Index: head/sys/net/altq/altq_subr.c
===================================================================
--- head/sys/net/altq/altq_subr.c	(revision 306744)
+++ head/sys/net/altq/altq_subr.c	(revision 306745)
@@ -1,1976 +1,1976 @@
 /*-
  * Copyright (C) 1997-2003
  *	Sony Computer Science Laboratories Inc.  All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  * $KAME: altq_subr.c,v 1.21 2003/11/06 06:32:53 kjc Exp $
  * $FreeBSD$
  */
 
 #include "opt_altq.h"
 #include "opt_inet.h"
 #include "opt_inet6.h"
 
 #include <sys/param.h>
 #include <sys/malloc.h>
 #include <sys/mbuf.h>
 #include <sys/systm.h>
 #include <sys/proc.h>
 #include <sys/socket.h>
 #include <sys/socketvar.h>
 #include <sys/kernel.h>
 #include <sys/errno.h>
 #include <sys/syslog.h>
 #include <sys/sysctl.h>
 #include <sys/queue.h>
 
 #include <net/if.h>
 #include <net/if_var.h>
 #include <net/if_dl.h>
 #include <net/if_types.h>
 #include <net/vnet.h>
 
 #include <netinet/in.h>
 #include <netinet/in_systm.h>
 #include <netinet/ip.h>
 #ifdef INET6
 #include <netinet/ip6.h>
 #endif
 #include <netinet/tcp.h>
 #include <netinet/udp.h>
 
 #include <netpfil/pf/pf.h>
 #include <netpfil/pf/pf_altq.h>
 #include <net/altq/altq.h>
 #ifdef ALTQ3_COMPAT
 #include <net/altq/altq_conf.h>
 #endif
 
 /* machine dependent clock related includes */
 #include <sys/bus.h>
 #include <sys/cpu.h>
 #include <sys/eventhandler.h>
 #include <machine/clock.h>
 #if defined(__amd64__) || defined(__i386__)
 #include <machine/cpufunc.h>		/* for pentium tsc */
 #include <machine/specialreg.h>		/* for CPUID_TSC */
 #include <machine/md_var.h>		/* for cpu_feature */
 #endif /* __amd64 || __i386__ */
 
 /*
  * internal function prototypes
  */
 static void	tbr_timeout(void *);
 int (*altq_input)(struct mbuf *, int) = NULL;
 static struct mbuf *tbr_dequeue(struct ifaltq *, int);
 static int tbr_timer = 0;	/* token bucket regulator timer */
 #if !defined(__FreeBSD__) || (__FreeBSD_version < 600000)
 static struct callout tbr_callout = CALLOUT_INITIALIZER;
 #else
 static struct callout tbr_callout;
 #endif
 
 #ifdef ALTQ3_CLFIER_COMPAT
 static int 	extract_ports4(struct mbuf *, struct ip *, struct flowinfo_in *);
 #ifdef INET6
 static int 	extract_ports6(struct mbuf *, struct ip6_hdr *,
 			       struct flowinfo_in6 *);
 #endif
 static int	apply_filter4(u_int32_t, struct flow_filter *,
 			      struct flowinfo_in *);
 static int	apply_ppfilter4(u_int32_t, struct flow_filter *,
 				struct flowinfo_in *);
 #ifdef INET6
 static int	apply_filter6(u_int32_t, struct flow_filter6 *,
 			      struct flowinfo_in6 *);
 #endif
 static int	apply_tosfilter4(u_int32_t, struct flow_filter *,
 				 struct flowinfo_in *);
 static u_long	get_filt_handle(struct acc_classifier *, int);
 static struct acc_filter *filth_to_filtp(struct acc_classifier *, u_long);
 static u_int32_t filt2fibmask(struct flow_filter *);
 
 static void 	ip4f_cache(struct ip *, struct flowinfo_in *);
 static int 	ip4f_lookup(struct ip *, struct flowinfo_in *);
 static int 	ip4f_init(void);
 static struct ip4_frag	*ip4f_alloc(void);
 static void 	ip4f_free(struct ip4_frag *);
 #endif /* ALTQ3_CLFIER_COMPAT */
 
 /*
  * alternate queueing support routines
  */
 
 /* look up the queue state by the interface name and the queueing type. */
 void *
 altq_lookup(name, type)
 	char *name;
 	int type;
 {
 	struct ifnet *ifp;
 
 	if ((ifp = ifunit(name)) != NULL) {
 		/* read if_snd unlocked */
 		if (type != ALTQT_NONE && ifp->if_snd.altq_type == type)
 			return (ifp->if_snd.altq_disc);
 	}
 
 	return NULL;
 }
 
 int
 altq_attach(ifq, type, discipline, enqueue, dequeue, request, clfier, classify)
 	struct ifaltq *ifq;
 	int type;
 	void *discipline;
 	int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *);
 	struct mbuf *(*dequeue)(struct ifaltq *, int);
 	int (*request)(struct ifaltq *, int, void *);
 	void *clfier;
 	void *(*classify)(void *, struct mbuf *, int);
 {
 	IFQ_LOCK(ifq);
 	if (!ALTQ_IS_READY(ifq)) {
 		IFQ_UNLOCK(ifq);
 		return ENXIO;
 	}
 
 #ifdef ALTQ3_COMPAT
 	/*
 	 * pfaltq can override the existing discipline, but altq3 cannot.
 	 * check these if clfier is not NULL (which implies altq3).
 	 */
 	if (clfier != NULL) {
 		if (ALTQ_IS_ENABLED(ifq)) {
 			IFQ_UNLOCK(ifq);
 			return EBUSY;
 		}
 		if (ALTQ_IS_ATTACHED(ifq)) {
 			IFQ_UNLOCK(ifq);
 			return EEXIST;
 		}
 	}
 #endif
 	ifq->altq_type     = type;
 	ifq->altq_disc     = discipline;
 	ifq->altq_enqueue  = enqueue;
 	ifq->altq_dequeue  = dequeue;
 	ifq->altq_request  = request;
 	ifq->altq_clfier   = clfier;
 	ifq->altq_classify = classify;
 	ifq->altq_flags &= (ALTQF_CANTCHANGE|ALTQF_ENABLED);
 #ifdef ALTQ3_COMPAT
 #ifdef ALTQ_KLD
 	altq_module_incref(type);
 #endif
 #endif
 	IFQ_UNLOCK(ifq);
 	return 0;
 }
 
 int
 altq_detach(ifq)
 	struct ifaltq *ifq;
 {
 	IFQ_LOCK(ifq);
 
 	if (!ALTQ_IS_READY(ifq)) {
 		IFQ_UNLOCK(ifq);
 		return ENXIO;
 	}
 	if (ALTQ_IS_ENABLED(ifq)) {
 		IFQ_UNLOCK(ifq);
 		return EBUSY;
 	}
 	if (!ALTQ_IS_ATTACHED(ifq)) {
 		IFQ_UNLOCK(ifq);
 		return (0);
 	}
 #ifdef ALTQ3_COMPAT
 #ifdef ALTQ_KLD
 	altq_module_declref(ifq->altq_type);
 #endif
 #endif
 
 	ifq->altq_type     = ALTQT_NONE;
 	ifq->altq_disc     = NULL;
 	ifq->altq_enqueue  = NULL;
 	ifq->altq_dequeue  = NULL;
 	ifq->altq_request  = NULL;
 	ifq->altq_clfier   = NULL;
 	ifq->altq_classify = NULL;
 	ifq->altq_flags &= ALTQF_CANTCHANGE;
 
 	IFQ_UNLOCK(ifq);
 	return 0;
 }
 
 int
 altq_enable(ifq)
 	struct ifaltq *ifq;
 {
 	int s;
 
 	IFQ_LOCK(ifq);
 
 	if (!ALTQ_IS_READY(ifq)) {
 		IFQ_UNLOCK(ifq);
 		return ENXIO;
 	}
 	if (ALTQ_IS_ENABLED(ifq)) {
 		IFQ_UNLOCK(ifq);
 		return 0;
 	}
 
 	s = splnet();
 	IFQ_PURGE_NOLOCK(ifq);
 	ASSERT(ifq->ifq_len == 0);
 	ifq->ifq_drv_maxlen = 0;		/* disable bulk dequeue */
 	ifq->altq_flags |= ALTQF_ENABLED;
 	if (ifq->altq_clfier != NULL)
 		ifq->altq_flags |= ALTQF_CLASSIFY;
 	splx(s);
 
 	IFQ_UNLOCK(ifq);
 	return 0;
 }
 
 int
 altq_disable(ifq)
 	struct ifaltq *ifq;
 {
 	int s;
 
 	IFQ_LOCK(ifq);
 	if (!ALTQ_IS_ENABLED(ifq)) {
 		IFQ_UNLOCK(ifq);
 		return 0;
 	}
 
 	s = splnet();
 	IFQ_PURGE_NOLOCK(ifq);
 	ASSERT(ifq->ifq_len == 0);
 	ifq->altq_flags &= ~(ALTQF_ENABLED|ALTQF_CLASSIFY);
 	splx(s);
 	
 	IFQ_UNLOCK(ifq);
 	return 0;
 }
 
 #ifdef ALTQ_DEBUG
 void
 altq_assert(file, line, failedexpr)
 	const char *file, *failedexpr;
 	int line;
 {
 	(void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n",
 		     failedexpr, file, line);
 	panic("altq assertion");
 	/* NOTREACHED */
 }
 #endif
 
 /*
  * internal representation of token bucket parameters
  *	rate:	byte_per_unittime << 32
  *		(((bits_per_sec) / 8) << 32) / machclk_freq
  *	depth:	byte << 32
  *
  */
 #define	TBR_SHIFT	32
 #define	TBR_SCALE(x)	((int64_t)(x) << TBR_SHIFT)
 #define	TBR_UNSCALE(x)	((x) >> TBR_SHIFT)
 
 static struct mbuf *
 tbr_dequeue(ifq, op)
 	struct ifaltq *ifq;
 	int op;
 {
 	struct tb_regulator *tbr;
 	struct mbuf *m;
 	int64_t interval;
 	u_int64_t now;
 
 	IFQ_LOCK_ASSERT(ifq);
 	tbr = ifq->altq_tbr;
 	if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) {
 		/* if this is a remove after poll, bypass tbr check */
 	} else {
 		/* update token only when it is negative */
 		if (tbr->tbr_token <= 0) {
 			now = read_machclk();
 			interval = now - tbr->tbr_last;
 			if (interval >= tbr->tbr_filluptime)
 				tbr->tbr_token = tbr->tbr_depth;
 			else {
 				tbr->tbr_token += interval * tbr->tbr_rate;
 				if (tbr->tbr_token > tbr->tbr_depth)
 					tbr->tbr_token = tbr->tbr_depth;
 			}
 			tbr->tbr_last = now;
 		}
 		/* if token is still negative, don't allow dequeue */
 		if (tbr->tbr_token <= 0)
 			return (NULL);
 	}
 
 	if (ALTQ_IS_ENABLED(ifq))
 		m = (*ifq->altq_dequeue)(ifq, op);
 	else {
 		if (op == ALTDQ_POLL)
 			_IF_POLL(ifq, m);
 		else
 			_IF_DEQUEUE(ifq, m);
 	}
 
 	if (m != NULL && op == ALTDQ_REMOVE)
 		tbr->tbr_token -= TBR_SCALE(m_pktlen(m));
 	tbr->tbr_lastop = op;
 	return (m);
 }
 
 /*
  * set a token bucket regulator.
  * if the specified rate is zero, the token bucket regulator is deleted.
  */
 int
 tbr_set(ifq, profile)
 	struct ifaltq *ifq;
 	struct tb_profile *profile;
 {
 	struct tb_regulator *tbr, *otbr;
 	
 	if (tbr_dequeue_ptr == NULL)
 		tbr_dequeue_ptr = tbr_dequeue;
 
 	if (machclk_freq == 0)
 		init_machclk();
 	if (machclk_freq == 0) {
 		printf("tbr_set: no cpu clock available!\n");
 		return (ENXIO);
 	}
 
 	IFQ_LOCK(ifq);
 	if (profile->rate == 0) {
 		/* delete this tbr */
 		if ((tbr = ifq->altq_tbr) == NULL) {
 			IFQ_UNLOCK(ifq);
 			return (ENOENT);
 		}
 		ifq->altq_tbr = NULL;
 		free(tbr, M_DEVBUF);
 		IFQ_UNLOCK(ifq);
 		return (0);
 	}
 
 	tbr = malloc(sizeof(struct tb_regulator), M_DEVBUF, M_NOWAIT | M_ZERO);
 	if (tbr == NULL) {
 		IFQ_UNLOCK(ifq);
 		return (ENOMEM);
 	}
 
 	tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq;
 	tbr->tbr_depth = TBR_SCALE(profile->depth);
 	if (tbr->tbr_rate > 0)
 		tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate;
 	else
 		tbr->tbr_filluptime = 0xffffffffffffffffLL;
 	tbr->tbr_token = tbr->tbr_depth;
 	tbr->tbr_last = read_machclk();
 	tbr->tbr_lastop = ALTDQ_REMOVE;
 
 	otbr = ifq->altq_tbr;
 	ifq->altq_tbr = tbr;	/* set the new tbr */
 
 	if (otbr != NULL)
 		free(otbr, M_DEVBUF);
 	else {
 		if (tbr_timer == 0) {
 			CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
 			tbr_timer = 1;
 		}
 	}
 	IFQ_UNLOCK(ifq);
 	return (0);
 }
 
 /*
  * tbr_timeout goes through the interface list, and kicks the drivers
  * if necessary.
  *
  * MPSAFE
  */
 static void
 tbr_timeout(arg)
 	void *arg;
 {
 	VNET_ITERATOR_DECL(vnet_iter);
 	struct ifnet *ifp;
 	int active, s;
 
 	active = 0;
 	s = splnet();
 	IFNET_RLOCK_NOSLEEP();
 	VNET_LIST_RLOCK_NOSLEEP();
 	VNET_FOREACH(vnet_iter) {
 		CURVNET_SET(vnet_iter);
 		for (ifp = TAILQ_FIRST(&V_ifnet); ifp;
-		    ifp = TAILQ_NEXT(ifp, if_list)) {
+		    ifp = TAILQ_NEXT(ifp, if_link)) {
 			/* read from if_snd unlocked */
 			if (!TBR_IS_ENABLED(&ifp->if_snd))
 				continue;
 			active++;
 			if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
 			    ifp->if_start != NULL)
 				(*ifp->if_start)(ifp);
 		}
 		CURVNET_RESTORE();
 	}
 	VNET_LIST_RUNLOCK_NOSLEEP();
 	IFNET_RUNLOCK_NOSLEEP();
 	splx(s);
 	if (active > 0)
 		CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
 	else
 		tbr_timer = 0;	/* don't need tbr_timer anymore */
 }
 
