Index: head/sys/arm/allwinner/a10_mmc.c =================================================================== --- head/sys/arm/allwinner/a10_mmc.c (revision 308704) +++ head/sys/arm/allwinner/a10_mmc.c (revision 308705) @@ -1,905 +1,922 @@ /*- * Copyright (c) 2013 Alexander Fedorov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define A10_MMC_MEMRES 0 #define A10_MMC_IRQRES 1 #define A10_MMC_RESSZ 2 #define A10_MMC_DMA_SEGS ((MAXPHYS / PAGE_SIZE) + 1) #define A10_MMC_DMA_MAX_SIZE 0x2000 #define A10_MMC_DMA_FTRGLEVEL 0x20070008 +#define A10_MMC_RESET_RETRY 1000 #define CARD_ID_FREQUENCY 400000 static struct ofw_compat_data compat_data[] = { {"allwinner,sun4i-a10-mmc", 1}, {"allwinner,sun5i-a13-mmc", 1}, {NULL, 0} }; struct a10_mmc_softc { device_t a10_dev; clk_t a10_clk_ahb; clk_t a10_clk_mmc; hwreset_t a10_rst_ahb; int a10_bus_busy; int a10_resid; int a10_timeout; struct callout a10_timeoutc; struct mmc_host a10_host; struct mmc_request * a10_req; struct mtx a10_mtx; struct resource * a10_res[A10_MMC_RESSZ]; uint32_t a10_intr; uint32_t a10_intr_wait; void * a10_intrhand; /* Fields required for DMA access. */ bus_addr_t a10_dma_desc_phys; bus_dmamap_t a10_dma_map; bus_dma_tag_t a10_dma_tag; void * a10_dma_desc; bus_dmamap_t a10_dma_buf_map; bus_dma_tag_t a10_dma_buf_tag; int a10_dma_map_err; }; static struct resource_spec a10_mmc_res_spec[] = { { SYS_RES_MEMORY, 0, RF_ACTIVE }, { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, { -1, 0, 0 } }; static int a10_mmc_probe(device_t); static int a10_mmc_attach(device_t); static int a10_mmc_detach(device_t); static int a10_mmc_setup_dma(struct a10_mmc_softc *); static int a10_mmc_reset(struct a10_mmc_softc *); static void a10_mmc_intr(void *); static int a10_mmc_update_clock(struct a10_mmc_softc *, uint32_t); static int a10_mmc_update_ios(device_t, device_t); static int a10_mmc_request(device_t, device_t, struct mmc_request *); static int a10_mmc_get_ro(device_t, device_t); static int a10_mmc_acquire_host(device_t, device_t); static int a10_mmc_release_host(device_t, device_t); #define A10_MMC_LOCK(_sc) mtx_lock(&(_sc)->a10_mtx) #define A10_MMC_UNLOCK(_sc) mtx_unlock(&(_sc)->a10_mtx) #define A10_MMC_READ_4(_sc, _reg) \ bus_read_4((_sc)->a10_res[A10_MMC_MEMRES], _reg) #define A10_MMC_WRITE_4(_sc, _reg, _value) \ bus_write_4((_sc)->a10_res[A10_MMC_MEMRES], _reg, _value) static int a10_mmc_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0) return (ENXIO); device_set_desc(dev, "Allwinner Integrated MMC/SD controller"); return (BUS_PROBE_DEFAULT); } static int a10_mmc_attach(device_t dev) { device_t child; struct a10_mmc_softc *sc; struct sysctl_ctx_list *ctx; struct sysctl_oid_list *tree; uint32_t bus_width; phandle_t node; int error; node = ofw_bus_get_node(dev); sc = device_get_softc(dev); sc->a10_dev = dev; sc->a10_req = NULL; if (bus_alloc_resources(dev, a10_mmc_res_spec, sc->a10_res) != 0) { device_printf(dev, "cannot allocate device resources\n"); return (ENXIO); } if (bus_setup_intr(dev, sc->a10_res[A10_MMC_IRQRES], INTR_TYPE_MISC | INTR_MPSAFE, NULL, a10_mmc_intr, sc, &sc->a10_intrhand)) { bus_release_resources(dev, a10_mmc_res_spec, sc->a10_res); device_printf(dev, "cannot setup interrupt handler\n"); return (ENXIO); } mtx_init(&sc->a10_mtx, device_get_nameunit(sc->a10_dev), "a10_mmc", MTX_DEF); callout_init_mtx(&sc->a10_timeoutc, &sc->a10_mtx, 0); /* De-assert reset */ if (hwreset_get_by_ofw_name(dev, 0, "ahb", &sc->a10_rst_ahb) == 0) { error = hwreset_deassert(sc->a10_rst_ahb); if (error != 0) { device_printf(dev, "cannot de-assert reset\n"); goto fail; } } /* Activate the module clock. */ error = clk_get_by_ofw_name(dev, 0, "ahb", &sc->a10_clk_ahb); if (error != 0) { device_printf(dev, "cannot get ahb clock\n"); goto fail; } error = clk_enable(sc->a10_clk_ahb); if (error != 0) { device_printf(dev, "cannot enable ahb clock\n"); goto fail; } error = clk_get_by_ofw_name(dev, 0, "mmc", &sc->a10_clk_mmc); if (error != 0) { device_printf(dev, "cannot get mmc clock\n"); goto fail; } error = clk_set_freq(sc->a10_clk_mmc, CARD_ID_FREQUENCY, CLK_SET_ROUND_DOWN); if (error != 0) { device_printf(dev, "cannot init mmc clock\n"); goto fail; } error = clk_enable(sc->a10_clk_mmc); if (error != 0) { device_printf(dev, "cannot enable mmc clock\n"); goto fail; } sc->a10_timeout = 10; ctx = device_get_sysctl_ctx(dev); tree = SYSCTL_CHILDREN(device_get_sysctl_tree(dev)); SYSCTL_ADD_INT(ctx, tree, OID_AUTO, "req_timeout", CTLFLAG_RW, &sc->a10_timeout, 0, "Request timeout in seconds"); /* Hardware reset */ A10_MMC_WRITE_4(sc, A10_MMC_HWRST, 1); DELAY(100); A10_MMC_WRITE_4(sc, A10_MMC_HWRST, 0); DELAY(500); /* Soft Reset controller. */ if (a10_mmc_reset(sc) != 0) { device_printf(dev, "cannot reset the controller\n"); goto fail; } if (a10_mmc_setup_dma(sc) != 0) { device_printf(sc->a10_dev, "Couldn't setup DMA!\n"); goto fail; } if (OF_getencprop(node, "bus-width", &bus_width, sizeof(uint32_t)) <= 0) bus_width = 4; sc->a10_host.f_min = 400000; - sc->a10_host.f_max = 50000000; + sc->a10_host.f_max = 52000000; sc->a10_host.host_ocr = MMC_OCR_320_330 | MMC_OCR_330_340; sc->a10_host.mode = mode_sd; sc->a10_host.caps = MMC_CAP_HSPEED; if (bus_width >= 4) sc->a10_host.caps |= MMC_CAP_4_BIT_DATA; if (bus_width >= 8) sc->a10_host.caps |= MMC_CAP_8_BIT_DATA; child = device_add_child(dev, "mmc", -1); if (child == NULL) { device_printf(dev, "attaching MMC bus failed!\n"); goto fail; } if (device_probe_and_attach(child) != 0) { device_printf(dev, "attaching MMC child failed!\n"); device_delete_child(dev, child); goto fail; } return (0); fail: callout_drain(&sc->a10_timeoutc); mtx_destroy(&sc->a10_mtx); bus_teardown_intr(dev, sc->a10_res[A10_MMC_IRQRES], sc->a10_intrhand); bus_release_resources(dev, a10_mmc_res_spec, sc->a10_res); return (ENXIO); } static int a10_mmc_detach(device_t dev) { return (EBUSY); } static void a10_dma_desc_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int err) { struct a10_mmc_softc *sc; sc = (struct a10_mmc_softc *)arg; if (err) { sc->a10_dma_map_err = err; return; } sc->a10_dma_desc_phys = segs[0].ds_addr; } static int a10_mmc_setup_dma(struct a10_mmc_softc *sc) { int dma_desc_size, error; /* Allocate the DMA descriptor memory. */ dma_desc_size = sizeof(struct a10_mmc_dma_desc) * A10_MMC_DMA_SEGS; error = bus_dma_tag_create(bus_get_dma_tag(sc->a10_dev), A10_MMC_DMA_ALIGN, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, dma_desc_size, 1, dma_desc_size, 0, NULL, NULL, &sc->a10_dma_tag); if (error) return (error); error = bus_dmamem_alloc(sc->a10_dma_tag, &sc->a10_dma_desc, BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->a10_dma_map); if (error) return (error); error = bus_dmamap_load(sc->a10_dma_tag, sc->a10_dma_map, sc->a10_dma_desc, dma_desc_size, a10_dma_desc_cb, sc, 0); if (error) return (error); if (sc->a10_dma_map_err) return (sc->a10_dma_map_err); /* Create the DMA map for data transfers. */ error = bus_dma_tag_create(bus_get_dma_tag(sc->a10_dev), A10_MMC_DMA_ALIGN, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, A10_MMC_DMA_MAX_SIZE * A10_MMC_DMA_SEGS, A10_MMC_DMA_SEGS, A10_MMC_DMA_MAX_SIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->a10_dma_buf_tag); if (error) return (error); error = bus_dmamap_create(sc->a10_dma_buf_tag, 0, &sc->a10_dma_buf_map); if (error) return (error); return (0); } static void a10_dma_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int err) { int i; struct a10_mmc_dma_desc *dma_desc; struct a10_mmc_softc *sc; sc = (struct a10_mmc_softc *)arg; sc->a10_dma_map_err = err; if (err) return; dma_desc = sc->a10_dma_desc; for (i = 0; i < nsegs; i++) { dma_desc[i].buf_size = segs[i].ds_len; dma_desc[i].buf_addr = segs[i].ds_addr; dma_desc[i].config = A10_MMC_DMA_CONFIG_CH | A10_MMC_DMA_CONFIG_OWN; if (i == 0) dma_desc[i].config |= A10_MMC_DMA_CONFIG_FD; if (i < (nsegs - 1)) { dma_desc[i].config |= A10_MMC_DMA_CONFIG_DIC; dma_desc[i].next = sc->a10_dma_desc_phys + ((i + 1) * sizeof(struct a10_mmc_dma_desc)); } else { dma_desc[i].config |= A10_MMC_DMA_CONFIG_LD | A10_MMC_DMA_CONFIG_ER; dma_desc[i].next = 0; } } } static int a10_mmc_prepare_dma(struct a10_mmc_softc *sc) { bus_dmasync_op_t sync_op; int error; struct mmc_command *cmd; uint32_t val; cmd = sc->a10_req->cmd; if (cmd->data->len > A10_MMC_DMA_MAX_SIZE * A10_MMC_DMA_SEGS) return (EFBIG); error = bus_dmamap_load(sc->a10_dma_buf_tag, sc->a10_dma_buf_map, cmd->data->data, cmd->data->len, a10_dma_cb, sc, 0); if (error) return (error); if (sc->a10_dma_map_err) return (sc->a10_dma_map_err); if (cmd->data->flags & MMC_DATA_WRITE) sync_op = BUS_DMASYNC_PREWRITE; else sync_op = BUS_DMASYNC_PREREAD; bus_dmamap_sync(sc->a10_dma_buf_tag, sc->a10_dma_buf_map, sync_op); bus_dmamap_sync(sc->a10_dma_tag, sc->a10_dma_map, BUS_DMASYNC_PREWRITE); /* Enable DMA */ val = A10_MMC_READ_4(sc, A10_MMC_GCTL); val &= ~A10_MMC_CTRL_FIFO_AC_MOD; val |= A10_MMC_CTRL_DMA_ENB; A10_MMC_WRITE_4(sc, A10_MMC_GCTL, val); /* Reset DMA */ val |= A10_MMC_CTRL_DMA_RST; A10_MMC_WRITE_4(sc, A10_MMC_GCTL, val); A10_MMC_WRITE_4(sc, A10_MMC_DMAC, A10_MMC_DMAC_IDMAC_SOFT_RST); A10_MMC_WRITE_4(sc, A10_MMC_DMAC, A10_MMC_DMAC_IDMAC_IDMA_ON | A10_MMC_DMAC_IDMAC_FIX_BURST); /* Enable RX or TX DMA interrupt */ if (cmd->data->flags & MMC_DATA_WRITE) val |= A10_MMC_IDST_TX_INT; else val |= A10_MMC_IDST_RX_INT; A10_MMC_WRITE_4(sc, A10_MMC_IDIE, val); /* Set DMA descritptor list address */ A10_MMC_WRITE_4(sc, A10_MMC_DLBA, sc->a10_dma_desc_phys); /* FIFO trigger level */ A10_MMC_WRITE_4(sc, A10_MMC_FWLR, A10_MMC_DMA_FTRGLEVEL); return (0); } static int a10_mmc_reset(struct a10_mmc_softc *sc) { int timeout; A10_MMC_WRITE_4(sc, A10_MMC_GCTL, A10_MMC_RESET); timeout = 1000; while (--timeout > 0) { if ((A10_MMC_READ_4(sc, A10_MMC_GCTL) & A10_MMC_RESET) == 0) break; DELAY(100); } if (timeout == 0) return (ETIMEDOUT); /* Set the timeout. */ A10_MMC_WRITE_4(sc, A10_MMC_TMOR, A10_MMC_TMOR_DTO_LMT_SHIFT(A10_MMC_TMOR_DTO_LMT_MASK) | A10_MMC_TMOR_RTO_LMT_SHIFT(A10_MMC_TMOR_RTO_LMT_MASK)); /* Clear pending interrupts. */ A10_MMC_WRITE_4(sc, A10_MMC_RISR, 0xffffffff); A10_MMC_WRITE_4(sc, A10_MMC_IDST, 0xffffffff); /* Unmask interrupts. */ A10_MMC_WRITE_4(sc, A10_MMC_IMKR, A10_MMC_INT_CMD_DONE | A10_MMC_INT_ERR_BIT | A10_MMC_INT_DATA_OVER | A10_MMC_INT_AUTO_STOP_DONE); /* Enable interrupts and AHB access. */ A10_MMC_WRITE_4(sc, A10_MMC_GCTL, A10_MMC_READ_4(sc, A10_MMC_GCTL) | A10_MMC_CTRL_INT_ENB); return (0); } static void a10_mmc_req_done(struct a10_mmc_softc *sc) { struct mmc_command *cmd; struct mmc_request *req; + uint32_t val, mask; + int retry; cmd = sc->a10_req->cmd; if (cmd->error != MMC_ERR_NONE) { - /* Reset the controller. */ - a10_mmc_reset(sc); + /* Reset the FIFO and DMA engines. */ + mask = A10_MMC_CTRL_FIFO_RST | A10_MMC_CTRL_DMA_RST; + val = A10_MMC_READ_4(sc, A10_MMC_GCTL); + A10_MMC_WRITE_4(sc, A10_MMC_GCTL, val | mask); + + retry = A10_MMC_RESET_RETRY; + while (--retry > 0) { + val = A10_MMC_READ_4(sc, A10_MMC_GCTL); + if ((val & mask) == 0) + break; + DELAY(10); + } + if (retry == 0) + device_printf(sc->a10_dev, + "timeout resetting DMA/FIFO\n"); + a10_mmc_update_clock(sc, 1); } req = sc->a10_req; callout_stop(&sc->a10_timeoutc); sc->a10_req = NULL; sc->a10_intr = 0; sc->a10_resid = 0; sc->a10_dma_map_err = 0; sc->a10_intr_wait = 0; req->done(req); } static void a10_mmc_req_ok(struct a10_mmc_softc *sc) { int timeout; struct mmc_command *cmd; uint32_t status; timeout = 1000; while (--timeout > 0) { status = A10_MMC_READ_4(sc, A10_MMC_STAR); if ((status & A10_MMC_STAR_CARD_BUSY) == 0) break; DELAY(1000); } cmd = sc->a10_req->cmd; if (timeout == 0) { cmd->error = MMC_ERR_FAILED; a10_mmc_req_done(sc); return; } if (cmd->flags & MMC_RSP_PRESENT) { if (cmd->flags & MMC_RSP_136) { cmd->resp[0] = A10_MMC_READ_4(sc, A10_MMC_RESP3); cmd->resp[1] = A10_MMC_READ_4(sc, A10_MMC_RESP2); cmd->resp[2] = A10_MMC_READ_4(sc, A10_MMC_RESP1); cmd->resp[3] = A10_MMC_READ_4(sc, A10_MMC_RESP0); } else cmd->resp[0] = A10_MMC_READ_4(sc, A10_MMC_RESP0); } /* All data has been