Index: head/sys/cddl/compat/opensolaris/sys/kmem.h =================================================================== --- head/sys/cddl/compat/opensolaris/sys/kmem.h (revision 309016) +++ head/sys/cddl/compat/opensolaris/sys/kmem.h (revision 309017) @@ -1,89 +1,89 @@ /*- * Copyright (c) 2007 Pawel Jakub Dawidek * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _OPENSOLARIS_SYS_KMEM_H_ #define _OPENSOLARIS_SYS_KMEM_H_ #include #include #include #include #include #include #include MALLOC_DECLARE(M_SOLARIS); #define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3)) #define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1)) #define KM_SLEEP M_WAITOK #define KM_PUSHPAGE M_WAITOK #define KM_NOSLEEP M_NOWAIT #define KM_NODEBUG M_NODUMP #define KM_NORMALPRI 0 #define KMC_NODEBUG UMA_ZONE_NODUMP #define KMC_NOTOUCH 0 typedef struct kmem_cache { char kc_name[32]; #if defined(_KERNEL) && !defined(KMEM_DEBUG) uma_zone_t kc_zone; #else size_t kc_size; #endif int (*kc_constructor)(void *, void *, int); void (*kc_destructor)(void *, void *); void *kc_private; } kmem_cache_t; void *zfs_kmem_alloc(size_t size, int kmflags); void zfs_kmem_free(void *buf, size_t size); uint64_t kmem_size(void); kmem_cache_t *kmem_cache_create(char *name, size_t bufsize, size_t align, int (*constructor)(void *, void *, int), void (*destructor)(void *, void *), void (*reclaim)(void *) __unused, void *private, vmem_t *vmp, int cflags); void kmem_cache_destroy(kmem_cache_t *cache); void *kmem_cache_alloc(kmem_cache_t *cache, int flags); void kmem_cache_free(kmem_cache_t *cache, void *buf); void kmem_cache_reap_now(kmem_cache_t *cache); void kmem_reap(void); int kmem_debugging(void); void *calloc(size_t n, size_t s); -#define freemem (vm_cnt.v_free_count + vm_cnt.v_cache_count) +#define freemem vm_cnt.v_free_count #define minfree vm_cnt.v_free_min #define heap_arena kmem_arena #define kmem_alloc(size, kmflags) zfs_kmem_alloc((size), (kmflags)) #define kmem_zalloc(size, kmflags) zfs_kmem_alloc((size), (kmflags) | M_ZERO) #define kmem_free(buf, size) zfs_kmem_free((buf), (size)) #define kmem_cache_set_move(cache, movefunc) do { } while (0) #endif /* _OPENSOLARIS_SYS_KMEM_H_ */ Index: head/sys/compat/linprocfs/linprocfs.c =================================================================== --- head/sys/compat/linprocfs/linprocfs.c (revision 309016) +++ head/sys/compat/linprocfs/linprocfs.c (revision 309017) @@ -1,1612 +1,1612 @@ /*- * Copyright (c) 2000 Dag-Erling Coïdan Smørgrav * Copyright (c) 1999 Pierre Beyssac * Copyright (c) 1993 Jan-Simon Pendry * Copyright (c) 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Jan-Simon Pendry. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)procfs_status.c 8.4 (Berkeley) 6/15/94 */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__i386__) || defined(__amd64__) #include #include #endif /* __i386__ || __amd64__ */ #include #include #include #include #include #include /* * Various conversion macros */ #define T2J(x) ((long)(((x) * 100ULL) / (stathz ? stathz : hz))) /* ticks to jiffies */ #define T2CS(x) ((unsigned long)(((x) * 100ULL) / (stathz ? stathz : hz))) /* ticks to centiseconds */ #define T2S(x) ((x) / (stathz ? stathz : hz)) /* ticks to seconds */ #define B2K(x) ((x) >> 10) /* bytes to kbytes */ #define B2P(x) ((x) >> PAGE_SHIFT) /* bytes to pages */ #define P2B(x) ((x) << PAGE_SHIFT) /* pages to bytes */ #define P2K(x) ((x) << (PAGE_SHIFT - 10)) /* pages to kbytes */ #define TV2J(x) ((x)->tv_sec * 100UL + (x)->tv_usec / 10000) /** * @brief Mapping of ki_stat in struct kinfo_proc to the linux state * * The linux procfs state field displays one of the characters RSDZTW to * denote running, sleeping in an interruptible wait, waiting in an * uninterruptible disk sleep, a zombie process, process is being traced * or stopped, or process is paging respectively. * * Our struct kinfo_proc contains the variable ki_stat which contains a * value out of SIDL, SRUN, SSLEEP, SSTOP, SZOMB, SWAIT and SLOCK. * * This character array is used with ki_stati-1 as an index and tries to * map our states to suitable linux states. */ static char linux_state[] = "RRSTZDD"; /* * Filler function for proc/meminfo */ static int linprocfs_domeminfo(PFS_FILL_ARGS) { unsigned long memtotal; /* total memory in bytes */ unsigned long memused; /* used memory in bytes */ unsigned long memfree; /* free memory in bytes */ unsigned long buffers, cached; /* buffer / cache memory ??? */ unsigned long long swaptotal; /* total swap space in bytes */ unsigned long long swapused; /* used swap space in bytes */ unsigned long long swapfree; /* free swap space in bytes */ int i, j; memtotal = physmem * PAGE_SIZE; /* * The correct thing here would be: * memfree = vm_cnt.v_free_count * PAGE_SIZE; memused = memtotal - memfree; * * but it might mislead linux binaries into thinking there * is very little memory left, so we cheat and tell them that * all memory that isn't wired down is free. */ memused = vm_cnt.v_wire_count * PAGE_SIZE; memfree = memtotal - memused; swap_pager_status(&i, &j); swaptotal = (unsigned long long)i * PAGE_SIZE; swapused = (unsigned long long)j * PAGE_SIZE; swapfree = swaptotal - swapused; /* * We'd love to be able to write: * buffers = bufspace; * * but bufspace is internal to vfs_bio.c and we don't feel * like unstaticizing it just for linprocfs's sake. */ buffers = 0; - cached = vm_cnt.v_cache_count * PAGE_SIZE; + cached = vm_cnt.v_inactive_count * PAGE_SIZE; sbuf_printf(sb, "MemTotal: %9lu kB\n" "MemFree: %9lu kB\n" "Buffers: %9lu kB\n" "Cached: %9lu kB\n" "SwapTotal:%9llu kB\n" "SwapFree: %9llu kB\n", B2K(memtotal), B2K(memfree), B2K(buffers), B2K(cached), B2K(swaptotal), B2K(swapfree)); return (0); } #if defined(__i386__) || defined(__amd64__) /* * Filler function for proc/cpuinfo (i386 & amd64 version) */ static int linprocfs_docpuinfo(PFS_FILL_ARGS) { int hw_model[2]; char model[128]; uint64_t freq; size_t size; int fqmhz, fqkhz; int i; /* * We default the flags to include all non-conflicting flags, * and the Intel versions of conflicting flags. */ static char *flags[] = { "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce", "cx8", "apic", "sep", "sep", "mtrr", "pge", "mca", "cmov", "pat", "pse36", "pn", "b19", "b20", "b21", "mmxext", "mmx", "fxsr", "xmm", "sse2", "b27", "b28", "b29", "3dnowext", "3dnow" }; hw_model[0] = CTL_HW; hw_model[1] = HW_MODEL; model[0] = '\0'; size = sizeof(model); if (kernel_sysctl(td, hw_model, 2, &model, &size, 0, 0, 0, 0) != 0) strcpy(model, "unknown"); for (i = 0; i < mp_ncpus; ++i) { sbuf_printf(sb, "processor\t: %d\n" "vendor_id\t: %.20s\n" "cpu family\t: %u\n" "model\t\t: %u\n" "model name\t: %s\n" "stepping\t: %u\n\n", i, cpu_vendor, CPUID_TO_FAMILY(cpu_id), CPUID_TO_MODEL(cpu_id), model, cpu_id & CPUID_STEPPING); /* XXX per-cpu vendor / class / model / id? */ } sbuf_cat(sb, "flags\t\t:"); #ifdef __i386__ switch (cpu_vendor_id) { case CPU_VENDOR_AMD: if (cpu_class < CPUCLASS_686) flags[16] = "fcmov"; break; case CPU_VENDOR_CYRIX: flags[24] = "cxmmx"; break; } #endif for (i = 0; i < 32; i++) if (cpu_feature & (1 << i)) sbuf_printf(sb, " %s", flags[i]); sbuf_cat(sb, "\n"); freq = atomic_load_acq_64(&tsc_freq); if (freq != 0) { fqmhz = (freq + 4999) / 1000000; fqkhz = ((freq + 4999) / 10000) % 100; sbuf_printf(sb, "cpu MHz\t\t: %d.%02d\n" "bogomips\t: %d.%02d\n", fqmhz, fqkhz, fqmhz, fqkhz); } return (0); } #endif /* __i386__ || __amd64__ */ /* * Filler function for proc/mtab * * This file doesn't exist in Linux' procfs, but is included here so * users can symlink /compat/linux/etc/mtab to /proc/mtab */ static int linprocfs_domtab(PFS_FILL_ARGS) { struct nameidata nd; const char *lep; char *dlep, *flep, *mntto, *mntfrom, *fstype; size_t lep_len; int error; struct statfs *buf, *sp; size_t count; /* resolve symlinks etc. in the emulation tree prefix */ NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, linux_emul_path, td); flep = NULL; error = namei(&nd); lep = linux_emul_path; if (error == 0) { if (vn_fullpath(td, nd.ni_vp, &dlep, &flep) == 0) lep = dlep; vrele(nd.ni_vp); } lep_len = strlen(lep); buf = NULL; error = kern_getfsstat(td, &buf, SIZE_T_MAX, &count, UIO_SYSSPACE, MNT_WAIT); if (error != 0) { free(buf, M_TEMP); free(flep, M_TEMP); return (error); } for (sp = buf; count > 0; sp++, count--) { /* determine device name */ mntfrom = sp->f_mntfromname; /* determine mount point */ mntto = sp->f_mntonname; if (strncmp(mntto, lep, lep_len) == 0 && mntto[lep_len] == '/') mntto += lep_len; /* determine fs type */ fstype = sp->f_fstypename; if (strcmp(fstype, pn->pn_info->pi_name) == 0) mntfrom = fstype = "proc"; else if (strcmp(fstype, "procfs") == 0) continue; if (strcmp(fstype, "linsysfs") == 0) { sbuf_printf(sb, "/sys %s sysfs %s", mntto, sp->f_flags & MNT_RDONLY ? "ro" : "rw"); } else { /* For Linux msdosfs is called vfat */ if (strcmp(fstype, "msdosfs") == 0) fstype = "vfat"; sbuf_printf(sb, "%s %s %s %s", mntfrom, mntto, fstype, sp->f_flags & MNT_RDONLY ? "ro" : "rw"); } #define ADD_OPTION(opt, name) \ if (sp->f_flags & (opt)) sbuf_printf(sb, "," name); ADD_OPTION(MNT_SYNCHRONOUS, "sync"); ADD_OPTION(MNT_NOEXEC, "noexec"); ADD_OPTION(MNT_NOSUID, "nosuid"); ADD_OPTION(MNT_UNION, "union"); ADD_OPTION(MNT_ASYNC, "async"); ADD_OPTION(MNT_SUIDDIR, "suiddir"); ADD_OPTION(MNT_NOSYMFOLLOW, "nosymfollow"); ADD_OPTION(MNT_NOATIME, "noatime"); #undef ADD_OPTION /* a real Linux mtab will also show NFS options */ sbuf_printf(sb, " 0 0\n"); } free(buf, M_TEMP); free(flep, M_TEMP); return (error); } /* * Filler function for proc/partitions */ static int linprocfs_dopartitions(PFS_FILL_ARGS) { struct g_class *cp; struct g_geom *gp; struct g_provider *pp; int major, minor; g_topology_lock(); sbuf_printf(sb, "major minor #blocks name rio rmerge rsect " "ruse wio wmerge wsect wuse running use aveq\n"); LIST_FOREACH(cp, &g_classes, class) { if (strcmp(cp->name, "DISK") == 0 || strcmp(cp->name, "PART") == 0) LIST_FOREACH(gp, &cp->geom, geom) { LIST_FOREACH(pp, &gp->provider, provider) { if (linux_driver_get_major_minor( pp->name, &major, &minor) != 0) { major = 0; minor = 0; } sbuf_printf(sb, "%d %d %lld %s " "%d %d %d %d %d " "%d %d %d %d %d %d\n", major, minor, (long long)pp->mediasize, pp->name, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); } } } g_topology_unlock(); return (0); } /* * Filler function for proc/stat */ static int linprocfs_dostat(PFS_FILL_ARGS) { struct pcpu *pcpu; long cp_time[CPUSTATES]; long *cp; struct timeval boottime; int i; read_cpu_time(cp_time); getboottime(&boottime); sbuf_printf(sb, "cpu %ld %ld %ld %ld\n", T2J(cp_time[CP_USER]), T2J(cp_time[CP_NICE]), T2J(cp_time[CP_SYS] /*+ cp_time[CP_INTR]*/), T2J(cp_time[CP_IDLE])); CPU_FOREACH(i) { pcpu = pcpu_find(i); cp = pcpu->pc_cp_time; sbuf_printf(sb, "cpu%d %ld %ld %ld %ld\n", i, T2J(cp[CP_USER]), T2J(cp[CP_NICE]), T2J(cp[CP_SYS] /*+ cp[CP_INTR]*/), T2J(cp[CP_IDLE])); } sbuf_printf(sb, "disk 0 0 0 0\n" "page %u %u\n" "swap %u %u\n" "intr %u\n" "ctxt %u\n" "btime %lld\n", vm_cnt.v_vnodepgsin, vm_cnt.v_vnodepgsout, vm_cnt.v_swappgsin, vm_cnt.v_swappgsout, vm_cnt.v_intr, vm_cnt.v_swtch, (long long)boottime.tv_sec); return (0); } static int linprocfs_doswaps(PFS_FILL_ARGS) { struct xswdev xsw; uintmax_t total, used; int n; char devname[SPECNAMELEN + 1]; sbuf_printf(sb, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); for (n = 0; ; n++) { if (swap_dev_info(n, &xsw, devname, sizeof(devname)) != 0) break; total = (uintmax_t)xsw.xsw_nblks * PAGE_SIZE / 1024; used = (uintmax_t)xsw.xsw_used * PAGE_SIZE / 1024; /* * The space and not tab after the device name is on * purpose. Linux does so. */ sbuf_printf(sb, "/dev/%-34s unknown\t\t%jd\t%jd\t-1\n", devname, total, used); } return (0); } /* * Filler function for proc/uptime */ static int linprocfs_douptime(PFS_FILL_ARGS) { long cp_time[CPUSTATES]; struct timeval tv; getmicrouptime(&tv); read_cpu_time(cp_time); sbuf_printf(sb, "%lld.%02ld %ld.%02lu\n", (long long)tv.tv_sec, tv.tv_usec / 10000, T2S(cp_time[CP_IDLE] / mp_ncpus), T2CS(cp_time[CP_IDLE] / mp_ncpus) % 100); return (0); } /* * Get OS build date */ static void linprocfs_osbuild(struct thread *td, struct sbuf *sb) { #if 0 char osbuild[256]; char *cp1, *cp2; strncpy(osbuild, version, 256); osbuild[255] = '\0'; cp1 = strstr(osbuild, "\n"); cp2 = strstr(osbuild, ":"); if (cp1 && cp2) { *cp1 = *cp2 = '\0'; cp1 = strstr(osbuild, "#"); } else cp1 = NULL; if (cp1) sbuf_printf(sb, "%s%s", cp1, cp2 + 1); else #endif sbuf_cat(sb, "#4 Sun Dec 18 04:30:00 CET 1977"); } /* * Get OS builder */ static void linprocfs_osbuilder(struct thread *td, struct sbuf *sb) { #if 0 char builder[256]; char *cp; cp = strstr(version, "\n "); if (cp) { strncpy(builder, cp + 5, 256); builder[255] = '\0'; cp = strstr(builder, ":"); if (cp) *cp = '\0'; } if (cp) sbuf_cat(sb, builder); else #endif sbuf_cat(sb, "des@freebsd.org"); } /* * Filler function for proc/version */ static int linprocfs_doversion(PFS_FILL_ARGS) { char osname[LINUX_MAX_UTSNAME]; char osrelease[LINUX_MAX_UTSNAME]; linux_get_osname(td, osname); linux_get_osrelease(td, osrelease); sbuf_printf(sb, "%s version %s (", osname, osrelease); linprocfs_osbuilder(td, sb); sbuf_cat(sb, ") (gcc version " __VERSION__ ") "); linprocfs_osbuild(td, sb); sbuf_cat(sb, "\n"); return (0); } /* * Filler function for proc/loadavg */ static int linprocfs_doloadavg(PFS_FILL_ARGS) { sbuf_printf(sb, "%d.%02d %d.%02d %d.%02d %d/%d %d\n", (int)(averunnable.ldavg[0] / averunnable.fscale), (int)(averunnable.ldavg[0] * 100 / averunnable.fscale % 100), (int)(averunnable.ldavg[1] / averunnable.fscale), (int)(averunnable.ldavg[1] * 100 / averunnable.fscale % 100), (int)(averunnable.ldavg[2] / averunnable.fscale), (int)(averunnable.ldavg[2] * 100 / averunnable.fscale % 100), 1, /* number of running tasks */ nprocs, /* number of tasks */ lastpid /* the last pid */ ); return (0); } /* * Filler function for proc/pid/stat */ static int linprocfs_doprocstat(PFS_FILL_ARGS) { struct kinfo_proc kp; struct timeval boottime; char state; static int ratelimit = 0; vm_offset_t startcode, startdata; getboottime(&boottime); sx_slock(&proctree_lock); PROC_LOCK(p); fill_kinfo_proc(p, &kp); sx_sunlock(&proctree_lock); if (p->p_vmspace) { startcode = (vm_offset_t)p->p_vmspace->vm_taddr; startdata = (vm_offset_t)p->p_vmspace->vm_daddr; } else { startcode = 0; startdata = 0; } sbuf_printf(sb, "%d", p->p_pid); #define PS_ADD(name, fmt, arg) sbuf_printf(sb, " " fmt, arg) PS_ADD("comm", "(%s)", p->p_comm); if (kp.ki_stat > sizeof(linux_state)) { state = 'R'; if (ratelimit == 0) { printf("linprocfs: don't know how to handle unknown FreeBSD state %d/%zd, mapping to R\n", kp.ki_stat, sizeof(linux_state)); ++ratelimit; } } else state = linux_state[kp.ki_stat - 1]; PS_ADD("state", "%c", state); PS_ADD("ppid", "%d", p->p_pptr ? p->p_pptr->p_pid : 0); PS_ADD("pgrp", "%d", p->p_pgid); PS_ADD("session", "%d", p->p_session->s_sid); PROC_UNLOCK(p); PS_ADD("tty", "%ju", (uintmax_t)kp.ki_tdev); PS_ADD("tpgid", "%d", kp.ki_tpgid); PS_ADD("flags", "%u", 0); /* XXX */ PS_ADD("minflt", "%lu", kp.ki_rusage.ru_minflt); PS_ADD("cminflt", "%lu", kp.ki_rusage_ch.ru_minflt); PS_ADD("majflt", "%lu", kp.ki_rusage.ru_majflt); PS_ADD("cmajflt", "%lu", kp.ki_rusage_ch.ru_majflt); PS_ADD("utime", "%ld", TV2J(&kp.ki_rusage.ru_utime)); PS_ADD("stime", "%ld", TV2J(&kp.ki_rusage.ru_stime)); PS_ADD("cutime", "%ld", TV2J(&kp.ki_rusage_ch.ru_utime)); PS_ADD("cstime", "%ld", TV2J(&kp.ki_rusage_ch.ru_stime)); PS_ADD("priority", "%d", kp.ki_pri.pri_user); PS_ADD("nice", "%d", kp.ki_nice); /* 19 (nicest) to -19 */ PS_ADD("0", "%d", 0); /* removed field */ PS_ADD("itrealvalue", "%d", 0); /* XXX */ PS_ADD("starttime", "%lu", TV2J(&kp.ki_start) - TV2J(&boottime)); PS_ADD("vsize", "%ju", P2K((uintmax_t)kp.ki_size)); PS_ADD("rss", "%ju", (uintmax_t)kp.ki_rssize); PS_ADD("rlim", "%lu", kp.ki_rusage.ru_maxrss); PS_ADD("startcode", "%ju", (uintmax_t)startcode); PS_ADD("endcode", "%ju", (uintmax_t)startdata); PS_ADD("startstack", "%u", 0); /* XXX */ PS_ADD("kstkesp", "%u", 0); /* XXX */ PS_ADD("kstkeip", "%u", 0); /* XXX */ PS_ADD("signal", "%u", 0); /* XXX */ PS_ADD("blocked", "%u", 0); /* XXX */ PS_ADD("sigignore", "%u", 0); /* XXX */ PS_ADD("sigcatch", "%u", 0); /* XXX */ PS_ADD("wchan", "%u", 0); /* XXX */ PS_ADD("nswap", "%lu", kp.ki_rusage.ru_nswap); PS_ADD("cnswap", "%lu", kp.ki_rusage_ch.ru_nswap); PS_ADD("exitsignal", "%d", 0); /* XXX */ PS_ADD("processor", "%u", kp.ki_lastcpu); PS_ADD("rt_priority", "%u", 0); /* XXX */ /* >= 2.5.19 */ PS_ADD("policy", "%u", kp.ki_pri.pri_class); /* >= 2.5.19 */ #undef PS_ADD sbuf_putc(sb, '\n'); return (0); } /* * Filler function for proc/pid/statm */ static int linprocfs_doprocstatm(PFS_FILL_ARGS) { struct kinfo_proc kp; segsz_t lsize; sx_slock(&proctree_lock); PROC_LOCK(p); fill_kinfo_proc(p, &kp); PROC_UNLOCK(p); sx_sunlock(&proctree_lock); /* * See comments in linprocfs_doprocstatus() regarding the * computation of lsize. */ /* size resident share trs drs lrs dt */ sbuf_printf(sb, "%ju ", B2P((uintmax_t)kp.ki_size)); sbuf_printf(sb, "%ju ", (uintmax_t)kp.ki_rssize); sbuf_printf(sb, "%ju ", (uintmax_t)0); /* XXX */ sbuf_printf(sb, "%ju ", (uintmax_t)kp.ki_tsize); sbuf_printf(sb, "%ju ", (uintmax_t)(kp.ki_dsize + kp.ki_ssize)); lsize = B2P(kp.ki_size) - kp.ki_dsize - kp.ki_ssize - kp.ki_tsize - 1; sbuf_printf(sb, "%ju ", (uintmax_t)lsize); sbuf_printf(sb, "%ju\n", (uintmax_t)0); /* XXX */ return (0); } /* * Filler function for proc/pid/status */ static int linprocfs_doprocstatus(PFS_FILL_ARGS) { struct kinfo_proc kp; char *state; segsz_t lsize; struct thread *td2; struct sigacts *ps; l_sigset_t siglist, sigignore, sigcatch; int i; sx_slock(&proctree_lock); PROC_LOCK(p); td2 = FIRST_THREAD_IN_PROC(p); /* XXXKSE pretend only one thread */ if (P_SHOULDSTOP(p)) { state = "T (stopped)"; } else { switch(p->p_state) { case PRS_NEW: state = "I (idle)"; break; case PRS_NORMAL: if (p->p_flag & P_WEXIT) { state = "X (exiting)"; break; } switch(td2->td_state) { case TDS_INHIBITED: state = "S (sleeping)"; break; case TDS_RUNQ: case TDS_RUNNING: state = "R (running)"; break; default: state = "? (unknown)"; break; } break; case PRS_ZOMBIE: state = "Z (zombie)"; break; default: state = "? (unknown)"; break; } } fill_kinfo_proc(p, &kp); sx_sunlock(&proctree_lock); sbuf_printf(sb, "Name:\t%s\n", p->p_comm); /* XXX escape */ sbuf_printf(sb, "State:\t%s\n", state); /* * Credentials */ sbuf_printf(sb, "Pid:\t%d\n", p->p_pid); sbuf_printf(sb, "PPid:\t%d\n", p->p_pptr ? p->p_pptr->p_pid : 0); sbuf_printf(sb, "Uid:\t%d %d %d %d\n", p->p_ucred->cr_ruid, p->p_ucred->cr_uid, p->p_ucred->cr_svuid, /* FreeBSD doesn't have fsuid */ p->p_ucred->cr_uid); sbuf_printf(sb, "Gid:\t%d %d %d %d\n", p->p_ucred->cr_rgid, p->p_ucred->cr_gid, p->p_ucred->cr_svgid, /* FreeBSD doesn't have fsgid */ p->p_ucred->cr_gid); sbuf_cat(sb, "Groups:\t"); for (i = 0; i < p->p_ucred->cr_ngroups; i++) sbuf_printf(sb, "%d ", p->p_ucred->cr_groups[i]); PROC_UNLOCK(p); sbuf_putc(sb, '\n'); /* * Memory * * While our approximation of VmLib may not be accurate (I * don't know of a simple way to verify it, and I'm not sure * it has much meaning anyway), I believe it's good enough. * * The same code that could (I think) accurately compute VmLib * could also compute VmLck, but I don't really care enough to * implement it. Submissions are welcome. */ sbuf_printf(sb, "VmSize:\t%8ju kB\n", B2K((uintmax_t)kp.ki_size)); sbuf_printf(sb, "VmLck:\t%8u kB\n", P2K(0)); /* XXX */ sbuf_printf(sb, "VmRSS:\t%8ju kB\n", P2K((uintmax_t)kp.ki_rssize)); sbuf_printf(sb, "VmData:\t%8ju kB\n", P2K((uintmax_t)kp.ki_dsize)); sbuf_printf(sb, "VmStk:\t%8ju kB\n", P2K((uintmax_t)kp.ki_ssize)); sbuf_printf(sb, "VmExe:\t%8ju kB\n", P2K((uintmax_t)kp.ki_tsize)); lsize = B2P(kp.ki_size) - kp.ki_dsize - kp.ki_ssize - kp.ki_tsize - 1; sbuf_printf(sb, "VmLib:\t%8ju kB\n", P2K((uintmax_t)lsize)); /* * Signal masks */ PROC_LOCK(p); bsd_to_linux_sigset(&p->p_siglist, &siglist); ps = p->p_sigacts; mtx_lock(&ps->ps_mtx); bsd_to_linux_sigset(&ps->ps_sigignore, &sigignore); bsd_to_linux_sigset(&ps->ps_sigcatch, &sigcatch); mtx_unlock(&ps->ps_mtx); PROC_UNLOCK(p); sbuf_printf(sb, "SigPnd:\t%016jx\n", siglist.__mask); /* * XXX. SigBlk - target thread's signal mask, td_sigmask. * To implement SigBlk pseudofs should support proc/tid dir entries. */ sbuf_printf(sb, "SigBlk:\t%016x\n", 0); sbuf_printf(sb, "SigIgn:\t%016jx\n", sigignore.__mask); sbuf_printf(sb, "SigCgt:\t%016jx\n", sigcatch.__mask); /* * Linux also prints the capability masks, but we don't have * capabilities yet, and when we do get them they're likely to * be meaningless to Linux programs, so we lie. XXX */ sbuf_printf(sb, "CapInh:\t%016x\n", 0); sbuf_printf(sb, "CapPrm:\t%016x\n", 0); sbuf_printf(sb, "CapEff:\t%016x\n", 0); return (0); } /* * Filler function for proc/pid/cwd */ static int linprocfs_doproccwd(PFS_FILL_ARGS) { struct filedesc *fdp; struct vnode *vp; char *fullpath = "unknown"; char *freepath = NULL; fdp = p->p_fd; FILEDESC_SLOCK(fdp); vp = fdp->fd_cdir; if (vp != NULL) VREF(vp); FILEDESC_SUNLOCK(fdp); vn_fullpath(td, vp, &fullpath, &freepath); if (vp != NULL) vrele(vp); sbuf_printf(sb, "%s", fullpath); if (freepath) free(freepath, M_TEMP); return (0); } /* * Filler function for proc/pid/root */ static int linprocfs_doprocroot(PFS_FILL_ARGS) { struct filedesc *fdp; struct vnode *vp; char *fullpath = "unknown"; char *freepath = NULL; fdp = p->p_fd; FILEDESC_SLOCK(fdp); vp = jailed(p->p_ucred) ? fdp->fd_jdir : fdp->fd_rdir; if (vp != NULL) VREF(vp); FILEDESC_SUNLOCK(fdp); vn_fullpath(td, vp, &fullpath, &freepath); if (vp != NULL) vrele(vp); sbuf_printf(sb, "%s", fullpath); if (freepath) free(freepath, M_TEMP); return (0); } /* * Filler function for proc/pid/cmdline */ static int linprocfs_doproccmdline(PFS_FILL_ARGS) { int ret; PROC_LOCK(p); if ((ret = p_cansee(td, p)) != 0) { PROC_UNLOCK(p); return (ret); } /* * Mimic linux behavior and pass only processes with usermode * address space as valid. Return zero silently otherwize. */ if (p->p_vmspace == &vmspace0) { PROC_UNLOCK(p); return (0); } if (p->p_args != NULL) { sbuf_bcpy(sb, p->p_args->ar_args, p->p_args->ar_length); PROC_UNLOCK(p); return (0); } if ((p->p_flag & P_SYSTEM) != 0) { PROC_UNLOCK(p); return (0); } PROC_UNLOCK(p); ret = proc_getargv(td, p, sb); return (ret); } /* * Filler function for proc/pid/environ */ static int linprocfs_doprocenviron(PFS_FILL_ARGS) { /* * Mimic linux behavior and pass only processes with usermode * address space as valid. Return zero silently otherwize. */ if (p->p_vmspace == &vmspace0) return (0); return (proc_getenvv(td, p, sb)); } static char l32_map_str[] = "%08lx-%08lx %s%s%s%s %08lx %02x:%02x %lu%s%s\n"; static char l64_map_str[] = "%016lx-%016lx %s%s%s%s %08lx %02x:%02x %lu%s%s\n"; static char vdso_str[] = " [vdso]"; static char stack_str[] = " [stack]"; /* * Filler function for proc/pid/maps */ static int linprocfs_doprocmaps(PFS_FILL_ARGS) { struct vmspace *vm; vm_map_t map; vm_map_entry_t entry, tmp_entry; vm_object_t obj, tobj, lobj; vm_offset_t e_start, e_end; vm_ooffset_t off = 0; vm_prot_t e_prot; unsigned int last_timestamp; char *name = "", *freename = NULL; const char *l_map_str; ino_t ino; int ref_count, shadow_count, flags; int error; struct vnode *vp; struct vattr vat; PROC_LOCK(p); error = p_candebug(td, p); PROC_UNLOCK(p); if (error) return (error); if (uio->uio_rw != UIO_READ) return (EOPNOTSUPP); error = 0; vm = vmspace_acquire_ref(p); if (vm == NULL) return (ESRCH); if (SV_CURPROC_FLAG(SV_LP64)) l_map_str = l64_map_str; else l_map_str = l32_map_str; map = &vm->vm_map; vm_map_lock_read(map); for (entry = map->header.next; entry != &map->header; entry = entry->next) { name = ""; freename = NULL; if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) continue; e_prot = entry->protection; e_start = entry->start; e_end = entry->end; obj = entry->object.vm_object; for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { VM_OBJECT_RLOCK(tobj); if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); lobj = tobj; } last_timestamp = map->timestamp; vm_map_unlock_read(map); ino = 0; if (lobj) { off = IDX_TO_OFF(lobj->size); vp = vm_object_vnode(lobj); if (vp != NULL) vref(vp); if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); flags = obj->flags; ref_count = obj->ref_count; shadow_count = obj->shadow_count; VM_OBJECT_RUNLOCK(obj); if (vp != NULL) { vn_fullpath(td, vp, &name, &freename); vn_lock(vp, LK_SHARED | LK_RETRY); VOP_GETATTR(vp, &vat, td->td_ucred); ino = vat.va_fileid; vput(vp); } else if (SV_PROC_ABI(p) == SV_ABI_LINUX) { if (e_start == p->p_sysent->sv_shared_page_base) name = vdso_str; if (e_end == p->p_sysent->sv_usrstack) name = stack_str; } } else { flags = 0; ref_count = 0; shadow_count = 0; } /* * format: * start, end, access, offset, major, minor, inode, name. */ error = sbuf_printf(sb, l_map_str, (u_long)e_start, (u_long)e_end, (e_prot & VM_PROT_READ)?"r":"-", (e_prot & VM_PROT_WRITE)?"w":"-", (e_prot & VM_PROT_EXECUTE)?"x":"-", "p", (u_long)off, 0, 0, (u_long)ino, *name ? " " : "", name ); if (freename) free(freename, M_TEMP); vm_map_lock_read(map); if (error == -1) { error = 0; break; } if (last_timestamp != map->timestamp) { /* * Look again for the entry because the map was * modified while it was unlocked. Specifically, * the entry may have been clipped, merged, or deleted. */ vm_map_lookup_entry(map, e_end - 1, &tmp_entry); entry = tmp_entry; } } vm_map_unlock_read(map); vmspace_free(vm); return (error); } /* * Criteria for interface name translation */ #define IFP_IS_ETH(ifp) (ifp->if_type == IFT_ETHER) static int linux_ifname(struct ifnet *ifp, char *buffer, size_t buflen) { struct ifnet *ifscan; int ethno; IFNET_RLOCK_ASSERT(); /* Short-circuit non ethernet interfaces */ if (!IFP_IS_ETH(ifp)) return (strlcpy(buffer, ifp->if_xname, buflen)); /* Determine the (relative) unit number for ethernet interfaces */ ethno = 0; TAILQ_FOREACH(ifscan, &V_ifnet, if_link) { if (ifscan == ifp) return (snprintf(buffer, buflen, "eth%d", ethno)); if (IFP_IS_ETH(ifscan)) ethno++; } return (0); } /* * Filler function for proc/net/dev */ static int linprocfs_donetdev(PFS_FILL_ARGS) { char ifname[16]; /* XXX LINUX_IFNAMSIZ */ struct ifnet *ifp; sbuf_printf(sb, "%6s|%58s|%s\n" "%6s|%58s|%58s\n", "Inter-", " Receive", " Transmit", " face", "bytes packets errs drop fifo frame compressed multicast", "bytes packets errs drop fifo colls carrier compressed"); CURVNET_SET(TD_TO_VNET(curthread)); IFNET_RLOCK(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { linux_ifname(ifp, ifname, sizeof ifname); sbuf_printf(sb, "%6.6s: ", ifname); sbuf_printf(sb, "%7ju %7ju %4ju %4ju %4lu %5lu %10lu %9ju ", (uintmax_t )ifp->if_get_counter(ifp, IFCOUNTER_IBYTES), (uintmax_t )ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS), (uintmax_t )ifp->if_get_counter(ifp, IFCOUNTER_IERRORS), (uintmax_t )ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS), /* rx_missed_errors */ 0UL, /* rx_fifo_errors */ 0UL, /* rx_length_errors + * rx_over_errors + * rx_crc_errors + * rx_frame_errors */ 0UL, /* rx_compressed */ (uintmax_t )ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS)); /* XXX-BZ rx only? */ sbuf_printf(sb, "%8ju %7ju %4ju %4ju %4lu %5ju %7lu %10lu\n", (uintmax_t )ifp->if_get_counter(ifp, IFCOUNTER_OBYTES), (uintmax_t )ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS), (uintmax_t )ifp->if_get_counter(ifp, IFCOUNTER_OERRORS), (uintmax_t )ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS), 0UL, /* tx_fifo_errors */ (uintmax_t )ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS), 0UL, /* tx_carrier_errors + * tx_aborted_errors + * tx_window_errors + * tx_heartbeat_errors*/ 0UL); /* tx_compressed */ } IFNET_RUNLOCK(); CURVNET_RESTORE(); return (0); } /* * Filler function for proc/sys/kernel/osrelease */ static int linprocfs_doosrelease(PFS_FILL_ARGS) { char osrelease[LINUX_MAX_UTSNAME]; linux_get_osrelease(td, osrelease); sbuf_printf(sb, "%s\n", osrelease); return (0); } /* * Filler function for proc/sys/kernel/ostype */ static int linprocfs_doostype(PFS_FILL_ARGS) { char osname[LINUX_MAX_UTSNAME]; linux_get_osname(td, osname); sbuf_printf(sb, "%s\n", osname); return (0); } /* * Filler function for proc/sys/kernel/version */ static int linprocfs_doosbuild(PFS_FILL_ARGS) { linprocfs_osbuild(td, sb); sbuf_cat(sb, "\n"); return (0); } /* * Filler function for proc/sys/kernel/msgmni */ static int linprocfs_domsgmni(PFS_FILL_ARGS) { sbuf_printf(sb, "%d\n", msginfo.msgmni); return (0); } /* * Filler function for proc/sys/kernel/pid_max */ static int linprocfs_dopid_max(PFS_FILL_ARGS) { sbuf_printf(sb, "%i\n", PID_MAX); return (0); } /* * Filler function for proc/sys/kernel/sem */ static int linprocfs_dosem(PFS_FILL_ARGS) { sbuf_printf(sb, "%d %d %d %d\n", seminfo.semmsl, seminfo.semmns, seminfo.semopm, seminfo.semmni); return (0); } /* * Filler function for proc/scsi/device_info */ static int linprocfs_doscsidevinfo(PFS_FILL_ARGS) { return (0); } /* * Filler function for proc/scsi/scsi */ static int linprocfs_doscsiscsi(PFS_FILL_ARGS) { return (0); } /* * Filler function for proc/devices */ static int linprocfs_dodevices(PFS_FILL_ARGS) { char *char_devices; sbuf_printf(sb, "Character devices:\n"); char_devices = linux_get_char_devices(); sbuf_printf(sb, "%s", char_devices); linux_free_get_char_devices(char_devices); sbuf_printf(sb, "\nBlock devices:\n"); return (0); } /* * Filler function for proc/cmdline */ static int linprocfs_docmdline(PFS_FILL_ARGS) { sbuf_printf(sb, "BOOT_IMAGE=%s", kernelname); sbuf_printf(sb, " ro root=302\n"); return (0); } /* * Filler function for proc/filesystems */ static int linprocfs_dofilesystems(PFS_FILL_ARGS) { struct vfsconf *vfsp; vfsconf_slock(); TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { if (vfsp->vfc_flags & VFCF_SYNTHETIC) sbuf_printf(sb, "nodev"); sbuf_printf(sb, "\t%s\n", vfsp->vfc_name); } vfsconf_sunlock(); return(0); } #if 0 /* * Filler function for proc/modules */ static int linprocfs_domodules(PFS_FILL_ARGS) { struct linker_file *lf; TAILQ_FOREACH(lf, &linker_files, link) { sbuf_printf(sb, "%-20s%8lu%4d\n", lf->filename, (unsigned long)lf->size, lf->refs); } return (0); } #endif /* * Filler function for proc/pid/fd */ static int linprocfs_dofdescfs(PFS_FILL_ARGS) { if (p == curproc) sbuf_printf(sb, "/dev/fd"); else sbuf_printf(sb, "unknown"); return (0); } /* * Filler function for proc/pid/limits */ static const struct linux_rlimit_ident { const char *desc; const char *unit; unsigned int rlim_id; } linux_rlimits_ident[] = { { "Max cpu time", "seconds", RLIMIT_CPU }, { "Max file size", "bytes", RLIMIT_FSIZE }, { "Max data size", "bytes", RLIMIT_DATA }, { "Max stack size", "bytes", RLIMIT_STACK }, { "Max core file size", "bytes", RLIMIT_CORE }, { "Max resident set", "bytes", RLIMIT_RSS }, { "Max processes", "processes", RLIMIT_NPROC }, { "Max open files", "files", RLIMIT_NOFILE }, { "Max locked memory", "bytes", RLIMIT_MEMLOCK }, { "Max address space", "bytes", RLIMIT_AS }, { "Max file locks", "locks", LINUX_RLIMIT_LOCKS }, { "Max pending signals", "signals", LINUX_RLIMIT_SIGPENDING }, { "Max msgqueue size", "bytes", LINUX_RLIMIT_MSGQUEUE }, { "Max nice priority", "", LINUX_RLIMIT_NICE }, { "Max realtime priority", "", LINUX_RLIMIT_RTPRIO }, { "Max realtime timeout", "us", LINUX_RLIMIT_RTTIME }, { 0, 0, 0 } }; static int linprocfs_doproclimits(PFS_FILL_ARGS) { const struct linux_rlimit_ident *li; struct plimit *limp; struct rlimit rl; ssize_t size; int res, error; error = 0; PROC_LOCK(p); limp = lim_hold(p->p_limit); PROC_UNLOCK(p); size = sizeof(res); sbuf_printf(sb, "%-26s%-21s%-21s%-21s\n", "Limit", "Soft Limit", "Hard Limit", "Units"); for (li = linux_rlimits_ident; li->desc != NULL; ++li) { switch (li->rlim_id) { case LINUX_RLIMIT_LOCKS: /* FALLTHROUGH */ case LINUX_RLIMIT_RTTIME: rl.rlim_cur = RLIM_INFINITY; break; case LINUX_RLIMIT_SIGPENDING: error = kernel_sysctlbyname(td, "kern.sigqueue.max_pending_per_proc", &res, &size, 0, 0, 0, 0); if (error != 0) goto out; rl.rlim_cur = res; rl.rlim_max = res; break; case LINUX_RLIMIT_MSGQUEUE: error = kernel_sysctlbyname(td, "kern.ipc.msgmnb", &res, &size, 0, 0, 0, 0); if (error != 0) goto out; rl.rlim_cur = res; rl.rlim_max = res; break; case LINUX_RLIMIT_NICE: /* FALLTHROUGH */ case LINUX_RLIMIT_RTPRIO: rl.rlim_cur = 0; rl.rlim_max = 0; break; default: rl = limp->pl_rlimit[li->rlim_id]; break; } if (rl.rlim_cur == RLIM_INFINITY) sbuf_printf(sb, "%-26s%-21s%-21s%-10s\n", li->desc, "unlimited", "unlimited", li->unit); else sbuf_printf(sb, "%-26s%-21llu%-21llu%-10s\n", li->desc, (unsigned long long)rl.rlim_cur, (unsigned long long)rl.rlim_max, li->unit); } out: lim_free(limp); return (error); } /* * Filler function for proc/sys/kernel/random/uuid */ static int linprocfs_douuid(PFS_FILL_ARGS) { struct uuid uuid; kern_uuidgen(&uuid, 1); sbuf_printf_uuid(sb, &uuid); sbuf_printf(sb, "\n"); return(0); } /* * Filler function for proc/pid/auxv */ static int linprocfs_doauxv(PFS_FILL_ARGS) { struct sbuf *asb; off_t buflen, resid; int error; /* * Mimic linux behavior and pass only processes with usermode * address space as valid. Return zero silently otherwise. */ if (p->p_vmspace == &vmspace0) return (0); if (uio->uio_resid == 0) return (0); if (uio->uio_offset < 0 || uio->uio_resid < 0) return (EINVAL); asb = sbuf_new_auto(); if (asb == NULL) return (ENOMEM); error = proc_getauxv(td, p, asb); if (error == 0) error = sbuf_finish(asb); resid = sbuf_len(asb) - uio->uio_offset; if (resid > uio->uio_resid) buflen = uio->uio_resid; else buflen = resid; if (buflen > IOSIZE_MAX) return (EINVAL); if (buflen > MAXPHYS) buflen = MAXPHYS; if (resid <= 0) return (0); if (error == 0) error = uiomove(sbuf_data(asb) + uio->uio_offset, buflen, uio); sbuf_delete(asb); return (error); } /* * Constructor */ static int linprocfs_init(PFS_INIT_ARGS) { struct pfs_node *root; struct pfs_node *dir; root = pi->pi_root; /* /proc/... */ pfs_create_file(root, "cmdline", &linprocfs_docmdline, NULL, NULL, NULL, PFS_RD); pfs_create_file(root, "cpuinfo", &linprocfs_docpuinfo, NULL, NULL, NULL, PFS_RD); pfs_create_file(root, "devices", &linprocfs_dodevices, NULL, NULL, NULL, PFS_RD); pfs_create_file(root, "filesystems", &linprocfs_dofilesystems, NULL, NULL, NULL, PFS_RD); pfs_create_file(root, "loadavg", &linprocfs_doloadavg, NULL, NULL, NULL, PFS_RD); pfs_create_file(root, "meminfo", &linprocfs_domeminfo, NULL, NULL, NULL, PFS_RD); #if 0 pfs_create_file(root, "modules", &linprocfs_domodules, NULL, NULL, NULL, PFS_RD); #endif pfs_create_file(root, "mounts", &linprocfs_domtab, NULL, NULL, NULL, PFS_RD); pfs_create_file(root, "mtab", &linprocfs_domtab, NULL, NULL, NULL, PFS_RD); pfs_create_file(root, "partitions", &linprocfs_dopartitions, NULL, NULL, NULL, PFS_RD); pfs_create_link(root, "self", &procfs_docurproc, NULL, NULL, NULL, 0); pfs_create_file(root, "stat", &linprocfs_dostat, NULL, NULL, NULL, PFS_RD); pfs_create_file(root, "swaps", &linprocfs_doswaps, NULL, NULL, NULL, PFS_RD); pfs_create_file(root, "uptime", &linprocfs_douptime, NULL, NULL, NULL, PFS_RD); pfs_create_file(root, "version", &linprocfs_doversion, NULL, NULL, NULL, PFS_RD); /* /proc/net/... */ dir = pfs_create_dir(root, "net", NULL, NULL, NULL, 0); pfs_create_file(dir, "dev", &linprocfs_donetdev, NULL, NULL, NULL, PFS_RD); /* /proc//... */ dir = pfs_create_dir(root, "pid", NULL, NULL, NULL, PFS_PROCDEP); pfs_create_file(dir, "cmdline", &linprocfs_doproccmdline, NULL, NULL, NULL, PFS_RD); pfs_create_link(dir, "cwd", &linprocfs_doproccwd, NULL, NULL, NULL, 0); pfs_create_file(dir, "environ", &linprocfs_doprocenviron, NULL, &procfs_candebug, NULL, PFS_RD); pfs_create_link(dir, "exe", &procfs_doprocfile, NULL, &procfs_notsystem, NULL, 0); pfs_create_file(dir, "maps", &linprocfs_doprocmaps, NULL, NULL, NULL, PFS_RD); pfs_create_file(dir, "mem", &procfs_doprocmem, &procfs_attr, &procfs_candebug, NULL, PFS_RDWR|PFS_RAW); pfs_create_link(dir, "root", &linprocfs_doprocroot, NULL, NULL, NULL, 0); pfs_create_file(dir, "stat", &linprocfs_doprocstat, NULL, NULL, NULL, PFS_RD); pfs_create_file(dir, "statm", &linprocfs_doprocstatm, NULL, NULL, NULL, PFS_RD); pfs_create_file(dir, "status", &linprocfs_doprocstatus, NULL, NULL, NULL, PFS_RD); pfs_create_link(dir, "fd", &linprocfs_dofdescfs, NULL, NULL, NULL, 0); pfs_create_file(dir, "auxv", &linprocfs_doauxv, NULL, &procfs_candebug, NULL, PFS_RD|PFS_RAWRD); pfs_create_file(dir, "limits", &linprocfs_doproclimits, NULL, NULL, NULL, PFS_RD); /* /proc/scsi/... */ dir = pfs_create_dir(root, "scsi", NULL, NULL, NULL, 0); pfs_create_file(dir, "device_info", &linprocfs_doscsidevinfo, NULL, NULL, NULL, PFS_RD); pfs_create_file(dir, "scsi", &linprocfs_doscsiscsi, NULL, NULL, NULL, PFS_RD); /* /proc/sys/... */ dir = pfs_create_dir(root, "sys", NULL, NULL, NULL, 0); /* /proc/sys/kernel/... */ dir = pfs_create_dir(dir, "kernel", NULL, NULL, NULL, 0); pfs_create_file(dir, "osrelease", &linprocfs_doosrelease, NULL, NULL, NULL, PFS_RD); pfs_create_file(dir, "ostype", &linprocfs_doostype, NULL, NULL, NULL, PFS_RD); pfs_create_file(dir, "version", &linprocfs_doosbuild, NULL, NULL, NULL, PFS_RD); pfs_create_file(dir, "msgmni", &linprocfs_domsgmni, NULL, NULL, NULL, PFS_RD); pfs_create_file(dir, "pid_max", &linprocfs_dopid_max, NULL, NULL, NULL, PFS_RD); pfs_create_file(dir, "sem", &linprocfs_dosem, NULL, NULL, NULL, PFS_RD); /* /proc/sys/kernel/random/... */ dir = pfs_create_dir(dir, "random", NULL, NULL, NULL, 0); pfs_create_file(dir, "uuid", &linprocfs_douuid, NULL, NULL, NULL, PFS_RD); return (0); } /* * Destructor */ static int linprocfs_uninit(PFS_INIT_ARGS) { /* nothing to do, pseudofs will GC */ return (0); } PSEUDOFS(linprocfs, 1, PR_ALLOW_MOUNT_LINPROCFS); #if defined(__amd64__) MODULE_DEPEND(linprocfs, linux_common, 1, 1, 1); #else MODULE_DEPEND(linprocfs, linux, 1, 1, 1); #endif MODULE_DEPEND(linprocfs, procfs, 1, 1, 1); MODULE_DEPEND(linprocfs, sysvmsg, 1, 1, 1); MODULE_DEPEND(linprocfs, sysvsem, 1, 1, 1); Index: head/sys/fs/tmpfs/tmpfs_subr.c =================================================================== --- head/sys/fs/tmpfs/tmpfs_subr.c (revision 309016) +++ head/sys/fs/tmpfs/tmpfs_subr.c (revision 309017) @@ -1,1814 +1,1813 @@ /* $NetBSD: tmpfs_subr.c,v 1.35 2007/07/09 21:10:50 ad Exp $ */ /*- * Copyright (c) 2005 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Julio M. Merino Vidal, developed as part of Google's Summer of Code * 2005 program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Efficient memory file system supporting functions. