Index: head/lib/libipsec/pfkey.c =================================================================== --- head/lib/libipsec/pfkey.c (revision 309143) +++ head/lib/libipsec/pfkey.c (revision 309144) @@ -1,2137 +1,2138 @@ /* $KAME: pfkey.c,v 1.46 2003/08/26 03:37:06 itojun Exp $ */ /* * Copyright (C) 1995, 1996, 1997, 1998, and 1999 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include "ipsec_strerror.h" #include "libpfkey.h" #define CALLOC(size, cast) (cast)calloc(1, (size)) static int findsupportedmap(int); static int setsupportedmap(struct sadb_supported *); static struct sadb_alg *findsupportedalg(u_int, u_int); static int pfkey_send_x1(int, u_int, u_int, u_int, struct sockaddr *, struct sockaddr *, u_int32_t, u_int32_t, u_int, caddr_t, u_int, u_int, u_int, u_int, u_int, u_int32_t, u_int32_t, u_int32_t, u_int32_t, u_int32_t); static int pfkey_send_x2(int, u_int, u_int, u_int, struct sockaddr *, struct sockaddr *, u_int32_t); static int pfkey_send_x3(int, u_int, u_int); static int pfkey_send_x4(int, u_int, struct sockaddr *, u_int, struct sockaddr *, u_int, u_int, u_int64_t, u_int64_t, char *, int, u_int32_t); static int pfkey_send_x5(int, u_int, u_int32_t); static caddr_t pfkey_setsadbmsg(caddr_t, caddr_t, u_int, u_int, u_int, u_int32_t, pid_t); static caddr_t pfkey_setsadbsa(caddr_t, caddr_t, u_int32_t, u_int, u_int, u_int, u_int32_t); static caddr_t pfkey_setsadbaddr(caddr_t, caddr_t, u_int, struct sockaddr *, u_int, u_int); static caddr_t pfkey_setsadbkey(caddr_t, caddr_t, u_int, caddr_t, u_int); static caddr_t pfkey_setsadblifetime(caddr_t, caddr_t, u_int, u_int32_t, u_int32_t, u_int32_t, u_int32_t); static caddr_t pfkey_setsadbxsa2(caddr_t, caddr_t, u_int32_t, u_int32_t); /* * make and search supported algorithm structure. */ static struct sadb_supported *ipsec_supported[] = { NULL, NULL, NULL, NULL }; static int supported_map[] = { SADB_SATYPE_AH, SADB_SATYPE_ESP, SADB_X_SATYPE_IPCOMP, SADB_X_SATYPE_TCPSIGNATURE }; static int findsupportedmap(satype) int satype; { int i; for (i = 0; i < sizeof(supported_map)/sizeof(supported_map[0]); i++) if (supported_map[i] == satype) return i; return -1; } static struct sadb_alg * findsupportedalg(satype, alg_id) u_int satype, alg_id; { int algno; int tlen; caddr_t p; /* validity check */ algno = findsupportedmap(satype); if (algno == -1) { __ipsec_errcode = EIPSEC_INVAL_ARGUMENT; return NULL; } if (ipsec_supported[algno] == NULL) { __ipsec_errcode = EIPSEC_DO_GET_SUPP_LIST; return NULL; } tlen = ipsec_supported[algno]->sadb_supported_len - sizeof(struct sadb_supported); p = (caddr_t)(ipsec_supported[algno] + 1); while (tlen > 0) { if (tlen < sizeof(struct sadb_alg)) { /* invalid format */ break; } if (((struct sadb_alg *)p)->sadb_alg_id == alg_id) return (struct sadb_alg *)p; tlen -= sizeof(struct sadb_alg); p += sizeof(struct sadb_alg); } __ipsec_errcode = EIPSEC_NOT_SUPPORTED; return NULL; } static int setsupportedmap(sup) struct sadb_supported *sup; { struct sadb_supported **ipsup; switch (sup->sadb_supported_exttype) { case SADB_EXT_SUPPORTED_AUTH: ipsup = &ipsec_supported[findsupportedmap(SADB_SATYPE_AH)]; break; case SADB_EXT_SUPPORTED_ENCRYPT: ipsup = &ipsec_supported[findsupportedmap(SADB_SATYPE_ESP)]; break; default: __ipsec_errcode = EIPSEC_INVAL_SATYPE; return -1; } if (*ipsup) free(*ipsup); *ipsup = malloc(sup->sadb_supported_len); if (!*ipsup) { __ipsec_set_strerror(strerror(errno)); return -1; } memcpy(*ipsup, sup, sup->sadb_supported_len); return 0; } /* * check key length against algorithm specified. * This function is called with SADB_EXT_SUPPORTED_{AUTH,ENCRYPT} as the * augument, and only calls to ipsec_check_keylen2(); * keylen is the unit of bit. * OUT: * -1: invalid. * 0: valid. */ int ipsec_check_keylen(supported, alg_id, keylen) u_int supported; u_int alg_id; u_int keylen; { int satype; /* validity check */ switch (supported) { case SADB_EXT_SUPPORTED_AUTH: satype = SADB_SATYPE_AH; break; case SADB_EXT_SUPPORTED_ENCRYPT: satype = SADB_SATYPE_ESP; break; default: __ipsec_errcode = EIPSEC_INVAL_ARGUMENT; return -1; } return ipsec_check_keylen2(satype, alg_id, keylen); } /* * check key length against algorithm specified. * satype is one of satype defined at pfkeyv2.h. * keylen is the unit of bit. * OUT: * -1: invalid. * 0: valid. */ int ipsec_check_keylen2(satype, alg_id, keylen) u_int satype; u_int alg_id; u_int keylen; { struct sadb_alg *alg; alg = findsupportedalg(satype, alg_id); if (!alg) return -1; if (keylen < alg->sadb_alg_minbits || keylen > alg->sadb_alg_maxbits) { __ipsec_errcode = EIPSEC_INVAL_KEYLEN; return -1; } __ipsec_errcode = EIPSEC_NO_ERROR; return 0; } /* * get max/min key length against algorithm specified. * satype is one of satype defined at pfkeyv2.h. * keylen is the unit of bit. * OUT: * -1: invalid. * 0: valid. */ int ipsec_get_keylen(supported, alg_id, alg0) u_int supported, alg_id; struct sadb_alg *alg0; { struct sadb_alg *alg; u_int satype; /* validity check */ if (!alg0) { __ipsec_errcode = EIPSEC_INVAL_ARGUMENT; return -1; } switch (supported) { case SADB_EXT_SUPPORTED_AUTH: satype = SADB_SATYPE_AH; break; case SADB_EXT_SUPPORTED_ENCRYPT: satype = SADB_SATYPE_ESP; break; default: __ipsec_errcode = EIPSEC_INVAL_ARGUMENT; return -1; } alg = findsupportedalg(satype, alg_id); if (!alg) return -1; memcpy(alg0, alg, sizeof(*alg0)); __ipsec_errcode = EIPSEC_NO_ERROR; return 0; } /* * set the rate for SOFT lifetime against HARD one. * If rate is more than 100 or equal to zero, then set to 100. */ static u_int soft_lifetime_allocations_rate = PFKEY_SOFT_LIFETIME_RATE; static u_int soft_lifetime_bytes_rate = PFKEY_SOFT_LIFETIME_RATE; static u_int soft_lifetime_addtime_rate = PFKEY_SOFT_LIFETIME_RATE; static u_int soft_lifetime_usetime_rate = PFKEY_SOFT_LIFETIME_RATE; u_int pfkey_set_softrate(type, rate) u_int type, rate; { __ipsec_errcode = EIPSEC_NO_ERROR; if (rate > 100 || rate == 0) rate = 100; switch (type) { case SADB_X_LIFETIME_ALLOCATIONS: soft_lifetime_allocations_rate = rate; return 0; case SADB_X_LIFETIME_BYTES: soft_lifetime_bytes_rate = rate; return 0; case SADB_X_LIFETIME_ADDTIME: soft_lifetime_addtime_rate = rate; return 0; case SADB_X_LIFETIME_USETIME: soft_lifetime_usetime_rate = rate; return 0; } __ipsec_errcode = EIPSEC_INVAL_ARGUMENT; return 1; } /* * get current rate for SOFT lifetime against HARD one. * ATTENTION: ~0 is returned if invalid type was passed. */ u_int pfkey_get_softrate(type) u_int type; { switch (type) { case SADB_X_LIFETIME_ALLOCATIONS: return soft_lifetime_allocations_rate; case SADB_X_LIFETIME_BYTES: return soft_lifetime_bytes_rate; case SADB_X_LIFETIME_ADDTIME: return soft_lifetime_addtime_rate; case SADB_X_LIFETIME_USETIME: return soft_lifetime_usetime_rate; } return ~0; } /* * sending SADB_GETSPI message to the kernel. * OUT: * positive: success and return length sent. * -1 : error occured, and set errno. */ int pfkey_send_getspi(so, satype, mode, src, dst, min, max, reqid, seq) int so; u_int satype, mode; struct sockaddr *src, *dst; u_int32_t min, max, reqid, seq; { struct sadb_msg *newmsg; caddr_t ep; int len; int need_spirange = 0; caddr_t p; int plen; /* validity check */ if (src == NULL || dst == NULL) { __ipsec_errcode = EIPSEC_INVAL_ARGUMENT; return -1; } if (src->sa_family != dst->sa_family) { __ipsec_errcode = EIPSEC_FAMILY_MISMATCH; return -1; } if (min > max || (min > 0 && min <= 255)) { __ipsec_errcode = EIPSEC_INVAL_SPI; return -1; } switch (src->sa_family) { case AF_INET: plen = sizeof(struct in_addr) << 3; break; case AF_INET6: plen = sizeof(struct in6_addr) << 3; break; default: __ipsec_errcode = EIPSEC_INVAL_FAMILY; return -1; } /* create new sadb_msg to send. */ len = sizeof(struct sadb_msg) + sizeof(struct sadb_x_sa2) + sizeof(struct sadb_address) + PFKEY_ALIGN8(src->sa_len) + sizeof(struct sadb_address) + PFKEY_ALIGN8(dst->sa_len); if (min > 255 && max < ~0) { need_spirange++; len += sizeof(struct sadb_spirange); } if ((newmsg = CALLOC(len, struct sadb_msg *)) == NULL) { __ipsec_set_strerror(strerror(errno)); return -1; } ep = ((caddr_t)newmsg) + len; p = pfkey_setsadbmsg((caddr_t)newmsg, ep, SADB_GETSPI, len, satype, seq, getpid()); if (!p) { free(newmsg); return -1; } p = pfkey_setsadbxsa2(p, ep, mode, reqid); if (!p) { free(newmsg); return -1; } /* set sadb_address for source */ p = pfkey_setsadbaddr(p, ep, SADB_EXT_ADDRESS_SRC, src, plen, IPSEC_ULPROTO_ANY); if (!p) { free(newmsg); return -1; } /* set sadb_address for destination */ p = pfkey_setsadbaddr(p, ep, SADB_EXT_ADDRESS_DST, dst, plen, IPSEC_ULPROTO_ANY); if (!p) { free(newmsg); return -1; } /* proccessing spi range */ if (need_spirange) { struct sadb_spirange spirange; if (p + sizeof(spirange) > ep) { free(newmsg); return -1; } memset(&spirange, 0, sizeof(spirange)); spirange.sadb_spirange_len = PFKEY_UNIT64(sizeof(spirange)); spirange.sadb_spirange_exttype = SADB_EXT_SPIRANGE; spirange.sadb_spirange_min = min; spirange.sadb_spirange_max = max; memcpy(p, &spirange, sizeof(spirange)); p += sizeof(spirange); } if (p != ep) { free(newmsg); return -1; } /* send message */ len = pfkey_send(so, newmsg, len); free(newmsg); if (len < 0) return -1; __ipsec_errcode = EIPSEC_NO_ERROR; return len; } /* * sending SADB_UPDATE message to the kernel. * The length of key material is a_keylen + e_keylen. * OUT: * positive: success and return length sent. * -1 : error occured, and set errno. */ int pfkey_send_update(so, satype, mode, src, dst, spi, reqid, wsize, keymat, e_type, e_keylen, a_type, a_keylen, flags, l_alloc, l_bytes, l_addtime, l_usetime, seq) int so; u_int satype, mode, wsize; struct sockaddr *src, *dst; u_int32_t spi, reqid; caddr_t keymat; u_int e_type, e_keylen, a_type, a_keylen, flags; u_int32_t l_alloc; u_int64_t l_bytes, l_addtime, l_usetime; u_int32_t seq; { int len; if ((len = pfkey_send_x1(so, SADB_UPDATE, satype, mode, src, dst, spi, reqid, wsize, keymat, e_type, e_keylen, a_type, a_keylen, flags, l_alloc, l_bytes, l_addtime, l_usetime, seq)) < 0) return -1; return len; } /* * sending SADB_ADD message to the kernel. * The length of key material is a_keylen + e_keylen. * OUT: * positive: success and return length sent. * -1 : error occured, and set errno. */ int pfkey_send_add(so, satype, mode, src, dst, spi, reqid, wsize, keymat, e_type, e_keylen, a_type, a_keylen, flags, l_alloc, l_bytes, l_addtime, l_usetime, seq) int so; u_int satype, mode, wsize; struct sockaddr *src, *dst; u_int32_t spi, reqid; caddr_t keymat; u_int e_type, e_keylen, a_type, a_keylen, flags; u_int32_t l_alloc; u_int64_t l_bytes, l_addtime, l_usetime; u_int32_t seq; { int len; if ((len = pfkey_send_x1(so, SADB_ADD, satype, mode, src, dst, spi, reqid, wsize, keymat, e_type, e_keylen, a_type, a_keylen, flags, l_alloc, l_bytes, l_addtime, l_usetime, seq)) < 0) return -1; return len; } /* * sending SADB_DELETE message to the kernel. * OUT: * positive: success and return length sent. * -1 : error occured, and set errno. */ int pfkey_send_delete(so, satype, mode, src, dst, spi) int so; u_int satype, mode; struct sockaddr *src, *dst; u_int32_t spi; { int len; if ((len = pfkey_send_x2(so, SADB_DELETE, satype, mode, src, dst, spi)) < 0) return -1; return len; } /* * sending SADB_DELETE without spi to the kernel. This is * the "delete all" request (an extension also present in * Solaris). * * OUT: * positive: success and return length sent * -1 : error occured, and set errno */ int pfkey_send_delete_all(so, satype, mode, src, dst) int so; u_int satype, mode; struct sockaddr *src, *dst; { struct sadb_msg *newmsg; int len; caddr_t p; int plen; caddr_t ep; /* validity check */ if (src == NULL || dst == NULL) { __ipsec_errcode = EIPSEC_INVAL_ARGUMENT; return -1; } if (src->sa_family != dst->sa_family) { __ipsec_errcode = EIPSEC_FAMILY_MISMATCH; return -1; } switch (src->sa_family) { case AF_INET: plen = sizeof(struct in_addr) << 3; break; case AF_INET6: plen = sizeof(struct in6_addr) << 3; break; default: __ipsec_errcode = EIPSEC_INVAL_FAMILY; return -1; } /* create new sadb_msg to reply. */ len = sizeof(struct sadb_msg) + sizeof(struct sadb_address) + PFKEY_ALIGN8(src->sa_len) + sizeof(struct sadb_address) + PFKEY_ALIGN8(dst->sa_len); if ((newmsg = CALLOC(len, struct sadb_msg *)) == NULL) { __ipsec_set_strerror(strerror(errno)); return -1; } ep = ((caddr_t)newmsg) + len; p = pfkey_setsadbmsg((caddr_t)newmsg, ep, SADB_DELETE, len, satype, 0, getpid()); if (!p) { free(newmsg); return -1; } p = pfkey_setsadbaddr(p, ep, SADB_EXT_ADDRESS_SRC, src, plen, IPSEC_ULPROTO_ANY); if (!p) { free(newmsg); return -1; } p = pfkey_setsadbaddr(p, ep, SADB_EXT_ADDRESS_DST, dst, plen, IPSEC_ULPROTO_ANY); if (!p || p != ep) { free(newmsg); return -1; } /* send message */ len = pfkey_send(so, newmsg, len); free(newmsg); if (len < 0) return -1; __ipsec_errcode = EIPSEC_NO_ERROR; return len; } /* * sending SADB_GET message to the kernel. * OUT: * positive: success and return length sent. * -1 : error occured, and set errno. */ int pfkey_send_get(so, satype, mode, src, dst, spi) int so; u_int satype, mode; struct sockaddr *src, *dst; u_int32_t spi; { int len; if ((len = pfkey_send_x2(so, SADB_GET, satype, mode, src, dst, spi)) < 0) return -1; return len; } /* * sending SADB_REGISTER message to the kernel. * OUT: * positive: success and return length sent. * -1 : error occured, and set errno. */ int pfkey_send_register(so, satype) int so; u_int satype; { int len, algno; if (satype == SADB_SATYPE_UNSPEC) { for (algno = 0; algno < sizeof(supported_map)/sizeof(supported_map[0]); algno++) { if (ipsec_supported[algno]) { free(ipsec_supported[algno]); ipsec_supported[algno] = NULL; } } } else { algno = findsupportedmap(satype); if (algno == -1) { __ipsec_errcode = EIPSEC_INVAL_ARGUMENT; return -1; } if (ipsec_supported[algno]) { free(ipsec_supported[algno]); ipsec_supported[algno] = NULL; } } if ((len = pfkey_send_x3(so, SADB_REGISTER, satype)) < 0) return -1; return len; } /* * receiving SADB_REGISTER message from the kernel, and copy buffer for * sadb_supported returned into ipsec_supported. * OUT: * 0: success and return length sent. * -1: error occured, and set errno. */ int pfkey_recv_register(so) int so; { pid_t pid = getpid(); struct sadb_msg *newmsg; int error = -1; /* receive message */ for (;;) { if ((newmsg = pfkey_recv(so)) == NULL) return -1; if (newmsg->sadb_msg_type == SADB_REGISTER && newmsg->sadb_msg_pid == pid) break; free(newmsg); } /* check and fix */ newmsg->sadb_msg_len = PFKEY_UNUNIT64(newmsg->sadb_msg_len); error = pfkey_set_supported(newmsg, newmsg->sadb_msg_len); free(newmsg); if (error == 0) __ipsec_errcode = EIPSEC_NO_ERROR; return error; } /* * receiving SADB_REGISTER message from the kernel, and copy buffer for * sadb_supported returned into ipsec_supported. * NOTE: sadb_msg_len must be host order. * IN: * tlen: msg length, it's to makeing sure. * OUT: * 0: success and return length sent. * -1: error occured, and set errno. */ int pfkey_set_supported(msg, tlen) struct sadb_msg *msg; int tlen; { struct sadb_supported *sup; caddr_t p; caddr_t ep; /* validity */ if (msg->sadb_msg_len != tlen) { __ipsec_errcode = EIPSEC_INVAL_ARGUMENT; return -1; } p = (caddr_t)msg; ep = p + tlen; p += sizeof(struct sadb_msg); while (p < ep) { sup = (struct sadb_supported *)p; if (ep < p + sizeof(*sup) || PFKEY_EXTLEN(sup) < sizeof(*sup) || ep < p + sup->sadb_supported_len) { /* invalid format */ break; } switch (sup->sadb_supported_exttype) { case SADB_EXT_SUPPORTED_AUTH: case SADB_EXT_SUPPORTED_ENCRYPT: break; default: __ipsec_errcode = EIPSEC_INVAL_SATYPE; return -1; } /* fixed length */ sup->sadb_supported_len = PFKEY_EXTLEN(sup); /* set supported map */ if (setsupportedmap(sup) != 0) return -1; p += sup->sadb_supported_len; } if (p != ep) { __ipsec_errcode = EIPSEC_INVAL_SATYPE; return -1; } __ipsec_errcode = EIPSEC_NO_ERROR; return 0; } /* * sending SADB_FLUSH message to the kernel. * OUT: * positive: success and return length sent. * -1 : error occured, and set errno. */ int pfkey_send_flush(so, satype) int so; u_int satype; { int len; if ((len = pfkey_send_x3(so, SADB_FLUSH, satype)) < 0) return -1; return len; } /* * sending SADB_DUMP message to the kernel. * OUT: * positive: success and return length sent. * -1 : error occured, and set errno. */ int pfkey_send_dump(so, satype) int so; u_int satype; { int len; if ((len = pfkey_send_x3(so, SADB_DUMP, satype)) < 0) return -1; return len; } /* * sending SADB_X_PROMISC message to the kernel. * NOTE that this function handles promisc mode toggle only. * IN: * flag: set promisc off if zero, set promisc on if non-zero. * OUT: * positive: success and return length sent. * -1 : error occured, and set errno. * 0 : error occured, and set errno. * others: a pointer to new allocated buffer in which supported * algorithms is. */ int pfkey_send_promisc_toggle(so, flag) int so; int flag; { int len; if ((len = pfkey_send_x3(so, SADB_X_PROMISC, (flag ? 1 : 0))) < 0) return -1; return len; } /* * sending SADB_X_SPDADD message to the kernel. * OUT: * positive: success and return length sent. * -1 : error occured, and set errno. */ int pfkey_send_spdadd(so, src, prefs, dst, prefd, proto, policy, policylen, seq) int so; struct sockaddr *src, *dst; u_int prefs, prefd, proto; caddr_t policy; int policylen; u_int32_t seq; { int len; if ((len = pfkey_send_x4(so, SADB_X_SPDADD, src, prefs, dst, prefd, proto, 0, 0, policy, policylen, seq)) < 0) return -1; return len; } /* * sending SADB_X_SPDADD message to the kernel. * OUT: * positive: success and return length sent. * -1 : error occured, and set errno. */ int pfkey_send_spdadd2(so, src, prefs, dst, prefd, proto, ltime, vtime, policy, policylen, seq) int so; struct sockaddr *src, *dst; u_int prefs, prefd, proto; u_int64_t ltime, vtime; caddr_t policy; int policylen; u_int32_t seq; { int len; if ((len = pfkey_send_x4(so, SADB_X_SPDADD, src, prefs, dst, prefd, proto, ltime, vtime, policy, policylen, seq)) < 0) return -1; return len; } /* * sending SADB_X_SPDUPDATE message to the kernel. * OUT: * positive: success and return length sent. * -1 : error occured, and set errno. */ int pfkey_send_spdupdate(so, src, prefs, dst, prefd, proto, policy, policylen, seq) int so; struct sockaddr *src, *dst; u_int prefs, prefd, proto; caddr_t policy; int policylen; u_int32_t seq; { int len; if ((len = pfkey_send_x4(so, SADB_X_SPDUPDATE, src, prefs, dst, prefd, proto, 0, 0, policy, policylen, seq)) < 0) return -1; return len; } /* * sending SADB_X_SPDUPDATE message to the kernel. * OUT: * positive: success and return length sent. * -1 : error occured, and set errno. */ int pfkey_send_spdupdate2(so, src, prefs, dst, prefd, proto, ltime, vtime, policy, policylen, seq) int so; struct sockaddr *src, *dst; u_int prefs, prefd, proto; u_int64_t ltime, vtime; caddr_t policy; int policylen; u_int32_t seq; { int len; if ((len = pfkey_send_x4(so, SADB_X_SPDUPDATE, src, prefs, dst, prefd, proto, ltime, vtime, policy, policylen, seq)) < 0) return -1; return len; } /* * sending SADB_X_SPDDELETE message to the kernel. * OUT: * positive: success and return length sent. * -1 : error occured, and set errno. */ int pfkey_send_spddelete(so, src, prefs, dst, prefd, proto, policy, policylen, seq) int so; struct sockaddr *src, *dst; u_int prefs, prefd, proto; caddr_t policy; int policylen; u_int32_t seq; { int len; if (policylen != sizeof(struct sadb_x_policy)) { __ipsec_errcode = EIPSEC_INVAL_ARGUMENT; return -1; } if ((len = pfkey_send_x4(so, SADB_X_SPDDELETE, src, prefs, dst, prefd, proto, 0, 0, policy, policylen, seq)) < 0) return -1; return len; } /* * sending SADB_X_SPDDELETE message to the kernel. * OUT: * positive: success and return length sent. * -1 : error occured, and set errno. */ int pfkey_send_spddelete2(so, spid) int so; u_int32_t spid; { int len; if ((len = pfkey_send_x5(so, SADB_X_SPDDELETE2, spid)) < 0) return -1; return len; } /* * sending SADB_X_SPDGET message to the kernel. * OUT: * positive: success and return length sent. * -1 : error occured, and set errno. */ int pfkey_send_spdget(so, spid) int so; u_int32_t spid; { int len; if ((len = pfkey_send_x5(so, SADB_X_SPDGET, spid)) < 0) return -1; return len; } /* * sending SADB_X_SPDSETIDX message to the kernel. * OUT: * positive: success and return length sent. * -1 : error occured, and set errno. */ int pfkey_send_spdsetidx(so, src, prefs, dst, prefd, proto, policy, policylen, seq) int so; struct sockaddr *src, *dst; u_int prefs, prefd, proto; caddr_t policy; int policylen; u_int32_t seq; { int len; if (policylen != sizeof(struct sadb_x_policy)) { __ipsec_errcode = EIPSEC_INVAL_ARGUMENT; return -1; } if ((len = pfkey_send_x4(so, SADB_X_SPDSETIDX, src, prefs, dst, prefd, proto, 0, 0, policy, policylen, seq)) < 0) return -1; return len; } /* * sending SADB_SPDFLUSH message to the kernel. * OUT: * positive: success and return length sent. * -1 : error occured, and set errno. */ int pfkey_send_spdflush(so) int so; { int len; if ((len = pfkey_send_x3(so, SADB_X_SPDFLUSH, SADB_SATYPE_UNSPEC)) < 0) return -1; return len; } /* * sending SADB_SPDDUMP message to the kernel. * OUT: * positive: success and return length sent. * -1 : error occured, and set errno. */ int pfkey_send_spddump(so) int so; { int len; if ((len = pfkey_send_x3(so, SADB_X_SPDDUMP, SADB_SATYPE_UNSPEC)) < 0) return -1; return len; } /* sending SADB_ADD or SADB_UPDATE message to the kernel */ static int pfkey_send_x1(so, type, satype, mode, src, dst, spi, reqid, wsize, keymat, e_type, e_keylen, a_type, a_keylen, flags, l_alloc, l_bytes, l_addtime, l_usetime, seq) int so; u_int type, satype, mode; struct sockaddr *src, *dst; u_int32_t spi, reqid; u_int wsize; caddr_t keymat; u_int e_type, e_keylen, a_type, a_keylen, flags; u_int32_t l_alloc, l_bytes, l_addtime, l_usetime, seq; { struct sadb_msg *newmsg; int len; caddr_t p; int plen; caddr_t ep; /* validity check */ if (src == NULL || dst == NULL) { __ipsec_errcode = EIPSEC_INVAL_ARGUMENT; return -1; } if (src->sa_family != dst->sa_family) { __ipsec_errcode = EIPSEC_FAMILY_MISMATCH; return -1; } switch (src->sa_family) { case AF_INET: plen = sizeof(struct in_addr) << 3; break; case AF_INET6: plen = sizeof(struct in6_addr) << 3; break; default: __ipsec_errcode = EIPSEC_INVAL_FAMILY; return -1; } switch (satype) { case SADB_SATYPE_ESP: if (e_type == SADB_EALG_NONE) { __ipsec_errcode = EIPSEC_NO_ALGS; return -1; } break; case SADB_SATYPE_AH: if (e_type != SADB_EALG_NONE) { __ipsec_errcode = EIPSEC_INVAL_ALGS; return -1; } if (a_type == SADB_AALG_NONE) { __ipsec_errcode = EIPSEC_NO_ALGS; return -1; } break; case SADB_X_SATYPE_IPCOMP: if (e_type == SADB_X_CALG_NONE) { __ipsec_errcode = EIPSEC_INVAL_ALGS; return -1; } if (a_type != SADB_AALG_NONE) { __ipsec_errcode = EIPSEC_NO_ALGS; return -1; } break; case SADB_X_SATYPE_TCPSIGNATURE: if (e_type != SADB_EALG_NONE) { __ipsec_errcode = EIPSEC_INVAL_ALGS; return -1; } if (a_type != SADB_X_AALG_TCP_MD5) { __ipsec_errcode = EIPSEC_INVAL_ALGS; return -1; } break; default: __ipsec_errcode = EIPSEC_INVAL_SATYPE; return -1; } /* create new sadb_msg to reply. */ len = sizeof(struct sadb_msg) + sizeof(struct sadb_sa) + sizeof(struct sadb_x_sa2) + sizeof(struct sadb_address) + PFKEY_ALIGN8(src->sa_len) + sizeof(struct sadb_address) + PFKEY_ALIGN8(dst->sa_len) + sizeof(struct sadb_lifetime) + sizeof(struct sadb_lifetime); if (e_type != SADB_EALG_NONE) len += (sizeof(struct sadb_key) + PFKEY_ALIGN8(e_keylen)); if (a_type != SADB_AALG_NONE) len += (sizeof(struct sadb_key) + PFKEY_ALIGN8(a_keylen)); if ((newmsg = CALLOC(len, struct sadb_msg *)) == NULL) { __ipsec_set_strerror(strerror(errno)); return -1; } ep = ((caddr_t)newmsg) + len; p = pfkey_setsadbmsg((caddr_t)newmsg, ep, type, len, satype, seq, getpid()); if (!p) { free(newmsg); return -1; } p = pfkey_setsadbsa(p, ep, spi, wsize, a_type, e_type, flags); if (!p) { free(newmsg); return -1; } p = pfkey_setsadbxsa2(p, ep, mode, reqid); if (!p) { free(newmsg); return -1; } p = pfkey_setsadbaddr(p, ep, SADB_EXT_ADDRESS_SRC, src, plen, IPSEC_ULPROTO_ANY); if (!p) { free(newmsg); return -1; } p = pfkey_setsadbaddr(p, ep, SADB_EXT_ADDRESS_DST, dst, plen, IPSEC_ULPROTO_ANY); if (!p) { free(newmsg); return -1; } if (e_type != SADB_EALG_NONE) { p = pfkey_setsadbkey(p, ep, SADB_EXT_KEY_ENCRYPT, keymat, e_keylen); if (!p) { free(newmsg); return -1; } } if (a_type != SADB_AALG_NONE) { p = pfkey_setsadbkey(p, ep, SADB_EXT_KEY_AUTH, keymat + e_keylen, a_keylen); if (!p) { free(newmsg); return -1; } } /* set sadb_lifetime for destination */ p = pfkey_setsadblifetime(p, ep, SADB_EXT_LIFETIME_HARD, l_alloc, l_bytes, l_addtime, l_usetime); if (!p) { free(newmsg); return -1; } p = pfkey_setsadblifetime(p, ep, SADB_EXT_LIFETIME_SOFT, l_alloc, l_bytes, l_addtime, l_usetime); if (!p || p != ep) { free(newmsg); return -1; } /* send message */ len = pfkey_send(so, newmsg, len); free(newmsg); if (len < 0) return -1; __ipsec_errcode = EIPSEC_NO_ERROR; return len; } /* sending SADB_DELETE or SADB_GET message to the kernel */ static int pfkey_send_x2(so, type, satype, mode, src, dst, spi) int so; u_int type, satype, mode; struct sockaddr *src, *dst; u_int32_t spi; { struct sadb_msg *newmsg; int len; caddr_t p; int plen; caddr_t ep; /* validity check */ if (src == NULL || dst == NULL) { __ipsec_errcode = EIPSEC_INVAL_ARGUMENT; return -1; } if (src->sa_family != dst->sa_family) { __ipsec_errcode = EIPSEC_FAMILY_MISMATCH; return -1; } switch (src->sa_family) { case AF_INET: plen = sizeof(struct in_addr) << 3; break; case AF_INET6: plen = sizeof(struct in6_addr) << 3; break; default: __ipsec_errcode = EIPSEC_INVAL_FAMILY; return -1; } /* create new sadb_msg to reply. */ len = sizeof(struct sadb_msg) + sizeof(struct sadb_sa) + sizeof(struct sadb_address) + PFKEY_ALIGN8(src->sa_len) + sizeof(struct sadb_address) + PFKEY_ALIGN8(dst->sa_len); if ((newmsg = CALLOC(len, struct sadb_msg *)) == NULL) { __ipsec_set_strerror(strerror(errno)); return -1; } ep = ((caddr_t)newmsg) + len; p = pfkey_setsadbmsg((caddr_t)newmsg, ep, type, len, satype, 0, getpid()); if (!p) { free(newmsg); return -1; } p = pfkey_setsadbsa(p, ep, spi, 0, 0, 0, 0); if (!p) { free(newmsg); return -1; } p = pfkey_setsadbaddr(p, ep, SADB_EXT_ADDRESS_SRC, src, plen, IPSEC_ULPROTO_ANY); if (!p) { free(newmsg); return -1; } p = pfkey_setsadbaddr(p, ep, SADB_EXT_ADDRESS_DST, dst, plen, IPSEC_ULPROTO_ANY); if (!p || p != ep) { free(newmsg); return -1; } /* send message */ len = pfkey_send(so, newmsg, len); free(newmsg); if (len < 0) return -1; __ipsec_errcode = EIPSEC_NO_ERROR; return len; } /* * sending SADB_REGISTER, SADB_FLUSH, SADB_DUMP or SADB_X_PROMISC message * to the kernel */ static int pfkey_send_x3(so, type, satype) int so; u_int type, satype; { struct sadb_msg *newmsg; int len; caddr_t p; caddr_t ep; /* validity check */ switch (type) { case SADB_X_PROMISC: if (satype != 0 && satype != 1) { __ipsec_errcode = EIPSEC_INVAL_SATYPE; return -1; } break; default: switch (satype) { case SADB_SATYPE_UNSPEC: case SADB_SATYPE_AH: case SADB_SATYPE_ESP: case SADB_X_SATYPE_IPCOMP: case SADB_X_SATYPE_TCPSIGNATURE: break; default: __ipsec_errcode = EIPSEC_INVAL_SATYPE; return -1; } } /* create new sadb_msg to send. */ len = sizeof(struct sadb_msg); if ((newmsg = CALLOC(len, struct sadb_msg *)) == NULL) { __ipsec_set_strerror(strerror(errno)); return -1; } ep = ((caddr_t)newmsg) + len; p = pfkey_setsadbmsg((caddr_t)newmsg, ep, type, len, satype, 0, getpid()); if (!p || p != ep) { free(newmsg); return -1; } /* send message */ len = pfkey_send(so, newmsg, len); free(newmsg); if (len < 0) return -1; __ipsec_errcode = EIPSEC_NO_ERROR; return len; } /* sending SADB_X_SPDADD message to the kernel */ static int pfkey_send_x4(so, type, src, prefs, dst, prefd, proto, ltime, vtime, policy, policylen, seq) int so; struct sockaddr *src, *dst; u_int type, prefs, prefd, proto; u_int64_t ltime, vtime; char *policy; int policylen; u_int32_t seq; { struct sadb_msg *newmsg; int len; caddr_t p; int plen; caddr_t ep; /* validity check */ if (src == NULL || dst == NULL) { __ipsec_errcode = EIPSEC_INVAL_ARGUMENT; return -1; } if (src->sa_family != dst->sa_family) { __ipsec_errcode = EIPSEC_FAMILY_MISMATCH; return -1; } switch (src->sa_family) { case AF_INET: plen = sizeof(struct in_addr) << 3; break; case AF_INET6: plen = sizeof(struct in6_addr) << 3; break; default: __ipsec_errcode = EIPSEC_INVAL_FAMILY; return -1; } if (prefs > plen || prefd > plen) { __ipsec_errcode = EIPSEC_INVAL_PREFIXLEN; return -1; } /* create new sadb_msg to reply. */ len = sizeof(struct sadb_msg) + sizeof(struct sadb_address) + PFKEY_ALIGN8(src->sa_len) + sizeof(struct sadb_address) + PFKEY_ALIGN8(src->sa_len) + sizeof(struct sadb_lifetime) + policylen; if ((newmsg = CALLOC(len, struct sadb_msg *)) == NULL) { __ipsec_set_strerror(strerror(errno)); return -1; } ep = ((caddr_t)newmsg) + len; p = pfkey_setsadbmsg((caddr_t)newmsg, ep, type, len, SADB_SATYPE_UNSPEC, seq, getpid()); if (!p) { free(newmsg); return -1; } p = pfkey_setsadbaddr(p, ep, SADB_EXT_ADDRESS_SRC, src, prefs, proto); if (!p) { free(newmsg); return -1; } p = pfkey_setsadbaddr(p, ep, SADB_EXT_ADDRESS_DST, dst, prefd, proto); if (!p) { free(newmsg); return -1; } p = pfkey_setsadblifetime(p, ep, SADB_EXT_LIFETIME_HARD, 0, 0, ltime, vtime); if (!p || p + policylen != ep) { free(newmsg); return -1; } memcpy(p, policy, policylen); /* send message */ len = pfkey_send(so, newmsg, len); free(newmsg); if (len < 0) return -1; __ipsec_errcode = EIPSEC_NO_ERROR; return len; } /* sending SADB_X_SPDGET or SADB_X_SPDDELETE message to the kernel */ static int pfkey_send_x5(so, type, spid) int so; u_int type; u_int32_t spid; { struct sadb_msg *newmsg; struct sadb_x_policy xpl; int len; caddr_t p; caddr_t ep; /* create new sadb_msg to reply. */ len = sizeof(struct sadb_msg) + sizeof(xpl); if ((newmsg = CALLOC(len, struct sadb_msg *)) == NULL) { __ipsec_set_strerror(strerror(errno)); return -1; } ep = ((caddr_t)newmsg) + len; p = pfkey_setsadbmsg((caddr_t)newmsg, ep, type, len, SADB_SATYPE_UNSPEC, 0, getpid()); if (!p) { free(newmsg); return -1; } if (p + sizeof(xpl) != ep) { free(newmsg); return -1; } memset(&xpl, 0, sizeof(xpl)); xpl.sadb_x_policy_len = PFKEY_UNIT64(sizeof(xpl)); xpl.sadb_x_policy_exttype = SADB_X_EXT_POLICY; xpl.sadb_x_policy_id = spid; memcpy(p, &xpl, sizeof(xpl)); /* send message */ len = pfkey_send(so, newmsg, len); free(newmsg); if (len < 0) return -1; __ipsec_errcode = EIPSEC_NO_ERROR; return len; } /* * open a socket. * OUT: * -1: fail. * others : success and return value of socket. */ int pfkey_open() { int so; const int bufsiz = 128 * 1024; /*is 128K enough?*/ if ((so = socket(PF_KEY, SOCK_RAW, PF_KEY_V2)) < 0) { __ipsec_set_strerror(strerror(errno)); return -1; } /* * This is a temporary workaround for KAME PR 154. * Don't really care even if it fails. */ (void)setsockopt(so, SOL_SOCKET, SO_SNDBUF, &bufsiz, sizeof(bufsiz)); (void)setsockopt(so, SOL_SOCKET, SO_RCVBUF, &bufsiz, sizeof(bufsiz)); __ipsec_errcode = EIPSEC_NO_ERROR; return so; } /* * close a socket. * OUT: * 0: success. * -1: fail. */ void pfkey_close(so) int so; { (void)close(so); __ipsec_errcode = EIPSEC_NO_ERROR; return; } /* * receive sadb_msg data, and return pointer to new buffer allocated. * Must free this buffer later. * OUT: * NULL : error occured. * others : a pointer to sadb_msg structure. * * XXX should be rewritten to pass length explicitly */ struct sadb_msg * pfkey_recv(so) int so; { struct sadb_msg buf, *newmsg; int len, reallen; while ((len = recv(so, (caddr_t)&buf, sizeof(buf), MSG_PEEK)) < 0) { if (errno == EINTR) continue; __ipsec_set_strerror(strerror(errno)); return NULL; } if (len < sizeof(buf)) { recv(so, (caddr_t)&buf, sizeof(buf), 0); __ipsec_errcode = EIPSEC_MAX; return NULL; } /* read real message */ reallen = PFKEY_UNUNIT64(buf.sadb_msg_len); if ((newmsg = CALLOC(reallen, struct sadb_msg *)) == NULL) { __ipsec_set_strerror(strerror(errno)); return NULL; } while ((len = recv(so, (caddr_t)newmsg, reallen, 0)) < 0) { if (errno == EINTR) continue; __ipsec_set_strerror(strerror(errno)); free(newmsg); return NULL; } if (len != reallen) { __ipsec_errcode = EIPSEC_SYSTEM_ERROR; free(newmsg); return NULL; } /* don't trust what the kernel says, validate! */ if (PFKEY_UNUNIT64(newmsg->sadb_msg_len) != len) { __ipsec_errcode = EIPSEC_SYSTEM_ERROR; free(newmsg); return NULL; } __ipsec_errcode = EIPSEC_NO_ERROR; return newmsg; } /* * send message to a socket. * OUT: * others: success and return length sent. * -1 : fail. */ int pfkey_send(so, msg, len) int so; struct sadb_msg *msg; int len; { if ((len = send(so, (caddr_t)msg, len, 0)) < 0) { __ipsec_set_strerror(strerror(errno)); return -1; } __ipsec_errcode = EIPSEC_NO_ERROR; return len; } /* * %%% Utilities * NOTE: These functions are derived from netkey/key.c in KAME. */ /* * set the pointer to each header in this message buffer. * IN: msg: pointer to message buffer. * mhp: pointer to the buffer initialized like below: * caddr_t mhp[SADB_EXT_MAX + 1]; * OUT: -1: invalid. * 0: valid. * * XXX should be rewritten to obtain length explicitly */ int pfkey_align(msg, mhp) struct sadb_msg *msg; caddr_t *mhp; { struct sadb_ext *ext; int i; caddr_t p; caddr_t ep; /* XXX should be passed from upper layer */ /* validity check */ if (msg == NULL || mhp == NULL) { __ipsec_errcode = EIPSEC_INVAL_ARGUMENT; return -1; } /* initialize */ for (i = 0; i < SADB_EXT_MAX + 1; i++) mhp[i] = NULL; mhp[0] = (caddr_t)msg; /* initialize */ p = (caddr_t) msg; ep = p + PFKEY_UNUNIT64(msg->sadb_msg_len); /* skip base header */ p += sizeof(struct sadb_msg); while (p < ep) { ext = (struct sadb_ext *)p; if (ep < p + sizeof(*ext) || PFKEY_EXTLEN(ext) < sizeof(*ext) || ep < p + PFKEY_EXTLEN(ext)) { /* invalid format */ break; } /* duplicate check */ /* XXX Are there duplication either KEY_AUTH or KEY_ENCRYPT ?*/ if (mhp[ext->sadb_ext_type] != NULL) { __ipsec_errcode = EIPSEC_INVAL_EXTTYPE; return -1; } /* set pointer */ switch (ext->sadb_ext_type) { case SADB_EXT_SA: case SADB_EXT_LIFETIME_CURRENT: case SADB_EXT_LIFETIME_HARD: case SADB_EXT_LIFETIME_SOFT: case SADB_EXT_ADDRESS_SRC: case SADB_EXT_ADDRESS_DST: case SADB_EXT_ADDRESS_PROXY: case SADB_EXT_KEY_AUTH: /* XXX should to be check weak keys. */ case SADB_EXT_KEY_ENCRYPT: /* XXX should to be check weak keys. */ case SADB_EXT_IDENTITY_SRC: case SADB_EXT_IDENTITY_DST: case SADB_EXT_SENSITIVITY: case SADB_EXT_PROPOSAL: case SADB_EXT_SUPPORTED_AUTH: case SADB_EXT_SUPPORTED_ENCRYPT: case SADB_EXT_SPIRANGE: case SADB_X_EXT_POLICY: case SADB_X_EXT_SA2: + case SADB_X_EXT_SA_REPLAY: mhp[ext->sadb_ext_type] = (caddr_t)ext; break; case SADB_X_EXT_NAT_T_TYPE: case SADB_X_EXT_NAT_T_SPORT: case SADB_X_EXT_NAT_T_DPORT: /* case SADB_X_EXT_NAT_T_OA: is OAI */ case SADB_X_EXT_NAT_T_OAI: case SADB_X_EXT_NAT_T_OAR: case SADB_X_EXT_NAT_T_FRAG: if (feature_present("ipsec_natt")) { mhp[ext->sadb_ext_type] = (caddr_t)ext; break; } /* FALLTHROUGH */ default: __ipsec_errcode = EIPSEC_INVAL_EXTTYPE; return -1; } p += PFKEY_EXTLEN(ext); } if (p != ep) { __ipsec_errcode = EIPSEC_INVAL_SADBMSG; return -1; } __ipsec_errcode = EIPSEC_NO_ERROR; return 0; } /* * check basic usage for sadb_msg, * NOTE: This routine is derived from netkey/key.c in KAME. * IN: msg: pointer to message buffer. * mhp: pointer to the buffer initialized like below: * * caddr_t mhp[SADB_EXT_MAX + 1]; * * OUT: -1: invalid. * 0: valid. */ int pfkey_check(mhp) caddr_t *mhp; { struct sadb_msg *msg; /* validity check */ if (mhp == NULL || mhp[0] == NULL) { __ipsec_errcode = EIPSEC_INVAL_ARGUMENT; return -1; } msg = (struct sadb_msg *)mhp[0]; /* check version */ if (msg->sadb_msg_version != PF_KEY_V2) { __ipsec_errcode = EIPSEC_INVAL_VERSION; return -1; } /* check type */ if (msg->sadb_msg_type > SADB_MAX) { __ipsec_errcode = EIPSEC_INVAL_MSGTYPE; return -1; } /* check SA type */ switch (msg->sadb_msg_satype) { case SADB_SATYPE_UNSPEC: switch (msg->sadb_msg_type) { case SADB_GETSPI: case SADB_UPDATE: case SADB_ADD: case SADB_DELETE: case SADB_GET: case SADB_ACQUIRE: case SADB_EXPIRE: __ipsec_errcode = EIPSEC_INVAL_SATYPE; return -1; } break; case SADB_SATYPE_ESP: case SADB_SATYPE_AH: case SADB_X_SATYPE_IPCOMP: case SADB_X_SATYPE_TCPSIGNATURE: switch (msg->sadb_msg_type) { case SADB_X_SPDADD: case SADB_X_SPDDELETE: case SADB_X_SPDGET: case SADB_X_SPDDUMP: case SADB_X_SPDFLUSH: __ipsec_errcode = EIPSEC_INVAL_SATYPE; return -1; } break; case SADB_SATYPE_RSVP: case SADB_SATYPE_OSPFV2: case SADB_SATYPE_RIPV2: case SADB_SATYPE_MIP: __ipsec_errcode = EIPSEC_NOT_SUPPORTED; return -1; case 1: /* XXX: What does it do ? */ if (msg->sadb_msg_type == SADB_X_PROMISC) break; /*FALLTHROUGH*/ default: __ipsec_errcode = EIPSEC_INVAL_SATYPE; return -1; } /* check field of upper layer protocol and address family */ if (mhp[SADB_EXT_ADDRESS_SRC] != NULL && mhp[SADB_EXT_ADDRESS_DST] != NULL) { struct sadb_address *src0, *dst0; src0 = (struct sadb_address *)(mhp[SADB_EXT_ADDRESS_SRC]); dst0 = (struct sadb_address *)(mhp[SADB_EXT_ADDRESS_DST]); if (src0->sadb_address_proto != dst0->sadb_address_proto) { __ipsec_errcode = EIPSEC_PROTO_MISMATCH; return -1; } if (PFKEY_ADDR_SADDR(src0)->sa_family != PFKEY_ADDR_SADDR(dst0)->sa_family) { __ipsec_errcode = EIPSEC_FAMILY_MISMATCH; return -1; } switch (PFKEY_ADDR_SADDR(src0)->sa_family) { case AF_INET: case AF_INET6: break; default: __ipsec_errcode = EIPSEC_INVAL_FAMILY; return -1; } /* * prefixlen == 0 is valid because there must be the case * all addresses are matched. */ } __ipsec_errcode = EIPSEC_NO_ERROR; return 0; } /* * set data into sadb_msg. * `buf' must has been allocated sufficiently. */ static caddr_t pfkey_setsadbmsg(buf, lim, type, tlen, satype, seq, pid) caddr_t buf; caddr_t lim; u_int type, satype; u_int tlen; u_int32_t seq; pid_t pid; { struct sadb_msg *p; u_int len; p = (struct sadb_msg *)buf; len = sizeof(struct sadb_msg); if (buf + len > lim) return NULL; memset(p, 0, len); p->sadb_msg_version = PF_KEY_V2; p->sadb_msg_type = type; p->sadb_msg_errno = 0; p->sadb_msg_satype = satype; p->sadb_msg_len = PFKEY_UNIT64(tlen); p->sadb_msg_reserved = 0; p->sadb_msg_seq = seq; p->sadb_msg_pid = (u_int32_t)pid; return(buf + len); } /* * copy secasvar data into sadb_address. * `buf' must has been allocated sufficiently. */ static caddr_t pfkey_setsadbsa(buf, lim, spi, wsize, auth, enc, flags) caddr_t buf; caddr_t lim; u_int32_t spi, flags; u_int wsize, auth, enc; { struct sadb_sa *p; u_int len; p = (struct sadb_sa *)buf; len = sizeof(struct sadb_sa); if (buf + len > lim) return NULL; memset(p, 0, len); p->sadb_sa_len = PFKEY_UNIT64(len); p->sadb_sa_exttype = SADB_EXT_SA; p->sadb_sa_spi = spi; p->sadb_sa_replay = wsize; p->sadb_sa_state = SADB_SASTATE_LARVAL; p->sadb_sa_auth = auth; p->sadb_sa_encrypt = enc; p->sadb_sa_flags = flags; return(buf + len); } /* * set data into sadb_address. * `buf' must has been allocated sufficiently. * prefixlen is in bits. */ static caddr_t pfkey_setsadbaddr(buf, lim, exttype, saddr, prefixlen, ul_proto) caddr_t buf; caddr_t lim; u_int exttype; struct sockaddr *saddr; u_int prefixlen; u_int ul_proto; { struct sadb_address *p; u_int len; p = (struct sadb_address *)buf; len = sizeof(struct sadb_address) + PFKEY_ALIGN8(saddr->sa_len); if (buf + len > lim) return NULL; memset(p, 0, len); p->sadb_address_len = PFKEY_UNIT64(len); p->sadb_address_exttype = exttype & 0xffff; p->sadb_address_proto = ul_proto & 0xff; p->sadb_address_prefixlen = prefixlen; p->sadb_address_reserved = 0; memcpy(p + 1, saddr, saddr->sa_len); return(buf + len); } /* * set sadb_key structure after clearing buffer with zero. * OUT: the pointer of buf + len. */ static caddr_t pfkey_setsadbkey(buf, lim, type, key, keylen) caddr_t buf; caddr_t lim; caddr_t key; u_int type, keylen; { struct sadb_key *p; u_int len; p = (struct sadb_key *)buf; len = sizeof(struct sadb_key) + PFKEY_ALIGN8(keylen); if (buf + len > lim) return NULL; memset(p, 0, len); p->sadb_key_len = PFKEY_UNIT64(len); p->sadb_key_exttype = type; p->sadb_key_bits = keylen << 3; p->sadb_key_reserved = 0; memcpy(p + 1, key, keylen); return buf + len; } /* * set sadb_lifetime structure after clearing buffer with zero. * OUT: the pointer of buf + len. */ static caddr_t pfkey_setsadblifetime(buf, lim, type, l_alloc, l_bytes, l_addtime, l_usetime) caddr_t buf; caddr_t lim; u_int type; u_int32_t l_alloc, l_bytes, l_addtime, l_usetime; { struct sadb_lifetime *p; u_int len; p = (struct sadb_lifetime *)buf; len = sizeof(struct sadb_lifetime); if (buf + len > lim) return NULL; memset(p, 0, len); p->sadb_lifetime_len = PFKEY_UNIT64(len); p->sadb_lifetime_exttype = type; switch (type) { case SADB_EXT_LIFETIME_SOFT: p->sadb_lifetime_allocations = (l_alloc * soft_lifetime_allocations_rate) /100; p->sadb_lifetime_bytes = (l_bytes * soft_lifetime_bytes_rate) /100; p->sadb_lifetime_addtime = (l_addtime * soft_lifetime_addtime_rate) /100; p->sadb_lifetime_usetime = (l_usetime * soft_lifetime_usetime_rate) /100; break; case SADB_EXT_LIFETIME_HARD: p->sadb_lifetime_allocations = l_alloc; p->sadb_lifetime_bytes = l_bytes; p->sadb_lifetime_addtime = l_addtime; p->sadb_lifetime_usetime = l_usetime; break; } return buf + len; } /* * copy secasvar data into sadb_address. * `buf' must has been allocated sufficiently. */ static caddr_t pfkey_setsadbxsa2(buf, lim, mode0, reqid) caddr_t buf; caddr_t lim; u_int32_t mode0; u_int32_t reqid; { struct sadb_x_sa2 *p; u_int8_t mode = mode0 & 0xff; u_int len; p = (struct sadb_x_sa2 *)buf; len = sizeof(struct sadb_x_sa2); if (buf + len > lim) return NULL; memset(p, 0, len); p->sadb_x_sa2_len = PFKEY_UNIT64(len); p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; p->sadb_x_sa2_mode = mode; p->sadb_x_sa2_reqid = reqid; return(buf + len); } Index: head/lib/libipsec/pfkey_dump.c =================================================================== --- head/lib/libipsec/pfkey_dump.c (revision 309143) +++ head/lib/libipsec/pfkey_dump.c (revision 309144) @@ -1,637 +1,640 @@ /* $KAME: pfkey_dump.c,v 1.45 2003/09/08 10:14:56 itojun Exp $ */ /* * Copyright (C) 1995, 1996, 1997, 1998, and 1999 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ipsec_strerror.h" #include "libpfkey.h" /* cope with old kame headers - ugly */ #ifndef SADB_X_AALG_MD5 #define SADB_X_AALG_MD5 SADB_AALG_MD5 #endif #ifndef SADB_X_AALG_SHA #define SADB_X_AALG_SHA SADB_AALG_SHA #endif #ifndef SADB_X_AALG_NULL #define SADB_X_AALG_NULL SADB_AALG_NULL #endif #ifndef SADB_X_EALG_BLOWFISHCBC #define SADB_X_EALG_BLOWFISHCBC SADB_EALG_BLOWFISHCBC #endif #ifndef SADB_X_EALG_CAST128CBC #define SADB_X_EALG_CAST128CBC SADB_EALG_CAST128CBC #endif #ifndef SADB_X_EALG_RC5CBC #ifdef SADB_EALG_RC5CBC #define SADB_X_EALG_RC5CBC SADB_EALG_RC5CBC #endif #endif #define GETMSGSTR(str, num) \ do { \ if (sizeof((str)[0]) == 0 \ || num >= sizeof(str)/sizeof((str)[0])) \ printf("%u ", (num)); \ else if (strlen((str)[(num)]) == 0) \ printf("%u ", (num)); \ else \ printf("%s ", (str)[(num)]); \ } while (0) #define GETMSGV2S(v2s, num) \ do { \ struct val2str *p; \ for (p = (v2s); p && p->str; p++) { \ if (p->val == (num)) \ break; \ } \ if (p && p->str) \ printf("%s ", p->str); \ else \ printf("%u ", (num)); \ } while (0) static char *str_ipaddr(struct sockaddr *); static char *str_prefport(u_int, u_int, u_int, u_int); static void str_upperspec(u_int, u_int, u_int); static char *str_time(time_t); static void str_lifetime_byte(struct sadb_lifetime *, char *); struct val2str { int val; const char *str; }; /* * Must to be re-written about following strings. */ static char *str_satype[] = { "unspec", "unknown", "ah", "esp", "unknown", "rsvp", "ospfv2", "ripv2", "mip", "ipcomp", "policy", "tcp" }; static char *str_mode[] = { "any", "transport", "tunnel", }; static char *str_state[] = { "larval", "mature", "dying", "dead", }; static struct val2str str_alg_auth[] = { { SADB_AALG_NONE, "none", }, { SADB_AALG_MD5HMAC, "hmac-md5", }, { SADB_AALG_SHA1HMAC, "hmac-sha1", }, { SADB_X_AALG_MD5, "md5", }, { SADB_X_AALG_SHA, "sha", }, { SADB_X_AALG_NULL, "null", }, { SADB_X_AALG_TCP_MD5, "tcp-md5", }, #ifdef SADB_X_AALG_SHA2_256 { SADB_X_AALG_SHA2_256, "hmac-sha2-256", }, #endif #ifdef SADB_X_AALG_SHA2_384 { SADB_X_AALG_SHA2_384, "hmac-sha2-384", }, #endif #ifdef SADB_X_AALG_SHA2_512 { SADB_X_AALG_SHA2_512, "hmac-sha2-512", }, #endif #ifdef SADB_X_AALG_RIPEMD160HMAC { SADB_X_AALG_RIPEMD160HMAC, "hmac-ripemd160", }, #endif #ifdef SADB_X_AALG_AES_XCBC_MAC { SADB_X_AALG_AES_XCBC_MAC, "aes-xcbc-mac", }, #endif { -1, NULL, }, }; static struct val2str str_alg_enc[] = { { SADB_EALG_NONE, "none", }, { SADB_EALG_DESCBC, "des-cbc", }, { SADB_EALG_3DESCBC, "3des-cbc", }, { SADB_EALG_NULL, "null", }, #ifdef SADB_X_EALG_RC5CBC { SADB_X_EALG_RC5CBC, "rc5-cbc", }, #endif { SADB_X_EALG_CAST128CBC, "cast128-cbc", }, { SADB_X_EALG_BLOWFISHCBC, "blowfish-cbc", }, #ifdef SADB_X_EALG_RIJNDAELCBC { SADB_X_EALG_RIJNDAELCBC, "rijndael-cbc", }, #endif #ifdef SADB_X_EALG_TWOFISHCBC { SADB_X_EALG_TWOFISHCBC, "twofish-cbc", }, #endif #ifdef SADB_X_EALG_AESCTR { SADB_X_EALG_AESCTR, "aes-ctr", }, #endif #ifdef SADB_X_EALG_AESGCM16 { SADB_X_EALG_AESGCM16, "aes-gcm-16", }, #endif #ifdef SADB_X_EALG_CAMELLIACBC { SADB_X_EALG_CAMELLIACBC, "camellia-cbc", }, #endif { -1, NULL, }, }; static struct val2str str_alg_comp[] = { { SADB_X_CALG_NONE, "none", }, { SADB_X_CALG_OUI, "oui", }, { SADB_X_CALG_DEFLATE, "deflate", }, { SADB_X_CALG_LZS, "lzs", }, { -1, NULL, }, }; /* * dump SADB_MSG formated. For debugging, you should use kdebug_sadb(). */ void pfkey_sadump(m) struct sadb_msg *m; { caddr_t mhp[SADB_EXT_MAX + 1]; struct sadb_sa *m_sa; struct sadb_x_sa2 *m_sa2; struct sadb_lifetime *m_lftc, *m_lfth, *m_lfts; struct sadb_address *m_saddr, *m_daddr, *m_paddr; struct sadb_key *m_auth, *m_enc; struct sadb_ident *m_sid, *m_did; struct sadb_sens *m_sens; + struct sadb_x_sa_replay *m_sa_replay; /* check pfkey message. */ if (pfkey_align(m, mhp)) { printf("%s\n", ipsec_strerror()); return; } if (pfkey_check(mhp)) { printf("%s\n", ipsec_strerror()); return; } m_sa = (struct sadb_sa *)mhp[SADB_EXT_SA]; m_sa2 = (struct sadb_x_sa2 *)mhp[SADB_X_EXT_SA2]; m_lftc = (struct sadb_lifetime *)mhp[SADB_EXT_LIFETIME_CURRENT]; m_lfth = (struct sadb_lifetime *)mhp[SADB_EXT_LIFETIME_HARD]; m_lfts = (struct sadb_lifetime *)mhp[SADB_EXT_LIFETIME_SOFT]; m_saddr = (struct sadb_address *)mhp[SADB_EXT_ADDRESS_SRC]; m_daddr = (struct sadb_address *)mhp[SADB_EXT_ADDRESS_DST]; m_paddr = (struct sadb_address *)mhp[SADB_EXT_ADDRESS_PROXY]; m_auth = (struct sadb_key *)mhp[SADB_EXT_KEY_AUTH]; m_enc = (struct sadb_key *)mhp[SADB_EXT_KEY_ENCRYPT]; m_sid = (struct sadb_ident *)mhp[SADB_EXT_IDENTITY_SRC]; m_did = (struct sadb_ident *)mhp[SADB_EXT_IDENTITY_DST]; m_sens = (struct sadb_sens *)mhp[SADB_EXT_SENSITIVITY]; + m_sa_replay = (struct sadb_x_sa_replay *)mhp[SADB_X_EXT_SA_REPLAY]; /* source address */ if (m_saddr == NULL) { printf("no ADDRESS_SRC extension.