 /*
  * get token bucket regulator profile
  */
 int
 tbr_get(ifq, profile)
 	struct ifaltq *ifq;
 	struct tb_profile *profile;
 {
 	struct tb_regulator *tbr;
 
 	IFQ_LOCK(ifq);
 	if ((tbr = ifq->altq_tbr) == NULL) {
 		profile->rate = 0;
 		profile->depth = 0;
 	} else {
 		profile->rate =
 		    (u_int)TBR_UNSCALE(tbr->tbr_rate * 8 * machclk_freq);
 		profile->depth = (u_int)TBR_UNSCALE(tbr->tbr_depth);
 	}
 	IFQ_UNLOCK(ifq);
 	return (0);
 }
 
 /*
  * attach a discipline to the interface.  if one already exists, it is
  * overridden.
  * Locking is done in the discipline specific attach functions. Basically
  * they call back to altq_attach which takes care of the attach and locking.
  */
 int
 altq_pfattach(struct pf_altq *a)
 {
 	int error = 0;
 
 	switch (a->scheduler) {
 	case ALTQT_NONE:
 		break;
 #ifdef ALTQ_CBQ
 	case ALTQT_CBQ:
 		error = cbq_pfattach(a);
 		break;
 #endif
 #ifdef ALTQ_PRIQ
 	case ALTQT_PRIQ:
 		error = priq_pfattach(a);
 		break;
 #endif
 #ifdef ALTQ_HFSC
 	case ALTQT_HFSC:
 		error = hfsc_pfattach(a);
 		break;
 #endif
 #ifdef ALTQ_FAIRQ
 	case ALTQT_FAIRQ:
 		error = fairq_pfattach(a);
 		break;
 #endif
 #ifdef ALTQ_CODEL
 	case ALTQT_CODEL:
 		error = codel_pfattach(a);
 		break;
 #endif
 	default:
 		error = ENXIO;
 	}
 
 	return (error);
 }
 
 /*
  * detach a discipline from the interface.
  * it is possible that the discipline was already overridden by another
  * discipline.
  */
 int
 altq_pfdetach(struct pf_altq *a)
 {
 	struct ifnet *ifp;
 	int s, error = 0;
 
 	if ((ifp = ifunit(a->ifname)) == NULL)
 		return (EINVAL);
 
 	/* if this discipline is no longer referenced, just return */
 	/* read unlocked from if_snd */
 	if (a->altq_disc == NULL || a->altq_disc != ifp->if_snd.altq_disc)
 		return (0);
 
 	s = splnet();
 	/* read unlocked from if_snd, _disable and _detach take care */
 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
 		error = altq_disable(&ifp->if_snd);
 	if (error == 0)
 		error = altq_detach(&ifp->if_snd);
 	splx(s);
 
 	return (error);
 }
 
 /*
  * add a discipline or a queue
  * Locking is done in the discipline specific functions with regards to
  * malloc with WAITOK, also it is not yet clear which lock to use.
  */
 int
 altq_add(struct pf_altq *a)
 {
 	int error = 0;
 
 	if (a->qname[0] != 0)
 		return (altq_add_queue(a));
 
 	if (machclk_freq == 0)
 		init_machclk();
 	if (machclk_freq == 0)
 		panic("altq_add: no cpu clock");
 
 	switch (a->scheduler) {
 #ifdef ALTQ_CBQ
 	case ALTQT_CBQ:
 		error = cbq_add_altq(a);
 		break;
 #endif
 #ifdef ALTQ_PRIQ
 	case ALTQT_PRIQ:
 		error = priq_add_altq(a);
 		break;
 #endif
 #ifdef ALTQ_HFSC
 	case ALTQT_HFSC:
 		error = hfsc_add_altq(a);
 		break;
 #endif
 #ifdef ALTQ_FAIRQ
         case ALTQT_FAIRQ:
                 error = fairq_add_altq(a);
                 break;
 #endif
 #ifdef ALTQ_CODEL
 	case ALTQT_CODEL:
 		error = codel_add_altq(a);
 		break;
 #endif
 	default:
 		error = ENXIO;
 	}
 
 	return (error);
 }
 
 /*
  * remove a discipline or a queue
  * It is yet unclear what lock to use to protect this operation, the
  * discipline specific functions will determine and grab it
  */
 int
 altq_remove(struct pf_altq *a)
 {
 	int error = 0;
 
 	if (a->qname[0] != 0)
 		return (altq_remove_queue(a));
 
 	switch (a->scheduler) {
 #ifdef ALTQ_CBQ
 	case ALTQT_CBQ:
 		error = cbq_remove_altq(a);
 		break;
 #endif
 #ifdef ALTQ_PRIQ
 	case ALTQT_PRIQ:
 		error = priq_remove_altq(a);
 		break;
 #endif
 #ifdef ALTQ_HFSC
 	case ALTQT_HFSC:
 		error = hfsc_remove_altq(a);
 		break;
 #endif
 #ifdef ALTQ_FAIRQ
         case ALTQT_FAIRQ:
                 error = fairq_remove_altq(a);
                 break;
 #endif
 #ifdef ALTQ_CODEL
 	case ALTQT_CODEL:
 		error = codel_remove_altq(a);
 		break;
 #endif
 	default:
 		error = ENXIO;
 	}
 
 	return (error);
 }
 
 /*
  * add a queue to the discipline
  * It is yet unclear what lock to use to protect this operation, the
  * discipline specific functions will determine and grab it
  */
 int
 altq_add_queue(struct pf_altq *a)
 {
 	int error = 0;
 
 	switch (a->scheduler) {
 #ifdef ALTQ_CBQ
 	case ALTQT_CBQ:
 		error = cbq_add_queue(a);
 		break;
 #endif
 #ifdef ALTQ_PRIQ
 	case ALTQT_PRIQ:
 		error = priq_add_queue(a);
 		break;
 #endif
 #ifdef ALTQ_HFSC
 	case ALTQT_HFSC:
 		error = hfsc_add_queue(a);
 		break;
 #endif
 #ifdef ALTQ_FAIRQ
         case ALTQT_FAIRQ:
                 error = fairq_add_queue(a);
                 break;
 #endif
 	default:
 		error = ENXIO;
 	}
 
 	return (error);
 }
 
 /*
  * remove a queue from the discipline
  * It is yet unclear what lock to use to protect this operation, the
  * discipline specific functions will determine and grab it
  */
 int
 altq_remove_queue(struct pf_altq *a)
 {
 	int error = 0;
 
 	switch (a->scheduler) {
 #ifdef ALTQ_CBQ
 	case ALTQT_CBQ:
 		error = cbq_remove_queue(a);
 		break;
 #endif
 #ifdef ALTQ_PRIQ
 	case ALTQT_PRIQ:
 		error = priq_remove_queue(a);
 		break;
 #endif
 #ifdef ALTQ_HFSC
 	case ALTQT_HFSC:
 		error = hfsc_remove_queue(a);
 		break;
 #endif
 #ifdef ALTQ_FAIRQ
         case ALTQT_FAIRQ:
                 error = fairq_remove_queue(a);
                 break;
 #endif
 	default:
 		error = ENXIO;
 	}
 
 	return (error);
 }
 
 /*
  * get queue statistics
  * Locking is done in the discipline specific functions with regards to
  * copyout operations, also it is not yet clear which lock to use.
  */
 int
 altq_getqstats(struct pf_altq *a, void *ubuf, int *nbytes)
 {
 	int error = 0;
 
 	switch (a->scheduler) {
 #ifdef ALTQ_CBQ
 	case ALTQT_CBQ:
 		error = cbq_getqstats(a, ubuf, nbytes);
 		break;
 #endif
 #ifdef ALTQ_PRIQ
 	case ALTQT_PRIQ:
 		error = priq_getqstats(a, ubuf, nbytes);
 		break;
 #endif
 #ifdef ALTQ_HFSC
 	case ALTQT_HFSC:
 		error = hfsc_getqstats(a, ubuf, nbytes);
 		break;
 #endif
 #ifdef ALTQ_FAIRQ
         case ALTQT_FAIRQ:
                 error = fairq_getqstats(a, ubuf, nbytes);
                 break;
 #endif
 #ifdef ALTQ_CODEL
 	case ALTQT_CODEL:
 		error = codel_getqstats(a, ubuf, nbytes);
 		break;
 #endif
 	default:
 		error = ENXIO;
 	}
 
 	return (error);
 }
 
 /*
  * read and write diffserv field in IPv4 or IPv6 header
  */
 u_int8_t
 read_dsfield(m, pktattr)
 	struct mbuf *m;
 	struct altq_pktattr *pktattr;
 {
 	struct mbuf *m0;
 	u_int8_t ds_field = 0;
 
 	if (pktattr == NULL ||
 	    (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
 		return ((u_int8_t)0);
 
 	/* verify that pattr_hdr is within the mbuf data */
 	for (m0 = m; m0 != NULL; m0 = m0->m_next)
 		if ((pktattr->pattr_hdr >= m0->m_data) &&
 		    (pktattr->pattr_hdr < m0->m_data + m0->m_len))
 			break;
 	if (m0 == NULL) {
 		/* ick, pattr_hdr is stale */
 		pktattr->pattr_af = AF_UNSPEC;
 #ifdef ALTQ_DEBUG
 		printf("read_dsfield: can't locate header!\n");
 #endif
 		return ((u_int8_t)0);
 	}
 
 	if (pktattr->pattr_af == AF_INET) {
 		struct ip *ip = (struct ip *)pktattr->pattr_hdr;
 
 		if (ip->ip_v != 4)
 			return ((u_int8_t)0);	/* version mismatch! */
 		ds_field = ip->ip_tos;
 	}
 #ifdef INET6
 	else if (pktattr->pattr_af == AF_INET6) {
 		struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
 		u_int32_t flowlabel;
 
 		flowlabel = ntohl(ip6->ip6_flow);
 		if ((flowlabel >> 28) != 6)
 			return ((u_int8_t)0);	/* version mismatch! */
 		ds_field = (flowlabel >> 20) & 0xff;
 	}
 #endif
 	return (ds_field);
 }
 
 void
 write_dsfield(struct mbuf *m, struct altq_pktattr *pktattr, u_int8_t dsfield)
 {
 	struct mbuf *m0;
 
 	if (pktattr == NULL ||
 	    (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
 		return;
 
 	/* verify that pattr_hdr is within the mbuf data */
 	for (m0 = m; m0 != NULL; m0 = m0->m_next)
 		if ((pktattr->pattr_hdr >= m0->m_data) &&
 		    (pktattr->pattr_hdr < m0->m_data + m0->m_len))
 			break;
 	if (m0 == NULL) {
 		/* ick, pattr_hdr is stale */
 		pktattr->pattr_af = AF_UNSPEC;
 #ifdef ALTQ_DEBUG
 		printf("write_dsfield: can't locate header!\n");
 #endif
 		return;
 	}
 
 	if (pktattr->pattr_af == AF_INET) {
 		struct ip *ip = (struct ip *)pktattr->pattr_hdr;
 		u_int8_t old;
 		int32_t sum;
 
 		if (ip->ip_v != 4)
 			return;		/* version mismatch! */
 		old = ip->ip_tos;
 		dsfield |= old & 3;	/* leave CU bits */
 		if (old == dsfield)
 			return;
 		ip->ip_tos = dsfield;
 		/*
 		 * update checksum (from RFC1624)
 		 *	   HC' = ~(~HC + ~m + m')
 		 */
 		sum = ~ntohs(ip->ip_sum) & 0xffff;
 		sum += 0xff00 + (~old & 0xff) + dsfield;
 		sum = (sum >> 16) + (sum & 0xffff);
 		sum += (sum >> 16);  /* add carry */
 
 		ip->ip_sum = htons(~sum & 0xffff);
 	}
 #ifdef INET6
 	else if (pktattr->pattr_af == AF_INET6) {
 		struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
 		u_int32_t flowlabel;
 
 		flowlabel = ntohl(ip6->ip6_flow);
 		if ((flowlabel >> 28) != 6)
 			return;		/* version mismatch! */
 		flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20);
 		ip6->ip6_flow = htonl(flowlabel);
 	}
 #endif
 	return;
 }
 
 
 /*
  * high resolution clock support taking advantage of a machine dependent
  * high resolution time counter (e.g., timestamp counter of intel pentium).
  * we assume
  *  - 64-bit-long monotonically-increasing counter
  *  - frequency range is 100M-4GHz (CPU speed)
  */
 /* if pcc is not available or disabled, emulate 256MHz using microtime() */
 #define	MACHCLK_SHIFT	8
 
 int machclk_usepcc;
 u_int32_t machclk_freq;
 u_int32_t machclk_per_tick;
 
 #if defined(__i386__) && defined(__NetBSD__)
 extern u_int64_t cpu_tsc_freq;
 #endif
 
 #if (__FreeBSD_version >= 700035)
 /* Update TSC freq with the value indicated by the caller. */
 static void
 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
 {
 	/* If there was an error during the transition, don't do anything. */
 	if (status != 0)
 		return;
 
 #if (__FreeBSD_version >= 701102) && (defined(__amd64__) || defined(__i386__))
 	/* If TSC is P-state invariant, don't do anything. */
 	if (tsc_is_invariant)
 		return;
 #endif
 
 	/* Total setting for this level gives the new frequency in MHz. */
 	init_machclk();
 }
 EVENTHANDLER_DEFINE(cpufreq_post_change, tsc_freq_changed, NULL,
     EVENTHANDLER_PRI_LAST);
 #endif /* __FreeBSD_version >= 700035 */
 
 static void
 init_machclk_setup(void)
 {
 #if (__FreeBSD_version >= 600000)
 	callout_init(&tbr_callout, 0);
 #endif
 
 	machclk_usepcc = 1;
 