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct tmpfs_dir_cursor { struct tmpfs_dirent *tdc_current; struct tmpfs_dirent *tdc_tree; }; SYSCTL_NODE(_vfs, OID_AUTO, tmpfs, CTLFLAG_RW, 0, "tmpfs file system"); static long tmpfs_pages_reserved = TMPFS_PAGES_MINRESERVED; static int sysctl_mem_reserved(SYSCTL_HANDLER_ARGS) { int error; long pages, bytes; pages = *(long *)arg1; bytes = pages * PAGE_SIZE; error = sysctl_handle_long(oidp, &bytes, 0, req); if (error || !req->newptr) return (error); pages = bytes / PAGE_SIZE; if (pages < TMPFS_PAGES_MINRESERVED) return (EINVAL); *(long *)arg1 = pages; return (0); } SYSCTL_PROC(_vfs_tmpfs, OID_AUTO, memory_reserved, CTLTYPE_LONG|CTLFLAG_RW, &tmpfs_pages_reserved, 0, sysctl_mem_reserved, "L", "Amount of available memory and swap below which tmpfs growth stops"); static __inline int tmpfs_dirtree_cmp(struct tmpfs_dirent *a, struct tmpfs_dirent *b); RB_PROTOTYPE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp); size_t tmpfs_mem_avail(void) { vm_ooffset_t avail; - avail = swap_pager_avail + vm_cnt.v_free_count + vm_cnt.v_cache_count - - tmpfs_pages_reserved; + avail = swap_pager_avail + vm_cnt.v_free_count - tmpfs_pages_reserved; if (__predict_false(avail < 0)) avail = 0; return (avail); } size_t tmpfs_pages_used(struct tmpfs_mount *tmp) { const size_t node_size = sizeof(struct tmpfs_node) + sizeof(struct tmpfs_dirent); size_t meta_pages; meta_pages = howmany((uintmax_t)tmp->tm_nodes_inuse * node_size, PAGE_SIZE); return (meta_pages + tmp->tm_pages_used); } static size_t tmpfs_pages_check_avail(struct tmpfs_mount *tmp, size_t req_pages) { if (tmpfs_mem_avail() < req_pages) return (0); if (tmp->tm_pages_max != SIZE_MAX && tmp->tm_pages_max < req_pages + tmpfs_pages_used(tmp)) return (0); return (1); } /* * Allocates a new node of type 'type' inside the 'tmp' mount point, with * its owner set to 'uid', its group to 'gid' and its mode set to 'mode', * using the credentials of the process 'p'. * * If the node type is set to 'VDIR', then the parent parameter must point * to the parent directory of the node being created. It may only be NULL * while allocating the root node. * * If the node type is set to 'VBLK' or 'VCHR', then the rdev parameter * specifies the device the node represents. * * If the node type is set to 'VLNK', then the parameter target specifies * the file name of the target file for the symbolic link that is being * created. * * Note that new nodes are retrieved from the available list if it has * items or, if it is empty, from the node pool as long as there is enough * space to create them. * * Returns zero on success or an appropriate error code on failure. */ int tmpfs_alloc_node(struct mount *mp, struct tmpfs_mount *tmp, enum vtype type, uid_t uid, gid_t gid, mode_t mode, struct tmpfs_node *parent, char *target, dev_t rdev, struct tmpfs_node **node) { struct tmpfs_node *nnode; vm_object_t obj; /* If the root directory of the 'tmp' file system is not yet * allocated, this must be the request to do it. */ MPASS(IMPLIES(tmp->tm_root == NULL, parent == NULL && type == VDIR)); KASSERT(tmp->tm_root == NULL || mp->mnt_writeopcount > 0, ("creating node not under vn_start_write")); MPASS(IFF(type == VLNK, target != NULL)); MPASS(IFF(type == VBLK || type == VCHR, rdev != VNOVAL)); if (tmp->tm_nodes_inuse >= tmp->tm_nodes_max) return (ENOSPC); if (tmpfs_pages_check_avail(tmp, 1) == 0) return (ENOSPC); if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) { /* * When a new tmpfs node is created for fully * constructed mount point, there must be a parent * node, which vnode is locked exclusively. As * consequence, if the unmount is executing in * parallel, vflush() cannot reclaim the parent vnode. * Due to this, the check for MNTK_UNMOUNT flag is not * racy: if we did not see MNTK_UNMOUNT flag, then tmp * cannot be destroyed until node construction is * finished and the parent vnode unlocked. * * Tmpfs does not need to instantiate new nodes during * unmount. */ return (EBUSY); } nnode = (struct tmpfs_node *)uma_zalloc_arg( tmp->tm_node_pool, tmp, M_WAITOK); /* Generic initialization. */ nnode->tn_type = type; vfs_timestamp(&nnode->tn_atime); nnode->tn_birthtime = nnode->tn_ctime = nnode->tn_mtime = nnode->tn_atime; nnode->tn_uid = uid; nnode->tn_gid = gid; nnode->tn_mode = mode; nnode->tn_id = alloc_unr(tmp->tm_ino_unr); /* Type-specific initialization. */ switch (nnode->tn_type) { case VBLK: case VCHR: nnode->tn_rdev = rdev; break; case VDIR: RB_INIT(&nnode->tn_dir.tn_dirhead); LIST_INIT(&nnode->tn_dir.tn_dupindex); MPASS(parent != nnode); MPASS(IMPLIES(parent == NULL, tmp->tm_root == NULL)); nnode->tn_dir.tn_parent = (parent == NULL) ? nnode : parent; nnode->tn_dir.tn_readdir_lastn = 0; nnode->tn_dir.tn_readdir_lastp = NULL; nnode->tn_links++; TMPFS_NODE_LOCK(nnode->tn_dir.tn_parent); nnode->tn_dir.tn_parent->tn_links++; TMPFS_NODE_UNLOCK(nnode->tn_dir.tn_parent); break; case VFIFO: /* FALLTHROUGH */ case VSOCK: break; case VLNK: MPASS(strlen(target) < MAXPATHLEN); nnode->tn_size = strlen(target); nnode->tn_link = malloc(nnode->tn_size, M_TMPFSNAME, M_WAITOK); memcpy(nnode->tn_link, target, nnode->tn_size); break; case VREG: obj = nnode->tn_reg.tn_aobj = vm_pager_allocate(OBJT_SWAP, NULL, 0, VM_PROT_DEFAULT, 0, NULL /* XXXKIB - tmpfs needs swap reservation */); VM_OBJECT_WLOCK(obj); /* OBJ_TMPFS is set together with the setting of vp->v_object */ vm_object_set_flag(obj, OBJ_NOSPLIT | OBJ_TMPFS_NODE); vm_object_clear_flag(obj, OBJ_ONEMAPPING); VM_OBJECT_WUNLOCK(obj); break; default: panic("tmpfs_alloc_node: type %p %d", nnode, (int)nnode->tn_type); } TMPFS_LOCK(tmp); LIST_INSERT_HEAD(&tmp->tm_nodes_used, nnode, tn_entries); tmp->tm_nodes_inuse++; TMPFS_UNLOCK(tmp); *node = nnode; return 0; } /* * Destroys the node pointed to by node from the file system 'tmp'. * If the node does not belong to the given mount point, the results are * unpredicted. * * If the node references a directory; no entries are allowed because * their removal could need a recursive algorithm, something forbidden in * kernel space. Furthermore, there is not need to provide such * functionality (recursive removal) because the only primitives offered * to the user are the removal of empty directories and the deletion of * individual files. * * Note that nodes are not really deleted; in fact, when a node has been * allocated, it cannot be deleted during the whole life of the file * system. Instead, they are moved to the available list and remain there * until reused. */ void tmpfs_free_node(struct tmpfs_mount *tmp, struct tmpfs_node *node) { vm_object_t uobj; #ifdef INVARIANTS TMPFS_NODE_LOCK(node); MPASS(node->tn_vnode == NULL); MPASS((node->tn_vpstate & TMPFS_VNODE_ALLOCATING) == 0); TMPFS_NODE_UNLOCK(node); #endif TMPFS_LOCK(tmp); LIST_REMOVE(node, tn_entries); tmp->tm_nodes_inuse--; TMPFS_UNLOCK(tmp); switch (node->tn_type) { case VNON: /* Do not do anything. VNON is provided to let the * allocation routine clean itself easily by avoiding * duplicating code in it. */ /* FALLTHROUGH */ case VBLK: /* FALLTHROUGH */ case VCHR: /* FALLTHROUGH */ case VDIR: /* FALLTHROUGH */ case VFIFO: /* FALLTHROUGH */ case VSOCK: break; case VLNK: free(node->tn_link, M_TMPFSNAME); break; case VREG: uobj = node->tn_reg.tn_aobj; if (uobj != NULL) { TMPFS_LOCK(tmp); tmp->tm_pages_used -= uobj->size; TMPFS_UNLOCK(tmp); KASSERT((uobj->flags & OBJ_TMPFS) == 0, ("leaked OBJ_TMPFS node %p vm_obj %p", node, uobj)); vm_object_deallocate(uobj); } break; default: panic("tmpfs_free_node: type %p %d", node, (int)node->tn_type); } free_unr(tmp->tm_ino_unr, node->tn_id); uma_zfree(tmp->tm_node_pool, node); } static __inline uint32_t tmpfs_dirent_hash(const char *name, u_int len) { uint32_t hash; hash = fnv_32_buf(name, len, FNV1_32_INIT + len) & TMPFS_DIRCOOKIE_MASK; #ifdef TMPFS_DEBUG_DIRCOOKIE_DUP hash &= 0xf; #endif if (hash < TMPFS_DIRCOOKIE_MIN) hash += TMPFS_DIRCOOKIE_MIN; return (hash); } static __inline off_t tmpfs_dirent_cookie(struct tmpfs_dirent *de) { if (de == NULL) return (TMPFS_DIRCOOKIE_EOF); MPASS(de->td_cookie >= TMPFS_DIRCOOKIE_MIN); return (de->td_cookie); } static __inline boolean_t tmpfs_dirent_dup(struct tmpfs_dirent *de) { return ((de->td_cookie & TMPFS_DIRCOOKIE_DUP) != 0); } static __inline boolean_t tmpfs_dirent_duphead(struct tmpfs_dirent *de) { return ((de->td_cookie & TMPFS_DIRCOOKIE_DUPHEAD) != 0); } void tmpfs_dirent_init(struct tmpfs_dirent *de, const char *name, u_int namelen) { de->td_hash = de->td_cookie = tmpfs_dirent_hash(name, namelen); memcpy(de->ud.td_name, name, namelen); de->td_namelen = namelen; } /* * Allocates a new directory entry for the node node with a name of name. * The new directory entry is returned in *de. * * The link count of node is increased by one to reflect the new object * referencing it. * * Returns zero on success or an appropriate error code on failure. */ int tmpfs_alloc_dirent(struct tmpfs_mount *tmp, struct tmpfs_node *node, const char *name, u_int len, struct tmpfs_dirent **de) { struct tmpfs_dirent *nde; nde = uma_zalloc(tmp->tm_dirent_pool, M_WAITOK); nde->td_node = node; if (name != NULL) { nde->ud.td_name = malloc(len, M_TMPFSNAME, M_WAITOK); tmpfs_dirent_init(nde, name, len); } else nde->td_namelen = 0; if (node != NULL) node->tn_links++; *de = nde; return 0; } /* * Frees a directory entry. It is the caller's responsibility to destroy * the node referenced by it if needed. * * The link count of node is decreased by one to reflect the removal of an * object that referenced it. This only happens if 'node_exists' is true; * otherwise the function will not access the node referred to by the * directory entry, as it may already have been released from the outside. */ void tmpfs_free_dirent(struct tmpfs_mount *tmp, struct tmpfs_dirent *de) { struct tmpfs_node *node; node = de->td_node; if (node != NULL) { MPASS(node->tn_links > 0); node->tn_links--; } if (!tmpfs_dirent_duphead(de) && de->ud.td_name != NULL) free(de->ud.td_name, M_TMPFSNAME); uma_zfree(tmp->tm_dirent_pool, de); } void tmpfs_destroy_vobject(struct vnode *vp, vm_object_t obj) { ASSERT_VOP_ELOCKED(vp, "tmpfs_destroy_vobject"); if (vp->v_type != VREG || obj == NULL) return; VM_OBJECT_WLOCK(obj); VI_LOCK(vp); vm_object_clear_flag(obj, OBJ_TMPFS); obj->un_pager.swp.swp_tmpfs = NULL; VI_UNLOCK(vp); VM_OBJECT_WUNLOCK(obj); } /* * Need to clear v_object for insmntque failure. */ static void tmpfs_insmntque_dtr(struct vnode *vp, void *dtr_arg) { tmpfs_destroy_vobject(vp, vp->v_object); vp->v_object = NULL; vp->v_data = NULL; vp->v_op = &dead_vnodeops; vgone(vp); vput(vp); } /* * Allocates a new vnode for the node node or returns a new reference to * an existing one if the node had already a vnode referencing it. The * resulting locked vnode is returned in *vpp. * * Returns zero on success or an appropriate error code on failure. */ int tmpfs_alloc_vp(struct mount *mp, struct tmpfs_node *node, int lkflag, struct vnode **vpp) { struct vnode *vp; vm_object_t object; int error; error = 0; loop: TMPFS_NODE_LOCK(node); loop1: if ((vp = node->tn_vnode) != NULL) { MPASS((node->tn_vpstate & TMPFS_VNODE_DOOMED) == 0); VI_LOCK(vp); if ((node->tn_type == VDIR && node->tn_dir.tn_parent == NULL) || ((vp->v_iflag & VI_DOOMED) != 0 && (lkflag & LK_NOWAIT) != 0)) { VI_UNLOCK(vp); TMPFS_NODE_UNLOCK(node); error = ENOENT; vp = NULL; goto out; } if ((vp->v_iflag & VI_DOOMED) != 0) { VI_UNLOCK(vp); node->tn_vpstate |= TMPFS_VNODE_WRECLAIM; while ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0) { msleep(&node->tn_vnode, TMPFS_NODE_MTX(node), 0, "tmpfsE", 0); } goto loop1; } TMPFS_NODE_UNLOCK(node); error = vget(vp, lkflag | LK_INTERLOCK, curthread); if (error == ENOENT) goto loop; if (error != 0) { vp = NULL; goto out; } /* * Make sure the vnode is still there after * getting the interlock to avoid racing a free. */ if (node->tn_vnode == NULL || node->tn_vnode != vp) { vput(vp); goto loop; } goto out; } if ((node->tn_vpstate & TMPFS_VNODE_DOOMED) || (node->tn_type == VDIR && node->tn_dir.tn_parent == NULL)) { TMPFS_NODE_UNLOCK(node); error = ENOENT; vp = NULL; goto out; } /* * otherwise lock the vp list while we call getnewvnode * since that can block. */ if (node->tn_vpstate & TMPFS_VNODE_ALLOCATING) { node->tn_vpstate |= TMPFS_VNODE_WANT; error = msleep((caddr_t) &node->tn_vpstate, TMPFS_NODE_MTX(node), PDROP | PCATCH, "tmpfs_alloc_vp", 0); if (error) return error; goto loop; } else node->tn_vpstate |= TMPFS_VNODE_ALLOCATING; TMPFS_NODE_UNLOCK(node); /* Get a new vnode and associate it with our node. */ error = getnewvnode("tmpfs", mp, &tmpfs_vnodeop_entries, &vp); if (error != 0) goto unlock; MPASS(vp != NULL); /* lkflag is ignored, the lock is exclusive */ (void) vn_lock(vp, lkflag | LK_RETRY); vp->v_data = node; vp->v_type = node->tn_type; /* Type-specific initialization. */ switch (node->tn_type) { case VBLK: /* FALLTHROUGH */ case VCHR: /* FALLTHROUGH */ case VLNK: /* FALLTHROUGH */ case VSOCK: break; case VFIFO: vp->v_op = &tmpfs_fifoop_entries; break; case VREG: object = node->tn_reg.tn_aobj; VM_OBJECT_WLOCK(object); VI_LOCK(vp); KASSERT(vp->v_object == NULL, ("Not NULL v_object in tmpfs")); vp->v_object = object; object->un_pager.swp.swp_tmpfs = vp; vm_object_set_flag(object, OBJ_TMPFS); VI_UNLOCK(vp); VM_OBJECT_WUNLOCK(object); break; case VDIR: MPASS(node->tn_dir.tn_parent != NULL); if (node->tn_dir.tn_parent == node) vp->v_vflag |= VV_ROOT; break; default: panic("tmpfs_alloc_vp: type %p %d", node, (int)node->tn_type); } if (vp->v_type != VFIFO) VN_LOCK_ASHARE(vp); error = insmntque1(vp, mp, tmpfs_insmntque_dtr, NULL); if (error) vp = NULL; unlock: TMPFS_NODE_LOCK(node); MPASS(node->tn_vpstate & TMPFS_VNODE_ALLOCATING); node->tn_vpstate &= ~TMPFS_VNODE_ALLOCATING; node->tn_vnode = vp; if (node->tn_vpstate & TMPFS_VNODE_WANT) { node->tn_vpstate &= ~TMPFS_VNODE_WANT; TMPFS_NODE_UNLOCK(node); wakeup((caddr_t) &node->tn_vpstate); } else TMPFS_NODE_UNLOCK(node); out: *vpp = vp; #ifdef INVARIANTS if (error == 0) { MPASS(*vpp != NULL && VOP_ISLOCKED(*vpp)); TMPFS_NODE_LOCK(node); MPASS(*vpp == node->tn_vnode); TMPFS_NODE_UNLOCK(node); } #endif return error; } /* * Destroys the association between the vnode vp and the node it * references. */ void tmpfs_free_vp(struct vnode *vp) { struct tmpfs_node *node; node = VP_TO_TMPFS_NODE(vp); TMPFS_NODE_ASSERT_LOCKED(node); node->tn_vnode = NULL; if ((node->tn_vpstate & TMPFS_VNODE_WRECLAIM) != 0) wakeup(&node->tn_vnode); node->tn_vpstate &= ~TMPFS_VNODE_WRECLAIM; vp->v_data = NULL; } /* * Allocates a new file of type 'type' and adds it to the parent directory * 'dvp'; this addition is done using the component name given in 'cnp'. * The ownership of the new file is automatically assigned based on the * credentials of the caller (through 'cnp'), the group is set based on * the parent directory and the mode is determined from the 'vap' argument. * If successful, *vpp holds a vnode to the newly created file and zero * is returned. Otherwise *vpp is NULL and the function returns an * appropriate error code. */ int tmpfs_alloc_file(struct vnode *dvp, struct vnode **vpp, struct vattr *vap, struct componentname *cnp, char *target) { int error; struct tmpfs_dirent *de; struct tmpfs_mount *tmp; struct tmpfs_node *dnode; struct tmpfs_node *node; struct tmpfs_node *parent; MPASS(VOP_ISLOCKED(dvp)); MPASS(cnp->cn_flags & HASBUF); tmp = VFS_TO_TMPFS(dvp->v_mount); dnode = VP_TO_TMPFS_DIR(dvp); *vpp = NULL; /* If the entry we are creating is a directory, we cannot overflow * the number of links of its parent, because it will get a new * link. */ if (vap->va_type == VDIR) { /* Ensure that we do not overflow the maximum number of links * imposed by the system. */ MPASS(dnode->tn_links <= LINK_MAX); if (dnode->tn_links == LINK_MAX) { return (EMLINK); } parent = dnode; MPASS(parent != NULL); } else parent = NULL; /* Allocate a node that represents the new file. */ error = tmpfs_alloc_node(dvp->v_mount, tmp, vap->va_type, cnp->cn_cred->cr_uid, dnode->tn_gid, vap->va_mode, parent, target, vap->va_rdev, &node); if (error != 0) return (error); /* Allocate a directory entry that points to the new file. */ error = tmpfs_alloc_dirent(tmp, node, cnp->cn_nameptr, cnp->cn_namelen, &de); if (error != 0) { tmpfs_free_node(tmp, node); return (error); } /* Allocate a vnode for the new file. */ error = tmpfs_alloc_vp(dvp->v_mount, node, LK_EXCLUSIVE, vpp); if (error != 0) { tmpfs_free_dirent(tmp, de); tmpfs_free_node(tmp, node); return (error); } /* Now that all required items are allocated, we can proceed to * insert the new node into the directory, an operation that * cannot fail. */ if (cnp->cn_flags & ISWHITEOUT) tmpfs_dir_whiteout_remove(dvp, cnp); tmpfs_dir_attach(dvp, de); return (0); } static struct tmpfs_dirent * tmpfs_dir_first(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc) { struct tmpfs_dirent *de; de = RB_MIN(tmpfs_dir, &dnode->tn_dir.tn_dirhead); dc->tdc_tree = de; if (de != NULL && tmpfs_dirent_duphead(de)) de = LIST_FIRST(&de->ud.td_duphead); dc->tdc_current = de; return (dc->tdc_current); } static struct tmpfs_dirent * tmpfs_dir_next(struct tmpfs_node *dnode, struct tmpfs_dir_cursor *dc) { struct tmpfs_dirent *de; MPASS(dc->tdc_tree != NULL); if (tmpfs_dirent_dup(dc->tdc_current)) { dc->tdc_current = LIST_NEXT(dc->tdc_current, uh.td_dup.entries); if (dc->tdc_current != NULL) return (dc->tdc_current); } dc->tdc_tree = dc->tdc_current = RB_NEXT(tmpfs_dir, &dnode->tn_dir.tn_dirhead, dc->tdc_tree); if ((de = dc->tdc_current) != NULL && tmpfs_dirent_duphead(de)) { dc->tdc_current = LIST_FIRST(&de->ud.td_duphead); MPASS(dc->tdc_current != NULL); } return (dc->tdc_current); } /* Lookup directory entry in RB-Tree. Function may return duphead entry. */ static struct tmpfs_dirent * tmpfs_dir_xlookup_hash(struct tmpfs_node *dnode, uint32_t hash) { struct tmpfs_dirent *de, dekey; dekey.td_hash = hash; de = RB_FIND(tmpfs_dir, &dnode->tn_dir.tn_dirhead, &dekey); return (de); } /* Lookup directory entry by cookie, initialize directory cursor accordingly. */ static struct tmpfs_dirent * tmpfs_dir_lookup_cookie(struct tmpfs_node *node, off_t cookie, struct tmpfs_dir_cursor *dc) { struct tmpfs_dir *dirhead = &node->tn_dir.tn_dirhead; struct tmpfs_dirent *de, dekey; MPASS(cookie >= TMPFS_DIRCOOKIE_MIN); if (cookie == node->tn_dir.tn_readdir_lastn && (de = node->tn_dir.tn_readdir_lastp) != NULL) { /* Protect against possible race, tn_readdir_last[pn] * may be updated with only shared vnode lock held. */ if (cookie == tmpfs_dirent_cookie(de)) goto out; } if ((cookie & TMPFS_DIRCOOKIE_DUP) != 0) { LIST_FOREACH(de, &node->tn_dir.tn_dupindex, uh.td_dup.index_entries) { MPASS(tmpfs_dirent_dup(de)); if (de->td_cookie == cookie) goto out; /* dupindex list is sorted. */ if (de->td_cookie < cookie) { de = NULL; goto out; } } MPASS(de == NULL); goto out; } if ((cookie & TMPFS_DIRCOOKIE_MASK) != cookie) { de = NULL; } else { dekey.td_hash = cookie; /* Recover if direntry for cookie was removed */ de = RB_NFIND(tmpfs_dir, dirhead, &dekey); } dc->tdc_tree = de; dc->tdc_current = de; if (de != NULL && tmpfs_dirent_duphead(de)) { dc->tdc_current = LIST_FIRST(&de->ud.td_duphead); MPASS(dc->tdc_current != NULL); } return (dc->tdc_current); out: dc->tdc_tree = de; dc->tdc_current = de; if (de != NULL && tmpfs_dirent_dup(de)) dc->tdc_tree = tmpfs_dir_xlookup_hash(node, de->td_hash); return (dc->tdc_current); } /* * Looks for a directory entry in the directory represented by node. * 'cnp' describes the name of the entry to look for. Note that the . * and .. components are not allowed as they do not physically exist * within directories. * * Returns a pointer to the entry when found, otherwise NULL. */ struct tmpfs_dirent * tmpfs_dir_lookup(struct tmpfs_node *node, struct tmpfs_node *f, struct componentname *cnp) { struct tmpfs_dir_duphead *duphead; struct tmpfs_dirent *de; uint32_t hash; MPASS(IMPLIES(cnp->cn_namelen == 1, cnp->cn_nameptr[0] != '.')); MPASS(IMPLIES(cnp->cn_namelen == 2, !(cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.'))); TMPFS_VALIDATE_DIR(node); hash = tmpfs_dirent_hash(cnp->cn_nameptr, cnp->cn_namelen); de = tmpfs_dir_xlookup_hash(node, hash); if (de != NULL && tmpfs_dirent_duphead(de)) { duphead = &de->ud.td_duphead; LIST_FOREACH(de, duphead, uh.td_dup.entries) { if (TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr, cnp->cn_namelen)) break; } } else if (de != NULL) { if (!TMPFS_DIRENT_MATCHES(de, cnp->cn_nameptr, cnp->cn_namelen)) de = NULL; } if (de != NULL && f != NULL && de->td_node != f) de = NULL; return (de); } /* * Attach duplicate-cookie directory entry nde to dnode and insert to dupindex * list, allocate new cookie value. */ static void tmpfs_dir_attach_dup(struct tmpfs_node *dnode, struct tmpfs_dir_duphead *duphead, struct tmpfs_dirent *nde) { struct tmpfs_dir_duphead *dupindex; struct tmpfs_dirent *de, *pde; dupindex = &dnode->tn_dir.tn_dupindex; de = LIST_FIRST(dupindex); if (de == NULL || de->td_cookie < TMPFS_DIRCOOKIE_DUP_MAX) { if (de == NULL) nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN; else nde->td_cookie = de->td_cookie + 1; MPASS(tmpfs_dirent_dup(nde)); LIST_INSERT_HEAD(dupindex, nde, uh.td_dup.index_entries); LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); return; } /* * Cookie numbers are near exhaustion. Scan dupindex list for unused * numbers. dupindex list is sorted in descending order. Keep it so * after inserting nde. */ while (1) { pde = de; de = LIST_NEXT(de, uh.td_dup.index_entries); if (de == NULL && pde->td_cookie != TMPFS_DIRCOOKIE_DUP_MIN) { /* * Last element of the index doesn't have minimal cookie * value, use it. */ nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MIN; LIST_INSERT_AFTER(pde, nde, uh.td_dup.index_entries); LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); return; } else if (de == NULL) { /* * We are so lucky have 2^30 hash duplicates in single * directory :) Return largest possible cookie value. * It should be fine except possible issues with * VOP_READDIR restart. */ nde->td_cookie = TMPFS_DIRCOOKIE_DUP_MAX; LIST_INSERT_HEAD(dupindex, nde, uh.td_dup.index_entries); LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); return; } if (de->td_cookie + 1 == pde->td_cookie || de->td_cookie >= TMPFS_DIRCOOKIE_DUP_MAX) continue; /* No hole or invalid cookie. */ nde->td_cookie = de->td_cookie + 1; MPASS(tmpfs_dirent_dup(nde)); MPASS(pde->td_cookie > nde->td_cookie); MPASS(nde->td_cookie > de->td_cookie); LIST_INSERT_BEFORE(de, nde, uh.td_dup.index_entries); LIST_INSERT_HEAD(duphead, nde, uh.td_dup.entries); return; } } /* * Attaches the directory entry de to the directory represented by vp. * Note that this does not change the link count of the node pointed by * the directory entry, as this is done by tmpfs_alloc_dirent. */ void tmpfs_dir_attach(struct vnode *vp, struct tmpfs_dirent *de) { struct tmpfs_node *dnode; struct tmpfs_dirent *xde, *nde; ASSERT_VOP_ELOCKED(vp, __func__); MPASS(de->td_namelen > 0); MPASS(de->td_hash >= TMPFS_DIRCOOKIE_MIN); MPASS(de->td_cookie == de->td_hash); dnode = VP_TO_TMPFS_DIR(vp); dnode->tn_dir.tn_readdir_lastn = 0; dnode->tn_dir.tn_readdir_lastp = NULL; MPASS(!tmpfs_dirent_dup(de)); xde = RB_INSERT(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de); if (xde != NULL && tmpfs_dirent_duphead(xde)) tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de); else if (xde != NULL) { /* * Allocate new duphead. Swap xde with duphead to avoid * adding/removing elements with the same hash. */ MPASS(!tmpfs_dirent_dup(xde)); tmpfs_alloc_dirent(VFS_TO_TMPFS(vp->v_mount), NULL, NULL, 0, &nde); /* *nde = *xde; XXX gcc 4.2.1 may generate invalid code. */ memcpy(nde, xde, sizeof(*xde)); xde->td_cookie |= TMPFS_DIRCOOKIE_DUPHEAD; LIST_INIT(&xde->ud.td_duphead); xde->td_namelen = 0; xde->td_node = NULL; tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, nde); tmpfs_dir_attach_dup(dnode, &xde->ud.td_duphead, de); } dnode->tn_size += sizeof(struct tmpfs_dirent); dnode->tn_status |= TMPFS_NODE_ACCESSED | TMPFS_NODE_CHANGED | \ TMPFS_NODE_MODIFIED; tmpfs_update(vp); } /* * Detaches the directory entry de from the directory represented by vp. * Note that this does not change the link count of the node pointed by * the directory entry, as this is done by tmpfs_free_dirent. */ void tmpfs_dir_detach(struct vnode *vp, struct tmpfs_dirent *de) { struct tmpfs_mount *tmp; struct tmpfs_dir *head; struct tmpfs_node *dnode; struct tmpfs_dirent *xde; ASSERT_VOP_ELOCKED(vp, __func__); dnode = VP_TO_TMPFS_DIR(vp); head = &dnode->tn_dir.tn_dirhead; dnode->tn_dir.tn_readdir_lastn = 0; dnode->tn_dir.tn_readdir_lastp = NULL; if (tmpfs_dirent_dup(de)) { /* Remove duphead if de was last entry. */ if (LIST_NEXT(de, uh.td_dup.entries) == NULL) { xde = tmpfs_dir_xlookup_hash(dnode, de->td_hash); MPASS(tmpfs_dirent_duphead(xde)); } else xde = NULL; LIST_REMOVE(de, uh.td_dup.entries); LIST_REMOVE(de, uh.td_dup.index_entries); if (xde != NULL) { if (LIST_EMPTY(&xde->ud.td_duphead)) { RB_REMOVE(tmpfs_dir, head, xde); tmp = VFS_TO_TMPFS(vp->v_mount); MPASS(xde->td_node == NULL); tmpfs_free_dirent(tmp, xde); } } de->td_cookie = de->td_hash; } else RB_REMOVE(tmpfs_dir, head, de); dnode->tn_size -= sizeof(struct tmpfs_dirent); dnode->tn_status |= TMPFS_NODE_ACCESSED | TMPFS_NODE_CHANGED | \ TMPFS_NODE_MODIFIED; tmpfs_update(vp); } void tmpfs_dir_destroy(struct tmpfs_mount *tmp, struct tmpfs_node *dnode) { struct tmpfs_dirent *de, *dde, *nde; RB_FOREACH_SAFE(de, tmpfs_dir, &dnode->tn_dir.tn_dirhead, nde) { RB_REMOVE(tmpfs_dir, &dnode->tn_dir.tn_dirhead, de); /* Node may already be destroyed. */ de->td_node = NULL; if (tmpfs_dirent_duphead(de)) { while ((dde = LIST_FIRST(&de->ud.td_duphead)) != NULL) { LIST_REMOVE(dde, uh.td_dup.entries); dde->td_node = NULL; tmpfs_free_dirent(tmp, dde); } } tmpfs_free_dirent(tmp, de); } } /* * Helper function for tmpfs_readdir. Creates a '.' entry for the given * directory and returns it in the uio space. The function returns 0 * on success, -1 if there was not enough space in the uio structure to * hold the directory entry or an appropriate error code if another * error happens. */ static int tmpfs_dir_getdotdent(struct tmpfs_node *node, struct uio *uio) { int error; struct dirent dent; TMPFS_VALIDATE_DIR(node); MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOT); dent.d_fileno = node->tn_id; dent.d_type = DT_DIR; dent.d_namlen = 1; dent.d_name[0] = '.'; dent.d_name[1] = '\0'; dent.d_reclen = GENERIC_DIRSIZ(&dent); if (dent.d_reclen > uio->uio_resid) error = EJUSTRETURN; else error = uiomove(&dent, dent.d_reclen, uio); node->tn_status |= TMPFS_NODE_ACCESSED; return error; } /* * Helper function for tmpfs_readdir. Creates a '..' entry for the given * directory and returns it in the uio space. The function returns 0 * on success, -1 if there was not enough space in the uio structure to * hold the directory entry or an appropriate error code if another * error happens. */ static int tmpfs_dir_getdotdotdent(struct tmpfs_node *node, struct uio *uio) { int error; struct dirent dent; TMPFS_VALIDATE_DIR(node); MPASS(uio->uio_offset == TMPFS_DIRCOOKIE_DOTDOT); /* * Return ENOENT if the current node is already removed. */ TMPFS_ASSERT_LOCKED(node); if (node->tn_dir.tn_parent == NULL) { return (ENOENT); } TMPFS_NODE_LOCK(node->tn_dir.tn_parent); dent.d_fileno = node->tn_dir.tn_parent->tn_id; TMPFS_NODE_UNLOCK(node->tn_dir.tn_parent); dent.d_type = DT_DIR; dent.d_namlen = 2; dent.d_name[0] = '.'; dent.d_name[1] = '.'; dent.d_name[2] = '\0'; dent.d_reclen = GENERIC_DIRSIZ(&dent); if (dent.d_reclen > uio->uio_resid) error = EJUSTRETURN; else error = uiomove(&dent, dent.d_reclen, uio); node->tn_status |= TMPFS_NODE_ACCESSED; return error; } /* * Helper function for tmpfs_readdir. Returns as much directory entries * as can fit in the uio space. The read starts at uio->uio_offset. * The function returns 0 on success, -1 if there was not enough space * in the uio structure to hold the directory entry or an appropriate * error code if another error happens. */ int tmpfs_dir_getdents(struct tmpfs_node *node, struct uio *uio, int maxcookies, u_long *cookies, int *ncookies) { struct tmpfs_dir_cursor dc; struct tmpfs_dirent *de; off_t off; int error; TMPFS_VALIDATE_DIR(node); off = 0; /* * Lookup the node from the current offset. The starting offset of * 0 will lookup both '.' and '..', and then the first real entry, * or EOF if there are none. Then find all entries for the dir that * fit into the buffer. Once no more entries are found (de == NULL), * the offset is set to TMPFS_DIRCOOKIE_EOF, which will cause the next * call to return 0. */ switch (uio->uio_offset) { case TMPFS_DIRCOOKIE_DOT: error = tmpfs_dir_getdotdent(node, uio); if (error != 0) return (error); uio->uio_offset = TMPFS_DIRCOOKIE_DOTDOT; if (cookies != NULL) cookies[(*ncookies)++] = off = uio->uio_offset; /* FALLTHROUGH */ case TMPFS_DIRCOOKIE_DOTDOT: error = tmpfs_dir_getdotdotdent(node, uio); if (error != 0) return (error); de = tmpfs_dir_first(node, &dc); uio->uio_offset = tmpfs_dirent_cookie(de); if (cookies != NULL) cookies[(*ncookies)++] = off = uio->uio_offset; /* EOF. */ if (de == NULL) return (0); break; case TMPFS_DIRCOOKIE_EOF: return (0); default: de = tmpfs_dir_lookup_cookie(node, uio->uio_offset, &dc); if (de == NULL) return (EINVAL); if (cookies != NULL) off = tmpfs_dirent_cookie(de); } /* Read as much entries as possible; i.e., until we reach the end of * the directory or we exhaust uio space. */ do { struct dirent d; /* Create a dirent structure representing the current * tmpfs_node and fill it. */ if (de->td_node == NULL) { d.d_fileno = 1; d.d_type = DT_WHT; } else { d.d_fileno = de->td_node->tn_id; switch (de->td_node->tn_type) { case VBLK: d.d_type = DT_BLK; break; case VCHR: d.d_type = DT_CHR; break; case VDIR: d.d_type = DT_DIR; break; case VFIFO: d.d_type = DT_FIFO; break; case VLNK: d.d_type = DT_LNK; break; case VREG: d.d_type = DT_REG; break; case VSOCK: d.d_type = DT_SOCK; break; default: panic("tmpfs_dir_getdents: type %p %d", de->td_node, (int)de->td_node->tn_type); } } d.d_namlen = de->td_namelen; MPASS(de->td_namelen < sizeof(d.d_name)); (void)memcpy(d.d_name, de->ud.td_name, de->td_namelen); d.d_name[de->td_namelen] = '\0'; d.d_reclen = GENERIC_DIRSIZ(&d); /* Stop reading if the directory entry we are treating is * bigger than the amount of data that can be returned. */ if (d.d_reclen > uio->uio_resid) { error = EJUSTRETURN; break; } /* Copy the new dirent structure into the output buffer and * advance pointers. */ error = uiomove(&d, d.d_reclen, uio); if (error == 0) { de = tmpfs_dir_next(node, &dc); if (cookies != NULL) { off = tmpfs_dirent_cookie(de); MPASS(*ncookies < maxcookies); cookies[(*ncookies)++] = off; } } } while (error == 0 && uio->uio_resid > 0 && de != NULL); /* Skip setting off when using cookies as it is already done above. */ if (cookies == NULL) off = tmpfs_dirent_cookie(de); /* Update the offset and cache. */ uio->uio_offset = off; node->tn_dir.tn_readdir_lastn = off; node->tn_dir.tn_readdir_lastp = de; node->tn_status |= TMPFS_NODE_ACCESSED; return error; } int tmpfs_dir_whiteout_add(struct vnode *dvp, struct componentname *cnp) { struct tmpfs_dirent *de; int error; error = tmpfs_alloc_dirent(VFS_TO_TMPFS(dvp->v_mount), NULL, cnp->cn_nameptr, cnp->cn_namelen, &de); if (error != 0) return (error); tmpfs_dir_attach(dvp, de); return (0); } void tmpfs_dir_whiteout_remove(struct vnode *dvp, struct componentname *cnp) { struct tmpfs_dirent *de; de = tmpfs_dir_lookup(VP_TO_TMPFS_DIR(dvp), NULL, cnp); MPASS(de != NULL && de->td_node == NULL); tmpfs_dir_detach(dvp, de); tmpfs_free_dirent(VFS_TO_TMPFS(dvp->v_mount), de); } /* * Resizes the aobj associated with the regular file pointed to by 'vp' to the * size 'newsize'. 