Index: stable/10/libexec/rtld-elf/rtld.c =================================================================== --- stable/10/libexec/rtld-elf/rtld.c (revision 309370) +++ stable/10/libexec/rtld-elf/rtld.c (revision 309371) @@ -1,5095 +1,5095 @@ /*- * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra. * Copyright 2003 Alexander Kabaev . * Copyright 2009-2012 Konstantin Belousov . * Copyright 2012 John Marino . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /* * Dynamic linker for ELF. * * John Polstra . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "debug.h" #include "rtld.h" #include "libmap.h" #include "rtld_tls.h" #include "rtld_printf.h" #include "notes.h" #ifndef COMPAT_32BIT #define PATH_RTLD "/libexec/ld-elf.so.1" #else #define PATH_RTLD "/libexec/ld-elf32.so.1" #endif /* Types. */ typedef void (*func_ptr_type)(); typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg); /* * Function declarations. */ static const char *basename(const char *); static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **, const Elf_Dyn **, const Elf_Dyn **); static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *, const Elf_Dyn *); static void digest_dynamic(Obj_Entry *, int); static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *); static Obj_Entry *dlcheck(void *); static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags, int mode, RtldLockState *lockstate); static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int); static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *); static bool donelist_check(DoneList *, const Obj_Entry *); static void errmsg_restore(char *); static char *errmsg_save(void); static void *fill_search_info(const char *, size_t, void *); static char *find_library(const char *, const Obj_Entry *); static const char *gethints(bool); static void init_dag(Obj_Entry *); static void init_pagesizes(Elf_Auxinfo **aux_info); static void init_rtld(caddr_t, Elf_Auxinfo **); static void initlist_add_neededs(Needed_Entry *, Objlist *); static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *); static void linkmap_add(Obj_Entry *); static void linkmap_delete(Obj_Entry *); static void load_filtees(Obj_Entry *, int flags, RtldLockState *); static void unload_filtees(Obj_Entry *); static int load_needed_objects(Obj_Entry *, int); static int load_preload_objects(void); static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int); static void map_stacks_exec(RtldLockState *); static Obj_Entry *obj_from_addr(const void *); static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *); static void objlist_call_init(Objlist *, RtldLockState *); static void objlist_clear(Objlist *); static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *); static void objlist_init(Objlist *); static void objlist_push_head(Objlist *, Obj_Entry *); static void objlist_push_tail(Objlist *, Obj_Entry *); static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *); static void objlist_remove(Objlist *, Obj_Entry *); static void *path_enumerate(const char *, path_enum_proc, void *); static int relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj, int flags, RtldLockState *lockstate); static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, int flags, RtldLockState *lockstate); static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int, RtldLockState *); static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags, RtldLockState *lockstate); static int rtld_dirname(const char *, char *); static int rtld_dirname_abs(const char *, char *); static void *rtld_dlopen(const char *name, int fd, int mode); static void rtld_exit(void); static char *search_library_path(const char *, const char *); static const void **get_program_var_addr(const char *, RtldLockState *); static void set_program_var(const char *, const void *); static int symlook_default(SymLook *, const Obj_Entry *refobj); static int symlook_global(SymLook *, DoneList *); static void symlook_init_from_req(SymLook *, const SymLook *); static int symlook_list(SymLook *, const Objlist *, DoneList *); static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *); static int symlook_obj1_sysv(SymLook *, const Obj_Entry *); static int symlook_obj1_gnu(SymLook *, const Obj_Entry *); static void trace_loaded_objects(Obj_Entry *); static void unlink_object(Obj_Entry *); static void unload_object(Obj_Entry *); static void unref_dag(Obj_Entry *); static void ref_dag(Obj_Entry *); static char *origin_subst_one(Obj_Entry *, char *, const char *, const char *, bool); static char *origin_subst(Obj_Entry *, char *); static bool obj_resolve_origin(Obj_Entry *obj); static void preinit_main(void); static int rtld_verify_versions(const Objlist *); static int rtld_verify_object_versions(Obj_Entry *); static void object_add_name(Obj_Entry *, const char *); static int object_match_name(const Obj_Entry *, const char *); static void ld_utrace_log(int, void *, void *, size_t, int, const char *); static void rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info); static uint32_t gnu_hash(const char *); static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *, const unsigned long); void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported; void _r_debug_postinit(struct link_map *) __noinline __exported; /* * Data declarations. */ static char *error_message; /* Message for dlerror(), or NULL */ struct r_debug r_debug __exported; /* for GDB; */ static bool libmap_disable; /* Disable libmap */ static bool ld_loadfltr; /* Immediate filters processing */ static char *libmap_override; /* Maps to use in addition to libmap.conf */ static bool trust; /* False for setuid and setgid programs */ static bool dangerous_ld_env; /* True if environment variables have been used to affect the libraries loaded */ static char *ld_bind_now; /* Environment variable for immediate binding */ static char *ld_debug; /* Environment variable for debugging */ static char *ld_library_path; /* Environment variable for search path */ static char *ld_preload; /* Environment variable for libraries to load first */ static char *ld_elf_hints_path; /* Environment variable for alternative hints path */ static char *ld_tracing; /* Called from ldd to print libs */ static char *ld_utrace; /* Use utrace() to log events. */ static struct obj_entry_q obj_list; /* Queue of all loaded objects */ static Obj_Entry *obj_main; /* The main program shared object */ static Obj_Entry obj_rtld; /* The dynamic linker shared object */ static unsigned int obj_count; /* Number of objects in obj_list */ static unsigned int obj_loads; /* Number of loads of objects (gen count) */ static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */ STAILQ_HEAD_INITIALIZER(list_global); static Objlist list_main = /* Objects loaded at program startup */ STAILQ_HEAD_INITIALIZER(list_main); static Objlist list_fini = /* Objects needing fini() calls */ STAILQ_HEAD_INITIALIZER(list_fini); Elf_Sym sym_zero; /* For resolving undefined weak refs. */ #define GDB_STATE(s,m) r_debug.r_state = s; r_debug_state(&r_debug,m); extern Elf_Dyn _DYNAMIC; #pragma weak _DYNAMIC #ifndef RTLD_IS_DYNAMIC #define RTLD_IS_DYNAMIC() (&_DYNAMIC != NULL) #endif int dlclose(void *) __exported; char *dlerror(void) __exported; void *dlopen(const char *, int) __exported; void *fdlopen(int, int) __exported; void *dlsym(void *, const char *) __exported; dlfunc_t dlfunc(void *, const char *) __exported; void *dlvsym(void *, const char *, const char *) __exported; int dladdr(const void *, Dl_info *) __exported; void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *), void (*)(void *), void (*)(void *), void (*)(void *)) __exported; int dlinfo(void *, int , void *) __exported; int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported; int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported; int _rtld_get_stack_prot(void) __exported; int _rtld_is_dlopened(void *) __exported; void _rtld_error(const char *, ...) __exported; int npagesizes, osreldate; size_t *pagesizes; long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0}; static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC; static int max_stack_flags; /* * Global declarations normally provided by crt1. The dynamic linker is * not built with crt1, so we have to provide them ourselves. */ char *__progname; char **environ; /* * Used to pass argc, argv to init functions. */ int main_argc; char **main_argv; /* * Globals to control TLS allocation. */ size_t tls_last_offset; /* Static TLS offset of last module */ size_t tls_last_size; /* Static TLS size of last module */ size_t tls_static_space; /* Static TLS space allocated */ size_t tls_static_max_align; int tls_dtv_generation = 1; /* Used to detect when dtv size changes */ int tls_max_index = 1; /* Largest module index allocated */ bool ld_library_path_rpath = false; /* * Fill in a DoneList with an allocation large enough to hold all of * the currently-loaded objects. Keep this as a macro since it calls * alloca and we want that to occur within the scope of the caller. */ #define donelist_init(dlp) \ ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]), \ assert((dlp)->objs != NULL), \ (dlp)->num_alloc = obj_count, \ (dlp)->num_used = 0) #define UTRACE_DLOPEN_START 1 #define UTRACE_DLOPEN_STOP 2 #define UTRACE_DLCLOSE_START 3 #define UTRACE_DLCLOSE_STOP 4 #define UTRACE_LOAD_OBJECT 5 #define UTRACE_UNLOAD_OBJECT 6 #define UTRACE_ADD_RUNDEP 7 #define UTRACE_PRELOAD_FINISHED 8 #define UTRACE_INIT_CALL 9 #define UTRACE_FINI_CALL 10 #define UTRACE_DLSYM_START 11 #define UTRACE_DLSYM_STOP 12 struct utrace_rtld { char sig[4]; /* 'RTLD' */ int event; void *handle; void *mapbase; /* Used for 'parent' and 'init/fini' */ size_t mapsize; int refcnt; /* Used for 'mode' */ char name[MAXPATHLEN]; }; #define LD_UTRACE(e, h, mb, ms, r, n) do { \ if (ld_utrace != NULL) \ ld_utrace_log(e, h, mb, ms, r, n); \ } while (0) static void ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize, int refcnt, const char *name) { struct utrace_rtld ut; ut.sig[0] = 'R'; ut.sig[1] = 'T'; ut.sig[2] = 'L'; ut.sig[3] = 'D'; ut.event = event; ut.handle = handle; ut.mapbase = mapbase; ut.mapsize = mapsize; ut.refcnt = refcnt; bzero(ut.name, sizeof(ut.name)); if (name) strlcpy(ut.name, name, sizeof(ut.name)); utrace(&ut, sizeof(ut)); } /* * Main entry point for dynamic linking. The first argument is the * stack pointer. The stack is expected to be laid out as described * in the SVR4 ABI specification, Intel 386 Processor Supplement. * Specifically, the stack pointer points to a word containing * ARGC. Following that in the stack is a null-terminated sequence * of pointers to argument strings. Then comes a null-terminated * sequence of pointers to environment strings. Finally, there is a * sequence of "auxiliary vector" entries. * * The second argument points to a place to store the dynamic linker's * exit procedure pointer and the third to a place to store the main * program's object. * * The return value is the main program's entry point. */ func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp) { Elf_Auxinfo *aux_info[AT_COUNT]; int i; int argc; char **argv; char **env; Elf_Auxinfo *aux; Elf_Auxinfo *auxp; const char *argv0; Objlist_Entry *entry; Obj_Entry *obj; Obj_Entry *preload_tail; Obj_Entry *last_interposer; Objlist initlist; RtldLockState lockstate; char *library_path_rpath; int mib[2]; size_t len; /* * On entry, the dynamic linker itself has not been relocated yet. * Be very careful not to reference any global data until after * init_rtld has returned. It is OK to reference file-scope statics * and string constants, and to call static and global functions. */ /* Find the auxiliary vector on the stack. */ argc = *sp++; argv = (char **) sp; sp += argc + 1; /* Skip over arguments and NULL terminator */ env = (char **) sp; while (*sp++ != 0) /* Skip over environment, and NULL terminator */ ; aux = (Elf_Auxinfo *) sp; /* Digest the auxiliary vector. */ for (i = 0; i < AT_COUNT; i++) aux_info[i] = NULL; for (auxp = aux; auxp->a_type != AT_NULL; auxp++) { if (auxp->a_type < AT_COUNT) aux_info[auxp->a_type] = auxp; } /* Initialize and relocate ourselves. */ assert(aux_info[AT_BASE] != NULL); init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info); __progname = obj_rtld.path; argv0 = argv[0] != NULL ? argv[0] : "(null)"; environ = env; main_argc = argc; main_argv = argv; if (aux_info[AT_CANARY] != NULL && aux_info[AT_CANARY]->a_un.a_ptr != NULL) { i = aux_info[AT_CANARYLEN]->a_un.a_val; if (i > sizeof(__stack_chk_guard)) i = sizeof(__stack_chk_guard); memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i); } else { mib[0] = CTL_KERN; mib[1] = KERN_ARND; len = sizeof(__stack_chk_guard); if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 || len != sizeof(__stack_chk_guard)) { /* If sysctl was unsuccessful, use the "terminator canary". */ ((unsigned char *)(void *)__stack_chk_guard)[0] = 0; ((unsigned char *)(void *)__stack_chk_guard)[1] = 0; ((unsigned char *)(void *)__stack_chk_guard)[2] = '\n'; ((unsigned char *)(void *)__stack_chk_guard)[3] = 255; } } trust = !issetugid(); ld_bind_now = getenv(LD_ "BIND_NOW"); /* * If the process is tainted, then we un-set the dangerous environment * variables. The process will be marked as tainted until setuid(2) * is called. If any child process calls setuid(2) we do not want any * future processes to honor the potentially un-safe variables. */ if (!trust) { if (unsetenv(LD_ "PRELOAD") || unsetenv(LD_ "LIBMAP") || unsetenv(LD_ "LIBRARY_PATH") || unsetenv(LD_ "LIBMAP_DISABLE") || unsetenv(LD_ "DEBUG") || unsetenv(LD_ "ELF_HINTS_PATH") || unsetenv(LD_ "LOADFLTR") || unsetenv(LD_ "LIBRARY_PATH_RPATH")) { _rtld_error("environment corrupt; aborting"); rtld_die(); } } ld_debug = getenv(LD_ "DEBUG"); libmap_disable = getenv(LD_ "LIBMAP_DISABLE") != NULL; libmap_override = getenv(LD_ "LIBMAP"); ld_library_path = getenv(LD_ "LIBRARY_PATH"); ld_preload = getenv(LD_ "PRELOAD"); ld_elf_hints_path = getenv(LD_ "ELF_HINTS_PATH"); ld_loadfltr = getenv(LD_ "LOADFLTR") != NULL; library_path_rpath = getenv(LD_ "LIBRARY_PATH_RPATH"); if (library_path_rpath != NULL) { if (library_path_rpath[0] == 'y' || library_path_rpath[0] == 'Y' || library_path_rpath[0] == '1') ld_library_path_rpath = true; else ld_library_path_rpath = false; } dangerous_ld_env = libmap_disable || (libmap_override != NULL) || (ld_library_path != NULL) || (ld_preload != NULL) || (ld_elf_hints_path != NULL) || ld_loadfltr; ld_tracing = getenv(LD_ "TRACE_LOADED_OBJECTS"); ld_utrace = getenv(LD_ "UTRACE"); if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0) ld_elf_hints_path = _PATH_ELF_HINTS; if (ld_debug != NULL && *ld_debug != '\0') debug = 1; dbg("%s is initialized, base address = %p", __progname, (caddr_t) aux_info[AT_BASE]->a_un.a_ptr); dbg("RTLD dynamic = %p", obj_rtld.dynamic); dbg("RTLD pltgot = %p", obj_rtld.pltgot); dbg("initializing thread locks"); lockdflt_init(); /* * Load the main program, or process its program header if it is * already loaded. */ if (aux_info[AT_EXECFD] != NULL) { /* Load the main program. */ int fd = aux_info[AT_EXECFD]->a_un.a_val; dbg("loading main program"); obj_main = map_object(fd, argv0, NULL); close(fd); if (obj_main == NULL) rtld_die(); max_stack_flags = obj->stack_flags; } else { /* Main program already loaded. */ const Elf_Phdr *phdr; int phnum; caddr_t entry; dbg("processing main program's program header"); assert(aux_info[AT_PHDR] != NULL); phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr; assert(aux_info[AT_PHNUM] != NULL); phnum = aux_info[AT_PHNUM]->a_un.a_val; assert(aux_info[AT_PHENT] != NULL); assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr)); assert(aux_info[AT_ENTRY] != NULL); entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr; if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL) rtld_die(); } if (aux_info[AT_EXECPATH] != 0) { char *kexecpath; char buf[MAXPATHLEN]; kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr; dbg("AT_EXECPATH %p %s", kexecpath, kexecpath); if (kexecpath[0] == '/') obj_main->path = kexecpath; else if (getcwd(buf, sizeof(buf)) == NULL || strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) || strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf)) obj_main->path = xstrdup(argv0); else obj_main->path = xstrdup(buf); } else { dbg("No AT_EXECPATH"); obj_main->path = xstrdup(argv0); } dbg("obj_main path %s", obj_main->path); obj_main->mainprog = true; if (aux_info[AT_STACKPROT] != NULL && aux_info[AT_STACKPROT]->a_un.a_val != 0) stack_prot = aux_info[AT_STACKPROT]->a_un.a_val; #ifndef COMPAT_32BIT /* * Get the actual dynamic linker pathname from the executable if * possible. (It should always be possible.) That ensures that * gdb will find the right dynamic linker even if a non-standard * one is being used. */ if (obj_main->interp != NULL && strcmp(obj_main->interp, obj_rtld.path) != 0) { free(obj_rtld.path); obj_rtld.path = xstrdup(obj_main->interp); __progname = obj_rtld.path; } #endif digest_dynamic(obj_main, 0); dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu, obj_main->dynsymcount); linkmap_add(obj_main); linkmap_add(&obj_rtld); /* Link the main program into the list of objects. */ TAILQ_INSERT_HEAD(&obj_list, obj_main, next); obj_count++; obj_loads++; /* Initialize a fake symbol for resolving undefined weak references. */ sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE); sym_zero.st_shndx = SHN_UNDEF; sym_zero.st_value = -(uintptr_t)obj_main->relocbase; if (!libmap_disable) libmap_disable = (bool)lm_init(libmap_override); dbg("loading LD_PRELOAD libraries"); if (load_preload_objects() == -1) rtld_die(); preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q)); dbg("loading needed objects"); if (load_needed_objects(obj_main, 0) == -1) rtld_die(); /* Make a list of all objects loaded at startup. */ last_interposer = obj_main; TAILQ_FOREACH(obj, &obj_list, next) { if (obj->marker) continue; if (obj->z_interpose && obj != obj_main) { objlist_put_after(&list_main, last_interposer, obj); last_interposer = obj; } else { objlist_push_tail(&list_main, obj); } obj->refcount++; } dbg("checking for required versions"); if (rtld_verify_versions(&list_main) == -1 && !ld_tracing) rtld_die(); if (ld_tracing) { /* We're done */ trace_loaded_objects(obj_main); exit(0); } if (getenv(LD_ "DUMP_REL_PRE") != NULL) { dump_relocations(obj_main); exit (0); } /* * Processing tls relocations requires having the tls offsets * initialized. Prepare offsets before starting initial * relocation processing. */ dbg("initializing initial thread local storage offsets"); STAILQ_FOREACH(entry, &list_main, link) { /* * Allocate all the initial objects out of the static TLS * block even if they didn't ask for it. */ allocate_tls_offset(entry->obj); } if (relocate_objects(obj_main, ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld, SYMLOOK_EARLY, NULL) == -1) rtld_die(); dbg("doing copy relocations"); if (do_copy_relocations(obj_main) == -1) rtld_die(); if (getenv(LD_ "DUMP_REL_POST") != NULL) { dump_relocations(obj_main); exit (0); } /* * Setup TLS for main thread. This must be done after the * relocations are processed, since tls initialization section * might be the subject for relocations. */ dbg("initializing initial thread local storage"); allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list))); dbg("initializing key program variables"); set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : ""); set_program_var("environ", env); set_program_var("__elf_aux_vector", aux); /* Make a list of init functions to call. */ objlist_init(&initlist); initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)), preload_tail, &initlist); r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */ map_stacks_exec(NULL); ifunc_init(aux); dbg("resolving ifuncs"); if (resolve_objects_ifunc(obj_main, ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY, NULL) == -1) rtld_die(); if (!obj_main->crt_no_init) { /* * Make sure we don't call the main program's init and fini * functions for binaries linked with old crt1 which calls * _init itself. */ obj_main->init = obj_main->fini = (Elf_Addr)NULL; obj_main->preinit_array = obj_main->init_array = obj_main->fini_array = (Elf_Addr)NULL; } wlock_acquire(rtld_bind_lock, &lockstate); if (obj_main->crt_no_init) preinit_main(); objlist_call_init(&initlist, &lockstate); _r_debug_postinit(&obj_main->linkmap); objlist_clear(&initlist); dbg("loading filtees"); TAILQ_FOREACH(obj, &obj_list, next) { if (obj->marker) continue; if (ld_loadfltr || obj->z_loadfltr) load_filtees(obj, 0, &lockstate); } lock_release(rtld_bind_lock, &lockstate); dbg("transferring control to program entry point = %p", obj_main->entry); /* Return the exit procedure and the program entry point. */ *exit_proc = rtld_exit; *objp = obj_main; return (func_ptr_type) obj_main->entry; } void * rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def) { void *ptr; Elf_Addr target; ptr = (void *)make_function_pointer(def, obj); target = call_ifunc_resolver(ptr); return ((void *)target); } Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff) { const Elf_Rel *rel; const Elf_Sym *def; const Obj_Entry *defobj; Elf_Addr *where; Elf_Addr target; RtldLockState lockstate; rlock_acquire(rtld_bind_lock, &lockstate); if (sigsetjmp(lockstate.env, 0) != 0) lock_upgrade(rtld_bind_lock, &lockstate); if (obj->pltrel) rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff); else rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff); where = (Elf_Addr *) (obj->relocbase + rel->r_offset); - def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL, - &lockstate); + def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT, + NULL, &lockstate); if (def == NULL) rtld_die(); if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) target = (Elf_Addr)rtld_resolve_ifunc(defobj, def); else target = (Elf_Addr)(defobj->relocbase + def->st_value); dbg("\"%s\" in \"%s\" ==> %p in \"%s\"", defobj->strtab + def->st_name, basename(obj->path), (void *)target, basename(defobj->path)); /* * Write the new contents for the jmpslot. Note that depending on * architecture, the value which we need to return back to the * lazy binding trampoline may or may not be the target * address. The value returned from reloc_jmpslot() is the value * that the trampoline needs. */ target = reloc_jmpslot(where, target, defobj, obj, rel); lock_release(rtld_bind_lock, &lockstate); return target; } /* * Error reporting function. Use it like printf. If formats the message * into a buffer, and sets things up so that the next call to dlerror() * will return the message. */ void _rtld_error(const char *fmt, ...) { static char buf[512]; va_list ap; va_start(ap, fmt); rtld_vsnprintf(buf, sizeof buf, fmt, ap); error_message = buf; va_end(ap); } /* * Return a dynamically-allocated copy of the current error message, if any. */ static char * errmsg_save(void) { return error_message == NULL ? NULL : xstrdup(error_message); } /* * Restore the current error message from a copy which was previously saved * by errmsg_save(). The copy is freed. */ static void errmsg_restore(char *saved_msg) { if (saved_msg == NULL) error_message = NULL; else { _rtld_error("%s", saved_msg); free(saved_msg); } } static const char * basename(const char *name) { const char *p = strrchr(name, '/'); return p != NULL ? p + 1 : name; } static struct utsname uts; static char * origin_subst_one(Obj_Entry *obj, char *real, const char *kw, const char *subst, bool may_free) { char *p, *p1, *res, *resp; int subst_len, kw_len, subst_count, old_len, new_len; kw_len = strlen(kw); /* * First, count the number of the keyword occurences, to * preallocate the final string. */ for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) { p1 = strstr(p, kw); if (p1 == NULL) break; } /* * If the keyword is not found, just return. * * Return non-substituted string if resolution failed. We * cannot do anything more reasonable, the failure mode of the * caller is unresolved library anyway. */ if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj))) return (may_free ? real : xstrdup(real)); if (obj != NULL) subst = obj->origin_path; /* * There is indeed something to substitute. Calculate the * length of the resulting string, and allocate it. */ subst_len = strlen(subst); old_len = strlen(real); new_len = old_len + (subst_len - kw_len) * subst_count; res = xmalloc(new_len + 1); /* * Now, execute the substitution loop. */ for (p = real, resp = res, *resp = '\0';;) { p1 = strstr(p, kw); if (p1 != NULL) { /* Copy the prefix before keyword. */ memcpy(resp, p, p1 - p); resp += p1 - p; /* Keyword replacement. */ memcpy(resp, subst, subst_len); resp += subst_len; *resp = '\0'; p = p1 + kw_len; } else break; } /* Copy to the end of string and finish. */ strcat(resp, p); if (may_free) free(real); return (res); } static char * origin_subst(Obj_Entry *obj, char *real) { char *res1, *res2, *res3, *res4; if (obj == NULL || !trust) return (xstrdup(real)); if (uts.sysname[0] == '\0') { if (uname(&uts) != 0) { _rtld_error("utsname failed: %d", errno); return (NULL); } } res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false); res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true); res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true); res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true); return (res4); } void rtld_die(void) { const char *msg = dlerror(); if (msg == NULL) msg = "Fatal error"; rtld_fdputstr(STDERR_FILENO, msg); rtld_fdputchar(STDERR_FILENO, '\n'); _exit(1); } /* * Process a shared object's DYNAMIC section, and save the important * information in its Obj_Entry structure. */ static void digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath, const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath) { const Elf_Dyn *dynp; Needed_Entry **needed_tail = &obj->needed; Needed_Entry **needed_filtees_tail = &obj->needed_filtees; Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees; const Elf_Hashelt *hashtab; const Elf32_Word *hashval; Elf32_Word bkt, nmaskwords; int bloom_size32; int plttype = DT_REL; *dyn_rpath = NULL; *dyn_soname = NULL; *dyn_runpath = NULL; obj->bind_now = false; for (dynp = obj->dynamic; dynp->d_tag != DT_NULL; dynp++) { switch (dynp->d_tag) { case DT_REL: obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr); break; case DT_RELSZ: obj->relsize = dynp->d_un.d_val; break; case DT_RELENT: assert(dynp->d_un.d_val == sizeof(Elf_Rel)); break; case DT_JMPREL: obj->pltrel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr); break; case DT_PLTRELSZ: obj->pltrelsize = dynp->d_un.d_val; break; case DT_RELA: obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr); break; case DT_RELASZ: obj->relasize = dynp->d_un.d_val; break; case DT_RELAENT: assert(dynp->d_un.d_val == sizeof(Elf_Rela)); break; case DT_PLTREL: plttype = dynp->d_un.d_val; assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA); break; case DT_SYMTAB: obj->symtab = (const Elf_Sym *) (obj->relocbase + dynp->d_un.d_ptr); break; case DT_SYMENT: assert(dynp->d_un.d_val == sizeof(Elf_Sym)); break; case DT_STRTAB: obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr); break; case DT_STRSZ: obj->strsize = dynp->d_un.d_val; break; case DT_VERNEED: obj->verneed = (const Elf_Verneed *) (obj->relocbase + dynp->d_un.d_val); break; case DT_VERNEEDNUM: obj->verneednum = dynp->d_un.d_val; break; case DT_VERDEF: obj->verdef = (const Elf_Verdef *) (obj->relocbase + dynp->d_un.d_val); break; case DT_VERDEFNUM: obj->verdefnum = dynp->d_un.d_val; break; case DT_VERSYM: obj->versyms = (const Elf_Versym *)(obj->relocbase + dynp->d_un.d_val); break; case DT_HASH: { hashtab = (const Elf_Hashelt *)(obj->relocbase + dynp->d_un.d_ptr); obj->nbuckets = hashtab[0]; obj->nchains = hashtab[1]; obj->buckets = hashtab + 2; obj->chains = obj->buckets + obj->nbuckets; obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 && obj->buckets != NULL; } break; case DT_GNU_HASH: { hashtab = (const Elf_Hashelt *)(obj->relocbase + dynp->d_un.d_ptr); obj->nbuckets_gnu = hashtab[0]; obj->symndx_gnu = hashtab[1]; nmaskwords = hashtab[2]; bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords; obj->maskwords_bm_gnu = nmaskwords - 1; obj->shift2_gnu = hashtab[3]; obj->bloom_gnu = (Elf_Addr *) (hashtab + 4); obj->buckets_gnu = hashtab + 4 + bloom_size32; obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu - obj->symndx_gnu; /* Number of bitmask words is required to be power of 2 */ obj->valid_hash_gnu = powerof2(nmaskwords) && obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL; } break; case DT_NEEDED: if (!obj->rtld) { Needed_Entry *nep = NEW(Needed_Entry); nep->name = dynp->d_un.d_val; nep->obj = NULL; nep->next = NULL; *needed_tail = nep; needed_tail = &nep->next; } break; case DT_FILTER: if (!obj->rtld) { Needed_Entry *nep = NEW(Needed_Entry); nep->name = dynp->d_un.d_val; nep->obj = NULL; nep->next = NULL; *needed_filtees_tail = nep; needed_filtees_tail = &nep->next; } break; case DT_AUXILIARY: if (!obj->rtld) { Needed_Entry *nep = NEW(Needed_Entry); nep->name = dynp->d_un.d_val; nep->obj = NULL; nep->next = NULL; *needed_aux_filtees_tail = nep; needed_aux_filtees_tail = &nep->next; } break; case DT_PLTGOT: obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr); break; case DT_TEXTREL: obj->textrel = true; break; case DT_SYMBOLIC: obj->symbolic = true; break; case DT_RPATH: /* * We have to wait until later to process this, because we * might not have gotten the address of the string table yet. */ *dyn_rpath = dynp; break; case DT_SONAME: *dyn_soname = dynp; break; case DT_RUNPATH: *dyn_runpath = dynp; break; case DT_INIT: obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); break; case DT_PREINIT_ARRAY: obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); break; case DT_PREINIT_ARRAYSZ: obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); break; case DT_INIT_ARRAY: obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); break; case DT_INIT_ARRAYSZ: obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); break; case DT_FINI: obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); break; case DT_FINI_ARRAY: obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); break; case DT_FINI_ARRAYSZ: obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); break; /* * Don't process DT_DEBUG on MIPS as the dynamic section * is mapped read-only. DT_MIPS_RLD_MAP is used instead. */ #ifndef __mips__ case DT_DEBUG: if (!early) dbg("Filling in DT_DEBUG entry"); ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug; break; #endif case DT_FLAGS: if (dynp->d_un.d_val & DF_ORIGIN) obj->z_origin = true; if (dynp->d_un.d_val & DF_SYMBOLIC) obj->symbolic = true; if (dynp->d_un.d_val & DF_TEXTREL) obj->textrel = true; if (dynp->d_un.d_val & DF_BIND_NOW) obj->bind_now = true; /*if (dynp->d_un.d_val & DF_STATIC_TLS) ;*/ break; #ifdef __mips__ case DT_MIPS_LOCAL_GOTNO: obj->local_gotno = dynp->d_un.d_val; break; case DT_MIPS_SYMTABNO: obj->symtabno = dynp->d_un.d_val; break; case DT_MIPS_GOTSYM: obj->gotsym = dynp->d_un.d_val; break; case DT_MIPS_RLD_MAP: *((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug; break; #endif case DT_FLAGS_1: if (dynp->d_un.d_val & DF_1_NOOPEN) obj->z_noopen = true; if (dynp->d_un.d_val & DF_1_ORIGIN) obj->z_origin = true; if (dynp->d_un.d_val & DF_1_GLOBAL) obj->z_global = true; if (dynp->d_un.d_val & DF_1_BIND_NOW) obj->bind_now = true; if (dynp->d_un.d_val & DF_1_NODELETE) obj->z_nodelete = true; if (dynp->d_un.d_val & DF_1_LOADFLTR) obj->z_loadfltr = true; if (dynp->d_un.d_val & DF_1_INTERPOSE) obj->z_interpose = true; if (dynp->d_un.d_val & DF_1_NODEFLIB) obj->z_nodeflib = true; break; default: if (!early) { dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag, (long)dynp->d_tag); } break; } } obj->traced = false; if (plttype == DT_RELA) { obj->pltrela = (const Elf_Rela *) obj->pltrel; obj->pltrel = NULL; obj->pltrelasize = obj->pltrelsize; obj->pltrelsize = 0; } /* Determine size of dynsym table (equal to nchains of sysv hash) */ if (obj->valid_hash_sysv) obj->dynsymcount = obj->nchains; else if (obj->valid_hash_gnu) { obj->dynsymcount = 0; for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) { if (obj->buckets_gnu[bkt] == 0) continue; hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]]; do obj->dynsymcount++; while ((*hashval++ & 1u) == 0); } obj->dynsymcount += obj->symndx_gnu; } } static bool obj_resolve_origin(Obj_Entry *obj) { if (obj->origin_path != NULL) return (true); obj->origin_path = xmalloc(PATH_MAX); return (rtld_dirname_abs(obj->path, obj->origin_path) != -1); } static void digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath, const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath) { if (obj->z_origin && !obj_resolve_origin(obj)) rtld_die(); if (dyn_runpath != NULL) { obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val; obj->runpath = origin_subst(obj, obj->runpath); } else if (dyn_rpath != NULL) { obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val; obj->rpath = origin_subst(obj, obj->rpath); } if (dyn_soname != NULL) object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val); } static void digest_dynamic(Obj_Entry *obj, int early) { const Elf_Dyn *dyn_rpath; const Elf_Dyn *dyn_soname; const Elf_Dyn *dyn_runpath; digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath); digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath); } /* * Process a shared object's program header. This is used only for the * main program, when the kernel has already loaded the main program * into memory before calling the dynamic linker. It creates and * returns an Obj_Entry structure. */ static Obj_Entry * digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path) { Obj_Entry *obj; const Elf_Phdr *phlimit = phdr + phnum; const Elf_Phdr *ph; Elf_Addr note_start, note_end; int nsegs = 0; obj = obj_new(); for (ph = phdr; ph < phlimit; ph++) { if (ph->p_type != PT_PHDR) continue; obj->phdr = phdr; obj->phsize = ph->p_memsz; obj->relocbase = (caddr_t)phdr - ph->p_vaddr; break; } obj->stack_flags = PF_X | PF_R | PF_W; for (ph = phdr; ph < phlimit; ph++) { switch (ph->p_type) { case PT_INTERP: obj->interp = (const char *)(ph->p_vaddr + obj->relocbase); break; case PT_LOAD: if (nsegs == 0) { /* First load segment */ obj->vaddrbase = trunc_page(ph->p_vaddr); obj->mapbase = obj->vaddrbase + obj->relocbase; obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) - obj->vaddrbase; } else { /* Last load segment */ obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) - obj->vaddrbase; } nsegs++; break; case PT_DYNAMIC: obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase); break; case PT_TLS: obj->tlsindex = 1; obj->tlssize = ph->p_memsz; obj->tlsalign = ph->p_align; obj->tlsinitsize = ph->p_filesz; obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase); break; case PT_GNU_STACK: obj->stack_flags = ph->p_flags; break; case PT_GNU_RELRO: obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr); obj->relro_size = round_page(ph->p_memsz); break; case PT_NOTE: note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr; note_end = note_start + ph->p_filesz; digest_notes(obj, note_start, note_end); break; } } if (nsegs < 1) { _rtld_error("%s: too few PT_LOAD segments", path); return NULL; } obj->entry = entry; return obj; } void digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end) { const Elf_Note *note; const char *note_name; uintptr_t p; for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end; note = (const Elf_Note *)((const char *)(note + 1) + roundup2(note->n_namesz, sizeof(Elf32_Addr)) + roundup2(note->n_descsz, sizeof(Elf32_Addr)))) { if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) || note->n_descsz != sizeof(int32_t)) continue; if (note->n_type != ABI_NOTETYPE && note->n_type != CRT_NOINIT_NOTETYPE) continue; note_name = (const char *)(note + 1); if (strncmp(NOTE_FREEBSD_VENDOR, note_name, sizeof(NOTE_FREEBSD_VENDOR)) != 0) continue; switch (note->n_type) { case ABI_NOTETYPE: /* FreeBSD osrel note */ p = (uintptr_t)(note + 1); p += roundup2(note->n_namesz, sizeof(Elf32_Addr)); obj->osrel = *(const int32_t *)(p); dbg("note osrel %d", obj->osrel); break; case CRT_NOINIT_NOTETYPE: /* FreeBSD 'crt does not call init' note */ obj->crt_no_init = true; dbg("note crt_no_init"); break; } } } static Obj_Entry * dlcheck(void *handle) { Obj_Entry *obj; TAILQ_FOREACH(obj, &obj_list, next) { if (obj == (Obj_Entry *) handle) break; } if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) { _rtld_error("Invalid shared object handle %p", handle); return NULL; } return obj; } /* * If the given object is already in the donelist, return true. Otherwise * add the object to the list and return false. */ static bool donelist_check(DoneList *dlp, const Obj_Entry *obj) { unsigned int i; for (i = 0; i < dlp->num_used; i++) if (dlp->objs[i] == obj) return true; /* * Our donelist allocation should always be sufficient. But if * our threads locking isn't working properly, more shared objects * could have been loaded since we allocated the list. That should * never happen, but we'll handle it properly just in case it does. */ if (dlp->num_used < dlp->num_alloc) dlp->objs[dlp->num_used++] = obj; return false; } /* * Hash function for symbol table lookup. Don't even think about changing * this. It is specified by the System V ABI. */ unsigned long elf_hash(const char *name) { const unsigned char *p = (const unsigned char *) name; unsigned long h = 0; unsigned long g; while (*p != '\0') { h = (h << 4) + *p++; if ((g = h & 0xf0000000) != 0) h ^= g >> 24; h &= ~g; } return h; } /* * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits * unsigned in case it's implemented with a wider type. */ static uint32_t gnu_hash(const char *s) { uint32_t h; unsigned char c; h = 5381; for (c = *s; c != '\0'; c = *++s) h = h * 33 + c; return (h & 0xffffffff); } /* * Find the library with the given name, and return its full pathname. * The returned string is dynamically allocated. Generates an error * message and returns NULL if the library cannot be found. * * If the second argument is non-NULL, then it refers to an already- * loaded shared object, whose library search path will be searched. * * The search order is: * DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1) * DT_RPATH of the main object if DSO without defined DT_RUNPATH (1) * LD_LIBRARY_PATH * DT_RUNPATH in the referencing file * ldconfig hints (if -z nodefaultlib, filter out default library directories * from list) * /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib * * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined. */ static char * find_library(const char *xname, const Obj_Entry *refobj) { char *pathname; char *name; bool nodeflib, objgiven; objgiven = refobj != NULL; if (strchr(xname, '/') != NULL) { /* Hard coded pathname */ if (xname[0] != '/' && !trust) { _rtld_error("Absolute pathname required for shared object \"%s\"", xname); return NULL; } return (origin_subst(__DECONST(Obj_Entry *, refobj), __DECONST(char *, xname))); } if (libmap_disable || !objgiven || (name = lm_find(refobj->path, xname)) == NULL) name = (char *)xname; dbg(" Searching for \"%s\"", name); /* * If refobj->rpath != NULL, then refobj->runpath is NULL. Fall * back to pre-conforming behaviour if user requested so with * LD_LIBRARY_PATH_RPATH environment variable and ignore -z * nodeflib. */ if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) { if ((pathname = search_library_path(name, ld_library_path)) != NULL || (refobj != NULL && (pathname = search_library_path(name, refobj->rpath)) != NULL) || (pathname = search_library_path(name, gethints(false))) != NULL || (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL) return (pathname); } else { nodeflib = objgiven ? refobj->z_nodeflib : false; if ((objgiven && (pathname = search_library_path(name, refobj->rpath)) != NULL) || (objgiven && refobj->runpath == NULL && refobj != obj_main && (pathname = search_library_path(name, obj_main->rpath)) != NULL) || (pathname = search_library_path(name, ld_library_path)) != NULL || (objgiven && (pathname = search_library_path(name, refobj->runpath)) != NULL) || (pathname = search_library_path(name, gethints(nodeflib))) != NULL || (objgiven && !nodeflib && (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)) return (pathname); } if (objgiven && refobj->path != NULL) { _rtld_error("Shared object \"%s\" not found, required by \"%s\"", name, basename(refobj->path)); } else { _rtld_error("Shared object \"%s\" not found", name); } return NULL; } /* * Given a symbol number in a referencing object, find the corresponding * definition of the symbol. Returns a pointer to the symbol, or NULL if * no definition was found. Returns a pointer to the Obj_Entry of the * defining object via the reference parameter DEFOBJ_OUT. */ const Elf_Sym * find_symdef(unsigned long symnum, const Obj_Entry *refobj, const Obj_Entry **defobj_out, int flags, SymCache *cache, RtldLockState *lockstate) { const Elf_Sym *ref; const Elf_Sym *def; const Obj_Entry *defobj; SymLook req; const char *name; int res; /* * If we have already found this symbol, get the information from * the cache. */ if (symnum >= refobj->dynsymcount) return NULL; /* Bad object */ if (cache != NULL && cache[symnum].sym != NULL) { *defobj_out = cache[symnum].obj; return cache[symnum].sym; } ref = refobj->symtab + symnum; name = refobj->strtab + ref->st_name; def = NULL; defobj = NULL; /* * We don't have to do a full scale lookup if the symbol is local. * We know it will bind to the instance in this load module; to * which we already have a pointer (ie ref). By not doing a lookup, * we not only improve performance, but it also avoids unresolvable * symbols when local symbols are not in the hash table. This has * been seen with the ia64 toolchain. */ if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) { if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) { _rtld_error("%s: Bogus symbol table entry %lu", refobj->path, symnum); } symlook_init(&req, name); req.flags = flags; req.ventry = fetch_ventry(refobj, symnum); req.lockstate = lockstate; res = symlook_default(&req, refobj); if (res == 0) { def = req.sym_out; defobj = req.defobj_out; } } else { def = ref; defobj = refobj; } /* * If we found no definition and the reference is weak, treat the * symbol as having the value zero. */ if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) { def = &sym_zero; defobj = obj_main; } if (def != NULL) { *defobj_out = defobj; /* Record the information in the cache to avoid subsequent lookups. */ if (cache != NULL) { cache[symnum].sym = def; cache[symnum].obj = defobj; } } else { if (refobj != &obj_rtld) _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name); } return def; } /* * Return the search path from the ldconfig hints file, reading it if * necessary. If nostdlib is true, then the default search paths are * not added to result. * * Returns NULL if there are problems with the hints file, * or if the search path there is empty. */ static const char * gethints(bool nostdlib) { static char *hints, *filtered_path; static struct elfhints_hdr hdr; struct fill_search_info_args sargs, hargs; struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo; struct dl_serpath *SLPpath, *hintpath; char *p; struct stat hint_stat; unsigned int SLPndx, hintndx, fndx, fcount; int fd; size_t flen; uint32_t dl; bool skip; /* First call, read the hints file */ if (hints == NULL) { /* Keep from trying again in case the hints file is bad. */ hints = ""; if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1) return (NULL); /* * Check of hdr.dirlistlen value against type limit * intends to pacify static analyzers. Further * paranoia leads to checks that dirlist is fully * contained in the file range. */ if (read(fd, &hdr, sizeof hdr) != sizeof hdr || hdr.magic != ELFHINTS_MAGIC || hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 || fstat(fd, &hint_stat) == -1) { cleanup1: close(fd); hdr.dirlistlen = 0; return (NULL); } dl = hdr.strtab; if (dl + hdr.dirlist < dl) goto cleanup1; dl += hdr.dirlist; if (dl + hdr.dirlistlen < dl) goto cleanup1; dl += hdr.dirlistlen; if (dl > hint_stat.st_size) goto cleanup1; p = xmalloc(hdr.dirlistlen + 1); if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 || read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1 || p[hdr.dirlistlen] != '\0') { free(p); goto cleanup1; } hints = p; close(fd); } /* * If caller agreed to receive list which includes the default * paths, we are done. Otherwise, if we still did not * calculated filtered result, do it now. */ if (!nostdlib) return (hints[0] != '\0' ? hints : NULL); if (filtered_path != NULL) goto filt_ret; /* * Obtain the list of all configured search paths, and the * list of the default paths. * * First estimate the size of the results. */ smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath); smeta.dls_cnt = 0; hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath); hmeta.dls_cnt = 0; sargs.request = RTLD_DI_SERINFOSIZE; sargs.serinfo = &smeta; hargs.request = RTLD_DI_SERINFOSIZE; hargs.serinfo = &hmeta; path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs); path_enumerate(hints, fill_search_info, &hargs); SLPinfo = xmalloc(smeta.dls_size); hintinfo = xmalloc(hmeta.dls_size); /* * Next fetch both sets of paths. */ sargs.request = RTLD_DI_SERINFO; sargs.serinfo = SLPinfo; sargs.serpath = &SLPinfo->dls_serpath[0]; sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt]; hargs.request = RTLD_DI_SERINFO; hargs.serinfo = hintinfo; hargs.serpath = &hintinfo->dls_serpath[0]; hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt]; path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs); path_enumerate(hints, fill_search_info, &hargs); /* * Now calculate the difference between two sets, by excluding * standard paths from the full set. */ fndx = 0; fcount = 0; filtered_path = xmalloc(hdr.dirlistlen + 1); hintpath = &hintinfo->dls_serpath[0]; for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) { skip = false; SLPpath = &SLPinfo->dls_serpath[0]; /* * Check each standard path against current. */ for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) { /* matched, skip the path */ if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) { skip = true; break; } } if (skip) continue; /* * Not matched against any standard path, add the path * to result. Separate consequtive paths with ':'. */ if (fcount > 0) { filtered_path[fndx] = ':'; fndx++; } fcount++; flen = strlen(hintpath->dls_name); strncpy((filtered_path + fndx), hintpath->dls_name, flen); fndx += flen; } filtered_path[fndx] = '\0'; free(SLPinfo); free(hintinfo); filt_ret: return (filtered_path[0] != '\0' ? filtered_path : NULL); } static void init_dag(Obj_Entry *root) { const Needed_Entry *needed; const Objlist_Entry *elm; DoneList donelist; if (root->dag_inited) return; donelist_init(&donelist); /* Root object belongs to own DAG. */ objlist_push_tail(&root->dldags, root); objlist_push_tail(&root->dagmembers, root); donelist_check(&donelist, root); /* * Add dependencies of root object to DAG in breadth order * by exploiting the fact that each new object get added * to the tail of the dagmembers list. */ STAILQ_FOREACH(elm, &root->dagmembers, link) { for (needed = elm->obj->needed; needed != NULL; needed = needed->next) { if (needed->obj == NULL || donelist_check(&donelist, needed->obj)) continue; objlist_push_tail(&needed->obj->dldags, root); objlist_push_tail(&root->dagmembers, needed->obj); } } root->dag_inited = true; } Obj_Entry * globallist_curr(const Obj_Entry *obj) { for (;;) { if (obj == NULL) return (NULL); if (!obj->marker) return (__DECONST(Obj_Entry *, obj)); obj = TAILQ_PREV(obj, obj_entry_q, next); } } Obj_Entry * globallist_next(const Obj_Entry *obj) { for (;;) { obj = TAILQ_NEXT(obj, next); if (obj == NULL) return (NULL); if (!obj->marker) return (__DECONST(Obj_Entry *, obj)); } } static void process_z(Obj_Entry *root) { const Objlist_Entry *elm; Obj_Entry *obj; /* * Walk over object DAG and process every dependent object * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need * to grow their own DAG. * * For DF_1_GLOBAL, DAG is required for symbol lookups in * symlook_global() to work. * * For DF_1_NODELETE, the DAG should have its reference upped. */ STAILQ_FOREACH(elm, &root->dagmembers, link) { obj = elm->obj; if (obj == NULL) continue; if (obj->z_nodelete && !obj->ref_nodel) { dbg("obj %s -z nodelete", obj->path); init_dag(obj); ref_dag(obj); obj->ref_nodel = true; } if (obj->z_global && objlist_find(&list_global, obj) == NULL) { dbg("obj %s -z global", obj->path); objlist_push_tail(&list_global, obj); init_dag(obj); } } } /* * Initialize the dynamic linker. The argument is the address at which * the dynamic linker has been mapped into memory. The primary task of * this function is to relocate the dynamic linker. */ static void init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info) { Obj_Entry objtmp; /* Temporary rtld object */ const Elf_Ehdr *ehdr; const Elf_Dyn *dyn_rpath; const Elf_Dyn *dyn_soname; const Elf_Dyn *dyn_runpath; #ifdef RTLD_INIT_PAGESIZES_EARLY /* The page size is required by the dynamic memory allocator. */ init_pagesizes(aux_info); #endif /* * Conjure up an Obj_Entry structure for the dynamic linker. * * The "path" member can't be initialized yet because string constants * cannot yet be accessed. Below we will set it correctly. */ memset(&objtmp, 0, sizeof(objtmp)); objtmp.path = NULL; objtmp.rtld = true; objtmp.mapbase = mapbase; #ifdef PIC objtmp.relocbase = mapbase; #endif if (RTLD_IS_DYNAMIC()) { objtmp.dynamic = rtld_dynamic(&objtmp); digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath); assert(objtmp.needed == NULL); #if !defined(__mips__) /* MIPS has a bogus DT_TEXTREL. */ assert(!objtmp.textrel); #endif /* * Temporarily put the dynamic linker entry into the object list, so * that symbols can be found. */ relocate_objects(&objtmp, true, &objtmp, 0, NULL); } ehdr = (Elf_Ehdr *)mapbase; objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff); objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]); /* Initialize the object list. */ TAILQ_INIT(&obj_list); /* Now that non-local variables can be accesses, copy out obj_rtld. */ memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld)); #ifndef RTLD_INIT_PAGESIZES_EARLY /* The page size is required by the dynamic memory allocator. */ init_pagesizes(aux_info); #endif if (aux_info[AT_OSRELDATE] != NULL) osreldate = aux_info[AT_OSRELDATE]->a_un.a_val; digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath); /* Replace the path with a dynamically allocated copy. */ obj_rtld.path = xstrdup(PATH_RTLD); r_debug.r_brk = r_debug_state; r_debug.r_state = RT_CONSISTENT; } /* * Retrieve the array of supported page sizes. The kernel provides the page * sizes in increasing order. */ static void init_pagesizes(Elf_Auxinfo **aux_info) { static size_t psa[MAXPAGESIZES]; int mib[2]; size_t len, size; if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] != NULL) { size = aux_info[AT_PAGESIZESLEN]->a_un.a_val; pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr; } else { len = 2; if (sysctlnametomib("hw.pagesizes", mib, &len) == 0) size = sizeof(psa); else { /* As a fallback, retrieve the base page size. */ size = sizeof(psa[0]); if (aux_info[AT_PAGESZ] != NULL) { psa[0] = aux_info[AT_PAGESZ]->a_un.a_val; goto psa_filled; } else { mib[0] = CTL_HW; mib[1] = HW_PAGESIZE; len = 2; } } if (sysctl(mib, len, psa, &size, NULL, 0) == -1) { _rtld_error("sysctl for hw.pagesize(s) failed"); rtld_die(); } psa_filled: pagesizes = psa; } npagesizes = size / sizeof(pagesizes[0]); /* Discard any invalid entries at the end of the array. */ while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0) npagesizes--; } /* * Add the init functions from a needed object list (and its recursive * needed objects) to "list". This is not used directly; it is a helper * function for initlist_add_objects(). The write lock must be held * when this function is called. */ static void initlist_add_neededs(Needed_Entry *needed, Objlist *list) { /* Recursively process the successor needed objects. */ if (needed->next != NULL) initlist_add_neededs(needed->next, list); /* Process the current needed object. */ if (needed->obj != NULL) initlist_add_objects(needed->obj, needed->obj, list); } /* * Scan all of the DAGs rooted in the range of objects from "obj" to * "tail" and add their init functions to "list". This recurses over * the DAGs and ensure the proper init ordering such that each object's * needed libraries are initialized before the object itself. At the * same time, this function adds the objects to the global finalization * list "list_fini" in the opposite order. The write lock must be * held when this function is called. */ static void initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list) { Obj_Entry *nobj; if (obj->init_scanned || obj->init_done) return; obj->init_scanned = true; /* Recursively process the successor objects. */ nobj = globallist_next(obj); if (nobj != NULL && obj != tail) initlist_add_objects(nobj, tail, list); /* Recursively process the needed objects. */ if (obj->needed != NULL) initlist_add_neededs(obj->needed, list); if (obj->needed_filtees != NULL) initlist_add_neededs(obj->needed_filtees, list); if (obj->needed_aux_filtees != NULL) initlist_add_neededs(obj->needed_aux_filtees, list); /* Add the object to the init list. */ if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL || obj->init_array != (Elf_Addr)NULL) objlist_push_tail(list, obj); /* Add the object to the global fini list in the reverse order. */ if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL) && !obj->on_fini_list) { objlist_push_head(&list_fini, obj); obj->on_fini_list = true; } } #ifndef FPTR_TARGET #define FPTR_TARGET(f) ((Elf_Addr) (f)) #endif static void free_needed_filtees(Needed_Entry *n) { Needed_Entry *needed, *needed1; for (needed = n; needed != NULL; needed = needed->next) { if (needed->obj != NULL) { dlclose(needed->obj); needed->obj = NULL; } } for (needed = n; needed != NULL; needed = needed1) { needed1 = needed->next; free(needed); } } static void unload_filtees(Obj_Entry *obj) { free_needed_filtees(obj->needed_filtees); obj->needed_filtees = NULL; free_needed_filtees(obj->needed_aux_filtees); obj->needed_aux_filtees = NULL; obj->filtees_loaded = false; } static void load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags, RtldLockState *lockstate) { for (; needed != NULL; needed = needed->next) { needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj, flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) | RTLD_LOCAL, lockstate); } } static void load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate) { lock_restart_for_upgrade(lockstate); if (!obj->filtees_loaded) { load_filtee1(obj, obj->needed_filtees, flags, lockstate); load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate); obj->filtees_loaded = true; } } static int process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags) { Obj_Entry *obj1; for (; needed != NULL; needed = needed->next) { obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj, flags & ~RTLD_LO_NOLOAD); if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0) return (-1); } return (0); } /* * Given a shared object, traverse its list of needed objects, and load * each of them. Returns 0 on success. Generates an error message and * returns -1 on failure. */ static int load_needed_objects(Obj_Entry *first, int flags) { Obj_Entry *obj; for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) { if (obj->marker) continue; if (process_needed(obj, obj->needed, flags) == -1) return (-1); } return (0); } static int load_preload_objects(void) { char *p = ld_preload; Obj_Entry *obj; static const char delim[] = " \t:;"; if (p == NULL) return 0; p += strspn(p, delim); while (*p != '\0') { size_t len = strcspn(p, delim); char savech; savech = p[len]; p[len] = '\0'; obj = load_object(p, -1, NULL, 0); if (obj == NULL) return -1; /* XXX - cleanup */ obj->z_interpose = true; p[len] = savech; p += len; p += strspn(p, delim); } LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL); return 0; } static const char * printable_path(const char *path) { return (path == NULL ? "" : path); } /* * Load a shared object into memory, if it is not already loaded. The * object may be specified by name or by user-supplied file descriptor * fd_u. In the later case, the fd_u descriptor is not closed, but its * duplicate is. * * Returns a pointer to the Obj_Entry for the object. Returns NULL * on failure. */ static Obj_Entry * load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags) { Obj_Entry *obj; int fd; struct stat sb; char *path; if (name != NULL) { TAILQ_FOREACH(obj, &obj_list, next) { if (obj->marker) continue; if (object_match_name(obj, name)) return (obj); } path = find_library(name, refobj); if (path == NULL) return (NULL); } else path = NULL; /* * If we didn't find a match by pathname, or the name is not * supplied, open the file and check again by device and inode. * This avoids false mismatches caused by multiple links or ".." * in pathnames. * * To avoid a race, we open the file and use fstat() rather than * using stat(). */ fd = -1; if (fd_u == -1) { if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) { _rtld_error("Cannot open \"%s\"", path); free(path); return (NULL); } } else { fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0); if (fd == -1) { _rtld_error("Cannot dup fd"); free(path); return (NULL); } } if (fstat(fd, &sb) == -1) { _rtld_error("Cannot fstat \"%s\"", printable_path(path)); close(fd); free(path); return NULL; } TAILQ_FOREACH(obj, &obj_list, next) { if (obj->marker) continue; if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) break; } if (obj != NULL && name != NULL) { object_add_name(obj, name); free(path); close(fd); return obj; } if (flags & RTLD_LO_NOLOAD) { free(path); close(fd); return (NULL); } /* First use of this object, so we must map it in */ obj = do_load_object(fd, name, path, &sb, flags); if (obj == NULL) free(path); close(fd); return obj; } static Obj_Entry * do_load_object(int fd, const char *name, char *path, struct stat *sbp, int flags) { Obj_Entry *obj; struct statfs fs; /* * but first, make sure that environment variables haven't been * used to circumvent the noexec flag on a filesystem. */ if (dangerous_ld_env) { if (fstatfs(fd, &fs) != 0) { _rtld_error("Cannot fstatfs \"%s\"", printable_path(path)); return NULL; } if (fs.f_flags & MNT_NOEXEC) { _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname); return NULL; } } dbg("loading \"%s\"", printable_path(path)); obj = map_object(fd, printable_path(path), sbp); if (obj == NULL) return NULL; /* * If DT_SONAME is present in the object, digest_dynamic2 already * added it to the object names. */ if (name != NULL) object_add_name(obj, name); obj->path = path; digest_dynamic(obj, 0); dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path, obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount); if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) == RTLD_LO_DLOPEN) { dbg("refusing to load non-loadable \"%s\"", obj->path); _rtld_error("Cannot dlopen non-loadable %s", obj->path); munmap(obj->mapbase, obj->mapsize); obj_free(obj); return (NULL); } obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0; TAILQ_INSERT_TAIL(&obj_list, obj, next); obj_count++; obj_loads++; linkmap_add(obj); /* for GDB & dlinfo() */ max_stack_flags |= obj->stack_flags; dbg(" %p .. %p: %s", obj->mapbase, obj->mapbase + obj->mapsize - 1, obj->path); if (obj->textrel) dbg(" WARNING: %s has impure text", obj->path); LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0, obj->path); return obj; } static Obj_Entry * obj_from_addr(const void *addr) { Obj_Entry *obj; TAILQ_FOREACH(obj, &obj_list, next) { if (obj->marker) continue; if (addr < (void *) obj->mapbase) continue; if (addr < (void *) (obj->mapbase + obj->mapsize)) return obj; } return NULL; } static void preinit_main(void) { Elf_Addr *preinit_addr; int index; preinit_addr = (Elf_Addr *)obj_main->preinit_array; if (preinit_addr == NULL) return; for (index = 0; index < obj_main->preinit_array_num; index++) { if (preinit_addr[index] != 0 && preinit_addr[index] != 1) { dbg("calling preinit function for %s at %p", obj_main->path, (void *)preinit_addr[index]); LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index], 0, 0, obj_main->path); call_init_pointer(obj_main, preinit_addr[index]); } } } /* * Call the finalization functions for each of the objects in "list" * belonging to the DAG of "root" and referenced once. If NULL "root" * is specified, every finalization function will be called regardless * of the reference count and the list elements won't be freed. All of * the objects are expected to have non-NULL fini functions. */ static void objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate) { Objlist_Entry *elm; char *saved_msg; Elf_Addr *fini_addr; int index; assert(root == NULL || root->refcount == 1); /* * Preserve the current error message since a fini function might * call into the dynamic linker and overwrite it. */ saved_msg = errmsg_save(); do { STAILQ_FOREACH(elm, list, link) { if (root != NULL && (elm->obj->refcount != 1 || objlist_find(&root->dagmembers, elm->obj) == NULL)) continue; /* Remove object from fini list to prevent recursive invocation. */ STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link); /* * XXX: If a dlopen() call references an object while the * fini function is in progress, we might end up trying to * unload the referenced object in dlclose() or the object * won't be unloaded although its fini function has been * called. */ lock_release(rtld_bind_lock, lockstate); /* * It is legal to have both DT_FINI and DT_FINI_ARRAY defined. * When this happens, DT_FINI_ARRAY is processed first. */ fini_addr = (Elf_Addr *)elm->obj->fini_array; if (fini_addr != NULL && elm->obj->fini_array_num > 0) { for (index = elm->obj->fini_array_num - 1; index >= 0; index--) { if (fini_addr[index] != 0 && fini_addr[index] != 1) { dbg("calling fini function for %s at %p", elm->obj->path, (void *)fini_addr[index]); LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)fini_addr[index], 0, 0, elm->obj->path); call_initfini_pointer(elm->obj, fini_addr[index]); } } } if (elm->obj->fini != (Elf_Addr)NULL) { dbg("calling fini function for %s at %p", elm->obj->path, (void *)elm->obj->fini); LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0, elm->obj->path); call_initfini_pointer(elm->obj, elm->obj->fini); } wlock_acquire(rtld_bind_lock, lockstate); /* No need to free anything if process is going down. */ if (root != NULL) free(elm); /* * We must restart the list traversal after every fini call * because a dlclose() call from the fini function or from * another thread might have modified the reference counts. */ break; } } while (elm != NULL); errmsg_restore(saved_msg); } /* * Call the initialization functions for each of the objects in * "list". All of the objects are expected to have non-NULL init * functions. */ static void objlist_call_init(Objlist *list, RtldLockState *lockstate) { Objlist_Entry *elm; Obj_Entry *obj; char *saved_msg; Elf_Addr *init_addr; int index; /* * Clean init_scanned flag so that objects can be rechecked and * possibly initialized earlier if any of vectors called below * cause the change by using dlopen. */ TAILQ_FOREACH(obj, &obj_list, next) { if (obj->marker) continue; obj->init_scanned = false; } /* * Preserve the current error message since an init function might * call into the dynamic linker and overwrite it. */ saved_msg = errmsg_save(); STAILQ_FOREACH(elm, list, link) { if (elm->obj->init_done) /* Initialized early. */ continue; /* * Race: other thread might try to use this object before current * one completes the initilization. Not much can be done here * without better locking. */ elm->obj->init_done = true; lock_release(rtld_bind_lock, lockstate); /* * It is legal to have both DT_INIT and DT_INIT_ARRAY defined. * When this happens, DT_INIT is processed first. */ if (elm->obj->init != (Elf_Addr)NULL) { dbg("calling init function for %s at %p", elm->obj->path, (void *)elm->obj->init); LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0, elm->obj->path); call_initfini_pointer(elm->obj, elm->obj->init); } init_addr = (Elf_Addr *)elm->obj->init_array; if (init_addr != NULL) { for (index = 0; index < elm->obj->init_array_num; index++) { if (init_addr[index] != 0 && init_addr[index] != 1) { dbg("calling init function for %s at %p", elm->obj->path, (void *)init_addr[index]); LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)init_addr[index], 0, 0, elm->obj->path); call_init_pointer(elm->obj, init_addr[index]); } } } wlock_acquire(rtld_bind_lock, lockstate); } errmsg_restore(saved_msg); } static void objlist_clear(Objlist *list) { Objlist_Entry *elm; while (!STAILQ_EMPTY(list)) { elm = STAILQ_FIRST(list); STAILQ_REMOVE_HEAD(list, link); free(elm); } } static Objlist_Entry * objlist_find(Objlist *list, const Obj_Entry *obj) { Objlist_Entry *elm; STAILQ_FOREACH(elm, list, link) if (elm->obj == obj) return elm; return NULL; } static void objlist_init(Objlist *list) { STAILQ_INIT(list); } static void objlist_push_head(Objlist *list, Obj_Entry *obj) { Objlist_Entry *elm; elm = NEW(Objlist_Entry); elm->obj = obj; STAILQ_INSERT_HEAD(list, elm, link); } static void objlist_push_tail(Objlist *list, Obj_Entry *obj) { Objlist_Entry *elm; elm = NEW(Objlist_Entry); elm->obj = obj; STAILQ_INSERT_TAIL(list, elm, link); } static void objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj) { Objlist_Entry *elm, *listelm; STAILQ_FOREACH(listelm, list, link) { if (listelm->obj == listobj) break; } elm = NEW(Objlist_Entry); elm->obj = obj; if (listelm != NULL) STAILQ_INSERT_AFTER(list, listelm, elm, link); else STAILQ_INSERT_TAIL(list, elm, link); } static void objlist_remove(Objlist *list, Obj_Entry *obj) { Objlist_Entry *elm; if ((elm = objlist_find(list, obj)) != NULL) { STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link); free(elm); } } /* * Relocate dag rooted in the specified object. * Returns 0 on success, or -1 on failure. */ static int relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj, int flags, RtldLockState *lockstate) { Objlist_Entry *elm; int error; error = 0; STAILQ_FOREACH(elm, &root->dagmembers, link) { error = relocate_object(elm->obj, bind_now, rtldobj, flags, lockstate); if (error == -1) break; } return (error); } /* * Prepare for, or clean after, relocating an object marked with * DT_TEXTREL or DF_TEXTREL. Before relocating, all read-only * segments are remapped read-write. After relocations are done, the * segment's permissions are returned back to the modes specified in * the phdrs. If any relocation happened, or always for wired * program, COW is triggered. */ static int reloc_textrel_prot(Obj_Entry *obj, bool before) { const Elf_Phdr *ph; void *base; size_t l, sz; int prot; for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0; l--, ph++) { if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0) continue; base = obj->relocbase + trunc_page(ph->p_vaddr); sz = round_page(ph->p_vaddr + ph->p_filesz) - trunc_page(ph->p_vaddr); prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0); if (mprotect(base, sz, prot) == -1) { _rtld_error("%s: Cannot write-%sable text segment: %s", obj->path, before ? "en" : "dis", rtld_strerror(errno)); return (-1); } } return (0); } /* * Relocate single object. * Returns 0 on success, or -1 on failure. */ static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, int flags, RtldLockState *lockstate) { if (obj->relocated) return (0); obj->relocated = true; if (obj != rtldobj) dbg("relocating \"%s\"", obj->path); if (obj->symtab == NULL || obj->strtab == NULL || !(obj->valid_hash_sysv || obj->valid_hash_gnu)) { _rtld_error("%s: Shared object has no run-time symbol table", obj->path); return (-1); } /* There are relocations to the write-protected text segment. */ if (obj->textrel && reloc_textrel_prot(obj, true) != 0) return (-1); /* Process the non-PLT non-IFUNC relocations. */ if (reloc_non_plt(obj, rtldobj, flags, lockstate)) return (-1); /* Re-protected the text segment. */ if (obj->textrel && reloc_textrel_prot(obj, false) != 0) return (-1); /* Set the special PLT or GOT entries. */ init_pltgot(obj); /* Process the PLT relocations. */ if (reloc_plt(obj) == -1) return (-1); /* Relocate the jump slots if we are doing immediate binding. */ if (obj->bind_now || bind_now) if (reloc_jmpslots(obj, flags, lockstate) == -1) return (-1); /* * Process the non-PLT IFUNC relocations. The relocations are * processed in two phases, because IFUNC resolvers may * reference other symbols, which must be readily processed * before resolvers are called. */ if (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate)) return (-1); if (obj->relro_size > 0) { if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) { _rtld_error("%s: Cannot enforce relro protection: %s", obj->path, rtld_strerror(errno)); return (-1); } } /* * Set up the magic number and version in the Obj_Entry. These * were checked in the crt1.o from the original ElfKit, so we * set them for backward compatibility. */ obj->magic = RTLD_MAGIC; obj->version = RTLD_VERSION; return (0); } /* * Relocate newly-loaded shared objects. The argument is a pointer to * the Obj_Entry for the first such object. All objects from the first * to the end of the list of objects are relocated. Returns 0 on success, * or -1 on failure. */ static int relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj, int flags, RtldLockState *lockstate) { Obj_Entry *obj; int error; for (error = 0, obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) { if (obj->marker) continue; error = relocate_object(obj, bind_now, rtldobj, flags, lockstate); if (error == -1) break; } return (error); } /* * The handling of R_MACHINE_IRELATIVE relocations and jumpslots * referencing STT_GNU_IFUNC symbols is postponed till the other * relocations are done. The indirect functions specified as * ifunc are allowed to call other symbols, so we need to have * objects relocated before asking for resolution from indirects. * * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion, * instead of the usual lazy handling of PLT slots. It is * consistent with how GNU does it. */ static int resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags, RtldLockState *lockstate) { if (obj->irelative && reloc_iresolve(obj, lockstate) == -1) return (-1); if ((obj->bind_now || bind_now) && obj->gnu_ifunc && reloc_gnu_ifunc(obj, flags, lockstate) == -1) return (-1); return (0); } static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags, RtldLockState *lockstate) { Obj_Entry *obj; for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) { if (obj->marker) continue; if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1) return (-1); } return (0); } static int initlist_objects_ifunc(Objlist *list, bool bind_now, int flags, RtldLockState *lockstate) { Objlist_Entry *elm; STAILQ_FOREACH(elm, list, link) { if (resolve_object_ifunc(elm->obj, bind_now, flags, lockstate) == -1) return (-1); } return (0); } /* * Cleanup procedure. It will be called (by the atexit mechanism) just * before the process exits. */ static void rtld_exit(void) { RtldLockState lockstate; wlock_acquire(rtld_bind_lock, &lockstate); dbg("rtld_exit()"); objlist_call_fini(&list_fini, NULL, &lockstate); /* No need to remove the items from the list, since we are exiting. */ if (!libmap_disable) lm_fini(); lock_release(rtld_bind_lock, &lockstate); } /* * Iterate over a search path, translate each element, and invoke the * callback on the result. */ static void * path_enumerate(const char *path, path_enum_proc callback, void *arg) { const char *trans; if (path == NULL) return (NULL); path += strspn(path, ":;"); while (*path != '\0') { size_t len; char *res; len = strcspn(path, ":;"); trans = lm_findn(NULL, path, len); if (trans) res = callback(trans, strlen(trans), arg); else res = callback(path, len, arg); if (res != NULL) return (res); path += len; path += strspn(path, ":;"); } return (NULL); } struct try_library_args { const char *name; size_t namelen; char *buffer; size_t buflen; }; static void * try_library_path(const char *dir, size_t dirlen, void *param) { struct try_library_args *arg; arg = param; if (*dir == '/' || trust) { char *pathname; if (dirlen + 1 + arg->namelen + 1 > arg->buflen) return (NULL); pathname = arg->buffer; strncpy(pathname, dir, dirlen); pathname[dirlen] = '/'; strcpy(pathname + dirlen + 1, arg->name); dbg(" Trying \"%s\"", pathname); if (access(pathname, F_OK) == 0) { /* We found it */ pathname = xmalloc(dirlen + 1 + arg->namelen + 1); strcpy(pathname, arg->buffer); return (pathname); } } return (NULL); } static char * search_library_path(const char *name, const char *path) { char *p; struct try_library_args arg; if (path == NULL) return NULL; arg.name = name; arg.namelen = strlen(name); arg.buffer = xmalloc(PATH_MAX); arg.buflen = PATH_MAX; p = path_enumerate(path, try_library_path, &arg); free(arg.buffer); return (p); } int dlclose(void *handle) { Obj_Entry *root; RtldLockState lockstate; wlock_acquire(rtld_bind_lock, &lockstate); root = dlcheck(handle); if (root == NULL) { lock_release(rtld_bind_lock, &lockstate); return -1; } LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount, root->path); /* Unreference the object and its dependencies. */ root->dl_refcount--; if (root->refcount == 1) { /* * The object will be no longer referenced, so we must unload it. * First, call the fini functions. */ objlist_call_fini(&list_fini, root, &lockstate); unref_dag(root); /* Finish cleaning up the newly-unreferenced objects. */ GDB_STATE(RT_DELETE,&root->linkmap); unload_object(root); GDB_STATE(RT_CONSISTENT,NULL); } else unref_dag(root); LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL); lock_release(rtld_bind_lock, &lockstate); return 0; } char * dlerror(void) { char *msg = error_message; error_message = NULL; return msg; } /* * This function is deprecated and has no effect. */ void dllockinit(void *context, void *(*lock_create)(void *context), void (*rlock_acquire)(void *lock), void (*wlock_acquire)(void *lock), void (*lock_release)(void *lock), void (*lock_destroy)(void *lock), void (*context_destroy)(void *context)) { static void *cur_context; static void (*cur_context_destroy)(void *); /* Just destroy the context from the previous call, if necessary. */ if (cur_context_destroy != NULL) cur_context_destroy(cur_context); cur_context = context; cur_context_destroy = context_destroy; } void * dlopen(const char *name, int mode) { return (rtld_dlopen(name, -1, mode)); } void * fdlopen(int fd, int mode) { return (rtld_dlopen(NULL, fd, mode)); } static void * rtld_dlopen(const char *name, int fd, int mode) { RtldLockState lockstate; int lo_flags; LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name); ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1"; if (ld_tracing != NULL) { rlock_acquire(rtld_bind_lock, &lockstate); if (sigsetjmp(lockstate.env, 0) != 0) lock_upgrade(rtld_bind_lock, &lockstate); environ = (char **)*get_program_var_addr("environ", &lockstate); lock_release(rtld_bind_lock, &lockstate); } lo_flags = RTLD_LO_DLOPEN; if (mode & RTLD_NODELETE) lo_flags |= RTLD_LO_NODELETE; if (mode & RTLD_NOLOAD) lo_flags |= RTLD_LO_NOLOAD; if (ld_tracing != NULL) lo_flags |= RTLD_LO_TRACE; return (dlopen_object(name, fd, obj_main, lo_flags, mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL)); } static void dlopen_cleanup(Obj_Entry *obj) { obj->dl_refcount--; unref_dag(obj); if (obj->refcount == 0) unload_object(obj); } static Obj_Entry * dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags, int mode, RtldLockState *lockstate) { Obj_Entry *old_obj_tail; Obj_Entry *obj; Objlist initlist; RtldLockState mlockstate; int result; objlist_init(&initlist); if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) { wlock_acquire(rtld_bind_lock, &mlockstate); lockstate = &mlockstate; } GDB_STATE(RT_ADD,NULL); old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q)); obj = NULL; if (name == NULL && fd == -1) { obj = obj_main; obj->refcount++; } else { obj = load_object(name, fd, refobj, lo_flags); } if (obj) { obj->dl_refcount++; if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL) objlist_push_tail(&list_global, obj); if (globallist_next(old_obj_tail) != NULL) { /* We loaded something new. */ assert(globallist_next(old_obj_tail) == obj); result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY)); init_dag(obj); ref_dag(obj); if (result != -1) result = rtld_verify_versions(&obj->dagmembers); if (result != -1 && ld_tracing) goto trace; if (result == -1 || relocate_object_dag(obj, (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld, (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0, lockstate) == -1) { dlopen_cleanup(obj); obj = NULL; } else if (lo_flags & RTLD_LO_EARLY) { /* * Do not call the init functions for early loaded * filtees. The image is still not initialized enough * for them to work. * * Our object is found by the global object list and * will be ordered among all init calls done right * before transferring control to main. */ } else { /* Make list of init functions to call. */ initlist_add_objects(obj, obj, &initlist); } /* * Process all no_delete or global objects here, given * them own DAGs to prevent their dependencies from being * unloaded. This has to be done after we have loaded all * of the dependencies, so that we do not miss any. */ if (obj != NULL) process_z(obj); } else { /* * Bump the reference counts for objects on this DAG. If * this is the first dlopen() call for the object that was * already loaded as a dependency, initialize the dag * starting at it. */ init_dag(obj); ref_dag(obj); if ((lo_flags & RTLD_LO_TRACE) != 0) goto trace; } if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 || obj->z_nodelete) && !obj->ref_nodel) { dbg("obj %s nodelete", obj->path); ref_dag(obj); obj->z_nodelete = obj->ref_nodel = true; } } LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0, name); GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL); if (!