Index: head/sys/amd64/amd64/minidump_machdep.c
===================================================================
--- head/sys/amd64/amd64/minidump_machdep.c	(revision 306019)
+++ head/sys/amd64/amd64/minidump_machdep.c	(revision 306020)
@@ -1,485 +1,485 @@
 /*-
  * Copyright (c) 2006 Peter Wemm
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  *
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_pmap.h"
 #include "opt_watchdog.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/conf.h>
 #include <sys/cons.h>
 #include <sys/kernel.h>
 #include <sys/kerneldump.h>
 #include <sys/msgbuf.h>
 #include <sys/watchdog.h>
 #include <vm/vm.h>
 #include <vm/vm_param.h>
 #include <vm/vm_page.h>
 #include <vm/vm_phys.h>
 #include <vm/pmap.h>
 #include <machine/atomic.h>
 #include <machine/elf.h>
 #include <machine/md_var.h>
 #include <machine/minidump.h>
 
 CTASSERT(sizeof(struct kerneldumpheader) == 512);
 
 /*
  * Don't touch the first SIZEOF_METADATA bytes on the dump device. This
  * is to protect us from metadata and to protect metadata from us.
  */
 #define	SIZEOF_METADATA		(64*1024)
 
 uint64_t *vm_page_dump;
 int vm_page_dump_size;
 
 static struct kerneldumpheader kdh;
 static off_t dumplo;
 
 /* Handle chunked writes. */
 static size_t fragsz;
 static void *dump_va;
 static size_t counter, progress, dumpsize;
 
 CTASSERT(sizeof(*vm_page_dump) == 8);
 
 static int
 is_dumpable(vm_paddr_t pa)
 {
 	vm_page_t m;
 	int i;
 
 	if ((m = vm_phys_paddr_to_vm_page(pa)) != NULL)
 		return ((m->flags & PG_NODUMP) == 0);
 	for (i = 0; dump_avail[i] != 0 || dump_avail[i + 1] != 0; i += 2) {
 		if (pa >= dump_avail[i] && pa < dump_avail[i + 1])
 			return (1);
 	}
 	return (0);
 }
 
 #define PG2MB(pgs) (((pgs) + (1 << 8) - 1) >> 8)
 
 static int
 blk_flush(struct dumperinfo *di)
 {
 	int error;
 
 	if (fragsz == 0)
 		return (0);
 
 	error = dump_write(di, dump_va, 0, dumplo, fragsz);
 	dumplo += fragsz;
 	fragsz = 0;
 	return (error);
 }
 
 static struct {
 	int min_per;
 	int max_per;
 	int visited;
 } progress_track[10] = {
 	{  0,  10, 0},
 	{ 10,  20, 0},
 	{ 20,  30, 0},
 	{ 30,  40, 0},
 	{ 40,  50, 0},
 	{ 50,  60, 0},
 	{ 60,  70, 0},
 	{ 70,  80, 0},
 	{ 80,  90, 0},
 	{ 90, 100, 0}
 };
 
 static void
 report_progress(size_t progress, size_t dumpsize)
 {
 	int sofar, i;
 
 	sofar = 100 - ((progress * 100) / dumpsize);
 	for (i = 0; i < nitems(progress_track); i++) {
 		if (sofar < progress_track[i].min_per ||
 		    sofar > progress_track[i].max_per)
 			continue;
 		if (progress_track[i].visited)
 			return;
 		progress_track[i].visited = 1;
 		printf("..%d%%", sofar);
 		return;
 	}
 }
 
 static int
 blk_write(struct dumperinfo *di, char *ptr, vm_paddr_t pa, size_t sz)
 {
 	size_t len;
 	int error, i, c;
 	u_int maxdumpsz;
 
 	maxdumpsz = min(di->maxiosize, MAXDUMPPGS * PAGE_SIZE);
 	if (maxdumpsz == 0)	/* seatbelt */
 		maxdumpsz = PAGE_SIZE;
 	error = 0;
 	if ((sz % PAGE_SIZE) != 0) {
 		printf("size not page aligned\n");
 		return (EINVAL);
 	}
 	if (ptr != NULL && pa != 0) {
 		printf("cant have both va and pa!\n");
 		return (EINVAL);
 	}
 	if ((((uintptr_t)pa) % PAGE_SIZE) != 0) {
 		printf("address not page aligned %p\n", ptr);
 		return (EINVAL);
 	}
 	if (ptr != NULL) {
 		/* If we're doing a virtual dump, flush any pre-existing pa pages */
 		error = blk_flush(di);
 		if (error)
 			return (error);
 	}
 	while (sz) {
 		len = maxdumpsz - fragsz;
 		if (len > sz)
 			len = sz;
 		counter += len;
 		progress -= len;
 		if (counter >> 24) {
 			report_progress(progress, dumpsize);
 			counter &= (1<<24) - 1;
 		}
 
 		wdog_kern_pat(WD_LASTVAL);
 
 		if (ptr) {
 			error = dump_write(di, ptr, 0, dumplo, len);
 			if (error)
 				return (error);
 			dumplo += len;
 			ptr += len;
 			sz -= len;
 		} else {
 			for (i = 0; i < len; i += PAGE_SIZE)
 				dump_va = pmap_kenter_temporary(pa + i, (i + fragsz) >> PAGE_SHIFT);
 			fragsz += len;
 			pa += len;
 			sz -= len;
 			if (fragsz == maxdumpsz) {
 				error = blk_flush(di);
 				if (error)
 					return (error);
 			}
 		}
 