 #if (!defined(__amd64__) && !defined(__i386__)) || defined(ALTQ_NOPCC)
 	machclk_usepcc = 0;
 #endif
 #if defined(__FreeBSD__) && defined(SMP)
 	machclk_usepcc = 0;
 #endif
 #if defined(__NetBSD__) && defined(MULTIPROCESSOR)
 	machclk_usepcc = 0;
 #endif
 #if defined(__amd64__) || defined(__i386__)
 	/* check if TSC is available */
 	if ((cpu_feature & CPUID_TSC) == 0 ||
 	    atomic_load_acq_64(&tsc_freq) == 0)
 		machclk_usepcc = 0;
 #endif
 }
 
 void
 init_machclk(void)
 {
 	static int called;
 
 	/* Call one-time initialization function. */
 	if (!called) {
 		init_machclk_setup();
 		called = 1;
 	}
 
 	if (machclk_usepcc == 0) {
 		/* emulate 256MHz using microtime() */
 		machclk_freq = 1000000 << MACHCLK_SHIFT;
 		machclk_per_tick = machclk_freq / hz;
 #ifdef ALTQ_DEBUG
 		printf("altq: emulate %uHz cpu clock\n", machclk_freq);
 #endif
 		return;
 	}
 
 	/*
 	 * if the clock frequency (of Pentium TSC or Alpha PCC) is
 	 * accessible, just use it.
 	 */
 #if defined(__amd64__) || defined(__i386__)
 	machclk_freq = atomic_load_acq_64(&tsc_freq);
 #endif
 
 	/*
 	 * if we don't know the clock frequency, measure it.
 	 */
 	if (machclk_freq == 0) {
 		static int	wait;
 		struct timeval	tv_start, tv_end;
 		u_int64_t	start, end, diff;
 		int		timo;
 
 		microtime(&tv_start);
 		start = read_machclk();
 		timo = hz;	/* 1 sec */
 		(void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo);
 		microtime(&tv_end);
 		end = read_machclk();
 		diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000
 		    + tv_end.tv_usec - tv_start.tv_usec;
 		if (diff != 0)
 			machclk_freq = (u_int)((end - start) * 1000000 / diff);
 	}
 
 	machclk_per_tick = machclk_freq / hz;
 
 #ifdef ALTQ_DEBUG
 	printf("altq: CPU clock: %uHz\n", machclk_freq);
 #endif
 }
 
 #if defined(__OpenBSD__) && defined(__i386__)
 static __inline u_int64_t
 rdtsc(void)
 {
 	u_int64_t rv;
 	__asm __volatile(".byte 0x0f, 0x31" : "=A" (rv));
 	return (rv);
 }
 #endif /* __OpenBSD__ && __i386__ */
 
 u_int64_t
 read_machclk(void)
 {
 	u_int64_t val;
 
 	if (machclk_usepcc) {
 #if defined(__amd64__) || defined(__i386__)
 		val = rdtsc();
 #else
 		panic("read_machclk");
 #endif
 	} else {
 		struct timeval tv, boottime;
 
 		microtime(&tv);
 		getboottime(&boottime);
 		val = (((u_int64_t)(tv.tv_sec - boottime.tv_sec) * 1000000
 		    + tv.tv_usec) << MACHCLK_SHIFT);
 	}
 	return (val);
 }
 
 #ifdef ALTQ3_CLFIER_COMPAT
 
 #ifndef IPPROTO_ESP
 #define	IPPROTO_ESP	50		/* encapsulating security payload */
 #endif
 #ifndef IPPROTO_AH
 #define	IPPROTO_AH	51		/* authentication header */
 #endif
 
 /*
  * extract flow information from a given packet.
  * filt_mask shows flowinfo fields required.
  * we assume the ip header is in one mbuf, and addresses and ports are
  * in network byte order.
  */
 int
 altq_extractflow(m, af, flow, filt_bmask)
 	struct mbuf *m;
 	int af;
 	struct flowinfo *flow;
 	u_int32_t	filt_bmask;
 {
 
 	switch (af) {
 	case PF_INET: {
 		struct flowinfo_in *fin;
 		struct ip *ip;
 
 		ip = mtod(m, struct ip *);
 
 		if (ip->ip_v != 4)
 			break;
 
 		fin = (struct flowinfo_in *)flow;
 		fin->fi_len = sizeof(struct flowinfo_in);
 		fin->fi_family = AF_INET;
 
 		fin->fi_proto = ip->ip_p;
 		fin->fi_tos = ip->ip_tos;
 
 		fin->fi_src.s_addr = ip->ip_src.s_addr;
 		fin->fi_dst.s_addr = ip->ip_dst.s_addr;
 
 		if (filt_bmask & FIMB4_PORTS)
 			/* if port info is required, extract port numbers */
 			extract_ports4(m, ip, fin);
 		else {
 			fin->fi_sport = 0;
 			fin->fi_dport = 0;
 			fin->fi_gpi = 0;
 		}
 		return (1);
 	}
 
 #ifdef INET6
 	case PF_INET6: {
 		struct flowinfo_in6 *fin6;
 		struct ip6_hdr *ip6;
 
 		ip6 = mtod(m, struct ip6_hdr *);
 		/* should we check the ip version? */
 
 		fin6 = (struct flowinfo_in6 *)flow;
 		fin6->fi6_len = sizeof(struct flowinfo_in6);
 		fin6->fi6_family = AF_INET6;
 
 		fin6->fi6_proto = ip6->ip6_nxt;
 		fin6->fi6_tclass   = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
 
 		fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff);
 		fin6->fi6_src = ip6->ip6_src;
 		fin6->fi6_dst = ip6->ip6_dst;
 
 		if ((filt_bmask & FIMB6_PORTS) ||
 		    ((filt_bmask & FIMB6_PROTO)
 		     && ip6->ip6_nxt > IPPROTO_IPV6))
 			/*
 			 * if port info is required, or proto is required
 			 * but there are option headers, extract port
 			 * and protocol numbers.
 			 */
 			extract_ports6(m, ip6, fin6);
 		else {
 			fin6->fi6_sport = 0;
 			fin6->fi6_dport = 0;
 			fin6->fi6_gpi = 0;
 		}
 		return (1);
 	}
 #endif /* INET6 */
 
 	default:
 		break;
 	}
 
 	/* failed */
 	flow->fi_len = sizeof(struct flowinfo);
 	flow->fi_family = AF_UNSPEC;
 	return (0);
 }
 
 /*
  * helper routine to extract port numbers
  */
 /* structure for ipsec and ipv6 option header template */
 struct _opt6 {
 	u_int8_t	opt6_nxt;	/* next header */
 	u_int8_t	opt6_hlen;	/* header extension length */
 	u_int16_t	_pad;
 	u_int32_t	ah_spi;		/* security parameter index
 					   for authentication header */
 };
 
 /*
  * extract port numbers from a ipv4 packet.
  */
 static int
 extract_ports4(m, ip, fin)
 	struct mbuf *m;
 	struct ip *ip;
 	struct flowinfo_in *fin;
 {
 	struct mbuf *m0;
 	u_short ip_off;
 	u_int8_t proto;
 	int 	off;
 
 	fin->fi_sport = 0;
 	fin->fi_dport = 0;
 	fin->fi_gpi = 0;
 
 	ip_off = ntohs(ip->ip_off);
 	/* if it is a fragment, try cached fragment info */
 	if (ip_off & IP_OFFMASK) {
 		ip4f_lookup(ip, fin);
 		return (1);
 	}
 
 	/* locate the mbuf containing the protocol header */
 	for (m0 = m; m0 != NULL; m0 = m0->m_next)
 		if (((caddr_t)ip >= m0->m_data) &&
 		    ((caddr_t)ip < m0->m_data + m0->m_len))
 			break;
 	if (m0 == NULL) {
 #ifdef ALTQ_DEBUG
 		printf("extract_ports4: can't locate header! ip=%p\n", ip);
 #endif
 		return (0);
 	}
 	off = ((caddr_t)ip - m0->m_data) + (ip->ip_hl << 2);
 	proto = ip->ip_p;
 
 #ifdef ALTQ_IPSEC
  again:
 #endif
 	while (off >= m0->m_len) {
 		off -= m0->m_len;
 		m0 = m0->m_next;
 		if (m0 == NULL)
 			return (0);  /* bogus ip_hl! */
 	}
 	if (m0->m_len < off + 4)
 		return (0);
 
 	switch (proto) {
 	case IPPROTO_TCP:
 	case IPPROTO_UDP: {
 		struct udphdr *udp;
 
 		udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
 		fin->fi_sport = udp->uh_sport;
 		fin->fi_dport = udp->uh_dport;
 		fin->fi_proto = proto;
 		}
 		break;
 
 #ifdef ALTQ_IPSEC
 	case IPPROTO_ESP:
 		if (fin->fi_gpi == 0){
 			u_int32_t *gpi;
 
 			gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
 			fin->fi_gpi   = *gpi;
 		}
 		fin->fi_proto = proto;
 		break;
 
 	case IPPROTO_AH: {
 			/* get next header and header length */
 			struct _opt6 *opt6;
 
 			opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
 			proto = opt6->opt6_nxt;
 			off += 8 + (opt6->opt6_hlen * 4);
 			if (fin->fi_gpi == 0 && m0->m_len >= off + 8)
 				fin->fi_gpi = opt6->ah_spi;
 		}
 		/* goto the next header */
 		goto again;
 #endif  /* ALTQ_IPSEC */
 
 	default:
 		fin->fi_proto = proto;
 		return (0);
 	}
 
 	/* if this is a first fragment, cache it. */
 	if (ip_off & IP_MF)
 		ip4f_cache(ip, fin);
 
 	return (1);
 }
 
 #ifdef INET6
 static int
 extract_ports6(m, ip6, fin6)
 	struct mbuf *m;
 	struct ip6_hdr *ip6;
 	struct flowinfo_in6 *fin6;
 {
 	struct mbuf *m0;
 	int	off;
 	u_int8_t proto;
 
 	fin6->fi6_gpi   = 0;
 	fin6->fi6_sport = 0;
 	fin6->fi6_dport = 0;
 
 	/* locate the mbuf containing the protocol header */
 	for (m0 = m; m0 != NULL; m0 = m0->m_next)
 		if (((caddr_t)ip6 >= m0->m_data) &&
 		    ((caddr_t)ip6 < m0->m_data + m0->m_len))
 			break;
 	if (m0 == NULL) {
 #ifdef ALTQ_DEBUG
 		printf("extract_ports6: can't locate header! ip6=%p\n", ip6);
 #endif
 		return (0);
 	}
 	off = ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr);
 
 	proto = ip6->ip6_nxt;
 	do {
 		while (off >= m0->m_len) {
 			off -= m0->m_len;
 			m0 = m0->m_next;
 			if (m0 == NULL)
 				return (0);
 		}
 		if (m0->m_len < off + 4)
 			return (0);
 
 		switch (proto) {
 		case IPPROTO_TCP:
 		case IPPROTO_UDP: {
 			struct udphdr *udp;
 
 			udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
 			fin6->fi6_sport = udp->uh_sport;
 			fin6->fi6_dport = udp->uh_dport;
 			fin6->fi6_proto = proto;
 			}
 			return (1);
 
 		case IPPROTO_ESP:
 			if (fin6->fi6_gpi == 0) {
 				u_int32_t *gpi;
 
 				gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
 				fin6->fi6_gpi   = *gpi;
 			}
 			fin6->fi6_proto = proto;
 			return (1);
 
 		case IPPROTO_AH: {
 			/* get next header and header length */
 			struct _opt6 *opt6;
 
 			opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
 			if (fin6->fi6_gpi == 0 && m0->m_len >= off + 8)
 				fin6->fi6_gpi = opt6->ah_spi;
 			proto = opt6->opt6_nxt;
 			off += 8 + (opt6->opt6_hlen * 4);
 			/* goto the next header */
 			break;
 			}
 
 		case IPPROTO_HOPOPTS:
 		case IPPROTO_ROUTING:
 		case IPPROTO_DSTOPTS: {
 			/* get next header and header length */
 			struct _opt6 *opt6;
 
 			opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
 			proto = opt6->opt6_nxt;
 			off += (opt6->opt6_hlen + 1) * 8;
 			/* goto the next header */
 			break;
 			}
 
 		case IPPROTO_FRAGMENT:
 			/* ipv6 fragmentations are not supported yet */
 		default:
 			fin6->fi6_proto = proto;
 			return (0);
 		}
 	} while (1);
 	/*NOTREACHED*/
 }
 #endif /* INET6 */
 
 /*
  * altq common classifier
  */
 int
 acc_add_filter(classifier, filter, class, phandle)
 	struct acc_classifier *classifier;
 	struct flow_filter *filter;
 	void	*class;
 	u_long	*phandle;
 {
 	struct acc_filter *afp, *prev, *tmp;
 	int	i, s;
 
 #ifdef INET6
 	if (filter->ff_flow.fi_family != AF_INET &&
 	    filter->ff_flow.fi_family != AF_INET6)
 		return (EINVAL);
 #else
 	if (filter->ff_flow.fi_family != AF_INET)
 		return (EINVAL);
 #endif
 
 	afp = malloc(sizeof(struct acc_filter),
 	       M_DEVBUF, M_WAITOK);
 	if (afp == NULL)
 		return (ENOMEM);
 	bzero(afp, sizeof(struct acc_filter));
 
 	afp->f_filter = *filter;
 	afp->f_class = class;
 
 	i = ACC_WILDCARD_INDEX;
 	if (filter->ff_flow.fi_family == AF_INET) {
 		struct flow_filter *filter4 = &afp->f_filter;
 
 		/*
 		 * if address is 0, it's a wildcard.  if address mask
 		 * isn't set, use full mask.
 		 */
 		if (filter4->ff_flow.fi_dst.s_addr == 0)
 			filter4->ff_mask.mask_dst.s_addr = 0;
 		else if (filter4->ff_mask.mask_dst.s_addr == 0)
 			filter4->ff_mask.mask_dst.s_addr = 0xffffffff;
 		if (filter4->ff_flow.fi_src.s_addr == 0)
 			filter4->ff_mask.mask_src.s_addr = 0;
 		else if (filter4->ff_mask.mask_src.s_addr == 0)
 			filter4->ff_mask.mask_src.s_addr = 0xffffffff;
 