(lo_flags & RTLD_LO_EARLY)) { map_stacks_exec(lockstate); } if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW, (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0, lockstate) == -1) { objlist_clear(&initlist); dlopen_cleanup(obj); if (lockstate == &mlockstate) lock_release(rtld_bind_lock, lockstate); return (NULL); } if (!(lo_flags & RTLD_LO_EARLY)) { /* Call the init functions. */ objlist_call_init(&initlist, lockstate); } objlist_clear(&initlist); if (lockstate == &mlockstate) lock_release(rtld_bind_lock, lockstate); return obj; trace: trace_loaded_objects(obj); if (lockstate == &mlockstate) lock_release(rtld_bind_lock, lockstate); exit(0); } static void * do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve, int flags) { DoneList donelist; const Obj_Entry *obj, *defobj; const Elf_Sym *def; SymLook req; RtldLockState lockstate; #ifndef __ia64__ tls_index ti; #endif void *sym; int res; def = NULL; defobj = NULL; symlook_init(&req, name); req.ventry = ve; req.flags = flags | SYMLOOK_IN_PLT; req.lockstate = &lockstate; LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name); rlock_acquire(rtld_bind_lock, &lockstate); if (sigsetjmp(lockstate.env, 0) != 0) lock_upgrade(rtld_bind_lock, &lockstate); if (handle == NULL || handle == RTLD_NEXT || handle == RTLD_DEFAULT || handle == RTLD_SELF) { if ((obj = obj_from_addr(retaddr)) == NULL) { _rtld_error("Cannot determine caller's shared object"); lock_release(rtld_bind_lock, &lockstate); LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); return NULL; } if (handle == NULL) { /* Just the caller's shared object. */ res = symlook_obj(&req, obj); if (res == 0) { def = req.sym_out; defobj = req.defobj_out; } } else if (handle == RTLD_NEXT || /* Objects after caller's */ handle == RTLD_SELF) { /* ... caller included */ if (handle == RTLD_NEXT) obj = globallist_next(obj); for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) { if (obj->marker) continue; res = symlook_obj(&req, obj); if (res == 0) { if (def == NULL || ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) { def = req.sym_out; defobj = req.defobj_out; if (ELF_ST_BIND(def->st_info) != STB_WEAK) break; } } } /* * Search the dynamic linker itself, and possibly resolve the * symbol from there. This is how the application links to * dynamic linker services such as dlopen. */ if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { res = symlook_obj(&req, &obj_rtld); if (res == 0) { def = req.sym_out; defobj = req.defobj_out; } } } else { assert(handle == RTLD_DEFAULT); res = symlook_default(&req, obj); if (res == 0) { defobj = req.defobj_out; def = req.sym_out; } } } else { if ((obj = dlcheck(handle)) == NULL) { lock_release(rtld_bind_lock, &lockstate); LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); return NULL; } donelist_init(&donelist); if (obj->mainprog) { /* Handle obtained by dlopen(NULL, ...) implies global scope. */ res = symlook_global(&req, &donelist); if (res == 0) { def = req.sym_out; defobj = req.defobj_out; } /* * Search the dynamic linker itself, and possibly resolve the * symbol from there. This is how the application links to * dynamic linker services such as dlopen. */ if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { res = symlook_obj(&req, &obj_rtld); if (res == 0) { def = req.sym_out; defobj = req.defobj_out; } } } else { /* Search the whole DAG rooted at the given object. */ res = symlook_list(&req, &obj->dagmembers, &donelist); if (res == 0) { def = req.sym_out; defobj = req.defobj_out; } } } if (def != NULL) { lock_release(rtld_bind_lock, &lockstate); /* * The value required by the caller is derived from the value * of the symbol. For the ia64 architecture, we need to * construct a function descriptor which the caller can use to * call the function with the right 'gp' value. For other * architectures and for non-functions, the value is simply * the relocated value of the symbol. */ if (ELF_ST_TYPE(def->st_info) == STT_FUNC) sym = make_function_pointer(def, defobj); else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) sym = rtld_resolve_ifunc(defobj, def); else if (ELF_ST_TYPE(def->st_info) == STT_TLS) { #ifdef __ia64__ return (__tls_get_addr(defobj->tlsindex, def->st_value)); #else ti.ti_module = defobj->tlsindex; ti.ti_offset = def->st_value; sym = __tls_get_addr(&ti); #endif } else sym = defobj->relocbase + def->st_value; LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name); return (sym); } _rtld_error("Undefined symbol \"%s\"", name); lock_release(rtld_bind_lock, &lockstate); LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); return NULL; } void * dlsym(void *handle, const char *name) { return do_dlsym(handle, name, __builtin_return_address(0), NULL, SYMLOOK_DLSYM); } dlfunc_t dlfunc(void *handle, const char *name) { union { void *d; dlfunc_t f; } rv; rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL, SYMLOOK_DLSYM); return (rv.f); } void * dlvsym(void *handle, const char *name, const char *version) { Ver_Entry ventry; ventry.name = version; ventry.file = NULL; ventry.hash = elf_hash(version); ventry.flags= 0; return do_dlsym(handle, name, __builtin_return_address(0), &ventry, SYMLOOK_DLSYM); } int _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info) { const Obj_Entry *obj; RtldLockState lockstate; rlock_acquire(rtld_bind_lock, &lockstate); obj = obj_from_addr(addr); if (obj == NULL) { _rtld_error("No shared object contains address"); lock_release(rtld_bind_lock, &lockstate); return (0); } rtld_fill_dl_phdr_info(obj, phdr_info); lock_release(rtld_bind_lock, &lockstate); return (1); } int dladdr(const void *addr, Dl_info *info) { const Obj_Entry *obj; const Elf_Sym *def; void *symbol_addr; unsigned long symoffset; RtldLockState lockstate; rlock_acquire(rtld_bind_lock, &lockstate); obj = obj_from_addr(addr); if (obj == NULL) { _rtld_error("No shared object contains address"); lock_release(rtld_bind_lock, &lockstate); return 0; } info->dli_fname = obj->path; info->dli_fbase = obj->mapbase; info->dli_saddr = (void *)0; info->dli_sname = NULL; /* * Walk the symbol list looking for the symbol whose address is * closest to the address sent in. */ for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) { def = obj->symtab + symoffset; /* * For skip the symbol if st_shndx is either SHN_UNDEF or * SHN_COMMON. */ if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON) continue; /* * If the symbol is greater than the specified address, or if it * is further away from addr than the current nearest symbol, * then reject it. */ symbol_addr = obj->relocbase + def->st_value; if (symbol_addr > addr || symbol_addr < info->dli_saddr) continue; /* Update our idea of the nearest symbol. */ info->dli_sname = obj->strtab + def->st_name; info->dli_saddr = symbol_addr; /* Exact match? */ if (info->dli_saddr == addr) break; } lock_release(rtld_bind_lock, &lockstate); return 1; } int dlinfo(void *handle, int request, void *p) { const Obj_Entry *obj; RtldLockState lockstate; int error; rlock_acquire(rtld_bind_lock, &lockstate); if (handle == NULL || handle == RTLD_SELF) { void *retaddr; retaddr = __builtin_return_address(0); /* __GNUC__ only */ if ((obj = obj_from_addr(retaddr)) == NULL) _rtld_error("Cannot determine caller's shared object"); } else obj = dlcheck(handle); if (obj == NULL) { lock_release(rtld_bind_lock, &lockstate); return (-1); } error = 0; switch (request) { case RTLD_DI_LINKMAP: *((struct link_map const **)p) = &obj->linkmap; break; case RTLD_DI_ORIGIN: error = rtld_dirname(obj->path, p); break; case RTLD_DI_SERINFOSIZE: case RTLD_DI_SERINFO: error = do_search_info(obj, request, (struct dl_serinfo *)p); break; default: _rtld_error("Invalid request %d passed to dlinfo()", request); error = -1; } lock_release(rtld_bind_lock, &lockstate); return (error); } static void rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info) { phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase; phdr_info->dlpi_name = obj->path; phdr_info->dlpi_phdr = obj->phdr; phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]); phdr_info->dlpi_tls_modid = obj->tlsindex; phdr_info->dlpi_tls_data = obj->tlsinit; phdr_info->dlpi_adds = obj_loads; phdr_info->dlpi_subs = obj_loads - obj_count; } int dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param) { struct dl_phdr_info phdr_info; Obj_Entry *obj, marker; RtldLockState bind_lockstate, phdr_lockstate; int error; bzero(&marker, sizeof(marker)); marker.marker = true; error = 0; wlock_acquire(rtld_phdr_lock, &phdr_lockstate); rlock_acquire(rtld_bind_lock, &bind_lockstate); for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) { TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next); rtld_fill_dl_phdr_info(obj, &phdr_info); lock_release(rtld_bind_lock, &bind_lockstate); error = callback(&phdr_info, sizeof phdr_info, param); rlock_acquire(rtld_bind_lock, &bind_lockstate); obj = globallist_next(&marker); TAILQ_REMOVE(&obj_list, &marker, next); if (error != 0) { lock_release(rtld_bind_lock, &bind_lockstate); lock_release(rtld_phdr_lock, &phdr_lockstate); return (error); } } if (error == 0) { rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info); lock_release(rtld_bind_lock, &bind_lockstate); error = callback(&phdr_info, sizeof(phdr_info), param); } lock_release(rtld_phdr_lock, &phdr_lockstate); return (error); } static void * fill_search_info(const char *dir, size_t dirlen, void *param) { struct fill_search_info_args *arg; arg = param; if (arg->request == RTLD_DI_SERINFOSIZE) { arg->serinfo->dls_cnt ++; arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1; } else { struct dl_serpath *s_entry; s_entry = arg->serpath; s_entry->dls_name = arg->strspace; s_entry->dls_flags = arg->flags; strncpy(arg->strspace, dir, dirlen); arg->strspace[dirlen] = '\0'; arg->strspace += dirlen + 1; arg->serpath++; } return (NULL); } static int do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info) { struct dl_serinfo _info; struct fill_search_info_args args; args.request = RTLD_DI_SERINFOSIZE; args.serinfo = &_info; _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath); _info.dls_cnt = 0; path_enumerate(obj->rpath, fill_search_info, &args); path_enumerate(ld_library_path, fill_search_info, &args); path_enumerate(obj->runpath, fill_search_info, &args); path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args); if (!obj->z_nodeflib) path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args); if (request == RTLD_DI_SERINFOSIZE) { info->dls_size = _info.dls_size; info->dls_cnt = _info.dls_cnt; return (0); } if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) { _rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()"); return (-1); } args.request = RTLD_DI_SERINFO; args.serinfo = info; args.serpath = &info->dls_serpath[0]; args.strspace = (char *)&info->dls_serpath[_info.dls_cnt]; args.flags = LA_SER_RUNPATH; if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL) return (-1); args.flags = LA_SER_LIBPATH; if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL) return (-1); args.flags = LA_SER_RUNPATH; if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL) return (-1); args.flags = LA_SER_CONFIG; if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args) != NULL) return (-1); args.flags = LA_SER_DEFAULT; if (!obj->z_nodeflib && path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL) return (-1); return (0); } static int rtld_dirname(const char *path, char *bname) { const char *endp; /* Empty or NULL string gets treated as "." */ if (path == NULL || *path == '\0') { bname[0] = '.'; bname[1] = '\0'; return (0); } /* Strip trailing slashes */ endp = path + strlen(path) - 1; while (endp > path && *endp == '/') endp--; /* Find the start of the dir */ while (endp > path && *endp != '/') endp--; /* Either the dir is "/" or there are no slashes */ if (endp == path) { bname[0] = *endp == '/' ? '/' : '.'; bname[1] = '\0'; return (0); } else { do { endp--; } while (endp > path && *endp == '/'); } if (endp - path + 2 > PATH_MAX) { _rtld_error("Filename is too long: %s", path); return(-1); } strncpy(bname, path, endp - path + 1); bname[endp - path + 1] = '\0'; return (0); } static int rtld_dirname_abs(const char *path, char *base) { char *last; if (realpath(path, base) == NULL) return (-1); dbg("%s -> %s", path, base); last = strrchr(base, '/'); if (last == NULL) return (-1); if (last != base) *last = '\0'; return (0); } static void linkmap_add(Obj_Entry *obj) { struct link_map *l = &obj->linkmap; struct link_map *prev; obj->linkmap.l_name = obj->path; obj->linkmap.l_addr = obj->mapbase; obj->linkmap.l_ld = obj->dynamic; #ifdef __mips__ /* GDB needs load offset on MIPS to use the symbols */ obj->linkmap.l_offs = obj->relocbase; #endif if (r_debug.r_map == NULL) { r_debug.r_map = l; return; } /* * Scan to the end of the list, but not past the entry for the * dynamic linker, which we want to keep at the very end. */ for (prev = r_debug.r_map; prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap; prev = prev->l_next) ; /* Link in the new entry. */ l->l_prev = prev; l->l_next = prev->l_next; if (l->l_next != NULL) l->l_next->l_prev = l; prev->l_next = l; } static void linkmap_delete(Obj_Entry *obj) { struct link_map *l = &obj->linkmap; if (l->l_prev == NULL) { if ((r_debug.r_map = l->l_next) != NULL) l->l_next->l_prev = NULL; return; } if ((l->l_prev->l_next = l->l_next) != NULL) l->l_next->l_prev = l->l_prev; } /* * Function for the debugger to set a breakpoint on to gain control. * * The two parameters allow the debugger to easily find and determine * what the runtime loader is doing and to whom it is doing it. * * When the loadhook trap is hit (r_debug_state, set at program * initialization), the arguments can be found on the stack: * * +8 struct link_map *m * +4 struct r_debug *rd * +0 RetAddr */ void r_debug_state(struct r_debug* rd, struct link_map *m) { /* * The following is a hack to force the compiler to emit calls to * this function, even when optimizing. If the function is empty, * the compiler is not obliged to emit any code for calls to it, * even when marked __noinline. However, gdb depends on those * calls being made. */ __compiler_membar(); } /* * A function called after init routines have completed. This can be used to * break before a program's entry routine is called, and can be used when * main is not available in the symbol table. */ void _r_debug_postinit(struct link_map *m) { /* See r_debug_state(). */ __compiler_membar(); } /* * Get address of the pointer variable in the main program. * Prefer non-weak symbol over the weak one. */ static const void ** get_program_var_addr(const char *name, RtldLockState *lockstate) { SymLook req; DoneList donelist; symlook_init(&req, name); req.lockstate = lockstate; donelist_init(&donelist); if (symlook_global(&req, &donelist) != 0) return (NULL); if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC) return ((const void **)make_function_pointer(req.sym_out, req.defobj_out)); else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC) return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out)); else return ((const void **)(req.defobj_out->relocbase + req.sym_out->st_value)); } /* * Set a pointer variable in the main program to the given value. This * is used to set key variables such as "environ" before any of the * init functions are called. */ static void set_program_var(const char *name, const void *value) { const void **addr; if ((addr = get_program_var_addr(name, NULL)) != NULL) { dbg("\"%s\": *%p <-- %p", name, addr, value); *addr = value; } } /* * Search the global objects, including dependencies and main object, * for the given symbol. */ static int symlook_global(SymLook *req, DoneList *donelist) { SymLook req1; const Objlist_Entry *elm; int res; symlook_init_from_req(&req1, req); /* Search all objects loaded at program start up. */ if (req->defobj_out == NULL || ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) { res = symlook_list(&req1, &list_main, donelist); if (res == 0 && (req->defobj_out == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { req->sym_out = req1.sym_out; req->defobj_out = req1.defobj_out; assert(req->defobj_out != NULL); } } /* Search all DAGs whose roots are RTLD_GLOBAL objects. */ STAILQ_FOREACH(elm, &list_global, link) { if (req->defobj_out != NULL && ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK) break; res = symlook_list(&req1, &elm->obj->dagmembers, donelist); if (res == 0 && (req->defobj_out == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { req->sym_out = req1.sym_out; req->defobj_out = req1.defobj_out; assert(req->defobj_out != NULL); } } return (req->sym_out != NULL ? 0 : ESRCH); } /* * Given a symbol name in a referencing object, find the corresponding * definition of the symbol. Returns a pointer to the symbol, or NULL if * no definition was found. Returns a pointer to the Obj_Entry of the * defining object via the reference parameter DEFOBJ_OUT. */ static int symlook_default(SymLook *req, const Obj_Entry *refobj) { DoneList donelist; const Objlist_Entry *elm; SymLook req1; int res; donelist_init(&donelist); symlook_init_from_req(&req1, req); /* Look first in the referencing object if linked symbolically. */ if (refobj->symbolic && !donelist_check(&donelist, refobj)) { res = symlook_obj(&req1, refobj); if (res == 0) { req->sym_out = req1.sym_out; req->defobj_out = req1.defobj_out; assert(req->defobj_out != NULL); } } symlook_global(req, &donelist); /* Search all dlopened DAGs containing the referencing object. */ STAILQ_FOREACH(elm, &refobj->dldags, link) { if (req->sym_out != NULL && ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK) break; res = symlook_list(&req1, &elm->obj->dagmembers, &donelist); if (res == 0 && (req->sym_out == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { req->sym_out = req1.sym_out; req->defobj_out = req1.defobj_out; assert(req->defobj_out != NULL); } } /* * Search the dynamic linker itself, and possibly resolve the * symbol from there. This is how the application links to * dynamic linker services such as dlopen. */ if (req->sym_out == NULL || ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) { res = symlook_obj(&req1, &obj_rtld); if (res == 0) { req->sym_out = req1.sym_out; req->defobj_out = req1.defobj_out; assert(req->defobj_out != NULL); } } return (req->sym_out != NULL ? 0 : ESRCH); } static int symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp) { const Elf_Sym *def; const Obj_Entry *defobj; const Objlist_Entry *elm; SymLook req1; int res; def = NULL; defobj = NULL; STAILQ_FOREACH(elm, objlist, link) { if (donelist_check(dlp, elm->obj)) continue; symlook_init_from_req(&req1, req); if ((res = symlook_obj(&req1, elm->obj)) == 0) { if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) { def = req1.sym_out; defobj = req1.defobj_out; if (ELF_ST_BIND(def->st_info) != STB_WEAK) break; } } } if (def != NULL) { req->sym_out = def; req->defobj_out = defobj; return (0); } return (ESRCH); } /* * Search the chain of DAGS cointed to by the given Needed_Entry * for a symbol of the given name. Each DAG is scanned completely * before advancing to the next one. Returns a pointer to the symbol, * or NULL if no definition was found. */ static int symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp) { const Elf_Sym *def; const Needed_Entry *n; const Obj_Entry *defobj; SymLook req1; int res; def = NULL; defobj = NULL; symlook_init_from_req(&req1, req); for (n = needed; n != NULL; n = n->next) { if (n->obj == NULL || (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0) continue; if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) { def = req1.sym_out; defobj = req1.defobj_out; if (ELF_ST_BIND(def->st_info) != STB_WEAK) break; } } if (def != NULL) { req->sym_out = def; req->defobj_out = defobj; return (0); } return (ESRCH); } /* * Search the symbol table of a single shared object for a symbol of * the given name and version, if requested. Returns a pointer to the * symbol, or NULL if no definition was found. If the object is * filter, return filtered symbol from filtee. * * The symbol's hash value is passed in for efficiency reasons; that * eliminates many recomputations of the hash value. */ int symlook_obj(SymLook *req, const Obj_Entry *obj) { DoneList donelist; SymLook req1; int flags, res, mres; /* * If there is at least one valid hash at this point, we prefer to * use the faster GNU version if available. */ if (obj->valid_hash_gnu) mres = symlook_obj1_gnu(req, obj); else if (obj->valid_hash_sysv) mres = symlook_obj1_sysv(req, obj); else return (EINVAL); if (mres == 0) { if (obj->needed_filtees != NULL) { flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0; load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate); donelist_init(&donelist); symlook_init_from_req(&req1, req); res = symlook_needed(&req1, obj->needed_filtees, &donelist); if (res == 0) { req->sym_out = req1.sym_out; req->defobj_out = req1.defobj_out; } return (res); } if (obj->needed_aux_filtees != NULL) { flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0; load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate); donelist_init(&donelist); symlook_init_from_req(&req1, req); res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist); if (res == 0) { req->sym_out = req1.sym_out; req->defobj_out = req1.defobj_out; return (res); } } } return (mres); } /* Symbol match routine common to both hash functions */ static bool matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result, const unsigned long symnum) { Elf_Versym verndx; const Elf_Sym *symp; const char *strp; symp = obj->symtab + symnum; strp = obj->strtab + symp->st_name; switch (ELF_ST_TYPE(symp->st_info)) { case STT_FUNC: case STT_NOTYPE: case STT_OBJECT: case STT_COMMON: case STT_GNU_IFUNC: if (symp->st_value == 0) return (false); /* fallthrough */ case STT_TLS: if (symp->st_shndx != SHN_UNDEF) break; #ifndef __mips__ else if (((req->flags & SYMLOOK_IN_PLT) == 0) && (ELF_ST_TYPE(symp->st_info) == STT_FUNC)) break; /* fallthrough */ #endif default: return (false); } if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0) return (false); if (req->ventry == NULL) { if (obj->versyms != NULL) { verndx = VER_NDX(obj->versyms[symnum]); if (verndx > obj->vernum) { _rtld_error( "%s: symbol %s references wrong version %d", obj->path, obj->strtab + symnum, verndx); return (false); } /* * If we are not called from dlsym (i.e. this * is a normal relocation from unversioned * binary), accept the symbol immediately if * it happens to have first version after this * shared object became versioned. Otherwise, * if symbol is versioned and not hidden, * remember it. If it is the only symbol with * this name exported by the shared object, it * will be returned as a match by the calling * function. If symbol is global (verndx < 2) * accept it unconditionally. */ if ((req->flags & SYMLOOK_DLSYM) == 0 && verndx == VER_NDX_GIVEN) { result->sym_out = symp; return (true); } else if (verndx >= VER_NDX_GIVEN) { if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) { if (result->vsymp == NULL) result->vsymp = symp; result->vcount++; } return (false); } } result->sym_out = symp; return (true); } if (obj->versyms == NULL) { if (object_match_name(obj, req->ventry->name)) { _rtld_error("%s: object %s should provide version %s " "for symbol %s", obj_rtld.path, obj->path, req->ventry->name, obj->strtab + symnum); return (false); } } else { verndx = VER_NDX(obj->versyms[symnum]); if (verndx > obj->vernum) { _rtld_error("%s: symbol %s references wrong version %d", obj->path, obj->strtab + symnum, verndx); return (false); } if (obj->vertab[verndx].hash != req->ventry->hash || strcmp(obj->vertab[verndx].name, req->ventry->name)) { /* * Version does not match. Look if this is a * global symbol and if it is not hidden. If * global symbol (verndx < 2) is available, * use it. Do not return symbol if we are * called by dlvsym, because dlvsym looks for * a specific version and default one is not * what dlvsym wants. */ if ((req->flags & SYMLOOK_DLSYM) || (verndx >= VER_NDX_GIVEN) || (obj->versyms[symnum] & VER_NDX_HIDDEN)) return (false); } } result->sym_out = symp; return (true); } /* * Search for symbol using SysV hash function. * obj->buckets is known not to be NULL at this point; the test for this was * performed with the obj->valid_hash_sysv assignment. */ static int symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj) { unsigned long symnum; Sym_Match_Result matchres; matchres.sym_out = NULL; matchres.vsymp = NULL; matchres.vcount = 0; for (symnum = obj->buckets[req->hash % obj->nbuckets]; symnum != STN_UNDEF; symnum = obj->chains[symnum]) { if (symnum >= obj->nchains) return (ESRCH); /* Bad object */ if (matched_symbol(req, obj, &matchres, symnum)) { req->sym_out = matchres.sym_out; req->defobj_out = obj; return (0); } } if (matchres.vcount == 1) { req->sym_out = matchres.vsymp; req->defobj_out = obj; return (0); } return (ESRCH); } /* Search for symbol using GNU hash function */ static int symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj) { Elf_Addr bloom_word; const Elf32_Word *hashval; Elf32_Word bucket; Sym_Match_Result matchres; unsigned int h1, h2; unsigned long symnum; matchres.sym_out = NULL; matchres.vsymp = NULL; matchres.vcount = 0; /* Pick right bitmask word from Bloom filter array */ bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) & obj->maskwords_bm_gnu]; /* Calculate modulus word size of gnu hash and its derivative */ h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1); h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1)); /* Filter out the "definitely not in set" queries */ if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0) return (ESRCH); /* Locate hash chain and corresponding value element*/ bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu]; if (bucket == 0) return (ESRCH); hashval = &obj->chain_zero_gnu[bucket]; do { if (((*hashval ^ req->hash_gnu) >> 1) == 0) { symnum = hashval - obj->chain_zero_gnu; if (matched_symbol(req, obj, &matchres, symnum)) { req->sym_out = matchres.sym_out; req->defobj_out = obj; return (0); } } } while ((*hashval++ & 1) == 0); if (matchres.vcount == 1) { req->sym_out = matchres.vsymp; req->defobj_out = obj; return (0); } return (ESRCH); } static void trace_loaded_objects(Obj_Entry *obj) { char *fmt1, *fmt2, *fmt, *main_local, *list_containers; int c; if ((main_local = getenv(LD_ "TRACE_LOADED_OBJECTS_PROGNAME")) == NULL) main_local = ""; if ((fmt1 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT1")) == NULL) fmt1 = "\t%o => %p (%x)\n"; if ((fmt2 = getenv(LD_ "TRACE_LOADED_OBJECTS_FMT2")) == NULL) fmt2 = "\t%o (%x)\n"; list_containers = getenv(LD_ "TRACE_LOADED_OBJECTS_ALL"); for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) { Needed_Entry *needed; char *name, *path; bool is_lib; if (obj->marker) continue; if (list_containers && obj->needed != NULL) rtld_printf("%s:\n", obj->path); for (needed = obj->needed; needed; needed = needed->next) { if (needed->obj != NULL) { if (needed->obj->traced && !list_containers) continue; needed->obj->traced = true; path = needed->obj->path; } else path = "not found"; name = (char *)obj->strtab + needed->name; is_lib = strncmp(name, "lib", 3) == 0; /* XXX - bogus */ fmt = is_lib ? fmt1 : fmt2; while ((c = *fmt++) != '\0') { switch (c) { default: rtld_putchar(c); continue; case '\\': switch (c = *fmt) { case '\0': continue; case 'n': rtld_putchar('\n'); break; case 't': rtld_putchar('\t'); break; } break; case '%': switch (c = *fmt) { case '\0': continue; case '%': default: rtld_putchar(c); break; case 'A': rtld_putstr(main_local); break; case 'a': rtld_putstr(obj_main->path); break; case 'o': rtld_putstr(name); break; #if 0 case 'm': rtld_printf("%d", sodp->sod_major); break; case 'n': rtld_printf("%d", sodp->sod_minor); break; #endif case 'p': rtld_putstr(path); break; case 'x': rtld_printf("%p", needed->obj ? needed->obj->mapbase : 0); break; } break; } ++fmt; } } } } /* * Unload a dlopened object and its dependencies from memory and from * our data structures. It is assumed that the DAG rooted in the * object has already been unreferenced, and that the object has a * reference count of 0. */ static void unload_object(Obj_Entry *root) { Obj_Entry *obj, *obj1; assert(root->refcount == 0); /* * Pass over the DAG removing unreferenced objects from * appropriate lists. */ unlink_object(root); /* Unmap all objects that are no longer referenced. */ TAILQ_FOREACH_SAFE(obj, &obj_list, next, obj1) { if (obj->marker || obj->refcount != 0) continue; LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0, obj->path); dbg("unloading \"%s\"", obj->path); unload_filtees(root); munmap(obj->mapbase, obj->mapsize); linkmap_delete(obj); TAILQ_REMOVE(&obj_list, obj, next); obj_count--; obj_free(obj); } } static void unlink_object(Obj_Entry *root) { Objlist_Entry *elm; if (root->refcount == 0) { /* Remove the object from the RTLD_GLOBAL list. */ objlist_remove(&list_global, root); /* Remove the object from all objects' DAG lists. */ STAILQ_FOREACH(elm, &root->dagmembers, link) { objlist_remove(&elm->obj->dldags, root); if (elm->obj != root) unlink_object(elm->obj); } } } static void ref_dag(Obj_Entry *root) { Objlist_Entry *elm; assert(root->dag_inited); STAILQ_FOREACH(elm, &root->dagmembers, link) elm->obj->refcount++; } static void unref_dag(Obj_Entry *root) { Objlist_Entry *elm; assert(root->dag_inited); STAILQ_FOREACH(elm, &root->dagmembers, link) elm->obj->refcount--; } /* * Common code for MD __tls_get_addr(). */ static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline; static void * tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset) { Elf_Addr *newdtv, *dtv; RtldLockState lockstate; int to_copy; dtv = *dtvp; /* Check dtv generation in case new modules have arrived */ if (dtv[0] != tls_dtv_generation) { wlock_acquire(rtld_bind_lock, &lockstate); newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); to_copy = dtv[1]; if (to_copy > tls_max_index) to_copy = tls_max_index; memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr)); newdtv[0] = tls_dtv_generation; newdtv[1] = tls_max_index; free(dtv); lock_release(rtld_bind_lock, &lockstate); dtv = *dtvp = newdtv; } /* Dynamically allocate module TLS if necessary */ if (dtv[index + 1] == 0) { /* Signal safe, wlock will block out signals. */ wlock_acquire(rtld_bind_lock, &lockstate); if (!dtv[index + 1]) dtv[index + 1] = (Elf_Addr)allocate_module_tls(index); lock_release(rtld_bind_lock, &lockstate); } return ((void *)(dtv[index + 1] + offset)); } void * tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset) { Elf_Addr *dtv; dtv = *dtvp; /* Check dtv generation in case new modules have arrived */ if (__predict_true(dtv[0] == tls_dtv_generation && dtv[index + 1] != 0)) return ((void *)(dtv[index + 1] + offset)); return (tls_get_addr_slow(dtvp, index, offset)); } #if defined(__arm__) || defined(__ia64__) || defined(__mips__) || defined(__powerpc__) /* * Allocate Static TLS using the Variant I method. */ void * allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign) { Obj_Entry *obj; char *tcb; Elf_Addr **tls; Elf_Addr *dtv; Elf_Addr addr; int i; if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE) return (oldtcb); assert(tcbsize >= TLS_TCB_SIZE); tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize); tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE); if (oldtcb != NULL) { memcpy(tls, oldtcb, tls_static_space); free(oldtcb); /* Adjust the DTV. */ dtv = tls[0]; for (i = 0; i < dtv[1]; i++) { if (dtv[i+2] >= (Elf_Addr)oldtcb && dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) { dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls; } } } else { dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); tls[0] = dtv; dtv[0] = tls_dtv_generation; dtv[1] = tls_max_index; for (obj = globallist_curr(objs); obj != NULL; obj = globallist_next(obj)) { if (obj->tlsoffset > 0) { addr = (Elf_Addr)tls + obj->tlsoffset; if (obj->tlsinitsize > 0) memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize); if (obj->tlssize > obj->tlsinitsize) memset((void*) (addr + obj->tlsinitsize), 0, obj->tlssize - obj->tlsinitsize); dtv[obj->tlsindex + 1] = addr; } } } return (tcb); } void free_tls(void *tcb, size_t tcbsize, size_t tcbalign) { Elf_Addr *dtv; Elf_Addr tlsstart, tlsend; int dtvsize, i; assert(tcbsize >= TLS_TCB_SIZE); tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE; tlsend = tlsstart + tls_static_space; dtv = *(Elf_Addr **)tlsstart; dtvsize = dtv[1]; for (i = 0; i < dtvsize; i++) { if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) { free((void*)dtv[i+2]); } } free(dtv); free(tcb); } #endif #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) /* * Allocate Static TLS using the Variant II method. */ void * allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign) { Obj_Entry *obj; size_t size, ralign; char *tls; Elf_Addr *dtv, *olddtv; Elf_Addr segbase, oldsegbase, addr; int i; ralign = tcbalign; if (tls_static_max_align > ralign) ralign = tls_static_max_align; size = round(tls_static_space, ralign) + round(tcbsize, ralign); assert(tcbsize >= 2*sizeof(Elf_Addr)); tls = malloc_aligned(size, ralign); dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); segbase = (Elf_Addr)(tls + round(tls_static_space, ralign)); ((Elf_Addr*)segbase)[0] = segbase; ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv; dtv[0] = tls_dtv_generation; dtv[1] = tls_max_index; if (oldtls) { /* * Copy the static TLS block over whole. */ oldsegbase = (Elf_Addr) oldtls; memcpy((void *)(segbase - tls_static_space), (const void *)(oldsegbase - tls_static_space), tls_static_space); /* * If any dynamic TLS blocks have been created tls_get_addr(), * move them over. */ olddtv = ((Elf_Addr**)oldsegbase)[1]; for (i = 0; i < olddtv[1]; i++) { if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) { dtv[i+2] = olddtv[i+2]; olddtv[i+2] = 0; } } /* * We assume that this block was the one we created with * allocate_initial_tls(). */ free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr)); } else { for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) { if (obj->marker || obj->tlsoffset == 0) continue; addr = segbase - obj->tlsoffset; memset((void*) (addr + obj->tlsinitsize), 0, obj->tlssize - obj->tlsinitsize); if (obj->tlsinit) memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize); dtv[obj->tlsindex + 1] = addr; } } return (void*) segbase; } void free_tls(void *tls, size_t tcbsize, size_t tcbalign) { Elf_Addr* dtv; size_t size, ralign; int dtvsize, i; Elf_Addr tlsstart, tlsend; /* * Figure out the size of the initial TLS block so that we can * find stuff which ___tls_get_addr() allocated dynamically. */ ralign = tcbalign; if (tls_static_max_align > ralign) ralign = tls_static_max_align; size = round(tls_static_space, ralign); dtv = ((Elf_Addr**)tls)[1]; dtvsize = dtv[1]; tlsend = (Elf_Addr) tls; tlsstart = tlsend - size; for (i = 0; i < dtvsize; i++) { if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) { free_aligned((void *)dtv[i + 2]); } } free_aligned((void *)tlsstart); free((void*) dtv); } #endif /* * Allocate TLS block for module with given index. */ void * allocate_module_tls(int index) { Obj_Entry* obj; char* p; TAILQ_FOREACH(obj, &obj_list, next) { if (obj->marker) continue; if (obj->tlsindex == index) break; } if (!obj) { _rtld_error("Can't find module with TLS index %d", index); rtld_die(); } p = malloc_aligned(obj->tlssize, obj->tlsalign); memcpy(p, obj->tlsinit, obj->tlsinitsize); memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize); return p; } bool allocate_tls_offset(Obj_Entry *obj) { size_t off; if (obj->tls_done) return true; if (obj->tlssize == 0) { obj->tls_done = true; return true; } if (tls_last_offset == 0) off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign); else off = calculate_tls_offset(tls_last_offset, tls_last_size, obj->tlssize, obj->tlsalign); /* * If we have already fixed the size of the static TLS block, we * must stay within that size. When allocating the static TLS, we * leave a small amount of space spare to be used for dynamically * loading modules which use static TLS. */ if (tls_static_space != 0) { if (calculate_tls_end(off, obj->tlssize) > tls_static_space) return false; } else if (obj->tlsalign > tls_static_max_align) { tls_static_max_align = obj->tlsalign; } tls_last_offset = obj->tlsoffset = off; tls_last_size = obj->tlssize; obj->tls_done = true; return true; } void free_tls_offset(Obj_Entry *obj) { /* * If we were the last thing to allocate out of the static TLS * block, we give our space back to the 'allocator'. This is a * simplistic workaround to allow libGL.so.1 to be loaded and * unloaded multiple times. */ if (calculate_tls_end(obj->tlsoffset, obj->tlssize) == calculate_tls_end(tls_last_offset, tls_last_size)) { tls_last_offset -= obj->tlssize; tls_last_size = 0; } } void * _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign) { void *ret; RtldLockState lockstate; wlock_acquire(rtld_bind_lock, &lockstate); ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls, tcbsize, tcbalign); lock_release(rtld_bind_lock, &lockstate); return (ret); } void _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign) { RtldLockState lockstate; wlock_acquire(rtld_bind_lock, &lockstate); free_tls(tcb, tcbsize, tcbalign); lock_release(rtld_bind_lock, &lockstate); } static void object_add_name(Obj_Entry *obj, const char *name) { Name_Entry *entry; size_t len; len = strlen(name); entry = malloc(sizeof(Name_Entry) + len); if (entry != NULL) { strcpy(entry->name, name); STAILQ_INSERT_TAIL(&obj->names, entry, link); } } static int object_match_name(const Obj_Entry *obj, const char *name) { Name_Entry *entry; STAILQ_FOREACH(entry, &obj->names, link) { if (strcmp(name, entry->name) == 0) return (1); } return (0); } static Obj_Entry * locate_dependency(const Obj_Entry *obj, const char *name) { const Objlist_Entry *entry; const Needed_Entry *needed; STAILQ_FOREACH(entry, &list_main, link) { if (object_match_name(entry->obj, name)) return entry->obj; } for (needed = obj->needed; needed != NULL; needed = needed->next) { if (strcmp(obj->strtab + needed->name, name) == 0 || (needed->obj != NULL && object_match_name(needed->obj, name))) { /* * If there is DT_NEEDED for the name we are looking for, * we are all set. Note that object might not be found if * dependency was not loaded yet, so the function can * return NULL here. This is expected and handled * properly by the caller. */ return (needed->obj); } } _rtld_error("%s: Unexpected inconsistency: dependency %s not found", obj->path, name); rtld_die(); } static int check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj, const Elf_Vernaux *vna) { const Elf_Verdef *vd; const char *vername; vername = refobj->strtab + vna->vna_name; vd = depobj->verdef; if (vd == NULL) { _rtld_error("%s: version %s required by %s not defined", depobj->path, vername, refobj->path); return (-1); } for (;;) { if (vd->vd_version != VER_DEF_CURRENT) { _rtld_error("%s: Unsupported version %d of Elf_Verdef entry", depobj->path, vd->vd_version); return (-1); } if (vna->vna_hash == vd->vd_hash) { const Elf_Verdaux *aux = (const Elf_Verdaux *) ((char *)vd + vd->vd_aux); if (strcmp(vername, depobj->strtab + aux->vda_name) == 0) return (0); } if (vd->vd_next == 0) break; vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next); } if (vna->vna_flags & VER_FLG_WEAK) return (0); _rtld_error("%s: version %s required by %s not found", depobj->path, vername, refobj->path); return (-1); } static int rtld_verify_object_versions(Obj_Entry *obj) { const Elf_Verneed *vn; const Elf_Verdef *vd; const Elf_Verdaux *vda; const Elf_Vernaux *vna; const Obj_Entry *depobj; int maxvernum, vernum; if (obj->ver_checked) return (0); obj->ver_checked = true; maxvernum = 0; /* * Walk over defined and required version records and figure out * max index used by any of them. Do very basic sanity checking * while there. */ vn = obj->verneed; while (vn != NULL) { if (vn->vn_version != VER_NEED_CURRENT) { _rtld_error("%s: Unsupported version %d of Elf_Verneed entry", obj->path, vn->vn_version); return (-1); } vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux); for (;;) { vernum = VER_NEED_IDX(vna->vna_other); if (vernum > maxvernum) maxvernum = vernum; if (vna->vna_next == 0) break; vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next); } if (vn->vn_next == 0) break; vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next); } vd = obj->verdef; while (vd != NULL) { if (vd->vd_version != VER_DEF_CURRENT) { _rtld_error("%s: Unsupported version %d of Elf_Verdef entry", obj->path, vd->vd_version); return (-1); } vernum = VER_DEF_IDX(vd->vd_ndx); if (vernum > maxvernum) maxvernum = vernum; if (vd->vd_next == 0) break; vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next); } if (maxvernum == 0) return (0); /* * Store version information in array indexable by version index. * Verify that object version requirements are satisfied along the * way. */ obj->vernum = maxvernum + 1; obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry)); vd = obj->verdef; while (vd != NULL) { if ((vd->vd_flags & VER_FLG_BASE) == 0) { vernum = VER_DEF_IDX(vd->vd_ndx); assert(vernum <= maxvernum); vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux); obj->vertab[vernum].hash = vd->vd_hash; obj->vertab[vernum].name = obj->strtab + vda->vda_name; obj->vertab[vernum].file = NULL; obj->vertab[vernum].flags = 0; } if (vd->vd_next == 0) break; vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next); } vn = obj->verneed; while (vn != NULL) { depobj = locate_dependency(obj, obj->strtab + vn->vn_file); if (depobj == NULL) return (-1); vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux); for (;;) { if (check_object_provided_version(obj, depobj, vna)) return (-1); vernum = VER_NEED_IDX(vna->vna_other); assert(vernum <= maxvernum); obj->vertab[vernum].hash = vna->vna_hash; obj->vertab[vernum].name = obj->strtab + vna->vna_name; obj->vertab[vernum].file = obj->strtab + vn->vn_file; obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ? VER_INFO_HIDDEN : 0; if (vna->vna_next == 0) break; vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next); } if (vn->vn_next == 0) break; vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next); } return 0; } static int rtld_verify_versions(const Objlist *objlist) { Objlist_Entry *entry; int rc; rc = 0; STAILQ_FOREACH(entry, objlist, link) { /* * Skip dummy objects or objects that have their version requirements * already checked. */ if (entry->obj->strtab == NULL || entry->obj->vertab != NULL) continue; if (rtld_verify_object_versions(entry->obj) == -1) { rc = -1; if (ld_tracing == NULL) break; } } if (rc == 0 || ld_tracing != NULL) rc = rtld_verify_object_versions(&obj_rtld); return rc; } const Ver_Entry * fetch_ventry(const Obj_Entry *obj, unsigned long symnum) { Elf_Versym vernum; if (obj->vertab) { vernum = VER_NDX(obj->versyms[symnum]); if (vernum >= obj->vernum) { _rtld_error("%s: symbol %s has wrong verneed value %d", obj->path, obj->strtab + symnum, vernum); } else if (obj->vertab[vernum].hash != 0) { return &obj->vertab[vernum]; } } return NULL; } int _rtld_get_stack_prot(void) { return (stack_prot); } int _rtld_is_dlopened(void *arg) { Obj_Entry *obj; RtldLockState lockstate; int res; rlock_acquire(rtld_bind_lock, &lockstate); obj = dlcheck(arg); if (obj == NULL) obj = obj_from_addr(arg); if (obj == NULL) { _rtld_error("No shared object contains address"); lock_release(rtld_bind_lock, &lockstate); return (-1); } res = obj->dlopened ? 1 : 0; lock_release(rtld_bind_lock, &lockstate); return (res); } static void map_stacks_exec(RtldLockState *lockstate) { void (*thr_map_stacks_exec)(void); if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0) return; thr_map_stacks_exec = (void (*)(void))(uintptr_t) get_program_var_addr("__pthread_map_stacks_exec", lockstate); if (thr_map_stacks_exec != NULL) { stack_prot |= PROT_EXEC; thr_map_stacks_exec(); } } void symlook_init(SymLook *dst, const char *name) { bzero(dst, sizeof(*dst)); dst->name = name; dst->hash = elf_hash(name); dst->hash_gnu = gnu_hash(name); } static void symlook_init_from_req(SymLook *dst, const SymLook *src) { dst->name = src->name; dst->hash = src->hash; dst->hash_gnu = src->hash_gnu; dst->ventry = src->ventry; dst->flags = src->flags; dst->defobj_out = NULL; dst->sym_out = NULL; dst->lockstate = src->lockstate; } /* * Overrides for libc_pic-provided functions. */ int __getosreldate(void) { size_t len; int oid[2]; int error, osrel; if (osreldate != 0) return (osreldate); oid[0] = CTL_KERN; oid[1] = KERN_OSRELDATE; osrel = 0; len = sizeof(osrel); error = sysctl(oid, 2, &osrel, &len, NULL, 0); if (error == 0 && osrel > 0 && len == sizeof(osrel)) osreldate = osrel; return (osreldate); } void exit(int status) { _exit(status); } void (*__cleanup)(void); int __isthreaded = 0; int _thread_autoinit_dummy_decl = 1; /* * No unresolved symbols for rtld. */ void __pthread_cxa_finalize(struct dl_phdr_info *a) { } void __stack_chk_fail(void) { _rtld_error("stack overflow detected; terminated"); rtld_die(); } __weak_reference(__stack_chk_fail, __stack_chk_fail_local); void __chk_fail(void) { _rtld_error("buffer overflow detected; terminated"); rtld_die(); } const char * rtld_strerror(int errnum) { if (errnum < 0 || errnum >= sys_nerr) return ("Unknown error"); return (sys_errlist[errnum]); } Index: stable/10/libexec/rtld-elf/sparc64/reloc.c =================================================================== --- stable/10/libexec/rtld-elf/sparc64/reloc.c (revision 309370) +++ stable/10/libexec/rtld-elf/sparc64/reloc.c (revision 309371) @@ -1,860 +1,860 @@ /* $NetBSD: mdreloc.c,v 1.42 2008/04/28 20:23:04 martin Exp $ */ /*- * Copyright (c) 2000 Eduardo Horvath. * Copyright (c) 1999 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Paul Kranenburg. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include "debug.h" #include "rtld.h" /* * The following table holds for each relocation type: * - the width in bits of the memory location the relocation * applies to (not currently used) * - the number of bits the relocation value must be shifted to the * right (i.e. discard least significant bits) to fit into * the appropriate field in the instruction word. * - flags indicating whether * * the relocation involves a symbol * * the relocation is relative to the current position * * the relocation is for a GOT entry * * the relocation is relative to the load address * */ #define _RF_S 0x80000000 /* Resolve symbol */ #define _RF_A 0x40000000 /* Use addend */ #define _RF_P 0x20000000 /* Location relative */ #define _RF_G 0x10000000 /* GOT offset */ #define _RF_B 0x08000000 /* Load address relative */ #define _RF_U 0x04000000 /* Unaligned */ #define _RF_X 0x02000000 /* Bare symbols, needs proc */ #define _RF_D 0x01000000 /* Use dynamic TLS offset */ #define _RF_O 0x00800000 /* Use static TLS offset */ #define _RF_I 0x00400000 /* Use TLS object ID */ #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */ #define _RF_RS(s) ( (s) & 0xff) /* right shift */ static const int reloc_target_flags[] = { 0, /* NONE */ _RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* 8 */ _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* 16 */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 32 */ _RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */ _RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(10), /* HI22 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(0), /* 22 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(0), /* 13 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(0), /* LO10 */ _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */ _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */ _RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */ _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */ _RF_SZ(32) | _RF_RS(0), /* COPY */ _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* GLOB_DAT */ _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */ _RF_A| _RF_B| _RF_SZ(64) | _RF_RS(0), /* RELATIVE */ _RF_S|_RF_A| _RF_U| _RF_SZ(32) | _RF_RS(0), /* UA_32 */ _RF_A| _RF_SZ(32) | _RF_RS(0), /* PLT32 */ _RF_A| _RF_SZ(32) | _RF_RS(10), /* HIPLT22 */ _RF_A| _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */ _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT32 */ _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PCPLT22 */ _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT10 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(0), /* 10 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(0), /* 11 */ _RF_S|_RF_A|_RF_X| _RF_SZ(64) | _RF_RS(0), /* 64 */ _RF_S|_RF_A|/*extra*/ _RF_SZ(32) | _RF_RS(0), /* OLO10 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(42), /* HH22 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(32), /* HM10 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(10), /* LM22 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(42), /* PC_HH22 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(32), /* PC_HM10 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC_LM22 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP16 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP19 */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_JMP */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(0), /* 7 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(0), /* 5 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(0), /* 6 */ _RF_S|_RF_A|_RF_P| _RF_SZ(64) | _RF_RS(0), /* DISP64 */ _RF_A| _RF_SZ(64) | _RF_RS(0), /* PLT64 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(10), /* HIX22 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(0), /* LOX10 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(22), /* H44 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(12), /* M44 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(0), /* L44 */ _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* REGISTER */ _RF_S|_RF_A| _RF_U| _RF_SZ(64) | _RF_RS(0), /* UA64 */ _RF_S|_RF_A| _RF_U| _RF_SZ(16) | _RF_RS(0), /* UA16 */ /* TLS */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* GD_HI22 */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GD_LO10 */ 0, /* GD_ADD */ _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* GD_CALL */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* LDM_HI22 */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LDM_LO10 */ 0, /* LDM_ADD */ _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* LDM_CALL */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* LDO_HIX22 */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LDO_LOX10 */ 0, /* LDO_ADD */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* IE_HI22 */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* IE_LO10 */ 0, /* IE_LD */ 0, /* IE_LDX */ 0, /* IE_ADD */ _RF_S|_RF_A| _RF_O| _RF_SZ(32) | _RF_RS(10), /* LE_HIX22 */ _RF_S|_RF_A| _RF_O| _RF_SZ(32) | _RF_RS(0), /* LE_LOX10 */ _RF_S| _RF_I| _RF_SZ(32) | _RF_RS(0), /* DTPMOD32 */ _RF_S| _RF_I| _RF_SZ(64) | _RF_RS(0), /* DTPMOD64 */ _RF_S|_RF_A| _RF_D| _RF_SZ(32) | _RF_RS(0), /* DTPOFF32 */ _RF_S|_RF_A| _RF_D| _RF_SZ(64) | _RF_RS(0), /* DTPOFF64 */ _RF_S|_RF_A| _RF_O| _RF_SZ(32) | _RF_RS(0), /* TPOFF32 */ _RF_S|_RF_A| _RF_O| _RF_SZ(64) | _RF_RS(0) /* TPOFF64 */ }; #if 0 static const char *const reloc_names[] = { "NONE", "8", "16", "32", "DISP_8", "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22", "22", "13", "LO10", "GOT10", "GOT13", "GOT22", "PC10", "PC22", "WPLT30", "COPY", "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32", "HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32", "10", "11", "64", "OLO10", "HH22", "HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22", "WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6", "DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44", "L44", "REGISTER", "UA64", "UA16", "GD_HI22", "GD_LO10", "GD_ADD", "GD_CALL", "LDM_HI22", "LDMO10", "LDM_ADD", "LDM_CALL", "LDO_HIX22", "LDO_LOX10", "LDO_ADD", "IE_HI22", "IE_LO10", "IE_LD", "IE_LDX", "IE_ADD", "LE_HIX22", "LE_LOX10", "DTPMOD32", "DTPMOD64", "DTPOFF32", "DTPOFF64", "TPOFF32", "TPOFF64" }; #endif #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0) #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0) #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0) #define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0) #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0) #define RELOC_BARE_SYMBOL(t) ((reloc_target_flags[t] & _RF_X) != 0) #define RELOC_USE_TLS_DOFF(t) ((reloc_target_flags[t] & _RF_D) != 0) #define RELOC_USE_TLS_OFF(t) ((reloc_target_flags[t] & _RF_O) != 0) #define RELOC_USE_TLS_ID(t) ((reloc_target_flags[t] & _RF_I) != 0) #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff) #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff) static const long reloc_target_bitmask[] = { #define _BM(x) (~(-(1ULL << (x)))) 0, /* NONE */ _BM(8), _BM(16), _BM(32), /* 8, 16, 32 */ _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */ _BM(30), _BM(22), /* WDISP30, WDISP22 */ _BM(22), _BM(22), /* HI22, 22 */ _BM(13), _BM(10), /* 13, LO10 */ _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */ _BM(10), _BM(22), /* PC10, PC22 */ _BM(30), 0, /* WPLT30, COPY */ _BM(32), _BM(32), _BM(32), /* GLOB_DAT, JMP_SLOT, RELATIVE */ _BM(32), _BM(32), /* UA32, PLT32 */ _BM(22), _BM(10), /* HIPLT22, LOPLT10 */ _BM(32), _BM(22), _BM(10), /* PCPLT32, PCPLT22, PCPLT10 */ _BM(10), _BM(11), -1, /* 10, 11, 64 */ _BM(13), _BM(22), /* OLO10, HH22 */ _BM(10), _BM(22), /* HM10, LM22 */ _BM(22), _BM(10), _BM(22), /* PC_HH22, PC_HM10, PC_LM22 */ _BM(16), _BM(19), /* WDISP16, WDISP19 */ -1, /* GLOB_JMP */ _BM(7), _BM(5), _BM(6), /* 7, 5, 6 */ -1, -1, /* DISP64, PLT64 */ _BM(22), _BM(13), /* HIX22, LOX10 */ _BM(22), _BM(10), _BM(13), /* H44, M44, L44 */ -1, -1, _BM(16), /* REGISTER, UA64, UA16 */ _BM(22), _BM(10), 0, _BM(30), /* GD_HI22, GD_LO10, GD_ADD, GD_CALL */ _BM(22), _BM(10), 0, /* LDM_HI22, LDMO10, LDM_ADD */ _BM(30), /* LDM_CALL */ _BM(22), _BM(10), 0, /* LDO_HIX22, LDO_LOX10, LDO_ADD */ _BM(22), _BM(10), 0, 0, /* IE_HI22, IE_LO10, IE_LD, IE_LDX */ 0, /* IE_ADD */ _BM(22), _BM(13), /* LE_HIX22, LE_LOX10 */ _BM(32), -1, /* DTPMOD32, DTPMOD64 */ _BM(32), -1, /* DTPOFF32, DTPOFF64 */ _BM(32), -1 /* TPOFF32, TPOFF64 */ #undef _BM }; #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t]) #undef flush #define flush(va, offs) \ __asm __volatile("flush %0 + %1" : : "r" (va), "I" (offs)); static int reloc_nonplt_object(Obj_Entry *obj, const Elf_Rela *rela, SymCache *cache, int flags, RtldLockState *lockstate); static void install_plt(Elf_Word *pltgot, Elf_Addr proc); extern char _rtld_bind_start_0[]; extern char _rtld_bind_start_1[]; int do_copy_relocations(Obj_Entry *dstobj) { const Elf_Rela *relalim; const Elf_Rela *rela; const Elf_Sym *dstsym; const Elf_Sym *srcsym; void *dstaddr; const void *srcaddr; const Obj_Entry *srcobj, *defobj; SymLook req; const char *name; size_t size; int res; assert(dstobj->mainprog); /* COPY relocations are invalid elsewhere */ relalim = (const Elf_Rela *)((caddr_t)dstobj->rela + dstobj->relasize); for (rela = dstobj->rela; rela < relalim; rela++) { if (ELF_R_TYPE(rela->r_info) == R_SPARC_COPY) { dstaddr = (void *)(dstobj->relocbase + rela->r_offset); dstsym = dstobj->symtab + ELF_R_SYM(rela->r_info); name = dstobj->strtab + dstsym->st_name; size = dstsym->st_size; symlook_init(&req, name); req.ventry = fetch_ventry(dstobj, ELF_R_SYM(rela->r_info)); req.flags = SYMLOOK_EARLY; for (srcobj = globallist_next(dstobj); srcobj != NULL; srcobj = globallist_next(srcobj)) { res = symlook_obj(&req, srcobj); if (res == 0) { srcsym = req.sym_out; defobj = req.defobj_out; break; } } if (srcobj == NULL) { _rtld_error("Undefined symbol \"%s\"" "referenced from COPY relocation" "in %s", name, dstobj->path); return (-1); } srcaddr = (const void *)(defobj->relocbase + srcsym->st_value); memcpy(dstaddr, srcaddr, size); } } return (0); } int reloc_non_plt(Obj_Entry *obj, Obj_Entry *obj_rtld, int flags, RtldLockState *lockstate) { const Elf_Rela *relalim; const Elf_Rela *rela; SymCache *cache; int r = -1; if ((flags & SYMLOOK_IFUNC) != 0) /* XXX not implemented */ return (0); /* * The dynamic loader may be called from a thread, we have * limited amounts of stack available so we cannot use alloca(). */ if (obj != obj_rtld) { cache = calloc(obj->dynsymcount, sizeof(SymCache)); /* No need to check for NULL here */ } else cache = NULL; relalim = (const Elf_Rela *)((caddr_t)obj->rela + obj->relasize); for (rela = obj->rela; rela < relalim; rela++) { if (reloc_nonplt_object(obj, rela, cache, flags, lockstate) < 0) goto done; } r = 0; done: if (cache != NULL) free(cache); return (r); } static int reloc_nonplt_object(Obj_Entry *obj, const Elf_Rela *rela, SymCache *cache, int flags, RtldLockState *lockstate) { const Obj_Entry *defobj; const Elf_Sym *def; Elf_Addr *where; Elf_Word *where32; Elf_Word type; Elf_Addr value; Elf_Addr mask; where = (Elf_Addr *)(obj->relocbase + rela->r_offset); where32 = (Elf_Word *)where; defobj = NULL; def = NULL; type = ELF64_R_TYPE_ID(rela->r_info); if (type == R_SPARC_NONE) return (0); /* We do JMP_SLOTs below. */ if (type == R_SPARC_JMP_SLOT) return (0); /* COPY relocs are also handled elsewhere. */ if (type == R_SPARC_COPY) return (0); /* Ignore ADD and CALL relocations for dynamic TLS references. */ if (type == R_SPARC_TLS_GD_ADD || type == R_SPARC_TLS_GD_CALL || type == R_SPARC_TLS_LDM_ADD || type == R_SPARC_TLS_LDM_CALL || type == R_SPARC_TLS_LDO_ADD) return (0); /* * Note: R_SPARC_TLS_TPOFF64 must be the numerically largest * relocation type. */ if (type >= sizeof(reloc_target_bitmask) / sizeof(*reloc_target_bitmask)) { _rtld_error("%s: Unsupported relocation type %d in non-PLT " "object\n", obj->path, type); return (-1); } value = rela->r_addend; /* * Handle relative relocs here, because we might not be able to access * globals yet. */ if (type == R_SPARC_RELATIVE) { /* XXXX -- apparently we ignore the preexisting value. */ *where = (Elf_Addr)(obj->relocbase + value); return (0); } /* * If we get here while relocating rtld itself, we will crash because * a non-local variable is accessed. */ if (RELOC_RESOLVE_SYMBOL(type)) { /* Find the symbol. */ def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, flags, cache, lockstate); if (def == NULL) return (-1); if (RELOC_USE_TLS_ID(type)) value = (Elf_Addr)defobj->tlsindex; else if (RELOC_USE_TLS_DOFF(type)) value += (Elf_Addr)def->st_value; else if (RELOC_USE_TLS_OFF(type)) { /* * We lazily allocate offsets for static TLS as we * see the first relocation that references the TLS * block. This allows us to support (small amounts * of) static TLS in dynamically loaded modules. If * we run out of space, we generate an error. */ if (!defobj->tls_done && !allocate_tls_offset((Obj_Entry*)defobj)) { _rtld_error("%s: No space available for " "static Thread Local Storage", obj->path); return (-1); } value += (Elf_Addr)(def->st_value - defobj->tlsoffset); } else { /* Add in the symbol's absolute address. */ value += (Elf_Addr)(def->st_value + defobj->relocbase); } } if (type == R_SPARC_OLO10) value = (value & 0x3ff) + ELF64_R_TYPE_DATA(rela->r_info); if (type == R_SPARC_HIX22 || type == R_SPARC_TLS_LE_HIX22) value ^= 0xffffffffffffffff; if (RELOC_PC_RELATIVE(type)) value -= (Elf_Addr)where; if (RELOC_BASE_RELATIVE(type)) { /* * Note that even though sparcs use `Elf_rela' exclusively * we still need the implicit memory addend in relocations * referring to GOT entries. Undoubtedly, someone f*cked * this up in the distant past, and now we're stuck with * it in the name of compatibility for all eternity ... * * In any case, the implicit and explicit should be mutually * exclusive. We provide a check for that here. */ /* XXXX -- apparently we ignore the preexisting value */ value += (Elf_Addr)(obj->relocbase); } mask = RELOC_VALUE_BITMASK(type); value >>= RELOC_VALUE_RIGHTSHIFT(type); value &= mask; if (type == R_SPARC_LOX10 || type == R_SPARC_TLS_LE_LOX10) value |= 0x1c00; if (RELOC_UNALIGNED(type)) { /* Handle unaligned relocations. */ Elf_Addr tmp; char *ptr; int size; int i; size = RELOC_TARGET_SIZE(type) / 8; ptr = (char *)where; tmp = 0; /* Read it in one byte at a time. */ for (i = 0; i < size; i++) tmp = (tmp << 8) | ptr[i]; tmp &= ~mask; tmp |= value; /* Write it back out. */ for (i = 0; i < size; i++) ptr[i] = ((tmp >> ((size - i - 1) * 8)) & 0xff); } else if (RELOC_TARGET_SIZE(type) > 32) { *where &= ~mask; *where |= value; } else { *where32 &= ~mask; *where32 |= value; } return (0); } int reloc_plt(Obj_Entry *obj) { #if 0 const Obj_Entry *defobj; const Elf_Rela *relalim; const Elf_Rela *rela; const Elf_Sym *def; Elf_Addr *where; Elf_Addr value; relalim = (const Elf_Rela *)((char *)obj->pltrela + obj->pltrelasize); for (rela = obj->pltrela; rela < relalim; rela++) { if (rela->r_addend == 0) continue; assert(ELF64_R_TYPE_ID(rela->r_info) == R_SPARC_JMP_SLOT); where = (Elf_Addr *)(obj->relocbase + rela->r_offset); def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, - true, NULL, lockstate); + SYMLOOK_IN_PLT, NULL, lockstate); value = (Elf_Addr)(defobj->relocbase + def->st_value); *where = value; } #endif return (0); } /* * Instruction templates: */ #define BAA 0x10400000 /* ba,a %xcc, 0 */ #define SETHI 0x03000000 /* sethi %hi(0), %g1 */ #define JMP 0x81c06000 /* jmpl %g1+%lo(0), %g0 */ #define NOP 0x01000000 /* sethi %hi(0), %g0 */ #define OR 0x82806000 /* or %g1, 0, %g1 */ #define XOR 0x82c06000 /* xor %g1, 0, %g1 */ #define MOV71 0x8283a000 /* or %o7, 0, %g1 */ #define MOV17 0x9c806000 /* or %g1, 0, %o7 */ #define CALL 0x40000000 /* call 0 */ #define SLLX 0x8b407000 /* sllx %g1, 0, %g1 */ #define SETHIG5 0x0b000000 /* sethi %hi(0), %g5 */ #define ORG5 0x82804005 /* or %g1, %g5, %g1 */ /* %hi(v) with variable shift */ #define HIVAL(v, s) (((v) >> (s)) & 0x003fffff) #define LOVAL(v) ((v) & 0x000003ff) int reloc_jmpslots(Obj_Entry *obj, int flags, RtldLockState *lockstate) { const Obj_Entry *defobj; const Elf_Rela *relalim; const Elf_Rela *rela; const Elf_Sym *def; Elf_Addr *where; Elf_Addr target; relalim = (const Elf_Rela *)((char *)obj->pltrela + obj->pltrelasize); for (rela = obj->pltrela; rela < relalim; rela++) { assert(ELF64_R_TYPE_ID(rela->r_info) == R_SPARC_JMP_SLOT); where = (Elf_Addr *)(obj->relocbase + rela->r_offset); def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, SYMLOOK_IN_PLT | flags, NULL, lockstate); if (def == NULL) return -1; target = (Elf_Addr)(defobj->relocbase + def->st_value); reloc_jmpslot(where, target, defobj, obj, (Elf_Rel *)rela); } obj->jmpslots_done = true; return (0); } int reloc_iresolve(Obj_Entry *obj, struct Struct_RtldLockState *lockstate) { /* XXX not implemented */ return (0); } int reloc_gnu_ifunc(Obj_Entry *obj, int flags, struct Struct_RtldLockState *lockstate) { /* XXX not implemented */ return (0); } Elf_Addr reloc_jmpslot(Elf_Addr *wherep, Elf_Addr target, const Obj_Entry *obj, const Obj_Entry *refobj, const Elf_Rel *rel) { const Elf_Rela *rela = (const Elf_Rela *)rel; Elf_Addr offset; Elf_Word *where; if (rela - refobj->pltrela < 32764) { /* * At the PLT entry pointed at by `where', we now construct * a direct transfer to the now fully resolved function * address. * * A PLT entry is supposed to start by looking like this: * * sethi (. - .PLT0), %g1 * ba,a %xcc, .PLT1 * nop * nop * nop * nop * nop * nop * * When we replace these entries we start from the second * entry and do it in reverse order so the last thing we * do is replace the branch. That allows us to change this * atomically. * * We now need to find out how far we need to jump. We * have a choice of several different relocation techniques * which are increasingly expensive. */ where = (Elf_Word *)wherep; offset = ((Elf_Addr)where) - target; if (offset <= (1L<<20) && offset >= -(1L<<20)) { /* * We're within 1MB -- we can use a direct branch * instruction. * * We can generate this pattern: * * sethi %hi(. - .PLT0), %g1 * ba,a %xcc, addr * nop * nop * nop * nop * nop * nop * */ where[1] = BAA | ((offset >> 2) &0x3fffff); flush(where, 4); } else if (target >= 0 && target < (1L<<32)) { /* * We're within 32-bits of address zero. * * The resulting code in the jump slot is: * * sethi %hi(. - .PLT0), %g1 * sethi %hi(addr), %g1 * jmp %g1+%lo(addr) * nop * nop * nop * nop * nop * */ where[2] = JMP | LOVAL(target); flush(where, 8); where[1] = SETHI | HIVAL(target, 10); flush(where, 4); } else if (target <= 0 && target > -(1L<<32)) { /* * We're within 32-bits of address -1. * * The resulting code in the jump slot is: * * sethi %hi(. - .PLT0), %g1 * sethi %hix(addr), %g1 * xor %g1, %lox(addr), %g1 * jmp %g1 * nop * nop * nop * nop * */ where[3] = JMP; flush(where, 12); where[2] = XOR | ((~target) & 0x00001fff); flush(where, 8); where[1] = SETHI | HIVAL(~target, 10); flush(where, 4); } else if (offset <= (1L<<32) && offset >= -((1L<<32) - 4)) { /* * We're within 32-bits -- we can use a direct call * insn * * The resulting code in the jump slot is: * * sethi %hi(. - .PLT0), %g1 * mov %o7, %g1 * call (.+offset) * mov %g1, %o7 * nop * nop * nop * nop * */ where[3] = MOV17; flush(where, 12); where[2] = CALL | ((offset >> 4) & 0x3fffffff); flush(where, 8); where[1] = MOV71; flush(where, 4); } else if (offset >= 0 && offset < (1L<<44)) { /* * We're within 44 bits. We can generate this * pattern: * * The resulting code in the jump slot is: * * sethi %hi(. - .PLT0), %g1 * sethi %h44(addr), %g1 * or %g1, %m44(addr), %g1 * sllx %g1, 12, %g1 * jmp %g1+%l44(addr) * nop * nop * nop * */ where[4] = JMP | LOVAL(offset); flush(where, 16); where[3] = SLLX | 12; flush(where, 12); where[2] = OR | (((offset) >> 12) & 0x00001fff); flush(where, 8); where[1] = SETHI | HIVAL(offset, 22); flush(where, 4); } else if (offset < 0 && offset > -(1L<<44)) { /* * We're within 44 bits. We can generate this * pattern: * * The resulting code in the jump slot is: * * sethi %hi(. - .PLT0), %g1 * sethi %h44(-addr), %g1 * xor %g1, %m44(-addr), %g1 * sllx %g1, 12, %g1 * jmp %g1+%l44(addr) * nop * nop * nop * */ where[4] = JMP | LOVAL(offset); flush(where, 16); where[3] = SLLX | 12; flush(where, 12); where[2] = XOR | (((~offset) >> 12) & 0x00001fff); flush(where, 8); where[1] = SETHI | HIVAL(~offset, 22); flush(where, 4); } else { /* * We need to load all 64-bits * * The resulting code in the jump slot is: * * sethi %hi(. - .PLT0), %g1 * sethi %hh(addr), %g1 * sethi %lm(addr), %g5 * or %g1, %hm(addr), %g1 * sllx %g1, 32, %g1 * or %g1, %g5, %g1 * jmp %g1+%lo(addr) * nop * */ where[6] = JMP | LOVAL(target); flush(where, 24); where[5] = ORG5; flush(where, 20); where[4] = SLLX | 32; flush(where, 16); where[3] = OR | LOVAL((target) >> 32); flush(where, 12); where[2] = SETHIG5 | HIVAL(target, 10); flush(where, 8); where[1] = SETHI | HIVAL(target, 42); flush(where, 4); } } else { /* * This is a high PLT slot; the relocation offset specifies a * pointer that needs to be frobbed; no actual code needs to * be modified. The pointer to be calculated needs the addend * added and the reference object relocation base subtraced. */ *wherep = target + rela->r_addend - (Elf_Addr)refobj->relocbase; } return (target); } void ifunc_init(Elf_Auxinfo aux_info[__min_size(AT_COUNT)] __unused) { } /* * Install rtld function call into this PLT slot. */ #define SAVE 0x9de3bf50 #define SETHI_l0 0x21000000 #define SETHI_l1 0x23000000 #define OR_l0_l0 0xa0142000 #define SLLX_l0_32_l0 0xa12c3020 #define OR_l0_l1_l0 0xa0140011 #define JMPL_l0_o1 0x93c42000 #define MOV_g1_o0 0x90100001 void init_pltgot(Obj_Entry *obj) { Elf_Word *entry; if (obj->pltgot != NULL) { entry = (Elf_Word *)obj->pltgot; install_plt(&entry[0], (Elf_Addr)_rtld_bind_start_0); install_plt(&entry[8], (Elf_Addr)_rtld_bind_start_1); obj->pltgot[8] = (Elf_Addr)obj; } } static void install_plt(Elf_Word *pltgot, Elf_Addr proc) { pltgot[0] = SAVE; flush(pltgot, 0); pltgot[1] = SETHI_l0 | HIVAL(proc, 42); flush(pltgot, 4); pltgot[2] = SETHI_l1 | HIVAL(proc, 10); flush(pltgot, 8); pltgot[3] = OR_l0_l0 | LOVAL((proc) >> 32); flush(pltgot, 12); pltgot[4] = SLLX_l0_32_l0; flush(pltgot, 16); pltgot[5] = OR_l0_l1_l0; flush(pltgot, 20); pltgot[6] = JMPL_l0_o1 | LOVAL(proc); flush(pltgot, 24); pltgot[7] = MOV_g1_o0; flush(pltgot, 28); } void allocate_initial_tls(Obj_Entry *objs) { Elf_Addr* tpval; /* * Fix the size of the static TLS block by using the maximum offset * allocated so far and adding a bit for dynamic modules to use. */ tls_static_space = tls_last_offset + RTLD_STATIC_TLS_EXTRA; tpval = allocate_tls(objs, NULL, 3 * sizeof(Elf_Addr), sizeof(Elf_Addr)); __asm __volatile("mov %0, %%g7" : : "r" (tpval)); } void *__tls_get_addr(tls_index *ti) { register Elf_Addr** tp __asm__("%g7"); return (tls_get_addr_common(tp, ti->ti_module, ti->ti_offset)); } Index: stable/10 =================================================================== --- stable/10 (revision 309370) +++ stable/10 (revision 309371) Property changes on: stable/10 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r308456 Index: stable/11/libexec/rtld-elf/rtld.c =================================================================== --- stable/11/libexec/rtld-elf/rtld.c (revision 309370) +++ stable/11/libexec/rtld-elf/rtld.c (revision 309371) @@ -1,5205 +1,5205 @@ /*- * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra. * Copyright 2003 Alexander Kabaev . * Copyright 2009-2012 Konstantin Belousov . * Copyright 2012 John Marino . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /* * Dynamic linker for ELF. * * John Polstra . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "debug.h" #include "rtld.h" #include "libmap.h" #include "paths.h" #include "rtld_tls.h" #include "rtld_printf.h" #include "rtld_utrace.h" #include "notes.h" /* Types. */ typedef void (*func_ptr_type)(); typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg); /* * Function declarations. */ static const char *basename(const char *); static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **, const Elf_Dyn **, const Elf_Dyn **); static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *, const Elf_Dyn *); static void digest_dynamic(Obj_Entry *, int); static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *); static Obj_Entry *dlcheck(void *); static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags, int mode, RtldLockState *lockstate); static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int); static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *); static bool donelist_check(DoneList *, const Obj_Entry *); static void errmsg_restore(char *); static char *errmsg_save(void); static void *fill_search_info(const char *, size_t, void *); static char *find_library(const char *, const Obj_Entry *, int *); static const char *gethints(bool); static void init_dag(Obj_Entry *); static void init_pagesizes(Elf_Auxinfo **aux_info); static void init_rtld(caddr_t, Elf_Auxinfo **); static void initlist_add_neededs(Needed_Entry *, Objlist *); static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *); static void linkmap_add(Obj_Entry *); static void linkmap_delete(Obj_Entry *); static void load_filtees(Obj_Entry *, int flags, RtldLockState *); static void unload_filtees(Obj_Entry *); static int load_needed_objects(Obj_Entry *, int); static int load_preload_objects(void); static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int); static void map_stacks_exec(RtldLockState *); static Obj_Entry *obj_from_addr(const void *); static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *); static void objlist_call_init(Objlist *, RtldLockState *); static void objlist_clear(Objlist *); static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *); static void objlist_init(Objlist *); static void objlist_push_head(Objlist *, Obj_Entry *); static void objlist_push_tail(Objlist *, Obj_Entry *); static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *); static void objlist_remove(Objlist *, Obj_Entry *); static int parse_libdir(const char *); static void *path_enumerate(const char *, path_enum_proc, void *); static int relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj, int flags, RtldLockState *lockstate); static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, int flags, RtldLockState *lockstate); static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int, RtldLockState *); static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags, RtldLockState *lockstate); static int rtld_dirname(const char *, char *); static int rtld_dirname_abs(const char *, char *); static void *rtld_dlopen(const char *name, int fd, int mode); static void rtld_exit(void); static char *search_library_path(const char *, const char *); static char *search_library_pathfds(const char *, const char *, int *); static const void **get_program_var_addr(const char *, RtldLockState *); static void set_program_var(const char *, const void *); static int symlook_default(SymLook *, const Obj_Entry *refobj); static int symlook_global(SymLook *, DoneList *); static void symlook_init_from_req(SymLook *, const SymLook *); static int symlook_list(SymLook *, const Objlist *, DoneList *); static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *); static int symlook_obj1_sysv(SymLook *, const Obj_Entry *); static int symlook_obj1_gnu(SymLook *, const Obj_Entry *); static void trace_loaded_objects(Obj_Entry *); static void unlink_object(Obj_Entry *); static void unload_object(Obj_Entry *); static void unref_dag(Obj_Entry *); static void ref_dag(Obj_Entry *); static char *origin_subst_one(Obj_Entry *, char *, const char *, const char *, bool); static char *origin_subst(Obj_Entry *, char *); static bool obj_resolve_origin(Obj_Entry *obj); static void preinit_main(void); static int rtld_verify_versions(const Objlist *); static int rtld_verify_object_versions(Obj_Entry *); static void object_add_name(Obj_Entry *, const char *); static int object_match_name(const Obj_Entry *, const char *); static void ld_utrace_log(int, void *, void *, size_t, int, const char *); static void rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info); static uint32_t gnu_hash(const char *); static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *, const unsigned long); void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported; void _r_debug_postinit(struct link_map *) __noinline __exported; int __sys_openat(int, const char *, int, ...); /* * Data declarations. */ static char *error_message; /* Message for dlerror(), or NULL */ struct r_debug r_debug __exported; /* for GDB; */ static bool libmap_disable; /* Disable libmap */ static bool ld_loadfltr; /* Immediate filters processing */ static char *libmap_override; /* Maps to use in addition to libmap.conf */ static bool trust; /* False for setuid and setgid programs */ static bool dangerous_ld_env; /* True if environment variables have been used to affect the libraries loaded */ static char *ld_bind_now; /* Environment variable for immediate binding */ static char *ld_debug; /* Environment variable for debugging */ static char *ld_library_path; /* Environment variable for search path */ static char *ld_library_dirs; /* Environment variable for library descriptors */ static char *ld_preload; /* Environment variable for libraries to load first */ static char *ld_elf_hints_path; /* Environment variable for alternative hints path */ static char *ld_tracing; /* Called from ldd to print libs */ static char *ld_utrace; /* Use utrace() to log events. */ static struct obj_entry_q obj_list; /* Queue of all loaded objects */ static Obj_Entry *obj_main; /* The main program shared object */ static Obj_Entry obj_rtld; /* The dynamic linker shared object */ static unsigned int obj_count; /* Number of objects in obj_list */ static unsigned int obj_loads; /* Number of loads of objects (gen count) */ static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */ STAILQ_HEAD_INITIALIZER(list_global); static Objlist list_main = /* Objects loaded at program startup */ STAILQ_HEAD_INITIALIZER(list_main); static Objlist list_fini = /* Objects needing fini() calls */ STAILQ_HEAD_INITIALIZER(list_fini); Elf_Sym sym_zero; /* For resolving undefined weak refs. */ #define GDB_STATE(s,m) r_debug.r_state = s; r_debug_state(&r_debug,m); extern Elf_Dyn _DYNAMIC; #pragma weak _DYNAMIC #ifndef RTLD_IS_DYNAMIC #define RTLD_IS_DYNAMIC() (&_DYNAMIC != NULL) #endif int dlclose(void *) __exported; char *dlerror(void) __exported; void *dlopen(const char *, int) __exported; void *fdlopen(int, int) __exported; void *dlsym(void *, const char *) __exported; dlfunc_t dlfunc(void *, const char *) __exported; void *dlvsym(void *, const char *, const char *) __exported; int dladdr(const void *, Dl_info *) __exported; void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *), void (*)(void *), void (*)(void *), void (*)(void *)) __exported; int dlinfo(void *, int , void *) __exported; int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported; int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported; int _rtld_get_stack_prot(void) __exported; int _rtld_is_dlopened(void *) __exported; void _rtld_error(const char *, ...) __exported; int npagesizes, osreldate; size_t *pagesizes; long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0}; static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC; static int max_stack_flags; /* * Global declarations normally provided by crt1. The dynamic linker is * not built with crt1, so we have to provide them ourselves. */ char *__progname; char **environ; /* * Used to pass argc, argv to init functions. */ int main_argc; char **main_argv; /* * Globals to control TLS allocation. */ size_t tls_last_offset; /* Static TLS offset of last module */ size_t tls_last_size; /* Static TLS size of last module */ size_t tls_static_space; /* Static TLS space allocated */ size_t tls_static_max_align; int tls_dtv_generation = 1; /* Used to detect when dtv size changes */ int tls_max_index = 1; /* Largest module index allocated */ bool ld_library_path_rpath = false; /* * Globals for path names, and such */ char *ld_elf_hints_default = _PATH_ELF_HINTS; char *ld_path_libmap_conf = _PATH_LIBMAP_CONF; char *ld_path_rtld = _PATH_RTLD; char *ld_standard_library_path = STANDARD_LIBRARY_PATH; char *ld_env_prefix = LD_; /* * Fill in a DoneList with an allocation large enough to hold all of * the currently-loaded objects. Keep this as a macro since it calls * alloca and we want that to occur within the scope of the caller. */ #define donelist_init(dlp) \ ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]), \ assert((dlp)->objs != NULL), \ (dlp)->num_alloc = obj_count, \ (dlp)->num_used = 0) #define LD_UTRACE(e, h, mb, ms, r, n) do { \ if (ld_utrace != NULL) \ ld_utrace_log(e, h, mb, ms, r, n); \ } while (0) static void ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize, int refcnt, const char *name) { struct utrace_rtld ut; static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG; memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig)); ut.event = event; ut.handle = handle; ut.mapbase = mapbase; ut.mapsize = mapsize; ut.refcnt = refcnt; bzero(ut.name, sizeof(ut.name)); if (name) strlcpy(ut.name, name, sizeof(ut.name)); utrace(&ut, sizeof(ut)); } #ifdef RTLD_VARIANT_ENV_NAMES /* * construct the env variable based on the type of binary that's * running. */ static inline const char * _LD(const char *var) { static char buffer[128]; strlcpy(buffer, ld_env_prefix, sizeof(buffer)); strlcat(buffer, var, sizeof(buffer)); return (buffer); } #else #define _LD(x) LD_ x #endif /* * Main entry point for dynamic linking. The first argument is the * stack pointer. The stack is expected to be laid out as described * in the SVR4 ABI specification, Intel 386 Processor Supplement. * Specifically, the stack pointer points to a word containing * ARGC. Following that in the stack is a null-terminated sequence * of pointers to argument strings. Then comes a null-terminated * sequence of pointers to environment strings. Finally, there is a * sequence of "auxiliary vector" entries. * * The second argument points to a place to store the dynamic linker's * exit procedure pointer and the third to a place to store the main * program's object. * * The return value is the main program's entry point. */ func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp) { Elf_Auxinfo *aux_info[AT_COUNT]; int i; int argc; char **argv; char **env; Elf_Auxinfo *aux; Elf_Auxinfo *auxp; const char *argv0; Objlist_Entry *entry; Obj_Entry *obj; Obj_Entry *preload_tail; Obj_Entry *last_interposer; Objlist initlist; RtldLockState lockstate; char *library_path_rpath; int mib[2]; size_t len; /* * On entry, the dynamic linker itself has not been relocated yet. * Be very careful not to reference any global data until after * init_rtld has returned. It is OK to reference file-scope statics * and string constants, and to call static and global functions. */ /* Find the auxiliary vector on the stack. */ argc = *sp++; argv = (char **) sp; sp += argc + 1; /* Skip over arguments and NULL terminator */ env = (char **) sp; while (*sp++ != 0) /* Skip over environment, and NULL terminator */ ; aux = (Elf_Auxinfo *) sp; /* Digest the auxiliary vector. */ for (i = 0; i < AT_COUNT; i++) aux_info[i] = NULL; for (auxp = aux; auxp->a_type != AT_NULL; auxp++) { if (auxp->a_type < AT_COUNT) aux_info[auxp->a_type] = auxp; } /* Initialize and relocate ourselves. */ assert(aux_info[AT_BASE] != NULL); init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info); __progname = obj_rtld.path; argv0 = argv[0] != NULL ? argv[0] : "(null)"; environ = env; main_argc = argc; main_argv = argv; if (aux_info[AT_CANARY] != NULL && aux_info[AT_CANARY]->a_un.a_ptr != NULL) { i = aux_info[AT_CANARYLEN]->a_un.a_val; if (i > sizeof(__stack_chk_guard)) i = sizeof(__stack_chk_guard); memcpy(__stack_chk_guard, aux_info[AT_CANARY]->a_un.a_ptr, i); } else { mib[0] = CTL_KERN; mib[1] = KERN_ARND; len = sizeof(__stack_chk_guard); if (sysctl(mib, 2, __stack_chk_guard, &len, NULL, 0) == -1 || len != sizeof(__stack_chk_guard)) { /* If sysctl was unsuccessful, use the "terminator canary". */ ((unsigned char *)(void *)__stack_chk_guard)[0] = 0; ((unsigned char *)(void *)__stack_chk_guard)[1] = 0; ((unsigned char *)(void *)__stack_chk_guard)[2] = '\n'; ((unsigned char *)(void *)__stack_chk_guard)[3] = 255; } } trust = !issetugid(); md_abi_variant_hook(aux_info); ld_bind_now = getenv(_LD("BIND_NOW")); /* * If the process is tainted, then we un-set the dangerous environment * variables. The process will be marked as tainted until setuid(2) * is called. If any child process calls setuid(2) we do not want any * future processes to honor the potentially un-safe variables. */ if (!trust) { if (unsetenv(_LD("PRELOAD")) || unsetenv(_LD("LIBMAP")) || unsetenv(_LD("LIBRARY_PATH")) || unsetenv(_LD("LIBRARY_PATH_FDS")) || unsetenv(_LD("LIBMAP_DISABLE")) || unsetenv(_LD("DEBUG")) || unsetenv(_LD("ELF_HINTS_PATH")) || unsetenv(_LD("LOADFLTR")) || unsetenv(_LD("LIBRARY_PATH_RPATH"))) { _rtld_error("environment corrupt; aborting"); rtld_die(); } } ld_debug = getenv(_LD("DEBUG")); libmap_disable = getenv(_LD("LIBMAP_DISABLE")) != NULL; libmap_override = getenv(_LD("LIBMAP")); ld_library_path = getenv(_LD("LIBRARY_PATH")); ld_library_dirs = getenv(_LD("LIBRARY_PATH_FDS")); ld_preload = getenv(_LD("PRELOAD")); ld_elf_hints_path = getenv(_LD("ELF_HINTS_PATH")); ld_loadfltr = getenv(_LD("LOADFLTR")) != NULL; library_path_rpath = getenv(_LD("LIBRARY_PATH_RPATH")); if (library_path_rpath != NULL) { if (library_path_rpath[0] == 'y' || library_path_rpath[0] == 'Y' || library_path_rpath[0] == '1') ld_library_path_rpath = true; else ld_library_path_rpath = false; } dangerous_ld_env = libmap_disable || (libmap_override != NULL) || (ld_library_path != NULL) || (ld_preload != NULL) || (ld_elf_hints_path != NULL) || ld_loadfltr; ld_tracing = getenv(_LD("TRACE_LOADED_OBJECTS")); ld_utrace = getenv(_LD("UTRACE")); if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0) ld_elf_hints_path = ld_elf_hints_default; if (ld_debug != NULL && *ld_debug != '\0') debug = 1; dbg("%s is initialized, base address = %p", __progname, (caddr_t) aux_info[AT_BASE]->a_un.a_ptr); dbg("RTLD dynamic = %p", obj_rtld.dynamic); dbg("RTLD pltgot = %p", obj_rtld.pltgot); dbg("initializing thread locks"); lockdflt_init(); /* * Load the main program, or process its program header if it is * already loaded. */ if (aux_info[AT_EXECFD] != NULL) { /* Load the main program. */ int fd = aux_info[AT_EXECFD]->a_un.a_val; dbg("loading main program"); obj_main = map_object(fd, argv0, NULL); close(fd); if (obj_main == NULL) rtld_die(); max_stack_flags = obj->stack_flags; } else { /* Main program already loaded. */ const Elf_Phdr *phdr; int phnum; caddr_t entry; dbg("processing main program's program header"); assert(aux_info[AT_PHDR] != NULL); phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr; assert(aux_info[AT_PHNUM] != NULL); phnum = aux_info[AT_PHNUM]->a_un.a_val; assert(aux_info[AT_PHENT] != NULL); assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr)); assert(aux_info[AT_ENTRY] != NULL); entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr; if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL) rtld_die(); } if (aux_info[AT_EXECPATH] != NULL) { char *kexecpath; char buf[MAXPATHLEN]; kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr; dbg("AT_EXECPATH %p %s", kexecpath, kexecpath); if (kexecpath[0] == '/') obj_main->path = kexecpath; else if (getcwd(buf, sizeof(buf)) == NULL || strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) || strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf)) obj_main->path = xstrdup(argv0); else obj_main->path = xstrdup(buf); } else { dbg("No AT_EXECPATH"); obj_main->path = xstrdup(argv0); } dbg("obj_main path %s", obj_main->path); obj_main->mainprog = true; if (aux_info[AT_STACKPROT] != NULL && aux_info[AT_STACKPROT]->a_un.a_val != 0) stack_prot = aux_info[AT_STACKPROT]->a_un.a_val; #ifndef COMPAT_32BIT /* * Get the actual dynamic linker pathname from the executable if * possible. (It should always be possible.) That ensures that * gdb will find the right dynamic linker even if a non-standard * one is being used. */ if (obj_main->interp != NULL && strcmp(obj_main->interp, obj_rtld.path) != 0) { free(obj_rtld.path); obj_rtld.path = xstrdup(obj_main->interp); __progname = obj_rtld.path; } #endif digest_dynamic(obj_main, 0); dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu, obj_main->dynsymcount); linkmap_add(obj_main); linkmap_add(&obj_rtld); /* Link the main program into the list of objects. */ TAILQ_INSERT_HEAD(&obj_list, obj_main, next); obj_count++; obj_loads++; /* Initialize a fake symbol for resolving undefined weak references. */ sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE); sym_zero.st_shndx = SHN_UNDEF; sym_zero.st_value = -(uintptr_t)obj_main->relocbase; if (!libmap_disable) libmap_disable = (bool)lm_init(libmap_override); dbg("loading LD_PRELOAD libraries"); if (load_preload_objects() == -1) rtld_die(); preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q)); dbg("loading needed objects"); if (load_needed_objects(obj_main, 0) == -1) rtld_die(); /* Make a list of all objects loaded at startup. */ last_interposer = obj_main; TAILQ_FOREACH(obj, &obj_list, next) { if (obj->marker) continue; if (obj->z_interpose && obj != obj_main) { objlist_put_after(&list_main, last_interposer, obj); last_interposer = obj; } else { objlist_push_tail(&list_main, obj); } obj->refcount++; } dbg("checking for required versions"); if (rtld_verify_versions(&list_main) == -1 && !ld_tracing) rtld_die(); if (ld_tracing) { /* We're done */ trace_loaded_objects(obj_main); exit(0); } if (getenv(_LD("DUMP_REL_PRE")) != NULL) { dump_relocations(obj_main); exit (0); } /* * Processing tls relocations requires having the tls offsets * initialized. Prepare offsets before starting initial * relocation processing. */ dbg("initializing initial thread local storage offsets"); STAILQ_FOREACH(entry, &list_main, link) { /* * Allocate all the initial objects out of the static TLS * block even if they didn't ask for it. */ allocate_tls_offset(entry->obj); } if (relocate_objects(obj_main, ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld, SYMLOOK_EARLY, NULL) == -1) rtld_die(); dbg("doing copy relocations"); if (do_copy_relocations(obj_main) == -1) rtld_die(); if (getenv(_LD("DUMP_REL_POST")) != NULL) { dump_relocations(obj_main); exit (0); } /* * Setup TLS for main thread. This must be done after the * relocations are processed, since tls initialization section * might be the subject for relocations. */ dbg("initializing initial thread local storage"); allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list))); dbg("initializing key program variables"); set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : ""); set_program_var("environ", env); set_program_var("__elf_aux_vector", aux); /* Make a list of init functions to call. */ objlist_init(&initlist); initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)), preload_tail, &initlist); r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */ map_stacks_exec(NULL); ifunc_init(aux); dbg("resolving ifuncs"); if (resolve_objects_ifunc(obj_main, ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY, NULL) == -1) rtld_die(); if (!obj_main->crt_no_init) { /* * Make sure we don't call the main program's init and fini * functions for binaries linked with old crt1 which calls * _init itself. */ obj_main->init = obj_main->fini = (Elf_Addr)NULL; obj_main->preinit_array = obj_main->init_array = obj_main->fini_array = (Elf_Addr)NULL; } wlock_acquire(rtld_bind_lock, &lockstate); if (obj_main->crt_no_init) preinit_main(); objlist_call_init(&initlist, &lockstate); _r_debug_postinit(&obj_main->linkmap); objlist_clear(&initlist); dbg("loading filtees"); TAILQ_FOREACH(obj, &obj_list, next) { if (obj->marker) continue; if (ld_loadfltr || obj->z_loadfltr) load_filtees(obj, 0, &lockstate); } lock_release(rtld_bind_lock, &lockstate); dbg("transferring control to program entry point = %p", obj_main->entry); /* Return the exit procedure and the program entry point. */ *exit_proc = rtld_exit; *objp = obj_main; return (func_ptr_type) obj_main->entry; } void * rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def) { void *ptr; Elf_Addr target; ptr = (void *)make_function_pointer(def, obj); target = call_ifunc_resolver(ptr); return ((void *)target); } Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff) { const Elf_Rel *rel; const Elf_Sym *def; const Obj_Entry *defobj; Elf_Addr *where; Elf_Addr target; RtldLockState lockstate; rlock_acquire(rtld_bind_lock, &lockstate); if (sigsetjmp(lockstate.env, 0) != 0) lock_upgrade(rtld_bind_lock, &lockstate); if (obj->pltrel) rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff); else rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff); where = (Elf_Addr *) (obj->relocbase + rel->r_offset); - def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL, - &lockstate); + def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT, + NULL, &lockstate); if (def == NULL) rtld_die(); if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) target = (Elf_Addr)rtld_resolve_ifunc(defobj, def); else target = (Elf_Addr)(defobj->relocbase + def->st_value); dbg("\"%s\" in \"%s\" ==> %p in \"%s\"", defobj->strtab + def->st_name, basename(obj->path), (void *)target, basename(defobj->path)); /* * Write the new contents for the jmpslot. Note that depending on * architecture, the value which we need to return back to the * lazy binding trampoline may or may not be the target * address. The value returned from reloc_jmpslot() is the value * that the trampoline needs. */ target = reloc_jmpslot(where, target, defobj, obj, rel); lock_release(rtld_bind_lock, &lockstate); return target; } /* * Error reporting function. Use it like printf. If formats the message * into a buffer, and sets things up so that the next call to dlerror() * will return the message. */ void _rtld_error(const char *fmt, ...) { static char buf[512]; va_list ap; va_start(ap, fmt); rtld_vsnprintf(buf, sizeof buf, fmt, ap); error_message = buf; va_end(ap); } /* * Return a dynamically-allocated copy of the current error message, if any. */ static char * errmsg_save(void) { return error_message == NULL ? NULL : xstrdup(error_message); } /* * Restore the current error message from a copy which was previously saved * by errmsg_save(). The copy is freed. */ static void errmsg_restore(char *saved_msg) { if (saved_msg == NULL) error_message = NULL; else { _rtld_error("%s", saved_msg); free(saved_msg); } } static const char * basename(const char *name) { const char *p = strrchr(name, '/'); return p != NULL ? p + 1 : name; } static struct utsname uts; static char * origin_subst_one(Obj_Entry *obj, char *real, const char *kw, const char *subst, bool may_free) { char *p, *p1, *res, *resp; int subst_len, kw_len, subst_count, old_len, new_len; kw_len = strlen(kw); /* * First, count the number of the keyword occurrences, to * preallocate the final string. */ for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) { p1 = strstr(p, kw); if (p1 == NULL) break; } /* * If the keyword is not found, just return. * * Return non-substituted string if resolution failed. We * cannot do anything more reasonable, the failure mode of the * caller is unresolved library anyway. */ if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj))) return (may_free ? real : xstrdup(real)); if (obj != NULL) subst = obj->origin_path; /* * There is indeed something to substitute. Calculate the * length of the resulting string, and allocate it. */ subst_len = strlen(subst); old_len = strlen(real); new_len = old_len + (subst_len - kw_len) * subst_count; res = xmalloc(new_len + 1); /* * Now, execute the substitution loop. */ for (p = real, resp = res, *resp = '\0';;) { p1 = strstr(p, kw); if (p1 != NULL) { /* Copy the prefix before keyword. */ memcpy(resp, p, p1 - p); resp += p1 - p; /* Keyword replacement. */ memcpy(resp, subst, subst_len); resp += subst_len; *resp = '\0'; p = p1 + kw_len; } else break; } /* Copy to the end of string and finish. */ strcat(resp, p); if (may_free) free(real); return (res); } static char * origin_subst(Obj_Entry *obj, char *real) { char *res1, *res2, *res3, *res4; if (obj == NULL || !trust) return (xstrdup(real)); if (uts.sysname[0] == '\0') { if (uname(&uts) != 0) { _rtld_error("utsname failed: %d", errno); return (NULL); } } res1 = origin_subst_one(obj, real, "$ORIGIN", NULL, false); res2 = origin_subst_one(NULL, res1, "$OSNAME", uts.sysname, true); res3 = origin_subst_one(NULL, res2, "$OSREL", uts.release, true); res4 = origin_subst_one(NULL, res3, "$PLATFORM", uts.machine, true); return (res4); } void rtld_die(void) { const char *msg = dlerror(); if (msg == NULL) msg = "Fatal error"; rtld_fdputstr(STDERR_FILENO, msg); rtld_fdputchar(STDERR_FILENO, '\n'); _exit(1); } /* * Process a shared object's DYNAMIC section, and save the important * information in its Obj_Entry structure. */ static void digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath, const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath) { const Elf_Dyn *dynp; Needed_Entry **needed_tail = &obj->needed; Needed_Entry **needed_filtees_tail = &obj->needed_filtees; Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees; const Elf_Hashelt *hashtab; const Elf32_Word *hashval; Elf32_Word bkt, nmaskwords; int bloom_size32; int plttype = DT_REL; *dyn_rpath = NULL; *dyn_soname = NULL; *dyn_runpath = NULL; obj->bind_now = false; for (dynp = obj->dynamic; dynp->d_tag != DT_NULL; dynp++) { switch (dynp->d_tag) { case DT_REL: obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr); break; case DT_RELSZ: obj->relsize = dynp->d_un.d_val; break; case DT_RELENT: assert(dynp->d_un.d_val == sizeof(Elf_Rel)); break; case DT_JMPREL: obj->pltrel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr); break; case DT_PLTRELSZ: obj->pltrelsize = dynp->d_un.d_val; break; case DT_RELA: obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr); break; case DT_RELASZ: obj->relasize = dynp->d_un.d_val; break; case DT_RELAENT: assert(dynp->d_un.d_val == sizeof(Elf_Rela)); break; case DT_PLTREL: plttype = dynp->d_un.d_val; assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA); break; case DT_SYMTAB: obj->symtab = (const Elf_Sym *) (obj->relocbase + dynp->d_un.d_ptr); break; case DT_SYMENT: assert(dynp->d_un.d_val == sizeof(Elf_Sym)); break; case DT_STRTAB: obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr); break; case DT_STRSZ: obj->strsize = dynp->d_un.d_val; break; case DT_VERNEED: obj->verneed = (const Elf_Verneed *) (obj->relocbase + dynp->d_un.d_val); break; case DT_VERNEEDNUM: obj->verneednum = dynp->d_un.d_val; break; case DT_VERDEF: obj->verdef = (const Elf_Verdef *) (obj->relocbase + dynp->d_un.d_val); break; case DT_VERDEFNUM: obj->verdefnum = dynp->d_un.d_val; break; case DT_VERSYM: obj->versyms = (const Elf_Versym *)(obj->relocbase + dynp->d_un.d_val); break; case DT_HASH: { hashtab = (const Elf_Hashelt *)(obj->relocbase + dynp->d_un.d_ptr); obj->nbuckets = hashtab[0]; obj->nchains = hashtab[1]; obj->buckets = hashtab + 2; obj->chains = obj->buckets + obj->nbuckets; obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 && obj->buckets != NULL; } break; case DT_GNU_HASH: { hashtab = (const Elf_Hashelt *)(obj->relocbase + dynp->d_un.d_ptr); obj->nbuckets_gnu = hashtab[0]; obj->symndx_gnu = hashtab[1]; nmaskwords = hashtab[2]; bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords; obj->maskwords_bm_gnu = nmaskwords - 1; obj->shift2_gnu = hashtab[3]; obj->bloom_gnu = (Elf_Addr *) (hashtab + 4); obj->buckets_gnu = hashtab + 4 + bloom_size32; obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu - obj->symndx_gnu; /* Number of bitmask words is required to be power of 2 */ obj->valid_hash_gnu = powerof2(nmaskwords) && obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL; } break; case DT_NEEDED: if (!obj->rtld) { Needed_Entry *nep = NEW(Needed_Entry); nep->name = dynp->d_un.d_val; nep->obj = NULL; nep->next = NULL; *needed_tail = nep; needed_tail = &nep->next; } break; case DT_FILTER: if (!obj->rtld) { Needed_Entry *nep = NEW(Needed_Entry); nep->name = dynp->d_un.d_val; nep->obj = NULL; nep->next = NULL; *needed_filtees_tail = nep; needed_filtees_tail = &nep->next; } break; case DT_AUXILIARY: if (!obj->rtld) { Needed_Entry *nep = NEW(Needed_Entry); nep->name = dynp->d_un.d_val; nep->obj = NULL; nep->next = NULL; *needed_aux_filtees_tail = nep; needed_aux_filtees_tail = &nep->next; } break; case DT_PLTGOT: obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr); break; case DT_TEXTREL: obj->textrel = true; break; case DT_SYMBOLIC: obj->symbolic = true; break; case DT_RPATH: /* * We have to wait until later to process this, because we * might not have gotten the address of the string table yet. */ *dyn_rpath = dynp; break; case DT_SONAME: *dyn_soname = dynp; break; case DT_RUNPATH: *dyn_runpath = dynp; break; case DT_INIT: obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); break; case DT_PREINIT_ARRAY: obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); break; case DT_PREINIT_ARRAYSZ: obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); break; case DT_INIT_ARRAY: obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); break; case DT_INIT_ARRAYSZ: obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); break; case DT_FINI: obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); break; case DT_FINI_ARRAY: obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr); break; case DT_FINI_ARRAYSZ: obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr); break; /* * Don't process DT_DEBUG on MIPS as the dynamic section * is mapped read-only. DT_MIPS_RLD_MAP is used instead. */ #ifndef __mips__ case DT_DEBUG: if (!early) dbg("Filling in DT_DEBUG entry"); ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug; break; #endif case DT_FLAGS: if (dynp->d_un.d_val & DF_ORIGIN) obj->z_origin = true; if (dynp->d_un.d_val & DF_SYMBOLIC) obj->symbolic = true; if (dynp->d_un.d_val & DF_TEXTREL) obj->textrel = true; if (dynp->d_un.d_val & DF_BIND_NOW) obj->bind_now = true; /*if (dynp->d_un.d_val & DF_STATIC_TLS) ;*/ break; #ifdef __mips__ case DT_MIPS_LOCAL_GOTNO: obj->local_gotno = dynp->d_un.d_val; break; case DT_MIPS_SYMTABNO: obj->symtabno = dynp->d_un.d_val; break; case DT_MIPS_GOTSYM: obj->gotsym = dynp->d_un.d_val; break; case DT_MIPS_RLD_MAP: *((Elf_Addr *)(dynp->d_un.d_ptr)) = (Elf_Addr) &r_debug; break; #endif #ifdef __powerpc64__ case DT_PPC64_GLINK: obj->glink = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr); break; #endif case DT_FLAGS_1: if (dynp->d_un.d_val & DF_1_NOOPEN) obj->z_noopen = true; if (dynp->d_un.d_val & DF_1_ORIGIN) obj->z_origin = true; if (dynp->d_un.d_val & DF_1_GLOBAL) obj->z_global = true; if (dynp->d_un.d_val & DF_1_BIND_NOW) obj->bind_now = true; if (dynp->d_un.d_val & DF_1_NODELETE) obj->z_nodelete = true; if (dynp->d_un.d_val & DF_1_LOADFLTR) obj->z_loadfltr = true; if (dynp->d_un.d_val & DF_1_INTERPOSE) obj->z_interpose = true; if (dynp->d_un.d_val & DF_1_NODEFLIB) obj->z_nodeflib = true; break; default: if (!early) { dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag, (long)dynp->d_tag); } break; } } obj->traced = false; if (plttype == DT_RELA) { obj->pltrela = (const Elf_Rela *) obj->pltrel; obj->pltrel = NULL; obj->pltrelasize = obj->pltrelsize; obj->pltrelsize = 0; } /* Determine size of dynsym table (equal to nchains of sysv hash) */ if (obj->valid_hash_sysv) obj->dynsymcount = obj->nchains; else if (obj->valid_hash_gnu) { obj->dynsymcount = 0; for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) { if (obj->buckets_gnu[bkt] == 0) continue; hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]]; do obj->dynsymcount++; while ((*hashval++ & 1u) == 0); } obj->dynsymcount += obj->symndx_gnu; } } static bool obj_resolve_origin(Obj_Entry *obj) { if (obj->origin_path != NULL) return (true); obj->origin_path = xmalloc(PATH_MAX); return (rtld_dirname_abs(obj->path, obj->origin_path) != -1); } static void digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath, const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath) { if (obj->z_origin && !obj_resolve_origin(obj)) rtld_die(); if (dyn_runpath != NULL) { obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val; obj->runpath = origin_subst(obj, obj->runpath); } else if (dyn_rpath != NULL) { obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val; obj->rpath = origin_subst(obj, obj->rpath); } if (dyn_soname != NULL) object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val); } static void digest_dynamic(Obj_Entry *obj, int early) { const Elf_Dyn *dyn_rpath; const Elf_Dyn *dyn_soname; const Elf_Dyn *dyn_runpath; digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath); digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath); } /* * Process a shared object's program header. This is used only for the * main program, when the kernel has already loaded the main program * into memory before calling the dynamic linker. It creates and * returns an Obj_Entry structure. */ static Obj_Entry * digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path) { Obj_Entry *obj; const Elf_Phdr *phlimit = phdr + phnum; const Elf_Phdr *ph; Elf_Addr note_start, note_end; int nsegs = 0; obj = obj_new(); for (ph = phdr; ph < phlimit; ph++) { if (ph->p_type != PT_PHDR) continue; obj->phdr = phdr; obj->phsize = ph->p_memsz; obj->relocbase = (caddr_t)phdr - ph->p_vaddr; break; } obj->stack_flags = PF_X | PF_R | PF_W; for (ph = phdr; ph < phlimit; ph++) { switch (ph->p_type) { case PT_INTERP: obj->interp = (const char *)(ph->p_vaddr + obj->relocbase); break; case PT_LOAD: if (nsegs == 0) { /* First load segment */ obj->vaddrbase = trunc_page(ph->p_vaddr); obj->mapbase = obj->vaddrbase + obj->relocbase; obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) - obj->vaddrbase; } else { /* Last load segment */ obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) - obj->vaddrbase; } nsegs++; break; case PT_DYNAMIC: obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase); break; case PT_TLS: obj->tlsindex = 1; obj->tlssize = ph->p_memsz; obj->tlsalign = ph->p_align; obj->tlsinitsize = ph->p_filesz; obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase); break; case PT_GNU_STACK: obj->stack_flags = ph->p_flags; break; case PT_GNU_RELRO: obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr); obj->relro_size = round_page(ph->p_memsz); break; case PT_NOTE: note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr; note_end = note_start + ph->p_filesz; digest_notes(obj, note_start, note_end); break; } } if (nsegs < 1) { _rtld_error("%s: too few PT_LOAD segments", path); return NULL; } obj->entry = entry; return obj; } void digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end) { const Elf_Note *note; const char *note_name; uintptr_t p; for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end; note = (const Elf_Note *)((const char *)(note + 1) + roundup2(note->n_namesz, sizeof(Elf32_Addr)) + roundup2(note->n_descsz, sizeof(Elf32_Addr)))) { if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) || note->n_descsz != sizeof(int32_t)) continue; if (note->n_type != NT_FREEBSD_ABI_TAG && note->n_type != NT_FREEBSD_NOINIT_TAG) continue; note_name = (const char *)(note + 1); if (strncmp(NOTE_FREEBSD_VENDOR, note_name, sizeof(NOTE_FREEBSD_VENDOR)) != 0) continue; switch (note->n_type) { case NT_FREEBSD_ABI_TAG: /* FreeBSD osrel note */ p = (uintptr_t)(note + 1); p += roundup2(note->n_namesz, sizeof(Elf32_Addr)); obj->osrel = *(const int32_t *)(p); dbg("note osrel %d", obj->osrel); break; case NT_FREEBSD_NOINIT_TAG: /* FreeBSD 'crt does not call init' note */ obj->crt_no_init = true; dbg("note crt_no_init"); break; } } } static Obj_Entry * dlcheck(void *handle) { Obj_Entry *obj; TAILQ_FOREACH(obj, &obj_list, next) { if (obj == (Obj_Entry *) handle) break; } if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) { _rtld_error("Invalid shared object handle %p", handle); return NULL; } return obj; } /* * If the given object is already in the donelist, return true. Otherwise * add the object to the list and return false. */ static bool donelist_check(DoneList *dlp, const Obj_Entry *obj) { unsigned int i; for (i = 0; i < dlp->num_used; i++) if (dlp->objs[i] == obj) return true; /* * Our donelist allocation should always be sufficient. But if * our threads locking isn't working properly, more shared objects * could have been loaded since we allocated the list. That should * never happen, but we'll handle it properly just in case it does. */ if (dlp->num_used < dlp->num_alloc) dlp->objs[dlp->num_used++] = obj; return false; } /* * Hash function for symbol table lookup. Don't even think about changing * this. It is specified by the System V ABI. */ unsigned long elf_hash(const char *name) { const unsigned char *p = (const unsigned char *) name; unsigned long h = 0; unsigned long g; while (*p != '\0') { h = (h << 4) + *p++; if ((g = h & 0xf0000000) != 0) h ^= g >> 24; h &= ~g; } return h; } /* * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits * unsigned in case it's implemented with a wider type. */ static uint32_t gnu_hash(const char *s) { uint32_t h; unsigned char c; h = 5381; for (c = *s; c != '\0'; c = *++s) h = h * 33 + c; return (h & 0xffffffff); } /* * Find the library with the given name, and return its full pathname. * The returned string is dynamically allocated. Generates