'vp' must point to a vnode that represents a regular file. * 'newsize' must be positive. * * Returns zero on success or an appropriate error code on failure. */ int tmpfs_reg_resize(struct vnode *vp, off_t newsize, boolean_t ignerr) { struct tmpfs_mount *tmp; struct tmpfs_node *node; vm_object_t uobj; vm_page_t m; vm_pindex_t idx, newpages, oldpages; off_t oldsize; int base, rv; MPASS(vp->v_type == VREG); MPASS(newsize >= 0); node = VP_TO_TMPFS_NODE(vp); uobj = node->tn_reg.tn_aobj; tmp = VFS_TO_TMPFS(vp->v_mount); /* * Convert the old and new sizes to the number of pages needed to * store them. It may happen that we do not need to do anything * because the last allocated page can accommodate the change on * its own. */ oldsize = node->tn_size; oldpages = OFF_TO_IDX(oldsize + PAGE_MASK); MPASS(oldpages == uobj->size); newpages = OFF_TO_IDX(newsize + PAGE_MASK); if (newpages > oldpages && tmpfs_pages_check_avail(tmp, newpages - oldpages) == 0) return (ENOSPC); VM_OBJECT_WLOCK(uobj); if (newsize < oldsize) { /* * Zero the truncated part of the last page. */ base = newsize & PAGE_MASK; if (base != 0) { idx = OFF_TO_IDX(newsize); retry: m = vm_page_lookup(uobj, idx); if (m != NULL) { if (vm_page_sleep_if_busy(m, "tmfssz")) goto retry; MPASS(m->valid == VM_PAGE_BITS_ALL); } else if (vm_pager_has_page(uobj, idx, NULL, NULL)) { m = vm_page_alloc(uobj, idx, VM_ALLOC_NORMAL); if (m == NULL) { VM_OBJECT_WUNLOCK(uobj); VM_WAIT; VM_OBJECT_WLOCK(uobj); goto retry; } rv = vm_pager_get_pages(uobj, &m, 1, NULL, NULL); vm_page_lock(m); if (rv == VM_PAGER_OK) { vm_page_deactivate(m); vm_page_unlock(m); vm_page_xunbusy(m); } else { vm_page_free(m); vm_page_unlock(m); if (ignerr) m = NULL; else { VM_OBJECT_WUNLOCK(uobj); return (EIO); } } } if (m != NULL) { pmap_zero_page_area(m, base, PAGE_SIZE - base); vm_page_dirty(m); vm_pager_page_unswapped(m); } } /* * Release any swap space and free any whole pages. */ if (newpages < oldpages) { swap_pager_freespace(uobj, newpages, oldpages - newpages); vm_object_page_remove(uobj, newpages, 0, 0); } } uobj->size = newpages; VM_OBJECT_WUNLOCK(uobj); TMPFS_LOCK(tmp); tmp->tm_pages_used += (newpages - oldpages); TMPFS_UNLOCK(tmp); node->tn_size = newsize; return (0); } void tmpfs_check_mtime(struct vnode *vp) { struct tmpfs_node *node; struct vm_object *obj; ASSERT_VOP_ELOCKED(vp, "check_mtime"); if (vp->v_type != VREG) return; obj = vp->v_object; KASSERT((obj->flags & (OBJ_TMPFS_NODE | OBJ_TMPFS)) == (OBJ_TMPFS_NODE | OBJ_TMPFS), ("non-tmpfs obj")); /* unlocked read */ if ((obj->flags & OBJ_TMPFS_DIRTY) != 0) { VM_OBJECT_WLOCK(obj); if ((obj->flags & OBJ_TMPFS_DIRTY) != 0) { obj->flags &= ~OBJ_TMPFS_DIRTY; node = VP_TO_TMPFS_NODE(vp); node->tn_status |= TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED; } VM_OBJECT_WUNLOCK(obj); } } /* * Change flags of the given vnode. * Caller should execute tmpfs_update on vp after a successful execution. * The vnode must be locked on entry and remain locked on exit. */ int tmpfs_chflags(struct vnode *vp, u_long flags, struct ucred *cred, struct thread *p) { int error; struct tmpfs_node *node; MPASS(VOP_ISLOCKED(vp)); node = VP_TO_TMPFS_NODE(vp); if ((flags & ~(SF_APPEND | SF_ARCHIVED | SF_IMMUTABLE | SF_NOUNLINK | UF_APPEND | UF_ARCHIVE | UF_HIDDEN | UF_IMMUTABLE | UF_NODUMP | UF_NOUNLINK | UF_OFFLINE | UF_OPAQUE | UF_READONLY | UF_REPARSE | UF_SPARSE | UF_SYSTEM)) != 0) return (EOPNOTSUPP); /* Disallow this operation if the file system is mounted read-only. */ if (vp->v_mount->mnt_flag & MNT_RDONLY) return EROFS; /* * Callers may only modify the file flags on objects they * have VADMIN rights for. */ if ((error = VOP_ACCESS(vp, VADMIN, cred, p))) return (error); /* * Unprivileged processes are not permitted to unset system * flags, or modify flags if any system flags are set. */ if (!priv_check_cred(cred, PRIV_VFS_SYSFLAGS, 0)) { if (node->tn_flags & (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND)) { error = securelevel_gt(cred, 0); if (error) return (error); } } else { if (node->tn_flags & (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND) || ((flags ^ node->tn_flags) & SF_SETTABLE)) return (EPERM); } node->tn_flags = flags; node->tn_status |= TMPFS_NODE_CHANGED; MPASS(VOP_ISLOCKED(vp)); return 0; } /* * Change access mode on the given vnode. * Caller should execute tmpfs_update on vp after a successful execution. * The vnode must be locked on entry and remain locked on exit. */ int tmpfs_chmod(struct vnode *vp, mode_t mode, struct ucred *cred, struct thread *p) { int error; struct tmpfs_node *node; MPASS(VOP_ISLOCKED(vp)); node = VP_TO_TMPFS_NODE(vp); /* Disallow this operation if the file system is mounted read-only. */ if (vp->v_mount->mnt_flag & MNT_RDONLY) return EROFS; /* Immutable or append-only files cannot be modified, either. */ if (node->tn_flags & (IMMUTABLE | APPEND)) return EPERM; /* * To modify the permissions on a file, must possess VADMIN * for that file. */ if ((error = VOP_ACCESS(vp, VADMIN, cred, p))) return (error); /* * Privileged processes may set the sticky bit on non-directories, * as well as set the setgid bit on a file with a group that the * process is not a member of. */ if (vp->v_type != VDIR && (mode & S_ISTXT)) { if (priv_check_cred(cred, PRIV_VFS_STICKYFILE, 0)) return (EFTYPE); } if (!groupmember(node->tn_gid, cred) && (mode & S_ISGID)) { error = priv_check_cred(cred, PRIV_VFS_SETGID, 0); if (error) return (error); } node->tn_mode &= ~ALLPERMS; node->tn_mode |= mode & ALLPERMS; node->tn_status |= TMPFS_NODE_CHANGED; MPASS(VOP_ISLOCKED(vp)); return 0; } /* * Change ownership of the given vnode. At least one of uid or gid must * be different than VNOVAL. If one is set to that value, the attribute * is unchanged. * Caller should execute tmpfs_update on vp after a successful execution. * The vnode must be locked on entry and remain locked on exit. */ int tmpfs_chown(struct vnode *vp, uid_t uid, gid_t gid, struct ucred *cred, struct thread *p) { int error; struct tmpfs_node *node; uid_t ouid; gid_t ogid; MPASS(VOP_ISLOCKED(vp)); node = VP_TO_TMPFS_NODE(vp); /* Assign default values if they are unknown. */ MPASS(uid != VNOVAL || gid != VNOVAL); if (uid == VNOVAL) uid = node->tn_uid; if (gid == VNOVAL) gid = node->tn_gid; MPASS(uid != VNOVAL && gid != VNOVAL); /* Disallow this operation if the file system is mounted read-only. */ if (vp->v_mount->mnt_flag & MNT_RDONLY) return EROFS; /* Immutable or append-only files cannot be modified, either. */ if (node->tn_flags & (IMMUTABLE | APPEND)) return EPERM; /* * To modify the ownership of a file, must possess VADMIN for that * file. */ if ((error = VOP_ACCESS(vp, VADMIN, cred, p))) return (error); /* * To change the owner of a file, or change the group of a file to a * group of which we are not a member, the caller must have * privilege. */ if ((uid != node->tn_uid || (gid != node->tn_gid && !groupmember(gid, cred))) && (error = priv_check_cred(cred, PRIV_VFS_CHOWN, 0))) return (error); ogid = node->tn_gid; ouid = node->tn_uid; node->tn_uid = uid; node->tn_gid = gid; node->tn_status |= TMPFS_NODE_CHANGED; if ((node->tn_mode & (S_ISUID | S_ISGID)) && (ouid != uid || ogid != gid)) { if (priv_check_cred(cred, PRIV_VFS_RETAINSUGID, 0)) node->tn_mode &= ~(S_ISUID | S_ISGID); } MPASS(VOP_ISLOCKED(vp)); return 0; } /* * Change size of the given vnode. * Caller should execute tmpfs_update on vp after a successful execution. * The vnode must be locked on entry and remain locked on exit. */ int tmpfs_chsize(struct vnode *vp, u_quad_t size, struct ucred *cred, struct thread *p) { int error; struct tmpfs_node *node; MPASS(VOP_ISLOCKED(vp)); node = VP_TO_TMPFS_NODE(vp); /* Decide whether this is a valid operation based on the file type. */ error = 0; switch (vp->v_type) { case VDIR: return EISDIR; case VREG: if (vp->v_mount->mnt_flag & MNT_RDONLY) return EROFS; break; case VBLK: /* FALLTHROUGH */ case VCHR: /* FALLTHROUGH */ case VFIFO: /* Allow modifications of special files even if in the file * system is mounted read-only (we are not modifying the * files themselves, but the objects they represent). */ return 0; default: /* Anything else is unsupported. */ return EOPNOTSUPP; } /* Immutable or append-only files cannot be modified, either. */ if (node->tn_flags & (IMMUTABLE | APPEND)) return EPERM; error = tmpfs_truncate(vp, size); /* tmpfs_truncate will raise the NOTE_EXTEND and NOTE_ATTRIB kevents * for us, as will update tn_status; no need to do that here. */ MPASS(VOP_ISLOCKED(vp)); return error; } /* * Change access and modification times of the given vnode. * Caller should execute tmpfs_update on vp after a successful execution. * The vnode must be locked on entry and remain locked on exit. */ int tmpfs_chtimes(struct vnode *vp, struct vattr *vap, struct ucred *cred, struct thread *l) { int error; struct tmpfs_node *node; MPASS(VOP_ISLOCKED(vp)); node = VP_TO_TMPFS_NODE(vp); /* Disallow this operation if the file system is mounted read-only. */ if (vp->v_mount->mnt_flag & MNT_RDONLY) return EROFS; /* Immutable or append-only files cannot be modified, either. */ if (node->tn_flags & (IMMUTABLE | APPEND)) return EPERM; error = vn_utimes_perm(vp, vap, cred, l); if (error != 0) return (error); if (vap->va_atime.tv_sec != VNOVAL) node->tn_status |= TMPFS_NODE_ACCESSED; if (vap->va_mtime.tv_sec != VNOVAL) node->tn_status |= TMPFS_NODE_MODIFIED; if (vap->va_birthtime.tv_sec != VNOVAL) node->tn_status |= TMPFS_NODE_MODIFIED; tmpfs_itimes(vp, &vap->va_atime, &vap->va_mtime); if (vap->va_birthtime.tv_sec != VNOVAL) node->tn_birthtime = vap->va_birthtime; MPASS(VOP_ISLOCKED(vp)); return 0; } /* Sync timestamps */ void tmpfs_itimes(struct vnode *vp, const struct timespec *acc, const struct timespec *mod) { struct tmpfs_node *node; struct timespec now; node = VP_TO_TMPFS_NODE(vp); if ((node->tn_status & (TMPFS_NODE_ACCESSED | TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED)) == 0) return; vfs_timestamp(&now); if (node->tn_status & TMPFS_NODE_ACCESSED) { if (acc == NULL) acc = &now; node->tn_atime = *acc; } if (node->tn_status & TMPFS_NODE_MODIFIED) { if (mod == NULL) mod = &now; node->tn_mtime = *mod; } if (node->tn_status & TMPFS_NODE_CHANGED) { node->tn_ctime = now; } node->tn_status &= ~(TMPFS_NODE_ACCESSED | TMPFS_NODE_MODIFIED | TMPFS_NODE_CHANGED); /* XXX: FIX? The entropy here is desirable, but the harvesting may be expensive */ random_harvest_queue(node, sizeof(*node), 1, RANDOM_FS_ATIME); } void tmpfs_update(struct vnode *vp) { tmpfs_itimes(vp, NULL, NULL); } int tmpfs_truncate(struct vnode *vp, off_t length) { int error; struct tmpfs_node *node; node = VP_TO_TMPFS_NODE(vp); if (length < 0) { error = EINVAL; goto out; } if (node->tn_size == length) { error = 0; goto out; } if (length > VFS_TO_TMPFS(vp->v_mount)->tm_maxfilesize) return (EFBIG); error = tmpfs_reg_resize(vp, length, FALSE); if (error == 0) { node->tn_status |= TMPFS_NODE_CHANGED | TMPFS_NODE_MODIFIED; } out: tmpfs_update(vp); return error; } static __inline int tmpfs_dirtree_cmp(struct tmpfs_dirent *a, struct tmpfs_dirent *b) { if (a->td_hash > b->td_hash) return (1); else if (a->td_hash < b->td_hash) return (-1); return (0); } RB_GENERATE_STATIC(tmpfs_dir, tmpfs_dirent, uh.td_entries, tmpfs_dirtree_cmp); Index: head/sys/sys/param.h =================================================================== --- head/sys/sys/param.h (revision 309016) +++ head/sys/sys/param.h (revision 309017) @@ -1,363 +1,363 @@ /*- * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)param.h 8.3 (Berkeley) 4/4/95 * $FreeBSD$ */ #ifndef _SYS_PARAM_H_ #define _SYS_PARAM_H_ #include #define BSD 199506 /* System version (year & month). */ #define BSD4_3 1 #define BSD4_4 1 /* * __FreeBSD_version numbers are documented in the Porter's Handbook. * If you bump the version for any reason, you should update the documentation * there. * Currently this lives here in the doc/ repository: * * head/en_US.ISO8859-1/books/porters-handbook/versions/chapter.xml * * scheme is: Rxx * 'R' is in the range 0 to 4 if this is a release branch or * x.0-CURRENT before RELENG_*_0 is created, otherwise 'R' is * in the range 5 to 9. */ #undef __FreeBSD_version -#define __FreeBSD_version 1200015 /* Master, propagated to newvers */ +#define __FreeBSD_version 1200016 /* Master, propagated to newvers */ /* * __FreeBSD_kernel__ indicates that this system uses the kernel of FreeBSD, * which by definition is always true on FreeBSD. This macro is also defined * on other systems that use the kernel of FreeBSD, such as GNU/kFreeBSD. * * It is tempting to use this macro in userland code when we want to enable * kernel-specific routines, and in fact it's fine to do this in code that * is part of FreeBSD itself. However, be aware that as presence of this * macro is still not widespread (e.g. older FreeBSD versions, 3rd party * compilers, etc), it is STRONGLY DISCOURAGED to check for this macro in * external applications without also checking for __FreeBSD__ as an * alternative. */ #undef __FreeBSD_kernel__ #define __FreeBSD_kernel__ #ifdef _KERNEL #define P_OSREL_SIGWAIT 700000 #define P_OSREL_SIGSEGV 700004 #define P_OSREL_MAP_ANON 800104 #define P_OSREL_MAP_FSTRICT 1100036 #define P_OSREL_SHUTDOWN_ENOTCONN 1100077 #define P_OSREL_MAJOR(x) ((x) / 100000) #endif #ifndef LOCORE #include #endif /* * Machine-independent constants (some used in following include files). * Redefined constants are from POSIX 1003.1 limits file. * * MAXCOMLEN should be >= sizeof(ac_comm) (see ) */ #include #define MAXCOMLEN 19 /* max command name remembered */ #define MAXINTERP PATH_MAX /* max interpreter file name length */ #define MAXLOGNAME 33 /* max login name length (incl. NUL) */ #define MAXUPRC CHILD_MAX /* max simultaneous processes */ #define NCARGS ARG_MAX /* max bytes for an exec function */ #define NGROUPS (NGROUPS_MAX+1) /* max number groups */ #define NOFILE OPEN_MAX /* max open files per process */ #define NOGROUP 65535 /* marker for empty group set member */ #define MAXHOSTNAMELEN 256 /* max hostname size */ #define SPECNAMELEN 63 /* max length of devicename */ /* More types and definitions used throughout the kernel. */ #ifdef _KERNEL #include #include #ifndef LOCORE #include #include #endif #ifndef FALSE #define FALSE 0 #endif #ifndef TRUE #define TRUE 1 #endif #endif #ifndef _KERNEL /* Signals. */ #include #endif /* Machine type dependent parameters. */ #include #ifndef _KERNEL #include #endif #ifndef DEV_BSHIFT #define DEV_BSHIFT 9 /* log2(DEV_BSIZE) */ #endif #define DEV_BSIZE (1<>PAGE_SHIFT) #endif /* * btodb() is messy and perhaps slow because `bytes' may be an off_t. We * want to shift an unsigned type to avoid sign extension and we don't * want to widen `bytes' unnecessarily. Assume that the result fits in * a daddr_t. */ #ifndef btodb #define btodb(bytes) /* calculates (bytes / DEV_BSIZE) */ \ (sizeof (bytes) > sizeof(long) \ ? (daddr_t)((unsigned long long)(bytes) >> DEV_BSHIFT) \ : (daddr_t)((unsigned long)(bytes) >> DEV_BSHIFT)) #endif #ifndef dbtob #define dbtob(db) /* calculates (db * DEV_BSIZE) */ \ ((off_t)(db) << DEV_BSHIFT) #endif #define PRIMASK 0x0ff #define PCATCH 0x100 /* OR'd with pri for tsleep to check signals */ #define PDROP 0x200 /* OR'd with pri to stop re-entry of interlock mutex */ #define NZERO 0 /* default "nice" */ #define NBBY 8 /* number of bits in a byte */ #define NBPW sizeof(int) /* number of bytes per word (integer) */ #define CMASK 022 /* default file mask: S_IWGRP|S_IWOTH */ #define NODEV (dev_t)(-1) /* non-existent device */ /* * File system parameters and macros. * * MAXBSIZE - Filesystems are made out of blocks of at most MAXBSIZE bytes * per block. MAXBSIZE may be made larger without effecting * any existing filesystems as long as it does not exceed MAXPHYS, * and may be made smaller at the risk of not being able to use * filesystems which require a block size exceeding MAXBSIZE. * * MAXBCACHEBUF - Maximum size of a buffer in the buffer cache. This must * be >= MAXBSIZE and can be set differently for different * architectures by defining it in . * Making this larger allows NFS to do larger reads/writes. * * BKVASIZE - Nominal buffer space per buffer, in bytes. BKVASIZE is the * minimum KVM memory reservation the kernel is willing to make. * Filesystems can of course request smaller chunks. Actual * backing memory uses a chunk size of a page (PAGE_SIZE). * The default value here can be overridden on a per-architecture * basis by defining it in . This should * probably be done to increase its value, when MAXBCACHEBUF is * defined as a larger value in . * * If you make BKVASIZE too small you risk seriously fragmenting * the buffer KVM map which may slow things down a bit. If you * make it too big the kernel will not be able to optimally use * the KVM memory reserved for the buffer cache and will wind * up with too-few buffers. * * The default is 16384, roughly 2x the block size used by a * normal UFS filesystem. */ #define MAXBSIZE 65536 /* must be power of 2 */ #ifndef MAXBCACHEBUF #define MAXBCACHEBUF MAXBSIZE /* must be a power of 2 >= MAXBSIZE */ #endif #ifndef BKVASIZE #define BKVASIZE 16384 /* must be power of 2 */ #endif #define BKVAMASK (BKVASIZE-1) /* * MAXPATHLEN defines the longest permissible path length after expanding * symbolic links. It is used to allocate a temporary buffer from the buffer * pool in which to do the name expansion, hence should be a power of two, * and must be less than or equal to MAXBSIZE. MAXSYMLINKS defines the * maximum number of symbolic links that may be expanded in a path name. * It should be set high enough to allow all legitimate uses, but halt * infinite loops reasonably quickly. */ #define MAXPATHLEN PATH_MAX #define MAXSYMLINKS 32 /* Bit map related macros. */ #define setbit(a,i) (((unsigned char *)(a))[(i)/NBBY] |= 1<<((i)%NBBY)) #define clrbit(a,i) (((unsigned char *)(a))[(i)/NBBY] &= ~(1<<((i)%NBBY))) #define isset(a,i) \ (((const unsigned char *)(a))[(i)/NBBY] & (1<<((i)%NBBY))) #define isclr(a,i) \ ((((const unsigned char *)(a))[(i)/NBBY] & (1<<((i)%NBBY))) == 0) /* Macros for counting and rounding. */ #ifndef howmany #define howmany(x, y) (((x)+((y)-1))/(y)) #endif #define nitems(x) (sizeof((x)) / sizeof((x)[0])) #define rounddown(x, y) (((x)/(y))*(y)) #define rounddown2(x, y) ((x)&(~((y)-1))) /* if y is power of two */ #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) /* to any y */ #define roundup2(x, y) (((x)+((y)-1))&(~((y)-1))) /* if y is powers of two */ #define powerof2(x) ((((x)-1)&(x))==0) /* Macros for min/max. */ #define MIN(a,b) (((a)<(b))?(a):(b)) #define MAX(a,b) (((a)>(b))?(a):(b)) #ifdef _KERNEL /* * Basic byte order function prototypes for non-inline functions. */ #ifndef LOCORE #ifndef _BYTEORDER_PROTOTYPED #define _BYTEORDER_PROTOTYPED __BEGIN_DECLS __uint32_t htonl(__uint32_t); __uint16_t htons(__uint16_t); __uint32_t ntohl(__uint32_t); __uint16_t ntohs(__uint16_t); __END_DECLS #endif #endif #ifndef lint #ifndef _BYTEORDER_FUNC_DEFINED #define _BYTEORDER_FUNC_DEFINED #define htonl(x) __htonl(x) #define htons(x) __htons(x) #define ntohl(x) __ntohl(x) #define ntohs(x) __ntohs(x) #endif /* !_BYTEORDER_FUNC_DEFINED */ #endif /* lint */ #endif /* _KERNEL */ /* * Scale factor for scaled integers used to count %cpu time and load avgs. * * The number of CPU `tick's that map to a unique `%age' can be expressed * by the formula (1 / (2 ^ (FSHIFT - 11))). The maximum load average that * can be calculated (assuming 32 bits) can be closely approximated using * the formula (2 ^ (2 * (16 - FSHIFT))) for (FSHIFT < 15). * * For the scheduler to maintain a 1:1 mapping of CPU `tick' to `%age', * FSHIFT must be at least 11; this gives us a maximum load avg of ~1024. */ #define FSHIFT 11 /* bits to right of fixed binary point */ #define FSCALE (1<> (PAGE_SHIFT - DEV_BSHIFT)) #define ctodb(db) /* calculates pages to devblks */ \ ((db) << (PAGE_SHIFT - DEV_BSHIFT)) /* * Old spelling of __containerof(). */ #define member2struct(s, m, x) \ ((struct s *)(void *)((char *)(x) - offsetof(struct s, m))) /* * Access a variable length array that has been declared as a fixed * length array. */ #define __PAST_END(array, offset) (((__typeof__(*(array)) *)(array))[offset]) #endif /* _SYS_PARAM_H_ */ Index: head/sys/sys/vmmeter.h =================================================================== --- head/sys/sys/vmmeter.h (revision 309016) +++ head/sys/sys/vmmeter.h (revision 309017) @@ -1,227 +1,221 @@ /*- * Copyright (c) 1982, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vmmeter.h 8.2 (Berkeley) 7/10/94 * $FreeBSD$ */ #ifndef _SYS_VMMETER_H_ #define _SYS_VMMETER_H_ /* * This value is used by ps(1) to change sleep state flag from 'S' to * 'I' and by the sched process to set the alarm clock. */ #define MAXSLP 20 /* * System wide statistics counters. * Locking: * a - locked by atomic operations * c - constant after initialization * f - locked by vm_page_queue_free_mtx * p - locked by being in the PCPU and atomicity respect to interrupts * q - changes are synchronized by the corresponding vm_pagequeue lock */ struct vmmeter { /* * General system activity. */ u_int v_swtch; /* (p) context switches */ u_int v_trap; /* (p) calls to trap */ u_int v_syscall; /* (p) calls to syscall() */ u_int v_intr; /* (p) device interrupts */ u_int v_soft; /* (p) software interrupts */ /* * Virtual memory activity. */ u_int v_vm_faults; /* (p) address memory faults */ u_int v_io_faults; /* (p) page faults requiring I/O */ u_int v_cow_faults; /* (p) copy-on-writes faults */ u_int v_cow_optim; /* (p) optimized copy-on-writes faults */ u_int v_zfod; /* (p) pages zero filled on demand */ u_int v_ozfod; /* (p) optimized zero fill pages */ u_int v_swapin; /* (p) swap pager pageins */ u_int v_swapout; /* (p) swap pager pageouts */ u_int v_swappgsin; /* (p) swap pager pages paged in */ u_int v_swappgsout; /* (p) swap pager pages paged out */ u_int v_vnodein; /* (p) vnode pager pageins */ u_int v_vnodeout; /* (p) vnode pager pageouts */ u_int v_vnodepgsin; /* (p) vnode_pager pages paged in */ u_int v_vnodepgsout; /* (p) vnode pager pages paged out */ u_int v_intrans; /* (p) intransit blocking page faults */ u_int v_reactivated; /* (p) pages reactivated by the pagedaemon */ u_int v_pdwakeups; /* (p) times daemon has awaken from sleep */ u_int v_pdpages; /* (p) pages analyzed by daemon */ u_int v_pdshortfalls; /* (p) page reclamation shortfalls */ - u_int v_tcached; /* (p) total pages cached */ u_int v_dfree; /* (p) pages freed by daemon */ u_int v_pfree; /* (p) pages freed by exiting processes */ u_int v_tfree; /* (p) total pages freed */ /* * Distribution of page usages. */ u_int v_page_size; /* (c) page size in bytes */ u_int v_page_count; /* (c) total number of pages in system */ u_int v_free_reserved; /* (c) pages reserved for deadlock */ u_int v_free_target; /* (c) pages desired free */ u_int v_free_min; /* (c) pages desired free */ u_int v_free_count; /* (f) pages free */ u_int v_wire_count; /* (a) pages wired down */ u_int v_active_count; /* (q) pages active */ u_int v_inactive_target; /* (c) pages desired inactive */ u_int v_inactive_count; /* (q) pages inactive */ u_int v_laundry_count; /* (q) pages eligible for laundering */ - u_int v_cache_count; /* (f) pages on cache queue */ u_int v_pageout_free_min; /* (c) min pages reserved for kernel */ u_int v_interrupt_free_min; /* (c) reserved pages for int code */ u_int v_free_severe; /* (c) severe page depletion point */ /* * Fork/vfork/rfork activity. */ u_int v_forks; /* (p) fork() calls */ u_int v_vforks; /* (p) vfork() calls */ u_int v_rforks; /* (p) rfork() calls */ u_int v_kthreads; /* (p) fork() calls by kernel */ u_int v_forkpages; /* (p) VM pages affected by fork() */ u_int v_vforkpages; /* (p) VM pages affected by vfork() */ u_int v_rforkpages; /* (p) VM pages affected by rfork() */ u_int v_kthreadpages; /* (p) VM pages affected by fork() by kernel */ }; #ifdef _KERNEL extern struct vmmeter vm_cnt; extern u_int vm_pageout_wakeup_thresh; /* * Return TRUE if we are under our severe low-free-pages threshold * * This routine is typically used at the user<->system interface to determine * whether we need to block in order to avoid a low memory deadlock. */ static inline int vm_page_count_severe(void) { - return (vm_cnt.v_free_severe > vm_cnt.v_free_count + - vm_cnt.v_cache_count); + return (vm_cnt.v_free_severe > vm_cnt.v_free_count); } /* * Return TRUE if we are under our minimum low-free-pages threshold. * * This routine is typically used within the system to determine whether * we can execute potentially very expensive code in terms of memory. It * is also used by the pageout daemon to calculate when to sleep, when * to wake waiters up, and when (after making a pass) to become more * desperate. */ static inline int vm_page_count_min(void) { - return (vm_cnt.v_free_min > vm_cnt.v_free_count + vm_cnt.v_cache_count); + return (vm_cnt.v_free_min > vm_cnt.v_free_count); } /* * Return TRUE if we have not reached our free page target during * free page recovery operations. */ static inline int vm_page_count_target(void) { - return (vm_cnt.v_free_target > vm_cnt.v_free_count + - vm_cnt.v_cache_count); + return (vm_cnt.v_free_target > vm_cnt.v_free_count); } /* * Return the number of pages we need to free-up or cache * A positive number indicates that we do not have enough free pages. */ static inline int vm_paging_target(void) { - return (vm_cnt.v_free_target - (vm_cnt.v_free_count + - vm_cnt.v_cache_count)); + return (vm_cnt.v_free_target - vm_cnt.v_free_count); } /* * Returns TRUE if the pagedaemon needs to be woken up. */ static inline int vm_paging_needed(void) { - return (vm_cnt.v_free_count + vm_cnt.v_cache_count < - vm_pageout_wakeup_thresh); + return (vm_cnt.v_free_count < vm_pageout_wakeup_thresh); } /* * Return the number of pages we need to launder. * A positive number indicates that we have a shortfall of clean pages. */ static inline int vm_laundry_target(void) { return (vm_paging_target()); } /* * Obtain the value of a per-CPU counter. */ #define VM_METER_PCPU_CNT(member) \ vm_meter_cnt(__offsetof(struct vmmeter, member)) u_int vm_meter_cnt(size_t); #endif /* systemwide totals computed every five seconds */ struct vmtotal { int16_t t_rq; /* length of the run queue */ int16_t t_dw; /* jobs in ``disk wait'' (neg priority) */ int16_t t_pw; /* jobs in page wait */ int16_t t_sl; /* jobs sleeping in core */ int16_t t_sw; /* swapped out runnable/short block jobs */ int32_t t_vm; /* total virtual memory */ int32_t t_avm; /* active virtual memory */ int32_t t_rm; /* total real memory in use */ int32_t t_arm; /* active real memory */ int32_t t_vmshr; /* shared virtual memory */ int32_t t_avmshr; /* active shared virtual memory */ int32_t t_rmshr; /* shared real memory */ int32_t t_armshr; /* active shared real memory */ int32_t t_free; /* free memory pages */ }; #endif Index: head/sys/vm/swap_pager.c =================================================================== --- head/sys/vm/swap_pager.c (revision 309016) +++ head/sys/vm/swap_pager.c (revision 309017) @@ -1,2780 +1,2778 @@ /*- * Copyright (c) 1998 Matthew Dillon, * Copyright (c) 1994 John S. Dyson * Copyright (c) 1990 University of Utah. * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * New Swap System * Matthew Dillon * * Radix Bitmap 'blists'. * * - The new swapper uses the new radix bitmap code. This should scale * to arbitrarily small or arbitrarily large swap spaces and an almost * arbitrary degree of fragmentation. * * Features: * * - on the fly reallocation of swap during putpages. The new system * does not try to keep previously allocated swap blocks for dirty * pages. * * - on the fly deallocation of swap * * - No more garbage collection required. Unnecessarily allocated swap * blocks only exist for dirty vm_page_t's now and these are already * cycled (in a high-load system) by the pager. We also do on-the-fly * removal of invalidated swap blocks when a page is destroyed * or renamed. * * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ * * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_swap.h" #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, 16 * or 32 pages per allocation. * The 32-page limit is due to the radix code (kern/subr_blist.c). */ #ifndef MAX_PAGEOUT_CLUSTER #define MAX_PAGEOUT_CLUSTER 16 #endif #if !defined(SWB_NPAGES) #define SWB_NPAGES MAX_PAGEOUT_CLUSTER #endif /* * The swblock structure maps an object and a small, fixed-size range * of page indices to disk addresses within a swap area. * The collection of these mappings is implemented as a hash table. * Unused disk addresses within a swap area are allocated and managed * using a blist. */ #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) #define SWAP_META_PAGES (SWB_NPAGES * 2) #define SWAP_META_MASK (SWAP_META_PAGES - 1) struct swblock { struct swblock *swb_hnext; vm_object_t swb_object; vm_pindex_t swb_index; int swb_count; daddr_t swb_pages[SWAP_META_PAGES]; }; static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data"); static struct mtx sw_dev_mtx; static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); static struct swdevt *swdevhd; /* Allocate from here next */ static int nswapdev; /* Number of swap devices */ int swap_pager_avail; static struct sx swdev_syscall_lock; /* serialize swap(on|off) */ static vm_ooffset_t swap_total; SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, "Total amount of available swap storage."); static vm_ooffset_t swap_reserved; SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, "Amount of swap storage needed to back all allocated anonymous memory."); static int overcommit = 0; SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, "Configure virtual memory overcommit behavior. See tuning(7) " "for details."); static unsigned long swzone; SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0, "Actual size of swap metadata zone"); static unsigned long swap_maxpages; SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0, "Maximum amount of swap supported"); /* bits from overcommit */ #define SWAP_RESERVE_FORCE_ON (1 << 0) #define SWAP_RESERVE_RLIMIT_ON (1 << 1) #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) int swap_reserve(vm_ooffset_t incr) { return (swap_reserve_by_cred(incr, curthread->td_ucred)); } int swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred) { vm_ooffset_t r, s; int res, error; static int curfail; static struct timeval lastfail; struct uidinfo *uip; uip = cred->cr_ruidinfo; if (incr & PAGE_MASK) panic("swap_reserve: & PAGE_MASK"); #ifdef RACCT if (racct_enable) { PROC_LOCK(curproc); error = racct_add(curproc, RACCT_SWAP, incr); PROC_UNLOCK(curproc); if (error != 0) return (0); } #endif res = 0; mtx_lock(&sw_dev_mtx); r = swap_reserved + incr; if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count; s *= PAGE_SIZE; } else s = 0; s += swap_total; if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { res = 1; swap_reserved = r; } mtx_unlock(&sw_dev_mtx); if (res) { UIDINFO_VMSIZE_LOCK(uip); if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 && uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) && priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) res = 0; else uip->ui_vmsize += incr; UIDINFO_VMSIZE_UNLOCK(uip); if (!res) { mtx_lock(&sw_dev_mtx); swap_reserved -= incr; mtx_unlock(&sw_dev_mtx); } } if (!res && ppsratecheck(&lastfail, &curfail, 1)) { printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", uip->ui_uid, curproc->p_pid, incr); } #ifdef RACCT if (!res) { PROC_LOCK(curproc); racct_sub(curproc, RACCT_SWAP, incr); PROC_UNLOCK(curproc); } #endif return (res); } void swap_reserve_force(vm_ooffset_t incr) { struct uidinfo *uip; mtx_lock(&sw_dev_mtx); swap_reserved += incr; mtx_unlock(&sw_dev_mtx); #ifdef RACCT PROC_LOCK(curproc); racct_add_force(curproc, RACCT_SWAP, incr); PROC_UNLOCK(curproc); #endif uip = curthread->td_ucred->cr_ruidinfo; PROC_LOCK(curproc); UIDINFO_VMSIZE_LOCK(uip); uip->ui_vmsize += incr; UIDINFO_VMSIZE_UNLOCK(uip); PROC_UNLOCK(curproc); } void swap_release(vm_ooffset_t decr) { struct ucred *cred; PROC_LOCK(curproc); cred = curthread->td_ucred; swap_release_by_cred(decr, cred); PROC_UNLOCK(curproc); } void swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred) { struct uidinfo *uip; uip = cred->cr_ruidinfo; if (decr & PAGE_MASK) panic("swap_release: & PAGE_MASK"); mtx_lock(&sw_dev_mtx); if (swap_reserved < decr) panic("swap_reserved < decr"); swap_reserved -= decr; mtx_unlock(&sw_dev_mtx); UIDINFO_VMSIZE_LOCK(uip); if (uip->ui_vmsize < decr) printf("negative vmsize for uid = %d\n", uip->ui_uid); uip->ui_vmsize -= decr; UIDINFO_VMSIZE_UNLOCK(uip); racct_sub_cred(cred, RACCT_SWAP, decr); } #define SWM_FREE 0x02 /* free, period */ #define SWM_POP 0x04 /* pop out */ int swap_pager_full = 2; /* swap space exhaustion (task killing) */ static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ static int nsw_rcount; /* free read buffers */ static int nsw_wcount_sync; /* limit write buffers / synchronous */ static int nsw_wcount_async; /* limit write buffers / asynchronous */ static int nsw_wcount_async_max;/* assigned maximum */ static int nsw_cluster_max; /* maximum VOP I/O allowed */ static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS); SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I", "Maximum running async swap ops"); static struct swblock **swhash; static int swhash_mask; static struct mtx swhash_mtx; static struct sx sw_alloc_sx; /* * "named" and "unnamed" anon region objects. Try to reduce the overhead * of searching a named list by hashing it just a little. */ #define NOBJLISTS 8 #define NOBJLIST(handle) \ (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) static struct pagerlst swap_pager_object_list[NOBJLISTS]; static uma_zone_t swap_zone; /* * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure * calls hooked from other parts of the VM system and do not appear here. * (see vm/swap_pager.h). */ static vm_object_t swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, vm_ooffset_t offset, struct ucred *); static void swap_pager_dealloc(vm_object_t object); static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *); static int swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *, int *, pgo_getpages_iodone_t, void *); static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); static boolean_t swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); static void swap_pager_init(void); static void swap_pager_unswapped(vm_page_t); static void swap_pager_swapoff(struct swdevt *sp); struct pagerops swappagerops = { .pgo_init = swap_pager_init, /* early system initialization of pager */ .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ .pgo_getpages = swap_pager_getpages, /* pagein */ .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */ .pgo_putpages = swap_pager_putpages, /* pageout */ .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ }; /* * dmmax is in page-sized chunks with the new swap system. It was * dev-bsized chunks in the old. dmmax is always a power of 2. * * swap_*() routines are externally accessible. swp_*() routines are * internal. */ static int dmmax; static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); static void swp_sizecheck(void); static void swp_pager_async_iodone(struct buf *bp); static int swapongeom(struct vnode *); static int swaponvp(struct thread *, struct vnode *, u_long); static int swapoff_one(struct swdevt *sp, struct ucred *cred); /* * Swap bitmap functions */ static void swp_pager_freeswapspace(daddr_t blk, int npages); static daddr_t swp_pager_getswapspace(int npages); /* * Metadata functions */ static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); static void swp_pager_meta_free_all(vm_object_t); static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); /* * SWP_SIZECHECK() - update swap_pager_full indication * * update the swap_pager_almost_full indication and warn when we are * about to run out of swap space, using lowat/hiwat hysteresis. * * Clear swap_pager_full ( task killing ) indication when lowat is met. * * No restrictions on call * This routine may not block. */ static void swp_sizecheck(void) { if (swap_pager_avail < nswap_lowat) { if (swap_pager_almost_full == 0) { printf("swap_pager: out of swap space\n"); swap_pager_almost_full = 1; } } else { swap_pager_full = 0; if (swap_pager_avail > nswap_hiwat) swap_pager_almost_full = 0; } } /* * SWP_PAGER_HASH() - hash swap meta data * * This is an helper function which hashes the swapblk given * the object and page index. It returns a pointer to a pointer * to the object, or a pointer to a NULL pointer if it could not * find a swapblk. */ static struct swblock ** swp_pager_hash(vm_object_t object, vm_pindex_t index) { struct swblock **pswap; struct swblock *swap; index &= ~(vm_pindex_t)SWAP_META_MASK; pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; while ((swap = *pswap) != NULL) { if (swap->swb_object == object && swap->swb_index == index ) { break; } pswap = &swap->swb_hnext; } return (pswap); } /* * SWAP_PAGER_INIT() - initialize the swap pager! * * Expected to be started from system init. NOTE: This code is run * before much else so be careful what you depend on. Most of the VM * system has yet to be initialized at this point. */ static void swap_pager_init(void) { /* * Initialize object lists */ int i; for (i = 0; i < NOBJLISTS; ++i) TAILQ_INIT(&swap_pager_object_list[i]); mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); sx_init(&sw_alloc_sx, "swspsx"); sx_init(&swdev_syscall_lock, "swsysc"); /* * Device Stripe, in PAGE_SIZE'd blocks */ dmmax = SWB_NPAGES * 2; } /* * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process * * Expected to be started from pageout process once, prior to entering * its main loop. */ void swap_pager_swap_init(void) { unsigned long n, n2; /* * Number of in-transit swap bp operations. Don't * exhaust the pbufs completely. Make sure we * initialize workable values (0 will work for hysteresis * but it isn't very efficient). * * The nsw_cluster_max is constrained by the bp->b_pages[] * array (MAXPHYS/PAGE_SIZE) and our locally defined * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are * constrained by the swap device interleave stripe size. * * Currently we hardwire nsw_wcount_async to 4. This limit is * designed to prevent other I/O from having high latencies due to * our pageout I/O. The value 4 works well for one or two active swap * devices but is probably a little low if you have more. Even so, * a higher value would probably generate only a limited improvement * with three or four active swap devices since the system does not * typically have to pageout at extreme bandwidths. We will want * at least 2 per swap devices, and 4 is a pretty good value if you * have one NFS swap device due to the command/ack latency over NFS. * So it all works out pretty well. */ nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); mtx_lock(&pbuf_mtx); nsw_rcount = (nswbuf + 1) / 2; nsw_wcount_sync = (nswbuf + 3) / 4; nsw_wcount_async = 4; nsw_wcount_async_max = nsw_wcount_async; mtx_unlock(&pbuf_mtx); /* * Initialize our zone. Right now I'm just guessing on the number * we need based on the number of pages in the system. Each swblock * can hold 32 pages, so this is probably overkill. This reservation * is typically limited to around 32MB by default. */ n = vm_cnt.v_page_count / 2; if (maxswzone && n > maxswzone / sizeof(struct swblock)) n = maxswzone / sizeof(struct swblock); n2 = n; swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); if (swap_zone == NULL) panic("failed to create swap_zone."); do { if (uma_zone_reserve_kva(swap_zone, n)) break; /* * if the allocation failed, try a zone two thirds the * size of the previous attempt. */ n -= ((n + 2) / 3); } while (n > 0); if (n2 != n) printf("Swap zone entries reduced from %lu to %lu.