 		/* Check for user abort. */
 		c = cncheckc();
 		if (c == 0x03)
 			return (ECANCELED);
 		if (c != -1)
 			printf(" (CTRL-C to abort) ");
 	}
 
 	return (0);
 }
 
 /* A fake page table page, to avoid having to handle both 4K and 2M pages */
 static pd_entry_t fakepd[NPDEPG];
 
 int
 minidumpsys(struct dumperinfo *di)
 {
 	uint32_t pmapsize;
 	vm_offset_t va;
 	int error;
 	uint64_t bits;
 	uint64_t *pml4, *pdp, *pd, *pt, pa;
 	size_t size;
 	int i, ii, j, k, n, bit;
 	int retry_count;
 	struct minidumphdr mdhdr;
 
 	retry_count = 0;
  retry:
 	retry_count++;
 	counter = 0;
 	for (i = 0; i < nitems(progress_track); i++)
 		progress_track[i].visited = 0;
 	/* Walk page table pages, set bits in vm_page_dump */
 	pmapsize = 0;
 	for (va = VM_MIN_KERNEL_ADDRESS; va < MAX(KERNBASE + nkpt * NBPDR,
 	    kernel_vm_end); ) {
 		/*
 		 * We always write a page, even if it is zero. Each
 		 * page written corresponds to 1GB of space
 		 */
 		pmapsize += PAGE_SIZE;
-		ii = (va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1);
+		ii = pmap_pml4e_index(va);
 		pml4 = (uint64_t *)PHYS_TO_DMAP(KPML4phys) + ii;
 		pdp = (uint64_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
-		i = (va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1);
+		i = pmap_pdpe_index(va);
 		if ((pdp[i] & PG_V) == 0) {
 			va += NBPDP;
 			continue;
 		}
 
 		/*
 		 * 1GB page is represented as 512 2MB pages in a dump.
 		 */
 		if ((pdp[i] & PG_PS) != 0) {
 			va += NBPDP;
 			pa = pdp[i] & PG_PS_FRAME;
 			for (n = 0; n < NPDEPG * NPTEPG; n++) {
 				if (is_dumpable(pa))
 					dump_add_page(pa);
 				pa += PAGE_SIZE;
 			}
 			continue;
 		}
 
 		pd = (uint64_t *)PHYS_TO_DMAP(pdp[i] & PG_FRAME);
 		for (n = 0; n < NPDEPG; n++, va += NBPDR) {
-			j = (va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1);
+			j = pmap_pde_index(va);
 
 			if ((pd[j] & PG_V) == 0)
 				continue;
 
 			if ((pd[j] & PG_PS) != 0) {
 				/* This is an entire 2M page. */
 				pa = pd[j] & PG_PS_FRAME;
 				for (k = 0; k < NPTEPG; k++) {
 					if (is_dumpable(pa))
 						dump_add_page(pa);
 					pa += PAGE_SIZE;
 				}
 				continue;
 			}
 
 			pa = pd[j] & PG_FRAME;
 			/* set bit for this PTE page */
 			if (is_dumpable(pa))
 				dump_add_page(pa);
 			/* and for each valid page in this 2MB block */
 			pt = (uint64_t *)PHYS_TO_DMAP(pd[j] & PG_FRAME);
 			for (k = 0; k < NPTEPG; k++) {
 				if ((pt[k] & PG_V) == 0)
 					continue;
 				pa = pt[k] & PG_FRAME;
 				if (is_dumpable(pa))
 					dump_add_page(pa);
 			}
 		}
 	}
 
 	/* Calculate dump size. */
 	dumpsize = pmapsize;
 	dumpsize += round_page(msgbufp->msg_size);
 	dumpsize += round_page(vm_page_dump_size);
 	for (i = 0; i < vm_page_dump_size / sizeof(*vm_page_dump); i++) {
 		bits = vm_page_dump[i];
 		while (bits) {
 			bit = bsfq(bits);
 			pa = (((uint64_t)i * sizeof(*vm_page_dump) * NBBY) + bit) * PAGE_SIZE;
 			/* Clear out undumpable pages now if needed */
 			if (is_dumpable(pa)) {
 				dumpsize += PAGE_SIZE;
 			} else {
 				dump_drop_page(pa);
 			}
 			bits &= ~(1ul << bit);
 		}
 	}
 	dumpsize += PAGE_SIZE;
 
 	/* Determine dump offset on device. */
 	if (di->mediasize < SIZEOF_METADATA + dumpsize + di->blocksize * 2) {
 		error = E2BIG;
 		goto fail;
 	}
 	dumplo = di->mediaoffset + di->mediasize - dumpsize;
 	dumplo -= di->blocksize * 2;
 	progress = dumpsize;
 
 	/* Initialize mdhdr */
 	bzero(&mdhdr, sizeof(mdhdr));
 	strcpy(mdhdr.magic, MINIDUMP_MAGIC);
 	mdhdr.version = MINIDUMP_VERSION;
 	mdhdr.msgbufsize = msgbufp->msg_size;
 	mdhdr.bitmapsize = vm_page_dump_size;
 	mdhdr.pmapsize = pmapsize;
 	mdhdr.kernbase = VM_MIN_KERNEL_ADDRESS;
 	mdhdr.dmapbase = DMAP_MIN_ADDRESS;
 	mdhdr.dmapend = DMAP_MAX_ADDRESS;
 
 	mkdumpheader(&kdh, KERNELDUMPMAGIC, KERNELDUMP_AMD64_VERSION, dumpsize, di->blocksize);
 
 	printf("Dumping %llu out of %ju MB:", (long long)dumpsize >> 20,
 	    ptoa((uintmax_t)physmem) / 1048576);
 
 	/* Dump leader */
 	error = dump_write_pad(di, &kdh, 0, dumplo, sizeof(kdh), &size);
 	if (error)
 		goto fail;
 	dumplo += size;
 