\n"); return; } printf("%s ", str_ipaddr((struct sockaddr *)(m_saddr + 1))); /* destination address */ if (m_daddr == NULL) { printf("no ADDRESS_DST extension.\n"); return; } printf("%s ", str_ipaddr((struct sockaddr *)(m_daddr + 1))); /* SA type */ if (m_sa == NULL) { printf("no SA extension.\n"); return; } if (m_sa2 == NULL) { printf("no SA2 extension.\n"); return; } printf("\n\t"); GETMSGSTR(str_satype, m->sadb_msg_satype); printf("mode="); GETMSGSTR(str_mode, m_sa2->sadb_x_sa2_mode); printf("spi=%u(0x%08x) reqid=%u(0x%08x)\n", (u_int32_t)ntohl(m_sa->sadb_sa_spi), (u_int32_t)ntohl(m_sa->sadb_sa_spi), (u_int32_t)m_sa2->sadb_x_sa2_reqid, (u_int32_t)m_sa2->sadb_x_sa2_reqid); /* encryption key */ if (m->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) { printf("\tC: "); GETMSGV2S(str_alg_comp, m_sa->sadb_sa_encrypt); } else if (m->sadb_msg_satype == SADB_SATYPE_ESP) { if (m_enc != NULL) { printf("\tE: "); GETMSGV2S(str_alg_enc, m_sa->sadb_sa_encrypt); ipsec_hexdump((caddr_t)m_enc + sizeof(*m_enc), m_enc->sadb_key_bits / 8); printf("\n"); } } /* authentication key */ if (m_auth != NULL) { printf("\tA: "); GETMSGV2S(str_alg_auth, m_sa->sadb_sa_auth); ipsec_hexdump((caddr_t)m_auth + sizeof(*m_auth), m_auth->sadb_key_bits / 8); printf("\n"); } /* replay windoe size & flags */ printf("\tseq=0x%08x replay=%u flags=0x%08x ", m_sa2->sadb_x_sa2_sequence, - m_sa->sadb_sa_replay, + m_sa_replay ? (m_sa_replay->sadb_x_sa_replay_replay >> 3) : + m_sa->sadb_sa_replay, m_sa->sadb_sa_flags); /* state */ printf("state="); GETMSGSTR(str_state, m_sa->sadb_sa_state); printf("\n"); /* lifetime */ if (m_lftc != NULL) { time_t tmp_time = time(0); printf("\tcreated: %s", str_time(m_lftc->sadb_lifetime_addtime)); printf("\tcurrent: %s\n", str_time(tmp_time)); printf("\tdiff: %lu(s)", (u_long)(m_lftc->sadb_lifetime_addtime == 0 ? 0 : (tmp_time - m_lftc->sadb_lifetime_addtime))); printf("\thard: %lu(s)", (u_long)(m_lfth == NULL ? 0 : m_lfth->sadb_lifetime_addtime)); printf("\tsoft: %lu(s)\n", (u_long)(m_lfts == NULL ? 0 : m_lfts->sadb_lifetime_addtime)); printf("\tlast: %s", str_time(m_lftc->sadb_lifetime_usetime)); printf("\thard: %lu(s)", (u_long)(m_lfth == NULL ? 0 : m_lfth->sadb_lifetime_usetime)); printf("\tsoft: %lu(s)\n", (u_long)(m_lfts == NULL ? 0 : m_lfts->sadb_lifetime_usetime)); str_lifetime_byte(m_lftc, "current"); str_lifetime_byte(m_lfth, "hard"); str_lifetime_byte(m_lfts, "soft"); printf("\n"); printf("\tallocated: %lu", (unsigned long)m_lftc->sadb_lifetime_allocations); printf("\thard: %lu", (u_long)(m_lfth == NULL ? 0 : m_lfth->sadb_lifetime_allocations)); printf("\tsoft: %lu\n", (u_long)(m_lfts == NULL ? 0 : m_lfts->sadb_lifetime_allocations)); } printf("\tsadb_seq=%lu pid=%lu ", (u_long)m->sadb_msg_seq, (u_long)m->sadb_msg_pid); /* XXX DEBUG */ printf("refcnt=%u\n", m->sadb_msg_reserved); return; } void pfkey_spdump(m) struct sadb_msg *m; { char pbuf[NI_MAXSERV]; caddr_t mhp[SADB_EXT_MAX + 1]; struct sadb_address *m_saddr, *m_daddr; struct sadb_x_policy *m_xpl; struct sadb_lifetime *m_lftc = NULL, *m_lfth = NULL; struct sockaddr *sa; u_int16_t sport = 0, dport = 0; /* check pfkey message. */ if (pfkey_align(m, mhp)) { printf("%s\n", ipsec_strerror()); return; } if (pfkey_check(mhp)) { printf("%s\n", ipsec_strerror()); return; } m_saddr = (struct sadb_address *)mhp[SADB_EXT_ADDRESS_SRC]; m_daddr = (struct sadb_address *)mhp[SADB_EXT_ADDRESS_DST]; m_xpl = (struct sadb_x_policy *)mhp[SADB_X_EXT_POLICY]; m_lftc = (struct sadb_lifetime *)mhp[SADB_EXT_LIFETIME_CURRENT]; m_lfth = (struct sadb_lifetime *)mhp[SADB_EXT_LIFETIME_HARD]; if (m_saddr && m_daddr) { /* source address */ sa = (struct sockaddr *)(m_saddr + 1); switch (sa->sa_family) { case AF_INET: case AF_INET6: if (getnameinfo(sa, sa->sa_len, NULL, 0, pbuf, sizeof(pbuf), NI_NUMERICSERV) != 0) sport = 0; /*XXX*/ else sport = atoi(pbuf); printf("%s%s ", str_ipaddr(sa), str_prefport(sa->sa_family, m_saddr->sadb_address_prefixlen, sport, m_saddr->sadb_address_proto)); break; default: printf("unknown-af "); break; } /* destination address */ sa = (struct sockaddr *)(m_daddr + 1); switch (sa->sa_family) { case AF_INET: case AF_INET6: if (getnameinfo(sa, sa->sa_len, NULL, 0, pbuf, sizeof(pbuf), NI_NUMERICSERV) != 0) dport = 0; /*XXX*/ else dport = atoi(pbuf); printf("%s%s ", str_ipaddr(sa), str_prefport(sa->sa_family, m_daddr->sadb_address_prefixlen, dport, m_saddr->sadb_address_proto)); break; default: printf("unknown-af "); break; } /* upper layer protocol */ if (m_saddr->sadb_address_proto != m_daddr->sadb_address_proto) { printf("upper layer protocol mismatched.\n"); return; } str_upperspec(m_saddr->sadb_address_proto, sport, dport); } else printf("(no selector, probably per-socket policy) "); /* policy */ { char *d_xpl; if (m_xpl == NULL) { printf("no X_POLICY extension.\n"); return; } d_xpl = ipsec_dump_policy((char *)m_xpl, "\n\t"); /* dump SPD */ printf("\n\t%s\n", d_xpl); free(d_xpl); } /* lifetime */ if (m_lftc) { printf("\tcreated: %s ", str_time(m_lftc->sadb_lifetime_addtime)); printf("lastused: %s\n", str_time(m_lftc->sadb_lifetime_usetime)); } if (m_lfth) { printf("\tlifetime: %lu(s) ", (u_long)m_lfth->sadb_lifetime_addtime); printf("validtime: %lu(s)\n", (u_long)m_lfth->sadb_lifetime_usetime); } printf("\tspid=%ld seq=%ld pid=%ld\n", (u_long)m_xpl->sadb_x_policy_id, (u_long)m->sadb_msg_seq, (u_long)m->sadb_msg_pid); /* XXX TEST */ printf("\trefcnt=%u\n", m->sadb_msg_reserved); return; } /* * set "ipaddress" to buffer. */ static char * str_ipaddr(sa) struct sockaddr *sa; { static char buf[NI_MAXHOST]; const int niflag = NI_NUMERICHOST; if (sa == NULL) return ""; if (getnameinfo(sa, sa->sa_len, buf, sizeof(buf), NULL, 0, niflag) == 0) return buf; return NULL; } /* * set "/prefix[port number]" to buffer. */ static char * str_prefport(family, pref, port, ulp) u_int family, pref, port, ulp; { static char buf[128]; char prefbuf[128]; char portbuf[128]; int plen; switch (family) { case AF_INET: plen = sizeof(struct in_addr) << 3; break; case AF_INET6: plen = sizeof(struct in6_addr) << 3; break; default: return "?"; } if (pref == plen) prefbuf[0] = '\0'; else snprintf(prefbuf, sizeof(prefbuf), "/%u", pref); if (ulp == IPPROTO_ICMPV6) memset(portbuf, 0, sizeof(portbuf)); else { if (port == IPSEC_PORT_ANY) snprintf(portbuf, sizeof(portbuf), "[%s]", "any"); else snprintf(portbuf, sizeof(portbuf), "[%u]", port); } snprintf(buf, sizeof(buf), "%s%s", prefbuf, portbuf); return buf; } static void str_upperspec(ulp, p1, p2) u_int ulp, p1, p2; { if (ulp == IPSEC_ULPROTO_ANY) printf("any"); else if (ulp == IPPROTO_ICMPV6) { printf("icmp6"); if (!(p1 == IPSEC_PORT_ANY && p2 == IPSEC_PORT_ANY)) printf(" %u,%u", p1, p2); } else { struct protoent *ent; switch (ulp) { case IPPROTO_IPV4: printf("ip4"); break; default: ent = getprotobynumber(ulp); if (ent) printf("%s", ent->p_name); else printf("%u", ulp); endprotoent(); break; } } } /* * set "Mon Day Time Year" to buffer */ static char * str_time(t) time_t t; { static char buf[128]; if (t == 0) { int i = 0; for (;i < 20;) buf[i++] = ' '; } else { char *t0; t0 = ctime(&t); memcpy(buf, t0 + 4, 20); } buf[20] = '\0'; return(buf); } static void str_lifetime_byte(x, str) struct sadb_lifetime *x; char *str; { double y; char *unit; int w; if (x == NULL) { printf("\t%s: 0(bytes)", str); return; } #if 0 if ((x->sadb_lifetime_bytes) / 1024 / 1024) { y = (x->sadb_lifetime_bytes) * 1.0 / 1024 / 1024; unit = "M"; w = 1; } else if ((x->sadb_lifetime_bytes) / 1024) { y = (x->sadb_lifetime_bytes) * 1.0 / 1024; unit = "K"; w = 1; } else { y = (x->sadb_lifetime_bytes) * 1.0; unit = ""; w = 0; } #else y = (x->sadb_lifetime_bytes) * 1.0; unit = ""; w = 0; #endif printf("\t%s: %.*f(%sbytes)", str, w, y, unit); } Index: head/sys/net/pfkeyv2.h =================================================================== --- head/sys/net/pfkeyv2.h (revision 309143) +++ head/sys/net/pfkeyv2.h (revision 309144) @@ -1,441 +1,450 @@ /* $FreeBSD$ */ /* $KAME: pfkeyv2.h,v 1.37 2003/09/06 05:15:43 itojun Exp $ */ /*- * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * This file has been derived rfc 2367, * And added some flags of SADB_KEY_FLAGS_ as SADB_X_EXT_. * sakane@ydc.co.jp */ #ifndef _NET_PFKEYV2_H_ #define _NET_PFKEYV2_H_ /* This file defines structures and symbols for the PF_KEY Version 2 key management interface. It was written at the U.S. Naval Research Laboratory. This file is in the public domain. The authors ask that you leave this credit intact on any copies of this file. */ #ifndef __PFKEY_V2_H #define __PFKEY_V2_H 1 #define PF_KEY_V2 2 #define PFKEYV2_REVISION 199806L #define SADB_RESERVED 0 #define SADB_GETSPI 1 #define SADB_UPDATE 2 #define SADB_ADD 3 #define SADB_DELETE 4 #define SADB_GET 5 #define SADB_ACQUIRE 6 #define SADB_REGISTER 7 #define SADB_EXPIRE 8 #define SADB_FLUSH 9 #define SADB_DUMP 10 #define SADB_X_PROMISC 11 #define SADB_X_PCHANGE 12 #define SADB_X_SPDUPDATE 13 #define SADB_X_SPDADD 14 #define SADB_X_SPDDELETE 15 /* by policy index */ #define SADB_X_SPDGET 16 #define SADB_X_SPDACQUIRE 17 #define SADB_X_SPDDUMP 18 #define SADB_X_SPDFLUSH 19 #define SADB_X_SPDSETIDX 20 #define SADB_X_SPDEXPIRE 21 #define SADB_X_SPDDELETE2 22 /* by policy id */ #define SADB_MAX 22 struct sadb_msg { u_int8_t sadb_msg_version; u_int8_t sadb_msg_type; u_int8_t sadb_msg_errno; u_int8_t sadb_msg_satype; u_int16_t sadb_msg_len; u_int16_t sadb_msg_reserved; u_int32_t sadb_msg_seq; u_int32_t sadb_msg_pid; }; struct sadb_ext { u_int16_t sadb_ext_len; u_int16_t sadb_ext_type; }; struct sadb_sa { u_int16_t sadb_sa_len; u_int16_t sadb_sa_exttype; u_int32_t sadb_sa_spi; u_int8_t sadb_sa_replay; u_int8_t sadb_sa_state; u_int8_t sadb_sa_auth; u_int8_t sadb_sa_encrypt; u_int32_t sadb_sa_flags; }; struct sadb_lifetime { u_int16_t sadb_lifetime_len; u_int16_t sadb_lifetime_exttype; u_int32_t sadb_lifetime_allocations; u_int64_t sadb_lifetime_bytes; u_int64_t sadb_lifetime_addtime; u_int64_t sadb_lifetime_usetime; }; struct sadb_address { u_int16_t sadb_address_len; u_int16_t sadb_address_exttype; u_int8_t sadb_address_proto; u_int8_t sadb_address_prefixlen; u_int16_t sadb_address_reserved; }; struct sadb_key { u_int16_t sadb_key_len; u_int16_t sadb_key_exttype; u_int16_t sadb_key_bits; u_int16_t sadb_key_reserved; }; struct sadb_ident { u_int16_t sadb_ident_len; u_int16_t sadb_ident_exttype; u_int16_t sadb_ident_type; u_int16_t sadb_ident_reserved; u_int64_t sadb_ident_id; }; struct sadb_sens { u_int16_t sadb_sens_len; u_int16_t sadb_sens_exttype; u_int32_t sadb_sens_dpd; u_int8_t sadb_sens_sens_level; u_int8_t sadb_sens_sens_len; u_int8_t sadb_sens_integ_level; u_int8_t sadb_sens_integ_len; u_int32_t sadb_sens_reserved; }; struct sadb_prop { u_int16_t sadb_prop_len; u_int16_t sadb_prop_exttype; u_int8_t sadb_prop_replay; u_int8_t sadb_prop_reserved[3]; }; struct sadb_comb { u_int8_t sadb_comb_auth; u_int8_t sadb_comb_encrypt; u_int16_t sadb_comb_flags; u_int16_t sadb_comb_auth_minbits; u_int16_t sadb_comb_auth_maxbits; u_int16_t sadb_comb_encrypt_minbits; u_int16_t sadb_comb_encrypt_maxbits; u_int32_t sadb_comb_reserved; u_int32_t sadb_comb_soft_allocations; u_int32_t sadb_comb_hard_allocations; u_int64_t sadb_comb_soft_bytes; u_int64_t sadb_comb_hard_bytes; u_int64_t sadb_comb_soft_addtime; u_int64_t sadb_comb_hard_addtime; u_int64_t sadb_comb_soft_usetime; u_int64_t sadb_comb_hard_usetime; }; struct sadb_supported { u_int16_t sadb_supported_len; u_int16_t sadb_supported_exttype; u_int32_t sadb_supported_reserved; }; struct sadb_alg { u_int8_t sadb_alg_id; u_int8_t sadb_alg_ivlen; u_int16_t sadb_alg_minbits; u_int16_t sadb_alg_maxbits; u_int16_t sadb_alg_reserved; }; struct sadb_spirange { u_int16_t sadb_spirange_len; u_int16_t sadb_spirange_exttype; u_int32_t sadb_spirange_min; u_int32_t sadb_spirange_max; u_int32_t sadb_spirange_reserved; }; struct sadb_x_kmprivate { u_int16_t sadb_x_kmprivate_len; u_int16_t sadb_x_kmprivate_exttype; u_int32_t sadb_x_kmprivate_reserved; }; /* * XXX Additional SA Extension. * mode: tunnel or transport * reqid: to make SA unique nevertheless the address pair of SA are same. * Mainly it's for VPN. */ struct sadb_x_sa2 { u_int16_t sadb_x_sa2_len; u_int16_t sadb_x_sa2_exttype; u_int8_t sadb_x_sa2_mode; u_int8_t sadb_x_sa2_reserved1; u_int16_t sadb_x_sa2_reserved2; u_int32_t sadb_x_sa2_sequence; /* lowermost 32bit of sequence number */ u_int32_t sadb_x_sa2_reqid; }; /* XXX Policy Extension */ struct sadb_x_policy { u_int16_t sadb_x_policy_len; u_int16_t sadb_x_policy_exttype; u_int16_t sadb_x_policy_type; /* See policy type of ipsec.h */ u_int8_t sadb_x_policy_dir; /* direction, see ipsec.h */ u_int8_t sadb_x_policy_reserved; u_int32_t sadb_x_policy_id; u_int32_t sadb_x_policy_priority; }; _Static_assert(sizeof(struct sadb_x_policy) == 16, "struct size mismatch"); /* * When policy_type == IPSEC, it is followed by some of * the ipsec policy request. * [total length of ipsec policy requests] * = (sadb_x_policy_len * sizeof(uint64_t) - sizeof(struct sadb_x_policy)) */ /* XXX IPsec Policy Request Extension */ /* * This structure is aligned 8 bytes. */ struct sadb_x_ipsecrequest { u_int16_t sadb_x_ipsecrequest_len; /* structure length in 64 bits. */ u_int16_t sadb_x_ipsecrequest_proto; /* See ipsec.h */ u_int8_t sadb_x_ipsecrequest_mode; /* See IPSEC_MODE_XX in ipsec.h. */ u_int8_t sadb_x_ipsecrequest_level; /* See IPSEC_LEVEL_XX in ipsec.h */ u_int16_t sadb_x_ipsecrequest_reqid; /* See ipsec.h */ /* * followed by source IP address of SA, and immediately followed by * destination IP address of SA. These encoded into two of sockaddr * structure without any padding. Must set each sa_len exactly. * Each of length of the sockaddr structure are not aligned to 64bits, * but sum of x_request and addresses is aligned to 64bits. */ }; /* NAT-Traversal type, see RFC 3948 (and drafts). */ struct sadb_x_nat_t_type { u_int16_t sadb_x_nat_t_type_len; u_int16_t sadb_x_nat_t_type_exttype; u_int8_t sadb_x_nat_t_type_type; u_int8_t sadb_x_nat_t_type_reserved[3]; }; _Static_assert(sizeof(struct sadb_x_nat_t_type) == 8, "struct size mismatch"); /* NAT-Traversal source or destination port. */ struct sadb_x_nat_t_port { u_int16_t sadb_x_nat_t_port_len; u_int16_t sadb_x_nat_t_port_exttype; u_int16_t sadb_x_nat_t_port_port; u_int16_t sadb_x_nat_t_port_reserved; }; _Static_assert(sizeof(struct sadb_x_nat_t_port) == 8, "struct size mismatch"); /* ESP fragmentation size. */ struct sadb_x_nat_t_frag { u_int16_t sadb_x_nat_t_frag_len; u_int16_t sadb_x_nat_t_frag_exttype; u_int16_t sadb_x_nat_t_frag_fraglen; u_int16_t sadb_x_nat_t_frag_reserved; }; _Static_assert(sizeof(struct sadb_x_nat_t_frag) == 8, "struct size mismatch"); +/* Additional large replay window support + */ +struct sadb_x_sa_replay { + u_int16_t sadb_x_sa_replay_len; + u_int16_t sadb_x_sa_replay_exttype; + u_int32_t sadb_x_sa_replay_replay; /* in packets */ +}; +_Static_assert(sizeof(struct sadb_x_sa_replay) == 8, "struct size mismatch"); #define SADB_EXT_RESERVED 0 #define SADB_EXT_SA 1 #define SADB_EXT_LIFETIME_CURRENT 2 #define SADB_EXT_LIFETIME_HARD 3 #define SADB_EXT_LIFETIME_SOFT 4 #define SADB_EXT_ADDRESS_SRC 5 #define SADB_EXT_ADDRESS_DST 6 #define SADB_EXT_ADDRESS_PROXY 7 #define SADB_EXT_KEY_AUTH 8 #define SADB_EXT_KEY_ENCRYPT 9 #define SADB_EXT_IDENTITY_SRC 10 #define SADB_EXT_IDENTITY_DST 11 #define SADB_EXT_SENSITIVITY 12 #define SADB_EXT_PROPOSAL 13 #define SADB_EXT_SUPPORTED_AUTH 14 #define SADB_EXT_SUPPORTED_ENCRYPT 15 #define SADB_EXT_SPIRANGE 16 #define SADB_X_EXT_KMPRIVATE 17 #define SADB_X_EXT_POLICY 18 #define SADB_X_EXT_SA2 19 #define SADB_X_EXT_NAT_T_TYPE 20 #define SADB_X_EXT_NAT_T_SPORT 21 #define SADB_X_EXT_NAT_T_DPORT 22 #define SADB_X_EXT_NAT_T_OA 23 /* Deprecated. */ #define SADB_X_EXT_NAT_T_OAI 23 /* Peer's NAT_OA for src of SA. */ #define SADB_X_EXT_NAT_T_OAR 24 /* Peer's NAT_OA for dst of SA. */ #define SADB_X_EXT_NAT_T_FRAG 25 /* Manual MTU override. */ -#define SADB_EXT_MAX 25 +#define SADB_X_EXT_SA_REPLAY 26 /* Replay window override. */ +#define SADB_EXT_MAX 26 #define SADB_SATYPE_UNSPEC 0 #define SADB_SATYPE_AH 2 #define SADB_SATYPE_ESP 3 #define SADB_SATYPE_RSVP 5 #define SADB_SATYPE_OSPFV2 6 #define SADB_SATYPE_RIPV2 7 #define SADB_SATYPE_MIP 8 #define SADB_X_SATYPE_IPCOMP 9 /*#define SADB_X_SATYPE_POLICY 10 obsolete, do not reuse */ #define SADB_X_SATYPE_TCPSIGNATURE 11 #define SADB_SATYPE_MAX 12 #define SADB_SASTATE_LARVAL 0 #define SADB_SASTATE_MATURE 1 #define SADB_SASTATE_DYING 2 #define SADB_SASTATE_DEAD 3 #define SADB_SASTATE_MAX 3 #define SADB_SAFLAGS_PFS 1 /* * Though some of these numbers (both _AALG and _EALG) appear to be * IKEv2 numbers and others original IKE numbers, they have no meaning. * These are constants that the various IKE daemons use to tell the kernel * what cipher to use. * * Do not use these constants directly to decide which Transformation ID * to send. You are responsible for mapping them yourself. */ #define SADB_AALG_NONE 0 #define SADB_AALG_MD5HMAC 2 #define SADB_AALG_SHA1HMAC 3 #define SADB_AALG_MAX 252 #define SADB_X_AALG_SHA2_256 5 #define SADB_X_AALG_SHA2_384 6 #define SADB_X_AALG_SHA2_512 7 #define SADB_X_AALG_RIPEMD160HMAC 8 #define SADB_X_AALG_AES_XCBC_MAC 9 /* RFC3566 */ #define SADB_X_AALG_AES128GMAC 11 /* RFC4543 + Errata1821 */ #define SADB_X_AALG_AES192GMAC 12 #define SADB_X_AALG_AES256GMAC 13 #define SADB_X_AALG_MD5 249 /* Keyed MD5 */ #define SADB_X_AALG_SHA 250 /* Keyed SHA */ #define SADB_X_AALG_NULL 251 /* null authentication */ #define SADB_X_AALG_TCP_MD5 252 /* Keyed TCP-MD5 (RFC2385) */ #define SADB_EALG_NONE 0 #define SADB_EALG_DESCBC 2 #define SADB_EALG_3DESCBC 3 #define SADB_X_EALG_CAST128CBC 6 #define SADB_X_EALG_BLOWFISHCBC 7 #define SADB_EALG_NULL 11 #define SADB_X_EALG_RIJNDAELCBC 12 #define SADB_X_EALG_AES 12 #define SADB_X_EALG_AESCTR 13 #define SADB_X_EALG_AESGCM8 18 /* RFC4106 */ #define SADB_X_EALG_AESGCM12 19 #define SADB_X_EALG_AESGCM16 20 #define SADB_X_EALG_CAMELLIACBC 22 #define SADB_X_EALG_AESGMAC 23 /* RFC4543 + Errata1821 */ #define SADB_EALG_MAX 23 /* !!! keep updated !!! */ /* private allocations - based on RFC2407/IANA assignment */ #define SADB_X_CALG_NONE 0 #define SADB_X_CALG_OUI 1 #define SADB_X_CALG_DEFLATE 2 #define SADB_X_CALG_LZS 3 #define SADB_X_CALG_MAX 4 #define SADB_IDENTTYPE_RESERVED 0 #define SADB_IDENTTYPE_PREFIX 1 #define SADB_IDENTTYPE_FQDN 2 #define SADB_IDENTTYPE_USERFQDN 3 #define SADB_X_IDENTTYPE_ADDR 4 #define SADB_IDENTTYPE_MAX 4 /* `flags' in sadb_sa structure holds followings */ #define SADB_X_EXT_NONE 0x0000 /* i.e. new format. */ #define SADB_X_EXT_OLD 0x0001 /* old format. */ #define SADB_X_EXT_IV4B 0x0010 /* IV length of 4 bytes in use */ #define SADB_X_EXT_DERIV 0x0020 /* DES derived */ #define SADB_X_EXT_CYCSEQ 0x0040 /* allowing to cyclic sequence. */ /* three of followings are exclusive flags each them */ #define SADB_X_EXT_PSEQ 0x0000 /* sequencial padding for ESP */ #define SADB_X_EXT_PRAND 0x0100 /* random padding for ESP */ #define SADB_X_EXT_PZERO 0x0200 /* zero padding for ESP */ #define SADB_X_EXT_PMASK 0x0300 /* mask for padding flag */ #if 1 #define SADB_X_EXT_RAWCPI 0x0080 /* use well known CPI (IPComp) */ #endif #define SADB_KEY_FLAGS_MAX 0x0fff /* SPI size for PF_KEYv2 */ #define PFKEY_SPI_SIZE sizeof(u_int32_t) /* Identifier for menber of lifetime structure */ #define SADB_X_LIFETIME_ALLOCATIONS 0 #define SADB_X_LIFETIME_BYTES 1 #define SADB_X_LIFETIME_ADDTIME 2 #define SADB_X_LIFETIME_USETIME 3 /* The rate for SOFT lifetime against HARD one. */ #define PFKEY_SOFT_LIFETIME_RATE 80 /* Utilities */ #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1))) #define PFKEY_EXTLEN(msg) \ PFKEY_UNUNIT64(((struct sadb_ext *)(msg))->sadb_ext_len) #define PFKEY_ADDR_PREFIX(ext) \ (((struct sadb_address *)(ext))->sadb_address_prefixlen) #define PFKEY_ADDR_PROTO(ext) \ (((struct sadb_address *)(ext))->sadb_address_proto) #define PFKEY_ADDR_SADDR(ext) \ ((struct sockaddr *)((caddr_t)(ext) + sizeof(struct sadb_address))) /* in 64bits */ #define PFKEY_UNUNIT64(a) ((a) << 3) #define PFKEY_UNIT64(a) ((a) >> 3) #endif /* __PFKEY_V2_H */ #endif /* _NET_PFKEYV2_H_ */ Index: head/sys/netipsec/ipsec.c =================================================================== --- head/sys/netipsec/ipsec.c (revision 309143) +++ head/sys/netipsec/ipsec.c (revision 309144) @@ -1,1751 +1,1731 @@ /* $FreeBSD$ */ /* $KAME: ipsec.c,v 1.103 2001/05/24 07:14:18 sakane Exp $ */ /*- * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * IPsec controller part. */ #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif #include #ifdef INET6 #include #endif #include #include #ifdef INET6 #include #endif #include #include #include /*XXX*/ #include #include #include #include #include #include #include #ifdef IPSEC_DEBUG VNET_DEFINE(int, ipsec_debug) = 1; #else VNET_DEFINE(int, ipsec_debug) = 0; #endif /* NB: name changed so netstat doesn't use it. */ VNET_PCPUSTAT_DEFINE(struct ipsecstat, ipsec4stat); VNET_PCPUSTAT_SYSINIT(ipsec4stat); #ifdef VIMAGE VNET_PCPUSTAT_SYSUNINIT(ipsec4stat); #endif /* VIMAGE */ VNET_DEFINE(int, ip4_ah_offsetmask) = 0; /* maybe IP_DF? */ /* DF bit on encap. 0: clear 1: set 2: copy */ VNET_DEFINE(int, ip4_ipsec_dfbit) = 0; VNET_DEFINE(int, ip4_esp_trans_deflev) = IPSEC_LEVEL_USE; VNET_DEFINE(int, ip4_esp_net_deflev) = IPSEC_LEVEL_USE; VNET_DEFINE(int, ip4_ah_trans_deflev) = IPSEC_LEVEL_USE; VNET_DEFINE(int, ip4_ah_net_deflev) = IPSEC_LEVEL_USE; /* ECN ignore(-1)/forbidden(0)/allowed(1) */ VNET_DEFINE(int, ip4_ipsec_ecn) = 0; VNET_DEFINE(int, ip4_esp_randpad) = -1; static VNET_DEFINE(struct secpolicy, def_policy); #define V_def_policy VNET(def_policy) /* * Crypto support requirements: * * 1 require hardware support * -1 require software support * 0 take anything */ VNET_DEFINE(int, crypto_support) = CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE; FEATURE(ipsec, "Internet Protocol Security (IPsec)"); #ifdef IPSEC_NAT_T FEATURE(ipsec_natt, "UDP Encapsulation of IPsec ESP Packets ('NAT-T')"); #endif SYSCTL_DECL(_net_inet_ipsec); /* net.inet.ipsec */ SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEF_POLICY, def_policy, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(def_policy).policy, 0, "IPsec default policy."); SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEF_ESP_TRANSLEV, esp_trans_deflev, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_esp_trans_deflev), 0, "Default ESP transport mode level"); SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEF_ESP_NETLEV, esp_net_deflev, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_esp_net_deflev), 0, "Default ESP tunnel mode level."); SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEF_AH_TRANSLEV, ah_trans_deflev, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_ah_trans_deflev), 0, "AH transfer mode default level."); SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEF_AH_NETLEV, ah_net_deflev, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_ah_net_deflev), 0, "AH tunnel mode default level."); SYSCTL_INT(_net_inet_ipsec, IPSECCTL_AH_CLEARTOS, ah_cleartos, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ah_cleartos), 0, "If set clear type-of-service field when doing AH computation."); SYSCTL_INT(_net_inet_ipsec, IPSECCTL_AH_OFFSETMASK, ah_offsetmask, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_ah_offsetmask), 0, "If not set clear offset field mask when doing AH computation."); SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DFBIT, dfbit, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_ipsec_dfbit), 0, "Do not fragment bit on encap."); SYSCTL_INT(_net_inet_ipsec, IPSECCTL_ECN, ecn, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip4_ipsec_ecn), 0, "Explicit Congestion Notification handling."); SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEBUG, debug, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0, "Enable IPsec debugging output when set."); SYSCTL_INT(_net_inet_ipsec, OID_AUTO, crypto_support, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(crypto_support), 0, "Crypto driver selection."); SYSCTL_VNET_PCPUSTAT(_net_inet_ipsec, OID_AUTO, ipsecstats, struct ipsecstat, ipsec4stat, "IPsec IPv4 statistics."); #ifdef REGRESSION /* * When set to 1, IPsec will send packets with the same sequence number. * This allows to verify if the other side has proper replay attacks detection. */ VNET_DEFINE(int, ipsec_replay) = 0; SYSCTL_INT(_net_inet_ipsec, OID_AUTO, test_replay, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_replay), 0, "Emulate replay attack"); /* * When set 1, IPsec will send packets with corrupted HMAC. * This allows to verify if the other side properly detects modified packets. */ VNET_DEFINE(int, ipsec_integrity) = 0; SYSCTL_INT(_net_inet_ipsec, OID_AUTO, test_integrity, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_integrity), 0, "Emulate man-in-the-middle attack"); #endif #ifdef INET6 VNET_PCPUSTAT_DEFINE(struct ipsecstat, ipsec6stat); VNET_PCPUSTAT_SYSINIT(ipsec6stat); #ifdef VIMAGE VNET_PCPUSTAT_SYSUNINIT(ipsec6stat); #endif /* VIMAGE */ VNET_DEFINE(int, ip6_esp_trans_deflev) = IPSEC_LEVEL_USE; VNET_DEFINE(int, ip6_esp_net_deflev) = IPSEC_LEVEL_USE; VNET_DEFINE(int, ip6_ah_trans_deflev) = IPSEC_LEVEL_USE; VNET_DEFINE(int, ip6_ah_net_deflev) = IPSEC_LEVEL_USE; VNET_DEFINE(int, ip6_ipsec_ecn) = 0; /* ECN ignore(-1)/forbidden(0)/allowed(1) */ SYSCTL_DECL(_net_inet6_ipsec6); /* net.inet6.ipsec6 */ SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEF_POLICY, def_policy, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(def_policy).policy, 0, "IPsec default policy."); SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEF_ESP_TRANSLEV, esp_trans_deflev, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip6_esp_trans_deflev), 0, "Default ESP transport mode level."); SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEF_ESP_NETLEV, esp_net_deflev, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip6_esp_net_deflev), 0, "Default ESP tunnel mode level."); SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEF_AH_TRANSLEV, ah_trans_deflev, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip6_ah_trans_deflev), 0, "AH transfer mode default level."); SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEF_AH_NETLEV, ah_net_deflev, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip6_ah_net_deflev), 0, "AH tunnel mode default level."); SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_ECN, ecn, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip6_ipsec_ecn), 0, "Explicit Congestion Notification handling."); SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEBUG, debug, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0, "Enable IPsec debugging output when set."); SYSCTL_VNET_PCPUSTAT(_net_inet6_ipsec6, IPSECCTL_STATS, ipsecstats, struct ipsecstat, ipsec6stat, "IPsec IPv6 statistics."); #endif /* INET6 */ static int ipsec_in_reject(struct secpolicy *, const struct mbuf *); static int ipsec_setspidx_inpcb(const struct mbuf *, struct inpcb *); static int ipsec_setspidx(const struct mbuf *, struct secpolicyindex *, int); static void ipsec4_get_ulp(const struct mbuf *m, struct secpolicyindex *, int); static int ipsec4_setspidx_ipaddr(const struct mbuf *, struct secpolicyindex *); #ifdef INET6 static void ipsec6_get_ulp(const struct mbuf *m, struct secpolicyindex *, int); static int ipsec6_setspidx_ipaddr(const struct mbuf *, struct secpolicyindex *); #endif static void ipsec_delpcbpolicy(struct inpcbpolicy *); static struct secpolicy *ipsec_deepcopy_policy(struct secpolicy *src); -static void vshiftl(unsigned char *, int, int); MALLOC_DEFINE(M_IPSEC_INPCB, "inpcbpolicy", "inpcb-resident ipsec policy"); /* * Return a held reference to the default SP. */ static struct secpolicy * key_allocsp_default(const char* where, int tag) { struct secpolicy *sp; KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP key_allocsp_default from %s:%u\n", where, tag)); sp = &V_def_policy; if (sp->policy != IPSEC_POLICY_DISCARD && sp->policy != IPSEC_POLICY_NONE) { ipseclog((LOG_INFO, "fixed system default policy: %d->%d\n", sp->policy, IPSEC_POLICY_NONE)); sp->policy = IPSEC_POLICY_NONE; } key_addref(sp); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP key_allocsp_default returns SP:%p (%u)\n", sp, sp->refcnt)); return (sp); } #define KEY_ALLOCSP_DEFAULT() \ key_allocsp_default(__FILE__, __LINE__) /* * For OUTBOUND packet having a socket. Searching SPD for packet, * and return a pointer to SP. * OUT: NULL: no apropreate SP found, the following value is set to error. * 0 : bypass * EACCES : discard packet. * ENOENT : ipsec_acquire() in progress, maybe. * others : error occurred. * others: a pointer to SP * * NOTE: IPv6 mapped adddress concern is implemented here. */ struct secpolicy * ipsec_getpolicy(struct tdb_ident *tdbi, u_int dir) { struct secpolicy *sp; IPSEC_ASSERT(tdbi != NULL, ("null tdbi")); IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, ("invalid direction %u", dir)); sp = KEY_ALLOCSP2(tdbi->spi, &tdbi->dst, tdbi->proto, dir); if (sp == NULL) /*XXX????*/ sp = KEY_ALLOCSP_DEFAULT(); IPSEC_ASSERT(sp != NULL, ("null SP")); return (sp); } /* * For OUTBOUND packet having a socket. Searching SPD for packet, * and return a pointer to SP. * OUT: NULL: no apropreate SP found, the following value is set to error. * 0 : bypass * EACCES : discard packet. * ENOENT : ipsec_acquire() in progress, maybe. * others : error occurred. * others: a pointer to SP * * NOTE: IPv6 mapped adddress concern is implemented here. */ static struct secpolicy * ipsec_getpolicybysock(const struct mbuf *m, u_int dir, struct inpcb *inp, int *error) { struct inpcbpolicy *pcbsp; struct secpolicy *currsp = NULL; /* Policy on socket. */ struct secpolicy *sp; IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(inp != NULL, ("null inpcb")); IPSEC_ASSERT(error != NULL, ("null error")); IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, ("invalid direction %u", dir)); if (!key_havesp(dir)) { /* No SP found, use system default. */ sp = KEY_ALLOCSP_DEFAULT(); return (sp); } /* Set spidx in pcb. */ *error = ipsec_setspidx_inpcb(m, inp); if (*error) return (NULL); pcbsp = inp->inp_sp; IPSEC_ASSERT(pcbsp != NULL, ("null pcbsp")); switch (dir) { case IPSEC_DIR_INBOUND: currsp = pcbsp->sp_in; break; case IPSEC_DIR_OUTBOUND: currsp = pcbsp->sp_out; break; } IPSEC_ASSERT(currsp != NULL, ("null currsp")); if (pcbsp->priv) { /* When privilieged socket. */ switch (currsp->policy) { case IPSEC_POLICY_BYPASS: case IPSEC_POLICY_IPSEC: key_addref(currsp); sp = currsp; break; case IPSEC_POLICY_ENTRUST: /* Look for a policy in SPD. */ sp = KEY_ALLOCSP(&currsp->spidx, dir); if (sp == NULL) /* No SP found. */ sp = KEY_ALLOCSP_DEFAULT(); break; default: ipseclog((LOG_ERR, "%s: Invalid policy for PCB %d\n", __func__, currsp->policy)); *error = EINVAL; return (NULL); } } else { /* Unpriv, SPD has policy. */ sp = KEY_ALLOCSP(&currsp->spidx, dir); if (sp == NULL) { /* No SP found. */ switch (currsp->policy) { case IPSEC_POLICY_BYPASS: ipseclog((LOG_ERR, "%s: Illegal policy for " "non-priviliged defined %d\n", __func__, currsp->policy)); *error = EINVAL; return (NULL); case IPSEC_POLICY_ENTRUST: sp = KEY_ALLOCSP_DEFAULT(); break; case IPSEC_POLICY_IPSEC: key_addref(currsp); sp = currsp; break; default: ipseclog((LOG_ERR, "%s: Invalid policy for " "PCB %d\n", __func__, currsp->policy)); *error = EINVAL; return (NULL); } } } IPSEC_ASSERT(sp != NULL, ("null SP (priv %u policy %u", pcbsp->priv, currsp->policy)); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s (priv %u policy %u) allocate SP:%p (refcnt %u)\n", __func__, pcbsp->priv, currsp->policy, sp, sp->refcnt)); return (sp); } /* * For FORWADING packet or OUTBOUND without a socket. Searching SPD for packet, * and return a pointer to SP. * OUT: positive: a pointer to the entry for security policy leaf matched. * NULL: no apropreate SP found, the following value is set to error. * 0 : bypass * EACCES : discard packet. * ENOENT : ipsec_acquire() in progress, maybe. * others : error occurred. */ struct secpolicy * ipsec_getpolicybyaddr(const struct mbuf *m, u_int dir, int *error) { struct secpolicyindex spidx; struct secpolicy *sp; IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(error != NULL, ("null error")); IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, ("invalid direction %u", dir)); sp = NULL; *error = 0; if (key_havesp(dir)) { /* Make an index to look for a policy. */ *error = ipsec_setspidx(m, &spidx, 0); if (*error != 0) { DPRINTF(("%s: setpidx failed, dir %u\n", __func__, dir)); return (NULL); } spidx.dir = dir; sp = KEY_ALLOCSP(&spidx, dir); } if (sp == NULL) /* No SP found, use system default. */ sp = KEY_ALLOCSP_DEFAULT(); IPSEC_ASSERT(sp != NULL, ("null SP")); return (sp); } struct secpolicy * ipsec4_checkpolicy(const struct mbuf *m, u_int dir, int *error, struct inpcb *inp) { struct secpolicy *sp; *error = 0; if (inp == NULL) sp = ipsec_getpolicybyaddr(m, dir, error); else sp = ipsec_getpolicybysock(m, dir, inp, error); if (sp == NULL) { IPSEC_ASSERT(*error != 0, ("getpolicy failed w/o error")); IPSECSTAT_INC(ips_out_inval); return (NULL); } IPSEC_ASSERT(*error == 0, ("sp w/ error set to %u", *error)); switch (sp->policy) { case IPSEC_POLICY_ENTRUST: default: printf("%s: invalid policy %u\n", __func__, sp->policy); /* FALLTHROUGH */ case IPSEC_POLICY_DISCARD: IPSECSTAT_INC(ips_out_polvio); *error = -EINVAL; /* Packet is discarded by caller. */ break; case IPSEC_POLICY_BYPASS: case IPSEC_POLICY_NONE: KEY_FREESP(&sp); sp = NULL; /* NB: force NULL result. */ break; case IPSEC_POLICY_IPSEC: if (sp->req == NULL) /* Acquire a SA. */ *error = key_spdacquire(sp); break; } if (*error != 0) { KEY_FREESP(&sp); sp = NULL; } return (sp); } static int ipsec_setspidx_inpcb(const struct mbuf *m, struct inpcb *inp) { int error; IPSEC_ASSERT(inp != NULL, ("null inp")); IPSEC_ASSERT(inp->inp_sp != NULL, ("null inp_sp")); IPSEC_ASSERT(inp->inp_sp->sp_out != NULL && inp->inp_sp->sp_in != NULL, ("null sp_in || sp_out")); error = ipsec_setspidx(m, &inp->inp_sp->sp_in->spidx, 1); if (error == 0) { inp->inp_sp->sp_in->spidx.dir = IPSEC_DIR_INBOUND; inp->inp_sp->sp_out->spidx = inp->inp_sp->sp_in->spidx; inp->inp_sp->sp_out->spidx.dir = IPSEC_DIR_OUTBOUND; } else { bzero(&inp->inp_sp->sp_in->spidx, sizeof (inp->inp_sp->sp_in->spidx)); bzero(&inp->inp_sp->sp_out->spidx, sizeof (inp->inp_sp->sp_in->spidx)); } return (error); } /* * Configure security policy index (src/dst/proto/sport/dport) * by looking at the content of mbuf. * The caller is responsible for error recovery (like clearing up spidx). */ static int ipsec_setspidx(const struct mbuf *m, struct secpolicyindex *spidx, int needport) { struct ip ipbuf; const struct ip *ip = NULL; const struct mbuf *n; u_int v; int len; int error; IPSEC_ASSERT(m != NULL, ("null mbuf")); /* * Validate m->m_pkthdr.len. We see incorrect length if we * mistakenly call this function with inconsistent mbuf chain * (like 4.4BSD tcp/udp processing). XXX Should we panic here? */ len = 0; for (n = m; n; n = n->m_next) len += n->m_len; if (m->m_pkthdr.len != len) { KEYDEBUG(KEYDEBUG_IPSEC_DUMP, printf("%s: pkthdr len(%d) mismatch (%d), ignored.\n", __func__, len, m->m_pkthdr.len)); return (EINVAL); } if (m->m_pkthdr.len < sizeof(struct ip)) { KEYDEBUG(KEYDEBUG_IPSEC_DUMP, printf("%s: pkthdr len(%d) too small (v4), ignored.\n", __func__, m->m_pkthdr.len)); return (EINVAL); } if (m->m_len >= sizeof(*ip)) ip = mtod(m, const struct ip *); else { m_copydata(m, 0, sizeof(ipbuf), (caddr_t)&ipbuf); ip = &ipbuf; } v = ip->ip_v; switch (v) { case 4: error = ipsec4_setspidx_ipaddr(m, spidx); if (error) return (error); ipsec4_get_ulp(m, spidx, needport); return (0); #ifdef INET6 case 6: if (m->m_pkthdr.len < sizeof(struct ip6_hdr)) { KEYDEBUG(KEYDEBUG_IPSEC_DUMP, printf("%s: pkthdr len(%d) too small (v6), " "ignored\n", __func__, m->m_pkthdr.len)); return (EINVAL); } error = ipsec6_setspidx_ipaddr(m, spidx); if (error) return (error); ipsec6_get_ulp(m, spidx, needport); return (0); #endif default: KEYDEBUG(KEYDEBUG_IPSEC_DUMP, printf("%s: " "unknown IP version %u, ignored.\n", __func__, v)); return (EINVAL); } } static void ipsec4_get_ulp(const struct mbuf *m, struct secpolicyindex *spidx, int needport) { u_int8_t nxt; int off; /* Sanity check. */ IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(m->m_pkthdr.len >= sizeof(struct ip),("packet too short")); if (m->m_len >= sizeof (struct ip)) { const struct ip *ip = mtod(m, const struct ip *); if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) goto done; off = ip->ip_hl << 2; nxt = ip->ip_p; } else { struct ip ih; m_copydata(m, 0, sizeof (struct ip), (caddr_t) &ih); if (ih.ip_off & htons(IP_MF | IP_OFFMASK)) goto done; off = ih.ip_hl << 2; nxt = ih.ip_p; } while (off < m->m_pkthdr.len) { struct ip6_ext ip6e; struct tcphdr th; struct udphdr uh; switch (nxt) { case IPPROTO_TCP: spidx->ul_proto = nxt; if (!needport) goto done_proto; if (off + sizeof(struct tcphdr) > m->m_pkthdr.len) goto done; m_copydata(m, off, sizeof (th), (caddr_t) &th); spidx->src.sin.sin_port = th.th_sport; spidx->dst.sin.sin_port = th.th_dport; return; case IPPROTO_UDP: spidx->ul_proto = nxt; if (!needport) goto done_proto; if (off + sizeof(struct udphdr) > m->m_pkthdr.len) goto done; m_copydata(m, off, sizeof (uh), (caddr_t) &uh); spidx->src.sin.sin_port = uh.uh_sport; spidx->dst.sin.sin_port = uh.uh_dport; return; case IPPROTO_AH: if (off + sizeof(ip6e) > m->m_pkthdr.len) goto done; /* XXX Sigh, this works but is totally bogus. */ m_copydata(m, off, sizeof(ip6e), (caddr_t) &ip6e); off += (ip6e.ip6e_len + 2) << 2; nxt = ip6e.ip6e_nxt; break; case IPPROTO_ICMP: default: /* XXX Intermediate headers??? */ spidx->ul_proto = nxt; goto done_proto; } } done: spidx->ul_proto = IPSEC_ULPROTO_ANY; done_proto: spidx->src.sin.sin_port = IPSEC_PORT_ANY; spidx->dst.sin.sin_port = IPSEC_PORT_ANY; } /* Assumes that m is sane. */ static int ipsec4_setspidx_ipaddr(const struct mbuf *m, struct secpolicyindex *spidx) { static const struct sockaddr_in template = { sizeof (struct sockaddr_in), AF_INET, 0, { 0 }, { 0, 0, 0, 0, 0, 0, 0, 0 } }; spidx->src.sin = template; spidx->dst.sin = template; if (m->m_len < sizeof (struct ip)) { m_copydata(m, offsetof(struct ip, ip_src), sizeof (struct in_addr), (caddr_t) &spidx->src.sin.sin_addr); m_copydata(m, offsetof(struct ip, ip_dst), sizeof (struct in_addr), (caddr_t) &spidx->dst.sin.sin_addr); } else { const struct ip *ip = mtod(m, const struct ip *); spidx->src.sin.sin_addr = ip->ip_src; spidx->dst.sin.sin_addr = ip->ip_dst; } spidx->prefs = sizeof(struct in_addr) << 3; spidx->prefd = sizeof(struct in_addr) << 3; return (0); } #ifdef INET6 static void ipsec6_get_ulp(const struct mbuf *m, struct secpolicyindex *spidx, int needport) { int off, nxt; struct tcphdr th; struct udphdr uh; struct icmp6_hdr ih; /* Sanity check. */ if (m == NULL) panic("%s: NULL pointer was passed.