\n", n2, n); swap_maxpages = n * SWAP_META_PAGES; swzone = n * sizeof(struct swblock); n2 = n; /* * Initialize our meta-data hash table. The swapper does not need to * be quite as efficient as the VM system, so we do not use an * oversized hash table. * * n: size of hash table, must be power of 2 * swhash_mask: hash table index mask */ for (n = 1; n < n2 / 8; n *= 2) ; swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); swhash_mask = n - 1; mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); } static vm_object_t swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size, vm_ooffset_t offset) { vm_object_t object; if (cred != NULL) { if (!swap_reserve_by_cred(size, cred)) return (NULL); crhold(cred); } object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset + PAGE_MASK + size)); object->handle = handle; if (cred != NULL) { object->cred = cred; object->charge = size; } object->un_pager.swp.swp_bcount = 0; return (object); } /* * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate * its metadata structures. * * This routine is called from the mmap and fork code to create a new * OBJT_SWAP object. * * This routine must ensure that no live duplicate is created for * the named object request, which is protected against by * holding the sw_alloc_sx lock in case handle != NULL. */ static vm_object_t swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, vm_ooffset_t offset, struct ucred *cred) { vm_object_t object; if (handle != NULL) { /* * Reference existing named region or allocate new one. There * should not be a race here against swp_pager_meta_build() * as called from vm_page_remove() in regards to the lookup * of the handle. */ sx_xlock(&sw_alloc_sx); object = vm_pager_object_lookup(NOBJLIST(handle), handle); if (object == NULL) { object = swap_pager_alloc_init(handle, cred, size, offset); if (object != NULL) { TAILQ_INSERT_TAIL(NOBJLIST(object->handle), object, pager_object_list); } } sx_xunlock(&sw_alloc_sx); } else { object = swap_pager_alloc_init(handle, cred, size, offset); } return (object); } /* * SWAP_PAGER_DEALLOC() - remove swap metadata from object * * The swap backing for the object is destroyed. The code is * designed such that we can reinstantiate it later, but this * routine is typically called only when the entire object is * about to be destroyed. * * The object must be locked. */ static void swap_pager_dealloc(vm_object_t object) { VM_OBJECT_ASSERT_WLOCKED(object); KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj")); /* * Remove from list right away so lookups will fail if we block for * pageout completion. */ if (object->handle != NULL) { VM_OBJECT_WUNLOCK(object); sx_xlock(&sw_alloc_sx); TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); sx_xunlock(&sw_alloc_sx); VM_OBJECT_WLOCK(object); } vm_object_pip_wait(object, "swpdea"); /* * Free all remaining metadata. We only bother to free it from * the swap meta data. We do not attempt to free swapblk's still * associated with vm_page_t's for this object. We do not care * if paging is still in progress on some objects. */ swp_pager_meta_free_all(object); object->handle = NULL; object->type = OBJT_DEAD; } /************************************************************************ * SWAP PAGER BITMAP ROUTINES * ************************************************************************/ /* * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space * * Allocate swap for the requested number of pages. The starting * swap block number (a page index) is returned or SWAPBLK_NONE * if the allocation failed. * * Also has the side effect of advising that somebody made a mistake * when they configured swap and didn't configure enough. * * This routine may not sleep. * * We allocate in round-robin fashion from the configured devices. */ static daddr_t swp_pager_getswapspace(int npages) { daddr_t blk; struct swdevt *sp; int i; blk = SWAPBLK_NONE; mtx_lock(&sw_dev_mtx); sp = swdevhd; for (i = 0; i < nswapdev; i++) { if (sp == NULL) sp = TAILQ_FIRST(&swtailq); if (!(sp->sw_flags & SW_CLOSING)) { blk = blist_alloc(sp->sw_blist, npages); if (blk != SWAPBLK_NONE) { blk += sp->sw_first; sp->sw_used += npages; swap_pager_avail -= npages; swp_sizecheck(); swdevhd = TAILQ_NEXT(sp, sw_list); goto done; } } sp = TAILQ_NEXT(sp, sw_list); } if (swap_pager_full != 2) { printf("swap_pager_getswapspace(%d): failed\n", npages); swap_pager_full = 2; swap_pager_almost_full = 1; } swdevhd = NULL; done: mtx_unlock(&sw_dev_mtx); return (blk); } static int swp_pager_isondev(daddr_t blk, struct swdevt *sp) { return (blk >= sp->sw_first && blk < sp->sw_end); } static void swp_pager_strategy(struct buf *bp) { struct swdevt *sp; mtx_lock(&sw_dev_mtx); TAILQ_FOREACH(sp, &swtailq, sw_list) { if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { mtx_unlock(&sw_dev_mtx); if ((sp->sw_flags & SW_UNMAPPED) != 0 && unmapped_buf_allowed) { bp->b_data = unmapped_buf; bp->b_offset = 0; } else { pmap_qenter((vm_offset_t)bp->b_data, &bp->b_pages[0], bp->b_bcount / PAGE_SIZE); } sp->sw_strategy(bp, sp); return; } } panic("Swapdev not found"); } /* * SWP_PAGER_FREESWAPSPACE() - free raw swap space * * This routine returns the specified swap blocks back to the bitmap. * * This routine may not sleep. */ static void swp_pager_freeswapspace(daddr_t blk, int npages) { struct swdevt *sp; mtx_lock(&sw_dev_mtx); TAILQ_FOREACH(sp, &swtailq, sw_list) { if (blk >= sp->sw_first && blk < sp->sw_end) { sp->sw_used -= npages; /* * If we are attempting to stop swapping on * this device, we don't want to mark any * blocks free lest they be reused. */ if ((sp->sw_flags & SW_CLOSING) == 0) { blist_free(sp->sw_blist, blk - sp->sw_first, npages); swap_pager_avail += npages; swp_sizecheck(); } mtx_unlock(&sw_dev_mtx); return; } } panic("Swapdev not found"); } /* * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page * range within an object. * * This is a globally accessible routine. * * This routine removes swapblk assignments from swap metadata. * * The external callers of this routine typically have already destroyed * or renamed vm_page_t's associated with this range in the object so * we should be ok. * * The object must be locked. */ void swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) { swp_pager_meta_free(object, start, size); } /* * SWAP_PAGER_RESERVE() - reserve swap blocks in object * * Assigns swap blocks to the specified range within the object. The * swap blocks are not zeroed. Any previous swap assignment is destroyed. * * Returns 0 on success, -1 on failure. */ int swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) { int n = 0; daddr_t blk = SWAPBLK_NONE; vm_pindex_t beg = start; /* save start index */ VM_OBJECT_WLOCK(object); while (size) { if (n == 0) { n = BLIST_MAX_ALLOC; while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { n >>= 1; if (n == 0) { swp_pager_meta_free(object, beg, start - beg); VM_OBJECT_WUNLOCK(object); return (-1); } } } swp_pager_meta_build(object, start, blk); --size; ++start; ++blk; --n; } swp_pager_meta_free(object, start, n); VM_OBJECT_WUNLOCK(object); return (0); } /* * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager * and destroy the source. * * Copy any valid swapblks from the source to the destination. In * cases where both the source and destination have a valid swapblk, * we keep the destination's. * * This routine is allowed to sleep. It may sleep allocating metadata * indirectly through swp_pager_meta_build() or if paging is still in * progress on the source. * * The source object contains no vm_page_t's (which is just as well) * * The source object is of type OBJT_SWAP. * * The source and destination objects must be locked. * Both object locks may temporarily be released. */ void swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, vm_pindex_t offset, int destroysource) { vm_pindex_t i; VM_OBJECT_ASSERT_WLOCKED(srcobject); VM_OBJECT_ASSERT_WLOCKED(dstobject); /* * If destroysource is set, we remove the source object from the * swap_pager internal queue now. */ if (destroysource && srcobject->handle != NULL) { vm_object_pip_add(srcobject, 1); VM_OBJECT_WUNLOCK(srcobject); vm_object_pip_add(dstobject, 1); VM_OBJECT_WUNLOCK(dstobject); sx_xlock(&sw_alloc_sx); TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject, pager_object_list); sx_xunlock(&sw_alloc_sx); VM_OBJECT_WLOCK(dstobject); vm_object_pip_wakeup(dstobject); VM_OBJECT_WLOCK(srcobject); vm_object_pip_wakeup(srcobject); } /* * transfer source to destination. */ for (i = 0; i < dstobject->size; ++i) { daddr_t dstaddr; /* * Locate (without changing) the swapblk on the destination, * unless it is invalid in which case free it silently, or * if the destination is a resident page, in which case the * source is thrown away. */ dstaddr = swp_pager_meta_ctl(dstobject, i, 0); if (dstaddr == SWAPBLK_NONE) { /* * Destination has no swapblk and is not resident, * copy source. */ daddr_t srcaddr; srcaddr = swp_pager_meta_ctl( srcobject, i + offset, SWM_POP ); if (srcaddr != SWAPBLK_NONE) { /* * swp_pager_meta_build() can sleep. */ vm_object_pip_add(srcobject, 1); VM_OBJECT_WUNLOCK(srcobject); vm_object_pip_add(dstobject, 1); swp_pager_meta_build(dstobject, i, srcaddr); vm_object_pip_wakeup(dstobject); VM_OBJECT_WLOCK(srcobject); vm_object_pip_wakeup(srcobject); } } else { /* * Destination has valid swapblk or it is represented * by a resident page. We destroy the sourceblock. */ swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); } } /* * Free left over swap blocks in source. * * We have to revert the type to OBJT_DEFAULT so we do not accidentally * double-remove the object from the swap queues. */ if (destroysource) { swp_pager_meta_free_all(srcobject); /* * Reverting the type is not necessary, the caller is going * to destroy srcobject directly, but I'm doing it here * for consistency since we've removed the object from its * queues. */ srcobject->type = OBJT_DEFAULT; } } /* * SWAP_PAGER_HASPAGE() - determine if we have good backing store for * the requested page. * * We determine whether good backing store exists for the requested * page and return TRUE if it does, FALSE if it doesn't. * * If TRUE, we also try to determine how much valid, contiguous backing * store exists before and after the requested page. */ static boolean_t swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) { daddr_t blk, blk0; int i; VM_OBJECT_ASSERT_LOCKED(object); /* * do we have good backing store at the requested index ? */ blk0 = swp_pager_meta_ctl(object, pindex, 0); if (blk0 == SWAPBLK_NONE) { if (before) *before = 0; if (after) *after = 0; return (FALSE); } /* * find backwards-looking contiguous good backing store */ if (before != NULL) { for (i = 1; i < SWB_NPAGES; i++) { if (i > pindex) break; blk = swp_pager_meta_ctl(object, pindex - i, 0); if (blk != blk0 - i) break; } *before = i - 1; } /* * find forward-looking contiguous good backing store */ if (after != NULL) { for (i = 1; i < SWB_NPAGES; i++) { blk = swp_pager_meta_ctl(object, pindex + i, 0); if (blk != blk0 + i) break; } *after = i - 1; } return (TRUE); } /* * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page * * This removes any associated swap backing store, whether valid or * not, from the page. * * This routine is typically called when a page is made dirty, at * which point any associated swap can be freed. MADV_FREE also * calls us in a special-case situation * * NOTE!!! If the page is clean and the swap was valid, the caller * should make the page dirty before calling this routine. This routine * does NOT change the m->dirty status of the page. Also: MADV_FREE * depends on it. * * This routine may not sleep. * * The object containing the page must be locked. */ static void swap_pager_unswapped(vm_page_t m) { swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); } /* * swap_pager_getpages() - bring pages in from swap * * Attempt to page in the pages in array "m" of length "count". The caller * may optionally specify that additional pages preceding and succeeding * the specified range be paged in. The number of such pages is returned * in the "rbehind" and "rahead" parameters, and they will be in the * inactive queue upon return. * * The pages in "m" must be busied and will remain busied upon return. */ static int swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind, int *rahead) { struct buf *bp; vm_page_t mpred, msucc, p; vm_pindex_t pindex; daddr_t blk; int i, j, maxahead, maxbehind, reqcount, shift; reqcount = count; VM_OBJECT_WUNLOCK(object); bp = getpbuf(&nsw_rcount); VM_OBJECT_WLOCK(object); if (!swap_pager_haspage(object, m[0]->pindex, &maxbehind, &maxahead)) { relpbuf(bp, &nsw_rcount); return (VM_PAGER_FAIL); } /* * Clip the readahead and readbehind ranges to exclude resident pages. */ if (rahead != NULL) { KASSERT(reqcount - 1 <= maxahead, ("page count %d extends beyond swap block", reqcount)); *rahead = imin(*rahead, maxahead - (reqcount - 1)); pindex = m[reqcount - 1]->pindex; msucc = TAILQ_NEXT(m[reqcount - 1], listq); if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead) *rahead = msucc->pindex - pindex - 1; } if (rbehind != NULL) { *rbehind = imin(*rbehind, maxbehind); pindex = m[0]->pindex; mpred = TAILQ_PREV(m[0], pglist, listq); if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind) *rbehind = pindex - mpred->pindex - 1; } /* * Allocate readahead and readbehind pages. */ shift = rbehind != NULL ? *rbehind : 0; if (shift != 0) { for (i = 1; i <= shift; i++) { p = vm_page_alloc(object, m[0]->pindex - i, VM_ALLOC_NORMAL); if (p == NULL) { /* Shift allocated pages to the left. */ for (j = 0; j < i - 1; j++) bp->b_pages[j] = bp->b_pages[j + shift - i + 1]; break; } bp->b_pages[shift - i] = p; } shift = i - 1; *rbehind = shift; } for (i = 0; i < reqcount; i++) bp->b_pages[i + shift] = m[i]; if (rahead != NULL) { for (i = 0; i < *rahead; i++) { p = vm_page_alloc(object, m[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL); if (p == NULL) break; bp->b_pages[shift + reqcount + i] = p; } *rahead = i; } if (rbehind != NULL) count += *rbehind; if (rahead != NULL) count += *rahead; vm_object_pip_add(object, count); for (i = 0; i < count; i++) bp->b_pages[i]->oflags |= VPO_SWAPINPROG; pindex = bp->b_pages[0]->pindex; blk = swp_pager_meta_ctl(object, pindex, 0); KASSERT(blk != SWAPBLK_NONE, ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex)); VM_OBJECT_WUNLOCK(object); bp->b_flags |= B_PAGING; bp->b_iocmd = BIO_READ; bp->b_iodone = swp_pager_async_iodone; bp->b_rcred = crhold(thread0.td_ucred); bp->b_wcred = crhold(thread0.td_ucred); bp->b_blkno = blk; bp->b_bcount = PAGE_SIZE * count; bp->b_bufsize = PAGE_SIZE * count; bp->b_npages = count; bp->b_pgbefore = rbehind != NULL ? *rbehind : 0; bp->b_pgafter = rahead != NULL ? *rahead : 0; PCPU_INC(cnt.v_swapin); PCPU_ADD(cnt.v_swappgsin, count); /* * perform the I/O. NOTE!!! bp cannot be considered valid after * this point because we automatically release it on completion. * Instead, we look at the one page we are interested in which we * still hold a lock on even through the I/O completion. * * The other pages in our m[] array are also released on completion, * so we cannot assume they are valid anymore either. * * NOTE: b_blkno is destroyed by the call to swapdev_strategy */ BUF_KERNPROC(bp); swp_pager_strategy(bp); /* * Wait for the pages we want to complete. VPO_SWAPINPROG is always * cleared on completion. If an I/O error occurs, SWAPBLK_NONE * is set in the metadata for each page in the request. */ VM_OBJECT_WLOCK(object); while ((m[0]->oflags & VPO_SWAPINPROG) != 0) { m[0]->oflags |= VPO_SWAPSLEEP; PCPU_INC(cnt.v_intrans); if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP, "swread", hz * 20)) { printf( "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); } } /* * If we had an unrecoverable read error pages will not be valid. */ for (i = 0; i < reqcount; i++) if (m[i]->valid != VM_PAGE_BITS_ALL) return (VM_PAGER_ERROR); return (VM_PAGER_OK); /* * A final note: in a low swap situation, we cannot deallocate swap * and mark a page dirty here because the caller is likely to mark * the page clean when we return, causing the page to possibly revert * to all-zero's later. */ } /* * swap_pager_getpages_async(): * * Right now this is emulation of asynchronous operation on top of * swap_pager_getpages(). */ static int swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count, int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg) { int r, error; r = swap_pager_getpages(object, m, count, rbehind, rahead); VM_OBJECT_WUNLOCK(object); switch (r) { case VM_PAGER_OK: error = 0; break; case VM_PAGER_ERROR: error = EIO; break; case VM_PAGER_FAIL: error = EINVAL; break; default: panic("unhandled swap_pager_getpages() error %d", r); } (iodone)(arg, m, count, error); VM_OBJECT_WLOCK(object); return (r); } /* * swap_pager_putpages: * * Assign swap (if necessary) and initiate I/O on the specified pages. * * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects * are automatically converted to SWAP objects. * * In a low memory situation we may block in VOP_STRATEGY(), but the new * vm_page reservation system coupled with properly written VFS devices * should ensure that no low-memory deadlock occurs. This is an area * which needs work. * * The parent has N vm_object_pip_add() references prior to * calling us and will remove references for rtvals[] that are * not set to VM_PAGER_PEND. We need to remove the rest on I/O * completion. * * The parent has soft-busy'd the pages it passes us and will unbusy * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. * We need to unbusy the rest on I/O completion. */ static void swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, int flags, int *rtvals) { int i, n; boolean_t sync; if (count && m[0]->object != object) { panic("swap_pager_putpages: object mismatch %p/%p", object, m[0]->object ); } /* * Step 1 * * Turn object into OBJT_SWAP * check for bogus sysops * force sync if not pageout process */ if (object->type != OBJT_SWAP) swp_pager_meta_build(object, 0, SWAPBLK_NONE); VM_OBJECT_WUNLOCK(object); n = 0; if (curproc != pageproc) sync = TRUE; else sync = (flags & VM_PAGER_PUT_SYNC) != 0; /* * Step 2 * * Assign swap blocks and issue I/O. We reallocate swap on the fly. * The page is left dirty until the pageout operation completes * successfully. */ for (i = 0; i < count; i += n) { int j; struct buf *bp; daddr_t blk; /* * Maximum I/O size is limited by a number of factors. */ n = min(BLIST_MAX_ALLOC, count - i); n = min(n, nsw_cluster_max); /* * Get biggest block of swap we can. If we fail, fall * back and try to allocate a smaller block. Don't go * overboard trying to allocate space if it would overly * fragment swap. */ while ( (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && n > 4 ) { n >>= 1; } if (blk == SWAPBLK_NONE) { for (j = 0; j < n; ++j) rtvals[i+j] = VM_PAGER_FAIL; continue; } /* * All I/O parameters have been satisfied, build the I/O * request and assign the swap space. */ if (sync == TRUE) { bp = getpbuf(&nsw_wcount_sync); } else { bp = getpbuf(&nsw_wcount_async); bp->b_flags = B_ASYNC; } bp->b_flags |= B_PAGING; bp->b_iocmd = BIO_WRITE; bp->b_rcred = crhold(thread0.td_ucred); bp->b_wcred = crhold(thread0.td_ucred); bp->b_bcount = PAGE_SIZE * n; bp->b_bufsize = PAGE_SIZE * n; bp->b_blkno = blk; VM_OBJECT_WLOCK(object); for (j = 0; j < n; ++j) { vm_page_t mreq = m[i+j]; swp_pager_meta_build( mreq->object, mreq->pindex, blk + j ); vm_page_dirty(mreq); mreq->oflags |= VPO_SWAPINPROG; bp->b_pages[j] = mreq; } VM_OBJECT_WUNLOCK(object); bp->b_npages = n; /* * Must set dirty range for NFS to work. */ bp->b_dirtyoff = 0; bp->b_dirtyend = bp->b_bcount; PCPU_INC(cnt.v_swapout); PCPU_ADD(cnt.v_swappgsout, bp->b_npages); /* * We unconditionally set rtvals[] to VM_PAGER_PEND so that we * can call the async completion routine at the end of a * synchronous I/O operation. Otherwise, our caller would * perform duplicate unbusy and wakeup operations on the page * and object, respectively. */ for (j = 0; j < n; j++) rtvals[i + j] = VM_PAGER_PEND; /* * asynchronous * * NOTE: b_blkno is destroyed by the call to swapdev_strategy */ if (sync == FALSE) { bp->b_iodone = swp_pager_async_iodone; BUF_KERNPROC(bp); swp_pager_strategy(bp); continue; } /* * synchronous * * NOTE: b_blkno is destroyed by the call to swapdev_strategy */ bp->b_iodone = bdone; swp_pager_strategy(bp); /* * Wait for the sync I/O to complete. */ bwait(bp, PVM, "swwrt"); /* * Now that we are through with the bp, we can call the * normal async completion, which frees everything up. */ swp_pager_async_iodone(bp); } VM_OBJECT_WLOCK(object); } /* * swp_pager_async_iodone: * * Completion routine for asynchronous reads and writes from/to swap. * Also called manually by synchronous code to finish up a bp. * * This routine may not sleep. */ static void swp_pager_async_iodone(struct buf *bp) { int i; vm_object_t object = NULL; /* * report error */ if (bp->b_ioflags & BIO_ERROR) { printf( "swap_pager: I/O error - %s failed; blkno %ld," "size %ld, error %d\n", ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), (long)bp->b_blkno, (long)bp->b_bcount, bp->b_error ); } /* * remove the mapping for kernel virtual */ if (buf_mapped(bp)) pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); else bp->b_data = bp->b_kvabase; if (bp->b_npages) { object = bp->b_pages[0]->object; VM_OBJECT_WLOCK(object); } /* * cleanup pages. If an error occurs writing to swap, we are in * very serious trouble. If it happens to be a disk error, though, * we may be able to recover by reassigning the swap later on. So * in this case we remove the m->swapblk assignment for the page * but do not free it in the rlist. The errornous block(s) are thus * never reallocated as swap. Redirty the page and continue. */ for (i = 0; i < bp->b_npages; ++i) { vm_page_t m = bp->b_pages[i]; m->oflags &= ~VPO_SWAPINPROG; if (m->oflags & VPO_SWAPSLEEP) { m->oflags &= ~VPO_SWAPSLEEP; wakeup(&object->paging_in_progress); } if (bp->b_ioflags & BIO_ERROR) { /* * If an error occurs I'd love to throw the swapblk * away without freeing it back to swapspace, so it * can never be used again. But I can't from an * interrupt. */ if (bp->b_iocmd == BIO_READ) { /* * NOTE: for reads, m->dirty will probably * be overridden by the original caller of * getpages so don't play cute tricks here. */ m->valid = 0; } else { /* * If a write error occurs, reactivate page * so it doesn't clog the inactive list, * then finish the I/O. */ vm_page_dirty(m); vm_page_lock(m); vm_page_activate(m); vm_page_unlock(m); vm_page_sunbusy(m); } } else if (bp->b_iocmd == BIO_READ) { /* * NOTE: for reads, m->dirty will probably be * overridden by the original caller of getpages so * we cannot set them in order to free the underlying * swap in a low-swap situation. I don't think we'd * want to do that anyway, but it was an optimization * that existed in the old swapper for a time before * it got ripped out due to precisely this problem. */ KASSERT(!pmap_page_is_mapped(m), ("swp_pager_async_iodone: page %p is mapped", m)); KASSERT(m->dirty == 0, ("swp_pager_async_iodone: page %p is dirty", m)); m->valid = VM_PAGE_BITS_ALL; if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter) vm_page_readahead_finish(m); } else { /* * For write success, clear the dirty * status, then finish the I/O ( which decrements the * busy count and possibly wakes waiter's up ). * A page is only written to swap after a period of * inactivity. Therefore, we do not expect it to be * reused. */ KASSERT(!pmap_page_is_write_mapped(m), ("swp_pager_async_iodone: page %p is not write" " protected", m)); vm_page_undirty(m); vm_page_lock(m); vm_page_deactivate_noreuse(m); vm_page_unlock(m); vm_page_sunbusy(m); } } /* * adjust pip. NOTE: the original parent may still have its own * pip refs on the object. */ if (object != NULL) { vm_object_pip_wakeupn(object, bp->b_npages); VM_OBJECT_WUNLOCK(object); } /* * swapdev_strategy() manually sets b_vp and b_bufobj before calling * bstrategy(). Set them back to NULL now we're done with it, or we'll * trigger a KASSERT in relpbuf(). */ if (bp->b_vp) { bp->b_vp = NULL; bp->b_bufobj = NULL; } /* * release the physical I/O buffer */ relpbuf( bp, ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : ((bp->b_flags & B_ASYNC) ? &nsw_wcount_async : &nsw_wcount_sync ) ) ); } /* * swap_pager_isswapped: * * Return 1 if at least one page in the given object is paged * out to the given swap device. * * This routine may not sleep. */ int swap_pager_isswapped(vm_object_t object, struct swdevt *sp) { daddr_t index = 0; int bcount; int i; VM_OBJECT_ASSERT_WLOCKED(object); if (object->type != OBJT_SWAP) return (0); mtx_lock(&swhash_mtx); for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { struct swblock *swap; if ((swap = *swp_pager_hash(object, index)) != NULL) { for (i = 0; i < SWAP_META_PAGES; ++i) { if (swp_pager_isondev(swap->swb_pages[i], sp)) { mtx_unlock(&swhash_mtx); return (1); } } } index += SWAP_META_PAGES; } mtx_unlock(&swhash_mtx); return (0); } /* * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in * * This routine dissociates the page at the given index within an object * from its backing store, paging it in if it does not reside in memory. * If the page is paged in, it is marked dirty and placed in the laundry * queue. The page is marked dirty because it no longer has backing * store. It is placed in the laundry queue because it has not been * accessed recently. Otherwise, it would already reside in memory. * * We also attempt to swap in all other pages in the swap block. * However, we only guarantee that the one at the specified index is * paged in. * * XXX - The code to page the whole block in doesn't work, so we * revert to the one-by-one behavior for now. Sigh. */ static inline void swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) { vm_page_t m; vm_object_pip_add(object, 1); m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); if (m->valid == VM_PAGE_BITS_ALL) { vm_object_pip_wakeup(object); vm_page_dirty(m); vm_page_lock(m); vm_page_activate(m); vm_page_unlock(m); vm_page_xunbusy(m); vm_pager_page_unswapped(m); return; } if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK) panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ vm_object_pip_wakeup(object); vm_page_dirty(m); vm_page_lock(m); vm_page_launder(m); vm_page_unlock(m); vm_page_xunbusy(m); vm_pager_page_unswapped(m); } /* * swap_pager_swapoff: * * Page in all of the pages that have been paged out to the * given device. The corresponding blocks in the bitmap must be * marked as allocated and the device must be flagged SW_CLOSING. * There may be no processes swapped out to the device. * * This routine may block. */ static void swap_pager_swapoff(struct swdevt *sp) { struct swblock *swap; vm_object_t locked_obj, object; vm_pindex_t pindex; int i, j, retries; sx_assert(&swdev_syscall_lock, SA_XLOCKED); retries = 0; locked_obj = NULL; full_rescan: mtx_lock(&swhash_mtx); for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ restart: for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { object = swap->swb_object; pindex = swap->swb_index; for (j = 0; j < SWAP_META_PAGES; ++j) { if (!swp_pager_isondev(swap->swb_pages[j], sp)) continue; if (locked_obj != object) { if (locked_obj != NULL) VM_OBJECT_WUNLOCK(locked_obj); locked_obj = object; if (!VM_OBJECT_TRYWLOCK(object)) { mtx_unlock(&swhash_mtx); /* Depends on type-stability. */ VM_OBJECT_WLOCK(object); mtx_lock(&swhash_mtx); goto restart; } } MPASS(locked_obj == object); mtx_unlock(&swhash_mtx); swp_pager_force_pagein(object, pindex + j); mtx_lock(&swhash_mtx); goto restart; } } } mtx_unlock(&swhash_mtx); if (locked_obj != NULL) { VM_OBJECT_WUNLOCK(locked_obj); locked_obj = NULL; } if (sp->sw_used) { /* * Objects may be locked or paging to the device being * removed, so we will miss their pages and need to * make another pass. We have marked this device as * SW_CLOSING, so the activity should finish soon. */ retries++; if (retries > 100) { panic("swapoff: failed to locate %d swap blocks", sp->sw_used); } pause("swpoff", hz / 20); goto full_rescan; } } /************************************************************************ * SWAP META DATA * ************************************************************************ * * These routines manipulate the swap metadata stored in the * OBJT_SWAP object. * * Swap metadata is implemented with a global hash and not directly * linked into the object. Instead the object simply contains * appropriate tracking counters. */ /* * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object * * We first convert the object to a swap object if it is a default * object. * * The specified swapblk is added to the object's swap metadata. If * the swapblk is not valid, it is freed instead. Any previously * assigned swapblk is freed. */ static void swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) { static volatile int exhausted; struct swblock *swap; struct swblock **pswap; int idx; VM_OBJECT_ASSERT_WLOCKED(object); /* * Convert default object to swap object if necessary */ if (object->type != OBJT_SWAP) { object->type = OBJT_SWAP; object->un_pager.swp.swp_bcount = 0; KASSERT(object->handle == NULL, ("default pager with handle")); } /* * Locate hash entry. If not found create, but if we aren't adding * anything just return. If we run out of space in the map we wait * and, since the hash table may have changed, retry. */ retry: mtx_lock(&swhash_mtx); pswap = swp_pager_hash(object, pindex); if ((swap = *pswap) == NULL) { int i; if (swapblk == SWAPBLK_NONE) goto done; swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT | (curproc == pageproc ? M_USE_RESERVE : 0)); if (swap == NULL) { mtx_unlock(&swhash_mtx); VM_OBJECT_WUNLOCK(object); if (uma_zone_exhausted(swap_zone)) { if (atomic_cmpset_int(&exhausted, 0, 1)) printf("swap zone exhausted, " "increase kern.maxswzone\n"); vm_pageout_oom(VM_OOM_SWAPZ); pause("swzonex", 10); } else VM_WAIT; VM_OBJECT_WLOCK(object); goto retry; } if (atomic_cmpset_int(&exhausted, 1, 0)) printf("swap zone ok\n"); swap->swb_hnext = NULL; swap->swb_object = object; swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; swap->swb_count = 0; ++object->un_pager.swp.swp_bcount; for (i = 0; i < SWAP_META_PAGES; ++i) swap->swb_pages[i] = SWAPBLK_NONE; } /* * Delete prior contents of metadata */ idx = pindex & SWAP_META_MASK; if (swap->swb_pages[idx] != SWAPBLK_NONE) { swp_pager_freeswapspace(swap->swb_pages[idx], 1); --swap->swb_count; } /* * Enter block into metadata */ swap->swb_pages[idx] = swapblk; if (swapblk != SWAPBLK_NONE) ++swap->swb_count; done: mtx_unlock(&swhash_mtx); } /* * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata * * The requested range of blocks is freed, with any associated swap * returned to the swap bitmap. * * This routine will free swap metadata structures as they are cleaned * out. This routine does *NOT* operate on swap metadata associated * with resident pages. */ static void swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) { VM_OBJECT_ASSERT_LOCKED(object); if (object->type != OBJT_SWAP) return; while (count > 0) { struct swblock **pswap; struct swblock *swap; mtx_lock(&swhash_mtx); pswap = swp_pager_hash(object, index); if ((swap = *pswap) != NULL) { daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; if (v != SWAPBLK_NONE) { swp_pager_freeswapspace(v, 1); swap->swb_pages[index & SWAP_META_MASK] = SWAPBLK_NONE; if (--swap->swb_count == 0) { *pswap = swap->swb_hnext; uma_zfree(swap_zone, swap); --object->un_pager.swp.swp_bcount; } } --count; ++index; } else { int n = SWAP_META_PAGES - (index & SWAP_META_MASK); count -= n; index += n; } mtx_unlock(&swhash_mtx); } } /* * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object * * This routine locates and destroys all swap metadata associated with * an object. */ static void swp_pager_meta_free_all(vm_object_t object) { daddr_t index = 0; VM_OBJECT_ASSERT_WLOCKED(object); if (object->type != OBJT_SWAP) return; while (object->un_pager.swp.swp_bcount) { struct swblock **pswap; struct swblock *swap; mtx_lock(&swhash_mtx); pswap = swp_pager_hash(object, index); if ((swap = *pswap) != NULL) { int i; for (i = 0; i < SWAP_META_PAGES; ++i) { daddr_t v = swap->swb_pages[i]; if (v != SWAPBLK_NONE) { --swap->swb_count; swp_pager_freeswapspace(v, 1); } } if (swap->swb_count != 0) panic("swap_pager_meta_free_all: swb_count != 0"); *pswap = swap->swb_hnext; uma_zfree(swap_zone, swap); --object->un_pager.swp.swp_bcount; } mtx_unlock(&swhash_mtx); index += SWAP_META_PAGES; } } /* * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. * * This routine is capable of looking up, popping, or freeing * swapblk assignments in the swap meta data or in the vm_page_t. * The routine typically returns the swapblk being looked-up, or popped, * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block * was invalid. This routine will automatically free any invalid * meta-data swapblks. * * It is not possible to store invalid swapblks in the swap meta data * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. * * When acting on a busy resident page and paging is in progress, we * have to wait until paging is complete but otherwise can act on the * busy page. * * SWM_FREE remove and free swap block from metadata * SWM_POP remove from meta data but do not free.. pop it out */ static daddr_t swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) { struct swblock **pswap; struct swblock *swap; daddr_t r1; int idx; VM_OBJECT_ASSERT_LOCKED(object); /* * The meta data only exists of the object is OBJT_SWAP * and even then might not be allocated yet. */ if (object->type != OBJT_SWAP) return (SWAPBLK_NONE); r1 = SWAPBLK_NONE; mtx_lock(&swhash_mtx); pswap = swp_pager_hash(object, pindex); if ((swap = *pswap) != NULL) { idx = pindex & SWAP_META_MASK; r1 = swap->swb_pages[idx]; if (r1 != SWAPBLK_NONE) { if (flags & SWM_FREE) { swp_pager_freeswapspace(r1, 1); r1 = SWAPBLK_NONE; } if (flags & (SWM_FREE|SWM_POP)) { swap->swb_pages[idx] = SWAPBLK_NONE; if (--swap->swb_count == 0) { *pswap = swap->swb_hnext; uma_zfree(swap_zone, swap); --object->un_pager.swp.swp_bcount; } } } } mtx_unlock(&swhash_mtx); return (r1); } /* * System call swapon(name) enables swapping on device name, * which must be in the swdevsw. Return EBUSY * if already swapping on this device. */ #ifndef _SYS_SYSPROTO_H_ struct swapon_args { char *name; }; #endif /* * MPSAFE */ /* ARGSUSED */ int sys_swapon(struct thread *td, struct swapon_args *uap) { struct vattr attr; struct vnode *vp; struct nameidata nd; int error; error = priv_check(td, PRIV_SWAPON); if (error) return (error); sx_xlock(&swdev_syscall_lock); /* * Swap metadata may not fit in the KVM if we have physical * memory of >1GB. */ if (swap_zone == NULL) { error = ENOMEM; goto done; } NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, td); error = namei(&nd); if (error) goto done; NDFREE(&nd, NDF_ONLY_PNBUF); vp = nd.ni_vp; if (vn_isdisk(vp, &error)) { error = swapongeom(vp); } else if (vp->v_type == VREG && (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { /* * Allow direct swapping to NFS regular files in the same * way that nfs_mountroot() sets up diskless swapping. */ error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); } if (error) vrele(vp); done: sx_xunlock(&swdev_syscall_lock); return (error); } /* * Check that the total amount of swap currently configured does not * exceed half the theoretical maximum. If it does, print a warning * message and return -1; otherwise, return 0. */ static int swapon_check_swzone(unsigned long npages) { unsigned long maxpages; /* absolute maximum we can handle assuming 100% efficiency */ maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES; /* recommend using no more than half that amount */ if (npages > maxpages / 2) { printf("warning: total configured swap (%lu pages) " "exceeds maximum recommended amount (%lu pages).