 	/* Dump my header */
 	bzero(&fakepd, sizeof(fakepd));
 	bcopy(&mdhdr, &fakepd, sizeof(mdhdr));
 	error = blk_write(di, (char *)&fakepd, 0, PAGE_SIZE);
 	if (error)
 		goto fail;
 
 	/* Dump msgbuf up front */
 	error = blk_write(di, (char *)msgbufp->msg_ptr, 0, round_page(msgbufp->msg_size));
 	if (error)
 		goto fail;
 
 	/* Dump bitmap */
 	error = blk_write(di, (char *)vm_page_dump, 0, round_page(vm_page_dump_size));
 	if (error)
 		goto fail;
 
 	/* Dump kernel page directory pages */
 	bzero(fakepd, sizeof(fakepd));
 	for (va = VM_MIN_KERNEL_ADDRESS; va < MAX(KERNBASE + nkpt * NBPDR,
 	    kernel_vm_end); va += NBPDP) {
-		ii = (va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1);
+		ii = pmap_pml4e_index(va);
 		pml4 = (uint64_t *)PHYS_TO_DMAP(KPML4phys) + ii;
 		pdp = (uint64_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
-		i = (va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1);
+		i = pmap_pdpe_index(va);
 
 		/* We always write a page, even if it is zero */
 		if ((pdp[i] & PG_V) == 0) {
 			error = blk_write(di, (char *)&fakepd, 0, PAGE_SIZE);
 			if (error)
 				goto fail;
 			/* flush, in case we reuse fakepd in the same block */
 			error = blk_flush(di);
 			if (error)
 				goto fail;
 			continue;
 		}
 
 		/* 1GB page is represented as 512 2MB pages in a dump */
 		if ((pdp[i] & PG_PS) != 0) {
 			/* PDPE and PDP have identical layout in this case */
 			fakepd[0] = pdp[i];
 			for (j = 1; j < NPDEPG; j++)
 				fakepd[j] = fakepd[j - 1] + NBPDR;
 			error = blk_write(di, (char *)&fakepd, 0, PAGE_SIZE);
 			if (error)
 				goto fail;
 			/* flush, in case we reuse fakepd in the same block */
 			error = blk_flush(di);
 			if (error)
 				goto fail;
 			bzero(fakepd, sizeof(fakepd));
 			continue;
 		}
 
 		pd = (uint64_t *)PHYS_TO_DMAP(pdp[i] & PG_FRAME);
 		error = blk_write(di, (char *)pd, 0, PAGE_SIZE);
 		if (error)
 			goto fail;
 		error = blk_flush(di);
 		if (error)
 			goto fail;
 	}
 
 	/* Dump memory chunks */
 	/* XXX cluster it up and use blk_dump() */
 	for (i = 0; i < vm_page_dump_size / sizeof(*vm_page_dump); i++) {
 		bits = vm_page_dump[i];
 		while (bits) {
 			bit = bsfq(bits);
 			pa = (((uint64_t)i * sizeof(*vm_page_dump) * NBBY) + bit) * PAGE_SIZE;
 			error = blk_write(di, 0, pa, PAGE_SIZE);
 			if (error)
 				goto fail;
 			bits &= ~(1ul << bit);
 		}
 	}
 
 	error = blk_flush(di);
 	if (error)
 		goto fail;
 
 	/* Dump trailer */
 	error = dump_write_pad(di, &kdh, 0, dumplo, sizeof(kdh), &size);
 	if (error)
 		goto fail;
 	dumplo += size;
 
 	/* Signal completion, signoff and exit stage left. */
 	dump_write(di, NULL, 0, 0, 0);
 	printf("\nDump complete\n");
 	return (0);
 
  fail:
 	if (error < 0)
 		error = -error;
 
 	printf("\n");
 	if (error == ENOSPC) {
 		printf("Dump map grown while dumping. ");
 		if (retry_count < 5) {
 			printf("Retrying...\n");
 			goto retry;
 		}
 		printf("Dump failed.\n");
 	}
 	else if (error == ECANCELED)
 		printf("Dump aborted\n");
 	else if (error == E2BIG)
 		printf("Dump failed. Partition too small.\n");
 	else
 		printf("** DUMP FAILED (ERROR %d) **\n", error);
 	return (error);
 }
 
 void
 dump_add_page(vm_paddr_t pa)
 {
 	int idx, bit;
 
 	pa >>= PAGE_SHIFT;
 	idx = pa >> 6;		/* 2^6 = 64 */
 	bit = pa & 63;
 	atomic_set_long(&vm_page_dump[idx], 1ul << bit);
 }
 
 void
 dump_drop_page(vm_paddr_t pa)
 {
 	int idx, bit;
 
