Index: head/sys/contrib/dev/acpica/changes.txt =================================================================== --- head/sys/contrib/dev/acpica/changes.txt (revision 308952) +++ head/sys/contrib/dev/acpica/changes.txt (revision 308953) @@ -1,16807 +1,16886 @@ ---------------------------------------- +17 November 2016. Summary of changes for version 20161117: + + +1) ACPICA kernel-resident subsystem: + +Table Manager: Fixed a regression introduced in 20160729, "FADT support +cleanup". This was an attempt to remove all references in the source to +the FADT version 2, which never was a legal version number. It was +skipped because it was an early version of 64-bit support that was +eventually abandoned for the current 64-bit support. + +Interpreter: Fixed a problem where runtime implicit conversion was +incorrectly disabled for the ASL operators below. This brings the +behavior into compliance with the ACPI specification: + FromBCD + ToBCD + ToDecimalString + ToHexString + ToInteger + ToBuffer + +Table Manager: Added a new public interface, AcpiPutTable, used to +release and free an ACPI table returned by AcpiGetTable and related +interfaces. Lv Zheng. + +Example Code and Data Size: These are the sizes for the OS-independent +acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The +debug version of the code includes the debug output trace mechanism and +has a much larger code and data size. + + Current Release: + Non-Debug Version: 140.5K Code, 58.5K Data, 198.9K Total + Debug Version: 201.3K Code, 82.7K Data, 284.0K Total + Previous Release: + Non-Debug Version: 140.4K Code, 58.1K Data, 198.5K Total + Debug Version: 200.7K Code, 82.1K Data, 282.8K Total + + +2) iASL Compiler/Disassembler and Tools: + +Disassembler: Fixed a regression for disassembly of Resource Template. +Detection of templates in the AML stream missed some types of templates. + +iASL: Fixed a problem where an Access Size error was returned for the PCC +address space when the AccessSize of the GAS register is greater than a +DWORD. Hoan Tran. + +iASL: Implemented several grammar changes for the operators below. These +changes are slated for the next version of the ACPI specification: + RefOf - Disallow method invocation as an operand + CondRefOf - Disallow method invocation as an operand + DerefOf - Disallow operands that use the result from operators +that + do not return a reference (Changed TermArg to +SuperName). + +iASL: Control method invocations are now allowed for Target operands, as +per the ACPI specification. Removed error for using a control method +invocation as a Target operand. + +Disassembler: Improved detection of Resource Templates, Unicode, and +Strings within Buffer objects. These subtypes do not contain a specific +opcode to indicate the originating ASL code, and they must be detected by +other means within the disassembler. + +iASL: Implemented an optimization improvement for 32-bit ACPI tables +(DSDT/SSDT). For the 32-bit case only, compute the optimum integer opcode +only after 64-bit to 32-bit truncation. A truncation warning message is +still emitted, however. + +AcpiXtract: Implemented handling for both types of line terminators (LF +or CR/LF) so that it can accept AcpiDump output files from any system. +Peter Wu. + +AcpiBin: Added two new options for comparing AML files: + -a: compare and display ALL mismatches + -o: start compare at this offset into the second file + +---------------------------------------- 30 September 2016. Summary of changes for version 20160930: 1) ACPICA kernel-resident subsystem: Fixed a regression in the internal AcpiTbFindTable function where a non AE_OK exception could inadvertently be returned even if the function did not fail. This problem affects the following operators: DataTableRegion LoadTable Fixed a regression in the LoadTable operator where a load to any namespace location other than the root no longer worked properly. Increased the maximum loop count value that will result in the AE_AML_INFINITE_LOOP exception. This is a mechanism that is intended to prevent infinite loops within the AML interpreter and thus the host OS kernel. The value is increased from 0xFFFF to 0xFFFFF loops (65,535 to 1,048,575). Moved the AcpiGbl_MaxLoopIterations configuration variable to the public acpixf.h file. This allows hosts to easily configure the maximum loop count at runtime. Removed an illegal character in the strtoul64.c file. This character caused errors with some C compilers. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 140.4K Code, 58.1K Data, 198.5K Total Debug Version: 200.7K Code, 82.1K Data, 282.8K Total Previous Release: Non-Debug Version: 140.0K Code, 58.1K Data, 198.1K Total Debug Version: 200.3K Code, 82.1K Data, 282.4K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Fixed a problem with the conversion of Else{If{ blocks into the simpler ASL ElseIf keyword. During the conversion, a trailing If block could be lost and missing from the disassembled output. iASL: Fixed a missing parser rule for the ObjectType operator. For ASL+, the missing rule caused a parse error when using the Index operator as an operand to ObjectType. This construct now compiles properly. Example: ObjectType(PKG1[4]). iASL: Correctly handle unresolved symbols in the hardware map file (-lm option). Previously, unresolved symbols could cause a protection fault. Such symbols are now marked as unresolved in the map file. iASL: Implemented support to allow control method invocations as an operand to the ASL DeRefOf operator. Example: DeRefOf(MTH1(Local0)) Disassembler: Improved support for the ToPLD ASL macro. Detection of a possible _PLD buffer now includes examination of both the normal buffer length (16 or 20) as well as the surrounding AML package length. Disassembler: Fixed a problem with the decoding of complex expressions within the Divide operator for ASL+. For the case where both the quotient and remainder targets are specified, the entire statement cannot be disassembled. Previously, the output incorrectly contained a mix of ASL- and ASL+ operators. This mixed statement causes a syntax error when compiled. Example: Divide (Add (INT1, 6), 128, RSLT, QUOT) // was incorrectly disassembled to: Divide (INT1 + 6, 128, RSLT, QUOT) iASL/Tools: Added support to process AML and non-AML ACPI tables consistently. For the disassembler and AcpiExec, allow all types of ACPI tables (AML and data tables). For the iASL -e option, allow only AML tables (DSDT/SSDT). ---------------------------------------- 31 August 2016. Summary of changes for version 20160831: 1) ACPICA kernel-resident subsystem: Improve support for the so-called "module-level code", which is defined to be math, logical and control AML opcodes that appear outside of any control method. This change improves the support by adding more opcodes that can be executed in the manner. Some other issues have been solved, and the ASL grammar changes to support such code under all scope operators (Device, etc.) are complete. Lv Zheng. UEFI support: these OSL functions have been implemented. This is an additional step toward supporting the AcpiExec utility natively (with full hardware access) under UEFI. Marcelo Ferreira. AcpiOsReadPciConfiguration AcpiOsWritePciConfiguration Fixed a possible mutex error during control method auto-serialization. Lv Zheng. Updated support for the Generic Address Structure by fully implementing all GAS fields when a 32-bit address is expanded to a 64-bit GAS. Lv Zheng. Updated the return value for the internal _OSI method. Instead of 0xFFFFFFFF, the "Ones" value is now returned, which is 0xFFFFFFFFFFFFFFFF for 64-bit ACPI tables. This fixes an incompatibility with other ACPI implementations, and will be reflected and clarified in the next version of the ACPI specification. Implemented two new table events that can be passed to an ACPICA table handler. These events are used to indicate a table installation or uninstallation. These events are used in addition to existed table load and unload events. Lv Zheng. Implemented a cleanup for all internal string-to-integer conversions. Consolidate multiple versions of this functionality and limit possible bases to either 10 or 16 to simplify the code. Adds a new file, utstrtoul64. Cleanup the inclusion order of the various compiler-specific headers. This simplifies build configuration management. The compiler-specific headers are now split out from the host-specific headers. Lv Zheng. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 140.1K Code, 58.1K Data, 198.1K Total Debug Version: 200.3K Code, 82.1K Data, 282.4K Total 2) iASL Compiler/Disassembler and Tools: iASL/AcpiExec: Added a command line option to display the build date/time of the tool (-vd). This can be useful to verify that the correct version of the tools are being used. AML Debugger: Implemented a new subcommand ("execute predef") to execute all predefined control methods and names within the current namespace. This can be useful for debugging problems with ACPI tables and the ACPI namespace. ---------------------------------------- 29 July 2016. Summary of changes for version 20160729: 1) ACPICA kernel-resident subsystem: Implemented basic UEFI support for the various ACPICA tools. This includes: 1) An OSL to implement the various AcpiOs* interfaces on UEFI. 2) Support to obtain the ACPI tables on UEFI. 3) Local implementation of required C library functions not available on UEFI. 4) A front-end (main) function for the tools for UEFI-related initialization. The initial deployment of this support is the AcpiDump utility executing as an UEFI application via EDK2 (EDKII, "UEFI Firmware Development Kit"). Current environments supported are Linux/Unix. MSVC generation is not supported at this time. See the generate/efi/README file for build instructions. Lv Zheng. Future plans include porting the AcpiExec utility to execute natively on the platform with I/O and memory access. This will allow viewing/dump of the platform namespace and native execution of ACPI control methods that access the actual hardware. To fully implement this support, the OSL functions below must be implemented with UEFI interfaces. Any community help in the implementation of these functions would be appreciated: AcpiOsReadPort AcpiOsWritePort AcpiOsReadMemory AcpiOsWriteMemory AcpiOsReadPciConfiguration AcpiOsWritePciConfiguration Restructured and standardized the C library configuration for ACPICA, resulting in the various configuration options below. This includes a global restructuring of the compiler-dependent and platform-dependent include files. These changes may affect the existing platform-dependent configuration files on some hosts. Lv Zheng. The current C library configuration options appear below. For any issues, it may be helpful to examine the existing compiler-dependent and platform-dependent files as examples. Lv Zheng. 1) Linux kernel: ACPI_USE_STANDARD_HEADERS=n in order not to use system-provided C library. ACPI_USE_SYSTEM_CLIBRARY=y in order not to use ACPICA mini C library. 2) Unix/Windows/BSD applications: ACPI_USE_STANDARD_HEADERS=y in order to use system-provided C library. ACPI_USE_SYSTEM_CLIBRARY=y in order not to use ACPICA mini C library. 3) UEFI applications: ACPI_USE_STANDARD_HEADERS=n in order not to use system-provided C library. ACPI_USE_SYSTEM_CLIBRARY=n in order to use ACPICA mini C library. 4) UEFI applications (EDK2/StdLib): ACPI_USE_STANDARD_HEADERS=y in order to use EDK2 StdLib C library. ACPI_USE_SYSTEM_CLIBRARY=y in order to use EDK2 StdLib C library. AML interpreter: "module-level code" support. Allows for execution of so- called "executable" AML code (math/logical operations, etc.) outside of control methods not just at the module level (top level) but also within any scope declared outside of a control method - Scope{}, Device{}, Processor{}, PowerResource{}, and ThermalZone{}. Lv Zheng. Simplified the configuration of the "maximum AML loops" global option by adding a global public variable, "AcpiGbl_MaxLoopIterations" which can be modified at runtime. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 139.1K Code, 22.9K Data, 162.0K Total Debug Version: 199.0K Code, 81.8K Data, 280.8K Total 2) iASL Compiler/Disassembler and Tools: iASL: Add full support for the RASF ACPI table (RAS Features Table). Includes disassembler, data table compiler, and header support. iASL Expand "module-level code" support. Allows for compilation/disassembly of so-called "executable" AML code (math/logical operations, etc.) outside of control methods not just at the module level (top level) but also within any scope declared outside of a control method - Scope{}, Device{}, Processor{}, PowerResource{}, and ThermalZone{}. AcpiDump: Added support for dumping all SSDTs on newer versions of Windows. These tables are now easily available -- SSDTs are not available through the registry on older versions. ---------------------------------------- 27 May 2016. Summary of changes for version 20160527: 1) ACPICA kernel-resident subsystem: Temporarily reverted the new arbitrary bit length/alignment support in AcpiHwRead/AcpiHwWrite for the Generic Address Structure. There have been a number of regressions with the new code that need to be fully resolved and tested before this support can be finally integrated into ACPICA. Apologies for any inconveniences these issues may have caused. The ACPI message macros are not configurable (ACPI_MSG_ERROR, ACPI_MSG_EXCEPTION, ACPI_MSG_WARNING, ACPI_MSG_INFO, ACPI_MSG_BIOS_ERROR, and ACPI_MSG_BIOS_WARNING). Lv Zheng. Fixed a couple of GCC warnings associated with the use of the -Wcast-qual option. Adds a new return macro, return_STR. Junk-uk Kim. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 136.8K Code, 51.6K Data, 188.4K Total Debug Version: 201.5K Code, 82.2K Data, 283.7K Total Previous Release: Non-Debug Version: 137.4K Code, 52.6K Data, 190.0K Total Debug Version: 200.9K Code, 82.2K Data, 283.1K Total ---------------------------------------- 22 April 2016. Summary of changes for version 20160422: 1) ACPICA kernel-resident subsystem: Fixed a regression in the GAS (generic address structure) arbitrary bit support in AcpiHwRead/AcpiHwWrite. Problem could cause incorrect behavior and incorrect return values. Lv Zheng. ACPICA BZ 1270. ACPI 6.0: Added support for new/renamed resource macros. One new argument was added to each of these macros, and the original name has been deprecated. The AML disassembler will always disassemble to the new names. Support for the new macros was added to iASL, disassembler, resource manager, and the acpihelp utility. ACPICA BZ 1274. I2cSerialBus -> I2cSerialBusV2 SpiSerialBus -> SpiSerialBusV2 UartSerialBus -> UartSerialBusV2 ACPI 6.0: Added support for a new integer field that was appended to the package object returned by the _BIX method. This adds iASL compile-time and AML runtime error checking. ACPICA BZ 1273. ACPI 6.1: Added support for a new PCCT subtable, "HW-Reduced Comm Subspace Type2" (Headers, Disassembler, and data table compiler). Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 137.4K Code, 52.6K Data, 190.0K Total Debug Version: 201.5K Code, 82.2K Data, 283.7K Total Previous Release: Non-Debug Version: 137.1K Code, 51.5K Data, 188.6K Total Debug Version: 201.0K Code, 82.0K Data, 283.0K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented an ASL grammar extension to allow/enable executable "module-level code" to be created and executed under the various operators that create new scopes. This type of AML code is already supported in all known AML interpreters, and the grammar change will appear in the next version of the ACPI specification. Simplifies the conditional runtime creation of named objects under these object types: Device PowerResource Processor Scope ThermalZone iASL: Implemented a new ASL extension, a "For" loop macro to add greater ease-of-use to the ASL language. The syntax is similar to the corresponding C operator, and is implemented with the existing AML While opcode -- thus requiring no changes to existing AML interpreters. For (Initialize, Predicate, Update) {TermList} Grammar: ForTerm := For ( Initializer // Nothing | TermArg => ComputationalData Predicate // Nothing | TermArg => ComputationalData Update // Nothing | TermArg => ComputationalData ) {TermList} iASL: The _HID/_ADR detection and validation has been enhanced to search under conditionals in order to allow these objects to be conditionally created at runtime. iASL: Fixed several issues with the constant folding feature. The improvement allows better detection and resolution of statements that can be folded at compile time. ACPICA BZ 1266. iASL/Disassembler: Fixed a couple issues with the Else{If{}...} conversion to the ASL ElseIf operator where incorrect ASL code could be generated. iASL/Disassembler: Fixed a problem with the ASL+ code disassembly where sometimes an extra (and extraneous) set of parentheses were emitted for some combinations of operators. Although this did not cause any problems with recompilation of the disassembled code, it made the code more difficult to read. David Box. ACPICA BZ 1231. iASL: Changed to ignore the unreferenced detection for predefined names of resource descriptor elements, when the resource descriptor is created/defined within a control method. iASL: Disassembler: Fix a possible fault with externally declared Buffer objects. ---------------------------------------- 18 March 2016. Summary of changes for version 20160318: 1) ACPICA kernel-resident subsystem: Added support for arbitrary bit lengths and bit offsets for registers defined by the Generic Address Structure. Previously, only aligned bit lengths of 8/16/32/64 were supported. This was sufficient for many years, but recently some machines have been seen that require arbitrary bit- level support. ACPICA BZ 1240. Lv Zheng. Fixed an issue where the \_SB._INI method sometimes must be evaluated before any _REG methods are evaluated. Lv Zheng. Implemented several changes related to ACPI table support (Headers/Disassembler/TableCompiler): NFIT: For ACPI 6.1, updated to add some additional new fields and constants. FADT: Updated a warning message and set compliance to ACPI 6.1 (Version 6). DMAR: Added new constants per the 10/2014 DMAR spec. IORT: Added new subtable per the 10/2015 IORT spec. HEST: For ACPI 6.1, added new constants and new subtable. DBG2: Added new constants per the 12/2015 DBG2 spec. FPDT: Fixed several incorrect fields, add the FPDT boot record structure. ACPICA BZ 1249. ERST/EINJ: Updated disassembler with new "Execute Timings" actions. Updated header support for the DMAR table to match the current version of the related spec. Added extensions to the ASL Concatenate operator to allow any ACPI object to be passed as an operand. Any object other than Integer/String/Buffer simply returns a string containing the object type. This extends the usefulness of the Printf macros. Previously, Concatenate would abort the control method if a non-data object was encountered. ACPICA source code: Deployed the C "const" keyword across the source code where appropriate. ACPICA BZ 732. Joerg Sonnenberger (NetBSD). Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 137.1K Code, 51.5K Data, 188.6K Total Debug Version: 201.0K Code, 82.0K Data, 283.0K Total Previous Release: Non-Debug Version: 136.2K Code, 51.5K Data, 187.7K Total Debug Version: 200.4K Code, 82.0K Data, 282.4K Total 2) iASL Compiler/Disassembler and Tools: iASL/Disassembler: Improved the heuristic used to determine the number of arguments for an externally defined control method (a method in another table). Although this is an improvement, there is no deterministic way to "guess" the number of method arguments. Only the ACPI 6.0 External opcode will completely solve this problem as it is deployed (automatically) in newer BIOS code. iASL/Disassembler: Fixed an ordering issue for emitted External() ASL statements that could cause errors when the disassembled file is compiled. ACPICA BZ 1243. David Box. iASL: Fixed a regression caused by the merger of the two versions of the local strtoul64. Because of a dependency on a global variable, strtoul64 could return an error for integers greater than a 32-bit value. ACPICA BZ 1260. iASL: Fixed a regression where a fault could occur for an ASL Return statement if it invokes a control method that is not resolved. ACPICA BZ 1264. AcpiXtract: Improved input file validation: detection of binary files and non-acpidump text files. ---------------------------------------- 12 February 2016. Summary of changes for version 20160212: 1) ACPICA kernel-resident subsystem: Implemented full support for the ACPI 6.1 specification (released in January). This version of the specification is available at: http://www.uefi.org/specifications Only a relatively small number of changes were required in ACPICA to support ACPI 6.1, in these areas: - New predefined names - New _HID values - A new subtable for HEST - A few other header changes for new values Ensure \_SB_._INI is executed before any _REG methods are executed. There appears to be existing BIOS code that relies on this behavior. Lv Zheng. Reverted a change made in version 20151218 which enabled method invocations to be targets of various ASL operators (SuperName and Target grammar elements). While the new behavior is supported by the ACPI specification, other AML interpreters do not support this behavior and never will. The ACPI specification will be updated for ACPI 6.2 to remove this support. Therefore, the change was reverted to the original ACPICA behavior. ACPICA now supports the GCC 6 compiler. Current Release: (Note: build changes increased sizes) Non-Debug Version: 136.2K Code, 51.5K Data, 187.7K Total Debug Version: 200.4K Code, 82.0K Data, 282.4K Total Previous Release: Non-Debug Version: 102.7K Code, 28.4K Data, 131.1K Total Debug Version: 200.4K Code, 81.9K Data, 282.3K Total 2) iASL Compiler/Disassembler and Tools: Completed full support for the ACPI 6.0 External() AML opcode. The compiler emits an external AML opcode for each ASL External statement. This opcode is used by the disassembler to assist with the disassembly of external control methods by specifying the required number of arguments for the method. AML interpreters do not use this opcode. To ensure that interpreters do not even see the opcode, a block of one or more external opcodes is surrounded by an "If(0)" construct. As this feature becomes commonly deployed in BIOS code, the ability of disassemblers to correctly disassemble AML code will be greatly improved. David Box. iASL: Implemented support for an optional cross-reference output file. The -lx option will create a the cross-reference file with the suffix "xrf". Three different types of cross-reference are created in this file: - List of object references made from within each control method - Invocation (caller) list for each user-defined control method - List of references to each non-method object in the namespace iASL: Method invocations as ASL Target operands are now disallowed and flagged as errors in preparation for ACPI 6.2 (see the description of the problem above). ---------------------------------------- 8 January 2016. Summary of changes for version 20160108: 1) ACPICA kernel-resident subsystem: Updated all ACPICA copyrights and signons to 2016: Added the 2016 copyright to all source code module headers and utility/tool signons. This includes the standard Linux dual-license header. This affects virtually every file in the ACPICA core subsystem, iASL compiler, all ACPICA utilities, and the ACPICA test suite. Fixed a regression introduced in version 20151218 concerning the execution of so-called module-level ASL/AML code. Namespace objects created under a module-level If() construct were not properly/fully entered into the namespace and could cause an interpreter fault when accessed. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 102.7K Code, 28.4K Data, 131.1K Total Debug Version: 200.4K Code, 81.9K Data, 282.4K Total Previous Release: Non-Debug Version: 102.6K Code, 28.4K Data, 131.0K Total Debug Version: 200.3K Code, 81.9K Data, 282.3K Total 2) iASL Compiler/Disassembler and Tools: Fixed a problem with the compilation of the GpioIo and GpioInt resource descriptors. The _PIN field name was incorrectly defined to be an array of 32-bit values, but the _PIN values are in fact 16 bits each. This would cause incorrect bit width warnings when using Word (16-bit) fields to access the descriptors. ---------------------------------------- 18 December 2015. Summary of changes for version 20151218: 1) ACPICA kernel-resident subsystem: Implemented per-AML-table execution of "module-level code" as individual ACPI tables are loaded into the namespace during ACPICA initialization. In other words, any module-level code within an AML table is executed immediately after the table is loaded, instead of batched and executed after all of the tables have been loaded. This provides compatibility with other ACPI implementations. ACPICA BZ 1219. Bob Moore, Lv Zheng, David Box. To fully support the feature above, the default operation region handlers for the SystemMemory, SystemIO, and PCI_Config address spaces are now installed before any ACPI tables are loaded. This enables module-level code to access these address spaces during the table load and module- level code execution phase. ACPICA BZ 1220. Bob Moore, Lv Zheng, David Box. Implemented several changes to the internal _REG support in conjunction with the changes above. Also, changes to the AcpiExec/AcpiNames/Examples utilities for the changes above. Although these tools were changed, host operating systems that simply use the default handlers for SystemMemory, SystemIO, and PCI_Config spaces should not require any update. Lv Zheng. For example, in the code below, DEV1 is conditionally added to the namespace by the DSDT via module-level code that accesses an operation region. The SSDT references DEV1 via the Scope operator. DEV1 must be created immediately after the DSDT is loaded in order for the SSDT to successfully reference DEV1. Previously, this code would cause an AE_NOT_EXIST exception during the load of the SSDT. Now, this code is fully supported by ACPICA. DefinitionBlock ("", "DSDT", 2, "Intel", "DSDT1", 1) { OperationRegion (OPR1, SystemMemory, 0x400, 32) Field (OPR1, AnyAcc, NoLock, Preserve) { FLD1, 1 } If (FLD1) { Device (\DEV1) { } } } DefinitionBlock ("", "SSDT", 2, "Intel", "SSDT1", 1) { External (\DEV1, DeviceObj) Scope (\DEV1) { } } Fixed an AML interpreter problem where control method invocations were not handled correctly when the invocation was itself a SuperName argument to another ASL operator. In these cases, the method was not invoked. ACPICA BZ 1002. Affects the following ASL operators that have a SuperName argument: Store Acquire, Wait CondRefOf, RefOf Decrement, Increment Load, Unload Notify Signal, Release, Reset SizeOf Implemented automatic String-to-ObjectReference conversion support for packages returned by predefined names (such as _DEP). A common BIOS error is to add double quotes around an ObjectReference namepath, which turns the reference into an unexpected string object. This support detects the problem and corrects it before the package is returned to the caller that invoked the method. Lv Zheng. Implemented extensions to the Concatenate operator. Concatenate now accepts any type of object, it is not restricted to simply Integer/String/Buffer. For objects other than these 3 basic data types, the argument is treated as a string containing the name of the object type. This expands the utility of Concatenate and the Printf/Fprintf macros. ACPICA BZ 1222. Cleaned up the output of the ASL Debug object. The timer() value is now optional and no longer emitted by default. Also, the basic data types of Integer/String/Buffer are simply emitted as their values, without a data type string -- since the data type is obvious from the output. ACPICA BZ 1221. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 102.6K Code, 28.4K Data, 131.0K Total Debug Version: 200.3K Code, 81.9K Data, 282.3K Total Previous Release: Non-Debug Version: 102.0K Code, 28.3K Data, 130.3K Total Debug Version: 199.6K Code, 81.8K Data, 281.4K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed some issues with the ASL Include() operator. This operator was incorrectly defined in the iASL parser rules, causing a new scope to be opened for the code within the include file. This could lead to several issues, including allowing ASL code that is technically illegal and not supported by AML interpreters. Note, this does not affect the related #include preprocessor operator. ACPICA BZ 1212. iASL/Disassembler: Implemented support for the ASL ElseIf operator. This operator is essentially an ASL macro since there is no AML opcode associated with it. The code emitted by the iASL compiler for ElseIf is an Else opcode followed immediately by an If opcode. The disassembler will now emit an ElseIf if it finds an Else immediately followed by an If. This simplifies the decoded ASL, especially for deeply nested If..Else and large Switch constructs. Thus, the disassembled code more closely follows the original source ASL. ACPICA BZ 1211. Example: Old disassembly: Else { If (Arg0 == 0x02) { Local0 = 0x05 } } New disassembly: ElseIf (Arg0 == 0x02) { Local0 = 0x05 } AcpiExec: Added support for the new module level code behavior and the early region installation. This required a small change to the initialization, since AcpiExec must install its own operation region handlers. AcpiExec: Added support to make the debug object timer optional. Default is timer disabled. This cleans up the debug object output -- the timer data is rarely used. AcpiExec: Multiple ACPI tables are now loaded in the order that they appear on the command line. This can be important when there are interdependencies/references between the tables. iASL/Templates. Add support to generate template files with multiple SSDTs within a single output file. Also added ommand line support to specify the number of SSDTs (in addition to a single DSDT). ACPICA BZ 1223, 1225. ---------------------------------------- 24 November 2015. Summary of changes for version 20151124: 1) ACPICA kernel-resident subsystem: Fixed a possible regression for a previous update to FADT handling. The FADT no longer has a fixed table ID, causing some issues with code that was hardwired to a specific ID. Lv Zheng. Fixed a problem where the method auto-serialization could interfere with the current SyncLevel. This change makes the auto-serialization support transparent to the SyncLevel support and management. Removed support for the _SUB predefined name in AcpiGetObjectInfo. This interface is intended for early access to the namespace during the initial namespace device discovery walk. The _SUB method has been seen to access operation regions in some cases, causing errors because the operation regions are not fully initialized. AML Debugger: Fixed some issues with the terminate/quit/exit commands that can cause faults. Lv Zheng. AML Debugger: Add thread ID support so that single-step mode only applies to the AML Debugger thread. This prevents runtime errors within some kernels. Lv Zheng. Eliminated extraneous warnings from AcpiGetSleepTypeData. Since the _Sx methods that are invoked by this interface are optional, removed warnings emitted for the case where one or more of these methods do not exist. ACPICA BZ 1208, original change by Prarit Bhargava. Made a major pass through the entire ACPICA source code base to standardize formatting that has diverged a bit over time. There are no functional changes, but this will of course cause quite a few code differences from the previous ACPICA release. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 102.0K Code, 28.3K Data, 130.3K Total Debug Version: 199.6K Code, 81.8K Data, 281.4K Total Previous Release: Non-Debug Version: 101.7K Code, 27.9K Data, 129.6K Total Debug Version: 199.3K Code, 81.4K Data, 280.7K Total 2) iASL Compiler/Disassembler and Tools: iASL/acpiexec/acpixtract/disassembler: Added support to allow multiple definition blocks within a single ASL file and the resulting AML file. Support for this type of file was also added to the various tools that use binary AML files: acpiexec, acpixtract, and the AML disassembler. The example code below shows two definition blocks within the same file: DefinitionBlock ("dsdt.aml", "DSDT", 2, "Intel", "Template", 0x12345678) { } DefinitionBlock ("", "SSDT", 2, "Intel", "Template", 0xABCDEF01) { } iASL: Enhanced typechecking for the Name() operator. All expressions for the value of the named object must be reduced/folded to a single constant at compile time, as per the ACPI specification (the AML definition of Name()). iASL: Fixed some code indentation issues for the -ic and -ia options (C and assembly headers). Now all emitted code correctly begins in column 1. iASL: Added an error message for an attempt to open a Scope() on an object defined in an SSDT. The DSDT is always loaded into the namespace first, so any attempt to open a Scope on an SSDT object will fail at runtime. ---------------------------------------- 30 September 2015. Summary of changes for version 20150930: 1) ACPICA kernel-resident subsystem: Debugger: Implemented several changes and bug fixes to assist support for the in-kernel version of the AML debugger. Lv Zheng. - Fix the "predefined" command for in-kernel debugger. - Do not enter debug command loop for the help and version commands. - Disallow "execute" command during execution/single-step of a method. Interpreter: Updated runtime typechecking for all operators that have target operands. The operand is resolved and validated that it is legal. For example, the target cannot be a non-data object such as a Device, Mutex, ThermalZone, etc., as per the ACPI specification. Debugger: Fixed the double-mutex user I/O handshake to work when local deadlock detection is enabled. Debugger: limited display of method locals and arguments (LocalX and ArgX) to only those that have actually been initialized. This prevents lines of extraneous output. Updated the definition of the NFIT table to correct the bit polarity of one flag: ACPI_NFIT_MEM_ARMED --> ACPI_NFIT_MEM_NOT_ARMED Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 101.7K Code, 27.9K Data, 129.6K Total Debug Version: 199.3K Code, 81.4K Data, 280.7K Total Previous Release: Non-Debug Version: 101.3K Code, 27.7K Data, 129.0K Total Debug Version: 198.6K Code, 80.9K Data, 279.5K Total 2) iASL Compiler/Disassembler and Tools: iASL: Improved the compile-time typechecking for operands of many of the ASL operators: -- Added an option to disable compiler operand/operator typechecking (- ot). -- For the following operators, the TermArg operands are now validated when possible to be Integer data objects: BankField, OperationRegion, DataTableRegion, Buffer, and Package. -- Store (Source, Target): Both the source and target operands are resolved and checked that the operands are both legal. For example, neither operand can be a non-data object such as a Device, Mutex, ThermalZone, etc. Note, as per the ACPI specification, the CopyObject operator can be used to store an object to any type of target object. -- Store (Source, Target): If the source is a Package object, the target must be a Package object, LocalX, ArgX, or Debug. Likewise, if the target is a Package, the source must also be a Package. -- Store (Source, Target): A warning is issued if the source and target resolve to the identical named object. -- Store (Source, ): An error is generated for the target method invocation, as this construct is not supported by the AML interpreter. -- For all ASL math and logic operators, the target operand must be a data object (Integer, String, Buffer, LocalX, ArgX, or Debug). This includes the function return value also. -- External declarations are also included in the typechecking where possible. External objects defined using the UnknownObj keyword cannot be typechecked, however. iASL and Disassembler: Added symbolic (ASL+) support for the ASL Index operator: - Legacy code: Index(PKG1, 3) - New ASL+ code: PKG1[3] This completes the ACPI 6.0 ASL+ support as it was the only operator not supported. iASL: Fixed the file suffix for the preprocessor output file (.i). Two spaces were inadvertently appended to the filename, causing file access and deletion problems on some systems. ASL Test Suite (ASLTS): Updated the master makefile to generate all possible compiler output files when building the test suite -- thus exercising these features of the compiler. These files are automatically deleted when the test suite exits. ---------------------------------------- 18 August 2015. Summary of changes for version 20150818: 1) ACPICA kernel-resident subsystem: Fix a regression for AcpiGetTableByIndex interface causing it to fail. Lv Zheng. ACPICA BZ 1186. Completed development to ensure that the ACPICA Disassembler and Debugger are fully standalone components of ACPICA. Removed cross-component dependences. Lv Zheng. The max-number-of-AML-loops is now runtime configurable (previously was compile-time only). This is essentially a loop timeout to force-abort infinite AML loops. ACPCIA BZ 1192. Debugger: Cleanup output to dump ACPI names and namepaths without any trailing underscores. Lv Zheng. ACPICA BZ 1135. Removed unnecessary conditional compilations across the Debugger and Disassembler components where entire modules could be left uncompiled. The aapits test is deprecated and has been removed from the ACPICA git tree. The test has never been completed and has not been maintained, thus becoming rather useless. ACPICA BZ 1015, 794. A batch of small changes to close bugzilla and other reports: - Remove duplicate code for _PLD processing. ACPICA BZ 1176. - Correctly cleanup after a ACPI table load failure. ACPICA BZ 1185. - iASL: Support POSIX yacc again in makefile. Jung-uk Kim. - ACPI table support: general cleanup and simplification. Lv Zheng, Bob Moore. - ACPI table support: fix for a buffer read overrun in AcpiTbFindTable. ACPICA BZ 1184. - Enhance parameter validation for DataTableRegion and LoadTable ASL/AML operators. - Debugger: Split debugger initialization/termination interfaces. Lv Zheng. - AcpiExec: Emit OemTableId for SSDTs during the load phase for table identification. - AcpiExec: Add debug message during _REG method phase during table load/init. - AcpiNames: Fix a regression where some output was missing and no longer emitted. - Debugger: General cleanup and simplification. Lv Zheng. - Disassembler: Cleanup use of several global option variables. Lv Zheng. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 101.3K Code, 27.7K Data, 129.0K Total Debug Version: 198.6K Code, 80.9K Data, 279.5K Total Previous Release: Non-Debug Version: 100.9K Code, 24.5K Data, 125.4K Total Debug Version: 197.8K Code, 81.5K Data, 279.3K Total 2) iASL Compiler/Disassembler and Tools: AcpiExec: Fixed a problem where any more than 32 ACPI tables in the XSDT were not handled properly and caused load errors. Now, properly invoke and use the ACPICA auto-reallocate mechanism for ACPI table data structures. ACPICA BZ 1188 AcpiNames: Add command-line wildcard support for ACPI table files. ACPICA BZ 1190. AcpiExec and AcpiNames: Add -l option to load ACPI tables only. For AcpiExec, this means that no control methods (like _REG/_INI/_STA) are executed during initialization. ACPICA BZ 1187, 1189. iASL/Disassembler: Implemented a prototype "listing" mode that emits AML that corresponds to each disassembled ASL statement, to simplify debugging. ACPICA BZ 1191. Debugger: Add option to the "objects" command to display a summary of the current namespace objects (Object type and count). This is displayed if the command is entered with no arguments. AcpiNames: Add -x option to specify debug level, similar to AcpiExec. ---------------------------------------- 17 July 2015. Summary of changes for version 20150717: 1) ACPICA kernel-resident subsystem: Improved the partitioning between the Debugger and Disassembler components. This allows the Debugger to be used standalone within kernel code without the Disassembler (which is used for single stepping also). This renames and moves one file, dmobject.c to dbobject.c. Lv Zheng. Debugger: Implemented a new command to trace the execution of control methods (Trace). This is especially useful for the in-kernel version of the debugger when file I/O may not be available for method trace output. See the ACPICA reference for more information. Lv Zheng. Moved all C library prototypes (used for the local versions of these functions when requested) to a new header, acclib.h Cleaned up the use of non-ANSI C library functions. These functions are implemented locally in ACPICA. Moved all such functions to a common source file, utnonansi.c Debugger: Fixed a problem with the "!!" command (get last command executed) where the debugger could enter an infinite loop and eventually crash. Removed the use of local macros that were used for some of the standard C library functions to automatically cast input parameters. This mostly affected the is* functions where the input parameter is defined to be an int. This required a few modifications to the main ACPICA source code to provide casting for these functions and eliminate possible compiler warnings for these parameters. Across the source code, added additional status/error checking to resolve issues discovered by static source code analysis tools such as Coverity. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 100.9K Code, 24.5K Data, 125.4K Total Debug Version: 197.8K Code, 81.5K Data, 279.3K Total Previous Release: Non-Debug Version: 100.6K Code, 27.6K Data, 128.2K Total Debug Version: 196.2K Code, 81.0K Data, 277.2K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a regression where the device map file feature no longer worked properly when used in conjunction with the disassembler. It only worked properly with the compiler itself. iASL: Implemented a new warning for method LocalX variables that are set but never used (similar to a C compiler such as gcc). This also applies to ArgX variables that are not defined by the parent method, and are instead (legally) used as local variables. iASL/Preprocessor: Finished the pass-through of line numbers from the preprocessor to the compiler. This ensures that compiler errors/warnings have the correct original line numbers and filenames, regardless of any #include files. iASL/Preprocessor: Fixed a couple of issues with comment handling and the pass-through of comments to the preprocessor output file (which becomes the compiler input file). Also fixed a problem with // comments that appear after a math expression. iASL: Added support for the TCPA server table to the table compiler and template generator. (The client table was already previously supported) iASL/Preprocessor: Added a permanent #define of the symbol "__IASL__" to identify the iASL compiler. Cleaned up the use of the macros NEGATIVE and POSITIVE which were defined multiple times. The new names are ACPI_SIGN_NEGATIVE and ACPI_SIGN_POSITIVE. AcpiHelp: Update to expand help messages for the iASL preprocessor directives. ---------------------------------------- 19 June 2015. Summary of changes for version 20150619: Two regressions in version 20150616 have been addressed: Fixes some problems/issues with the C library macro removal (ACPI_STRLEN, etc.) This update changes ACPICA to only use the standard headers for functions, or the prototypes for the local versions of the C library functions. Across the source code, this required some additional casts for some Clib invocations for portability. Moved all local prototypes to a new file, acclib.h Fixes several problems with recent changes to the handling of the FACS table that could cause some systems not to boot. ---------------------------------------- 16 June 2015. Summary of changes for version 20150616: 1) ACPICA kernel-resident subsystem: Across the entire ACPICA source code base, the various macros for the C library functions (such as ACPI_STRLEN, etc.) have been removed and replaced by the standard C library names (strlen, etc.) The original purpose for these macros is no longer applicable. This simplification reduces the number of macros used in the ACPICA source code significantly, improving readability and maintainability. Implemented support for a new ACPI table, the OSDT. This table, the "override" SDT, can be loaded directly by the host OS at boot time. It enables the replacement of existing namespace objects that were installed via the DSDT and/or SSDTs. The primary purpose for this is to replace buggy or incorrect ASL/AML code obtained via the BIOS. The OSDT is slated for inclusion in a future version of the ACPI Specification. Lv Zheng/Bob Moore. Added support for systems with (improperly) two FACS tables -- a "32-bit" table (via FADT 32-bit legacy field) and a "64-bit" table (via the 64-bit X field). This change will support both automatically. There continues to be systems found with this issue. This support requires a change to the AcpiSetFirmwareWakingVector interface. Also, a public global variable has been added to allow the host to select which FACS is desired (AcpiGbl_Use32BitFacsAddresses). See the ACPICA reference for more details Lv Zheng. Added a new feature to allow for systems that do not contain an FACS. Although this is already supported on hardware-reduced platforms, the feature has been extended for all platforms. The reasoning is that we do not want to abort the entire ACPICA initialization just because the system is seriously buggy and has no FACS. Fixed a problem where the GUID strings for NFIT tables (in acuuid.h) were not correctly transcribed from the ACPI specification in ACPICA version 20150515. Implemented support for the _CLS object in the AcpiGetObjectInfo external interface. Updated the definitions of the TCPA and TPM2 ACPI tables to the more recent TCG ACPI Specification, December 14, 2014. Table disassembler and compiler also updated. Note: The TCPA "server" table is not supported by the disassembler/table-compiler at this time. ACPI 6.0: Added definitions for the new GIC version field in the MADT. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 100.6K Code, 27.6K Data, 128.2K Total Debug Version: 196.2K Code, 81.0K Data, 277.2K Total Previous Release: Non-Debug Version: 99.9K Code, 27.5K Data, 127.4K Total Debug Version: 195.2K Code, 80.8K Data, 276.0K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Fixed a problem with the new symbolic operator disassembler where incorrect ASL code could be emitted in some cases for the "non- commutative" operators -- Subtract, Divide, Modulo, ShiftLeft, and ShiftRight. The actual problem cases seem to be rather unusual in common ASL code, however. David Box. Modified the linux version of acpidump to obtain ACPI tables from not just /dev/mem (which may not exist) and /sys/firmware/acpi/tables. Lv Zheng. iASL: Fixed a problem where the user preprocessor output file (.i) contained extra data that was not expected. The compiler was using this file as a temporary file and passed through #line directives in order to keep compiler error messages in sync with the input file and line number across multiple include files. The (.i) is no longer a temporary file as the compiler uses a new, different file for the original purpose. iASL: Fixed a problem where comments within the original ASL source code file were not passed through to the preprocessor output file, nor any listing files. iASL: Fixed some issues for the handling of the "#include" preprocessor directive and the similar (but not the same) "Include" ASL operator. iASL: Add support for the new OSDT in both the disassembler and compiler. iASL: Fixed a problem with the constant folding support where a Buffer object could be incorrectly generated (incorrectly formed) during a conversion to a Store() operator. AcpiHelp: Updated for new NFIT GUIDs, "External" AML opcode, and new description text for the _REV predefined name. _REV now permanently returns 2, as per the ACPI 6.0 specification. Debugger: Enhanced the output of the Debug ASL object for references produced by the Index operator. For Buffers and strings, only output the actual byte pointed to by the index. For packages, only print the single package element decoded by the index. Previously, the entire buffer/string/package was emitted. iASL/Table-compiler: Fixed a regression where the "generic" data types were no longer recognized, causing errors. ---------------------------------------- 15 May 2015. Summary of changes for version 20150515: This release implements most of ACPI 6.0 as described below. 1) ACPICA kernel-resident subsystem: Implemented runtime argument checking and return value checking for all new ACPI 6.0 predefined names. This includes: _BTH, _CR3, _DSD, _LPI, _MTL, _PRR, _RDI, _RST, _TFP, _TSN. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 99.9K Code, 27.5K Data, 127.4K Total Debug Version: 195.2K Code, 80.8K Data, 276.0K Total Previous Release: Non-Debug Version: 99.1K Code, 27.3K Data, 126.4K Total Debug Version: 192.8K Code, 79.9K Data, 272.7K Total 2) iASL Compiler/Disassembler and Tools: iASL compiler: Added compile-time support for all new ACPI 6.0 predefined names (argument count validation and return value typechecking.) iASL disassembler and table compiler: implemented support for all new ACPI 6.0 tables. This includes: DRTM, IORT, LPIT, NFIT, STAO, WPBT, XENV. iASL disassembler and table compiler: Added ACPI 6.0 changes to existing tables: FADT, MADT. iASL preprocessor: Added a new directive to enable inclusion of binary blobs into ASL code. The new directive is #includebuffer. It takes a binary file as input and emits a named ascii buffer object into the ASL code. AcpiHelp: Added support for all new ACPI 6.0 predefined names. AcpiHelp: Added a new option, -d, to display all iASL preprocessor directives. AcpiHelp: Added a new option, -t, to display all known/supported ACPI tables. ---------------------------------------- 10 April 2015. Summary of changes for version 20150410: Reverted a change introduced in version 20150408 that caused a regression in the disassembler where incorrect operator symbols could be emitted. ---------------------------------------- 08 April 2015. Summary of changes for version 20150408: 1) ACPICA kernel-resident subsystem: Permanently set the return value for the _REV predefined name. It now returns 2 (was 5). This matches other ACPI implementations. _REV will be deprecated in the future, and is now defined to be 1 for ACPI 1.0, and 2 for ACPI 2.0 and later. It should never be used to differentiate or identify operating systems. Added the "Windows 2015" string to the _OSI support. ACPICA will now return TRUE to a query with this string. Fixed several issues with the local version of the printf function. Added the C99 compiler option (-std=c99) to the Unix makefiles. Current Release: Non-Debug Version: 99.9K Code, 27.4K Data, 127.3K Total Debug Version: 195.2K Code, 80.7K Data, 275.9K Total Previous Release: Non-Debug Version: 98.8K Code, 27.3K Data, 126.1K Total Debug Version: 192.1K Code, 79.8K Data, 271.9K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented an enhancement to the constant folding feature to transform the parse tree to a simple Store operation whenever possible: Add (2, 3, X) ==> is converted to: Store (5, X) X = 2 + 3 ==> is converted to: Store (5, X) Updated support for the SLIC table (Software Licensing Description Table) in both the Data Table compiler and the disassembler. The SLIC table support now conforms to "Microsoft Software Licensing Tables (SLIC and MSDM). November 29, 2011. Copyright 2011 Microsoft". Note: Any SLIC data following the ACPI header is now defined to be "Proprietary Data", and as such, can only be entered or displayed as a hex data block. Implemented full support for the MSDM table as described in the document above. Note: The format of MSDM is similar to SLIC. Any MSDM data following the ACPI header is defined to be "Proprietary Data", and can only be entered or displayed as a hex data block. Implemented the -Pn option for the iASL Table Compiler (was only implemented for the ASL compiler). This option disables the iASL preprocessor. Disassembler: For disassembly of Data Tables, added a comment field around the Ascii equivalent data that is emitted as part of the "Raw Table Data" block. This prevents the iASL Preprocessor from possible confusion if/when the table is compiled. Disassembler: Added an option (-df) to force the disassembler to assume that the table being disassembled contains valid AML. This feature is useful for disassembling AML files that contain ACPI signatures other than DSDT or SSDT (such as OEMx or other signatures). Changes for the EFI version of the tools: 1) Fixed a build error/issue 2) Fixed a cast warning iASL: Fixed a path issue with the __FILE__ operator by making the directory prefix optional within the internal SplitInputFilename function. Debugger: Removed some unused global variables. Tests: Updated the makefile for proper generation of the AAPITS suite. ---------------------------------------- 04 February 2015. Summary of changes for version 20150204: ACPICA kernel-resident subsystem: Updated all ACPICA copyrights and signons to 2014. Added the 2014 copyright to all module headers and signons, including the standard Linux header. This affects virtually every file in the ACPICA core subsystem, iASL compiler, all ACPICA utilities, and the test suites. Events: Introduce ACPI_GPE_DISPATCH_RAW_HANDLER to fix GPE storm issues. A raw gpe handling mechanism was created to allow better handling of GPE storms that aren't easily managed by the normal handler. The raw handler allows disabling/renabling of the the GPE so that interrupt storms can be avoided in cases where events cannot be timely serviced. In this scenario, handlers should use the AcpiSetGpe() API to disable/enable the GPE. This API will leave the reference counts undisturbed, thereby preventing unintentional clearing of the GPE when the intent in only to temporarily disable it. Raw handlers allow enabling and disabling of a GPE by removing GPE register locking. As such, raw handlers much provide their own locks while using GPE API's to protect access to GPE data structures. Lv Zheng Events: Always modify GPE registers under the GPE lock. Applies GPE lock around AcpiFinishGpe() to protect access to GPE register values. Reported as bug by joe.liu@apple.com. Unix makefiles: Separate option to disable optimizations and _FORTIFY_SOURCE. This change removes the _FORTIFY_SOURCE flag from the NOOPT disable option and creates a separate flag (NOFORTIFY) for this purpose. Some toolchains may define _FORTIFY_SOURCE which leads redefined errors when building ACPICA. This allows disabling the option without also having to disable optimazations. David Box Current Release: Non-Debug Version: 101.7K Code, 27.9K Data, 129.6K Total Debug Version: 199.2K Code, 82.4K Data, 281.6K Total -- -------------------------------------- 07 November 2014. Summary of changes for version 20141107: This release is available at https://acpica.org/downloads This release introduces and implements language extensions to ASL that provide support for symbolic ("C-style") operators and expressions. These language extensions are known collectively as ASL+. 1) iASL Compiler/Disassembler and Tools: Disassembler: Fixed a problem with disassembly of the UartSerialBus macro. Changed "StopBitsNone" to the correct "StopBitsZero". David E. Box. Disassembler: Fixed the Unicode macro support to add escape sequences. All non-printable ASCII values are emitted as escape sequences, as well as the standard escapes for quote and backslash. Ensures that the disassembled macro can be correctly recompiled. iASL: Added Printf/Fprintf macros for formatted output. These macros are translated to existing AML Concatenate and Store operations. Printf writes to the ASL Debug object. Fprintf allows the specification of an ASL name as the target. Only a single format specifier is required, %o, since the AML interpreter dynamically converts objects to the required type. David E. Box. (old) Store (Concatenate (Concatenate (Concatenate (Concatenate (Concatenate (Concatenate (Concatenate ("", Arg0), ": Unexpected value for "), Arg1), ", "), Arg2), " at line "), Arg3), Debug) (new) Printf ("%o: Unexpected value for %o, %o at line %o", Arg0, Arg1, Arg2, Arg3) (old) Store (Concatenate (Concatenate (Concatenate (Concatenate ("", Arg1), ": "), Arg0), " Successful"), STR1) (new) Fprintf (STR1, "%o: %o Successful", Arg1, Arg0) iASL: Added debug options (-bp, -bt) to dynamically prune levels of the ASL parse tree before the AML code is generated. This allows blocks of ASL code to be removed in order to help locate and identify problem devices and/or code. David E. Box. AcpiExec: Added support (-fi) for an optional namespace object initialization file. This file specifies initial values for namespace objects as necessary for debugging and testing different ASL code paths that may be taken as a result of BIOS options. 2) Overview of symbolic operator support for ASL (ASL+) ------------------------------------------------------- As an extension to the ASL language, iASL implements support for symbolic (C-style) operators for math and logical expressions. This can greatly simplify ASL code as well as improve both readability and maintainability. These language extensions can exist concurrently with all legacy ASL code and expressions. The symbolic extensions are 100% compatible with existing AML interpreters, since no new AML opcodes are created. To implement the extensions, the iASL compiler transforms the symbolic expressions into the legacy ASL/AML equivalents at compile time. Full symbolic expressions are supported, along with the standard C precedence and associativity rules. Full disassembler support for the symbolic expressions is provided, and creates an automatic migration path for existing ASL code to ASL+ code via the disassembly process. By default, the disassembler now emits ASL+ code with symbolic expressions. An option (-dl) is provided to force the disassembler to emit legacy ASL code if desired. Below is the complete list of the currently supported symbolic operators with examples. See the iASL User Guide for additional information. ASL+ Syntax Legacy ASL Equivalent ----------- --------------------- // Math operators Z = X + Y Add (X, Y, Z) Z = X - Y Subtract (X, Y, Z) Z = X * Y Multiply (X, Y, Z) Z = X / Y Divide (X, Y, , Z) Z = X % Y Mod (X, Y, Z) Z = X << Y ShiftLeft (X, Y, Z) Z = X >> Y ShiftRight (X, Y, Z) Z = X & Y And (X, Y, Z) Z = X | Y Or (X, Y, Z) Z = X ^ Y Xor (X, Y, Z) Z = ~X Not (X, Z) X++ Increment (X) X-- Decrement (X) // Logical operators (X == Y) LEqual (X, Y) (X != Y) LNotEqual (X, Y) (X < Y) LLess (X, Y) (X > Y) LGreater (X, Y) (X <= Y) LLessEqual (X, Y) (X >= Y) LGreaterEqual (X, Y) (X && Y) LAnd (X, Y) (X || Y) LOr (X, Y) (!X) LNot (X) // Assignment and compound assignment operations X = Y Store (Y, X) X += Y Add (X, Y, X) X -= Y Subtract (X, Y, X) X *= Y Multiply (X, Y, X) X /= Y Divide (X, Y, , X) X %= Y Mod (X, Y, X) X <<= Y ShiftLeft (X, Y, X) X >>= Y ShiftRight (X, Y, X) X &= Y And (X, Y, X) X |= Y Or (X, Y, X) X ^= Y Xor (X, Y, X) 3) ASL+ Examples: ----------------- Legacy ASL: If (LOr (LOr (LEqual (And (R510, 0x03FB), 0x02E0), LEqual ( And (R520, 0x03FB), 0x02E0)), LOr (LEqual (And (R530, 0x03FB), 0x02E0), LEqual (And (R540, 0x03FB), 0x02E0)))) { And (MEMB, 0xFFFFFFF0, SRMB) Store (MEMB, Local2) Store (PDBM, Local1) And (PDBM, 0xFFFFFFFFFFFFFFF9, PDBM) Store (SRMB, MEMB) Or (PDBM, 0x02, PDBM) } ASL+ version: If (((R510 & 0x03FB) == 0x02E0) || ((R520 & 0x03FB) == 0x02E0) || ((R530 & 0x03FB) == 0x02E0) || ((R540 & 0x03FB) == 0x02E0)) { SRMB = (MEMB & 0xFFFFFFF0) Local2 = MEMB Local1 = PDBM PDBM &= 0xFFFFFFFFFFFFFFF9 MEMB = SRMB PDBM |= 0x02 } Legacy ASL: Store (0x1234, Local1) Multiply (Add (Add (Local1, TEST), 0x20), Local2, Local3) Multiply (Local2, Add (Add (Local1, TEST), 0x20), Local3) Add (Local1, Add (TEST, Multiply (0x20, Local2)), Local3) Store (Index (PKG1, 0x03), Local6) Store (Add (Local3, Local2), Debug) Add (Local1, 0x0F, Local2) Add (Local1, Multiply (Local2, Local3), Local2) Multiply (Add (Add (Local1, TEST), 0x20), ToBCD (Local1), Local3) ASL+ version: Local1 = 0x1234 Local3 = (((Local1 + TEST) + 0x20) * Local2) Local3 = (Local2 * ((Local1 + TEST) + 0x20)) Local3 = (Local1 + (TEST + (0x20 * Local2))) Local6 = Index (PKG1, 0x03) Debug = (Local3 + Local2) Local2 = (Local1 + 0x0F) Local2 = (Local1 + (Local2 * Local3)) Local3 = (((Local1 + TEST) + 0x20) * ToBCD (Local1)) ---------------------------------------- 26 September 2014. Summary of changes for version 20140926: 1) ACPICA kernel-resident subsystem: Updated the GPIO operation region handler interface (GeneralPurposeIo). In order to support GPIO Connection objects with multiple pins, along with the related Field objects, the following changes to the interface have been made: The Address is now defined to be the offset in bits of the field unit from the previous invocation of a Connection. It can be viewed as a "Pin Number Index" into the connection resource descriptor. The BitWidth is the exact bit width of the field. It is usually one bit, but not always. See the ACPICA reference guide (section 8.8.6.2.1) for additional information and examples. GPE support: During ACPICA/GPE initialization, ensure that all GPEs with corresponding _Lxx/_Exx methods are disabled (they may have been enabled by the firmware), so that they cannot fire until they are enabled via AcpiUpdateAllGpes. Rafael J. Wysocki. Added a new return flag for the Event/GPE status interfaces -- AcpiGetEventStatus and AcpiGetGpeStatus. The new ACPI_EVENT_FLAGS_HAS_HANDLER flag is used to indicate that the event or GPE currently has a handler associated with it, and can thus actually affect the system. Lv Zheng. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 99.1K Code, 27.3K Data, 126.4K Total Debug Version: 192.8K Code, 79.9K Data, 272.7K Total Previous Release: Non-Debug Version: 98.8K Code, 27.3K Data, 126.1K Total Debug Version: 192.1K Code, 79.8K Data, 271.9K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a memory allocation/free regression introduced in 20140828 that could cause the compiler to crash. This was introduced inadvertently during the effort to eliminate compiler memory leaks. ACPICA BZ 1111, 1113. iASL: Removed two error messages that have been found to create false positives, until they can be fixed and fully validated (ACPICA BZ 1112): 1) Illegal forward reference within a method 2) Illegal reference across two methods iASL: Implemented a new option (-lm) to create a hardware mapping file that summarizes all GPIO, I2C, SPI, and UART connections. This option works for both the compiler and disassembler. See the iASL compiler user guide for additional information and examples (section 6.4.6). AcpiDump: Added support for the version 1 (ACPI 1.0) RSDP in addition to version 2. This corrects the AE_BAD_HEADER exception seen on systems with a version 1 RSDP. Lv Zheng ACPICA BZ 1097. AcpiExec: For Unix versions, don't attempt to put STDIN into raw mode unless STDIN is actually a terminal. Assists with batch-mode processing. ACPICA BZ 1114. Disassembler/AcpiHelp: Added another large group of recognized _HID values. ---------------------------------------- 28 August 2014. Summary of changes for version 20140828: 1) ACPICA kernel-resident subsystem: Fixed a problem related to the internal use of the Timer() operator where a 64-bit divide could cause an attempted link to a double-precision math library. This divide is not actually necessary, so the code was restructured to eliminate it. Lv Zheng. ACPI 5.1: Added support for the runtime validation of the _DSD package (similar to the iASL support). ACPI 5.1/Headers: Added support for the GICC affinity subtable to the SRAT table. Hanjun Guo . Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 98.8K Code, 27.3K Data, 126.1K Total Debug Version: 192.1K Code, 79.8K Data, 271.9K Total Previous Release: Non-Debug Version: 98.7K Code, 27.3K Data, 126.0K Total1 Debug Version: 192.0K Code, 79.7K Data, 271.7K Total 2) iASL Compiler/Disassembler and Tools: AcpiExec: Fixed a problem on unix systems where the original terminal state was not always properly restored upon exit. Seen when using the -v option. ACPICA BZ 1104. iASL: Fixed a problem with the validation of the ranges/length within the Memory24 resource descriptor. There was a boundary condition when the range was equal to the (length -1) caused by the fact that these values are defined in 256-byte blocks, not bytes. ACPICA BZ 1098 Disassembler: Fixed a problem with the GpioInt descriptor interrupt polarity flags. The flags are actually 2 bits, not 1, and the "ActiveBoth" keyword is now supported properly. ACPI 5.1: Added the GICC affinity subtable to the SRAT table. Supported in the disassembler, data table compiler, and table template generator. iASL: Added a requirement for Device() objects that one of either a _HID or _ADR must exist within the scope of a Device, as per the ACPI specification. Remove a similar requirement that was incorrectly in place for the _DSD object. iASL: Added error detection for illegal named references within control methods that would cause runtime failures. Now trapped as errors are: 1) References to objects within a non-parent control method. 2) Forward references (within a method) -- for control methods, AML interpreters use a one-pass parse of control methods. ACPICA BZ 1008. iASL: Added error checking for dependencies related to the _PSx power methods. ACPICA BZ 1029. 1) For _PS0, one of these must exist within the same scope: _PS1, _PS2, _PS3. 2) For _PS1, _PS2, and PS3: A _PS0 object must exist within the same scope. iASL and table compiler: Cleanup miscellaneous memory leaks by fully deploying the existing object and string caches and adding new caches for the table compiler. iASL: Split the huge parser source file into multiple subfiles to improve manageability. Generation now requires the M4 macro preprocessor, which is part of the Bison distribution on both unix and windows platforms. AcpiSrc: Fixed and removed all extraneous warnings generated during entire ACPICA source code scan and/or conversion. ---------------------------------------- 24 July 2014. Summary of changes for version 20140724: The ACPI 5.1 specification has been released and is available at: http://uefi.org/specs/access 0) ACPI 5.1 support in ACPICA: ACPI 5.1 is fully supported in ACPICA as of this release. New predefined names. Support includes iASL and runtime ACPICA validation. _CCA (Cache Coherency Attribute). _DSD (Device-Specific Data). David Box. Modifications to existing ACPI tables. Support includes headers, iASL Data Table compiler, disassembler, and the template generator. FADT - New fields and flags. Graeme Gregory. GTDT - One new subtable and new fields. Tomasz Nowicki. MADT - Two new subtables. Tomasz Nowicki. PCCT - One new subtable. Miscellaneous. New notification type for System Resource Affinity change events. 1) ACPICA kernel-resident subsystem: Fixed a regression introduced in 20140627 where a fault can happen during the deletion of Alias AML namespace objects. The problem affected both the core ACPICA and the ACPICA tools including iASL and AcpiExec. Implemented a new GPE public interface, AcpiMarkGpeForWake. Provides a simple mechanism to enable wake GPEs that have no associated handler or control method. Rafael Wysocki. Updated the AcpiEnableGpe interface to disallow the enable if there is no handler or control method associated with the particular GPE. This will help avoid meaningless GPEs and even GPE floods. Rafael Wysocki. Updated GPE handling and dispatch by disabling the GPE before clearing the status bit for edge-triggered GPEs. Lv Zheng. Added Timer() support to the AML Debug object. The current timer value is now displayed with each invocation of (Store to) the debug object to enable simple generation of execution times for AML code (method execution for example.) ACPICA BZ 1093. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 98.7K Code, 27.3K Data, 126.0K Total Debug Version: 192.0K Code, 79.7K Data, 271.7K Total Previous Release: Non-Debug Version: 98.7K Code, 27.2K Data, 125.9K Total Debug Version: 191.7K Code, 79.6K Data, 271.3K Total 2) iASL Compiler/Disassembler and Tools: Fixed an issue with the recently added local printf implementation, concerning width/precision specifiers that could cause incorrect output. Lv Zheng. ACPICA BZ 1094. Disassembler: Added support to detect buffers that contain UUIDs and disassemble them to an invocation of the ToUUID operator. Also emit commented descriptions of known ACPI-related UUIDs. AcpiHelp: Added support to display known ACPI-related UUIDs. New option, -u. Adds three new files. iASL: Update table compiler and disassembler for DMAR table changes that were introduced in September 2013. With assistance by David Woodhouse. ---------------------------------------- 27 June 2014. Summary of changes for version 20140627: 1) ACPICA kernel-resident subsystem: Formatted Output: Implemented local versions of standard formatted output utilities such as printf, etc. Over time, it has been discovered that there are in fact many portability issues with printf, and the addition of this feature will fix/prevent these issues once and for all. Some known issues are summarized below: 1) Output of 64-bit values is not portable. For example, UINT64 is %ull for the Linux kernel and is %uI64 for some MSVC versions. 2) Invoking printf consistently in a manner that is portable across both 32-bit and 64-bit platforms is difficult at best in many situations. 3) The output format for pointers varies from system to system (leading zeros especially), and leads to inconsistent output from ACPICA across platforms. 4) Certain platform-specific printf formats may conflict with ACPICA use. 5) If there is no local C library available, ACPICA now has local support for printf. -- To address these printf issues in a complete manner, ACPICA now directly implements a small subset of printf format specifiers, only those that it requires. Adds a new file, utilities/utprint.c. Lv Zheng. Implemented support for ACPICA generation within the EFI environment. Initially, the AcpiDump utility is supported in the UEFI shell environment. Lv Zheng. Added a new external interface, AcpiLogError, to improve ACPICA portability. This allows the host to redirect error messages from the ACPICA utilities. Lv Zheng. Added and deployed new OSL file I/O interfaces to improve ACPICA portability: AcpiOsOpenFile AcpiOsCloseFile AcpiOsReadFile AcpiOsWriteFile AcpiOsGetFileOffset AcpiOsSetFileOffset There are C library implementations of these functions in the new file service_layers/oslibcfs.c -- however, the functions can be implemented by the local host in any way necessary. Lv Zheng. Implemented a mechanism to disable/enable ACPI table checksum validation at runtime. This can be useful when loading tables very early during OS initialization when it may not be possible to map the entire table in order to compute the checksum. Lv Zheng. Fixed a buffer allocation issue for the Generic Serial Bus support. Originally, a fixed buffer length was used. This change allows for variable-length buffers based upon the protocol indicated by the field access attributes. Reported by Lan Tianyu. Lv Zheng. Fixed a problem where an object detached from a namespace node was not properly terminated/cleared and could cause a circular list problem if reattached. ACPICA BZ 1063. David Box. Fixed a possible recursive lock acquisition in hwregs.c. Rakib Mullick. Fixed a possible memory leak in an error return path within the function AcpiUtCopyIobjectToIobject. ACPICA BZ 1087. Colin Ian King. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 98.7K Code, 27.2K Data, 125.9K Total Debug Version: 191.7K Code, 79.6K Data, 271.3K Total Previous Release: Non-Debug Version: 96.8K Code, 27.2K Data, 124.0K Total Debug Version: 189.5K Code, 79.7K Data, 269.2K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Add dump of ASCII equivalent text within a comment at the end of each line of the output for the Buffer() ASL operator. AcpiDump: Miscellaneous changes: Fixed repetitive table dump in -n mode. For older EFI platforms, use the ACPI 1.0 GUID during RSDP search if the ACPI 2.0 GUID fails. iASL: Fixed a problem where the compiler could fault if incorrectly given an acpidump output file as input. ACPICA BZ 1088. David Box. AcpiExec/AcpiNames: Fixed a problem where these utilities could fault if they are invoked without any arguments. Debugger: Fixed a possible memory leak in an error return path. ACPICA BZ 1086. Colin Ian King. Disassembler: Cleaned up a block of code that extracts a parent Op object. Added a comment that explains that the parent is guaranteed to be valid in this case. ACPICA BZ 1069. ---------------------------------------- 24 April 2014. Summary of changes for version 20140424: 1) ACPICA kernel-resident subsystem: Implemented support to skip/ignore NULL address entries in the RSDT/XSDT. Some of these tables are known to contain a trailing NULL entry. Lv Zheng. Removed an extraneous error message for the case where there are a large number of system GPEs (> 124). This was the "32-bit FADT register is too long to convert to GAS struct" message, which is irrelevant for GPEs since the GPEx_BLK_LEN fields of the FADT are always used instead of the (limited capacity) GAS bit length. Also, several changes to ensure proper support for GPE numbers > 255, where some "GPE number" fields were 8-bits internally. Implemented and deployed additional configuration support for the public ACPICA external interfaces. Entire classes of interfaces can now be easily modified or configured out, replaced by stubbed inline functions by default. Lv Zheng. Moved all public ACPICA runtime configuration globals to the public ACPICA external interface file for convenience. Also, removed some obsolete/unused globals. See the file acpixf.h. Lv Zheng. Documentation: Added a new section to the ACPICA reference describing the maximum number of GPEs that can be supported by the FADT-defined GPEs in block zero and one. About 1200 total. See section 4.4.1 of the ACPICA reference. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.8K Code, 27.2K Data, 124.0K Total Debug Version: 189.5K Code, 79.7K Data, 269.2K Total Previous Release: Non-Debug Version: 97.0K Code, 27.2K Data, 124.2K Total Debug Version: 189.7K Code, 79.5K Data, 269.2K Total 2) iASL Compiler/Disassembler and Tools: iASL and disassembler: Add full support for the LPIT table (Low Power Idle Table). Includes support in the disassembler, data table compiler, and template generator. AcpiDump utility: 1) Add option to force the use of the RSDT (over the XSDT). 2) Improve validation of the RSDP signature (use 8 chars instead of 4). iASL: Add check for predefined packages that are too large. For predefined names that contain subpackages, check if each subpackage is too large. (Check for too small already exists.) Debugger: Updated the GPE command (which simulates a GPE by executing the GPE code paths in ACPICA). The GPE device is now optional, and defaults to the GPE 0/1 FADT-defined blocks. Unix application OSL: Update line-editing support. Add additional error checking and take care not to reset terminal attributes on exit if they were never set. This should help guarantee that the terminal is always left in the previous state on program exit. ---------------------------------------- 25 March 2014. Summary of changes for version 20140325: 1) ACPICA kernel-resident subsystem: Updated the auto-serialize feature for control methods. This feature automatically serializes all methods that create named objects in order to prevent runtime errors. The update adds support to ignore the currently executing AML SyncLevel when invoking such a method, in order to prevent disruption of any existing SyncLevel priorities that may exist in the AML code. Although the use of SyncLevels is relatively rare, this change fixes a regression where an AE_AML_MUTEX_ORDER exception can appear on some machines starting with the 20140214 release. Added a new external interface to allow the host to install ACPI tables very early, before the namespace is even created. AcpiInstallTable gives the host additional flexibility for ACPI table management. Tables can be installed directly by the host as if they had originally appeared in the XSDT/RSDT. Installed tables can be SSDTs or other ACPI data tables (anything except the DSDT and FACS). Adds a new file, tbdata.c, along with additional internal restructuring and cleanup. See the ACPICA Reference for interface details. Lv Zheng. Added validation of the checksum for all incoming dynamically loaded tables (via external interfaces or via AML Load/LoadTable operators). Lv Zheng. Updated the use of the AcpiOsWaitEventsComplete interface during Notify and GPE handler removal. Restructured calls to eliminate possible race conditions. Lv Zheng. Added a warning for the use/execution of the ASL/AML Unload (table) operator. This will help detect and identify machines that use this operator if and when it is ever used. This operator has never been seen in the field and the usage model and possible side-effects of the drastic runtime action of a full table removal are unknown. Reverted the use of #pragma push/pop which was introduced in the 20140214 release. It appears that push and pop are not implemented by enough compilers to make the use of this feature feasible for ACPICA at this time. However, these operators may be deployed in a future ACPICA release. Added the missing EXPORT_SYMBOL macros for the install and remove SCI handler interfaces. Source code generation: 1) Disabled the use of the "strchr" macro for the gcc-specific generation. For some versions of gcc, this macro can periodically expose a compiler bug which in turn causes compile-time error(s). 2) Added support for PPC64 compilation. Colin Ian King. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 97.0K Code, 27.2K Data, 124.2K Total Debug Version: 189.7K Code, 79.5K Data, 269.2K Total Previous Release: Non-Debug Version: 96.5K Code, 27.2K Data, 123.7K Total Debug Version: 188.6K Code, 79.0K Data, 267.6K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Added several new features to improve the readability of the resulting ASL code. Extra information is emitted within comment fields in the ASL code: 1) Known _HID/_CID values are decoded to descriptive text. 2) Standard values for the Notify() operator are decoded to descriptive text. 3) Target operands are expanded to full pathnames (in a comment) when possible. Disassembler: Miscellaneous updates for extern() handling: 1) Abort compiler if file specified by -fe option does not exist. 2) Silence unnecessary warnings about argument count mismatches. 3) Update warning messages concerning unresolved method externals. 4) Emit "UnknownObj" keyword for externals whose type cannot be determined. AcpiHelp utility: 1) Added the -a option to display both the ASL syntax and the AML encoding for an input ASL operator. This effectively displays all known information about an ASL operator with one AcpiHelp invocation. 2) Added substring match support (similar to a wildcard) for the -i (_HID/PNP IDs) option. iASL/Disassembler: Since this tool does not yet support execution on big- endian machines, added detection of endianness and an error message if execution is attempted on big-endian. Support for big-endian within iASL is a feature that is on the ACPICA to-be-done list. AcpiBin utility: 1) Remove option to extract binary files from an acpidump; this function is made obsolete by the AcpiXtract utility. 2) General cleanup of open files and allocated buffers. ---------------------------------------- 14 February 2014. Summary of changes for version 20140214: 1) ACPICA kernel-resident subsystem: Implemented a new mechanism to proactively prevent problems with ill- behaved reentrant control methods that create named ACPI objects. This behavior is illegal as per the ACPI specification, but is nonetheless frequently seen in the field. Previously, this could lead to an AE_ALREADY_EXISTS exception if the method was actually entered by more than one thread. This new mechanism detects such methods at table load time and marks them "serialized" to prevent reentrancy. A new global option, AcpiGbl_AutoSerializeMethods, has been added to disable this feature if desired. This mechanism and global option obsoletes and supersedes the previous AcpiGbl_SerializeAllMethods option. Added the "Windows 2013" string to the _OSI support. ACPICA will now respond TRUE to _OSI queries with this string. It is the stated policy of ACPICA to add new strings to the _OSI support as soon as possible after they are defined. See the full ACPICA _OSI policy which has been added to the utilities/utosi.c file. Hardened/updated the _PRT return value auto-repair code: 1) Do not abort the repair on a single subpackage failure, continue to check all subpackages. 2) Add check for the minimum subpackage length (4). 3) Properly handle extraneous NULL package elements. Added support to avoid the possibility of infinite loops when traversing object linked lists. Never allow an infinite loop, even in the face of corrupted object lists. ACPICA headers: Deployed the use of #pragma pack(push) and #pragma pack(pop) directives to ensure that the ACPICA headers are independent of compiler settings or other host headers. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.5K Code, 27.2K Data, 123.7K Total Debug Version: 188.6K Code, 79.0K Data, 267.6K Total Previous Release: Non-Debug Version: 96.2K Code, 27.0K Data, 123.2K Total Debug Version: 187.5K Code, 78.3K Data, 265.8K Total 2) iASL Compiler/Disassembler and Tools: iASL/Table-compiler: Fixed a problem with support for the SPMI table. The first reserved field was incorrectly forced to have a value of zero. This change correctly forces the field to have a value of one. ACPICA BZ 1081. Debugger: Added missing support for the "Extra" and "Data" subobjects when displaying object data. Debugger: Added support to display entire object linked lists when displaying object data. iASL: Removed the obsolete -g option to obtain ACPI tables from the Windows registry. This feature has been superseded by the acpidump utility. ---------------------------------------- 14 January 2014. Summary of changes for version 20140114: 1) ACPICA kernel-resident subsystem: Updated all ACPICA copyrights and signons to 2014. Added the 2014 copyright to all module headers and signons, including the standard Linux header. This affects virtually every file in the ACPICA core subsystem, iASL compiler, all ACPICA utilities, and the test suites. Improved parameter validation for AcpiInstallGpeBlock. Added the following checks: 1) The incoming device handle refers to type ACPI_TYPE_DEVICE. 2) There is not already a GPE block attached to the device. Likewise, with AcpiRemoveGpeBlock, ensure that the incoming object is a device. Correctly support "references" in the ACPI_OBJECT. This change fixes the support to allow references (namespace nodes) to be passed as arguments to control methods via the evaluate object interface. This is probably most useful for testing purposes, however. Improved support for 32/64 bit physical addresses in printf()-like output. This change improves the support for physical addresses in printf debug statements and other output on both 32-bit and 64-bit hosts. It consistently outputs the appropriate number of bytes for each host. The %p specifier is unsatisfactory since it does not emit uniform output on all hosts/clib implementations (on some, leading zeros are not supported, leading to difficult-to-read output). Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.2K Code, 27.0K Data, 123.2K Total Debug Version: 187.5K Code, 78.3K Data, 265.8K Total Previous Release: Non-Debug Version: 96.1K Code, 27.0K Data, 123.1K Total Debug Version: 185.6K Code, 77.3K Data, 262.9K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fix a possible fault when using the Connection() operator. Fixes a problem if the parent Field definition for the Connection operator refers to an operation region that does not exist. ACPICA BZ 1064. AcpiExec: Load of local test tables is now optional. The utility has the capability to load some various tables to test features of ACPICA. However, there are enough of them that the output of the utility became confusing. With this change, only the required local tables are displayed (RSDP, XSDT, etc.) along with the actual tables loaded via the command line specification. This makes the default output simler and easier to understand. The -el command line option restores the original behavior for testing purposes. AcpiExec: Added support for overlapping operation regions. This change expands the simulation of operation regions by supporting regions that overlap within the given address space. Supports SystemMemory and SystemIO. ASLTS test suite updated also. David Box. ACPICA BZ 1031. AcpiExec: Added region handler support for PCI_Config and EC spaces. This allows AcpiExec to simulate these address spaces, similar to the current support for SystemMemory and SystemIO. Debugger: Added new command to read/write/compare all namespace objects. The command "test objects" will exercise the entire namespace by writing new values to each data object, and ensuring that the write was successful. The original value is then restored and verified. Debugger: Added the "test predefined" command. This change makes this test public and puts it under the new "test" command. The test executes each and every predefined name within the current namespace. ---------------------------------------- 18 December 2013. Summary of changes for version 20131218: Global note: The ACPI 5.0A specification was released this month. There are no changes needed for ACPICA since this release of ACPI is an errata/clarification release. The specification is available at acpi.info. 1) ACPICA kernel-resident subsystem: Added validation of the XSDT root table if it is present. Some older platforms contain an XSDT that is ill-formed or otherwise invalid (such as containing some or all entries that are NULL pointers). This change adds a new function to validate the XSDT before actually using it. If the XSDT is found to be invalid, ACPICA will now automatically fall back to using the RSDT instead. Original implementation by Zhao Yakui. Ported to ACPICA and enhanced by Lv Zheng and Bob Moore. Added a runtime option to ignore the XSDT and force the use of the RSDT. This change adds a runtime option that will force ACPICA to use the RSDT instead of the XSDT (AcpiGbl_DoNotUseXsdt). Although the ACPI spec requires that an XSDT be used instead of the RSDT, the XSDT has been found to be corrupt or ill-formed on some machines. Lv Zheng. Added a runtime option to favor 32-bit FADT register addresses over the 64-bit addresses. This change adds an option to favor 32-bit FADT addresses when there is a conflict between the 32-bit and 64-bit versions of the same register. The default behavior is to use the 64-bit version in accordance with the ACPI specification. This can now be overridden via the AcpiGbl_Use32BitFadtAddresses flag. ACPICA BZ 885. Lv Zheng. During the change above, the internal "Convert FADT" and "Verify FADT" functions have been merged to simplify the code, making it easier to understand and maintain. ACPICA BZ 933. Improve exception reporting and handling for GPE block installation. Return an actual status from AcpiEvGetGpeXruptBlock and don't clobber the status when exiting AcpiEvInstallGpeBlock. ACPICA BZ 1019. Added helper macros to extract bus/segment numbers from the HEST table. This change adds two macros to extract the encoded bus and segment numbers from the HEST Bus field - ACPI_HEST_BUS and ACPI_HEST_SEGMENT. Betty Dall Removed the unused ACPI_FREE_BUFFER macro. This macro is no longer used by ACPICA. It is not a public macro, so it should have no effect on existing OSV code. Lv Zheng. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.1K Code, 27.0K Data, 123.1K Total Debug Version: 185.6K Code, 77.3K Data, 262.9K Total Previous Release: Non-Debug Version: 95.9K Code, 27.0K Data, 122.9K Total Debug Version: 185.1K Code, 77.2K Data, 262.3K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Improved pathname support for emitted External() statements. This change adds full pathname support for external names that have been resolved internally by the inclusion of additional ACPI tables (via the iASL -e option). Without this change, the disassembler can emit multiple externals for the same object, or it become confused when the Scope() operator is used on an external object. Overall, greatly improves the ability to actually recompile the emitted ASL code when objects a referenced across multiple ACPI tables. Reported by Michael Tsirkin (mst@redhat.com). Tests/ASLTS: Updated functional control suite to execute with no errors. David Box. Fixed several errors related to the testing of the interpreter slack mode. Lv Zheng. iASL: Added support to detect names that are declared within a control method, but are unused (these are temporary names that are only valid during the time the method is executing). A remark is issued for these cases. ACPICA BZ 1022. iASL: Added full support for the DBG2 table. Adds full disassembler, table compiler, and template generator support for the DBG2 table (Debug Port 2 table). iASL: Added full support for the PCCT table, update the table definition. Updates the PCCT table definition in the actbl3.h header and adds table compiler and template generator support. iASL: Added an option to emit only error messages (no warnings/remarks). The -ve option will enable only error messages, warnings and remarks are suppressed. This can simplify debugging when only the errors are important, such as when an ACPI table is disassembled and there are many warnings and remarks -- but only the actual errors are of real interest. Example ACPICA code (source/tools/examples): Updated the example code so that it builds to an actual working program, not just example code. Added ACPI tables and execution of an example control method in the DSDT. Added makefile support for Unix generation. ---------------------------------------- 15 November 2013. Summary of changes for version 20131115: This release is available at https://acpica.org/downloads 1) ACPICA kernel-resident subsystem: Resource Manager: Fixed loop termination for the "get AML length" function. The loop previously had an error termination on a NULL resource pointer, which can never happen since the loop simply increments a valid resource pointer. This fix changes the loop to terminate with an error on an invalid end-of-buffer condition. The problem can be seen as an infinite loop by callers to AcpiSetCurrentResources with an invalid or corrupted resource descriptor, or a resource descriptor that is missing an END_TAG descriptor. Reported by Dan Carpenter . Lv Zheng, Bob Moore. Table unload and ACPICA termination: Delete all attached data objects during namespace node deletion. This fix updates namespace node deletion to delete the entire list of attached objects (attached via AcpiAttachObject) instead of just one of the attached items. ACPICA BZ 1024. Tomasz Nowicki (tomasz.nowicki@linaro.org). ACPICA termination: Added support to delete all objects attached to the root namespace node. This fix deletes any and all objects that have been attached to the root node via AcpiAttachData. Previously, none of these objects were deleted. Reported by Tomasz Nowicki. ACPICA BZ 1026. Debug output: Do not emit the function nesting level for the in-kernel build. The nesting level is really only useful during a single-thread execution. Therefore, only enable this output for the AcpiExec utility. Also, only emit the thread ID when executing under AcpiExec (Context switches are still always detected and a message is emitted). ACPICA BZ 972. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 95.9K Code, 27.0K Data, 122.9K Total Debug Version: 185.1K Code, 77.2K Data, 262.3K Total Previous Release: Non-Debug Version: 95.8K Code, 27.0K Data, 122.8K Total Debug Version: 185.2K Code, 77.2K Data, 262.4K Total 2) iASL Compiler/Disassembler and Tools: AcpiExec/Unix-OSL: Use instead of . This is the correct portable POSIX header for terminal control functions. Disassembler: Fixed control method invocation issues related to the use of the CondRefOf() operator. The problem is seen in the disassembly where control method invocations may not be disassembled properly if the control method name has been used previously as an argument to CondRefOf. The solution is to not attempt to emit an external declaration for the CondRefOf target (it is not necessary in the first place). This prevents disassembler object type confusion. ACPICA BZ 988. Unix Makefiles: Added an option to disable compiler optimizations and the _FORTIFY_SOURCE flag. Some older compilers have problems compiling ACPICA with optimizations (reportedly, gcc 4.4 for example). This change adds a command line option for make (NOOPT) that disables all compiler optimizations and the _FORTIFY_SOURCE compiler flag. The default optimization is -O2 with the _FORTIFY_SOURCE flag specified. ACPICA BZ 1034. Lv Zheng, Bob Moore. Tests/ASLTS: Added options to specify individual test cases and modes. This allows testers running aslts.sh to optionally specify individual test modes and test cases. Also added an option to disable the forced generation of the ACPICA tools from source if desired. Lv Zheng. ---------------------------------------- 27 September 2013. Summary of changes for version 20130927: This release is available at https://acpica.org/downloads 1) ACPICA kernel-resident subsystem: Fixed a problem with store operations to reference objects. This change fixes a problem where a Store operation to an ArgX object that contained a reference to a field object did not complete the automatic dereference and then write to the actual field object. Instead, the object type of the field object was inadvertently changed to match the type of the source operand. The new behavior will actually write to the field object (buffer field or field unit), thus matching the correct ACPI-defined behavior. Implemented support to allow the host to redefine individual OSL prototypes. This change enables the host to redefine OSL prototypes found in the acpiosxf.h file. This allows the host to implement OSL interfaces with a macro or inlined function. Further, it allows the host to add any additional required modifiers such as __iomem, __init, __exit, etc., as necessary on a per-interface basis. Enables maximum flexibility for the OSL interfaces. Lv Zheng. Hardcoded the access width for the FADT-defined reset register. The ACPI specification requires the reset register width to be 8 bits. ACPICA now hardcodes the width to 8 and ignores the FADT width value. This provides compatibility with other ACPI implementations that have allowed BIOS code with bad register width values to go unnoticed. Matthew Garett, Bob Moore, Lv Zheng. Changed the position/use of the ACPI_PRINTF_LIKE macro. This macro is used in the OSL header (acpiosxf). The change modifies the position of this macro in each instance where it is used (AcpiDebugPrint, etc.) to avoid build issues if the OSL defines the implementation of the interface to be an inline stub function. Lv Zheng. Deployed a new macro ACPI_EXPORT_SYMBOL_INIT for the main ACPICA initialization interfaces. This change adds a new macro for the main init and terminate external interfaces in order to support hosts that require additional or different processing for these functions. Changed from ACPI_EXPORT_SYMBOL to ACPI_EXPORT_SYMBOL_INIT for these functions. Lv Zheng, Bob Moore. Cleaned up the memory allocation macros for configurability. In the common case, the ACPI_ALLOCATE and related macros now resolve directly to their respective AcpiOs* OSL interfaces. Two options: 1) The ACPI_ALLOCATE_ZEROED macro uses a simple local implementation by default, unless overridden by the USE_NATIVE_ALLOCATE_ZEROED define. 2) For AcpiExec (and for debugging), the macros can optionally be resolved to the local ACPICA interfaces that track each allocation (local tracking is used to immediately detect memory leaks). Lv Zheng. Simplified the configuration for ACPI_REDUCED_HARDWARE. Allows the kernel to predefine this macro to either TRUE or FALSE during the system build. Replaced __FUNCTION_ with __func__ in the gcc-specific header. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 95.8K Code, 27.0K Data, 122.8K Total Debug Version: 185.2K Code, 77.2K Data, 262.4K Total Previous Release: Non-Debug Version: 96.7K Code, 27.1K Data, 123.9K Total Debug Version: 184.4K Code, 76.8K Data, 261.2K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented wildcard support for the -e option. This simplifies use when there are many SSDTs that must be included to resolve external method declarations. ACPICA BZ 1041. Example: iasl -e ssdt*.dat -d dsdt.dat AcpiExec: Add history/line-editing for Unix/Linux systems. This change adds a portable module that implements full history and limited line editing for Unix and Linux systems. It does not use readline() due to portability issues. Instead it uses the POSIX termio interface to put the terminal in raw input mode so that the various special keys can be trapped (such as up/down-arrow for history support and left/right-arrow for line editing). Uses the existing debugger history mechanism. ACPICA BZ 1036. AcpiXtract: Add support to handle (ignore) "empty" lines containing only one or more spaces. This provides compatible with early or different versions of the AcpiDump utility. ACPICA BZ 1044. AcpiDump: Do not ignore tables that contain only an ACPI table header. Apparently, some BIOSs create SSDTs that contain an ACPI table header but no other data. This change adds support to dump these tables. Any tables shorter than the length of an ACPI table header remain in error (an error message is emitted). Reported by Yi Li. Debugger: Echo actual command along with the "unknown command" message. ---------------------------------------- 23 August 2013. Summary of changes for version 20130823: 1) ACPICA kernel-resident subsystem: Implemented support for host-installed System Control Interrupt (SCI) handlers. Certain ACPI functionality requires the host to handle raw SCIs. For example, the "SCI Doorbell" that is defined for memory power state support requires the host device driver to handle SCIs to examine if the doorbell has been activated. Multiple SCI handlers can be installed to allow for future expansion. New external interfaces are AcpiInstallSciHandler, AcpiRemoveSciHandler; see the ACPICA reference for details. Lv Zheng, Bob Moore. ACPICA BZ 1032. Operation region support: Never locally free the handler "context" pointer. This change removes some dangerous code that attempts to free the handler context pointer in some (rare) circumstances. The owner of the handler owns this pointer and the ACPICA code should never touch it. Although not seen to be an issue in any kernel, it did show up as a problem (fault) under AcpiExec. Also, set the internal storage field for the context pointer to zero when the region is deactivated, simply for sanity. David Box. ACPICA BZ 1039. AcpiRead: On error, do not modify the return value target location. If an error happens in the middle of a split 32/32 64-bit I/O operation, do not modify the target of the return value pointer. Makes the code consistent with the rest of ACPICA. Bjorn Helgaas. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.7K Code, 27.1K Data, 123.9K Total Debug Version: 184.4K Code, 76.8K Data, 261.2K Total Previous Release: Non-Debug Version: 96.2K Code, 27.1K Data, 123.3K Total Debug Version: 185.4K Code, 77.1K Data, 262.5K Total 2) iASL Compiler/Disassembler and Tools: AcpiDump: Implemented several new features and fixed some problems: 1) Added support to dump the RSDP, RSDT, and XSDT tables. 2) Added support for multiple table instances (SSDT, UEFI). 3) Added option to dump "customized" (overridden) tables (-c). 4) Fixed a problem where some table filenames were improperly constructed. 5) Improved some error messages, removed some unnecessary messages. iASL: Implemented additional support for disassembly of ACPI tables that contain invocations of external control methods. The -fe option allows the import of a file that specifies the external methods along with the required number of arguments for each -- allowing for the correct disassembly of the table. This is a workaround for a limitation of AML code where the disassembler often cannot determine the number of arguments required for an external control method and generates incorrect ASL code. See the iASL reference for details. ACPICA BZ 1030. Debugger: Implemented a new command (paths) that displays the full pathnames (namepaths) and object types of all objects in the namespace. This is an alternative to the namespace command. Debugger: Implemented a new command (sci) that invokes the SCI dispatch mechanism and any installed handlers. iASL: Fixed a possible segfault for "too many parent prefixes" condition. This can occur if there are too many parent prefixes in a namepath (for example, ^^^^^^PCI0.ECRD). ACPICA BZ 1035. Application OSLs: Set the return value for the PCI read functions. These functions simply return AE_OK, but should set the return value to zero also. This change implements this. ACPICA BZ 1038. Debugger: Prevent possible command line buffer overflow. Increase the size of a couple of the debugger line buffers, and ensure that overflow cannot happen. ACPICA BZ 1037. iASL: Changed to abort immediately on serious errors during the parsing phase. Due to the nature of ASL, there is no point in attempting to compile these types of errors, and they typically end up causing a cascade of hundreds of errors which obscure the original problem. ---------------------------------------- 25 July 2013. Summary of changes for version 20130725: 1) ACPICA kernel-resident subsystem: Fixed a problem with the DerefOf operator where references to FieldUnits and BufferFields incorrectly returned the parent object, not the actual value of the object. After this change, a dereference of a FieldUnit reference results in a read operation on the field to get the value, and likewise, the appropriate BufferField value is extracted from the target buffer. Fixed a problem where the _WAK method could cause a fault under these circumstances: 1) Interpreter slack mode was not enabled, and 2) the _WAK method returned no value. The problem is rarely seen because most kernels run ACPICA in slack mode. For the DerefOf operator, a fatal error now results if an attempt is made to dereference a reference (created by the Index operator) to a NULL package element. Provides compatibility with other ACPI implementations, and this behavior will be added to a future version of the ACPI specification. The ACPI Power Management Timer (defined in the FADT) is now optional. This provides compatibility with other ACPI implementations and will appear in the next version of the ACPI specification. If there is no PM Timer on the platform, AcpiGetTimer returns AE_SUPPORT. An address of zero in the FADT indicates no PM timer. Implemented a new interface for _OSI support, AcpiUpdateInterfaces. This allows the host to globally enable/disable all vendor strings, all feature strings, or both. Intended to be primarily used for debugging purposes only. Lv Zheng. Expose the collected _OSI data to the host via a global variable. This data tracks the highest level vendor ID that has been invoked by the BIOS so that the host (and potentially ACPICA itself) can change behaviors based upon the age of the BIOS. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.2K Code, 27.1K Data, 123.3K Total Debug Version: 184.4K Code, 76.8K Data, 261.2K Total Previous Release: Non-Debug Version: 95.9K Code, 26.9K Data, 122.8K Total Debug Version: 184.1K Code, 76.7K Data, 260.8K Total 2) iASL Compiler/Disassembler and Tools: iASL: Created the following enhancements for the -so option (create offset table): 1)Add offsets for the last nameseg in each namepath for every supported object type 2)Add support for Processor, Device, Thermal Zone, and Scope objects 3)Add the actual AML opcode for the parent object of every supported object type 4)Add support for the ZERO/ONE/ONES AML opcodes for integer objects Disassembler: Emit all unresolved external symbols in a single block. These are external references to control methods that could not be resolved, and thus, the disassembler had to make a guess at the number of arguments to parse. iASL: The argument to the -T option (create table template) is now optional. If not specified, the default table is a DSDT, typically the most common case. ---------------------------------------- 26 June 2013. Summary of changes for version 20130626: 1) ACPICA kernel-resident subsystem: Fixed an issue with runtime repair of the _CST object. Null or invalid elements were not always removed properly. Lv Zheng. Removed an arbitrary restriction of 256 GPEs per GPE block (such as the FADT-defined GPE0 and GPE1). For GPE0, GPE1, and each GPE Block Device, the maximum number of GPEs is 1016. Use of multiple GPE block devices makes the system-wide number of GPEs essentially unlimited. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 95.9K Code, 26.9K Data, 122.8K Total Debug Version: 184.1K Code, 76.7K Data, 260.8K Total Previous Release: Non-Debug Version: 96.0K Code, 27.0K Data, 123.0K Total Debug Version: 184.1K Code, 76.8K Data, 260.9K Total 2) iASL Compiler/Disassembler and Tools: Portable AcpiDump: Implemented full support for the Linux and FreeBSD hosts. Now supports Linux, FreeBSD, and Windows. Disassembler: Added some missing types for the HEST and EINJ tables: "Set Error Type With Address", "CMCI", "MCE", and "Flush Cacheline". iASL/Preprocessor: Implemented full support for nested #if/#else/#elif/#endif blocks. Allows arbitrary depth of nested blocks. Disassembler: Expanded maximum output string length to 64K. Was 256 bytes max. The original purpose of this constraint was to limit the amount of debug output. However, the string function in question (UtPrintString) is now used for the disassembler also, where 256 bytes is insufficient. Reported by RehabMan@GitHub. iASL/DataTables: Fixed some problems and issues with compilation of DMAR tables. ACPICA BZ 999. Lv Zheng. iASL: Fixed a couple of error exit issues that could result in a "Could not delete " message during ASL compilation. AcpiDump: Allow "FADT" and "MADT" as valid table signatures, even though the actual signatures for these tables are "FACP" and "APIC", respectively. AcpiDump: Added support for multiple UEFI tables. Only SSDT and UEFI tables are allowed to have multiple instances. ---------------------------------------- 17 May 2013. Summary of changes for version 20130517: 1) ACPICA kernel-resident subsystem: Fixed a regression introduced in version 20130328 for _INI methods. This change fixes a problem introduced in 20130328 where _INI methods are no longer executed properly because of a memory block that was not initialized correctly. ACPICA BZ 1016. Tomasz Nowicki . Fixed a possible problem with the new extended sleep registers in the ACPI 5.0 FADT. Do not use these registers (even if populated) unless the HW- reduced bit is set in the FADT (as per the ACPI specification). ACPICA BZ 1020. Lv Zheng. Implemented return value repair code for _CST predefined objects: Sort the list and detect/remove invalid entries. ACPICA BZ 890. Lv Zheng. Implemented a debug-only option to disable loading of SSDTs from the RSDT/XSDT during ACPICA initialization. This can be useful for debugging ACPI problems on some machines. Set AcpiGbl_DisableSsdtTableLoad in acglobal.h - ACPICA BZ 1005. Lv Zheng. Fixed some issues in the ACPICA initialization and termination code: Tomasz Nowicki 1) Clear events initialized flag upon event component termination. ACPICA BZ 1013. 2) Fixed a possible memory leak in GPE init error path. ACPICA BZ 1018. 3) Delete global lock pending lock during termination. ACPICA BZ 1012. 4) Clear debug buffer global on termination to prevent possible multiple delete. ACPICA BZ 1010. Standardized all switch() blocks across the entire source base. After many years, different formatting for switch() had crept in. This change makes the formatting of every switch block identical. ACPICA BZ 997. Chao Guan. Split some files to enhance ACPICA modularity and configurability: 1) Split buffer dump routines into utilities/utbuffer.c 2) Split internal error message routines into utilities/uterror.c 3) Split table print utilities into tables/tbprint.c 4) Split iASL command-line option processing into asloptions.c Makefile enhancements: 1) Support for all new files above. 2) Abort make on errors from any subcomponent. Chao Guan. 3) Add build support for Apple Mac OS X. Liang Qi. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.0K Code, 27.0K Data, 123.0K Total Debug Version: 184.1K Code, 76.8K Data, 260.9K Total Previous Release: Non-Debug Version: 95.6K Code, 26.8K Data, 122.4K Total Debug Version: 183.5K Code, 76.6K Data, 260.1K Total 2) iASL Compiler/Disassembler and Tools: New utility: Implemented an easily portable version of the acpidump utility to extract ACPI tables from the system (or a file) in an ASCII hex dump format. The top-level code implements the various command line options, file I/O, and table dump routines. To port to a new host, only three functions need to be implemented to get tables -- since this functionality is OS-dependent. See the tools/acpidump/apmain.c module and the ACPICA reference for porting instructions. ACPICA BZ 859. Notes: 1) The Windows version obtains the ACPI tables from the Registry. 2) The Linux version is under development. 3) Other hosts - If an OS-dependent module is submitted, it will be distributed with ACPICA. iASL: Fixed a regression for -D preprocessor option (define symbol). A restructuring/change to the initialization sequence caused this option to no longer work properly. iASL: Implemented a mechanism to disable specific warnings and remarks. Adds a new command line option, "-vw as well as "#pragma disable ". ACPICA BZ 989. Chao Guan, Bob Moore. iASL: Fix for too-strict package object validation. The package object validation for return values from the predefined names is a bit too strict, it does not allow names references within the package (which will be resolved at runtime.) These types of references cannot be validated at compile time. This change ignores named references within package objects for names that return or define static packages. Debugger: Fixed the 80-character command line limitation for the History command. Now allows lines of arbitrary length. ACPICA BZ 1000. Chao Guan. iASL: Added control method and package support for the -so option (generates AML offset table for BIOS support.) iASL: issue a remark if a non-serialized method creates named objects. If a thread blocks within the method for any reason, and another thread enters the method, the method will fail because an attempt will be made to create the same (named) object twice. In this case, issue a remark that the method should be marked serialized. NOTE: may become a warning later. ACPICA BZ 909. ---------------------------------------- 18 April 2013. Summary of changes for version 20130418: 1) ACPICA kernel-resident subsystem: Fixed a possible buffer overrun during some rare but specific field unit read operations. This overrun can only happen if the DSDT version is 1 -- meaning that all AML integers are 32 bits -- and the field length is between 33 and 55 bits long. During the read, an internal buffer object is created for the field unit because the field is larger than an integer (32 bits). However, in this case, the buffer will be incorrectly written beyond the end because the buffer length is less than the internal minimum of 64 bits (8 bytes) long. The buffer will be either 5, 6, or 7 bytes long, but a full 8 bytes will be written. Updated the Embedded Controller "orphan" _REG method support. This refers to _REG methods under the EC device that have no corresponding operation region. This is allowed by the ACPI specification. This update removes a dependency on the existence an ECDT table. It will execute an orphan _REG method as long as the operation region handler for the EC is installed at the EC device node and not the namespace root. Rui Zhang (original update), Bob Moore (update/integrate). Implemented run-time argument typechecking for all predefined ACPI names (_STA, _BIF, etc.) This change performs object typechecking on all incoming arguments for all predefined names executed via AcpiEvaluateObject. This ensures that ACPI-related device drivers are passing correct object types as well as the correct number of arguments (therefore identifying any issues immediately). Also, the ASL/namespace definition of the predefined name is checked against the ACPI specification for the proper argument count. Adds one new file, nsarguments.c Changed an exception code for the ASL UnLoad() operator. Changed the exception code for the case where the input DdbHandle is invalid, from AE_BAD_PARAMETER to the more appropriate AE_AML_OPERAND_TYPE. Unix/Linux makefiles: Removed the use of the -O2 optimization flag in the global makefile. The use of this flag causes compiler errors on earlier versions of GCC, so it has been removed for compatibility. Miscellaneous cleanup: 1) Removed some unused/obsolete macros 2) Fixed a possible memory leak in the _OSI support 3) Removed an unused variable in the predefined name support 4) Windows OSL: remove obsolete reference to a memory list field Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 95.2K Code, 26.4K Data, 121.6K Total Debug Version: 183.0K Code, 76.0K Data, 259.0K Total Previous Release: Non-Debug Version: 95.6K Code, 26.8K Data, 122.4K Total Debug Version: 183.5K Code, 76.6K Data, 260.1K Total 2) iASL Compiler/Disassembler and Tools: AcpiExec: Added installation of a handler for the SystemCMOS address space. This prevents control method abort if a method accesses this space. AcpiExec: Added support for multiple EC devices, and now install EC operation region handler(s) at the actual EC device instead of the namespace root. This reflects the typical behavior of host operating systems. AcpiExec: Updated to ensure that all operation region handlers are installed before the _REG methods are executed. This prevents a _REG method from aborting if it accesses an address space has no handler. AcpiExec installs a handler for every possible address space. Debugger: Enhanced the "handlers" command to display non-root handlers. This change enhances the handlers command to display handlers associated with individual devices throughout the namespace, in addition to the currently supported display of handlers associated with the root namespace node. ASL Test Suite: Several test suite errors have been identified and resolved, reducing the total error count during execution. Chao Guan. ---------------------------------------- 28 March 2013. Summary of changes for version 20130328: 1) ACPICA kernel-resident subsystem: Fixed several possible race conditions with the internal object reference counting mechanism. Some of the external ACPICA interfaces update object reference counts without holding the interpreter or namespace lock. This change adds a spinlock to protect reference count updates on the internal ACPICA objects. Reported by and with assistance from Andriy Gapon (avg@FreeBSD.org). FADT support: Removed an extraneous warning for very large GPE register sets. This change removes a size mismatch warning if the legacy length field for a GPE register set is larger than the 64-bit GAS structure can accommodate. GPE register sets can be larger than the 255-bit width limitation of the GAS structure. Linn Crosetto (linn@hp.com). _OSI Support: handle any errors from AcpiOsAcquireMutex. Check for error return from this interface. Handles a possible timeout case if ACPI_WAIT_FOREVER is modified by the host to be a value less than "forever". Jung-uk Kim. Predefined name support: Add allowed/required argument type information to the master predefined info table. This change adds the infrastructure to enable typechecking on incoming arguments for all predefined methods/objects. It does not actually contain the code that will fully utilize this information, this is still under development. Also condenses some duplicate code for the predefined names into a new module, utilities/utpredef.c Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 95.0K Code, 25.9K Data, 120.9K Total Debug Version: 182.9K Code, 75.6K Data, 258.5K Total Current Release: Non-Debug Version: 95.2K Code, 26.4K Data, 121.6K Total Debug Version: 183.0K Code, 76.0K Data, 259.0K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented a new option to simplify the development of ACPI- related BIOS code. Adds support for a new "offset table" output file. The -so option will create a C table containing the AML table offsets of various named objects in the namespace so that BIOS code can modify them easily at boot time. This can simplify BIOS runtime code by eliminating expensive searches for "magic values", enhancing boot times and adding greater reliability. With assistance from Lee Hamel. iASL: Allow additional predefined names to return zero-length packages. Now, all predefined names that are defined by the ACPI specification to return a "variable-length package of packages" are allowed to return a zero length top-level package. This allows the BIOS to tell the host that the requested feature is not supported, and supports existing BIOS/ASL code and practices. iASL: Changed the "result not used" warning to an error. This is the case where an ASL operator is effectively a NOOP because the result of the operation is not stored anywhere. For example: Add (4, Local0) There is no target (missing 3rd argument), nor is the function return value used. This is potentially a very serious problem -- since the code was probably intended to do something, but for whatever reason, the value was not stored. Therefore, this issue has been upgraded from a warning to an error. AcpiHelp: Added allowable/required argument types to the predefined names info display. This feature utilizes the recent update to the predefined names table (above). ---------------------------------------- 14 February 2013. Summary of changes for version 20130214: 1) ACPICA Kernel-resident Subsystem: Fixed a possible regression on some hosts: Reinstated the safe return macros (return_ACPI_STATUS, etc.) that ensure that the argument is evaluated only once. Although these macros are not needed for the ACPICA code itself, they are often used by ACPI-related host device drivers where the safe feature may be necessary. Fixed several issues related to the ACPI 5.0 reduced hardware support (SOC): Now ensure that if the platform declares itself as hardware- reduced via the FADT, the following functions become NOOPs (and always return AE_OK) because ACPI is always enabled by definition on these machines: AcpiEnable AcpiDisable AcpiHwGetMode AcpiHwSetMode Dynamic Object Repair: Implemented additional runtime repairs for predefined name return values. Both of these repairs can simplify code in the related device drivers that invoke these methods: 1) For the _STR and _MLS names, automatically repair/convert an ASCII string to a Unicode buffer. 2) For the _CRS, _PRS, and _DMA names, return a resource descriptor with a lone end tag descriptor in the following cases: A Return(0) was executed, a null buffer was returned, or no object at all was returned (non-slack mode only). Adds a new file, nsconvert.c ACPICA BZ 998. Bob Moore, Lv Zheng. Resource Manager: Added additional code to prevent possible infinite loops while traversing corrupted or ill-formed resource template buffers. Check for zero-length resource descriptors in all code that loops through resource templates (the length field is used to index through the template). This change also hardens the external AcpiWalkResources and AcpiWalkResourceBuffer interfaces. Local Cache Manager: Enhanced the main data structure to eliminate an unnecessary mechanism to access the next object in the list. Actually provides a small performance enhancement for hosts that use the local ACPICA cache manager. Jung-uk Kim. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 94.5K Code, 25.4K Data, 119.9K Total Debug Version: 182.3K Code, 75.0K Data, 257.3K Total Current Release: Non-Debug Version: 95.0K Code, 25.9K Data, 120.9K Total Debug Version: 182.9K Code, 75.6K Data, 258.5K Total 2) iASL Compiler/Disassembler and Tools: iASL/Disassembler: Fixed several issues with the definition of the ACPI 5.0 RASF table (RAS Feature Table). This change incorporates late changes that were made to the ACPI 5.0 specification. iASL/Disassembler: Added full support for the following new ACPI tables: 1) The MTMR table (MID Timer Table) 2) The VRTC table (Virtual Real Time Clock Table). Includes header file, disassembler, table compiler, and template support for both tables. iASL: Implemented compile-time validation of package objects returned by predefined names. This new feature validates static package objects returned by the various predefined names defined to return packages. Both object types and package lengths are validated, for both parent packages and sub-packages, if any. The code is similar in structure and behavior to the runtime repair mechanism within the AML interpreter and uses the existing predefined name information table. Adds a new file, aslprepkg.c. ACPICA BZ 938. iASL: Implemented auto-detection of binary ACPI tables for disassembly. This feature detects a binary file with a valid ACPI table header and invokes the disassembler automatically. Eliminates the need to specifically invoke the disassembler with the -d option. ACPICA BZ 862. iASL/Disassembler: Added several warnings for the case where there are unresolved control methods during the disassembly. This can potentially cause errors when the output file is compiled, because the disassembler assumes zero method arguments in these cases (it cannot determine the actual number of arguments without resolution/definition of the method). Debugger: Added support to display all resources with a single command. Invocation of the resources command with no arguments will now display all resources within the current namespace. AcpiHelp: Added descriptive text for each ACPICA exception code displayed via the -e option. ---------------------------------------- 17 January 2013. Summary of changes for version 20130117: 1) ACPICA Kernel-resident Subsystem: Updated the AcpiGetSleepTypeData interface: Allow the \_Sx methods to return either 1 or 2 integers. Although the ACPI spec defines the \_Sx objects to return a package containing one integer, most BIOS code returns two integers and the previous code reflects that. However, we also need to support BIOS code that actually implements to the ACPI spec, and this change reflects this. Fixed two issues with the ACPI_DEBUG_PRINT macros: 1) Added the ACPI_DO_WHILE macro to the main DEBUG_PRINT helper macro for C compilers that require this support. 2) Renamed the internal ACPI_DEBUG macro to ACPI_DO_DEBUG_PRINT since ACPI_DEBUG is already used by many of the various hosts. Updated all ACPICA copyrights and signons to 2013. Added the 2013 copyright to all module headers and signons, including the standard Linux header. This affects virtually every file in the ACPICA core subsystem, iASL compiler, all ACPICA utilities, and the test suites. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 94.5K Code, 25.5K Data, 120.0K Total Debug Version: 182.2K Code, 74.9K Data, 257.1K Total Current Release: Non-Debug Version: 94.5K Code, 25.4K Data, 119.9K Total Debug Version: 182.3K Code, 75.0K Data, 257.3K Total 2) iASL Compiler/Disassembler and Tools: Generic Unix OSL: Use a buffer to eliminate multiple vfprintf()s and prevent a possible fault on some hosts. Some C libraries modify the arg pointer parameter to vfprintf making it difficult to call it twice in the AcpiOsVprintf function. Use a local buffer to workaround this issue. This does not affect the Windows OSL since the Win C library does not modify the arg pointer. Chao Guan, Bob Moore. iASL: Fixed a possible infinite loop when the maximum error count is reached. If an output file other than the .AML file is specified (such as a listing file), and the maximum number of errors is reached, do not attempt to flush data to the output file(s) as the compiler is aborting. This can cause an infinite loop as the max error count code essentially keeps calling itself. iASL/Disassembler: Added an option (-in) to ignore NOOP opcodes/operators. Implemented for both the compiler and the disassembler. Often, the NOOP opcode is used as padding for packages that are changed dynamically by the BIOS. When disassembled and recompiled, these NOOPs will cause syntax errors. This option causes the disassembler to ignore all NOOP opcodes (0xA3), and it also causes the compiler to ignore all ASL source code NOOP statements as well. Debugger: Enhanced the Sleep command to execute all sleep states. This change allows Sleep to be invoked with no arguments and causes the debugger to execute all of the sleep states, 0-5, automatically. ---------------------------------------- 20 December 2012. Summary of changes for version 20121220: 1) ACPICA Kernel-resident Subsystem: Implemented a new interface, AcpiWalkResourceBuffer. This interface is an alternate entry point for AcpiWalkResources and improves the usability of the resource manager by accepting as input a buffer containing the output of either a _CRS, _PRS, or _AEI method. The key functionality is that the input buffer is not deleted by this interface so that it can be used by the host later. See the ACPICA reference for details. Interpreter: Add a warning if a 64-bit constant appears in a 32-bit table (DSDT version < 2). The constant will be truncated and this warning reflects that behavior. Resource Manager: Add support for the new ACPI 5.0 wake bit in the IRQ, ExtendedInterrupt, and GpioInt descriptors. This change adds support to both get and set the new wake bit in these descriptors, separately from the existing share bit. Reported by Aaron Lu. Interpreter: Fix Store() when an implicit conversion is not possible. For example, in the cases such as a store of a string to an existing package object, implement the store as a CopyObject(). This is a small departure from the ACPI specification which states that the control method should be aborted in this case. However, the ASLTS suite depends on this behavior. Performance improvement for the various FUNCTION_TRACE and DEBUG_PRINT macros: check if debug output is currently enabled as soon as possible to minimize performance impact if debug is in fact not enabled. Source code restructuring: Cleanup to improve modularity. The following new files have been added: dbconvert.c, evhandler.c, nsprepkg.c, psopinfo.c, psobject.c, rsdumpinfo.c, utstring.c, and utownerid.c. Associated makefiles and project files have been updated. Changed an exception code for LoadTable operator. For the case where one of the input strings is too long, change the returned exception code from AE_BAD_PARAMETER to AE_AML_STRING_LIMIT. Fixed a possible memory leak in dispatcher error path. On error, delete the mutex object created during method mutex creation. Reported by tim.gardner@canonical.com. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 94.3K Code, 25.3K Data, 119.6K Total Debug Version: 175.5K Code, 74.5K Data, 250.0K Total Current Release: Non-Debug Version: 94.5K Code, 25.5K Data, 120.0K Total Debug Version: 182.2K Code, 74.9K Data, 257.1K Total 2) iASL Compiler/Disassembler and Tools: iASL: Disallow a method call as argument to the ObjectType ASL operator. This change tracks an errata to the ACPI 5.0 document. The AML grammar will not allow the interpreter to differentiate between a method and a method invocation when these are used as an argument to the ObjectType operator. The ACPI specification change is to disallow a method invocation (UserTerm) for the ObjectType operator. Finish support for the TPM2 and CSRT tables in the headers, table compiler, and disassembler. Unix user-space OSL: Fix a problem with WaitSemaphore where the timeout always expires immediately if the semaphore is not available. The original code was using a relative-time timeout, but sem_timedwait requires the use of an absolute time. iASL: Added a remark if the Timer() operator is used within a 32-bit table. This operator returns a 64-bit time value that will be truncated within a 32-bit table. iASL Source code restructuring: Cleanup to improve modularity. The following new files have been added: aslhex.c, aslxref.c, aslnamesp.c, aslmethod.c, and aslfileio.c. Associated makefiles and project files have been updated. ---------------------------------------- 14 November 2012. Summary of changes for version 20121114: 1) ACPICA Kernel-resident Subsystem: Implemented a performance enhancement for ACPI/AML Package objects. This change greatly increases the performance of Package objects within the interpreter. It changes the processing of reference counts for packages by optimizing for the most common case where the package sub-objects are either Integers, Strings, or Buffers. Increases the overall performance of the ASLTS test suite by 1.5X (Increases the Slack Mode performance by 2X.) Chao Guan. ACPICA BZ 943. Implemented and deployed common macros to extract flag bits from resource descriptors. Improves readability and maintainability of the code. Fixes a problem with the UART serial bus descriptor for the number of data bits flags (was incorrectly 2 bits, should be 3). Enhanced the ACPI_GETx and ACPI_SETx macros. Improved the implementation of the macros and changed the SETx macros to the style of (destination, source). Also added ACPI_CASTx companion macros. Lv Zheng. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.9K Code, 25.2K Data, 119.1K Total Debug Version: 175.5K Code, 74.5K Data, 250.0K Total Current Release: Non-Debug Version: 94.3K Code, 25.3K Data, 119.6K Total Debug Version: 175.5K Code, 74.5K Data, 250.0K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Added the new ACPI 5.0 interrupt sharing flags. This change adds the ShareAndWake and ExclusiveAndWake flags which were added to the Irq, Interrupt, and Gpio resource descriptors in ACPI 5.0. ACPICA BZ 986. Disassembler: Fixed a problem with external declaration generation. Fixes a problem where an incorrect pathname could be generated for an external declaration if the original reference to the object includes leading carats (^). ACPICA BZ 984. Debugger: Completed a major update for the Disassemble command. This command was out-of-date and did not properly disassemble control methods that had any reasonable complexity. This fix brings the command up to the same level as the rest of the disassembler. Adds one new file, dmdeferred.c, which is existing code that is now common with the main disassembler and the debugger disassemble command. ACPICA MZ 978. iASL: Moved the parser entry prototype to avoid a duplicate declaration. Newer versions of Bison emit this prototype, so moved the prototype out of the iASL header to where it is actually used in order to avoid a duplicate declaration. iASL/Tools: Standardized use of the stream I/O functions: 1) Ensure check for I/O error after every fopen/fread/fwrite 2) Ensure proper order of size/count arguments for fread/fwrite 3) Use test of (Actual != Requested) after all fwrite, and most fread 4) Standardize I/O error messages Improves reliability and maintainability of the code. Bob Moore, Lv Zheng. ACPICA BZ 981. Disassembler: Prevent duplicate External() statements. During generation of external statements, detect similar pathnames that are actually duplicates such as these: External (\ABCD) External (ABCD) Remove all leading '\' characters from pathnames during the external statement generation so that duplicates will be detected and tossed. ACPICA BZ 985. Tools: Replace low-level I/O with stream I/O functions. Replace open/read/write/close with the stream I/O equivalents fopen/fread/fwrite/fclose for portability and performance. Lv Zheng, Bob Moore. AcpiBin: Fix for the dump-to-hex function. Now correctly output the table name header so that AcpiXtract recognizes the output file/table. iASL: Remove obsolete -2 option flag. Originally intended to force the compiler/disassembler into an ACPI 2.0 mode, this was never implemented and the entire concept is now obsolete. ---------------------------------------- 18 October 2012. Summary of changes for version 20121018: 1) ACPICA Kernel-resident Subsystem: Updated support for the ACPI 5.0 MPST table. Fixes some problems introduced by late changes to the table as it was added to the ACPI 5.0 specification. Includes header, disassembler, and data table compiler support as well as a new version of the MPST template. AcpiGetObjectInfo: Enhanced the device object support to include the ACPI 5.0 _SUB method. Now calls _SUB in addition to the other PNP-related ID methods: _HID, _CID, and _UID. Changed ACPI_DEVICE_ID to ACPI_PNP_DEVICE_ID. Also changed ACPI_DEVICE_ID_LIST to ACPI_PNP_DEVICE_ID_LIST. These changes prevent name collisions on hosts that reserve the *_DEVICE_ID (or *DeviceId) names for their various drivers. Affects the AcpiGetObjectInfo external interface, and other internal interfaces as well. Added and deployed a new macro for ACPI_NAME management: ACPI_MOVE_NAME. This macro resolves to a simple 32-bit move of the 4-character ACPI_NAME on machines that support non-aligned transfers. Optimizes for this case rather than using a strncpy. With assistance from Zheng Lv. Resource Manager: Small fix for buffer size calculation. Fixed a one byte error in the output buffer calculation. Feng Tang. ACPICA BZ 849. Added a new debug print message for AML mutex objects that are force- released. At control method termination, any currently acquired mutex objects are force-released. Adds a new debug-only message for each one that is released. Audited/updated all ACPICA return macros and the function debug depth counter: 1) Ensure that all functions that use the various TRACE macros also use the appropriate ACPICA return macros. 2) Ensure that all normal return statements surround the return expression (value) with parens to ensure consistency across the ACPICA code base. Guan Chao, Tang Feng, Zheng Lv, Bob Moore. ACPICA Bugzilla 972. Global source code changes/maintenance: All extra lines at the start and end of each source file have been removed for consistency. Also, within comments, all new sentences start with a single space instead of a double space, again for consistency across the code base. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.7K Code, 25.3K Data, 119.0K Total Debug Version: 175.0K Code, 74.4K Data, 249.4K Total Current Release: Non-Debug Version: 93.9K Code, 25.2K Data, 119.1K Total Debug Version: 175.5K Code, 74.5K Data, 250.0K Total 2) iASL Compiler/Disassembler and Tools: AcpiExec: Improved the algorithm used for memory leak/corruption detection. Added some intelligence to the code that maintains the global list of allocated memory. The list is now ordered by allocated memory address, significantly improving performance. When running AcpiExec on the ASLTS test suite, speed improvements of 3X to 5X are seen, depending on the platform and/or the environment. Note, this performance enhancement affects the AcpiExec utility only, not the kernel-resident ACPICA code. Enhanced error reporting for invalid AML opcodes and bad ACPI_NAMEs. For the disassembler, dump the 48 bytes surrounding the invalid opcode. Fix incorrect table offset reported for invalid opcodes. Report the original 32-bit value for bad ACPI_NAMEs (as well as the repaired name.) Disassembler: Enhanced the -vt option to emit the binary table data in hex format to assist with debugging. Fixed a potential filename buffer overflow in osunixdir.c. Increased the size of file structure. Colin Ian King. ---------------------------------------- 13 September 2012. Summary of changes for version 20120913: 1) ACPICA Kernel-resident Subsystem: ACPI 5.0: Added two new notify types for the Hardware Error Notification Structure within the Hardware Error Source Table (HEST) table -- CMCI(5) and MCE(6). Table Manager: Merged/removed duplicate code in the root table resize functions. One function is external, the other is internal. Lv Zheng, ACPICA BZ 846. Makefiles: Completely removed the obsolete "Linux" makefiles under acpica/generate/linux. These makefiles are obsolete and have been replaced by the generic unix makefiles under acpica/generate/unix. Makefiles: Ensure that binary files always copied properly. Minor rule change to ensure that the final binary output files are always copied up to the appropriate binary directory (bin32 or bin64.) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.8K Code, 25.3K Data, 119.1K Total Debug Version: 175.7K Code, 74.8K Data, 250.5K Total Current Release: Non-Debug Version: 93.7K Code, 25.3K Data, 119.0K Total Debug Version: 175.0K Code, 74.4K Data, 249.4K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Fixed a possible fault during the disassembly of resource descriptors when a second parse is required because of the invocation of external control methods within the table. With assistance from adq@lidskialf.net. ACPICA BZ 976. iASL: Fixed a namepath optimization problem. An error can occur if the parse node that contains the namepath to be optimized does not have a parent node that is a named object. This change fixes the problem. iASL: Fixed a regression where the AML file is not deleted on errors. The AML output file should be deleted if there are any errors during the compiler. The only exception is if the -f (force output) option is used. ACPICA BZ 974. iASL: Added a feature to automatically increase internal line buffer sizes. Via realloc(), automatically increase the internal line buffer sizes as necessary to support very long source code lines. The current version of the preprocessor requires a buffer long enough to contain full source code lines. This change increases the line buffer(s) if the input lines go beyond the current buffer size. This eliminates errors that occurred when a source code line was longer than the buffer. iASL: Fixed a problem with constant folding in method declarations. The SyncLevel term is a ByteConstExpr, and incorrect code would be generated if a Type3 opcode was used. Debugger: Improved command help support. For incorrect argument count, display full help for the command. For help command itself, allow an argument to specify a command. Test Suites: Several bug fixes for the ASLTS suite reduces the number of errors during execution of the suite. Guan Chao. ---------------------------------------- 16 August 2012. Summary of changes for version 20120816: 1) ACPICA Kernel-resident Subsystem: Removed all use of the deprecated _GTS and _BFS predefined methods. The _GTS (Going To Sleep) and _BFS (Back From Sleep) methods are essentially deprecated and will probably be removed from the ACPI specification. Windows does not invoke them, and reportedly never will. The final nail in the coffin is that the ACPI specification states that these methods must be run with interrupts off, which is not going to happen in a kernel interpreter. Note: Linux has removed all use of the methods also. It was discovered that invoking these functions caused failures on some machines, probably because they were never tested since Windows does not call them. Affects two external interfaces, AcpiEnterSleepState and AcpiLeaveSleepStatePrep. Tang Feng. ACPICA BZ 969. Implemented support for complex bit-packed buffers returned from the _PLD (Physical Location of Device) predefined method. Adds a new external interface, AcpiDecodePldBuffer that parses the buffer into a more usable C structure. Note: C Bitfields cannot be used for this type of predefined structure since the memory layout of individual bitfields is not defined by the C language. In addition, there are endian concerns where a compiler will change the bitfield ordering based on the machine type. The new ACPICA interface eliminates these issues, and should be called after _PLD is executed. ACPICA BZ 954. Implemented a change to allow a scope change to root (via "Scope (\)") during execution of module-level ASL code (code that is executed at table load time.) Lin Ming. Added the Windows8/Server2012 string for the _OSI method. This change adds a new _OSI string, "Windows 2012" for both Windows 8 and Windows Server 2012. Added header support for the new ACPI tables DBG2 (Debug Port Table Type 2) and CSRT (Core System Resource Table). Added struct header support for the _FDE, _GRT, _GTM, and _SRT predefined names. This simplifies access to the buffers returned by these predefined names. Adds a new file, include/acbuffer.h. ACPICA BZ 956. GPE support: Removed an extraneous parameter from the various low-level internal GPE functions. Tang Feng. Removed the linux makefiles from the unix packages. The generate/linux makefiles are obsolete and have been removed from the unix tarball release packages. The replacement makefiles are under generate/unix, and there is a top-level makefile under the main acpica directory. ACPICA BZ 967, 912. Updates for Unix makefiles: 1) Add -D_FORTIFY_SOURCE=2 for gcc generation. Arjan van de Ven. 2) Update linker flags (move to end of command line) for AcpiExec utility. Guan Chao. Split ACPICA initialization functions to new file, utxfinit.c. Split from utxface.c to improve modularity and reduce file size. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.5K Code, 25.3K Data, 118.8K Total Debug Version: 173.7K Code, 74.0K Data, 247.7K Total Current Release: Non-Debug Version: 93.8K Code, 25.3K Data, 119.1K Total Debug Version: 175.7K Code, 74.8K Data, 250.5K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a problem with constant folding for fixed-length constant expressions. The constant-folding code was not being invoked for constant expressions that allow the use of type 3/4/5 opcodes to generate constants for expressions such as ByteConstExpr, WordConstExpr, etc. This could result in the generation of invalid AML bytecode. ACPICA BZ 970. iASL: Fixed a generation issue on newer versions of Bison. Newer versions apparently automatically emit some of the necessary externals. This change handles these versions in order to eliminate generation warnings. Disassembler: Added support to decode the DBG2 and CSRT ACPI tables. Disassembler: Add support to decode _PLD buffers. The decoded buffer appears within comments in the output file. Debugger: Fixed a regression with the "Threads" command where AE_BAD_PARAMETER was always returned. ---------------------------------------- 11 July 2012. Summary of changes for version 20120711: 1) ACPICA Kernel-resident Subsystem: Fixed a possible fault in the return package object repair code. Fixes a problem that can occur when a lone package object is wrapped with an outer package object in order to force conformance to the ACPI specification. Can affect these predefined names: _ALR, _MLS, _PSS, _TRT, _TSS, _PRT, _HPX, _DLM, _CSD, _PSD, _TSD. Removed code to disable/enable bus master arbitration (ARB_DIS bit in the PM2_CNT register) in the ACPICA sleep/wake interfaces. Management of the ARB_DIS bit must be implemented in the host-dependent C3 processor power state support. Note, ARB_DIS is obsolete and only applies to older chipsets, both Intel and other vendors. (for Intel: ICH4-M and earlier) This change removes the code to disable/enable bus master arbitration during suspend/resume. Use of the ARB_DIS bit in the optional PM2_CNT register causes resume problems on some machines. The change has been in use for over seven years within Linux. Implemented two new external interfaces to support host-directed dynamic ACPI table load and unload. They are intended to simplify the host implementation of hot-plug support: AcpiLoadTable: Load an SSDT from a buffer into the namespace. AcpiUnloadParentTable: Unload an SSDT via a named object owned by the table. See the ACPICA reference for additional details. Adds one new file, components/tables/tbxfload.c Implemented and deployed two new interfaces for errors and warnings that are known to be caused by BIOS/firmware issues: AcpiBiosError: Prints "ACPI Firmware Error" message. AcpiBiosWarning: Prints "ACPI Firmware Warning" message. Deployed these new interfaces in the ACPICA Table Manager code for ACPI table and FADT errors. Additional deployment to be completed as appropriate in the future. The associated conditional macros are ACPI_BIOS_ERROR and ACPI_BIOS_WARNING. See the ACPICA reference for additional details. ACPICA BZ 843. Implicit notify support: ensure that no memory allocation occurs within a critical region. This fix moves a memory allocation outside of the time that a spinlock is held. Fixes issues on systems that do not allow this behavior. Jung-uk Kim. Split exception code utilities and tables into a new file, utilities/utexcep.c Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.1K Code, 25.1K Data, 118.2K Total Debug Version: 172.9K Code, 73.6K Data, 246.5K Total Current Release: Non-Debug Version: 93.5K Code, 25.3K Data, 118.8K Total Debug Version: 173.7K Code, 74.0K Data, 247.7K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a parser problem for hosts where EOF is defined as -1 instead of 0. Jung-uk Kim. Debugger: Enhanced the "tables" command to emit additional information about the current set of ACPI tables, including the owner ID and flags decode. Debugger: Reimplemented the "unload" command to use the new AcpiUnloadParentTable external interface. This command was disable previously due to need for an unload interface. AcpiHelp: Added a new option to decode ACPICA exception codes. The -e option will decode 16-bit hex status codes (ACPI_STATUS) to name strings. ---------------------------------------- 20 June 2012. Summary of changes for version 20120620: 1) ACPICA Kernel-resident Subsystem: Implemented support to expand the "implicit notify" feature to allow multiple devices to be notified by a single GPE. This feature automatically generates a runtime device notification in the absence of a BIOS-provided GPE control method (_Lxx/_Exx) or a host-installed handler for the GPE. Implicit notify is provided by ACPICA for Windows compatibility, and is a workaround for BIOS AML code errors. See the description of the AcpiSetupGpeForWake interface in the APCICA reference. Bob Moore, Rafael Wysocki. ACPICA BZ 918. Changed some comments and internal function names to simplify and ensure correctness of the Linux code translation. No functional changes. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.0K Code, 25.1K Data, 118.1K Total Debug Version: 172.7K Code, 73.6K Data, 246.3K Total Current Release: Non-Debug Version: 93.1K Code, 25.1K Data, 118.2K Total Debug Version: 172.9K Code, 73.6K Data, 246.5K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Added support to emit short, commented descriptions for the ACPI predefined names in order to improve the readability of the disassembled output. ACPICA BZ 959. Changes include: 1) Emit descriptions for all standard predefined names (_INI, _STA, _PRW, etc.) 2) Emit generic descriptions for the special names (_Exx, _Qxx, etc.) 3) Emit descriptions for the resource descriptor names (_MIN, _LEN, etc.) AcpiSrc: Fixed several long-standing Linux code translation issues. Argument descriptions in function headers are now translated properly to lower case and underscores. ACPICA BZ 961. Also fixes translation problems such as these: (old -> new) i_aSL -> iASL 00-7_f -> 00-7F 16_k -> 16K local_fADT -> local_FADT execute_oSI -> execute_OSI iASL: Fixed a problem where null bytes were inadvertently emitted into some listing files. iASL: Added the existing debug options to the standard help screen. There are no longer two different help screens. ACPICA BZ 957. AcpiHelp: Fixed some typos in the various predefined name descriptions. Also expand some of the descriptions where appropriate. iASL: Fixed the -ot option (display compile times/statistics). Was not working properly for standard output; only worked for the debug file case. ---------------------------------------- 18 May 2012. Summary of changes for version 20120518: 1) ACPICA Core Subsystem: Added a new OSL interface, AcpiOsWaitEventsComplete. This interface is defined to block until asynchronous events such as notifies and GPEs have completed. Within ACPICA, it is only called before a notify or GPE handler is removed/uninstalled. It also may be useful for the host OS within related drivers such as the Embedded Controller driver. See the ACPICA reference for additional information. ACPICA BZ 868. ACPI Tables: Added a new error message for a possible overflow failure during the conversion of FADT 32-bit legacy register addresses to internal common 64- bit GAS structure representation. The GAS has a one-byte "bit length" field, thus limiting the register length to 255 bits. ACPICA BZ 953. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 92.9K Code, 25.0K Data, 117.9K Total Debug Version: 172.6K Code, 73.4K Data, 246.0K Total Current Release: Non-Debug Version: 93.0K Code, 25.1K Data, 118.1K Total Debug Version: 172.7K Code, 73.6K Data, 246.3K Total 2) iASL Compiler/Disassembler and Tools: iASL: Added the ACPI 5.0 "PCC" keyword for use in the Register() ASL macro. This keyword was added late in the ACPI 5.0 release cycle and was not implemented until now. Disassembler: Added support for Operation Region externals. Adds missing support for operation regions that are defined in another table, and referenced locally via a Field or BankField ASL operator. Now generates the correct External statement. Disassembler: Several additional fixes for the External() statement generation related to some ASL operators. Also, order the External() statements alphabetically in the disassembler output. Fixes the External() generation for the Create* field, Alias, and Scope operators: 1) Create* buffer field operators - fix type mismatch warning on disassembly 2) Alias - implement missing External support 3) Scope - fix to make sure all necessary externals are emitted. iASL: Improved pathname support. For include files, merge the prefix pathname with the file pathname and eliminate unnecessary components. Convert backslashes in all pathnames to forward slashes, for readability. Include file pathname changes affect both #include and Include() type operators. iASL/DTC/Preprocessor: Gracefully handle early EOF. Handle an EOF at the end of a valid line by inserting a newline and then returning the EOF during the next call to GetNextLine. Prevents the line from being ignored due to EOF condition. iASL: Implemented some changes to enhance the IDE support (-vi option.) Error and Warning messages are now correctly recognized for both the source code browser and the global error and warning counts. ---------------------------------------- 20 April 2012. Summary of changes for version 20120420: 1) ACPICA Core Subsystem: Implemented support for multiple notify handlers. This change adds support to allow multiple system and device notify handlers on Device, Thermal Zone, and Processor objects. This can simplify the host OS notification implementation. Also re-worked and restructured the entire notify support code to simplify handler installation, handler removal, notify event queuing, and notify dispatch to handler(s). Note: there can still only be two global notify handlers - one for system notifies and one for device notifies. There are no changes to the existing handler install/remove interfaces. Lin Ming, Bob Moore, Rafael Wysocki. Fixed a regression in the package repair code where the object reference count was calculated incorrectly. Regression was introduced in the commit "Support to add Package wrappers". Fixed a couple possible memory leaks in the AML parser, in the error recovery path. Jesper Juhl, Lin Ming. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 92.9K Code, 25.0K Data, 117.9K Total Debug Version: 172.5K Code, 73.2K Data, 245.7K Total Current Release: Non-Debug Version: 92.9K Code, 25.0K Data, 117.9K Total Debug Version: 172.6K Code, 73.4K Data, 246.0K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a problem with the resource descriptor support where the length of the StartDependentFn and StartDependentFnNoPrio descriptors were not included in cumulative descriptor offset, resulting in incorrect values for resource tags within resource descriptors appearing after a StartDependent* descriptor. Reported by Petr Vandrovec. ACPICA BZ 949. iASL and Preprocessor: Implemented full support for the #line directive to correctly track original source file line numbers through the .i preprocessor output file - for error and warning messages. iASL: Expand the allowable byte constants for address space IDs. Previously, the allowable range was 0x80-0xFF (user-defined spaces), now the range is 0x0A-0xFF to allow for custom and new IDs without changing the compiler. iASL: Add option to treat all warnings as errors (-we). ACPICA BZ 948. iASL: Add option to completely disable the preprocessor (-Pn). iASL: Now emit all error/warning messages to standard error (stderr) by default (instead of the previous stdout). ASL Test Suite (ASLTS): Reduce iASL warnings due to use of Switch(). Update for resource descriptor offset fix above. Update/cleanup error output routines. Enable and send iASL errors/warnings to an error logfile (error.txt). Send all other iASL output to a logfile (compiler.txt). Fixed several extraneous "unrecognized operator" messages. ---------------------------------------- 20 March 2012. Summary of changes for version 20120320: 1) ACPICA Core Subsystem: Enhanced the sleep/wake interfaces to optionally execute the _GTS method (Going To Sleep) and the _BFS method (Back From Sleep). Windows apparently does not execute these methods, and therefore these methods are often untested. It has been seen on some systems where the execution of these methods causes errors and also prevents the machine from entering S5. It is therefore suggested that host operating systems do not execute these methods by default. In the future, perhaps these methods can be optionally executed based on the age of the system and/or what is the newest version of Windows that the BIOS asks for via _OSI. Changed interfaces: AcpiEnterSleepState and AcpileaveSleepStatePrep. See the ACPICA reference and Linux BZ 13041. Lin Ming. Fixed a problem where the length of the local/common FADT was set too early. The local FADT table length cannot be set to the common length until the original length has been examined. There is code that checks the table length and sets various fields appropriately. This can affect older machines with early FADT versions. For example, this can cause inadvertent writes to the CST_CNT register. Julian Anastasov. Fixed a mapping issue related to a physical table override. Use the deferred mapping mechanism for tables loaded via the physical override OSL interface. This allows for early mapping before the virtual memory manager is available. Thomas Renninger, Bob Moore. Enhanced the automatic return-object repair code: Repair a common problem with predefined methods that are defined to return a variable-length Package of sub-objects. If there is only one sub-object, some BIOS ASL code mistakenly simply returns the single object instead of a Package with one sub- object. This new support will repair this error by wrapping a Package object around the original object, creating the correct and expected Package with one sub- object. Names that can be repaired in this manner include: _ALR, _CSD, _HPX, _MLS, _PLD, _PRT, _PSS, _TRT, _TSS, _BCL, _DOD, _FIX, and _Sx. ACPICA BZ 939. Changed the exception code returned for invalid ACPI paths passed as parameters to external interfaces such as AcpiEvaluateObject. Was AE_BAD_PARAMETER, now is the more sensible AE_BAD_PATHNAME. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.0K Code, 25.0K Data, 118.0K Total Debug Version: 172.5K Code, 73.2K Data, 245.7K Total Current Release: Non-Debug Version: 92.9K Code, 25.0K Data, 117.9K Total Debug Version: 172.5K Code, 73.2K Data, 245.7K Total 2) iASL Compiler/Disassembler and Tools: iASL: Added the infrastructure and initial implementation of a integrated C- like preprocessor. This will simplify BIOS development process by eliminating the need for a separate preprocessing step during builds. On Windows, it also eliminates the need to install a separate C compiler. ACPICA BZ 761. Some features including full #define() macro support are still under development. These preprocessor directives are supported: #define #elif #else #endif #error #if #ifdef #ifndef #include #pragma message #undef #warning In addition, these new command line options are supported: -D Define symbol for preprocessor use -li Create preprocessed output file (*.i) -P Preprocess only and create preprocessor output file (*.i) Table Compiler: Fixed a problem where the equals operator within an expression did not work properly. Updated iASL to use the current versions of Bison/Flex. Updated the Windows project file to invoke these tools from the standard location. ACPICA BZ 904. Versions supported: Flex for Windows: V2.5.4 Bison for Windows: V2.4.1 ---------------------------------------- 15 February 2012. Summary of changes for version 20120215: 1) ACPICA Core Subsystem: There have been some major changes to the sleep/wake support code, as described below (a - e). a) The AcpiLeaveSleepState has been split into two interfaces, similar to AcpiEnterSleepStatePrep and AcpiEnterSleepState. The new interface is AcpiLeaveSleepStatePrep. This allows the host to perform actions between the time the _BFS method is called and the _WAK method is called. NOTE: all hosts must update their wake/resume code or else sleep/wake will not work properly. Rafael Wysocki. b) In AcpiLeaveSleepState, now enable all runtime GPEs before calling the _WAK method. Some machines require that the GPEs are enabled before the _WAK method is executed. Thomas Renninger. c) In AcpiLeaveSleepState, now always clear the WAK_STS (wake status) bit. Some BIOS code assumes that WAK_STS will be cleared on resume and use it to determine whether the system is rebooting or resuming. Matthew Garrett. d) Move the invocations of _GTS (Going To Sleep) and _BFS (Back From Sleep) to match the ACPI specification requirement. Rafael Wysocki. e) Implemented full support for the ACPI 5.0 SleepStatus and SleepControl registers within the V5 FADT. This support adds two new files: hardware/hwesleep.c implements the support for the new registers. Moved all sleep/wake external interfaces to hardware/hwxfsleep.c. Added a new OSL interface for ACPI table overrides, AcpiOsPhysicalTableOverride. This interface allows the host to override a table via a physical address, instead of the logical address required by AcpiOsTableOverride. This simplifies the host implementation. Initial implementation by Thomas Renninger. The ACPICA implementation creates a single shared function for table overrides that attempts both a logical and a physical override. Expanded the OSL memory read/write interfaces to 64-bit data (AcpiOsReadMemory, AcpiOsWriteMemory.) This enables full 64-bit memory transfer support for GAS register structures passed to AcpiRead and AcpiWrite. Implemented the ACPI_REDUCED_HARDWARE option to allow the creation of a custom build of ACPICA that supports only the ACPI 5.0 reduced hardware (SoC) model. See the ACPICA reference for details. ACPICA BZ 942. This option removes about 10% of the code and 5% of the static data, and the following hardware ACPI features become unavailable: PM Event and Control registers SCI interrupt (and handler) Fixed Events General Purpose Events (GPEs) Global Lock ACPI PM timer FACS table (Waking vectors and Global Lock) Updated the unix tarball directory structure to match the ACPICA git source tree. This ensures that the generic unix makefiles work properly (in generate/unix). Also updated the Linux makefiles to match. ACPICA BZ 867. Updated the return value of the _REV predefined method to integer value 5 to reflect ACPI 5.0 support. Moved the external ACPI PM timer interface prototypes to the public acpixf.h file where they belong. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 92.8K Code, 24.9K Data, 117.7K Total Debug Version: 171.7K Code, 72.9K Data, 244.5K Total Current Release: Non-Debug Version: 93.0K Code, 25.0K Data, 118.0K Total Debug Version: 172.5K Code, 73.2K Data, 245.7K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Fixed a problem with the new ACPI 5.0 serial resource descriptors (I2C, SPI, UART) where the resource produce/consumer bit was incorrectly displayed. AcpiHelp: Add display of ACPI/PNP device IDs that are defined in the ACPI specification. ---------------------------------------- 11 January 2012. Summary of changes for version 20120111: 1) ACPICA Core Subsystem: Implemented a new mechanism to allow host device drivers to check for address range conflicts with ACPI Operation Regions. Both SystemMemory and SystemIO address spaces are supported. A new external interface, AcpiCheckAddressRange, allows drivers to check an address range against the ACPI namespace. See the ACPICA reference for additional details. Adds one new file, utilities/utaddress.c. Lin Ming, Bob Moore. Fixed several issues with the ACPI 5.0 FADT support: Add the sleep Control and Status registers, update the ACPI 5.0 flags, and update internal data structures to handle an FADT larger than 256 bytes. The size of the ACPI 5.0 FADT is 268 bytes. Updated all ACPICA copyrights and signons to 2012. Added the 2012 copyright to all module headers and signons, including the standard Linux header. This affects virtually every file in the ACPICA core subsystem, iASL compiler, and all ACPICA utilities. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 92.3K Code, 24.9K Data, 117.2K Total Debug Version: 170.8K Code, 72.6K Data, 243.4K Total Current Release: Non-Debug Version: 92.8K Code, 24.9K Data, 117.7K Total Debug Version: 171.7K Code, 72.9K Data, 244.5K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: fixed a problem with the automatic resource tag generation support. Fixes a problem where the resource tags are inadvertently not constructed if the table being disassembled contains external references to control methods. Moved the actual construction of the tags to after the final namespace is constructed (after 2nd parse is invoked due to external control method references.) ACPICA BZ 941. Table Compiler: Make all "generic" operators caseless. These are the operators like UINT8, String, etc. Making these caseless improves ease-of-use. ACPICA BZ 934. ---------------------------------------- 23 November 2011. Summary of changes for version 20111123: 0) ACPI 5.0 Support: This release contains full support for the ACPI 5.0 specification, as summarized below. Reduced Hardware Support: ------------------------- This support allows for ACPI systems without the usual ACPI hardware. This support is enabled by a flag in the revision 5 FADT. If it is set, ACPICA will not attempt to initialize or use any of the usual ACPI hardware. Note, when this flag is set, all of the following ACPI hardware is assumed to be not present and is not initialized or accessed: General Purpose Events (GPEs) Fixed Events (PM1a/PM1b and PM Control) Power Management Timer and Console Buttons (power/sleep) Real-time Clock Alarm Global Lock System Control Interrupt (SCI) The FACS is assumed to be non-existent ACPI Tables: ------------ All new tables and updates to existing tables are fully supported in the ACPICA headers (for use by device drivers), the disassembler, and the iASL Data Table Compiler. ACPI 5.0 defines these new tables: BGRT /* Boot Graphics Resource Table */ DRTM /* Dynamic Root of Trust for Measurement table */ FPDT /* Firmware Performance Data Table */ GTDT /* Generic Timer Description Table */ MPST /* Memory Power State Table */ PCCT /* Platform Communications Channel Table */ PMTT /* Platform Memory Topology Table */ RASF /* RAS Feature table */ Operation Regions/SpaceIDs: --------------------------- All new operation regions are fully supported by the iASL compiler, the disassembler, and the ACPICA runtime code (for dispatch to region handlers.) The new operation region Space IDs are: GeneralPurposeIo GenericSerialBus Resource Descriptors: --------------------- All new ASL resource descriptors are fully supported by the iASL compiler, the ASL/AML disassembler, and the ACPICA runtime Resource Manager code (including all new predefined resource tags). New descriptors are: FixedDma GpioIo GpioInt I2cSerialBus SpiSerialBus UartSerialBus ASL/AML Operators, New and Modified: ------------------------------------ One new operator is added, the Connection operator, which is used to associate a GeneralPurposeIo or GenericSerialBus resource descriptor with individual field objects within an operation region. Several new protocols are associated with the AccessAs operator. All are fully supported by the iASL compiler, disassembler, and runtime ACPICA AML interpreter: Connection // Declare Field Connection attributes AccessAs: AttribBytes (n) // Read/Write N-Bytes Protocol AccessAs: AttribRawBytes (n) // Raw Read/Write N-Bytes Protocol AccessAs: AttribRawProcessBytes (n) // Raw Process Call Protocol RawDataBuffer // Data type for Vendor Data fields Predefined ASL/AML Objects: --------------------------- All new predefined objects/control-methods are supported by the iASL compiler and the ACPICA runtime validation/repair (arguments and return values.) New predefined names include the following: Standard Predefined Names (Objects or Control Methods): _AEI, _CLS, _CPC, _CWS, _DEP, _DLM, _EVT, _GCP, _CRT, _GWS, _HRV, _PRE, _PSE, _SRT, _SUB. Resource Tags (Names used to access individual fields within resource descriptors): _DBT, _DPL, _DRS, _END, _FLC, _IOR, _LIN, _MOD, _PAR, _PHA, _PIN, _PPI, _POL, _RXL, _SLV, _SPE, _STB, _TXL, _VEN. ACPICA External Interfaces: --------------------------- Several new interfaces have been defined for use by ACPI-related device drivers and other host OS services: AcpiAcquireMutex and AcpiReleaseMutex: These interfaces allow the host OS to acquire and release AML mutexes that are defined in the DSDT/SSDT tables provided by the BIOS. They are intended to be used in conjunction with the ACPI 5.0 _DLM (Device Lock Method) in order to provide transaction-level mutual exclusion with the AML code/interpreter. AcpiGetEventResources: Returns the (formatted) resource descriptors as defined by the ACPI 5.0 _AEI object (ACPI Event Information). This object provides resource descriptors associated with hardware-reduced platform events, similar to the AcpiGetCurrentResources interface. Operation Region Handlers: For General Purpose IO and Generic Serial Bus operation regions, information about the Connection() object and any optional length information is passed to the region handler within the Context parameter. AcpiBufferToResource: This interface converts a raw AML buffer containing a resource template or resource descriptor to the ACPI_RESOURCE internal format suitable for use by device drivers. Can be used by an operation region handler to convert the Connection() buffer object into a ACPI_RESOURCE. Miscellaneous/Tools/TestSuites: ------------------------------- Support for extended _HID names (Four alpha characters instead of three). Support for ACPI 5.0 features in the AcpiExec and AcpiHelp utilities. Support for ACPI 5.0 features in the ASLTS test suite. Fully updated documentation (ACPICA and iASL reference documents.) ACPI Table Definition Language: ------------------------------- Support for this language was implemented and released as a subsystem of the iASL compiler in 2010. (See the iASL compiler User Guide.) Non-ACPI 5.0 changes for this release: -------------------------------------- 1) ACPICA Core Subsystem: Fix a problem with operation region declarations where a failure can occur if the region name and an argument that evaluates to an object (such as the region address) are in different namespace scopes. Lin Ming, ACPICA BZ 937. Do not abort an ACPI table load if an invalid space ID is found within. This will be caught later if the offending method is executed. ACPICA BZ 925. Fixed an issue with the FFixedHW space ID where the ID was not always recognized properly (Both ACPICA and iASL). ACPICA BZ 926. Fixed a problem with the 32-bit generation of the unix-specific OSL (osunixxf.c). Lin Ming, ACPICA BZ 936. Several changes made to enable generation with the GCC 4.6 compiler. ACPICA BZ 935. New error messages: Unsupported I/O requests (not 8/16/32 bit), and Index/Bank field registers out-of-range. 2) iASL Compiler/Disassembler and Tools: iASL: Implemented the __PATH__ operator, which returns the full pathname of the current source file. AcpiHelp: Automatically display expanded keyword information for all ASL operators. Debugger: Add "Template" command to disassemble/dump resource template buffers. Added a new master script to generate and execute the ASLTS test suite. Automatically handles 32- and 64-bit generation. See tests/aslts.sh iASL: Fix problem with listing generation during processing of the Switch() operator where AML listing was disabled until the entire Switch block was completed. iASL: Improve support for semicolon statement terminators. Fix "invalid character" message for some cases when the semicolon is used. Semicolons are now allowed after every grammar element. ACPICA BZ 927. iASL: Fixed some possible aliasing warnings during generation. ACPICA BZ 923. Disassembler: Fix problem with disassembly of the DataTableRegion operator where an inadvertent "Unhandled deferred opcode" message could be generated. 3) Example Code and Data Size These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 90.2K Code, 23.9K Data, 114.1K Total Debug Version: 165.6K Code, 68.4K Data, 234.0K Total Current Release: Non-Debug Version: 92.3K Code, 24.9K Data, 117.2K Total Debug Version: 170.8K Code, 72.6K Data, 243.4K Total ---------------------------------------- 22 September 2011. Summary of changes for version 20110922: 0) ACPI 5.0 News: Support for ACPI 5.0 in ACPICA has been underway for several months and will be released at the same time that ACPI 5.0 is officially released. The ACPI 5.0 specification is on track for release in the next few months. 1) ACPICA Core Subsystem: Fixed a problem where the maximum sleep time for the Sleep() operator was intended to be limited to two seconds, but was inadvertently limited to 20 seconds instead. Linux and Unix makefiles: Added header file dependencies to ensure correct generation of ACPICA core code and utilities. Also simplified the makefiles considerably through the use of the vpath variable to specify search paths. ACPICA BZ 924. 2) iASL Compiler/Disassembler and Tools: iASL: Implemented support to check the access length for all fields created to access named Resource Descriptor fields. For example, if a resource field is defined to be two bits, a warning is issued if a CreateXxxxField() is used with an incorrect bit length. This is implemented for all current resource descriptor names. ACPICA BZ 930. Disassembler: Fixed a byte ordering problem with the output of 24-bit and 56- bit integers. iASL: Fixed a couple of issues associated with variable-length package objects. 1) properly handle constants like One, Ones, Zero -- do not make a VAR_PACKAGE when these are used as a package length. 2) Allow the VAR_PACKAGE opcode (in addition to PACKAGE) when validating object types for predefined names. iASL: Emit statistics for all output files (instead of just the ASL input and AML output). Includes listings, hex files, etc. iASL: Added -G option to the table compiler to allow the compilation of custom ACPI tables. The only part of a table that is required is the standard 36- byte ACPI header. AcpiXtract: Ported to the standard ACPICA environment (with ACPICA headers), which also adds correct 64-bit support. Also, now all output filenames are completely lower case. AcpiExec: Ignore any non-AML tables (tables other than DSDT or SSDT) when loading table files. A warning is issued for any such tables. The only exception is an FADT. This also fixes a possible fault when attempting to load non-AML tables. ACPICA BZ 932. AcpiHelp: Added the AccessAs and Offset operators. Fixed a problem where a missing table terminator could cause a fault when using the -p option. AcpiSrc: Fixed a possible divide-by-zero fault when generating file statistics. 3) Example Code and Data Size These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 9.0): Non-Debug Version: 90.2K Code, 23.9K Data, 114.1K Total Debug Version: 165.6K Code, 68.4K Data, 234.0K Total Current Release (VC 9.0): Non-Debug Version: 90.2K Code, 23.9K Data, 114.1K Total Debug Version: 165.6K Code, 68.4K Data, 234.0K Total ---------------------------------------- 23 June 2011. Summary of changes for version 20110623: 1) ACPI CA Core Subsystem: Updated the predefined name repair mechanism to not attempt repair of a _TSS return object if a _PSS object is present. We can only sort the _TSS return package if there is no _PSS within the same scope. This is because if _PSS is present, the ACPI specification dictates that the _TSS Power Dissipation field is to be ignored, and therefore some BIOSs leave garbage values in the _TSS Power field(s). In this case, it is best to just return the _TSS package as- is. Reported by, and fixed with assistance from Fenghua Yu. Added an option to globally disable the control method return value validation and repair. This runtime option can be used to disable return value repair if this is causing a problem on a particular machine. Also added an option to AcpiExec (-dr) to set this disable flag. All makefiles and project files: Major changes to improve generation of ACPICA tools. ACPICA BZ 912: Reduce default optimization levels to improve compatibility For Linux, add strict-aliasing=0 for gcc 4 Cleanup and simplify use of command line defines Cleanup multithread library support Improve usage messages Linux-specific header: update handling of THREAD_ID and pthread. For the 32- bit case, improve casting to eliminate possible warnings, especially with the acpica tools. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 9.0): Non-Debug Version: 90.1K Code, 23.9K Data, 114.0K Total Debug Version: 165.6K Code, 68.4K Data, 234.0K Total Current Release (VC 9.0): Non-Debug Version: 90.2K Code, 23.9K Data, 114.1K Total Debug Version: 165.6K Code, 68.4K Data, 234.0K Total 2) iASL Compiler/Disassembler and Tools: With this release, a new utility named "acpihelp" has been added to the ACPICA package. This utility summarizes the ACPI specification chapters for the ASL and AML languages. It generates under Linux/Unix as well as Windows, and provides the following functionality: Find/display ASL operator(s) -- with description and syntax. Find/display ASL keyword(s) -- with exact spelling and descriptions. Find/display ACPI predefined name(s) -- with description, number of arguments, and the return value data type. Find/display AML opcode name(s) -- with opcode, arguments, and grammar. Decode/display AML opcode -- with opcode name, arguments, and grammar. Service Layers: Make multi-thread support configurable. Conditionally compile the multi-thread support so that threading libraries will not be linked if not necessary. The only tool that requires multi-thread support is AcpiExec. iASL: Update yyerrror/AslCompilerError for "const" errors. Newer versions of Bison appear to want the interface to yyerror to be a const char * (or at least this is a problem when generating iASL on some systems.) ACPICA BZ 923 Pierre Lejeune. Tools: Fix for systems where O_BINARY is not defined. Only used for Windows versions of the tools. ---------------------------------------- 27 May 2011. Summary of changes for version 20110527: 1) ACPI CA Core Subsystem: ASL Load() operator: Reinstate most restrictions on the incoming ACPI table signature. Now, only allow SSDT, OEMx, and a null signature. History: 1) Originally, we checked the table signature for "SSDT" or "PSDT". (PSDT is now obsolete.) 2) We added support for OEMx tables, signature "OEM" plus a fourth "don't care" character. 3) Valid tables were encountered with a null signature, so we just gave up on validating the signature, (05/2008). 4) We encountered non-AML tables such as the MADT, which caused interpreter errors and kernel faults. So now, we once again allow only SSDT, OEMx, and now, also a null signature. (05/2011). Added the missing _TDL predefined name to the global name list in order to enable validation. Affects both the core ACPICA code and the iASL compiler. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 9.0): Non-Debug Version: 90.0K Code, 23.8K Data, 113.8K Total Debug Version: 164.5K Code, 68.0K Data, 232.5K Total Current Release (VC 9.0): Non-Debug Version: 90.1K Code, 23.9K Data, 114.0K Total Debug Version: 165.6K Code, 68.4K Data, 234.0K Total 2) iASL Compiler/Disassembler and Tools: Debugger/AcpiExec: Implemented support for "complex" method arguments on the debugger command line. This adds support beyond simple integers -- including Strings, Buffers, and Packages. Includes support for nested packages. Increased the default command line buffer size to accommodate these arguments. See the ACPICA reference for details and syntax. ACPICA BZ 917. Debugger/AcpiExec: Implemented support for "default" method arguments for the Execute/Debug command. Now, the debugger will always invoke a control method with the required number of arguments -- even if the command line specifies none or insufficient arguments. It uses default integer values for any missing arguments. Also fixes a bug where only six method arguments maximum were supported instead of the required seven. Debugger/AcpiExec: Add a maximum buffer length parameter to AcpiOsGetLine and also return status in order to prevent buffer overruns. See the ACPICA reference for details and syntax. ACPICA BZ 921 iASL: Cleaned up support for Berkeley yacc. A general cleanup of code and makefiles to simplify support for the two different but similar parser generators, bison and yacc. Updated the generic unix makefile for gcc 4. The default gcc version is now expected to be 4 or greater, since options specific to gcc 4 are used. ---------------------------------------- 13 April 2011. Summary of changes for version 20110413: 1) ACPI CA Core Subsystem: Implemented support to execute a so-called "orphan" _REG method under the EC device. This change will force the execution of a _REG method underneath the EC device even if there is no corresponding operation region of type EmbeddedControl. Fixes a problem seen on some machines and apparently is compatible with Windows behavior. ACPICA BZ 875. Added more predefined methods that are eligible for automatic NULL package element removal. This change adds another group of predefined names to the list of names that can be repaired by having NULL package elements dynamically removed. This group are those methods that return a single variable- length package containing simple data types such as integers, buffers, strings. This includes: _ALx, _BCL, _CID,_ DOD, _EDL, _FIX, _PCL, _PLD, _PMD, _PRx, _PSL, _Sx, and _TZD. ACPICA BZ 914. Split and segregated all internal global lock functions to a new file, evglock.c. Updated internal address SpaceID for DataTable regions. Moved this internal space id in preparation for ACPI 5.0 changes that will include some new space IDs. This change should not affect user/host code. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 9.0): Non-Debug Version: 89.8K Code, 23.8K Data, 113.6K Total Debug Version: 164.2K Code, 67.9K Data, 232.1K Total Current Release (VC 9.0): Non-Debug Version: 90.0K Code, 23.8K Data, 113.8K Total Debug Version: 164.5K Code, 68.0K Data, 232.5K Total 2) iASL Compiler/Disassembler and Tools: iASL/DTC: Major update for new grammar features. Allow generic data types in custom ACPI tables. Field names are now optional. Any line can be split to multiple lines using the continuation char (\). Large buffers now use line- continuation character(s) and no colon on the continuation lines. See the grammar update in the iASL compiler reference. ACPI BZ 910,911. Lin Ming, Bob Moore. iASL: Mark ASL "Return()" and the simple "Return" as "Null" return statements. Since the parser stuffs a "zero" as the return value for these statements (due to the underlying AML grammar), they were seen as "return with value" by the iASL semantic checking. They are now seen correctly as "null" return statements. iASL: Check if a_REG declaration has a corresponding Operation Region. Adds a check for each _REG to ensure that there is in fact a corresponding operation region declaration in the same scope. If not, the _REG method is not very useful since it probably won't be executed. ACPICA BZ 915. iASL/DTC: Finish support for expression evaluation. Added a new expression parser that implements c-style operator precedence and parenthesization. ACPICA bugzilla 908. Disassembler/DTC: Remove support for () and <> style comments in data tables. Now that DTC has full expression support, we don't want to have comment strings that start with a parentheses or a less-than symbol. Now, only the standard /* and // comments are supported, as well as the bracket [] comments. AcpiXtract: Fix for RSDP and dynamic SSDT extraction. These tables have "unusual" headers in the acpidump file. Update the header validation to support these tables. Problem introduced in previous AcpiXtract version in the change to support "wrong checksum" error messages emitted by acpidump utility. iASL: Add a * option to generate all template files (as a synonym for ALL) as in "iasl -T *" or "iasl -T ALL". iASL/DTC: Do not abort compiler on fatal errors. We do not want to completely abort the compiler on "fatal" errors, simply should abort the current compile. This allows multiple compiles with a single (possibly wildcard) compiler invocation. ---------------------------------------- 16 March 2011. Summary of changes for version 20110316: 1) ACPI CA Core Subsystem: Fixed a problem caused by a _PRW method appearing at the namespace root scope during the setup of wake GPEs. A fault could occur if a _PRW directly under the root object was passed to the AcpiSetupGpeForWake interface. Lin Ming. Implemented support for "spurious" Global Lock interrupts. On some systems, a global lock interrupt can occur without the pending flag being set. Upon a GL interrupt, we now ensure that a thread is actually waiting for the lock before signaling GL availability. Rafael Wysocki, Bob Moore. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 9.0): Non-Debug Version: 89.7K Code, 23.7K Data, 113.4K Total Debug Version: 163.9K Code, 67.5K Data, 231.4K Total Current Release (VC 9.0): Non-Debug Version: 89.8K Code, 23.8K Data, 113.6K Total Debug Version: 164.2K Code, 67.9K Data, 232.1K Total 2) iASL Compiler/Disassembler and Tools: Implemented full support for the "SLIC" ACPI table. Includes support in the header files, disassembler, table compiler, and template generator. Bob Moore, Lin Ming. AcpiXtract: Correctly handle embedded comments and messages from AcpiDump. Apparently some or all versions of acpidump will occasionally emit a comment like "Wrong checksum", etc., into the dump file. This was causing problems for AcpiXtract. ACPICA BZ 905. iASL: Fix the Linux makefile by removing an inadvertent double file inclusion. ACPICA BZ 913. AcpiExec: Update installation of operation region handlers. Install one handler for a user-defined address space. This is used by the ASL test suite (ASLTS). ---------------------------------------- 11 February 2011. Summary of changes for version 20110211: 1) ACPI CA Core Subsystem: Added a mechanism to defer _REG methods for some early-installed handlers. Most user handlers should be installed before call to AcpiEnableSubsystem. However, Event handlers and region handlers should be installed after AcpiInitializeObjects. Override handlers for the "default" regions should be installed early, however. This change executes all _REG methods for the default regions (Memory/IO/PCI/DataTable) simultaneously to prevent any chicken/egg issues between them. ACPICA BZ 848. Implemented an optimization for GPE detection. This optimization will simply ignore GPE registers that contain no enabled GPEs -- there is no need to read the register since this information is available internally. This becomes more important on machines with a large GPE space. ACPICA bugzilla 884. Lin Ming. Suggestion from Joe Liu. Removed all use of the highly unreliable FADT revision field. The revision number in the FADT has been found to be completely unreliable and cannot be trusted. Only the actual table length can be used to infer the version. This change updates the ACPICA core and the disassembler so that both no longer even look at the FADT version and instead depend solely upon the FADT length. Fix an unresolved name issue for the no-debug and no-error-message source generation cases. The _AcpiModuleName was left undefined in these cases, but it is actually needed as a parameter to some interfaces. Define _AcpiModuleName as a null string in these cases. ACPICA Bugzilla 888. Split several large files (makefiles and project files updated) utglobal.c -> utdecode.c dbcomds.c -> dbmethod.c dbnames.c dsopcode.c -> dsargs.c dscontrol.c dsload.c -> dsload2.c aslanalyze.c -> aslbtypes.c aslwalks.c Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 9.0): Non-Debug Version: 89.7K Code, 23.7K Data, 113.4K Total Debug Version: 163.9K Code, 67.5K Data, 231.4K Total Current Release (VC 9.0): Non-Debug Version: 89.7K Code, 23.7K Data, 113.4K Total Debug Version: 163.9K Code, 67.5K Data, 231.4K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented the predefined macros __LINE__, __FILE__, and __DATE__. These are useful C-style macros with the standard definitions. ACPICA bugzilla 898. iASL/DTC: Added support for integer expressions and labels. Support for full expressions for all integer fields in all ACPI tables. Support for labels in "generic" portions of tables such as UEFI. See the iASL reference manual. Debugger: Added a command to display the status of global handlers. The "handlers" command will display op region, fixed event, and miscellaneous global handlers. installation status -- and for op regions, whether default or user-installed handler will be used. iASL: Warn if reserved method incorrectly returns a value. Many predefined names are defined such that they do not return a value. If implemented as a method, issue a warning if such a name explicitly returns a value. ACPICA Bugzilla 855. iASL: Added detection of GPE method name conflicts. Detects a conflict where there are two GPE methods of the form _Lxy and _Exy in the same scope. (For example, _L1D and _E1D in the same scope.) ACPICA bugzilla 848. iASL/DTC: Fixed a couple input scanner issues with comments and line numbers. Comment remover could get confused and miss a comment ending. Fixed a problem with line counter maintenance. iASL/DTC: Reduced the severity of some errors from fatal to error. There is no need to abort on simple errors within a field definition. Debugger: Simplified the output of the help command. All help output now in a single screen, instead of help subcommands. ACPICA Bugzilla 897. ---------------------------------------- 12 January 2011. Summary of changes for version 20110112: 1) ACPI CA Core Subsystem: Fixed a race condition between method execution and namespace walks that can possibly cause a fault. The problem was apparently introduced in version 20100528 as a result of a performance optimization that reduces the number of namespace walks upon method exit by using the delete_namespace_subtree function instead of the delete_namespace_by_owner function used previously. Bug is a missing namespace lock in the delete_namespace_subtree function. dana.myers@oracle.com Fixed several issues and a possible fault with the automatic "serialized" method support. History: This support changes a method to "serialized" on the fly if the method generates an AE_ALREADY_EXISTS error, indicating the possibility that it cannot handle reentrancy. This fix repairs a couple of issues seen in the field, especially on machines with many cores: 1) Delete method children only upon the exit of the last thread, so as to not delete objects out from under other running threads (and possibly causing a fault.) 2) Set the "serialized" bit for the method only upon the exit of the Last thread, so as to not cause deadlock when running threads attempt to exit. 3) Cleanup the use of the AML "MethodFlags" and internal method flags so that there is no longer any confusion between the two. Lin Ming, Bob Moore. Reported by dana.myers@oracle.com. Debugger: Now lock the namespace for duration of a namespace dump. Prevents issues if the namespace is changing dynamically underneath the debugger. Especially affects temporary namespace nodes, since the debugger displays these also. Updated the ordering of include files. The ACPICA headers should appear before any compiler-specific headers (stdio.h, etc.) so that acenv.h can set any necessary compiler-specific defines, etc. Affects the ACPI-related tools and utilities. Updated all ACPICA copyrights and signons to 2011. Added the 2011 copyright to all module headers and signons, including the Linux header. This affects virtually every file in the ACPICA core subsystem, iASL compiler, and all utilities. Added project files for MS Visual Studio 2008 (VC++ 9.0). The original project files for VC++ 6.0 are now obsolete. New project files can be found under acpica/generate/msvc9. See acpica/generate/msvc9/readme.txt for details. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 6.0): Non-Debug Version: 89.8K Code, 18.9K Data, 108.7K Total Debug Version: 166.6K Code, 52.1K Data, 218.7K Total Current Release (VC 9.0): Non-Debug Version: 89.7K Code, 23.7K Data, 113.4K Total Debug Version: 163.9K Code, 67.5K Data, 231.4K Total 2) iASL Compiler/Disassembler and Tools: iASL: Added generic data types to the Data Table compiler. Add "generic" data types such as UINT32, String, Unicode, etc., to simplify the generation of platform-defined tables such as UEFI. Lin Ming. iASL: Added listing support for the Data Table Compiler. Adds listing support (-l) to display actual binary output for each line of input code. ---------------------------------------- 09 December 2010. Summary of changes for version 20101209: 1) ACPI CA Core Subsystem: Completed the major overhaul of the GPE support code that was begun in July 2010. Major features include: removal of _PRW execution in ACPICA (host executes _PRWs anyway), cleanup of "wake" GPE interfaces and processing, changes to existing interfaces, simplification of GPE handler operation, and a handful of new interfaces: AcpiUpdateAllGpes AcpiFinishGpe AcpiSetupGpeForWake AcpiSetGpeWakeMask One new file, evxfgpe.c to consolidate all external GPE interfaces. See the ACPICA Programmer Reference for full details and programming information. See the new section 4.4 "General Purpose Event (GPE) Support" for a full overview, and section 8.7 "ACPI General Purpose Event Management" for programming details. ACPICA BZ 858,870,877. Matthew Garrett, Lin Ming, Bob Moore, Rafael Wysocki. Implemented a new GPE feature for Windows compatibility, the "Implicit Wake GPE Notify". This feature will automatically issue a Notify(2) on a device when a Wake GPE is received if there is no corresponding GPE method or handler. ACPICA BZ 870. Fixed a problem with the Scope() operator during table parse and load phase. During load phase (table load or method execution), the scope operator should not enter the target into the namespace. Instead, it should open a new scope at the target location. Linux BZ 19462, ACPICA BZ 882. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 89.8K Code, 18.9K Data, 108.7K Total Debug Version: 166.6K Code, 52.1K Data, 218.7K Total Current Release: Non-Debug Version: 89.9K Code, 19.0K Data, 108.9K Total Debug Version: 166.3K Code, 52.1K Data, 218.4K Total 2) iASL Compiler/Disassembler and Tools: iASL: Relax the alphanumeric restriction on _CID strings. These strings are "bus-specific" per the ACPI specification, and therefore any characters are acceptable. The only checks that can be performed are for a null string and perhaps for a leading asterisk. ACPICA BZ 886. iASL: Fixed a problem where a syntax error that caused a premature EOF condition on the source file emitted a very confusing error message. The premature EOF is now detected correctly. ACPICA BZ 891. Disassembler: Decode the AccessSize within a Generic Address Structure (byte access, word access, etc.) Note, this field does not allow arbitrary bit access, the size is encoded as 1=byte, 2=word, 3=dword, and 4=qword. New: AcpiNames utility - Example namespace dump utility. Shows an example of ACPICA configuration for a minimal namespace dump utility. Uses table and namespace managers, but no AML interpreter. Does not add any functionality over AcpiExec, it is a subset of AcpiExec. The purpose is to show how to partition and configure ACPICA. ACPICA BZ 883. AML Debugger: Increased the debugger buffer size for method return objects. Was 4K, increased to 16K. Also enhanced error messages for debugger method execution, including the buffer overflow case. ---------------------------------------- 13 October 2010. Summary of changes for version 20101013: 1) ACPI CA Core Subsystem: Added support to clear the PCIEXP_WAKE event. When clearing ACPI events, now clear the PCIEXP_WAKE_STS bit in the ACPI PM1 Status Register, via HwClearAcpiStatus. Original change from Colin King. ACPICA BZ 880. Changed the type of the predefined namespace object _TZ from ThermalZone to Device. This was found to be confusing to the host software that processes the various thermal zones, since _TZ is not really a ThermalZone. However, a Notify() can still be performed on it. ACPICA BZ 876. Suggestion from Rui Zhang. Added Windows Vista SP2 to the list of supported _OSI strings. The actual string is "Windows 2006 SP2". Eliminated duplicate code in AcpiUtExecute* functions. Now that the nsrepair code automatically repairs _HID-related strings, this type of code is no longer needed in Execute_HID, Execute_CID, and Execute_UID. ACPICA BZ 878. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 89.9K Code, 19.0K Data, 108.9K Total Debug Version: 166.3K Code, 52.1K Data, 218.4K Total Current Release: Non-Debug Version: 89.9K Code, 19.0K Data, 108.9K Total Debug Version: 166.3K Code, 52.1K Data, 218.4K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented additional compile-time validation for _HID strings. The non-hex prefix (such as "PNP" or "ACPI") must be uppercase, and the length of the string must be exactly seven or eight characters. For both _HID and _CID strings, all characters must be alphanumeric. ACPICA BZ 874. iASL: Allow certain "null" resource descriptors. Some BIOS code creates descriptors that are mostly or all zeros, with the expectation that they will be filled in at runtime. iASL now allows this as long as there is a "resource tag" (name) associated with the descriptor, which gives the ASL a handle needed to modify the descriptor. ACPICA BZ 873. Added single-thread support to the generic Unix application OSL. Primarily for iASL support, this change removes the use of semaphores in the single- threaded ACPICA tools/applications - increasing performance. The _MULTI_THREADED option was replaced by the (reverse) ACPI_SINGLE_THREADED option. ACPICA BZ 879. AcpiExec: several fixes for the 64-bit version. Adds XSDT support and support for 64-bit DSDT/FACS addresses in the FADT. Lin Ming. iASL: Moved all compiler messages to a new file, aslmessages.h. ---------------------------------------- 15 September 2010. Summary of changes for version 20100915: 1) ACPI CA Core Subsystem: Removed the AcpiOsDerivePciId OSL interface. The various host implementations of this function were not OS-dependent and are now obsolete and can be removed from all host OSLs. This function has been replaced by AcpiHwDerivePciId, which is now part of the ACPICA core code. AcpiHwDerivePciId has been implemented without recursion. Adds one new module, hwpci.c. ACPICA BZ 857. Implemented a dynamic repair for _HID and _CID strings. The following problems are now repaired at runtime: 1) Remove a leading asterisk in the string, and 2) the entire string is uppercased. Both repairs are in accordance with the ACPI specification and will simplify host driver code. ACPICA BZ 871. The ACPI_THREAD_ID type is no longer configurable, internally it is now always UINT64. This simplifies the ACPICA code, especially any printf output. UINT64 is the only common data type for all thread_id types across all operating systems. It is now up to the host OSL to cast the native thread_id type to UINT64 before returning the value to ACPICA (via AcpiOsGetThreadId). Lin Ming, Bob Moore. Added the ACPI_INLINE type to enhance the ACPICA configuration. The "inline" keyword is not standard across compilers, and this type allows inline to be configured on a per-compiler basis. Lin Ming. Made the system global AcpiGbl_SystemAwakeAndRunning publically available. Added an extern for this boolean in acpixf.h. Some hosts utilize this value during suspend/restore operations. ACPICA BZ 869. All code that implements error/warning messages with the "ACPI:" prefix has been moved to a new module, utxferror.c. The UINT64_OVERLAY was moved to utmath.c, which is the only module where it is used. ACPICA BZ 829. Lin Ming, Bob Moore. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 89.1K Code, 19.0K Data, 108.1K Total Debug Version: 165.1K Code, 51.9K Data, 217.0K Total Current Release: Non-Debug Version: 89.9K Code, 19.0K Data, 108.9K Total Debug Version: 166.3K Code, 52.1K Data, 218.4K Total 2) iASL Compiler/Disassembler and Tools: iASL/Disassembler: Write ACPI errors to stderr instead of the output file. This keeps the output files free of random error messages that may originate from within the namespace/interpreter code. Used this opportunity to merge all ACPI:-style messages into a single new module, utxferror.c. ACPICA BZ 866. Lin Ming, Bob Moore. Tools: update some printfs for ansi warnings on size_t. Handle width change of size_t on 32-bit versus 64-bit generations. Lin Ming. ---------------------------------------- 06 August 2010. Summary of changes for version 20100806: 1) ACPI CA Core Subsystem: Designed and implemented a new host interface to the _OSI support code. This will allow the host to dynamically add or remove multiple _OSI strings, as well as install an optional handler that is called for each _OSI invocation. Also added a new AML debugger command, 'osi' to display and modify the global _OSI string table, and test support in the AcpiExec utility. See the ACPICA reference manual for full details. Lin Ming, Bob Moore. ACPICA BZ 836. New Functions: AcpiInstallInterface - Add an _OSI string. AcpiRemoveInterface - Delete an _OSI string. AcpiInstallInterfaceHandler - Install optional _OSI handler. Obsolete Functions: AcpiOsValidateInterface - no longer used. New Files: source/components/utilities/utosi.c Re-introduced the support to enable multi-byte transfers for Embedded Controller (EC) operation regions. A reported problem was found to be a bug in the host OS, not in the multi-byte support. Previously, the maximum data size passed to the EC operation region handler was a single byte. There are often EC Fields larger than one byte that need to be transferred, and it is useful for the EC driver to lock these as a single transaction. This change enables single transfers larger than 8 bits. This effectively changes the access to the EC space from ByteAcc to AnyAcc, and will probably require changes to the host OS Embedded Controller driver to enable 16/32/64/256- bit transfers in addition to 8-bit transfers. Alexey Starikovskiy, Lin Ming. Fixed a problem with the prototype for AcpiOsReadPciConfiguration. The prototype in acpiosxf.h had the output value pointer as a (void *). It should be a (UINT64 *). This may affect some host OSL code. Fixed a couple problems with the recently modified Linux makefiles for iASL and AcpiExec. These new makefiles place the generated object files in the local directory so that there can be no collisions between the files that are shared between them that are compiled with different options. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 88.3K Code, 18.8K Data, 107.1K Total Debug Version: 164.0K Code, 51.5K Data, 215.5K Total Current Release: Non-Debug Version: 89.1K Code, 19.0K Data, 108.1K Total Debug Version: 165.1K Code, 51.9K Data, 217.0K Total 2) iASL Compiler/Disassembler and Tools: iASL/Disassembler: Added a new option (-da, "disassemble all") to load the namespace from and disassemble an entire group of AML files. Useful for loading all of the AML tables for a given machine (DSDT, SSDT1...SSDTn) and disassembling with one simple command. ACPICA BZ 865. Lin Ming. iASL: Allow multiple invocations of -e option. This change allows multiple uses of -e on the command line: "-e ssdt1.dat -e ssdt2.dat". ACPICA BZ 834. Lin Ming. ---------------------------------------- 02 July 2010. Summary of changes for version 20100702: 1) ACPI CA Core Subsystem: Implemented several updates to the recently added GPE reference count support. The model for "wake" GPEs is changing to give the host OS complete control of these GPEs. Eventually, the ACPICA core will not execute any _PRW methods, since the host already must execute them. Also, additional changes were made to help ensure that the reference counts are kept in proper synchronization with reality. Rafael J. Wysocki. 1) Ensure that GPEs are not enabled twice during initialization. 2) Ensure that GPE enable masks stay in sync with the reference count. 3) Do not inadvertently enable GPEs when writing GPE registers. 4) Remove the internal wake reference counter and add new AcpiGpeWakeup interface. This interface will set or clear individual GPEs for wakeup. 5) Remove GpeType argument from AcpiEnable and AcpiDisable. These interfaces are now used for "runtime" GPEs only. Changed the behavior of the GPE install/remove handler interfaces. The GPE is no longer disabled during this process, as it was found to cause problems on some machines. Rafael J. Wysocki. Reverted a change introduced in version 20100528 to enable Embedded Controller multi-byte transfers. This change was found to cause problems with Index Fields and possibly Bank Fields. It will be reintroduced when these problems have been resolved. Fixed a problem with references to Alias objects within Package Objects. A reference to an Alias within the definition of a Package was not always resolved properly. Aliases to objects like Processors, Thermal zones, etc. were resolved to the actual object instead of a reference to the object as it should be. Package objects are only allowed to contain integer, string, buffer, package, and reference objects. Redhat bugzilla 608648. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 88.3K Code, 18.8K Data, 107.1K Total Debug Version: 164.1K Code, 51.5K Data, 215.6K Total Current Release: Non-Debug Version: 88.3K Code, 18.8K Data, 107.1K Total Debug Version: 164.0K Code, 51.5K Data, 215.5K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented a new compiler subsystem to allow definition and compilation of the non-AML ACPI tables such as FADT, MADT, SRAT, etc. These are called "ACPI Data Tables", and the new compiler is the "Data Table Compiler". This compiler is intended to simplify the existing error-prone process of creating these tables for the BIOS, as well as allowing the disassembly, modification, recompilation, and override of existing ACPI data tables. See the iASL User Guide for detailed information. iASL: Implemented a new Template Generator option in support of the new Data Table Compiler. This option will create examples of all known ACPI tables that can be used as the basis for table development. See the iASL documentation and the -T option. Disassembler and headers: Added support for the WDDT ACPI table (Watchdog Descriptor Table). Updated the Linux makefiles for iASL and AcpiExec to place the generated object files in the local directory so that there can be no collisions between the shared files between them that are generated with different options. Added support for Mac OS X in the Unix OSL used for iASL and AcpiExec. Use the #define __APPLE__ to enable this support. ---------------------------------------- 28 May 2010. Summary of changes for version 20100528: Note: The ACPI 4.0a specification was released on April 5, 2010 and is available at www.acpi.info. This is primarily an errata release. 1) ACPI CA Core Subsystem: Undefined ACPI tables: We are looking for the definitions for the following ACPI tables that have been seen in the field: ATKG, IEIT, GSCI. Implemented support to enable multi-byte transfers for Embedded Controller (EC) operation regions. Previously, the maximum data size passed to the EC operation region handler was a single byte. There are often EC Fields larger than one byte that need to be transferred, and it is useful for the EC driver to lock these as a single transaction. This change enables single transfers larger than 8 bits. This effectively changes the access to the EC space from ByteAcc to AnyAcc, and will probably require changes to the host OS Embedded Controller driver to enable 16/32/64/256-bit transfers in addition to 8- bit transfers. Alexey Starikovskiy, Lin Ming Implemented a performance enhancement for namespace search and access. This change enhances the performance of namespace searches and walks by adding a backpointer to the parent in each namespace node. On large namespaces, this change can improve overall ACPI performance by up to 9X. Adding a pointer to each namespace node increases the overall size of the internal namespace by about 5%, since each namespace entry usually consists of both a namespace node and an ACPI operand object. However, this is the first growth of the namespace in ten years. ACPICA bugzilla 817. Alexey Starikovskiy. Implemented a performance optimization that reduces the number of namespace walks. On control method exit, only walk the namespace if the method is known to have created namespace objects outside of its local scope. Previously, the entire namespace was traversed on each control method exit. This change can improve overall ACPI performance by up to 3X. Alexey Starikovskiy, Bob Moore. Added support to truncate I/O addresses to 16 bits for Windows compatibility. Some ASL code has been seen in the field that inadvertently has bits set above bit 15. This feature is optional and is enabled if the BIOS requests any Windows OSI strings. It can also be enabled by the host OS. Matthew Garrett, Bob Moore. Added support to limit the maximum time for the ASL Sleep() operator. To prevent accidental deep sleeps, limit the maximum time that Sleep() will actually sleep. Configurable, the default maximum is two seconds. ACPICA bugzilla 854. Added run-time validation support for the _WDG and_WED Microsoft predefined methods. These objects are defined by "Windows Instrumentation", and are not part of the ACPI spec. ACPICA BZ 860. Expanded all statistic counters used during namespace and device initialization from 16 to 32 bits in order to support very large namespaces. Replaced all instances of %d in printf format specifiers with %u since nearly all integers in ACPICA are unsigned. Fixed the exception namestring for AE_WAKE_ONLY_GPE. Was incorrectly returned as AE_NO_HANDLER. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 88.4K Code, 18.8K Data, 107.2K Total Debug Version: 164.2K Code, 51.5K Data, 215.7K Total Current Release: Non-Debug Version: 88.3K Code, 18.8K Data, 107.1K Total Debug Version: 164.1K Code, 51.5K Data, 215.6K Total 2) iASL Compiler/Disassembler and Tools: iASL: Added compiler support for the _WDG and_WED Microsoft predefined methods. These objects are defined by "Windows Instrumentation", and are not part of the ACPI spec. ACPICA BZ 860. AcpiExec: added option to disable the memory tracking mechanism. The -dt option will disable the tracking mechanism, which improves performance considerably. AcpiExec: Restructured the command line options into -d (disable) and -e (enable) options. ---------------------------------------- 28 April 2010. Summary of changes for version 20100428: 1) ACPI CA Core Subsystem: Implemented GPE support for dynamically loaded ACPI tables. For all GPEs, including FADT-based and GPE Block Devices, execute any _PRW methods in the new table, and process any _Lxx/_Exx GPE methods in the new table. Any runtime GPE that is referenced by an _Lxx/_Exx method in the new table is immediately enabled. Handles the FADT-defined GPEs as well as GPE Block Devices. Provides compatibility with other ACPI implementations. Two new files added, evgpeinit.c and evgpeutil.c. ACPICA BZ 833. Lin Ming, Bob Moore. Fixed a regression introduced in version 20100331 within the table manager where initial table loading could fail. This was introduced in the fix for AcpiReallocateRootTable. Also, renamed some of fields in the table manager data structures to clarify their meaning and use. Fixed a possible allocation overrun during internal object copy in AcpiUtCopySimpleObject. The original code did not correctly handle the case where the object to be copied was a namespace node. Lin Ming. ACPICA BZ 847. Updated the allocation dump routine, AcpiUtDumpAllocation and fixed a possible access beyond end-of-allocation. Also, now fully validate descriptor (size and type) before output. Lin Ming, Bob Moore. ACPICA BZ 847 Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 87.9K Code, 18.6K Data, 106.5K Total Debug Version: 163.5K Code, 51.3K Data, 214.8K Total Current Release: Non-Debug Version: 88.4K Code, 18.8K Data, 107.2K Total Debug Version: 164.2K Code, 51.5K Data, 215.7K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented Min/Max/Len/Gran validation for address resource descriptors. This change implements validation for the address fields that are common to all address-type resource descriptors. These checks are implemented: Checks for valid Min/Max, length within the Min/Max window, valid granularity, Min/Max a multiple of granularity, and _MIF/_MAF as per table 6-40 in the ACPI 4.0a specification. Also split the large aslrestype1.c and aslrestype2.c files into five new files. ACPICA BZ 840. iASL: Added support for the _Wxx predefined names. This support was missing and these names were not recognized by the compiler as valid predefined names. ACPICA BZ 851. iASL: Added an error for all predefined names that are defined to return no value and thus must be implemented as Control Methods. These include all of the _Lxx, _Exx, _Wxx, and _Qxx names, as well as some other miscellaneous names such as _DIS, _INI, _IRC, _OFF, _ON, and _PSx. ACPICA BZ 850, 856. iASL: Implemented the -ts option to emit hex AML data in ASL format, as an ASL Buffer. Allows ACPI tables to be easily included within ASL files, to be dynamically loaded via the Load() operator. Also cleaned up output for the - ta and -tc options. ACPICA BZ 853. Tests: Added a new file with examples of extended iASL error checking. Demonstrates the advanced error checking ability of the iASL compiler. Available at tests/misc/badcode.asl. ---------------------------------------- 31 March 2010. Summary of changes for version 20100331: 1) ACPI CA Core Subsystem: Completed a major update for the GPE support in order to improve support for shared GPEs and to simplify both host OS and ACPICA code. Added a reference count mechanism to support shared GPEs that require multiple device drivers. Several external interfaces have changed. One external interface has been removed. One new external interface was added. Most of the GPE external interfaces now use the GPE spinlock instead of the events mutex (and the Flags parameter for many GPE interfaces has been removed.) See the updated ACPICA Programmer Reference for details. Matthew Garrett, Bob Moore, Rafael Wysocki. ACPICA BZ 831. Changed: AcpiEnableGpe, AcpiDisableGpe, AcpiClearGpe, AcpiGetGpeStatus Removed: AcpiSetGpeType New: AcpiSetGpe Implemented write support for DataTable operation regions. These regions are defined via the DataTableRegion() operator. Previously, only read support was implemented. The ACPI specification allows DataTableRegions to be read/write, however. Implemented a new subsystem option to force a copy of the DSDT to local memory. Optionally copy the entire DSDT to local memory (instead of simply mapping it.) There are some (albeit very rare) BIOSs that corrupt or replace the original DSDT, creating the need for this option. Default is FALSE, do not copy the DSDT. Implemented detection of a corrupted or replaced DSDT. This change adds support to detect a DSDT that has been corrupted and/or replaced from outside the OS (by firmware). This is typically catastrophic for the system, but has been seen on some machines. Once this problem has been detected, the DSDT copy option can be enabled via system configuration. Lin Ming, Bob Moore. Fixed two problems with AcpiReallocateRootTable during the root table copy. When copying the root table to the new allocation, the length used was incorrect. The new size was used instead of the current table size, meaning too much data was copied. Also, the count of available slots for ACPI tables was not set correctly. Alexey Starikovskiy, Bob Moore. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 87.5K Code, 18.4K Data, 105.9K Total Debug Version: 163.4K Code, 51.1K Data, 214.5K Total Current Release: Non-Debug Version: 87.9K Code, 18.6K Data, 106.5K Total Debug Version: 163.5K Code, 51.3K Data, 214.8K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implement limited typechecking for values returned from predefined control methods. The type of any returned static (unnamed) object is now validated. For example, Return(1). ACPICA BZ 786. iASL: Fixed a predefined name object verification regression. Fixes a problem introduced in version 20100304. An error is incorrectly generated if a predefined name is declared as a static named object with a value defined using the keywords "Zero", "One", or "Ones". Lin Ming. iASL: Added Windows 7 support for the -g option (get local ACPI tables) by reducing the requested registry access rights. ACPICA BZ 842. Disassembler: fixed a possible fault when generating External() statements. Introduced in commit ae7d6fd: Properly handle externals with parent- prefix (carat). Fixes a string length allocation calculation. Lin Ming. ---------------------------------------- 04 March 2010. Summary of changes for version 20100304: 1) ACPI CA Core Subsystem: Fixed a possible problem with the AML Mutex handling function AcpiExReleaseMutex where the function could fault under the very rare condition when the interpreter has blocked, the interpreter lock is released, the interpreter is then reentered via the same thread, and attempts to acquire an AML mutex that was previously acquired. FreeBSD report 140979. Lin Ming. Implemented additional configuration support for the AML "Debug Object". Output from the debug object can now be enabled via a global variable, AcpiGbl_EnableAmlDebugObject. This will assist with remote machine debugging. This debug output is now available in the release version of ACPICA instead of just the debug version. Also, the entire debug output module can now be configured out of the ACPICA build if desired. One new file added, executer/exdebug.c. Lin Ming, Bob Moore. Added header support for the ACPI MCHI table (Management Controller Host Interface Table). This table was added in ACPI 4.0, but the defining document has only recently become available. Standardized output of integer values for ACPICA warnings/errors. Always use 0x prefix for hex output, always use %u for unsigned integer decimal output. Affects ACPI_INFO, ACPI_ERROR, ACPI_EXCEPTION, and ACPI_WARNING (about 400 invocations.) These invocations were converted from the original ACPI_DEBUG_PRINT invocations and were not consistent. ACPICA BZ 835. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 87.1K Code, 18.0K Data, 105.1K Total Debug Version: 163.5K Code, 50.9K Data, 214.4K Total Current Release: Non-Debug Version: 87.5K Code, 18.4K Data, 105.9K Total Debug Version: 163.4K Code, 51.1K Data, 214.5K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented typechecking support for static (non-control method) predefined named objects that are declared with the Name() operator. For example, the type of this object is now validated to be of type Integer: Name(_BBN, 1). This change migrates the compiler to using the core predefined name table instead of maintaining a local version. Added a new file, aslpredef.c. ACPICA BZ 832. Disassembler: Added support for the ACPI 4.0 MCHI table. ---------------------------------------- 21 January 2010. Summary of changes for version 20100121: 1) ACPI CA Core Subsystem: Added the 2010 copyright to all module headers and signons. This affects virtually every file in the ACPICA core subsystem, the iASL compiler, the tools/utilities, and the test suites. Implemented a change to the AcpiGetDevices interface to eliminate unnecessary invocations of the _STA method. In the case where a specific _HID is requested, do not run _STA until a _HID match is found. This eliminates potentially dozens of _STA calls during a search for a particular device/HID, which in turn can improve boot times. ACPICA BZ 828. Lin Ming. Implemented an additional repair for predefined method return values. Attempt to repair unexpected NULL elements within returned Package objects. Create an Integer of value zero, a NULL String, or a zero-length Buffer as appropriate. ACPICA BZ 818. Lin Ming, Bob Moore. Removed the obsolete ACPI_INTEGER data type. This type was introduced as the code was migrated from ACPI 1.0 (with 32-bit AML integers) to ACPI 2.0 (with 64-bit AML integers). It is now obsolete and this change removes it from the ACPICA code base, replaced by UINT64. The original typedef has been retained for now for compatibility with existing device driver code. ACPICA BZ 824. Removed the unused UINT32_STRUCT type, and the obsolete Integer64 field in the parse tree object. Added additional warning options for the gcc-4 generation. Updated the source accordingly. This includes some code restructuring to eliminate unreachable code, elimination of some gotos, elimination of unused return values, some additional casting, and removal of redundant declarations. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 87.0K Code, 18.0K Data, 105.0K Total Debug Version: 163.4K Code, 50.8K Data, 214.2K Total Current Release: Non-Debug Version: 87.1K Code, 18.0K Data, 105.1K Total Debug Version: 163.5K Code, 50.9K Data, 214.4K Total 2) iASL Compiler/Disassembler and Tools: No functional changes for this release. ---------------------------------------- 14 December 2009. Summary of changes for version 20091214: 1) ACPI CA Core Subsystem: Enhanced automatic data type conversions for predefined name repairs. This change expands the automatic repairs/conversions for predefined name return values to make Integers, Strings, and Buffers fully interchangeable. Also, a Buffer can be converted to a Package of Integers if necessary. The nsrepair.c module was completely restructured. Lin Ming, Bob Moore. Implemented automatic removal of null package elements during predefined name repairs. This change will automatically remove embedded and trailing NULL package elements from returned package objects that are defined to contain a variable number of sub-packages. The driver is then presented with a package with no null elements to deal with. ACPICA BZ 819. Implemented a repair for the predefined _FDE and _GTM names. The expected return value for both names is a Buffer of 5 DWORDs. This repair fixes two possible problems (both seen in the field), where a package of integers is returned, or a buffer of BYTEs is returned. With assistance from Jung-uk Kim. Implemented additional module-level code support. This change will properly execute module-level code that is not at the root of the namespace (under a Device object, etc.). Now executes the code within the current scope instead of the root. ACPICA BZ 762. Lin Ming. Fixed possible mutex acquisition errors when running _REG methods. Fixes a problem where mutex errors can occur when running a _REG method that is in the same scope as a method-defined operation region or an operation region under a module-level IF block. This type of code is rare, so the problem has not been seen before. ACPICA BZ 826. Lin Ming, Bob Moore. Fixed a possible memory leak during module-level code execution. An object could be leaked for each block of executed module-level code if the interpreter slack mode is enabled This change deletes any implicitly returned object from the module-level code block. Lin Ming. Removed messages for successful predefined repair(s). The repair mechanism was considered too wordy. Now, messages are only unconditionally emitted if the return object cannot be repaired. Existing messages for successful repairs were converted to ACPI_DEBUG_PRINT messages for now. ACPICA BZ 827. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 86.6K Code, 18.2K Data, 104.8K Total Debug Version: 162.7K Code, 50.8K Data, 213.5K Total Current Release: Non-Debug Version: 87.0K Code, 18.0K Data, 105.0K Total Debug Version: 163.4K Code, 50.8K Data, 214.2K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a regression introduced in 20091112 where intermediate .SRC files were no longer automatically removed at the termination of the compile. acpiexec: Implemented the -f option to specify default region fill value. This option specifies the value used to initialize buffers that simulate operation regions. Default value is zero. Useful for debugging problems that depend on a specific initial value for a region or field. ---------------------------------------- 12 November 2009. Summary of changes for version 20091112: 1) ACPI CA Core Subsystem: Implemented a post-order callback to AcpiWalkNamespace. The existing interface only has a pre-order callback. This change adds an additional parameter for a post-order callback which will be more useful for bus scans. ACPICA BZ 779. Lin Ming. Updated the ACPICA Programmer Reference. Modified the behavior of the operation region memory mapping cache for SystemMemory. Ensure that the memory mappings created for operation regions do not cross 4K page boundaries. Crossing a page boundary while mapping regions can cause kernel warnings on some hosts if the pages have different attributes. Such regions are probably BIOS bugs, and this is the workaround. Linux BZ 14445. Lin Ming. Implemented an automatic repair for predefined methods that must return sorted lists. This change will repair (by sorting) packages returned by _ALR, _PSS, and _TSS. Drivers can now assume that the packages are correctly sorted and do not contain NULL package elements. Adds one new file, namespace/nsrepair2.c. ACPICA BZ 784. Lin Ming, Bob Moore. Fixed a possible fault during predefined name validation if a return Package object contains NULL elements. Also adds a warning if a NULL element is followed by any non-null elements. ACPICA BZ 813, 814. Future enhancement may include repair or removal of all such NULL elements where possible. Implemented additional module-level executable AML code support. This change will execute module-level code that is not at the root of the namespace (under a Device object, etc.) at table load time. Module-level executable AML code has been illegal since ACPI 2.0. ACPICA BZ 762. Lin Ming. Implemented a new internal function to create Integer objects. This function simplifies miscellaneous object creation code. ACPICA BZ 823. Reduced the severity of predefined repair messages, Warning to Info. Since the object was successfully repaired, a warning is too severe. Reduced to an info message for now. These messages may eventually be changed to debug- only. ACPICA BZ 812. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 85.8K Code, 18.0K Data, 103.8K Total Debug Version: 161.8K Code, 50.6K Data, 212.4K Total Current Release: Non-Debug Version: 86.6K Code, 18.2K Data, 104.8K Total Debug Version: 162.7K Code, 50.8K Data, 213.5K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented Switch() with While(1) so that Break works correctly. This change correctly implements the Switch operator with a surrounding While(1) so that the Break operator works as expected. ACPICA BZ 461. Lin Ming. iASL: Added a message if a package initializer list is shorter than package length. Adds a new remark for a Package() declaration if an initializer list exists, but is shorter than the declared length of the package. Although technically legal, this is probably a coding error and it is seen in the field. ACPICA BZ 815. Lin Ming, Bob Moore. iASL: Fixed a problem where the compiler could fault after the maximum number of errors was reached (200). acpixtract: Fixed a possible warning for pointer cast if the compiler warning level set very high. ---------------------------------------- 13 October 2009. Summary of changes for version 20091013: 1) ACPI CA Core Subsystem: Fixed a problem where an Operation Region _REG method could be executed more than once. If a custom address space handler is installed by the host before the "initialize operation regions" phase of the ACPICA initialization, any _REG methods for that address space could be executed twice. This change fixes the problem. ACPICA BZ 427. Lin Ming. Fixed a possible memory leak for the Scope() ASL operator. When the exact invocation of "Scope(\)" is executed (change scope to root), one internal operand object was leaked. Lin Ming. Implemented a run-time repair for the _MAT predefined method. If the _MAT return value is defined as a Field object in the AML, and the field size is less than or equal to the default width of an integer (32 or 64),_MAT can incorrectly return an Integer instead of a Buffer. ACPICA now automatically repairs this problem. ACPICA BZ 810. Implemented a run-time repair for the _BIF and _BIX predefined methods. The "OEM Information" field is often incorrectly returned as an Integer with value zero if the field is not supported by the platform. This is due to an ambiguity in the ACPI specification. The field should always be a string. ACPICA now automatically repairs this problem by returning a NULL string within the returned Package. ACPICA BZ 807. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 85.6K Code, 18.0K Data, 103.6K Total Debug Version: 161.7K Code, 50.9K Data, 212.6K Total Current Release: Non-Debug Version: 85.8K Code, 18.0K Data, 103.8K Total Debug Version: 161.8K Code, 50.6K Data, 212.4K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Fixed a problem where references to external symbols that contained one or more parent-prefixes (carats) were not handled correctly, possibly causing a fault. ACPICA BZ 806. Lin Ming. Disassembler: Restructured the code so that all functions that handle external symbols are in a single module. One new file is added, common/dmextern.c. AML Debugger: Added a max count argument for the Batch command (which executes multiple predefined methods within the namespace.) iASL: Updated the compiler documentation (User Reference.) Available at http://www.acpica.org/documentation/. ACPICA BZ 750. AcpiXtract: Updated for Lint and other formatting changes. Close all open files. ---------------------------------------- 03 September 2009. Summary of changes for version 20090903: 1) ACPI CA Core Subsystem: For Windows Vista compatibility, added the automatic execution of an _INI method located at the namespace root (\_INI). This method is executed at table load time. This support is in addition to the automatic execution of \_SB._INI. Lin Ming. Fixed a possible memory leak in the interpreter for AML package objects if the package initializer list is longer than the defined size of the package. This apparently can only happen if the BIOS changes the package size on the fly (seen in a _PSS object), as ASL compilers do not allow this. The interpreter will truncate the package to the defined size (and issue an error message), but previously could leave the extra objects undeleted if they were pre-created during the argument processing (such is the case if the package consists of a number of sub-packages as in the _PSS.) ACPICA BZ 805. Fixed a problem seen when a Buffer or String is stored to itself via ASL. This has been reported in the field. Previously, ACPICA would zero out the buffer/string. Now, the operation is treated as a noop. Provides Windows compatibility. ACPICA BZ 803. Lin Ming. Removed an extraneous error message for ASL constructs of the form Store(LocalX,LocalX) when LocalX is uninitialized. These curious statements are seen in many BIOSs and are once again treated as NOOPs and no error is emitted when they are encountered. ACPICA BZ 785. Fixed an extraneous warning message if a _DSM reserved method returns a Package object. _DSM can return any type of object, so validation on the return type cannot be performed. ACPICA BZ 802. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 85.5K Code, 18.0K Data, 103.5K Total Debug Version: 161.6K Code, 50.9K Data, 212.5K Total Current Release: Non-Debug Version: 85.6K Code, 18.0K Data, 103.6K Total Debug Version: 161.7K Code, 50.9K Data, 212.6K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a problem with the use of the Alias operator and Resource Templates. The correct alias is now constructed and no error is emitted. ACPICA BZ 738. iASL: Implemented the -I option to specify additional search directories for include files. Allows multiple additional search paths for include files. Directories are searched in the order specified on the command line (after the local directory is searched.) ACPICA BZ 800. iASL: Fixed a problem where the full pathname for include files was not emitted for warnings/errors. This caused the IDE support to not work properly. ACPICA BZ 765. iASL: Implemented the -@ option to specify a Windows-style response file containing additional command line options. ACPICA BZ 801. AcpiExec: Added support to load multiple AML files simultaneously (such as a DSDT and multiple SSDTs). Also added support for wildcards within the AML pathname. These features allow all machine tables to be easily loaded and debugged together. ACPICA BZ 804. Disassembler: Added missing support for disassembly of HEST table Error Bank subtables. ---------------------------------------- 30 July 2009. Summary of changes for version 20090730: The ACPI 4.0 implementation for ACPICA is complete with this release. 1) ACPI CA Core Subsystem: ACPI 4.0: Added header file support for all new and changed ACPI tables. Completely new tables are: IBFT, IVRS, MSCT, and WAET. Tables that are new for ACPI 4.0, but have previously been supported in ACPICA are: CPEP, BERT, EINJ, ERST, and HEST. Other newly supported tables are: UEFI and WDAT. There have been some ACPI 4.0 changes to other existing tables. Split the large actbl1.h header into the existing actbl2.h header. ACPICA BZ 774. ACPI 4.0: Implemented predefined name validation for all new names. There are 31 new names in ACPI 4.0. The predefined validation module was split into two files. The new file is namespace/nsrepair.c. ACPICA BZ 770. Implemented support for so-called "module-level executable code". This is executable AML code that exists outside of any control method and is intended to be executed at table load time. Although illegal since ACPI 2.0, this type of code still exists and is apparently still being created. Blocks of this code are now detected and executed as intended. Currently, the code blocks must exist under either an If, Else, or While construct; these are the typical cases seen in the field. ACPICA BZ 762. Lin Ming. Implemented an automatic dynamic repair for predefined names that return nested Package objects. This applies to predefined names that are defined to return a variable-length Package of sub-packages. If the number of sub- packages is one, BIOS code is occasionally seen that creates a simple single package with no sub-packages. This code attempts to fix the problem by wrapping a new package object around the existing package. These methods can be repaired: _ALR, _CSD, _HPX, _MLS, _PRT, _PSS, _TRT, and _TSS. ACPICA BZ 790. Fixed a regression introduced in 20090625 for the AcpiGetDevices interface. The _HID/_CID matching was broken and no longer matched IDs correctly. ACPICA BZ 793. Fixed a problem with AcpiReset where the reset would silently fail if the register was one of the protected I/O ports. AcpiReset now bypasses the port validation mechanism. This may eventually be driven into the AcpiRead/Write interfaces. Fixed a regression related to the recent update of the AcpiRead/Write interfaces. A sleep/suspend could fail if the optional PM2 Control register does not exist during an attempt to write the Bus Master Arbitration bit. (However, some hosts already delete the code that writes this bit, and the code may in fact be obsolete at this date.) ACPICA BZ 799. Fixed a problem where AcpiTerminate could fault if inadvertently called twice in succession. ACPICA BZ 795. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 84.7K Code, 17.8K Data, 102.5K Total Debug Version: 160.5K Code, 50.6K Data, 211.1K Total Current Release: Non-Debug Version: 85.5K Code, 18.0K Data, 103.5K Total Debug Version: 161.6K Code, 50.9K Data, 212.5K Total 2) iASL Compiler/Disassembler and Tools: ACPI 4.0: Implemented disassembler support for all new ACPI tables and changes to existing tables. ACPICA BZ 775. ---------------------------------------- 25 June 2009. Summary of changes for version 20090625: The ACPI 4.0 Specification was released on June 16 and is available at www.acpi.info. ACPICA implementation of ACPI 4.0 is underway and will continue for the next few releases. 1) ACPI CA Core Subsystem: ACPI 4.0: Implemented interpreter support for the IPMI operation region address space. Includes support for bi-directional data buffers and an IPMI address space handler (to be installed by an IPMI device driver.) ACPICA BZ 773. Lin Ming. ACPI 4.0: Added changes for existing ACPI tables - FACS and SRAT. Includes support in both the header files and the disassembler. Completed a major update for the AcpiGetObjectInfo external interface. Changes include: - Support for variable, unlimited length HID, UID, and CID strings. - Support Processor objects the same as Devices (HID,UID,CID,ADR,STA, etc.) - Call the _SxW power methods on behalf of a device object. - Determine if a device is a PCI root bridge. - Change the ACPI_BUFFER parameter to ACPI_DEVICE_INFO. These changes will require an update to all callers of this interface. See the updated ACPICA Programmer Reference for details. One new source file has been added - utilities/utids.c. ACPICA BZ 368, 780. Updated the AcpiRead and AcpiWrite external interfaces to support 64-bit transfers. The Value parameter has been extended from 32 bits to 64 bits in order to support new ACPI 4.0 tables. These changes will require an update to all callers of these interfaces. See the ACPICA Programmer Reference for details. ACPICA BZ 768. Fixed several problems with AcpiAttachData. The handler was not invoked when the host node was deleted. The data sub-object was not automatically deleted when the host node was deleted. The interface to the handler had an unused parameter, this was removed. ACPICA BZ 778. Enhanced the function that dumps ACPI table headers. All non-printable characters in the string fields are now replaced with '?' (Signature, OemId, OemTableId, and CompilerId.) ACPI tables with non-printable characters in these fields are occasionally seen in the field. ACPICA BZ 788. Fixed a problem with predefined method repair code where the code that attempts to repair/convert an object of incorrect type is only executed on the first time the predefined method is called. The mechanism that disables warnings on subsequent calls was interfering with the repair mechanism. ACPICA BZ 781. Fixed a possible memory leak in the predefined validation/repair code when a buffer is automatically converted to an expected string object. Removed obsolete 16-bit files from the distribution and from the current git tree head. ACPICA BZ 776. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 83.4K Code, 17.5K Data, 100.9K Total Debug Version: 158.9K Code, 50.0K Data, 208.9K Total Current Release: Non-Debug Version: 84.7K Code, 17.8K Data, 102.5K Total Debug Version: 160.5K Code, 50.6K Data, 211.1K Total 2) iASL Compiler/Disassembler and Tools: ACPI 4.0: iASL and Disassembler - implemented support for the new IPMI operation region keyword. ACPICA BZ 771, 772. Lin Ming. ACPI 4.0: iASL - implemented compile-time validation support for all new predefined names and control methods (31 total). ACPICA BZ 769. ---------------------------------------- 21 May 2009. Summary of changes for version 20090521: 1) ACPI CA Core Subsystem: Disabled the preservation of the SCI enable bit in the PM1 control register. The SCI enable bit (bit 0, SCI_EN) is defined by the ACPI specification to be a "preserved" bit - "OSPM always preserves this bit position", section 4.7.3.2.1. However, some machines fail if this bit is in fact preserved because the bit needs to be explicitly set by the OS as a workaround. No machines fail if the bit is not preserved. Therefore, ACPICA no longer attempts to preserve this bit. Fixed a problem in AcpiRsGetPciRoutingTableLength where an invalid or incorrectly formed _PRT package could cause a fault. Added validation to ensure that each package element is actually a sub-package. Implemented a new interface to install or override a single control method, AcpiInstallMethod. This interface is useful when debugging in order to repair an existing method or to install a missing method without having to override the entire ACPI table. See the ACPICA Programmer Reference for use and examples. Lin Ming, Bob Moore. Fixed several reference count issues with the DdbHandle object that is created from a Load or LoadTable operator. Prevent premature deletion of the object. Also, mark the object as invalid once the table has been unloaded. This is needed because the handle itself may not be deleted after the table unload, depending on whether it has been stored in a named object by the caller. Lin Ming. Fixed a problem with Mutex Sync Levels. Fixed a problem where if multiple mutexes of the same sync level are acquired but then not released in strict opposite order, the internally maintained Current Sync Level becomes confused and can cause subsequent execution errors. ACPICA BZ 471. Changed the allowable release order for ASL mutex objects. The ACPI 4.0 specification has been changed to make the SyncLevel for mutex objects more useful. When releasing a mutex, the SyncLevel of the mutex must now be the same as the current sync level. This makes more sense than the previous rule (SyncLevel less than or equal). This change updates the code to match the specification. Fixed a problem with the local version of the AcpiOsPurgeCache function. The (local) cache must be locked during all cache object deletions. Andrew Baumann. Updated the Load operator to use operation region interfaces. This replaces direct memory mapping with region access calls. Now, all region accesses go through the installed region handler as they should. Simplified and optimized the NsGetNextNode function. Reduced parameter count and reduced code for this frequently used function. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 82.8K Code, 17.5K Data, 100.3K Total Debug Version: 158.0K Code, 49.9K Data, 207.9K Total Current Release: Non-Debug Version: 83.4K Code, 17.5K Data, 100.9K Total Debug Version: 158.9K Code, 50.0K Data, 208.9K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Fixed some issues with DMAR, HEST, MADT tables. Some problems with sub-table disassembly and handling invalid sub-tables. Attempt recovery after an invalid sub-table ID. ---------------------------------------- 22 April 2009. Summary of changes for version 20090422: 1) ACPI CA Core Subsystem: Fixed a compatibility issue with the recently released I/O port protection mechanism. For windows compatibility, 1) On a port protection violation, simply ignore the request and do not return an exception (allow the control method to continue execution.) 2) If only part of the request overlaps a protected port, read/write the individual ports that are not protected. Linux BZ 13036. Lin Ming Enhanced the execution of the ASL/AML BreakPoint operator so that it actually breaks into the AML debugger if the debugger is present. This matches the ACPI-defined behavior. Fixed several possible warnings related to the use of the configurable ACPI_THREAD_ID. This type can now be configured as either an integer or a pointer with no warnings. Also fixes several warnings in printf-like statements for the 64-bit build when the type is configured as a pointer. ACPICA BZ 766, 767. Fixed a number of possible warnings when compiling with gcc 4+ (depending on warning options.) Examples include printf formats, aliasing, unused globals, missing prototypes, missing switch default statements, use of non-ANSI library functions, use of non-ANSI constructs. See generate/unix/Makefile for a list of warning options used with gcc 3 and 4. ACPICA BZ 735. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 82.6K Code, 17.6K Data, 100.2K Total Debug Version: 157.7K Code, 49.9K Data, 207.6K Total Current Release: Non-Debug Version: 82.8K Code, 17.5K Data, 100.3K Total Debug Version: 158.0K Code, 49.9K Data, 207.9K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a generation warning from Bison 2.3 and fixed several warnings on the 64-bit build. iASL: Fixed a problem where the Unix/Linux versions of the compiler could not correctly digest Windows/DOS formatted files (with CR/LF). iASL: Added a new option for "quiet mode" (-va) that produces only the compilation summary, not individual errors and warnings. Useful for large batch compilations. AcpiExec: Implemented a new option (-z) to enable a forced semaphore/mutex timeout that can be used to detect hang conditions during execution of AML code (includes both internal semaphores and AML-defined mutexes and events.) Added new makefiles for the generation of acpica in a generic unix-like environment. These makefiles are intended to generate the acpica tools and utilities from the original acpica git source tree structure. Test Suites: Updated and cleaned up the documentation files. Updated the copyrights to 2009, affecting all source files. Use the new version of iASL with quiet mode. Increased the number of available semaphores in the Windows OSL, allowing the aslts to execute fully on Windows. For the Unix OSL, added an alternate implementation of the semaphore timeout to allow aslts to execute fully on Cygwin. ---------------------------------------- 20 March 2009. Summary of changes for version 20090320: 1) ACPI CA Core Subsystem: Fixed a possible race condition between AcpiWalkNamespace and dynamic table unloads. Added a reader/writer locking mechanism to allow multiple concurrent namespace walks (readers), but block a dynamic table unload until it can gain exclusive write access to the namespace. This fixes a problem where a table unload could (possibly catastrophically) delete the portion of the namespace that is currently being examined by a walk. Adds a new file, utlock.c, that implements the reader/writer lock mechanism. ACPICA BZ 749. Fixed a regression introduced in version 20090220 where a change to the FADT handling could cause the ACPICA subsystem to access non-existent I/O ports. Modified the handling of FADT register and table (FACS/DSDT) addresses. The FADT can contain both 32-bit and 64-bit versions of these addresses. Previously, the 64-bit versions were favored, meaning that if both 32 and 64 versions were valid, but not equal, the 64-bit version was used. This was found to cause some machines to fail. Now, in this case, the 32-bit version is used instead. This now matches the Windows behavior. Implemented a new mechanism to protect certain I/O ports. Provides Microsoft compatibility and protects the standard PC I/O ports from access via AML code. Adds a new file, hwvalid.c Fixed a possible extraneous warning message from the FADT support. The message warns of a 32/64 length mismatch between the legacy and GAS definitions for a register. Removed the obsolete AcpiOsValidateAddress OSL interface. This interface is made obsolete by the port protection mechanism above. It was previously used to validate the entire address range of an operation region, which could be incorrect if the range included illegal ports, but fields within the operation region did not actually access those ports. Validation is now performed on a per-field basis instead of the entire region. Modified the handling of the PM1 Status Register ignored bit (bit 11.) Ignored bits must be "preserved" according to the ACPI spec. Usually, this means a read/modify/write when writing to the register. However, for status registers, writing a one means clear the event. Writing a zero means preserve the event (do not clear.) This behavior is clarified in the ACPI 4.0 spec, and the ACPICA code now simply always writes a zero to the ignored bit. Modified the handling of ignored bits for the PM1 A/B Control Registers. As per the ACPI specification, for the control registers, preserve (read/modify/write) all bits that are defined as either reserved or ignored. Updated the handling of write-only bits in the PM1 A/B Control Registers. When reading the register, zero the write-only bits as per the ACPI spec. ACPICA BZ 443. Lin Ming. Removed "Linux" from the list of supported _OSI strings. Linux no longer wants to reply true to this request. The Windows strings are the only paths through the AML that are tested and known to work properly. Previous Release: Non-Debug Version: 82.0K Code, 17.5K Data, 99.5K Total Debug Version: 156.9K Code, 49.8K Data, 206.7K Total Current Release: Non-Debug Version: 82.6K Code, 17.6K Data, 100.2K Total Debug Version: 157.7K Code, 49.9K Data, 207.6K Total 2) iASL Compiler/Disassembler and Tools: Acpiexec: Split the large aeexec.c file into two new files, aehandlers.c and aetables.c ---------------------------------------- 20 February 2009. Summary of changes for version 20090220: 1) ACPI CA Core Subsystem: Optimized the ACPI register locking. Removed locking for reads from the ACPI bit registers in PM1 Status, Enable, Control, and PM2 Control. The lock is not required when reading the single-bit registers. The AcpiGetRegisterUnlocked function is no longer needed and has been removed. This will improve performance for reads on these registers. ACPICA BZ 760. Fixed the parameter validation for AcpiRead/Write. Now return AE_BAD_PARAMETER if the input register pointer is null, and AE_BAD_ADDRESS if the register has an address of zero. Previously, these cases simply returned AE_OK. For optional registers such as PM1B status/enable/control, the caller should check for a valid register address before calling. ACPICA BZ 748. Renamed the external ACPI bit register access functions. Renamed AcpiGetRegister and AcpiSetRegister to clarify the purpose of these functions. The new names are AcpiReadBitRegister and AcpiWriteBitRegister. Also, restructured the code for these functions by simplifying the code path and condensing duplicate code to reduce code size. Added new functions to transparently handle the possibly split PM1 A/B registers. AcpiHwReadMultiple and AcpiHwWriteMultiple. These two functions now handle the split registers for PM1 Status, Enable, and Control. ACPICA BZ 746. Added a function to handle the PM1 control registers, AcpiHwWritePm1Control. This function writes both of the PM1 control registers (A/B). These registers are different than the PM1 A/B status and enable registers in that different values can be written to the A/B registers. Most notably, the SLP_TYP bits can be different, as per the values returned from the _Sx predefined methods. Removed an extra register write within AcpiHwClearAcpiStatus. This function was writing an optional PM1B status register twice. The existing call to the low-level AcpiHwRegisterWrite automatically handles a possibly split PM1 A/B register. ACPICA BZ 751. Split out the PM1 Status registers from the FADT. Added new globals for these registers (A/B), similar to the way the PM1 Enable registers are handled. Instead of overloading the FADT Event Register blocks. This makes the code clearer and less prone to error. Fixed the warning message for when the platform contains too many ACPI tables for the default size of the global root table data structure. The calculation for the truncation value was incorrect. Removed the ACPI_GET_OBJECT_TYPE macro. Removed all instances of this obsolete macro, since it is now a simple reference to ->common.type. There were about 150 invocations of the macro across 41 files. ACPICA BZ 755. Removed the redundant ACPI_BITREG_SLEEP_TYPE_B. This type is the same as TYPE_A. Removed this and all related instances. Renamed SLEEP_TYPE_A to simply SLEEP_TYPE. ACPICA BZ 754. Conditionally compile the AcpiSetFirmwareWakingVector64 function. This function is only needed on 64-bit host operating systems and is thus not included for 32-bit hosts. Debug output: print the input and result for invocations of the _OSI reserved control method via the ACPI_LV_INFO debug level. Also, reduced some of the verbosity of this debug level. Len Brown. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 82.3K Code, 17.5K Data, 99.8K Total Debug Version: 157.3K Code, 49.8K Data, 207.1K Total Current Release: Non-Debug Version: 82.0K Code, 17.5K Data, 99.5K Total Debug Version: 156.9K Code, 49.8K Data, 206.7K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Decode the FADT PM_Profile field. Emit ascii names for the various legal performance profiles. ---------------------------------------- 23 January 2009. Summary of changes for version 20090123: 1) ACPI CA Core Subsystem: Added the 2009 copyright to all module headers and signons. This affects virtually every file in the ACPICA core subsystem, the iASL compiler, and the tools/utilities. Implemented a change to allow the host to override any ACPI table, including dynamically loaded tables. Previously, only the DSDT could be replaced by the host. With this change, the AcpiOsTableOverride interface is called for each table found in the RSDT/XSDT during ACPICA initialization, and also whenever a table is dynamically loaded via the AML Load operator. Updated FADT flag definitions, especially the Boot Architecture flags. Debugger: For the Find command, automatically pad the input ACPI name with underscores if the name is shorter than 4 characters. This enables a match with the actual namespace entry which is itself padded with underscores. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 82.3K Code, 17.4K Data, 99.7K Total Debug Version: 157.1K Code, 49.7K Data, 206.8K Total Current Release: Non-Debug Version: 82.3K Code, 17.5K Data, 99.8K Total Debug Version: 157.3K Code, 49.8K Data, 207.1K Total 2) iASL Compiler/Disassembler and Tools: Fix build error under Bison-2.4. Dissasembler: Enhanced FADT support. Added decoding of the Boot Architecture flags. Now decode all flags, regardless of the FADT version. Flag output includes the FADT version which first defined each flag. The iASL -g option now dumps the RSDT to a file (in addition to the FADT and DSDT). Windows only. ---------------------------------------- 04 December 2008. Summary of changes for version 20081204: 1) ACPI CA Core Subsystem: The ACPICA Programmer Reference has been completely updated and revamped for this release. This includes updates to the external interfaces, OSL interfaces, the overview sections, and the debugger reference. Several new ACPICA interfaces have been implemented and documented in the programmer reference: AcpiReset - Writes the reset value to the FADT-defined reset register. AcpiDisableAllGpes - Disable all available GPEs. AcpiEnableAllRuntimeGpes - Enable all available runtime GPEs. AcpiGetGpeDevice - Get the GPE block device associated with a GPE. AcpiGbl_CurrentGpeCount - Tracks the current number of available GPEs. AcpiRead - Low-level read ACPI register (was HwLowLevelRead.) AcpiWrite - Low-level write ACPI register (was HwLowLevelWrite.) Most of the public ACPI hardware-related interfaces have been moved to a new file, components/hardware/hwxface.c Enhanced the FADT parsing and low-level ACPI register access: The ACPI register lengths within the FADT are now used, and the low level ACPI register access no longer hardcodes the ACPI register lengths. Given that there may be some risk in actually trusting the FADT register lengths, a run- time option was added to fall back to the default hardcoded lengths if the FADT proves to contain incorrect values - UseDefaultRegisterWidths. This option is set to true for now, and a warning is issued if a suspicious FADT register length is overridden with the default value. Fixed a reference count issue in NsRepairObject. This problem was introduced in version 20081031 as part of a fix to repair Buffer objects within Packages. Lin Ming. Added semaphore support to the Linux/Unix application OS-services layer (OSL). ACPICA BZ 448. Lin Ming. Added the ACPI_MUTEX_TYPE configuration option to select whether mutexes will be implemented in the OSL, or will binary semaphores be used instead. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 81.7K Code, 17.3K Data, 99.0K Total Debug Version: 156.4K Code, 49.4K Data, 205.8K Total Current Release: Non-Debug Version: 82.3K Code, 17.4K Data, 99.7K Total Debug Version: 157.1K Code, 49.7K Data, 206.8K Total 2) iASL Compiler/Disassembler and Tools: iASL: Completed the '-e' option to include additional ACPI tables in order to aid with disassembly and External statement generation. ACPICA BZ 742. Lin Ming. iASL: Removed the "named object in while loop" error. The compiler cannot determine how many times a loop will execute. ACPICA BZ 730. Disassembler: Implemented support for FADT revision 2 (MS extension). ACPICA BZ 743. Disassembler: Updates for several ACPI data tables (HEST, EINJ, and MCFG). ---------------------------------------- 31 October 2008. Summary of changes for version 20081031: 1) ACPI CA Core Subsystem: Restructured the ACPICA header files into public/private. acpi.h now includes only the "public" acpica headers. All other acpica headers are "private" and should not be included by acpica users. One new file, accommon.h is used to include the commonly used private headers for acpica code generation. Future plans include moving all private headers to a new subdirectory. Implemented an automatic Buffer->String return value conversion for predefined ACPI methods. For these methods (such as _BIF), added automatic conversion for return objects that are required to be a String, but a Buffer was found instead. This can happen when reading string battery data from an operation region, because it used to be difficult to convert the data from buffer to string from within the ASL. Ensures that the host OS is provided with a valid null-terminated string. Linux BZ 11822. Updated the FACS waking vector interfaces. Split AcpiSetFirmwareWakingVector into two: one for the 32-bit vector, another for the 64-bit vector. This is required because the host OS must setup the wake much differently for each vector (real vs. protected mode, etc.) and the interface itself should not be deciding which vector to use. Also, eliminated the GetFirmwareWakingVector interface, as it served no purpose (only the firmware reads the vector, OS only writes the vector.) ACPICA BZ 731. Implemented a mechanism to escape infinite AML While() loops. Added a loop counter to force exit from AML While loops if the count becomes too large. This can occur in poorly written AML when the hardware does not respond within a while loop and the loop does not implement a timeout. The maximum loop count is configurable. A new exception code is returned when a loop is broken, AE_AML_INFINITE_LOOP. Alexey Starikovskiy, Bob Moore. Optimized the execution of AML While loops. Previously, a control state object was allocated and freed for each execution of the loop. The optimization is to simply reuse the control state for each iteration. This speeds up the raw loop execution time by about 5%. Enhanced the implicit return mechanism. For Windows compatibility, return an implicit integer of value zero for methods that contain no executable code. Such methods are seen in the field as stubs (presumably), and can cause drivers to fail if they expect a return value. Lin Ming. Allow multiple backslashes as root prefixes in namepaths. In a fully qualified namepath, allow multiple backslash prefixes. This can happen (and is seen in the field) because of the use of a double-backslash in strings (since backslash is the escape character) causing confusion. ACPICA BZ 739 Lin Ming. Emit a warning if two different FACS or DSDT tables are discovered in the FADT. Checks if there are two valid but different addresses for the FACS and DSDT within the FADT (mismatch between the 32-bit and 64-bit fields.) Consolidated the method argument count validation code. Merged the code that validates control method argument counts into the predefined validation module. Eliminates possible multiple warnings for incorrect argument counts. Implemented ACPICA example code. Includes code for ACPICA initialization, handler installation, and calling a control method. Available at source/tools/examples. Added a global pointer for FACS table to simplify internal FACS access. Use the global pointer instead of using AcpiGetTableByIndex for each FACS access. This simplifies the code for the Global Lock and the Firmware Waking Vector(s). Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 81.2K Code, 17.0K Data, 98.2K Total Debug Version: 155.8K Code, 49.1K Data, 204.9K Total Current Release: Non-Debug Version: 81.7K Code, 17.3K Data, 99.0K Total Debug Version: 156.4K Code, 49.4K Data, 205.8K Total 2) iASL Compiler/Disassembler and Tools: iASL: Improved disassembly of external method calls. Added the -e option to allow the inclusion of additional ACPI tables to help with the disassembly of method invocations and the generation of external declarations during the disassembly. Certain external method invocations cannot be disassembled properly without the actual declaration of the method. Use the -e option to include the table where the external method(s) are actually declared. Most useful for disassembling SSDTs that make method calls back to the master DSDT. Lin Ming. Example: To disassemble an SSDT with calls to DSDT: iasl -d -e dsdt.aml ssdt1.aml iASL: Fix to allow references to aliases within ASL namepaths. Fixes a problem where the use of an alias within a namepath would result in a not found error or cause the compiler to fault. Also now allows forward references from the Alias operator itself. ACPICA BZ 738. ---------------------------------------- 26 September 2008. Summary of changes for version 20080926: 1) ACPI CA Core Subsystem: Designed and implemented a mechanism to validate predefined ACPI methods and objects. This code validates the predefined ACPI objects (objects whose names start with underscore) that appear in the namespace, at the time they are evaluated. The argument count and the type of the returned object are validated against the ACPI specification. The purpose of this validation is to detect problems with the BIOS-implemented predefined ACPI objects before the results are returned to the ACPI-related drivers. Future enhancements may include actual repair of incorrect return objects where possible. Two new files are nspredef.c and acpredef.h. Fixed a fault in the AML parser if a memory allocation fails during the Op completion routine AcpiPsCompleteThisOp. Lin Ming. ACPICA BZ 492. Fixed an issue with implicit return compatibility. This change improves the implicit return mechanism to be more compatible with the MS interpreter. Lin Ming, ACPICA BZ 349. Implemented support for zero-length buffer-to-string conversions. Allow zero length strings during interpreter buffer-to-string conversions. For example, during the ToDecimalString and ToHexString operators, as well as implicit conversions. Fiodor Suietov, ACPICA BZ 585. Fixed two possible memory leaks in the error exit paths of AcpiUtUpdateObjectReference and AcpiUtWalkPackageTree. These functions are similar in that they use a stack of state objects in order to eliminate recursion. The stack must be fully unwound and deallocated if an error occurs. Lin Ming. ACPICA BZ 383. Removed the unused ACPI_BITREG_WAKE_ENABLE definition and entry in the global ACPI register table. This bit does not exist and is unused. Lin Ming, Bob Moore ACPICA BZ 442. Removed the obsolete version number in module headers. Removed the "$Revision" number that appeared in each module header. This version number was useful under SourceSafe and CVS, but has no meaning under git. It is not only incorrect, it could also be misleading. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.7K Code, 16.4K Data, 96.1K Total Debug Version: 153.7K Code, 48.2K Data, 201.9K Total Current Release: Non-Debug Version: 81.2K Code, 17.0K Data, 98.2K Total Debug Version: 155.8K Code, 49.1K Data, 204.9K Total ---------------------------------------- 29 August 2008. Summary of changes for version 20080829: 1) ACPI CA Core Subsystem: Completed a major cleanup of the internal ACPI_OPERAND_OBJECT of type Reference. Changes include the elimination of cheating on the Object field for the DdbHandle subtype, addition of a reference class field to differentiate the various reference types (instead of an AML opcode), and the cleanup of debug output for this object. Lin Ming, Bob Moore. BZ 723 Reduce an error to a warning for an incorrect method argument count. Previously aborted with an error if too few arguments were passed to a control method via the external ACPICA interface. Now issue a warning instead and continue. Handles the case where the method inadvertently declares too many arguments, but does not actually use the extra ones. Applies mainly to the predefined methods. Lin Ming. Linux BZ 11032. Disallow the evaluation of named object types with no intrinsic value. Return AE_TYPE for objects that have no value and therefore evaluation is undefined: Device, Event, Mutex, Region, Thermal, and Scope. Previously, evaluation of these types were allowed, but an exception would be generated at some point during the evaluation. Now, the error is generated up front. Fixed a possible memory leak in the AcpiNsGetExternalPathname function (nsnames.c). Fixes a leak in the error exit path. Removed the obsolete debug levels ACPI_DB_WARN and ACPI_DB_ERROR. These debug levels were made obsolete by the ACPI_WARNING, ACPI_ERROR, and ACPI_EXCEPTION interfaces. Also added ACPI_DB_EVENTS to correspond with the existing ACPI_LV_EVENTS. Removed obsolete and/or unused exception codes from the acexcep.h header. There is the possibility that certain device drivers may be affected if they use any of these exceptions. The ACPICA documentation has been added to the public git source tree, under acpica/documents. Included are the ACPICA programmer reference, the iASL compiler reference, and the changes.txt release logfile. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.7K Code, 16.4K Data, 96.1K Total Debug Version: 153.9K Code, 48.4K Data, 202.3K Total Current Release: Non-Debug Version: 79.7K Code, 16.4K Data, 96.1K Total Debug Version: 153.7K Code, 48.2K Data, 201.9K Total 2) iASL Compiler/Disassembler and Tools: Allow multiple argument counts for the predefined _SCP method. ACPI 3.0 defines _SCP with 3 arguments. Previous versions defined it with only 1 argument. iASL now allows both definitions. iASL/disassembler: avoid infinite loop on bad ACPI tables. Check for zero- length subtables when disassembling ACPI tables. Also fixed a couple of errors where a full 16-bit table type field was not extracted from the input properly. acpisrc: Improve comment counting mechanism for generating source code statistics. Count first and last lines of multi-line comments as whitespace, not comment lines. Handle Linux legal header in addition to standard acpica header. ---------------------------------------- 29 July 2008. Summary of changes for version 20080729: 1) ACPI CA Core Subsystem: Fix a possible deadlock in the GPE dispatch. Remove call to AcpiHwDisableAllGpes during wake in AcpiEvGpeDispatch. This call will attempt to acquire the GPE lock but can deadlock since the GPE lock is already held at dispatch time. This code was introduced in version 20060831 as a response to Linux BZ 6881 and has since been removed from Linux. Add a function to dereference returned reference objects. Examines the return object from a call to AcpiEvaluateObject. Any Index or RefOf references are automatically dereferenced in an attempt to return something useful (these reference types cannot be converted into an external ACPI_OBJECT.) Provides MS compatibility. Lin Ming, Bob Moore. Linux BZ 11105 x2APIC support: changes for MADT and SRAT ACPI tables. There are 2 new subtables for the MADT and one new subtable for the SRAT. Includes disassembler and AcpiSrc support. Data from the Intel 64 Architecture x2APIC Specification, June 2008. Additional error checking for pathname utilities. Add error check after all calls to AcpiNsGetPathnameLength. Add status return from AcpiNsBuildExternalPath and check after all calls. Add parameter validation to AcpiUtInitializeBuffer. Reported by and initial patch by Ingo Molnar. Return status from the global init function AcpiUtGlobalInitialize. This is used by both the kernel subsystem and the utilities such as iASL compiler. The function could possibly fail when the caches are initialized. Yang Yi. Add a function to decode reference object types to strings. Created for improved error messages. Improve object conversion error messages. Better error messages during object conversion from internal to the external ACPI_OBJECT. Used for external calls to AcpiEvaluateObject. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.6K Code, 16.2K Data, 95.8K Total Debug Version: 153.5K Code, 48.2K Data, 201.7K Total Current Release: Non-Debug Version: 79.7K Code, 16.4K Data, 96.1K Total Debug Version: 153.9K Code, 48.4K Data, 202.3K Total 2) iASL Compiler/Disassembler and Tools: Debugger: fix a possible hang when evaluating non-methods. Fixes a problem introduced in version 20080701. If the object being evaluated (via execute command) is not a method, the debugger can hang while trying to obtain non- existent parameters. iASL: relax error for using reserved "_T_x" identifiers. These names can appear in a disassembled ASL file if they were emitted by the original compiler. Instead of issuing an error or warning and forcing the user to manually change these names, issue a remark instead. iASL: error if named object created in while loop. Emit an error if any named object is created within a While loop. If allowed, this code will generate a run-time error on the second iteration of the loop when an attempt is made to create the same named object twice. ACPICA bugzilla 730. iASL: Support absolute pathnames for include files. Add support for absolute pathnames within the Include operator. previously, only relative pathnames were supported. iASL: Enforce minimum 1 interrupt in interrupt macro and Resource Descriptor. The ACPI spec requires one interrupt minimum. BZ 423 iASL: Handle a missing ResourceSource arg, with a present SourceIndex. Handles the case for the Interrupt Resource Descriptor where the ResourceSource argument is omitted but ResourceSourceIndex is present. Now leave room for the Index. BZ 426 iASL: Prevent error message if CondRefOf target does not exist. Fixes cases where an error message is emitted if the target does not exist. BZ 516 iASL: Fix broken -g option (get Windows ACPI tables). Fixes the -g option (get ACPI tables on Windows). This was apparently broken in version 20070919. AcpiXtract: Handle EOF while extracting data. Correctly handle the case where the EOF happens immediately after the last table in the input file. Print completion message. Previously, no message was displayed in this case. ---------------------------------------- 01 July 2008. Summary of changes for version 20080701: 0) Git source tree / acpica.org Fixed a problem where a git-clone from http would not transfer the entire source tree. 1) ACPI CA Core Subsystem: Implemented a "careful" GPE disable in AcpiEvDisableGpe, only modify one enable bit. Now performs a read-change-write of the enable register instead of simply writing out the cached enable mask. This will prevent inadvertent enabling of GPEs if a rogue GPE is received during initialization (before GPE handlers are installed.) Implemented a copy for dynamically loaded tables. Previously, dynamically loaded tables were simply mapped - but on some machines this memory is corrupted after suspend. Now copy the table to a local buffer. For the OpRegion case, added checksum verify. Use the table length from the table header, not the region length. For the Buffer case, use the table length also. Dennis Noordsij, Bob Moore. BZ 10734 Fixed a problem where the same ACPI table could not be dynamically loaded and unloaded more than once. Without this change, a table cannot be loaded again once it has been loaded/unloaded one time. The current mechanism does not unregister a table upon an unload. During a load, if the same table is found, this no longer returns an exception. BZ 722 Fixed a problem where the wrong descriptor length was calculated for the EndTag descriptor in 64-bit mode. The "minimal" descriptors such as EndTag are calculated as 12 bytes long, but the actual length in the internal descriptor is 16 because of the round-up to 8 on the 64-bit build. Reported by Linn Crosetto. BZ 728 Fixed a possible memory leak in the Unload operator. The DdbHandle returned by Load() did not have its reference count decremented during unload, leading to a memory leak. Lin Ming. BZ 727 Fixed a possible memory leak when deleting thermal/processor objects. Any associated notify handlers (and objects) were not being deleted. Fiodor Suietov. BZ 506 Fixed the ordering of the ASCII names in the global mutex table to match the actual mutex IDs. Used by AcpiUtGetMutexName, a function used for debug only. Vegard Nossum. BZ 726 Enhanced the AcpiGetObjectInfo interface to return the number of required arguments if the object is a control method. Added this call to the debugger so the proper number of default arguments are passed to a method. This prevents a warning when executing methods from AcpiExec. Added a check for an invalid handle in AcpiGetObjectInfo. Return AE_BAD_PARAMETER if input handle is invalid. BZ 474 Fixed an extraneous warning from exconfig.c on the 64-bit build. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.3K Code, 16.2K Data, 95.5K Total Debug Version: 153.0K Code, 48.2K Data, 201.2K Total Current Release: Non-Debug Version: 79.6K Code, 16.2K Data, 95.8K Total Debug Version: 153.5K Code, 48.2K Data, 201.7K Total 2) iASL Compiler/Disassembler and Tools: iASL: Added two missing ACPI reserved names. Added _MTP and _ASZ, both resource descriptor names. iASL: Detect invalid ASCII characters in input (windows version). Removed the "-CF" flag from the flex compile, enables correct detection of non-ASCII characters in the input. BZ 441 iASL: Eliminate warning when result of LoadTable is not used. Eliminate the "result of operation not used" warning when the DDB handle returned from LoadTable is not used. The warning is not needed. BZ 590 AcpiExec: Add support for dynamic table load/unload. Now calls _CFG method to pass address of table to the AML. Added option to disable OpRegion simulation to allow creation of an OpRegion with a real address that was passed to _CFG. All of this allows testing of the Load and Unload operators from AcpiExec. Debugger: update tables command for unloaded tables. Handle unloaded tables and use the standard table header output routine. ---------------------------------------- 09 June 2008. Summary of changes for version 20080609: 1) ACPI CA Core Subsystem: Implemented a workaround for reversed _PRT entries. A significant number of BIOSs erroneously reverse the _PRT SourceName and the SourceIndex. This change dynamically detects and repairs this problem. Provides compatibility with MS ACPI. BZ 6859 Simplified the internal ACPI hardware interfaces to eliminate the locking flag parameter from Register Read/Write. Added a new external interface, AcpiGetRegisterUnlocked. Fixed a problem where the invocation of a GPE control method could hang. This was a regression introduced in 20080514. The new method argument count validation mechanism can enter an infinite loop when a GPE method is dispatched. Problem fixed by removing the obsolete code that passed GPE block information to the notify handler via the control method parameter pointer. Fixed a problem where the _SST execution status was incorrectly returned to the caller of AcpiEnterSleepStatePrep. This was a regression introduced in 20080514. _SST is optional and a NOT_FOUND exception should never be returned. BZ 716 Fixed a problem where a deleted object could be accessed from within the AML parser. This was a regression introduced in version 20080123 as a fix for the Unload operator. Lin Ming. BZ 10669 Cleaned up the debug operand dump mechanism. Eliminated unnecessary operands and eliminated the use of a negative index in a loop. Operands are now displayed in the correct order, not backwards. This also fixes a regression introduced in 20080514 on 64-bit systems where the elimination of ACPI_NATIVE_UINT caused the negative index to go large and positive. BZ 715 Fixed a possible memory leak in EvPciConfigRegionSetup where the error exit path did not delete a locally allocated structure. Updated definitions for the DMAR and SRAT tables to synchronize with the current specifications. Includes disassembler support. Fixed a problem in the mutex debug code (in utmutex.c) where an incorrect loop termination value was used. Loop terminated on iteration early, missing one mutex. Linn Crosetto Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.5K Code, 16.2K Data, 95.7K Total Debug Version: 153.3K Code, 48.3K Data, 201.6K Total Current Release: Non-Debug Version: 79.3K Code, 16.2K Data, 95.5K Total Debug Version: 153.0K Code, 48.2K Data, 201.2K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Implemented support for EisaId() within _CID objects. Now disassemble integer _CID objects back to EisaId invocations, including multiple integers within _CID packages. Includes single-step support for debugger also. Disassembler: Added support for DMAR and SRAT table definition changes. ---------------------------------------- 14 May 2008. Summary of changes for version 20080514: 1) ACPI CA Core Subsystem: Fixed a problem where GPEs were enabled too early during the ACPICA initialization. This could lead to "handler not installed" errors on some machines. Moved GPE enable until after _REG/_STA/_INI methods are run. This ensures that all operation regions and devices throughout the namespace have been initialized before GPEs are enabled. Alexey Starikovskiy, BZ 9916. Implemented a change to the enter sleep code. Moved execution of the _GTS method to just before setting sleep enable bit. The execution was moved from AcpiEnterSleepStatePrep to AcpiEnterSleepState. _GTS is now executed immediately before the SLP_EN bit is set, as per the ACPI specification. Luming Yu, BZ 1653. Implemented a fix to disable unknown GPEs (2nd version). Now always disable the GPE, even if ACPICA thinks that that it is already disabled. It is possible that the AML or some other code has enabled the GPE unbeknownst to the ACPICA code. Fixed a problem with the Field operator where zero-length fields would return an AE_AML_NO_OPERAND exception during table load. Fix enables zero-length ASL field declarations in Field(), BankField(), and IndexField(). BZ 10606. Implemented a fix for the Load operator, now load the table at the namespace root. This reverts a change introduced in version 20071019. The table is now loaded at the namespace root even though this goes against the ACPI specification. This provides compatibility with other ACPI implementations. The ACPI specification will be updated to reflect this in ACPI 4.0. Lin Ming. Fixed a problem where ACPICA would not Load() tables with unusual signatures. Now ignore ACPI table signature for Load() operator. Only "SSDT" is acceptable to the ACPI spec, but tables are seen with OEMx and null sigs. Therefore, signature validation is worthless. Apparently MS ACPI accepts such signatures, ACPICA must be compatible. BZ 10454. Fixed a possible negative array index in AcpiUtValidateException. Added NULL fields to the exception string arrays to eliminate a -1 subtraction on the SubStatus field. Updated the debug tracking macros to reduce overall code and data size. Changed ACPI_MODULE_NAME and ACPI_FUNCTION_NAME to use arrays of strings instead of pointers to static strings. Jan Beulich and Bob Moore. Implemented argument count checking in control method invocation via AcpiEvaluateObject. Now emit an error if too few arguments, warning if too many. This applies only to extern programmatic control method execution, not method-to-method calls within the AML. Lin Ming. Eliminated the ACPI_NATIVE_UINT type across all ACPICA code. This type is no longer needed, especially with the removal of 16-bit support. It was replaced mostly with UINT32, but also ACPI_SIZE where a type that changes 32/64 bit on 32/64-bit platforms is required. Added the C const qualifier for appropriate string constants -- mostly MODULE_NAME and printf format strings. Jan Beulich. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.0K Code, 17.4K Data, 97.4K Total Debug Version: 159.4K Code, 64.4K Data, 223.8K Total Current Release: Non-Debug Version: 79.5K Code, 16.2K Data, 95.7K Total Debug Version: 153.3K Code, 48.3K Data, 201.6K Total 2) iASL Compiler/Disassembler and Tools: Implemented ACPI table revision ID validation in the disassembler. Zero is always invalid. For DSDTs, the ID controls the interpreter integer width. 1 means 32-bit and this is unusual. 2 or greater is 64-bit. ---------------------------------------- 21 March 2008. Summary of changes for version 20080321: 1) ACPI CA Core Subsystem: Implemented an additional change to the GPE support in order to suppress spurious or stray GPEs. The AcpiEvDisableGpe function will now permanently disable incoming GPEs that are neither enabled nor disabled -- meaning that the GPE is unknown to the system. This should prevent future interrupt floods from that GPE. BZ 6217 (Zhang Rui) Fixed a problem where NULL package elements were not returned to the AcpiEvaluateObject interface correctly. The element was simply ignored instead of returning a NULL ACPI_OBJECT package element, potentially causing a buffer overflow and/or confusing the caller who expected a fixed number of elements. BZ 10132 (Lin Ming, Bob Moore) Fixed a problem with the CreateField, CreateXXXField (Bit, Byte, Word, Dword, Qword), Field, BankField, and IndexField operators when invoked from inside an executing control method. In this case, these operators created namespace nodes that were incorrectly left marked as permanent nodes instead of temporary nodes. This could cause a problem if there is race condition between an exiting control method and a running namespace walk. (Reported by Linn Crosetto) Fixed a problem where the CreateField and CreateXXXField operators would incorrectly allow duplicate names (the name of the field) with no exception generated. Implemented several changes for Notify handling. Added support for new Notify values (ACPI 2.0+) and improved the Notify debug output. Notify on PowerResource objects is no longer allowed, as per the ACPI specification. (Bob Moore, Zhang Rui) All Reference Objects returned via the AcpiEvaluateObject interface are now marked as type "REFERENCE" instead of "ANY". The type ANY is now reserved for NULL objects - either NULL package elements or unresolved named references. Fixed a problem where an extraneous debug message was produced for package objects (when debugging enabled). The message "Package List length larger than NumElements count" is now produced in the correct case, and is now an error message rather than a debug message. Added a debug message for the opposite case, where NumElements is larger than the Package List (the package will be padded out with NULL elements as per the ACPI spec.) Implemented several improvements for the output of the ASL "Debug" object to clarify and keep all data for a given object on one output line. Fixed two size calculation issues with the variable-length Start Dependent resource descriptor. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.7K Code, 17.3K Data, 97.0K Total Debug Version: 158.9K Code, 64.0K Data, 222.9K Total Current Release: Non-Debug Version: 80.0K Code, 17.4K Data, 97.4K Total Debug Version: 159.4K Code, 64.4K Data, 223.8K Total 2) iASL Compiler/Disassembler and Tools: Fixed a problem with the use of the Switch operator where execution of the containing method by multiple concurrent threads could cause an AE_ALREADY_EXISTS exception. This is caused by the fact that there is no actual Switch opcode, it must be simulated with local named temporary variables and if/else pairs. The solution chosen was to mark any method that uses Switch as Serialized, thus preventing multiple thread entries. BZ 469. ---------------------------------------- 13 February 2008. Summary of changes for version 20080213: 1) ACPI CA Core Subsystem: Implemented another MS compatibility design change for GPE/Notify handling. GPEs are now cleared/enabled asynchronously to allow all pending notifies to complete first. It is expected that the OSL will queue the enable request behind all pending notify requests (may require changes to the local host OSL in AcpiOsExecute). Alexey Starikovskiy. Fixed a problem where buffer and package objects passed as arguments to a control method via the external AcpiEvaluateObject interface could cause an AE_AML_INTERNAL exception depending on the order and type of operators executed by the target control method. Fixed a problem where resource descriptor size optimization could cause a problem when a _CRS resource template is passed to a _SRS method. The _SRS resource template must use the same descriptors (with the same size) as returned from _CRS. This change affects the following resource descriptors: IRQ / IRQNoFlags and StartDependendentFn / StartDependentFnNoPri. (BZ 9487) Fixed a problem where a CopyObject to RegionField, BankField, and IndexField objects did not perform an implicit conversion as it should. These types must retain their initial type permanently as per the ACPI specification. However, a CopyObject to all other object types should not perform an implicit conversion, as per the ACPI specification. (Lin Ming, Bob Moore) BZ 388 Fixed a problem with the AcpiGetDevices interface where the mechanism to match device CIDs did not examine the entire list of available CIDs, but instead aborted on the first non-matching CID. Andrew Patterson. Fixed a regression introduced in version 20071114. The ACPI_HIDWORD macro was inadvertently changed to return a 16-bit value instead of a 32-bit value, truncating the upper dword of a 64-bit value. This macro is only used to display debug output, so no incorrect calculations were made. Also, reimplemented the macro so that a 64-bit shift is not performed by inefficient compilers. Added missing va_end statements that should correspond with each va_start statement. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.5K Code, 17.2K Data, 96.7K Total Debug Version: 159.0K Code, 63.8K Data, 222.8K Total Current Release: Non-Debug Version: 79.7K Code, 17.3K Data, 97.0K Total Debug Version: 158.9K Code, 64.0K Data, 222.9K Total 2) iASL Compiler/Disassembler and Tools: Implemented full disassembler support for the following new ACPI tables: BERT, EINJ, and ERST. Implemented partial disassembler support for the complicated HEST table. These tables support the Windows Hardware Error Architecture (WHEA). ---------------------------------------- 23 January 2008. Summary of changes for version 20080123: 1) ACPI CA Core Subsystem: Added the 2008 copyright to all module headers and signons. This affects virtually every file in the ACPICA core subsystem, the iASL compiler, and the tools/utilities. Fixed a problem with the SizeOf operator when used with Package and Buffer objects. These objects have deferred execution for some arguments, and the execution is now completed before the SizeOf is executed. This problem caused unexpected AE_PACKAGE_LIMIT errors on some systems (Lin Ming, Bob Moore) BZ 9558 Implemented an enhancement to the interpreter "slack mode". In the absence of an explicit return or an implicitly returned object from the last executed opcode, a control method will now implicitly return an integer of value 0 for Microsoft compatibility. (Lin Ming) BZ 392 Fixed a problem with the Load operator where an exception was not returned in the case where the table is already loaded. (Lin Ming) BZ 463 Implemented support for the use of DDBHandles as an Indexed Reference, as per the ACPI spec. (Lin Ming) BZ 486 Implemented support for UserTerm (Method invocation) for the Unload operator as per the ACPI spec. (Lin Ming) BZ 580 Fixed a problem with the LoadTable operator where the OemId and OemTableId input strings could cause unexpected failures if they were shorter than the maximum lengths allowed. (Lin Ming, Bob Moore) BZ 576 Implemented support for UserTerm (Method invocation) for the Unload operator as per the ACPI spec. (Lin Ming) BZ 580 Implemented header file support for new ACPI tables - BERT, ERST, EINJ, HEST, IBFT, UEFI, WDAT. Disassembler support is forthcoming. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.3K Code, 17.2K Data, 96.5K Total Debug Version: 158.6K Code, 63.8K Data, 222.4K Total Current Release: Non-Debug Version: 79.5K Code, 17.2K Data, 96.7K Total Debug Version: 159.0K Code, 63.8K Data, 222.8K Total 2) iASL Compiler/Disassembler and Tools: Implemented support in the disassembler for checksum validation on incoming binary DSDTs and SSDTs. If incorrect, a message is displayed within the table header dump at the start of the disassembly. Implemented additional debugging information in the namespace listing file created during compilation. In addition to the namespace hierarchy, the full pathname to each namespace object is displayed. Fixed a problem with the disassembler where invalid ACPI tables could cause faults or infinite loops. Fixed an unexpected parse error when using the optional "parameter types" list in a control method declaration. (Lin Ming) BZ 397 Fixed a problem where two External declarations with the same name did not cause an error (Lin Ming) BZ 509 Implemented support for full TermArgs (adding Argx, Localx and method invocation) for the ParameterData parameter to the LoadTable operator. (Lin Ming) BZ 583,587 ---------------------------------------- 19 December 2007. Summary of changes for version 20071219: 1) ACPI CA Core Subsystem: Implemented full support for deferred execution for the TermArg string arguments for DataTableRegion. This enables forward references and full operand resolution for the three string arguments. Similar to OperationRegion deferred argument execution.) Lin Ming. BZ 430 Implemented full argument resolution support for the BankValue argument to BankField. Previously, only constants were supported, now any TermArg may be used. Lin Ming BZ 387, 393 Fixed a problem with AcpiGetDevices where the search of a branch of the device tree could be terminated prematurely. In accordance with the ACPI specification, the search down the current branch is terminated if a device is both not present and not functional (instead of just not present.) Yakui Zhao. Fixed a problem where "unknown" GPEs could be allowed to fire repeatedly if the underlying AML code changed the GPE enable registers. Now, any unknown incoming GPE (no _Lxx/_Exx method and not the EC GPE) is immediately disabled instead of simply ignored. Rui Zhang. Fixed a problem with Index Fields where the Index register was incorrectly limited to a maximum of 32 bits. Now any size may be used. Fixed a couple memory leaks associated with "implicit return" objects when the AML Interpreter slack mode is enabled. Lin Ming BZ 349 Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.0K Code, 17.2K Data, 96.2K Total Debug Version: 157.9K Code, 63.6K Data, 221.5K Total Current Release: Non-Debug Version: 79.3K Code, 17.2K Data, 96.5K Total Debug Version: 158.6K Code, 63.8K Data, 222.4K Total ---------------------------------------- 14 November 2007. Summary of changes for version 20071114: 1) ACPI CA Core Subsystem: Implemented event counters for each of the Fixed Events, the ACPI SCI (interrupt) itself, and control methods executed. Named AcpiFixedEventCount[], AcpiSciCount, and AcpiMethodCount respectively. These should be useful for debugging and statistics. Implemented a new external interface, AcpiGetStatistics, to retrieve the contents of the various event counters. Returns the current values for AcpiSciCount, AcpiGpeCount, the AcpiFixedEventCount array, and AcpiMethodCount. The interface can be expanded in the future if new counters are added. Device drivers should use this interface rather than access the counters directly. Fixed a problem with the FromBCD and ToBCD operators. With some compilers, the ShortDivide function worked incorrectly, causing problems with the BCD functions with large input values. A truncation from 64-bit to 32-bit inadvertently occurred. Internal BZ 435. Lin Ming Fixed a problem with Index references passed as method arguments. References passed as arguments to control methods were dereferenced immediately (before control was passed to the called method). The references are now correctly passed directly to the called method. BZ 5389. Lin Ming Fixed a problem with CopyObject used in conjunction with the Index operator. The reference was incorrectly dereferenced before the copy. The reference is now correctly copied. BZ 5391. Lin Ming Fixed a problem with Control Method references within Package objects. These references are now correctly generated. This completes the package construction overhaul that began in version 20071019. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.8K Code, 17.2K Data, 96.0K Total Debug Version: 157.2K Code, 63.4K Data, 220.6K Total Current Release: Non-Debug Version: 79.0K Code, 17.2K Data, 96.2K Total Debug Version: 157.9K Code, 63.6K Data, 221.5K Total 2) iASL Compiler/Disassembler and Tools: The AcpiExec utility now installs handlers for all of the predefined Operation Region types. New types supported are: PCI_Config, CMOS, and PCIBARTarget. Fixed a problem with the 64-bit version of AcpiExec where the extended (64- bit) address fields for the DSDT and FACS within the FADT were not being used, causing truncation of the upper 32-bits of these addresses. Lin Ming and Bob Moore ---------------------------------------- 19 October 2007. Summary of changes for version 20071019: 1) ACPI CA Core Subsystem: Fixed a problem with the Alias operator when the target of the alias is a named ASL operator that opens a new scope -- Scope, Device, PowerResource, Processor, and ThermalZone. In these cases, any children of the original operator could not be accessed via the alias, potentially causing unexpected AE_NOT_FOUND exceptions. (BZ 9067) Fixed a problem with the Package operator where all named references were created as object references and left otherwise unresolved. According to the ACPI specification, a Package can only contain Data Objects or references to control methods. The implication is that named references to Data Objects (Integer, Buffer, String, Package, BufferField, Field) should be resolved immediately upon package creation. This is the approach taken with this change. References to all other named objects (Methods, Devices, Scopes, etc.) are all now properly created as reference objects. (BZ 5328) Reverted a change to Notify handling that was introduced in version 20070508. This version changed the Notify handling from asynchronous to fully synchronous (Device driver Notify handling with respect to the Notify ASL operator). It was found that this change caused more problems than it solved and was removed by most users. Fixed a problem with the Increment and Decrement operators where the type of the target object could be unexpectedly and incorrectly changed. (BZ 353) Lin Ming. Fixed a problem with the Load and LoadTable operators where the table location within the namespace was ignored. Instead, the table was always loaded into the root or current scope. Lin Ming. Fixed a problem with the Load operator when loading a table from a buffer object. The input buffer was prematurely zeroed and/or deleted. (BZ 577) Fixed a problem with the Debug object where a store of a DdbHandle reference object to the Debug object could cause a fault. Added a table checksum verification for the Load operator, in the case where the load is from a buffer. (BZ 578). Implemented additional parameter validation for the LoadTable operator. The length of the input strings SignatureString, OemIdString, and OemTableId are now checked for maximum lengths. (BZ 582) Lin Ming. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.5K Code, 17.1K Data, 95.6K Total Debug Version: 156.7K Code, 63.2K Data, 219.9K Total Current Release: Non-Debug Version: 78.8K Code, 17.2K Data, 96.0K Total Debug Version: 157.2K Code, 63.4K Data, 220.6K Total 2) iASL Compiler/Disassembler: Fixed a problem where if a single file was specified and the file did not exist, no error message was emitted. (Introduced with wildcard support in version 20070917.) ---------------------------------------- 19 September 2007. Summary of changes for version 20070919: 1) ACPI CA Core Subsystem: Designed and implemented new external interfaces to install and remove handlers for ACPI table-related events. Current events that are defined are LOAD and UNLOAD. These interfaces allow the host to track ACPI tables as they are dynamically loaded and unloaded. See AcpiInstallTableHandler and AcpiRemoveTableHandler. (Lin Ming and Bob Moore) Fixed a problem where the use of the AcpiGbl_AllMethodsSerialized flag (acpi_serialized option on Linux) could cause some systems to hang during initialization. (Bob Moore) BZ 8171 Fixed a problem where objects of certain types (Device, ThermalZone, Processor, PowerResource) can be not found if they are declared and referenced from within the same control method (Lin Ming) BZ 341 Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.3K Code, 17.0K Data, 95.3K Total Debug Version: 156.3K Code, 63.1K Data, 219.4K Total Current Release: Non-Debug Version: 78.5K Code, 17.1K Data, 95.6K Total Debug Version: 156.7K Code, 63.2K Data, 219.9K Total 2) iASL Compiler/Disassembler: Implemented support to allow multiple files to be compiled/disassembled in a single invocation. This includes command line wildcard support for both the Windows and Unix versions of the compiler. This feature simplifies the disassembly and compilation of multiple ACPI tables in a single directory. ---------------------------------------- 08 May 2007. Summary of changes for version 20070508: 1) ACPI CA Core Subsystem: Implemented a Microsoft compatibility design change for the handling of the Notify AML operator. Previously, notify handlers were dispatched and executed completely asynchronously in a deferred thread. The new design still executes the notify handlers in a different thread, but the original thread that executed the Notify() now waits at a synchronization point for the notify handler to complete. Some machines depend on a synchronous Notify operator in order to operate correctly. Implemented support to allow Package objects to be passed as method arguments to the external AcpiEvaluateObject interface. Previously, this would return the AE_NOT_IMPLEMENTED exception. This feature had not been implemented since there were no reserved control methods that required it until recently. Fixed a problem with the internal FADT conversion where ACPI 1.0 FADTs that contained invalid non-zero values in reserved fields could cause later failures because these fields have meaning in later revisions of the FADT. For incoming ACPI 1.0 FADTs, these fields are now always zeroed. (The fields are: Preferred_PM_Profile, PSTATE_CNT, CST_CNT, and IAPC_BOOT_FLAGS.) Fixed a problem where the Global Lock handle was not properly updated if a thread that acquired the Global Lock via executing AML code then attempted to acquire the lock via the AcpiAcquireGlobalLock interface. Reported by Joe Liu. Fixed a problem in AcpiEvDeleteGpeXrupt where the global interrupt list could be corrupted if the interrupt being removed was at the head of the list. Reported by Linn Crosetto. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total Debug Version: 155.9K Code, 63.1K Data, 219.0K Total Current Release: Non-Debug Version: 78.3K Code, 17.0K Data, 95.3K Total Debug Version: 156.3K Code, 63.1K Data, 219.4K Total ---------------------------------------- 20 March 2007. Summary of changes for version 20070320: 1) ACPI CA Core Subsystem: Implemented a change to the order of interpretation and evaluation of AML operand objects within the AML interpreter. The interpreter now evaluates operands in the order that they appear in the AML stream (and the corresponding ASL code), instead of in the reverse order (after the entire operand list has been parsed). The previous behavior caused several subtle incompatibilities with the Microsoft AML interpreter as well as being somewhat non-intuitive. BZ 7871, local BZ 263. Valery Podrezov. Implemented a change to the ACPI Global Lock support. All interfaces to the global lock now allow the same thread to acquire the lock multiple times. This affects the AcpiAcquireGlobalLock external interface to the global lock as well as the internal use of the global lock to support AML fields -- a control method that is holding the global lock can now simultaneously access AML fields that require global lock protection. Previously, in both cases, this would have resulted in an AE_ALREADY_ACQUIRED exception. The change to AcpiAcquireGlobalLock is of special interest to drivers for the Embedded Controller. There is no change to the behavior of the AML Acquire operator, as this can already be used to acquire a mutex multiple times by the same thread. BZ 8066. With assistance from Alexey Starikovskiy. Fixed a problem where invalid objects could be referenced in the AML Interpreter after error conditions. During operand evaluation, ensure that the internal "Return Object" field is cleared on error and only valid pointers are stored there. Caused occasional access to deleted objects that resulted in "large reference count" warning messages. Valery Podrezov. Fixed a problem where an AE_STACK_OVERFLOW internal exception could occur on deeply nested control method invocations. BZ 7873, local BZ 487. Valery Podrezov. Fixed an internal problem with the handling of result objects on the interpreter result stack. BZ 7872. Valery Podrezov. Removed obsolete code that handled the case where AML_NAME_OP is the target of a reference (Reference.Opcode). This code was no longer necessary. BZ 7874. Valery Podrezov. Removed obsolete ACPI_NO_INTEGER64_SUPPORT from two header files. This was a remnant from the previously discontinued 16-bit support. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total Debug Version: 155.8K Code, 63.3K Data, 219.1K Total Current Release: Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total Debug Version: 155.9K Code, 63.1K Data, 219.0K Total ---------------------------------------- 26 January 2007. Summary of changes for version 20070126: 1) ACPI CA Core Subsystem: Added the 2007 copyright to all module headers and signons. This affects virtually every file in the ACPICA core subsystem, the iASL compiler, and the utilities. Implemented a fix for an incorrect parameter passed to AcpiTbDeleteTable during a table load. A bad pointer was passed in the case where the DSDT is overridden, causing a fault in this case. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total Debug Version: 155.8K Code, 63.3K Data, 219.1K Total Current Release: Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total Debug Version: 155.8K Code, 63.3K Data, 219.1K Total ---------------------------------------- 15 December 2006. Summary of changes for version 20061215: 1) ACPI CA Core Subsystem: Support for 16-bit ACPICA has been completely removed since it is no longer necessary and it clutters the code. All 16-bit macros, types, and conditional compiles have been removed, cleaning up and simplifying the code across the entire subsystem. DOS support is no longer needed since the bootable Linux firmware kit is now available. The handler for the Global Lock is now removed during AcpiTerminate to enable a clean subsystem restart, via the implementation of the AcpiEvRemoveGlobalLockHandler function. (With assistance from Joel Bretz, HP) Implemented enhancements to the multithreading support within the debugger to enable improved multithreading debugging and evaluation of the subsystem. (Valery Podrezov) Debugger: Enhanced the Statistics/Memory command to emit the total (maximum) memory used during the execution, as well as the maximum memory consumed by each of the various object types. (Valery Podrezov) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 77.9K Code, 17.0K Data, 94.9K Total Debug Version: 155.2K Code, 63.1K Data, 218.3K Total Current Release: Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total Debug Version: 155.8K Code, 63.3K Data, 219.1K Total 2) iASL Compiler/Disassembler and Tools: AcpiExec: Implemented a new option (-m) to display full memory use statistics upon subsystem/program termination. (Valery Podrezov) ---------------------------------------- 09 November 2006. Summary of changes for version 20061109: 1) ACPI CA Core Subsystem: Optimized the Load ASL operator in the case where the source operand is an operation region. Simply map the operation region memory, instead of performing a bytewise read. (Region must be of type SystemMemory, see below.) Fixed the Load ASL operator for the case where the source operand is a region field. A buffer object is also allowed as the source operand. BZ 480 Fixed a problem where the Load ASL operator allowed the source operand to be an operation region of any type. It is now restricted to regions of type SystemMemory, as per the ACPI specification. BZ 481 Additional cleanup and optimizations for the new Table Manager code. AcpiEnable will now fail if all of the required ACPI tables are not loaded (FADT, FACS, DSDT). BZ 477 Added #pragma pack(8/4) to acobject.h to ensure that the structures in this header are always compiled as aligned. The ACPI_OPERAND_OBJECT has been manually optimized to be aligned and will not work if it is byte-packed. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.1K Code, 17.1K Data, 95.2K Total Debug Version: 155.4K Code, 63.1K Data, 218.5K Total Current Release: Non-Debug Version: 77.9K Code, 17.0K Data, 94.9K Total Debug Version: 155.2K Code, 63.1K Data, 218.3K Total 2) iASL Compiler/Disassembler and Tools: Fixed a problem where the presence of the _OSI predefined control method within complex expressions could cause an internal compiler error. AcpiExec: Implemented full region support for multiple address spaces. SpaceId is now part of the REGION object. BZ 429 ---------------------------------------- 11 October 2006. Summary of changes for version 20061011: 1) ACPI CA Core Subsystem: Completed an AML interpreter performance enhancement for control method execution. Previously a 2-pass parse/execution, control methods are now completely parsed and executed in a single pass. This improves overall interpreter performance by ~25%, reduces code size, and reduces CPU stack use. (Valery Podrezov + interpreter changes in version 20051202 that eliminated namespace loading during the pass one parse.) Implemented _CID support for PCI Root Bridge detection. If the _HID does not match the predefined PCI Root Bridge IDs, the _CID list (if present) is now obtained and also checked for an ID match. Implemented additional support for the PCI _ADR execution: upsearch until a device scope is found before executing _ADR. This allows PCI_Config operation regions to be declared locally within control methods underneath PCI device objects. Fixed a problem with a possible race condition between threads executing AcpiWalkNamespace and the AML interpreter. This condition was removed by modifying AcpiWalkNamespace to (by default) ignore all temporary namespace entries created during any concurrent control method execution. An additional namespace race condition is known to exist between AcpiWalkNamespace and the Load/Unload ASL operators and is still under investigation. Restructured the AML ParseLoop function, breaking it into several subfunctions in order to reduce CPU stack use and improve maintainability. (Mikhail Kouzmich) AcpiGetHandle: Fix for parameter validation to detect invalid combinations of prefix handle and pathname. BZ 478 Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 77.9K Code, 17.1K Data, 95.0K Total Debug Version: 154.6K Code, 63.0K Data, 217.6K Total Current Release: Non-Debug Version: 78.1K Code, 17.1K Data, 95.2K Total Debug Version: 155.4K Code, 63.1K Data, 218.5K Total 2) iASL Compiler/Disassembler and Tools: Ported the -g option (get local ACPI tables) to the new ACPICA Table Manager to restore original behavior. ---------------------------------------- 27 September 2006. Summary of changes for version 20060927: 1) ACPI CA Core Subsystem: Removed the "Flags" parameter from AcpiGetRegister and AcpiSetRegister. These functions now use a spinlock for mutual exclusion and the interrupt level indication flag is not needed. Fixed a problem with the Global Lock where the lock could appear to be obtained before it is actually obtained. The global lock semaphore was inadvertently created with one unit instead of zero units. (BZ 464) Fiodor Suietov. Fixed a possible memory leak and fault in AcpiExResolveObjectToValue during a read from a buffer or region field. (BZ 458) Fiodor Suietov. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 77.9K Code, 17.1K Data, 95.0K Total Debug Version: 154.7K Code, 63.0K Data, 217.7K Total Current Release: Non-Debug Version: 77.9K Code, 17.1K Data, 95.0K Total Debug Version: 154.6K Code, 63.0K Data, 217.6K Total 2) iASL Compiler/Disassembler and Tools: Fixed a compilation problem with the pre-defined Resource Descriptor field names where an "object does not exist" error could be incorrectly generated if the parent ResourceTemplate pathname places the template within a different namespace scope than the current scope. (BZ 7212) Fixed a problem where the compiler could hang after syntax errors detected in an ElseIf construct. (BZ 453) Fixed a problem with the AmlFilename parameter to the DefinitionBlock() operator. An incorrect output filename was produced when this parameter was a null string (""). Now, the original input filename is used as the AML output filename, with an ".aml" extension. Implemented a generic batch command mode for the AcpiExec utility (execute any AML debugger command) (Valery Podrezov). ---------------------------------------- 12 September 2006. Summary of changes for version 20060912: 1) ACPI CA Core Subsystem: Enhanced the implementation of the "serialized mode" of the interpreter (enabled via the AcpiGbl_AllMethodsSerialized flag.) When this mode is specified, instead of creating a serialization semaphore per control method, the interpreter lock is simply no longer released before a blocking operation during control method execution. This effectively makes the AML Interpreter single-threaded. The overhead of a semaphore per-method is eliminated. Fixed a regression where an error was no longer emitted if a control method attempts to create 2 objects of the same name. This once again returns AE_ALREADY_EXISTS. When this exception occurs, it invokes the mechanism that will dynamically serialize the control method to possible prevent future errors. (BZ 440) Integrated a fix for a problem with PCI Express HID detection in the PCI Config Space setup procedure. (BZ 7145) Moved all FADT-related functions to a new file, tbfadt.c. Eliminated the AcpiHwInitialize function - the FADT registers are now validated when the table is loaded. Added two new warnings during FADT verification - 1) if the FADT is larger than the largest known FADT version, and 2) if there is a mismatch between a 32-bit block address and the 64-bit X counterpart (when both are non- zero.) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 77.9K Code, 16.7K Data, 94.6K Total Debug Version: 154.9K Code, 62.6K Data, 217.5K Total Current Release: Non-Debug Version: 77.9K Code, 17.1K Data, 95.0K Total Debug Version: 154.7K Code, 63.0K Data, 217.7K Total 2) iASL Compiler/Disassembler and Tools: Fixed a problem with the implementation of the Switch() operator where the temporary variable was declared too close to the actual Switch, instead of at method level. This could cause a problem if the Switch() operator is within a while loop, causing an error on the second iteration. (BZ 460) Disassembler - fix for error emitted for unknown type for target of scope operator. Now, ignore it and continue. Disassembly of an FADT now verifies the input FADT and reports any errors found. Fix for proper disassembly of full-sized (ACPI 2.0) FADTs. Disassembly of raw data buffers with byte initialization data now prefixes each output line with the current buffer offset. Disassembly of ASF! table now includes all variable-length data fields at the end of some of the subtables. The disassembler now emits a comment if a buffer appears to be a ResourceTemplate, but cannot be disassembled as such because the EndTag does not appear at the very end of the buffer. AcpiExec - Added the "-t" command line option to enable the serialized mode of the AML interpreter. ---------------------------------------- 31 August 2006. Summary of changes for version 20060831: 1) ACPI CA Core Subsystem: Miscellaneous fixes for the Table Manager: - Correctly initialize internal common FADT for all 64-bit "X" fields - Fixed a couple table mapping issues during table load - Fixed a couple alignment issues for IA64 - Initialize input array to zero in AcpiInitializeTables - Additional parameter validation for AcpiGetTable, AcpiGetTableHeader, AcpiGetTableByIndex Change for GPE support: when a "wake" GPE is received, all wake GPEs are now immediately disabled to prevent the waking GPE from firing again and to prevent other wake GPEs from interrupting the wake process. Added the AcpiGpeCount global that tracks the number of processed GPEs, to be used for debugging systems with a large number of ACPI interrupts. Implemented support for the "DMAR" ACPI table (DMA Redirection Table) in both the ACPICA headers and the disassembler. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 77.8K Code, 16.5K Data, 94.3K Total Debug Version: 154.6K Code, 62.3K Data, 216.9K Total Current Release: Non-Debug Version: 77.9K Code, 16.7K Data, 94.6K Total Debug Version: 154.9K Code, 62.6K Data, 217.5K Total 2) iASL Compiler/Disassembler and Tools: Disassembler support for the DMAR ACPI table. ---------------------------------------- 23 August 2006. Summary of changes for version 20060823: 1) ACPI CA Core Subsystem: The Table Manager component has been completely redesigned and reimplemented. The new design is much simpler, and reduces the overall code and data size of the kernel-resident ACPICA by approximately 5%. Also, it is now possible to obtain the ACPI tables very early during kernel initialization, even before dynamic memory management is initialized. (Alexey Starikovskiy, Fiodor Suietov, Bob Moore) Obsolete ACPICA interfaces: - AcpiGetFirmwareTable: Use AcpiGetTable instead (works at early kernel init time). - AcpiLoadTable: Not needed. - AcpiUnloadTable: Not needed. New ACPICA interfaces: - AcpiInitializeTables: Must be called before the table manager can be used. - AcpiReallocateRootTable: Used to transfer the root table to dynamically allocated memory after it becomes available. - AcpiGetTableByIndex: Allows the host to easily enumerate all ACPI tables in the RSDT/XSDT. Other ACPICA changes: - AcpiGetTableHeader returns the actual mapped table header, not a copy. Use AcpiOsUnmapMemory to free this mapping. - AcpiGetTable returns the actual mapped table. The mapping is managed internally and must not be deleted by the caller. Use of this interface causes no additional dynamic memory allocation. - AcpiFindRootPointer: Support for physical addressing has been eliminated, it appeared to be unused. - The interface to AcpiOsMapMemory has changed to be consistent with the other allocation interfaces. - The interface to AcpiOsGetRootPointer has changed to eliminate unnecessary parameters. - ACPI_PHYSICAL_ADDRESS is now 32 bits on 32-bit platforms, 64 bits on 64- bit platforms. Was previously 64 bits on all platforms. - The interface to the ACPI Global Lock acquire/release macros have changed slightly since ACPICA no longer keeps a local copy of the FACS with a constructed pointer to the actual global lock. Porting to the new table manager: - AcpiInitializeTables: Must be called once, and can be called anytime during the OS initialization process. It allows the host to specify an area of memory to be used to store the internal version of the RSDT/XSDT (root table). This allows the host to access ACPI tables before memory management is initialized and running. - AcpiReallocateRootTable: Can be called after memory management is running to copy the root table to a dynamically allocated array, freeing up the scratch memory specified in the call to AcpiInitializeTables. - AcpiSubsystemInitialize: This existing interface is independent of the Table Manager, and does not have to be called before the Table Manager can be used, it only must be called before the rest of ACPICA can be used. - ACPI Tables: Some changes have been made to the names and structure of the actbl.h and actbl1.h header files and may require changes to existing code. For example, bitfields have been completely removed because of their lack of portability across C compilers. - Update interfaces to the Global Lock acquire/release macros if local versions are used. (see acwin.h) Obsolete files: tbconvrt.c, tbget.c, tbgetall.c, tbrsdt.c New files: tbfind.c Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.7K Code, 17.9K Data, 98.6K Total Debug Version: 161.0K Code, 65.1K Data, 226.1K Total Current Release: Non-Debug Version: 77.8K Code, 16.5K Data, 94.3K Total Debug Version: 154.6K Code, 62.3K Data, 216.9K Total 2) iASL Compiler/Disassembler and Tools: No changes for this release. ---------------------------------------- 21 July 2006. Summary of changes for version 20060721: 1) ACPI CA Core Subsystem: The full source code for the ASL test suite used to validate the iASL compiler and the ACPICA core subsystem is being released with the ACPICA source for the first time. The source is contained in a separate package and consists of over 1100 files that exercise all ASL/AML operators. The package should appear on the Intel/ACPI web site shortly. (Valery Podrezov, Fiodor Suietov) Completed a new design and implementation for support of the ACPI Global Lock. On the OS side, the global lock is now treated as a standard AML mutex. Previously, multiple OS threads could "acquire" the global lock simultaneously. However, this could cause the BIOS to be starved out of the lock - especially in cases such as the Embedded Controller driver where there is a tight coupling between the OS and the BIOS. Implemented an optimization for the ACPI Global Lock interrupt mechanism. The Global Lock interrupt handler no longer queues the execution of a separate thread to signal the global lock semaphore. Instead, the semaphore is signaled directly from the interrupt handler. Implemented support within the AML interpreter for package objects that contain a larger AML length (package list length) than the package element count. In this case, the length of the package is truncated to match the package element count. Some BIOS code apparently modifies the package length on the fly, and this change supports this behavior. Provides compatibility with the MS AML interpreter. (With assistance from Fiodor Suietov) Implemented a temporary fix for the BankValue parameter of a Bank Field to support all constant values, now including the Zero and One opcodes. Evaluation of this parameter must eventually be converted to a full TermArg evaluation. A not-implemented error is now returned (temporarily) for non- constant values for this parameter. Fixed problem reports (Fiodor Suietov) integrated: - Fix for premature object deletion after CopyObject on Operation Region (BZ 350) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.7K Code, 18.0K Data, 98.7K Total Debug Version: 160.9K Code, 65.1K Data, 226.0K Total Current Release: Non-Debug Version: 80.7K Code, 17.9K Data, 98.6K Total Debug Version: 161.0K Code, 65.1K Data, 226.1K Total 2) iASL Compiler/Disassembler and Tools: No changes for this release. ---------------------------------------- 07 July 2006. Summary of changes for version 20060707: 1) ACPI CA Core Subsystem: Added the ACPI_PACKED_POINTERS_NOT_SUPPORTED macro to support C compilers that do not allow the initialization of address pointers within packed structures - even though the hardware itself may support misaligned transfers. Some of the debug data structures are packed by default to minimize size. Added an error message for the case where AcpiOsGetThreadId() returns zero. A non-zero value is required by the core ACPICA code to ensure the proper operation of AML mutexes and recursive control methods. The DSDT is now the only ACPI table that determines whether the AML interpreter is in 32-bit or 64-bit mode. Not really a functional change, but the hooks for per-table 32/64 switching have been removed from the code. A clarification to the ACPI specification is forthcoming in ACPI 3.0B. Fixed a possible leak of an OwnerID in the error path of AcpiTbInitTableDescriptor (tbinstal.c), and migrated all table OwnerID deletion to a single place in AcpiTbUninstallTable to correct possible leaks when using the AcpiTbDeleteTablesByType interface (with assistance from Lance Ortiz.) Fixed a problem with Serialized control methods where the semaphore associated with the method could be over-signaled after multiple method invocations. Fixed two issues with the locking of the internal namespace data structure. Both the Unload() operator and AcpiUnloadTable interface now lock the namespace during the namespace deletion associated with the table unload (with assistance from Linn Crosetto.) Fixed problem reports (Valery Podrezov) integrated: - Eliminate unnecessary memory allocation for CreateXxxxField (BZ 5426) Fixed problem reports (Fiodor Suietov) integrated: - Incomplete cleanup branches in AcpiTbGetTableRsdt (BZ 369) - On Address Space handler deletion, needless deactivation call (BZ 374) - AcpiRemoveAddressSpaceHandler: validate Device handle parameter (BZ 375) - Possible memory leak, Notify sub-objects of Processor, Power, ThermalZone (BZ 376) - AcpiRemoveAddressSpaceHandler: validate Handler parameter (BZ 378) - Minimum Length of RSDT should be validated (BZ 379) - AcpiRemoveNotifyHandler: return AE_NOT_EXIST if Processor Obj has no Handler (BZ (380) - AcpiUnloadTable: return AE_NOT_EXIST if no table of specified type loaded (BZ 381) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.5K Code, 17.8K Data, 98.3K Total Debug Version: 160.8K Code, 64.8K Data, 225.6K Total Current Release: Non-Debug Version: 80.7K Code, 17.9K Data, 98.6K Total Debug Version: 161.0K Code, 65.1K Data, 226.1K Total 2) iASL Compiler/Disassembler and Tools: Fixed problem reports: Compiler segfault when ASL contains a long (>1024) String declaration (BZ 436) ---------------------------------------- 23 June 2006. Summary of changes for version 20060623: 1) ACPI CA Core Subsystem: Implemented a new ACPI_SPINLOCK type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Therefore, no OSL changes are required at this time. (See acpiosxf.h) Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.0K Code, 17.6K Data, 97.6K Total Debug Version: 160.2K Code, 64.7K Data, 224.9K Total Current Release: Non-Debug Version: 80.5K Code, 17.8K Data, 98.3K Total Debug Version: 160.8K Code, 64.8K Data, 225.6K Total 2) iASL Compiler/Disassembler and Tools: No changes for this release. ---------------------------------------- 08 June 2006. Summary of changes for version 20060608: 1) ACPI CA Core Subsystem: Converted the locking mutex used for the ACPI hardware to a spinlock. This change should eliminate all problems caused by attempting to acquire a semaphore at interrupt level, and it means that all ACPICA external interfaces that directly access the ACPI hardware can be safely called from interrupt level. OSL code that implements the semaphore interfaces should be able to eliminate any workarounds for being called at interrupt level. Fixed a regression introduced in 20060526 where the ACPI device initialization could be prematurely aborted with an AE_NOT_FOUND if a device did not have an optional _INI method. Fixed an IndexField issue where a write to the Data Register should be limited in size to the AccessSize (width) of the IndexField itself. (BZ 433, Fiodor Suietov) Fixed problem reports (Valery Podrezov) integrated: - Allow store of ThermalZone objects to Debug object (BZ 5369/5370) Fixed problem reports (Fiodor Suietov) integrated: - AcpiGetTableHeader doesn't handle multiple instances correctly (BZ 364) Removed four global mutexes that were obsolete and were no longer being used. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.0K Code, 17.7K Data, 97.7K Total Debug Version: 160.3K Code, 64.9K Data, 225.2K Total Current Release: Non-Debug Version: 80.0K Code, 17.6K Data, 97.6K Total Debug Version: 160.2K Code, 64.7K Data, 224.9K Total 2) iASL Compiler/Disassembler and Tools: Fixed a fault when using -g option (get tables from registry) on Windows machines. Fixed problem reports integrated: - Generate error if CreateField NumBits parameter is zero. (BZ 405) - Fault if Offset/Length in Field unit is very large (BZ 432, Fiodor Suietov) - Global table revision override (-r) is ignored (BZ 413) ---------------------------------------- 26 May 2006. Summary of changes for version 20060526: 1) ACPI CA Core Subsystem: Restructured, flattened, and simplified the internal interfaces for namespace object evaluation - resulting in smaller code, less CPU stack use, and fewer interfaces. (With assistance from Mikhail Kouzmich) Fixed a problem with the CopyObject operator where the first parameter was not typed correctly for the parser, interpreter, compiler, and disassembler. Caused various errors and unexpected behavior. Fixed a problem where a ShiftLeft or ShiftRight of more than 64 bits produced incorrect results with some C compilers. Since the behavior of C compilers when the shift value is larger than the datatype width is apparently not well defined, the interpreter now detects this condition and simply returns zero as expected in all such cases. (BZ 395) Fixed problem reports (Valery Podrezov) integrated: - Update String-to-Integer conversion to match ACPI 3.0A spec (BZ 5329) - Allow interpreter to handle nested method declarations (BZ 5361) Fixed problem reports (Fiodor Suietov) integrated: - AcpiTerminate doesn't free debug memory allocation list objects (BZ 355) - After Core Subsystem shutdown, AcpiSubsystemStatus returns AE_OK (BZ 356) - AcpiOsUnmapMemory for RSDP can be invoked inconsistently (BZ 357) - Resource Manager should return AE_TYPE for non-device objects (BZ 358) - Incomplete cleanup branch in AcpiNsEvaluateRelative (BZ 359) - Use AcpiOsFree instead of ACPI_FREE in AcpiRsSetSrsMethodData (BZ 360) - Incomplete cleanup branch in AcpiPsParseAml (BZ 361) - Incomplete cleanup branch in AcpiDsDeleteWalkState (BZ 362) - AcpiGetTableHeader returns AE_NO_ACPI_TABLES until DSDT is loaded (BZ 365) - Status of the Global Initialization Handler call not used (BZ 366) - Incorrect object parameter to Global Initialization Handler (BZ 367) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.8K Code, 17.7K Data, 97.5K Total Debug Version: 160.5K Code, 65.1K Data, 225.6K Total Current Release: Non-Debug Version: 80.0K Code, 17.7K Data, 97.7K Total Debug Version: 160.3K Code, 64.9K Data, 225.2K Total 2) iASL Compiler/Disassembler and Tools: Modified the parser to allow the names IO, DMA, and IRQ to be used as namespace identifiers with no collision with existing resource descriptor macro names. This provides compatibility with other ASL compilers and is most useful for disassembly/recompilation of existing tables without parse errors. (With assistance from Thomas Renninger) Disassembler: fixed an incorrect disassembly problem with the DataTableRegion and CopyObject operators. Fixed a possible fault during disassembly of some Alias operators. ---------------------------------------- 12 May 2006. Summary of changes for version 20060512: 1) ACPI CA Core Subsystem: Replaced the AcpiOsQueueForExecution interface with a new interface named AcpiOsExecute. The major difference is that the new interface does not have a Priority parameter, this appeared to be useless and has been replaced by a Type parameter. The Type tells the host what type of execution is being requested, such as global lock handler, notify handler, GPE handler, etc. This allows the host to queue and execute the request as appropriate for the request type, possibly using different work queues and different priorities for the various request types. This enables fixes for multithreading deadlock problems such as BZ #5534, and will require changes to all existing OS interface layers. (Alexey Starikovskiy and Bob Moore) Fixed a possible memory leak associated with the support for the so- called "implicit return" ACPI extension. Reported by FreeBSD, BZ #6514. (Fiodor Suietov) Fixed a problem with the Load() operator where a table load from an operation region could overwrite an internal table buffer by up to 7 bytes and cause alignment faults on IPF systems. (With assistance from Luming Yu) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.7K Code, 17.7K Data, 97.4K Total Debug Version: 160.1K Code, 65.2K Data, 225.3K Total Current Release: Non-Debug Version: 79.8K Code, 17.7K Data, 97.5K Total Debug Version: 160.5K Code, 65.1K Data, 225.6K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Implemented support to cross reference the internal namespace and automatically generate ASL External() statements for symbols not defined within the current table being disassembled. This will simplify the disassembly and recompilation of interdependent tables such as SSDTs since these statements will no longer have to be added manually. Disassembler: Implemented experimental support to automatically detect invocations of external control methods and generate appropriate External() statements. This is problematic because the AML cannot be correctly parsed until the number of arguments for each control method is known. Currently, standalone method invocations and invocations as the source operand of a Store() statement are supported. Disassembler: Implemented support for the ASL pseudo-operators LNotEqual, LLessEqual, and LGreaterEqual. Previously disassembled as LNot(LEqual()), LNot(LGreater()), and LNot(LLess()), this makes the disassembled ASL code more readable and likely closer to the original ASL source. ---------------------------------------- 21 April 2006. Summary of changes for version 20060421: 1) ACPI CA Core Subsystem: Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree. (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, AcpiOsValidateAddress. This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) See oswinxf or osunixxf for an example implementation. Defined and deployed a new OSL interface, AcpiOsValidateInterface. This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) See oswinxf or osunixxf for an example implementation. Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 81.1K Code, 17.7K Data, 98.8K Total Debug Version: 158.9K Code, 64.9K Data, 223.8K Total Current Release: Non-Debug Version: 79.7K Code, 17.7K Data, 97.4K Total Debug Version: 160.1K Code, 65.2K Data, 225.3K Total 2) iASL Compiler/Disassembler and Tools: Implemented 3 new warnings for iASL, and implemented multiple warning levels (w2 flag). 1) Ignored timeouts: If the TimeoutValue parameter to Wait or Acquire is not WAIT_FOREVER (0xFFFF) and the code does not examine the return value to check for the possible timeout, a warning is issued. 2) Useless operators: If an ASL operator does not specify an optional target operand and it also does not use the function return value from the operator, a warning is issued since the operator effectively does nothing. 3) Unreferenced objects: If a namespace object is created, but never referenced, a warning is issued. This is a warning level 2 since there are cases where this is ok, such as when a secondary table is loaded that uses the unreferenced objects. Even so, care is taken to only flag objects that don't look like they will ever be used. For example, the reserved methods (starting with an underscore) are usually not referenced because it is expected that the OS will invoke them. ---------------------------------------- 31 March 2006. Summary of changes for version 20060331: 1) ACPI CA Core Subsystem: Implemented header file support for the following additional ACPI tables: ASF!, BOOT, CPEP, DBGP, MCFG, SPCR, SPMI, TCPA, and WDRT. With this support, all current and known ACPI tables are now defined in the ACPICA headers and are available for use by device drivers and other software. Implemented support to allow tables that contain ACPI names with invalid characters to be loaded. Previously, this would cause the table load to fail, but since there are several known cases of such tables on existing machines, this change was made to enable ACPI support for them. Also, this matches the behavior of the Microsoft ACPI implementation. Fixed a couple regressions introduced during the memory optimization in the 20060317 release. The namespace node definition required additional reorganization and an internal datatype that had been changed to 8-bit was restored to 32-bit. (Valery Podrezov) Fixed a problem where a null pointer passed to AcpiUtDeleteGenericState could be passed through to AcpiOsReleaseObject which is unexpected. Such null pointers are now trapped and ignored, matching the behavior of the previous implementation before the deployment of AcpiOsReleaseObject. (Valery Podrezov, Fiodor Suietov) Fixed a memory mapping leak during the deletion of a SystemMemory operation region where a cached memory mapping was not deleted. This became a noticeable problem for operation regions that are defined within frequently used control methods. (Dana Meyers) Reorganized the ACPI table header files into two main files: one for the ACPI tables consumed by the ACPICA core, and another for the miscellaneous ACPI tables that are consumed by the drivers and other software. The various FADT definitions were merged into one common section and three different tables (ACPI 1.0, 1.0+, and 2.0) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.9K Code, 17.7K Data, 98.6K Total Debug Version: 158.7K Code, 64.8K Data, 223.5K Total Current Release: Non-Debug Version: 81.1K Code, 17.7K Data, 98.8K Total Debug Version: 158.9K Code, 64.9K Data, 223.8K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Implemented support to decode and format all non-AML ACPI tables (tables other than DSDTs and SSDTs.) This includes the new tables added to the ACPICA headers, therefore all current and known ACPI tables are supported. Disassembler: The change to allow ACPI names with invalid characters also enables the disassembly of such tables. Invalid characters within names are changed to '*' to make the name printable; the iASL compiler will still generate an error for such names, however, since this is an invalid ACPI character. Implemented an option for AcpiXtract (-a) to extract all tables found in the input file. The default invocation extracts only the DSDTs and SSDTs. Fixed a couple of gcc generation issues for iASL and AcpiExec and added a makefile for the AcpiXtract utility. ---------------------------------------- 17 March 2006. Summary of changes for version 20060317: 1) ACPI CA Core Subsystem: Implemented the use of a cache object for all internal namespace nodes. Since there are about 1000 static nodes in a typical system, this will decrease memory use for cache implementations that minimize per- allocation overhead (such as a slab allocator.) Removed the reference count mechanism for internal namespace nodes, since it was deemed unnecessary. This reduces the size of each namespace node by about 5%-10% on all platforms. Nodes are now 20 bytes for the 32-bit case, and 32 bytes for the 64-bit case. Optimized several internal data structures to reduce object size on 64- bit platforms by packing data within the 64-bit alignment. This includes the frequently used ACPI_OPERAND_OBJECT, of which there can be ~1000 static instances corresponding to the namespace objects. Added two new strings for the predefined _OSI method: "Windows 2001.1 SP1" and "Windows 2006". Split the allocation tracking mechanism out to a separate file, from utalloc.c to uttrack.c. This mechanism appears to be only useful for application-level code. Kernels may wish to not include uttrack.c in distributions. Removed all remnants of the obsolete ACPI_REPORT_* macros and the associated code. (These macros have been replaced by the ACPI_ERROR and ACPI_WARNING macros.) Code and Data Size: These are the sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 81.1K Code, 17.8K Data, 98.9K Total Debug Version: 161.6K Code, 65.7K Data, 227.3K Total Current Release: Non-Debug Version: 80.9K Code, 17.7K Data, 98.6K Total Debug Version: 158.7K Code, 64.8K Data, 223.5K Total 2) iASL Compiler/Disassembler and Tools: Implemented an ANSI C version of the acpixtract utility. This version will automatically extract the DSDT and all SSDTs from the input acpidump text file and dump the binary output to separate files. It can also display a summary of the input file including the headers for each table found and will extract any single ACPI table, with any signature. (See source/tools/acpixtract) ---------------------------------------- 10 March 2006. Summary of changes for version 20060310: 1) ACPI CA Core Subsystem: Tagged all external interfaces to the subsystem with the new ACPI_EXPORT_SYMBOL macro. This macro can be defined as necessary to assist kernel integration. For Linux, the macro resolves to the EXPORT_SYMBOL macro. The default definition is NULL. Added the ACPI_THREAD_ID type for the return value from AcpiOsGetThreadId. This allows the host to define this as necessary to simplify kernel integration. The default definition is ACPI_NATIVE_UINT. Fixed two interpreter problems related to error processing, the deletion of objects, and placing invalid pointers onto the internal operator result stack. BZ 6028, 6151 (Valery Podrezov) Increased the reference count threshold where a warning is emitted for large reference counts in order to eliminate unnecessary warnings on systems with large namespaces (especially 64-bit.) Increased the value from 0x400 to 0x800. Due to universal disagreement as to the meaning of the 'c' in the calloc() function, the ACPI_MEM_CALLOCATE macro has been renamed to ACPI_ALLOCATE_ZEROED so that the purpose of the interface is 'clear'. ACPI_MEM_ALLOCATE and ACPI_MEM_FREE are renamed to ACPI_ALLOCATE and ACPI_FREE. Code and Data Size: These are the sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 81.0K Code, 17.8K Data, 98.8K Total Debug Version: 161.4K Code, 65.7K Data, 227.1K Total Current Release: Non-Debug Version: 81.1K Code, 17.8K Data, 98.9K Total Debug Version: 161.6K Code, 65.7K Data, 227.3K Total 2) iASL Compiler/Disassembler: Disassembler: implemented support for symbolic resource descriptor references. If a CreateXxxxField operator references a fixed offset within a resource descriptor, a name is assigned to the descriptor and the offset is translated to the appropriate resource tag and pathname. The addition of this support brings the disassembled code very close to the original ASL source code and helps eliminate run-time errors when the disassembled code is modified (and recompiled) in such a way as to invalidate the original fixed offsets. Implemented support for a Descriptor Name as the last parameter to the ASL Register() macro. This parameter was inadvertently left out of the ACPI specification, and will be added for ACPI 3.0b. Fixed a problem where the use of the "_OSI" string (versus the full path "\_OSI") caused an internal compiler error. ("No back ptr to op") Fixed a problem with the error message that occurs when an invalid string is used for a _HID object (such as one with an embedded asterisk: "*PNP010A".) The correct message is now displayed. ---------------------------------------- 17 February 2006. Summary of changes for version 20060217: 1) ACPI CA Core Subsystem: Implemented a change to the IndexField support to match the behavior of the Microsoft AML interpreter. The value written to the Index register is now a byte offset, no longer an index based upon the width of the Data register. This should fix IndexField problems seen on some machines where the Data register is not exactly one byte wide. The ACPI specification will be clarified on this point. Fixed a problem where several resource descriptor types could overrun the internal descriptor buffer due to size miscalculation: VendorShort, VendorLong, and Interrupt. This was noticed on IA64 machines, but could affect all platforms. Fixed a problem where individual resource descriptors were misaligned within the internal buffer, causing alignment faults on IA64 platforms. Code and Data Size: These are the sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 81.1K Code, 17.8K Data, 98.9K Total Debug Version: 161.3K Code, 65.6K Data, 226.9K Total Current Release: Non-Debug Version: 81.0K Code, 17.8K Data, 98.8K Total Debug Version: 161.4K Code, 65.7K Data, 227.1K Total 2) iASL Compiler/Disassembler: Implemented support for new reserved names: _WDG and _WED are Microsoft extensions for Windows Instrumentation Management, _TDL is a new ACPI- defined method (Throttling Depth Limit.) Fixed a problem where a zero-length VendorShort or VendorLong resource descriptor was incorrectly emitted as a descriptor of length one. ---------------------------------------- 10 February 2006. Summary of changes for version 20060210: 1) ACPI CA Core Subsystem: Removed a couple of extraneous ACPI_ERROR messages that appeared during normal execution. These became apparent after the conversion from ACPI_DEBUG_PRINT. Fixed a problem where the CreateField operator could hang if the BitIndex or NumBits parameter referred to a named object. (Valery Podrezov, BZ 5359) Fixed a problem where a DeRefOf operation on a buffer object incorrectly failed with an exception. This also fixes a couple of related RefOf and DeRefOf issues. (Valery Podrezov, BZ 5360/5392/5387) Fixed a problem where the AE_BUFFER_LIMIT exception was returned instead of AE_STRING_LIMIT on an out-of-bounds Index() operation. (Valery Podrezov, BZ 5480) Implemented a memory cleanup at the end of the execution of each iteration of an AML While() loop, preventing the accumulation of outstanding objects. (Valery Podrezov, BZ 5427) Eliminated a chunk of duplicate code in the object resolution code. (Valery Podrezov, BZ 5336) Fixed several warnings during the 64-bit code generation. The AcpiSrc source code conversion tool now inserts one line of whitespace after an if() statement that is followed immediately by a comment, improving readability of the Linux code. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 81.0K Code, 17.9K Data, 98.9K Total Debug Version: 161.3K Code, 65.7K Data, 227.0K Total Current Release: Non-Debug Version: 81.1K Code, 17.8K Data, 98.9K Total Debug Version: 161.3K Code, 65.6K Data, 226.9K Total 2) iASL Compiler/Disassembler: Fixed a problem with the disassembly of a BankField operator with a complex expression for the BankValue parameter. ---------------------------------------- 27 January 2006. Summary of changes for version 20060127: 1) ACPI CA Core Subsystem: Implemented support in the Resource Manager to allow unresolved namestring references within resource package objects for the _PRT method. This support is in addition to the previously implemented unresolved reference support within the AML parser. If the interpreter slack mode is enabled, these unresolved references will be passed through to the caller as a NULL package entry. Implemented and deployed new macros and functions for error and warning messages across the subsystem. These macros are simpler and generate less code than their predecessors. The new macros ACPI_ERROR, ACPI_EXCEPTION, ACPI_WARNING, and ACPI_INFO replace the ACPI_REPORT_* macros. The older macros remain defined to allow ACPI drivers time to migrate to the new macros. Implemented the ACPI_CPU_FLAGS type to simplify host OS integration of the Acquire/Release Lock OSL interfaces. Fixed a problem where Alias ASL operators are sometimes not correctly resolved, in both the interpreter and the iASL compiler. Fixed several problems with the implementation of the ConcatenateResTemplate ASL operator. As per the ACPI specification, zero length buffers are now treated as a single EndTag. One-length buffers always cause a fatal exception. Non-zero length buffers that do not end with a full 2-byte EndTag cause a fatal exception. Fixed a possible structure overwrite in the AcpiGetObjectInfo external interface. (With assistance from Thomas Renninger) Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 83.1K Code, 18.4K Data, 101.5K Total Debug Version: 163.2K Code, 66.2K Data, 229.4K Total Current Release: Non-Debug Version: 81.0K Code, 17.9K Data, 98.9K Total Debug Version: 161.3K Code, 65.7K Data, 227.0K Total 2) iASL Compiler/Disassembler: Fixed an internal error that was generated for any forward references to ASL Alias objects. ---------------------------------------- 13 January 2006. Summary of changes for version 20060113: 1) ACPI CA Core Subsystem: Added 2006 copyright to all module headers and signons. This affects virtually every file in the ACPICA core subsystem, iASL compiler, and the utilities. Enhanced the ACPICA error reporting in order to simplify user migration to the non-debug version of ACPICA. Replaced all instances of the ACPI_DEBUG_PRINT macro invoked at the ACPI_DB_ERROR and ACPI_DB_WARN debug levels with the ACPI_REPORT_ERROR and ACPI_REPORT_WARNING macros, respectively. This preserves all error and warning messages in the non- debug version of the ACPICA code (this has been referred to as the "debug lite" option.) Over 200 cases were converted to create a total of over 380 error/warning messages across the ACPICA code. This increases the code and data size of the default non-debug version of the code somewhat (about 13K), but all error/warning reporting may be disabled if desired (and code eliminated) by specifying the ACPI_NO_ERROR_MESSAGES compile-time configuration option. The size of the debug version of ACPICA remains about the same. Fixed a memory leak within the AML Debugger "Set" command. One object was not properly deleted for every successful invocation of the command. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.6K Code, 12.3K Data, 88.9K Total Debug Version: 163.7K Code, 67.5K Data, 231.2K Total Current Release: Non-Debug Version: 83.1K Code, 18.4K Data, 101.5K Total Debug Version: 163.2K Code, 66.2K Data, 229.4K Total 2) iASL Compiler/Disassembler: The compiler now officially supports the ACPI 3.0a specification that was released on December 30, 2005. (Specification is available at www.acpi.info) ---------------------------------------- 16 December 2005. Summary of changes for version 20051216: 1) ACPI CA Core Subsystem: Implemented optional support to allow unresolved names within ASL Package objects. A null object is inserted in the package when a named reference cannot be located in the current namespace. Enabled via the interpreter slack flag, this should eliminate AE_NOT_FOUND exceptions seen on machines that contain such code. Implemented an optimization to the initialization sequence that can improve boot time. During ACPI device initialization, the _STA method is now run if and only if the _INI method exists. The _STA method is used to determine if the device is present; An _INI can only be run if _STA returns present, but it is a waste of time to run the _STA method if the _INI does not exist. (Prototype and assistance from Dong Wei) Implemented use of the C99 uintptr_t for the pointer casting macros if it is available in the current compiler. Otherwise, the default (void *) cast is used as before. Fixed some possible memory leaks found within the execution path of the Break, Continue, If, and CreateField operators. (Valery Podrezov) Fixed a problem introduced in the 20051202 release where an exception is generated during method execution if a control method attempts to declare another method. Moved resource descriptor string constants that are used by both the AML disassembler and AML debugger to the common utilities directory so that these components are independent. Implemented support in the AcpiExec utility (-e switch) to globally ignore exceptions during control method execution (method is not aborted.) Added the rsinfo.c source file to the AcpiExec makefile for Linux/Unix generation. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.3K Code, 12.3K Data, 88.6K Total Debug Version: 163.2K Code, 67.4K Data, 230.6K Total Current Release: Non-Debug Version: 76.6K Code, 12.3K Data, 88.9K Total Debug Version: 163.7K Code, 67.5K Data, 231.2K Total 2) iASL Compiler/Disassembler: Fixed a problem where a CPU stack overflow fault could occur if a recursive method call was made from within a Return statement. ---------------------------------------- 02 December 2005. Summary of changes for version 20051202: 1) ACPI CA Core Subsystem: Modified the parsing of control methods to no longer create namespace objects during the first pass of the parse. Objects are now created only during the execute phase, at the moment the namespace creation operator is encountered in the AML (Name, OperationRegion, CreateByteField, etc.) This should eliminate ALREADY_EXISTS exceptions seen on some machines where reentrant control methods are protected by an AML mutex. The mutex will now correctly block multiple threads from attempting to create the same object more than once. Increased the number of available Owner Ids for namespace object tracking from 32 to 255. This should eliminate the OWNER_ID_LIMIT exceptions seen on some machines with a large number of ACPI tables (either static or dynamic). Fixed a problem with the AcpiExec utility where a fault could occur when the -b switch (batch mode) is used. Enhanced the namespace dump routine to output the owner ID for each namespace object. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.3K Code, 12.3K Data, 88.6K Total Debug Version: 163.0K Code, 67.4K Data, 230.4K Total Current Release: Non-Debug Version: 76.3K Code, 12.3K Data, 88.6K Total Debug Version: 163.2K Code, 67.4K Data, 230.6K Total 2) iASL Compiler/Disassembler: Fixed a parse error during compilation of certain Switch/Case constructs. To simplify the parse, the grammar now allows for multiple Default statements and this error is now detected and flagged during the analysis phase. Disassembler: The disassembly now includes the contents of the original table header within a comment at the start of the file. This includes the name and version of the original ASL compiler. ---------------------------------------- 17 November 2005. Summary of changes for version 20051117: 1) ACPI CA Core Subsystem: Fixed a problem in the AML parser where the method thread count could be decremented below zero if any errors occurred during the method parse phase. This should eliminate AE_AML_METHOD_LIMIT exceptions seen on some machines. This also fixed a related regression with the mechanism that detects and corrects methods that cannot properly handle reentrancy (related to the deployment of the new OwnerId mechanism.) Eliminated the pre-parsing of control methods (to detect errors) during table load. Related to the problem above, this was causing unwind issues if any errors occurred during the parse, and it seemed to be overkill. A table load should not be aborted if there are problems with any single control method, thus rendering this feature rather pointless. Fixed a problem with the new table-driven resource manager where an internal buffer overflow could occur for small resource templates. Implemented a new external interface, AcpiGetVendorResource. This interface will find and return a vendor-defined resource descriptor within a _CRS or _PRS method via an ACPI 3.0 UUID match. With assistance from Bjorn Helgaas. Removed the length limit (200) on string objects as per the upcoming ACPI 3.0A specification. This affects the following areas of the interpreter: 1) any implicit conversion of a Buffer to a String, 2) a String object result of the ASL Concatentate operator, 3) the String object result of the ASL ToString operator. Fixed a problem in the Windows OS interface layer (OSL) where a WAIT_FOREVER on a semaphore object would incorrectly timeout. This allows the multithreading features of the AcpiExec utility to work properly under Windows. Updated the Linux makefiles for the iASL compiler and AcpiExec to include the recently added file named "utresrc.c". Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.2K Code, 12.3K Data, 88.5K Total Debug Version: 163.0K Code, 67.4K Data, 230.4K Total Current Release: Non-Debug Version: 76.3K Code, 12.3K Data, 88.6K Total Debug Version: 163.0K Code, 67.4K Data, 230.4K Total 2) iASL Compiler/Disassembler: Removed the limit (200) on string objects as per the upcoming ACPI 3.0A specification. For the iASL compiler, this means that string literals within the source ASL can be of any length. Enhanced the listing output to dump the AML code for resource descriptors immediately after the ASL code for each descriptor, instead of in a block at the end of the entire resource template. Enhanced the compiler debug output to dump the entire original parse tree constructed during the parse phase, before any transforms are applied to the tree. The transformed tree is dumped also. ---------------------------------------- 02 November 2005. Summary of changes for version 20051102: 1) ACPI CA Core Subsystem: Modified the subsystem initialization sequence to improve GPE support. The GPE initialization has been split into two parts in order to defer execution of the _PRW methods (Power Resources for Wake) until after the hardware is fully initialized and the SCI handler is installed. This allows the _PRW methods to access fields protected by the Global Lock. This will fix systems where a NO_GLOBAL_LOCK exception has been seen during initialization. Converted the ACPI internal object disassemble and display code within the AML debugger to fully table-driven operation, reducing code size and increasing maintainability. Fixed a regression with the ConcatenateResTemplate() ASL operator introduced in the 20051021 release. Implemented support for "local" internal ACPI object types within the debugger "Object" command and the AcpiWalkNamespace external interfaces. These local types include RegionFields, BankFields, IndexFields, Alias, and reference objects. Moved common AML resource handling code into a new file, "utresrc.c". This code is shared by both the Resource Manager and the AML Debugger. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.1K Code, 12.2K Data, 88.3K Total Debug Version: 163.5K Code, 67.0K Data, 230.5K Total Current Release: Non-Debug Version: 76.2K Code, 12.3K Data, 88.5K Total Debug Version: 163.0K Code, 67.4K Data, 230.4K Total 2) iASL Compiler/Disassembler: Fixed a problem with very large initializer lists (more than 4000 elements) for both Buffer and Package objects where the parse stack could overflow. Enhanced the pre-compile source code scan for non-ASCII characters to ignore characters within comment fields. The scan is now always performed and is no longer optional, detecting invalid characters within a source file immediately rather than during the parse phase or later. Enhanced the ASL grammar definition to force early reductions on all list- style grammar elements so that the overall parse stack usage is greatly reduced. This should improve performance and reduce the possibility of parse stack overflow. Eliminated all reduce/reduce conflicts in the iASL parser generation. Also, with the addition of a %expected statement, the compiler generates from source with no warnings. Fixed a possible segment fault in the disassembler if the input filename does not contain a "dot" extension (Thomas Renninger). ---------------------------------------- 21 October 2005. Summary of changes for version 20051021: 1) ACPI CA Core Subsystem: Implemented support for the EM64T and other x86-64 processors. This essentially entails recognizing that these processors support non-aligned memory transfers. Previously, all 64-bit processors were assumed to lack hardware support for non-aligned transfers. Completed conversion of the Resource Manager to nearly full table-driven operation. Specifically, the resource conversion code (convert AML to internal format and the reverse) and the debug code to dump internal resource descriptors are fully table-driven, reducing code and data size and improving maintainability. The OSL interfaces for Acquire and Release Lock now use a 64-bit flag word on 64-bit processors instead of a fixed 32-bit word. (With assistance from Alexey Starikovskiy) Implemented support within the resource conversion code for the Type- Specific byte within the various ACPI 3.0 *WordSpace macros. Fixed some issues within the resource conversion code for the type- specific flags for both Memory and I/O address resource descriptors. For Memory, implemented support for the MTP and TTP flags. For I/O, split the TRS and TTP flags into two separate fields. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.1K Code, 12.1K Data, 89.2K Total Debug Version: 168.0K Code, 68.3K Data, 236.3K Total Current Release: Non-Debug Version: 76.1K Code, 12.2K Data, 88.3K Total Debug Version: 163.5K Code, 67.0K Data, 230.5K Total 2) iASL Compiler/Disassembler: Relaxed a compiler restriction that disallowed a ResourceIndex byte if the corresponding ResourceSource string was not also present in a resource descriptor declaration. This restriction caused problems with existing AML/ASL code that includes the Index byte without the string. When such AML was disassembled, it could not be compiled without modification. Further, the modified code created a resource template with a different size than the original, breaking code that used fixed offsets into the resource template buffer. Removed a recent feature of the disassembler to ignore a lone ResourceIndex byte. This byte is now emitted if present so that the exact AML can be reproduced when the disassembled code is recompiled. Improved comments and text alignment for the resource descriptor code emitted by the disassembler. Implemented disassembler support for the ACPI 3.0 AccessSize field within a Register() resource descriptor. ---------------------------------------- 30 September 2005. Summary of changes for version 20050930: 1) ACPI CA Core Subsystem: Completed a major overhaul of the Resource Manager code - specifically, optimizations in the area of the AML/internal resource conversion code. The code has been optimized to simplify and eliminate duplicated code, CPU stack use has been decreased by optimizing function parameters and local variables, and naming conventions across the manager have been standardized for clarity and ease of maintenance (this includes function, parameter, variable, and struct/typedef names.) The update may force changes in some driver code, depending on how resources are handled by the host OS. All Resource Manager dispatch and information tables have been moved to a single location for clarity and ease of maintenance. One new file was created, named "rsinfo.c". The ACPI return macros (return_ACPI_STATUS, etc.) have been modified to guarantee that the argument is not evaluated twice, making them less prone to macro side-effects. However, since there exists the possibility of additional stack use if a particular compiler cannot optimize them (such as in the debug generation case), the original macros are optionally available. Note that some invocations of the return_VALUE macro may now cause size mismatch warnings; the return_UINT8 and return_UINT32 macros are provided to eliminate these. (From Randy Dunlap) Implemented a new mechanism to enable debug tracing for individual control methods. A new external interface, AcpiDebugTrace, is provided to enable this mechanism. The intent is to allow the host OS to easily enable and disable tracing for problematic control methods. This interface can be easily exposed to a user or debugger interface if desired. See the file psxface.c for details. AcpiUtCallocate will now return a valid pointer if a length of zero is specified - a length of one is used and a warning is issued. This matches the behavior of AcpiUtAllocate. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.5K Code, 12.0K Data, 89.5K Total Debug Version: 168.1K Code, 68.4K Data, 236.5K Total Current Release: Non-Debug Version: 77.1K Code, 12.1K Data, 89.2K Total Debug Version: 168.0K Code, 68.3K Data, 236.3K Total 2) iASL Compiler/Disassembler: A remark is issued if the effective compile-time length of a package or buffer is zero. Previously, this was a warning. ---------------------------------------- 16 September 2005. Summary of changes for version 20050916: 1) ACPI CA Core Subsystem: Fixed a problem within the Resource Manager where support for the Generic Register descriptor was not fully implemented. This descriptor is now fully recognized, parsed, disassembled, and displayed. Completely restructured the Resource Manager code to utilize table-driven dispatch and lookup, eliminating many of the large switch() statements. This reduces overall subsystem code size and code complexity. Affects the resource parsing and construction, disassembly, and debug dump output. Cleaned up and restructured the debug dump output for all resource descriptors. Improved readability of the output and reduced code size. Fixed a problem where changes to internal data structures caused the optional ACPI_MUTEX_DEBUG code to fail compilation if specified. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.4K Code, 11.8K Data, 90.2K Total Debug Version: 169.6K Code, 69.9K Data, 239.5K Total Current Release: Non-Debug Version: 77.5K Code, 12.0K Data, 89.5K Total Debug Version: 168.1K Code, 68.4K Data, 236.5K Total 2) iASL Compiler/Disassembler: Updated the disassembler to automatically insert an EndDependentFn() macro into the ASL stream if this macro is missing in the original AML code, simplifying compilation of the resulting ASL module. Fixed a problem in the disassembler where a disassembled ResourceSource string (within a large resource descriptor) was not surrounded by quotes and not followed by a comma, causing errors when the resulting ASL module was compiled. Also, escape sequences within a ResourceSource string are now handled correctly (especially "\\") ---------------------------------------- 02 September 2005. Summary of changes for version 20050902: 1) ACPI CA Core Subsystem: Fixed a problem with the internal Owner ID allocation and deallocation mechanisms for control method execution and recursive method invocation. This should eliminate the OWNER_ID_LIMIT exceptions and "Invalid OwnerId" messages seen on some systems. Recursive method invocation depth is currently limited to 255. (Alexey Starikovskiy) Completely eliminated all vestiges of support for the "module-level executable code" until this support is fully implemented and debugged. This should eliminate the NO_RETURN_VALUE exceptions seen during table load on some systems that invoke this support. Fixed a problem within the resource manager code where the transaction flags for a 64-bit address descriptor were handled incorrectly in the type- specific flag byte. Consolidated duplicate code within the address descriptor resource manager code, reducing overall subsystem code size. Fixed a fault when using the AML debugger "disassemble" command to disassemble individual control methods. Removed references to the "release_current" directory within the Unix release package. Code and Data Size: The current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.6K Code, 11.7K Data, 90.3K Total Debug Version: 170.0K Code, 69.9K Data, 239.9K Total Current Release: Non-Debug Version: 78.4K Code, 11.8K Data, 90.2K Total Debug Version: 169.6K Code, 69.9K Data, 239.5K Total 2) iASL Compiler/Disassembler: Implemented an error check for illegal duplicate values in the interrupt and dma lists for the following ASL macros: Dma(), Irq(), IrqNoFlags(), and Interrupt(). Implemented error checking for the Irq() and IrqNoFlags() macros to detect too many values in the interrupt list (16 max) and invalid values in the list (range 0 - 15) The maximum length string literal within an ASL file is now restricted to 200 characters as per the ACPI specification. Fixed a fault when using the -ln option (generate namespace listing). Implemented an error check to determine if a DescriptorName within a resource descriptor has already been used within the current scope. ---------------------------------------- 15 August 2005. Summary of changes for version 20050815: 1) ACPI CA Core Subsystem: Implemented a full bytewise compare to determine if a table load request is attempting to load a duplicate table. The compare is performed if the table signatures and table lengths match. This will allow different tables with the same OEM Table ID and revision to be loaded - probably against the ACPI specification, but discovered in the field nonetheless. Added the changes.txt logfile to each of the zipped release packages. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.6K Code, 11.7K Data, 90.3K Total Debug Version: 167.0K Code, 69.9K Data, 236.9K Total Current Release: Non-Debug Version: 78.6K Code, 11.7K Data, 90.3K Total Debug Version: 170.0K Code, 69.9K Data, 239.9K Total 2) iASL Compiler/Disassembler: Fixed a problem where incorrect AML code could be generated for Package objects if optimization is disabled (via the -oa switch). Fixed a problem with where incorrect AML code is generated for variable- length packages when the package length is not specified and the number of initializer values is greater than 255. ---------------------------------------- 29 July 2005. Summary of changes for version 20050729: 1) ACPI CA Core Subsystem: Implemented support to ignore an attempt to install/load a particular ACPI table more than once. Apparently there exists BIOS code that repeatedly attempts to load the same SSDT upon certain events. With assistance from Venkatesh Pallipadi. Restructured the main interface to the AML parser in order to correctly handle all exceptional conditions. This will prevent leakage of the OwnerId resource and should eliminate the AE_OWNER_ID_LIMIT exceptions seen on some machines. With assistance from Alexey Starikovskiy. Support for "module level code" has been disabled in this version due to a number of issues that have appeared on various machines. The support can be enabled by defining ACPI_ENABLE_MODULE_LEVEL_CODE during subsystem compilation. When the issues are fully resolved, the code will be enabled by default again. Modified the internal functions for debug print support to define the FunctionName parameter as a (const char *) for compatibility with compiler built-in macros such as __FUNCTION__, etc. Linted the entire ACPICA source tree for both 32-bit and 64-bit. Implemented support to display an object count summary for the AML Debugger commands Object and Methods. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.6K Code, 11.6K Data, 90.2K Total Debug Version: 170.0K Code, 69.7K Data, 239.7K Total Current Release: Non-Debug Version: 78.6K Code, 11.7K Data, 90.3K Total Debug Version: 167.0K Code, 69.9K Data, 236.9K Total 2) iASL Compiler/Disassembler: Fixed a regression that appeared in the 20050708 version of the compiler where an error message was inadvertently emitted for invocations of the _OSI reserved control method. ---------------------------------------- 08 July 2005. Summary of changes for version 20050708: 1) ACPI CA Core Subsystem: The use of the CPU stack in the debug version of the subsystem has been considerably reduced. Previously, a debug structure was declared in every function that used the debug macros. This structure has been removed in favor of declaring the individual elements as parameters to the debug functions. This reduces the cumulative stack use during nested execution of ACPI function calls at the cost of a small increase in the code size of the debug version of the subsystem. With assistance from Alexey Starikovskiy and Len Brown. Added the ACPI_GET_FUNCTION_NAME macro to enable the compiler-dependent headers to define a macro that will return the current function name at runtime (such as __FUNCTION__ or _func_, etc.) The function name is used by the debug trace output. If ACPI_GET_FUNCTION_NAME is not defined in the compiler-dependent header, the function name is saved on the CPU stack (one pointer per function.) This mechanism is used because apparently there exists no standard ANSI-C defined macro that that returns the function name. Redesigned and reimplemented the "Owner ID" mechanism used to track namespace objects created/deleted by ACPI tables and control method execution. A bitmap is now used to allocate and free the IDs, thus solving the wraparound problem present in the previous implementation. The size of the namespace node descriptor was reduced by 2 bytes as a result (Alexey Starikovskiy). Removed the UINT32_BIT and UINT16_BIT types that were used for the bitfield flag definitions within the headers for the predefined ACPI tables. These have been replaced by UINT8_BIT in order to increase the code portability of the subsystem. If the use of UINT8 remains a problem, we may be forced to eliminate bitfields entirely because of a lack of portability. Enhanced the performance of the AcpiUtUpdateObjectReference procedure. This is a frequently used function and this improvement increases the performance of the entire subsystem (Alexey Starikovskiy). Fixed several possible memory leaks and the inverse - premature object deletion (Alexey Starikovskiy). Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.6K Code, 11.5K Data, 90.1K Total Debug Version: 165.2K Code, 69.6K Data, 234.8K Total Current Release: Non-Debug Version: 78.6K Code, 11.6K Data, 90.2K Total Debug Version: 170.0K Code, 69.7K Data, 239.7K Total ---------------------------------------- 24 June 2005. Summary of changes for version 20050624: 1) ACPI CA Core Subsystem: Modified the new OSL cache interfaces to use ACPI_CACHE_T as the type for the host-defined cache object. This allows the OSL implementation to define and type this object in any manner desired, simplifying the OSL implementation. For example, ACPI_CACHE_T is defined as kmem_cache_t for Linux, and should be defined in the OS-specific header file for other operating systems as required. Changed the interface to AcpiOsAcquireObject to directly return the requested object as the function return (instead of ACPI_STATUS.) This change was made for performance reasons, since this is the purpose of the interface in the first place. AcpiOsAcquireObject is now similar to the AcpiOsAllocate interface. Implemented a new AML debugger command named Businfo. This command displays information about all devices that have an associate _PRT object. The _ADR, _HID, _UID, and _CID are displayed for these devices. Modified the initialization sequence in AcpiInitializeSubsystem to call the OSL interface AcpiOslInitialize first, before any local initialization. This change was required because the global initialization now calls OSL interfaces. Enhanced the Dump command to display the entire contents of Package objects (including all sub-objects and their values.) Restructured the code base to split some files because of size and/or because the code logically belonged in a separate file. New files are listed below. All makefiles and project files included in the ACPI CA release have been updated. utilities/utcache.c /* Local cache interfaces */ utilities/utmutex.c /* Local mutex support */ utilities/utstate.c /* State object support */ interpreter/parser/psloop.c /* Main AML parse loop */ Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.3K Code, 11.6K Data, 89.9K Total Debug Version: 164.0K Code, 69.1K Data, 233.1K Total Current Release: Non-Debug Version: 78.6K Code, 11.5K Data, 90.1K Total Debug Version: 165.2K Code, 69.6K Data, 234.8K Total 2) iASL Compiler/Disassembler: Fixed a regression introduced in version 20050513 where the use of a Package object within a Case() statement caused a compile time exception. The original behavior has been restored (a Match() operator is emitted.) ---------------------------------------- 17 June 2005. Summary of changes for version 20050617: 1) ACPI CA Core Subsystem: Moved the object cache operations into the OS interface layer (OSL) to allow the host OS to handle these operations if desired (for example, the Linux OSL will invoke the slab allocator). This support is optional; the compile time define ACPI_USE_LOCAL_CACHE may be used to utilize the original cache code in the ACPI CA core. The new OSL interfaces are shown below. See utalloc.c for an example implementation, and acpiosxf.h for the exact interface definitions. With assistance from Alexey Starikovskiy. AcpiOsCreateCache AcpiOsDeleteCache AcpiOsPurgeCache AcpiOsAcquireObject AcpiOsReleaseObject Modified the interfaces to AcpiOsAcquireLock and AcpiOsReleaseLock to return and restore a flags parameter. This fits better with many OS lock models. Note: the current execution state (interrupt handler or not) is no longer passed to these interfaces. If necessary, the OSL must determine this state by itself, a simple and fast operation. With assistance from Alexey Starikovskiy. Fixed a problem in the ACPI table handling where a valid XSDT was assumed present if the revision of the RSDP was 2 or greater. According to the ACPI specification, the XSDT is optional in all cases, and the table manager therefore now checks for both an RSDP >=2 and a valid XSDT pointer. Otherwise, the RSDT pointer is used. Some ACPI 2.0 compliant BIOSs contain only the RSDT. Fixed an interpreter problem with the Mid() operator in the case of an input string where the resulting output string is of zero length. It now correctly returns a valid, null terminated string object instead of a string object with a null pointer. Fixed a problem with the control method argument handling to allow a store to an Arg object that already contains an object of type Device. The Device object is now correctly overwritten. Previously, an error was returned. Enhanced the debugger Find command to emit object values in addition to the found object pathnames. The output format is the same as the dump namespace command. Enhanced the debugger Set command. It now has the ability to set the value of any Named integer object in the namespace (Previously, only method locals and args could be set.) Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.1K Code, 11.6K Data, 89.7K Total Debug Version: 164.0K Code, 69.3K Data, 233.3K Total Current Release: Non-Debug Version: 78.3K Code, 11.6K Data, 89.9K Total Debug Version: 164.0K Code, 69.1K Data, 233.1K Total 2) iASL Compiler/Disassembler: Fixed a regression in the disassembler where if/else/while constructs were output incorrectly. This problem was introduced in the previous release (20050526). This problem also affected the single-step disassembly in the debugger. Fixed a problem where compiling the reserved _OSI method would randomly (but rarely) produce compile errors. Enhanced the disassembler to emit compilable code in the face of incorrect AML resource descriptors. If the optional ResourceSourceIndex is present, but the ResourceSource is not, do not emit the ResourceSourceIndex in the disassembly. Otherwise, the resulting code cannot be compiled without errors. ---------------------------------------- 26 May 2005. Summary of changes for version 20050526: 1) ACPI CA Core Subsystem: Implemented support to execute Type 1 and Type 2 AML opcodes appearing at the module level (not within a control method.) These opcodes are executed exactly once at the time the table is loaded. This type of code was legal up until the release of ACPI 2.0B (2002) and is now supported within ACPI CA in order to provide backwards compatibility with earlier BIOS implementations. This eliminates the "Encountered executable code at module level" warning that was previously generated upon detection of such code. Fixed a problem in the interpreter where an AE_NOT_FOUND exception could inadvertently be generated during the lookup of namespace objects in the second pass parse of ACPI tables and control methods. It appears that this problem could occur during the resolution of forward references to namespace objects. Added the ACPI_MUTEX_DEBUG #ifdef to the AcpiUtReleaseMutex function, corresponding to the same #ifdef in the AcpiUtAcquireMutex function. This allows the deadlock detection debug code to be compiled out in the normal case, improving mutex performance (and overall subsystem performance) considerably. Implemented a handful of miscellaneous fixes for possible memory leaks on error conditions and error handling control paths. These fixes were suggested by FreeBSD and the Coverity Prevent source code analysis tool. Added a check for a null RSDT pointer in AcpiGetFirmwareTable (tbxfroot.c) to prevent a fault in this error case. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.2K Code, 11.6K Data, 89.8K Total Debug Version: 163.7K Code, 69.3K Data, 233.0K Total Current Release: Non-Debug Version: 78.1K Code, 11.6K Data, 89.7K Total Debug Version: 164.0K Code, 69.3K Data, 233.3K Total 2) iASL Compiler/Disassembler: Implemented support to allow Type 1 and Type 2 ASL operators to appear at the module level (not within a control method.) These operators will be executed once at the time the table is loaded. This type of code was legal up until the release of ACPI 2.0B (2002) and is now supported by the iASL compiler in order to provide backwards compatibility with earlier BIOS ASL code. The ACPI integer width (specified via the table revision ID or the -r override, 32 or 64 bits) is now used internally during compile-time constant folding to ensure that constants are truncated to 32 bits if necessary. Previously, the revision ID value was only emitted in the AML table header. An error message is now generated for the Mutex and Method operators if the SyncLevel parameter is outside the legal range of 0 through 15. Fixed a problem with the Method operator ParameterTypes list handling (ACPI 3.0). Previously, more than 2 types or 2 arguments generated a syntax error. The actual underlying implementation of method argument typechecking is still under development, however. ---------------------------------------- 13 May 2005. Summary of changes for version 20050513: 1) ACPI CA Core Subsystem: Implemented support for PCI Express root bridges -- added support for device PNP0A08 in the root bridge search within AcpiEvPciConfigRegionSetup. The interpreter now automatically truncates incoming 64-bit constants to 32 bits if currently executing out of a 32-bit ACPI table (Revision < 2). This also affects the iASL compiler constant folding. (Note: as per below, the iASL compiler no longer allows 64-bit constants within 32-bit tables.) Fixed a problem where string and buffer objects with "static" pointers (pointers to initialization data within an ACPI table) were not handled consistently. The internal object copy operation now always copies the data to a newly allocated buffer, regardless of whether the source object is static or not. Fixed a problem with the FromBCD operator where an implicit result conversion was improperly performed while storing the result to the target operand. Since this is an "explicit conversion" operator, the implicit conversion should never be performed on the output. Fixed a problem with the CopyObject operator where a copy to an existing named object did not always completely overwrite the existing object stored at name. Specifically, a buffer-to-buffer copy did not delete the existing buffer. Replaced "InterruptLevel" with "InterruptNumber" in all GPE interfaces and structs for consistency. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.2K Code, 11.6K Data, 89.8K Total Debug Version: 163.7K Code, 69.3K Data, 233.0K Total Current Release: (Same sizes) Non-Debug Version: 78.2K Code, 11.6K Data, 89.8K Total Debug Version: 163.7K Code, 69.3K Data, 233.0K Total 2) iASL Compiler/Disassembler: The compiler now emits a warning if an attempt is made to generate a 64- bit integer constant from within a 32-bit ACPI table (Revision < 2). The integer is truncated to 32 bits. Fixed a problem with large package objects: if the static length of the package is greater than 255, the "variable length package" opcode is emitted. Previously, this caused an error. This requires an update to the ACPI spec, since it currently (incorrectly) states that packages larger than 255 elements are not allowed. The disassembler now correctly handles variable length packages and packages larger than 255 elements. ---------------------------------------- 08 April 2005. Summary of changes for version 20050408: 1) ACPI CA Core Subsystem: Fixed three cases in the interpreter where an "index" argument to an ASL function was still (internally) 32 bits instead of the required 64 bits. This was the Index argument to the Index, Mid, and Match operators. The "strupr" function is now permanently local (AcpiUtStrupr), since this is not a POSIX-defined function and not present in most kernel-level C libraries. All references to the C library strupr function have been removed from the headers. Completed the deployment of static functions/prototypes. All prototypes with the static attribute have been moved from the headers to the owning C file. Implemented an extract option (-e) for the AcpiBin utility (AML binary utility). This option allows the utility to extract individual ACPI tables from the output of AcpiDmp. It provides the same functionality of the acpixtract.pl perl script without the worry of setting the correct perl options. AcpiBin runs on Windows and has not yet been generated/validated in the Linux/Unix environment (but should be soon). Updated and fixed the table dump option for AcpiBin (-d). This option converts a single ACPI table to a hex/ascii file, similar to the output of AcpiDmp. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.0K Code, 11.6K Data, 89.6K Total Debug Version: 163.5K Code, 69.3K Data, 232.8K Total Current Release: Non-Debug Version: 78.2K Code, 11.6K Data, 89.8K Total Debug Version: 163.7K Code, 69.3K Data, 233.0K Total 2) iASL Compiler/Disassembler: Disassembler fix: Added a check to ensure that the table length found in the ACPI table header within the input file is not longer than the actual input file size. This indicates some kind of file or table corruption. ---------------------------------------- 29 March 2005. Summary of changes for version 20050329: 1) ACPI CA Core Subsystem: An error is now generated if an attempt is made to create a Buffer Field of length zero (A CreateField with a length operand of zero.) The interpreter now issues a warning whenever executable code at the module level is detected during ACPI table load. This will give some idea of the prevalence of this type of code. Implemented support for references to named objects (other than control methods) within package objects. Enhanced package object output for the debug object. Package objects are now completely dumped, showing all elements. Enhanced miscellaneous object output for the debug object. Any object can now be written to the debug object (for example, a device object can be written, and the type of the object will be displayed.) The "static" qualifier has been added to all local functions across both the core subsystem and the iASL compiler. The number of "long" lines (> 80 chars) within the source has been significantly reduced, by about 1/3. Cleaned up all header files to ensure that all CA/iASL functions are prototyped (even static functions) and the formatting is consistent. Two new header files have been added, acopcode.h and acnames.h. Removed several obsolete functions that were no longer used. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 165.4K Code, 69.7K Data, 236.1K Total Current Release: Non-Debug Version: 78.0K Code, 11.6K Data, 89.6K Total Debug Version: 163.5K Code, 69.3K Data, 232.8K Total 2) iASL Compiler/Disassembler: Fixed a problem with the resource descriptor generation/support. For the ResourceSourceIndex and the ResourceSource fields, both must be present, or both must be not present - can't have one without the other. The compiler now returns non-zero from the main procedure if any errors have occurred during the compilation. ---------------------------------------- 09 March 2005. Summary of changes for version 20050309: 1) ACPI CA Core Subsystem: The string-to-buffer implicit conversion code has been modified again after a change to the ACPI specification. In order to match the behavior of the other major ACPI implementation, the target buffer is no longer truncated if the source string is smaller than an existing target buffer. This change requires an update to the ACPI spec, and should eliminate the recent AE_AML_BUFFER_LIMIT issues. The "implicit return" support was rewritten to a new algorithm that solves the general case. Rather than attempt to determine when a method is about to exit, the result of every ASL operator is saved momentarily until the very next ASL operator is executed. Therefore, no matter how the method exits, there will always be a saved implicit return value. This feature is only enabled with the AcpiGbl_EnableInterpreterSlack flag, and should eliminate AE_AML_NO_RETURN_VALUE errors when enabled. Implemented implicit conversion support for the predicate (operand) of the If, Else, and While operators. String and Buffer arguments are automatically converted to Integers. Changed the string-to-integer conversion behavior to match the new ACPI errata: "If no integer object exists, a new integer is created. The ASCII string is interpreted as a hexadecimal constant. Each string character is interpreted as a hexadecimal value ('0'-'9', 'A'-'F', 'a', 'f'), starting with the first character as the most significant digit, and ending with the first non-hexadecimal character or end-of-string." This means that the first non-hex character terminates the conversion and this is the code that was changed. Fixed a problem where the ObjectType operator would fail (fault) when used on an Index of a Package which pointed to a null package element. The operator now properly returns zero (Uninitialized) in this case. Fixed a problem where the While operator used excessive memory by not properly popping the result stack during execution. There was no memory leak after execution, however. (Code provided by Valery Podrezov.) Fixed a problem where references to control methods within Package objects caused the method to be invoked, instead of producing a reference object pointing to the method. Restructured and simplified the pswalk.c module (AcpiPsDeleteParseTree) to improve performance and reduce code size. (Code provided by Alexey Starikovskiy.) Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 165.4K Code, 69.6K Data, 236.0K Total Current Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 165.4K Code, 69.7K Data, 236.1K Total 2) iASL Compiler/Disassembler: Fixed a problem with the Return operator with no arguments. Since the AML grammar for the byte encoding requires an operand for the Return opcode, the compiler now emits a Return(Zero) for this case. An ACPI specification update has been written for this case. For tables other than the DSDT, namepath optimization is automatically disabled. This is because SSDTs can be loaded anywhere in the namespace, the compiler has no knowledge of where, and thus cannot optimize namepaths. Added "ProcessorObj" to the ObjectTypeKeyword list. This object type was inadvertently omitted from the ACPI specification, and will require an update to the spec. The source file scan for ASCII characters is now optional (-a). This change was made because some vendors place non-ascii characters within comments. However, the scan is simply a brute-force byte compare to ensure all characters in the file are in the range 0x00 to 0x7F. Fixed a problem with the CondRefOf operator where the compiler was inappropriately checking for the existence of the target. Since the point of the operator is to check for the existence of the target at run-time, the compiler no longer checks for the target existence. Fixed a problem where errors generated from the internal AML interpreter during constant folding were not handled properly, causing a fault. Fixed a problem with overly aggressive range checking for the Stall operator. The valid range (max 255) is now only checked if the operand is of type Integer. All other operand types cannot be statically checked. Fixed a problem where control method references within the RefOf, DeRefOf, and ObjectType operators were not treated properly. They are now treated as actual references, not method invocations. Fixed and enhanced the "list namespace" option (-ln). This option was broken a number of releases ago. Improved error handling for the Field, IndexField, and BankField operators. The compiler now cleanly reports and recovers from errors in the field component (FieldUnit) list. Fixed a disassembler problem where the optional ResourceDescriptor fields TRS and TTP were not always handled correctly. Disassembler - Comments in output now use "//" instead of "/*" ---------------------------------------- 28 February 2005. Summary of changes for version 20050228: 1) ACPI CA Core Subsystem: Fixed a problem where the result of an Index() operator (an object reference) must increment the reference count on the target object for the life of the object reference. Implemented AML Interpreter and Debugger support for the new ACPI 3.0 Extended Address (IO, Memory, Space), QwordSpace, DwordSpace, and WordSpace resource descriptors. Implemented support in the _OSI method for the ACPI 3.0 "Extended Address Space Descriptor" string, indicating interpreter support for the descriptors above. Implemented header support for the new ACPI 3.0 FADT flag bits. Implemented header support for the new ACPI 3.0 PCI Express bits for the PM1 status/enable registers. Updated header support for the MADT processor local Apic struct and MADT platform interrupt source struct for new ACPI 3.0 fields. Implemented header support for the SRAT and SLIT ACPI tables. Implemented the -s switch in AcpiExec to enable the "InterpreterSlack" flag at runtime. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.2K Code, 11.5K Data, 89.7K Total Debug Version: 164.9K Code, 69.2K Data, 234.1K Total Current Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 165.4K Code, 69.6K Data, 236.0K Total 2) iASL Compiler/Disassembler: Fixed a problem with the internal 64-bit String-to-integer conversion with strings less than two characters long. Fixed a problem with constant folding where the result of the Index() operator can not be considered a constant. This means that Index() cannot be a type3 opcode and this will require an update to the ACPI specification. Disassembler: Implemented support for the TTP, MTP, and TRS resource descriptor fields. These fields were inadvertently ignored and not output in the disassembly of the resource descriptor. ---------------------------------------- 11 February 2005. Summary of changes for version 20050211: 1) ACPI CA Core Subsystem: Implemented ACPI 3.0 support for implicit conversion within the Match() operator. MatchObjects can now be of type integer, buffer, or string instead of just type integer. Package elements are implicitly converted to the type of the MatchObject. This change aligns the behavior of Match() with the behavior of the other logical operators (LLess(), etc.) It also requires an errata change to the ACPI specification as this support was intended for ACPI 3.0, but was inadvertently omitted. Fixed a problem with the internal implicit "to buffer" conversion. Strings that are converted to buffers will cause buffer truncation if the string is smaller than the target buffer. Integers that are converted to buffers will not cause buffer truncation, only zero extension (both as per the ACPI spec.) The problem was introduced when code was added to truncate the buffer, but this should not be performed in all cases, only the string case. Fixed a problem with the Buffer and Package operators where the interpreter would get confused if two such operators were used as operands to an ASL operator (such as LLess(Buffer(1){0},Buffer(1){1}). The internal result stack was not being popped after the execution of these operators, resulting in an AE_NO_RETURN_VALUE exception. Fixed a problem with constructs of the form Store(Index(...),...). The reference object returned from Index was inadvertently resolved to an actual value. This problem was introduced in version 20050114 when the behavior of Store() was modified to restrict the object types that can be used as the source operand (to match the ACPI specification.) Reduced excessive stack use within the AcpiGetObjectInfo procedure. Added a fix to aclinux.h to allow generation of AcpiExec on Linux. Updated the AcpiSrc utility to add the FADT_DESCRIPTOR_REV2_MINUS struct. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.1K Code, 11.5K Data, 89.6K Total Debug Version: 164.8K Code, 69.2K Data, 234.0K Total Current Release: Non-Debug Version: 78.2K Code, 11.5K Data, 89.7K Total Debug Version: 164.9K Code, 69.2K Data, 234.1K Total 2) iASL Compiler/Disassembler: Fixed a code generation problem in the constant folding optimization code where incorrect code was generated if a constant was reduced to a buffer object (i.e., a reduced type 5 opcode.) Fixed a typechecking problem for the ToBuffer operator. Caused by an incorrect return type in the internal opcode information table. ---------------------------------------- 25 January 2005. Summary of changes for version 20050125: 1) ACPI CA Core Subsystem: Fixed a recently introduced problem with the Global Lock where the underlying semaphore was not created. This problem was introduced in version 20050114, and caused an AE_AML_NO_OPERAND exception during an Acquire() operation on _GL. The local object cache is now optional, and is disabled by default. Both AcpiExec and the iASL compiler enable the cache because they run in user mode and this enhances their performance. #define ACPI_ENABLE_OBJECT_CACHE to enable the local cache. Fixed an issue in the internal function AcpiUtEvaluateObject concerning the optional "implicit return" support where an error was returned if no return object was expected, but one was implicitly returned. AE_OK is now returned in this case and the implicitly returned object is deleted. AcpiUtEvaluateObject is only occasionally used, and only to execute reserved methods such as _STA and _INI where the return type is known up front. Fixed a few issues with the internal convert-to-integer code. It now returns an error if an attempt is made to convert a null string, a string of only blanks/tabs, or a zero-length buffer. This affects both implicit conversion and explicit conversion via the ToInteger() operator. The internal debug code in AcpiUtAcquireMutex has been commented out. It is not needed for normal operation and should increase the performance of the entire subsystem. The code remains in case it is needed for debug purposes again. The AcpiExec source and makefile are included in the Unix/Linux package for the first time. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.4K Code, 11.5K Data, 89.9K Total Debug Version: 165.4K Code, 69.4K Data, 234.8K Total Current Release: Non-Debug Version: 78.1K Code, 11.5K Data, 89.6K Total Debug Version: 164.8K Code, 69.2K Data, 234.0K Total 2) iASL Compiler/Disassembler: Switch/Case support: A warning is now issued if the type of the Switch value cannot be determined at compile time. For example, Switch(Arg0) will generate the warning, and the type is assumed to be an integer. As per the ACPI spec, use a construct such as Switch(ToInteger(Arg0)) to eliminate the warning. Switch/Case support: Implemented support for buffer and string objects as the switch value. This is an ACPI 3.0 feature, now that LEqual supports buffers and strings. Switch/Case support: The emitted code for the LEqual() comparisons now uses the switch value as the first operand, not the second. The case value is now the second operand, and this allows the case value to be implicitly converted to the type of the switch value, not the other way around. Switch/Case support: Temporary variables are now emitted immediately within the control method, not at the global level. This means that there are now 36 temps available per-method, not 36 temps per-module as was the case with the earlier implementation (_T_0 through _T_9 and _T_A through _T_Z.) ---------------------------------------- 14 January 2005. Summary of changes for version 20050114: Added 2005 copyright to all module headers. This affects every module in the core subsystem, iASL compiler, and the utilities. 1) ACPI CA Core Subsystem: Fixed an issue with the String-to-Buffer conversion code where the string null terminator was not included in the buffer after conversion, but there is existing ASL that assumes the string null terminator is included. This is the root of the ACPI_AML_BUFFER_LIMIT regression. This problem was introduced in the previous version when the code was updated to correctly set the converted buffer size as per the ACPI specification. The ACPI spec is ambiguous and will be updated to specify that the null terminator must be included in the converted buffer. This also affects the ToBuffer() ASL operator. Fixed a problem with the Mid() ASL/AML operator where it did not work correctly on Buffer objects. Newly created sub-buffers were not being marked as initialized. Fixed a problem in AcpiTbFindTable where incorrect string compares were performed on the OemId and OemTableId table header fields. These fields are not null terminated, so strncmp is now used instead of strcmp. Implemented a restriction on the Store() ASL/AML operator to align the behavior with the ACPI specification. Previously, any object could be used as the source operand. Now, the only objects that may be used are Integers, Buffers, Strings, Packages, Object References, and DDB Handles. If necessary, the original behavior can be restored by enabling the EnableInterpreterSlack flag. Enhanced the optional "implicit return" support to allow an implicit return value from methods that are invoked externally via the AcpiEvaluateObject interface. This enables implicit returns from the _STA and _INI methods, for example. Changed the Revision() ASL/AML operator to return the current version of the AML interpreter, in the YYYYMMDD format. Previously, it incorrectly returned the supported ACPI version (This is the function of the _REV method). Updated the _REV predefined method to return the currently supported version of ACPI, now 3. Implemented batch mode option for the AcpiExec utility (-b). Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 165.3K Code, 69.4K Data, 234.7K Total Current Release: Non-Debug Version: 78.4K Code, 11.5K Data, 89.9K Total Debug Version: 165.4K Code, 69.4K Data, 234.8K Total ---------------------------------------- 10 December 2004. Summary of changes for version 20041210: ACPI 3.0 support is nearing completion in both the iASL compiler and the ACPI CA core subsystem. 1) ACPI CA Core Subsystem: Fixed a problem in the ToDecimalString operator where the resulting string length was incorrectly calculated. The length is now calculated exactly, eliminating incorrect AE_STRING_LIMIT exceptions. Fixed a problem in the ToHexString operator to allow a maximum 200 character string to be produced. Fixed a problem in the internal string-to-buffer and buffer-to-buffer copy routine where the length of the resulting buffer was not truncated to the new size (if the target buffer already existed). Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 164.7K Code, 68.5K Data, 233.2K Total Current Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 165.3K Code, 69.4K Data, 234.7K Total 2) iASL Compiler/Disassembler: Implemented the new ACPI 3.0 resource template macros - DWordSpace, ExtendedIO, ExtendedMemory, ExtendedSpace, QWordSpace, and WordSpace. Includes support in the disassembler. Implemented support for the new (ACPI 3.0) parameter to the Register macro, AccessSize. Fixed a problem where the _HE resource name for the Interrupt macro was referencing bit 0 instead of bit 1. Implemented check for maximum 255 interrupts in the Interrupt macro. Fixed a problem with the predefined resource descriptor names where incorrect AML code was generated if the offset within the resource buffer was 0 or 1. The optimizer shortened the AML code to a single byte opcode but did not update the surrounding package lengths. Changes to the Dma macro: All channels within the channel list must be in the range 0-7. Maximum 8 channels can be specified. BusMaster operand is optional (default is BusMaster). Implemented check for maximum 7 data bytes for the VendorShort macro. The ReadWrite parameter is now optional for the Memory32 and similar macros. ---------------------------------------- 03 December 2004. Summary of changes for version 20041203: 1) ACPI CA Core Subsystem: The low-level field insertion/extraction code (exfldio) has been completely rewritten to eliminate unnecessary complexity, bugs, and boundary conditions. Fixed a problem in the ToInteger, ToBuffer, ToHexString, and ToDecimalString operators where the input operand could be inadvertently deleted if no conversion was necessary (e.g., if the input to ToInteger was an Integer object.) Fixed a problem with the ToDecimalString and ToHexString where an incorrect exception code was returned if the resulting string would be > 200 chars. AE_STRING_LIMIT is now returned. Fixed a problem with the Concatenate operator where AE_OK was always returned, even if the operation failed. Fixed a problem in oswinxf (used by AcpiExec and iASL) to allow > 128 semaphores to be allocated. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.5K Code, 11.5K Data, 90.0K Total Debug Version: 165.2K Code, 68.6K Data, 233.8K Total Current Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 164.7K Code, 68.5K Data, 233.2K Total 2) iASL Compiler/Disassembler: Fixed typechecking for the ObjectType and SizeOf operators. Problem was recently introduced in 20041119. Fixed a problem with the ToUUID macro where the upper nybble of each buffer byte was inadvertently set to zero. ---------------------------------------- 19 November 2004. Summary of changes for version 20041119: 1) ACPI CA Core Subsystem: Fixed a problem in the internal ConvertToInteger routine where new integers were not truncated to 32 bits for 32-bit ACPI tables. This routine converts buffers and strings to integers. Implemented support to store a value to an Index() on a String object. This is an ACPI 2.0 feature that had not yet been implemented. Implemented new behavior for storing objects to individual package elements (via the Index() operator). The previous behavior was to invoke the implicit conversion rules if an object was already present at the index. The new behavior is to simply delete any existing object and directly store the new object. Although the ACPI specification seems unclear on this subject, other ACPI implementations behave in this manner. (This is the root of the AE_BAD_HEX_CONSTANT issue.) Modified the RSDP memory scan mechanism to support the extended checksum for ACPI 2.0 (and above) RSDPs. Note that the search continues until a valid RSDP signature is found with a valid checksum. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.5K Code, 11.5K Data, 90.0K Total Debug Version: 165.2K Code, 68.6K Data, 233.8K Total Current Release: Non-Debug Version: 78.5K Code, 11.5K Data, 90.0K Total Debug Version: 165.2K Code, 68.6K Data, 233.8K Total 2) iASL Compiler/Disassembler: Fixed a missing semicolon in the aslcompiler.y file. ---------------------------------------- 05 November 2004. Summary of changes for version 20041105: 1) ACPI CA Core Subsystem: Implemented support for FADT revision 2. This was an interim table (between ACPI 1.0 and ACPI 2.0) that adds support for the FADT reset register. Implemented optional support to allow uninitialized LocalX and ArgX variables in a control method. The variables are initialized to an Integer object with a value of zero. This support is enabled by setting the AcpiGbl_EnableInterpreterSlack flag to TRUE. Implemented support for Integer objects for the SizeOf operator. Either 4 or 8 is returned, depending on the current integer size (32-bit or 64- bit, depending on the parent table revision). Fixed a problem in the implementation of the SizeOf and ObjectType operators where the operand was resolved to a value too early, causing incorrect return values for some objects. Fixed some possible memory leaks during exceptional conditions. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.0K Code, 11.5K Data, 89.5K Total Debug Version: 164.8K Code, 68.6K Data, 233.4K Total Current Release: Non-Debug Version: 78.5K Code, 11.5K Data, 90.0K Total Debug Version: 165.2K Code, 68.6K Data, 233.8K Total 2) iASL Compiler/Disassembler: Implemented support for all ACPI 3.0 reserved names and methods. Implemented all ACPI 3.0 grammar elements in the front-end, including support for semicolons. Implemented the ACPI 3.0 Function() and ToUUID() macros Fixed a problem in the disassembler where a Scope() operator would not be emitted properly if the target of the scope was in another table. ---------------------------------------- 15 October 2004. Summary of changes for version 20041015: Note: ACPI CA is currently undergoing an in-depth and complete formal evaluation to test/verify the following areas. Other suggestions are welcome. This will result in an increase in the frequency of releases and the number of bug fixes in the next few months. - Functional tests for all ASL/AML operators - All implicit/explicit type conversions - Bit fields and operation regions - 64-bit math support and 32-bit-only "truncated" math support - Exceptional conditions, both compiler and interpreter - Dynamic object deletion and memory leaks - ACPI 3.0 support when implemented - External interfaces to the ACPI subsystem 1) ACPI CA Core Subsystem: Fixed two alignment issues on 64-bit platforms - within debug statements in AcpiEvGpeDetect and AcpiEvCreateGpeBlock. Removed references to the Address field within the non-aligned ACPI generic address structure. Fixed a problem in the Increment and Decrement operators where incorrect operand resolution could result in the inadvertent modification of the original integer when the integer is passed into another method as an argument and the arg is then incremented/decremented. Fixed a problem in the FromBCD operator where the upper 32-bits of a 64- bit BCD number were truncated during conversion. Fixed a problem in the ToDecimal operator where the length of the resulting string could be set incorrectly too long if the input operand was a Buffer object. Fixed a problem in the Logical operators (LLess, etc.) where a NULL byte (0) within a buffer would prematurely terminate a compare between buffer objects. Added a check for string overflow (>200 characters as per the ACPI specification) during the Concatenate operator with two string operands. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.8K Code, 11.5K Data, 89.3K Total Debug Version: 164.6K Code, 68.5K Data, 233.1K Total Current Release: Non-Debug Version: 78.0K Code, 11.5K Data, 89.5K Total Debug Version: 164.8K Code, 68.6K Data, 233.4K Total 2) iASL Compiler/Disassembler: Allow the use of the ObjectType operator on uninitialized Locals and Args (returns 0 as per the ACPI specification). Fixed a problem where the compiler would fault if there was a syntax error in the FieldName of all of the various CreateXXXField operators. Disallow the use of lower case letters within the EISAID macro, as per the ACPI specification. All EISAID strings must be of the form "UUUNNNN" Where U is an uppercase letter and N is a hex digit. ---------------------------------------- 06 October 2004. Summary of changes for version 20041006: 1) ACPI CA Core Subsystem: Implemented support for the ACPI 3.0 Timer operator. This ASL function implements a 64-bit timer with 100 nanosecond granularity. Defined a new OSL interface, AcpiOsGetTimer. This interface is used to implement the ACPI 3.0 Timer operator. This allows the host OS to implement the timer with the best clock available. Also, it keeps the core subsystem out of the clock handling business, since the host OS (usually) performs this function. Fixed an alignment issue on 64-bit platforms. The HwLowLevelRead(Write) functions use a 64-bit address which is part of the packed ACPI Generic Address Structure. Since the structure is non-aligned, the alignment macros are now used to extract the address to a local variable before use. Fixed a problem where the ToInteger operator assumed all input strings were hexadecimal. The operator now handles both decimal strings and hex strings (prefixed with "0x"). Fixed a problem where the string length in the string object created as a result of the internal ConvertToString procedure could be incorrect. This potentially affected all implicit conversions and also the ToDecimalString and ToHexString operators. Fixed two problems in the ToString operator. If the length parameter was zero, an incorrect string object was created and the value of the input length parameter was inadvertently changed from zero to Ones. Fixed a problem where the optional ResourceSource string in the ExtendedIRQ resource macro was ignored. Simplified the interfaces to the internal division functions, reducing code size and complexity. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.9K Code, 11.4K Data, 89.3K Total Debug Version: 164.5K Code, 68.3K Data, 232.8K Total Current Release: Non-Debug Version: 77.8K Code, 11.5K Data, 89.3K Total Debug Version: 164.6K Code, 68.5K Data, 233.1K Total 2) iASL Compiler/Disassembler: Implemented support for the ACPI 3.0 Timer operator. Fixed a problem where the Default() operator was inadvertently ignored in a Switch/Case block. This was a problem in the translation of the Switch statement to If...Else pairs. Added support to allow a standalone Return operator, with no parentheses (or operands). Fixed a problem with code generation for the ElseIf operator where the translated Else...If parse tree was improperly constructed leading to the loss of some code. ---------------------------------------- 22 September 2004. Summary of changes for version 20040922: 1) ACPI CA Core Subsystem: Fixed a problem with the implementation of the LNot() operator where "Ones" was not returned for the TRUE case. Changed the code to return Ones instead of (!Arg) which was usually 1. This change affects iASL constant folding for this operator also. Fixed a problem in AcpiUtInitializeBuffer where an existing buffer was not initialized properly -- Now zero the entire buffer in this case where the buffer already exists. Changed the interface to AcpiOsSleep from (UINT32 Seconds, UINT32 Milliseconds) to simply (ACPI_INTEGER Milliseconds). This simplifies all related code considerably. This will require changes/updates to all OS interface layers (OSLs.) Implemented a new external interface, AcpiInstallExceptionHandler, to allow a system exception handler to be installed. This handler is invoked upon any run-time exception that occurs during control method execution. Added support for the DSDT in AcpiTbFindTable. This allows the DataTableRegion() operator to access the local copy of the DSDT. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.8K Code, 11.4K Data, 89.2K Total Debug Version: 164.2K Code, 68.2K Data, 232.4K Total Current Release: Non-Debug Version: 77.9K Code, 11.4K Data, 89.3K Total Debug Version: 164.5K Code, 68.3K Data, 232.8K Total 2) iASL Compiler/Disassembler: Fixed a problem with constant folding and the LNot operator. LNot was returning 1 in the TRUE case, not Ones as per the ACPI specification. This could result in the generation of an incorrect folded/reduced constant. End-Of-File is now allowed within a "//"-style comment. A parse error no longer occurs if such a comment is at the very end of the input ASL source file. Implemented the "-r" option to override the Revision in the table header. The initial use of this option will be to simplify the evaluation of the AML interpreter by allowing a single ASL source module to be compiled for either 32-bit or 64-bit integers. ---------------------------------------- 27 August 2004. Summary of changes for version 20040827: 1) ACPI CA Core Subsystem: - Implemented support for implicit object conversion in the non-numeric logical operators (LEqual, LGreater, LGreaterEqual, LLess, LLessEqual, and LNotEqual.) Any combination of Integers/Strings/Buffers may now be used; the second operand is implicitly converted on the fly to match the type of the first operand. For example: LEqual (Source1, Source2) Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1 dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of Source1. - Updated and corrected the behavior of the string conversion support. The rules concerning conversion of buffers to strings (according to the ACPI specification) are as follows: ToDecimalString - explicit byte-wise conversion of buffer to string of decimal values (0-255) separated by commas. ToHexString - explicit byte- wise conversion of buffer to string of hex values (0-FF) separated by commas. ToString - explicit byte-wise conversion of buffer to string. Byte-by- byte copy with no transform except NULL terminated. Any other implicit buffer- to- string conversion - byte-wise conversion of buffer to string of hex values (0-FF) separated by spaces. - Fixed typo in definition of AcpiGbl_EnableInterpreterSlack. - Fixed a problem in AcpiNsGetPathnameLength where the returned length was one byte too short in the case of a node in the root scope. This could cause a fault during debug output. - Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.9K Code, 11.5K Data, 89.4K Total Debug Version: 164.1K Code, 68.3K Data, 232.4K Total Current Release: Non-Debug Version: 77.8K Code, 11.4K Data, 89.2K Total Debug Version: 164.2K Code, 68.2K Data, 232.4K Total 2) iASL Compiler/Disassembler: - Fixed a Linux generation error. ---------------------------------------- 16 August 2004. Summary of changes for version 20040816: 1) ACPI CA Core Subsystem: Designed and implemented support within the AML interpreter for the so- called "implicit return". This support returns the result of the last ASL operation within a control method, in the absence of an explicit Return() operator. A few machines depend on this behavior, even though it is not explicitly supported by the ASL language. It is optional support that can be enabled at runtime via the AcpiGbl_EnableInterpreterSlack flag. Removed support for the PCI_Config address space from the internal low level hardware interfaces (AcpiHwLowLevelRead and AcpiHwLowLevelWrite). This support was not used internally, and would not work correctly anyway because the PCI bus number and segment number were not supported. There are separate interfaces for PCI configuration space access because of the unique interface. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.0K Code, 11.5K Data, 89.5K Total Debug Version: 164.1K Code, 68.2K Data, 232.3K Total Current Release: Non-Debug Version: 77.9K Code, 11.5K Data, 89.4K Total Debug Version: 164.1K Code, 68.3K Data, 232.4K Total 2) iASL Compiler/Disassembler: Fixed a problem where constants in ASL expressions at the root level (not within a control method) could be inadvertently truncated during code generation. This problem was introduced in the 20040715 release. ---------------------------------------- 15 July 2004. Summary of changes for version 20040715: 1) ACPI CA Core Subsystem: Restructured the internal HW GPE interfaces to pass/track the current state of interrupts (enabled/disabled) in order to avoid possible deadlock and increase flexibility of the interfaces. Implemented a "lexicographical compare" for String and Buffer objects within the logical operators -- LGreater, LLess, LGreaterEqual, and LLessEqual - - as per further clarification to the ACPI specification. Behavior is similar to C library "strcmp". Completed a major reduction in CPU stack use for the AcpiGetFirmwareTable external function. In the 32-bit non-debug case, the stack use has been reduced from 168 bytes to 32 bytes. Deployed a new run-time configuration flag, AcpiGbl_EnableInterpreterSlack, whose purpose is to allow the AML interpreter to forgive certain bad AML constructs. Default setting is FALSE. Implemented the first use of AcpiGbl_EnableInterpreterSlack in the Field IO support code. If enabled, it allows field access to go beyond the end of a region definition if the field is within the region length rounded up to the next access width boundary (a common coding error.) Renamed OSD_HANDLER to ACPI_OSD_HANDLER, and OSD_EXECUTION_CALLBACK to ACPI_OSD_EXEC_CALLBACK for consistency with other ACPI symbols. Also, these symbols are lowercased by the latest version of the AcpiSrc tool. The prototypes for the PCI interfaces in acpiosxf.h have been updated to rename "Register" to simply "Reg" to prevent certain compilers from complaining. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.8K Code, 11.5K Data, 89.3K Total Debug Version: 163.8K Code, 68.2K Data, 232.0K Total Current Release: Non-Debug Version: 78.0K Code, 11.5K Data, 89.5K Total Debug Version: 164.1K Code, 68.2K Data, 232.3K Total 2) iASL Compiler/Disassembler: Implemented full support for Package objects within the Case() operator. Note: The Break() operator is currently not supported within Case blocks (TermLists) as there is some question about backward compatibility with ACPI 1.0 interpreters. Fixed a problem where complex terms were not supported properly within the Switch() operator. Eliminated extraneous warning for compiler-emitted reserved names of the form "_T_x". (Used in Switch/Case operators.) Eliminated optimization messages for "_T_x" objects and small constants within the DefinitionBlock operator. ---------------------------------------- 15 June 2004. Summary of changes for version 20040615: 1) ACPI CA Core Subsystem: Implemented support for Buffer and String objects (as per ACPI 2.0) for the following ASL operators: LEqual, LGreater, LLess, LGreaterEqual, and LLessEqual. All directory names in the entire source package are lower case, as they were in earlier releases. Implemented "Disassemble" command in the AML debugger that will disassemble a single control method. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.7K Code, 11.5K Data, 89.2K Total Debug Version: 163.3K Code, 67.2K Data, 230.5K Total Current Release: Non-Debug Version: 77.8K Code, 11.5K Data, 89.3K Total Debug Version: 163.8K Code, 68.2K Data, 232.0K Total 2) iASL Compiler/Disassembler: Implemented support for Buffer and String objects (as per ACPI 2.0) for the following ASL operators: LEqual, LGreater, LLess, LGreaterEqual, and LLessEqual. All directory names in the entire source package are lower case, as they were in earlier releases. Fixed a fault when using the -g or -d options if the FADT was not found. Fixed an issue with the Windows version of the compiler where later versions of Windows place the FADT in the registry under the name "FADT" and not "FACP" as earlier versions did. This applies when using the -g or - d options. The compiler now looks for both strings as necessary. Fixed a problem with compiler namepath optimization where a namepath within the Scope() operator could not be optimized if the namepath was a subpath of the current scope path. ---------------------------------------- 27 May 2004. Summary of changes for version 20040527: 1) ACPI CA Core Subsystem: Completed a new design and implementation for EBDA (Extended BIOS Data Area) support in the RSDP scan code. The original code improperly scanned for the EBDA by simply scanning from memory location 0 to 0x400. The correct method is to first obtain the EBDA pointer from within the BIOS data area, then scan 1K of memory starting at the EBDA pointer. There appear to be few if any machines that place the RSDP in the EBDA, however. Integrated a fix for a possible fault during evaluation of BufferField arguments. Obsolete code that was causing the problem was removed. Found and fixed a problem in the Field Support Code where data could be corrupted on a bit field read that starts on an aligned boundary but does not end on an aligned boundary. Merged the read/write "datum length" calculation code into a common procedure. Rolled in a couple of changes to the FreeBSD-specific header. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.6K Code, 11.5K Data, 89.1K Total Debug Version: 163.2K Code, 67.2K Data, 230.4K Total Current Release: Non-Debug Version: 77.7K Code, 11.5K Data, 89.2K Total Debug Version: 163.3K Code, 67.2K Data, 230.5K Total 2) iASL Compiler/Disassembler: Fixed a generation warning produced by some overly-verbose compilers for a 64-bit constant. ---------------------------------------- 14 May 2004. Summary of changes for version 20040514: 1) ACPI CA Core Subsystem: Fixed a problem where hardware GPE enable bits sometimes not set properly during and after GPE method execution. Result of 04/27 changes. Removed extra "clear all GPEs" when sleeping/waking. Removed AcpiHwEnableGpe and AcpiHwDisableGpe, replaced by the single AcpiHwWriteGpeEnableReg. Changed a couple of calls to the functions above to the new AcpiEv* calls as appropriate. ACPI_OS_NAME was removed from the OS-specific headers. The default name is now "Microsoft Windows NT" for maximum compatibility. However this can be changed by modifying the acconfig.h file. Allow a single invocation of AcpiInstallNotifyHandler for a handler that traps both types of notifies (System, Device). Use ACPI_ALL_NOTIFY flag. Run _INI methods on ThermalZone objects. This is against the ACPI specification, but there is apparently ASL code in the field that has these _INI methods, and apparently "other" AML interpreters execute them. Performed a full 16/32/64 bit lint that resulted in some small changes. Added a sleep simulation command to the AML debugger to test sleep code. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.6K Code, 11.5K Data, 89.1K Total Debug Version: 162.9K Code, 67.0K Data, 229.9K Total Current Release: Non-Debug Version: 77.6K Code, 11.5K Data, 89.1K Total Debug Version: 163.2K Code, 67.2K Data, 230.4K Total ---------------------------------------- 27 April 2004. Summary of changes for version 20040427: 1) ACPI CA Core Subsystem: Completed a major overhaul of the GPE handling within ACPI CA. There are now three types of GPEs: wake-only, runtime-only, and combination wake/run. The only GPEs allowed to be combination wake/run are for button-style devices such as a control-method power button, control-method sleep button, or a notebook lid switch. GPEs that have an _Lxx or _Exx method and are not referenced by any _PRW methods are marked for "runtime" and hardware enabled. Any GPE that is referenced by a _PRW method is marked for "wake" (and disabled at runtime). However, at sleep time, only those GPEs that have been specifically enabled for wake via the AcpiEnableGpe interface will actually be hardware enabled. A new external interface has been added, AcpiSetGpeType(), that is meant to be used by device drivers to force a GPE to a particular type. It will be especially useful for the drivers for the button devices mentioned above. Completed restructuring of the ACPI CA initialization sequence so that default operation region handlers are installed before GPEs are initialized and the _PRW methods are executed. This will prevent errors when the _PRW methods attempt to access system memory or I/O space. GPE enable/disable no longer reads the GPE enable register. We now keep the enable info for runtime and wake separate and in the GPE_EVENT_INFO. We thus no longer depend on the hardware to maintain these bits. Always clear the wake status and fixed/GPE status bits before sleep, even for state S5. Improved the AML debugger output for displaying the GPE blocks and their current status. Added new strings for the _OSI method, of the form "Windows 2001 SPx" where x = 0,1,2,3,4. Fixed a problem where the physical address was incorrectly calculated when the Load() operator was used to directly load from an Operation Region (vs. loading from a Field object.) Also added check for minimum table length for this case. Fix for multiple mutex acquisition. Restore original thread SyncLevel on mutex release. Added ACPI_VALID_SXDS flag to the AcpiGetObjectInfo interface for consistency with the other fields returned. Shrunk the ACPI_GPE_EVENT_INFO structure by 40%. There is one such structure for each GPE in the system, so the size of this structure is important. CPU stack requirement reduction: Cleaned up the method execution and object evaluation paths so that now a parameter structure is passed, instead of copying the various method parameters over and over again. In evregion.c: Correctly exit and reenter the interpreter region if and only if dispatching an operation region request to a user-installed handler. Do not exit/reenter when dispatching to a default handler (e.g., default system memory or I/O handlers) Notes for updating drivers for the new GPE support. The following changes must be made to ACPI-related device drivers that are attached to one or more GPEs: (This information will be added to the ACPI CA Programmer Reference.) 1) AcpiInstallGpeHandler no longer automatically enables the GPE, you must explicitly call AcpiEnableGpe. 2) There is a new interface called AcpiSetGpeType. This should be called before enabling the GPE. Also, this interface will automatically disable the GPE if it is currently enabled. 3) AcpiEnableGpe no longer supports a GPE type flag. Specific drivers that must be changed: 1) EC driver: AcpiInstallGpeHandler (NULL, GpeNum, ACPI_GPE_EDGE_TRIGGERED, AeGpeHandler, NULL); AcpiSetGpeType (NULL, GpeNum, ACPI_GPE_TYPE_RUNTIME); AcpiEnableGpe (NULL, GpeNum, ACPI_NOT_ISR); 2) Button Drivers (Power, Lid, Sleep): Run _PRW method under parent device If _PRW exists: /* This is a control-method button */ Extract GPE number and possibly GpeDevice AcpiSetGpeType (GpeDevice, GpeNum, ACPI_GPE_TYPE_WAKE_RUN); AcpiEnableGpe (GpeDevice, GpeNum, ACPI_NOT_ISR); For all other devices that have _PRWs, we automatically set the GPE type to ACPI_GPE_TYPE_WAKE, but the GPE is NOT automatically (wake) enabled. This must be done on a selective basis, usually requiring some kind of user app to allow the user to pick the wake devices. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.0K Code, 11.4K Data, 88.4K Total Debug Version: 161.0K Code, 66.3K Data, 227.3K Total Current Release: Non-Debug Version: 77.6K Code, 11.5K Data, 89.1K Total Debug Version: 162.9K Code, 67.0K Data, 229.9K Total ---------------------------------------- 02 April 2004. Summary of changes for version 20040402: 1) ACPI CA Core Subsystem: Fixed an interpreter problem where an indirect store through an ArgX parameter was incorrectly applying the "implicit conversion rules" during the store. From the ACPI specification: "If the target is a method local or argument (LocalX or ArgX), no conversion is performed and the result is stored directly to the target". The new behavior is to disable implicit conversion during ALL stores to an ArgX. Changed the behavior of the _PRW method scan to ignore any and all errors returned by a given _PRW. This prevents the scan from aborting from the failure of any single _PRW. Moved the runtime configuration parameters from the global init procedure to static variables in acglobal.h. This will allow the host to override the default values easily. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.9K Code, 11.4K Data, 88.3K Total Debug Version: 160.8K Code, 66.1K Data, 226.9K Total Current Release: Non-Debug Version: 77.0K Code, 11.4K Data, 88.4K Total Debug Version: 161.0K Code, 66.3K Data, 227.3K Total 2) iASL Compiler/Disassembler: iASL now fully disassembles SSDTs. However, External() statements are not generated automatically for unresolved symbols at this time. This is a planned feature for future implementation. Fixed a scoping problem in the disassembler that occurs when the type of the target of a Scope() operator is overridden. This problem caused an incorrectly nested internal namespace to be constructed. Any warnings or errors that are emitted during disassembly are now commented out automatically so that the resulting file can be recompiled without any hand editing. ---------------------------------------- 26 March 2004. Summary of changes for version 20040326: 1) ACPI CA Core Subsystem: Implemented support for "wake" GPEs via interaction between GPEs and the _PRW methods. Every GPE that is pointed to by one or more _PRWs is identified as a WAKE GPE and by default will no longer be enabled at runtime. Previously, we were blindly enabling all GPEs with a corresponding _Lxx or _Exx method - but most of these turn out to be WAKE GPEs anyway. We believe this has been the cause of thousands of "spurious" GPEs on some systems. This new GPE behavior is can be reverted to the original behavior (enable ALL GPEs at runtime) via a runtime flag. Fixed a problem where aliased control methods could not access objects properly. The proper scope within the namespace was not initialized (transferred to the target of the aliased method) before executing the target method. Fixed a potential race condition on internal object deletion on the return object in AcpiEvaluateObject. Integrated a fix for resource descriptors where both _MEM and _MTP were being extracted instead of just _MEM. (i.e. bitmask was incorrectly too wide, 0x0F instead of 0x03.) Added a special case for ACPI_ROOT_OBJECT in AcpiUtGetNodeName, preventing a fault in some cases. Updated Notify() values for debug statements in evmisc.c Return proper status from AcpiUtMutexInitialize, not just simply AE_OK. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.5K Code, 11.3K Data, 87.8K Total Debug Version: 160.3K Code, 66.0K Data, 226.3K Total Current Release: Non-Debug Version: 76.9K Code, 11.4K Data, 88.3K Total Debug Version: 160.8K Code, 66.1K Data, 226.9K Total ---------------------------------------- 11 March 2004. Summary of changes for version 20040311: 1) ACPI CA Core Subsystem: Fixed a problem where errors occurring during the parse phase of control method execution did not abort cleanly. For example, objects created and installed in the namespace were not deleted. This caused all subsequent invocations of the method to return the AE_ALREADY_EXISTS exception. Implemented a mechanism to force a control method to "Serialized" execution if the method attempts to create namespace objects. (The root of the AE_ALREADY_EXISTS problem.) Implemented support for the predefined _OSI "internal" control method. Initial supported strings are "Linux", "Windows 2000", "Windows 2001", and "Windows 2001.1", and can be easily upgraded for new strings as necessary. This feature will allow "other" operating systems to execute the fully tested, "Windows" code path through the ASL code Global Lock Support: Now allows multiple acquires and releases with any internal thread. Removed concept of "owning thread" for this special mutex. Fixed two functions that were inappropriately declaring large objects on the CPU stack: PsParseLoop, NsEvaluateRelative. Reduces the stack usage during method execution considerably. Fixed a problem in the ACPI 2.0 FACS descriptor (actbl2.h) where the S4Bios_f field was incorrectly defined as UINT32 instead of UINT32_BIT. Fixed a problem where AcpiEvGpeDetect would fault if there were no GPEs defined on the machine. Implemented two runtime options: One to force all control method execution to "Serialized" to mimic Windows behavior, another to disable _OSI support if it causes problems on a given machine. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 74.8K Code, 10.1K Data, 84.9K Total Debug Version: 158.7K Code, 65.1K Data, 223.8K Total Current Release: Non-Debug Version: 76.5K Code, 11.3K Data, 87.8K Total Debug Version: 160.3K Code, 66.0K Data, 226.3K Total 2) iASL Compiler/Disassembler: Fixed an array size problem for FreeBSD that would cause the compiler to fault. ---------------------------------------- 20 February 2004. Summary of changes for version 20040220: 1) ACPI CA Core Subsystem: Implemented execution of _SxD methods for Device objects in the GetObjectInfo interface. Fixed calls to _SST method to pass the correct arguments. Added a call to _SST on wake to restore to "working" state. Check for End-Of-Buffer failure case in the WalkResources interface. Integrated fix for 64-bit alignment issue in acglobal.h by moving two structures to the beginning of the file. After wake, clear GPE status register(s) before enabling GPEs. After wake, clear/enable power button. (Perhaps we should clear/enable all fixed events upon wake.) Fixed a couple of possible memory leaks in the Namespace manager. Integrated latest acnetbsd.h file. ---------------------------------------- 11 February 2004. Summary of changes for version 20040211: 1) ACPI CA Core Subsystem: Completed investigation and implementation of the call-by-reference mechanism for control method arguments. Fixed a problem where a store of an object into an indexed package could fail if the store occurs within a different method than the method that created the package. Fixed a problem where the ToDecimal operator could return incorrect results. Fixed a problem where the CopyObject operator could fail on some of the more obscure objects (e.g., Reference objects.) Improved the output of the Debug object to display buffer, package, and index objects. Fixed a problem where constructs of the form "RefOf (ArgX)" did not return the expected result. Added permanent ACPI_REPORT_ERROR macros for all instances of the ACPI_AML_INTERNAL exception. Integrated latest version of acfreebsd.h ---------------------------------------- 16 January 2004. Summary of changes for version 20040116: The purpose of this release is primarily to update the copyright years in each module, thus causing a huge number of diffs. There are a few small functional changes, however. 1) ACPI CA Core Subsystem: Improved error messages when there is a problem finding one or more of the required base ACPI tables Reintroduced the definition of APIC_HEADER in actbl.h Changed definition of MADT_ADDRESS_OVERRIDE to 64 bits (actbl.h) Removed extraneous reference to NewObj in dsmthdat.c 2) iASL compiler Fixed a problem introduced in December that disabled the correct disassembly of Resource Templates ---------------------------------------- 03 December 2003. Summary of changes for version 20031203: 1) ACPI CA Core Subsystem: Changed the initialization of Operation Regions during subsystem init to perform two entire walks of the ACPI namespace; The first to initialize the regions themselves, the second to execute the _REG methods. This fixed some interdependencies across _REG methods found on some machines. Fixed a problem where a Store(Local0, Local1) could simply update the object reference count, and not create a new copy of the object if the Local1 is uninitialized. Implemented support for the _SST reserved method during sleep transitions. Implemented support to clear the SLP_TYP and SLP_EN bits when waking up, this is apparently required by some machines. When sleeping, clear the wake status only if SleepState is not S5. Fixed a problem in AcpiRsExtendedIrqResource() where an incorrect pointer arithmetic advanced a string pointer too far. Fixed a problem in AcpiTbGetTablePtr() where a garbage pointer could be returned if the requested table has not been loaded. Within the support for IRQ resources, restructured the handling of the active and edge/level bits. Fixed a few problems in AcpiPsxExecute() where memory could be leaked under certain error conditions. Improved error messages for the cases where the ACPI mode could not be entered. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (20031029): Non-Debug Version: 74.4K Code, 10.1K Data, 84.5K Total Debug Version: 158.3K Code, 65.0K Data, 223.3K Total Current Release: Non-Debug Version: 74.8K Code, 10.1K Data, 84.9K Total Debug Version: 158.7K Code, 65.1K Data, 223.8K Total 2) iASL Compiler/Disassembler: Implemented a fix for the iASL disassembler where a bad index was generated. This was most noticeable on 64-bit platforms ---------------------------------------- 29 October 2003. Summary of changes for version 20031029: 1) ACPI CA Core Subsystem: Fixed a problem where a level-triggered GPE with an associated _Lxx control method was incorrectly cleared twice. Fixed a problem with the Field support code where an access can occur beyond the end-of-region if the field is non-aligned but extends to the very end of the parent region (resulted in an AE_AML_REGION_LIMIT exception.) Fixed a problem with ACPI Fixed Events where an RT Clock handler would not get invoked on an RTC event. The RTC event bitmasks for the PM1 registers were not being initialized properly. Implemented support for executing _STA and _INI methods for Processor objects. Although this is currently not part of the ACPI specification, there is existing ASL code that depends on the init-time execution of these methods. Implemented and deployed a GetDescriptorName function to decode the various types of internal descriptors. Guards against null descriptors during debug output also. Implemented and deployed a GetNodeName function to extract the 4- character namespace node name. This function simplifies the debug and error output, as well as guarding against null pointers during output. Implemented and deployed the ACPI_FORMAT_UINT64 helper macro to simplify the debug and error output of 64-bit integers. This macro replaces the HIDWORD and LODWORD macros for dumping these integers. Updated the implementation of the Stall() operator to only call AcpiOsStall(), and also return an error if the operand is larger than 255. This preserves the required behavior of not relinquishing the processor, as would happen if AcpiOsSleep() was called for "long stalls". Constructs of the form "Store(LocalX,LocalX)" where LocalX is not initialized are now treated as NOOPs. Cleaned up a handful of warnings during 64-bit generation. Fixed a reported error where and incorrect GPE number was passed to the GPE dispatch handler. This value is only used for error output, however. Used this opportunity to clean up and streamline the GPE dispatch code. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (20031002): Non-Debug Version: 74.1K Code, 9.7K Data, 83.8K Total Debug Version: 157.9K Code, 64.8K Data, 222.7K Total Current Release: Non-Debug Version: 74.4K Code, 10.1K Data, 84.5K Total Debug Version: 158.3K Code, 65.0K Data, 223.3K Total 2) iASL Compiler/Disassembler: Updated the iASL compiler to return an error if the operand to the Stall() operator is larger than 255. ---------------------------------------- 02 October 2003. Summary of changes for version 20031002: 1) ACPI CA Core Subsystem: Fixed a problem with Index Fields where the index was not incremented for fields that require multiple writes to the index/data registers (Fields that are wider than the data register.) Fixed a problem with all Field objects where a write could go beyond the end-of-field if the field was larger than the access granularity and therefore required multiple writes to complete the request. An extra write beyond the end of the field could happen inadvertently. Fixed a problem with Index Fields where a BUFFER_OVERFLOW error would incorrectly be returned if the width of the Data Register was larger than the specified field access width. Completed fixes for LoadTable() and Unload() and verified their operation. Implemented full support for the "DdbHandle" object throughout the ACPI CA subsystem. Implemented full support for the MADT and ECDT tables in the ACPI CA header files. Even though these tables are not directly consumed by ACPI CA, the header definitions are useful for ACPI device drivers. Integrated resource descriptor fixes posted to the Linux ACPI list. This included checks for minimum descriptor length, and support for trailing NULL strings within descriptors that have optional string elements. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (20030918): Non-Debug Version: 73.9K Code, 9.7K Data, 83.6K Total Debug Version: 157.3K Code, 64.5K Data, 221.8K Total Current Release: Non-Debug Version: 74.1K Code, 9.7K Data, 83.8K Total Debug Version: 157.9K Code, 64.8K Data, 222.7K Total 2) iASL Compiler: Implemented detection of non-ASCII characters within the input source ASL file. This catches attempts to compile binary (AML) files early in the compile, with an informative error message. Fixed a problem where the disassembler would fault if the output filename could not be generated or if the output file could not be opened. ---------------------------------------- 18 September 2003. Summary of changes for version 20030918: 1) ACPI CA Core Subsystem: Found and fixed a longstanding problem with the late execution of the various deferred AML opcodes (such as Operation Regions, Buffer Fields, Buffers, and Packages). If the name string specified for the name of the new object placed the object in a scope other than the current scope, the initialization/execution of the opcode failed. The solution to this problem was to implement a mechanism where the late execution of such opcodes does not attempt to lookup/create the name a second time in an incorrect scope. This fixes the "region size computed incorrectly" problem. Fixed a call to AcpiHwRegisterWrite in hwregs.c that was causing a Global Lock AE_BAD_PARAMETER error. Fixed several 64-bit issues with prototypes, casting and data types. Removed duplicate prototype from acdisasm.h Fixed an issue involving EC Operation Region Detach (Shaohua Li) Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 73.7K Code, 9.7K Data, 83.4K Total Debug Version: 156.9K Code, 64.2K Data, 221.1K Total Current Release: Non-Debug Version: 73.9K Code, 9.7K Data, 83.6K Total Debug Version: 157.3K Code, 64.5K Data, 221.8K Total 2) Linux: Fixed the AcpiOsSleep implementation in osunixxf.c to pass the correct sleep time in seconds. ---------------------------------------- 14 July 2003. Summary of changes for version 20030619: 1) ACPI CA Core Subsystem: Parse SSDTs in order discovered, as opposed to reverse order (Hrvoje Habjanic) Fixes from FreeBSD and NetBSD. (Frank van der Linden, Thomas Klausner, Nate Lawson) 2) Linux: Dynamically allocate SDT list (suggested by Andi Kleen) proc function return value cleanups (Andi Kleen) Correctly handle NMI watchdog during long stalls (Andrew Morton) Make it so acpismp=force works (reported by Andrew Morton) ---------------------------------------- 19 June 2003. Summary of changes for version 20030619: 1) ACPI CA Core Subsystem: Fix To/FromBCD, eliminating the need for an arch-specific #define. Do not acquire a semaphore in the S5 shutdown path. Fix ex_digits_needed for 0. (Takayoshi Kochi) Fix sleep/stall code reversal. (Andi Kleen) Revert a change having to do with control method calling semantics. 2) Linux: acpiphp update (Takayoshi Kochi) Export acpi_disabled for sonypi (Stelian Pop) Mention acpismp=force in config help Re-add acpitable.c and acpismp=force. This improves backwards compatibility and also cleans up the code to a significant degree. Add ASUS Value-add driver (Karol Kozimor and Julien Lerouge) ---------------------------------------- 22 May 2003. Summary of changes for version 20030522: 1) ACPI CA Core Subsystem: Found and fixed a reported problem where an AE_NOT_FOUND error occurred occasionally during _BST evaluation. This turned out to be an Owner ID allocation issue where a called method did not get a new ID assigned to it. Eventually, (after 64k calls), the Owner ID UINT16 would wraparound so that the ID would be the same as the caller's and the called method would delete the caller's namespace. Implemented extended error reporting for control methods that are aborted due to a run-time exception. Output includes the exact AML instruction that caused the method abort, a dump of the method locals and arguments at the time of the abort, and a trace of all nested control method calls. Modified the interpreter to allow the creation of buffers of zero length from the AML code. Implemented new code to ensure that no attempt is made to actually allocate a memory buffer (of length zero) - instead, a simple buffer object with a NULL buffer pointer and length zero is created. A warning is no longer issued when the AML attempts to create a zero-length buffer. Implemented a workaround for the "leading asterisk issue" in _HIDs, _UIDs, and _CIDs in the AML interpreter. One leading asterisk is automatically removed if present in any HID, UID, or CID strings. The iASL compiler will still flag this asterisk as an error, however. Implemented full support for _CID methods that return a package of multiple CIDs (Compatible IDs). The AcpiGetObjectInfo() interface now additionally returns a device _CID list if present. This required a change to the external interface in order to pass an ACPI_BUFFER object as a parameter since the _CID list is of variable length. Fixed a problem with the new AE_SAME_HANDLER exception where handler initialization code did not know about this exception. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (20030509): Non-Debug Version: 73.4K Code, 9.7K Data, 83.1K Total Debug Version: 156.1K Code, 63.9K Data, 220.0K Total Current Release: Non-Debug Version: 73.7K Code, 9.7K Data, 83.4K Total Debug Version: 156.9K Code, 64.2K Data, 221.1K Total 2) Linux: Fixed a bug in which we would reinitialize the ACPI interrupt after it was already working, thus disabling all ACPI and the IRQs for any other device sharing the interrupt. (Thanks to Stian Jordet) Toshiba driver update (John Belmonte) Return only 0 or 1 for our interrupt handler status (Andrew Morton) 3) iASL Compiler: Fixed a reported problem where multiple (nested) ElseIf() statements were not handled correctly by the compiler, resulting in incorrect warnings and incorrect AML code. This was a problem in both the ASL parser and the code generator. 4) Documentation: Added changes to existing interfaces, new exception codes, and new text concerning reference count object management versus garbage collection. ---------------------------------------- 09 May 2003. Summary of changes for version 20030509. 1) ACPI CA Core Subsystem: Changed the subsystem initialization sequence to hold off installation of address space handlers until the hardware has been initialized and the system has entered ACPI mode. This is because the installation of space handlers can cause _REG methods to be run. Previously, the _REG methods could potentially be run before ACPI mode was enabled. Fixed some memory leak issues related to address space handler and notify handler installation. There were some problems with the reference count mechanism caused by the fact that the handler objects are shared across several namespace objects. Fixed a reported problem where reference counts within the namespace were not properly updated when named objects created by method execution were deleted. Fixed a reported problem where multiple SSDTs caused a deletion issue during subsystem termination. Restructured the table data structures to simplify the linked lists and the related code. Fixed a problem where the table ID associated with secondary tables (SSDTs) was not being propagated into the namespace objects created by those tables. This would only present a problem for tables that are unloaded at run-time, however. Updated AcpiOsReadable and AcpiOsWritable to use the ACPI_SIZE type as the length parameter (instead of UINT32). Solved a long-standing problem where an ALREADY_EXISTS error appears on various systems. This problem could happen when there are multiple PCI_Config operation regions under a single PCI root bus. This doesn't happen very frequently, but there are some systems that do this in the ASL. Fixed a reported problem where the internal DeleteNode function was incorrectly handling the case where a namespace node was the first in the parent's child list, and had additional peers (not the only child, but first in the list of children.) Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 73.7K Code, 9.5K Data, 83.2K Total Debug Version: 156.1K Code, 63.6K Data, 219.7K Total Current Release: Non-Debug Version: 73.4K Code, 9.7K Data, 83.1K Total Debug Version: 156.1K Code, 63.9K Data, 220.0K Total 2) Linux: Allow ":" in OS override string (Ducrot Bruno) Kobject fix (Greg KH) 3 iASL Compiler/Disassembler: Fixed a problem in the generation of the C source code files (AML is emitted in C source statements for BIOS inclusion) where the Ascii dump that appears within a C comment at the end of each line could cause a compile time error if the AML sequence happens to have an open comment or close comment sequence embedded. ---------------------------------------- 24 April 2003. Summary of changes for version 20030424. 1) ACPI CA Core Subsystem: Support for big-endian systems has been implemented. Most of the support has been invisibly added behind big-endian versions of the ACPI_MOVE_* macros. Fixed a problem in AcpiHwDisableGpeBlock() and AcpiHwClearGpeBlock() where an incorrect offset was passed to the low level hardware write routine. The offset parameter was actually eliminated from the low level read/write routines because they had become obsolete. Fixed a problem where a handler object was deleted twice during the removal of a fixed event handler. 2) Linux: A fix for SMP systems with link devices was contributed by Compaq's Dan Zink. (2.5) Return whether we handled the interrupt in our IRQ handler. (Linux ISRs no longer return void, so we can propagate the handler return value from the ACPI CA core back to the OS.) 3) Documentation: The ACPI CA Programmer Reference has been updated to reflect new interfaces and changes to existing interfaces. ---------------------------------------- 28 March 2003. Summary of changes for version 20030328. 1) ACPI CA Core Subsystem: The GPE Block Device support has been completed. New interfaces are AcpiInstallGpeBlock and AcpiRemoveGpeBlock. The Event interfaces (enable, disable, clear, getstatus) have been split into separate interfaces for Fixed Events and General Purpose Events (GPEs) in order to support GPE Block Devices properly. Fixed a problem where the error message "Failed to acquire semaphore" would appear during operations on the embedded controller (EC). Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 72.3K Code, 9.5K Data, 81.8K Total Debug Version: 154.0K Code, 63.4K Data, 217.4K Total Current Release: Non-Debug Version: 73.7K Code, 9.5K Data, 83.2K Total Debug Version: 156.1K Code, 63.6K Data, 219.7K Total ---------------------------------------- 28 February 2003. Summary of changes for version 20030228. 1) ACPI CA Core Subsystem: The GPE handling and dispatch code has been completely overhauled in preparation for support of GPE Block Devices (ID ACPI0006). This affects internal data structures and code only; there should be no differences visible externally. One new file has been added, evgpeblk.c The FADT fields GPE0_BLK_LEN and GPE1_BLK_LEN are now the only fields that are used to determine the GPE block lengths. The REGISTER_BIT_WIDTH field of the X_GPEx_BLK extended address structures are ignored. This is per the ACPI specification but it isn't very clear. The full 256 Block 0/1 GPEs are now supported (the use of REGISTER_BIT_WIDTH limited the number of GPEs to 128). In the SCI interrupt handler, removed the read of the PM1_CONTROL register to look at the SCI_EN bit. On some machines, this read causes an SMI event and greatly slows down SCI events. (This may in fact be the cause of slow battery status response on some systems.) Fixed a problem where a store of a NULL string to a package object could cause the premature deletion of the object. This was seen during execution of the battery _BIF method on some systems, resulting in no battery data being returned. Added AcpiWalkResources interface to simplify parsing of resource lists. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 72.0K Code, 9.5K Data, 81.5K Total Debug Version: 153.0K Code, 62.9K Data, 215.9K Total Current Release: Non-Debug Version: 72.3K Code, 9.5K Data, 81.8K Total Debug Version: 154.0K Code, 63.4K Data, 217.4K Total 2) Linux S3 fixes (Ole Rohne) Update ACPI PHP driver with to use new acpi_walk_resource API (Bjorn Helgaas) Add S4BIOS support (Pavel Machek) Map in entire table before performing checksum (John Stultz) Expand the mem= cmdline to allow the specification of reserved and ACPI DATA blocks (Pavel Machek) Never use ACPI on VISWS Fix derive_pci_id (Ducrot Bruno, Alvaro Lopez) Revert a change that allowed P_BLK lengths to be 4 or 5. This is causing us to think that some systems support C2 when they really don't. Do not count processor objects for non-present CPUs (Thanks to Dominik Brodowski) 3) iASL Compiler: Fixed a problem where ASL include files could not be found and opened. Added support for the _PDC reserved name. ---------------------------------------- 22 January 2003. Summary of changes for version 20030122. 1) ACPI CA Core Subsystem: Added a check for constructs of the form: Store (Local0, Local0) where Local0 is not initialized. Apparently, some BIOS programmers believe that this is a NOOP. Since this store doesn't do anything anyway, the new prototype behavior will ignore this error. This is a case where we can relax the strict checking in the interpreter in the name of compatibility. 2) Linux The AcpiSrc Source Conversion Utility has been released with the Linux package for the first time. This is the utility that is used to convert the ACPI CA base source code to the Linux version. (Both) Handle P_BLK lengths shorter than 6 more gracefully (Both) Move more headers to include/acpi, and delete an unused header. (Both) Move drivers/acpi/include directory to include/acpi (Both) Boot functions don't use cmdline, so don't pass it around (Both) Remove include of unused header (Adrian Bunk) (Both) acpiphp.h includes both linux/acpi.h and acpi_bus.h. Since the former now also includes the latter, acpiphp.h only needs the one, now. (2.5) Make it possible to select method of bios restoring after S3 resume. [=> no more ugly ifdefs] (Pavel Machek) (2.5) Make proc write interfaces work (Pavel Machek) (2.5) Properly init/clean up in cpufreq/acpi (Dominik Brodowski) (2.5) Break out ACPI Perf code into its own module, under cpufreq (Dominik Brodowski) (2.4) S4BIOS support (Ducrot Bruno) (2.4) Fix acpiphp_glue.c for latest ACPI struct changes (Sergio Visinoni) 3) iASL Compiler: Added support to disassemble SSDT and PSDTs. Implemented support to obtain SSDTs from the Windows registry if available. ---------------------------------------- 09 January 2003. Summary of changes for version 20030109. 1) ACPI CA Core Subsystem: Changed the behavior of the internal Buffer-to-String conversion function. The current ACPI specification states that the contents of the buffer are "converted to a string of two-character hexadecimal numbers, each separated by a space". Unfortunately, this definition is not backwards compatible with existing ACPI 1.0 implementations (although the behavior was not defined in the ACPI 1.0 specification). The new behavior simply copies data from the buffer to the string until a null character is found or the end of the buffer is reached. The new String object is always null terminated. This problem was seen during the generation of _BIF battery data where incorrect strings were returned for battery type, etc. This will also require an errata to the ACPI specification. Renamed all instances of NATIVE_UINT and NATIVE_INT to ACPI_NATIVE_UINT and ACPI_NATIVE_INT, respectively. Copyright in all module headers (both Linux and non-Linux) has be updated to 2003. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 72.0K Code, 9.5K Data, 81.5K Total Debug Version: 153.0K Code, 62.9K Data, 215.9K Total Current Release: Non-Debug Version: 72.0K Code, 9.5K Data, 81.5K Total Debug Version: 153.0K Code, 62.9K Data, 215.9K Total 2) Linux Fixed an oops on module insertion/removal (Matthew Tippett) (2.4) Fix to handle dynamic size of mp_irqs (Joerg Prante) (2.5) Replace pr_debug (Randy Dunlap) (2.5) Remove usage of CPUFREQ_ALL_CPUS (Dominik Brodowski) (Both) Eliminate spawning of thread from timer callback, in favor of schedule_work() (Both) Show Lid status in /proc (Zdenek OGAR Skalak) (Both) Added define for Fixed Function HW region (Matthew Wilcox) (Both) Add missing statics to button.c (Pavel Machek) Several changes have been made to the source code translation utility that generates the Linux Code in order to make the code more "Linux-like": All typedefs on structs and unions have been removed in keeping with the Linux coding style. Removed the non-Linux SourceSafe module revision number from each module header. Completed major overhaul of symbols to be lowercased for linux. Doubled the number of symbols that are lowercased. Fixed a problem where identifiers within procedure headers and within quotes were not fully lower cased (they were left with a starting capital.) Some C macros whose only purpose is to allow the generation of 16- bit code are now completely removed in the Linux code, increasing readability and maintainability. ---------------------------------------- 12 December 2002. Summary of changes for version 20021212. 1) ACPI CA Core Subsystem: Fixed a problem where the creation of a zero-length AML Buffer would cause a fault. Fixed a problem where a Buffer object that pointed to a static AML buffer (in an ACPI table) could inadvertently be deleted, causing memory corruption. Fixed a problem where a user buffer (passed in to the external ACPI CA interfaces) could be overwritten if the buffer was too small to complete the operation, causing memory corruption. Fixed a problem in the Buffer-to-String conversion code where a string of length one was always returned, regardless of the size of the input Buffer object. Removed the NATIVE_CHAR data type across the entire source due to lack of need and lack of consistent use. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 72.1K Code, 9.5K Data, 81.6K Total Debug Version: 152.7K Code, 62.7K Data, 215.4K Total Current Release: Non-Debug Version: 72.0K Code, 9.5K Data, 81.5K Total Debug Version: 153.0K Code, 62.9K Data, 215.9K Total ---------------------------------------- 05 December 2002. Summary of changes for version 20021205. 1) ACPI CA Core Subsystem: Fixed a problem where a store to a String or Buffer object could cause corruption of the DSDT if the object type being stored was the same as the target object type and the length of the object being stored was equal to or smaller than the original (existing) target object. This was seen to cause corruption of battery _BIF buffers if the _BIF method modified the buffer on the fly. Fixed a problem where an internal error was generated if a control method invocation was used in an OperationRegion, Buffer, or Package declaration. This was caused by the deferred parsing of the control method and thus the deferred creation of the internal method object. The solution to this problem was to create the internal method object at the moment the method is encountered in the first pass - so that subsequent references to the method will able to obtain the required parameter count and thus properly parse the method invocation. This problem presented itself as an AE_AML_INTERNAL during the pass 1 parse phase during table load. Fixed a problem where the internal String object copy routine did not always allocate sufficient memory for the target String object and caused memory corruption. This problem was seen to cause "Allocation already present in list!" errors as memory allocation became corrupted. Implemented a new function for the evaluation of namespace objects that allows the specification of the allowable return object types. This simplifies a lot of code that checks for a return object of one or more specific objects returned from the evaluation (such as _STA, etc.) This may become and external function if it would be useful to ACPI-related drivers. Completed another round of prefixing #defines with "ACPI_" for clarity. Completed additional code restructuring to allow more modular linking for iASL compiler and AcpiExec. Several files were split creating new files. New files: nsparse.c dsinit.c evgpe.c Implemented an abort mechanism to terminate an executing control method via the AML debugger. This feature is useful for debugging control methods that depend (wait) for specific hardware responses. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 71.4K Code, 9.0K Data, 80.4K Total Debug Version: 152.9K Code, 63.3K Data, 216.2K Total Current Release: Non-Debug Version: 72.1K Code, 9.5K Data, 81.6K Total Debug Version: 152.7K Code, 62.7K Data, 215.4K Total 2) iASL Compiler/Disassembler Fixed a compiler code generation problem for "Interrupt" Resource Descriptors. If specified in the ASL, the optional "Resource Source Index" and "Resource Source" fields were not inserted into the correct location within the AML resource descriptor, creating an invalid descriptor. Fixed a disassembler problem for "Interrupt" resource descriptors. The optional "Resource Source Index" and "Resource Source" fields were ignored. ---------------------------------------- 22 November 2002. Summary of changes for version 20021122. 1) ACPI CA Core Subsystem: Fixed a reported problem where an object stored to a Method Local or Arg was not copied to a new object during the store - the object pointer was simply copied to the Local/Arg. This caused all subsequent operations on the Local/Arg to also affect the original source of the store operation. Fixed a problem where a store operation to a Method Local or Arg was not completed properly if the Local/Arg contained a reference (from RefOf) to a named field. The general-purpose store-to- namespace-node code is now used so that this case is handled automatically. Fixed a problem where the internal object copy routine would cause a protection fault if the object being copied was a Package and contained either 1) a NULL package element or 2) a nested sub- package. Fixed a problem with the GPE initialization that resulted from an ambiguity in the ACPI specification. One section of the specification states that both the address and length of the GPE block must be zero if the block is not supported. Another section implies that only the address need be zero if the block is not supported. The code has been changed so that both the address and the length must be non-zero to indicate a valid GPE block (i.e., if either the address or the length is zero, the GPE block is invalid.) Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 71.3K Code, 9.0K Data, 80.3K Total Debug Version: 152.7K Code, 63.2K Data, 215.5K Total Current Release: Non-Debug Version: 71.4K Code, 9.0K Data, 80.4K Total Debug Version: 152.9K Code, 63.3K Data, 216.2K Total 2) Linux Cleaned up EC driver. Exported an external EC read/write interface. By going through this, other drivers (most notably sonypi) will be able to serialize access to the EC. 3) iASL Compiler/Disassembler Implemented support to optionally generate include files for both ASM and C (the -i switch). This simplifies BIOS development by automatically creating include files that contain external declarations for the symbols that are created within the (optionally generated) ASM and C AML source files. ---------------------------------------- 15 November 2002. Summary of changes for version 20021115. 1) ACPI CA Core Subsystem: Fixed a memory leak problem where an error during resolution of method arguments during a method invocation from another method failed to cleanup properly by deleting all successfully resolved argument objects. Fixed a problem where the target of the Index() operator was not correctly constructed if the source object was a package. This problem has not been detected because the use of a target operand with Index() is very rare. Fixed a problem with the Index() operator where an attempt was made to delete the operand objects twice. Fixed a problem where an attempt was made to delete an operand twice during execution of the CondRefOf() operator if the target did not exist. Implemented the first of perhaps several internal create object functions that create and initialize a specific object type. This consolidates duplicated code wherever the object is created, thus shrinking the size of the subsystem. Implemented improved debug/error messages for errors that occur during nested method invocations. All executing method pathnames are displayed (with the error) as the call stack is unwound - thus simplifying debug. Fixed a problem introduced in the 10/02 release that caused premature deletion of a buffer object if a buffer was used as an ASL operand where an integer operand is required (Thus causing an implicit object conversion from Buffer to Integer.) The change in the 10/02 release was attempting to fix a memory leak (albeit incorrectly.) Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 71.9K Code, 9.1K Data, 81.0K Total Debug Version: 153.1K Code, 63.3K Data, 216.4K Total Current Release: Non-Debug Version: 71.3K Code, 9.0K Data, 80.3K Total Debug Version: 152.7K Code, 63.2K Data, 215.5K Total 2) Linux Changed the implementation of the ACPI semaphores to use down() instead of down_interruptable(). It is important that the execution of ACPI control methods not be interrupted by signals. Methods must run to completion, or the system may be left in an unknown/unstable state. Fixed a compilation error when CONFIG_SOFTWARE_SUSPEND is not set. (Shawn Starr) 3) iASL Compiler/Disassembler Changed the default location of output files. All output files are now placed in the current directory by default instead of in the directory of the source file. This change may affect some existing makefiles, but it brings the behavior of the compiler in line with other similar tools. The location of the output files can be overridden with the -p command line switch. ---------------------------------------- 11 November 2002. Summary of changes for version 20021111. 0) ACPI Specification 2.0B is released and is now available at: http://www.acpi.info/index.html 1) ACPI CA Core Subsystem: Implemented support for the ACPI 2.0 SMBus Operation Regions. This includes the early detection and handoff of the request to the SMBus region handler (avoiding all of the complex field support code), and support for the bidirectional return packet from an SMBus write operation. This paves the way for the development of SMBus drivers in each host operating system. Fixed a problem where the semaphore WAIT_FOREVER constant was defined as 32 bits, but must be 16 bits according to the ACPI specification. This had the side effect of causing ASL Mutex/Event timeouts even though the ASL code requested a wait forever. Changed all internal references to the ACPI timeout parameter to 16 bits to prevent future problems. Changed the name of WAIT_FOREVER to ACPI_WAIT_FOREVER. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 71.4K Code, 9.0K Data, 80.4K Total Debug Version: 152.3K Code, 63.0K Data, 215.3K Total Current Release: Non-Debug Version: 71.9K Code, 9.1K Data, 81.0K Total Debug Version: 153.1K Code, 63.3K Data, 216.4K Total 2) Linux Module loading/unloading fixes (John Cagle) 3) iASL Compiler/Disassembler Added support for the SMBBlockProcessCall keyword (ACPI 2.0) Implemented support for the disassembly of all SMBus protocol keywords (SMBQuick, SMBWord, etc.) ---------------------------------------- 01 November 2002. Summary of changes for version 20021101. 1) ACPI CA Core Subsystem: Fixed a problem where platforms that have a GPE1 block but no GPE0 block were not handled correctly. This resulted in a "GPE overlap" error message. GPE0 is no longer required. Removed code added in the previous release that inserted nodes into the namespace in alphabetical order. This caused some side- effects on various machines. The root cause of the problem is still under investigation since in theory, the internal ordering of the namespace nodes should not matter. Enhanced error reporting for the case where a named object is not found during control method execution. The full ACPI namepath (name reference) of the object that was not found is displayed in this case. Note: as a result of the overhaul of the namespace object types in the previous release, the namespace nodes for the predefined scopes (_TZ, _PR, etc.) are now of the type ACPI_TYPE_LOCAL_SCOPE instead of ACPI_TYPE_ANY. This simplifies the namespace management code but may affect code that walks the namespace tree looking for specific object types. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 70.7K Code, 8.6K Data, 79.3K Total Debug Version: 151.7K Code, 62.4K Data, 214.1K Total Current Release: Non-Debug Version: 71.4K Code, 9.0K Data, 80.4K Total Debug Version: 152.3K Code, 63.0K Data, 215.3K Total 2) Linux Fixed a problem introduced in the previous release where the Processor and Thermal objects were not recognized and installed in /proc. This was related to the scope type change described above. 3) iASL Compiler/Disassembler Implemented the -g option to get all of the required ACPI tables from the registry and save them to files (Windows version of the compiler only.) The required tables are the FADT, FACS, and DSDT. Added ACPI table checksum validation during table disassembly in order to catch corrupted tables. ---------------------------------------- 22 October 2002. Summary of changes for version 20021022. 1) ACPI CA Core Subsystem: Implemented a restriction on the Scope operator that the target must already exist in the namespace at the time the operator is encountered (during table load or method execution). In other words, forward references are not allowed and Scope() cannot create a new object. This changes the previous behavior where the interpreter would create the name if not found. This new behavior correctly enables the search-to-root algorithm during namespace lookup of the target name. Because of this upsearch, this fixes the known Compaq _SB_.OKEC problem and makes both the AML interpreter and iASL compiler compatible with other ACPI implementations. Completed a major overhaul of the internal ACPI object types for the ACPI Namespace and the associated operand objects. Many of these types had become obsolete with the introduction of the two- pass namespace load. This cleanup simplifies the code and makes the entire namespace load mechanism much clearer and easier to understand. Improved debug output for tracking scope opening/closing to help diagnose scoping issues. The old scope name as well as the new scope name are displayed. Also improved error messages for problems with ASL Mutex objects and error messages for GPE problems. Cleaned up the namespace dump code, removed obsolete code. All string output (for all namespace/object dumps) now uses the common ACPI string output procedure which handles escapes properly and does not emit non-printable characters. Fixed some issues with constants in the 64-bit version of the local C library (utclib.c) 2) Linux EC Driver: No longer attempts to acquire the Global Lock at interrupt level. 3) iASL Compiler/Disassembler Implemented ACPI 2.0B grammar change that disallows all Type 1 and 2 opcodes outside of a control method. This means that the "executable" operators (versus the "namespace" operators) cannot be used at the table level; they can only be used within a control method. Implemented the restriction on the Scope() operator where the target must already exist in the namespace at the time the operator is encountered (during ASL compilation). In other words, forward references are not allowed and Scope() cannot create a new object. This makes the iASL compiler compatible with other ACPI implementations and makes the Scope() implementation adhere to the ACPI specification. Fixed a problem where namepath optimization for the Alias operator was optimizing the wrong path (of the two namepaths.) This caused a "Missing alias link" error message. Fixed a problem where an "unknown reserved name" warning could be incorrectly generated for names like "_SB" when the trailing underscore is not used in the original ASL. Fixed a problem where the reserved name check did not handle NamePaths with multiple NameSegs correctly. The first nameseg of the NamePath was examined instead of the last NameSeg. ---------------------------------------- 02 October 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem version 20021002: Fixed a problem where a store/copy of a string to an existing string did not always set the string length properly in the String object. Fixed a reported problem with the ToString operator where the behavior was identical to the ToHexString operator instead of just simply converting a raw buffer to a string data type. Fixed a problem where CopyObject and the other "explicit" conversion operators were not updating the internal namespace node type as part of the store operation. Fixed a memory leak during implicit source operand conversion where the original object was not deleted if it was converted to a new object of a different type. Enhanced error messages for all problems associated with namespace lookups. Common procedure generates and prints the lookup name as well as the formatted status. Completed implementation of a new design for the Alias support within the namespace. The existing design did not handle the case where a new object was assigned to one of the two names due to the use of an explicit conversion operator, resulting in the two names pointing to two different objects. The new design simply points the Alias name to the original name node - not to the object. This results in a level of indirection that must be handled in the name resolution mechanism. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 69.6K Code, 8.3K Data, 77.9K Total Debug Version: 150.0K Code, 61.7K Data, 211.7K Total Current Release: Non-Debug Version: 70.7K Code, 8.6K Data, 79.3K Total Debug Version: 151.7K Code, 62.4K Data, 214.1K Total 2) Linux Initialize thermal driver's timer before it is used. (Knut Neumann) Allow handling negative celsius values. (Kochi Takayoshi) Fix thermal management and make trip points. R/W (Pavel Machek) Fix /proc/acpi/sleep. (P. Christeas) IA64 fixes. (David Mosberger) Fix reversed logic in blacklist code. (Sergio Monteiro Basto) Replace ACPI_DEBUG define with ACPI_DEBUG_OUTPUT. (Dominik Brodowski) 3) iASL Compiler/Disassembler Clarified some warning/error messages. ---------------------------------------- 18 September 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem version 20020918: Fixed a reported problem with reference chaining (via the Index() and RefOf() operators) in the ObjectType() and SizeOf() operators. The definition of these operators includes the dereferencing of all chained references to return information on the base object. Fixed a problem with stores to indexed package elements - the existing code would not complete the store if an "implicit conversion" was not performed. In other words, if the existing object (package element) was to be replaced completely, the code didn't handle this case. Relaxed typechecking on the ASL "Scope" operator to allow the target name to refer to an object of type Integer, String, or Buffer, in addition to the scoping object types (Device, predefined Scopes, Processor, PowerResource, and ThermalZone.) This allows existing AML code that has workarounds for a bug in Windows to function properly. A warning is issued, however. This affects both the AML interpreter and the iASL compiler. Below is an example of this type of ASL code: Name(DEB,0x00) Scope(DEB) { Fixed some reported problems with 64-bit integer support in the local implementation of C library functions (clib.c) 2) Linux Use ACPI fix map region instead of IOAPIC region, since it is undefined in non-SMP. Ensure that the SCI has the proper polarity and trigger, even on systems that do not have an interrupt override entry in the MADT. 2.5 big driver reorganization (Pat Mochel) Use early table mapping code from acpitable.c (Andi Kleen) New blacklist entries (Andi Kleen) Blacklist improvements. Split blacklist code out into a separate file. Move checking the blacklist to very early. Previously, we would use ACPI tables, and then halfway through init, check the blacklist -- too late. Now, it's early enough to completely fall- back to non-ACPI. 3) iASL Compiler/Disassembler version 20020918: Fixed a problem where the typechecking code didn't know that an alias could point to a method. In other words, aliases were not being dereferenced during typechecking. ---------------------------------------- 29 August 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020829: If the target of a Scope() operator already exists, it must be an object type that actually opens a scope -- such as a Device, Method, Scope, etc. This is a fatal runtime error. Similar error check has been added to the iASL compiler also. Tightened up the namespace load to disallow multiple names in the same scope. This previously was allowed if both objects were of the same type. (i.e., a lookup was the same as entering a new name). 2) Linux Ensure that the ACPI interrupt has the proper trigger and polarity. local_irq_disable is extraneous. (Matthew Wilcox) Make "acpi=off" actually do what it says, and not use the ACPI interpreter *or* the tables. Added arch-neutral support for parsing SLIT and SRAT tables (Kochi Takayoshi) 3) iASL Compiler/Disassembler Version 20020829: Implemented namepath optimization for name declarations. For example, a declaration like "Method (\_SB_.ABCD)" would get optimized to "Method (ABCD)" if the declaration is within the \_SB_ scope. This optimization is in addition to the named reference path optimization first released in the previous version. This would seem to complete all possible optimizations for namepaths within the ASL/AML. If the target of a Scope() operator already exists, it must be an object type that actually opens a scope -- such as a Device, Method, Scope, etc. Implemented a check and warning for unreachable code in the same block below a Return() statement. Fixed a problem where the listing file was not generated if the compiler aborted if the maximum error count was exceeded (200). Fixed a problem where the typechecking of method return values was broken. This includes the check for a return value when the method is invoked as a TermArg (a return value is expected.) Fixed a reported problem where EOF conditions during a quoted string or comment caused a fault. ---------------------------------------- 15 August 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020815: Fixed a reported problem where a Store to a method argument that contains a reference did not perform the indirect store correctly. This problem was created during the conversion to the new reference object model - the indirect store to a method argument code was not updated to reflect the new model. Reworked the ACPI mode change code to better conform to ACPI 2.0, handle corner cases, and improve code legibility (Kochi Takayoshi) Fixed a problem with the pathname parsing for the carat (^) prefix. The heavy use of the carat operator by the new namepath optimization in the iASL compiler uncovered a problem with the AML interpreter handling of this prefix. In the case where one or more carats precede a single nameseg, the nameseg was treated as standalone and the search rule (to root) was inadvertently applied. This could cause both the iASL compiler and the interpreter to find the wrong object or to miss the error that should occur if the object does not exist at that exact pathname. Found and fixed the problem where the HP Pavilion DSDT would not load. This was a relatively minor tweak to the table loading code (a problem caused by the unexpected encounter with a method invocation not within a control method), but it does not solve the overall issue of the execution of AML code at the table level. This investigation is still ongoing. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 69.1K Code, 8.2K Data, 77.3K Total Debug Version: 149.4K Code, 61.6K Data, 211.0K Total Current Release: Non-Debug Version: 69.6K Code, 8.3K Data, 77.9K Total Debug Version: 150.0K Code, 61.7K Data, 211.7K Total 2) Linux Remove redundant slab.h include (Brad Hards) Fix several bugs in thermal.c (Herbert Nachtnebel) Make CONFIG_ACPI_BOOT work properly (Pavel Machek) Change acpi_system_suspend to use updated irq functions (Pavel Machek) Export acpi_get_firmware_table (Matthew Wilcox) Use proper root proc entry for ACPI (Kochi Takayoshi) Fix early-boot table parsing (Bjorn Helgaas) 3) iASL Compiler/Disassembler Reworked the compiler options to make them more consistent and to use two-letter options where appropriate. We were running out of sensible letters. This may break some makefiles, so check the current options list by invoking the compiler with no parameters. Completed the design and implementation of the ASL namepath optimization option for the compiler. This option optimizes all references to named objects to the shortest possible path. The first attempt tries to utilize a single nameseg (4 characters) and the "search-to-root" algorithm used by the interpreter. If that cannot be used (because either the name is not in the search path or there is a conflict with another object with the same name), the pathname is optimized using the carat prefix (usually a shorter string than specifying the entire path from the root.) Implemented support to obtain the DSDT from the Windows registry (when the disassembly option is specified with no input file). Added this code as the implementation for AcpiOsTableOverride in the Windows OSL. Migrated the 16-bit code (used in the AcpiDump utility) to scan memory for the DSDT to the AcpiOsTableOverride function in the DOS OSL to make the disassembler truly OS independent. Implemented a new option to disassemble and compile in one step. When used without an input filename, this option will grab the DSDT from the local machine, disassemble it, and compile it in one step. Added a warning message for invalid escapes (a backslash followed by any character other than the allowable escapes). This catches the quoted string error "\_SB_" (which should be "\\_SB_" ). Also, there are numerous instances in the ACPI specification where this error occurs. Added a compiler option to disable all optimizations. This is basically the "compatibility mode" because by using this option, the AML code will come out exactly the same as other ASL compilers. Added error messages for incorrectly ordered dependent resource functions. This includes: missing EndDependentFn macro at end of dependent resource list, nested dependent function macros (both start and end), and missing StartDependentFn macro. These are common errors that should be caught at compile time. Implemented _OSI support for the disassembler and compiler. _OSI must be included in the namespace for proper disassembly (because the disassembler must know the number of arguments.) Added an "optimization" message type that is optional (off by default). This message is used for all optimizations - including constant folding, integer optimization, and namepath optimization. ---------------------------------------- 25 July 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020725: The AML Disassembler has been enhanced to produce compilable ASL code and has been integrated into the iASL compiler (see below) as well as the single-step disassembly for the AML debugger and the disassembler for the AcpiDump utility. All ACPI 2.0A opcodes, resource templates and macros are fully supported. The disassembler has been tested on over 30 different AML files, producing identical AML when the resulting disassembled ASL file is recompiled with the same ASL compiler. Modified the Resource Manager to allow zero interrupts and zero dma channels during the GetCurrentResources call. This was causing problems on some platforms. Added the AcpiOsRedirectOutput interface to the OSL to simplify output redirection for the AcpiOsPrintf and AcpiOsVprintf interfaces. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 68.7K Code, 7.4K Data, 76.1K Total Debug Version: 142.9K Code, 58.7K Data, 201.6K Total Current Release: Non-Debug Version: 69.1K Code, 8.2K Data, 77.3K Total Debug Version: 149.4K Code, 61.6K Data, 211.0K Total 2) Linux Fixed a panic in the EC driver (Dominik Brodowski) Implemented checksum of the R/XSDT itself during Linux table scan (Richard Schaal) 3) iASL compiler The AML disassembler is integrated into the compiler. The "-d" option invokes the disassembler to completely disassemble an input AML file, producing as output a text ASL file with the extension ".dsl" (to avoid name collisions with existing .asl source files.) A future enhancement will allow the disassembler to obtain the BIOS DSDT from the registry under Windows. Fixed a problem with the VendorShort and VendorLong resource descriptors where an invalid AML sequence was created. Implemented a fix for BufferData term in the ASL parser. It was inadvertently defined twice, allowing invalid syntax to pass and causing reduction conflicts. Fixed a problem where the Ones opcode could get converted to a value of zero if "Ones" was used where a byte, word or dword value was expected. The 64-bit value is now truncated to the correct size with the correct value. ---------------------------------------- 02 July 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020702: The Table Manager code has been restructured to add several new features. Tables that are not required by the core subsystem (other than the FADT, DSDT, FACS, PSDTs, etc.) are no longer validated in any way and are returned from AcpiGetFirmwareTable if requested. The AcpiOsTableOverride interface is now called for each table that is loaded by the subsystem in order to allow the host to override any table it chooses. Previously, only the DSDT could be overridden. Added one new files, tbrsdt.c and tbgetall.c. Fixed a problem with the conversion of internal package objects to external objects (when a package is returned from a control method.) The return buffer length was set to zero instead of the proper length of the package object. Fixed a reported problem with the use of the RefOf and DeRefOf operators when passing reference arguments to control methods. A new type of Reference object is used internally for references produced by the RefOf operator. Added additional error messages in the Resource Manager to explain AE_BAD_DATA errors when they occur during resource parsing. Split the AcpiEnableSubsystem into two primitives to enable a finer granularity initialization sequence. These two calls should be called in this order: AcpiEnableSubsystem (flags), AcpiInitializeObjects (flags). The flags parameter remains the same. 2) Linux Updated the ACPI utilities module to understand the new style of fully resolved package objects that are now returned from the core subsystem. This eliminates errors of the form: ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.PPB_._PRT] acpi_utils-0430 [145] acpi_evaluate_reference: Invalid element in package (not a device reference) The method evaluation utility uses the new buffer allocation scheme instead of calling AcpiEvaluate Object twice. Added support for ECDT. This allows the use of the Embedded Controller before the namespace has been fully initialized, which is necessary for ACPI 2.0 support, and for some laptops to initialize properly. (Laptops using ECDT are still rare, so only limited testing was performed of the added functionality.) Fixed memory leaks in the EC driver. Eliminated a brittle code structure in acpi_bus_init(). Eliminated the acpi_evaluate() helper function in utils.c. It is no longer needed since acpi_evaluate_object can optionally allocate memory for the return object. Implemented fix for keyboard hang when getting battery readings on some systems (Stephen White) PCI IRQ routing update (Dominik Brodowski) Fix an ifdef to allow compilation on UP with LAPIC but no IOAPIC support ---------------------------------------- 11 June 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020611: Fixed a reported problem where constants such as Zero and One appearing within _PRT packages were not handled correctly within the resource manager code. Originally reported against the ASL compiler because the code generator now optimizes integers to their minimal AML representation (i.e. AML constants if possible.) The _PRT code now handles all AML constant opcodes correctly (Zero, One, Ones, Revision). Fixed a problem with the Concatenate operator in the AML interpreter where a buffer result object was incorrectly marked as not fully evaluated, causing a run-time error of AE_AML_INTERNAL. All package sub-objects are now fully resolved before they are returned from the external ACPI interfaces. This means that name strings are resolved to object handles, and constant operators (Zero, One, Ones, Revision) are resolved to Integers. Implemented immediate resolution of the AML Constant opcodes (Zero, One, Ones, Revision) to Integer objects upon detection within the AML stream. This has simplified and reduced the generated code size of the subsystem by eliminating about 10 switch statements for these constants (which previously were contained in Reference objects.) The complicating issues are that the Zero opcode is used as a "placeholder" for unspecified optional target operands and stores to constants are defined to be no-ops. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 69.3K Code, 7.4K Data, 76.7K Total Debug Version: 143.8K Code, 58.8K Data, 202.6K Total Current Release: Non-Debug Version: 68.7K Code, 7.4K Data, 76.1K Total Debug Version: 142.9K Code, 58.7K Data, 201.6K Total 2) Linux Added preliminary support for obtaining _TRA data for PCI root bridges (Bjorn Helgaas). 3) iASL Compiler Version X2046: Fixed a problem where the "_DDN" reserved name was defined to be a control method with one argument. There are no arguments, and _DDN does not have to be a control method. Fixed a problem with the Linux version of the compiler where the source lines printed with error messages were the wrong lines. This turned out to be the "LF versus CR/LF" difference between Windows and Unix. This appears to be the longstanding issue concerning listing output and error messages. Fixed a problem with the Linux version of compiler where opcode names within error messages were wrong. This was caused by a slight difference in the output of the Flex tool on Linux versus Windows. Fixed a problem with the Linux compiler where the hex output files contained some garbage data caused by an internal buffer overrun. ---------------------------------------- 17 May 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020517: Implemented a workaround to an BIOS bug discovered on the HP OmniBook where the FADT revision number and the table size are inconsistent (ACPI 2.0 revision vs. ACPI 1.0 table size). The new behavior is to fallback to using only the ACPI 1.0 fields of the FADT if the table is too small to be a ACPI 2.0 table as claimed by the revision number. Although this is a BIOS bug, this is a case where the workaround is simple enough and with no side effects, so it seemed prudent to add it. A warning message is issued, however. Implemented minimum size checks for the fixed-length ACPI tables - - the FADT and FACS, as well as consistency checks between the revision number and the table size. Fixed a reported problem in the table override support where the new table pointer was incorrectly treated as a physical address instead of a logical address. Eliminated the use of the AE_AML_ERROR exception and replaced it with more descriptive codes. Fixed a problem where an exception would occur if an ASL Field was defined with no named Field Units underneath it (used by some index fields). Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 68.8K Code, 7.1K Data, 75.9K Total Debug Version: 142.9K Code, 58.4K Data, 201.3K Total Current Release: Non-Debug Version: 69.3K Code, 7.4K Data, 76.7K Total Debug Version: 143.8K Code, 58.8K Data, 202.6K Total 2) Linux Much work done on ACPI init (MADT and PCI IRQ routing support). (Paul D. and Dominik Brodowski) Fix PCI IRQ-related panic on boot (Sam Revitch) Set BM_ARB_DIS when entering a sleep state (Ducrot Bruno) Fix "MHz" typo (Dominik Brodowski) Fix RTC year 2000 issue (Dominik Brodowski) Preclude multiple button proc entries (Eric Brunet) Moved arch-specific code out of include/platform/aclinux.h 3) iASL Compiler Version X2044: Implemented error checking for the string used in the EISAID macro (Usually used in the definition of the _HID object.) The code now strictly enforces the PnP format - exactly 7 characters, 3 uppercase letters and 4 hex digits. If a raw string is used in the definition of the _HID object (instead of the EISAID macro), the string must contain all alphanumeric characters (e.g., "*PNP0011" is not allowed because of the asterisk.) Implemented checking for invalid use of ACPI reserved names for most of the name creation operators (Name, Device, Event, Mutex, OperationRegion, PowerResource, Processor, and ThermalZone.) Previously, this check was only performed for control methods. Implemented an additional check on the Name operator to emit an error if a reserved name that must be implemented in ASL as a control method is used. We know that a reserved name must be a method if it is defined with input arguments. The warning emitted when a namespace object reference is not found during the cross reference phase has been changed into an error. The "External" directive should be used for names defined in other modules. 4) Tools and Utilities The 16-bit tools (adump16 and aexec16) have been regenerated and tested. Fixed a problem with the output of both acpidump and adump16 where the indentation of closing parentheses and brackets was not aligned properly with the parent block. ---------------------------------------- 03 May 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020503: Added support a new OSL interface that allows the host operating system software to override the DSDT found in the firmware - AcpiOsTableOverride. With this interface, the OSL can examine the version of the firmware DSDT and replace it with a different one if desired. Added new external interfaces for accessing ACPI registers from device drivers and other system software - AcpiGetRegister and AcpiSetRegister. This was simply an externalization of the existing AcpiHwBitRegister interfaces. Fixed a regression introduced in the previous build where the ASL/AML CreateField operator always returned an error, "destination must be a NS Node". Extended the maximum time (before failure) to successfully enable ACPI mode to 3 seconds. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 68.5K Code, 7.0K Data, 75.5K Total Debug Version: 142.4K Code, 58.3K Data, 200.7K Total Current Release: Non-Debug Version: 68.8K Code, 7.1K Data, 75.9K Total Debug Version: 142.9K Code, 58.4K Data, 201.3K Total 2) Linux Enhanced ACPI init code for SMP. We are now fully MPS and $PIR- free. While 3 out of 4 of our in-house systems work fine, the last one still hangs when testing the LAPIC timer. Renamed many files in 2.5 kernel release to omit "acpi_" from the name. Added warning on boot for Presario 711FR. Sleep improvements (Pavel Machek) ACPI can now be built without CONFIG_PCI enabled. IA64: Fixed memory map functions (JI Lee) 3) iASL Compiler Version X2043: Added support to allow the compiler to be integrated into the MS VC++ development environment for one-button compilation of single files or entire projects -- with error-to-source-line mapping. Implemented support for compile-time constant folding for the Type3, Type4, and Type5 opcodes first defined in the ACPI 2.0 specification. This allows the ASL writer to use expressions instead of Integer/Buffer/String constants in terms that must evaluate to constants at compile time and will also simplify the emitted AML in any such sub-expressions that can be folded (evaluated at compile-time.) This increases the size of the compiler significantly because a portion of the ACPI CA AML interpreter is included within the compiler in order to pre- evaluate constant expressions. Fixed a problem with the "Unicode" ASL macro that caused the compiler to fault. (This macro is used in conjunction with the _STR reserved name.) Implemented an AML opcode optimization to use the Zero, One, and Ones opcodes where possible to further reduce the size of integer constants and thus reduce the overall size of the generated AML code. Implemented error checking for new reserved terms for ACPI version 2.0A. Implemented the -qr option to display the current list of ACPI reserved names known to the compiler. Implemented the -qc option to display the current list of ASL operators that are allowed within constant expressions and can therefore be folded at compile time if the operands are constants. 4) Documentation Updated the Programmer's Reference for new interfaces, data types, and memory allocation model options. Updated the iASL Compiler User Reference to apply new format and add information about new features and options. ---------------------------------------- 19 April 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020419: The source code base for the Core Subsystem has been completely cleaned with PC-lint (FlexLint) for both 32-bit and 64-bit versions. The Lint option files used are included in the /acpi/generate/lint directory. Implemented enhanced status/error checking across the entire Hardware manager subsystem. Any hardware errors (reported from the OSL) are now bubbled up and will abort a running control method. Fixed a problem where the per-ACPI-table integer width (32 or 64) was stored only with control method nodes, causing a fault when non-control method code was executed during table loading. The solution implemented uses a global variable to indicate table width across the entire ACPI subsystem. Therefore, ACPI CA does not support mixed integer widths across different ACPI tables (DSDT, SSDT). Fixed a problem where NULL extended fields (X fields) in an ACPI 2.0 ACPI FADT caused the table load to fail. Although the existing ACPI specification is a bit fuzzy on this topic, the new behavior is to fall back on a ACPI 1.0 field if the corresponding ACPI 2.0 X field is zero (even though the table revision indicates a full ACPI 2.0 table.) The ACPI specification will be updated to clarify this issue. Fixed a problem with the SystemMemory operation region handler where memory was always accessed byte-wise even if the AML- specified access width was larger than a byte. This caused problems on systems with memory-mapped I/O. Memory is now accessed with the width specified. On systems that do not support non-aligned transfers, a check is made to guarantee proper address alignment before proceeding in order to avoid an AML-caused alignment fault within the kernel. Fixed a problem with the ExtendedIrq resource where only one byte of the 4-byte Irq field was extracted. Fixed the AcpiExDigitsNeeded() procedure to support _UID. This function was out of date and required a rewrite. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 66.6K Code, 6.5K Data, 73.1K Total Debug Version: 139.8K Code, 57.4K Data, 197.2K Total Current Release: Non-Debug Version: 68.5K Code, 7.0K Data, 75.5K Total Debug Version: 142.4K Code, 58.3K Data, 200.7K Total 2) Linux PCI IRQ routing fixes (Dominik Brodowski) 3) iASL Compiler Version X2042: Implemented an additional compile-time error check for a field unit whose size + minimum access width would cause a run-time access beyond the end-of-region. Previously, only the field size itself was checked. The Core subsystem and iASL compiler now share a common parse object in preparation for compile-time evaluation of the type 3/4/5 ASL operators. ---------------------------------------- Summary of changes for this release: 03_29_02 1) ACPI CA Core Subsystem Version 20020329: Implemented support for late evaluation of TermArg operands to Buffer and Package objects. This allows complex expressions to be used in the declarations of these object types. Fixed an ACPI 1.0 compatibility issue when reading Fields. In ACPI 1.0, if the field was larger than 32 bits, it was returned as a buffer - otherwise it was returned as an integer. In ACPI 2.0, the field is returned as a buffer only if the field is larger than 64 bits. The TableRevision is now considered when making this conversion to avoid incompatibility with existing ASL code. Implemented logical addressing for AcpiOsGetRootPointer. This allows an RSDP with either a logical or physical address. With this support, the host OS can now override all ACPI tables with one logical RSDP. Includes implementation of "typed" pointer support to allow a common data type for both physical and logical pointers internally. This required a change to the AcpiOsGetRootPointer interface. Implemented the use of ACPI 2.0 Generic Address Structures for all GPE, Fixed Event, and PM Timer I/O. This allows the use of memory mapped I/O for these ACPI features. Initialization now ignores not only non-required tables (All tables other than the FADT, FACS, DSDT, and SSDTs), but also does not validate the table headers of unrecognized tables. Fixed a problem where a notify handler could only be installed/removed on an object of type Device. All "notify" objects are now supported -- Devices, Processor, Power, and Thermal. Removed most verbosity from the ACPI_DB_INFO debug level. Only critical information is returned when this debug level is enabled. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 65.4K Code, 6.2K Data, 71.6K Total Debug Version: 138.0K Code, 56.6K Data, 194.6K Total Current Release: Non-Debug Version: 66.6K Code, 6.5K Data, 73.1K Total Debug Version: 139.8K Code, 57.4K Data, 197.2K Total 2) Linux: The processor driver (acpi_processor.c) now fully supports ACPI 2.0-based processor performance control (e.g. Intel(R) SpeedStep(TM) technology) Note that older laptops that only have the Intel "applet" interface are not supported through this. The 'limit' and 'performance' interface (/proc) are fully functional. [Note that basic policy for controlling performance state transitions will be included in the next version of ospmd.] The idle handler was modified to more aggressively use C2, and PIIX4 errata handling underwent a complete overhaul (big thanks to Dominik Brodowski). Added support for ACPI-PCI device binding (acpi_pci_root.c). _ADR- based devices in the ACPI namespace are now dynamically bound (associated) with their PCI counterparts (e.g. PCI1->01:00.0). This allows, among other things, ACPI to resolve bus numbers for subordinate PCI bridges. Enhanced PCI IRQ routing to get the proper bus number for _PRT entries defined underneath PCI bridges. Added IBM 600E to bad bios list due to invalid _ADR value for PIIX4 PCI-ISA bridge, resulting in improper PCI IRQ routing. In the process of adding full MADT support (e.g. IOAPIC) for IA32 (acpi.c, mpparse.c) -- stay tuned. Added back visual differentiation between fixed-feature and control-method buttons in dmesg. Buttons are also subtyped (e.g. button/power/PWRF) to simplify button identification. We no longer use -Wno-unused when compiling debug. Please ignore any "_THIS_MODULE defined but not used" messages. Can now shut down the system using "magic sysrq" key. 3) iASL Compiler version 2041: Fixed a problem where conversion errors for hex/octal/decimal constants were not reported. Implemented a fix for the General Register template Address field. This field was 8 bits when it should be 64. Fixed a problem where errors/warnings were no longer being emitted within the listing output file. Implemented the ACPI 2.0A restriction on ACPI Table Signatures to exactly 4 characters, alphanumeric only. ---------------------------------------- Summary of changes for this release: 03_08_02 1) ACPI CA Core Subsystem Version 20020308: Fixed a problem with AML Fields where the use of the "AccessAny" keyword could cause an interpreter error due to attempting to read or write beyond the end of the parent Operation Region. Fixed a problem in the SystemMemory Operation Region handler where an attempt was made to map memory beyond the end of the region. This was the root cause of the "AE_ERROR" and "AE_NO_MEMORY" errors on some Linux systems. Fixed a problem where the interpreter/namespace "search to root" algorithm was not functioning for some object types. Relaxed the internal restriction on the search to allow upsearches for all external object types as well as most internal types. 2) Linux: We now use safe_halt() macro versus individual calls to sti | hlt. Writing to the processor limit interface should now work. "echo 1" will increase the limit, 2 will decrease, and 0 will reset to the default. 3) ASL compiler: Fixed segfault on Linux version. ---------------------------------------- Summary of changes for this release: 02_25_02 1) ACPI CA Core Subsystem: Fixed a problem where the GPE bit masks were not initialized properly, causing erratic GPE behavior. Implemented limited support for multiple calling conventions. The code can be generated with either the VPL (variable parameter list, or "C") convention, or the FPL (fixed parameter list, or "Pascal") convention. The core subsystem is about 3.4% smaller when generated with FPL. 2) Linux Re-add some /proc/acpi/event functionality that was lost during the rewrite Resolved issue with /proc events for fixed-feature buttons showing up as the system device. Fixed checks on C2/C3 latencies to be inclusive of maximum values. Replaced AE_ERRORs in acpi_osl.c with more specific error codes. Changed ACPI PRT option from "pci=noacpi-routing" to "pci=noacpi" Fixed limit interface & usage to fix bugs with passive cooling hysterisis. Restructured PRT support. ---------------------------------------- Summary of changes for this label: 02_14_02 1) ACPI CA Core Subsystem: Implemented support in AcpiLoadTable to allow loading of FACS and FADT tables. Suport for the now-obsolete interim 0.71 64-bit ACPI tables has been removed. All 64-bit platforms should be migrated to the ACPI 2.0 tables. The actbl71.h header has been removed from the source tree. All C macros defined within the subsystem have been prefixed with "ACPI_" to avoid collision with other system include files. Removed the return value for the two AcpiOsPrint interfaces, since it is never used and causes lint warnings for ignoring the return value. Added error checking to all internal mutex acquire and release calls. Although a failure from one of these interfaces is probably a fatal system error, these checks will cause the immediate abort of the currently executing method or interface. Fixed a problem where the AcpiSetCurrentResources interface could fault. This was a side effect of the deployment of the new memory allocation model. Fixed a couple of problems with the Global Lock support introduced in the last major build. The "common" (1.0/2.0) internal FACS was being overwritten with the FACS signature and clobbering the Global Lock pointer. Also, the actual firmware FACS was being unmapped after construction of the "common" FACS, preventing access to the actual Global Lock field within it. The "common" internal FACS is no longer installed as an actual ACPI table; it is used simply as a global. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (02_07_01) Non-Debug Version: 65.2K Code, 6.2K Data, 71.4K Total Debug Version: 136.9K Code, 56.4K Data, 193.3K Total Current Release: Non-Debug Version: 65.4K Code, 6.2K Data, 71.6K Total Debug Version: 138.0K Code, 56.6K Data, 194.6K Total 2) Linux Updated Linux-specific code for core macro and OSL interface changes described above. Improved /proc/acpi/event. It now can be opened only once and has proper poll functionality. Fixed and restructured power management (acpi_bus). Only create /proc "view by type" when devices of that class exist. Fixed "charging/discharging" bug (and others) in acpi_battery. Improved thermal zone code. 3) ASL Compiler, version X2039: Implemented the new compiler restriction on ASL String hex/octal escapes to non-null, ASCII values. An error results if an invalid value is used. (This will require an ACPI 2.0 specification change.) AML object labels that are output to the optional C and ASM source are now prefixed with both the ACPI table signature and table ID to help guarantee uniqueness within a large BIOS project. ---------------------------------------- Summary of changes for this label: 02_01_02 1) ACPI CA Core Subsystem: ACPI 2.0 support is complete in the entire Core Subsystem and the ASL compiler. All new ACPI 2.0 operators are implemented and all other changes for ACPI 2.0 support are complete. With simultaneous code and data optimizations throughout the subsystem, ACPI 2.0 support has been implemented with almost no additional cost in terms of code and data size. Implemented a new mechanism for allocation of return buffers. If the buffer length is set to ACPI_ALLOCATE_BUFFER, the buffer will be allocated on behalf of the caller. Consolidated all return buffer validation and allocation to a common procedure. Return buffers will be allocated via the primary OSL allocation interface since it appears that a separate pool is not needed by most users. If a separate pool is required for these buffers, the caller can still use the original mechanism and pre-allocate the buffer(s). Implemented support for string operands within the DerefOf operator. Restructured the Hardware and Event managers to be table driven, simplifying the source code and reducing the amount of generated code. Split the common read/write low-level ACPI register bitfield procedure into a separate read and write, simplifying the code considerably. Obsoleted the AcpiOsCallocate OSL interface. This interface was used only a handful of times and didn't have enough critical mass for a separate interface. Replaced with a common calloc procedure in the core. Fixed a reported problem with the GPE number mapping mechanism that allows GPE1 numbers to be non-contiguous with GPE0. Reorganized the GPE information and shrunk a large array that was originally large enough to hold info for all possible GPEs (256) to simply large enough to hold all GPEs up to the largest GPE number on the machine. Fixed a reported problem with resource structure alignment on 64- bit platforms. Changed the AcpiEnableEvent and AcpiDisableEvent external interfaces to not require any flags for the common case of enabling/disabling a GPE. Implemented support to allow a "Notify" on a Processor object. Most TBDs in comments within the source code have been resolved and eliminated. Fixed a problem in the interpreter where a standalone parent prefix (^) was not handled correctly in the interpreter and debugger. Removed obsolete and unnecessary GPE save/restore code. Implemented Field support in the ASL Load operator. This allows a table to be loaded from a named field, in addition to loading a table directly from an Operation Region. Implemented timeout and handle support in the external Global Lock interfaces. Fixed a problem in the AcpiDump utility where pathnames were no longer being generated correctly during the dump of named objects. Modified the AML debugger to give a full display of if/while predicates instead of just one AML opcode at a time. (The predicate can have several nested ASL statements.) The old method was confusing during single stepping. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (12_18_01) Non-Debug Version: 66.1K Code, 5.5K Data, 71.6K Total Debug Version: 138.3K Code, 55.9K Data, 194.2K Total Current Release: Non-Debug Version: 65.2K Code, 6.2K Data, 71.4K Total Debug Version: 136.9K Code, 56.4K Data, 193.3K Total 2) Linux Implemented fix for PIIX reverse throttling errata (Processor driver) Added new Limit interface (Processor and Thermal drivers) New thermal policy (Thermal driver) Many updates to /proc Battery "low" event support (Battery driver) Supports ACPI PCI IRQ routing (PCI Link and PCI root drivers) IA32 - IA64 initialization unification, no longer experimental Menuconfig options redesigned 3) ASL Compiler, version X2037: Implemented several new output features to simplify integration of AML code into firmware: 1) Output the AML in C source code with labels for each named ASL object. The original ASL source code is interleaved as C comments. 2) Output the AML in ASM source code with labels and interleaved ASL source. 3) Output the AML in raw hex table form, in either C or ASM. Implemented support for optional string parameters to the LoadTable operator. Completed support for embedded escape sequences within string literals. The compiler now supports all single character escapes as well as the Octal and Hex escapes. Note: the insertion of a null byte into a string literal (via the hex/octal escape) causes the string to be immediately terminated. A warning is issued. Fixed a problem where incorrect AML was generated for the case where an ASL namepath consists of a single parent prefix ( ) with no trailing name segments. The compiler has been successfully generated with a 64-bit C compiler. ---------------------------------------- Summary of changes for this label: 12_18_01 1) Linux Enhanced blacklist with reason and severity fields. Any table's signature may now be used to identify a blacklisted system. Call _PIC control method to inform the firmware which interrupt model the OS is using. Turn on any disabled link devices. Cleaned up busmgr /proc error handling (Andreas Dilger) 2) ACPI CA Core Subsystem: Implemented ACPI 2.0 semantics for the "Break" operator (Exit from while loop) Completed implementation of the ACPI 2.0 "Continue", "ConcatenateResTemplate", "DataTableRegion", and "LoadTable" operators. All new ACPI 2.0 operators are now implemented in both the ASL compiler and the AML interpreter. The only remaining ACPI 2.0 task is support for the String data type in the DerefOf operator. Fixed a problem with AcquireMutex where the status code was lost if the caller had to actually wait for the mutex. Increased the maximum ASL Field size from 64K bits to 4G bits. Completed implementation of the external Global Lock interfaces -- AcpiAcquireGlobalLock and AcpiReleaseGlobalLock. The Timeout and Handler parameters were added. Completed another pass at removing warnings and issues when compiling with 64-bit compilers. The code now compiles cleanly with the Intel 64-bit C/C++ compiler. Most notably, the pointer add and subtract (diff) macros have changed considerably. Created and deployed a new ACPI_SIZE type that is 64-bits wide on 64-bit platforms, 32-bits on all others. This type is used wherever memory allocation and/or the C sizeof() operator is used, and affects the OSL memory allocation interfaces AcpiOsAllocate and AcpiOsCallocate. Implemented sticky user breakpoints in the AML debugger. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (12_05_01) Non-Debug Version: 64.7K Code, 5.3K Data, 70.0K Total Debug Version: 136.2K Code, 55.6K Data, 191.8K Total Current Release: Non-Debug Version: 66.1K Code, 5.5K Data, 71.6K Total Debug Version: 138.3K Code, 55.9K Data, 194.2K Total 3) ASL Compiler, version X2034: Now checks for (and generates an error if detected) the use of a Break or Continue statement without an enclosing While statement. Successfully generated the compiler with the Intel 64-bit C compiler. ---------------------------------------- Summary of changes for this label: 12_05_01 1) ACPI CA Core Subsystem: The ACPI 2.0 CopyObject operator is fully implemented. This operator creates a new copy of an object (and is also used to bypass the "implicit conversion" mechanism of the Store operator.) The ACPI 2.0 semantics for the SizeOf operator are fully implemented. The change is that performing a SizeOf on a reference object causes an automatic dereference of the object to tha actual value before the size is evaluated. This behavior was undefined in ACPI 1.0. The ACPI 2.0 semantics for the Extended IRQ resource descriptor have been implemented. The interrupt polarity and mode are now independently set. Fixed a problem where ASL Constants (Zero, One, Ones, Revision) appearing in Package objects were not properly converted to integers when the internal Package was converted to an external object (via the AcpiEvaluateObject interface.) Fixed a problem with the namespace object deletion mechanism for objects created by control methods. There were two parts to this problem: 1) Objects created during the initialization phase method parse were not being deleted, and 2) The object owner ID mechanism to track objects was broken. Fixed a problem where the use of the ASL Scope operator within a control method would result in an invalid opcode exception. Fixed a problem introduced in the previous label where the buffer length required for the _PRT structure was not being returned correctly. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (11_20_01) Non-Debug Version: 64.1K Code, 5.3K Data, 69.4K Total Debug Version: 135.1K Code, 55.4K Data, 190.5K Total Current Release: Non-Debug Version: 64.7K Code, 5.3K Data, 70.0K Total Debug Version: 136.2K Code, 55.6K Data, 191.8K Total 2) Linux: Updated all files to apply cleanly against 2.4.16. Added basic PCI Interrupt Routing Table (PRT) support for IA32 (acpi_pci.c), and unified the PRT code for IA32 and IA64. This version supports both static and dyanmic PRT entries, but dynamic entries are treated as if they were static (not yet reconfigurable). Architecture- specific code to use this data is absent on IA32 but should be available shortly. Changed the initialization sequence to start the ACPI interpreter (acpi_init) prior to initialization of the PCI driver (pci_init) in init/main.c. This ordering is required to support PRT and facilitate other (future) enhancement. A side effect is that the ACPI bus driver and certain device drivers can no longer be loaded as modules. Modified the 'make menuconfig' options to allow PCI Interrupt Routing support to be included without the ACPI Bus and other device drivers. 3) ASL Compiler, version X2033: Fixed some issues with the use of the new CopyObject and DataTableRegion operators. Both are fully functional. ---------------------------------------- Summary of changes for this label: 11_20_01 20 November 2001. Summary of changes for this release. 1) ACPI CA Core Subsystem: Updated Index support to match ACPI 2.0 semantics. Storing a Integer, String, or Buffer to an Index of a Buffer will store only the least-significant byte of the source to the Indexed buffer byte. Multiple writes are not performed. Fixed a problem where the access type used in an AccessAs ASL operator was not recorded correctly into the field object. Fixed a problem where ASL Event objects were created in a signalled state. Events are now created in an unsignalled state. The internal object cache is now purged after table loading and initialization to reduce the use of dynamic kernel memory -- on the assumption that object use is greatest during the parse phase of the entire table (versus the run-time use of individual control methods.) ACPI 2.0 variable-length packages are now fully operational. Code and Data Size: Code and Data optimizations have permitted new feature development with an actual reduction in the library size. Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (11_09_01): Non-Debug Version: 63.7K Code, 5.2K Data, 68.9K Total Debug Version: 134.5K Code, 55.4K Data, 189.9K Total Current Release: Non-Debug Version: 64.1K Code, 5.3K Data, 69.4K Total Debug Version: 135.1K Code, 55.4K Data, 190.5K Total 2) Linux: Enhanced the ACPI boot-time initialization code to allow the use of Local APIC tables for processor enumeration on IA-32, and to pave the way for a fully MPS-free boot (on SMP systems) in the near future. This functionality replaces arch/i386/kernel/acpitables.c, which was introduced in an earlier 2.4.15-preX release. To enable this feature you must add "acpi_boot=on" to the kernel command line -- see the help entry for CONFIG_ACPI_BOOT for more information. An IA-64 release is in the works... Restructured the configuration options to allow boot-time table parsing support without inclusion of the ACPI Interpreter (and other) code. NOTE: This release does not include fixes for the reported events, power-down, and thermal passive cooling issues (coming soon). 3) ASL Compiler: Added additional typechecking for Fields within restricted access Operation Regions. All fields within EC and CMOS regions must be declared with ByteAcc. All fields withing SMBus regions must be declared with the BufferAcc access type. Fixed a problem where the listing file output of control methods no longer interleaved the actual AML code with the ASL source code. ---------------------------------------- Summary of changes for this label: 11_09_01 1) ACPI CA Core Subsystem: Implemented ACPI 2.0-defined support for writes to fields with a Buffer, String, or Integer source operand that is smaller than the target field. In these cases, the source operand is zero-extended to fill the target field. Fixed a problem where a Field starting bit offset (within the parent operation region) was calculated incorrectly if the alignment of the field differed from the access width. This affected CreateWordField, CreateDwordField, CreateQwordField, and possibly other fields that use the "AccessAny" keyword. Fixed a problem introduced in the 11_02_01 release where indirect stores through method arguments did not operate correctly. 2) Linux: Implemented boot-time ACPI table parsing support (CONFIG_ACPI_BOOT) for IA32 and IA64 UP/SMP systems. This code facilitates the use of ACPI tables (e.g. MADT, SRAT) rather than legacy BIOS interfaces (e.g. MPS) for the configuration of system processors, memory, and interrupts during setup_arch(). Note that this patch does not include the required architecture-specific changes required to apply this information -- subsequent patches will be posted for both IA32 and IA64 to achieve this. Added low-level sleep support for IA32 platforms, courtesy of Pat Mochel. This allows IA32 systems to transition to/from various sleeping states (e.g. S1, S3), although the lack of a centralized driver model and power-manageable drivers will prevent its (successful) use on most systems. Revamped the ACPI 'menuconfig' layout: created new "ACPI Support" submenu, unified IA32 and IA64 options, added new "Boot using ACPI tables" option, etc. Increased the default timeout for the EC driver from 1ms to 10ms (1000 cycles of 10us) to try to address AE_TIME errors during EC transactions. ---------------------------------------- Summary of changes for this label: 11_02_01 1) ACPI CA Core Subsystem: ACPI 2.0 Support: Implemented ACPI 2.0 64-bit Field access (QWordAcc keyword). All ACPI 2.0 64-bit support is now implemented. OSL Interfaces: Several of the OSL (AcpiOs*) interfaces required changes to support ACPI 2.0 Qword field access. Read/Write PciConfiguration(), Read/Write Memory(), and Read/Write Port() now accept an ACPI_INTEGER (64 bits) as the value parameter. Also, the value parameter for the address space handler interface is now an ACPI_INTEGER. OSL implementations of these interfaces must now handle the case where the Width parameter is 64. Index Fields: Fixed a problem where unaligned bit assembly and disassembly for IndexFields was not supported correctly. Index and Bank Fields: Nested Index and Bank Fields are now supported. During field access, a check is performed to ensure that the value written to an Index or Bank register is not out of the range of the register. The Index (or Bank) register is written before each access to the field data. Future support will include allowing individual IndexFields to be wider than the DataRegister width. Fields: Fixed a problem where the AML interpreter was incorrectly attempting to write beyond the end of a Field/OpRegion. This was a boundary case that occurred when a DWORD field was written to a BYTE access OpRegion, forcing multiple writes and causing the interpreter to write one datum too many. Fields: Fixed a problem with Field/OpRegion access where the starting bit address of a field was incorrectly calculated if the current access type was wider than a byte (WordAcc, DwordAcc, or QwordAcc). Fields: Fixed a problem where forward references to individual FieldUnits (individual Field names within a Field definition) were not resolved during the AML table load. Fields: Fixed a problem where forward references from a Field definition to the parent Operation Region definition were not resolved during the AML table load. Fields: Duplicate FieldUnit names within a scope are now detected during AML table load. Acpi Interfaces: Fixed a problem where the AcpiGetName() interface returned an incorrect name for the root node. Code and Data Size: Code and Data optimizations have permitted new feature development with an actual reduction in the library size. Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (10_18_01): Non-Debug Version: 63.9K Code, 5.1K Data, 69.0K Total Debug Version: 136.7K Code, 57.4K Data, 194.2K Total Current Release: Non-Debug Version: 63.7K Code, 5.2K Data, 68.9K Total Debug Version: 134.5K Code, 55.4K Data, 189.9K Total 2) Linux: Improved /proc processor output (Pavel Machek) Re-added MODULE_LICENSE("GPL") to all modules. 3) ASL Compiler version X2030: Duplicate FieldUnit names within a scope are now detected and flagged as errors. 4) Documentation: Programmer Reference updated to reflect OSL and address space handler interface changes described above. ---------------------------------------- Summary of changes for this label: 10_18_01 ACPI CA Core Subsystem: Fixed a problem with the internal object reference count mechanism that occasionally caused premature object deletion. This resolves all of the outstanding problem reports where an object is deleted in the middle of an interpreter evaluation. Although this problem only showed up in rather obscure cases, the solution to the problem involved an adjustment of all reference counts involving objects attached to namespace nodes. Fixed a problem with Field support in the interpreter where writing to an aligned field whose length is an exact multiple (2 or greater) of the field access granularity would cause an attempt to write beyond the end of the field. The top level AML opcode execution functions within the interpreter have been renamed with a more meaningful and consistent naming convention. The modules exmonad.c and exdyadic.c were eliminated. New modules are exoparg1.c, exoparg2.c, exoparg3.c, and exoparg6.c. Support for the ACPI 2.0 "Mid" ASL operator has been implemented. Fixed a problem where the AML debugger was causing some internal objects to not be deleted during subsystem termination. Fixed a problem with the external AcpiEvaluateObject interface where the subsystem would fault if the named object to be evaluated refered to a constant such as Zero, Ones, etc. Fixed a problem with IndexFields and BankFields where the subsystem would fault if the index, data, or bank registers were not defined in the same scope as the field itself. Added printf format string checking for compilers that support this feature. Corrected more than 50 instances of issues with format specifiers within invocations of ACPI_DEBUG_PRINT throughout the core subsystem code. The ASL "Revision" operator now returns the ACPI support level implemented in the core - the value "2" since the ACPI 2.0 support is more than 50% implemented. Enhanced the output of the AML debugger "dump namespace" command to output in a more human-readable form. Current core subsystem library code sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the full debug trace mechanism -- leading to a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Label (09_20_01): Non-Debug Version: 65K Code, 5K Data, 70K Total Debug Version: 138K Code, 58K Data, 196K Total This Label: Non-Debug Version: 63.9K Code, 5.1K Data, 69.0K Total Debug Version: 136.7K Code, 57.4K Data, 194.2K Total Linux: Implemented a "Bad BIOS Blacklist" to track machines that have known ASL/AML problems. Enhanced the /proc interface for the thermal zone driver and added support for _HOT (the critical suspend trip point). The 'info' file now includes threshold/policy information, and allows setting of _SCP (cooling preference) and _TZP (polling frequency) values to the 'info' file. Examples: "echo tzp=5 > info" sets the polling frequency to 5 seconds, and "echo scp=1 > info" sets the cooling preference to the passive/quiet mode (if supported by the ASL). Implemented a workaround for a gcc bug that resuted in an OOPs when loading the control method battery driver. ---------------------------------------- Summary of changes for this label: 09_20_01 ACPI CA Core Subsystem: The AcpiEnableEvent and AcpiDisableEvent interfaces have been modified to allow individual GPE levels to be flagged as wake- enabled (i.e., these GPEs are to remain enabled when the platform sleeps.) The AcpiEnterSleepState and AcpiLeaveSleepState interfaces now support wake-enabled GPEs. This means that upon entering the sleep state, all GPEs that are not wake-enabled are disabled. When leaving the sleep state, these GPEs are reenabled. A local double-precision divide/modulo module has been added to enhance portability to OS kernels where a 64-bit math library is not available. The new module is "utmath.c". Several optimizations have been made to reduce the use of CPU stack. Originally over 2K, the maximum stack usage is now below 2K at 1860 bytes (1.82k) Fixed a problem with the AcpiGetFirmwareTable interface where the root table pointer was not mapped into a logical address properly. Fixed a problem where a NULL pointer was being dereferenced in the interpreter code for the ASL Notify operator. Fixed a problem where the use of the ASL Revision operator returned an error. This operator now returns the current version of the ACPI CA core subsystem. Fixed a problem where objects passed as control method parameters to AcpiEvaluateObject were always deleted at method termination. However, these objects may end up being stored into the namespace by the called method. The object reference count mechanism was applied to these objects instead of a force delete. Fixed a problem where static strings or buffers (contained in the AML code) that are declared as package elements within the ASL code could cause a fault because the interpreter would attempt to delete them. These objects are now marked with the "static object" flag to prevent any attempt to delete them. Implemented an interpreter optimization to use operands directly from the state object instead of extracting the operands to local variables. This reduces stack use and code size, and improves performance. The module exxface.c was eliminated as it was an unnecessary extra layer of code. Current core subsystem library code sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the full debug trace mechanism -- leading to a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Non-Debug Version: 65K Code, 5K Data, 70K Total (Previously 69K) Debug Version: 138K Code, 58K Data, 196K Total (Previously 195K) Linux: Support for ACPI 2.0 64-bit integers has been added. All ACPI Integer objects are now 64 bits wide All Acpi data types and structures are now in lower case. Only Acpi macros are upper case for differentiation. Documentation: Changes to the external interfaces as described above. ---------------------------------------- Summary of changes for this label: 08_31_01 ACPI CA Core Subsystem: A bug with interpreter implementation of the ASL Divide operator was found and fixed. The implicit function return value (not the explicit store operands) was returning the remainder instead of the quotient. This was a longstanding bug and it fixes several known outstanding issues on various platforms. The ACPI_DEBUG_PRINT and function trace entry/exit macros have been further optimized for size. There are 700 invocations of the DEBUG_PRINT macro alone, so each optimization reduces the size of the debug version of the subsystem significantly. A stack trace mechanism has been implemented. The maximum stack usage is about 2K on 32-bit platforms. The debugger command "stat stack" will display the current maximum stack usage. All public symbols and global variables within the subsystem are now prefixed with the string "Acpi". This keeps all of the symbols grouped together in a kernel map, and avoids conflicts with other kernel subsystems. Most of the internal fixed lookup tables have been moved into the code segment via the const operator. Several enhancements have been made to the interpreter to both reduce the code size and improve performance. Current core subsystem library code sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the full debug trace mechanism which contains over 700 invocations of the DEBUG_PRINT macro, 500 function entry macro invocations, and over 900 function exit macro invocations -- leading to a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Non-Debug Version: 64K Code, 5K Data, 69K Total Debug Version: 137K Code, 58K Data, 195K Total Linux: Implemented wbinvd() macro, pending a kernel-wide definition. Fixed /proc/acpi/event to handle poll() and short reads. ASL Compiler, version X2026: Fixed a problem introduced in the previous label where the AML code emitted for package objects produced packages with zero length. ---------------------------------------- Summary of changes for this label: 08_16_01 ACPI CA Core Subsystem: The following ACPI 2.0 ASL operators have been implemented in the AML interpreter (These are already supported by the Intel ASL compiler): ToDecimalString, ToHexString, ToString, ToInteger, and ToBuffer. Support for 64-bit AML constants is implemented in the AML parser, debugger, and disassembler. The internal memory tracking mechanism (leak detection code) has been upgraded to reduce the memory overhead (a separate tracking block is no longer allocated for each memory allocation), and now supports all of the internal object caches. The data structures and code for the internal object caches have been coelesced and optimized so that there is a single cache and memory list data structure and a single group of functions that implement generic cache management. This has reduced the code size in both the debug and release versions of the subsystem. The DEBUG_PRINT macro(s) have been optimized for size and replaced by ACPI_DEBUG_PRINT. The syntax for this macro is slightly different, because it generates a single call to an internal function. This results in a savings of about 90 bytes per invocation, resulting in an overall code and data savings of about 16% in the debug version of the subsystem. Linux: Fixed C3 disk corruption problems and re-enabled C3 on supporting machines. Integrated low-level sleep code by Patrick Mochel. Further tweaked source code Linuxization. Other minor fixes. ASL Compiler: Support for ACPI 2.0 variable length packages is fixed/completed. Fixed a problem where the optional length parameter for the ACPI 2.0 ToString operator. Fixed multiple extraneous error messages when a syntax error is detected within the declaration line of a control method. ---------------------------------------- Summary of changes for this label: 07_17_01 ACPI CA Core Subsystem: Added a new interface named AcpiGetFirmwareTable to obtain any ACPI table via the ACPI signature. The interface can be called at any time during kernel initialization, even before the kernel virtual memory manager is initialized and paging is enabled. This allows kernel subsystems to obtain ACPI tables very early, even before the ACPI CA subsystem is initialized. Fixed a problem where Fields defined with the AnyAcc attribute could be resolved to the incorrect address under the following conditions: 1) the field width is larger than 8 bits and 2) the parent operation region is not defined on a DWORD boundary. Fixed a problem where the interpreter is not being locked during namespace initialization (during execution of the _INI control methods), causing an error when an attempt is made to release it later. ACPI 2.0 support in the AML Interpreter has begun and will be ongoing throughout the rest of this year. In this label, The Mod operator is implemented. Added a new data type to contain full PCI addresses named ACPI_PCI_ID. This structure contains the PCI Segment, Bus, Device, and Function values. Linux: Enhanced the Linux version of the source code to change most capitalized ACPI type names to lowercase. For example, all instances of ACPI_STATUS are changed to acpi_status. This will result in a large diff, but the change is strictly cosmetic and aligns the CA code closer to the Linux coding standard. OSL Interfaces: The interfaces to the PCI configuration space have been changed to add the PCI Segment number and to split the single 32-bit combined DeviceFunction field into two 16-bit fields. This was accomplished by moving the four values that define an address in PCI configuration space (segment, bus, device, and function) to the new ACPI_PCI_ID structure. The changes to the PCI configuration space interfaces led to a reexamination of the complete set of address space access interfaces for PCI, I/O, and Memory. The previously existing 18 interfaces have proven difficult to maintain (any small change must be propagated across at least 6 interfaces) and do not easily allow for future expansion to 64 bits if necessary. Also, on some systems, it would not be appropriate to demultiplex the access width (8, 16, 32,or 64) before calling the OSL if the corresponding native OS interfaces contain a similar access width parameter. For these reasons, the 18 address space interfaces have been replaced by these 6 new ones: AcpiOsReadPciConfiguration AcpiOsWritePciConfiguration AcpiOsReadMemory AcpiOsWriteMemory AcpiOsReadPort AcpiOsWritePort Added a new interface named AcpiOsGetRootPointer to allow the OSL to perform the platform and/or OS-specific actions necessary to obtain the ACPI RSDP table pointer. On IA-32 platforms, this interface will simply call down to the CA core to perform the low- memory search for the table. On IA-64, the RSDP is obtained from EFI. Migrating this interface to the OSL allows the CA core to remain OS and platform independent. Added a new interface named AcpiOsSignal to provide a generic "function code and pointer" interface for various miscellaneous signals and notifications that must be made to the host OS. The first such signals are intended to support the ASL Fatal and Breakpoint operators. In the latter case, the AcpiOsBreakpoint interface has been obsoleted. The definition of the AcpiFormatException interface has been changed to simplify its use. The caller no longer must supply a buffer to the call; A pointer to a const string is now returned directly. This allows the call to be easily used in printf statements, etc. since the caller does not have to manage a local buffer. ASL Compiler, Version X2025: The ACPI 2.0 Switch/Case/Default operators have been implemented and are fully functional. They will work with all ACPI 1.0 interpreters, since the operators are simply translated to If/Else pairs. The ACPI 2.0 ElseIf operator is implemented and will also work with 1.0 interpreters, for the same reason. Implemented support for ACPI 2.0 variable-length packages. These packages have a separate opcode, and their size is determined by the interpreter at run-time. Documentation The ACPI CA Programmer Reference has been updated to reflect the new interfaces and changes to existing interfaces. ------------------------------------------ Summary of changes for this label: 06_15_01 ACPI CA Core Subsystem: Fixed a problem where a DWORD-accessed field within a Buffer object would get its byte address inadvertently rounded down to the nearest DWORD. Buffers are always Byte-accessible. ASL Compiler, version X2024: Fixed a problem where the Switch() operator would either fault or hang the compiler. Note however, that the AML code for this ACPI 2.0 operator is not yet implemented. Compiler uses the new AcpiOsGetTimer interface to obtain compile timings. Implementation of the CreateField operator automatically converts a reference to a named field within a resource descriptor from a byte offset to a bit offset if required. Added some missing named fields from the resource descriptor support. These are the names that are automatically created by the compiler to reference fields within a descriptor. They are only valid at compile time and are not passed through to the AML interpreter. Resource descriptor named fields are now typed as Integers and subject to compile-time typechecking when used in expressions. ------------------------------------------ Summary of changes for this label: 05_18_01 ACPI CA Core Subsystem: Fixed a couple of problems in the Field support code where bits from adjacent fields could be returned along with the proper field bits. Restructured the field support code to improve performance, readability and maintainability. New DEBUG_PRINTP macro automatically inserts the procedure name into the output, saving hundreds of copies of procedure name strings within the source, shrinking the memory footprint of the debug version of the core subsystem. Source Code Structure: The source code directory tree was restructured to reflect the current organization of the component architecture. Some files and directories have been moved and/or renamed. Linux: Fixed leaking kacpidpc processes. Fixed queueing event data even when /proc/acpi/event is not opened. ASL Compiler, version X2020: Memory allocation performance enhancement - over 24X compile time improvement on large ASL files. Parse nodes and namestring buffers are now allocated from a large internal compiler buffer. The temporary .SRC file is deleted unless the "-s" option is specified The "-d" debug output option now sends all output to the .DBG file instead of the console. "External" second parameter is now optional "ElseIf" syntax now properly allows the predicate Last operand to "Load" now recognized as a Target operand Debug object can now be used anywhere as a normal object. ResourceTemplate now returns an object of type BUFFER EISAID now returns an object of type INTEGER "Index" now works with a STRING operand "LoadTable" now accepts optional parameters "ToString" length parameter is now optional "Interrupt (ResourceType," parse error fixed. "Register" with a user-defined region space parse error fixed Escaped backslash at the end of a string ("\\") scan/parse error fixed "Revision" is now an object of type INTEGER. ------------------------------------------ Summary of changes for this label: 05_02_01 Linux: /proc/acpi/event now blocks properly. Removed /proc/sys/acpi. You can still dump your DSDT from /proc/acpi/dsdt. ACPI CA Core Subsystem: Fixed a problem introduced in the previous label where some of the "small" resource descriptor types were not recognized. Improved error messages for the case where an ASL Field is outside the range of the parent operation region. ASL Compiler, version X2018: Added error detection for ASL Fields that extend beyond the length of the parent operation region (only if the length of the region is known at compile time.) This includes fields that have a minimum access width that is smaller than the parent region, and individual field units that are partially or entirely beyond the extent of the parent. ------------------------------------------ Summary of changes for this label: 04_27_01 ACPI CA Core Subsystem: Fixed a problem where the namespace mutex could be released at the wrong time during execution of AcpiRemoveAddressSpaceHandler. Added optional thread ID output for debug traces, to simplify debugging of multiple threads. Added context switch notification when the debug code realizes that a different thread is now executing ACPI code. Some additional external data types have been prefixed with the string "ACPI_" for consistency. This may effect existing code. The data types affected are the external callback typedefs - e.g., WALK_CALLBACK becomes ACPI_WALK_CALLBACK. Linux: Fixed an issue with the OSL semaphore implementation where a thread was waking up with an error from receiving a SIGCHLD signal. Linux version of ACPI CA now uses the system C library for string manipulation routines instead of a local implementation. Cleaned up comments and removed TBDs. ASL Compiler, version X2017: Enhanced error detection and reporting for all file I/O operations. Documentation: Programmer Reference updated to version 1.06. ------------------------------------------ Summary of changes for this label: 04_13_01 ACPI CA Core Subsystem: Restructured support for BufferFields and RegionFields. BankFields support is now fully operational. All known 32-bit limitations on field sizes have been removed. Both BufferFields and (Operation) RegionFields are now supported by the same field management code. Resource support now supports QWORD address and IO resources. The 16/32/64 bit address structures and the Extended IRQ structure have been changed to properly handle Source Resource strings. A ThreadId of -1 is now used to indicate a "mutex not acquired" condition internally and must never be returned by AcpiOsThreadId. This reserved value was changed from 0 since Unix systems allow a thread ID of 0. Linux: Driver code reorganized to enhance portability Added a kernel configuration option to control ACPI_DEBUG Fixed the EC driver to honor _GLK. ASL Compiler, version X2016: Fixed support for the "FixedHw" keyword. Previously, the FixedHw address space was set to 0, not 0x7f as it should be. ------------------------------------------ Summary of changes for this label: 03_13_01 ACPI CA Core Subsystem: During ACPI initialization, the _SB_._INI method is now run if present. Notify handler fix - notifies are deferred until the parent method completes execution. This fixes the "mutex already acquired" issue seen occasionally. Part of the "implicit conversion" rules in ACPI 2.0 have been found to cause compatibility problems with existing ASL/AML. The convert "result-to-target-type" implementation has been removed for stores to method Args and Locals. Source operand conversion is still fully implemented. Possible changes to ACPI 2.0 specification pending. Fix to AcpiRsCalculatePciRoutingTableLength to return correct length. Fix for compiler warnings for 64-bit compiles. Linux: /proc output aligned for easier parsing. Release-version compile problem fixed. New kernel configuration options documented in Configure.help. IBM 600E - Fixed Sleep button may generate "Invalid context" message. OSPM: Power resource driver integrated with bus manager. Fixed kernel fault during active cooling for thermal zones. Source Code: The source code tree has been restructured. ------------------------------------------ Summary of changes for this label: 03_02_01 Linux OS Services Layer (OSL): Major revision of all Linux-specific code. Modularized all ACPI-specific drivers. Added new thermal zone and power resource drivers. Revamped /proc interface (new functionality is under /proc/acpi). New kernel configuration options. Linux known issues: New kernel configuration options not documented in Configure.help yet. Module dependencies not currently implemented. If used, they should be loaded in this order: busmgr, power, ec, system, processor, battery, ac_adapter, button, thermal. Modules will not load if CONFIG_MODVERSION is set. IBM 600E - entering S5 may reboot instead of shutting down. IBM 600E - Sleep button may generate "Invalid context" message. Some systems may fail with "execution mutex already acquired" message. ACPI CA Core Subsystem: Added a new OSL Interface, AcpiOsGetThreadId. This was required for the deadlock detection code. Defined to return a non-zero, 32- bit thread ID for the currently executing thread. May be a non- zero constant integer on single-thread systems. Implemented deadlock detection for internal subsystem mutexes. We may add conditional compilation for this code (debug only) later. ASL/AML Mutex object semantics are now fully supported. This includes multiple acquires/releases by owner and support for the Mutex SyncLevel parameter. A new "Force Release" mechanism automatically frees all ASL Mutexes that have been acquired but not released when a thread exits the interpreter. This forces conformance to the ACPI spec ("All mutexes must be released when an invocation exits") and prevents deadlocked ASL threads. This mechanism can be expanded (later) to monitor other resource acquisitions if OEM ASL code continues to misbehave (which it will). Several new ACPI exception codes have been added for the Mutex support. Recursive method calls are now allowed and supported (the ACPI spec does in fact allow recursive method calls.) The number of recursive calls is subject to the restrictions imposed by the SERIALIZED method keyword and SyncLevel (ACPI 2.0) method parameter. Implemented support for the SyncLevel parameter for control methods (ACPI 2.0 feature) Fixed a deadlock problem when multiple threads attempted to use the interpreter. Fixed a problem where the string length of a String package element was not always set in a package returned from AcpiEvaluateObject. Fixed a problem where the length of a String package element was not always included in the length of the overall package returned from AcpiEvaluateObject. Added external interfaces (Acpi*) to the ACPI debug memory manager. This manager keeps a list of all outstanding allocations, and can therefore detect memory leaks and attempts to free memory blocks more than once. Useful for code such as the power manager, etc. May not be appropriate for device drivers. Performance with the debug code enabled is slow. The ACPI Global Lock is now an optional hardware element. ASL Compiler Version X2015: Integrated changes to allow the compiler to be generated on multiple platforms. Linux makefile added to generate the compiler on Linux Source Code: All platform-specific headers have been moved to their own subdirectory, Include/Platform. New source file added, Interpreter/ammutex.c New header file, Include/acstruct.h Documentation: The programmer reference has been updated for the following new interfaces: AcpiOsGetThreadId AcpiAllocate AcpiCallocate AcpiFree ------------------------------------------ Summary of changes for this label: 02_08_01 Core ACPI CA Subsystem: Fixed a problem where an error was incorrectly returned if the return resource buffer was larger than the actual data (in the resource interfaces). References to named objects within packages are resolved to the full pathname string before packages are returned directly (via the AcpiEvaluateObject interface) or indirectly via the resource interfaces. Linux OS Services Layer (OSL): Improved /proc battery interface. Added C-state debugging output and other miscellaneous fixes. ASL Compiler Version X2014: All defined method arguments can now be used as local variables, including the ones that are not actually passed in as parameters. The compiler tracks initialization of the arguments and issues an exception if they are used without prior assignment (just like locals). The -o option now specifies a filename prefix that is used for all output files, including the AML output file. Otherwise, the default behavior is as follows: 1) the AML goes to the file specified in the DSDT. 2) all other output files use the input source filename as the base. ------------------------------------------ Summary of changes for this label: 01_25_01 Core ACPI CA Subsystem: Restructured the implementation of object store support within the interpreter. This includes support for the Store operator as well as any ASL operators that include a target operand. Partially implemented support for Implicit Result-to-Target conversion. This is when a result object is converted on the fly to the type of an existing target object. Completion of this support is pending further analysis of the ACPI specification concerning this matter. CPU-specific code has been removed from the subsystem (hardware directory). New Power Management Timer functions added Linux OS Services Layer (OSL): Moved system state transition code to the core, fixed it, and modified Linux OSL accordingly. Fixed C2 and C3 latency calculations. We no longer use the compilation date for the version message on initialization, but retrieve the version from AcpiGetSystemInfo(). Incorporated for fix Sony VAIO machines. Documentation: The Programmer Reference has been updated and reformatted. ASL Compiler: Version X2013: Fixed a problem where the line numbering and error reporting could get out of sync in the presence of multiple include files. ------------------------------------------ Summary of changes for this label: 01_15_01 Core ACPI CA Subsystem: Implemented support for type conversions in the execution of the ASL Concatenate operator (The second operand is converted to match the type of the first operand before concatenation.) Support for implicit source operand conversion is partially implemented. The ASL source operand types Integer, Buffer, and String are freely interchangeable for most ASL operators and are converted by the interpreter on the fly as required. Implicit Target operand conversion (where the result is converted to the target type before storing) is not yet implemented. Support for 32-bit and 64-bit BCD integers is implemented. Problem fixed where a field read on an aligned field could cause a read past the end of the field. New exception, AE_AML_NO_RETURN_VALUE, is returned when a method does not return a value, but the caller expects one. (The ASL compiler flags this as a warning.) ASL Compiler: Version X2011: 1. Static typechecking of all operands is implemented. This prevents the use of invalid objects (such as using a Package where an Integer is required) at compile time instead of at interpreter run-time. 2. The ASL source line is printed with ALL errors and warnings. 3. Bug fix for source EOF without final linefeed. 4. Debug option is split into a parse trace and a namespace trace. 5. Namespace output option (-n) includes initial values for integers and strings. 6. Parse-only option added for quick syntax checking. 7. Compiler checks for duplicate ACPI name declarations Version X2012: 1. Relaxed typechecking to allow interchangeability between strings, integers, and buffers. These types are now converted by the interpreter at runtime. 2. Compiler reports time taken by each internal subsystem in the debug output file. ------------------------------------------ Summary of changes for this label: 12_14_00 ASL Compiler: This is the first official release of the compiler. Since the compiler requires elements of the Core Subsystem, this label synchronizes everything. ------------------------------------------ Summary of changes for this label: 12_08_00 Fixed a problem where named references within the ASL definition of both OperationRegions and CreateXXXFields did not work properly. The symptom was an AE_AML_OPERAND_TYPE during initialization of the region/field. This is similar (but not related internally) to the problem that was fixed in the last label. Implemented both 32-bit and 64-bit support for the BCD ASL functions ToBCD and FromBCD. Updated all legal headers to include "2000" in the copyright years. ------------------------------------------ Summary of changes for this label: 12_01_00 Fixed a problem where method invocations within the ASL definition of both OperationRegions and CreateXXXFields did not work properly. The symptom was an AE_AML_OPERAND_TYPE during initialization of the region/field: nsinit-0209: AE_AML_OPERAND_TYPE while getting region arguments [DEBG] ammonad-0284: Exec_monadic2_r/Not: bad operand(s) (0x3005) Fixed a problem where operators with more than one nested subexpression would fail. The symptoms were varied, by mostly AE_AML_OPERAND_TYPE errors. This was actually a rather serious problem that has gone unnoticed until now. Subtract (Add (1,2), Multiply (3,4)) Fixed a problem where AcpiGetHandle didn't quite get fixed in the previous build (The prefix part of a relative path was handled incorrectly). Fixed a problem where Operation Region initialization failed if the operation region name was a "namepath" instead of a simple "nameseg". Symptom was an AE_NO_OPERAND error. Fixed a problem where an assignment to a local variable via the indirect RefOf mechanism only worked for the first such assignment. Subsequent assignments were ignored. ------------------------------------------ Summary of changes for this label: 11_15_00 ACPI 2.0 table support with backwards support for ACPI 1.0 and the 0.71 extensions. Note: although we can read ACPI 2.0 BIOS tables, the AML interpreter does NOT have support for the new 2.0 ASL grammar terms at this time. All ACPI hardware access is via the GAS structures in the ACPI 2.0 FADT. All physical memory addresses across all platforms are now 64 bits wide. Logical address width remains dependent on the platform (i.e., "void *"). AcpiOsMapMemory interface changed to a 64-bit physical address. The AML interpreter integer size is now 64 bits, as per the ACPI 2.0 specification. For backwards compatibility with ACPI 1.0, ACPI tables with a revision number less than 2 use 32-bit integers only. Fixed a problem where the evaluation of OpRegion operands did not always resolve them to numbers properly. ------------------------------------------ Summary of changes for this label: 10_20_00 Fix for CBN_._STA issue. This fix will allow correct access to CBN_ OpRegions when the _STA returns 0x8. Support to convert ACPI constants (Ones, Zeros, One) to actual values before a package object is returned Fix for method call as predicate to if/while construct causing incorrect if/while behavior Fix for Else block package lengths sometimes calculated wrong (if block > 63 bytes) Fix for Processor object length field, was always zero Table load abort if FACP sanity check fails Fix for problem with Scope(name) if name already exists Warning emitted if a named object referenced cannot be found (resolved) during method execution. ------------------------------------------ Summary of changes for this label: 9_29_00 New table initialization interfaces: AcpiInitializeSubsystem no longer has any parameters AcpiFindRootPointer - Find the RSDP (if necessary) AcpiLoadTables (RSDP) - load all tables found at RSDP- >RSDT Obsolete Interfaces AcpiLoadFirmwareTables - replaced by AcpiLoadTables Note: These interface changes require changes to all existing OSDs The PCI_Config default address space handler is always installed at the root namespace object. ------------------------------------------- Summary of changes for this label: 09_15_00 The new initialization architecture is implemented. New interfaces are: AcpiInitializeSubsystem (replaces AcpiInitialize) AcpiEnableSubsystem Obsolete Interfaces: AcpiLoadNamespace (Namespace is automatically loaded when a table is loaded) The ACPI_OPERAND_OBJECT has been optimized to shrink its size from 52 bytes to 32 bytes. There is usually one of these for every namespace object, so the memory savings is significant. Implemented just-in-time evaluation of the CreateField operators. Bug fixes for IA-64 support have been integrated. Additional code review comments have been implemented The so-called "third pass parse" has been replaced by a final walk through the namespace to initialize all operation regions (address spaces) and fields that have not yet been initialized during the execution of the various _INI and REG methods. New file - namespace/nsinit.c ------------------------------------------- Summary of changes for this label: 09_01_00 Namespace manager data structures have been reworked to change the primary object from a table to a single object. This has resulted in dynamic memory savings of 3X within the namespace and 2X overall in the ACPI CA subsystem. Fixed problem where the call to AcpiEvFindPciRootBuses was inadvertently left commented out. Reduced the warning count when generating the source with the GCC compiler. Revision numbers added to each module header showing the SourceSafe version of the file. Please refer to this version number when giving us feedback or comments on individual modules. The main object types within the subsystem have been renamed to clarify their purpose: ACPI_INTERNAL_OBJECT -> ACPI_OPERAND_OBJECT ACPI_GENERIC_OP -> ACPI_PARSE_OBJECT ACPI_NAME_TABLE_ENTRY -> ACPI_NAMESPACE_NODE NOTE: no changes to the initialization sequence are included in this label. ------------------------------------------- Summary of changes for this label: 08_23_00 Fixed problem where TerminateControlMethod was being called multiple times per method Fixed debugger problem where single stepping caused a semaphore to be oversignalled Improved performance through additional parse object caching - added ACPI_EXTENDED_OP type ------------------------------------------- Summary of changes for this label: 08_10_00 Parser/Interpreter integration: Eliminated the creation of complete parse trees for ACPI tables and control methods. Instead, parse subtrees are created and then deleted as soon as they are processed (Either entered into the namespace or executed by the interpreter). This reduces the use of dynamic kernel memory significantly. (about 10X) Exception codes broken into classes and renumbered. Be sure to recompile all code that includes acexcep.h. Hopefully we won't have to renumber the codes again now that they are split into classes (environment, programmer, AML code, ACPI table, and internal). Fixed some additional alignment issues in the Resource Manager subcomponent Implemented semaphore tracking in the AcpiExec utility, and fixed several places where mutexes/semaphores were being unlocked without a corresponding lock operation. There are no known semaphore or mutex "leaks" at this time. Fixed the case where an ASL Return operator is used to return an unnamed package. ------------------------------------------- Summary of changes for this label: 07_28_00 Fixed a problem with the way addresses were calculated in AcpiAmlReadFieldData() and AcpiAmlWriteFieldData(). This problem manifested itself when a Field was created with WordAccess or DwordAccess, but the field unit defined within the Field was less than a Word or Dword. Fixed a problem in AmlDumpOperands() module's loop to pull operands off of the operand stack to display information. The problem manifested itself as a TLB error on 64-bit systems when accessing an operand stack with two or more operands. Fixed a problem with the PCI configuration space handlers where context was getting confused between accesses. This required a change to the generic address space handler and address space setup definitions. Handlers now get both a global handler context (this is the one passed in by the user when executing AcpiInstallAddressSpaceHandler() and a specific region context that is unique to each region (For example, the _ADR, _SEG and _BBN values associated with a specific region). The generic function definitions have changed to the following: typedef ACPI_STATUS (*ADDRESS_SPACE_HANDLER) ( UINT32 Function, UINT32 Address, UINT32 BitWidth, UINT32 *Value, void *HandlerContext, // This used to be void *Context void *RegionContext); // This is an additional parameter typedef ACPI_STATUS (*ADDRESS_SPACE_SETUP) ( ACPI_HANDLE RegionHandle, UINT32 Function, void *HandlerContext, void **RegionContext); // This used to be **ReturnContext ------------------------------------------- Summary of changes for this label: 07_21_00 Major file consolidation and rename. All files within the interpreter have been renamed as well as most header files. This was done to prevent collisions with existing files in the host OSs -- filenames such as "config.h" and "global.h" seem to be quite common. The VC project files have been updated. All makefiles will require modification. The parser/interpreter integration continues in Phase 5 with the implementation of a complete 2-pass parse (the AML is parsed twice) for each table; This avoids the construction of a huge parse tree and therefore reduces the amount of dynamic memory required by the subsystem. Greater use of the parse object cache means that performance is unaffected. Many comments from the two code reviews have been rolled in. The 64-bit alignment support is complete. ------------------------------------------- Summary of changes for this label: 06_30_00 With a nod and a tip of the hat to the technology of yesteryear, we've added support in the source code for 80 column output devices. The code is now mostly constrained to 80 columns or less to support environments and editors that 1) cannot display or print more than 80 characters on a single line, and 2) cannot disable line wrapping. A major restructuring of the namespace data structure has been completed. The result is 1) cleaner and more understandable/maintainable code, and 2) a significant reduction in the dynamic memory requirement for each named ACPI object (almost half). ------------------------------------------- Summary of changes for this label: 06_23_00 Linux support has been added. In order to obtain approval to get the ACPI CA subsystem into the Linux kernel, we've had to make quite a few changes to the base subsystem that will affect all users (all the changes are generic and OS- independent). The effects of these global changes have been somewhat far reaching. Files have been merged and/or renamed and interfaces have been renamed. The major changes are described below. Osd* interfaces renamed to AcpiOs* to eliminate namespace pollution/confusion within our target kernels. All OSD interfaces must be modified to match the new naming convention. Files merged across the subsystem. A number of the smaller source and header files have been merged to reduce the file count and increase the density of the existing files. There are too many to list here. In general, makefiles that call out individual files will require rebuilding. Interpreter files renamed. All interpreter files now have the prefix am* instead of ie* and is*. Header files renamed: The acapi.h file is now acpixf.h. The acpiosd.h file is now acpiosxf.h. We are removing references to the acronym "API" since it is somewhat windowsy. The new name is "external interface" or xface or xf in the filenames.j All manifest constants have been forced to upper case (some were mixed case.) Also, the string "ACPI_" has been prepended to many (not all) of the constants, typedefs, and structs. The globals "DebugLevel" and "DebugLayer" have been renamed "AcpiDbgLevel" and "AcpiDbgLayer" respectively. All other globals within the subsystem are now prefixed with "AcpiGbl_" Internal procedures within the subsystem are now prefixed with "Acpi" (with only a few exceptions). The original two-letter abbreviation for the subcomponent remains after "Acpi" - for example, CmCallocate became AcpiCmCallocate. Added a source code translation/conversion utility. Used to generate the Linux source code, it can be modified to generate other types of source as well. Can also be used to cleanup existing source by removing extraneous spaces and blank lines. Found in tools/acpisrc/* OsdUnMapMemory was renamed to OsdUnmapMemory and then AcpiOsUnmapMemory. (UnMap became Unmap). A "MaxUnits" parameter has been added to AcpiOsCreateSemaphore. When set to one, this indicates that the caller wants to use the semaphore as a mutex, not a counting semaphore. ACPI CA uses both types. However, implementers of this call may want to use different OS primitives depending on the type of semaphore requested. For example, some operating systems provide separate "mutex" and "semaphore" interfaces - where the mutex interface is much faster because it doesn't have all the overhead of a full semaphore implementation. Fixed a deadlock problem where a method that accesses the PCI address space can block forever if it is the first access to the space. ------------------------------------------- Summary of changes for this label: 06_02_00 Support for environments that cannot handle unaligned data accesses (e.g. firmware and OS environments devoid of alignment handler technology namely SAL/EFI and the IA-64 Linux kernel) has been added (via configurable macros) in these three areas: - Transfer of data from the raw AML byte stream is done via byte moves instead of word/dword/qword moves. - External objects are aligned within the user buffer, including package elements (sub- objects). - Conversion of name strings to UINT32 Acpi Names is now done byte-wise. The Store operator was modified to mimic Microsoft's implementation when storing to a Buffer Field. Added a check of the BM_STS bit before entering C3. The methods subdirectory has been obsoleted and removed. A new file, cmeval.c subsumes the functionality. A 16-bit (DOS) version of AcpiExec has been developed. The makefile is under the acpiexec directory. Index: head/sys/contrib/dev/acpica/common/acfileio.c =================================================================== --- head/sys/contrib/dev/acpica/common/acfileio.c (revision 308952) +++ head/sys/contrib/dev/acpica/common/acfileio.c (revision 308953) @@ -1,539 +1,547 @@ /****************************************************************************** * * Module Name: acfileio - Get ACPI tables from file * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #include #define _COMPONENT ACPI_UTILITIES ACPI_MODULE_NAME ("acfileio") /* Local prototypes */ static ACPI_STATUS AcGetOneTableFromFile ( char *Filename, FILE *File, UINT8 GetOnlyAmlTables, ACPI_TABLE_HEADER **Table); static ACPI_STATUS AcCheckTextModeCorruption ( ACPI_TABLE_HEADER *Table); /******************************************************************************* * * FUNCTION: AcGetAllTablesFromFile * * PARAMETERS: Filename - Table filename * GetOnlyAmlTables - TRUE if the tables must be AML tables * ReturnListHead - Where table list is returned * * RETURN: Status * * DESCRIPTION: Get all ACPI tables from within a single file. * ******************************************************************************/ ACPI_STATUS AcGetAllTablesFromFile ( char *Filename, UINT8 GetOnlyAmlTables, ACPI_NEW_TABLE_DESC **ReturnListHead) { ACPI_NEW_TABLE_DESC *ListHead = NULL; ACPI_NEW_TABLE_DESC *ListTail = NULL; ACPI_NEW_TABLE_DESC *TableDesc; FILE *File; ACPI_TABLE_HEADER *Table = NULL; UINT32 FileSize; ACPI_STATUS Status = AE_OK; File = fopen (Filename, "rb"); if (!File) { fprintf (stderr, "Could not open input file: %s\n", Filename); if (errno == ENOENT) { return (AE_NOT_EXIST); } return (AE_ERROR); } /* Get the file size */ FileSize = CmGetFileSize (File); if (FileSize == ACPI_UINT32_MAX) { Status = AE_ERROR; - goto ErrorExit; + goto Exit; } fprintf (stderr, "Input file %s, Length 0x%X (%u) bytes\n", Filename, FileSize, FileSize); /* We must have at least one ACPI table header */ if (FileSize < sizeof (ACPI_TABLE_HEADER)) { Status = AE_BAD_HEADER; - goto ErrorExit; + goto Exit; } /* Check for an non-binary file */ if (!AcIsFileBinary (File)) { fprintf (stderr, " %s: File does not appear to contain a valid AML table\n", Filename); - return (AE_TYPE); + Status = AE_TYPE; + goto Exit; } /* Read all tables within the file */ while (ACPI_SUCCESS (Status)) { /* Get one entire ACPI table */ Status = AcGetOneTableFromFile ( Filename, File, GetOnlyAmlTables, &Table); if (Status == AE_CTRL_TERMINATE) { Status = AE_OK; break; } else if (Status == AE_TYPE) { - return (AE_OK); + Status = AE_OK; + goto Exit; } else if (ACPI_FAILURE (Status)) { - goto ErrorExit; + goto Exit; } /* Print table header for iASL/disassembler only */ #ifdef ACPI_ASL_COMPILER - AcpiTbPrintTableHeader (0, Table); + AcpiTbPrintTableHeader (0, Table); #endif /* Allocate and link a table descriptor */ TableDesc = AcpiOsAllocate (sizeof (ACPI_NEW_TABLE_DESC)); + if (!TableDesc) + { + AcpiOsFree (Table); + Status = AE_NO_MEMORY; + goto Exit; + } + TableDesc->Table = Table; TableDesc->Next = NULL; /* Link at the end of the local table list */ if (!ListHead) { ListHead = TableDesc; ListTail = TableDesc; } else { ListTail->Next = TableDesc; ListTail = TableDesc; } } /* Add the local table list to the end of the global list */ if (*ReturnListHead) { ListTail = *ReturnListHead; while (ListTail->Next) { ListTail = ListTail->Next; } ListTail->Next = ListHead; } else { *ReturnListHead = ListHead; } -ErrorExit: +Exit: fclose(File); return (Status); } /******************************************************************************* * * FUNCTION: AcGetOneTableFromFile * * PARAMETERS: Filename - File where table is located * File - Open FILE pointer to Filename * GetOnlyAmlTables - TRUE if the tables must be AML tables. * ReturnTable - Where a pointer to the table is returned * * RETURN: Status * * DESCRIPTION: Read the next ACPI table from a file. Implements support * for multiple tables within a single file. File must already * be open. * * Note: Loading an RSDP is not supported. * ******************************************************************************/ static ACPI_STATUS AcGetOneTableFromFile ( char *Filename, FILE *File, UINT8 GetOnlyAmlTables, ACPI_TABLE_HEADER **ReturnTable) { ACPI_STATUS Status = AE_OK; ACPI_TABLE_HEADER TableHeader; ACPI_TABLE_HEADER *Table; INT32 Count; long TableOffset; *ReturnTable = NULL; /* Get the table header to examine signature and length */ TableOffset = ftell (File); Count = fread (&TableHeader, 1, sizeof (ACPI_TABLE_HEADER), File); if (Count != sizeof (ACPI_TABLE_HEADER)) { return (AE_CTRL_TERMINATE); } /* Validate the table signature/header (limited ASCII chars) */ Status = AcValidateTableHeader (File, TableOffset); if (ACPI_FAILURE (Status)) { return (Status); } - if (GetOnlyAmlTables) { /* * Table must be an AML table (DSDT/SSDT). * Used for iASL -e option only. */ if (!AcpiUtIsAmlTable (&TableHeader)) { fprintf (stderr, " %s: Table [%4.4s] is not an AML table - ignoring\n", Filename, TableHeader.Signature); return (AE_TYPE); } } /* Allocate a buffer for the entire table */ Table = AcpiOsAllocate ((ACPI_SIZE) TableHeader.Length); if (!Table) { return (AE_NO_MEMORY); } /* Read the entire ACPI table, including header */ fseek (File, TableOffset, SEEK_SET); Count = fread (Table, 1, TableHeader.Length, File); if (Count != (INT32) TableHeader.Length) { Status = AE_ERROR; goto ErrorExit; } /* Validate the checksum (just issue a warning) */ Status = AcpiTbVerifyChecksum (Table, TableHeader.Length); if (ACPI_FAILURE (Status)) { Status = AcCheckTextModeCorruption (Table); if (ACPI_FAILURE (Status)) { goto ErrorExit; } } *ReturnTable = Table; return (AE_OK); ErrorExit: AcpiOsFree (Table); return (Status); } /******************************************************************************* * * FUNCTION: AcIsFileBinary * * PARAMETERS: File - Open input file * * RETURN: TRUE if file appears to be binary * * DESCRIPTION: Scan a file for any non-ASCII bytes. * * Note: Maintains current file position. * ******************************************************************************/ BOOLEAN AcIsFileBinary ( FILE *File) { UINT8 Byte; BOOLEAN IsBinary = FALSE; long FileOffset; /* Scan entire file for any non-ASCII bytes */ FileOffset = ftell (File); while (fread (&Byte, 1, 1, File) == 1) { if (!isprint (Byte) && !isspace (Byte)) { IsBinary = TRUE; goto Exit; } } Exit: fseek (File, FileOffset, SEEK_SET); return (IsBinary); } /******************************************************************************* * * FUNCTION: AcValidateTableHeader * * PARAMETERS: File - Open input file * * RETURN: Status * * DESCRIPTION: Determine if a file seems to contain one or more binary ACPI * tables, via the * following checks on what would be the table header: * 1) File must be at least as long as an ACPI_TABLE_HEADER * 2) There must be enough room in the file to hold entire table * 3) Signature, OemId, OemTableId, AslCompilerId must be ASCII * * Note: There can be multiple definition blocks per file, so we cannot * expect/compare the file size to be equal to the table length. 