\n", npages, maxpages / 2); printf("warning: increase kern.maxswzone " "or reduce amount of swap.\n"); return (-1); } return (0); } static void swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags) { struct swdevt *sp, *tsp; swblk_t dvbase; u_long mblocks; /* * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. * First chop nblks off to page-align it, then convert. * * sw->sw_nblks is in page-sized chunks now too. */ nblks &= ~(ctodb(1) - 1); nblks = dbtoc(nblks); /* * If we go beyond this, we get overflows in the radix * tree bitmap code. */ mblocks = 0x40000000 / BLIST_META_RADIX; if (nblks > mblocks) { printf( "WARNING: reducing swap size to maximum of %luMB per unit\n", mblocks / 1024 / 1024 * PAGE_SIZE); nblks = mblocks; } sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); sp->sw_vp = vp; sp->sw_id = id; sp->sw_dev = dev; sp->sw_flags = 0; sp->sw_nblks = nblks; sp->sw_used = 0; sp->sw_strategy = strategy; sp->sw_close = close; sp->sw_flags = flags; sp->sw_blist = blist_create(nblks, M_WAITOK); /* * Do not free the first two block in order to avoid overwriting * any bsd label at the front of the partition */ blist_free(sp->sw_blist, 2, nblks - 2); dvbase = 0; mtx_lock(&sw_dev_mtx); TAILQ_FOREACH(tsp, &swtailq, sw_list) { if (tsp->sw_end >= dvbase) { /* * We put one uncovered page between the devices * in order to definitively prevent any cross-device * I/O requests */ dvbase = tsp->sw_end + 1; } } sp->sw_first = dvbase; sp->sw_end = dvbase + nblks; TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); nswapdev++; swap_pager_avail += nblks; swap_total += (vm_ooffset_t)nblks * PAGE_SIZE; swapon_check_swzone(swap_total / PAGE_SIZE); swp_sizecheck(); mtx_unlock(&sw_dev_mtx); } /* * SYSCALL: swapoff(devname) * * Disable swapping on the given device. * * XXX: Badly designed system call: it should use a device index * rather than filename as specification. We keep sw_vp around * only to make this work. */ #ifndef _SYS_SYSPROTO_H_ struct swapoff_args { char *name; }; #endif /* * MPSAFE */ /* ARGSUSED */ int sys_swapoff(struct thread *td, struct swapoff_args *uap) { struct vnode *vp; struct nameidata nd; struct swdevt *sp; int error; error = priv_check(td, PRIV_SWAPOFF); if (error) return (error); sx_xlock(&swdev_syscall_lock); NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, td); error = namei(&nd); if (error) goto done; NDFREE(&nd, NDF_ONLY_PNBUF); vp = nd.ni_vp; mtx_lock(&sw_dev_mtx); TAILQ_FOREACH(sp, &swtailq, sw_list) { if (sp->sw_vp == vp) break; } mtx_unlock(&sw_dev_mtx); if (sp == NULL) { error = EINVAL; goto done; } error = swapoff_one(sp, td->td_ucred); done: sx_xunlock(&swdev_syscall_lock); return (error); } static int swapoff_one(struct swdevt *sp, struct ucred *cred) { u_long nblks, dvbase; #ifdef MAC int error; #endif sx_assert(&swdev_syscall_lock, SA_XLOCKED); #ifdef MAC (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); error = mac_system_check_swapoff(cred, sp->sw_vp); (void) VOP_UNLOCK(sp->sw_vp, 0); if (error != 0) return (error); #endif nblks = sp->sw_nblks; /* * We can turn off this swap device safely only if the * available virtual memory in the system will fit the amount * of data we will have to page back in, plus an epsilon so * the system doesn't become critically low on swap space. */ - if (vm_cnt.v_free_count + vm_cnt.v_cache_count + swap_pager_avail < - nblks + nswap_lowat) { + if (vm_cnt.v_free_count + swap_pager_avail < nblks + nswap_lowat) return (ENOMEM); - } /* * Prevent further allocations on this device. */ mtx_lock(&sw_dev_mtx); sp->sw_flags |= SW_CLOSING; for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { swap_pager_avail -= blist_fill(sp->sw_blist, dvbase, dmmax); } swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE; mtx_unlock(&sw_dev_mtx); /* * Page in the contents of the device and close it. */ swap_pager_swapoff(sp); sp->sw_close(curthread, sp); mtx_lock(&sw_dev_mtx); sp->sw_id = NULL; TAILQ_REMOVE(&swtailq, sp, sw_list); nswapdev--; if (nswapdev == 0) { swap_pager_full = 2; swap_pager_almost_full = 1; } if (swdevhd == sp) swdevhd = NULL; mtx_unlock(&sw_dev_mtx); blist_destroy(sp->sw_blist); free(sp, M_VMPGDATA); return (0); } void swapoff_all(void) { struct swdevt *sp, *spt; const char *devname; int error; sx_xlock(&swdev_syscall_lock); mtx_lock(&sw_dev_mtx); TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { mtx_unlock(&sw_dev_mtx); if (vn_isdisk(sp->sw_vp, NULL)) devname = devtoname(sp->sw_vp->v_rdev); else devname = "[file]"; error = swapoff_one(sp, thread0.td_ucred); if (error != 0) { printf("Cannot remove swap device %s (error=%d), " "skipping.\n", devname, error); } else if (bootverbose) { printf("Swap device %s removed.\n", devname); } mtx_lock(&sw_dev_mtx); } mtx_unlock(&sw_dev_mtx); sx_xunlock(&swdev_syscall_lock); } void swap_pager_status(int *total, int *used) { struct swdevt *sp; *total = 0; *used = 0; mtx_lock(&sw_dev_mtx); TAILQ_FOREACH(sp, &swtailq, sw_list) { *total += sp->sw_nblks; *used += sp->sw_used; } mtx_unlock(&sw_dev_mtx); } int swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len) { struct swdevt *sp; const char *tmp_devname; int error, n; n = 0; error = ENOENT; mtx_lock(&sw_dev_mtx); TAILQ_FOREACH(sp, &swtailq, sw_list) { if (n != name) { n++; continue; } xs->xsw_version = XSWDEV_VERSION; xs->xsw_dev = sp->sw_dev; xs->xsw_flags = sp->sw_flags; xs->xsw_nblks = sp->sw_nblks; xs->xsw_used = sp->sw_used; if (devname != NULL) { if (vn_isdisk(sp->sw_vp, NULL)) tmp_devname = devtoname(sp->sw_vp->v_rdev); else tmp_devname = "[file]"; strncpy(devname, tmp_devname, len); } error = 0; break; } mtx_unlock(&sw_dev_mtx); return (error); } static int sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) { struct xswdev xs; int error; if (arg2 != 1) /* name length */ return (EINVAL); error = swap_dev_info(*(int *)arg1, &xs, NULL, 0); if (error != 0) return (error); error = SYSCTL_OUT(req, &xs, sizeof(xs)); return (error); } SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, "Number of swap devices"); SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_vm_swap_info, "Swap statistics by device"); /* * vmspace_swap_count() - count the approximate swap usage in pages for a * vmspace. * * The map must be locked. * * Swap usage is determined by taking the proportional swap used by * VM objects backing the VM map. To make up for fractional losses, * if the VM object has any swap use at all the associated map entries * count for at least 1 swap page. */ long vmspace_swap_count(struct vmspace *vmspace) { vm_map_t map; vm_map_entry_t cur; vm_object_t object; long count, n; map = &vmspace->vm_map; count = 0; for (cur = map->header.next; cur != &map->header; cur = cur->next) { if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && (object = cur->object.vm_object) != NULL) { VM_OBJECT_WLOCK(object); if (object->type == OBJT_SWAP && object->un_pager.swp.swp_bcount != 0) { n = (cur->end - cur->start) / PAGE_SIZE; count += object->un_pager.swp.swp_bcount * SWAP_META_PAGES * n / object->size + 1; } VM_OBJECT_WUNLOCK(object); } } return (count); } /* * GEOM backend * * Swapping onto disk devices. * */ static g_orphan_t swapgeom_orphan; static struct g_class g_swap_class = { .name = "SWAP", .version = G_VERSION, .orphan = swapgeom_orphan, }; DECLARE_GEOM_CLASS(g_swap_class, g_class); static void swapgeom_close_ev(void *arg, int flags) { struct g_consumer *cp; cp = arg; g_access(cp, -1, -1, 0); g_detach(cp); g_destroy_consumer(cp); } /* * Add a reference to the g_consumer for an inflight transaction. */ static void swapgeom_acquire(struct g_consumer *cp) { mtx_assert(&sw_dev_mtx, MA_OWNED); cp->index++; } /* * Remove a reference from the g_consumer. Post a close event if all * references go away, since the function might be called from the * biodone context. */ static void swapgeom_release(struct g_consumer *cp, struct swdevt *sp) { mtx_assert(&sw_dev_mtx, MA_OWNED); cp->index--; if (cp->index == 0) { if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0) sp->sw_id = NULL; } } static void swapgeom_done(struct bio *bp2) { struct swdevt *sp; struct buf *bp; struct g_consumer *cp; bp = bp2->bio_caller2; cp = bp2->bio_from; bp->b_ioflags = bp2->bio_flags; if (bp2->bio_error) bp->b_ioflags |= BIO_ERROR; bp->b_resid = bp->b_bcount - bp2->bio_completed; bp->b_error = bp2->bio_error; bufdone(bp); sp = bp2->bio_caller1; mtx_lock(&sw_dev_mtx); swapgeom_release(cp, sp); mtx_unlock(&sw_dev_mtx); g_destroy_bio(bp2); } static void swapgeom_strategy(struct buf *bp, struct swdevt *sp) { struct bio *bio; struct g_consumer *cp; mtx_lock(&sw_dev_mtx); cp = sp->sw_id; if (cp == NULL) { mtx_unlock(&sw_dev_mtx); bp->b_error = ENXIO; bp->b_ioflags |= BIO_ERROR; bufdone(bp); return; } swapgeom_acquire(cp); mtx_unlock(&sw_dev_mtx); if (bp->b_iocmd == BIO_WRITE) bio = g_new_bio(); else bio = g_alloc_bio(); if (bio == NULL) { mtx_lock(&sw_dev_mtx); swapgeom_release(cp, sp); mtx_unlock(&sw_dev_mtx); bp->b_error = ENOMEM; bp->b_ioflags |= BIO_ERROR; bufdone(bp); return; } bio->bio_caller1 = sp; bio->bio_caller2 = bp; bio->bio_cmd = bp->b_iocmd; bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; bio->bio_length = bp->b_bcount; bio->bio_done = swapgeom_done; if (!buf_mapped(bp)) { bio->bio_ma = bp->b_pages; bio->bio_data = unmapped_buf; bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; bio->bio_ma_n = bp->b_npages; bio->bio_flags |= BIO_UNMAPPED; } else { bio->bio_data = bp->b_data; bio->bio_ma = NULL; } g_io_request(bio, cp); return; } static void swapgeom_orphan(struct g_consumer *cp) { struct swdevt *sp; int destroy; mtx_lock(&sw_dev_mtx); TAILQ_FOREACH(sp, &swtailq, sw_list) { if (sp->sw_id == cp) { sp->sw_flags |= SW_CLOSING; break; } } /* * Drop reference we were created with. Do directly since we're in a * special context where we don't have to queue the call to * swapgeom_close_ev(). */ cp->index--; destroy = ((sp != NULL) && (cp->index == 0)); if (destroy) sp->sw_id = NULL; mtx_unlock(&sw_dev_mtx); if (destroy) swapgeom_close_ev(cp, 0); } static void swapgeom_close(struct thread *td, struct swdevt *sw) { struct g_consumer *cp; mtx_lock(&sw_dev_mtx); cp = sw->sw_id; sw->sw_id = NULL; mtx_unlock(&sw_dev_mtx); /* * swapgeom_close() may be called from the biodone context, * where we cannot perform topology changes. Delegate the * work to the events thread. */ if (cp != NULL) g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL); } static int swapongeom_locked(struct cdev *dev, struct vnode *vp) { struct g_provider *pp; struct g_consumer *cp; static struct g_geom *gp; struct swdevt *sp; u_long nblks; int error; pp = g_dev_getprovider(dev); if (pp == NULL) return (ENODEV); mtx_lock(&sw_dev_mtx); TAILQ_FOREACH(sp, &swtailq, sw_list) { cp = sp->sw_id; if (cp != NULL && cp->provider == pp) { mtx_unlock(&sw_dev_mtx); return (EBUSY); } } mtx_unlock(&sw_dev_mtx); if (gp == NULL) gp = g_new_geomf(&g_swap_class, "swap"); cp = g_new_consumer(gp); cp->index = 1; /* Number of active I/Os, plus one for being active. */ cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; g_attach(cp, pp); /* * XXX: Every time you think you can improve the margin for * footshooting, somebody depends on the ability to do so: * savecore(8) wants to write to our swapdev so we cannot * set an exclusive count :-( */ error = g_access(cp, 1, 1, 0); if (error != 0) { g_detach(cp); g_destroy_consumer(cp); return (error); } nblks = pp->mediasize / DEV_BSIZE; swaponsomething(vp, cp, nblks, swapgeom_strategy, swapgeom_close, dev2udev(dev), (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0); return (0); } static int swapongeom(struct vnode *vp) { int error; vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) { error = ENOENT; } else { g_topology_lock(); error = swapongeom_locked(vp->v_rdev, vp); g_topology_unlock(); } VOP_UNLOCK(vp, 0); return (error); } /* * VNODE backend * * This is used mainly for network filesystem (read: probably only tested * with NFS) swapfiles. * */ static void swapdev_strategy(struct buf *bp, struct swdevt *sp) { struct vnode *vp2; bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); vp2 = sp->sw_id; vhold(vp2); if (bp->b_iocmd == BIO_WRITE) { if (bp->b_bufobj) bufobj_wdrop(bp->b_bufobj); bufobj_wref(&vp2->v_bufobj); } if (bp->b_bufobj != &vp2->v_bufobj) bp->b_bufobj = &vp2->v_bufobj; bp->b_vp = vp2; bp->b_iooffset = dbtob(bp->b_blkno); bstrategy(bp); return; } static void swapdev_close(struct thread *td, struct swdevt *sp) { VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); vrele(sp->sw_vp); } static int swaponvp(struct thread *td, struct vnode *vp, u_long nblks) { struct swdevt *sp; int error; if (nblks == 0) return (ENXIO); mtx_lock(&sw_dev_mtx); TAILQ_FOREACH(sp, &swtailq, sw_list) { if (sp->sw_id == vp) { mtx_unlock(&sw_dev_mtx); return (EBUSY); } } mtx_unlock(&sw_dev_mtx); (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); #ifdef MAC error = mac_system_check_swapon(td->td_ucred, vp); if (error == 0) #endif error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); (void) VOP_UNLOCK(vp, 0); if (error) return (error); swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, NODEV, 0); return (0); } static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS) { int error, new, n; new = nsw_wcount_async_max; error = sysctl_handle_int(oidp, &new, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (new > nswbuf / 2 || new < 1) return (EINVAL); mtx_lock(&pbuf_mtx); while (nsw_wcount_async_max != new) { /* * Adjust difference. If the current async count is too low, * we will need to sqeeze our update slowly in. Sleep with a * higher priority than getpbuf() to finish faster. */ n = new - nsw_wcount_async_max; if (nsw_wcount_async + n >= 0) { nsw_wcount_async += n; nsw_wcount_async_max += n; wakeup(&nsw_wcount_async); } else { nsw_wcount_async_max -= nsw_wcount_async; nsw_wcount_async = 0; msleep(&nsw_wcount_async, &pbuf_mtx, PSWP, "swpsysctl", 0); } } mtx_unlock(&pbuf_mtx); return (0); } Index: head/sys/vm/vm_meter.c =================================================================== --- head/sys/vm/vm_meter.c (revision 309016) +++ head/sys/vm/vm_meter.c (revision 309017) @@ -1,318 +1,316 @@ /*- * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vm_meter.c 8.4 (Berkeley) 1/4/94 */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct vmmeter vm_cnt; SYSCTL_UINT(_vm, VM_V_FREE_MIN, v_free_min, CTLFLAG_RW, &vm_cnt.v_free_min, 0, "Minimum low-free-pages threshold"); SYSCTL_UINT(_vm, VM_V_FREE_TARGET, v_free_target, CTLFLAG_RW, &vm_cnt.v_free_target, 0, "Desired free pages"); SYSCTL_UINT(_vm, VM_V_FREE_RESERVED, v_free_reserved, CTLFLAG_RW, &vm_cnt.v_free_reserved, 0, "Pages reserved for deadlock"); SYSCTL_UINT(_vm, VM_V_INACTIVE_TARGET, v_inactive_target, CTLFLAG_RW, &vm_cnt.v_inactive_target, 0, "Pages desired inactive"); SYSCTL_UINT(_vm, VM_V_PAGEOUT_FREE_MIN, v_pageout_free_min, CTLFLAG_RW, &vm_cnt.v_pageout_free_min, 0, "Min pages reserved for kernel"); SYSCTL_UINT(_vm, OID_AUTO, v_free_severe, CTLFLAG_RW, &vm_cnt.v_free_severe, 0, "Severe page depletion point"); static int sysctl_vm_loadavg(SYSCTL_HANDLER_ARGS) { #ifdef SCTL_MASK32 u_int32_t la[4]; if (req->flags & SCTL_MASK32) { la[0] = averunnable.ldavg[0]; la[1] = averunnable.ldavg[1]; la[2] = averunnable.ldavg[2]; la[3] = averunnable.fscale; return SYSCTL_OUT(req, la, sizeof(la)); } else #endif return SYSCTL_OUT(req, &averunnable, sizeof(averunnable)); } SYSCTL_PROC(_vm, VM_LOADAVG, loadavg, CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_loadavg, "S,loadavg", "Machine loadaverage history"); /* * This function aims to determine if the object is mapped, * specifically, if it is referenced by a vm_map_entry. Because * objects occasionally acquire transient references that do not * represent a mapping, the method used here is inexact. However, it * has very low overhead and is good enough for the advisory * vm.vmtotal sysctl. */ static bool is_object_active(vm_object_t obj) { return (obj->ref_count > obj->shadow_count); } static int vmtotal(SYSCTL_HANDLER_ARGS) { struct vmtotal total; vm_object_t object; struct proc *p; struct thread *td; bzero(&total, sizeof(total)); /* * Calculate process statistics. */ sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { if (p->p_flag & P_SYSTEM) continue; PROC_LOCK(p); switch (p->p_state) { case PRS_NEW: PROC_UNLOCK(p); continue; break; default: FOREACH_THREAD_IN_PROC(p, td) { thread_lock(td); switch (td->td_state) { case TDS_INHIBITED: if (TD_IS_SWAPPED(td)) total.t_sw++; else if (TD_IS_SLEEPING(td)) { if (td->td_priority <= PZERO) total.t_dw++; else total.t_sl++; if (td->td_wchan == &vm_cnt.v_free_count) total.t_pw++; } break; case TDS_CAN_RUN: total.t_sw++; break; case TDS_RUNQ: case TDS_RUNNING: total.t_rq++; thread_unlock(td); continue; default: break; } thread_unlock(td); } } PROC_UNLOCK(p); } sx_sunlock(&allproc_lock); /* * Calculate object memory usage statistics. */ mtx_lock(&vm_object_list_mtx); TAILQ_FOREACH(object, &vm_object_list, object_list) { /* * Perform unsynchronized reads on the object. In * this case, the lack of synchronization should not * impair the accuracy of the reported statistics. */ if ((object->flags & OBJ_FICTITIOUS) != 0) { /* * Devices, like /dev/mem, will badly skew our totals. */ continue; } if (object->ref_count == 0) { /* * Also skip unreferenced objects, including * vnodes representing mounted file systems. */ continue; } if (object->ref_count == 1 && (object->flags & OBJ_NOSPLIT) != 0) { /* * Also skip otherwise unreferenced swap * objects backing tmpfs vnodes, and POSIX or * SysV shared memory. */ continue; } total.t_vm += object->size; total.t_rm += object->resident_page_count; if (is_object_active(object)) { total.t_avm += object->size; total.t_arm += object->resident_page_count; } if (object->shadow_count > 1) { /* shared object */ total.t_vmshr += object->size; total.t_rmshr += object->resident_page_count; if (is_object_active(object)) { total.t_avmshr += object->size; total.t_armshr += object->resident_page_count; } } } mtx_unlock(&vm_object_list_mtx); - total.t_free = vm_cnt.v_free_count + vm_cnt.v_cache_count; + total.t_free = vm_cnt.v_free_count; return (sysctl_handle_opaque(oidp, &total, sizeof(total), req)); } /* * vm_meter_cnt() - accumulate statistics from all cpus and the global cnt * structure. * * The vmmeter structure is now per-cpu as well as global. Those * statistics which can be kept on a per-cpu basis (to avoid cache * stalls between cpus) can be moved to the per-cpu vmmeter. Remaining * statistics, such as v_free_reserved, are left in the global * structure. */ u_int vm_meter_cnt(size_t offset) { struct pcpu *pcpu; u_int count; int i; count = *(u_int *)((char *)&vm_cnt + offset); CPU_FOREACH(i) { pcpu = pcpu_find(i); count += *(u_int *)((char *)&pcpu->pc_cnt + offset); } return (count); } static int cnt_sysctl(SYSCTL_HANDLER_ARGS) { u_int count; count = vm_meter_cnt((char *)arg1 - (char *)&vm_cnt); return (SYSCTL_OUT(req, &count, sizeof(count))); } SYSCTL_PROC(_vm, VM_TOTAL, vmtotal, CTLTYPE_OPAQUE|CTLFLAG_RD|CTLFLAG_MPSAFE, 0, sizeof(struct vmtotal), vmtotal, "S,vmtotal", "System virtual memory statistics"); SYSCTL_NODE(_vm, OID_AUTO, stats, CTLFLAG_RW, 0, "VM meter stats"); static SYSCTL_NODE(_vm_stats, OID_AUTO, sys, CTLFLAG_RW, 0, "VM meter sys stats"); static SYSCTL_NODE(_vm_stats, OID_AUTO, vm, CTLFLAG_RW, 0, "VM meter vm stats"); SYSCTL_NODE(_vm_stats, OID_AUTO, misc, CTLFLAG_RW, 0, "VM meter misc stats"); #define VM_STATS(parent, var, descr) \ SYSCTL_PROC(parent, OID_AUTO, var, \ CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, &vm_cnt.var, 0, \ cnt_sysctl, "IU", descr) #define VM_STATS_VM(var, descr) VM_STATS(_vm_stats_vm, var, descr) #define VM_STATS_SYS(var, descr) VM_STATS(_vm_stats_sys, var, descr) VM_STATS_SYS(v_swtch, "Context switches"); VM_STATS_SYS(v_trap, "Traps"); VM_STATS_SYS(v_syscall, "System calls"); VM_STATS_SYS(v_intr, "Device interrupts"); VM_STATS_SYS(v_soft, "Software interrupts"); VM_STATS_VM(v_vm_faults, "Address memory faults"); VM_STATS_VM(v_io_faults, "Page faults requiring I/O"); VM_STATS_VM(v_cow_faults, "Copy-on-write faults"); VM_STATS_VM(v_cow_optim, "Optimized COW faults"); VM_STATS_VM(v_zfod, "Pages zero-filled on demand"); VM_STATS_VM(v_ozfod, "Optimized zero fill pages"); VM_STATS_VM(v_swapin, "Swap pager pageins"); VM_STATS_VM(v_swapout, "Swap pager pageouts"); VM_STATS_VM(v_swappgsin, "Swap pages swapped in"); VM_STATS_VM(v_swappgsout, "Swap pages swapped out"); VM_STATS_VM(v_vnodein, "Vnode pager pageins"); VM_STATS_VM(v_vnodeout, "Vnode pager pageouts"); VM_STATS_VM(v_vnodepgsin, "Vnode pages paged in"); VM_STATS_VM(v_vnodepgsout, "Vnode pages paged out"); VM_STATS_VM(v_intrans, "In transit page faults"); VM_STATS_VM(v_reactivated, "Pages reactivated by pagedaemon"); VM_STATS_VM(v_pdwakeups, "Pagedaemon wakeups"); VM_STATS_VM(v_pdpages, "Pages analyzed by pagedaemon"); VM_STATS_VM(v_pdshortfalls, "Page reclamation shortfalls"); -VM_STATS_VM(v_tcached, "Total pages cached"); VM_STATS_VM(v_dfree, "Pages freed by pagedaemon"); VM_STATS_VM(v_pfree, "Pages freed by exiting processes"); VM_STATS_VM(v_tfree, "Total pages freed"); VM_STATS_VM(v_page_size, "Page size in bytes"); VM_STATS_VM(v_page_count, "Total number of pages in system"); VM_STATS_VM(v_free_reserved, "Pages reserved for deadlock"); VM_STATS_VM(v_free_target, "Pages desired free"); VM_STATS_VM(v_free_min, "Minimum low-free-pages threshold"); VM_STATS_VM(v_free_count, "Free pages"); VM_STATS_VM(v_wire_count, "Wired pages"); VM_STATS_VM(v_active_count, "Active pages"); VM_STATS_VM(v_inactive_target, "Desired inactive pages"); VM_STATS_VM(v_inactive_count, "Inactive pages"); VM_STATS_VM(v_laundry_count, "Pages eligible for laundering"); -VM_STATS_VM(v_cache_count, "Pages on cache queue"); VM_STATS_VM(v_pageout_free_min, "Min pages reserved for kernel"); VM_STATS_VM(v_interrupt_free_min, "Reserved pages for interrupt code"); VM_STATS_VM(v_forks, "Number of fork() calls"); VM_STATS_VM(v_vforks, "Number of vfork() calls"); VM_STATS_VM(v_rforks, "Number of rfork() calls"); VM_STATS_VM(v_kthreads, "Number of fork() calls by kernel"); VM_STATS_VM(v_forkpages, "VM pages affected by fork()"); VM_STATS_VM(v_vforkpages, "VM pages affected by vfork()"); VM_STATS_VM(v_rforkpages, "VM pages affected by rfork()"); VM_STATS_VM(v_kthreadpages, "VM pages affected by fork() by kernel"); Index: head/sys/vm/vm_page.c =================================================================== --- head/sys/vm/vm_page.c (revision 309016) +++ head/sys/vm/vm_page.c (revision 309017) @@ -1,3564 +1,3563 @@ /*- * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * Copyright (c) 1998 Matthew Dillon. All Rights Reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 */ /*- * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Authors: Avadis Tevanian, Jr., Michael Wayne Young * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * GENERAL RULES ON VM_PAGE MANIPULATION * * - A page queue lock is required when adding or removing a page from a * page queue regardless of other locks or the busy state of a page. * * * In general, no thread besides the page daemon can acquire or * hold more than one page queue lock at a time. * * * The page daemon can acquire and hold any pair of page queue * locks in any order. * * - The object lock is required when inserting or removing * pages from an object (vm_page_insert() or vm_page_remove()). * */ /* * Resident memory management module. */ #include __FBSDID("$FreeBSD$"); #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Associated with page of user-allocatable memory is a * page structure. */ struct vm_domain vm_dom[MAXMEMDOM]; struct mtx_padalign vm_page_queue_free_mtx; struct mtx_padalign pa_lock[PA_LOCK_COUNT]; vm_page_t vm_page_array; long vm_page_array_size; long first_page; static int boot_pages = UMA_BOOT_PAGES; SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &boot_pages, 0, "number of pages allocated for bootstrapping the VM system"); static int pa_tryrelock_restart; SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD, &pa_tryrelock_restart, 0, "Number of tryrelock restarts"); static TAILQ_HEAD(, vm_page) blacklist_head; static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS); SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages"); /* Is the page daemon waiting for free pages? */ static int vm_pageout_pages_needed; static uma_zone_t fakepg_zone; static void vm_page_alloc_check(vm_page_t m); static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits); static void vm_page_enqueue(uint8_t queue, vm_page_t m); static void vm_page_free_wakeup(void); static void vm_page_init_fakepg(void *dummy); static int vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, vm_page_t mpred); static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred); static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run, vm_paddr_t high); SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL); static void vm_page_init_fakepg(void *dummy) { fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); } /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */ #if PAGE_SIZE == 32768 #ifdef CTASSERT CTASSERT(sizeof(u_long) >= 8); #endif #endif /* * Try to acquire a physical address lock while a pmap is locked. If we * fail to trylock we unlock and lock the pmap directly and cache the * locked pa in *locked. The caller should then restart their loop in case * the virtual to physical mapping has changed. */ int vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked) { vm_paddr_t lockpa; lockpa = *locked; *locked = pa; if (lockpa) { PA_LOCK_ASSERT(lockpa, MA_OWNED); if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa)) return (0); PA_UNLOCK(lockpa); } if (PA_TRYLOCK(pa)) return (0); PMAP_UNLOCK(pmap); atomic_add_int(&pa_tryrelock_restart, 1); PA_LOCK(pa); PMAP_LOCK(pmap); return (EAGAIN); } /* * vm_set_page_size: * * Sets the page size, perhaps based upon the memory * size. Must be called before any use of page-size * dependent functions. */ void vm_set_page_size(void) { if (vm_cnt.v_page_size == 0) vm_cnt.v_page_size = PAGE_SIZE; if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0) panic("vm_set_page_size: page size not a power of two"); } /* * vm_page_blacklist_next: * * Find the next entry in the provided string of blacklist * addresses. Entries are separated by space, comma, or newline. * If an invalid integer is encountered then the rest of the * string is skipped. Updates the list pointer to the next * character, or NULL if the string is exhausted or invalid. */ static vm_paddr_t vm_page_blacklist_next(char **list, char *end) { vm_paddr_t bad; char *cp, *pos; if (list == NULL || *list == NULL) return (0); if (**list =='\0') { *list = NULL; return (0); } /* * If there's no end pointer then the buffer is coming from * the kenv and we know it's null-terminated. */ if (end == NULL) end = *list + strlen(*list); /* Ensure that strtoq() won't walk off the end */ if (*end != '\0') { if (*end == '\n' || *end == ' ' || *end == ',') *end = '\0'; else { printf("Blacklist not terminated, skipping\n"); *list = NULL; return (0); } } for (pos = *list; *pos != '\0'; pos = cp) { bad = strtoq(pos, &cp, 0); if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') { if (bad == 0) { if (++cp < end) continue; else break; } } else break; if (*cp == '\0' || ++cp >= end) *list = NULL; else *list = cp; return (trunc_page(bad)); } printf("Garbage in RAM blacklist, skipping\n"); *list = NULL; return (0); } /* * vm_page_blacklist_check: * * Iterate through the provided string of blacklist addresses, pulling * each entry out of the physical allocator free list and putting it * onto a list for reporting via the vm.page_blacklist sysctl. */ static void vm_page_blacklist_check(char *list, char *end) { vm_paddr_t pa; vm_page_t m; char *next; int ret; next = list; while (next != NULL) { if ((pa = vm_page_blacklist_next(&next, end)) == 0) continue; m = vm_phys_paddr_to_vm_page(pa); if (m == NULL) continue; mtx_lock(&vm_page_queue_free_mtx); ret = vm_phys_unfree_page(m); mtx_unlock(&vm_page_queue_free_mtx); if (ret == TRUE) { TAILQ_INSERT_TAIL(&blacklist_head, m, listq); if (bootverbose) printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa); } } } /* * vm_page_blacklist_load: * * Search for a special module named "ram_blacklist". It'll be a * plain text file provided by the user via the loader directive * of the same name. */ static void vm_page_blacklist_load(char **list, char **end) { void *mod; u_char *ptr; u_int len; mod = NULL; ptr = NULL; mod = preload_search_by_type("ram_blacklist"); if (mod != NULL) { ptr = preload_fetch_addr(mod); len = preload_fetch_size(mod); } *list = ptr; if (ptr != NULL) *end = ptr + len; else *end = NULL; return; } static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS) { vm_page_t m; struct sbuf sbuf; int error, first; first = 1; error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); sbuf_new_for_sysctl(&sbuf, NULL, 128, req); TAILQ_FOREACH(m, &blacklist_head, listq) { sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",", (uintmax_t)m->phys_addr); first = 0; } error = sbuf_finish(&sbuf); sbuf_delete(&sbuf); return (error); } static void vm_page_domain_init(struct vm_domain *vmd) { struct vm_pagequeue *pq; int i; *__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) = "vm inactive pagequeue"; *__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) = &vm_cnt.v_inactive_count; *__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) = "vm active pagequeue"; *__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) = &vm_cnt.v_active_count; *__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) = "vm laundry pagequeue"; *__DECONST(int **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_vcnt) = &vm_cnt.v_laundry_count; vmd->vmd_page_count = 0; vmd->vmd_free_count = 0; vmd->vmd_segs = 0; vmd->vmd_oom = FALSE; for (i = 0; i < PQ_COUNT; i++) { pq = &vmd->vmd_pagequeues[i]; TAILQ_INIT(&pq->pq_pl); mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue", MTX_DEF | MTX_DUPOK); } } /* * vm_page_startup: * * Initializes the resident memory module. * * Allocates memory for the page cells, and * for the object/offset-to-page hash table headers. * Each page cell is initialized and placed on the free list. */ vm_offset_t vm_page_startup(vm_offset_t vaddr) { vm_offset_t mapped; vm_paddr_t page_range; vm_paddr_t new_end; int i; vm_paddr_t pa; vm_paddr_t last_pa; char *list, *listend; vm_paddr_t end; vm_paddr_t biggestsize; vm_paddr_t low_water, high_water; int biggestone; int pages_per_zone; biggestsize = 0; biggestone = 0; vaddr = round_page(vaddr); for (i = 0; phys_avail[i + 1]; i += 2) { phys_avail[i] = round_page(phys_avail[i]); phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); } low_water = phys_avail[0]; high_water = phys_avail[1]; for (i = 0; i < vm_phys_nsegs; i++) { if (vm_phys_segs[i].start < low_water) low_water = vm_phys_segs[i].start; if (vm_phys_segs[i].end > high_water) high_water = vm_phys_segs[i].end; } for (i = 0; phys_avail[i + 1]; i += 2) { vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; if (size > biggestsize) { biggestone = i; biggestsize = size; } if (phys_avail[i] < low_water) low_water = phys_avail[i]; if (phys_avail[i + 1] > high_water) high_water = phys_avail[i + 1]; } end = phys_avail[biggestone+1]; /* * Initialize the page and queue locks. */ mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF); for (i = 0; i < PA_LOCK_COUNT; i++) mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF); for (i = 0; i < vm_ndomains; i++) vm_page_domain_init(&vm_dom[i]); /* * Almost all of the pages needed for boot strapping UMA are used * for zone structures, so if the number of CPUs results in those * structures taking more than one page each, we set aside more pages * in proportion to the zone structure size. */ pages_per_zone = howmany(sizeof(struct uma_zone) + sizeof(struct uma_cache) * (mp_maxid + 1), UMA_SLAB_SIZE); if (pages_per_zone > 1) { /* Reserve more pages so that we don't run out. */ boot_pages = UMA_BOOT_PAGES_ZONES * pages_per_zone; } /* * Allocate memory for use when boot strapping the kernel memory * allocator. * * CTFLAG_RDTUN doesn't work during the early boot process, so we must * manually fetch the value. */ TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages); new_end = end - (boot_pages * UMA_SLAB_SIZE); new_end = trunc_page(new_end); mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE); bzero((void *)mapped, end - new_end); uma_startup((void *)mapped, boot_pages); #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \ defined(__i386__) || defined(__mips__) /* * Allocate a bitmap to indicate that a random physical page * needs to be included in a minidump. * * The amd64 port needs this to indicate which direct map pages * need to be dumped, via calls to dump_add_page()/dump_drop_page(). * * However, i386 still needs this workspace internally within the * minidump code. In theory, they are not needed on i386, but are * included should the sf_buf code decide to use them. */ last_pa = 0; for (i = 0; dump_avail[i + 1] != 0; i += 2) if (dump_avail[i + 1] > last_pa) last_pa = dump_avail[i + 1]; page_range = last_pa / PAGE_SIZE; vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); new_end -= vm_page_dump_size; vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end, new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE); bzero((void *)vm_page_dump, vm_page_dump_size); #endif #ifdef __amd64__ /* * Request that the physical pages underlying the message buffer be * included in a crash dump. Since the message buffer is accessed * through the direct map, they are not automatically included. */ pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr); last_pa = pa + round_page(msgbufsize); while (pa < last_pa) { dump_add_page(pa); pa += PAGE_SIZE; } #endif /* * Compute the number of pages of memory that will be available for * use (taking into account the overhead of a page structure per * page). */ first_page = low_water / PAGE_SIZE; #ifdef VM_PHYSSEG_SPARSE page_range = 0; for (i = 0; i < vm_phys_nsegs; i++) { page_range += atop(vm_phys_segs[i].end - vm_phys_segs[i].start); } for (i = 0; phys_avail[i + 1] != 0; i += 2) page_range += atop(phys_avail[i + 1] - phys_avail[i]); #elif defined(VM_PHYSSEG_DENSE) page_range = high_water / PAGE_SIZE - first_page; #else #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." #endif end = new_end; /* * Reserve an unmapped guard page to trap access to vm_page_array[-1]. */ vaddr += PAGE_SIZE; /* * Initialize the mem entry structures now, and put them in the free * queue. */ new_end = trunc_page(end - page_range * sizeof(struct vm_page)); mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE); vm_page_array = (vm_page_t) mapped; #if VM_NRESERVLEVEL > 0 /* * Allocate memory for the reservation management system's data * structures. */ new_end = vm_reserv_startup(&vaddr, new_end, high_water); #endif #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) /* * pmap_map on arm64, amd64, and mips can come out of the direct-map, * not kvm like i386, so the pages must be tracked for a crashdump to * include this data. This includes the vm_page_array and the early * UMA bootstrap pages. */ for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) dump_add_page(pa); #endif phys_avail[biggestone + 1] = new_end; /* * Add physical memory segments corresponding to the available * physical pages. */ for (i = 0; phys_avail[i + 1] != 0; i += 2) vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]); /* * Clear all of the page structures */ bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); for (i = 0; i < page_range; i++) vm_page_array[i].order = VM_NFREEORDER; vm_page_array_size = page_range; /* * Initialize the physical memory allocator. */ vm_phys_init(); /* * Add every available physical page that is not blacklisted to * the free lists. */ vm_cnt.v_page_count = 0; vm_cnt.v_free_count = 0; for (i = 0; phys_avail[i + 1] != 0; i += 2) { pa = phys_avail[i]; last_pa = phys_avail[i + 1]; while (pa < last_pa) { vm_phys_add_page(pa); pa += PAGE_SIZE; } } TAILQ_INIT(&blacklist_head); vm_page_blacklist_load(&list, &listend); vm_page_blacklist_check(list, listend); list = kern_getenv("vm.blacklist"); vm_page_blacklist_check(list, NULL); freeenv(list); #if VM_NRESERVLEVEL > 0 /* * Initialize the reservation management system. */ vm_reserv_init(); #endif return (vaddr); } void vm_page_reference(vm_page_t m) { vm_page_aflag_set(m, PGA_REFERENCED); } /* * vm_page_busy_downgrade: * * Downgrade an exclusive busy page into a single shared busy page. */ void vm_page_busy_downgrade(vm_page_t m) { u_int x; bool locked; vm_page_assert_xbusied(m); locked = mtx_owned(vm_page_lockptr(m)); for (;;) { x = m->busy_lock; x &= VPB_BIT_WAITERS; if (x != 0 && !locked) vm_page_lock(m); if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1))) break; if (x != 0 && !locked) vm_page_unlock(m); } if (x != 0) { wakeup(m); if (!locked) vm_page_unlock(m); } } /* * vm_page_sbusied: * * Return a positive value if the page is shared busied, 0 otherwise. */ int vm_page_sbusied(vm_page_t m) { u_int x; x = m->busy_lock; return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED); } /* * vm_page_sunbusy: * * Shared unbusy a page. */ void vm_page_sunbusy(vm_page_t m) { u_int x; vm_page_assert_sbusied(m); for (;;) { x = m->busy_lock; if (VPB_SHARERS(x) > 1) { if (atomic_cmpset_int(&m->busy_lock, x, x - VPB_ONE_SHARER)) break; continue; } if ((x & VPB_BIT_WAITERS) == 0) { KASSERT(x == VPB_SHARERS_WORD(1), ("vm_page_sunbusy: invalid lock state")); if (atomic_cmpset_int(&m->busy_lock, VPB_SHARERS_WORD(1), VPB_UNBUSIED)) break; continue; } KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS), ("vm_page_sunbusy: invalid lock state for waiters")); vm_page_lock(m); if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) { vm_page_unlock(m); continue; } wakeup(m); vm_page_unlock(m); break; } } /* * vm_page_busy_sleep: * * Sleep and release the page lock, using the page pointer as wchan. * This is used to implement the hard-path of busying mechanism. * * The given page must be locked. * * If nonshared is true, sleep only if the page is xbusy. */ void vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared) { u_int x; vm_page_assert_locked(m); x = m->busy_lock; if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) || ((x & VPB_BIT_WAITERS) == 0 && !