an error * message and returns NULL if the library cannot be found. * * If the second argument is non-NULL, then it refers to an already- * loaded shared object, whose library search path will be searched. * * If a library is successfully located via LD_LIBRARY_PATH_FDS, its * descriptor (which is close-on-exec) will be passed out via the third * argument. * * The search order is: * DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1) * DT_RPATH of the main object if DSO without defined DT_RUNPATH (1) * LD_LIBRARY_PATH * DT_RUNPATH in the referencing file * ldconfig hints (if -z nodefaultlib, filter out default library directories * from list) * /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib * * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined. */ static char * find_library(const char *xname, const Obj_Entry *refobj, int *fdp) { char *pathname; char *name; bool nodeflib, objgiven; objgiven = refobj != NULL; if (strchr(xname, '/') != NULL) { /* Hard coded pathname */ if (xname[0] != '/' && !trust) { _rtld_error("Absolute pathname required for shared object \"%s\"", xname); return NULL; } return (origin_subst(__DECONST(Obj_Entry *, refobj), __DECONST(char *, xname))); } if (libmap_disable || !objgiven || (name = lm_find(refobj->path, xname)) == NULL) name = (char *)xname; dbg(" Searching for \"%s\"", name); /* * If refobj->rpath != NULL, then refobj->runpath is NULL. Fall * back to pre-conforming behaviour if user requested so with * LD_LIBRARY_PATH_RPATH environment variable and ignore -z * nodeflib. */ if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) { if ((pathname = search_library_path(name, ld_library_path)) != NULL || (refobj != NULL && (pathname = search_library_path(name, refobj->rpath)) != NULL) || (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL || (pathname = search_library_path(name, gethints(false))) != NULL || (pathname = search_library_path(name, ld_standard_library_path)) != NULL) return (pathname); } else { nodeflib = objgiven ? refobj->z_nodeflib : false; if ((objgiven && (pathname = search_library_path(name, refobj->rpath)) != NULL) || (objgiven && refobj->runpath == NULL && refobj != obj_main && (pathname = search_library_path(name, obj_main->rpath)) != NULL) || (pathname = search_library_path(name, ld_library_path)) != NULL || (objgiven && (pathname = search_library_path(name, refobj->runpath)) != NULL) || (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL || (pathname = search_library_path(name, gethints(nodeflib))) != NULL || (objgiven && !nodeflib && (pathname = search_library_path(name, ld_standard_library_path)) != NULL)) return (pathname); } if (objgiven && refobj->path != NULL) { _rtld_error("Shared object \"%s\" not found, required by \"%s\"", name, basename(refobj->path)); } else { _rtld_error("Shared object \"%s\" not found", name); } return NULL; } /* * Given a symbol number in a referencing object, find the corresponding * definition of the symbol. Returns a pointer to the symbol, or NULL if * no definition was found. Returns a pointer to the Obj_Entry of the * defining object via the reference parameter DEFOBJ_OUT. */ const Elf_Sym * find_symdef(unsigned long symnum, const Obj_Entry *refobj, const Obj_Entry **defobj_out, int flags, SymCache *cache, RtldLockState *lockstate) { const Elf_Sym *ref; const Elf_Sym *def; const Obj_Entry *defobj; SymLook req; const char *name; int res; /* * If we have already found this symbol, get the information from * the cache. */ if (symnum >= refobj->dynsymcount) return NULL; /* Bad object */ if (cache != NULL && cache[symnum].sym != NULL) { *defobj_out = cache[symnum].obj; return cache[symnum].sym; } ref = refobj->symtab + symnum; name = refobj->strtab + ref->st_name; def = NULL; defobj = NULL; /* * We don't have to do a full scale lookup if the symbol is local. * We know it will bind to the instance in this load module; to * which we already have a pointer (ie ref). By not doing a lookup, * we not only improve performance, but it also avoids unresolvable * symbols when local symbols are not in the hash table. This has * been seen with the ia64 toolchain. */ if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) { if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) { _rtld_error("%s: Bogus symbol table entry %lu", refobj->path, symnum); } symlook_init(&req, name); req.flags = flags; req.ventry = fetch_ventry(refobj, symnum); req.lockstate = lockstate; res = symlook_default(&req, refobj); if (res == 0) { def = req.sym_out; defobj = req.defobj_out; } } else { def = ref; defobj = refobj; } /* * If we found no definition and the reference is weak, treat the * symbol as having the value zero. */ if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) { def = &sym_zero; defobj = obj_main; } if (def != NULL) { *defobj_out = defobj; /* Record the information in the cache to avoid subsequent lookups. */ if (cache != NULL) { cache[symnum].sym = def; cache[symnum].obj = defobj; } } else { if (refobj != &obj_rtld) _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name); } return def; } /* * Return the search path from the ldconfig hints file, reading it if * necessary. If nostdlib is true, then the default search paths are * not added to result. * * Returns NULL if there are problems with the hints file, * or if the search path there is empty. */ static const char * gethints(bool nostdlib) { static char *hints, *filtered_path; static struct elfhints_hdr hdr; struct fill_search_info_args sargs, hargs; struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo; struct dl_serpath *SLPpath, *hintpath; char *p; struct stat hint_stat; unsigned int SLPndx, hintndx, fndx, fcount; int fd; size_t flen; uint32_t dl; bool skip; /* First call, read the hints file */ if (hints == NULL) { /* Keep from trying again in case the hints file is bad. */ hints = ""; if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1) return (NULL); /* * Check of hdr.dirlistlen value against type limit * intends to pacify static analyzers. Further * paranoia leads to checks that dirlist is fully * contained in the file range. */ if (read(fd, &hdr, sizeof hdr) != sizeof hdr || hdr.magic != ELFHINTS_MAGIC || hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 || fstat(fd, &hint_stat) == -1) { cleanup1: close(fd); hdr.dirlistlen = 0; return (NULL); } dl = hdr.strtab; if (dl + hdr.dirlist < dl) goto cleanup1; dl += hdr.dirlist; if (dl + hdr.dirlistlen < dl) goto cleanup1; dl += hdr.dirlistlen; if (dl > hint_stat.st_size) goto cleanup1; p = xmalloc(hdr.dirlistlen + 1); if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 || read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1 || p[hdr.dirlistlen] != '\0') { free(p); goto cleanup1; } hints = p; close(fd); } /* * If caller agreed to receive list which includes the default * paths, we are done. Otherwise, if we still did not * calculated filtered result, do it now. */ if (!nostdlib) return (hints[0] != '\0' ? hints : NULL); if (filtered_path != NULL) goto filt_ret; /* * Obtain the list of all configured search paths, and the * list of the default paths. * * First estimate the size of the results. */ smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath); smeta.dls_cnt = 0; hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath); hmeta.dls_cnt = 0; sargs.request = RTLD_DI_SERINFOSIZE; sargs.serinfo = &smeta; hargs.request = RTLD_DI_SERINFOSIZE; hargs.serinfo = &hmeta; path_enumerate(ld_standard_library_path, fill_search_info, &sargs); path_enumerate(hints, fill_search_info, &hargs); SLPinfo = xmalloc(smeta.dls_size); hintinfo = xmalloc(hmeta.dls_size); /* * Next fetch both sets of paths. */ sargs.request = RTLD_DI_SERINFO; sargs.serinfo = SLPinfo; sargs.serpath = &SLPinfo->dls_serpath[0]; sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt]; hargs.request = RTLD_DI_SERINFO; hargs.serinfo = hintinfo; hargs.serpath = &hintinfo->dls_serpath[0]; hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt]; path_enumerate(ld_standard_library_path, fill_search_info, &sargs); path_enumerate(hints, fill_search_info, &hargs); /* * Now calculate the difference between two sets, by excluding * standard paths from the full set. */ fndx = 0; fcount = 0; filtered_path = xmalloc(hdr.dirlistlen + 1); hintpath = &hintinfo->dls_serpath[0]; for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) { skip = false; SLPpath = &SLPinfo->dls_serpath[0]; /* * Check each standard path against current. */ for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) { /* matched, skip the path */ if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) { skip = true; break; } } if (skip) continue; /* * Not matched against any standard path, add the path * to result. Separate consequtive paths with ':'. */ if (fcount > 0) { filtered_path[fndx] = ':'; fndx++; } fcount++; flen = strlen(hintpath->dls_name); strncpy((filtered_path + fndx), hintpath->dls_name, flen); fndx += flen; } filtered_path[fndx] = '\0'; free(SLPinfo); free(hintinfo); filt_ret: return (filtered_path[0] != '\0' ? filtered_path : NULL); } static void init_dag(Obj_Entry *root) { const Needed_Entry *needed; const Objlist_Entry *elm; DoneList donelist; if (root->dag_inited) return; donelist_init(&donelist); /* Root object belongs to own DAG. */ objlist_push_tail(&root->dldags, root); objlist_push_tail(&root->dagmembers, root); donelist_check(&donelist, root); /* * Add dependencies of root object to DAG in breadth order * by exploiting the fact that each new object get added * to the tail of the dagmembers list. */ STAILQ_FOREACH(elm, &root->dagmembers, link) { for (needed = elm->obj->needed; needed != NULL; needed = needed->next) { if (needed->obj == NULL || donelist_check(&donelist, needed->obj)) continue; objlist_push_tail(&needed->obj->dldags, root); objlist_push_tail(&root->dagmembers, needed->obj); } } root->dag_inited = true; } Obj_Entry * globallist_curr(const Obj_Entry *obj) { for (;;) { if (obj == NULL) return (NULL); if (!obj->marker) return (__DECONST(Obj_Entry *, obj)); obj = TAILQ_PREV(obj, obj_entry_q, next); } } Obj_Entry * globallist_next(const Obj_Entry *obj) { for (;;) { obj = TAILQ_NEXT(obj, next); if (obj == NULL) return (NULL); if (!obj->marker) return (__DECONST(Obj_Entry *, obj)); } } static void process_z(Obj_Entry *root) { const Objlist_Entry *elm; Obj_Entry *obj; /* * Walk over object DAG and process every dependent object * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need * to grow their own DAG. * * For DF_1_GLOBAL, DAG is required for symbol lookups in * symlook_global() to work. * * For DF_1_NODELETE, the DAG should have its reference upped. */ STAILQ_FOREACH(elm, &root->dagmembers, link) { obj = elm->obj; if (obj == NULL) continue; if (obj->z_nodelete && !obj->ref_nodel) { dbg("obj %s -z nodelete", obj->path); init_dag(obj); ref_dag(obj); obj->ref_nodel = true; } if (obj->z_global && objlist_find(&list_global, obj) == NULL) { dbg("obj %s -z global", obj->path); objlist_push_tail(&list_global, obj); init_dag(obj); } } } /* * Initialize the dynamic linker. The argument is the address at which * the dynamic linker has been mapped into memory. The primary task of * this function is to relocate the dynamic linker. */ static void init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info) { Obj_Entry objtmp; /* Temporary rtld object */ const Elf_Ehdr *ehdr; const Elf_Dyn *dyn_rpath; const Elf_Dyn *dyn_soname; const Elf_Dyn *dyn_runpath; #ifdef RTLD_INIT_PAGESIZES_EARLY /* The page size is required by the dynamic memory allocator. */ init_pagesizes(aux_info); #endif /* * Conjure up an Obj_Entry structure for the dynamic linker. * * The "path" member can't be initialized yet because string constants * cannot yet be accessed. Below we will set it correctly. */ memset(&objtmp, 0, sizeof(objtmp)); objtmp.path = NULL; objtmp.rtld = true; objtmp.mapbase = mapbase; #ifdef PIC objtmp.relocbase = mapbase; #endif if (RTLD_IS_DYNAMIC()) { objtmp.dynamic = rtld_dynamic(&objtmp); digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath); assert(objtmp.needed == NULL); #if !defined(__mips__) /* MIPS has a bogus DT_TEXTREL. */ assert(!objtmp.textrel); #endif /* * Temporarily put the dynamic linker entry into the object list, so * that symbols can be found. */ relocate_objects(&objtmp, true, &objtmp, 0, NULL); } ehdr = (Elf_Ehdr *)mapbase; objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff); objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]); /* Initialize the object list. */ TAILQ_INIT(&obj_list); /* Now that non-local variables can be accesses, copy out obj_rtld. */ memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld)); #ifndef RTLD_INIT_PAGESIZES_EARLY /* The page size is required by the dynamic memory allocator. */ init_pagesizes(aux_info); #endif if (aux_info[AT_OSRELDATE] != NULL) osreldate = aux_info[AT_OSRELDATE]->a_un.a_val; digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath); /* Replace the path with a dynamically allocated copy. */ obj_rtld.path = xstrdup(ld_path_rtld); r_debug.r_brk = r_debug_state; r_debug.r_state = RT_CONSISTENT; } /* * Retrieve the array of supported page sizes. The kernel provides the page * sizes in increasing order. */ static void init_pagesizes(Elf_Auxinfo **aux_info) { static size_t psa[MAXPAGESIZES]; int mib[2]; size_t len, size; if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] != NULL) { size = aux_info[AT_PAGESIZESLEN]->a_un.a_val; pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr; } else { len = 2; if (sysctlnametomib("hw.pagesizes", mib, &len) == 0) size = sizeof(psa); else { /* As a fallback, retrieve the base page size. */ size = sizeof(psa[0]); if (aux_info[AT_PAGESZ] != NULL) { psa[0] = aux_info[AT_PAGESZ]->a_un.a_val; goto psa_filled; } else { mib[0] = CTL_HW; mib[1] = HW_PAGESIZE; len = 2; } } if (sysctl(mib, len, psa, &size, NULL, 0) == -1) { _rtld_error("sysctl for hw.pagesize(s) failed"); rtld_die(); } psa_filled: pagesizes = psa; } npagesizes = size / sizeof(pagesizes[0]); /* Discard any invalid entries at the end of the array. */ while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0) npagesizes--; } /* * Add the init functions from a needed object list (and its recursive * needed objects) to "list". This is not used directly; it is a helper * function for initlist_add_objects(). The write lock must be held * when this function is called. */ static void initlist_add_neededs(Needed_Entry *needed, Objlist *list) { /* Recursively process the successor needed objects. */ if (needed->next != NULL) initlist_add_neededs(needed->next, list); /* Process the current needed object. */ if (needed->obj != NULL) initlist_add_objects(needed->obj, needed->obj, list); } /* * Scan all of the DAGs rooted in the range of objects from "obj" to * "tail" and add their init functions to "list". This recurses over * the DAGs and ensure the proper init ordering such that each object's * needed libraries are initialized before the object itself. At the * same time, this function adds the objects to the global finalization * list "list_fini" in the opposite order. The write lock must be * held when this function is called. */ static void initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list) { Obj_Entry *nobj; if (obj->init_scanned || obj->init_done) return; obj->init_scanned = true; /* Recursively process the successor objects. */ nobj = globallist_next(obj); if (nobj != NULL && obj != tail) initlist_add_objects(nobj, tail, list); /* Recursively process the needed objects. */ if (obj->needed != NULL) initlist_add_neededs(obj->needed, list); if (obj->needed_filtees != NULL) initlist_add_neededs(obj->needed_filtees, list); if (obj->needed_aux_filtees != NULL) initlist_add_neededs(obj->needed_aux_filtees, list); /* Add the object to the init list. */ if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL || obj->init_array != (Elf_Addr)NULL) objlist_push_tail(list, obj); /* Add the object to the global fini list in the reverse order. */ if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL) && !obj->on_fini_list) { objlist_push_head(&list_fini, obj); obj->on_fini_list = true; } } #ifndef FPTR_TARGET #define FPTR_TARGET(f) ((Elf_Addr) (f)) #endif static void free_needed_filtees(Needed_Entry *n) { Needed_Entry *needed, *needed1; for (needed = n; needed != NULL; needed = needed->next) { if (needed->obj != NULL) { dlclose(needed->obj); needed->obj = NULL; } } for (needed = n; needed != NULL; needed = needed1) { needed1 = needed->next; free(needed); } } static void unload_filtees(Obj_Entry *obj) { free_needed_filtees(obj->needed_filtees); obj->needed_filtees = NULL; free_needed_filtees(obj->needed_aux_filtees); obj->needed_aux_filtees = NULL; obj->filtees_loaded = false; } static void load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags, RtldLockState *lockstate) { for (; needed != NULL; needed = needed->next) { needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj, flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) | RTLD_LOCAL, lockstate); } } static void load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate) { lock_restart_for_upgrade(lockstate); if (!obj->filtees_loaded) { load_filtee1(obj, obj->needed_filtees, flags, lockstate); load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate); obj->filtees_loaded = true; } } static int process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags) { Obj_Entry *obj1; for (; needed != NULL; needed = needed->next) { obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj, flags & ~RTLD_LO_NOLOAD); if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0) return (-1); } return (0); } /* * Given a shared object, traverse its list of needed objects, and load * each of them. Returns 0 on success. Generates an error message and * returns -1 on failure. */ static int load_needed_objects(Obj_Entry *first, int flags) { Obj_Entry *obj; for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) { if (obj->marker) continue; if (process_needed(obj, obj->needed, flags) == -1) return (-1); } return (0); } static int load_preload_objects(void) { char *p = ld_preload; Obj_Entry *obj; static const char delim[] = " \t:;"; if (p == NULL) return 0; p += strspn(p, delim); while (*p != '\0') { size_t len = strcspn(p, delim); char savech; savech = p[len]; p[len] = '\0'; obj = load_object(p, -1, NULL, 0); if (obj == NULL) return -1; /* XXX - cleanup */ obj->z_interpose = true; p[len] = savech; p += len; p += strspn(p, delim); } LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL); return 0; } static const char * printable_path(const char *path) { return (path == NULL ? "" : path); } /* * Load a shared object into memory, if it is not already loaded. The * object may be specified by name or by user-supplied file descriptor * fd_u. In the later case, the fd_u descriptor is not closed, but its * duplicate is. * * Returns a pointer to the Obj_Entry for the object. Returns NULL * on failure. */ static Obj_Entry * load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags) { Obj_Entry *obj; int fd; struct stat sb; char *path; fd = -1; if (name != NULL) { TAILQ_FOREACH(obj, &obj_list, next) { if (obj->marker) continue; if (object_match_name(obj, name)) return (obj); } path = find_library(name, refobj, &fd); if (path == NULL) return (NULL); } else path = NULL; if (fd >= 0) { /* * search_library_pathfds() opens a fresh file descriptor for the * library, so there is no need to dup(). */ } else if (fd_u == -1) { /* * If we didn't find a match by pathname, or the name is not * supplied, open the file and check again by device and inode. * This avoids false mismatches caused by multiple links or ".." * in pathnames. * * To avoid a race, we open the file and use fstat() rather than * using stat(). */ if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) { _rtld_error("Cannot open \"%s\"", path); free(path); return (NULL); } } else { fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0); if (fd == -1) { _rtld_error("Cannot dup fd"); free(path); return (NULL); } } if (fstat(fd, &sb) == -1) { _rtld_error("Cannot fstat \"%s\"", printable_path(path)); close(fd); free(path); return NULL; } TAILQ_FOREACH(obj, &obj_list, next) { if (obj->marker) continue; if (obj->ino == sb.st_ino && obj->dev == sb.st_dev) break; } if (obj != NULL && name != NULL) { object_add_name(obj, name); free(path); close(fd); return obj; } if (flags & RTLD_LO_NOLOAD) { free(path); close(fd); return (NULL); } /* First use of this object, so we must map it in */ obj = do_load_object(fd, name, path, &sb, flags); if (obj == NULL) free(path); close(fd); return obj; } static Obj_Entry * do_load_object(int fd, const char *name, char *path, struct stat *sbp, int flags) { Obj_Entry *obj; struct statfs fs; /* * but first, make sure that environment variables haven't been * used to circumvent the noexec flag on a filesystem. */ if (dangerous_ld_env) { if (fstatfs(fd, &fs) != 0) { _rtld_error("Cannot fstatfs \"%s\"", printable_path(path)); return NULL; } if (fs.f_flags & MNT_NOEXEC) { _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname); return NULL; } } dbg("loading \"%s\"", printable_path(path)); obj = map_object(fd, printable_path(path), sbp); if (obj == NULL) return NULL; /* * If DT_SONAME is present in the object, digest_dynamic2 already * added it to the object names. */ if (name != NULL) object_add_name(obj, name); obj->path = path; digest_dynamic(obj, 0); dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path, obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount); if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) == RTLD_LO_DLOPEN) { dbg("refusing to load non-loadable \"%s\"", obj->path); _rtld_error("Cannot dlopen non-loadable %s", obj->path); munmap(obj->mapbase, obj->mapsize); obj_free(obj); return (NULL); } obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0; TAILQ_INSERT_TAIL(&obj_list, obj, next); obj_count++; obj_loads++; linkmap_add(obj); /* for GDB & dlinfo() */ max_stack_flags |= obj->stack_flags; dbg(" %p .. %p: %s", obj->mapbase, obj->mapbase + obj->mapsize - 1, obj->path); if (obj->textrel) dbg(" WARNING: %s has impure text", obj->path); LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0, obj->path); return obj; } static Obj_Entry * obj_from_addr(const void *addr) { Obj_Entry *obj; TAILQ_FOREACH(obj, &obj_list, next) { if (obj->marker) continue; if (addr < (void *) obj->mapbase) continue; if (addr < (void *) (obj->mapbase + obj->mapsize)) return obj; } return NULL; } static void preinit_main(void) { Elf_Addr *preinit_addr; int index; preinit_addr = (Elf_Addr *)obj_main->preinit_array; if (preinit_addr == NULL) return; for (index = 0; index < obj_main->preinit_array_num; index++) { if (preinit_addr[index] != 0 && preinit_addr[index] != 1) { dbg("calling preinit function for %s at %p", obj_main->path, (void *)preinit_addr[index]); LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index], 0, 0, obj_main->path); call_init_pointer(obj_main, preinit_addr[index]); } } } /* * Call the finalization functions for each of the objects in "list" * belonging to the DAG of "root" and referenced once. If NULL "root" * is specified, every finalization function will be called regardless * of the reference count and the list elements won't be freed. All of * the objects are expected to have non-NULL fini functions. */ static void objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate) { Objlist_Entry *elm; char *saved_msg; Elf_Addr *fini_addr; int index; assert(root == NULL || root->refcount == 1); /* * Preserve the current error message since a fini function might * call into the dynamic linker and overwrite it. */ saved_msg = errmsg_save(); do { STAILQ_FOREACH(elm, list, link) { if (root != NULL && (elm->obj->refcount != 1 || objlist_find(&root->dagmembers, elm->obj) == NULL)) continue; /* Remove object from fini list to prevent recursive invocation. */ STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link); /* * XXX: If a dlopen() call references an object while the * fini function is in progress, we might end up trying to * unload the referenced object in dlclose() or the object * won't be unloaded although its fini function has been * called. */ lock_release(rtld_bind_lock, lockstate); /* * It is legal to have both DT_FINI and DT_FINI_ARRAY defined. * When this happens, DT_FINI_ARRAY is processed first. */ fini_addr = (Elf_Addr *)elm->obj->fini_array; if (fini_addr != NULL && elm->obj->fini_array_num > 0) { for (index = elm->obj->fini_array_num - 1; index >= 0; index--) { if (fini_addr[index] != 0 && fini_addr[index] != 1) { dbg("calling fini function for %s at %p", elm->obj->path, (void *)fini_addr[index]); LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)fini_addr[index], 0, 0, elm->obj->path); call_initfini_pointer(elm->obj, fini_addr[index]); } } } if (elm->obj->fini != (Elf_Addr)NULL) { dbg("calling fini function for %s at %p", elm->obj->path, (void *)elm->obj->fini); LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0, elm->obj->path); call_initfini_pointer(elm->obj, elm->obj->fini); } wlock_acquire(rtld_bind_lock, lockstate); /* No need to free anything if process is going down. */ if (root != NULL) free(elm); /* * We must restart the list traversal after every fini call * because a dlclose() call from the fini function or from * another thread might have modified the reference counts. */ break; } } while (elm != NULL); errmsg_restore(saved_msg); } /* * Call the initialization functions for each of the objects in * "list". All of the objects are expected to have non-NULL init * functions. */ static void objlist_call_init(Objlist *list, RtldLockState *lockstate) { Objlist_Entry *elm; Obj_Entry *obj; char *saved_msg; Elf_Addr *init_addr; int index; /* * Clean init_scanned flag so that objects can be rechecked and * possibly initialized earlier if any of vectors called below * cause the change by using dlopen. */ TAILQ_FOREACH(obj, &obj_list, next) { if (obj->marker) continue; obj->init_scanned = false; } /* * Preserve the current error message since an init function might * call into the dynamic linker and overwrite it. */ saved_msg = errmsg_save(); STAILQ_FOREACH(elm, list, link) { if (elm->obj->init_done) /* Initialized early. */ continue; /* * Race: other thread might try to use this object before current * one completes the initilization. Not much can be done here * without better locking. */ elm->obj->init_done = true; lock_release(rtld_bind_lock, lockstate); /* * It is legal to have both DT_INIT and DT_INIT_ARRAY defined. * When this happens, DT_INIT is processed first. */ if (elm->obj->init != (Elf_Addr)NULL) { dbg("calling init function for %s at %p", elm->obj->path, (void *)elm->obj->init); LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0, elm->obj->path); call_initfini_pointer(elm->obj, elm->obj->init); } init_addr = (Elf_Addr *)elm->obj->init_array; if (init_addr != NULL) { for (index = 0; index < elm->obj->init_array_num; index++) { if (init_addr[index] != 0 && init_addr[index] != 1) { dbg("calling init function for %s at %p", elm->obj->path, (void *)init_addr[index]); LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)init_addr[index], 0, 0, elm->obj->path); call_init_pointer(elm->obj, init_addr[index]); } } } wlock_acquire(rtld_bind_lock, lockstate); } errmsg_restore(saved_msg); } static void objlist_clear(Objlist *list) { Objlist_Entry *elm; while (!STAILQ_EMPTY(list)) { elm = STAILQ_FIRST(list); STAILQ_REMOVE_HEAD(list, link); free(elm); } } static Objlist_Entry * objlist_find(Objlist *list, const Obj_Entry *obj) { Objlist_Entry *elm; STAILQ_FOREACH(elm, list, link) if (elm->obj == obj) return elm; return NULL; } static void objlist_init(Objlist *list) { STAILQ_INIT(list); } static void objlist_push_head(Objlist *list, Obj_Entry *obj) { Objlist_Entry *elm; elm = NEW(Objlist_Entry); elm->obj = obj; STAILQ_INSERT_HEAD(list, elm, link); } static void objlist_push_tail(Objlist *list, Obj_Entry *obj) { Objlist_Entry *elm; elm = NEW(Objlist_Entry); elm->obj = obj; STAILQ_INSERT_TAIL(list, elm, link); } static void objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj) { Objlist_Entry *elm, *listelm; STAILQ_FOREACH(listelm, list, link) { if (listelm->obj == listobj) break; } elm = NEW(Objlist_Entry); elm->obj = obj; if (listelm != NULL) STAILQ_INSERT_AFTER(list, listelm, elm, link); else STAILQ_INSERT_TAIL(list, elm, link); } static void objlist_remove(Objlist *list, Obj_Entry *obj) { Objlist_Entry *elm; if ((elm = objlist_find(list, obj)) != NULL) { STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link); free(elm); } } /* * Relocate dag rooted in the specified object. * Returns 0 on success, or -1 on failure. */ static int relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj, int flags, RtldLockState *lockstate) { Objlist_Entry *elm; int error; error = 0; STAILQ_FOREACH(elm, &root->dagmembers, link) { error = relocate_object(elm->obj, bind_now, rtldobj, flags, lockstate); if (error == -1) break; } return (error); } /* * Prepare for, or clean after, relocating an object marked with * DT_TEXTREL or DF_TEXTREL. Before relocating, all read-only * segments are remapped read-write. After relocations are done, the * segment's permissions are returned back to the modes specified in * the phdrs. If any relocation happened, or always for wired * program, COW is triggered. */ static int reloc_textrel_prot(Obj_Entry *obj, bool before) { const Elf_Phdr *ph; void *base; size_t l, sz; int prot; for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0; l--, ph++) { if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0) continue; base = obj->relocbase + trunc_page(ph->p_vaddr); sz = round_page(ph->p_vaddr + ph->p_filesz) - trunc_page(ph->p_vaddr); prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0); if (mprotect(base, sz, prot) == -1) { _rtld_error("%s: Cannot write-%sable text segment: %s", obj->path, before ? "en" : "dis", rtld_strerror(errno)); return (-1); } } return (0); } /* * Relocate single object. * Returns 0 on success, or -1 on failure. */ static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, int flags, RtldLockState *lockstate) { if (obj->relocated) return (0); obj->relocated = true; if (obj != rtldobj) dbg("relocating \"%s\"", obj->path); if (obj->symtab == NULL || obj->strtab == NULL || !(obj->valid_hash_sysv || obj->valid_hash_gnu)) { _rtld_error("%s: Shared object has no run-time symbol table", obj->path); return (-1); } /* There are relocations to the write-protected text segment. */ if (obj->textrel && reloc_textrel_prot(obj, true) != 0) return (-1); /* Process the non-PLT non-IFUNC relocations. */ if (reloc_non_plt(obj, rtldobj, flags, lockstate)) return (-1); /* Re-protected the text segment. */ if (obj->textrel && reloc_textrel_prot(obj, false) != 0) return (-1); /* Set the special PLT or GOT entries. */ init_pltgot(obj); /* Process the PLT relocations. */ if (reloc_plt(obj) == -1) return (-1); /* Relocate the jump slots if we are doing immediate binding. */ if (obj->bind_now || bind_now) if (reloc_jmpslots(obj, flags, lockstate) == -1) return (-1); /* * Process the non-PLT IFUNC relocations. The relocations are * processed in two phases, because IFUNC resolvers may * reference other symbols, which must be readily processed * before resolvers are called. */ if (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate)) return (-1); if (obj->relro_size > 0) { if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) { _rtld_error("%s: Cannot enforce relro protection: %s", obj->path, rtld_strerror(errno)); return (-1); } } /* * Set up the magic number and version in the Obj_Entry. These * were checked in the crt1.o from the original ElfKit, so we * set them for backward compatibility. */ obj->magic = RTLD_MAGIC; obj->version = RTLD_VERSION; return (0); } /* * Relocate newly-loaded shared objects. The argument is a pointer to * the Obj_Entry for the first such object. All objects from the first * to the end of the list of objects are relocated. Returns 0 on success, * or -1 on failure. */ static int relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj, int flags, RtldLockState *lockstate) { Obj_Entry *obj; int error; for (error = 0, obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) { if (obj->marker) continue; error = relocate_object(obj, bind_now, rtldobj, flags, lockstate); if (error == -1) break; } return (error); } /* * The handling of R_MACHINE_IRELATIVE relocations and jumpslots * referencing STT_GNU_IFUNC symbols is postponed till the other * relocations are done. The indirect functions specified as * ifunc are allowed to call other symbols, so we need to have * objects relocated before asking for resolution from indirects. * * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion, * instead of the usual lazy handling of PLT slots. It is * consistent with how GNU does it. */ static int resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags, RtldLockState *lockstate) { if (obj->irelative && reloc_iresolve(obj, lockstate) == -1) return (-1); if ((obj->bind_now || bind_now) && obj->gnu_ifunc && reloc_gnu_ifunc(obj, flags, lockstate) == -1) return (-1); return (0); } static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags, RtldLockState *lockstate) { Obj_Entry *obj; for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) { if (obj->marker) continue; if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1) return (-1); } return (0); } static int initlist_objects_ifunc(Objlist *list, bool bind_now, int flags, RtldLockState *lockstate) { Objlist_Entry *elm; STAILQ_FOREACH(elm, list, link) { if (resolve_object_ifunc(elm->obj, bind_now, flags, lockstate) == -1) return (-1); } return (0); } /* * Cleanup procedure. It will be called (by the atexit mechanism) just * before the process exits. */ static void rtld_exit(void) { RtldLockState lockstate; wlock_acquire(rtld_bind_lock, &lockstate); dbg("rtld_exit()"); objlist_call_fini(&list_fini, NULL, &lockstate); /* No need to remove the items from the list, since we are exiting. */ if (!libmap_disable) lm_fini(); lock_release(rtld_bind_lock, &lockstate); } /* * Iterate over a search path, translate each element, and invoke the * callback on the result. */ static void * path_enumerate(const char *path, path_enum_proc callback, void *arg) { const char *trans; if (path == NULL) return (NULL); path += strspn(path, ":;"); while (*path != '\0') { size_t len; char *res; len = strcspn(path, ":;"); trans = lm_findn(NULL, path, len); if (trans) res = callback(trans, strlen(trans), arg); else res = callback(path, len, arg); if (res != NULL) return (res); path += len; path += strspn(path, ":;"); } return (NULL); } struct try_library_args { const char *name; size_t namelen; char *buffer; size_t buflen; }; static void * try_library_path(const char *dir, size_t dirlen, void *param) { struct try_library_args *arg; arg = param; if (*dir == '/' || trust) { char *pathname; if (dirlen + 1 + arg->namelen + 1 > arg->buflen) return (NULL); pathname = arg->buffer; strncpy(pathname, dir, dirlen); pathname[dirlen] = '/'; strcpy(pathname + dirlen + 1, arg->name); dbg(" Trying \"%s\"", pathname); if (access(pathname, F_OK) == 0) { /* We found it */ pathname = xmalloc(dirlen + 1 + arg->namelen + 1); strcpy(pathname, arg->buffer); return (pathname); } } return (NULL); } static char * search_library_path(const char *name, const char *path) { char *p; struct try_library_args arg; if (path == NULL) return NULL; arg.name = name; arg.namelen = strlen(name); arg.buffer = xmalloc(PATH_MAX); arg.buflen = PATH_MAX; p = path_enumerate(path, try_library_path, &arg); free(arg.buffer); return (p); } /* * Finds the library with the given name using the directory descriptors * listed in the LD_LIBRARY_PATH_FDS environment variable. * * Returns a freshly-opened close-on-exec file descriptor for the library, * or -1 if the library cannot be found. */ static char * search_library_pathfds(const char *name, const char *path, int *fdp) { char *envcopy, *fdstr, *found, *last_token; size_t len; int dirfd, fd; dbg("%s('%s', '%s', fdp)", __func__, name, path); /* Don't load from user-specified libdirs into setuid binaries. */ if (!trust) return (NULL); /* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */ if (path == NULL) return (NULL); /* LD_LIBRARY_PATH_FDS only works with relative paths. */ if (name[0] == '/') { dbg("Absolute path (%s) passed to %s", name, __func__); return (NULL); } /* * Use strtok_r() to walk the FD:FD:FD list. This requires a local * copy of the path, as strtok_r rewrites separator tokens * with '\0'. */ found = NULL; envcopy = xstrdup(path); for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL; fdstr = strtok_r(NULL, ":", &last_token)) { dirfd = parse_libdir(fdstr); if (dirfd < 0) break; fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY); if (fd >= 0) { *fdp = fd; len = strlen(fdstr) + strlen(name) + 3; found = xmalloc(len); if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) { _rtld_error("error generating '%d/%s'", dirfd, name); rtld_die(); } dbg("open('%s') => %d", found, fd); break; } } free(envcopy); return (found); } int dlclose(void *handle) { Obj_Entry *root; RtldLockState lockstate; wlock_acquire(rtld_bind_lock, &lockstate); root = dlcheck(handle); if (root == NULL) { lock_release(rtld_bind_lock, &lockstate); return -1; } LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount, root->path); /* Unreference the object and its dependencies. */ root->dl_refcount--; if (root->refcount == 1) { /* * The object will be no longer referenced, so we must unload it. * First, call the fini functions. */ objlist_call_fini(&list_fini, root, &lockstate); unref_dag(root); /* Finish cleaning up the newly-unreferenced objects. */ GDB_STATE(RT_DELETE,&root->linkmap); unload_object(root); GDB_STATE(RT_CONSISTENT,NULL); } else unref_dag(root); LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL); lock_release(rtld_bind_lock, &lockstate); return 0; } char * dlerror(void) { char *msg = error_message; error_message = NULL; return msg; } /* * This function is deprecated and has no effect. */ void dllockinit(void *context, void *(*lock_create)(void *context), void (*rlock_acquire)(void *lock), void (*wlock_acquire)(void *lock), void (*lock_release)(void *lock), void (*lock_destroy)(void *lock), void (*context_destroy)(void *context)) { static void *cur_context; static void (*cur_context_destroy)(void *); /* Just destroy the context from the previous call, if necessary. */ if (cur_context_destroy != NULL) cur_context_destroy(cur_context); cur_context = context; cur_context_destroy = context_destroy; } void * dlopen(const char *name, int mode) { return (rtld_dlopen(name, -1, mode)); } void * fdlopen(int fd, int mode) { return (rtld_dlopen(NULL, fd, mode)); } static void * rtld_dlopen(const char *name, int fd, int mode) { RtldLockState lockstate; int lo_flags; LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name); ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1"; if (ld_tracing != NULL) { rlock_acquire(rtld_bind_lock, &lockstate); if (sigsetjmp(lockstate.env, 0) != 0) lock_upgrade(rtld_bind_lock, &lockstate); environ = (char **)*get_program_var_addr("environ", &lockstate); lock_release(rtld_bind_lock, &lockstate); } lo_flags = RTLD_LO_DLOPEN; if (mode & RTLD_NODELETE) lo_flags |= RTLD_LO_NODELETE; if (mode & RTLD_NOLOAD) lo_flags |= RTLD_LO_NOLOAD; if (ld_tracing != NULL) lo_flags |= RTLD_LO_TRACE; return (dlopen_object(name, fd, obj_main, lo_flags, mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL)); } static void dlopen_cleanup(Obj_Entry *obj) { obj->dl_refcount--; unref_dag(obj); if (obj->refcount == 0) unload_object(obj); } static Obj_Entry * dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags, int mode, RtldLockState *lockstate) { Obj_Entry *old_obj_tail; Obj_Entry *obj; Objlist initlist; RtldLockState mlockstate; int result; objlist_init(&initlist); if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) { wlock_acquire(rtld_bind_lock, &mlockstate); lockstate = &mlockstate; } GDB_STATE(RT_ADD,NULL); old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q)); obj = NULL; if (name == NULL && fd == -1) { obj = obj_main; obj->refcount++; } else { obj = load_object(name, fd, refobj, lo_flags); } if (obj) { obj->dl_refcount++; if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL) objlist_push_tail(&list_global, obj); if (globallist_next(old_obj_tail) != NULL) { /* We loaded something new. */ assert(globallist_next(old_obj_tail) == obj); result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY)); init_dag(obj); ref_dag(obj); if (result != -1) result = rtld_verify_versions(&obj->dagmembers); if (result != -1 && ld_tracing) goto trace; if (result == -1 || relocate_object_dag(obj, (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld, (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0, lockstate) == -1) { dlopen_cleanup(obj); obj = NULL; } else if (lo_flags & RTLD_LO_EARLY) { /* * Do not call the init functions for early loaded * filtees. The image is still not initialized enough * for them to work. * * Our object is found by the global object list and * will be ordered among all init calls done right * before transferring control to main. */ } else { /* Make list of init functions to call. */ initlist_add_objects(obj, obj, &initlist); } /* * Process all no_delete or global objects here, given * them own DAGs to prevent their dependencies from being * unloaded. This has to be done after we have loaded all * of the dependencies, so that we do not miss any. */ if (obj != NULL) process_z(obj); } else { /* * Bump the reference counts for objects on this DAG. If * this is the first dlopen() call for the object that was * already loaded as a dependency, initialize the dag * starting at it. */ init_dag(obj); ref_dag(obj); if ((lo_flags & RTLD_LO_TRACE) != 0) goto trace; } if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 || obj->z_nodelete) && !obj->ref_nodel) { dbg("obj %s nodelete", obj->path); ref_dag(obj); obj->z_nodelete = obj->ref_nodel = true; } } LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0, name); GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL); if (!