12/2015. * * Note: Maintains current file position. * ******************************************************************************/ ACPI_STATUS AcValidateTableHeader ( FILE *File, long TableOffset) { ACPI_TABLE_HEADER TableHeader; ACPI_SIZE Actual; long OriginalOffset; UINT32 FileSize; UINT32 i; ACPI_FUNCTION_TRACE ("AcValidateTableHeader"); /* Read a potential table header */ OriginalOffset = ftell (File); fseek (File, TableOffset, SEEK_SET); Actual = fread (&TableHeader, 1, sizeof (ACPI_TABLE_HEADER), File); fseek (File, OriginalOffset, SEEK_SET); if (Actual < sizeof (ACPI_TABLE_HEADER)) { return (AE_ERROR); } /* Validate the signature (limited ASCII chars) */ if (!AcpiUtValidNameseg (TableHeader.Signature)) { fprintf (stderr, "Invalid table signature: 0x%8.8X\n", *ACPI_CAST_PTR (UINT32, TableHeader.Signature)); return (AE_BAD_SIGNATURE); } /* Validate table length against bytes remaining in the file */ FileSize = CmGetFileSize (File); if (TableHeader.Length > (UINT32) (FileSize - TableOffset)) { fprintf (stderr, "Table [%4.4s] is too long for file - " "needs: 0x%.2X, remaining in file: 0x%.2X\n", TableHeader.Signature, TableHeader.Length, (UINT32) (FileSize - TableOffset)); return (AE_BAD_HEADER); } /* * These fields must be ASCII: OemId, OemTableId, AslCompilerId. * We allow a NULL terminator in OemId and OemTableId. */ for (i = 0; i < ACPI_NAME_SIZE; i++) { if (!ACPI_IS_ASCII ((UINT8) TableHeader.AslCompilerId[i])) { goto BadCharacters; } } for (i = 0; (i < ACPI_OEM_ID_SIZE) && (TableHeader.OemId[i]); i++) { if (!ACPI_IS_ASCII ((UINT8) TableHeader.OemId[i])) { goto BadCharacters; } } for (i = 0; (i < ACPI_OEM_TABLE_ID_SIZE) && (TableHeader.OemTableId[i]); i++) { if (!ACPI_IS_ASCII ((UINT8) TableHeader.OemTableId[i])) { goto BadCharacters; } } return (AE_OK); BadCharacters: ACPI_WARNING ((AE_INFO, "Table header for [%4.4s] has invalid ASCII character(s)", TableHeader.Signature)); return (AE_OK); } /******************************************************************************* * * FUNCTION: AcCheckTextModeCorruption * * PARAMETERS: Table - Table buffer starting with table header * * RETURN: Status * * DESCRIPTION: Check table for text mode file corruption where all linefeed * characters (LF) have been replaced by carriage return linefeed * pairs (CR/LF). * ******************************************************************************/ static ACPI_STATUS AcCheckTextModeCorruption ( ACPI_TABLE_HEADER *Table) { UINT32 i; UINT32 Pairs = 0; UINT8 *Buffer = ACPI_CAST_PTR (UINT8, Table); /* Scan entire table to determine if each LF has been prefixed with a CR */ for (i = 1; i < Table->Length; i++) { if (Buffer[i] == 0x0A) { if (Buffer[i - 1] != 0x0D) { /* The LF does not have a preceding CR, table not corrupted */ return (AE_OK); } else { /* Found a CR/LF pair */ Pairs++; } i++; } } if (!Pairs) { return (AE_OK); } /* * Entire table scanned, each CR is part of a CR/LF pair -- * meaning that the table was treated as a text file somewhere. * * NOTE: We can't "fix" the table, because any existing CR/LF pairs in the * original table are left untouched by the text conversion process -- * meaning that we cannot simply replace CR/LF pairs with LFs. */ AcpiOsPrintf ("Table has been corrupted by text mode conversion\n"); AcpiOsPrintf ("All LFs (%u) were changed to CR/LF pairs\n", Pairs); AcpiOsPrintf ("Table cannot be repaired!\n"); return (AE_BAD_VALUE); } Index: head/sys/contrib/dev/acpica/common/dmtbdump.c =================================================================== --- head/sys/contrib/dev/acpica/common/dmtbdump.c (revision 308952) +++ head/sys/contrib/dev/acpica/common/dmtbdump.c (revision 308953) @@ -1,3646 +1,3692 @@ /****************************************************************************** * * Module Name: dmtbdump - Dump ACPI data tables that contain no AML code * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include /* This module used for application-level code only */ #define _COMPONENT ACPI_CA_DISASSEMBLER ACPI_MODULE_NAME ("dmtbdump") -/* Table of revision-dependent FADT sizes */ +/* Local prototypes */ -static const UINT32 FadtRevisionLength [ACPI_FADT_MAX_VERSION + 1] = -{ - 0, /* 0 - illegal */ - ACPI_FADT_V1_SIZE, /* 1 - ACPI 1.0 */ - 0, /* 2 - illegal */ - ACPI_FADT_V3_SIZE, /* 3 - ACPI 2.0 */ - ACPI_FADT_V4_SIZE, /* 4 - ACPI 3.0 and ACPI 4.0 */ - ACPI_FADT_V5_SIZE, /* 5 - ACPI 5.0 */ - ACPI_FADT_V6_SIZE /* 6 - ACPI 6.0 */ -}; +static void +AcpiDmValidateFadtLength ( + UINT32 Revision, + UINT32 Length); -/* Table of revision-dependent FADT info tables */ -ACPI_DMTABLE_INFO *FadtRevisionInfo [ACPI_FADT_MAX_VERSION + 1] = -{ - NULL, /* 0 - illegal */ - AcpiDmTableInfoFadt1, /* 1 - ACPI 1.0 */ - NULL, /* 2 - illegal */ - AcpiDmTableInfoFadt3, /* 3 - ACPI 2.0 */ - AcpiDmTableInfoFadt4, /* 4 - ACPI 3.0 and ACPI 4.0 */ - AcpiDmTableInfoFadt5, /* 5 - ACPI 5.0 */ - AcpiDmTableInfoFadt6 /* 6 - ACPI 6.0 */ -}; - - /******************************************************************************* * * FUNCTION: AcpiDmDumpBuffer * * PARAMETERS: Table - ACPI Table or subtable * BufferOffset - Offset of buffer from Table above * Length - Length of the buffer * AbsoluteOffset - Offset of buffer in the main ACPI table * Header - Name of the buffer field (printed on the * first line only.) * * RETURN: None * * DESCRIPTION: Format the contents of an arbitrary length data buffer (in the * disassembler output format.) * ******************************************************************************/ void AcpiDmDumpBuffer ( void *Table, UINT32 BufferOffset, UINT32 Length, UINT32 AbsoluteOffset, char *Header) { UINT8 *Buffer; UINT32 i; if (!Length) { return; } Buffer = ACPI_CAST_PTR (UINT8, Table) + BufferOffset; i = 0; while (i < Length) { if (!(i % 16)) { /* Insert a backslash - line continuation character */ if (Length > 16) { AcpiOsPrintf ("\\\n "); } } AcpiOsPrintf ("%.02X ", *Buffer); i++; Buffer++; AbsoluteOffset++; } AcpiOsPrintf ("\n"); } /******************************************************************************* * * FUNCTION: AcpiDmDumpUnicode * * PARAMETERS: Table - ACPI Table or subtable * BufferOffset - Offset of buffer from Table above * ByteLength - Length of the buffer * * RETURN: None * * DESCRIPTION: Validate and dump the contents of a buffer that contains * unicode data. The output is a standard ASCII string. If it * appears that the data is not unicode, the buffer is dumped * as hex characters. * ******************************************************************************/ void AcpiDmDumpUnicode ( void *Table, UINT32 BufferOffset, UINT32 ByteLength) { UINT8 *Buffer; UINT32 Length; UINT32 i; Buffer = ((UINT8 *) Table) + BufferOffset; Length = ByteLength - 2; /* Last two bytes are the null terminator */ /* Ensure all low bytes are entirely printable ASCII */ for (i = 0; i < Length; i += 2) { if (!isprint (Buffer[i])) { goto DumpRawBuffer; } } /* Ensure all high bytes are zero */ for (i = 1; i < Length; i += 2) { if (Buffer[i]) { goto DumpRawBuffer; } } /* Dump the buffer as a normal string */ AcpiOsPrintf ("\""); for (i = 0; i < Length; i += 2) { AcpiOsPrintf ("%c", Buffer[i]); } AcpiOsPrintf ("\"\n"); return; DumpRawBuffer: AcpiDmDumpBuffer (Table, BufferOffset, ByteLength, BufferOffset, NULL); AcpiOsPrintf ("\n"); } /******************************************************************************* * * FUNCTION: AcpiDmDumpRsdp * * PARAMETERS: Table - A RSDP * * RETURN: Length of the table (there is not always a length field, * use revision or length if available (ACPI 2.0+)) * * DESCRIPTION: Format the contents of a RSDP * ******************************************************************************/ UINT32 AcpiDmDumpRsdp ( ACPI_TABLE_HEADER *Table) { ACPI_TABLE_RSDP *Rsdp = ACPI_CAST_PTR (ACPI_TABLE_RSDP, Table); UINT32 Length = sizeof (ACPI_RSDP_COMMON); UINT8 Checksum; ACPI_STATUS Status; /* Dump the common ACPI 1.0 portion */ Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoRsdp1); if (ACPI_FAILURE (Status)) { return (Length); } /* Validate the first checksum */ Checksum = AcpiDmGenerateChecksum (Rsdp, sizeof (ACPI_RSDP_COMMON), Rsdp->Checksum); if (Checksum != Rsdp->Checksum) { AcpiOsPrintf ("/* Incorrect Checksum above, should be 0x%2.2X */\n", Checksum); } /* The RSDP for ACPI 2.0+ contains more data and has a Length field */ if (Rsdp->Revision > 0) { Length = Rsdp->Length; Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoRsdp2); if (ACPI_FAILURE (Status)) { return (Length); } /* Validate the extended checksum over entire RSDP */ Checksum = AcpiDmGenerateChecksum (Rsdp, sizeof (ACPI_TABLE_RSDP), Rsdp->ExtendedChecksum); if (Checksum != Rsdp->ExtendedChecksum) { AcpiOsPrintf ( "/* Incorrect Extended Checksum above, should be 0x%2.2X */\n", Checksum); } } return (Length); } /******************************************************************************* * * FUNCTION: AcpiDmDumpRsdt * * PARAMETERS: Table - A RSDT * * RETURN: None * * DESCRIPTION: Format the contents of a RSDT * ******************************************************************************/ void AcpiDmDumpRsdt ( ACPI_TABLE_HEADER *Table) { UINT32 *Array; UINT32 Entries; UINT32 Offset; UINT32 i; /* Point to start of table pointer array */ Array = ACPI_CAST_PTR (ACPI_TABLE_RSDT, Table)->TableOffsetEntry; Offset = sizeof (ACPI_TABLE_HEADER); /* RSDT uses 32-bit pointers */ Entries = (Table->Length - sizeof (ACPI_TABLE_HEADER)) / sizeof (UINT32); for (i = 0; i < Entries; i++) { AcpiDmLineHeader2 (Offset, sizeof (UINT32), "ACPI Table Address", i); AcpiOsPrintf ("%8.8X\n", Array[i]); Offset += sizeof (UINT32); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpXsdt * * PARAMETERS: Table - A XSDT * * RETURN: None * * DESCRIPTION: Format the contents of a XSDT * ******************************************************************************/ void AcpiDmDumpXsdt ( ACPI_TABLE_HEADER *Table) { UINT64 *Array; UINT32 Entries; UINT32 Offset; UINT32 i; /* Point to start of table pointer array */ Array = ACPI_CAST_PTR (ACPI_TABLE_XSDT, Table)->TableOffsetEntry; Offset = sizeof (ACPI_TABLE_HEADER); /* XSDT uses 64-bit pointers */ Entries = (Table->Length - sizeof (ACPI_TABLE_HEADER)) / sizeof (UINT64); for (i = 0; i < Entries; i++) { AcpiDmLineHeader2 (Offset, sizeof (UINT64), "ACPI Table Address", i); AcpiOsPrintf ("%8.8X%8.8X\n", ACPI_FORMAT_UINT64 (Array[i])); Offset += sizeof (UINT64); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpFadt * * PARAMETERS: Table - A FADT * * RETURN: None * * DESCRIPTION: Format the contents of a FADT * - * Check the FADT revision against the expected table length for - * that revision. Issue a warning if the length is not what was - * expected. This seems to be such a common BIOS bug that the - * FADT revision has been rendered virtually meaningless. - * * NOTE: We cannot depend on the FADT version to indicate the actual * contents of the FADT because of BIOS bugs. The table length * is the only reliable indicator. * ******************************************************************************/ void AcpiDmDumpFadt ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; - UINT8 FadtRevision; - UINT32 ExpectedLength; - UINT32 i; - FadtRevision = Table->Revision; + /* Always dump the minimum FADT revision 1 fields (ACPI 1.0) */ - /* FADT revision/length validation */ - - if ((FadtRevision == 0) || - (FadtRevision == 2)) + Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, + AcpiDmTableInfoFadt1); + if (ACPI_FAILURE (Status)) { - AcpiOsPrintf ( - "// ACPI Warning: Invalid or unsupported FADT revision: %u\n", - FadtRevision); return; } - if (FadtRevision > ACPI_FADT_MAX_VERSION) + /* Check for FADT revision 2 fields (ACPI 1.0B MS extensions) */ + + if ((Table->Length > ACPI_FADT_V1_SIZE) && + (Table->Length <= ACPI_FADT_V2_SIZE)) { - AcpiOsPrintf ("// ACPI Warning: Revision %u is not fully supported, " - "disassembling known fields (up to revision %u)\n\n", - FadtRevision, ACPI_FADT_MAX_VERSION); - } - else - { - ExpectedLength = FadtRevisionLength[FadtRevision]; - if (Table->Length != ExpectedLength) + Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, + AcpiDmTableInfoFadt2); + if (ACPI_FAILURE (Status)) { - AcpiOsPrintf ( - "// ACPI Warning: Input FADT revision %X does not match " - "expected length: found 0x%X expected 0x%X\n", - FadtRevision, Table->Length, ExpectedLength); + return; } } - /* - * Dump the input table on a per-version basis, but is actually - * based upon the length of the table. Table length must - * be larger than the required length of the previous version. - */ - for (i = 1; i <= ACPI_FADT_MAX_VERSION; i++) + /* Check for FADT revision 3/4 fields and up (ACPI 2.0+ extended data) */ + + else if (Table->Length > ACPI_FADT_V2_SIZE) { - if (!FadtRevisionLength[i]) /* Skip any empty slots */ + Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, + AcpiDmTableInfoFadt3); + if (ACPI_FAILURE (Status)) { - continue; + return; } - /* Dump the fields specific to FADT revision[i] */ + /* Check for FADT revision 5 fields and up (ACPI 5.0+) */ - Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, - FadtRevisionInfo[i]); - if (ACPI_FAILURE (Status)) + if (Table->Length > ACPI_FADT_V3_SIZE) { - return; + Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, + AcpiDmTableInfoFadt5); + if (ACPI_FAILURE (Status)) + { + return; + } } - if (Table->Length <= FadtRevisionLength[i]) + /* Check for FADT revision 6 fields and up (ACPI 6.0+) */ + + if (Table->Length > ACPI_FADT_V3_SIZE) { - break; /* End of table */ + Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, + AcpiDmTableInfoFadt6); + if (ACPI_FAILURE (Status)) + { + return; + } } } - /* Build a local FADT to test some FADT values */ + /* Validate various fields in the FADT, including length */ AcpiTbCreateLocalFadt (Table, Table->Length); + + /* Validate FADT length against the revision */ + + AcpiDmValidateFadtLength (Table->Revision, Table->Length); +} + + +/******************************************************************************* + * + * FUNCTION: AcpiDmValidateFadtLength + * + * PARAMETERS: Revision - FADT revision (Header->Revision) + * Length - FADT length (Header->Length + * + * RETURN: None + * + * DESCRIPTION: Check the FADT revision against the expected table length for + * that revision. Issue a warning if the length is not what was + * expected. This seems to be such a common BIOS bug that the + * FADT revision has been rendered virtually meaningless. + * + ******************************************************************************/ + +static void +AcpiDmValidateFadtLength ( + UINT32 Revision, + UINT32 Length) +{ + UINT32 ExpectedLength; + + + switch (Revision) + { + case 0: + + AcpiOsPrintf ("// ACPI Warning: Invalid FADT revision: 0\n"); + return; + + case 1: + + ExpectedLength = ACPI_FADT_V1_SIZE; + break; + + case 2: + + ExpectedLength = ACPI_FADT_V2_SIZE; + break; + + case 3: + case 4: + + ExpectedLength = ACPI_FADT_V3_SIZE; + break; + + case 5: + + ExpectedLength = ACPI_FADT_V5_SIZE; + break; + + default: + + return; + } + + if (Length == ExpectedLength) + { + return; + } + + AcpiOsPrintf ( + "\n// ACPI Warning: FADT revision %X does not match length: " + "found %X expected %X\n", + Revision, Length, ExpectedLength); } /******************************************************************************* * * FUNCTION: AcpiDmDumpAsf * * PARAMETERS: Table - A ASF table * * RETURN: None * * DESCRIPTION: Format the contents of a ASF table * ******************************************************************************/ void AcpiDmDumpAsf ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; UINT32 Offset = sizeof (ACPI_TABLE_HEADER); ACPI_ASF_INFO *SubTable; ACPI_DMTABLE_INFO *InfoTable; ACPI_DMTABLE_INFO *DataInfoTable = NULL; UINT8 *DataTable = NULL; UINT32 DataCount = 0; UINT32 DataLength = 0; UINT32 DataOffset = 0; UINT32 i; UINT8 Type; /* No main table, only subtables */ SubTable = ACPI_ADD_PTR (ACPI_ASF_INFO, Table, Offset); while (Offset < Table->Length) { /* Common subtable header */ Status = AcpiDmDumpTable (Table->Length, Offset, SubTable, SubTable->Header.Length, AcpiDmTableInfoAsfHdr); if (ACPI_FAILURE (Status)) { return; } /* The actual type is the lower 7 bits of Type */ Type = (UINT8) (SubTable->Header.Type & 0x7F); switch (Type) { case ACPI_ASF_TYPE_INFO: InfoTable = AcpiDmTableInfoAsf0; break; case ACPI_ASF_TYPE_ALERT: InfoTable = AcpiDmTableInfoAsf1; DataInfoTable = AcpiDmTableInfoAsf1a; DataTable = ACPI_ADD_PTR (UINT8, SubTable, sizeof (ACPI_ASF_ALERT)); DataCount = ACPI_CAST_PTR (ACPI_ASF_ALERT, SubTable)->Alerts; DataLength = ACPI_CAST_PTR (ACPI_ASF_ALERT, SubTable)->DataLength; DataOffset = Offset + sizeof (ACPI_ASF_ALERT); break; case ACPI_ASF_TYPE_CONTROL: InfoTable = AcpiDmTableInfoAsf2; DataInfoTable = AcpiDmTableInfoAsf2a; DataTable = ACPI_ADD_PTR (UINT8, SubTable, sizeof (ACPI_ASF_REMOTE)); DataCount = ACPI_CAST_PTR (ACPI_ASF_REMOTE, SubTable)->Controls; DataLength = ACPI_CAST_PTR (ACPI_ASF_REMOTE, SubTable)->DataLength; DataOffset = Offset + sizeof (ACPI_ASF_REMOTE); break; case ACPI_ASF_TYPE_BOOT: InfoTable = AcpiDmTableInfoAsf3; break; case ACPI_ASF_TYPE_ADDRESS: InfoTable = AcpiDmTableInfoAsf4; DataTable = ACPI_ADD_PTR (UINT8, SubTable, sizeof (ACPI_ASF_ADDRESS)); DataLength = ACPI_CAST_PTR (ACPI_ASF_ADDRESS, SubTable)->Devices; DataOffset = Offset + sizeof (ACPI_ASF_ADDRESS); break; default: AcpiOsPrintf ("\n**** Unknown ASF subtable type 0x%X\n", SubTable->Header.Type); return; } Status = AcpiDmDumpTable (Table->Length, Offset, SubTable, SubTable->Header.Length, InfoTable); if (ACPI_FAILURE (Status)) { return; } /* Dump variable-length extra data */ switch (Type) { case ACPI_ASF_TYPE_ALERT: case ACPI_ASF_TYPE_CONTROL: for (i = 0; i < DataCount; i++) { AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Table->Length, DataOffset, DataTable, DataLength, DataInfoTable); if (ACPI_FAILURE (Status)) { return; } DataTable = ACPI_ADD_PTR (UINT8, DataTable, DataLength); DataOffset += DataLength; } break; case ACPI_ASF_TYPE_ADDRESS: for (i = 0; i < DataLength; i++) { if (!(i % 16)) { AcpiDmLineHeader (DataOffset, 1, "Addresses"); } AcpiOsPrintf ("%2.2X ", *DataTable); DataTable++; DataOffset++; if (DataOffset > Table->Length) { AcpiOsPrintf ( "**** ACPI table terminates in the middle of a " "data structure! (ASF! table)\n"); return; } } AcpiOsPrintf ("\n"); break; default: break; } AcpiOsPrintf ("\n"); /* Point to next subtable */ if (!SubTable->Header.Length) { AcpiOsPrintf ("Invalid zero subtable header length\n"); return; } Offset += SubTable->Header.Length; SubTable = ACPI_ADD_PTR (ACPI_ASF_INFO, SubTable, SubTable->Header.Length); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpCpep * * PARAMETERS: Table - A CPEP table * * RETURN: None * * DESCRIPTION: Format the contents of a CPEP. This table type consists * of an open-ended number of subtables. * ******************************************************************************/ void AcpiDmDumpCpep ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; ACPI_CPEP_POLLING *SubTable; UINT32 Length = Table->Length; UINT32 Offset = sizeof (ACPI_TABLE_CPEP); /* Main table */ Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoCpep); if (ACPI_FAILURE (Status)) { return; } /* Subtables */ SubTable = ACPI_ADD_PTR (ACPI_CPEP_POLLING, Table, Offset); while (Offset < Table->Length) { AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Length, Offset, SubTable, SubTable->Header.Length, AcpiDmTableInfoCpep0); if (ACPI_FAILURE (Status)) { return; } /* Point to next subtable */ Offset += SubTable->Header.Length; SubTable = ACPI_ADD_PTR (ACPI_CPEP_POLLING, SubTable, SubTable->Header.Length); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpCsrt * * PARAMETERS: Table - A CSRT table * * RETURN: None * * DESCRIPTION: Format the contents of a CSRT. This table type consists * of an open-ended number of subtables. * ******************************************************************************/ void AcpiDmDumpCsrt ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; ACPI_CSRT_GROUP *SubTable; ACPI_CSRT_SHARED_INFO *SharedInfoTable; ACPI_CSRT_DESCRIPTOR *SubSubTable; UINT32 Length = Table->Length; UINT32 Offset = sizeof (ACPI_TABLE_CSRT); UINT32 SubOffset; UINT32 SubSubOffset; UINT32 InfoLength; /* The main table only contains the ACPI header, thus already handled */ /* Subtables (Resource Groups) */ SubTable = ACPI_ADD_PTR (ACPI_CSRT_GROUP, Table, Offset); while (Offset < Table->Length) { /* Resource group subtable */ AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Length, Offset, SubTable, SubTable->Length, AcpiDmTableInfoCsrt0); if (ACPI_FAILURE (Status)) { return; } /* Shared info subtable (One per resource group) */ SubOffset = sizeof (ACPI_CSRT_GROUP); SharedInfoTable = ACPI_ADD_PTR (ACPI_CSRT_SHARED_INFO, Table, Offset + SubOffset); AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Length, Offset + SubOffset, SharedInfoTable, sizeof (ACPI_CSRT_SHARED_INFO), AcpiDmTableInfoCsrt1); if (ACPI_FAILURE (Status)) { return; } SubOffset += SubTable->SharedInfoLength; /* Sub-Subtables (Resource Descriptors) */ SubSubTable = ACPI_ADD_PTR (ACPI_CSRT_DESCRIPTOR, Table, Offset + SubOffset); while ((SubOffset < SubTable->Length) && ((Offset + SubOffset) < Table->Length)) { AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Length, Offset + SubOffset, SubSubTable, SubSubTable->Length, AcpiDmTableInfoCsrt2); if (ACPI_FAILURE (Status)) { return; } SubSubOffset = sizeof (ACPI_CSRT_DESCRIPTOR); /* Resource-specific info buffer */ InfoLength = SubSubTable->Length - SubSubOffset; if (InfoLength) { Status = AcpiDmDumpTable (Length, Offset + SubOffset + SubSubOffset, Table, InfoLength, AcpiDmTableInfoCsrt2a); if (ACPI_FAILURE (Status)) { return; } SubSubOffset += InfoLength; } /* Point to next sub-subtable */ SubOffset += SubSubTable->Length; SubSubTable = ACPI_ADD_PTR (ACPI_CSRT_DESCRIPTOR, SubSubTable, SubSubTable->Length); } /* Point to next subtable */ Offset += SubTable->Length; SubTable = ACPI_ADD_PTR (ACPI_CSRT_GROUP, SubTable, SubTable->Length); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpDbg2 * * PARAMETERS: Table - A DBG2 table * * RETURN: None * * DESCRIPTION: Format the contents of a DBG2. This table type consists * of an open-ended number of subtables. * ******************************************************************************/ void AcpiDmDumpDbg2 ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; ACPI_DBG2_DEVICE *SubTable; UINT32 Length = Table->Length; UINT32 Offset = sizeof (ACPI_TABLE_DBG2); UINT32 i; UINT32 ArrayOffset; UINT32 AbsoluteOffset; UINT8 *Array; /* Main table */ Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoDbg2); if (ACPI_FAILURE (Status)) { return; } /* Subtables */ SubTable = ACPI_ADD_PTR (ACPI_DBG2_DEVICE, Table, Offset); while (Offset < Table->Length) { AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Length, Offset, SubTable, SubTable->Length, AcpiDmTableInfoDbg2Device); if (ACPI_FAILURE (Status)) { return; } /* Dump the BaseAddress array */ for (i = 0; i < SubTable->RegisterCount; i++) { ArrayOffset = SubTable->BaseAddressOffset + (sizeof (ACPI_GENERIC_ADDRESS) * i); AbsoluteOffset = Offset + ArrayOffset; Array = (UINT8 *) SubTable + ArrayOffset; Status = AcpiDmDumpTable (Length, AbsoluteOffset, Array, SubTable->Length, AcpiDmTableInfoDbg2Addr); if (ACPI_FAILURE (Status)) { return; } } /* Dump the AddressSize array */ for (i = 0; i < SubTable->RegisterCount; i++) { ArrayOffset = SubTable->AddressSizeOffset + (sizeof (UINT32) * i); AbsoluteOffset = Offset + ArrayOffset; Array = (UINT8 *) SubTable + ArrayOffset; Status = AcpiDmDumpTable (Length, AbsoluteOffset, Array, SubTable->Length, AcpiDmTableInfoDbg2Size); if (ACPI_FAILURE (Status)) { return; } } /* Dump the Namestring (required) */ AcpiOsPrintf ("\n"); ArrayOffset = SubTable->NamepathOffset; AbsoluteOffset = Offset + ArrayOffset; Array = (UINT8 *) SubTable + ArrayOffset; Status = AcpiDmDumpTable (Length, AbsoluteOffset, Array, SubTable->Length, AcpiDmTableInfoDbg2Name); if (ACPI_FAILURE (Status)) { return; } /* Dump the OemData (optional) */ if (SubTable->OemDataOffset) { Status = AcpiDmDumpTable (Length, Offset + SubTable->OemDataOffset, Table, SubTable->OemDataLength, AcpiDmTableInfoDbg2OemData); if (ACPI_FAILURE (Status)) { return; } } /* Point to next subtable */ Offset += SubTable->Length; SubTable = ACPI_ADD_PTR (ACPI_DBG2_DEVICE, SubTable, SubTable->Length); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpDmar * * PARAMETERS: Table - A DMAR table * * RETURN: None * * DESCRIPTION: Format the contents of a DMAR. This table type consists * of an open-ended number of subtables. * ******************************************************************************/ void AcpiDmDumpDmar ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; ACPI_DMAR_HEADER *SubTable; UINT32 Length = Table->Length; UINT32 Offset = sizeof (ACPI_TABLE_DMAR); ACPI_DMTABLE_INFO *InfoTable; ACPI_DMAR_DEVICE_SCOPE *ScopeTable; UINT32 ScopeOffset; UINT8 *PciPath; UINT32 PathOffset; /* Main table */ Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoDmar); if (ACPI_FAILURE (Status)) { return; } /* Subtables */ SubTable = ACPI_ADD_PTR (ACPI_DMAR_HEADER, Table, Offset); while (Offset < Table->Length) { /* Common subtable header */ AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Length, Offset, SubTable, SubTable->Length, AcpiDmTableInfoDmarHdr); if (ACPI_FAILURE (Status)) { return; } AcpiOsPrintf ("\n"); switch (SubTable->Type) { case ACPI_DMAR_TYPE_HARDWARE_UNIT: InfoTable = AcpiDmTableInfoDmar0; ScopeOffset = sizeof (ACPI_DMAR_HARDWARE_UNIT); break; case ACPI_DMAR_TYPE_RESERVED_MEMORY: InfoTable = AcpiDmTableInfoDmar1; ScopeOffset = sizeof (ACPI_DMAR_RESERVED_MEMORY); break; case ACPI_DMAR_TYPE_ROOT_ATS: InfoTable = AcpiDmTableInfoDmar2; ScopeOffset = sizeof (ACPI_DMAR_ATSR); break; case ACPI_DMAR_TYPE_HARDWARE_AFFINITY: InfoTable = AcpiDmTableInfoDmar3; ScopeOffset = sizeof (ACPI_DMAR_RHSA); break; case ACPI_DMAR_TYPE_NAMESPACE: InfoTable = AcpiDmTableInfoDmar4; ScopeOffset = sizeof (ACPI_DMAR_ANDD); break; default: AcpiOsPrintf ("\n**** Unknown DMAR subtable type 0x%X\n\n", SubTable->Type); return; } Status = AcpiDmDumpTable (Length, Offset, SubTable, SubTable->Length, InfoTable); if (ACPI_FAILURE (Status)) { return; } /* * Dump the optional device scope entries */ if ((SubTable->Type == ACPI_DMAR_TYPE_HARDWARE_AFFINITY) || (SubTable->Type == ACPI_DMAR_TYPE_NAMESPACE)) { /* These types do not support device scopes */ goto NextSubtable; } ScopeTable = ACPI_ADD_PTR (ACPI_DMAR_DEVICE_SCOPE, SubTable, ScopeOffset); while (ScopeOffset < SubTable->Length) { AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Length, Offset + ScopeOffset, ScopeTable, ScopeTable->Length, AcpiDmTableInfoDmarScope); if (ACPI_FAILURE (Status)) { return; } AcpiOsPrintf ("\n"); /* Dump the PCI Path entries for this device scope */ PathOffset = sizeof (ACPI_DMAR_DEVICE_SCOPE); /* Path entries start at this offset */ PciPath = ACPI_ADD_PTR (UINT8, ScopeTable, sizeof (ACPI_DMAR_DEVICE_SCOPE)); while (PathOffset < ScopeTable->Length) { AcpiDmLineHeader ((PathOffset + ScopeOffset + Offset), 2, "PCI Path"); AcpiOsPrintf ("%2.2X,%2.2X\n", PciPath[0], PciPath[1]); /* Point to next PCI Path entry */ PathOffset += 2; PciPath += 2; AcpiOsPrintf ("\n"); } /* Point to next device scope entry */ ScopeOffset += ScopeTable->Length; ScopeTable = ACPI_ADD_PTR (ACPI_DMAR_DEVICE_SCOPE, ScopeTable, ScopeTable->Length); } NextSubtable: /* Point to next subtable */ Offset += SubTable->Length; SubTable = ACPI_ADD_PTR (ACPI_DMAR_HEADER, SubTable, SubTable->Length); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpDrtm * * PARAMETERS: Table - A DRTM table * * RETURN: None * * DESCRIPTION: Format the contents of a DRTM. * ******************************************************************************/ void AcpiDmDumpDrtm ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; UINT32 Offset; ACPI_DRTM_VTABLE_LIST *DrtmVtl; ACPI_DRTM_RESOURCE_LIST *DrtmRl; ACPI_DRTM_DPS_ID *DrtmDps; UINT32 Count; /* Main table */ Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoDrtm); if (ACPI_FAILURE (Status)) { return; } Offset = sizeof (ACPI_TABLE_DRTM); /* Sub-tables */ /* Dump ValidatedTable length */ DrtmVtl = ACPI_ADD_PTR (ACPI_DRTM_VTABLE_LIST, Table, Offset); AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Table->Length, Offset, DrtmVtl, ACPI_OFFSET (ACPI_DRTM_VTABLE_LIST, ValidatedTables), AcpiDmTableInfoDrtm0); if (ACPI_FAILURE (Status)) { return; } Offset += ACPI_OFFSET (ACPI_DRTM_VTABLE_LIST, ValidatedTables); /* Dump Validated table addresses */ Count = 0; while ((Offset < Table->Length) && (DrtmVtl->ValidatedTableCount > Count)) { Status = AcpiDmDumpTable (Table->Length, Offset, ACPI_ADD_PTR (void, Table, Offset), sizeof (UINT64), AcpiDmTableInfoDrtm0a); if (ACPI_FAILURE (Status)) { return; } Offset += sizeof (UINT64); Count++; } /* Dump ResourceList length */ DrtmRl = ACPI_ADD_PTR (ACPI_DRTM_RESOURCE_LIST, Table, Offset); AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Table->Length, Offset, DrtmRl, ACPI_OFFSET (ACPI_DRTM_RESOURCE_LIST, Resources), AcpiDmTableInfoDrtm1); if (ACPI_FAILURE (Status)) { return; } Offset += ACPI_OFFSET (ACPI_DRTM_RESOURCE_LIST, Resources); /* Dump the Resource List */ Count = 0; while ((Offset < Table->Length) && (DrtmRl->ResourceCount > Count)) { Status = AcpiDmDumpTable (Table->Length, Offset, ACPI_ADD_PTR (void, Table, Offset), sizeof (ACPI_DRTM_RESOURCE), AcpiDmTableInfoDrtm1a); if (ACPI_FAILURE (Status)) { return; } Offset += sizeof (ACPI_DRTM_RESOURCE); Count++; } /* Dump DPS */ DrtmDps = ACPI_ADD_PTR (ACPI_DRTM_DPS_ID, Table, Offset); AcpiOsPrintf ("\n"); (void) AcpiDmDumpTable (Table->Length, Offset, DrtmDps, sizeof (ACPI_DRTM_DPS_ID), AcpiDmTableInfoDrtm2); } /******************************************************************************* * * FUNCTION: AcpiDmDumpEinj * * PARAMETERS: Table - A EINJ table * * RETURN: None * * DESCRIPTION: Format the contents of a EINJ. This table type consists * of an open-ended number of subtables. * ******************************************************************************/ void AcpiDmDumpEinj ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; ACPI_WHEA_HEADER *SubTable; UINT32 Length = Table->Length; UINT32 Offset = sizeof (ACPI_TABLE_EINJ); /* Main table */ Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoEinj); if (ACPI_FAILURE (Status)) { return; } /* Subtables */ SubTable = ACPI_ADD_PTR (ACPI_WHEA_HEADER, Table, Offset); while (Offset < Table->Length) { AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Length, Offset, SubTable, sizeof (ACPI_WHEA_HEADER), AcpiDmTableInfoEinj0); if (ACPI_FAILURE (Status)) { return; } /* Point to next subtable (each subtable is of fixed length) */ Offset += sizeof (ACPI_WHEA_HEADER); SubTable = ACPI_ADD_PTR (ACPI_WHEA_HEADER, SubTable, sizeof (ACPI_WHEA_HEADER)); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpErst * * PARAMETERS: Table - A ERST table * * RETURN: None * * DESCRIPTION: Format the contents of a ERST. This table type consists * of an open-ended number of subtables. * ******************************************************************************/ void AcpiDmDumpErst ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; ACPI_WHEA_HEADER *SubTable; UINT32 Length = Table->Length; UINT32 Offset = sizeof (ACPI_TABLE_ERST); /* Main table */ Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoErst); if (ACPI_FAILURE (Status)) { return; } /* Subtables */ SubTable = ACPI_ADD_PTR (ACPI_WHEA_HEADER, Table, Offset); while (Offset < Table->Length) { AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Length, Offset, SubTable, sizeof (ACPI_WHEA_HEADER), AcpiDmTableInfoErst0); if (ACPI_FAILURE (Status)) { return; } /* Point to next subtable (each subtable is of fixed length) */ Offset += sizeof (ACPI_WHEA_HEADER); SubTable = ACPI_ADD_PTR (ACPI_WHEA_HEADER, SubTable, sizeof (ACPI_WHEA_HEADER)); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpFpdt * * PARAMETERS: Table - A FPDT table * * RETURN: None * * DESCRIPTION: Format the contents of a FPDT. This table type consists * of an open-ended number of subtables. * ******************************************************************************/ void AcpiDmDumpFpdt ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; ACPI_FPDT_HEADER *SubTable; UINT32 Length = Table->Length; UINT32 Offset = sizeof (ACPI_TABLE_FPDT); ACPI_DMTABLE_INFO *InfoTable; /* There is no main table (other than the standard ACPI header) */ /* Subtables */ SubTable = ACPI_ADD_PTR (ACPI_FPDT_HEADER, Table, Offset); while (Offset < Table->Length) { /* Common subtable header */ AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Length, Offset, SubTable, SubTable->Length, AcpiDmTableInfoFpdtHdr); if (ACPI_FAILURE (Status)) { return; } switch (SubTable->Type) { case ACPI_FPDT_TYPE_BOOT: InfoTable = AcpiDmTableInfoFpdt0; break; case ACPI_FPDT_TYPE_S3PERF: InfoTable = AcpiDmTableInfoFpdt1; break; default: AcpiOsPrintf ("\n**** Unknown FPDT subtable type 0x%X\n\n", SubTable->Type); /* Attempt to continue */ if (!SubTable->Length) { AcpiOsPrintf ("Invalid zero length subtable\n"); return; } goto NextSubTable; } Status = AcpiDmDumpTable (Length, Offset, SubTable, SubTable->Length, InfoTable); if (ACPI_FAILURE (Status)) { return; } NextSubTable: /* Point to next subtable */ Offset += SubTable->Length; SubTable = ACPI_ADD_PTR (ACPI_FPDT_HEADER, SubTable, SubTable->Length); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpGtdt * * PARAMETERS: Table - A GTDT table * * RETURN: None * * DESCRIPTION: Format the contents of a GTDT. This table type consists * of an open-ended number of subtables. * ******************************************************************************/ void AcpiDmDumpGtdt ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; ACPI_GTDT_HEADER *SubTable; UINT32 Length = Table->Length; UINT32 Offset = sizeof (ACPI_TABLE_GTDT); ACPI_DMTABLE_INFO *InfoTable; UINT32 SubTableLength; UINT32 GtCount; ACPI_GTDT_TIMER_ENTRY *GtxTable; /* Main table */ Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoGtdt); if (ACPI_FAILURE (Status)) { return; } /* Subtables */ SubTable = ACPI_ADD_PTR (ACPI_GTDT_HEADER, Table, Offset); while (Offset < Table->Length) { /* Common subtable header */ AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Length, Offset, SubTable, SubTable->Length, AcpiDmTableInfoGtdtHdr); if (ACPI_FAILURE (Status)) { return; } GtCount = 0; switch (SubTable->Type) { case ACPI_GTDT_TYPE_TIMER_BLOCK: SubTableLength = sizeof (ACPI_GTDT_TIMER_BLOCK); GtCount = (ACPI_CAST_PTR (ACPI_GTDT_TIMER_BLOCK, SubTable))->TimerCount; InfoTable = AcpiDmTableInfoGtdt0; break; case ACPI_GTDT_TYPE_WATCHDOG: SubTableLength = sizeof (ACPI_GTDT_WATCHDOG); InfoTable = AcpiDmTableInfoGtdt1; break; default: /* Cannot continue on unknown type - no length */ AcpiOsPrintf ("\n**** Unknown GTDT subtable type 0x%X\n", SubTable->Type); return; } Status = AcpiDmDumpTable (Length, Offset, SubTable, SubTable->Length, InfoTable); if (ACPI_FAILURE (Status)) { return; } /* Point to end of current subtable (each subtable above is of fixed length) */ Offset += SubTableLength; /* If there are any Gt Timer Blocks from above, dump them now */ if (GtCount) { GtxTable = ACPI_ADD_PTR ( ACPI_GTDT_TIMER_ENTRY, SubTable, SubTableLength); SubTableLength += GtCount * sizeof (ACPI_GTDT_TIMER_ENTRY); while (GtCount) { AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Length, Offset, GtxTable, sizeof (ACPI_GTDT_TIMER_ENTRY), AcpiDmTableInfoGtdt0a); if (ACPI_FAILURE (Status)) { return; } Offset += sizeof (ACPI_GTDT_TIMER_ENTRY); GtxTable++; GtCount--; } } /* Point to next subtable */ SubTable = ACPI_ADD_PTR (ACPI_GTDT_HEADER, SubTable, SubTableLength); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpHest * * PARAMETERS: Table - A HEST table * * RETURN: None * * DESCRIPTION: Format the contents of a HEST. This table type consists * of an open-ended number of subtables. * ******************************************************************************/ void AcpiDmDumpHest ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; ACPI_HEST_HEADER *SubTable; UINT32 Length = Table->Length; UINT32 Offset = sizeof (ACPI_TABLE_HEST); ACPI_DMTABLE_INFO *InfoTable; UINT32 SubTableLength; UINT32 BankCount; ACPI_HEST_IA_ERROR_BANK *BankTable; /* Main table */ Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoHest); if (ACPI_FAILURE (Status)) { return; } /* Subtables */ SubTable = ACPI_ADD_PTR (ACPI_HEST_HEADER, Table, Offset); while (Offset < Table->Length) { BankCount = 0; switch (SubTable->Type) { case ACPI_HEST_TYPE_IA32_CHECK: InfoTable = AcpiDmTableInfoHest0; SubTableLength = sizeof (ACPI_HEST_IA_MACHINE_CHECK); BankCount = (ACPI_CAST_PTR (ACPI_HEST_IA_MACHINE_CHECK, SubTable))->NumHardwareBanks; break; case ACPI_HEST_TYPE_IA32_CORRECTED_CHECK: InfoTable = AcpiDmTableInfoHest1; SubTableLength = sizeof (ACPI_HEST_IA_CORRECTED); BankCount = (ACPI_CAST_PTR (ACPI_HEST_IA_CORRECTED, SubTable))->NumHardwareBanks; break; case ACPI_HEST_TYPE_IA32_NMI: InfoTable = AcpiDmTableInfoHest2; SubTableLength = sizeof (ACPI_HEST_IA_NMI); break; case ACPI_HEST_TYPE_AER_ROOT_PORT: InfoTable = AcpiDmTableInfoHest6; SubTableLength = sizeof (ACPI_HEST_AER_ROOT); break; case ACPI_HEST_TYPE_AER_ENDPOINT: InfoTable = AcpiDmTableInfoHest7; SubTableLength = sizeof (ACPI_HEST_AER); break; case ACPI_HEST_TYPE_AER_BRIDGE: InfoTable = AcpiDmTableInfoHest8; SubTableLength = sizeof (ACPI_HEST_AER_BRIDGE); break; case ACPI_HEST_TYPE_GENERIC_ERROR: InfoTable = AcpiDmTableInfoHest9; SubTableLength = sizeof (ACPI_HEST_GENERIC); break; case ACPI_HEST_TYPE_GENERIC_ERROR_V2: InfoTable = AcpiDmTableInfoHest10; SubTableLength = sizeof (ACPI_HEST_GENERIC_V2); break; default: /* Cannot continue on unknown type - no length */ AcpiOsPrintf ("\n**** Unknown HEST subtable type 0x%X\n", SubTable->Type); return; } AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Length, Offset, SubTable, SubTableLength, InfoTable); if (ACPI_FAILURE (Status)) { return; } /* Point to end of current subtable (each subtable above is of fixed length) */ Offset += SubTableLength; /* If there are any (fixed-length) Error Banks from above, dump them now */ if (BankCount) { BankTable = ACPI_ADD_PTR (ACPI_HEST_IA_ERROR_BANK, SubTable, SubTableLength); SubTableLength += BankCount * sizeof (ACPI_HEST_IA_ERROR_BANK); while (BankCount) { AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Length, Offset, BankTable, sizeof (ACPI_HEST_IA_ERROR_BANK), AcpiDmTableInfoHestBank); if (ACPI_FAILURE (Status)) { return; } Offset += sizeof (ACPI_HEST_IA_ERROR_BANK); BankTable++; BankCount--; } } /* Point to next subtable */ SubTable = ACPI_ADD_PTR (ACPI_HEST_HEADER, SubTable, SubTableLength); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpIort * * PARAMETERS: Table - A IORT table * * RETURN: None * * DESCRIPTION: Format the contents of a IORT * ******************************************************************************/ void AcpiDmDumpIort ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; ACPI_TABLE_IORT *Iort; ACPI_IORT_NODE *IortNode; ACPI_IORT_ITS_GROUP *IortItsGroup = NULL; ACPI_IORT_SMMU *IortSmmu = NULL; UINT32 Offset; UINT32 NodeOffset; UINT32 Length; ACPI_DMTABLE_INFO *InfoTable; char *String; UINT32 i; /* Main table */ Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoIort); if (ACPI_FAILURE (Status)) { return; } Iort = ACPI_CAST_PTR (ACPI_TABLE_IORT, Table); Offset = sizeof (ACPI_TABLE_IORT); /* Dump the OptionalPadding (optional) */ if (Iort->NodeOffset > Offset) { Status = AcpiDmDumpTable (Table->Length, Offset, Table, Iort->NodeOffset - Offset, AcpiDmTableInfoIortPad); if (ACPI_FAILURE (Status)) { return; } } Offset = Iort->NodeOffset; while (Offset < Table->Length) { /* Common subtable header */ IortNode = ACPI_ADD_PTR (ACPI_IORT_NODE, Table, Offset); AcpiOsPrintf ("\n"); Length = ACPI_OFFSET (ACPI_IORT_NODE, NodeData); Status = AcpiDmDumpTable (Table->Length, Offset, IortNode, Length, AcpiDmTableInfoIortHdr); if (ACPI_FAILURE (Status)) { return; } NodeOffset = Length; switch (IortNode->Type) { case ACPI_IORT_NODE_ITS_GROUP: InfoTable = AcpiDmTableInfoIort0; Length = ACPI_OFFSET (ACPI_IORT_ITS_GROUP, Identifiers); IortItsGroup = ACPI_ADD_PTR (ACPI_IORT_ITS_GROUP, IortNode, NodeOffset); break; case ACPI_IORT_NODE_NAMED_COMPONENT: InfoTable = AcpiDmTableInfoIort1; Length = ACPI_OFFSET (ACPI_IORT_NAMED_COMPONENT, DeviceName); String = ACPI_ADD_PTR (char, IortNode, NodeOffset + Length); Length += strlen (String) + 1; break; case ACPI_IORT_NODE_PCI_ROOT_COMPLEX: InfoTable = AcpiDmTableInfoIort2; Length = IortNode->Length - NodeOffset; break; case ACPI_IORT_NODE_SMMU: InfoTable = AcpiDmTableInfoIort3; Length = ACPI_OFFSET (ACPI_IORT_SMMU, Interrupts); IortSmmu = ACPI_ADD_PTR (ACPI_IORT_SMMU, IortNode, NodeOffset); break; case ACPI_IORT_NODE_SMMU_V3: InfoTable = AcpiDmTableInfoIort4; Length = IortNode->Length - NodeOffset; break; default: AcpiOsPrintf ("\n**** Unknown IORT node type 0x%X\n", IortNode->Type); /* Attempt to continue */ if (!IortNode->Length) { AcpiOsPrintf ("Invalid zero length IORT node\n"); return; } goto NextSubTable; } /* Dump the node subtable header */ AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Table->Length, Offset + NodeOffset, ACPI_ADD_PTR (ACPI_IORT_NODE, IortNode, NodeOffset), Length, InfoTable); if (ACPI_FAILURE (Status)) { return; } NodeOffset += Length; /* Dump the node specific data */ switch (IortNode->Type) { case ACPI_IORT_NODE_ITS_GROUP: /* Validate IortItsGroup to avoid compiler warnings */ if (IortItsGroup) { for (i = 0; i < IortItsGroup->ItsCount; i++) { Status = AcpiDmDumpTable (Table->Length, Offset + NodeOffset, ACPI_ADD_PTR (ACPI_IORT_NODE, IortNode, NodeOffset), 4, AcpiDmTableInfoIort0a); NodeOffset += 4; } } break; case ACPI_IORT_NODE_NAMED_COMPONENT: /* Dump the Padding (optional) */ if (IortNode->Length > NodeOffset) { Status = AcpiDmDumpTable (Table->Length, Offset + NodeOffset, Table, IortNode->Length - NodeOffset, AcpiDmTableInfoIort1a); if (ACPI_FAILURE (Status)) { return; } } break; case ACPI_IORT_NODE_SMMU: AcpiOsPrintf ("\n"); /* Validate IortSmmu to avoid compiler warnings */ if (IortSmmu) { Length = 2 * sizeof (UINT64); NodeOffset = IortSmmu->GlobalInterruptOffset; Status = AcpiDmDumpTable (Table->Length, Offset + NodeOffset, ACPI_ADD_PTR (ACPI_IORT_NODE, IortNode, NodeOffset), Length, AcpiDmTableInfoIort3a); if (ACPI_FAILURE (Status)) { return; } NodeOffset = IortSmmu->ContextInterruptOffset; for (i = 0; i < IortSmmu->ContextInterruptCount; i++) { Status = AcpiDmDumpTable (Table->Length, Offset + NodeOffset, ACPI_ADD_PTR (ACPI_IORT_NODE, IortNode, NodeOffset), 8, AcpiDmTableInfoIort3b); if (ACPI_FAILURE (Status)) { return; } NodeOffset += 8; } NodeOffset = IortSmmu->PmuInterruptOffset; for (i = 0; i < IortSmmu->PmuInterruptCount; i++) { Status = AcpiDmDumpTable (Table->Length, Offset + NodeOffset, ACPI_ADD_PTR (ACPI_IORT_NODE, IortNode, NodeOffset), 8, AcpiDmTableInfoIort3c); if (ACPI_FAILURE (Status)) { return; } NodeOffset += 8; } } break; default: break; } /* Dump the ID mappings */ NodeOffset = IortNode->MappingOffset; for (i = 0; i < IortNode->MappingCount; i++) { AcpiOsPrintf ("\n"); Length = sizeof (ACPI_IORT_ID_MAPPING); Status = AcpiDmDumpTable (Table->Length, Offset + NodeOffset, ACPI_ADD_PTR (ACPI_IORT_NODE, IortNode, NodeOffset), Length, AcpiDmTableInfoIortMap); if (ACPI_FAILURE (Status)) { return; } NodeOffset += Length; } NextSubTable: /* Point to next node subtable */ Offset += IortNode->Length; IortNode = ACPI_ADD_PTR (ACPI_IORT_NODE, IortNode, IortNode->Length); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpIvrs * * PARAMETERS: Table - A IVRS table * * RETURN: None * * DESCRIPTION: Format the contents of a IVRS * ******************************************************************************/ static UINT8 EntrySizes[] = {4,8,16,32}; void AcpiDmDumpIvrs ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; UINT32 Offset = sizeof (ACPI_TABLE_IVRS); UINT32 EntryOffset; UINT32 EntryLength; UINT32 EntryType; ACPI_IVRS_DE_HEADER *DeviceEntry; ACPI_IVRS_HEADER *SubTable; ACPI_DMTABLE_INFO *InfoTable; /* Main table */ Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoIvrs); if (ACPI_FAILURE (Status)) { return; } /* Subtables */ SubTable = ACPI_ADD_PTR (ACPI_IVRS_HEADER, Table, Offset); while (Offset < Table->Length) { /* Common subtable header */ AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Table->Length, Offset, SubTable, SubTable->Length, AcpiDmTableInfoIvrsHdr); if (ACPI_FAILURE (Status)) { return; } switch (SubTable->Type) { case ACPI_IVRS_TYPE_HARDWARE: InfoTable = AcpiDmTableInfoIvrs0; break; case ACPI_IVRS_TYPE_MEMORY1: case ACPI_IVRS_TYPE_MEMORY2: case ACPI_IVRS_TYPE_MEMORY3: InfoTable = AcpiDmTableInfoIvrs1; break; default: AcpiOsPrintf ("\n**** Unknown IVRS subtable type 0x%X\n", SubTable->Type); /* Attempt to continue */ if (!SubTable->Length) { AcpiOsPrintf ("Invalid zero length subtable\n"); return; } goto NextSubTable; } /* Dump the subtable */ AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Table->Length, Offset, SubTable, SubTable->Length, InfoTable); if (ACPI_FAILURE (Status)) { return; } /* The hardware subtable can contain multiple device entries */ if (SubTable->Type == ACPI_IVRS_TYPE_HARDWARE) { EntryOffset = Offset + sizeof (ACPI_IVRS_HARDWARE); DeviceEntry = ACPI_ADD_PTR (ACPI_IVRS_DE_HEADER, SubTable, sizeof (ACPI_IVRS_HARDWARE)); while (EntryOffset < (Offset + SubTable->Length)) { AcpiOsPrintf ("\n"); /* * Upper 2 bits of Type encode the length of the device entry * * 00 = 4 byte * 01 = 8 byte * 10 = 16 byte - currently no entries defined * 11 = 32 byte - currently no entries defined */ EntryType = DeviceEntry->Type; EntryLength = EntrySizes [EntryType >> 6]; switch (EntryType) { /* 4-byte device entries */ case ACPI_IVRS_TYPE_PAD4: case ACPI_IVRS_TYPE_ALL: case ACPI_IVRS_TYPE_SELECT: case ACPI_IVRS_TYPE_START: case ACPI_IVRS_TYPE_END: InfoTable = AcpiDmTableInfoIvrs4; break; /* 8-byte entries, type A */ case ACPI_IVRS_TYPE_ALIAS_SELECT: case ACPI_IVRS_TYPE_ALIAS_START: InfoTable = AcpiDmTableInfoIvrs8a; break; /* 8-byte entries, type B */ case ACPI_IVRS_TYPE_PAD8: case ACPI_IVRS_TYPE_EXT_SELECT: case ACPI_IVRS_TYPE_EXT_START: InfoTable = AcpiDmTableInfoIvrs8b; break; /* 8-byte entries, type C */ case ACPI_IVRS_TYPE_SPECIAL: InfoTable = AcpiDmTableInfoIvrs8c; break; default: InfoTable = AcpiDmTableInfoIvrs4; AcpiOsPrintf ( "\n**** Unknown IVRS device entry type/length: " "0x%.2X/0x%X at offset 0x%.4X: (header below)\n", EntryType, EntryLength, EntryOffset); break; } /* Dump the Device Entry */ Status = AcpiDmDumpTable (Table->Length, EntryOffset, DeviceEntry, EntryLength, InfoTable); if (ACPI_FAILURE (Status)) { return; } EntryOffset += EntryLength; DeviceEntry = ACPI_ADD_PTR (ACPI_IVRS_DE_HEADER, DeviceEntry, EntryLength); } } NextSubTable: /* Point to next subtable */ Offset += SubTable->Length; SubTable = ACPI_ADD_PTR (ACPI_IVRS_HEADER, SubTable, SubTable->Length); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpLpit * * PARAMETERS: Table - A LPIT table * * RETURN: None * * DESCRIPTION: Format the contents of a LPIT. This table type consists * of an open-ended number of subtables. Note: There are no * entries in the main table. An LPIT consists of the table * header and then subtables only. * ******************************************************************************/ void AcpiDmDumpLpit ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; ACPI_LPIT_HEADER *SubTable; UINT32 Length = Table->Length; UINT32 Offset = sizeof (ACPI_TABLE_LPIT); ACPI_DMTABLE_INFO *InfoTable; UINT32 SubTableLength; /* Subtables */ SubTable = ACPI_ADD_PTR (ACPI_LPIT_HEADER, Table, Offset); while (Offset < Table->Length) { /* Common subtable header */ Status = AcpiDmDumpTable (Length, Offset, SubTable, sizeof (ACPI_LPIT_HEADER), AcpiDmTableInfoLpitHdr); if (ACPI_FAILURE (Status)) { return; } switch (SubTable->Type) { case ACPI_LPIT_TYPE_NATIVE_CSTATE: InfoTable = AcpiDmTableInfoLpit0; SubTableLength = sizeof (ACPI_LPIT_NATIVE); break; default: /* Cannot continue on unknown type - no length */ AcpiOsPrintf ("\n**** Unknown LPIT subtable type 0x%X\n", SubTable->Type); return; } Status = AcpiDmDumpTable (Length, Offset, SubTable, SubTableLength, InfoTable); if (ACPI_FAILURE (Status)) { return; } AcpiOsPrintf ("\n"); /* Point to next subtable */ Offset += SubTableLength; SubTable = ACPI_ADD_PTR (ACPI_LPIT_HEADER, SubTable, SubTableLength); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpMadt * * PARAMETERS: Table - A MADT table * * RETURN: None * * DESCRIPTION: Format the contents of a MADT. This table type consists * of an open-ended number of subtables. * ******************************************************************************/ void AcpiDmDumpMadt ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; ACPI_SUBTABLE_HEADER *SubTable; UINT32 Length = Table->Length; UINT32 Offset = sizeof (ACPI_TABLE_MADT); ACPI_DMTABLE_INFO *InfoTable; /* Main table */ Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoMadt); if (ACPI_FAILURE (Status)) { return; } /* Subtables */ SubTable = ACPI_ADD_PTR (ACPI_SUBTABLE_HEADER, Table, Offset); while (Offset < Table->Length) { /* Common subtable header */ AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Length, Offset, SubTable, SubTable->Length, AcpiDmTableInfoMadtHdr); if (ACPI_FAILURE (Status)) { return; } switch (SubTable->Type) { case ACPI_MADT_TYPE_LOCAL_APIC: InfoTable = AcpiDmTableInfoMadt0; break; case ACPI_MADT_TYPE_IO_APIC: InfoTable = AcpiDmTableInfoMadt1; break; case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE: InfoTable = AcpiDmTableInfoMadt2; break; case ACPI_MADT_TYPE_NMI_SOURCE: InfoTable = AcpiDmTableInfoMadt3; break; case ACPI_MADT_TYPE_LOCAL_APIC_NMI: InfoTable = AcpiDmTableInfoMadt4; break; case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE: InfoTable = AcpiDmTableInfoMadt5; break; case ACPI_MADT_TYPE_IO_SAPIC: InfoTable = AcpiDmTableInfoMadt6; break; case ACPI_MADT_TYPE_LOCAL_SAPIC: InfoTable = AcpiDmTableInfoMadt7; break; case ACPI_MADT_TYPE_INTERRUPT_SOURCE: InfoTable = AcpiDmTableInfoMadt8; break; case ACPI_MADT_TYPE_LOCAL_X2APIC: InfoTable = AcpiDmTableInfoMadt9; break; case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI: InfoTable = AcpiDmTableInfoMadt10; break; case ACPI_MADT_TYPE_GENERIC_INTERRUPT: InfoTable = AcpiDmTableInfoMadt11; break; case ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR: InfoTable = AcpiDmTableInfoMadt12; break; case ACPI_MADT_TYPE_GENERIC_MSI_FRAME: InfoTable = AcpiDmTableInfoMadt13; break; case ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR: InfoTable = AcpiDmTableInfoMadt14; break; case ACPI_MADT_TYPE_GENERIC_TRANSLATOR: InfoTable = AcpiDmTableInfoMadt15; break; default: AcpiOsPrintf ("\n**** Unknown MADT subtable type 0x%X\n\n", SubTable->Type); /* Attempt to continue */ if (!SubTable->Length) { AcpiOsPrintf ("Invalid zero length subtable\n"); return; } goto NextSubTable; } Status = AcpiDmDumpTable (Length, Offset, SubTable, SubTable->Length, InfoTable); if (ACPI_FAILURE (Status)) { return; } NextSubTable: /* Point to next subtable */ Offset += SubTable->Length; SubTable = ACPI_ADD_PTR (ACPI_SUBTABLE_HEADER, SubTable, SubTable->Length); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpMcfg * * PARAMETERS: Table - A MCFG Table * * RETURN: None * * DESCRIPTION: Format the contents of a MCFG table * ******************************************************************************/ void AcpiDmDumpMcfg ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; UINT32 Offset = sizeof (ACPI_TABLE_MCFG); ACPI_MCFG_ALLOCATION *SubTable; /* Main table */ Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoMcfg); if (ACPI_FAILURE (Status)) { return; } /* Subtables */ SubTable = ACPI_ADD_PTR (ACPI_MCFG_ALLOCATION, Table, Offset); while (Offset < Table->Length) { if (Offset + sizeof (ACPI_MCFG_ALLOCATION) > Table->Length) { AcpiOsPrintf ("Warning: there are %u invalid trailing bytes\n", sizeof (ACPI_MCFG_ALLOCATION) - (Offset - Table->Length)); return; } AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Table->Length, Offset, SubTable, sizeof (ACPI_MCFG_ALLOCATION), AcpiDmTableInfoMcfg0); if (ACPI_FAILURE (Status)) { return; } /* Point to next subtable (each subtable is of fixed length) */ Offset += sizeof (ACPI_MCFG_ALLOCATION); SubTable = ACPI_ADD_PTR (ACPI_MCFG_ALLOCATION, SubTable, sizeof (ACPI_MCFG_ALLOCATION)); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpMpst * * PARAMETERS: Table - A MPST Table * * RETURN: None * * DESCRIPTION: Format the contents of a MPST table * ******************************************************************************/ void AcpiDmDumpMpst ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; UINT32 Offset = sizeof (ACPI_TABLE_MPST); ACPI_MPST_POWER_NODE *SubTable0; ACPI_MPST_POWER_STATE *SubTable0A; ACPI_MPST_COMPONENT *SubTable0B; ACPI_MPST_DATA_HDR *SubTable1; ACPI_MPST_POWER_DATA *SubTable2; UINT16 SubtableCount; UINT32 PowerStateCount; UINT32 ComponentCount; /* Main table */ Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoMpst); if (ACPI_FAILURE (Status)) { return; } /* Subtable: Memory Power Node(s) */ SubtableCount = (ACPI_CAST_PTR (ACPI_TABLE_MPST, Table))->PowerNodeCount; SubTable0 = ACPI_ADD_PTR (ACPI_MPST_POWER_NODE, Table, Offset); while ((Offset < Table->Length) && SubtableCount) { AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Table->Length, Offset, SubTable0, sizeof (ACPI_MPST_POWER_NODE), AcpiDmTableInfoMpst0); if (ACPI_FAILURE (Status)) { return; } /* Extract the sub-subtable counts */ PowerStateCount = SubTable0->NumPowerStates; ComponentCount = SubTable0->NumPhysicalComponents; Offset += sizeof (ACPI_MPST_POWER_NODE); /* Sub-subtables - Memory Power State Structure(s) */ SubTable0A = ACPI_ADD_PTR (ACPI_MPST_POWER_STATE, SubTable0, sizeof (ACPI_MPST_POWER_NODE)); while (PowerStateCount) { AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Table->Length, Offset, SubTable0A, sizeof (ACPI_MPST_POWER_STATE), AcpiDmTableInfoMpst0A); if (ACPI_FAILURE (Status)) { return; } SubTable0A++; PowerStateCount--; Offset += sizeof (ACPI_MPST_POWER_STATE); } /* Sub-subtables - Physical Component ID Structure(s) */ SubTable0B = ACPI_CAST_PTR (ACPI_MPST_COMPONENT, SubTable0A); if (ComponentCount) { AcpiOsPrintf ("\n"); } while (ComponentCount) { Status = AcpiDmDumpTable (Table->Length, Offset, SubTable0B, sizeof (ACPI_MPST_COMPONENT), AcpiDmTableInfoMpst0B); if (ACPI_FAILURE (Status)) { return; } SubTable0B++; ComponentCount--; Offset += sizeof (ACPI_MPST_COMPONENT); } /* Point to next Memory Power Node subtable */ SubtableCount--; SubTable0 = ACPI_ADD_PTR (ACPI_MPST_POWER_NODE, SubTable0, sizeof (ACPI_MPST_POWER_NODE) + (sizeof (ACPI_MPST_POWER_STATE) * SubTable0->NumPowerStates) + (sizeof (ACPI_MPST_COMPONENT) * SubTable0->NumPhysicalComponents)); } /* Subtable: Count of Memory Power State Characteristic structures */ AcpiOsPrintf ("\n"); SubTable1 = ACPI_CAST_PTR (ACPI_MPST_DATA_HDR, SubTable0); Status = AcpiDmDumpTable (Table->Length, Offset, SubTable1, sizeof (ACPI_MPST_DATA_HDR), AcpiDmTableInfoMpst1); if (ACPI_FAILURE (Status)) { return; } SubtableCount = SubTable1->CharacteristicsCount; Offset += sizeof (ACPI_MPST_DATA_HDR); /* Subtable: Memory Power State Characteristics structure(s) */ SubTable2 = ACPI_ADD_PTR (ACPI_MPST_POWER_DATA, SubTable1, sizeof (ACPI_MPST_DATA_HDR)); while ((Offset < Table->Length) && SubtableCount) { AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Table->Length, Offset, SubTable2, sizeof (ACPI_MPST_POWER_DATA), AcpiDmTableInfoMpst2); if (ACPI_FAILURE (Status)) { return; } SubTable2++; SubtableCount--; Offset += sizeof (ACPI_MPST_POWER_DATA); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpMsct * * PARAMETERS: Table - A MSCT table * * RETURN: None * * DESCRIPTION: Format the contents of a MSCT * ******************************************************************************/ void AcpiDmDumpMsct ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; UINT32 Offset = sizeof (ACPI_TABLE_MSCT); ACPI_MSCT_PROXIMITY *SubTable; /* Main table */ Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoMsct); if (ACPI_FAILURE (Status)) { return; } /* Subtables */ SubTable = ACPI_ADD_PTR (ACPI_MSCT_PROXIMITY, Table, Offset); while (Offset < Table->Length) { /* Common subtable header */ AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Table->Length, Offset, SubTable, sizeof (ACPI_MSCT_PROXIMITY), AcpiDmTableInfoMsct0); if (ACPI_FAILURE (Status)) { return; } /* Point to next subtable */ Offset += sizeof (ACPI_MSCT_PROXIMITY); SubTable = ACPI_ADD_PTR (ACPI_MSCT_PROXIMITY, SubTable, sizeof (ACPI_MSCT_PROXIMITY)); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpMtmr * * PARAMETERS: Table - A MTMR table * * RETURN: None * * DESCRIPTION: Format the contents of a MTMR * ******************************************************************************/ void AcpiDmDumpMtmr ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; UINT32 Offset = sizeof (ACPI_TABLE_MTMR); ACPI_MTMR_ENTRY *SubTable; /* Main table */ Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoMtmr); if (ACPI_FAILURE (Status)) { return; } /* Subtables */ SubTable = ACPI_ADD_PTR (ACPI_MTMR_ENTRY, Table, Offset); while (Offset < Table->Length) { /* Common subtable header */ AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Table->Length, Offset, SubTable, sizeof (ACPI_MTMR_ENTRY), AcpiDmTableInfoMtmr0); if (ACPI_FAILURE (Status)) { return; } /* Point to next subtable */ Offset += sizeof (ACPI_MTMR_ENTRY); SubTable = ACPI_ADD_PTR (ACPI_MTMR_ENTRY, SubTable, sizeof (ACPI_MTMR_ENTRY)); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpNfit * * PARAMETERS: Table - A NFIT table * * RETURN: None * * DESCRIPTION: Format the contents of an NFIT. * ******************************************************************************/ void AcpiDmDumpNfit ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; UINT32 Offset = sizeof (ACPI_TABLE_NFIT); UINT32 FieldOffset = 0; UINT32 Length; ACPI_NFIT_HEADER *SubTable; ACPI_DMTABLE_INFO *InfoTable; ACPI_NFIT_INTERLEAVE *Interleave = NULL; ACPI_NFIT_SMBIOS *SmbiosInfo = NULL; ACPI_NFIT_FLUSH_ADDRESS *Hint = NULL; UINT32 i; /* Main table */ Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoNfit); if (ACPI_FAILURE (Status)) { return; } /* Subtables */ SubTable = ACPI_ADD_PTR (ACPI_NFIT_HEADER, Table, Offset); while (Offset < Table->Length) { /* NFIT subtable header */ AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Table->Length, Offset, SubTable, SubTable->Length, AcpiDmTableInfoNfitHdr); if (ACPI_FAILURE (Status)) { return; } switch (SubTable->Type) { case ACPI_NFIT_TYPE_SYSTEM_ADDRESS: InfoTable = AcpiDmTableInfoNfit0; break; case ACPI_NFIT_TYPE_MEMORY_MAP: InfoTable = AcpiDmTableInfoNfit1; break; case ACPI_NFIT_TYPE_INTERLEAVE: /* Has a variable number of 32-bit values at the end */ InfoTable = AcpiDmTableInfoNfit2; Interleave = ACPI_CAST_PTR (ACPI_NFIT_INTERLEAVE, SubTable); FieldOffset = sizeof (ACPI_NFIT_INTERLEAVE); break; case ACPI_NFIT_TYPE_SMBIOS: SmbiosInfo = ACPI_CAST_PTR (ACPI_NFIT_SMBIOS, SubTable); InfoTable = AcpiDmTableInfoNfit3; break; case ACPI_NFIT_TYPE_CONTROL_REGION: InfoTable = AcpiDmTableInfoNfit4; break; case ACPI_NFIT_TYPE_DATA_REGION: InfoTable = AcpiDmTableInfoNfit5; break; case ACPI_NFIT_TYPE_FLUSH_ADDRESS: /* Has a variable number of 64-bit addresses at the end */ InfoTable = AcpiDmTableInfoNfit6; Hint = ACPI_CAST_PTR (ACPI_NFIT_FLUSH_ADDRESS, SubTable); FieldOffset = sizeof (ACPI_NFIT_FLUSH_ADDRESS) - sizeof (UINT64); break; default: AcpiOsPrintf ("\n**** Unknown NFIT subtable type 0x%X\n", SubTable->Type); /* Attempt to continue */ if (!SubTable->Length) { AcpiOsPrintf ("Invalid zero length subtable\n"); return; } goto NextSubTable; } AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Table->Length, Offset, SubTable, SubTable->Length, InfoTable); if (ACPI_FAILURE (Status)) { return; } /* Per-subtable variable-length fields */ switch (SubTable->Type) { case ACPI_NFIT_TYPE_INTERLEAVE: for (i = 0; i < Interleave->LineCount; i++) { Status = AcpiDmDumpTable (Table->Length, Offset + FieldOffset, &Interleave->LineOffset[i], sizeof (UINT32), AcpiDmTableInfoNfit2a); if (ACPI_FAILURE (Status)) { return; } FieldOffset += sizeof (UINT32); } break; case ACPI_NFIT_TYPE_SMBIOS: Length = SubTable->Length - sizeof (ACPI_NFIT_SMBIOS) + sizeof (UINT8); if (Length) { Status = AcpiDmDumpTable (Table->Length, sizeof (ACPI_NFIT_SMBIOS) - sizeof (UINT8), SmbiosInfo, Length, AcpiDmTableInfoNfit3a); if (ACPI_FAILURE (Status)) { return; } } break; case ACPI_NFIT_TYPE_FLUSH_ADDRESS: for (i = 0; i < Hint->HintCount; i++) { Status = AcpiDmDumpTable (Table->Length, Offset + FieldOffset, &Hint->HintAddress[i], sizeof (UINT64), AcpiDmTableInfoNfit6a); if (ACPI_FAILURE (Status)) { return; } FieldOffset += sizeof (UINT64); } break; default: break; } NextSubTable: /* Point to next subtable */ Offset += SubTable->Length; SubTable = ACPI_ADD_PTR (ACPI_NFIT_HEADER, SubTable, SubTable->Length); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpPcct * * PARAMETERS: Table - A PCCT table * * RETURN: None * * DESCRIPTION: Format the contents of a PCCT. This table type consists * of an open-ended number of subtables. * ******************************************************************************/ void AcpiDmDumpPcct ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; ACPI_PCCT_SUBSPACE *SubTable; ACPI_DMTABLE_INFO *InfoTable; UINT32 Length = Table->Length; UINT32 Offset = sizeof (ACPI_TABLE_PCCT); /* Main table */ Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoPcct); if (ACPI_FAILURE (Status)) { return; } /* Subtables */ SubTable = ACPI_ADD_PTR (ACPI_PCCT_SUBSPACE, Table, Offset); while (Offset < Table->Length) { /* Common subtable header */ AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Length, Offset, SubTable, SubTable->Header.Length, AcpiDmTableInfoPcctHdr); if (ACPI_FAILURE (Status)) { return; } switch (SubTable->Header.Type) { case ACPI_PCCT_TYPE_GENERIC_SUBSPACE: InfoTable = AcpiDmTableInfoPcct0; break; case ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE: InfoTable = AcpiDmTableInfoPcct1; break; case ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE_TYPE2: InfoTable = AcpiDmTableInfoPcct2; break; default: AcpiOsPrintf ( "\n**** Unexpected or unknown PCCT subtable type 0x%X\n\n", SubTable->Header.Type); return; } AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Length, Offset, SubTable, SubTable->Header.Length, InfoTable); if (ACPI_FAILURE (Status)) { return; } /* Point to next subtable */ Offset += SubTable->Header.Length; SubTable = ACPI_ADD_PTR (ACPI_PCCT_SUBSPACE, SubTable, SubTable->Header.Length); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpPmtt * * PARAMETERS: Table - A PMTT table * * RETURN: None * * DESCRIPTION: Format the contents of a PMTT. This table type consists * of an open-ended number of subtables. * ******************************************************************************/ void AcpiDmDumpPmtt ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; ACPI_PMTT_HEADER *SubTable; ACPI_PMTT_HEADER *MemSubTable; ACPI_PMTT_HEADER *DimmSubTable; ACPI_PMTT_DOMAIN *DomainArray; UINT32 Length = Table->Length; UINT32 Offset = sizeof (ACPI_TABLE_PMTT); UINT32 MemOffset; UINT32 DimmOffset; UINT32 DomainOffset; UINT32 DomainCount; /* Main table */ Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoPmtt); if (ACPI_FAILURE (Status)) { return; } /* Subtables */ SubTable = ACPI_ADD_PTR (ACPI_PMTT_HEADER, Table, Offset); while (Offset < Table->Length) { /* Common subtable header */ AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Length, Offset, SubTable, SubTable->Length, AcpiDmTableInfoPmttHdr); if (ACPI_FAILURE (Status)) { return; } /* Only Socket subtables are expected at this level */ if (SubTable->Type != ACPI_PMTT_TYPE_SOCKET) { AcpiOsPrintf ( "\n**** Unexpected or unknown PMTT subtable type 0x%X\n\n", SubTable->Type); return; } /* Dump the fixed-length portion of the subtable */ Status = AcpiDmDumpTable (Length, Offset, SubTable, SubTable->Length, AcpiDmTableInfoPmtt0); if (ACPI_FAILURE (Status)) { return; } /* Walk the memory controller subtables */ MemOffset = sizeof (ACPI_PMTT_SOCKET); MemSubTable = ACPI_ADD_PTR (ACPI_PMTT_HEADER, SubTable, sizeof (ACPI_PMTT_SOCKET)); while (((Offset + MemOffset) < Table->Length) && (MemOffset < SubTable->Length)) { /* Common subtable header */ AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Length, Offset + MemOffset, MemSubTable, MemSubTable->Length, AcpiDmTableInfoPmttHdr); if (ACPI_FAILURE (Status)) { return; } /* Only memory controller subtables are expected at this level */ if (MemSubTable->Type != ACPI_PMTT_TYPE_CONTROLLER) { AcpiOsPrintf ( "\n**** Unexpected or unknown PMTT subtable type 0x%X\n\n", MemSubTable->Type); return; } /* Dump the fixed-length portion of the controller subtable */ Status = AcpiDmDumpTable (Length, Offset + MemOffset, MemSubTable, MemSubTable->Length, AcpiDmTableInfoPmtt1); if (ACPI_FAILURE (Status)) { return; } /* Walk the variable count of proximity domains */ DomainCount = ((ACPI_PMTT_CONTROLLER *) MemSubTable)->DomainCount; DomainOffset = sizeof (ACPI_PMTT_CONTROLLER); DomainArray = ACPI_ADD_PTR (ACPI_PMTT_DOMAIN, MemSubTable, sizeof (ACPI_PMTT_CONTROLLER)); while (((Offset + MemOffset + DomainOffset) < Table->Length) && ((MemOffset + DomainOffset) < SubTable->Length) && DomainCount) { Status = AcpiDmDumpTable (Length, Offset + MemOffset + DomainOffset, DomainArray, sizeof (ACPI_PMTT_DOMAIN), AcpiDmTableInfoPmtt1a); if (ACPI_FAILURE (Status)) { return; } DomainOffset += sizeof (ACPI_PMTT_DOMAIN); DomainArray++; DomainCount--; } if (DomainCount) { AcpiOsPrintf ( "\n**** DomainCount exceeds subtable length\n\n"); } /* Walk the physical component (DIMM) subtables */ DimmOffset = DomainOffset; DimmSubTable = ACPI_ADD_PTR (ACPI_PMTT_HEADER, MemSubTable, DomainOffset); while (((Offset + MemOffset + DimmOffset) < Table->Length) && (DimmOffset < MemSubTable->Length)) { /* Common subtable header */ AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Length, Offset + MemOffset + DimmOffset, DimmSubTable, DimmSubTable->Length, AcpiDmTableInfoPmttHdr); if (ACPI_FAILURE (Status)) { return; } /* Only DIMM subtables are expected at this level */ if (DimmSubTable->Type != ACPI_PMTT_TYPE_DIMM) { AcpiOsPrintf ( "\n**** Unexpected or unknown PMTT subtable type 0x%X\n\n", DimmSubTable->Type); return; } /* Dump the fixed-length DIMM subtable */ Status = AcpiDmDumpTable (Length, Offset + MemOffset + DimmOffset, DimmSubTable, DimmSubTable->Length, AcpiDmTableInfoPmtt2); if (ACPI_FAILURE (Status)) { return; } /* Point to next DIMM subtable */ DimmOffset += DimmSubTable->Length; DimmSubTable = ACPI_ADD_PTR (ACPI_PMTT_HEADER, DimmSubTable, DimmSubTable->Length); } /* Point to next Controller subtable */ MemOffset += MemSubTable->Length; MemSubTable = ACPI_ADD_PTR (ACPI_PMTT_HEADER, MemSubTable, MemSubTable->Length); } /* Point to next Socket subtable */ Offset += SubTable->Length; SubTable = ACPI_ADD_PTR (ACPI_PMTT_HEADER, SubTable, SubTable->Length); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpS3pt * * PARAMETERS: Table - A S3PT table * * RETURN: Length of the table * * DESCRIPTION: Format the contents of a S3PT * ******************************************************************************/ UINT32 AcpiDmDumpS3pt ( ACPI_TABLE_HEADER *Tables) { ACPI_STATUS Status; UINT32 Offset = sizeof (ACPI_TABLE_S3PT); ACPI_FPDT_HEADER *SubTable; ACPI_DMTABLE_INFO *InfoTable; ACPI_TABLE_S3PT *S3ptTable = ACPI_CAST_PTR (ACPI_TABLE_S3PT, Tables); /* Main table */ Status = AcpiDmDumpTable (Offset, 0, S3ptTable, 0, AcpiDmTableInfoS3pt); if (ACPI_FAILURE (Status)) { return 0; } SubTable = ACPI_ADD_PTR (ACPI_FPDT_HEADER, S3ptTable, Offset); while (Offset < S3ptTable->Length) { /* Common subtable header */ AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (S3ptTable->Length, Offset, SubTable, SubTable->Length, AcpiDmTableInfoS3ptHdr); if (ACPI_FAILURE (Status)) { return 0; } switch (SubTable->Type) { case ACPI_S3PT_TYPE_RESUME: InfoTable = AcpiDmTableInfoS3pt0; break; case ACPI_S3PT_TYPE_SUSPEND: InfoTable = AcpiDmTableInfoS3pt1; break; default: AcpiOsPrintf ("\n**** Unknown S3PT subtable type 0x%X\n", SubTable->Type); /* Attempt to continue */ if (!SubTable->Length) { AcpiOsPrintf ("Invalid zero length subtable\n"); return 0; } goto NextSubTable; } AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (S3ptTable->Length, Offset, SubTable, SubTable->Length, InfoTable); if (ACPI_FAILURE (Status)) { return 0; } NextSubTable: /* Point to next subtable */ Offset += SubTable->Length; SubTable = ACPI_ADD_PTR (ACPI_FPDT_HEADER, SubTable, SubTable->Length); } return (S3ptTable->Length); } /******************************************************************************* * * FUNCTION: AcpiDmDumpSlic * * PARAMETERS: Table - A SLIC table * * RETURN: None * * DESCRIPTION: Format the contents of a SLIC * ******************************************************************************/ void AcpiDmDumpSlic ( ACPI_TABLE_HEADER *Table) { (void) AcpiDmDumpTable (Table->Length, sizeof (ACPI_TABLE_HEADER), Table, Table->Length - sizeof (*Table), AcpiDmTableInfoSlic); } /******************************************************************************* * * FUNCTION: AcpiDmDumpSlit * * PARAMETERS: Table - An SLIT * * RETURN: None * * DESCRIPTION: Format the contents of a SLIT * ******************************************************************************/ void AcpiDmDumpSlit ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; UINT32 Offset; UINT8 *Row; UINT32 Localities; UINT32 i; UINT32 j; /* Main table */ Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoSlit); if (ACPI_FAILURE (Status)) { return; } /* Display the Locality NxN Matrix */ Localities = (UINT32) ACPI_CAST_PTR (ACPI_TABLE_SLIT, Table)->LocalityCount; Offset = ACPI_OFFSET (ACPI_TABLE_SLIT, Entry[0]); Row = (UINT8 *) ACPI_CAST_PTR (ACPI_TABLE_SLIT, Table)->Entry; for (i = 0; i < Localities; i++) { /* Display one row of the matrix */ AcpiDmLineHeader2 (Offset, Localities, "Locality", i); for (j = 0; j < Localities; j++) { /* Check for beyond EOT */ if (Offset >= Table->Length) { AcpiOsPrintf ( "\n**** Not enough room in table for all localities\n"); return; } AcpiOsPrintf ("%2.2X", Row[j]); Offset++; /* Display up to 16 bytes per output row */ if ((j+1) < Localities) { AcpiOsPrintf (" "); if (j && (((j+1) % 16) == 0)) { AcpiOsPrintf ("\\\n"); /* With line continuation char */ AcpiDmLineHeader (Offset, 0, NULL); } } } /* Point to next row */ AcpiOsPrintf ("\n"); Row += Localities; } } /******************************************************************************* * * FUNCTION: AcpiDmDumpSrat * * PARAMETERS: Table - A SRAT table * * RETURN: None * * DESCRIPTION: Format the contents of a SRAT * ******************************************************************************/ void AcpiDmDumpSrat ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; UINT32 Offset = sizeof (ACPI_TABLE_SRAT); ACPI_SUBTABLE_HEADER *SubTable; ACPI_DMTABLE_INFO *InfoTable; /* Main table */ Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoSrat); if (ACPI_FAILURE (Status)) { return; } /* Subtables */ SubTable = ACPI_ADD_PTR (ACPI_SUBTABLE_HEADER, Table, Offset); while (Offset < Table->Length) { /* Common subtable header */ AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Table->Length, Offset, SubTable, SubTable->Length, AcpiDmTableInfoSratHdr); if (ACPI_FAILURE (Status)) { return; } switch (SubTable->Type) { case ACPI_SRAT_TYPE_CPU_AFFINITY: InfoTable = AcpiDmTableInfoSrat0; break; case ACPI_SRAT_TYPE_MEMORY_AFFINITY: InfoTable = AcpiDmTableInfoSrat1; break; case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: InfoTable = AcpiDmTableInfoSrat2; break; case ACPI_SRAT_TYPE_GICC_AFFINITY: InfoTable = AcpiDmTableInfoSrat3; break; default: AcpiOsPrintf ("\n**** Unknown SRAT subtable type 0x%X\n", SubTable->Type); /* Attempt to continue */ if (!SubTable->Length) { AcpiOsPrintf ("Invalid zero length subtable\n"); return; } goto NextSubTable; } AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Table->Length, Offset, SubTable, SubTable->Length, InfoTable); if (ACPI_FAILURE (Status)) { return; } NextSubTable: /* Point to next subtable */ Offset += SubTable->Length; SubTable = ACPI_ADD_PTR (ACPI_SUBTABLE_HEADER, SubTable, SubTable->Length); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpStao * * PARAMETERS: Table - A STAO table * * RETURN: None * * DESCRIPTION: Format the contents of a STAO. This is a variable-length * table that contains an open-ended number of ASCII strings * at the end of the table. * ******************************************************************************/ void AcpiDmDumpStao ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; char *Namepath; UINT32 Length = Table->Length; UINT32 StringLength; UINT32 Offset = sizeof (ACPI_TABLE_STAO); /* Main table */ Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoStao); if (ACPI_FAILURE (Status)) { return; } /* The rest of the table consists of Namepath strings */ while (Offset < Table->Length) { Namepath = ACPI_ADD_PTR (char, Table, Offset); StringLength = strlen (Namepath) + 1; AcpiDmLineHeader (Offset, StringLength, "Namestring"); AcpiOsPrintf ("\"%s\"\n", Namepath); /* Point to next namepath */ Offset += StringLength; } } /******************************************************************************* * * FUNCTION: AcpiDmDumpTcpa * * PARAMETERS: Table - A TCPA table * * RETURN: None * * DESCRIPTION: Format the contents of a TCPA. * * NOTE: There are two versions of the table with the same signature: * the client version and the server version. The common * PlatformClass field is used to differentiate the two types of * tables. * ******************************************************************************/ void AcpiDmDumpTcpa ( ACPI_TABLE_HEADER *Table) { UINT32 Offset = sizeof (ACPI_TABLE_TCPA_HDR); ACPI_TABLE_TCPA_HDR *CommonHeader = ACPI_CAST_PTR ( ACPI_TABLE_TCPA_HDR, Table); ACPI_TABLE_TCPA_HDR *SubTable = ACPI_ADD_PTR ( ACPI_TABLE_TCPA_HDR, Table, Offset); ACPI_STATUS Status; /* Main table */ Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoTcpaHdr); if (ACPI_FAILURE (Status)) { return; } /* * Examine the PlatformClass field to determine the table type. * Either a client or server table. Only one. */ switch (CommonHeader->PlatformClass) { case ACPI_TCPA_CLIENT_TABLE: Status = AcpiDmDumpTable (Table->Length, Offset, SubTable, Table->Length - Offset, AcpiDmTableInfoTcpaClient); break; case ACPI_TCPA_SERVER_TABLE: Status = AcpiDmDumpTable (Table->Length, Offset, SubTable, Table->Length - Offset, AcpiDmTableInfoTcpaServer); break; default: AcpiOsPrintf ("\n**** Unknown TCPA Platform Class 0x%X\n", CommonHeader->PlatformClass); Status = AE_ERROR; break; } if (ACPI_FAILURE (Status)) { AcpiOsPrintf ("\n**** Cannot disassemble TCPA table\n"); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpVrtc * * PARAMETERS: Table - A VRTC table * * RETURN: None * * DESCRIPTION: Format the contents of a VRTC * ******************************************************************************/ void AcpiDmDumpVrtc ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; UINT32 Offset = sizeof (ACPI_TABLE_VRTC); ACPI_VRTC_ENTRY *SubTable; /* Main table */ Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoVrtc); if (ACPI_FAILURE (Status)) { return; } /* Subtables */ SubTable = ACPI_ADD_PTR (ACPI_VRTC_ENTRY, Table, Offset); while (Offset < Table->Length) { /* Common subtable header */ AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Table->Length, Offset, SubTable, sizeof (ACPI_VRTC_ENTRY), AcpiDmTableInfoVrtc0); if (ACPI_FAILURE (Status)) { return; } /* Point to next subtable */ Offset += sizeof (ACPI_VRTC_ENTRY); SubTable = ACPI_ADD_PTR (ACPI_VRTC_ENTRY, SubTable, sizeof (ACPI_VRTC_ENTRY)); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpWdat * * PARAMETERS: Table - A WDAT table * * RETURN: None * * DESCRIPTION: Format the contents of a WDAT * ******************************************************************************/ void AcpiDmDumpWdat ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; UINT32 Offset = sizeof (ACPI_TABLE_WDAT); ACPI_WDAT_ENTRY *SubTable; /* Main table */ Status = AcpiDmDumpTable (Table->Length, 0, Table, 0, AcpiDmTableInfoWdat); if (ACPI_FAILURE (Status)) { return; } /* Subtables */ SubTable = ACPI_ADD_PTR (ACPI_WDAT_ENTRY, Table, Offset); while (Offset < Table->Length) { /* Common subtable header */ AcpiOsPrintf ("\n"); Status = AcpiDmDumpTable (Table->Length, Offset, SubTable, sizeof (ACPI_WDAT_ENTRY), AcpiDmTableInfoWdat0); if (ACPI_FAILURE (Status)) { return; } /* Point to next subtable */ Offset += sizeof (ACPI_WDAT_ENTRY); SubTable = ACPI_ADD_PTR (ACPI_WDAT_ENTRY, SubTable, sizeof (ACPI_WDAT_ENTRY)); } } /******************************************************************************* * * FUNCTION: AcpiDmDumpWpbt * * PARAMETERS: Table - A WPBT table * * RETURN: None * * DESCRIPTION: Format the contents of a WPBT. This table type consists * of an open-ended arguments buffer at the end of the table. * ******************************************************************************/ void AcpiDmDumpWpbt ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; ACPI_TABLE_WPBT *SubTable; UINT32 Length = Table->Length; UINT16 ArgumentsLength; /* Dump the main table */ Status = AcpiDmDumpTable (Length, 0, Table, 0, AcpiDmTableInfoWpbt); if (ACPI_FAILURE (Status)) { return; } /* Extract the arguments buffer length from the main table */ SubTable = ACPI_CAST_PTR (ACPI_TABLE_WPBT, Table); ArgumentsLength = SubTable->ArgumentsLength; /* Dump the arguments buffer */ (void) AcpiDmDumpTable (Table->Length, 0, Table, ArgumentsLength, AcpiDmTableInfoWpbt0); } Index: head/sys/contrib/dev/acpica/common/dmtbinfo.c =================================================================== --- head/sys/contrib/dev/acpica/common/dmtbinfo.c (revision 308952) +++ head/sys/contrib/dev/acpica/common/dmtbinfo.c (revision 308953) @@ -1,3000 +1,3004 @@ /****************************************************************************** * * Module Name: dmtbinfo - Table info for non-AML tables * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include /* This module used for application-level code only */ #define _COMPONENT ACPI_CA_DISASSEMBLER ACPI_MODULE_NAME ("dmtbinfo") /* * How to add a new table: * * - Add the C table definition to the actbl1.h or actbl2.h header. * - Add ACPI_xxxx_OFFSET macro(s) for the table (and subtables) to list below. * - Define the table in this file (for the disassembler). If any * new data types are required (ACPI_DMT_*), see below. * - Add an external declaration for the new table definition (AcpiDmTableInfo*) * in acdisam.h * - Add new table definition to the dispatch table in dmtable.c (AcpiDmTableData) * If a simple table (with no subtables), no disassembly code is needed. * Otherwise, create the AcpiDmDump* function for to disassemble the table * and add it to the dmtbdump.c file. * - Add an external declaration for the new AcpiDmDump* function in acdisasm.h * - Add the new AcpiDmDump* function to the dispatch table in dmtable.c * - Create a template for the new table * - Add data table compiler support * * How to add a new data type (ACPI_DMT_*): * * - Add new type at the end of the ACPI_DMT list in acdisasm.h * - Add length and implementation cases in dmtable.c (disassembler) * - Add type and length cases in dtutils.c (DT compiler) */ /* * Macros used to generate offsets to specific table fields */ #define ACPI_FACS_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_FACS,f) #define ACPI_GAS_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_GENERIC_ADDRESS,f) #define ACPI_HDR_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_HEADER,f) #define ACPI_RSDP_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_RSDP,f) #define ACPI_BERT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_BERT,f) #define ACPI_BGRT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_BGRT,f) #define ACPI_BOOT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_BOOT,f) #define ACPI_CPEP_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_CPEP,f) #define ACPI_DBG2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_DBG2,f) #define ACPI_DBGP_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_DBGP,f) #define ACPI_DMAR_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_DMAR,f) #define ACPI_DRTM_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_DRTM,f) #define ACPI_ECDT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_ECDT,f) #define ACPI_EINJ_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_EINJ,f) #define ACPI_ERST_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_ERST,f) #define ACPI_GTDT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_GTDT,f) #define ACPI_HEST_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_HEST,f) #define ACPI_HPET_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_HPET,f) #define ACPI_IORT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_IORT,f) #define ACPI_IVRS_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_IVRS,f) #define ACPI_MADT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_MADT,f) #define ACPI_MCFG_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_MCFG,f) #define ACPI_MCHI_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_MCHI,f) #define ACPI_MPST_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_MPST,f) #define ACPI_MSCT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_MSCT,f) #define ACPI_NFIT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_NFIT,f) #define ACPI_PCCT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_PCCT,f) #define ACPI_PMTT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_PMTT,f) #define ACPI_RASF_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_RASF,f) #define ACPI_S3PT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_S3PT,f) #define ACPI_SBST_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_SBST,f) #define ACPI_SLIT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_SLIT,f) #define ACPI_SPCR_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_SPCR,f) #define ACPI_SPMI_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_SPMI,f) #define ACPI_SRAT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_SRAT,f) #define ACPI_STAO_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_STAO,f) #define ACPI_TCPA_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_TCPA_HDR,f) #define ACPI_TPM2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_TPM2,f) #define ACPI_UEFI_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_UEFI,f) #define ACPI_WAET_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_WAET,f) #define ACPI_WDAT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_WDAT,f) #define ACPI_WDDT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_WDDT,f) #define ACPI_WDRT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_WDRT,f) #define ACPI_WPBT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_WPBT,f) #define ACPI_XENV_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_XENV,f) /* Subtables */ #define ACPI_ASF0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_ASF_INFO,f) #define ACPI_ASF1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_ASF_ALERT,f) #define ACPI_ASF1a_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_ASF_ALERT_DATA,f) #define ACPI_ASF2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_ASF_REMOTE,f) #define ACPI_ASF2a_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_ASF_CONTROL_DATA,f) #define ACPI_ASF3_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_ASF_RMCP,f) #define ACPI_ASF4_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_ASF_ADDRESS,f) #define ACPI_CPEP0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_CPEP_POLLING,f) #define ACPI_CSRT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_CSRT_GROUP,f) #define ACPI_CSRT1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_CSRT_SHARED_INFO,f) #define ACPI_CSRT2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_CSRT_DESCRIPTOR,f) #define ACPI_DBG20_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_DBG2_DEVICE,f) #define ACPI_DMARS_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_DMAR_DEVICE_SCOPE,f) #define ACPI_DMAR0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_DMAR_HARDWARE_UNIT,f) #define ACPI_DMAR1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_DMAR_RESERVED_MEMORY,f) #define ACPI_DMAR2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_DMAR_ATSR,f) #define ACPI_DMAR3_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_DMAR_RHSA,f) #define ACPI_DMAR4_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_DMAR_ANDD,f) #define ACPI_DRTM0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_DRTM_VTABLE_LIST,f) #define ACPI_DRTM1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_DRTM_RESOURCE_LIST,f) #define ACPI_DRTM1a_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_DRTM_RESOURCE,f) #define ACPI_DRTM2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_DRTM_DPS_ID,f) #define ACPI_EINJ0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_WHEA_HEADER,f) #define ACPI_ERST0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_WHEA_HEADER,f) #define ACPI_FPDTH_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_FPDT_HEADER,f) #define ACPI_FPDT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_FPDT_BOOT_POINTER,f) #define ACPI_FPDT1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_FPDT_S3PT_POINTER,f) #define ACPI_GTDT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_GTDT_TIMER_BLOCK,f) #define ACPI_GTDT0a_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_GTDT_TIMER_ENTRY,f) #define ACPI_GTDT1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_GTDT_WATCHDOG,f) #define ACPI_GTDTH_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_GTDT_HEADER,f) #define ACPI_HEST0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_HEST_IA_MACHINE_CHECK,f) #define ACPI_HEST1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_HEST_IA_CORRECTED,f) #define ACPI_HEST2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_HEST_IA_NMI,f) #define ACPI_HEST6_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_HEST_AER_ROOT,f) #define ACPI_HEST7_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_HEST_AER,f) #define ACPI_HEST8_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_HEST_AER_BRIDGE,f) #define ACPI_HEST9_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_HEST_GENERIC,f) #define ACPI_HEST10_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_HEST_GENERIC_V2,f) #define ACPI_HESTN_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_HEST_NOTIFY,f) #define ACPI_HESTB_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_HEST_IA_ERROR_BANK,f) #define ACPI_IORT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IORT_ITS_GROUP,f) #define ACPI_IORT1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IORT_NAMED_COMPONENT,f) #define ACPI_IORT2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IORT_ROOT_COMPLEX,f) #define ACPI_IORT3_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IORT_SMMU,f) #define ACPI_IORT4_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IORT_SMMU_V3,f) #define ACPI_IORTA_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IORT_MEMORY_ACCESS,f) #define ACPI_IORTH_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IORT_NODE,f) #define ACPI_IORTM_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IORT_ID_MAPPING,f) #define ACPI_IVRSH_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IVRS_HEADER,f) #define ACPI_IVRS0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IVRS_HARDWARE,f) #define ACPI_IVRS1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IVRS_MEMORY,f) #define ACPI_IVRSD_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IVRS_DE_HEADER,f) #define ACPI_IVRS8A_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IVRS_DEVICE8A,f) #define ACPI_IVRS8B_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IVRS_DEVICE8B,f) #define ACPI_IVRS8C_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_IVRS_DEVICE8C,f) #define ACPI_LPITH_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_LPIT_HEADER,f) #define ACPI_LPIT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_LPIT_NATIVE,f) #define ACPI_MADT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_LOCAL_APIC,f) #define ACPI_MADT1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_IO_APIC,f) #define ACPI_MADT2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_INTERRUPT_OVERRIDE,f) #define ACPI_MADT3_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_NMI_SOURCE,f) #define ACPI_MADT4_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_LOCAL_APIC_NMI,f) #define ACPI_MADT5_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_LOCAL_APIC_OVERRIDE,f) #define ACPI_MADT6_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_IO_SAPIC,f) #define ACPI_MADT7_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_LOCAL_SAPIC,f) #define ACPI_MADT8_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_INTERRUPT_SOURCE,f) #define ACPI_MADT9_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_LOCAL_X2APIC,f) #define ACPI_MADT10_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_LOCAL_X2APIC_NMI,f) #define ACPI_MADT11_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_GENERIC_INTERRUPT,f) #define ACPI_MADT12_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_GENERIC_DISTRIBUTOR,f) #define ACPI_MADT13_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_GENERIC_MSI_FRAME,f) #define ACPI_MADT14_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_GENERIC_REDISTRIBUTOR,f) #define ACPI_MADT15_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MADT_GENERIC_TRANSLATOR,f) #define ACPI_MADTH_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_SUBTABLE_HEADER,f) #define ACPI_MCFG0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MCFG_ALLOCATION,f) #define ACPI_MPST0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MPST_POWER_NODE,f) #define ACPI_MPST0A_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MPST_POWER_STATE,f) #define ACPI_MPST0B_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MPST_COMPONENT,f) #define ACPI_MPST1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MPST_DATA_HDR,f) #define ACPI_MPST2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MPST_POWER_DATA,f) #define ACPI_MSCT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MSCT_PROXIMITY,f) #define ACPI_MTMR0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_MTMR_ENTRY,f) #define ACPI_NFITH_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_NFIT_HEADER,f) #define ACPI_NFIT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_NFIT_SYSTEM_ADDRESS,f) #define ACPI_NFIT1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_NFIT_MEMORY_MAP,f) #define ACPI_NFIT2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_NFIT_INTERLEAVE,f) #define ACPI_NFIT3_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_NFIT_SMBIOS,f) #define ACPI_NFIT4_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_NFIT_CONTROL_REGION,f) #define ACPI_NFIT5_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_NFIT_DATA_REGION,f) #define ACPI_NFIT6_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_NFIT_FLUSH_ADDRESS,f) #define ACPI_PCCT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_PCCT_SUBSPACE,f) #define ACPI_PCCT1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_PCCT_HW_REDUCED,f) #define ACPI_PCCT2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_PCCT_HW_REDUCED_TYPE2,f) #define ACPI_PMTT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_PMTT_SOCKET,f) #define ACPI_PMTT1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_PMTT_CONTROLLER,f) #define ACPI_PMTT1A_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_PMTT_DOMAIN,f) #define ACPI_PMTT2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_PMTT_PHYSICAL_COMPONENT,f) #define ACPI_PMTTH_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_PMTT_HEADER,f) #define ACPI_S3PTH_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_FPDT_HEADER,f) #define ACPI_S3PT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_S3PT_RESUME,f) #define ACPI_S3PT1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_S3PT_SUSPEND,f) #define ACPI_SLIC_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_SLIC,f) #define ACPI_SRATH_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_SUBTABLE_HEADER,f) #define ACPI_SRAT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_SRAT_CPU_AFFINITY,f) #define ACPI_SRAT1_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_SRAT_MEM_AFFINITY,f) #define ACPI_SRAT2_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_SRAT_X2APIC_CPU_AFFINITY,f) #define ACPI_SRAT3_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_SRAT_GICC_AFFINITY,f) #define ACPI_TCPA_CLIENT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_TCPA_CLIENT,f) #define ACPI_TCPA_SERVER_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_TCPA_SERVER,f) #define ACPI_VRTC0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_VRTC_ENTRY,f) #define ACPI_WDAT0_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_WDAT_ENTRY,f) /* * Simplify access to flag fields by breaking them up into bytes */ #define ACPI_FLAG_OFFSET(d,f,o) (UINT16) (ACPI_OFFSET (d,f) + o) /* Flags */ #define ACPI_DRTM_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_TABLE_DRTM,f,o) #define ACPI_DRTM1a_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_DRTM_RESOURCE,f,o) #define ACPI_FADT_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_TABLE_FADT,f,o) #define ACPI_FACS_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_TABLE_FACS,f,o) #define ACPI_HPET_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_TABLE_HPET,f,o) #define ACPI_SRAT0_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_SRAT_CPU_AFFINITY,f,o) #define ACPI_SRAT1_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_SRAT_MEM_AFFINITY,f,o) #define ACPI_SRAT2_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_SRAT_X2APIC_CPU_AFFINITY,f,o) #define ACPI_SRAT3_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_SRAT_GICC_AFFINITY,f,o) #define ACPI_GTDT_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_TABLE_GTDT,f,o) #define ACPI_GTDT0a_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_GTDT_TIMER_ENTRY,f,o) #define ACPI_GTDT1_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_GTDT_WATCHDOG,f,o) #define ACPI_IORT3_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_IORT_SMMU,f,o) #define ACPI_IORT4_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_IORT_SMMU_V3,f,o) #define ACPI_IORTA_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_IORT_MEMORY_ACCESS,f,o) #define ACPI_IORTM_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_IORT_ID_MAPPING,f,o) #define ACPI_LPITH_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_LPIT_HEADER,f,o) #define ACPI_MADT_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_TABLE_MADT,f,o) #define ACPI_MADT0_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MADT_LOCAL_APIC,f,o) #define ACPI_MADT2_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MADT_INTERRUPT_OVERRIDE,f,o) #define ACPI_MADT3_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MADT_NMI_SOURCE,f,o) #define ACPI_MADT4_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MADT_LOCAL_APIC_NMI,f,o) #define ACPI_MADT7_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MADT_LOCAL_SAPIC,f,o) #define ACPI_MADT8_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MADT_INTERRUPT_SOURCE,f,o) #define ACPI_MADT9_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MADT_LOCAL_X2APIC,f,o) #define ACPI_MADT10_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MADT_LOCAL_X2APIC_NMI,f,o) #define ACPI_MADT11_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MADT_GENERIC_INTERRUPT,f,o) #define ACPI_MADT13_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MADT_GENERIC_MSI_FRAME,f,o) #define ACPI_MPST0_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MPST_POWER_NODE,f,o) #define ACPI_MPST2_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_MPST_POWER_DATA,f,o) #define ACPI_NFIT0_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_NFIT_SYSTEM_ADDRESS,f,o) #define ACPI_NFIT1_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_NFIT_MEMORY_MAP,f,o) #define ACPI_NFIT4_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_NFIT_CONTROL_REGION,f,o) #define ACPI_PCCT_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_TABLE_PCCT,f,o) #define ACPI_PCCT1_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_PCCT_HW_REDUCED,f,o) #define ACPI_PCCT2_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_PCCT_HW_REDUCED_TYPE2,f,o) #define ACPI_PMTTH_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_PMTT_HEADER,f,o) #define ACPI_WDDT_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_TABLE_WDDT,f,o) #define ACPI_EINJ0_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_WHEA_HEADER,f,o) #define ACPI_ERST0_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_WHEA_HEADER,f,o) #define ACPI_HEST0_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_HEST_IA_MACHINE_CHECK,f,o) #define ACPI_HEST1_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_HEST_IA_CORRECTED,f,o) #define ACPI_HEST6_FLAG_OFFSET(f,o) ACPI_FLAG_OFFSET (ACPI_HEST_AER_ROOT,f,o) /* * Required terminator for all tables below */ #define ACPI_DMT_TERMINATOR {ACPI_DMT_EXIT, 0, NULL, 0} #define ACPI_DMT_NEW_LINE {ACPI_DMT_EXTRA_TEXT, 0, "\n", 0} /* * ACPI Table Information, used to dump formatted ACPI tables * * Each entry is of the form: */ /******************************************************************************* * * Common ACPI table header * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoHeader[] = { {ACPI_DMT_SIG, ACPI_HDR_OFFSET (Signature[0]), "Signature", 0}, {ACPI_DMT_UINT32, ACPI_HDR_OFFSET (Length), "Table Length", DT_LENGTH}, {ACPI_DMT_UINT8, ACPI_HDR_OFFSET (Revision), "Revision", 0}, {ACPI_DMT_CHKSUM, ACPI_HDR_OFFSET (Checksum), "Checksum", 0}, {ACPI_DMT_NAME6, ACPI_HDR_OFFSET (OemId[0]), "Oem ID", 0}, {ACPI_DMT_NAME8, ACPI_HDR_OFFSET (OemTableId[0]), "Oem Table ID", 0}, {ACPI_DMT_UINT32, ACPI_HDR_OFFSET (OemRevision), "Oem Revision", 0}, {ACPI_DMT_NAME4, ACPI_HDR_OFFSET (AslCompilerId[0]), "Asl Compiler ID", 0}, {ACPI_DMT_UINT32, ACPI_HDR_OFFSET (AslCompilerRevision), "Asl Compiler Revision", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * GAS - Generic Address Structure * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoGas[] = { {ACPI_DMT_SPACEID, ACPI_GAS_OFFSET (SpaceId), "Space ID", 0}, {ACPI_DMT_UINT8, ACPI_GAS_OFFSET (BitWidth), "Bit Width", 0}, {ACPI_DMT_UINT8, ACPI_GAS_OFFSET (BitOffset), "Bit Offset", 0}, {ACPI_DMT_ACCWIDTH, ACPI_GAS_OFFSET (AccessWidth), "Encoded Access Width", 0}, {ACPI_DMT_UINT64, ACPI_GAS_OFFSET (Address), "Address", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * RSDP - Root System Description Pointer (Signature is "RSD PTR ") * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoRsdp1[] = { {ACPI_DMT_NAME8, ACPI_RSDP_OFFSET (Signature[0]), "Signature", 0}, {ACPI_DMT_UINT8, ACPI_RSDP_OFFSET (Checksum), "Checksum", 0}, {ACPI_DMT_NAME6, ACPI_RSDP_OFFSET (OemId[0]), "Oem ID", 0}, {ACPI_DMT_UINT8, ACPI_RSDP_OFFSET (Revision), "Revision", 0}, {ACPI_DMT_UINT32, ACPI_RSDP_OFFSET (RsdtPhysicalAddress), "RSDT Address", 0}, ACPI_DMT_TERMINATOR }; /* ACPI 2.0+ Extensions */ ACPI_DMTABLE_INFO AcpiDmTableInfoRsdp2[] = { {ACPI_DMT_UINT32, ACPI_RSDP_OFFSET (Length), "Length", DT_LENGTH}, {ACPI_DMT_UINT64, ACPI_RSDP_OFFSET (XsdtPhysicalAddress), "XSDT Address", 0}, {ACPI_DMT_UINT8, ACPI_RSDP_OFFSET (ExtendedChecksum), "Extended Checksum", 0}, {ACPI_DMT_UINT24, ACPI_RSDP_OFFSET (Reserved[0]), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * FACS - Firmware ACPI Control Structure * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoFacs[] = { {ACPI_DMT_NAME4, ACPI_FACS_OFFSET (Signature[0]), "Signature", 0}, {ACPI_DMT_UINT32, ACPI_FACS_OFFSET (Length), "Length", DT_LENGTH}, {ACPI_DMT_UINT32, ACPI_FACS_OFFSET (HardwareSignature), "Hardware Signature", 0}, {ACPI_DMT_UINT32, ACPI_FACS_OFFSET (FirmwareWakingVector), "32 Firmware Waking Vector", 0}, {ACPI_DMT_UINT32, ACPI_FACS_OFFSET (GlobalLock), "Global Lock", 0}, {ACPI_DMT_UINT32, ACPI_FACS_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_FACS_FLAG_OFFSET (Flags,0), "S4BIOS Support Present", 0}, {ACPI_DMT_FLAG1, ACPI_FACS_FLAG_OFFSET (Flags,0), "64-bit Wake Supported (V2)", 0}, {ACPI_DMT_UINT64, ACPI_FACS_OFFSET (XFirmwareWakingVector), "64 Firmware Waking Vector", 0}, {ACPI_DMT_UINT8, ACPI_FACS_OFFSET (Version), "Version", 0}, {ACPI_DMT_UINT24, ACPI_FACS_OFFSET (Reserved[0]), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_FACS_OFFSET (OspmFlags), "OspmFlags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_FACS_FLAG_OFFSET (OspmFlags,0), "64-bit Wake Env Required (V2)", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * FADT - Fixed ACPI Description Table (Signature is FACP) * ******************************************************************************/ -/* FADT version 1 (ACPI 1.0) */ +/* ACPI 1.0 FADT (Version 1) */ ACPI_DMTABLE_INFO AcpiDmTableInfoFadt1[] = { {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (Facs), "FACS Address", 0}, {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (Dsdt), "DSDT Address", DT_NON_ZERO}, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (Model), "Model", 0}, {ACPI_DMT_FADTPM, ACPI_FADT_OFFSET (PreferredProfile), "PM Profile", 0}, {ACPI_DMT_UINT16, ACPI_FADT_OFFSET (SciInterrupt), "SCI Interrupt", 0}, {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (SmiCommand), "SMI Command Port", 0}, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (AcpiEnable), "ACPI Enable Value", 0}, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (AcpiDisable), "ACPI Disable Value", 0}, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (S4BiosRequest), "S4BIOS Command", 0}, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (PstateControl), "P-State Control", 0}, {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (Pm1aEventBlock), "PM1A Event Block Address", 0}, {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (Pm1bEventBlock), "PM1B Event Block Address", 0}, {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (Pm1aControlBlock), "PM1A Control Block Address", 0}, {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (Pm1bControlBlock), "PM1B Control Block Address", 0}, {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (Pm2ControlBlock), "PM2 Control Block Address", 0}, {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (PmTimerBlock), "PM Timer Block Address", 0}, {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (Gpe0Block), "GPE0 Block Address", 0}, {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (Gpe1Block), "GPE1 Block Address", 0}, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (Pm1EventLength), "PM1 Event Block Length", 0}, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (Pm1ControlLength), "PM1 Control Block Length", 0}, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (Pm2ControlLength), "PM2 Control Block Length", 0}, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (PmTimerLength), "PM Timer Block Length", 0}, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (Gpe0BlockLength), "GPE0 Block Length", 0}, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (Gpe1BlockLength), "GPE1 Block Length", 0}, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (Gpe1Base), "GPE1 Base Offset", 0}, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (CstControl), "_CST Support", 0}, {ACPI_DMT_UINT16, ACPI_FADT_OFFSET (C2Latency), "C2 Latency", 0}, {ACPI_DMT_UINT16, ACPI_FADT_OFFSET (C3Latency), "C3 Latency", 0}, {ACPI_DMT_UINT16, ACPI_FADT_OFFSET (FlushSize), "CPU Cache Size", 0}, {ACPI_DMT_UINT16, ACPI_FADT_OFFSET (FlushStride), "Cache Flush Stride", 0}, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (DutyOffset), "Duty Cycle Offset", 0}, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (DutyWidth), "Duty Cycle Width", 0}, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (DayAlarm), "RTC Day Alarm Index", 0}, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (MonthAlarm), "RTC Month Alarm Index", 0}, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (Century), "RTC Century Index", 0}, {ACPI_DMT_UINT16, ACPI_FADT_OFFSET (BootFlags), "Boot Flags (decoded below)", DT_FLAG}, /* Boot Architecture Flags byte 0 */ {ACPI_DMT_FLAG0, ACPI_FADT_FLAG_OFFSET (BootFlags,0), "Legacy Devices Supported (V2)", 0}, {ACPI_DMT_FLAG1, ACPI_FADT_FLAG_OFFSET (BootFlags,0), "8042 Present on ports 60/64 (V2)", 0}, {ACPI_DMT_FLAG2, ACPI_FADT_FLAG_OFFSET (BootFlags,0), "VGA Not Present (V4)", 0}, {ACPI_DMT_FLAG3, ACPI_FADT_FLAG_OFFSET (BootFlags,0), "MSI Not Supported (V4)", 0}, {ACPI_DMT_FLAG4, ACPI_FADT_FLAG_OFFSET (BootFlags,0), "PCIe ASPM Not Supported (V4)", 0}, {ACPI_DMT_FLAG5, ACPI_FADT_FLAG_OFFSET (BootFlags,0), "CMOS RTC Not Present (V5)", 0}, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_FADT_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, /* Flags byte 0 */ {ACPI_DMT_FLAG0, ACPI_FADT_FLAG_OFFSET (Flags,0), "WBINVD instruction is operational (V1)", 0}, {ACPI_DMT_FLAG1, ACPI_FADT_FLAG_OFFSET (Flags,0), "WBINVD flushes all caches (V1)", 0}, {ACPI_DMT_FLAG2, ACPI_FADT_FLAG_OFFSET (Flags,0), "All CPUs support C1 (V1)", 0}, {ACPI_DMT_FLAG3, ACPI_FADT_FLAG_OFFSET (Flags,0), "C2 works on MP system (V1)", 0}, {ACPI_DMT_FLAG4, ACPI_FADT_FLAG_OFFSET (Flags,0), "Control Method Power Button (V1)", 0}, {ACPI_DMT_FLAG5, ACPI_FADT_FLAG_OFFSET (Flags,0), "Control Method Sleep Button (V1)", 0}, {ACPI_DMT_FLAG6, ACPI_FADT_FLAG_OFFSET (Flags,0), "RTC wake not in fixed reg space (V1)", 0}, {ACPI_DMT_FLAG7, ACPI_FADT_FLAG_OFFSET (Flags,0), "RTC can wake system from S4 (V1)", 0}, /* Flags byte 1 */ {ACPI_DMT_FLAG0, ACPI_FADT_FLAG_OFFSET (Flags,1), "32-bit PM Timer (V1)", 0}, {ACPI_DMT_FLAG1, ACPI_FADT_FLAG_OFFSET (Flags,1), "Docking Supported (V1)", 0}, {ACPI_DMT_FLAG2, ACPI_FADT_FLAG_OFFSET (Flags,1), "Reset Register Supported (V2)", 0}, {ACPI_DMT_FLAG3, ACPI_FADT_FLAG_OFFSET (Flags,1), "Sealed Case (V3)", 0}, {ACPI_DMT_FLAG4, ACPI_FADT_FLAG_OFFSET (Flags,1), "Headless - No Video (V3)", 0}, {ACPI_DMT_FLAG5, ACPI_FADT_FLAG_OFFSET (Flags,1), "Use native instr after SLP_TYPx (V3)", 0}, {ACPI_DMT_FLAG6, ACPI_FADT_FLAG_OFFSET (Flags,1), "PCIEXP_WAK Bits Supported (V4)", 0}, {ACPI_DMT_FLAG7, ACPI_FADT_FLAG_OFFSET (Flags,1), "Use Platform Timer (V4)", 0}, /* Flags byte 2 */ {ACPI_DMT_FLAG0, ACPI_FADT_FLAG_OFFSET (Flags,2), "RTC_STS valid on S4 wake (V4)", 0}, {ACPI_DMT_FLAG1, ACPI_FADT_FLAG_OFFSET (Flags,2), "Remote Power-on capable (V4)", 0}, {ACPI_DMT_FLAG2, ACPI_FADT_FLAG_OFFSET (Flags,2), "Use APIC Cluster Model (V4)", 0}, {ACPI_DMT_FLAG3, ACPI_FADT_FLAG_OFFSET (Flags,2), "Use APIC Physical Destination Mode (V4)", 0}, {ACPI_DMT_FLAG4, ACPI_FADT_FLAG_OFFSET (Flags,2), "Hardware Reduced (V5)", 0}, {ACPI_DMT_FLAG5, ACPI_FADT_FLAG_OFFSET (Flags,2), "Low Power S0 Idle (V5)", 0}, ACPI_DMT_TERMINATOR }; -/* FADT version 3 (ACPI 2.0) */ +/* ACPI 1.0 MS Extensions (FADT version 2) */ +ACPI_DMTABLE_INFO AcpiDmTableInfoFadt2[] = +{ + {ACPI_DMT_GAS, ACPI_FADT_OFFSET (ResetRegister), "Reset Register", 0}, + {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (ResetValue), "Value to cause reset", 0}, + {ACPI_DMT_UINT16, ACPI_FADT_OFFSET (ArmBootFlags), "Reserved", 0}, + {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (MinorRevision), "Reserved", 0}, + ACPI_DMT_TERMINATOR +}; + +/* ACPI 2.0+ Extensions (FADT version 3, 4, and 5) */ + ACPI_DMTABLE_INFO AcpiDmTableInfoFadt3[] = { {ACPI_DMT_GAS, ACPI_FADT_OFFSET (ResetRegister), "Reset Register", 0}, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (ResetValue), "Value to cause reset", 0}, {ACPI_DMT_UINT16, ACPI_FADT_OFFSET (ArmBootFlags), "ARM Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_FADT_FLAG_OFFSET(ArmBootFlags,0), "PSCI Compliant", 0}, {ACPI_DMT_FLAG1, ACPI_FADT_FLAG_OFFSET(ArmBootFlags,0), "Must use HVC for PSCI", 0}, ACPI_DMT_NEW_LINE, {ACPI_DMT_UINT8, ACPI_FADT_OFFSET (MinorRevision), "FADT Minor Revision", 0}, {ACPI_DMT_UINT64, ACPI_FADT_OFFSET (XFacs), "FACS Address", 0}, {ACPI_DMT_UINT64, ACPI_FADT_OFFSET (XDsdt), "DSDT Address", 0}, {ACPI_DMT_GAS, ACPI_FADT_OFFSET (XPm1aEventBlock), "PM1A Event Block", 0}, {ACPI_DMT_GAS, ACPI_FADT_OFFSET (XPm1bEventBlock), "PM1B Event Block", 0}, {ACPI_DMT_GAS, ACPI_FADT_OFFSET (XPm1aControlBlock), "PM1A Control Block", 0}, {ACPI_DMT_GAS, ACPI_FADT_OFFSET (XPm1bControlBlock), "PM1B Control Block", 0}, {ACPI_DMT_GAS, ACPI_FADT_OFFSET (XPm2ControlBlock), "PM2 Control Block", 0}, {ACPI_DMT_GAS, ACPI_FADT_OFFSET (XPmTimerBlock), "PM Timer Block", 0}, {ACPI_DMT_GAS, ACPI_FADT_OFFSET (XGpe0Block), "GPE0 Block", 0}, {ACPI_DMT_GAS, ACPI_FADT_OFFSET (XGpe1Block), "GPE1 Block", 0}, ACPI_DMT_TERMINATOR }; -/* FADT version 4 (ACPI 3.0 and ACPI 4.0) */ +/* ACPI 5.0 Extensions (FADT version 5) */ -ACPI_DMTABLE_INFO AcpiDmTableInfoFadt4[] = -{ - {ACPI_DMT_GAS, ACPI_FADT_OFFSET (SleepControl), "Sleep Control Register", 0}, - ACPI_DMT_TERMINATOR -}; - -/* FADT version 5 (ACPI 5.0) */ - ACPI_DMTABLE_INFO AcpiDmTableInfoFadt5[] = { + {ACPI_DMT_GAS, ACPI_FADT_OFFSET (SleepControl), "Sleep Control Register", 0}, {ACPI_DMT_GAS, ACPI_FADT_OFFSET (SleepStatus), "Sleep Status Register", 0}, ACPI_DMT_TERMINATOR }; -/* FADT version 6 (ACPI 6.0) */ +/* ACPI 6.0 Extensions (FADT version 6) */ ACPI_DMTABLE_INFO AcpiDmTableInfoFadt6[] = { {ACPI_DMT_UINT64, ACPI_FADT_OFFSET (HypervisorId), "Hypervisor ID", 0}, ACPI_DMT_TERMINATOR }; /* * Remaining tables are not consumed directly by the ACPICA subsystem */ /******************************************************************************* * * ASF - Alert Standard Format table (Signature "ASF!") * ******************************************************************************/ /* Common Subtable header (one per Subtable) */ ACPI_DMTABLE_INFO AcpiDmTableInfoAsfHdr[] = { {ACPI_DMT_ASF, ACPI_ASF0_OFFSET (Header.Type), "Subtable Type", 0}, {ACPI_DMT_UINT8, ACPI_ASF0_OFFSET (Header.Reserved), "Reserved", 0}, {ACPI_DMT_UINT16, ACPI_ASF0_OFFSET (Header.Length), "Length", DT_LENGTH}, ACPI_DMT_TERMINATOR }; /* 0: ASF Information */ ACPI_DMTABLE_INFO AcpiDmTableInfoAsf0[] = { {ACPI_DMT_UINT8, ACPI_ASF0_OFFSET (MinResetValue), "Minimum Reset Value", 0}, {ACPI_DMT_UINT8, ACPI_ASF0_OFFSET (MinPollInterval), "Minimum Polling Interval", 0}, {ACPI_DMT_UINT16, ACPI_ASF0_OFFSET (SystemId), "System ID", 0}, {ACPI_DMT_UINT32, ACPI_ASF0_OFFSET (MfgId), "Manufacturer ID", 0}, {ACPI_DMT_UINT8, ACPI_ASF0_OFFSET (Flags), "Flags", 0}, {ACPI_DMT_UINT24, ACPI_ASF0_OFFSET (Reserved2[0]), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* 1: ASF Alerts */ ACPI_DMTABLE_INFO AcpiDmTableInfoAsf1[] = { {ACPI_DMT_UINT8, ACPI_ASF1_OFFSET (AssertMask), "AssertMask", 0}, {ACPI_DMT_UINT8, ACPI_ASF1_OFFSET (DeassertMask), "DeassertMask", 0}, {ACPI_DMT_UINT8, ACPI_ASF1_OFFSET (Alerts), "Alert Count", 0}, {ACPI_DMT_UINT8, ACPI_ASF1_OFFSET (DataLength), "Alert Data Length", 0}, ACPI_DMT_TERMINATOR }; /* 1a: ASF Alert data */ ACPI_DMTABLE_INFO AcpiDmTableInfoAsf1a[] = { {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Address), "Address", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Command), "Command", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Mask), "Mask", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Value), "Value", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (SensorType), "SensorType", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Type), "Type", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Offset), "Offset", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (SourceType), "SourceType", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Severity), "Severity", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (SensorNumber), "SensorNumber", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Entity), "Entity", 0}, {ACPI_DMT_UINT8, ACPI_ASF1a_OFFSET (Instance), "Instance", 0}, ACPI_DMT_TERMINATOR }; /* 2: ASF Remote Control */ ACPI_DMTABLE_INFO AcpiDmTableInfoAsf2[] = { {ACPI_DMT_UINT8, ACPI_ASF2_OFFSET (Controls), "Control Count", 0}, {ACPI_DMT_UINT8, ACPI_ASF2_OFFSET (DataLength), "Control Data Length", 0}, {ACPI_DMT_UINT16, ACPI_ASF2_OFFSET (Reserved2), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* 2a: ASF Control data */ ACPI_DMTABLE_INFO AcpiDmTableInfoAsf2a[] = { {ACPI_DMT_UINT8, ACPI_ASF2a_OFFSET (Function), "Function", 0}, {ACPI_DMT_UINT8, ACPI_ASF2a_OFFSET (Address), "Address", 0}, {ACPI_DMT_UINT8, ACPI_ASF2a_OFFSET (Command), "Command", 0}, {ACPI_DMT_UINT8, ACPI_ASF2a_OFFSET (Value), "Value", 0}, ACPI_DMT_TERMINATOR }; /* 3: ASF RMCP Boot Options */ ACPI_DMTABLE_INFO AcpiDmTableInfoAsf3[] = { {ACPI_DMT_BUF7, ACPI_ASF3_OFFSET (Capabilities[0]), "Capabilities", 0}, {ACPI_DMT_UINT8, ACPI_ASF3_OFFSET (CompletionCode), "Completion Code", 0}, {ACPI_DMT_UINT32, ACPI_ASF3_OFFSET (EnterpriseId), "Enterprise ID", 0}, {ACPI_DMT_UINT8, ACPI_ASF3_OFFSET (Command), "Command", 0}, {ACPI_DMT_UINT16, ACPI_ASF3_OFFSET (Parameter), "Parameter", 0}, {ACPI_DMT_UINT16, ACPI_ASF3_OFFSET (BootOptions), "Boot Options", 0}, {ACPI_DMT_UINT16, ACPI_ASF3_OFFSET (OemParameters), "Oem Parameters", 0}, ACPI_DMT_TERMINATOR }; /* 4: ASF Address */ ACPI_DMTABLE_INFO AcpiDmTableInfoAsf4[] = { {ACPI_DMT_UINT8, ACPI_ASF4_OFFSET (EpromAddress), "Eprom Address", 0}, {ACPI_DMT_UINT8, ACPI_ASF4_OFFSET (Devices), "Device Count", DT_COUNT}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * BERT - Boot Error Record table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoBert[] = { {ACPI_DMT_UINT32, ACPI_BERT_OFFSET (RegionLength), "Boot Error Region Length", 0}, {ACPI_DMT_UINT64, ACPI_BERT_OFFSET (Address), "Boot Error Region Address", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * BGRT - Boot Graphics Resource Table (ACPI 5.0) * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoBgrt[] = { {ACPI_DMT_UINT16, ACPI_BGRT_OFFSET (Version), "Version", 0}, {ACPI_DMT_UINT8, ACPI_BGRT_OFFSET (Status), "Status", 0}, {ACPI_DMT_UINT8, ACPI_BGRT_OFFSET (ImageType), "Image Type", 0}, {ACPI_DMT_UINT64, ACPI_BGRT_OFFSET (ImageAddress), "Image Address", 0}, {ACPI_DMT_UINT32, ACPI_BGRT_OFFSET (ImageOffsetX), "Image OffsetX", 0}, {ACPI_DMT_UINT32, ACPI_BGRT_OFFSET (ImageOffsetY), "Image OffsetY", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * BOOT - Simple Boot Flag Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoBoot[] = { {ACPI_DMT_UINT8, ACPI_BOOT_OFFSET (CmosIndex), "Boot Register Index", 0}, {ACPI_DMT_UINT24, ACPI_BOOT_OFFSET (Reserved[0]), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * CPEP - Corrected Platform Error Polling table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoCpep[] = { {ACPI_DMT_UINT64, ACPI_CPEP_OFFSET (Reserved), "Reserved", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoCpep0[] = { {ACPI_DMT_UINT8, ACPI_CPEP0_OFFSET (Header.Type), "Subtable Type", 0}, {ACPI_DMT_UINT8, ACPI_CPEP0_OFFSET (Header.Length), "Length", DT_LENGTH}, {ACPI_DMT_UINT8, ACPI_CPEP0_OFFSET (Id), "Processor ID", 0}, {ACPI_DMT_UINT8, ACPI_CPEP0_OFFSET (Eid), "Processor EID", 0}, {ACPI_DMT_UINT32, ACPI_CPEP0_OFFSET (Interval), "Polling Interval", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * CSRT - Core System Resource Table * ******************************************************************************/ /* Main table consists only of the standard ACPI table header */ /* Resource Group subtable */ ACPI_DMTABLE_INFO AcpiDmTableInfoCsrt0[] = { {ACPI_DMT_UINT32, ACPI_CSRT0_OFFSET (Length), "Length", DT_LENGTH}, {ACPI_DMT_UINT32, ACPI_CSRT0_OFFSET (VendorId), "Vendor ID", 0}, {ACPI_DMT_UINT32, ACPI_CSRT0_OFFSET (SubvendorId), "Subvendor ID", 0}, {ACPI_DMT_UINT16, ACPI_CSRT0_OFFSET (DeviceId), "Device ID", 0}, {ACPI_DMT_UINT16, ACPI_CSRT0_OFFSET (SubdeviceId), "Subdevice ID", 0}, {ACPI_DMT_UINT16, ACPI_CSRT0_OFFSET (Revision), "Revision", 0}, {ACPI_DMT_UINT16, ACPI_CSRT0_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_CSRT0_OFFSET (SharedInfoLength), "Shared Info Length", 0}, ACPI_DMT_TERMINATOR }; /* Shared Info subtable */ ACPI_DMTABLE_INFO AcpiDmTableInfoCsrt1[] = { {ACPI_DMT_UINT16, ACPI_CSRT1_OFFSET (MajorVersion), "Major Version", 0}, {ACPI_DMT_UINT16, ACPI_CSRT1_OFFSET (MinorVersion), "Minor Version", 0}, {ACPI_DMT_UINT32, ACPI_CSRT1_OFFSET (MmioBaseLow), "MMIO Base Address Low", 0}, {ACPI_DMT_UINT32, ACPI_CSRT1_OFFSET (MmioBaseHigh), "MMIO Base Address High", 0}, {ACPI_DMT_UINT32, ACPI_CSRT1_OFFSET (GsiInterrupt), "GSI Interrupt", 0}, {ACPI_DMT_UINT8, ACPI_CSRT1_OFFSET (InterruptPolarity), "Interrupt Polarity", 0}, {ACPI_DMT_UINT8, ACPI_CSRT1_OFFSET (InterruptMode), "Interrupt Mode", 0}, {ACPI_DMT_UINT8, ACPI_CSRT1_OFFSET (NumChannels), "Num Channels", 0}, {ACPI_DMT_UINT8, ACPI_CSRT1_OFFSET (DmaAddressWidth), "DMA Address Width", 0}, {ACPI_DMT_UINT16, ACPI_CSRT1_OFFSET (BaseRequestLine), "Base Request Line", 0}, {ACPI_DMT_UINT16, ACPI_CSRT1_OFFSET (NumHandshakeSignals), "Num Handshake Signals", 0}, {ACPI_DMT_UINT32, ACPI_CSRT1_OFFSET (MaxBlockSize), "Max Block Size", 0}, ACPI_DMT_TERMINATOR }; /* Resource Descriptor subtable */ ACPI_DMTABLE_INFO AcpiDmTableInfoCsrt2[] = { {ACPI_DMT_UINT32, ACPI_CSRT2_OFFSET (Length), "Length", DT_LENGTH}, {ACPI_DMT_UINT16, ACPI_CSRT2_OFFSET (Type), "Type", 0}, {ACPI_DMT_UINT16, ACPI_CSRT2_OFFSET (Subtype), "Subtype", 0}, {ACPI_DMT_UINT32, ACPI_CSRT2_OFFSET (Uid), "UID", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoCsrt2a[] = { {ACPI_DMT_RAW_BUFFER, 0, "ResourceInfo", DT_OPTIONAL}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * DBG2 - Debug Port Table 2 * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2[] = { {ACPI_DMT_UINT32, ACPI_DBG2_OFFSET (InfoOffset), "Info Offset", 0}, {ACPI_DMT_UINT32, ACPI_DBG2_OFFSET (InfoCount), "Info Count", 0}, ACPI_DMT_TERMINATOR }; /* Debug Device Information Subtable */ ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2Device[] = { {ACPI_DMT_UINT8, ACPI_DBG20_OFFSET (Revision), "Revision", 0}, {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (Length), "Length", DT_LENGTH}, {ACPI_DMT_UINT8, ACPI_DBG20_OFFSET (RegisterCount), "Register Count", 0}, {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (NamepathLength), "Namepath Length", 0}, {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (NamepathOffset), "Namepath Offset", 0}, {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (OemDataLength), "OEM Data Length", DT_DESCRIBES_OPTIONAL}, {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (OemDataOffset), "OEM Data Offset", DT_DESCRIBES_OPTIONAL}, {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (PortType), "Port Type", 0}, {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (PortSubtype), "Port Subtype", 0}, {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (BaseAddressOffset), "Base Address Offset", 0}, {ACPI_DMT_UINT16, ACPI_DBG20_OFFSET (AddressSizeOffset), "Address Size Offset", 0}, ACPI_DMT_TERMINATOR }; /* Variable-length data for the subtable */ ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2Addr[] = { {ACPI_DMT_GAS, 0, "Base Address Register", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2Size[] = { {ACPI_DMT_UINT32, 0, "Address Size", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2Name[] = { {ACPI_DMT_STRING, 0, "Namepath", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2OemData[] = { {ACPI_DMT_RAW_BUFFER, 0, "OEM Data", DT_OPTIONAL}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * DBGP - Debug Port * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoDbgp[] = { {ACPI_DMT_UINT8, ACPI_DBGP_OFFSET (Type), "Interface Type", 0}, {ACPI_DMT_UINT24, ACPI_DBGP_OFFSET (Reserved[0]), "Reserved", 0}, {ACPI_DMT_GAS, ACPI_DBGP_OFFSET (DebugPort), "Debug Port Register", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * DMAR - DMA Remapping table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoDmar[] = { {ACPI_DMT_UINT8, ACPI_DMAR_OFFSET (Width), "Host Address Width", 0}, {ACPI_DMT_UINT8, ACPI_DMAR_OFFSET (Flags), "Flags", 0}, {ACPI_DMT_BUF10, ACPI_DMAR_OFFSET (Reserved[0]), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* Common Subtable header (one per Subtable) */ ACPI_DMTABLE_INFO AcpiDmTableInfoDmarHdr[] = { {ACPI_DMT_DMAR, ACPI_DMAR0_OFFSET (Header.Type), "Subtable Type", 0}, {ACPI_DMT_UINT16, ACPI_DMAR0_OFFSET (Header.Length), "Length", DT_LENGTH}, ACPI_DMT_TERMINATOR }; /* Common device scope entry */ ACPI_DMTABLE_INFO AcpiDmTableInfoDmarScope[] = { {ACPI_DMT_DMAR_SCOPE, ACPI_DMARS_OFFSET (EntryType), "Device Scope Type", 0}, {ACPI_DMT_UINT8, ACPI_DMARS_OFFSET (Length), "Entry Length", DT_LENGTH}, {ACPI_DMT_UINT16, ACPI_DMARS_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT8, ACPI_DMARS_OFFSET (EnumerationId), "Enumeration ID", 0}, {ACPI_DMT_UINT8, ACPI_DMARS_OFFSET (Bus), "PCI Bus Number", 0}, ACPI_DMT_TERMINATOR }; /* DMAR Subtables */ /* 0: Hardware Unit Definition */ ACPI_DMTABLE_INFO AcpiDmTableInfoDmar0[] = { {ACPI_DMT_UINT8, ACPI_DMAR0_OFFSET (Flags), "Flags", 0}, {ACPI_DMT_UINT8, ACPI_DMAR0_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT16, ACPI_DMAR0_OFFSET (Segment), "PCI Segment Number", 0}, {ACPI_DMT_UINT64, ACPI_DMAR0_OFFSET (Address), "Register Base Address", 0}, ACPI_DMT_TERMINATOR }; /* 1: Reserved Memory Definition */ ACPI_DMTABLE_INFO AcpiDmTableInfoDmar1[] = { {ACPI_DMT_UINT16, ACPI_DMAR1_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT16, ACPI_DMAR1_OFFSET (Segment), "PCI Segment Number", 0}, {ACPI_DMT_UINT64, ACPI_DMAR1_OFFSET (BaseAddress), "Base Address", 0}, {ACPI_DMT_UINT64, ACPI_DMAR1_OFFSET (EndAddress), "End Address (limit)", 0}, ACPI_DMT_TERMINATOR }; /* 2: Root Port ATS Capability Definition */ ACPI_DMTABLE_INFO AcpiDmTableInfoDmar2[] = { {ACPI_DMT_UINT8, ACPI_DMAR2_OFFSET (Flags), "Flags", 0}, {ACPI_DMT_UINT8, ACPI_DMAR2_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT16, ACPI_DMAR2_OFFSET (Segment), "PCI Segment Number", 0}, ACPI_DMT_TERMINATOR }; /* 3: Remapping Hardware Static Affinity Structure */ ACPI_DMTABLE_INFO AcpiDmTableInfoDmar3[] = { {ACPI_DMT_UINT32, ACPI_DMAR3_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_DMAR3_OFFSET (BaseAddress), "Base Address", 0}, {ACPI_DMT_UINT32, ACPI_DMAR3_OFFSET (ProximityDomain), "Proximity Domain", 0}, ACPI_DMT_TERMINATOR }; /* 4: ACPI Namespace Device Declaration Structure */ ACPI_DMTABLE_INFO AcpiDmTableInfoDmar4[] = { {ACPI_DMT_UINT24, ACPI_DMAR4_OFFSET (Reserved[0]), "Reserved", 0}, {ACPI_DMT_UINT8, ACPI_DMAR4_OFFSET (DeviceNumber), "Device Number", 0}, {ACPI_DMT_STRING, ACPI_DMAR4_OFFSET (DeviceName[0]), "Device Name", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * DRTM - Dynamic Root of Trust for Measurement table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoDrtm[] = { {ACPI_DMT_UINT64, ACPI_DRTM_OFFSET (EntryBaseAddress), "Entry Base Address", 0}, {ACPI_DMT_UINT64, ACPI_DRTM_OFFSET (EntryLength), "Entry Length", 0}, {ACPI_DMT_UINT32, ACPI_DRTM_OFFSET (EntryAddress32), "Entry 32", 0}, {ACPI_DMT_UINT64, ACPI_DRTM_OFFSET (EntryAddress64), "Entry 64", 0}, {ACPI_DMT_UINT64, ACPI_DRTM_OFFSET (ExitAddress), "Exit Address", 0}, {ACPI_DMT_UINT64, ACPI_DRTM_OFFSET (LogAreaAddress), "Log Area Start", 0}, {ACPI_DMT_UINT32, ACPI_DRTM_OFFSET (LogAreaLength), "Log Area Length", 0}, {ACPI_DMT_UINT64, ACPI_DRTM_OFFSET (ArchDependentAddress), "Arch Dependent Address", 0}, {ACPI_DMT_UINT32, ACPI_DRTM_OFFSET (Flags), "Flags (decoded below)", 0}, {ACPI_DMT_FLAG0, ACPI_DRTM_FLAG_OFFSET (Flags, 0), "Namespace in TCB", 0}, {ACPI_DMT_FLAG1, ACPI_DRTM_FLAG_OFFSET (Flags, 0), "Gap Code on S3 Resume", 0}, {ACPI_DMT_FLAG2, ACPI_DRTM_FLAG_OFFSET (Flags, 0), "Gap Code on DLME_Exit", 0}, {ACPI_DMT_FLAG3, ACPI_DRTM_FLAG_OFFSET (Flags, 0), "PCR_Authorities Changed", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoDrtm0[] = { {ACPI_DMT_UINT32, ACPI_DRTM0_OFFSET (ValidatedTableCount), "Validated Table Count", DT_COUNT}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoDrtm0a[] = { {ACPI_DMT_UINT64, 0, "Table Address", DT_OPTIONAL}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoDrtm1[] = { {ACPI_DMT_UINT32, ACPI_DRTM1_OFFSET (ResourceCount), "Resource Count", DT_COUNT}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoDrtm1a[] = { {ACPI_DMT_UINT56, ACPI_DRTM1a_OFFSET (Size[0]), "Size", DT_OPTIONAL}, {ACPI_DMT_UINT8, ACPI_DRTM1a_OFFSET (Type), "Type", 0}, {ACPI_DMT_FLAG0, ACPI_DRTM1a_FLAG_OFFSET (Type, 0), "Resource Type", 0}, {ACPI_DMT_FLAG7, ACPI_DRTM1a_FLAG_OFFSET (Type, 0), "Protections", 0}, {ACPI_DMT_UINT64, ACPI_DRTM1a_OFFSET (Address), "Address", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoDrtm2[] = { {ACPI_DMT_UINT32, ACPI_DRTM2_OFFSET (DpsIdLength), "DLME Platform Id Length", DT_COUNT}, {ACPI_DMT_BUF16, ACPI_DRTM2_OFFSET (DpsId), "DLME Platform Id", DT_COUNT}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * ECDT - Embedded Controller Boot Resources Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoEcdt[] = { {ACPI_DMT_GAS, ACPI_ECDT_OFFSET (Control), "Command/Status Register", 0}, {ACPI_DMT_GAS, ACPI_ECDT_OFFSET (Data), "Data Register", 0}, {ACPI_DMT_UINT32, ACPI_ECDT_OFFSET (Uid), "UID", 0}, {ACPI_DMT_UINT8, ACPI_ECDT_OFFSET (Gpe), "GPE Number", 0}, {ACPI_DMT_STRING, ACPI_ECDT_OFFSET (Id[0]), "Namepath", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * EINJ - Error Injection table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoEinj[] = { {ACPI_DMT_UINT32, ACPI_EINJ_OFFSET (HeaderLength), "Injection Header Length", 0}, {ACPI_DMT_UINT8, ACPI_EINJ_OFFSET (Flags), "Flags", 0}, {ACPI_DMT_UINT24, ACPI_EINJ_OFFSET (Reserved[0]), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_EINJ_OFFSET (Entries), "Injection Entry Count", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoEinj0[] = { {ACPI_DMT_EINJACT, ACPI_EINJ0_OFFSET (Action), "Action", 0}, {ACPI_DMT_EINJINST, ACPI_EINJ0_OFFSET (Instruction), "Instruction", 0}, {ACPI_DMT_UINT8, ACPI_EINJ0_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_EINJ0_FLAG_OFFSET (Flags,0), "Preserve Register Bits", 0}, {ACPI_DMT_UINT8, ACPI_EINJ0_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_GAS, ACPI_EINJ0_OFFSET (RegisterRegion), "Register Region", 0}, {ACPI_DMT_UINT64, ACPI_EINJ0_OFFSET (Value), "Value", 0}, {ACPI_DMT_UINT64, ACPI_EINJ0_OFFSET (Mask), "Mask", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * ERST - Error Record Serialization table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoErst[] = { {ACPI_DMT_UINT32, ACPI_ERST_OFFSET (HeaderLength), "Serialization Header Length", 0}, {ACPI_DMT_UINT32, ACPI_ERST_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_ERST_OFFSET (Entries), "Instruction Entry Count", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoErst0[] = { {ACPI_DMT_ERSTACT, ACPI_ERST0_OFFSET (Action), "Action", 0}, {ACPI_DMT_ERSTINST, ACPI_ERST0_OFFSET (Instruction), "Instruction", 0}, {ACPI_DMT_UINT8, ACPI_ERST0_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_ERST0_FLAG_OFFSET (Flags,0), "Preserve Register Bits", 0}, {ACPI_DMT_UINT8, ACPI_ERST0_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_GAS, ACPI_ERST0_OFFSET (RegisterRegion), "Register Region", 0}, {ACPI_DMT_UINT64, ACPI_ERST0_OFFSET (Value), "Value", 0}, {ACPI_DMT_UINT64, ACPI_ERST0_OFFSET (Mask), "Mask", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * FPDT - Firmware Performance Data Table (ACPI 5.0) * ******************************************************************************/ /* Main table consists of only the standard ACPI header - subtables follow */ /* FPDT subtable header */ ACPI_DMTABLE_INFO AcpiDmTableInfoFpdtHdr[] = { {ACPI_DMT_UINT16, ACPI_FPDTH_OFFSET (Type), "Subtable Type", 0}, {ACPI_DMT_UINT8, ACPI_FPDTH_OFFSET (Length), "Length", DT_LENGTH}, {ACPI_DMT_UINT8, ACPI_FPDTH_OFFSET (Revision), "Revision", 0}, ACPI_DMT_TERMINATOR }; /* 0: Firmware Basic Boot Performance Record */ ACPI_DMTABLE_INFO AcpiDmTableInfoFpdt0[] = { {ACPI_DMT_UINT32, ACPI_FPDT0_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_FPDT1_OFFSET (Address), "FPDT Boot Record Address", 0}, ACPI_DMT_TERMINATOR }; /* 1: S3 Performance Table Pointer Record */ ACPI_DMTABLE_INFO AcpiDmTableInfoFpdt1[] = { {ACPI_DMT_UINT32, ACPI_FPDT1_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_FPDT1_OFFSET (Address), "S3PT Record Address", 0}, ACPI_DMT_TERMINATOR }; #if 0 /* Boot Performance Record, not supported at this time. */ {ACPI_DMT_UINT64, ACPI_FPDT0_OFFSET (ResetEnd), "Reset End", 0}, {ACPI_DMT_UINT64, ACPI_FPDT0_OFFSET (LoadStart), "Load Image Start", 0}, {ACPI_DMT_UINT64, ACPI_FPDT0_OFFSET (StartupStart), "Start Image Start", 0}, {ACPI_DMT_UINT64, ACPI_FPDT0_OFFSET (ExitServicesEntry), "Exit Services Entry", 0}, {ACPI_DMT_UINT64, ACPI_FPDT0_OFFSET (ExitServicesExit), "Exit Services Exit", 0}, #endif /******************************************************************************* * * GTDT - Generic Timer Description Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoGtdt[] = { {ACPI_DMT_UINT64, ACPI_GTDT_OFFSET (CounterBlockAddresss), "Counter Block Address", 0}, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (Reserved), "Reserved", 0}, ACPI_DMT_NEW_LINE, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (SecureEl1Interrupt), "Secure EL1 Interrupt", 0}, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (SecureEl1Flags), "EL1 Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_GTDT_FLAG_OFFSET (SecureEl1Flags,0), "Trigger Mode", 0}, {ACPI_DMT_FLAG1, ACPI_GTDT_FLAG_OFFSET (SecureEl1Flags,0), "Polarity", 0}, {ACPI_DMT_FLAG2, ACPI_GTDT_FLAG_OFFSET (SecureEl1Flags,0), "Always On", 0}, ACPI_DMT_NEW_LINE, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (NonSecureEl1Interrupt), "Non-Secure EL1 Interrupt", 0}, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (NonSecureEl1Flags), "NEL1 Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_GTDT_FLAG_OFFSET (NonSecureEl1Flags,0),"Trigger Mode", 0}, {ACPI_DMT_FLAG1, ACPI_GTDT_FLAG_OFFSET (NonSecureEl1Flags,0),"Polarity", 0}, {ACPI_DMT_FLAG2, ACPI_GTDT_FLAG_OFFSET (NonSecureEl1Flags,0),"Always On", 0}, ACPI_DMT_NEW_LINE, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (VirtualTimerInterrupt), "Virtual Timer Interrupt", 0}, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (VirtualTimerFlags), "VT Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_GTDT_FLAG_OFFSET (VirtualTimerFlags,0),"Trigger Mode", 0}, {ACPI_DMT_FLAG1, ACPI_GTDT_FLAG_OFFSET (VirtualTimerFlags,0),"Polarity", 0}, {ACPI_DMT_FLAG2, ACPI_GTDT_FLAG_OFFSET (VirtualTimerFlags,0),"Always On", 0}, ACPI_DMT_NEW_LINE, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (NonSecureEl2Interrupt), "Non-Secure EL2 Interrupt", 0}, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (NonSecureEl2Flags), "NEL2 Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_GTDT_FLAG_OFFSET (NonSecureEl2Flags,0),"Trigger Mode", 0}, {ACPI_DMT_FLAG1, ACPI_GTDT_FLAG_OFFSET (NonSecureEl2Flags,0),"Polarity", 0}, {ACPI_DMT_FLAG2, ACPI_GTDT_FLAG_OFFSET (NonSecureEl2Flags,0),"Always On", 0}, {ACPI_DMT_UINT64, ACPI_GTDT_OFFSET (CounterReadBlockAddress), "Counter Read Block Address", 0}, ACPI_DMT_NEW_LINE, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (PlatformTimerCount), "Platform Timer Count", 0}, {ACPI_DMT_UINT32, ACPI_GTDT_OFFSET (PlatformTimerOffset), "Platform Timer Offset", 0}, ACPI_DMT_TERMINATOR }; /* GTDT Subtable header (one per Subtable) */ ACPI_DMTABLE_INFO AcpiDmTableInfoGtdtHdr[] = { {ACPI_DMT_GTDT, ACPI_GTDTH_OFFSET (Type), "Subtable Type", 0}, {ACPI_DMT_UINT16, ACPI_GTDTH_OFFSET (Length), "Length", DT_LENGTH}, ACPI_DMT_TERMINATOR }; /* GTDT Subtables */ ACPI_DMTABLE_INFO AcpiDmTableInfoGtdt0[] = { {ACPI_DMT_UINT8, ACPI_GTDT0_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_GTDT0_OFFSET (BlockAddress), "Block Address", 0}, {ACPI_DMT_UINT32, ACPI_GTDT0_OFFSET (TimerCount), "Timer Count", 0}, {ACPI_DMT_UINT32, ACPI_GTDT0_OFFSET (TimerOffset), "Timer Offset", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoGtdt0a[] = { {ACPI_DMT_UINT8 , ACPI_GTDT0a_OFFSET (FrameNumber), "Frame Number", 0}, {ACPI_DMT_UINT24, ACPI_GTDT0a_OFFSET (Reserved[0]), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_GTDT0a_OFFSET (BaseAddress), "Base Address", 0}, {ACPI_DMT_UINT64, ACPI_GTDT0a_OFFSET (El0BaseAddress), "EL0 Base Address", 0}, {ACPI_DMT_UINT32, ACPI_GTDT0a_OFFSET (TimerInterrupt), "Timer Interrupt", 0}, {ACPI_DMT_UINT32, ACPI_GTDT0a_OFFSET (TimerFlags), "Timer Flags (decoded below)", 0}, {ACPI_DMT_FLAG0, ACPI_GTDT0a_FLAG_OFFSET (TimerFlags,0), "Trigger Mode", 0}, {ACPI_DMT_FLAG1, ACPI_GTDT0a_FLAG_OFFSET (TimerFlags,0), "Polarity", 0}, {ACPI_DMT_UINT32, ACPI_GTDT0a_OFFSET (VirtualTimerInterrupt), "Virtual Timer Interrupt", 0}, {ACPI_DMT_UINT32, ACPI_GTDT0a_OFFSET (VirtualTimerFlags), "Virtual Timer Flags (decoded below)", 0}, {ACPI_DMT_FLAG0, ACPI_GTDT0a_FLAG_OFFSET (VirtualTimerFlags,0), "Trigger Mode", 0}, {ACPI_DMT_FLAG1, ACPI_GTDT0a_FLAG_OFFSET (VirtualTimerFlags,0), "Polarity", 0}, {ACPI_DMT_UINT32, ACPI_GTDT0a_OFFSET (CommonFlags), "Common Flags (decoded below)", 0}, {ACPI_DMT_FLAG0, ACPI_GTDT0a_FLAG_OFFSET (CommonFlags,0), "Secure", 0}, {ACPI_DMT_FLAG1, ACPI_GTDT0a_FLAG_OFFSET (CommonFlags,0), "Always On", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoGtdt1[] = { {ACPI_DMT_UINT8, ACPI_GTDT1_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_GTDT1_OFFSET (RefreshFrameAddress), "Refresh Frame Address", 0}, {ACPI_DMT_UINT64, ACPI_GTDT1_OFFSET (ControlFrameAddress), "Control Frame Address", 0}, {ACPI_DMT_UINT32, ACPI_GTDT1_OFFSET (TimerInterrupt), "Timer Interrupt", 0}, {ACPI_DMT_UINT32, ACPI_GTDT1_OFFSET (TimerFlags), "Timer Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_GTDT1_FLAG_OFFSET (TimerFlags,0), "Trigger Mode", 0}, {ACPI_DMT_FLAG1, ACPI_GTDT1_FLAG_OFFSET (TimerFlags,0), "Polarity", 0}, {ACPI_DMT_FLAG2, ACPI_GTDT1_FLAG_OFFSET (TimerFlags,0), "Security", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * HEST - Hardware Error Source table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoHest[] = { {ACPI_DMT_UINT32, ACPI_HEST_OFFSET (ErrorSourceCount), "Error Source Count", 0}, ACPI_DMT_TERMINATOR }; /* Common HEST structures for subtables */ #define ACPI_DM_HEST_HEADER \ {ACPI_DMT_HEST, ACPI_HEST0_OFFSET (Header.Type), "Subtable Type", 0}, \ {ACPI_DMT_UINT16, ACPI_HEST0_OFFSET (Header.SourceId), "Source Id", 0} #define ACPI_DM_HEST_AER \ {ACPI_DMT_UINT16, ACPI_HEST6_OFFSET (Aer.Reserved1), "Reserved", 0}, \ {ACPI_DMT_UINT8, ACPI_HEST6_OFFSET (Aer.Flags), "Flags (decoded below)", DT_FLAG}, \ {ACPI_DMT_FLAG0, ACPI_HEST6_FLAG_OFFSET (Aer.Flags,0), "Firmware First", 0}, \ {ACPI_DMT_UINT8, ACPI_HEST6_OFFSET (Aer.Enabled), "Enabled", 0}, \ {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.RecordsToPreallocate), "Records To Preallocate", 0}, \ {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.MaxSectionsPerRecord), "Max Sections Per Record", 0}, \ {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.Bus), "Bus", 0}, \ {ACPI_DMT_UINT16, ACPI_HEST6_OFFSET (Aer.Device), "Device", 0}, \ {ACPI_DMT_UINT16, ACPI_HEST6_OFFSET (Aer.Function), "Function", 0}, \ {ACPI_DMT_UINT16, ACPI_HEST6_OFFSET (Aer.DeviceControl), "DeviceControl", 0}, \ {ACPI_DMT_UINT16, ACPI_HEST6_OFFSET (Aer.Reserved2), "Reserved", 0}, \ {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.UncorrectableMask), "Uncorrectable Mask", 0}, \ {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.UncorrectableSeverity), "Uncorrectable Severity", 0}, \ {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.CorrectableMask), "Correctable Mask", 0}, \ {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (Aer.AdvancedCapabilities), "Advanced Capabilities", 0} /* HEST Subtables */ /* 0: IA32 Machine Check Exception */ ACPI_DMTABLE_INFO AcpiDmTableInfoHest0[] = { ACPI_DM_HEST_HEADER, {ACPI_DMT_UINT16, ACPI_HEST0_OFFSET (Reserved1), "Reserved1", 0}, {ACPI_DMT_UINT8, ACPI_HEST0_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_HEST0_FLAG_OFFSET (Flags,0), "Firmware First", 0}, {ACPI_DMT_UINT8, ACPI_HEST0_OFFSET (Enabled), "Enabled", 0}, {ACPI_DMT_UINT32, ACPI_HEST0_OFFSET (RecordsToPreallocate), "Records To Preallocate", 0}, {ACPI_DMT_UINT32, ACPI_HEST0_OFFSET (MaxSectionsPerRecord), "Max Sections Per Record", 0}, {ACPI_DMT_UINT64, ACPI_HEST0_OFFSET (GlobalCapabilityData), "Global Capability Data", 0}, {ACPI_DMT_UINT64, ACPI_HEST0_OFFSET (GlobalControlData), "Global Control Data", 0}, {ACPI_DMT_UINT8, ACPI_HEST0_OFFSET (NumHardwareBanks), "Num Hardware Banks", 0}, {ACPI_DMT_UINT56, ACPI_HEST0_OFFSET (Reserved3[0]), "Reserved2", 0}, ACPI_DMT_TERMINATOR }; /* 1: IA32 Corrected Machine Check */ ACPI_DMTABLE_INFO AcpiDmTableInfoHest1[] = { ACPI_DM_HEST_HEADER, {ACPI_DMT_UINT16, ACPI_HEST1_OFFSET (Reserved1), "Reserved1", 0}, {ACPI_DMT_UINT8, ACPI_HEST1_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_HEST1_FLAG_OFFSET (Flags,0), "Firmware First", 0}, {ACPI_DMT_UINT8, ACPI_HEST1_OFFSET (Enabled), "Enabled", 0}, {ACPI_DMT_UINT32, ACPI_HEST1_OFFSET (RecordsToPreallocate), "Records To Preallocate", 0}, {ACPI_DMT_UINT32, ACPI_HEST1_OFFSET (MaxSectionsPerRecord), "Max Sections Per Record", 0}, {ACPI_DMT_HESTNTFY, ACPI_HEST1_OFFSET (Notify), "Notify", 0}, {ACPI_DMT_UINT8, ACPI_HEST1_OFFSET (NumHardwareBanks), "Num Hardware Banks", 0}, {ACPI_DMT_UINT24, ACPI_HEST1_OFFSET (Reserved2[0]), "Reserved2", 0}, ACPI_DMT_TERMINATOR }; /* 2: IA32 Non-Maskable Interrupt */ ACPI_DMTABLE_INFO AcpiDmTableInfoHest2[] = { ACPI_DM_HEST_HEADER, {ACPI_DMT_UINT32, ACPI_HEST2_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_HEST2_OFFSET (RecordsToPreallocate), "Records To Preallocate", 0}, {ACPI_DMT_UINT32, ACPI_HEST2_OFFSET (MaxSectionsPerRecord), "Max Sections Per Record", 0}, {ACPI_DMT_UINT32, ACPI_HEST2_OFFSET (MaxRawDataLength), "Max Raw Data Length", 0}, ACPI_DMT_TERMINATOR }; /* 6: PCI Express Root Port AER */ ACPI_DMTABLE_INFO AcpiDmTableInfoHest6[] = { ACPI_DM_HEST_HEADER, ACPI_DM_HEST_AER, {ACPI_DMT_UINT32, ACPI_HEST6_OFFSET (RootErrorCommand), "Root Error Command", 0}, ACPI_DMT_TERMINATOR }; /* 7: PCI Express AER (AER Endpoint) */ ACPI_DMTABLE_INFO AcpiDmTableInfoHest7[] = { ACPI_DM_HEST_HEADER, ACPI_DM_HEST_AER, ACPI_DMT_TERMINATOR }; /* 8: PCI Express/PCI-X Bridge AER */ ACPI_DMTABLE_INFO AcpiDmTableInfoHest8[] = { ACPI_DM_HEST_HEADER, ACPI_DM_HEST_AER, {ACPI_DMT_UINT32, ACPI_HEST8_OFFSET (UncorrectableMask2), "2nd Uncorrectable Mask", 0}, {ACPI_DMT_UINT32, ACPI_HEST8_OFFSET (UncorrectableSeverity2), "2nd Uncorrectable Severity", 0}, {ACPI_DMT_UINT32, ACPI_HEST8_OFFSET (AdvancedCapabilities2), "2nd Advanced Capabilities", 0}, ACPI_DMT_TERMINATOR }; /* 9: Generic Hardware Error Source */ ACPI_DMTABLE_INFO AcpiDmTableInfoHest9[] = { ACPI_DM_HEST_HEADER, {ACPI_DMT_UINT16, ACPI_HEST9_OFFSET (RelatedSourceId), "Related Source Id", 0}, {ACPI_DMT_UINT8, ACPI_HEST9_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT8, ACPI_HEST9_OFFSET (Enabled), "Enabled", 0}, {ACPI_DMT_UINT32, ACPI_HEST9_OFFSET (RecordsToPreallocate), "Records To Preallocate", 0}, {ACPI_DMT_UINT32, ACPI_HEST9_OFFSET (MaxSectionsPerRecord), "Max Sections Per Record", 0}, {ACPI_DMT_UINT32, ACPI_HEST9_OFFSET (MaxRawDataLength), "Max Raw Data Length", 0}, {ACPI_DMT_GAS, ACPI_HEST9_OFFSET (ErrorStatusAddress), "Error Status Address", 0}, {ACPI_DMT_HESTNTFY, ACPI_HEST9_OFFSET (Notify), "Notify", 0}, {ACPI_DMT_UINT32, ACPI_HEST9_OFFSET (ErrorBlockLength), "Error Status Block Length", 0}, ACPI_DMT_TERMINATOR }; /* 10: Generic Hardware Error Source - Version 2 */ ACPI_DMTABLE_INFO AcpiDmTableInfoHest10[] = { ACPI_DM_HEST_HEADER, {ACPI_DMT_UINT16, ACPI_HEST10_OFFSET (RelatedSourceId), "Related Source Id", 0}, {ACPI_DMT_UINT8, ACPI_HEST10_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT8, ACPI_HEST10_OFFSET (Enabled), "Enabled", 0}, {ACPI_DMT_UINT32, ACPI_HEST10_OFFSET (RecordsToPreallocate), "Records To Preallocate", 0}, {ACPI_DMT_UINT32, ACPI_HEST10_OFFSET (MaxSectionsPerRecord), "Max Sections Per Record", 0}, {ACPI_DMT_UINT32, ACPI_HEST10_OFFSET (MaxRawDataLength), "Max Raw Data Length", 0}, {ACPI_DMT_GAS, ACPI_HEST10_OFFSET (ErrorStatusAddress), "Error Status Address", 0}, {ACPI_DMT_HESTNTFY, ACPI_HEST10_OFFSET (Notify), "Notify", 0}, {ACPI_DMT_UINT32, ACPI_HEST10_OFFSET (ErrorBlockLength), "Error Status Block Length", 0}, {ACPI_DMT_GAS, ACPI_HEST10_OFFSET (ReadAckRegister), "Read Ack Register", 0}, {ACPI_DMT_UINT64, ACPI_HEST10_OFFSET (ReadAckPreserve), "Read Ack Preserve", 0}, {ACPI_DMT_UINT64, ACPI_HEST10_OFFSET (ReadAckWrite), "Read Ack Write", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoHestNotify[] = { {ACPI_DMT_HESTNTYP, ACPI_HESTN_OFFSET (Type), "Notify Type", 0}, {ACPI_DMT_UINT8, ACPI_HESTN_OFFSET (Length), "Notify Length", DT_LENGTH}, {ACPI_DMT_UINT16, ACPI_HESTN_OFFSET (ConfigWriteEnable), "Configuration Write Enable", 0}, {ACPI_DMT_UINT32, ACPI_HESTN_OFFSET (PollInterval), "PollInterval", 0}, {ACPI_DMT_UINT32, ACPI_HESTN_OFFSET (Vector), "Vector", 0}, {ACPI_DMT_UINT32, ACPI_HESTN_OFFSET (PollingThresholdValue), "Polling Threshold Value", 0}, {ACPI_DMT_UINT32, ACPI_HESTN_OFFSET (PollingThresholdWindow), "Polling Threshold Window", 0}, {ACPI_DMT_UINT32, ACPI_HESTN_OFFSET (ErrorThresholdValue), "Error Threshold Value", 0}, {ACPI_DMT_UINT32, ACPI_HESTN_OFFSET (ErrorThresholdWindow), "Error Threshold Window", 0}, ACPI_DMT_TERMINATOR }; /* * IA32 Error Bank(s) - Follows the ACPI_HEST_IA_MACHINE_CHECK and * ACPI_HEST_IA_CORRECTED structures. */ ACPI_DMTABLE_INFO AcpiDmTableInfoHestBank[] = { {ACPI_DMT_UINT8, ACPI_HESTB_OFFSET (BankNumber), "Bank Number", 0}, {ACPI_DMT_UINT8, ACPI_HESTB_OFFSET (ClearStatusOnInit), "Clear Status On Init", 0}, {ACPI_DMT_UINT8, ACPI_HESTB_OFFSET (StatusFormat), "Status Format", 0}, {ACPI_DMT_UINT8, ACPI_HESTB_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_HESTB_OFFSET (ControlRegister), "Control Register", 0}, {ACPI_DMT_UINT64, ACPI_HESTB_OFFSET (ControlData), "Control Data", 0}, {ACPI_DMT_UINT32, ACPI_HESTB_OFFSET (StatusRegister), "Status Register", 0}, {ACPI_DMT_UINT32, ACPI_HESTB_OFFSET (AddressRegister), "Address Register", 0}, {ACPI_DMT_UINT32, ACPI_HESTB_OFFSET (MiscRegister), "Misc Register", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * HPET - High Precision Event Timer table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoHpet[] = { {ACPI_DMT_UINT32, ACPI_HPET_OFFSET (Id), "Hardware Block ID", 0}, {ACPI_DMT_GAS, ACPI_HPET_OFFSET (Address), "Timer Block Register", 0}, {ACPI_DMT_UINT8, ACPI_HPET_OFFSET (Sequence), "Sequence Number", 0}, {ACPI_DMT_UINT16, ACPI_HPET_OFFSET (MinimumTick), "Minimum Clock Ticks", 0}, {ACPI_DMT_UINT8, ACPI_HPET_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_HPET_FLAG_OFFSET (Flags,0), "4K Page Protect", 0}, {ACPI_DMT_FLAG1, ACPI_HPET_FLAG_OFFSET (Flags,0), "64K Page Protect", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * IORT - IO Remapping Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoIort[] = { {ACPI_DMT_UINT32, ACPI_IORT_OFFSET (NodeCount), "Node Count", 0}, {ACPI_DMT_UINT32, ACPI_IORT_OFFSET (NodeOffset), "Node Offset", 0}, {ACPI_DMT_UINT32, ACPI_IORT_OFFSET (Reserved), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* Optional padding field */ ACPI_DMTABLE_INFO AcpiDmTableInfoIortPad[] = { {ACPI_DMT_RAW_BUFFER, 0, "Optional Padding", DT_OPTIONAL}, ACPI_DMT_TERMINATOR }; /* Common Subtable header (one per Subtable) */ ACPI_DMTABLE_INFO AcpiDmTableInfoIortHdr[] = { {ACPI_DMT_UINT8, ACPI_IORTH_OFFSET (Type), "Type", 0}, {ACPI_DMT_UINT16, ACPI_IORTH_OFFSET (Length), "Length", DT_LENGTH}, {ACPI_DMT_UINT8, ACPI_IORTH_OFFSET (Revision), "Revision", 0}, {ACPI_DMT_UINT32, ACPI_IORTH_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_IORTH_OFFSET (MappingCount), "Mapping Count", 0}, {ACPI_DMT_UINT32, ACPI_IORTH_OFFSET (MappingOffset), "Mapping Offset", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoIortMap[] = { {ACPI_DMT_UINT32, ACPI_IORTM_OFFSET (InputBase), "Input base", DT_OPTIONAL}, {ACPI_DMT_UINT32, ACPI_IORTM_OFFSET (IdCount), "ID Count", 0}, {ACPI_DMT_UINT32, ACPI_IORTM_OFFSET (OutputBase), "Output Base", 0}, {ACPI_DMT_UINT32, ACPI_IORTM_OFFSET (OutputReference), "Output Reference", 0}, {ACPI_DMT_UINT32, ACPI_IORTM_OFFSET (Flags), "Flags (decoded below)", 0}, {ACPI_DMT_FLAG0, ACPI_IORTM_FLAG_OFFSET (Flags, 0), "Single Mapping", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoIortAcc[] = { {ACPI_DMT_UINT32, ACPI_IORTA_OFFSET (CacheCoherency), "Cache Coherency", 0}, {ACPI_DMT_UINT8, ACPI_IORTA_OFFSET (Hints), "Hints (decoded below)", 0}, {ACPI_DMT_FLAG0, ACPI_IORTA_FLAG_OFFSET (Hints, 0), "Transient", 0}, {ACPI_DMT_FLAG1, ACPI_IORTA_FLAG_OFFSET (Hints, 0), "Write Allocate", 0}, {ACPI_DMT_FLAG2, ACPI_IORTA_FLAG_OFFSET (Hints, 0), "Read Allocate", 0}, {ACPI_DMT_FLAG3, ACPI_IORTA_FLAG_OFFSET (Hints, 0), "Override", 0}, {ACPI_DMT_UINT16, ACPI_IORTA_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT8, ACPI_IORTA_OFFSET (MemoryFlags), "Memory Flags (decoded below)", 0}, {ACPI_DMT_FLAG0, ACPI_IORTA_FLAG_OFFSET (MemoryFlags, 0), "Coherency", 0}, {ACPI_DMT_FLAG1, ACPI_IORTA_FLAG_OFFSET (MemoryFlags, 0), "Device Attribute", 0}, ACPI_DMT_TERMINATOR }; /* IORT subtables */ /* 0x00: ITS Group */ ACPI_DMTABLE_INFO AcpiDmTableInfoIort0[] = { {ACPI_DMT_UINT32, ACPI_IORT0_OFFSET (ItsCount), "ItsCount", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoIort0a[] = { {ACPI_DMT_UINT32, 0, "Identifiers", DT_OPTIONAL}, ACPI_DMT_TERMINATOR }; /* 0x01: Named Component */ ACPI_DMTABLE_INFO AcpiDmTableInfoIort1[] = { {ACPI_DMT_UINT32, ACPI_IORT1_OFFSET (NodeFlags), "Node Flags", 0}, {ACPI_DMT_IORTMEM, ACPI_IORT1_OFFSET (MemoryProperties), "Memory Properties", 0}, {ACPI_DMT_UINT8, ACPI_IORT1_OFFSET (MemoryAddressLimit), "Memory Size Limit", 0}, {ACPI_DMT_STRING, ACPI_IORT1_OFFSET (DeviceName[0]), "Device Name", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoIort1a[] = { {ACPI_DMT_RAW_BUFFER, 0, "Padding", DT_OPTIONAL}, ACPI_DMT_TERMINATOR }; /* 0x02: PCI Root Complex */ ACPI_DMTABLE_INFO AcpiDmTableInfoIort2[] = { {ACPI_DMT_IORTMEM, ACPI_IORT2_OFFSET (MemoryProperties), "Memory Properties", 0}, {ACPI_DMT_UINT32, ACPI_IORT2_OFFSET (AtsAttribute), "ATS Attribute", 0}, {ACPI_DMT_UINT32, ACPI_IORT2_OFFSET (PciSegmentNumber), "PCI Segment Number", 0}, ACPI_DMT_TERMINATOR }; /* 0x03: SMMUv1/2 */ ACPI_DMTABLE_INFO AcpiDmTableInfoIort3[] = { {ACPI_DMT_UINT64, ACPI_IORT3_OFFSET (BaseAddress), "Base Address", 0}, {ACPI_DMT_UINT64, ACPI_IORT3_OFFSET (Span), "Span", 0}, {ACPI_DMT_UINT32, ACPI_IORT3_OFFSET (Model), "Model", 0}, {ACPI_DMT_UINT32, ACPI_IORT3_OFFSET (Flags), "Flags (decoded below)", 0}, {ACPI_DMT_FLAG0, ACPI_IORT3_FLAG_OFFSET (Flags, 0), "DVM Supported", 0}, {ACPI_DMT_FLAG1, ACPI_IORT3_FLAG_OFFSET (Flags, 0), "Coherent Walk", 0}, {ACPI_DMT_UINT32, ACPI_IORT3_OFFSET (GlobalInterruptOffset), "Global Interrupt Offset", 0}, {ACPI_DMT_UINT32, ACPI_IORT3_OFFSET (ContextInterruptCount), "Context Interrupt Count", 0}, {ACPI_DMT_UINT32, ACPI_IORT3_OFFSET (ContextInterruptOffset), "Context Interrupt Offset", 0}, {ACPI_DMT_UINT32, ACPI_IORT3_OFFSET (PmuInterruptCount), "PMU Interrupt Count", 0}, {ACPI_DMT_UINT32, ACPI_IORT3_OFFSET (PmuInterruptOffset), "PMU Interrupt Offset", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoIort3a[] = { {ACPI_DMT_UINT64, 0, "SMMU_NSgIrpt Interrupt", 0}, {ACPI_DMT_UINT64, 0, "SMMU_NSgCfgIrpt Interrupt", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoIort3b[] = { {ACPI_DMT_UINT64, 0, "Context Interrupt", DT_OPTIONAL}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoIort3c[] = { {ACPI_DMT_UINT64, 0, "PMU Interrupt", DT_OPTIONAL}, ACPI_DMT_TERMINATOR }; /* 0x04: SMMUv3 */ ACPI_DMTABLE_INFO AcpiDmTableInfoIort4[] = { {ACPI_DMT_UINT64, ACPI_IORT4_OFFSET (BaseAddress), "Base Address", 0}, {ACPI_DMT_UINT32, ACPI_IORT4_OFFSET (Flags), "Flags (decoded below)", 0}, {ACPI_DMT_FLAG0, ACPI_IORT4_FLAG_OFFSET (Flags, 0), "COHACC Override", 0}, {ACPI_DMT_FLAG1, ACPI_IORT4_FLAG_OFFSET (Flags, 0), "HTTU Override", 0}, {ACPI_DMT_UINT32, ACPI_IORT4_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_IORT4_OFFSET (VatosAddress), "VATOS Address", 0}, {ACPI_DMT_UINT32, ACPI_IORT4_OFFSET (Model), "Model", 0}, {ACPI_DMT_UINT32, ACPI_IORT4_OFFSET (EventGsiv), "Event GSIV", 0}, {ACPI_DMT_UINT32, ACPI_IORT4_OFFSET (PriGsiv), "PRI GSIV", 0}, {ACPI_DMT_UINT32, ACPI_IORT4_OFFSET (GerrGsiv), "GERR GSIV", 0}, {ACPI_DMT_UINT32, ACPI_IORT4_OFFSET (SyncGsiv), "Sync GSIV", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * IVRS - I/O Virtualization Reporting Structure * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs[] = { {ACPI_DMT_UINT32, ACPI_IVRS_OFFSET (Info), "Virtualization Info", 0}, {ACPI_DMT_UINT64, ACPI_IVRS_OFFSET (Reserved), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* Common Subtable header (one per Subtable) */ ACPI_DMTABLE_INFO AcpiDmTableInfoIvrsHdr[] = { {ACPI_DMT_IVRS, ACPI_IVRSH_OFFSET (Type), "Subtable Type", 0}, {ACPI_DMT_UINT8, ACPI_IVRSH_OFFSET (Flags), "Flags", 0}, {ACPI_DMT_UINT16, ACPI_IVRSH_OFFSET (Length), "Length", DT_LENGTH}, {ACPI_DMT_UINT16, ACPI_IVRSH_OFFSET (DeviceId), "DeviceId", 0}, ACPI_DMT_TERMINATOR }; /* IVRS subtables */ /* 0x10: I/O Virtualization Hardware Definition (IVHD) Block */ ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs0[] = { {ACPI_DMT_UINT16, ACPI_IVRS0_OFFSET (CapabilityOffset), "Capability Offset", 0}, {ACPI_DMT_UINT64, ACPI_IVRS0_OFFSET (BaseAddress), "Base Address", 0}, {ACPI_DMT_UINT16, ACPI_IVRS0_OFFSET (PciSegmentGroup), "PCI Segment Group", 0}, {ACPI_DMT_UINT16, ACPI_IVRS0_OFFSET (Info), "Virtualization Info", 0}, {ACPI_DMT_UINT32, ACPI_IVRS0_OFFSET (Reserved), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* 0x20, 0x21, 0x22: I/O Virtualization Memory Definition (IVMD) Block */ ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs1[] = { {ACPI_DMT_UINT16, ACPI_IVRS1_OFFSET (AuxData), "Auxiliary Data", 0}, {ACPI_DMT_UINT64, ACPI_IVRS1_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_IVRS1_OFFSET (StartAddress), "Start Address", 0}, {ACPI_DMT_UINT64, ACPI_IVRS1_OFFSET (MemoryLength), "Memory Length", 0}, ACPI_DMT_TERMINATOR }; /* Device entry header for IVHD block */ #define ACPI_DMT_IVRS_DE_HEADER \ {ACPI_DMT_UINT8, ACPI_IVRSD_OFFSET (Type), "Entry Type", 0}, \ {ACPI_DMT_UINT16, ACPI_IVRSD_OFFSET (Id), "Device ID", 0}, \ {ACPI_DMT_UINT8, ACPI_IVRSD_OFFSET (DataSetting), "Data Setting", 0} /* 4-byte device entry */ ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs4[] = { ACPI_DMT_IVRS_DE_HEADER, {ACPI_DMT_EXIT, 0, NULL, 0}, }; /* 8-byte device entry */ ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs8a[] = { ACPI_DMT_IVRS_DE_HEADER, {ACPI_DMT_UINT8, ACPI_IVRS8A_OFFSET (Reserved1), "Reserved", 0}, {ACPI_DMT_UINT16, ACPI_IVRS8A_OFFSET (UsedId), "Source Used Device ID", 0}, {ACPI_DMT_UINT8, ACPI_IVRS8A_OFFSET (Reserved2), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* 8-byte device entry */ ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs8b[] = { ACPI_DMT_IVRS_DE_HEADER, {ACPI_DMT_UINT32, ACPI_IVRS8B_OFFSET (ExtendedData), "Extended Data", 0}, ACPI_DMT_TERMINATOR }; /* 8-byte device entry */ ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs8c[] = { ACPI_DMT_IVRS_DE_HEADER, {ACPI_DMT_UINT8, ACPI_IVRS8C_OFFSET (Handle), "Handle", 0}, {ACPI_DMT_UINT16, ACPI_IVRS8C_OFFSET (UsedId), "Source Used Device ID", 0}, {ACPI_DMT_UINT8, ACPI_IVRS8C_OFFSET (Variety), "Variety", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * LPIT - Low Power Idle Table * ******************************************************************************/ /* Main table consists only of the standard ACPI table header */ /* Common Subtable header (one per Subtable) */ ACPI_DMTABLE_INFO AcpiDmTableInfoLpitHdr[] = { {ACPI_DMT_LPIT, ACPI_LPITH_OFFSET (Type), "Subtable Type", 0}, {ACPI_DMT_UINT32, ACPI_LPITH_OFFSET (Length), "Length", DT_LENGTH}, {ACPI_DMT_UINT16, ACPI_LPITH_OFFSET (UniqueId), "Unique ID", 0}, {ACPI_DMT_UINT16, ACPI_LPITH_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_LPITH_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_LPITH_FLAG_OFFSET (Flags, 0), "State Disabled", 0}, {ACPI_DMT_FLAG1, ACPI_LPITH_FLAG_OFFSET (Flags, 0), "No Counter", 0}, ACPI_DMT_TERMINATOR }; /* LPIT Subtables */ /* 0: Native C-state */ ACPI_DMTABLE_INFO AcpiDmTableInfoLpit0[] = { {ACPI_DMT_GAS, ACPI_LPIT0_OFFSET (EntryTrigger), "Entry Trigger", 0}, {ACPI_DMT_UINT32, ACPI_LPIT0_OFFSET (Residency), "Residency", 0}, {ACPI_DMT_UINT32, ACPI_LPIT0_OFFSET (Latency), "Latency", 0}, {ACPI_DMT_GAS, ACPI_LPIT0_OFFSET (ResidencyCounter), "Residency Counter", 0}, {ACPI_DMT_UINT64, ACPI_LPIT0_OFFSET (CounterFrequency), "Counter Frequency", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * MADT - Multiple APIC Description Table and subtables * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoMadt[] = { {ACPI_DMT_UINT32, ACPI_MADT_OFFSET (Address), "Local Apic Address", 0}, {ACPI_DMT_UINT32, ACPI_MADT_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_MADT_FLAG_OFFSET (Flags,0), "PC-AT Compatibility", 0}, ACPI_DMT_TERMINATOR }; /* Common Subtable header (one per Subtable) */ ACPI_DMTABLE_INFO AcpiDmTableInfoMadtHdr[] = { {ACPI_DMT_MADT, ACPI_MADTH_OFFSET (Type), "Subtable Type", 0}, {ACPI_DMT_UINT8, ACPI_MADTH_OFFSET (Length), "Length", DT_LENGTH}, ACPI_DMT_TERMINATOR }; /* MADT Subtables */ /* 0: processor APIC */ ACPI_DMTABLE_INFO AcpiDmTableInfoMadt0[] = { {ACPI_DMT_UINT8, ACPI_MADT0_OFFSET (ProcessorId), "Processor ID", 0}, {ACPI_DMT_UINT8, ACPI_MADT0_OFFSET (Id), "Local Apic ID", 0}, {ACPI_DMT_UINT32, ACPI_MADT0_OFFSET (LapicFlags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_MADT0_FLAG_OFFSET (LapicFlags,0), "Processor Enabled", 0}, ACPI_DMT_TERMINATOR }; /* 1: IO APIC */ ACPI_DMTABLE_INFO AcpiDmTableInfoMadt1[] = { {ACPI_DMT_UINT8, ACPI_MADT1_OFFSET (Id), "I/O Apic ID", 0}, {ACPI_DMT_UINT8, ACPI_MADT1_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_MADT1_OFFSET (Address), "Address", 0}, {ACPI_DMT_UINT32, ACPI_MADT1_OFFSET (GlobalIrqBase), "Interrupt", 0}, ACPI_DMT_TERMINATOR }; /* 2: Interrupt Override */ ACPI_DMTABLE_INFO AcpiDmTableInfoMadt2[] = { {ACPI_DMT_UINT8, ACPI_MADT2_OFFSET (Bus), "Bus", 0}, {ACPI_DMT_UINT8, ACPI_MADT2_OFFSET (SourceIrq), "Source", 0}, {ACPI_DMT_UINT32, ACPI_MADT2_OFFSET (GlobalIrq), "Interrupt", 0}, {ACPI_DMT_UINT16, ACPI_MADT2_OFFSET (IntiFlags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAGS0, ACPI_MADT2_FLAG_OFFSET (IntiFlags,0), "Polarity", 0}, {ACPI_DMT_FLAGS2, ACPI_MADT2_FLAG_OFFSET (IntiFlags,0), "Trigger Mode", 0}, ACPI_DMT_TERMINATOR }; /* 3: NMI Sources */ ACPI_DMTABLE_INFO AcpiDmTableInfoMadt3[] = { {ACPI_DMT_UINT16, ACPI_MADT3_OFFSET (IntiFlags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAGS0, ACPI_MADT3_FLAG_OFFSET (IntiFlags,0), "Polarity", 0}, {ACPI_DMT_FLAGS2, ACPI_MADT3_FLAG_OFFSET (IntiFlags,0), "Trigger Mode", 0}, {ACPI_DMT_UINT32, ACPI_MADT3_OFFSET (GlobalIrq), "Interrupt", 0}, ACPI_DMT_TERMINATOR }; /* 4: Local APIC NMI */ ACPI_DMTABLE_INFO AcpiDmTableInfoMadt4[] = { {ACPI_DMT_UINT8, ACPI_MADT4_OFFSET (ProcessorId), "Processor ID", 0}, {ACPI_DMT_UINT16, ACPI_MADT4_OFFSET (IntiFlags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAGS0, ACPI_MADT4_FLAG_OFFSET (IntiFlags,0), "Polarity", 0}, {ACPI_DMT_FLAGS2, ACPI_MADT4_FLAG_OFFSET (IntiFlags,0), "Trigger Mode", 0}, {ACPI_DMT_UINT8, ACPI_MADT4_OFFSET (Lint), "Interrupt Input LINT", 0}, ACPI_DMT_TERMINATOR }; /* 5: Address Override */ ACPI_DMTABLE_INFO AcpiDmTableInfoMadt5[] = { {ACPI_DMT_UINT16, ACPI_MADT5_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_MADT5_OFFSET (Address), "APIC Address", 0}, ACPI_DMT_TERMINATOR }; /* 6: I/O Sapic */ ACPI_DMTABLE_INFO AcpiDmTableInfoMadt6[] = { {ACPI_DMT_UINT8, ACPI_MADT6_OFFSET (Id), "I/O Sapic ID", 0}, {ACPI_DMT_UINT8, ACPI_MADT6_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_MADT6_OFFSET (GlobalIrqBase), "Interrupt Base", 0}, {ACPI_DMT_UINT64, ACPI_MADT6_OFFSET (Address), "Address", 0}, ACPI_DMT_TERMINATOR }; /* 7: Local Sapic */ ACPI_DMTABLE_INFO AcpiDmTableInfoMadt7[] = { {ACPI_DMT_UINT8, ACPI_MADT7_OFFSET (ProcessorId), "Processor ID", 0}, {ACPI_DMT_UINT8, ACPI_MADT7_OFFSET (Id), "Local Sapic ID", 0}, {ACPI_DMT_UINT8, ACPI_MADT7_OFFSET (Eid), "Local Sapic EID", 0}, {ACPI_DMT_UINT24, ACPI_MADT7_OFFSET (Reserved[0]), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_MADT7_OFFSET (LapicFlags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_MADT7_FLAG_OFFSET (LapicFlags,0), "Processor Enabled", 0}, {ACPI_DMT_UINT32, ACPI_MADT7_OFFSET (Uid), "Processor UID", 0}, {ACPI_DMT_STRING, ACPI_MADT7_OFFSET (UidString[0]), "Processor UID String", 0}, ACPI_DMT_TERMINATOR }; /* 8: Platform Interrupt Source */ ACPI_DMTABLE_INFO AcpiDmTableInfoMadt8[] = { {ACPI_DMT_UINT16, ACPI_MADT8_OFFSET (IntiFlags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAGS0, ACPI_MADT8_FLAG_OFFSET (IntiFlags,0), "Polarity", 0}, {ACPI_DMT_FLAGS2, ACPI_MADT8_FLAG_OFFSET (IntiFlags,0), "Trigger Mode", 0}, {ACPI_DMT_UINT8, ACPI_MADT8_OFFSET (Type), "InterruptType", 0}, {ACPI_DMT_UINT8, ACPI_MADT8_OFFSET (Id), "Processor ID", 0}, {ACPI_DMT_UINT8, ACPI_MADT8_OFFSET (Eid), "Processor EID", 0}, {ACPI_DMT_UINT8, ACPI_MADT8_OFFSET (IoSapicVector), "I/O Sapic Vector", 0}, {ACPI_DMT_UINT32, ACPI_MADT8_OFFSET (GlobalIrq), "Interrupt", 0}, {ACPI_DMT_UINT32, ACPI_MADT8_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_MADT8_OFFSET (Flags), "CPEI Override", 0}, ACPI_DMT_TERMINATOR }; /* 9: Processor Local X2_APIC (ACPI 4.0) */ ACPI_DMTABLE_INFO AcpiDmTableInfoMadt9[] = { {ACPI_DMT_UINT16, ACPI_MADT9_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_MADT9_OFFSET (LocalApicId), "Processor x2Apic ID", 0}, {ACPI_DMT_UINT32, ACPI_MADT9_OFFSET (LapicFlags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_MADT9_FLAG_OFFSET (LapicFlags,0), "Processor Enabled", 0}, {ACPI_DMT_UINT32, ACPI_MADT9_OFFSET (Uid), "Processor UID", 0}, ACPI_DMT_TERMINATOR }; /* 10: Local X2_APIC NMI (ACPI 4.0) */ ACPI_DMTABLE_INFO AcpiDmTableInfoMadt10[] = { {ACPI_DMT_UINT16, ACPI_MADT10_OFFSET (IntiFlags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAGS0, ACPI_MADT10_FLAG_OFFSET (IntiFlags,0), "Polarity", 0}, {ACPI_DMT_FLAGS2, ACPI_MADT10_FLAG_OFFSET (IntiFlags,0), "Trigger Mode", 0}, {ACPI_DMT_UINT32, ACPI_MADT10_OFFSET (Uid), "Processor UID", 0}, {ACPI_DMT_UINT8, ACPI_MADT10_OFFSET (Lint), "Interrupt Input LINT", 0}, {ACPI_DMT_UINT24, ACPI_MADT10_OFFSET (Reserved[0]), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* 11: Generic Interrupt Controller (ACPI 5.0) */ ACPI_DMTABLE_INFO AcpiDmTableInfoMadt11[] = { {ACPI_DMT_UINT16, ACPI_MADT11_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_MADT11_OFFSET (CpuInterfaceNumber), "CPU Interface Number", 0}, {ACPI_DMT_UINT32, ACPI_MADT11_OFFSET (Uid), "Processor UID", 0}, {ACPI_DMT_UINT32, ACPI_MADT11_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_MADT11_FLAG_OFFSET (Flags,0), "Processor Enabled", 0}, {ACPI_DMT_FLAG1, ACPI_MADT11_FLAG_OFFSET (Flags,0), "Performance Interrupt Trigger Mode", 0}, {ACPI_DMT_FLAG2, ACPI_MADT11_FLAG_OFFSET (Flags,0), "Virtual GIC Interrupt Trigger Mode", 0}, {ACPI_DMT_UINT32, ACPI_MADT11_OFFSET (ParkingVersion), "Parking Protocol Version", 0}, {ACPI_DMT_UINT32, ACPI_MADT11_OFFSET (PerformanceInterrupt), "Performance Interrupt", 0}, {ACPI_DMT_UINT64, ACPI_MADT11_OFFSET (ParkedAddress), "Parked Address", 0}, {ACPI_DMT_UINT64, ACPI_MADT11_OFFSET (BaseAddress), "Base Address", 0}, {ACPI_DMT_UINT64, ACPI_MADT11_OFFSET (GicvBaseAddress), "Virtual GIC Base Address", 0}, {ACPI_DMT_UINT64, ACPI_MADT11_OFFSET (GichBaseAddress), "Hypervisor GIC Base Address", 0}, {ACPI_DMT_UINT32, ACPI_MADT11_OFFSET (VgicInterrupt), "Virtual GIC Interrupt", 0}, {ACPI_DMT_UINT64, ACPI_MADT11_OFFSET (GicrBaseAddress), "Redistributor Base Address", 0}, {ACPI_DMT_UINT64, ACPI_MADT11_OFFSET (ArmMpidr), "ARM MPIDR", 0}, {ACPI_DMT_UINT8, ACPI_MADT11_OFFSET (EfficiencyClass), "Efficiency Class", 0}, {ACPI_DMT_UINT24, ACPI_MADT11_OFFSET (Reserved2[0]), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* 12: Generic Interrupt Distributor (ACPI 5.0) */ ACPI_DMTABLE_INFO AcpiDmTableInfoMadt12[] = { {ACPI_DMT_UINT16, ACPI_MADT12_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_MADT12_OFFSET (GicId), "Local GIC Hardware ID", 0}, {ACPI_DMT_UINT64, ACPI_MADT12_OFFSET (BaseAddress), "Base Address", 0}, {ACPI_DMT_UINT32, ACPI_MADT12_OFFSET (GlobalIrqBase), "Interrupt Base", 0}, {ACPI_DMT_UINT8, ACPI_MADT12_OFFSET (Version), "Version", 0}, {ACPI_DMT_UINT24, ACPI_MADT12_OFFSET (Reserved2[0]), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* 13: Generic MSI Frame (ACPI 5.1) */ ACPI_DMTABLE_INFO AcpiDmTableInfoMadt13[] = { {ACPI_DMT_UINT16, ACPI_MADT13_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_MADT13_OFFSET (MsiFrameId), "MSI Frame ID", 0}, {ACPI_DMT_UINT64, ACPI_MADT13_OFFSET (BaseAddress), "Base Address", 0}, {ACPI_DMT_UINT32, ACPI_MADT13_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_MADT13_FLAG_OFFSET (Flags,0), "Select SPI", 0}, {ACPI_DMT_UINT16, ACPI_MADT13_OFFSET (SpiCount), "SPI Count", 0}, {ACPI_DMT_UINT16, ACPI_MADT13_OFFSET (SpiBase), "SPI Base", 0}, ACPI_DMT_TERMINATOR }; /* 14: Generic Redistributor (ACPI 5.1) */ ACPI_DMTABLE_INFO AcpiDmTableInfoMadt14[] = { {ACPI_DMT_UINT16, ACPI_MADT14_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_MADT14_OFFSET (BaseAddress), "Base Address", 0}, {ACPI_DMT_UINT32, ACPI_MADT14_OFFSET (Length), "Length", 0}, ACPI_DMT_TERMINATOR }; /* 15: Generic Translator (ACPI 6.0) */ ACPI_DMTABLE_INFO AcpiDmTableInfoMadt15[] = { {ACPI_DMT_UINT16, ACPI_MADT15_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_MADT15_OFFSET (TranslationId), "Translation ID", 0}, {ACPI_DMT_UINT64, ACPI_MADT15_OFFSET (BaseAddress), "Base Address", 0}, {ACPI_DMT_UINT32, ACPI_MADT15_OFFSET (Reserved2), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * MCFG - PCI Memory Mapped Configuration table and Subtable * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoMcfg[] = { {ACPI_DMT_UINT64, ACPI_MCFG_OFFSET (Reserved[0]), "Reserved", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoMcfg0[] = { {ACPI_DMT_UINT64, ACPI_MCFG0_OFFSET (Address), "Base Address", 0}, {ACPI_DMT_UINT16, ACPI_MCFG0_OFFSET (PciSegment), "Segment Group Number", 0}, {ACPI_DMT_UINT8, ACPI_MCFG0_OFFSET (StartBusNumber), "Start Bus Number", 0}, {ACPI_DMT_UINT8, ACPI_MCFG0_OFFSET (EndBusNumber), "End Bus Number", 0}, {ACPI_DMT_UINT32, ACPI_MCFG0_OFFSET (Reserved), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * MCHI - Management Controller Host Interface table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoMchi[] = { {ACPI_DMT_UINT8, ACPI_MCHI_OFFSET (InterfaceType), "Interface Type", 0}, {ACPI_DMT_UINT8, ACPI_MCHI_OFFSET (Protocol), "Protocol", 0}, {ACPI_DMT_UINT64, ACPI_MCHI_OFFSET (ProtocolData), "Protocol Data", 0}, {ACPI_DMT_UINT8, ACPI_MCHI_OFFSET (InterruptType), "Interrupt Type", 0}, {ACPI_DMT_UINT8, ACPI_MCHI_OFFSET (Gpe), "Gpe", 0}, {ACPI_DMT_UINT8, ACPI_MCHI_OFFSET (PciDeviceFlag), "Pci Device Flag", 0}, {ACPI_DMT_UINT32, ACPI_MCHI_OFFSET (GlobalInterrupt), "Global Interrupt", 0}, {ACPI_DMT_GAS, ACPI_MCHI_OFFSET (ControlRegister), "Control Register", 0}, {ACPI_DMT_UINT8, ACPI_MCHI_OFFSET (PciSegment), "Pci Segment", 0}, {ACPI_DMT_UINT8, ACPI_MCHI_OFFSET (PciBus), "Pci Bus", 0}, {ACPI_DMT_UINT8, ACPI_MCHI_OFFSET (PciDevice), "Pci Device", 0}, {ACPI_DMT_UINT8, ACPI_MCHI_OFFSET (PciFunction), "Pci Function", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * MPST - Memory Power State Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoMpst[] = { {ACPI_DMT_UINT8, ACPI_MPST_OFFSET (ChannelId), "Channel ID", 0}, {ACPI_DMT_UINT24, ACPI_MPST_OFFSET (Reserved1[0]), "Reserved", 0}, {ACPI_DMT_UINT16, ACPI_MPST_OFFSET (PowerNodeCount), "Power Node Count", 0}, {ACPI_DMT_UINT16, ACPI_MPST_OFFSET (Reserved2), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* MPST subtables */ /* 0: Memory Power Node Structure */ ACPI_DMTABLE_INFO AcpiDmTableInfoMpst0[] = { {ACPI_DMT_UINT8, ACPI_MPST0_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_MPST0_FLAG_OFFSET (Flags,0), "Node Enabled", 0}, {ACPI_DMT_FLAG1, ACPI_MPST0_FLAG_OFFSET (Flags,0), "Power Managed", 0}, {ACPI_DMT_FLAG2, ACPI_MPST0_FLAG_OFFSET (Flags,0), "Hot Plug Capable", 0}, {ACPI_DMT_UINT8, ACPI_MPST0_OFFSET (Reserved1), "Reserved", 0}, {ACPI_DMT_UINT16, ACPI_MPST0_OFFSET (NodeId), "Node ID", 0}, {ACPI_DMT_UINT32, ACPI_MPST0_OFFSET (Length), "Length", 0}, {ACPI_DMT_UINT64, ACPI_MPST0_OFFSET (RangeAddress), "Range Address", 0}, {ACPI_DMT_UINT64, ACPI_MPST0_OFFSET (RangeLength), "Range Length", 0}, {ACPI_DMT_UINT32, ACPI_MPST0_OFFSET (NumPowerStates), "Num Power States", 0}, {ACPI_DMT_UINT32, ACPI_MPST0_OFFSET (NumPhysicalComponents), "Num Physical Components", 0}, ACPI_DMT_TERMINATOR }; /* 0A: Sub-subtable - Memory Power State Structure (follows Memory Power Node above) */ ACPI_DMTABLE_INFO AcpiDmTableInfoMpst0A[] = { {ACPI_DMT_UINT8, ACPI_MPST0A_OFFSET (PowerState), "Power State", 0}, {ACPI_DMT_UINT8, ACPI_MPST0A_OFFSET (InfoIndex), "InfoIndex", 0}, ACPI_DMT_TERMINATOR }; /* 0B: Sub-subtable - Physical Component ID Structure (follows Memory Power State(s) above) */ ACPI_DMTABLE_INFO AcpiDmTableInfoMpst0B[] = { {ACPI_DMT_UINT16, ACPI_MPST0B_OFFSET (ComponentId), "Component Id", 0}, ACPI_DMT_TERMINATOR }; /* 01: Power Characteristics Count (follows all Power Node(s) above) */ ACPI_DMTABLE_INFO AcpiDmTableInfoMpst1[] = { {ACPI_DMT_UINT16, ACPI_MPST1_OFFSET (CharacteristicsCount), "Characteristics Count", 0}, {ACPI_DMT_UINT16, ACPI_MPST1_OFFSET (Reserved), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* 02: Memory Power State Characteristics Structure */ ACPI_DMTABLE_INFO AcpiDmTableInfoMpst2[] = { {ACPI_DMT_UINT8, ACPI_MPST2_OFFSET (StructureId), "Structure ID", 0}, {ACPI_DMT_UINT8, ACPI_MPST2_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_MPST2_FLAG_OFFSET (Flags,0), "Memory Preserved", 0}, {ACPI_DMT_FLAG1, ACPI_MPST2_FLAG_OFFSET (Flags,0), "Auto Entry", 0}, {ACPI_DMT_FLAG2, ACPI_MPST2_FLAG_OFFSET (Flags,0), "Auto Exit", 0}, {ACPI_DMT_UINT16, ACPI_MPST2_OFFSET (Reserved1), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_MPST2_OFFSET (AveragePower), "Average Power", 0}, {ACPI_DMT_UINT32, ACPI_MPST2_OFFSET (PowerSaving), "Power Saving", 0}, {ACPI_DMT_UINT64, ACPI_MPST2_OFFSET (ExitLatency), "Exit Latency", 0}, {ACPI_DMT_UINT64, ACPI_MPST2_OFFSET (Reserved2), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * MSCT - Maximum System Characteristics Table (ACPI 4.0) * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoMsct[] = { {ACPI_DMT_UINT32, ACPI_MSCT_OFFSET (ProximityOffset), "Proximity Offset", 0}, {ACPI_DMT_UINT32, ACPI_MSCT_OFFSET (MaxProximityDomains), "Max Proximity Domains", 0}, {ACPI_DMT_UINT32, ACPI_MSCT_OFFSET (MaxClockDomains), "Max Clock Domains", 0}, {ACPI_DMT_UINT64, ACPI_MSCT_OFFSET (MaxAddress), "Max Physical Address", 0}, ACPI_DMT_TERMINATOR }; /* Subtable - Maximum Proximity Domain Information. Version 1 */ ACPI_DMTABLE_INFO AcpiDmTableInfoMsct0[] = { {ACPI_DMT_UINT8, ACPI_MSCT0_OFFSET (Revision), "Revision", 0}, {ACPI_DMT_UINT8, ACPI_MSCT0_OFFSET (Length), "Length", DT_LENGTH}, {ACPI_DMT_UINT32, ACPI_MSCT0_OFFSET (RangeStart), "Domain Range Start", 0}, {ACPI_DMT_UINT32, ACPI_MSCT0_OFFSET (RangeEnd), "Domain Range End", 0}, {ACPI_DMT_UINT32, ACPI_MSCT0_OFFSET (ProcessorCapacity), "Processor Capacity", 0}, {ACPI_DMT_UINT64, ACPI_MSCT0_OFFSET (MemoryCapacity), "Memory Capacity", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * MTMR - MID Timer Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoMtmr[] = { ACPI_DMT_TERMINATOR }; /* MTMR Subtables - MTMR Entry */ ACPI_DMTABLE_INFO AcpiDmTableInfoMtmr0[] = { {ACPI_DMT_GAS, ACPI_MTMR0_OFFSET (PhysicalAddress), "PhysicalAddress", 0}, {ACPI_DMT_UINT32, ACPI_MTMR0_OFFSET (Frequency), "Frequency", 0}, {ACPI_DMT_UINT32, ACPI_MTMR0_OFFSET (Irq), "IRQ", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * NFIT - NVDIMM Firmware Interface Table and Subtables - (ACPI 6.0) * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoNfit[] = { {ACPI_DMT_UINT32, ACPI_NFIT_OFFSET (Reserved), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* Common Subtable header */ ACPI_DMTABLE_INFO AcpiDmTableInfoNfitHdr[] = { {ACPI_DMT_NFIT, ACPI_NFITH_OFFSET (Type), "Subtable Type", 0}, {ACPI_DMT_UINT16, ACPI_NFITH_OFFSET (Length), "Length", DT_LENGTH}, ACPI_DMT_TERMINATOR }; /* 0: System Physical Address Range Structure */ ACPI_DMTABLE_INFO AcpiDmTableInfoNfit0[] = { {ACPI_DMT_UINT16, ACPI_NFIT0_OFFSET (RangeIndex), "Range Index", 0}, {ACPI_DMT_UINT16, ACPI_NFIT0_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_NFIT0_FLAG_OFFSET (Flags,0), "Add/Online Operation Only", 0}, {ACPI_DMT_FLAG1, ACPI_NFIT0_FLAG_OFFSET (Flags,0), "Proximity Domain Valid", 0}, {ACPI_DMT_UINT32, ACPI_NFIT0_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_NFIT0_OFFSET (ProximityDomain), "Proximity Domain", 0}, {ACPI_DMT_UUID, ACPI_NFIT0_OFFSET (RangeGuid[0]), "Address Range GUID", 0}, {ACPI_DMT_UINT64, ACPI_NFIT0_OFFSET (Address), "Address Range Base", 0}, {ACPI_DMT_UINT64, ACPI_NFIT0_OFFSET (Length), "Address Range Length", 0}, {ACPI_DMT_UINT64, ACPI_NFIT0_OFFSET (MemoryMapping), "Memory Map Attribute", 0}, ACPI_DMT_TERMINATOR }; /* 1: Memory Device to System Address Range Map Structure */ ACPI_DMTABLE_INFO AcpiDmTableInfoNfit1[] = { {ACPI_DMT_UINT32, ACPI_NFIT1_OFFSET (DeviceHandle), "Device Handle", 0}, {ACPI_DMT_UINT16, ACPI_NFIT1_OFFSET (PhysicalId), "Physical Id", 0}, {ACPI_DMT_UINT16, ACPI_NFIT1_OFFSET (RegionId), "Region Id", 0}, {ACPI_DMT_UINT16, ACPI_NFIT1_OFFSET (RangeIndex), "Range Index", 0}, {ACPI_DMT_UINT16, ACPI_NFIT1_OFFSET (RegionIndex), "Control Region Index", 0}, {ACPI_DMT_UINT64, ACPI_NFIT1_OFFSET (RegionSize), "Region Size", 0}, {ACPI_DMT_UINT64, ACPI_NFIT1_OFFSET (RegionOffset), "Region Offset", 0}, {ACPI_DMT_UINT64, ACPI_NFIT1_OFFSET (Address), "Address Region Base", 0}, {ACPI_DMT_UINT16, ACPI_NFIT1_OFFSET (InterleaveIndex), "Interleave Index", 0}, {ACPI_DMT_UINT16, ACPI_NFIT1_OFFSET (InterleaveWays), "Interleave Ways", 0}, {ACPI_DMT_UINT16, ACPI_NFIT1_OFFSET (Flags), "Flags", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_NFIT1_FLAG_OFFSET (Flags,0), "Save to device failed", 0}, {ACPI_DMT_FLAG1, ACPI_NFIT1_FLAG_OFFSET (Flags,0), "Restore from device failed", 0}, {ACPI_DMT_FLAG2, ACPI_NFIT1_FLAG_OFFSET (Flags,0), "Platform flush failed", 0}, {ACPI_DMT_FLAG3, ACPI_NFIT1_FLAG_OFFSET (Flags,0), "Device not armed", 0}, {ACPI_DMT_FLAG4, ACPI_NFIT1_FLAG_OFFSET (Flags,0), "Health events observed", 0}, {ACPI_DMT_FLAG5, ACPI_NFIT1_FLAG_OFFSET (Flags,0), "Health events enabled", 0}, {ACPI_DMT_FLAG6, ACPI_NFIT1_FLAG_OFFSET (Flags,0), "Mapping failed", 0}, {ACPI_DMT_UINT16, ACPI_NFIT1_OFFSET (Reserved), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* 2: Interleave Structure */ ACPI_DMTABLE_INFO AcpiDmTableInfoNfit2[] = { {ACPI_DMT_UINT16, ACPI_NFIT2_OFFSET (InterleaveIndex), "Interleave Index", 0}, {ACPI_DMT_UINT16, ACPI_NFIT2_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_NFIT2_OFFSET (LineCount), "Line Count", 0}, {ACPI_DMT_UINT32, ACPI_NFIT2_OFFSET (LineSize), "Line Size", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoNfit2a[] = { {ACPI_DMT_UINT32, 0, "Line Offset", DT_OPTIONAL}, ACPI_DMT_TERMINATOR }; /* 3: SMBIOS Management Information Structure */ ACPI_DMTABLE_INFO AcpiDmTableInfoNfit3[] = { {ACPI_DMT_UINT32, ACPI_NFIT3_OFFSET (Reserved), "Reserved", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoNfit3a[] = { {ACPI_DMT_RAW_BUFFER, 0, "SMBIOS Table Entries", DT_OPTIONAL}, ACPI_DMT_TERMINATOR }; /* 4: NVDIMM Control Region Structure */ ACPI_DMTABLE_INFO AcpiDmTableInfoNfit4[] = { {ACPI_DMT_UINT16, ACPI_NFIT4_OFFSET (RegionIndex), "Region Index", 0}, {ACPI_DMT_UINT16, ACPI_NFIT4_OFFSET (VendorId), "Vendor Id", 0}, {ACPI_DMT_UINT16, ACPI_NFIT4_OFFSET (DeviceId), "Device Id", 0}, {ACPI_DMT_UINT16, ACPI_NFIT4_OFFSET (RevisionId), "Revision Id", 0}, {ACPI_DMT_UINT16, ACPI_NFIT4_OFFSET (SubsystemVendorId), "Subsystem Vendor Id", 0}, {ACPI_DMT_UINT16, ACPI_NFIT4_OFFSET (SubsystemDeviceId), "Subsystem Device Id", 0}, {ACPI_DMT_UINT16, ACPI_NFIT4_OFFSET (SubsystemRevisionId), "Subsystem Revision Id", 0}, {ACPI_DMT_UINT8, ACPI_NFIT4_OFFSET (ValidFields), "Valid Fields", 0}, {ACPI_DMT_UINT8, ACPI_NFIT4_OFFSET (ManufacturingLocation), "Manufacturing Location", 0}, {ACPI_DMT_UINT16, ACPI_NFIT4_OFFSET (ManufacturingDate), "Manufacturing Date", 0}, {ACPI_DMT_UINT16, ACPI_NFIT4_OFFSET (Reserved[0]), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_NFIT4_OFFSET (SerialNumber), "Serial Number", 0}, {ACPI_DMT_UINT16, ACPI_NFIT4_OFFSET (Code), "Code", 0}, {ACPI_DMT_UINT16, ACPI_NFIT4_OFFSET (Windows), "Window Count", 0}, {ACPI_DMT_UINT64, ACPI_NFIT4_OFFSET (WindowSize), "Window Size", 0}, {ACPI_DMT_UINT64, ACPI_NFIT4_OFFSET (CommandOffset), "Command Offset", 0}, {ACPI_DMT_UINT64, ACPI_NFIT4_OFFSET (CommandSize), "Command Size", 0}, {ACPI_DMT_UINT64, ACPI_NFIT4_OFFSET (StatusOffset), "Status Offset", 0}, {ACPI_DMT_UINT64, ACPI_NFIT4_OFFSET (StatusSize), "Status Size", 0}, {ACPI_DMT_UINT16, ACPI_NFIT4_OFFSET (Flags), "Flags", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_NFIT4_FLAG_OFFSET (Flags,0), "Windows buffered", 0}, {ACPI_DMT_UINT48, ACPI_NFIT4_OFFSET (Reserved1[0]), "Reserved1", 0}, ACPI_DMT_TERMINATOR }; /* 5: NVDIMM Block Data Window Region Structure */ ACPI_DMTABLE_INFO AcpiDmTableInfoNfit5[] = { {ACPI_DMT_UINT16, ACPI_NFIT5_OFFSET (RegionIndex), "Region Index", 0}, {ACPI_DMT_UINT16, ACPI_NFIT5_OFFSET (Windows), "Window Count", 0}, {ACPI_DMT_UINT64, ACPI_NFIT5_OFFSET (Offset), "Offset", 0}, {ACPI_DMT_UINT64, ACPI_NFIT5_OFFSET (Size), "Size", 0}, {ACPI_DMT_UINT64, ACPI_NFIT5_OFFSET (Capacity), "Capacity", 0}, {ACPI_DMT_UINT64, ACPI_NFIT5_OFFSET (StartAddress), "Start Address", 0}, ACPI_DMT_TERMINATOR }; /* 6: Flush Hint Address Structure */ ACPI_DMTABLE_INFO AcpiDmTableInfoNfit6[] = { {ACPI_DMT_UINT32, ACPI_NFIT6_OFFSET (DeviceHandle), "Device Handle", 0}, {ACPI_DMT_UINT16, ACPI_NFIT6_OFFSET (HintCount), "Hint Count", 0}, {ACPI_DMT_UINT48, ACPI_NFIT6_OFFSET (Reserved[0]), "Reserved", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoNfit6a[] = { {ACPI_DMT_UINT64, 0, "Hint Address", DT_OPTIONAL}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * PCCT - Platform Communications Channel Table (ACPI 5.0) * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoPcct[] = { {ACPI_DMT_UINT32, ACPI_PCCT_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_PCCT_FLAG_OFFSET (Flags,0), "Doorbell", 0}, {ACPI_DMT_UINT64, ACPI_PCCT_OFFSET (Reserved), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* PCCT subtables */ ACPI_DMTABLE_INFO AcpiDmTableInfoPcctHdr[] = { {ACPI_DMT_PCCT, ACPI_PCCT0_OFFSET (Header.Type), "Subtable Type", 0}, {ACPI_DMT_UINT8, ACPI_PCCT0_OFFSET (Header.Length), "Length", DT_LENGTH}, ACPI_DMT_TERMINATOR }; /* 0: Generic Communications Subspace */ ACPI_DMTABLE_INFO AcpiDmTableInfoPcct0[] = { {ACPI_DMT_UINT48, ACPI_PCCT0_OFFSET (Reserved[0]), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_PCCT0_OFFSET (BaseAddress), "Base Address", 0}, {ACPI_DMT_UINT64, ACPI_PCCT0_OFFSET (Length), "Address Length", 0}, {ACPI_DMT_GAS, ACPI_PCCT0_OFFSET (DoorbellRegister), "Doorbell Register", 0}, {ACPI_DMT_UINT64, ACPI_PCCT0_OFFSET (PreserveMask), "Preserve Mask", 0}, {ACPI_DMT_UINT64, ACPI_PCCT0_OFFSET (WriteMask), "Write Mask", 0}, {ACPI_DMT_UINT32, ACPI_PCCT0_OFFSET (Latency), "Command Latency", 0}, {ACPI_DMT_UINT32, ACPI_PCCT0_OFFSET (MaxAccessRate), "Maximum Access Rate", 0}, {ACPI_DMT_UINT16, ACPI_PCCT0_OFFSET (MinTurnaroundTime), "Minimum Turnaround Time", 0}, ACPI_DMT_TERMINATOR }; /* 1: HW-reduced Communications Subspace (ACPI 5.1) */ ACPI_DMTABLE_INFO AcpiDmTableInfoPcct1[] = { {ACPI_DMT_UINT32, ACPI_PCCT1_OFFSET (DoorbellInterrupt), "Doorbell Interrupt", 0}, {ACPI_DMT_UINT8, ACPI_PCCT1_OFFSET (Flags), "Flags (Decoded Below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_PCCT1_FLAG_OFFSET (Flags,0), "Polarity", 0}, {ACPI_DMT_FLAG1, ACPI_PCCT1_FLAG_OFFSET (Flags,0), "Mode", 0}, {ACPI_DMT_UINT8, ACPI_PCCT1_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_PCCT1_OFFSET (BaseAddress), "Base Address", 0}, {ACPI_DMT_UINT64, ACPI_PCCT1_OFFSET (Length), "Address Length", 0}, {ACPI_DMT_GAS, ACPI_PCCT1_OFFSET (DoorbellRegister), "Doorbell Register", 0}, {ACPI_DMT_UINT64, ACPI_PCCT1_OFFSET (PreserveMask), "Preserve Mask", 0}, {ACPI_DMT_UINT64, ACPI_PCCT1_OFFSET (WriteMask), "Write Mask", 0}, {ACPI_DMT_UINT32, ACPI_PCCT1_OFFSET (Latency), "Command Latency", 0}, {ACPI_DMT_UINT32, ACPI_PCCT1_OFFSET (MaxAccessRate), "Maximum Access Rate", 0}, {ACPI_DMT_UINT16, ACPI_PCCT1_OFFSET (MinTurnaroundTime), "Minimum Turnaround Time", 0}, ACPI_DMT_TERMINATOR }; /* 2: HW-reduced Communications Subspace Type 2 (ACPI 6.1) */ ACPI_DMTABLE_INFO AcpiDmTableInfoPcct2[] = { {ACPI_DMT_UINT32, ACPI_PCCT2_OFFSET (DoorbellInterrupt), "Doorbell Interrupt", 0}, {ACPI_DMT_UINT8, ACPI_PCCT2_OFFSET (Flags), "Flags (Decoded Below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_PCCT2_FLAG_OFFSET (Flags,0), "Polarity", 0}, {ACPI_DMT_FLAG1, ACPI_PCCT2_FLAG_OFFSET (Flags,0), "Mode", 0}, {ACPI_DMT_UINT8, ACPI_PCCT2_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_PCCT2_OFFSET (BaseAddress), "Base Address", 0}, {ACPI_DMT_UINT64, ACPI_PCCT2_OFFSET (Length), "Address Length", 0}, {ACPI_DMT_GAS, ACPI_PCCT2_OFFSET (DoorbellRegister), "Doorbell Register", 0}, {ACPI_DMT_UINT64, ACPI_PCCT2_OFFSET (PreserveMask), "Preserve Mask", 0}, {ACPI_DMT_UINT64, ACPI_PCCT2_OFFSET (WriteMask), "Write Mask", 0}, {ACPI_DMT_UINT32, ACPI_PCCT2_OFFSET (Latency), "Command Latency", 0}, {ACPI_DMT_UINT32, ACPI_PCCT2_OFFSET (MaxAccessRate), "Maximum Access Rate", 0}, {ACPI_DMT_UINT16, ACPI_PCCT2_OFFSET (MinTurnaroundTime), "Minimum Turnaround Time", 0}, {ACPI_DMT_GAS, ACPI_PCCT2_OFFSET (DoorbellAckRegister), "Doorbell ACK Register", 0}, {ACPI_DMT_UINT64, ACPI_PCCT2_OFFSET (AckPreserveMask), "ACK Preserve Mask", 0}, {ACPI_DMT_UINT64, ACPI_PCCT2_OFFSET (AckWriteMask), "ACK Write Mask", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * PMTT - Platform Memory Topology Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoPmtt[] = { {ACPI_DMT_UINT32, ACPI_PMTT_OFFSET (Reserved), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* Common Subtable header (one per Subtable) */ ACPI_DMTABLE_INFO AcpiDmTableInfoPmttHdr[] = { {ACPI_DMT_PMTT, ACPI_PMTTH_OFFSET (Type), "Subtable Type", 0}, {ACPI_DMT_UINT8, ACPI_PMTTH_OFFSET (Reserved1), "Reserved", 0}, {ACPI_DMT_UINT16, ACPI_PMTTH_OFFSET (Length), "Length", DT_LENGTH}, {ACPI_DMT_UINT16, ACPI_PMTTH_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_PMTTH_FLAG_OFFSET (Flags,0), "Top-level Device", 0}, {ACPI_DMT_FLAG1, ACPI_PMTTH_FLAG_OFFSET (Flags,0), "Physical Element", 0}, {ACPI_DMT_FLAGS2, ACPI_PMTTH_FLAG_OFFSET (Flags,0), "Memory Type", 0}, {ACPI_DMT_UINT16, ACPI_PMTTH_OFFSET (Reserved2), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* PMTT Subtables */ /* 0: Socket */ ACPI_DMTABLE_INFO AcpiDmTableInfoPmtt0[] = { {ACPI_DMT_UINT16, ACPI_PMTT0_OFFSET (SocketId), "Socket ID", 0}, {ACPI_DMT_UINT16, ACPI_PMTT0_OFFSET (Reserved), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* 1: Memory Controller */ ACPI_DMTABLE_INFO AcpiDmTableInfoPmtt1[] = { {ACPI_DMT_UINT32, ACPI_PMTT1_OFFSET (ReadLatency), "Read Latency", 0}, {ACPI_DMT_UINT32, ACPI_PMTT1_OFFSET (WriteLatency), "Write Latency", 0}, {ACPI_DMT_UINT32, ACPI_PMTT1_OFFSET (ReadBandwidth), "Read Bandwidth", 0}, {ACPI_DMT_UINT32, ACPI_PMTT1_OFFSET (WriteBandwidth), "Write Bandwidth", 0}, {ACPI_DMT_UINT16, ACPI_PMTT1_OFFSET (AccessWidth), "Access Width", 0}, {ACPI_DMT_UINT16, ACPI_PMTT1_OFFSET (Alignment), "Alignment", 0}, {ACPI_DMT_UINT16, ACPI_PMTT1_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT16, ACPI_PMTT1_OFFSET (DomainCount), "Domain Count", 0}, ACPI_DMT_TERMINATOR }; /* 1a: Proximity Domain */ ACPI_DMTABLE_INFO AcpiDmTableInfoPmtt1a[] = { {ACPI_DMT_UINT32, ACPI_PMTT1A_OFFSET (ProximityDomain), "Proximity Domain", 0}, ACPI_DMT_TERMINATOR }; /* 2: Physical Component */ ACPI_DMTABLE_INFO AcpiDmTableInfoPmtt2[] = { {ACPI_DMT_UINT16, ACPI_PMTT2_OFFSET (ComponentId), "Component ID", 0}, {ACPI_DMT_UINT16, ACPI_PMTT2_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_PMTT2_OFFSET (MemorySize), "Memory Size", 0}, {ACPI_DMT_UINT32, ACPI_PMTT2_OFFSET (BiosHandle), "Bios Handle", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * RASF - RAS Feature table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoRasf[] = { {ACPI_DMT_BUF12, ACPI_RASF_OFFSET (ChannelId[0]), "Channel ID", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * S3PT - S3 Performance Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoS3pt[] = { {ACPI_DMT_SIG, ACPI_S3PT_OFFSET (Signature[0]), "Signature", 0}, {ACPI_DMT_UINT32, ACPI_S3PT_OFFSET (Length), "Length", DT_LENGTH}, ACPI_DMT_TERMINATOR }; /* S3PT subtable header */ ACPI_DMTABLE_INFO AcpiDmTableInfoS3ptHdr[] = { {ACPI_DMT_UINT16, ACPI_S3PTH_OFFSET (Type), "Type", 0}, {ACPI_DMT_UINT8, ACPI_S3PTH_OFFSET (Length), "Length", DT_LENGTH}, {ACPI_DMT_UINT8, ACPI_S3PTH_OFFSET (Revision), "Revision", 0}, ACPI_DMT_TERMINATOR }; /* 0: Basic S3 Resume Performance Record */ ACPI_DMTABLE_INFO AcpiDmTableInfoS3pt0[] = { {ACPI_DMT_UINT32, ACPI_S3PT0_OFFSET (ResumeCount), "Resume Count", 0}, {ACPI_DMT_UINT64, ACPI_S3PT0_OFFSET (FullResume), "Full Resume", 0}, {ACPI_DMT_UINT64, ACPI_S3PT0_OFFSET (AverageResume), "Average Resume", 0}, ACPI_DMT_TERMINATOR }; /* 1: Basic S3 Suspend Performance Record */ ACPI_DMTABLE_INFO AcpiDmTableInfoS3pt1[] = { {ACPI_DMT_UINT64, ACPI_S3PT1_OFFSET (SuspendStart), "Suspend Start", 0}, {ACPI_DMT_UINT64, ACPI_S3PT1_OFFSET (SuspendEnd), "Suspend End", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * SBST - Smart Battery Specification Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoSbst[] = { {ACPI_DMT_UINT32, ACPI_SBST_OFFSET (WarningLevel), "Warning Level", 0}, {ACPI_DMT_UINT32, ACPI_SBST_OFFSET (LowLevel), "Low Level", 0}, {ACPI_DMT_UINT32, ACPI_SBST_OFFSET (CriticalLevel), "Critical Level", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * SLIC - Software Licensing Description Table. This table contains the standard * ACPI header followed by proprietary data structures * ******************************************************************************/ /* Single subtable, a proprietary format, so treat it as a buffer */ ACPI_DMTABLE_INFO AcpiDmTableInfoSlic[] = { {ACPI_DMT_RAW_BUFFER, 0, "Software Licensing Structure", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * SLIT - System Locality Information Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoSlit[] = { {ACPI_DMT_UINT64, ACPI_SLIT_OFFSET (LocalityCount), "Localities", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * SPCR - Serial Port Console Redirection table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoSpcr[] = { {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (InterfaceType), "Interface Type", 0}, {ACPI_DMT_UINT24, ACPI_SPCR_OFFSET (Reserved[0]), "Reserved", 0}, {ACPI_DMT_GAS, ACPI_SPCR_OFFSET (SerialPort), "Serial Port Register", 0}, {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (InterruptType), "Interrupt Type", 0}, {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (PcInterrupt), "PCAT-compatible IRQ", 0}, {ACPI_DMT_UINT32, ACPI_SPCR_OFFSET (Interrupt), "Interrupt", 0}, {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (BaudRate), "Baud Rate", 0}, {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (Parity), "Parity", 0}, {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (StopBits), "Stop Bits", 0}, {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (FlowControl), "Flow Control", 0}, {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (TerminalType), "Terminal Type", 0}, {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (Reserved2), "Reserved", 0}, {ACPI_DMT_UINT16, ACPI_SPCR_OFFSET (PciDeviceId), "PCI Device ID", 0}, {ACPI_DMT_UINT16, ACPI_SPCR_OFFSET (PciVendorId), "PCI Vendor ID", 0}, {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (PciBus), "PCI Bus", 0}, {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (PciDevice), "PCI Device", 0}, {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (PciFunction), "PCI Function", 0}, {ACPI_DMT_UINT32, ACPI_SPCR_OFFSET (PciFlags), "PCI Flags", 0}, {ACPI_DMT_UINT8, ACPI_SPCR_OFFSET (PciSegment), "PCI Segment", 0}, {ACPI_DMT_UINT32, ACPI_SPCR_OFFSET (Reserved2), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * SPMI - Server Platform Management Interface table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoSpmi[] = { {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (InterfaceType), "Interface Type", 0}, {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (Reserved), "Reserved", DT_NON_ZERO}, /* Value must be 1 */ {ACPI_DMT_UINT16, ACPI_SPMI_OFFSET (SpecRevision), "IPMI Spec Version", 0}, {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (InterruptType), "Interrupt Type", 0}, {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (GpeNumber), "GPE Number", 0}, {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (Reserved1), "Reserved", 0}, {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (PciDeviceFlag), "PCI Device Flag", 0}, {ACPI_DMT_UINT32, ACPI_SPMI_OFFSET (Interrupt), "Interrupt", 0}, {ACPI_DMT_GAS, ACPI_SPMI_OFFSET (IpmiRegister), "IPMI Register", 0}, {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (PciSegment), "PCI Segment", 0}, {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (PciBus), "PCI Bus", 0}, {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (PciDevice), "PCI Device", 0}, {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (PciFunction), "PCI Function", 0}, {ACPI_DMT_UINT8, ACPI_SPMI_OFFSET (Reserved2), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * SRAT - System Resource Affinity Table and Subtables * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoSrat[] = { {ACPI_DMT_UINT32, ACPI_SRAT_OFFSET (TableRevision), "Table Revision", 0}, {ACPI_DMT_UINT64, ACPI_SRAT_OFFSET (Reserved), "Reserved", 0}, ACPI_DMT_TERMINATOR }; /* Common Subtable header (one per Subtable) */ ACPI_DMTABLE_INFO AcpiDmTableInfoSratHdr[] = { {ACPI_DMT_SRAT, ACPI_SRATH_OFFSET (Type), "Subtable Type", 0}, {ACPI_DMT_UINT8, ACPI_SRATH_OFFSET (Length), "Length", DT_LENGTH}, ACPI_DMT_TERMINATOR }; /* SRAT Subtables */ /* 0: Processor Local APIC/SAPIC Affinity */ ACPI_DMTABLE_INFO AcpiDmTableInfoSrat0[] = { {ACPI_DMT_UINT8, ACPI_SRAT0_OFFSET (ProximityDomainLo), "Proximity Domain Low(8)", 0}, {ACPI_DMT_UINT8, ACPI_SRAT0_OFFSET (ApicId), "Apic ID", 0}, {ACPI_DMT_UINT32, ACPI_SRAT0_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_SRAT0_FLAG_OFFSET (Flags,0), "Enabled", 0}, {ACPI_DMT_UINT8, ACPI_SRAT0_OFFSET (LocalSapicEid), "Local Sapic EID", 0}, {ACPI_DMT_UINT24, ACPI_SRAT0_OFFSET (ProximityDomainHi[0]), "Proximity Domain High(24)", 0}, {ACPI_DMT_UINT32, ACPI_SRAT0_OFFSET (ClockDomain), "Clock Domain", 0}, ACPI_DMT_TERMINATOR }; /* 1: Memory Affinity */ ACPI_DMTABLE_INFO AcpiDmTableInfoSrat1[] = { {ACPI_DMT_UINT32, ACPI_SRAT1_OFFSET (ProximityDomain), "Proximity Domain", 0}, {ACPI_DMT_UINT16, ACPI_SRAT1_OFFSET (Reserved), "Reserved1", 0}, {ACPI_DMT_UINT64, ACPI_SRAT1_OFFSET (BaseAddress), "Base Address", 0}, {ACPI_DMT_UINT64, ACPI_SRAT1_OFFSET (Length), "Address Length", 0}, {ACPI_DMT_UINT32, ACPI_SRAT1_OFFSET (Reserved1), "Reserved2", 0}, {ACPI_DMT_UINT32, ACPI_SRAT1_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_SRAT1_FLAG_OFFSET (Flags,0), "Enabled", 0}, {ACPI_DMT_FLAG1, ACPI_SRAT1_FLAG_OFFSET (Flags,0), "Hot Pluggable", 0}, {ACPI_DMT_FLAG2, ACPI_SRAT1_FLAG_OFFSET (Flags,0), "Non-Volatile", 0}, {ACPI_DMT_UINT64, ACPI_SRAT1_OFFSET (Reserved2), "Reserved3", 0}, ACPI_DMT_TERMINATOR }; /* 2: Processor Local X2_APIC Affinity (ACPI 4.0) */ ACPI_DMTABLE_INFO AcpiDmTableInfoSrat2[] = { {ACPI_DMT_UINT16, ACPI_SRAT2_OFFSET (Reserved), "Reserved1", 0}, {ACPI_DMT_UINT32, ACPI_SRAT2_OFFSET (ProximityDomain), "Proximity Domain", 0}, {ACPI_DMT_UINT32, ACPI_SRAT2_OFFSET (ApicId), "Apic ID", 0}, {ACPI_DMT_UINT32, ACPI_SRAT2_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_SRAT2_FLAG_OFFSET (Flags,0), "Enabled", 0}, {ACPI_DMT_UINT32, ACPI_SRAT2_OFFSET (ClockDomain), "Clock Domain", 0}, {ACPI_DMT_UINT32, ACPI_SRAT2_OFFSET (Reserved2), "Reserved2", 0}, ACPI_DMT_TERMINATOR }; /* : GICC Affinity (ACPI 5.1) */ ACPI_DMTABLE_INFO AcpiDmTableInfoSrat3[] = { {ACPI_DMT_UINT32, ACPI_SRAT3_OFFSET (ProximityDomain), "Proximity Domain", 0}, {ACPI_DMT_UINT32, ACPI_SRAT3_OFFSET (AcpiProcessorUid), "Acpi Processor UID", 0}, {ACPI_DMT_UINT32, ACPI_SRAT3_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_SRAT3_FLAG_OFFSET (Flags,0), "Enabled", 0}, {ACPI_DMT_UINT32, ACPI_SRAT3_OFFSET (ClockDomain), "Clock Domain", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * STAO - Status Override Table (_STA override) - ACPI 6.0 * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoStao[] = { {ACPI_DMT_UINT8, ACPI_STAO_OFFSET (IgnoreUart), "Ignore UART", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoStaoStr[] = { {ACPI_DMT_STRING, 0, "Namepath", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * TCPA - Trusted Computing Platform Alliance table (Client) * * NOTE: There are two versions of the table with the same signature -- * the client version and the server version. The common PlatformClass * field is used to differentiate the two types of tables. * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoTcpaHdr[] = { {ACPI_DMT_UINT16, ACPI_TCPA_OFFSET (PlatformClass), "Platform Class", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoTcpaClient[] = { {ACPI_DMT_UINT32, ACPI_TCPA_CLIENT_OFFSET (MinimumLogLength), "Min Event Log Length", 0}, {ACPI_DMT_UINT64, ACPI_TCPA_CLIENT_OFFSET (LogAddress), "Event Log Address", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoTcpaServer[] = { {ACPI_DMT_UINT16, ACPI_TCPA_SERVER_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_TCPA_SERVER_OFFSET (MinimumLogLength), "Min Event Log Length", 0}, {ACPI_DMT_UINT64, ACPI_TCPA_SERVER_OFFSET (LogAddress), "Event Log Address", 0}, {ACPI_DMT_UINT16, ACPI_TCPA_SERVER_OFFSET (SpecRevision), "Specification Revision", 0}, {ACPI_DMT_UINT8, ACPI_TCPA_SERVER_OFFSET (DeviceFlags), "Device Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_TCPA_SERVER_OFFSET (DeviceFlags), "Pci Device", 0}, {ACPI_DMT_FLAG1, ACPI_TCPA_SERVER_OFFSET (DeviceFlags), "Bus is Pnp", 0}, {ACPI_DMT_FLAG2, ACPI_TCPA_SERVER_OFFSET (DeviceFlags), "Address Valid", 0}, {ACPI_DMT_UINT8, ACPI_TCPA_SERVER_OFFSET (InterruptFlags), "Interrupt Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_TCPA_SERVER_OFFSET (InterruptFlags), "Mode", 0}, {ACPI_DMT_FLAG1, ACPI_TCPA_SERVER_OFFSET (InterruptFlags), "Polarity", 0}, {ACPI_DMT_FLAG2, ACPI_TCPA_SERVER_OFFSET (InterruptFlags), "GPE SCI Triggered", 0}, {ACPI_DMT_FLAG3, ACPI_TCPA_SERVER_OFFSET (InterruptFlags), "Global System Interrupt", 0}, {ACPI_DMT_UINT8, ACPI_TCPA_SERVER_OFFSET (GpeNumber), "Gpe Number", 0}, {ACPI_DMT_UINT24, ACPI_TCPA_SERVER_OFFSET (Reserved2[0]), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_TCPA_SERVER_OFFSET (GlobalInterrupt), "Global Interrupt", 0}, {ACPI_DMT_GAS, ACPI_TCPA_SERVER_OFFSET (Address), "Address", 0}, {ACPI_DMT_UINT32, ACPI_TCPA_SERVER_OFFSET (Reserved3), "Reserved", 0}, {ACPI_DMT_GAS, ACPI_TCPA_SERVER_OFFSET (ConfigAddress), "Configuration Address", 0}, {ACPI_DMT_UINT8, ACPI_TCPA_SERVER_OFFSET (Group), "Pci Group", 0}, {ACPI_DMT_UINT8, ACPI_TCPA_SERVER_OFFSET (Bus), "Pci Bus", 0}, {ACPI_DMT_UINT8, ACPI_TCPA_SERVER_OFFSET (Device), "Pci Device", 0}, {ACPI_DMT_UINT8, ACPI_TCPA_SERVER_OFFSET (Function), "Pci Function", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * TPM2 - Trusted Platform Module (TPM) 2.0 Hardware Interface Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoTpm2[] = { {ACPI_DMT_UINT16, ACPI_TPM2_OFFSET (PlatformClass), "Platform Class", 0}, {ACPI_DMT_UINT16, ACPI_TPM2_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_UINT64, ACPI_TPM2_OFFSET (ControlAddress), "Control Address", 0}, {ACPI_DMT_UINT32, ACPI_TPM2_OFFSET (StartMethod), "Start Method", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * UEFI - UEFI Boot optimization Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoUefi[] = { {ACPI_DMT_UUID, ACPI_UEFI_OFFSET (Identifier[0]), "UUID Identifier", 0}, {ACPI_DMT_UINT16, ACPI_UEFI_OFFSET (DataOffset), "Data Offset", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * VRTC - Virtual Real Time Clock Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoVrtc[] = { ACPI_DMT_TERMINATOR }; /* VRTC Subtables - VRTC Entry */ ACPI_DMTABLE_INFO AcpiDmTableInfoVrtc0[] = { {ACPI_DMT_GAS, ACPI_VRTC0_OFFSET (PhysicalAddress), "PhysicalAddress", 0}, {ACPI_DMT_UINT32, ACPI_VRTC0_OFFSET (Irq), "IRQ", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * WAET - Windows ACPI Emulated devices Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoWaet[] = { {ACPI_DMT_UINT32, ACPI_WAET_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_WAET_OFFSET (Flags), "RTC needs no INT ack", 0}, {ACPI_DMT_FLAG1, ACPI_WAET_OFFSET (Flags), "PM timer, one read only", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * WDAT - Watchdog Action Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoWdat[] = { {ACPI_DMT_UINT32, ACPI_WDAT_OFFSET (HeaderLength), "Header Length", DT_LENGTH}, {ACPI_DMT_UINT16, ACPI_WDAT_OFFSET (PciSegment), "PCI Segment", 0}, {ACPI_DMT_UINT8, ACPI_WDAT_OFFSET (PciBus), "PCI Bus", 0}, {ACPI_DMT_UINT8, ACPI_WDAT_OFFSET (PciDevice), "PCI Device", 0}, {ACPI_DMT_UINT8, ACPI_WDAT_OFFSET (PciFunction), "PCI Function", 0}, {ACPI_DMT_UINT24, ACPI_WDAT_OFFSET (Reserved[0]), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_WDAT_OFFSET (TimerPeriod), "Timer Period", 0}, {ACPI_DMT_UINT32, ACPI_WDAT_OFFSET (MaxCount), "Max Count", 0}, {ACPI_DMT_UINT32, ACPI_WDAT_OFFSET (MinCount), "Min Count", 0}, {ACPI_DMT_UINT8, ACPI_WDAT_OFFSET (Flags), "Flags (decoded below)", DT_FLAG}, {ACPI_DMT_FLAG0, ACPI_WDAT_OFFSET (Flags), "Enabled", 0}, {ACPI_DMT_FLAG7, ACPI_WDAT_OFFSET (Flags), "Stopped When Asleep", 0}, {ACPI_DMT_UINT24, ACPI_WDAT_OFFSET (Reserved2[0]), "Reserved", 0}, {ACPI_DMT_UINT32, ACPI_WDAT_OFFSET (Entries), "Watchdog Entry Count", 0}, ACPI_DMT_TERMINATOR }; /* WDAT Subtables - Watchdog Instruction Entries */ ACPI_DMTABLE_INFO AcpiDmTableInfoWdat0[] = { {ACPI_DMT_UINT8, ACPI_WDAT0_OFFSET (Action), "Watchdog Action", 0}, {ACPI_DMT_UINT8, ACPI_WDAT0_OFFSET (Instruction), "Instruction", 0}, {ACPI_DMT_UINT16, ACPI_WDAT0_OFFSET (Reserved), "Reserved", 0}, {ACPI_DMT_GAS, ACPI_WDAT0_OFFSET (RegisterRegion), "Register Region", 0}, {ACPI_DMT_UINT32, ACPI_WDAT0_OFFSET (Value), "Value", 0}, {ACPI_DMT_UINT32, ACPI_WDAT0_OFFSET (Mask), "Register Mask", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * WDDT - Watchdog Description Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoWddt[] = { {ACPI_DMT_UINT16, ACPI_WDDT_OFFSET (SpecVersion), "Specification Version", 0}, {ACPI_DMT_UINT16, ACPI_WDDT_OFFSET (TableVersion), "Table Version", 0}, {ACPI_DMT_UINT16, ACPI_WDDT_OFFSET (PciVendorId), "PCI Vendor ID", 0}, {ACPI_DMT_GAS, ACPI_WDDT_OFFSET (Address), "Timer Register", 0}, {ACPI_DMT_UINT16, ACPI_WDDT_OFFSET (MaxCount), "Max Count", 0}, {ACPI_DMT_UINT16, ACPI_WDDT_OFFSET (MinCount), "Min Count", 0}, {ACPI_DMT_UINT16, ACPI_WDDT_OFFSET (Period), "Period", 0}, {ACPI_DMT_UINT16, ACPI_WDDT_OFFSET (Status), "Status (decoded below)", 0}, /* Status Flags byte 0 */ {ACPI_DMT_FLAG0, ACPI_WDDT_FLAG_OFFSET (Status,0), "Available", 0}, {ACPI_DMT_FLAG1, ACPI_WDDT_FLAG_OFFSET (Status,0), "Active", 0}, {ACPI_DMT_FLAG2, ACPI_WDDT_FLAG_OFFSET (Status,0), "OS Owns", 0}, /* Status Flags byte 1 */ {ACPI_DMT_FLAG3, ACPI_WDDT_FLAG_OFFSET (Status,1), "User Reset", 0}, {ACPI_DMT_FLAG4, ACPI_WDDT_FLAG_OFFSET (Status,1), "Timeout Reset", 0}, {ACPI_DMT_FLAG5, ACPI_WDDT_FLAG_OFFSET (Status,1), "Power Fail Reset", 0}, {ACPI_DMT_FLAG6, ACPI_WDDT_FLAG_OFFSET (Status,1), "Unknown Reset", 0}, {ACPI_DMT_UINT16, ACPI_WDDT_OFFSET (Capability), "Capability (decoded below)", 0}, /* Capability Flags byte 0 */ {ACPI_DMT_FLAG0, ACPI_WDDT_FLAG_OFFSET (Capability,0), "Auto Reset", 0}, {ACPI_DMT_FLAG1, ACPI_WDDT_FLAG_OFFSET (Capability,0), "Timeout Alert", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * WDRT - Watchdog Resource Table * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoWdrt[] = { {ACPI_DMT_GAS, ACPI_WDRT_OFFSET (ControlRegister), "Control Register", 0}, {ACPI_DMT_GAS, ACPI_WDRT_OFFSET (CountRegister), "Count Register", 0}, {ACPI_DMT_UINT16, ACPI_WDRT_OFFSET (PciDeviceId), "PCI Device ID", 0}, {ACPI_DMT_UINT16, ACPI_WDRT_OFFSET (PciVendorId), "PCI Vendor ID", 0}, {ACPI_DMT_UINT8, ACPI_WDRT_OFFSET (PciBus), "PCI Bus", 0}, {ACPI_DMT_UINT8, ACPI_WDRT_OFFSET (PciDevice), "PCI Device", 0}, {ACPI_DMT_UINT8, ACPI_WDRT_OFFSET (PciFunction), "PCI Function", 0}, {ACPI_DMT_UINT8, ACPI_WDRT_OFFSET (PciSegment), "PCI Segment", 0}, {ACPI_DMT_UINT16, ACPI_WDRT_OFFSET (MaxCount), "Max Count", 0}, {ACPI_DMT_UINT8, ACPI_WDRT_OFFSET (Units), "Counter Units", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * WPBT - Windows Platform Environment Table (ACPI 6.0) * Version 1 * * Conforms to "Windows Platform Binary Table (WPBT)" 29 November 2011 * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoWpbt[] = { {ACPI_DMT_UINT32, ACPI_WPBT_OFFSET (HandoffSize), "Handoff Size", 0}, {ACPI_DMT_UINT64, ACPI_WPBT_OFFSET (HandoffAddress), "Handoff Address", 0}, {ACPI_DMT_UINT8, ACPI_WPBT_OFFSET (Layout), "Layout", 0}, {ACPI_DMT_UINT8, ACPI_WPBT_OFFSET (Type), "Type", 0}, {ACPI_DMT_UINT16, ACPI_WPBT_OFFSET (ArgumentsLength), "Arguments Length", 0}, ACPI_DMT_TERMINATOR }; ACPI_DMTABLE_INFO AcpiDmTableInfoWpbt0[] = { {ACPI_DMT_UNICODE, sizeof (ACPI_TABLE_WPBT), "Command-line Arguments", 0}, ACPI_DMT_TERMINATOR }; /******************************************************************************* * * XENV - Xen Environment table (ACPI 6.0) * ******************************************************************************/ ACPI_DMTABLE_INFO AcpiDmTableInfoXenv[] = { {ACPI_DMT_UINT64, ACPI_XENV_OFFSET (GrantTableAddress), "Grant Table Address", 0}, {ACPI_DMT_UINT64, ACPI_XENV_OFFSET (GrantTableSize), "Grant Table Size", 0}, {ACPI_DMT_UINT32, ACPI_XENV_OFFSET (EventInterrupt), "Event Interrupt", 0}, {ACPI_DMT_UINT8, ACPI_XENV_OFFSET (EventFlags), "Event Flags", 0}, ACPI_DMT_TERMINATOR }; /*! [Begin] no source code translation */ /* * Generic types (used in UEFI and custom tables) * * Examples: * * Buffer : cc 04 ff bb * UINT8 : 11 * UINT16 : 1122 * UINT24 : 112233 * UINT32 : 11223344 * UINT56 : 11223344556677 * UINT64 : 1122334455667788 * * String : "This is string" * Unicode : "This string encoded to Unicode" * * GUID : 11223344-5566-7788-99aa-bbccddeeff00 * DevicePath : "\PciRoot(0)\Pci(0x1f,1)\Usb(0,0)" */ #define ACPI_DM_GENERIC_ENTRY(FieldType, FieldName) \ {{FieldType, 0, FieldName, 0}, ACPI_DMT_TERMINATOR} ACPI_DMTABLE_INFO AcpiDmTableInfoGeneric[][2] = { ACPI_DM_GENERIC_ENTRY (ACPI_DMT_UINT8, "UINT8"), ACPI_DM_GENERIC_ENTRY (ACPI_DMT_UINT16, "UINT16"), ACPI_DM_GENERIC_ENTRY (ACPI_DMT_UINT24, "UINT24"), ACPI_DM_GENERIC_ENTRY (ACPI_DMT_UINT32, "UINT32"), ACPI_DM_GENERIC_ENTRY (ACPI_DMT_UINT40, "UINT40"), ACPI_DM_GENERIC_ENTRY (ACPI_DMT_UINT48, "UINT48"), ACPI_DM_GENERIC_ENTRY (ACPI_DMT_UINT56, "UINT56"), ACPI_DM_GENERIC_ENTRY (ACPI_DMT_UINT64, "UINT64"), ACPI_DM_GENERIC_ENTRY (ACPI_DMT_STRING, "String"), ACPI_DM_GENERIC_ENTRY (ACPI_DMT_UNICODE, "Unicode"), ACPI_DM_GENERIC_ENTRY (ACPI_DMT_BUFFER, "Buffer"), ACPI_DM_GENERIC_ENTRY (ACPI_DMT_UUID, "GUID"), ACPI_DM_GENERIC_ENTRY (ACPI_DMT_STRING, "DevicePath"), ACPI_DM_GENERIC_ENTRY (ACPI_DMT_LABEL, "Label"), {ACPI_DMT_TERMINATOR} }; /*! [End] no source code translation !