\n", __func__); KEYDEBUG(KEYDEBUG_IPSEC_DUMP, printf("%s:\n", __func__); kdebug_mbuf(m)); /* Set default. */ spidx->ul_proto = IPSEC_ULPROTO_ANY; ((struct sockaddr_in6 *)&spidx->src)->sin6_port = IPSEC_PORT_ANY; ((struct sockaddr_in6 *)&spidx->dst)->sin6_port = IPSEC_PORT_ANY; nxt = -1; off = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxt); if (off < 0 || m->m_pkthdr.len < off) return; switch (nxt) { case IPPROTO_TCP: spidx->ul_proto = nxt; if (!needport) break; if (off + sizeof(struct tcphdr) > m->m_pkthdr.len) break; m_copydata(m, off, sizeof(th), (caddr_t)&th); ((struct sockaddr_in6 *)&spidx->src)->sin6_port = th.th_sport; ((struct sockaddr_in6 *)&spidx->dst)->sin6_port = th.th_dport; break; case IPPROTO_UDP: spidx->ul_proto = nxt; if (!needport) break; if (off + sizeof(struct udphdr) > m->m_pkthdr.len) break; m_copydata(m, off, sizeof(uh), (caddr_t)&uh); ((struct sockaddr_in6 *)&spidx->src)->sin6_port = uh.uh_sport; ((struct sockaddr_in6 *)&spidx->dst)->sin6_port = uh.uh_dport; break; case IPPROTO_ICMPV6: spidx->ul_proto = nxt; if (off + sizeof(struct icmp6_hdr) > m->m_pkthdr.len) break; m_copydata(m, off, sizeof(ih), (caddr_t)&ih); ((struct sockaddr_in6 *)&spidx->src)->sin6_port = htons((uint16_t)ih.icmp6_type); ((struct sockaddr_in6 *)&spidx->dst)->sin6_port = htons((uint16_t)ih.icmp6_code); break; default: /* XXX Intermediate headers??? */ spidx->ul_proto = nxt; break; } } /* Assumes that m is sane. */ static int ipsec6_setspidx_ipaddr(const struct mbuf *m, struct secpolicyindex *spidx) { struct ip6_hdr ip6buf; const struct ip6_hdr *ip6 = NULL; struct sockaddr_in6 *sin6; if (m->m_len >= sizeof(*ip6)) ip6 = mtod(m, const struct ip6_hdr *); else { m_copydata(m, 0, sizeof(ip6buf), (caddr_t)&ip6buf); ip6 = &ip6buf; } sin6 = (struct sockaddr_in6 *)&spidx->src; bzero(sin6, sizeof(*sin6)); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(struct sockaddr_in6); bcopy(&ip6->ip6_src, &sin6->sin6_addr, sizeof(ip6->ip6_src)); if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { sin6->sin6_addr.s6_addr16[1] = 0; sin6->sin6_scope_id = ntohs(ip6->ip6_src.s6_addr16[1]); } spidx->prefs = sizeof(struct in6_addr) << 3; sin6 = (struct sockaddr_in6 *)&spidx->dst; bzero(sin6, sizeof(*sin6)); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(struct sockaddr_in6); bcopy(&ip6->ip6_dst, &sin6->sin6_addr, sizeof(ip6->ip6_dst)); if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) { sin6->sin6_addr.s6_addr16[1] = 0; sin6->sin6_scope_id = ntohs(ip6->ip6_dst.s6_addr16[1]); } spidx->prefd = sizeof(struct in6_addr) << 3; return (0); } #endif int ipsec_run_hhooks(struct ipsec_ctx_data *ctx, int type) { int idx; switch (ctx->af) { #ifdef INET case AF_INET: idx = HHOOK_IPSEC_INET; break; #endif #ifdef INET6 case AF_INET6: idx = HHOOK_IPSEC_INET6; break; #endif default: return (EPFNOSUPPORT); } if (type == HHOOK_TYPE_IPSEC_IN) HHOOKS_RUN_IF(V_ipsec_hhh_in[idx], ctx, NULL); else HHOOKS_RUN_IF(V_ipsec_hhh_out[idx], ctx, NULL); if (*ctx->mp == NULL) return (EACCES); return (0); } static void ipsec_delpcbpolicy(struct inpcbpolicy *p) { free(p, M_IPSEC_INPCB); } /* Initialize policy in PCB. */ int ipsec_init_policy(struct socket *so, struct inpcbpolicy **pcb_sp) { struct inpcbpolicy *new; /* Sanity check. */ if (so == NULL || pcb_sp == NULL) panic("%s: NULL pointer was passed.\n", __func__); new = (struct inpcbpolicy *) malloc(sizeof(struct inpcbpolicy), M_IPSEC_INPCB, M_NOWAIT|M_ZERO); if (new == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return (ENOBUFS); } new->priv = IPSEC_IS_PRIVILEGED_SO(so); if ((new->sp_in = KEY_NEWSP()) == NULL) { ipsec_delpcbpolicy(new); return (ENOBUFS); } new->sp_in->policy = IPSEC_POLICY_ENTRUST; if ((new->sp_out = KEY_NEWSP()) == NULL) { KEY_FREESP(&new->sp_in); ipsec_delpcbpolicy(new); return (ENOBUFS); } new->sp_out->policy = IPSEC_POLICY_ENTRUST; *pcb_sp = new; return (0); } /* Copy old IPsec policy into new. */ int ipsec_copy_policy(struct inpcbpolicy *old, struct inpcbpolicy *new) { struct secpolicy *sp; sp = ipsec_deepcopy_policy(old->sp_in); if (sp) { KEY_FREESP(&new->sp_in); new->sp_in = sp; } else return (ENOBUFS); sp = ipsec_deepcopy_policy(old->sp_out); if (sp) { KEY_FREESP(&new->sp_out); new->sp_out = sp; } else return (ENOBUFS); new->priv = old->priv; return (0); } struct ipsecrequest * ipsec_newisr(void) { struct ipsecrequest *p; p = malloc(sizeof(struct ipsecrequest), M_IPSEC_SR, M_NOWAIT|M_ZERO); if (p != NULL) IPSECREQUEST_LOCK_INIT(p); return (p); } void ipsec_delisr(struct ipsecrequest *p) { IPSECREQUEST_LOCK_DESTROY(p); free(p, M_IPSEC_SR); } /* Deep-copy a policy in PCB. */ static struct secpolicy * ipsec_deepcopy_policy(struct secpolicy *src) { struct ipsecrequest *newchain = NULL; struct ipsecrequest *p; struct ipsecrequest **q; struct ipsecrequest *r; struct secpolicy *dst; if (src == NULL) return (NULL); dst = KEY_NEWSP(); if (dst == NULL) return (NULL); /* * Deep-copy IPsec request chain. This is required since struct * ipsecrequest is not reference counted. */ q = &newchain; for (p = src->req; p; p = p->next) { *q = ipsec_newisr(); if (*q == NULL) goto fail; (*q)->saidx.proto = p->saidx.proto; (*q)->saidx.mode = p->saidx.mode; (*q)->level = p->level; (*q)->saidx.reqid = p->saidx.reqid; bcopy(&p->saidx.src, &(*q)->saidx.src, sizeof((*q)->saidx.src)); bcopy(&p->saidx.dst, &(*q)->saidx.dst, sizeof((*q)->saidx.dst)); (*q)->sp = dst; q = &((*q)->next); } dst->req = newchain; dst->policy = src->policy; /* Do not touch the refcnt fields. */ return (dst); fail: for (p = newchain; p; p = r) { r = p->next; ipsec_delisr(p); p = NULL; } KEY_FREESP(&dst); return (NULL); } /* Set policy and IPsec request if present. */ static int ipsec_set_policy_internal(struct secpolicy **pcb_sp, int optname, caddr_t request, size_t len, struct ucred *cred) { struct sadb_x_policy *xpl; struct secpolicy *newsp = NULL; int error; /* Sanity check. */ if (pcb_sp == NULL || *pcb_sp == NULL || request == NULL) return (EINVAL); if (len < sizeof(*xpl)) return (EINVAL); xpl = (struct sadb_x_policy *)request; KEYDEBUG(KEYDEBUG_IPSEC_DUMP, printf("%s: passed policy\n", __func__); kdebug_sadb_x_policy((struct sadb_ext *)xpl)); /* Check policy type. */ /* ipsec_set_policy_internal() accepts IPSEC, ENTRUST and BYPASS. */ if (xpl->sadb_x_policy_type == IPSEC_POLICY_DISCARD || xpl->sadb_x_policy_type == IPSEC_POLICY_NONE) return (EINVAL); /* Check privileged socket. */ if (cred != NULL && xpl->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { error = priv_check_cred(cred, PRIV_NETINET_IPSEC, 0); if (error) return (EACCES); } /* Allocating new SP entry. */ if ((newsp = key_msg2sp(xpl, len, &error)) == NULL) return (error); /* Clear old SP and set new SP. */ KEY_FREESP(pcb_sp); *pcb_sp = newsp; KEYDEBUG(KEYDEBUG_IPSEC_DUMP, printf("%s: new policy\n", __func__); kdebug_secpolicy(newsp)); return (0); } int ipsec_set_policy(struct inpcb *inp, int optname, caddr_t request, size_t len, struct ucred *cred) { struct sadb_x_policy *xpl; struct secpolicy **pcb_sp; /* Sanity check. */ if (inp == NULL || request == NULL) return (EINVAL); if (len < sizeof(*xpl)) return (EINVAL); xpl = (struct sadb_x_policy *)request; /* Select direction. */ switch (xpl->sadb_x_policy_dir) { case IPSEC_DIR_INBOUND: pcb_sp = &inp->inp_sp->sp_in; break; case IPSEC_DIR_OUTBOUND: pcb_sp = &inp->inp_sp->sp_out; break; default: ipseclog((LOG_ERR, "%s: invalid direction=%u\n", __func__, xpl->sadb_x_policy_dir)); return (EINVAL); } return (ipsec_set_policy_internal(pcb_sp, optname, request, len, cred)); } int ipsec_get_policy(struct inpcb *inp, caddr_t request, size_t len, struct mbuf **mp) { struct sadb_x_policy *xpl; struct secpolicy *pcb_sp; /* Sanity check. */ if (inp == NULL || request == NULL || mp == NULL) return (EINVAL); IPSEC_ASSERT(inp->inp_sp != NULL, ("null inp_sp")); if (len < sizeof(*xpl)) return (EINVAL); xpl = (struct sadb_x_policy *)request; /* Select direction. */ switch (xpl->sadb_x_policy_dir) { case IPSEC_DIR_INBOUND: pcb_sp = inp->inp_sp->sp_in; break; case IPSEC_DIR_OUTBOUND: pcb_sp = inp->inp_sp->sp_out; break; default: ipseclog((LOG_ERR, "%s: invalid direction=%u\n", __func__, xpl->sadb_x_policy_dir)); return (EINVAL); } /* Sanity check. Should be an IPSEC_ASSERT. */ if (pcb_sp == NULL) return (EINVAL); *mp = key_sp2msg(pcb_sp); if (!*mp) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return (ENOBUFS); } (*mp)->m_type = MT_DATA; KEYDEBUG(KEYDEBUG_IPSEC_DUMP, printf("%s:\n", __func__); kdebug_mbuf(*mp)); return (0); } /* Delete policy in PCB. */ int ipsec_delete_pcbpolicy(struct inpcb *inp) { IPSEC_ASSERT(inp != NULL, ("null inp")); if (inp->inp_sp == NULL) return (0); if (inp->inp_sp->sp_in != NULL) KEY_FREESP(&inp->inp_sp->sp_in); if (inp->inp_sp->sp_out != NULL) KEY_FREESP(&inp->inp_sp->sp_out); ipsec_delpcbpolicy(inp->inp_sp); inp->inp_sp = NULL; return (0); } /* * Return current level. * Either IPSEC_LEVEL_USE or IPSEC_LEVEL_REQUIRE are always returned. */ u_int ipsec_get_reqlevel(struct ipsecrequest *isr) { u_int level = 0; u_int esp_trans_deflev, esp_net_deflev; u_int ah_trans_deflev, ah_net_deflev; IPSEC_ASSERT(isr != NULL && isr->sp != NULL, ("null argument")); IPSEC_ASSERT(isr->sp->spidx.src.sa.sa_family == isr->sp->spidx.dst.sa.sa_family, ("af family mismatch, src %u, dst %u", isr->sp->spidx.src.sa.sa_family, isr->sp->spidx.dst.sa.sa_family)); /* XXX Note that we have ipseclog() expanded here - code sync issue. */ #define IPSEC_CHECK_DEFAULT(lev) \ (((lev) != IPSEC_LEVEL_USE && (lev) != IPSEC_LEVEL_REQUIRE \ && (lev) != IPSEC_LEVEL_UNIQUE) \ ? (V_ipsec_debug \ ? log(LOG_INFO, "fixed system default level " #lev ":%d->%d\n",\ (lev), IPSEC_LEVEL_REQUIRE) \ : 0), \ (lev) = IPSEC_LEVEL_REQUIRE, \ (lev) \ : (lev)) /* Set default level. */ switch (((struct sockaddr *)&isr->sp->spidx.src)->sa_family) { #ifdef INET case AF_INET: esp_trans_deflev = IPSEC_CHECK_DEFAULT(V_ip4_esp_trans_deflev); esp_net_deflev = IPSEC_CHECK_DEFAULT(V_ip4_esp_net_deflev); ah_trans_deflev = IPSEC_CHECK_DEFAULT(V_ip4_ah_trans_deflev); ah_net_deflev = IPSEC_CHECK_DEFAULT(V_ip4_ah_net_deflev); break; #endif #ifdef INET6 case AF_INET6: esp_trans_deflev = IPSEC_CHECK_DEFAULT(V_ip6_esp_trans_deflev); esp_net_deflev = IPSEC_CHECK_DEFAULT(V_ip6_esp_net_deflev); ah_trans_deflev = IPSEC_CHECK_DEFAULT(V_ip6_ah_trans_deflev); ah_net_deflev = IPSEC_CHECK_DEFAULT(V_ip6_ah_net_deflev); break; #endif /* INET6 */ default: panic("%s: unknown af %u", __func__, isr->sp->spidx.src.sa.sa_family); } #undef IPSEC_CHECK_DEFAULT /* Set level. */ switch (isr->level) { case IPSEC_LEVEL_DEFAULT: switch (isr->saidx.proto) { case IPPROTO_ESP: if (isr->saidx.mode == IPSEC_MODE_TUNNEL) level = esp_net_deflev; else level = esp_trans_deflev; break; case IPPROTO_AH: if (isr->saidx.mode == IPSEC_MODE_TUNNEL) level = ah_net_deflev; else level = ah_trans_deflev; break; case IPPROTO_IPCOMP: /* * We don't really care, as IPcomp document says that * we shouldn't compress small packets. */ level = IPSEC_LEVEL_USE; break; default: panic("%s: Illegal protocol defined %u\n", __func__, isr->saidx.proto); } break; case IPSEC_LEVEL_USE: case IPSEC_LEVEL_REQUIRE: level = isr->level; break; case IPSEC_LEVEL_UNIQUE: level = IPSEC_LEVEL_REQUIRE; break; default: panic("%s: Illegal IPsec level %u\n", __func__, isr->level); } return (level); } /* * Check security policy requirements against the actual * packet contents. Return one if the packet should be * reject as "invalid"; otherwiser return zero to have the * packet treated as "valid". * * OUT: * 0: valid * 1: invalid */ static int ipsec_in_reject(struct secpolicy *sp, const struct mbuf *m) { struct ipsecrequest *isr; int need_auth; KEYDEBUG(KEYDEBUG_IPSEC_DATA, printf("%s: using SP\n", __func__); kdebug_secpolicy(sp)); /* Check policy. */ switch (sp->policy) { case IPSEC_POLICY_DISCARD: return (1); case IPSEC_POLICY_BYPASS: case IPSEC_POLICY_NONE: return (0); } IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, ("invalid policy %u", sp->policy)); /* XXX Should compare policy against IPsec header history. */ need_auth = 0; for (isr = sp->req; isr != NULL; isr = isr->next) { if (ipsec_get_reqlevel(isr) != IPSEC_LEVEL_REQUIRE) continue; switch (isr->saidx.proto) { case IPPROTO_ESP: if ((m->m_flags & M_DECRYPTED) == 0) { KEYDEBUG(KEYDEBUG_IPSEC_DUMP, printf("%s: ESP m_flags:%x\n", __func__, m->m_flags)); return (1); } if (!need_auth && isr->sav != NULL && isr->sav->tdb_authalgxform != NULL && (m->m_flags & M_AUTHIPDGM) == 0) { KEYDEBUG(KEYDEBUG_IPSEC_DUMP, printf("%s: ESP/AH m_flags:%x\n", __func__, m->m_flags)); return (1); } break; case IPPROTO_AH: need_auth = 1; if ((m->m_flags & M_AUTHIPHDR) == 0) { KEYDEBUG(KEYDEBUG_IPSEC_DUMP, printf("%s: AH m_flags:%x\n", __func__, m->m_flags)); return (1); } break; case IPPROTO_IPCOMP: /* * We don't really care, as IPcomp document * says that we shouldn't compress small * packets. IPComp policy should always be * treated as being in "use" level. */ break; } } return (0); /* Valid. */ } /* * Non zero return value means security policy DISCARD or policy violation. */ static int ipsec46_in_reject(const struct mbuf *m, struct inpcb *inp) { struct secpolicy *sp; int error; int result; if (!key_havesp(IPSEC_DIR_INBOUND)) return 0; IPSEC_ASSERT(m != NULL, ("null mbuf")); /* Get SP for this packet. */ if (inp == NULL) sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND, &error); else sp = ipsec_getpolicybysock(m, IPSEC_DIR_INBOUND, inp, &error); if (sp != NULL) { result = ipsec_in_reject(sp, m); KEY_FREESP(&sp); } else { result = 1; /* treat errors as policy violation */ } return (result); } /* * Check AH/ESP integrity. * This function is called from tcp_input(), udp_input(), * and {ah,esp}4_input for tunnel mode. */ int ipsec4_in_reject(const struct mbuf *m, struct inpcb *inp) { int result; result = ipsec46_in_reject(m, inp); if (result) IPSECSTAT_INC(ips_in_polvio); return (result); } #ifdef INET6 /* * Check AH/ESP integrity. * This function is called from tcp6_input(), udp6_input(), * and {ah,esp}6_input for tunnel mode. */ int ipsec6_in_reject(const struct mbuf *m, struct inpcb *inp) { int result; result = ipsec46_in_reject(m, inp); if (result) IPSEC6STAT_INC(ips_in_polvio); return (result); } #endif /* * Compute the byte size to be occupied by IPsec header. * In case it is tunnelled, it includes the size of outer IP header. * NOTE: SP passed is freed in this function. */ static size_t ipsec_hdrsiz_internal(struct secpolicy *sp) { struct ipsecrequest *isr; size_t size; KEYDEBUG(KEYDEBUG_IPSEC_DATA, printf("%s: using SP\n", __func__); kdebug_secpolicy(sp)); switch (sp->policy) { case IPSEC_POLICY_DISCARD: case IPSEC_POLICY_BYPASS: case IPSEC_POLICY_NONE: return (0); } IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, ("invalid policy %u", sp->policy)); size = 0; for (isr = sp->req; isr != NULL; isr = isr->next) { size_t clen = 0; switch (isr->saidx.proto) { case IPPROTO_ESP: clen = esp_hdrsiz(isr->sav); break; case IPPROTO_AH: clen = ah_hdrsiz(isr->sav); break; case IPPROTO_IPCOMP: clen = sizeof(struct ipcomp); break; } if (isr->saidx.mode == IPSEC_MODE_TUNNEL) { switch (isr->saidx.dst.sa.sa_family) { case AF_INET: clen += sizeof(struct ip); break; #ifdef INET6 case AF_INET6: clen += sizeof(struct ip6_hdr); break; #endif default: ipseclog((LOG_ERR, "%s: unknown AF %d in " "IPsec tunnel SA\n", __func__, ((struct sockaddr *)&isr->saidx.dst)->sa_family)); break; } } size += clen; } return (size); } /* * This function is called from ipsec_hdrsiz_tcp(), ip_ipsec_mtu(), * disabled ip6_ipsec_mtu() and ip6_forward(). */ size_t ipsec_hdrsiz(const struct mbuf *m, u_int dir, struct inpcb *inp) { struct secpolicy *sp; int error; size_t size; if (!key_havesp(dir)) return 0; IPSEC_ASSERT(m != NULL, ("null mbuf")); /* Get SP for this packet. */ if (inp == NULL) sp = ipsec_getpolicybyaddr(m, dir, &error); else sp = ipsec_getpolicybysock(m, dir, inp, &error); if (sp != NULL) { size = ipsec_hdrsiz_internal(sp); KEYDEBUG(KEYDEBUG_IPSEC_DATA, printf("%s: size:%lu.\n", __func__, (unsigned long)size)); KEY_FREESP(&sp); } else { size = 0; /* XXX Should be panic? * -> No, we are called w/o knowing if * IPsec processing is needed. */ } return (size); } /* * Check the variable replay window. * ipsec_chkreplay() performs replay check before ICV verification. * ipsec_updatereplay() updates replay bitmap. This must be called after * ICV verification (it also performs replay check, which is usually done * beforehand). * 0 (zero) is returned if packet disallowed, 1 if packet permitted. * - * Based on RFC 2401. + * Based on RFC 6479. Blocks are 32 bits unsigned integers */ + +#define IPSEC_BITMAP_INDEX_MASK(w) (w - 1) +#define IPSEC_REDUNDANT_BIT_SHIFTS 5 +#define IPSEC_REDUNDANT_BITS (1 << IPSEC_REDUNDANT_BIT_SHIFTS) +#define IPSEC_BITMAP_LOC_MASK (IPSEC_REDUNDANT_BITS - 1) + int ipsec_chkreplay(u_int32_t seq, struct secasvar *sav) { const struct secreplay *replay; - u_int32_t diff; - int fr; - u_int32_t wsizeb; /* Constant: bits of window size. */ - int frlast; /* Constant: last frame. */ + u_int32_t wsizeb; /* Constant: window size. */ + int ret, index, bit_location; IPSEC_ASSERT(sav != NULL, ("Null SA")); IPSEC_ASSERT(sav->replay != NULL, ("Null replay state")); + SECASVAR_LOCK(sav); + + ret = 0; replay = sav->replay; + /* No need to check replay if disabled. */ if (replay->wsize == 0) - return (1); /* No need to check replay. */ + goto allowed; /* Constant. */ - frlast = replay->wsize - 1; wsizeb = replay->wsize << 3; /* Sequence number of 0 is invalid. */ if (seq == 0) - return (0); + goto end; /* First time is always okay. */ if (replay->count == 0) - return (1); + goto allowed; - if (seq > replay->lastseq) { - /* Larger sequences are okay. */ - return (1); - } else { - /* seq is equal or less than lastseq. */ - diff = replay->lastseq - seq; + /* Larger sequences are okay. */ + if (seq > replay->lastseq) + goto allowed; - /* Over range to check, i.e. too old or wrapped. */ - if (diff >= wsizeb) - return (0); + /* Over range to check, i.e. too old or wrapped. */ + if (replay->lastseq - seq >= wsizeb) + goto end; - fr = frlast - diff / 8; + /* The sequence is inside the sliding window + * now check the bit in the bitmap + * bit location only depends on the sequence number + */ + bit_location = seq & IPSEC_BITMAP_LOC_MASK; + index = (seq >> IPSEC_REDUNDANT_BIT_SHIFTS) + & IPSEC_BITMAP_INDEX_MASK(replay->bitmap_size); - /* This packet already seen? */ - if ((replay->bitmap)[fr] & (1 << (diff % 8))) - return (0); + /* This packet already seen? */ + if ((replay->bitmap)[index] & (1 << bit_location)) + goto end; - /* Out of order but good. */ - return (1); - } +allowed: + ret = 1; +end: + SECASVAR_UNLOCK(sav); + + return (ret); } /* * Check replay counter whether to update or not. * OUT: 0: OK * 1: NG */ int ipsec_updatereplay(u_int32_t seq, struct secasvar *sav) { char buf[128]; struct secreplay *replay; - u_int32_t diff; - int fr; - u_int32_t wsizeb; /* Constant: bits of window size. */ - int frlast; /* Constant: last frame. */ + u_int32_t wsizeb; /* Constant: window size. */ + int ret, diff, index, bit_location; IPSEC_ASSERT(sav != NULL, ("Null SA")); IPSEC_ASSERT(sav->replay != NULL, ("Null replay state")); + SECASVAR_LOCK(sav); + + ret = 1; replay = sav->replay; if (replay->wsize == 0) goto ok; /* No need to check replay. */ /* Constant. */ - frlast = replay->wsize - 1; wsizeb = replay->wsize << 3; /* Sequence number of 0 is invalid. */ if (seq == 0) - return (1); + goto end; - /* First time. */ - if (replay->count == 0) { - replay->lastseq = seq; - bzero(replay->bitmap, replay->wsize); - (replay->bitmap)[frlast] = 1; + /* The packet is too old, no need to update */ + if (wsizeb + seq < replay->lastseq) goto ok; - } + /* Now update the bit */ + index = (seq >> IPSEC_REDUNDANT_BIT_SHIFTS); + + /* First check if the sequence number is in the range */ if (seq > replay->lastseq) { - /* seq is larger than lastseq. */ - diff = seq - replay->lastseq; + int id; + int index_cur = replay->lastseq >> IPSEC_REDUNDANT_BIT_SHIFTS; - /* New larger sequence number. */ - if (diff < wsizeb) { - /* In window. */ - /* Set bit for this packet. */ - vshiftl(replay->bitmap, diff, replay->wsize); - (replay->bitmap)[frlast] |= 1; - } else { - /* This packet has a "way larger". */ - bzero(replay->bitmap, replay->wsize); - (replay->bitmap)[frlast] = 1; + diff = index - index_cur; + if (diff > replay->bitmap_size) { + /* something unusual in this case */ + diff = replay->bitmap_size; } - replay->lastseq = seq; - /* Larger is good. */ - } else { - /* seq is equal or less than lastseq. */ - diff = replay->lastseq - seq; + for (id = 0; id < diff; ++id) { + replay->bitmap[(id + index_cur + 1) + & IPSEC_BITMAP_INDEX_MASK(replay->bitmap_size)] = 0; + } - /* Over range to check, i.e. too old or wrapped. */ - if (diff >= wsizeb) - return (1); + replay->lastseq = seq; + } - fr = frlast - diff / 8; + index &= IPSEC_BITMAP_INDEX_MASK(replay->bitmap_size); + bit_location = seq & IPSEC_BITMAP_LOC_MASK; - /* This packet already seen? */ - if ((replay->bitmap)[fr] & (1 << (diff % 8))) - return (1); + /* this packet has already been received */ + if (replay->bitmap[index] & (1 << bit_location)) + goto end; - /* Mark as seen. */ - (replay->bitmap)[fr] |= (1 << (diff % 8)); + replay->bitmap[index] |= (1 << bit_location); - /* Out of order but good. */ - } - ok: if (replay->count == ~0) { /* Set overflow flag. */ replay->overflow++; /* Don't increment, no more packets accepted. */ if ((sav->flags & SADB_X_EXT_CYCSEQ) == 0) - return (1); + goto end; ipseclog((LOG_WARNING, "%s: replay counter made %d cycle. %s\n", __func__, replay->overflow, ipsec_logsastr(sav, buf, sizeof(buf)))); } - replay->count++; + ret = 0; - return (0); -} - -/* - * Shift variable length buffer to left. - * IN: bitmap: pointer to the buffer - * nbit: the number of to shift. - * wsize: buffer size (bytes). - */ -static void -vshiftl(unsigned char *bitmap, int nbit, int wsize) -{ - int s, j, i; - unsigned char over; - - for (j = 0; j < nbit; j += 8) { - s = (nbit - j < 8) ? (nbit - j): 8; - bitmap[0] <<= s; - for (i = 1; i < wsize; i++) { - over = (bitmap[i] >> (8 - s)); - bitmap[i] <<= s; - bitmap[i-1] |= over; - } - } +end: + SECASVAR_UNLOCK(sav); + return (ret); } /* Return a printable string for the address. */ char* ipsec_address(union sockaddr_union* sa, char *buf, socklen_t size) { switch (sa->sa.sa_family) { #ifdef INET case AF_INET: return (inet_ntop(AF_INET, &sa->sin.sin_addr, buf, size)); #endif /* INET */ #ifdef INET6 case AF_INET6: return (inet_ntop(AF_INET6, &sa->sin6.sin6_addr, buf, size)); #endif /* INET6 */ default: return ("(unknown address family)"); } } char * ipsec_logsastr(struct secasvar *sav, char *buf, size_t size) { char sbuf[INET6_ADDRSTRLEN], dbuf[INET6_ADDRSTRLEN]; IPSEC_ASSERT(sav->sah->saidx.src.sa.sa_family == sav->sah->saidx.dst.sa.sa_family, ("address family mismatch")); snprintf(buf, size, "SA(SPI=%08lx src=%s dst=%s)", (u_long)ntohl(sav->spi), ipsec_address(&sav->sah->saidx.src, sbuf, sizeof(sbuf)), ipsec_address(&sav->sah->saidx.dst, dbuf, sizeof(dbuf))); return (buf); } void ipsec_dumpmbuf(const struct mbuf *m) { const u_char *p; int totlen; int i; totlen = 0; printf("---\n"); while (m) { p = mtod(m, const u_char *); for (i = 0; i < m->m_len; i++) { printf("%02x ", p[i]); totlen++; if (totlen % 16 == 0) printf("\n"); } m = m->m_next; } if (totlen % 16 != 0) printf("\n"); printf("---\n"); } static void def_policy_init(const void *unused __unused) { bzero(&V_def_policy, sizeof(struct secpolicy)); V_def_policy.policy = IPSEC_POLICY_NONE; V_def_policy.refcnt = 1; } VNET_SYSINIT(def_policy_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, def_policy_init, NULL); /* XXX This stuff doesn't belong here... */ static struct xformsw* xforms = NULL; /* * Register a transform; typically at system startup. */ void xform_register(struct xformsw* xsp) { xsp->xf_next = xforms; xforms = xsp; } /* * Initialize transform support in an sav. */ int xform_init(struct secasvar *sav, int xftype) { struct xformsw *xsp; if (sav->tdb_xform != NULL) /* Previously initialized. */ return (0); for (xsp = xforms; xsp; xsp = xsp->xf_next) if (xsp->xf_type == xftype) return ((*xsp->xf_init)(sav, xsp)); return (EINVAL); } Index: head/sys/netipsec/key.c =================================================================== --- head/sys/netipsec/key.c (revision 309143) +++ head/sys/netipsec/key.c (revision 309144) @@ -1,7931 +1,8033 @@ /* $FreeBSD$ */ /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ /*- * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * This code is referd to RFC 2367 */ #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #endif /* INET6 */ #if defined(INET) || defined(INET6) #include #endif #ifdef INET6 #include #endif /* INET6 */ #include #include #include #include #include #include #ifdef INET6 #include #endif #include #include /* randomness */ #include #define FULLMASK 0xff #define _BITS(bytes) ((bytes) << 3) /* * Note on SA reference counting: * - SAs that are not in DEAD state will have (total external reference + 1) * following value in reference count field. they cannot be freed and are * referenced from SA header. * - SAs that are in DEAD state will have (total external reference) * in reference count field. they are ready to be freed. reference from * SA header will be removed in key_delsav(), when the reference count * field hits 0 (= no external reference other than from SA header. */ VNET_DEFINE(u_int32_t, key_debug_level) = 0; static VNET_DEFINE(u_int, key_spi_trycnt) = 1000; static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100; static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ static VNET_DEFINE(u_int32_t, policy_id) = 0; /*interval to initialize randseed,1(m)*/ static VNET_DEFINE(u_int, key_int_random) = 60; /* interval to expire acquiring, 30(s)*/ static VNET_DEFINE(u_int, key_larval_lifetime) = 30; /* counter for blocking SADB_ACQUIRE.*/ static VNET_DEFINE(int, key_blockacq_count) = 10; /* lifetime for blocking SADB_ACQUIRE.*/ static VNET_DEFINE(int, key_blockacq_lifetime) = 20; /* preferred old sa rather than new sa.*/ static VNET_DEFINE(int, key_preferred_oldsa) = 1; #define V_key_spi_trycnt VNET(key_spi_trycnt) #define V_key_spi_minval VNET(key_spi_minval) #define V_key_spi_maxval VNET(key_spi_maxval) #define V_policy_id VNET(policy_id) #define V_key_int_random VNET(key_int_random) #define V_key_larval_lifetime VNET(key_larval_lifetime) #define V_key_blockacq_count VNET(key_blockacq_count) #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) #define V_key_preferred_oldsa VNET(key_preferred_oldsa) static VNET_DEFINE(u_int32_t, acq_seq) = 0; #define V_acq_seq VNET(acq_seq) /* SPD */ static VNET_DEFINE(TAILQ_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]); static struct rmlock sptree_lock; #define V_sptree VNET(sptree) #define SPTREE_LOCK_INIT() rm_init(&sptree_lock, "sptree") #define SPTREE_LOCK_DESTROY() rm_destroy(&sptree_lock) #define SPTREE_RLOCK_TRACKER struct rm_priotracker sptree_tracker #define SPTREE_RLOCK() rm_rlock(&sptree_lock, &sptree_tracker) #define SPTREE_RUNLOCK() rm_runlock(&sptree_lock, &sptree_tracker) #define SPTREE_RLOCK_ASSERT() rm_assert(&sptree_lock, RA_RLOCKED) #define SPTREE_WLOCK() rm_wlock(&sptree_lock) #define SPTREE_WUNLOCK() rm_wunlock(&sptree_lock) #define SPTREE_WLOCK_ASSERT() rm_assert(&sptree_lock, RA_WLOCKED) #define SPTREE_UNLOCK_ASSERT() rm_assert(&sptree_lock, RA_UNLOCKED) static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */ #define V_sahtree VNET(sahtree) static struct mtx sahtree_lock; #define SAHTREE_LOCK_INIT() \ mtx_init(&sahtree_lock, "sahtree", \ "fast ipsec security association database", MTX_DEF) #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) /* registed list */ static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); #define V_regtree VNET(regtree) static struct mtx regtree_lock; #define REGTREE_LOCK_INIT() \ mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) #define REGTREE_LOCK() mtx_lock(®tree_lock) #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */ #define V_acqtree VNET(acqtree) static struct mtx acq_lock; #define ACQ_LOCK_INIT() \ mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) #define ACQ_LOCK() mtx_lock(&acq_lock) #define ACQ_UNLOCK() mtx_unlock(&acq_lock) #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) /* SP acquiring list */ static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree); #define V_spacqtree VNET(spacqtree) static struct mtx spacq_lock; #define SPACQ_LOCK_INIT() \ mtx_init(&spacq_lock, "spacqtree", \ "fast ipsec security policy acquire list", MTX_DEF) #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) #define SPACQ_LOCK() mtx_lock(&spacq_lock) #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) /* search order for SAs */ static const u_int saorder_state_valid_prefer_old[] = { SADB_SASTATE_DYING, SADB_SASTATE_MATURE, }; static const u_int saorder_state_valid_prefer_new[] = { SADB_SASTATE_MATURE, SADB_SASTATE_DYING, }; static const u_int saorder_state_alive[] = { /* except DEAD */ SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL }; static const u_int saorder_state_any[] = { SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD }; static const int minsize[] = { sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ sizeof(struct sadb_sa), /* SADB_EXT_SA */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 0, /* SADB_X_EXT_KMPRIVATE */ sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ + sizeof(struct sadb_x_sa_replay), /* SADB_X_EXT_SA_REPLAY */ }; +_Static_assert(sizeof(minsize)/sizeof(int) == SADB_EXT_MAX + 1, "minsize size mismatch"); + static const int maxsize[] = { sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ sizeof(struct sadb_sa), /* SADB_EXT_SA */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 0, /* SADB_EXT_ADDRESS_SRC */ 0, /* SADB_EXT_ADDRESS_DST */ 0, /* SADB_EXT_ADDRESS_PROXY */ 0, /* SADB_EXT_KEY_AUTH */ 0, /* SADB_EXT_KEY_ENCRYPT */ 0, /* SADB_EXT_IDENTITY_SRC */ 0, /* SADB_EXT_IDENTITY_DST */ 0, /* SADB_EXT_SENSITIVITY */ 0, /* SADB_EXT_PROPOSAL */ 0, /* SADB_EXT_SUPPORTED_AUTH */ 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 0, /* SADB_X_EXT_KMPRIVATE */ 0, /* SADB_X_EXT_POLICY */ sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 0, /* SADB_X_EXT_NAT_T_OAI */ 0, /* SADB_X_EXT_NAT_T_OAR */ sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ + sizeof(struct sadb_x_sa_replay), /* SADB_X_EXT_SA_REPLAY */ }; +_Static_assert(sizeof(maxsize)/sizeof(int) == SADB_EXT_MAX + 1, "minsize size mismatch"); static VNET_DEFINE(int, ipsec_esp_keymin) = 256; static VNET_DEFINE(int, ipsec_esp_auth) = 0; static VNET_DEFINE(int, ipsec_ah_keymin) = 128; #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) #define V_ipsec_esp_auth VNET(ipsec_esp_auth) #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) #ifdef SYSCTL_DECL SYSCTL_DECL(_net_key); #endif SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); /* max count of trial for the decision of spi value */ SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); /* minimum spi value to allocate automatically. */ SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); /* maximun spi value to allocate automatically. */ SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); /* interval to initialize randseed */ SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); /* lifetime for larval SA */ SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); /* counter for blocking to send SADB_ACQUIRE to IKEd */ SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); /* ESP auth */ SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); /* minimum ESP key length */ SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); /* minimum AH key length */ SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); /* perfered old SA rather than new SA */ SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); #define __LIST_CHAINED(elm) \ (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) #define LIST_INSERT_TAIL(head, elm, type, field) \ do {\ struct type *curelm = LIST_FIRST(head); \ if (curelm == NULL) {\ LIST_INSERT_HEAD(head, elm, field); \ } else { \ while (LIST_NEXT(curelm, field)) \ curelm = LIST_NEXT(curelm, field);\ LIST_INSERT_AFTER(curelm, elm, field);\ }\ } while (0) #define KEY_CHKSASTATE(head, sav, name) \ do { \ if ((head) != (sav)) { \ ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ (name), (head), (sav))); \ break; \ } \ } while (0) #define KEY_CHKSPDIR(head, sp, name) \ do { \ if ((head) != (sp)) { \ ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ "anyway continue.\n", \ (name), (head), (sp))); \ } \ } while (0) MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); /* * set parameters into secpolicyindex buffer. * Must allocate secpolicyindex buffer passed to this function. */ #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ do { \ bzero((idx), sizeof(struct secpolicyindex)); \ (idx)->dir = (_dir); \ (idx)->prefs = (ps); \ (idx)->prefd = (pd); \ (idx)->ul_proto = (ulp); \ bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ } while (0) /* * set parameters into secasindex buffer. * Must allocate secasindex buffer before calling this function. */ #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ do { \ bzero((idx), sizeof(struct secasindex)); \ (idx)->proto = (p); \ (idx)->mode = (m); \ (idx)->reqid = (r); \ bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ } while (0) /* key statistics */ struct _keystat { u_long getspi_count; /* the avarage of count to try to get new SPI */ } keystat; struct sadb_msghdr { struct sadb_msg *msg; struct sadb_ext *ext[SADB_EXT_MAX + 1]; int extoff[SADB_EXT_MAX + 1]; int extlen[SADB_EXT_MAX + 1]; }; #ifndef IPSEC_DEBUG2 static struct callout key_timer; #endif static struct secasvar *key_allocsa_policy(const struct secasindex *); static void key_freesp_so(struct secpolicy **); static struct secasvar *key_do_allocsa_policy(struct secashead *, u_int); static void key_unlink(struct secpolicy *); static struct secpolicy *key_getsp(struct secpolicyindex *); static struct secpolicy *key_getspbyid(u_int32_t); static u_int32_t key_newreqid(void); static struct mbuf *key_gather_mbuf(struct mbuf *, const struct sadb_msghdr *, int, int, ...); static int key_spdadd(struct socket *, struct mbuf *, const struct sadb_msghdr *); static u_int32_t key_getnewspid(void); static int key_spddelete(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_spddelete2(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_spdget(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_spdflush(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_spddump(struct socket *, struct mbuf *, const struct sadb_msghdr *); static struct mbuf *key_setdumpsp(struct secpolicy *, u_int8_t, u_int32_t, u_int32_t); static u_int key_getspreqmsglen(struct secpolicy *); static int key_spdexpire(struct secpolicy *); static struct secashead *key_newsah(struct secasindex *); static void key_delsah(struct secashead *); static struct secasvar *key_newsav(struct mbuf *, const struct sadb_msghdr *, struct secashead *, int *, const char*, int); #define KEY_NEWSAV(m, sadb, sah, e) \ key_newsav(m, sadb, sah, e, __FILE__, __LINE__) static void key_delsav(struct secasvar *); static struct secashead *key_getsah(struct secasindex *); static struct secasvar *key_checkspidup(struct secasindex *, u_int32_t); static struct secasvar *key_getsavbyspi(struct secashead *, u_int32_t); static int key_setsaval(struct secasvar *, struct mbuf *, const struct sadb_msghdr *); static int key_mature(struct secasvar *); static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t, u_int8_t, u_int32_t, u_int32_t); static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t, u_int32_t, pid_t, u_int16_t); static struct mbuf *key_setsadbsa(struct secasvar *); static struct mbuf *key_setsadbaddr(u_int16_t, const struct sockaddr *, u_int8_t, u_int16_t); #ifdef IPSEC_NAT_T static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); static struct mbuf *key_setsadbxtype(u_int16_t); #endif static void key_porttosaddr(struct sockaddr *, u_int16_t); #define KEY_PORTTOSADDR(saddr, port) \ key_porttosaddr((struct sockaddr *)(saddr), (port)) static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t); +static struct mbuf *key_setsadbxsareplay(u_int32_t); static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t, u_int32_t, u_int32_t); static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, struct malloc_type *); static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type); #ifdef INET6 static int key_ismyaddr6(struct sockaddr_in6 *); #endif /* flags for key_cmpsaidx() */ #define CMP_HEAD 1 /* protocol, addresses. */ #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ #define CMP_REQID 3 /* additionally HEAD, reaid. */ #define CMP_EXACTLY 4 /* all elements. */ static int key_cmpsaidx(const struct secasindex *, const struct secasindex *, int); static int key_cmpspidx_exactly(struct secpolicyindex *, struct secpolicyindex *); static int key_cmpspidx_withmask(struct secpolicyindex *, struct secpolicyindex *); static int key_sockaddrcmp(const struct sockaddr *, const struct sockaddr *, int); static int key_bbcmp(const void *, const void *, u_int); static u_int16_t key_satype2proto(u_int8_t); static u_int8_t key_proto2satype(u_int16_t); static int key_getspi(struct socket *, struct mbuf *, const struct sadb_msghdr *); static u_int32_t key_do_getnewspi(struct sadb_spirange *, struct secasindex *); static int key_update(struct socket *, struct mbuf *, const struct sadb_msghdr *); #ifdef IPSEC_DOSEQCHECK static struct secasvar *key_getsavbyseq(struct secashead *, u_int32_t); #endif static int key_add(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_setident(struct secashead *, struct mbuf *, const struct sadb_msghdr *); static struct mbuf *key_getmsgbuf_x1(struct mbuf *, const struct sadb_msghdr *); static int key_delete(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_delete_all(struct socket *, struct mbuf *, const struct sadb_msghdr *, u_int16_t); static int key_get(struct socket *, struct mbuf *, const struct sadb_msghdr *); static void key_getcomb_setlifetime(struct sadb_comb *); static struct mbuf *key_getcomb_esp(void); static struct mbuf *key_getcomb_ah(void); static struct mbuf *key_getcomb_ipcomp(void); static struct mbuf *key_getprop(const struct secasindex *); static int key_acquire(const struct secasindex *, struct secpolicy *); static struct secacq *key_newacq(const struct secasindex *); static struct secacq *key_getacq(const struct secasindex *); static struct secacq *key_getacqbyseq(u_int32_t); static struct secspacq *key_newspacq(struct secpolicyindex *); static struct secspacq *key_getspacq(struct secpolicyindex *); static int key_acquire2(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_register(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_expire(struct secasvar *, int); static int key_flush(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_dump(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_promisc(struct socket *, struct mbuf *, const struct sadb_msghdr *); static int key_senderror(struct socket *, struct mbuf *, int); static int key_validate_ext(const struct sadb_ext *, int); static int key_align(struct mbuf *, struct sadb_msghdr *); static struct mbuf *key_setlifetime(struct seclifetime *src, u_int16_t exttype); static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); #if 0 static const char *key_getfqdn(void); static const char *key_getuserfqdn(void); #endif static void key_sa_chgstate(struct secasvar *, u_int8_t); static __inline void sa_initref(struct secasvar *sav) { refcount_init(&sav->refcnt, 1); } static __inline void sa_addref(struct secasvar *sav) { refcount_acquire(&sav->refcnt); IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); } static __inline int sa_delref(struct secasvar *sav) { IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); return (refcount_release(&sav->refcnt)); } #define SP_ADDREF(p) refcount_acquire(&(p)->refcnt) #define SP_DELREF(p) refcount_release(&(p)->refcnt) /* * Update the refcnt while holding the SPTREE lock. */ void key_addref(struct secpolicy *sp) { SP_ADDREF(sp); } /* * Return 0 when there are known to be no SP's for the specified * direction. Otherwise return 1. This is used by IPsec code * to optimize performance. */ int key_havesp(u_int dir) { return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? TAILQ_FIRST(&V_sptree[dir]) != NULL : 1); } /* %%% IPsec policy management */ /* * allocating a SP for OUTBOUND or INBOUND packet. * Must call key_freesp() later. * OUT: NULL: not found * others: found and return the pointer. */ struct secpolicy * key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) { SPTREE_RLOCK_TRACKER; struct secpolicy *sp; IPSEC_ASSERT(spidx != NULL, ("null spidx")); IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, ("invalid direction %u", dir)); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s from %s:%u\n", __func__, where, tag)); /* get a SP entry */ KEYDEBUG(KEYDEBUG_IPSEC_DATA, printf("*** objects\n"); kdebug_secpolicyindex(spidx)); SPTREE_RLOCK(); TAILQ_FOREACH(sp, &V_sptree[dir], chain) { KEYDEBUG(KEYDEBUG_IPSEC_DATA, printf("*** in SPD\n"); kdebug_secpolicyindex(&sp->spidx)); if (key_cmpspidx_withmask(&sp->spidx, spidx)) goto found; } sp = NULL; found: if (sp) { /* sanity check */ KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); /* found a SPD entry */ sp->lastused = time_second; SP_ADDREF(sp); } SPTREE_RUNLOCK(); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); return sp; } /* * allocating a SP for OUTBOUND or INBOUND packet. * Must call key_freesp() later. * OUT: NULL: not found * others: found and return the pointer. */ struct secpolicy * key_allocsp2(u_int32_t spi, union sockaddr_union *dst, u_int8_t proto, u_int dir, const char* where, int tag) { SPTREE_RLOCK_TRACKER; struct secpolicy *sp; IPSEC_ASSERT(dst != NULL, ("null dst")); IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, ("invalid direction %u", dir)); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s from %s:%u\n", __func__, where, tag)); /* get a SP entry */ KEYDEBUG(KEYDEBUG_IPSEC_DATA, printf("*** objects\n"); printf("spi %u proto %u dir %u\n", spi, proto, dir); kdebug_sockaddr(&dst->sa)); SPTREE_RLOCK(); TAILQ_FOREACH(sp, &V_sptree[dir], chain) { KEYDEBUG(KEYDEBUG_IPSEC_DATA, printf("*** in SPD\n"); kdebug_secpolicyindex(&sp->spidx)); /* compare simple values, then dst address */ if (sp->spidx.ul_proto != proto) continue; /* NB: spi's must exist and match */ if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) continue; if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) goto found; } sp = NULL; found: if (sp) { /* sanity check */ KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); /* found a SPD entry */ sp->lastused = time_second; SP_ADDREF(sp); } SPTREE_RUNLOCK(); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); return sp; } #if 0 /* * return a policy that matches this particular inbound packet. * XXX slow */ struct secpolicy * key_gettunnel(const struct sockaddr *osrc, const struct sockaddr *odst, const struct sockaddr *isrc, const struct sockaddr *idst, const char* where, int tag) { struct secpolicy *sp; const int dir = IPSEC_DIR_INBOUND; struct ipsecrequest *r1, *r2, *p; struct secpolicyindex spidx; KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s from %s:%u\n", __func__, where, tag)); if (isrc->sa_family != idst->sa_family) { ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", __func__, isrc->sa_family, idst->sa_family)); sp = NULL; goto done; } SPTREE_LOCK(); LIST_FOREACH(sp, &V_sptree[dir], chain) { if (sp->state == IPSEC_SPSTATE_DEAD) continue; r1 = r2 = NULL; for (p = sp->req; p; p = p->next) { if (p->saidx.mode != IPSEC_MODE_TUNNEL) continue; r1 = r2; r2 = p; if (!r1) { /* here we look at address matches only */ spidx = sp->spidx; if (isrc->sa_len > sizeof(spidx.src) || idst->sa_len > sizeof(spidx.dst)) continue; bcopy(isrc, &spidx.src, isrc->sa_len); bcopy(idst, &spidx.dst, idst->sa_len); if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) continue; } else { if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) continue; } if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) continue; goto found; } } sp = NULL; found: if (sp) { sp->lastused = time_second; SP_ADDREF(sp); } SPTREE_UNLOCK(); done: KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); return sp; } #endif /* * allocating an SA entry for an *OUTBOUND* packet. * checking