transferred ? */ if (cmd->data != NULL && (sc->a10_resid << 2) < cmd->data->len) cmd->error = MMC_ERR_FAILED; a10_mmc_req_done(sc); } static void a10_mmc_timeout(void *arg) { struct a10_mmc_softc *sc; sc = (struct a10_mmc_softc *)arg; if (sc->a10_req != NULL) { device_printf(sc->a10_dev, "controller timeout\n"); sc->a10_req->cmd->error = MMC_ERR_TIMEOUT; a10_mmc_req_done(sc); } else device_printf(sc->a10_dev, "Spurious timeout - no active request\n"); } static void a10_mmc_intr(void *arg) { bus_dmasync_op_t sync_op; struct a10_mmc_softc *sc; struct mmc_data *data; uint32_t idst, imask, rint; sc = (struct a10_mmc_softc *)arg; A10_MMC_LOCK(sc); rint = A10_MMC_READ_4(sc, A10_MMC_RISR); idst = A10_MMC_READ_4(sc, A10_MMC_IDST); imask = A10_MMC_READ_4(sc, A10_MMC_IMKR); if (idst == 0 && imask == 0 && rint == 0) { A10_MMC_UNLOCK(sc); return; } #ifdef DEBUG device_printf(sc->a10_dev, "idst: %#x, imask: %#x, rint: %#x\n", idst, imask, rint); #endif if (sc->a10_req == NULL) { device_printf(sc->a10_dev, "Spurious interrupt - no active request, rint: 0x%08X\n", rint); goto end; } if (rint & A10_MMC_INT_ERR_BIT) { device_printf(sc->a10_dev, "error rint: 0x%08X\n", rint); if (rint & A10_MMC_INT_RESP_TIMEOUT) sc->a10_req->cmd->error = MMC_ERR_TIMEOUT; else sc->a10_req->cmd->error = MMC_ERR_FAILED; a10_mmc_req_done(sc); goto end; } if (idst & A10_MMC_IDST_ERROR) { device_printf(sc->a10_dev, "error idst: 0x%08x\n", idst); sc->a10_req->cmd->error = MMC_ERR_FAILED; a10_mmc_req_done(sc); goto end; } sc->a10_intr |= rint; data = sc->a10_req->cmd->data; if (data != NULL && (idst & A10_MMC_IDST_COMPLETE) != 0) { if (data->flags & MMC_DATA_WRITE) sync_op = BUS_DMASYNC_POSTWRITE; else sync_op = BUS_DMASYNC_POSTREAD; bus_dmamap_sync(sc->a10_dma_buf_tag, sc->a10_dma_buf_map, sync_op); bus_dmamap_sync(sc->a10_dma_tag, sc->a10_dma_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->a10_dma_buf_tag, sc->a10_dma_buf_map); sc->a10_resid = data->len >> 2; } if ((sc->a10_intr & sc->a10_intr_wait) == sc->a10_intr_wait) a10_mmc_req_ok(sc); end: A10_MMC_WRITE_4(sc, A10_MMC_IDST, idst); A10_MMC_WRITE_4(sc, A10_MMC_RISR, rint); A10_MMC_UNLOCK(sc); } static int a10_mmc_request(device_t bus, device_t child, struct mmc_request *req) { int blksz; struct a10_mmc_softc *sc; struct mmc_command *cmd; uint32_t cmdreg; int err; sc = device_get_softc(bus); A10_MMC_LOCK(sc); if (sc->a10_req) { A10_MMC_UNLOCK(sc); return (EBUSY); } sc->a10_req = req; cmd = req->cmd; cmdreg = A10_MMC_CMDR_LOAD; if (cmd->opcode == MMC_GO_IDLE_STATE) cmdreg |= A10_MMC_CMDR_SEND_INIT_SEQ; if (cmd->flags & MMC_RSP_PRESENT) cmdreg |= A10_MMC_CMDR_RESP_RCV; if (cmd->flags & MMC_RSP_136) cmdreg |= A10_MMC_CMDR_LONG_RESP; if (cmd->flags & MMC_RSP_CRC) cmdreg |= A10_MMC_CMDR_CHK_RESP_CRC; sc->a10_intr = 0; sc->a10_resid = 0; sc->a10_intr_wait = A10_MMC_INT_CMD_DONE; cmd->error = MMC_ERR_NONE; if (cmd->data != NULL) { sc->a10_intr_wait |= A10_MMC_INT_DATA_OVER; cmdreg |= A10_MMC_CMDR_DATA_TRANS | A10_MMC_CMDR_WAIT_PRE_OVER; if (cmd->data->flags & MMC_DATA_MULTI) { cmdreg |= A10_MMC_CMDR_STOP_CMD_FLAG; sc->a10_intr_wait |= A10_MMC_INT_AUTO_STOP_DONE; } if (cmd->data->flags & MMC_DATA_WRITE) cmdreg |= A10_MMC_CMDR_DIR_WRITE; blksz = min(cmd->data->len, MMC_SECTOR_SIZE); A10_MMC_WRITE_4(sc, A10_MMC_BKSR, blksz); A10_MMC_WRITE_4(sc, A10_MMC_BYCR, cmd->data->len); err = a10_mmc_prepare_dma(sc); if (err != 0) device_printf(sc->a10_dev, "prepare_dma failed: %d\n", err); } A10_MMC_WRITE_4(sc, A10_MMC_CAGR, cmd->arg); A10_MMC_WRITE_4(sc, A10_MMC_CMDR, cmdreg | cmd->opcode); callout_reset(&sc->a10_timeoutc, sc->a10_timeout * hz, a10_mmc_timeout, sc); A10_MMC_UNLOCK(sc); return (0); } static int a10_mmc_read_ivar(device_t bus, device_t child, int which, uintptr_t *result) { struct a10_mmc_softc *sc; sc = device_get_softc(bus); switch (which) { default: return (EINVAL); case MMCBR_IVAR_BUS_MODE: *(int *)result = sc->a10_host.ios.bus_mode; break; case MMCBR_IVAR_BUS_WIDTH: *(int *)result = sc->a10_host.ios.bus_width; break; case MMCBR_IVAR_CHIP_SELECT: *(int *)result = sc->a10_host.ios.chip_select; break; case MMCBR_IVAR_CLOCK: *(int *)result = sc->a10_host.ios.clock; break; case MMCBR_IVAR_F_MIN: *(int *)result = sc->a10_host.f_min; break; case MMCBR_IVAR_F_MAX: *(int *)result = sc->a10_host.f_max; break; case MMCBR_IVAR_HOST_OCR: *(int *)result = sc->a10_host.host_ocr; break; case MMCBR_IVAR_MODE: *(int *)result = sc->a10_host.mode; break; case MMCBR_IVAR_OCR: *(int *)result = sc->a10_host.ocr; break; case MMCBR_IVAR_POWER_MODE: *(int *)result = sc->a10_host.ios.power_mode; break; case MMCBR_IVAR_VDD: *(int *)result = sc->a10_host.ios.vdd; break; case MMCBR_IVAR_CAPS: *(int *)result = sc->a10_host.caps; break; case MMCBR_IVAR_MAX_DATA: *(int *)result = 65535; break; } return (0); } static int a10_mmc_write_ivar(device_t bus, device_t child, int which, uintptr_t value) { struct a10_mmc_softc *sc; sc = device_get_softc(bus); switch (which) { default: return (EINVAL); case MMCBR_IVAR_BUS_MODE: sc->a10_host.ios.bus_mode = value; break; case MMCBR_IVAR_BUS_WIDTH: sc->a10_host.ios.bus_width = value; break; case MMCBR_IVAR_CHIP_SELECT: sc->a10_host.ios.chip_select = value; break; case MMCBR_IVAR_CLOCK: sc->a10_host.ios.clock = value; break; case MMCBR_IVAR_MODE: sc->a10_host.mode = value; break; case MMCBR_IVAR_OCR: sc->a10_host.ocr = value; break; case MMCBR_IVAR_POWER_MODE: sc->a10_host.ios.power_mode = value; break; case MMCBR_IVAR_VDD: sc->a10_host.ios.vdd = value; break; /* These are read-only */ case MMCBR_IVAR_CAPS: case MMCBR_IVAR_HOST_OCR: case MMCBR_IVAR_F_MIN: case MMCBR_IVAR_F_MAX: case MMCBR_IVAR_MAX_DATA: return (EINVAL); } return (0); } static int a10_mmc_update_clock(struct a10_mmc_softc *sc, uint32_t clkon) { uint32_t cmdreg; int retry; uint32_t ckcr; ckcr = A10_MMC_READ_4(sc, A10_MMC_CKCR); ckcr &= ~(A10_MMC_CKCR_CCLK_ENB | A10_MMC_CKCR_CCLK_CTRL); if (clkon) ckcr |= A10_MMC_CKCR_CCLK_ENB; A10_MMC_WRITE_4(sc, A10_MMC_CKCR, ckcr); cmdreg = A10_MMC_CMDR_LOAD | A10_MMC_CMDR_PRG_CLK | A10_MMC_CMDR_WAIT_PRE_OVER; A10_MMC_WRITE_4(sc, A10_MMC_CMDR, cmdreg); retry = 0xfffff; while (--retry > 0) { if ((A10_MMC_READ_4(sc, A10_MMC_CMDR) & A10_MMC_CMDR_LOAD) == 0) { A10_MMC_WRITE_4(sc, A10_MMC_RISR, 0xffffffff); return (0); } DELAY(10); } A10_MMC_WRITE_4(sc, A10_MMC_RISR, 0xffffffff); device_printf(sc->a10_dev, "timeout updating clock\n"); return (ETIMEDOUT); } static int a10_mmc_update_ios(device_t bus, device_t child) { int error; struct a10_mmc_softc *sc; struct mmc_ios *ios; uint32_t ckcr; sc = device_get_softc(bus); ios = &sc->a10_host.ios; /* Set the bus width. */ switch (ios->bus_width) { case bus_width_1: A10_MMC_WRITE_4(sc, A10_MMC_BWDR, A10_MMC_BWDR1); break; case bus_width_4: A10_MMC_WRITE_4(sc, A10_MMC_BWDR, A10_MMC_BWDR4); break; case bus_width_8: A10_MMC_WRITE_4(sc, A10_MMC_BWDR, A10_MMC_BWDR8); break; } if (ios->clock) { /* Disable clock */ error = a10_mmc_update_clock(sc, 0); if (error != 0) return (error); /* Reset the divider. */ ckcr = A10_MMC_READ_4(sc, A10_MMC_CKCR); ckcr &= ~A10_MMC_CKCR_CCLK_DIV; A10_MMC_WRITE_4(sc, A10_MMC_CKCR, ckcr); /* Set the MMC clock. */ error = clk_set_freq(sc->a10_clk_mmc, ios->clock, CLK_SET_ROUND_DOWN); if (error != 0) { device_printf(sc->a10_dev, "failed to set frequency to %u Hz: %d\n", ios->clock, error); return (error); } /* Enable clock. */ error = a10_mmc_update_clock(sc, 1); if (error != 0) return (error); } return (0); } static int a10_mmc_get_ro(device_t bus, device_t child) { return (0); } static int a10_mmc_acquire_host(device_t bus, device_t child) { struct a10_mmc_softc *sc; int error; sc = device_get_softc(bus); A10_MMC_LOCK(sc); while (sc->a10_bus_busy) { error = msleep(sc, &sc->a10_mtx, PCATCH, "mmchw", 0); if (error != 0) { A10_MMC_UNLOCK(sc); return (error); } } sc->a10_bus_busy++; A10_MMC_UNLOCK(sc); return (0); } static int a10_mmc_release_host(device_t bus, device_t child) { struct a10_mmc_softc *sc; sc = device_get_softc(bus); A10_MMC_LOCK(sc); sc->a10_bus_busy--; wakeup(sc); A10_MMC_UNLOCK(sc); return (0); } static device_method_t a10_mmc_methods[] = { /* Device interface */ DEVMETHOD(device_probe, a10_mmc_probe), DEVMETHOD(device_attach, a10_mmc_attach), DEVMETHOD(device_detach, a10_mmc_detach), /* Bus interface */ DEVMETHOD(bus_read_ivar, a10_mmc_read_ivar), DEVMETHOD(bus_write_ivar, a10_mmc_write_ivar), DEVMETHOD(bus_print_child, bus_generic_print_child), /* MMC bridge interface */ DEVMETHOD(mmcbr_update_ios, a10_mmc_update_ios), DEVMETHOD(mmcbr_request, a10_mmc_request), DEVMETHOD(mmcbr_get_ro, a10_mmc_get_ro), DEVMETHOD(mmcbr_acquire_host, a10_mmc_acquire_host), DEVMETHOD(mmcbr_release_host, a10_mmc_release_host), DEVMETHOD_END }; static devclass_t a10_mmc_devclass; static driver_t a10_mmc_driver = { "a10_mmc", a10_mmc_methods, sizeof(struct a10_mmc_softc), }; DRIVER_MODULE(a10_mmc, simplebus, a10_mmc_driver, a10_mmc_devclass, 0, 0); DRIVER_MODULE(mmc, a10_mmc, mmc_driver, mmc_devclass, NULL, NULL); MODULE_DEPEND(a10_mmc, mmc, 1, 1, 1);