 		/* clear extra bits in addresses  */
 		   filter4->ff_flow.fi_dst.s_addr &=
 		       filter4->ff_mask.mask_dst.s_addr;
 		   filter4->ff_flow.fi_src.s_addr &=
 		       filter4->ff_mask.mask_src.s_addr;
 
 		/*
 		 * if dst address is a wildcard, use hash-entry
 		 * ACC_WILDCARD_INDEX.
 		 */
 		if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff)
 			i = ACC_WILDCARD_INDEX;
 		else
 			i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr);
 	}
 #ifdef INET6
 	else if (filter->ff_flow.fi_family == AF_INET6) {
 		struct flow_filter6 *filter6 =
 			(struct flow_filter6 *)&afp->f_filter;
 #ifndef IN6MASK0 /* taken from kame ipv6 */
 #define	IN6MASK0	{{{ 0, 0, 0, 0 }}}
 #define	IN6MASK128	{{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}}
 		const struct in6_addr in6mask0 = IN6MASK0;
 		const struct in6_addr in6mask128 = IN6MASK128;
 #endif
 
 		if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst))
 			filter6->ff_mask6.mask6_dst = in6mask0;
 		else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst))
 			filter6->ff_mask6.mask6_dst = in6mask128;
 		if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src))
 			filter6->ff_mask6.mask6_src = in6mask0;
 		else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src))
 			filter6->ff_mask6.mask6_src = in6mask128;
 
 		/* clear extra bits in addresses  */
 		for (i = 0; i < 16; i++)
 			filter6->ff_flow6.fi6_dst.s6_addr[i] &=
 			    filter6->ff_mask6.mask6_dst.s6_addr[i];
 		for (i = 0; i < 16; i++)
 			filter6->ff_flow6.fi6_src.s6_addr[i] &=
 			    filter6->ff_mask6.mask6_src.s6_addr[i];
 
 		if (filter6->ff_flow6.fi6_flowlabel == 0)
 			i = ACC_WILDCARD_INDEX;
 		else
 			i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel);
 	}
 #endif /* INET6 */
 
 	afp->f_handle = get_filt_handle(classifier, i);
 
 	/* update filter bitmask */
 	afp->f_fbmask = filt2fibmask(filter);
 	classifier->acc_fbmask |= afp->f_fbmask;
 
 	/*
 	 * add this filter to the filter list.
 	 * filters are ordered from the highest rule number.
 	 */
 	s = splnet();
 	prev = NULL;
 	LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) {
 		if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno)
 			prev = tmp;
 		else
 			break;
 	}
 	if (prev == NULL)
 		LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain);
 	else
 		LIST_INSERT_AFTER(prev, afp, f_chain);
 	splx(s);
 
 	*phandle = afp->f_handle;
 	return (0);
 }
 
 int
 acc_delete_filter(classifier, handle)
 	struct acc_classifier *classifier;
 	u_long handle;
 {
 	struct acc_filter *afp;
 	int	s;
 
 	if ((afp = filth_to_filtp(classifier, handle)) == NULL)
 		return (EINVAL);
 
 	s = splnet();
 	LIST_REMOVE(afp, f_chain);
 	splx(s);
 
 	free(afp, M_DEVBUF);
 
 	/* todo: update filt_bmask */
 
 	return (0);
 }
 
 /*
  * delete filters referencing to the specified class.
  * if the all flag is not 0, delete all the filters.
  */
 int
 acc_discard_filters(classifier, class, all)
 	struct acc_classifier *classifier;
 	void	*class;
 	int	all;
 {
 	struct acc_filter *afp;
 	int	i, s;
 
 	s = splnet();
 	for (i = 0; i < ACC_FILTER_TABLESIZE; i++) {
 		do {
 			LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
 				if (all || afp->f_class == class) {
 					LIST_REMOVE(afp, f_chain);
 					free(afp, M_DEVBUF);
 					/* start again from the head */
 					break;
 				}
 		} while (afp != NULL);
 	}
 	splx(s);
 
 	if (all)
 		classifier->acc_fbmask = 0;
 
 	return (0);
 }
 
 void *
 acc_classify(clfier, m, af)
 	void *clfier;
 	struct mbuf *m;
 	int af;
 {
 	struct acc_classifier *classifier;
 	struct flowinfo flow;
 	struct acc_filter *afp;
 	int	i;
 
 	classifier = (struct acc_classifier *)clfier;
 	altq_extractflow(m, af, &flow, classifier->acc_fbmask);
 
 	if (flow.fi_family == AF_INET) {
 		struct flowinfo_in *fp = (struct flowinfo_in *)&flow;
 
 		if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) {
 			/* only tos is used */
 			LIST_FOREACH(afp,
 				 &classifier->acc_filters[ACC_WILDCARD_INDEX],
 				 f_chain)
 				if (apply_tosfilter4(afp->f_fbmask,
 						     &afp->f_filter, fp))
 					/* filter matched */
 					return (afp->f_class);
 		} else if ((classifier->acc_fbmask &
 			(~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL))
 		    == 0) {
 			/* only proto and ports are used */
 			LIST_FOREACH(afp,
 				 &classifier->acc_filters[ACC_WILDCARD_INDEX],
 				 f_chain)
 				if (apply_ppfilter4(afp->f_fbmask,
 						    &afp->f_filter, fp))
 					/* filter matched */
 					return (afp->f_class);
 		} else {
 			/* get the filter hash entry from its dest address */
 			i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr);
 			do {
 				/*
 				 * go through this loop twice.  first for dst
 				 * hash, second for wildcards.
 				 */
 				LIST_FOREACH(afp, &classifier->acc_filters[i],
 					     f_chain)
 					if (apply_filter4(afp->f_fbmask,
 							  &afp->f_filter, fp))
 						/* filter matched */
 						return (afp->f_class);
 
 				/*
 				 * check again for filters with a dst addr
 				 * wildcard.
 				 * (daddr == 0 || dmask != 0xffffffff).
 				 */
 				if (i != ACC_WILDCARD_INDEX)
 					i = ACC_WILDCARD_INDEX;
 				else
 					break;
 			} while (1);
 		}
 	}
 #ifdef INET6
 	else if (flow.fi_family == AF_INET6) {
 		struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow;
 
 		/* get the filter hash entry from its flow ID */
 		if (fp6->fi6_flowlabel != 0)
 			i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel);
 		else
 			/* flowlable can be zero */
 			i = ACC_WILDCARD_INDEX;
 
 		/* go through this loop twice.  first for flow hash, second
 		   for wildcards. */
 		do {
 			LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
 				if (apply_filter6(afp->f_fbmask,
 					(struct flow_filter6 *)&afp->f_filter,
 					fp6))
 					/* filter matched */
 					return (afp->f_class);
 
 			/*
 			 * check again for filters with a wildcard.
 			 */
 			if (i != ACC_WILDCARD_INDEX)
 				i = ACC_WILDCARD_INDEX;
 			else
 				break;
 		} while (1);
 	}
 #endif /* INET6 */
 
 	/* no filter matched */
 	return (NULL);
 }
 
 static int
 apply_filter4(fbmask, filt, pkt)
 	u_int32_t	fbmask;
 	struct flow_filter *filt;
 	struct flowinfo_in *pkt;
 {
 	if (filt->ff_flow.fi_family != AF_INET)
 		return (0);
 	if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
 		return (0);
 	if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
 		return (0);
 	if ((fbmask & FIMB4_DADDR) &&
 	    filt->ff_flow.fi_dst.s_addr !=
 	    (pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr))
 		return (0);
 	if ((fbmask & FIMB4_SADDR) &&
 	    filt->ff_flow.fi_src.s_addr !=
 	    (pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr))
 		return (0);
 	if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
 		return (0);
 	if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
 	    (pkt->fi_tos & filt->ff_mask.mask_tos))
 		return (0);
 	if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi))
 		return (0);
 	/* match */
 	return (1);
 }
 
 /*
  * filter matching function optimized for a common case that checks
  * only protocol and port numbers
  */
 static int
 apply_ppfilter4(fbmask, filt, pkt)
 	u_int32_t	fbmask;
 	struct flow_filter *filt;
 	struct flowinfo_in *pkt;
 {
 	if (filt->ff_flow.fi_family != AF_INET)
 		return (0);
 	if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
 		return (0);
 	if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
 		return (0);
 	if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
 		return (0);
 	/* match */
 	return (1);
 }
 
 /*
  * filter matching function only for tos field.
  */
 static int
 apply_tosfilter4(fbmask, filt, pkt)
 	u_int32_t	fbmask;
 	struct flow_filter *filt;
 	struct flowinfo_in *pkt;
 {
 	if (filt->ff_flow.fi_family != AF_INET)
 		return (0);
 	if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
 	    (pkt->fi_tos & filt->ff_mask.mask_tos))
 		return (0);
 	/* match */
 	return (1);
 }
 
 #ifdef INET6
 static int
 apply_filter6(fbmask, filt, pkt)
 	u_int32_t	fbmask;
 	struct flow_filter6 *filt;
 	struct flowinfo_in6 *pkt;
 {
 	int i;
 
 	if (filt->ff_flow6.fi6_family != AF_INET6)
 		return (0);
 	if ((fbmask & FIMB6_FLABEL) &&
 	    filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel)
 		return (0);
 	if ((fbmask & FIMB6_PROTO) &&
 	    filt->ff_flow6.fi6_proto != pkt->fi6_proto)
 		return (0);
 	if ((fbmask & FIMB6_SPORT) &&
 	    filt->ff_flow6.fi6_sport != pkt->fi6_sport)
 		return (0);
 	if ((fbmask & FIMB6_DPORT) &&
 	    filt->ff_flow6.fi6_dport != pkt->fi6_dport)
 		return (0);
 	if (fbmask & FIMB6_SADDR) {
 		for (i = 0; i < 4; i++)
 			if (filt->ff_flow6.fi6_src.s6_addr32[i] !=
 			    (pkt->fi6_src.s6_addr32[i] &
 			     filt->ff_mask6.mask6_src.s6_addr32[i]))
 				return (0);
 	}
 	if (fbmask & FIMB6_DADDR) {
 		for (i = 0; i < 4; i++)
 			if (filt->ff_flow6.fi6_dst.s6_addr32[i] !=
 			    (pkt->fi6_dst.s6_addr32[i] &
 			     filt->ff_mask6.mask6_dst.s6_addr32[i]))
 				return (0);
 	}
 	if ((fbmask & FIMB6_TCLASS) &&
 	    filt->ff_flow6.fi6_tclass !=
 	    (pkt->fi6_tclass & filt->ff_mask6.mask6_tclass))
 		return (0);
 	if ((fbmask & FIMB6_GPI) &&
 	    filt->ff_flow6.fi6_gpi != pkt->fi6_gpi)
 		return (0);
 	/* match */
 	return (1);
 }
 #endif /* INET6 */
 
 /*
  *  filter handle:
  *	bit 20-28: index to the filter hash table
  *	bit  0-19: unique id in the hash bucket.
  */
 static u_long
 get_filt_handle(classifier, i)
 	struct acc_classifier *classifier;
 	int	i;
 {
 	static u_long handle_number = 1;
 	u_long 	handle;
 	struct acc_filter *afp;
 
 	while (1) {
 		handle = handle_number++ & 0x000fffff;
 
 		if (LIST_EMPTY(&classifier->acc_filters[i]))
 			break;
 
 		LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
 			if ((afp->f_handle & 0x000fffff) == handle)
 				break;
 		if (afp == NULL)
 			break;
 		/* this handle is already used, try again */
 	}
 
 	return ((i << 20) | handle);
 }
 
 /* convert filter handle to filter pointer */
 static struct acc_filter *
 filth_to_filtp(classifier, handle)
 	struct acc_classifier *classifier;
 	u_long handle;
 {
 	struct acc_filter *afp;
 	int	i;
 
 	i = ACC_GET_HINDEX(handle);
 
 	LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
 		if (afp->f_handle == handle)
 			return (afp);
 
 	return (NULL);
 }
 
 /* create flowinfo bitmask */
 static u_int32_t
 filt2fibmask(filt)
 	struct flow_filter *filt;
 {
 	u_int32_t mask = 0;
 #ifdef INET6
 	struct flow_filter6 *filt6;
 #endif
 
 	switch (filt->ff_flow.fi_family) {
 	case AF_INET:
 		if (filt->ff_flow.fi_proto != 0)
 			mask |= FIMB4_PROTO;
 		if (filt->ff_flow.fi_tos != 0)
 			mask |= FIMB4_TOS;
 		if (filt->ff_flow.fi_dst.s_addr != 0)
 			mask |= FIMB4_DADDR;
 		if (filt->ff_flow.fi_src.s_addr != 0)
 			mask |= FIMB4_SADDR;
 		if (filt->ff_flow.fi_sport != 0)
 			mask |= FIMB4_SPORT;
 		if (filt->ff_flow.fi_dport != 0)
 			mask |= FIMB4_DPORT;
 		if (filt->ff_flow.fi_gpi != 0)
 			mask |= FIMB4_GPI;
 		break;
 #ifdef INET6
 	case AF_INET6:
 		filt6 = (struct flow_filter6 *)filt;
 
 		if (filt6->ff_flow6.fi6_proto != 0)
 			mask |= FIMB6_PROTO;
 		if (filt6->ff_flow6.fi6_tclass != 0)
 			mask |= FIMB6_TCLASS;
 		if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst))
 			mask |= FIMB6_DADDR;
 		if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src))
 			mask |= FIMB6_SADDR;
 		if (filt6->ff_flow6.fi6_sport != 0)
 			mask |= FIMB6_SPORT;
 		if (filt6->ff_flow6.fi6_dport != 0)
 			mask |= FIMB6_DPORT;
 		if (filt6->ff_flow6.fi6_gpi != 0)
 			mask |= FIMB6_GPI;
 		if (filt6->ff_flow6.fi6_flowlabel != 0)
 			mask |= FIMB6_FLABEL;
 		break;
 #endif /* INET6 */
 	}
 	return (mask);
 }
 