each request entries in SP, and acquire an SA if need. * OUT: 0: there are valid requests. * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. */ int key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) { u_int level; int error; struct secasvar *sav; IPSEC_ASSERT(isr != NULL, ("null isr")); IPSEC_ASSERT(saidx != NULL, ("null saidx")); IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || saidx->mode == IPSEC_MODE_TUNNEL, ("unexpected policy %u", saidx->mode)); /* * XXX guard against protocol callbacks from the crypto * thread as they reference ipsecrequest.sav which we * temporarily null out below. Need to rethink how we * handle bundled SA's in the callback thread. */ IPSECREQUEST_LOCK_ASSERT(isr); /* get current level */ level = ipsec_get_reqlevel(isr); /* * We check new SA in the IPsec request because a different * SA may be involved each time this request is checked, either * because new SAs are being configured, or this request is * associated with an unconnected datagram socket, or this request * is associated with a system default policy. * * key_allocsa_policy should allocate the oldest SA available. * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. */ sav = key_allocsa_policy(saidx); if (sav != isr->sav) { /* SA need to be updated. */ if (!IPSECREQUEST_UPGRADE(isr)) { /* Kick everyone off. */ IPSECREQUEST_UNLOCK(isr); IPSECREQUEST_WLOCK(isr); } if (isr->sav != NULL) KEY_FREESAV(&isr->sav); isr->sav = sav; IPSECREQUEST_DOWNGRADE(isr); } else if (sav != NULL) KEY_FREESAV(&sav); /* When there is SA. */ if (isr->sav != NULL) { if (isr->sav->state != SADB_SASTATE_MATURE && isr->sav->state != SADB_SASTATE_DYING) return EINVAL; return 0; } /* there is no SA */ error = key_acquire(saidx, isr->sp); if (error != 0) { /* XXX What should I do ? */ ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", __func__, error)); return error; } if (level != IPSEC_LEVEL_REQUIRE) { /* XXX sigh, the interface to this routine is botched */ IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); return 0; } else { return ENOENT; } } /* * allocating a SA for policy entry from SAD. * NOTE: searching SAD of aliving state. * OUT: NULL: not found. * others: found and return the pointer. */ static struct secasvar * key_allocsa_policy(const struct secasindex *saidx) { #define N(a) _ARRAYLEN(a) struct secashead *sah; struct secasvar *sav; u_int stateidx, arraysize; const u_int *state_valid; state_valid = NULL; /* silence gcc */ arraysize = 0; /* silence gcc */ SAHTREE_LOCK(); LIST_FOREACH(sah, &V_sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) continue; if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { if (V_key_preferred_oldsa) { state_valid = saorder_state_valid_prefer_old; arraysize = N(saorder_state_valid_prefer_old); } else { state_valid = saorder_state_valid_prefer_new; arraysize = N(saorder_state_valid_prefer_new); } break; } } SAHTREE_UNLOCK(); if (sah == NULL) return NULL; /* search valid state */ for (stateidx = 0; stateidx < arraysize; stateidx++) { sav = key_do_allocsa_policy(sah, state_valid[stateidx]); if (sav != NULL) return sav; } return NULL; #undef N } /* * searching SAD with direction, protocol, mode and state. * called by key_allocsa_policy(). * OUT: * NULL : not found * others : found, pointer to a SA. */ static struct secasvar * key_do_allocsa_policy(struct secashead *sah, u_int state) { struct secasvar *sav, *nextsav, *candidate, *d; /* initialize */ candidate = NULL; SAHTREE_LOCK(); for (sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) { nextsav = LIST_NEXT(sav, chain); /* sanity check */ KEY_CHKSASTATE(sav->state, state, __func__); /* initialize */ if (candidate == NULL) { candidate = sav; continue; } /* Which SA is the better ? */ IPSEC_ASSERT(candidate->lft_c != NULL, ("null candidate lifetime")); IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); /* What the best method is to compare ? */ if (V_key_preferred_oldsa) { if (candidate->lft_c->addtime > sav->lft_c->addtime) { candidate = sav; } continue; /*NOTREACHED*/ } /* preferred new sa rather than old sa */ if (candidate->lft_c->addtime < sav->lft_c->addtime) { d = candidate; candidate = sav; } else d = sav; /* * prepared to delete the SA when there is more * suitable candidate and the lifetime of the SA is not * permanent. */ if (d->lft_h->addtime != 0) { struct mbuf *m, *result; u_int8_t satype; key_sa_chgstate(d, SADB_SASTATE_DEAD); IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); satype = key_proto2satype(d->sah->saidx.proto); if (satype == 0) goto msgfail; m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, d->refcnt - 1); if (!m) goto msgfail; result = m; /* set sadb_address for saidx's. */ m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &d->sah->saidx.src.sa, d->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY); if (!m) goto msgfail; m_cat(result, m); /* set sadb_address for saidx's. */ m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &d->sah->saidx.dst.sa, d->sah->saidx.dst.sa.sa_len << 3, IPSEC_ULPROTO_ANY); if (!m) goto msgfail; m_cat(result, m); /* create SA extension */ m = key_setsadbsa(d); if (!m) goto msgfail; m_cat(result, m); if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) goto msgfail; } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); if (key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED)) goto msgfail; msgfail: KEY_FREESAV(&d); } } if (candidate) { sa_addref(candidate); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s cause refcnt++:%d SA:%p\n", __func__, candidate->refcnt, candidate)); } SAHTREE_UNLOCK(); return candidate; } /* * allocating a usable SA entry for a *INBOUND* packet. * Must call key_freesav() later. * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). * NULL: not found, or error occurred. * * In the comparison, no source address is used--for RFC2401 conformance. * To quote, from section 4.1: * A security association is uniquely identified by a triple consisting * of a Security Parameter Index (SPI), an IP Destination Address, and a * security protocol (AH or ESP) identifier. * Note that, however, we do need to keep source address in IPsec SA. * IKE specification and PF_KEY specification do assume that we * keep source address in IPsec SA. We see a tricky situation here. */ struct secasvar * key_allocsa(union sockaddr_union *dst, u_int proto, u_int32_t spi, const char* where, int tag) { struct secashead *sah; struct secasvar *sav; u_int stateidx, arraysize, state; const u_int *saorder_state_valid; #ifdef IPSEC_NAT_T int natt_chkport; #endif IPSEC_ASSERT(dst != NULL, ("null dst address")); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s from %s:%u\n", __func__, where, tag)); #ifdef IPSEC_NAT_T natt_chkport = (dst->sa.sa_family == AF_INET && dst->sa.sa_len == sizeof(struct sockaddr_in) && dst->sin.sin_port != 0); #endif /* * searching SAD. * XXX: to be checked internal IP header somewhere. Also when * IPsec tunnel packet is received. But ESP tunnel mode is * encrypted so we can't check internal IP header. */ SAHTREE_LOCK(); if (V_key_preferred_oldsa) { saorder_state_valid = saorder_state_valid_prefer_old; arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); } else { saorder_state_valid = saorder_state_valid_prefer_new; arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); } LIST_FOREACH(sah, &V_sahtree, chain) { int checkport; /* search valid state */ for (stateidx = 0; stateidx < arraysize; stateidx++) { state = saorder_state_valid[stateidx]; LIST_FOREACH(sav, &sah->savtree[state], chain) { /* sanity check */ KEY_CHKSASTATE(sav->state, state, __func__); /* do not return entries w/ unusable state */ if (sav->state != SADB_SASTATE_MATURE && sav->state != SADB_SASTATE_DYING) continue; if (proto != sav->sah->saidx.proto) continue; if (spi != sav->spi) continue; checkport = 0; #ifdef IPSEC_NAT_T /* * Really only check ports when this is a NAT-T * SA. Otherwise other lookups providing ports * might suffer. */ if (sav->natt_type && natt_chkport) checkport = 1; #endif #if 0 /* don't check src */ /* check src address */ if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, checkport) != 0) continue; #endif /* check dst address */ if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, checkport) != 0) continue; sa_addref(sav); goto done; } } } sav = NULL; done: SAHTREE_UNLOCK(); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s return SA:%p; refcnt %u\n", __func__, sav, sav ? sav->refcnt : 0)); return sav; } struct secasvar * key_allocsa_tunnel(union sockaddr_union *src, union sockaddr_union *dst, u_int proto, const char* where, int tag) { struct secashead *sah; struct secasvar *sav; u_int stateidx, arraysize, state; const u_int *saorder_state_valid; IPSEC_ASSERT(src != NULL, ("null src address")); IPSEC_ASSERT(dst != NULL, ("null dst address")); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s from %s:%u\n", __func__, where, tag)); SAHTREE_LOCK(); if (V_key_preferred_oldsa) { saorder_state_valid = saorder_state_valid_prefer_old; arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); } else { saorder_state_valid = saorder_state_valid_prefer_new; arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); } LIST_FOREACH(sah, &V_sahtree, chain) { /* search valid state */ for (stateidx = 0; stateidx < arraysize; stateidx++) { state = saorder_state_valid[stateidx]; LIST_FOREACH(sav, &sah->savtree[state], chain) { /* sanity check */ KEY_CHKSASTATE(sav->state, state, __func__); /* do not return entries w/ unusable state */ if (sav->state != SADB_SASTATE_MATURE && sav->state != SADB_SASTATE_DYING) continue; if (IPSEC_MODE_TUNNEL != sav->sah->saidx.mode) continue; if (proto != sav->sah->saidx.proto) continue; /* check src address */ if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0) continue; /* check dst address */ if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, 0) != 0) continue; sa_addref(sav); goto done; } } } sav = NULL; done: SAHTREE_UNLOCK(); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s return SA:%p; refcnt %u\n", __func__, sav, sav ? sav->refcnt : 0)); return (sav); } /* * Must be called after calling key_allocsp(). * For both the packet without socket and key_freeso(). */ void _key_freesp(struct secpolicy **spp, const char* where, int tag) { struct ipsecrequest *isr, *nextisr; struct secpolicy *sp = *spp; IPSEC_ASSERT(sp != NULL, ("null sp")); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", __func__, sp, sp->id, where, tag, sp->refcnt)); if (SP_DELREF(sp) == 0) return; *spp = NULL; for (isr = sp->req; isr != NULL; isr = nextisr) { if (isr->sav != NULL) { KEY_FREESAV(&isr->sav); isr->sav = NULL; } nextisr = isr->next; ipsec_delisr(isr); } free(sp, M_IPSEC_SP); } static void key_unlink(struct secpolicy *sp) { IPSEC_ASSERT(sp != NULL, ("null sp")); IPSEC_ASSERT(sp->spidx.dir == IPSEC_DIR_INBOUND || sp->spidx.dir == IPSEC_DIR_OUTBOUND, ("invalid direction %u", sp->spidx.dir)); SPTREE_UNLOCK_ASSERT(); SPTREE_WLOCK(); if (sp->state == IPSEC_SPSTATE_DEAD) { SPTREE_WUNLOCK(); return; } sp->state = IPSEC_SPSTATE_DEAD; TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain); SPTREE_WUNLOCK(); KEY_FREESP(&sp); } /* * insert a secpolicy into the SP database. Lower priorities first */ static void key_insertsp(struct secpolicy *newsp) { struct secpolicy *sp; SPTREE_WLOCK(); TAILQ_FOREACH(sp, &V_sptree[newsp->spidx.dir], chain) { if (newsp->priority < sp->priority) { TAILQ_INSERT_BEFORE(sp, newsp, chain); goto done; } } TAILQ_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, chain); done: newsp->state = IPSEC_SPSTATE_ALIVE; SPTREE_WUNLOCK(); } /* * Must be called after calling key_allocsp(). * For the packet with socket. */ void key_freeso(struct socket *so) { IPSEC_ASSERT(so != NULL, ("null so")); switch (so->so_proto->pr_domain->dom_family) { #if defined(INET) || defined(INET6) #ifdef INET case PF_INET: #endif #ifdef INET6 case PF_INET6: #endif { struct inpcb *pcb = sotoinpcb(so); /* Does it have a PCB ? */ if (pcb == NULL) return; key_freesp_so(&pcb->inp_sp->sp_in); key_freesp_so(&pcb->inp_sp->sp_out); } break; #endif /* INET || INET6 */ default: ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", __func__, so->so_proto->pr_domain->dom_family)); return; } } static void key_freesp_so(struct secpolicy **sp) { IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); if ((*sp)->policy == IPSEC_POLICY_ENTRUST || (*sp)->policy == IPSEC_POLICY_BYPASS) return; IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, ("invalid policy %u", (*sp)->policy)); KEY_FREESP(sp); } void key_addrefsa(struct secasvar *sav, const char* where, int tag) { IPSEC_ASSERT(sav != NULL, ("null sav")); IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist")); sa_addref(sav); } /* * Must be called after calling key_allocsa(). * This function is called by key_freesp() to free some SA allocated * for a policy. */ void key_freesav(struct secasvar **psav, const char* where, int tag) { struct secasvar *sav = *psav; IPSEC_ASSERT(sav != NULL, ("null sav")); if (sa_delref(sav)) { KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); *psav = NULL; key_delsav(sav); } else { KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); } } /* %%% SPD management */ /* * search SPD * OUT: NULL : not found * others : found, pointer to a SP. */ static struct secpolicy * key_getsp(struct secpolicyindex *spidx) { SPTREE_RLOCK_TRACKER; struct secpolicy *sp; IPSEC_ASSERT(spidx != NULL, ("null spidx")); SPTREE_RLOCK(); TAILQ_FOREACH(sp, &V_sptree[spidx->dir], chain) { if (key_cmpspidx_exactly(spidx, &sp->spidx)) { SP_ADDREF(sp); break; } } SPTREE_RUNLOCK(); return sp; } /* * get SP by index. * OUT: NULL : not found * others : found, pointer to a SP. */ static struct secpolicy * key_getspbyid(u_int32_t id) { SPTREE_RLOCK_TRACKER; struct secpolicy *sp; SPTREE_RLOCK(); TAILQ_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { if (sp->id == id) { SP_ADDREF(sp); goto done; } } TAILQ_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { if (sp->id == id) { SP_ADDREF(sp); goto done; } } done: SPTREE_RUNLOCK(); return sp; } struct secpolicy * key_newsp(const char* where, int tag) { struct secpolicy *newsp = NULL; newsp = (struct secpolicy *) malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); if (newsp) refcount_init(&newsp->refcnt, 1); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s from %s:%u return SP:%p\n", __func__, where, tag, newsp)); return newsp; } /* * create secpolicy structure from sadb_x_policy structure. * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, * so must be set properly later. */ struct secpolicy * key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error) { struct secpolicy *newsp; IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); if (len != PFKEY_EXTLEN(xpl0)) { ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); *error = EINVAL; return NULL; } if ((newsp = KEY_NEWSP()) == NULL) { *error = ENOBUFS; return NULL; } newsp->spidx.dir = xpl0->sadb_x_policy_dir; newsp->policy = xpl0->sadb_x_policy_type; newsp->priority = xpl0->sadb_x_policy_priority; /* check policy */ switch (xpl0->sadb_x_policy_type) { case IPSEC_POLICY_DISCARD: case IPSEC_POLICY_NONE: case IPSEC_POLICY_ENTRUST: case IPSEC_POLICY_BYPASS: newsp->req = NULL; break; case IPSEC_POLICY_IPSEC: { int tlen; struct sadb_x_ipsecrequest *xisr; struct ipsecrequest **p_isr = &newsp->req; /* validity check */ if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); KEY_FREESP(&newsp); *error = EINVAL; return NULL; } tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); while (tlen > 0) { /* length check */ if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " "length.\n", __func__)); KEY_FREESP(&newsp); *error = EINVAL; return NULL; } /* allocate request buffer */ /* NB: data structure is zero'd */ *p_isr = ipsec_newisr(); if ((*p_isr) == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); KEY_FREESP(&newsp); *error = ENOBUFS; return NULL; } /* set values */ switch (xisr->sadb_x_ipsecrequest_proto) { case IPPROTO_ESP: case IPPROTO_AH: case IPPROTO_IPCOMP: break; default: ipseclog((LOG_DEBUG, "%s: invalid proto type=%u\n", __func__, xisr->sadb_x_ipsecrequest_proto)); KEY_FREESP(&newsp); *error = EPROTONOSUPPORT; return NULL; } (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; switch (xisr->sadb_x_ipsecrequest_mode) { case IPSEC_MODE_TRANSPORT: case IPSEC_MODE_TUNNEL: break; case IPSEC_MODE_ANY: default: ipseclog((LOG_DEBUG, "%s: invalid mode=%u\n", __func__, xisr->sadb_x_ipsecrequest_mode)); KEY_FREESP(&newsp); *error = EINVAL; return NULL; } (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; switch (xisr->sadb_x_ipsecrequest_level) { case IPSEC_LEVEL_DEFAULT: case IPSEC_LEVEL_USE: case IPSEC_LEVEL_REQUIRE: break; case IPSEC_LEVEL_UNIQUE: /* validity check */ /* * If range violation of reqid, kernel will * update it, don't refuse it. */ if (xisr->sadb_x_ipsecrequest_reqid > IPSEC_MANUAL_REQID_MAX) { ipseclog((LOG_DEBUG, "%s: reqid=%d range " "violation, updated by kernel.\n", __func__, xisr->sadb_x_ipsecrequest_reqid)); xisr->sadb_x_ipsecrequest_reqid = 0; } /* allocate new reqid id if reqid is zero. */ if (xisr->sadb_x_ipsecrequest_reqid == 0) { u_int32_t reqid; if ((reqid = key_newreqid()) == 0) { KEY_FREESP(&newsp); *error = ENOBUFS; return NULL; } (*p_isr)->saidx.reqid = reqid; xisr->sadb_x_ipsecrequest_reqid = reqid; } else { /* set it for manual keying. */ (*p_isr)->saidx.reqid = xisr->sadb_x_ipsecrequest_reqid; } break; default: ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", __func__, xisr->sadb_x_ipsecrequest_level)); KEY_FREESP(&newsp); *error = EINVAL; return NULL; } (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; /* set IP addresses if there */ if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { struct sockaddr *paddr; paddr = (struct sockaddr *)(xisr + 1); /* validity check */ if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) { ipseclog((LOG_DEBUG, "%s: invalid " "request address length.\n", __func__)); KEY_FREESP(&newsp); *error = EINVAL; return NULL; } bcopy(paddr, &(*p_isr)->saidx.src, paddr->sa_len); paddr = (struct sockaddr *)((caddr_t)paddr + paddr->sa_len); /* validity check */ if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) { ipseclog((LOG_DEBUG, "%s: invalid " "request address length.\n", __func__)); KEY_FREESP(&newsp); *error = EINVAL; return NULL; } bcopy(paddr, &(*p_isr)->saidx.dst, paddr->sa_len); } (*p_isr)->sp = newsp; /* initialization for the next. */ p_isr = &(*p_isr)->next; tlen -= xisr->sadb_x_ipsecrequest_len; /* validity check */ if (tlen < 0) { ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", __func__)); KEY_FREESP(&newsp); *error = EINVAL; return NULL; } xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr + xisr->sadb_x_ipsecrequest_len); } } break; default: ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); KEY_FREESP(&newsp); *error = EINVAL; return NULL; } *error = 0; return newsp; } static u_int32_t key_newreqid() { static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; auto_reqid = (auto_reqid == ~0 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); /* XXX should be unique check */ return auto_reqid; } /* * copy secpolicy struct to sadb_x_policy structure indicated. */ struct mbuf * key_sp2msg(struct secpolicy *sp) { struct sadb_x_policy *xpl; int tlen; caddr_t p; struct mbuf *m; IPSEC_ASSERT(sp != NULL, ("null policy")); tlen = key_getspreqmsglen(sp); m = m_get2(tlen, M_NOWAIT, MT_DATA, 0); if (m == NULL) return (NULL); m_align(m, tlen); m->m_len = tlen; xpl = mtod(m, struct sadb_x_policy *); bzero(xpl, tlen); xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; xpl->sadb_x_policy_type = sp->policy; xpl->sadb_x_policy_dir = sp->spidx.dir; xpl->sadb_x_policy_id = sp->id; xpl->sadb_x_policy_priority = sp->priority; p = (caddr_t)xpl + sizeof(*xpl); /* if is the policy for ipsec ? */ if (sp->policy == IPSEC_POLICY_IPSEC) { struct sadb_x_ipsecrequest *xisr; struct ipsecrequest *isr; for (isr = sp->req; isr != NULL; isr = isr->next) { xisr = (struct sadb_x_ipsecrequest *)p; xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; xisr->sadb_x_ipsecrequest_level = isr->level; xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; p += sizeof(*xisr); bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); p += isr->saidx.src.sa.sa_len; bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); p += isr->saidx.src.sa.sa_len; xisr->sadb_x_ipsecrequest_len = PFKEY_ALIGN8(sizeof(*xisr) + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len); } } return m; } /* m will not be freed nor modified */ static struct mbuf * key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, int ndeep, int nitem, ...) { va_list ap; int idx; int i; struct mbuf *result = NULL, *n; int len; IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); va_start(ap, nitem); for (i = 0; i < nitem; i++) { idx = va_arg(ap, int); if (idx < 0 || idx > SADB_EXT_MAX) goto fail; /* don't attempt to pull empty extension */ if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) continue; if (idx != SADB_EXT_RESERVED && (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) continue; if (idx == SADB_EXT_RESERVED) { len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); MGETHDR(n, M_NOWAIT, MT_DATA); if (!n) goto fail; n->m_len = len; n->m_next = NULL; m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t)); } else if (i < ndeep) { len = mhp->extlen[idx]; n = m_get2(len, M_NOWAIT, MT_DATA, 0); if (n == NULL) goto fail; m_align(n, len); n->m_len = len; m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], mtod(n, caddr_t)); } else { n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], M_NOWAIT); } if (n == NULL) goto fail; if (result) m_cat(result, n); else result = n; } va_end(ap); if ((result->m_flags & M_PKTHDR) != 0) { result->m_pkthdr.len = 0; for (n = result; n; n = n->m_next) result->m_pkthdr.len += n->m_len; } return result; fail: m_freem(result); va_end(ap); return NULL; } /* * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing * add an entry to SP database, when received * * from the user(?). * Adding to SP database, * and send * * to the socket which was send. * * SPDADD set a unique policy entry. * SPDSETIDX like SPDADD without a part of policy requests. * SPDUPDATE replace a unique policy entry. * * m will always be freed. */ static int key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_address *src0, *dst0; struct sadb_x_policy *xpl0, *xpl; struct sadb_lifetime *lft = NULL; struct secpolicyindex spidx; struct secpolicy *newsp; int error; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || mhp->ext[SADB_X_EXT_POLICY] == NULL) { ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(struct sadb_lifetime)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; } src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; /* * Note: do not parse SADB_X_EXT_NAT_T_* here: * we are processing traffic endpoints. */ /* make secindex */ /* XXX boundary check against sa_len */ KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, src0 + 1, dst0 + 1, src0->sadb_address_prefixlen, dst0->sadb_address_prefixlen, src0->sadb_address_proto, &spidx); /* checking the direciton. */ switch (xpl0->sadb_x_policy_dir) { case IPSEC_DIR_INBOUND: case IPSEC_DIR_OUTBOUND: break; default: ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); mhp->msg->sadb_msg_errno = EINVAL; return 0; } /* check policy */ /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); return key_senderror(so, m, EINVAL); } /* policy requests are mandatory when action is ipsec. */ if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", __func__)); return key_senderror(so, m, EINVAL); } /* * checking there is SP already or not. * SPDUPDATE doesn't depend on whether there is a SP or not. * If the type is either SPDADD or SPDSETIDX AND a SP is found, * then error. */ newsp = key_getsp(&spidx); if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { if (newsp) { key_unlink(newsp); KEY_FREESP(&newsp); } } else { if (newsp != NULL) { KEY_FREESP(&newsp); ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", __func__)); return key_senderror(so, m, EEXIST); } } /* XXX: there is race between key_getsp and key_msg2sp. */ /* allocation new SP entry */ if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { return key_senderror(so, m, error); } if ((newsp->id = key_getnewspid()) == 0) { KEY_FREESP(&newsp); return key_senderror(so, m, ENOBUFS); } /* XXX boundary check against sa_len */ KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, src0 + 1, dst0 + 1, src0->sadb_address_prefixlen, dst0->sadb_address_prefixlen, src0->sadb_address_proto, &newsp->spidx); /* sanity check on addr pair */ if (((struct sockaddr *)(src0 + 1))->sa_family != ((struct sockaddr *)(dst0+ 1))->sa_family) { KEY_FREESP(&newsp); return key_senderror(so, m, EINVAL); } if (((struct sockaddr *)(src0 + 1))->sa_len != ((struct sockaddr *)(dst0+ 1))->sa_len) { KEY_FREESP(&newsp); return key_senderror(so, m, EINVAL); } #if 1 if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) { if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) { KEY_FREESP(&newsp); return key_senderror(so, m, EINVAL); } } #endif newsp->created = time_second; newsp->lastused = newsp->created; newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; key_insertsp(newsp); /* delete the entry in spacqtree */ if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { struct secspacq *spacq = key_getspacq(&spidx); if (spacq != NULL) { /* reset counter in order to deletion by timehandler. */ spacq->created = time_second; spacq->count = 0; SPACQ_UNLOCK(); } } { struct mbuf *n, *mpolicy; struct sadb_msg *newmsg; int off; /* * Note: do not send SADB_X_EXT_NAT_T_* here: * we are sending traffic endpoints. */ /* create new sadb_msg to reply. */ if (lft) { n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); } else { n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); } if (!n) return key_senderror(so, m, ENOBUFS); if (n->m_len < sizeof(*newmsg)) { n = m_pullup(n, sizeof(*newmsg)); if (!n) return key_senderror(so, m, ENOBUFS); } newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); off = 0; mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), sizeof(*xpl), &off); if (mpolicy == NULL) { /* n is already freed */ return key_senderror(so, m, ENOBUFS); } xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { m_freem(n); return key_senderror(so, m, EINVAL); } xpl->sadb_x_policy_id = newsp->id; m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * get new policy id. * OUT: * 0: failure. * others: success. */ static u_int32_t key_getnewspid() { u_int32_t newid = 0; int count = V_key_spi_trycnt; /* XXX */ struct secpolicy *sp; /* when requesting to allocate spi ranged */ while (count--) { newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); if ((sp = key_getspbyid(newid)) == NULL) break; KEY_FREESP(&sp); } if (count == 0 || newid == 0) { ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", __func__)); return 0; } return newid; } /* * SADB_SPDDELETE processing * receive * * from the user(?), and set SADB_SASTATE_DEAD, * and send, * * to the ikmpd. * policy(*) including direction of policy. * * m will always be freed. */ static int key_spddelete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_address *src0, *dst0; struct sadb_x_policy *xpl0; struct secpolicyindex spidx; struct secpolicy *sp; IPSEC_ASSERT(so != NULL, ("null so")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || mhp->ext[SADB_X_EXT_POLICY] == NULL) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; /* * Note: do not parse SADB_X_EXT_NAT_T_* here: * we are processing traffic endpoints. */ /* make secindex */ /* XXX boundary check against sa_len */ KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, src0 + 1, dst0 + 1, src0->sadb_address_prefixlen, dst0->sadb_address_prefixlen, src0->sadb_address_proto, &spidx); /* checking the direciton. */ switch (xpl0->sadb_x_policy_dir) { case IPSEC_DIR_INBOUND: case IPSEC_DIR_OUTBOUND: break; default: ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); return key_senderror(so, m, EINVAL); } /* Is there SP in SPD ? */ if ((sp = key_getsp(&spidx)) == NULL) { ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); return key_senderror(so, m, EINVAL); } /* save policy id to buffer to be returned. */ xpl0->sadb_x_policy_id = sp->id; key_unlink(sp); KEY_FREESP(&sp); { struct mbuf *n; struct sadb_msg *newmsg; /* * Note: do not send SADB_X_EXT_NAT_T_* here: * we are sending traffic endpoints. */ /* create new sadb_msg to reply. */ n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); if (!n) return key_senderror(so, m, ENOBUFS); newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * SADB_SPDDELETE2 processing * receive * * from the user(?), and set SADB_SASTATE_DEAD, * and send, * * to the ikmpd. * policy(*) including direction of policy. * * m will always be freed. */ static int key_spddelete2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { u_int32_t id; struct secpolicy *sp; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); if (mhp->ext[SADB_X_EXT_POLICY] == NULL || mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; /* Is there SP in SPD ? */ if ((sp = key_getspbyid(id)) == NULL) { ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); return key_senderror(so, m, EINVAL); } key_unlink(sp); KEY_FREESP(&sp); { struct mbuf *n, *nn; struct sadb_msg *newmsg; int off, len; /* create new sadb_msg to reply. */ len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); MGETHDR(n, M_NOWAIT, MT_DATA); if (n && len > MHLEN) { if (!(MCLGET(n, M_NOWAIT))) { m_freem(n); n = NULL; } } if (!n) return key_senderror(so, m, ENOBUFS); n->m_len = len; n->m_next = NULL; off = 0; m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", off, len)); n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT); if (!n->m_next) { m_freem(n); return key_senderror(so, m, ENOBUFS); } n->m_pkthdr.len = 0; for (nn = n; nn; nn = nn->m_next) n->m_pkthdr.len += nn->m_len; newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * SADB_X_SPDGET processing * receive * * from the user(?), * and send, * * to the ikmpd. * policy(*) including direction of policy. * * m will always be freed. */ static int key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { u_int32_t id; struct secpolicy *sp; struct mbuf *n; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); if (mhp->ext[SADB_X_EXT_POLICY] == NULL || mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; /* Is there SP in SPD ? */ if ((sp = key_getspbyid(id)) == NULL) { ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); return key_senderror(so, m, ENOENT); } n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, mhp->msg->sadb_msg_pid); KEY_FREESP(&sp); if (n != NULL) { m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } else return key_senderror(so, m, ENOBUFS); } /* * SADB_X_SPDACQUIRE processing. * Acquire policy and SA(s) for a *OUTBOUND* packet. * send * * to KMD, and expect to receive * with SADB_X_SPDACQUIRE if error occurred, * or * * with SADB_X_SPDUPDATE from KMD by PF_KEY. * policy(*) is without policy requests. * * 0 : succeed * others: error number */ int key_spdacquire(struct secpolicy *sp) { struct mbuf *result = NULL, *m; struct secspacq *newspacq; IPSEC_ASSERT(sp != NULL, ("null secpolicy")); IPSEC_ASSERT(sp->req == NULL, ("policy exists")); IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, ("policy not IPSEC %u", sp->policy)); /* Get an entry to check whether sent message or not. */ newspacq = key_getspacq(&sp->spidx); if (newspacq != NULL) { if (V_key_blockacq_count < newspacq->count) { /* reset counter and do send message. */ newspacq->count = 0; } else { /* increment counter and do nothing. */ newspacq->count++; SPACQ_UNLOCK(); return (0); } SPACQ_UNLOCK(); } else { /* make new entry for blocking to send SADB_ACQUIRE. */ newspacq = key_newspacq(&sp->spidx); if (newspacq == NULL) return ENOBUFS; } /* create new sadb_msg to reply. */ m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); if (!m) return ENOBUFS; result = m; result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); } /* * SADB_SPDFLUSH processing * receive * * from the user, and free all entries in secpctree. * and send, * * to the user. * NOTE: what to do is only marking SADB_SASTATE_DEAD. * * m will always be freed. */ static int key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { TAILQ_HEAD(, secpolicy) drainq; struct sadb_msg *newmsg; struct secpolicy *sp, *nextsp; u_int dir; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) return key_senderror(so, m, EINVAL); TAILQ_INIT(&drainq); SPTREE_WLOCK(); for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { TAILQ_CONCAT(&drainq, &V_sptree[dir], chain); } /* * We need to set state to DEAD for each policy to be sure, * that another thread won't try to unlink it. */ TAILQ_FOREACH(sp, &drainq, chain) sp->state = IPSEC_SPSTATE_DEAD; SPTREE_WUNLOCK(); sp = TAILQ_FIRST(&drainq); while (sp != NULL) { nextsp = TAILQ_NEXT(sp, chain); KEY_FREESP(&sp); sp = nextsp; } if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return key_senderror(so, m, ENOBUFS); } if (m->m_next) m_freem(m->m_next); m->m_next = NULL; m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); newmsg = mtod(m, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); } /* * SADB_SPDDUMP processing * receive * * from the user, and dump all SP leaves * and send, * ..... * to the ikmpd. * * m will always be freed. */ static int key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { SPTREE_RLOCK_TRACKER; struct secpolicy *sp; int cnt; u_int dir; struct mbuf *n; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* search SPD entry and get buffer size. */ cnt = 0; SPTREE_RLOCK(); for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { TAILQ_FOREACH(sp, &V_sptree[dir], chain) { cnt++; } } if (cnt == 0) { SPTREE_RUNLOCK(); return key_senderror(so, m, ENOENT); } for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { TAILQ_FOREACH(sp, &V_sptree[dir], chain) { --cnt; n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, mhp->msg->sadb_msg_pid); if (n) key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } } SPTREE_RUNLOCK(); m_freem(m); return 0; } static struct mbuf * key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid) { struct mbuf *result = NULL, *m; struct seclifetime lt; m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); if (!m) goto fail; result = m; /* * Note: do not send SADB_X_EXT_NAT_T_* here: * we are sending traffic endpoints. */ m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto); if (!m) goto fail; m_cat(result, m); m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto); if (!m) goto fail; m_cat(result, m); m = key_sp2msg(sp); if (!m) goto fail; m_cat(result, m); if(sp->lifetime){ lt.addtime=sp->created; lt.usetime= sp->lastused; m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); if (!m) goto fail; m_cat(result, m); lt.addtime=sp->lifetime; lt.usetime= sp->validtime; m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); if (!m) goto fail; m_cat(result, m); } if ((result->m_flags & M_PKTHDR) == 0) goto fail; if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) goto fail; } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); return result; fail: m_freem(result); return NULL; } /* * get PFKEY message length for security policy and request. */ static u_int key_getspreqmsglen(struct secpolicy *sp) { u_int tlen; tlen = sizeof(struct sadb_x_policy); /* if is the policy for ipsec ? */ if (sp->policy != IPSEC_POLICY_IPSEC) return tlen; /* get length of ipsec requests */ { struct ipsecrequest *isr; int len; for (isr = sp->req; isr != NULL; isr = isr->next) { len = sizeof(struct sadb_x_ipsecrequest) + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len; tlen += PFKEY_ALIGN8(len); } } return tlen; } /* * SADB_SPDEXPIRE processing * send * * to KMD by PF_KEY. * * OUT: 0 : succeed * others : error number */ static int key_spdexpire(struct secpolicy *sp) { struct mbuf *result = NULL, *m; int len; int error = -1; struct sadb_lifetime *lt; /* XXX: Why do we lock ? */ IPSEC_ASSERT(sp != NULL, ("null secpolicy")); /* set msg header */ m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); if (!m) { error = ENOBUFS; goto fail; } result = m; /* create lifetime extension (current and hard) */ len = PFKEY_ALIGN8(sizeof(*lt)) * 2; m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) { error = ENOBUFS; goto fail; } m_align(m, len); m->m_len = len; bzero(mtod(m, caddr_t), len); lt = mtod(m, struct sadb_lifetime *); lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; lt->sadb_lifetime_allocations = 0; lt->sadb_lifetime_bytes = 0; lt->sadb_lifetime_addtime = sp->created; lt->sadb_lifetime_usetime = sp->lastused; lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; lt->sadb_lifetime_allocations = 0; lt->sadb_lifetime_bytes = 0; lt->sadb_lifetime_addtime = sp->lifetime; lt->sadb_lifetime_usetime = sp->validtime; m_cat(result, m); /* * Note: do not send SADB_X_EXT_NAT_T_* here: * we are sending traffic endpoints. */ /* set sadb_address for source */ m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* set sadb_address for destination */ m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* set secpolicy */ m = key_sp2msg(sp); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); if ((result->m_flags & M_PKTHDR) == 0) { error = EINVAL; goto fail; } if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) { error = ENOBUFS; goto fail; } } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); fail: if (result) m_freem(result); return error; } /* %%% SAD management */ /* * allocating a memory for new SA head, and copy from the values of mhp. * OUT: NULL : failure due to the lack of memory. * others : pointer to new SA head. */ static struct secashead * key_newsah(struct secasindex *saidx) { struct secashead *newsah; IPSEC_ASSERT(saidx != NULL, ("null saidx")); newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); if (newsah != NULL) { int i; for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) LIST_INIT(&newsah->savtree[i]); newsah->saidx = *saidx; /* add to saidxtree */ newsah->state = SADB_SASTATE_MATURE; SAHTREE_LOCK(); LIST_INSERT_HEAD(&V_sahtree, newsah, chain); SAHTREE_UNLOCK(); } return(newsah); } /* * delete SA index and all SA registerd. */ static void key_delsah(struct secashead *sah) { struct secasvar *sav, *nextsav; u_int stateidx; int zombie = 0; IPSEC_ASSERT(sah != NULL, ("NULL sah")); SAHTREE_LOCK_ASSERT(); /* searching all SA registerd in the secindex. */ for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_any); stateidx++) { u_int state = saorder_state_any[stateidx]; LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { if (sav->refcnt == 0) { /* sanity check */ KEY_CHKSASTATE(state, sav->state, __func__); /* * do NOT call KEY_FREESAV here: * it will only delete the sav if refcnt == 1, * where we already know that refcnt == 0 */ key_delsav(sav); } else { /* give up to delete this sa */ zombie++; } } } if (!zombie) { /* delete only if there are savs */ /* remove from tree of SA index */ if (__LIST_CHAINED(sah)) LIST_REMOVE(sah, chain); free(sah, M_IPSEC_SAH); } } /* * allocating a new SA with LARVAL state. key_add() and key_getspi() call, * and copy the values of mhp into new buffer. * When SAD message type is GETSPI: * to set sequence number from acq_seq++, * to set zero to SPI. * not to call key_setsava(). * OUT: NULL : fail * others : pointer to new secasvar. * * does not modify mbuf. does not free mbuf on error. */ static struct secasvar * key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp, struct secashead *sah, int *errp, const char *where, int tag) { struct secasvar *newsav; const struct sadb_sa *xsa; IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); IPSEC_ASSERT(sah != NULL, ("null secashead")); newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); if (newsav == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); *errp = ENOBUFS; goto done; } switch (mhp->msg->sadb_msg_type) { case SADB_GETSPI: newsav->spi = 0; #ifdef IPSEC_DOSEQCHECK /* sync sequence number */ if (mhp->msg->sadb_msg_seq == 0) newsav->seq = (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); else #endif newsav->seq = mhp->msg->sadb_msg_seq; break; case SADB_ADD: /* sanity check */ if (mhp->ext[SADB_EXT_SA] == NULL) { free(newsav, M_IPSEC_SA); newsav = NULL; ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); *errp = EINVAL; goto done; } xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; newsav->spi = xsa->sadb_sa_spi; newsav->seq = mhp->msg->sadb_msg_seq; break; default: free(newsav, M_IPSEC_SA); newsav = NULL; *errp = EINVAL; goto done; } /* copy sav values */ if (mhp->msg->sadb_msg_type != SADB_GETSPI) { *errp = key_setsaval(newsav, m, mhp); if (*errp) { free(newsav, M_IPSEC_SA); newsav = NULL; goto done; } } SECASVAR_LOCK_INIT(newsav); /* reset created */ newsav->created = time_second; newsav->pid = mhp->msg->sadb_msg_pid; /* add to satree */ newsav->sah = sah; sa_initref(newsav); newsav->state = SADB_SASTATE_LARVAL; SAHTREE_LOCK(); LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, secasvar, chain); SAHTREE_UNLOCK(); done: KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s from %s:%u return SP:%p\n", __func__, where, tag, newsav)); return newsav; } /* * free() SA variable entry. */ static void key_cleansav(struct secasvar *sav) { /* * Cleanup xform state. Note that zeroize'ing causes the * keys to be cleared; otherwise we must do it ourself. */ if (sav->tdb_xform != NULL) { sav->tdb_xform->xf_zeroize(sav); sav->tdb_xform = NULL; } else { if (sav->key_auth != NULL) bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); if (sav->key_enc != NULL) bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); } if (sav->key_auth != NULL) { if (sav->key_auth->key_data != NULL) free(sav->key_auth->key_data, M_IPSEC_MISC); free(sav->key_auth, M_IPSEC_MISC); sav->key_auth = NULL; } if (sav->key_enc != NULL) { if (sav->key_enc->key_data != NULL) free(sav->key_enc->key_data, M_IPSEC_MISC); free(sav->key_enc, M_IPSEC_MISC); sav->key_enc = NULL; } if (sav->sched) { bzero(sav->sched, sav->schedlen); free(sav->sched, M_IPSEC_MISC); sav->sched = NULL; } if (sav->replay != NULL) { + if (sav->replay->bitmap != NULL) + free(sav->replay->bitmap, M_IPSEC_MISC); free(sav->replay, M_IPSEC_MISC); sav->replay = NULL; } if (sav->lft_c != NULL) { free(sav->lft_c, M_IPSEC_MISC); sav->lft_c = NULL; } if (sav->lft_h != NULL) { free(sav->lft_h, M_IPSEC_MISC); sav->lft_h = NULL; } if (sav->lft_s != NULL) { free(sav->lft_s, M_IPSEC_MISC); sav->lft_s = NULL; } } /* * free() SA variable entry. */ static void key_delsav(struct secasvar *sav) { IPSEC_ASSERT(sav != NULL, ("null sav")); IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); /* remove from SA header */ if (__LIST_CHAINED(sav)) LIST_REMOVE(sav, chain); key_cleansav(sav); SECASVAR_LOCK_DESTROY(sav); free(sav, M_IPSEC_SA); } /* * search SAD. * OUT: * NULL : not found * others : found, pointer to a SA. */ static struct secashead * key_getsah(struct secasindex *saidx) { struct secashead *sah; SAHTREE_LOCK(); LIST_FOREACH(sah, &V_sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) continue; if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) break; } SAHTREE_UNLOCK(); return sah; } /* * check not to be duplicated SPI. * NOTE: this function is too slow due to searching all SAD. * OUT: * NULL : not found * others : found, pointer to a SA. */ static struct secasvar * key_checkspidup(struct secasindex *saidx, u_int32_t spi) { struct secashead *sah; struct secasvar *sav; /* check address family */ if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", __func__)); return NULL; } sav = NULL; /* check all SAD */ SAHTREE_LOCK(); LIST_FOREACH(sah, &V_sahtree, chain) { if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) continue; sav = key_getsavbyspi(sah, spi); if (sav != NULL) break; } SAHTREE_UNLOCK(); return sav; } /* * search SAD litmited alive SA, protocol, SPI. * OUT: * NULL : not found * others : found, pointer to a SA. */ static struct secasvar * key_getsavbyspi(struct secashead *sah, u_int32_t spi) { struct secasvar *sav; u_int stateidx, state; sav = NULL; SAHTREE_LOCK_ASSERT(); /* search all status */ for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) { state = saorder_state_alive[stateidx]; LIST_FOREACH(sav, &sah->savtree[state], chain) { /* sanity check */ if (sav->state != state) { ipseclog((LOG_DEBUG, "%s: " "invalid sav->state (queue: %d SA: %d)\n", __func__, state, sav->state)); continue; } if (sav->spi == spi) return sav; } } return NULL; } /* * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. * You must update these if need. * OUT: 0: success. * !0: failure. * * does not modify mbuf. does not free mbuf on error. */ static int key_setsaval(struct secasvar *sav, struct mbuf *m, const struct sadb_msghdr *mhp) { int error = 0; IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* initialization */ sav->replay = NULL; sav->key_auth = NULL; sav->key_enc = NULL; sav->sched = NULL; sav->schedlen = 0; sav->lft_c = NULL; sav->lft_h = NULL; sav->lft_s = NULL; sav->tdb_xform = NULL; /* transform */ sav->tdb_encalgxform = NULL; /* encoding algorithm */ sav->tdb_authalgxform = NULL; /* authentication algorithm */ sav->tdb_compalgxform = NULL; /* compression algorithm */ /* Initialize even if NAT-T not compiled in: */ sav->natt_type = 0; sav->natt_esp_frag_len = 0; /* SA */ if (mhp->ext[SADB_EXT_SA] != NULL) { const struct sadb_sa *sa0; + u_int32_t replay; sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { error = EINVAL; goto fail; } sav->alg_auth = sa0->sadb_sa_auth; sav->alg_enc = sa0->sadb_sa_encrypt; sav->flags = sa0->sadb_sa_flags; - /* replay window */ - if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { - sav->replay = (struct secreplay *) - malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); - if (sav->replay == NULL) { + /* Optional replay window */ + replay = 0; + if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) + replay = sa0->sadb_sa_replay; + if ((mhp->ext[SADB_X_EXT_SA_REPLAY]) != NULL) { + replay = ((const struct sadb_x_sa_replay *) + mhp->ext[SADB_X_EXT_SA_REPLAY])->sadb_x_sa_replay_replay; + + if (replay > UINT32_MAX - 32) { + ipseclog((LOG_DEBUG, "%s: replay window too big.