*/ Index: head/sys/contrib/dev/acpica/compiler/aslbtypes.c =================================================================== --- head/sys/contrib/dev/acpica/compiler/aslbtypes.c (revision 308952) +++ head/sys/contrib/dev/acpica/compiler/aslbtypes.c (revision 308953) @@ -1,595 +1,594 @@ /****************************************************************************** * * Module Name: aslbtypes - Support for bitfield types * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include "aslcompiler.y.h" #include #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("aslbtypes") /* Local prototypes */ static UINT32 AnMapEtypeToBtype ( UINT32 Etype); /******************************************************************************* * * FUNCTION: AnMapArgTypeToBtype * * PARAMETERS: ArgType - The ARGI required type(s) for this * argument, from the opcode info table * * RETURN: The corresponding Bit-encoded types * * DESCRIPTION: Convert an encoded ARGI required argument type code into a * bitfield type code. Implements the implicit source conversion * rules. * ******************************************************************************/ UINT32 AnMapArgTypeToBtype ( UINT32 ArgType) { switch (ArgType) { /* Simple types */ case ARGI_ANYTYPE: return (ACPI_BTYPE_OBJECTS_AND_REFS); case ARGI_PACKAGE: return (ACPI_BTYPE_PACKAGE); case ARGI_EVENT: return (ACPI_BTYPE_EVENT); case ARGI_MUTEX: return (ACPI_BTYPE_MUTEX); case ARGI_DDBHANDLE: /* * DDBHandleObject := SuperName * ACPI_BTYPE_REFERENCE_OBJECT: * Index reference as parameter of Load/Unload */ return (ACPI_BTYPE_DDB_HANDLE | ACPI_BTYPE_REFERENCE_OBJECT); /* Interchangeable types */ /* * Source conversion rules: * Integer, String, and Buffer are all interchangeable */ case ARGI_INTEGER: case ARGI_STRING: case ARGI_BUFFER: case ARGI_BUFFER_OR_STRING: case ARGI_COMPUTEDATA: return (ACPI_BTYPE_COMPUTE_DATA); /* References */ case ARGI_INTEGER_REF: return (ACPI_BTYPE_INTEGER); case ARGI_OBJECT_REF: return (ACPI_BTYPE_ALL_OBJECTS); case ARGI_DEVICE_REF: return (ACPI_BTYPE_DEVICE_OBJECTS); case ARGI_REFERENCE: return (ACPI_BTYPE_NAMED_REFERENCE); /* Name or Namestring */ case ARGI_TARGETREF: /* * Target operand for most math and logic operators. * Package objects not allowed as target. */ return (ACPI_BTYPE_COMPUTE_DATA | ACPI_BTYPE_DEBUG_OBJECT | ACPI_BTYPE_REFERENCE_OBJECT); case ARGI_STORE_TARGET: /* Special target for Store(), includes packages */ return (ACPI_BTYPE_DATA | ACPI_BTYPE_DEBUG_OBJECT | ACPI_BTYPE_REFERENCE_OBJECT); - case ARGI_FIXED_TARGET: case ARGI_SIMPLE_TARGET: return (ACPI_BTYPE_OBJECTS_AND_REFS); /* Complex types */ case ARGI_DATAOBJECT: /* * Buffer, string, package or reference to a Op - * Used only by SizeOf operator */ return (ACPI_BTYPE_STRING | ACPI_BTYPE_BUFFER | ACPI_BTYPE_PACKAGE | ACPI_BTYPE_REFERENCE_OBJECT); case ARGI_COMPLEXOBJ: /* Buffer, String, or package */ return (ACPI_BTYPE_STRING | ACPI_BTYPE_BUFFER | ACPI_BTYPE_PACKAGE); case ARGI_REF_OR_STRING: /* Used by DeRefOf operator only */ return (ACPI_BTYPE_STRING | ACPI_BTYPE_REFERENCE_OBJECT); case ARGI_REGION_OR_BUFFER: /* Used by Load() only. Allow buffers in addition to regions/fields */ return (ACPI_BTYPE_REGION | ACPI_BTYPE_BUFFER | ACPI_BTYPE_FIELD_UNIT); case ARGI_DATAREFOBJ: /* Used by Store() only, as the source operand */ return (ACPI_BTYPE_DATA_REFERENCE | ACPI_BTYPE_REFERENCE_OBJECT); default: break; } return (ACPI_BTYPE_OBJECTS_AND_REFS); } /******************************************************************************* * * FUNCTION: AnMapEtypeToBtype * * PARAMETERS: Etype - Encoded ACPI Type * * RETURN: Btype corresponding to the Etype * * DESCRIPTION: Convert an encoded ACPI type to a bitfield type applying the * operand conversion rules. In other words, returns the type(s) * this Etype is implicitly converted to during interpretation. * ******************************************************************************/ static UINT32 AnMapEtypeToBtype ( UINT32 Etype) { if (Etype == ACPI_TYPE_ANY) { return (ACPI_BTYPE_OBJECTS_AND_REFS); } /* Try the standard ACPI data types */ if (Etype <= ACPI_TYPE_EXTERNAL_MAX) { /* * This switch statement implements the allowed operand conversion * rules as per the "ASL Data Types" section of the ACPI * specification. */ switch (Etype) { case ACPI_TYPE_INTEGER: return (ACPI_BTYPE_COMPUTE_DATA | ACPI_BTYPE_DDB_HANDLE); case ACPI_TYPE_STRING: case ACPI_TYPE_BUFFER: return (ACPI_BTYPE_COMPUTE_DATA); case ACPI_TYPE_PACKAGE: return (ACPI_BTYPE_PACKAGE); case ACPI_TYPE_FIELD_UNIT: return (ACPI_BTYPE_COMPUTE_DATA | ACPI_BTYPE_FIELD_UNIT); case ACPI_TYPE_BUFFER_FIELD: return (ACPI_BTYPE_COMPUTE_DATA | ACPI_BTYPE_BUFFER_FIELD); case ACPI_TYPE_DDB_HANDLE: return (ACPI_BTYPE_INTEGER | ACPI_BTYPE_DDB_HANDLE); case ACPI_TYPE_DEBUG_OBJECT: /* Cannot be used as a source operand */ return (0); default: return (1 << (Etype - 1)); } } /* Try the internal data types */ switch (Etype) { case ACPI_TYPE_LOCAL_REGION_FIELD: case ACPI_TYPE_LOCAL_BANK_FIELD: case ACPI_TYPE_LOCAL_INDEX_FIELD: /* Named fields can be either Integer/Buffer/String */ return (ACPI_BTYPE_COMPUTE_DATA | ACPI_BTYPE_FIELD_UNIT); case ACPI_TYPE_LOCAL_ALIAS: return (ACPI_BTYPE_INTEGER); case ACPI_TYPE_LOCAL_RESOURCE: case ACPI_TYPE_LOCAL_RESOURCE_FIELD: return (ACPI_BTYPE_REFERENCE_OBJECT); default: printf ("Unhandled encoded type: %X\n", Etype); return (0); } } /******************************************************************************* * * FUNCTION: AnFormatBtype * * PARAMETERS: Btype - Bitfield of ACPI types * Buffer - Where to put the ascii string * * RETURN: None. * * DESCRIPTION: Convert a Btype to a string of ACPI types * ******************************************************************************/ void AnFormatBtype ( char *Buffer, UINT32 Btype) { UINT32 Type; BOOLEAN First = TRUE; *Buffer = 0; if (Btype == 0) { strcat (Buffer, "NoReturnValue"); return; } for (Type = 1; Type <= ACPI_TYPE_EXTERNAL_MAX; Type++) { if (Btype & 0x00000001) { if (!First) { strcat (Buffer, "|"); } First = FALSE; strcat (Buffer, AcpiUtGetTypeName (Type)); } Btype >>= 1; } if (Btype & 0x00000001) { if (!First) { strcat (Buffer, "|"); } First = FALSE; strcat (Buffer, "Reference"); } Btype >>= 1; if (Btype & 0x00000001) { if (!First) { strcat (Buffer, "|"); } First = FALSE; strcat (Buffer, "Resource"); } } /******************************************************************************* * * FUNCTION: AnGetBtype * * PARAMETERS: Op - Parse node whose type will be returned. * * RETURN: The Btype associated with the Op. * * DESCRIPTION: Get the (bitfield) ACPI type associated with the parse node. * Handles the case where the node is a name or method call and * the actual type must be obtained from the namespace node. * ******************************************************************************/ UINT32 AnGetBtype ( ACPI_PARSE_OBJECT *Op) { ACPI_NAMESPACE_NODE *Node; ACPI_PARSE_OBJECT *ReferencedNode; UINT32 ThisNodeBtype = 0; if (!Op) { AcpiOsPrintf ("Null Op in AnGetBtype\n"); return (ACPI_UINT32_MAX); } if ((Op->Asl.ParseOpcode == PARSEOP_NAMESEG) || (Op->Asl.ParseOpcode == PARSEOP_NAMESTRING) || (Op->Asl.ParseOpcode == PARSEOP_METHODCALL)) { Node = Op->Asl.Node; if (!Node) { /* These are not expected to have a node at this time */ if ((Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_CREATEWORDFIELD) || (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_CREATEDWORDFIELD) || (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_CREATEQWORDFIELD) || (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_CREATEBYTEFIELD) || (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_CREATEBITFIELD) || (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_CREATEFIELD) || (Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_CONDREFOF)) { return (ACPI_UINT32_MAX - 1); } DbgPrint (ASL_DEBUG_OUTPUT, "No attached Nsnode: [%s] at line %u name [%s], " "ignoring typecheck. Parent [%s]\n", Op->Asl.ParseOpName, Op->Asl.LineNumber, Op->Asl.ExternalName, Op->Asl.Parent->Asl.ParseOpName); return (ACPI_UINT32_MAX - 1); } ThisNodeBtype = AnMapEtypeToBtype (Node->Type); if (!ThisNodeBtype) { AslError (ASL_ERROR, ASL_MSG_COMPILER_INTERNAL, Op, "could not map type"); } if (Op->Asl.ParseOpcode == PARSEOP_METHODCALL) { ReferencedNode = Node->Op; if (!ReferencedNode) { /* Check for an internal method */ if (AnIsInternalMethod (Op)) { return (AnGetInternalMethodReturnType (Op)); } AslError (ASL_ERROR, ASL_MSG_COMPILER_INTERNAL, Op, "null Op pointer"); return (ACPI_UINT32_MAX); } if (ReferencedNode->Asl.CompileFlags & NODE_METHOD_TYPED) { ThisNodeBtype = ReferencedNode->Asl.AcpiBtype; } else { return (ACPI_UINT32_MAX -1); } } } else { ThisNodeBtype = Op->Asl.AcpiBtype; } return (ThisNodeBtype); } /******************************************************************************* * * FUNCTION: AnMapObjTypeToBtype * * PARAMETERS: Op - A parse node * * RETURN: A Btype * * DESCRIPTION: Map object to the associated "Btype" * ******************************************************************************/ UINT32 AnMapObjTypeToBtype ( ACPI_PARSE_OBJECT *Op) { switch (Op->Asl.ParseOpcode) { case PARSEOP_OBJECTTYPE_BFF: /* "BuffFieldObj" */ return (ACPI_BTYPE_BUFFER_FIELD); case PARSEOP_OBJECTTYPE_BUF: /* "BuffObj" */ return (ACPI_BTYPE_BUFFER); case PARSEOP_OBJECTTYPE_DDB: /* "DDBHandleObj" */ return (ACPI_BTYPE_DDB_HANDLE); case PARSEOP_OBJECTTYPE_DEV: /* "DeviceObj" */ return (ACPI_BTYPE_DEVICE); case PARSEOP_OBJECTTYPE_EVT: /* "EventObj" */ return (ACPI_BTYPE_EVENT); case PARSEOP_OBJECTTYPE_FLD: /* "FieldUnitObj" */ return (ACPI_BTYPE_FIELD_UNIT); case PARSEOP_OBJECTTYPE_INT: /* "IntObj" */ return (ACPI_BTYPE_INTEGER); case PARSEOP_OBJECTTYPE_MTH: /* "MethodObj" */ return (ACPI_BTYPE_METHOD); case PARSEOP_OBJECTTYPE_MTX: /* "MutexObj" */ return (ACPI_BTYPE_MUTEX); case PARSEOP_OBJECTTYPE_OPR: /* "OpRegionObj" */ return (ACPI_BTYPE_REGION); case PARSEOP_OBJECTTYPE_PKG: /* "PkgObj" */ return (ACPI_BTYPE_PACKAGE); case PARSEOP_OBJECTTYPE_POW: /* "PowerResObj" */ return (ACPI_BTYPE_POWER); case PARSEOP_OBJECTTYPE_STR: /* "StrObj" */ return (ACPI_BTYPE_STRING); case PARSEOP_OBJECTTYPE_THZ: /* "ThermalZoneObj" */ return (ACPI_BTYPE_THERMAL); case PARSEOP_OBJECTTYPE_UNK: /* "UnknownObj" */ return (ACPI_BTYPE_OBJECTS_AND_REFS); default: return (0); } } #ifdef ACPI_OBSOLETE_FUNCTIONS /******************************************************************************* * * FUNCTION: AnMapBtypeToEtype * * PARAMETERS: Btype - Bitfield of ACPI types * * RETURN: The Etype corresponding the the Btype * * DESCRIPTION: Convert a bitfield type to an encoded type * ******************************************************************************/ UINT32 AnMapBtypeToEtype ( UINT32 Btype) { UINT32 i; UINT32 Etype; if (Btype == 0) { return (0); } Etype = 1; for (i = 1; i < Btype; i *= 2) { Etype++; } return (Etype); } #endif Index: head/sys/contrib/dev/acpica/compiler/aslcompiler.l =================================================================== --- head/sys/contrib/dev/acpica/compiler/aslcompiler.l (revision 308952) +++ head/sys/contrib/dev/acpica/compiler/aslcompiler.l (revision 308953) @@ -1,749 +1,749 @@ %{ /****************************************************************************** * * Module Name: aslcompiler.l - Flex/lex input file * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include "aslcompiler.y.h" #include #include YYSTYPE AslCompilerlval; /* * Generation: Use the following command line: * * flex.exe -PAslCompiler -i -o$(InputPath).c $(InputPath) * * -i: Scanner must be case-insensitive */ #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("aslscanner") /* Local prototypes */ static void AslDoLineDirective (void); static char AslDoComment (void); static char AslDoCommentType2 (void); static char AslDoStringLiteral (void); static void count (int type); /*! [Begin] no source code translation */ %} /* Definitions */ LeadNameChar [A-Za-z_] DigitChar [0-9] HexDigitChar [A-Fa-f0-9] RootChar [\\] Nothing [] NameChar [A-Za-z_0-9] NameSeg1 {LeadNameChar}{NameChar} NameSeg2 {LeadNameChar}{NameChar}{NameChar} NameSeg3 {LeadNameChar}{NameChar}{NameChar}{NameChar} NameSeg {LeadNameChar}|{NameSeg1}|{NameSeg2}|{NameSeg3} NameString {RootChar}|{RootChar}{NamePath}|[\^]+{NamePath}|{NonEmptyNamePath} NamePath {NonEmptyNamePath}? NonEmptyNamePath {NameSeg}{NamePathTail}* NamePathTail [.]{NameSeg} %% /* Rules */ [ ] { count (0); } [\n] { count (0); } /* Handle files with both LF and CR/LF */ [\r] { count (0); } /* termination on both Unix and Windows */ [ \t] { count (0); } "/*" { if (!AslDoComment ()) {yyterminate ();} } "//" { if (!AslDoCommentType2 ()) {yyterminate ();} } "\"" { if (AslDoStringLiteral ()) {return (PARSEOP_STRING_LITERAL);} else {yyterminate ();} } ";" { count (0); return(';'); } /* ASL Extension: Standard C operators */ "~" { count (3); return (PARSEOP_EXP_NOT); } "!" { count (3); return (PARSEOP_EXP_LOGICAL_NOT); } "*" { count (3); return (PARSEOP_EXP_MULTIPLY); } "/" { count (3); return (PARSEOP_EXP_DIVIDE); } "%" { count (3); return (PARSEOP_EXP_MODULO); } "+" { count (3); return (PARSEOP_EXP_ADD); } "-" { count (3); return (PARSEOP_EXP_SUBTRACT); } ">>" { count (3); return (PARSEOP_EXP_SHIFT_RIGHT); } "<<" { count (3); return (PARSEOP_EXP_SHIFT_LEFT); } "<" { count (3); return (PARSEOP_EXP_LESS); } ">" { count (3); return (PARSEOP_EXP_GREATER); } "&" { count (3); return (PARSEOP_EXP_AND); } "<=" { count (3); return (PARSEOP_EXP_LESS_EQUAL); } ">=" { count (3); return (PARSEOP_EXP_GREATER_EQUAL); } "==" { count (3); return (PARSEOP_EXP_EQUAL); } "!=" { count (3); return (PARSEOP_EXP_NOT_EQUAL); } "|" { count (3); return (PARSEOP_EXP_OR); } "&&" { count (3); return (PARSEOP_EXP_LOGICAL_AND); } "||" { count (3); return (PARSEOP_EXP_LOGICAL_OR); } "++" { count (3); return (PARSEOP_EXP_INCREMENT); } "--" { count (3); return (PARSEOP_EXP_DECREMENT); } "^ " { count (3); return (PARSEOP_EXP_XOR); } /* ASL Extension: Standard C assignment operators */ "=" { count (3); return (PARSEOP_EXP_EQUALS); } "+=" { count (3); return (PARSEOP_EXP_ADD_EQ); } "-=" { count (3); return (PARSEOP_EXP_SUB_EQ); } "*=" { count (3); return (PARSEOP_EXP_MUL_EQ); } "/=" { count (3); return (PARSEOP_EXP_DIV_EQ); } "%=" { count (3); return (PARSEOP_EXP_MOD_EQ); } "<<=" { count (3); return (PARSEOP_EXP_SHL_EQ); } ">>=" { count (3); return (PARSEOP_EXP_SHR_EQ); } "&=" { count (3); return (PARSEOP_EXP_AND_EQ); } "^=" { count (3); return (PARSEOP_EXP_XOR_EQ); } "|=" { count (3); return (PARSEOP_EXP_OR_EQ); } -"[" { count (3); return(PARSEOP_EXP_INDEX_LEFT); } -"]" { count (0); return(PARSEOP_EXP_INDEX_RIGHT); } +"[" { count (3); return (PARSEOP_EXP_INDEX_LEFT); } +"]" { count (0); return (PARSEOP_EXP_INDEX_RIGHT); } +"(" { count (0); return (PARSEOP_OPEN_PAREN); } +")" { count (0); return (PARSEOP_CLOSE_PAREN); } +"{" { count (0); return ('{'); } +"}" { count (0); return ('}'); } +"," { count (0); return (','); } + /* * Begin standard ASL grammar */ 0[xX]{HexDigitChar}+ | {DigitChar}+ { AslCompilerlval.i = UtDoConstant ((char *) AslCompilertext); count (1); return (PARSEOP_INTEGER); } "Include" { count (1); return (PARSEOP_INCLUDE); } "External" { count (1); return (PARSEOP_EXTERNAL); } /* * The #line directive is emitted by the preprocessor and handled * here in the main iASL lexer - simply set the line number and * optionally the current filename. */ "#line" { AslDoLineDirective ();} /**************************************************************************** * * Main ASL operators * ****************************************************************************/ "AccessAs" { count (1); return (PARSEOP_ACCESSAS); } "Acquire" { count (3); return (PARSEOP_ACQUIRE); } "Add" { count (3); return (PARSEOP_ADD); } "Alias" { count (2); return (PARSEOP_ALIAS); } "And" { count (3); return (PARSEOP_AND); } "BankField" { count (2); return (PARSEOP_BANKFIELD); } "Break" { count (3); return (PARSEOP_BREAK); } "BreakPoint" { count (3); return (PARSEOP_BREAKPOINT); } "Buffer" { count (1); return (PARSEOP_BUFFER); } "Case" { count (3); return (PARSEOP_CASE); } "Concatenate" { count (3); return (PARSEOP_CONCATENATE); } "ConcatenateResTemplate" { count (3); return (PARSEOP_CONCATENATERESTEMPLATE); } "CondRefOf" { count (3); return (PARSEOP_CONDREFOF); } "Connection" { count (2); return (PARSEOP_CONNECTION); } "Continue" { count (3); return (PARSEOP_CONTINUE); } "CopyObject" { count (3); return (PARSEOP_COPYOBJECT); } "CreateBitField" { count (2); return (PARSEOP_CREATEBITFIELD); } "CreateByteField" { count (2); return (PARSEOP_CREATEBYTEFIELD); } "CreateDWordField" { count (2); return (PARSEOP_CREATEDWORDFIELD); } "CreateField" { count (2); return (PARSEOP_CREATEFIELD); } "CreateQWordField" { count (2); return (PARSEOP_CREATEQWORDFIELD); } "CreateWordField" { count (2); return (PARSEOP_CREATEWORDFIELD); } "DataTableRegion" { count (2); return (PARSEOP_DATATABLEREGION); } "Debug" { count (1); return (PARSEOP_DEBUG); } "Decrement" { count (3); return (PARSEOP_DECREMENT); } "Default" { count (3); return (PARSEOP_DEFAULT); } "DefinitionBlock" { count (1); return (PARSEOP_DEFINITION_BLOCK); } "DeRefOf" { count (3); return (PARSEOP_DEREFOF); } "Device" { count (2); return (PARSEOP_DEVICE); } "Divide" { count (3); return (PARSEOP_DIVIDE); } "Eisaid" { count (1); return (PARSEOP_EISAID); } "Else" { count (3); return (PARSEOP_ELSE); } "ElseIf" { count (3); return (PARSEOP_ELSEIF); } "Event" { count (2); return (PARSEOP_EVENT); } "Fatal" { count (3); return (PARSEOP_FATAL); } "Field" { count (2); return (PARSEOP_FIELD); } "FindSetLeftBit" { count (3); return (PARSEOP_FINDSETLEFTBIT); } "FindSetRightBit" { count (3); return (PARSEOP_FINDSETRIGHTBIT); } "FromBcd" { count (3); return (PARSEOP_FROMBCD); } "Function" { count (2); return (PARSEOP_FUNCTION); } "If" { count (3); return (PARSEOP_IF); } "Increment" { count (3); return (PARSEOP_INCREMENT); } "Index" { count (3); return (PARSEOP_INDEX); } "IndexField" { count (2); return (PARSEOP_INDEXFIELD); } "LAnd" { count (3); return (PARSEOP_LAND); } "LEqual" { count (3); return (PARSEOP_LEQUAL); } "LGreater" { count (3); return (PARSEOP_LGREATER); } "LGreaterEqual" { count (3); return (PARSEOP_LGREATEREQUAL); } "LLess" { count (3); return (PARSEOP_LLESS); } "LLessEqual" { count (3); return (PARSEOP_LLESSEQUAL); } "LNot" { count (3); return (PARSEOP_LNOT); } "LNotEqual" { count (3); return (PARSEOP_LNOTEQUAL); } "Load" { count (3); return (PARSEOP_LOAD); } "LoadTable" { count (3); return (PARSEOP_LOADTABLE); } "LOr" { count (3); return (PARSEOP_LOR); } "Match" { count (3); return (PARSEOP_MATCH); } "Method" { count (2); return (PARSEOP_METHOD); } "Mid" { count (3); return (PARSEOP_MID); } "Mod" { count (3); return (PARSEOP_MOD); } "Multiply" { count (3); return (PARSEOP_MULTIPLY); } "Mutex" { count (2); return (PARSEOP_MUTEX); } "Name" { count (2); return (PARSEOP_NAME); } "NAnd" { count (3); return (PARSEOP_NAND); } "Noop" { if (!AcpiGbl_IgnoreNoopOperator) {count (3); return (PARSEOP_NOOP);} } "NOr" { count (3); return (PARSEOP_NOR); } "Not" { count (3); return (PARSEOP_NOT); } "Notify" { count (3); return (PARSEOP_NOTIFY); } "ObjectType" { count (3); return (PARSEOP_OBJECTTYPE); } "Offset" { count (1); return (PARSEOP_OFFSET); } "One" { count (1); return (PARSEOP_ONE); } "Ones" { count (1); return (PARSEOP_ONES); } "OperationRegion" { count (2); return (PARSEOP_OPERATIONREGION); } "Or" { count (3); return (PARSEOP_OR); } "Package" { count (1); return (PARSEOP_PACKAGE); } "PowerResource" { count (2); return (PARSEOP_POWERRESOURCE); } "Processor" { count (2); return (PARSEOP_PROCESSOR); } "RefOf" { count (3); return (PARSEOP_REFOF); } "Release" { count (3); return (PARSEOP_RELEASE); } "Reset" { count (3); return (PARSEOP_RESET); } "Return" { count (3); return (PARSEOP_RETURN); } "Revision" { count (1); return (PARSEOP_REVISION); } "Scope" { count (2); return (PARSEOP_SCOPE); } "ShiftLeft" { count (3); return (PARSEOP_SHIFTLEFT); } "ShiftRight" { count (3); return (PARSEOP_SHIFTRIGHT); } "Signal" { count (3); return (PARSEOP_SIGNAL); } "SizeOf" { count (3); return (PARSEOP_SIZEOF); } "Sleep" { count (3); return (PARSEOP_SLEEP); } "Stall" { count (3); return (PARSEOP_STALL); } "Store" { count (3); return (PARSEOP_STORE); } "Subtract" { count (3); return (PARSEOP_SUBTRACT); } "Switch" { count (3); return (PARSEOP_SWITCH); } "ThermalZone" { count (2); return (PARSEOP_THERMALZONE); } "Timer" { count (3); return (PARSEOP_TIMER); } "ToBcd" { count (3); return (PARSEOP_TOBCD); } "ToBuffer" { count (3); return (PARSEOP_TOBUFFER); } "ToDecimalString" { count (3); return (PARSEOP_TODECIMALSTRING); } "ToHexString" { count (3); return (PARSEOP_TOHEXSTRING); } "ToInteger" { count (3); return (PARSEOP_TOINTEGER); } "ToString" { count (3); return (PARSEOP_TOSTRING); } "ToUuid" { count (1); return (PARSEOP_TOUUID); } "Unicode" { count (1); return (PARSEOP_UNICODE); } "Unload" { count (3); return (PARSEOP_UNLOAD); } "Wait" { count (3); return (PARSEOP_WAIT); } "While" { count (3); return (PARSEOP_WHILE); } "XOr" { count (3); return (PARSEOP_XOR); } "Zero" { count (1); return (PARSEOP_ZERO); } /* Control method arguments and locals */ "Arg0" { count (1); return (PARSEOP_ARG0); } "Arg1" { count (1); return (PARSEOP_ARG1); } "Arg2" { count (1); return (PARSEOP_ARG2); } "Arg3" { count (1); return (PARSEOP_ARG3); } "Arg4" { count (1); return (PARSEOP_ARG4); } "Arg5" { count (1); return (PARSEOP_ARG5); } "Arg6" { count (1); return (PARSEOP_ARG6); } "Local0" { count (1); return (PARSEOP_LOCAL0); } "Local1" { count (1); return (PARSEOP_LOCAL1); } "Local2" { count (1); return (PARSEOP_LOCAL2); } "Local3" { count (1); return (PARSEOP_LOCAL3); } "Local4" { count (1); return (PARSEOP_LOCAL4); } "Local5" { count (1); return (PARSEOP_LOCAL5); } "Local6" { count (1); return (PARSEOP_LOCAL6); } "Local7" { count (1); return (PARSEOP_LOCAL7); } /**************************************************************************** * * Resource Descriptor macros * ****************************************************************************/ "ResourceTemplate" { count (1); return (PARSEOP_RESOURCETEMPLATE); } "RawDataBuffer" { count (1); return (PARSEOP_DATABUFFER); } "DMA" { count (1); return (PARSEOP_DMA); } "DWordIO" { count (1); return (PARSEOP_DWORDIO); } "DWordMemory" { count (1); return (PARSEOP_DWORDMEMORY); } "DWordSpace" { count (1); return (PARSEOP_DWORDSPACE); } "EndDependentFn" { count (1); return (PARSEOP_ENDDEPENDENTFN); } "ExtendedIO" { count (1); return (PARSEOP_EXTENDEDIO); } "ExtendedMemory" { count (1); return (PARSEOP_EXTENDEDMEMORY); } "ExtendedSpace" { count (1); return (PARSEOP_EXTENDEDSPACE); } "FixedDma" { count (1); return (PARSEOP_FIXEDDMA); } "FixedIO" { count (1); return (PARSEOP_FIXEDIO); } "GpioInt" { count (1); return (PARSEOP_GPIO_INT); } "GpioIo" { count (1); return (PARSEOP_GPIO_IO); } "I2cSerialBus" { count (1); return (PARSEOP_I2C_SERIALBUS); } "I2cSerialBusV2" { count (1); return (PARSEOP_I2C_SERIALBUS_V2); } "Interrupt" { count (1); return (PARSEOP_INTERRUPT); } "IO" { count (1); return (PARSEOP_IO); } "IRQ" { count (1); return (PARSEOP_IRQ); } "IRQNoFlags" { count (1); return (PARSEOP_IRQNOFLAGS); } "Memory24" { count (1); return (PARSEOP_MEMORY24); } "Memory32" { count (1); return (PARSEOP_MEMORY32); } "Memory32Fixed" { count (1); return (PARSEOP_MEMORY32FIXED); } "QWordIO" { count (1); return (PARSEOP_QWORDIO); } "QWordMemory" { count (1); return (PARSEOP_QWORDMEMORY); } "QWordSpace" { count (1); return (PARSEOP_QWORDSPACE); } "Register" { count (1); return (PARSEOP_REGISTER); } "SpiSerialBus" { count (1); return (PARSEOP_SPI_SERIALBUS); } "SpiSerialBusV2" { count (1); return (PARSEOP_SPI_SERIALBUS_V2); } "StartDependentFn" { count (1); return (PARSEOP_STARTDEPENDENTFN); } "StartDependentFnNoPri" { count (1); return (PARSEOP_STARTDEPENDENTFN_NOPRI); } "UartSerialBus" { count (1); return (PARSEOP_UART_SERIALBUS); } "UartSerialBusV2" { count (1); return (PARSEOP_UART_SERIALBUS_V2); } "VendorLong" { count (1); return (PARSEOP_VENDORLONG); } "VendorShort" { count (1); return (PARSEOP_VENDORSHORT); } "WordBusNumber" { count (1); return (PARSEOP_WORDBUSNUMBER); } "WordIO" { count (1); return (PARSEOP_WORDIO); } "WordSpace" { count (1); return (PARSEOP_WORDSPACE); } /**************************************************************************** * * Keywords used as arguments to ASL operators and macros * ****************************************************************************/ /* AccessAttribKeyword: Serial Bus Attributes (ACPI 5.0) */ "AttribQuick" { count (0); return (PARSEOP_ACCESSATTRIB_QUICK); } "AttribSendReceive" { count (0); return (PARSEOP_ACCESSATTRIB_SND_RCV); } "AttribByte" { count (0); return (PARSEOP_ACCESSATTRIB_BYTE); } "AttribWord" { count (0); return (PARSEOP_ACCESSATTRIB_WORD); } "AttribBlock" { count (0); return (PARSEOP_ACCESSATTRIB_BLOCK); } "AttribProcessCall" { count (0); return (PARSEOP_ACCESSATTRIB_WORD_CALL); } "AttribBlockProcessCall" { count (0); return (PARSEOP_ACCESSATTRIB_BLOCK_CALL); } /* AccessAttribKeyword: Legacy synonyms for above (pre-ACPI 5.0) */ "SMBQuick" { count (0); return (PARSEOP_ACCESSATTRIB_QUICK); } "SMBSendReceive" { count (0); return (PARSEOP_ACCESSATTRIB_SND_RCV); } "SMBByte" { count (0); return (PARSEOP_ACCESSATTRIB_BYTE); } "SMBWord" { count (0); return (PARSEOP_ACCESSATTRIB_WORD); } "SMBBlock" { count (0); return (PARSEOP_ACCESSATTRIB_BLOCK); } "SMBProcessCall" { count (0); return (PARSEOP_ACCESSATTRIB_WORD_CALL); } "SMBBlockProcessCall" { count (0); return (PARSEOP_ACCESSATTRIB_BLOCK_CALL); } /* AccessTypeKeyword: Field Access Types */ "AnyAcc" { count (0); return (PARSEOP_ACCESSTYPE_ANY); } "ByteAcc" { count (0); return (PARSEOP_ACCESSTYPE_BYTE); } "WordAcc" { count (0); return (PARSEOP_ACCESSTYPE_WORD); } "DWordAcc" { count (0); return (PARSEOP_ACCESSTYPE_DWORD); } "QWordAcc" { count (0); return (PARSEOP_ACCESSTYPE_QWORD); } "BufferAcc" { count (0); return (PARSEOP_ACCESSTYPE_BUF); } /* AddressingModeKeyword: Mode - Resource Descriptors (ACPI 5.0) */ "AddressingMode7Bit" { count (0); return (PARSEOP_ADDRESSINGMODE_7BIT); } "AddressingMode10Bit" { count (0); return (PARSEOP_ADDRESSINGMODE_10BIT); } /* AddressKeyword: ACPI memory range types */ "AddressRangeMemory" { count (0); return (PARSEOP_ADDRESSTYPE_MEMORY); } "AddressRangeReserved" { count (0); return (PARSEOP_ADDRESSTYPE_RESERVED); } "AddressRangeNVS" { count (0); return (PARSEOP_ADDRESSTYPE_NVS); } "AddressRangeACPI" { count (0); return (PARSEOP_ADDRESSTYPE_ACPI); } /* BusMasterKeyword: DMA Bus Mastering */ "BusMaster" { count (0); return (PARSEOP_BUSMASTERTYPE_MASTER); } "NotBusMaster" { count (0); return (PARSEOP_BUSMASTERTYPE_NOTMASTER); } /* ByteLengthKeyword: Bits per Byte - Resource Descriptors (ACPI 5.0) */ "DataBitsFive" { count (0); return (PARSEOP_BITSPERBYTE_FIVE); } "DataBitsSix" { count (0); return (PARSEOP_BITSPERBYTE_SIX); } "DataBitsSeven" { count (0); return (PARSEOP_BITSPERBYTE_SEVEN); } "DataBitsEight" { count (0); return (PARSEOP_BITSPERBYTE_EIGHT); } "DataBitsNine" { count (0); return (PARSEOP_BITSPERBYTE_NINE); } /* ClockPhaseKeyword: Resource Descriptors (ACPI 5.0) */ "ClockPhaseFirst" { count (0); return (PARSEOP_CLOCKPHASE_FIRST); } "ClockPhaseSecond" { count (0); return (PARSEOP_CLOCKPHASE_SECOND); } /* ClockPolarityKeyword: Resource Descriptors (ACPI 5.0) */ "ClockPolarityLow" { count (0); return (PARSEOP_CLOCKPOLARITY_LOW); } "ClockPolarityHigh" { count (0); return (PARSEOP_CLOCKPOLARITY_HIGH); } /* DecodeKeyword: Type of Memory Decoding - Resource Descriptors */ "PosDecode" { count (0); return (PARSEOP_DECODETYPE_POS); } "SubDecode" { count (0); return (PARSEOP_DECODETYPE_SUB); } /* DmaTypeKeyword: DMA Types - DMA Resource Descriptor */ "Compatibility" { count (0); return (PARSEOP_DMATYPE_COMPATIBILITY); } "TypeA" { count (0); return (PARSEOP_DMATYPE_A); } "TypeB" { count (0); return (PARSEOP_DMATYPE_B); } "TypeF" { count (0); return (PARSEOP_DMATYPE_F); } /* EndianKeyword: Endian type - Resource Descriptor (ACPI 5.0) */ "LittleEndian" { count (0); return (PARSEOP_ENDIAN_LITTLE); } "BigEndian" { count (0); return (PARSEOP_ENDIAN_BIG); } /* ExtendedAttribKeyword: Bus attributes, AccessAs operator (ACPI 5.0) */ "AttribBytes" { count (0); return (PARSEOP_ACCESSATTRIB_MULTIBYTE); } "AttribRawBytes" { count (0); return (PARSEOP_ACCESSATTRIB_RAW_BYTES); } "AttribRawProcessBytes" { count (0); return (PARSEOP_ACCESSATTRIB_RAW_PROCESS); } /* FlowControlKeyword: Resource Descriptors (ACPI 5.0) */ "FlowControlHardware" { count (0); return (PARSEOP_FLOWCONTROL_HW); } "FlowControlNone" { count (0); return (PARSEOP_FLOWCONTROL_NONE); } "FlowControlXon" { count (0); return (PARSEOP_FLOWCONTROL_SW); } /* InterruptLevelKeyword: Interrupt Active Types */ "ActiveBoth" { count (0); return (PARSEOP_INTLEVEL_ACTIVEBOTH); } "ActiveHigh" { count (0); return (PARSEOP_INTLEVEL_ACTIVEHIGH); } "ActiveLow" { count (0); return (PARSEOP_INTLEVEL_ACTIVELOW); } /* InterruptTypeKeyword: Interrupt Types */ "Edge" { count (0); return (PARSEOP_INTTYPE_EDGE); } "Level" { count (0); return (PARSEOP_INTTYPE_LEVEL); } /* IoDecodeKeyword: Type of Memory Decoding - Resource Descriptors */ "Decode10" { count (0); return (PARSEOP_IODECODETYPE_10); } "Decode16" { count (0); return (PARSEOP_IODECODETYPE_16); } /* IoRestrictionKeyword: I/O Restriction - GPIO Resource Descriptors (ACPI 5.0) */ "IoRestrictionNone" { count (0); return (PARSEOP_IORESTRICT_NONE); } "IoRestrictionInputOnly" { count (0); return (PARSEOP_IORESTRICT_IN); } "IoRestrictionOutputOnly" { count (0); return (PARSEOP_IORESTRICT_OUT); } "IoRestrictionNoneAndPreserve" { count (0); return (PARSEOP_IORESTRICT_PRESERVE); } /* LockRuleKeyword: Global Lock use for Field Operator */ "Lock" { count (0); return (PARSEOP_LOCKRULE_LOCK); } "NoLock" { count (0); return (PARSEOP_LOCKRULE_NOLOCK); } /* MatchOpKeyword: Types for Match Operator */ "MTR" { count (0); return (PARSEOP_MATCHTYPE_MTR); } "MEQ" { count (0); return (PARSEOP_MATCHTYPE_MEQ); } "MLE" { count (0); return (PARSEOP_MATCHTYPE_MLE); } "MLT" { count (0); return (PARSEOP_MATCHTYPE_MLT); } "MGE" { count (0); return (PARSEOP_MATCHTYPE_MGE); } "MGT" { count (0); return (PARSEOP_MATCHTYPE_MGT); } /* MaxKeyword: Max Range Type - Resource Descriptors */ "MaxFixed" { count (0); return (PARSEOP_MAXTYPE_FIXED); } "MaxNotFixed" { count (0); return (PARSEOP_MAXTYPE_NOTFIXED); } /* MemTypeKeyword: Memory Types - Resource Descriptors */ "Cacheable" { count (0); return (PARSEOP_MEMTYPE_CACHEABLE); } "WriteCombining" { count (0); return (PARSEOP_MEMTYPE_WRITECOMBINING); } "Prefetchable" { count (0); return (PARSEOP_MEMTYPE_PREFETCHABLE); } "NonCacheable" { count (0); return (PARSEOP_MEMTYPE_NONCACHEABLE); } /* MinKeyword: Min Range Type - Resource Descriptors */ "MinFixed" { count (0); return (PARSEOP_MINTYPE_FIXED); } "MinNotFixed" { count (0); return (PARSEOP_MINTYPE_NOTFIXED); } /* ObjectTypeKeyword: ACPI Object Types */ "UnknownObj" { count (0); return (PARSEOP_OBJECTTYPE_UNK); } "IntObj" { count (0); return (PARSEOP_OBJECTTYPE_INT); } "StrObj" { count (0); return (PARSEOP_OBJECTTYPE_STR); } "BuffObj" { count (0); return (PARSEOP_OBJECTTYPE_BUF); } "PkgObj" { count (0); return (PARSEOP_OBJECTTYPE_PKG); } "FieldUnitObj" { count (0); return (PARSEOP_OBJECTTYPE_FLD); } "DeviceObj" { count (0); return (PARSEOP_OBJECTTYPE_DEV); } "EventObj" { count (0); return (PARSEOP_OBJECTTYPE_EVT); } "MethodObj" { count (0); return (PARSEOP_OBJECTTYPE_MTH); } "MutexObj" { count (0); return (PARSEOP_OBJECTTYPE_MTX); } "OpRegionObj" { count (0); return (PARSEOP_OBJECTTYPE_OPR); } "PowerResObj" { count (0); return (PARSEOP_OBJECTTYPE_POW); } "ProcessorObj" { count (0); return (PARSEOP_OBJECTTYPE_PRO); } "ThermalZoneObj" { count (0); return (PARSEOP_OBJECTTYPE_THZ); } "BuffFieldObj" { count (0); return (PARSEOP_OBJECTTYPE_BFF); } "DDBHandleObj" { count (0); return (PARSEOP_OBJECTTYPE_DDB); } /* ParityKeyword: Resource Descriptors (ACPI 5.0) */ "ParityTypeSpace" { count (0); return (PARSEOP_PARITYTYPE_SPACE); } "ParityTypeMark" { count (0); return (PARSEOP_PARITYTYPE_MARK); } "ParityTypeOdd" { count (0); return (PARSEOP_PARITYTYPE_ODD); } "ParityTypeEven" { count (0); return (PARSEOP_PARITYTYPE_EVEN); } "ParityTypeNone" { count (0); return (PARSEOP_PARITYTYPE_NONE); } /* PinConfigKeyword: Pin Configuration - GPIO Resource Descriptors (ACPI 5.0) */ "PullDefault" { count (0); return (PARSEOP_PIN_PULLDEFAULT); } "PullUp" { count (0); return (PARSEOP_PIN_PULLUP); } "PullDown" { count (0); return (PARSEOP_PIN_PULLDOWN); } "PullNone" { count (0); return (PARSEOP_PIN_NOPULL); } /* PolarityKeyword: Resource Descriptors (ACPI 5.0) */ "PolarityLow" { count (0); return (PARSEOP_DEVICEPOLARITY_LOW); } "PolarityHigh" { count (0); return (PARSEOP_DEVICEPOLARITY_HIGH); } /* RangeTypeKeyword: I/O Range Types - Resource Descriptors */ "ISAOnlyRanges" { count (0); return (PARSEOP_RANGETYPE_ISAONLY); } "NonISAOnlyRanges" { count (0); return (PARSEOP_RANGETYPE_NONISAONLY); } "EntireRange" { count (0); return (PARSEOP_RANGETYPE_ENTIRE); } /* ReadWriteKeyword: Memory Access Types - Resource Descriptors */ "ReadWrite" { count (0); return (PARSEOP_READWRITETYPE_BOTH); } "ReadOnly" { count (0); return (PARSEOP_READWRITETYPE_READONLY); } /* RegionSpaceKeyword: Operation Region Address Space Types */ "SystemIO" { count (0); return (PARSEOP_REGIONSPACE_IO); } "SystemMemory" { count (0); return (PARSEOP_REGIONSPACE_MEM); } "PCI_Config" { count (0); return (PARSEOP_REGIONSPACE_PCI); } "EmbeddedControl" { count (0); return (PARSEOP_REGIONSPACE_EC); } "SMBus" { count (0); return (PARSEOP_REGIONSPACE_SMBUS); } "SystemCMOS" { count (0); return (PARSEOP_REGIONSPACE_CMOS); } "PciBarTarget" { count (0); return (PARSEOP_REGIONSPACE_PCIBAR); } "IPMI" { count (0); return (PARSEOP_REGIONSPACE_IPMI); } "GeneralPurposeIo" { count (0); return (PARSEOP_REGIONSPACE_GPIO); } /* ACPI 5.0 */ "GenericSerialBus" { count (0); return (PARSEOP_REGIONSPACE_GSBUS); } /* ACPI 5.0 */ "PCC" { count (0); return (PARSEOP_REGIONSPACE_PCC); } /* ACPI 5.0 */ "FFixedHW" { count (0); return (PARSEOP_REGIONSPACE_FFIXEDHW); } /* ResourceTypeKeyword: Resource Usage - Resource Descriptors */ "ResourceConsumer" { count (0); return (PARSEOP_RESOURCETYPE_CONSUMER); } "ResourceProducer" { count (0); return (PARSEOP_RESOURCETYPE_PRODUCER); } /* SerializeRuleKeyword: Control Method Serialization */ "Serialized" { count (0); return (PARSEOP_SERIALIZERULE_SERIAL); } "NotSerialized" { count (0); return (PARSEOP_SERIALIZERULE_NOTSERIAL); } /* ShareTypeKeyword: Interrupt Sharing - Resource Descriptors */ "Shared" { count (0); return (PARSEOP_SHARETYPE_SHARED); } "Exclusive" { count (0); return (PARSEOP_SHARETYPE_EXCLUSIVE); } "SharedAndWake" { count (0); return (PARSEOP_SHARETYPE_SHAREDWAKE); } /* ACPI 5.0 */ "ExclusiveAndWake" { count (0); return (PARSEOP_SHARETYPE_EXCLUSIVEWAKE); } /* ACPI 5.0 */ /* SlaveModeKeyword: Resource Descriptors (ACPI 5.0) */ "ControllerInitiated" { count (0); return (PARSEOP_SLAVEMODE_CONTROLLERINIT); } "DeviceInitiated" { count (0); return (PARSEOP_SLAVEMODE_DEVICEINIT); } /* StopBitsKeyword: Resource Descriptors (ACPI 5.0) */ "StopBitsOne" { count (0); return (PARSEOP_STOPBITS_ONE); } "StopBitsOnePlusHalf" { count (0); return (PARSEOP_STOPBITS_ONEPLUSHALF); } "StopBitsTwo" { count (0); return (PARSEOP_STOPBITS_TWO); } "StopBitsZero" { count (0); return (PARSEOP_STOPBITS_ZERO); } /* TransferWidthKeyword: DMA Widths - Fixed DMA Resource Descriptor (ACPI 5.0) */ "Width8bit" { count (0); return (PARSEOP_XFERSIZE_8); } "Width16bit" { count (0); return (PARSEOP_XFERSIZE_16); } "Width32bit" { count (0); return (PARSEOP_XFERSIZE_32); } "Width64bit" { count (0); return (PARSEOP_XFERSIZE_64); } "Width128bit" { count (0); return (PARSEOP_XFERSIZE_128); } "Width256bit" { count (0); return (PARSEOP_XFERSIZE_256); } /* TranslationKeyword: Translation Density Types - Resource Descriptors */ "SparseTranslation" { count (0); return (PARSEOP_TRANSLATIONTYPE_SPARSE); } "DenseTranslation" { count (0); return (PARSEOP_TRANSLATIONTYPE_DENSE); } /* TypeKeyword: Translation Types - Resource Descriptors */ "TypeTranslation" { count (0); return (PARSEOP_TYPE_TRANSLATION); } "TypeStatic" { count (0); return (PARSEOP_TYPE_STATIC); } /* UpdateRuleKeyword: Field Update Rules */ "Preserve" { count (0); return (PARSEOP_UPDATERULE_PRESERVE); } "WriteAsOnes" { count (0); return (PARSEOP_UPDATERULE_ONES); } "WriteAsZeros" { count (0); return (PARSEOP_UPDATERULE_ZEROS); } /* WireModeKeyword: SPI Wire Mode - Resource Descriptors (ACPI 5.0) */ "FourWireMode" { count (0); return (PARSEOP_WIREMODE_FOUR); } "ThreeWireMode" { count (0); return (PARSEOP_WIREMODE_THREE); } /* XferTypeKeyword: DMA Transfer Types */ "Transfer8" { count (0); return (PARSEOP_XFERTYPE_8); } "Transfer8_16" { count (0); return (PARSEOP_XFERTYPE_8_16); } "Transfer16" { count (0); return (PARSEOP_XFERTYPE_16); } /* ToPld macro */ "ToPLD" { count (0); return (PARSEOP_TOPLD); } "PLD_Revision" { count (0); return (PARSEOP_PLD_REVISION); } "PLD_IgnoreColor" { count (0); return (PARSEOP_PLD_IGNORECOLOR); } "PLD_Red" { count (0); return (PARSEOP_PLD_RED); } "PLD_Green" { count (0); return (PARSEOP_PLD_GREEN); } "PLD_Blue" { count (0); return (PARSEOP_PLD_BLUE); } "PLD_Width" { count (0); return (PARSEOP_PLD_WIDTH); } "PLD_Height" { count (0); return (PARSEOP_PLD_HEIGHT); } "PLD_UserVisible" { count (0); return (PARSEOP_PLD_USERVISIBLE); } "PLD_Dock" { count (0); return (PARSEOP_PLD_DOCK); } "PLD_Lid" { count (0); return (PARSEOP_PLD_LID); } "PLD_Panel" { count (0); return (PARSEOP_PLD_PANEL); } "PLD_VerticalPosition" { count (0); return (PARSEOP_PLD_VERTICALPOSITION); } "PLD_HorizontalPosition" { count (0); return (PARSEOP_PLD_HORIZONTALPOSITION); } "PLD_Shape" { count (0); return (PARSEOP_PLD_SHAPE); } "PLD_GroupOrientation" { count (0); return (PARSEOP_PLD_GROUPORIENTATION); } "PLD_GroupToken" { count (0); return (PARSEOP_PLD_GROUPTOKEN); } "PLD_GroupPosition" { count (0); return (PARSEOP_PLD_GROUPPOSITION); } "PLD_Bay" { count (0); return (PARSEOP_PLD_BAY); } "PLD_Ejectable" { count (0); return (PARSEOP_PLD_EJECTABLE); } "PLD_EjectRequired" { count (0); return (PARSEOP_PLD_EJECTREQUIRED); } "PLD_CabinetNumber" { count (0); return (PARSEOP_PLD_CABINETNUMBER); } "PLD_CardCageNumber" { count (0); return (PARSEOP_PLD_CARDCAGENUMBER); } "PLD_Reference" { count (0); return (PARSEOP_PLD_REFERENCE); } "PLD_Rotation" { count (0); return (PARSEOP_PLD_ROTATION); } "PLD_Order" { count (0); return (PARSEOP_PLD_ORDER); } "PLD_Reserved" { count (0); return (PARSEOP_PLD_RESERVED); } "PLD_VerticalOffset" { count (0); return (PARSEOP_PLD_VERTICALOFFSET); } "PLD_HorizontalOffset" { count (0); return (PARSEOP_PLD_HORIZONTALOFFSET); } /* printf debug macros */ "printf" { count (0); return (PARSEOP_PRINTF); } "fprintf" { count (0); return (PARSEOP_FPRINTF); } /* Other macros */ "For" { count (0); return (PARSEOP_FOR); } /* Predefined compiler names */ "__DATE__" { count (0); return (PARSEOP___DATE__); } "__FILE__" { count (0); return (PARSEOP___FILE__); } "__LINE__" { count (0); return (PARSEOP___LINE__); } "__PATH__" { count (0); return (PARSEOP___PATH__); } - -"{" { count (0); return('{'); } -"}" { count (0); return('}'); } -"," { count (0); return(','); } -"(" { count (0); return('('); } -")" { count (0); return(')'); } {NameSeg} { char *s; count (0); s=UtStringCacheCalloc (ACPI_NAME_SIZE + 1); if (strcmp (AslCompilertext, "\\")) { strcpy (s, "____"); AcpiUtStrupr (AslCompilertext); } memcpy (s, AslCompilertext, strlen (AslCompilertext)); AslCompilerlval.s = s; DbgPrint (ASL_PARSE_OUTPUT, "NameSeg: %s\n", s); return (PARSEOP_NAMESEG); } {NameString} { char *s; count (0); s=UtStringCacheCalloc (strlen (AslCompilertext)+1); AcpiUtStrupr (AslCompilertext); strcpy (s, AslCompilertext); AslCompilerlval.s = s; DbgPrint (ASL_PARSE_OUTPUT, "NameString: %s\n", s); return (PARSEOP_NAMESTRING); } . { count (1); if (isprint ((int) *AslCompilertext)) { sprintf (MsgBuffer, "Invalid character (%c), expecting ASL keyword or name", *AslCompilertext); } else { sprintf (MsgBuffer, "Invalid character (0x%2.2X), expecting ASL keyword or name", *AslCompilertext); } AslCompilererror (MsgBuffer);} <> { if (AslPopInputFileStack ()) {yyterminate();} else {return (PARSEOP_INCLUDE_END);} }; %% /*! [End] no source code translation !*/ /* * Bring in the scanner support routines */ #include Index: head/sys/contrib/dev/acpica/compiler/aslcstyle.y =================================================================== --- head/sys/contrib/dev/acpica/compiler/aslcstyle.y (revision 308952) +++ head/sys/contrib/dev/acpica/compiler/aslcstyle.y (revision 308953) @@ -1,226 +1,250 @@ NoEcho(' /****************************************************************************** * * Module Name: aslcstyle.y - Production rules for symbolic operators * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ ') /******************************************************************************* * * Production rules for the symbolic (c-style) operators * ******************************************************************************/ /* * ASL Extensions: C-style math/logical operators and expressions. * The implementation transforms these operators into the standard * AML opcodes and syntax. * * Supported operators and precedence rules (high-to-low) * * NOTE: The operator precedence and associativity rules are * implemented by the tokens in asltokens.y * * (left-to-right): * 1) ( ) expr++ expr-- * * (right-to-left): * 2) ! ~ * * (left-to-right): * 3) * / % * 4) + - * 5) >> << * 6) < > <= >= * 7) == != * 8) & * 9) ^ * 10) | * 11) && * 12) || * * (right-to-left): * 13) = += -= *= /= %= <<= >>= &= ^= |= */ /******************************************************************************* * * Basic operations for math and logical expressions. * ******************************************************************************/ Expression /* Unary operators */ : PARSEOP_EXP_LOGICAL_NOT {$$ = TrCreateLeafNode (PARSEOP_LNOT);} TermArg {$$ = TrLinkChildren ($2,1,$3);} | PARSEOP_EXP_NOT {$$ = TrCreateLeafNode (PARSEOP_NOT);} TermArg {$$ = TrLinkChildren ($2,2,$3,TrCreateNullTarget ());} | SuperName PARSEOP_EXP_INCREMENT {$$ = TrCreateLeafNode (PARSEOP_INCREMENT);} {$$ = TrLinkChildren ($3,1,$1);} | SuperName PARSEOP_EXP_DECREMENT {$$ = TrCreateLeafNode (PARSEOP_DECREMENT);} {$$ = TrLinkChildren ($3,1,$1);} /* Binary operators: math and logical */ | TermArg PARSEOP_EXP_ADD {$$ = TrCreateLeafNode (PARSEOP_ADD);} TermArg {$$ = TrLinkChildren ($3,3,$1,$4,TrCreateNullTarget ());} | TermArg PARSEOP_EXP_DIVIDE {$$ = TrCreateLeafNode (PARSEOP_DIVIDE);} TermArg {$$ = TrLinkChildren ($3,4,$1,$4,TrCreateNullTarget (), TrCreateNullTarget ());} | TermArg PARSEOP_EXP_MODULO {$$ = TrCreateLeafNode (PARSEOP_MOD);} TermArg {$$ = TrLinkChildren ($3,3,$1,$4,TrCreateNullTarget ());} | TermArg PARSEOP_EXP_MULTIPLY {$$ = TrCreateLeafNode (PARSEOP_MULTIPLY);} TermArg {$$ = TrLinkChildren ($3,3,$1,$4,TrCreateNullTarget ());} | TermArg PARSEOP_EXP_SHIFT_LEFT {$$ = TrCreateLeafNode (PARSEOP_SHIFTLEFT);} TermArg {$$ = TrLinkChildren ($3,3,$1,$4,TrCreateNullTarget ());} | TermArg PARSEOP_EXP_SHIFT_RIGHT {$$ = TrCreateLeafNode (PARSEOP_SHIFTRIGHT);} TermArg {$$ = TrLinkChildren ($3,3,$1,$4,TrCreateNullTarget ());} | TermArg PARSEOP_EXP_SUBTRACT {$$ = TrCreateLeafNode (PARSEOP_SUBTRACT);} TermArg {$$ = TrLinkChildren ($3,3,$1,$4,TrCreateNullTarget ());} | TermArg PARSEOP_EXP_AND {$$ = TrCreateLeafNode (PARSEOP_AND);} TermArg {$$ = TrLinkChildren ($3,3,$1,$4,TrCreateNullTarget ());} | TermArg PARSEOP_EXP_OR {$$ = TrCreateLeafNode (PARSEOP_OR);} TermArg {$$ = TrLinkChildren ($3,3,$1,$4,TrCreateNullTarget ());} | TermArg PARSEOP_EXP_XOR {$$ = TrCreateLeafNode (PARSEOP_XOR);} TermArg {$$ = TrLinkChildren ($3,3,$1,$4,TrCreateNullTarget ());} | TermArg PARSEOP_EXP_GREATER {$$ = TrCreateLeafNode (PARSEOP_LGREATER);} TermArg {$$ = TrLinkChildren ($3,2,$1,$4);} | TermArg PARSEOP_EXP_GREATER_EQUAL {$$ = TrCreateLeafNode (PARSEOP_LGREATEREQUAL);} TermArg {$$ = TrLinkChildren ($3,2,$1,$4);} | TermArg PARSEOP_EXP_LESS {$$ = TrCreateLeafNode (PARSEOP_LLESS);} TermArg {$$ = TrLinkChildren ($3,2,$1,$4);} | TermArg PARSEOP_EXP_LESS_EQUAL {$$ = TrCreateLeafNode (PARSEOP_LLESSEQUAL);} TermArg {$$ = TrLinkChildren ($3,2,$1,$4);} | TermArg PARSEOP_EXP_EQUAL {$$ = TrCreateLeafNode (PARSEOP_LEQUAL);} TermArg {$$ = TrLinkChildren ($3,2,$1,$4);} | TermArg PARSEOP_EXP_NOT_EQUAL {$$ = TrCreateLeafNode (PARSEOP_LNOTEQUAL);} TermArg {$$ = TrLinkChildren ($3,2,$1,$4);} | TermArg PARSEOP_EXP_LOGICAL_AND {$$ = TrCreateLeafNode (PARSEOP_LAND);} TermArg {$$ = TrLinkChildren ($3,2,$1,$4);} | TermArg PARSEOP_EXP_LOGICAL_OR {$$ = TrCreateLeafNode (PARSEOP_LOR);} TermArg {$$ = TrLinkChildren ($3,2,$1,$4);} /* Parentheses */ - | '(' TermArg ')' { $$ = $2;} + | PARSEOP_OPEN_PAREN + Expression + PARSEOP_CLOSE_PAREN {$$ = $2;} /* Index term -- "= BUF1[5]" on right-hand side of an equals (source) */ - | SuperName PARSEOP_EXP_INDEX_LEFT - TermArg PARSEOP_EXP_INDEX_RIGHT {$$ = TrCreateLeafNode (PARSEOP_INDEX); - TrLinkChildren ($$,3,$1,$3,TrCreateNullTarget ());} + | IndexExpTerm ; - /* Index term -- "BUF1[5] = " on left-hand side of an equals (target) */ - + /* + * Index term -- "BUF1[5] = " or " = BUF1[5] on either the left side + * of an equals (target) or the right side (source) + * Currently used in these terms: + * Expression + * ObjectTypeSource + * DerefOfSource + * Type6Opcode + */ IndexExpTerm - : SuperName PARSEOP_EXP_INDEX_LEFT - TermArg PARSEOP_EXP_INDEX_RIGHT {$$ = TrCreateLeafNode (PARSEOP_INDEX); + : SuperName + PARSEOP_EXP_INDEX_LEFT + TermArg + PARSEOP_EXP_INDEX_RIGHT {$$ = TrCreateLeafNode (PARSEOP_INDEX); TrLinkChildren ($$,3,$1,$3,TrCreateNullTarget ());} ; /******************************************************************************* * * All assignment-type operations -- math and logical. Includes simple * assignment and compound assignments. * ******************************************************************************/ EqualsTerm + /* Allow parens anywhere */ + + : PARSEOP_OPEN_PAREN + EqualsTerm + PARSEOP_CLOSE_PAREN {$$ = $2;} + /* Simple Store() operation */ - : SuperName PARSEOP_EXP_EQUALS + | SuperName + PARSEOP_EXP_EQUALS TermArg {$$ = TrCreateAssignmentNode ($1, $3);} + + /* Chained equals: (a=RefOf)=b, a=b=c=d etc. */ + + | PARSEOP_OPEN_PAREN + EqualsTerm + PARSEOP_CLOSE_PAREN + PARSEOP_EXP_EQUALS + TermArg {$$ = TrCreateAssignmentNode ($2, $5);} /* Compound assignments -- Add (operand, operand, target) */ | TermArg PARSEOP_EXP_ADD_EQ {$$ = TrCreateLeafNode (PARSEOP_ADD);} TermArg {$$ = TrLinkChildren ($3,3,$1,$4, TrSetNodeFlags (TrCreateTargetOperand ($1, NULL), NODE_IS_TARGET));} | TermArg PARSEOP_EXP_DIV_EQ {$$ = TrCreateLeafNode (PARSEOP_DIVIDE);} TermArg {$$ = TrLinkChildren ($3,4,$1,$4,TrCreateNullTarget (), TrSetNodeFlags (TrCreateTargetOperand ($1, NULL), NODE_IS_TARGET));} | TermArg PARSEOP_EXP_MOD_EQ {$$ = TrCreateLeafNode (PARSEOP_MOD);} TermArg {$$ = TrLinkChildren ($3,3,$1,$4, TrSetNodeFlags (TrCreateTargetOperand ($1, NULL), NODE_IS_TARGET));} | TermArg PARSEOP_EXP_MUL_EQ {$$ = TrCreateLeafNode (PARSEOP_MULTIPLY);} TermArg {$$ = TrLinkChildren ($3,3,$1,$4, TrSetNodeFlags (TrCreateTargetOperand ($1, NULL), NODE_IS_TARGET));} | TermArg PARSEOP_EXP_SHL_EQ {$$ = TrCreateLeafNode (PARSEOP_SHIFTLEFT);} TermArg {$$ = TrLinkChildren ($3,3,$1,$4, TrSetNodeFlags (TrCreateTargetOperand ($1, NULL), NODE_IS_TARGET));} | TermArg PARSEOP_EXP_SHR_EQ {$$ = TrCreateLeafNode (PARSEOP_SHIFTRIGHT);} TermArg {$$ = TrLinkChildren ($3,3,$1,$4, TrSetNodeFlags (TrCreateTargetOperand ($1, NULL), NODE_IS_TARGET));} | TermArg PARSEOP_EXP_SUB_EQ {$$ = TrCreateLeafNode (PARSEOP_SUBTRACT);} TermArg {$$ = TrLinkChildren ($3,3,$1,$4, TrSetNodeFlags (TrCreateTargetOperand ($1, NULL), NODE_IS_TARGET));} | TermArg PARSEOP_EXP_AND_EQ {$$ = TrCreateLeafNode (PARSEOP_AND);} TermArg {$$ = TrLinkChildren ($3,3,$1,$4, TrSetNodeFlags (TrCreateTargetOperand ($1, NULL), NODE_IS_TARGET));} | TermArg PARSEOP_EXP_OR_EQ {$$ = TrCreateLeafNode (PARSEOP_OR);} TermArg {$$ = TrLinkChildren ($3,3,$1,$4, TrSetNodeFlags (TrCreateTargetOperand ($1, NULL), NODE_IS_TARGET));} | TermArg PARSEOP_EXP_XOR_EQ {$$ = TrCreateLeafNode (PARSEOP_XOR);} TermArg {$$ = TrLinkChildren ($3,3,$1,$4, TrSetNodeFlags (TrCreateTargetOperand ($1, NULL), NODE_IS_TARGET));} ; Index: head/sys/contrib/dev/acpica/compiler/aslexternal.c =================================================================== --- head/sys/contrib/dev/acpica/compiler/aslexternal.c (revision 308952) +++ head/sys/contrib/dev/acpica/compiler/aslexternal.c (revision 308953) @@ -1,498 +1,513 @@ /****************************************************************************** * * Module Name: aslexternal - ASL External opcode compiler support * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include "aslcompiler.y.h" #include #include #include #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("aslexternal") /* Local prototypes */ static void ExInsertArgCount ( ACPI_PARSE_OBJECT *Op); static void ExMoveExternals ( ACPI_PARSE_OBJECT *DefinitionBlockOp); /******************************************************************************* * * FUNCTION: ExDoExternal * * PARAMETERS: Op - Current Parse node * * RETURN: None * * DESCRIPTION: Add an External() definition to the global list. This list * is used to generate External opcodes. * ******************************************************************************/ void ExDoExternal ( ACPI_PARSE_OBJECT *Op) { ACPI_PARSE_OBJECT *ListOp; ACPI_PARSE_OBJECT *Prev; ACPI_PARSE_OBJECT *Next; ACPI_PARSE_OBJECT *ArgCountOp; ArgCountOp = Op->Asl.Child->Asl.Next->Asl.Next; ArgCountOp->Asl.AmlOpcode = AML_RAW_DATA_BYTE; ArgCountOp->Asl.ParseOpcode = PARSEOP_BYTECONST; ArgCountOp->Asl.Value.Integer = 0; UtSetParseOpName (ArgCountOp); /* Create new list node of arbitrary type */ ListOp = TrAllocateNode (PARSEOP_DEFAULT_ARG); /* Store External node as child */ ListOp->Asl.Child = Op; ListOp->Asl.Next = NULL; if (Gbl_ExternalsListHead) { /* Link new External to end of list */ Prev = Gbl_ExternalsListHead; Next = Prev; while (Next) { Prev = Next; Next = Next->Asl.Next; } Prev->Asl.Next = ListOp; } else { Gbl_ExternalsListHead = ListOp; } } /******************************************************************************* * * FUNCTION: ExInsertArgCount * * PARAMETERS: Op - Op for a method invocation * * RETURN: None * * DESCRIPTION: Obtain the number of arguments for a control method -- from * the actual invocation. * ******************************************************************************/ static void ExInsertArgCount ( ACPI_PARSE_OBJECT *Op) { ACPI_PARSE_OBJECT *Next; ACPI_PARSE_OBJECT *NameOp; ACPI_PARSE_OBJECT *Child; ACPI_PARSE_OBJECT *ArgCountOp; char * ExternalName; char * CallName; UINT16 ArgCount = 0; ACPI_STATUS Status; CallName = AcpiNsGetNormalizedPathname (Op->Asl.Node, TRUE); Next = Gbl_ExternalsListHead; while (Next) { ArgCount = 0; /* Skip if External node already handled */ if (Next->Asl.Child->Asl.CompileFlags & NODE_VISITED) { Next = Next->Asl.Next; continue; } NameOp = Next->Asl.Child->Asl.Child; ExternalName = AcpiNsGetNormalizedPathname (NameOp->Asl.Node, TRUE); if (strcmp (CallName, ExternalName)) { ACPI_FREE (ExternalName); Next = Next->Asl.Next; continue; } Next->Asl.Child->Asl.CompileFlags |= NODE_VISITED; /* * Since we will reposition Externals to the Root, set Namepath * to the fully qualified name and recalculate the aml length */ Status = UtInternalizeName (ExternalName, &NameOp->Asl.Value.String); ACPI_FREE (ExternalName); if (ACPI_FAILURE (Status)) { AslError (ASL_ERROR, ASL_MSG_COMPILER_INTERNAL, NULL, "- Could not Internalize External"); break; } NameOp->Asl.AmlLength = strlen (NameOp->Asl.Value.String); /* Get argument count */ Child = Op->Asl.Child; while (Child) { ArgCount++; Child = Child->Asl.Next; } /* Setup ArgCount operand */ ArgCountOp = Next->Asl.Child->Asl.Child->Asl.Next->Asl.Next; ArgCountOp->Asl.Value.Integer = ArgCount; break; } ACPI_FREE (CallName); } /******************************************************************************* * * FUNCTION: ExAmlExternalWalkBegin * * PARAMETERS: ASL_WALK_CALLBACK * * RETURN: None * * DESCRIPTION: Parse tree walk to create external opcode list for methods. * ******************************************************************************/ ACPI_STATUS ExAmlExternalWalkBegin ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context) { /* External list head saved in the definition block op */ if (Op->Asl.ParseOpcode == PARSEOP_DEFINITION_BLOCK) { Gbl_ExternalsListHead = Op->Asl.Value.Arg; } if (!Gbl_ExternalsListHead) { return (AE_OK); } if (Op->Asl.ParseOpcode != PARSEOP_METHODCALL) { return (AE_OK); } /* * The NameOp child under an ExternalOp gets turned into PARSE_METHODCALL * by XfNamespaceLocateBegin(). Ignore these. */ if (Op->Asl.Parent && Op->Asl.Parent->Asl.ParseOpcode == PARSEOP_EXTERNAL) { return (AE_OK); } ExInsertArgCount (Op); return (AE_OK); } /******************************************************************************* * * FUNCTION: ExAmlExternalWalkEnd * * PARAMETERS: ASL_WALK_CALLBACK * * RETURN: None * * DESCRIPTION: Parse tree walk to create external opcode list for methods. * Here, we just want to catch the case where a definition block * has been completed. Then we move all of the externals into * a single block in the parse tree and thus the AML code. * ******************************************************************************/ ACPI_STATUS ExAmlExternalWalkEnd ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context) { if (Op->Asl.ParseOpcode == PARSEOP_DEFINITION_BLOCK) { /* * Process any existing external list. (Support for * multiple definition blocks in a single file/compile) */ ExMoveExternals (Op); Gbl_ExternalsListHead = NULL; } return (AE_OK); } /******************************************************************************* * * FUNCTION: ExMoveExternals * * PARAMETERS: DefinitionBlockOp - Op for current definition block * * RETURN: None * * DESCRIPTION: Move all externals present in the source file into a single * block of AML code, surrounded by an "If (0)" to prevent * AML interpreters from attempting to execute the External * opcodes. * ******************************************************************************/ static void ExMoveExternals ( ACPI_PARSE_OBJECT *DefinitionBlockOp) { ACPI_PARSE_OBJECT *ParentOp; ACPI_PARSE_OBJECT *ExternalOp; ACPI_PARSE_OBJECT *PredicateOp; ACPI_PARSE_OBJECT *NextOp; ACPI_PARSE_OBJECT *Prev; ACPI_PARSE_OBJECT *Next; + char *ExternalName; ACPI_OBJECT_TYPE ObjType; UINT32 i; if (!Gbl_ExternalsListHead) { return; } /* Remove the External nodes from the tree */ NextOp = Gbl_ExternalsListHead; while (NextOp) { /* * The External is stored in child pointer of each node in the * list */ ExternalOp = NextOp->Asl.Child; + /* Get/set the fully qualified name */ + + ExternalName = AcpiNsGetNormalizedPathname (ExternalOp->Asl.Node, TRUE); + ExternalOp->Asl.ExternalName = ExternalName; + ExternalOp->Asl.Namepath = ExternalName; + /* Set line numbers (for listings, etc.) */ ExternalOp->Asl.LineNumber = 0; ExternalOp->Asl.LogicalLineNumber = 0; Next = ExternalOp->Asl.Child; Next->Asl.LineNumber = 0; Next->Asl.LogicalLineNumber = 0; + + if (Next->Asl.ParseOpcode == PARSEOP_NAMESEG) + { + Next->Asl.ParseOpcode = PARSEOP_NAMESTRING; + } + Next->Asl.ExternalName = ExternalName; + UtInternalizeName (ExternalName, &Next->Asl.Value.String); + Next->Asl.AmlLength = strlen (Next->Asl.Value.String); Next = Next->Asl.Next; Next->Asl.LineNumber = 0; Next->Asl.LogicalLineNumber = 0; Next = Next->Asl.Next; Next->Asl.LineNumber = 0; Next->Asl.LogicalLineNumber = 0; Next = Next->Asl.Next; Next->Asl.LineNumber = 0; Next->Asl.LogicalLineNumber = 0; ParentOp = ExternalOp->Asl.Parent; Prev = Next = ParentOp->Asl.Child; /* Now find the External node's position in parse tree */ while (Next != ExternalOp) { Prev = Next; Next = Next->Asl.Next; } /* Remove the External from the parse tree */ if (Prev == ExternalOp) { /* External was the first child node */ ParentOp->Asl.Child = ExternalOp->Asl.Next; } Prev->Asl.Next = ExternalOp->Asl.Next; ExternalOp->Asl.Next = NULL; ExternalOp->Asl.Parent = Gbl_ExternalsListHead; /* Point the External to the next in the list */ if (NextOp->Asl.Next) { ExternalOp->Asl.Next = NextOp->Asl.Next->Asl.Child; } NextOp = NextOp->Asl.Next; } /* * Loop again to remove MethodObj Externals for which * a MethodCall was not found (dead external reference) */ Prev = Gbl_ExternalsListHead->Asl.Child; Next = Prev; while (Next) { ObjType = (ACPI_OBJECT_TYPE) Next->Asl.Child->Asl.Next->Asl.Value.Integer; if (ObjType == ACPI_TYPE_METHOD && !(Next->Asl.CompileFlags & NODE_VISITED)) { if (Next == Prev) { Gbl_ExternalsListHead->Asl.Child = Next->Asl.Next; Next->Asl.Next = NULL; Prev = Gbl_ExternalsListHead->Asl.Child; Next = Prev; continue; } else { Prev->Asl.Next = Next->Asl.Next; Next->Asl.Next = NULL; Next = Prev->Asl.Next; continue; } } Prev = Next; Next = Next->Asl.Next; } /* If list is now empty, don't bother to make If (0) block */ if (!Gbl_ExternalsListHead->Asl.Child) { return; } /* Convert Gbl_ExternalsListHead parent to If(). */ Gbl_ExternalsListHead->Asl.ParseOpcode = PARSEOP_IF; Gbl_ExternalsListHead->Asl.AmlOpcode = AML_IF_OP; Gbl_ExternalsListHead->Asl.CompileFlags = NODE_AML_PACKAGE; UtSetParseOpName (Gbl_ExternalsListHead); /* Create a Zero op for the If predicate */ PredicateOp = TrAllocateNode (PARSEOP_ZERO); PredicateOp->Asl.AmlOpcode = AML_ZERO_OP; PredicateOp->Asl.Parent = Gbl_ExternalsListHead; PredicateOp->Asl.Child = NULL; PredicateOp->Asl.Next = Gbl_ExternalsListHead->Asl.Child; Gbl_ExternalsListHead->Asl.Child = PredicateOp; /* Set line numbers (for listings, etc.) */ Gbl_ExternalsListHead->Asl.LineNumber = 0; Gbl_ExternalsListHead->Asl.LogicalLineNumber = 0; PredicateOp->Asl.LineNumber = 0; PredicateOp->Asl.LogicalLineNumber = 0; /* Insert block back in the list */ Prev = DefinitionBlockOp->Asl.Child; Next = Prev; /* Find last default arg */ for (i = 0; i < 6; i++) { Prev = Next; Next = Prev->Asl.Next; } if (Next) { /* Definition Block is not empty */ Gbl_ExternalsListHead->Asl.Next = Next; } else { /* Definition Block is empty. */ Gbl_ExternalsListHead->Asl.Next = NULL; } Prev->Asl.Next = Gbl_ExternalsListHead; Gbl_ExternalsListHead->Asl.Parent = Prev->Asl.Parent; } Index: head/sys/contrib/dev/acpica/compiler/aslkeywords.y =================================================================== --- head/sys/contrib/dev/acpica/compiler/aslkeywords.y (revision 308952) +++ head/sys/contrib/dev/acpica/compiler/aslkeywords.y (revision 308953) @@ -1,352 +1,355 @@ NoEcho(' /****************************************************************************** * * Module Name: aslkeywords.y - Rules for resource descriptor keywords * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ ') /******************************************************************************* * * ASL Parameter Keyword Terms * ******************************************************************************/ AccessAttribKeyword : PARSEOP_ACCESSATTRIB_BLOCK {$$ = TrCreateLeafNode (PARSEOP_ACCESSATTRIB_BLOCK);} | PARSEOP_ACCESSATTRIB_BLOCK_CALL {$$ = TrCreateLeafNode (PARSEOP_ACCESSATTRIB_BLOCK_CALL);} | PARSEOP_ACCESSATTRIB_BYTE {$$ = TrCreateLeafNode (PARSEOP_ACCESSATTRIB_BYTE);} | PARSEOP_ACCESSATTRIB_QUICK {$$ = TrCreateLeafNode (PARSEOP_ACCESSATTRIB_QUICK );} | PARSEOP_ACCESSATTRIB_SND_RCV {$$ = TrCreateLeafNode (PARSEOP_ACCESSATTRIB_SND_RCV);} | PARSEOP_ACCESSATTRIB_WORD {$$ = TrCreateLeafNode (PARSEOP_ACCESSATTRIB_WORD);} | PARSEOP_ACCESSATTRIB_WORD_CALL {$$ = TrCreateLeafNode (PARSEOP_ACCESSATTRIB_WORD_CALL);} - | PARSEOP_ACCESSATTRIB_MULTIBYTE '(' {$$ = TrCreateLeafNode (PARSEOP_ACCESSATTRIB_MULTIBYTE);} + | PARSEOP_ACCESSATTRIB_MULTIBYTE + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_ACCESSATTRIB_MULTIBYTE);} ByteConst - ')' {$$ = TrLinkChildren ($3,1,$4);} - | PARSEOP_ACCESSATTRIB_RAW_BYTES '(' {$$ = TrCreateLeafNode (PARSEOP_ACCESSATTRIB_RAW_BYTES);} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,1,$4);} + | PARSEOP_ACCESSATTRIB_RAW_BYTES + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_ACCESSATTRIB_RAW_BYTES);} ByteConst - ')' {$$ = TrLinkChildren ($3,1,$4);} - | PARSEOP_ACCESSATTRIB_RAW_PROCESS '(' {$$ = TrCreateLeafNode (PARSEOP_ACCESSATTRIB_RAW_PROCESS);} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,1,$4);} + | PARSEOP_ACCESSATTRIB_RAW_PROCESS + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_ACCESSATTRIB_RAW_PROCESS);} ByteConst - ')' {$$ = TrLinkChildren ($3,1,$4);} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,1,$4);} ; AccessTypeKeyword : PARSEOP_ACCESSTYPE_ANY {$$ = TrCreateLeafNode (PARSEOP_ACCESSTYPE_ANY);} | PARSEOP_ACCESSTYPE_BYTE {$$ = TrCreateLeafNode (PARSEOP_ACCESSTYPE_BYTE);} | PARSEOP_ACCESSTYPE_WORD {$$ = TrCreateLeafNode (PARSEOP_ACCESSTYPE_WORD);} | PARSEOP_ACCESSTYPE_DWORD {$$ = TrCreateLeafNode (PARSEOP_ACCESSTYPE_DWORD);} | PARSEOP_ACCESSTYPE_QWORD {$$ = TrCreateLeafNode (PARSEOP_ACCESSTYPE_QWORD);} | PARSEOP_ACCESSTYPE_BUF {$$ = TrCreateLeafNode (PARSEOP_ACCESSTYPE_BUF);} ; AddressingModeKeyword : PARSEOP_ADDRESSINGMODE_7BIT {$$ = TrCreateLeafNode (PARSEOP_ADDRESSINGMODE_7BIT);} | PARSEOP_ADDRESSINGMODE_10BIT {$$ = TrCreateLeafNode (PARSEOP_ADDRESSINGMODE_10BIT);} ; AddressKeyword : PARSEOP_ADDRESSTYPE_MEMORY {$$ = TrCreateLeafNode (PARSEOP_ADDRESSTYPE_MEMORY);} | PARSEOP_ADDRESSTYPE_RESERVED {$$ = TrCreateLeafNode (PARSEOP_ADDRESSTYPE_RESERVED);} | PARSEOP_ADDRESSTYPE_NVS {$$ = TrCreateLeafNode (PARSEOP_ADDRESSTYPE_NVS);} | PARSEOP_ADDRESSTYPE_ACPI {$$ = TrCreateLeafNode (PARSEOP_ADDRESSTYPE_ACPI);} ; AddressSpaceKeyword : ByteConst {$$ = UtCheckIntegerRange ($1, 0x0A, 0xFF);} | RegionSpaceKeyword {} ; BitsPerByteKeyword : PARSEOP_BITSPERBYTE_FIVE {$$ = TrCreateLeafNode (PARSEOP_BITSPERBYTE_FIVE);} | PARSEOP_BITSPERBYTE_SIX {$$ = TrCreateLeafNode (PARSEOP_BITSPERBYTE_SIX);} | PARSEOP_BITSPERBYTE_SEVEN {$$ = TrCreateLeafNode (PARSEOP_BITSPERBYTE_SEVEN);} | PARSEOP_BITSPERBYTE_EIGHT {$$ = TrCreateLeafNode (PARSEOP_BITSPERBYTE_EIGHT);} | PARSEOP_BITSPERBYTE_NINE {$$ = TrCreateLeafNode (PARSEOP_BITSPERBYTE_NINE);} ; ClockPhaseKeyword : PARSEOP_CLOCKPHASE_FIRST {$$ = TrCreateLeafNode (PARSEOP_CLOCKPHASE_FIRST);} | PARSEOP_CLOCKPHASE_SECOND {$$ = TrCreateLeafNode (PARSEOP_CLOCKPHASE_SECOND);} ; ClockPolarityKeyword : PARSEOP_CLOCKPOLARITY_LOW {$$ = TrCreateLeafNode (PARSEOP_CLOCKPOLARITY_LOW);} | PARSEOP_CLOCKPOLARITY_HIGH {$$ = TrCreateLeafNode (PARSEOP_CLOCKPOLARITY_HIGH);} ; DecodeKeyword : PARSEOP_DECODETYPE_POS {$$ = TrCreateLeafNode (PARSEOP_DECODETYPE_POS);} | PARSEOP_DECODETYPE_SUB {$$ = TrCreateLeafNode (PARSEOP_DECODETYPE_SUB);} ; DevicePolarityKeyword : PARSEOP_DEVICEPOLARITY_LOW {$$ = TrCreateLeafNode (PARSEOP_DEVICEPOLARITY_LOW);} | PARSEOP_DEVICEPOLARITY_HIGH {$$ = TrCreateLeafNode (PARSEOP_DEVICEPOLARITY_HIGH);} ; DMATypeKeyword : PARSEOP_DMATYPE_A {$$ = TrCreateLeafNode (PARSEOP_DMATYPE_A);} | PARSEOP_DMATYPE_COMPATIBILITY {$$ = TrCreateLeafNode (PARSEOP_DMATYPE_COMPATIBILITY);} | PARSEOP_DMATYPE_B {$$ = TrCreateLeafNode (PARSEOP_DMATYPE_B);} | PARSEOP_DMATYPE_F {$$ = TrCreateLeafNode (PARSEOP_DMATYPE_F);} ; EndianKeyword : PARSEOP_ENDIAN_LITTLE {$$ = TrCreateLeafNode (PARSEOP_ENDIAN_LITTLE);} | PARSEOP_ENDIAN_BIG {$$ = TrCreateLeafNode (PARSEOP_ENDIAN_BIG);} ; FlowControlKeyword : PARSEOP_FLOWCONTROL_HW {$$ = TrCreateLeafNode (PARSEOP_FLOWCONTROL_HW);} | PARSEOP_FLOWCONTROL_NONE {$$ = TrCreateLeafNode (PARSEOP_FLOWCONTROL_NONE);} | PARSEOP_FLOWCONTROL_SW {$$ = TrCreateLeafNode (PARSEOP_FLOWCONTROL_SW);} ; InterruptLevel : PARSEOP_INTLEVEL_ACTIVEBOTH {$$ = TrCreateLeafNode (PARSEOP_INTLEVEL_ACTIVEBOTH);} | PARSEOP_INTLEVEL_ACTIVEHIGH {$$ = TrCreateLeafNode (PARSEOP_INTLEVEL_ACTIVEHIGH);} | PARSEOP_INTLEVEL_ACTIVELOW {$$ = TrCreateLeafNode (PARSEOP_INTLEVEL_ACTIVELOW);} ; InterruptTypeKeyword : PARSEOP_INTTYPE_EDGE {$$ = TrCreateLeafNode (PARSEOP_INTTYPE_EDGE);} | PARSEOP_INTTYPE_LEVEL {$$ = TrCreateLeafNode (PARSEOP_INTTYPE_LEVEL);} ; IODecodeKeyword : PARSEOP_IODECODETYPE_16 {$$ = TrCreateLeafNode (PARSEOP_IODECODETYPE_16);} | PARSEOP_IODECODETYPE_10 {$$ = TrCreateLeafNode (PARSEOP_IODECODETYPE_10);} ; IoRestrictionKeyword : PARSEOP_IORESTRICT_IN {$$ = TrCreateLeafNode (PARSEOP_IORESTRICT_IN);} | PARSEOP_IORESTRICT_OUT {$$ = TrCreateLeafNode (PARSEOP_IORESTRICT_OUT);} | PARSEOP_IORESTRICT_NONE {$$ = TrCreateLeafNode (PARSEOP_IORESTRICT_NONE);} | PARSEOP_IORESTRICT_PRESERVE {$$ = TrCreateLeafNode (PARSEOP_IORESTRICT_PRESERVE);} ; LockRuleKeyword : PARSEOP_LOCKRULE_LOCK {$$ = TrCreateLeafNode (PARSEOP_LOCKRULE_LOCK);} | PARSEOP_LOCKRULE_NOLOCK {$$ = TrCreateLeafNode (PARSEOP_LOCKRULE_NOLOCK);} ; MatchOpKeyword : PARSEOP_MATCHTYPE_MTR {$$ = TrCreateLeafNode (PARSEOP_MATCHTYPE_MTR);} | PARSEOP_MATCHTYPE_MEQ {$$ = TrCreateLeafNode (PARSEOP_MATCHTYPE_MEQ);} | PARSEOP_MATCHTYPE_MLE {$$ = TrCreateLeafNode (PARSEOP_MATCHTYPE_MLE);} | PARSEOP_MATCHTYPE_MLT {$$ = TrCreateLeafNode (PARSEOP_MATCHTYPE_MLT);} | PARSEOP_MATCHTYPE_MGE {$$ = TrCreateLeafNode (PARSEOP_MATCHTYPE_MGE);} | PARSEOP_MATCHTYPE_MGT {$$ = TrCreateLeafNode (PARSEOP_MATCHTYPE_MGT);} ; MaxKeyword : PARSEOP_MAXTYPE_FIXED {$$ = TrCreateLeafNode (PARSEOP_MAXTYPE_FIXED);} | PARSEOP_MAXTYPE_NOTFIXED {$$ = TrCreateLeafNode (PARSEOP_MAXTYPE_NOTFIXED);} ; MemTypeKeyword : PARSEOP_MEMTYPE_CACHEABLE {$$ = TrCreateLeafNode (PARSEOP_MEMTYPE_CACHEABLE);} | PARSEOP_MEMTYPE_WRITECOMBINING {$$ = TrCreateLeafNode (PARSEOP_MEMTYPE_WRITECOMBINING);} | PARSEOP_MEMTYPE_PREFETCHABLE {$$ = TrCreateLeafNode (PARSEOP_MEMTYPE_PREFETCHABLE);} | PARSEOP_MEMTYPE_NONCACHEABLE {$$ = TrCreateLeafNode (PARSEOP_MEMTYPE_NONCACHEABLE);} ; MinKeyword : PARSEOP_MINTYPE_FIXED {$$ = TrCreateLeafNode (PARSEOP_MINTYPE_FIXED);} | PARSEOP_MINTYPE_NOTFIXED {$$ = TrCreateLeafNode (PARSEOP_MINTYPE_NOTFIXED);} ; ObjectTypeKeyword : PARSEOP_OBJECTTYPE_UNK {$$ = TrCreateLeafNode (PARSEOP_OBJECTTYPE_UNK);} | PARSEOP_OBJECTTYPE_INT {$$ = TrCreateLeafNode (PARSEOP_OBJECTTYPE_INT);} | PARSEOP_OBJECTTYPE_STR {$$ = TrCreateLeafNode (PARSEOP_OBJECTTYPE_STR);} | PARSEOP_OBJECTTYPE_BUF {$$ = TrCreateLeafNode (PARSEOP_OBJECTTYPE_BUF);} | PARSEOP_OBJECTTYPE_PKG {$$ = TrCreateLeafNode (PARSEOP_OBJECTTYPE_PKG);} | PARSEOP_OBJECTTYPE_FLD {$$ = TrCreateLeafNode (PARSEOP_OBJECTTYPE_FLD);} | PARSEOP_OBJECTTYPE_DEV {$$ = TrCreateLeafNode (PARSEOP_OBJECTTYPE_DEV);} | PARSEOP_OBJECTTYPE_EVT {$$ = TrCreateLeafNode (PARSEOP_OBJECTTYPE_EVT);} | PARSEOP_OBJECTTYPE_MTH {$$ = TrCreateLeafNode (PARSEOP_OBJECTTYPE_MTH);} | PARSEOP_OBJECTTYPE_MTX {$$ = TrCreateLeafNode (PARSEOP_OBJECTTYPE_MTX);} | PARSEOP_OBJECTTYPE_OPR {$$ = TrCreateLeafNode (PARSEOP_OBJECTTYPE_OPR);} | PARSEOP_OBJECTTYPE_POW {$$ = TrCreateLeafNode (PARSEOP_OBJECTTYPE_POW);} | PARSEOP_OBJECTTYPE_PRO {$$ = TrCreateLeafNode (PARSEOP_OBJECTTYPE_PRO);} | PARSEOP_OBJECTTYPE_THZ {$$ = TrCreateLeafNode (PARSEOP_OBJECTTYPE_THZ);} | PARSEOP_OBJECTTYPE_BFF {$$ = TrCreateLeafNode (PARSEOP_OBJECTTYPE_BFF);} | PARSEOP_OBJECTTYPE_DDB {$$ = TrCreateLeafNode (PARSEOP_OBJECTTYPE_DDB);} ; ParityTypeKeyword : PARSEOP_PARITYTYPE_SPACE {$$ = TrCreateLeafNode (PARSEOP_PARITYTYPE_SPACE);} | PARSEOP_PARITYTYPE_MARK {$$ = TrCreateLeafNode (PARSEOP_PARITYTYPE_MARK);} | PARSEOP_PARITYTYPE_ODD {$$ = TrCreateLeafNode (PARSEOP_PARITYTYPE_ODD);} | PARSEOP_PARITYTYPE_EVEN {$$ = TrCreateLeafNode (PARSEOP_PARITYTYPE_EVEN);} | PARSEOP_PARITYTYPE_NONE {$$ = TrCreateLeafNode (PARSEOP_PARITYTYPE_NONE);} ; PinConfigByte : PinConfigKeyword {$$ = $1;} | ByteConstExpr {$$ = UtCheckIntegerRange ($1, 0x80, 0xFF);} ; PinConfigKeyword : PARSEOP_PIN_NOPULL {$$ = TrCreateLeafNode (PARSEOP_PIN_NOPULL);} | PARSEOP_PIN_PULLDOWN {$$ = TrCreateLeafNode (PARSEOP_PIN_PULLDOWN);} | PARSEOP_PIN_PULLUP {$$ = TrCreateLeafNode (PARSEOP_PIN_PULLUP);} | PARSEOP_PIN_PULLDEFAULT {$$ = TrCreateLeafNode (PARSEOP_PIN_PULLDEFAULT);} ; PldKeyword : PARSEOP_PLD_REVISION {$$ = TrCreateLeafNode (PARSEOP_PLD_REVISION);} | PARSEOP_PLD_IGNORECOLOR {$$ = TrCreateLeafNode (PARSEOP_PLD_IGNORECOLOR);} | PARSEOP_PLD_RED {$$ = TrCreateLeafNode (PARSEOP_PLD_RED);} | PARSEOP_PLD_GREEN {$$ = TrCreateLeafNode (PARSEOP_PLD_GREEN);} | PARSEOP_PLD_BLUE {$$ = TrCreateLeafNode (PARSEOP_PLD_BLUE);} | PARSEOP_PLD_WIDTH {$$ = TrCreateLeafNode (PARSEOP_PLD_WIDTH);} | PARSEOP_PLD_HEIGHT {$$ = TrCreateLeafNode (PARSEOP_PLD_HEIGHT);} | PARSEOP_PLD_USERVISIBLE {$$ = TrCreateLeafNode (PARSEOP_PLD_USERVISIBLE);} | PARSEOP_PLD_DOCK {$$ = TrCreateLeafNode (PARSEOP_PLD_DOCK);} | PARSEOP_PLD_LID {$$ = TrCreateLeafNode (PARSEOP_PLD_LID);} | PARSEOP_PLD_PANEL {$$ = TrCreateLeafNode (PARSEOP_PLD_PANEL);} | PARSEOP_PLD_VERTICALPOSITION {$$ = TrCreateLeafNode (PARSEOP_PLD_VERTICALPOSITION);} | PARSEOP_PLD_HORIZONTALPOSITION {$$ = TrCreateLeafNode (PARSEOP_PLD_HORIZONTALPOSITION);} | PARSEOP_PLD_SHAPE {$$ = TrCreateLeafNode (PARSEOP_PLD_SHAPE);} | PARSEOP_PLD_GROUPORIENTATION {$$ = TrCreateLeafNode (PARSEOP_PLD_GROUPORIENTATION);} | PARSEOP_PLD_GROUPTOKEN {$$ = TrCreateLeafNode (PARSEOP_PLD_GROUPTOKEN);} | PARSEOP_PLD_GROUPPOSITION {$$ = TrCreateLeafNode (PARSEOP_PLD_GROUPPOSITION);} | PARSEOP_PLD_BAY {$$ = TrCreateLeafNode (PARSEOP_PLD_BAY);} | PARSEOP_PLD_EJECTABLE {$$ = TrCreateLeafNode (PARSEOP_PLD_EJECTABLE);} | PARSEOP_PLD_EJECTREQUIRED {$$ = TrCreateLeafNode (PARSEOP_PLD_EJECTREQUIRED);} | PARSEOP_PLD_CABINETNUMBER {$$ = TrCreateLeafNode (PARSEOP_PLD_CABINETNUMBER);} | PARSEOP_PLD_CARDCAGENUMBER {$$ = TrCreateLeafNode (PARSEOP_PLD_CARDCAGENUMBER);} | PARSEOP_PLD_REFERENCE {$$ = TrCreateLeafNode (PARSEOP_PLD_REFERENCE);} | PARSEOP_PLD_ROTATION {$$ = TrCreateLeafNode (PARSEOP_PLD_ROTATION);} | PARSEOP_PLD_ORDER {$$ = TrCreateLeafNode (PARSEOP_PLD_ORDER);} | PARSEOP_PLD_RESERVED {$$ = TrCreateLeafNode (PARSEOP_PLD_RESERVED);} | PARSEOP_PLD_VERTICALOFFSET {$$ = TrCreateLeafNode (PARSEOP_PLD_VERTICALOFFSET);} | PARSEOP_PLD_HORIZONTALOFFSET {$$ = TrCreateLeafNode (PARSEOP_PLD_HORIZONTALOFFSET);} ; RangeTypeKeyword : PARSEOP_RANGETYPE_ISAONLY {$$ = TrCreateLeafNode (PARSEOP_RANGETYPE_ISAONLY);} | PARSEOP_RANGETYPE_NONISAONLY {$$ = TrCreateLeafNode (PARSEOP_RANGETYPE_NONISAONLY);} | PARSEOP_RANGETYPE_ENTIRE {$$ = TrCreateLeafNode (PARSEOP_RANGETYPE_ENTIRE);} ; RegionSpaceKeyword : PARSEOP_REGIONSPACE_IO {$$ = TrCreateLeafNode (PARSEOP_REGIONSPACE_IO);} | PARSEOP_REGIONSPACE_MEM {$$ = TrCreateLeafNode (PARSEOP_REGIONSPACE_MEM);} | PARSEOP_REGIONSPACE_PCI {$$ = TrCreateLeafNode (PARSEOP_REGIONSPACE_PCI);} | PARSEOP_REGIONSPACE_EC {$$ = TrCreateLeafNode (PARSEOP_REGIONSPACE_EC);} | PARSEOP_REGIONSPACE_SMBUS {$$ = TrCreateLeafNode (PARSEOP_REGIONSPACE_SMBUS);} | PARSEOP_REGIONSPACE_CMOS {$$ = TrCreateLeafNode (PARSEOP_REGIONSPACE_CMOS);} | PARSEOP_REGIONSPACE_PCIBAR {$$ = TrCreateLeafNode (PARSEOP_REGIONSPACE_PCIBAR);} | PARSEOP_REGIONSPACE_IPMI {$$ = TrCreateLeafNode (PARSEOP_REGIONSPACE_IPMI);} | PARSEOP_REGIONSPACE_GPIO {$$ = TrCreateLeafNode (PARSEOP_REGIONSPACE_GPIO);} | PARSEOP_REGIONSPACE_GSBUS {$$ = TrCreateLeafNode (PARSEOP_REGIONSPACE_GSBUS);} | PARSEOP_REGIONSPACE_PCC {$$ = TrCreateLeafNode (PARSEOP_REGIONSPACE_PCC);} | PARSEOP_REGIONSPACE_FFIXEDHW {$$ = TrCreateLeafNode (PARSEOP_REGIONSPACE_FFIXEDHW);} ; ResourceTypeKeyword : PARSEOP_RESOURCETYPE_CONSUMER {$$ = TrCreateLeafNode (PARSEOP_RESOURCETYPE_CONSUMER);} | PARSEOP_RESOURCETYPE_PRODUCER {$$ = TrCreateLeafNode (PARSEOP_RESOURCETYPE_PRODUCER);} ; SerializeRuleKeyword : PARSEOP_SERIALIZERULE_SERIAL {$$ = TrCreateLeafNode (PARSEOP_SERIALIZERULE_SERIAL);} | PARSEOP_SERIALIZERULE_NOTSERIAL {$$ = TrCreateLeafNode (PARSEOP_SERIALIZERULE_NOTSERIAL);} ; ShareTypeKeyword : PARSEOP_SHARETYPE_SHARED {$$ = TrCreateLeafNode (PARSEOP_SHARETYPE_SHARED);} | PARSEOP_SHARETYPE_EXCLUSIVE {$$ = TrCreateLeafNode (PARSEOP_SHARETYPE_EXCLUSIVE);} | PARSEOP_SHARETYPE_SHAREDWAKE {$$ = TrCreateLeafNode (PARSEOP_SHARETYPE_SHAREDWAKE);} | PARSEOP_SHARETYPE_EXCLUSIVEWAKE {$$ = TrCreateLeafNode (PARSEOP_SHARETYPE_EXCLUSIVEWAKE);} ; SlaveModeKeyword : PARSEOP_SLAVEMODE_CONTROLLERINIT {$$ = TrCreateLeafNode (PARSEOP_SLAVEMODE_CONTROLLERINIT);} | PARSEOP_SLAVEMODE_DEVICEINIT {$$ = TrCreateLeafNode (PARSEOP_SLAVEMODE_DEVICEINIT);} ; StopBitsKeyword : PARSEOP_STOPBITS_TWO {$$ = TrCreateLeafNode (PARSEOP_STOPBITS_TWO);} | PARSEOP_STOPBITS_ONEPLUSHALF {$$ = TrCreateLeafNode (PARSEOP_STOPBITS_ONEPLUSHALF);} | PARSEOP_STOPBITS_ONE {$$ = TrCreateLeafNode (PARSEOP_STOPBITS_ONE);} | PARSEOP_STOPBITS_ZERO {$$ = TrCreateLeafNode (PARSEOP_STOPBITS_ZERO);} ; TranslationKeyword : PARSEOP_TRANSLATIONTYPE_SPARSE {$$ = TrCreateLeafNode (PARSEOP_TRANSLATIONTYPE_SPARSE);} | PARSEOP_TRANSLATIONTYPE_DENSE {$$ = TrCreateLeafNode (PARSEOP_TRANSLATIONTYPE_DENSE);} ; TypeKeyword : PARSEOP_TYPE_TRANSLATION {$$ = TrCreateLeafNode (PARSEOP_TYPE_TRANSLATION);} | PARSEOP_TYPE_STATIC {$$ = TrCreateLeafNode (PARSEOP_TYPE_STATIC);} ; UpdateRuleKeyword : PARSEOP_UPDATERULE_PRESERVE {$$ = TrCreateLeafNode (PARSEOP_UPDATERULE_PRESERVE);} | PARSEOP_UPDATERULE_ONES {$$ = TrCreateLeafNode (PARSEOP_UPDATERULE_ONES);} | PARSEOP_UPDATERULE_ZEROS {$$ = TrCreateLeafNode (PARSEOP_UPDATERULE_ZEROS);} ; WireModeKeyword : PARSEOP_WIREMODE_FOUR {$$ = TrCreateLeafNode (PARSEOP_WIREMODE_FOUR);} | PARSEOP_WIREMODE_THREE {$$ = TrCreateLeafNode (PARSEOP_WIREMODE_THREE);} ; XferSizeKeyword : PARSEOP_XFERSIZE_8 {$$ = TrCreateValuedLeafNode (PARSEOP_XFERSIZE_8, 0);} | PARSEOP_XFERSIZE_16 {$$ = TrCreateValuedLeafNode (PARSEOP_XFERSIZE_16, 1);} | PARSEOP_XFERSIZE_32 {$$ = TrCreateValuedLeafNode (PARSEOP_XFERSIZE_32, 2);} | PARSEOP_XFERSIZE_64 {$$ = TrCreateValuedLeafNode (PARSEOP_XFERSIZE_64, 3);} | PARSEOP_XFERSIZE_128 {$$ = TrCreateValuedLeafNode (PARSEOP_XFERSIZE_128, 4);} | PARSEOP_XFERSIZE_256 {$$ = TrCreateValuedLeafNode (PARSEOP_XFERSIZE_256, 5);} ; XferTypeKeyword : PARSEOP_XFERTYPE_8 {$$ = TrCreateLeafNode (PARSEOP_XFERTYPE_8);} | PARSEOP_XFERTYPE_8_16 {$$ = TrCreateLeafNode (PARSEOP_XFERTYPE_8_16);} | PARSEOP_XFERTYPE_16 {$$ = TrCreateLeafNode (PARSEOP_XFERTYPE_16);} ; Index: head/sys/contrib/dev/acpica/compiler/aslopcodes.c =================================================================== --- head/sys/contrib/dev/acpica/compiler/aslopcodes.c (revision 308952) +++ head/sys/contrib/dev/acpica/compiler/aslopcodes.c (revision 308953) @@ -1,843 +1,847 @@ /****************************************************************************** * * Module Name: aslopcode - AML opcode generation * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include "aslcompiler.y.h" #include #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("aslopcodes") /* Local prototypes */ static void OpcDoAccessAs ( ACPI_PARSE_OBJECT *Op); static void OpcDoConnection ( ACPI_PARSE_OBJECT *Op); static void OpcDoUnicode ( ACPI_PARSE_OBJECT *Op); static void OpcDoEisaId ( ACPI_PARSE_OBJECT *Op); static void OpcDoUuId ( ACPI_PARSE_OBJECT *Op); /******************************************************************************* * * FUNCTION: OpcAmlOpcodeUpdateWalk * * PARAMETERS: ASL_WALK_CALLBACK * * RETURN: Status * * DESCRIPTION: Opcode update walk, ascending callback * ******************************************************************************/ ACPI_STATUS OpcAmlOpcodeUpdateWalk ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context) { /* * Handle the Package() case where the actual opcode cannot be determined * until the PackageLength operand has been folded and minimized. * (PackageOp versus VarPackageOp) * * This is (as of ACPI 3.0) the only case where the AML opcode can change * based upon the value of a parameter. * * The parser always inserts a VarPackage opcode, which can possibly be * optimized to a Package opcode. */ if (Op->Asl.ParseOpcode == PARSEOP_VAR_PACKAGE) { OpnDoPackage (Op); } return (AE_OK); } /******************************************************************************* * * FUNCTION: OpcAmlOpcodeWalk * * PARAMETERS: ASL_WALK_CALLBACK * * RETURN: Status * * DESCRIPTION: Parse tree walk to generate both the AML opcodes and the AML * operands. * ******************************************************************************/ ACPI_STATUS OpcAmlOpcodeWalk ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context) { TotalParseNodes++; OpcGenerateAmlOpcode (Op); OpnGenerateAmlOperands (Op); return (AE_OK); } /******************************************************************************* * * FUNCTION: OpcGetIntegerWidth * * PARAMETERS: Op - DEFINITION BLOCK op * * RETURN: none * * DESCRIPTION: Extract integer width from the table revision * ******************************************************************************/ void OpcGetIntegerWidth ( ACPI_PARSE_OBJECT *Op) { ACPI_PARSE_OBJECT *Child; if (!Op) { return; } if (Gbl_RevisionOverride) { AcpiUtSetIntegerWidth (Gbl_RevisionOverride); } else { Child = Op->Asl.Child; Child = Child->Asl.Next; Child = Child->Asl.Next; /* Use the revision to set the integer width */ AcpiUtSetIntegerWidth ((UINT8) Child->Asl.Value.Integer); } } /******************************************************************************* * * FUNCTION: OpcSetOptimalIntegerSize * * PARAMETERS: Op - A parse tree node * * RETURN: Integer width, in bytes. Also sets the node AML opcode to the * optimal integer AML prefix opcode. * * DESCRIPTION: Determine the optimal AML encoding of an integer. All leading * zeros can be truncated to squeeze the integer into the * minimal number of AML bytes. * ******************************************************************************/ UINT32 OpcSetOptimalIntegerSize ( ACPI_PARSE_OBJECT *Op) { #if 0 /* * TBD: - we don't want to optimize integers in the block header, but the * code below does not work correctly. */ if (Op->Asl.Parent && Op->Asl.Parent->Asl.Parent && (Op->Asl.Parent->Asl.Parent->Asl.ParseOpcode == PARSEOP_DEFINITION_BLOCK)) { return (0); } #endif /* * Check for the special AML integers first - Zero, One, Ones. * These are single-byte opcodes that are the smallest possible * representation of an integer. * * This optimization is optional. */ if (Gbl_IntegerOptimizationFlag) { switch (Op->Asl.Value.Integer) { case 0: Op->Asl.AmlOpcode = AML_ZERO_OP; AslError (ASL_OPTIMIZATION, ASL_MSG_INTEGER_OPTIMIZATION, Op, "Zero"); return (1); case 1: Op->Asl.AmlOpcode = AML_ONE_OP; AslError (ASL_OPTIMIZATION, ASL_MSG_INTEGER_OPTIMIZATION, Op, "One"); return (1); case ACPI_UINT32_MAX: /* Check for table integer width (32 or 64) */ if (AcpiGbl_IntegerByteWidth == 4) { Op->Asl.AmlOpcode = AML_ONES_OP; AslError (ASL_OPTIMIZATION, ASL_MSG_INTEGER_OPTIMIZATION, Op, "Ones"); return (1); } break; case ACPI_UINT64_MAX: /* Check for table integer width (32 or 64) */ if (AcpiGbl_IntegerByteWidth == 8) { Op->Asl.AmlOpcode = AML_ONES_OP; AslError (ASL_OPTIMIZATION, ASL_MSG_INTEGER_OPTIMIZATION, Op, "Ones"); return (1); } break; default: break; } } /* Find the best fit using the various AML integer prefixes */ if (Op->Asl.Value.Integer <= ACPI_UINT8_MAX) { Op->Asl.AmlOpcode = AML_BYTE_OP; return (1); } if (Op->Asl.Value.Integer <= ACPI_UINT16_MAX) { Op->Asl.AmlOpcode = AML_WORD_OP; return (2); } if (Op->Asl.Value.Integer <= ACPI_UINT32_MAX) { Op->Asl.AmlOpcode = AML_DWORD_OP; return (4); } - else + else /* 64-bit integer */ { if (AcpiGbl_IntegerByteWidth == 4) { AslError (ASL_WARNING, ASL_MSG_INTEGER_LENGTH, Op, NULL); if (!Gbl_IgnoreErrors) { /* Truncate the integer to 32-bit */ - Op->Asl.AmlOpcode = AML_DWORD_OP; - return (4); + + Op->Asl.Value.Integer &= ACPI_UINT32_MAX; + + /* Now set the optimal integer size */ + + return (OpcSetOptimalIntegerSize (Op)); } } Op->Asl.AmlOpcode = AML_QWORD_OP; return (8); } } /******************************************************************************* * * FUNCTION: OpcDoAccessAs * * PARAMETERS: Op - Parse node * * RETURN: None * * DESCRIPTION: Implement the ACCESS_AS ASL keyword. * ******************************************************************************/ static void OpcDoAccessAs ( ACPI_PARSE_OBJECT *Op) { ACPI_PARSE_OBJECT *TypeOp; ACPI_PARSE_OBJECT *AttribOp; ACPI_PARSE_OBJECT *LengthOp; UINT8 Attribute; Op->Asl.AmlOpcodeLength = 1; TypeOp = Op->Asl.Child; /* First child is the access type */ TypeOp->Asl.AmlOpcode = AML_RAW_DATA_BYTE; TypeOp->Asl.ParseOpcode = PARSEOP_RAW_DATA; /* Second child is the optional access attribute */ AttribOp = TypeOp->Asl.Next; if (AttribOp->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG) { AttribOp->Asl.Value.Integer = 0; } AttribOp->Asl.AmlOpcode = AML_RAW_DATA_BYTE; AttribOp->Asl.ParseOpcode = PARSEOP_RAW_DATA; /* Only a few AccessAttributes support AccessLength */ Attribute = (UINT8) AttribOp->Asl.Value.Integer; if ((Attribute != AML_FIELD_ATTRIB_MULTIBYTE) && (Attribute != AML_FIELD_ATTRIB_RAW_BYTES) && (Attribute != AML_FIELD_ATTRIB_RAW_PROCESS)) { return; } Op->Asl.AmlOpcode = AML_FIELD_EXT_ACCESS_OP; /* * Child of Attributes is the AccessLength (required for Multibyte, * RawBytes, RawProcess.) */ LengthOp = AttribOp->Asl.Child; if (!LengthOp) { return; } /* TBD: probably can remove */ if (LengthOp->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG) { LengthOp->Asl.Value.Integer = 16; } LengthOp->Asl.AmlOpcode = AML_RAW_DATA_BYTE; LengthOp->Asl.ParseOpcode = PARSEOP_RAW_DATA; } /******************************************************************************* * * FUNCTION: OpcDoConnection * * PARAMETERS: Op - Parse node * * RETURN: None * * DESCRIPTION: Implement the Connection ASL keyword. * ******************************************************************************/ static void OpcDoConnection ( ACPI_PARSE_OBJECT *Op) { ASL_RESOURCE_NODE *Rnode; ACPI_PARSE_OBJECT *BufferOp; ACPI_PARSE_OBJECT *BufferLengthOp; ACPI_PARSE_OBJECT *BufferDataOp; ASL_RESOURCE_INFO Info; UINT8 State; Op->Asl.AmlOpcodeLength = 1; if (Op->Asl.Child->Asl.AmlOpcode == AML_INT_NAMEPATH_OP) { return; } BufferOp = Op->Asl.Child; BufferLengthOp = BufferOp->Asl.Child; BufferDataOp = BufferLengthOp->Asl.Next; Info.DescriptorTypeOp = BufferDataOp->Asl.Next; Info.CurrentByteOffset = 0; State = ACPI_RSTATE_NORMAL; Rnode = RsDoOneResourceDescriptor (&Info, &State); if (!Rnode) { return; /* error */ } /* * Transform the nodes into the following * * Op -> AML_BUFFER_OP * First Child -> BufferLength * Second Child -> Descriptor Buffer (raw byte data) */ BufferOp->Asl.ParseOpcode = PARSEOP_BUFFER; BufferOp->Asl.AmlOpcode = AML_BUFFER_OP; BufferOp->Asl.CompileFlags = NODE_AML_PACKAGE | NODE_IS_RESOURCE_DESC; UtSetParseOpName (BufferOp); BufferLengthOp->Asl.ParseOpcode = PARSEOP_INTEGER; BufferLengthOp->Asl.Value.Integer = Rnode->BufferLength; (void) OpcSetOptimalIntegerSize (BufferLengthOp); UtSetParseOpName (BufferLengthOp); BufferDataOp->Asl.ParseOpcode = PARSEOP_RAW_DATA; BufferDataOp->Asl.AmlOpcode = AML_RAW_DATA_CHAIN; BufferDataOp->Asl.AmlOpcodeLength = 0; BufferDataOp->Asl.AmlLength = Rnode->BufferLength; BufferDataOp->Asl.Value.Buffer = (UINT8 *) Rnode; UtSetParseOpName (BufferDataOp); } /******************************************************************************* * * FUNCTION: OpcDoUnicode * * PARAMETERS: Op - Parse node * * RETURN: None * * DESCRIPTION: Implement the UNICODE ASL "macro". Convert the input string * to a unicode buffer. There is no Unicode AML opcode. * * Note: The Unicode string is 16 bits per character, no leading signature, * with a 16-bit terminating NULL. * ******************************************************************************/ static void OpcDoUnicode ( ACPI_PARSE_OBJECT *Op) { ACPI_PARSE_OBJECT *InitializerOp; UINT32 Length; UINT32 Count; UINT32 i; UINT8 *AsciiString; UINT16 *UnicodeString; ACPI_PARSE_OBJECT *BufferLengthOp; /* Change op into a buffer object */ Op->Asl.CompileFlags &= ~NODE_COMPILE_TIME_CONST; Op->Asl.ParseOpcode = PARSEOP_BUFFER; UtSetParseOpName (Op); /* Buffer Length is first, followed by the string */ BufferLengthOp = Op->Asl.Child; InitializerOp = BufferLengthOp->Asl.Next; AsciiString = (UINT8 *) InitializerOp->Asl.Value.String; /* Create a new buffer for the Unicode string */ Count = strlen (InitializerOp->Asl.Value.String) + 1; Length = Count * sizeof (UINT16); UnicodeString = UtLocalCalloc (Length); /* Convert to Unicode string (including null terminator) */ for (i = 0; i < Count; i++) { UnicodeString[i] = (UINT16) AsciiString[i]; } /* * Just set the buffer size node to be the buffer length, regardless * of whether it was previously an integer or a default_arg placeholder */ BufferLengthOp->Asl.ParseOpcode = PARSEOP_INTEGER; BufferLengthOp->Asl.AmlOpcode = AML_DWORD_OP; BufferLengthOp->Asl.Value.Integer = Length; UtSetParseOpName (BufferLengthOp); (void) OpcSetOptimalIntegerSize (BufferLengthOp); /* The Unicode string is a raw data buffer */ InitializerOp->Asl.Value.Buffer = (UINT8 *) UnicodeString; InitializerOp->Asl.AmlOpcode = AML_RAW_DATA_BUFFER; InitializerOp->Asl.AmlLength = Length; InitializerOp->Asl.ParseOpcode = PARSEOP_RAW_DATA; InitializerOp->Asl.Child = NULL; UtSetParseOpName (InitializerOp); } /******************************************************************************* * * FUNCTION: OpcDoEisaId * * PARAMETERS: Op - Parse node * * RETURN: None * * DESCRIPTION: Convert a string EISA ID to numeric representation. See the * Pnp BIOS Specification for details. Here is an excerpt: * * A seven character ASCII representation of the product * identifier compressed into a 32-bit identifier. The seven * character ID consists of a three character manufacturer code, * a three character hexadecimal product identifier, and a one * character hexadecimal revision number. The manufacturer code * is a 3 uppercase character code that is compressed into 3 5-bit * values as follows: * 1) Find hex ASCII value for each letter * 2) Subtract 40h from each ASCII value * 3) Retain 5 least significant bits for each letter by * discarding upper 3 bits because they are always 0. * 4) Compressed code = concatenate 0 and the 3 5-bit values * * The format of the compressed product identifier is as follows: * Byte 0: Bit 7 - Reserved (0) * Bits 6-2: - 1st character of compressed mfg code * Bits 1-0 - Upper 2 bits of 2nd character of mfg code * Byte 1: Bits 7-5 - Lower 3 bits of 2nd character of mfg code * Bits 4-0 - 3rd character of mfg code * Byte 2: Bits 7-4 - 1st hex digit of product number * Bits 3-0 - 2nd hex digit of product number * Byte 3: Bits 7-4 - 3st hex digit of product number * Bits 3-0 - Hex digit of the revision number * ******************************************************************************/ static void OpcDoEisaId ( ACPI_PARSE_OBJECT *Op) { UINT32 EisaId = 0; UINT32 BigEndianId; char *InString; ACPI_STATUS Status = AE_OK; UINT32 i; InString = (char *) Op->Asl.Value.String; /* * The EISAID string must be exactly 7 characters and of the form * "UUUXXXX" -- 3 uppercase letters and 4 hex digits (e.g., "PNP0001") */ if (strlen (InString) != 7) { Status = AE_BAD_PARAMETER; } else { /* Check all 7 characters for correct format */ for (i = 0; i < 7; i++) { /* First 3 characters must be uppercase letters */ if (i < 3) { if (!isupper ((int) InString[i])) { Status = AE_BAD_PARAMETER; } } /* Last 4 characters must be hex digits */ else if (!isxdigit ((int) InString[i])) { Status = AE_BAD_PARAMETER; } } } if (ACPI_FAILURE (Status)) { AslError (ASL_ERROR, ASL_MSG_INVALID_EISAID, Op, Op->Asl.Value.String); } else { /* Create ID big-endian first (bits are contiguous) */ BigEndianId = (UINT32) ((UINT8) (InString[0] - 0x40)) << 26 | (UINT32) ((UINT8) (InString[1] - 0x40)) << 21 | (UINT32) ((UINT8) (InString[2] - 0x40)) << 16 | (AcpiUtAsciiCharToHex (InString[3])) << 12 | (AcpiUtAsciiCharToHex (InString[4])) << 8 | (AcpiUtAsciiCharToHex (InString[5])) << 4 | AcpiUtAsciiCharToHex (InString[6]); /* Swap to little-endian to get final ID (see function header) */ EisaId = AcpiUtDwordByteSwap (BigEndianId); } /* * Morph the Op into an integer, regardless of whether there * was an error in the EISAID string */ Op->Asl.Value.Integer = EisaId; Op->Asl.CompileFlags &= ~NODE_COMPILE_TIME_CONST; Op->Asl.ParseOpcode = PARSEOP_INTEGER; (void) OpcSetOptimalIntegerSize (Op); /* Op is now an integer */ UtSetParseOpName (Op); } /******************************************************************************* * * FUNCTION: OpcDoUuId * * PARAMETERS: Op - Parse node * * RETURN: None * * DESCRIPTION: Convert UUID string to 16-byte buffer * ******************************************************************************/ static void OpcDoUuId ( ACPI_PARSE_OBJECT *Op) { char *InString; UINT8 *Buffer; ACPI_STATUS Status = AE_OK; ACPI_PARSE_OBJECT *NewOp; InString = ACPI_CAST_PTR (char, Op->Asl.Value.String); Buffer = UtLocalCalloc (16); Status = AuValidateUuid (InString); if (ACPI_FAILURE (Status)) { AslError (ASL_ERROR, ASL_MSG_INVALID_UUID, Op, Op->Asl.Value.String); } else { AcpiUtConvertStringToUuid (InString, Buffer); } /* Change Op to a Buffer */ Op->Asl.ParseOpcode = PARSEOP_BUFFER; Op->Common.AmlOpcode = AML_BUFFER_OP; /* Disable further optimization */ Op->Asl.CompileFlags &= ~NODE_COMPILE_TIME_CONST; UtSetParseOpName (Op); /* Child node is the buffer length */ NewOp = TrAllocateNode (PARSEOP_INTEGER); NewOp->Asl.AmlOpcode = AML_BYTE_OP; NewOp->Asl.Value.Integer = 16; NewOp->Asl.Parent = Op; Op->Asl.Child = NewOp; Op = NewOp; /* Peer to the child is the raw buffer data */ NewOp = TrAllocateNode (PARSEOP_RAW_DATA); NewOp->Asl.AmlOpcode = AML_RAW_DATA_BUFFER; NewOp->Asl.AmlLength = 16; NewOp->Asl.Value.String = ACPI_CAST_PTR (char, Buffer); NewOp->Asl.Parent = Op->Asl.Parent; Op->Asl.Next = NewOp; } /******************************************************************************* * * FUNCTION: OpcGenerateAmlOpcode * * PARAMETERS: Op - Parse node * * RETURN: None * * DESCRIPTION: Generate the AML opcode associated with the node and its * parse (lex/flex) keyword opcode. Essentially implements * a mapping between the parse opcodes and the actual AML opcodes. * ******************************************************************************/ void OpcGenerateAmlOpcode ( ACPI_PARSE_OBJECT *Op) { UINT16 Index; Index = (UINT16) (Op->Asl.ParseOpcode - ASL_PARSE_OPCODE_BASE); Op->Asl.AmlOpcode = AslKeywordMapping[Index].AmlOpcode; Op->Asl.AcpiBtype = AslKeywordMapping[Index].AcpiBtype; Op->Asl.CompileFlags |= AslKeywordMapping[Index].Flags; if (!Op->Asl.Value.Integer) { Op->Asl.Value.Integer = AslKeywordMapping[Index].Value; } /* Special handling for some opcodes */ switch (Op->Asl.ParseOpcode) { case PARSEOP_INTEGER: /* * Set the opcode based on the size of the integer */ (void) OpcSetOptimalIntegerSize (Op); break; case PARSEOP_OFFSET: Op->Asl.AmlOpcodeLength = 1; break; case PARSEOP_ACCESSAS: OpcDoAccessAs (Op); break; case PARSEOP_CONNECTION: OpcDoConnection (Op); break; case PARSEOP_EISAID: OpcDoEisaId (Op); break; case PARSEOP_PRINTF: OpcDoPrintf (Op); break; case PARSEOP_FPRINTF: OpcDoFprintf (Op); break; case PARSEOP_TOPLD: OpcDoPld (Op); break; case PARSEOP_TOUUID: OpcDoUuId (Op); break; case PARSEOP_UNICODE: OpcDoUnicode (Op); break; case PARSEOP_INCLUDE: Gbl_HasIncludeFiles = TRUE; break; case PARSEOP_EXTERNAL: if (Gbl_DoExternals == FALSE) { Op->Asl.Child->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG; Op->Asl.Child->Asl.Next->Asl.ParseOpcode = PARSEOP_DEFAULT_ARG; } break; case PARSEOP_TIMER: if (AcpiGbl_IntegerBitWidth == 32) { AslError (ASL_REMARK, ASL_MSG_TRUNCATION, Op, NULL); } break; default: /* Nothing to do for other opcodes */ break; } return; } Index: head/sys/contrib/dev/acpica/compiler/aslprimaries.y =================================================================== --- head/sys/contrib/dev/acpica/compiler/aslprimaries.y (revision 308952) +++ head/sys/contrib/dev/acpica/compiler/aslprimaries.y (revision 308953) @@ -1,1160 +1,1363 @@ NoEcho(' /****************************************************************************** * * Module Name: aslprimaries.y - Rules for primary ASL operators * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ ') /******************************************************************************* * * ASL Primary Terms * ******************************************************************************/ AccessAsTerm - : PARSEOP_ACCESSAS '(' + : PARSEOP_ACCESSAS + PARSEOP_OPEN_PAREN AccessTypeKeyword OptionalAccessAttribTerm - ')' {$$ = TrCreateNode (PARSEOP_ACCESSAS,2,$3,$4);} - | PARSEOP_ACCESSAS '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrCreateNode (PARSEOP_ACCESSAS,2,$3,$4);} + | PARSEOP_ACCESSAS + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; AcquireTerm - : PARSEOP_ACQUIRE '(' {$$ = TrCreateLeafNode (PARSEOP_ACQUIRE);} + : PARSEOP_ACQUIRE + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_ACQUIRE);} SuperName ',' WordConstExpr - ')' {$$ = TrLinkChildren ($3,2,$4,$6);} - | PARSEOP_ACQUIRE '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4,$6);} + | PARSEOP_ACQUIRE + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; AddTerm - : PARSEOP_ADD '(' {$$ = TrCreateLeafNode (PARSEOP_ADD);} + : PARSEOP_ADD + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_ADD);} TermArg TermArgItem Target - ')' {$$ = TrLinkChildren ($3,3,$4,$5,$6);} - | PARSEOP_ADD '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$5,$6);} + | PARSEOP_ADD + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; AliasTerm - : PARSEOP_ALIAS '(' {$$ = TrCreateLeafNode (PARSEOP_ALIAS);} + : PARSEOP_ALIAS + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_ALIAS);} NameString NameStringItem - ')' {$$ = TrLinkChildren ($3,2,$4, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4, TrSetNodeFlags ($5, NODE_IS_NAME_DECLARATION));} - | PARSEOP_ALIAS '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_ALIAS + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; AndTerm - : PARSEOP_AND '(' {$$ = TrCreateLeafNode (PARSEOP_AND);} + : PARSEOP_AND + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_AND);} TermArg TermArgItem Target - ')' {$$ = TrLinkChildren ($3,3,$4,$5,$6);} - | PARSEOP_AND '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$5,$6);} + | PARSEOP_AND + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ArgTerm : PARSEOP_ARG0 {$$ = TrCreateLeafNode (PARSEOP_ARG0);} | PARSEOP_ARG1 {$$ = TrCreateLeafNode (PARSEOP_ARG1);} | PARSEOP_ARG2 {$$ = TrCreateLeafNode (PARSEOP_ARG2);} | PARSEOP_ARG3 {$$ = TrCreateLeafNode (PARSEOP_ARG3);} | PARSEOP_ARG4 {$$ = TrCreateLeafNode (PARSEOP_ARG4);} | PARSEOP_ARG5 {$$ = TrCreateLeafNode (PARSEOP_ARG5);} | PARSEOP_ARG6 {$$ = TrCreateLeafNode (PARSEOP_ARG6);} ; BankFieldTerm - : PARSEOP_BANKFIELD '(' {$$ = TrCreateLeafNode (PARSEOP_BANKFIELD);} + : PARSEOP_BANKFIELD + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_BANKFIELD);} NameString NameStringItem TermArgItem ',' AccessTypeKeyword ',' LockRuleKeyword ',' UpdateRuleKeyword - ')' '{' + PARSEOP_CLOSE_PAREN '{' FieldUnitList '}' {$$ = TrLinkChildren ($3,7, $4,$5,$6,$8,$10,$12,$15);} - | PARSEOP_BANKFIELD '(' - error ')' '{' error '}' {$$ = AslDoError(); yyclearin;} + | PARSEOP_BANKFIELD + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN + '{' error '}' {$$ = AslDoError(); yyclearin;} ; BreakTerm : PARSEOP_BREAK {$$ = TrCreateNode (PARSEOP_BREAK, 0);} ; BreakPointTerm : PARSEOP_BREAKPOINT {$$ = TrCreateNode (PARSEOP_BREAKPOINT, 0);} ; BufferTerm : PARSEOP_BUFFER {$$ = TrCreateLeafNode (PARSEOP_BUFFER);} OptionalDataCount '{' BufferTermData '}' {$$ = TrLinkChildren ($2,2,$3,$5);} ; BufferTermData : ByteList {} | StringData {} ; CaseTerm - : PARSEOP_CASE '(' {$$ = TrCreateLeafNode (PARSEOP_CASE);} + : PARSEOP_CASE + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_CASE);} DataObject - ')' '{' + PARSEOP_CLOSE_PAREN '{' TermList '}' {$$ = TrLinkChildren ($3,2,$4,$7);} - | PARSEOP_CASE '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_CASE + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ConcatTerm - : PARSEOP_CONCATENATE '(' {$$ = TrCreateLeafNode (PARSEOP_CONCATENATE);} + : PARSEOP_CONCATENATE + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_CONCATENATE);} TermArg TermArgItem Target - ')' {$$ = TrLinkChildren ($3,3,$4,$5,$6);} - | PARSEOP_CONCATENATE '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$5,$6);} + | PARSEOP_CONCATENATE + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ConcatResTerm - : PARSEOP_CONCATENATERESTEMPLATE '(' {$$ = TrCreateLeafNode ( - PARSEOP_CONCATENATERESTEMPLATE);} + : PARSEOP_CONCATENATERESTEMPLATE + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode ( + PARSEOP_CONCATENATERESTEMPLATE);} TermArg TermArgItem Target - ')' {$$ = TrLinkChildren ($3,3,$4,$5,$6);} - | PARSEOP_CONCATENATERESTEMPLATE '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$5,$6);} + | PARSEOP_CONCATENATERESTEMPLATE + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; +CondRefOfTerm + : PARSEOP_CONDREFOF + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_CONDREFOF);} + CondRefOfSource + Target + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4,$5);} + | PARSEOP_CONDREFOF + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} + ; + ConnectionTerm - : PARSEOP_CONNECTION '(' + : PARSEOP_CONNECTION + PARSEOP_OPEN_PAREN NameString - ')' {$$ = TrCreateNode (PARSEOP_CONNECTION,1,$3);} - | PARSEOP_CONNECTION '(' {$$ = TrCreateLeafNode (PARSEOP_CONNECTION);} + PARSEOP_CLOSE_PAREN {$$ = TrCreateNode (PARSEOP_CONNECTION,1,$3);} + | PARSEOP_CONNECTION + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_CONNECTION);} ResourceMacroTerm - ')' {$$ = TrLinkChildren ($3, 1, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3, 1, TrLinkChildren ( TrCreateLeafNode (PARSEOP_RESOURCETEMPLATE), 3, TrCreateLeafNode (PARSEOP_DEFAULT_ARG), TrCreateLeafNode (PARSEOP_DEFAULT_ARG), $4));} - | PARSEOP_CONNECTION '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_CONNECTION + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; -CondRefOfTerm - : PARSEOP_CONDREFOF '(' {$$ = TrCreateLeafNode (PARSEOP_CONDREFOF);} - SuperName - Target - ')' {$$ = TrLinkChildren ($3,2,$4,$5);} - | PARSEOP_CONDREFOF '(' - error ')' {$$ = AslDoError(); yyclearin;} - ; - ContinueTerm : PARSEOP_CONTINUE {$$ = TrCreateNode (PARSEOP_CONTINUE, 0);} ; CopyObjectTerm - : PARSEOP_COPYOBJECT '(' {$$ = TrCreateLeafNode (PARSEOP_COPYOBJECT);} + : PARSEOP_COPYOBJECT + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_COPYOBJECT);} TermArg - ',' SimpleTarget - ')' {$$ = TrLinkChildren ($3,2,$4, + ',' SimpleName + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4, TrSetNodeFlags ($6, NODE_IS_TARGET));} - | PARSEOP_COPYOBJECT '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_COPYOBJECT + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; CreateBitFieldTerm - : PARSEOP_CREATEBITFIELD '(' {$$ = TrCreateLeafNode (PARSEOP_CREATEBITFIELD);} + : PARSEOP_CREATEBITFIELD + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_CREATEBITFIELD);} TermArg TermArgItem NameStringItem - ')' {$$ = TrLinkChildren ($3,3,$4,$5, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$5, TrSetNodeFlags ($6, NODE_IS_NAME_DECLARATION));} - | PARSEOP_CREATEBITFIELD '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_CREATEBITFIELD + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; CreateByteFieldTerm - : PARSEOP_CREATEBYTEFIELD '(' {$$ = TrCreateLeafNode (PARSEOP_CREATEBYTEFIELD);} + : PARSEOP_CREATEBYTEFIELD + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_CREATEBYTEFIELD);} TermArg TermArgItem NameStringItem - ')' {$$ = TrLinkChildren ($3,3,$4,$5, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$5, TrSetNodeFlags ($6, NODE_IS_NAME_DECLARATION));} - | PARSEOP_CREATEBYTEFIELD '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_CREATEBYTEFIELD + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; CreateDWordFieldTerm - : PARSEOP_CREATEDWORDFIELD '(' {$$ = TrCreateLeafNode (PARSEOP_CREATEDWORDFIELD);} + : PARSEOP_CREATEDWORDFIELD + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_CREATEDWORDFIELD);} TermArg TermArgItem NameStringItem - ')' {$$ = TrLinkChildren ($3,3,$4,$5, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$5, TrSetNodeFlags ($6, NODE_IS_NAME_DECLARATION));} - | PARSEOP_CREATEDWORDFIELD '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_CREATEDWORDFIELD + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; CreateFieldTerm - : PARSEOP_CREATEFIELD '(' {$$ = TrCreateLeafNode (PARSEOP_CREATEFIELD);} + : PARSEOP_CREATEFIELD + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_CREATEFIELD);} TermArg TermArgItem TermArgItem NameStringItem - ')' {$$ = TrLinkChildren ($3,4,$4,$5,$6, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,4,$4,$5,$6, TrSetNodeFlags ($7, NODE_IS_NAME_DECLARATION));} - | PARSEOP_CREATEFIELD '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_CREATEFIELD + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; CreateQWordFieldTerm - : PARSEOP_CREATEQWORDFIELD '(' {$$ = TrCreateLeafNode (PARSEOP_CREATEQWORDFIELD);} + : PARSEOP_CREATEQWORDFIELD + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_CREATEQWORDFIELD);} TermArg TermArgItem NameStringItem - ')' {$$ = TrLinkChildren ($3,3,$4,$5, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$5, TrSetNodeFlags ($6, NODE_IS_NAME_DECLARATION));} - | PARSEOP_CREATEQWORDFIELD '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_CREATEQWORDFIELD + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; CreateWordFieldTerm - : PARSEOP_CREATEWORDFIELD '(' {$$ = TrCreateLeafNode (PARSEOP_CREATEWORDFIELD);} + : PARSEOP_CREATEWORDFIELD + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_CREATEWORDFIELD);} TermArg TermArgItem NameStringItem - ')' {$$ = TrLinkChildren ($3,3,$4,$5, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$5, TrSetNodeFlags ($6, NODE_IS_NAME_DECLARATION));} - | PARSEOP_CREATEWORDFIELD '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_CREATEWORDFIELD + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; DataRegionTerm - : PARSEOP_DATATABLEREGION '(' {$$ = TrCreateLeafNode (PARSEOP_DATATABLEREGION);} + : PARSEOP_DATATABLEREGION + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_DATATABLEREGION);} NameString TermArgItem TermArgItem TermArgItem - ')' {$$ = TrLinkChildren ($3,4, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,4, TrSetNodeFlags ($4, NODE_IS_NAME_DECLARATION),$5,$6,$7);} - | PARSEOP_DATATABLEREGION '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_DATATABLEREGION + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; DebugTerm : PARSEOP_DEBUG {$$ = TrCreateLeafNode (PARSEOP_DEBUG);} ; DecTerm - : PARSEOP_DECREMENT '(' {$$ = TrCreateLeafNode (PARSEOP_DECREMENT);} + : PARSEOP_DECREMENT + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_DECREMENT);} SuperName - ')' {$$ = TrLinkChildren ($3,1,$4);} - | PARSEOP_DECREMENT '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,1,$4);} + | PARSEOP_DECREMENT + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; DefaultTerm : PARSEOP_DEFAULT '{' {$$ = TrCreateLeafNode (PARSEOP_DEFAULT);} TermList '}' {$$ = TrLinkChildren ($3,1,$4);} | PARSEOP_DEFAULT '{' error '}' {$$ = AslDoError(); yyclearin;} ; DerefOfTerm - : PARSEOP_DEREFOF '(' {$$ = TrCreateLeafNode (PARSEOP_DEREFOF);} - TermArg - ')' {$$ = TrLinkChildren ($3,1,$4);} - | PARSEOP_DEREFOF '(' - error ')' {$$ = AslDoError(); yyclearin;} + : PARSEOP_DEREFOF + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_DEREFOF);} + DerefOfSource + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,1,$4);} + | PARSEOP_DEREFOF + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; DeviceTerm - : PARSEOP_DEVICE '(' {$$ = TrCreateLeafNode (PARSEOP_DEVICE);} + : PARSEOP_DEVICE + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_DEVICE);} NameString - ')' '{' + PARSEOP_CLOSE_PAREN '{' TermList '}' {$$ = TrLinkChildren ($3,2, TrSetNodeFlags ($4, NODE_IS_NAME_DECLARATION),$7);} - | PARSEOP_DEVICE '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_DEVICE + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; DivideTerm - : PARSEOP_DIVIDE '(' {$$ = TrCreateLeafNode (PARSEOP_DIVIDE);} + : PARSEOP_DIVIDE + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_DIVIDE);} TermArg TermArgItem Target Target - ')' {$$ = TrLinkChildren ($3,4,$4,$5,$6,$7);} - | PARSEOP_DIVIDE '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,4,$4,$5,$6,$7);} + | PARSEOP_DIVIDE + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; EISAIDTerm - : PARSEOP_EISAID '(' - StringData ')' {$$ = TrUpdateNode (PARSEOP_EISAID, $3);} - | PARSEOP_EISAID '(' - error ')' {$$ = AslDoError(); yyclearin;} + : PARSEOP_EISAID + PARSEOP_OPEN_PAREN + StringData + PARSEOP_CLOSE_PAREN {$$ = TrUpdateNode (PARSEOP_EISAID, $3);} + | PARSEOP_EISAID + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ElseIfTerm : IfTerm ElseTerm {$$ = TrLinkPeerNode ($1,$2);} ; ElseTerm : {$$ = NULL;} | PARSEOP_ELSE '{' {$$ = TrCreateLeafNode (PARSEOP_ELSE);} TermList '}' {$$ = TrLinkChildren ($3,1,$4);} | PARSEOP_ELSE '{' error '}' {$$ = AslDoError(); yyclearin;} | PARSEOP_ELSE error {$$ = AslDoError(); yyclearin;} - | PARSEOP_ELSEIF '(' {$$ = TrCreateLeafNode (PARSEOP_ELSE);} + | PARSEOP_ELSEIF + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_ELSE);} TermArg {$$ = TrCreateLeafNode (PARSEOP_IF);} - ')' '{' + PARSEOP_CLOSE_PAREN '{' TermList '}' {TrLinkChildren ($5,2,$4,$8);} ElseTerm {TrLinkPeerNode ($5,$11);} {$$ = TrLinkChildren ($3,1,$5);} - | PARSEOP_ELSEIF '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_ELSEIF + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} | PARSEOP_ELSEIF error {$$ = AslDoError(); yyclearin;} ; EventTerm - : PARSEOP_EVENT '(' {$$ = TrCreateLeafNode (PARSEOP_EVENT);} + : PARSEOP_EVENT + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_EVENT);} NameString - ')' {$$ = TrLinkChildren ($3,1, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,1, TrSetNodeFlags ($4, NODE_IS_NAME_DECLARATION));} - | PARSEOP_EVENT '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_EVENT + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ExternalTerm - : PARSEOP_EXTERNAL '(' + : PARSEOP_EXTERNAL + PARSEOP_OPEN_PAREN NameString OptionalObjectTypeKeyword OptionalParameterTypePackage OptionalParameterTypesPackage - ')' {$$ = TrCreateNode (PARSEOP_EXTERNAL,4,$3,$4,$5,$6);} - | PARSEOP_EXTERNAL '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrCreateNode (PARSEOP_EXTERNAL,4,$3,$4,$5,$6);} + | PARSEOP_EXTERNAL + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; FatalTerm - : PARSEOP_FATAL '(' {$$ = TrCreateLeafNode (PARSEOP_FATAL);} + : PARSEOP_FATAL + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_FATAL);} ByteConstExpr ',' DWordConstExpr TermArgItem - ')' {$$ = TrLinkChildren ($3,3,$4,$6,$7);} - | PARSEOP_FATAL '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$6,$7);} + | PARSEOP_FATAL + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; FieldTerm - : PARSEOP_FIELD '(' {$$ = TrCreateLeafNode (PARSEOP_FIELD);} + : PARSEOP_FIELD + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_FIELD);} NameString ',' AccessTypeKeyword ',' LockRuleKeyword ',' UpdateRuleKeyword - ')' '{' + PARSEOP_CLOSE_PAREN '{' FieldUnitList '}' {$$ = TrLinkChildren ($3,5,$4,$6,$8,$10,$13);} - | PARSEOP_FIELD '(' - error ')' '{' error '}' {$$ = AslDoError(); yyclearin;} + | PARSEOP_FIELD + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN + '{' error '}' {$$ = AslDoError(); yyclearin;} ; FindSetLeftBitTerm - : PARSEOP_FINDSETLEFTBIT '(' {$$ = TrCreateLeafNode (PARSEOP_FINDSETLEFTBIT);} + : PARSEOP_FINDSETLEFTBIT + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_FINDSETLEFTBIT);} TermArg Target - ')' {$$ = TrLinkChildren ($3,2,$4,$5);} - | PARSEOP_FINDSETLEFTBIT '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4,$5);} + | PARSEOP_FINDSETLEFTBIT + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; FindSetRightBitTerm - : PARSEOP_FINDSETRIGHTBIT '(' {$$ = TrCreateLeafNode (PARSEOP_FINDSETRIGHTBIT);} + : PARSEOP_FINDSETRIGHTBIT + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_FINDSETRIGHTBIT);} TermArg Target - ')' {$$ = TrLinkChildren ($3,2,$4,$5);} - | PARSEOP_FINDSETRIGHTBIT '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4,$5);} + | PARSEOP_FINDSETRIGHTBIT + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; /* Convert a For() loop to a While() loop */ ForTerm - : PARSEOP_FOR '(' {$$ = TrCreateLeafNode (PARSEOP_WHILE);} + : PARSEOP_FOR + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_WHILE);} OptionalTermArg ',' {} OptionalPredicate ',' OptionalTermArg {$$ = TrLinkPeerNode ($4,$3); - TrSetParent ($9,$3);} /* New parent is WHILE */ - ')' '{' TermList '}' {$$ = TrLinkChildren ($3,2,$7,$13);} + TrSetParent ($9,$3);} /* New parent is WHILE */ + PARSEOP_CLOSE_PAREN + '{' TermList '}' {$$ = TrLinkChildren ($3,2,$7,$13);} {$$ = TrLinkPeerNode ($13,$9); $$ = $10;} ; OptionalPredicate : {$$ = TrCreateValuedLeafNode (PARSEOP_INTEGER, 1);} | TermArg {$$ = $1;} ; FprintfTerm - : PARSEOP_FPRINTF '(' {$$ = TrCreateLeafNode (PARSEOP_FPRINTF);} + : PARSEOP_FPRINTF + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_FPRINTF);} TermArg ',' StringData PrintfArgList - ')' {$$ = TrLinkChildren ($3,3,$4,$6,$7);} - | PARSEOP_FPRINTF '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$6,$7);} + | PARSEOP_FPRINTF + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; FromBCDTerm - : PARSEOP_FROMBCD '(' {$$ = TrCreateLeafNode (PARSEOP_FROMBCD);} + : PARSEOP_FROMBCD + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_FROMBCD);} TermArg Target - ')' {$$ = TrLinkChildren ($3,2,$4,$5);} - | PARSEOP_FROMBCD '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4,$5);} + | PARSEOP_FROMBCD + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; FunctionTerm - : PARSEOP_FUNCTION '(' {$$ = TrCreateLeafNode (PARSEOP_METHOD);} + : PARSEOP_FUNCTION + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_METHOD);} NameString OptionalParameterTypePackage OptionalParameterTypesPackage - ')' '{' + PARSEOP_CLOSE_PAREN '{' TermList '}' {$$ = TrLinkChildren ($3,7, TrSetNodeFlags ($4, NODE_IS_NAME_DECLARATION), TrCreateValuedLeafNode (PARSEOP_BYTECONST, 0), TrCreateLeafNode (PARSEOP_SERIALIZERULE_NOTSERIAL), TrCreateValuedLeafNode (PARSEOP_BYTECONST, 0),$5,$6,$9);} - | PARSEOP_FUNCTION '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_FUNCTION + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; IfTerm - : PARSEOP_IF '(' {$$ = TrCreateLeafNode (PARSEOP_IF);} + : PARSEOP_IF + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_IF);} TermArg - ')' '{' + PARSEOP_CLOSE_PAREN '{' TermList '}' {$$ = TrLinkChildren ($3,2,$4,$7);} - | PARSEOP_IF '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_IF + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; IncludeTerm - : PARSEOP_INCLUDE '(' - String ')' {$$ = TrUpdateNode (PARSEOP_INCLUDE, $3); + : PARSEOP_INCLUDE + PARSEOP_OPEN_PAREN + String + PARSEOP_CLOSE_PAREN {$$ = TrUpdateNode (PARSEOP_INCLUDE, $3); FlOpenIncludeFile ($3);} ; IncludeEndTerm : PARSEOP_INCLUDE_END {$$ = TrCreateLeafNode (PARSEOP_INCLUDE_END); TrSetCurrentFilename ($$);} ; IncTerm - : PARSEOP_INCREMENT '(' {$$ = TrCreateLeafNode (PARSEOP_INCREMENT);} + : PARSEOP_INCREMENT + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_INCREMENT);} SuperName - ')' {$$ = TrLinkChildren ($3,1,$4);} - | PARSEOP_INCREMENT '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,1,$4);} + | PARSEOP_INCREMENT + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; IndexFieldTerm - : PARSEOP_INDEXFIELD '(' {$$ = TrCreateLeafNode (PARSEOP_INDEXFIELD);} + : PARSEOP_INDEXFIELD + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_INDEXFIELD);} NameString NameStringItem ',' AccessTypeKeyword ',' LockRuleKeyword ',' UpdateRuleKeyword - ')' '{' + PARSEOP_CLOSE_PAREN '{' FieldUnitList '}' {$$ = TrLinkChildren ($3,6,$4,$5,$7,$9,$11,$14);} - | PARSEOP_INDEXFIELD '(' - error ')' '{' error '}' {$$ = AslDoError(); yyclearin;} + | PARSEOP_INDEXFIELD + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN + '{' error '}' {$$ = AslDoError(); yyclearin;} ; IndexTerm - : PARSEOP_INDEX '(' {$$ = TrCreateLeafNode (PARSEOP_INDEX);} + : PARSEOP_INDEX + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_INDEX);} TermArg TermArgItem Target - ')' {$$ = TrLinkChildren ($3,3,$4,$5,$6);} - | PARSEOP_INDEX '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$5,$6);} + | PARSEOP_INDEX + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; LAndTerm - : PARSEOP_LAND '(' {$$ = TrCreateLeafNode (PARSEOP_LAND);} + : PARSEOP_LAND + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_LAND);} TermArg TermArgItem - ')' {$$ = TrLinkChildren ($3,2,$4,$5);} - | PARSEOP_LAND '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4,$5);} + | PARSEOP_LAND + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; LEqualTerm - : PARSEOP_LEQUAL '(' {$$ = TrCreateLeafNode (PARSEOP_LEQUAL);} + : PARSEOP_LEQUAL + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_LEQUAL);} TermArg TermArgItem - ')' {$$ = TrLinkChildren ($3,2,$4,$5);} - | PARSEOP_LEQUAL '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4,$5);} + | PARSEOP_LEQUAL + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; LGreaterEqualTerm - : PARSEOP_LGREATEREQUAL '(' {$$ = TrCreateLeafNode (PARSEOP_LLESS);} + : PARSEOP_LGREATEREQUAL + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_LLESS);} TermArg TermArgItem - ')' {$$ = TrCreateNode (PARSEOP_LNOT, 1, + PARSEOP_CLOSE_PAREN {$$ = TrCreateNode (PARSEOP_LNOT, 1, TrLinkChildren ($3,2,$4,$5));} - | PARSEOP_LGREATEREQUAL '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_LGREATEREQUAL + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; LGreaterTerm - : PARSEOP_LGREATER '(' {$$ = TrCreateLeafNode (PARSEOP_LGREATER);} + : PARSEOP_LGREATER + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_LGREATER);} TermArg TermArgItem - ')' {$$ = TrLinkChildren ($3,2,$4,$5);} - | PARSEOP_LGREATER '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4,$5);} + | PARSEOP_LGREATER + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; LLessEqualTerm - : PARSEOP_LLESSEQUAL '(' {$$ = TrCreateLeafNode (PARSEOP_LGREATER);} + : PARSEOP_LLESSEQUAL + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_LGREATER);} TermArg TermArgItem - ')' {$$ = TrCreateNode (PARSEOP_LNOT, 1, + PARSEOP_CLOSE_PAREN {$$ = TrCreateNode (PARSEOP_LNOT, 1, TrLinkChildren ($3,2,$4,$5));} - | PARSEOP_LLESSEQUAL '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_LLESSEQUAL + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; LLessTerm - : PARSEOP_LLESS '(' {$$ = TrCreateLeafNode (PARSEOP_LLESS);} + : PARSEOP_LLESS + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_LLESS);} TermArg TermArgItem - ')' {$$ = TrLinkChildren ($3,2,$4,$5);} - | PARSEOP_LLESS '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4,$5);} + | PARSEOP_LLESS + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; LNotEqualTerm - : PARSEOP_LNOTEQUAL '(' {$$ = TrCreateLeafNode (PARSEOP_LEQUAL);} + : PARSEOP_LNOTEQUAL + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_LEQUAL);} TermArg TermArgItem - ')' {$$ = TrCreateNode (PARSEOP_LNOT, 1, + PARSEOP_CLOSE_PAREN {$$ = TrCreateNode (PARSEOP_LNOT, 1, TrLinkChildren ($3,2,$4,$5));} - | PARSEOP_LNOTEQUAL '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_LNOTEQUAL + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; LNotTerm - : PARSEOP_LNOT '(' {$$ = TrCreateLeafNode (PARSEOP_LNOT);} + : PARSEOP_LNOT + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_LNOT);} TermArg - ')' {$$ = TrLinkChildren ($3,1,$4);} - | PARSEOP_LNOT '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,1,$4);} + | PARSEOP_LNOT + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; LoadTableTerm - : PARSEOP_LOADTABLE '(' {$$ = TrCreateLeafNode (PARSEOP_LOADTABLE);} + : PARSEOP_LOADTABLE + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_LOADTABLE);} TermArg TermArgItem TermArgItem OptionalListString OptionalListString OptionalReference - ')' {$$ = TrLinkChildren ($3,6,$4,$5,$6,$7,$8,$9);} - | PARSEOP_LOADTABLE '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,6,$4,$5,$6,$7,$8,$9);} + | PARSEOP_LOADTABLE + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; LoadTerm - : PARSEOP_LOAD '(' {$$ = TrCreateLeafNode (PARSEOP_LOAD);} + : PARSEOP_LOAD + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_LOAD);} NameString RequiredTarget - ')' {$$ = TrLinkChildren ($3,2,$4,$5);} - | PARSEOP_LOAD '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4,$5);} + | PARSEOP_LOAD + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; LocalTerm : PARSEOP_LOCAL0 {$$ = TrCreateLeafNode (PARSEOP_LOCAL0);} | PARSEOP_LOCAL1 {$$ = TrCreateLeafNode (PARSEOP_LOCAL1);} | PARSEOP_LOCAL2 {$$ = TrCreateLeafNode (PARSEOP_LOCAL2);} | PARSEOP_LOCAL3 {$$ = TrCreateLeafNode (PARSEOP_LOCAL3);} | PARSEOP_LOCAL4 {$$ = TrCreateLeafNode (PARSEOP_LOCAL4);} | PARSEOP_LOCAL5 {$$ = TrCreateLeafNode (PARSEOP_LOCAL5);} | PARSEOP_LOCAL6 {$$ = TrCreateLeafNode (PARSEOP_LOCAL6);} | PARSEOP_LOCAL7 {$$ = TrCreateLeafNode (PARSEOP_LOCAL7);} ; LOrTerm - : PARSEOP_LOR '(' {$$ = TrCreateLeafNode (PARSEOP_LOR);} + : PARSEOP_LOR + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_LOR);} TermArg TermArgItem - ')' {$$ = TrLinkChildren ($3,2,$4,$5);} - | PARSEOP_LOR '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4,$5);} + | PARSEOP_LOR + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; MatchTerm - : PARSEOP_MATCH '(' {$$ = TrCreateLeafNode (PARSEOP_MATCH);} + : PARSEOP_MATCH + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_MATCH);} TermArg ',' MatchOpKeyword TermArgItem ',' MatchOpKeyword TermArgItem TermArgItem - ')' {$$ = TrLinkChildren ($3,6,$4,$6,$7,$9,$10,$11);} - | PARSEOP_MATCH '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,6,$4,$6,$7,$9,$10,$11);} + | PARSEOP_MATCH + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; MethodTerm - : PARSEOP_METHOD '(' {$$ = TrCreateLeafNode (PARSEOP_METHOD);} + : PARSEOP_METHOD + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_METHOD);} NameString OptionalByteConstExpr {UtCheckIntegerRange ($5, 0, 7);} OptionalSerializeRuleKeyword OptionalByteConstExpr OptionalParameterTypePackage OptionalParameterTypesPackage - ')' '{' + PARSEOP_CLOSE_PAREN '{' TermList '}' {$$ = TrLinkChildren ($3,7, TrSetNodeFlags ($4, NODE_IS_NAME_DECLARATION), $5,$7,$8,$9,$10,$13);} - | PARSEOP_METHOD '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_METHOD + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; MidTerm - : PARSEOP_MID '(' {$$ = TrCreateLeafNode (PARSEOP_MID);} + : PARSEOP_MID + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_MID);} TermArg TermArgItem TermArgItem Target - ')' {$$ = TrLinkChildren ($3,4,$4,$5,$6,$7);} - | PARSEOP_MID '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,4,$4,$5,$6,$7);} + | PARSEOP_MID + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ModTerm - : PARSEOP_MOD '(' {$$ = TrCreateLeafNode (PARSEOP_MOD);} + : PARSEOP_MOD + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_MOD);} TermArg TermArgItem Target - ')' {$$ = TrLinkChildren ($3,3,$4,$5,$6);} - | PARSEOP_MOD '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$5,$6);} + | PARSEOP_MOD + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; MultiplyTerm - : PARSEOP_MULTIPLY '(' {$$ = TrCreateLeafNode (PARSEOP_MULTIPLY);} + : PARSEOP_MULTIPLY + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_MULTIPLY);} TermArg TermArgItem Target - ')' {$$ = TrLinkChildren ($3,3,$4,$5,$6);} - | PARSEOP_MULTIPLY '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$5,$6);} + | PARSEOP_MULTIPLY + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; MutexTerm - : PARSEOP_MUTEX '(' {$$ = TrCreateLeafNode (PARSEOP_MUTEX);} + : PARSEOP_MUTEX + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_MUTEX);} NameString ',' ByteConstExpr - ')' {$$ = TrLinkChildren ($3,2, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2, TrSetNodeFlags ($4, NODE_IS_NAME_DECLARATION),$6);} - | PARSEOP_MUTEX '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_MUTEX + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; NameTerm - : PARSEOP_NAME '(' {$$ = TrCreateLeafNode (PARSEOP_NAME);} + : PARSEOP_NAME + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_NAME);} NameString ',' DataObject - ')' {$$ = TrLinkChildren ($3,2, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2, TrSetNodeFlags ($4, NODE_IS_NAME_DECLARATION),$6);} - | PARSEOP_NAME '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_NAME + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; NAndTerm - : PARSEOP_NAND '(' {$$ = TrCreateLeafNode (PARSEOP_NAND);} + : PARSEOP_NAND + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_NAND);} TermArg TermArgItem Target - ')' {$$ = TrLinkChildren ($3,3,$4,$5,$6);} - | PARSEOP_NAND '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$5,$6);} + | PARSEOP_NAND + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; NoOpTerm : PARSEOP_NOOP {$$ = TrCreateNode (PARSEOP_NOOP, 0);} ; NOrTerm - : PARSEOP_NOR '(' {$$ = TrCreateLeafNode (PARSEOP_NOR);} + : PARSEOP_NOR + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_NOR);} TermArg TermArgItem Target - ')' {$$ = TrLinkChildren ($3,3,$4,$5,$6);} - | PARSEOP_NOR '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$5,$6);} + | PARSEOP_NOR + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; NotifyTerm - : PARSEOP_NOTIFY '(' {$$ = TrCreateLeafNode (PARSEOP_NOTIFY);} + : PARSEOP_NOTIFY + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_NOTIFY);} SuperName TermArgItem - ')' {$$ = TrLinkChildren ($3,2,$4,$5);} - | PARSEOP_NOTIFY '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4,$5);} + | PARSEOP_NOTIFY + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; NotTerm - : PARSEOP_NOT '(' {$$ = TrCreateLeafNode (PARSEOP_NOT);} + : PARSEOP_NOT + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_NOT);} TermArg Target - ')' {$$ = TrLinkChildren ($3,2,$4,$5);} - | PARSEOP_NOT '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4,$5);} + | PARSEOP_NOT + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ObjectTypeTerm - : PARSEOP_OBJECTTYPE '(' {$$ = TrCreateLeafNode (PARSEOP_OBJECTTYPE);} - ObjectTypeName - ')' {$$ = TrLinkChildren ($3,1,$4);} - | PARSEOP_OBJECTTYPE '(' - error ')' {$$ = AslDoError(); yyclearin;} + : PARSEOP_OBJECTTYPE + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_OBJECTTYPE);} + ObjectTypeSource + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,1,$4);} + | PARSEOP_OBJECTTYPE + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; OffsetTerm - : PARSEOP_OFFSET '(' + : PARSEOP_OFFSET + PARSEOP_OPEN_PAREN AmlPackageLengthTerm - ')' {$$ = TrCreateNode (PARSEOP_OFFSET,1,$3);} - | PARSEOP_OFFSET '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrCreateNode (PARSEOP_OFFSET,1,$3);} + | PARSEOP_OFFSET + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; OpRegionTerm - : PARSEOP_OPERATIONREGION '(' {$$ = TrCreateLeafNode (PARSEOP_OPERATIONREGION);} + : PARSEOP_OPERATIONREGION + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_OPERATIONREGION);} NameString ',' OpRegionSpaceIdTerm TermArgItem TermArgItem - ')' {$$ = TrLinkChildren ($3,4, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,4, TrSetNodeFlags ($4, NODE_IS_NAME_DECLARATION), $6,$7,$8);} - | PARSEOP_OPERATIONREGION '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_OPERATIONREGION + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; OpRegionSpaceIdTerm : RegionSpaceKeyword {} | ByteConst {$$ = UtCheckIntegerRange ($1, 0x80, 0xFF);} ; OrTerm - : PARSEOP_OR '(' {$$ = TrCreateLeafNode (PARSEOP_OR);} + : PARSEOP_OR + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_OR);} TermArg TermArgItem Target - ')' {$$ = TrLinkChildren ($3,3,$4,$5,$6);} - | PARSEOP_OR '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$5,$6);} + | PARSEOP_OR + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; PackageTerm : PARSEOP_PACKAGE {$$ = TrCreateLeafNode (PARSEOP_VAR_PACKAGE);} OptionalDataCount '{' PackageList '}' {$$ = TrLinkChildren ($2,2,$3,$5);} PowerResTerm - : PARSEOP_POWERRESOURCE '(' {$$ = TrCreateLeafNode (PARSEOP_POWERRESOURCE);} + : PARSEOP_POWERRESOURCE + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_POWERRESOURCE);} NameString ',' ByteConstExpr ',' WordConstExpr - ')' '{' + PARSEOP_CLOSE_PAREN '{' TermList '}' {$$ = TrLinkChildren ($3,4, TrSetNodeFlags ($4, NODE_IS_NAME_DECLARATION), $6,$8,$11);} - | PARSEOP_POWERRESOURCE '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_POWERRESOURCE + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; PrintfTerm - : PARSEOP_PRINTF '(' {$$ = TrCreateLeafNode (PARSEOP_PRINTF);} + : PARSEOP_PRINTF + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_PRINTF);} StringData PrintfArgList - ')' {$$ = TrLinkChildren ($3,2,$4,$5);} - | PARSEOP_PRINTF '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4,$5);} + | PARSEOP_PRINTF + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; PrintfArgList : {$$ = NULL;} | TermArg {$$ = $1;} | PrintfArgList ',' TermArg {$$ = TrLinkPeerNode ($1, $3);} ; ProcessorTerm - : PARSEOP_PROCESSOR '(' {$$ = TrCreateLeafNode (PARSEOP_PROCESSOR);} + : PARSEOP_PROCESSOR + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_PROCESSOR);} NameString ',' ByteConstExpr OptionalDWordConstExpr OptionalByteConstExpr - ')' '{' + PARSEOP_CLOSE_PAREN '{' TermList '}' {$$ = TrLinkChildren ($3,5, TrSetNodeFlags ($4, NODE_IS_NAME_DECLARATION), $6,$7,$8,$11);} - | PARSEOP_PROCESSOR '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_PROCESSOR + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; RawDataBufferTerm - : PARSEOP_DATABUFFER '(' {$$ = TrCreateLeafNode (PARSEOP_DATABUFFER);} + : PARSEOP_DATABUFFER + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_DATABUFFER);} OptionalWordConst - ')' '{' + PARSEOP_CLOSE_PAREN '{' ByteList '}' {$$ = TrLinkChildren ($3,2,$4,$7);} - | PARSEOP_DATABUFFER '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_DATABUFFER + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; /* * In RefOf, the node isn't really a target, but we can't keep track of it after * we've taken a pointer to it. (hard to tell if a local becomes initialized this way.) */ RefOfTerm - : PARSEOP_REFOF '(' {$$ = TrCreateLeafNode (PARSEOP_REFOF);} - SuperName - ')' {$$ = TrLinkChildren ($3,1, + : PARSEOP_REFOF + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_REFOF);} + RefOfSource + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,1, TrSetNodeFlags ($4, NODE_IS_TARGET));} - | PARSEOP_REFOF '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_REFOF + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ReleaseTerm - : PARSEOP_RELEASE '(' {$$ = TrCreateLeafNode (PARSEOP_RELEASE);} + : PARSEOP_RELEASE + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_RELEASE);} SuperName - ')' {$$ = TrLinkChildren ($3,1,$4);} - | PARSEOP_RELEASE '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,1,$4);} + | PARSEOP_RELEASE + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ResetTerm - : PARSEOP_RESET '(' {$$ = TrCreateLeafNode (PARSEOP_RESET);} + : PARSEOP_RESET + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_RESET);} SuperName - ')' {$$ = TrLinkChildren ($3,1,$4);} - | PARSEOP_RESET '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,1,$4);} + | PARSEOP_RESET + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ReturnTerm - : PARSEOP_RETURN '(' {$$ = TrCreateLeafNode (PARSEOP_RETURN);} + : PARSEOP_RETURN + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_RETURN);} OptionalReturnArg - ')' {$$ = TrLinkChildren ($3,1,$4);} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,1,$4);} | PARSEOP_RETURN {$$ = TrLinkChildren ( TrCreateLeafNode (PARSEOP_RETURN),1, TrSetNodeFlags (TrCreateLeafNode (PARSEOP_ZERO), NODE_IS_NULL_RETURN));} - | PARSEOP_RETURN '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_RETURN + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ScopeTerm - : PARSEOP_SCOPE '(' {$$ = TrCreateLeafNode (PARSEOP_SCOPE);} + : PARSEOP_SCOPE + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_SCOPE);} NameString - ')' '{' + PARSEOP_CLOSE_PAREN '{' TermList '}' {$$ = TrLinkChildren ($3,2, TrSetNodeFlags ($4, NODE_IS_NAME_DECLARATION),$7);} - | PARSEOP_SCOPE '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_SCOPE + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ShiftLeftTerm - : PARSEOP_SHIFTLEFT '(' {$$ = TrCreateLeafNode (PARSEOP_SHIFTLEFT);} + : PARSEOP_SHIFTLEFT + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_SHIFTLEFT);} TermArg TermArgItem Target - ')' {$$ = TrLinkChildren ($3,3,$4,$5,$6);} - | PARSEOP_SHIFTLEFT '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$5,$6);} + | PARSEOP_SHIFTLEFT + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ShiftRightTerm - : PARSEOP_SHIFTRIGHT '(' {$$ = TrCreateLeafNode (PARSEOP_SHIFTRIGHT);} + : PARSEOP_SHIFTRIGHT + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_SHIFTRIGHT);} TermArg TermArgItem Target - ')' {$$ = TrLinkChildren ($3,3,$4,$5,$6);} - | PARSEOP_SHIFTRIGHT '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$5,$6);} + | PARSEOP_SHIFTRIGHT + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; SignalTerm - : PARSEOP_SIGNAL '(' {$$ = TrCreateLeafNode (PARSEOP_SIGNAL);} + : PARSEOP_SIGNAL + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_SIGNAL);} SuperName - ')' {$$ = TrLinkChildren ($3,1,$4);} - | PARSEOP_SIGNAL '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,1,$4);} + | PARSEOP_SIGNAL + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; SizeOfTerm - : PARSEOP_SIZEOF '(' {$$ = TrCreateLeafNode (PARSEOP_SIZEOF);} + : PARSEOP_SIZEOF + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_SIZEOF);} SuperName - ')' {$$ = TrLinkChildren ($3,1,$4);} - | PARSEOP_SIZEOF '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,1,$4);} + | PARSEOP_SIZEOF + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; SleepTerm - : PARSEOP_SLEEP '(' {$$ = TrCreateLeafNode (PARSEOP_SLEEP);} + : PARSEOP_SLEEP + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_SLEEP);} TermArg - ')' {$$ = TrLinkChildren ($3,1,$4);} - | PARSEOP_SLEEP '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,1,$4);} + | PARSEOP_SLEEP + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; StallTerm - : PARSEOP_STALL '(' {$$ = TrCreateLeafNode (PARSEOP_STALL);} + : PARSEOP_STALL + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_STALL);} TermArg - ')' {$$ = TrLinkChildren ($3,1,$4);} - | PARSEOP_STALL '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,1,$4);} + | PARSEOP_STALL + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; StoreTerm - : PARSEOP_STORE '(' {$$ = TrCreateLeafNode (PARSEOP_STORE);} + : PARSEOP_STORE + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_STORE);} TermArg ',' SuperName - ')' {$$ = TrLinkChildren ($3,2,$4, - TrSetNodeFlags ($6, NODE_IS_TARGET));} - | PARSEOP_STORE '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4, + TrSetNodeFlags ($6, NODE_IS_TARGET));} + | PARSEOP_STORE + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; SubtractTerm - : PARSEOP_SUBTRACT '(' {$$ = TrCreateLeafNode (PARSEOP_SUBTRACT);} + : PARSEOP_SUBTRACT + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_SUBTRACT);} TermArg TermArgItem Target - ')' {$$ = TrLinkChildren ($3,3,$4,$5,$6);} - | PARSEOP_SUBTRACT '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$5,$6);} + | PARSEOP_SUBTRACT + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; SwitchTerm - : PARSEOP_SWITCH '(' {$$ = TrCreateLeafNode (PARSEOP_SWITCH);} + : PARSEOP_SWITCH + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_SWITCH);} TermArg - ')' '{' - CaseDefaultTermList '}' - {$$ = TrLinkChildren ($3,2,$4,$7);} - | PARSEOP_SWITCH '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN '{' + CaseDefaultTermList '}' {$$ = TrLinkChildren ($3,2,$4,$7);} + | PARSEOP_SWITCH + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ThermalZoneTerm - : PARSEOP_THERMALZONE '(' {$$ = TrCreateLeafNode (PARSEOP_THERMALZONE);} + : PARSEOP_THERMALZONE + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_THERMALZONE);} NameString - ')' '{' + PARSEOP_CLOSE_PAREN '{' TermList '}' {$$ = TrLinkChildren ($3,2, TrSetNodeFlags ($4, NODE_IS_NAME_DECLARATION),$7);} - | PARSEOP_THERMALZONE '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_THERMALZONE + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; TimerTerm - : PARSEOP_TIMER '(' {$$ = TrCreateLeafNode (PARSEOP_TIMER);} - ')' {$$ = TrLinkChildren ($3,0);} + : PARSEOP_TIMER + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_TIMER);} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,0);} | PARSEOP_TIMER {$$ = TrLinkChildren ( TrCreateLeafNode (PARSEOP_TIMER),0);} - | PARSEOP_TIMER '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_TIMER + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ToBCDTerm - : PARSEOP_TOBCD '(' {$$ = TrCreateLeafNode (PARSEOP_TOBCD);} + : PARSEOP_TOBCD + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_TOBCD);} TermArg Target - ')' {$$ = TrLinkChildren ($3,2,$4,$5);} - | PARSEOP_TOBCD '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4,$5);} + | PARSEOP_TOBCD + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ToBufferTerm - : PARSEOP_TOBUFFER '(' {$$ = TrCreateLeafNode (PARSEOP_TOBUFFER);} + : PARSEOP_TOBUFFER + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_TOBUFFER);} TermArg Target - ')' {$$ = TrLinkChildren ($3,2,$4,$5);} - | PARSEOP_TOBUFFER '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4,$5);} + | PARSEOP_TOBUFFER + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ToDecimalStringTerm - : PARSEOP_TODECIMALSTRING '(' {$$ = TrCreateLeafNode (PARSEOP_TODECIMALSTRING);} + : PARSEOP_TODECIMALSTRING + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_TODECIMALSTRING);} TermArg Target - ')' {$$ = TrLinkChildren ($3,2,$4,$5);} - | PARSEOP_TODECIMALSTRING '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4,$5);} + | PARSEOP_TODECIMALSTRING + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ToHexStringTerm - : PARSEOP_TOHEXSTRING '(' {$$ = TrCreateLeafNode (PARSEOP_TOHEXSTRING);} + : PARSEOP_TOHEXSTRING + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_TOHEXSTRING);} TermArg Target - ')' {$$ = TrLinkChildren ($3,2,$4,$5);} - | PARSEOP_TOHEXSTRING '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4,$5);} + | PARSEOP_TOHEXSTRING + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ToIntegerTerm - : PARSEOP_TOINTEGER '(' {$$ = TrCreateLeafNode (PARSEOP_TOINTEGER);} + : PARSEOP_TOINTEGER + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_TOINTEGER);} TermArg Target - ')' {$$ = TrLinkChildren ($3,2,$4,$5);} - | PARSEOP_TOINTEGER '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4,$5);} + | PARSEOP_TOINTEGER + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ToPLDTerm - : PARSEOP_TOPLD '(' {$$ = TrCreateLeafNode (PARSEOP_TOPLD);} + : PARSEOP_TOPLD + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_TOPLD);} PldKeywordList - ')' {$$ = TrLinkChildren ($3,1,$4);} - | PARSEOP_TOPLD '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,1,$4);} + | PARSEOP_TOPLD + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; PldKeywordList : {$$ = NULL;} | PldKeyword PARSEOP_EXP_EQUALS Integer {$$ = TrLinkChildren ($1,1,$3);} | PldKeyword PARSEOP_EXP_EQUALS String {$$ = TrLinkChildren ($1,1,$3);} | PldKeywordList ',' /* Allows a trailing comma at list end */ | PldKeywordList ',' PldKeyword PARSEOP_EXP_EQUALS Integer {$$ = TrLinkPeerNode ($1,TrLinkChildren ($3,1,$5));} | PldKeywordList ',' PldKeyword PARSEOP_EXP_EQUALS String {$$ = TrLinkPeerNode ($1,TrLinkChildren ($3,1,$5));} ; ToStringTerm - : PARSEOP_TOSTRING '(' {$$ = TrCreateLeafNode (PARSEOP_TOSTRING);} + : PARSEOP_TOSTRING + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_TOSTRING);} TermArg OptionalCount Target - ')' {$$ = TrLinkChildren ($3,3,$4,$5,$6);} - | PARSEOP_TOSTRING '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$5,$6);} + | PARSEOP_TOSTRING + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ToUUIDTerm - : PARSEOP_TOUUID '(' - StringData ')' {$$ = TrUpdateNode (PARSEOP_TOUUID, $3);} - | PARSEOP_TOUUID '(' - error ')' {$$ = AslDoError(); yyclearin;} + : PARSEOP_TOUUID + PARSEOP_OPEN_PAREN + StringData + PARSEOP_CLOSE_PAREN {$$ = TrUpdateNode (PARSEOP_TOUUID, $3);} + | PARSEOP_TOUUID + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; UnicodeTerm - : PARSEOP_UNICODE '(' {$$ = TrCreateLeafNode (PARSEOP_UNICODE);} + : PARSEOP_UNICODE + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_UNICODE);} StringData - ')' {$$ = TrLinkChildren ($3,2,0,$4);} - | PARSEOP_UNICODE '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,0,$4);} + | PARSEOP_UNICODE + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; UnloadTerm - : PARSEOP_UNLOAD '(' {$$ = TrCreateLeafNode (PARSEOP_UNLOAD);} + : PARSEOP_UNLOAD + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_UNLOAD);} SuperName - ')' {$$ = TrLinkChildren ($3,1,$4);} - | PARSEOP_UNLOAD '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,1,$4);} + | PARSEOP_UNLOAD + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; WaitTerm - : PARSEOP_WAIT '(' {$$ = TrCreateLeafNode (PARSEOP_WAIT);} + : PARSEOP_WAIT + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_WAIT);} SuperName TermArgItem - ')' {$$ = TrLinkChildren ($3,2,$4,$5);} - | PARSEOP_WAIT '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,2,$4,$5);} + | PARSEOP_WAIT + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; XOrTerm - : PARSEOP_XOR '(' {$$ = TrCreateLeafNode (PARSEOP_XOR);} + : PARSEOP_XOR + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_XOR);} TermArg TermArgItem Target - ')' {$$ = TrLinkChildren ($3,3,$4,$5,$6);} - | PARSEOP_XOR '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$5,$6);} + | PARSEOP_XOR + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; WhileTerm - : PARSEOP_WHILE '(' {$$ = TrCreateLeafNode (PARSEOP_WHILE);} + : PARSEOP_WHILE + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_WHILE);} TermArg - ')' '{' TermList '}' - {$$ = TrLinkChildren ($3,2,$4,$7);} - | PARSEOP_WHILE '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN + '{' TermList '}' {$$ = TrLinkChildren ($3,2,$4,$7);} + | PARSEOP_WHILE + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; Index: head/sys/contrib/dev/acpica/compiler/aslresources.y =================================================================== --- head/sys/contrib/dev/acpica/compiler/aslresources.y (revision 308952) +++ head/sys/contrib/dev/acpica/compiler/aslresources.y (revision 308953) @@ -1,725 +1,798 @@ NoEcho(' /****************************************************************************** * * Module Name: aslresources.y - Bison/Yacc production rules for resources * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ ') /******************************************************************************* * * ASL Resource Template Terms * ******************************************************************************/ /* * Note: Create two default nodes to allow conversion to a Buffer AML opcode * Also, insert the EndTag at the end of the template. */ ResourceTemplateTerm - : PARSEOP_RESOURCETEMPLATE OptionalParentheses + : PARSEOP_RESOURCETEMPLATE + OptionalParentheses '{' ResourceMacroList '}' {$$ = TrCreateNode (PARSEOP_RESOURCETEMPLATE,4, TrCreateLeafNode (PARSEOP_DEFAULT_ARG), TrCreateLeafNode (PARSEOP_DEFAULT_ARG), $4, TrCreateLeafNode (PARSEOP_ENDTAG));} ; OptionalParentheses : {$$ = NULL;} - | '(' ')' {$$ = NULL;} + | PARSEOP_OPEN_PAREN + PARSEOP_CLOSE_PAREN {$$ = NULL;} ; ResourceMacroList : {$$ = NULL;} | ResourceMacroList ResourceMacroTerm {$$ = TrLinkPeerNode ($1,$2);} ; ResourceMacroTerm : DMATerm {} | DWordIOTerm {} | DWordMemoryTerm {} | DWordSpaceTerm {} | EndDependentFnTerm {} | ExtendedIOTerm {} | ExtendedMemoryTerm {} | ExtendedSpaceTerm {} | FixedDmaTerm {} | FixedIOTerm {} | GpioIntTerm {} | GpioIoTerm {} | I2cSerialBusTerm {} | I2cSerialBusTermV2 {} | InterruptTerm {} | IOTerm {} | IRQNoFlagsTerm {} | IRQTerm {} | Memory24Term {} | Memory32FixedTerm {} | Memory32Term {} | QWordIOTerm {} | QWordMemoryTerm {} | QWordSpaceTerm {} | RegisterTerm {} | SpiSerialBusTerm {} | SpiSerialBusTermV2 {} | StartDependentFnNoPriTerm {} | StartDependentFnTerm {} | UartSerialBusTerm {} | UartSerialBusTermV2 {} | VendorLongTerm {} | VendorShortTerm {} | WordBusNumberTerm {} | WordIOTerm {} | WordSpaceTerm {} ; DMATerm - : PARSEOP_DMA '(' {$$ = TrCreateLeafNode (PARSEOP_DMA);} + : PARSEOP_DMA + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_DMA);} DMATypeKeyword OptionalBusMasterKeyword ',' XferTypeKeyword OptionalNameString_Last - ')' '{' + PARSEOP_CLOSE_PAREN '{' ByteList '}' {$$ = TrLinkChildren ($3,5,$4,$5,$7,$8,$11);} - | PARSEOP_DMA '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_DMA + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; DWordIOTerm - : PARSEOP_DWORDIO '(' {$$ = TrCreateLeafNode (PARSEOP_DWORDIO);} + : PARSEOP_DWORDIO + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_DWORDIO);} OptionalResourceType_First OptionalMinType OptionalMaxType OptionalDecodeType OptionalRangeType ',' DWordConstExpr ',' DWordConstExpr ',' DWordConstExpr ',' DWordConstExpr ',' DWordConstExpr OptionalByteConstExpr OptionalStringData OptionalNameString OptionalType OptionalTranslationType_Last - ')' {$$ = TrLinkChildren ($3,15, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,15, $4,$5,$6,$7,$8,$10,$12,$14,$16,$18,$19,$20,$21,$22,$23);} - | PARSEOP_DWORDIO '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_DWORDIO + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; DWordMemoryTerm - : PARSEOP_DWORDMEMORY '(' {$$ = TrCreateLeafNode (PARSEOP_DWORDMEMORY);} + : PARSEOP_DWORDMEMORY + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_DWORDMEMORY);} OptionalResourceType_First OptionalDecodeType OptionalMinType OptionalMaxType OptionalMemType ',' OptionalReadWriteKeyword ',' DWordConstExpr ',' DWordConstExpr ',' DWordConstExpr ',' DWordConstExpr ',' DWordConstExpr OptionalByteConstExpr OptionalStringData OptionalNameString OptionalAddressRange OptionalType_Last - ')' {$$ = TrLinkChildren ($3,16, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,16, $4,$5,$6,$7,$8,$10,$12,$14,$16,$18,$20,$21,$22,$23,$24,$25);} - | PARSEOP_DWORDMEMORY '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_DWORDMEMORY + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; DWordSpaceTerm - : PARSEOP_DWORDSPACE '(' {$$ = TrCreateLeafNode (PARSEOP_DWORDSPACE);} + : PARSEOP_DWORDSPACE + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_DWORDSPACE);} ByteConstExpr {UtCheckIntegerRange ($4, 0xC0, 0xFF);} OptionalResourceType OptionalDecodeType OptionalMinType OptionalMaxType ',' ByteConstExpr ',' DWordConstExpr ',' DWordConstExpr ',' DWordConstExpr ',' DWordConstExpr ',' DWordConstExpr OptionalByteConstExpr OptionalStringData OptionalNameString_Last - ')' {$$ = TrLinkChildren ($3,14, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,14, $4,$6,$7,$8,$9,$11,$13,$15,$17,$19,$21,$22,$23,$24);} - | PARSEOP_DWORDSPACE '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_DWORDSPACE + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; EndDependentFnTerm - : PARSEOP_ENDDEPENDENTFN '(' - ')' {$$ = TrCreateLeafNode (PARSEOP_ENDDEPENDENTFN);} - | PARSEOP_ENDDEPENDENTFN '(' - error ')' {$$ = AslDoError(); yyclearin;} + : PARSEOP_ENDDEPENDENTFN + PARSEOP_OPEN_PAREN + PARSEOP_CLOSE_PAREN {$$ = TrCreateLeafNode (PARSEOP_ENDDEPENDENTFN);} + | PARSEOP_ENDDEPENDENTFN + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ExtendedIOTerm - : PARSEOP_EXTENDEDIO '(' {$$ = TrCreateLeafNode (PARSEOP_EXTENDEDIO);} + : PARSEOP_EXTENDEDIO + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_EXTENDEDIO);} OptionalResourceType_First OptionalMinType OptionalMaxType OptionalDecodeType OptionalRangeType ',' QWordConstExpr ',' QWordConstExpr ',' QWordConstExpr ',' QWordConstExpr ',' QWordConstExpr OptionalQWordConstExpr OptionalNameString OptionalType OptionalTranslationType_Last - ')' {$$ = TrLinkChildren ($3,14, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,14, $4,$5,$6,$7,$8,$10,$12,$14,$16,$18,$19,$20,$21,$22);} - | PARSEOP_EXTENDEDIO '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_EXTENDEDIO + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ExtendedMemoryTerm - : PARSEOP_EXTENDEDMEMORY '(' {$$ = TrCreateLeafNode (PARSEOP_EXTENDEDMEMORY);} + : PARSEOP_EXTENDEDMEMORY + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_EXTENDEDMEMORY);} OptionalResourceType_First OptionalDecodeType OptionalMinType OptionalMaxType OptionalMemType ',' OptionalReadWriteKeyword ',' QWordConstExpr ',' QWordConstExpr ',' QWordConstExpr ',' QWordConstExpr ',' QWordConstExpr OptionalQWordConstExpr OptionalNameString OptionalAddressRange OptionalType_Last - ')' {$$ = TrLinkChildren ($3,15, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,15, $4,$5,$6,$7,$8,$10,$12,$14,$16,$18,$20,$21,$22,$23,$24);} - | PARSEOP_EXTENDEDMEMORY '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_EXTENDEDMEMORY + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; ExtendedSpaceTerm - : PARSEOP_EXTENDEDSPACE '(' {$$ = TrCreateLeafNode (PARSEOP_EXTENDEDSPACE);} + : PARSEOP_EXTENDEDSPACE PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_EXTENDEDSPACE);} ByteConstExpr {UtCheckIntegerRange ($4, 0xC0, 0xFF);} OptionalResourceType OptionalDecodeType OptionalMinType OptionalMaxType ',' ByteConstExpr ',' QWordConstExpr ',' QWordConstExpr ',' QWordConstExpr ',' QWordConstExpr ',' QWordConstExpr OptionalQWordConstExpr OptionalNameString_Last - ')' {$$ = TrLinkChildren ($3,13, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,13, $4,$6,$7,$8,$9,$11,$13,$15,$17,$19,$21,$22,$23);} - | PARSEOP_EXTENDEDSPACE '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_EXTENDEDSPACE + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; FixedDmaTerm - : PARSEOP_FIXEDDMA '(' {$$ = TrCreateLeafNode (PARSEOP_FIXEDDMA);} + : PARSEOP_FIXEDDMA + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_FIXEDDMA);} WordConstExpr /* 04: DMA RequestLines */ ',' WordConstExpr /* 06: DMA Channels */ OptionalXferSize /* 07: DMA TransferSize */ OptionalNameString /* 08: DescriptorName */ - ')' {$$ = TrLinkChildren ($3,4,$4,$6,$7,$8);} - | PARSEOP_FIXEDDMA '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,4,$4,$6,$7,$8);} + | PARSEOP_FIXEDDMA + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; FixedIOTerm - : PARSEOP_FIXEDIO '(' {$$ = TrCreateLeafNode (PARSEOP_FIXEDIO);} + : PARSEOP_FIXEDIO + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_FIXEDIO);} WordConstExpr ',' ByteConstExpr OptionalNameString_Last - ')' {$$ = TrLinkChildren ($3,3,$4,$6,$7);} - | PARSEOP_FIXEDIO '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,3,$4,$6,$7);} + | PARSEOP_FIXEDIO + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; GpioIntTerm - : PARSEOP_GPIO_INT '(' {$$ = TrCreateLeafNode (PARSEOP_GPIO_INT);} + : PARSEOP_GPIO_INT + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_GPIO_INT);} InterruptTypeKeyword /* 04: InterruptType */ ',' InterruptLevel /* 06: InterruptLevel */ OptionalShareType /* 07: SharedType */ ',' PinConfigByte /* 09: PinConfig */ OptionalWordConstExpr /* 10: DebounceTimeout */ ',' StringData /* 12: ResourceSource */ OptionalByteConstExpr /* 13: ResourceSourceIndex */ OptionalResourceType /* 14: ResourceType */ OptionalNameString /* 15: DescriptorName */ OptionalBuffer_Last /* 16: VendorData */ - ')' '{' + PARSEOP_CLOSE_PAREN '{' DWordConstExpr '}' {$$ = TrLinkChildren ($3,11, $4,$6,$7,$9,$10,$12,$13,$14,$15,$16,$19);} - | PARSEOP_GPIO_INT '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_GPIO_INT + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; GpioIoTerm - : PARSEOP_GPIO_IO '(' {$$ = TrCreateLeafNode (PARSEOP_GPIO_IO);} + : PARSEOP_GPIO_IO + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_GPIO_IO);} OptionalShareType_First /* 04: SharedType */ ',' PinConfigByte /* 06: PinConfig */ OptionalWordConstExpr /* 07: DebounceTimeout */ OptionalWordConstExpr /* 08: DriveStrength */ OptionalIoRestriction /* 09: IoRestriction */ ',' StringData /* 11: ResourceSource */ OptionalByteConstExpr /* 12: ResourceSourceIndex */ OptionalResourceType /* 13: ResourceType */ OptionalNameString /* 14: DescriptorName */ OptionalBuffer_Last /* 15: VendorData */ - ')' '{' + PARSEOP_CLOSE_PAREN '{' DWordList '}' {$$ = TrLinkChildren ($3,11, $4,$6,$7,$8,$9,$11,$12,$13,$14,$15,$18);} - | PARSEOP_GPIO_IO '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_GPIO_IO + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; I2cSerialBusTerm - : PARSEOP_I2C_SERIALBUS '(' {$$ = TrCreateLeafNode (PARSEOP_I2C_SERIALBUS);} + : PARSEOP_I2C_SERIALBUS + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_I2C_SERIALBUS);} WordConstExpr /* 04: SlaveAddress */ OptionalSlaveMode /* 05: SlaveMode */ ',' DWordConstExpr /* 07: ConnectionSpeed */ OptionalAddressingMode /* 08: AddressingMode */ ',' StringData /* 10: ResourceSource */ OptionalByteConstExpr /* 11: ResourceSourceIndex */ OptionalResourceType /* 12: ResourceType */ OptionalNameString /* 13: DescriptorName */ OptionalBuffer_Last /* 14: VendorData */ - ')' {$$ = TrLinkChildren ($3,10, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,10, $4,$5,$7,$8,$10,$11,$12,$13, TrCreateLeafNode (PARSEOP_DEFAULT_ARG),$14);} - | PARSEOP_I2C_SERIALBUS '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_I2C_SERIALBUS + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; I2cSerialBusTermV2 - : PARSEOP_I2C_SERIALBUS_V2 '(' {$$ = TrCreateLeafNode (PARSEOP_I2C_SERIALBUS_V2);} + : PARSEOP_I2C_SERIALBUS_V2 + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_I2C_SERIALBUS_V2);} WordConstExpr /* 04: SlaveAddress */ OptionalSlaveMode /* 05: SlaveMode */ ',' DWordConstExpr /* 07: ConnectionSpeed */ OptionalAddressingMode /* 08: AddressingMode */ ',' StringData /* 10: ResourceSource */ OptionalByteConstExpr /* 11: ResourceSourceIndex */ OptionalResourceType /* 12: ResourceType */ OptionalNameString /* 13: DescriptorName */ OptionalShareType /* 14: Share */ OptionalBuffer_Last /* 15: VendorData */ - ')' {$$ = TrLinkChildren ($3,10, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,10, $4,$5,$7,$8,$10,$11,$12,$13,$14,$15);} - | PARSEOP_I2C_SERIALBUS_V2 '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_I2C_SERIALBUS_V2 + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; InterruptTerm - : PARSEOP_INTERRUPT '(' {$$ = TrCreateLeafNode (PARSEOP_INTERRUPT);} + : PARSEOP_INTERRUPT + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_INTERRUPT);} OptionalResourceType_First ',' InterruptTypeKeyword ',' InterruptLevel OptionalShareType OptionalByteConstExpr OptionalStringData OptionalNameString_Last - ')' '{' + PARSEOP_CLOSE_PAREN '{' DWordList '}' {$$ = TrLinkChildren ($3,8, $4,$6,$8,$9,$10,$11,$12,$15);} - | PARSEOP_INTERRUPT '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_INTERRUPT + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; IOTerm - : PARSEOP_IO '(' {$$ = TrCreateLeafNode (PARSEOP_IO);} + : PARSEOP_IO + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_IO);} IODecodeKeyword ',' WordConstExpr ',' WordConstExpr ',' ByteConstExpr ',' ByteConstExpr OptionalNameString_Last - ')' {$$ = TrLinkChildren ($3,6,$4,$6,$8,$10,$12,$13);} - | PARSEOP_IO '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,6,$4,$6,$8,$10,$12,$13);} + | PARSEOP_IO + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; IRQNoFlagsTerm - : PARSEOP_IRQNOFLAGS '(' {$$ = TrCreateLeafNode (PARSEOP_IRQNOFLAGS);} + : PARSEOP_IRQNOFLAGS + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_IRQNOFLAGS);} OptionalNameString_First - ')' '{' + PARSEOP_CLOSE_PAREN '{' ByteList '}' {$$ = TrLinkChildren ($3,2,$4,$7);} - | PARSEOP_IRQNOFLAGS '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_IRQNOFLAGS + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; IRQTerm - : PARSEOP_IRQ '(' {$$ = TrCreateLeafNode (PARSEOP_IRQ);} + : PARSEOP_IRQ + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_IRQ);} InterruptTypeKeyword ',' InterruptLevel OptionalShareType OptionalNameString_Last - ')' '{' + PARSEOP_CLOSE_PAREN '{' ByteList '}' {$$ = TrLinkChildren ($3,5,$4,$6,$7,$8,$11);} - | PARSEOP_IRQ '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_IRQ + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; Memory24Term - : PARSEOP_MEMORY24 '(' {$$ = TrCreateLeafNode (PARSEOP_MEMORY24);} + : PARSEOP_MEMORY24 + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_MEMORY24);} OptionalReadWriteKeyword ',' WordConstExpr ',' WordConstExpr ',' WordConstExpr ',' WordConstExpr OptionalNameString_Last - ')' {$$ = TrLinkChildren ($3,6,$4,$6,$8,$10,$12,$13);} - | PARSEOP_MEMORY24 '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,6,$4,$6,$8,$10,$12,$13);} + | PARSEOP_MEMORY24 + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; Memory32FixedTerm - : PARSEOP_MEMORY32FIXED '(' {$$ = TrCreateLeafNode (PARSEOP_MEMORY32FIXED);} + : PARSEOP_MEMORY32FIXED + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_MEMORY32FIXED);} OptionalReadWriteKeyword ',' DWordConstExpr ',' DWordConstExpr OptionalNameString_Last - ')' {$$ = TrLinkChildren ($3,4,$4,$6,$8,$9);} - | PARSEOP_MEMORY32FIXED '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,4,$4,$6,$8,$9);} + | PARSEOP_MEMORY32FIXED + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; Memory32Term - : PARSEOP_MEMORY32 '(' {$$ = TrCreateLeafNode (PARSEOP_MEMORY32);} + : PARSEOP_MEMORY32 + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_MEMORY32);} OptionalReadWriteKeyword ',' DWordConstExpr ',' DWordConstExpr ',' DWordConstExpr ',' DWordConstExpr OptionalNameString_Last - ')' {$$ = TrLinkChildren ($3,6,$4,$6,$8,$10,$12,$13);} - | PARSEOP_MEMORY32 '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,6,$4,$6,$8,$10,$12,$13);} + | PARSEOP_MEMORY32 + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; QWordIOTerm - : PARSEOP_QWORDIO '(' {$$ = TrCreateLeafNode (PARSEOP_QWORDIO);} + : PARSEOP_QWORDIO + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_QWORDIO);} OptionalResourceType_First OptionalMinType OptionalMaxType OptionalDecodeType OptionalRangeType ',' QWordConstExpr ',' QWordConstExpr ',' QWordConstExpr ',' QWordConstExpr ',' QWordConstExpr OptionalByteConstExpr OptionalStringData OptionalNameString OptionalType OptionalTranslationType_Last - ')' {$$ = TrLinkChildren ($3,15, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,15, $4,$5,$6,$7,$8,$10,$12,$14,$16,$18,$19,$20,$21,$22,$23);} - | PARSEOP_QWORDIO '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_QWORDIO + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; QWordMemoryTerm - : PARSEOP_QWORDMEMORY '(' {$$ = TrCreateLeafNode (PARSEOP_QWORDMEMORY);} + : PARSEOP_QWORDMEMORY + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_QWORDMEMORY);} OptionalResourceType_First OptionalDecodeType OptionalMinType OptionalMaxType OptionalMemType ',' OptionalReadWriteKeyword ',' QWordConstExpr ',' QWordConstExpr ',' QWordConstExpr ',' QWordConstExpr ',' QWordConstExpr OptionalByteConstExpr OptionalStringData OptionalNameString OptionalAddressRange OptionalType_Last - ')' {$$ = TrLinkChildren ($3,16, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,16, $4,$5,$6,$7,$8,$10,$12,$14,$16,$18,$20,$21,$22,$23,$24,$25);} - | PARSEOP_QWORDMEMORY '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_QWORDMEMORY + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; QWordSpaceTerm - : PARSEOP_QWORDSPACE '(' {$$ = TrCreateLeafNode (PARSEOP_QWORDSPACE);} + : PARSEOP_QWORDSPACE + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_QWORDSPACE);} ByteConstExpr {UtCheckIntegerRange ($4, 0xC0, 0xFF);} OptionalResourceType OptionalDecodeType OptionalMinType OptionalMaxType ',' ByteConstExpr ',' QWordConstExpr ',' QWordConstExpr ',' QWordConstExpr ',' QWordConstExpr ',' QWordConstExpr OptionalByteConstExpr OptionalStringData OptionalNameString_Last - ')' {$$ = TrLinkChildren ($3,14, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,14, $4,$6,$7,$8,$9,$11,$13,$15,$17,$19,$21,$22,$23,$24);} - | PARSEOP_QWORDSPACE '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_QWORDSPACE + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; RegisterTerm - : PARSEOP_REGISTER '(' {$$ = TrCreateLeafNode (PARSEOP_REGISTER);} + : PARSEOP_REGISTER + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_REGISTER);} AddressSpaceKeyword ',' ByteConstExpr ',' ByteConstExpr ',' QWordConstExpr OptionalAccessSize OptionalNameString_Last - ')' {$$ = TrLinkChildren ($3,6,$4,$6,$8,$10,$11,$12);} - | PARSEOP_REGISTER '(' - error ')' {$$ = AslDoError(); yyclearin;} + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,6,$4,$6,$8,$10,$11,$12);} + | PARSEOP_REGISTER + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; SpiSerialBusTerm - : PARSEOP_SPI_SERIALBUS '(' {$$ = TrCreateLeafNode (PARSEOP_SPI_SERIALBUS);} + : PARSEOP_SPI_SERIALBUS + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_SPI_SERIALBUS);} WordConstExpr /* 04: DeviceSelection */ OptionalDevicePolarity /* 05: DevicePolarity */ OptionalWireMode /* 06: WireMode */ ',' ByteConstExpr /* 08: DataBitLength */ OptionalSlaveMode /* 09: SlaveMode */ ',' DWordConstExpr /* 11: ConnectionSpeed */ ',' ClockPolarityKeyword /* 13: ClockPolarity */ ',' ClockPhaseKeyword /* 15: ClockPhase */ ',' StringData /* 17: ResourceSource */ OptionalByteConstExpr /* 18: ResourceSourceIndex */ OptionalResourceType /* 19: ResourceType */ OptionalNameString /* 20: DescriptorName */ OptionalBuffer_Last /* 21: VendorData */ - ')' {$$ = TrLinkChildren ($3,14, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,14, $4,$5,$6,$8,$9,$11,$13,$15,$17,$18,$19,$20, TrCreateLeafNode (PARSEOP_DEFAULT_ARG),$21);} - | PARSEOP_SPI_SERIALBUS '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_SPI_SERIALBUS + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; SpiSerialBusTermV2 - : PARSEOP_SPI_SERIALBUS_V2 '(' {$$ = TrCreateLeafNode (PARSEOP_SPI_SERIALBUS_V2);} + : PARSEOP_SPI_SERIALBUS_V2 + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_SPI_SERIALBUS_V2);} WordConstExpr /* 04: DeviceSelection */ OptionalDevicePolarity /* 05: DevicePolarity */ OptionalWireMode /* 06: WireMode */ ',' ByteConstExpr /* 08: DataBitLength */ OptionalSlaveMode /* 09: SlaveMode */ ',' DWordConstExpr /* 11: ConnectionSpeed */ ',' ClockPolarityKeyword /* 13: ClockPolarity */ ',' ClockPhaseKeyword /* 15: ClockPhase */ ',' StringData /* 17: ResourceSource */ OptionalByteConstExpr /* 18: ResourceSourceIndex */ OptionalResourceType /* 19: ResourceType */ OptionalNameString /* 20: DescriptorName */ OptionalShareType /* 21: Share */ OptionalBuffer_Last /* 22: VendorData */ - ')' {$$ = TrLinkChildren ($3,14, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,14, $4,$5,$6,$8,$9,$11,$13,$15,$17,$18,$19,$20,$21,$22);} - | PARSEOP_SPI_SERIALBUS_V2 '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_SPI_SERIALBUS_V2 + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; StartDependentFnNoPriTerm - : PARSEOP_STARTDEPENDENTFN_NOPRI '(' {$$ = TrCreateLeafNode (PARSEOP_STARTDEPENDENTFN_NOPRI);} - ')' '{' + : PARSEOP_STARTDEPENDENTFN_NOPRI + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_STARTDEPENDENTFN_NOPRI);} + PARSEOP_CLOSE_PAREN '{' ResourceMacroList '}' {$$ = TrLinkChildren ($3,1,$6);} - | PARSEOP_STARTDEPENDENTFN_NOPRI '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_STARTDEPENDENTFN_NOPRI + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; StartDependentFnTerm - : PARSEOP_STARTDEPENDENTFN '(' {$$ = TrCreateLeafNode (PARSEOP_STARTDEPENDENTFN);} + : PARSEOP_STARTDEPENDENTFN + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_STARTDEPENDENTFN);} ByteConstExpr ',' ByteConstExpr - ')' '{' + PARSEOP_CLOSE_PAREN '{' ResourceMacroList '}' {$$ = TrLinkChildren ($3,3,$4,$6,$9);} - | PARSEOP_STARTDEPENDENTFN '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_STARTDEPENDENTFN + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; UartSerialBusTerm - : PARSEOP_UART_SERIALBUS '(' {$$ = TrCreateLeafNode (PARSEOP_UART_SERIALBUS);} + : PARSEOP_UART_SERIALBUS + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_UART_SERIALBUS);} DWordConstExpr /* 04: ConnectionSpeed */ OptionalBitsPerByte /* 05: BitsPerByte */ OptionalStopBits /* 06: StopBits */ ',' ByteConstExpr /* 08: LinesInUse */ OptionalEndian /* 09: Endianess */ OptionalParityType /* 10: Parity */ OptionalFlowControl /* 11: FlowControl */ ',' WordConstExpr /* 13: Rx BufferSize */ ',' WordConstExpr /* 15: Tx BufferSize */ ',' StringData /* 17: ResourceSource */ OptionalByteConstExpr /* 18: ResourceSourceIndex */ OptionalResourceType /* 19: ResourceType */ OptionalNameString /* 20: DescriptorName */ OptionalBuffer_Last /* 21: VendorData */ - ')' {$$ = TrLinkChildren ($3,15, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,15, $4,$5,$6,$8,$9,$10,$11,$13,$15,$17,$18,$19,$20, TrCreateLeafNode (PARSEOP_DEFAULT_ARG),$21);} - | PARSEOP_UART_SERIALBUS '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_UART_SERIALBUS + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; UartSerialBusTermV2 - : PARSEOP_UART_SERIALBUS_V2 '(' {$$ = TrCreateLeafNode (PARSEOP_UART_SERIALBUS_V2);} + : PARSEOP_UART_SERIALBUS_V2 + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_UART_SERIALBUS_V2);} DWordConstExpr /* 04: ConnectionSpeed */ OptionalBitsPerByte /* 05: BitsPerByte */ OptionalStopBits /* 06: StopBits */ ',' ByteConstExpr /* 08: LinesInUse */ OptionalEndian /* 09: Endianess */ OptionalParityType /* 10: Parity */ OptionalFlowControl /* 11: FlowControl */ ',' WordConstExpr /* 13: Rx BufferSize */ ',' WordConstExpr /* 15: Tx BufferSize */ ',' StringData /* 17: ResourceSource */ OptionalByteConstExpr /* 18: ResourceSourceIndex */ OptionalResourceType /* 19: ResourceType */ OptionalNameString /* 20: DescriptorName */ OptionalShareType /* 21: Share */ OptionalBuffer_Last /* 22: VendorData */ - ')' {$$ = TrLinkChildren ($3,15, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,15, $4,$5,$6,$8,$9,$10,$11,$13,$15,$17,$18,$19,$20,$21,$22);} - | PARSEOP_UART_SERIALBUS_V2 '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_UART_SERIALBUS_V2 + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; VendorLongTerm - : PARSEOP_VENDORLONG '(' {$$ = TrCreateLeafNode (PARSEOP_VENDORLONG);} + : PARSEOP_VENDORLONG + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_VENDORLONG);} OptionalNameString_First - ')' '{' + PARSEOP_CLOSE_PAREN '{' ByteList '}' {$$ = TrLinkChildren ($3,2,$4,$7);} - | PARSEOP_VENDORLONG '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_VENDORLONG + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; VendorShortTerm - : PARSEOP_VENDORSHORT '(' {$$ = TrCreateLeafNode (PARSEOP_VENDORSHORT);} + : PARSEOP_VENDORSHORT + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_VENDORSHORT);} OptionalNameString_First - ')' '{' + PARSEOP_CLOSE_PAREN '{' ByteList '}' {$$ = TrLinkChildren ($3,2,$4,$7);} - | PARSEOP_VENDORSHORT '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_VENDORSHORT + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; WordBusNumberTerm - : PARSEOP_WORDBUSNUMBER '(' {$$ = TrCreateLeafNode (PARSEOP_WORDBUSNUMBER);} + : PARSEOP_WORDBUSNUMBER + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_WORDBUSNUMBER);} OptionalResourceType_First OptionalMinType OptionalMaxType OptionalDecodeType ',' WordConstExpr ',' WordConstExpr ',' WordConstExpr ',' WordConstExpr ',' WordConstExpr OptionalByteConstExpr OptionalStringData OptionalNameString_Last - ')' {$$ = TrLinkChildren ($3,12, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,12, $4,$5,$6,$7,$9,$11,$13,$15,$17,$18,$19,$20);} - | PARSEOP_WORDBUSNUMBER '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_WORDBUSNUMBER + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; WordIOTerm - : PARSEOP_WORDIO '(' {$$ = TrCreateLeafNode (PARSEOP_WORDIO);} + : PARSEOP_WORDIO + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_WORDIO);} OptionalResourceType_First OptionalMinType OptionalMaxType OptionalDecodeType OptionalRangeType ',' WordConstExpr ',' WordConstExpr ',' WordConstExpr ',' WordConstExpr ',' WordConstExpr OptionalByteConstExpr OptionalStringData OptionalNameString OptionalType OptionalTranslationType_Last - ')' {$$ = TrLinkChildren ($3,15, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,15, $4,$5,$6,$7,$8,$10,$12,$14,$16,$18,$19,$20,$21,$22,$23);} - | PARSEOP_WORDIO '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_WORDIO + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; WordSpaceTerm - : PARSEOP_WORDSPACE '(' {$$ = TrCreateLeafNode (PARSEOP_WORDSPACE);} + : PARSEOP_WORDSPACE + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_WORDSPACE);} ByteConstExpr {UtCheckIntegerRange ($4, 0xC0, 0xFF);} OptionalResourceType OptionalDecodeType OptionalMinType OptionalMaxType ',' ByteConstExpr ',' WordConstExpr ',' WordConstExpr ',' WordConstExpr ',' WordConstExpr ',' WordConstExpr OptionalByteConstExpr OptionalStringData OptionalNameString_Last - ')' {$$ = TrLinkChildren ($3,14, + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildren ($3,14, $4,$6,$7,$8,$9,$11,$13,$15,$17,$19,$21,$22,$23,$24);} - | PARSEOP_WORDSPACE '(' - error ')' {$$ = AslDoError(); yyclearin;} + | PARSEOP_WORDSPACE + PARSEOP_OPEN_PAREN + error PARSEOP_CLOSE_PAREN {$$ = AslDoError(); yyclearin;} ; Index: head/sys/contrib/dev/acpica/compiler/aslrestype2.c =================================================================== --- head/sys/contrib/dev/acpica/compiler/aslrestype2.c (revision 308952) +++ head/sys/contrib/dev/acpica/compiler/aslrestype2.c (revision 308953) @@ -1,457 +1,462 @@ /****************************************************************************** * * Module Name: aslrestype2 - Miscellaneous Large resource descriptors * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include "aslcompiler.y.h" #include #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("aslrestype2") /* * This module contains miscellaneous large resource descriptors: * * Register * Interrupt * VendorLong */ /******************************************************************************* * * FUNCTION: RsDoGeneralRegisterDescriptor * * PARAMETERS: Info - Parse Op and resource template offset * * RETURN: Completed resource node * * DESCRIPTION: Construct a long "Register" descriptor * ******************************************************************************/ ASL_RESOURCE_NODE * RsDoGeneralRegisterDescriptor ( ASL_RESOURCE_INFO *Info) { AML_RESOURCE *Descriptor; ACPI_PARSE_OBJECT *InitializerOp; ASL_RESOURCE_NODE *Rnode; UINT32 CurrentByteOffset; UINT32 i; InitializerOp = Info->DescriptorTypeOp->Asl.Child; CurrentByteOffset = Info->CurrentByteOffset; Rnode = RsAllocateResourceNode (sizeof (AML_RESOURCE_GENERIC_REGISTER)); Descriptor = Rnode->Buffer; Descriptor->GenericReg.DescriptorType = ACPI_RESOURCE_NAME_GENERIC_REGISTER; Descriptor->GenericReg.ResourceLength = 12; /* Process all child initialization nodes */ for (i = 0; InitializerOp; i++) { switch (i) { case 0: /* Address space */ Descriptor->GenericReg.AddressSpaceId = (UINT8) InitializerOp->Asl.Value.Integer; RsCreateByteField (InitializerOp, ACPI_RESTAG_ADDRESSSPACE, CurrentByteOffset + ASL_RESDESC_OFFSET (GenericReg.AddressSpaceId)); break; case 1: /* Register Bit Width */ Descriptor->GenericReg.BitWidth = (UINT8) InitializerOp->Asl.Value.Integer; RsCreateByteField (InitializerOp, ACPI_RESTAG_REGISTERBITWIDTH, CurrentByteOffset + ASL_RESDESC_OFFSET (GenericReg.BitWidth)); break; case 2: /* Register Bit Offset */ Descriptor->GenericReg.BitOffset = (UINT8) InitializerOp->Asl.Value.Integer; RsCreateByteField (InitializerOp, ACPI_RESTAG_REGISTERBITOFFSET, CurrentByteOffset + ASL_RESDESC_OFFSET (GenericReg.BitOffset)); break; case 3: /* Register Address */ Descriptor->GenericReg.Address = InitializerOp->Asl.Value.Integer; RsCreateQwordField (InitializerOp, ACPI_RESTAG_ADDRESS, CurrentByteOffset + ASL_RESDESC_OFFSET (GenericReg.Address)); break; case 4: /* Access Size (ACPI 3.0) */ Descriptor->GenericReg.AccessSize = (UINT8) InitializerOp->Asl.Value.Integer; RsCreateByteField (InitializerOp, ACPI_RESTAG_ACCESSSIZE, CurrentByteOffset + ASL_RESDESC_OFFSET (GenericReg.AccessSize)); + if (Descriptor->GenericReg.AddressSpaceId == ACPI_ADR_SPACE_PLATFORM_COMM) + { + break; + } + if (Descriptor->GenericReg.AccessSize > AML_FIELD_ACCESS_QWORD) { AslError (ASL_ERROR, ASL_MSG_INVALID_ACCESS_SIZE, InitializerOp, NULL); } break; case 5: /* ResourceTag (ACPI 3.0b) */ UtAttachNamepathToOwner (Info->DescriptorTypeOp, InitializerOp); break; default: AslError (ASL_ERROR, ASL_MSG_RESOURCE_LIST, InitializerOp, NULL); break; } InitializerOp = RsCompleteNodeAndGetNext (InitializerOp); } return (Rnode); } /******************************************************************************* * * FUNCTION: RsDoInterruptDescriptor * * PARAMETERS: Info - Parse Op and resource template offset * * RETURN: Completed resource node * * DESCRIPTION: Construct a long "Interrupt" descriptor * ******************************************************************************/ ASL_RESOURCE_NODE * RsDoInterruptDescriptor ( ASL_RESOURCE_INFO *Info) { AML_RESOURCE *Descriptor; AML_RESOURCE *Rover = NULL; ACPI_PARSE_OBJECT *InitializerOp; ASL_RESOURCE_NODE *Rnode; UINT16 StringLength = 0; UINT32 OptionIndex = 0; UINT32 CurrentByteOffset; UINT32 i; BOOLEAN HasResSourceIndex = FALSE; UINT8 ResSourceIndex = 0; UINT8 *ResSourceString = NULL; InitializerOp = Info->DescriptorTypeOp->Asl.Child; CurrentByteOffset = Info->CurrentByteOffset; StringLength = RsGetStringDataLength (InitializerOp); /* Count the interrupt numbers */ for (i = 0; InitializerOp; i++) { InitializerOp = ASL_GET_PEER_NODE (InitializerOp); if (i <= 6) { if (i == 3 && InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG) { /* * ResourceSourceIndex was specified, always make room for * it, even if the ResourceSource was omitted. */ OptionIndex++; } continue; } OptionIndex += 4; } InitializerOp = Info->DescriptorTypeOp->Asl.Child; Rnode = RsAllocateResourceNode (sizeof (AML_RESOURCE_EXTENDED_IRQ) + 1 + OptionIndex + StringLength); Descriptor = Rnode->Buffer; Descriptor->ExtendedIrq.DescriptorType = ACPI_RESOURCE_NAME_EXTENDED_IRQ; /* * Initial descriptor length -- may be enlarged if there are * optional fields present */ Descriptor->ExtendedIrq.ResourceLength = 2; /* Flags and table length byte */ Descriptor->ExtendedIrq.InterruptCount = 0; Rover = ACPI_CAST_PTR (AML_RESOURCE, (&(Descriptor->ExtendedIrq.Interrupts[0]))); /* Process all child initialization nodes */ for (i = 0; InitializerOp; i++) { switch (i) { case 0: /* Resource Usage (Default: consumer (1) */ RsSetFlagBits (&Descriptor->ExtendedIrq.Flags, InitializerOp, 0, 1); break; case 1: /* Interrupt Type (or Mode - edge/level) */ RsSetFlagBits (&Descriptor->ExtendedIrq.Flags, InitializerOp, 1, 0); RsCreateBitField (InitializerOp, ACPI_RESTAG_INTERRUPTTYPE, CurrentByteOffset + ASL_RESDESC_OFFSET (ExtendedIrq.Flags), 1); break; case 2: /* Interrupt Level (or Polarity - Active high/low) */ RsSetFlagBits (&Descriptor->ExtendedIrq.Flags, InitializerOp, 2, 0); RsCreateBitField (InitializerOp, ACPI_RESTAG_INTERRUPTLEVEL, CurrentByteOffset + ASL_RESDESC_OFFSET (ExtendedIrq.Flags), 2); break; case 3: /* Share Type - Default: exclusive (0) */ RsSetFlagBits (&Descriptor->ExtendedIrq.Flags, InitializerOp, 3, 0); RsCreateBitField (InitializerOp, ACPI_RESTAG_INTERRUPTSHARE, CurrentByteOffset + ASL_RESDESC_OFFSET (ExtendedIrq.Flags), 3); break; case 4: /* ResSourceIndex [Optional Field - BYTE] */ if (InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG) { HasResSourceIndex = TRUE; ResSourceIndex = (UINT8) InitializerOp->Asl.Value.Integer; } break; case 5: /* ResSource [Optional Field - STRING] */ if ((InitializerOp->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG) && (InitializerOp->Asl.Value.String)) { if (StringLength) { ResSourceString = (UINT8 *) InitializerOp->Asl.Value.String; } /* ResourceSourceIndex must also be valid */ if (!HasResSourceIndex) { AslError (ASL_ERROR, ASL_MSG_RESOURCE_INDEX, InitializerOp, NULL); } } #if 0 /* * Not a valid ResourceSource, ResourceSourceIndex must also * be invalid */ else if (HasResSourceIndex) { AslError (ASL_ERROR, ASL_MSG_RESOURCE_SOURCE, InitializerOp, NULL); } #endif break; case 6: /* ResourceTag */ UtAttachNamepathToOwner (Info->DescriptorTypeOp, InitializerOp); break; default: /* * Interrupt Numbers come through here, repeatedly */ /* Maximum 255 interrupts allowed for this descriptor */ if (Descriptor->ExtendedIrq.InterruptCount == 255) { AslError (ASL_ERROR, ASL_MSG_EX_INTERRUPT_LIST, InitializerOp, NULL); return (Rnode); } /* Each interrupt number must be a 32-bit value */ if (InitializerOp->Asl.Value.Integer > ACPI_UINT32_MAX) { AslError (ASL_ERROR, ASL_MSG_EX_INTERRUPT_NUMBER, InitializerOp, NULL); } /* Save the integer and move pointer to the next one */ Rover->DwordItem = (UINT32) InitializerOp->Asl.Value.Integer; Rover = ACPI_ADD_PTR (AML_RESOURCE, &(Rover->DwordItem), 4); Descriptor->ExtendedIrq.InterruptCount++; Descriptor->ExtendedIrq.ResourceLength += 4; /* Case 7: First interrupt number in list */ if (i == 7) { if (InitializerOp->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG) { /* Must be at least one interrupt */ AslError (ASL_ERROR, ASL_MSG_EX_INTERRUPT_LIST_MIN, InitializerOp, NULL); } /* Check now for duplicates in list */ RsCheckListForDuplicates (InitializerOp); /* Create a named field at the start of the list */ RsCreateDwordField (InitializerOp, ACPI_RESTAG_INTERRUPT, CurrentByteOffset + ASL_RESDESC_OFFSET (ExtendedIrq.Interrupts[0])); } } InitializerOp = RsCompleteNodeAndGetNext (InitializerOp); } /* Add optional ResSourceIndex if present */ if (HasResSourceIndex) { Rover->ByteItem = ResSourceIndex; Rover = ACPI_ADD_PTR (AML_RESOURCE, &(Rover->ByteItem), 1); Descriptor->ExtendedIrq.ResourceLength += 1; } /* Add optional ResSource string if present */ if (StringLength && ResSourceString) { strcpy ((char *) Rover, (char *) ResSourceString); Rover = ACPI_ADD_PTR ( AML_RESOURCE, &(Rover->ByteItem), StringLength); Descriptor->ExtendedIrq.ResourceLength = (UINT16) (Descriptor->ExtendedIrq.ResourceLength + StringLength); } Rnode->BufferLength = (ASL_RESDESC_OFFSET (ExtendedIrq.Interrupts[0]) - ASL_RESDESC_OFFSET (ExtendedIrq.DescriptorType)) + OptionIndex + StringLength; return (Rnode); } /******************************************************************************* * * FUNCTION: RsDoVendorLargeDescriptor * * PARAMETERS: Info - Parse Op and resource template offset * * RETURN: Completed resource node * * DESCRIPTION: Construct a long "VendorLong" descriptor * ******************************************************************************/ ASL_RESOURCE_NODE * RsDoVendorLargeDescriptor ( ASL_RESOURCE_INFO *Info) { AML_RESOURCE *Descriptor; ACPI_PARSE_OBJECT *InitializerOp; ASL_RESOURCE_NODE *Rnode; UINT8 *VendorData; UINT32 i; /* Count the number of data bytes */ InitializerOp = Info->DescriptorTypeOp->Asl.Child; InitializerOp = RsCompleteNodeAndGetNext (InitializerOp); for (i = 0; InitializerOp; i++) { if (InitializerOp->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG) { break; } InitializerOp = InitializerOp->Asl.Next; } InitializerOp = Info->DescriptorTypeOp->Asl.Child; InitializerOp = RsCompleteNodeAndGetNext (InitializerOp); Rnode = RsAllocateResourceNode (sizeof (AML_RESOURCE_VENDOR_LARGE) + i); Descriptor = Rnode->Buffer; Descriptor->VendorLarge.DescriptorType = ACPI_RESOURCE_NAME_VENDOR_LARGE; Descriptor->VendorLarge.ResourceLength = (UINT16) i; /* Point to end-of-descriptor for vendor data */ VendorData = ((UINT8 *) Descriptor) + sizeof (AML_RESOURCE_LARGE_HEADER); /* Process all child initialization nodes */ for (i = 0; InitializerOp; i++) { if (InitializerOp->Asl.ParseOpcode == PARSEOP_DEFAULT_ARG) { break; } VendorData[i] = (UINT8) InitializerOp->Asl.Value.Integer; InitializerOp = RsCompleteNodeAndGetNext (InitializerOp); } return (Rnode); } Index: head/sys/contrib/dev/acpica/compiler/aslrules.y =================================================================== --- head/sys/contrib/dev/acpica/compiler/aslrules.y (revision 308952) +++ head/sys/contrib/dev/acpica/compiler/aslrules.y (revision 308953) @@ -1,728 +1,773 @@ NoEcho(' /****************************************************************************** * * Module Name: aslrules.y - Main Bison/Yacc production rules * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ ') /******************************************************************************* * * ASL Root and Secondary Terms * ******************************************************************************/ /* * Root term. Allow multiple #line directives before the definition block * to handle output from preprocessors */ AslCode : DefinitionBlockList {$$ = TrLinkChildren ( TrCreateLeafNode (PARSEOP_ASL_CODE),1, $1);} | error {YYABORT; $$ = NULL;} ; /* * Note concerning support for "module-level code". * * ACPI 1.0 allowed Type1 and Type2 executable opcodes outside of control * methods (the so-called module-level code.) This support was explicitly * removed in ACPI 2.0, but this type of code continues to be created by * BIOS vendors. In order to support the disassembly and recompilation of * such code (and the porting of ASL code to iASL), iASL supports this * code in violation of the current ACPI specification. * * The grammar change to support module-level code is to revert the * {ObjectList} portion of the DefinitionBlockTerm in ACPI 2.0 to the * original use of {TermList} instead (see below.) This allows the use * of Type1 and Type2 opcodes at module level. * * 04/2016: The module-level code is now allowed in the following terms: * DeviceTerm, PowerResTerm, ProcessorTerm, ScopeTerm, ThermalZoneTerm. * The ObjectList term is obsolete and has been removed. */ DefinitionBlockTerm - : PARSEOP_DEFINITION_BLOCK '(' {$$ = TrCreateLeafNode (PARSEOP_DEFINITION_BLOCK);} + : PARSEOP_DEFINITION_BLOCK + PARSEOP_OPEN_PAREN {$$ = TrCreateLeafNode (PARSEOP_DEFINITION_BLOCK);} String ',' String ',' ByteConst ',' String ',' String ',' DWordConst - ')' {TrSetEndLineNumber ($3);} + PARSEOP_CLOSE_PAREN {TrSetEndLineNumber ($3);} '{' TermList '}' {$$ = TrLinkChildren ($3,7, $4,$6,$8,$10,$12,$14,$18);} ; DefinitionBlockList : DefinitionBlockTerm | DefinitionBlockTerm DefinitionBlockList {$$ = TrLinkPeerNodes (2, $1,$2);} ; + +/******* Basic ASCII identifiers **************************************************/ + /* Allow IO, DMA, IRQ Resource macro and FOR macro names to also be used as identifiers */ NameString : NameSeg {} | PARSEOP_NAMESTRING {$$ = TrCreateValuedLeafNode (PARSEOP_NAMESTRING, (ACPI_NATIVE_INT) $1);} | PARSEOP_IO {$$ = TrCreateValuedLeafNode (PARSEOP_NAMESTRING, (ACPI_NATIVE_INT) "IO");} | PARSEOP_DMA {$$ = TrCreateValuedLeafNode (PARSEOP_NAMESTRING, (ACPI_NATIVE_INT) "DMA");} | PARSEOP_IRQ {$$ = TrCreateValuedLeafNode (PARSEOP_NAMESTRING, (ACPI_NATIVE_INT) "IRQ");} | PARSEOP_FOR {$$ = TrCreateValuedLeafNode (PARSEOP_NAMESTRING, (ACPI_NATIVE_INT) "FOR");} ; /* NameSeg : PARSEOP_NAMESEG {$$ = TrCreateValuedLeafNode (PARSEOP_NAMESEG, (ACPI_NATIVE_INT) - TrNormalizeNameSeg ($1));} + TrNormalizeNameSeg ($1));} ; */ NameSeg : PARSEOP_NAMESEG {$$ = TrCreateValuedLeafNode (PARSEOP_NAMESEG, - (ACPI_NATIVE_INT) AslCompilerlval.s);} + (ACPI_NATIVE_INT) AslCompilerlval.s);} ; +/******* Fundamental argument/statement types ***********************************/ + +Term + : Object {} + | Type1Opcode {} + | Type2Opcode {} + | Type2IntegerOpcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_CONST);} + | Type2StringOpcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_CONST);} + | Type2BufferOpcode {} + | Type2BufferOrStringOpcode {} + | error {$$ = AslDoError(); yyclearin;} + ; + SuperName - : NameString {} - | ArgTerm {} - | LocalTerm {} + : SimpleName {} | DebugTerm {} | Type6Opcode {} ; Target : {$$ = TrCreateNullTarget ();} /* Placeholder is a ZeroOp object */ | ',' {$$ = TrCreateNullTarget ();} /* Placeholder is a ZeroOp object */ | ',' SuperName {$$ = TrSetNodeFlags ($2, NODE_IS_TARGET);} ; +RequiredTarget + : ',' SuperName {$$ = TrSetNodeFlags ($2, NODE_IS_TARGET);} + ; + TermArg - : Type2Opcode {$$ = TrSetNodeFlags ($1, NODE_IS_TERM_ARG);} + : SimpleName {$$ = TrSetNodeFlags ($1, NODE_IS_TERM_ARG);} + | Type2Opcode {$$ = TrSetNodeFlags ($1, NODE_IS_TERM_ARG);} | DataObject {$$ = TrSetNodeFlags ($1, NODE_IS_TERM_ARG);} - | NameString {$$ = TrSetNodeFlags ($1, NODE_IS_TERM_ARG);} - | ArgTerm {$$ = TrSetNodeFlags ($1, NODE_IS_TERM_ARG);} - | LocalTerm {$$ = TrSetNodeFlags ($1, NODE_IS_TERM_ARG);} - - +/* + | PARSEOP_OPEN_PAREN + TermArg + PARSEOP_CLOSE_PAREN {} +*/ ; /* NOTE: Removed from TermArg due to reduce/reduce conflicts: | Type2IntegerOpcode {$$ = TrSetNodeFlags ($1, NODE_IS_TERM_ARG);} | Type2StringOpcode {$$ = TrSetNodeFlags ($1, NODE_IS_TERM_ARG);} | Type2BufferOpcode {$$ = TrSetNodeFlags ($1, NODE_IS_TERM_ARG);} | Type2BufferOrStringOpcode {$$ = TrSetNodeFlags ($1, NODE_IS_TERM_ARG);} */ MethodInvocationTerm - : NameString '(' {TrUpdateNode (PARSEOP_METHODCALL, $1);} - ArgList ')' {$$ = TrLinkChildNode ($1,$4);} + : NameString + PARSEOP_OPEN_PAREN {TrUpdateNode (PARSEOP_METHODCALL, $1);} + ArgList + PARSEOP_CLOSE_PAREN {$$ = TrLinkChildNode ($1,$4);} ; /* OptionalCount must appear before ByteList or an incorrect reduction will result */ OptionalCount : {$$ = TrCreateLeafNode (PARSEOP_ONES);} /* Placeholder is a OnesOp object */ | ',' {$$ = TrCreateLeafNode (PARSEOP_ONES);} /* Placeholder is a OnesOp object */ | ',' TermArg {$$ = $2;} ; /* * Data count for buffers and packages (byte count for buffers, * element count for packages). */ OptionalDataCount /* Legacy ASL */ : {$$ = NULL;} - | '(' TermArg ')' {$$ = $2;} - | '(' ')' {$$ = NULL;} + | PARSEOP_OPEN_PAREN + TermArg + PARSEOP_CLOSE_PAREN {$$ = $2;} + | PARSEOP_OPEN_PAREN + PARSEOP_CLOSE_PAREN {$$ = NULL;} /* C-style (ASL+) -- adds equals term */ | PARSEOP_EXP_EQUALS {$$ = NULL;} - | '(' TermArg ')' + | PARSEOP_OPEN_PAREN + TermArg + PARSEOP_CLOSE_PAREN PARSEOP_EXP_EQUALS {$$ = $2;} - | '(' ')' String + | PARSEOP_OPEN_PAREN + PARSEOP_CLOSE_PAREN + String PARSEOP_EXP_EQUALS {$$ = NULL;} ; /******* List Terms **************************************************/ + /* ACPI 3.0 -- allow semicolons between terms */ + +TermList + : {$$ = NULL;} + | TermList Term {$$ = TrLinkPeerNode ( + TrSetNodeFlags ($1, NODE_RESULT_NOT_USED),$2);} + | TermList Term ';' {$$ = TrLinkPeerNode ( + TrSetNodeFlags ($1, NODE_RESULT_NOT_USED),$2);} + | TermList ';' Term {$$ = TrLinkPeerNode ( + TrSetNodeFlags ($1, NODE_RESULT_NOT_USED),$3);} + | TermList ';' Term ';' {$$ = TrLinkPeerNode ( + TrSetNodeFlags ($1, NODE_RESULT_NOT_USED),$3);} + ; + ArgList : {$$ = NULL;} | TermArg | ArgList ',' /* Allows a trailing comma at list end */ | ArgList ',' TermArg {$$ = TrLinkPeerNode ($1,$3);} ; ByteList : {$$ = NULL;} | ByteConstExpr | ByteList ',' /* Allows a trailing comma at list end */ | ByteList ',' ByteConstExpr {$$ = TrLinkPeerNode ($1,$3);} ; DWordList : {$$ = NULL;} | DWordConstExpr | DWordList ',' /* Allows a trailing comma at list end */ | DWordList ',' DWordConstExpr {$$ = TrLinkPeerNode ($1,$3);} ; FieldUnitList : {$$ = NULL;} | FieldUnit | FieldUnitList ',' /* Allows a trailing comma at list end */ | FieldUnitList ',' FieldUnit {$$ = TrLinkPeerNode ($1,$3);} ; FieldUnit : FieldUnitEntry {} | OffsetTerm {} | AccessAsTerm {} | ConnectionTerm {} ; FieldUnitEntry : ',' AmlPackageLengthTerm {$$ = TrCreateNode (PARSEOP_RESERVED_BYTES,1,$2);} | NameSeg ',' AmlPackageLengthTerm {$$ = TrLinkChildNode ($1,$3);} ; Object : CompilerDirective {} | NamedObject {} | NameSpaceModifier {} // | StructureTerm {} ; PackageList : {$$ = NULL;} | PackageElement | PackageList ',' /* Allows a trailing comma at list end */ | PackageList ',' PackageElement {$$ = TrLinkPeerNode ($1,$3);} ; PackageElement : DataObject {} | NameString {} ; /* Rules for specifying the type of one method argument or return value */ ParameterTypePackage : {$$ = NULL;} | ObjectTypeKeyword {$$ = $1;} | ParameterTypePackage ',' ObjectTypeKeyword {$$ = TrLinkPeerNodes (2,$1,$3);} ; ParameterTypePackageList : {$$ = NULL;} | ObjectTypeKeyword {$$ = $1;} | '{' ParameterTypePackage '}' {$$ = $2;} ; OptionalParameterTypePackage : {$$ = TrCreateLeafNode (PARSEOP_DEFAULT_ARG);} | ',' ParameterTypePackageList {$$ = TrLinkChildren ( TrCreateLeafNode (PARSEOP_DEFAULT_ARG),1,$2);} ; /* Rules for specifying the types for method arguments */ ParameterTypesPackage : ParameterTypePackageList {$$ = $1;} | ParameterTypesPackage ',' ParameterTypePackageList {$$ = TrLinkPeerNodes (2,$1,$3);} ; ParameterTypesPackageList : {$$ = NULL;} | ObjectTypeKeyword {$$ = $1;} | '{' ParameterTypesPackage '}' {$$ = $2;} ; OptionalParameterTypesPackage : {$$ = TrCreateLeafNode (PARSEOP_DEFAULT_ARG);} | ',' ParameterTypesPackageList {$$ = TrLinkChildren ( TrCreateLeafNode (PARSEOP_DEFAULT_ARG),1,$2);} ; - /* ACPI 3.0 -- allow semicolons between terms */ - -TermList - : {$$ = NULL;} - | TermList Term {$$ = TrLinkPeerNode ( - TrSetNodeFlags ($1, NODE_RESULT_NOT_USED),$2);} - | TermList Term ';' {$$ = TrLinkPeerNode ( - TrSetNodeFlags ($1, NODE_RESULT_NOT_USED),$2);} - | TermList ';' Term {$$ = TrLinkPeerNode ( - TrSetNodeFlags ($1, NODE_RESULT_NOT_USED),$3);} - | TermList ';' Term ';' {$$ = TrLinkPeerNode ( - TrSetNodeFlags ($1, NODE_RESULT_NOT_USED),$3);} - ; - -Term - : Object {} - | Type1Opcode {} - | Type2Opcode {} - | Type2IntegerOpcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_CONST);} - | Type2StringOpcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_CONST);} - | Type2BufferOpcode {} - | Type2BufferOrStringOpcode {} - | error {$$ = AslDoError(); yyclearin;} - ; - /* * Case-Default list; allow only one Default term and unlimited Case terms */ CaseDefaultTermList : {$$ = NULL;} - | CaseTerm {} - | DefaultTerm {} + | CaseTerm {} + | DefaultTerm {} | CaseDefaultTermList CaseTerm {$$ = TrLinkPeerNode ($1,$2);} | CaseDefaultTermList DefaultTerm {$$ = TrLinkPeerNode ($1,$2);} /* Original - attempts to force zero or one default term within the switch */ /* CaseDefaultTermList : {$$ = NULL;} | CaseTermList DefaultTerm CaseTermList {$$ = TrLinkPeerNode ($1,TrLinkPeerNode ($2, $3));} | CaseTermList CaseTerm {$$ = TrLinkPeerNode ($1,$2);} ; CaseTermList : {$$ = NULL;} | CaseTerm {} | CaseTermList CaseTerm {$$ = TrLinkPeerNode ($1,$2);} ; */ /******************************************************************************* * * ASL Data and Constant Terms * ******************************************************************************/ DataObject : BufferData {} | PackageData {} | IntegerData {} | StringData {} ; BufferData : Type5Opcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_CONST);} | Type2BufferOrStringOpcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_CONST);} | Type2BufferOpcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_CONST);} | BufferTerm {} ; PackageData : PackageTerm {} ; IntegerData : Type2IntegerOpcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_CONST);} | Type3Opcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_CONST);} | Integer {} | ConstTerm {} ; StringData : Type2StringOpcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_CONST);} | String {} ; ByteConst : Integer {$$ = TrUpdateNode (PARSEOP_BYTECONST, $1);} ; WordConst : Integer {$$ = TrUpdateNode (PARSEOP_WORDCONST, $1);} ; DWordConst : Integer {$$ = TrUpdateNode (PARSEOP_DWORDCONST, $1);} ; QWordConst : Integer {$$ = TrUpdateNode (PARSEOP_QWORDCONST, $1);} ; /* * The NODE_COMPILE_TIME_CONST flag in the following constant expressions * enables compile-time constant folding to reduce the Type3Opcodes/Type2IntegerOpcodes * to simple integers. It is an error if these types of expressions cannot be * reduced, since the AML grammar for ****ConstExpr requires a simple constant. * Note: The required byte length of the constant is passed through to the * constant folding code in the node AmlLength field. */ ByteConstExpr : Type3Opcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_CONST); TrSetNodeAmlLength ($1, 1);} | Type2IntegerOpcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_CONST); TrSetNodeAmlLength ($1, 1);} | ConstExprTerm {$$ = TrUpdateNode (PARSEOP_BYTECONST, $1);} | ByteConst {} ; WordConstExpr : Type3Opcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_CONST); TrSetNodeAmlLength ($1, 2);} | Type2IntegerOpcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_CONST); TrSetNodeAmlLength ($1, 2);} | ConstExprTerm {$$ = TrUpdateNode (PARSEOP_WORDCONST, $1);} | WordConst {} ; DWordConstExpr : Type3Opcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_CONST); TrSetNodeAmlLength ($1, 4);} | Type2IntegerOpcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_CONST); TrSetNodeAmlLength ($1, 4);} | ConstExprTerm {$$ = TrUpdateNode (PARSEOP_DWORDCONST, $1);} | DWordConst {} ; QWordConstExpr : Type3Opcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_CONST); TrSetNodeAmlLength ($1, 8);} | Type2IntegerOpcode {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_CONST); TrSetNodeAmlLength ($1, 8);} | ConstExprTerm {$$ = TrUpdateNode (PARSEOP_QWORDCONST, $1);} | QWordConst {} ; ConstTerm : ConstExprTerm {} | PARSEOP_REVISION {$$ = TrCreateLeafNode (PARSEOP_REVISION);} ; ConstExprTerm : PARSEOP_ZERO {$$ = TrCreateValuedLeafNode (PARSEOP_ZERO, 0);} | PARSEOP_ONE {$$ = TrCreateValuedLeafNode (PARSEOP_ONE, 1);} | PARSEOP_ONES {$$ = TrCreateValuedLeafNode (PARSEOP_ONES, ACPI_UINT64_MAX);} | PARSEOP___DATE__ {$$ = TrCreateConstantLeafNode (PARSEOP___DATE__);} | PARSEOP___FILE__ {$$ = TrCreateConstantLeafNode (PARSEOP___FILE__);} | PARSEOP___LINE__ {$$ = TrCreateConstantLeafNode (PARSEOP___LINE__);} | PARSEOP___PATH__ {$$ = TrCreateConstantLeafNode (PARSEOP___PATH__);} ; Integer : PARSEOP_INTEGER {$$ = TrCreateValuedLeafNode (PARSEOP_INTEGER, AslCompilerlval.i);} ; String : PARSEOP_STRING_LITERAL {$$ = TrCreateValuedLeafNode (PARSEOP_STRING_LITERAL, (ACPI_NATIVE_INT) AslCompilerlval.s);} ; /******************************************************************************* * * ASL Opcode Terms * ******************************************************************************/ CompilerDirective : IncludeTerm {} | IncludeEndTerm {} | ExternalTerm {} ; NamedObject : BankFieldTerm {} | CreateBitFieldTerm {} | CreateByteFieldTerm {} | CreateDWordFieldTerm {} | CreateFieldTerm {} | CreateQWordFieldTerm {} | CreateWordFieldTerm {} | DataRegionTerm {} | DeviceTerm {} | EventTerm {} | FieldTerm {} | FunctionTerm {} | IndexFieldTerm {} | MethodTerm {} | MutexTerm {} | OpRegionTerm {} | PowerResTerm {} | ProcessorTerm {} | ThermalZoneTerm {} ; NameSpaceModifier : AliasTerm {} | NameTerm {} // | NameTermAslPlus {} | ScopeTerm {} ; -/* For ObjectType: SuperName except for MethodInvocationTerm */ - -ObjectTypeName +SimpleName : NameString {} - | ArgTerm {} | LocalTerm {} + | ArgTerm {} + ; + +/* For ObjectType(), SuperName except for MethodInvocationTerm */ + +ObjectTypeSource + : SimpleName {} | DebugTerm {} | RefOfTerm {} | DerefOfTerm {} | IndexTerm {} | IndexExpTerm {} -/* | MethodInvocationTerm {} */ /* Caused reduce/reduce with Type6Opcode->MethodInvocationTerm */ ; -RequiredTarget - : ',' SuperName {$$ = TrSetNodeFlags ($2, NODE_IS_TARGET);} +/* For DeRefOf(), SuperName except for DerefOf and Debug */ + +DerefOfSource + : SimpleName {} + | RefOfTerm {} + | DerefOfTerm {} + | IndexTerm {} + | IndexExpTerm {} + | StoreTerm {} + | EqualsTerm {} + | MethodInvocationTerm {} ; -SimpleTarget - : NameString {} - | LocalTerm {} - | ArgTerm {} +/* For RefOf(), SuperName except for RefOf and MethodInvocationTerm */ + +RefOfSource + : SimpleName {} + | DebugTerm {} + | DerefOfTerm {} + | IndexTerm {} + | IndexExpTerm {} ; -/* Opcode types */ +/* For CondRefOf(), SuperName except for RefOf and MethodInvocationTerm */ +CondRefOfSource + : SimpleName {} + | DebugTerm {} + | DerefOfTerm {} + | IndexTerm {} + | IndexExpTerm {} + ; + +/* + * Opcode types, as defined in the ACPI specification + */ Type1Opcode : BreakTerm {} | BreakPointTerm {} | ContinueTerm {} | FatalTerm {} | ForTerm {} | ElseIfTerm {} | LoadTerm {} | NoOpTerm {} | NotifyTerm {} | ReleaseTerm {} | ResetTerm {} | ReturnTerm {} | SignalTerm {} | SleepTerm {} | StallTerm {} | SwitchTerm {} | UnloadTerm {} | WhileTerm {} ; Type2Opcode : AcquireTerm {} | CondRefOfTerm {} | CopyObjectTerm {} | DerefOfTerm {} | ObjectTypeTerm {} | RefOfTerm {} | SizeOfTerm {} | StoreTerm {} | EqualsTerm {} | TimerTerm {} | WaitTerm {} | MethodInvocationTerm {} ; /* * Type 3/4/5 opcodes */ Type2IntegerOpcode /* "Type3" opcodes */ : Expression {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_CONST);} | AddTerm {} | AndTerm {} | DecTerm {} | DivideTerm {} | FindSetLeftBitTerm {} | FindSetRightBitTerm {} | FromBCDTerm {} | IncTerm {} | IndexTerm {} // | StructureIndexTerm {} // | StructurePointerTerm {} | LAndTerm {} | LEqualTerm {} | LGreaterTerm {} | LGreaterEqualTerm {} | LLessTerm {} | LLessEqualTerm {} | LNotTerm {} | LNotEqualTerm {} | LoadTableTerm {} | LOrTerm {} | MatchTerm {} | ModTerm {} | MultiplyTerm {} | NAndTerm {} | NOrTerm {} | NotTerm {} | OrTerm {} | ShiftLeftTerm {} | ShiftRightTerm {} | SubtractTerm {} | ToBCDTerm {} | ToIntegerTerm {} | XOrTerm {} ; Type2StringOpcode /* "Type4" Opcodes */ : ToDecimalStringTerm {} | ToHexStringTerm {} | ToStringTerm {} ; Type2BufferOpcode /* "Type5" Opcodes */ : ToBufferTerm {} | ConcatResTerm {} ; Type2BufferOrStringOpcode : ConcatTerm {$$ = TrSetNodeFlags ($1, NODE_COMPILE_TIME_CONST);} | PrintfTerm {} | FprintfTerm {} | MidTerm {} ; /* * A type 3 opcode evaluates to an Integer and cannot have a destination operand */ Type3Opcode : EISAIDTerm {} ; /* Obsolete Type4Opcode : ConcatTerm {} | ToDecimalStringTerm {} | ToHexStringTerm {} | MidTerm {} | ToStringTerm {} ; */ /* Type 5 opcodes are a subset of Type2 opcodes, and return a constant */ Type5Opcode : ResourceTemplateTerm {} | UnicodeTerm {} | ToPLDTerm {} | ToUUIDTerm {} ; Type6Opcode : RefOfTerm {} | DerefOfTerm {} | IndexTerm {} | IndexExpTerm {} // | StructureIndexTerm {} // | StructurePointerTerm {} | MethodInvocationTerm {} ; /******************************************************************************* * * ASL Helper Terms * ******************************************************************************/ AmlPackageLengthTerm : Integer {$$ = TrUpdateNode (PARSEOP_PACKAGE_LENGTH, (ACPI_PARSE_OBJECT *) $1);} ; NameStringItem : ',' NameString {$$ = $2;} | ',' error {$$ = AslDoError (); yyclearin;} ; TermArgItem : ',' TermArg {$$ = $2;} | ',' error {$$ = AslDoError (); yyclearin;} ; OptionalReference : {$$ = TrCreateLeafNode (PARSEOP_ZERO);} /* Placeholder is a ZeroOp object */ | ',' {$$ = TrCreateLeafNode (PARSEOP_ZERO);} /* Placeholder is a ZeroOp object */ | ',' TermArg {$$ = $2;} ; OptionalReturnArg : {$$ = TrSetNodeFlags (TrCreateLeafNode (PARSEOP_ZERO), NODE_IS_NULL_RETURN);} /* Placeholder is a ZeroOp object */ | TermArg {$$ = $1;} ; OptionalSerializeRuleKeyword : {$$ = NULL;} | ',' {$$ = NULL;} | ',' SerializeRuleKeyword {$$ = $2;} ; OptionalTermArg : {$$ = TrCreateLeafNode (PARSEOP_DEFAULT_ARG);} | TermArg {$$ = $1;} ; OptionalWordConst : {$$ = NULL;} | WordConst {$$ = $1;} ; Index: head/sys/contrib/dev/acpica/compiler/aslstubs.c =================================================================== --- head/sys/contrib/dev/acpica/compiler/aslstubs.c (revision 308952) +++ head/sys/contrib/dev/acpica/compiler/aslstubs.c (revision 308953) @@ -1,343 +1,342 @@ /****************************************************************************** * * Module Name: aslstubs - Stubs used to link to Aml interpreter * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #include #include #include #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("aslstubs") /* * Stubs to simplify linkage to the ACPICA core subsystem. * Things like Events, Global Lock, etc. are not used * by the compiler, so they are stubbed out here. */ void AcpiNsExecModuleCodeList ( void) { } ACPI_STATUS AcpiNsInitializeObjects ( void) { return (AE_OK); } ACPI_STATUS AcpiPsExecuteTable ( ACPI_EVALUATE_INFO *Info) { return (AE_OK); } ACPI_STATUS AcpiHwReadPort ( ACPI_IO_ADDRESS Address, UINT32 *Value, UINT32 Width) { return (AE_OK); } ACPI_STATUS AcpiHwWritePort ( ACPI_IO_ADDRESS Address, UINT32 Value, UINT32 Width) { return (AE_OK); } ACPI_STATUS AcpiDsMethodError ( ACPI_STATUS Status, ACPI_WALK_STATE *WalkState) { return (Status); } ACPI_STATUS AcpiDsMethodDataGetValue ( UINT8 Type, UINT32 Index, ACPI_WALK_STATE *WalkState, ACPI_OPERAND_OBJECT **DestDesc) { return (AE_OK); } ACPI_STATUS AcpiDsMethodDataGetNode ( UINT8 Type, UINT32 Index, ACPI_WALK_STATE *WalkState, ACPI_NAMESPACE_NODE **Node) { return (AE_OK); } ACPI_STATUS AcpiDsStoreObjectToLocal ( UINT8 Type, UINT32 Index, ACPI_OPERAND_OBJECT *SrcDesc, ACPI_WALK_STATE *WalkState) { return (AE_OK); } ACPI_STATUS AcpiEvInstallRegionHandlers ( void) { return (AE_OK); } ACPI_STATUS AcpiEvQueueNotifyRequest ( ACPI_NAMESPACE_NODE *Node, UINT32 NotifyValue) { return (AE_OK); } BOOLEAN AcpiEvIsNotifyObject ( ACPI_NAMESPACE_NODE *Node) { return (FALSE); } #if (!ACPI_REDUCED_HARDWARE) ACPI_STATUS AcpiEvDeleteGpeBlock ( ACPI_GPE_BLOCK_INFO *GpeBlock) { return (AE_OK); } void AcpiEvUpdateGpes ( ACPI_OWNER_ID TableOwnerId) { return; } ACPI_STATUS AcpiEvAcquireGlobalLock ( UINT16 Timeout) { return (AE_OK); } ACPI_STATUS AcpiEvReleaseGlobalLock ( void) { return (AE_OK); } #endif /* !ACPI_REDUCED_HARDWARE */ ACPI_STATUS AcpiEvInitializeRegion ( - ACPI_OPERAND_OBJECT *RegionObj, - BOOLEAN AcpiNsLocked) + ACPI_OPERAND_OBJECT *RegionObj) { return (AE_OK); } ACPI_STATUS AcpiExReadDataFromField ( ACPI_WALK_STATE *WalkState, ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT **RetBufferDesc) { return (AE_SUPPORT); } ACPI_STATUS AcpiExWriteDataToField ( ACPI_OPERAND_OBJECT *SourceDesc, ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT **ResultDesc) { return (AE_SUPPORT); } ACPI_STATUS AcpiExLoadTableOp ( ACPI_WALK_STATE *WalkState, ACPI_OPERAND_OBJECT **ReturnDesc) { return (AE_SUPPORT); } ACPI_STATUS AcpiExUnloadTable ( ACPI_OPERAND_OBJECT *DdbHandle) { return (AE_SUPPORT); } ACPI_STATUS AcpiExLoadOp ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT *Target, ACPI_WALK_STATE *WalkState) { return (AE_SUPPORT); } void AcpiExDoDebugObject ( ACPI_OPERAND_OBJECT *SourceDesc, UINT32 Level, UINT32 Index) { return; } void AcpiExStartTraceMethod ( ACPI_NAMESPACE_NODE *MethodNode, ACPI_OPERAND_OBJECT *ObjDesc, ACPI_WALK_STATE *WalkState) { return; } void AcpiExStopTraceMethod ( ACPI_NAMESPACE_NODE *MethodNode, ACPI_OPERAND_OBJECT *ObjDesc, ACPI_WALK_STATE *WalkState) { return; } void AcpiExStartTraceOpcode ( ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState) { return; } void AcpiExStopTraceOpcode ( ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState) { return; } void AcpiExTracePoint ( ACPI_TRACE_EVENT_TYPE Type, BOOLEAN Begin, UINT8 *Aml, char *Pathname) { return; } ACPI_STATUS AcpiTbFindTable ( char *Signature, char *OemId, char *OemTableId, UINT32 *TableIndex) { return (AE_SUPPORT); } ACPI_STATUS AcpiNsLoadTable ( UINT32 TableIndex, ACPI_NAMESPACE_NODE *Node) { return (AE_NOT_IMPLEMENTED); } ACPI_STATUS AcpiDsRestartControlMethod ( ACPI_WALK_STATE *WalkState, ACPI_OPERAND_OBJECT *ReturnDesc) { return (AE_OK); } void AcpiDsTerminateControlMethod ( ACPI_OPERAND_OBJECT *MethodDesc, ACPI_WALK_STATE *WalkState) { return; } ACPI_STATUS AcpiDsCallControlMethod ( ACPI_THREAD_STATE *Thread, ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op) { return (AE_OK); } ACPI_STATUS AcpiDsMethodDataInitArgs ( ACPI_OPERAND_OBJECT **Params, UINT32 MaxParamCount, ACPI_WALK_STATE *WalkState) { return (AE_OK); } Index: head/sys/contrib/dev/acpica/compiler/asltokens.y =================================================================== --- head/sys/contrib/dev/acpica/compiler/asltokens.y (revision 308952) +++ head/sys/contrib/dev/acpica/compiler/asltokens.y (revision 308953) @@ -1,523 +1,526 @@ NoEcho(' /****************************************************************************** * * Module Name: asltokens.y - Bison/Yacc token types * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ ') /****************************************************************************** * * Token types: These are returned by the lexer * * NOTE: This list MUST match the AslKeywordMapping table found * in aslmap.c EXACTLY! Double check any changes! * *****************************************************************************/ /* * Most tokens are defined to return , which is a UINT64. * * These tokens return , a pointer to the associated lexed string: * * PARSEOP_NAMESEG * PARSEOP_NAMESTRING * PARSEOP_STRING_LITERAL * PARSEOP_STRUCTURE_NAMESTRING */ %token PARSEOP_ACCESSAS %token PARSEOP_ACCESSATTRIB_BLOCK %token PARSEOP_ACCESSATTRIB_BLOCK_CALL %token PARSEOP_ACCESSATTRIB_BYTE %token PARSEOP_ACCESSATTRIB_MULTIBYTE %token PARSEOP_ACCESSATTRIB_QUICK %token PARSEOP_ACCESSATTRIB_RAW_BYTES %token PARSEOP_ACCESSATTRIB_RAW_PROCESS %token PARSEOP_ACCESSATTRIB_SND_RCV %token PARSEOP_ACCESSATTRIB_WORD %token PARSEOP_ACCESSATTRIB_WORD_CALL %token PARSEOP_ACCESSTYPE_ANY %token PARSEOP_ACCESSTYPE_BUF %token PARSEOP_ACCESSTYPE_BYTE %token PARSEOP_ACCESSTYPE_DWORD %token PARSEOP_ACCESSTYPE_QWORD %token PARSEOP_ACCESSTYPE_WORD %token PARSEOP_ACQUIRE %token PARSEOP_ADD %token PARSEOP_ADDRESSINGMODE_7BIT %token PARSEOP_ADDRESSINGMODE_10BIT %token PARSEOP_ADDRESSTYPE_ACPI %token PARSEOP_ADDRESSTYPE_MEMORY %token PARSEOP_ADDRESSTYPE_NVS %token PARSEOP_ADDRESSTYPE_RESERVED %token PARSEOP_ALIAS %token PARSEOP_AND %token PARSEOP_ARG0 %token PARSEOP_ARG1 %token PARSEOP_ARG2 %token PARSEOP_ARG3 %token PARSEOP_ARG4 %token PARSEOP_ARG5 %token PARSEOP_ARG6 %token PARSEOP_BANKFIELD %token PARSEOP_BITSPERBYTE_EIGHT %token PARSEOP_BITSPERBYTE_FIVE %token PARSEOP_BITSPERBYTE_NINE %token PARSEOP_BITSPERBYTE_SEVEN %token PARSEOP_BITSPERBYTE_SIX %token PARSEOP_BREAK %token PARSEOP_BREAKPOINT %token PARSEOP_BUFFER %token PARSEOP_BUSMASTERTYPE_MASTER %token PARSEOP_BUSMASTERTYPE_NOTMASTER %token PARSEOP_BYTECONST %token PARSEOP_CASE %token PARSEOP_CLOCKPHASE_FIRST %token PARSEOP_CLOCKPHASE_SECOND %token PARSEOP_CLOCKPOLARITY_HIGH %token PARSEOP_CLOCKPOLARITY_LOW %token PARSEOP_CONCATENATE %token PARSEOP_CONCATENATERESTEMPLATE %token PARSEOP_CONDREFOF %token PARSEOP_CONNECTION %token PARSEOP_CONTINUE %token PARSEOP_COPYOBJECT %token PARSEOP_CREATEBITFIELD %token PARSEOP_CREATEBYTEFIELD %token PARSEOP_CREATEDWORDFIELD %token PARSEOP_CREATEFIELD %token PARSEOP_CREATEQWORDFIELD %token PARSEOP_CREATEWORDFIELD %token PARSEOP_DATABUFFER %token PARSEOP_DATATABLEREGION %token PARSEOP_DEBUG %token PARSEOP_DECODETYPE_POS %token PARSEOP_DECODETYPE_SUB %token PARSEOP_DECREMENT %token PARSEOP_DEFAULT %token PARSEOP_DEFAULT_ARG %token PARSEOP_DEFINITION_BLOCK %token PARSEOP_DEREFOF %token PARSEOP_DEVICE %token PARSEOP_DEVICEPOLARITY_HIGH %token PARSEOP_DEVICEPOLARITY_LOW %token PARSEOP_DIVIDE %token PARSEOP_DMA %token PARSEOP_DMATYPE_A %token PARSEOP_DMATYPE_COMPATIBILITY %token PARSEOP_DMATYPE_B %token PARSEOP_DMATYPE_F %token PARSEOP_DWORDCONST %token PARSEOP_DWORDIO %token PARSEOP_DWORDMEMORY %token PARSEOP_DWORDSPACE %token PARSEOP_EISAID %token PARSEOP_ELSE %token PARSEOP_ELSEIF %token PARSEOP_ENDDEPENDENTFN %token PARSEOP_ENDIAN_BIG %token PARSEOP_ENDIAN_LITTLE %token PARSEOP_ENDTAG %token PARSEOP_ERRORNODE %token PARSEOP_EVENT %token PARSEOP_EXTENDEDIO %token PARSEOP_EXTENDEDMEMORY %token PARSEOP_EXTENDEDSPACE %token PARSEOP_EXTERNAL %token PARSEOP_FATAL %token PARSEOP_FIELD %token PARSEOP_FINDSETLEFTBIT %token PARSEOP_FINDSETRIGHTBIT %token PARSEOP_FIXEDDMA %token PARSEOP_FIXEDIO %token PARSEOP_FLOWCONTROL_HW %token PARSEOP_FLOWCONTROL_NONE %token PARSEOP_FLOWCONTROL_SW %token PARSEOP_FROMBCD %token PARSEOP_FUNCTION %token PARSEOP_GPIO_INT %token PARSEOP_GPIO_IO %token PARSEOP_I2C_SERIALBUS %token PARSEOP_I2C_SERIALBUS_V2 %token PARSEOP_IF %token PARSEOP_INCLUDE %token PARSEOP_INCLUDE_END %token PARSEOP_INCREMENT %token PARSEOP_INDEX %token PARSEOP_INDEXFIELD %token PARSEOP_INTEGER %token PARSEOP_INTERRUPT %token PARSEOP_INTLEVEL_ACTIVEBOTH %token PARSEOP_INTLEVEL_ACTIVEHIGH %token PARSEOP_INTLEVEL_ACTIVELOW %token PARSEOP_INTTYPE_EDGE %token PARSEOP_INTTYPE_LEVEL %token PARSEOP_IO %token PARSEOP_IODECODETYPE_10 %token PARSEOP_IODECODETYPE_16 %token PARSEOP_IORESTRICT_IN %token PARSEOP_IORESTRICT_NONE %token PARSEOP_IORESTRICT_OUT %token PARSEOP_IORESTRICT_PRESERVE %token PARSEOP_IRQ %token PARSEOP_IRQNOFLAGS %token PARSEOP_LAND %token PARSEOP_LEQUAL %token PARSEOP_LGREATER %token PARSEOP_LGREATEREQUAL %token PARSEOP_LLESS %token PARSEOP_LLESSEQUAL %token PARSEOP_LNOT %token PARSEOP_LNOTEQUAL %token PARSEOP_LOAD %token PARSEOP_LOADTABLE %token PARSEOP_LOCAL0 %token PARSEOP_LOCAL1 %token PARSEOP_LOCAL2 %token PARSEOP_LOCAL3 %token PARSEOP_LOCAL4 %token PARSEOP_LOCAL5 %token PARSEOP_LOCAL6 %token PARSEOP_LOCAL7 %token PARSEOP_LOCKRULE_LOCK %token PARSEOP_LOCKRULE_NOLOCK %token PARSEOP_LOR %token PARSEOP_MATCH %token PARSEOP_MATCHTYPE_MEQ %token PARSEOP_MATCHTYPE_MGE %token PARSEOP_MATCHTYPE_MGT %token PARSEOP_MATCHTYPE_MLE %token PARSEOP_MATCHTYPE_MLT %token PARSEOP_MATCHTYPE_MTR %token PARSEOP_MAXTYPE_FIXED %token PARSEOP_MAXTYPE_NOTFIXED %token PARSEOP_MEMORY24 %token PARSEOP_MEMORY32 %token PARSEOP_MEMORY32FIXED %token PARSEOP_MEMTYPE_CACHEABLE %token PARSEOP_MEMTYPE_NONCACHEABLE %token PARSEOP_MEMTYPE_PREFETCHABLE %token PARSEOP_MEMTYPE_WRITECOMBINING %token PARSEOP_METHOD %token PARSEOP_METHODCALL %token PARSEOP_MID %token PARSEOP_MINTYPE_FIXED %token PARSEOP_MINTYPE_NOTFIXED %token PARSEOP_MOD %token PARSEOP_MULTIPLY %token PARSEOP_MUTEX %token PARSEOP_NAME %token PARSEOP_NAMESEG %token PARSEOP_NAMESTRING %token PARSEOP_NAND %token PARSEOP_NOOP %token PARSEOP_NOR %token PARSEOP_NOT %token PARSEOP_NOTIFY %token PARSEOP_OBJECTTYPE %token PARSEOP_OBJECTTYPE_BFF %token PARSEOP_OBJECTTYPE_BUF %token PARSEOP_OBJECTTYPE_DDB %token PARSEOP_OBJECTTYPE_DEV %token PARSEOP_OBJECTTYPE_EVT %token PARSEOP_OBJECTTYPE_FLD %token PARSEOP_OBJECTTYPE_INT %token PARSEOP_OBJECTTYPE_MTH %token PARSEOP_OBJECTTYPE_MTX %token PARSEOP_OBJECTTYPE_OPR %token PARSEOP_OBJECTTYPE_PKG %token PARSEOP_OBJECTTYPE_POW %token PARSEOP_OBJECTTYPE_PRO %token PARSEOP_OBJECTTYPE_STR %token PARSEOP_OBJECTTYPE_THZ %token PARSEOP_OBJECTTYPE_UNK %token PARSEOP_OFFSET %token PARSEOP_ONE %token PARSEOP_ONES %token PARSEOP_OPERATIONREGION %token PARSEOP_OR %token PARSEOP_PACKAGE %token PARSEOP_PACKAGE_LENGTH %token PARSEOP_PARITYTYPE_EVEN %token PARSEOP_PARITYTYPE_MARK %token PARSEOP_PARITYTYPE_NONE %token PARSEOP_PARITYTYPE_ODD %token PARSEOP_PARITYTYPE_SPACE %token PARSEOP_PIN_NOPULL %token PARSEOP_PIN_PULLDEFAULT %token PARSEOP_PIN_PULLDOWN %token PARSEOP_PIN_PULLUP %token PARSEOP_POWERRESOURCE %token PARSEOP_PROCESSOR %token PARSEOP_QWORDCONST %token PARSEOP_QWORDIO %token PARSEOP_QWORDMEMORY %token PARSEOP_QWORDSPACE %token PARSEOP_RANGETYPE_ENTIRE %token PARSEOP_RANGETYPE_ISAONLY %token PARSEOP_RANGETYPE_NONISAONLY %token PARSEOP_RAW_DATA %token PARSEOP_READWRITETYPE_BOTH %token PARSEOP_READWRITETYPE_READONLY %token PARSEOP_REFOF %token PARSEOP_REGIONSPACE_CMOS %token PARSEOP_REGIONSPACE_EC %token PARSEOP_REGIONSPACE_FFIXEDHW %token PARSEOP_REGIONSPACE_GPIO %token PARSEOP_REGIONSPACE_GSBUS %token PARSEOP_REGIONSPACE_IO %token PARSEOP_REGIONSPACE_IPMI %token PARSEOP_REGIONSPACE_MEM %token PARSEOP_REGIONSPACE_PCC %token PARSEOP_REGIONSPACE_PCI %token PARSEOP_REGIONSPACE_PCIBAR %token PARSEOP_REGIONSPACE_SMBUS %token PARSEOP_REGISTER %token PARSEOP_RELEASE %token PARSEOP_RESERVED_BYTES %token PARSEOP_RESET %token PARSEOP_RESOURCETEMPLATE %token PARSEOP_RESOURCETYPE_CONSUMER %token PARSEOP_RESOURCETYPE_PRODUCER %token PARSEOP_RETURN %token PARSEOP_REVISION %token PARSEOP_SCOPE %token PARSEOP_SERIALIZERULE_NOTSERIAL %token PARSEOP_SERIALIZERULE_SERIAL %token PARSEOP_SHARETYPE_EXCLUSIVE %token PARSEOP_SHARETYPE_EXCLUSIVEWAKE %token PARSEOP_SHARETYPE_SHARED %token PARSEOP_SHARETYPE_SHAREDWAKE %token PARSEOP_SHIFTLEFT %token PARSEOP_SHIFTRIGHT %token PARSEOP_SIGNAL %token PARSEOP_SIZEOF %token PARSEOP_SLAVEMODE_CONTROLLERINIT %token PARSEOP_SLAVEMODE_DEVICEINIT %token PARSEOP_SLEEP %token PARSEOP_SPI_SERIALBUS %token PARSEOP_SPI_SERIALBUS_V2 %token PARSEOP_STALL %token PARSEOP_STARTDEPENDENTFN %token PARSEOP_STARTDEPENDENTFN_NOPRI %token PARSEOP_STOPBITS_ONE %token PARSEOP_STOPBITS_ONEPLUSHALF %token PARSEOP_STOPBITS_TWO %token PARSEOP_STOPBITS_ZERO %token PARSEOP_STORE %token PARSEOP_STRING_LITERAL %token PARSEOP_SUBTRACT %token PARSEOP_SWITCH %token PARSEOP_THERMALZONE %token PARSEOP_TIMER %token PARSEOP_TOBCD %token PARSEOP_TOBUFFER %token PARSEOP_TODECIMALSTRING %token PARSEOP_TOHEXSTRING %token PARSEOP_TOINTEGER %token PARSEOP_TOSTRING %token PARSEOP_TOUUID %token PARSEOP_TRANSLATIONTYPE_DENSE %token PARSEOP_TRANSLATIONTYPE_SPARSE %token PARSEOP_TYPE_STATIC %token PARSEOP_TYPE_TRANSLATION %token PARSEOP_UART_SERIALBUS %token PARSEOP_UART_SERIALBUS_V2 %token PARSEOP_UNICODE %token PARSEOP_UNLOAD %token PARSEOP_UPDATERULE_ONES %token PARSEOP_UPDATERULE_PRESERVE %token PARSEOP_UPDATERULE_ZEROS %token PARSEOP_VAR_PACKAGE %token PARSEOP_VENDORLONG %token PARSEOP_VENDORSHORT %token PARSEOP_WAIT %token PARSEOP_WHILE %token PARSEOP_WIREMODE_FOUR %token PARSEOP_WIREMODE_THREE %token PARSEOP_WORDBUSNUMBER %token PARSEOP_WORDCONST %token PARSEOP_WORDIO %token PARSEOP_WORDSPACE %token PARSEOP_XFERSIZE_8 %token PARSEOP_XFERSIZE_16 %token PARSEOP_XFERSIZE_32 %token PARSEOP_XFERSIZE_64 %token PARSEOP_XFERSIZE_128 %token PARSEOP_XFERSIZE_256 %token PARSEOP_XFERTYPE_8 %token PARSEOP_XFERTYPE_8_16 %token PARSEOP_XFERTYPE_16 %token PARSEOP_XOR %token PARSEOP_ZERO /* ToPld macro */ %token PARSEOP_TOPLD %token PARSEOP_PLD_REVISION %token PARSEOP_PLD_IGNORECOLOR %token PARSEOP_PLD_RED %token PARSEOP_PLD_GREEN %token PARSEOP_PLD_BLUE %token PARSEOP_PLD_WIDTH %token PARSEOP_PLD_HEIGHT %token PARSEOP_PLD_USERVISIBLE %token PARSEOP_PLD_DOCK %token PARSEOP_PLD_LID %token PARSEOP_PLD_PANEL %token PARSEOP_PLD_VERTICALPOSITION %token PARSEOP_PLD_HORIZONTALPOSITION %token PARSEOP_PLD_SHAPE %token PARSEOP_PLD_GROUPORIENTATION %token PARSEOP_PLD_GROUPTOKEN %token PARSEOP_PLD_GROUPPOSITION %token PARSEOP_PLD_BAY %token PARSEOP_PLD_EJECTABLE %token PARSEOP_PLD_EJECTREQUIRED %token PARSEOP_PLD_CABINETNUMBER %token PARSEOP_PLD_CARDCAGENUMBER %token PARSEOP_PLD_REFERENCE %token PARSEOP_PLD_ROTATION %token PARSEOP_PLD_ORDER %token PARSEOP_PLD_RESERVED %token PARSEOP_PLD_VERTICALOFFSET %token PARSEOP_PLD_HORIZONTALOFFSET /* * C-style expression parser. These must appear after all of the * standard ASL operators and keywords. * * Note: The order of these tokens implements the precedence rules * (low precedence to high). See aslrules.y for an exhaustive list. */ %right PARSEOP_EXP_EQUALS PARSEOP_EXP_ADD_EQ PARSEOP_EXP_SUB_EQ PARSEOP_EXP_MUL_EQ PARSEOP_EXP_DIV_EQ PARSEOP_EXP_MOD_EQ PARSEOP_EXP_SHL_EQ PARSEOP_EXP_SHR_EQ PARSEOP_EXP_AND_EQ PARSEOP_EXP_XOR_EQ PARSEOP_EXP_OR_EQ %left PARSEOP_EXP_LOGICAL_OR %left PARSEOP_EXP_LOGICAL_AND %left PARSEOP_EXP_OR %left PARSEOP_EXP_XOR %left PARSEOP_EXP_AND %left PARSEOP_EXP_EQUAL PARSEOP_EXP_NOT_EQUAL %left PARSEOP_EXP_GREATER PARSEOP_EXP_LESS PARSEOP_EXP_GREATER_EQUAL PARSEOP_EXP_LESS_EQUAL %left PARSEOP_EXP_SHIFT_RIGHT PARSEOP_EXP_SHIFT_LEFT %left PARSEOP_EXP_ADD PARSEOP_EXP_SUBTRACT %left PARSEOP_EXP_MULTIPLY PARSEOP_EXP_DIVIDE PARSEOP_EXP_MODULO %right PARSEOP_EXP_NOT PARSEOP_EXP_LOGICAL_NOT %left PARSEOP_EXP_INCREMENT PARSEOP_EXP_DECREMENT +%left PARSEOP_OPEN_PAREN + PARSEOP_CLOSE_PAREN + /* Brackets for Index() support */ %left PARSEOP_EXP_INDEX_LEFT %right PARSEOP_EXP_INDEX_RIGHT /* Macros */ %token PARSEOP_PRINTF %token PARSEOP_FPRINTF %token PARSEOP_FOR /* Structures */ %token PARSEOP_STRUCTURE %token PARSEOP_STRUCTURE_NAMESTRING %token PARSEOP_STRUCTURE_TAG %token PARSEOP_STRUCTURE_ELEMENT %token PARSEOP_STRUCTURE_INSTANCE %token PARSEOP_STRUCTURE_REFERENCE %token PARSEOP_STRUCTURE_POINTER /* Top level */ %token PARSEOP_ASL_CODE /******************************************************************************* * * Tokens below are not in the aslmap.c file * ******************************************************************************/ /* Tokens below this are not in the aslmap.c file */ /* Specific parentheses tokens are not used at this time */ /* PARSEOP_EXP_PAREN_OPEN */ /* PARSEOP_EXP_PAREN_CLOSE */ /* ASL+ variable creation */ %token PARSEOP_INTEGER_TYPE %token PARSEOP_STRING_TYPE %token PARSEOP_BUFFER_TYPE %token PARSEOP_PACKAGE_TYPE %token PARSEOP_REFERENCE_TYPE /* * Special functions. These should probably stay at the end of this * table. */ %token PARSEOP___DATE__ %token PARSEOP___FILE__ %token PARSEOP___LINE__ %token PARSEOP___PATH__ Index: head/sys/contrib/dev/acpica/compiler/asltypes.y =================================================================== --- head/sys/contrib/dev/acpica/compiler/asltypes.y (revision 308952) +++ head/sys/contrib/dev/acpica/compiler/asltypes.y (revision 308953) @@ -1,445 +1,448 @@ NoEcho(' /****************************************************************************** * * Module Name: asltypes.y - Bison/Yacc production types/names * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ ') /****************************************************************************** * * Production names * *****************************************************************************/ %type ArgList %type AslCode %type BufferData %type BufferTermData %type CompilerDirective %type DataObject %type DefinitionBlockTerm %type DefinitionBlockList %type IntegerData %type NamedObject %type NameSpaceModifier %type Object %type PackageData %type ParameterTypePackage %type ParameterTypePackageList %type ParameterTypesPackage %type ParameterTypesPackageList %type RequiredTarget -%type SimpleTarget +%type SimpleName %type StringData %type Target %type Term %type TermArg %type TermList %type MethodInvocationTerm /* Type4Opcode is obsolete */ %type Type1Opcode %type Type2BufferOpcode %type Type2BufferOrStringOpcode %type Type2IntegerOpcode %type Type2Opcode %type Type2StringOpcode %type Type3Opcode %type Type5Opcode %type Type6Opcode %type AccessAsTerm %type ExternalTerm %type FieldUnit %type FieldUnitEntry %type FieldUnitList %type IncludeTerm %type OffsetTerm %type OptionalAccessAttribTerm /* Named Objects */ %type BankFieldTerm %type CreateBitFieldTerm %type CreateByteFieldTerm %type CreateDWordFieldTerm %type CreateFieldTerm %type CreateQWordFieldTerm %type CreateWordFieldTerm %type DataRegionTerm %type DeviceTerm %type EventTerm %type FieldTerm %type FunctionTerm %type IndexFieldTerm %type MethodTerm %type MutexTerm %type OpRegionTerm %type OpRegionSpaceIdTerm %type PowerResTerm %type ProcessorTerm %type ThermalZoneTerm /* Namespace modifiers */ %type AliasTerm %type NameTerm %type ScopeTerm /* Type 1 opcodes */ %type BreakPointTerm %type BreakTerm %type CaseDefaultTermList %type CaseTerm %type ContinueTerm %type DefaultTerm %type ElseTerm %type FatalTerm %type ElseIfTerm %type IfTerm %type LoadTerm %type NoOpTerm %type NotifyTerm %type ReleaseTerm %type ResetTerm %type ReturnTerm %type SignalTerm %type SleepTerm %type StallTerm %type SwitchTerm %type UnloadTerm %type WhileTerm /* %type CaseTermList */ /* Type 2 opcodes */ %type AcquireTerm %type AddTerm %type AndTerm %type ConcatResTerm %type ConcatTerm %type CondRefOfTerm %type CopyObjectTerm %type DecTerm %type DerefOfTerm %type DivideTerm %type FindSetLeftBitTerm %type FindSetRightBitTerm %type FromBCDTerm %type IncTerm %type IndexTerm %type LAndTerm %type LEqualTerm %type LGreaterEqualTerm %type LGreaterTerm %type LLessEqualTerm %type LLessTerm %type LNotEqualTerm %type LNotTerm %type LoadTableTerm %type LOrTerm %type MatchTerm %type MidTerm %type ModTerm %type MultiplyTerm %type NAndTerm %type NOrTerm %type NotTerm %type ObjectTypeTerm %type OrTerm %type RawDataBufferTerm %type RefOfTerm %type ShiftLeftTerm %type ShiftRightTerm %type SizeOfTerm %type StoreTerm %type SubtractTerm %type TimerTerm %type ToBCDTerm %type ToBufferTerm %type ToDecimalStringTerm %type ToHexStringTerm %type ToIntegerTerm %type ToStringTerm %type WaitTerm %type XOrTerm /* Keywords */ %type AccessAttribKeyword %type AccessTypeKeyword %type AddressingModeKeyword %type AddressKeyword %type AddressSpaceKeyword %type BitsPerByteKeyword %type ClockPhaseKeyword %type ClockPolarityKeyword %type DecodeKeyword %type DevicePolarityKeyword %type DMATypeKeyword %type EndianKeyword %type FlowControlKeyword %type InterruptLevel %type InterruptTypeKeyword %type IODecodeKeyword %type IoRestrictionKeyword %type LockRuleKeyword %type MatchOpKeyword %type MaxKeyword %type MemTypeKeyword %type MinKeyword %type ObjectTypeKeyword %type OptionalBusMasterKeyword %type OptionalReadWriteKeyword %type ParityTypeKeyword %type PinConfigByte %type PinConfigKeyword %type RangeTypeKeyword %type RegionSpaceKeyword %type ResourceTypeKeyword %type SerializeRuleKeyword %type ShareTypeKeyword %type SlaveModeKeyword %type StopBitsKeyword %type TranslationKeyword %type TypeKeyword %type UpdateRuleKeyword %type WireModeKeyword %type XferSizeKeyword %type XferTypeKeyword /* Types */ %type SuperName -%type ObjectTypeName +%type ObjectTypeSource +%type DerefOfSource +%type RefOfSource +%type CondRefOfSource %type ArgTerm %type LocalTerm %type DebugTerm %type Integer %type ByteConst %type WordConst %type DWordConst %type QWordConst %type String %type ConstTerm %type ConstExprTerm %type ByteConstExpr %type WordConstExpr %type DWordConstExpr %type QWordConstExpr %type DWordList %type BufferTerm %type ByteList %type PackageElement %type PackageList %type PackageTerm /* Macros */ %type EISAIDTerm %type ResourceMacroList %type ResourceMacroTerm %type ResourceTemplateTerm %type PldKeyword %type PldKeywordList %type ToPLDTerm %type ToUUIDTerm %type UnicodeTerm %type PrintfArgList %type PrintfTerm %type FprintfTerm %type ForTerm /* Resource Descriptors */ %type ConnectionTerm %type DMATerm %type DWordIOTerm %type DWordMemoryTerm %type DWordSpaceTerm %type EndDependentFnTerm %type ExtendedIOTerm %type ExtendedMemoryTerm %type ExtendedSpaceTerm %type FixedDmaTerm %type FixedIOTerm %type GpioIntTerm %type GpioIoTerm %type I2cSerialBusTerm %type I2cSerialBusTermV2 %type InterruptTerm %type IOTerm %type IRQNoFlagsTerm %type IRQTerm %type Memory24Term %type Memory32FixedTerm %type Memory32Term %type NameSeg %type NameString %type QWordIOTerm %type QWordMemoryTerm %type QWordSpaceTerm %type RegisterTerm %type SpiSerialBusTerm %type SpiSerialBusTermV2 %type StartDependentFnNoPriTerm %type StartDependentFnTerm %type UartSerialBusTerm %type UartSerialBusTermV2 %type VendorLongTerm %type VendorShortTerm %type WordBusNumberTerm %type WordIOTerm %type WordSpaceTerm /* Local types that help construct the AML, not in ACPI spec */ %type AmlPackageLengthTerm %type IncludeEndTerm %type NameStringItem %type TermArgItem %type OptionalAccessSize %type OptionalAddressingMode %type OptionalAddressRange %type OptionalBitsPerByte %type OptionalBuffer_Last %type OptionalByteConstExpr %type OptionalCount %type OptionalDataCount %type OptionalDecodeType %type OptionalDevicePolarity %type OptionalDWordConstExpr %type OptionalEndian %type OptionalFlowControl %type OptionalIoRestriction %type OptionalListString %type OptionalMaxType %type OptionalMemType %type OptionalMinType %type OptionalNameString %type OptionalNameString_First %type OptionalNameString_Last %type OptionalObjectTypeKeyword %type OptionalParameterTypePackage %type OptionalParameterTypesPackage %type OptionalParentheses %type OptionalParityType %type OptionalPredicate %type OptionalQWordConstExpr %type OptionalRangeType %type OptionalReference %type OptionalResourceType %type OptionalResourceType_First %type OptionalReturnArg %type OptionalSerializeRuleKeyword %type OptionalShareType %type OptionalShareType_First %type OptionalSlaveMode %type OptionalStopBits %type OptionalStringData %type OptionalTermArg %type OptionalTranslationType_Last %type OptionalType %type OptionalType_Last %type OptionalWireMode %type OptionalWordConst %type OptionalWordConstExpr %type OptionalXferSize /* * ASL+ (C-style) parser */ /* Expressions and symbolic operators */ %type Expression %type EqualsTerm %type IndexExpTerm /* ASL+ Named object declaration support */ /* %type NameTermAslPlus %type BufferBegin %type BufferEnd %type PackageBegin %type PackageEnd %type OptionalLength */ /* ASL+ Structure declarations */ /* %type StructureTerm %type StructureTermBegin %type StructureType %type StructureTag %type StructureElementList %type StructureElement %type StructureElementType %type OptionalStructureElementType %type StructureId */ /* Structure instantiantion */ /* %type StructureInstanceTerm %type StructureTagReference %type StructureInstanceEnd */ /* Pseudo-instantiantion for method Args/Locals */ /* %type MethodStructureTerm %type LocalStructureName */ /* Direct structure references via the Index operator */ /* %type StructureReference %type StructureIndexTerm %type StructurePointerTerm %type StructurePointerReference %type OptionalDefinePointer */ Index: head/sys/contrib/dev/acpica/compiler/aslwalks.c =================================================================== --- head/sys/contrib/dev/acpica/compiler/aslwalks.c (revision 308952) +++ head/sys/contrib/dev/acpica/compiler/aslwalks.c (revision 308953) @@ -1,977 +1,966 @@ /****************************************************************************** * * Module Name: aslwalks.c - Miscellaneous analytical parse tree walks * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include "aslcompiler.y.h" #include #include #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("aslwalks") /* Local prototypes */ static void AnAnalyzeStoreOperator ( ACPI_PARSE_OBJECT *Op); /******************************************************************************* * * FUNCTION: AnMethodTypingWalkEnd * * PARAMETERS: ASL_WALK_CALLBACK * * RETURN: Status * * DESCRIPTION: Ascending callback for typing walk. Complete the method * return analysis. Check methods for: * 1) Initialized local variables * 2) Valid arguments * 3) Return types * ******************************************************************************/ ACPI_STATUS AnMethodTypingWalkEnd ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context) { UINT32 ThisOpBtype; switch (Op->Asl.ParseOpcode) { case PARSEOP_METHOD: Op->Asl.CompileFlags |= NODE_METHOD_TYPED; break; case PARSEOP_RETURN: if ((Op->Asl.Child) && (Op->Asl.Child->Asl.ParseOpcode != PARSEOP_DEFAULT_ARG)) { ThisOpBtype = AnGetBtype (Op->Asl.Child); if ((Op->Asl.Child->Asl.ParseOpcode == PARSEOP_METHODCALL) && (ThisOpBtype == (ACPI_UINT32_MAX -1))) { /* * The called method is untyped at this time (typically a * forward reference). * * Check for a recursive method call first. Note: the * Child->Node will be null if the method has not been * resolved. */ if (Op->Asl.Child->Asl.Node && (Op->Asl.ParentMethod != Op->Asl.Child->Asl.Node->Op)) { /* We must type the method here */ TrWalkParseTree (Op->Asl.Child->Asl.Node->Op, ASL_WALK_VISIT_UPWARD, NULL, AnMethodTypingWalkEnd, NULL); ThisOpBtype = AnGetBtype (Op->Asl.Child); } } /* Returns a value, save the value type */ if (Op->Asl.ParentMethod) { Op->Asl.ParentMethod->Asl.AcpiBtype |= ThisOpBtype; } } break; default: break; } return (AE_OK); } /******************************************************************************* * * FUNCTION: AnOperandTypecheckWalkEnd * * PARAMETERS: ASL_WALK_CALLBACK * * RETURN: Status * * DESCRIPTION: Ascending callback for analysis walk. Complete method * return analysis. * ******************************************************************************/ ACPI_STATUS AnOperandTypecheckWalkEnd ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context) { const ACPI_OPCODE_INFO *OpInfo; UINT32 RuntimeArgTypes; UINT32 RuntimeArgTypes2; UINT32 RequiredBtypes; UINT32 ThisNodeBtype; UINT32 CommonBtypes; UINT32 OpcodeClass; ACPI_PARSE_OBJECT *ArgOp; UINT32 ArgType; switch (Op->Asl.AmlOpcode) { case AML_RAW_DATA_BYTE: case AML_RAW_DATA_WORD: case AML_RAW_DATA_DWORD: case AML_RAW_DATA_QWORD: case AML_RAW_DATA_BUFFER: case AML_RAW_DATA_CHAIN: case AML_PACKAGE_LENGTH: case AML_UNASSIGNED_OPCODE: case AML_DEFAULT_ARG_OP: /* Ignore the internal (compiler-only) AML opcodes */ return (AE_OK); default: break; } OpInfo = AcpiPsGetOpcodeInfo (Op->Asl.AmlOpcode); if (!OpInfo) { return (AE_OK); } ArgOp = Op->Asl.Child; OpcodeClass = OpInfo->Class; RuntimeArgTypes = OpInfo->RuntimeArgs; #ifdef ASL_ERROR_NAMED_OBJECT_IN_WHILE /* * Update 11/2008: In practice, we can't perform this check. A simple * analysis is not sufficient. Also, it can cause errors when compiling * disassembled code because of the way Switch operators are implemented * (a While(One) loop with a named temp variable created within.) */ /* * If we are creating a named object, check if we are within a while loop * by checking if the parent is a WHILE op. This is a simple analysis, but * probably sufficient for many cases. * * Allow Scope(), Buffer(), and Package(). */ if (((OpcodeClass == AML_CLASS_NAMED_OBJECT) && (Op->Asl.AmlOpcode != AML_SCOPE_OP)) || ((OpcodeClass == AML_CLASS_CREATE) && (OpInfo->Flags & AML_NSNODE))) { if (Op->Asl.Parent->Asl.AmlOpcode == AML_WHILE_OP) { AslError (ASL_ERROR, ASL_MSG_NAMED_OBJECT_IN_WHILE, Op, NULL); } } #endif /* * Special case for control opcodes IF/RETURN/WHILE since they * have no runtime arg list (at this time) */ switch (Op->Asl.AmlOpcode) { case AML_IF_OP: case AML_WHILE_OP: case AML_RETURN_OP: if (ArgOp->Asl.ParseOpcode == PARSEOP_METHODCALL) { /* Check for an internal method */ if (AnIsInternalMethod (ArgOp)) { return (AE_OK); } /* The lone arg is a method call, check it */ RequiredBtypes = AnMapArgTypeToBtype (ARGI_INTEGER); if (Op->Asl.AmlOpcode == AML_RETURN_OP) { RequiredBtypes = 0xFFFFFFFF; } ThisNodeBtype = AnGetBtype (ArgOp); if (ThisNodeBtype == ACPI_UINT32_MAX) { return (AE_OK); } AnCheckMethodReturnValue (Op, OpInfo, ArgOp, RequiredBtypes, ThisNodeBtype); } return (AE_OK); case AML_EXTERNAL_OP: /* * Not really a "runtime" opcode since it used by disassembler only. * The parser will find any issues with the operands. */ return (AE_OK); default: break; } /* Ignore the non-executable opcodes */ if (RuntimeArgTypes == ARGI_INVALID_OPCODE) { return (AE_OK); } /* * Special handling for certain opcodes. */ switch (Op->Asl.AmlOpcode) { /* BankField has one TermArg */ case AML_BANK_FIELD_OP: OpcodeClass = AML_CLASS_EXECUTE; ArgOp = ArgOp->Asl.Next; ArgOp = ArgOp->Asl.Next; break; /* Operation Region has 2 TermArgs */ case AML_REGION_OP: OpcodeClass = AML_CLASS_EXECUTE; ArgOp = ArgOp->Asl.Next; ArgOp = ArgOp->Asl.Next; break; /* DataTableRegion has 3 TermArgs */ case AML_DATA_REGION_OP: OpcodeClass = AML_CLASS_EXECUTE; ArgOp = ArgOp->Asl.Next; break; /* Buffers/Packages have a length that is a TermArg */ case AML_BUFFER_OP: case AML_PACKAGE_OP: case AML_VAR_PACKAGE_OP: /* If length is a constant, we are done */ if ((ArgOp->Asl.ParseOpcode == PARSEOP_INTEGER) || (ArgOp->Asl.ParseOpcode == PARSEOP_RAW_DATA)) { return (AE_OK); } break; /* Store can write any object to the Debug object */ case AML_STORE_OP: /* * If this is a Store() to the Debug object, we don't need * to perform any further validation -- because a Store of * any object to Debug is permitted and supported. */ if (ArgOp->Asl.Next->Asl.AmlOpcode == AML_DEBUG_OP) { return (AE_OK); } break; default: break; } switch (OpcodeClass) { case AML_CLASS_EXECUTE: case AML_CLASS_CREATE: case AML_CLASS_CONTROL: case AML_CLASS_RETURN_VALUE: /* Reverse the runtime argument list */ RuntimeArgTypes2 = 0; while ((ArgType = GET_CURRENT_ARG_TYPE (RuntimeArgTypes))) { RuntimeArgTypes2 <<= ARG_TYPE_WIDTH; RuntimeArgTypes2 |= ArgType; INCREMENT_ARG_LIST (RuntimeArgTypes); } /* Typecheck each argument */ while ((ArgType = GET_CURRENT_ARG_TYPE (RuntimeArgTypes2))) { /* Get the required type(s) for the argument */ RequiredBtypes = AnMapArgTypeToBtype (ArgType); if (!ArgOp) { AslError (ASL_ERROR, ASL_MSG_COMPILER_INTERNAL, Op, "Null ArgOp in argument loop"); AslAbort (); } /* Get the actual type of the argument */ ThisNodeBtype = AnGetBtype (ArgOp); if (ThisNodeBtype == ACPI_UINT32_MAX) { goto NextArgument; } /* Examine the arg based on the required type of the arg */ switch (ArgType) { case ARGI_TARGETREF: if (ArgOp->Asl.ParseOpcode == PARSEOP_ZERO) { /* ZERO is the placeholder for "don't store result" */ ThisNodeBtype = RequiredBtypes; break; } /* Fallthrough */ case ARGI_STORE_TARGET: if (ArgOp->Asl.ParseOpcode == PARSEOP_INTEGER) { /* * This is the case where an original reference to a resource * descriptor field has been replaced by an (Integer) offset. * These named fields are supported at compile-time only; * the names are not passed to the interpreter (via the AML). */ if ((ArgOp->Asl.Node->Type == ACPI_TYPE_LOCAL_RESOURCE_FIELD) || (ArgOp->Asl.Node->Type == ACPI_TYPE_LOCAL_RESOURCE)) { AslError (ASL_ERROR, ASL_MSG_RESOURCE_FIELD, ArgOp, NULL); } else { AslError (ASL_ERROR, ASL_MSG_INVALID_TYPE, ArgOp, NULL); } } break; #ifdef __FUTURE_IMPLEMENTATION /* * Possible future typechecking support */ case ARGI_REFERENCE: /* References */ case ARGI_INTEGER_REF: case ARGI_OBJECT_REF: case ARGI_DEVICE_REF: switch (ArgOp->Asl.ParseOpcode) { case PARSEOP_LOCAL0: case PARSEOP_LOCAL1: case PARSEOP_LOCAL2: case PARSEOP_LOCAL3: case PARSEOP_LOCAL4: case PARSEOP_LOCAL5: case PARSEOP_LOCAL6: case PARSEOP_LOCAL7: /* TBD: implement analysis of current value (type) of the local */ /* For now, just treat any local as a typematch */ /*ThisNodeBtype = RequiredBtypes;*/ break; case PARSEOP_ARG0: case PARSEOP_ARG1: case PARSEOP_ARG2: case PARSEOP_ARG3: case PARSEOP_ARG4: case PARSEOP_ARG5: case PARSEOP_ARG6: /* Hard to analyze argument types, so we won't */ /* for now. Just treat any arg as a typematch */ /* ThisNodeBtype = RequiredBtypes; */ break; case PARSEOP_DEBUG: case PARSEOP_REFOF: case PARSEOP_INDEX: default: break; } break; #endif case ARGI_INTEGER: default: break; } /* Check for a type mismatch (required versus actual) */ CommonBtypes = ThisNodeBtype & RequiredBtypes; if (ArgOp->Asl.ParseOpcode == PARSEOP_METHODCALL) { if (AnIsInternalMethod (ArgOp)) { return (AE_OK); } /* Check a method call for a valid return value */ AnCheckMethodReturnValue (Op, OpInfo, ArgOp, RequiredBtypes, ThisNodeBtype); } /* * Now check if the actual type(s) match at least one * bit to the required type */ else if (!CommonBtypes) { /* No match -- this is a type mismatch error */ AnFormatBtype (StringBuffer, ThisNodeBtype); AnFormatBtype (StringBuffer2, RequiredBtypes); sprintf (MsgBuffer, "[%s] found, %s operator requires [%s]", StringBuffer, OpInfo->Name, StringBuffer2); AslError (ASL_ERROR, ASL_MSG_INVALID_TYPE, ArgOp, MsgBuffer); } NextArgument: ArgOp = ArgOp->Asl.Next; INCREMENT_ARG_LIST (RuntimeArgTypes2); } break; default: break; } return (AE_OK); } /******************************************************************************* * * FUNCTION: AnOtherSemanticAnalysisWalkBegin * * PARAMETERS: ASL_WALK_CALLBACK * * RETURN: Status * * DESCRIPTION: Descending callback for the analysis walk. Checks for * miscellaneous issues in the code. * ******************************************************************************/ ACPI_STATUS AnOtherSemanticAnalysisWalkBegin ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context) { ACPI_PARSE_OBJECT *ArgOp; ACPI_PARSE_OBJECT *PrevArgOp = NULL; const ACPI_OPCODE_INFO *OpInfo; ACPI_NAMESPACE_NODE *Node; OpInfo = AcpiPsGetOpcodeInfo (Op->Asl.AmlOpcode); /* * Determine if an execution class operator actually does something by * checking if it has a target and/or the function return value is used. * (Target is optional, so a standalone statement can actually do nothing.) */ if ((OpInfo->Class == AML_CLASS_EXECUTE) && (OpInfo->Flags & AML_HAS_RETVAL) && (!AnIsResultUsed (Op))) { if (OpInfo->Flags & AML_HAS_TARGET) { /* * Find the target node, it is always the last child. If the target * is not specified in the ASL, a default node of type Zero was * created by the parser. */ ArgOp = Op->Asl.Child; while (ArgOp->Asl.Next) { PrevArgOp = ArgOp; ArgOp = ArgOp->Asl.Next; } /* Divide() is the only weird case, it has two targets */ if (Op->Asl.AmlOpcode == AML_DIVIDE_OP) { if ((ArgOp->Asl.ParseOpcode == PARSEOP_ZERO) && (PrevArgOp) && (PrevArgOp->Asl.ParseOpcode == PARSEOP_ZERO)) { AslError (ASL_ERROR, ASL_MSG_RESULT_NOT_USED, Op, Op->Asl.ExternalName); } } else if (ArgOp->Asl.ParseOpcode == PARSEOP_ZERO) { AslError (ASL_ERROR, ASL_MSG_RESULT_NOT_USED, Op, Op->Asl.ExternalName); } } else { /* * Has no target and the result is not used. Only a couple opcodes * can have this combination. */ switch (Op->Asl.ParseOpcode) { case PARSEOP_ACQUIRE: case PARSEOP_WAIT: case PARSEOP_LOADTABLE: break; default: AslError (ASL_ERROR, ASL_MSG_RESULT_NOT_USED, Op, Op->Asl.ExternalName); break; } } } /* * Semantic checks for individual ASL operators */ switch (Op->Asl.ParseOpcode) { case PARSEOP_STORE: if (Gbl_DoTypechecking) { AnAnalyzeStoreOperator (Op); } break; case PARSEOP_ACQUIRE: case PARSEOP_WAIT: /* * Emit a warning if the timeout parameter for these operators is not * ACPI_WAIT_FOREVER, and the result value from the operator is not * checked, meaning that a timeout could happen, but the code * would not know about it. */ /* First child is the namepath, 2nd child is timeout */ ArgOp = Op->Asl.Child; ArgOp = ArgOp->Asl.Next; /* * Check for the WAIT_FOREVER case - defined by the ACPI spec to be * 0xFFFF or greater */ if (((ArgOp->Asl.ParseOpcode == PARSEOP_WORDCONST) || (ArgOp->Asl.ParseOpcode == PARSEOP_INTEGER)) && (ArgOp->Asl.Value.Integer >= (UINT64) ACPI_WAIT_FOREVER)) { break; } /* * The operation could timeout. If the return value is not used * (indicates timeout occurred), issue a warning */ if (!AnIsResultUsed (Op)) { AslError (ASL_WARNING, ASL_MSG_TIMEOUT, ArgOp, Op->Asl.ExternalName); } break; case PARSEOP_CREATEFIELD: /* * Check for a zero Length (NumBits) operand. NumBits is the 3rd operand */ ArgOp = Op->Asl.Child; ArgOp = ArgOp->Asl.Next; ArgOp = ArgOp->Asl.Next; if ((ArgOp->Asl.ParseOpcode == PARSEOP_ZERO) || ((ArgOp->Asl.ParseOpcode == PARSEOP_INTEGER) && (ArgOp->Asl.Value.Integer == 0))) { AslError (ASL_ERROR, ASL_MSG_NON_ZERO, ArgOp, NULL); } break; case PARSEOP_CONNECTION: /* * Ensure that the referenced operation region has the correct SPACE_ID. * From the grammar/parser, we know the parent is a FIELD definition. */ ArgOp = Op->Asl.Parent; /* Field definition */ ArgOp = ArgOp->Asl.Child; /* First child is the OpRegion Name */ Node = ArgOp->Asl.Node; /* OpRegion namespace node */ if (!Node) { break; } ArgOp = Node->Op; /* OpRegion definition */ ArgOp = ArgOp->Asl.Child; /* First child is the OpRegion Name */ ArgOp = ArgOp->Asl.Next; /* Next peer is the SPACE_ID (what we want) */ /* * The Connection() operator is only valid for the following operation * region SpaceIds: GeneralPurposeIo and GenericSerialBus. */ if ((ArgOp->Asl.Value.Integer != ACPI_ADR_SPACE_GPIO) && (ArgOp->Asl.Value.Integer != ACPI_ADR_SPACE_GSBUS)) { AslError (ASL_ERROR, ASL_MSG_CONNECTION_INVALID, Op, NULL); } break; case PARSEOP_FIELD: /* * Ensure that fields for GeneralPurposeIo and GenericSerialBus * contain at least one Connection() operator */ ArgOp = Op->Asl.Child; /* 1st child is the OpRegion Name */ Node = ArgOp->Asl.Node; /* OpRegion namespace node */ if (!Node) { break; } ArgOp = Node->Op; /* OpRegion definition */ ArgOp = ArgOp->Asl.Child; /* First child is the OpRegion Name */ ArgOp = ArgOp->Asl.Next; /* Next peer is the SPACE_ID (what we want) */ /* We are only interested in GeneralPurposeIo and GenericSerialBus */ if ((ArgOp->Asl.Value.Integer != ACPI_ADR_SPACE_GPIO) && (ArgOp->Asl.Value.Integer != ACPI_ADR_SPACE_GSBUS)) { break; } ArgOp = Op->Asl.Child; /* 1st child is the OpRegion Name */ ArgOp = ArgOp->Asl.Next; /* AccessType */ ArgOp = ArgOp->Asl.Next; /* LockRule */ ArgOp = ArgOp->Asl.Next; /* UpdateRule */ ArgOp = ArgOp->Asl.Next; /* Start of FieldUnitList */ /* Walk the FieldUnitList */ while (ArgOp) { if (ArgOp->Asl.ParseOpcode == PARSEOP_CONNECTION) { break; } else if (ArgOp->Asl.ParseOpcode == PARSEOP_NAMESEG) { AslError (ASL_ERROR, ASL_MSG_CONNECTION_MISSING, ArgOp, NULL); break; } ArgOp = ArgOp->Asl.Next; } break; default: break; } return (AE_OK); } /******************************************************************************* * * FUNCTION: AnAnalyzeStoreOperator * * PARAMETERS: Op - Store() operator * * RETURN: None * * DESCRIPTION: Analyze a store operator. Mostly for stores to/from package * objects where there are more restrictions than other data * types. * ******************************************************************************/ static void AnAnalyzeStoreOperator ( ACPI_PARSE_OBJECT *Op) { ACPI_NAMESPACE_NODE *SourceNode; ACPI_NAMESPACE_NODE *TargetNode; ACPI_PARSE_OBJECT *SourceOperandOp; ACPI_PARSE_OBJECT *TargetOperandOp; UINT32 SourceOperandBtype; UINT32 TargetOperandBtype; /* Extract the two operands for STORE */ SourceOperandOp = Op->Asl.Child; TargetOperandOp = SourceOperandOp->Asl.Next; /* * Ignore these Source operand opcodes, they cannot be typechecked, * the actual result is unknown here. */ switch (SourceOperandOp->Asl.ParseOpcode) { /* For these, type of the returned value is unknown at compile time */ case PARSEOP_DEREFOF: case PARSEOP_METHODCALL: case PARSEOP_STORE: case PARSEOP_COPYOBJECT: return; case PARSEOP_INDEX: case PARSEOP_REFOF: if (!Gbl_EnableReferenceTypechecking) { return; } /* * These opcodes always return an object reference, and thus * the result can only be stored to a Local, Arg, or Debug. */ if (TargetOperandOp->Asl.AmlOpcode == AML_DEBUG_OP) { return; } if ((TargetOperandOp->Asl.AmlOpcode < AML_LOCAL0) || (TargetOperandOp->Asl.AmlOpcode > AML_ARG6)) { AslError (ASL_ERROR, ASL_MSG_INVALID_TYPE, TargetOperandOp, "Source [Reference], Target must be [Local/Arg/Debug]"); } return; default: break; } /* * Ignore these Target operand opcodes, they cannot be typechecked */ switch (TargetOperandOp->Asl.ParseOpcode) { case PARSEOP_DEBUG: case PARSEOP_DEREFOF: case PARSEOP_REFOF: case PARSEOP_INDEX: + case PARSEOP_STORE: - return; - - case PARSEOP_METHODCALL: - /* - * A target is not allowed to be a method call. - * It is not supported by the ACPICA interpreter, nor is it - * supported by the MS ASL compiler or the MS interpreter. - * Although legal syntax up until ACPI 6.1, support for this - * will be removed for ACPI 6.2 (02/2016) - */ - AslError (ASL_ERROR, ASL_MSG_SYNTAX, - TargetOperandOp, "Illegal method invocation as a target operand"); return; default: break; } /* * Ignore typecheck for External() operands of type "UnknownObj", * we don't know the actual type (source or target). */ SourceNode = SourceOperandOp->Asl.Node; if (SourceNode && (SourceNode->Flags & ANOBJ_IS_EXTERNAL) && (SourceNode->Type == ACPI_TYPE_ANY)) { return; } TargetNode = TargetOperandOp->Asl.Node; if (TargetNode && (TargetNode->Flags & ANOBJ_IS_EXTERNAL) && (TargetNode->Type == ACPI_TYPE_ANY)) { return; } /* * A NULL node with a namepath AML opcode indicates non-existent * name. Just return, the error message is generated elsewhere. */ if ((!SourceNode && (SourceOperandOp->Asl.AmlOpcode == AML_INT_NAMEPATH_OP)) || (!TargetNode && (TargetOperandOp->Asl.AmlOpcode == AML_INT_NAMEPATH_OP))) { return; } /* * Simple check for source same as target via NS node. * -- Could be expanded to locals and args. */ if (SourceNode && TargetNode) { if (SourceNode == TargetNode) { AslError (ASL_WARNING, ASL_MSG_DUPLICATE_ITEM, TargetOperandOp, "Source is the same as Target"); return; } } /* Ignore typecheck if either source or target is a local or arg */ if ((SourceOperandOp->Asl.AmlOpcode >= AML_LOCAL0) && (SourceOperandOp->Asl.AmlOpcode <= AML_ARG6)) { return; /* Cannot type a local/arg at compile time */ } if ((TargetOperandOp->Asl.AmlOpcode >= AML_LOCAL0) && (TargetOperandOp->Asl.AmlOpcode <= AML_ARG6)) { return; /* Cannot type a local/arg at compile time */ } /* * Package objects are a special case because they cannot by implicitly * converted to/from anything. Check for these two illegal cases: * * Store (non-package, package) * Store (package, non-package) */ SourceOperandBtype = AnGetBtype (SourceOperandOp); TargetOperandBtype = AnGetBtype (TargetOperandOp); /* Check source first for (package, non-package) case */ if (SourceOperandBtype & ACPI_BTYPE_PACKAGE) { /* If Source is PACKAGE-->Target must be PACKAGE */ if (!(TargetOperandBtype & ACPI_BTYPE_PACKAGE)) { AslError (ASL_ERROR, ASL_MSG_INVALID_TYPE, TargetOperandOp, "Source is [Package], Target must be a package also"); } } /* Else check target for (non-package, package) case */ else if (TargetOperandBtype & ACPI_BTYPE_PACKAGE) { /* If Target is PACKAGE, Source must be PACKAGE */ if (!(SourceOperandBtype & ACPI_BTYPE_PACKAGE)) { AslError (ASL_ERROR, ASL_MSG_INVALID_TYPE, SourceOperandOp, "Target is [Package], Source must be a package also"); } } } Index: head/sys/contrib/dev/acpica/compiler/dttable.c =================================================================== --- head/sys/contrib/dev/acpica/compiler/dttable.c (revision 308952) +++ head/sys/contrib/dev/acpica/compiler/dttable.c (revision 308953) @@ -1,236 +1,238 @@ /****************************************************************************** * * Module Name: dttable.c - handling for specific ACPI tables * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ /* Compile routines for the basic ACPI tables */ #include #include #define _COMPONENT DT_COMPILER ACPI_MODULE_NAME ("dttable") /****************************************************************************** * * FUNCTION: DtCompileRsdp * * PARAMETERS: PFieldList - Current field list pointer * * RETURN: Status * * DESCRIPTION: Compile RSDP. * *****************************************************************************/ ACPI_STATUS DtCompileRsdp ( DT_FIELD **PFieldList) { DT_SUBTABLE *Subtable; ACPI_TABLE_RSDP *Rsdp; ACPI_RSDP_EXTENSION *RsdpExtension; ACPI_STATUS Status; /* Compile the "common" RSDP (ACPI 1.0) */ Status = DtCompileTable (PFieldList, AcpiDmTableInfoRsdp1, &Gbl_RootTable, TRUE); if (ACPI_FAILURE (Status)) { return (Status); } Rsdp = ACPI_CAST_PTR (ACPI_TABLE_RSDP, Gbl_RootTable->Buffer); DtSetTableChecksum (&Rsdp->Checksum); if (Rsdp->Revision > 0) { /* Compile the "extended" part of the RSDP as a subtable */ Status = DtCompileTable (PFieldList, AcpiDmTableInfoRsdp2, &Subtable, TRUE); if (ACPI_FAILURE (Status)) { return (Status); } DtInsertSubtable (Gbl_RootTable, Subtable); /* Set length and extended checksum for entire RSDP */ RsdpExtension = ACPI_CAST_PTR (ACPI_RSDP_EXTENSION, Subtable->Buffer); RsdpExtension->Length = Gbl_RootTable->Length + Subtable->Length; DtSetTableChecksum (&RsdpExtension->ExtendedChecksum); } return (AE_OK); } /****************************************************************************** * * FUNCTION: DtCompileFadt * * PARAMETERS: List - Current field list pointer * * RETURN: Status * * DESCRIPTION: Compile FADT. * *****************************************************************************/ ACPI_STATUS DtCompileFadt ( void **List) { ACPI_STATUS Status; DT_SUBTABLE *Subtable; DT_SUBTABLE *ParentTable; DT_FIELD **PFieldList = (DT_FIELD **) List; ACPI_TABLE_HEADER *Table; - UINT8 FadtRevision; - UINT32 i; + UINT8 Revision; - /* Minimum table is the FADT version 1 (ACPI 1.0) */ - Status = DtCompileTable (PFieldList, AcpiDmTableInfoFadt1, &Subtable, TRUE); if (ACPI_FAILURE (Status)) { return (Status); } ParentTable = DtPeekSubtable (); DtInsertSubtable (ParentTable, Subtable); Table = ACPI_CAST_PTR (ACPI_TABLE_HEADER, ParentTable->Buffer); - FadtRevision = Table->Revision; + Revision = Table->Revision; - /* Revision 0 and 2 are illegal */ - - if ((FadtRevision == 0) || - (FadtRevision == 2)) + if (Revision == 2) { - DtError (ASL_ERROR, 0, NULL, - "Invalid value for FADT revision"); - - return (AE_BAD_VALUE); - } - - /* Revision out of supported range? */ - - if (FadtRevision > ACPI_FADT_MAX_VERSION) - { - DtError (ASL_ERROR, 0, NULL, - "Unknown or unsupported value for FADT revision"); - - return (AE_BAD_VALUE); - } - - /* Compile individual sub-parts of the FADT, per-revision */ - - for (i = 3; i <= ACPI_FADT_MAX_VERSION; i++) - { - if (i > FadtRevision) + Status = DtCompileTable (PFieldList, AcpiDmTableInfoFadt2, + &Subtable, TRUE); + if (ACPI_FAILURE (Status)) { - break; + return (Status); } - /* Compile the fields specific to this FADT revision */ - - Status = DtCompileTable (PFieldList, FadtRevisionInfo[i], + DtInsertSubtable (ParentTable, Subtable); + } + else if (Revision >= 2) + { + Status = DtCompileTable (PFieldList, AcpiDmTableInfoFadt3, &Subtable, TRUE); if (ACPI_FAILURE (Status)) { return (Status); } DtInsertSubtable (ParentTable, Subtable); + + if (Revision >= 5) + { + Status = DtCompileTable (PFieldList, AcpiDmTableInfoFadt5, + &Subtable, TRUE); + if (ACPI_FAILURE (Status)) + { + return (Status); + } + + DtInsertSubtable (ParentTable, Subtable); + } + + if (Revision >= 6) + { + Status = DtCompileTable (PFieldList, AcpiDmTableInfoFadt6, + &Subtable, TRUE); + if (ACPI_FAILURE (Status)) + { + return (Status); + } + + DtInsertSubtable (ParentTable, Subtable); + } } return (AE_OK); } /****************************************************************************** * * FUNCTION: DtCompileFacs * * PARAMETERS: PFieldList - Current field list pointer * * RETURN: Status * * DESCRIPTION: Compile FACS. * *****************************************************************************/ ACPI_STATUS DtCompileFacs ( DT_FIELD **PFieldList) { DT_SUBTABLE *Subtable; UINT8 *ReservedBuffer; ACPI_STATUS Status; UINT32 ReservedSize; Status = DtCompileTable (PFieldList, AcpiDmTableInfoFacs, &Gbl_RootTable, TRUE); if (ACPI_FAILURE (Status)) { return (Status); } /* Large FACS reserved area at the end of the table */ ReservedSize = (UINT32) sizeof (((ACPI_TABLE_FACS *) NULL)->Reserved1); ReservedBuffer = UtLocalCalloc (ReservedSize); DtCreateSubtable (ReservedBuffer, ReservedSize, &Subtable); ACPI_FREE (ReservedBuffer); DtInsertSubtable (Gbl_RootTable, Subtable); return (AE_OK); } Index: head/sys/contrib/dev/acpica/components/disassembler/dmbuffer.c =================================================================== --- head/sys/contrib/dev/acpica/components/disassembler/dmbuffer.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/disassembler/dmbuffer.c (revision 308953) @@ -1,1050 +1,1069 @@ /******************************************************************************* * * Module Name: dmbuffer - AML disassembler, buffer and string support * ******************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #include #include #include #define _COMPONENT ACPI_CA_DEBUGGER ACPI_MODULE_NAME ("dmbuffer") /* Local prototypes */ static void AcpiDmUuid ( ACPI_PARSE_OBJECT *Op); static void AcpiDmUnicode ( ACPI_PARSE_OBJECT *Op); static void AcpiDmGetHardwareIdType ( ACPI_PARSE_OBJECT *Op); static void AcpiDmPldBuffer ( UINT32 Level, UINT8 *ByteData, UINT32 ByteCount); static const char * AcpiDmFindNameByIndex ( UINT64 Index, const char **List); #define ACPI_BUFFER_BYTES_PER_LINE 8 /******************************************************************************* * * FUNCTION: AcpiDmDisasmByteList * * PARAMETERS: Level - Current source code indentation level * ByteData - Pointer to the byte list * ByteCount - Length of the byte list * * RETURN: None * * DESCRIPTION: Dump an AML "ByteList" in Hex format. 8 bytes per line, prefixed * with the hex buffer offset. * ******************************************************************************/ void AcpiDmDisasmByteList ( UINT32 Level, UINT8 *ByteData, UINT32 ByteCount) { UINT32 i; UINT32 j; UINT32 CurrentIndex; UINT8 BufChar; if (!ByteCount) { return; } for (i = 0; i < ByteCount; i += ACPI_BUFFER_BYTES_PER_LINE) { /* Line indent and offset prefix for each new line */ AcpiDmIndent (Level); if (ByteCount > ACPI_BUFFER_BYTES_PER_LINE) { AcpiOsPrintf ("/* %04X */ ", i); } /* Dump the actual hex values */ for (j = 0; j < ACPI_BUFFER_BYTES_PER_LINE; j++) { CurrentIndex = i + j; if (CurrentIndex >= ByteCount) { /* Dump fill spaces */ AcpiOsPrintf (" "); continue; } AcpiOsPrintf (" 0x%2.2X", ByteData[CurrentIndex]); /* Add comma if there are more bytes to display */ if (CurrentIndex < (ByteCount - 1)) { AcpiOsPrintf (","); } else { AcpiOsPrintf (" "); } } /* Dump the ASCII equivalents within a comment */ AcpiOsPrintf (" /* "); for (j = 0; j < ACPI_BUFFER_BYTES_PER_LINE; j++) { CurrentIndex = i + j; if (CurrentIndex >= ByteCount) { break; } BufChar = ByteData[CurrentIndex]; if (isprint (BufChar)) { AcpiOsPrintf ("%c", BufChar); } else { AcpiOsPrintf ("."); } } /* Finished with this line */ AcpiOsPrintf (" */\n"); } } /******************************************************************************* * * FUNCTION: AcpiDmByteList * * PARAMETERS: Info - Parse tree walk info * Op - Byte list op * * RETURN: None * * DESCRIPTION: Dump a buffer byte list, handling the various types of buffers. * Buffer type must be already set in the Op DisasmOpcode. * ******************************************************************************/ void AcpiDmByteList ( ACPI_OP_WALK_INFO *Info, ACPI_PARSE_OBJECT *Op) { UINT8 *ByteData; UINT32 ByteCount; ByteData = Op->Named.Data; ByteCount = (UINT32) Op->Common.Value.Integer; /* * The byte list belongs to a buffer, and can be produced by either * a ResourceTemplate, Unicode, quoted string, or a plain byte list. */ switch (Op->Common.Parent->Common.DisasmOpcode) { case ACPI_DASM_RESOURCE: AcpiDmResourceTemplate ( Info, Op->Common.Parent, ByteData, ByteCount); break; case ACPI_DASM_STRING: AcpiDmIndent (Info->Level); AcpiUtPrintString ((char *) ByteData, ACPI_UINT16_MAX); AcpiOsPrintf ("\n"); break; case ACPI_DASM_UUID: AcpiDmUuid (Op); break; case ACPI_DASM_UNICODE: AcpiDmUnicode (Op); break; case ACPI_DASM_PLD_METHOD: #if 0 AcpiDmDisasmByteList (Info->Level, ByteData, ByteCount); #endif AcpiDmPldBuffer (Info->Level, ByteData, ByteCount); break; case ACPI_DASM_BUFFER: default: /* * Not a resource, string, or unicode string. * Just dump the buffer */ AcpiDmDisasmByteList (Info->Level, ByteData, ByteCount); break; } } /******************************************************************************* * * FUNCTION: AcpiDmIsUuidBuffer * * PARAMETERS: Op - Buffer Object to be examined * * RETURN: TRUE if buffer contains a UUID * * DESCRIPTION: Determine if a buffer Op contains a UUID * * To help determine whether the buffer is a UUID versus a raw data buffer, * there a are a couple bytes we can look at: * * xxxxxxxx-xxxx-Mxxx-Nxxx-xxxxxxxxxxxx * * The variant covered by the UUID specification is indicated by the two most * significant bits of N being 1 0 (i.e., the hexadecimal N will always be * 8, 9, A, or B). * * The variant covered by the UUID specification has five versions. For this * variant, the four bits of M indicates the UUID version (i.e., the * hexadecimal M will be either 1, 2, 3, 4, or 5). * ******************************************************************************/ BOOLEAN AcpiDmIsUuidBuffer ( ACPI_PARSE_OBJECT *Op) { UINT8 *ByteData; UINT32 ByteCount; ACPI_PARSE_OBJECT *SizeOp; ACPI_PARSE_OBJECT *NextOp; /* Buffer size is the buffer argument */ SizeOp = Op->Common.Value.Arg; /* Next, the initializer byte list to examine */ NextOp = SizeOp->Common.Next; if (!NextOp) { return (FALSE); } /* Extract the byte list info */ ByteData = NextOp->Named.Data; ByteCount = (UINT32) NextOp->Common.Value.Integer; /* Byte count must be exactly 16 */ if (ByteCount != UUID_BUFFER_LENGTH) { return (FALSE); } /* Check for valid "M" and "N" values (see function header above) */ if (((ByteData[7] & 0xF0) == 0x00) || /* M={1,2,3,4,5} */ ((ByteData[7] & 0xF0) > 0x50) || ((ByteData[8] & 0xF0) < 0x80) || /* N={8,9,A,B} */ ((ByteData[8] & 0xF0) > 0xB0)) { return (FALSE); } /* Ignore the Size argument in the disassembly of this buffer op */ SizeOp->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE; return (TRUE); } /******************************************************************************* * * FUNCTION: AcpiDmUuid * * PARAMETERS: Op - Byte List op containing a UUID * * RETURN: None * * DESCRIPTION: Dump a buffer containing a UUID as a standard ASCII string. * * Output Format: * In its canonical form, the UUID is represented by a string containing 32 * lowercase hexadecimal digits, displayed in 5 groups separated by hyphens. * The complete form is 8-4-4-4-12 for a total of 36 characters (32 * alphanumeric characters representing hex digits and 4 hyphens). In bytes, * 4-2-2-2-6. Example: * * ToUUID ("107ededd-d381-4fd7-8da9-08e9a6c79644") * ******************************************************************************/ static void AcpiDmUuid ( ACPI_PARSE_OBJECT *Op) { UINT8 *Data; const char *Description; Data = ACPI_CAST_PTR (UINT8, Op->Named.Data); /* Emit the 36-byte UUID string in the proper format/order */ AcpiOsPrintf ( "\"%2.2x%2.2x%2.2x%2.2x-" "%2.2x%2.2x-" "%2.2x%2.2x-" "%2.2x%2.2x-" "%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x\")", Data[3], Data[2], Data[1], Data[0], Data[5], Data[4], Data[7], Data[6], Data[8], Data[9], Data[10], Data[11], Data[12], Data[13], Data[14], Data[15]); /* Dump the UUID description string if available */ Description = AcpiAhMatchUuid (Data); if (Description) { AcpiOsPrintf (" /* %s */", Description); } } /******************************************************************************* * * FUNCTION: AcpiDmIsUnicodeBuffer * * PARAMETERS: Op - Buffer Object to be examined * * RETURN: TRUE if buffer contains a UNICODE string * * DESCRIPTION: Determine if a buffer Op contains a Unicode string * ******************************************************************************/ BOOLEAN AcpiDmIsUnicodeBuffer ( ACPI_PARSE_OBJECT *Op) { UINT8 *ByteData; UINT32 ByteCount; UINT32 WordCount; ACPI_PARSE_OBJECT *SizeOp; ACPI_PARSE_OBJECT *NextOp; UINT32 i; /* Buffer size is the buffer argument */ SizeOp = Op->Common.Value.Arg; /* Next, the initializer byte list to examine */ NextOp = SizeOp->Common.Next; if (!NextOp) { return (FALSE); } /* Extract the byte list info */ ByteData = NextOp->Named.Data; ByteCount = (UINT32) NextOp->Common.Value.Integer; WordCount = ACPI_DIV_2 (ByteCount); /* * Unicode string must have an even number of bytes and last * word must be zero */ if ((!ByteCount) || (ByteCount < 4) || (ByteCount & 1) || ((UINT16 *) (void *) ByteData)[WordCount - 1] != 0) { return (FALSE); } - /* For each word, 1st byte must be ascii (1-0x7F), 2nd byte must be zero */ - + /* + * For each word, 1st byte must be printable ascii, and the + * 2nd byte must be zero. This does not allow for escape + * sequences, but it is the most secure way to detect a + * unicode string. + */ for (i = 0; i < (ByteCount - 2); i += 2) { if ((ByteData[i] == 0) || - (ByteData[i] > 0x7F) || + !(isprint (ByteData[i])) || (ByteData[(ACPI_SIZE) i + 1] != 0)) { return (FALSE); } } /* Ignore the Size argument in the disassembly of this buffer op */ SizeOp->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE; return (TRUE); } /******************************************************************************* * * FUNCTION: AcpiDmIsStringBuffer * * PARAMETERS: Op - Buffer Object to be examined * * RETURN: TRUE if buffer contains a ASCII string, FALSE otherwise * * DESCRIPTION: Determine if a buffer Op contains a ASCII string * ******************************************************************************/ BOOLEAN AcpiDmIsStringBuffer ( ACPI_PARSE_OBJECT *Op) { UINT8 *ByteData; UINT32 ByteCount; ACPI_PARSE_OBJECT *SizeOp; ACPI_PARSE_OBJECT *NextOp; UINT32 i; /* Buffer size is the buffer argument */ SizeOp = Op->Common.Value.Arg; /* Next, the initializer byte list to examine */ NextOp = SizeOp->Common.Next; if (!NextOp) { return (FALSE); } /* Extract the byte list info */ ByteData = NextOp->Named.Data; ByteCount = (UINT32) NextOp->Common.Value.Integer; /* Last byte must be the null terminator */ if ((!ByteCount) || (ByteCount < 2) || (ByteData[ByteCount-1] != 0)) { return (FALSE); } + /* + * Check for a possible standalone resource EndTag, ignore it + * here. However, this sequence is also the string "Y", but + * this seems rare enough to be acceptable. + */ + if ((ByteCount == 2) && (ByteData[0] == 0x79)) + { + return (FALSE); + } + + /* Check all bytes for ASCII */ + for (i = 0; i < (ByteCount - 1); i++) { - /* TBD: allow some escapes (non-ascii chars). + /* + * TBD: allow some escapes (non-ascii chars). * they will be handled in the string output routine */ + + /* Not a string if not printable ascii */ if (!isprint (ByteData[i])) { return (FALSE); } } return (TRUE); } /******************************************************************************* * * FUNCTION: AcpiDmIsPldBuffer * * PARAMETERS: Op - Buffer Object to be examined * * RETURN: TRUE if buffer appears to contain data produced via the * ToPLD macro, FALSE otherwise * * DESCRIPTION: Determine if a buffer Op contains a _PLD structure * ******************************************************************************/ BOOLEAN AcpiDmIsPldBuffer ( ACPI_PARSE_OBJECT *Op) { ACPI_NAMESPACE_NODE *Node; ACPI_PARSE_OBJECT *SizeOp; ACPI_PARSE_OBJECT *ByteListOp; ACPI_PARSE_OBJECT *ParentOp; UINT64 BufferSize; UINT64 InitializerSize; /* * Get the BufferSize argument - Buffer(BufferSize) * If the buffer was generated by the ToPld macro, it must * be a BYTE constant. */ SizeOp = Op->Common.Value.Arg; if (SizeOp->Common.AmlOpcode != AML_BYTE_OP) { return (FALSE); } /* Check the declared BufferSize, two possibilities */ BufferSize = SizeOp->Common.Value.Integer; if ((BufferSize != ACPI_PLD_REV1_BUFFER_SIZE) && (BufferSize != ACPI_PLD_REV2_BUFFER_SIZE)) { return (FALSE); } /* * Check the initializer list length. This is the actual * number of bytes in the buffer as counted by the AML parser. * The declared BufferSize can be larger than the actual length. * However, for the ToPLD macro, the BufferSize will be the same * as the initializer list length. */ ByteListOp = SizeOp->Common.Next; if (!ByteListOp) { return (FALSE); /* Zero-length buffer case */ } InitializerSize = ByteListOp->Common.Value.Integer; if ((InitializerSize != ACPI_PLD_REV1_BUFFER_SIZE) && (InitializerSize != ACPI_PLD_REV2_BUFFER_SIZE)) { return (FALSE); } /* Final size check */ if (BufferSize != InitializerSize) { return (FALSE); } /* Now examine the buffer parent */ ParentOp = Op->Common.Parent; if (!ParentOp) { return (FALSE); } /* Check for form: Name(_PLD, Buffer() {}). Not legal, however */ if (ParentOp->Common.AmlOpcode == AML_NAME_OP) { Node = ParentOp->Common.Node; if (ACPI_COMPARE_NAME (Node->Name.Ascii, METHOD_NAME__PLD)) { /* Ignore the Size argument in the disassembly of this buffer op */ SizeOp->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE; return (TRUE); } return (FALSE); } /* * Check for proper form: Name(_PLD, Package() {ToPLD()}) * * Note: All other forms such as * Return (Package() {ToPLD()}) * Local0 = ToPLD() * etc. are not converted back to the ToPLD macro, because * there is really no deterministic way to disassemble the buffer * back to the ToPLD macro, other than trying to find the "_PLD" * name */ if (ParentOp->Common.AmlOpcode == AML_PACKAGE_OP) { ParentOp = ParentOp->Common.Parent; if (!ParentOp) { return (FALSE); } if (ParentOp->Common.AmlOpcode == AML_NAME_OP) { Node = ParentOp->Common.Node; if (ACPI_COMPARE_NAME (Node->Name.Ascii, METHOD_NAME__PLD)) { /* Ignore the Size argument in the disassembly of this buffer op */ SizeOp->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE; return (TRUE); } } } return (FALSE); } /******************************************************************************* * * FUNCTION: AcpiDmFindNameByIndex * * PARAMETERS: Index - Index of array to check * List - Array to reference * * RETURN: String from List or empty string * * DESCRIPTION: Finds and returns the char string located at the given index * position in List. * ******************************************************************************/ static const char * AcpiDmFindNameByIndex ( UINT64 Index, const char **List) { const char *NameString; UINT32 i; /* Bounds check */ NameString = List[0]; i = 0; while (NameString) { i++; NameString = List[i]; } if (Index >= i) { /* TBD: Add error msg */ return (""); } return (List[Index]); } /******************************************************************************* * * FUNCTION: AcpiDmPldBuffer * * PARAMETERS: Level - Current source code indentation level * ByteData - Pointer to the byte list * ByteCount - Length of the byte list * * RETURN: None * * DESCRIPTION: Dump and format the contents of a _PLD buffer object * ******************************************************************************/ #define ACPI_PLD_OUTPUT08 "%*.s%-22s = 0x%X,\n", ACPI_MUL_4 (Level), " " #define ACPI_PLD_OUTPUT08P "%*.s%-22s = 0x%X)\n", ACPI_MUL_4 (Level), " " #define ACPI_PLD_OUTPUT16 "%*.s%-22s = 0x%X,\n", ACPI_MUL_4 (Level), " " #define ACPI_PLD_OUTPUT16P "%*.s%-22s = 0x%X)\n", ACPI_MUL_4 (Level), " " #define ACPI_PLD_OUTPUT24 "%*.s%-22s = 0x%X,\n", ACPI_MUL_4 (Level), " " #define ACPI_PLD_OUTPUTSTR "%*.s%-22s = \"%s\",\n", ACPI_MUL_4 (Level), " " static void AcpiDmPldBuffer ( UINT32 Level, UINT8 *ByteData, UINT32 ByteCount) { ACPI_PLD_INFO *PldInfo; ACPI_STATUS Status; /* Check for valid byte count */ if (ByteCount < ACPI_PLD_REV1_BUFFER_SIZE) { return; } /* Convert _PLD buffer to local _PLD struct */ Status = AcpiDecodePldBuffer (ByteData, ByteCount, &PldInfo); if (ACPI_FAILURE (Status)) { return; } AcpiOsPrintf ("\n"); /* First 32-bit dword */ AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Revision", PldInfo->Revision); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_IgnoreColor", PldInfo->IgnoreColor); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Red", PldInfo->Red); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Green", PldInfo->Green); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Blue", PldInfo->Blue); /* Second 32-bit dword */ AcpiOsPrintf (ACPI_PLD_OUTPUT16, "PLD_Width", PldInfo->Width); AcpiOsPrintf (ACPI_PLD_OUTPUT16, "PLD_Height", PldInfo->Height); /* Third 32-bit dword */ AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_UserVisible", PldInfo->UserVisible); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Dock", PldInfo->Dock); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Lid", PldInfo->Lid); AcpiOsPrintf (ACPI_PLD_OUTPUTSTR, "PLD_Panel", AcpiDmFindNameByIndex(PldInfo->Panel, AcpiGbl_PldPanelList)); AcpiOsPrintf (ACPI_PLD_OUTPUTSTR, "PLD_VerticalPosition", AcpiDmFindNameByIndex(PldInfo->VerticalPosition, AcpiGbl_PldVerticalPositionList)); AcpiOsPrintf (ACPI_PLD_OUTPUTSTR, "PLD_HorizontalPosition", AcpiDmFindNameByIndex(PldInfo->HorizontalPosition, AcpiGbl_PldHorizontalPositionList)); AcpiOsPrintf (ACPI_PLD_OUTPUTSTR, "PLD_Shape", AcpiDmFindNameByIndex(PldInfo->Shape, AcpiGbl_PldShapeList)); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_GroupOrientation", PldInfo->GroupOrientation); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_GroupToken", PldInfo->GroupToken); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_GroupPosition", PldInfo->GroupPosition); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Bay", PldInfo->Bay); /* Fourth 32-bit dword */ AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Ejectable", PldInfo->Ejectable); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_EjectRequired", PldInfo->OspmEjectRequired); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_CabinetNumber", PldInfo->CabinetNumber); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_CardCageNumber", PldInfo->CardCageNumber); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Reference", PldInfo->Reference); AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Rotation", PldInfo->Rotation); if (ByteCount >= ACPI_PLD_REV2_BUFFER_SIZE) { AcpiOsPrintf (ACPI_PLD_OUTPUT08, "PLD_Order", PldInfo->Order); /* Fifth 32-bit dword */ AcpiOsPrintf (ACPI_PLD_OUTPUT16, "PLD_VerticalOffset", PldInfo->VerticalOffset); AcpiOsPrintf (ACPI_PLD_OUTPUT16P, "PLD_HorizontalOffset", PldInfo->HorizontalOffset); } else /* Rev 1 buffer */ { AcpiOsPrintf (ACPI_PLD_OUTPUT08P, "PLD_Order", PldInfo->Order); } ACPI_FREE (PldInfo); } /******************************************************************************* * * FUNCTION: AcpiDmUnicode * * PARAMETERS: Op - Byte List op containing Unicode string * * RETURN: None * * DESCRIPTION: Dump Unicode string as a standard ASCII string. (Remove * the extra zero bytes). * ******************************************************************************/ static void AcpiDmUnicode ( ACPI_PARSE_OBJECT *Op) { UINT16 *WordData; UINT32 WordCount; UINT32 i; int OutputValue; /* Extract the buffer info as a WORD buffer */ WordData = ACPI_CAST_PTR (UINT16, Op->Named.Data); WordCount = ACPI_DIV_2 (((UINT32) Op->Common.Value.Integer)); /* Write every other byte as an ASCII character */ AcpiOsPrintf ("\""); for (i = 0; i < (WordCount - 1); i++) { OutputValue = (int) WordData[i]; /* Handle values that must be escaped */ if ((OutputValue == '\"') || (OutputValue == '\\')) { AcpiOsPrintf ("\\%c", OutputValue); } else if (!isprint (OutputValue)) { AcpiOsPrintf ("\\x%2.2X", OutputValue); } else { AcpiOsPrintf ("%c", OutputValue); } } AcpiOsPrintf ("\")"); } /******************************************************************************* * * FUNCTION: AcpiDmGetHardwareIdType * * PARAMETERS: Op - Op to be examined * * RETURN: None * * DESCRIPTION: Determine the type of the argument to a _HID or _CID * 1) Strings are allowed * 2) If Integer, determine if it is a valid EISAID * ******************************************************************************/ static void AcpiDmGetHardwareIdType ( ACPI_PARSE_OBJECT *Op) { UINT32 BigEndianId; UINT32 Prefix[3]; UINT32 i; switch (Op->Common.AmlOpcode) { case AML_STRING_OP: /* Mark this string as an _HID/_CID string */ Op->Common.DisasmOpcode = ACPI_DASM_HID_STRING; break; case AML_WORD_OP: case AML_DWORD_OP: /* Determine if a Word/Dword is a valid encoded EISAID */ /* Swap from little-endian to big-endian to simplify conversion */ BigEndianId = AcpiUtDwordByteSwap ((UINT32) Op->Common.Value.Integer); /* Create the 3 leading ASCII letters */ Prefix[0] = ((BigEndianId >> 26) & 0x1F) + 0x40; Prefix[1] = ((BigEndianId >> 21) & 0x1F) + 0x40; Prefix[2] = ((BigEndianId >> 16) & 0x1F) + 0x40; /* Verify that all 3 are ascii and alpha */ for (i = 0; i < 3; i++) { if (!ACPI_IS_ASCII (Prefix[i]) || !isalpha (Prefix[i])) { return; } } /* Mark this node as convertable to an EISA ID string */ Op->Common.DisasmOpcode = ACPI_DASM_EISAID; break; default: break; } } /******************************************************************************* * * FUNCTION: AcpiDmCheckForHardwareId * * PARAMETERS: Op - Op to be examined * * RETURN: None * * DESCRIPTION: Determine if a Name() Op is a _HID/_CID. * ******************************************************************************/ void AcpiDmCheckForHardwareId ( ACPI_PARSE_OBJECT *Op) { UINT32 Name; ACPI_PARSE_OBJECT *NextOp; /* Get the NameSegment */ Name = AcpiPsGetName (Op); if (!Name) { return; } NextOp = AcpiPsGetDepthNext (NULL, Op); if (!NextOp) { return; } /* Check for _HID - has one argument */ if (ACPI_COMPARE_NAME (&Name, METHOD_NAME__HID)) { AcpiDmGetHardwareIdType (NextOp); return; } /* Exit if not _CID */ if (!ACPI_COMPARE_NAME (&Name, METHOD_NAME__CID)) { return; } /* _CID can contain a single argument or a package */ if (NextOp->Common.AmlOpcode != AML_PACKAGE_OP) { AcpiDmGetHardwareIdType (NextOp); return; } /* _CID with Package: get the package length, check all elements */ NextOp = AcpiPsGetDepthNext (NULL, NextOp); if (!NextOp) { return; } /* Don't need to use the length, just walk the peer list */ NextOp = NextOp->Common.Next; while (NextOp) { AcpiDmGetHardwareIdType (NextOp); NextOp = NextOp->Common.Next; } } /******************************************************************************* * * FUNCTION: AcpiDmDecompressEisaId * * PARAMETERS: EncodedId - Raw encoded EISA ID. * * RETURN: None * * DESCRIPTION: Convert an encoded EISAID back to the original ASCII String * and emit the correct ASL statement. If the ID is known, emit * a description of the ID as a comment. * ******************************************************************************/ void AcpiDmDecompressEisaId ( UINT32 EncodedId) { char IdBuffer[ACPI_EISAID_STRING_SIZE]; const AH_DEVICE_ID *Info; /* Convert EISAID to a string an emit the statement */ AcpiExEisaIdToString (IdBuffer, EncodedId); AcpiOsPrintf ("EisaId (\"%s\")", IdBuffer); /* If we know about the ID, emit the description */ Info = AcpiAhMatchHardwareId (IdBuffer); if (Info) { AcpiOsPrintf (" /* %s */", Info->Description); } } Index: head/sys/contrib/dev/acpica/components/disassembler/dmcstyle.c =================================================================== --- head/sys/contrib/dev/acpica/components/disassembler/dmcstyle.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/disassembler/dmcstyle.c (revision 308953) @@ -1,968 +1,1024 @@ /******************************************************************************* * * Module Name: dmcstyle - Support for C-style operator disassembly * ******************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #include #define _COMPONENT ACPI_CA_DEBUGGER ACPI_MODULE_NAME ("dmcstyle") /* Local prototypes */ static char * AcpiDmGetCompoundSymbol ( UINT16 AslOpcode); static void AcpiDmPromoteTarget ( ACPI_PARSE_OBJECT *Op, ACPI_PARSE_OBJECT *Target); static BOOLEAN AcpiDmIsValidTarget ( ACPI_PARSE_OBJECT *Op); static BOOLEAN AcpiDmIsTargetAnOperand ( ACPI_PARSE_OBJECT *Target, ACPI_PARSE_OBJECT *Operand, BOOLEAN TopLevel); +static BOOLEAN +AcpiDmIsOptimizationIgnored ( + ACPI_PARSE_OBJECT *StoreOp, + ACPI_PARSE_OBJECT *StoreArgument); + /******************************************************************************* * * FUNCTION: AcpiDmCheckForSymbolicOpcode * * PARAMETERS: Op - Current parse object * Walk - Current parse tree walk info * * RETURN: TRUE if opcode can be converted to symbolic, FALSE otherwise * * DESCRIPTION: This is the main code that implements disassembly of AML code * to C-style operators. Called during descending phase of the * parse tree walk. * ******************************************************************************/ BOOLEAN AcpiDmCheckForSymbolicOpcode ( ACPI_PARSE_OBJECT *Op, ACPI_OP_WALK_INFO *Info) { char *OperatorSymbol = NULL; - ACPI_PARSE_OBJECT *Child1; - ACPI_PARSE_OBJECT *Child2; + ACPI_PARSE_OBJECT *Argument1; + ACPI_PARSE_OBJECT *Argument2; ACPI_PARSE_OBJECT *Target; - ACPI_PARSE_OBJECT *GrandChild1; - ACPI_PARSE_OBJECT *GrandChild2; - ACPI_PARSE_OBJECT *GrandTarget = NULL; + ACPI_PARSE_OBJECT *Target2; /* Exit immediately if ASL+ not enabled */ if (!AcpiGbl_CstyleDisassembly) { return (FALSE); } - /* Check for a non-ASL+ statement, propagate the flag */ - - if (Op->Common.Parent->Common.DisasmFlags & ACPI_PARSEOP_LEGACY_ASL_ONLY) - { - Op->Common.DisasmFlags |= ACPI_PARSEOP_LEGACY_ASL_ONLY; - return (FALSE); - } - /* Get the first operand */ - Child1 = AcpiPsGetArg (Op, 0); - if (!Child1) + Argument1 = AcpiPsGetArg (Op, 0); + if (!Argument1) { return (FALSE); } /* Get the second operand */ - Child2 = Child1->Common.Next; + Argument2 = Argument1->Common.Next; /* Setup the operator string for this opcode */ switch (Op->Common.AmlOpcode) { case AML_ADD_OP: OperatorSymbol = " + "; break; case AML_SUBTRACT_OP: OperatorSymbol = " - "; break; case AML_MULTIPLY_OP: OperatorSymbol = " * "; break; case AML_DIVIDE_OP: OperatorSymbol = " / "; break; case AML_MOD_OP: OperatorSymbol = " % "; break; case AML_SHIFT_LEFT_OP: OperatorSymbol = " << "; break; case AML_SHIFT_RIGHT_OP: OperatorSymbol = " >> "; break; case AML_BIT_AND_OP: OperatorSymbol = " & "; break; case AML_BIT_OR_OP: OperatorSymbol = " | "; break; case AML_BIT_XOR_OP: OperatorSymbol = " ^ "; break; /* Logical operators, no target */ case AML_LAND_OP: OperatorSymbol = " && "; break; case AML_LEQUAL_OP: OperatorSymbol = " == "; break; case AML_LGREATER_OP: OperatorSymbol = " > "; break; case AML_LLESS_OP: OperatorSymbol = " < "; break; case AML_LOR_OP: OperatorSymbol = " || "; break; case AML_LNOT_OP: /* * Check for the LNOT sub-opcodes. These correspond to * LNotEqual, LLessEqual, and LGreaterEqual. There are * no actual AML opcodes for these operators. */ - switch (Child1->Common.AmlOpcode) + switch (Argument1->Common.AmlOpcode) { case AML_LEQUAL_OP: OperatorSymbol = " != "; break; case AML_LGREATER_OP: OperatorSymbol = " <= "; break; case AML_LLESS_OP: OperatorSymbol = " >= "; break; default: /* Unary LNOT case, emit "!" immediately */ AcpiOsPrintf ("!"); return (TRUE); } - Child1->Common.DisasmOpcode = ACPI_DASM_LNOT_SUFFIX; + Argument1->Common.DisasmOpcode = ACPI_DASM_LNOT_SUFFIX; Op->Common.DisasmOpcode = ACPI_DASM_LNOT_PREFIX; - Op->Common.DisasmFlags |= ACPI_PARSEOP_COMPOUND_ASSIGNMENT; /* Save symbol string in the next child (not peer) */ - Child2 = AcpiPsGetArg (Child1, 0); - if (!Child2) + Argument2 = AcpiPsGetArg (Argument1, 0); + if (!Argument2) { return (FALSE); } - Child2->Common.OperatorSymbol = OperatorSymbol; + Argument2->Common.OperatorSymbol = OperatorSymbol; return (TRUE); case AML_INDEX_OP: /* * Check for constant source operand. Note: although technically * legal syntax, the iASL compiler does not support this with * the symbolic operators for Index(). It doesn't make sense to * use Index() with a constant anyway. */ - if ((Child1->Common.AmlOpcode == AML_STRING_OP) || - (Child1->Common.AmlOpcode == AML_BUFFER_OP) || - (Child1->Common.AmlOpcode == AML_PACKAGE_OP) || - (Child1->Common.AmlOpcode == AML_VAR_PACKAGE_OP)) + if ((Argument1->Common.AmlOpcode == AML_STRING_OP) || + (Argument1->Common.AmlOpcode == AML_BUFFER_OP) || + (Argument1->Common.AmlOpcode == AML_PACKAGE_OP) || + (Argument1->Common.AmlOpcode == AML_VAR_PACKAGE_OP)) { Op->Common.DisasmFlags |= ACPI_PARSEOP_CLOSING_PAREN; return (FALSE); } /* Index operator is [] */ - Child1->Common.OperatorSymbol = " ["; - Child2->Common.OperatorSymbol = "]"; + Argument1->Common.OperatorSymbol = " ["; + Argument2->Common.OperatorSymbol = "]"; break; /* Unary operators */ case AML_DECREMENT_OP: OperatorSymbol = "--"; break; case AML_INCREMENT_OP: OperatorSymbol = "++"; break; case AML_BIT_NOT_OP: case AML_STORE_OP: OperatorSymbol = NULL; break; default: return (FALSE); } - if (Child1->Common.DisasmOpcode == ACPI_DASM_LNOT_SUFFIX) + if (Argument1->Common.DisasmOpcode == ACPI_DASM_LNOT_SUFFIX) { return (TRUE); } /* * This is the key to how the disassembly of the C-style operators * works. We save the operator symbol in the first child, thus * deferring symbol output until after the first operand has been * emitted. */ - if (!Child1->Common.OperatorSymbol) + if (!Argument1->Common.OperatorSymbol) { - Child1->Common.OperatorSymbol = OperatorSymbol; + Argument1->Common.OperatorSymbol = OperatorSymbol; } /* * Check for a valid target as the 3rd (or sometimes 2nd) operand * * Compound assignment operator support: * Attempt to optimize constructs of the form: * Add (Local1, 0xFF, Local1) * to: * Local1 += 0xFF * * Only the math operators and Store() have a target. * Logicals have no target. */ switch (Op->Common.AmlOpcode) { case AML_ADD_OP: case AML_SUBTRACT_OP: case AML_MULTIPLY_OP: case AML_DIVIDE_OP: case AML_MOD_OP: case AML_SHIFT_LEFT_OP: case AML_SHIFT_RIGHT_OP: case AML_BIT_AND_OP: case AML_BIT_OR_OP: case AML_BIT_XOR_OP: /* Target is 3rd operand */ - Target = Child2->Common.Next; + Target = Argument2->Common.Next; if (Op->Common.AmlOpcode == AML_DIVIDE_OP) { + Target2 = Target->Common.Next; + /* * Divide has an extra target operand (Remainder). - * If this extra target is specified, it cannot be converted - * to a C-style operator + * Default behavior is to simply ignore ASL+ conversion + * if the remainder target (modulo) is specified. */ - if (AcpiDmIsValidTarget (Target)) + if (!AcpiGbl_DoDisassemblerOptimizations) { - Child1->Common.OperatorSymbol = NULL; - Op->Common.DisasmFlags |= ACPI_PARSEOP_LEGACY_ASL_ONLY; - return (FALSE); + if (AcpiDmIsValidTarget (Target)) + { + Argument1->Common.OperatorSymbol = NULL; + Op->Common.DisasmFlags |= ACPI_PARSEOP_LEGACY_ASL_ONLY; + return (FALSE); + } + + Target->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE; + Target = Target2; } + else + { + /* + * Divide has an extra target operand (Remainder). + * If both targets are specified, it cannot be converted + * to a C-style operator. + */ + if (AcpiDmIsValidTarget (Target) && + AcpiDmIsValidTarget (Target2)) + { + Argument1->Common.OperatorSymbol = NULL; + Op->Common.DisasmFlags |= ACPI_PARSEOP_LEGACY_ASL_ONLY; + return (FALSE); + } - Target->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE; - Target = Target->Common.Next; + if (AcpiDmIsValidTarget (Target)) /* Only first Target is valid (remainder) */ + { + /* Convert the Divide to Modulo */ + + Op->Common.AmlOpcode = AML_MOD_OP; + + Argument1->Common.OperatorSymbol = " % "; + Target2->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE; + } + else /* Only second Target (quotient) is valid */ + { + Target->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE; + Target = Target2; + } + } } /* Parser should ensure there is at least a placeholder target */ if (!Target) { return (FALSE); } if (!AcpiDmIsValidTarget (Target)) { - if (Op->Common.Parent->Common.AmlOpcode == AML_STORE_OP) - { - Op->Common.DisasmFlags = 0; - Child1->Common.OperatorSymbol = NULL; - return (FALSE); - } - /* Not a valid target (placeholder only, from parser) */ break; } /* * Promote the target up to the first child in the parse * tree. This is done because the target will be output * first, in the form: * = Operands... */ AcpiDmPromoteTarget (Op, Target); /* Check operands for conversion to a "Compound Assignment" */ switch (Op->Common.AmlOpcode) { /* Commutative operators */ case AML_ADD_OP: case AML_MULTIPLY_OP: case AML_BIT_AND_OP: case AML_BIT_OR_OP: case AML_BIT_XOR_OP: /* * For the commutative operators, we can convert to a * compound statement only if at least one (either) operand * is the same as the target. * * Add (A, B, A) --> A += B * Add (B, A, A) --> A += B * Add (B, C, A) --> A = (B + C) */ - if ((AcpiDmIsTargetAnOperand (Target, Child1, TRUE)) || - (AcpiDmIsTargetAnOperand (Target, Child2, TRUE))) + if ((AcpiDmIsTargetAnOperand (Target, Argument1, TRUE)) || + (AcpiDmIsTargetAnOperand (Target, Argument2, TRUE))) { Target->Common.OperatorSymbol = AcpiDmGetCompoundSymbol (Op->Common.AmlOpcode); /* Convert operator to compound assignment */ Op->Common.DisasmFlags |= ACPI_PARSEOP_COMPOUND_ASSIGNMENT; - Child1->Common.OperatorSymbol = NULL; + Argument1->Common.OperatorSymbol = NULL; return (TRUE); } break; /* Non-commutative operators */ case AML_SUBTRACT_OP: case AML_DIVIDE_OP: case AML_MOD_OP: case AML_SHIFT_LEFT_OP: case AML_SHIFT_RIGHT_OP: /* * For the non-commutative operators, we can convert to a * compound statement only if the target is the same as the * first operand. * * Subtract (A, B, A) --> A -= B * Subtract (B, A, A) --> A = (B - A) */ - if ((AcpiDmIsTargetAnOperand (Target, Child1, TRUE))) + if ((AcpiDmIsTargetAnOperand (Target, Argument1, TRUE))) { Target->Common.OperatorSymbol = AcpiDmGetCompoundSymbol (Op->Common.AmlOpcode); /* Convert operator to compound assignment */ Op->Common.DisasmFlags |= ACPI_PARSEOP_COMPOUND_ASSIGNMENT; - Child1->Common.OperatorSymbol = NULL; + Argument1->Common.OperatorSymbol = NULL; return (TRUE); } break; default: break; } /* * If we are within a C-style expression, emit an extra open * paren. Implemented by examining the parent op. */ switch (Op->Common.Parent->Common.AmlOpcode) { case AML_ADD_OP: case AML_SUBTRACT_OP: case AML_MULTIPLY_OP: case AML_DIVIDE_OP: case AML_MOD_OP: case AML_SHIFT_LEFT_OP: case AML_SHIFT_RIGHT_OP: case AML_BIT_AND_OP: case AML_BIT_OR_OP: case AML_BIT_XOR_OP: case AML_LAND_OP: case AML_LEQUAL_OP: case AML_LGREATER_OP: case AML_LLESS_OP: case AML_LOR_OP: Op->Common.DisasmFlags |= ACPI_PARSEOP_ASSIGNMENT; AcpiOsPrintf ("("); break; default: break; } /* Normal output for ASL/AML operators with a target operand */ Target->Common.OperatorSymbol = " = ("; return (TRUE); /* Binary operators, no parens */ case AML_DECREMENT_OP: case AML_INCREMENT_OP: return (TRUE); case AML_INDEX_OP: /* Target is optional, 3rd operand */ - Target = Child2->Common.Next; + Target = Argument2->Common.Next; if (AcpiDmIsValidTarget (Target)) { AcpiDmPromoteTarget (Op, Target); if (!Target->Common.OperatorSymbol) { Target->Common.OperatorSymbol = " = "; } } return (TRUE); case AML_STORE_OP: /* - * Target is the 2nd operand. - * We know the target is valid, it is not optional. + * For Store, the Target is the 2nd operand. We know the target + * is valid, because it is not optional. * - * The following block implements "Ignore conversion if a store - * is followed by a math/bit operator that has no target". Used - * only for the ASL test suite. + * Ignore any optimizations/folding if flag is set. + * Used for iASL/disassembler test suite only. */ - if (!AcpiGbl_DoDisassemblerOptimizations) + if (AcpiDmIsOptimizationIgnored (Op, Argument1)) { - switch (Child1->Common.AmlOpcode) - { - /* This operator has two operands and two targets */ - - case AML_DIVIDE_OP: - - GrandChild1 = Child1->Common.Value.Arg; - GrandChild2 = GrandChild1->Common.Next; - GrandTarget = GrandChild2->Common.Next; - - if (GrandTarget && !AcpiDmIsValidTarget (GrandTarget)) - { - Op->Common.DisasmFlags |= ACPI_PARSEOP_LEGACY_ASL_ONLY; - return (FALSE); - } - GrandTarget = GrandTarget->Common.Next; - break; - - case AML_ADD_OP: - case AML_SUBTRACT_OP: - case AML_MULTIPLY_OP: - case AML_MOD_OP: - case AML_SHIFT_LEFT_OP: - case AML_SHIFT_RIGHT_OP: - case AML_BIT_AND_OP: - case AML_BIT_OR_OP: - case AML_BIT_XOR_OP: - case AML_INDEX_OP: - - /* These operators have two operands and a target */ - - GrandChild1 = Child1->Common.Value.Arg; - GrandChild2 = GrandChild1->Common.Next; - GrandTarget = GrandChild2->Common.Next; - break; - - case AML_BIT_NOT_OP: - - /* This operator has one operand and a target */ - - GrandChild1 = Child1->Common.Value.Arg; - GrandTarget = GrandChild1->Common.Next; - break; - - default: - break; - } - - if (GrandTarget && !AcpiDmIsValidTarget (GrandTarget)) - { - Op->Common.DisasmFlags |= ACPI_PARSEOP_LEGACY_ASL_ONLY; - return (FALSE); - } + return (FALSE); } /* + * Perform conversion. * In the parse tree, simply swap the target with the * source so that the target is processed first. */ - Target = Child1->Common.Next; + Target = Argument1->Common.Next; if (!Target) { return (FALSE); } AcpiDmPromoteTarget (Op, Target); if (!Target->Common.OperatorSymbol) { Target->Common.OperatorSymbol = " = "; } return (TRUE); case AML_BIT_NOT_OP: /* Target is optional, 2nd operand */ - Target = Child1->Common.Next; + Target = Argument1->Common.Next; if (!Target) { return (FALSE); } if (AcpiDmIsValidTarget (Target)) { /* Valid target, not a placeholder */ AcpiDmPromoteTarget (Op, Target); Target->Common.OperatorSymbol = " = ~"; } else { /* No target. Emit this prefix operator immediately */ AcpiOsPrintf ("~"); } return (TRUE); default: break; } + /* All other operators, emit an open paren */ + + AcpiOsPrintf ("("); + return (TRUE); +} + + +/******************************************************************************* + * + * FUNCTION: AcpiDmIsOptimizationIgnored + * + * PARAMETERS: StoreOp - Store operator parse object + * StoreArgument - Target associate with the Op + * + * RETURN: TRUE if this Store operator should not be converted/removed. + * + * DESCRIPTION: The following function implements "Do not optimize if a + * store is immediately followed by a math/bit operator that + * has no target". + * + * Function is ignored if DoDisassemblerOptimizations is TRUE. + * This is the default, ignore this function. + * + * Disables these types of optimizations, and simply emits + * legacy ASL code: + * Store (Add (INT1, 4), INT2) --> Add (INT1, 4, INT2) + * --> INT2 = INT1 + 4 + * + * Store (Not (INT1), INT2) --> Not (INT1, INT2) + * --> INT2 = ~INT1 + * + * Used only for the ASL test suite. For the test suite, we + * don't want to perform some optimizations to ensure binary + * compatibility with the generation of the legacy ASL->AML. + * In other words, for all test modules we want exactly: + * (ASL+ -> AML) == (ASL- -> AML) + * + ******************************************************************************/ + +static BOOLEAN +AcpiDmIsOptimizationIgnored ( + ACPI_PARSE_OBJECT *StoreOp, + ACPI_PARSE_OBJECT *StoreArgument) +{ + ACPI_PARSE_OBJECT *Argument1; + ACPI_PARSE_OBJECT *Argument2; + ACPI_PARSE_OBJECT *Target; + + + /* No optimizations/folding for the typical case */ + + if (AcpiGbl_DoDisassemblerOptimizations) + { + return (FALSE); + } + /* - * Nodes marked with ACPI_PARSEOP_PARAMLIST don't need a parens - * output here. We also need to check the parent to see if this op - * is part of a compound test (!=, >=, <=). + * Only a small subset of ASL/AML operators can be optimized. + * Can only optimize/fold if there is no target (or targets) + * specified for the operator. And of course, the operator + * is surrrounded by a Store() operator. */ - if ((Op->Common.DisasmFlags & ACPI_PARSEOP_PARAMETER_LIST) || - ((Op->Common.Parent->Common.DisasmFlags & ACPI_PARSEOP_PARAMETER_LIST) && - (Op->Common.DisasmOpcode == ACPI_DASM_LNOT_SUFFIX))) + switch (StoreArgument->Common.AmlOpcode) { - /* Do Nothing. Paren already generated */ - return (TRUE); - } + case AML_ADD_OP: + case AML_SUBTRACT_OP: + case AML_MULTIPLY_OP: + case AML_MOD_OP: + case AML_SHIFT_LEFT_OP: + case AML_SHIFT_RIGHT_OP: + case AML_BIT_AND_OP: + case AML_BIT_OR_OP: + case AML_BIT_XOR_OP: + case AML_INDEX_OP: - /* All other operators, emit an open paren */ + /* These operators have two arguments and one target */ - AcpiOsPrintf ("("); - return (TRUE); + Argument1 = StoreArgument->Common.Value.Arg; + Argument2 = Argument1->Common.Next; + Target = Argument2->Common.Next; + + if (!AcpiDmIsValidTarget (Target)) + { + StoreOp->Common.DisasmFlags |= ACPI_PARSEOP_LEGACY_ASL_ONLY; + return (TRUE); + } + break; + + case AML_DIVIDE_OP: + + /* This operator has two arguments and two targets */ + + Argument1 = StoreArgument->Common.Value.Arg; + Argument2 = Argument1->Common.Next; + Target = Argument2->Common.Next; + + if (!AcpiDmIsValidTarget (Target) || + !AcpiDmIsValidTarget (Target->Common.Next)) + { + StoreOp->Common.DisasmFlags |= ACPI_PARSEOP_LEGACY_ASL_ONLY; + return (TRUE); + } + break; + + case AML_BIT_NOT_OP: + + /* This operator has one operand and one target */ + + Argument1 = StoreArgument->Common.Value.Arg; + Target = Argument1->Common.Next; + + if (!AcpiDmIsValidTarget (Target)) + { + StoreOp->Common.DisasmFlags |= ACPI_PARSEOP_LEGACY_ASL_ONLY; + return (TRUE); + } + break; + + default: + break; + } + + return (FALSE); } /******************************************************************************* * * FUNCTION: AcpiDmCloseOperator * * PARAMETERS: Op - Current parse object * * RETURN: None * * DESCRIPTION: Closes an operator by adding a closing parentheses if and * when necessary. Called during ascending phase of the * parse tree walk. * ******************************************************************************/ void AcpiDmCloseOperator ( ACPI_PARSE_OBJECT *Op) { - BOOLEAN IsCStyleOp = FALSE; - /* Always emit paren if ASL+ disassembly disabled */ if (!AcpiGbl_CstyleDisassembly) { AcpiOsPrintf (")"); return; } - /* Check for a non-ASL+ statement */ - if (Op->Common.DisasmFlags & ACPI_PARSEOP_LEGACY_ASL_ONLY) { AcpiOsPrintf (")"); return; } /* Check if we need to add an additional closing paren */ switch (Op->Common.AmlOpcode) { case AML_ADD_OP: case AML_SUBTRACT_OP: case AML_MULTIPLY_OP: case AML_DIVIDE_OP: case AML_MOD_OP: case AML_SHIFT_LEFT_OP: case AML_SHIFT_RIGHT_OP: case AML_BIT_AND_OP: case AML_BIT_OR_OP: case AML_BIT_XOR_OP: case AML_LAND_OP: case AML_LEQUAL_OP: case AML_LGREATER_OP: case AML_LLESS_OP: case AML_LOR_OP: /* Emit paren only if this is not a compound assignment */ if (Op->Common.DisasmFlags & ACPI_PARSEOP_COMPOUND_ASSIGNMENT) { return; } /* Emit extra close paren for assignment within an expression */ if (Op->Common.DisasmFlags & ACPI_PARSEOP_ASSIGNMENT) { AcpiOsPrintf (")"); } - - IsCStyleOp = TRUE; break; case AML_INDEX_OP: /* This is case for unsupported Index() source constants */ if (Op->Common.DisasmFlags & ACPI_PARSEOP_CLOSING_PAREN) { AcpiOsPrintf (")"); } return; /* No need for parens for these */ case AML_DECREMENT_OP: case AML_INCREMENT_OP: case AML_LNOT_OP: case AML_BIT_NOT_OP: case AML_STORE_OP: return; default: /* Always emit paren for non-ASL+ operators */ break; } - /* - * Nodes marked with ACPI_PARSEOP_PARAMLIST don't need a parens - * output here. We also need to check the parent to see if this op - * is part of a compound test (!=, >=, <=). - */ - if (IsCStyleOp && - ((Op->Common.DisasmFlags & ACPI_PARSEOP_PARAMETER_LIST) || - ((Op->Common.Parent->Common.DisasmFlags & ACPI_PARSEOP_PARAMETER_LIST) && - (Op->Common.DisasmOpcode == ACPI_DASM_LNOT_SUFFIX)))) - { - return; - } - AcpiOsPrintf (")"); - return; } /******************************************************************************* * * FUNCTION: AcpiDmGetCompoundSymbol * * PARAMETERS: AslOpcode * * RETURN: String containing the compound assignment symbol * * DESCRIPTION: Detect opcodes that can be converted to compound assignment, * return the appropriate operator string. * ******************************************************************************/ static char * AcpiDmGetCompoundSymbol ( UINT16 AmlOpcode) { char *Symbol; switch (AmlOpcode) { case AML_ADD_OP: Symbol = " += "; break; case AML_SUBTRACT_OP: Symbol = " -= "; break; case AML_MULTIPLY_OP: Symbol = " *= "; break; case AML_DIVIDE_OP: Symbol = " /= "; break; case AML_MOD_OP: Symbol = " %= "; break; case AML_SHIFT_LEFT_OP: Symbol = " <<= "; break; case AML_SHIFT_RIGHT_OP: Symbol = " >>= "; break; case AML_BIT_AND_OP: Symbol = " &= "; break; case AML_BIT_OR_OP: Symbol = " |= "; break; case AML_BIT_XOR_OP: Symbol = " ^= "; break; default: /* No operator string for all other opcodes */ return (NULL); } return (Symbol); } /******************************************************************************* * * FUNCTION: AcpiDmPromoteTarget * * PARAMETERS: Op - Operator parse object * Target - Target associate with the Op * * RETURN: None * * DESCRIPTION: Transform the parse tree by moving the target up to the first * child of the Op. * ******************************************************************************/ static void AcpiDmPromoteTarget ( ACPI_PARSE_OBJECT *Op, ACPI_PARSE_OBJECT *Target) { ACPI_PARSE_OBJECT *Child; /* Link target directly to the Op as first child */ Child = Op->Common.Value.Arg; Op->Common.Value.Arg = Target; Target->Common.Next = Child; /* Find the last peer, it is linked to the target. Unlink it. */ while (Child->Common.Next != Target) { Child = Child->Common.Next; } Child->Common.Next = NULL; } /******************************************************************************* * * FUNCTION: AcpiDmIsValidTarget * * PARAMETERS: Target - Target Op from the parse tree * * RETURN: TRUE if the Target is real. FALSE if it is just a placeholder * Op that was inserted by the parser. * * DESCRIPTION: Determine if a Target Op is a placeholder Op or a real Target. * In other words, determine if the optional target is used or * not. Note: If Target is NULL, something is seriously wrong, * probably with the parse tree. * ******************************************************************************/ static BOOLEAN AcpiDmIsValidTarget ( ACPI_PARSE_OBJECT *Target) { if (!Target) { return (FALSE); } if ((Target->Common.AmlOpcode == AML_INT_NAMEPATH_OP) && (Target->Common.Value.Arg == NULL)) { return (FALSE); } return (TRUE); } /******************************************************************************* * * FUNCTION: AcpiDmIsTargetAnOperand * * PARAMETERS: Target - Target associated with the expression * Operand - An operand associated with expression * * RETURN: TRUE if expression can be converted to a compound assignment. * FALSE otherwise. * * DESCRIPTION: Determine if the Target duplicates the operand, in order to * detect if the expression can be converted to a compound * assigment. (+=, *=, etc.) * ******************************************************************************/ static BOOLEAN AcpiDmIsTargetAnOperand ( ACPI_PARSE_OBJECT *Target, ACPI_PARSE_OBJECT *Operand, BOOLEAN TopLevel) { const ACPI_OPCODE_INFO *OpInfo; BOOLEAN Same; /* * Opcodes must match. Note: ignoring the difference between nameseg * and namepath for now. May be needed later. */ if (Target->Common.AmlOpcode != Operand->Common.AmlOpcode) { return (FALSE); } /* Nodes should match, even if they are NULL */ if (Target->Common.Node != Operand->Common.Node) { return (FALSE); } /* Determine if a child exists */ OpInfo = AcpiPsGetOpcodeInfo (Operand->Common.AmlOpcode); if (OpInfo->Flags & AML_HAS_ARGS) { Same = AcpiDmIsTargetAnOperand (Target->Common.Value.Arg, Operand->Common.Value.Arg, FALSE); if (!Same) { return (FALSE); } } /* Check the next peer, as long as we are not at the top level */ if ((!TopLevel) && Target->Common.Next) { Same = AcpiDmIsTargetAnOperand (Target->Common.Next, Operand->Common.Next, FALSE); if (!Same) { return (FALSE); } } /* Supress the duplicate operand at the top-level */ if (TopLevel) { Operand->Common.DisasmFlags |= ACPI_PARSEOP_IGNORE; } return (TRUE); } Index: head/sys/contrib/dev/acpica/components/disassembler/dmresrc.c =================================================================== --- head/sys/contrib/dev/acpica/components/disassembler/dmresrc.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/disassembler/dmresrc.c (revision 308953) @@ -1,448 +1,466 @@ /******************************************************************************* * * Module Name: dmresrc.c - Resource Descriptor disassembly * ******************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #define _COMPONENT ACPI_CA_DEBUGGER ACPI_MODULE_NAME ("dbresrc") /* Dispatch tables for Resource disassembly functions */ static ACPI_RESOURCE_HANDLER AcpiGbl_DmResourceDispatch [] = { /* Small descriptors */ NULL, /* 0x00, Reserved */ NULL, /* 0x01, Reserved */ NULL, /* 0x02, Reserved */ NULL, /* 0x03, Reserved */ AcpiDmIrqDescriptor, /* 0x04, ACPI_RESOURCE_NAME_IRQ_FORMAT */ AcpiDmDmaDescriptor, /* 0x05, ACPI_RESOURCE_NAME_DMA_FORMAT */ AcpiDmStartDependentDescriptor, /* 0x06, ACPI_RESOURCE_NAME_START_DEPENDENT */ AcpiDmEndDependentDescriptor, /* 0x07, ACPI_RESOURCE_NAME_END_DEPENDENT */ AcpiDmIoDescriptor, /* 0x08, ACPI_RESOURCE_NAME_IO_PORT */ AcpiDmFixedIoDescriptor, /* 0x09, ACPI_RESOURCE_NAME_FIXED_IO_PORT */ AcpiDmFixedDmaDescriptor, /* 0x0A, ACPI_RESOURCE_NAME_FIXED_DMA */ NULL, /* 0x0B, Reserved */ NULL, /* 0x0C, Reserved */ NULL, /* 0x0D, Reserved */ AcpiDmVendorSmallDescriptor, /* 0x0E, ACPI_RESOURCE_NAME_SMALL_VENDOR */ NULL, /* 0x0F, ACPI_RESOURCE_NAME_END_TAG (not used) */ /* Large descriptors */ NULL, /* 0x00, Reserved */ AcpiDmMemory24Descriptor, /* 0x01, ACPI_RESOURCE_NAME_MEMORY_24 */ AcpiDmGenericRegisterDescriptor,/* 0x02, ACPI_RESOURCE_NAME_GENERIC_REGISTER */ NULL, /* 0x03, Reserved */ AcpiDmVendorLargeDescriptor, /* 0x04, ACPI_RESOURCE_NAME_LARGE_VENDOR */ AcpiDmMemory32Descriptor, /* 0x05, ACPI_RESOURCE_NAME_MEMORY_32 */ AcpiDmFixedMemory32Descriptor, /* 0x06, ACPI_RESOURCE_NAME_FIXED_MEMORY_32 */ AcpiDmDwordDescriptor, /* 0x07, ACPI_RESOURCE_NAME_DWORD_ADDRESS_SPACE */ AcpiDmWordDescriptor, /* 0x08, ACPI_RESOURCE_NAME_WORD_ADDRESS_SPACE */ AcpiDmInterruptDescriptor, /* 0x09, ACPI_RESOURCE_NAME_EXTENDED_XRUPT */ AcpiDmQwordDescriptor, /* 0x0A, ACPI_RESOURCE_NAME_QWORD_ADDRESS_SPACE */ AcpiDmExtendedDescriptor, /* 0x0B, ACPI_RESOURCE_NAME_EXTENDED_ADDRESS_SPACE */ AcpiDmGpioDescriptor, /* 0x0C, ACPI_RESOURCE_NAME_GPIO */ NULL, /* 0x0D, Reserved */ AcpiDmSerialBusDescriptor /* 0x0E, ACPI_RESOURCE_NAME_SERIAL_BUS */ }; /* Only used for single-threaded applications */ /* TBD: remove when name is passed as parameter to the dump functions */ static UINT32 ResourceName; /******************************************************************************* * * FUNCTION: AcpiDmDescriptorName * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Emit a name for the descriptor if one is present (indicated * by the name being changed from the default name.) A name is only * emitted if a reference to the descriptor has been made somewhere * in the original ASL code. * ******************************************************************************/ void AcpiDmDescriptorName ( void) { if (ResourceName == ACPI_DEFAULT_RESNAME) { return; } AcpiOsPrintf ("%4.4s", (char *) &ResourceName); } /******************************************************************************* * * FUNCTION: AcpiDmDumpInteger* * * PARAMETERS: Value - Value to emit * Name - Associated name (emitted as a comment) * * RETURN: None * * DESCRIPTION: Integer output helper functions * ******************************************************************************/ void AcpiDmDumpInteger8 ( UINT8 Value, const char *Name) { AcpiOsPrintf ("0x%2.2X, // %s\n", Value, Name); } void AcpiDmDumpInteger16 ( UINT16 Value, const char *Name) { AcpiOsPrintf ("0x%4.4X, // %s\n", Value, Name); } void AcpiDmDumpInteger32 ( UINT32 Value, const char *Name) { AcpiOsPrintf ("0x%8.8X, // %s\n", Value, Name); } void AcpiDmDumpInteger64 ( UINT64 Value, const char *Name) { AcpiOsPrintf ("0x%8.8X%8.8X, // %s\n", ACPI_FORMAT_UINT64 (Value), Name); } /******************************************************************************* * * FUNCTION: AcpiDmBitList * * PARAMETERS: Mask - 16-bit value corresponding to 16 interrupt * or DMA values * * RETURN: None * * DESCRIPTION: Dump a bit mask as a list of individual interrupt/DMA levels. * ******************************************************************************/ void AcpiDmBitList ( UINT16 Mask) { UINT32 i; BOOLEAN Previous = FALSE; /* Open the initializer list */ AcpiOsPrintf ("{"); /* Examine each bit */ for (i = 0; i < 16; i++) { /* Only interested in bits that are set to 1 */ if (Mask & 1) { if (Previous) { AcpiOsPrintf (","); } Previous = TRUE; AcpiOsPrintf ("%u", i); } Mask >>= 1; } /* Close list */ AcpiOsPrintf ("}\n"); } /******************************************************************************* * * FUNCTION: AcpiDmResourceTemplate * * PARAMETERS: Info - Curent parse tree walk info * ByteData - Pointer to the byte list data * ByteCount - Length of the byte list * * RETURN: None * * DESCRIPTION: Dump the contents of a Resource Template containing a set of * Resource Descriptors. * ******************************************************************************/ void AcpiDmResourceTemplate ( ACPI_OP_WALK_INFO *Info, ACPI_PARSE_OBJECT *Op, UINT8 *ByteData, UINT32 ByteCount) { ACPI_STATUS Status; UINT32 CurrentByteOffset; UINT8 ResourceType; UINT32 ResourceLength; void *Aml; UINT32 Level; BOOLEAN DependentFns = FALSE; UINT8 ResourceIndex; ACPI_NAMESPACE_NODE *Node; if (Op->Asl.AmlOpcode != AML_FIELD_OP) { Info->MappingOp = Op; } Level = Info->Level; ResourceName = ACPI_DEFAULT_RESNAME; Node = Op->Common.Node; if (Node) { Node = Node->Child; } for (CurrentByteOffset = 0; CurrentByteOffset < ByteCount;) { Aml = &ByteData[CurrentByteOffset]; /* Get the descriptor type and length */ ResourceType = AcpiUtGetResourceType (Aml); ResourceLength = AcpiUtGetResourceLength (Aml); /* Validate the Resource Type and Resource Length */ Status = AcpiUtValidateResource (NULL, Aml, &ResourceIndex); if (ACPI_FAILURE (Status)) { AcpiOsPrintf ( "/*** Could not validate Resource, type (%X) %s***/\n", ResourceType, AcpiFormatException (Status)); return; } /* Point to next descriptor */ CurrentByteOffset += AcpiUtGetDescriptorLength (Aml); /* Descriptor pre-processing */ switch (ResourceType) { case ACPI_RESOURCE_NAME_START_DEPENDENT: /* Finish a previous StartDependentFns */ if (DependentFns) { Level--; AcpiDmIndent (Level); AcpiOsPrintf ("}\n"); } break; case ACPI_RESOURCE_NAME_END_DEPENDENT: Level--; DependentFns = FALSE; break; case ACPI_RESOURCE_NAME_END_TAG: /* Normal exit, the resource list is finished */ if (DependentFns) { /* * Close an open StartDependentDescriptor. This indicates a * missing EndDependentDescriptor. */ Level--; DependentFns = FALSE; /* Go ahead and insert EndDependentFn() */ AcpiDmEndDependentDescriptor (Info, Aml, ResourceLength, Level); AcpiDmIndent (Level); AcpiOsPrintf ( "/*** Disassembler: inserted " "missing EndDependentFn () ***/\n"); } return; default: break; } /* Disassemble the resource structure */ if (Node) { ResourceName = Node->Name.Integer; Node = Node->Peer; } AcpiGbl_DmResourceDispatch [ResourceIndex] ( Info, Aml, ResourceLength, Level); /* Descriptor post-processing */ if (ResourceType == ACPI_RESOURCE_NAME_START_DEPENDENT) { DependentFns = TRUE; Level++; } } } /******************************************************************************* * * FUNCTION: AcpiDmIsResourceTemplate * * PARAMETERS: WalkState - Current walk info * Op - Buffer Op to be examined * * RETURN: Status. AE_OK if valid template * * DESCRIPTION: Walk a byte list to determine if it consists of a valid set * of resource descriptors. Nothing is output. * ******************************************************************************/ ACPI_STATUS AcpiDmIsResourceTemplate ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op) { ACPI_STATUS Status; ACPI_PARSE_OBJECT *NextOp; UINT8 *Aml; UINT8 *EndAml; - ACPI_SIZE Length; + UINT32 BufferLength; + UINT32 DeclaredBufferLength; /* This op must be a buffer */ if (Op->Common.AmlOpcode != AML_BUFFER_OP) { return (AE_TYPE); } - /* Get the ByteData list and length */ - + /* + * Get the declared length of the buffer. + * This is the nn in "Buffer (nn)" + */ NextOp = Op->Common.Value.Arg; if (!NextOp) { AcpiOsPrintf ("NULL byte list in buffer\n"); return (AE_TYPE); } + DeclaredBufferLength = NextOp->Common.Value.Size; + + /* Get the length of the raw initialization byte list */ + NextOp = NextOp->Common.Next; if (!NextOp) { return (AE_TYPE); } Aml = NextOp->Named.Data; - Length = (ACPI_SIZE) NextOp->Common.Value.Integer; + BufferLength = NextOp->Common.Value.Size; + /* + * Not a template if declared buffer length != actual length of the + * intialization byte list. Because the resource macros will create + * a buffer of the exact required length (buffer length will be equal + * to the actual length). + */ + if (DeclaredBufferLength != BufferLength) + { + return (AE_TYPE); + } + /* Walk the byte list, abort on any invalid descriptor type or length */ - Status = AcpiUtWalkAmlResources (WalkState, Aml, Length, + Status = AcpiUtWalkAmlResources (WalkState, Aml, BufferLength, NULL, ACPI_CAST_INDIRECT_PTR (void, &EndAml)); if (ACPI_FAILURE (Status)) { return (AE_TYPE); } /* * For the resource template to be valid, one EndTag must appear * at the very end of the ByteList, not before. (For proper disassembly * of a ResourceTemplate, the buffer must not have any extra data after * the EndTag.) */ - if ((Aml + Length - sizeof (AML_RESOURCE_END_TAG)) != EndAml) + if ((Aml + BufferLength - sizeof (AML_RESOURCE_END_TAG)) != EndAml) { return (AE_AML_NO_RESOURCE_END_TAG); } /* * All resource descriptors are valid, therefore this list appears * to be a valid resource template */ return (AE_OK); } Index: head/sys/contrib/dev/acpica/components/dispatcher/dsinit.c =================================================================== --- head/sys/contrib/dev/acpica/components/dispatcher/dsinit.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/dispatcher/dsinit.c (revision 308953) @@ -1,280 +1,274 @@ /****************************************************************************** * * Module Name: dsinit - Object initialization namespace walk * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #include +#include #define _COMPONENT ACPI_DISPATCHER ACPI_MODULE_NAME ("dsinit") /* Local prototypes */ static ACPI_STATUS AcpiDsInitOneObject ( ACPI_HANDLE ObjHandle, UINT32 Level, void *Context, void **ReturnValue); /******************************************************************************* * * FUNCTION: AcpiDsInitOneObject * * PARAMETERS: ObjHandle - Node for the object * Level - Current nesting level * Context - Points to a init info struct * ReturnValue - Not used * * RETURN: Status * * DESCRIPTION: Callback from AcpiWalkNamespace. Invoked for every object * within the namespace. * * Currently, the only objects that require initialization are: * 1) Methods * 2) Operation Regions * ******************************************************************************/ static ACPI_STATUS AcpiDsInitOneObject ( ACPI_HANDLE ObjHandle, UINT32 Level, void *Context, void **ReturnValue) { ACPI_INIT_WALK_INFO *Info = (ACPI_INIT_WALK_INFO *) Context; ACPI_NAMESPACE_NODE *Node = (ACPI_NAMESPACE_NODE *) ObjHandle; ACPI_STATUS Status; ACPI_OPERAND_OBJECT *ObjDesc; ACPI_FUNCTION_ENTRY (); /* * We are only interested in NS nodes owned by the table that * was just loaded */ if (Node->OwnerId != Info->OwnerId) { return (AE_OK); } Info->ObjectCount++; /* And even then, we are only interested in a few object types */ switch (AcpiNsGetType (ObjHandle)) { case ACPI_TYPE_REGION: Status = AcpiDsInitializeRegion (ObjHandle); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "During Region initialization %p [%4.4s]", ObjHandle, AcpiUtGetNodeName (ObjHandle))); } Info->OpRegionCount++; break; case ACPI_TYPE_METHOD: /* * Auto-serialization support. We will examine each method that is * NotSerialized to determine if it creates any Named objects. If * it does, it will be marked serialized to prevent problems if * the method is entered by two or more threads and an attempt is * made to create the same named object twice -- which results in * an AE_ALREADY_EXISTS exception and method abort. */ Info->MethodCount++; ObjDesc = AcpiNsGetAttachedObject (Node); if (!ObjDesc) { break; } /* Ignore if already serialized */ if (ObjDesc->Method.InfoFlags & ACPI_METHOD_SERIALIZED) { Info->SerialMethodCount++; break; } if (AcpiGbl_AutoSerializeMethods) { /* Parse/scan method and serialize it if necessary */ AcpiDsAutoSerializeMethod (Node, ObjDesc); if (ObjDesc->Method.InfoFlags & ACPI_METHOD_SERIALIZED) { /* Method was just converted to Serialized */ Info->SerialMethodCount++; Info->SerializedMethodCount++; break; } } Info->NonSerialMethodCount++; break; case ACPI_TYPE_DEVICE: Info->DeviceCount++; break; default: break; } /* * We ignore errors from above, and always return OK, since * we don't want to abort the walk on a single error. */ return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiDsInitializeObjects * * PARAMETERS: TableDesc - Descriptor for parent ACPI table * StartNode - Root of subtree to be initialized. * * RETURN: Status * * DESCRIPTION: Walk the namespace starting at "StartNode" and perform any * necessary initialization on the objects found therein * ******************************************************************************/ ACPI_STATUS AcpiDsInitializeObjects ( UINT32 TableIndex, ACPI_NAMESPACE_NODE *StartNode) { ACPI_STATUS Status; ACPI_INIT_WALK_INFO Info; ACPI_TABLE_HEADER *Table; ACPI_OWNER_ID OwnerId; ACPI_FUNCTION_TRACE (DsInitializeObjects); Status = AcpiTbGetOwnerId (TableIndex, &OwnerId); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "**** Starting initialization of namespace objects ****\n")); /* Set all init info to zero */ memset (&Info, 0, sizeof (ACPI_INIT_WALK_INFO)); Info.OwnerId = OwnerId; Info.TableIndex = TableIndex; /* Walk entire namespace from the supplied root */ - Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); - if (ACPI_FAILURE (Status)) - { - return_ACPI_STATUS (Status); - } - /* * We don't use AcpiWalkNamespace since we do not want to acquire * the namespace reader lock. */ Status = AcpiNsWalkNamespace (ACPI_TYPE_ANY, StartNode, ACPI_UINT32_MAX, - ACPI_NS_WALK_UNLOCK, AcpiDsInitOneObject, NULL, &Info, NULL); + ACPI_NS_WALK_NO_UNLOCK, AcpiDsInitOneObject, NULL, &Info, NULL); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "During WalkNamespace")); } - (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); Status = AcpiGetTableByIndex (TableIndex, &Table); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* DSDT is always the first AML table */ if (ACPI_COMPARE_NAME (Table->Signature, ACPI_SIG_DSDT)) { ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INIT, "\nInitializing Namespace objects:\n")); } /* Summary of objects initialized */ ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INIT, "Table [%4.4s: %-8.8s] (id %.2X) - %4u Objects with %3u Devices, " "%3u Regions, %4u Methods (%u/%u/%u Serial/Non/Cvt)\n", Table->Signature, Table->OemTableId, OwnerId, Info.ObjectCount, Info.DeviceCount,Info.OpRegionCount, Info.MethodCount, Info.SerialMethodCount, Info.NonSerialMethodCount, Info.SerializedMethodCount)); ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "%u Methods, %u Regions\n", Info.MethodCount, Info.OpRegionCount)); return_ACPI_STATUS (AE_OK); } Index: head/sys/contrib/dev/acpica/components/dispatcher/dsmethod.c =================================================================== --- head/sys/contrib/dev/acpica/components/dispatcher/dsmethod.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/dispatcher/dsmethod.c (revision 308953) @@ -1,920 +1,914 @@ /****************************************************************************** * * Module Name: dsmethod - Parser/Interpreter interface - control method parsing * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #include #include #include #include #define _COMPONENT ACPI_DISPATCHER ACPI_MODULE_NAME ("dsmethod") /* Local prototypes */ static ACPI_STATUS AcpiDsDetectNamedOpcodes ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT **OutOp); static ACPI_STATUS AcpiDsCreateMethodMutex ( ACPI_OPERAND_OBJECT *MethodDesc); /******************************************************************************* * * FUNCTION: AcpiDsAutoSerializeMethod * * PARAMETERS: Node - Namespace Node of the method * ObjDesc - Method object attached to node * * RETURN: Status * * DESCRIPTION: Parse a control method AML to scan for control methods that * need serialization due to the creation of named objects. * * NOTE: It is a bit of overkill to mark all such methods serialized, since * there is only a problem if the method actually blocks during execution. * A blocking operation is, for example, a Sleep() operation, or any access * to an operation region. However, it is probably not possible to easily * detect whether a method will block or not, so we simply mark all suspicious * methods as serialized. * * NOTE2: This code is essentially a generic routine for parsing a single * control method. * ******************************************************************************/ ACPI_STATUS AcpiDsAutoSerializeMethod ( ACPI_NAMESPACE_NODE *Node, ACPI_OPERAND_OBJECT *ObjDesc) { ACPI_STATUS Status; ACPI_PARSE_OBJECT *Op = NULL; ACPI_WALK_STATE *WalkState; ACPI_FUNCTION_TRACE_PTR (DsAutoSerializeMethod, Node); ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "Method auto-serialization parse [%4.4s] %p\n", AcpiUtGetNodeName (Node), Node)); - AcpiExEnterInterpreter (); - /* Create/Init a root op for the method parse tree */ Op = AcpiPsAllocOp (AML_METHOD_OP, ObjDesc->Method.AmlStart); if (!Op) { - Status = AE_NO_MEMORY; - goto Unlock; + return_ACPI_STATUS (AE_NO_MEMORY); } AcpiPsSetName (Op, Node->Name.Integer); Op->Common.Node = Node; /* Create and initialize a new walk state */ WalkState = AcpiDsCreateWalkState (Node->OwnerId, NULL, NULL, NULL); if (!WalkState) { AcpiPsFreeOp (Op); - Status = AE_NO_MEMORY; - goto Unlock; + return_ACPI_STATUS (AE_NO_MEMORY); } Status = AcpiDsInitAmlWalk (WalkState, Op, Node, ObjDesc->Method.AmlStart, ObjDesc->Method.AmlLength, NULL, 0); if (ACPI_FAILURE (Status)) { AcpiDsDeleteWalkState (WalkState); AcpiPsFreeOp (Op); return_ACPI_STATUS (Status); } WalkState->DescendingCallback = AcpiDsDetectNamedOpcodes; /* Parse the method, scan for creation of named objects */ Status = AcpiPsParseAml (WalkState); AcpiPsDeleteParseTree (Op); -Unlock: - AcpiExExitInterpreter (); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiDsDetectNamedOpcodes * * PARAMETERS: WalkState - Current state of the parse tree walk * OutOp - Unused, required for parser interface * * RETURN: Status * * DESCRIPTION: Descending callback used during the loading of ACPI tables. * Currently used to detect methods that must be marked serialized * in order to avoid problems with the creation of named objects. * ******************************************************************************/ static ACPI_STATUS AcpiDsDetectNamedOpcodes ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT **OutOp) { ACPI_FUNCTION_NAME (AcpiDsDetectNamedOpcodes); /* We are only interested in opcodes that create a new name */ if (!(WalkState->OpInfo->Flags & (AML_NAMED | AML_CREATE | AML_FIELD))) { return (AE_OK); } /* * At this point, we know we have a Named object opcode. * Mark the method as serialized. Later code will create a mutex for * this method to enforce serialization. * * Note, ACPI_METHOD_IGNORE_SYNC_LEVEL flag means that we will ignore the * Sync Level mechanism for this method, even though it is now serialized. * Otherwise, there can be conflicts with existing ASL code that actually * uses sync levels. */ WalkState->MethodDesc->Method.SyncLevel = 0; WalkState->MethodDesc->Method.InfoFlags |= (ACPI_METHOD_SERIALIZED | ACPI_METHOD_IGNORE_SYNC_LEVEL); ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Method serialized [%4.4s] %p - [%s] (%4.4X)\n", WalkState->MethodNode->Name.Ascii, WalkState->MethodNode, WalkState->OpInfo->Name, WalkState->Opcode)); /* Abort the parse, no need to examine this method any further */ return (AE_CTRL_TERMINATE); } /******************************************************************************* * * FUNCTION: AcpiDsMethodError * * PARAMETERS: Status - Execution status * WalkState - Current state * * RETURN: Status * * DESCRIPTION: Called on method error. Invoke the global exception handler if * present, dump the method data if the debugger is configured * * Note: Allows the exception handler to change the status code * ******************************************************************************/ ACPI_STATUS AcpiDsMethodError ( ACPI_STATUS Status, ACPI_WALK_STATE *WalkState) { UINT32 AmlOffset; ACPI_FUNCTION_ENTRY (); /* Ignore AE_OK and control exception codes */ if (ACPI_SUCCESS (Status) || (Status & AE_CODE_CONTROL)) { return (Status); } /* Invoke the global exception handler */ if (AcpiGbl_ExceptionHandler) { /* Exit the interpreter, allow handler to execute methods */ AcpiExExitInterpreter (); /* * Handler can map the exception code to anything it wants, including * AE_OK, in which case the executing method will not be aborted. */ AmlOffset = (UINT32) ACPI_PTR_DIFF (WalkState->Aml, WalkState->ParserState.AmlStart); Status = AcpiGbl_ExceptionHandler (Status, WalkState->MethodNode ? WalkState->MethodNode->Name.Integer : 0, WalkState->Opcode, AmlOffset, NULL); AcpiExEnterInterpreter (); } AcpiDsClearImplicitReturn (WalkState); if (ACPI_FAILURE (Status)) { AcpiDsDumpMethodStack (Status, WalkState, WalkState->Op); /* Display method locals/args if debugger is present */ #ifdef ACPI_DEBUGGER AcpiDbDumpMethodInfo (Status, WalkState); #endif } return (Status); } /******************************************************************************* * * FUNCTION: AcpiDsCreateMethodMutex * * PARAMETERS: ObjDesc - The method object * * RETURN: Status * * DESCRIPTION: Create a mutex object for a serialized control method * ******************************************************************************/ static ACPI_STATUS AcpiDsCreateMethodMutex ( ACPI_OPERAND_OBJECT *MethodDesc) { ACPI_OPERAND_OBJECT *MutexDesc; ACPI_STATUS Status; ACPI_FUNCTION_TRACE (DsCreateMethodMutex); /* Create the new mutex object */ MutexDesc = AcpiUtCreateInternalObject (ACPI_TYPE_MUTEX); if (!MutexDesc) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Create the actual OS Mutex */ Status = AcpiOsCreateMutex (&MutexDesc->Mutex.OsMutex); if (ACPI_FAILURE (Status)) { AcpiUtDeleteObjectDesc (MutexDesc); return_ACPI_STATUS (Status); } MutexDesc->Mutex.SyncLevel = MethodDesc->Method.SyncLevel; MethodDesc->Method.Mutex = MutexDesc; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiDsBeginMethodExecution * * PARAMETERS: MethodNode - Node of the method * ObjDesc - The method object * WalkState - current state, NULL if not yet executing * a method. * * RETURN: Status * * DESCRIPTION: Prepare a method for execution. Parses the method if necessary, * increments the thread count, and waits at the method semaphore * for clearance to execute. * ******************************************************************************/ ACPI_STATUS AcpiDsBeginMethodExecution ( ACPI_NAMESPACE_NODE *MethodNode, ACPI_OPERAND_OBJECT *ObjDesc, ACPI_WALK_STATE *WalkState) { ACPI_STATUS Status = AE_OK; ACPI_FUNCTION_TRACE_PTR (DsBeginMethodExecution, MethodNode); if (!MethodNode) { return_ACPI_STATUS (AE_NULL_ENTRY); } AcpiExStartTraceMethod (MethodNode, ObjDesc, WalkState); /* Prevent wraparound of thread count */ if (ObjDesc->Method.ThreadCount == ACPI_UINT8_MAX) { ACPI_ERROR ((AE_INFO, "Method reached maximum reentrancy limit (255)")); return_ACPI_STATUS (AE_AML_METHOD_LIMIT); } /* * If this method is serialized, we need to acquire the method mutex. */ if (ObjDesc->Method.InfoFlags & ACPI_METHOD_SERIALIZED) { /* * Create a mutex for the method if it is defined to be Serialized * and a mutex has not already been created. We defer the mutex creation * until a method is actually executed, to minimize the object count */ if (!ObjDesc->Method.Mutex) { Status = AcpiDsCreateMethodMutex (ObjDesc); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } /* * The CurrentSyncLevel (per-thread) must be less than or equal to * the sync level of the method. This mechanism provides some * deadlock prevention. * * If the method was auto-serialized, we just ignore the sync level * mechanism, because auto-serialization of methods can interfere * with ASL code that actually uses sync levels. * * Top-level method invocation has no walk state at this point */ if (WalkState && (!(ObjDesc->Method.InfoFlags & ACPI_METHOD_IGNORE_SYNC_LEVEL)) && (WalkState->Thread->CurrentSyncLevel > ObjDesc->Method.Mutex->Mutex.SyncLevel)) { ACPI_ERROR ((AE_INFO, "Cannot acquire Mutex for method [%4.4s]" ", current SyncLevel is too large (%u)", AcpiUtGetNodeName (MethodNode), WalkState->Thread->CurrentSyncLevel)); return_ACPI_STATUS (AE_AML_MUTEX_ORDER); } /* * Obtain the method mutex if necessary. Do not acquire mutex for a * recursive call. */ if (!WalkState || !ObjDesc->Method.Mutex->Mutex.ThreadId || (WalkState->Thread->ThreadId != ObjDesc->Method.Mutex->Mutex.ThreadId)) { /* * Acquire the method mutex. This releases the interpreter if we * block (and reacquires it before it returns) */ Status = AcpiExSystemWaitMutex ( ObjDesc->Method.Mutex->Mutex.OsMutex, ACPI_WAIT_FOREVER); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Update the mutex and walk info and save the original SyncLevel */ if (WalkState) { ObjDesc->Method.Mutex->Mutex.OriginalSyncLevel = WalkState->Thread->CurrentSyncLevel; ObjDesc->Method.Mutex->Mutex.ThreadId = WalkState->Thread->ThreadId; /* * Update the current SyncLevel only if this is not an auto- * serialized method. In the auto case, we have to ignore * the sync level for the method mutex (created for the * auto-serialization) because we have no idea of what the * sync level should be. Therefore, just ignore it. */ if (!(ObjDesc->Method.InfoFlags & ACPI_METHOD_IGNORE_SYNC_LEVEL)) { WalkState->Thread->CurrentSyncLevel = ObjDesc->Method.SyncLevel; } } else { ObjDesc->Method.Mutex->Mutex.OriginalSyncLevel = ObjDesc->Method.Mutex->Mutex.SyncLevel; ObjDesc->Method.Mutex->Mutex.ThreadId = AcpiOsGetThreadId (); } } /* Always increase acquisition depth */ ObjDesc->Method.Mutex->Mutex.AcquisitionDepth++; } /* * Allocate an Owner ID for this method, only if this is the first thread * to begin concurrent execution. We only need one OwnerId, even if the * method is invoked recursively. */ if (!ObjDesc->Method.OwnerId) { Status = AcpiUtAllocateOwnerId (&ObjDesc->Method.OwnerId); if (ACPI_FAILURE (Status)) { goto Cleanup; } } /* * Increment the method parse tree thread count since it has been * reentered one more time (even if it is the same thread) */ ObjDesc->Method.ThreadCount++; AcpiMethodCount++; return_ACPI_STATUS (Status); Cleanup: /* On error, must release the method mutex (if present) */ if (ObjDesc->Method.Mutex) { AcpiOsReleaseMutex (ObjDesc->Method.Mutex->Mutex.OsMutex); } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiDsCallControlMethod * * PARAMETERS: Thread - Info for this thread * ThisWalkState - Current walk state * Op - Current Op to be walked * * RETURN: Status * * DESCRIPTION: Transfer execution to a called control method * ******************************************************************************/ ACPI_STATUS AcpiDsCallControlMethod ( ACPI_THREAD_STATE *Thread, ACPI_WALK_STATE *ThisWalkState, ACPI_PARSE_OBJECT *Op) { ACPI_STATUS Status; ACPI_NAMESPACE_NODE *MethodNode; ACPI_WALK_STATE *NextWalkState = NULL; ACPI_OPERAND_OBJECT *ObjDesc; ACPI_EVALUATE_INFO *Info; UINT32 i; ACPI_FUNCTION_TRACE_PTR (DsCallControlMethod, ThisWalkState); ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Calling method %p, currentstate=%p\n", ThisWalkState->PrevOp, ThisWalkState)); /* * Get the namespace entry for the control method we are about to call */ MethodNode = ThisWalkState->MethodCallNode; if (!MethodNode) { return_ACPI_STATUS (AE_NULL_ENTRY); } ObjDesc = AcpiNsGetAttachedObject (MethodNode); if (!ObjDesc) { return_ACPI_STATUS (AE_NULL_OBJECT); } /* Init for new method, possibly wait on method mutex */ Status = AcpiDsBeginMethodExecution ( MethodNode, ObjDesc, ThisWalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Begin method parse/execution. Create a new walk state */ NextWalkState = AcpiDsCreateWalkState ( ObjDesc->Method.OwnerId, NULL, ObjDesc, Thread); if (!NextWalkState) { Status = AE_NO_MEMORY; goto Cleanup; } /* * The resolved arguments were put on the previous walk state's operand * stack. Operands on the previous walk state stack always * start at index 0. Also, null terminate the list of arguments */ ThisWalkState->Operands [ThisWalkState->NumOperands] = NULL; /* * Allocate and initialize the evaluation information block * TBD: this is somewhat inefficient, should change interface to * DsInitAmlWalk. For now, keeps this struct off the CPU stack */ Info = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_EVALUATE_INFO)); if (!Info) { Status = AE_NO_MEMORY; goto Cleanup; } Info->Parameters = &ThisWalkState->Operands[0]; Status = AcpiDsInitAmlWalk (NextWalkState, NULL, MethodNode, ObjDesc->Method.AmlStart, ObjDesc->Method.AmlLength, Info, ACPI_IMODE_EXECUTE); ACPI_FREE (Info); if (ACPI_FAILURE (Status)) { goto Cleanup; } /* * Delete the operands on the previous walkstate operand stack * (they were copied to new objects) */ for (i = 0; i < ObjDesc->Method.ParamCount; i++) { AcpiUtRemoveReference (ThisWalkState->Operands [i]); ThisWalkState->Operands [i] = NULL; } /* Clear the operand stack */ ThisWalkState->NumOperands = 0; ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "**** Begin nested execution of [%4.4s] **** WalkState=%p\n", MethodNode->Name.Ascii, NextWalkState)); /* Invoke an internal method if necessary */ if (ObjDesc->Method.InfoFlags & ACPI_METHOD_INTERNAL_ONLY) { Status = ObjDesc->Method.Dispatch.Implementation (NextWalkState); if (Status == AE_OK) { Status = AE_CTRL_TERMINATE; } } return_ACPI_STATUS (Status); Cleanup: /* On error, we must terminate the method properly */ AcpiDsTerminateControlMethod (ObjDesc, NextWalkState); AcpiDsDeleteWalkState (NextWalkState); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiDsRestartControlMethod * * PARAMETERS: WalkState - State for preempted method (caller) * ReturnDesc - Return value from the called method * * RETURN: Status * * DESCRIPTION: Restart a method that was preempted by another (nested) method * invocation. Handle the return value (if any) from the callee. * ******************************************************************************/ ACPI_STATUS AcpiDsRestartControlMethod ( ACPI_WALK_STATE *WalkState, ACPI_OPERAND_OBJECT *ReturnDesc) { ACPI_STATUS Status; int SameAsImplicitReturn; ACPI_FUNCTION_TRACE_PTR (DsRestartControlMethod, WalkState); ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "****Restart [%4.4s] Op %p ReturnValueFromCallee %p\n", AcpiUtGetNodeName (WalkState->MethodNode), WalkState->MethodCallOp, ReturnDesc)); ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, " ReturnFromThisMethodUsed?=%X ResStack %p Walk %p\n", WalkState->ReturnUsed, WalkState->Results, WalkState)); /* Did the called method return a value? */ if (ReturnDesc) { /* Is the implicit return object the same as the return desc? */ SameAsImplicitReturn = (WalkState->ImplicitReturnObj == ReturnDesc); /* Are we actually going to use the return value? */ if (WalkState->ReturnUsed) { /* Save the return value from the previous method */ Status = AcpiDsResultPush (ReturnDesc, WalkState); if (ACPI_FAILURE (Status)) { AcpiUtRemoveReference (ReturnDesc); return_ACPI_STATUS (Status); } /* * Save as THIS method's return value in case it is returned * immediately to yet another method */ WalkState->ReturnDesc = ReturnDesc; } /* * The following code is the optional support for the so-called * "implicit return". Some AML code assumes that the last value of the * method is "implicitly" returned to the caller, in the absence of an * explicit return value. * * Just save the last result of the method as the return value. * * NOTE: this is optional because the ASL language does not actually * support this behavior. */ else if (!AcpiDsDoImplicitReturn (ReturnDesc, WalkState, FALSE) || SameAsImplicitReturn) { /* * Delete the return value if it will not be used by the * calling method or remove one reference if the explicit return * is the same as the implicit return value. */ AcpiUtRemoveReference (ReturnDesc); } } return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiDsTerminateControlMethod * * PARAMETERS: MethodDesc - Method object * WalkState - State associated with the method * * RETURN: None * * DESCRIPTION: Terminate a control method. Delete everything that the method * created, delete all locals and arguments, and delete the parse * tree if requested. * * MUTEX: Interpreter is locked * ******************************************************************************/ void AcpiDsTerminateControlMethod ( ACPI_OPERAND_OBJECT *MethodDesc, ACPI_WALK_STATE *WalkState) { ACPI_FUNCTION_TRACE_PTR (DsTerminateControlMethod, WalkState); /* MethodDesc is required, WalkState is optional */ if (!MethodDesc) { return_VOID; } if (WalkState) { /* Delete all arguments and locals */ AcpiDsMethodDataDeleteAll (WalkState); /* - * If method is serialized, release the mutex and restore the - * current sync level for this thread - */ - if (MethodDesc->Method.Mutex) - { - /* Acquisition Depth handles recursive calls */ - - MethodDesc->Method.Mutex->Mutex.AcquisitionDepth--; - if (!MethodDesc->Method.Mutex->Mutex.AcquisitionDepth) - { - WalkState->Thread->CurrentSyncLevel = - MethodDesc->Method.Mutex->Mutex.OriginalSyncLevel; - - AcpiOsReleaseMutex ( - MethodDesc->Method.Mutex->Mutex.OsMutex); - MethodDesc->Method.Mutex->Mutex.ThreadId = 0; - } - } - - /* * Delete any namespace objects created anywhere within the * namespace by the execution of this method. Unless: * 1) This method is a module-level executable code method, in which * case we want make the objects permanent. * 2) There are other threads executing the method, in which case we * will wait until the last thread has completed. */ if (!(MethodDesc->Method.InfoFlags & ACPI_METHOD_MODULE_LEVEL) && (MethodDesc->Method.ThreadCount == 1)) { /* Delete any direct children of (created by) this method */ (void) AcpiExExitInterpreter (); AcpiNsDeleteNamespaceSubtree (WalkState->MethodNode); (void) AcpiExEnterInterpreter (); /* * Delete any objects that were created by this method * elsewhere in the namespace (if any were created). * Use of the ACPI_METHOD_MODIFIED_NAMESPACE optimizes the * deletion such that we don't have to perform an entire * namespace walk for every control method execution. */ if (MethodDesc->Method.InfoFlags & ACPI_METHOD_MODIFIED_NAMESPACE) { (void) AcpiExExitInterpreter (); AcpiNsDeleteNamespaceByOwner (MethodDesc->Method.OwnerId); (void) AcpiExEnterInterpreter (); MethodDesc->Method.InfoFlags &= ~ACPI_METHOD_MODIFIED_NAMESPACE; + } + } + + /* + * If method is serialized, release the mutex and restore the + * current sync level for this thread + */ + if (MethodDesc->Method.Mutex) + { + /* Acquisition Depth handles recursive calls */ + + MethodDesc->Method.Mutex->Mutex.AcquisitionDepth--; + if (!MethodDesc->Method.Mutex->Mutex.AcquisitionDepth) + { + WalkState->Thread->CurrentSyncLevel = + MethodDesc->Method.Mutex->Mutex.OriginalSyncLevel; + + AcpiOsReleaseMutex ( + MethodDesc->Method.Mutex->Mutex.OsMutex); + MethodDesc->Method.Mutex->Mutex.ThreadId = 0; } } } /* Decrement the thread count on the method */ if (MethodDesc->Method.ThreadCount) { MethodDesc->Method.ThreadCount--; } else { ACPI_ERROR ((AE_INFO, "Invalid zero thread count in method")); } /* Are there any other threads currently executing this method? */ if (MethodDesc->Method.ThreadCount) { /* * Additional threads. Do not release the OwnerId in this case, * we immediately reuse it for the next thread executing this method */ ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "*** Completed execution of one thread, %u threads remaining\n", MethodDesc->Method.ThreadCount)); } else { /* This is the only executing thread for this method */ /* * Support to dynamically change a method from NotSerialized to * Serialized if it appears that the method is incorrectly written and * does not support multiple thread execution. The best example of this * is if such a method creates namespace objects and blocks. A second * thread will fail with an AE_ALREADY_EXISTS exception. * * This code is here because we must wait until the last thread exits * before marking the method as serialized. */ if (MethodDesc->Method.InfoFlags & ACPI_METHOD_SERIALIZED_PENDING) { if (WalkState) { ACPI_INFO (( "Marking method %4.4s as Serialized " "because of AE_ALREADY_EXISTS error", WalkState->MethodNode->Name.Ascii)); } /* * Method tried to create an object twice and was marked as * "pending serialized". The probable cause is that the method * cannot handle reentrancy. * * The method was created as NotSerialized, but it tried to create * a named object and then blocked, causing the second thread * entrance to begin and then fail. Workaround this problem by * marking the method permanently as Serialized when the last * thread exits here. */ MethodDesc->Method.InfoFlags &= ~ACPI_METHOD_SERIALIZED_PENDING; MethodDesc->Method.InfoFlags |= (ACPI_METHOD_SERIALIZED | ACPI_METHOD_IGNORE_SYNC_LEVEL); MethodDesc->Method.SyncLevel = 0; } /* No more threads, we can free the OwnerId */ if (!(MethodDesc->Method.InfoFlags & ACPI_METHOD_MODULE_LEVEL)) { AcpiUtReleaseOwnerId (&MethodDesc->Method.OwnerId); } } AcpiExStopTraceMethod ((ACPI_NAMESPACE_NODE *) MethodDesc->Method.Node, MethodDesc, WalkState); return_VOID; } Index: head/sys/contrib/dev/acpica/components/dispatcher/dsopcode.c =================================================================== --- head/sys/contrib/dev/acpica/components/dispatcher/dsopcode.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/dispatcher/dsopcode.c (revision 308953) @@ -1,817 +1,817 @@ /****************************************************************************** * * Module Name: dsopcode - Dispatcher support for regions and fields * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #include #include #include #include #include #define _COMPONENT ACPI_DISPATCHER ACPI_MODULE_NAME ("dsopcode") /* Local prototypes */ static ACPI_STATUS AcpiDsInitBufferField ( UINT16 AmlOpcode, ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT *BufferDesc, ACPI_OPERAND_OBJECT *OffsetDesc, ACPI_OPERAND_OBJECT *LengthDesc, ACPI_OPERAND_OBJECT *ResultDesc); /******************************************************************************* * * FUNCTION: AcpiDsInitializeRegion * * PARAMETERS: ObjHandle - Region namespace node * * RETURN: Status * * DESCRIPTION: Front end to EvInitializeRegion * ******************************************************************************/ ACPI_STATUS AcpiDsInitializeRegion ( ACPI_HANDLE ObjHandle) { ACPI_OPERAND_OBJECT *ObjDesc; ACPI_STATUS Status; ObjDesc = AcpiNsGetAttachedObject (ObjHandle); /* Namespace is NOT locked */ - Status = AcpiEvInitializeRegion (ObjDesc, FALSE); + Status = AcpiEvInitializeRegion (ObjDesc); return (Status); } /******************************************************************************* * * FUNCTION: AcpiDsInitBufferField * * PARAMETERS: AmlOpcode - CreateXxxField * ObjDesc - BufferField object * BufferDesc - Host Buffer * OffsetDesc - Offset into buffer * LengthDesc - Length of field (CREATE_FIELD_OP only) * ResultDesc - Where to store the result * * RETURN: Status * * DESCRIPTION: Perform actual initialization of a buffer field * ******************************************************************************/ static ACPI_STATUS AcpiDsInitBufferField ( UINT16 AmlOpcode, ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT *BufferDesc, ACPI_OPERAND_OBJECT *OffsetDesc, ACPI_OPERAND_OBJECT *LengthDesc, ACPI_OPERAND_OBJECT *ResultDesc) { UINT32 Offset; UINT32 BitOffset; UINT32 BitCount; UINT8 FieldFlags; ACPI_STATUS Status; ACPI_FUNCTION_TRACE_PTR (DsInitBufferField, ObjDesc); /* Host object must be a Buffer */ if (BufferDesc->Common.Type != ACPI_TYPE_BUFFER) { ACPI_ERROR ((AE_INFO, "Target of Create Field is not a Buffer object - %s", AcpiUtGetObjectTypeName (BufferDesc))); Status = AE_AML_OPERAND_TYPE; goto Cleanup; } /* * The last parameter to all of these opcodes (ResultDesc) started * out as a NameString, and should therefore now be a NS node * after resolution in AcpiExResolveOperands(). */ if (ACPI_GET_DESCRIPTOR_TYPE (ResultDesc) != ACPI_DESC_TYPE_NAMED) { ACPI_ERROR ((AE_INFO, "(%s) destination not a NS Node [%s]", AcpiPsGetOpcodeName (AmlOpcode), AcpiUtGetDescriptorName (ResultDesc))); Status = AE_AML_OPERAND_TYPE; goto Cleanup; } Offset = (UINT32) OffsetDesc->Integer.Value; /* * Setup the Bit offsets and counts, according to the opcode */ switch (AmlOpcode) { case AML_CREATE_FIELD_OP: /* Offset is in bits, count is in bits */ FieldFlags = AML_FIELD_ACCESS_BYTE; BitOffset = Offset; BitCount = (UINT32) LengthDesc->Integer.Value; /* Must have a valid (>0) bit count */ if (BitCount == 0) { ACPI_ERROR ((AE_INFO, "Attempt to CreateField of length zero")); Status = AE_AML_OPERAND_VALUE; goto Cleanup; } break; case AML_CREATE_BIT_FIELD_OP: /* Offset is in bits, Field is one bit */ BitOffset = Offset; BitCount = 1; FieldFlags = AML_FIELD_ACCESS_BYTE; break; case AML_CREATE_BYTE_FIELD_OP: /* Offset is in bytes, field is one byte */ BitOffset = 8 * Offset; BitCount = 8; FieldFlags = AML_FIELD_ACCESS_BYTE; break; case AML_CREATE_WORD_FIELD_OP: /* Offset is in bytes, field is one word */ BitOffset = 8 * Offset; BitCount = 16; FieldFlags = AML_FIELD_ACCESS_WORD; break; case AML_CREATE_DWORD_FIELD_OP: /* Offset is in bytes, field is one dword */ BitOffset = 8 * Offset; BitCount = 32; FieldFlags = AML_FIELD_ACCESS_DWORD; break; case AML_CREATE_QWORD_FIELD_OP: /* Offset is in bytes, field is one qword */ BitOffset = 8 * Offset; BitCount = 64; FieldFlags = AML_FIELD_ACCESS_QWORD; break; default: ACPI_ERROR ((AE_INFO, "Unknown field creation opcode 0x%02X", AmlOpcode)); Status = AE_AML_BAD_OPCODE; goto Cleanup; } /* Entire field must fit within the current length of the buffer */ if ((BitOffset + BitCount) > (8 * (UINT32) BufferDesc->Buffer.Length)) { ACPI_ERROR ((AE_INFO, "Field [%4.4s] at %u exceeds Buffer [%4.4s] size %u (bits)", AcpiUtGetNodeName (ResultDesc), BitOffset + BitCount, AcpiUtGetNodeName (BufferDesc->Buffer.Node), 8 * (UINT32) BufferDesc->Buffer.Length)); Status = AE_AML_BUFFER_LIMIT; goto Cleanup; } /* * Initialize areas of the field object that are common to all fields * For FieldFlags, use LOCK_RULE = 0 (NO_LOCK), * UPDATE_RULE = 0 (UPDATE_PRESERVE) */ Status = AcpiExPrepCommonFieldObject ( ObjDesc, FieldFlags, 0, BitOffset, BitCount); if (ACPI_FAILURE (Status)) { goto Cleanup; } ObjDesc->BufferField.BufferObj = BufferDesc; /* Reference count for BufferDesc inherits ObjDesc count */ BufferDesc->Common.ReferenceCount = (UINT16) (BufferDesc->Common.ReferenceCount + ObjDesc->Common.ReferenceCount); Cleanup: /* Always delete the operands */ AcpiUtRemoveReference (OffsetDesc); AcpiUtRemoveReference (BufferDesc); if (AmlOpcode == AML_CREATE_FIELD_OP) { AcpiUtRemoveReference (LengthDesc); } /* On failure, delete the result descriptor */ if (ACPI_FAILURE (Status)) { AcpiUtRemoveReference (ResultDesc); /* Result descriptor */ } else { /* Now the address and length are valid for this BufferField */ ObjDesc->BufferField.Flags |= AOPOBJ_DATA_VALID; } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiDsEvalBufferFieldOperands * * PARAMETERS: WalkState - Current walk * Op - A valid BufferField Op object * * RETURN: Status * * DESCRIPTION: Get BufferField Buffer and Index * Called from AcpiDsExecEndOp during BufferField parse tree walk * ******************************************************************************/ ACPI_STATUS AcpiDsEvalBufferFieldOperands ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op) { ACPI_STATUS Status; ACPI_OPERAND_OBJECT *ObjDesc; ACPI_NAMESPACE_NODE *Node; ACPI_PARSE_OBJECT *NextOp; ACPI_FUNCTION_TRACE_PTR (DsEvalBufferFieldOperands, Op); /* * This is where we evaluate the address and length fields of the * CreateXxxField declaration */ Node = Op->Common.Node; /* NextOp points to the op that holds the Buffer */ NextOp = Op->Common.Value.Arg; /* Evaluate/create the address and length operands */ Status = AcpiDsCreateOperands (WalkState, NextOp); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } ObjDesc = AcpiNsGetAttachedObject (Node); if (!ObjDesc) { return_ACPI_STATUS (AE_NOT_EXIST); } /* Resolve the operands */ Status = AcpiExResolveOperands ( Op->Common.AmlOpcode, ACPI_WALK_OPERANDS, WalkState); if (ACPI_FAILURE (Status)) { ACPI_ERROR ((AE_INFO, "(%s) bad operand(s), status 0x%X", AcpiPsGetOpcodeName (Op->Common.AmlOpcode), Status)); return_ACPI_STATUS (Status); } /* Initialize the Buffer Field */ if (Op->Common.AmlOpcode == AML_CREATE_FIELD_OP) { /* NOTE: Slightly different operands for this opcode */ Status = AcpiDsInitBufferField (Op->Common.AmlOpcode, ObjDesc, WalkState->Operands[0], WalkState->Operands[1], WalkState->Operands[2], WalkState->Operands[3]); } else { /* All other, CreateXxxField opcodes */ Status = AcpiDsInitBufferField (Op->Common.AmlOpcode, ObjDesc, WalkState->Operands[0], WalkState->Operands[1], NULL, WalkState->Operands[2]); } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiDsEvalRegionOperands * * PARAMETERS: WalkState - Current walk * Op - A valid region Op object * * RETURN: Status * * DESCRIPTION: Get region address and length * Called from AcpiDsExecEndOp during OpRegion parse tree walk * ******************************************************************************/ ACPI_STATUS AcpiDsEvalRegionOperands ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op) { ACPI_STATUS Status; ACPI_OPERAND_OBJECT *ObjDesc; ACPI_OPERAND_OBJECT *OperandDesc; ACPI_NAMESPACE_NODE *Node; ACPI_PARSE_OBJECT *NextOp; ACPI_FUNCTION_TRACE_PTR (DsEvalRegionOperands, Op); /* * This is where we evaluate the address and length fields of the * OpRegion declaration */ Node = Op->Common.Node; /* NextOp points to the op that holds the SpaceID */ NextOp = Op->Common.Value.Arg; /* NextOp points to address op */ NextOp = NextOp->Common.Next; /* Evaluate/create the address and length operands */ Status = AcpiDsCreateOperands (WalkState, NextOp); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Resolve the length and address operands to numbers */ Status = AcpiExResolveOperands ( Op->Common.AmlOpcode, ACPI_WALK_OPERANDS, WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } ObjDesc = AcpiNsGetAttachedObject (Node); if (!ObjDesc) { return_ACPI_STATUS (AE_NOT_EXIST); } /* * Get the length operand and save it * (at Top of stack) */ OperandDesc = WalkState->Operands[WalkState->NumOperands - 1]; ObjDesc->Region.Length = (UINT32) OperandDesc->Integer.Value; AcpiUtRemoveReference (OperandDesc); /* * Get the address and save it * (at top of stack - 1) */ OperandDesc = WalkState->Operands[WalkState->NumOperands - 2]; ObjDesc->Region.Address = (ACPI_PHYSICAL_ADDRESS) OperandDesc->Integer.Value; AcpiUtRemoveReference (OperandDesc); ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "RgnObj %p Addr %8.8X%8.8X Len %X\n", ObjDesc, ACPI_FORMAT_UINT64 (ObjDesc->Region.Address), ObjDesc->Region.Length)); /* Now the address and length are valid for this opregion */ ObjDesc->Region.Flags |= AOPOBJ_DATA_VALID; return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiDsEvalTableRegionOperands * * PARAMETERS: WalkState - Current walk * Op - A valid region Op object * * RETURN: Status * * DESCRIPTION: Get region address and length. * Called from AcpiDsExecEndOp during DataTableRegion parse * tree walk. * ******************************************************************************/ ACPI_STATUS AcpiDsEvalTableRegionOperands ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op) { ACPI_STATUS Status; ACPI_OPERAND_OBJECT *ObjDesc; ACPI_OPERAND_OBJECT **Operand; ACPI_NAMESPACE_NODE *Node; ACPI_PARSE_OBJECT *NextOp; ACPI_TABLE_HEADER *Table; UINT32 TableIndex; ACPI_FUNCTION_TRACE_PTR (DsEvalTableRegionOperands, Op); /* * This is where we evaluate the Signature string, OemId string, * and OemTableId string of the Data Table Region declaration */ Node = Op->Common.Node; /* NextOp points to Signature string op */ NextOp = Op->Common.Value.Arg; /* * Evaluate/create the Signature string, OemId string, * and OemTableId string operands */ Status = AcpiDsCreateOperands (WalkState, NextOp); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } Operand = &WalkState->Operands[0]; /* * Resolve the Signature string, OemId string, * and OemTableId string operands */ Status = AcpiExResolveOperands ( Op->Common.AmlOpcode, ACPI_WALK_OPERANDS, WalkState); if (ACPI_FAILURE (Status)) { goto Cleanup; } /* Find the ACPI table */ Status = AcpiTbFindTable ( Operand[0]->String.Pointer, Operand[1]->String.Pointer, Operand[2]->String.Pointer, &TableIndex); if (ACPI_FAILURE (Status)) { if (Status == AE_NOT_FOUND) { ACPI_ERROR ((AE_INFO, "ACPI Table [%4.4s] OEM:(%s, %s) not found in RSDT/XSDT", Operand[0]->String.Pointer, Operand[1]->String.Pointer, Operand[2]->String.Pointer)); } goto Cleanup; } Status = AcpiGetTableByIndex (TableIndex, &Table); if (ACPI_FAILURE (Status)) { goto Cleanup; } ObjDesc = AcpiNsGetAttachedObject (Node); if (!ObjDesc) { Status = AE_NOT_EXIST; goto Cleanup; } ObjDesc->Region.Address = ACPI_PTR_TO_PHYSADDR (Table); ObjDesc->Region.Length = Table->Length; ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "RgnObj %p Addr %8.8X%8.8X Len %X\n", ObjDesc, ACPI_FORMAT_UINT64 (ObjDesc->Region.Address), ObjDesc->Region.Length)); /* Now the address and length are valid for this opregion */ ObjDesc->Region.Flags |= AOPOBJ_DATA_VALID; Cleanup: AcpiUtRemoveReference (Operand[0]); AcpiUtRemoveReference (Operand[1]); AcpiUtRemoveReference (Operand[2]); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiDsEvalDataObjectOperands * * PARAMETERS: WalkState - Current walk * Op - A valid DataObject Op object * ObjDesc - DataObject * * RETURN: Status * * DESCRIPTION: Get the operands and complete the following data object types: * Buffer, Package. * ******************************************************************************/ ACPI_STATUS AcpiDsEvalDataObjectOperands ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op, ACPI_OPERAND_OBJECT *ObjDesc) { ACPI_STATUS Status; ACPI_OPERAND_OBJECT *ArgDesc; UINT32 Length; ACPI_FUNCTION_TRACE (DsEvalDataObjectOperands); /* The first operand (for all of these data objects) is the length */ /* * Set proper index into operand stack for AcpiDsObjStackPush * invoked inside AcpiDsCreateOperand. */ WalkState->OperandIndex = WalkState->NumOperands; Status = AcpiDsCreateOperand (WalkState, Op->Common.Value.Arg, 1); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } Status = AcpiExResolveOperands (WalkState->Opcode, &(WalkState->Operands [WalkState->NumOperands -1]), WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Extract length operand */ ArgDesc = WalkState->Operands [WalkState->NumOperands - 1]; Length = (UINT32) ArgDesc->Integer.Value; /* Cleanup for length operand */ Status = AcpiDsObjStackPop (1, WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } AcpiUtRemoveReference (ArgDesc); /* * Create the actual data object */ switch (Op->Common.AmlOpcode) { case AML_BUFFER_OP: Status = AcpiDsBuildInternalBufferObj ( WalkState, Op, Length, &ObjDesc); break; case AML_PACKAGE_OP: case AML_VAR_PACKAGE_OP: Status = AcpiDsBuildInternalPackageObj ( WalkState, Op, Length, &ObjDesc); break; default: return_ACPI_STATUS (AE_AML_BAD_OPCODE); } if (ACPI_SUCCESS (Status)) { /* * Return the object in the WalkState, unless the parent is a package - * in this case, the return object will be stored in the parse tree * for the package. */ if ((!Op->Common.Parent) || ((Op->Common.Parent->Common.AmlOpcode != AML_PACKAGE_OP) && (Op->Common.Parent->Common.AmlOpcode != AML_VAR_PACKAGE_OP) && (Op->Common.Parent->Common.AmlOpcode != AML_NAME_OP))) { WalkState->ResultObj = ObjDesc; } } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiDsEvalBankFieldOperands * * PARAMETERS: WalkState - Current walk * Op - A valid BankField Op object * * RETURN: Status * * DESCRIPTION: Get BankField BankValue * Called from AcpiDsExecEndOp during BankField parse tree walk * ******************************************************************************/ ACPI_STATUS AcpiDsEvalBankFieldOperands ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op) { ACPI_STATUS Status; ACPI_OPERAND_OBJECT *ObjDesc; ACPI_OPERAND_OBJECT *OperandDesc; ACPI_NAMESPACE_NODE *Node; ACPI_PARSE_OBJECT *NextOp; ACPI_PARSE_OBJECT *Arg; ACPI_FUNCTION_TRACE_PTR (DsEvalBankFieldOperands, Op); /* * This is where we evaluate the BankValue field of the * BankField declaration */ /* NextOp points to the op that holds the Region */ NextOp = Op->Common.Value.Arg; /* NextOp points to the op that holds the Bank Register */ NextOp = NextOp->Common.Next; /* NextOp points to the op that holds the Bank Value */ NextOp = NextOp->Common.Next; /* * Set proper index into operand stack for AcpiDsObjStackPush * invoked inside AcpiDsCreateOperand. * * We use WalkState->Operands[0] to store the evaluated BankValue */ WalkState->OperandIndex = 0; Status = AcpiDsCreateOperand (WalkState, NextOp, 0); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } Status = AcpiExResolveToValue (&WalkState->Operands[0], WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } ACPI_DUMP_OPERANDS (ACPI_WALK_OPERANDS, AcpiPsGetOpcodeName (Op->Common.AmlOpcode), 1); /* * Get the BankValue operand and save it * (at Top of stack) */ OperandDesc = WalkState->Operands[0]; /* Arg points to the start Bank Field */ Arg = AcpiPsGetArg (Op, 4); while (Arg) { /* Ignore OFFSET and ACCESSAS terms here */ if (Arg->Common.AmlOpcode == AML_INT_NAMEDFIELD_OP) { Node = Arg->Common.Node; ObjDesc = AcpiNsGetAttachedObject (Node); if (!ObjDesc) { return_ACPI_STATUS (AE_NOT_EXIST); } ObjDesc->BankField.Value = (UINT32) OperandDesc->Integer.Value; } /* Move to next field in the list */ Arg = Arg->Common.Next; } AcpiUtRemoveReference (OperandDesc); return_ACPI_STATUS (Status); } Index: head/sys/contrib/dev/acpica/components/dispatcher/dswload2.c =================================================================== --- head/sys/contrib/dev/acpica/components/dispatcher/dswload2.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/dispatcher/dswload2.c (revision 308953) @@ -1,753 +1,738 @@ /****************************************************************************** * * Module Name: dswload2 - Dispatcher second pass namespace load callbacks * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #include #include #include #include #define _COMPONENT ACPI_DISPATCHER ACPI_MODULE_NAME ("dswload2") /******************************************************************************* * * FUNCTION: AcpiDsLoad2BeginOp * * PARAMETERS: WalkState - Current state of the parse tree walk * OutOp - Wher to return op if a new one is created * * RETURN: Status * * DESCRIPTION: Descending callback used during the loading of ACPI tables. * ******************************************************************************/ ACPI_STATUS AcpiDsLoad2BeginOp ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT **OutOp) { ACPI_PARSE_OBJECT *Op; ACPI_NAMESPACE_NODE *Node; ACPI_STATUS Status; ACPI_OBJECT_TYPE ObjectType; char *BufferPtr; UINT32 Flags; ACPI_FUNCTION_TRACE (DsLoad2BeginOp); Op = WalkState->Op; ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Op=%p State=%p\n", Op, WalkState)); if (Op) { if ((WalkState->ControlState) && (WalkState->ControlState->Common.State == ACPI_CONTROL_CONDITIONAL_EXECUTING)) { /* We are executing a while loop outside of a method */ Status = AcpiDsExecBeginOp (WalkState, OutOp); return_ACPI_STATUS (Status); } /* We only care about Namespace opcodes here */ if ((!(WalkState->OpInfo->Flags & AML_NSOPCODE) && (WalkState->Opcode != AML_INT_NAMEPATH_OP)) || (!(WalkState->OpInfo->Flags & AML_NAMED))) { return_ACPI_STATUS (AE_OK); } /* Get the name we are going to enter or lookup in the namespace */ if (WalkState->Opcode == AML_INT_NAMEPATH_OP) { /* For Namepath op, get the path string */ BufferPtr = Op->Common.Value.String; if (!BufferPtr) { /* No name, just exit */ return_ACPI_STATUS (AE_OK); } } else { /* Get name from the op */ BufferPtr = ACPI_CAST_PTR (char, &Op->Named.Name); } } else { /* Get the namestring from the raw AML */ BufferPtr = AcpiPsGetNextNamestring (&WalkState->ParserState); } /* Map the opcode into an internal object type */ ObjectType = WalkState->OpInfo->ObjectType; ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "State=%p Op=%p Type=%X\n", WalkState, Op, ObjectType)); switch (WalkState->Opcode) { case AML_FIELD_OP: case AML_BANK_FIELD_OP: case AML_INDEX_FIELD_OP: Node = NULL; Status = AE_OK; break; case AML_INT_NAMEPATH_OP: /* * The NamePath is an object reference to an existing object. * Don't enter the name into the namespace, but look it up * for use later. */ Status = AcpiNsLookup (WalkState->ScopeInfo, BufferPtr, ObjectType, ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT, WalkState, &(Node)); break; case AML_SCOPE_OP: /* Special case for Scope(\) -> refers to the Root node */ if (Op && (Op->Named.Node == AcpiGbl_RootNode)) { Node = Op->Named.Node; Status = AcpiDsScopeStackPush (Node, ObjectType, WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } else { /* * The Path is an object reference to an existing object. * Don't enter the name into the namespace, but look it up * for use later. */ Status = AcpiNsLookup (WalkState->ScopeInfo, BufferPtr, ObjectType, ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT, WalkState, &(Node)); if (ACPI_FAILURE (Status)) { #ifdef ACPI_ASL_COMPILER if (Status == AE_NOT_FOUND) { Status = AE_OK; } else { ACPI_ERROR_NAMESPACE (BufferPtr, Status); } #else ACPI_ERROR_NAMESPACE (BufferPtr, Status); #endif return_ACPI_STATUS (Status); } } /* * We must check to make sure that the target is * one of the opcodes that actually opens a scope */ switch (Node->Type) { case ACPI_TYPE_ANY: case ACPI_TYPE_LOCAL_SCOPE: /* Scope */ case ACPI_TYPE_DEVICE: case ACPI_TYPE_POWER: case ACPI_TYPE_PROCESSOR: case ACPI_TYPE_THERMAL: /* These are acceptable types */ break; case ACPI_TYPE_INTEGER: case ACPI_TYPE_STRING: case ACPI_TYPE_BUFFER: /* * These types we will allow, but we will change the type. * This enables some existing code of the form: * * Name (DEB, 0) * Scope (DEB) { ... } */ ACPI_WARNING ((AE_INFO, "Type override - [%4.4s] had invalid type (%s) " "for Scope operator, changed to type ANY", AcpiUtGetNodeName (Node), AcpiUtGetTypeName (Node->Type))); Node->Type = ACPI_TYPE_ANY; WalkState->ScopeInfo->Common.Value = ACPI_TYPE_ANY; break; case ACPI_TYPE_METHOD: /* * Allow scope change to root during execution of module-level * code. Root is typed METHOD during this time. */ if ((Node == AcpiGbl_RootNode) && (WalkState->ParseFlags & ACPI_PARSE_MODULE_LEVEL)) { break; } /*lint -fallthrough */ default: /* All other types are an error */ ACPI_ERROR ((AE_INFO, "Invalid type (%s) for target of " "Scope operator [%4.4s] (Cannot override)", AcpiUtGetTypeName (Node->Type), AcpiUtGetNodeName (Node))); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } break; default: /* All other opcodes */ if (Op && Op->Common.Node) { /* This op/node was previously entered into the namespace */ Node = Op->Common.Node; if (AcpiNsOpensScope (ObjectType)) { Status = AcpiDsScopeStackPush (Node, ObjectType, WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } return_ACPI_STATUS (AE_OK); } /* * Enter the named type into the internal namespace. We enter the name * as we go downward in the parse tree. Any necessary subobjects that * involve arguments to the opcode must be created as we go back up the * parse tree later. * * Note: Name may already exist if we are executing a deferred opcode. */ if (WalkState->DeferredNode) { /* This name is already in the namespace, get the node */ Node = WalkState->DeferredNode; Status = AE_OK; break; } Flags = ACPI_NS_NO_UPSEARCH; if (WalkState->PassNumber == ACPI_IMODE_EXECUTE) { /* Execution mode, node cannot already exist, node is temporary */ Flags |= ACPI_NS_ERROR_IF_FOUND; if (!(WalkState->ParseFlags & ACPI_PARSE_MODULE_LEVEL)) { Flags |= ACPI_NS_TEMPORARY; } } /* Add new entry or lookup existing entry */ Status = AcpiNsLookup (WalkState->ScopeInfo, BufferPtr, ObjectType, ACPI_IMODE_LOAD_PASS2, Flags, WalkState, &Node); if (ACPI_SUCCESS (Status) && (Flags & ACPI_NS_TEMPORARY)) { ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "***New Node [%4.4s] %p is temporary\n", AcpiUtGetNodeName (Node), Node)); } break; } if (ACPI_FAILURE (Status)) { ACPI_ERROR_NAMESPACE (BufferPtr, Status); return_ACPI_STATUS (Status); } if (!Op) { /* Create a new op */ Op = AcpiPsAllocOp (WalkState->Opcode, WalkState->Aml); if (!Op) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Initialize the new op */ if (Node) { Op->Named.Name = Node->Name.Integer; } *OutOp = Op; } /* * Put the Node in the "op" object that the parser uses, so we * can get it again quickly when this scope is closed */ Op->Common.Node = Node; return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiDsLoad2EndOp * * PARAMETERS: WalkState - Current state of the parse tree walk * * RETURN: Status * * DESCRIPTION: Ascending callback used during the loading of the namespace, * both control methods and everything else. * ******************************************************************************/ ACPI_STATUS AcpiDsLoad2EndOp ( ACPI_WALK_STATE *WalkState) { ACPI_PARSE_OBJECT *Op; ACPI_STATUS Status = AE_OK; ACPI_OBJECT_TYPE ObjectType; ACPI_NAMESPACE_NODE *Node; ACPI_PARSE_OBJECT *Arg; ACPI_NAMESPACE_NODE *NewNode; #ifndef ACPI_NO_METHOD_EXECUTION UINT32 i; UINT8 RegionSpace; #endif ACPI_FUNCTION_TRACE (DsLoad2EndOp); Op = WalkState->Op; ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Opcode [%s] Op %p State %p\n", WalkState->OpInfo->Name, Op, WalkState)); /* Check if opcode had an associated namespace object */ if (!(WalkState->OpInfo->Flags & AML_NSOBJECT)) { return_ACPI_STATUS (AE_OK); } if (Op->Common.AmlOpcode == AML_SCOPE_OP) { ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Ending scope Op=%p State=%p\n", Op, WalkState)); } ObjectType = WalkState->OpInfo->ObjectType; /* * Get the Node/name from the earlier lookup * (It was saved in the *op structure) */ Node = Op->Common.Node; /* * Put the Node on the object stack (Contains the ACPI Name of * this object) */ WalkState->Operands[0] = (void *) Node; WalkState->NumOperands = 1; /* Pop the scope stack */ if (AcpiNsOpensScope (ObjectType) && (Op->Common.AmlOpcode != AML_INT_METHODCALL_OP)) { ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "(%s) Popping scope for Op %p\n", AcpiUtGetTypeName (ObjectType), Op)); Status = AcpiDsScopeStackPop (WalkState); if (ACPI_FAILURE (Status)) { goto Cleanup; } } /* * Named operations are as follows: * * AML_ALIAS * AML_BANKFIELD * AML_CREATEBITFIELD * AML_CREATEBYTEFIELD * AML_CREATEDWORDFIELD * AML_CREATEFIELD * AML_CREATEQWORDFIELD * AML_CREATEWORDFIELD * AML_DATA_REGION * AML_DEVICE * AML_EVENT * AML_FIELD * AML_INDEXFIELD * AML_METHOD * AML_METHODCALL * AML_MUTEX * AML_NAME * AML_NAMEDFIELD * AML_OPREGION * AML_POWERRES * AML_PROCESSOR * AML_SCOPE * AML_THERMALZONE */ ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Create-Load [%s] State=%p Op=%p NamedObj=%p\n", AcpiPsGetOpcodeName (Op->Common.AmlOpcode), WalkState, Op, Node)); /* Decode the opcode */ Arg = Op->Common.Value.Arg; switch (WalkState->OpInfo->Type) { #ifndef ACPI_NO_METHOD_EXECUTION case AML_TYPE_CREATE_FIELD: /* * Create the field object, but the field buffer and index must * be evaluated later during the execution phase */ Status = AcpiDsCreateBufferField (Op, WalkState); break; case AML_TYPE_NAMED_FIELD: /* * If we are executing a method, initialize the field */ if (WalkState->MethodNode) { Status = AcpiDsInitFieldObjects (Op, WalkState); } switch (Op->Common.AmlOpcode) { case AML_INDEX_FIELD_OP: Status = AcpiDsCreateIndexField ( Op, (ACPI_HANDLE) Arg->Common.Node, WalkState); break; case AML_BANK_FIELD_OP: Status = AcpiDsCreateBankField (Op, Arg->Common.Node, WalkState); break; case AML_FIELD_OP: Status = AcpiDsCreateField (Op, Arg->Common.Node, WalkState); break; default: /* All NAMED_FIELD opcodes must be handled above */ break; } break; case AML_TYPE_NAMED_SIMPLE: Status = AcpiDsCreateOperands (WalkState, Arg); if (ACPI_FAILURE (Status)) { goto Cleanup; } switch (Op->Common.AmlOpcode) { case AML_PROCESSOR_OP: Status = AcpiExCreateProcessor (WalkState); break; case AML_POWER_RES_OP: Status = AcpiExCreatePowerResource (WalkState); break; case AML_MUTEX_OP: Status = AcpiExCreateMutex (WalkState); break; case AML_EVENT_OP: Status = AcpiExCreateEvent (WalkState); break; case AML_ALIAS_OP: Status = AcpiExCreateAlias (WalkState); break; default: /* Unknown opcode */ Status = AE_OK; goto Cleanup; } /* Delete operands */ for (i = 1; i < WalkState->NumOperands; i++) { AcpiUtRemoveReference (WalkState->Operands[i]); WalkState->Operands[i] = NULL; } break; #endif /* ACPI_NO_METHOD_EXECUTION */ case AML_TYPE_NAMED_COMPLEX: switch (Op->Common.AmlOpcode) { #ifndef ACPI_NO_METHOD_EXECUTION case AML_REGION_OP: case AML_DATA_REGION_OP: if (Op->Common.AmlOpcode == AML_REGION_OP) { RegionSpace = (ACPI_ADR_SPACE_TYPE) ((Op->Common.Value.Arg)->Common.Value.Integer); } else { RegionSpace = ACPI_ADR_SPACE_DATA_TABLE; } /* * The OpRegion is not fully parsed at this time. The only valid * argument is the SpaceId. (We must save the address of the * AML of the address and length operands) * * If we have a valid region, initialize it. The namespace is * unlocked at this point. * * Need to unlock interpreter if it is locked (if we are running * a control method), in order to allow _REG methods to be run * during AcpiEvInitializeRegion. */ if (WalkState->MethodNode) { /* * Executing a method: initialize the region and unlock * the interpreter */ Status = AcpiExCreateRegion (Op->Named.Data, Op->Named.Length, RegionSpace, WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } - AcpiExExitInterpreter (); Status = AcpiEvInitializeRegion ( - AcpiNsGetAttachedObject (Node), FALSE); - AcpiExEnterInterpreter (); - - if (ACPI_FAILURE (Status)) - { - /* - * If AE_NOT_EXIST is returned, it is not fatal - * because many regions get created before a handler - * is installed for said region. - */ - if (AE_NOT_EXIST == Status) - { - Status = AE_OK; - } - } + AcpiNsGetAttachedObject (Node)); break; case AML_NAME_OP: Status = AcpiDsCreateNode (WalkState, Node, Op); break; case AML_METHOD_OP: /* * MethodOp PkgLength NameString MethodFlags TermList * * Note: We must create the method node/object pair as soon as we * see the method declaration. This allows later pass1 parsing * of invocations of the method (need to know the number of * arguments.) */ ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "LOADING-Method: State=%p Op=%p NamedObj=%p\n", WalkState, Op, Op->Named.Node)); if (!AcpiNsGetAttachedObject (Op->Named.Node)) { WalkState->Operands[0] = ACPI_CAST_PTR (void, Op->Named.Node); WalkState->NumOperands = 1; Status = AcpiDsCreateOperands ( WalkState, Op->Common.Value.Arg); if (ACPI_SUCCESS (Status)) { Status = AcpiExCreateMethod ( Op->Named.Data, Op->Named.Length, WalkState); } WalkState->Operands[0] = NULL; WalkState->NumOperands = 0; if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } break; #endif /* ACPI_NO_METHOD_EXECUTION */ default: /* All NAMED_COMPLEX opcodes must be handled above */ break; } break; case AML_CLASS_INTERNAL: /* case AML_INT_NAMEPATH_OP: */ break; case AML_CLASS_METHOD_CALL: ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "RESOLVING-MethodCall: State=%p Op=%p NamedObj=%p\n", WalkState, Op, Node)); /* * Lookup the method name and save the Node */ Status = AcpiNsLookup (WalkState->ScopeInfo, Arg->Common.Value.String, ACPI_TYPE_ANY, ACPI_IMODE_LOAD_PASS2, ACPI_NS_SEARCH_PARENT | ACPI_NS_DONT_OPEN_SCOPE, WalkState, &(NewNode)); if (ACPI_SUCCESS (Status)) { /* * Make sure that what we found is indeed a method * We didn't search for a method on purpose, to see if the name * would resolve */ if (NewNode->Type != ACPI_TYPE_METHOD) { Status = AE_AML_OPERAND_TYPE; } /* We could put the returned object (Node) on the object stack for * later, but for now, we will put it in the "op" object that the * parser uses, so we can get it again at the end of this scope */ Op->Common.Node = NewNode; } else { ACPI_ERROR_NAMESPACE (Arg->Common.Value.String, Status); } break; default: break; } Cleanup: /* Remove the Node pushed at the very beginning */ WalkState->Operands[0] = NULL; WalkState->NumOperands = 0; return_ACPI_STATUS (Status); } Index: head/sys/contrib/dev/acpica/components/events/evrgnini.c =================================================================== --- head/sys/contrib/dev/acpica/components/events/evrgnini.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/events/evrgnini.c (revision 308953) @@ -1,687 +1,684 @@ /****************************************************************************** * * Module Name: evrgnini- ACPI AddressSpace (OpRegion) init * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include +#include #define _COMPONENT ACPI_EVENTS ACPI_MODULE_NAME ("evrgnini") /* Local prototypes */ static BOOLEAN AcpiEvIsPciRootBridge ( ACPI_NAMESPACE_NODE *Node); /******************************************************************************* * * FUNCTION: AcpiEvSystemMemoryRegionSetup * * PARAMETERS: Handle - Region we are interested in * Function - Start or stop * HandlerContext - Address space handler context * RegionContext - Region specific context * * RETURN: Status * * DESCRIPTION: Setup a SystemMemory operation region * ******************************************************************************/ ACPI_STATUS AcpiEvSystemMemoryRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext) { ACPI_OPERAND_OBJECT *RegionDesc = (ACPI_OPERAND_OBJECT *) Handle; ACPI_MEM_SPACE_CONTEXT *LocalRegionContext; ACPI_FUNCTION_TRACE (EvSystemMemoryRegionSetup); if (Function == ACPI_REGION_DEACTIVATE) { if (*RegionContext) { LocalRegionContext = (ACPI_MEM_SPACE_CONTEXT *) *RegionContext; /* Delete a cached mapping if present */ if (LocalRegionContext->MappedLength) { AcpiOsUnmapMemory (LocalRegionContext->MappedLogicalAddress, LocalRegionContext->MappedLength); } ACPI_FREE (LocalRegionContext); *RegionContext = NULL; } return_ACPI_STATUS (AE_OK); } /* Create a new context */ LocalRegionContext = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_MEM_SPACE_CONTEXT)); if (!(LocalRegionContext)) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Save the region length and address for use in the handler */ LocalRegionContext->Length = RegionDesc->Region.Length; LocalRegionContext->Address = RegionDesc->Region.Address; *RegionContext = LocalRegionContext; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvIoSpaceRegionSetup * * PARAMETERS: Handle - Region we are interested in * Function - Start or stop * HandlerContext - Address space handler context * RegionContext - Region specific context * * RETURN: Status * * DESCRIPTION: Setup a IO operation region * ******************************************************************************/ ACPI_STATUS AcpiEvIoSpaceRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext) { ACPI_FUNCTION_TRACE (EvIoSpaceRegionSetup); if (Function == ACPI_REGION_DEACTIVATE) { *RegionContext = NULL; } else { *RegionContext = HandlerContext; } return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvPciConfigRegionSetup * * PARAMETERS: Handle - Region we are interested in * Function - Start or stop * HandlerContext - Address space handler context * RegionContext - Region specific context * * RETURN: Status * * DESCRIPTION: Setup a PCI_Config operation region * * MUTEX: Assumes namespace is not locked * ******************************************************************************/ ACPI_STATUS AcpiEvPciConfigRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext) { ACPI_STATUS Status = AE_OK; UINT64 PciValue; ACPI_PCI_ID *PciId = *RegionContext; ACPI_OPERAND_OBJECT *HandlerObj; ACPI_NAMESPACE_NODE *ParentNode; ACPI_NAMESPACE_NODE *PciRootNode; ACPI_NAMESPACE_NODE *PciDeviceNode; ACPI_OPERAND_OBJECT *RegionObj = (ACPI_OPERAND_OBJECT *) Handle; ACPI_FUNCTION_TRACE (EvPciConfigRegionSetup); HandlerObj = RegionObj->Region.Handler; if (!HandlerObj) { /* * No installed handler. This shouldn't happen because the dispatch * routine checks before we get here, but we check again just in case. */ ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION, "Attempting to init a region %p, with no handler\n", RegionObj)); return_ACPI_STATUS (AE_NOT_EXIST); } *RegionContext = NULL; if (Function == ACPI_REGION_DEACTIVATE) { if (PciId) { ACPI_FREE (PciId); } return_ACPI_STATUS (Status); } ParentNode = RegionObj->Region.Node->Parent; /* * Get the _SEG and _BBN values from the device upon which the handler * is installed. * * We need to get the _SEG and _BBN objects relative to the PCI BUS device. * This is the device the handler has been registered to handle. */ /* * If the AddressSpace.Node is still pointing to the root, we need * to scan upward for a PCI Root bridge and re-associate the OpRegion * handlers with that device. */ if (HandlerObj->AddressSpace.Node == AcpiGbl_RootNode) { /* Start search from the parent object */ PciRootNode = ParentNode; while (PciRootNode != AcpiGbl_RootNode) { /* Get the _HID/_CID in order to detect a RootBridge */ if (AcpiEvIsPciRootBridge (PciRootNode)) { /* Install a handler for this PCI root bridge */ Status = AcpiInstallAddressSpaceHandler ( (ACPI_HANDLE) PciRootNode, ACPI_ADR_SPACE_PCI_CONFIG, ACPI_DEFAULT_HANDLER, NULL, NULL); if (ACPI_FAILURE (Status)) { if (Status == AE_SAME_HANDLER) { /* * It is OK if the handler is already installed on the * root bridge. Still need to return a context object * for the new PCI_Config operation region, however. */ Status = AE_OK; } else { ACPI_EXCEPTION ((AE_INFO, Status, "Could not install PciConfig handler " "for Root Bridge %4.4s", AcpiUtGetNodeName (PciRootNode))); } } break; } PciRootNode = PciRootNode->Parent; } /* PCI root bridge not found, use namespace root node */ } else { PciRootNode = HandlerObj->AddressSpace.Node; } /* * If this region is now initialized, we are done. * (InstallAddressSpaceHandler could have initialized it) */ if (RegionObj->Region.Flags & AOPOBJ_SETUP_COMPLETE) { return_ACPI_STATUS (AE_OK); } /* Region is still not initialized. Create a new context */ PciId = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_PCI_ID)); if (!PciId) { return_ACPI_STATUS (AE_NO_MEMORY); } /* * For PCI_Config space access, we need the segment, bus, device and * function numbers. Acquire them here. * * Find the parent device object. (This allows the operation region to be * within a subscope under the device, such as a control method.) */ PciDeviceNode = RegionObj->Region.Node; while (PciDeviceNode && (PciDeviceNode->Type != ACPI_TYPE_DEVICE)) { PciDeviceNode = PciDeviceNode->Parent; } if (!PciDeviceNode) { ACPI_FREE (PciId); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } /* * Get the PCI device and function numbers from the _ADR object * contained in the parent's scope. */ Status = AcpiUtEvaluateNumericObject (METHOD_NAME__ADR, PciDeviceNode, &PciValue); /* * The default is zero, and since the allocation above zeroed the data, * just do nothing on failure. */ if (ACPI_SUCCESS (Status)) { PciId->Device = ACPI_HIWORD (ACPI_LODWORD (PciValue)); PciId->Function = ACPI_LOWORD (ACPI_LODWORD (PciValue)); } /* The PCI segment number comes from the _SEG method */ Status = AcpiUtEvaluateNumericObject (METHOD_NAME__SEG, PciRootNode, &PciValue); if (ACPI_SUCCESS (Status)) { PciId->Segment = ACPI_LOWORD (PciValue); } /* The PCI bus number comes from the _BBN method */ Status = AcpiUtEvaluateNumericObject (METHOD_NAME__BBN, PciRootNode, &PciValue); if (ACPI_SUCCESS (Status)) { PciId->Bus = ACPI_LOWORD (PciValue); } /* Complete/update the PCI ID for this device */ Status = AcpiHwDerivePciId (PciId, PciRootNode, RegionObj->Region.Node); if (ACPI_FAILURE (Status)) { ACPI_FREE (PciId); return_ACPI_STATUS (Status); } *RegionContext = PciId; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvIsPciRootBridge * * PARAMETERS: Node - Device node being examined * * RETURN: TRUE if device is a PCI/PCI-Express Root Bridge * * DESCRIPTION: Determine if the input device represents a PCI Root Bridge by * examining the _HID and _CID for the device. * ******************************************************************************/ static BOOLEAN AcpiEvIsPciRootBridge ( ACPI_NAMESPACE_NODE *Node) { ACPI_STATUS Status; ACPI_PNP_DEVICE_ID *Hid; ACPI_PNP_DEVICE_ID_LIST *Cid; UINT32 i; BOOLEAN Match; /* Get the _HID and check for a PCI Root Bridge */ Status = AcpiUtExecute_HID (Node, &Hid); if (ACPI_FAILURE (Status)) { return (FALSE); } Match = AcpiUtIsPciRootBridge (Hid->String); ACPI_FREE (Hid); if (Match) { return (TRUE); } /* The _HID did not match. Get the _CID and check for a PCI Root Bridge */ Status = AcpiUtExecute_CID (Node, &Cid); if (ACPI_FAILURE (Status)) { return (FALSE); } /* Check all _CIDs in the returned list */ for (i = 0; i < Cid->Count; i++) { if (AcpiUtIsPciRootBridge (Cid->Ids[i].String)) { ACPI_FREE (Cid); return (TRUE); } } ACPI_FREE (Cid); return (FALSE); } /******************************************************************************* * * FUNCTION: AcpiEvPciBarRegionSetup * * PARAMETERS: Handle - Region we are interested in * Function - Start or stop * HandlerContext - Address space handler context * RegionContext - Region specific context * * RETURN: Status * * DESCRIPTION: Setup a PciBAR operation region * * MUTEX: Assumes namespace is not locked * ******************************************************************************/ ACPI_STATUS AcpiEvPciBarRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext) { ACPI_FUNCTION_TRACE (EvPciBarRegionSetup); return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvCmosRegionSetup * * PARAMETERS: Handle - Region we are interested in * Function - Start or stop * HandlerContext - Address space handler context * RegionContext - Region specific context * * RETURN: Status * * DESCRIPTION: Setup a CMOS operation region * * MUTEX: Assumes namespace is not locked * ******************************************************************************/ ACPI_STATUS AcpiEvCmosRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext) { ACPI_FUNCTION_TRACE (EvCmosRegionSetup); return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvDefaultRegionSetup * * PARAMETERS: Handle - Region we are interested in * Function - Start or stop * HandlerContext - Address space handler context * RegionContext - Region specific context * * RETURN: Status * * DESCRIPTION: Default region initialization * ******************************************************************************/ ACPI_STATUS AcpiEvDefaultRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext) { ACPI_FUNCTION_TRACE (EvDefaultRegionSetup); if (Function == ACPI_REGION_DEACTIVATE) { *RegionContext = NULL; } else { *RegionContext = HandlerContext; } return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvInitializeRegion * * PARAMETERS: RegionObj - Region we are initializing - * AcpiNsLocked - Is namespace locked? * * RETURN: Status * * DESCRIPTION: Initializes the region, finds any _REG methods and saves them * for execution at a later time * * Get the appropriate address space handler for a newly * created region. * * This also performs address space specific initialization. For * example, PCI regions must have an _ADR object that contains * a PCI address in the scope of the definition. This address is * required to perform an access to PCI config space. * * MUTEX: Interpreter should be unlocked, because we may run the _REG * method for this region. * + * NOTE: Possible incompliance: + * There is a behavior conflict in automatic _REG execution: + * 1. When the interpreter is evaluating a method, we can only + * automatically run _REG for the following case: + * Method(_REG, 2) {} + * OperationRegion (OPR1, 0x80, 0x1000010, 0x4) + * 2. When the interpreter is loading a table, we can also + * automatically run _REG for the following case: + * OperationRegion (OPR1, 0x80, 0x1000010, 0x4) + * Method(_REG, 2) {} + * Though this may not be compliant to the de-facto standard, the + * logic is kept in order not to trigger regressions. And keeping + * this logic should be taken care by the caller of this function. + * ******************************************************************************/ ACPI_STATUS AcpiEvInitializeRegion ( - ACPI_OPERAND_OBJECT *RegionObj, - BOOLEAN AcpiNsLocked) + ACPI_OPERAND_OBJECT *RegionObj) { ACPI_OPERAND_OBJECT *HandlerObj; ACPI_OPERAND_OBJECT *ObjDesc; ACPI_ADR_SPACE_TYPE SpaceId; ACPI_NAMESPACE_NODE *Node; - ACPI_STATUS Status; - ACPI_FUNCTION_TRACE_U32 (EvInitializeRegion, AcpiNsLocked); + ACPI_FUNCTION_TRACE (EvInitializeRegion); if (!RegionObj) { return_ACPI_STATUS (AE_BAD_PARAMETER); } if (RegionObj->Common.Flags & AOPOBJ_OBJECT_INITIALIZED) { return_ACPI_STATUS (AE_OK); } RegionObj->Common.Flags |= AOPOBJ_OBJECT_INITIALIZED; Node = RegionObj->Region.Node->Parent; SpaceId = RegionObj->Region.SpaceId; /* * The following loop depends upon the root Node having no parent * ie: AcpiGbl_RootNode->Parent being set to NULL */ while (Node) { /* Check to see if a handler exists */ HandlerObj = NULL; ObjDesc = AcpiNsGetAttachedObject (Node); if (ObjDesc) { /* Can only be a handler if the object exists */ switch (Node->Type) { case ACPI_TYPE_DEVICE: case ACPI_TYPE_PROCESSOR: case ACPI_TYPE_THERMAL: HandlerObj = ObjDesc->CommonNotify.Handler; break; case ACPI_TYPE_METHOD: /* * If we are executing module level code, the original * Node's object was replaced by this Method object and we * saved the handler in the method object. * * See AcpiNsExecModuleCode */ if (!AcpiGbl_ParseTableAsTermList && ObjDesc->Method.InfoFlags & ACPI_METHOD_MODULE_LEVEL) { HandlerObj = ObjDesc->Method.Dispatch.Handler; } break; default: /* Ignore other objects */ break; } HandlerObj = AcpiEvFindRegionHandler (SpaceId, HandlerObj); if (HandlerObj) { /* Found correct handler */ ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION, "Found handler %p for region %p in obj %p\n", HandlerObj, RegionObj, ObjDesc)); - Status = AcpiEvAttachRegion (HandlerObj, RegionObj, - AcpiNsLocked); + (void) AcpiEvAttachRegion (HandlerObj, RegionObj, FALSE); /* * Tell all users that this region is usable by * running the _REG method */ - if (AcpiNsLocked) - { - Status = AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); - if (ACPI_FAILURE (Status)) - { - return_ACPI_STATUS (Status); - } - } - - Status = AcpiEvExecuteRegMethod (RegionObj, ACPI_REG_CONNECT); - - if (AcpiNsLocked) - { - Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); - if (ACPI_FAILURE (Status)) - { - return_ACPI_STATUS (Status); - } - } - + AcpiExExitInterpreter (); + (void) AcpiEvExecuteRegMethod (RegionObj, ACPI_REG_CONNECT); + AcpiExEnterInterpreter (); return_ACPI_STATUS (AE_OK); } } /* This node does not have the handler we need; Pop up one level */ Node = Node->Parent; } - /* If we get here, there is no handler for this region */ - + /* + * If we get here, there is no handler for this region. This is not + * fatal because many regions get created before a handler is installed + * for said region. + */ ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION, "No handler for RegionType %s(%X) (RegionObj %p)\n", AcpiUtGetRegionName (SpaceId), SpaceId, RegionObj)); - return_ACPI_STATUS (AE_NOT_EXIST); + return_ACPI_STATUS (AE_OK); } Index: head/sys/contrib/dev/acpica/components/executer/exconfig.c =================================================================== --- head/sys/contrib/dev/acpica/components/executer/exconfig.