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) { vm_page_unlock(m); return; } msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0); } /* * vm_page_trysbusy: * * Try to shared busy a page. * If the operation succeeds 1 is returned otherwise 0. * The operation never sleeps. */ int vm_page_trysbusy(vm_page_t m) { u_int x; for (;;) { x = m->busy_lock; if ((x & VPB_BIT_SHARED) == 0) return (0); if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER)) return (1); } } static void vm_page_xunbusy_locked(vm_page_t m) { vm_page_assert_xbusied(m); vm_page_assert_locked(m); atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED); /* There is a waiter, do wakeup() instead of vm_page_flash(). */ wakeup(m); } void vm_page_xunbusy_maybelocked(vm_page_t m) { bool lockacq; vm_page_assert_xbusied(m); /* * Fast path for unbusy. If it succeeds, we know that there * are no waiters, so we do not need a wakeup. */ if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER, VPB_UNBUSIED)) return; lockacq = !mtx_owned(vm_page_lockptr(m)); if (lockacq) vm_page_lock(m); vm_page_xunbusy_locked(m); if (lockacq) vm_page_unlock(m); } /* * vm_page_xunbusy_hard: * * Called after the first try the exclusive unbusy of a page failed. * It is assumed that the waiters bit is on. */ void vm_page_xunbusy_hard(vm_page_t m) { vm_page_assert_xbusied(m); vm_page_lock(m); vm_page_xunbusy_locked(m); vm_page_unlock(m); } /* * vm_page_flash: * * Wakeup anyone waiting for the page. * The ownership bits do not change. * * The given page must be locked. */ void vm_page_flash(vm_page_t m) { u_int x; vm_page_lock_assert(m, MA_OWNED); for (;;) { x = m->busy_lock; if ((x & VPB_BIT_WAITERS) == 0) return; if (atomic_cmpset_int(&m->busy_lock, x, x & (~VPB_BIT_WAITERS))) break; } wakeup(m); } /* * Keep page from being freed by the page daemon * much of the same effect as wiring, except much lower * overhead and should be used only for *very* temporary * holding ("wiring"). */ void vm_page_hold(vm_page_t mem) { vm_page_lock_assert(mem, MA_OWNED); mem->hold_count++; } void vm_page_unhold(vm_page_t mem) { vm_page_lock_assert(mem, MA_OWNED); KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!")); --mem->hold_count; if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0) vm_page_free_toq(mem); } /* * vm_page_unhold_pages: * * Unhold each of the pages that is referenced by the given array. */ void vm_page_unhold_pages(vm_page_t *ma, int count) { struct mtx *mtx, *new_mtx; mtx = NULL; for (; count != 0; count--) { /* * Avoid releasing and reacquiring the same page lock. */ new_mtx = vm_page_lockptr(*ma); if (mtx != new_mtx) { if (mtx != NULL) mtx_unlock(mtx); mtx = new_mtx; mtx_lock(mtx); } vm_page_unhold(*ma); ma++; } if (mtx != NULL) mtx_unlock(mtx); } vm_page_t PHYS_TO_VM_PAGE(vm_paddr_t pa) { vm_page_t m; #ifdef VM_PHYSSEG_SPARSE m = vm_phys_paddr_to_vm_page(pa); if (m == NULL) m = vm_phys_fictitious_to_vm_page(pa); return (m); #elif defined(VM_PHYSSEG_DENSE) long pi; pi = atop(pa); if (pi >= first_page && (pi - first_page) < vm_page_array_size) { m = &vm_page_array[pi - first_page]; return (m); } return (vm_phys_fictitious_to_vm_page(pa)); #else #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined." #endif } /* * vm_page_getfake: * * Create a fictitious page with the specified physical address and * memory attribute. The memory attribute is the only the machine- * dependent aspect of a fictitious page that must be initialized. */ vm_page_t vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr) { vm_page_t m; m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO); vm_page_initfake(m, paddr, memattr); return (m); } void vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) { if ((m->flags & PG_FICTITIOUS) != 0) { /* * The page's memattr might have changed since the * previous initialization. Update the pmap to the * new memattr. */ goto memattr; } m->phys_addr = paddr; m->queue = PQ_NONE; /* Fictitious pages don't use "segind". */ m->flags = PG_FICTITIOUS; /* Fictitious pages don't use "order" or "pool". */ m->oflags = VPO_UNMANAGED; m->busy_lock = VPB_SINGLE_EXCLUSIVER; m->wire_count = 1; pmap_page_init(m); memattr: pmap_page_set_memattr(m, memattr); } /* * vm_page_putfake: * * Release a fictitious page. */ void vm_page_putfake(vm_page_t m) { KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m)); KASSERT((m->flags & PG_FICTITIOUS) != 0, ("vm_page_putfake: bad page %p", m)); uma_zfree(fakepg_zone, m); } /* * vm_page_updatefake: * * Update the given fictitious page to the specified physical address and * memory attribute. */ void vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr) { KASSERT((m->flags & PG_FICTITIOUS) != 0, ("vm_page_updatefake: bad page %p", m)); m->phys_addr = paddr; pmap_page_set_memattr(m, memattr); } /* * vm_page_free: * * Free a page. */ void vm_page_free(vm_page_t m) { m->flags &= ~PG_ZERO; vm_page_free_toq(m); } /* * vm_page_free_zero: * * Free a page to the zerod-pages queue */ void vm_page_free_zero(vm_page_t m) { m->flags |= PG_ZERO; vm_page_free_toq(m); } /* * Unbusy and handle the page queueing for a page from a getpages request that * was optionally read ahead or behind. */ void vm_page_readahead_finish(vm_page_t m) { /* We shouldn't put invalid pages on queues. */ KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m)); /* * Since the page is not the actually needed one, whether it should * be activated or deactivated is not obvious. Empirical results * have shown that deactivating the page is usually the best choice, * unless the page is wanted by another thread. */ vm_page_lock(m); if ((m->busy_lock & VPB_BIT_WAITERS) != 0) vm_page_activate(m); else vm_page_deactivate(m); vm_page_unlock(m); vm_page_xunbusy(m); } /* * vm_page_sleep_if_busy: * * Sleep and release the page queues lock if the page is busied. * Returns TRUE if the thread slept. * * The given page must be unlocked and object containing it must * be locked. */ int vm_page_sleep_if_busy(vm_page_t m, const char *msg) { vm_object_t obj; vm_page_lock_assert(m, MA_NOTOWNED); VM_OBJECT_ASSERT_WLOCKED(m->object); if (vm_page_busied(m)) { /* * The page-specific object must be cached because page * identity can change during the sleep, causing the * re-lock of a different object. * It is assumed that a reference to the object is already * held by the callers. */ obj = m->object; vm_page_lock(m); VM_OBJECT_WUNLOCK(obj); vm_page_busy_sleep(m, msg, false); VM_OBJECT_WLOCK(obj); return (TRUE); } return (FALSE); } /* * vm_page_dirty_KBI: [ internal use only ] * * Set all bits in the page's dirty field. * * The object containing the specified page must be locked if the * call is made from the machine-independent layer. * * See vm_page_clear_dirty_mask(). * * This function should only be called by vm_page_dirty(). */ void vm_page_dirty_KBI(vm_page_t m) { /* Refer to this operation by its public name. */ KASSERT(m->valid == VM_PAGE_BITS_ALL, ("vm_page_dirty: page is invalid!")); m->dirty = VM_PAGE_BITS_ALL; } /* * vm_page_insert: [ internal use only ] * * Inserts the given mem entry into the object and object list. * * The object must be locked. */ int vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) { vm_page_t mpred; VM_OBJECT_ASSERT_WLOCKED(object); mpred = vm_radix_lookup_le(&object->rtree, pindex); return (vm_page_insert_after(m, object, pindex, mpred)); } /* * vm_page_insert_after: * * Inserts the page "m" into the specified object at offset "pindex". * * The page "mpred" must immediately precede the offset "pindex" within * the specified object. * * The object must be locked. */ static int vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex, vm_page_t mpred) { vm_page_t msucc; VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(m->object == NULL, ("vm_page_insert_after: page already inserted")); if (mpred != NULL) { KASSERT(mpred->object == object, ("vm_page_insert_after: object doesn't contain mpred")); KASSERT(mpred->pindex < pindex, ("vm_page_insert_after: mpred doesn't precede pindex")); msucc = TAILQ_NEXT(mpred, listq); } else msucc = TAILQ_FIRST(&object->memq); if (msucc != NULL) KASSERT(msucc->pindex > pindex, ("vm_page_insert_after: msucc doesn't succeed pindex")); /* * Record the object/offset pair in this page */ m->object = object; m->pindex = pindex; /* * Now link into the object's ordered list of backed pages. */ if (vm_radix_insert(&object->rtree, m)) { m->object = NULL; m->pindex = 0; return (1); } vm_page_insert_radixdone(m, object, mpred); return (0); } /* * vm_page_insert_radixdone: * * Complete page "m" insertion into the specified object after the * radix trie hooking. * * The page "mpred" must precede the offset "m->pindex" within the * specified object. * * The object must be locked. */ static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred) { VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(object != NULL && m->object == object, ("vm_page_insert_radixdone: page %p has inconsistent object", m)); if (mpred != NULL) { KASSERT(mpred->object == object, ("vm_page_insert_after: object doesn't contain mpred")); KASSERT(mpred->pindex < m->pindex, ("vm_page_insert_after: mpred doesn't precede pindex")); } if (mpred != NULL) TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq); else TAILQ_INSERT_HEAD(&object->memq, m, listq); /* * Show that the object has one more resident page. */ object->resident_page_count++; /* * Hold the vnode until the last page is released. */ if (object->resident_page_count == 1 && object->type == OBJT_VNODE) vhold(object->handle); /* * Since we are inserting a new and possibly dirty page, * update the object's OBJ_MIGHTBEDIRTY flag. */ if (pmap_page_is_write_mapped(m)) vm_object_set_writeable_dirty(object); } /* * vm_page_remove: * * Removes the given mem entry from the object/offset-page * table and the object page list, but do not invalidate/terminate * the backing store. * * The object must be locked. The page must be locked if it is managed. */ void vm_page_remove(vm_page_t m) { vm_object_t object; if ((m->oflags & VPO_UNMANAGED) == 0) vm_page_assert_locked(m); if ((object = m->object) == NULL) return; VM_OBJECT_ASSERT_WLOCKED(object); if (vm_page_xbusied(m)) vm_page_xunbusy_maybelocked(m); /* * Now remove from the object's list of backed pages. */ vm_radix_remove(&object->rtree, m->pindex); TAILQ_REMOVE(&object->memq, m, listq); /* * And show that the object has one fewer resident page. */ object->resident_page_count--; /* * The vnode may now be recycled. */ if (object->resident_page_count == 0 && object->type == OBJT_VNODE) vdrop(object->handle); m->object = NULL; } /* * vm_page_lookup: * * Returns the page associated with the object/offset * pair specified; if none is found, NULL is returned. * * The object must be locked. */ vm_page_t vm_page_lookup(vm_object_t object, vm_pindex_t pindex) { VM_OBJECT_ASSERT_LOCKED(object); return (vm_radix_lookup(&object->rtree, pindex)); } /* * vm_page_find_least: * * Returns the page associated with the object with least pindex * greater than or equal to the parameter pindex, or NULL. * * The object must be locked. */ vm_page_t vm_page_find_least(vm_object_t object, vm_pindex_t pindex) { vm_page_t m; VM_OBJECT_ASSERT_LOCKED(object); if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex) m = vm_radix_lookup_ge(&object->rtree, pindex); return (m); } /* * Returns the given page's successor (by pindex) within the object if it is * resident; if none is found, NULL is returned. * * The object must be locked. */ vm_page_t vm_page_next(vm_page_t m) { vm_page_t next; VM_OBJECT_ASSERT_LOCKED(m->object); if ((next = TAILQ_NEXT(m, listq)) != NULL && next->pindex != m->pindex + 1) next = NULL; return (next); } /* * Returns the given page's predecessor (by pindex) within the object if it is * resident; if none is found, NULL is returned. * * The object must be locked. */ vm_page_t vm_page_prev(vm_page_t m) { vm_page_t prev; VM_OBJECT_ASSERT_LOCKED(m->object); if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL && prev->pindex != m->pindex - 1) prev = NULL; return (prev); } /* * Uses the page mnew as a replacement for an existing page at index * pindex which must be already present in the object. * * The existing page must not be on a paging queue. */ vm_page_t vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex) { vm_page_t mold; VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(mnew->object == NULL, ("vm_page_replace: page already in object")); /* * This function mostly follows vm_page_insert() and * vm_page_remove() without the radix, object count and vnode * dance. Double check such functions for more comments. */ mnew->object = object; mnew->pindex = pindex; mold = vm_radix_replace(&object->rtree, mnew); KASSERT(mold->queue == PQ_NONE, ("vm_page_replace: mold is on a paging queue")); /* Keep the resident page list in sorted order. */ TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq); TAILQ_REMOVE(&object->memq, mold, listq); mold->object = NULL; vm_page_xunbusy_maybelocked(mold); /* * The object's resident_page_count does not change because we have * swapped one page for another, but OBJ_MIGHTBEDIRTY. */ if (pmap_page_is_write_mapped(mnew)) vm_object_set_writeable_dirty(object); return (mold); } /* * vm_page_rename: * * Move the given memory entry from its * current object to the specified target object/offset. * * Note: swap associated with the page must be invalidated by the move. We * have to do this for several reasons: (1) we aren't freeing the * page, (2) we are dirtying the page, (3) the VM system is probably * moving the page from object A to B, and will then later move * the backing store from A to B and we can't have a conflict. * * Note: we *always* dirty the page. It is necessary both for the * fact that we moved it, and because we may be invalidating * swap. If the page is on the cache, we have to deactivate it * or vm_page_dirty() will panic. Dirty pages are not allowed * on the cache. * * The objects must be locked. */ int vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) { vm_page_t mpred; vm_pindex_t opidx; VM_OBJECT_ASSERT_WLOCKED(new_object); mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex); KASSERT(mpred == NULL || mpred->pindex != new_pindex, ("vm_page_rename: pindex already renamed")); /* * Create a custom version of vm_page_insert() which does not depend * by m_prev and can cheat on the implementation aspects of the * function. */ opidx = m->pindex; m->pindex = new_pindex; if (vm_radix_insert(&new_object->rtree, m)) { m->pindex = opidx; return (1); } /* * The operation cannot fail anymore. The removal must happen before * the listq iterator is tainted. */ m->pindex = opidx; vm_page_lock(m); vm_page_remove(m); /* Return back to the new pindex to complete vm_page_insert(). */ m->pindex = new_pindex; m->object = new_object; vm_page_unlock(m); vm_page_insert_radixdone(m, new_object, mpred); vm_page_dirty(m); return (0); } /* * vm_page_alloc: * * Allocate and return a page that is associated with the specified * object and offset pair. By default, this page is exclusive busied. * * The caller must always specify an allocation class. * * allocation classes: * VM_ALLOC_NORMAL normal process request * VM_ALLOC_SYSTEM system *really* needs a page * VM_ALLOC_INTERRUPT interrupt time request * * optional allocation flags: * VM_ALLOC_COUNT(number) the number of additional pages that the caller * intends to allocate * VM_ALLOC_NOBUSY do not exclusive busy the page * VM_ALLOC_NODUMP do not include the page in a kernel core dump * VM_ALLOC_NOOBJ page is not associated with an object and * should not be exclusive busy * VM_ALLOC_SBUSY shared busy the allocated page * VM_ALLOC_WIRED wire the allocated page * VM_ALLOC_ZERO prefer a zeroed page * * This routine may not sleep. */ vm_page_t vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req) { vm_page_t m, mpred; int flags, req_class; mpred = 0; /* XXX: pacify gcc */ KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object, req)); if (object != NULL) VM_OBJECT_ASSERT_WLOCKED(object); req_class = req & VM_ALLOC_CLASS_MASK; /* * The page daemon is allowed to dig deeper into the free page list. */ if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) req_class = VM_ALLOC_SYSTEM; if (object != NULL) { mpred = vm_radix_lookup_le(&object->rtree, pindex); KASSERT(mpred == NULL || mpred->pindex != pindex, ("vm_page_alloc: pindex already allocated")); } /* * The page allocation request can came from consumers which already * hold the free page queue mutex, like vm_page_insert() in * vm_page_cache(). */ mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE); - if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved || + if (vm_cnt.v_free_count > vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM && - vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) || + vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT && - vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) { + vm_cnt.v_free_count > 0)) { /* * Allocate from the free queue if the number of free pages * exceeds the minimum for the request class. */ #if VM_NRESERVLEVEL > 0 if (object == NULL || (object->flags & (OBJ_COLORED | OBJ_FICTITIOUS)) != OBJ_COLORED || (m = vm_reserv_alloc_page(object, pindex, mpred)) == NULL) #endif { m = vm_phys_alloc_pages(object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); #if VM_NRESERVLEVEL > 0 if (m == NULL && vm_reserv_reclaim_inactive()) { m = vm_phys_alloc_pages(object != NULL ? VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0); } #endif } } else { /* * Not allocatable, give up. */ mtx_unlock(&vm_page_queue_free_mtx); atomic_add_int(&vm_pageout_deficit, max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); pagedaemon_wakeup(); return (NULL); } /* * At this point we had better have found a good page. */ KASSERT(m != NULL, ("vm_page_alloc: missing page")); vm_phys_freecnt_adj(m, -1); mtx_unlock(&vm_page_queue_free_mtx); vm_page_alloc_check(m); /* * Initialize the page. Only the PG_ZERO flag is inherited. */ flags = 0; if ((req & VM_ALLOC_ZERO) != 0) flags = PG_ZERO; flags &= m->flags; if ((req & VM_ALLOC_NODUMP) != 0) flags |= PG_NODUMP; m->flags = flags; m->aflags = 0; m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0; m->busy_lock = VPB_UNBUSIED; if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0) m->busy_lock = VPB_SINGLE_EXCLUSIVER; if ((req & VM_ALLOC_SBUSY) != 0) m->busy_lock = VPB_SHARERS_WORD(1); if (req & VM_ALLOC_WIRED) { /* * The page lock is not required for wiring a page until that * page is inserted into the object. */ atomic_add_int(&vm_cnt.v_wire_count, 1); m->wire_count = 1; } m->act_count = 0; if (object != NULL) { if (vm_page_insert_after(m, object, pindex, mpred)) { pagedaemon_wakeup(); if (req & VM_ALLOC_WIRED) { atomic_subtract_int(&vm_cnt.v_wire_count, 1); m->wire_count = 0; } m->object = NULL; m->oflags = VPO_UNMANAGED; m->busy_lock = VPB_UNBUSIED; vm_page_free(m); return (NULL); } /* Ignore device objects; the pager sets "memattr" for them. */ if (object->memattr != VM_MEMATTR_DEFAULT && (object->flags & OBJ_FICTITIOUS) == 0) pmap_page_set_memattr(m, object->memattr); } else m->pindex = pindex; /* * Don't wakeup too often - wakeup the pageout daemon when * we would be nearly out of memory. */ if (vm_paging_needed()) pagedaemon_wakeup(); return (m); } /* * vm_page_alloc_contig: * * Allocate a contiguous set of physical pages of the given size "npages" * from the free lists. All of the physical pages must be at or above * the given physical address "low" and below the given physical address * "high". The given value "alignment" determines the alignment of the * first physical page in the set. If the given value "boundary" is * non-zero, then the set of physical pages cannot cross any physical * address boundary that is a multiple of that value. Both "alignment" * and "boundary" must be a power of two. * * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT, * then the memory attribute setting for the physical pages is configured * to the object's memory attribute setting. Otherwise, the memory * attribute setting for the physical pages is configured to "memattr", * overriding the object's memory attribute setting. However, if the * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the * memory attribute setting for the physical pages cannot be configured * to VM_MEMATTR_DEFAULT. * * The caller must always specify an allocation class. * * allocation classes: * VM_ALLOC_NORMAL normal process request * VM_ALLOC_SYSTEM system *really* needs a page * VM_ALLOC_INTERRUPT interrupt time request * * optional allocation flags: * VM_ALLOC_NOBUSY do not exclusive busy the page * VM_ALLOC_NODUMP do not include the page in a kernel core dump * VM_ALLOC_NOOBJ page is not associated with an object and * should not be exclusive busy * VM_ALLOC_SBUSY shared busy the allocated page * VM_ALLOC_WIRED wire the allocated page * VM_ALLOC_ZERO prefer a zeroed page * * This routine may not sleep. */ vm_page_t vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary, vm_memattr_t memattr) { vm_page_t m, m_tmp, m_ret; u_int flags; int req_class; KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) && (object != NULL || (req & VM_ALLOC_SBUSY) == 0) && ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) != (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)), ("vm_page_alloc: inconsistent object(%p)/req(%x)", (void *)object, req)); if (object != NULL) { VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(object->type == OBJT_PHYS, ("vm_page_alloc_contig: object %p isn't OBJT_PHYS", object)); } KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero")); req_class = req & VM_ALLOC_CLASS_MASK; /* * The page daemon is allowed to dig deeper into the free page list. */ if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) req_class = VM_ALLOC_SYSTEM; mtx_lock(&vm_page_queue_free_mtx); - if (vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages + - vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM && - vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages + - vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT && - vm_cnt.v_free_count + vm_cnt.v_cache_count >= npages)) { + if (vm_cnt.v_free_count >= npages + vm_cnt.v_free_reserved || + (req_class == VM_ALLOC_SYSTEM && + vm_cnt.v_free_count >= npages + vm_cnt.v_interrupt_free_min) || + (req_class == VM_ALLOC_INTERRUPT && + vm_cnt.v_free_count >= npages)) { #if VM_NRESERVLEVEL > 0 retry: if (object == NULL || (object->flags & OBJ_COLORED) == 0 || (m_ret = vm_reserv_alloc_contig(object, pindex, npages, low, high, alignment, boundary)) == NULL) #endif m_ret = vm_phys_alloc_contig(npages, low, high, alignment, boundary); } else { mtx_unlock(&vm_page_queue_free_mtx); atomic_add_int(&vm_pageout_deficit, npages); pagedaemon_wakeup(); return (NULL); } if (m_ret != NULL) vm_phys_freecnt_adj(m_ret, -npages); else { #if VM_NRESERVLEVEL > 0 if (vm_reserv_reclaim_contig(npages, low, high, alignment, boundary)) goto retry; #endif } mtx_unlock(&vm_page_queue_free_mtx); if (m_ret == NULL) return (NULL); for (m = m_ret; m < &m_ret[npages]; m++) vm_page_alloc_check(m); /* * Initialize the pages. Only the PG_ZERO flag is inherited. */ flags = 0; if ((req & VM_ALLOC_ZERO) != 0) flags = PG_ZERO; if ((req & VM_ALLOC_NODUMP) != 0) flags |= PG_NODUMP; if ((req & VM_ALLOC_WIRED) != 0) atomic_add_int(&vm_cnt.v_wire_count, npages); if (object != NULL) { if (object->memattr != VM_MEMATTR_DEFAULT && memattr == VM_MEMATTR_DEFAULT) memattr = object->memattr; } for (m = m_ret; m < &m_ret[npages]; m++) { m->aflags = 0; m->flags = (m->flags | PG_NODUMP) & flags; m->busy_lock = VPB_UNBUSIED; if (object != NULL) { if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) m->busy_lock = VPB_SINGLE_EXCLUSIVER; if ((req & VM_ALLOC_SBUSY) != 0) m->busy_lock = VPB_SHARERS_WORD(1); } if ((req & VM_ALLOC_WIRED) != 0) m->wire_count = 1; /* Unmanaged pages don't use "act_count". */ m->oflags = VPO_UNMANAGED; if (object != NULL) { if (vm_page_insert(m, object, pindex)) { if (vm_paging_needed()) pagedaemon_wakeup(); if ((req & VM_ALLOC_WIRED) != 0) atomic_subtract_int(&vm_cnt.v_wire_count, npages); for (m_tmp = m, m = m_ret; m < &m_ret[npages]; m++) { if ((req & VM_ALLOC_WIRED) != 0) m->wire_count = 0; if (m >= m_tmp) { m->object = NULL; m->oflags |= VPO_UNMANAGED; } m->busy_lock = VPB_UNBUSIED; vm_page_free(m); } return (NULL); } } else m->pindex = pindex; if (memattr != VM_MEMATTR_DEFAULT) pmap_page_set_memattr(m, memattr); pindex++; } if (vm_paging_needed()) pagedaemon_wakeup(); return (m_ret); } /* * Check a page that has been freshly dequeued from a freelist. */ static void vm_page_alloc_check(vm_page_t m) { KASSERT(m->queue == PQ_NONE, ("page %p has unexpected queue %d", m, m->queue)); KASSERT(m->wire_count == 0, ("page %p is wired", m)); KASSERT(m->hold_count == 0, ("page %p is held", m)); KASSERT(!vm_page_busied(m), ("page %p is busy", m)); KASSERT(m->dirty == 0, ("page %p is dirty", m)); KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, ("page %p has unexpected memattr %d", m, pmap_page_get_memattr(m))); KASSERT(m->valid == 0, ("free page %p is valid", m)); } /* * vm_page_alloc_freelist: * * Allocate a physical page from the specified free page list. * * The caller must always specify an allocation class. * * allocation classes: * VM_ALLOC_NORMAL normal process request * VM_ALLOC_SYSTEM system *really* needs a page * VM_ALLOC_INTERRUPT interrupt time request * * optional allocation flags: * VM_ALLOC_COUNT(number) the number of additional pages that the caller * intends to allocate * VM_ALLOC_WIRED wire the allocated page * VM_ALLOC_ZERO prefer a zeroed page * * This routine may not sleep. */ vm_page_t vm_page_alloc_freelist(int flind, int req) { vm_page_t m; u_int flags; int req_class; req_class = req & VM_ALLOC_CLASS_MASK; /* * The page daemon is allowed to dig deeper into the free page list. */ if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) req_class = VM_ALLOC_SYSTEM; /* * Do not allocate reserved pages unless the req has asked for it. */ mtx_lock_flags(&vm_page_queue_free_mtx, MTX_RECURSE); - if (vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_free_reserved || + if (vm_cnt.v_free_count > vm_cnt.v_free_reserved || (req_class == VM_ALLOC_SYSTEM && - vm_cnt.v_free_count + vm_cnt.v_cache_count > vm_cnt.v_interrupt_free_min) || + vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) || (req_class == VM_ALLOC_INTERRUPT && - vm_cnt.v_free_count + vm_cnt.v_cache_count > 0)) + vm_cnt.v_free_count > 0)) m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0); else { mtx_unlock(&vm_page_queue_free_mtx); atomic_add_int(&vm_pageout_deficit, max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1)); pagedaemon_wakeup(); return (NULL); } if (m == NULL) { mtx_unlock(&vm_page_queue_free_mtx); return (NULL); } vm_phys_freecnt_adj(m, -1); mtx_unlock(&vm_page_queue_free_mtx); vm_page_alloc_check(m); /* * Initialize the page. Only the PG_ZERO flag is inherited. */ m->aflags = 0; flags = 0; if ((req & VM_ALLOC_ZERO) != 0) flags = PG_ZERO; m->flags &= flags; if ((req & VM_ALLOC_WIRED) != 0) { /* * The page lock is not required for wiring a page that does * not belong to an object. */ atomic_add_int(&vm_cnt.v_wire_count, 1); m->wire_count = 1; } /* Unmanaged pages don't use "act_count". */ m->oflags = VPO_UNMANAGED; if (vm_paging_needed()) pagedaemon_wakeup(); return (m); } #define VPSC_ANY 0 /* No restrictions. */ #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */ #define VPSC_NOSUPER 2 /* Skip superpages. */ /* * vm_page_scan_contig: * * Scan vm_page_array[] between the specified entries "m_start" and * "m_end" for a run of contiguous physical pages that satisfy the * specified conditions, and return the lowest page in the run. The * specified "alignment" determines the alignment of the lowest physical * page in the run. If the specified "boundary" is non-zero, then the * run of physical pages cannot span a physical address that is a * multiple of "boundary". * * "m_end" is never dereferenced, so it need not point to a vm_page * structure within vm_page_array[]. * * "npages" must be greater than zero. "m_start" and "m_end" must not * span a hole (or discontiguity) in the physical address space. Both * "alignment" and "boundary" must be a power of two. */ vm_page_t vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end, u_long alignment, vm_paddr_t boundary, int options) { struct mtx *m_mtx, *new_mtx; vm_object_t object; vm_paddr_t pa; vm_page_t m, m_run; #if VM_NRESERVLEVEL > 0 int level; #endif int m_inc, order, run_ext, run_len; KASSERT(npages > 0, ("npages is 0")); KASSERT(powerof2(alignment), ("alignment is not a power of 2")); KASSERT(powerof2(boundary), ("boundary is not a power of 2")); m_run = NULL; run_len = 0; m_mtx = NULL; for (m = m_start; m < m_end && run_len < npages; m += m_inc) { KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, ("page %p is PG_FICTITIOUS or PG_MARKER", m)); /* * If the current page would be the start of a run, check its * physical address against the end, alignment, and boundary * conditions. If it doesn't satisfy these conditions, either * terminate the scan or advance to the next page that * satisfies the failed condition. */ if (run_len == 0) { KASSERT(m_run == NULL, ("m_run != NULL")); if (m + npages > m_end) break; pa = VM_PAGE_TO_PHYS(m); if ((pa & (alignment - 1)) != 0) { m_inc = atop(roundup2(pa, alignment) - pa); continue; } if (rounddown2(pa ^ (pa + ptoa(npages) - 1), boundary) != 0) { m_inc = atop(roundup2(pa, boundary) - pa); continue; } } else KASSERT(m_run != NULL, ("m_run == NULL")); /* * Avoid releasing and reacquiring the same page lock. */ new_mtx = vm_page_lockptr(m); if (m_mtx != new_mtx) { if (m_mtx != NULL) mtx_unlock(m_mtx); m_mtx = new_mtx; mtx_lock(m_mtx); } m_inc = 1; retry: if (m->wire_count != 0 || m->hold_count != 0) run_ext = 0; #if VM_NRESERVLEVEL > 0 else if ((level = vm_reserv_level(m)) >= 0 && (options & VPSC_NORESERV) != 0) { run_ext = 0; /* Advance to the end of the reservation. */ pa = VM_PAGE_TO_PHYS(m); m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - pa); } #endif else if ((object = m->object) != NULL) { /* * The page is considered eligible for relocation if * and only if it could be laundered or reclaimed by * the page daemon. */ if (!VM_OBJECT_TRYRLOCK(object)) { mtx_unlock(m_mtx); VM_OBJECT_RLOCK(object); mtx_lock(m_mtx); if (m->object != object) { /* * The page may have been freed. */ VM_OBJECT_RUNLOCK(object); goto retry; } else if (m->wire_count != 0 || m->hold_count != 0) { run_ext = 0; goto unlock; } } KASSERT((m->flags & PG_UNHOLDFREE) == 0, ("page %p is PG_UNHOLDFREE", m)); /* Don't care: PG_NODUMP, PG_ZERO. */ if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP && object->type != OBJT_VNODE) { run_ext = 0; #if VM_NRESERVLEVEL > 0 } else if ((options & VPSC_NOSUPER) != 0 && (level = vm_reserv_level_iffullpop(m)) >= 0) { run_ext = 0; /* Advance to the end of the superpage. */ pa = VM_PAGE_TO_PHYS(m); m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) - pa); #endif } else if (object->memattr == VM_MEMATTR_DEFAULT && m->queue != PQ_NONE && !vm_page_busied(m)) { /* * The page is allocated but eligible for * relocation. Extend the current run by one * page. */ KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, ("page %p has an unexpected memattr", m)); KASSERT((m->oflags & (VPO_SWAPINPROG | VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, ("page %p has unexpected oflags", m)); /* Don't care: VPO_NOSYNC. */ run_ext = 1; } else run_ext = 0; unlock: VM_OBJECT_RUNLOCK(object); #if VM_NRESERVLEVEL > 0 } else if (level >= 0) { /* * The page is reserved but not yet allocated. In * other words, it is still cached or free. Extend * the current run by one page. */ run_ext = 1; #endif } else if ((order = m->order) < VM_NFREEORDER) { /* * The page is enqueued in the physical memory * allocator's cache/free page queues. Moreover, it * is the first page in a power-of-two-sized run of * contiguous cache/free pages. Add these pages to * the end of the current run, and jump ahead. */ run_ext = 1 << order; m_inc = 1 << order; } else { /* * Skip the page for one of the following reasons: (1) * It is enqueued in the physical memory allocator's * cache/free page queues. However, it is not the * first page in a run of contiguous cache/free pages. * (This case rarely occurs because the scan is * performed in ascending order.) (2) It is not * reserved, and it is transitioning from free to * allocated. (Conversely, the transition from * allocated to free for managed pages is blocked by * the page lock.) (3) It is allocated but not * contained by an object and not wired, e.g., * allocated by Xen's balloon driver. */ run_ext = 0; } /* * Extend or reset the current run of pages. */ if (run_ext > 0) { if (run_len == 0) m_run = m; run_len += run_ext; } else { if (run_len > 0) { m_run = NULL; run_len = 0; } } } if (m_mtx != NULL) mtx_unlock(m_mtx); if (run_len >= npages) return (m_run); return (NULL); } /* * vm_page_reclaim_run: * * Try to relocate each of the allocated virtual pages within the * specified run of physical pages to a new physical address. Free the * physical pages underlying the relocated virtual pages. A virtual page * is relocatable if and only if it could be laundered or reclaimed by * the page daemon. Whenever possible, a virtual page is relocated to a * physical address above "high". * * Returns 0 if every physical page within the run was already free or * just freed by a successful relocation. Otherwise, returns a non-zero * value indicating why the last attempt to relocate a virtual page was * unsuccessful. * * "req_class" must be an allocation class. */ static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run, vm_paddr_t high) { struct mtx *m_mtx, *new_mtx; struct spglist free; vm_object_t object; vm_paddr_t pa; vm_page_t m, m_end, m_new; int error, order, req; KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class, ("req_class is not an allocation class")); SLIST_INIT(&free); error = 0; m = m_run; m_end = m_run + npages; m_mtx = NULL; for (; error == 0 && m < m_end; m++) { KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0, ("page %p is PG_FICTITIOUS or PG_MARKER", m)); /* * Avoid releasing and reacquiring the same page lock. */ new_mtx = vm_page_lockptr(m); if (m_mtx != new_mtx) { if (m_mtx != NULL) mtx_unlock(m_mtx); m_mtx = new_mtx; mtx_lock(m_mtx); } retry: if (m->wire_count != 0 || m->hold_count != 0) error = EBUSY; else if ((object = m->object) != NULL) { /* * The page is relocated if and only if it could be * laundered or reclaimed by the page daemon. */ if (!VM_OBJECT_TRYWLOCK(object)) { mtx_unlock(m_mtx); VM_OBJECT_WLOCK(object); mtx_lock(m_mtx); if (m->object != object) { /* * The page may have been freed. */ VM_OBJECT_WUNLOCK(object); goto retry; } else if (m->wire_count != 0 || m->hold_count != 0) { error = EBUSY; goto unlock; } } KASSERT((m->flags & PG_UNHOLDFREE) == 0, ("page %p is PG_UNHOLDFREE", m)); /* Don't care: PG_NODUMP, PG_ZERO. */ if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP && object->type != OBJT_VNODE) error = EINVAL; else if (object->memattr != VM_MEMATTR_DEFAULT) error = EINVAL; else if (m->queue != PQ_NONE && !vm_page_busied(m)) { KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT, ("page %p has an unexpected memattr", m)); KASSERT((m->oflags & (VPO_SWAPINPROG | VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0, ("page %p has unexpected oflags", m)); /* Don't care: VPO_NOSYNC. */ if (m->valid != 0) { /* * First, try to allocate a new page * that is above "high". Failing * that, try to allocate a new page * that is below "m_run". Allocate * the new page between the end of * "m_run" and "high" only as a last * resort. */ req = req_class | VM_ALLOC_NOOBJ; if ((m->flags & PG_NODUMP) != 0) req |= VM_ALLOC_NODUMP; if (trunc_page(high) != ~(vm_paddr_t)PAGE_MASK) { m_new = vm_page_alloc_contig( NULL, 0, req, 1, round_page(high), ~(vm_paddr_t)0, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT); } else m_new = NULL; if (m_new == NULL) { pa = VM_PAGE_TO_PHYS(m_run); m_new = vm_page_alloc_contig( NULL, 0, req, 1, 0, pa - 1, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT); } if (m_new == NULL) { pa += ptoa(npages); m_new = vm_page_alloc_contig( NULL, 0, req, 1, pa, high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT); } if (m_new == NULL) { error = ENOMEM; goto unlock; } KASSERT(m_new->wire_count == 0, ("page %p is wired", m)); /* * Replace "m" with the new page. For * vm_page_replace(), "m" must be busy * and dequeued. Finally, change "m" * as if vm_page_free() was called. */ if (object->ref_count != 0) pmap_remove_all(m); m_new->aflags = m->aflags; KASSERT(m_new->oflags == VPO_UNMANAGED, ("page %p is managed", m)); m_new->oflags = m->oflags & VPO_NOSYNC; pmap_copy_page(m, m_new); m_new->valid = m->valid; m_new->dirty = m->dirty; m->flags &= ~PG_ZERO; vm_page_xbusy(m); vm_page_remque(m); vm_page_replace_checked(m_new, object, m->pindex, m); m->valid = 0; vm_page_undirty(m); /* * The new page must be deactivated * before the object is unlocked. */ new_mtx = vm_page_lockptr(m_new); if (m_mtx != new_mtx) { mtx_unlock(m_mtx); m_mtx = new_mtx; mtx_lock(m_mtx); } vm_page_deactivate(m_new); } else { m->flags &= ~PG_ZERO; vm_page_remque(m); vm_page_remove(m); KASSERT(m->dirty == 0, ("page %p is dirty", m)); } SLIST_INSERT_HEAD(&free, m, plinks.s.ss); } else error = EBUSY; unlock: VM_OBJECT_WUNLOCK(object); } else { mtx_lock(&vm_page_queue_free_mtx); order = m->order; if (order < VM_NFREEORDER) { /* * The page is enqueued in the physical memory * allocator's cache/free page queues. * Moreover, it is the first page in a power- * of-two-sized run of contiguous cache/free * pages. Jump ahead to the last page within * that run, and continue from there. */ m += (1 << order) - 1; } #if VM_NRESERVLEVEL > 0 else if (vm_reserv_is_page_free(m)) order = 0; #endif mtx_unlock(&vm_page_queue_free_mtx); if (order == VM_NFREEORDER) error = EINVAL; } } if (m_mtx != NULL) mtx_unlock(m_mtx); if ((m = SLIST_FIRST(&free)) != NULL) { mtx_lock(&vm_page_queue_free_mtx); do { SLIST_REMOVE_HEAD(&free, plinks.s.ss); vm_phys_freecnt_adj(m, 1); #if VM_NRESERVLEVEL > 0 if (!vm_reserv_free_page(m)) #else if (true) #endif vm_phys_free_pages(m, 0); } while ((m = SLIST_FIRST(&free)) != NULL); vm_page_free_wakeup(); mtx_unlock(&vm_page_queue_free_mtx); } return (error); } #define NRUNS 16 CTASSERT(powerof2(NRUNS)); #define RUN_INDEX(count) ((count) & (NRUNS - 1)) #define MIN_RECLAIM 8 /* * vm_page_reclaim_contig: * * Reclaim allocated, contiguous physical memory satisfying the specified * conditions by relocating the virtual pages using that physical memory. * Returns true if reclamation is successful and false otherwise. Since * relocation requires the allocation of physical pages, reclamation may * fail due to a shortage of cache/free pages. When reclamation fails, * callers are expected to perform VM_WAIT before retrying a failed * allocation operation, e.g., vm_page_alloc_contig(). * * The caller must always specify an allocation class through "req". * * allocation classes: * VM_ALLOC_NORMAL normal process request * VM_ALLOC_SYSTEM system *really* needs a page * VM_ALLOC_INTERRUPT interrupt time request * * The optional allocation flags are ignored. * * "npages" must be greater than zero. Both "alignment" and "boundary" * must be a power of two. */ bool vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary) { vm_paddr_t curr_low; vm_page_t m_run, m_runs[NRUNS]; u_long count, reclaimed; int error, i, options, req_class; KASSERT(npages > 0, ("npages is 0")); KASSERT(powerof2(alignment), ("alignment is not a power of 2")); KASSERT(powerof2(boundary), ("boundary is not a power of 2")); req_class = req & VM_ALLOC_CLASS_MASK; /* * The page daemon is allowed to dig deeper into the free page list. */ if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT) req_class = VM_ALLOC_SYSTEM; /* * Return if the number of cached and free pages cannot satisfy the * requested allocation. */ - count = vm_cnt.v_free_count + vm_cnt.v_cache_count; + count = vm_cnt.v_free_count; if (count < npages + vm_cnt.v_free_reserved || (count < npages + vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) || (count < npages && req_class == VM_ALLOC_INTERRUPT)) return (false); /* * Scan up to three times, relaxing the restrictions ("options") on * the reclamation of reservations and superpages each time. */ for (options = VPSC_NORESERV;;) { /* * Find the highest runs that satisfy the given constraints * and restrictions, and record them in "m_runs". */ curr_low = low; count = 0; for (;;) { m_run = vm_phys_scan_contig(npages, curr_low, high, alignment, boundary, options); if (m_run == NULL) break; curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages); m_runs[RUN_INDEX(count)] = m_run; count++; } /* * Reclaim the highest runs in LIFO (descending) order until * the number of reclaimed pages, "reclaimed", is at least * MIN_RECLAIM. Reset "reclaimed" each time because each * reclamation is idempotent, and runs will (likely) recur * from one scan to the next as restrictions are relaxed. */ reclaimed = 0; for (i = 0; count > 0 && i < NRUNS; i++) { count--; m_run = m_runs[RUN_INDEX(count)]; error = vm_page_reclaim_run(req_class, npages, m_run, high); if (error == 0) { reclaimed += npages; if (reclaimed >= MIN_RECLAIM) return (true); } } /* * Either relax the restrictions on the next scan or return if * the last scan had no restrictions. */ if (options == VPSC_NORESERV) options = VPSC_NOSUPER; else if (options == VPSC_NOSUPER) options = VPSC_ANY; else if (options == VPSC_ANY) return (reclaimed != 0); } } /* * vm_wait: (also see VM_WAIT macro) * * Sleep until free pages are available for allocation. * - Called in various places before memory allocations. */ void vm_wait(void) { mtx_lock(&vm_page_queue_free_mtx); if (curproc == pageproc) { vm_pageout_pages_needed = 1; msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx, PDROP | PSWP, "VMWait", 0); } else { if (__predict_false(pageproc == NULL)) panic("vm_wait in early boot"); if (!vm_pageout_wanted) { vm_pageout_wanted = true; wakeup(&vm_pageout_wanted); } vm_pages_needed = true; msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM, "vmwait", 0); } } /* * vm_waitpfault: (also see VM_WAITPFAULT macro) * * Sleep until free pages are available for allocation. * - Called only in vm_fault so that processes page faulting * can be easily tracked. * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing * processes will be able to grab memory first. Do not change * this balance without careful testing first. */ void vm_waitpfault(void) { mtx_lock(&vm_page_queue_free_mtx); if (!vm_pageout_wanted) { vm_pageout_wanted = true; wakeup(&vm_pageout_wanted); } vm_pages_needed = true; msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER, "pfault", 0); } struct vm_pagequeue * vm_page_pagequeue(vm_page_t m) { if (vm_page_in_laundry(m)) return (&vm_dom[0].vmd_pagequeues[m->queue]); else return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]); } /* * vm_page_dequeue: * * Remove the given page from its current page queue. * * The page must be locked. */ void vm_page_dequeue(vm_page_t m) { struct vm_pagequeue *pq; vm_page_assert_locked(m); KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued", m)); pq = vm_page_pagequeue(m); vm_pagequeue_lock(pq); m->queue = PQ_NONE; TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); vm_pagequeue_cnt_dec(pq); vm_pagequeue_unlock(pq); } /* * vm_page_dequeue_locked: * * Remove the given page from its current page queue. * * The page and page queue must be locked. */ void vm_page_dequeue_locked(vm_page_t m) { struct vm_pagequeue *pq; vm_page_lock_assert(m, MA_OWNED); pq = vm_page_pagequeue(m); vm_pagequeue_assert_locked(pq); m->queue = PQ_NONE; TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); vm_pagequeue_cnt_dec(pq); } /* * vm_page_enqueue: * * Add the given page to the specified page queue. * * The page must be locked. */ static void vm_page_enqueue(uint8_t queue, vm_page_t m) { struct vm_pagequeue *pq; vm_page_lock_assert(m, MA_OWNED); KASSERT(queue < PQ_COUNT, ("vm_page_enqueue: invalid queue %u request for page %p", queue, m)); if (queue == PQ_LAUNDRY) pq = &vm_dom[0].vmd_pagequeues[queue]; else pq = &vm_phys_domain(m)->vmd_pagequeues[queue]; vm_pagequeue_lock(pq); m->queue = queue; TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); vm_pagequeue_cnt_inc(pq); vm_pagequeue_unlock(pq); } /* * vm_page_requeue: * * Move the given page to the tail of its current page queue. * * The page must be locked. */ void vm_page_requeue(vm_page_t m) { struct vm_pagequeue *pq; vm_page_lock_assert(m, MA_OWNED); KASSERT(m->queue != PQ_NONE, ("vm_page_requeue: page %p is not queued", m)); pq = vm_page_pagequeue(m); vm_pagequeue_lock(pq); TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); vm_pagequeue_unlock(pq); } /* * vm_page_requeue_locked: * * Move the given page to the tail of its current page queue. * * The page queue must be locked. */ void vm_page_requeue_locked(vm_page_t m) { struct vm_pagequeue *pq; KASSERT(m->queue != PQ_NONE, ("vm_page_requeue_locked: page %p is not queued", m)); pq = vm_page_pagequeue(m); vm_pagequeue_assert_locked(pq); TAILQ_REMOVE(&pq->pq_pl, m, plinks.q); TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); } /* * vm_page_activate: * * Put the specified page on the active list (if appropriate). * Ensure that act_count is at least ACT_INIT but do not otherwise * mess with it. * * The page must be locked. */ void vm_page_activate(vm_page_t m) { int queue; vm_page_lock_assert(m, MA_OWNED); if ((queue = m->queue) != PQ_ACTIVE) { if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { if (m->act_count < ACT_INIT) m->act_count = ACT_INIT; if (queue != PQ_NONE) vm_page_dequeue(m); vm_page_enqueue(PQ_ACTIVE, m); } else KASSERT(queue == PQ_NONE, ("vm_page_activate: wired page %p is queued", m)); } else { if (m->act_count < ACT_INIT) m->act_count = ACT_INIT; } } /* * vm_page_free_wakeup: * * Helper routine for vm_page_free_toq() and vm_page_cache(). This * routine is called when a page has been added to the cache or free * queues. * * The page queues must be locked. */ static inline void vm_page_free_wakeup(void) { mtx_assert(&vm_page_queue_free_mtx, MA_OWNED); /* * if pageout daemon needs pages, then tell it that there are * some free. */ if (vm_pageout_pages_needed && - vm_cnt.v_cache_count + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) { + vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) { wakeup(&vm_pageout_pages_needed); vm_pageout_pages_needed = 0; } /* * wakeup processes that are waiting on memory if we hit a * high water mark. And wakeup scheduler process if we have * lots of memory. this process will swapin processes. */ if (vm_pages_needed && !vm_page_count_min()) { vm_pages_needed = false; wakeup(&vm_cnt.v_free_count); } } /* * vm_page_free_toq: * * Returns the given page to the free list, * disassociating it with any VM object. * * The object must be locked. The page must be locked if it is managed. */ void vm_page_free_toq(vm_page_t m) { if ((m->oflags & VPO_UNMANAGED) == 0) { vm_page_lock_assert(m, MA_OWNED); KASSERT(!pmap_page_is_mapped(m), ("vm_page_free_toq: freeing mapped page %p", m)); } else KASSERT(m->queue == PQ_NONE, ("vm_page_free_toq: unmanaged page %p is queued", m)); PCPU_INC(cnt.v_tfree); if (vm_page_sbusied(m)) panic("vm_page_free: freeing busy page %p", m); /* * Unqueue, then remove page. Note that we cannot destroy * the page here because we do not want to call the pager's * callback routine until after we've put the page on the * appropriate free queue. */ vm_page_remque(m); vm_page_remove(m); /* * If fictitious remove object association and * return, otherwise delay object association removal. */ if ((m->flags & PG_FICTITIOUS) != 0) { return; } m->valid = 0; vm_page_undirty(m); if (m->wire_count != 0) panic("vm_page_free: freeing wired page %p", m); if (m->hold_count != 0) { m->flags &= ~PG_ZERO; KASSERT((m->flags & PG_UNHOLDFREE) == 0, ("vm_page_free: freeing PG_UNHOLDFREE page %p", m)); m->flags |= PG_UNHOLDFREE; } else { /* * Restore the default memory attribute to the page. */ if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT) pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT); /* * Insert the page into the physical memory allocator's * cache/free page queues. */ mtx_lock(&vm_page_queue_free_mtx); vm_phys_freecnt_adj(m, 1); #if VM_NRESERVLEVEL > 0 if (!vm_reserv_free_page(m)) #else if (TRUE) #endif vm_phys_free_pages(m, 0); vm_page_free_wakeup(); mtx_unlock(&vm_page_queue_free_mtx); } } /* * vm_page_wire: * * Mark this page as wired down by yet * another map, removing it from paging queues * as necessary. * * If the page is fictitious, then its wire count must remain one. * * The page must be locked. */ void vm_page_wire(vm_page_t m) { /* * Only bump the wire statistics if the page is not already wired, * and only unqueue the page if it is on some queue (if it is unmanaged * it is already off the queues). */ vm_page_lock_assert(m, MA_OWNED); if ((m->flags & PG_FICTITIOUS) != 0) { KASSERT(m->wire_count == 1, ("vm_page_wire: fictitious page %p's wire count isn't one", m)); return; } if (m->wire_count == 0) { KASSERT((m->oflags & VPO_UNMANAGED) == 0 || m->queue == PQ_NONE, ("vm_page_wire: unmanaged page %p is queued", m)); vm_page_remque(m); atomic_add_int(&vm_cnt.v_wire_count, 1); } m->wire_count++; KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m)); } /* * vm_page_unwire: * * Release one wiring of the specified page, potentially allowing it to be * paged out. Returns TRUE if the number of wirings transitions to zero and * FALSE otherwise. * * Only managed pages belonging to an object can be paged out. If the number * of wirings transitions to zero and the page is eligible for page out, then * the page is added to the specified paging queue (unless PQ_NONE is * specified). * * If a page is fictitious, then its wire count must always be one. * * A managed page must be locked. */ boolean_t vm_page_unwire(vm_page_t m, uint8_t queue) { KASSERT(queue < PQ_COUNT || queue == PQ_NONE, ("vm_page_unwire: invalid queue %u request for page %p", queue, m)); if ((m->oflags & VPO_UNMANAGED) == 0) vm_page_assert_locked(m); if ((m->flags & PG_FICTITIOUS) != 0) { KASSERT(m->wire_count == 1, ("vm_page_unwire: fictitious page %p's wire count isn't one", m)); return (FALSE); } if (m->wire_count > 0) { m->wire_count--; if (m->wire_count == 0) { atomic_subtract_int(&vm_cnt.v_wire_count, 1); if ((m->oflags & VPO_UNMANAGED) == 0 && m->object != NULL && queue != PQ_NONE) vm_page_enqueue(queue, m); return (TRUE); } else return (FALSE); } else panic("vm_page_unwire: page %p's wire count is zero", m); } /* * Move the specified page to the inactive queue. * * Many pages placed on the inactive queue should actually go * into the cache, but it is difficult to figure out which. What * we do instead, if the inactive target is well met, is to put * clean pages at the head of the inactive queue instead of the tail. * This will cause them to be moved to the cache more quickly and * if not actively re-referenced, reclaimed more quickly. If we just * stick these pages at the end of the inactive queue, heavy filesystem * meta-data accesses can cause an unnecessary paging load on memory bound * processes. This optimization causes one-time-use metadata to be * reused more quickly. * * Normally noreuse is FALSE, resulting in LRU operation. noreuse is set * to TRUE if we want this page to be 'as if it were placed in the cache', * except without unmapping it from the process address space. In * practice this is implemented by inserting the page at the head of the * queue, using a marker page to guide FIFO insertion ordering. * * The page must be locked. */ static inline void _vm_page_deactivate(vm_page_t m, boolean_t noreuse) { struct vm_pagequeue *pq; int queue; vm_page_assert_locked(m); /* * Ignore if the page is already inactive, unless it is unlikely to be * reactivated. */ if ((queue = m->queue) == PQ_INACTIVE && !noreuse) return; if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE]; /* Avoid multiple acquisitions of the inactive queue lock. */ if (queue == PQ_INACTIVE) { vm_pagequeue_lock(pq); vm_page_dequeue_locked(m); } else { if (queue != PQ_NONE) vm_page_dequeue(m); vm_pagequeue_lock(pq); } m->queue = PQ_INACTIVE; if (noreuse) TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead, m, plinks.q); else TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q); vm_pagequeue_cnt_inc(pq); vm_pagequeue_unlock(pq); } } /* * Move the specified page to the inactive queue. * * The page must be locked. */ void vm_page_deactivate(vm_page_t m) { _vm_page_deactivate(m, FALSE); } /* * Move the specified page to the inactive queue with the expectation * that it is unlikely to be reused. * * The page must be locked. */ void vm_page_deactivate_noreuse(vm_page_t m) { _vm_page_deactivate(m, TRUE); } /* * vm_page_launder * * Put a page in the laundry. */ void vm_page_launder(vm_page_t m) { int queue; vm_page_assert_locked(m); if ((queue = m->queue) != PQ_LAUNDRY) { if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) { if (queue != PQ_NONE) vm_page_dequeue(m); vm_page_enqueue(PQ_LAUNDRY, m); } else KASSERT(queue == PQ_NONE, ("wired page %p is queued", m)); } } /* * vm_page_try_to_free() * * Attempt to free the page. If we cannot free it, we do nothing. * 1 is returned on success, 0 on failure. */ int vm_page_try_to_free(vm_page_t m) { vm_page_lock_assert(m, MA_OWNED); if (m->object != NULL) VM_OBJECT_ASSERT_WLOCKED(m->object); if (m->dirty || m->hold_count || m->wire_count || (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m)) return (0); pmap_remove_all(m); if (m->dirty) return (0); vm_page_free(m); return (1); } /* * vm_page_advise * * Deactivate or do nothing, as appropriate. * * The object and page must be locked. */ void vm_page_advise(vm_page_t m, int advice) { vm_page_assert_locked(m); VM_OBJECT_ASSERT_WLOCKED(m->object); if (advice == MADV_FREE) /* * Mark the page clean. This will allow the page to be freed * up by the system. However, such pages are often reused * quickly by malloc() so we do not do anything that would * cause a page fault if we can help it. * * Specifically, we do not try to actually free the page now * nor do we try to put it in the cache (which would cause a * page fault on reuse). * * But we do make the page as freeable as we can without * actually taking the step of unmapping it. */ vm_page_undirty(m); else if (advice != MADV_DONTNEED) return; /* * Clear any references to the page. Otherwise, the page daemon will * immediately reactivate the page. */ vm_page_aflag_clear(m, PGA_REFERENCED); if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m)) vm_page_dirty(m); /* * Place clean pages near the head of the inactive queue rather than * the tail, thus defeating the queue's LRU operation and ensuring that * the page will be reused quickly. Dirty pages not already in the * laundry are moved there. */ if (m->dirty == 0) vm_page_deactivate_noreuse(m); else vm_page_launder(m); } /* * Grab a page, waiting until we are waken up due to the page * changing state. We keep on waiting, if the page continues * to be in the object. If the page doesn't exist, first allocate it * and then conditionally zero it. * * This routine may sleep. * * The object must be locked on entry. The lock will, however, be released * and reacquired if the routine sleeps. */ vm_page_t vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) { vm_page_t m; int sleep; VM_OBJECT_ASSERT_WLOCKED(object); KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 || (allocflags & VM_ALLOC_IGN_SBUSY) != 0, ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch")); retrylookup: if ((m = vm_page_lookup(object, pindex)) != NULL) { sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ? vm_page_xbusied(m) : vm_page_busied(m); if (sleep) { if ((allocflags & VM_ALLOC_NOWAIT) != 0) return (NULL); /* * Reference the page before unlocking and * sleeping so that the page daemon is less * likely to reclaim it. */ vm_page_aflag_set(m, PGA_REFERENCED); vm_page_lock(m); VM_OBJECT_WUNLOCK(object); vm_page_busy_sleep(m, "pgrbwt", (allocflags & VM_ALLOC_IGN_SBUSY) != 0); VM_OBJECT_WLOCK(object); goto retrylookup; } else { if ((allocflags & VM_ALLOC_WIRED) != 0) { vm_page_lock(m); vm_page_wire(m); vm_page_unlock(m); } if ((allocflags & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0) vm_page_xbusy(m); if ((allocflags & VM_ALLOC_SBUSY) != 0) vm_page_sbusy(m); return (m); } } m = vm_page_alloc(object, pindex, allocflags); if (m == NULL) { if ((allocflags & VM_ALLOC_NOWAIT) != 0) return (NULL); VM_OBJECT_WUNLOCK(object); VM_WAIT; VM_OBJECT_WLOCK(object); goto retrylookup; } if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0) pmap_zero_page(m); return (m); } /* * Mapping function for valid or dirty bits in a page. * * Inputs are required to range within a page. */ vm_page_bits_t vm_page_bits(int base, int size) { int first_bit; int last_bit; KASSERT( base + size <= PAGE_SIZE, ("vm_page_bits: illegal base/size %d/%d", base, size) ); if (size == 0) /* handle degenerate case */ return (0); first_bit = base >> DEV_BSHIFT; last_bit = (base + size - 1) >> DEV_BSHIFT; return (((vm_page_bits_t)2 << last_bit) - ((vm_page_bits_t)1 << first_bit)); } /* * vm_page_set_valid_range: * * Sets portions of a page valid. The arguments are expected * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive * of any partial chunks touched by the range. The invalid portion of * such chunks will be zeroed. * * (base + size) must be less then or equal to PAGE_SIZE. */ void vm_page_set_valid_range(vm_page_t m, int base, int size) { int endoff, frag; VM_OBJECT_ASSERT_WLOCKED(m->object); if (size == 0) /* handle degenerate case */ return; /* * If the base is not DEV_BSIZE aligned and the valid * bit is clear, we have to zero out a portion of the * first block. */ if ((frag = rounddown2(base, DEV_BSIZE)) != base && (m->valid & (1 << (base >> DEV_BSHIFT))) == 0) pmap_zero_page_area(m, frag, base - frag); /* * If the ending offset is not DEV_BSIZE aligned and the * valid bit is clear, we have to zero out a portion of * the last block. */ endoff = base + size; if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0) pmap_zero_page_area(m, endoff, DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); /* * Assert that no previously invalid block that is now being validated * is already dirty. */ KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0, ("vm_page_set_valid_range: page %p is dirty", m)); /* * Set valid bits inclusive of any overlap. */ m->valid |= vm_page_bits(base, size); } /* * Clear the given bits from the specified page's dirty field. */ static __inline void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits) { uintptr_t addr; #if PAGE_SIZE < 16384 int shift; #endif /* * If the object is locked and the page is neither exclusive busy nor * write mapped, then the page's dirty field cannot possibly be * set by a concurrent pmap operation. */ VM_OBJECT_ASSERT_WLOCKED(m->object); if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) m->dirty &= ~pagebits; else { /* * The pmap layer can call vm_page_dirty() without * holding a distinguished lock. The combination of * the object's lock and an atomic operation suffice * to guarantee consistency of the page dirty field. * * For PAGE_SIZE == 32768 case, compiler already * properly aligns the dirty field, so no forcible * alignment is needed. Only require existence of * atomic_clear_64 when page size is 32768. */ addr = (uintptr_t)&m->dirty; #if PAGE_SIZE == 32768 atomic_clear_64((uint64_t *)addr, pagebits); #elif PAGE_SIZE == 16384 atomic_clear_32((uint32_t *)addr, pagebits); #else /* PAGE_SIZE <= 8192 */ /* * Use a trick to perform a 32-bit atomic on the * containing aligned word, to not depend on the existence * of atomic_clear_{8, 16}. */ shift = addr & (sizeof(uint32_t) - 1); #if BYTE_ORDER == BIG_ENDIAN shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY; #else shift *= NBBY; #endif addr &= ~(sizeof(uint32_t) - 1); atomic_clear_32((uint32_t *)addr, pagebits << shift); #endif /* PAGE_SIZE */ } } /* * vm_page_set_validclean: * * Sets portions of a page valid and clean. The arguments are expected * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive * of any partial chunks touched by the range. The invalid portion of * such chunks will be zero'd. * * (base + size) must be less then or equal to PAGE_SIZE. */ void vm_page_set_validclean(vm_page_t m, int base, int size) { vm_page_bits_t oldvalid, pagebits; int endoff, frag; VM_OBJECT_ASSERT_WLOCKED(m->object); if (size == 0) /* handle degenerate case */ return; /* * If the base is not DEV_BSIZE aligned and the valid * bit is clear, we have to zero out a portion of the * first block. */ if ((frag = rounddown2(base, DEV_BSIZE)) != base && (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0) pmap_zero_page_area(m, frag, base - frag); /* * If the ending offset is not DEV_BSIZE aligned and the * valid bit is clear, we have to zero out a portion of * the last block. */ endoff = base + size; if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff && (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0) pmap_zero_page_area(m, endoff, DEV_BSIZE - (endoff & (DEV_BSIZE - 1))); /* * Set valid, clear dirty bits. If validating the entire * page we can safely clear the pmap modify bit. We also * use this opportunity to clear the VPO_NOSYNC flag. If a process * takes a write fault on a MAP_NOSYNC memory area the flag will * be set again. * * We set valid bits inclusive of any overlap, but we can only * clear dirty bits for DEV_BSIZE chunks that are fully within * the range. */ oldvalid = m->valid; pagebits = vm_page_bits(base, size); m->valid |= pagebits; #if 0 /* NOT YET */ if ((frag = base & (DEV_BSIZE - 1)) != 0) { frag = DEV_BSIZE - frag; base += frag; size -= frag; if (size < 0) size = 0; } pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); #endif if (base == 0 && size == PAGE_SIZE) { /* * The page can only be modified within the pmap if it is * mapped, and it can only be mapped if it was previously * fully valid. */ if (oldvalid == VM_PAGE_BITS_ALL) /* * Perform the pmap_clear_modify() first. Otherwise, * a concurrent pmap operation, such as * pmap_protect(), could clear a modification in the * pmap and set the dirty field on the page before * pmap_clear_modify() had begun and after the dirty * field was cleared here. */ pmap_clear_modify(m); m->dirty = 0; m->oflags &= ~VPO_NOSYNC; } else if (oldvalid != VM_PAGE_BITS_ALL) m->dirty &= ~pagebits; else vm_page_clear_dirty_mask(m, pagebits); } void vm_page_clear_dirty(vm_page_t m, int base, int size) { vm_page_clear_dirty_mask(m, vm_page_bits(base, size)); } /* * vm_page_set_invalid: * * Invalidates DEV_BSIZE'd chunks within a page. Both the * valid and dirty bits for the effected areas are cleared. */ void vm_page_set_invalid(vm_page_t m, int base, int size) { vm_page_bits_t bits; vm_object_t object; object = m->object; VM_OBJECT_ASSERT_WLOCKED(object); if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) + size >= object->un_pager.vnp.vnp_size) bits = VM_PAGE_BITS_ALL; else bits = vm_page_bits(base, size); if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL && bits != 0) pmap_remove_all(m); KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) || !pmap_page_is_mapped(m), ("vm_page_set_invalid: page %p is mapped", m)); m->valid &= ~bits; m->dirty &= ~bits; } /* * vm_page_zero_invalid() * * The kernel assumes that the invalid portions of a page contain * garbage, but such pages can be mapped into memory by user code. * When this occurs, we must zero out the non-valid portions of the * page so user code sees what it expects. * * Pages are most often semi-valid when the end of a file is mapped * into memory and the file's size is not page aligned. */ void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) { int b; int i; VM_OBJECT_ASSERT_WLOCKED(m->object); /* * Scan the valid bits looking for invalid sections that * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the * valid bit may be set ) have already been zeroed by * vm_page_set_validclean(). */ for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { if (i == (PAGE_SIZE / DEV_BSIZE) || (m->valid & ((vm_page_bits_t)1 << i))) { if (i > b) { pmap_zero_page_area(m, b << DEV_BSHIFT, (i - b) << DEV_BSHIFT); } b = i + 1; } } /* * setvalid is TRUE when we can safely set the zero'd areas * as being valid. We can do this if there are no cache consistancy * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. */ if (setvalid) m->valid = VM_PAGE_BITS_ALL; } /* * vm_page_is_valid: * * Is (partial) page valid? Note that the case where size == 0 * will return FALSE in the degenerate case where the page is * entirely invalid, and TRUE otherwise. */ int vm_page_is_valid(vm_page_t m, int base, int size) { vm_page_bits_t bits; VM_OBJECT_ASSERT_LOCKED(m->object); bits = vm_page_bits(base, size); return (m->valid != 0 && (m->valid & bits) == bits); } /* * vm_page_ps_is_valid: * * Returns TRUE if the entire (super)page is valid and FALSE otherwise. */ boolean_t vm_page_ps_is_valid(vm_page_t m) { int i, npages; VM_OBJECT_ASSERT_LOCKED(m->object); npages = atop(pagesizes[m->psind]); /* * The physically contiguous pages that make up a superpage, i.e., a * page with a page size index ("psind") greater than zero, will * occupy adjacent entries in vm_page_array[]. */ for (i = 0; i < npages; i++) { if (m[i].valid != VM_PAGE_BITS_ALL) return (FALSE); } return (TRUE); } /* * Set the page's dirty bits if the page is modified. */ void vm_page_test_dirty(vm_page_t m) { VM_OBJECT_ASSERT_WLOCKED(m->object); if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m)) vm_page_dirty(m); } void vm_page_lock_KBI(vm_page_t m, const char *file, int line) { mtx_lock_flags_(vm_page_lockptr(m), 0, file, line); } void vm_page_unlock_KBI(vm_page_t m, const char *file, int line) { mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line); } int vm_page_trylock_KBI(vm_page_t m, const char *file, int line) { return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line)); } #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT) void vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line) { vm_page_lock_assert_KBI(m, MA_OWNED, file, line); } void vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line) { mtx_assert_(vm_page_lockptr(m), a, file, line); } #endif #ifdef INVARIANTS void vm_page_object_lock_assert(vm_page_t m) { /* * Certain of the page's fields may only be modified by the * holder of the containing object's lock or the exclusive busy. * holder. Unfortunately, the holder of the write busy is * not recorded, and thus cannot be checked here. */ if (m->object != NULL && !vm_page_xbusied(m)) VM_OBJECT_ASSERT_WLOCKED(m->object); } void vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits) { if ((bits & PGA_WRITEABLE) == 0) return; /* * The PGA_WRITEABLE flag can only be set if the page is * managed, is exclusively busied or the object is locked. * Currently, this flag is only set by pmap_enter(). */ KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("PGA_WRITEABLE on unmanaged page")); if (!vm_page_xbusied(m)) VM_OBJECT_ASSERT_LOCKED(m->object); } #endif #include "opt_ddb.h" #ifdef DDB #include #include DB_SHOW_COMMAND(page, vm_page_print_page_info) { + db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count); - db_printf("vm_cnt.v_cache_count: %d\n", vm_cnt.v_cache_count); db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count); db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count); db_printf("vm_cnt.v_laundry_count: %d\n", vm_cnt.v_laundry_count); db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count); db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved); db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min); db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target); db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target); } DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) { int dom; - db_printf("pq_free %d pq_cache %d\n", - vm_cnt.v_free_count, vm_cnt.v_cache_count); + db_printf("pq_free %d\n", vm_cnt.v_free_count); for (dom = 0; dom < vm_ndomains; dom++) { db_printf( "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d\n", dom, vm_dom[dom].vmd_page_count, vm_dom[dom].vmd_free_count, vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt, vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt, vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt); } } DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo) { vm_page_t m; boolean_t phys; if (!have_addr) { db_printf("show pginfo addr\n"); return; } phys = strchr(modif, 'p') != NULL; if (phys) m = PHYS_TO_VM_PAGE(addr); else m = (vm_page_t)addr; db_printf( "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n" " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n", m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr, m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags, m->flags, m->act_count, m->busy_lock, m->valid, m->dirty); } #endif /* DDB */ Index: head/sys/vm/vnode_pager.c =================================================================== --- head/sys/vm/vnode_pager.c (revision 309016) +++ head/sys/vm/vnode_pager.c (revision 309017) @@ -1,1414 +1,1413 @@ /*- * Copyright (c) 1990 University of Utah. * Copyright (c) 1991 The Regents of the University of California. * All rights reserved. * Copyright (c) 1993, 1994 John S. Dyson * Copyright (c) 1995, David Greenman * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91 */ /* * Page to/from files (vnodes). */ /* * TODO: * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will * greatly re-simplify the vnode_pager. */ #include __FBSDID("$FreeBSD$"); #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress, int *run); static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m); static int vnode_pager_input_old(vm_object_t object, vm_page_t m); static void vnode_pager_dealloc(vm_object_t); static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int *, int *); static int vnode_pager_getpages_async(vm_object_t, vm_page_t *, int, int *, int *, vop_getpages_iodone_t, void *); static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, int, int *); static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *); static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, vm_ooffset_t, struct ucred *cred); static int vnode_pager_generic_getpages_done(struct buf *); static void vnode_pager_generic_getpages_done_async(struct buf *); struct pagerops vnodepagerops = { .pgo_alloc = vnode_pager_alloc, .pgo_dealloc = vnode_pager_dealloc, .pgo_getpages = vnode_pager_getpages, .pgo_getpages_async = vnode_pager_getpages_async, .pgo_putpages = vnode_pager_putpages, .pgo_haspage = vnode_pager_haspage, }; int vnode_pbuf_freecnt; int vnode_async_pbuf_freecnt; /* Create the VM system backing object for this vnode */ int vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td) { vm_object_t object; vm_ooffset_t size = isize; struct vattr va; if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE) return (0); while ((object = vp->v_object) != NULL) { VM_OBJECT_WLOCK(object); if (!