\n", + __func__)); + error = EINVAL; + goto fail; + } + + replay = (replay + 7) >> 3; + } + + sav->replay = (struct secreplay *) + malloc(sizeof(struct secreplay), + M_IPSEC_MISC, M_NOWAIT|M_ZERO); + if (sav->replay == NULL) { + ipseclog((LOG_DEBUG, "%s: No more memory.\n", + __func__)); + error = ENOBUFS; + goto fail; + } + + if (replay != 0) { + /* number of 32b blocks to be allocated */ + u_int32_t bitmap_size; + + /* RFC 6479: + * - the allocated replay window size must be a power of two + * - use an extra 32b block as a redundant window + */ + bitmap_size = 1; + while (replay + 4 > bitmap_size) + bitmap_size <<= 1; + bitmap_size = bitmap_size / 4; + + sav->replay->bitmap = malloc(bitmap_size*sizeof(u_int32_t), + M_IPSEC_MISC, M_NOWAIT|M_ZERO); + if (sav->replay->bitmap == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); error = ENOBUFS; goto fail; } - if (sa0->sadb_sa_replay != 0) - sav->replay->bitmap = (caddr_t)(sav->replay+1); - sav->replay->wsize = sa0->sadb_sa_replay; + sav->replay->bitmap_size = bitmap_size; + sav->replay->wsize = replay; } } /* Authentication keys */ if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { const struct sadb_key *key0; int len; key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; len = mhp->extlen[SADB_EXT_KEY_AUTH]; error = 0; if (len < sizeof(*key0)) { error = EINVAL; goto fail; } switch (mhp->msg->sadb_msg_satype) { case SADB_SATYPE_AH: case SADB_SATYPE_ESP: case SADB_X_SATYPE_TCPSIGNATURE: if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && sav->alg_auth != SADB_X_AALG_NULL) error = EINVAL; break; case SADB_X_SATYPE_IPCOMP: default: error = EINVAL; break; } if (error) { ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", __func__)); goto fail; } sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, M_IPSEC_MISC); if (sav->key_auth == NULL ) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); error = ENOBUFS; goto fail; } } /* Encryption key */ if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { const struct sadb_key *key0; int len; key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; error = 0; if (len < sizeof(*key0)) { error = EINVAL; goto fail; } switch (mhp->msg->sadb_msg_satype) { case SADB_SATYPE_ESP: if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && sav->alg_enc != SADB_EALG_NULL) { error = EINVAL; break; } sav->key_enc = (struct seckey *)key_dup_keymsg(key0, len, M_IPSEC_MISC); if (sav->key_enc == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); error = ENOBUFS; goto fail; } break; case SADB_X_SATYPE_IPCOMP: if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) error = EINVAL; sav->key_enc = NULL; /*just in case*/ break; case SADB_SATYPE_AH: case SADB_X_SATYPE_TCPSIGNATURE: default: error = EINVAL; break; } if (error) { ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", __func__)); goto fail; } } /* set iv */ sav->ivlen = 0; switch (mhp->msg->sadb_msg_satype) { case SADB_SATYPE_AH: error = xform_init(sav, XF_AH); break; case SADB_SATYPE_ESP: error = xform_init(sav, XF_ESP); break; case SADB_X_SATYPE_IPCOMP: error = xform_init(sav, XF_IPCOMP); break; case SADB_X_SATYPE_TCPSIGNATURE: error = xform_init(sav, XF_TCPSIGNATURE); break; } if (error) { ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", __func__, mhp->msg->sadb_msg_satype)); goto fail; } /* reset created */ sav->created = time_second; /* make lifetime for CURRENT */ sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); if (sav->lft_c == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); error = ENOBUFS; goto fail; } sav->lft_c->allocations = 0; sav->lft_c->bytes = 0; sav->lft_c->addtime = time_second; sav->lft_c->usetime = 0; /* lifetimes for HARD and SOFT */ { const struct sadb_lifetime *lft0; lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; if (lft0 != NULL) { if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { error = EINVAL; goto fail; } sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); if (sav->lft_h == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); error = ENOBUFS; goto fail; } /* to be initialize ? */ } lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; if (lft0 != NULL) { if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { error = EINVAL; goto fail; } sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); if (sav->lft_s == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); error = ENOBUFS; goto fail; } /* to be initialize ? */ } } return 0; fail: /* initialization */ key_cleansav(sav); return error; } /* * validation with a secasvar entry, and set SADB_SATYPE_MATURE. * OUT: 0: valid * other: errno */ static int key_mature(struct secasvar *sav) { int error; /* check SPI value */ switch (sav->sah->saidx.proto) { case IPPROTO_ESP: case IPPROTO_AH: /* * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values * 1-255 reserved by IANA for future use, * 0 for implementation specific, local use. */ if (ntohl(sav->spi) <= 255) { ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", __func__, (u_int32_t)ntohl(sav->spi))); return EINVAL; } break; } /* check satype */ switch (sav->sah->saidx.proto) { case IPPROTO_ESP: /* check flags */ if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " "given to old-esp.\n", __func__)); return EINVAL; } error = xform_init(sav, XF_ESP); break; case IPPROTO_AH: /* check flags */ if (sav->flags & SADB_X_EXT_DERIV) { ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " "given to AH SA.\n", __func__)); return EINVAL; } if (sav->alg_enc != SADB_EALG_NONE) { ipseclog((LOG_DEBUG, "%s: protocol and algorithm " "mismated.\n", __func__)); return(EINVAL); } error = xform_init(sav, XF_AH); break; case IPPROTO_IPCOMP: if (sav->alg_auth != SADB_AALG_NONE) { ipseclog((LOG_DEBUG, "%s: protocol and algorithm " "mismated.\n", __func__)); return(EINVAL); } if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 && ntohl(sav->spi) >= 0x10000) { ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", __func__)); return(EINVAL); } error = xform_init(sav, XF_IPCOMP); break; case IPPROTO_TCP: if (sav->alg_enc != SADB_EALG_NONE) { ipseclog((LOG_DEBUG, "%s: protocol and algorithm " "mismated.\n", __func__)); return(EINVAL); } error = xform_init(sav, XF_TCPSIGNATURE); break; default: ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); error = EPROTONOSUPPORT; break; } if (error == 0) { SAHTREE_LOCK(); key_sa_chgstate(sav, SADB_SASTATE_MATURE); SAHTREE_UNLOCK(); } return (error); } /* * subroutine for SADB_GET and SADB_DUMP. */ static struct mbuf * key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, u_int32_t seq, u_int32_t pid) { struct mbuf *result = NULL, *tres = NULL, *m; int i; int dumporder[] = { - SADB_EXT_SA, SADB_X_EXT_SA2, + SADB_EXT_SA, SADB_X_EXT_SA2, SADB_X_EXT_SA_REPLAY, SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, #ifdef IPSEC_NAT_T SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG, #endif }; + u_int32_t replay_count; m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); if (m == NULL) goto fail; result = m; for (i = nitems(dumporder) - 1; i >= 0; i--) { m = NULL; switch (dumporder[i]) { case SADB_EXT_SA: m = key_setsadbsa(sav); if (!m) goto fail; break; case SADB_X_EXT_SA2: - m = key_setsadbxsa2(sav->sah->saidx.mode, - sav->replay ? sav->replay->count : 0, + SECASVAR_LOCK(sav); + replay_count = sav->replay ? sav->replay->count : 0; + SECASVAR_UNLOCK(sav); + m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count, sav->sah->saidx.reqid); if (!m) goto fail; break; + case SADB_X_EXT_SA_REPLAY: + if (sav->replay == NULL || + sav->replay->wsize <= UINT8_MAX) + continue; + + m = key_setsadbxsareplay(sav->replay->wsize); + if (!m) + goto fail; + break; + case SADB_EXT_ADDRESS_SRC: m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) goto fail; break; case SADB_EXT_ADDRESS_DST: m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) goto fail; break; case SADB_EXT_KEY_AUTH: if (!sav->key_auth) continue; m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); if (!m) goto fail; break; case SADB_EXT_KEY_ENCRYPT: if (!sav->key_enc) continue; m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); if (!m) goto fail; break; case SADB_EXT_LIFETIME_CURRENT: if (!sav->lft_c) continue; m = key_setlifetime(sav->lft_c, SADB_EXT_LIFETIME_CURRENT); if (!m) goto fail; break; case SADB_EXT_LIFETIME_HARD: if (!sav->lft_h) continue; m = key_setlifetime(sav->lft_h, SADB_EXT_LIFETIME_HARD); if (!m) goto fail; break; case SADB_EXT_LIFETIME_SOFT: if (!sav->lft_s) continue; m = key_setlifetime(sav->lft_s, SADB_EXT_LIFETIME_SOFT); if (!m) goto fail; break; #ifdef IPSEC_NAT_T case SADB_X_EXT_NAT_T_TYPE: m = key_setsadbxtype(sav->natt_type); if (!m) goto fail; break; case SADB_X_EXT_NAT_T_DPORT: m = key_setsadbxport( KEY_PORTFROMSADDR(&sav->sah->saidx.dst), SADB_X_EXT_NAT_T_DPORT); if (!m) goto fail; break; case SADB_X_EXT_NAT_T_SPORT: m = key_setsadbxport( KEY_PORTFROMSADDR(&sav->sah->saidx.src), SADB_X_EXT_NAT_T_SPORT); if (!m) goto fail; break; case SADB_X_EXT_NAT_T_OAI: case SADB_X_EXT_NAT_T_OAR: case SADB_X_EXT_NAT_T_FRAG: /* We do not (yet) support those. */ continue; #endif case SADB_EXT_ADDRESS_PROXY: case SADB_EXT_IDENTITY_SRC: case SADB_EXT_IDENTITY_DST: /* XXX: should we brought from SPD ? */ case SADB_EXT_SENSITIVITY: default: continue; } if (!m) goto fail; if (tres) m_cat(m, tres); tres = m; } m_cat(result, tres); tres = NULL; if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) goto fail; } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); return result; fail: m_freem(result); m_freem(tres); return NULL; } /* * set data into sadb_msg. */ static struct mbuf * key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, pid_t pid, u_int16_t reserved) { struct mbuf *m; struct sadb_msg *p; int len; len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); if (len > MCLBYTES) return NULL; MGETHDR(m, M_NOWAIT, MT_DATA); if (m && len > MHLEN) { if (!(MCLGET(m, M_NOWAIT))) { m_freem(m); m = NULL; } } if (!m) return NULL; m->m_pkthdr.len = m->m_len = len; m->m_next = NULL; p = mtod(m, struct sadb_msg *); bzero(p, len); p->sadb_msg_version = PF_KEY_V2; p->sadb_msg_type = type; p->sadb_msg_errno = 0; p->sadb_msg_satype = satype; p->sadb_msg_len = PFKEY_UNIT64(tlen); p->sadb_msg_reserved = reserved; p->sadb_msg_seq = seq; p->sadb_msg_pid = (u_int32_t)pid; return m; } /* * copy secasvar data into sadb_address. */ static struct mbuf * key_setsadbsa(struct secasvar *sav) { struct mbuf *m; struct sadb_sa *p; int len; len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) return (NULL); m_align(m, len); m->m_len = len; p = mtod(m, struct sadb_sa *); bzero(p, len); p->sadb_sa_len = PFKEY_UNIT64(len); p->sadb_sa_exttype = SADB_EXT_SA; p->sadb_sa_spi = sav->spi; - p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); + p->sadb_sa_replay = sav->replay ? + (sav->replay->wsize > UINT8_MAX ? + UINT8_MAX : sav->replay->wsize) : 0; p->sadb_sa_state = sav->state; p->sadb_sa_auth = sav->alg_auth; p->sadb_sa_encrypt = sav->alg_enc; p->sadb_sa_flags = sav->flags; return m; } /* * set data into sadb_address. */ static struct mbuf * key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto) { struct mbuf *m; struct sadb_address *p; size_t len; len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + PFKEY_ALIGN8(saddr->sa_len); m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) return (NULL); m_align(m, len); m->m_len = len; p = mtod(m, struct sadb_address *); bzero(p, len); p->sadb_address_len = PFKEY_UNIT64(len); p->sadb_address_exttype = exttype; p->sadb_address_proto = ul_proto; if (prefixlen == FULLMASK) { switch (saddr->sa_family) { case AF_INET: prefixlen = sizeof(struct in_addr) << 3; break; case AF_INET6: prefixlen = sizeof(struct in6_addr) << 3; break; default: ; /*XXX*/ } } p->sadb_address_prefixlen = prefixlen; p->sadb_address_reserved = 0; bcopy(saddr, mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), saddr->sa_len); return m; } /* * set data into sadb_x_sa2. */ static struct mbuf * key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) { struct mbuf *m; struct sadb_x_sa2 *p; size_t len; len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) return (NULL); m_align(m, len); m->m_len = len; p = mtod(m, struct sadb_x_sa2 *); bzero(p, len); p->sadb_x_sa2_len = PFKEY_UNIT64(len); p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; p->sadb_x_sa2_mode = mode; p->sadb_x_sa2_reserved1 = 0; p->sadb_x_sa2_reserved2 = 0; p->sadb_x_sa2_sequence = seq; p->sadb_x_sa2_reqid = reqid; return m; } +/* + * Set data into sadb_x_sa_replay. + */ +static struct mbuf * +key_setsadbxsareplay(u_int32_t replay) +{ + struct mbuf *m; + struct sadb_x_sa_replay *p; + size_t len; + + len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa_replay)); + m = m_get2(len, M_NOWAIT, MT_DATA, 0); + if (m == NULL) + return (NULL); + m_align(m, len); + m->m_len = len; + p = mtod(m, struct sadb_x_sa_replay *); + + bzero(p, len); + p->sadb_x_sa_replay_len = PFKEY_UNIT64(len); + p->sadb_x_sa_replay_exttype = SADB_X_EXT_SA_REPLAY; + p->sadb_x_sa_replay_replay = (replay << 3); + + return m; +} + #ifdef IPSEC_NAT_T /* * Set a type in sadb_x_nat_t_type. */ static struct mbuf * key_setsadbxtype(u_int16_t type) { struct mbuf *m; size_t len; struct sadb_x_nat_t_type *p; len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) return (NULL); m_align(m, len); m->m_len = len; p = mtod(m, struct sadb_x_nat_t_type *); bzero(p, len); p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; p->sadb_x_nat_t_type_type = type; return (m); } /* * Set a port in sadb_x_nat_t_port. * In contrast to default RFC 2367 behaviour, port is in network byte order. */ static struct mbuf * key_setsadbxport(u_int16_t port, u_int16_t type) { struct mbuf *m; size_t len; struct sadb_x_nat_t_port *p; len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) return (NULL); m_align(m, len); m->m_len = len; p = mtod(m, struct sadb_x_nat_t_port *); bzero(p, len); p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); p->sadb_x_nat_t_port_exttype = type; p->sadb_x_nat_t_port_port = port; return (m); } /* * Get port from sockaddr. Port is in network byte order. */ u_int16_t key_portfromsaddr(struct sockaddr *sa) { switch (sa->sa_family) { #ifdef INET case AF_INET: return ((struct sockaddr_in *)sa)->sin_port; #endif #ifdef INET6 case AF_INET6: return ((struct sockaddr_in6 *)sa)->sin6_port; #endif } KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s unexpected address family %d\n", __func__, sa->sa_family)); return (0); } #endif /* IPSEC_NAT_T */ /* * Set port in struct sockaddr. Port is in network byte order. */ static void key_porttosaddr(struct sockaddr *sa, u_int16_t port) { switch (sa->sa_family) { #ifdef INET case AF_INET: ((struct sockaddr_in *)sa)->sin_port = port; break; #endif #ifdef INET6 case AF_INET6: ((struct sockaddr_in6 *)sa)->sin6_port = port; break; #endif default: ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", __func__, sa->sa_family)); break; } } /* * set data into sadb_x_policy */ static struct mbuf * key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id, u_int32_t priority) { struct mbuf *m; struct sadb_x_policy *p; size_t len; len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) return (NULL); m_align(m, len); m->m_len = len; p = mtod(m, struct sadb_x_policy *); bzero(p, len); p->sadb_x_policy_len = PFKEY_UNIT64(len); p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; p->sadb_x_policy_type = type; p->sadb_x_policy_dir = dir; p->sadb_x_policy_id = id; p->sadb_x_policy_priority = priority; return m; } /* %%% utilities */ /* Take a key message (sadb_key) from the socket and turn it into one * of the kernel's key structures (seckey). * * IN: pointer to the src * OUT: NULL no more memory */ struct seckey * key_dup_keymsg(const struct sadb_key *src, u_int len, struct malloc_type *type) { struct seckey *dst; dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); if (dst != NULL) { dst->bits = src->sadb_key_bits; dst->key_data = (char *)malloc(len, type, M_NOWAIT); if (dst->key_data != NULL) { bcopy((const char *)src + sizeof(struct sadb_key), dst->key_data, len); } else { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); free(dst, type); dst = NULL; } } else { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); } return dst; } /* Take a lifetime message (sadb_lifetime) passed in on a socket and * turn it into one of the kernel's lifetime structures (seclifetime). * * IN: pointer to the destination, source and malloc type * OUT: NULL, no more memory */ static struct seclifetime * key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type) { struct seclifetime *dst = NULL; dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), type, M_NOWAIT); if (dst == NULL) { /* XXX counter */ ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); } else { dst->allocations = src->sadb_lifetime_allocations; dst->bytes = src->sadb_lifetime_bytes; dst->addtime = src->sadb_lifetime_addtime; dst->usetime = src->sadb_lifetime_usetime; } return dst; } /* compare my own address * OUT: 1: true, i.e. my address. * 0: false */ int key_ismyaddr(struct sockaddr *sa) { IPSEC_ASSERT(sa != NULL, ("null sockaddr")); switch (sa->sa_family) { #ifdef INET case AF_INET: return (in_localip(satosin(sa)->sin_addr)); #endif #ifdef INET6 case AF_INET6: return key_ismyaddr6((struct sockaddr_in6 *)sa); #endif } return 0; } #ifdef INET6 /* * compare my own address for IPv6. * 1: ours * 0: other */ static int key_ismyaddr6(struct sockaddr_in6 *sin6) { struct in6_addr in6; if (!IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr)) return (in6_localip(&sin6->sin6_addr)); /* Convert address into kernel-internal form */ in6 = sin6->sin6_addr; in6.s6_addr16[1] = htons(sin6->sin6_scope_id & 0xffff); return (in6_localip(&in6)); } #endif /*INET6*/ /* * compare two secasindex structure. * flag can specify to compare 2 saidxes. * compare two secasindex structure without both mode and reqid. * don't compare port. * IN: * saidx0: source, it can be in SAD. * saidx1: object. * OUT: * 1 : equal * 0 : not equal */ static int key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1, int flag) { int chkport = 0; /* sanity */ if (saidx0 == NULL && saidx1 == NULL) return 1; if (saidx0 == NULL || saidx1 == NULL) return 0; if (saidx0->proto != saidx1->proto) return 0; if (flag == CMP_EXACTLY) { if (saidx0->mode != saidx1->mode) return 0; if (saidx0->reqid != saidx1->reqid) return 0; if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) return 0; } else { /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ if (flag == CMP_MODE_REQID ||flag == CMP_REQID) { /* * If reqid of SPD is non-zero, unique SA is required. * The result must be of same reqid in this case. */ if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) return 0; } if (flag == CMP_MODE_REQID) { if (saidx0->mode != IPSEC_MODE_ANY && saidx0->mode != saidx1->mode) return 0; } #ifdef IPSEC_NAT_T /* * If NAT-T is enabled, check ports for tunnel mode. * Do not check ports if they are set to zero in the SPD. * Also do not do it for native transport mode, as there * is no port information available in the SP. */ if ((saidx1->mode == IPSEC_MODE_TUNNEL || (saidx1->mode == IPSEC_MODE_TRANSPORT && saidx1->proto == IPPROTO_ESP)) && saidx1->src.sa.sa_family == AF_INET && saidx1->dst.sa.sa_family == AF_INET && ((const struct sockaddr_in *)(&saidx1->src))->sin_port && ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) chkport = 1; #endif /* IPSEC_NAT_T */ if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) { return 0; } if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) { return 0; } } return 1; } /* * compare two secindex structure exactly. * IN: * spidx0: source, it is often in SPD. * spidx1: object, it is often from PFKEY message. * OUT: * 1 : equal * 0 : not equal */ static int key_cmpspidx_exactly(struct secpolicyindex *spidx0, struct secpolicyindex *spidx1) { /* sanity */ if (spidx0 == NULL && spidx1 == NULL) return 1; if (spidx0 == NULL || spidx1 == NULL) return 0; if (spidx0->prefs != spidx1->prefs || spidx0->prefd != spidx1->prefd || spidx0->ul_proto != spidx1->ul_proto) return 0; return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; } /* * compare two secindex structure with mask. * IN: * spidx0: source, it is often in SPD. * spidx1: object, it is often from IP header. * OUT: * 1 : equal * 0 : not equal */ static int key_cmpspidx_withmask(struct secpolicyindex *spidx0, struct secpolicyindex *spidx1) { /* sanity */ if (spidx0 == NULL && spidx1 == NULL) return 1; if (spidx0 == NULL || spidx1 == NULL) return 0; if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) return 0; /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY && spidx0->ul_proto != spidx1->ul_proto) return 0; switch (spidx0->src.sa.sa_family) { case AF_INET: if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) return 0; if (!key_bbcmp(&spidx0->src.sin.sin_addr, &spidx1->src.sin.sin_addr, spidx0->prefs)) return 0; break; case AF_INET6: if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) return 0; /* * scope_id check. if sin6_scope_id is 0, we regard it * as a wildcard scope, which matches any scope zone ID. */ if (spidx0->src.sin6.sin6_scope_id && spidx1->src.sin6.sin6_scope_id && spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) return 0; if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, &spidx1->src.sin6.sin6_addr, spidx0->prefs)) return 0; break; default: /* XXX */ if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) return 0; break; } switch (spidx0->dst.sa.sa_family) { case AF_INET: if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) return 0; if (!key_bbcmp(&spidx0->dst.sin.sin_addr, &spidx1->dst.sin.sin_addr, spidx0->prefd)) return 0; break; case AF_INET6: if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) return 0; /* * scope_id check. if sin6_scope_id is 0, we regard it * as a wildcard scope, which matches any scope zone ID. */ if (spidx0->dst.sin6.sin6_scope_id && spidx1->dst.sin6.sin6_scope_id && spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) return 0; if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) return 0; break; default: /* XXX */ if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) return 0; break; } /* XXX Do we check other field ? e.g. flowinfo */ return 1; } /* returns 0 on match */ static int key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2, int port) { #ifdef satosin #undef satosin #endif #define satosin(s) ((const struct sockaddr_in *)s) #ifdef satosin6 #undef satosin6 #endif #define satosin6(s) ((const struct sockaddr_in6 *)s) if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) return 1; switch (sa1->sa_family) { case AF_INET: if (sa1->sa_len != sizeof(struct sockaddr_in)) return 1; if (satosin(sa1)->sin_addr.s_addr != satosin(sa2)->sin_addr.s_addr) { return 1; } if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) return 1; break; case AF_INET6: if (sa1->sa_len != sizeof(struct sockaddr_in6)) return 1; /*EINVAL*/ if (satosin6(sa1)->sin6_scope_id != satosin6(sa2)->sin6_scope_id) { return 1; } if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, &satosin6(sa2)->sin6_addr)) { return 1; } if (port && satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { return 1; } break; default: if (bcmp(sa1, sa2, sa1->sa_len) != 0) return 1; break; } return 0; #undef satosin #undef satosin6 } /* * compare two buffers with mask. * IN: * addr1: source * addr2: object * bits: Number of bits to compare * OUT: * 1 : equal * 0 : not equal */ static int key_bbcmp(const void *a1, const void *a2, u_int bits) { const unsigned char *p1 = a1; const unsigned char *p2 = a2; /* XXX: This could be considerably faster if we compare a word * at a time, but it is complicated on LSB Endian machines */ /* Handle null pointers */ if (p1 == NULL || p2 == NULL) return (p1 == p2); while (bits >= 8) { if (*p1++ != *p2++) return 0; bits -= 8; } if (bits > 0) { u_int8_t mask = ~((1<<(8-bits))-1); if ((*p1 & mask) != (*p2 & mask)) return 0; } return 1; /* Match! */ } static void key_flush_spd(time_t now) { SPTREE_RLOCK_TRACKER; struct secpolicy *sp; u_int dir; /* SPD */ for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { restart: SPTREE_RLOCK(); TAILQ_FOREACH(sp, &V_sptree[dir], chain) { if (sp->lifetime == 0 && sp->validtime == 0) continue; if ((sp->lifetime && now - sp->created > sp->lifetime) || (sp->validtime && now - sp->lastused > sp->validtime)) { SP_ADDREF(sp); SPTREE_RUNLOCK(); key_spdexpire(sp); key_unlink(sp); KEY_FREESP(&sp); goto restart; } } SPTREE_RUNLOCK(); } } static void key_flush_sad(time_t now) { struct secashead *sah, *nextsah; struct secasvar *sav, *nextsav; /* SAD */ SAHTREE_LOCK(); LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { /* if sah has been dead, then delete it and process next sah. */ if (sah->state == SADB_SASTATE_DEAD) { key_delsah(sah); continue; } /* if LARVAL entry doesn't become MATURE, delete it. */ LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { /* Need to also check refcnt for a larval SA ??? */ if (now - sav->created > V_key_larval_lifetime) KEY_FREESAV(&sav); } /* * check MATURE entry to start to send expire message * whether or not. */ LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { /* we don't need to check. */ if (sav->lft_s == NULL) continue; /* sanity check */ if (sav->lft_c == NULL) { ipseclog((LOG_DEBUG,"%s: there is no CURRENT " "time, why?\n", __func__)); continue; } /* * RFC 2367: * HARD lifetimes MUST take precedence over SOFT * lifetimes, meaning if the HARD and SOFT lifetimes * are the same, the HARD lifetime will appear on the * EXPIRE message. */ /* check HARD lifetime */ if ((sav->lft_h->addtime != 0 && now - sav->created > sav->lft_h->addtime) || (sav->lft_h->bytes != 0 && sav->lft_h->bytes < sav->lft_c->bytes)) { key_sa_chgstate(sav, SADB_SASTATE_DEAD); key_expire(sav, 1); KEY_FREESAV(&sav); } /* check SOFT lifetime */ else if ((sav->lft_s->addtime != 0 && now - sav->created > sav->lft_s->addtime) || (sav->lft_s->bytes != 0 && sav->lft_s->bytes < sav->lft_c->bytes)) { key_sa_chgstate(sav, SADB_SASTATE_DYING); key_expire(sav, 0); } } /* check DYING entry to change status to DEAD. */ LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { /* we don't need to check. */ if (sav->lft_h == NULL) continue; /* sanity check */ if (sav->lft_c == NULL) { ipseclog((LOG_DEBUG, "%s: there is no CURRENT " "time, why?\n", __func__)); continue; } if (sav->lft_h->addtime != 0 && now - sav->created > sav->lft_h->addtime) { key_sa_chgstate(sav, SADB_SASTATE_DEAD); key_expire(sav, 1); KEY_FREESAV(&sav); } #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ else if (sav->lft_s != NULL && sav->lft_s->addtime != 0 && now - sav->created > sav->lft_s->addtime) { /* * XXX: should be checked to be * installed the valid SA. */ /* * If there is no SA then sending * expire message. */ key_expire(sav, 0); } #endif /* check HARD lifetime by bytes */ else if (sav->lft_h->bytes != 0 && sav->lft_h->bytes < sav->lft_c->bytes) { key_sa_chgstate(sav, SADB_SASTATE_DEAD); key_expire(sav, 1); KEY_FREESAV(&sav); } } /* delete entry in DEAD */ LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { /* sanity check */ if (sav->state != SADB_SASTATE_DEAD) { ipseclog((LOG_DEBUG, "%s: invalid sav->state " "(queue: %d SA: %d): kill it anyway\n", __func__, SADB_SASTATE_DEAD, sav->state)); } /* * do not call key_freesav() here. * sav should already be freed, and sav->refcnt * shows other references to sav * (such as from SPD). */ } } SAHTREE_UNLOCK(); } static void key_flush_acq(time_t now) { struct secacq *acq, *nextacq; /* ACQ tree */ ACQ_LOCK(); for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { nextacq = LIST_NEXT(acq, chain); if (now - acq->created > V_key_blockacq_lifetime && __LIST_CHAINED(acq)) { LIST_REMOVE(acq, chain); free(acq, M_IPSEC_SAQ); } } ACQ_UNLOCK(); } static void key_flush_spacq(time_t now) { struct secspacq *acq, *nextacq; /* SP ACQ tree */ SPACQ_LOCK(); for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { nextacq = LIST_NEXT(acq, chain); if (now - acq->created > V_key_blockacq_lifetime && __LIST_CHAINED(acq)) { LIST_REMOVE(acq, chain); free(acq, M_IPSEC_SAQ); } } SPACQ_UNLOCK(); } /* * time handler. * scanning SPD and SAD to check status for each entries, * and do to remove or to expire. * XXX: year 2038 problem may remain. */ static void key_timehandler(void *arg) { VNET_ITERATOR_DECL(vnet_iter); time_t now = time_second; VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); key_flush_spd(now); key_flush_sad(now); key_flush_acq(now); key_flush_spacq(now); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); #ifndef IPSEC_DEBUG2 /* do exchange to tick time !! */ callout_schedule(&key_timer, hz); #endif /* IPSEC_DEBUG2 */ } u_long key_random() { u_long value; key_randomfill(&value, sizeof(value)); return value; } void key_randomfill(void *p, size_t l) { size_t n; u_long v; static int warn = 1; n = 0; n = (size_t)read_random(p, (u_int)l); /* last resort */ while (n < l) { v = random(); bcopy(&v, (u_int8_t *)p + n, l - n < sizeof(v) ? l - n : sizeof(v)); n += sizeof(v); if (warn) { printf("WARNING: pseudo-random number generator " "used for IPsec processing\n"); warn = 0; } } } /* * map SADB_SATYPE_* to IPPROTO_*. * if satype == SADB_SATYPE then satype is mapped to ~0. * OUT: * 0: invalid satype. */ static u_int16_t key_satype2proto(u_int8_t satype) { switch (satype) { case SADB_SATYPE_UNSPEC: return IPSEC_PROTO_ANY; case SADB_SATYPE_AH: return IPPROTO_AH; case SADB_SATYPE_ESP: return IPPROTO_ESP; case SADB_X_SATYPE_IPCOMP: return IPPROTO_IPCOMP; case SADB_X_SATYPE_TCPSIGNATURE: return IPPROTO_TCP; default: return 0; } /* NOTREACHED */ } /* * map IPPROTO_* to SADB_SATYPE_* * OUT: * 0: invalid protocol type. */ static u_int8_t key_proto2satype(u_int16_t proto) { switch (proto) { case IPPROTO_AH: return SADB_SATYPE_AH; case IPPROTO_ESP: return SADB_SATYPE_ESP; case IPPROTO_IPCOMP: return SADB_X_SATYPE_IPCOMP; case IPPROTO_TCP: return SADB_X_SATYPE_TCPSIGNATURE; default: return 0; } /* NOTREACHED */ } /* %%% PF_KEY */ /* * SADB_GETSPI processing is to receive * * from the IKMPd, to assign a unique spi value, to hang on the INBOUND * tree with the status of LARVAL, and send * * to the IKMPd. * * IN: mhp: pointer to the pointer to each header. * OUT: NULL if fail. * other if success, return pointer to the message to send. */ static int key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_address *src0, *dst0; struct secasindex saidx; struct secashead *newsah; struct secasvar *newsav; u_int8_t proto; u_int32_t spi; u_int8_t mode; u_int32_t reqid; int error; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_X_EXT_SA2] != NULL) { mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; } else { mode = IPSEC_MODE_ANY; reqid = 0; } src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } /* * Make sure the port numbers are zero. * In case of NAT-T we will update them later if needed. */ switch (((struct sockaddr *)(src0 + 1))->sa_family) { case AF_INET: if (((struct sockaddr *)(src0 + 1))->sa_len != sizeof(struct sockaddr_in)) return key_senderror(so, m, EINVAL); ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; break; case AF_INET6: if (((struct sockaddr *)(src0 + 1))->sa_len != sizeof(struct sockaddr_in6)) return key_senderror(so, m, EINVAL); ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; break; default: ; /*???*/ } switch (((struct sockaddr *)(dst0 + 1))->sa_family) { case AF_INET: if (((struct sockaddr *)(dst0 + 1))->sa_len != sizeof(struct sockaddr_in)) return key_senderror(so, m, EINVAL); ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; break; case AF_INET6: if (((struct sockaddr *)(dst0 + 1))->sa_len != sizeof(struct sockaddr_in6)) return key_senderror(so, m, EINVAL); ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; break; default: ; /*???*/ } /* XXX boundary check against sa_len */ KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); #ifdef IPSEC_NAT_T /* * Handle NAT-T info if present. * We made sure the port numbers are zero above, so we do * not have to worry in case we do not update them. */ if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__)); if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__)); if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { struct sadb_x_nat_t_type *type; struct sadb_x_nat_t_port *sport, *dport; if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { ipseclog((LOG_DEBUG, "%s: invalid nat-t message " "passed.\n", __func__)); return key_senderror(so, m, EINVAL); } sport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_SPORT]; dport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_DPORT]; if (sport) KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); if (dport) KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); } #endif /* SPI allocation */ spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], &saidx); if (spi == 0) return key_senderror(so, m, EINVAL); /* get a SA index */ if ((newsah = key_getsah(&saidx)) == NULL) { /* create a new SA index */ if ((newsah = key_newsah(&saidx)) == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); return key_senderror(so, m, ENOBUFS); } } /* get a new SA */ /* XXX rewrite */ newsav = KEY_NEWSAV(m, mhp, newsah, &error); if (newsav == NULL) { /* XXX don't free new SA index allocated in above. */ return key_senderror(so, m, error); } /* set spi */ newsav->spi = htonl(spi); /* delete the entry in acqtree */ if (mhp->msg->sadb_msg_seq != 0) { struct secacq *acq; if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { /* reset counter in order to deletion by timehandler. */ acq->created = time_second; acq->count = 0; } } { struct mbuf *n, *nn; struct sadb_sa *m_sa; struct sadb_msg *newmsg; int off, len; /* create new sadb_msg to reply. */ len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + PFKEY_ALIGN8(sizeof(struct sadb_sa)); MGETHDR(n, M_NOWAIT, MT_DATA); if (len > MHLEN) { if (!(MCLGET(n, M_NOWAIT))) { m_freem(n); n = NULL; } } if (!n) return key_senderror(so, m, ENOBUFS); n->m_len = len; n->m_next = NULL; off = 0; m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); m_sa->sadb_sa_exttype = SADB_EXT_SA; m_sa->sadb_sa_spi = htonl(spi); off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", off, len)); n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); if (!n->m_next) { m_freem(n); return key_senderror(so, m, ENOBUFS); } if (n->m_len < sizeof(struct sadb_msg)) { n = m_pullup(n, sizeof(struct sadb_msg)); if (n == NULL) return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); } n->m_pkthdr.len = 0; for (nn = n; nn; nn = nn->m_next) n->m_pkthdr.len += nn->m_len; newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_seq = newsav->seq; newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } } /* * allocating new SPI * called by key_getspi(). * OUT: * 0: failure. * others: success. */ static u_int32_t key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx) { u_int32_t newspi; u_int32_t min, max; int count = V_key_spi_trycnt; /* set spi range to allocate */ if (spirange != NULL) { min = spirange->sadb_spirange_min; max = spirange->sadb_spirange_max; } else { min = V_key_spi_minval; max = V_key_spi_maxval; } /* IPCOMP needs 2-byte SPI */ if (saidx->proto == IPPROTO_IPCOMP) { u_int32_t t; if (min >= 0x10000) min = 0xffff; if (max >= 0x10000) max = 0xffff; if (min > max) { t = min; min = max; max = t; } } if (min == max) { if (key_checkspidup(saidx, min) != NULL) { ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", __func__, min)); return 0; } count--; /* taking one cost. */ newspi = min; } else { /* init SPI */ newspi = 0; /* when requesting to allocate spi ranged */ while (count--) { /* generate pseudo-random SPI value ranged. */ newspi = min + (key_random() % (max - min + 1)); if (key_checkspidup(saidx, newspi) == NULL) break; } if (count == 0 || newspi == 0) { ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", __func__)); return 0; } } /* statistics */ keystat.getspi_count = (keystat.getspi_count + V_key_spi_trycnt - count) / 2; return newspi; } /* * SADB_UPDATE processing * receive * * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. * and send * * to the ikmpd. * * m will always be freed. */ static int key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_sa *sa0; struct sadb_address *src0, *dst0; #ifdef IPSEC_NAT_T struct sadb_x_nat_t_type *type; struct sadb_x_nat_t_port *sport, *dport; struct sadb_address *iaddr, *raddr; struct sadb_x_nat_t_frag *frag; #endif struct secasindex saidx; struct secashead *sah; struct secasvar *sav; u_int16_t proto; u_int8_t mode; u_int32_t reqid; int error; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_SA] == NULL || mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_X_EXT_SA2] != NULL) { mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; } else { mode = IPSEC_MODE_ANY; reqid = 0; } /* XXX boundary checking for other extensions */ sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); /* XXX boundary check against sa_len */ KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); /* * Make sure the port numbers are zero. * In case of NAT-T we will update them later if needed. */ KEY_PORTTOSADDR(&saidx.src, 0); KEY_PORTTOSADDR(&saidx.dst, 0); #ifdef IPSEC_NAT_T /* * Handle NAT-T info if present. */ if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { ipseclog((LOG_DEBUG, "%s: invalid message.\n", __func__)); return key_senderror(so, m, EINVAL); } type = (struct sadb_x_nat_t_type *) mhp->ext[SADB_X_EXT_NAT_T_TYPE]; sport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_SPORT]; dport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_DPORT]; } else { type = NULL; sport = dport = NULL; } if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { ipseclog((LOG_DEBUG, "%s: invalid message\n", __func__)); return key_senderror(so, m, EINVAL); } iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); } else { iaddr = raddr = NULL; } if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { ipseclog((LOG_DEBUG, "%s: invalid message\n", __func__)); return key_senderror(so, m, EINVAL); } frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG]; } else { frag = NULL; } #endif /* get a SA header */ if ((sah = key_getsah(&saidx)) == NULL) { ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); return key_senderror(so, m, ENOENT); } /* set spidx if there */ /* XXX rewrite */ error = key_setident(sah, m, mhp); if (error) return key_senderror(so, m, error); /* find a SA with sequence number. */ #ifdef IPSEC_DOSEQCHECK if (mhp->msg->sadb_msg_seq != 0 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " "exists.