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/executer/exconfig.c (revision 308953) @@ -1,636 +1,600 @@ /****************************************************************************** * * Module Name: exconfig - Namespace reconfiguration (Load/Unload opcodes) * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #include #include #include #include #define _COMPONENT ACPI_EXECUTER ACPI_MODULE_NAME ("exconfig") /* Local prototypes */ static ACPI_STATUS AcpiExAddTable ( UINT32 TableIndex, ACPI_OPERAND_OBJECT **DdbHandle); static ACPI_STATUS AcpiExRegionRead ( ACPI_OPERAND_OBJECT *ObjDesc, UINT32 Length, UINT8 *Buffer); /******************************************************************************* * * FUNCTION: AcpiExAddTable * * PARAMETERS: Table - Pointer to raw table * ParentNode - Where to load the table (scope) * DdbHandle - Where to return the table handle. * * RETURN: Status * * DESCRIPTION: Common function to Install and Load an ACPI table with a * returned table handle. * ******************************************************************************/ static ACPI_STATUS AcpiExAddTable ( UINT32 TableIndex, ACPI_OPERAND_OBJECT **DdbHandle) { ACPI_OPERAND_OBJECT *ObjDesc; ACPI_FUNCTION_TRACE (ExAddTable); /* Create an object to be the table handle */ ObjDesc = AcpiUtCreateInternalObject (ACPI_TYPE_LOCAL_REFERENCE); if (!ObjDesc) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Init the table handle */ ObjDesc->Common.Flags |= AOPOBJ_DATA_VALID; ObjDesc->Reference.Class = ACPI_REFCLASS_TABLE; ObjDesc->Reference.Value = TableIndex; *DdbHandle = ObjDesc; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiExLoadTableOp * * PARAMETERS: WalkState - Current state with operands * ReturnDesc - Where to store the return object * * RETURN: Status * * DESCRIPTION: Load an ACPI table from the RSDT/XSDT * ******************************************************************************/ ACPI_STATUS AcpiExLoadTableOp ( ACPI_WALK_STATE *WalkState, ACPI_OPERAND_OBJECT **ReturnDesc) { ACPI_STATUS Status; ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0]; ACPI_NAMESPACE_NODE *ParentNode; ACPI_NAMESPACE_NODE *StartNode; ACPI_NAMESPACE_NODE *ParameterNode = NULL; ACPI_OPERAND_OBJECT *DdbHandle; UINT32 TableIndex; ACPI_FUNCTION_TRACE (ExLoadTableOp); /* Find the ACPI table in the RSDT/XSDT */ AcpiExExitInterpreter (); Status = AcpiTbFindTable ( Operand[0]->String.Pointer, Operand[1]->String.Pointer, Operand[2]->String.Pointer, &TableIndex); AcpiExEnterInterpreter (); if (ACPI_FAILURE (Status)) { if (Status != AE_NOT_FOUND) { return_ACPI_STATUS (Status); } /* Table not found, return an Integer=0 and AE_OK */ DdbHandle = AcpiUtCreateIntegerObject ((UINT64) 0); if (!DdbHandle) { return_ACPI_STATUS (AE_NO_MEMORY); } *ReturnDesc = DdbHandle; return_ACPI_STATUS (AE_OK); } /* Default nodes */ StartNode = WalkState->ScopeInfo->Scope.Node; ParentNode = AcpiGbl_RootNode; /* RootPath (optional parameter) */ if (Operand[3]->String.Length > 0) { /* * Find the node referenced by the RootPathString. This is the * location within the namespace where the table will be loaded. */ Status = AcpiNsGetNodeUnlocked (StartNode, Operand[3]->String.Pointer, ACPI_NS_SEARCH_PARENT, &ParentNode); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } /* ParameterPath (optional parameter) */ if (Operand[4]->String.Length > 0) { if ((Operand[4]->String.Pointer[0] != AML_ROOT_PREFIX) && (Operand[4]->String.Pointer[0] != AML_PARENT_PREFIX)) { /* * Path is not absolute, so it will be relative to the node * referenced by the RootPathString (or the NS root if omitted) */ StartNode = ParentNode; } /* Find the node referenced by the ParameterPathString */ Status = AcpiNsGetNodeUnlocked (StartNode, Operand[4]->String.Pointer, ACPI_NS_SEARCH_PARENT, &ParameterNode); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } /* Load the table into the namespace */ ACPI_INFO (("Dynamic OEM Table Load:")); AcpiExExitInterpreter (); Status = AcpiTbLoadTable (TableIndex, ParentNode); AcpiExEnterInterpreter (); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } Status = AcpiExAddTable (TableIndex, &DdbHandle); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Parameter Data (optional) */ if (ParameterNode) { /* Store the parameter data into the optional parameter object */ Status = AcpiExStore (Operand[5], ACPI_CAST_PTR (ACPI_OPERAND_OBJECT, ParameterNode), WalkState); if (ACPI_FAILURE (Status)) { (void) AcpiExUnloadTable (DdbHandle); AcpiUtRemoveReference (DdbHandle); return_ACPI_STATUS (Status); } } *ReturnDesc = DdbHandle; return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExRegionRead * * PARAMETERS: ObjDesc - Region descriptor * Length - Number of bytes to read * Buffer - Pointer to where to put the data * * RETURN: Status * * DESCRIPTION: Read data from an operation region. The read starts from the * beginning of the region. * ******************************************************************************/ static ACPI_STATUS AcpiExRegionRead ( ACPI_OPERAND_OBJECT *ObjDesc, UINT32 Length, UINT8 *Buffer) { ACPI_STATUS Status; UINT64 Value; UINT32 RegionOffset = 0; UINT32 i; /* Bytewise reads */ for (i = 0; i < Length; i++) { Status = AcpiEvAddressSpaceDispatch (ObjDesc, NULL, ACPI_READ, RegionOffset, 8, &Value); if (ACPI_FAILURE (Status)) { return (Status); } *Buffer = (UINT8) Value; Buffer++; RegionOffset++; } return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiExLoadOp * * PARAMETERS: ObjDesc - Region or Buffer/Field where the table will be * obtained * Target - Where a handle to the table will be stored * WalkState - Current state * * RETURN: Status * * DESCRIPTION: Load an ACPI table from a field or operation region * * NOTE: Region Fields (Field, BankField, IndexFields) are resolved to buffer * objects before this code is reached. * * If source is an operation region, it must refer to SystemMemory, as * per the ACPI specification. * ******************************************************************************/ ACPI_STATUS AcpiExLoadOp ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT *Target, ACPI_WALK_STATE *WalkState) { ACPI_OPERAND_OBJECT *DdbHandle; ACPI_TABLE_HEADER *TableHeader; ACPI_TABLE_HEADER *Table; UINT32 TableIndex; ACPI_STATUS Status; UINT32 Length; ACPI_FUNCTION_TRACE (ExLoadOp); /* Source Object can be either an OpRegion or a Buffer/Field */ switch (ObjDesc->Common.Type) { case ACPI_TYPE_REGION: ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Load table from Region %p\n", ObjDesc)); /* Region must be SystemMemory (from ACPI spec) */ if (ObjDesc->Region.SpaceId != ACPI_ADR_SPACE_SYSTEM_MEMORY) { return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } /* * If the Region Address and Length have not been previously * evaluated, evaluate them now and save the results. */ if (!(ObjDesc->Common.Flags & AOPOBJ_DATA_VALID)) { Status = AcpiDsGetRegionArguments (ObjDesc); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } /* Get the table header first so we can get the table length */ TableHeader = ACPI_ALLOCATE (sizeof (ACPI_TABLE_HEADER)); if (!TableHeader) { return_ACPI_STATUS (AE_NO_MEMORY); } Status = AcpiExRegionRead (ObjDesc, sizeof (ACPI_TABLE_HEADER), ACPI_CAST_PTR (UINT8, TableHeader)); Length = TableHeader->Length; ACPI_FREE (TableHeader); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Must have at least an ACPI table header */ if (Length < sizeof (ACPI_TABLE_HEADER)) { return_ACPI_STATUS (AE_INVALID_TABLE_LENGTH); } /* * The original implementation simply mapped the table, with no copy. * However, the memory region is not guaranteed to remain stable and * we must copy the table to a local buffer. For example, the memory * region is corrupted after suspend on some machines. Dynamically * loaded tables are usually small, so this overhead is minimal. * * The latest implementation (5/2009) does not use a mapping at all. * We use the low-level operation region interface to read the table * instead of the obvious optimization of using a direct mapping. * This maintains a consistent use of operation regions across the * entire subsystem. This is important if additional processing must * be performed in the (possibly user-installed) operation region * handler. For example, AcpiExec and ASLTS depend on this. */ /* Allocate a buffer for the table */ Table = ACPI_ALLOCATE (Length); if (!Table) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Read the entire table */ Status = AcpiExRegionRead (ObjDesc, Length, ACPI_CAST_PTR (UINT8, Table)); if (ACPI_FAILURE (Status)) { ACPI_FREE (Table); return_ACPI_STATUS (Status); } break; case ACPI_TYPE_BUFFER: /* Buffer or resolved RegionField */ ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Load table from Buffer or Field %p\n", ObjDesc)); /* Must have at least an ACPI table header */ if (ObjDesc->Buffer.Length < sizeof (ACPI_TABLE_HEADER)) { return_ACPI_STATUS (AE_INVALID_TABLE_LENGTH); } /* Get the actual table length from the table header */ TableHeader = ACPI_CAST_PTR ( ACPI_TABLE_HEADER, ObjDesc->Buffer.Pointer); Length = TableHeader->Length; /* Table cannot extend beyond the buffer */ if (Length > ObjDesc->Buffer.Length) { return_ACPI_STATUS (AE_AML_BUFFER_LIMIT); } if (Length < sizeof (ACPI_TABLE_HEADER)) { return_ACPI_STATUS (AE_INVALID_TABLE_LENGTH); } /* * Copy the table from the buffer because the buffer could be * modified or even deleted in the future */ Table = ACPI_ALLOCATE (Length); if (!Table) { return_ACPI_STATUS (AE_NO_MEMORY); } memcpy (Table, TableHeader, Length); break; default: return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } /* Install the new table into the local data structures */ ACPI_INFO (("Dynamic OEM Table Load:")); AcpiExExitInterpreter (); - Status = AcpiTbInstallAndLoadTable (Table, ACPI_PTR_TO_PHYSADDR (Table), + Status = AcpiTbInstallAndLoadTable (ACPI_PTR_TO_PHYSADDR (Table), ACPI_TABLE_ORIGIN_INTERNAL_VIRTUAL, TRUE, &TableIndex); AcpiExEnterInterpreter (); if (ACPI_FAILURE (Status)) { /* Delete allocated table buffer */ ACPI_FREE (Table); return_ACPI_STATUS (Status); } /* * Add the table to the namespace. * * Note: Load the table objects relative to the root of the namespace. * This appears to go against the ACPI specification, but we do it for * compatibility with other ACPI implementations. */ Status = AcpiExAddTable (TableIndex, &DdbHandle); if (ACPI_FAILURE (Status)) { /* On error, TablePtr was deallocated above */ return_ACPI_STATUS (Status); } /* Store the DdbHandle into the Target operand */ Status = AcpiExStore (DdbHandle, Target, WalkState); if (ACPI_FAILURE (Status)) { (void) AcpiExUnloadTable (DdbHandle); /* TablePtr was deallocated above */ AcpiUtRemoveReference (DdbHandle); return_ACPI_STATUS (Status); } /* Remove the reference by added by AcpiExStore above */ AcpiUtRemoveReference (DdbHandle); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExUnloadTable * * PARAMETERS: DdbHandle - Handle to a previously loaded table * * RETURN: Status * * DESCRIPTION: Unload an ACPI table * ******************************************************************************/ ACPI_STATUS AcpiExUnloadTable ( ACPI_OPERAND_OBJECT *DdbHandle) { ACPI_STATUS Status = AE_OK; ACPI_OPERAND_OBJECT *TableDesc = DdbHandle; UINT32 TableIndex; - ACPI_TABLE_HEADER *Table; ACPI_FUNCTION_TRACE (ExUnloadTable); /* * Temporarily emit a warning so that the ASL for the machine can be * hopefully obtained. This is to say that the Unload() operator is * extremely rare if not completely unused. */ ACPI_WARNING ((AE_INFO, "Received request to unload an ACPI table")); /* * Validate the handle * Although the handle is partially validated in AcpiExReconfiguration() * when it calls AcpiExResolveOperands(), the handle is more completely * validated here. * * Handle must be a valid operand object of type reference. Also, the * DdbHandle must still be marked valid (table has not been previously * unloaded) */ if ((!DdbHandle) || (ACPI_GET_DESCRIPTOR_TYPE (DdbHandle) != ACPI_DESC_TYPE_OPERAND) || (DdbHandle->Common.Type != ACPI_TYPE_LOCAL_REFERENCE) || (!(DdbHandle->Common.Flags & AOPOBJ_DATA_VALID))) { return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } /* Get the table index from the DdbHandle */ TableIndex = TableDesc->Reference.Value; /* * Release the interpreter lock so that the table lock won't have * strict order requirement against it. */ AcpiExExitInterpreter (); - - /* Ensure the table is still loaded */ - - if (!AcpiTbIsTableLoaded (TableIndex)) - { - Status = AE_NOT_EXIST; - goto LockAndExit; - } - - /* Invoke table handler if present */ - - if (AcpiGbl_TableHandler) - { - Status = AcpiGetTableByIndex (TableIndex, &Table); - if (ACPI_SUCCESS (Status)) - { - (void) AcpiGbl_TableHandler (ACPI_TABLE_EVENT_UNLOAD, Table, - AcpiGbl_TableHandlerContext); - } - } - - /* Delete the portion of the namespace owned by this table */ - - Status = AcpiTbDeleteNamespaceByOwner (TableIndex); - if (ACPI_FAILURE (Status)) - { - goto LockAndExit; - } - - (void) AcpiTbReleaseOwnerId (TableIndex); - AcpiTbSetTableLoadedFlag (TableIndex, FALSE); - -LockAndExit: - - /* Re-acquire the interpreter lock */ - + Status = AcpiTbUnloadTable (TableIndex); AcpiExEnterInterpreter (); /* * Invalidate the handle. We do this because the handle may be stored * in a named object and may not be actually deleted until much later. */ if (ACPI_SUCCESS (Status)) { DdbHandle->Common.Flags &= ~AOPOBJ_DATA_VALID; } return_ACPI_STATUS (Status); } Index: head/sys/contrib/dev/acpica/components/executer/exconvrt.c =================================================================== --- head/sys/contrib/dev/acpica/components/executer/exconvrt.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/executer/exconvrt.c (revision 308953) @@ -1,745 +1,744 @@ /****************************************************************************** * * Module Name: exconvrt - Object conversion routines * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #define _COMPONENT ACPI_EXECUTER ACPI_MODULE_NAME ("exconvrt") /* Local prototypes */ static UINT32 AcpiExConvertToAscii ( UINT64 Integer, UINT16 Base, UINT8 *String, UINT8 MaxLength); /******************************************************************************* * * FUNCTION: AcpiExConvertToInteger * * PARAMETERS: ObjDesc - Object to be converted. Must be an * Integer, Buffer, or String * ResultDesc - Where the new Integer object is returned * Flags - Used for string conversion * * RETURN: Status * * DESCRIPTION: Convert an ACPI Object to an integer. * ******************************************************************************/ ACPI_STATUS AcpiExConvertToInteger ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT **ResultDesc, UINT32 Flags) { ACPI_OPERAND_OBJECT *ReturnDesc; UINT8 *Pointer; UINT64 Result; UINT32 i; UINT32 Count; ACPI_STATUS Status; ACPI_FUNCTION_TRACE_PTR (ExConvertToInteger, ObjDesc); switch (ObjDesc->Common.Type) { case ACPI_TYPE_INTEGER: /* No conversion necessary */ *ResultDesc = ObjDesc; return_ACPI_STATUS (AE_OK); case ACPI_TYPE_BUFFER: case ACPI_TYPE_STRING: /* Note: Takes advantage of common buffer/string fields */ Pointer = ObjDesc->Buffer.Pointer; Count = ObjDesc->Buffer.Length; break; default: return_ACPI_STATUS (AE_TYPE); } /* * Convert the buffer/string to an integer. Note that both buffers and * strings are treated as raw data - we don't convert ascii to hex for * strings. * * There are two terminating conditions for the loop: * 1) The size of an integer has been reached, or * 2) The end of the buffer or string has been reached */ Result = 0; /* String conversion is different than Buffer conversion */ switch (ObjDesc->Common.Type) { case ACPI_TYPE_STRING: /* * Convert string to an integer - for most cases, the string must be * hexadecimal as per the ACPI specification. The only exception (as * of ACPI 3.0) is that the ToInteger() operator allows both decimal * and hexadecimal strings (hex prefixed with "0x"). */ Status = AcpiUtStrtoul64 (ACPI_CAST_PTR (char, Pointer), (AcpiGbl_IntegerByteWidth | Flags), &Result); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } break; case ACPI_TYPE_BUFFER: /* Check for zero-length buffer */ if (!Count) { return_ACPI_STATUS (AE_AML_BUFFER_LIMIT); } /* Transfer no more than an integer's worth of data */ if (Count > AcpiGbl_IntegerByteWidth) { Count = AcpiGbl_IntegerByteWidth; } /* * Convert buffer to an integer - we simply grab enough raw data * from the buffer to fill an integer */ for (i = 0; i < Count; i++) { /* * Get next byte and shift it into the Result. * Little endian is used, meaning that the first byte of the buffer * is the LSB of the integer */ Result |= (((UINT64) Pointer[i]) << (i * 8)); } break; default: /* No other types can get here */ break; } /* Create a new integer */ ReturnDesc = AcpiUtCreateIntegerObject (Result); if (!ReturnDesc) { return_ACPI_STATUS (AE_NO_MEMORY); } ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Converted value: %8.8X%8.8X\n", ACPI_FORMAT_UINT64 (Result))); /* Save the Result */ (void) AcpiExTruncateFor32bitTable (ReturnDesc); *ResultDesc = ReturnDesc; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiExConvertToBuffer * * PARAMETERS: ObjDesc - Object to be converted. Must be an * Integer, Buffer, or String * ResultDesc - Where the new buffer object is returned * * RETURN: Status * * DESCRIPTION: Convert an ACPI Object to a Buffer * ******************************************************************************/ ACPI_STATUS AcpiExConvertToBuffer ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT **ResultDesc) { ACPI_OPERAND_OBJECT *ReturnDesc; UINT8 *NewBuf; ACPI_FUNCTION_TRACE_PTR (ExConvertToBuffer, ObjDesc); switch (ObjDesc->Common.Type) { case ACPI_TYPE_BUFFER: /* No conversion necessary */ *ResultDesc = ObjDesc; return_ACPI_STATUS (AE_OK); case ACPI_TYPE_INTEGER: /* * Create a new Buffer object. * Need enough space for one integer */ ReturnDesc = AcpiUtCreateBufferObject (AcpiGbl_IntegerByteWidth); if (!ReturnDesc) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Copy the integer to the buffer, LSB first */ NewBuf = ReturnDesc->Buffer.Pointer; memcpy (NewBuf, &ObjDesc->Integer.Value, AcpiGbl_IntegerByteWidth); break; case ACPI_TYPE_STRING: /* * Create a new Buffer object * Size will be the string length * * NOTE: Add one to the string length to include the null terminator. * The ACPI spec is unclear on this subject, but there is existing * ASL/AML code that depends on the null being transferred to the new * buffer. */ ReturnDesc = AcpiUtCreateBufferObject ((ACPI_SIZE) ObjDesc->String.Length + 1); if (!ReturnDesc) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Copy the string to the buffer */ NewBuf = ReturnDesc->Buffer.Pointer; strncpy ((char *) NewBuf, (char *) ObjDesc->String.Pointer, ObjDesc->String.Length); break; default: return_ACPI_STATUS (AE_TYPE); } /* Mark buffer initialized */ ReturnDesc->Common.Flags |= AOPOBJ_DATA_VALID; *ResultDesc = ReturnDesc; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiExConvertToAscii * * PARAMETERS: Integer - Value to be converted * Base - ACPI_STRING_DECIMAL or ACPI_STRING_HEX * String - Where the string is returned * DataWidth - Size of data item to be converted, in bytes * * RETURN: Actual string length * * DESCRIPTION: Convert an ACPI Integer to a hex or decimal string * ******************************************************************************/ static UINT32 AcpiExConvertToAscii ( UINT64 Integer, UINT16 Base, UINT8 *String, UINT8 DataWidth) { UINT64 Digit; UINT32 i; UINT32 j; UINT32 k = 0; UINT32 HexLength; UINT32 DecimalLength; UINT32 Remainder; BOOLEAN SupressZeros; ACPI_FUNCTION_ENTRY (); switch (Base) { case 10: /* Setup max length for the decimal number */ switch (DataWidth) { case 1: DecimalLength = ACPI_MAX8_DECIMAL_DIGITS; break; case 4: DecimalLength = ACPI_MAX32_DECIMAL_DIGITS; break; case 8: default: DecimalLength = ACPI_MAX64_DECIMAL_DIGITS; break; } SupressZeros = TRUE; /* No leading zeros */ Remainder = 0; for (i = DecimalLength; i > 0; i--) { /* Divide by nth factor of 10 */ Digit = Integer; for (j = 0; j < i; j++) { (void) AcpiUtShortDivide (Digit, 10, &Digit, &Remainder); } /* Handle leading zeros */ if (Remainder != 0) { SupressZeros = FALSE; } if (!SupressZeros) { String[k] = (UINT8) (ACPI_ASCII_ZERO + Remainder); k++; } } break; case 16: /* HexLength: 2 ascii hex chars per data byte */ HexLength = ACPI_MUL_2 (DataWidth); for (i = 0, j = (HexLength-1); i < HexLength; i++, j--) { /* Get one hex digit, most significant digits first */ String[k] = (UINT8) AcpiUtHexToAsciiChar (Integer, ACPI_MUL_4 (j)); k++; } break; default: return (0); } /* * Since leading zeros are suppressed, we must check for the case where * the integer equals 0 * * Finally, null terminate the string and return the length */ if (!k) { String [0] = ACPI_ASCII_ZERO; k = 1; } String [k] = 0; return ((UINT32) k); } /******************************************************************************* * * FUNCTION: AcpiExConvertToString * * PARAMETERS: ObjDesc - Object to be converted. Must be an * Integer, Buffer, or String * ResultDesc - Where the string object is returned * Type - String flags (base and conversion type) * * RETURN: Status * * DESCRIPTION: Convert an ACPI Object to a string * ******************************************************************************/ ACPI_STATUS AcpiExConvertToString ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT **ResultDesc, UINT32 Type) { ACPI_OPERAND_OBJECT *ReturnDesc; UINT8 *NewBuf; UINT32 i; UINT32 StringLength = 0; UINT16 Base = 16; UINT8 Separator = ','; ACPI_FUNCTION_TRACE_PTR (ExConvertToString, ObjDesc); switch (ObjDesc->Common.Type) { case ACPI_TYPE_STRING: /* No conversion necessary */ *ResultDesc = ObjDesc; return_ACPI_STATUS (AE_OK); case ACPI_TYPE_INTEGER: switch (Type) { case ACPI_EXPLICIT_CONVERT_DECIMAL: /* Make room for maximum decimal number */ StringLength = ACPI_MAX_DECIMAL_DIGITS; Base = 10; break; default: /* Two hex string characters for each integer byte */ StringLength = ACPI_MUL_2 (AcpiGbl_IntegerByteWidth); break; } /* * Create a new String * Need enough space for one ASCII integer (plus null terminator) */ ReturnDesc = AcpiUtCreateStringObject ((ACPI_SIZE) StringLength); if (!ReturnDesc) { return_ACPI_STATUS (AE_NO_MEMORY); } NewBuf = ReturnDesc->Buffer.Pointer; /* Convert integer to string */ StringLength = AcpiExConvertToAscii ( ObjDesc->Integer.Value, Base, NewBuf, AcpiGbl_IntegerByteWidth); /* Null terminate at the correct place */ ReturnDesc->String.Length = StringLength; NewBuf [StringLength] = 0; break; case ACPI_TYPE_BUFFER: /* Setup string length, base, and separator */ switch (Type) { case ACPI_EXPLICIT_CONVERT_DECIMAL: /* Used by ToDecimalString */ /* * From ACPI: "If Data is a buffer, it is converted to a string of * decimal values separated by commas." */ Base = 10; /* * Calculate the final string length. Individual string values * are variable length (include separator for each) */ for (i = 0; i < ObjDesc->Buffer.Length; i++) { if (ObjDesc->Buffer.Pointer[i] >= 100) { StringLength += 4; } else if (ObjDesc->Buffer.Pointer[i] >= 10) { StringLength += 3; } else { StringLength += 2; } } break; case ACPI_IMPLICIT_CONVERT_HEX: /* * From the ACPI spec: *"The entire contents of the buffer are converted to a string of * two-character hexadecimal numbers, each separated by a space." */ Separator = ' '; StringLength = (ObjDesc->Buffer.Length * 3); break; case ACPI_EXPLICIT_CONVERT_HEX: /* Used by ToHexString */ /* * From ACPI: "If Data is a buffer, it is converted to a string of * hexadecimal values separated by commas." */ StringLength = (ObjDesc->Buffer.Length * 3); break; default: return_ACPI_STATUS (AE_BAD_PARAMETER); } /* * Create a new string object and string buffer * (-1 because of extra separator included in StringLength from above) * Allow creation of zero-length strings from zero-length buffers. */ if (StringLength) { StringLength--; } ReturnDesc = AcpiUtCreateStringObject ((ACPI_SIZE) StringLength); if (!ReturnDesc) { return_ACPI_STATUS (AE_NO_MEMORY); } NewBuf = ReturnDesc->Buffer.Pointer; /* * Convert buffer bytes to hex or decimal values * (separated by commas or spaces) */ for (i = 0; i < ObjDesc->Buffer.Length; i++) { NewBuf += AcpiExConvertToAscii ( (UINT64) ObjDesc->Buffer.Pointer[i], Base, NewBuf, 1); *NewBuf++ = Separator; /* each separated by a comma or space */ } /* * Null terminate the string * (overwrites final comma/space from above) */ if (ObjDesc->Buffer.Length) { NewBuf--; } *NewBuf = 0; break; default: return_ACPI_STATUS (AE_TYPE); } *ResultDesc = ReturnDesc; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiExConvertToTargetType * * PARAMETERS: DestinationType - Current type of the destination * SourceDesc - Source object to be converted. * ResultDesc - Where the converted object is returned * WalkState - Current method state * * RETURN: Status * * DESCRIPTION: Implements "implicit conversion" rules for storing an object. * ******************************************************************************/ ACPI_STATUS AcpiExConvertToTargetType ( ACPI_OBJECT_TYPE DestinationType, ACPI_OPERAND_OBJECT *SourceDesc, ACPI_OPERAND_OBJECT **ResultDesc, ACPI_WALK_STATE *WalkState) { ACPI_STATUS Status = AE_OK; ACPI_FUNCTION_TRACE (ExConvertToTargetType); /* Default behavior */ *ResultDesc = SourceDesc; /* * If required by the target, * perform implicit conversion on the source before we store it. */ switch (GET_CURRENT_ARG_TYPE (WalkState->OpInfo->RuntimeArgs)) { case ARGI_SIMPLE_TARGET: - case ARGI_FIXED_TARGET: case ARGI_INTEGER_REF: /* Handles Increment, Decrement cases */ switch (DestinationType) { case ACPI_TYPE_LOCAL_REGION_FIELD: /* * Named field can always handle conversions */ break; default: /* No conversion allowed for these types */ if (DestinationType != SourceDesc->Common.Type) { ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Explicit operator, will store (%s) over existing type (%s)\n", AcpiUtGetObjectTypeName (SourceDesc), AcpiUtGetTypeName (DestinationType))); Status = AE_TYPE; } } break; case ARGI_TARGETREF: case ARGI_STORE_TARGET: switch (DestinationType) { case ACPI_TYPE_INTEGER: case ACPI_TYPE_BUFFER_FIELD: case ACPI_TYPE_LOCAL_BANK_FIELD: case ACPI_TYPE_LOCAL_INDEX_FIELD: /* * These types require an Integer operand. We can convert * a Buffer or a String to an Integer if necessary. */ Status = AcpiExConvertToInteger (SourceDesc, ResultDesc, ACPI_STRTOUL_BASE16); break; case ACPI_TYPE_STRING: /* * The operand must be a String. We can convert an * Integer or Buffer if necessary */ Status = AcpiExConvertToString (SourceDesc, ResultDesc, ACPI_IMPLICIT_CONVERT_HEX); break; case ACPI_TYPE_BUFFER: /* * The operand must be a Buffer. We can convert an * Integer or String if necessary */ Status = AcpiExConvertToBuffer (SourceDesc, ResultDesc); break; default: ACPI_ERROR ((AE_INFO, "Bad destination type during conversion: 0x%X", DestinationType)); Status = AE_AML_INTERNAL; break; } break; case ARGI_REFERENCE: /* * CreateXxxxField cases - we are storing the field object into the name */ break; default: ACPI_ERROR ((AE_INFO, "Unknown Target type ID 0x%X AmlOpcode 0x%X DestType %s", GET_CURRENT_ARG_TYPE (WalkState->OpInfo->RuntimeArgs), WalkState->Opcode, AcpiUtGetTypeName (DestinationType))); Status = AE_AML_INTERNAL; } /* * Source-to-Target conversion semantics: * * If conversion to the target type cannot be performed, then simply * overwrite the target with the new object and type. */ if (Status == AE_TYPE) { Status = AE_OK; } return_ACPI_STATUS (Status); } Index: head/sys/contrib/dev/acpica/components/executer/exresop.c =================================================================== --- head/sys/contrib/dev/acpica/components/executer/exresop.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/executer/exresop.c (revision 308953) @@ -1,732 +1,731 @@ /****************************************************************************** * * Module Name: exresop - AML Interpreter operand/object resolution * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #include #include #define _COMPONENT ACPI_EXECUTER ACPI_MODULE_NAME ("exresop") /* Local prototypes */ static ACPI_STATUS AcpiExCheckObjectType ( ACPI_OBJECT_TYPE TypeNeeded, ACPI_OBJECT_TYPE ThisType, void *Object); /******************************************************************************* * * FUNCTION: AcpiExCheckObjectType * * PARAMETERS: TypeNeeded Object type needed * ThisType Actual object type * Object Object pointer * * RETURN: Status * * DESCRIPTION: Check required type against actual type * ******************************************************************************/ static ACPI_STATUS AcpiExCheckObjectType ( ACPI_OBJECT_TYPE TypeNeeded, ACPI_OBJECT_TYPE ThisType, void *Object) { ACPI_FUNCTION_ENTRY (); if (TypeNeeded == ACPI_TYPE_ANY) { /* All types OK, so we don't perform any typechecks */ return (AE_OK); } if (TypeNeeded == ACPI_TYPE_LOCAL_REFERENCE) { /* * Allow the AML "Constant" opcodes (Zero, One, etc.) to be reference * objects and thus allow them to be targets. (As per the ACPI * specification, a store to a constant is a noop.) */ if ((ThisType == ACPI_TYPE_INTEGER) && (((ACPI_OPERAND_OBJECT *) Object)->Common.Flags & AOPOBJ_AML_CONSTANT)) { return (AE_OK); } } if (TypeNeeded != ThisType) { ACPI_ERROR ((AE_INFO, "Needed type [%s], found [%s] %p", AcpiUtGetTypeName (TypeNeeded), AcpiUtGetTypeName (ThisType), Object)); return (AE_AML_OPERAND_TYPE); } return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiExResolveOperands * * PARAMETERS: Opcode - Opcode being interpreted * StackPtr - Pointer to the operand stack to be * resolved * WalkState - Current state * * RETURN: Status * * DESCRIPTION: Convert multiple input operands to the types required by the * target operator. * * Each 5-bit group in ArgTypes represents one required * operand and indicates the required Type. The corresponding operand * will be converted to the required type if possible, otherwise we * abort with an exception. * ******************************************************************************/ ACPI_STATUS AcpiExResolveOperands ( UINT16 Opcode, ACPI_OPERAND_OBJECT **StackPtr, ACPI_WALK_STATE *WalkState) { ACPI_OPERAND_OBJECT *ObjDesc; ACPI_STATUS Status = AE_OK; UINT8 ObjectType; UINT32 ArgTypes; const ACPI_OPCODE_INFO *OpInfo; UINT32 ThisArgType; ACPI_OBJECT_TYPE TypeNeeded; UINT16 TargetOp = 0; ACPI_FUNCTION_TRACE_U32 (ExResolveOperands, Opcode); OpInfo = AcpiPsGetOpcodeInfo (Opcode); if (OpInfo->Class == AML_CLASS_UNKNOWN) { return_ACPI_STATUS (AE_AML_BAD_OPCODE); } ArgTypes = OpInfo->RuntimeArgs; if (ArgTypes == ARGI_INVALID_OPCODE) { ACPI_ERROR ((AE_INFO, "Unknown AML opcode 0x%X", Opcode)); return_ACPI_STATUS (AE_AML_INTERNAL); } ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Opcode %X [%s] RequiredOperandTypes=%8.8X\n", Opcode, OpInfo->Name, ArgTypes)); /* * Normal exit is with (ArgTypes == 0) at end of argument list. * Function will return an exception from within the loop upon * finding an entry which is not (or cannot be converted * to) the required type; if stack underflows; or upon * finding a NULL stack entry (which should not happen). */ while (GET_CURRENT_ARG_TYPE (ArgTypes)) { if (!StackPtr || !*StackPtr) { ACPI_ERROR ((AE_INFO, "Null stack entry at %p", StackPtr)); return_ACPI_STATUS (AE_AML_INTERNAL); } /* Extract useful items */ ObjDesc = *StackPtr; /* Decode the descriptor type */ switch (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc)) { case ACPI_DESC_TYPE_NAMED: /* Namespace Node */ ObjectType = ((ACPI_NAMESPACE_NODE *) ObjDesc)->Type; /* * Resolve an alias object. The construction of these objects * guarantees that there is only one level of alias indirection; * thus, the attached object is always the aliased namespace node */ if (ObjectType == ACPI_TYPE_LOCAL_ALIAS) { ObjDesc = AcpiNsGetAttachedObject ( (ACPI_NAMESPACE_NODE *) ObjDesc); *StackPtr = ObjDesc; ObjectType = ((ACPI_NAMESPACE_NODE *) ObjDesc)->Type; } break; case ACPI_DESC_TYPE_OPERAND: /* ACPI internal object */ ObjectType = ObjDesc->Common.Type; /* Check for bad ACPI_OBJECT_TYPE */ if (!AcpiUtValidObjectType (ObjectType)) { ACPI_ERROR ((AE_INFO, "Bad operand object type [0x%X]", ObjectType)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } if (ObjectType == (UINT8) ACPI_TYPE_LOCAL_REFERENCE) { /* Validate the Reference */ switch (ObjDesc->Reference.Class) { case ACPI_REFCLASS_DEBUG: TargetOp = AML_DEBUG_OP; /*lint -fallthrough */ case ACPI_REFCLASS_ARG: case ACPI_REFCLASS_LOCAL: case ACPI_REFCLASS_INDEX: case ACPI_REFCLASS_REFOF: case ACPI_REFCLASS_TABLE: /* DdbHandle from LOAD_OP or LOAD_TABLE_OP */ case ACPI_REFCLASS_NAME: /* Reference to a named object */ ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Operand is a Reference, Class [%s] %2.2X\n", AcpiUtGetReferenceName (ObjDesc), ObjDesc->Reference.Class)); break; default: ACPI_ERROR ((AE_INFO, "Unknown Reference Class 0x%2.2X in %p", ObjDesc->Reference.Class, ObjDesc)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } } break; default: /* Invalid descriptor */ ACPI_ERROR ((AE_INFO, "Invalid descriptor %p [%s]", ObjDesc, AcpiUtGetDescriptorName (ObjDesc))); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } /* Get one argument type, point to the next */ ThisArgType = GET_CURRENT_ARG_TYPE (ArgTypes); INCREMENT_ARG_LIST (ArgTypes); /* * Handle cases where the object does not need to be * resolved to a value */ switch (ThisArgType) { case ARGI_REF_OR_STRING: /* Can be a String or Reference */ if ((ACPI_GET_DESCRIPTOR_TYPE (ObjDesc) == ACPI_DESC_TYPE_OPERAND) && (ObjDesc->Common.Type == ACPI_TYPE_STRING)) { /* * String found - the string references a named object and * must be resolved to a node */ goto NextOperand; } /* * Else not a string - fall through to the normal Reference * case below */ /*lint -fallthrough */ case ARGI_REFERENCE: /* References: */ case ARGI_INTEGER_REF: case ARGI_OBJECT_REF: case ARGI_DEVICE_REF: case ARGI_TARGETREF: /* Allows implicit conversion rules before store */ - case ARGI_FIXED_TARGET: /* No implicit conversion before store to target */ case ARGI_SIMPLE_TARGET: /* Name, Local, or Arg - no implicit conversion */ case ARGI_STORE_TARGET: /* * Need an operand of type ACPI_TYPE_LOCAL_REFERENCE * A Namespace Node is OK as-is */ if (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc) == ACPI_DESC_TYPE_NAMED) { goto NextOperand; } Status = AcpiExCheckObjectType ( ACPI_TYPE_LOCAL_REFERENCE, ObjectType, ObjDesc); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } goto NextOperand; case ARGI_DATAREFOBJ: /* Store operator only */ /* * We don't want to resolve IndexOp reference objects during * a store because this would be an implicit DeRefOf operation. * Instead, we just want to store the reference object. * -- All others must be resolved below. */ if ((Opcode == AML_STORE_OP) && ((*StackPtr)->Common.Type == ACPI_TYPE_LOCAL_REFERENCE) && ((*StackPtr)->Reference.Class == ACPI_REFCLASS_INDEX)) { goto NextOperand; } break; default: /* All cases covered above */ break; } /* * Resolve this object to a value */ Status = AcpiExResolveToValue (StackPtr, WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Get the resolved object */ ObjDesc = *StackPtr; /* * Check the resulting object (value) type */ switch (ThisArgType) { /* * For the simple cases, only one type of resolved object * is allowed */ case ARGI_MUTEX: /* Need an operand of type ACPI_TYPE_MUTEX */ TypeNeeded = ACPI_TYPE_MUTEX; break; case ARGI_EVENT: /* Need an operand of type ACPI_TYPE_EVENT */ TypeNeeded = ACPI_TYPE_EVENT; break; case ARGI_PACKAGE: /* Package */ /* Need an operand of type ACPI_TYPE_PACKAGE */ TypeNeeded = ACPI_TYPE_PACKAGE; break; case ARGI_ANYTYPE: /* Any operand type will do */ TypeNeeded = ACPI_TYPE_ANY; break; case ARGI_DDBHANDLE: /* Need an operand of type ACPI_TYPE_DDB_HANDLE */ TypeNeeded = ACPI_TYPE_LOCAL_REFERENCE; break; /* * The more complex cases allow multiple resolved object types */ case ARGI_INTEGER: /* * Need an operand of type ACPI_TYPE_INTEGER, but we can * implicitly convert from a STRING or BUFFER. * * Known as "Implicit Source Operand Conversion" */ Status = AcpiExConvertToInteger (ObjDesc, StackPtr, ACPI_STRTOUL_BASE16); if (ACPI_FAILURE (Status)) { if (Status == AE_TYPE) { ACPI_ERROR ((AE_INFO, "Needed [Integer/String/Buffer], found [%s] %p", AcpiUtGetObjectTypeName (ObjDesc), ObjDesc)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } return_ACPI_STATUS (Status); } if (ObjDesc != *StackPtr) { AcpiUtRemoveReference (ObjDesc); } goto NextOperand; case ARGI_BUFFER: /* * Need an operand of type ACPI_TYPE_BUFFER, * But we can implicitly convert from a STRING or INTEGER * Aka - "Implicit Source Operand Conversion" */ Status = AcpiExConvertToBuffer (ObjDesc, StackPtr); if (ACPI_FAILURE (Status)) { if (Status == AE_TYPE) { ACPI_ERROR ((AE_INFO, "Needed [Integer/String/Buffer], found [%s] %p", AcpiUtGetObjectTypeName (ObjDesc), ObjDesc)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } return_ACPI_STATUS (Status); } if (ObjDesc != *StackPtr) { AcpiUtRemoveReference (ObjDesc); } goto NextOperand; case ARGI_STRING: /* * Need an operand of type ACPI_TYPE_STRING, * But we can implicitly convert from a BUFFER or INTEGER * Aka - "Implicit Source Operand Conversion" */ Status = AcpiExConvertToString ( ObjDesc, StackPtr, ACPI_IMPLICIT_CONVERT_HEX); if (ACPI_FAILURE (Status)) { if (Status == AE_TYPE) { ACPI_ERROR ((AE_INFO, "Needed [Integer/String/Buffer], found [%s] %p", AcpiUtGetObjectTypeName (ObjDesc), ObjDesc)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } return_ACPI_STATUS (Status); } if (ObjDesc != *StackPtr) { AcpiUtRemoveReference (ObjDesc); } goto NextOperand; case ARGI_COMPUTEDATA: /* Need an operand of type INTEGER, STRING or BUFFER */ switch (ObjDesc->Common.Type) { case ACPI_TYPE_INTEGER: case ACPI_TYPE_STRING: case ACPI_TYPE_BUFFER: /* Valid operand */ break; default: ACPI_ERROR ((AE_INFO, "Needed [Integer/String/Buffer], found [%s] %p", AcpiUtGetObjectTypeName (ObjDesc), ObjDesc)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } goto NextOperand; case ARGI_BUFFER_OR_STRING: /* Need an operand of type STRING or BUFFER */ switch (ObjDesc->Common.Type) { case ACPI_TYPE_STRING: case ACPI_TYPE_BUFFER: /* Valid operand */ break; case ACPI_TYPE_INTEGER: /* Highest priority conversion is to type Buffer */ Status = AcpiExConvertToBuffer (ObjDesc, StackPtr); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } if (ObjDesc != *StackPtr) { AcpiUtRemoveReference (ObjDesc); } break; default: ACPI_ERROR ((AE_INFO, "Needed [Integer/String/Buffer], found [%s] %p", AcpiUtGetObjectTypeName (ObjDesc), ObjDesc)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } goto NextOperand; case ARGI_DATAOBJECT: /* * ARGI_DATAOBJECT is only used by the SizeOf operator. * Need a buffer, string, package, or RefOf reference. * * The only reference allowed here is a direct reference to * a namespace node. */ switch (ObjDesc->Common.Type) { case ACPI_TYPE_PACKAGE: case ACPI_TYPE_STRING: case ACPI_TYPE_BUFFER: case ACPI_TYPE_LOCAL_REFERENCE: /* Valid operand */ break; default: ACPI_ERROR ((AE_INFO, "Needed [Buffer/String/Package/Reference], found [%s] %p", AcpiUtGetObjectTypeName (ObjDesc), ObjDesc)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } goto NextOperand; case ARGI_COMPLEXOBJ: /* Need a buffer or package or (ACPI 2.0) String */ switch (ObjDesc->Common.Type) { case ACPI_TYPE_PACKAGE: case ACPI_TYPE_STRING: case ACPI_TYPE_BUFFER: /* Valid operand */ break; default: ACPI_ERROR ((AE_INFO, "Needed [Buffer/String/Package], found [%s] %p", AcpiUtGetObjectTypeName (ObjDesc), ObjDesc)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } goto NextOperand; case ARGI_REGION_OR_BUFFER: /* Used by Load() only */ /* * Need an operand of type REGION or a BUFFER * (which could be a resolved region field) */ switch (ObjDesc->Common.Type) { case ACPI_TYPE_BUFFER: case ACPI_TYPE_REGION: /* Valid operand */ break; default: ACPI_ERROR ((AE_INFO, "Needed [Region/Buffer], found [%s] %p", AcpiUtGetObjectTypeName (ObjDesc), ObjDesc)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } goto NextOperand; case ARGI_DATAREFOBJ: /* Used by the Store() operator only */ switch (ObjDesc->Common.Type) { case ACPI_TYPE_INTEGER: case ACPI_TYPE_PACKAGE: case ACPI_TYPE_STRING: case ACPI_TYPE_BUFFER: case ACPI_TYPE_BUFFER_FIELD: case ACPI_TYPE_LOCAL_REFERENCE: case ACPI_TYPE_LOCAL_REGION_FIELD: case ACPI_TYPE_LOCAL_BANK_FIELD: case ACPI_TYPE_LOCAL_INDEX_FIELD: case ACPI_TYPE_DDB_HANDLE: /* Valid operand */ break; default: if (AcpiGbl_EnableInterpreterSlack) { /* * Enable original behavior of Store(), allowing any * and all objects as the source operand. The ACPI * spec does not allow this, however. */ break; } if (TargetOp == AML_DEBUG_OP) { /* Allow store of any object to the Debug object */ break; } ACPI_ERROR ((AE_INFO, "Needed Integer/Buffer/String/Package/Ref/Ddb]" ", found [%s] %p", AcpiUtGetObjectTypeName (ObjDesc), ObjDesc)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } goto NextOperand; default: /* Unknown type */ ACPI_ERROR ((AE_INFO, "Internal - Unknown ARGI (required operand) type 0x%X", ThisArgType)); return_ACPI_STATUS (AE_BAD_PARAMETER); } /* * Make sure that the original object was resolved to the * required object type (Simple cases only). */ Status = AcpiExCheckObjectType ( TypeNeeded, (*StackPtr)->Common.Type, *StackPtr); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } NextOperand: /* * If more operands needed, decrement StackPtr to point * to next operand on stack */ if (GET_CURRENT_ARG_TYPE (ArgTypes)) { StackPtr--; } } ACPI_DUMP_OPERANDS (WalkState->Operands, AcpiPsGetOpcodeName (Opcode), WalkState->NumOperands); return_ACPI_STATUS (Status); } Index: head/sys/contrib/dev/acpica/components/namespace/nsload.c =================================================================== --- head/sys/contrib/dev/acpica/components/namespace/nsload.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/namespace/nsload.c (revision 308953) @@ -1,376 +1,378 @@ /****************************************************************************** * * Module Name: nsload - namespace loading/expanding/contracting procedures * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #include #include #define _COMPONENT ACPI_NAMESPACE ACPI_MODULE_NAME ("nsload") /* Local prototypes */ #ifdef ACPI_FUTURE_IMPLEMENTATION ACPI_STATUS AcpiNsUnloadNamespace ( ACPI_HANDLE Handle); static ACPI_STATUS AcpiNsDeleteSubtree ( ACPI_HANDLE StartHandle); #endif #ifndef ACPI_NO_METHOD_EXECUTION /******************************************************************************* * * FUNCTION: AcpiNsLoadTable * * PARAMETERS: TableIndex - Index for table to be loaded * Node - Owning NS node * * RETURN: Status * * DESCRIPTION: Load one ACPI table into the namespace * ******************************************************************************/ ACPI_STATUS AcpiNsLoadTable ( UINT32 TableIndex, ACPI_NAMESPACE_NODE *Node) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (NsLoadTable); /* If table already loaded into namespace, just return */ if (AcpiTbIsTableLoaded (TableIndex)) { Status = AE_ALREADY_EXISTS; goto Unlock; } ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "**** Loading table into namespace ****\n")); Status = AcpiTbAllocateOwnerId (TableIndex); if (ACPI_FAILURE (Status)) { goto Unlock; } /* * Parse the table and load the namespace with all named * objects found within. Control methods are NOT parsed * at this time. In fact, the control methods cannot be * parsed until the entire namespace is loaded, because * if a control method makes a forward reference (call) * to another control method, we can't continue parsing * because we don't know how many arguments to parse next! */ Status = AcpiNsParseTable (TableIndex, Node); if (ACPI_SUCCESS (Status)) { AcpiTbSetTableLoadedFlag (TableIndex, TRUE); } else { /* * On error, delete any namespace objects created by this table. * We cannot initialize these objects, so delete them. There are * a couple of expecially bad cases: * AE_ALREADY_EXISTS - namespace collision. * AE_NOT_FOUND - the target of a Scope operator does not * exist. This target of Scope must already exist in the * namespace, as per the ACPI specification. */ AcpiNsDeleteNamespaceByOwner ( AcpiGbl_RootTableList.Tables[TableIndex].OwnerId); AcpiTbReleaseOwnerId (TableIndex); return_ACPI_STATUS (Status); } Unlock: if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* * Now we can parse the control methods. We always parse * them here for a sanity check, and if configured for * just-in-time parsing, we delete the control method * parse trees. */ ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "**** Begin Table Object Initialization\n")); + AcpiExEnterInterpreter (); Status = AcpiDsInitializeObjects (TableIndex, Node); + AcpiExExitInterpreter (); ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "**** Completed Table Object Initialization\n")); /* * Execute any module-level code that was detected during the table load * phase. Although illegal since ACPI 2.0, there are many machines that * contain this type of code. Each block of detected executable AML code * outside of any control method is wrapped with a temporary control * method object and placed on a global list. The methods on this list * are executed below. * * This case executes the module-level code for each table immediately * after the table has been loaded. This provides compatibility with * other ACPI implementations. Optionally, the execution can be deferred * until later, see AcpiInitializeObjects. */ if (!AcpiGbl_ParseTableAsTermList && !AcpiGbl_GroupModuleLevelCode) { AcpiNsExecModuleCodeList (); } return_ACPI_STATUS (Status); } #ifdef ACPI_OBSOLETE_FUNCTIONS /******************************************************************************* * * FUNCTION: AcpiLoadNamespace * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Load the name space from what ever is pointed to by DSDT. * (DSDT points to either the BIOS or a buffer.) * ******************************************************************************/ ACPI_STATUS AcpiNsLoadNamespace ( void) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (AcpiLoadNameSpace); /* There must be at least a DSDT installed */ if (AcpiGbl_DSDT == NULL) { ACPI_ERROR ((AE_INFO, "DSDT is not in memory")); return_ACPI_STATUS (AE_NO_ACPI_TABLES); } /* * Load the namespace. The DSDT is required, * but the SSDT and PSDT tables are optional. */ Status = AcpiNsLoadTableByType (ACPI_TABLE_ID_DSDT); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Ignore exceptions from these */ (void) AcpiNsLoadTableByType (ACPI_TABLE_ID_SSDT); (void) AcpiNsLoadTableByType (ACPI_TABLE_ID_PSDT); ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INIT, "ACPI Namespace successfully loaded at root %p\n", AcpiGbl_RootNode)); return_ACPI_STATUS (Status); } #endif #ifdef ACPI_FUTURE_IMPLEMENTATION /******************************************************************************* * * FUNCTION: AcpiNsDeleteSubtree * * PARAMETERS: StartHandle - Handle in namespace where search begins * * RETURNS Status * * DESCRIPTION: Walks the namespace starting at the given handle and deletes * all objects, entries, and scopes in the entire subtree. * * Namespace/Interpreter should be locked or the subsystem should * be in shutdown before this routine is called. * ******************************************************************************/ static ACPI_STATUS AcpiNsDeleteSubtree ( ACPI_HANDLE StartHandle) { ACPI_STATUS Status; ACPI_HANDLE ChildHandle; ACPI_HANDLE ParentHandle; ACPI_HANDLE NextChildHandle; ACPI_HANDLE Dummy; UINT32 Level; ACPI_FUNCTION_TRACE (NsDeleteSubtree); ParentHandle = StartHandle; ChildHandle = NULL; Level = 1; /* * Traverse the tree of objects until we bubble back up * to where we started. */ while (Level > 0) { /* Attempt to get the next object in this scope */ Status = AcpiGetNextObject (ACPI_TYPE_ANY, ParentHandle, ChildHandle, &NextChildHandle); ChildHandle = NextChildHandle; /* Did we get a new object? */ if (ACPI_SUCCESS (Status)) { /* Check if this object has any children */ if (ACPI_SUCCESS (AcpiGetNextObject (ACPI_TYPE_ANY, ChildHandle, NULL, &Dummy))) { /* * There is at least one child of this object, * visit the object */ Level++; ParentHandle = ChildHandle; ChildHandle = NULL; } } else { /* * No more children in this object, go back up to * the object's parent */ Level--; /* Delete all children now */ AcpiNsDeleteChildren (ChildHandle); ChildHandle = ParentHandle; Status = AcpiGetParent (ParentHandle, &ParentHandle); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } } /* Now delete the starting object, and we are done */ AcpiNsRemoveNode (ChildHandle); return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiNsUnloadNameSpace * * PARAMETERS: Handle - Root of namespace subtree to be deleted * * RETURN: Status * * DESCRIPTION: Shrinks the namespace, typically in response to an undocking * event. Deletes an entire subtree starting from (and * including) the given handle. * ******************************************************************************/ ACPI_STATUS AcpiNsUnloadNamespace ( ACPI_HANDLE Handle) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (NsUnloadNameSpace); /* Parameter validation */ if (!AcpiGbl_RootNode) { return_ACPI_STATUS (AE_NO_NAMESPACE); } if (!Handle) { return_ACPI_STATUS (AE_BAD_PARAMETER); } /* This function does the real work */ Status = AcpiNsDeleteSubtree (Handle); return_ACPI_STATUS (Status); } #endif #endif Index: head/sys/contrib/dev/acpica/components/namespace/nsnames.c =================================================================== --- head/sys/contrib/dev/acpica/components/namespace/nsnames.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/namespace/nsnames.c (revision 308953) @@ -1,346 +1,398 @@ /******************************************************************************* * * Module Name: nsnames - Name manipulation and search * ******************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #define _COMPONENT ACPI_NAMESPACE ACPI_MODULE_NAME ("nsnames") /******************************************************************************* * * FUNCTION: AcpiNsGetExternalPathname * * PARAMETERS: Node - Namespace node whose pathname is needed * * RETURN: Pointer to storage containing the fully qualified name of * the node, In external format (name segments separated by path * separators.) * * DESCRIPTION: Used to obtain the full pathname to a namespace node, usually * for error and debug statements. * ******************************************************************************/ char * AcpiNsGetExternalPathname ( ACPI_NAMESPACE_NODE *Node) { char *NameBuffer; ACPI_FUNCTION_TRACE_PTR (NsGetExternalPathname, Node); NameBuffer = AcpiNsGetNormalizedPathname (Node, FALSE); return_PTR (NameBuffer); } /******************************************************************************* * * FUNCTION: AcpiNsGetPathnameLength * * PARAMETERS: Node - Namespace node * * RETURN: Length of path, including prefix * * DESCRIPTION: Get the length of the pathname string for this node * ******************************************************************************/ ACPI_SIZE AcpiNsGetPathnameLength ( ACPI_NAMESPACE_NODE *Node) { ACPI_SIZE Size; ACPI_FUNCTION_ENTRY (); Size = AcpiNsBuildNormalizedPath (Node, NULL, 0, FALSE); return (Size); } /******************************************************************************* * + * FUNCTION: AcpiNsHandleToName + * + * PARAMETERS: TargetHandle - Handle of named object whose name is + * to be found + * Buffer - Where the name is returned + * + * RETURN: Status, Buffer is filled with name if status is AE_OK + * + * DESCRIPTION: Build and return a full namespace name + * + ******************************************************************************/ + +ACPI_STATUS +AcpiNsHandleToName ( + ACPI_HANDLE TargetHandle, + ACPI_BUFFER *Buffer) +{ + ACPI_STATUS Status; + ACPI_NAMESPACE_NODE *Node; + const char *NodeName; + + + ACPI_FUNCTION_TRACE_PTR (NsHandleToName, TargetHandle); + + + Node = AcpiNsValidateHandle (TargetHandle); + if (!Node) + { + return_ACPI_STATUS (AE_BAD_PARAMETER); + } + + /* Validate/Allocate/Clear caller buffer */ + + Status = AcpiUtInitializeBuffer (Buffer, ACPI_PATH_SEGMENT_LENGTH); + if (ACPI_FAILURE (Status)) + { + return_ACPI_STATUS (Status); + } + + /* Just copy the ACPI name from the Node and zero terminate it */ + + NodeName = AcpiUtGetNodeName (Node); + ACPI_MOVE_NAME (Buffer->Pointer, NodeName); + ((char *) Buffer->Pointer) [ACPI_NAME_SIZE] = 0; + + ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "%4.4s\n", (char *) Buffer->Pointer)); + return_ACPI_STATUS (AE_OK); +} + + +/******************************************************************************* + * * FUNCTION: AcpiNsHandleToPathname * * PARAMETERS: TargetHandle - Handle of named object whose name is * to be found * Buffer - Where the pathname is returned * NoTrailing - Remove trailing '_' for each name * segment * * RETURN: Status, Buffer is filled with pathname if status is AE_OK * * DESCRIPTION: Build and return a full namespace pathname * ******************************************************************************/ ACPI_STATUS AcpiNsHandleToPathname ( ACPI_HANDLE TargetHandle, ACPI_BUFFER *Buffer, BOOLEAN NoTrailing) { ACPI_STATUS Status; ACPI_NAMESPACE_NODE *Node; ACPI_SIZE RequiredSize; ACPI_FUNCTION_TRACE_PTR (NsHandleToPathname, TargetHandle); Node = AcpiNsValidateHandle (TargetHandle); if (!Node) { return_ACPI_STATUS (AE_BAD_PARAMETER); } /* Determine size required for the caller buffer */ RequiredSize = AcpiNsBuildNormalizedPath (Node, NULL, 0, NoTrailing); if (!RequiredSize) { return_ACPI_STATUS (AE_BAD_PARAMETER); } /* Validate/Allocate/Clear caller buffer */ Status = AcpiUtInitializeBuffer (Buffer, RequiredSize); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Build the path in the caller buffer */ (void) AcpiNsBuildNormalizedPath (Node, Buffer->Pointer, RequiredSize, NoTrailing); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "%s [%X]\n", (char *) Buffer->Pointer, (UINT32) RequiredSize)); return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiNsBuildNormalizedPath * * PARAMETERS: Node - Namespace node * FullPath - Where the path name is returned * PathSize - Size of returned path name buffer * NoTrailing - Remove trailing '_' from each name segment * * RETURN: Return 1 if the AML path is empty, otherwise returning (length * of pathname + 1) which means the 'FullPath' contains a trailing * null. * * DESCRIPTION: Build and return a full namespace pathname. * Note that if the size of 'FullPath' isn't large enough to * contain the namespace node's path name, the actual required * buffer length is returned, and it should be greater than * 'PathSize'. So callers are able to check the returning value * to determine the buffer size of 'FullPath'. * ******************************************************************************/ UINT32 AcpiNsBuildNormalizedPath ( ACPI_NAMESPACE_NODE *Node, char *FullPath, UINT32 PathSize, BOOLEAN NoTrailing) { UINT32 Length = 0, i; char Name[ACPI_NAME_SIZE]; BOOLEAN DoNoTrailing; char c, *Left, *Right; ACPI_NAMESPACE_NODE *NextNode; ACPI_FUNCTION_TRACE_PTR (NsBuildNormalizedPath, Node); #define ACPI_PATH_PUT8(Path, Size, Byte, Length) \ do { \ if ((Length) < (Size)) \ { \ (Path)[(Length)] = (Byte); \ } \ (Length)++; \ } while (0) /* * Make sure the PathSize is correct, so that we don't need to * validate both FullPath and PathSize. */ if (!FullPath) { PathSize = 0; } if (!Node) { goto BuildTrailingNull; } NextNode = Node; while (NextNode && NextNode != AcpiGbl_RootNode) { if (NextNode != Node) { ACPI_PATH_PUT8(FullPath, PathSize, AML_DUAL_NAME_PREFIX, Length); } ACPI_MOVE_32_TO_32 (Name, &NextNode->Name); DoNoTrailing = NoTrailing; for (i = 0; i < 4; i++) { c = Name[4-i-1]; if (DoNoTrailing && c != '_') { DoNoTrailing = FALSE; } if (!DoNoTrailing) { ACPI_PATH_PUT8(FullPath, PathSize, c, Length); } } NextNode = NextNode->Parent; } ACPI_PATH_PUT8(FullPath, PathSize, AML_ROOT_PREFIX, Length); /* Reverse the path string */ if (Length <= PathSize) { Left = FullPath; Right = FullPath+Length - 1; while (Left < Right) { c = *Left; *Left++ = *Right; *Right-- = c; } } /* Append the trailing null */ BuildTrailingNull: ACPI_PATH_PUT8 (FullPath, PathSize, '\0', Length); #undef ACPI_PATH_PUT8 return_UINT32 (Length); } /******************************************************************************* * * FUNCTION: AcpiNsGetNormalizedPathname * * PARAMETERS: Node - Namespace node whose pathname is needed * NoTrailing - Remove trailing '_' from each name segment * * RETURN: Pointer to storage containing the fully qualified name of * the node, In external format (name segments separated by path * separators.) * * DESCRIPTION: Used to obtain the full pathname to a namespace node, usually * for error and debug statements. All trailing '_' will be * removed from the full pathname if 'NoTrailing' is specified.. * ******************************************************************************/ char * AcpiNsGetNormalizedPathname ( ACPI_NAMESPACE_NODE *Node, BOOLEAN NoTrailing) { char *NameBuffer; ACPI_SIZE Size; ACPI_FUNCTION_TRACE_PTR (NsGetNormalizedPathname, Node); /* Calculate required buffer size based on depth below root */ Size = AcpiNsBuildNormalizedPath (Node, NULL, 0, NoTrailing); if (!Size) { return_PTR (NULL); } /* Allocate a buffer to be returned to caller */ NameBuffer = ACPI_ALLOCATE_ZEROED (Size); if (!NameBuffer) { ACPI_ERROR ((AE_INFO, "Could not allocate %u bytes", (UINT32) Size)); return_PTR (NULL); } /* Build the path in the allocated buffer */ (void) AcpiNsBuildNormalizedPath (Node, NameBuffer, Size, NoTrailing); return_PTR (NameBuffer); } Index: head/sys/contrib/dev/acpica/components/namespace/nsxfname.c =================================================================== --- head/sys/contrib/dev/acpica/components/namespace/nsxfname.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/namespace/nsxfname.c (revision 308953) @@ -1,738 +1,716 @@ /****************************************************************************** * * Module Name: nsxfname - Public interfaces to the ACPI subsystem * ACPI Namespace oriented interfaces * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #define EXPORT_ACPI_INTERFACES #include #include #include #include #include #define _COMPONENT ACPI_NAMESPACE ACPI_MODULE_NAME ("nsxfname") /* Local prototypes */ static char * AcpiNsCopyDeviceId ( ACPI_PNP_DEVICE_ID *Dest, ACPI_PNP_DEVICE_ID *Source, char *StringArea); /****************************************************************************** * * FUNCTION: AcpiGetHandle * * PARAMETERS: Parent - Object to search under (search scope). * Pathname - Pointer to an asciiz string containing the * name * RetHandle - Where the return handle is returned * * RETURN: Status * * DESCRIPTION: This routine will search for a caller specified name in the * name space. The caller can restrict the search region by * specifying a non NULL parent. The parent value is itself a * namespace handle. * ******************************************************************************/ ACPI_STATUS AcpiGetHandle ( ACPI_HANDLE Parent, ACPI_STRING Pathname, ACPI_HANDLE *RetHandle) { ACPI_STATUS Status; ACPI_NAMESPACE_NODE *Node = NULL; ACPI_NAMESPACE_NODE *PrefixNode = NULL; ACPI_FUNCTION_ENTRY (); /* Parameter Validation */ if (!RetHandle || !Pathname) { return (AE_BAD_PARAMETER); } /* Convert a parent handle to a prefix node */ if (Parent) { PrefixNode = AcpiNsValidateHandle (Parent); if (!PrefixNode) { return (AE_BAD_PARAMETER); } } /* * Valid cases are: * 1) Fully qualified pathname * 2) Parent + Relative pathname * * Error for */ if (ACPI_IS_ROOT_PREFIX (Pathname[0])) { /* Pathname is fully qualified (starts with '\') */ /* Special case for root-only, since we can't search for it */ if (!strcmp (Pathname, ACPI_NS_ROOT_PATH)) { *RetHandle = ACPI_CAST_PTR (ACPI_HANDLE, AcpiGbl_RootNode); return (AE_OK); } } else if (!PrefixNode) { /* Relative path with null prefix is disallowed */ return (AE_BAD_PARAMETER); } /* Find the Node and convert to a handle */ Status = AcpiNsGetNode (PrefixNode, Pathname, ACPI_NS_NO_UPSEARCH, &Node); if (ACPI_SUCCESS (Status)) { *RetHandle = ACPI_CAST_PTR (ACPI_HANDLE, Node); } return (Status); } ACPI_EXPORT_SYMBOL (AcpiGetHandle) /****************************************************************************** * * FUNCTION: AcpiGetName * * PARAMETERS: Handle - Handle to be converted to a pathname * NameType - Full pathname or single segment * Buffer - Buffer for returned path * * RETURN: Pointer to a string containing the fully qualified Name. * * DESCRIPTION: This routine returns the fully qualified name associated with * the Handle parameter. This and the AcpiPathnameToHandle are * complementary functions. * ******************************************************************************/ ACPI_STATUS AcpiGetName ( ACPI_HANDLE Handle, UINT32 NameType, ACPI_BUFFER *Buffer) { ACPI_STATUS Status; - ACPI_NAMESPACE_NODE *Node; - const char *NodeName; /* Parameter validation */ if (NameType > ACPI_NAME_TYPE_MAX) { return (AE_BAD_PARAMETER); } Status = AcpiUtValidateBuffer (Buffer); if (ACPI_FAILURE (Status)) { return (Status); } - if (NameType == ACPI_FULL_PATHNAME || - NameType == ACPI_FULL_PATHNAME_NO_TRAILING) - { - /* Get the full pathname (From the namespace root) */ - - Status = AcpiNsHandleToPathname (Handle, Buffer, - NameType == ACPI_FULL_PATHNAME ? FALSE : TRUE); - return (Status); - } - /* * Wants the single segment ACPI name. * Validate handle and convert to a namespace Node */ Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); if (ACPI_FAILURE (Status)) { return (Status); } - Node = AcpiNsValidateHandle (Handle); - if (!Node) + if (NameType == ACPI_FULL_PATHNAME || + NameType == ACPI_FULL_PATHNAME_NO_TRAILING) { - Status = AE_BAD_PARAMETER; - goto UnlockAndExit; - } + /* Get the full pathname (From the namespace root) */ - /* Validate/Allocate/Clear caller buffer */ - - Status = AcpiUtInitializeBuffer (Buffer, ACPI_PATH_SEGMENT_LENGTH); - if (ACPI_FAILURE (Status)) - { - goto UnlockAndExit; + Status = AcpiNsHandleToPathname (Handle, Buffer, + NameType == ACPI_FULL_PATHNAME ? FALSE : TRUE); } + else + { + /* Get the single name */ - /* Just copy the ACPI name from the Node and zero terminate it */ - - NodeName = AcpiUtGetNodeName (Node); - ACPI_MOVE_NAME (Buffer->Pointer, NodeName); - ((char *) Buffer->Pointer) [ACPI_NAME_SIZE] = 0; - Status = AE_OK; - - -UnlockAndExit: + Status = AcpiNsHandleToName (Handle, Buffer); + } (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); return (Status); } ACPI_EXPORT_SYMBOL (AcpiGetName) /****************************************************************************** * * FUNCTION: AcpiNsCopyDeviceId * * PARAMETERS: Dest - Pointer to the destination PNP_DEVICE_ID * Source - Pointer to the source PNP_DEVICE_ID * StringArea - Pointer to where to copy the dest string * * RETURN: Pointer to the next string area * * DESCRIPTION: Copy a single PNP_DEVICE_ID, including the string data. * ******************************************************************************/ static char * AcpiNsCopyDeviceId ( ACPI_PNP_DEVICE_ID *Dest, ACPI_PNP_DEVICE_ID *Source, char *StringArea) { /* Create the destination PNP_DEVICE_ID */ Dest->String = StringArea; Dest->Length = Source->Length; /* Copy actual string and return a pointer to the next string area */ memcpy (StringArea, Source->String, Source->Length); return (StringArea + Source->Length); } /****************************************************************************** * * FUNCTION: AcpiGetObjectInfo * * PARAMETERS: Handle - Object Handle * ReturnBuffer - Where the info is returned * * RETURN: Status * * DESCRIPTION: Returns information about an object as gleaned from the * namespace node and possibly by running several standard * control methods (Such as in the case of a device.) * * For Device and Processor objects, run the Device _HID, _UID, _CID, _STA, * _CLS, _ADR, _SxW, and _SxD methods. * * Note: Allocates the return buffer, must be freed by the caller. * * Note: This interface is intended to be used during the initial device * discovery namespace traversal. Therefore, no complex methods can be * executed, especially those that access operation regions. Therefore, do * not add any additional methods that could cause problems in this area. * this was the fate of the _SUB method which was found to cause such * problems and was removed (11/2015). * ******************************************************************************/ ACPI_STATUS AcpiGetObjectInfo ( ACPI_HANDLE Handle, ACPI_DEVICE_INFO **ReturnBuffer) { ACPI_NAMESPACE_NODE *Node; ACPI_DEVICE_INFO *Info; ACPI_PNP_DEVICE_ID_LIST *CidList = NULL; ACPI_PNP_DEVICE_ID *Hid = NULL; ACPI_PNP_DEVICE_ID *Uid = NULL; ACPI_PNP_DEVICE_ID *Cls = NULL; char *NextIdString; ACPI_OBJECT_TYPE Type; ACPI_NAME Name; UINT8 ParamCount= 0; UINT16 Valid = 0; UINT32 InfoSize; UINT32 i; ACPI_STATUS Status; /* Parameter validation */ if (!Handle || !ReturnBuffer) { return (AE_BAD_PARAMETER); } Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); if (ACPI_FAILURE (Status)) { return (Status); } Node = AcpiNsValidateHandle (Handle); if (!Node) { (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); return (AE_BAD_PARAMETER); } /* Get the namespace node data while the namespace is locked */ InfoSize = sizeof (ACPI_DEVICE_INFO); Type = Node->Type; Name = Node->Name.Integer; if (Node->Type == ACPI_TYPE_METHOD) { ParamCount = Node->Object->Method.ParamCount; } Status = AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); if (ACPI_FAILURE (Status)) { return (Status); } if ((Type == ACPI_TYPE_DEVICE) || (Type == ACPI_TYPE_PROCESSOR)) { /* * Get extra info for ACPI Device/Processor objects only: * Run the Device _HID, _UID, _CLS, and _CID methods. * * Note: none of these methods are required, so they may or may * not be present for this device. The Info->Valid bitfield is used * to indicate which methods were found and run successfully. */ /* Execute the Device._HID method */ Status = AcpiUtExecute_HID (Node, &Hid); if (ACPI_SUCCESS (Status)) { InfoSize += Hid->Length; Valid |= ACPI_VALID_HID; } /* Execute the Device._UID method */ Status = AcpiUtExecute_UID (Node, &Uid); if (ACPI_SUCCESS (Status)) { InfoSize += Uid->Length; Valid |= ACPI_VALID_UID; } /* Execute the Device._CID method */ Status = AcpiUtExecute_CID (Node, &CidList); if (ACPI_SUCCESS (Status)) { /* Add size of CID strings and CID pointer array */ InfoSize += (CidList->ListSize - sizeof (ACPI_PNP_DEVICE_ID_LIST)); Valid |= ACPI_VALID_CID; } /* Execute the Device._CLS method */ Status = AcpiUtExecute_CLS (Node, &Cls); if (ACPI_SUCCESS (Status)) { InfoSize += Cls->Length; Valid |= ACPI_VALID_CLS; } } /* * Now that we have the variable-length data, we can allocate the * return buffer */ Info = ACPI_ALLOCATE_ZEROED (InfoSize); if (!Info) { Status = AE_NO_MEMORY; goto Cleanup; } /* Get the fixed-length data */ if ((Type == ACPI_TYPE_DEVICE) || (Type == ACPI_TYPE_PROCESSOR)) { /* * Get extra info for ACPI Device/Processor objects only: * Run the _STA, _ADR and, SxW, and _SxD methods. * * Notes: none of these methods are required, so they may or may * not be present for this device. The Info->Valid bitfield is used * to indicate which methods were found and run successfully. * * For _STA, if the method does not exist, then (as per the ACPI * specification), the returned CurrentStatus flags will indicate * that the device is present/functional/enabled. Otherwise, the * CurrentStatus flags reflect the value returned from _STA. */ /* Execute the Device._STA method */ Status = AcpiUtExecute_STA (Node, &Info->CurrentStatus); if (ACPI_SUCCESS (Status)) { Valid |= ACPI_VALID_STA; } /* Execute the Device._ADR method */ Status = AcpiUtEvaluateNumericObject (METHOD_NAME__ADR, Node, &Info->Address); if (ACPI_SUCCESS (Status)) { Valid |= ACPI_VALID_ADR; } /* Execute the Device._SxW methods */ Status = AcpiUtExecutePowerMethods (Node, AcpiGbl_LowestDstateNames, ACPI_NUM_SxW_METHODS, Info->LowestDstates); if (ACPI_SUCCESS (Status)) { Valid |= ACPI_VALID_SXWS; } /* Execute the Device._SxD methods */ Status = AcpiUtExecutePowerMethods (Node, AcpiGbl_HighestDstateNames, ACPI_NUM_SxD_METHODS, Info->HighestDstates); if (ACPI_SUCCESS (Status)) { Valid |= ACPI_VALID_SXDS; } } /* * Create a pointer to the string area of the return buffer. * Point to the end of the base ACPI_DEVICE_INFO structure. */ NextIdString = ACPI_CAST_PTR (char, Info->CompatibleIdList.Ids); if (CidList) { /* Point past the CID PNP_DEVICE_ID array */ NextIdString += ((ACPI_SIZE) CidList->Count * sizeof (ACPI_PNP_DEVICE_ID)); } /* * Copy the HID, UID, and CIDs to the return buffer. The variable-length * strings are copied to the reserved area at the end of the buffer. * * For HID and CID, check if the ID is a PCI Root Bridge. */ if (Hid) { NextIdString = AcpiNsCopyDeviceId (&Info->HardwareId, Hid, NextIdString); if (AcpiUtIsPciRootBridge (Hid->String)) { Info->Flags |= ACPI_PCI_ROOT_BRIDGE; } } if (Uid) { NextIdString = AcpiNsCopyDeviceId (&Info->UniqueId, Uid, NextIdString); } if (CidList) { Info->CompatibleIdList.Count = CidList->Count; Info->CompatibleIdList.ListSize = CidList->ListSize; /* Copy each CID */ for (i = 0; i < CidList->Count; i++) { NextIdString = AcpiNsCopyDeviceId (&Info->CompatibleIdList.Ids[i], &CidList->Ids[i], NextIdString); if (AcpiUtIsPciRootBridge (CidList->Ids[i].String)) { Info->Flags |= ACPI_PCI_ROOT_BRIDGE; } } } if (Cls) { NextIdString = AcpiNsCopyDeviceId (&Info->ClassCode, Cls, NextIdString); } /* Copy the fixed-length data */ Info->InfoSize = InfoSize; Info->Type = Type; Info->Name = Name; Info->ParamCount = ParamCount; Info->Valid = Valid; *ReturnBuffer = Info; Status = AE_OK; Cleanup: if (Hid) { ACPI_FREE (Hid); } if (Uid) { ACPI_FREE (Uid); } if (CidList) { ACPI_FREE (CidList); } if (Cls) { ACPI_FREE (Cls); } return (Status); } ACPI_EXPORT_SYMBOL (AcpiGetObjectInfo) /****************************************************************************** * * FUNCTION: AcpiInstallMethod * * PARAMETERS: Buffer - An ACPI table containing one control method * * RETURN: Status * * DESCRIPTION: Install a control method into the namespace. If the method * name already exists in the namespace, it is overwritten. The * input buffer must contain a valid DSDT or SSDT containing a * single control method. * ******************************************************************************/ ACPI_STATUS AcpiInstallMethod ( UINT8 *Buffer) { ACPI_TABLE_HEADER *Table = ACPI_CAST_PTR (ACPI_TABLE_HEADER, Buffer); UINT8 *AmlBuffer; UINT8 *AmlStart; char *Path; ACPI_NAMESPACE_NODE *Node; ACPI_OPERAND_OBJECT *MethodObj; ACPI_PARSE_STATE ParserState; UINT32 AmlLength; UINT16 Opcode; UINT8 MethodFlags; ACPI_STATUS Status; /* Parameter validation */ if (!Buffer) { return (AE_BAD_PARAMETER); } /* Table must be a DSDT or SSDT */ if (!ACPI_COMPARE_NAME (Table->Signature, ACPI_SIG_DSDT) && !ACPI_COMPARE_NAME (Table->Signature, ACPI_SIG_SSDT)) { return (AE_BAD_HEADER); } /* First AML opcode in the table must be a control method */ ParserState.Aml = Buffer + sizeof (ACPI_TABLE_HEADER); Opcode = AcpiPsPeekOpcode (&ParserState); if (Opcode != AML_METHOD_OP) { return (AE_BAD_PARAMETER); } /* Extract method information from the raw AML */ ParserState.Aml += AcpiPsGetOpcodeSize (Opcode); ParserState.PkgEnd = AcpiPsGetNextPackageEnd (&ParserState); Path = AcpiPsGetNextNamestring (&ParserState); MethodFlags = *ParserState.Aml++; AmlStart = ParserState.Aml; AmlLength = ACPI_PTR_DIFF (ParserState.PkgEnd, AmlStart); /* * Allocate resources up-front. We don't want to have to delete a new * node from the namespace if we cannot allocate memory. */ AmlBuffer = ACPI_ALLOCATE (AmlLength); if (!AmlBuffer) { return (AE_NO_MEMORY); } MethodObj = AcpiUtCreateInternalObject (ACPI_TYPE_METHOD); if (!MethodObj) { ACPI_FREE (AmlBuffer); return (AE_NO_MEMORY); } /* Lock namespace for AcpiNsLookup, we may be creating a new node */ Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); if (ACPI_FAILURE (Status)) { goto ErrorExit; } /* The lookup either returns an existing node or creates a new one */ Status = AcpiNsLookup (NULL, Path, ACPI_TYPE_METHOD, ACPI_IMODE_LOAD_PASS1, ACPI_NS_DONT_OPEN_SCOPE | ACPI_NS_ERROR_IF_FOUND, NULL, &Node); (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); if (ACPI_FAILURE (Status)) /* NsLookup */ { if (Status != AE_ALREADY_EXISTS) { goto ErrorExit; } /* Node existed previously, make sure it is a method node */ if (Node->Type != ACPI_TYPE_METHOD) { Status = AE_TYPE; goto ErrorExit; } } /* Copy the method AML to the local buffer */ memcpy (AmlBuffer, AmlStart, AmlLength); /* Initialize the method object with the new method's information */ MethodObj->Method.AmlStart = AmlBuffer; MethodObj->Method.AmlLength = AmlLength; MethodObj->Method.ParamCount = (UINT8) (MethodFlags & AML_METHOD_ARG_COUNT); if (MethodFlags & AML_METHOD_SERIALIZED) { MethodObj->Method.InfoFlags = ACPI_METHOD_SERIALIZED; MethodObj->Method.SyncLevel = (UINT8) ((MethodFlags & AML_METHOD_SYNC_LEVEL) >> 4); } /* * Now that it is complete, we can attach the new method object to * the method Node (detaches/deletes any existing object) */ Status = AcpiNsAttachObject (Node, MethodObj, ACPI_TYPE_METHOD); /* * Flag indicates AML buffer is dynamic, must be deleted later. * Must be set only after attach above. */ Node->Flags |= ANOBJ_ALLOCATED_BUFFER; /* Remove local reference to the method object */ AcpiUtRemoveReference (MethodObj); return (Status); ErrorExit: ACPI_FREE (AmlBuffer); ACPI_FREE (MethodObj); return (Status); } ACPI_EXPORT_SYMBOL (AcpiInstallMethod) Index: head/sys/contrib/dev/acpica/components/parser/psargs.c =================================================================== --- head/sys/contrib/dev/acpica/components/parser/psargs.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/parser/psargs.c (revision 308953) @@ -1,936 +1,945 @@ /****************************************************************************** * * Module Name: psargs - Parse AML opcode arguments * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #include #include #define _COMPONENT ACPI_PARSER ACPI_MODULE_NAME ("psargs") /* Local prototypes */ static UINT32 AcpiPsGetNextPackageLength ( ACPI_PARSE_STATE *ParserState); static ACPI_PARSE_OBJECT * AcpiPsGetNextField ( ACPI_PARSE_STATE *ParserState); /******************************************************************************* * * FUNCTION: AcpiPsGetNextPackageLength * * PARAMETERS: ParserState - Current parser state object * * RETURN: Decoded package length. On completion, the AML pointer points * past the length byte or bytes. * * DESCRIPTION: Decode and return a package length field. * Note: Largest package length is 28 bits, from ACPI specification * ******************************************************************************/ static UINT32 AcpiPsGetNextPackageLength ( ACPI_PARSE_STATE *ParserState) { UINT8 *Aml = ParserState->Aml; UINT32 PackageLength = 0; UINT32 ByteCount; UINT8 ByteZeroMask = 0x3F; /* Default [0:5] */ ACPI_FUNCTION_TRACE (PsGetNextPackageLength); /* * Byte 0 bits [6:7] contain the number of additional bytes * used to encode the package length, either 0,1,2, or 3 */ ByteCount = (Aml[0] >> 6); ParserState->Aml += ((ACPI_SIZE) ByteCount + 1); /* Get bytes 3, 2, 1 as needed */ while (ByteCount) { /* * Final bit positions for the package length bytes: * Byte3->[20:27] * Byte2->[12:19] * Byte1->[04:11] * Byte0->[00:03] */ PackageLength |= (Aml[ByteCount] << ((ByteCount << 3) - 4)); ByteZeroMask = 0x0F; /* Use bits [0:3] of byte 0 */ ByteCount--; } /* Byte 0 is a special case, either bits [0:3] or [0:5] are used */ PackageLength |= (Aml[0] & ByteZeroMask); return_UINT32 (PackageLength); } /******************************************************************************* * * FUNCTION: AcpiPsGetNextPackageEnd * * PARAMETERS: ParserState - Current parser state object * * RETURN: Pointer to end-of-package +1 * * DESCRIPTION: Get next package length and return a pointer past the end of * the package. Consumes the package length field * ******************************************************************************/ UINT8 * AcpiPsGetNextPackageEnd ( ACPI_PARSE_STATE *ParserState) { UINT8 *Start = ParserState->Aml; UINT32 PackageLength; ACPI_FUNCTION_TRACE (PsGetNextPackageEnd); /* Function below updates ParserState->Aml */ PackageLength = AcpiPsGetNextPackageLength (ParserState); return_PTR (Start + PackageLength); /* end of package */ } /******************************************************************************* * * FUNCTION: AcpiPsGetNextNamestring * * PARAMETERS: ParserState - Current parser state object * * RETURN: Pointer to the start of the name string (pointer points into * the AML. * * DESCRIPTION: Get next raw namestring within the AML stream. Handles all name * prefix characters. Set parser state to point past the string. * (Name is consumed from the AML.) * ******************************************************************************/ char * AcpiPsGetNextNamestring ( ACPI_PARSE_STATE *ParserState) { UINT8 *Start = ParserState->Aml; UINT8 *End = ParserState->Aml; ACPI_FUNCTION_TRACE (PsGetNextNamestring); /* Point past any namestring prefix characters (backslash or carat) */ while (ACPI_IS_ROOT_PREFIX (*End) || ACPI_IS_PARENT_PREFIX (*End)) { End++; } /* Decode the path prefix character */ switch (*End) { case 0: /* NullName */ if (End == Start) { Start = NULL; } End++; break; case AML_DUAL_NAME_PREFIX: /* Two name segments */ End += 1 + (2 * ACPI_NAME_SIZE); break; case AML_MULTI_NAME_PREFIX_OP: /* Multiple name segments, 4 chars each, count in next byte */ End += 2 + (*(End + 1) * ACPI_NAME_SIZE); break; default: /* Single name segment */ End += ACPI_NAME_SIZE; break; } ParserState->Aml = End; return_PTR ((char *) Start); } /******************************************************************************* * * FUNCTION: AcpiPsGetNextNamepath * * PARAMETERS: ParserState - Current parser state object * Arg - Where the namepath will be stored * ArgCount - If the namepath points to a control method * the method's argument is returned here. * PossibleMethodCall - Whether the namepath can possibly be the * start of a method call * * RETURN: Status * * DESCRIPTION: Get next name (if method call, return # of required args). * Names are looked up in the internal namespace to determine * if the name represents a control method. If a method * is found, the number of arguments to the method is returned. * This information is critical for parsing to continue correctly. * ******************************************************************************/ ACPI_STATUS AcpiPsGetNextNamepath ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_STATE *ParserState, ACPI_PARSE_OBJECT *Arg, BOOLEAN PossibleMethodCall) { ACPI_STATUS Status; char *Path; ACPI_PARSE_OBJECT *NameOp; ACPI_OPERAND_OBJECT *MethodDesc; ACPI_NAMESPACE_NODE *Node; UINT8 *Start = ParserState->Aml; ACPI_FUNCTION_TRACE (PsGetNextNamepath); Path = AcpiPsGetNextNamestring (ParserState); AcpiPsInitOp (Arg, AML_INT_NAMEPATH_OP); /* Null path case is allowed, just exit */ if (!Path) { Arg->Common.Value.Name = Path; return_ACPI_STATUS (AE_OK); } /* * Lookup the name in the internal namespace, starting with the current * scope. We don't want to add anything new to the namespace here, * however, so we use MODE_EXECUTE. * Allow searching of the parent tree, but don't open a new scope - * we just want to lookup the object (must be mode EXECUTE to perform * the upsearch) */ Status = AcpiNsLookup (WalkState->ScopeInfo, Path, ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT | ACPI_NS_DONT_OPEN_SCOPE, NULL, &Node); /* * If this name is a control method invocation, we must * setup the method call */ if (ACPI_SUCCESS (Status) && PossibleMethodCall && (Node->Type == ACPI_TYPE_METHOD)) { - if (WalkState->Opcode == AML_UNLOAD_OP) - { - /* - * AcpiPsGetNextNamestring has increased the AML pointer, - * so we need to restore the saved AML pointer for method call. - */ - WalkState->ParserState.Aml = Start; - WalkState->ArgCount = 1; - AcpiPsInitOp (Arg, AML_INT_METHODCALL_OP); - return_ACPI_STATUS (AE_OK); - } - /* This name is actually a control method invocation */ MethodDesc = AcpiNsGetAttachedObject (Node); ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, - "Control Method - %p Desc %p Path=%p\n", Node, MethodDesc, Path)); + "Control Method invocation %4.4s - %p Desc %p Path=%p\n", + Node->Name.Ascii, Node, MethodDesc, Path)); NameOp = AcpiPsAllocOp (AML_INT_NAMEPATH_OP, Start); if (!NameOp) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Change Arg into a METHOD CALL and attach name to it */ AcpiPsInitOp (Arg, AML_INT_METHODCALL_OP); NameOp->Common.Value.Name = Path; /* Point METHODCALL/NAME to the METHOD Node */ NameOp->Common.Node = Node; AcpiPsAppendArg (Arg, NameOp); if (!MethodDesc) { ACPI_ERROR ((AE_INFO, "Control Method %p has no attached object", Node)); return_ACPI_STATUS (AE_AML_INTERNAL); } ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "Control Method - %p Args %X\n", Node, MethodDesc->Method.ParamCount)); /* Get the number of arguments to expect */ WalkState->ArgCount = MethodDesc->Method.ParamCount; return_ACPI_STATUS (AE_OK); } /* * Special handling if the name was not found during the lookup - * some NotFound cases are allowed */ if (Status == AE_NOT_FOUND) { /* 1) NotFound is ok during load pass 1/2 (allow forward references) */ if ((WalkState->ParseFlags & ACPI_PARSE_MODE_MASK) != ACPI_PARSE_EXECUTE) { Status = AE_OK; } /* 2) NotFound during a CondRefOf(x) is ok by definition */ else if (WalkState->Op->Common.AmlOpcode == AML_COND_REF_OF_OP) { Status = AE_OK; } /* * 3) NotFound while building a Package is ok at this point, we * may flag as an error later if slack mode is not enabled. * (Some ASL code depends on allowing this behavior) */ else if ((Arg->Common.Parent) && ((Arg->Common.Parent->Common.AmlOpcode == AML_PACKAGE_OP) || (Arg->Common.Parent->Common.AmlOpcode == AML_VAR_PACKAGE_OP))) { Status = AE_OK; } } /* Final exception check (may have been changed from code above) */ if (ACPI_FAILURE (Status)) { ACPI_ERROR_NAMESPACE (Path, Status); if ((WalkState->ParseFlags & ACPI_PARSE_MODE_MASK) == ACPI_PARSE_EXECUTE) { /* Report a control method execution error */ Status = AcpiDsMethodError (Status, WalkState); } } /* Save the namepath */ Arg->Common.Value.Name = Path; return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiPsGetNextSimpleArg * * PARAMETERS: ParserState - Current parser state object * ArgType - The argument type (AML_*_ARG) * Arg - Where the argument is returned * * RETURN: None * * DESCRIPTION: Get the next simple argument (constant, string, or namestring) * ******************************************************************************/ void AcpiPsGetNextSimpleArg ( ACPI_PARSE_STATE *ParserState, UINT32 ArgType, ACPI_PARSE_OBJECT *Arg) { UINT32 Length; UINT16 Opcode; UINT8 *Aml = ParserState->Aml; ACPI_FUNCTION_TRACE_U32 (PsGetNextSimpleArg, ArgType); switch (ArgType) { case ARGP_BYTEDATA: /* Get 1 byte from the AML stream */ Opcode = AML_BYTE_OP; Arg->Common.Value.Integer = (UINT64) *Aml; Length = 1; break; case ARGP_WORDDATA: /* Get 2 bytes from the AML stream */ Opcode = AML_WORD_OP; ACPI_MOVE_16_TO_64 (&Arg->Common.Value.Integer, Aml); Length = 2; break; case ARGP_DWORDDATA: /* Get 4 bytes from the AML stream */ Opcode = AML_DWORD_OP; ACPI_MOVE_32_TO_64 (&Arg->Common.Value.Integer, Aml); Length = 4; break; case ARGP_QWORDDATA: /* Get 8 bytes from the AML stream */ Opcode = AML_QWORD_OP; ACPI_MOVE_64_TO_64 (&Arg->Common.Value.Integer, Aml); Length = 8; break; case ARGP_CHARLIST: /* Get a pointer to the string, point past the string */ Opcode = AML_STRING_OP; Arg->Common.Value.String = ACPI_CAST_PTR (char, Aml); /* Find the null terminator */ Length = 0; while (Aml[Length]) { Length++; } Length++; break; case ARGP_NAME: case ARGP_NAMESTRING: AcpiPsInitOp (Arg, AML_INT_NAMEPATH_OP); Arg->Common.Value.Name = AcpiPsGetNextNamestring (ParserState); return_VOID; default: ACPI_ERROR ((AE_INFO, "Invalid ArgType 0x%X", ArgType)); return_VOID; } AcpiPsInitOp (Arg, Opcode); ParserState->Aml += Length; return_VOID; } /******************************************************************************* * * FUNCTION: AcpiPsGetNextField * * PARAMETERS: ParserState - Current parser state object * * RETURN: A newly allocated FIELD op * * DESCRIPTION: Get next field (NamedField, ReservedField, or AccessField) * ******************************************************************************/ static ACPI_PARSE_OBJECT * AcpiPsGetNextField ( ACPI_PARSE_STATE *ParserState) { UINT8 *Aml; ACPI_PARSE_OBJECT *Field; ACPI_PARSE_OBJECT *Arg = NULL; UINT16 Opcode; UINT32 Name; UINT8 AccessType; UINT8 AccessAttribute; UINT8 AccessLength; UINT32 PkgLength; UINT8 *PkgEnd; UINT32 BufferLength; ACPI_FUNCTION_TRACE (PsGetNextField); Aml = ParserState->Aml; /* Determine field type */ switch (ACPI_GET8 (ParserState->Aml)) { case AML_FIELD_OFFSET_OP: Opcode = AML_INT_RESERVEDFIELD_OP; ParserState->Aml++; break; case AML_FIELD_ACCESS_OP: Opcode = AML_INT_ACCESSFIELD_OP; ParserState->Aml++; break; case AML_FIELD_CONNECTION_OP: Opcode = AML_INT_CONNECTION_OP; ParserState->Aml++; break; case AML_FIELD_EXT_ACCESS_OP: Opcode = AML_INT_EXTACCESSFIELD_OP; ParserState->Aml++; break; default: Opcode = AML_INT_NAMEDFIELD_OP; break; } /* Allocate a new field op */ Field = AcpiPsAllocOp (Opcode, Aml); if (!Field) { return_PTR (NULL); } /* Decode the field type */ switch (Opcode) { case AML_INT_NAMEDFIELD_OP: /* Get the 4-character name */ ACPI_MOVE_32_TO_32 (&Name, ParserState->Aml); AcpiPsSetName (Field, Name); ParserState->Aml += ACPI_NAME_SIZE; /* Get the length which is encoded as a package length */ Field->Common.Value.Size = AcpiPsGetNextPackageLength (ParserState); break; case AML_INT_RESERVEDFIELD_OP: /* Get the length which is encoded as a package length */ Field->Common.Value.Size = AcpiPsGetNextPackageLength (ParserState); break; case AML_INT_ACCESSFIELD_OP: case AML_INT_EXTACCESSFIELD_OP: /* * Get AccessType and AccessAttrib and merge into the field Op * AccessType is first operand, AccessAttribute is second. stuff * these bytes into the node integer value for convenience. */ /* Get the two bytes (Type/Attribute) */ AccessType = ACPI_GET8 (ParserState->Aml); ParserState->Aml++; AccessAttribute = ACPI_GET8 (ParserState->Aml); ParserState->Aml++; Field->Common.Value.Integer = (UINT8) AccessType; Field->Common.Value.Integer |= (UINT16) (AccessAttribute << 8); /* This opcode has a third byte, AccessLength */ if (Opcode == AML_INT_EXTACCESSFIELD_OP) { AccessLength = ACPI_GET8 (ParserState->Aml); ParserState->Aml++; Field->Common.Value.Integer |= (UINT32) (AccessLength << 16); } break; case AML_INT_CONNECTION_OP: /* * Argument for Connection operator can be either a Buffer * (resource descriptor), or a NameString. */ Aml = ParserState->Aml; if (ACPI_GET8 (ParserState->Aml) == AML_BUFFER_OP) { ParserState->Aml++; PkgEnd = ParserState->Aml; PkgLength = AcpiPsGetNextPackageLength (ParserState); PkgEnd += PkgLength; if (ParserState->Aml < PkgEnd) { /* Non-empty list */ Arg = AcpiPsAllocOp (AML_INT_BYTELIST_OP, Aml); if (!Arg) { AcpiPsFreeOp (Field); return_PTR (NULL); } /* Get the actual buffer length argument */ Opcode = ACPI_GET8 (ParserState->Aml); ParserState->Aml++; switch (Opcode) { case AML_BYTE_OP: /* AML_BYTEDATA_ARG */ BufferLength = ACPI_GET8 (ParserState->Aml); ParserState->Aml += 1; break; case AML_WORD_OP: /* AML_WORDDATA_ARG */ BufferLength = ACPI_GET16 (ParserState->Aml); ParserState->Aml += 2; break; case AML_DWORD_OP: /* AML_DWORDATA_ARG */ BufferLength = ACPI_GET32 (ParserState->Aml); ParserState->Aml += 4; break; default: BufferLength = 0; break; } /* Fill in bytelist data */ Arg->Named.Value.Size = BufferLength; Arg->Named.Data = ParserState->Aml; } /* Skip to End of byte data */ ParserState->Aml = PkgEnd; } else { Arg = AcpiPsAllocOp (AML_INT_NAMEPATH_OP, Aml); if (!Arg) { AcpiPsFreeOp (Field); return_PTR (NULL); } /* Get the Namestring argument */ Arg->Common.Value.Name = AcpiPsGetNextNamestring (ParserState); } /* Link the buffer/namestring to parent (CONNECTION_OP) */ AcpiPsAppendArg (Field, Arg); break; default: /* Opcode was set in previous switch */ break; } return_PTR (Field); } /******************************************************************************* * * FUNCTION: AcpiPsGetNextArg * * PARAMETERS: WalkState - Current state * ParserState - Current parser state object * ArgType - The argument type (AML_*_ARG) * ReturnArg - Where the next arg is returned * * RETURN: Status, and an op object containing the next argument. * * DESCRIPTION: Get next argument (including complex list arguments that require * pushing the parser stack) * ******************************************************************************/ ACPI_STATUS AcpiPsGetNextArg ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_STATE *ParserState, UINT32 ArgType, ACPI_PARSE_OBJECT **ReturnArg) { ACPI_PARSE_OBJECT *Arg = NULL; ACPI_PARSE_OBJECT *Prev = NULL; ACPI_PARSE_OBJECT *Field; UINT32 Subop; ACPI_STATUS Status = AE_OK; ACPI_FUNCTION_TRACE_PTR (PsGetNextArg, ParserState); + ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, + "Expected argument type ARGP: %s (%2.2X)\n", + AcpiUtGetArgumentTypeName (ArgType), ArgType)); + switch (ArgType) { case ARGP_BYTEDATA: case ARGP_WORDDATA: case ARGP_DWORDDATA: case ARGP_CHARLIST: case ARGP_NAME: case ARGP_NAMESTRING: /* Constants, strings, and namestrings are all the same size */ Arg = AcpiPsAllocOp (AML_BYTE_OP, ParserState->Aml); if (!Arg) { return_ACPI_STATUS (AE_NO_MEMORY); } AcpiPsGetNextSimpleArg (ParserState, ArgType, Arg); break; case ARGP_PKGLENGTH: /* Package length, nothing returned */ ParserState->PkgEnd = AcpiPsGetNextPackageEnd (ParserState); break; case ARGP_FIELDLIST: if (ParserState->Aml < ParserState->PkgEnd) { /* Non-empty list */ while (ParserState->Aml < ParserState->PkgEnd) { Field = AcpiPsGetNextField (ParserState); if (!Field) { return_ACPI_STATUS (AE_NO_MEMORY); } if (Prev) { Prev->Common.Next = Field; } else { Arg = Field; } Prev = Field; } /* Skip to End of byte data */ ParserState->Aml = ParserState->PkgEnd; } break; case ARGP_BYTELIST: if (ParserState->Aml < ParserState->PkgEnd) { /* Non-empty list */ Arg = AcpiPsAllocOp (AML_INT_BYTELIST_OP, ParserState->Aml); if (!Arg) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Fill in bytelist data */ Arg->Common.Value.Size = (UINT32) ACPI_PTR_DIFF (ParserState->PkgEnd, ParserState->Aml); Arg->Named.Data = ParserState->Aml; /* Skip to End of byte data */ ParserState->Aml = ParserState->PkgEnd; } break; - case ARGP_TARGET: - case ARGP_SUPERNAME: case ARGP_SIMPLENAME: case ARGP_NAME_OR_REF: + ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, + "**** SimpleName/NameOrRef: %s (%2.2X)\n", + AcpiUtGetArgumentTypeName (ArgType), ArgType)); + Subop = AcpiPsPeekOpcode (ParserState); if (Subop == 0 || AcpiPsIsLeadingChar (Subop) || ACPI_IS_ROOT_PREFIX (Subop) || ACPI_IS_PARENT_PREFIX (Subop)) { /* NullName or NameString */ Arg = AcpiPsAllocOp (AML_INT_NAMEPATH_OP, ParserState->Aml); if (!Arg) { return_ACPI_STATUS (AE_NO_MEMORY); } - /* To support SuperName arg of Unload */ + Status = AcpiPsGetNextNamepath (WalkState, ParserState, + Arg, ACPI_NOT_METHOD_CALL); + } + else + { + /* Single complex argument, nothing returned */ - if (WalkState->Opcode == AML_UNLOAD_OP) - { - Status = AcpiPsGetNextNamepath (WalkState, ParserState, - Arg, ACPI_POSSIBLE_METHOD_CALL); + WalkState->ArgCount = 1; + } + break; - /* - * If the SuperName argument is a method call, we have - * already restored the AML pointer, just free this Arg - */ - if (Arg->Common.AmlOpcode == AML_INT_METHODCALL_OP) - { - AcpiPsFreeOp (Arg); - Arg = NULL; - } - } - else + case ARGP_TARGET: + case ARGP_SUPERNAME: + + ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, + "**** Target/Supername: %s (%2.2X)\n", + AcpiUtGetArgumentTypeName (ArgType), ArgType)); + + Subop = AcpiPsPeekOpcode (ParserState); + if (Subop == 0) + { + /* NULL target (zero). Convert to a NULL namepath */ + + Arg = AcpiPsAllocOp (AML_INT_NAMEPATH_OP, ParserState->Aml); + if (!Arg) { - Status = AcpiPsGetNextNamepath (WalkState, ParserState, - Arg, ACPI_NOT_METHOD_CALL); + return_ACPI_STATUS (AE_NO_MEMORY); } + + Status = AcpiPsGetNextNamepath (WalkState, ParserState, + Arg, ACPI_POSSIBLE_METHOD_CALL); } else { /* Single complex argument, nothing returned */ WalkState->ArgCount = 1; } break; case ARGP_DATAOBJ: case ARGP_TERMARG: + + + ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, + "**** TermArg/DataObj: %s (%2.2X)\n", + AcpiUtGetArgumentTypeName (ArgType), ArgType)); /* Single complex argument, nothing returned */ WalkState->ArgCount = 1; break; case ARGP_DATAOBJLIST: case ARGP_TERMLIST: case ARGP_OBJLIST: if (ParserState->Aml < ParserState->PkgEnd) { /* Non-empty list of variable arguments, nothing returned */ WalkState->ArgCount = ACPI_VAR_ARGS; } break; default: ACPI_ERROR ((AE_INFO, "Invalid ArgType: 0x%X", ArgType)); Status = AE_AML_OPERAND_TYPE; break; } *ReturnArg = Arg; return_ACPI_STATUS (Status); } Index: head/sys/contrib/dev/acpica/components/parser/psloop.c =================================================================== --- head/sys/contrib/dev/acpica/components/parser/psloop.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/parser/psloop.c (revision 308953) @@ -1,639 +1,642 @@ /****************************************************************************** * * Module Name: psloop - Main AML parse loop * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ /* * Parse the AML and build an operation tree as most interpreters, (such as * Perl) do. Parsing is done by hand rather than with a YACC generated parser * to tightly constrain stack and dynamic memory usage. Parsing is kept * flexible and the code fairly compact by parsing based on a list of AML * opcode templates in AmlOpInfo[]. */ #include #include #include #include #include #include #define _COMPONENT ACPI_PARSER ACPI_MODULE_NAME ("psloop") /* Local prototypes */ static ACPI_STATUS AcpiPsGetArguments ( ACPI_WALK_STATE *WalkState, UINT8 *AmlOpStart, ACPI_PARSE_OBJECT *Op); static void AcpiPsLinkModuleCode ( ACPI_PARSE_OBJECT *ParentOp, UINT8 *AmlStart, UINT32 AmlLength, ACPI_OWNER_ID OwnerId); /******************************************************************************* * * FUNCTION: AcpiPsGetArguments * * PARAMETERS: WalkState - Current state * AmlOpStart - Op start in AML * Op - Current Op * * RETURN: Status * * DESCRIPTION: Get arguments for passed Op. * ******************************************************************************/ static ACPI_STATUS AcpiPsGetArguments ( ACPI_WALK_STATE *WalkState, UINT8 *AmlOpStart, ACPI_PARSE_OBJECT *Op) { ACPI_STATUS Status = AE_OK; ACPI_PARSE_OBJECT *Arg = NULL; const ACPI_OPCODE_INFO *OpInfo; ACPI_FUNCTION_TRACE_PTR (PsGetArguments, WalkState); + ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, + "Get arguments for opcode [%s]\n", Op->Common.AmlOpName)); + switch (Op->Common.AmlOpcode) { case AML_BYTE_OP: /* AML_BYTEDATA_ARG */ case AML_WORD_OP: /* AML_WORDDATA_ARG */ case AML_DWORD_OP: /* AML_DWORDATA_ARG */ case AML_QWORD_OP: /* AML_QWORDATA_ARG */ case AML_STRING_OP: /* AML_ASCIICHARLIST_ARG */ /* Fill in constant or string argument directly */ AcpiPsGetNextSimpleArg (&(WalkState->ParserState), GET_CURRENT_ARG_TYPE (WalkState->ArgTypes), Op); break; case AML_INT_NAMEPATH_OP: /* AML_NAMESTRING_ARG */ Status = AcpiPsGetNextNamepath (WalkState, &(WalkState->ParserState), Op, ACPI_POSSIBLE_METHOD_CALL); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } WalkState->ArgTypes = 0; break; default: /* * Op is not a constant or string, append each argument to the Op */ while (GET_CURRENT_ARG_TYPE (WalkState->ArgTypes) && !WalkState->ArgCount) { WalkState->Aml = WalkState->ParserState.Aml; Status = AcpiPsGetNextArg (WalkState, &(WalkState->ParserState), GET_CURRENT_ARG_TYPE (WalkState->ArgTypes), &Arg); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } if (Arg) { AcpiPsAppendArg (Op, Arg); } INCREMENT_ARG_LIST (WalkState->ArgTypes); } /* * Handle executable code at "module-level". This refers to * executable opcodes that appear outside of any control method. */ if ((WalkState->PassNumber <= ACPI_IMODE_LOAD_PASS2) && ((WalkState->ParseFlags & ACPI_PARSE_DISASSEMBLE) == 0)) { /* * We want to skip If/Else/While constructs during Pass1 because we * want to actually conditionally execute the code during Pass2. * * Except for disassembly, where we always want to walk the * If/Else/While packages */ switch (Op->Common.AmlOpcode) { case AML_IF_OP: case AML_ELSE_OP: case AML_WHILE_OP: /* * Currently supported module-level opcodes are: * IF/ELSE/WHILE. These appear to be the most common, * and easiest to support since they open an AML * package. */ if (WalkState->PassNumber == ACPI_IMODE_LOAD_PASS1) { AcpiPsLinkModuleCode (Op->Common.Parent, AmlOpStart, (UINT32) (WalkState->ParserState.PkgEnd - AmlOpStart), WalkState->OwnerId); } ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "Pass1: Skipping an If/Else/While body\n")); /* Skip body of if/else/while in pass 1 */ WalkState->ParserState.Aml = WalkState->ParserState.PkgEnd; WalkState->ArgCount = 0; break; default: /* * Check for an unsupported executable opcode at module * level. We must be in PASS1, the parent must be a SCOPE, * The opcode class must be EXECUTE, and the opcode must * not be an argument to another opcode. */ if ((WalkState->PassNumber == ACPI_IMODE_LOAD_PASS1) && (Op->Common.Parent->Common.AmlOpcode == AML_SCOPE_OP)) { OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode); if ((OpInfo->Class == AML_CLASS_EXECUTE) && (!Arg)) { ACPI_WARNING ((AE_INFO, "Unsupported module-level executable opcode " "0x%.2X at table offset 0x%.4X", Op->Common.AmlOpcode, (UINT32) (ACPI_PTR_DIFF (AmlOpStart, WalkState->ParserState.AmlStart) + sizeof (ACPI_TABLE_HEADER)))); } } break; } } /* Special processing for certain opcodes */ switch (Op->Common.AmlOpcode) { case AML_METHOD_OP: /* * Skip parsing of control method because we don't have enough * info in the first pass to parse it correctly. * * Save the length and address of the body */ Op->Named.Data = WalkState->ParserState.Aml; Op->Named.Length = (UINT32) (WalkState->ParserState.PkgEnd - WalkState->ParserState.Aml); /* Skip body of method */ WalkState->ParserState.Aml = WalkState->ParserState.PkgEnd; WalkState->ArgCount = 0; break; case AML_BUFFER_OP: case AML_PACKAGE_OP: case AML_VAR_PACKAGE_OP: if ((Op->Common.Parent) && (Op->Common.Parent->Common.AmlOpcode == AML_NAME_OP) && (WalkState->PassNumber <= ACPI_IMODE_LOAD_PASS2)) { /* * Skip parsing of Buffers and Packages because we don't have * enough info in the first pass to parse them correctly. */ Op->Named.Data = AmlOpStart; Op->Named.Length = (UINT32) (WalkState->ParserState.PkgEnd - AmlOpStart); /* Skip body */ WalkState->ParserState.Aml = WalkState->ParserState.PkgEnd; WalkState->ArgCount = 0; } break; case AML_WHILE_OP: if (WalkState->ControlState) { WalkState->ControlState->Control.PackageEnd = WalkState->ParserState.PkgEnd; } break; default: /* No action for all other opcodes */ break; } break; } return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiPsLinkModuleCode * * PARAMETERS: ParentOp - Parent parser op * AmlStart - Pointer to the AML * AmlLength - Length of executable AML * OwnerId - OwnerId of module level code * * RETURN: None. * * DESCRIPTION: Wrap the module-level code with a method object and link the * object to the global list. Note, the mutex field of the method * object is used to link multiple module-level code objects. * ******************************************************************************/ static void AcpiPsLinkModuleCode ( ACPI_PARSE_OBJECT *ParentOp, UINT8 *AmlStart, UINT32 AmlLength, ACPI_OWNER_ID OwnerId) { ACPI_OPERAND_OBJECT *Prev; ACPI_OPERAND_OBJECT *Next; ACPI_OPERAND_OBJECT *MethodObj; ACPI_NAMESPACE_NODE *ParentNode; ACPI_FUNCTION_TRACE (PsLinkModuleCode); /* Get the tail of the list */ Prev = Next = AcpiGbl_ModuleCodeList; while (Next) { Prev = Next; Next = Next->Method.Mutex; } /* * Insert the module level code into the list. Merge it if it is * adjacent to the previous element. */ if (!Prev || ((Prev->Method.AmlStart + Prev->Method.AmlLength) != AmlStart)) { /* Create, initialize, and link a new temporary method object */ MethodObj = AcpiUtCreateInternalObject (ACPI_TYPE_METHOD); if (!MethodObj) { return_VOID; } ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "Create/Link new code block: %p\n", MethodObj)); if (ParentOp->Common.Node) { ParentNode = ParentOp->Common.Node; } else { ParentNode = AcpiGbl_RootNode; } MethodObj->Method.AmlStart = AmlStart; MethodObj->Method.AmlLength = AmlLength; MethodObj->Method.OwnerId = OwnerId; MethodObj->Method.InfoFlags |= ACPI_METHOD_MODULE_LEVEL; /* * Save the parent node in NextObject. This is cheating, but we * don't want to expand the method object. */ MethodObj->Method.NextObject = ACPI_CAST_PTR (ACPI_OPERAND_OBJECT, ParentNode); if (!Prev) { AcpiGbl_ModuleCodeList = MethodObj; } else { Prev->Method.Mutex = MethodObj; } } else { ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "Appending to existing code block: %p\n", Prev)); Prev->Method.AmlLength += AmlLength; } return_VOID; } /******************************************************************************* * * FUNCTION: AcpiPsParseLoop * * PARAMETERS: WalkState - Current state * * RETURN: Status * * DESCRIPTION: Parse AML (pointed to by the current parser state) and return * a tree of ops. * ******************************************************************************/ ACPI_STATUS AcpiPsParseLoop ( ACPI_WALK_STATE *WalkState) { ACPI_STATUS Status = AE_OK; ACPI_PARSE_OBJECT *Op = NULL; /* current op */ ACPI_PARSE_STATE *ParserState; UINT8 *AmlOpStart = NULL; ACPI_FUNCTION_TRACE_PTR (PsParseLoop, WalkState); if (WalkState->DescendingCallback == NULL) { return_ACPI_STATUS (AE_BAD_PARAMETER); } ParserState = &WalkState->ParserState; WalkState->ArgTypes = 0; #if (!defined (ACPI_NO_METHOD_EXECUTION) && !defined (ACPI_CONSTANT_EVAL_ONLY)) if (WalkState->WalkType & ACPI_WALK_METHOD_RESTART) { /* We are restarting a preempted control method */ if (AcpiPsHasCompletedScope (ParserState)) { /* * We must check if a predicate to an IF or WHILE statement * was just completed */ if ((ParserState->Scope->ParseScope.Op) && ((ParserState->Scope->ParseScope.Op->Common.AmlOpcode == AML_IF_OP) || (ParserState->Scope->ParseScope.Op->Common.AmlOpcode == AML_WHILE_OP)) && (WalkState->ControlState) && (WalkState->ControlState->Common.State == ACPI_CONTROL_PREDICATE_EXECUTING)) { /* * A predicate was just completed, get the value of the * predicate and branch based on that value */ WalkState->Op = NULL; Status = AcpiDsGetPredicateValue (WalkState, ACPI_TO_POINTER (TRUE)); if (ACPI_FAILURE (Status) && ((Status & AE_CODE_MASK) != AE_CODE_CONTROL)) { if (Status == AE_AML_NO_RETURN_VALUE) { ACPI_EXCEPTION ((AE_INFO, Status, "Invoked method did not return a value")); } ACPI_EXCEPTION ((AE_INFO, Status, "GetPredicate Failed")); return_ACPI_STATUS (Status); } Status = AcpiPsNextParseState (WalkState, Op, Status); } AcpiPsPopScope (ParserState, &Op, &WalkState->ArgTypes, &WalkState->ArgCount); ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "Popped scope, Op=%p\n", Op)); } else if (WalkState->PrevOp) { /* We were in the middle of an op */ Op = WalkState->PrevOp; WalkState->ArgTypes = WalkState->PrevArgTypes; } } #endif /* Iterative parsing loop, while there is more AML to process: */ while ((ParserState->Aml < ParserState->AmlEnd) || (Op)) { AmlOpStart = ParserState->Aml; if (!Op) { Status = AcpiPsCreateOp (WalkState, AmlOpStart, &Op); if (ACPI_FAILURE (Status)) { if (Status == AE_CTRL_PARSE_CONTINUE) { continue; } if (Status == AE_CTRL_PARSE_PENDING) { Status = AE_OK; } if (Status == AE_CTRL_TERMINATE) { return_ACPI_STATUS (Status); } Status = AcpiPsCompleteOp (WalkState, &Op, Status); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } continue; } AcpiExStartTraceOpcode (Op, WalkState); } /* * Start ArgCount at zero because we don't know if there are * any args yet */ WalkState->ArgCount = 0; /* Are there any arguments that must be processed? */ if (WalkState->ArgTypes) { /* Get arguments */ Status = AcpiPsGetArguments (WalkState, AmlOpStart, Op); if (ACPI_FAILURE (Status)) { Status = AcpiPsCompleteOp (WalkState, &Op, Status); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } continue; } } /* Check for arguments that need to be processed */ if (WalkState->ArgCount) { /* * There are arguments (complex ones), push Op and * prepare for argument */ Status = AcpiPsPushScope (ParserState, Op, WalkState->ArgTypes, WalkState->ArgCount); if (ACPI_FAILURE (Status)) { Status = AcpiPsCompleteOp (WalkState, &Op, Status); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } continue; } Op = NULL; continue; } /* * All arguments have been processed -- Op is complete, * prepare for next */ WalkState->OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode); if (WalkState->OpInfo->Flags & AML_NAMED) { if (Op->Common.AmlOpcode == AML_REGION_OP || Op->Common.AmlOpcode == AML_DATA_REGION_OP) { /* * Skip parsing of control method or opregion body, * because we don't have enough info in the first pass * to parse them correctly. * * Completed parsing an OpRegion declaration, we now * know the length. */ Op->Named.Length = (UINT32) (ParserState->Aml - Op->Named.Data); } } if (WalkState->OpInfo->Flags & AML_CREATE) { /* * Backup to beginning of CreateXXXfield declaration (1 for * Opcode) * * BodyLength is unknown until we parse the body */ Op->Named.Length = (UINT32) (ParserState->Aml - Op->Named.Data); } if (Op->Common.AmlOpcode == AML_BANK_FIELD_OP) { /* * Backup to beginning of BankField declaration * * BodyLength is unknown until we parse the body */ Op->Named.Length = (UINT32) (ParserState->Aml - Op->Named.Data); } /* This op complete, notify the dispatcher */ if (WalkState->AscendingCallback != NULL) { WalkState->Op = Op; WalkState->Opcode = Op->Common.AmlOpcode; Status = WalkState->AscendingCallback (WalkState); Status = AcpiPsNextParseState (WalkState, Op, Status); if (Status == AE_CTRL_PENDING) { Status = AE_OK; } } Status = AcpiPsCompleteOp (WalkState, &Op, Status); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } /* while ParserState->Aml */ Status = AcpiPsCompleteFinalOp (WalkState, Op, Status); return_ACPI_STATUS (Status); } Index: head/sys/contrib/dev/acpica/components/parser/psobject.c =================================================================== --- head/sys/contrib/dev/acpica/components/parser/psobject.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/parser/psobject.c (revision 308953) @@ -1,686 +1,692 @@ /****************************************************************************** * * Module Name: psobject - Support for parse objects * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #define _COMPONENT ACPI_PARSER ACPI_MODULE_NAME ("psobject") /* Local prototypes */ static ACPI_STATUS AcpiPsGetAmlOpcode ( ACPI_WALK_STATE *WalkState); /******************************************************************************* * * FUNCTION: AcpiPsGetAmlOpcode * * PARAMETERS: WalkState - Current state * * RETURN: Status * * DESCRIPTION: Extract the next AML opcode from the input stream. * ******************************************************************************/ static ACPI_STATUS AcpiPsGetAmlOpcode ( ACPI_WALK_STATE *WalkState) { UINT32 AmlOffset; ACPI_FUNCTION_TRACE_PTR (PsGetAmlOpcode, WalkState); WalkState->Aml = WalkState->ParserState.Aml; WalkState->Opcode = AcpiPsPeekOpcode (&(WalkState->ParserState)); /* * First cut to determine what we have found: * 1) A valid AML opcode * 2) A name string * 3) An unknown/invalid opcode */ WalkState->OpInfo = AcpiPsGetOpcodeInfo (WalkState->Opcode); switch (WalkState->OpInfo->Class) { case AML_CLASS_ASCII: case AML_CLASS_PREFIX: /* * Starts with a valid prefix or ASCII char, this is a name * string. Convert the bare name string to a namepath. */ WalkState->Opcode = AML_INT_NAMEPATH_OP; WalkState->ArgTypes = ARGP_NAMESTRING; break; case AML_CLASS_UNKNOWN: /* The opcode is unrecognized. Complain and skip unknown opcodes */ if (WalkState->PassNumber == 2) { AmlOffset = (UINT32) ACPI_PTR_DIFF (WalkState->Aml, WalkState->ParserState.AmlStart); ACPI_ERROR ((AE_INFO, "Unknown opcode 0x%.2X at table offset 0x%.4X, ignoring", WalkState->Opcode, (UINT32) (AmlOffset + sizeof (ACPI_TABLE_HEADER)))); ACPI_DUMP_BUFFER ((WalkState->ParserState.Aml - 16), 48); #ifdef ACPI_ASL_COMPILER /* * This is executed for the disassembler only. Output goes * to the disassembled ASL output file. */ AcpiOsPrintf ( "/*\nError: Unknown opcode 0x%.2X at table offset 0x%.4X, context:\n", WalkState->Opcode, (UINT32) (AmlOffset + sizeof (ACPI_TABLE_HEADER))); /* Dump the context surrounding the invalid opcode */ AcpiUtDumpBuffer (((UINT8 *) WalkState->ParserState.Aml - 16), 48, DB_BYTE_DISPLAY, (AmlOffset + sizeof (ACPI_TABLE_HEADER) - 16)); AcpiOsPrintf (" */\n"); #endif } /* Increment past one-byte or two-byte opcode */ WalkState->ParserState.Aml++; if (WalkState->Opcode > 0xFF) /* Can only happen if first byte is 0x5B */ { WalkState->ParserState.Aml++; } return_ACPI_STATUS (AE_CTRL_PARSE_CONTINUE); default: /* Found opcode info, this is a normal opcode */ WalkState->ParserState.Aml += AcpiPsGetOpcodeSize (WalkState->Opcode); WalkState->ArgTypes = WalkState->OpInfo->ParseArgs; break; } return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiPsBuildNamedOp * * PARAMETERS: WalkState - Current state * AmlOpStart - Begin of named Op in AML * UnnamedOp - Early Op (not a named Op) * Op - Returned Op * * RETURN: Status * * DESCRIPTION: Parse a named Op * ******************************************************************************/ ACPI_STATUS AcpiPsBuildNamedOp ( ACPI_WALK_STATE *WalkState, UINT8 *AmlOpStart, ACPI_PARSE_OBJECT *UnnamedOp, ACPI_PARSE_OBJECT **Op) { ACPI_STATUS Status = AE_OK; ACPI_PARSE_OBJECT *Arg = NULL; ACPI_FUNCTION_TRACE_PTR (PsBuildNamedOp, WalkState); UnnamedOp->Common.Value.Arg = NULL; UnnamedOp->Common.ArgListLength = 0; UnnamedOp->Common.AmlOpcode = WalkState->Opcode; /* * Get and append arguments until we find the node that contains * the name (the type ARGP_NAME). */ while (GET_CURRENT_ARG_TYPE (WalkState->ArgTypes) && (GET_CURRENT_ARG_TYPE (WalkState->ArgTypes) != ARGP_NAME)) { Status = AcpiPsGetNextArg (WalkState, &(WalkState->ParserState), GET_CURRENT_ARG_TYPE (WalkState->ArgTypes), &Arg); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } AcpiPsAppendArg (UnnamedOp, Arg); INCREMENT_ARG_LIST (WalkState->ArgTypes); } /* * Make sure that we found a NAME and didn't run out of arguments */ if (!GET_CURRENT_ARG_TYPE (WalkState->ArgTypes)) { return_ACPI_STATUS (AE_AML_NO_OPERAND); } /* We know that this arg is a name, move to next arg */ INCREMENT_ARG_LIST (WalkState->ArgTypes); /* * Find the object. This will either insert the object into * the namespace or simply look it up */ WalkState->Op = NULL; Status = WalkState->DescendingCallback (WalkState, Op); if (ACPI_FAILURE (Status)) { if (Status != AE_CTRL_TERMINATE) { ACPI_EXCEPTION ((AE_INFO, Status, "During name lookup/catalog")); } return_ACPI_STATUS (Status); } if (!*Op) { return_ACPI_STATUS (AE_CTRL_PARSE_CONTINUE); } Status = AcpiPsNextParseState (WalkState, *Op, Status); if (ACPI_FAILURE (Status)) { if (Status == AE_CTRL_PENDING) { Status = AE_CTRL_PARSE_PENDING; } return_ACPI_STATUS (Status); } AcpiPsAppendArg (*Op, UnnamedOp->Common.Value.Arg); if ((*Op)->Common.AmlOpcode == AML_REGION_OP || (*Op)->Common.AmlOpcode == AML_DATA_REGION_OP) { /* * Defer final parsing of an OperationRegion body, because we don't * have enough info in the first pass to parse it correctly (i.e., * there may be method calls within the TermArg elements of the body.) * * However, we must continue parsing because the opregion is not a * standalone package -- we don't know where the end is at this point. * * (Length is unknown until parse of the body complete) */ (*Op)->Named.Data = AmlOpStart; (*Op)->Named.Length = 0; } return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiPsCreateOp * * PARAMETERS: WalkState - Current state * AmlOpStart - Op start in AML * NewOp - Returned Op * * RETURN: Status * * DESCRIPTION: Get Op from AML * ******************************************************************************/ ACPI_STATUS AcpiPsCreateOp ( ACPI_WALK_STATE *WalkState, UINT8 *AmlOpStart, ACPI_PARSE_OBJECT **NewOp) { ACPI_STATUS Status = AE_OK; ACPI_PARSE_OBJECT *Op; ACPI_PARSE_OBJECT *NamedOp = NULL; ACPI_PARSE_OBJECT *ParentScope; UINT8 ArgumentCount; const ACPI_OPCODE_INFO *OpInfo; ACPI_FUNCTION_TRACE_PTR (PsCreateOp, WalkState); Status = AcpiPsGetAmlOpcode (WalkState); if (Status == AE_CTRL_PARSE_CONTINUE) { return_ACPI_STATUS (AE_CTRL_PARSE_CONTINUE); } /* Create Op structure and append to parent's argument list */ WalkState->OpInfo = AcpiPsGetOpcodeInfo (WalkState->Opcode); Op = AcpiPsAllocOp (WalkState->Opcode, AmlOpStart); if (!Op) { return_ACPI_STATUS (AE_NO_MEMORY); } if (WalkState->OpInfo->Flags & AML_NAMED) { Status = AcpiPsBuildNamedOp (WalkState, AmlOpStart, Op, &NamedOp); AcpiPsFreeOp (Op); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } *NewOp = NamedOp; return_ACPI_STATUS (AE_OK); } /* Not a named opcode, just allocate Op and append to parent */ if (WalkState->OpInfo->Flags & AML_CREATE) { /* * Backup to beginning of CreateXXXfield declaration * BodyLength is unknown until we parse the body */ Op->Named.Data = AmlOpStart; Op->Named.Length = 0; } if (WalkState->Opcode == AML_BANK_FIELD_OP) { /* * Backup to beginning of BankField declaration * BodyLength is unknown until we parse the body */ Op->Named.Data = AmlOpStart; Op->Named.Length = 0; } ParentScope = AcpiPsGetParentScope (&(WalkState->ParserState)); AcpiPsAppendArg (ParentScope, Op); if (ParentScope) { OpInfo = AcpiPsGetOpcodeInfo (ParentScope->Common.AmlOpcode); if (OpInfo->Flags & AML_HAS_TARGET) { ArgumentCount = AcpiPsGetArgumentCount (OpInfo->Type); if (ParentScope->Common.ArgListLength > ArgumentCount) { Op->Common.Flags |= ACPI_PARSEOP_TARGET; } } - else if (ParentScope->Common.AmlOpcode == AML_INCREMENT_OP) + + /* + * Special case for both Increment() and Decrement(), where + * the lone argument is both a source and a target. + */ + else if ((ParentScope->Common.AmlOpcode == AML_INCREMENT_OP) || + (ParentScope->Common.AmlOpcode == AML_DECREMENT_OP)) { Op->Common.Flags |= ACPI_PARSEOP_TARGET; } } if (WalkState->DescendingCallback != NULL) { /* * Find the object. This will either insert the object into * the namespace or simply look it up */ WalkState->Op = *NewOp = Op; Status = WalkState->DescendingCallback (WalkState, &Op); Status = AcpiPsNextParseState (WalkState, Op, Status); if (Status == AE_CTRL_PENDING) { Status = AE_CTRL_PARSE_PENDING; } } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiPsCompleteOp * * PARAMETERS: WalkState - Current state * Op - Returned Op * Status - Parse status before complete Op * * RETURN: Status * * DESCRIPTION: Complete Op * ******************************************************************************/ ACPI_STATUS AcpiPsCompleteOp ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT **Op, ACPI_STATUS Status) { ACPI_STATUS Status2; ACPI_FUNCTION_TRACE_PTR (PsCompleteOp, WalkState); /* * Finished one argument of the containing scope */ WalkState->ParserState.Scope->ParseScope.ArgCount--; /* Close this Op (will result in parse subtree deletion) */ Status2 = AcpiPsCompleteThisOp (WalkState, *Op); if (ACPI_FAILURE (Status2)) { return_ACPI_STATUS (Status2); } *Op = NULL; switch (Status) { case AE_OK: break; case AE_CTRL_TRANSFER: /* We are about to transfer to a called method */ WalkState->PrevOp = NULL; WalkState->PrevArgTypes = WalkState->ArgTypes; return_ACPI_STATUS (Status); case AE_CTRL_END: AcpiPsPopScope (&(WalkState->ParserState), Op, &WalkState->ArgTypes, &WalkState->ArgCount); if (*Op) { WalkState->Op = *Op; WalkState->OpInfo = AcpiPsGetOpcodeInfo ((*Op)->Common.AmlOpcode); WalkState->Opcode = (*Op)->Common.AmlOpcode; Status = WalkState->AscendingCallback (WalkState); Status = AcpiPsNextParseState (WalkState, *Op, Status); Status2 = AcpiPsCompleteThisOp (WalkState, *Op); if (ACPI_FAILURE (Status2)) { return_ACPI_STATUS (Status2); } } Status = AE_OK; break; case AE_CTRL_BREAK: case AE_CTRL_CONTINUE: /* Pop off scopes until we find the While */ while (!(*Op) || ((*Op)->Common.AmlOpcode != AML_WHILE_OP)) { AcpiPsPopScope (&(WalkState->ParserState), Op, &WalkState->ArgTypes, &WalkState->ArgCount); } /* Close this iteration of the While loop */ WalkState->Op = *Op; WalkState->OpInfo = AcpiPsGetOpcodeInfo ((*Op)->Common.AmlOpcode); WalkState->Opcode = (*Op)->Common.AmlOpcode; Status = WalkState->AscendingCallback (WalkState); Status = AcpiPsNextParseState (WalkState, *Op, Status); Status2 = AcpiPsCompleteThisOp (WalkState, *Op); if (ACPI_FAILURE (Status2)) { return_ACPI_STATUS (Status2); } Status = AE_OK; break; case AE_CTRL_TERMINATE: /* Clean up */ do { if (*Op) { Status2 = AcpiPsCompleteThisOp (WalkState, *Op); if (ACPI_FAILURE (Status2)) { return_ACPI_STATUS (Status2); } AcpiUtDeleteGenericState ( AcpiUtPopGenericState (&WalkState->ControlState)); } AcpiPsPopScope (&(WalkState->ParserState), Op, &WalkState->ArgTypes, &WalkState->ArgCount); } while (*Op); return_ACPI_STATUS (AE_OK); default: /* All other non-AE_OK status */ do { if (*Op) { Status2 = AcpiPsCompleteThisOp (WalkState, *Op); if (ACPI_FAILURE (Status2)) { return_ACPI_STATUS (Status2); } } AcpiPsPopScope (&(WalkState->ParserState), Op, &WalkState->ArgTypes, &WalkState->ArgCount); } while (*Op); #if 0 /* * TBD: Cleanup parse ops on error */ if (*Op == NULL) { AcpiPsPopScope (ParserState, Op, &WalkState->ArgTypes, &WalkState->ArgCount); } #endif WalkState->PrevOp = NULL; WalkState->PrevArgTypes = WalkState->ArgTypes; return_ACPI_STATUS (Status); } /* This scope complete? */ if (AcpiPsHasCompletedScope (&(WalkState->ParserState))) { AcpiPsPopScope (&(WalkState->ParserState), Op, &WalkState->ArgTypes, &WalkState->ArgCount); ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "Popped scope, Op=%p\n", *Op)); } else { *Op = NULL; } return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiPsCompleteFinalOp * * PARAMETERS: WalkState - Current state * Op - Current Op * Status - Current parse status before complete last * Op * * RETURN: Status * * DESCRIPTION: Complete last Op. * ******************************************************************************/ ACPI_STATUS AcpiPsCompleteFinalOp ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op, ACPI_STATUS Status) { ACPI_STATUS Status2; ACPI_FUNCTION_TRACE_PTR (PsCompleteFinalOp, WalkState); /* * Complete the last Op (if not completed), and clear the scope stack. * It is easily possible to end an AML "package" with an unbounded number * of open scopes (such as when several ASL blocks are closed with * sequential closing braces). We want to terminate each one cleanly. */ ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "AML package complete at Op %p\n", Op)); do { if (Op) { if (WalkState->AscendingCallback != NULL) { WalkState->Op = Op; WalkState->OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode); WalkState->Opcode = Op->Common.AmlOpcode; Status = WalkState->AscendingCallback (WalkState); Status = AcpiPsNextParseState (WalkState, Op, Status); if (Status == AE_CTRL_PENDING) { Status = AcpiPsCompleteOp (WalkState, &Op, AE_OK); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } if (Status == AE_CTRL_TERMINATE) { Status = AE_OK; /* Clean up */ do { if (Op) { Status2 = AcpiPsCompleteThisOp (WalkState, Op); if (ACPI_FAILURE (Status2)) { return_ACPI_STATUS (Status2); } } AcpiPsPopScope (&(WalkState->ParserState), &Op, &WalkState->ArgTypes, &WalkState->ArgCount); } while (Op); return_ACPI_STATUS (Status); } else if (ACPI_FAILURE (Status)) { /* First error is most important */ (void) AcpiPsCompleteThisOp (WalkState, Op); return_ACPI_STATUS (Status); } } Status2 = AcpiPsCompleteThisOp (WalkState, Op); if (ACPI_FAILURE (Status2)) { return_ACPI_STATUS (Status2); } } AcpiPsPopScope (&(WalkState->ParserState), &Op, &WalkState->ArgTypes, &WalkState->ArgCount); } while (Op); return_ACPI_STATUS (Status); } Index: head/sys/contrib/dev/acpica/components/parser/pstree.c =================================================================== --- head/sys/contrib/dev/acpica/components/parser/pstree.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/parser/pstree.c (revision 308953) @@ -1,353 +1,355 @@ /****************************************************************************** * * Module Name: pstree - Parser op tree manipulation/traversal/search * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #define _COMPONENT ACPI_PARSER ACPI_MODULE_NAME ("pstree") /* Local prototypes */ #ifdef ACPI_OBSOLETE_FUNCTIONS ACPI_PARSE_OBJECT * AcpiPsGetChild ( ACPI_PARSE_OBJECT *op); #endif /******************************************************************************* * * FUNCTION: AcpiPsGetArg * * PARAMETERS: Op - Get an argument for this op * Argn - Nth argument to get * * RETURN: The argument (as an Op object). NULL if argument does not exist * * DESCRIPTION: Get the specified op's argument. * ******************************************************************************/ ACPI_PARSE_OBJECT * AcpiPsGetArg ( ACPI_PARSE_OBJECT *Op, UINT32 Argn) { ACPI_PARSE_OBJECT *Arg = NULL; const ACPI_OPCODE_INFO *OpInfo; ACPI_FUNCTION_ENTRY (); /* if (Op->Common.AmlOpcode == AML_INT_CONNECTION_OP) { return (Op->Common.Value.Arg); } */ /* Get the info structure for this opcode */ OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode); if (OpInfo->Class == AML_CLASS_UNKNOWN) { /* Invalid opcode or ASCII character */ return (NULL); } /* Check if this opcode requires argument sub-objects */ if (!(OpInfo->Flags & AML_HAS_ARGS)) { /* Has no linked argument objects */ return (NULL); } /* Get the requested argument object */ Arg = Op->Common.Value.Arg; while (Arg && Argn) { Argn--; Arg = Arg->Common.Next; } return (Arg); } /******************************************************************************* * * FUNCTION: AcpiPsAppendArg * * PARAMETERS: Op - Append an argument to this Op. * Arg - Argument Op to append * * RETURN: None. * * DESCRIPTION: Append an argument to an op's argument list (a NULL arg is OK) * ******************************************************************************/ void AcpiPsAppendArg ( ACPI_PARSE_OBJECT *Op, ACPI_PARSE_OBJECT *Arg) { ACPI_PARSE_OBJECT *PrevArg; const ACPI_OPCODE_INFO *OpInfo; - ACPI_FUNCTION_ENTRY (); + ACPI_FUNCTION_TRACE ("PsAppendArg"); if (!Op) { - return; + return_VOID; } /* Get the info structure for this opcode */ OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode); if (OpInfo->Class == AML_CLASS_UNKNOWN) { /* Invalid opcode */ ACPI_ERROR ((AE_INFO, "Invalid AML Opcode: 0x%2.2X", Op->Common.AmlOpcode)); - return; + return_VOID; } /* Check if this opcode requires argument sub-objects */ if (!(OpInfo->Flags & AML_HAS_ARGS)) { /* Has no linked argument objects */ - return; + return_VOID; } /* Append the argument to the linked argument list */ if (Op->Common.Value.Arg) { /* Append to existing argument list */ PrevArg = Op->Common.Value.Arg; while (PrevArg->Common.Next) { PrevArg = PrevArg->Common.Next; } PrevArg->Common.Next = Arg; } else { /* No argument list, this will be the first argument */ Op->Common.Value.Arg = Arg; } /* Set the parent in this arg and any args linked after it */ while (Arg) { Arg->Common.Parent = Op; Arg = Arg->Common.Next; Op->Common.ArgListLength++; } + + return_VOID; } /******************************************************************************* * * FUNCTION: AcpiPsGetDepthNext * * PARAMETERS: Origin - Root of subtree to search * Op - Last (previous) Op that was found * * RETURN: Next Op found in the search. * * DESCRIPTION: Get next op in tree (walking the tree in depth-first order) * Return NULL when reaching "origin" or when walking up from root * ******************************************************************************/ ACPI_PARSE_OBJECT * AcpiPsGetDepthNext ( ACPI_PARSE_OBJECT *Origin, ACPI_PARSE_OBJECT *Op) { ACPI_PARSE_OBJECT *Next = NULL; ACPI_PARSE_OBJECT *Parent; ACPI_PARSE_OBJECT *Arg; ACPI_FUNCTION_ENTRY (); if (!Op) { return (NULL); } /* Look for an argument or child */ Next = AcpiPsGetArg (Op, 0); if (Next) { return (Next); } /* Look for a sibling */ Next = Op->Common.Next; if (Next) { return (Next); } /* Look for a sibling of parent */ Parent = Op->Common.Parent; while (Parent) { Arg = AcpiPsGetArg (Parent, 0); while (Arg && (Arg != Origin) && (Arg != Op)) { Arg = Arg->Common.Next; } if (Arg == Origin) { /* Reached parent of origin, end search */ return (NULL); } if (Parent->Common.Next) { /* Found sibling of parent */ return (Parent->Common.Next); } Op = Parent; Parent = Parent->Common.Parent; } return (Next); } #ifdef ACPI_OBSOLETE_FUNCTIONS /******************************************************************************* * * FUNCTION: AcpiPsGetChild * * PARAMETERS: Op - Get the child of this Op * * RETURN: Child Op, Null if none is found. * * DESCRIPTION: Get op's children or NULL if none * ******************************************************************************/ ACPI_PARSE_OBJECT * AcpiPsGetChild ( ACPI_PARSE_OBJECT *Op) { ACPI_PARSE_OBJECT *Child = NULL; ACPI_FUNCTION_ENTRY (); switch (Op->Common.AmlOpcode) { case AML_SCOPE_OP: case AML_ELSE_OP: case AML_DEVICE_OP: case AML_THERMAL_ZONE_OP: case AML_INT_METHODCALL_OP: Child = AcpiPsGetArg (Op, 0); break; case AML_BUFFER_OP: case AML_PACKAGE_OP: case AML_METHOD_OP: case AML_IF_OP: case AML_WHILE_OP: case AML_FIELD_OP: Child = AcpiPsGetArg (Op, 1); break; case AML_POWER_RES_OP: case AML_INDEX_FIELD_OP: Child = AcpiPsGetArg (Op, 2); break; case AML_PROCESSOR_OP: case AML_BANK_FIELD_OP: Child = AcpiPsGetArg (Op, 3); break; default: /* All others have no children */ break; } return (Child); } #endif Index: head/sys/contrib/dev/acpica/components/tables/tbdata.c =================================================================== --- head/sys/contrib/dev/acpica/components/tables/tbdata.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/tables/tbdata.c (revision 308953) @@ -1,1022 +1,1040 @@ /****************************************************************************** * * Module Name: tbdata - Table manager data structure functions * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #include #define _COMPONENT ACPI_TABLES ACPI_MODULE_NAME ("tbdata") /******************************************************************************* * * FUNCTION: AcpiTbInitTableDescriptor * * PARAMETERS: TableDesc - Table descriptor * Address - Physical address of the table * Flags - Allocation flags of the table * Table - Pointer to the table * * RETURN: None * * DESCRIPTION: Initialize a new table descriptor * ******************************************************************************/ void AcpiTbInitTableDescriptor ( ACPI_TABLE_DESC *TableDesc, ACPI_PHYSICAL_ADDRESS Address, UINT8 Flags, ACPI_TABLE_HEADER *Table) { /* * Initialize the table descriptor. Set the pointer to NULL, since the * table is not fully mapped at this time. */ memset (TableDesc, 0, sizeof (ACPI_TABLE_DESC)); TableDesc->Address = Address; TableDesc->Length = Table->Length; TableDesc->Flags = Flags; ACPI_MOVE_32_TO_32 (TableDesc->Signature.Ascii, Table->Signature); } /******************************************************************************* * * FUNCTION: AcpiTbAcquireTable * * PARAMETERS: TableDesc - Table descriptor * TablePtr - Where table is returned * TableLength - Where table length is returned * TableFlags - Where table allocation flags are returned * * RETURN: Status * * DESCRIPTION: Acquire an ACPI table. It can be used for tables not * maintained in the AcpiGbl_RootTableList. * ******************************************************************************/ ACPI_STATUS AcpiTbAcquireTable ( ACPI_TABLE_DESC *TableDesc, ACPI_TABLE_HEADER **TablePtr, UINT32 *TableLength, UINT8 *TableFlags) { ACPI_TABLE_HEADER *Table = NULL; switch (TableDesc->Flags & ACPI_TABLE_ORIGIN_MASK) { case ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL: Table = AcpiOsMapMemory (TableDesc->Address, TableDesc->Length); break; case ACPI_TABLE_ORIGIN_INTERNAL_VIRTUAL: case ACPI_TABLE_ORIGIN_EXTERNAL_VIRTUAL: Table = ACPI_CAST_PTR (ACPI_TABLE_HEADER, ACPI_PHYSADDR_TO_PTR (TableDesc->Address)); break; default: break; } /* Table is not valid yet */ if (!Table) { return (AE_NO_MEMORY); } /* Fill the return values */ *TablePtr = Table; *TableLength = TableDesc->Length; *TableFlags = TableDesc->Flags; return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiTbReleaseTable * * PARAMETERS: Table - Pointer for the table * TableLength - Length for the table * TableFlags - Allocation flags for the table * * RETURN: None * * DESCRIPTION: Release a table. The inverse of AcpiTbAcquireTable(). * ******************************************************************************/ void AcpiTbReleaseTable ( ACPI_TABLE_HEADER *Table, UINT32 TableLength, UINT8 TableFlags) { switch (TableFlags & ACPI_TABLE_ORIGIN_MASK) { case ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL: AcpiOsUnmapMemory (Table, TableLength); break; case ACPI_TABLE_ORIGIN_INTERNAL_VIRTUAL: case ACPI_TABLE_ORIGIN_EXTERNAL_VIRTUAL: default: break; } } /******************************************************************************* * * FUNCTION: AcpiTbAcquireTempTable * * PARAMETERS: TableDesc - Table descriptor to be acquired * Address - Address of the table * Flags - Allocation flags of the table * * RETURN: Status * * DESCRIPTION: This function validates the table header to obtain the length * of a table and fills the table descriptor to make its state as * "INSTALLED". Such a table descriptor is only used for verified * installation. * ******************************************************************************/ ACPI_STATUS AcpiTbAcquireTempTable ( ACPI_TABLE_DESC *TableDesc, ACPI_PHYSICAL_ADDRESS Address, UINT8 Flags) { ACPI_TABLE_HEADER *TableHeader; switch (Flags & ACPI_TABLE_ORIGIN_MASK) { case ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL: /* Get the length of the full table from the header */ TableHeader = AcpiOsMapMemory (Address, sizeof (ACPI_TABLE_HEADER)); if (!TableHeader) { return (AE_NO_MEMORY); } AcpiTbInitTableDescriptor (TableDesc, Address, Flags, TableHeader); AcpiOsUnmapMemory (TableHeader, sizeof (ACPI_TABLE_HEADER)); return (AE_OK); case ACPI_TABLE_ORIGIN_INTERNAL_VIRTUAL: case ACPI_TABLE_ORIGIN_EXTERNAL_VIRTUAL: TableHeader = ACPI_CAST_PTR (ACPI_TABLE_HEADER, ACPI_PHYSADDR_TO_PTR (Address)); if (!TableHeader) { return (AE_NO_MEMORY); } AcpiTbInitTableDescriptor (TableDesc, Address, Flags, TableHeader); return (AE_OK); default: break; } /* Table is not valid yet */ return (AE_NO_MEMORY); } /******************************************************************************* * * FUNCTION: AcpiTbReleaseTempTable * * PARAMETERS: TableDesc - Table descriptor to be released * * RETURN: Status * * DESCRIPTION: The inverse of AcpiTbAcquireTempTable(). * *****************************************************************************/ void AcpiTbReleaseTempTable ( ACPI_TABLE_DESC *TableDesc) { /* * Note that the .Address is maintained by the callers of * AcpiTbAcquireTempTable(), thus do not invoke AcpiTbUninstallTable() * where .Address will be freed. */ AcpiTbInvalidateTable (TableDesc); } /****************************************************************************** * * FUNCTION: AcpiTbValidateTable * * PARAMETERS: TableDesc - Table descriptor * * RETURN: Status * * DESCRIPTION: This function is called to validate the table, the returned * table descriptor is in "VALIDATED" state. * *****************************************************************************/ ACPI_STATUS AcpiTbValidateTable ( ACPI_TABLE_DESC *TableDesc) { ACPI_STATUS Status = AE_OK; ACPI_FUNCTION_TRACE (TbValidateTable); /* Validate the table if necessary */ if (!TableDesc->Pointer) { Status = AcpiTbAcquireTable (TableDesc, &TableDesc->Pointer, &TableDesc->Length, &TableDesc->Flags); if (!TableDesc->Pointer) { Status = AE_NO_MEMORY; } } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiTbInvalidateTable * * PARAMETERS: TableDesc - Table descriptor * * RETURN: None * * DESCRIPTION: Invalidate one internal ACPI table, this is the inverse of * AcpiTbValidateTable(). * ******************************************************************************/ void AcpiTbInvalidateTable ( ACPI_TABLE_DESC *TableDesc) { ACPI_FUNCTION_TRACE (TbInvalidateTable); /* Table must be validated */ if (!TableDesc->Pointer) { return_VOID; } AcpiTbReleaseTable (TableDesc->Pointer, TableDesc->Length, TableDesc->Flags); TableDesc->Pointer = NULL; return_VOID; } /****************************************************************************** * * FUNCTION: AcpiTbValidateTempTable * * PARAMETERS: TableDesc - Table descriptor * * RETURN: Status * * DESCRIPTION: This function is called to validate the table, the returned * table descriptor is in "VALIDATED" state. * *****************************************************************************/ ACPI_STATUS AcpiTbValidateTempTable ( ACPI_TABLE_DESC *TableDesc) { if (!TableDesc->Pointer && !AcpiGbl_VerifyTableChecksum) { /* * Only validates the header of the table. * Note that Length contains the size of the mapping after invoking * this work around, this value is required by * AcpiTbReleaseTempTable(). * We can do this because in AcpiInitTableDescriptor(), the Length * field of the installed descriptor is filled with the actual * table length obtaining from the table header. */ TableDesc->Length = sizeof (ACPI_TABLE_HEADER); } return (AcpiTbValidateTable (TableDesc)); } /****************************************************************************** * * FUNCTION: AcpiTbVerifyTempTable * * PARAMETERS: TableDesc - Table descriptor * Signature - Table signature to verify * * RETURN: Status * * DESCRIPTION: This function is called to validate and verify the table, the * returned table descriptor is in "VALIDATED" state. * *****************************************************************************/ ACPI_STATUS AcpiTbVerifyTempTable ( ACPI_TABLE_DESC *TableDesc, char *Signature) { ACPI_STATUS Status = AE_OK; ACPI_FUNCTION_TRACE (TbVerifyTempTable); /* Validate the table */ Status = AcpiTbValidateTempTable (TableDesc); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (AE_NO_MEMORY); } /* If a particular signature is expected (DSDT/FACS), it must match */ if (Signature && !ACPI_COMPARE_NAME (&TableDesc->Signature, Signature)) { ACPI_BIOS_ERROR ((AE_INFO, "Invalid signature 0x%X for ACPI table, expected [%s]", TableDesc->Signature.Integer, Signature)); Status = AE_BAD_SIGNATURE; goto InvalidateAndExit; } /* Verify the checksum */ if (AcpiGbl_VerifyTableChecksum) { Status = AcpiTbVerifyChecksum (TableDesc->Pointer, TableDesc->Length); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, AE_NO_MEMORY, "%4.4s 0x%8.8X%8.8X" " Attempted table install failed", AcpiUtValidNameseg (TableDesc->Signature.Ascii) ? TableDesc->Signature.Ascii : "????", ACPI_FORMAT_UINT64 (TableDesc->Address))); goto InvalidateAndExit; } } return_ACPI_STATUS (AE_OK); InvalidateAndExit: AcpiTbInvalidateTable (TableDesc); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiTbResizeRootTableList * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Expand the size of global table array * ******************************************************************************/ ACPI_STATUS AcpiTbResizeRootTableList ( void) { ACPI_TABLE_DESC *Tables; UINT32 TableCount; ACPI_FUNCTION_TRACE (TbResizeRootTableList); /* AllowResize flag is a parameter to AcpiInitializeTables */ if (!(AcpiGbl_RootTableList.Flags & ACPI_ROOT_ALLOW_RESIZE)) { ACPI_ERROR ((AE_INFO, "Resize of Root Table Array is not allowed")); return_ACPI_STATUS (AE_SUPPORT); } /* Increase the Table Array size */ if (AcpiGbl_RootTableList.Flags & ACPI_ROOT_ORIGIN_ALLOCATED) { TableCount = AcpiGbl_RootTableList.MaxTableCount; } else { TableCount = AcpiGbl_RootTableList.CurrentTableCount; } Tables = ACPI_ALLOCATE_ZEROED ( ((ACPI_SIZE) TableCount + ACPI_ROOT_TABLE_SIZE_INCREMENT) * sizeof (ACPI_TABLE_DESC)); if (!Tables) { ACPI_ERROR ((AE_INFO, "Could not allocate new root table array")); return_ACPI_STATUS (AE_NO_MEMORY); } /* Copy and free the previous table array */ if (AcpiGbl_RootTableList.Tables) { memcpy (Tables, AcpiGbl_RootTableList.Tables, (ACPI_SIZE) TableCount * sizeof (ACPI_TABLE_DESC)); if (AcpiGbl_RootTableList.Flags & ACPI_ROOT_ORIGIN_ALLOCATED) { ACPI_FREE (AcpiGbl_RootTableList.Tables); } } AcpiGbl_RootTableList.Tables = Tables; AcpiGbl_RootTableList.MaxTableCount = TableCount + ACPI_ROOT_TABLE_SIZE_INCREMENT; AcpiGbl_RootTableList.Flags |= ACPI_ROOT_ORIGIN_ALLOCATED; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiTbGetNextTableDescriptor * * PARAMETERS: TableIndex - Where table index is returned * TableDesc - Where table descriptor is returned * * RETURN: Status and table index/descriptor. * * DESCRIPTION: Allocate a new ACPI table entry to the global table list * ******************************************************************************/ ACPI_STATUS AcpiTbGetNextTableDescriptor ( UINT32 *TableIndex, ACPI_TABLE_DESC **TableDesc) { ACPI_STATUS Status; UINT32 i; /* Ensure that there is room for the table in the Root Table List */ if (AcpiGbl_RootTableList.CurrentTableCount >= AcpiGbl_RootTableList.MaxTableCount) { Status = AcpiTbResizeRootTableList(); if (ACPI_FAILURE (Status)) { return (Status); } } i = AcpiGbl_RootTableList.CurrentTableCount; AcpiGbl_RootTableList.CurrentTableCount++; if (TableIndex) { *TableIndex = i; } if (TableDesc) { *TableDesc = &AcpiGbl_RootTableList.Tables[i]; } return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiTbTerminate * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Delete all internal ACPI tables * ******************************************************************************/ void AcpiTbTerminate ( void) { UINT32 i; ACPI_FUNCTION_TRACE (TbTerminate); (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); /* Delete the individual tables */ for (i = 0; i < AcpiGbl_RootTableList.CurrentTableCount; i++) { AcpiTbUninstallTable (&AcpiGbl_RootTableList.Tables[i]); } /* * Delete the root table array if allocated locally. Array cannot be * mapped, so we don't need to check for that flag. */ if (AcpiGbl_RootTableList.Flags & ACPI_ROOT_ORIGIN_ALLOCATED) { ACPI_FREE (AcpiGbl_RootTableList.Tables); } AcpiGbl_RootTableList.Tables = NULL; AcpiGbl_RootTableList.Flags = 0; AcpiGbl_RootTableList.CurrentTableCount = 0; ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "ACPI Tables freed\n")); (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); return_VOID; } /******************************************************************************* * * FUNCTION: AcpiTbDeleteNamespaceByOwner * * PARAMETERS: TableIndex - Table index * * RETURN: Status * * DESCRIPTION: Delete all namespace objects created when this table was loaded. * ******************************************************************************/ ACPI_STATUS AcpiTbDeleteNamespaceByOwner ( UINT32 TableIndex) { ACPI_OWNER_ID OwnerId; ACPI_STATUS Status; ACPI_FUNCTION_TRACE (TbDeleteNamespaceByOwner); Status = AcpiUtAcquireMutex (ACPI_MTX_TABLES); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } if (TableIndex >= AcpiGbl_RootTableList.CurrentTableCount) { /* The table index does not exist */ (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); return_ACPI_STATUS (AE_NOT_EXIST); } /* Get the owner ID for this table, used to delete namespace nodes */ OwnerId = AcpiGbl_RootTableList.Tables[TableIndex].OwnerId; (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); /* * Need to acquire the namespace writer lock to prevent interference * with any concurrent namespace walks. The interpreter must be * released during the deletion since the acquisition of the deletion * lock may block, and also since the execution of a namespace walk * must be allowed to use the interpreter. */ Status = AcpiUtAcquireWriteLock (&AcpiGbl_NamespaceRwLock); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } AcpiNsDeleteNamespaceByOwner (OwnerId); AcpiUtReleaseWriteLock (&AcpiGbl_NamespaceRwLock); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiTbAllocateOwnerId * * PARAMETERS: TableIndex - Table index * * RETURN: Status * * DESCRIPTION: Allocates OwnerId in TableDesc * ******************************************************************************/ ACPI_STATUS AcpiTbAllocateOwnerId ( UINT32 TableIndex) { ACPI_STATUS Status = AE_BAD_PARAMETER; ACPI_FUNCTION_TRACE (TbAllocateOwnerId); (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); if (TableIndex < AcpiGbl_RootTableList.CurrentTableCount) { Status = AcpiUtAllocateOwnerId ( &(AcpiGbl_RootTableList.Tables[TableIndex].OwnerId)); } (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiTbReleaseOwnerId * * PARAMETERS: TableIndex - Table index * * RETURN: Status * * DESCRIPTION: Releases OwnerId in TableDesc * ******************************************************************************/ ACPI_STATUS AcpiTbReleaseOwnerId ( UINT32 TableIndex) { ACPI_STATUS Status = AE_BAD_PARAMETER; ACPI_FUNCTION_TRACE (TbReleaseOwnerId); (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); if (TableIndex < AcpiGbl_RootTableList.CurrentTableCount) { AcpiUtReleaseOwnerId ( &(AcpiGbl_RootTableList.Tables[TableIndex].OwnerId)); Status = AE_OK; } (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiTbGetOwnerId * * PARAMETERS: TableIndex - Table index * OwnerId - Where the table OwnerId is returned * * RETURN: Status * * DESCRIPTION: returns OwnerId for the ACPI table * ******************************************************************************/ ACPI_STATUS AcpiTbGetOwnerId ( UINT32 TableIndex, ACPI_OWNER_ID *OwnerId) { ACPI_STATUS Status = AE_BAD_PARAMETER; ACPI_FUNCTION_TRACE (TbGetOwnerId); (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); if (TableIndex < AcpiGbl_RootTableList.CurrentTableCount) { *OwnerId = AcpiGbl_RootTableList.Tables[TableIndex].OwnerId; Status = AE_OK; } (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiTbIsTableLoaded * * PARAMETERS: TableIndex - Index into the root table * * RETURN: Table Loaded Flag * ******************************************************************************/ BOOLEAN AcpiTbIsTableLoaded ( UINT32 TableIndex) { BOOLEAN IsLoaded = FALSE; (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); if (TableIndex < AcpiGbl_RootTableList.CurrentTableCount) { IsLoaded = (BOOLEAN) (AcpiGbl_RootTableList.Tables[TableIndex].Flags & ACPI_TABLE_IS_LOADED); } (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); return (IsLoaded); } /******************************************************************************* * * FUNCTION: AcpiTbSetTableLoadedFlag * * PARAMETERS: TableIndex - Table index * IsLoaded - TRUE if table is loaded, FALSE otherwise * * RETURN: None * * DESCRIPTION: Sets the table loaded flag to either TRUE or FALSE. * ******************************************************************************/ void AcpiTbSetTableLoadedFlag ( UINT32 TableIndex, BOOLEAN IsLoaded) { (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); if (TableIndex < AcpiGbl_RootTableList.CurrentTableCount) { if (IsLoaded) { AcpiGbl_RootTableList.Tables[TableIndex].Flags |= ACPI_TABLE_IS_LOADED; } else { AcpiGbl_RootTableList.Tables[TableIndex].Flags &= ~ACPI_TABLE_IS_LOADED; } } (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); } /******************************************************************************* * * FUNCTION: AcpiTbLoadTable * * PARAMETERS: TableIndex - Table index * ParentNode - Where table index is returned * * RETURN: Status * * DESCRIPTION: Load an ACPI table * ******************************************************************************/ ACPI_STATUS AcpiTbLoadTable ( UINT32 TableIndex, ACPI_NAMESPACE_NODE *ParentNode) { ACPI_TABLE_HEADER *Table; ACPI_STATUS Status; ACPI_OWNER_ID OwnerId; ACPI_FUNCTION_TRACE (TbLoadTable); /* * Note: Now table is "INSTALLED", it must be validated before * using. */ Status = AcpiGetTableByIndex (TableIndex, &Table); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } Status = AcpiNsLoadTable (TableIndex, ParentNode); /* Execute any module-level code that was found in the table */ if (!AcpiGbl_ParseTableAsTermList && AcpiGbl_GroupModuleLevelCode) { AcpiNsExecModuleCodeList (); } /* * Update GPEs for any new _Lxx/_Exx methods. Ignore errors. The host is * responsible for discovering any new wake GPEs by running _PRW methods * that may have been loaded by this table. */ Status = AcpiTbGetOwnerId (TableIndex, &OwnerId); if (ACPI_SUCCESS (Status)) { AcpiEvUpdateGpes (OwnerId); } /* Invoke table handler if present */ if (AcpiGbl_TableHandler) { (void) AcpiGbl_TableHandler (ACPI_TABLE_EVENT_LOAD, Table, AcpiGbl_TableHandlerContext); } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiTbInstallAndLoadTable * - * PARAMETERS: Table - Pointer to the table - * Address - Physical address of the table + * PARAMETERS: Address - Physical address of the table * Flags - Allocation flags of the table + * Override - Whether override should be performed * TableIndex - Where table index is returned * * RETURN: Status * * DESCRIPTION: Install and load an ACPI table * ******************************************************************************/ ACPI_STATUS AcpiTbInstallAndLoadTable ( - ACPI_TABLE_HEADER *Table, ACPI_PHYSICAL_ADDRESS Address, UINT8 Flags, BOOLEAN Override, UINT32 *TableIndex) { ACPI_STATUS Status; UINT32 i; - ACPI_OWNER_ID OwnerId; - ACPI_FUNCTION_TRACE (AcpiLoadTable); + ACPI_FUNCTION_TRACE (TbInstallAndLoadTable); (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); /* Install the table and load it into the namespace */ Status = AcpiTbInstallStandardTable (Address, Flags, TRUE, Override, &i); if (ACPI_FAILURE (Status)) { goto UnlockAndExit; } - /* - * Note: Now table is "INSTALLED", it must be validated before - * using. - */ - Status = AcpiTbValidateTable (&AcpiGbl_RootTableList.Tables[i]); - if (ACPI_FAILURE (Status)) - { - goto UnlockAndExit; - } + (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); + Status = AcpiTbLoadTable (i, AcpiGbl_RootNode); + (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); +UnlockAndExit: + *TableIndex = i; (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); - Status = AcpiNsLoadTable (i, AcpiGbl_RootNode); + return_ACPI_STATUS (Status); +} - /* Execute any module-level code that was found in the table */ - if (!AcpiGbl_ParseTableAsTermList && AcpiGbl_GroupModuleLevelCode) - { - AcpiNsExecModuleCodeList (); - } +/******************************************************************************* + * + * FUNCTION: AcpiTbUnloadTable + * + * PARAMETERS: TableIndex - Table index + * + * RETURN: Status + * + * DESCRIPTION: Unload an ACPI table + * + ******************************************************************************/ - /* - * Update GPEs for any new _Lxx/_Exx methods. Ignore errors. The host is - * responsible for discovering any new wake GPEs by running _PRW methods - * that may have been loaded by this table. - */ - Status = AcpiTbGetOwnerId (i, &OwnerId); - if (ACPI_SUCCESS (Status)) +ACPI_STATUS +AcpiTbUnloadTable ( + UINT32 TableIndex) +{ + ACPI_STATUS Status = AE_OK; + ACPI_TABLE_HEADER *Table; + + + ACPI_FUNCTION_TRACE (TbUnloadTable); + + + /* Ensure the table is still loaded */ + + if (!AcpiTbIsTableLoaded (TableIndex)) { - AcpiEvUpdateGpes (OwnerId); + return_ACPI_STATUS (AE_NOT_EXIST); } /* Invoke table handler if present */ if (AcpiGbl_TableHandler) { - (void) AcpiGbl_TableHandler (ACPI_TABLE_EVENT_LOAD, Table, - AcpiGbl_TableHandlerContext); + Status = AcpiGetTableByIndex (TableIndex, &Table); + if (ACPI_SUCCESS (Status)) + { + (void) AcpiGbl_TableHandler (ACPI_TABLE_EVENT_UNLOAD, Table, + AcpiGbl_TableHandlerContext); + } } - (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); -UnlockAndExit: - *TableIndex = i; - (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); + /* Delete the portion of the namespace owned by this table */ + + Status = AcpiTbDeleteNamespaceByOwner (TableIndex); + if (ACPI_FAILURE (Status)) + { + return_ACPI_STATUS (Status); + } + + (void) AcpiTbReleaseOwnerId (TableIndex); + AcpiTbSetTableLoadedFlag (TableIndex, FALSE); return_ACPI_STATUS (Status); } Index: head/sys/contrib/dev/acpica/components/tables/tbfadt.c =================================================================== --- head/sys/contrib/dev/acpica/components/tables/tbfadt.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/tables/tbfadt.c (revision 308953) @@ -1,791 +1,790 @@ /****************************************************************************** * * Module Name: tbfadt - FADT table utilities * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #define _COMPONENT ACPI_TABLES ACPI_MODULE_NAME ("tbfadt") /* Local prototypes */ static void AcpiTbInitGenericAddress ( ACPI_GENERIC_ADDRESS *GenericAddress, UINT8 SpaceId, UINT8 ByteWidth, UINT64 Address, const char *RegisterName, UINT8 Flags); static void AcpiTbConvertFadt ( void); static void AcpiTbSetupFadtRegisters ( void); static UINT64 AcpiTbSelectAddress ( char *RegisterName, UINT32 Address32, UINT64 Address64); /* Table for conversion of FADT to common internal format and FADT validation */ typedef struct acpi_fadt_info { const char *Name; UINT16 Address64; UINT16 Address32; UINT16 Length; UINT8 DefaultLength; UINT8 Flags; } ACPI_FADT_INFO; #define ACPI_FADT_OPTIONAL 0 #define ACPI_FADT_REQUIRED 1 #define ACPI_FADT_SEPARATE_LENGTH 2 #define ACPI_FADT_GPE_REGISTER 4 static ACPI_FADT_INFO FadtInfoTable[] = { {"Pm1aEventBlock", ACPI_FADT_OFFSET (XPm1aEventBlock), ACPI_FADT_OFFSET (Pm1aEventBlock), ACPI_FADT_OFFSET (Pm1EventLength), ACPI_PM1_REGISTER_WIDTH * 2, /* Enable + Status register */ ACPI_FADT_REQUIRED}, {"Pm1bEventBlock", ACPI_FADT_OFFSET (XPm1bEventBlock), ACPI_FADT_OFFSET (Pm1bEventBlock), ACPI_FADT_OFFSET (Pm1EventLength), ACPI_PM1_REGISTER_WIDTH * 2, /* Enable + Status register */ ACPI_FADT_OPTIONAL}, {"Pm1aControlBlock", ACPI_FADT_OFFSET (XPm1aControlBlock), ACPI_FADT_OFFSET (Pm1aControlBlock), ACPI_FADT_OFFSET (Pm1ControlLength), ACPI_PM1_REGISTER_WIDTH, ACPI_FADT_REQUIRED}, {"Pm1bControlBlock", ACPI_FADT_OFFSET (XPm1bControlBlock), ACPI_FADT_OFFSET (Pm1bControlBlock), ACPI_FADT_OFFSET (Pm1ControlLength), ACPI_PM1_REGISTER_WIDTH, ACPI_FADT_OPTIONAL}, {"Pm2ControlBlock", ACPI_FADT_OFFSET (XPm2ControlBlock), ACPI_FADT_OFFSET (Pm2ControlBlock), ACPI_FADT_OFFSET (Pm2ControlLength), ACPI_PM2_REGISTER_WIDTH, ACPI_FADT_SEPARATE_LENGTH}, {"PmTimerBlock", ACPI_FADT_OFFSET (XPmTimerBlock), ACPI_FADT_OFFSET (PmTimerBlock), ACPI_FADT_OFFSET (PmTimerLength), ACPI_PM_TIMER_WIDTH, ACPI_FADT_SEPARATE_LENGTH}, /* ACPI 5.0A: Timer is optional */ {"Gpe0Block", ACPI_FADT_OFFSET (XGpe0Block), ACPI_FADT_OFFSET (Gpe0Block), ACPI_FADT_OFFSET (Gpe0BlockLength), 0, ACPI_FADT_SEPARATE_LENGTH | ACPI_FADT_GPE_REGISTER}, {"Gpe1Block", ACPI_FADT_OFFSET (XGpe1Block), ACPI_FADT_OFFSET (Gpe1Block), ACPI_FADT_OFFSET (Gpe1BlockLength), 0, ACPI_FADT_SEPARATE_LENGTH | ACPI_FADT_GPE_REGISTER} }; #define ACPI_FADT_INFO_ENTRIES \ (sizeof (FadtInfoTable) / sizeof (ACPI_FADT_INFO)) /* Table used to split Event Blocks into separate status/enable registers */ typedef struct acpi_fadt_pm_info { ACPI_GENERIC_ADDRESS *Target; UINT16 Source; UINT8 RegisterNum; } ACPI_FADT_PM_INFO; static ACPI_FADT_PM_INFO FadtPmInfoTable[] = { {&AcpiGbl_XPm1aStatus, ACPI_FADT_OFFSET (XPm1aEventBlock), 0}, {&AcpiGbl_XPm1aEnable, ACPI_FADT_OFFSET (XPm1aEventBlock), 1}, {&AcpiGbl_XPm1bStatus, ACPI_FADT_OFFSET (XPm1bEventBlock), 0}, {&AcpiGbl_XPm1bEnable, ACPI_FADT_OFFSET (XPm1bEventBlock), 1} }; #define ACPI_FADT_PM_INFO_ENTRIES \ (sizeof (FadtPmInfoTable) / sizeof (ACPI_FADT_PM_INFO)) /******************************************************************************* * * FUNCTION: AcpiTbInitGenericAddress * * PARAMETERS: GenericAddress - GAS struct to be initialized * SpaceId - ACPI Space ID for this register * ByteWidth - Width of this register * Address - Address of the register * RegisterName - ASCII name of the ACPI register * * RETURN: None * * DESCRIPTION: Initialize a Generic Address Structure (GAS) * See the ACPI specification for a full description and * definition of this structure. * ******************************************************************************/ static void AcpiTbInitGenericAddress ( ACPI_GENERIC_ADDRESS *GenericAddress, UINT8 SpaceId, UINT8 ByteWidth, UINT64 Address, const char *RegisterName, UINT8 Flags) { UINT8 BitWidth; /* * Bit width field in the GAS is only one byte long, 255 max. * Check for BitWidth overflow in GAS. */ BitWidth = (UINT8) (ByteWidth * 8); if (ByteWidth > 31) /* (31*8)=248, (32*8)=256 */ { /* * No error for GPE blocks, because we do not use the BitWidth * for GPEs, the legacy length (ByteWidth) is used instead to * allow for a large number of GPEs. */ if (!(Flags & ACPI_FADT_GPE_REGISTER)) { ACPI_ERROR ((AE_INFO, "%s - 32-bit FADT register is too long (%u bytes, %u bits) " "to convert to GAS struct - 255 bits max, truncating", RegisterName, ByteWidth, (ByteWidth * 8))); } BitWidth = 255; } /* * The 64-bit Address field is non-aligned in the byte packed * GAS struct. */ ACPI_MOVE_64_TO_64 (&GenericAddress->Address, &Address); /* All other fields are byte-wide */ GenericAddress->SpaceId = SpaceId; GenericAddress->BitWidth = BitWidth; GenericAddress->BitOffset = 0; GenericAddress->AccessWidth = 0; /* Access width ANY */ } /******************************************************************************* * * FUNCTION: AcpiTbSelectAddress * * PARAMETERS: RegisterName - ASCII name of the ACPI register * Address32 - 32-bit address of the register * Address64 - 64-bit address of the register * * RETURN: The resolved 64-bit address * * DESCRIPTION: Select between 32-bit and 64-bit versions of addresses within * the FADT. Used for the FACS and DSDT addresses. * * NOTES: * * Check for FACS and DSDT address mismatches. An address mismatch between * the 32-bit and 64-bit address fields (FIRMWARE_CTRL/X_FIRMWARE_CTRL and * DSDT/X_DSDT) could be a corrupted address field or it might indicate * the presence of two FACS or two DSDT tables. * * November 2013: * By default, as per the ACPICA specification, a valid 64-bit address is * used regardless of the value of the 32-bit address. However, this * behavior can be overridden via the AcpiGbl_Use32BitFadtAddresses flag. * ******************************************************************************/ static UINT64 AcpiTbSelectAddress ( char *RegisterName, UINT32 Address32, UINT64 Address64) { if (!Address64) { /* 64-bit address is zero, use 32-bit address */ return ((UINT64) Address32); } if (Address32 && (Address64 != (UINT64) Address32)) { /* Address mismatch between 32-bit and 64-bit versions */ ACPI_BIOS_WARNING ((AE_INFO, "32/64X %s address mismatch in FADT: " "0x%8.8X/0x%8.8X%8.8X, using %u-bit address", RegisterName, Address32, ACPI_FORMAT_UINT64 (Address64), AcpiGbl_Use32BitFadtAddresses ? 32 : 64)); /* 32-bit address override */ if (AcpiGbl_Use32BitFadtAddresses) { return ((UINT64) Address32); } } /* Default is to use the 64-bit address */ return (Address64); } /******************************************************************************* * * FUNCTION: AcpiTbParseFadt * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Initialize the FADT, DSDT and FACS tables * (FADT contains the addresses of the DSDT and FACS) * ******************************************************************************/ void AcpiTbParseFadt ( void) { UINT32 Length; ACPI_TABLE_HEADER *Table; + ACPI_TABLE_DESC *FadtDesc; + ACPI_STATUS Status; /* * The FADT has multiple versions with different lengths, * and it contains pointers to both the DSDT and FACS tables. * * Get a local copy of the FADT and convert it to a common format * Map entire FADT, assumed to be smaller than one page. */ - Length = AcpiGbl_RootTableList.Tables[AcpiGbl_FadtIndex].Length; - - Table = AcpiOsMapMemory ( - AcpiGbl_RootTableList.Tables[AcpiGbl_FadtIndex].Address, Length); - if (!Table) + FadtDesc = &AcpiGbl_RootTableList.Tables[AcpiGbl_FadtIndex]; + Status = AcpiTbGetTable (FadtDesc, &Table); + if (ACPI_FAILURE (Status)) { return; } + Length = FadtDesc->Length; /* * Validate the FADT checksum before we copy the table. Ignore * checksum error as we want to try to get the DSDT and FACS. */ (void) AcpiTbVerifyChecksum (Table, Length); /* Create a local copy of the FADT in common ACPI 2.0+ format */ AcpiTbCreateLocalFadt (Table, Length); /* All done with the real FADT, unmap it */ - AcpiOsUnmapMemory (Table, Length); + AcpiTbPutTable (FadtDesc); /* Obtain the DSDT and FACS tables via their addresses within the FADT */ AcpiTbInstallStandardTable ( (ACPI_PHYSICAL_ADDRESS) AcpiGbl_FADT.XDsdt, ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL, FALSE, TRUE, &AcpiGbl_DsdtIndex); /* If Hardware Reduced flag is set, there is no FACS */ if (!AcpiGbl_ReducedHardware) { if (AcpiGbl_FADT.Facs) { AcpiTbInstallStandardTable ( (ACPI_PHYSICAL_ADDRESS) AcpiGbl_FADT.Facs, ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL, FALSE, TRUE, &AcpiGbl_FacsIndex); } if (AcpiGbl_FADT.XFacs) { AcpiTbInstallStandardTable ( (ACPI_PHYSICAL_ADDRESS) AcpiGbl_FADT.XFacs, ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL, FALSE, TRUE, &AcpiGbl_XFacsIndex); } } } /******************************************************************************* * * FUNCTION: AcpiTbCreateLocalFadt * * PARAMETERS: Table - Pointer to BIOS FADT * Length - Length of the table * * RETURN: None * * DESCRIPTION: Get a local copy of the FADT and convert it to a common format. * Performs validation on some important FADT fields. * * NOTE: We create a local copy of the FADT regardless of the version. * ******************************************************************************/ void AcpiTbCreateLocalFadt ( ACPI_TABLE_HEADER *Table, UINT32 Length) { /* * Check if the FADT is larger than the largest table that we expect * (typically the current ACPI specification version). If so, truncate * the table, and issue a warning. */ if (Length > sizeof (ACPI_TABLE_FADT)) { ACPI_BIOS_WARNING ((AE_INFO, "FADT (revision %u) is longer than %s length, " "truncating length %u to %u", Table->Revision, ACPI_FADT_CONFORMANCE, Length, (UINT32) sizeof (ACPI_TABLE_FADT))); } /* Clear the entire local FADT */ memset (&AcpiGbl_FADT, 0, sizeof (ACPI_TABLE_FADT)); /* Copy the original FADT, up to sizeof (ACPI_TABLE_FADT) */ memcpy (&AcpiGbl_FADT, Table, ACPI_MIN (Length, sizeof (ACPI_TABLE_FADT))); /* Take a copy of the Hardware Reduced flag */ AcpiGbl_ReducedHardware = FALSE; if (AcpiGbl_FADT.Flags & ACPI_FADT_HW_REDUCED) { AcpiGbl_ReducedHardware = TRUE; } /* Convert the local copy of the FADT to the common internal format */ AcpiTbConvertFadt (); /* Initialize the global ACPI register structures */ AcpiTbSetupFadtRegisters (); } /******************************************************************************* * * FUNCTION: AcpiTbConvertFadt * * PARAMETERS: None - AcpiGbl_FADT is used. * * RETURN: None * * DESCRIPTION: Converts all versions of the FADT to a common internal format. * Expand 32-bit addresses to 64-bit as necessary. Also validate * important fields within the FADT. * * NOTE: AcpiGbl_FADT must be of size (ACPI_TABLE_FADT), and must * contain a copy of the actual BIOS-provided FADT. * * Notes on 64-bit register addresses: * * After this FADT conversion, later ACPICA code will only use the 64-bit "X" * fields of the FADT for all ACPI register addresses. * * The 64-bit X fields are optional extensions to the original 32-bit FADT * V1.0 fields. Even if they are present in the FADT, they are optional and * are unused if the BIOS sets them to zero. Therefore, we must copy/expand * 32-bit V1.0 fields to the 64-bit X fields if the the 64-bit X field is * originally zero. * * For ACPI 1.0 FADTs (that contain no 64-bit addresses), all 32-bit address * fields are expanded to the corresponding 64-bit X fields in the internal * common FADT. * * For ACPI 2.0+ FADTs, all valid (non-zero) 32-bit address fields are expanded * to the corresponding 64-bit X fields, if the 64-bit field is originally * zero. Adhering to the ACPI specification, we completely ignore the 32-bit * field if the 64-bit field is valid, regardless of whether the host OS is * 32-bit or 64-bit. * * Possible additional checks: * (AcpiGbl_FADT.Pm1EventLength >= 4) * (AcpiGbl_FADT.Pm1ControlLength >= 2) * (AcpiGbl_FADT.PmTimerLength >= 4) * Gpe block lengths must be multiple of 2 * ******************************************************************************/ static void AcpiTbConvertFadt ( void) { const char *Name; ACPI_GENERIC_ADDRESS *Address64; UINT32 Address32; UINT8 Length; UINT8 Flags; UINT32 i; /* - * For ACPI 1.0 FADTs (revision 1), ensure that reserved fields which + * For ACPI 1.0 FADTs (revision 1 or 2), ensure that reserved fields which * should be zero are indeed zero. This will workaround BIOSs that * inadvertently place values in these fields. * * The ACPI 1.0 reserved fields that will be zeroed are the bytes located * at offset 45, 55, 95, and the word located at offset 109, 110. * - * Note: The FADT revision value is unreliable because of BIOS errors. - * The table length is instead used as the final word on the version. - * - * Note: FADT revision 3 is the ACPI 2.0 version of the FADT. + * Note: The FADT revision value is unreliable. Only the length can be + * trusted. */ - if (AcpiGbl_FADT.Header.Length <= ACPI_FADT_V3_SIZE) + if (AcpiGbl_FADT.Header.Length <= ACPI_FADT_V2_SIZE) { AcpiGbl_FADT.PreferredProfile = 0; AcpiGbl_FADT.PstateControl = 0; AcpiGbl_FADT.CstControl = 0; AcpiGbl_FADT.BootFlags = 0; } /* * Now we can update the local FADT length to the length of the * current FADT version as defined by the ACPI specification. * Thus, we will have a common FADT internally. */ AcpiGbl_FADT.Header.Length = sizeof (ACPI_TABLE_FADT); /* * Expand the 32-bit DSDT addresses to 64-bit as necessary. * Later ACPICA code will always use the X 64-bit field. */ AcpiGbl_FADT.XDsdt = AcpiTbSelectAddress ("DSDT", AcpiGbl_FADT.Dsdt, AcpiGbl_FADT.XDsdt); /* If Hardware Reduced flag is set, we are all done */ if (AcpiGbl_ReducedHardware) { return; } /* Examine all of the 64-bit extended address fields (X fields) */ for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++) { /* * Get the 32-bit and 64-bit addresses, as well as the register * length and register name. */ Address32 = *ACPI_ADD_PTR (UINT32, &AcpiGbl_FADT, FadtInfoTable[i].Address32); Address64 = ACPI_ADD_PTR (ACPI_GENERIC_ADDRESS, &AcpiGbl_FADT, FadtInfoTable[i].Address64); Length = *ACPI_ADD_PTR (UINT8, &AcpiGbl_FADT, FadtInfoTable[i].Length); Name = FadtInfoTable[i].Name; Flags = FadtInfoTable[i].Flags; /* * Expand the ACPI 1.0 32-bit addresses to the ACPI 2.0 64-bit "X" * generic address structures as necessary. Later code will always use * the 64-bit address structures. * * November 2013: * Now always use the 64-bit address if it is valid (non-zero), in * accordance with the ACPI specification which states that a 64-bit * address supersedes the 32-bit version. This behavior can be * overridden by the AcpiGbl_Use32BitFadtAddresses flag. * * During 64-bit address construction and verification, * these cases are handled: * * Address32 zero, Address64 [don't care] - Use Address64 * * No override: if AcpiGbl_Use32BitFadtAddresses is FALSE, and: * Address32 non-zero, Address64 zero - Copy/use Address32 * Address32 non-zero == Address64 non-zero - Use Address64 * Address32 non-zero != Address64 non-zero - Warning, use Address64 * * Override: if AcpiGbl_Use32BitFadtAddresses is TRUE, and: * Address32 non-zero, Address64 zero - Copy/use Address32 * Address32 non-zero == Address64 non-zero - Copy/use Address32 * Address32 non-zero != Address64 non-zero - Warning, copy/use Address32 * * Note: SpaceId is always I/O for 32-bit legacy address fields */ if (Address32) { if (Address64->Address) { if (Address64->Address != (UINT64) Address32) { /* Address mismatch */ ACPI_BIOS_WARNING ((AE_INFO, "32/64X address mismatch in FADT/%s: " "0x%8.8X/0x%8.8X%8.8X, using %u-bit address", Name, Address32, ACPI_FORMAT_UINT64 (Address64->Address), AcpiGbl_Use32BitFadtAddresses ? 32 : 64)); } /* * For each extended field, check for length mismatch * between the legacy length field and the corresponding * 64-bit X length field. * Note: If the legacy length field is > 0xFF bits, ignore * this check. (GPE registers can be larger than the * 64-bit GAS structure can accomodate, 0xFF bits). */ if ((ACPI_MUL_8 (Length) <= ACPI_UINT8_MAX) && (Address64->BitWidth != ACPI_MUL_8 (Length))) { ACPI_BIOS_WARNING ((AE_INFO, "32/64X length mismatch in FADT/%s: %u/%u", Name, ACPI_MUL_8 (Length), Address64->BitWidth)); } } /* * Hardware register access code always uses the 64-bit fields. * So if the 64-bit field is zero or is to be overridden, * initialize it with the 32-bit fields. * Note that when the 32-bit address favor is specified, the * 64-bit fields are always re-initialized so that * AccessSize/BitWidth/BitOffset fields can be correctly * configured to the values to trigger a 32-bit compatible * access mode in the hardware register access code. */ if (!Address64->Address || AcpiGbl_Use32BitFadtAddresses) { AcpiTbInitGenericAddress (Address64, ACPI_ADR_SPACE_SYSTEM_IO, Length, (UINT64) Address32, Name, Flags); } } if (FadtInfoTable[i].Flags & ACPI_FADT_REQUIRED) { /* * Field is required (PM1aEvent, PM1aControl). * Both the address and length must be non-zero. */ if (!Address64->Address || !Length) { ACPI_BIOS_ERROR ((AE_INFO, "Required FADT field %s has zero address and/or length: " "0x%8.8X%8.8X/0x%X", Name, ACPI_FORMAT_UINT64 (Address64->Address), Length)); } } else if (FadtInfoTable[i].Flags & ACPI_FADT_SEPARATE_LENGTH) { /* * Field is optional (PM2Control, GPE0, GPE1) AND has its own * length field. If present, both the address and length must * be valid. */ if ((Address64->Address && !Length) || (!Address64->Address && Length)) { ACPI_BIOS_WARNING ((AE_INFO, "Optional FADT field %s has valid %s but zero %s: " "0x%8.8X%8.8X/0x%X", Name, (Length ? "Length" : "Address"), (Length ? "Address": "Length"), ACPI_FORMAT_UINT64 (Address64->Address), Length)); } } } } /******************************************************************************* * * FUNCTION: AcpiTbSetupFadtRegisters * * PARAMETERS: None, uses AcpiGbl_FADT. * * RETURN: None * * DESCRIPTION: Initialize global ACPI PM1 register definitions. Optionally, * force FADT register definitions to their default lengths. * ******************************************************************************/ static void AcpiTbSetupFadtRegisters ( void) { ACPI_GENERIC_ADDRESS *Target64; ACPI_GENERIC_ADDRESS *Source64; UINT8 Pm1RegisterByteWidth; UINT32 i; /* * Optionally check all register lengths against the default values and * update them if they are incorrect. */ if (AcpiGbl_UseDefaultRegisterWidths) { for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++) { Target64 = ACPI_ADD_PTR (ACPI_GENERIC_ADDRESS, &AcpiGbl_FADT, FadtInfoTable[i].Address64); /* * If a valid register (Address != 0) and the (DefaultLength > 0) * (Not a GPE register), then check the width against the default. */ if ((Target64->Address) && (FadtInfoTable[i].DefaultLength > 0) && (FadtInfoTable[i].DefaultLength != Target64->BitWidth)) { ACPI_BIOS_WARNING ((AE_INFO, "Invalid length for FADT/%s: %u, using default %u", FadtInfoTable[i].Name, Target64->BitWidth, FadtInfoTable[i].DefaultLength)); /* Incorrect size, set width to the default */ Target64->BitWidth = FadtInfoTable[i].DefaultLength; } } } /* * Get the length of the individual PM1 registers (enable and status). * Each register is defined to be (event block length / 2). Extra divide * by 8 converts bits to bytes. */ Pm1RegisterByteWidth = (UINT8) ACPI_DIV_16 (AcpiGbl_FADT.XPm1aEventBlock.BitWidth); /* * Calculate separate GAS structs for the PM1x (A/B) Status and Enable * registers. These addresses do not appear (directly) in the FADT, so it * is useful to pre-calculate them from the PM1 Event Block definitions. * * The PM event blocks are split into two register blocks, first is the * PM Status Register block, followed immediately by the PM Enable * Register block. Each is of length (Pm1EventLength/2) * * Note: The PM1A event block is required by the ACPI specification. * However, the PM1B event block is optional and is rarely, if ever, * used. */ for (i = 0; i < ACPI_FADT_PM_INFO_ENTRIES; i++) { Source64 = ACPI_ADD_PTR (ACPI_GENERIC_ADDRESS, &AcpiGbl_FADT, FadtPmInfoTable[i].Source); if (Source64->Address) { AcpiTbInitGenericAddress (FadtPmInfoTable[i].Target, Source64->SpaceId, Pm1RegisterByteWidth, Source64->Address + (FadtPmInfoTable[i].RegisterNum * Pm1RegisterByteWidth), "PmRegisters", 0); } } } Index: head/sys/contrib/dev/acpica/components/tables/tbutils.c =================================================================== --- head/sys/contrib/dev/acpica/components/tables/tbutils.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/tables/tbutils.c (revision 308953) @@ -1,413 +1,509 @@ /****************************************************************************** * * Module Name: tbutils - ACPI Table utilities * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #define _COMPONENT ACPI_TABLES ACPI_MODULE_NAME ("tbutils") /* Local prototypes */ static ACPI_PHYSICAL_ADDRESS AcpiTbGetRootTableEntry ( UINT8 *TableEntry, UINT32 TableEntrySize); #if (!ACPI_REDUCED_HARDWARE) /******************************************************************************* * * FUNCTION: AcpiTbInitializeFacs * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Create a permanent mapping for the FADT and save it in a global * for accessing the Global Lock and Firmware Waking Vector * ******************************************************************************/ ACPI_STATUS AcpiTbInitializeFacs ( void) { ACPI_TABLE_FACS *Facs; /* If Hardware Reduced flag is set, there is no FACS */ if (AcpiGbl_ReducedHardware) { AcpiGbl_FACS = NULL; return (AE_OK); } else if (AcpiGbl_FADT.XFacs && (!AcpiGbl_FADT.Facs || !AcpiGbl_Use32BitFacsAddresses)) { (void) AcpiGetTableByIndex (AcpiGbl_XFacsIndex, ACPI_CAST_INDIRECT_PTR (ACPI_TABLE_HEADER, &Facs)); AcpiGbl_FACS = Facs; } else if (AcpiGbl_FADT.Facs) { (void) AcpiGetTableByIndex (AcpiGbl_FacsIndex, ACPI_CAST_INDIRECT_PTR (ACPI_TABLE_HEADER, &Facs)); AcpiGbl_FACS = Facs; } /* If there is no FACS, just continue. There was already an error msg */ return (AE_OK); } #endif /* !ACPI_REDUCED_HARDWARE */ /******************************************************************************* * * FUNCTION: AcpiTbCheckDsdtHeader * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Quick compare to check validity of the DSDT. This will detect * if the DSDT has been replaced from outside the OS and/or if * the DSDT header has been corrupted. * ******************************************************************************/ void AcpiTbCheckDsdtHeader ( void) { /* Compare original length and checksum to current values */ if (AcpiGbl_OriginalDsdtHeader.Length != AcpiGbl_DSDT->Length || AcpiGbl_OriginalDsdtHeader.Checksum != AcpiGbl_DSDT->Checksum) { ACPI_BIOS_ERROR ((AE_INFO, "The DSDT has been corrupted or replaced - " "old, new headers below")); AcpiTbPrintTableHeader (0, &AcpiGbl_OriginalDsdtHeader); AcpiTbPrintTableHeader (0, AcpiGbl_DSDT); /* Disable further error messages */ AcpiGbl_OriginalDsdtHeader.Length = AcpiGbl_DSDT->Length; AcpiGbl_OriginalDsdtHeader.Checksum = AcpiGbl_DSDT->Checksum; } } /******************************************************************************* * * FUNCTION: AcpiTbCopyDsdt * * PARAMETERS: TableDesc - Installed table to copy * * RETURN: None * * DESCRIPTION: Implements a subsystem option to copy the DSDT to local memory. * Some very bad BIOSs are known to either corrupt the DSDT or * install a new, bad DSDT. This copy works around the problem. * ******************************************************************************/ ACPI_TABLE_HEADER * AcpiTbCopyDsdt ( UINT32 TableIndex) { ACPI_TABLE_HEADER *NewTable; ACPI_TABLE_DESC *TableDesc; TableDesc = &AcpiGbl_RootTableList.Tables[TableIndex]; NewTable = ACPI_ALLOCATE (TableDesc->Length); if (!NewTable) { ACPI_ERROR ((AE_INFO, "Could not copy DSDT of length 0x%X", TableDesc->Length)); return (NULL); } memcpy (NewTable, TableDesc->Pointer, TableDesc->Length); AcpiTbUninstallTable (TableDesc); AcpiTbInitTableDescriptor ( &AcpiGbl_RootTableList.Tables[AcpiGbl_DsdtIndex], ACPI_PTR_TO_PHYSADDR (NewTable), ACPI_TABLE_ORIGIN_INTERNAL_VIRTUAL, NewTable); ACPI_INFO (( "Forced DSDT copy: length 0x%05X copied locally, original unmapped", NewTable->Length)); return (NewTable); } /******************************************************************************* * * FUNCTION: AcpiTbGetRootTableEntry * * PARAMETERS: TableEntry - Pointer to the RSDT/XSDT table entry * TableEntrySize - sizeof 32 or 64 (RSDT or XSDT) * * RETURN: Physical address extracted from the root table * * DESCRIPTION: Get one root table entry. Handles 32-bit and 64-bit cases on * both 32-bit and 64-bit platforms * * NOTE: ACPI_PHYSICAL_ADDRESS is 32-bit on 32-bit platforms, 64-bit on * 64-bit platforms. * ******************************************************************************/ static ACPI_PHYSICAL_ADDRESS AcpiTbGetRootTableEntry ( UINT8 *TableEntry, UINT32 TableEntrySize) { UINT64 Address64; /* * Get the table physical address (32-bit for RSDT, 64-bit for XSDT): * Note: Addresses are 32-bit aligned (not 64) in both RSDT and XSDT */ if (TableEntrySize == ACPI_RSDT_ENTRY_SIZE) { /* * 32-bit platform, RSDT: Return 32-bit table entry * 64-bit platform, RSDT: Expand 32-bit to 64-bit and return */ return ((ACPI_PHYSICAL_ADDRESS) (*ACPI_CAST_PTR ( UINT32, TableEntry))); } else { /* * 32-bit platform, XSDT: Truncate 64-bit to 32-bit and return * 64-bit platform, XSDT: Move (unaligned) 64-bit to local, * return 64-bit */ ACPI_MOVE_64_TO_64 (&Address64, TableEntry); #if ACPI_MACHINE_WIDTH == 32 if (Address64 > ACPI_UINT32_MAX) { /* Will truncate 64-bit address to 32 bits, issue warning */ ACPI_BIOS_WARNING ((AE_INFO, "64-bit Physical Address in XSDT is too large (0x%8.8X%8.8X)," " truncating", ACPI_FORMAT_UINT64 (Address64))); } #endif return ((ACPI_PHYSICAL_ADDRESS) (Address64)); } } /******************************************************************************* * * FUNCTION: AcpiTbParseRootTable * * PARAMETERS: Rsdp - Pointer to the RSDP * * RETURN: Status * * DESCRIPTION: This function is called to parse the Root System Description * Table (RSDT or XSDT) * * NOTE: Tables are mapped (not copied) for efficiency. The FACS must * be mapped and cannot be copied because it contains the actual * memory location of the ACPI Global Lock. * ******************************************************************************/ ACPI_STATUS ACPI_INIT_FUNCTION AcpiTbParseRootTable ( ACPI_PHYSICAL_ADDRESS RsdpAddress) { ACPI_TABLE_RSDP *Rsdp; UINT32 TableEntrySize; UINT32 i; UINT32 TableCount; ACPI_TABLE_HEADER *Table; ACPI_PHYSICAL_ADDRESS Address; UINT32 Length; UINT8 *TableEntry; ACPI_STATUS Status; UINT32 TableIndex; ACPI_FUNCTION_TRACE (TbParseRootTable); /* Map the entire RSDP and extract the address of the RSDT or XSDT */ Rsdp = AcpiOsMapMemory (RsdpAddress, sizeof (ACPI_TABLE_RSDP)); if (!Rsdp) { return_ACPI_STATUS (AE_NO_MEMORY); } AcpiTbPrintTableHeader (RsdpAddress, ACPI_CAST_PTR (ACPI_TABLE_HEADER, Rsdp)); /* Use XSDT if present and not overridden. Otherwise, use RSDT */ if ((Rsdp->Revision > 1) && Rsdp->XsdtPhysicalAddress && !AcpiGbl_DoNotUseXsdt) { /* * RSDP contains an XSDT (64-bit physical addresses). We must use * the XSDT if the revision is > 1 and the XSDT pointer is present, * as per the ACPI specification. */ Address = (ACPI_PHYSICAL_ADDRESS) Rsdp->XsdtPhysicalAddress; TableEntrySize = ACPI_XSDT_ENTRY_SIZE; } else { /* Root table is an RSDT (32-bit physical addresses) */ Address = (ACPI_PHYSICAL_ADDRESS) Rsdp->RsdtPhysicalAddress; TableEntrySize = ACPI_RSDT_ENTRY_SIZE; } /* * It is not possible to map more than one entry in some environments, * so unmap the RSDP here before mapping other tables */ AcpiOsUnmapMemory (Rsdp, sizeof (ACPI_TABLE_RSDP)); /* Map the RSDT/XSDT table header to get the full table length */ Table = AcpiOsMapMemory (Address, sizeof (ACPI_TABLE_HEADER)); if (!Table) { return_ACPI_STATUS (AE_NO_MEMORY); } AcpiTbPrintTableHeader (Address, Table); /* * Validate length of the table, and map entire table. * Minimum length table must contain at least one entry. */ Length = Table->Length; AcpiOsUnmapMemory (Table, sizeof (ACPI_TABLE_HEADER)); if (Length < (sizeof (ACPI_TABLE_HEADER) + TableEntrySize)) { ACPI_BIOS_ERROR ((AE_INFO, "Invalid table length 0x%X in RSDT/XSDT", Length)); return_ACPI_STATUS (AE_INVALID_TABLE_LENGTH); } Table = AcpiOsMapMemory (Address, Length); if (!Table) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Validate the root table checksum */ Status = AcpiTbVerifyChecksum (Table, Length); if (ACPI_FAILURE (Status)) { AcpiOsUnmapMemory (Table, Length); return_ACPI_STATUS (Status); } /* Get the number of entries and pointer to first entry */ TableCount = (UINT32) ((Table->Length - sizeof (ACPI_TABLE_HEADER)) / TableEntrySize); TableEntry = ACPI_ADD_PTR (UINT8, Table, sizeof (ACPI_TABLE_HEADER)); /* Initialize the root table array from the RSDT/XSDT */ for (i = 0; i < TableCount; i++) { /* Get the table physical address (32-bit for RSDT, 64-bit for XSDT) */ Address = AcpiTbGetRootTableEntry (TableEntry, TableEntrySize); /* Skip NULL entries in RSDT/XSDT */ if (!Address) { goto NextTable; } Status = AcpiTbInstallStandardTable (Address, ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL, FALSE, TRUE, &TableIndex); if (ACPI_SUCCESS (Status) && ACPI_COMPARE_NAME ( &AcpiGbl_RootTableList.Tables[TableIndex].Signature, ACPI_SIG_FADT)) { AcpiGbl_FadtIndex = TableIndex; AcpiTbParseFadt (); } NextTable: TableEntry += TableEntrySize; } AcpiOsUnmapMemory (Table, Length); return_ACPI_STATUS (AE_OK); } + + +/******************************************************************************* + * + * FUNCTION: AcpiTbGetTable + * + * PARAMETERS: TableDesc - Table descriptor + * OutTable - Where the pointer to the table is returned + * + * RETURN: Status and pointer to the requested table + * + * DESCRIPTION: Increase a reference to a table descriptor and return the + * validated table pointer. + * If the table descriptor is an entry of the root table list, + * this API must be invoked with ACPI_MTX_TABLES acquired. + * + ******************************************************************************/ + +ACPI_STATUS +AcpiTbGetTable ( + ACPI_TABLE_DESC *TableDesc, + ACPI_TABLE_HEADER **OutTable) +{ + ACPI_STATUS Status; + + + ACPI_FUNCTION_TRACE (AcpiTbGetTable); + + + if (TableDesc->ValidationCount == 0) + { + /* Table need to be "VALIDATED" */ + + Status = AcpiTbValidateTable (TableDesc); + if (ACPI_FAILURE (Status)) + { + return_ACPI_STATUS (Status); + } + } + + TableDesc->ValidationCount++; + if (TableDesc->ValidationCount == 0) + { + ACPI_ERROR ((AE_INFO, + "Table %p, Validation count is zero after increment\n", + TableDesc)); + TableDesc->ValidationCount--; + return_ACPI_STATUS (AE_LIMIT); + } + + *OutTable = TableDesc->Pointer; + return_ACPI_STATUS (AE_OK); +} + + +/******************************************************************************* + * + * FUNCTION: AcpiTbPutTable + * + * PARAMETERS: TableDesc - Table descriptor + * + * RETURN: None + * + * DESCRIPTION: Decrease a reference to a table descriptor and release the + * validated table pointer if no references. + * If the table descriptor is an entry of the root table list, + * this API must be invoked with ACPI_MTX_TABLES acquired. + * + ******************************************************************************/ + +void +AcpiTbPutTable ( + ACPI_TABLE_DESC *TableDesc) +{ + + ACPI_FUNCTION_TRACE (AcpiTbPutTable); + + + if (TableDesc->ValidationCount == 0) + { + ACPI_WARNING ((AE_INFO, + "Table %p, Validation count is zero before decrement\n", + TableDesc)); + return_VOID; + } + TableDesc->ValidationCount--; + + if (TableDesc->ValidationCount == 0) + { + /* Table need to be "INVALIDATED" */ + + AcpiTbInvalidateTable (TableDesc); + } + + return_VOID; +} Index: head/sys/contrib/dev/acpica/components/tables/tbxface.c =================================================================== --- head/sys/contrib/dev/acpica/components/tables/tbxface.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/tables/tbxface.c (revision 308953) @@ -1,527 +1,604 @@ /****************************************************************************** * * Module Name: tbxface - ACPI table-oriented external interfaces * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #define EXPORT_ACPI_INTERFACES #include #include #include #define _COMPONENT ACPI_TABLES ACPI_MODULE_NAME ("tbxface") /******************************************************************************* * * FUNCTION: AcpiAllocateRootTable * * PARAMETERS: InitialTableCount - Size of InitialTableArray, in number of * ACPI_TABLE_DESC structures * * RETURN: Status * * DESCRIPTION: Allocate a root table array. Used by iASL compiler and * AcpiInitializeTables. * ******************************************************************************/ ACPI_STATUS AcpiAllocateRootTable ( UINT32 InitialTableCount) { AcpiGbl_RootTableList.MaxTableCount = InitialTableCount; AcpiGbl_RootTableList.Flags = ACPI_ROOT_ALLOW_RESIZE; return (AcpiTbResizeRootTableList ()); } /******************************************************************************* * * FUNCTION: AcpiInitializeTables * * PARAMETERS: InitialTableArray - Pointer to an array of pre-allocated * ACPI_TABLE_DESC structures. If NULL, the * array is dynamically allocated. * InitialTableCount - Size of InitialTableArray, in number of * ACPI_TABLE_DESC structures * AllowResize - Flag to tell Table Manager if resize of * pre-allocated array is allowed. Ignored * if InitialTableArray is NULL. * * RETURN: Status * * DESCRIPTION: Initialize the table manager, get the RSDP and RSDT/XSDT. * * NOTE: Allows static allocation of the initial table array in order * to avoid the use of dynamic memory in confined environments * such as the kernel boot sequence where it may not be available. * * If the host OS memory managers are initialized, use NULL for * InitialTableArray, and the table will be dynamically allocated. * ******************************************************************************/ ACPI_STATUS ACPI_INIT_FUNCTION AcpiInitializeTables ( ACPI_TABLE_DESC *InitialTableArray, UINT32 InitialTableCount, BOOLEAN AllowResize) { ACPI_PHYSICAL_ADDRESS RsdpAddress; ACPI_STATUS Status; ACPI_FUNCTION_TRACE (AcpiInitializeTables); /* * Setup the Root Table Array and allocate the table array * if requested */ if (!InitialTableArray) { Status = AcpiAllocateRootTable (InitialTableCount); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } else { /* Root Table Array has been statically allocated by the host */ memset (InitialTableArray, 0, (ACPI_SIZE) InitialTableCount * sizeof (ACPI_TABLE_DESC)); AcpiGbl_RootTableList.Tables = InitialTableArray; AcpiGbl_RootTableList.MaxTableCount = InitialTableCount; AcpiGbl_RootTableList.Flags = ACPI_ROOT_ORIGIN_UNKNOWN; if (AllowResize) { AcpiGbl_RootTableList.Flags |= ACPI_ROOT_ALLOW_RESIZE; } } /* Get the address of the RSDP */ RsdpAddress = AcpiOsGetRootPointer (); if (!RsdpAddress) { return_ACPI_STATUS (AE_NOT_FOUND); } /* * Get the root table (RSDT or XSDT) and extract all entries to the local * Root Table Array. This array contains the information of the RSDT/XSDT * in a common, more useable format. */ Status = AcpiTbParseRootTable (RsdpAddress); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL_INIT (AcpiInitializeTables) /******************************************************************************* * * FUNCTION: AcpiReallocateRootTable * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Reallocate Root Table List into dynamic memory. Copies the * root list from the previously provided scratch area. Should * be called once dynamic memory allocation is available in the * kernel. * ******************************************************************************/ ACPI_STATUS ACPI_INIT_FUNCTION AcpiReallocateRootTable ( void) { ACPI_STATUS Status; + UINT32 i; ACPI_FUNCTION_TRACE (AcpiReallocateRootTable); /* * Only reallocate the root table if the host provided a static buffer * for the table array in the call to AcpiInitializeTables. */ if (AcpiGbl_RootTableList.Flags & ACPI_ROOT_ORIGIN_ALLOCATED) { return_ACPI_STATUS (AE_SUPPORT); } + /* + * Ensure OS early boot logic, which is required by some hosts. If the + * table state is reported to be wrong, developers should fix the + * issue by invoking AcpiPutTable() for the reported table during the + * early stage. + */ + for (i = 0; i < AcpiGbl_RootTableList.CurrentTableCount; ++i) + { + if (AcpiGbl_RootTableList.Tables[i].Pointer) + { + ACPI_ERROR ((AE_INFO, + "Table [%4.4s] is not invalidated during early boot stage", + AcpiGbl_RootTableList.Tables[i].Signature.Ascii)); + } + } + AcpiGbl_RootTableList.Flags |= ACPI_ROOT_ALLOW_RESIZE; Status = AcpiTbResizeRootTableList (); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL_INIT (AcpiReallocateRootTable) /******************************************************************************* * * FUNCTION: AcpiGetTableHeader * * PARAMETERS: Signature - ACPI signature of needed table * Instance - Which instance (for SSDTs) * OutTableHeader - The pointer to the table header to fill * * RETURN: Status and pointer to mapped table header * * DESCRIPTION: Finds an ACPI table header. * * NOTE: Caller is responsible in unmapping the header with * AcpiOsUnmapMemory * ******************************************************************************/ ACPI_STATUS AcpiGetTableHeader ( char *Signature, UINT32 Instance, ACPI_TABLE_HEADER *OutTableHeader) { UINT32 i; UINT32 j; ACPI_TABLE_HEADER *Header; /* Parameter validation */ if (!Signature || !OutTableHeader) { return (AE_BAD_PARAMETER); } /* Walk the root table list */ for (i = 0, j = 0; i < AcpiGbl_RootTableList.CurrentTableCount; i++) { if (!ACPI_COMPARE_NAME ( &(AcpiGbl_RootTableList.Tables[i].Signature), Signature)) { continue; } if (++j < Instance) { continue; } if (!AcpiGbl_RootTableList.Tables[i].Pointer) { if ((AcpiGbl_RootTableList.Tables[i].Flags & ACPI_TABLE_ORIGIN_MASK) == ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL) { Header = AcpiOsMapMemory ( AcpiGbl_RootTableList.Tables[i].Address, sizeof (ACPI_TABLE_HEADER)); if (!Header) { return (AE_NO_MEMORY); } memcpy (OutTableHeader, Header, sizeof (ACPI_TABLE_HEADER)); AcpiOsUnmapMemory (Header, sizeof (ACPI_TABLE_HEADER)); } else { return (AE_NOT_FOUND); } } else { memcpy (OutTableHeader, AcpiGbl_RootTableList.Tables[i].Pointer, sizeof (ACPI_TABLE_HEADER)); } return (AE_OK); } return (AE_NOT_FOUND); } ACPI_EXPORT_SYMBOL (AcpiGetTableHeader) /******************************************************************************* * * FUNCTION: AcpiGetTable * * PARAMETERS: Signature - ACPI signature of needed table * Instance - Which instance (for SSDTs) * OutTable - Where the pointer to the table is returned * * RETURN: Status and pointer to the requested table * * DESCRIPTION: Finds and verifies an ACPI table. Table must be in the * RSDT/XSDT. + * Note that an early stage AcpiGetTable() call must be paired + * with an early stage AcpiPutTable() call. otherwise the table + * pointer mapped by the early stage mapping implementation may be + * erroneously unmapped by the late stage unmapping implementation + * in an AcpiPutTable() invoked during the late stage. * ******************************************************************************/ ACPI_STATUS AcpiGetTable ( char *Signature, UINT32 Instance, ACPI_TABLE_HEADER **OutTable) { UINT32 i; UINT32 j; - ACPI_STATUS Status; + ACPI_STATUS Status = AE_NOT_FOUND; + ACPI_TABLE_DESC *TableDesc; /* Parameter validation */ if (!Signature || !OutTable) { return (AE_BAD_PARAMETER); } + /* + * Note that the following line is required by some OSPMs, they only + * check if the returned table is NULL instead of the returned status + * to determined if this function is succeeded. + */ + *OutTable = NULL; + + (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); + /* Walk the root table list */ for (i = 0, j = 0; i < AcpiGbl_RootTableList.CurrentTableCount; i++) { - if (!ACPI_COMPARE_NAME ( - &(AcpiGbl_RootTableList.Tables[i].Signature), Signature)) + TableDesc = &AcpiGbl_RootTableList.Tables[i]; + + if (!ACPI_COMPARE_NAME (&TableDesc->Signature, Signature)) { continue; } if (++j < Instance) { continue; } - Status = AcpiTbValidateTable (&AcpiGbl_RootTableList.Tables[i]); - if (ACPI_SUCCESS (Status)) + Status = AcpiTbGetTable (TableDesc, OutTable); + break; + } + + (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); + return (Status); +} + +ACPI_EXPORT_SYMBOL (AcpiGetTable) + + +/******************************************************************************* + * + * FUNCTION: AcpiPutTable + * + * PARAMETERS: Table - The pointer to the table + * + * RETURN: None + * + * DESCRIPTION: Release a table returned by AcpiGetTable() and its clones. + * Note that it is not safe if this function was invoked after an + * uninstallation happened to the original table descriptor. + * Currently there is no OSPMs' requirement to handle such + * situations. + * + ******************************************************************************/ + +void +AcpiPutTable ( + ACPI_TABLE_HEADER *Table) +{ + UINT32 i; + ACPI_TABLE_DESC *TableDesc; + + + ACPI_FUNCTION_TRACE (AcpiPutTable); + + + (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); + + /* Walk the root table list */ + + for (i = 0; i < AcpiGbl_RootTableList.CurrentTableCount; i++) + { + TableDesc = &AcpiGbl_RootTableList.Tables[i]; + + if (TableDesc->Pointer != Table) { - *OutTable = AcpiGbl_RootTableList.Tables[i].Pointer; + continue; } - return (Status); + AcpiTbPutTable (TableDesc); + break; } - return (AE_NOT_FOUND); + (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); + return_VOID; } -ACPI_EXPORT_SYMBOL (AcpiGetTable) +ACPI_EXPORT_SYMBOL (AcpiPutTable) /******************************************************************************* * * FUNCTION: AcpiGetTableByIndex * * PARAMETERS: TableIndex - Table index - * Table - Where the pointer to the table is returned + * OutTable - Where the pointer to the table is returned * * RETURN: Status and pointer to the requested table * * DESCRIPTION: Obtain a table by an index into the global table list. Used * internally also. * ******************************************************************************/ ACPI_STATUS AcpiGetTableByIndex ( UINT32 TableIndex, - ACPI_TABLE_HEADER **Table) + ACPI_TABLE_HEADER **OutTable) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (AcpiGetTableByIndex); /* Parameter validation */ - if (!Table) + if (!OutTable) { return_ACPI_STATUS (AE_BAD_PARAMETER); } + /* + * Note that the following line is required by some OSPMs, they only + * check if the returned table is NULL instead of the returned status + * to determined if this function is succeeded. + */ + *OutTable = NULL; + (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); /* Validate index */ if (TableIndex >= AcpiGbl_RootTableList.CurrentTableCount) { - (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); - return_ACPI_STATUS (AE_BAD_PARAMETER); + Status = AE_BAD_PARAMETER; + goto UnlockAndExit; } - if (!AcpiGbl_RootTableList.Tables[TableIndex].Pointer) - { - /* Table is not mapped, map it */ + Status = AcpiTbGetTable ( + &AcpiGbl_RootTableList.Tables[TableIndex], OutTable); - Status = AcpiTbValidateTable ( - &AcpiGbl_RootTableList.Tables[TableIndex]); - if (ACPI_FAILURE (Status)) - { - (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); - return_ACPI_STATUS (Status); - } - } - - *Table = AcpiGbl_RootTableList.Tables[TableIndex].Pointer; +UnlockAndExit: (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); - return_ACPI_STATUS (AE_OK); + return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiGetTableByIndex) /******************************************************************************* * * FUNCTION: AcpiInstallTableHandler * * PARAMETERS: Handler - Table event handler * Context - Value passed to the handler on each event * * RETURN: Status * * DESCRIPTION: Install a global table event handler. * ******************************************************************************/ ACPI_STATUS AcpiInstallTableHandler ( ACPI_TABLE_HANDLER Handler, void *Context) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (AcpiInstallTableHandler); if (!Handler) { return_ACPI_STATUS (AE_BAD_PARAMETER); } Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Don't allow more than one handler */ if (AcpiGbl_TableHandler) { Status = AE_ALREADY_EXISTS; goto Cleanup; } /* Install the handler */ AcpiGbl_TableHandler = Handler; AcpiGbl_TableHandlerContext = Context; Cleanup: (void) AcpiUtReleaseMutex (ACPI_MTX_EVENTS); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiInstallTableHandler) /******************************************************************************* * * FUNCTION: AcpiRemoveTableHandler * * PARAMETERS: Handler - Table event handler that was installed * previously. * * RETURN: Status * * DESCRIPTION: Remove a table event handler * ******************************************************************************/ ACPI_STATUS AcpiRemoveTableHandler ( ACPI_TABLE_HANDLER Handler) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (AcpiRemoveTableHandler); Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Make sure that the installed handler is the same */ if (!Handler || Handler != AcpiGbl_TableHandler) { Status = AE_BAD_PARAMETER; goto Cleanup; } /* Remove the handler */ AcpiGbl_TableHandler = NULL; Cleanup: (void) AcpiUtReleaseMutex (ACPI_MTX_EVENTS); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiRemoveTableHandler) Index: head/sys/contrib/dev/acpica/components/tables/tbxfload.c =================================================================== --- head/sys/contrib/dev/acpica/components/tables/tbxfload.