 
 /*
  * helper functions to handle IPv4 fragments.
  * currently only in-sequence fragments are handled.
  *	- fragment info is cached in a LRU list.
  *	- when a first fragment is found, cache its flow info.
  *	- when a non-first fragment is found, lookup the cache.
  */
 
 struct ip4_frag {
     TAILQ_ENTRY(ip4_frag) ip4f_chain;
     char    ip4f_valid;
     u_short ip4f_id;
     struct flowinfo_in ip4f_info;
 };
 
 static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */
 
 #define	IP4F_TABSIZE		16	/* IPv4 fragment cache size */
 
 
 static void
 ip4f_cache(ip, fin)
 	struct ip *ip;
 	struct flowinfo_in *fin;
 {
 	struct ip4_frag *fp;
 
 	if (TAILQ_EMPTY(&ip4f_list)) {
 		/* first time call, allocate fragment cache entries. */
 		if (ip4f_init() < 0)
 			/* allocation failed! */
 			return;
 	}
 
 	fp = ip4f_alloc();
 	fp->ip4f_id = ip->ip_id;
 	fp->ip4f_info.fi_proto = ip->ip_p;
 	fp->ip4f_info.fi_src.s_addr = ip->ip_src.s_addr;
 	fp->ip4f_info.fi_dst.s_addr = ip->ip_dst.s_addr;
 
 	/* save port numbers */
 	fp->ip4f_info.fi_sport = fin->fi_sport;
 	fp->ip4f_info.fi_dport = fin->fi_dport;
 	fp->ip4f_info.fi_gpi   = fin->fi_gpi;
 }
 
 static int
 ip4f_lookup(ip, fin)
 	struct ip *ip;
 	struct flowinfo_in *fin;
 {
 	struct ip4_frag *fp;
 
 	for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid;
 	     fp = TAILQ_NEXT(fp, ip4f_chain))
 		if (ip->ip_id == fp->ip4f_id &&
 		    ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr &&
 		    ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr &&
 		    ip->ip_p == fp->ip4f_info.fi_proto) {
 
 			/* found the matching entry */
 			fin->fi_sport = fp->ip4f_info.fi_sport;
 			fin->fi_dport = fp->ip4f_info.fi_dport;
 			fin->fi_gpi   = fp->ip4f_info.fi_gpi;
 
 			if ((ntohs(ip->ip_off) & IP_MF) == 0)
 				/* this is the last fragment,
 				   release the entry. */
 				ip4f_free(fp);
 
 			return (1);
 		}
 
 	/* no matching entry found */
 	return (0);
 }
 
 static int
 ip4f_init(void)
 {
 	struct ip4_frag *fp;
 	int i;
 
 	TAILQ_INIT(&ip4f_list);
 	for (i=0; i<IP4F_TABSIZE; i++) {
 		fp = malloc(sizeof(struct ip4_frag),
 		       M_DEVBUF, M_NOWAIT);
 		if (fp == NULL) {
 			printf("ip4f_init: can't alloc %dth entry!\n", i);
 			if (i == 0)
 				return (-1);
 			return (0);
 		}
 		fp->ip4f_valid = 0;
 		TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
 	}
 	return (0);
 }
 
 static struct ip4_frag *
 ip4f_alloc(void)
 {
 	struct ip4_frag *fp;
 
 	/* reclaim an entry at the tail, put it at the head */
 	fp = TAILQ_LAST(&ip4f_list, ip4f_list);
 	TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
 	fp->ip4f_valid = 1;
 	TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain);
 	return (fp);
 }
 
 static void
 ip4f_free(fp)
 	struct ip4_frag *fp;
 {
 	TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
 	fp->ip4f_valid = 0;
 	TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
 }
 
 #endif /* ALTQ3_CLFIER_COMPAT */
Index: head/sys/net/if_var.h
===================================================================
--- head/sys/net/if_var.h	(revision 306744)
+++ head/sys/net/if_var.h	(revision 306745)
@@ -1,659 +1,658 @@
 /*-
  * Copyright (c) 1982, 1986, 1989, 1993
  *	The Regents of the University of California.  All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 4. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	From: @(#)if.h	8.1 (Berkeley) 6/10/93
  * $FreeBSD$
  */
 
 #ifndef	_NET_IF_VAR_H_
 #define	_NET_IF_VAR_H_
 
 /*
  * Structures defining a network interface, providing a packet
  * transport mechanism (ala level 0 of the PUP protocols).
  *
  * Each interface accepts output datagrams of a specified maximum
  * length, and provides higher level routines with input datagrams
  * received from its medium.
  *
  * Output occurs when the routine if_output is called, with three parameters:
  *	(*ifp->if_output)(ifp, m, dst, rt)
  * Here m is the mbuf chain to be sent and dst is the destination address.
  * The output routine encapsulates the supplied datagram if necessary,
  * and then transmits it on its medium.
  *
  * On input, each interface unwraps the data received by it, and either
  * places it on the input queue of an internetwork datagram routine
  * and posts the associated software interrupt, or passes the datagram to a raw
  * packet input routine.
  *
  * Routines exist for locating interfaces by their addresses
  * or for locating an interface on a certain network, as well as more general
  * routing and gateway routines maintaining information used to locate
  * interfaces.  These routines live in the files if.c and route.c
  */
 
 struct	rtentry;		/* ifa_rtrequest */
 struct	rt_addrinfo;		/* ifa_rtrequest */
 struct	socket;
 struct	carp_if;
 struct	carp_softc;
 struct  ifvlantrunk;
 struct	route;			/* if_output */
 struct	vnet;
 struct	ifmedia;
 struct	netmap_adapter;
 
 #ifdef _KERNEL
 #include <sys/mbuf.h>		/* ifqueue only? */
 #include <sys/buf_ring.h>
 #include <net/vnet.h>
 #endif /* _KERNEL */
 #include <sys/counter.h>
 #include <sys/lock.h>		/* XXX */
 #include <sys/mutex.h>		/* struct ifqueue */
 #include <sys/rwlock.h>		/* XXX */
 #include <sys/sx.h>		/* XXX */
 #include <sys/_task.h>		/* if_link_task */
 
 #define	IF_DUNIT_NONE	-1
 
 #include <net/altq/if_altq.h>
 
 TAILQ_HEAD(ifnethead, ifnet);	/* we use TAILQs so that the order of */
 TAILQ_HEAD(ifaddrhead, ifaddr);	/* instantiation is preserved in the list */
 TAILQ_HEAD(ifmultihead, ifmultiaddr);
 TAILQ_HEAD(ifgrouphead, ifg_group);
 
 #ifdef _KERNEL
 VNET_DECLARE(struct pfil_head, link_pfil_hook);	/* packet filter hooks */
 #define	V_link_pfil_hook	VNET(link_pfil_hook)
 
 #define	HHOOK_IPSEC_INET	0
 #define	HHOOK_IPSEC_INET6	1
 #define	HHOOK_IPSEC_COUNT	2
 VNET_DECLARE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]);
 VNET_DECLARE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]);
 #define	V_ipsec_hhh_in	VNET(ipsec_hhh_in)
 #define	V_ipsec_hhh_out	VNET(ipsec_hhh_out)
 #endif /* _KERNEL */
 
 typedef enum {
 	IFCOUNTER_IPACKETS = 0,
 	IFCOUNTER_IERRORS,
 	IFCOUNTER_OPACKETS,
 	IFCOUNTER_OERRORS,
 	IFCOUNTER_COLLISIONS,
 	IFCOUNTER_IBYTES,
 	IFCOUNTER_OBYTES,
 	IFCOUNTER_IMCASTS,
 	IFCOUNTER_OMCASTS,
 	IFCOUNTER_IQDROPS,
 	IFCOUNTER_OQDROPS,
 	IFCOUNTER_NOPROTO,
 	IFCOUNTERS /* Array size. */
 } ift_counter;
 
 typedef struct ifnet * if_t;
 
 typedef	void (*if_start_fn_t)(if_t);
 typedef	int (*if_ioctl_fn_t)(if_t, u_long, caddr_t);
 typedef	void (*if_init_fn_t)(void *);
 typedef void (*if_qflush_fn_t)(if_t);
 typedef int (*if_transmit_fn_t)(if_t, struct mbuf *);
 typedef	uint64_t (*if_get_counter_t)(if_t, ift_counter);
 
 struct ifnet_hw_tsomax {
 	u_int	tsomaxbytes;	/* TSO total burst length limit in bytes */
 	u_int	tsomaxsegcount;	/* TSO maximum segment count */
 	u_int	tsomaxsegsize;	/* TSO maximum segment size in bytes */
 };
 
 /* Interface encap request types */
 typedef enum {
 	IFENCAP_LL = 1			/* pre-calculate link-layer header */
 } ife_type;
 
 /*
  * The structure below allows to request various pre-calculated L2/L3 headers
  * for different media. Requests varies by type (rtype field).
  *
  * IFENCAP_LL type: pre-calculates link header based on address family
  *   and destination lladdr.
  *
  *   Input data fields:
  *     buf: pointer to destination buffer
  *     bufsize: buffer size
  *     flags: IFENCAP_FLAG_BROADCAST if destination is broadcast
  *     family: address family defined by AF_ constant.
  *     lladdr: pointer to link-layer address
  *     lladdr_len: length of link-layer address
  *     hdata: pointer to L3 header (optional, used for ARP requests).
  *   Output data fields:
  *     buf: encap data is stored here
  *     bufsize: resulting encap length is stored here
  *     lladdr_off: offset of link-layer address from encap hdr start
  *     hdata: L3 header may be altered if necessary
  */
 
 struct if_encap_req {
 	u_char		*buf;		/* Destination buffer (w) */
 	size_t		bufsize;	/* size of provided buffer (r) */
 	ife_type	rtype;		/* request type (r) */
 	uint32_t	flags;		/* Request flags (r) */
 	int		family;		/* Address family AF_* (r) */
 	int		lladdr_off;	/* offset from header start (w) */
 	int		lladdr_len;	/* lladdr length (r) */
 	char		*lladdr;	/* link-level address pointer (r) */
 	char		*hdata;		/* Upper layer header data (rw) */
 };
 
 #define	IFENCAP_FLAG_BROADCAST	0x02	/* Destination is broadcast */
 
 
 /*
  * Structure defining a network interface.
  */
 struct ifnet {
 	/* General book keeping of interface lists. */
 	TAILQ_ENTRY(ifnet) if_link; 	/* all struct ifnets are chained */
 	LIST_ENTRY(ifnet) if_clones;	/* interfaces of a cloner */
 	TAILQ_HEAD(, ifg_list) if_groups; /* linked list of groups per if */
 					/* protected by if_addr_lock */
 	u_char	if_alloctype;		/* if_type at time of allocation */
 
 	/* Driver and protocol specific information that remains stable. */
 	void	*if_softc;		/* pointer to driver state */
 	void	*if_llsoftc;		/* link layer softc */
 	void	*if_l2com;		/* pointer to protocol bits */
 	const char *if_dname;		/* driver name */
 	int	if_dunit;		/* unit or IF_DUNIT_NONE */
 	u_short	if_index;		/* numeric abbreviation for this if  */
 	short	if_index_reserved;	/* spare space to grow if_index */
 	char	if_xname[IFNAMSIZ];	/* external name (name + unit) */
 	char	*if_description;	/* interface description */
 
 	/* Variable fields that are touched by the stack and drivers. */
 	int	if_flags;		/* up/down, broadcast, etc. */
 	int	if_drv_flags;		/* driver-managed status flags */
 	int	if_capabilities;	/* interface features & capabilities */
 	int	if_capenable;		/* enabled features & capabilities */
 	void	*if_linkmib;		/* link-type-specific MIB data */
 	size_t	if_linkmiblen;		/* length of above data */
 	u_int	if_refcount;		/* reference count */
 
 	/* These fields are shared with struct if_data. */
 	uint8_t		if_type;	/* ethernet, tokenring, etc */
 	uint8_t		if_addrlen;	/* media address length */
 	uint8_t		if_hdrlen;	/* media header length */
 	uint8_t		if_link_state;	/* current link state */
 	uint32_t	if_mtu;		/* maximum transmission unit */
 	uint32_t	if_metric;	/* routing metric (external only) */
 	uint64_t	if_baudrate;	/* linespeed */
 	uint64_t	if_hwassist;	/* HW offload capabilities, see IFCAP */
 	time_t		if_epoch;	/* uptime at attach or stat reset */
 	struct timeval	if_lastchange;	/* time of last administrative change */
 
 	struct  ifaltq if_snd;		/* output queue (includes altq) */
 	struct	task if_linktask;	/* task for link change events */
 
 	/* Addresses of different protocol families assigned to this if. */
 	struct	rwlock if_addr_lock;	/* lock to protect address lists */
 		/*
 		 * if_addrhead is the list of all addresses associated to
 		 * an interface.
 		 * Some code in the kernel assumes that first element
 		 * of the list has type AF_LINK, and contains sockaddr_dl
 		 * addresses which store the link-level address and the name
 		 * of the interface.
 		 * However, access to the AF_LINK address through this
 		 * field is deprecated. Use if_addr or ifaddr_byindex() instead.
 		 */
 	struct	ifaddrhead if_addrhead;	/* linked list of addresses per if */
 	struct	ifmultihead if_multiaddrs; /* multicast addresses configured */
 	int	if_amcount;		/* number of all-multicast requests */
 	struct	ifaddr	*if_addr;	/* pointer to link-level address */
 	const u_int8_t *if_broadcastaddr; /* linklevel broadcast bytestring */
 	struct	rwlock if_afdata_lock;
 	void	*if_afdata[AF_MAX];
 	int	if_afdata_initialized;
 
 	/* Additional features hung off the interface. */
 	u_int	if_fib;			/* interface FIB */
 	struct	vnet *if_vnet;		/* pointer to network stack instance */
 	struct	vnet *if_home_vnet;	/* where this ifnet originates from */
 	struct  ifvlantrunk *if_vlantrunk; /* pointer to 802.1q data */
 	struct	bpf_if *if_bpf;		/* packet filter structure */
 	int	if_pcount;		/* number of promiscuous listeners */
 	void	*if_bridge;		/* bridge glue */
 	void	*if_lagg;		/* lagg glue */
 	void	*if_pf_kif;		/* pf glue */
 	struct	carp_if *if_carp;	/* carp interface structure */
 	struct	label *if_label;	/* interface MAC label */
 	struct	netmap_adapter *if_netmap; /* netmap(4) softc */
 