\n", __func__, mhp->msg->sadb_msg_seq)); return key_senderror(so, m, ENOENT); } #else SAHTREE_LOCK(); sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); SAHTREE_UNLOCK(); if (sav == NULL) { ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); return key_senderror(so, m, EINVAL); } #endif /* validity check */ if (sav->sah->saidx.proto != proto) { ipseclog((LOG_DEBUG, "%s: protocol mismatched " "(DB=%u param=%u)\n", __func__, sav->sah->saidx.proto, proto)); return key_senderror(so, m, EINVAL); } #ifdef IPSEC_DOSEQCHECK if (sav->spi != sa0->sadb_sa_spi) { ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", __func__, (u_int32_t)ntohl(sav->spi), (u_int32_t)ntohl(sa0->sadb_sa_spi))); return key_senderror(so, m, EINVAL); } #endif if (sav->pid != mhp->msg->sadb_msg_pid) { ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", __func__, sav->pid, mhp->msg->sadb_msg_pid)); return key_senderror(so, m, EINVAL); } /* copy sav values */ error = key_setsaval(sav, m, mhp); if (error) { KEY_FREESAV(&sav); return key_senderror(so, m, error); } #ifdef IPSEC_NAT_T /* * Handle more NAT-T info if present, * now that we have a sav to fill. */ if (type) sav->natt_type = type->sadb_x_nat_t_type_type; if (sport) KEY_PORTTOSADDR(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port); if (dport) KEY_PORTTOSADDR(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port); #if 0 /* * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. * We should actually check for a minimum MTU here, if we * want to support it in ip_output. */ if (frag) sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; #endif #endif /* check SA values to be mature. */ if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { KEY_FREESAV(&sav); return key_senderror(so, m, 0); } { struct mbuf *n; /* set msg buf from mhp */ n = key_getmsgbuf_x1(m, mhp); if (n == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return key_senderror(so, m, ENOBUFS); } m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. * only called by key_update(). * OUT: * NULL : not found * others : found, pointer to a SA. */ #ifdef IPSEC_DOSEQCHECK static struct secasvar * key_getsavbyseq(struct secashead *sah, u_int32_t seq) { struct secasvar *sav; u_int state; state = SADB_SASTATE_LARVAL; /* search SAD with sequence number ? */ LIST_FOREACH(sav, &sah->savtree[state], chain) { KEY_CHKSASTATE(state, sav->state, __func__); if (sav->seq == seq) { sa_addref(sav); KEYDEBUG(KEYDEBUG_IPSEC_STAMP, printf("DP %s cause refcnt++:%d SA:%p\n", __func__, sav->refcnt, sav)); return sav; } } return NULL; } #endif /* * SADB_ADD processing * add an entry to SA database, when received * * from the ikmpd, * and send * * to the ikmpd. * * IGNORE identity and sensitivity messages. * * m will always be freed. */ static int key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_sa *sa0; struct sadb_address *src0, *dst0; #ifdef IPSEC_NAT_T struct sadb_x_nat_t_type *type; struct sadb_address *iaddr, *raddr; struct sadb_x_nat_t_frag *frag; #endif struct secasindex saidx; struct secashead *newsah; struct secasvar *newsav; u_int16_t proto; u_int8_t mode; u_int32_t reqid; int error; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_SA] == NULL || mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { /* XXX need more */ ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_X_EXT_SA2] != NULL) { mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; } else { mode = IPSEC_MODE_ANY; reqid = 0; } sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; /* XXX boundary check against sa_len */ KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); /* * Make sure the port numbers are zero. * In case of NAT-T we will update them later if needed. */ KEY_PORTTOSADDR(&saidx.src, 0); KEY_PORTTOSADDR(&saidx.dst, 0); #ifdef IPSEC_NAT_T /* * Handle NAT-T info if present. */ if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { struct sadb_x_nat_t_port *sport, *dport; if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { ipseclog((LOG_DEBUG, "%s: invalid message.\n", __func__)); return key_senderror(so, m, EINVAL); } type = (struct sadb_x_nat_t_type *) mhp->ext[SADB_X_EXT_NAT_T_TYPE]; sport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_SPORT]; dport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_DPORT]; if (sport) KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); if (dport) KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); } else { type = NULL; } if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { ipseclog((LOG_DEBUG, "%s: invalid message\n", __func__)); return key_senderror(so, m, EINVAL); } iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); } else { iaddr = raddr = NULL; } if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { ipseclog((LOG_DEBUG, "%s: invalid message\n", __func__)); return key_senderror(so, m, EINVAL); } frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG]; } else { frag = NULL; } #endif /* get a SA header */ if ((newsah = key_getsah(&saidx)) == NULL) { /* create a new SA header */ if ((newsah = key_newsah(&saidx)) == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); return key_senderror(so, m, ENOBUFS); } } /* set spidx if there */ /* XXX rewrite */ error = key_setident(newsah, m, mhp); if (error) { return key_senderror(so, m, error); } /* create new SA entry. */ /* We can create new SA only if SPI is differenct. */ SAHTREE_LOCK(); newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); SAHTREE_UNLOCK(); if (newsav != NULL) { ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); return key_senderror(so, m, EEXIST); } newsav = KEY_NEWSAV(m, mhp, newsah, &error); if (newsav == NULL) { return key_senderror(so, m, error); } #ifdef IPSEC_NAT_T /* * Handle more NAT-T info if present, * now that we have a sav to fill. */ if (type) newsav->natt_type = type->sadb_x_nat_t_type_type; #if 0 /* * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. * We should actually check for a minimum MTU here, if we * want to support it in ip_output. */ if (frag) newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; #endif #endif /* check SA values to be mature. */ if ((error = key_mature(newsav)) != 0) { KEY_FREESAV(&newsav); return key_senderror(so, m, error); } /* * don't call key_freesav() here, as we would like to keep the SA * in the database on success. */ { struct mbuf *n; /* set msg buf from mhp */ n = key_getmsgbuf_x1(m, mhp); if (n == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return key_senderror(so, m, ENOBUFS); } m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* m is retained */ static int key_setident(struct secashead *sah, struct mbuf *m, const struct sadb_msghdr *mhp) { const struct sadb_ident *idsrc, *iddst; int idsrclen, iddstlen; IPSEC_ASSERT(sah != NULL, ("null secashead")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* don't make buffer if not there */ if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { sah->idents = NULL; sah->identd = NULL; return 0; } if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); return EINVAL; } idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; /* validity check */ if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); return EINVAL; } switch (idsrc->sadb_ident_type) { case SADB_IDENTTYPE_PREFIX: case SADB_IDENTTYPE_FQDN: case SADB_IDENTTYPE_USERFQDN: default: /* XXX do nothing */ sah->idents = NULL; sah->identd = NULL; return 0; } /* make structure */ sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); if (sah->idents == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return ENOBUFS; } sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); if (sah->identd == NULL) { free(sah->idents, M_IPSEC_MISC); sah->idents = NULL; ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return ENOBUFS; } sah->idents->type = idsrc->sadb_ident_type; sah->idents->id = idsrc->sadb_ident_id; sah->identd->type = iddst->sadb_ident_type; sah->identd->id = iddst->sadb_ident_id; return 0; } /* * m will not be freed on return. * it is caller's responsibility to free the result. */ static struct mbuf * key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) { struct mbuf *n; IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* create new sadb_msg to reply. */ n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, SADB_EXT_SA, SADB_X_EXT_SA2, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); if (!n) return NULL; if (n->m_len < sizeof(struct sadb_msg)) { n = m_pullup(n, sizeof(struct sadb_msg)); if (n == NULL) return NULL; } mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; mtod(n, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); return n; } /* * SADB_DELETE processing * receive * * from the ikmpd, and set SADB_SASTATE_DEAD, * and send, * * to the ikmpd. * * m will always be freed. */ static int key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_sa *sa0; struct sadb_address *src0, *dst0; struct secasindex saidx; struct secashead *sah; struct secasvar *sav = NULL; u_int16_t proto; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_SA] == NULL) { /* * Caller wants us to delete all non-LARVAL SAs * that match the src/dst. This is used during * IKE INITIAL-CONTACT. */ ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); return key_delete_all(so, m, mhp, proto); } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); /* XXX boundary check against sa_len */ KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); /* * Make sure the port numbers are zero. * In case of NAT-T we will update them later if needed. */ KEY_PORTTOSADDR(&saidx.src, 0); KEY_PORTTOSADDR(&saidx.dst, 0); #ifdef IPSEC_NAT_T /* * Handle NAT-T info if present. */ if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { struct sadb_x_nat_t_port *sport, *dport; if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { ipseclog((LOG_DEBUG, "%s: invalid message.\n", __func__)); return key_senderror(so, m, EINVAL); } sport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_SPORT]; dport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_DPORT]; if (sport) KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); if (dport) KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); } #endif /* get a SA header */ SAHTREE_LOCK(); LIST_FOREACH(sah, &V_sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) continue; if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) continue; /* get a SA with SPI. */ sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); if (sav) break; } if (sah == NULL) { SAHTREE_UNLOCK(); ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); return key_senderror(so, m, ENOENT); } key_sa_chgstate(sav, SADB_SASTATE_DEAD); KEY_FREESAV(&sav); SAHTREE_UNLOCK(); { struct mbuf *n; struct sadb_msg *newmsg; /* create new sadb_msg to reply. */ /* XXX-BZ NAT-T extensions? */ n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); if (!n) return key_senderror(so, m, ENOBUFS); if (n->m_len < sizeof(struct sadb_msg)) { n = m_pullup(n, sizeof(struct sadb_msg)); if (n == NULL) return key_senderror(so, m, ENOBUFS); } newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * delete all SAs for src/dst. Called from key_delete(). */ static int key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp, u_int16_t proto) { struct sadb_address *src0, *dst0; struct secasindex saidx; struct secashead *sah; struct secasvar *sav, *nextsav; u_int stateidx, state; src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); /* XXX boundary check against sa_len */ KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); /* * Make sure the port numbers are zero. * In case of NAT-T we will update them later if needed. */ KEY_PORTTOSADDR(&saidx.src, 0); KEY_PORTTOSADDR(&saidx.dst, 0); #ifdef IPSEC_NAT_T /* * Handle NAT-T info if present. */ if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { struct sadb_x_nat_t_port *sport, *dport; if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { ipseclog((LOG_DEBUG, "%s: invalid message.\n", __func__)); return key_senderror(so, m, EINVAL); } sport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_SPORT]; dport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_DPORT]; if (sport) KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); if (dport) KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); } #endif SAHTREE_LOCK(); LIST_FOREACH(sah, &V_sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) continue; if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) continue; /* Delete all non-LARVAL SAs. */ for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) { state = saorder_state_alive[stateidx]; if (state == SADB_SASTATE_LARVAL) continue; for (sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) { nextsav = LIST_NEXT(sav, chain); /* sanity check */ if (sav->state != state) { ipseclog((LOG_DEBUG, "%s: invalid " "sav->state (queue %d SA %d)\n", __func__, state, sav->state)); continue; } key_sa_chgstate(sav, SADB_SASTATE_DEAD); KEY_FREESAV(&sav); } } } SAHTREE_UNLOCK(); { struct mbuf *n; struct sadb_msg *newmsg; /* create new sadb_msg to reply. */ /* XXX-BZ NAT-T extensions? */ n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); if (!n) return key_senderror(so, m, ENOBUFS); if (n->m_len < sizeof(struct sadb_msg)) { n = m_pullup(n, sizeof(struct sadb_msg)); if (n == NULL) return key_senderror(so, m, ENOBUFS); } newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); } } /* * SADB_GET processing * receive * * from the ikmpd, and get a SP and a SA to respond, * and send, * * to the ikmpd. * * m will always be freed. */ static int key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_sa *sa0; struct sadb_address *src0, *dst0; struct secasindex saidx; struct secashead *sah; struct secasvar *sav = NULL; u_int16_t proto; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_SA] == NULL || mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; /* XXX boundary check against sa_len */ KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); /* * Make sure the port numbers are zero. * In case of NAT-T we will update them later if needed. */ KEY_PORTTOSADDR(&saidx.src, 0); KEY_PORTTOSADDR(&saidx.dst, 0); #ifdef IPSEC_NAT_T /* * Handle NAT-T info if present. */ if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { struct sadb_x_nat_t_port *sport, *dport; if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { ipseclog((LOG_DEBUG, "%s: invalid message.\n", __func__)); return key_senderror(so, m, EINVAL); } sport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_SPORT]; dport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_DPORT]; if (sport) KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); if (dport) KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); } #endif /* get a SA header */ SAHTREE_LOCK(); LIST_FOREACH(sah, &V_sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) continue; if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) continue; /* get a SA with SPI. */ sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); if (sav) break; } SAHTREE_UNLOCK(); if (sah == NULL) { ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); return key_senderror(so, m, ENOENT); } { struct mbuf *n; u_int8_t satype; /* map proto to satype */ if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", __func__)); return key_senderror(so, m, EINVAL); } /* create new sadb_msg to reply. */ n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, mhp->msg->sadb_msg_pid); if (!n) return key_senderror(so, m, ENOBUFS); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } } /* XXX make it sysctl-configurable? */ static void key_getcomb_setlifetime(struct sadb_comb *comb) { comb->sadb_comb_soft_allocations = 1; comb->sadb_comb_hard_allocations = 1; comb->sadb_comb_soft_bytes = 0; comb->sadb_comb_hard_bytes = 0; comb->sadb_comb_hard_addtime = 86400; /* 1 day */ comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; } /* * XXX reorder combinations by preference * XXX no idea if the user wants ESP authentication or not */ static struct mbuf * key_getcomb_esp() { struct sadb_comb *comb; struct enc_xform *algo; struct mbuf *result = NULL, *m, *n; int encmin; int i, off, o; int totlen; const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); m = NULL; for (i = 1; i <= SADB_EALG_MAX; i++) { algo = esp_algorithm_lookup(i); if (algo == NULL) continue; /* discard algorithms with key size smaller than system min */ if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) continue; if (_BITS(algo->minkey) < V_ipsec_esp_keymin) encmin = V_ipsec_esp_keymin; else encmin = _BITS(algo->minkey); if (V_ipsec_esp_auth) m = key_getcomb_ah(); else { IPSEC_ASSERT(l <= MLEN, ("l=%u > MLEN=%lu", l, (u_long) MLEN)); MGET(m, M_NOWAIT, MT_DATA); if (m) { M_ALIGN(m, l); m->m_len = l; m->m_next = NULL; bzero(mtod(m, caddr_t), m->m_len); } } if (!m) goto fail; totlen = 0; for (n = m; n; n = n->m_next) totlen += n->m_len; IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); for (off = 0; off < totlen; off += l) { n = m_pulldown(m, off, l, &o); if (!n) { /* m is already freed */ goto fail; } comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); bzero(comb, sizeof(*comb)); key_getcomb_setlifetime(comb); comb->sadb_comb_encrypt = i; comb->sadb_comb_encrypt_minbits = encmin; comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); } if (!result) result = m; else m_cat(result, m); } return result; fail: if (result) m_freem(result); return NULL; } static void key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min, u_int16_t* max) { *min = *max = ah->keysize; if (ah->keysize == 0) { /* * Transform takes arbitrary key size but algorithm * key size is restricted. Enforce this here. */ switch (alg) { case SADB_X_AALG_MD5: *min = *max = 16; break; case SADB_X_AALG_SHA: *min = *max = 20; break; case SADB_X_AALG_NULL: *min = 1; *max = 256; break; case SADB_X_AALG_SHA2_256: *min = *max = 32; break; case SADB_X_AALG_SHA2_384: *min = *max = 48; break; case SADB_X_AALG_SHA2_512: *min = *max = 64; break; default: DPRINTF(("%s: unknown AH algorithm %u\n", __func__, alg)); break; } } } /* * XXX reorder combinations by preference */ static struct mbuf * key_getcomb_ah() { struct sadb_comb *comb; struct auth_hash *algo; struct mbuf *m; u_int16_t minkeysize, maxkeysize; int i; const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); m = NULL; for (i = 1; i <= SADB_AALG_MAX; i++) { #if 1 /* we prefer HMAC algorithms, not old algorithms */ if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC && i != SADB_X_AALG_SHA2_256 && i != SADB_X_AALG_SHA2_384 && i != SADB_X_AALG_SHA2_512) continue; #endif algo = ah_algorithm_lookup(i); if (!algo) continue; key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); /* discard algorithms with key size smaller than system min */ if (_BITS(minkeysize) < V_ipsec_ah_keymin) continue; if (!m) { IPSEC_ASSERT(l <= MLEN, ("l=%u > MLEN=%lu", l, (u_long) MLEN)); MGET(m, M_NOWAIT, MT_DATA); if (m) { M_ALIGN(m, l); m->m_len = l; m->m_next = NULL; } } else M_PREPEND(m, l, M_NOWAIT); if (!m) return NULL; comb = mtod(m, struct sadb_comb *); bzero(comb, sizeof(*comb)); key_getcomb_setlifetime(comb); comb->sadb_comb_auth = i; comb->sadb_comb_auth_minbits = _BITS(minkeysize); comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); } return m; } /* * not really an official behavior. discussed in pf_key@inner.net in Sep2000. * XXX reorder combinations by preference */ static struct mbuf * key_getcomb_ipcomp() { struct sadb_comb *comb; struct comp_algo *algo; struct mbuf *m; int i; const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); m = NULL; for (i = 1; i <= SADB_X_CALG_MAX; i++) { algo = ipcomp_algorithm_lookup(i); if (!algo) continue; if (!m) { IPSEC_ASSERT(l <= MLEN, ("l=%u > MLEN=%lu", l, (u_long) MLEN)); MGET(m, M_NOWAIT, MT_DATA); if (m) { M_ALIGN(m, l); m->m_len = l; m->m_next = NULL; } } else M_PREPEND(m, l, M_NOWAIT); if (!m) return NULL; comb = mtod(m, struct sadb_comb *); bzero(comb, sizeof(*comb)); key_getcomb_setlifetime(comb); comb->sadb_comb_encrypt = i; /* what should we set into sadb_comb_*_{min,max}bits? */ } return m; } /* * XXX no way to pass mode (transport/tunnel) to userland * XXX replay checking? * XXX sysctl interface to ipsec_{ah,esp}_keymin */ static struct mbuf * key_getprop(const struct secasindex *saidx) { struct sadb_prop *prop; struct mbuf *m, *n; const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); int totlen; switch (saidx->proto) { case IPPROTO_ESP: m = key_getcomb_esp(); break; case IPPROTO_AH: m = key_getcomb_ah(); break; case IPPROTO_IPCOMP: m = key_getcomb_ipcomp(); break; default: return NULL; } if (!m) return NULL; M_PREPEND(m, l, M_NOWAIT); if (!m) return NULL; totlen = 0; for (n = m; n; n = n->m_next) totlen += n->m_len; prop = mtod(m, struct sadb_prop *); bzero(prop, sizeof(*prop)); prop->sadb_prop_len = PFKEY_UNIT64(totlen); prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; prop->sadb_prop_replay = 32; /* XXX */ return m; } /* * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). * send * * to KMD, and expect to receive * with SADB_ACQUIRE if error occurred, * or * with SADB_GETSPI * from KMD by PF_KEY. * * XXX x_policy is outside of RFC2367 (KAME extension). * XXX sensitivity is not supported. * XXX for ipcomp, RFC2367 does not define how to fill in proposal. * see comment for key_getcomb_ipcomp(). * * OUT: * 0 : succeed * others: error number */ static int key_acquire(const struct secasindex *saidx, struct secpolicy *sp) { union sockaddr_union addr; struct mbuf *result, *m; struct secacq *newacq; u_int32_t seq; int error; u_int16_t ul_proto; u_int8_t mask, satype; IPSEC_ASSERT(saidx != NULL, ("null saidx")); satype = key_proto2satype(saidx->proto); IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); error = -1; result = NULL; ul_proto = IPSEC_ULPROTO_ANY; /* * We never do anything about acquirng SA. There is anather * solution that kernel blocks to send SADB_ACQUIRE message until * getting something message from IKEd. In later case, to be * managed with ACQUIRING list. */ /* Get an entry to check whether sending message or not. */ if ((newacq = key_getacq(saidx)) != NULL) { if (V_key_blockacq_count < newacq->count) { /* reset counter and do send message. */ newacq->count = 0; } else { /* increment counter and do nothing. */ newacq->count++; return 0; } } else { /* make new entry for blocking to send SADB_ACQUIRE. */ if ((newacq = key_newacq(saidx)) == NULL) return ENOBUFS; } seq = newacq->seq; m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); if (!m) { error = ENOBUFS; goto fail; } result = m; /* * No SADB_X_EXT_NAT_T_* here: we do not know * anything related to NAT-T at this time. */ /* * set sadb_address for saidx's. * * Note that if sp is supplied, then we're being called from * key_checkrequest and should supply port and protocol information. */ if (sp != NULL && (sp->spidx.ul_proto == IPPROTO_TCP || sp->spidx.ul_proto == IPPROTO_UDP)) ul_proto = sp->spidx.ul_proto; addr = saidx->src; mask = FULLMASK; if (ul_proto != IPSEC_ULPROTO_ANY) { switch (sp->spidx.src.sa.sa_family) { case AF_INET: if (sp->spidx.src.sin.sin_port != IPSEC_PORT_ANY) { addr.sin.sin_port = sp->spidx.src.sin.sin_port; mask = sp->spidx.prefs; } break; case AF_INET6: if (sp->spidx.src.sin6.sin6_port != IPSEC_PORT_ANY) { addr.sin6.sin6_port = sp->spidx.src.sin6.sin6_port; mask = sp->spidx.prefs; } break; default: break; } } m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &addr.sa, mask, ul_proto); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); addr = saidx->dst; mask = FULLMASK; if (ul_proto != IPSEC_ULPROTO_ANY) { switch (sp->spidx.dst.sa.sa_family) { case AF_INET: if (sp->spidx.dst.sin.sin_port != IPSEC_PORT_ANY) { addr.sin.sin_port = sp->spidx.dst.sin.sin_port; mask = sp->spidx.prefd; } break; case AF_INET6: if (sp->spidx.dst.sin6.sin6_port != IPSEC_PORT_ANY) { addr.sin6.sin6_port = sp->spidx.dst.sin6.sin6_port; mask = sp->spidx.prefd; } break; default: break; } } m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &addr.sa, mask, ul_proto); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* XXX proxy address (optional) */ /* set sadb_x_policy */ if (sp) { m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id, sp->priority); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); } /* XXX identity (optional) */ #if 0 if (idexttype && fqdn) { /* create identity extension (FQDN) */ struct sadb_ident *id; int fqdnlen; fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ id = (struct sadb_ident *)p; bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); id->sadb_ident_exttype = idexttype; id->sadb_ident_type = SADB_IDENTTYPE_FQDN; bcopy(fqdn, id + 1, fqdnlen); p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); } if (idexttype) { /* create identity extension (USERFQDN) */ struct sadb_ident *id; int userfqdnlen; if (userfqdn) { /* +1 for terminating-NUL */ userfqdnlen = strlen(userfqdn) + 1; } else userfqdnlen = 0; id = (struct sadb_ident *)p; bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); id->sadb_ident_exttype = idexttype; id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; /* XXX is it correct? */ if (curproc && curproc->p_cred) id->sadb_ident_id = curproc->p_cred->p_ruid; if (userfqdn && userfqdnlen) bcopy(userfqdn, id + 1, userfqdnlen); p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); } #endif /* XXX sensitivity (optional) */ /* create proposal/combination extension */ m = key_getprop(saidx); #if 0 /* * spec conformant: always attach proposal/combination extension, * the problem is that we have no way to attach it for ipcomp, * due to the way sadb_comb is declared in RFC2367. */ if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); #else /* * outside of spec; make proposal/combination extension optional. */ if (m) m_cat(result, m); #endif if ((result->m_flags & M_PKTHDR) == 0) { error = EINVAL; goto fail; } if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) { error = ENOBUFS; goto fail; } } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); fail: if (result) m_freem(result); return error; } static struct secacq * key_newacq(const struct secasindex *saidx) { struct secacq *newacq; /* get new entry */ newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); if (newacq == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return NULL; } /* copy secindex */ bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); newacq->created = time_second; newacq->count = 0; /* add to acqtree */ ACQ_LOCK(); LIST_INSERT_HEAD(&V_acqtree, newacq, chain); ACQ_UNLOCK(); return newacq; } static struct secacq * key_getacq(const struct secasindex *saidx) { struct secacq *acq; ACQ_LOCK(); LIST_FOREACH(acq, &V_acqtree, chain) { if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) break; } ACQ_UNLOCK(); return acq; } static struct secacq * key_getacqbyseq(u_int32_t seq) { struct secacq *acq; ACQ_LOCK(); LIST_FOREACH(acq, &V_acqtree, chain) { if (acq->seq == seq) break; } ACQ_UNLOCK(); return acq; } static struct secspacq * key_newspacq(struct secpolicyindex *spidx) { struct secspacq *acq; /* get new entry */ acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); if (acq == NULL) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return NULL; } /* copy secindex */ bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); acq->created = time_second; acq->count = 0; /* add to spacqtree */ SPACQ_LOCK(); LIST_INSERT_HEAD(&V_spacqtree, acq, chain); SPACQ_UNLOCK(); return acq; } static struct secspacq * key_getspacq(struct secpolicyindex *spidx) { struct secspacq *acq; SPACQ_LOCK(); LIST_FOREACH(acq, &V_spacqtree, chain) { if (key_cmpspidx_exactly(spidx, &acq->spidx)) { /* NB: return holding spacq_lock */ return acq; } } SPACQ_UNLOCK(); return NULL; } /* * SADB_ACQUIRE processing, * in first situation, is receiving * * from the ikmpd, and clear sequence of its secasvar entry. * * In second situation, is receiving * * from a user land process, and return * * to the socket. * * m will always be freed. */ static int key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { const struct sadb_address *src0, *dst0; struct secasindex saidx; struct secashead *sah; u_int16_t proto; int error; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* * Error message from KMd. * We assume that if error was occurred in IKEd, the length of PFKEY * message is equal to the size of sadb_msg structure. * We do not raise error even if error occurred in this function. */ if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { struct secacq *acq; /* check sequence number */ if (mhp->msg->sadb_msg_seq == 0) { ipseclog((LOG_DEBUG, "%s: must specify sequence " "number.\n", __func__)); m_freem(m); return 0; } if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { /* * the specified larval SA is already gone, or we got * a bogus sequence number. we can silently ignore it. */ m_freem(m); return 0; } /* reset acq counter in order to deletion by timehander. */ acq->created = time_second; acq->count = 0; m_freem(m); return 0; } /* * This message is from user land. */ /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || mhp->ext[SADB_EXT_PROPOSAL] == NULL) { /* error */ ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { /* error */ ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; /* XXX boundary check against sa_len */ KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); /* * Make sure the port numbers are zero. * In case of NAT-T we will update them later if needed. */ KEY_PORTTOSADDR(&saidx.src, 0); KEY_PORTTOSADDR(&saidx.dst, 0); #ifndef IPSEC_NAT_T /* * Handle NAT-T info if present. */ if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { struct sadb_x_nat_t_port *sport, *dport; if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { ipseclog((LOG_DEBUG, "%s: invalid message.\n", __func__)); return key_senderror(so, m, EINVAL); } sport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_SPORT]; dport = (struct sadb_x_nat_t_port *) mhp->ext[SADB_X_EXT_NAT_T_DPORT]; if (sport) KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); if (dport) KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); } #endif /* get a SA index */ SAHTREE_LOCK(); LIST_FOREACH(sah, &V_sahtree, chain) { if (sah->state == SADB_SASTATE_DEAD) continue; if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) break; } SAHTREE_UNLOCK(); if (sah != NULL) { ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); return key_senderror(so, m, EEXIST); } error = key_acquire(&saidx, NULL); if (error != 0) { ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", __func__, mhp->msg->sadb_msg_errno)); return key_senderror(so, m, error); } return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); } /* * SADB_REGISTER processing. * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. * receive * * from the ikmpd, and register a socket to send PF_KEY messages, * and send * * to KMD by PF_KEY. * If socket is detached, must free from regnode. * * m will always be freed. */ static int key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct secreg *reg, *newreg = NULL; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* check for invalid register message */ if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) return key_senderror(so, m, EINVAL); /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) goto setmsg; /* check whether existing or not */ REGTREE_LOCK(); LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { if (reg->so == so) { REGTREE_UNLOCK(); ipseclog((LOG_DEBUG, "%s: socket exists already.\n", __func__)); return key_senderror(so, m, EEXIST); } } /* create regnode */ newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); if (newreg == NULL) { REGTREE_UNLOCK(); ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return key_senderror(so, m, ENOBUFS); } newreg->so = so; ((struct keycb *)sotorawcb(so))->kp_registered++; /* add regnode to regtree. */ LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); REGTREE_UNLOCK(); setmsg: { struct mbuf *n; struct sadb_msg *newmsg; struct sadb_supported *sup; u_int len, alen, elen; int off; int i; struct sadb_alg *alg; /* create new sadb_msg to reply. */ alen = 0; for (i = 1; i <= SADB_AALG_MAX; i++) { if (ah_algorithm_lookup(i)) alen += sizeof(struct sadb_alg); } if (alen) alen += sizeof(struct sadb_supported); elen = 0; for (i = 1; i <= SADB_EALG_MAX; i++) { if (esp_algorithm_lookup(i)) elen += sizeof(struct sadb_alg); } if (elen) elen += sizeof(struct sadb_supported); len = sizeof(struct sadb_msg) + alen + elen; if (len > MCLBYTES) return key_senderror(so, m, ENOBUFS); MGETHDR(n, M_NOWAIT, MT_DATA); if (len > MHLEN) { if (!(MCLGET(n, M_NOWAIT))) { m_freem(n); n = NULL; } } if (!n) return key_senderror(so, m, ENOBUFS); n->m_pkthdr.len = n->m_len = len; n->m_next = NULL; off = 0; m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); newmsg = mtod(n, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(len); off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); /* for authentication algorithm */ if (alen) { sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); sup->sadb_supported_len = PFKEY_UNIT64(alen); sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; off += PFKEY_ALIGN8(sizeof(*sup)); for (i = 1; i <= SADB_AALG_MAX; i++) { struct auth_hash *aalgo; u_int16_t minkeysize, maxkeysize; aalgo = ah_algorithm_lookup(i); if (!aalgo) continue; alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); alg->sadb_alg_id = i; alg->sadb_alg_ivlen = 0; key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); alg->sadb_alg_minbits = _BITS(minkeysize); alg->sadb_alg_maxbits = _BITS(maxkeysize); off += PFKEY_ALIGN8(sizeof(*alg)); } } /* for encryption algorithm */ if (elen) { sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); sup->sadb_supported_len = PFKEY_UNIT64(elen); sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; off += PFKEY_ALIGN8(sizeof(*sup)); for (i = 1; i <= SADB_EALG_MAX; i++) { struct enc_xform *ealgo; ealgo = esp_algorithm_lookup(i); if (!ealgo) continue; alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); alg->sadb_alg_id = i; alg->sadb_alg_ivlen = ealgo->ivsize; alg->sadb_alg_minbits = _BITS(ealgo->minkey); alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); } } IPSEC_ASSERT(off == len, ("length assumption failed (off %u len %u)", off, len)); m_freem(m); return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); } } /* * free secreg entry registered. * XXX: I want to do free a socket marked done SADB_RESIGER to socket. */ void key_freereg(struct socket *so) { struct secreg *reg; int i; IPSEC_ASSERT(so != NULL, ("NULL so")); /* * check whether existing or not. * check all type of SA, because there is a potential that * one socket is registered to multiple type of SA. */ REGTREE_LOCK(); for (i = 0; i <= SADB_SATYPE_MAX; i++) { LIST_FOREACH(reg, &V_regtree[i], chain) { if (reg->so == so && __LIST_CHAINED(reg)) { LIST_REMOVE(reg, chain); free(reg, M_IPSEC_SAR); break; } } } REGTREE_UNLOCK(); } /* * SADB_EXPIRE processing * send * * to KMD by PF_KEY. * NOTE: We send only soft lifetime extension. * * OUT: 0 : succeed * others : error number */ static int key_expire(struct secasvar *sav, int hard) { int satype; struct mbuf *result = NULL, *m; int len; int error = -1; struct sadb_lifetime *lt; + u_int32_t replay_count; IPSEC_ASSERT (sav != NULL, ("null sav")); IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); /* set msg header */ satype = key_proto2satype(sav->sah->saidx.proto); IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); if (!m) { error = ENOBUFS; goto fail; } result = m; /* create SA extension */ m = key_setsadbsa(sav); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* create SA extension */ - m = key_setsadbxsa2(sav->sah->saidx.mode, - sav->replay ? sav->replay->count : 0, + SECASVAR_LOCK(sav); + replay_count = sav->replay ? sav->replay->count : 0; + SECASVAR_UNLOCK(sav); + + m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count, sav->sah->saidx.reqid); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); + if (sav->replay && sav->replay->wsize > UINT8_MAX) { + m = key_setsadbxsareplay(sav->replay->wsize); + if (!m) { + error = ENOBUFS; + goto fail; + } + m_cat(result, m); + } + /* create lifetime extension (current and soft) */ len = PFKEY_ALIGN8(sizeof(*lt)) * 2; m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) { error = ENOBUFS; goto fail; } m_align(m, len); m->m_len = len; bzero(mtod(m, caddr_t), len); lt = mtod(m, struct sadb_lifetime *); lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; lt->sadb_lifetime_allocations = sav->lft_c->allocations; lt->sadb_lifetime_bytes = sav->lft_c->bytes; lt->sadb_lifetime_addtime = sav->lft_c->addtime; lt->sadb_lifetime_usetime = sav->lft_c->usetime; lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); if (hard) { lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; lt->sadb_lifetime_allocations = sav->lft_h->allocations; lt->sadb_lifetime_bytes = sav->lft_h->bytes; lt->sadb_lifetime_addtime = sav->lft_h->addtime; lt->sadb_lifetime_usetime = sav->lft_h->usetime; } else { lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; lt->sadb_lifetime_allocations = sav->lft_s->allocations; lt->sadb_lifetime_bytes = sav->lft_s->bytes; lt->sadb_lifetime_addtime = sav->lft_s->addtime; lt->sadb_lifetime_usetime = sav->lft_s->usetime; } m_cat(result, m); /* set sadb_address for source */ m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* set sadb_address for destination */ m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); if (!m) { error = ENOBUFS; goto fail; } m_cat(result, m); /* * XXX-BZ Handle NAT-T extensions here. */ if ((result->m_flags & M_PKTHDR) == 0) { error = EINVAL; goto fail; } if (result->m_len < sizeof(struct sadb_msg)) { result = m_pullup(result, sizeof(struct sadb_msg)); if (result == NULL) { error = ENOBUFS; goto fail; } } result->m_pkthdr.len = 0; for (m = result; m; m = m->m_next) result->m_pkthdr.len += m->m_len; mtod(result, struct sadb_msg *)->sadb_msg_len = PFKEY_UNIT64(result->m_pkthdr.len); return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); fail: if (result) m_freem(result); return error; } /* * SADB_FLUSH processing * receive * * from the ikmpd, and free all entries in secastree. * and send, * * to the ikmpd. * NOTE: to do is only marking SADB_SASTATE_DEAD. * * m will always be freed. */ static int key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct sadb_msg *newmsg; struct secashead *sah, *nextsah; struct secasvar *sav, *nextsav; u_int16_t proto; u_int8_t state; u_int stateidx; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } /* no SATYPE specified, i.e. flushing all SA. */ SAHTREE_LOCK(); for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) { nextsah = LIST_NEXT(sah, chain); if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && proto != sah->saidx.proto) continue; for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) { state = saorder_state_any[stateidx]; for (sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) { nextsav = LIST_NEXT(sav, chain); key_sa_chgstate(sav, SADB_SASTATE_DEAD); KEY_FREESAV(&sav); } } sah->state = SADB_SASTATE_DEAD; } SAHTREE_UNLOCK(); if (m->m_len < sizeof(struct sadb_msg) || sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); return key_senderror(so, m, ENOBUFS); } if (m->m_next) m_freem(m->m_next); m->m_next = NULL; m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); newmsg = mtod(m, struct sadb_msg *); newmsg->sadb_msg_errno = 0; newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); } /* * SADB_DUMP processing * dump all entries including status of DEAD in SAD. * receive * * from the ikmpd, and dump all secasvar leaves * and send, * ..... * to the ikmpd. * * m will always be freed. */ static int key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { struct secashead *sah; struct secasvar *sav; u_int16_t proto; u_int stateidx; u_int8_t satype; u_int8_t state; int cnt; struct sadb_msg *newmsg; struct mbuf *n; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); /* map satype to proto */ if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", __func__)); return key_senderror(so, m, EINVAL); } /* count sav entries to be sent to the userland. */ cnt = 0; SAHTREE_LOCK(); LIST_FOREACH(sah, &V_sahtree, chain) { if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && proto != sah->saidx.proto) continue; for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_any); stateidx++) { state = saorder_state_any[stateidx]; LIST_FOREACH(sav, &sah->savtree[state], chain) { cnt++; } } } if (cnt == 0) { SAHTREE_UNLOCK(); return key_senderror(so, m, ENOENT); } /* send this to the userland, one at a time. */ newmsg = NULL; LIST_FOREACH(sah, &V_sahtree, chain) { if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && proto != sah->saidx.proto) continue; /* map proto to satype */ if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { SAHTREE_UNLOCK(); ipseclog((LOG_DEBUG, "%s: there was invalid proto in " "SAD.\n", __func__)); return key_senderror(so, m, EINVAL); } for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_any); stateidx++) { state = saorder_state_any[stateidx]; LIST_FOREACH(sav, &sah->savtree[state], chain) { n = key_setdumpsa(sav, SADB_DUMP, satype, --cnt, mhp->msg->sadb_msg_pid); if (!n) { SAHTREE_UNLOCK(); return key_senderror(so, m, ENOBUFS); } key_sendup_mbuf(so, n, KEY_SENDUP_ONE); } } } SAHTREE_UNLOCK(); m_freem(m); return 0; } /* * SADB_X_PROMISC processing * * m will always be freed. */ static int key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) { int olen; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); if (olen < sizeof(struct sadb_msg)) { #if 1 return key_senderror(so, m, EINVAL); #else m_freem(m); return 0; #endif } else if (olen == sizeof(struct sadb_msg)) { /* enable/disable promisc mode */ struct keycb *kp; if ((kp = (struct keycb *)sotorawcb(so)) == NULL) return key_senderror(so, m, EINVAL); mhp->msg->sadb_msg_errno = 0; switch (mhp->msg->sadb_msg_satype) { case 0: case 1: kp->kp_promisc = mhp->msg->sadb_msg_satype; break; default: return key_senderror(so, m, EINVAL); } /* send the original message back to everyone */ mhp->msg->sadb_msg_errno = 0; return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); } else { /* send packet as is */ m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); /* TODO: if sadb_msg_seq is specified, send to specific pid */ return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); } } static int (*key_typesw[])(struct socket *, struct mbuf *, const struct sadb_msghdr *) = { NULL, /* SADB_RESERVED */ key_getspi, /* SADB_GETSPI */ key_update, /* SADB_UPDATE */ key_add, /* SADB_ADD */ key_delete, /* SADB_DELETE */ key_get, /* SADB_GET */ key_acquire2, /* SADB_ACQUIRE */ key_register, /* SADB_REGISTER */ NULL, /* SADB_EXPIRE */ key_flush, /* SADB_FLUSH */ key_dump, /* SADB_DUMP */ key_promisc, /* SADB_X_PROMISC */ NULL, /* SADB_X_PCHANGE */ key_spdadd, /* SADB_X_SPDUPDATE */ key_spdadd, /* SADB_X_SPDADD */ key_spddelete, /* SADB_X_SPDDELETE */ key_spdget, /* SADB_X_SPDGET */ NULL, /* SADB_X_SPDACQUIRE */ key_spddump, /* SADB_X_SPDDUMP */ key_spdflush, /* SADB_X_SPDFLUSH */ key_spdadd, /* SADB_X_SPDSETIDX */ NULL, /* SADB_X_SPDEXPIRE */ key_spddelete2, /* SADB_X_SPDDELETE2 */ }; /* * parse sadb_msg buffer to process PFKEYv2, * and create a data to response if needed. * I think to be dealed with mbuf directly. * IN: * msgp : pointer to pointer to a received buffer pulluped. * This is rewrited to response. * so : pointer to socket. * OUT: * length for buffer to send to user process. */ int key_parse(struct mbuf *m, struct socket *so) { struct sadb_msg *msg; struct sadb_msghdr mh; u_int orglen; int error; int target; IPSEC_ASSERT(so != NULL, ("null socket")); IPSEC_ASSERT(m != NULL, ("null mbuf")); #if 0 /*kdebug_sadb assumes msg in linear buffer*/ KEYDEBUG(KEYDEBUG_KEY_DUMP, ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); kdebug_sadb(msg)); #endif if (m->m_len < sizeof(struct sadb_msg)) { m = m_pullup(m, sizeof(struct sadb_msg)); if (!m) return ENOBUFS; } msg = mtod(m, struct sadb_msg *); orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); target = KEY_SENDUP_ONE; if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len != orglen) { ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); PFKEYSTAT_INC(out_invlen); error = EINVAL; goto senderror; } if (msg->sadb_msg_version != PF_KEY_V2) { ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", __func__, msg->sadb_msg_version)); PFKEYSTAT_INC(out_invver); error = EINVAL; goto senderror; } if (msg->sadb_msg_type > SADB_MAX) { ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", __func__, msg->sadb_msg_type)); PFKEYSTAT_INC(out_invmsgtype); error = EINVAL; goto senderror; } /* for old-fashioned code - should be nuked */ if (m->m_pkthdr.len > MCLBYTES) { m_freem(m); return ENOBUFS; } if (m->m_next) { struct mbuf *n; MGETHDR(n, M_NOWAIT, MT_DATA); if (n && m->m_pkthdr.len > MHLEN) { if (!