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/tables/tbxfload.c (revision 308953) @@ -1,503 +1,472 @@ /****************************************************************************** * * Module Name: tbxfload - Table load/unload external interfaces * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #define EXPORT_ACPI_INTERFACES #include #include #include #include #include #define _COMPONENT ACPI_TABLES ACPI_MODULE_NAME ("tbxfload") /******************************************************************************* * * FUNCTION: AcpiLoadTables * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Load the ACPI tables from the RSDT/XSDT * ******************************************************************************/ ACPI_STATUS ACPI_INIT_FUNCTION AcpiLoadTables ( void) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (AcpiLoadTables); /* * Install the default operation region handlers. These are the * handlers that are defined by the ACPI specification to be * "always accessible" -- namely, SystemMemory, SystemIO, and * PCI_Config. This also means that no _REG methods need to be * run for these address spaces. We need to have these handlers * installed before any AML code can be executed, especially any * module-level code (11/2015). * Note that we allow OSPMs to install their own region handlers * between AcpiInitializeSubsystem() and AcpiLoadTables() to use * their customized default region handlers. */ Status = AcpiEvInstallRegionHandlers (); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "During Region initialization")); return_ACPI_STATUS (Status); } /* Load the namespace from the tables */ Status = AcpiTbLoadNamespace (); /* Don't let single failures abort the load */ if (Status == AE_CTRL_TERMINATE) { Status = AE_OK; } if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "While loading namespace from ACPI tables")); } if (AcpiGbl_ParseTableAsTermList || !AcpiGbl_GroupModuleLevelCode) { /* * Initialize the objects that remain uninitialized. This * runs the executable AML that may be part of the * declaration of these objects: * OperationRegions, BufferFields, Buffers, and Packages. */ Status = AcpiNsInitializeObjects (); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } AcpiGbl_NamespaceInitialized = TRUE; return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL_INIT (AcpiLoadTables) /******************************************************************************* * * FUNCTION: AcpiTbLoadNamespace * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Load the namespace from the DSDT and all SSDTs/PSDTs found in * the RSDT/XSDT. * ******************************************************************************/ ACPI_STATUS AcpiTbLoadNamespace ( void) { ACPI_STATUS Status; UINT32 i; ACPI_TABLE_HEADER *NewDsdt; ACPI_TABLE_DESC *Table; UINT32 TablesLoaded = 0; UINT32 TablesFailed = 0; ACPI_FUNCTION_TRACE (TbLoadNamespace); (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); /* * Load the namespace. The DSDT is required, but any SSDT and * PSDT tables are optional. Verify the DSDT. */ Table = &AcpiGbl_RootTableList.Tables[AcpiGbl_DsdtIndex]; if (!AcpiGbl_RootTableList.CurrentTableCount || !ACPI_COMPARE_NAME (Table->Signature.Ascii, ACPI_SIG_DSDT) || ACPI_FAILURE (AcpiTbValidateTable (Table))) { Status = AE_NO_ACPI_TABLES; goto UnlockAndExit; } /* * Save the DSDT pointer for simple access. This is the mapped memory * address. We must take care here because the address of the .Tables * array can change dynamically as tables are loaded at run-time. Note: * .Pointer field is not validated until after call to AcpiTbValidateTable. */ AcpiGbl_DSDT = Table->Pointer; /* * Optionally copy the entire DSDT to local memory (instead of simply * mapping it.) There are some BIOSs that corrupt or replace the original * DSDT, creating the need for this option. Default is FALSE, do not copy * the DSDT. */ if (AcpiGbl_CopyDsdtLocally) { NewDsdt = AcpiTbCopyDsdt (AcpiGbl_DsdtIndex); if (NewDsdt) { AcpiGbl_DSDT = NewDsdt; } } /* * Save the original DSDT header for detection of table corruption * and/or replacement of the DSDT from outside the OS. */ memcpy (&AcpiGbl_OriginalDsdtHeader, AcpiGbl_DSDT, sizeof (ACPI_TABLE_HEADER)); /* Load and parse tables */ (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); Status = AcpiNsLoadTable (AcpiGbl_DsdtIndex, AcpiGbl_RootNode); (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "[DSDT] table load failed")); TablesFailed++; } else { TablesLoaded++; } /* Load any SSDT or PSDT tables. Note: Loop leaves tables locked */ for (i = 0; i < AcpiGbl_RootTableList.CurrentTableCount; ++i) { Table = &AcpiGbl_RootTableList.Tables[i]; if (!AcpiGbl_RootTableList.Tables[i].Address || (!ACPI_COMPARE_NAME (Table->Signature.Ascii, ACPI_SIG_SSDT) && !ACPI_COMPARE_NAME (Table->Signature.Ascii, ACPI_SIG_PSDT) && !ACPI_COMPARE_NAME (Table->Signature.Ascii, ACPI_SIG_OSDT)) || ACPI_FAILURE (AcpiTbValidateTable (Table))) { continue; } /* Ignore errors while loading tables, get as many as possible */ (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); Status = AcpiNsLoadTable (i, AcpiGbl_RootNode); (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "(%4.4s:%8.8s) while loading table", Table->Signature.Ascii, Table->Pointer->OemTableId)); TablesFailed++; ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INIT, "Table [%4.4s:%8.8s] (id FF) - Table namespace load failed\n\n", Table->Signature.Ascii, Table->Pointer->OemTableId)); } else { TablesLoaded++; } } if (!TablesFailed) { ACPI_INFO (( "%u ACPI AML tables successfully acquired and loaded", TablesLoaded)); } else { ACPI_ERROR ((AE_INFO, "%u table load failures, %u successful", TablesFailed, TablesLoaded)); /* Indicate at least one failure */ Status = AE_CTRL_TERMINATE; } #ifdef ACPI_APPLICATION ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INIT, "\n")); #endif UnlockAndExit: (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiInstallTable * * PARAMETERS: Address - Address of the ACPI table to be installed. * Physical - Whether the address is a physical table * address or not * * RETURN: Status * * DESCRIPTION: Dynamically install an ACPI table. * Note: This function should only be invoked after * AcpiInitializeTables() and before AcpiLoadTables(). * ******************************************************************************/ ACPI_STATUS ACPI_INIT_FUNCTION AcpiInstallTable ( ACPI_PHYSICAL_ADDRESS Address, BOOLEAN Physical) { ACPI_STATUS Status; UINT8 Flags; UINT32 TableIndex; ACPI_FUNCTION_TRACE (AcpiInstallTable); if (Physical) { Flags = ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL; } else { Flags = ACPI_TABLE_ORIGIN_EXTERNAL_VIRTUAL; } Status = AcpiTbInstallStandardTable (Address, Flags, FALSE, FALSE, &TableIndex); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL_INIT (AcpiInstallTable) /******************************************************************************* * * FUNCTION: AcpiLoadTable * * PARAMETERS: Table - Pointer to a buffer containing the ACPI * table to be loaded. * * RETURN: Status * * DESCRIPTION: Dynamically load an ACPI table from the caller's buffer. Must * be a valid ACPI table with a valid ACPI table header. * Note1: Mainly intended to support hotplug addition of SSDTs. * Note2: Does not copy the incoming table. User is responsible * to ensure that the table is not deleted or unmapped. * ******************************************************************************/ ACPI_STATUS AcpiLoadTable ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; UINT32 TableIndex; ACPI_FUNCTION_TRACE (AcpiLoadTable); /* Parameter validation */ if (!Table) { return_ACPI_STATUS (AE_BAD_PARAMETER); } /* Install the table and load it into the namespace */ ACPI_INFO (("Host-directed Dynamic ACPI Table Load:")); - Status = AcpiTbInstallAndLoadTable (Table, ACPI_PTR_TO_PHYSADDR (Table), + Status = AcpiTbInstallAndLoadTable (ACPI_PTR_TO_PHYSADDR (Table), ACPI_TABLE_ORIGIN_EXTERNAL_VIRTUAL, FALSE, &TableIndex); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiLoadTable) /******************************************************************************* * * FUNCTION: AcpiUnloadParentTable * * PARAMETERS: Object - Handle to any namespace object owned by * the table to be unloaded * * RETURN: Status * * DESCRIPTION: Via any namespace object within an SSDT or OEMx table, unloads * the table and deletes all namespace objects associated with * that table. Unloading of the DSDT is not allowed. * Note: Mainly intended to support hotplug removal of SSDTs. * ******************************************************************************/ ACPI_STATUS AcpiUnloadParentTable ( ACPI_HANDLE Object) { ACPI_NAMESPACE_NODE *Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, Object); ACPI_STATUS Status = AE_NOT_EXIST; ACPI_OWNER_ID OwnerId; UINT32 i; ACPI_FUNCTION_TRACE (AcpiUnloadParentTable); /* Parameter validation */ if (!Object) { return_ACPI_STATUS (AE_BAD_PARAMETER); } /* * The node OwnerId is currently the same as the parent table ID. * However, this could change in the future. */ OwnerId = Node->OwnerId; if (!OwnerId) { /* OwnerId==0 means DSDT is the owner. DSDT cannot be unloaded */ return_ACPI_STATUS (AE_TYPE); } /* Must acquire the table lock during this operation */ Status = AcpiUtAcquireMutex (ACPI_MTX_TABLES); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Find the table in the global table list */ for (i = 0; i < AcpiGbl_RootTableList.CurrentTableCount; i++) { if (OwnerId != AcpiGbl_RootTableList.Tables[i].OwnerId) { continue; } /* * Allow unload of SSDT and OEMx tables only. Do not allow unload * of the DSDT. No other types of tables should get here, since * only these types can contain AML and thus are the only types * that can create namespace objects. */ if (ACPI_COMPARE_NAME ( AcpiGbl_RootTableList.Tables[i].Signature.Ascii, ACPI_SIG_DSDT)) { Status = AE_TYPE; break; } - /* Ensure the table is actually loaded */ - (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); - if (!AcpiTbIsTableLoaded (i)) - { - Status = AE_NOT_EXIST; - (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); - break; - } - - /* Invoke table handler if present */ - - if (AcpiGbl_TableHandler) - { - (void) AcpiGbl_TableHandler (ACPI_TABLE_EVENT_UNLOAD, - AcpiGbl_RootTableList.Tables[i].Pointer, - AcpiGbl_TableHandlerContext); - } - - /* - * Delete all namespace objects owned by this table. Note that - * these objects can appear anywhere in the namespace by virtue - * of the AML "Scope" operator. Thus, we need to track ownership - * by an ID, not simply a position within the hierarchy. - */ - Status = AcpiTbDeleteNamespaceByOwner (i); - if (ACPI_FAILURE (Status)) - { - break; - } - - Status = AcpiTbReleaseOwnerId (i); - AcpiTbSetTableLoadedFlag (i, FALSE); + Status = AcpiTbUnloadTable (i); (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); break; } (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiUnloadParentTable) Index: head/sys/contrib/dev/acpica/components/utilities/utdecode.c =================================================================== --- head/sys/contrib/dev/acpica/components/utilities/utdecode.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/utilities/utdecode.c (revision 308953) @@ -1,635 +1,689 @@ /****************************************************************************** * * Module Name: utdecode - Utility decoding routines (value-to-string) * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include +#include #define _COMPONENT ACPI_UTILITIES ACPI_MODULE_NAME ("utdecode") /* * Properties of the ACPI Object Types, both internal and external. * The table is indexed by values of ACPI_OBJECT_TYPE */ const UINT8 AcpiGbl_NsProperties[ACPI_NUM_NS_TYPES] = { ACPI_NS_NORMAL, /* 00 Any */ ACPI_NS_NORMAL, /* 01 Number */ ACPI_NS_NORMAL, /* 02 String */ ACPI_NS_NORMAL, /* 03 Buffer */ ACPI_NS_NORMAL, /* 04 Package */ ACPI_NS_NORMAL, /* 05 FieldUnit */ ACPI_NS_NEWSCOPE, /* 06 Device */ ACPI_NS_NORMAL, /* 07 Event */ ACPI_NS_NEWSCOPE, /* 08 Method */ ACPI_NS_NORMAL, /* 09 Mutex */ ACPI_NS_NORMAL, /* 10 Region */ ACPI_NS_NEWSCOPE, /* 11 Power */ ACPI_NS_NEWSCOPE, /* 12 Processor */ ACPI_NS_NEWSCOPE, /* 13 Thermal */ ACPI_NS_NORMAL, /* 14 BufferField */ ACPI_NS_NORMAL, /* 15 DdbHandle */ ACPI_NS_NORMAL, /* 16 Debug Object */ ACPI_NS_NORMAL, /* 17 DefField */ ACPI_NS_NORMAL, /* 18 BankField */ ACPI_NS_NORMAL, /* 19 IndexField */ ACPI_NS_NORMAL, /* 20 Reference */ ACPI_NS_NORMAL, /* 21 Alias */ ACPI_NS_NORMAL, /* 22 MethodAlias */ ACPI_NS_NORMAL, /* 23 Notify */ ACPI_NS_NORMAL, /* 24 Address Handler */ ACPI_NS_NEWSCOPE | ACPI_NS_LOCAL, /* 25 Resource Desc */ ACPI_NS_NEWSCOPE | ACPI_NS_LOCAL, /* 26 Resource Field */ ACPI_NS_NEWSCOPE, /* 27 Scope */ ACPI_NS_NORMAL, /* 28 Extra */ ACPI_NS_NORMAL, /* 29 Data */ ACPI_NS_NORMAL /* 30 Invalid */ }; /******************************************************************************* * * FUNCTION: AcpiUtGetRegionName * * PARAMETERS: Space ID - ID for the region * * RETURN: Decoded region SpaceId name * * DESCRIPTION: Translate a Space ID into a name string (Debug only) * ******************************************************************************/ /* Region type decoding */ const char *AcpiGbl_RegionTypes[ACPI_NUM_PREDEFINED_REGIONS] = { "SystemMemory", /* 0x00 */ "SystemIO", /* 0x01 */ "PCI_Config", /* 0x02 */ "EmbeddedControl", /* 0x03 */ "SMBus", /* 0x04 */ "SystemCMOS", /* 0x05 */ "PCIBARTarget", /* 0x06 */ "IPMI", /* 0x07 */ "GeneralPurposeIo", /* 0x08 */ "GenericSerialBus", /* 0x09 */ "PCC" /* 0x0A */ }; const char * AcpiUtGetRegionName ( UINT8 SpaceId) { if (SpaceId >= ACPI_USER_REGION_BEGIN) { return ("UserDefinedRegion"); } else if (SpaceId == ACPI_ADR_SPACE_DATA_TABLE) { return ("DataTable"); } else if (SpaceId == ACPI_ADR_SPACE_FIXED_HARDWARE) { return ("FunctionalFixedHW"); } else if (SpaceId >= ACPI_NUM_PREDEFINED_REGIONS) { return ("InvalidSpaceId"); } return (AcpiGbl_RegionTypes[SpaceId]); } /******************************************************************************* * * FUNCTION: AcpiUtGetEventName * * PARAMETERS: EventId - Fixed event ID * * RETURN: Decoded event ID name * * DESCRIPTION: Translate a Event ID into a name string (Debug only) * ******************************************************************************/ /* Event type decoding */ static const char *AcpiGbl_EventTypes[ACPI_NUM_FIXED_EVENTS] = { "PM_Timer", "GlobalLock", "PowerButton", "SleepButton", "RealTimeClock", }; const char * AcpiUtGetEventName ( UINT32 EventId) { if (EventId > ACPI_EVENT_MAX) { return ("InvalidEventID"); } return (AcpiGbl_EventTypes[EventId]); } /******************************************************************************* * * FUNCTION: AcpiUtGetTypeName * * PARAMETERS: Type - An ACPI object type * * RETURN: Decoded ACPI object type name * * DESCRIPTION: Translate a Type ID into a name string (Debug only) * ******************************************************************************/ /* * Elements of AcpiGbl_NsTypeNames below must match * one-to-one with values of ACPI_OBJECT_TYPE * * The type ACPI_TYPE_ANY (Untyped) is used as a "don't care" when searching; * when stored in a table it really means that we have thus far seen no * evidence to indicate what type is actually going to be stored for this & entry. */ static const char AcpiGbl_BadType[] = "UNDEFINED"; /* Printable names of the ACPI object types */ static const char *AcpiGbl_NsTypeNames[] = { /* 00 */ "Untyped", /* 01 */ "Integer", /* 02 */ "String", /* 03 */ "Buffer", /* 04 */ "Package", /* 05 */ "FieldUnit", /* 06 */ "Device", /* 07 */ "Event", /* 08 */ "Method", /* 09 */ "Mutex", /* 10 */ "Region", /* 11 */ "Power", /* 12 */ "Processor", /* 13 */ "Thermal", /* 14 */ "BufferField", /* 15 */ "DdbHandle", /* 16 */ "DebugObject", /* 17 */ "RegionField", /* 18 */ "BankField", /* 19 */ "IndexField", /* 20 */ "Reference", /* 21 */ "Alias", /* 22 */ "MethodAlias", /* 23 */ "Notify", /* 24 */ "AddrHandler", /* 25 */ "ResourceDesc", /* 26 */ "ResourceFld", /* 27 */ "Scope", /* 28 */ "Extra", /* 29 */ "Data", /* 30 */ "Invalid" }; const char * AcpiUtGetTypeName ( ACPI_OBJECT_TYPE Type) { if (Type > ACPI_TYPE_INVALID) { return (AcpiGbl_BadType); } return (AcpiGbl_NsTypeNames[Type]); } const char * AcpiUtGetObjectTypeName ( ACPI_OPERAND_OBJECT *ObjDesc) { ACPI_FUNCTION_TRACE (UtGetObjectTypeName); if (!ObjDesc) { ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Null Object Descriptor\n")); return_PTR ("[NULL Object Descriptor]"); } /* These descriptor types share a common area */ if ((ACPI_GET_DESCRIPTOR_TYPE (ObjDesc) != ACPI_DESC_TYPE_OPERAND) && (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc) != ACPI_DESC_TYPE_NAMED)) { ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Invalid object descriptor type: 0x%2.2X [%s] (%p)\n", ACPI_GET_DESCRIPTOR_TYPE (ObjDesc), AcpiUtGetDescriptorName (ObjDesc), ObjDesc)); return_PTR ("Invalid object"); } return_STR (AcpiUtGetTypeName (ObjDesc->Common.Type)); } /******************************************************************************* * * FUNCTION: AcpiUtGetNodeName * * PARAMETERS: Object - A namespace node * * RETURN: ASCII name of the node * * DESCRIPTION: Validate the node and return the node's ACPI name. * ******************************************************************************/ const char * AcpiUtGetNodeName ( void *Object) { ACPI_NAMESPACE_NODE *Node = (ACPI_NAMESPACE_NODE *) Object; /* Must return a string of exactly 4 characters == ACPI_NAME_SIZE */ if (!Object) { return ("NULL"); } /* Check for Root node */ if ((Object == ACPI_ROOT_OBJECT) || (Object == AcpiGbl_RootNode)) { return ("\"\\\" "); } /* Descriptor must be a namespace node */ if (ACPI_GET_DESCRIPTOR_TYPE (Node) != ACPI_DESC_TYPE_NAMED) { return ("####"); } /* * Ensure name is valid. The name was validated/repaired when the node * was created, but make sure it has not been corrupted. */ AcpiUtRepairName (Node->Name.Ascii); /* Return the name */ return (Node->Name.Ascii); } /******************************************************************************* * * FUNCTION: AcpiUtGetDescriptorName * * PARAMETERS: Object - An ACPI object * * RETURN: Decoded name of the descriptor type * * DESCRIPTION: Validate object and return the descriptor type * ******************************************************************************/ /* Printable names of object descriptor types */ static const char *AcpiGbl_DescTypeNames[] = { /* 00 */ "Not a Descriptor", /* 01 */ "Cached", /* 02 */ "State-Generic", /* 03 */ "State-Update", /* 04 */ "State-Package", /* 05 */ "State-Control", /* 06 */ "State-RootParseScope", /* 07 */ "State-ParseScope", /* 08 */ "State-WalkScope", /* 09 */ "State-Result", /* 10 */ "State-Notify", /* 11 */ "State-Thread", /* 12 */ "Walk", /* 13 */ "Parser", /* 14 */ "Operand", /* 15 */ "Node" }; const char * AcpiUtGetDescriptorName ( void *Object) { if (!Object) { return ("NULL OBJECT"); } if (ACPI_GET_DESCRIPTOR_TYPE (Object) > ACPI_DESC_TYPE_MAX) { return ("Not a Descriptor"); } return (AcpiGbl_DescTypeNames[ACPI_GET_DESCRIPTOR_TYPE (Object)]); } /******************************************************************************* * * FUNCTION: AcpiUtGetReferenceName * * PARAMETERS: Object - An ACPI reference object * * RETURN: Decoded name of the type of reference * * DESCRIPTION: Decode a reference object sub-type to a string. * ******************************************************************************/ /* Printable names of reference object sub-types */ static const char *AcpiGbl_RefClassNames[] = { /* 00 */ "Local", /* 01 */ "Argument", /* 02 */ "RefOf", /* 03 */ "Index", /* 04 */ "DdbHandle", /* 05 */ "Named Object", /* 06 */ "Debug" }; const char * AcpiUtGetReferenceName ( ACPI_OPERAND_OBJECT *Object) { if (!Object) { return ("NULL Object"); } if (ACPI_GET_DESCRIPTOR_TYPE (Object) != ACPI_DESC_TYPE_OPERAND) { return ("Not an Operand object"); } if (Object->Common.Type != ACPI_TYPE_LOCAL_REFERENCE) { return ("Not a Reference object"); } if (Object->Reference.Class > ACPI_REFCLASS_MAX) { return ("Unknown Reference class"); } return (AcpiGbl_RefClassNames[Object->Reference.Class]); } #if defined(ACPI_DEBUG_OUTPUT) || defined(ACPI_DEBUGGER) /* * Strings and procedures used for debug only */ /******************************************************************************* * * FUNCTION: AcpiUtGetMutexName * * PARAMETERS: MutexId - The predefined ID for this mutex. * * RETURN: Decoded name of the internal mutex * * DESCRIPTION: Translate a mutex ID into a name string (Debug only) * ******************************************************************************/ /* Names for internal mutex objects, used for debug output */ static const char *AcpiGbl_MutexNames[ACPI_NUM_MUTEX] = { "ACPI_MTX_Interpreter", "ACPI_MTX_Namespace", "ACPI_MTX_Tables", "ACPI_MTX_Events", "ACPI_MTX_Caches", "ACPI_MTX_Memory", }; const char * AcpiUtGetMutexName ( UINT32 MutexId) { if (MutexId > ACPI_MAX_MUTEX) { return ("Invalid Mutex ID"); } return (AcpiGbl_MutexNames[MutexId]); } /******************************************************************************* * * FUNCTION: AcpiUtGetNotifyName * * PARAMETERS: NotifyValue - Value from the Notify() request * * RETURN: Decoded name for the notify value * * DESCRIPTION: Translate a Notify Value to a notify namestring. * ******************************************************************************/ /* Names for Notify() values, used for debug output */ static const char *AcpiGbl_GenericNotify[ACPI_GENERIC_NOTIFY_MAX + 1] = { /* 00 */ "Bus Check", /* 01 */ "Device Check", /* 02 */ "Device Wake", /* 03 */ "Eject Request", /* 04 */ "Device Check Light", /* 05 */ "Frequency Mismatch", /* 06 */ "Bus Mode Mismatch", /* 07 */ "Power Fault", /* 08 */ "Capabilities Check", /* 09 */ "Device PLD Check", /* 0A */ "Reserved", /* 0B */ "System Locality Update", /* 0C */ "Shutdown Request", /* Reserved in ACPI 6.0 */ /* 0D */ "System Resource Affinity Update" }; static const char *AcpiGbl_DeviceNotify[5] = { /* 80 */ "Status Change", /* 81 */ "Information Change", /* 82 */ "Device-Specific Change", /* 83 */ "Device-Specific Change", /* 84 */ "Reserved" }; static const char *AcpiGbl_ProcessorNotify[5] = { /* 80 */ "Performance Capability Change", /* 81 */ "C-State Change", /* 82 */ "Throttling Capability Change", /* 83 */ "Guaranteed Change", /* 84 */ "Minimum Excursion" }; static const char *AcpiGbl_ThermalNotify[5] = { /* 80 */ "Thermal Status Change", /* 81 */ "Thermal Trip Point Change", /* 82 */ "Thermal Device List Change", /* 83 */ "Thermal Relationship Change", /* 84 */ "Reserved" }; const char * AcpiUtGetNotifyName ( UINT32 NotifyValue, ACPI_OBJECT_TYPE Type) { /* 00 - 0D are "common to all object types" (from ACPI Spec) */ if (NotifyValue <= ACPI_GENERIC_NOTIFY_MAX) { return (AcpiGbl_GenericNotify[NotifyValue]); } /* 0E - 7F are reserved */ if (NotifyValue <= ACPI_MAX_SYS_NOTIFY) { return ("Reserved"); } /* 80 - 84 are per-object-type */ if (NotifyValue <= ACPI_SPECIFIC_NOTIFY_MAX) { switch (Type) { case ACPI_TYPE_ANY: case ACPI_TYPE_DEVICE: return (AcpiGbl_DeviceNotify [NotifyValue - 0x80]); case ACPI_TYPE_PROCESSOR: return (AcpiGbl_ProcessorNotify [NotifyValue - 0x80]); case ACPI_TYPE_THERMAL: return (AcpiGbl_ThermalNotify [NotifyValue - 0x80]); default: return ("Target object type does not support notifies"); } } /* 84 - BF are device-specific */ if (NotifyValue <= ACPI_MAX_DEVICE_SPECIFIC_NOTIFY) { return ("Device-Specific"); } /* C0 and above are hardware-specific */ return ("Hardware-Specific"); } + + +/******************************************************************************* + * + * FUNCTION: AcpiUtGetArgumentTypeName + * + * PARAMETERS: ArgType - an ARGP_* parser argument type + * + * RETURN: Decoded ARGP_* type + * + * DESCRIPTION: Decode an ARGP_* parser type, as defined in the amlcode.h file, + * and used in the acopcode.h file. For example, ARGP_TERMARG. + * Used for debug only. + * + ******************************************************************************/ + +static const char *AcpiGbl_ArgumentType[20] = +{ + /* 00 */ "Unknown ARGP", + /* 01 */ "ByteData", + /* 02 */ "ByteList", + /* 03 */ "CharList", + /* 04 */ "DataObject", + /* 05 */ "DataObjectList", + /* 06 */ "DWordData", + /* 07 */ "FieldList", + /* 08 */ "Name", + /* 09 */ "NameString", + /* 0A */ "ObjectList", + /* 0B */ "PackageLength", + /* 0C */ "SuperName", + /* 0D */ "Target", + /* 0E */ "TermArg", + /* 0F */ "TermList", + /* 10 */ "WordData", + /* 11 */ "QWordData", + /* 12 */ "SimpleName", + /* 13 */ "NameOrRef" +}; + +const char * +AcpiUtGetArgumentTypeName ( + UINT32 ArgType) +{ + + if (ArgType > ARGP_MAX) + { + return ("Unknown ARGP"); + } + + return (AcpiGbl_ArgumentType[ArgType]); +} + #endif /******************************************************************************* * * FUNCTION: AcpiUtValidObjectType * * PARAMETERS: Type - Object type to be validated * * RETURN: TRUE if valid object type, FALSE otherwise * * DESCRIPTION: Validate an object type * ******************************************************************************/ BOOLEAN AcpiUtValidObjectType ( ACPI_OBJECT_TYPE Type) { if (Type > ACPI_TYPE_LOCAL_MAX) { /* Note: Assumes all TYPEs are contiguous (external/local) */ return (FALSE); } return (TRUE); } Index: head/sys/contrib/dev/acpica/components/utilities/utresrc.c =================================================================== --- head/sys/contrib/dev/acpica/components/utilities/utresrc.c (revision 308952) +++ head/sys/contrib/dev/acpica/components/utilities/utresrc.c (revision 308953) @@ -1,925 +1,934 @@ /******************************************************************************* * * Module Name: utresrc - Resource management utilities * ******************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #define _COMPONENT ACPI_UTILITIES ACPI_MODULE_NAME ("utresrc") #if defined(ACPI_DEBUG_OUTPUT) || defined (ACPI_DISASSEMBLER) || defined (ACPI_DEBUGGER) /* * Strings used to decode resource descriptors. * Used by both the disassembler and the debugger resource dump routines */ const char *AcpiGbl_BmDecode[] = { "NotBusMaster", "BusMaster" }; const char *AcpiGbl_ConfigDecode[] = { "0 - Good Configuration", "1 - Acceptable Configuration", "2 - Suboptimal Configuration", "3 - ***Invalid Configuration***", }; const char *AcpiGbl_ConsumeDecode[] = { "ResourceProducer", "ResourceConsumer" }; const char *AcpiGbl_DecDecode[] = { "PosDecode", "SubDecode" }; const char *AcpiGbl_HeDecode[] = { "Level", "Edge" }; const char *AcpiGbl_IoDecode[] = { "Decode10", "Decode16" }; const char *AcpiGbl_LlDecode[] = { "ActiveHigh", "ActiveLow", "ActiveBoth", "Reserved" }; const char *AcpiGbl_MaxDecode[] = { "MaxNotFixed", "MaxFixed" }; const char *AcpiGbl_MemDecode[] = { "NonCacheable", "Cacheable", "WriteCombining", "Prefetchable" }; const char *AcpiGbl_MinDecode[] = { "MinNotFixed", "MinFixed" }; const char *AcpiGbl_MtpDecode[] = { "AddressRangeMemory", "AddressRangeReserved", "AddressRangeACPI", "AddressRangeNVS" }; const char *AcpiGbl_RngDecode[] = { "InvalidRanges", "NonISAOnlyRanges", "ISAOnlyRanges", "EntireRange" }; const char *AcpiGbl_RwDecode[] = { "ReadOnly", "ReadWrite" }; const char *AcpiGbl_ShrDecode[] = { "Exclusive", "Shared", "ExclusiveAndWake", /* ACPI 5.0 */ "SharedAndWake" /* ACPI 5.0 */ }; const char *AcpiGbl_SizDecode[] = { "Transfer8", "Transfer8_16", "Transfer16", "InvalidSize" }; const char *AcpiGbl_TrsDecode[] = { "DenseTranslation", "SparseTranslation" }; const char *AcpiGbl_TtpDecode[] = { "TypeStatic", "TypeTranslation" }; const char *AcpiGbl_TypDecode[] = { "Compatibility", "TypeA", "TypeB", "TypeF" }; const char *AcpiGbl_PpcDecode[] = { "PullDefault", "PullUp", "PullDown", "PullNone" }; const char *AcpiGbl_IorDecode[] = { "IoRestrictionNone", "IoRestrictionInputOnly", "IoRestrictionOutputOnly", "IoRestrictionNoneAndPreserve" }; const char *AcpiGbl_DtsDecode[] = { "Width8bit", "Width16bit", "Width32bit", "Width64bit", "Width128bit", "Width256bit", }; /* GPIO connection type */ const char *AcpiGbl_CtDecode[] = { "Interrupt", "I/O" }; /* Serial bus type */ const char *AcpiGbl_SbtDecode[] = { "/* UNKNOWN serial bus type */", "I2C", "SPI", "UART" }; /* I2C serial bus access mode */ const char *AcpiGbl_AmDecode[] = { "AddressingMode7Bit", "AddressingMode10Bit" }; /* I2C serial bus slave mode */ const char *AcpiGbl_SmDecode[] = { "ControllerInitiated", "DeviceInitiated" }; /* SPI serial bus wire mode */ const char *AcpiGbl_WmDecode[] = { "FourWireMode", "ThreeWireMode" }; /* SPI serial clock phase */ const char *AcpiGbl_CphDecode[] = { "ClockPhaseFirst", "ClockPhaseSecond" }; /* SPI serial bus clock polarity */ const char *AcpiGbl_CpoDecode[] = { "ClockPolarityLow", "ClockPolarityHigh" }; /* SPI serial bus device polarity */ const char *AcpiGbl_DpDecode[] = { "PolarityLow", "PolarityHigh" }; /* UART serial bus endian */ const char *AcpiGbl_EdDecode[] = { "LittleEndian", "BigEndian" }; /* UART serial bus bits per byte */ const char *AcpiGbl_BpbDecode[] = { "DataBitsFive", "DataBitsSix", "DataBitsSeven", "DataBitsEight", "DataBitsNine", "/* UNKNOWN Bits per byte */", "/* UNKNOWN Bits per byte */", "/* UNKNOWN Bits per byte */" }; /* UART serial bus stop bits */ const char *AcpiGbl_SbDecode[] = { "StopBitsZero", "StopBitsOne", "StopBitsOnePlusHalf", "StopBitsTwo" }; /* UART serial bus flow control */ const char *AcpiGbl_FcDecode[] = { "FlowControlNone", "FlowControlHardware", "FlowControlXON", "/* UNKNOWN flow control keyword */" }; /* UART serial bus parity type */ const char *AcpiGbl_PtDecode[] = { "ParityTypeNone", "ParityTypeEven", "ParityTypeOdd", "ParityTypeMark", "ParityTypeSpace", "/* UNKNOWN parity keyword */", "/* UNKNOWN parity keyword */", "/* UNKNOWN parity keyword */" }; #endif /* * Base sizes of the raw AML resource descriptors, indexed by resource type. * Zero indicates a reserved (and therefore invalid) resource type. */ const UINT8 AcpiGbl_ResourceAmlSizes[] = { /* Small descriptors */ 0, 0, 0, 0, ACPI_AML_SIZE_SMALL (AML_RESOURCE_IRQ), ACPI_AML_SIZE_SMALL (AML_RESOURCE_DMA), ACPI_AML_SIZE_SMALL (AML_RESOURCE_START_DEPENDENT), ACPI_AML_SIZE_SMALL (AML_RESOURCE_END_DEPENDENT), ACPI_AML_SIZE_SMALL (AML_RESOURCE_IO), ACPI_AML_SIZE_SMALL (AML_RESOURCE_FIXED_IO), ACPI_AML_SIZE_SMALL (AML_RESOURCE_FIXED_DMA), 0, 0, 0, ACPI_AML_SIZE_SMALL (AML_RESOURCE_VENDOR_SMALL), ACPI_AML_SIZE_SMALL (AML_RESOURCE_END_TAG), /* Large descriptors */ 0, ACPI_AML_SIZE_LARGE (AML_RESOURCE_MEMORY24), ACPI_AML_SIZE_LARGE (AML_RESOURCE_GENERIC_REGISTER), 0, ACPI_AML_SIZE_LARGE (AML_RESOURCE_VENDOR_LARGE), ACPI_AML_SIZE_LARGE (AML_RESOURCE_MEMORY32), ACPI_AML_SIZE_LARGE (AML_RESOURCE_FIXED_MEMORY32), ACPI_AML_SIZE_LARGE (AML_RESOURCE_ADDRESS32), ACPI_AML_SIZE_LARGE (AML_RESOURCE_ADDRESS16), ACPI_AML_SIZE_LARGE (AML_RESOURCE_EXTENDED_IRQ), ACPI_AML_SIZE_LARGE (AML_RESOURCE_ADDRESS64), ACPI_AML_SIZE_LARGE (AML_RESOURCE_EXTENDED_ADDRESS64), ACPI_AML_SIZE_LARGE (AML_RESOURCE_GPIO), 0, ACPI_AML_SIZE_LARGE (AML_RESOURCE_COMMON_SERIALBUS), }; const UINT8 AcpiGbl_ResourceAmlSerialBusSizes[] = { 0, ACPI_AML_SIZE_LARGE (AML_RESOURCE_I2C_SERIALBUS), ACPI_AML_SIZE_LARGE (AML_RESOURCE_SPI_SERIALBUS), ACPI_AML_SIZE_LARGE (AML_RESOURCE_UART_SERIALBUS), }; /* * Resource types, used to validate the resource length field. * The length of fixed-length types must match exactly, variable * lengths must meet the minimum required length, etc. * Zero indicates a reserved (and therefore invalid) resource type. */ static const UINT8 AcpiGbl_ResourceTypes[] = { /* Small descriptors */ 0, 0, 0, 0, ACPI_SMALL_VARIABLE_LENGTH, /* 04 IRQ */ ACPI_FIXED_LENGTH, /* 05 DMA */ ACPI_SMALL_VARIABLE_LENGTH, /* 06 StartDependentFunctions */ ACPI_FIXED_LENGTH, /* 07 EndDependentFunctions */ ACPI_FIXED_LENGTH, /* 08 IO */ ACPI_FIXED_LENGTH, /* 09 FixedIO */ ACPI_FIXED_LENGTH, /* 0A FixedDMA */ 0, 0, 0, ACPI_VARIABLE_LENGTH, /* 0E VendorShort */ ACPI_FIXED_LENGTH, /* 0F EndTag */ /* Large descriptors */ 0, ACPI_FIXED_LENGTH, /* 01 Memory24 */ ACPI_FIXED_LENGTH, /* 02 GenericRegister */ 0, ACPI_VARIABLE_LENGTH, /* 04 VendorLong */ ACPI_FIXED_LENGTH, /* 05 Memory32 */ ACPI_FIXED_LENGTH, /* 06 Memory32Fixed */ ACPI_VARIABLE_LENGTH, /* 07 Dword* address */ ACPI_VARIABLE_LENGTH, /* 08 Word* address */ ACPI_VARIABLE_LENGTH, /* 09 ExtendedIRQ */ ACPI_VARIABLE_LENGTH, /* 0A Qword* address */ ACPI_FIXED_LENGTH, /* 0B Extended* address */ ACPI_VARIABLE_LENGTH, /* 0C Gpio* */ 0, ACPI_VARIABLE_LENGTH /* 0E *SerialBus */ }; /******************************************************************************* * * FUNCTION: AcpiUtWalkAmlResources * * PARAMETERS: WalkState - Current walk info * PARAMETERS: Aml - Pointer to the raw AML resource template * AmlLength - Length of the entire template * UserFunction - Called once for each descriptor found. If * NULL, a pointer to the EndTag is returned * Context - Passed to UserFunction * * RETURN: Status * * DESCRIPTION: Walk a raw AML resource list(buffer). User function called * once for each resource found. * ******************************************************************************/ ACPI_STATUS AcpiUtWalkAmlResources ( ACPI_WALK_STATE *WalkState, UINT8 *Aml, ACPI_SIZE AmlLength, ACPI_WALK_AML_CALLBACK UserFunction, void **Context) { ACPI_STATUS Status; UINT8 *EndAml; UINT8 ResourceIndex; UINT32 Length; UINT32 Offset = 0; UINT8 EndTag[2] = {0x79, 0x00}; ACPI_FUNCTION_TRACE (UtWalkAmlResources); - /* The absolute minimum resource template is one EndTag descriptor */ - - if (AmlLength < sizeof (AML_RESOURCE_END_TAG)) + /* + * The absolute minimum resource template is one EndTag descriptor. + * However, we will treat a lone EndTag as just a simple buffer. + */ + if (AmlLength <= sizeof (AML_RESOURCE_END_TAG)) { return_ACPI_STATUS (AE_AML_NO_RESOURCE_END_TAG); } /* Point to the end of the resource template buffer */ EndAml = Aml + AmlLength; /* Walk the byte list, abort on any invalid descriptor type or length */ while (Aml < EndAml) { /* Validate the Resource Type and Resource Length */ Status = AcpiUtValidateResource (WalkState, Aml, &ResourceIndex); if (ACPI_FAILURE (Status)) { /* * Exit on failure. Cannot continue because the descriptor * length may be bogus also. */ return_ACPI_STATUS (Status); } /* Get the length of this descriptor */ Length = AcpiUtGetDescriptorLength (Aml); /* Invoke the user function */ if (UserFunction) { - Status = UserFunction ( - Aml, Length, Offset, ResourceIndex, Context); + Status = UserFunction (Aml, Length, Offset, + ResourceIndex, Context); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } /* An EndTag descriptor terminates this resource template */ if (AcpiUtGetResourceType (Aml) == ACPI_RESOURCE_NAME_END_TAG) { /* * There must be at least one more byte in the buffer for * the 2nd byte of the EndTag */ if ((Aml + 1) >= EndAml) { return_ACPI_STATUS (AE_AML_NO_RESOURCE_END_TAG); } /* Return the pointer to the EndTag if requested */ if (!UserFunction) { *Context = Aml; + } + + /* Check if buffer is defined to be longer than the resource length */ + + if (AmlLength > (Offset + Length)) + { + return_ACPI_STATUS (AE_AML_NO_RESOURCE_END_TAG); } /* Normal exit */ return_ACPI_STATUS (AE_OK); } Aml += Length; Offset += Length; } /* Did not find an EndTag descriptor */ if (UserFunction) { /* Insert an EndTag anyway. AcpiRsGetListLength always leaves room */ (void) AcpiUtValidateResource (WalkState, EndTag, &ResourceIndex); Status = UserFunction (EndTag, 2, Offset, ResourceIndex, Context); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } return_ACPI_STATUS (AE_AML_NO_RESOURCE_END_TAG); } /******************************************************************************* * * FUNCTION: AcpiUtValidateResource * * PARAMETERS: WalkState - Current walk info * Aml - Pointer to the raw AML resource descriptor * ReturnIndex - Where the resource index is returned. NULL * if the index is not required. * * RETURN: Status, and optionally the Index into the global resource tables * * DESCRIPTION: Validate an AML resource descriptor by checking the Resource * Type and Resource Length. Returns an index into the global * resource information/dispatch tables for later use. * ******************************************************************************/ ACPI_STATUS AcpiUtValidateResource ( ACPI_WALK_STATE *WalkState, void *Aml, UINT8 *ReturnIndex) { AML_RESOURCE *AmlResource; UINT8 ResourceType; UINT8 ResourceIndex; ACPI_RS_LENGTH ResourceLength; ACPI_RS_LENGTH MinimumResourceLength; ACPI_FUNCTION_ENTRY (); /* * 1) Validate the ResourceType field (Byte 0) */ ResourceType = ACPI_GET8 (Aml); /* * Byte 0 contains the descriptor name (Resource Type) * Examine the large/small bit in the resource header */ if (ResourceType & ACPI_RESOURCE_NAME_LARGE) { /* Verify the large resource type (name) against the max */ if (ResourceType > ACPI_RESOURCE_NAME_LARGE_MAX) { goto InvalidResource; } /* * Large Resource Type -- bits 6:0 contain the name * Translate range 0x80-0x8B to index range 0x10-0x1B */ ResourceIndex = (UINT8) (ResourceType - 0x70); } else { /* * Small Resource Type -- bits 6:3 contain the name * Shift range to index range 0x00-0x0F */ ResourceIndex = (UINT8) ((ResourceType & ACPI_RESOURCE_NAME_SMALL_MASK) >> 3); } /* * Check validity of the resource type, via AcpiGbl_ResourceTypes. * Zero indicates an invalid resource. */ if (!AcpiGbl_ResourceTypes[ResourceIndex]) { goto InvalidResource; } /* * Validate the ResourceLength field. This ensures that the length * is at least reasonable, and guarantees that it is non-zero. */ ResourceLength = AcpiUtGetResourceLength (Aml); MinimumResourceLength = AcpiGbl_ResourceAmlSizes[ResourceIndex]; /* Validate based upon the type of resource - fixed length or variable */ switch (AcpiGbl_ResourceTypes[ResourceIndex]) { case ACPI_FIXED_LENGTH: /* Fixed length resource, length must match exactly */ if (ResourceLength != MinimumResourceLength) { goto BadResourceLength; } break; case ACPI_VARIABLE_LENGTH: /* Variable length resource, length must be at least the minimum */ if (ResourceLength < MinimumResourceLength) { goto BadResourceLength; } break; case ACPI_SMALL_VARIABLE_LENGTH: /* Small variable length resource, length can be (Min) or (Min-1) */ if ((ResourceLength > MinimumResourceLength) || (ResourceLength < (MinimumResourceLength - 1))) { goto BadResourceLength; } break; default: /* Shouldn't happen (because of validation earlier), but be sure */ goto InvalidResource; } AmlResource = ACPI_CAST_PTR (AML_RESOURCE, Aml); if (ResourceType == ACPI_RESOURCE_NAME_SERIAL_BUS) { /* Validate the BusType field */ if ((AmlResource->CommonSerialBus.Type == 0) || (AmlResource->CommonSerialBus.Type > AML_RESOURCE_MAX_SERIALBUSTYPE)) { if (WalkState) { ACPI_ERROR ((AE_INFO, "Invalid/unsupported SerialBus resource descriptor: BusType 0x%2.2X", AmlResource->CommonSerialBus.Type)); } return (AE_AML_INVALID_RESOURCE_TYPE); } } /* Optionally return the resource table index */ if (ReturnIndex) { *ReturnIndex = ResourceIndex; } return (AE_OK); InvalidResource: if (WalkState) { ACPI_ERROR ((AE_INFO, "Invalid/unsupported resource descriptor: Type 0x%2.2X", ResourceType)); } return (AE_AML_INVALID_RESOURCE_TYPE); BadResourceLength: if (WalkState) { ACPI_ERROR ((AE_INFO, "Invalid resource descriptor length: Type " "0x%2.2X, Length 0x%4.4X, MinLength 0x%4.4X", ResourceType, ResourceLength, MinimumResourceLength)); } return (AE_AML_BAD_RESOURCE_LENGTH); } /******************************************************************************* * * FUNCTION: AcpiUtGetResourceType * * PARAMETERS: Aml - Pointer to the raw AML resource descriptor * * RETURN: The Resource Type with no extraneous bits (except the * Large/Small descriptor bit -- this is left alone) * * DESCRIPTION: Extract the Resource Type/Name from the first byte of * a resource descriptor. * ******************************************************************************/ UINT8 AcpiUtGetResourceType ( void *Aml) { ACPI_FUNCTION_ENTRY (); /* * Byte 0 contains the descriptor name (Resource Type) * Examine the large/small bit in the resource header */ if (ACPI_GET8 (Aml) & ACPI_RESOURCE_NAME_LARGE) { /* Large Resource Type -- bits 6:0 contain the name */ return (ACPI_GET8 (Aml)); } else { /* Small Resource Type -- bits 6:3 contain the name */ return ((UINT8) (ACPI_GET8 (Aml) & ACPI_RESOURCE_NAME_SMALL_MASK)); } } /******************************************************************************* * * FUNCTION: AcpiUtGetResourceLength * * PARAMETERS: Aml - Pointer to the raw AML resource descriptor * * RETURN: Byte Length * * DESCRIPTION: Get the "Resource Length" of a raw AML descriptor. By * definition, this does not include the size of the descriptor * header or the length field itself. * ******************************************************************************/ UINT16 AcpiUtGetResourceLength ( void *Aml) { ACPI_RS_LENGTH ResourceLength; ACPI_FUNCTION_ENTRY (); /* * Byte 0 contains the descriptor name (Resource Type) * Examine the large/small bit in the resource header */ if (ACPI_GET8 (Aml) & ACPI_RESOURCE_NAME_LARGE) { /* Large Resource type -- bytes 1-2 contain the 16-bit length */ ACPI_MOVE_16_TO_16 (&ResourceLength, ACPI_ADD_PTR (UINT8, Aml, 1)); } else { /* Small Resource type -- bits 2:0 of byte 0 contain the length */ ResourceLength = (UINT16) (ACPI_GET8 (Aml) & ACPI_RESOURCE_NAME_SMALL_LENGTH_MASK); } return (ResourceLength); } /******************************************************************************* * * FUNCTION: AcpiUtGetResourceHeaderLength * * PARAMETERS: Aml - Pointer to the raw AML resource descriptor * * RETURN: Length of the AML header (depends on large/small descriptor) * * DESCRIPTION: Get the length of the header for this resource. * ******************************************************************************/ UINT8 AcpiUtGetResourceHeaderLength ( void *Aml) { ACPI_FUNCTION_ENTRY (); /* Examine the large/small bit in the resource header */ if (ACPI_GET8 (Aml) & ACPI_RESOURCE_NAME_LARGE) { return (sizeof (AML_RESOURCE_LARGE_HEADER)); } else { return (sizeof (AML_RESOURCE_SMALL_HEADER)); } } /******************************************************************************* * * FUNCTION: AcpiUtGetDescriptorLength * * PARAMETERS: Aml - Pointer to the raw AML resource descriptor * * RETURN: Byte length * * DESCRIPTION: Get the total byte length of a raw AML descriptor, including the * length of the descriptor header and the length field itself. * Used to walk descriptor lists. * ******************************************************************************/ UINT32 AcpiUtGetDescriptorLength ( void *Aml) { ACPI_FUNCTION_ENTRY (); /* * Get the Resource Length (does not include header length) and add * the header length (depends on if this is a small or large resource) */ return (AcpiUtGetResourceLength (Aml) + AcpiUtGetResourceHeaderLength (Aml)); } /******************************************************************************* * * FUNCTION: AcpiUtGetResourceEndTag * * PARAMETERS: ObjDesc - The resource template buffer object * EndTag - Where the pointer to the EndTag is returned * * RETURN: Status, pointer to the end tag * * DESCRIPTION: Find the EndTag resource descriptor in an AML resource template * Note: allows a buffer length of zero. * ******************************************************************************/ ACPI_STATUS AcpiUtGetResourceEndTag ( ACPI_OPERAND_OBJECT *ObjDesc, UINT8 **EndTag) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (UtGetResourceEndTag); /* Allow a buffer length of zero */ if (!ObjDesc->Buffer.Length) { *EndTag = ObjDesc->Buffer.Pointer; return_ACPI_STATUS (AE_OK); } /* Validate the template and get a pointer to the EndTag */ Status = AcpiUtWalkAmlResources (NULL, ObjDesc->Buffer.Pointer, ObjDesc->Buffer.Length, NULL, (void **) EndTag); return_ACPI_STATUS (Status); } Index: head/sys/contrib/dev/acpica/include/acdisasm.h =================================================================== --- head/sys/contrib/dev/acpica/include/acdisasm.h (revision 308952) +++ head/sys/contrib/dev/acpica/include/acdisasm.h (revision 308953) @@ -1,1099 +1,1096 @@ /****************************************************************************** * * Name: acdisasm.h - AML disassembler * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef __ACDISASM_H__ #define __ACDISASM_H__ #include #define BLOCK_NONE 0 #define BLOCK_PAREN 1 #define BLOCK_BRACE 2 #define BLOCK_COMMA_LIST 4 #define ACPI_DEFAULT_RESNAME *(UINT32 *) "__RD" /* * Raw table data header. Used by disassembler and data table compiler. * Do not change. */ #define ACPI_RAW_TABLE_DATA_HEADER "Raw Table Data" typedef struct acpi_dmtable_info { UINT8 Opcode; UINT16 Offset; char *Name; UINT8 Flags; } ACPI_DMTABLE_INFO; /* Values for Flags field above */ #define DT_LENGTH 0x01 /* Field is a subtable length */ #define DT_FLAG 0x02 /* Field is a flag value */ #define DT_NON_ZERO 0x04 /* Field must be non-zero */ #define DT_OPTIONAL 0x08 /* Field is optional */ #define DT_DESCRIBES_OPTIONAL 0x10 /* Field describes an optional field (length, etc.) */ #define DT_COUNT 0x20 /* Currently not used */ /* * Values for Opcode above. * Note: 0-7 must not change, they are used as a flag shift value. Other * than those, new values can be added wherever appropriate. */ typedef enum { /* Simple Data Types */ ACPI_DMT_FLAG0 = 0, ACPI_DMT_FLAG1 = 1, ACPI_DMT_FLAG2 = 2, ACPI_DMT_FLAG3 = 3, ACPI_DMT_FLAG4 = 4, ACPI_DMT_FLAG5 = 5, ACPI_DMT_FLAG6 = 6, ACPI_DMT_FLAG7 = 7, ACPI_DMT_FLAGS0, ACPI_DMT_FLAGS1, ACPI_DMT_FLAGS2, ACPI_DMT_FLAGS4, ACPI_DMT_UINT8, ACPI_DMT_UINT16, ACPI_DMT_UINT24, ACPI_DMT_UINT32, ACPI_DMT_UINT40, ACPI_DMT_UINT48, ACPI_DMT_UINT56, ACPI_DMT_UINT64, ACPI_DMT_BUF7, ACPI_DMT_BUF10, ACPI_DMT_BUF12, ACPI_DMT_BUF16, ACPI_DMT_BUF128, ACPI_DMT_SIG, ACPI_DMT_STRING, ACPI_DMT_NAME4, ACPI_DMT_NAME6, ACPI_DMT_NAME8, /* Types that are decoded to strings and miscellaneous */ ACPI_DMT_ACCWIDTH, ACPI_DMT_CHKSUM, ACPI_DMT_GAS, ACPI_DMT_SPACEID, ACPI_DMT_UNICODE, ACPI_DMT_UUID, /* Types used only for the Data Table Compiler */ ACPI_DMT_BUFFER, ACPI_DMT_RAW_BUFFER, /* Large, multiple line buffer */ ACPI_DMT_DEVICE_PATH, ACPI_DMT_LABEL, ACPI_DMT_PCI_PATH, /* Types that are specific to particular ACPI tables */ ACPI_DMT_ASF, ACPI_DMT_DMAR, ACPI_DMT_DMAR_SCOPE, ACPI_DMT_EINJACT, ACPI_DMT_EINJINST, ACPI_DMT_ERSTACT, ACPI_DMT_ERSTINST, ACPI_DMT_FADTPM, ACPI_DMT_GTDT, ACPI_DMT_HEST, ACPI_DMT_HESTNTFY, ACPI_DMT_HESTNTYP, ACPI_DMT_IORTMEM, ACPI_DMT_IVRS, ACPI_DMT_LPIT, ACPI_DMT_MADT, ACPI_DMT_NFIT, ACPI_DMT_PCCT, ACPI_DMT_PMTT, ACPI_DMT_SLIC, ACPI_DMT_SRAT, /* Special opcodes */ ACPI_DMT_EXTRA_TEXT, ACPI_DMT_EXIT } ACPI_ENTRY_TYPES; typedef void (*ACPI_DMTABLE_HANDLER) ( ACPI_TABLE_HEADER *Table); typedef ACPI_STATUS (*ACPI_CMTABLE_HANDLER) ( void **PFieldList); typedef struct acpi_dmtable_data { char *Signature; ACPI_DMTABLE_INFO *TableInfo; ACPI_DMTABLE_HANDLER TableHandler; ACPI_CMTABLE_HANDLER CmTableHandler; const unsigned char *Template; } ACPI_DMTABLE_DATA; typedef struct acpi_op_walk_info { ACPI_WALK_STATE *WalkState; ACPI_PARSE_OBJECT *MappingOp; UINT8 *PreviousAml; UINT8 *StartAml; UINT32 Level; UINT32 LastLevel; UINT32 Count; UINT32 BitOffset; UINT32 Flags; UINT32 AmlOffset; } ACPI_OP_WALK_INFO; /* * TBD - another copy of this is in asltypes.h, fix */ #ifndef ASL_WALK_CALLBACK_DEFINED typedef ACPI_STATUS (*ASL_WALK_CALLBACK) ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); #define ASL_WALK_CALLBACK_DEFINED #endif typedef void (*ACPI_RESOURCE_HANDLER) ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); typedef struct acpi_resource_tag { UINT32 BitIndex; char *Tag; } ACPI_RESOURCE_TAG; /* Strings used for decoding flags to ASL keywords */ extern const char *AcpiGbl_WordDecode[]; extern const char *AcpiGbl_IrqDecode[]; extern const char *AcpiGbl_LockRule[]; extern const char *AcpiGbl_AccessTypes[]; extern const char *AcpiGbl_UpdateRules[]; extern const char *AcpiGbl_MatchOps[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoAsf0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoAsf1[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoAsf1a[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoAsf2[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoAsf2a[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoAsf3[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoAsf4[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoAsfHdr[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoBoot[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoBert[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoBgrt[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoCpep[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoCpep0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoCsrt0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoCsrt1[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoCsrt2[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoCsrt2a[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2Device[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2Addr[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2Size[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2Name[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDbg2OemData[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDbgp[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDmar[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDmarHdr[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDmarScope[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDmar0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDmar1[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDmar2[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDmar3[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDmar4[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDrtm[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDrtm0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDrtm0a[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDrtm1[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDrtm1a[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoDrtm2[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoEcdt[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoEinj[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoEinj0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoErst[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoErst0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoFacs[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoFadt1[]; +extern ACPI_DMTABLE_INFO AcpiDmTableInfoFadt2[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoFadt3[]; -extern ACPI_DMTABLE_INFO AcpiDmTableInfoFadt4[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoFadt5[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoFadt6[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoFpdt[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoFpdtHdr[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoFpdt0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoFpdt1[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoGas[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoGtdt[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoGtdtHdr[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoGtdt0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoGtdt0a[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoGtdt1[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoHeader[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoHest[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoHest0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoHest1[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoHest2[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoHest6[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoHest7[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoHest8[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoHest9[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoHest10[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoHestNotify[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoHestBank[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoHpet[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoLpitHdr[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoLpit0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoLpit1[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIort[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIort0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIort0a[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIort1[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIort1a[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIort2[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIort3[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIort3a[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIort3b[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIort3c[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIort4[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIortAcc[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIortHdr[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIortMap[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIortPad[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs1[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs4[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs8a[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs8b[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIvrs8c[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoIvrsHdr[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt1[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt2[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt3[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt4[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt5[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt6[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt7[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt8[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt9[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt10[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt11[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt12[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt13[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt14[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadt15[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMadtHdr[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMcfg[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMcfg0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMchi[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMpst[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMpst0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMpst0A[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMpst0B[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMpst1[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMpst2[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMsct[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMsct0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMtmr[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoMtmr0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoNfit[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoNfitHdr[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoNfit0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoNfit1[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoNfit2[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoNfit2a[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoNfit3[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoNfit3a[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoNfit4[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoNfit5[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoNfit6[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoNfit6a[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoPmtt[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoPmtt0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoPmtt1[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoPmtt1a[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoPmtt2[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoPmttHdr[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoPcct[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoPcctHdr[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoPcct0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoPcct1[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoPcct2[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoRasf[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoRsdp1[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoRsdp2[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoS3pt[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoS3ptHdr[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoS3pt0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoS3pt1[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoSbst[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoSlic[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoSlit[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoSpcr[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoSpmi[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoSrat[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoSratHdr[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoSrat0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoSrat1[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoSrat2[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoSrat3[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoStao[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoStaoStr[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoTcpaHdr[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoTcpaClient[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoTcpaServer[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoTpm2[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoUefi[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoVrtc[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoVrtc0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoWaet[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoWdat[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoWdat0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoWddt[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoWdrt[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoWpbt[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoWpbt0[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoXenv[]; extern ACPI_DMTABLE_INFO AcpiDmTableInfoGeneric[][2]; - -extern ACPI_DMTABLE_INFO *FadtRevisionInfo [ACPI_FADT_MAX_VERSION + 1]; - /* * dmtable and ahtable */ extern const ACPI_DMTABLE_DATA AcpiDmTableData[]; extern const AH_TABLE AcpiSupportedTables[]; UINT8 AcpiDmGenerateChecksum ( void *Table, UINT32 Length, UINT8 OriginalChecksum); const ACPI_DMTABLE_DATA * AcpiDmGetTableData ( char *Signature); void AcpiDmDumpDataTable ( ACPI_TABLE_HEADER *Table); ACPI_STATUS AcpiDmDumpTable ( UINT32 TableLength, UINT32 TableOffset, void *Table, UINT32 SubTableLength, ACPI_DMTABLE_INFO *Info); void AcpiDmLineHeader ( UINT32 Offset, UINT32 ByteLength, char *Name); void AcpiDmLineHeader2 ( UINT32 Offset, UINT32 ByteLength, char *Name, UINT32 Value); /* * dmtbdump */ void AcpiDmDumpBuffer ( void *Table, UINT32 BufferOffset, UINT32 Length, UINT32 AbsoluteOffset, char *Header); void AcpiDmDumpUnicode ( void *Table, UINT32 BufferOffset, UINT32 ByteLength); void AcpiDmDumpAsf ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpCpep ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpCsrt ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpDbg2 ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpDmar ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpDrtm ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpEinj ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpErst ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpFadt ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpFpdt ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpGtdt ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpHest ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpIort ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpIvrs ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpLpit ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpMadt ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpMcfg ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpMpst ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpMsct ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpMtmr ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpNfit ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpPcct ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpPmtt ( ACPI_TABLE_HEADER *Table); UINT32 AcpiDmDumpRsdp ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpRsdt ( ACPI_TABLE_HEADER *Table); UINT32 AcpiDmDumpS3pt ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpSlic ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpSlit ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpSrat ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpStao ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpTcpa ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpVrtc ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpWdat ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpWpbt ( ACPI_TABLE_HEADER *Table); void AcpiDmDumpXsdt ( ACPI_TABLE_HEADER *Table); /* * dmwalk */ void AcpiDmDisassemble ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Origin, UINT32 NumOpcodes); void AcpiDmWalkParseTree ( ACPI_PARSE_OBJECT *Op, ASL_WALK_CALLBACK DescendingCallback, ASL_WALK_CALLBACK AscendingCallback, void *Context); /* * dmopcode */ void AcpiDmDisassembleOneOp ( ACPI_WALK_STATE *WalkState, ACPI_OP_WALK_INFO *Info, ACPI_PARSE_OBJECT *Op); UINT32 AcpiDmListType ( ACPI_PARSE_OBJECT *Op); void AcpiDmMethodFlags ( ACPI_PARSE_OBJECT *Op); void AcpiDmDisplayTargetPathname ( ACPI_PARSE_OBJECT *Op); void AcpiDmNotifyDescription ( ACPI_PARSE_OBJECT *Op); void AcpiDmPredefinedDescription ( ACPI_PARSE_OBJECT *Op); void AcpiDmFieldPredefinedDescription ( ACPI_PARSE_OBJECT *Op); void AcpiDmFieldFlags ( ACPI_PARSE_OBJECT *Op); void AcpiDmAddressSpace ( UINT8 SpaceId); void AcpiDmRegionFlags ( ACPI_PARSE_OBJECT *Op); void AcpiDmMatchOp ( ACPI_PARSE_OBJECT *Op); /* * dmnames */ UINT32 AcpiDmDumpName ( UINT32 Name); ACPI_STATUS AcpiPsDisplayObjectPathname ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op); void AcpiDmNamestring ( char *Name); /* * dmbuffer */ void AcpiDmDisasmByteList ( UINT32 Level, UINT8 *ByteData, UINT32 ByteCount); void AcpiDmByteList ( ACPI_OP_WALK_INFO *Info, ACPI_PARSE_OBJECT *Op); void AcpiDmCheckForHardwareId ( ACPI_PARSE_OBJECT *Op); void AcpiDmDecompressEisaId ( UINT32 EncodedId); BOOLEAN AcpiDmIsUuidBuffer ( ACPI_PARSE_OBJECT *Op); BOOLEAN AcpiDmIsUnicodeBuffer ( ACPI_PARSE_OBJECT *Op); BOOLEAN AcpiDmIsStringBuffer ( ACPI_PARSE_OBJECT *Op); BOOLEAN AcpiDmIsPldBuffer ( ACPI_PARSE_OBJECT *Op); /* * dmdeferred */ ACPI_STATUS AcpiDmParseDeferredOps ( ACPI_PARSE_OBJECT *Root); /* * dmextern */ ACPI_STATUS AcpiDmAddToExternalFileList ( char *PathList); void AcpiDmClearExternalFileList ( void); void AcpiDmAddOpToExternalList ( ACPI_PARSE_OBJECT *Op, char *Path, UINT8 Type, UINT32 Value, UINT16 Flags); void AcpiDmAddNodeToExternalList ( ACPI_NAMESPACE_NODE *Node, UINT8 Type, UINT32 Value, UINT16 Flags); void AcpiDmAddExternalsToNamespace ( void); UINT32 AcpiDmGetExternalMethodCount ( void); void AcpiDmClearExternalList ( void); void AcpiDmEmitExternals ( void); void AcpiDmUnresolvedWarning ( UINT8 Type); void AcpiDmGetExternalsFromFile ( void); /* * dmresrc */ void AcpiDmDumpInteger8 ( UINT8 Value, const char *Name); void AcpiDmDumpInteger16 ( UINT16 Value, const char *Name); void AcpiDmDumpInteger32 ( UINT32 Value, const char *Name); void AcpiDmDumpInteger64 ( UINT64 Value, const char *Name); void AcpiDmResourceTemplate ( ACPI_OP_WALK_INFO *Info, ACPI_PARSE_OBJECT *Op, UINT8 *ByteData, UINT32 ByteCount); ACPI_STATUS AcpiDmIsResourceTemplate ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op); void AcpiDmBitList ( UINT16 Mask); void AcpiDmDescriptorName ( void); /* * dmresrcl */ void AcpiDmWordDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); void AcpiDmDwordDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); void AcpiDmExtendedDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); void AcpiDmQwordDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); void AcpiDmMemory24Descriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); void AcpiDmMemory32Descriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); void AcpiDmFixedMemory32Descriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); void AcpiDmGenericRegisterDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); void AcpiDmInterruptDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); void AcpiDmVendorLargeDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); void AcpiDmGpioDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); void AcpiDmSerialBusDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); void AcpiDmVendorCommon ( const char *Name, UINT8 *ByteData, UINT32 Length, UINT32 Level); /* * dmresrcs */ void AcpiDmIrqDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); void AcpiDmDmaDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); void AcpiDmFixedDmaDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); void AcpiDmIoDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); void AcpiDmFixedIoDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); void AcpiDmStartDependentDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); void AcpiDmEndDependentDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); void AcpiDmVendorSmallDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); /* * dmutils */ void AcpiDmDecodeAttribute ( UINT8 Attribute); void AcpiDmIndent ( UINT32 Level); BOOLEAN AcpiDmCommaIfListMember ( ACPI_PARSE_OBJECT *Op); void AcpiDmCommaIfFieldMember ( ACPI_PARSE_OBJECT *Op); /* * dmrestag */ void AcpiDmFindResources ( ACPI_PARSE_OBJECT *Root); void AcpiDmCheckResourceReference ( ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState); /* * dmcstyle */ BOOLEAN AcpiDmCheckForSymbolicOpcode ( ACPI_PARSE_OBJECT *Op, ACPI_OP_WALK_INFO *Info); void AcpiDmCloseOperator ( ACPI_PARSE_OBJECT *Op); /* * dmtables */ void AdDisassemblerHeader ( char *Filename, UINT8 TableType); #define ACPI_IS_AML_TABLE 0 #define ACPI_IS_DATA_TABLE 1 /* * adisasm */ ACPI_STATUS AdAmlDisassemble ( BOOLEAN OutToFile, char *Filename, char *Prefix, char **OutFilename); ACPI_STATUS AdGetLocalTables ( void); ACPI_STATUS AdParseTable ( ACPI_TABLE_HEADER *Table, ACPI_OWNER_ID *OwnerId, BOOLEAN LoadTable, BOOLEAN External); ACPI_STATUS AdDisplayTables ( char *Filename, ACPI_TABLE_HEADER *Table); ACPI_STATUS AdDisplayStatistics ( void); #endif /* __ACDISASM_H__ */ Index: head/sys/contrib/dev/acpica/include/acevents.h =================================================================== --- head/sys/contrib/dev/acpica/include/acevents.h (revision 308952) +++ head/sys/contrib/dev/acpica/include/acevents.h (revision 308953) @@ -1,367 +1,366 @@ /****************************************************************************** * * Name: acevents.h - Event subcomponent prototypes and defines * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef __ACEVENTS_H__ #define __ACEVENTS_H__ /* * evevent */ ACPI_STATUS AcpiEvInitializeEvents ( void); ACPI_STATUS AcpiEvInstallXruptHandlers ( void); UINT32 AcpiEvFixedEventDetect ( void); /* * evmisc */ BOOLEAN AcpiEvIsNotifyObject ( ACPI_NAMESPACE_NODE *Node); UINT32 AcpiEvGetGpeNumberIndex ( UINT32 GpeNumber); ACPI_STATUS AcpiEvQueueNotifyRequest ( ACPI_NAMESPACE_NODE *Node, UINT32 NotifyValue); /* * evglock - Global Lock support */ ACPI_STATUS AcpiEvInitGlobalLockHandler ( void); ACPI_HW_DEPENDENT_RETURN_OK ( ACPI_STATUS AcpiEvAcquireGlobalLock( UINT16 Timeout)) ACPI_HW_DEPENDENT_RETURN_OK ( ACPI_STATUS AcpiEvReleaseGlobalLock( void)) ACPI_STATUS AcpiEvRemoveGlobalLockHandler ( void); /* * evgpe - Low-level GPE support */ UINT32 AcpiEvGpeDetect ( ACPI_GPE_XRUPT_INFO *GpeXruptList); ACPI_STATUS AcpiEvUpdateGpeEnableMask ( ACPI_GPE_EVENT_INFO *GpeEventInfo); ACPI_STATUS AcpiEvEnableGpe ( ACPI_GPE_EVENT_INFO *GpeEventInfo); ACPI_STATUS AcpiEvMaskGpe ( ACPI_GPE_EVENT_INFO *GpeEventInfo, BOOLEAN IsMasked); ACPI_STATUS AcpiEvAddGpeReference ( ACPI_GPE_EVENT_INFO *GpeEventInfo); ACPI_STATUS AcpiEvRemoveGpeReference ( ACPI_GPE_EVENT_INFO *GpeEventInfo); ACPI_GPE_EVENT_INFO * AcpiEvGetGpeEventInfo ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber); ACPI_GPE_EVENT_INFO * AcpiEvLowGetGpeInfo ( UINT32 GpeNumber, ACPI_GPE_BLOCK_INFO *GpeBlock); ACPI_STATUS AcpiEvFinishGpe ( ACPI_GPE_EVENT_INFO *GpeEventInfo); /* * evgpeblk - Upper-level GPE block support */ ACPI_STATUS AcpiEvCreateGpeBlock ( ACPI_NAMESPACE_NODE *GpeDevice, UINT64 Address, UINT8 SpaceId, UINT32 RegisterCount, UINT16 GpeBlockBaseNumber, UINT32 InterruptNumber, ACPI_GPE_BLOCK_INFO **ReturnGpeBlock); ACPI_STATUS AcpiEvInitializeGpeBlock ( ACPI_GPE_XRUPT_INFO *GpeXruptInfo, ACPI_GPE_BLOCK_INFO *GpeBlock, void *Context); ACPI_HW_DEPENDENT_RETURN_OK ( ACPI_STATUS AcpiEvDeleteGpeBlock ( ACPI_GPE_BLOCK_INFO *GpeBlock)) UINT32 AcpiEvGpeDispatch ( ACPI_NAMESPACE_NODE *GpeDevice, ACPI_GPE_EVENT_INFO *GpeEventInfo, UINT32 GpeNumber); /* * evgpeinit - GPE initialization and update */ ACPI_STATUS AcpiEvGpeInitialize ( void); ACPI_HW_DEPENDENT_RETURN_VOID ( void AcpiEvUpdateGpes ( ACPI_OWNER_ID TableOwnerId)) ACPI_STATUS AcpiEvMatchGpeMethod ( ACPI_HANDLE ObjHandle, UINT32 Level, void *Context, void **ReturnValue); /* * evgpeutil - GPE utilities */ ACPI_STATUS AcpiEvWalkGpeList ( ACPI_GPE_CALLBACK GpeWalkCallback, void *Context); ACPI_STATUS AcpiEvGetGpeDevice ( ACPI_GPE_XRUPT_INFO *GpeXruptInfo, ACPI_GPE_BLOCK_INFO *GpeBlock, void *Context); ACPI_STATUS AcpiEvGetGpeXruptBlock ( UINT32 InterruptNumber, ACPI_GPE_XRUPT_INFO **GpeXruptBlock); ACPI_STATUS AcpiEvDeleteGpeXrupt ( ACPI_GPE_XRUPT_INFO *GpeXrupt); ACPI_STATUS AcpiEvDeleteGpeHandlers ( ACPI_GPE_XRUPT_INFO *GpeXruptInfo, ACPI_GPE_BLOCK_INFO *GpeBlock, void *Context); /* * evhandler - Address space handling */ ACPI_OPERAND_OBJECT * AcpiEvFindRegionHandler ( ACPI_ADR_SPACE_TYPE SpaceId, ACPI_OPERAND_OBJECT *HandlerObj); BOOLEAN AcpiEvHasDefaultHandler ( ACPI_NAMESPACE_NODE *Node, ACPI_ADR_SPACE_TYPE SpaceId); ACPI_STATUS AcpiEvInstallRegionHandlers ( void); ACPI_STATUS AcpiEvInstallSpaceHandler ( ACPI_NAMESPACE_NODE *Node, ACPI_ADR_SPACE_TYPE SpaceId, ACPI_ADR_SPACE_HANDLER Handler, ACPI_ADR_SPACE_SETUP Setup, void *Context); /* * evregion - Operation region support */ ACPI_STATUS AcpiEvInitializeOpRegions ( void); ACPI_STATUS AcpiEvAddressSpaceDispatch ( ACPI_OPERAND_OBJECT *RegionObj, ACPI_OPERAND_OBJECT *FieldObj, UINT32 Function, UINT32 RegionOffset, UINT32 BitWidth, UINT64 *Value); ACPI_STATUS AcpiEvAttachRegion ( ACPI_OPERAND_OBJECT *HandlerObj, ACPI_OPERAND_OBJECT *RegionObj, BOOLEAN AcpiNsIsLocked); void AcpiEvDetachRegion ( ACPI_OPERAND_OBJECT *RegionObj, BOOLEAN AcpiNsIsLocked); void AcpiEvExecuteRegMethods ( ACPI_NAMESPACE_NODE *Node, ACPI_ADR_SPACE_TYPE SpaceId, UINT32 Function); ACPI_STATUS AcpiEvExecuteRegMethod ( ACPI_OPERAND_OBJECT *RegionObj, UINT32 Function); /* * evregini - Region initialization and setup */ ACPI_STATUS AcpiEvSystemMemoryRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext); ACPI_STATUS AcpiEvIoSpaceRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext); ACPI_STATUS AcpiEvPciConfigRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext); ACPI_STATUS AcpiEvCmosRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext); ACPI_STATUS AcpiEvPciBarRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext); ACPI_STATUS AcpiEvDefaultRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext); ACPI_STATUS AcpiEvInitializeRegion ( - ACPI_OPERAND_OBJECT *RegionObj, - BOOLEAN AcpiNsLocked); + ACPI_OPERAND_OBJECT *RegionObj); /* * evsci - SCI (System Control Interrupt) handling/dispatch */ UINT32 ACPI_SYSTEM_XFACE AcpiEvGpeXruptHandler ( void *Context); UINT32 AcpiEvSciDispatch ( void); UINT32 AcpiEvInstallSciHandler ( void); ACPI_STATUS AcpiEvRemoveAllSciHandlers ( void); ACPI_HW_DEPENDENT_RETURN_VOID ( void AcpiEvTerminate ( void)) #endif /* __ACEVENTS_H__ */ Index: head/sys/contrib/dev/acpica/include/acnamesp.h =================================================================== --- head/sys/contrib/dev/acpica/include/acnamesp.h (revision 308952) +++ head/sys/contrib/dev/acpica/include/acnamesp.h (revision 308953) @@ -1,567 +1,572 @@ /****************************************************************************** * * Name: acnamesp.h - Namespace subcomponent prototypes and defines * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef __ACNAMESP_H__ #define __ACNAMESP_H__ /* To search the entire name space, pass this as SearchBase */ #define ACPI_NS_ALL ((ACPI_HANDLE)0) /* * Elements of AcpiNsProperties are bit significant * and should be one-to-one with values of ACPI_OBJECT_TYPE */ #define ACPI_NS_NORMAL 0 #define ACPI_NS_NEWSCOPE 1 /* a definition of this type opens a name scope */ #define ACPI_NS_LOCAL 2 /* suppress search of enclosing scopes */ /* Flags for AcpiNsLookup, AcpiNsSearchAndEnter */ #define ACPI_NS_NO_UPSEARCH 0 #define ACPI_NS_SEARCH_PARENT 0x01 #define ACPI_NS_DONT_OPEN_SCOPE 0x02 #define ACPI_NS_NO_PEER_SEARCH 0x04 #define ACPI_NS_ERROR_IF_FOUND 0x08 #define ACPI_NS_PREFIX_IS_SCOPE 0x10 #define ACPI_NS_EXTERNAL 0x20 #define ACPI_NS_TEMPORARY 0x40 #define ACPI_NS_OVERRIDE_IF_FOUND 0x80 /* Flags for AcpiNsWalkNamespace */ #define ACPI_NS_WALK_NO_UNLOCK 0 #define ACPI_NS_WALK_UNLOCK 0x01 #define ACPI_NS_WALK_TEMP_NODES 0x02 /* Object is not a package element */ #define ACPI_NOT_PACKAGE_ELEMENT ACPI_UINT32_MAX #define ACPI_ALL_PACKAGE_ELEMENTS (ACPI_UINT32_MAX-1) /* Always emit warning message, not dependent on node flags */ #define ACPI_WARN_ALWAYS 0 /* * nsinit - Namespace initialization */ ACPI_STATUS AcpiNsInitializeObjects ( void); ACPI_STATUS AcpiNsInitializeDevices ( UINT32 Flags); /* * nsload - Namespace loading */ ACPI_STATUS AcpiNsLoadNamespace ( void); ACPI_STATUS AcpiNsLoadTable ( UINT32 TableIndex, ACPI_NAMESPACE_NODE *Node); /* * nswalk - walk the namespace */ ACPI_STATUS AcpiNsWalkNamespace ( ACPI_OBJECT_TYPE Type, ACPI_HANDLE StartObject, UINT32 MaxDepth, UINT32 Flags, ACPI_WALK_CALLBACK DescendingCallback, ACPI_WALK_CALLBACK AscendingCallback, void *Context, void **ReturnValue); ACPI_NAMESPACE_NODE * AcpiNsGetNextNode ( ACPI_NAMESPACE_NODE *Parent, ACPI_NAMESPACE_NODE *Child); ACPI_NAMESPACE_NODE * AcpiNsGetNextNodeTyped ( ACPI_OBJECT_TYPE Type, ACPI_NAMESPACE_NODE *Parent, ACPI_NAMESPACE_NODE *Child); /* * nsparse - table parsing */ ACPI_STATUS AcpiNsParseTable ( UINT32 TableIndex, ACPI_NAMESPACE_NODE *StartNode); ACPI_STATUS AcpiNsExecuteTable ( UINT32 TableIndex, ACPI_NAMESPACE_NODE *StartNode); ACPI_STATUS AcpiNsOneCompleteParse ( UINT32 PassNumber, UINT32 TableIndex, ACPI_NAMESPACE_NODE *StartNode); /* * nsaccess - Top-level namespace access */ ACPI_STATUS AcpiNsRootInitialize ( void); ACPI_STATUS AcpiNsLookup ( ACPI_GENERIC_STATE *ScopeInfo, char *Name, ACPI_OBJECT_TYPE Type, ACPI_INTERPRETER_MODE InterpreterMode, UINT32 Flags, ACPI_WALK_STATE *WalkState, ACPI_NAMESPACE_NODE **RetNode); /* * nsalloc - Named object allocation/deallocation */ ACPI_NAMESPACE_NODE * AcpiNsCreateNode ( UINT32 Name); void AcpiNsDeleteNode ( ACPI_NAMESPACE_NODE *Node); void AcpiNsRemoveNode ( ACPI_NAMESPACE_NODE *Node); void AcpiNsDeleteNamespaceSubtree ( ACPI_NAMESPACE_NODE *ParentHandle); void AcpiNsDeleteNamespaceByOwner ( ACPI_OWNER_ID OwnerId); void AcpiNsDetachObject ( ACPI_NAMESPACE_NODE *Node); void AcpiNsDeleteChildren ( ACPI_NAMESPACE_NODE *Parent); int AcpiNsCompareNames ( char *Name1, char *Name2); /* * nsconvert - Dynamic object conversion routines */ ACPI_STATUS AcpiNsConvertToInteger ( ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ReturnObject); ACPI_STATUS AcpiNsConvertToString ( ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ReturnObject); ACPI_STATUS AcpiNsConvertToBuffer ( ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ReturnObject); ACPI_STATUS AcpiNsConvertToUnicode ( ACPI_NAMESPACE_NODE *Scope, ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ReturnObject); ACPI_STATUS AcpiNsConvertToResource ( ACPI_NAMESPACE_NODE *Scope, ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ReturnObject); ACPI_STATUS AcpiNsConvertToReference ( ACPI_NAMESPACE_NODE *Scope, ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ReturnObject); /* * nsdump - Namespace dump/print utilities */ void AcpiNsDumpTables ( ACPI_HANDLE SearchBase, UINT32 MaxDepth); void AcpiNsDumpEntry ( ACPI_HANDLE Handle, UINT32 DebugLevel); void AcpiNsDumpPathname ( ACPI_HANDLE Handle, const char *Msg, UINT32 Level, UINT32 Component); void AcpiNsPrintPathname ( UINT32 NumSegments, const char *Pathname); ACPI_STATUS AcpiNsDumpOneObject ( ACPI_HANDLE ObjHandle, UINT32 Level, void *Context, void **ReturnValue); void AcpiNsDumpObjects ( ACPI_OBJECT_TYPE Type, UINT8 DisplayType, UINT32 MaxDepth, ACPI_OWNER_ID OwnerId, ACPI_HANDLE StartHandle); void AcpiNsDumpObjectPaths ( ACPI_OBJECT_TYPE Type, UINT8 DisplayType, UINT32 MaxDepth, ACPI_OWNER_ID OwnerId, ACPI_HANDLE StartHandle); /* * nseval - Namespace evaluation functions */ ACPI_STATUS AcpiNsEvaluate ( ACPI_EVALUATE_INFO *Info); void AcpiNsExecModuleCodeList ( void); /* * nsarguments - Argument count/type checking for predefined/reserved names */ void AcpiNsCheckArgumentCount ( char *Pathname, ACPI_NAMESPACE_NODE *Node, UINT32 UserParamCount, const ACPI_PREDEFINED_INFO *Info); void AcpiNsCheckAcpiCompliance ( char *Pathname, ACPI_NAMESPACE_NODE *Node, const ACPI_PREDEFINED_INFO *Predefined); void AcpiNsCheckArgumentTypes ( ACPI_EVALUATE_INFO *Info); /* * nspredef - Return value checking for predefined/reserved names */ ACPI_STATUS AcpiNsCheckReturnValue ( ACPI_NAMESPACE_NODE *Node, ACPI_EVALUATE_INFO *Info, UINT32 UserParamCount, ACPI_STATUS ReturnStatus, ACPI_OPERAND_OBJECT **ReturnObject); ACPI_STATUS AcpiNsCheckObjectType ( ACPI_EVALUATE_INFO *Info, ACPI_OPERAND_OBJECT **ReturnObjectPtr, UINT32 ExpectedBtypes, UINT32 PackageIndex); /* * nsprepkg - Validation of predefined name packages */ ACPI_STATUS AcpiNsCheckPackage ( ACPI_EVALUATE_INFO *Info, ACPI_OPERAND_OBJECT **ReturnObjectPtr); /* * nsnames - Name and Scope manipulation */ UINT32 AcpiNsOpensScope ( ACPI_OBJECT_TYPE Type); char * AcpiNsGetExternalPathname ( ACPI_NAMESPACE_NODE *Node); UINT32 AcpiNsBuildNormalizedPath ( ACPI_NAMESPACE_NODE *Node, char *FullPath, UINT32 PathSize, BOOLEAN NoTrailing); char * AcpiNsGetNormalizedPathname ( ACPI_NAMESPACE_NODE *Node, BOOLEAN NoTrailing); char * AcpiNsNameOfCurrentScope ( ACPI_WALK_STATE *WalkState); ACPI_STATUS +AcpiNsHandleToName ( + ACPI_HANDLE TargetHandle, + ACPI_BUFFER *Buffer); + +ACPI_STATUS AcpiNsHandleToPathname ( ACPI_HANDLE TargetHandle, ACPI_BUFFER *Buffer, BOOLEAN NoTrailing); BOOLEAN AcpiNsPatternMatch ( ACPI_NAMESPACE_NODE *ObjNode, char *SearchFor); ACPI_STATUS AcpiNsGetNodeUnlocked ( ACPI_NAMESPACE_NODE *PrefixNode, const char *ExternalPathname, UINT32 Flags, ACPI_NAMESPACE_NODE **OutNode); ACPI_STATUS AcpiNsGetNode ( ACPI_NAMESPACE_NODE *PrefixNode, const char *ExternalPathname, UINT32 Flags, ACPI_NAMESPACE_NODE **OutNode); ACPI_SIZE AcpiNsGetPathnameLength ( ACPI_NAMESPACE_NODE *Node); /* * nsobject - Object management for namespace nodes */ ACPI_STATUS AcpiNsAttachObject ( ACPI_NAMESPACE_NODE *Node, ACPI_OPERAND_OBJECT *Object, ACPI_OBJECT_TYPE Type); ACPI_OPERAND_OBJECT * AcpiNsGetAttachedObject ( ACPI_NAMESPACE_NODE *Node); ACPI_OPERAND_OBJECT * AcpiNsGetSecondaryObject ( ACPI_OPERAND_OBJECT *ObjDesc); ACPI_STATUS AcpiNsAttachData ( ACPI_NAMESPACE_NODE *Node, ACPI_OBJECT_HANDLER Handler, void *Data); ACPI_STATUS AcpiNsDetachData ( ACPI_NAMESPACE_NODE *Node, ACPI_OBJECT_HANDLER Handler); ACPI_STATUS AcpiNsGetAttachedData ( ACPI_NAMESPACE_NODE *Node, ACPI_OBJECT_HANDLER Handler, void **Data); /* * nsrepair - General return object repair for all * predefined methods/objects */ ACPI_STATUS AcpiNsSimpleRepair ( ACPI_EVALUATE_INFO *Info, UINT32 ExpectedBtypes, UINT32 PackageIndex, ACPI_OPERAND_OBJECT **ReturnObjectPtr); ACPI_STATUS AcpiNsWrapWithPackage ( ACPI_EVALUATE_INFO *Info, ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ObjDescPtr); ACPI_STATUS AcpiNsRepairNullElement ( ACPI_EVALUATE_INFO *Info, UINT32 ExpectedBtypes, UINT32 PackageIndex, ACPI_OPERAND_OBJECT **ReturnObjectPtr); void AcpiNsRemoveNullElements ( ACPI_EVALUATE_INFO *Info, UINT8 PackageType, ACPI_OPERAND_OBJECT *ObjDesc); /* * nsrepair2 - Return object repair for specific * predefined methods/objects */ ACPI_STATUS AcpiNsComplexRepairs ( ACPI_EVALUATE_INFO *Info, ACPI_NAMESPACE_NODE *Node, ACPI_STATUS ValidateStatus, ACPI_OPERAND_OBJECT **ReturnObjectPtr); /* * nssearch - Namespace searching and entry */ ACPI_STATUS AcpiNsSearchAndEnter ( UINT32 EntryName, ACPI_WALK_STATE *WalkState, ACPI_NAMESPACE_NODE *Node, ACPI_INTERPRETER_MODE InterpreterMode, ACPI_OBJECT_TYPE Type, UINT32 Flags, ACPI_NAMESPACE_NODE **RetNode); ACPI_STATUS AcpiNsSearchOneScope ( UINT32 EntryName, ACPI_NAMESPACE_NODE *Node, ACPI_OBJECT_TYPE Type, ACPI_NAMESPACE_NODE **RetNode); void AcpiNsInstallNode ( ACPI_WALK_STATE *WalkState, ACPI_NAMESPACE_NODE *ParentNode, ACPI_NAMESPACE_NODE *Node, ACPI_OBJECT_TYPE Type); /* * nsutils - Utility functions */ ACPI_OBJECT_TYPE AcpiNsGetType ( ACPI_NAMESPACE_NODE *Node); UINT32 AcpiNsLocal ( ACPI_OBJECT_TYPE Type); void AcpiNsPrintNodePathname ( ACPI_NAMESPACE_NODE *Node, const char *Msg); ACPI_STATUS AcpiNsBuildInternalName ( ACPI_NAMESTRING_INFO *Info); void AcpiNsGetInternalNameLength ( ACPI_NAMESTRING_INFO *Info); ACPI_STATUS AcpiNsInternalizeName ( const char *DottedName, char **ConvertedName); ACPI_STATUS AcpiNsExternalizeName ( UINT32 InternalNameLength, const char *InternalName, UINT32 *ConvertedNameLength, char **ConvertedName); ACPI_NAMESPACE_NODE * AcpiNsValidateHandle ( ACPI_HANDLE Handle); void AcpiNsTerminate ( void); #endif /* __ACNAMESP_H__ */ Index: head/sys/contrib/dev/acpica/include/acopcode.h =================================================================== --- head/sys/contrib/dev/acpica/include/acopcode.h (revision 308952) +++ head/sys/contrib/dev/acpica/include/acopcode.h (revision 308953) @@ -1,331 +1,331 @@ /****************************************************************************** * * Name: acopcode.h - AML opcode information for the AML parser and interpreter * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef __ACOPCODE_H__ #define __ACOPCODE_H__ #define MAX_EXTENDED_OPCODE 0x88 #define NUM_EXTENDED_OPCODE (MAX_EXTENDED_OPCODE + 1) #define MAX_INTERNAL_OPCODE #define NUM_INTERNAL_OPCODE (MAX_INTERNAL_OPCODE + 1) /* Used for non-assigned opcodes */ #define _UNK 0x6B /* * Reserved ASCII characters. Do not use any of these for * internal opcodes, since they are used to differentiate * name strings from AML opcodes */ #define _ASC 0x6C #define _NAM 0x6C #define _PFX 0x6D /* * All AML opcodes and the parse-time arguments for each. Used by the AML * parser Each list is compressed into a 32-bit number and stored in the * master opcode table (in psopcode.c). */ #define ARGP_ACCESSFIELD_OP ARGP_LIST1 (ARGP_NAMESTRING) #define ARGP_ACQUIRE_OP ARGP_LIST2 (ARGP_SUPERNAME, ARGP_WORDDATA) #define ARGP_ADD_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_TARGET) #define ARGP_ALIAS_OP ARGP_LIST2 (ARGP_NAMESTRING, ARGP_NAME) #define ARGP_ARG0 ARG_NONE #define ARGP_ARG1 ARG_NONE #define ARGP_ARG2 ARG_NONE #define ARGP_ARG3 ARG_NONE #define ARGP_ARG4 ARG_NONE #define ARGP_ARG5 ARG_NONE #define ARGP_ARG6 ARG_NONE #define ARGP_BANK_FIELD_OP ARGP_LIST6 (ARGP_PKGLENGTH, ARGP_NAMESTRING, ARGP_NAMESTRING,ARGP_TERMARG, ARGP_BYTEDATA, ARGP_FIELDLIST) #define ARGP_BIT_AND_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_TARGET) #define ARGP_BIT_NAND_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_TARGET) #define ARGP_BIT_NOR_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_TARGET) #define ARGP_BIT_NOT_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TARGET) #define ARGP_BIT_OR_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_TARGET) #define ARGP_BIT_XOR_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_TARGET) #define ARGP_BREAK_OP ARG_NONE #define ARGP_BREAK_POINT_OP ARG_NONE #define ARGP_BUFFER_OP ARGP_LIST3 (ARGP_PKGLENGTH, ARGP_TERMARG, ARGP_BYTELIST) #define ARGP_BYTE_OP ARGP_LIST1 (ARGP_BYTEDATA) #define ARGP_BYTELIST_OP ARGP_LIST1 (ARGP_NAMESTRING) #define ARGP_CONCAT_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_TARGET) #define ARGP_CONCAT_RES_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_TARGET) -#define ARGP_COND_REF_OF_OP ARGP_LIST2 (ARGP_NAME_OR_REF,ARGP_TARGET) +#define ARGP_COND_REF_OF_OP ARGP_LIST2 (ARGP_SIMPLENAME, ARGP_TARGET) #define ARGP_CONNECTFIELD_OP ARGP_LIST1 (ARGP_NAMESTRING) #define ARGP_CONTINUE_OP ARG_NONE #define ARGP_COPY_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_SIMPLENAME) #define ARGP_CREATE_BIT_FIELD_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_NAME) #define ARGP_CREATE_BYTE_FIELD_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_NAME) #define ARGP_CREATE_DWORD_FIELD_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_NAME) #define ARGP_CREATE_FIELD_OP ARGP_LIST4 (ARGP_TERMARG, ARGP_TERMARG, ARGP_TERMARG, ARGP_NAME) #define ARGP_CREATE_QWORD_FIELD_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_NAME) #define ARGP_CREATE_WORD_FIELD_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_NAME) #define ARGP_DATA_REGION_OP ARGP_LIST4 (ARGP_NAME, ARGP_TERMARG, ARGP_TERMARG, ARGP_TERMARG) #define ARGP_DEBUG_OP ARG_NONE #define ARGP_DECREMENT_OP ARGP_LIST1 (ARGP_SUPERNAME) -#define ARGP_DEREF_OF_OP ARGP_LIST1 (ARGP_TERMARG) +#define ARGP_DEREF_OF_OP ARGP_LIST1 (ARGP_SUPERNAME) #define ARGP_DEVICE_OP ARGP_LIST3 (ARGP_PKGLENGTH, ARGP_NAME, ARGP_OBJLIST) #define ARGP_DIVIDE_OP ARGP_LIST4 (ARGP_TERMARG, ARGP_TERMARG, ARGP_TARGET, ARGP_TARGET) #define ARGP_DWORD_OP ARGP_LIST1 (ARGP_DWORDDATA) #define ARGP_ELSE_OP ARGP_LIST2 (ARGP_PKGLENGTH, ARGP_TERMLIST) #define ARGP_EVENT_OP ARGP_LIST1 (ARGP_NAME) #define ARGP_EXTERNAL_OP ARGP_LIST3 (ARGP_NAMESTRING, ARGP_BYTEDATA, ARGP_BYTEDATA) #define ARGP_FATAL_OP ARGP_LIST3 (ARGP_BYTEDATA, ARGP_DWORDDATA, ARGP_TERMARG) #define ARGP_FIELD_OP ARGP_LIST4 (ARGP_PKGLENGTH, ARGP_NAMESTRING, ARGP_BYTEDATA, ARGP_FIELDLIST) #define ARGP_FIND_SET_LEFT_BIT_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TARGET) #define ARGP_FIND_SET_RIGHT_BIT_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TARGET) #define ARGP_FROM_BCD_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TARGET) #define ARGP_IF_OP ARGP_LIST3 (ARGP_PKGLENGTH, ARGP_TERMARG, ARGP_TERMLIST) #define ARGP_INCREMENT_OP ARGP_LIST1 (ARGP_SUPERNAME) #define ARGP_INDEX_FIELD_OP ARGP_LIST5 (ARGP_PKGLENGTH, ARGP_NAMESTRING, ARGP_NAMESTRING,ARGP_BYTEDATA, ARGP_FIELDLIST) #define ARGP_INDEX_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_TARGET) #define ARGP_LAND_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TERMARG) #define ARGP_LEQUAL_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TERMARG) #define ARGP_LGREATER_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TERMARG) #define ARGP_LGREATEREQUAL_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TERMARG) #define ARGP_LLESS_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TERMARG) #define ARGP_LLESSEQUAL_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TERMARG) #define ARGP_LNOT_OP ARGP_LIST1 (ARGP_TERMARG) #define ARGP_LNOTEQUAL_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TERMARG) #define ARGP_LOAD_OP ARGP_LIST2 (ARGP_NAMESTRING, ARGP_SUPERNAME) #define ARGP_LOAD_TABLE_OP ARGP_LIST6 (ARGP_TERMARG, ARGP_TERMARG, ARGP_TERMARG, ARGP_TERMARG, ARGP_TERMARG, ARGP_TERMARG) #define ARGP_LOCAL0 ARG_NONE #define ARGP_LOCAL1 ARG_NONE #define ARGP_LOCAL2 ARG_NONE #define ARGP_LOCAL3 ARG_NONE #define ARGP_LOCAL4 ARG_NONE #define ARGP_LOCAL5 ARG_NONE #define ARGP_LOCAL6 ARG_NONE #define ARGP_LOCAL7 ARG_NONE #define ARGP_LOR_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TERMARG) #define ARGP_MATCH_OP ARGP_LIST6 (ARGP_TERMARG, ARGP_BYTEDATA, ARGP_TERMARG, ARGP_BYTEDATA, ARGP_TERMARG, ARGP_TERMARG) #define ARGP_METHOD_OP ARGP_LIST4 (ARGP_PKGLENGTH, ARGP_NAME, ARGP_BYTEDATA, ARGP_TERMLIST) #define ARGP_METHODCALL_OP ARGP_LIST1 (ARGP_NAMESTRING) #define ARGP_MID_OP ARGP_LIST4 (ARGP_TERMARG, ARGP_TERMARG, ARGP_TERMARG, ARGP_TARGET) #define ARGP_MOD_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_TARGET) #define ARGP_MULTIPLY_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_TARGET) #define ARGP_MUTEX_OP ARGP_LIST2 (ARGP_NAME, ARGP_BYTEDATA) #define ARGP_NAME_OP ARGP_LIST2 (ARGP_NAME, ARGP_DATAOBJ) #define ARGP_NAMEDFIELD_OP ARGP_LIST1 (ARGP_NAMESTRING) #define ARGP_NAMEPATH_OP ARGP_LIST1 (ARGP_NAMESTRING) #define ARGP_NOOP_OP ARG_NONE #define ARGP_NOTIFY_OP ARGP_LIST2 (ARGP_SUPERNAME, ARGP_TERMARG) -#define ARGP_OBJECT_TYPE_OP ARGP_LIST1 (ARGP_NAME_OR_REF) +#define ARGP_OBJECT_TYPE_OP ARGP_LIST1 (ARGP_SIMPLENAME) #define ARGP_ONE_OP ARG_NONE #define ARGP_ONES_OP ARG_NONE #define ARGP_PACKAGE_OP ARGP_LIST3 (ARGP_PKGLENGTH, ARGP_BYTEDATA, ARGP_DATAOBJLIST) #define ARGP_POWER_RES_OP ARGP_LIST5 (ARGP_PKGLENGTH, ARGP_NAME, ARGP_BYTEDATA, ARGP_WORDDATA, ARGP_OBJLIST) #define ARGP_PROCESSOR_OP ARGP_LIST6 (ARGP_PKGLENGTH, ARGP_NAME, ARGP_BYTEDATA, ARGP_DWORDDATA, ARGP_BYTEDATA, ARGP_OBJLIST) #define ARGP_QWORD_OP ARGP_LIST1 (ARGP_QWORDDATA) -#define ARGP_REF_OF_OP ARGP_LIST1 (ARGP_NAME_OR_REF) +#define ARGP_REF_OF_OP ARGP_LIST1 (ARGP_SIMPLENAME) #define ARGP_REGION_OP ARGP_LIST4 (ARGP_NAME, ARGP_BYTEDATA, ARGP_TERMARG, ARGP_TERMARG) #define ARGP_RELEASE_OP ARGP_LIST1 (ARGP_SUPERNAME) #define ARGP_RESERVEDFIELD_OP ARGP_LIST1 (ARGP_NAMESTRING) #define ARGP_RESET_OP ARGP_LIST1 (ARGP_SUPERNAME) #define ARGP_RETURN_OP ARGP_LIST1 (ARGP_TERMARG) #define ARGP_REVISION_OP ARG_NONE #define ARGP_SCOPE_OP ARGP_LIST3 (ARGP_PKGLENGTH, ARGP_NAME, ARGP_TERMLIST) #define ARGP_SERIALFIELD_OP ARGP_LIST1 (ARGP_NAMESTRING) #define ARGP_SHIFT_LEFT_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_TARGET) #define ARGP_SHIFT_RIGHT_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_TARGET) #define ARGP_SIGNAL_OP ARGP_LIST1 (ARGP_SUPERNAME) #define ARGP_SIZE_OF_OP ARGP_LIST1 (ARGP_SUPERNAME) #define ARGP_SLEEP_OP ARGP_LIST1 (ARGP_TERMARG) #define ARGP_STALL_OP ARGP_LIST1 (ARGP_TERMARG) #define ARGP_STATICSTRING_OP ARGP_LIST1 (ARGP_NAMESTRING) #define ARGP_STORE_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_SUPERNAME) #define ARGP_STRING_OP ARGP_LIST1 (ARGP_CHARLIST) #define ARGP_SUBTRACT_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_TARGET) #define ARGP_THERMAL_ZONE_OP ARGP_LIST3 (ARGP_PKGLENGTH, ARGP_NAME, ARGP_OBJLIST) #define ARGP_TIMER_OP ARG_NONE #define ARGP_TO_BCD_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TARGET) #define ARGP_TO_BUFFER_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TARGET) #define ARGP_TO_DEC_STR_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TARGET) #define ARGP_TO_HEX_STR_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TARGET) #define ARGP_TO_INTEGER_OP ARGP_LIST2 (ARGP_TERMARG, ARGP_TARGET) #define ARGP_TO_STRING_OP ARGP_LIST3 (ARGP_TERMARG, ARGP_TERMARG, ARGP_TARGET) #define ARGP_UNLOAD_OP ARGP_LIST1 (ARGP_SUPERNAME) #define ARGP_VAR_PACKAGE_OP ARGP_LIST3 (ARGP_PKGLENGTH, ARGP_TERMARG, ARGP_DATAOBJLIST) #define ARGP_WAIT_OP ARGP_LIST2 (ARGP_SUPERNAME, ARGP_TERMARG) #define ARGP_WHILE_OP ARGP_LIST3 (ARGP_PKGLENGTH, ARGP_TERMARG, ARGP_TERMLIST) #define ARGP_WORD_OP ARGP_LIST1 (ARGP_WORDDATA) #define ARGP_ZERO_OP ARG_NONE /* * All AML opcodes and the runtime arguments for each. Used by the AML * interpreter Each list is compressed into a 32-bit number and stored * in the master opcode table (in psopcode.c). * * (Used by PrepOperands procedure and the ASL Compiler) */ #define ARGI_ACCESSFIELD_OP ARGI_INVALID_OPCODE #define ARGI_ACQUIRE_OP ARGI_LIST2 (ARGI_MUTEX, ARGI_INTEGER) #define ARGI_ADD_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGER, ARGI_TARGETREF) #define ARGI_ALIAS_OP ARGI_INVALID_OPCODE #define ARGI_ARG0 ARG_NONE #define ARGI_ARG1 ARG_NONE #define ARGI_ARG2 ARG_NONE #define ARGI_ARG3 ARG_NONE #define ARGI_ARG4 ARG_NONE #define ARGI_ARG5 ARG_NONE #define ARGI_ARG6 ARG_NONE #define ARGI_BANK_FIELD_OP ARGI_LIST1 (ARGI_INTEGER) #define ARGI_BIT_AND_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGER, ARGI_TARGETREF) #define ARGI_BIT_NAND_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGER, ARGI_TARGETREF) #define ARGI_BIT_NOR_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGER, ARGI_TARGETREF) #define ARGI_BIT_NOT_OP ARGI_LIST2 (ARGI_INTEGER, ARGI_TARGETREF) #define ARGI_BIT_OR_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGER, ARGI_TARGETREF) #define ARGI_BIT_XOR_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGER, ARGI_TARGETREF) #define ARGI_BREAK_OP ARG_NONE #define ARGI_BREAK_POINT_OP ARG_NONE #define ARGI_BUFFER_OP ARGI_LIST1 (ARGI_INTEGER) #define ARGI_BYTE_OP ARGI_INVALID_OPCODE #define ARGI_BYTELIST_OP ARGI_INVALID_OPCODE #define ARGI_CONCAT_OP ARGI_LIST3 (ARGI_ANYTYPE, ARGI_ANYTYPE, ARGI_TARGETREF) #define ARGI_CONCAT_RES_OP ARGI_LIST3 (ARGI_BUFFER, ARGI_BUFFER, ARGI_TARGETREF) #define ARGI_COND_REF_OF_OP ARGI_LIST2 (ARGI_OBJECT_REF, ARGI_TARGETREF) #define ARGI_CONNECTFIELD_OP ARGI_INVALID_OPCODE #define ARGI_CONTINUE_OP ARGI_INVALID_OPCODE #define ARGI_COPY_OP ARGI_LIST2 (ARGI_ANYTYPE, ARGI_SIMPLE_TARGET) #define ARGI_CREATE_BIT_FIELD_OP ARGI_LIST3 (ARGI_BUFFER, ARGI_INTEGER, ARGI_REFERENCE) #define ARGI_CREATE_BYTE_FIELD_OP ARGI_LIST3 (ARGI_BUFFER, ARGI_INTEGER, ARGI_REFERENCE) #define ARGI_CREATE_DWORD_FIELD_OP ARGI_LIST3 (ARGI_BUFFER, ARGI_INTEGER, ARGI_REFERENCE) #define ARGI_CREATE_FIELD_OP ARGI_LIST4 (ARGI_BUFFER, ARGI_INTEGER, ARGI_INTEGER, ARGI_REFERENCE) #define ARGI_CREATE_QWORD_FIELD_OP ARGI_LIST3 (ARGI_BUFFER, ARGI_INTEGER, ARGI_REFERENCE) #define ARGI_CREATE_WORD_FIELD_OP ARGI_LIST3 (ARGI_BUFFER, ARGI_INTEGER, ARGI_REFERENCE) #define ARGI_DATA_REGION_OP ARGI_LIST3 (ARGI_STRING, ARGI_STRING, ARGI_STRING) #define ARGI_DEBUG_OP ARG_NONE #define ARGI_DECREMENT_OP ARGI_LIST1 (ARGI_TARGETREF) #define ARGI_DEREF_OF_OP ARGI_LIST1 (ARGI_REF_OR_STRING) #define ARGI_DEVICE_OP ARGI_INVALID_OPCODE #define ARGI_DIVIDE_OP ARGI_LIST4 (ARGI_INTEGER, ARGI_INTEGER, ARGI_TARGETREF, ARGI_TARGETREF) #define ARGI_DWORD_OP ARGI_INVALID_OPCODE #define ARGI_ELSE_OP ARGI_INVALID_OPCODE #define ARGI_EVENT_OP ARGI_INVALID_OPCODE #define ARGI_EXTERNAL_OP ARGI_LIST3 (ARGI_STRING, ARGI_INTEGER, ARGI_INTEGER) #define ARGI_FATAL_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGER, ARGI_INTEGER) #define ARGI_FIELD_OP ARGI_INVALID_OPCODE #define ARGI_FIND_SET_LEFT_BIT_OP ARGI_LIST2 (ARGI_INTEGER, ARGI_TARGETREF) #define ARGI_FIND_SET_RIGHT_BIT_OP ARGI_LIST2 (ARGI_INTEGER, ARGI_TARGETREF) -#define ARGI_FROM_BCD_OP ARGI_LIST2 (ARGI_INTEGER, ARGI_FIXED_TARGET) +#define ARGI_FROM_BCD_OP ARGI_LIST2 (ARGI_INTEGER, ARGI_TARGETREF) #define ARGI_IF_OP ARGI_INVALID_OPCODE #define ARGI_INCREMENT_OP ARGI_LIST1 (ARGI_TARGETREF) #define ARGI_INDEX_FIELD_OP ARGI_INVALID_OPCODE #define ARGI_INDEX_OP ARGI_LIST3 (ARGI_COMPLEXOBJ, ARGI_INTEGER, ARGI_TARGETREF) #define ARGI_LAND_OP ARGI_LIST2 (ARGI_INTEGER, ARGI_INTEGER) #define ARGI_LEQUAL_OP ARGI_LIST2 (ARGI_COMPUTEDATA,ARGI_COMPUTEDATA) #define ARGI_LGREATER_OP ARGI_LIST2 (ARGI_COMPUTEDATA,ARGI_COMPUTEDATA) #define ARGI_LGREATEREQUAL_OP ARGI_INVALID_OPCODE #define ARGI_LLESS_OP ARGI_LIST2 (ARGI_COMPUTEDATA,ARGI_COMPUTEDATA) #define ARGI_LLESSEQUAL_OP ARGI_INVALID_OPCODE #define ARGI_LNOT_OP ARGI_LIST1 (ARGI_INTEGER) #define ARGI_LNOTEQUAL_OP ARGI_INVALID_OPCODE #define ARGI_LOAD_OP ARGI_LIST2 (ARGI_REGION_OR_BUFFER,ARGI_TARGETREF) #define ARGI_LOAD_TABLE_OP ARGI_LIST6 (ARGI_STRING, ARGI_STRING, ARGI_STRING, ARGI_STRING, ARGI_STRING, ARGI_ANYTYPE) #define ARGI_LOCAL0 ARG_NONE #define ARGI_LOCAL1 ARG_NONE #define ARGI_LOCAL2 ARG_NONE #define ARGI_LOCAL3 ARG_NONE #define ARGI_LOCAL4 ARG_NONE #define ARGI_LOCAL5 ARG_NONE #define ARGI_LOCAL6 ARG_NONE #define ARGI_LOCAL7 ARG_NONE #define ARGI_LOR_OP ARGI_LIST2 (ARGI_INTEGER, ARGI_INTEGER) #define ARGI_MATCH_OP ARGI_LIST6 (ARGI_PACKAGE, ARGI_INTEGER, ARGI_COMPUTEDATA, ARGI_INTEGER,ARGI_COMPUTEDATA,ARGI_INTEGER) #define ARGI_METHOD_OP ARGI_INVALID_OPCODE #define ARGI_METHODCALL_OP ARGI_INVALID_OPCODE #define ARGI_MID_OP ARGI_LIST4 (ARGI_BUFFER_OR_STRING,ARGI_INTEGER, ARGI_INTEGER, ARGI_TARGETREF) #define ARGI_MOD_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGER, ARGI_TARGETREF) #define ARGI_MULTIPLY_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGER, ARGI_TARGETREF) #define ARGI_MUTEX_OP ARGI_INVALID_OPCODE #define ARGI_NAME_OP ARGI_INVALID_OPCODE #define ARGI_NAMEDFIELD_OP ARGI_INVALID_OPCODE #define ARGI_NAMEPATH_OP ARGI_INVALID_OPCODE #define ARGI_NOOP_OP ARG_NONE #define ARGI_NOTIFY_OP ARGI_LIST2 (ARGI_DEVICE_REF, ARGI_INTEGER) #define ARGI_OBJECT_TYPE_OP ARGI_LIST1 (ARGI_ANYTYPE) #define ARGI_ONE_OP ARG_NONE #define ARGI_ONES_OP ARG_NONE #define ARGI_PACKAGE_OP ARGI_LIST1 (ARGI_INTEGER) #define ARGI_POWER_RES_OP ARGI_INVALID_OPCODE #define ARGI_PROCESSOR_OP ARGI_INVALID_OPCODE #define ARGI_QWORD_OP ARGI_INVALID_OPCODE #define ARGI_REF_OF_OP ARGI_LIST1 (ARGI_OBJECT_REF) #define ARGI_REGION_OP ARGI_LIST2 (ARGI_INTEGER, ARGI_INTEGER) #define ARGI_RELEASE_OP ARGI_LIST1 (ARGI_MUTEX) #define ARGI_RESERVEDFIELD_OP ARGI_INVALID_OPCODE #define ARGI_RESET_OP ARGI_LIST1 (ARGI_EVENT) #define ARGI_RETURN_OP ARGI_INVALID_OPCODE #define ARGI_REVISION_OP ARG_NONE #define ARGI_SCOPE_OP ARGI_INVALID_OPCODE #define ARGI_SERIALFIELD_OP ARGI_INVALID_OPCODE #define ARGI_SHIFT_LEFT_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGER, ARGI_TARGETREF) #define ARGI_SHIFT_RIGHT_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGER, ARGI_TARGETREF) #define ARGI_SIGNAL_OP ARGI_LIST1 (ARGI_EVENT) #define ARGI_SIZE_OF_OP ARGI_LIST1 (ARGI_DATAOBJECT) #define ARGI_SLEEP_OP ARGI_LIST1 (ARGI_INTEGER) #define ARGI_STALL_OP ARGI_LIST1 (ARGI_INTEGER) #define ARGI_STATICSTRING_OP ARGI_INVALID_OPCODE #define ARGI_STORE_OP ARGI_LIST2 (ARGI_DATAREFOBJ, ARGI_STORE_TARGET) #define ARGI_STRING_OP ARGI_INVALID_OPCODE #define ARGI_SUBTRACT_OP ARGI_LIST3 (ARGI_INTEGER, ARGI_INTEGER, ARGI_TARGETREF) #define ARGI_THERMAL_ZONE_OP ARGI_INVALID_OPCODE #define ARGI_TIMER_OP ARG_NONE -#define ARGI_TO_BCD_OP ARGI_LIST2 (ARGI_INTEGER, ARGI_FIXED_TARGET) -#define ARGI_TO_BUFFER_OP ARGI_LIST2 (ARGI_COMPUTEDATA,ARGI_FIXED_TARGET) -#define ARGI_TO_DEC_STR_OP ARGI_LIST2 (ARGI_COMPUTEDATA,ARGI_FIXED_TARGET) -#define ARGI_TO_HEX_STR_OP ARGI_LIST2 (ARGI_COMPUTEDATA,ARGI_FIXED_TARGET) -#define ARGI_TO_INTEGER_OP ARGI_LIST2 (ARGI_COMPUTEDATA,ARGI_FIXED_TARGET) -#define ARGI_TO_STRING_OP ARGI_LIST3 (ARGI_BUFFER, ARGI_INTEGER, ARGI_FIXED_TARGET) +#define ARGI_TO_BCD_OP ARGI_LIST2 (ARGI_INTEGER, ARGI_TARGETREF) +#define ARGI_TO_BUFFER_OP ARGI_LIST2 (ARGI_COMPUTEDATA,ARGI_TARGETREF) +#define ARGI_TO_DEC_STR_OP ARGI_LIST2 (ARGI_COMPUTEDATA,ARGI_TARGETREF) +#define ARGI_TO_HEX_STR_OP ARGI_LIST2 (ARGI_COMPUTEDATA,ARGI_TARGETREF) +#define ARGI_TO_INTEGER_OP ARGI_LIST2 (ARGI_COMPUTEDATA,ARGI_TARGETREF) +#define ARGI_TO_STRING_OP ARGI_LIST3 (ARGI_BUFFER, ARGI_INTEGER, ARGI_TARGETREF) #define ARGI_UNLOAD_OP ARGI_LIST1 (ARGI_DDBHANDLE) #define ARGI_VAR_PACKAGE_OP ARGI_LIST1 (ARGI_INTEGER) #define ARGI_WAIT_OP ARGI_LIST2 (ARGI_EVENT, ARGI_INTEGER) #define ARGI_WHILE_OP ARGI_INVALID_OPCODE #define ARGI_WORD_OP ARGI_INVALID_OPCODE #define ARGI_ZERO_OP ARG_NONE #endif /* __ACOPCODE_H__ */ Index: head/sys/contrib/dev/acpica/include/acpixf.h =================================================================== --- head/sys/contrib/dev/acpica/include/acpixf.h (revision 308952) +++ head/sys/contrib/dev/acpica/include/acpixf.h (revision 308953) @@ -1,1268 +1,1273 @@ /****************************************************************************** * * Name: acpixf.h - External interfaces to the ACPI subsystem * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef __ACXFACE_H__ #define __ACXFACE_H__ /* Current ACPICA subsystem version in YYYYMMDD format */ -#define ACPI_CA_VERSION 0x20160930 +#define ACPI_CA_VERSION 0x20161117 #include #include #include #include /***************************************************************************** * * Macros used for ACPICA globals and configuration * ****************************************************************************/ /* * Ensure that global variables are defined and initialized only once. * * The use of these macros allows for a single list of globals (here) * in order to simplify maintenance of the code. */ #ifdef DEFINE_ACPI_GLOBALS #define ACPI_GLOBAL(type,name) \ extern type name; \ type name #define ACPI_INIT_GLOBAL(type,name,value) \ type name=value #else #ifndef ACPI_GLOBAL #define ACPI_GLOBAL(type,name) \ extern type name #endif #ifndef ACPI_INIT_GLOBAL #define ACPI_INIT_GLOBAL(type,name,value) \ extern type name #endif #endif /* * These macros configure the various ACPICA interfaces. They are * useful for generating stub inline functions for features that are * configured out of the current kernel or ACPICA application. */ #ifndef ACPI_EXTERNAL_RETURN_STATUS #define ACPI_EXTERNAL_RETURN_STATUS(Prototype) \ Prototype; #endif #ifndef ACPI_EXTERNAL_RETURN_OK #define ACPI_EXTERNAL_RETURN_OK(Prototype) \ Prototype; #endif #ifndef ACPI_EXTERNAL_RETURN_VOID #define ACPI_EXTERNAL_RETURN_VOID(Prototype) \ Prototype; #endif #ifndef ACPI_EXTERNAL_RETURN_UINT32 #define ACPI_EXTERNAL_RETURN_UINT32(Prototype) \ Prototype; #endif #ifndef ACPI_EXTERNAL_RETURN_PTR #define ACPI_EXTERNAL_RETURN_PTR(Prototype) \ Prototype; #endif /***************************************************************************** * * Public globals and runtime configuration options * ****************************************************************************/ /* * Enable "slack mode" of the AML interpreter? Default is FALSE, and the * interpreter strictly follows the ACPI specification. Setting to TRUE * allows the interpreter to ignore certain errors and/or bad AML constructs. * * Currently, these features are enabled by this flag: * * 1) Allow "implicit return" of last value in a control method * 2) Allow access beyond the end of an operation region * 3) Allow access to uninitialized locals/args (auto-init to integer 0) * 4) Allow ANY object type to be a source operand for the Store() operator * 5) Allow unresolved references (invalid target name) in package objects * 6) Enable warning messages for behavior that is not ACPI spec compliant */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_EnableInterpreterSlack, FALSE); /* * Automatically serialize all methods that create named objects? Default * is TRUE, meaning that all NonSerialized methods are scanned once at * table load time to determine those that create named objects. Methods * that create named objects are marked Serialized in order to prevent * possible run-time problems if they are entered by more than one thread. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_AutoSerializeMethods, TRUE); /* * Create the predefined _OSI method in the namespace? Default is TRUE * because ACPICA is fully compatible with other ACPI implementations. * Changing this will revert ACPICA (and machine ASL) to pre-OSI behavior. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_CreateOsiMethod, TRUE); /* * Optionally use default values for the ACPI register widths. Set this to * TRUE to use the defaults, if an FADT contains incorrect widths/lengths. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_UseDefaultRegisterWidths, TRUE); /* * Whether or not to verify the table checksum before installation. Set * this to TRUE to verify the table checksum before install it to the table * manager. Note that enabling this option causes errors to happen in some * OSPMs during early initialization stages. Default behavior is to do such * verification. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_VerifyTableChecksum, TRUE); /* * Optionally enable output from the AML Debug Object. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_EnableAmlDebugObject, FALSE); /* * Optionally copy the entire DSDT to local memory (instead of simply * mapping it.) There are some BIOSs that corrupt or replace the original * DSDT, creating the need for this option. Default is FALSE, do not copy * the DSDT. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_CopyDsdtLocally, FALSE); /* * Optionally ignore an XSDT if present and use the RSDT instead. * Although the ACPI specification requires that an XSDT be used instead * of the RSDT, the XSDT has been found to be corrupt or ill-formed on * some machines. Default behavior is to use the XSDT if present. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_DoNotUseXsdt, FALSE); /* * Optionally support group module level code. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_GroupModuleLevelCode, FALSE); /* * Optionally support module level code by parsing the entire table as * a TermList. Default is FALSE, do not execute entire table until some * lock order issues are fixed. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_ParseTableAsTermList, FALSE); /* * Optionally use 32-bit FADT addresses if and when there is a conflict * (address mismatch) between the 32-bit and 64-bit versions of the * address. Although ACPICA adheres to the ACPI specification which * requires the use of the corresponding 64-bit address if it is non-zero, * some machines have been found to have a corrupted non-zero 64-bit * address. Default is FALSE, do not favor the 32-bit addresses. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_Use32BitFadtAddresses, FALSE); /* * Optionally use 32-bit FACS table addresses. * It is reported that some platforms fail to resume from system suspending * if 64-bit FACS table address is selected: * https://bugzilla.kernel.org/show_bug.cgi?id=74021 * Default is TRUE, favor the 32-bit addresses. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_Use32BitFacsAddresses, TRUE); /* * Optionally truncate I/O addresses to 16 bits. Provides compatibility * with other ACPI implementations. NOTE: During ACPICA initialization, * this value is set to TRUE if any Windows OSI strings have been * requested by the BIOS. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_TruncateIoAddresses, FALSE); /* * Disable runtime checking and repair of values returned by control methods. * Use only if the repair is causing a problem on a particular machine. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_DisableAutoRepair, FALSE); /* * Optionally do not install any SSDTs from the RSDT/XSDT during initialization. * This can be useful for debugging ACPI problems on some machines. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_DisableSsdtTableInstall, FALSE); /* * Optionally enable runtime namespace override. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_RuntimeNamespaceOverride, TRUE); /* * We keep track of the latest version of Windows that has been requested by * the BIOS. ACPI 5.0. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_OsiData, 0); /* * ACPI 5.0 introduces the concept of a "reduced hardware platform", meaning * that the ACPI hardware is no longer required. A flag in the FADT indicates * a reduced HW machine, and that flag is duplicated here for convenience. */ ACPI_INIT_GLOBAL (BOOLEAN, AcpiGbl_ReducedHardware, FALSE); /* * Maximum number of While() loop iterations before forced method abort. * This mechanism is intended to prevent infinite loops during interpreter * execution within a host kernel. */ ACPI_INIT_GLOBAL (UINT32, AcpiGbl_MaxLoopIterations, ACPI_MAX_LOOP_COUNT); /* * This mechanism is used to trace a specified AML method. The method is * traced each time it is executed. */ ACPI_INIT_GLOBAL (UINT32, AcpiGbl_TraceFlags, 0); ACPI_INIT_GLOBAL (const char *, AcpiGbl_TraceMethodName, NULL); ACPI_INIT_GLOBAL (UINT32, AcpiGbl_TraceDbgLevel, ACPI_TRACE_LEVEL_DEFAULT); ACPI_INIT_GLOBAL (UINT32, AcpiGbl_TraceDbgLayer, ACPI_TRACE_LAYER_DEFAULT); /* * Runtime configuration of debug output control masks. We want the debug * switches statically initialized so they are already set when the debugger * is entered. */ #ifdef ACPI_DEBUG_OUTPUT ACPI_INIT_GLOBAL (UINT32, AcpiDbgLevel, ACPI_DEBUG_DEFAULT); #else ACPI_INIT_GLOBAL (UINT32, AcpiDbgLevel, ACPI_NORMAL_DEFAULT); #endif ACPI_INIT_GLOBAL (UINT32, AcpiDbgLayer, ACPI_COMPONENT_DEFAULT); /* Optionally enable timer output with Debug Object output */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_DisplayDebugTimer, FALSE); /* * Other miscellaneous globals */ ACPI_GLOBAL (ACPI_TABLE_FADT, AcpiGbl_FADT); ACPI_GLOBAL (UINT32, AcpiCurrentGpeCount); ACPI_GLOBAL (BOOLEAN, AcpiGbl_SystemAwakeAndRunning); /***************************************************************************** * * ACPICA public interface configuration. * * Interfaces that are configured out of the ACPICA build are replaced * by inlined stubs by default. * ****************************************************************************/ /* * Hardware-reduced prototypes (default: Not hardware reduced). * * All ACPICA hardware-related interfaces that use these macros will be * configured out of the ACPICA build if the ACPI_REDUCED_HARDWARE flag * is set to TRUE. * * Note: This static build option for reduced hardware is intended to * reduce ACPICA code size if desired or necessary. However, even if this * option is not specified, the runtime behavior of ACPICA is dependent * on the actual FADT reduced hardware flag (HW_REDUCED_ACPI). If set, * the flag will enable similar behavior -- ACPICA will not attempt * to access any ACPI-relate hardware (SCI, GPEs, Fixed Events, etc.) */ #if (!ACPI_REDUCED_HARDWARE) #define ACPI_HW_DEPENDENT_RETURN_STATUS(Prototype) \ ACPI_EXTERNAL_RETURN_STATUS(Prototype) #define ACPI_HW_DEPENDENT_RETURN_OK(Prototype) \ ACPI_EXTERNAL_RETURN_OK(Prototype) #define ACPI_HW_DEPENDENT_RETURN_VOID(Prototype) \ ACPI_EXTERNAL_RETURN_VOID(Prototype) #else #define ACPI_HW_DEPENDENT_RETURN_STATUS(Prototype) \ static ACPI_INLINE Prototype {return(AE_NOT_CONFIGURED);} #define ACPI_HW_DEPENDENT_RETURN_OK(Prototype) \ static ACPI_INLINE Prototype {return(AE_OK);} #define ACPI_HW_DEPENDENT_RETURN_VOID(Prototype) \ static ACPI_INLINE Prototype {return;} #endif /* !ACPI_REDUCED_HARDWARE */ /* * Error message prototypes (default: error messages enabled). * * All interfaces related to error and warning messages * will be configured out of the ACPICA build if the * ACPI_NO_ERROR_MESSAGE flag is defined. */ #ifndef ACPI_NO_ERROR_MESSAGES #define ACPI_MSG_DEPENDENT_RETURN_VOID(Prototype) \ Prototype; #else #define ACPI_MSG_DEPENDENT_RETURN_VOID(Prototype) \ static ACPI_INLINE Prototype {return;} #endif /* ACPI_NO_ERROR_MESSAGES */ /* * Debugging output prototypes (default: no debug output). * * All interfaces related to debug output messages * will be configured out of the ACPICA build unless the * ACPI_DEBUG_OUTPUT flag is defined. */ #ifdef ACPI_DEBUG_OUTPUT #define ACPI_DBG_DEPENDENT_RETURN_VOID(Prototype) \ Prototype; #else #define ACPI_DBG_DEPENDENT_RETURN_VOID(Prototype) \ static ACPI_INLINE Prototype {return;} #endif /* ACPI_DEBUG_OUTPUT */ /* * Application prototypes * * All interfaces used by application will be configured * out of the ACPICA build unless the ACPI_APPLICATION * flag is defined. */ #ifdef ACPI_APPLICATION #define ACPI_APP_DEPENDENT_RETURN_VOID(Prototype) \ Prototype; #else #define ACPI_APP_DEPENDENT_RETURN_VOID(Prototype) \ static ACPI_INLINE Prototype {return;} #endif /* ACPI_APPLICATION */ /* * Debugger prototypes * * All interfaces used by debugger will be configured * out of the ACPICA build unless the ACPI_DEBUGGER * flag is defined. */ #ifdef ACPI_DEBUGGER #define ACPI_DBR_DEPENDENT_RETURN_OK(Prototype) \ ACPI_EXTERNAL_RETURN_OK(Prototype) #define ACPI_DBR_DEPENDENT_RETURN_VOID(Prototype) \ ACPI_EXTERNAL_RETURN_VOID(Prototype) #else #define ACPI_DBR_DEPENDENT_RETURN_OK(Prototype) \ static ACPI_INLINE Prototype {return(AE_OK);} #define ACPI_DBR_DEPENDENT_RETURN_VOID(Prototype) \ static ACPI_INLINE Prototype {return;} #endif /* ACPI_DEBUGGER */ /***************************************************************************** * * ACPICA public interface prototypes * ****************************************************************************/ /* * Initialization */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiInitializeTables ( ACPI_TABLE_DESC *InitialStorage, UINT32 InitialTableCount, BOOLEAN AllowResize)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiInitializeSubsystem ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiEnableSubsystem ( UINT32 Flags)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiInitializeObjects ( UINT32 Flags)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiTerminate ( void)) /* * Miscellaneous global interfaces */ ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiEnable ( void)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiDisable ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiSubsystemStatus ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetSystemInfo ( ACPI_BUFFER *RetBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetStatistics ( ACPI_STATISTICS *Stats)) ACPI_EXTERNAL_RETURN_PTR ( const char * AcpiFormatException ( ACPI_STATUS Exception)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiPurgeCachedObjects ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallInterface ( ACPI_STRING InterfaceName)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiRemoveInterface ( ACPI_STRING InterfaceName)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiUpdateInterfaces ( UINT8 Action)) ACPI_EXTERNAL_RETURN_UINT32 ( UINT32 AcpiCheckAddressRange ( ACPI_ADR_SPACE_TYPE SpaceId, ACPI_PHYSICAL_ADDRESS Address, ACPI_SIZE Length, BOOLEAN Warn)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiDecodePldBuffer ( UINT8 *InBuffer, ACPI_SIZE Length, ACPI_PLD_INFO **ReturnBuffer)) /* * ACPI table load/unload interfaces */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiInstallTable ( ACPI_PHYSICAL_ADDRESS Address, BOOLEAN Physical)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiLoadTable ( ACPI_TABLE_HEADER *Table)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiUnloadParentTable ( ACPI_HANDLE Object)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiLoadTables ( void)) /* * ACPI table manipulation interfaces */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiReallocateRootTable ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiFindRootPointer ( ACPI_PHYSICAL_ADDRESS *RsdpAddress)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetTableHeader ( ACPI_STRING Signature, UINT32 Instance, ACPI_TABLE_HEADER *OutTableHeader)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetTable ( ACPI_STRING Signature, UINT32 Instance, ACPI_TABLE_HEADER **OutTable)) + +ACPI_EXTERNAL_RETURN_VOID ( +void +AcpiPutTable ( + ACPI_TABLE_HEADER *Table)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetTableByIndex ( UINT32 TableIndex, ACPI_TABLE_HEADER **OutTable)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallTableHandler ( ACPI_TABLE_HANDLER Handler, void *Context)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiRemoveTableHandler ( ACPI_TABLE_HANDLER Handler)) /* * Namespace and name interfaces */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiWalkNamespace ( ACPI_OBJECT_TYPE Type, ACPI_HANDLE StartObject, UINT32 MaxDepth, ACPI_WALK_CALLBACK DescendingCallback, ACPI_WALK_CALLBACK AscendingCallback, void *Context, void **ReturnValue)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetDevices ( char *HID, ACPI_WALK_CALLBACK UserFunction, void *Context, void **ReturnValue)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetName ( ACPI_HANDLE Object, UINT32 NameType, ACPI_BUFFER *RetPathPtr)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetHandle ( ACPI_HANDLE Parent, ACPI_STRING Pathname, ACPI_HANDLE *RetHandle)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiAttachData ( ACPI_HANDLE Object, ACPI_OBJECT_HANDLER Handler, void *Data)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiDetachData ( ACPI_HANDLE Object, ACPI_OBJECT_HANDLER Handler)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetData ( ACPI_HANDLE Object, ACPI_OBJECT_HANDLER Handler, void **Data)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiDebugTrace ( const char *Name, UINT32 DebugLevel, UINT32 DebugLayer, UINT32 Flags)) /* * Object manipulation and enumeration */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiEvaluateObject ( ACPI_HANDLE Object, ACPI_STRING Pathname, ACPI_OBJECT_LIST *ParameterObjects, ACPI_BUFFER *ReturnObjectBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiEvaluateObjectTyped ( ACPI_HANDLE Object, ACPI_STRING Pathname, ACPI_OBJECT_LIST *ExternalParams, ACPI_BUFFER *ReturnBuffer, ACPI_OBJECT_TYPE ReturnType)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetObjectInfo ( ACPI_HANDLE Object, ACPI_DEVICE_INFO **ReturnBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallMethod ( UINT8 *Buffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetNextObject ( ACPI_OBJECT_TYPE Type, ACPI_HANDLE Parent, ACPI_HANDLE Child, ACPI_HANDLE *OutHandle)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetType ( ACPI_HANDLE Object, ACPI_OBJECT_TYPE *OutType)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetParent ( ACPI_HANDLE Object, ACPI_HANDLE *OutHandle)) /* * Handler interfaces */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallInitializationHandler ( ACPI_INIT_HANDLER Handler, UINT32 Function)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiInstallSciHandler ( ACPI_SCI_HANDLER Address, void *Context)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiRemoveSciHandler ( ACPI_SCI_HANDLER Address)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiInstallGlobalEventHandler ( ACPI_GBL_EVENT_HANDLER Handler, void *Context)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiInstallFixedEventHandler ( UINT32 AcpiEvent, ACPI_EVENT_HANDLER Handler, void *Context)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiRemoveFixedEventHandler ( UINT32 AcpiEvent, ACPI_EVENT_HANDLER Handler)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiInstallGpeHandler ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, UINT32 Type, ACPI_GPE_HANDLER Address, void *Context)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiInstallGpeRawHandler ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, UINT32 Type, ACPI_GPE_HANDLER Address, void *Context)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiRemoveGpeHandler ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, ACPI_GPE_HANDLER Address)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallNotifyHandler ( ACPI_HANDLE Device, UINT32 HandlerType, ACPI_NOTIFY_HANDLER Handler, void *Context)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiRemoveNotifyHandler ( ACPI_HANDLE Device, UINT32 HandlerType, ACPI_NOTIFY_HANDLER Handler)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallAddressSpaceHandler ( ACPI_HANDLE Device, ACPI_ADR_SPACE_TYPE SpaceId, ACPI_ADR_SPACE_HANDLER Handler, ACPI_ADR_SPACE_SETUP Setup, void *Context)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiRemoveAddressSpaceHandler ( ACPI_HANDLE Device, ACPI_ADR_SPACE_TYPE SpaceId, ACPI_ADR_SPACE_HANDLER Handler)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallExceptionHandler ( ACPI_EXCEPTION_HANDLER Handler)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallInterfaceHandler ( ACPI_INTERFACE_HANDLER Handler)) /* * Global Lock interfaces */ ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiAcquireGlobalLock ( UINT16 Timeout, UINT32 *Handle)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiReleaseGlobalLock ( UINT32 Handle)) /* * Interfaces to AML mutex objects */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiAcquireMutex ( ACPI_HANDLE Handle, ACPI_STRING Pathname, UINT16 Timeout)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiReleaseMutex ( ACPI_HANDLE Handle, ACPI_STRING Pathname)) /* * Fixed Event interfaces */ ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiEnableEvent ( UINT32 Event, UINT32 Flags)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiDisableEvent ( UINT32 Event, UINT32 Flags)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiClearEvent ( UINT32 Event)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiGetEventStatus ( UINT32 Event, ACPI_EVENT_STATUS *EventStatus)) /* * General Purpose Event (GPE) Interfaces */ ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiUpdateAllGpes ( void)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiEnableGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiDisableGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiClearGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiSetGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, UINT8 Action)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiFinishGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiMaskGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, BOOLEAN IsMasked)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiMarkGpeForWake ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiSetupGpeForWake ( ACPI_HANDLE ParentDevice, ACPI_HANDLE GpeDevice, UINT32 GpeNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiSetGpeWakeMask ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, UINT8 Action)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiGetGpeStatus ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, ACPI_EVENT_STATUS *EventStatus)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiDisableAllGpes ( void)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiEnableAllRuntimeGpes ( void)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiEnableAllWakeupGpes ( void)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiGetGpeDevice ( UINT32 GpeIndex, ACPI_HANDLE *GpeDevice)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiInstallGpeBlock ( ACPI_HANDLE GpeDevice, ACPI_GENERIC_ADDRESS *GpeBlockAddress, UINT32 RegisterCount, UINT32 InterruptNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiRemoveGpeBlock ( ACPI_HANDLE GpeDevice)) /* * Resource interfaces */ typedef ACPI_STATUS (*ACPI_WALK_RESOURCE_CALLBACK) ( ACPI_RESOURCE *Resource, void *Context); ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetVendorResource ( ACPI_HANDLE Device, char *Name, ACPI_VENDOR_UUID *Uuid, ACPI_BUFFER *RetBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetCurrentResources ( ACPI_HANDLE Device, ACPI_BUFFER *RetBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetPossibleResources ( ACPI_HANDLE Device, ACPI_BUFFER *RetBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetEventResources ( ACPI_HANDLE DeviceHandle, ACPI_BUFFER *RetBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiWalkResourceBuffer ( ACPI_BUFFER *Buffer, ACPI_WALK_RESOURCE_CALLBACK UserFunction, void *Context)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiWalkResources ( ACPI_HANDLE Device, char *Name, ACPI_WALK_RESOURCE_CALLBACK UserFunction, void *Context)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiSetCurrentResources ( ACPI_HANDLE Device, ACPI_BUFFER *InBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetIrqRoutingTable ( ACPI_HANDLE Device, ACPI_BUFFER *RetBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiResourceToAddress64 ( ACPI_RESOURCE *Resource, ACPI_RESOURCE_ADDRESS64 *Out)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiBufferToResource ( UINT8 *AmlBuffer, UINT16 AmlBufferLength, ACPI_RESOURCE **ResourcePtr)) /* * Hardware (ACPI device) interfaces */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiReset ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiRead ( UINT64 *Value, ACPI_GENERIC_ADDRESS *Reg)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiWrite ( UINT64 Value, ACPI_GENERIC_ADDRESS *Reg)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiReadBitRegister ( UINT32 RegisterId, UINT32 *ReturnValue)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiWriteBitRegister ( UINT32 RegisterId, UINT32 Value)) /* * Sleep/Wake interfaces */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetSleepTypeData ( UINT8 SleepState, UINT8 *Slp_TypA, UINT8 *Slp_TypB)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiEnterSleepStatePrep ( UINT8 SleepState)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiEnterSleepState ( UINT8 SleepState)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiEnterSleepStateS4bios ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiLeaveSleepStatePrep ( UINT8 SleepState)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiLeaveSleepState ( UINT8 SleepState)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiSetFirmwareWakingVector ( ACPI_PHYSICAL_ADDRESS PhysicalAddress, ACPI_PHYSICAL_ADDRESS PhysicalAddress64)) /* * ACPI Timer interfaces */ ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiGetTimerResolution ( UINT32 *Resolution)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiGetTimer ( UINT32 *Ticks)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiGetTimerDuration ( UINT32 StartTicks, UINT32 EndTicks, UINT32 *TimeElapsed)) /* * Error/Warning output */ ACPI_MSG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(3) void ACPI_INTERNAL_VAR_XFACE AcpiError ( const char *ModuleName, UINT32 LineNumber, const char *Format, ...)) ACPI_MSG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(4) void ACPI_INTERNAL_VAR_XFACE AcpiException ( const char *ModuleName, UINT32 LineNumber, ACPI_STATUS Status, const char *Format, ...)) ACPI_MSG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(3) void ACPI_INTERNAL_VAR_XFACE AcpiWarning ( const char *ModuleName, UINT32 LineNumber, const char *Format, ...)) ACPI_MSG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(1) void ACPI_INTERNAL_VAR_XFACE AcpiInfo ( const char *Format, ...)) ACPI_MSG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(3) void ACPI_INTERNAL_VAR_XFACE AcpiBiosError ( const char *ModuleName, UINT32 LineNumber, const char *Format, ...)) ACPI_MSG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(3) void ACPI_INTERNAL_VAR_XFACE AcpiBiosWarning ( const char *ModuleName, UINT32 LineNumber, const char *Format, ...)) /* * Debug output */ ACPI_DBG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(6) void ACPI_INTERNAL_VAR_XFACE AcpiDebugPrint ( UINT32 RequestedDebugLevel, UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId, const char *Format, ...)) ACPI_DBG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(6) void ACPI_INTERNAL_VAR_XFACE AcpiDebugPrintRaw ( UINT32 RequestedDebugLevel, UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId, const char *Format, ...)) ACPI_DBG_DEPENDENT_RETURN_VOID ( void AcpiTracePoint ( ACPI_TRACE_EVENT_TYPE Type, BOOLEAN Begin, UINT8 *Aml, char *Pathname)) ACPI_STATUS AcpiInitializeDebugger ( void); void AcpiTerminateDebugger ( void); void AcpiSetDebuggerThreadId ( ACPI_THREAD_ID ThreadId); #endif /* __ACXFACE_H__ */ Index: head/sys/contrib/dev/acpica/include/actables.h =================================================================== --- head/sys/contrib/dev/acpica/include/actables.h (revision 308952) +++ head/sys/contrib/dev/acpica/include/actables.h (revision 308953) @@ -1,264 +1,276 @@ /****************************************************************************** * * Name: actables.h - ACPI table management * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef __ACTABLES_H__ #define __ACTABLES_H__ ACPI_STATUS AcpiAllocateRootTable ( UINT32 InitialTableCount); /* * tbxfroot - Root pointer utilities */ UINT32 AcpiTbGetRsdpLength ( ACPI_TABLE_RSDP *Rsdp); ACPI_STATUS AcpiTbValidateRsdp ( ACPI_TABLE_RSDP *Rsdp); UINT8 * AcpiTbScanMemoryForRsdp ( UINT8 *StartAddress, UINT32 Length); /* * tbdata - table data structure management */ ACPI_STATUS AcpiTbGetNextTableDescriptor ( UINT32 *TableIndex, ACPI_TABLE_DESC **TableDesc); void AcpiTbInitTableDescriptor ( ACPI_TABLE_DESC *TableDesc, ACPI_PHYSICAL_ADDRESS Address, UINT8 Flags, ACPI_TABLE_HEADER *Table); ACPI_STATUS AcpiTbAcquireTempTable ( ACPI_TABLE_DESC *TableDesc, ACPI_PHYSICAL_ADDRESS Address, UINT8 Flags); void AcpiTbReleaseTempTable ( ACPI_TABLE_DESC *TableDesc); ACPI_STATUS AcpiTbValidateTempTable ( ACPI_TABLE_DESC *TableDesc); ACPI_STATUS AcpiTbVerifyTempTable ( ACPI_TABLE_DESC *TableDesc, char *Signature); BOOLEAN AcpiTbIsTableLoaded ( UINT32 TableIndex); void AcpiTbSetTableLoadedFlag ( UINT32 TableIndex, BOOLEAN IsLoaded); /* * tbfadt - FADT parse/convert/validate */ void AcpiTbParseFadt ( void); void AcpiTbCreateLocalFadt ( ACPI_TABLE_HEADER *Table, UINT32 Length); /* * tbfind - find ACPI table */ ACPI_STATUS AcpiTbFindTable ( char *Signature, char *OemId, char *OemTableId, UINT32 *TableIndex); /* * tbinstal - Table removal and deletion */ ACPI_STATUS AcpiTbResizeRootTableList ( void); ACPI_STATUS AcpiTbValidateTable ( ACPI_TABLE_DESC *TableDesc); void AcpiTbInvalidateTable ( ACPI_TABLE_DESC *TableDesc); void AcpiTbOverrideTable ( ACPI_TABLE_DESC *OldTableDesc); ACPI_STATUS AcpiTbAcquireTable ( ACPI_TABLE_DESC *TableDesc, ACPI_TABLE_HEADER **TablePtr, UINT32 *TableLength, UINT8 *TableFlags); void AcpiTbReleaseTable ( ACPI_TABLE_HEADER *Table, UINT32 TableLength, UINT8 TableFlags); ACPI_STATUS AcpiTbInstallStandardTable ( ACPI_PHYSICAL_ADDRESS Address, UINT8 Flags, BOOLEAN Reload, BOOLEAN Override, UINT32 *TableIndex); void AcpiTbUninstallTable ( ACPI_TABLE_DESC *TableDesc); ACPI_STATUS AcpiTbLoadTable ( UINT32 TableIndex, ACPI_NAMESPACE_NODE *ParentNode); ACPI_STATUS AcpiTbInstallAndLoadTable ( - ACPI_TABLE_HEADER *Table, ACPI_PHYSICAL_ADDRESS Address, UINT8 Flags, BOOLEAN Override, UINT32 *TableIndex); +ACPI_STATUS +AcpiTbUnloadTable ( + UINT32 TableIndex); + void AcpiTbTerminate ( void); ACPI_STATUS AcpiTbDeleteNamespaceByOwner ( UINT32 TableIndex); ACPI_STATUS AcpiTbAllocateOwnerId ( UINT32 TableIndex); ACPI_STATUS AcpiTbReleaseOwnerId ( UINT32 TableIndex); ACPI_STATUS AcpiTbGetOwnerId ( UINT32 TableIndex, ACPI_OWNER_ID *OwnerId); /* * tbutils - table manager utilities */ ACPI_STATUS AcpiTbInitializeFacs ( void); void AcpiTbPrintTableHeader( ACPI_PHYSICAL_ADDRESS Address, ACPI_TABLE_HEADER *Header); UINT8 AcpiTbChecksum ( UINT8 *Buffer, UINT32 Length); ACPI_STATUS AcpiTbVerifyChecksum ( ACPI_TABLE_HEADER *Table, UINT32 Length); void AcpiTbCheckDsdtHeader ( void); ACPI_TABLE_HEADER * AcpiTbCopyDsdt ( UINT32 TableIndex); void AcpiTbInstallTableWithOverride ( ACPI_TABLE_DESC *NewTableDesc, BOOLEAN Override, UINT32 *TableIndex); ACPI_STATUS AcpiTbParseRootTable ( ACPI_PHYSICAL_ADDRESS RsdpAddress); + +ACPI_STATUS +AcpiTbGetTable ( + ACPI_TABLE_DESC *TableDesc, + ACPI_TABLE_HEADER **OutTable); + +void +AcpiTbPutTable ( + ACPI_TABLE_DESC *TableDesc); /* * tbxfload */ ACPI_STATUS AcpiTbLoadNamespace ( void); #endif /* __ACTABLES_H__ */ Index: head/sys/contrib/dev/acpica/include/actbl.h =================================================================== --- head/sys/contrib/dev/acpica/include/actbl.h (revision 308952) +++ head/sys/contrib/dev/acpica/include/actbl.h (revision 308953) @@ -1,478 +1,455 @@ /****************************************************************************** * * Name: actbl.h - Basic ACPI Table Definitions * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef __ACTBL_H__ #define __ACTBL_H__ /******************************************************************************* * * Fundamental ACPI tables * * This file contains definitions for the ACPI tables that are directly consumed * by ACPICA. All other tables are consumed by the OS-dependent ACPI-related * device drivers and other OS support code. * * The RSDP and FACS do not use the common ACPI table header. All other ACPI * tables use the header. * ******************************************************************************/ /* * Values for description table header signatures for tables defined in this * file. Useful because they make it more difficult to inadvertently type in * the wrong signature. */ #define ACPI_SIG_DSDT "DSDT" /* Differentiated System Description Table */ #define ACPI_SIG_FADT "FACP" /* Fixed ACPI Description Table */ #define ACPI_SIG_FACS "FACS" /* Firmware ACPI Control Structure */ #define ACPI_SIG_OSDT "OSDT" /* Override System Description Table */ #define ACPI_SIG_PSDT "PSDT" /* Persistent System Description Table */ #define ACPI_SIG_RSDP "RSD PTR " /* Root System Description Pointer */ #define ACPI_SIG_RSDT "RSDT" /* Root System Description Table */ #define ACPI_SIG_XSDT "XSDT" /* Extended System Description Table */ #define ACPI_SIG_SSDT "SSDT" /* Secondary System Description Table */ #define ACPI_RSDP_NAME "RSDP" /* Short name for RSDP, not signature */ /* * All tables and structures must be byte-packed to match the ACPI * specification, since the tables are provided by the system BIOS */ #pragma pack(1) /* * Note: C bitfields are not used for this reason: * * "Bitfields are great and easy to read, but unfortunately the C language * does not specify the layout of bitfields in memory, which means they are * essentially useless for dealing with packed data in on-disk formats or * binary wire protocols." (Or ACPI tables and buffers.) "If you ask me, * this decision was a design error in C. Ritchie could have picked an order * and stuck with it." Norman Ramsey. * See http://stackoverflow.com/a/1053662/41661 */ /******************************************************************************* * * Master ACPI Table Header. This common header is used by all ACPI tables * except the RSDP and FACS. * ******************************************************************************/ typedef struct acpi_table_header { char Signature[ACPI_NAME_SIZE]; /* ASCII table signature */ UINT32 Length; /* Length of table in bytes, including this header */ UINT8 Revision; /* ACPI Specification minor version number */ UINT8 Checksum; /* To make sum of entire table == 0 */ char OemId[ACPI_OEM_ID_SIZE]; /* ASCII OEM identification */ char OemTableId[ACPI_OEM_TABLE_ID_SIZE]; /* ASCII OEM table identification */ UINT32 OemRevision; /* OEM revision number */ char AslCompilerId[ACPI_NAME_SIZE]; /* ASCII ASL compiler vendor ID */ UINT32 AslCompilerRevision; /* ASL compiler version */ } ACPI_TABLE_HEADER; /******************************************************************************* * * GAS - Generic Address Structure (ACPI 2.0+) * * Note: Since this structure is used in the ACPI tables, it is byte aligned. * If misaligned access is not supported by the hardware, accesses to the * 64-bit Address field must be performed with care. * ******************************************************************************/ typedef struct acpi_generic_address { UINT8 SpaceId; /* Address space where struct or register exists */ UINT8 BitWidth; /* Size in bits of given register */ UINT8 BitOffset; /* Bit offset within the register */ UINT8 AccessWidth; /* Minimum Access size (ACPI 3.0) */ UINT64 Address; /* 64-bit address of struct or register */ } ACPI_GENERIC_ADDRESS; /******************************************************************************* * * RSDP - Root System Description Pointer (Signature is "RSD PTR ") * Version 2 * ******************************************************************************/ typedef struct acpi_table_rsdp { char Signature[8]; /* ACPI signature, contains "RSD PTR " */ UINT8 Checksum; /* ACPI 1.0 checksum */ char OemId[ACPI_OEM_ID_SIZE]; /* OEM identification */ UINT8 Revision; /* Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+ */ UINT32 RsdtPhysicalAddress; /* 32-bit physical address of the RSDT */ UINT32 Length; /* Table length in bytes, including header (ACPI 2.0+) */ UINT64 XsdtPhysicalAddress; /* 64-bit physical address of the XSDT (ACPI 2.0+) */ UINT8 ExtendedChecksum; /* Checksum of entire table (ACPI 2.0+) */ UINT8 Reserved[3]; /* Reserved, must be zero */ } ACPI_TABLE_RSDP; /* Standalone struct for the ACPI 1.0 RSDP */ typedef struct acpi_rsdp_common { char Signature[8]; UINT8 Checksum; char OemId[ACPI_OEM_ID_SIZE]; UINT8 Revision; UINT32 RsdtPhysicalAddress; } ACPI_RSDP_COMMON; /* Standalone struct for the extended part of the RSDP (ACPI 2.0+) */ typedef struct acpi_rsdp_extension { UINT32 Length; UINT64 XsdtPhysicalAddress; UINT8 ExtendedChecksum; UINT8 Reserved[3]; } ACPI_RSDP_EXTENSION; /******************************************************************************* * * RSDT/XSDT - Root System Description Tables * Version 1 (both) * ******************************************************************************/ typedef struct acpi_table_rsdt { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ UINT32 TableOffsetEntry[1]; /* Array of pointers to ACPI tables */ } ACPI_TABLE_RSDT; typedef struct acpi_table_xsdt { ACPI_TABLE_HEADER Header; /* Common ACPI table header */ UINT64 TableOffsetEntry[1]; /* Array of pointers to ACPI tables */ } ACPI_TABLE_XSDT; #define ACPI_RSDT_ENTRY_SIZE (sizeof (UINT32)) #define ACPI_XSDT_ENTRY_SIZE (sizeof (UINT64)) /******************************************************************************* * * FACS - Firmware ACPI Control Structure (FACS) * ******************************************************************************/ typedef struct acpi_table_facs { char Signature[4]; /* ASCII table signature */ UINT32 Length; /* Length of structure, in bytes */ UINT32 HardwareSignature; /* Hardware configuration signature */ UINT32 FirmwareWakingVector; /* 32-bit physical address of the Firmware Waking Vector */ UINT32 GlobalLock; /* Global Lock for shared hardware resources */ UINT32 Flags; UINT64 XFirmwareWakingVector; /* 64-bit version of the Firmware Waking Vector (ACPI 2.0+) */ UINT8 Version; /* Version of this table (ACPI 2.0+) */ UINT8 Reserved[3]; /* Reserved, must be zero */ UINT32 OspmFlags; /* Flags to be set by OSPM (ACPI 4.0) */ UINT8 Reserved1[24]; /* Reserved, must be zero */ } ACPI_TABLE_FACS; /* Masks for GlobalLock flag field above */ #define ACPI_GLOCK_PENDING (1) /* 00: Pending global lock ownership */ #define ACPI_GLOCK_OWNED (1<<1) /* 01: Global lock is owned */ /* Masks for Flags field above */ #define ACPI_FACS_S4_BIOS_PRESENT (1) /* 00: S4BIOS support is present */ #define ACPI_FACS_64BIT_WAKE (1<<1) /* 01: 64-bit wake vector supported (ACPI 4.0) */ /* Masks for OspmFlags field above */ #define ACPI_FACS_64BIT_ENVIRONMENT (1) /* 00: 64-bit wake environment is required (ACPI 4.0) */ /******************************************************************************* * * FADT - Fixed ACPI Description Table (Signature "FACP") * Version 6 * ******************************************************************************/ /* Fields common to all versions of the FADT */ typedef struct acpi_table_fadt { - ACPI_TABLE_HEADER Header; /* [V1] Common ACPI table header */ - UINT32 Facs; /* [V1] 32-bit physical address of FACS */ - UINT32 Dsdt; /* [V1] 32-bit physical address of DSDT */ - UINT8 Model; /* [V1] System Interrupt Model (ACPI 1.0) - not used in ACPI 2.0+ */ - UINT8 PreferredProfile; /* [V1] Conveys preferred power management profile to OSPM. */ - UINT16 SciInterrupt; /* [V1] System vector of SCI interrupt */ - UINT32 SmiCommand; /* [V1] 32-bit Port address of SMI command port */ - UINT8 AcpiEnable; /* [V1] Value to write to SMI_CMD to enable ACPI */ - UINT8 AcpiDisable; /* [V1] Value to write to SMI_CMD to disable ACPI */ - UINT8 S4BiosRequest; /* [V1] Value to write to SMI_CMD to enter S4BIOS state */ - UINT8 PstateControl; /* [V1] Processor performance state control*/ - UINT32 Pm1aEventBlock; /* [V1] 32-bit port address of Power Mgt 1a Event Reg Blk */ - UINT32 Pm1bEventBlock; /* [V1] 32-bit port address of Power Mgt 1b Event Reg Blk */ - UINT32 Pm1aControlBlock; /* [V1] 32-bit port address of Power Mgt 1a Control Reg Blk */ - UINT32 Pm1bControlBlock; /* [V1] 32-bit port address of Power Mgt 1b Control Reg Blk */ - UINT32 Pm2ControlBlock; /* [V1] 32-bit port address of Power Mgt 2 Control Reg Blk */ - UINT32 PmTimerBlock; /* [V1] 32-bit port address of Power Mgt Timer Ctrl Reg Blk */ - UINT32 Gpe0Block; /* [V1] 32-bit port address of General Purpose Event 0 Reg Blk */ - UINT32 Gpe1Block; /* [V1] 32-bit port address of General Purpose Event 1 Reg Blk */ - UINT8 Pm1EventLength; /* [V1] Byte Length of ports at Pm1xEventBlock */ - UINT8 Pm1ControlLength; /* [V1] Byte Length of ports at Pm1xControlBlock */ - UINT8 Pm2ControlLength; /* [V1] Byte Length of ports at Pm2ControlBlock */ - UINT8 PmTimerLength; /* [V1] Byte Length of ports at PmTimerBlock */ - UINT8 Gpe0BlockLength; /* [V1] Byte Length of ports at Gpe0Block */ - UINT8 Gpe1BlockLength; /* [V1] Byte Length of ports at Gpe1Block */ - UINT8 Gpe1Base; /* [V1] Offset in GPE number space where GPE1 events start */ - UINT8 CstControl; /* [V1] Support for the _CST object and C-States change notification */ - UINT16 C2Latency; /* [V1] Worst case HW latency to enter/exit C2 state */ - UINT16 C3Latency; /* [V1] Worst case HW latency to enter/exit C3 state */ - UINT16 FlushSize; /* [V1] Processor memory cache line width, in bytes */ - UINT16 FlushStride; /* [V1] Number of flush strides that need to be read */ - UINT8 DutyOffset; /* [V1] Processor duty cycle index in processor P_CNT reg */ - UINT8 DutyWidth; /* [V1] Processor duty cycle value bit width in P_CNT register */ - UINT8 DayAlarm; /* [V1] Index to day-of-month alarm in RTC CMOS RAM */ - UINT8 MonthAlarm; /* [V1] Index to month-of-year alarm in RTC CMOS RAM */ - UINT8 Century; /* [V1] Index to century in RTC CMOS RAM */ - UINT16 BootFlags; /* [V3] IA-PC Boot Architecture Flags (see below for individual flags) */ - UINT8 Reserved; /* [V1] Reserved, must be zero */ - UINT32 Flags; /* [V1] Miscellaneous flag bits (see below for individual flags) */ - /* End of Version 1 FADT fields (ACPI 1.0) */ + ACPI_TABLE_HEADER Header; /* Common ACPI table header */ + UINT32 Facs; /* 32-bit physical address of FACS */ + UINT32 Dsdt; /* 32-bit physical address of DSDT */ + UINT8 Model; /* System Interrupt Model (ACPI 1.0) - not used in ACPI 2.0+ */ + UINT8 PreferredProfile; /* Conveys preferred power management profile to OSPM. */ + UINT16 SciInterrupt; /* System vector of SCI interrupt */ + UINT32 SmiCommand; /* 32-bit Port address of SMI command port */ + UINT8 AcpiEnable; /* Value to write to SMI_CMD to enable ACPI */ + UINT8 AcpiDisable; /* Value to write to SMI_CMD to disable ACPI */ + UINT8 S4BiosRequest; /* Value to write to SMI_CMD to enter S4BIOS state */ + UINT8 PstateControl; /* Processor performance state control*/ + UINT32 Pm1aEventBlock; /* 32-bit port address of Power Mgt 1a Event Reg Blk */ + UINT32 Pm1bEventBlock; /* 32-bit port address of Power Mgt 1b Event Reg Blk */ + UINT32 Pm1aControlBlock; /* 32-bit port address of Power Mgt 1a Control Reg Blk */ + UINT32 Pm1bControlBlock; /* 32-bit port address of Power Mgt 1b Control Reg Blk */ + UINT32 Pm2ControlBlock; /* 32-bit port address of Power Mgt 2 Control Reg Blk */ + UINT32 PmTimerBlock; /* 32-bit port address of Power Mgt Timer Ctrl Reg Blk */ + UINT32 Gpe0Block; /* 32-bit port address of General Purpose Event 0 Reg Blk */ + UINT32 Gpe1Block; /* 32-bit port address of General Purpose Event 1 Reg Blk */ + UINT8 Pm1EventLength; /* Byte Length of ports at Pm1xEventBlock */ + UINT8 Pm1ControlLength; /* Byte Length of ports at Pm1xControlBlock */ + UINT8 Pm2ControlLength; /* Byte Length of ports at Pm2ControlBlock */ + UINT8 PmTimerLength; /* Byte Length of ports at PmTimerBlock */ + UINT8 Gpe0BlockLength; /* Byte Length of ports at Gpe0Block */ + UINT8 Gpe1BlockLength; /* Byte Length of ports at Gpe1Block */ + UINT8 Gpe1Base; /* Offset in GPE number space where GPE1 events start */ + UINT8 CstControl; /* Support for the _CST object and C-States change notification */ + UINT16 C2Latency; /* Worst case HW latency to enter/exit C2 state */ + UINT16 C3Latency; /* Worst case HW latency to enter/exit C3 state */ + UINT16 FlushSize; /* Processor memory cache line width, in bytes */ + UINT16 FlushStride; /* Number of flush strides that need to be read */ + UINT8 DutyOffset; /* Processor duty cycle index in processor P_CNT reg */ + UINT8 DutyWidth; /* Processor duty cycle value bit width in P_CNT register */ + UINT8 DayAlarm; /* Index to day-of-month alarm in RTC CMOS RAM */ + UINT8 MonthAlarm; /* Index to month-of-year alarm in RTC CMOS RAM */ + UINT8 Century; /* Index to century in RTC CMOS RAM */ + UINT16 BootFlags; /* IA-PC Boot Architecture Flags (see below for individual flags) */ + UINT8 Reserved; /* Reserved, must be zero */ + UINT32 Flags; /* Miscellaneous flag bits (see below for individual flags) */ + ACPI_GENERIC_ADDRESS ResetRegister; /* 64-bit address of the Reset register */ + UINT8 ResetValue; /* Value to write to the ResetRegister port to reset the system */ + UINT16 ArmBootFlags; /* ARM-Specific Boot Flags (see below for individual flags) (ACPI 5.1) */ + UINT8 MinorRevision; /* FADT Minor Revision (ACPI 5.1) */ + UINT64 XFacs; /* 64-bit physical address of FACS */ + UINT64 XDsdt; /* 64-bit physical address of DSDT */ + ACPI_GENERIC_ADDRESS XPm1aEventBlock; /* 64-bit Extended Power Mgt 1a Event Reg Blk address */ + ACPI_GENERIC_ADDRESS XPm1bEventBlock; /* 64-bit Extended Power Mgt 1b Event Reg Blk address */ + ACPI_GENERIC_ADDRESS XPm1aControlBlock; /* 64-bit Extended Power Mgt 1a Control Reg Blk address */ + ACPI_GENERIC_ADDRESS XPm1bControlBlock; /* 64-bit Extended Power Mgt 1b Control Reg Blk address */ + ACPI_GENERIC_ADDRESS XPm2ControlBlock; /* 64-bit Extended Power Mgt 2 Control Reg Blk address */ + ACPI_GENERIC_ADDRESS XPmTimerBlock; /* 64-bit Extended Power Mgt Timer Ctrl Reg Blk address */ + ACPI_GENERIC_ADDRESS XGpe0Block; /* 64-bit Extended General Purpose Event 0 Reg Blk address */ + ACPI_GENERIC_ADDRESS XGpe1Block; /* 64-bit Extended General Purpose Event 1 Reg Blk address */ + ACPI_GENERIC_ADDRESS SleepControl; /* 64-bit Sleep Control register (ACPI 5.0) */ + ACPI_GENERIC_ADDRESS SleepStatus; /* 64-bit Sleep Status register (ACPI 5.0) */ + UINT64 HypervisorId; /* Hypervisor Vendor ID (ACPI 6.0) */ - ACPI_GENERIC_ADDRESS ResetRegister; /* [V3] 64-bit address of the Reset register */ - UINT8 ResetValue; /* [V3] Value to write to the ResetRegister port to reset the system */ - UINT16 ArmBootFlags; /* [V5] ARM-Specific Boot Flags (see below for individual flags) (ACPI 5.1) */ - UINT8 MinorRevision; /* [V5] FADT Minor Revision (ACPI 5.1) */ - UINT64 XFacs; /* [V3] 64-bit physical address of FACS */ - UINT64 XDsdt; /* [V3] 64-bit physical address of DSDT */ - ACPI_GENERIC_ADDRESS XPm1aEventBlock; /* [V3] 64-bit Extended Power Mgt 1a Event Reg Blk address */ - ACPI_GENERIC_ADDRESS XPm1bEventBlock; /* [V3] 64-bit Extended Power Mgt 1b Event Reg Blk address */ - ACPI_GENERIC_ADDRESS XPm1aControlBlock; /* [V3] 64-bit Extended Power Mgt 1a Control Reg Blk address */ - ACPI_GENERIC_ADDRESS XPm1bControlBlock; /* [V3] 64-bit Extended Power Mgt 1b Control Reg Blk address */ - ACPI_GENERIC_ADDRESS XPm2ControlBlock; /* [V3] 64-bit Extended Power Mgt 2 Control Reg Blk address */ - ACPI_GENERIC_ADDRESS XPmTimerBlock; /* [V3] 64-bit Extended Power Mgt Timer Ctrl Reg Blk address */ - ACPI_GENERIC_ADDRESS XGpe0Block; /* [V3] 64-bit Extended General Purpose Event 0 Reg Blk address */ - ACPI_GENERIC_ADDRESS XGpe1Block; /* [V3] 64-bit Extended General Purpose Event 1 Reg Blk address */ - /* End of Version 3 FADT fields (ACPI 2.0) */ - - ACPI_GENERIC_ADDRESS SleepControl; /* [V4] 64-bit Sleep Control register (ACPI 5.0) */ - /* End of Version 4 FADT fields (ACPI 3.0 and ACPI 4.0) (Field was originally reserved in ACPI 3.0) */ - - ACPI_GENERIC_ADDRESS SleepStatus; /* [V5] 64-bit Sleep Status register (ACPI 5.0) */ - /* End of Version 5 FADT fields (ACPI 5.0) */ - - UINT64 HypervisorId; /* [V6] Hypervisor Vendor ID (ACPI 6.0) */ - /* End of Version 6 FADT fields (ACPI 6.0) */ - - } ACPI_TABLE_FADT; /* Masks for FADT IA-PC Boot Architecture Flags (boot_flags) [Vx]=Introduced in this FADT revision */ #define ACPI_FADT_LEGACY_DEVICES (1) /* 00: [V2] System has LPC or ISA bus devices */ #define ACPI_FADT_8042 (1<<1) /* 01: [V3] System has an 8042 controller on port 60/64 */ #define ACPI_FADT_NO_VGA (1<<2) /* 02: [V4] It is not safe to probe for VGA hardware */ #define ACPI_FADT_NO_MSI (1<<3) /* 03: [V4] Message Signaled Interrupts (MSI) must not be enabled */ #define ACPI_FADT_NO_ASPM (1<<4) /* 04: [V4] PCIe ASPM control must not be enabled */ #define ACPI_FADT_NO_CMOS_RTC (1<<5) /* 05: [V5] No CMOS real-time clock present */ /* Masks for FADT ARM Boot Architecture Flags (arm_boot_flags) ACPI 5.1 */ -#define ACPI_FADT_PSCI_COMPLIANT (1) /* 00: [V5] PSCI 0.2+ is implemented */ -#define ACPI_FADT_PSCI_USE_HVC (1<<1) /* 01: [V5] HVC must be used instead of SMC as the PSCI conduit */ +#define ACPI_FADT_PSCI_COMPLIANT (1) /* 00: [V5+] PSCI 0.2+ is implemented */ +#define ACPI_FADT_PSCI_USE_HVC (1<<1) /* 01: [V5+] HVC must be used instead of SMC as the PSCI conduit */ /* Masks for FADT flags */ #define ACPI_FADT_WBINVD (1) /* 00: [V1] The WBINVD instruction works properly */ #define ACPI_FADT_WBINVD_FLUSH (1<<1) /* 01: [V1] WBINVD flushes but does not invalidate caches */ #define ACPI_FADT_C1_SUPPORTED (1<<2) /* 02: [V1] All processors support C1 state */ #define ACPI_FADT_C2_MP_SUPPORTED (1<<3) /* 03: [V1] C2 state works on MP system */ #define ACPI_FADT_POWER_BUTTON (1<<4) /* 04: [V1] Power button is handled as a control method device */ #define ACPI_FADT_SLEEP_BUTTON (1<<5) /* 05: [V1] Sleep button is handled as a control method device */ #define ACPI_FADT_FIXED_RTC (1<<6) /* 06: [V1] RTC wakeup status is not in fixed register space */ #define ACPI_FADT_S4_RTC_WAKE (1<<7) /* 07: [V1] RTC alarm can wake system from S4 */ #define ACPI_FADT_32BIT_TIMER (1<<8) /* 08: [V1] ACPI timer width is 32-bit (0=24-bit) */ #define ACPI_FADT_DOCKING_SUPPORTED (1<<9) /* 09: [V1] Docking supported */ #define ACPI_FADT_RESET_REGISTER (1<<10) /* 10: [V2] System reset via the FADT RESET_REG supported */ #define ACPI_FADT_SEALED_CASE (1<<11) /* 11: [V3] No internal expansion capabilities and case is sealed */ #define ACPI_FADT_HEADLESS (1<<12) /* 12: [V3] No local video capabilities or local input devices */ #define ACPI_FADT_SLEEP_TYPE (1<<13) /* 13: [V3] Must execute native instruction after writing SLP_TYPx register */ #define ACPI_FADT_PCI_EXPRESS_WAKE (1<<14) /* 14: [V4] System supports PCIEXP_WAKE (STS/EN) bits (ACPI 3.0) */ #define ACPI_FADT_PLATFORM_CLOCK (1<<15) /* 15: [V4] OSPM should use platform-provided timer (ACPI 3.0) */ #define ACPI_FADT_S4_RTC_VALID (1<<16) /* 16: [V4] Contents of RTC_STS valid after S4 wake (ACPI 3.0) */ #define ACPI_FADT_REMOTE_POWER_ON (1<<17) /* 17: [V4] System is compatible with remote power on (ACPI 3.0) */ #define ACPI_FADT_APIC_CLUSTER (1<<18) /* 18: [V4] All local APICs must use cluster model (ACPI 3.0) */ #define ACPI_FADT_APIC_PHYSICAL (1<<19) /* 19: [V4] All local xAPICs must use physical dest mode (ACPI 3.0) */ #define ACPI_FADT_HW_REDUCED (1<<20) /* 20: [V5] ACPI hardware is not implemented (ACPI 5.0) */ #define ACPI_FADT_LOW_POWER_S0 (1<<21) /* 21: [V5] S0 power savings are equal or better than S3 (ACPI 5.0) */ /* Values for PreferredProfile (Preferred Power Management Profiles) */ enum AcpiPreferredPmProfiles { PM_UNSPECIFIED = 0, PM_DESKTOP = 1, PM_MOBILE = 2, PM_WORKSTATION = 3, PM_ENTERPRISE_SERVER = 4, PM_SOHO_SERVER = 5, PM_APPLIANCE_PC = 6, PM_PERFORMANCE_SERVER = 7, PM_TABLET = 8 }; /* Values for SleepStatus and SleepControl registers (V5+ FADT) */ #define ACPI_X_WAKE_STATUS 0x80 #define ACPI_X_SLEEP_TYPE_MASK 0x1C #define ACPI_X_SLEEP_TYPE_POSITION 0x02 #define ACPI_X_SLEEP_ENABLE 0x20 /* Reset to default packing */ #pragma pack() /* * Internal table-related structures */ typedef union acpi_name_union { UINT32 Integer; char Ascii[4]; } ACPI_NAME_UNION; /* Internal ACPI Table Descriptor. One per ACPI table. */ typedef struct acpi_table_desc { ACPI_PHYSICAL_ADDRESS Address; ACPI_TABLE_HEADER *Pointer; UINT32 Length; /* Length fixed at 32 bits (fixed in table header) */ ACPI_NAME_UNION Signature; ACPI_OWNER_ID OwnerId; UINT8 Flags; + UINT16 ValidationCount; } ACPI_TABLE_DESC; /* Masks for Flags field above */ #define ACPI_TABLE_ORIGIN_EXTERNAL_VIRTUAL (0) /* Virtual address, external maintained */ #define ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL (1) /* Physical address, internally mapped */ #define ACPI_TABLE_ORIGIN_INTERNAL_VIRTUAL (2) /* Virtual address, internallly allocated */ #define ACPI_TABLE_ORIGIN_MASK (3) #define ACPI_TABLE_IS_LOADED (8) /* * Get the remaining ACPI tables */ #include #include #include /* Macros used to generate offsets to specific table fields */ #define ACPI_FADT_OFFSET(f) (UINT16) ACPI_OFFSET (ACPI_TABLE_FADT, f) /* * Sizes of the various flavors of FADT. We need to look closely * at the FADT length because the version number essentially tells * us nothing because of many BIOS bugs where the version does not * match the expected length. In other words, the length of the * FADT is the bottom line as to what the version really is. * - * NOTE: There is no officialy released V2 of the FADT. This - * version was used only for prototyping and testing during the - * 32-bit to 64-bit transition. V3 was the first official 64-bit - * version of the FADT. - * - * Update this list of defines when a new version of the FADT is - * added to the ACPI specification. Note that the FADT version is - * only incremented when new fields are appended to the existing - * version. Therefore, the FADT version is competely independent - * from the version of the ACPI specification where it is - * defined. - * - * For reference, the various FADT lengths are as follows: - * FADT V1 size: 0x074 ACPI 1.0 - * FADT V3 size: 0x0F4 ACPI 2.0 - * FADT V4 size: 0x100 ACPI 3.0 and ACPI 4.0 - * FADT V5 size: 0x10C ACPI 5.0 - * FADT V6 size: 0x114 ACPI 6.0 + * For reference, the values below are as follows: + * FADT V1 size: 0x074 + * FADT V2 size: 0x084 + * FADT V3 size: 0x0F4 + * FADT V4 size: 0x0F4 + * FADT V5 size: 0x10C + * FADT V6 size: 0x114 */ -#define ACPI_FADT_V1_SIZE (UINT32) (ACPI_FADT_OFFSET (Flags) + 4) /* ACPI 1.0 */ -#define ACPI_FADT_V3_SIZE (UINT32) (ACPI_FADT_OFFSET (SleepControl)) /* ACPI 2.0 */ -#define ACPI_FADT_V4_SIZE (UINT32) (ACPI_FADT_OFFSET (SleepStatus)) /* ACPI 3.0 and ACPI 4.0 */ -#define ACPI_FADT_V5_SIZE (UINT32) (ACPI_FADT_OFFSET (HypervisorId)) /* ACPI 5.0 */ -#define ACPI_FADT_V6_SIZE (UINT32) (sizeof (ACPI_TABLE_FADT)) /* ACPI 6.0 */ +#define ACPI_FADT_V1_SIZE (UINT32) (ACPI_FADT_OFFSET (Flags) + 4) +#define ACPI_FADT_V2_SIZE (UINT32) (ACPI_FADT_OFFSET (MinorRevision) + 1) +#define ACPI_FADT_V3_SIZE (UINT32) (ACPI_FADT_OFFSET (SleepControl)) +#define ACPI_FADT_V5_SIZE (UINT32) (ACPI_FADT_OFFSET (HypervisorId)) +#define ACPI_FADT_V6_SIZE (UINT32) (sizeof (ACPI_TABLE_FADT)) -/* Update these when new FADT versions are added */ - -#define ACPI_FADT_MAX_VERSION 6 #define ACPI_FADT_CONFORMANCE "ACPI 6.1 (FADT version 6)" #endif /* __ACTBL_H__ */ Index: head/sys/contrib/dev/acpica/include/acutils.h =================================================================== --- head/sys/contrib/dev/acpica/include/acutils.h (revision 308952) +++ head/sys/contrib/dev/acpica/include/acutils.h (revision 308953) @@ -1,1087 +1,1091 @@ /****************************************************************************** * * Name: acutils.h -- prototypes for the common (subsystem-wide) procedures * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef _ACUTILS_H #define _ACUTILS_H extern const UINT8 AcpiGbl_ResourceAmlSizes[]; extern const UINT8 AcpiGbl_ResourceAmlSerialBusSizes[]; /* Strings used by the disassembler and debugger resource dump routines */ #if defined(ACPI_DEBUG_OUTPUT) || defined (ACPI_DISASSEMBLER) || defined (ACPI_DEBUGGER) extern const char *AcpiGbl_BmDecode[]; extern const char *AcpiGbl_ConfigDecode[]; extern const char *AcpiGbl_ConsumeDecode[]; extern const char *AcpiGbl_DecDecode[]; extern const char *AcpiGbl_HeDecode[]; extern const char *AcpiGbl_IoDecode[]; extern const char *AcpiGbl_LlDecode[]; extern const char *AcpiGbl_MaxDecode[]; extern const char *AcpiGbl_MemDecode[]; extern const char *AcpiGbl_MinDecode[]; extern const char *AcpiGbl_MtpDecode[]; extern const char *AcpiGbl_RngDecode[]; extern const char *AcpiGbl_RwDecode[]; extern const char *AcpiGbl_ShrDecode[]; extern const char *AcpiGbl_SizDecode[]; extern const char *AcpiGbl_TrsDecode[]; extern const char *AcpiGbl_TtpDecode[]; extern const char *AcpiGbl_TypDecode[]; extern const char *AcpiGbl_PpcDecode[]; extern const char *AcpiGbl_IorDecode[]; extern const char *AcpiGbl_DtsDecode[]; extern const char *AcpiGbl_CtDecode[]; extern const char *AcpiGbl_SbtDecode[]; extern const char *AcpiGbl_AmDecode[]; extern const char *AcpiGbl_SmDecode[]; extern const char *AcpiGbl_WmDecode[]; extern const char *AcpiGbl_CphDecode[]; extern const char *AcpiGbl_CpoDecode[]; extern const char *AcpiGbl_DpDecode[]; extern const char *AcpiGbl_EdDecode[]; extern const char *AcpiGbl_BpbDecode[]; extern const char *AcpiGbl_SbDecode[]; extern const char *AcpiGbl_FcDecode[]; extern const char *AcpiGbl_PtDecode[]; #endif /* * For the iASL compiler case, the output is redirected to stderr so that * any of the various ACPI errors and warnings do not appear in the output * files, for either the compiler or disassembler portions of the tool. */ #ifdef ACPI_ASL_COMPILER #include #define ACPI_MSG_REDIRECT_BEGIN \ FILE *OutputFile = AcpiGbl_OutputFile; \ AcpiOsRedirectOutput (stderr); #define ACPI_MSG_REDIRECT_END \ AcpiOsRedirectOutput (OutputFile); #else /* * non-iASL case - no redirection, nothing to do */ #define ACPI_MSG_REDIRECT_BEGIN #define ACPI_MSG_REDIRECT_END #endif /* * Common error message prefixes */ #ifndef ACPI_MSG_ERROR #define ACPI_MSG_ERROR "ACPI Error: " #endif #ifndef ACPI_MSG_EXCEPTION #define ACPI_MSG_EXCEPTION "ACPI Exception: " #endif #ifndef ACPI_MSG_WARNING #define ACPI_MSG_WARNING "ACPI Warning: " #endif #ifndef ACPI_MSG_INFO #define ACPI_MSG_INFO "ACPI: " #endif #ifndef ACPI_MSG_BIOS_ERROR #define ACPI_MSG_BIOS_ERROR "ACPI BIOS Error (bug): " #endif #ifndef ACPI_MSG_BIOS_WARNING #define ACPI_MSG_BIOS_WARNING "ACPI BIOS Warning (bug): " #endif /* * Common message suffix */ #define ACPI_MSG_SUFFIX \ AcpiOsPrintf (" (%8.8X/%s-%u)\n", ACPI_CA_VERSION, ModuleName, LineNumber) /* Types for Resource descriptor entries */ #define ACPI_INVALID_RESOURCE 0 #define ACPI_FIXED_LENGTH 1 #define ACPI_VARIABLE_LENGTH 2 #define ACPI_SMALL_VARIABLE_LENGTH 3 typedef ACPI_STATUS (*ACPI_WALK_AML_CALLBACK) ( UINT8 *Aml, UINT32 Length, UINT32 Offset, UINT8 ResourceIndex, void **Context); typedef ACPI_STATUS (*ACPI_PKG_CALLBACK) ( UINT8 ObjectType, ACPI_OPERAND_OBJECT *SourceObject, ACPI_GENERIC_STATE *State, void *Context); typedef struct acpi_pkg_info { UINT8 *FreeSpace; ACPI_SIZE Length; UINT32 ObjectSpace; UINT32 NumPackages; } ACPI_PKG_INFO; /* Object reference counts */ #define REF_INCREMENT (UINT16) 0 #define REF_DECREMENT (UINT16) 1 /* AcpiUtDumpBuffer */ #define DB_BYTE_DISPLAY 1 #define DB_WORD_DISPLAY 2 #define DB_DWORD_DISPLAY 4 #define DB_QWORD_DISPLAY 8 /* * utascii - ASCII utilities */ BOOLEAN AcpiUtValidNameseg ( char *Signature); BOOLEAN AcpiUtValidNameChar ( char Character, UINT32 Position); void AcpiUtCheckAndRepairAscii ( UINT8 *Name, char *RepairedName, UINT32 Count); /* * utnonansi - Non-ANSI C library functions */ void AcpiUtStrupr ( char *SrcString); void AcpiUtStrlwr ( char *SrcString); int AcpiUtStricmp ( char *String1, char *String2); ACPI_STATUS AcpiUtStrtoul64 ( char *String, UINT32 Flags, UINT64 *RetInteger); /* * Values for Flags above * Note: LIMIT values correspond to AcpiGbl_IntegerByteWidth values (4/8) */ #define ACPI_STRTOUL_32BIT 0x04 /* 4 bytes */ #define ACPI_STRTOUL_64BIT 0x08 /* 8 bytes */ #define ACPI_STRTOUL_BASE16 0x10 /* Default: Base10/16 */ /* * utglobal - Global data structures and procedures */ ACPI_STATUS AcpiUtInitGlobals ( void); #if defined(ACPI_DEBUG_OUTPUT) || defined(ACPI_DEBUGGER) const char * AcpiUtGetMutexName ( UINT32 MutexId); const char * AcpiUtGetNotifyName ( UINT32 NotifyValue, ACPI_OBJECT_TYPE Type); #endif const char * AcpiUtGetTypeName ( ACPI_OBJECT_TYPE Type); const char * AcpiUtGetNodeName ( void *Object); const char * AcpiUtGetDescriptorName ( void *Object); const char * AcpiUtGetReferenceName ( ACPI_OPERAND_OBJECT *Object); const char * AcpiUtGetObjectTypeName ( ACPI_OPERAND_OBJECT *ObjDesc); const char * AcpiUtGetRegionName ( UINT8 SpaceId); const char * AcpiUtGetEventName ( UINT32 EventId); +const char * +AcpiUtGetArgumentTypeName ( + UINT32 ArgType); + char AcpiUtHexToAsciiChar ( UINT64 Integer, UINT32 Position); ACPI_STATUS AcpiUtAsciiToHexByte ( char *TwoAsciiChars, UINT8 *ReturnByte); UINT8 AcpiUtAsciiCharToHex ( int HexChar); BOOLEAN AcpiUtValidObjectType ( ACPI_OBJECT_TYPE Type); /* * utinit - miscellaneous initialization and shutdown */ ACPI_STATUS AcpiUtHardwareInitialize ( void); void AcpiUtSubsystemShutdown ( void); /* * utcopy - Object construction and conversion interfaces */ ACPI_STATUS AcpiUtBuildSimpleObject( ACPI_OPERAND_OBJECT *Obj, ACPI_OBJECT *UserObj, UINT8 *DataSpace, UINT32 *BufferSpaceUsed); ACPI_STATUS AcpiUtBuildPackageObject ( ACPI_OPERAND_OBJECT *Obj, UINT8 *Buffer, UINT32 *SpaceUsed); ACPI_STATUS AcpiUtCopyIobjectToEobject ( ACPI_OPERAND_OBJECT *Obj, ACPI_BUFFER *RetBuffer); ACPI_STATUS AcpiUtCopyEobjectToIobject ( ACPI_OBJECT *Obj, ACPI_OPERAND_OBJECT **InternalObj); ACPI_STATUS AcpiUtCopyISimpleToIsimple ( ACPI_OPERAND_OBJECT *SourceObj, ACPI_OPERAND_OBJECT *DestObj); ACPI_STATUS AcpiUtCopyIobjectToIobject ( ACPI_OPERAND_OBJECT *SourceDesc, ACPI_OPERAND_OBJECT **DestDesc, ACPI_WALK_STATE *WalkState); /* * utcreate - Object creation */ ACPI_STATUS AcpiUtUpdateObjectReference ( ACPI_OPERAND_OBJECT *Object, UINT16 Action); /* * utdebug - Debug interfaces */ void AcpiUtInitStackPtrTrace ( void); void AcpiUtTrackStackPtr ( void); void AcpiUtTrace ( UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId); void AcpiUtTracePtr ( UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId, const void *Pointer); void AcpiUtTraceU32 ( UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId, UINT32 Integer); void AcpiUtTraceStr ( UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId, const char *String); void AcpiUtExit ( UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId); void AcpiUtStatusExit ( UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId, ACPI_STATUS Status); void AcpiUtValueExit ( UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId, UINT64 Value); void AcpiUtPtrExit ( UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId, UINT8 *Ptr); void AcpiUtStrExit ( UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId, const char *String); void AcpiUtDebugDumpBuffer ( UINT8 *Buffer, UINT32 Count, UINT32 Display, UINT32 ComponentId); void AcpiUtDumpBuffer ( UINT8 *Buffer, UINT32 Count, UINT32 Display, UINT32 Offset); #ifdef ACPI_APPLICATION void AcpiUtDumpBufferToFile ( ACPI_FILE File, UINT8 *Buffer, UINT32 Count, UINT32 Display, UINT32 BaseOffset); #endif void AcpiUtReportError ( char *ModuleName, UINT32 LineNumber); void AcpiUtReportInfo ( char *ModuleName, UINT32 LineNumber); void AcpiUtReportWarning ( char *ModuleName, UINT32 LineNumber); /* * utdelete - Object deletion and reference counts */ void AcpiUtAddReference ( ACPI_OPERAND_OBJECT *Object); void AcpiUtRemoveReference ( ACPI_OPERAND_OBJECT *Object); void AcpiUtDeleteInternalPackageObject ( ACPI_OPERAND_OBJECT *Object); void AcpiUtDeleteInternalSimpleObject ( ACPI_OPERAND_OBJECT *Object); void AcpiUtDeleteInternalObjectList ( ACPI_OPERAND_OBJECT **ObjList); /* * uteval - object evaluation */ ACPI_STATUS AcpiUtEvaluateObject ( ACPI_NAMESPACE_NODE *PrefixNode, const char *Path, UINT32 ExpectedReturnBtypes, ACPI_OPERAND_OBJECT **ReturnDesc); ACPI_STATUS AcpiUtEvaluateNumericObject ( const char *ObjectName, ACPI_NAMESPACE_NODE *DeviceNode, UINT64 *Value); ACPI_STATUS AcpiUtExecute_STA ( ACPI_NAMESPACE_NODE *DeviceNode, UINT32 *StatusFlags); ACPI_STATUS AcpiUtExecutePowerMethods ( ACPI_NAMESPACE_NODE *DeviceNode, const char **MethodNames, UINT8 MethodCount, UINT8 *OutValues); /* * utids - device ID support */ ACPI_STATUS AcpiUtExecute_HID ( ACPI_NAMESPACE_NODE *DeviceNode, ACPI_PNP_DEVICE_ID **ReturnId); ACPI_STATUS AcpiUtExecute_UID ( ACPI_NAMESPACE_NODE *DeviceNode, ACPI_PNP_DEVICE_ID **ReturnId); ACPI_STATUS AcpiUtExecute_CID ( ACPI_NAMESPACE_NODE *DeviceNode, ACPI_PNP_DEVICE_ID_LIST **ReturnCidList); ACPI_STATUS AcpiUtExecute_CLS ( ACPI_NAMESPACE_NODE *DeviceNode, ACPI_PNP_DEVICE_ID **ReturnId); /* * utlock - reader/writer locks */ ACPI_STATUS AcpiUtCreateRwLock ( ACPI_RW_LOCK *Lock); void AcpiUtDeleteRwLock ( ACPI_RW_LOCK *Lock); ACPI_STATUS AcpiUtAcquireReadLock ( ACPI_RW_LOCK *Lock); ACPI_STATUS AcpiUtReleaseReadLock ( ACPI_RW_LOCK *Lock); ACPI_STATUS AcpiUtAcquireWriteLock ( ACPI_RW_LOCK *Lock); void AcpiUtReleaseWriteLock ( ACPI_RW_LOCK *Lock); /* * utobject - internal object create/delete/cache routines */ ACPI_OPERAND_OBJECT * AcpiUtCreateInternalObjectDbg ( const char *ModuleName, UINT32 LineNumber, UINT32 ComponentId, ACPI_OBJECT_TYPE Type); void * AcpiUtAllocateObjectDescDbg ( const char *ModuleName, UINT32 LineNumber, UINT32 ComponentId); #define AcpiUtCreateInternalObject(t) AcpiUtCreateInternalObjectDbg (_AcpiModuleName,__LINE__,_COMPONENT,t) #define AcpiUtAllocateObjectDesc() AcpiUtAllocateObjectDescDbg (_AcpiModuleName,__LINE__,_COMPONENT) void AcpiUtDeleteObjectDesc ( ACPI_OPERAND_OBJECT *Object); BOOLEAN AcpiUtValidInternalObject ( void *Object); ACPI_OPERAND_OBJECT * AcpiUtCreatePackageObject ( UINT32 Count); ACPI_OPERAND_OBJECT * AcpiUtCreateIntegerObject ( UINT64 Value); ACPI_OPERAND_OBJECT * AcpiUtCreateBufferObject ( ACPI_SIZE BufferSize); ACPI_OPERAND_OBJECT * AcpiUtCreateStringObject ( ACPI_SIZE StringSize); ACPI_STATUS AcpiUtGetObjectSize( ACPI_OPERAND_OBJECT *Obj, ACPI_SIZE *ObjLength); /* * utosi - Support for the _OSI predefined control method */ ACPI_STATUS AcpiUtInitializeInterfaces ( void); ACPI_STATUS AcpiUtInterfaceTerminate ( void); ACPI_STATUS AcpiUtInstallInterface ( ACPI_STRING InterfaceName); ACPI_STATUS AcpiUtRemoveInterface ( ACPI_STRING InterfaceName); ACPI_STATUS AcpiUtUpdateInterfaces ( UINT8 Action); ACPI_INTERFACE_INFO * AcpiUtGetInterface ( ACPI_STRING InterfaceName); ACPI_STATUS AcpiUtOsiImplementation ( ACPI_WALK_STATE *WalkState); /* * utpredef - support for predefined names */ const ACPI_PREDEFINED_INFO * AcpiUtGetNextPredefinedMethod ( const ACPI_PREDEFINED_INFO *ThisName); const ACPI_PREDEFINED_INFO * AcpiUtMatchPredefinedMethod ( char *Name); void AcpiUtGetExpectedReturnTypes ( char *Buffer, UINT32 ExpectedBtypes); #if (defined ACPI_ASL_COMPILER || defined ACPI_HELP_APP) const ACPI_PREDEFINED_INFO * AcpiUtMatchResourceName ( char *Name); void AcpiUtDisplayPredefinedMethod ( char *Buffer, const ACPI_PREDEFINED_INFO *ThisName, BOOLEAN MultiLine); UINT32 AcpiUtGetResourceBitWidth ( char *Buffer, UINT16 Types); #endif /* * utstate - Generic state creation/cache routines */ void AcpiUtPushGenericState ( ACPI_GENERIC_STATE **ListHead, ACPI_GENERIC_STATE *State); ACPI_GENERIC_STATE * AcpiUtPopGenericState ( ACPI_GENERIC_STATE **ListHead); ACPI_GENERIC_STATE * AcpiUtCreateGenericState ( void); ACPI_THREAD_STATE * AcpiUtCreateThreadState ( void); ACPI_GENERIC_STATE * AcpiUtCreateUpdateState ( ACPI_OPERAND_OBJECT *Object, UINT16 Action); ACPI_GENERIC_STATE * AcpiUtCreatePkgState ( void *InternalObject, void *ExternalObject, UINT16 Index); ACPI_STATUS AcpiUtCreateUpdateStateAndPush ( ACPI_OPERAND_OBJECT *Object, UINT16 Action, ACPI_GENERIC_STATE **StateList); ACPI_GENERIC_STATE * AcpiUtCreateControlState ( void); void AcpiUtDeleteGenericState ( ACPI_GENERIC_STATE *State); /* * utmath */ ACPI_STATUS AcpiUtDivide ( UINT64 InDividend, UINT64 InDivisor, UINT64 *OutQuotient, UINT64 *OutRemainder); ACPI_STATUS AcpiUtShortDivide ( UINT64 InDividend, UINT32 Divisor, UINT64 *OutQuotient, UINT32 *OutRemainder); /* * utmisc */ const ACPI_EXCEPTION_INFO * AcpiUtValidateException ( ACPI_STATUS Status); BOOLEAN AcpiUtIsPciRootBridge ( char *Id); #if (defined ACPI_ASL_COMPILER || defined ACPI_EXEC_APP || defined ACPI_NAMES_APP) BOOLEAN AcpiUtIsAmlTable ( ACPI_TABLE_HEADER *Table); #endif ACPI_STATUS AcpiUtWalkPackageTree ( ACPI_OPERAND_OBJECT *SourceObject, void *TargetObject, ACPI_PKG_CALLBACK WalkCallback, void *Context); /* Values for Base above (16=Hex, 10=Decimal) */ #define ACPI_ANY_BASE 0 UINT32 AcpiUtDwordByteSwap ( UINT32 Value); void AcpiUtSetIntegerWidth ( UINT8 Revision); #ifdef ACPI_DEBUG_OUTPUT void AcpiUtDisplayInitPathname ( UINT8 Type, ACPI_NAMESPACE_NODE *ObjHandle, const char *Path); #endif /* * utownerid - Support for Table/Method Owner IDs */ ACPI_STATUS AcpiUtAllocateOwnerId ( ACPI_OWNER_ID *OwnerId); void AcpiUtReleaseOwnerId ( ACPI_OWNER_ID *OwnerId); /* * utresrc */ ACPI_STATUS AcpiUtWalkAmlResources ( ACPI_WALK_STATE *WalkState, UINT8 *Aml, ACPI_SIZE AmlLength, ACPI_WALK_AML_CALLBACK UserFunction, void **Context); ACPI_STATUS AcpiUtValidateResource ( ACPI_WALK_STATE *WalkState, void *Aml, UINT8 *ReturnIndex); UINT32 AcpiUtGetDescriptorLength ( void *Aml); UINT16 AcpiUtGetResourceLength ( void *Aml); UINT8 AcpiUtGetResourceHeaderLength ( void *Aml); UINT8 AcpiUtGetResourceType ( void *Aml); ACPI_STATUS AcpiUtGetResourceEndTag ( ACPI_OPERAND_OBJECT *ObjDesc, UINT8 **EndTag); /* * utstring - String and character utilities */ void AcpiUtPrintString ( char *String, UINT16 MaxLength); #if defined ACPI_ASL_COMPILER || defined ACPI_EXEC_APP void UtConvertBackslashes ( char *Pathname); #endif void AcpiUtRepairName ( char *Name); #if defined (ACPI_DEBUGGER) || defined (ACPI_APPLICATION) BOOLEAN AcpiUtSafeStrcpy ( char *Dest, ACPI_SIZE DestSize, char *Source); BOOLEAN AcpiUtSafeStrcat ( char *Dest, ACPI_SIZE DestSize, char *Source); BOOLEAN AcpiUtSafeStrncat ( char *Dest, ACPI_SIZE DestSize, char *Source, ACPI_SIZE MaxTransferLength); #endif /* * utmutex - mutex support */ ACPI_STATUS AcpiUtMutexInitialize ( void); void AcpiUtMutexTerminate ( void); ACPI_STATUS AcpiUtAcquireMutex ( ACPI_MUTEX_HANDLE MutexId); ACPI_STATUS AcpiUtReleaseMutex ( ACPI_MUTEX_HANDLE MutexId); /* * utalloc - memory allocation and object caching */ ACPI_STATUS AcpiUtCreateCaches ( void); ACPI_STATUS AcpiUtDeleteCaches ( void); ACPI_STATUS AcpiUtValidateBuffer ( ACPI_BUFFER *Buffer); ACPI_STATUS AcpiUtInitializeBuffer ( ACPI_BUFFER *Buffer, ACPI_SIZE RequiredLength); #ifdef ACPI_DBG_TRACK_ALLOCATIONS void * AcpiUtAllocateAndTrack ( ACPI_SIZE Size, UINT32 Component, const char *Module, UINT32 Line); void * AcpiUtAllocateZeroedAndTrack ( ACPI_SIZE Size, UINT32 Component, const char *Module, UINT32 Line); void AcpiUtFreeAndTrack ( void *Address, UINT32 Component, const char *Module, UINT32 Line); void AcpiUtDumpAllocationInfo ( void); void AcpiUtDumpAllocations ( UINT32 Component, const char *Module); ACPI_STATUS AcpiUtCreateList ( const char *ListName, UINT16 ObjectSize, ACPI_MEMORY_LIST **ReturnCache); #endif /* ACPI_DBG_TRACK_ALLOCATIONS */ /* * utaddress - address range check */ ACPI_STATUS AcpiUtAddAddressRange ( ACPI_ADR_SPACE_TYPE SpaceId, ACPI_PHYSICAL_ADDRESS Address, UINT32 Length, ACPI_NAMESPACE_NODE *RegionNode); void AcpiUtRemoveAddressRange ( ACPI_ADR_SPACE_TYPE SpaceId, ACPI_NAMESPACE_NODE *RegionNode); UINT32 AcpiUtCheckAddressRange ( ACPI_ADR_SPACE_TYPE SpaceId, ACPI_PHYSICAL_ADDRESS Address, UINT32 Length, BOOLEAN Warn); void AcpiUtDeleteAddressLists ( void); /* * utxferror - various error/warning output functions */ void ACPI_INTERNAL_VAR_XFACE AcpiUtPredefinedWarning ( const char *ModuleName, UINT32 LineNumber, char *Pathname, UINT8 NodeFlags, const char *Format, ...); void ACPI_INTERNAL_VAR_XFACE AcpiUtPredefinedInfo ( const char *ModuleName, UINT32 LineNumber, char *Pathname, UINT8 NodeFlags, const char *Format, ...); void ACPI_INTERNAL_VAR_XFACE AcpiUtPredefinedBiosError ( const char *ModuleName, UINT32 LineNumber, char *Pathname, UINT8 NodeFlags, const char *Format, ...); void AcpiUtNamespaceError ( const char *ModuleName, UINT32 LineNumber, const char *InternalName, ACPI_STATUS LookupStatus); void AcpiUtMethodError ( const char *ModuleName, UINT32 LineNumber, const char *Message, ACPI_NAMESPACE_NODE *Node, const char *Path, ACPI_STATUS LookupStatus); /* * Utility functions for ACPI names and IDs */ const AH_PREDEFINED_NAME * AcpiAhMatchPredefinedName ( char *Nameseg); const AH_DEVICE_ID * AcpiAhMatchHardwareId ( char *Hid); const char * AcpiAhMatchUuid ( UINT8 *Data); /* * utuuid -- UUID support functions */ #if (defined ACPI_ASL_COMPILER || defined ACPI_DISASSEMBLER || defined ACPI_EXEC_APP || defined ACPI_HELP_APP) void AcpiUtConvertStringToUuid ( char *InString, UINT8 *UuidBuffer); #endif #endif /* _ACUTILS_H */ Index: head/sys/contrib/dev/acpica/include/amlcode.h =================================================================== --- head/sys/contrib/dev/acpica/include/amlcode.h (revision 308952) +++ head/sys/contrib/dev/acpica/include/amlcode.h (revision 308953) @@ -1,514 +1,530 @@ /****************************************************************************** * * Name: amlcode.h - Definitions for AML, as included in "definition blocks" * Declarations and definitions contained herein are derived * directly from the ACPI specification. * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef __AMLCODE_H__ #define __AMLCODE_H__ /* primary opcodes */ #define AML_NULL_CHAR (UINT16) 0x00 #define AML_ZERO_OP (UINT16) 0x00 #define AML_ONE_OP (UINT16) 0x01 #define AML_UNASSIGNED (UINT16) 0x02 #define AML_ALIAS_OP (UINT16) 0x06 #define AML_NAME_OP (UINT16) 0x08 #define AML_BYTE_OP (UINT16) 0x0a #define AML_WORD_OP (UINT16) 0x0b #define AML_DWORD_OP (UINT16) 0x0c #define AML_STRING_OP (UINT16) 0x0d #define AML_QWORD_OP (UINT16) 0x0e /* ACPI 2.0 */ #define AML_SCOPE_OP (UINT16) 0x10 #define AML_BUFFER_OP (UINT16) 0x11 #define AML_PACKAGE_OP (UINT16) 0x12 #define AML_VAR_PACKAGE_OP (UINT16) 0x13 /* ACPI 2.0 */ #define AML_METHOD_OP (UINT16) 0x14 #define AML_EXTERNAL_OP (UINT16) 0x15 /* ACPI 6.0 */ #define AML_DUAL_NAME_PREFIX (UINT16) 0x2e #define AML_MULTI_NAME_PREFIX_OP (UINT16) 0x2f #define AML_NAME_CHAR_SUBSEQ (UINT16) 0x30 #define AML_NAME_CHAR_FIRST (UINT16) 0x41 #define AML_EXTENDED_OP_PREFIX (UINT16) 0x5b #define AML_ROOT_PREFIX (UINT16) 0x5c #define AML_PARENT_PREFIX (UINT16) 0x5e #define AML_LOCAL_OP (UINT16) 0x60 #define AML_LOCAL0 (UINT16) 0x60 #define AML_LOCAL1 (UINT16) 0x61 #define AML_LOCAL2 (UINT16) 0x62 #define AML_LOCAL3 (UINT16) 0x63 #define AML_LOCAL4 (UINT16) 0x64 #define AML_LOCAL5 (UINT16) 0x65 #define AML_LOCAL6 (UINT16) 0x66 #define AML_LOCAL7 (UINT16) 0x67 #define AML_ARG_OP (UINT16) 0x68 #define AML_ARG0 (UINT16) 0x68 #define AML_ARG1 (UINT16) 0x69 #define AML_ARG2 (UINT16) 0x6a #define AML_ARG3 (UINT16) 0x6b #define AML_ARG4 (UINT16) 0x6c #define AML_ARG5 (UINT16) 0x6d #define AML_ARG6 (UINT16) 0x6e #define AML_STORE_OP (UINT16) 0x70 #define AML_REF_OF_OP (UINT16) 0x71 #define AML_ADD_OP (UINT16) 0x72 #define AML_CONCAT_OP (UINT16) 0x73 #define AML_SUBTRACT_OP (UINT16) 0x74 #define AML_INCREMENT_OP (UINT16) 0x75 #define AML_DECREMENT_OP (UINT16) 0x76 #define AML_MULTIPLY_OP (UINT16) 0x77 #define AML_DIVIDE_OP (UINT16) 0x78 #define AML_SHIFT_LEFT_OP (UINT16) 0x79 #define AML_SHIFT_RIGHT_OP (UINT16) 0x7a #define AML_BIT_AND_OP (UINT16) 0x7b #define AML_BIT_NAND_OP (UINT16) 0x7c #define AML_BIT_OR_OP (UINT16) 0x7d #define AML_BIT_NOR_OP (UINT16) 0x7e #define AML_BIT_XOR_OP (UINT16) 0x7f #define AML_BIT_NOT_OP (UINT16) 0x80 #define AML_FIND_SET_LEFT_BIT_OP (UINT16) 0x81 #define AML_FIND_SET_RIGHT_BIT_OP (UINT16) 0x82 #define AML_DEREF_OF_OP (UINT16) 0x83 #define AML_CONCAT_RES_OP (UINT16) 0x84 /* ACPI 2.0 */ #define AML_MOD_OP (UINT16) 0x85 /* ACPI 2.0 */ #define AML_NOTIFY_OP (UINT16) 0x86 #define AML_SIZE_OF_OP (UINT16) 0x87 #define AML_INDEX_OP (UINT16) 0x88 #define AML_MATCH_OP (UINT16) 0x89 #define AML_CREATE_DWORD_FIELD_OP (UINT16) 0x8a #define AML_CREATE_WORD_FIELD_OP (UINT16) 0x8b #define AML_CREATE_BYTE_FIELD_OP (UINT16) 0x8c #define AML_CREATE_BIT_FIELD_OP (UINT16) 0x8d #define AML_OBJECT_TYPE_OP (UINT16) 0x8e #define AML_CREATE_QWORD_FIELD_OP (UINT16) 0x8f /* ACPI 2.0 */ #define AML_LAND_OP (UINT16) 0x90 #define AML_LOR_OP (UINT16) 0x91 #define AML_LNOT_OP (UINT16) 0x92 #define AML_LEQUAL_OP (UINT16) 0x93 #define AML_LGREATER_OP (UINT16) 0x94 #define AML_LLESS_OP (UINT16) 0x95 #define AML_TO_BUFFER_OP (UINT16) 0x96 /* ACPI 2.0 */ #define AML_TO_DECSTRING_OP (UINT16) 0x97 /* ACPI 2.0 */ #define AML_TO_HEXSTRING_OP (UINT16) 0x98 /* ACPI 2.0 */ #define AML_TO_INTEGER_OP (UINT16) 0x99 /* ACPI 2.0 */ #define AML_TO_STRING_OP (UINT16) 0x9c /* ACPI 2.0 */ #define AML_COPY_OP (UINT16) 0x9d /* ACPI 2.0 */ #define AML_MID_OP (UINT16) 0x9e /* ACPI 2.0 */ #define AML_CONTINUE_OP (UINT16) 0x9f /* ACPI 2.0 */ #define AML_IF_OP (UINT16) 0xa0 #define AML_ELSE_OP (UINT16) 0xa1 #define AML_WHILE_OP (UINT16) 0xa2 #define AML_NOOP_OP (UINT16) 0xa3 #define AML_RETURN_OP (UINT16) 0xa4 #define AML_BREAK_OP (UINT16) 0xa5 #define AML_BREAK_POINT_OP (UINT16) 0xcc #define AML_ONES_OP (UINT16) 0xff /* prefixed opcodes */ #define AML_EXTENDED_OPCODE (UINT16) 0x5b00 /* prefix for 2-byte opcodes */ #define AML_MUTEX_OP (UINT16) 0x5b01 #define AML_EVENT_OP (UINT16) 0x5b02 #define AML_SHIFT_RIGHT_BIT_OP (UINT16) 0x5b10 #define AML_SHIFT_LEFT_BIT_OP (UINT16) 0x5b11 #define AML_COND_REF_OF_OP (UINT16) 0x5b12 #define AML_CREATE_FIELD_OP (UINT16) 0x5b13 #define AML_LOAD_TABLE_OP (UINT16) 0x5b1f /* ACPI 2.0 */ #define AML_LOAD_OP (UINT16) 0x5b20 #define AML_STALL_OP (UINT16) 0x5b21 #define AML_SLEEP_OP (UINT16) 0x5b22 #define AML_ACQUIRE_OP (UINT16) 0x5b23 #define AML_SIGNAL_OP (UINT16) 0x5b24 #define AML_WAIT_OP (UINT16) 0x5b25 #define AML_RESET_OP (UINT16) 0x5b26 #define AML_RELEASE_OP (UINT16) 0x5b27 #define AML_FROM_BCD_OP (UINT16) 0x5b28 #define AML_TO_BCD_OP (UINT16) 0x5b29 #define AML_UNLOAD_OP (UINT16) 0x5b2a #define AML_REVISION_OP (UINT16) 0x5b30 #define AML_DEBUG_OP (UINT16) 0x5b31 #define AML_FATAL_OP (UINT16) 0x5b32 #define AML_TIMER_OP (UINT16) 0x5b33 /* ACPI 3.0 */ #define AML_REGION_OP (UINT16) 0x5b80 #define AML_FIELD_OP (UINT16) 0x5b81 #define AML_DEVICE_OP (UINT16) 0x5b82 #define AML_PROCESSOR_OP (UINT16) 0x5b83 #define AML_POWER_RES_OP (UINT16) 0x5b84 #define AML_THERMAL_ZONE_OP (UINT16) 0x5b85 #define AML_INDEX_FIELD_OP (UINT16) 0x5b86 #define AML_BANK_FIELD_OP (UINT16) 0x5b87 #define AML_DATA_REGION_OP (UINT16) 0x5b88 /* ACPI 2.0 */ /* * Combination opcodes (actually two one-byte opcodes) * Used by the disassembler and iASL compiler */ #define AML_LGREATEREQUAL_OP (UINT16) 0x9295 #define AML_LLESSEQUAL_OP (UINT16) 0x9294 #define AML_LNOTEQUAL_OP (UINT16) 0x9293 /* * Opcodes for "Field" operators */ #define AML_FIELD_OFFSET_OP (UINT8) 0x00 #define AML_FIELD_ACCESS_OP (UINT8) 0x01 #define AML_FIELD_CONNECTION_OP (UINT8) 0x02 /* ACPI 5.0 */ #define AML_FIELD_EXT_ACCESS_OP (UINT8) 0x03 /* ACPI 5.0 */ /* * Internal opcodes * Use only "Unknown" AML opcodes, don't attempt to use * any valid ACPI ASCII values (A-Z, 0-9, '-') */ #define AML_INT_NAMEPATH_OP (UINT16) 0x002d #define AML_INT_NAMEDFIELD_OP (UINT16) 0x0030 #define AML_INT_RESERVEDFIELD_OP (UINT16) 0x0031 #define AML_INT_ACCESSFIELD_OP (UINT16) 0x0032 #define AML_INT_BYTELIST_OP (UINT16) 0x0033 #define AML_INT_METHODCALL_OP (UINT16) 0x0035 #define AML_INT_RETURN_VALUE_OP (UINT16) 0x0036 #define AML_INT_EVAL_SUBTREE_OP (UINT16) 0x0037 #define AML_INT_CONNECTION_OP (UINT16) 0x0038 #define AML_INT_EXTACCESSFIELD_OP (UINT16) 0x0039 #define ARG_NONE 0x0 /* * Argument types for the AML Parser * Each field in the ArgTypes UINT32 is 5 bits, allowing for a maximum of 6 arguments. * There can be up to 31 unique argument types * Zero is reserved as end-of-list indicator */ #define ARGP_BYTEDATA 0x01 #define ARGP_BYTELIST 0x02 #define ARGP_CHARLIST 0x03 #define ARGP_DATAOBJ 0x04 #define ARGP_DATAOBJLIST 0x05 #define ARGP_DWORDDATA 0x06 #define ARGP_FIELDLIST 0x07 #define ARGP_NAME 0x08 #define ARGP_NAMESTRING 0x09 #define ARGP_OBJLIST 0x0A #define ARGP_PKGLENGTH 0x0B #define ARGP_SUPERNAME 0x0C #define ARGP_TARGET 0x0D #define ARGP_TERMARG 0x0E #define ARGP_TERMLIST 0x0F #define ARGP_WORDDATA 0x10 #define ARGP_QWORDDATA 0x11 #define ARGP_SIMPLENAME 0x12 /* NameString | LocalTerm | ArgTerm */ #define ARGP_NAME_OR_REF 0x13 /* For ObjectType only */ +#define ARGP_MAX 0x13 /* * Resolved argument types for the AML Interpreter * Each field in the ArgTypes UINT32 is 5 bits, allowing for a maximum of 6 arguments. * There can be up to 31 unique argument types (0 is end-of-arg-list indicator) * * Note1: These values are completely independent from the ACPI_TYPEs * i.e., ARGI_INTEGER != ACPI_TYPE_INTEGER * * Note2: If and when 5 bits becomes insufficient, it would probably be best * to convert to a 6-byte array of argument types, allowing 8 bits per argument. */ /* Single, simple types */ #define ARGI_ANYTYPE 0x01 /* Don't care */ #define ARGI_PACKAGE 0x02 #define ARGI_EVENT 0x03 #define ARGI_MUTEX 0x04 #define ARGI_DDBHANDLE 0x05 /* Interchangeable types (via implicit conversion) */ #define ARGI_INTEGER 0x06 #define ARGI_STRING 0x07 #define ARGI_BUFFER 0x08 #define ARGI_BUFFER_OR_STRING 0x09 /* Used by MID op only */ #define ARGI_COMPUTEDATA 0x0A /* Buffer, String, or Integer */ /* Reference objects */ #define ARGI_INTEGER_REF 0x0B #define ARGI_OBJECT_REF 0x0C #define ARGI_DEVICE_REF 0x0D #define ARGI_REFERENCE 0x0E #define ARGI_TARGETREF 0x0F /* Target, subject to implicit conversion */ -#define ARGI_FIXED_TARGET 0x10 /* Target, no implicit conversion */ -#define ARGI_SIMPLE_TARGET 0x11 /* Name, Local, Arg -- no implicit conversion */ -#define ARGI_STORE_TARGET 0x12 /* Target for store is TARGETREF + package objects */ +#define ARGI_SIMPLE_TARGET 0x10 /* Name, Local, Arg -- no implicit conversion */ +#define ARGI_STORE_TARGET 0x11 /* Target for store is TARGETREF + package objects */ +/* + * #define ARGI_FIXED_TARGET 0x10 Target, no implicit conversion + * + * Removed 10/2016. ARGI_FIXED_TARGET was used for these operators: + * FromBCD + * ToBCD + * ToDecimalString + * ToHexString + * ToInteger + * ToBuffer + * The purpose of this type was to disable "implicit result conversion", + * but this was incorrect per the ACPI spec and other ACPI implementations. + * These operators now have the target operand defined as a normal + * ARGI_TARGETREF. + */ + /* Multiple/complex types */ #define ARGI_DATAOBJECT 0x13 /* Buffer, String, package or reference to a Node - Used only by SizeOf operator*/ #define ARGI_COMPLEXOBJ 0x14 /* Buffer, String, or package (Used by INDEX op only) */ #define ARGI_REF_OR_STRING 0x15 /* Reference or String (Used by DEREFOF op only) */ #define ARGI_REGION_OR_BUFFER 0x16 /* Used by LOAD op only */ #define ARGI_DATAREFOBJ 0x17 /* Note: types above can expand to 0x1F maximum */ #define ARGI_INVALID_OPCODE 0xFFFFFFFF /* * hash offsets */ #define AML_EXTOP_HASH_OFFSET 22 #define AML_LNOT_HASH_OFFSET 19 /* * opcode groups and types */ #define OPGRP_NAMED 0x01 #define OPGRP_FIELD 0x02 #define OPGRP_BYTELIST 0x04 /* * Opcode information */ /* Opcode flags */ #define AML_LOGICAL 0x0001 #define AML_LOGICAL_NUMERIC 0x0002 #define AML_MATH 0x0004 #define AML_CREATE 0x0008 #define AML_FIELD 0x0010 #define AML_DEFER 0x0020 #define AML_NAMED 0x0040 #define AML_NSNODE 0x0080 #define AML_NSOPCODE 0x0100 #define AML_NSOBJECT 0x0200 #define AML_HAS_RETVAL 0x0400 #define AML_HAS_TARGET 0x0800 #define AML_HAS_ARGS 0x1000 #define AML_CONSTANT 0x2000 #define AML_NO_OPERAND_RESOLVE 0x4000 /* Convenient flag groupings */ #define AML_FLAGS_EXEC_0A_0T_1R AML_HAS_RETVAL #define AML_FLAGS_EXEC_1A_0T_0R AML_HAS_ARGS /* Monadic1 */ #define AML_FLAGS_EXEC_1A_0T_1R AML_HAS_ARGS | AML_HAS_RETVAL /* Monadic2 */ #define AML_FLAGS_EXEC_1A_1T_0R AML_HAS_ARGS | AML_HAS_TARGET #define AML_FLAGS_EXEC_1A_1T_1R AML_HAS_ARGS | AML_HAS_TARGET | AML_HAS_RETVAL /* Monadic2R */ #define AML_FLAGS_EXEC_2A_0T_0R AML_HAS_ARGS /* Dyadic1 */ #define AML_FLAGS_EXEC_2A_0T_1R AML_HAS_ARGS | AML_HAS_RETVAL /* Dyadic2 */ #define AML_FLAGS_EXEC_2A_1T_1R AML_HAS_ARGS | AML_HAS_TARGET | AML_HAS_RETVAL /* Dyadic2R */ #define AML_FLAGS_EXEC_2A_2T_1R AML_HAS_ARGS | AML_HAS_TARGET | AML_HAS_RETVAL #define AML_FLAGS_EXEC_3A_0T_0R AML_HAS_ARGS #define AML_FLAGS_EXEC_3A_1T_1R AML_HAS_ARGS | AML_HAS_TARGET | AML_HAS_RETVAL #define AML_FLAGS_EXEC_6A_0T_1R AML_HAS_ARGS | AML_HAS_RETVAL /* * The opcode Type is used in a dispatch table, do not change * without updating the table. */ #define AML_TYPE_EXEC_0A_0T_1R 0x00 #define AML_TYPE_EXEC_1A_0T_0R 0x01 /* Monadic1 */ #define AML_TYPE_EXEC_1A_0T_1R 0x02 /* Monadic2 */ #define AML_TYPE_EXEC_1A_1T_0R 0x03 #define AML_TYPE_EXEC_1A_1T_1R 0x04 /* Monadic2R */ #define AML_TYPE_EXEC_2A_0T_0R 0x05 /* Dyadic1 */ #define AML_TYPE_EXEC_2A_0T_1R 0x06 /* Dyadic2 */ #define AML_TYPE_EXEC_2A_1T_1R 0x07 /* Dyadic2R */ #define AML_TYPE_EXEC_2A_2T_1R 0x08 #define AML_TYPE_EXEC_3A_0T_0R 0x09 #define AML_TYPE_EXEC_3A_1T_1R 0x0A #define AML_TYPE_EXEC_6A_0T_1R 0x0B /* End of types used in dispatch table */ #define AML_TYPE_LITERAL 0x0B #define AML_TYPE_CONSTANT 0x0C #define AML_TYPE_METHOD_ARGUMENT 0x0D #define AML_TYPE_LOCAL_VARIABLE 0x0E #define AML_TYPE_DATA_TERM 0x0F /* Generic for an op that returns a value */ #define AML_TYPE_METHOD_CALL 0x10 /* Misc */ #define AML_TYPE_CREATE_FIELD 0x11 #define AML_TYPE_CREATE_OBJECT 0x12 #define AML_TYPE_CONTROL 0x13 #define AML_TYPE_NAMED_NO_OBJ 0x14 #define AML_TYPE_NAMED_FIELD 0x15 #define AML_TYPE_NAMED_SIMPLE 0x16 #define AML_TYPE_NAMED_COMPLEX 0x17 #define AML_TYPE_RETURN 0x18 #define AML_TYPE_UNDEFINED 0x19 #define AML_TYPE_BOGUS 0x1A /* AML Package Length encodings */ #define ACPI_AML_PACKAGE_TYPE1 0x40 #define ACPI_AML_PACKAGE_TYPE2 0x4000 #define ACPI_AML_PACKAGE_TYPE3 0x400000 #define ACPI_AML_PACKAGE_TYPE4 0x40000000 /* * Opcode classes */ #define AML_CLASS_EXECUTE 0x00 #define AML_CLASS_CREATE 0x01 #define AML_CLASS_ARGUMENT 0x02 #define AML_CLASS_NAMED_OBJECT 0x03 #define AML_CLASS_CONTROL 0x04 #define AML_CLASS_ASCII 0x05 #define AML_CLASS_PREFIX 0x06 #define AML_CLASS_INTERNAL 0x07 #define AML_CLASS_RETURN_VALUE 0x08 #define AML_CLASS_METHOD_CALL 0x09 #define AML_CLASS_UNKNOWN 0x0A /* Comparison operation codes for MatchOp operator */ typedef enum { MATCH_MTR = 0, MATCH_MEQ = 1, MATCH_MLE = 2, MATCH_MLT = 3, MATCH_MGE = 4, MATCH_MGT = 5 } AML_MATCH_OPERATOR; #define MAX_MATCH_OPERATOR 5 /* * FieldFlags * * This byte is extracted from the AML and includes three separate * pieces of information about the field: * 1) The field access type * 2) The field update rule * 3) The lock rule for the field * * Bits 00 - 03 : AccessType (AnyAcc, ByteAcc, etc.) * 04 : LockRule (1 == Lock) * 05 - 06 : UpdateRule */ #define AML_FIELD_ACCESS_TYPE_MASK 0x0F #define AML_FIELD_LOCK_RULE_MASK 0x10 #define AML_FIELD_UPDATE_RULE_MASK 0x60 /* 1) Field Access Types */ typedef enum { AML_FIELD_ACCESS_ANY = 0x00, AML_FIELD_ACCESS_BYTE = 0x01, AML_FIELD_ACCESS_WORD = 0x02, AML_FIELD_ACCESS_DWORD = 0x03, AML_FIELD_ACCESS_QWORD = 0x04, /* ACPI 2.0 */ AML_FIELD_ACCESS_BUFFER = 0x05 /* ACPI 2.0 */ } AML_ACCESS_TYPE; /* 2) Field Lock Rules */ typedef enum { AML_FIELD_LOCK_NEVER = 0x00, AML_FIELD_LOCK_ALWAYS = 0x10 } AML_LOCK_RULE; /* 3) Field Update Rules */ typedef enum { AML_FIELD_UPDATE_PRESERVE = 0x00, AML_FIELD_UPDATE_WRITE_AS_ONES = 0x20, AML_FIELD_UPDATE_WRITE_AS_ZEROS = 0x40 } AML_UPDATE_RULE; /* * Field Access Attributes. * This byte is extracted from the AML via the * AccessAs keyword */ typedef enum { AML_FIELD_ATTRIB_QUICK = 0x02, AML_FIELD_ATTRIB_SEND_RCV = 0x04, AML_FIELD_ATTRIB_BYTE = 0x06, AML_FIELD_ATTRIB_WORD = 0x08, AML_FIELD_ATTRIB_BLOCK = 0x0A, AML_FIELD_ATTRIB_MULTIBYTE = 0x0B, AML_FIELD_ATTRIB_WORD_CALL = 0x0C, AML_FIELD_ATTRIB_BLOCK_CALL = 0x0D, AML_FIELD_ATTRIB_RAW_BYTES = 0x0E, AML_FIELD_ATTRIB_RAW_PROCESS = 0x0F } AML_ACCESS_ATTRIBUTE; /* Bit fields in the AML MethodFlags byte */ #define AML_METHOD_ARG_COUNT 0x07 #define AML_METHOD_SERIALIZED 0x08 #define AML_METHOD_SYNC_LEVEL 0xF0 #endif /* __AMLCODE_H__ */ Index: head/sys/contrib/dev/acpica =================================================================== --- head/sys/contrib/dev/acpica (revision 308952) +++ head/sys/contrib/dev/acpica (revision 308953) Property changes on: head/sys/contrib/dev/acpica ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /vendor-sys/acpica/dist/source:r308770