 	pa >>= PAGE_SHIFT;
 	idx = pa >> 6;		/* 2^6 = 64 */
 	bit = pa & 63;
 	atomic_clear_long(&vm_page_dump[idx], 1ul << bit);
 }
Index: head/sys/amd64/amd64/pmap.c
===================================================================
--- head/sys/amd64/amd64/pmap.c	(revision 306019)
+++ head/sys/amd64/amd64/pmap.c	(revision 306020)
@@ -1,7268 +1,7239 @@
 /*-
  * Copyright (c) 1991 Regents of the University of California.
  * All rights reserved.
  * Copyright (c) 1994 John S. Dyson
  * All rights reserved.
  * Copyright (c) 1994 David Greenman
  * All rights reserved.
  * Copyright (c) 2003 Peter Wemm
  * All rights reserved.
  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
  * All rights reserved.
  *
  * This code is derived from software contributed to Berkeley by
  * the Systems Programming Group of the University of Utah Computer
  * Science Department and William Jolitz of UUNET Technologies Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. All advertising materials mentioning features or use of this software
  *    must display the following acknowledgement:
  *	This product includes software developed by the University of
  *	California, Berkeley and its contributors.
  * 4. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
  */
 /*-
  * Copyright (c) 2003 Networks Associates Technology, Inc.
  * All rights reserved.
  *
  * This software was developed for the FreeBSD Project by Jake Burkholder,
  * Safeport Network Services, and Network Associates Laboratories, the
  * Security Research Division of Network Associates, Inc. under
  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
  * CHATS research program.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #define	AMD64_NPT_AWARE
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 /*
  *	Manages physical address maps.
  *
  *	Since the information managed by this module is
  *	also stored by the logical address mapping module,
  *	this module may throw away valid virtual-to-physical
  *	mappings at almost any time.  However, invalidations
  *	of virtual-to-physical mappings must be done as
  *	requested.
  *
  *	In order to cope with hardware architectures which
  *	make virtual-to-physical map invalidates expensive,
  *	this module may delay invalidate or reduced protection
  *	operations until such time as they are actually
  *	necessary.  This module is given full information as
  *	to which processors are currently using which maps,
  *	and to when physical maps must be made correct.
  */
 
 #include "opt_pmap.h"
 #include "opt_vm.h"
 
 #include <sys/param.h>
 #include <sys/bitstring.h>
 #include <sys/bus.h>
 #include <sys/systm.h>
 #include <sys/kernel.h>
 #include <sys/ktr.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/mman.h>
 #include <sys/mutex.h>
 #include <sys/proc.h>
 #include <sys/rwlock.h>
 #include <sys/sx.h>
 #include <sys/turnstile.h>
 #include <sys/vmem.h>
 #include <sys/vmmeter.h>
 #include <sys/sched.h>
 #include <sys/sysctl.h>
 #include <sys/smp.h>
 
 #include <vm/vm.h>
 #include <vm/vm_param.h>
 #include <vm/vm_kern.h>
 #include <vm/vm_page.h>
 #include <vm/vm_map.h>
 #include <vm/vm_object.h>
 #include <vm/vm_extern.h>
 #include <vm/vm_pageout.h>
 #include <vm/vm_pager.h>
 #include <vm/vm_phys.h>
 #include <vm/vm_radix.h>
 #include <vm/vm_reserv.h>
 #include <vm/uma.h>
 
 #include <machine/intr_machdep.h>
 #include <x86/apicvar.h>
 #include <machine/cpu.h>
 #include <machine/cputypes.h>
 #include <machine/md_var.h>
 #include <machine/pcb.h>
 #include <machine/specialreg.h>
 #ifdef SMP
 #include <machine/smp.h>
 #endif
 
 static __inline boolean_t
 pmap_type_guest(pmap_t pmap)
 {
 
 	return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
 }
 
 static __inline boolean_t
 pmap_emulate_ad_bits(pmap_t pmap)
 {
 
 	return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
 }
 
 static __inline pt_entry_t
 pmap_valid_bit(pmap_t pmap)
 {
 	pt_entry_t mask;
 
 	switch (pmap->pm_type) {
 	case PT_X86:
 	case PT_RVI:
 		mask = X86_PG_V;
 		break;
 	case PT_EPT:
 		if (pmap_emulate_ad_bits(pmap))
 			mask = EPT_PG_EMUL_V;
 		else
 			mask = EPT_PG_READ;
 		break;
 	default:
 		panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
 	}
 
 	return (mask);
 }
 
 static __inline pt_entry_t
 pmap_rw_bit(pmap_t pmap)
 {
 	pt_entry_t mask;
 
 	switch (pmap->pm_type) {
 	case PT_X86:
 	case PT_RVI:
 		mask = X86_PG_RW;
 		break;
 	case PT_EPT:
 		if (pmap_emulate_ad_bits(pmap))
 			mask = EPT_PG_EMUL_RW;
 		else
 			mask = EPT_PG_WRITE;
 		break;
 	default:
 		panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
 	}
 
 	return (mask);
 }
 
 static __inline pt_entry_t
 pmap_global_bit(pmap_t pmap)
 {
 	pt_entry_t mask;
 
 	switch (pmap->pm_type) {
 	case PT_X86:
 		mask = X86_PG_G;
 		break;
 	case PT_RVI:
 	case PT_EPT:
 		mask = 0;
 		break;
 	default:
 		panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
 	}
 
 	return (mask);
 }
 
 static __inline pt_entry_t
 pmap_accessed_bit(pmap_t pmap)
 {
 	pt_entry_t mask;
 
 	switch (pmap->pm_type) {
 	case PT_X86:
 	case PT_RVI:
 		mask = X86_PG_A;
 		break;
 	case PT_EPT:
 		if (pmap_emulate_ad_bits(pmap))
 			mask = EPT_PG_READ;
 		else
 			mask = EPT_PG_A;
 		break;
 	default:
 		panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
 	}
 
 	return (mask);
 }
 
 static __inline pt_entry_t
 pmap_modified_bit(pmap_t pmap)
 {
 	pt_entry_t mask;
 
 	switch (pmap->pm_type) {
 	case PT_X86:
 	case PT_RVI:
 		mask = X86_PG_M;
 		break;
 	case PT_EPT:
 		if (pmap_emulate_ad_bits(pmap))
 			mask = EPT_PG_WRITE;
 		else
 			mask = EPT_PG_M;
 		break;
 	default:
 		panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
 	}
 
 	return (mask);
 }
 
 extern	struct pcpu __pcpu[];
 
 #if !defined(DIAGNOSTIC)
 #ifdef __GNUC_GNU_INLINE__
 #define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
 #else
 #define PMAP_INLINE	extern inline
 #endif
 #else
 #define PMAP_INLINE
 #endif
 