 	/* Various procedures of the layer2 encapsulation and drivers. */
 	int	(*if_output)		/* output routine (enqueue) */
 		(struct ifnet *, struct mbuf *, const struct sockaddr *,
 		     struct route *);
 	void	(*if_input)		/* input routine (from h/w driver) */
 		(struct ifnet *, struct mbuf *);
 	if_start_fn_t	if_start;	/* initiate output routine */
 	if_ioctl_fn_t	if_ioctl;	/* ioctl routine */
 	if_init_fn_t	if_init;	/* Init routine */
 	int	(*if_resolvemulti)	/* validate/resolve multicast */
 		(struct ifnet *, struct sockaddr **, struct sockaddr *);
 	if_qflush_fn_t	if_qflush;	/* flush any queue */	
 	if_transmit_fn_t if_transmit;   /* initiate output routine */
 
 	void	(*if_reassign)		/* reassign to vnet routine */
 		(struct ifnet *, struct vnet *, char *);
 	if_get_counter_t if_get_counter; /* get counter values */
 	int	(*if_requestencap)	/* make link header from request */
 		(struct ifnet *, struct if_encap_req *);
 
 	/* Statistics. */
 	counter_u64_t	if_counters[IFCOUNTERS];
 
 	/* Stuff that's only temporary and doesn't belong here. */
 
 	/*
 	 * Network adapter TSO limits:
 	 * ===========================
 	 *
 	 * If the "if_hw_tsomax" field is zero the maximum segment
 	 * length limit does not apply. If the "if_hw_tsomaxsegcount"
 	 * or the "if_hw_tsomaxsegsize" field is zero the TSO segment
 	 * count limit does not apply. If all three fields are zero,
 	 * there is no TSO limit.
 	 *
 	 * NOTE: The TSO limits should reflect the values used in the
 	 * BUSDMA tag a network adapter is using to load a mbuf chain
 	 * for transmission. The TCP/IP network stack will subtract
 	 * space for all linklevel and protocol level headers and
 	 * ensure that the full mbuf chain passed to the network
 	 * adapter fits within the given limits.
 	 */
 	u_int	if_hw_tsomax;		/* TSO maximum size in bytes */
 	u_int	if_hw_tsomaxsegcount;	/* TSO maximum segment count */
 	u_int	if_hw_tsomaxsegsize;	/* TSO maximum segment size in bytes */
 
 	/*
 	 * Spare fields to be added before branching a stable branch, so
 	 * that structure can be enhanced without changing the kernel
 	 * binary interface.
 	 */
 	void	*if_pspare[4];		/* packet pacing / general use */
 	int	if_ispare[4];		/* packet pacing / general use */
 };
 
 /* for compatibility with other BSDs */
-#define	if_list		if_link
 #define	if_name(ifp)	((ifp)->if_xname)
 
 /*
  * Locks for address lists on the network interface.
  */
 #define	IF_ADDR_LOCK_INIT(if)	rw_init(&(if)->if_addr_lock, "if_addr_lock")
 #define	IF_ADDR_LOCK_DESTROY(if)	rw_destroy(&(if)->if_addr_lock)
 #define	IF_ADDR_WLOCK(if)	rw_wlock(&(if)->if_addr_lock)
 #define	IF_ADDR_WUNLOCK(if)	rw_wunlock(&(if)->if_addr_lock)
 #define	IF_ADDR_RLOCK(if)	rw_rlock(&(if)->if_addr_lock)
 #define	IF_ADDR_RUNLOCK(if)	rw_runlock(&(if)->if_addr_lock)
 #define	IF_ADDR_LOCK_ASSERT(if)	rw_assert(&(if)->if_addr_lock, RA_LOCKED)
 #define	IF_ADDR_WLOCK_ASSERT(if) rw_assert(&(if)->if_addr_lock, RA_WLOCKED)
 
 /*
  * Function variations on locking macros intended to be used by loadable
  * kernel modules in order to divorce them from the internals of address list
  * locking.
  */
 void	if_addr_rlock(struct ifnet *ifp);	/* if_addrhead */
 void	if_addr_runlock(struct ifnet *ifp);	/* if_addrhead */
 void	if_maddr_rlock(if_t ifp);	/* if_multiaddrs */
 void	if_maddr_runlock(if_t ifp);	/* if_multiaddrs */
 
 #ifdef _KERNEL
 #ifdef _SYS_EVENTHANDLER_H_
 /* interface link layer address change event */
 typedef void (*iflladdr_event_handler_t)(void *, struct ifnet *);
 EVENTHANDLER_DECLARE(iflladdr_event, iflladdr_event_handler_t);
 /* interface address change event */
 typedef void (*ifaddr_event_handler_t)(void *, struct ifnet *);
 EVENTHANDLER_DECLARE(ifaddr_event, ifaddr_event_handler_t);
 /* new interface arrival event */
 typedef void (*ifnet_arrival_event_handler_t)(void *, struct ifnet *);
 EVENTHANDLER_DECLARE(ifnet_arrival_event, ifnet_arrival_event_handler_t);
 /* interface departure event */
 typedef void (*ifnet_departure_event_handler_t)(void *, struct ifnet *);
 EVENTHANDLER_DECLARE(ifnet_departure_event, ifnet_departure_event_handler_t);
 /* Interface link state change event */
 typedef void (*ifnet_link_event_handler_t)(void *, struct ifnet *, int);
 EVENTHANDLER_DECLARE(ifnet_link_event, ifnet_link_event_handler_t);
 #endif /* _SYS_EVENTHANDLER_H_ */
 
 /*
  * interface groups
  */
 struct ifg_group {
 	char				 ifg_group[IFNAMSIZ];
 	u_int				 ifg_refcnt;
 	void				*ifg_pf_kif;
 	TAILQ_HEAD(, ifg_member)	 ifg_members;
 	TAILQ_ENTRY(ifg_group)		 ifg_next;
 };
 
 struct ifg_member {
 	TAILQ_ENTRY(ifg_member)	 ifgm_next;
 	struct ifnet		*ifgm_ifp;
 };
 
 struct ifg_list {
 	struct ifg_group	*ifgl_group;
 	TAILQ_ENTRY(ifg_list)	 ifgl_next;
 };
 
 #ifdef _SYS_EVENTHANDLER_H_
 /* group attach event */
 typedef void (*group_attach_event_handler_t)(void *, struct ifg_group *);
 EVENTHANDLER_DECLARE(group_attach_event, group_attach_event_handler_t);
 /* group detach event */
 typedef void (*group_detach_event_handler_t)(void *, struct ifg_group *);
 EVENTHANDLER_DECLARE(group_detach_event, group_detach_event_handler_t);
 /* group change event */
 typedef void (*group_change_event_handler_t)(void *, const char *);
 EVENTHANDLER_DECLARE(group_change_event, group_change_event_handler_t);
 #endif /* _SYS_EVENTHANDLER_H_ */
 
 #define	IF_AFDATA_LOCK_INIT(ifp)	\
 	rw_init(&(ifp)->if_afdata_lock, "if_afdata")
 
 #define	IF_AFDATA_WLOCK(ifp)	rw_wlock(&(ifp)->if_afdata_lock)
 #define	IF_AFDATA_RLOCK(ifp)	rw_rlock(&(ifp)->if_afdata_lock)
 #define	IF_AFDATA_WUNLOCK(ifp)	rw_wunlock(&(ifp)->if_afdata_lock)
 #define	IF_AFDATA_RUNLOCK(ifp)	rw_runlock(&(ifp)->if_afdata_lock)
 #define	IF_AFDATA_LOCK(ifp)	IF_AFDATA_WLOCK(ifp)
 #define	IF_AFDATA_UNLOCK(ifp)	IF_AFDATA_WUNLOCK(ifp)
 #define	IF_AFDATA_TRYLOCK(ifp)	rw_try_wlock(&(ifp)->if_afdata_lock)
 #define	IF_AFDATA_DESTROY(ifp)	rw_destroy(&(ifp)->if_afdata_lock)
 
 #define	IF_AFDATA_LOCK_ASSERT(ifp)	rw_assert(&(ifp)->if_afdata_lock, RA_LOCKED)
 #define	IF_AFDATA_RLOCK_ASSERT(ifp)	rw_assert(&(ifp)->if_afdata_lock, RA_RLOCKED)
 #define	IF_AFDATA_WLOCK_ASSERT(ifp)	rw_assert(&(ifp)->if_afdata_lock, RA_WLOCKED)
 #define	IF_AFDATA_UNLOCK_ASSERT(ifp)	rw_assert(&(ifp)->if_afdata_lock, RA_UNLOCKED)
 
 /*
  * 72 was chosen below because it is the size of a TCP/IP
  * header (40) + the minimum mss (32).
  */
 #define	IF_MINMTU	72
 #define	IF_MAXMTU	65535
 
 #define	TOEDEV(ifp)	((ifp)->if_llsoftc)
 
 /*
  * The ifaddr structure contains information about one address
  * of an interface.  They are maintained by the different address families,
  * are allocated and attached when an address is set, and are linked
  * together so all addresses for an interface can be located.
  *
  * NOTE: a 'struct ifaddr' is always at the beginning of a larger
  * chunk of malloc'ed memory, where we store the three addresses
  * (ifa_addr, ifa_dstaddr and ifa_netmask) referenced here.
  */
 struct ifaddr {
 	struct	sockaddr *ifa_addr;	/* address of interface */
 	struct	sockaddr *ifa_dstaddr;	/* other end of p-to-p link */
 #define	ifa_broadaddr	ifa_dstaddr	/* broadcast address interface */
 	struct	sockaddr *ifa_netmask;	/* used to determine subnet */
 	struct	ifnet *ifa_ifp;		/* back-pointer to interface */
 	struct	carp_softc *ifa_carp;	/* pointer to CARP data */
 	TAILQ_ENTRY(ifaddr) ifa_link;	/* queue macro glue */
 	void	(*ifa_rtrequest)	/* check or clean routes (+ or -)'d */
 		(int, struct rtentry *, struct rt_addrinfo *);
 	u_short	ifa_flags;		/* mostly rt_flags for cloning */
 #define	IFA_ROUTE	RTF_UP		/* route installed */
 #define	IFA_RTSELF	RTF_HOST	/* loopback route to self installed */
 	u_int	ifa_refcnt;		/* references to this structure */
 
 	counter_u64_t	ifa_ipackets;
 	counter_u64_t	ifa_opackets;	 
 	counter_u64_t	ifa_ibytes;
 	counter_u64_t	ifa_obytes;
 };
 
 struct ifaddr *	ifa_alloc(size_t size, int flags);
 void	ifa_free(struct ifaddr *ifa);
 void	ifa_ref(struct ifaddr *ifa);
 
 /*
  * Multicast address structure.  This is analogous to the ifaddr
  * structure except that it keeps track of multicast addresses.
  */
 struct ifmultiaddr {
 	TAILQ_ENTRY(ifmultiaddr) ifma_link; /* queue macro glue */
 	struct	sockaddr *ifma_addr; 	/* address this membership is for */
 	struct	sockaddr *ifma_lladdr;	/* link-layer translation, if any */
 	struct	ifnet *ifma_ifp;	/* back-pointer to interface */
 	u_int	ifma_refcount;		/* reference count */
 	void	*ifma_protospec;	/* protocol-specific state, if any */
 	struct	ifmultiaddr *ifma_llifma; /* pointer to ifma for ifma_lladdr */
 };
 
 extern	struct rwlock ifnet_rwlock;
 extern	struct sx ifnet_sxlock;
 
 #define	IFNET_WLOCK() do {						\
 	sx_xlock(&ifnet_sxlock);					\
 	rw_wlock(&ifnet_rwlock);					\
 } while (0)
 
 #define	IFNET_WUNLOCK() do {						\
 	rw_wunlock(&ifnet_rwlock);					\
 	sx_xunlock(&ifnet_sxlock);					\
 } while (0)
 
 /*
  * To assert the ifnet lock, you must know not only whether it's for read or
  * write, but also whether it was acquired with sleep support or not.
  */
 #define	IFNET_RLOCK_ASSERT()		sx_assert(&ifnet_sxlock, SA_SLOCKED)
 #define	IFNET_RLOCK_NOSLEEP_ASSERT()	rw_assert(&ifnet_rwlock, RA_RLOCKED)
 #define	IFNET_WLOCK_ASSERT() do {					\
 	sx_assert(&ifnet_sxlock, SA_XLOCKED);				\
 	rw_assert(&ifnet_rwlock, RA_WLOCKED);				\
 } while (0)
 
 #define	IFNET_RLOCK()		sx_slock(&ifnet_sxlock)
 #define	IFNET_RLOCK_NOSLEEP()	rw_rlock(&ifnet_rwlock)
 #define	IFNET_RUNLOCK()		sx_sunlock(&ifnet_sxlock)
 #define	IFNET_RUNLOCK_NOSLEEP()	rw_runlock(&ifnet_rwlock)
 
 /*
  * Look up an ifnet given its index; the _ref variant also acquires a
  * reference that must be freed using if_rele().  It is almost always a bug
  * to call ifnet_byindex() instead if ifnet_byindex_ref().
  */
 struct ifnet	*ifnet_byindex(u_short idx);
 struct ifnet	*ifnet_byindex_locked(u_short idx);
 struct ifnet	*ifnet_byindex_ref(u_short idx);
 
 /*
  * Given the index, ifaddr_byindex() returns the one and only
  * link-level ifaddr for the interface. You are not supposed to use
  * it to traverse the list of addresses associated to the interface.
  */
 struct ifaddr	*ifaddr_byindex(u_short idx);
 
 VNET_DECLARE(struct ifnethead, ifnet);
 VNET_DECLARE(struct ifgrouphead, ifg_head);
 VNET_DECLARE(int, if_index);
 VNET_DECLARE(struct ifnet *, loif);	/* first loopback interface */
 