(MCLGET(n, M_NOWAIT))) { m_free(n); n = NULL; } } if (!n) { m_freem(m); return ENOBUFS; } m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; n->m_next = NULL; m_freem(m); m = n; } /* align the mbuf chain so that extensions are in contiguous region. */ error = key_align(m, &mh); if (error) return error; msg = mh.msg; /* check SA type */ switch (msg->sadb_msg_satype) { case SADB_SATYPE_UNSPEC: switch (msg->sadb_msg_type) { case SADB_GETSPI: case SADB_UPDATE: case SADB_ADD: case SADB_DELETE: case SADB_GET: case SADB_ACQUIRE: case SADB_EXPIRE: ipseclog((LOG_DEBUG, "%s: must specify satype " "when msg type=%u.\n", __func__, msg->sadb_msg_type)); PFKEYSTAT_INC(out_invsatype); error = EINVAL; goto senderror; } break; case SADB_SATYPE_AH: case SADB_SATYPE_ESP: case SADB_X_SATYPE_IPCOMP: case SADB_X_SATYPE_TCPSIGNATURE: switch (msg->sadb_msg_type) { case SADB_X_SPDADD: case SADB_X_SPDDELETE: case SADB_X_SPDGET: case SADB_X_SPDDUMP: case SADB_X_SPDFLUSH: case SADB_X_SPDSETIDX: case SADB_X_SPDUPDATE: case SADB_X_SPDDELETE2: ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", __func__, msg->sadb_msg_type)); PFKEYSTAT_INC(out_invsatype); error = EINVAL; goto senderror; } break; case SADB_SATYPE_RSVP: case SADB_SATYPE_OSPFV2: case SADB_SATYPE_RIPV2: case SADB_SATYPE_MIP: ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", __func__, msg->sadb_msg_satype)); PFKEYSTAT_INC(out_invsatype); error = EOPNOTSUPP; goto senderror; case 1: /* XXX: What does it do? */ if (msg->sadb_msg_type == SADB_X_PROMISC) break; /*FALLTHROUGH*/ default: ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", __func__, msg->sadb_msg_satype)); PFKEYSTAT_INC(out_invsatype); error = EINVAL; goto senderror; } /* check field of upper layer protocol and address family */ if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { struct sadb_address *src0, *dst0; u_int plen; src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); /* check upper layer protocol */ if (src0->sadb_address_proto != dst0->sadb_address_proto) { ipseclog((LOG_DEBUG, "%s: upper layer protocol " "mismatched.\n", __func__)); PFKEYSTAT_INC(out_invaddr); error = EINVAL; goto senderror; } /* check family */ if (PFKEY_ADDR_SADDR(src0)->sa_family != PFKEY_ADDR_SADDR(dst0)->sa_family) { ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", __func__)); PFKEYSTAT_INC(out_invaddr); error = EINVAL; goto senderror; } if (PFKEY_ADDR_SADDR(src0)->sa_len != PFKEY_ADDR_SADDR(dst0)->sa_len) { ipseclog((LOG_DEBUG, "%s: address struct size " "mismatched.\n", __func__)); PFKEYSTAT_INC(out_invaddr); error = EINVAL; goto senderror; } switch (PFKEY_ADDR_SADDR(src0)->sa_family) { case AF_INET: if (PFKEY_ADDR_SADDR(src0)->sa_len != sizeof(struct sockaddr_in)) { PFKEYSTAT_INC(out_invaddr); error = EINVAL; goto senderror; } break; case AF_INET6: if (PFKEY_ADDR_SADDR(src0)->sa_len != sizeof(struct sockaddr_in6)) { PFKEYSTAT_INC(out_invaddr); error = EINVAL; goto senderror; } break; default: ipseclog((LOG_DEBUG, "%s: unsupported address family\n", __func__)); PFKEYSTAT_INC(out_invaddr); error = EAFNOSUPPORT; goto senderror; } switch (PFKEY_ADDR_SADDR(src0)->sa_family) { case AF_INET: plen = sizeof(struct in_addr) << 3; break; case AF_INET6: plen = sizeof(struct in6_addr) << 3; break; default: plen = 0; /*fool gcc*/ break; } /* check max prefix length */ if (src0->sadb_address_prefixlen > plen || dst0->sadb_address_prefixlen > plen) { ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", __func__)); PFKEYSTAT_INC(out_invaddr); error = EINVAL; goto senderror; } /* * prefixlen == 0 is valid because there can be a case when * all addresses are matched. */ } if (msg->sadb_msg_type >= nitems(key_typesw) || key_typesw[msg->sadb_msg_type] == NULL) { PFKEYSTAT_INC(out_invmsgtype); error = EINVAL; goto senderror; } return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); senderror: msg->sadb_msg_errno = error; return key_sendup_mbuf(so, m, target); } static int key_senderror(struct socket *so, struct mbuf *m, int code) { struct sadb_msg *msg; IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), ("mbuf too small, len %u", m->m_len)); msg = mtod(m, struct sadb_msg *); msg->sadb_msg_errno = code; return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); } /* * set the pointer to each header into message buffer. * m will be freed on error. * XXX larger-than-MCLBYTES extension? */ static int key_align(struct mbuf *m, struct sadb_msghdr *mhp) { struct mbuf *n; struct sadb_ext *ext; size_t off, end; int extlen; int toff; IPSEC_ASSERT(m != NULL, ("null mbuf")); IPSEC_ASSERT(mhp != NULL, ("null msghdr")); IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), ("mbuf too small, len %u", m->m_len)); /* initialize */ bzero(mhp, sizeof(*mhp)); mhp->msg = mtod(m, struct sadb_msg *); mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); extlen = end; /*just in case extlen is not updated*/ for (off = sizeof(struct sadb_msg); off < end; off += extlen) { n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); if (!n) { /* m is already freed */ return ENOBUFS; } ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); /* set pointer */ switch (ext->sadb_ext_type) { case SADB_EXT_SA: case SADB_EXT_ADDRESS_SRC: case SADB_EXT_ADDRESS_DST: case SADB_EXT_ADDRESS_PROXY: case SADB_EXT_LIFETIME_CURRENT: case SADB_EXT_LIFETIME_HARD: case SADB_EXT_LIFETIME_SOFT: case SADB_EXT_KEY_AUTH: case SADB_EXT_KEY_ENCRYPT: case SADB_EXT_IDENTITY_SRC: case SADB_EXT_IDENTITY_DST: case SADB_EXT_SENSITIVITY: case SADB_EXT_PROPOSAL: case SADB_EXT_SUPPORTED_AUTH: case SADB_EXT_SUPPORTED_ENCRYPT: case SADB_EXT_SPIRANGE: case SADB_X_EXT_POLICY: case SADB_X_EXT_SA2: #ifdef IPSEC_NAT_T case SADB_X_EXT_NAT_T_TYPE: case SADB_X_EXT_NAT_T_SPORT: case SADB_X_EXT_NAT_T_DPORT: case SADB_X_EXT_NAT_T_OAI: case SADB_X_EXT_NAT_T_OAR: case SADB_X_EXT_NAT_T_FRAG: #endif + case SADB_X_EXT_SA_REPLAY: /* duplicate check */ /* * XXX Are there duplication payloads of either * KEY_AUTH or KEY_ENCRYPT ? */ if (mhp->ext[ext->sadb_ext_type] != NULL) { ipseclog((LOG_DEBUG, "%s: duplicate ext_type " "%u\n", __func__, ext->sadb_ext_type)); m_freem(m); PFKEYSTAT_INC(out_dupext); return EINVAL; } break; default: ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", __func__, ext->sadb_ext_type)); m_freem(m); PFKEYSTAT_INC(out_invexttype); return EINVAL; } extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); if (key_validate_ext(ext, extlen)) { m_freem(m); PFKEYSTAT_INC(out_invlen); return EINVAL; } n = m_pulldown(m, off, extlen, &toff); if (!n) { /* m is already freed */ return ENOBUFS; } ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); mhp->ext[ext->sadb_ext_type] = ext; mhp->extoff[ext->sadb_ext_type] = off; mhp->extlen[ext->sadb_ext_type] = extlen; } if (off != end) { m_freem(m); PFKEYSTAT_INC(out_invlen); return EINVAL; } return 0; } static int key_validate_ext(const struct sadb_ext *ext, int len) { const struct sockaddr *sa; enum { NONE, ADDR } checktype = NONE; int baselen = 0; const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) return EINVAL; /* if it does not match minimum/maximum length, bail */ if (ext->sadb_ext_type >= nitems(minsize) || ext->sadb_ext_type >= nitems(maxsize)) return EINVAL; if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) return EINVAL; if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) return EINVAL; /* more checks based on sadb_ext_type XXX need more */ switch (ext->sadb_ext_type) { case SADB_EXT_ADDRESS_SRC: case SADB_EXT_ADDRESS_DST: case SADB_EXT_ADDRESS_PROXY: baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); checktype = ADDR; break; case SADB_EXT_IDENTITY_SRC: case SADB_EXT_IDENTITY_DST: if (((const struct sadb_ident *)ext)->sadb_ident_type == SADB_X_IDENTTYPE_ADDR) { baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); checktype = ADDR; } else checktype = NONE; break; default: checktype = NONE; break; } switch (checktype) { case NONE: break; case ADDR: sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); if (len < baselen + sal) return EINVAL; if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) return EINVAL; break; } return 0; } void key_init(void) { int i; for (i = 0; i < IPSEC_DIR_MAX; i++) TAILQ_INIT(&V_sptree[i]); LIST_INIT(&V_sahtree); for (i = 0; i <= SADB_SATYPE_MAX; i++) LIST_INIT(&V_regtree[i]); LIST_INIT(&V_acqtree); LIST_INIT(&V_spacqtree); if (!IS_DEFAULT_VNET(curvnet)) return; SPTREE_LOCK_INIT(); REGTREE_LOCK_INIT(); SAHTREE_LOCK_INIT(); ACQ_LOCK_INIT(); SPACQ_LOCK_INIT(); #ifndef IPSEC_DEBUG2 callout_init(&key_timer, 1); callout_reset(&key_timer, hz, key_timehandler, NULL); #endif /*IPSEC_DEBUG2*/ /* initialize key statistics */ keystat.getspi_count = 1; if (bootverbose) printf("IPsec: Initialized Security Association Processing.\n"); } #ifdef VIMAGE void key_destroy(void) { TAILQ_HEAD(, secpolicy) drainq; struct secpolicy *sp, *nextsp; struct secacq *acq, *nextacq; struct secspacq *spacq, *nextspacq; struct secashead *sah, *nextsah; struct secreg *reg; int i; TAILQ_INIT(&drainq); SPTREE_WLOCK(); for (i = 0; i < IPSEC_DIR_MAX; i++) { TAILQ_CONCAT(&drainq, &V_sptree[i], chain); } SPTREE_WUNLOCK(); sp = TAILQ_FIRST(&drainq); while (sp != NULL) { nextsp = TAILQ_NEXT(sp, chain); KEY_FREESP(&sp); sp = nextsp; } SAHTREE_LOCK(); for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) { nextsah = LIST_NEXT(sah, chain); if (__LIST_CHAINED(sah)) { LIST_REMOVE(sah, chain); free(sah, M_IPSEC_SAH); } } SAHTREE_UNLOCK(); REGTREE_LOCK(); for (i = 0; i <= SADB_SATYPE_MAX; i++) { LIST_FOREACH(reg, &V_regtree[i], chain) { if (__LIST_CHAINED(reg)) { LIST_REMOVE(reg, chain); free(reg, M_IPSEC_SAR); break; } } } REGTREE_UNLOCK(); ACQ_LOCK(); for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { nextacq = LIST_NEXT(acq, chain); if (__LIST_CHAINED(acq)) { LIST_REMOVE(acq, chain); free(acq, M_IPSEC_SAQ); } } ACQ_UNLOCK(); SPACQ_LOCK(); for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; spacq = nextspacq) { nextspacq = LIST_NEXT(spacq, chain); if (__LIST_CHAINED(spacq)) { LIST_REMOVE(spacq, chain); free(spacq, M_IPSEC_SAQ); } } SPACQ_UNLOCK(); } #endif /* * XXX: maybe This function is called after INBOUND IPsec processing. * * Special check for tunnel-mode packets. * We must make some checks for consistency between inner and outer IP header. * * xxx more checks to be provided */ int key_checktunnelsanity(struct secasvar *sav, u_int family, caddr_t src, caddr_t dst) { IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); /* XXX: check inner IP header */ return 1; } /* record data transfer on SA, and update timestamps */ void key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) { IPSEC_ASSERT(sav != NULL, ("Null secasvar")); IPSEC_ASSERT(m != NULL, ("Null mbuf")); if (!sav->lft_c) return; /* * XXX Currently, there is a difference of bytes size * between inbound and outbound processing. */ sav->lft_c->bytes += m->m_pkthdr.len; /* to check bytes lifetime is done in key_timehandler(). */ /* * We use the number of packets as the unit of * allocations. We increment the variable * whenever {esp,ah}_{in,out}put is called. */ sav->lft_c->allocations++; /* XXX check for expires? */ /* * NOTE: We record CURRENT usetime by using wall clock, * in seconds. HARD and SOFT lifetime are measured by the time * difference (again in seconds) from usetime. * * usetime * v expire expire * -----+-----+--------+---> t * <--------------> HARD * <-----> SOFT */ sav->lft_c->usetime = time_second; /* XXX check for expires? */ return; } static void key_sa_chgstate(struct secasvar *sav, u_int8_t state) { IPSEC_ASSERT(sav != NULL, ("NULL sav")); SAHTREE_LOCK_ASSERT(); if (sav->state != state) { if (__LIST_CHAINED(sav)) LIST_REMOVE(sav, chain); sav->state = state; LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); } } /* * Take one of the kernel's security keys and convert it into a PF_KEY * structure within an mbuf, suitable for sending up to a waiting * application in user land. * * IN: * src: A pointer to a kernel security key. * exttype: Which type of key this is. Refer to the PF_KEY data structures. * OUT: * a valid mbuf or NULL indicating an error * */ static struct mbuf * key_setkey(struct seckey *src, u_int16_t exttype) { struct mbuf *m; struct sadb_key *p; int len; if (src == NULL) return NULL; len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) return NULL; m_align(m, len); m->m_len = len; p = mtod(m, struct sadb_key *); bzero(p, len); p->sadb_key_len = PFKEY_UNIT64(len); p->sadb_key_exttype = exttype; p->sadb_key_bits = src->bits; bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); return m; } /* * Take one of the kernel's lifetime data structures and convert it * into a PF_KEY structure within an mbuf, suitable for sending up to * a waiting application in user land. * * IN: * src: A pointer to a kernel lifetime structure. * exttype: Which type of lifetime this is. Refer to the PF_KEY * data structures for more information. * OUT: * a valid mbuf or NULL indicating an error * */ static struct mbuf * key_setlifetime(struct seclifetime *src, u_int16_t exttype) { struct mbuf *m = NULL; struct sadb_lifetime *p; int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); if (src == NULL) return NULL; m = m_get2(len, M_NOWAIT, MT_DATA, 0); if (m == NULL) return m; m_align(m, len); m->m_len = len; p = mtod(m, struct sadb_lifetime *); bzero(p, len); p->sadb_lifetime_len = PFKEY_UNIT64(len); p->sadb_lifetime_exttype = exttype; p->sadb_lifetime_allocations = src->allocations; p->sadb_lifetime_bytes = src->bytes; p->sadb_lifetime_addtime = src->addtime; p->sadb_lifetime_usetime = src->usetime; return m; } Index: head/sys/netipsec/key_debug.c =================================================================== --- head/sys/netipsec/key_debug.c (revision 309143) +++ head/sys/netipsec/key_debug.c (revision 309144) @@ -1,733 +1,736 @@ /* $FreeBSD$ */ /* $KAME: key_debug.c,v 1.26 2001/06/27 10:46:50 sakane Exp $ */ /*- * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifdef _KERNEL #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #endif #include #ifdef _KERNEL #include #include #include #include #endif #include #include #include #include #include #include #ifdef _KERNEL #include #endif #ifndef _KERNEL #include #include #include #endif /* !_KERNEL */ static void kdebug_sadb_prop(struct sadb_ext *); static void kdebug_sadb_identity(struct sadb_ext *); static void kdebug_sadb_supported(struct sadb_ext *); static void kdebug_sadb_lifetime(struct sadb_ext *); static void kdebug_sadb_sa(struct sadb_ext *); static void kdebug_sadb_address(struct sadb_ext *); static void kdebug_sadb_key(struct sadb_ext *); static void kdebug_sadb_x_sa2(struct sadb_ext *); #ifdef _KERNEL static void kdebug_secreplay(struct secreplay *); #endif #ifndef _KERNEL #define panic(fmt, ...) { printf(fmt, ## __VA_ARGS__); exit(-1); } #endif /* NOTE: host byte order */ /* %%%: about struct sadb_msg */ void kdebug_sadb(struct sadb_msg *base) { struct sadb_ext *ext; int tlen, extlen; /* sanity check */ if (base == NULL) panic("%s: NULL pointer was passed.\n", __func__); printf("sadb_msg{ version=%u type=%u errno=%u satype=%u\n", base->sadb_msg_version, base->sadb_msg_type, base->sadb_msg_errno, base->sadb_msg_satype); printf(" len=%u reserved=%u seq=%u pid=%u\n", base->sadb_msg_len, base->sadb_msg_reserved, base->sadb_msg_seq, base->sadb_msg_pid); tlen = PFKEY_UNUNIT64(base->sadb_msg_len) - sizeof(struct sadb_msg); ext = (struct sadb_ext *)((caddr_t)base + sizeof(struct sadb_msg)); while (tlen > 0) { printf("sadb_ext{ len=%u type=%u }\n", ext->sadb_ext_len, ext->sadb_ext_type); if (ext->sadb_ext_len == 0) { printf("%s: invalid ext_len=0 was passed.\n", __func__); return; } if (ext->sadb_ext_len > tlen) { printf("%s: ext_len too big (%u > %u).\n", __func__, ext->sadb_ext_len, tlen); return; } switch (ext->sadb_ext_type) { case SADB_EXT_SA: kdebug_sadb_sa(ext); break; case SADB_EXT_LIFETIME_CURRENT: case SADB_EXT_LIFETIME_HARD: case SADB_EXT_LIFETIME_SOFT: kdebug_sadb_lifetime(ext); break; case SADB_EXT_ADDRESS_SRC: case SADB_EXT_ADDRESS_DST: case SADB_EXT_ADDRESS_PROXY: kdebug_sadb_address(ext); break; case SADB_EXT_KEY_AUTH: case SADB_EXT_KEY_ENCRYPT: kdebug_sadb_key(ext); break; case SADB_EXT_IDENTITY_SRC: case SADB_EXT_IDENTITY_DST: kdebug_sadb_identity(ext); break; case SADB_EXT_SENSITIVITY: break; case SADB_EXT_PROPOSAL: kdebug_sadb_prop(ext); break; case SADB_EXT_SUPPORTED_AUTH: case SADB_EXT_SUPPORTED_ENCRYPT: kdebug_sadb_supported(ext); break; case SADB_EXT_SPIRANGE: case SADB_X_EXT_KMPRIVATE: break; case SADB_X_EXT_POLICY: kdebug_sadb_x_policy(ext); break; case SADB_X_EXT_SA2: kdebug_sadb_x_sa2(ext); break; default: printf("%s: invalid ext_type %u\n", __func__, ext->sadb_ext_type); return; } extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); tlen -= extlen; ext = (struct sadb_ext *)((caddr_t)ext + extlen); } return; } static void kdebug_sadb_prop(struct sadb_ext *ext) { struct sadb_prop *prop = (struct sadb_prop *)ext; struct sadb_comb *comb; int len; /* sanity check */ if (ext == NULL) panic("%s: NULL pointer was passed.\n", __func__); len = (PFKEY_UNUNIT64(prop->sadb_prop_len) - sizeof(*prop)) / sizeof(*comb); comb = (struct sadb_comb *)(prop + 1); printf("sadb_prop{ replay=%u\n", prop->sadb_prop_replay); while (len--) { printf("sadb_comb{ auth=%u encrypt=%u " "flags=0x%04x reserved=0x%08x\n", comb->sadb_comb_auth, comb->sadb_comb_encrypt, comb->sadb_comb_flags, comb->sadb_comb_reserved); printf(" auth_minbits=%u auth_maxbits=%u " "encrypt_minbits=%u encrypt_maxbits=%u\n", comb->sadb_comb_auth_minbits, comb->sadb_comb_auth_maxbits, comb->sadb_comb_encrypt_minbits, comb->sadb_comb_encrypt_maxbits); printf(" soft_alloc=%u hard_alloc=%u " "soft_bytes=%lu hard_bytes=%lu\n", comb->sadb_comb_soft_allocations, comb->sadb_comb_hard_allocations, (unsigned long)comb->sadb_comb_soft_bytes, (unsigned long)comb->sadb_comb_hard_bytes); printf(" soft_alloc=%lu hard_alloc=%lu " "soft_bytes=%lu hard_bytes=%lu }\n", (unsigned long)comb->sadb_comb_soft_addtime, (unsigned long)comb->sadb_comb_hard_addtime, (unsigned long)comb->sadb_comb_soft_usetime, (unsigned long)comb->sadb_comb_hard_usetime); comb++; } printf("}\n"); return; } static void kdebug_sadb_identity(struct sadb_ext *ext) { struct sadb_ident *id = (struct sadb_ident *)ext; int len; /* sanity check */ if (ext == NULL) panic("%s: NULL pointer was passed.\n", __func__); len = PFKEY_UNUNIT64(id->sadb_ident_len) - sizeof(*id); printf("sadb_ident_%s{", id->sadb_ident_exttype == SADB_EXT_IDENTITY_SRC ? "src" : "dst"); switch (id->sadb_ident_type) { default: printf(" type=%d id=%lu", id->sadb_ident_type, (u_long)id->sadb_ident_id); if (len) { #ifdef _KERNEL ipsec_hexdump((caddr_t)(id + 1), len); /*XXX cast ?*/ #else char *p, *ep; printf("\n str=\""); p = (char *)(id + 1); ep = p + len; for (/*nothing*/; *p && p < ep; p++) { if (isprint(*p)) printf("%c", *p & 0xff); else printf("\\%03o", *p & 0xff); } #endif printf("\""); } break; } printf(" }\n"); return; } static void kdebug_sadb_supported(struct sadb_ext *ext) { struct sadb_supported *sup = (struct sadb_supported *)ext; struct sadb_alg *alg; int len; /* sanity check */ if (ext == NULL) panic("%s: NULL pointer was passed.\n", __func__); len = (PFKEY_UNUNIT64(sup->sadb_supported_len) - sizeof(*sup)) / sizeof(*alg); alg = (struct sadb_alg *)(sup + 1); printf("sadb_sup{\n"); while (len--) { printf(" { id=%d ivlen=%d min=%d max=%d }\n", alg->sadb_alg_id, alg->sadb_alg_ivlen, alg->sadb_alg_minbits, alg->sadb_alg_maxbits); alg++; } printf("}\n"); return; } static void kdebug_sadb_lifetime(struct sadb_ext *ext) { struct sadb_lifetime *lft = (struct sadb_lifetime *)ext; /* sanity check */ if (ext == NULL) panic("%s: NULL pointer was passed.\n", __func__); printf("sadb_lifetime{ alloc=%u, bytes=%u\n", lft->sadb_lifetime_allocations, (u_int32_t)lft->sadb_lifetime_bytes); printf(" addtime=%u, usetime=%u }\n", (u_int32_t)lft->sadb_lifetime_addtime, (u_int32_t)lft->sadb_lifetime_usetime); return; } static void kdebug_sadb_sa(struct sadb_ext *ext) { struct sadb_sa *sa = (struct sadb_sa *)ext; /* sanity check */ if (ext == NULL) panic("%s: NULL pointer was passed.\n", __func__); printf("sadb_sa{ spi=%u replay=%u state=%u\n", (u_int32_t)ntohl(sa->sadb_sa_spi), sa->sadb_sa_replay, sa->sadb_sa_state); printf(" auth=%u encrypt=%u flags=0x%08x }\n", sa->sadb_sa_auth, sa->sadb_sa_encrypt, sa->sadb_sa_flags); return; } static void kdebug_sadb_address(struct sadb_ext *ext) { struct sadb_address *addr = (struct sadb_address *)ext; /* sanity check */ if (ext == NULL) panic("%s: NULL pointer was passed.\n", __func__); printf("sadb_address{ proto=%u prefixlen=%u reserved=0x%02x%02x }\n", addr->sadb_address_proto, addr->sadb_address_prefixlen, ((u_char *)&addr->sadb_address_reserved)[0], ((u_char *)&addr->sadb_address_reserved)[1]); kdebug_sockaddr((struct sockaddr *)((caddr_t)ext + sizeof(*addr))); return; } static void kdebug_sadb_key(struct sadb_ext *ext) { struct sadb_key *key = (struct sadb_key *)ext; /* sanity check */ if (ext == NULL) panic("%s: NULL pointer was passed.\n", __func__); printf("sadb_key{ bits=%u reserved=%u\n", key->sadb_key_bits, key->sadb_key_reserved); printf(" key="); /* sanity check 2 */ if ((key->sadb_key_bits >> 3) > (PFKEY_UNUNIT64(key->sadb_key_len) - sizeof(struct sadb_key))) { printf("%s: key length mismatch, bit:%d len:%ld.\n", __func__, key->sadb_key_bits >> 3, (long)PFKEY_UNUNIT64(key->sadb_key_len) - sizeof(struct sadb_key)); } ipsec_hexdump((caddr_t)key + sizeof(struct sadb_key), key->sadb_key_bits >> 3); printf(" }\n"); return; } static void kdebug_sadb_x_sa2(struct sadb_ext *ext) { struct sadb_x_sa2 *sa2 = (struct sadb_x_sa2 *)ext; /* sanity check */ if (ext == NULL) panic("%s: NULL pointer was passed.\n", __func__); printf("sadb_x_sa2{ mode=%u reqid=%u\n", sa2->sadb_x_sa2_mode, sa2->sadb_x_sa2_reqid); printf(" reserved1=%u reserved2=%u sequence=%u }\n", sa2->sadb_x_sa2_reserved1, sa2->sadb_x_sa2_reserved2, sa2->sadb_x_sa2_sequence); return; } void kdebug_sadb_x_policy(struct sadb_ext *ext) { struct sadb_x_policy *xpl = (struct sadb_x_policy *)ext; struct sockaddr *addr; /* sanity check */ if (ext == NULL) panic("%s: NULL pointer was passed.\n", __func__); printf("sadb_x_policy{ type=%u dir=%u id=%x }\n", xpl->sadb_x_policy_type, xpl->sadb_x_policy_dir, xpl->sadb_x_policy_id); if (xpl->sadb_x_policy_type == IPSEC_POLICY_IPSEC) { int tlen; struct sadb_x_ipsecrequest *xisr; tlen = PFKEY_UNUNIT64(xpl->sadb_x_policy_len) - sizeof(*xpl); xisr = (struct sadb_x_ipsecrequest *)(xpl + 1); while (tlen > 0) { printf(" { len=%u proto=%u mode=%u level=%u reqid=%u\n", xisr->sadb_x_ipsecrequest_len, xisr->sadb_x_ipsecrequest_proto, xisr->sadb_x_ipsecrequest_mode, xisr->sadb_x_ipsecrequest_level, xisr->sadb_x_ipsecrequest_reqid); if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { addr = (struct sockaddr *)(xisr + 1); kdebug_sockaddr(addr); addr = (struct sockaddr *)((caddr_t)addr + addr->sa_len); kdebug_sockaddr(addr); } printf(" }\n"); /* prevent infinite loop */ if (xisr->sadb_x_ipsecrequest_len <= 0) { printf("%s: wrong policy struct.\n", __func__); return; } /* prevent overflow */ if (xisr->sadb_x_ipsecrequest_len > tlen) { printf("%s: invalid ipsec policy length " "(%u > %u)\n", __func__, xisr->sadb_x_ipsecrequest_len, tlen); return; } tlen -= xisr->sadb_x_ipsecrequest_len; xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr + xisr->sadb_x_ipsecrequest_len); } if (tlen != 0) panic("%s: wrong policy struct.\n", __func__); } return; } #ifdef _KERNEL /* %%%: about SPD and SAD */ void kdebug_secpolicy(struct secpolicy *sp) { /* sanity check */ if (sp == NULL) panic("%s: NULL pointer was passed.\n", __func__); printf("secpolicy{ refcnt=%u policy=%u\n", sp->refcnt, sp->policy); kdebug_secpolicyindex(&sp->spidx); switch (sp->policy) { case IPSEC_POLICY_DISCARD: printf(" type=discard }\n"); break; case IPSEC_POLICY_NONE: printf(" type=none }\n"); break; case IPSEC_POLICY_IPSEC: { struct ipsecrequest *isr; for (isr = sp->req; isr != NULL; isr = isr->next) { printf(" level=%u\n", isr->level); kdebug_secasindex(&isr->saidx); if (isr->sav != NULL) kdebug_secasv(isr->sav); } printf(" }\n"); } break; case IPSEC_POLICY_BYPASS: printf(" type=bypass }\n"); break; case IPSEC_POLICY_ENTRUST: printf(" type=entrust }\n"); break; default: printf("%s: Invalid policy found. %d\n", __func__, sp->policy); break; } return; } void kdebug_secpolicyindex(struct secpolicyindex *spidx) { char buf[INET6_ADDRSTRLEN]; /* sanity check */ if (spidx == NULL) panic("%s: NULL pointer was passed.\n", __func__); printf("secpolicyindex{ dir=%u prefs=%u prefd=%u ul_proto=%u\n", spidx->dir, spidx->prefs, spidx->prefd, spidx->ul_proto); printf("%s -> ", ipsec_address(&spidx->src, buf, sizeof(buf))); printf("%s }\n", ipsec_address(&spidx->dst, buf, sizeof(buf))); } void kdebug_secasindex(struct secasindex *saidx) { char buf[INET6_ADDRSTRLEN]; /* sanity check */ if (saidx == NULL) panic("%s: NULL pointer was passed.\n", __func__); printf("secasindex{ mode=%u proto=%u\n", saidx->mode, saidx->proto); printf("%s -> ", ipsec_address(&saidx->src, buf, sizeof(buf))); printf("%s }\n", ipsec_address(&saidx->dst, buf, sizeof(buf))); } static void kdebug_sec_lifetime(struct seclifetime *lft) { /* sanity check */ if (lft == NULL) panic("%s: NULL pointer was passed.\n", __func__); printf("sec_lifetime{ alloc=%u, bytes=%u\n", lft->allocations, (u_int32_t)lft->bytes); printf(" addtime=%u, usetime=%u }\n", (u_int32_t)lft->addtime, (u_int32_t)lft->usetime); return; } void kdebug_secasv(struct secasvar *sav) { /* sanity check */ if (sav == NULL) panic("%s: NULL pointer was passed.\n", __func__); printf("secas{"); kdebug_secasindex(&sav->sah->saidx); printf(" refcnt=%u state=%u auth=%u enc=%u\n", sav->refcnt, sav->state, sav->alg_auth, sav->alg_enc); printf(" spi=%u flags=%u\n", (u_int32_t)ntohl(sav->spi), sav->flags); if (sav->key_auth != NULL) kdebug_sadb_key((struct sadb_ext *)sav->key_auth); if (sav->key_enc != NULL) kdebug_sadb_key((struct sadb_ext *)sav->key_enc); - if (sav->replay != NULL) + if (sav->replay != NULL) { + SECASVAR_LOCK(sav); kdebug_secreplay(sav->replay); + SECASVAR_UNLOCK(sav); + } if (sav->lft_c != NULL) kdebug_sec_lifetime(sav->lft_c); if (sav->lft_h != NULL) kdebug_sec_lifetime(sav->lft_h); if (sav->lft_s != NULL) kdebug_sec_lifetime(sav->lft_s); #ifdef notyet /* XXX: misc[123] ? */ #endif return; } static void kdebug_secreplay(struct secreplay *rpl) { int len, l; /* sanity check */ if (rpl == NULL) panic("%s: NULL pointer was passed.\n", __func__); - printf(" secreplay{ count=%u wsize=%u seq=%u lastseq=%u", - rpl->count, rpl->wsize, rpl->seq, rpl->lastseq); + printf(" secreplay{ count=%u bitmap_size=%u wsize=%u seq=%u lastseq=%u", + rpl->count, rpl->bitmap_size, rpl->wsize, rpl->seq, rpl->lastseq); if (rpl->bitmap == NULL) { printf(" }\n"); return; } printf("\n bitmap { "); - for (len = 0; len < rpl->wsize; len++) { + for (len = 0; len < rpl->bitmap_size*4; len++) { for (l = 7; l >= 0; l--) printf("%u", (((rpl->bitmap)[len] >> l) & 1) ? 1 : 0); } printf(" }\n"); return; } void kdebug_mbufhdr(const struct mbuf *m) { /* sanity check */ if (m == NULL) return; printf("mbuf(%p){ m_next:%p m_nextpkt:%p m_data:%p " "m_len:%d m_type:0x%02x m_flags:0x%02x }\n", m, m->m_next, m->m_nextpkt, m->m_data, m->m_len, m->m_type, m->m_flags); if (m->m_flags & M_PKTHDR) { printf(" m_pkthdr{ len:%d rcvif:%p }\n", m->m_pkthdr.len, m->m_pkthdr.rcvif); } if (m->m_flags & M_EXT) { printf(" m_ext{ ext_buf:%p ext_free:%p " "ext_size:%u ext_cnt:%p }\n", m->m_ext.ext_buf, m->m_ext.ext_free, m->m_ext.ext_size, m->m_ext.ext_cnt); } return; } void kdebug_mbuf(const struct mbuf *m0) { const struct mbuf *m = m0; int i, j; for (j = 0; m; m = m->m_next) { kdebug_mbufhdr(m); printf(" m_data:\n"); for (i = 0; i < m->m_len; i++) { if (i && i % 32 == 0) printf("\n"); if (i % 4 == 0) printf(" "); printf("%02x", mtod(m, const u_char *)[i]); j++; } printf("\n"); } return; } #endif /* _KERNEL */ void kdebug_sockaddr(struct sockaddr *addr) { struct sockaddr_in *sin4; #ifdef INET6 struct sockaddr_in6 *sin6; #endif /* sanity check */ if (addr == NULL) panic("%s: NULL pointer was passed.\n", __func__); /* NOTE: We deal with port number as host byte order. */ printf("sockaddr{ len=%u family=%u", addr->sa_len, addr->sa_family); switch (addr->sa_family) { case AF_INET: sin4 = (struct sockaddr_in *)addr; printf(" port=%u\n", ntohs(sin4->sin_port)); ipsec_hexdump((caddr_t)&sin4->sin_addr, sizeof(sin4->sin_addr)); break; #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)addr; printf(" port=%u\n", ntohs(sin6->sin6_port)); printf(" flowinfo=0x%08x, scope_id=0x%08x\n", sin6->sin6_flowinfo, sin6->sin6_scope_id); ipsec_hexdump((caddr_t)&sin6->sin6_addr, sizeof(sin6->sin6_addr)); break; #endif } printf(" }\n"); return; } void ipsec_bindump(caddr_t buf, int len) { int i; for (i = 0; i < len; i++) printf("%c", (unsigned char)buf[i]); return; } void ipsec_hexdump(caddr_t buf, int len) { int i; for (i = 0; i < len; i++) { if (i != 0 && i % 32 == 0) printf("\n"); if (i % 4 == 0) printf(" "); printf("%02x", (unsigned char)buf[i]); } #if 0 if (i % 32 != 0) printf("\n"); #endif return; } Index: head/sys/netipsec/keydb.h =================================================================== --- head/sys/netipsec/keydb.h (revision 309143) +++ head/sys/netipsec/keydb.h (revision 309144) @@ -1,225 +1,231 @@ /* $FreeBSD$ */ /* $KAME: keydb.h,v 1.14 2000/08/02 17:58:26 sakane Exp $ */ /*- * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef _NETIPSEC_KEYDB_H_ #define _NETIPSEC_KEYDB_H_ #ifdef _KERNEL +#include + #include #ifndef _SOCKADDR_UNION_DEFINED #define _SOCKADDR_UNION_DEFINED /* * The union of all possible address formats we handle. */ union sockaddr_union { struct sockaddr sa; struct sockaddr_in sin; struct sockaddr_in6 sin6; }; #endif /* _SOCKADDR_UNION_DEFINED */ /* Security Assocciation Index */ /* NOTE: Ensure to be same address family */ struct secasindex { union sockaddr_union src; /* source address for SA */ union sockaddr_union dst; /* destination address for SA */ u_int16_t proto; /* IPPROTO_ESP or IPPROTO_AH */ u_int8_t mode; /* mode of protocol, see ipsec.h */ u_int32_t reqid; /* reqid id who owned this SA */ /* see IPSEC_MANUAL_REQID_MAX. */ }; /* * In order to split out the keydb implementation from that of the * PF_KEY sockets we need to define a few structures that while they * may seem common are likely to diverge over time. */ /* sadb_identity */ struct secident { u_int16_t type; u_int64_t id; }; /* sadb_key */ struct seckey { u_int16_t bits; char *key_data; }; struct seclifetime { u_int32_t allocations; u_int64_t bytes; u_int64_t addtime; u_int64_t usetime; }; /* Security Association Data Base */ struct secashead { LIST_ENTRY(secashead) chain; struct secasindex saidx; struct secident *idents; /* source identity */ struct secident *identd; /* destination identity */ /* XXX I don't know how to use them. */ u_int8_t state; /* MATURE or DEAD. */ LIST_HEAD(_satree, secasvar) savtree[SADB_SASTATE_MAX+1]; /* SA chain */ /* The first of this list is newer SA */ }; struct xformsw; struct enc_xform; struct auth_hash; struct comp_algo; /* Security Association */ struct secasvar { LIST_ENTRY(secasvar) chain; struct mtx lock; /* update/access lock */ u_int refcnt; /* reference count */ u_int8_t state; /* Status of this Association */ u_int8_t alg_auth; /* Authentication Algorithm Identifier*/ u_int8_t alg_enc; /* Cipher Algorithm Identifier */ u_int8_t alg_comp; /* Compression Algorithm Identifier */ u_int32_t spi; /* SPI Value, network byte order */ u_int32_t flags; /* holder for SADB_KEY_FLAGS */ struct seckey *key_auth; /* Key for Authentication */ struct seckey *key_enc; /* Key for Encryption */ u_int ivlen; /* length of IV */ void *sched; /* intermediate encryption key */ size_t schedlen; uint64_t cntr; /* counter for GCM and CTR */ struct secreplay *replay; /* replay prevention */ time_t created; /* for lifetime */ struct seclifetime *lft_c; /* CURRENT lifetime, it's constant. */ struct seclifetime *lft_h; /* HARD lifetime */ struct seclifetime *lft_s; /* SOFT lifetime */ u_int32_t seq; /* sequence number */ pid_t pid; /* message's pid */ struct secashead *sah; /* back pointer to the secashead */ /* * NB: Fields with a tdb_ prefix are part of the "glue" used * to interface to the OpenBSD crypto support. This was done * to distinguish this code from the mainline KAME code. */ struct xformsw *tdb_xform; /* transform */ struct enc_xform *tdb_encalgxform; /* encoding algorithm */ struct auth_hash *tdb_authalgxform; /* authentication algorithm */ struct comp_algo *tdb_compalgxform; /* compression algorithm */ u_int64_t tdb_cryptoid; /* crypto session id */ /* * NAT-Traversal. */ u_int16_t natt_type; /* IKE/ESP-marker in output. */ u_int16_t natt_esp_frag_len; /* MTU for payload fragmentation. */ }; #define SECASVAR_LOCK_INIT(_sav) \ mtx_init(&(_sav)->lock, "ipsec association", NULL, MTX_DEF) #define SECASVAR_LOCK(_sav) mtx_lock(&(_sav)->lock) #define SECASVAR_UNLOCK(_sav) mtx_unlock(&(_sav)->lock) #define SECASVAR_LOCK_DESTROY(_sav) mtx_destroy(&(_sav)->lock) #define SECASVAR_LOCK_ASSERT(_sav) mtx_assert(&(_sav)->lock, MA_OWNED) #define SAV_ISGCM(_sav) \ ((_sav)->alg_enc == SADB_X_EALG_AESGCM8 || \ (_sav)->alg_enc == SADB_X_EALG_AESGCM12 || \ (_sav)->alg_enc == SADB_X_EALG_AESGCM16) #define SAV_ISCTR(_sav) ((_sav)->alg_enc == SADB_X_EALG_AESCTR) #define SAV_ISCTRORGCM(_sav) (SAV_ISCTR((_sav)) || SAV_ISGCM((_sav))) -/* replay prevention */ +/* Replay prevention, protected by SECASVAR_LOCK: + * (m) locked by mtx + * (c) read only except during creation / free + */ struct secreplay { - u_int32_t count; - u_int wsize; /* window size, i.g. 4 bytes */ - u_int32_t seq; /* used by sender */ - u_int32_t lastseq; /* used by receiver */ - caddr_t bitmap; /* used by receiver */ - int overflow; /* overflow flag */ + u_int32_t count; /* (m) */ + u_int wsize; /* (c) window size, i.g. 4 bytes */ + u_int32_t seq; /* (m) used by sender */ + u_int32_t lastseq; /* (m) used by receiver */ + u_int32_t *bitmap; /* (m) used by receiver */ + u_int bitmap_size; /* (c) size of the bitmap array */ + int overflow; /* (m) overflow flag */ }; /* socket table due to send PF_KEY messages. */ struct secreg { LIST_ENTRY(secreg) chain; struct socket *so; }; /* acquiring list table. */ struct secacq { LIST_ENTRY(secacq) chain; struct secasindex saidx; u_int32_t seq; /* sequence number */ time_t created; /* for lifetime */ int count; /* for lifetime */ }; /* Sensitivity Level Specification */ /* nothing */ #define SADB_KILL_INTERVAL 600 /* six seconds */ /* secpolicy */ extern struct secpolicy *keydb_newsecpolicy(void); extern void keydb_delsecpolicy(struct secpolicy *); /* secashead */ extern struct secashead *keydb_newsecashead(void); extern void keydb_delsecashead(struct secashead *); /* secasvar */ extern struct secasvar *keydb_newsecasvar(void); extern void keydb_refsecasvar(struct secasvar *); extern void keydb_freesecasvar(struct secasvar *); /* secreplay */ extern struct secreplay *keydb_newsecreplay(size_t); extern void keydb_delsecreplay(struct secreplay *); /* secreg */ extern struct secreg *keydb_newsecreg(void); extern void keydb_delsecreg(struct secreg *); #endif /* _KERNEL */ #endif /* _NETIPSEC_KEYDB_H_ */ Index: head/sys/netipsec/xform_ah.c =================================================================== --- head/sys/netipsec/xform_ah.c (revision 309143) +++ head/sys/netipsec/xform_ah.c (revision 309144) @@ -1,1199 +1,1204 @@ /* $FreeBSD$ */ /* $OpenBSD: ip_ah.c,v 1.63 2001/06/26 06:18:58 angelos Exp $ */ /*- * The authors of this code are John Ioannidis (ji@tla.org), * Angelos D. Keromytis (kermit@csd.uch.gr) and * Niels Provos (provos@physnet.uni-hamburg.de). * * The original version of this code was written by John Ioannidis * for BSD/OS in Athens, Greece, in November 1995. * * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996, * by Angelos D. Keromytis. * * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis * and Niels Provos. * * Additional features in 1999 by Angelos D. Keromytis and Niklas Hallqvist. * * Copyright (c) 1995, 1996, 1997, 1998, 1999 by John Ioannidis, * Angelos D. Keromytis and Niels Provos. * Copyright (c) 1999 Niklas Hallqvist. * Copyright (c) 2001 Angelos D. Keromytis. * * Permission to use, copy, and modify this software with or without fee * is hereby granted, provided that this entire notice is included in * all copies of any software which is or includes a copy or * modification of this software. * You may use this code under the GNU public license if you so wish. Please * contribute changes back to the authors under this freer than GPL license * so that we may further the use of strong encryption without limitations to * all. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR * PURPOSE. */ #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #endif #include #include #include /* * Return header size in bytes. The old protocol did not support * the replay counter; the new protocol always includes the counter. */ #define HDRSIZE(sav) \ (((sav)->flags & SADB_X_EXT_OLD) ? \ sizeof (struct ah) : sizeof (struct ah) + sizeof (u_int32_t)) /* * Return authenticator size in bytes, based on a field in the * algorithm descriptor. */ #define AUTHSIZE(sav) ((sav->flags & SADB_X_EXT_OLD) ? 16 : \ xform_ah_authsize((sav)->tdb_authalgxform)) VNET_DEFINE(int, ah_enable) = 1; /* control flow of packets with AH */ VNET_DEFINE(int, ah_cleartos) = 1; /* clear ip_tos when doing AH calc */ VNET_PCPUSTAT_DEFINE(struct ahstat, ahstat); VNET_PCPUSTAT_SYSINIT(ahstat); #ifdef VIMAGE VNET_PCPUSTAT_SYSUNINIT(ahstat); #endif /* VIMAGE */ #ifdef INET SYSCTL_DECL(_net_inet_ah); SYSCTL_INT(_net_inet_ah, OID_AUTO, ah_enable, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ah_enable), 0, ""); SYSCTL_INT(_net_inet_ah, OID_AUTO, ah_cleartos, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ah_cleartos), 0, ""); SYSCTL_VNET_PCPUSTAT(_net_inet_ah, IPSECCTL_STATS, stats, struct ahstat, ahstat, "AH statistics (struct ahstat, netipsec/ah_var.h)"); #endif static unsigned char ipseczeroes[256]; /* larger than an ip6 extension hdr */ static int ah_input_cb(struct cryptop*); static int ah_output_cb(struct cryptop*); int xform_ah_authsize(struct auth_hash *esph) { int alen; if (esph == NULL) return 0; switch (esph->type) { case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: alen = esph->hashsize / 2; /* RFC4868 2.3 */ break; case CRYPTO_AES_128_NIST_GMAC: case CRYPTO_AES_192_NIST_GMAC: case CRYPTO_AES_256_NIST_GMAC: alen = esph->hashsize; break; default: alen = AH_HMAC_HASHLEN; break; } return alen; } /* * NB: this is public for use by the PF_KEY support. */ struct auth_hash * ah_algorithm_lookup(int alg) { if (alg > SADB_AALG_MAX) return NULL; switch (alg) { case SADB_X_AALG_NULL: return &auth_hash_null; case SADB_AALG_MD5HMAC: return &auth_hash_hmac_md5; case SADB_AALG_SHA1HMAC: return &auth_hash_hmac_sha1; case SADB_X_AALG_RIPEMD160HMAC: return &auth_hash_hmac_ripemd_160; case SADB_X_AALG_MD5: return &auth_hash_key_md5; case SADB_X_AALG_SHA: return &auth_hash_key_sha1; case SADB_X_AALG_SHA2_256: return &auth_hash_hmac_sha2_256; case SADB_X_AALG_SHA2_384: return &auth_hash_hmac_sha2_384; case SADB_X_AALG_SHA2_512: return &auth_hash_hmac_sha2_512; case SADB_X_AALG_AES128GMAC: return &auth_hash_nist_gmac_aes_128; case SADB_X_AALG_AES192GMAC: return &auth_hash_nist_gmac_aes_192; case SADB_X_AALG_AES256GMAC: return &auth_hash_nist_gmac_aes_256; } return NULL; } size_t ah_hdrsiz(struct secasvar *sav) { size_t size; if (sav != NULL) { int authsize; IPSEC_ASSERT(sav->tdb_authalgxform != NULL, ("null xform")); /*XXX not right for null algorithm--does it matter??