 #ifdef PV_STATS
 #define PV_STAT(x)	do { x ; } while (0)
 #else
 #define PV_STAT(x)	do { } while (0)
 #endif
 
 #define	pa_index(pa)	((pa) >> PDRSHIFT)
 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
 
 #define	NPV_LIST_LOCKS	MAXCPU
 
 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
 
 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
 	struct rwlock **_lockp = (lockp);		\
 	struct rwlock *_new_lock;			\
 							\
 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
 	if (_new_lock != *_lockp) {			\
 		if (*_lockp != NULL)			\
 			rw_wunlock(*_lockp);		\
 		*_lockp = _new_lock;			\
 		rw_wlock(*_lockp);			\
 	}						\
 } while (0)
 
 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
 
 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
 	struct rwlock **_lockp = (lockp);		\
 							\
 	if (*_lockp != NULL) {				\
 		rw_wunlock(*_lockp);			\
 		*_lockp = NULL;				\
 	}						\
 } while (0)
 
 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
 
 struct pmap kernel_pmap_store;
 
 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
 
 int nkpt;
 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
     "Number of kernel page table pages allocated on bootup");
 
 static int ndmpdp;
 vm_paddr_t dmaplimit;
 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
 pt_entry_t pg_nx;
 
 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
 
 static int pat_works = 1;
 SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
     "Is page attribute table fully functional?");
 
 static int pg_ps_enabled = 1;
 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
     &pg_ps_enabled, 0, "Are large page mappings enabled?");
 
 #define	PAT_INDEX_SIZE	8
 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
 
 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
 static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
 u_int64_t		KPDPphys;	/* phys addr of kernel level 3 */
 u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
 
 static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
 static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
 static int		ndmpdpphys;	/* number of DMPDPphys pages */
 
 /*
  * pmap_mapdev support pre initialization (i.e. console)
  */
 #define	PMAP_PREINIT_MAPPING_COUNT	8
 static struct pmap_preinit_mapping {
 	vm_paddr_t	pa;
 	vm_offset_t	va;
 	vm_size_t	sz;
 	int		mode;
 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
 static int pmap_initialized;
 
 /*
  * Data for the pv entry allocation mechanism.
  * Updates to pv_invl_gen are protected by the pv_list_locks[]
  * elements, but reads are not.
  */
 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
 static struct mtx pv_chunks_mutex;
 static struct rwlock pv_list_locks[NPV_LIST_LOCKS];
 static u_long pv_invl_gen[NPV_LIST_LOCKS];
 static struct md_page *pv_table;
 static struct md_page pv_dummy;
 
 /*
  * All those kernel PT submaps that BSD is so fond of
  */
 pt_entry_t *CMAP1 = 0;
 caddr_t CADDR1 = 0;
 static vm_offset_t qframe = 0;
 static struct mtx qframe_mtx;
 
 static int pmap_flags = PMAP_PDE_SUPERPAGE;	/* flags for x86 pmaps */
 
 int pmap_pcid_enabled = 1;
 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
     &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
 int invpcid_works = 0;
 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
     "Is the invpcid instruction available ?");
 
 static int
 pmap_pcid_save_cnt_proc(SYSCTL_HANDLER_ARGS)
 {
 	int i;
 	uint64_t res;
 
 	res = 0;
 	CPU_FOREACH(i) {
 		res += cpuid_to_pcpu[i]->pc_pm_save_cnt;
 	}
 	return (sysctl_handle_64(oidp, &res, 0, req));
 }
 SYSCTL_PROC(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLTYPE_U64 | CTLFLAG_RW |
     CTLFLAG_MPSAFE, NULL, 0, pmap_pcid_save_cnt_proc, "QU",
     "Count of saved TLB context on switch");
 
 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
     LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
 static struct mtx invl_gen_mtx;
 static u_long pmap_invl_gen = 0;
 /* Fake lock object to satisfy turnstiles interface. */
 static struct lock_object invl_gen_ts = {
 	.lo_name = "invlts",
 };
 
 #define	PMAP_ASSERT_NOT_IN_DI() \
     KASSERT(curthread->td_md.md_invl_gen.gen == 0, ("DI already started"))
 
 /*
  * Start a new Delayed Invalidation (DI) block of code, executed by
  * the current thread.  Within a DI block, the current thread may
  * destroy both the page table and PV list entries for a mapping and
  * then release the corresponding PV list lock before ensuring that
  * the mapping is flushed from the TLBs of any processors with the
  * pmap active.
  */
 static void
 pmap_delayed_invl_started(void)
 {
 	struct pmap_invl_gen *invl_gen;
 	u_long currgen;
 
 	invl_gen = &curthread->td_md.md_invl_gen;
 	PMAP_ASSERT_NOT_IN_DI();
 	mtx_lock(&invl_gen_mtx);
 	if (LIST_EMPTY(&pmap_invl_gen_tracker))
 		currgen = pmap_invl_gen;
 	else
 		currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
 	invl_gen->gen = currgen + 1;
 	LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
 	mtx_unlock(&invl_gen_mtx);
 }
 