 #define	V_ifnet		VNET(ifnet)
 #define	V_ifg_head	VNET(ifg_head)
 #define	V_if_index	VNET(if_index)
 #define	V_loif		VNET(loif)
 
 int	if_addgroup(struct ifnet *, const char *);
 int	if_delgroup(struct ifnet *, const char *);
 int	if_addmulti(struct ifnet *, struct sockaddr *, struct ifmultiaddr **);
 int	if_allmulti(struct ifnet *, int);
 struct	ifnet* if_alloc(u_char);
 void	if_attach(struct ifnet *);
 void	if_dead(struct ifnet *);
 int	if_delmulti(struct ifnet *, struct sockaddr *);
 void	if_delmulti_ifma(struct ifmultiaddr *);
 void	if_detach(struct ifnet *);
 void	if_purgeaddrs(struct ifnet *);
 void	if_delallmulti(struct ifnet *);
 void	if_down(struct ifnet *);
 struct ifmultiaddr *
 	if_findmulti(struct ifnet *, const struct sockaddr *);
 void	if_free(struct ifnet *);
 void	if_initname(struct ifnet *, const char *, int);
 void	if_link_state_change(struct ifnet *, int);
 int	if_printf(struct ifnet *, const char *, ...) __printflike(2, 3);
 void	if_ref(struct ifnet *);
 void	if_rele(struct ifnet *);
 int	if_setlladdr(struct ifnet *, const u_char *, int);
 void	if_up(struct ifnet *);
 int	ifioctl(struct socket *, u_long, caddr_t, struct thread *);
 int	ifpromisc(struct ifnet *, int);
 struct	ifnet *ifunit(const char *);
 struct	ifnet *ifunit_ref(const char *);
 
 int	ifa_add_loopback_route(struct ifaddr *, struct sockaddr *);
 int	ifa_del_loopback_route(struct ifaddr *, struct sockaddr *);
 int	ifa_switch_loopback_route(struct ifaddr *, struct sockaddr *);
 
 struct	ifaddr *ifa_ifwithaddr(const struct sockaddr *);
 int		ifa_ifwithaddr_check(const struct sockaddr *);
 struct	ifaddr *ifa_ifwithbroadaddr(const struct sockaddr *, int);
 struct	ifaddr *ifa_ifwithdstaddr(const struct sockaddr *, int);
 struct	ifaddr *ifa_ifwithnet(const struct sockaddr *, int, int);
 struct	ifaddr *ifa_ifwithroute(int, const struct sockaddr *, struct sockaddr *,
     u_int);
 struct	ifaddr *ifaof_ifpforaddr(const struct sockaddr *, struct ifnet *);
 int	ifa_preferred(struct ifaddr *, struct ifaddr *);
 
 int	if_simloop(struct ifnet *ifp, struct mbuf *m, int af, int hlen);
 
 typedef	void *if_com_alloc_t(u_char type, struct ifnet *ifp);
 typedef	void if_com_free_t(void *com, u_char type);
 void	if_register_com_alloc(u_char type, if_com_alloc_t *a, if_com_free_t *f);
 void	if_deregister_com_alloc(u_char type);
 void	if_data_copy(struct ifnet *, struct if_data *);
 uint64_t if_get_counter_default(struct ifnet *, ift_counter);
 void	if_inc_counter(struct ifnet *, ift_counter, int64_t);
 
 #define IF_LLADDR(ifp)							\
     LLADDR((struct sockaddr_dl *)((ifp)->if_addr->ifa_addr))
 
 uint64_t if_setbaudrate(if_t ifp, uint64_t baudrate);
 uint64_t if_getbaudrate(if_t ifp);
 int if_setcapabilities(if_t ifp, int capabilities);
 int if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit);
 int if_getcapabilities(if_t ifp);
 int if_togglecapenable(if_t ifp, int togglecap);
 int if_setcapenable(if_t ifp, int capenable);
 int if_setcapenablebit(if_t ifp, int setcap, int clearcap);
 int if_getcapenable(if_t ifp);
 const char *if_getdname(if_t ifp);
 int if_setdev(if_t ifp, void *dev);
 int if_setdrvflagbits(if_t ifp, int if_setflags, int clear_flags);
 int if_getdrvflags(if_t ifp);
 int if_setdrvflags(if_t ifp, int flags);
 int if_clearhwassist(if_t ifp);
 int if_sethwassistbits(if_t ifp, int toset, int toclear);
 int if_sethwassist(if_t ifp, int hwassist_bit);
 int if_gethwassist(if_t ifp);
 int if_setsoftc(if_t ifp, void *softc);
 void *if_getsoftc(if_t ifp);
 int if_setflags(if_t ifp, int flags);
 int if_setmtu(if_t ifp, int mtu);
 int if_getmtu(if_t ifp);
 int if_getmtu_family(if_t ifp, int family);
 int if_setflagbits(if_t ifp, int set, int clear);
 int if_getflags(if_t ifp);
 int if_sendq_empty(if_t ifp);
 int if_setsendqready(if_t ifp);
 int if_setsendqlen(if_t ifp, int tx_desc_count);
 int if_input(if_t ifp, struct mbuf* sendmp);
 int if_sendq_prepend(if_t ifp, struct mbuf *m);
 struct mbuf *if_dequeue(if_t ifp);
 int if_setifheaderlen(if_t ifp, int len);
 void if_setrcvif(struct mbuf *m, if_t ifp);
 void if_setvtag(struct mbuf *m, u_int16_t tag);
 u_int16_t if_getvtag(struct mbuf *m);
 int if_vlantrunkinuse(if_t ifp);
 caddr_t if_getlladdr(if_t ifp);
 void *if_gethandle(u_char);
 void if_bpfmtap(if_t ifp, struct mbuf *m);
 void if_etherbpfmtap(if_t ifp, struct mbuf *m);
 void if_vlancap(if_t ifp);
 
 int if_setupmultiaddr(if_t ifp, void *mta, int *cnt, int max);
 int if_multiaddr_array(if_t ifp, void *mta, int *cnt, int max);
 int if_multiaddr_count(if_t ifp, int max);
 
 int if_multi_apply(struct ifnet *ifp, int (*filter)(void *, struct ifmultiaddr *, int), void *arg);
 int if_getamcount(if_t ifp);
 struct ifaddr * if_getifaddr(if_t ifp);
 
 /* Functions */
 void if_setinitfn(if_t ifp, void (*)(void *));
 void if_setioctlfn(if_t ifp, int (*)(if_t, u_long, caddr_t));
 void if_setstartfn(if_t ifp, void (*)(if_t));
 void if_settransmitfn(if_t ifp, if_transmit_fn_t);
 void if_setqflushfn(if_t ifp, if_qflush_fn_t);
 void if_setgetcounterfn(if_t ifp, if_get_counter_t);
  
 /* Revisit the below. These are inline functions originally */
 int drbr_inuse_drv(if_t ifp, struct buf_ring *br);
 struct mbuf* drbr_dequeue_drv(if_t ifp, struct buf_ring *br);
 int drbr_needs_enqueue_drv(if_t ifp, struct buf_ring *br);
 int drbr_enqueue_drv(if_t ifp, struct buf_ring *br, struct mbuf *m);
 
 /* TSO */
 void if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *);
 int if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *);
 
 #ifdef DEVICE_POLLING
 enum poll_cmd { POLL_ONLY, POLL_AND_CHECK_STATUS };
 
 typedef	int poll_handler_t(if_t ifp, enum poll_cmd cmd, int count);
 int    ether_poll_register(poll_handler_t *h, if_t ifp);
 int    ether_poll_deregister(if_t ifp);
 #endif /* DEVICE_POLLING */
 
 #endif /* _KERNEL */
 
 #include <net/ifq.h>	/* XXXAO: temporary unconditional include */
 
 #endif /* !_NET_IF_VAR_H_ */
Index: head/sys/netinet/sctp_bsd_addr.c
===================================================================
--- head/sys/netinet/sctp_bsd_addr.c	(revision 306744)
+++ head/sys/netinet/sctp_bsd_addr.c	(revision 306745)
@@ -1,550 +1,550 @@
 /*-
  * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved.
  * Copyright (c) 2008-2012, by Randall Stewart. All rights reserved.
  * Copyright (c) 2008-2012, by Michael Tuexen. All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions are met:
  *
  * a) Redistributions of source code must retain the above copyright notice,
  *    this list of conditions and the following disclaimer.
  *
  * b) Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in
  *    the documentation and/or other materials provided with the distribution.
  *
  * c) Neither the name of Cisco Systems, Inc. nor the names of its
  *    contributors may be used to endorse or promote products derived
  *    from this software without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  * THE POSSIBILITY OF SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <netinet/sctp_os.h>
 #include <netinet/sctp_var.h>
 #include <netinet/sctp_pcb.h>
 #include <netinet/sctp_header.h>
 #include <netinet/sctputil.h>
 #include <netinet/sctp_output.h>
 #include <netinet/sctp_bsd_addr.h>
 #include <netinet/sctp_uio.h>
 #include <netinet/sctputil.h>
 #include <netinet/sctp_timer.h>
 #include <netinet/sctp_asconf.h>
 #include <netinet/sctp_sysctl.h>
 #include <netinet/sctp_indata.h>
 #include <sys/unistd.h>
 
 /* Declare all of our malloc named types */
 MALLOC_DEFINE(SCTP_M_MAP, "sctp_map", "sctp asoc map descriptor");
 MALLOC_DEFINE(SCTP_M_STRMI, "sctp_stri", "sctp stream in array");
 MALLOC_DEFINE(SCTP_M_STRMO, "sctp_stro", "sctp stream out array");
 MALLOC_DEFINE(SCTP_M_ASC_ADDR, "sctp_aadr", "sctp asconf address");
 MALLOC_DEFINE(SCTP_M_ASC_IT, "sctp_a_it", "sctp asconf iterator");
 MALLOC_DEFINE(SCTP_M_AUTH_CL, "sctp_atcl", "sctp auth chunklist");
 MALLOC_DEFINE(SCTP_M_AUTH_KY, "sctp_atky", "sctp auth key");
 MALLOC_DEFINE(SCTP_M_AUTH_HL, "sctp_athm", "sctp auth hmac list");
 MALLOC_DEFINE(SCTP_M_AUTH_IF, "sctp_athi", "sctp auth info");
 MALLOC_DEFINE(SCTP_M_STRESET, "sctp_stre", "sctp stream reset");
 MALLOC_DEFINE(SCTP_M_CMSG, "sctp_cmsg", "sctp CMSG buffer");
 MALLOC_DEFINE(SCTP_M_COPYAL, "sctp_cpal", "sctp copy all");
 MALLOC_DEFINE(SCTP_M_VRF, "sctp_vrf", "sctp vrf struct");
 MALLOC_DEFINE(SCTP_M_IFA, "sctp_ifa", "sctp ifa struct");
 MALLOC_DEFINE(SCTP_M_IFN, "sctp_ifn", "sctp ifn struct");
 MALLOC_DEFINE(SCTP_M_TIMW, "sctp_timw", "sctp time block");
 MALLOC_DEFINE(SCTP_M_MVRF, "sctp_mvrf", "sctp mvrf pcb list");
 MALLOC_DEFINE(SCTP_M_ITER, "sctp_iter", "sctp iterator control");
 MALLOC_DEFINE(SCTP_M_SOCKOPT, "sctp_socko", "sctp socket option");
 MALLOC_DEFINE(SCTP_M_MCORE, "sctp_mcore", "sctp mcore queue");
 
 /* Global NON-VNET structure that controls the iterator */
 struct iterator_control sctp_it_ctl;
 
 
 void
 sctp_wakeup_iterator(void)
 {
 	wakeup(&sctp_it_ctl.iterator_running);
 }
 
 static void
 sctp_iterator_thread(void *v SCTP_UNUSED)
 {
 	SCTP_IPI_ITERATOR_WQ_LOCK();
 	/* In FreeBSD this thread never terminates. */
 	for (;;) {
 		msleep(&sctp_it_ctl.iterator_running,
 		    &sctp_it_ctl.ipi_iterator_wq_mtx,
 		    0, "waiting_for_work", 0);
 		sctp_iterator_worker();
 	}
 }
 
 void
 sctp_startup_iterator(void)
 {
 	if (sctp_it_ctl.thread_proc) {
 		/* You only get one */
 		return;
 	}
 	/* Initialize global locks here, thus only once. */
 	SCTP_ITERATOR_LOCK_INIT();
 	SCTP_IPI_ITERATOR_WQ_INIT();
 	TAILQ_INIT(&sctp_it_ctl.iteratorhead);
 	kproc_create(sctp_iterator_thread,
 	    (void *)NULL,
 	    &sctp_it_ctl.thread_proc,
 	    RFPROC,
 	    SCTP_KTHREAD_PAGES,
 	    SCTP_KTRHEAD_NAME);
 }
 
 #ifdef INET6
 
 void
 sctp_gather_internal_ifa_flags(struct sctp_ifa *ifa)
 {
 	struct in6_ifaddr *ifa6;
 
 	ifa6 = (struct in6_ifaddr *)ifa->ifa;
 	ifa->flags = ifa6->ia6_flags;
 	if (!MODULE_GLOBAL(ip6_use_deprecated)) {
 		if (ifa->flags &
 		    IN6_IFF_DEPRECATED) {
 			ifa->localifa_flags |= SCTP_ADDR_IFA_UNUSEABLE;
 		} else {
 			ifa->localifa_flags &= ~SCTP_ADDR_IFA_UNUSEABLE;
 		}
 	} else {
 		ifa->localifa_flags &= ~SCTP_ADDR_IFA_UNUSEABLE;
 	}
 	if (ifa->flags &
 	    (IN6_IFF_DETACHED |
 	    IN6_IFF_ANYCAST |
 	    IN6_IFF_NOTREADY)) {
 		ifa->localifa_flags |= SCTP_ADDR_IFA_UNUSEABLE;
 	} else {
 		ifa->localifa_flags &= ~SCTP_ADDR_IFA_UNUSEABLE;
 	}
 }
 
 #endif				/* INET6 */
 
 
 static uint32_t
 sctp_is_desired_interface_type(struct ifnet *ifn)
 {
 	int result;
 