*/ authsize = AUTHSIZE(sav); size = roundup(authsize, sizeof (u_int32_t)) + HDRSIZE(sav); } else { /* default guess */ size = sizeof (struct ah) + sizeof (u_int32_t) + 16; } return size; } /* * NB: public for use by esp_init. */ int ah_init0(struct secasvar *sav, struct xformsw *xsp, struct cryptoini *cria) { struct auth_hash *thash; int keylen; thash = ah_algorithm_lookup(sav->alg_auth); if (thash == NULL) { DPRINTF(("%s: unsupported authentication algorithm %u\n", __func__, sav->alg_auth)); return EINVAL; } /* * Verify the replay state block allocation is consistent with * the protocol type. We check here so we can make assumptions * later during protocol processing. */ /* NB: replay state is setup elsewhere (sigh) */ if (((sav->flags&SADB_X_EXT_OLD) == 0) ^ (sav->replay != NULL)) { DPRINTF(("%s: replay state block inconsistency, " "%s algorithm %s replay state\n", __func__, (sav->flags & SADB_X_EXT_OLD) ? "old" : "new", sav->replay == NULL ? "without" : "with")); return EINVAL; } if (sav->key_auth == NULL) { DPRINTF(("%s: no authentication key for %s algorithm\n", __func__, thash->name)); return EINVAL; } keylen = _KEYLEN(sav->key_auth); if (keylen != thash->keysize && thash->keysize != 0) { DPRINTF(("%s: invalid keylength %d, algorithm %s requires " "keysize %d\n", __func__, keylen, thash->name, thash->keysize)); return EINVAL; } sav->tdb_xform = xsp; sav->tdb_authalgxform = thash; /* Initialize crypto session. */ bzero(cria, sizeof (*cria)); cria->cri_alg = sav->tdb_authalgxform->type; cria->cri_klen = _KEYBITS(sav->key_auth); cria->cri_key = sav->key_auth->key_data; cria->cri_mlen = AUTHSIZE(sav); return 0; } /* * ah_init() is called when an SPI is being set up. */ static int ah_init(struct secasvar *sav, struct xformsw *xsp) { struct cryptoini cria; int error; error = ah_init0(sav, xsp, &cria); return error ? error : crypto_newsession(&sav->tdb_cryptoid, &cria, V_crypto_support); } /* * Paranoia. * * NB: public for use by esp_zeroize (XXX). */ int ah_zeroize(struct secasvar *sav) { int err; if (sav->key_auth) bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); err = crypto_freesession(sav->tdb_cryptoid); sav->tdb_cryptoid = 0; sav->tdb_authalgxform = NULL; sav->tdb_xform = NULL; return err; } /* * Massage IPv4/IPv6 headers for AH processing. */ static int ah_massage_headers(struct mbuf **m0, int proto, int skip, int alg, int out) { struct mbuf *m = *m0; unsigned char *ptr; int off, count; #ifdef INET struct ip *ip; #endif /* INET */ #ifdef INET6 struct ip6_ext *ip6e; struct ip6_hdr ip6; int alloc, len, ad; #endif /* INET6 */ switch (proto) { #ifdef INET case AF_INET: /* * This is the least painful way of dealing with IPv4 header * and option processing -- just make sure they're in * contiguous memory. */ *m0 = m = m_pullup(m, skip); if (m == NULL) { DPRINTF(("%s: m_pullup failed\n", __func__)); return ENOBUFS; } /* Fix the IP header */ ip = mtod(m, struct ip *); if (V_ah_cleartos) ip->ip_tos = 0; ip->ip_ttl = 0; ip->ip_sum = 0; if (alg == CRYPTO_MD5_KPDK || alg == CRYPTO_SHA1_KPDK) ip->ip_off &= htons(IP_DF); else ip->ip_off = htons(0); ptr = mtod(m, unsigned char *) + sizeof(struct ip); /* IPv4 option processing */ for (off = sizeof(struct ip); off < skip;) { if (ptr[off] == IPOPT_EOL || ptr[off] == IPOPT_NOP || off + 1 < skip) ; else { DPRINTF(("%s: illegal IPv4 option length for " "option %d\n", __func__, ptr[off])); m_freem(m); return EINVAL; } switch (ptr[off]) { case IPOPT_EOL: off = skip; /* End the loop. */ break; case IPOPT_NOP: off++; break; case IPOPT_SECURITY: /* 0x82 */ case 0x85: /* Extended security. */ case 0x86: /* Commercial security. */ case 0x94: /* Router alert */ case 0x95: /* RFC1770 */ /* Sanity check for option length. */ if (ptr[off + 1] < 2) { DPRINTF(("%s: illegal IPv4 option " "length for option %d\n", __func__, ptr[off])); m_freem(m); return EINVAL; } off += ptr[off + 1]; break; case IPOPT_LSRR: case IPOPT_SSRR: /* Sanity check for option length. */ if (ptr[off + 1] < 2) { DPRINTF(("%s: illegal IPv4 option " "length for option %d\n", __func__, ptr[off])); m_freem(m); return EINVAL; } /* * On output, if we have either of the * source routing options, we should * swap the destination address of the * IP header with the last address * specified in the option, as that is * what the destination's IP header * will look like. */ if (out) bcopy(ptr + off + ptr[off + 1] - sizeof(struct in_addr), &(ip->ip_dst), sizeof(struct in_addr)); /* Fall through */ default: /* Sanity check for option length. */ if (ptr[off + 1] < 2) { DPRINTF(("%s: illegal IPv4 option " "length for option %d\n", __func__, ptr[off])); m_freem(m); return EINVAL; } /* Zeroize all other options. */ count = ptr[off + 1]; bcopy(ipseczeroes, ptr, count); off += count; break; } /* Sanity check. */ if (off > skip) { DPRINTF(("%s: malformed IPv4 options header\n", __func__)); m_freem(m); return EINVAL; } } break; #endif /* INET */ #ifdef INET6 case AF_INET6: /* Ugly... */ /* Copy and "cook" the IPv6 header. */ m_copydata(m, 0, sizeof(ip6), (caddr_t) &ip6); /* We don't do IPv6 Jumbograms. */ if (ip6.ip6_plen == 0) { DPRINTF(("%s: unsupported IPv6 jumbogram\n", __func__)); m_freem(m); return EMSGSIZE; } ip6.ip6_flow = 0; ip6.ip6_hlim = 0; ip6.ip6_vfc &= ~IPV6_VERSION_MASK; ip6.ip6_vfc |= IPV6_VERSION; /* Scoped address handling. */ if (IN6_IS_SCOPE_LINKLOCAL(&ip6.ip6_src)) ip6.ip6_src.s6_addr16[1] = 0; if (IN6_IS_SCOPE_LINKLOCAL(&ip6.ip6_dst)) ip6.ip6_dst.s6_addr16[1] = 0; /* Done with IPv6 header. */ m_copyback(m, 0, sizeof(struct ip6_hdr), (caddr_t) &ip6); /* Let's deal with the remaining headers (if any). */ if (skip - sizeof(struct ip6_hdr) > 0) { if (m->m_len <= skip) { ptr = (unsigned char *) malloc( skip - sizeof(struct ip6_hdr), M_XDATA, M_NOWAIT); if (ptr == NULL) { DPRINTF(("%s: failed to allocate memory" "for IPv6 headers\n",__func__)); m_freem(m); return ENOBUFS; } /* * Copy all the protocol headers after * the IPv6 header. */ m_copydata(m, sizeof(struct ip6_hdr), skip - sizeof(struct ip6_hdr), ptr); alloc = 1; } else { /* No need to allocate memory. */ ptr = mtod(m, unsigned char *) + sizeof(struct ip6_hdr); alloc = 0; } } else break; off = ip6.ip6_nxt & 0xff; /* Next header type. */ for (len = 0; len < skip - sizeof(struct ip6_hdr);) switch (off) { case IPPROTO_HOPOPTS: case IPPROTO_DSTOPTS: ip6e = (struct ip6_ext *) (ptr + len); /* * Process the mutable/immutable * options -- borrows heavily from the * KAME code. */ for (count = len + sizeof(struct ip6_ext); count < len + ((ip6e->ip6e_len + 1) << 3);) { if (ptr[count] == IP6OPT_PAD1) { count++; continue; /* Skip padding. */ } /* Sanity check. */ if (count > len + ((ip6e->ip6e_len + 1) << 3)) { m_freem(m); /* Free, if we allocated. */ if (alloc) free(ptr, M_XDATA); return EINVAL; } ad = ptr[count + 1]; /* If mutable option, zeroize. */ if (ptr[count] & IP6OPT_MUTABLE) bcopy(ipseczeroes, ptr + count, ptr[count + 1]); count += ad; /* Sanity check. */ if (count > skip - sizeof(struct ip6_hdr)) { m_freem(m); /* Free, if we allocated. */ if (alloc) free(ptr, M_XDATA); return EINVAL; } } /* Advance. */ len += ((ip6e->ip6e_len + 1) << 3); off = ip6e->ip6e_nxt; break; case IPPROTO_ROUTING: /* * Always include routing headers in * computation. */ ip6e = (struct ip6_ext *) (ptr + len); len += ((ip6e->ip6e_len + 1) << 3); off = ip6e->ip6e_nxt; break; default: DPRINTF(("%s: unexpected IPv6 header type %d", __func__, off)); if (alloc) free(ptr, M_XDATA); m_freem(m); return EINVAL; } /* Copyback and free, if we allocated. */ if (alloc) { m_copyback(m, sizeof(struct ip6_hdr), skip - sizeof(struct ip6_hdr), ptr); free(ptr, M_XDATA); } break; #endif /* INET6 */ } return 0; } /* * ah_input() gets called to verify that an input packet * passes authentication. */ static int ah_input(struct mbuf *m, struct secasvar *sav, int skip, int protoff) { char buf[128]; struct auth_hash *ahx; struct tdb_crypto *tc; struct newah *ah; int hl, rplen, authsize, error; struct cryptodesc *crda; struct cryptop *crp; IPSEC_ASSERT(sav != NULL, ("null SA")); IPSEC_ASSERT(sav->key_auth != NULL, ("null authentication key")); IPSEC_ASSERT(sav->tdb_authalgxform != NULL, ("null authentication xform")); /* Figure out header size. */ rplen = HDRSIZE(sav); /* XXX don't pullup, just copy header */ IP6_EXTHDR_GET(ah, struct newah *, m, skip, rplen); if (ah == NULL) { DPRINTF(("ah_input: cannot pullup header\n")); AHSTAT_INC(ahs_hdrops); /*XXX*/ m_freem(m); return ENOBUFS; } /* Check replay window, if applicable. */ if (sav->replay && !ipsec_chkreplay(ntohl(ah->ah_seq), sav)) { AHSTAT_INC(ahs_replay); DPRINTF(("%s: packet replay failure: %s\n", __func__, ipsec_logsastr(sav, buf, sizeof(buf)))); m_freem(m); return ENOBUFS; } /* Verify AH header length. */ hl = ah->ah_len * sizeof (u_int32_t); ahx = sav->tdb_authalgxform; authsize = AUTHSIZE(sav); if (hl != authsize + rplen - sizeof (struct ah)) { DPRINTF(("%s: bad authenticator length %u (expecting %lu)" " for packet in SA %s/%08lx\n", __func__, hl, (u_long) (authsize + rplen - sizeof (struct ah)), ipsec_address(&sav->sah->saidx.dst, buf, sizeof(buf)), (u_long) ntohl(sav->spi))); AHSTAT_INC(ahs_badauthl); m_freem(m); return EACCES; } AHSTAT_ADD(ahs_ibytes, m->m_pkthdr.len - skip - hl); /* Get crypto descriptors. */ crp = crypto_getreq(1); if (crp == NULL) { DPRINTF(("%s: failed to acquire crypto descriptor\n",__func__)); AHSTAT_INC(ahs_crypto); m_freem(m); return ENOBUFS; } crda = crp->crp_desc; IPSEC_ASSERT(crda != NULL, ("null crypto descriptor")); crda->crd_skip = 0; crda->crd_len = m->m_pkthdr.len; crda->crd_inject = skip + rplen; /* Authentication operation. */ crda->crd_alg = ahx->type; crda->crd_klen = _KEYBITS(sav->key_auth); crda->crd_key = sav->key_auth->key_data; /* Allocate IPsec-specific opaque crypto info. */ tc = (struct tdb_crypto *) malloc(sizeof (struct tdb_crypto) + skip + rplen + authsize, M_XDATA, M_NOWAIT | M_ZERO); if (tc == NULL) { DPRINTF(("%s: failed to allocate tdb_crypto\n", __func__)); AHSTAT_INC(ahs_crypto); crypto_freereq(crp); m_freem(m); return ENOBUFS; } /* * Save the authenticator, the skipped portion of the packet, * and the AH header. */ m_copydata(m, 0, skip + rplen + authsize, (caddr_t)(tc+1)); /* Zeroize the authenticator on the packet. */ m_copyback(m, skip + rplen, authsize, ipseczeroes); /* "Massage" the packet headers for crypto processing. */ error = ah_massage_headers(&m, sav->sah->saidx.dst.sa.sa_family, skip, ahx->type, 0); if (error != 0) { /* NB: mbuf is free'd by ah_massage_headers */ AHSTAT_INC(ahs_hdrops); free(tc, M_XDATA); crypto_freereq(crp); return (error); } /* Crypto operation descriptor. */ crp->crp_ilen = m->m_pkthdr.len; /* Total input length. */ crp->crp_flags = CRYPTO_F_IMBUF | CRYPTO_F_CBIFSYNC; crp->crp_buf = (caddr_t) m; crp->crp_callback = ah_input_cb; crp->crp_sid = sav->tdb_cryptoid; crp->crp_opaque = (caddr_t) tc; /* These are passed as-is to the callback. */ tc->tc_spi = sav->spi; tc->tc_dst = sav->sah->saidx.dst; tc->tc_proto = sav->sah->saidx.proto; tc->tc_nxt = ah->ah_nxt; tc->tc_protoff = protoff; tc->tc_skip = skip; KEY_ADDREFSA(sav); tc->tc_sav = sav; return (crypto_dispatch(crp)); } /* * AH input callback from the crypto driver. */ static int ah_input_cb(struct cryptop *crp) { char buf[INET6_ADDRSTRLEN]; int rplen, error, skip, protoff; unsigned char calc[AH_ALEN_MAX]; struct mbuf *m; struct cryptodesc *crd; struct auth_hash *ahx; struct tdb_crypto *tc; struct secasvar *sav; struct secasindex *saidx; u_int8_t nxt; caddr_t ptr; int authsize; crd = crp->crp_desc; tc = (struct tdb_crypto *) crp->crp_opaque; IPSEC_ASSERT(tc != NULL, ("null opaque crypto data area!")); skip = tc->tc_skip; nxt = tc->tc_nxt; protoff = tc->tc_protoff; m = (struct mbuf *) crp->crp_buf; sav = tc->tc_sav; IPSEC_ASSERT(sav != NULL, ("null SA!")); saidx = &sav->sah->saidx; IPSEC_ASSERT(saidx->dst.sa.sa_family == AF_INET || saidx->dst.sa.sa_family == AF_INET6, ("unexpected protocol family %u", saidx->dst.sa.sa_family)); ahx = (struct auth_hash *) sav->tdb_authalgxform; /* Check for crypto errors. */ if (crp->crp_etype) { if (sav->tdb_cryptoid != 0) sav->tdb_cryptoid = crp->crp_sid; if (crp->crp_etype == EAGAIN) return (crypto_dispatch(crp)); AHSTAT_INC(ahs_noxform); DPRINTF(("%s: crypto error %d\n", __func__, crp->crp_etype)); error = crp->crp_etype; goto bad; } else { AHSTAT_INC(ahs_hist[sav->alg_auth]); crypto_freereq(crp); /* No longer needed. */ crp = NULL; } /* Shouldn't happen... */ if (m == NULL) { AHSTAT_INC(ahs_crypto); DPRINTF(("%s: bogus returned buffer from crypto\n", __func__)); error = EINVAL; goto bad; } /* Figure out header size. */ rplen = HDRSIZE(sav); authsize = AUTHSIZE(sav); /* Copy authenticator off the packet. */ m_copydata(m, skip + rplen, authsize, calc); /* Verify authenticator. */ ptr = (caddr_t) (tc + 1); if (timingsafe_bcmp(ptr + skip + rplen, calc, authsize)) { DPRINTF(("%s: authentication hash mismatch for packet " "in SA %s/%08lx\n", __func__, ipsec_address(&saidx->dst, buf, sizeof(buf)), (u_long) ntohl(sav->spi))); AHSTAT_INC(ahs_badauth); error = EACCES; goto bad; } /* Fix the Next Protocol field. */ ((u_int8_t *) ptr)[protoff] = nxt; /* Copyback the saved (uncooked) network headers. */ m_copyback(m, 0, skip, ptr); free(tc, M_XDATA), tc = NULL; /* No longer needed */ /* * Header is now authenticated. */ m->m_flags |= M_AUTHIPHDR|M_AUTHIPDGM; /* * Update replay sequence number, if appropriate. */ if (sav->replay) { u_int32_t seq; m_copydata(m, skip + offsetof(struct newah, ah_seq), sizeof (seq), (caddr_t) &seq); if (ipsec_updatereplay(ntohl(seq), sav)) { AHSTAT_INC(ahs_replay); error = ENOBUFS; /*XXX as above*/ goto bad; } } /* * Remove the AH header and authenticator from the mbuf. */ error = m_striphdr(m, skip, rplen + authsize); if (error) { DPRINTF(("%s: mangled mbuf chain for SA %s/%08lx\n", __func__, ipsec_address(&saidx->dst, buf, sizeof(buf)), (u_long) ntohl(sav->spi))); AHSTAT_INC(ahs_hdrops); goto bad; } switch (saidx->dst.sa.sa_family) { #ifdef INET6 case AF_INET6: error = ipsec6_common_input_cb(m, sav, skip, protoff); break; #endif #ifdef INET case AF_INET: error = ipsec4_common_input_cb(m, sav, skip, protoff); break; #endif default: panic("%s: Unexpected address family: %d saidx=%p", __func__, saidx->dst.sa.sa_family, saidx); } KEY_FREESAV(&sav); return error; bad: if (sav) KEY_FREESAV(&sav); if (m != NULL) m_freem(m); if (tc != NULL) free(tc, M_XDATA); if (crp != NULL) crypto_freereq(crp); return error; } /* * AH output routine, called by ipsec[46]_process_packet(). */ static int ah_output(struct mbuf *m, struct ipsecrequest *isr, struct mbuf **mp, int skip, int protoff) { char buf[INET6_ADDRSTRLEN]; struct secasvar *sav; struct auth_hash *ahx; struct cryptodesc *crda; struct tdb_crypto *tc; struct mbuf *mi; struct cryptop *crp; u_int16_t iplen; int error, rplen, authsize, maxpacketsize, roff; u_int8_t prot; struct newah *ah; sav = isr->sav; IPSEC_ASSERT(sav != NULL, ("null SA")); ahx = sav->tdb_authalgxform; IPSEC_ASSERT(ahx != NULL, ("null authentication xform")); AHSTAT_INC(ahs_output); /* Figure out header size. */ rplen = HDRSIZE(sav); /* Check for maximum packet size violations. */ switch (sav->sah->saidx.dst.sa.sa_family) { #ifdef INET case AF_INET: maxpacketsize = IP_MAXPACKET; break; #endif /* INET */ #ifdef INET6 case AF_INET6: maxpacketsize = IPV6_MAXPACKET; break; #endif /* INET6 */ default: DPRINTF(("%s: unknown/unsupported protocol family %u, " "SA %s/%08lx\n", __func__, sav->sah->saidx.dst.sa.sa_family, ipsec_address(&sav->sah->saidx.dst, buf, sizeof(buf)), (u_long) ntohl(sav->spi))); AHSTAT_INC(ahs_nopf); error = EPFNOSUPPORT; goto bad; } authsize = AUTHSIZE(sav); if (rplen + authsize + m->m_pkthdr.len > maxpacketsize) { DPRINTF(("%s: packet in SA %s/%08lx got too big " "(len %u, max len %u)\n", __func__, ipsec_address(&sav->sah->saidx.dst, buf, sizeof(buf)), (u_long) ntohl(sav->spi), rplen + authsize + m->m_pkthdr.len, maxpacketsize)); AHSTAT_INC(ahs_toobig); error = EMSGSIZE; goto bad; } /* Update the counters. */ AHSTAT_ADD(ahs_obytes, m->m_pkthdr.len - skip); m = m_unshare(m, M_NOWAIT); if (m == NULL) { DPRINTF(("%s: cannot clone mbuf chain, SA %s/%08lx\n", __func__, ipsec_address(&sav->sah->saidx.dst, buf, sizeof(buf)), (u_long) ntohl(sav->spi))); AHSTAT_INC(ahs_hdrops); error = ENOBUFS; goto bad; } /* Inject AH header. */ mi = m_makespace(m, skip, rplen + authsize, &roff); if (mi == NULL) { DPRINTF(("%s: failed to inject %u byte AH header for SA " "%s/%08lx\n", __func__, rplen + authsize, ipsec_address(&sav->sah->saidx.dst, buf, sizeof(buf)), (u_long) ntohl(sav->spi))); AHSTAT_INC(ahs_hdrops); /*XXX differs from openbsd */ error = ENOBUFS; goto bad; } /* * The AH header is guaranteed by m_makespace() to be in * contiguous memory, at roff bytes offset into the returned mbuf. */ ah = (struct newah *)(mtod(mi, caddr_t) + roff); /* Initialize the AH header. */ m_copydata(m, protoff, sizeof(u_int8_t), (caddr_t) &ah->ah_nxt); ah->ah_len = (rplen + authsize - sizeof(struct ah)) / sizeof(u_int32_t); ah->ah_reserve = 0; ah->ah_spi = sav->spi; /* Zeroize authenticator. */ m_copyback(m, skip + rplen, authsize, ipseczeroes); /* Insert packet replay counter, as requested. */ if (sav->replay) { + SECASVAR_LOCK(sav); + if (sav->replay->count == ~0 && (sav->flags & SADB_X_EXT_CYCSEQ) == 0) { + SECASVAR_UNLOCK(sav); DPRINTF(("%s: replay counter wrapped for SA %s/%08lx\n", __func__, ipsec_address(&sav->sah->saidx.dst, buf, sizeof(buf)), (u_long) ntohl(sav->spi))); AHSTAT_INC(ahs_wrap); error = EINVAL; goto bad; } #ifdef REGRESSION /* Emulate replay attack when ipsec_replay is TRUE. */ if (!V_ipsec_replay) #endif sav->replay->count++; ah->ah_seq = htonl(sav->replay->count); + + SECASVAR_UNLOCK(sav); } /* Get crypto descriptors. */ crp = crypto_getreq(1); if (crp == NULL) { DPRINTF(("%s: failed to acquire crypto descriptors\n", __func__)); AHSTAT_INC(ahs_crypto); error = ENOBUFS; goto bad; } crda = crp->crp_desc; crda->crd_skip = 0; crda->crd_inject = skip + rplen; crda->crd_len = m->m_pkthdr.len; /* Authentication operation. */ crda->crd_alg = ahx->type; crda->crd_key = sav->key_auth->key_data; crda->crd_klen = _KEYBITS(sav->key_auth); /* Allocate IPsec-specific opaque crypto info. */ tc = (struct tdb_crypto *) malloc( sizeof(struct tdb_crypto) + skip, M_XDATA, M_NOWAIT|M_ZERO); if (tc == NULL) { crypto_freereq(crp); DPRINTF(("%s: failed to allocate tdb_crypto\n", __func__)); AHSTAT_INC(ahs_crypto); error = ENOBUFS; goto bad; } /* Save the skipped portion of the packet. */ m_copydata(m, 0, skip, (caddr_t) (tc + 1)); /* * Fix IP header length on the header used for * authentication. We don't need to fix the original * header length as it will be fixed by our caller. */ switch (sav->sah->saidx.dst.sa.sa_family) { #ifdef INET case AF_INET: bcopy(((caddr_t)(tc + 1)) + offsetof(struct ip, ip_len), (caddr_t) &iplen, sizeof(u_int16_t)); iplen = htons(ntohs(iplen) + rplen + authsize); m_copyback(m, offsetof(struct ip, ip_len), sizeof(u_int16_t), (caddr_t) &iplen); break; #endif /* INET */ #ifdef INET6 case AF_INET6: bcopy(((caddr_t)(tc + 1)) + offsetof(struct ip6_hdr, ip6_plen), (caddr_t) &iplen, sizeof(u_int16_t)); iplen = htons(ntohs(iplen) + rplen + authsize); m_copyback(m, offsetof(struct ip6_hdr, ip6_plen), sizeof(u_int16_t), (caddr_t) &iplen); break; #endif /* INET6 */ } /* Fix the Next Header field in saved header. */ ((u_int8_t *) (tc + 1))[protoff] = IPPROTO_AH; /* Update the Next Protocol field in the IP header. */ prot = IPPROTO_AH; m_copyback(m, protoff, sizeof(u_int8_t), (caddr_t) &prot); /* "Massage" the packet headers for crypto processing. */ error = ah_massage_headers(&m, sav->sah->saidx.dst.sa.sa_family, skip, ahx->type, 1); if (error != 0) { m = NULL; /* mbuf was free'd by ah_massage_headers. */ free(tc, M_XDATA); crypto_freereq(crp); goto bad; } /* Crypto operation descriptor. */ crp->crp_ilen = m->m_pkthdr.len; /* Total input length. */ crp->crp_flags = CRYPTO_F_IMBUF | CRYPTO_F_CBIFSYNC; crp->crp_buf = (caddr_t) m; crp->crp_callback = ah_output_cb; crp->crp_sid = sav->tdb_cryptoid; crp->crp_opaque = (caddr_t) tc; /* These are passed as-is to the callback. */ key_addref(isr->sp); tc->tc_isr = isr; KEY_ADDREFSA(sav); tc->tc_sav = sav; tc->tc_spi = sav->spi; tc->tc_dst = sav->sah->saidx.dst; tc->tc_proto = sav->sah->saidx.proto; tc->tc_skip = skip; tc->tc_protoff = protoff; return crypto_dispatch(crp); bad: if (m) m_freem(m); return (error); } /* * AH output callback from the crypto driver. */ static int ah_output_cb(struct cryptop *crp) { int skip, protoff, error; struct tdb_crypto *tc; struct ipsecrequest *isr; struct secasvar *sav; struct mbuf *m; caddr_t ptr; tc = (struct tdb_crypto *) crp->crp_opaque; IPSEC_ASSERT(tc != NULL, ("null opaque data area!")); skip = tc->tc_skip; protoff = tc->tc_protoff; ptr = (caddr_t) (tc + 1); m = (struct mbuf *) crp->crp_buf; isr = tc->tc_isr; IPSEC_ASSERT(isr->sp != NULL, ("NULL isr->sp")); IPSECREQUEST_LOCK(isr); sav = tc->tc_sav; /* With the isr lock released SA pointer can be updated. */ if (sav != isr->sav) { AHSTAT_INC(ahs_notdb); DPRINTF(("%s: SA expired while in crypto\n", __func__)); error = ENOBUFS; /*XXX*/ goto bad; } /* Check for crypto errors. */ if (crp->crp_etype) { if (sav->tdb_cryptoid != 0) sav->tdb_cryptoid = crp->crp_sid; if (crp->crp_etype == EAGAIN) { IPSECREQUEST_UNLOCK(isr); return (crypto_dispatch(crp)); } AHSTAT_INC(ahs_noxform); DPRINTF(("%s: crypto error %d\n", __func__, crp->crp_etype)); error = crp->crp_etype; goto bad; } /* Shouldn't happen... */ if (m == NULL) { AHSTAT_INC(ahs_crypto); DPRINTF(("%s: bogus returned buffer from crypto\n", __func__)); error = EINVAL; goto bad; } AHSTAT_INC(ahs_hist[sav->alg_auth]); /* * Copy original headers (with the new protocol number) back * in place. */ m_copyback(m, 0, skip, ptr); /* No longer needed. */ free(tc, M_XDATA); crypto_freereq(crp); #ifdef REGRESSION /* Emulate man-in-the-middle attack when ipsec_integrity is TRUE. */ if (V_ipsec_integrity) { int alen; /* * Corrupt HMAC if we want to test integrity verification of * the other side. */ alen = AUTHSIZE(sav); m_copyback(m, m->m_pkthdr.len - alen, alen, ipseczeroes); } #endif /* NB: m is reclaimed by ipsec_process_done. */ error = ipsec_process_done(m, isr); KEY_FREESAV(&sav); IPSECREQUEST_UNLOCK(isr); KEY_FREESP(&isr->sp); return (error); bad: if (sav) KEY_FREESAV(&sav); IPSECREQUEST_UNLOCK(isr); KEY_FREESP(&isr->sp); if (m) m_freem(m); free(tc, M_XDATA); crypto_freereq(crp); return (error); } static struct xformsw ah_xformsw = { XF_AH, XFT_AUTH, "IPsec AH", ah_init, ah_zeroize, ah_input, ah_output, }; static void ah_attach(void) { xform_register(&ah_xformsw); } SYSINIT(ah_xform_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, ah_attach, NULL); Index: head/sys/netipsec/xform_esp.c =================================================================== --- head/sys/netipsec/xform_esp.c (revision 309143) +++ head/sys/netipsec/xform_esp.c (revision 309144) @@ -1,1020 +1,1022 @@ /* $FreeBSD$ */ /* $OpenBSD: ip_esp.c,v 1.69 2001/06/26 06:18:59 angelos Exp $ */ /*- * The authors of this code are John Ioannidis (ji@tla.org), * Angelos D. Keromytis (kermit@csd.uch.gr) and * Niels Provos (provos@physnet.uni-hamburg.de). * * The original version of this code was written by John Ioannidis * for BSD/OS in Athens, Greece, in November 1995. * * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996, * by Angelos D. Keromytis. * * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis * and Niels Provos. * * Additional features in 1999 by Angelos D. Keromytis. * * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis, * Angelos D. Keromytis and Niels Provos. * Copyright (c) 2001 Angelos D. Keromytis. * * Permission to use, copy, and modify this software with or without fee * is hereby granted, provided that this entire notice is included in * all copies of any software which is or includes a copy or * modification of this software. * You may use this code under the GNU public license if you so wish. Please * contribute changes back to the authors under this freer than GPL license * so that we may further the use of strong encryption without limitations to * all. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR * PURPOSE. */ #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #endif #include #include #include #include VNET_DEFINE(int, esp_enable) = 1; VNET_PCPUSTAT_DEFINE(struct espstat, espstat); VNET_PCPUSTAT_SYSINIT(espstat); #ifdef VIMAGE VNET_PCPUSTAT_SYSUNINIT(espstat); #endif /* VIMAGE */ SYSCTL_DECL(_net_inet_esp); SYSCTL_INT(_net_inet_esp, OID_AUTO, esp_enable, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(esp_enable), 0, ""); SYSCTL_VNET_PCPUSTAT(_net_inet_esp, IPSECCTL_STATS, stats, struct espstat, espstat, "ESP statistics (struct espstat, netipsec/esp_var.h"); static int esp_input_cb(struct cryptop *op); static int esp_output_cb(struct cryptop *crp); /* * NB: this is public for use by the PF_KEY support. * NB: if you add support here; be sure to add code to esp_attach below! */ struct enc_xform * esp_algorithm_lookup(int alg) { if (alg >= ESP_ALG_MAX) return NULL; switch (alg) { case SADB_EALG_DESCBC: return &enc_xform_des; case SADB_EALG_3DESCBC: return &enc_xform_3des; case SADB_X_EALG_AES: return &enc_xform_rijndael128; case SADB_X_EALG_BLOWFISHCBC: return &enc_xform_blf; case SADB_X_EALG_CAST128CBC: return &enc_xform_cast5; case SADB_EALG_NULL: return &enc_xform_null; case SADB_X_EALG_CAMELLIACBC: return &enc_xform_camellia; case SADB_X_EALG_AESCTR: return &enc_xform_aes_icm; case SADB_X_EALG_AESGCM16: return &enc_xform_aes_nist_gcm; case SADB_X_EALG_AESGMAC: return &enc_xform_aes_nist_gmac; } return NULL; } size_t esp_hdrsiz(struct secasvar *sav) { size_t size; if (sav != NULL) { /*XXX not right for null algorithm--does it matter??*/ IPSEC_ASSERT(sav->tdb_encalgxform != NULL, ("SA with null xform")); if (sav->flags & SADB_X_EXT_OLD) size = sizeof (struct esp); else size = sizeof (struct newesp); size += sav->tdb_encalgxform->blocksize + 9; /*XXX need alg check???*/ if (sav->tdb_authalgxform != NULL && sav->replay) size += ah_hdrsiz(sav); } else { /* * base header size * + max iv length for CBC mode * + max pad length * + sizeof (pad length field) * + sizeof (next header field) * + max icv supported. */ size = sizeof (struct newesp) + EALG_MAX_BLOCK_LEN + 9 + 16; } return size; } /* * esp_init() is called when an SPI is being set up. */ static int esp_init(struct secasvar *sav, struct xformsw *xsp) { struct enc_xform *txform; struct cryptoini cria, crie; int keylen; int error; txform = esp_algorithm_lookup(sav->alg_enc); if (txform == NULL) { DPRINTF(("%s: unsupported encryption algorithm %d\n", __func__, sav->alg_enc)); return EINVAL; } if (sav->key_enc == NULL) { DPRINTF(("%s: no encoding key for %s algorithm\n", __func__, txform->name)); return EINVAL; } if ((sav->flags & (SADB_X_EXT_OLD | SADB_X_EXT_IV4B)) == SADB_X_EXT_IV4B) { DPRINTF(("%s: 4-byte IV not supported with protocol\n", __func__)); return EINVAL; } /* subtract off the salt, RFC4106, 8.1 and RFC3686, 5.1 */ keylen = _KEYLEN(sav->key_enc) - SAV_ISCTRORGCM(sav) * 4; if (txform->minkey > keylen || keylen > txform->maxkey) { DPRINTF(("%s: invalid key length %u, must be in the range " "[%u..%u] for algorithm %s\n", __func__, keylen, txform->minkey, txform->maxkey, txform->name)); return EINVAL; } if (SAV_ISCTRORGCM(sav)) sav->ivlen = 8; /* RFC4106 3.1 and RFC3686 3.1 */ else sav->ivlen = txform->ivsize; /* * Setup AH-related state. */ if (sav->alg_auth != 0) { error = ah_init0(sav, xsp, &cria); if (error) return error; } /* NB: override anything set in ah_init0 */ sav->tdb_xform = xsp; sav->tdb_encalgxform = txform; /* * Whenever AES-GCM is used for encryption, one * of the AES authentication algorithms is chosen * as well, based on the key size. */ if (sav->alg_enc == SADB_X_EALG_AESGCM16) { switch (keylen) { case AES_128_GMAC_KEY_LEN: sav->alg_auth = SADB_X_AALG_AES128GMAC; sav->tdb_authalgxform = &auth_hash_nist_gmac_aes_128; break; case AES_192_GMAC_KEY_LEN: sav->alg_auth = SADB_X_AALG_AES192GMAC; sav->tdb_authalgxform = &auth_hash_nist_gmac_aes_192; break; case AES_256_GMAC_KEY_LEN: sav->alg_auth = SADB_X_AALG_AES256GMAC; sav->tdb_authalgxform = &auth_hash_nist_gmac_aes_256; break; default: DPRINTF(("%s: invalid key length %u" "for algorithm %s\n", __func__, keylen, txform->name)); return EINVAL; } bzero(&cria, sizeof(cria)); cria.cri_alg = sav->tdb_authalgxform->type; cria.cri_key = sav->key_enc->key_data; cria.cri_klen = _KEYBITS(sav->key_enc) - SAV_ISGCM(sav) * 32; } /* Initialize crypto session. */ bzero(&crie, sizeof(crie)); crie.cri_alg = sav->tdb_encalgxform->type; crie.cri_key = sav->key_enc->key_data; crie.cri_klen = _KEYBITS(sav->key_enc) - SAV_ISCTRORGCM(sav) * 32; if (sav->tdb_authalgxform && sav->tdb_encalgxform) { /* init both auth & enc */ crie.cri_next = &cria; error = crypto_newsession(&sav->tdb_cryptoid, &crie, V_crypto_support); } else if (sav->tdb_encalgxform) { error = crypto_newsession(&sav->tdb_cryptoid, &crie, V_crypto_support); } else if (sav->tdb_authalgxform) { error = crypto_newsession(&sav->tdb_cryptoid, &cria, V_crypto_support); } else { /* XXX cannot happen? */ DPRINTF(("%s: no encoding OR authentication xform!\n", __func__)); error = EINVAL; } return error; } /* * Paranoia. */ static int esp_zeroize(struct secasvar *sav) { /* NB: ah_zerorize free's the crypto session state */ int error = ah_zeroize(sav); if (sav->key_enc) bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); sav->tdb_encalgxform = NULL; sav->tdb_xform = NULL; return error; } /* * ESP input processing, called (eventually) through the protocol switch. */ static int esp_input(struct mbuf *m, struct secasvar *sav, int skip, int protoff) { char buf[128]; struct auth_hash *esph; struct enc_xform *espx; struct tdb_crypto *tc; uint8_t *ivp; int plen, alen, hlen; struct newesp *esp; struct cryptodesc *crde; struct cryptop *crp; IPSEC_ASSERT(sav != NULL, ("null SA")); IPSEC_ASSERT(sav->tdb_encalgxform != NULL, ("null encoding xform")); /* Valid IP Packet length ? */ if ( (skip&3) || (m->m_pkthdr.len&3) ){ DPRINTF(("%s: misaligned packet, skip %u pkt len %u", __func__, skip, m->m_pkthdr.len)); ESPSTAT_INC(esps_badilen); m_freem(m); return EINVAL; } /* XXX don't pullup, just copy header */ IP6_EXTHDR_GET(esp, struct newesp *, m, skip, sizeof (struct newesp)); esph = sav->tdb_authalgxform; espx = sav->tdb_encalgxform; /* Determine the ESP header and auth length */ if (sav->flags & SADB_X_EXT_OLD) hlen = sizeof (struct esp) + sav->ivlen; else hlen = sizeof (struct newesp) + sav->ivlen; alen = xform_ah_authsize(esph); /* * Verify payload length is multiple of encryption algorithm * block size. * * NB: This works for the null algorithm because the blocksize * is 4 and all packets must be 4-byte aligned regardless * of the algorithm. */ plen = m->m_pkthdr.len - (skip + hlen + alen); if ((plen & (espx->blocksize - 1)) || (plen <= 0)) { DPRINTF(("%s: payload of %d octets not a multiple of %d octets," " SA %s/%08lx\n", __func__, plen, espx->blocksize, ipsec_address(&sav->sah->saidx.dst, buf, sizeof(buf)), (u_long)ntohl(sav->spi))); ESPSTAT_INC(esps_badilen); m_freem(m); return EINVAL; } /* * Check sequence number. */ if (esph != NULL && sav->replay != NULL && !ipsec_chkreplay(ntohl(esp->esp_seq), sav)) { DPRINTF(("%s: packet replay check for %s\n", __func__, ipsec_logsastr(sav, buf, sizeof(buf)))); /*XXX*/ ESPSTAT_INC(esps_replay); m_freem(m); return ENOBUFS; /*XXX*/ } /* Update the counters */ ESPSTAT_ADD(esps_ibytes, m->m_pkthdr.len - (skip + hlen + alen)); /* Get crypto descriptors */ crp = crypto_getreq(esph && espx ? 2 : 1); if (crp == NULL) { DPRINTF(("%s: failed to acquire crypto descriptors\n", __func__)); ESPSTAT_INC(esps_crypto); m_freem(m); return ENOBUFS; } /* Get IPsec-specific opaque pointer */ tc = (struct tdb_crypto *) malloc(sizeof(struct tdb_crypto) + alen, M_XDATA, M_NOWAIT | M_ZERO); if (tc == NULL) { crypto_freereq(crp); DPRINTF(("%s: failed to allocate tdb_crypto\n", __func__)); ESPSTAT_INC(esps_crypto); m_freem(m); return ENOBUFS; } if (esph != NULL) { struct cryptodesc *crda = crp->crp_desc; IPSEC_ASSERT(crda != NULL, ("null ah crypto descriptor")); /* Authentication descriptor */ crda->crd_skip = skip; if (SAV_ISGCM(sav)) crda->crd_len = 8; /* RFC4106 5, SPI + SN */ else crda->crd_len = m->m_pkthdr.len - (skip + alen); crda->crd_inject = m->m_pkthdr.len - alen; crda->crd_alg = esph->type; /* Copy the authenticator */ m_copydata(m, m->m_pkthdr.len - alen, alen, (caddr_t) (tc + 1)); /* Chain authentication request */ crde = crda->crd_next; } else { crde = crp->crp_desc; } /* Crypto operation descriptor */ crp->crp_ilen = m->m_pkthdr.len; /* Total input length */ crp->crp_flags = CRYPTO_F_IMBUF | CRYPTO_F_CBIFSYNC; crp->crp_buf = (caddr_t) m; crp->crp_callback = esp_input_cb; crp->crp_sid = sav->tdb_cryptoid; crp->crp_opaque = (caddr_t) tc; /* These are passed as-is to the callback */ tc->tc_spi = sav->spi; tc->tc_dst = sav->sah->saidx.dst; tc->tc_proto = sav->sah->saidx.proto; tc->tc_protoff = protoff; tc->tc_skip = skip; KEY_ADDREFSA(sav); tc->tc_sav = sav; /* Decryption descriptor */ IPSEC_ASSERT(crde != NULL, ("null esp crypto descriptor")); crde->crd_skip = skip + hlen; crde->crd_len = m->m_pkthdr.len - (skip + hlen + alen); crde->crd_inject = skip + hlen - sav->ivlen; if (SAV_ISCTRORGCM(sav)) { ivp = &crde->crd_iv[0]; /* GCM IV Format: RFC4106 4 */ /* CTR IV Format: RFC3686 4 */ /* Salt is last four bytes of key, RFC4106 8.1 */ /* Nonce is last four bytes of key, RFC3686 5.1 */ memcpy(ivp, sav->key_enc->key_data + _KEYLEN(sav->key_enc) - 4, 4); if (SAV_ISCTR(sav)) { /* Initial block counter is 1, RFC3686 4 */ be32enc(&ivp[sav->ivlen + 4], 1); } m_copydata(m, skip + hlen - sav->ivlen, sav->ivlen, &ivp[4]); crde->crd_flags |= CRD_F_IV_EXPLICIT; } crde->crd_alg = espx->type; return (crypto_dispatch(crp)); } /* * ESP input callback from the crypto driver. */ static int esp_input_cb(struct cryptop *crp) { char buf[128]; u_int8_t lastthree[3], aalg[AH_HMAC_MAXHASHLEN]; int hlen, skip, protoff, error, alen; struct mbuf *m; struct cryptodesc *crd; struct auth_hash *esph; struct enc_xform *espx; struct tdb_crypto *tc; struct secasvar *sav; struct secasindex *saidx; caddr_t ptr; crd = crp->crp_desc; IPSEC_ASSERT(crd != NULL, ("null crypto descriptor!")); tc = (struct tdb_crypto *) crp->crp_opaque; IPSEC_ASSERT(tc != NULL, ("null opaque crypto data area!")); skip = tc->tc_skip; protoff = tc->tc_protoff; m = (struct mbuf *) crp->crp_buf; sav = tc->tc_sav; IPSEC_ASSERT(sav != NULL, ("null SA!")); saidx = &sav->sah->saidx; IPSEC_ASSERT(saidx->dst.sa.sa_family == AF_INET || saidx->dst.sa.sa_family == AF_INET6, ("unexpected protocol family %u", saidx->dst.sa.sa_family)); esph = sav->tdb_authalgxform; espx = sav->tdb_encalgxform; /* Check for crypto errors */ if (crp->crp_etype) { /* Reset the session ID */ if (sav->tdb_cryptoid != 0) sav->tdb_cryptoid = crp->crp_sid; if (crp->crp_etype == EAGAIN) return (crypto_dispatch(crp)); ESPSTAT_INC(esps_noxform); DPRINTF(("%s: crypto error %d\n", __func__, crp->crp_etype)); error = crp->crp_etype; goto bad; } /* Shouldn't happen... */ if (m == NULL) { ESPSTAT_INC(esps_crypto); DPRINTF(("%s: bogus returned buffer from crypto\n", __func__)); error = EINVAL; goto bad; } ESPSTAT_INC(esps_hist[sav->alg_enc]); /* If authentication was performed, check now. */ if (esph != NULL) { alen = xform_ah_authsize(esph); AHSTAT_INC(ahs_hist[sav->alg_auth]); /* Copy the authenticator from the packet */ m_copydata(m, m->m_pkthdr.len - alen, alen, aalg); ptr = (caddr_t) (tc + 1); /* Verify authenticator */ if (timingsafe_bcmp(ptr, aalg, alen) != 0) { DPRINTF(("%s: authentication hash mismatch for " "packet in SA %s/%08lx\n", __func__, ipsec_address(&saidx->dst, buf, sizeof(buf)), (u_long) ntohl(sav->spi))); ESPSTAT_INC(esps_badauth); error = EACCES; goto bad; } /* Remove trailing authenticator */ m_adj(m, -alen); } /* Release the crypto descriptors */ free(tc, M_XDATA), tc = NULL; crypto_freereq(crp), crp = NULL; /* * Packet is now decrypted. */ m->m_flags |= M_DECRYPTED; /* * Update replay sequence number, if appropriate. */ if (sav->replay) { u_int32_t seq; m_copydata(m, skip + offsetof(struct newesp, esp_seq), sizeof (seq), (caddr_t) &seq); if (ipsec_updatereplay(ntohl(seq), sav)) { DPRINTF(("%s: packet replay check for %s\n", __func__, ipsec_logsastr(sav, buf, sizeof(buf)))); ESPSTAT_INC(esps_replay); error = ENOBUFS; goto bad; } } /* Determine the ESP header length */ if (sav->flags & SADB_X_EXT_OLD) hlen = sizeof (struct esp) + sav->ivlen; else hlen = sizeof (struct newesp) + sav->ivlen; /* Remove the ESP header and IV from the mbuf. */ error = m_striphdr(m, skip, hlen); if (error) { ESPSTAT_INC(esps_hdrops); DPRINTF(("%s: bad mbuf chain, SA %s/%08lx\n", __func__, ipsec_address(&sav->sah->saidx.dst, buf, sizeof(buf)), (u_long) ntohl(sav->spi))); goto bad; } /* Save the last three bytes of decrypted data */ m_copydata(m, m->m_pkthdr.len - 3, 3, lastthree); /* Verify pad length */ if (lastthree[1] + 2 > m->m_pkthdr.len - skip) { ESPSTAT_INC(esps_badilen); DPRINTF(("%s: invalid padding length %d for %u byte packet " "in SA %s/%08lx\n", __func__, lastthree[1], m->m_pkthdr.len - skip, ipsec_address(&sav->sah->saidx.dst, buf, sizeof(buf)), (u_long) ntohl(sav->spi))); error = EINVAL; goto bad; } /* Verify correct decryption by checking the last padding bytes */ if ((sav->flags & SADB_X_EXT_PMASK) != SADB_X_EXT_PRAND) { if (lastthree[1] != lastthree[0] && lastthree[1] != 0) { ESPSTAT_INC(esps_badenc); DPRINTF(("%s: decryption failed for packet in " "SA %s/%08lx\n", __func__, ipsec_address( &sav->sah->saidx.dst, buf, sizeof(buf)), (u_long) ntohl(sav->spi))); error = EINVAL; goto bad; } } /* Trim the mbuf chain to remove trailing authenticator and padding */ m_adj(m, -(lastthree[1] + 2)); /* Restore the Next Protocol field */ m_copyback(m, protoff, sizeof (u_int8_t), lastthree + 2); switch (saidx->dst.sa.sa_family) { #ifdef INET6 case AF_INET6: error = ipsec6_common_input_cb(m, sav, skip, protoff); break; #endif #ifdef INET case AF_INET: error = ipsec4_common_input_cb(m, sav, skip, protoff); break; #endif default: panic("%s: Unexpected address family: %d saidx=%p", __func__, saidx->dst.sa.sa_family, saidx); } KEY_FREESAV(&sav); return error; bad: if (sav) KEY_FREESAV(&sav); if (m != NULL) m_freem(m); if (tc != NULL) free(tc, M_XDATA); if (crp != NULL) crypto_freereq(crp); return error; } /* * ESP output routine, called by ipsec[46]_process_packet(). */ static int esp_output(struct mbuf *m, struct ipsecrequest *isr, struct mbuf **mp, int skip, int protoff) { char buf[INET6_ADDRSTRLEN]; struct enc_xform *espx; struct auth_hash *esph; uint8_t *ivp; uint64_t cntr; int hlen, rlen, padding, blks, alen, i, roff; struct mbuf *mo = (struct mbuf *) NULL; struct tdb_crypto *tc; struct secasvar *sav; struct secasindex *saidx; unsigned char *pad; u_int8_t prot; int error, maxpacketsize; struct cryptodesc *crde = NULL, *crda = NULL; struct cryptop *crp; sav = isr->sav; IPSEC_ASSERT(sav != NULL, ("null SA")); esph = sav->tdb_authalgxform; espx = sav->tdb_encalgxform; IPSEC_ASSERT(espx != NULL, ("null encoding xform")); if (sav->flags & SADB_X_EXT_OLD) hlen = sizeof (struct esp) + sav->ivlen; else hlen = sizeof (struct newesp) + sav->ivlen; rlen = m->m_pkthdr.len - skip; /* Raw payload length. */ /* * RFC4303 2.4 Requires 4 byte alignment. */ blks = MAX(4, espx->blocksize); /* Cipher blocksize */ /* XXX clamp padding length a la KAME??? */ padding = ((blks - ((rlen + 2) % blks)) % blks) + 2; alen = xform_ah_authsize(esph); ESPSTAT_INC(esps_output); saidx = &sav->sah->saidx; /* Check for maximum packet size violations. */ switch (saidx->dst.sa.sa_family) { #ifdef INET case AF_INET: maxpacketsize = IP_MAXPACKET; break; #endif /* INET */ #ifdef INET6 case AF_INET6: maxpacketsize = IPV6_MAXPACKET; break; #endif /* INET6 */ default: DPRINTF(("%s: unknown/unsupported protocol " "family %d, SA %s/%08lx\n", __func__, saidx->dst.sa.sa_family, ipsec_address(&saidx->dst, buf, sizeof(buf)), (u_long) ntohl(sav->spi))); ESPSTAT_INC(esps_nopf); error = EPFNOSUPPORT; goto bad; } DPRINTF(("%s: skip %d hlen %d rlen %d padding %d alen %d blksd %d\n", __func__, skip, hlen, rlen, padding, alen, blks)); if (skip + hlen + rlen + padding + alen > maxpacketsize) { DPRINTF(("%s: packet in SA %s/%08lx got too big " "(len %u, max len %u)\n", __func__, ipsec_address(&saidx->dst, buf, sizeof(buf)), (u_long) ntohl(sav->spi), skip + hlen + rlen + padding + alen, maxpacketsize)); ESPSTAT_INC(esps_toobig); error = EMSGSIZE; goto bad; } /* Update the counters. */ ESPSTAT_ADD(esps_obytes, m->m_pkthdr.len - skip); m = m_unshare(m, M_NOWAIT); if (m == NULL) { DPRINTF(("%s: cannot clone mbuf chain, SA %s/%08lx\n", __func__, ipsec_address(&saidx->dst, buf, sizeof(buf)), (u_long) ntohl(sav->spi))); ESPSTAT_INC(esps_hdrops); error = ENOBUFS; goto bad; } /* Inject ESP header. */ mo = m_makespace(m, skip, hlen, &roff); if (mo == NULL) { DPRINTF(("%s: %u byte ESP hdr inject failed for SA %s/%08lx\n", __func__, hlen, ipsec_address(&saidx->dst, buf, sizeof(buf)), (u_long) ntohl(sav->spi))); ESPSTAT_INC(esps_hdrops); /* XXX diffs from openbsd */ error = ENOBUFS; goto bad; } /* Initialize ESP header. */ bcopy((caddr_t) &sav->spi, mtod(mo, caddr_t) + roff, sizeof(u_int32_t)); if (sav->replay) { u_int32_t replay; + SECASVAR_LOCK(sav); #ifdef REGRESSION /* Emulate replay attack when ipsec_replay is TRUE. */ if (!V_ipsec_replay) #endif sav->replay->count++; replay = htonl(sav->replay->count); + SECASVAR_UNLOCK(sav); bcopy((caddr_t) &replay, mtod(mo, caddr_t) + roff + sizeof(u_int32_t), sizeof(u_int32_t)); } /* * Add padding -- better to do it ourselves than use the crypto engine, * although if/when we support compression, we'd have to do that. */ pad = (u_char *) m_pad(m, padding + alen); if (pad == NULL) { DPRINTF(("%s: m_pad failed for SA %s/%08lx\n", __func__, ipsec_address(&saidx->dst, buf, sizeof(buf)), (u_long) ntohl(sav->spi))); m = NULL; /* NB: free'd by m_pad */ error = ENOBUFS; goto bad; } /* * Add padding: random, zero, or self-describing. * XXX catch unexpected setting */ switch (sav->flags & SADB_X_EXT_PMASK) { case SADB_X_EXT_PRAND: (void) read_random(pad, padding - 2); break; case SADB_X_EXT_PZERO: bzero(pad, padding - 2); break; case SADB_X_EXT_PSEQ: for (i = 0; i < padding - 2; i++) pad[i] = i+1; break; } /* Fix padding length and Next Protocol in padding itself. */ pad[padding - 2] = padding - 2; m_copydata(m, protoff, sizeof(u_int8_t), pad + padding - 1); /* Fix Next Protocol in IPv4/IPv6 header. */ prot = IPPROTO_ESP; m_copyback(m, protoff, sizeof(u_int8_t), (u_char *) &prot); /* Get crypto descriptors. */ crp = crypto_getreq(esph != NULL ? 2 : 1); if (crp == NULL) { DPRINTF(("%s: failed to acquire crypto descriptors\n", __func__)); ESPSTAT_INC(esps_crypto); error = ENOBUFS; goto bad; } /* IPsec-specific opaque crypto info. */ tc = (struct tdb_crypto *) malloc(sizeof(struct tdb_crypto), M_XDATA, M_NOWAIT|M_ZERO); if (tc == NULL) { crypto_freereq(crp); DPRINTF(("%s: failed to allocate tdb_crypto\n", __func__)); ESPSTAT_INC(esps_crypto); error = ENOBUFS; goto bad; } crde = crp->crp_desc; crda = crde->crd_next; /* Encryption descriptor. */ crde->crd_skip = skip + hlen; crde->crd_len = m->m_pkthdr.len - (skip + hlen + alen); crde->crd_flags = CRD_F_ENCRYPT; crde->crd_inject = skip + hlen - sav->ivlen; /* Encryption operation. */ crde->crd_alg = espx->type; if (SAV_ISCTRORGCM(sav)) { ivp = &crde->crd_iv[0]; /* GCM IV Format: RFC4106 4 */ /* CTR IV Format: RFC3686 4 */ /* Salt is last four bytes of key, RFC4106 8.1 */ /* Nonce is last four bytes of key, RFC3686 5.1 */ memcpy(ivp, sav->key_enc->key_data + _KEYLEN(sav->key_enc) - 4, 4); SECASVAR_LOCK(sav); cntr = sav->cntr++; SECASVAR_UNLOCK(sav); be64enc(&ivp[4], cntr); if (SAV_ISCTR(sav)) { /* Initial block counter is 1, RFC3686 4 */ be32enc(&ivp[sav->ivlen + 4], 1); } m_copyback(m, skip + hlen - sav->ivlen, sav->ivlen, &ivp[4]); crde->crd_flags |= CRD_F_IV_EXPLICIT|CRD_F_IV_PRESENT; } /* Callback parameters */ key_addref(isr->sp); tc->tc_isr = isr; KEY_ADDREFSA(sav); tc->tc_sav = sav; tc->tc_spi = sav->spi; tc->tc_dst = saidx->dst; tc->tc_proto = saidx->proto; /* Crypto operation descriptor. */ crp->crp_ilen = m->m_pkthdr.len; /* Total input length. */ crp->crp_flags = CRYPTO_F_IMBUF | CRYPTO_F_CBIFSYNC; crp->crp_buf = (caddr_t) m; crp->crp_callback = esp_output_cb; crp->crp_opaque = (caddr_t) tc; crp->crp_sid = sav->tdb_cryptoid; if (esph) { /* Authentication descriptor. */ crda->crd_alg = esph->type; crda->crd_skip = skip; if (SAV_ISGCM(sav)) crda->crd_len = 8; /* RFC4106 5, SPI + SN */ else crda->crd_len = m->m_pkthdr.len - (skip + alen); crda->crd_inject = m->m_pkthdr.len - alen; } return crypto_dispatch(crp); bad: if (m) m_freem(m); return (error); } /* * ESP output callback from the crypto driver. */ static int esp_output_cb(struct cryptop *crp) { char buf[INET6_ADDRSTRLEN]; struct tdb_crypto *tc; struct ipsecrequest *isr; struct secasvar *sav; struct mbuf *m; int error; tc = (struct tdb_crypto *) crp->crp_opaque; IPSEC_ASSERT(tc != NULL, ("null opaque data area!")); m = (struct mbuf *) crp->crp_buf; isr = tc->tc_isr; IPSEC_ASSERT(isr->sp != NULL, ("NULL isr->sp")); IPSECREQUEST_LOCK(isr); sav = tc->tc_sav; /* With the isr lock released, SA pointer may have changed. */ if (sav != isr->sav) { ESPSTAT_INC(esps_notdb); DPRINTF(("%s: SA gone during crypto (SA %s/%08lx proto %u)\n", __func__, ipsec_address(&tc->tc_dst, buf, sizeof(buf)), (u_long) ntohl(tc->tc_spi), tc->tc_proto)); error = ENOBUFS; /*XXX*/ goto bad; } /* Check for crypto errors. */ if (crp->crp_etype) { /* Reset session ID. */ if (sav->tdb_cryptoid != 0) sav->tdb_cryptoid = crp->crp_sid; if (crp->crp_etype == EAGAIN) { IPSECREQUEST_UNLOCK(isr); return (crypto_dispatch(crp)); } ESPSTAT_INC(esps_noxform); DPRINTF(("%s: crypto error %d\n", __func__, crp->crp_etype)); error = crp->crp_etype; goto bad; } /* Shouldn't happen... */ if (m == NULL) { ESPSTAT_INC(esps_crypto); DPRINTF(("%s: bogus returned buffer from crypto\n", __func__)); error = EINVAL; goto bad; } ESPSTAT_INC(esps_hist[sav->alg_enc]); if (sav->tdb_authalgxform != NULL) AHSTAT_INC(ahs_hist[sav->alg_auth]); /* Release crypto descriptors. */ free(tc, M_XDATA); crypto_freereq(crp); #ifdef REGRESSION /* Emulate man-in-the-middle attack when ipsec_integrity is TRUE. */ if (V_ipsec_integrity) { static unsigned char ipseczeroes[AH_HMAC_MAXHASHLEN]; struct auth_hash *esph; /* * Corrupt HMAC if we want to test integrity verification of * the other side. */ esph = sav->tdb_authalgxform; if (esph != NULL) { int alen; alen = xform_ah_authsize(esph); m_copyback(m, m->m_pkthdr.len - alen, alen, ipseczeroes); } } #endif /* NB: m is reclaimed by ipsec_process_done. */ error = ipsec_process_done(m, isr); KEY_FREESAV(&sav); IPSECREQUEST_UNLOCK(isr); KEY_FREESP(&isr->sp); return (error); bad: if (sav) KEY_FREESAV(&sav); IPSECREQUEST_UNLOCK(isr); KEY_FREESP(&isr->sp); if (m) m_freem(m); free(tc, M_XDATA); crypto_freereq(crp); return (error); } static struct xformsw esp_xformsw = { XF_ESP, XFT_CONF|XFT_AUTH, "IPsec ESP", esp_init, esp_zeroize, esp_input, esp_output }; static void esp_attach(void) { xform_register(&esp_xformsw); } SYSINIT(esp_xform_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, esp_attach, NULL);