 /*
  * Finish the DI block, previously started by the current thread.  All
  * required TLB flushes for the pages marked by
  * pmap_delayed_invl_page() must be finished before this function is
  * called.
  *
  * This function works by bumping the global DI generation number to
  * the generation number of the current thread's DI, unless there is a
  * pending DI that started earlier.  In the latter case, bumping the
  * global DI generation number would incorrectly signal that the
  * earlier DI had finished.  Instead, this function bumps the earlier
  * DI's generation number to match the generation number of the
  * current thread's DI.
  */
 static void
 pmap_delayed_invl_finished(void)
 {
 	struct pmap_invl_gen *invl_gen, *next;
 	struct turnstile *ts;
 
 	invl_gen = &curthread->td_md.md_invl_gen;
 	KASSERT(invl_gen->gen != 0, ("missed invl_started"));
 	mtx_lock(&invl_gen_mtx);
 	next = LIST_NEXT(invl_gen, link);
 	if (next == NULL) {
 		turnstile_chain_lock(&invl_gen_ts);
 		ts = turnstile_lookup(&invl_gen_ts);
 		pmap_invl_gen = invl_gen->gen;
 		if (ts != NULL) {
 			turnstile_broadcast(ts, TS_SHARED_QUEUE);
 			turnstile_unpend(ts, TS_SHARED_LOCK);
 		}
 		turnstile_chain_unlock(&invl_gen_ts);
 	} else {
 		next->gen = invl_gen->gen;
 	}
 	LIST_REMOVE(invl_gen, link);
 	mtx_unlock(&invl_gen_mtx);
 	invl_gen->gen = 0;
 }
 
 #ifdef PV_STATS
 static long invl_wait;
 SYSCTL_LONG(_vm_pmap, OID_AUTO, invl_wait, CTLFLAG_RD, &invl_wait, 0,
     "Number of times DI invalidation blocked pmap_remove_all/write");
 #endif
 
 static u_long *
 pmap_delayed_invl_genp(vm_page_t m)
 {
 
 	return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
 }
 
 /*
  * Ensure that all currently executing DI blocks, that need to flush
  * TLB for the given page m, actually flushed the TLB at the time the
  * function returned.  If the page m has an empty PV list and we call
  * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
  * valid mapping for the page m in either its page table or TLB.
  *
  * This function works by blocking until the global DI generation
  * number catches up with the generation number associated with the
  * given page m and its PV list.  Since this function's callers
  * typically own an object lock and sometimes own a page lock, it
  * cannot sleep.  Instead, it blocks on a turnstile to relinquish the
  * processor.
  */
 static void
 pmap_delayed_invl_wait(vm_page_t m)
 {
 	struct thread *td;
 	struct turnstile *ts;
 	u_long *m_gen;
 #ifdef PV_STATS
 	bool accounted = false;
 #endif
 
 	td = curthread;
 	m_gen = pmap_delayed_invl_genp(m);
 	while (*m_gen > pmap_invl_gen) {
 #ifdef PV_STATS
 		if (!accounted) {
 			atomic_add_long(&invl_wait, 1);
 			accounted = true;
 		}
 #endif
 		ts = turnstile_trywait(&invl_gen_ts);
 		if (*m_gen > pmap_invl_gen)
 			turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
 		else
 			turnstile_cancel(ts);
 	}
 }
 
 /*
  * Mark the page m's PV list as participating in the current thread's
  * DI block.  Any threads concurrently using m's PV list to remove or
  * restrict all mappings to m will wait for the current thread's DI
  * block to complete before proceeding.
  *
  * The function works by setting the DI generation number for m's PV
  * list to at least the DI generation number of the current thread.
  * This forces a caller of pmap_delayed_invl_wait() to block until
  * current thread calls pmap_delayed_invl_finished().
  */
 static void
 pmap_delayed_invl_page(vm_page_t m)
 {
 	u_long gen, *m_gen;
 
 	rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
 	gen = curthread->td_md.md_invl_gen.gen;
 	if (gen == 0)
 		return;
 	m_gen = pmap_delayed_invl_genp(m);
 	if (*m_gen < gen)
 		*m_gen = gen;
 }
 
 /*
  * Crashdump maps.
  */
 static caddr_t crashdumpmap;
 
 static void	free_pv_chunk(struct pv_chunk *pc);
 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
 static int	popcnt_pc_map_pq(uint64_t *map);
 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
 static void	reserve_pv_entries(pmap_t pmap, int needed,
 		    struct rwlock **lockp);
 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
 		    struct rwlock **lockp);
 static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
 		    struct rwlock **lockp);
 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
 		    struct rwlock **lockp);
 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
 		    vm_offset_t va);
 
 static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode);
 static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
 static boolean_t pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
     vm_offset_t va, struct rwlock **lockp);
 static boolean_t pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
     vm_offset_t va);
 static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
     vm_prot_t prot, struct rwlock **lockp);
 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
 static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
 static void pmap_pde_attr(pd_entry_t *pde, int cache_bits, int mask);
 static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
     struct rwlock **lockp);
 static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
     vm_prot_t prot);
 static void pmap_pte_attr(pt_entry_t *pte, int cache_bits, int mask);
 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
     struct spglist *free, struct rwlock **lockp);
 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
 static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
     struct spglist *free);
 static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
     vm_page_t m, struct rwlock **lockp);
 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
     pd_entry_t newpde);
 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
 
 static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
 		struct rwlock **lockp);
 static vm_page_t pmap_allocpde(pmap_t pmap, vm_offset_t va,
 		struct rwlock **lockp);
 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
 		struct rwlock **lockp);
 
 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
     struct spglist *free);
 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
 
 /*
  * Move the kernel virtual free pointer to the next
  * 2MB.  This is used to help improve performance
  * by using a large (2MB) page for much of the kernel
  * (.text, .data, .bss)
  */
 static vm_offset_t
 pmap_kmem_choose(vm_offset_t addr)
 {
 	vm_offset_t newaddr = addr;
 
 	newaddr = roundup2(addr, NBPDR);
 	return (newaddr);
 }
 
 /********************/
 /* Inline functions */
 /********************/
 
 /* Return a non-clipped PD index for a given VA */
 static __inline vm_pindex_t
 pmap_pde_pindex(vm_offset_t va)
 {
 	return (va >> PDRSHIFT);
 }
 