 	/* check the interface type to see if it's one we care about */
 	switch (ifn->if_type) {
 	case IFT_ETHER:
 	case IFT_ISO88023:
 	case IFT_ISO88024:
 	case IFT_ISO88025:
 	case IFT_ISO88026:
 	case IFT_STARLAN:
 	case IFT_P10:
 	case IFT_P80:
 	case IFT_HY:
 	case IFT_FDDI:
 	case IFT_XETHER:
 	case IFT_ISDNBASIC:
 	case IFT_ISDNPRIMARY:
 	case IFT_PTPSERIAL:
 	case IFT_OTHER:
 	case IFT_PPP:
 	case IFT_LOOP:
 	case IFT_SLIP:
 	case IFT_GIF:
 	case IFT_L2VLAN:
 	case IFT_STF:
 	case IFT_IP:
 	case IFT_IPOVERCDLC:
 	case IFT_IPOVERCLAW:
 	case IFT_PROPVIRTUAL:	/* NetGraph Virtual too */
 	case IFT_VIRTUALIPADDRESS:
 		result = 1;
 		break;
 	default:
 		result = 0;
 	}
 
 	return (result);
 }
 
 
 
 
 static void
 sctp_init_ifns_for_vrf(int vrfid)
 {
 	/*
 	 * Here we must apply ANY locks needed by the IFN we access and also
 	 * make sure we lock any IFA that exists as we float through the
 	 * list of IFA's
 	 */
 	struct ifnet *ifn;
 	struct ifaddr *ifa;
 	struct sctp_ifa *sctp_ifa;
 	uint32_t ifa_flags;
 
 #ifdef INET6
 	struct in6_ifaddr *ifa6;
 
 #endif
 
 	IFNET_RLOCK();
-	TAILQ_FOREACH(ifn, &MODULE_GLOBAL(ifnet), if_list) {
+	TAILQ_FOREACH(ifn, &MODULE_GLOBAL(ifnet), if_link) {
 		if (sctp_is_desired_interface_type(ifn) == 0) {
 			/* non desired type */
 			continue;
 		}
 		IF_ADDR_RLOCK(ifn);
 		TAILQ_FOREACH(ifa, &ifn->if_addrhead, ifa_link) {
 			if (ifa->ifa_addr == NULL) {
 				continue;
 			}
 			switch (ifa->ifa_addr->sa_family) {
 #ifdef INET
 			case AF_INET:
 				if (((struct sockaddr_in *)ifa->ifa_addr)->sin_addr.s_addr == 0) {
 					continue;
 				}
 				break;
 #endif
 #ifdef INET6
 			case AF_INET6:
 				if (IN6_IS_ADDR_UNSPECIFIED(&((struct sockaddr_in6 *)ifa->ifa_addr)->sin6_addr)) {
 					/* skip unspecifed addresses */
 					continue;
 				}
 				break;
 #endif
 			default:
 				continue;
 			}
 			switch (ifa->ifa_addr->sa_family) {
 #ifdef INET
 			case AF_INET:
 				ifa_flags = 0;
 				break;
 #endif
 #ifdef INET6
 			case AF_INET6:
 				ifa6 = (struct in6_ifaddr *)ifa;
 				ifa_flags = ifa6->ia6_flags;
 				break;
 #endif
 			default:
 				ifa_flags = 0;
 				break;
 			}
 			sctp_ifa = sctp_add_addr_to_vrf(vrfid,
 			    (void *)ifn,
 			    ifn->if_index,
 			    ifn->if_type,
 			    ifn->if_xname,
 			    (void *)ifa,
 			    ifa->ifa_addr,
 			    ifa_flags,
 			    0);
 			if (sctp_ifa) {
 				sctp_ifa->localifa_flags &= ~SCTP_ADDR_DEFER_USE;
 			}
 		}
 		IF_ADDR_RUNLOCK(ifn);
 	}
 	IFNET_RUNLOCK();
 }
 
 void
 sctp_init_vrf_list(int vrfid)
 {
 	if (vrfid > SCTP_MAX_VRF_ID)
 		/* can't do that */
 		return;
 
 	/* Don't care about return here */
 	(void)sctp_allocate_vrf(vrfid);
 
 	/*
 	 * Now we need to build all the ifn's for this vrf and there
 	 * addresses
 	 */
 	sctp_init_ifns_for_vrf(vrfid);
 }
 
 void
 sctp_addr_change(struct ifaddr *ifa, int cmd)
 {
 	uint32_t ifa_flags = 0;
 
 	if (SCTP_BASE_VAR(sctp_pcb_initialized) == 0) {
 		return;
 	}
 	/*
 	 * BSD only has one VRF, if this changes we will need to hook in the
 	 * right things here to get the id to pass to the address management
 	 * routine.
 	 */
 	if (SCTP_BASE_VAR(first_time) == 0) {
 		/* Special test to see if my ::1 will showup with this */
 		SCTP_BASE_VAR(first_time) = 1;
 		sctp_init_ifns_for_vrf(SCTP_DEFAULT_VRFID);
 	}
 	if ((cmd != RTM_ADD) && (cmd != RTM_DELETE)) {
 		/* don't know what to do with this */
 		return;
 	}
 	if (ifa->ifa_addr == NULL) {
 		return;
 	}
 	if (sctp_is_desired_interface_type(ifa->ifa_ifp) == 0) {
 		/* non desired type */
 		return;
 	}
 	switch (ifa->ifa_addr->sa_family) {
 #ifdef INET
 	case AF_INET:
 		if (((struct sockaddr_in *)ifa->ifa_addr)->sin_addr.s_addr == 0) {
 			return;
 		}
 		break;
 #endif
 #ifdef INET6
 	case AF_INET6:
 		ifa_flags = ((struct in6_ifaddr *)ifa)->ia6_flags;
 		if (IN6_IS_ADDR_UNSPECIFIED(&((struct sockaddr_in6 *)ifa->ifa_addr)->sin6_addr)) {
 			/* skip unspecifed addresses */
 			return;
 		}
 		break;
 #endif
 	default:
 		/* non inet/inet6 skip */
 		return;
 	}
 	if (cmd == RTM_ADD) {
 		(void)sctp_add_addr_to_vrf(SCTP_DEFAULT_VRFID, (void *)ifa->ifa_ifp,
 		    ifa->ifa_ifp->if_index, ifa->ifa_ifp->if_type, ifa->ifa_ifp->if_xname,
 		    (void *)ifa, ifa->ifa_addr, ifa_flags, 1);
 	} else {
 
 		sctp_del_addr_from_vrf(SCTP_DEFAULT_VRFID, ifa->ifa_addr,
 		    ifa->ifa_ifp->if_index,
 		    ifa->ifa_ifp->if_xname);
 
 		/*
 		 * We don't bump refcount here so when it completes the
 		 * final delete will happen.
 		 */
 	}
 }
 
 void
      sctp_add_or_del_interfaces(int (*pred) (struct ifnet *), int add){
 	struct ifnet *ifn;
 	struct ifaddr *ifa;
 
 	IFNET_RLOCK();
-	TAILQ_FOREACH(ifn, &MODULE_GLOBAL(ifnet), if_list) {
+	TAILQ_FOREACH(ifn, &MODULE_GLOBAL(ifnet), if_link) {
 		if (!(*pred) (ifn)) {
 			continue;
 		}
 		TAILQ_FOREACH(ifa, &ifn->if_addrhead, ifa_link) {
 			sctp_addr_change(ifa, add ? RTM_ADD : RTM_DELETE);
 		}
 	}
 	IFNET_RUNLOCK();
 }
 
 struct mbuf *
 sctp_get_mbuf_for_msg(unsigned int space_needed, int want_header,
     int how, int allonebuf, int type)
 {
 	struct mbuf *m = NULL;
 
 	m = m_getm2(NULL, space_needed, how, type, want_header ? M_PKTHDR : 0);
 	if (m == NULL) {
 		/* bad, no memory */
 		return (m);
 	}
 	if (allonebuf) {
 		if (SCTP_BUF_SIZE(m) < space_needed) {
 			m_freem(m);
 			return (NULL);
 		}
 	}
 	if (SCTP_BUF_NEXT(m)) {
 		sctp_m_freem(SCTP_BUF_NEXT(m));
 		SCTP_BUF_NEXT(m) = NULL;
 	}
 #ifdef SCTP_MBUF_LOGGING
 	if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_MBUF_LOGGING_ENABLE) {
 		sctp_log_mb(m, SCTP_MBUF_IALLOC);
 	}
 #endif
 	return (m);
 }
 
 
 #ifdef SCTP_PACKET_LOGGING
 void
 sctp_packet_log(struct mbuf *m)
 {
 	int *lenat, thisone;
 	void *copyto;
 	uint32_t *tick_tock;
 	int length;
 	int total_len;
 	int grabbed_lock = 0;
 	int value, newval, thisend, thisbegin;
 
 	/*
 	 * Buffer layout. -sizeof this entry (total_len) -previous end
 	 * (value) -ticks of log      (ticks) o -ip packet o -as logged -
 	 * where this started (thisbegin) x <--end points here
 	 */
 	length = SCTP_HEADER_LEN(m);
 	total_len = SCTP_SIZE32((length + (4 * sizeof(int))));
 	/* Log a packet to the buffer. */
 	if (total_len > SCTP_PACKET_LOG_SIZE) {
 		/* Can't log this packet I have not a buffer big enough */
 		return;
 	}
 	if (length < (int)(SCTP_MIN_V4_OVERHEAD + sizeof(struct sctp_cookie_ack_chunk))) {
 		return;
 	}
 	atomic_add_int(&SCTP_BASE_VAR(packet_log_writers), 1);
 try_again:
 	if (SCTP_BASE_VAR(packet_log_writers) > SCTP_PKTLOG_WRITERS_NEED_LOCK) {
 		SCTP_IP_PKTLOG_LOCK();
 		grabbed_lock = 1;
 again_locked:
 		value = SCTP_BASE_VAR(packet_log_end);
 		newval = SCTP_BASE_VAR(packet_log_end) + total_len;
 		if (newval >= SCTP_PACKET_LOG_SIZE) {
 			/* we wrapped */
 			thisbegin = 0;
 			thisend = total_len;
 		} else {
 			thisbegin = SCTP_BASE_VAR(packet_log_end);
 			thisend = newval;
 		}
 		if (!(atomic_cmpset_int(&SCTP_BASE_VAR(packet_log_end), value, thisend))) {
 			goto again_locked;
 		}
 	} else {
 		value = SCTP_BASE_VAR(packet_log_end);
 		newval = SCTP_BASE_VAR(packet_log_end) + total_len;
 		if (newval >= SCTP_PACKET_LOG_SIZE) {
 			/* we wrapped */
 			thisbegin = 0;
 			thisend = total_len;
 		} else {
 			thisbegin = SCTP_BASE_VAR(packet_log_end);
 			thisend = newval;
 		}
 		if (!(atomic_cmpset_int(&SCTP_BASE_VAR(packet_log_end), value, thisend))) {
 			goto try_again;
 		}
 	}
 	/* Sanity check */
 	if (thisend >= SCTP_PACKET_LOG_SIZE) {
 		SCTP_PRINTF("Insanity stops a log thisbegin:%d thisend:%d writers:%d lock:%d end:%d\n",
 		    thisbegin,
 		    thisend,
 		    SCTP_BASE_VAR(packet_log_writers),
 		    grabbed_lock,
 		    SCTP_BASE_VAR(packet_log_end));
 		SCTP_BASE_VAR(packet_log_end) = 0;
 		goto no_log;
 
 	}
 	lenat = (int *)&SCTP_BASE_VAR(packet_log_buffer)[thisbegin];
 	*lenat = total_len;
 	lenat++;
 	*lenat = value;
 	lenat++;
 	tick_tock = (uint32_t *) lenat;
 	lenat++;
 	*tick_tock = sctp_get_tick_count();
 	copyto = (void *)lenat;
 	thisone = thisend - sizeof(int);
 	lenat = (int *)&SCTP_BASE_VAR(packet_log_buffer)[thisone];
 	*lenat = thisbegin;
 	if (grabbed_lock) {
 		SCTP_IP_PKTLOG_UNLOCK();
 		grabbed_lock = 0;
 	}
 	m_copydata(m, 0, length, (caddr_t)copyto);
 no_log:
 	if (grabbed_lock) {
 		SCTP_IP_PKTLOG_UNLOCK();
 	}
 	atomic_subtract_int(&SCTP_BASE_VAR(packet_log_writers), 1);
 }
 
 
 int
 sctp_copy_out_packet_log(uint8_t * target, int length)
 {
 	/*
 	 * We wind through the packet log starting at start copying up to
 	 * length bytes out. We return the number of bytes copied.
 	 */
 	int tocopy, this_copy;
 	int *lenat;
 	int did_delay = 0;
 
 	tocopy = length;
 	if (length < (int)(2 * sizeof(int))) {
 		/* not enough room */
 		return (0);
 	}
 	if (SCTP_PKTLOG_WRITERS_NEED_LOCK) {
 		atomic_add_int(&SCTP_BASE_VAR(packet_log_writers), SCTP_PKTLOG_WRITERS_NEED_LOCK);
 again:
 		if ((did_delay == 0) && (SCTP_BASE_VAR(packet_log_writers) != SCTP_PKTLOG_WRITERS_NEED_LOCK)) {
 			/*
 			 * we delay here for just a moment hoping the
 			 * writer(s) that were present when we entered will
 			 * have left and we only have locking ones that will
 			 * contend with us for the lock. This does not
 			 * assure 100% access, but its good enough for a
 			 * logging facility like this.
 			 */
 			did_delay = 1;
 			DELAY(10);
 			goto again;
 		}
 	}
 	SCTP_IP_PKTLOG_LOCK();
 	lenat = (int *)target;
 	*lenat = SCTP_BASE_VAR(packet_log_end);
 	lenat++;
 	this_copy = min((length - sizeof(int)), SCTP_PACKET_LOG_SIZE);
 	memcpy((void *)lenat, (void *)SCTP_BASE_VAR(packet_log_buffer), this_copy);
 	if (SCTP_PKTLOG_WRITERS_NEED_LOCK) {
 		atomic_subtract_int(&SCTP_BASE_VAR(packet_log_writers),
 		    SCTP_PKTLOG_WRITERS_NEED_LOCK);
 	}
 	SCTP_IP_PKTLOG_UNLOCK();
 	return (this_copy + sizeof(int));
 }
 
 #endif