(lo_flags & RTLD_LO_EARLY)) { map_stacks_exec(lockstate); } if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW, (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0, lockstate) == -1) { objlist_clear(&initlist); dlopen_cleanup(obj); if (lockstate == &mlockstate) lock_release(rtld_bind_lock, lockstate); return (NULL); } if (!(lo_flags & RTLD_LO_EARLY)) { /* Call the init functions. */ objlist_call_init(&initlist, lockstate); } objlist_clear(&initlist); if (lockstate == &mlockstate) lock_release(rtld_bind_lock, lockstate); return obj; trace: trace_loaded_objects(obj); if (lockstate == &mlockstate) lock_release(rtld_bind_lock, lockstate); exit(0); } static void * do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve, int flags) { DoneList donelist; const Obj_Entry *obj, *defobj; const Elf_Sym *def; SymLook req; RtldLockState lockstate; tls_index ti; void *sym; int res; def = NULL; defobj = NULL; symlook_init(&req, name); req.ventry = ve; req.flags = flags | SYMLOOK_IN_PLT; req.lockstate = &lockstate; LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name); rlock_acquire(rtld_bind_lock, &lockstate); if (sigsetjmp(lockstate.env, 0) != 0) lock_upgrade(rtld_bind_lock, &lockstate); if (handle == NULL || handle == RTLD_NEXT || handle == RTLD_DEFAULT || handle == RTLD_SELF) { if ((obj = obj_from_addr(retaddr)) == NULL) { _rtld_error("Cannot determine caller's shared object"); lock_release(rtld_bind_lock, &lockstate); LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); return NULL; } if (handle == NULL) { /* Just the caller's shared object. */ res = symlook_obj(&req, obj); if (res == 0) { def = req.sym_out; defobj = req.defobj_out; } } else if (handle == RTLD_NEXT || /* Objects after caller's */ handle == RTLD_SELF) { /* ... caller included */ if (handle == RTLD_NEXT) obj = globallist_next(obj); for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) { if (obj->marker) continue; res = symlook_obj(&req, obj); if (res == 0) { if (def == NULL || ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) { def = req.sym_out; defobj = req.defobj_out; if (ELF_ST_BIND(def->st_info) != STB_WEAK) break; } } } /* * Search the dynamic linker itself, and possibly resolve the * symbol from there. This is how the application links to * dynamic linker services such as dlopen. */ if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { res = symlook_obj(&req, &obj_rtld); if (res == 0) { def = req.sym_out; defobj = req.defobj_out; } } } else { assert(handle == RTLD_DEFAULT); res = symlook_default(&req, obj); if (res == 0) { defobj = req.defobj_out; def = req.sym_out; } } } else { if ((obj = dlcheck(handle)) == NULL) { lock_release(rtld_bind_lock, &lockstate); LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); return NULL; } donelist_init(&donelist); if (obj->mainprog) { /* Handle obtained by dlopen(NULL, ...) implies global scope. */ res = symlook_global(&req, &donelist); if (res == 0) { def = req.sym_out; defobj = req.defobj_out; } /* * Search the dynamic linker itself, and possibly resolve the * symbol from there. This is how the application links to * dynamic linker services such as dlopen. */ if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) { res = symlook_obj(&req, &obj_rtld); if (res == 0) { def = req.sym_out; defobj = req.defobj_out; } } } else { /* Search the whole DAG rooted at the given object. */ res = symlook_list(&req, &obj->dagmembers, &donelist); if (res == 0) { def = req.sym_out; defobj = req.defobj_out; } } } if (def != NULL) { lock_release(rtld_bind_lock, &lockstate); /* * The value required by the caller is derived from the value * of the symbol. this is simply the relocated value of the * symbol. */ if (ELF_ST_TYPE(def->st_info) == STT_FUNC) sym = make_function_pointer(def, defobj); else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) sym = rtld_resolve_ifunc(defobj, def); else if (ELF_ST_TYPE(def->st_info) == STT_TLS) { ti.ti_module = defobj->tlsindex; ti.ti_offset = def->st_value; sym = __tls_get_addr(&ti); } else sym = defobj->relocbase + def->st_value; LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name); return (sym); } _rtld_error("Undefined symbol \"%s\"", name); lock_release(rtld_bind_lock, &lockstate); LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name); return NULL; } void * dlsym(void *handle, const char *name) { return do_dlsym(handle, name, __builtin_return_address(0), NULL, SYMLOOK_DLSYM); } dlfunc_t dlfunc(void *handle, const char *name) { union { void *d; dlfunc_t f; } rv; rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL, SYMLOOK_DLSYM); return (rv.f); } void * dlvsym(void *handle, const char *name, const char *version) { Ver_Entry ventry; ventry.name = version; ventry.file = NULL; ventry.hash = elf_hash(version); ventry.flags= 0; return do_dlsym(handle, name, __builtin_return_address(0), &ventry, SYMLOOK_DLSYM); } int _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info) { const Obj_Entry *obj; RtldLockState lockstate; rlock_acquire(rtld_bind_lock, &lockstate); obj = obj_from_addr(addr); if (obj == NULL) { _rtld_error("No shared object contains address"); lock_release(rtld_bind_lock, &lockstate); return (0); } rtld_fill_dl_phdr_info(obj, phdr_info); lock_release(rtld_bind_lock, &lockstate); return (1); } int dladdr(const void *addr, Dl_info *info) { const Obj_Entry *obj; const Elf_Sym *def; void *symbol_addr; unsigned long symoffset; RtldLockState lockstate; rlock_acquire(rtld_bind_lock, &lockstate); obj = obj_from_addr(addr); if (obj == NULL) { _rtld_error("No shared object contains address"); lock_release(rtld_bind_lock, &lockstate); return 0; } info->dli_fname = obj->path; info->dli_fbase = obj->mapbase; info->dli_saddr = (void *)0; info->dli_sname = NULL; /* * Walk the symbol list looking for the symbol whose address is * closest to the address sent in. */ for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) { def = obj->symtab + symoffset; /* * For skip the symbol if st_shndx is either SHN_UNDEF or * SHN_COMMON. */ if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON) continue; /* * If the symbol is greater than the specified address, or if it * is further away from addr than the current nearest symbol, * then reject it. */ symbol_addr = obj->relocbase + def->st_value; if (symbol_addr > addr || symbol_addr < info->dli_saddr) continue; /* Update our idea of the nearest symbol. */ info->dli_sname = obj->strtab + def->st_name; info->dli_saddr = symbol_addr; /* Exact match? */ if (info->dli_saddr == addr) break; } lock_release(rtld_bind_lock, &lockstate); return 1; } int dlinfo(void *handle, int request, void *p) { const Obj_Entry *obj; RtldLockState lockstate; int error; rlock_acquire(rtld_bind_lock, &lockstate); if (handle == NULL || handle == RTLD_SELF) { void *retaddr; retaddr = __builtin_return_address(0); /* __GNUC__ only */ if ((obj = obj_from_addr(retaddr)) == NULL) _rtld_error("Cannot determine caller's shared object"); } else obj = dlcheck(handle); if (obj == NULL) { lock_release(rtld_bind_lock, &lockstate); return (-1); } error = 0; switch (request) { case RTLD_DI_LINKMAP: *((struct link_map const **)p) = &obj->linkmap; break; case RTLD_DI_ORIGIN: error = rtld_dirname(obj->path, p); break; case RTLD_DI_SERINFOSIZE: case RTLD_DI_SERINFO: error = do_search_info(obj, request, (struct dl_serinfo *)p); break; default: _rtld_error("Invalid request %d passed to dlinfo()", request); error = -1; } lock_release(rtld_bind_lock, &lockstate); return (error); } static void rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info) { phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase; phdr_info->dlpi_name = obj->path; phdr_info->dlpi_phdr = obj->phdr; phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]); phdr_info->dlpi_tls_modid = obj->tlsindex; phdr_info->dlpi_tls_data = obj->tlsinit; phdr_info->dlpi_adds = obj_loads; phdr_info->dlpi_subs = obj_loads - obj_count; } int dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param) { struct dl_phdr_info phdr_info; Obj_Entry *obj, marker; RtldLockState bind_lockstate, phdr_lockstate; int error; bzero(&marker, sizeof(marker)); marker.marker = true; error = 0; wlock_acquire(rtld_phdr_lock, &phdr_lockstate); rlock_acquire(rtld_bind_lock, &bind_lockstate); for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) { TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next); rtld_fill_dl_phdr_info(obj, &phdr_info); lock_release(rtld_bind_lock, &bind_lockstate); error = callback(&phdr_info, sizeof phdr_info, param); rlock_acquire(rtld_bind_lock, &bind_lockstate); obj = globallist_next(&marker); TAILQ_REMOVE(&obj_list, &marker, next); if (error != 0) { lock_release(rtld_bind_lock, &bind_lockstate); lock_release(rtld_phdr_lock, &phdr_lockstate); return (error); } } if (error == 0) { rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info); lock_release(rtld_bind_lock, &bind_lockstate); error = callback(&phdr_info, sizeof(phdr_info), param); } lock_release(rtld_phdr_lock, &phdr_lockstate); return (error); } static void * fill_search_info(const char *dir, size_t dirlen, void *param) { struct fill_search_info_args *arg; arg = param; if (arg->request == RTLD_DI_SERINFOSIZE) { arg->serinfo->dls_cnt ++; arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1; } else { struct dl_serpath *s_entry; s_entry = arg->serpath; s_entry->dls_name = arg->strspace; s_entry->dls_flags = arg->flags; strncpy(arg->strspace, dir, dirlen); arg->strspace[dirlen] = '\0'; arg->strspace += dirlen + 1; arg->serpath++; } return (NULL); } static int do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info) { struct dl_serinfo _info; struct fill_search_info_args args; args.request = RTLD_DI_SERINFOSIZE; args.serinfo = &_info; _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath); _info.dls_cnt = 0; path_enumerate(obj->rpath, fill_search_info, &args); path_enumerate(ld_library_path, fill_search_info, &args); path_enumerate(obj->runpath, fill_search_info, &args); path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args); if (!obj->z_nodeflib) path_enumerate(ld_standard_library_path, fill_search_info, &args); if (request == RTLD_DI_SERINFOSIZE) { info->dls_size = _info.dls_size; info->dls_cnt = _info.dls_cnt; return (0); } if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) { _rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()"); return (-1); } args.request = RTLD_DI_SERINFO; args.serinfo = info; args.serpath = &info->dls_serpath[0]; args.strspace = (char *)&info->dls_serpath[_info.dls_cnt]; args.flags = LA_SER_RUNPATH; if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL) return (-1); args.flags = LA_SER_LIBPATH; if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL) return (-1); args.flags = LA_SER_RUNPATH; if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL) return (-1); args.flags = LA_SER_CONFIG; if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args) != NULL) return (-1); args.flags = LA_SER_DEFAULT; if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path, fill_search_info, &args) != NULL) return (-1); return (0); } static int rtld_dirname(const char *path, char *bname) { const char *endp; /* Empty or NULL string gets treated as "." */ if (path == NULL || *path == '\0') { bname[0] = '.'; bname[1] = '\0'; return (0); } /* Strip trailing slashes */ endp = path + strlen(path) - 1; while (endp > path && *endp == '/') endp--; /* Find the start of the dir */ while (endp > path && *endp != '/') endp--; /* Either the dir is "/" or there are no slashes */ if (endp == path) { bname[0] = *endp == '/' ? '/' : '.'; bname[1] = '\0'; return (0); } else { do { endp--; } while (endp > path && *endp == '/'); } if (endp - path + 2 > PATH_MAX) { _rtld_error("Filename is too long: %s", path); return(-1); } strncpy(bname, path, endp - path + 1); bname[endp - path + 1] = '\0'; return (0); } static int rtld_dirname_abs(const char *path, char *base) { char *last; if (realpath(path, base) == NULL) return (-1); dbg("%s -> %s", path, base); last = strrchr(base, '/'); if (last == NULL) return (-1); if (last != base) *last = '\0'; return (0); } static void linkmap_add(Obj_Entry *obj) { struct link_map *l = &obj->linkmap; struct link_map *prev; obj->linkmap.l_name = obj->path; obj->linkmap.l_addr = obj->mapbase; obj->linkmap.l_ld = obj->dynamic; #ifdef __mips__ /* GDB needs load offset on MIPS to use the symbols */ obj->linkmap.l_offs = obj->relocbase; #endif if (r_debug.r_map == NULL) { r_debug.r_map = l; return; } /* * Scan to the end of the list, but not past the entry for the * dynamic linker, which we want to keep at the very end. */ for (prev = r_debug.r_map; prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap; prev = prev->l_next) ; /* Link in the new entry. */ l->l_prev = prev; l->l_next = prev->l_next; if (l->l_next != NULL) l->l_next->l_prev = l; prev->l_next = l; } static void linkmap_delete(Obj_Entry *obj) { struct link_map *l = &obj->linkmap; if (l->l_prev == NULL) { if ((r_debug.r_map = l->l_next) != NULL) l->l_next->l_prev = NULL; return; } if ((l->l_prev->l_next = l->l_next) != NULL) l->l_next->l_prev = l->l_prev; } /* * Function for the debugger to set a breakpoint on to gain control. * * The two parameters allow the debugger to easily find and determine * what the runtime loader is doing and to whom it is doing it. * * When the loadhook trap is hit (r_debug_state, set at program * initialization), the arguments can be found on the stack: * * +8 struct link_map *m * +4 struct r_debug *rd * +0 RetAddr */ void r_debug_state(struct r_debug* rd, struct link_map *m) { /* * The following is a hack to force the compiler to emit calls to * this function, even when optimizing. If the function is empty, * the compiler is not obliged to emit any code for calls to it, * even when marked __noinline. However, gdb depends on those * calls being made. */ __compiler_membar(); } /* * A function called after init routines have completed. This can be used to * break before a program's entry routine is called, and can be used when * main is not available in the symbol table. */ void _r_debug_postinit(struct link_map *m) { /* See r_debug_state(). */ __compiler_membar(); } /* * Get address of the pointer variable in the main program. * Prefer non-weak symbol over the weak one. */ static const void ** get_program_var_addr(const char *name, RtldLockState *lockstate) { SymLook req; DoneList donelist; symlook_init(&req, name); req.lockstate = lockstate; donelist_init(&donelist); if (symlook_global(&req, &donelist) != 0) return (NULL); if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC) return ((const void **)make_function_pointer(req.sym_out, req.defobj_out)); else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC) return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out)); else return ((const void **)(req.defobj_out->relocbase + req.sym_out->st_value)); } /* * Set a pointer variable in the main program to the given value. This * is used to set key variables such as "environ" before any of the * init functions are called. */ static void set_program_var(const char *name, const void *value) { const void **addr; if ((addr = get_program_var_addr(name, NULL)) != NULL) { dbg("\"%s\": *%p <-- %p", name, addr, value); *addr = value; } } /* * Search the global objects, including dependencies and main object, * for the given symbol. */ static int symlook_global(SymLook *req, DoneList *donelist) { SymLook req1; const Objlist_Entry *elm; int res; symlook_init_from_req(&req1, req); /* Search all objects loaded at program start up. */ if (req->defobj_out == NULL || ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) { res = symlook_list(&req1, &list_main, donelist); if (res == 0 && (req->defobj_out == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { req->sym_out = req1.sym_out; req->defobj_out = req1.defobj_out; assert(req->defobj_out != NULL); } } /* Search all DAGs whose roots are RTLD_GLOBAL objects. */ STAILQ_FOREACH(elm, &list_global, link) { if (req->defobj_out != NULL && ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK) break; res = symlook_list(&req1, &elm->obj->dagmembers, donelist); if (res == 0 && (req->defobj_out == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { req->sym_out = req1.sym_out; req->defobj_out = req1.defobj_out; assert(req->defobj_out != NULL); } } return (req->sym_out != NULL ? 0 : ESRCH); } /* * Given a symbol name in a referencing object, find the corresponding * definition of the symbol. Returns a pointer to the symbol, or NULL if * no definition was found. Returns a pointer to the Obj_Entry of the * defining object via the reference parameter DEFOBJ_OUT. */ static int symlook_default(SymLook *req, const Obj_Entry *refobj) { DoneList donelist; const Objlist_Entry *elm; SymLook req1; int res; donelist_init(&donelist); symlook_init_from_req(&req1, req); /* Look first in the referencing object if linked symbolically. */ if (refobj->symbolic && !donelist_check(&donelist, refobj)) { res = symlook_obj(&req1, refobj); if (res == 0) { req->sym_out = req1.sym_out; req->defobj_out = req1.defobj_out; assert(req->defobj_out != NULL); } } symlook_global(req, &donelist); /* Search all dlopened DAGs containing the referencing object. */ STAILQ_FOREACH(elm, &refobj->dldags, link) { if (req->sym_out != NULL && ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK) break; res = symlook_list(&req1, &elm->obj->dagmembers, &donelist); if (res == 0 && (req->sym_out == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) { req->sym_out = req1.sym_out; req->defobj_out = req1.defobj_out; assert(req->defobj_out != NULL); } } /* * Search the dynamic linker itself, and possibly resolve the * symbol from there. This is how the application links to * dynamic linker services such as dlopen. */ if (req->sym_out == NULL || ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) { res = symlook_obj(&req1, &obj_rtld); if (res == 0) { req->sym_out = req1.sym_out; req->defobj_out = req1.defobj_out; assert(req->defobj_out != NULL); } } return (req->sym_out != NULL ? 0 : ESRCH); } static int symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp) { const Elf_Sym *def; const Obj_Entry *defobj; const Objlist_Entry *elm; SymLook req1; int res; def = NULL; defobj = NULL; STAILQ_FOREACH(elm, objlist, link) { if (donelist_check(dlp, elm->obj)) continue; symlook_init_from_req(&req1, req); if ((res = symlook_obj(&req1, elm->obj)) == 0) { if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) { def = req1.sym_out; defobj = req1.defobj_out; if (ELF_ST_BIND(def->st_info) != STB_WEAK) break; } } } if (def != NULL) { req->sym_out = def; req->defobj_out = defobj; return (0); } return (ESRCH); } /* * Search the chain of DAGS cointed to by the given Needed_Entry * for a symbol of the given name. Each DAG is scanned completely * before advancing to the next one. Returns a pointer to the symbol, * or NULL if no definition was found. */ static int symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp) { const Elf_Sym *def; const Needed_Entry *n; const Obj_Entry *defobj; SymLook req1; int res; def = NULL; defobj = NULL; symlook_init_from_req(&req1, req); for (n = needed; n != NULL; n = n->next) { if (n->obj == NULL || (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0) continue; if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) { def = req1.sym_out; defobj = req1.defobj_out; if (ELF_ST_BIND(def->st_info) != STB_WEAK) break; } } if (def != NULL) { req->sym_out = def; req->defobj_out = defobj; return (0); } return (ESRCH); } /* * Search the symbol table of a single shared object for a symbol of * the given name and version, if requested. Returns a pointer to the * symbol, or NULL if no definition was found. If the object is * filter, return filtered symbol from filtee. * * The symbol's hash value is passed in for efficiency reasons; that * eliminates many recomputations of the hash value. */ int symlook_obj(SymLook *req, const Obj_Entry *obj) { DoneList donelist; SymLook req1; int flags, res, mres; /* * If there is at least one valid hash at this point, we prefer to * use the faster GNU version if available. */ if (obj->valid_hash_gnu) mres = symlook_obj1_gnu(req, obj); else if (obj->valid_hash_sysv) mres = symlook_obj1_sysv(req, obj); else return (EINVAL); if (mres == 0) { if (obj->needed_filtees != NULL) { flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0; load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate); donelist_init(&donelist); symlook_init_from_req(&req1, req); res = symlook_needed(&req1, obj->needed_filtees, &donelist); if (res == 0) { req->sym_out = req1.sym_out; req->defobj_out = req1.defobj_out; } return (res); } if (obj->needed_aux_filtees != NULL) { flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0; load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate); donelist_init(&donelist); symlook_init_from_req(&req1, req); res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist); if (res == 0) { req->sym_out = req1.sym_out; req->defobj_out = req1.defobj_out; return (res); } } } return (mres); } /* Symbol match routine common to both hash functions */ static bool matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result, const unsigned long symnum) { Elf_Versym verndx; const Elf_Sym *symp; const char *strp; symp = obj->symtab + symnum; strp = obj->strtab + symp->st_name; switch (ELF_ST_TYPE(symp->st_info)) { case STT_FUNC: case STT_NOTYPE: case STT_OBJECT: case STT_COMMON: case STT_GNU_IFUNC: if (symp->st_value == 0) return (false); /* fallthrough */ case STT_TLS: if (symp->st_shndx != SHN_UNDEF) break; #ifndef __mips__ else if (((req->flags & SYMLOOK_IN_PLT) == 0) && (ELF_ST_TYPE(symp->st_info) == STT_FUNC)) break; /* fallthrough */ #endif default: return (false); } if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0) return (false); if (req->ventry == NULL) { if (obj->versyms != NULL) { verndx = VER_NDX(obj->versyms[symnum]); if (verndx > obj->vernum) { _rtld_error( "%s: symbol %s references wrong version %d", obj->path, obj->strtab + symnum, verndx); return (false); } /* * If we are not called from dlsym (i.e. this * is a normal relocation from unversioned * binary), accept the symbol immediately if * it happens to have first version after this * shared object became versioned. Otherwise, * if symbol is versioned and not hidden, * remember it. If it is the only symbol with * this name exported by the shared object, it * will be returned as a match by the calling * function. If symbol is global (verndx < 2) * accept it unconditionally. */ if ((req->flags & SYMLOOK_DLSYM) == 0 && verndx == VER_NDX_GIVEN) { result->sym_out = symp; return (true); } else if (verndx >= VER_NDX_GIVEN) { if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) { if (result->vsymp == NULL) result->vsymp = symp; result->vcount++; } return (false); } } result->sym_out = symp; return (true); } if (obj->versyms == NULL) { if (object_match_name(obj, req->ventry->name)) { _rtld_error("%s: object %s should provide version %s " "for symbol %s", obj_rtld.path, obj->path, req->ventry->name, obj->strtab + symnum); return (false); } } else { verndx = VER_NDX(obj->versyms[symnum]); if (verndx > obj->vernum) { _rtld_error("%s: symbol %s references wrong version %d", obj->path, obj->strtab + symnum, verndx); return (false); } if (obj->vertab[verndx].hash != req->ventry->hash || strcmp(obj->vertab[verndx].name, req->ventry->name)) { /* * Version does not match. Look if this is a * global symbol and if it is not hidden. If * global symbol (verndx < 2) is available, * use it. Do not return symbol if we are * called by dlvsym, because dlvsym looks for * a specific version and default one is not * what dlvsym wants. */ if ((req->flags & SYMLOOK_DLSYM) || (verndx >= VER_NDX_GIVEN) || (obj->versyms[symnum] & VER_NDX_HIDDEN)) return (false); } } result->sym_out = symp; return (true); } /* * Search for symbol using SysV hash function. * obj->buckets is known not to be NULL at this point; the test for this was * performed with the obj->valid_hash_sysv assignment. */ static int symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj) { unsigned long symnum; Sym_Match_Result matchres; matchres.sym_out = NULL; matchres.vsymp = NULL; matchres.vcount = 0; for (symnum = obj->buckets[req->hash % obj->nbuckets]; symnum != STN_UNDEF; symnum = obj->chains[symnum]) { if (symnum >= obj->nchains) return (ESRCH); /* Bad object */ if (matched_symbol(req, obj, &matchres, symnum)) { req->sym_out = matchres.sym_out; req->defobj_out = obj; return (0); } } if (matchres.vcount == 1) { req->sym_out = matchres.vsymp; req->defobj_out = obj; return (0); } return (ESRCH); } /* Search for symbol using GNU hash function */ static int symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj) { Elf_Addr bloom_word; const Elf32_Word *hashval; Elf32_Word bucket; Sym_Match_Result matchres; unsigned int h1, h2; unsigned long symnum; matchres.sym_out = NULL; matchres.vsymp = NULL; matchres.vcount = 0; /* Pick right bitmask word from Bloom filter array */ bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) & obj->maskwords_bm_gnu]; /* Calculate modulus word size of gnu hash and its derivative */ h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1); h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1)); /* Filter out the "definitely not in set" queries */ if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0) return (ESRCH); /* Locate hash chain and corresponding value element*/ bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu]; if (bucket == 0) return (ESRCH); hashval = &obj->chain_zero_gnu[bucket]; do { if (((*hashval ^ req->hash_gnu) >> 1) == 0) { symnum = hashval - obj->chain_zero_gnu; if (matched_symbol(req, obj, &matchres, symnum)) { req->sym_out = matchres.sym_out; req->defobj_out = obj; return (0); } } } while ((*hashval++ & 1) == 0); if (matchres.vcount == 1) { req->sym_out = matchres.vsymp; req->defobj_out = obj; return (0); } return (ESRCH); } static void trace_loaded_objects(Obj_Entry *obj) { char *fmt1, *fmt2, *fmt, *main_local, *list_containers; int c; if ((main_local = getenv(_LD("TRACE_LOADED_OBJECTS_PROGNAME"))) == NULL) main_local = ""; if ((fmt1 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT1"))) == NULL) fmt1 = "\t%o => %p (%x)\n"; if ((fmt2 = getenv(_LD("TRACE_LOADED_OBJECTS_FMT2"))) == NULL) fmt2 = "\t%o (%x)\n"; list_containers = getenv(_LD("TRACE_LOADED_OBJECTS_ALL")); for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) { Needed_Entry *needed; char *name, *path; bool is_lib; if (obj->marker) continue; if (list_containers && obj->needed != NULL) rtld_printf("%s:\n", obj->path); for (needed = obj->needed; needed; needed = needed->next) { if (needed->obj != NULL) { if (needed->obj->traced && !list_containers) continue; needed->obj->traced = true; path = needed->obj->path; } else path = "not found"; name = (char *)obj->strtab + needed->name; is_lib = strncmp(name, "lib", 3) == 0; /* XXX - bogus */ fmt = is_lib ? fmt1 : fmt2; while ((c = *fmt++) != '\0') { switch (c) { default: rtld_putchar(c); continue; case '\\': switch (c = *fmt) { case '\0': continue; case 'n': rtld_putchar('\n'); break; case 't': rtld_putchar('\t'); break; } break; case '%': switch (c = *fmt) { case '\0': continue; case '%': default: rtld_putchar(c); break; case 'A': rtld_putstr(main_local); break; case 'a': rtld_putstr(obj_main->path); break; case 'o': rtld_putstr(name); break; #if 0 case 'm': rtld_printf("%d", sodp->sod_major); break; case 'n': rtld_printf("%d", sodp->sod_minor); break; #endif case 'p': rtld_putstr(path); break; case 'x': rtld_printf("%p", needed->obj ? needed->obj->mapbase : 0); break; } break; } ++fmt; } } } } /* * Unload a dlopened object and its dependencies from memory and from * our data structures. It is assumed that the DAG rooted in the * object has already been unreferenced, and that the object has a * reference count of 0. */ static void unload_object(Obj_Entry *root) { Obj_Entry *obj, *obj1; assert(root->refcount == 0); /* * Pass over the DAG removing unreferenced objects from * appropriate lists. */ unlink_object(root); /* Unmap all objects that are no longer referenced. */ TAILQ_FOREACH_SAFE(obj, &obj_list, next, obj1) { if (obj->marker || obj->refcount != 0) continue; LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0, obj->path); dbg("unloading \"%s\"", obj->path); unload_filtees(root); munmap(obj->mapbase, obj->mapsize); linkmap_delete(obj); TAILQ_REMOVE(&obj_list, obj, next); obj_count--; obj_free(obj); } } static void unlink_object(Obj_Entry *root) { Objlist_Entry *elm; if (root->refcount == 0) { /* Remove the object from the RTLD_GLOBAL list. */ objlist_remove(&list_global, root); /* Remove the object from all objects' DAG lists. */ STAILQ_FOREACH(elm, &root->dagmembers, link) { objlist_remove(&elm->obj->dldags, root); if (elm->obj != root) unlink_object(elm->obj); } } } static void ref_dag(Obj_Entry *root) { Objlist_Entry *elm; assert(root->dag_inited); STAILQ_FOREACH(elm, &root->dagmembers, link) elm->obj->refcount++; } static void unref_dag(Obj_Entry *root) { Objlist_Entry *elm; assert(root->dag_inited); STAILQ_FOREACH(elm, &root->dagmembers, link) elm->obj->refcount--; } /* * Common code for MD __tls_get_addr(). */ static void *tls_get_addr_slow(Elf_Addr **, int, size_t) __noinline; static void * tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset) { Elf_Addr *newdtv, *dtv; RtldLockState lockstate; int to_copy; dtv = *dtvp; /* Check dtv generation in case new modules have arrived */ if (dtv[0] != tls_dtv_generation) { wlock_acquire(rtld_bind_lock, &lockstate); newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); to_copy = dtv[1]; if (to_copy > tls_max_index) to_copy = tls_max_index; memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr)); newdtv[0] = tls_dtv_generation; newdtv[1] = tls_max_index; free(dtv); lock_release(rtld_bind_lock, &lockstate); dtv = *dtvp = newdtv; } /* Dynamically allocate module TLS if necessary */ if (dtv[index + 1] == 0) { /* Signal safe, wlock will block out signals. */ wlock_acquire(rtld_bind_lock, &lockstate); if (!dtv[index + 1]) dtv[index + 1] = (Elf_Addr)allocate_module_tls(index); lock_release(rtld_bind_lock, &lockstate); } return ((void *)(dtv[index + 1] + offset)); } void * tls_get_addr_common(Elf_Addr **dtvp, int index, size_t offset) { Elf_Addr *dtv; dtv = *dtvp; /* Check dtv generation in case new modules have arrived */ if (__predict_true(dtv[0] == tls_dtv_generation && dtv[index + 1] != 0)) return ((void *)(dtv[index + 1] + offset)); return (tls_get_addr_slow(dtvp, index, offset)); } #if defined(__aarch64__) || defined(__arm__) || defined(__mips__) || \ defined(__powerpc__) || defined(__riscv__) /* * Allocate Static TLS using the Variant I method. */ void * allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign) { Obj_Entry *obj; char *tcb; Elf_Addr **tls; Elf_Addr *dtv; Elf_Addr addr; int i; if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE) return (oldtcb); assert(tcbsize >= TLS_TCB_SIZE); tcb = xcalloc(1, tls_static_space - TLS_TCB_SIZE + tcbsize); tls = (Elf_Addr **)(tcb + tcbsize - TLS_TCB_SIZE); if (oldtcb != NULL) { memcpy(tls, oldtcb, tls_static_space); free(oldtcb); /* Adjust the DTV. */ dtv = tls[0]; for (i = 0; i < dtv[1]; i++) { if (dtv[i+2] >= (Elf_Addr)oldtcb && dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) { dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tls; } } } else { dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); tls[0] = dtv; dtv[0] = tls_dtv_generation; dtv[1] = tls_max_index; for (obj = globallist_curr(objs); obj != NULL; obj = globallist_next(obj)) { if (obj->tlsoffset > 0) { addr = (Elf_Addr)tls + obj->tlsoffset; if (obj->tlsinitsize > 0) memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize); if (obj->tlssize > obj->tlsinitsize) memset((void*) (addr + obj->tlsinitsize), 0, obj->tlssize - obj->tlsinitsize); dtv[obj->tlsindex + 1] = addr; } } } return (tcb); } void free_tls(void *tcb, size_t tcbsize, size_t tcbalign) { Elf_Addr *dtv; Elf_Addr tlsstart, tlsend; int dtvsize, i; assert(tcbsize >= TLS_TCB_SIZE); tlsstart = (Elf_Addr)tcb + tcbsize - TLS_TCB_SIZE; tlsend = tlsstart + tls_static_space; dtv = *(Elf_Addr **)tlsstart; dtvsize = dtv[1]; for (i = 0; i < dtvsize; i++) { if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) { free((void*)dtv[i+2]); } } free(dtv); free(tcb); } #endif #if defined(__i386__) || defined(__amd64__) || defined(__sparc64__) /* * Allocate Static TLS using the Variant II method. */ void * allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign) { Obj_Entry *obj; size_t size, ralign; char *tls; Elf_Addr *dtv, *olddtv; Elf_Addr segbase, oldsegbase, addr; int i; ralign = tcbalign; if (tls_static_max_align > ralign) ralign = tls_static_max_align; size = round(tls_static_space, ralign) + round(tcbsize, ralign); assert(tcbsize >= 2*sizeof(Elf_Addr)); tls = malloc_aligned(size, ralign); dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr)); segbase = (Elf_Addr)(tls + round(tls_static_space, ralign)); ((Elf_Addr*)segbase)[0] = segbase; ((Elf_Addr*)segbase)[1] = (Elf_Addr) dtv; dtv[0] = tls_dtv_generation; dtv[1] = tls_max_index; if (oldtls) { /* * Copy the static TLS block over whole. */ oldsegbase = (Elf_Addr) oldtls; memcpy((void *)(segbase - tls_static_space), (const void *)(oldsegbase - tls_static_space), tls_static_space); /* * If any dynamic TLS blocks have been created tls_get_addr(), * move them over. */ olddtv = ((Elf_Addr**)oldsegbase)[1]; for (i = 0; i < olddtv[1]; i++) { if (olddtv[i+2] < oldsegbase - size || olddtv[i+2] > oldsegbase) { dtv[i+2] = olddtv[i+2]; olddtv[i+2] = 0; } } /* * We assume that this block was the one we created with * allocate_initial_tls(). */ free_tls(oldtls, 2*sizeof(Elf_Addr), sizeof(Elf_Addr)); } else { for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) { if (obj->marker || obj->tlsoffset == 0) continue; addr = segbase - obj->tlsoffset; memset((void*) (addr + obj->tlsinitsize), 0, obj->tlssize - obj->tlsinitsize); if (obj->tlsinit) memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize); dtv[obj->tlsindex + 1] = addr; } } return (void*) segbase; } void free_tls(void *tls, size_t tcbsize, size_t tcbalign) { Elf_Addr* dtv; size_t size, ralign; int dtvsize, i; Elf_Addr tlsstart, tlsend; /* * Figure out the size of the initial TLS block so that we can * find stuff which ___tls_get_addr() allocated dynamically. */ ralign = tcbalign; if (tls_static_max_align > ralign) ralign = tls_static_max_align; size = round(tls_static_space, ralign); dtv = ((Elf_Addr**)tls)[1]; dtvsize = dtv[1]; tlsend = (Elf_Addr) tls; tlsstart = tlsend - size; for (i = 0; i < dtvsize; i++) { if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart || dtv[i + 2] > tlsend)) { free_aligned((void *)dtv[i + 2]); } } free_aligned((void *)tlsstart); free((void*) dtv); } #endif /* * Allocate TLS block for module with given index. */ void * allocate_module_tls(int index) { Obj_Entry* obj; char* p; TAILQ_FOREACH(obj, &obj_list, next) { if (obj->marker) continue; if (obj->tlsindex == index) break; } if (!obj) { _rtld_error("Can't find module with TLS index %d", index); rtld_die(); } p = malloc_aligned(obj->tlssize, obj->tlsalign); memcpy(p, obj->tlsinit, obj->tlsinitsize); memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize); return p; } bool allocate_tls_offset(Obj_Entry *obj) { size_t off; if (obj->tls_done) return true; if (obj->tlssize == 0) { obj->tls_done = true; return true; } if (tls_last_offset == 0) off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign); else off = calculate_tls_offset(tls_last_offset, tls_last_size, obj->tlssize, obj->tlsalign); /* * If we have already fixed the size of the static TLS block, we * must stay within that size. When allocating the static TLS, we * leave a small amount of space spare to be used for dynamically * loading modules which use static TLS. */ if (tls_static_space != 0) { if (calculate_tls_end(off, obj->tlssize) > tls_static_space) return false; } else if (obj->tlsalign > tls_static_max_align) { tls_static_max_align = obj->tlsalign; } tls_last_offset = obj->tlsoffset = off; tls_last_size = obj->tlssize; obj->tls_done = true; return true; } void free_tls_offset(Obj_Entry *obj) { /* * If we were the last thing to allocate out of the static TLS * block, we give our space back to the 'allocator'. This is a * simplistic workaround to allow libGL.so.1 to be loaded and * unloaded multiple times. */ if (calculate_tls_end(obj->tlsoffset, obj->tlssize) == calculate_tls_end(tls_last_offset, tls_last_size)) { tls_last_offset -= obj->tlssize; tls_last_size = 0; } } void * _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign) { void *ret; RtldLockState lockstate; wlock_acquire(rtld_bind_lock, &lockstate); ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls, tcbsize, tcbalign); lock_release(rtld_bind_lock, &lockstate); return (ret); } void _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign) { RtldLockState lockstate; wlock_acquire(rtld_bind_lock, &lockstate); free_tls(tcb, tcbsize, tcbalign); lock_release(rtld_bind_lock, &lockstate); } static void object_add_name(Obj_Entry *obj, const char *name) { Name_Entry *entry; size_t len; len = strlen(name); entry = malloc(sizeof(Name_Entry) + len); if (entry != NULL) { strcpy(entry->name, name); STAILQ_INSERT_TAIL(&obj->names, entry, link); } } static int object_match_name(const Obj_Entry *obj, const char *name) { Name_Entry *entry; STAILQ_FOREACH(entry, &obj->names, link) { if (strcmp(name, entry->name) == 0) return (1); } return (0); } static Obj_Entry * locate_dependency(const Obj_Entry *obj, const char *name) { const Objlist_Entry *entry; const Needed_Entry *needed; STAILQ_FOREACH(entry, &list_main, link) { if (object_match_name(entry->obj, name)) return entry->obj; } for (needed = obj->needed; needed != NULL; needed = needed->next) { if (strcmp(obj->strtab + needed->name, name) == 0 || (needed->obj != NULL && object_match_name(needed->obj, name))) { /* * If there is DT_NEEDED for the name we are looking for, * we are all set. Note that object might not be found if * dependency was not loaded yet, so the function can * return NULL here. This is expected and handled * properly by the caller. */ return (needed->obj); } } _rtld_error("%s: Unexpected inconsistency: dependency %s not found", obj->path, name); rtld_die(); } static int check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj, const Elf_Vernaux *vna) { const Elf_Verdef *vd; const char *vername; vername = refobj->strtab + vna->vna_name; vd = depobj->verdef; if (vd == NULL) { _rtld_error("%s: version %s required by %s not defined", depobj->path, vername, refobj->path); return (-1); } for (;;) { if (vd->vd_version != VER_DEF_CURRENT) { _rtld_error("%s: Unsupported version %d of Elf_Verdef entry", depobj->path, vd->vd_version); return (-1); } if (vna->vna_hash == vd->vd_hash) { const Elf_Verdaux *aux = (const Elf_Verdaux *) ((char *)vd + vd->vd_aux); if (strcmp(vername, depobj->strtab + aux->vda_name) == 0) return (0); } if (vd->vd_next == 0) break; vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next); } if (vna->vna_flags & VER_FLG_WEAK) return (0); _rtld_error("%s: version %s required by %s not found", depobj->path, vername, refobj->path); return (-1); } static int rtld_verify_object_versions(Obj_Entry *obj) { const Elf_Verneed *vn; const Elf_Verdef *vd; const Elf_Verdaux *vda; const Elf_Vernaux *vna; const Obj_Entry *depobj; int maxvernum, vernum; if (obj->ver_checked) return (0); obj->ver_checked = true; maxvernum = 0; /* * Walk over defined and required version records and figure out * max index used by any of them. Do very basic sanity checking * while there. */ vn = obj->verneed; while (vn != NULL) { if (vn->vn_version != VER_NEED_CURRENT) { _rtld_error("%s: Unsupported version %d of Elf_Verneed entry", obj->path, vn->vn_version); return (-1); } vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux); for (;;) { vernum = VER_NEED_IDX(vna->vna_other); if (vernum > maxvernum) maxvernum = vernum; if (vna->vna_next == 0) break; vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next); } if (vn->vn_next == 0) break; vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next); } vd = obj->verdef; while (vd != NULL) { if (vd->vd_version != VER_DEF_CURRENT) { _rtld_error("%s: Unsupported version %d of Elf_Verdef entry", obj->path, vd->vd_version); return (-1); } vernum = VER_DEF_IDX(vd->vd_ndx); if (vernum > maxvernum) maxvernum = vernum; if (vd->vd_next == 0) break; vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next); } if (maxvernum == 0) return (0); /* * Store version information in array indexable by version index. * Verify that object version requirements are satisfied along the * way. */ obj->vernum = maxvernum + 1; obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry)); vd = obj->verdef; while (vd != NULL) { if ((vd->vd_flags & VER_FLG_BASE) == 0) { vernum = VER_DEF_IDX(vd->vd_ndx); assert(vernum <= maxvernum); vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux); obj->vertab[vernum].hash = vd->vd_hash; obj->vertab[vernum].name = obj->strtab + vda->vda_name; obj->vertab[vernum].file = NULL; obj->vertab[vernum].flags = 0; } if (vd->vd_next == 0) break; vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next); } vn = obj->verneed; while (vn != NULL) { depobj = locate_dependency(obj, obj->strtab + vn->vn_file); if (depobj == NULL) return (-1); vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux); for (;;) { if (check_object_provided_version(obj, depobj, vna)) return (-1); vernum = VER_NEED_IDX(vna->vna_other); assert(vernum <= maxvernum); obj->vertab[vernum].hash = vna->vna_hash; obj->vertab[vernum].name = obj->strtab + vna->vna_name; obj->vertab[vernum].file = obj->strtab + vn->vn_file; obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ? VER_INFO_HIDDEN : 0; if (vna->vna_next == 0) break; vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next); } if (vn->vn_next == 0) break; vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next); } return 0; } static int rtld_verify_versions(const Objlist *objlist) { Objlist_Entry *entry; int rc; rc = 0; STAILQ_FOREACH(entry, objlist, link) { /* * Skip dummy objects or objects that have their version requirements * already checked. */ if (entry->obj->strtab == NULL || entry->obj->vertab != NULL) continue; if (rtld_verify_object_versions(entry->obj) == -1) { rc = -1; if (ld_tracing == NULL) break; } } if (rc == 0 || ld_tracing != NULL) rc = rtld_verify_object_versions(&obj_rtld); return rc; } const Ver_Entry * fetch_ventry(const Obj_Entry *obj, unsigned long symnum) { Elf_Versym vernum; if (obj->vertab) { vernum = VER_NDX(obj->versyms[symnum]); if (vernum >= obj->vernum) { _rtld_error("%s: symbol %s has wrong verneed value %d", obj->path, obj->strtab + symnum, vernum); } else if (obj->vertab[vernum].hash != 0) { return &obj->vertab[vernum]; } } return NULL; } int _rtld_get_stack_prot(void) { return (stack_prot); } int _rtld_is_dlopened(void *arg) { Obj_Entry *obj; RtldLockState lockstate; int res; rlock_acquire(rtld_bind_lock, &lockstate); obj = dlcheck(arg); if (obj == NULL) obj = obj_from_addr(arg); if (obj == NULL) { _rtld_error("No shared object contains address"); lock_release(rtld_bind_lock, &lockstate); return (-1); } res = obj->dlopened ? 1 : 0; lock_release(rtld_bind_lock, &lockstate); return (res); } static void map_stacks_exec(RtldLockState *lockstate) { void (*thr_map_stacks_exec)(void); if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0) return; thr_map_stacks_exec = (void (*)(void))(uintptr_t) get_program_var_addr("__pthread_map_stacks_exec", lockstate); if (thr_map_stacks_exec != NULL) { stack_prot |= PROT_EXEC; thr_map_stacks_exec(); } } void symlook_init(SymLook *dst, const char *name) { bzero(dst, sizeof(*dst)); dst->name = name; dst->hash = elf_hash(name); dst->hash_gnu = gnu_hash(name); } static void symlook_init_from_req(SymLook *dst, const SymLook *src) { dst->name = src->name; dst->hash = src->hash; dst->hash_gnu = src->hash_gnu; dst->ventry = src->ventry; dst->flags = src->flags; dst->defobj_out = NULL; dst->sym_out = NULL; dst->lockstate = src->lockstate; } /* * Parse a file descriptor number without pulling in more of libc (e.g. atoi). */ static int parse_libdir(const char *str) { static const int RADIX = 10; /* XXXJA: possibly support hex? */ const char *orig; int fd; char c; orig = str; fd = 0; for (c = *str; c != '\0'; c = *++str) { if (c < '0' || c > '9') return (-1); fd *= RADIX; fd += c - '0'; } /* Make sure we actually parsed something. */ if (str == orig) { _rtld_error("failed to parse directory FD from '%s'", str); return (-1); } return (fd); } /* * Overrides for libc_pic-provided functions. */ int __getosreldate(void) { size_t len; int oid[2]; int error, osrel; if (osreldate != 0) return (osreldate); oid[0] = CTL_KERN; oid[1] = KERN_OSRELDATE; osrel = 0; len = sizeof(osrel); error = sysctl(oid, 2, &osrel, &len, NULL, 0); if (error == 0 && osrel > 0 && len == sizeof(osrel)) osreldate = osrel; return (osreldate); } void exit(int status) { _exit(status); } void (*__cleanup)(void); int __isthreaded = 0; int _thread_autoinit_dummy_decl = 1; /* * No unresolved symbols for rtld. */ void __pthread_cxa_finalize(struct dl_phdr_info *a) { } void __stack_chk_fail(void) { _rtld_error("stack overflow detected; terminated"); rtld_die(); } __weak_reference(__stack_chk_fail, __stack_chk_fail_local); void __chk_fail(void) { _rtld_error("buffer overflow detected; terminated"); rtld_die(); } const char * rtld_strerror(int errnum) { if (errnum < 0 || errnum >= sys_nerr) return ("Unknown error"); return (sys_errlist[errnum]); } Index: stable/11/libexec/rtld-elf/sparc64/reloc.c =================================================================== --- stable/11/libexec/rtld-elf/sparc64/reloc.c (revision 309370) +++ stable/11/libexec/rtld-elf/sparc64/reloc.c (revision 309371) @@ -1,860 +1,860 @@ /* $NetBSD: mdreloc.c,v 1.42 2008/04/28 20:23:04 martin Exp $ */ /*- * Copyright (c) 2000 Eduardo Horvath. * Copyright (c) 1999 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Paul Kranenburg. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include "debug.h" #include "rtld.h" /* * The following table holds for each relocation type: * - the width in bits of the memory location the relocation * applies to (not currently used) * - the number of bits the relocation value must be shifted to the * right (i.e. discard least significant bits) to fit into * the appropriate field in the instruction word. * - flags indicating whether * * the relocation involves a symbol * * the relocation is relative to the current position * * the relocation is for a GOT entry * * the relocation is relative to the load address * */ #define _RF_S 0x80000000 /* Resolve symbol */ #define _RF_A 0x40000000 /* Use addend */ #define _RF_P 0x20000000 /* Location relative */ #define _RF_G 0x10000000 /* GOT offset */ #define _RF_B 0x08000000 /* Load address relative */ #define _RF_U 0x04000000 /* Unaligned */ #define _RF_X 0x02000000 /* Bare symbols, needs proc */ #define _RF_D 0x01000000 /* Use dynamic TLS offset */ #define _RF_O 0x00800000 /* Use static TLS offset */ #define _RF_I 0x00400000 /* Use TLS object ID */ #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */ #define _RF_RS(s) ( (s) & 0xff) /* right shift */ static const int reloc_target_flags[] = { 0, /* NONE */ _RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* 8 */ _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* 16 */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 32 */ _RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */ _RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(10), /* HI22 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(0), /* 22 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(0), /* 13 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(0), /* LO10 */ _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */ _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */ _RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */ _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */ _RF_SZ(32) | _RF_RS(0), /* COPY */ _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* GLOB_DAT */ _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */ _RF_A| _RF_B| _RF_SZ(64) | _RF_RS(0), /* RELATIVE */ _RF_S|_RF_A| _RF_U| _RF_SZ(32) | _RF_RS(0), /* UA_32 */ _RF_A| _RF_SZ(32) | _RF_RS(0), /* PLT32 */ _RF_A| _RF_SZ(32) | _RF_RS(10), /* HIPLT22 */ _RF_A| _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */ _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT32 */ _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PCPLT22 */ _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT10 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(0), /* 10 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(0), /* 11 */ _RF_S|_RF_A|_RF_X| _RF_SZ(64) | _RF_RS(0), /* 64 */ _RF_S|_RF_A|/*extra*/ _RF_SZ(32) | _RF_RS(0), /* OLO10 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(42), /* HH22 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(32), /* HM10 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(10), /* LM22 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(42), /* PC_HH22 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(32), /* PC_HM10 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC_LM22 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP16 */ _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP19 */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_JMP */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(0), /* 7 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(0), /* 5 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(0), /* 6 */ _RF_S|_RF_A|_RF_P| _RF_SZ(64) | _RF_RS(0), /* DISP64 */ _RF_A| _RF_SZ(64) | _RF_RS(0), /* PLT64 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(10), /* HIX22 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(0), /* LOX10 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(22), /* H44 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(12), /* M44 */ _RF_S|_RF_A|_RF_X| _RF_SZ(32) | _RF_RS(0), /* L44 */ _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* REGISTER */ _RF_S|_RF_A| _RF_U| _RF_SZ(64) | _RF_RS(0), /* UA64 */ _RF_S|_RF_A| _RF_U| _RF_SZ(16) | _RF_RS(0), /* UA16 */ /* TLS */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* GD_HI22 */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GD_LO10 */ 0, /* GD_ADD */ _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* GD_CALL */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* LDM_HI22 */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LDM_LO10 */ 0, /* LDM_ADD */ _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* LDM_CALL */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* LDO_HIX22 */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LDO_LOX10 */ 0, /* LDO_ADD */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* IE_HI22 */ _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* IE_LO10 */ 0, /* IE_LD */ 0, /* IE_LDX */ 0, /* IE_ADD */ _RF_S|_RF_A| _RF_O| _RF_SZ(32) | _RF_RS(10), /* LE_HIX22 */ _RF_S|_RF_A| _RF_O| _RF_SZ(32) | _RF_RS(0), /* LE_LOX10 */ _RF_S| _RF_I| _RF_SZ(32) | _RF_RS(0), /* DTPMOD32 */ _RF_S| _RF_I| _RF_SZ(64) | _RF_RS(0), /* DTPMOD64 */ _RF_S|_RF_A| _RF_D| _RF_SZ(32) | _RF_RS(0), /* DTPOFF32 */ _RF_S|_RF_A| _RF_D| _RF_SZ(64) | _RF_RS(0), /* DTPOFF64 */ _RF_S|_RF_A| _RF_O| _RF_SZ(32) | _RF_RS(0), /* TPOFF32 */ _RF_S|_RF_A| _RF_O| _RF_SZ(64) | _RF_RS(0) /* TPOFF64 */ }; #if 0 static const char *const reloc_names[] = { "NONE", "8", "16", "32", "DISP_8", "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22", "22", "13", "LO10", "GOT10", "GOT13", "GOT22", "PC10", "PC22", "WPLT30", "COPY", "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32", "HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32", "10", "11", "64", "OLO10", "HH22", "HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22", "WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6", "DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44", "L44", "REGISTER", "UA64", "UA16", "GD_HI22", "GD_LO10", "GD_ADD", "GD_CALL", "LDM_HI22", "LDMO10", "LDM_ADD", "LDM_CALL", "LDO_HIX22", "LDO_LOX10", "LDO_ADD", "IE_HI22", "IE_LO10", "IE_LD", "IE_LDX", "IE_ADD", "LE_HIX22", "LE_LOX10", "DTPMOD32", "DTPMOD64", "DTPOFF32", "DTPOFF64", "TPOFF32", "TPOFF64" }; #endif #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0) #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0) #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0) #define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0) #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0) #define RELOC_BARE_SYMBOL(t) ((reloc_target_flags[t] & _RF_X) != 0) #define RELOC_USE_TLS_DOFF(t) ((reloc_target_flags[t] & _RF_D) != 0) #define RELOC_USE_TLS_OFF(t) ((reloc_target_flags[t] & _RF_O) != 0) #define RELOC_USE_TLS_ID(t) ((reloc_target_flags[t] & _RF_I) != 0) #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff) #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff) static const long reloc_target_bitmask[] = { #define _BM(x) (~(-(1ULL << (x)))) 0, /* NONE */ _BM(8), _BM(16), _BM(32), /* 8, 16, 32 */ _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */ _BM(30), _BM(22), /* WDISP30, WDISP22 */ _BM(22), _BM(22), /* HI22, 22 */ _BM(13), _BM(10), /* 13, LO10 */ _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */ _BM(10), _BM(22), /* PC10, PC22 */ _BM(30), 0, /* WPLT30, COPY */ _BM(32), _BM(32), _BM(32), /* GLOB_DAT, JMP_SLOT, RELATIVE */ _BM(32), _BM(32), /* UA32, PLT32 */ _BM(22), _BM(10), /* HIPLT22, LOPLT10 */ _BM(32), _BM(22), _BM(10), /* PCPLT32, PCPLT22, PCPLT10 */ _BM(10), _BM(11), -1, /* 10, 11, 64 */ _BM(13), _BM(22), /* OLO10, HH22 */ _BM(10), _BM(22), /* HM10, LM22 */ _BM(22), _BM(10), _BM(22), /* PC_HH22, PC_HM10, PC_LM22 */ _BM(16), _BM(19), /* WDISP16, WDISP19 */ -1, /* GLOB_JMP */ _BM(7), _BM(5), _BM(6), /* 7, 5, 6 */ -1, -1, /* DISP64, PLT64 */ _BM(22), _BM(13), /* HIX22, LOX10 */ _BM(22), _BM(10), _BM(13), /* H44, M44, L44 */ -1, -1, _BM(16), /* REGISTER, UA64, UA16 */ _BM(22), _BM(10), 0, _BM(30), /* GD_HI22, GD_LO10, GD_ADD, GD_CALL */ _BM(22), _BM(10), 0, /* LDM_HI22, LDMO10, LDM_ADD */ _BM(30), /* LDM_CALL */ _BM(22), _BM(10), 0, /* LDO_HIX22, LDO_LOX10, LDO_ADD */ _BM(22), _BM(10), 0, 0, /* IE_HI22, IE_LO10, IE_LD, IE_LDX */ 0, /* IE_ADD */ _BM(22), _BM(13), /* LE_HIX22, LE_LOX10 */ _BM(32), -1, /* DTPMOD32, DTPMOD64 */ _BM(32), -1, /* DTPOFF32, DTPOFF64 */ _BM(32), -1 /* TPOFF32, TPOFF64 */ #undef _BM }; #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t]) #undef flush #define flush(va, offs) \ __asm __volatile("flush %0 + %1" : : "r" (va), "I" (offs)); static int reloc_nonplt_object(Obj_Entry *obj, const Elf_Rela *rela, SymCache *cache, int flags, RtldLockState *lockstate); static void install_plt(Elf_Word *pltgot, Elf_Addr proc); extern char _rtld_bind_start_0[]; extern char _rtld_bind_start_1[]; int do_copy_relocations(Obj_Entry *dstobj) { const Elf_Rela *relalim; const Elf_Rela *rela; const Elf_Sym *dstsym; const Elf_Sym *srcsym; void *dstaddr; const void *srcaddr; const Obj_Entry *srcobj, *defobj; SymLook req; const char *name; size_t size; int res; assert(dstobj->mainprog); /* COPY relocations are invalid elsewhere */ relalim = (const Elf_Rela *)((caddr_t)dstobj->rela + dstobj->relasize); for (rela = dstobj->rela; rela < relalim; rela++) { if (ELF_R_TYPE(rela->r_info) == R_SPARC_COPY) { dstaddr = (void *)(dstobj->relocbase + rela->r_offset); dstsym = dstobj->symtab + ELF_R_SYM(rela->r_info); name = dstobj->strtab + dstsym->st_name; size = dstsym->st_size; symlook_init(&req, name); req.ventry = fetch_ventry(dstobj, ELF_R_SYM(rela->r_info)); req.flags = SYMLOOK_EARLY; for (srcobj = globallist_next(dstobj); srcobj != NULL; srcobj = globallist_next(srcobj)) { res = symlook_obj(&req, srcobj); if (res == 0) { srcsym = req.sym_out; defobj = req.defobj_out; break; } } if (srcobj == NULL) { _rtld_error("Undefined symbol \"%s\"" "referenced from COPY relocation" "in %s", name, dstobj->path); return (-1); } srcaddr = (const void *)(defobj->relocbase + srcsym->st_value); memcpy(dstaddr, srcaddr, size); } } return (0); } int reloc_non_plt(Obj_Entry *obj, Obj_Entry *obj_rtld, int flags, RtldLockState *lockstate) { const Elf_Rela *relalim; const Elf_Rela *rela; SymCache *cache; int r = -1; if ((flags & SYMLOOK_IFUNC) != 0) /* XXX not implemented */ return (0); /* * The dynamic loader may be called from a thread, we have * limited amounts of stack available so we cannot use alloca(). */ if (obj != obj_rtld) { cache = calloc(obj->dynsymcount, sizeof(SymCache)); /* No need to check for NULL here */ } else cache = NULL; relalim = (const Elf_Rela *)((caddr_t)obj->rela + obj->relasize); for (rela = obj->rela; rela < relalim; rela++) { if (reloc_nonplt_object(obj, rela, cache, flags, lockstate) < 0) goto done; } r = 0; done: if (cache != NULL) free(cache); return (r); } static int reloc_nonplt_object(Obj_Entry *obj, const Elf_Rela *rela, SymCache *cache, int flags, RtldLockState *lockstate) { const Obj_Entry *defobj; const Elf_Sym *def; Elf_Addr *where; Elf_Word *where32; Elf_Word type; Elf_Addr value; Elf_Addr mask; where = (Elf_Addr *)(obj->relocbase + rela->r_offset); where32 = (Elf_Word *)where; defobj = NULL; def = NULL; type = ELF64_R_TYPE_ID(rela->r_info); if (type == R_SPARC_NONE) return (0); /* We do JMP_SLOTs below. */ if (type == R_SPARC_JMP_SLOT) return (0); /* COPY relocs are also handled elsewhere. */ if (type == R_SPARC_COPY) return (0); /* Ignore ADD and CALL relocations for dynamic TLS references. */ if (type == R_SPARC_TLS_GD_ADD || type == R_SPARC_TLS_GD_CALL || type == R_SPARC_TLS_LDM_ADD || type == R_SPARC_TLS_LDM_CALL || type == R_SPARC_TLS_LDO_ADD) return (0); /* * Note: R_SPARC_TLS_TPOFF64 must be the numerically largest * relocation type. */ if (type >= sizeof(reloc_target_bitmask) / sizeof(*reloc_target_bitmask)) { _rtld_error("%s: Unsupported relocation type %d in non-PLT " "object\n", obj->path, type); return (-1); } value = rela->r_addend; /* * Handle relative relocs here, because we might not be able to access * globals yet. */ if (type == R_SPARC_RELATIVE) { /* XXXX -- apparently we ignore the preexisting value. */ *where = (Elf_Addr)(obj->relocbase + value); return (0); } /* * If we get here while relocating rtld itself, we will crash because * a non-local variable is accessed. */ if (RELOC_RESOLVE_SYMBOL(type)) { /* Find the symbol. */ def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, flags, cache, lockstate); if (def == NULL) return (-1); if (RELOC_USE_TLS_ID(type)) value = (Elf_Addr)defobj->tlsindex; else if (RELOC_USE_TLS_DOFF(type)) value += (Elf_Addr)def->st_value; else if (RELOC_USE_TLS_OFF(type)) { /* * We lazily allocate offsets for static TLS as we * see the first relocation that references the TLS * block. This allows us to support (small amounts * of) static TLS in dynamically loaded modules. If * we run out of space, we generate an error. */ if (!defobj->tls_done && !allocate_tls_offset((Obj_Entry*)defobj)) { _rtld_error("%s: No space available for " "static Thread Local Storage", obj->path); return (-1); } value += (Elf_Addr)(def->st_value - defobj->tlsoffset); } else { /* Add in the symbol's absolute address. */ value += (Elf_Addr)(def->st_value + defobj->relocbase); } } if (type == R_SPARC_OLO10) value = (value & 0x3ff) + ELF64_R_TYPE_DATA(rela->r_info); if (type == R_SPARC_HIX22 || type == R_SPARC_TLS_LE_HIX22) value ^= 0xffffffffffffffff; if (RELOC_PC_RELATIVE(type)) value -= (Elf_Addr)where; if (RELOC_BASE_RELATIVE(type)) { /* * Note that even though sparcs use `Elf_rela' exclusively * we still need the implicit memory addend in relocations * referring to GOT entries. Undoubtedly, someone f*cked * this up in the distant past, and now we're stuck with * it in the name of compatibility for all eternity ... * * In any case, the implicit and explicit should be mutually * exclusive. We provide a check for that here. */ /* XXXX -- apparently we ignore the preexisting value */ value += (Elf_Addr)(obj->relocbase); } mask = RELOC_VALUE_BITMASK(type); value >>= RELOC_VALUE_RIGHTSHIFT(type); value &= mask; if (type == R_SPARC_LOX10 || type == R_SPARC_TLS_LE_LOX10) value |= 0x1c00; if (RELOC_UNALIGNED(type)) { /* Handle unaligned relocations. */ Elf_Addr tmp; char *ptr; int size; int i; size = RELOC_TARGET_SIZE(type) / 8; ptr = (char *)where; tmp = 0; /* Read it in one byte at a time. */ for (i = 0; i < size; i++) tmp = (tmp << 8) | ptr[i]; tmp &= ~mask; tmp |= value; /* Write it back out. */ for (i = 0; i < size; i++) ptr[i] = ((tmp >> ((size - i - 1) * 8)) & 0xff); } else if (RELOC_TARGET_SIZE(type) > 32) { *where &= ~mask; *where |= value; } else { *where32 &= ~mask; *where32 |= value; } return (0); } int reloc_plt(Obj_Entry *obj) { #if 0 const Obj_Entry *defobj; const Elf_Rela *relalim; const Elf_Rela *rela; const Elf_Sym *def; Elf_Addr *where; Elf_Addr value; relalim = (const Elf_Rela *)((char *)obj->pltrela + obj->pltrelasize); for (rela = obj->pltrela; rela < relalim; rela++) { if (rela->r_addend == 0) continue; assert(ELF64_R_TYPE_ID(rela->r_info) == R_SPARC_JMP_SLOT); where = (Elf_Addr *)(obj->relocbase + rela->r_offset); def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, - true, NULL, lockstate); + SYMLOOK_IN_PLT, NULL, lockstate); value = (Elf_Addr)(defobj->relocbase + def->st_value); *where = value; } #endif return (0); } /* * Instruction templates: */ #define BAA 0x10400000 /* ba,a %xcc, 0 */ #define SETHI 0x03000000 /* sethi %hi(0), %g1 */ #define JMP 0x81c06000 /* jmpl %g1+%lo(0), %g0 */ #define NOP 0x01000000 /* sethi %hi(0), %g0 */ #define OR 0x82806000 /* or %g1, 0, %g1 */ #define XOR 0x82c06000 /* xor %g1, 0, %g1 */ #define MOV71 0x8283a000 /* or %o7, 0, %g1 */ #define MOV17 0x9c806000 /* or %g1, 0, %o7 */ #define CALL 0x40000000 /* call 0 */ #define SLLX 0x8b407000 /* sllx %g1, 0, %g1 */ #define SETHIG5 0x0b000000 /* sethi %hi(0), %g5 */ #define ORG5 0x82804005 /* or %g1, %g5, %g1 */ /* %hi(v) with variable shift */ #define HIVAL(v, s) (((v) >> (s)) & 0x003fffff) #define LOVAL(v) ((v) & 0x000003ff) int reloc_jmpslots(Obj_Entry *obj, int flags, RtldLockState *lockstate) { const Obj_Entry *defobj; const Elf_Rela *relalim; const Elf_Rela *rela; const Elf_Sym *def; Elf_Addr *where; Elf_Addr target; relalim = (const Elf_Rela *)((char *)obj->pltrela + obj->pltrelasize); for (rela = obj->pltrela; rela < relalim; rela++) { assert(ELF64_R_TYPE_ID(rela->r_info) == R_SPARC_JMP_SLOT); where = (Elf_Addr *)(obj->relocbase + rela->r_offset); def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, SYMLOOK_IN_PLT | flags, NULL, lockstate); if (def == NULL) return -1; target = (Elf_Addr)(defobj->relocbase + def->st_value); reloc_jmpslot(where, target, defobj, obj, (Elf_Rel *)rela); } obj->jmpslots_done = true; return (0); } int reloc_iresolve(Obj_Entry *obj, struct Struct_RtldLockState *lockstate) { /* XXX not implemented */ return (0); } int reloc_gnu_ifunc(Obj_Entry *obj, int flags, struct Struct_RtldLockState *lockstate) { /* XXX not implemented */ return (0); } Elf_Addr reloc_jmpslot(Elf_Addr *wherep, Elf_Addr target, const Obj_Entry *obj, const Obj_Entry *refobj, const Elf_Rel *rel) { const Elf_Rela *rela = (const Elf_Rela *)rel; Elf_Addr offset; Elf_Word *where; if (rela - refobj->pltrela < 32764) { /* * At the PLT entry pointed at by `where', we now construct * a direct transfer to the now fully resolved function * address. * * A PLT entry is supposed to start by looking like this: * * sethi (. - .PLT0), %g1 * ba,a %xcc, .PLT1 * nop * nop * nop * nop * nop * nop * * When we replace these entries we start from the second * entry and do it in reverse order so the last thing we * do is replace the branch. That allows us to change this * atomically. * * We now need to find out how far we need to jump. We * have a choice of several different relocation techniques * which are increasingly expensive. */ where = (Elf_Word *)wherep; offset = ((Elf_Addr)where) - target; if (offset <= (1L<<20) && offset >= -(1L<<20)) { /* * We're within 1MB -- we can use a direct branch * instruction. * * We can generate this pattern: * * sethi %hi(. - .PLT0), %g1 * ba,a %xcc, addr * nop * nop * nop * nop * nop * nop * */ where[1] = BAA | ((offset >> 2) &0x3fffff); flush(where, 4); } else if (target >= 0 && target < (1L<<32)) { /* * We're within 32-bits of address zero. * * The resulting code in the jump slot is: * * sethi %hi(. - .PLT0), %g1 * sethi %hi(addr), %g1 * jmp %g1+%lo(addr) * nop * nop * nop * nop * nop * */ where[2] = JMP | LOVAL(target); flush(where, 8); where[1] = SETHI | HIVAL(target, 10); flush(where, 4); } else if (target <= 0 && target > -(1L<<32)) { /* * We're within 32-bits of address -1. * * The resulting code in the jump slot is: * * sethi %hi(. - .PLT0), %g1 * sethi %hix(addr), %g1 * xor %g1, %lox(addr), %g1 * jmp %g1 * nop * nop * nop * nop * */ where[3] = JMP; flush(where, 12); where[2] = XOR | ((~target) & 0x00001fff); flush(where, 8); where[1] = SETHI | HIVAL(~target, 10); flush(where, 4); } else if (offset <= (1L<<32) && offset >= -((1L<<32) - 4)) { /* * We're within 32-bits -- we can use a direct call * insn * * The resulting code in the jump slot is: * * sethi %hi(. - .PLT0), %g1 * mov %o7, %g1 * call (.+offset) * mov %g1, %o7 * nop * nop * nop * nop * */ where[3] = MOV17; flush(where, 12); where[2] = CALL | ((offset >> 4) & 0x3fffffff); flush(where, 8); where[1] = MOV71; flush(where, 4); } else if (offset >= 0 && offset < (1L<<44)) { /* * We're within 44 bits. We can generate this * pattern: * * The resulting code in the jump slot is: * * sethi %hi(. - .PLT0), %g1 * sethi %h44(addr), %g1 * or %g1, %m44(addr), %g1 * sllx %g1, 12, %g1 * jmp %g1+%l44(addr) * nop * nop * nop * */ where[4] = JMP | LOVAL(offset); flush(where, 16); where[3] = SLLX | 12; flush(where, 12); where[2] = OR | (((offset) >> 12) & 0x00001fff); flush(where, 8); where[1] = SETHI | HIVAL(offset, 22); flush(where, 4); } else if (offset < 0 && offset > -(1L<<44)) { /* * We're within 44 bits. We can generate this * pattern: * * The resulting code in the jump slot is: * * sethi %hi(. - .PLT0), %g1 * sethi %h44(-addr), %g1 * xor %g1, %m44(-addr), %g1 * sllx %g1, 12, %g1 * jmp %g1+%l44(addr) * nop * nop * nop * */ where[4] = JMP | LOVAL(offset); flush(where, 16); where[3] = SLLX | 12; flush(where, 12); where[2] = XOR | (((~offset) >> 12) & 0x00001fff); flush(where, 8); where[1] = SETHI | HIVAL(~offset, 22); flush(where, 4); } else { /* * We need to load all 64-bits * * The resulting code in the jump slot is: * * sethi %hi(. - .PLT0), %g1 * sethi %hh(addr), %g1 * sethi %lm(addr), %g5 * or %g1, %hm(addr), %g1 * sllx %g1, 32, %g1 * or %g1, %g5, %g1 * jmp %g1+%lo(addr) * nop * */ where[6] = JMP | LOVAL(target); flush(where, 24); where[5] = ORG5; flush(where, 20); where[4] = SLLX | 32; flush(where, 16); where[3] = OR | LOVAL((target) >> 32); flush(where, 12); where[2] = SETHIG5 | HIVAL(target, 10); flush(where, 8); where[1] = SETHI | HIVAL(target, 42); flush(where, 4); } } else { /* * This is a high PLT slot; the relocation offset specifies a * pointer that needs to be frobbed; no actual code needs to * be modified. The pointer to be calculated needs the addend * added and the reference object relocation base subtraced. */ *wherep = target + rela->r_addend - (Elf_Addr)refobj->relocbase; } return (target); } void ifunc_init(Elf_Auxinfo aux_info[__min_size(AT_COUNT)] __unused) { } /* * Install rtld function call into this PLT slot. */ #define SAVE 0x9de3bf50 #define SETHI_l0 0x21000000 #define SETHI_l1 0x23000000 #define OR_l0_l0 0xa0142000 #define SLLX_l0_32_l0 0xa12c3020 #define OR_l0_l1_l0 0xa0140011 #define JMPL_l0_o1 0x93c42000 #define MOV_g1_o0 0x90100001 void init_pltgot(Obj_Entry *obj) { Elf_Word *entry; if (obj->pltgot != NULL) { entry = (Elf_Word *)obj->pltgot; install_plt(&entry[0], (Elf_Addr)_rtld_bind_start_0); install_plt(&entry[8], (Elf_Addr)_rtld_bind_start_1); obj->pltgot[8] = (Elf_Addr)obj; } } static void install_plt(Elf_Word *pltgot, Elf_Addr proc) { pltgot[0] = SAVE; flush(pltgot, 0); pltgot[1] = SETHI_l0 | HIVAL(proc, 42); flush(pltgot, 4); pltgot[2] = SETHI_l1 | HIVAL(proc, 10); flush(pltgot, 8); pltgot[3] = OR_l0_l0 | LOVAL((proc) >> 32); flush(pltgot, 12); pltgot[4] = SLLX_l0_32_l0; flush(pltgot, 16); pltgot[5] = OR_l0_l1_l0; flush(pltgot, 20); pltgot[6] = JMPL_l0_o1 | LOVAL(proc); flush(pltgot, 24); pltgot[7] = MOV_g1_o0; flush(pltgot, 28); } void allocate_initial_tls(Obj_Entry *objs) { Elf_Addr* tpval; /* * Fix the size of the static TLS block by using the maximum offset * allocated so far and adding a bit for dynamic modules to use. */ tls_static_space = tls_last_offset + RTLD_STATIC_TLS_EXTRA; tpval = allocate_tls(objs, NULL, 3 * sizeof(Elf_Addr), sizeof(Elf_Addr)); __asm __volatile("mov %0, %%g7" : : "r" (tpval)); } void *__tls_get_addr(tls_index *ti) { register Elf_Addr** tp __asm__("%g7"); return (tls_get_addr_common(tp, ti->ti_module, ti->ti_offset)); } Index: stable/11 =================================================================== --- stable/11 (revision 309370) +++ stable/11 (revision 309371) Property changes on: stable/11 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r308456