 
-/* Return various clipped indexes for a given VA */
-static __inline vm_pindex_t
-pmap_pte_index(vm_offset_t va)
-{
-
-	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
-}
-
-static __inline vm_pindex_t
-pmap_pde_index(vm_offset_t va)
-{
-
-	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
-}
-
-static __inline vm_pindex_t
-pmap_pdpe_index(vm_offset_t va)
-{
-
-	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
-}
-
-static __inline vm_pindex_t
-pmap_pml4e_index(vm_offset_t va)
-{
-
-	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
-}
-
 /* Return a pointer to the PML4 slot that corresponds to a VA */
 static __inline pml4_entry_t *
 pmap_pml4e(pmap_t pmap, vm_offset_t va)
 {
 
 	return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
 }
 
 /* Return a pointer to the PDP slot that corresponds to a VA */
 static __inline pdp_entry_t *
 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
 {
 	pdp_entry_t *pdpe;
 
 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
 	return (&pdpe[pmap_pdpe_index(va)]);
 }
 
 /* Return a pointer to the PDP slot that corresponds to a VA */
 static __inline pdp_entry_t *
 pmap_pdpe(pmap_t pmap, vm_offset_t va)
 {
 	pml4_entry_t *pml4e;
 	pt_entry_t PG_V;
 
 	PG_V = pmap_valid_bit(pmap);
 	pml4e = pmap_pml4e(pmap, va);
 	if ((*pml4e & PG_V) == 0)
 		return (NULL);
 	return (pmap_pml4e_to_pdpe(pml4e, va));
 }
 
 /* Return a pointer to the PD slot that corresponds to a VA */
 static __inline pd_entry_t *
 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
 {
 	pd_entry_t *pde;
 
 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
 	return (&pde[pmap_pde_index(va)]);
 }
 
 /* Return a pointer to the PD slot that corresponds to a VA */
 static __inline pd_entry_t *
 pmap_pde(pmap_t pmap, vm_offset_t va)
 {
 	pdp_entry_t *pdpe;
 	pt_entry_t PG_V;
 
 	PG_V = pmap_valid_bit(pmap);
 	pdpe = pmap_pdpe(pmap, va);
 	if (pdpe == NULL || (*pdpe & PG_V) == 0)
 		return (NULL);
 	return (pmap_pdpe_to_pde(pdpe, va));
 }
 
 /* Return a pointer to the PT slot that corresponds to a VA */
 static __inline pt_entry_t *
 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
 {
 	pt_entry_t *pte;
 
 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
 	return (&pte[pmap_pte_index(va)]);
 }
 
 /* Return a pointer to the PT slot that corresponds to a VA */
 static __inline pt_entry_t *
 pmap_pte(pmap_t pmap, vm_offset_t va)
 {
 	pd_entry_t *pde;
 	pt_entry_t PG_V;
 
 	PG_V = pmap_valid_bit(pmap);
 	pde = pmap_pde(pmap, va);
 	if (pde == NULL || (*pde & PG_V) == 0)
 		return (NULL);
 	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
 		return ((pt_entry_t *)pde);
 	return (pmap_pde_to_pte(pde, va));
 }
 
 static __inline void
 pmap_resident_count_inc(pmap_t pmap, int count)
 {
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	pmap->pm_stats.resident_count += count;
 }
 
 static __inline void
 pmap_resident_count_dec(pmap_t pmap, int count)
 {
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	KASSERT(pmap->pm_stats.resident_count >= count,
 	    ("pmap %p resident count underflow %ld %d", pmap,
 	    pmap->pm_stats.resident_count, count));
 	pmap->pm_stats.resident_count -= count;
 }
 
 PMAP_INLINE pt_entry_t *
 vtopte(vm_offset_t va)
 {
 	u_int64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
 
 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
 
 	return (PTmap + ((va >> PAGE_SHIFT) & mask));
 }
 
 static __inline pd_entry_t *
 vtopde(vm_offset_t va)
 {
 	u_int64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
 
 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
 
 	return (PDmap + ((va >> PDRSHIFT) & mask));
 }
 
 static u_int64_t
 allocpages(vm_paddr_t *firstaddr, int n)
 {
 	u_int64_t ret;
 
 	ret = *firstaddr;
 	bzero((void *)ret, n * PAGE_SIZE);
 	*firstaddr += n * PAGE_SIZE;
 	return (ret);
 }
 
 CTASSERT(powerof2(NDMPML4E));
 
 /* number of kernel PDP slots */
 #define	NKPDPE(ptpgs)		howmany(ptpgs, NPDEPG)
 
 static void
 nkpt_init(vm_paddr_t addr)
 {
 	int pt_pages;
 	
 #ifdef NKPT
 	pt_pages = NKPT;
 #else
 	pt_pages = howmany(addr, 1 << PDRSHIFT);
 	pt_pages += NKPDPE(pt_pages);
 
 	/*
 	 * Add some slop beyond the bare minimum required for bootstrapping
 	 * the kernel.
 	 *
 	 * This is quite important when allocating KVA for kernel modules.
 	 * The modules are required to be linked in the negative 2GB of
 	 * the address space.  If we run out of KVA in this region then
 	 * pmap_growkernel() will need to allocate page table pages to map
 	 * the entire 512GB of KVA space which is an unnecessary tax on
 	 * physical memory.
 	 *
 	 * Secondly, device memory mapped as part of setting up the low-
 	 * level console(s) is taken from KVA, starting at virtual_avail.
 	 * This is because cninit() is called after pmap_bootstrap() but
 	 * before vm_init() and pmap_init(). 20MB for a frame buffer is
 	 * not uncommon.
 	 */
 	pt_pages += 32;		/* 64MB additional slop. */
 #endif
 	nkpt = pt_pages;
 }
 
 static void
 create_pagetables(vm_paddr_t *firstaddr)
 {
 	int i, j, ndm1g, nkpdpe;
 	pt_entry_t *pt_p;
 	pd_entry_t *pd_p;
 	pdp_entry_t *pdp_p;
 	pml4_entry_t *p4_p;
 