(object->flags & OBJ_DEAD)) { VM_OBJECT_WUNLOCK(object); return (0); } VOP_UNLOCK(vp, 0); vm_object_set_flag(object, OBJ_DISCONNECTWNT); VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vodead", 0); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); } if (size == 0) { if (vn_isdisk(vp, NULL)) { size = IDX_TO_OFF(INT_MAX); } else { if (VOP_GETATTR(vp, &va, td->td_ucred)) return (0); size = va.va_size; } } object = vnode_pager_alloc(vp, size, 0, 0, td->td_ucred); /* * Dereference the reference we just created. This assumes * that the object is associated with the vp. */ VM_OBJECT_WLOCK(object); object->ref_count--; VM_OBJECT_WUNLOCK(object); vrele(vp); KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object")); return (0); } void vnode_destroy_vobject(struct vnode *vp) { struct vm_object *obj; obj = vp->v_object; if (obj == NULL) return; ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject"); VM_OBJECT_WLOCK(obj); umtx_shm_object_terminated(obj); if (obj->ref_count == 0) { /* * don't double-terminate the object */ if ((obj->flags & OBJ_DEAD) == 0) { vm_object_terminate(obj); } else { /* * Waiters were already handled during object * termination. The exclusive vnode lock hopefully * prevented new waiters from referencing the dying * object. */ KASSERT((obj->flags & OBJ_DISCONNECTWNT) == 0, ("OBJ_DISCONNECTWNT set obj %p flags %x", obj, obj->flags)); vp->v_object = NULL; VM_OBJECT_WUNLOCK(obj); } } else { /* * Woe to the process that tries to page now :-). */ vm_pager_deallocate(obj); VM_OBJECT_WUNLOCK(obj); } KASSERT(vp->v_object == NULL, ("vp %p obj %p", vp, vp->v_object)); } /* * Allocate (or lookup) pager for a vnode. * Handle is a vnode pointer. * * MPSAFE */ vm_object_t vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, vm_ooffset_t offset, struct ucred *cred) { vm_object_t object; struct vnode *vp; /* * Pageout to vnode, no can do yet. */ if (handle == NULL) return (NULL); vp = (struct vnode *) handle; /* * If the object is being terminated, wait for it to * go away. */ retry: while ((object = vp->v_object) != NULL) { VM_OBJECT_WLOCK(object); if ((object->flags & OBJ_DEAD) == 0) break; vm_object_set_flag(object, OBJ_DISCONNECTWNT); VM_OBJECT_SLEEP(object, object, PDROP | PVM, "vadead", 0); } KASSERT(vp->v_usecount != 0, ("vnode_pager_alloc: no vnode reference")); if (object == NULL) { /* * Add an object of the appropriate size */ object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size))); object->un_pager.vnp.vnp_size = size; object->un_pager.vnp.writemappings = 0; object->handle = handle; VI_LOCK(vp); if (vp->v_object != NULL) { /* * Object has been created while we were sleeping */ VI_UNLOCK(vp); VM_OBJECT_WLOCK(object); KASSERT(object->ref_count == 1, ("leaked ref %p %d", object, object->ref_count)); object->type = OBJT_DEAD; object->ref_count = 0; VM_OBJECT_WUNLOCK(object); vm_object_destroy(object); goto retry; } vp->v_object = object; VI_UNLOCK(vp); } else { object->ref_count++; #if VM_NRESERVLEVEL > 0 vm_object_color(object, 0); #endif VM_OBJECT_WUNLOCK(object); } vref(vp); return (object); } /* * The object must be locked. */ static void vnode_pager_dealloc(vm_object_t object) { struct vnode *vp; int refs; vp = object->handle; if (vp == NULL) panic("vnode_pager_dealloc: pager already dealloced"); VM_OBJECT_ASSERT_WLOCKED(object); vm_object_pip_wait(object, "vnpdea"); refs = object->ref_count; object->handle = NULL; object->type = OBJT_DEAD; if (object->flags & OBJ_DISCONNECTWNT) { vm_object_clear_flag(object, OBJ_DISCONNECTWNT); wakeup(object); } ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc"); if (object->un_pager.vnp.writemappings > 0) { object->un_pager.vnp.writemappings = 0; VOP_ADD_WRITECOUNT(vp, -1); CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", __func__, vp, vp->v_writecount); } vp->v_object = NULL; VOP_UNSET_TEXT(vp); VM_OBJECT_WUNLOCK(object); while (refs-- > 0) vunref(vp); VM_OBJECT_WLOCK(object); } static boolean_t vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) { struct vnode *vp = object->handle; daddr_t bn; int err; daddr_t reqblock; int poff; int bsize; int pagesperblock, blocksperpage; VM_OBJECT_ASSERT_WLOCKED(object); /* * If no vp or vp is doomed or marked transparent to VM, we do not * have the page. */ if (vp == NULL || vp->v_iflag & VI_DOOMED) return FALSE; /* * If the offset is beyond end of file we do * not have the page. */ if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size) return FALSE; bsize = vp->v_mount->mnt_stat.f_iosize; pagesperblock = bsize / PAGE_SIZE; blocksperpage = 0; if (pagesperblock > 0) { reqblock = pindex / pagesperblock; } else { blocksperpage = (PAGE_SIZE / bsize); reqblock = pindex * blocksperpage; } VM_OBJECT_WUNLOCK(object); err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before); VM_OBJECT_WLOCK(object); if (err) return TRUE; if (bn == -1) return FALSE; if (pagesperblock > 0) { poff = pindex - (reqblock * pagesperblock); if (before) { *before *= pagesperblock; *before += poff; } if (after) { /* * The BMAP vop can report a partial block in the * 'after', but must not report blocks after EOF. * Assert the latter, and truncate 'after' in case * of the former. */ KASSERT((reqblock + *after) * pagesperblock < roundup2(object->size, pagesperblock), ("%s: reqblock %jd after %d size %ju", __func__, (intmax_t )reqblock, *after, (uintmax_t )object->size)); *after *= pagesperblock; *after += pagesperblock - (poff + 1); if (pindex + *after >= object->size) *after = object->size - 1 - pindex; } } else { if (before) { *before /= blocksperpage; } if (after) { *after /= blocksperpage; } } return TRUE; } /* * Lets the VM system know about a change in size for a file. * We adjust our own internal size and flush any cached pages in * the associated object that are affected by the size change. * * Note: this routine may be invoked as a result of a pager put * operation (possibly at object termination time), so we must be careful. */ void vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize) { vm_object_t object; vm_page_t m; vm_pindex_t nobjsize; if ((object = vp->v_object) == NULL) return; /* ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */ VM_OBJECT_WLOCK(object); if (object->type == OBJT_DEAD) { VM_OBJECT_WUNLOCK(object); return; } KASSERT(object->type == OBJT_VNODE, ("not vnode-backed object %p", object)); if (nsize == object->un_pager.vnp.vnp_size) { /* * Hasn't changed size */ VM_OBJECT_WUNLOCK(object); return; } nobjsize = OFF_TO_IDX(nsize + PAGE_MASK); if (nsize < object->un_pager.vnp.vnp_size) { /* * File has shrunk. Toss any cached pages beyond the new EOF. */ if (nobjsize < object->size) vm_object_page_remove(object, nobjsize, object->size, 0); /* * this gets rid of garbage at the end of a page that is now * only partially backed by the vnode. * * XXX for some reason (I don't know yet), if we take a * completely invalid page and mark it partially valid * it can screw up NFS reads, so we don't allow the case. */ if ((nsize & PAGE_MASK) && (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL && m->valid != 0) { int base = (int)nsize & PAGE_MASK; int size = PAGE_SIZE - base; /* * Clear out partial-page garbage in case * the page has been mapped. */ pmap_zero_page_area(m, base, size); /* * Update the valid bits to reflect the blocks that * have been zeroed. Some of these valid bits may * have already been set. */ vm_page_set_valid_range(m, base, size); /* * Round "base" to the next block boundary so that the * dirty bit for a partially zeroed block is not * cleared. */ base = roundup2(base, DEV_BSIZE); /* * Clear out partial-page dirty bits. * * note that we do not clear out the valid * bits. This would prevent bogus_page * replacement from working properly. */ vm_page_clear_dirty(m, base, PAGE_SIZE - base); } } object->un_pager.vnp.vnp_size = nsize; object->size = nobjsize; VM_OBJECT_WUNLOCK(object); } /* * calculate the linear (byte) disk address of specified virtual * file address */ static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress, int *run) { int bsize; int err; daddr_t vblock; daddr_t voffset; if (address < 0) return -1; if (vp->v_iflag & VI_DOOMED) return -1; bsize = vp->v_mount->mnt_stat.f_iosize; vblock = address / bsize; voffset = address % bsize; err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL); if (err == 0) { if (*rtaddress != -1) *rtaddress += voffset / DEV_BSIZE; if (run) { *run += 1; *run *= bsize/PAGE_SIZE; *run -= voffset/PAGE_SIZE; } } return (err); } /* * small block filesystem vnode pager input */ static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m) { struct vnode *vp; struct bufobj *bo; struct buf *bp; struct sf_buf *sf; daddr_t fileaddr; vm_offset_t bsize; vm_page_bits_t bits; int error, i; error = 0; vp = object->handle; if (vp->v_iflag & VI_DOOMED) return VM_PAGER_BAD; bsize = vp->v_mount->mnt_stat.f_iosize; VOP_BMAP(vp, 0, &bo, 0, NULL, NULL); sf = sf_buf_alloc(m, 0); for (i = 0; i < PAGE_SIZE / bsize; i++) { vm_ooffset_t address; bits = vm_page_bits(i * bsize, bsize); if (m->valid & bits) continue; address = IDX_TO_OFF(m->pindex) + i * bsize; if (address >= object->un_pager.vnp.vnp_size) { fileaddr = -1; } else { error = vnode_pager_addr(vp, address, &fileaddr, NULL); if (error) break; } if (fileaddr != -1) { bp = getpbuf(&vnode_pbuf_freecnt); /* build a minimal buffer header */ bp->b_iocmd = BIO_READ; bp->b_iodone = bdone; KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); bp->b_rcred = crhold(curthread->td_ucred); bp->b_wcred = crhold(curthread->td_ucred); bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize; bp->b_blkno = fileaddr; pbgetbo(bo, bp); bp->b_vp = vp; bp->b_bcount = bsize; bp->b_bufsize = bsize; bp->b_runningbufspace = bp->b_bufsize; atomic_add_long(&runningbufspace, bp->b_runningbufspace); /* do the input */ bp->b_iooffset = dbtob(bp->b_blkno); bstrategy(bp); bwait(bp, PVM, "vnsrd"); if ((bp->b_ioflags & BIO_ERROR) != 0) error = EIO; /* * free the buffer header back to the swap buffer pool */ bp->b_vp = NULL; pbrelbo(bp); relpbuf(bp, &vnode_pbuf_freecnt); if (error) break; } else bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize); KASSERT((m->dirty & bits) == 0, ("vnode_pager_input_smlfs: page %p is dirty", m)); VM_OBJECT_WLOCK(object); m->valid |= bits; VM_OBJECT_WUNLOCK(object); } sf_buf_free(sf); if (error) { return VM_PAGER_ERROR; } return VM_PAGER_OK; } /* * old style vnode pager input routine */ static int vnode_pager_input_old(vm_object_t object, vm_page_t m) { struct uio auio; struct iovec aiov; int error; int size; struct sf_buf *sf; struct vnode *vp; VM_OBJECT_ASSERT_WLOCKED(object); error = 0; /* * Return failure if beyond current EOF */ if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) { return VM_PAGER_BAD; } else { size = PAGE_SIZE; if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size) size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex); vp = object->handle; VM_OBJECT_WUNLOCK(object); /* * Allocate a kernel virtual address and initialize so that * we can use VOP_READ/WRITE routines. */ sf = sf_buf_alloc(m, 0); aiov.iov_base = (caddr_t)sf_buf_kva(sf); aiov.iov_len = size; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_offset = IDX_TO_OFF(m->pindex); auio.uio_segflg = UIO_SYSSPACE; auio.uio_rw = UIO_READ; auio.uio_resid = size; auio.uio_td = curthread; error = VOP_READ(vp, &auio, 0, curthread->td_ucred); if (!error) { int count = size - auio.uio_resid; if (count == 0) error = EINVAL; else if (count != PAGE_SIZE) bzero((caddr_t)sf_buf_kva(sf) + count, PAGE_SIZE - count); } sf_buf_free(sf); VM_OBJECT_WLOCK(object); } KASSERT(m->dirty == 0, ("vnode_pager_input_old: page %p is dirty", m)); if (!error) m->valid = VM_PAGE_BITS_ALL; return error ? VM_PAGER_ERROR : VM_PAGER_OK; } /* * generic vnode pager input routine */ /* * Local media VFS's that do not implement their own VOP_GETPAGES * should have their VOP_GETPAGES call to vnode_pager_generic_getpages() * to implement the previous behaviour. * * All other FS's should use the bypass to get to the local media * backing vp's VOP_GETPAGES. */ static int vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind, int *rahead) { struct vnode *vp; int rtval; vp = object->handle; VM_OBJECT_WUNLOCK(object); rtval = VOP_GETPAGES(vp, m, count, rbehind, rahead); KASSERT(rtval != EOPNOTSUPP, ("vnode_pager: FS getpages not implemented\n")); VM_OBJECT_WLOCK(object); return rtval; } static int vnode_pager_getpages_async(vm_object_t object, vm_page_t *m, int count, int *rbehind, int *rahead, vop_getpages_iodone_t iodone, void *arg) { struct vnode *vp; int rtval; vp = object->handle; VM_OBJECT_WUNLOCK(object); rtval = VOP_GETPAGES_ASYNC(vp, m, count, rbehind, rahead, iodone, arg); KASSERT(rtval != EOPNOTSUPP, ("vnode_pager: FS getpages_async not implemented\n")); VM_OBJECT_WLOCK(object); return (rtval); } /* * The implementation of VOP_GETPAGES() and VOP_GETPAGES_ASYNC() for * local filesystems, where partially valid pages can only occur at * the end of file. */ int vnode_pager_local_getpages(struct vop_getpages_args *ap) { return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_rbehind, ap->a_rahead, NULL, NULL)); } int vnode_pager_local_getpages_async(struct vop_getpages_async_args *ap) { return (vnode_pager_generic_getpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg)); } /* * This is now called from local media FS's to operate against their * own vnodes if they fail to implement VOP_GETPAGES. */ int vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int count, int *a_rbehind, int *a_rahead, vop_getpages_iodone_t iodone, void *arg) { vm_object_t object; struct bufobj *bo; struct buf *bp; off_t foff; #ifdef INVARIANTS off_t blkno0; #endif int bsize, pagesperblock, *freecnt; int error, before, after, rbehind, rahead, poff, i; int bytecount, secmask; KASSERT(vp->v_type != VCHR && vp->v_type != VBLK, ("%s does not support devices", __func__)); if (vp->v_iflag & VI_DOOMED) return (VM_PAGER_BAD); object = vp->v_object; foff = IDX_TO_OFF(m[0]->pindex); bsize = vp->v_mount->mnt_stat.f_iosize; pagesperblock = bsize / PAGE_SIZE; KASSERT(foff < object->un_pager.vnp.vnp_size, ("%s: page %p offset beyond vp %p size", __func__, m[0], vp)); KASSERT(count <= sizeof(bp->b_pages), ("%s: requested %d pages", __func__, count)); /* * The last page has valid blocks. Invalid part can only * exist at the end of file, and the page is made fully valid * by zeroing in vm_pager_get_pages(). */ if (m[count - 1]->valid != 0 && --count == 0) { if (iodone != NULL) iodone(arg, m, 1, 0); return (VM_PAGER_OK); } /* * Synchronous and asynchronous paging operations use different * free pbuf counters. This is done to avoid asynchronous requests * to consume all pbufs. * Allocate the pbuf at the very beginning of the function, so that * if we are low on certain kind of pbufs don't even proceed to BMAP, * but sleep. */ freecnt = iodone != NULL ? &vnode_async_pbuf_freecnt : &vnode_pbuf_freecnt; bp = getpbuf(freecnt); /* * Get the underlying device blocks for the file with VOP_BMAP(). * If the file system doesn't support VOP_BMAP, use old way of * getting pages via VOP_READ. */ error = VOP_BMAP(vp, foff / bsize, &bo, &bp->b_blkno, &after, &before); if (error == EOPNOTSUPP) { relpbuf(bp, freecnt); VM_OBJECT_WLOCK(object); for (i = 0; i < count; i++) { PCPU_INC(cnt.v_vnodein); PCPU_INC(cnt.v_vnodepgsin); error = vnode_pager_input_old(object, m[i]); if (error) break; } VM_OBJECT_WUNLOCK(object); return (error); } else if (error != 0) { relpbuf(bp, freecnt); return (VM_PAGER_ERROR); } /* * If the file system supports BMAP, but blocksize is smaller * than a page size, then use special small filesystem code. */ if (pagesperblock == 0) { relpbuf(bp, freecnt); for (i = 0; i < count; i++) { PCPU_INC(cnt.v_vnodein); PCPU_INC(cnt.v_vnodepgsin); error = vnode_pager_input_smlfs(object, m[i]); if (error) break; } return (error); } /* * A sparse file can be encountered only for a single page request, * which may not be preceded by call to vm_pager_haspage(). */ if (bp->b_blkno == -1) { KASSERT(count == 1, ("%s: array[%d] request to a sparse file %p", __func__, count, vp)); relpbuf(bp, freecnt); pmap_zero_page(m[0]); KASSERT(m[0]->dirty == 0, ("%s: page %p is dirty", __func__, m[0])); VM_OBJECT_WLOCK(object); m[0]->valid = VM_PAGE_BITS_ALL; VM_OBJECT_WUNLOCK(object); return (VM_PAGER_OK); } #ifdef INVARIANTS blkno0 = bp->b_blkno; #endif bp->b_blkno += (foff % bsize) / DEV_BSIZE; /* Recalculate blocks available after/before to pages. */ poff = (foff % bsize) / PAGE_SIZE; before *= pagesperblock; before += poff; after *= pagesperblock; after += pagesperblock - (poff + 1); if (m[0]->pindex + after >= object->size) after = object->size - 1 - m[0]->pindex; KASSERT(count <= after + 1, ("%s: %d pages asked, can do only %d", __func__, count, after + 1)); after -= count - 1; /* Trim requested rbehind/rahead to possible values. */ rbehind = a_rbehind ? *a_rbehind : 0; rahead = a_rahead ? *a_rahead : 0; rbehind = min(rbehind, before); rbehind = min(rbehind, m[0]->pindex); rahead = min(rahead, after); rahead = min(rahead, object->size - m[count - 1]->pindex); /* * Check that total amount of pages fit into buf. Trim rbehind and * rahead evenly if not. */ if (rbehind + rahead + count > nitems(bp->b_pages)) { int trim, sum; trim = rbehind + rahead + count - nitems(bp->b_pages) + 1; sum = rbehind + rahead; if (rbehind == before) { /* Roundup rbehind trim to block size. */ rbehind -= roundup(trim * rbehind / sum, pagesperblock); if (rbehind < 0) rbehind = 0; } else rbehind -= trim * rbehind / sum; rahead -= trim * rahead / sum; } KASSERT(rbehind + rahead + count <= nitems(bp->b_pages), ("%s: behind %d ahead %d count %d", __func__, rbehind, rahead, count)); /* * Fill in the bp->b_pages[] array with requested and optional * read behind or read ahead pages. Read behind pages are looked * up in a backward direction, down to a first cached page. Same * for read ahead pages, but there is no need to shift the array * in case of encountering a cached page. */ i = bp->b_npages = 0; if (rbehind) { vm_pindex_t startpindex, tpindex; vm_page_t p; VM_OBJECT_WLOCK(object); startpindex = m[0]->pindex - rbehind; if ((p = TAILQ_PREV(m[0], pglist, listq)) != NULL && p->pindex >= startpindex) startpindex = p->pindex + 1; /* tpindex is unsigned; beware of numeric underflow. */ for (tpindex = m[0]->pindex - 1; tpindex >= startpindex && tpindex < m[0]->pindex; tpindex--, i++) { p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); if (p == NULL) { /* Shift the array. */ for (int j = 0; j < i; j++) bp->b_pages[j] = bp->b_pages[j + tpindex + 1 - startpindex]; break; } bp->b_pages[tpindex - startpindex] = p; } bp->b_pgbefore = i; bp->b_npages += i; bp->b_blkno -= IDX_TO_OFF(i) / DEV_BSIZE; } else bp->b_pgbefore = 0; /* Requested pages. */ for (int j = 0; j < count; j++, i++) bp->b_pages[i] = m[j]; bp->b_npages += count; if (rahead) { vm_pindex_t endpindex, tpindex; vm_page_t p; if (!VM_OBJECT_WOWNED(object)) VM_OBJECT_WLOCK(object); endpindex = m[count - 1]->pindex + rahead + 1; if ((p = TAILQ_NEXT(m[count - 1], listq)) != NULL && p->pindex < endpindex) endpindex = p->pindex; if (endpindex > object->size) endpindex = object->size; for (tpindex = m[count - 1]->pindex + 1; tpindex < endpindex; i++, tpindex++) { p = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); if (p == NULL) break; bp->b_pages[i] = p; } bp->b_pgafter = i - bp->b_npages; bp->b_npages = i; } else bp->b_pgafter = 0; if (VM_OBJECT_WOWNED(object)) VM_OBJECT_WUNLOCK(object); /* Report back actual behind/ahead read. */ if (a_rbehind) *a_rbehind = bp->b_pgbefore; if (a_rahead) *a_rahead = bp->b_pgafter; #ifdef INVARIANTS KASSERT(bp->b_npages <= nitems(bp->b_pages), ("%s: buf %p overflowed", __func__, bp)); for (int j = 1; j < bp->b_npages; j++) KASSERT(bp->b_pages[j]->pindex - 1 == bp->b_pages[j - 1]->pindex, ("%s: pages array not consecutive, bp %p", __func__, bp)); #endif /* * Recalculate first offset and bytecount with regards to read behind. * Truncate bytecount to vnode real size and round up physical size * for real devices. */ foff = IDX_TO_OFF(bp->b_pages[0]->pindex); bytecount = bp->b_npages << PAGE_SHIFT; if ((foff + bytecount) > object->un_pager.vnp.vnp_size) bytecount = object->un_pager.vnp.vnp_size - foff; secmask = bo->bo_bsize - 1; KASSERT(secmask < PAGE_SIZE && secmask > 0, ("%s: sector size %d too large", __func__, secmask + 1)); bytecount = (bytecount + secmask) & ~secmask; /* * And map the pages to be read into the kva, if the filesystem * requires mapped buffers. */ if ((vp->v_mount->mnt_kern_flag & MNTK_UNMAPPED_BUFS) != 0 && unmapped_buf_allowed) { bp->b_data = unmapped_buf; bp->b_offset = 0; } else { bp->b_data = bp->b_kvabase; pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages); } /* Build a minimal buffer header. */ bp->b_iocmd = BIO_READ; KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred")); KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred")); bp->b_rcred = crhold(curthread->td_ucred); bp->b_wcred = crhold(curthread->td_ucred); pbgetbo(bo, bp); bp->b_vp = vp; bp->b_bcount = bp->b_bufsize = bp->b_runningbufspace = bytecount; bp->b_iooffset = dbtob(bp->b_blkno); KASSERT(IDX_TO_OFF(m[0]->pindex - bp->b_pages[0]->pindex) == (blkno0 - bp->b_blkno) * DEV_BSIZE + IDX_TO_OFF(m[0]->pindex) % bsize, ("wrong offsets bsize %d m[0] %ju b_pages[0] %ju " "blkno0 %ju b_blkno %ju", bsize, (uintmax_t)m[0]->pindex, (uintmax_t)bp->b_pages[0]->pindex, (uintmax_t)blkno0, (uintmax_t)bp->b_blkno)); atomic_add_long(&runningbufspace, bp->b_runningbufspace); PCPU_INC(cnt.v_vnodein); PCPU_ADD(cnt.v_vnodepgsin, bp->b_npages); if (iodone != NULL) { /* async */ bp->b_pgiodone = iodone; bp->b_caller1 = arg; bp->b_iodone = vnode_pager_generic_getpages_done_async; bp->b_flags |= B_ASYNC; BUF_KERNPROC(bp); bstrategy(bp); return (VM_PAGER_OK); } else { bp->b_iodone = bdone; bstrategy(bp); bwait(bp, PVM, "vnread"); error = vnode_pager_generic_getpages_done(bp); for (i = 0; i < bp->b_npages; i++) bp->b_pages[i] = NULL; bp->b_vp = NULL; pbrelbo(bp); relpbuf(bp, &vnode_pbuf_freecnt); return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK); } } static void vnode_pager_generic_getpages_done_async(struct buf *bp) { int error; error = vnode_pager_generic_getpages_done(bp); /* Run the iodone upon the requested range. */ bp->b_pgiodone(bp->b_caller1, bp->b_pages + bp->b_pgbefore, bp->b_npages - bp->b_pgbefore - bp->b_pgafter, error); for (int i = 0; i < bp->b_npages; i++) bp->b_pages[i] = NULL; bp->b_vp = NULL; pbrelbo(bp); relpbuf(bp, &vnode_async_pbuf_freecnt); } static int vnode_pager_generic_getpages_done(struct buf *bp) { vm_object_t object; off_t tfoff, nextoff; int i, error; error = (bp->b_ioflags & BIO_ERROR) != 0 ? EIO : 0; object = bp->b_vp->v_object; if (error == 0 && bp->b_bcount != bp->b_npages * PAGE_SIZE) { if (!buf_mapped(bp)) { bp->b_data = bp->b_kvabase; pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages); } bzero(bp->b_data + bp->b_bcount, PAGE_SIZE * bp->b_npages - bp->b_bcount); } if (buf_mapped(bp)) { pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); bp->b_data = unmapped_buf; } VM_OBJECT_WLOCK(object); for (i = 0, tfoff = IDX_TO_OFF(bp->b_pages[0]->pindex); i < bp->b_npages; i++, tfoff = nextoff) { vm_page_t mt; nextoff = tfoff + PAGE_SIZE; mt = bp->b_pages[i]; if (nextoff <= object->un_pager.vnp.vnp_size) { /* * Read filled up entire page. */ mt->valid = VM_PAGE_BITS_ALL; KASSERT(mt->dirty == 0, ("%s: page %p is dirty", __func__, mt)); KASSERT(!pmap_page_is_mapped(mt), ("%s: page %p is mapped", __func__, mt)); } else { /* * Read did not fill up entire page. * * Currently we do not set the entire page valid, * we just try to clear the piece that we couldn't * read. */ vm_page_set_valid_range(mt, 0, object->un_pager.vnp.vnp_size - tfoff); KASSERT((mt->dirty & vm_page_bits(0, object->un_pager.vnp.vnp_size - tfoff)) == 0, ("%s: page %p is dirty", __func__, mt)); } if (i < bp->b_pgbefore || i >= bp->b_npages - bp->b_pgafter) vm_page_readahead_finish(mt); } VM_OBJECT_WUNLOCK(object); if (error != 0) printf("%s: I/O read error %d\n", __func__, error); return (error); } /* * EOPNOTSUPP is no longer legal. For local media VFS's that do not * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to * vnode_pager_generic_putpages() to implement the previous behaviour. * * All other FS's should use the bypass to get to the local media * backing vp's VOP_PUTPAGES. */ static void vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count, int flags, int *rtvals) { int rtval; struct vnode *vp; int bytes = count * PAGE_SIZE; /* * Force synchronous operation if we are extremely low on memory * to prevent a low-memory deadlock. VOP operations often need to * allocate more memory to initiate the I/O ( i.e. do a BMAP * operation ). The swapper handles the case by limiting the amount * of asynchronous I/O, but that sort of solution doesn't scale well * for the vnode pager without a lot of work. * * Also, the backing vnode's iodone routine may not wake the pageout * daemon up. This should be probably be addressed XXX. */ - if (vm_cnt.v_free_count + vm_cnt.v_cache_count < - vm_cnt.v_pageout_free_min) + if (vm_cnt.v_free_count < vm_cnt.v_pageout_free_min) flags |= VM_PAGER_PUT_SYNC; /* * Call device-specific putpages function */ vp = object->handle; VM_OBJECT_WUNLOCK(object); rtval = VOP_PUTPAGES(vp, m, bytes, flags, rtvals); KASSERT(rtval != EOPNOTSUPP, ("vnode_pager: stale FS putpages\n")); VM_OBJECT_WLOCK(object); } /* * This is now called from local media FS's to operate against their * own vnodes if they fail to implement VOP_PUTPAGES. * * This is typically called indirectly via the pageout daemon and * clustering has already typically occurred, so in general we ask the * underlying filesystem to write the data out asynchronously rather * then delayed. */ int vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *ma, int bytecount, int flags, int *rtvals) { int i; vm_object_t object; vm_page_t m; int count; int maxsize, ncount; vm_ooffset_t poffset; struct uio auio; struct iovec aiov; int error; int ioflags; int ppscheck = 0; static struct timeval lastfail; static int curfail; object = vp->v_object; count = bytecount / PAGE_SIZE; for (i = 0; i < count; i++) rtvals[i] = VM_PAGER_ERROR; if ((int64_t)ma[0]->pindex < 0) { printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n", (long)ma[0]->pindex, (u_long)ma[0]->dirty); rtvals[0] = VM_PAGER_BAD; return VM_PAGER_BAD; } maxsize = count * PAGE_SIZE; ncount = count; poffset = IDX_TO_OFF(ma[0]->pindex); /* * If the page-aligned write is larger then the actual file we * have to invalidate pages occurring beyond the file EOF. However, * there is an edge case where a file may not be page-aligned where * the last page is partially invalid. In this case the filesystem * may not properly clear the dirty bits for the entire page (which * could be VM_PAGE_BITS_ALL due to the page having been mmap()d). * With the page locked we are free to fix-up the dirty bits here. * * We do not under any circumstances truncate the valid bits, as * this will screw up bogus page replacement. */ VM_OBJECT_WLOCK(object); if (maxsize + poffset > object->un_pager.vnp.vnp_size) { if (object->un_pager.vnp.vnp_size > poffset) { int pgoff; maxsize = object->un_pager.vnp.vnp_size - poffset; ncount = btoc(maxsize); if ((pgoff = (int)maxsize & PAGE_MASK) != 0) { /* * If the object is locked and the following * conditions hold, then the page's dirty * field cannot be concurrently changed by a * pmap operation. */ m = ma[ncount - 1]; vm_page_assert_sbusied(m); KASSERT(!pmap_page_is_write_mapped(m), ("vnode_pager_generic_putpages: page %p is not read-only", m)); vm_page_clear_dirty(m, pgoff, PAGE_SIZE - pgoff); } } else { maxsize = 0; ncount = 0; } if (ncount < count) { for (i = ncount; i < count; i++) { rtvals[i] = VM_PAGER_BAD; } } } VM_OBJECT_WUNLOCK(object); /* * pageouts are already clustered, use IO_ASYNC to force a bawrite() * rather then a bdwrite() to prevent paging I/O from saturating * the buffer cache. Dummy-up the sequential heuristic to cause * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set, * the system decides how to cluster. */ ioflags = IO_VMIO; if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL)) ioflags |= IO_SYNC; else if ((flags & VM_PAGER_CLUSTER_OK) == 0) ioflags |= IO_ASYNC; ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0; ioflags |= IO_SEQMAX << IO_SEQSHIFT; aiov.iov_base = (caddr_t) 0; aiov.iov_len = maxsize; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_offset = poffset; auio.uio_segflg = UIO_NOCOPY; auio.uio_rw = UIO_WRITE; auio.uio_resid = maxsize; auio.uio_td = (struct thread *) 0; error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred); PCPU_INC(cnt.v_vnodeout); PCPU_ADD(cnt.v_vnodepgsout, ncount); if (error) { if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1))) printf("vnode_pager_putpages: I/O error %d\n", error); } if (auio.uio_resid) { if (ppscheck || ppsratecheck(&lastfail, &curfail, 1)) printf("vnode_pager_putpages: residual I/O %zd at %lu\n", auio.uio_resid, (u_long)ma[0]->pindex); } for (i = 0; i < ncount; i++) { rtvals[i] = VM_PAGER_OK; } return rtvals[0]; } void vnode_pager_undirty_pages(vm_page_t *ma, int *rtvals, int written) { vm_object_t obj; int i, pos; if (written == 0) return; obj = ma[0]->object; VM_OBJECT_WLOCK(obj); for (i = 0, pos = 0; pos < written; i++, pos += PAGE_SIZE) { if (pos < trunc_page(written)) { rtvals[i] = VM_PAGER_OK; vm_page_undirty(ma[i]); } else { /* Partially written page. */ rtvals[i] = VM_PAGER_AGAIN; vm_page_clear_dirty(ma[i], 0, written & PAGE_MASK); } } VM_OBJECT_WUNLOCK(obj); } void vnode_pager_update_writecount(vm_object_t object, vm_offset_t start, vm_offset_t end) { struct vnode *vp; vm_ooffset_t old_wm; VM_OBJECT_WLOCK(object); if (object->type != OBJT_VNODE) { VM_OBJECT_WUNLOCK(object); return; } old_wm = object->un_pager.vnp.writemappings; object->un_pager.vnp.writemappings += (vm_ooffset_t)end - start; vp = object->handle; if (old_wm == 0 && object->un_pager.vnp.writemappings != 0) { ASSERT_VOP_ELOCKED(vp, "v_writecount inc"); VOP_ADD_WRITECOUNT(vp, 1); CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", __func__, vp, vp->v_writecount); } else if (old_wm != 0 && object->un_pager.vnp.writemappings == 0) { ASSERT_VOP_ELOCKED(vp, "v_writecount dec"); VOP_ADD_WRITECOUNT(vp, -1); CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", __func__, vp, vp->v_writecount); } VM_OBJECT_WUNLOCK(object); } void vnode_pager_release_writecount(vm_object_t object, vm_offset_t start, vm_offset_t end) { struct vnode *vp; struct mount *mp; vm_offset_t inc; VM_OBJECT_WLOCK(object); /* * First, recheck the object type to account for the race when * the vnode is reclaimed. */ if (object->type != OBJT_VNODE) { VM_OBJECT_WUNLOCK(object); return; } /* * Optimize for the case when writemappings is not going to * zero. */ inc = end - start; if (object->un_pager.vnp.writemappings != inc) { object->un_pager.vnp.writemappings -= inc; VM_OBJECT_WUNLOCK(object); return; } vp = object->handle; vhold(vp); VM_OBJECT_WUNLOCK(object); mp = NULL; vn_start_write(vp, &mp, V_WAIT); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); /* * Decrement the object's writemappings, by swapping the start * and end arguments for vnode_pager_update_writecount(). If * there was not a race with vnode reclaimation, then the * vnode's v_writecount is decremented. */ vnode_pager_update_writecount(object, end, start); VOP_UNLOCK(vp, 0); vdrop(vp); if (mp != NULL) vn_finished_write(mp); }