 	/* Allocate page table pages for the direct map */
 	ndmpdp = howmany(ptoa(Maxmem), NBPDP);
 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
 		ndmpdp = 4;
 	ndmpdpphys = howmany(ndmpdp, NPDPEPG);
 	if (ndmpdpphys > NDMPML4E) {
 		/*
 		 * Each NDMPML4E allows 512 GB, so limit to that,
 		 * and then readjust ndmpdp and ndmpdpphys.
 		 */
 		printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
 		Maxmem = atop(NDMPML4E * NBPML4);
 		ndmpdpphys = NDMPML4E;
 		ndmpdp = NDMPML4E * NPDEPG;
 	}
 	DMPDPphys = allocpages(firstaddr, ndmpdpphys);
 	ndm1g = 0;
 	if ((amd_feature & AMDID_PAGE1GB) != 0)
 		ndm1g = ptoa(Maxmem) >> PDPSHIFT;
 	if (ndm1g < ndmpdp)
 		DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
 
 	/* Allocate pages */
 	KPML4phys = allocpages(firstaddr, 1);
 	KPDPphys = allocpages(firstaddr, NKPML4E);
 
 	/*
 	 * Allocate the initial number of kernel page table pages required to
 	 * bootstrap.  We defer this until after all memory-size dependent
 	 * allocations are done (e.g. direct map), so that we don't have to
 	 * build in too much slop in our estimate.
 	 *
 	 * Note that when NKPML4E > 1, we have an empty page underneath
 	 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
 	 * pages.  (pmap_enter requires a PD page to exist for each KPML4E.)
 	 */
 	nkpt_init(*firstaddr);
 	nkpdpe = NKPDPE(nkpt);
 
 	KPTphys = allocpages(firstaddr, nkpt);
 	KPDphys = allocpages(firstaddr, nkpdpe);
 
 	/* Fill in the underlying page table pages */
 	/* Nominally read-only (but really R/W) from zero to physfree */
 	/* XXX not fully used, underneath 2M pages */
 	pt_p = (pt_entry_t *)KPTphys;
 	for (i = 0; ptoa(i) < *firstaddr; i++)
 		pt_p[i] = ptoa(i) | X86_PG_RW | X86_PG_V | X86_PG_G;
 
 	/* Now map the page tables at their location within PTmap */
 	pd_p = (pd_entry_t *)KPDphys;
 	for (i = 0; i < nkpt; i++)
 		pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
 
 	/* Map from zero to end of allocations under 2M pages */
 	/* This replaces some of the KPTphys entries above */
 	for (i = 0; (i << PDRSHIFT) < *firstaddr; i++)
 		pd_p[i] = (i << PDRSHIFT) | X86_PG_RW | X86_PG_V | PG_PS |
 		    X86_PG_G;
 
 	/* And connect up the PD to the PDP (leaving room for L4 pages) */
 	pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
 	for (i = 0; i < nkpdpe; i++)
 		pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
 		    PG_U;
 
 	/*
 	 * Now, set up the direct map region using 2MB and/or 1GB pages.  If
 	 * the end of physical memory is not aligned to a 1GB page boundary,
 	 * then the residual physical memory is mapped with 2MB pages.  Later,
 	 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
 	 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
 	 * that are partially used. 
 	 */
 	pd_p = (pd_entry_t *)DMPDphys;
 	for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
 		pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
 		/* Preset PG_M and PG_A because demotion expects it. */
 		pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | X86_PG_G |
 		    X86_PG_M | X86_PG_A;
 	}
 	pdp_p = (pdp_entry_t *)DMPDPphys;
 	for (i = 0; i < ndm1g; i++) {
 		pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
 		/* Preset PG_M and PG_A because demotion expects it. */
 		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | X86_PG_G |
 		    X86_PG_M | X86_PG_A;
 	}
 	for (j = 0; i < ndmpdp; i++, j++) {
 		pdp_p[i] = DMPDphys + ptoa(j);
 		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_U;
 	}
 
 	/* And recursively map PML4 to itself in order to get PTmap */
 	p4_p = (pml4_entry_t *)KPML4phys;
 	p4_p[PML4PML4I] = KPML4phys;
 	p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | PG_U;
 
 	/* Connect the Direct Map slot(s) up to the PML4. */
 	for (i = 0; i < ndmpdpphys; i++) {
 		p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
 		p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | PG_U;
 	}
 
 	/* Connect the KVA slots up to the PML4 */
 	for (i = 0; i < NKPML4E; i++) {
 		p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
 		p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V | PG_U;
 	}
 }
 
 /*
  *	Bootstrap the system enough to run with virtual memory.
  *
  *	On amd64 this is called after mapping has already been enabled
  *	and just syncs the pmap module with what has already been done.
  *	[We can't call it easily with mapping off since the kernel is not
  *	mapped with PA == VA, hence we would have to relocate every address
  *	from the linked base (virtual) address "KERNBASE" to the actual
  *	(physical) address starting relative to 0]
  */
 void
 pmap_bootstrap(vm_paddr_t *firstaddr)
 {
 	vm_offset_t va;
 	pt_entry_t *pte;
 	int i;
 
 	/*
 	 * Create an initial set of page tables to run the kernel in.
 	 */
 	create_pagetables(firstaddr);
 
 	/*
 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
 	 * preallocated kernel page table pages so that vm_page structures
 	 * representing these pages will be created.  The vm_page structures
 	 * are required for promotion of the corresponding kernel virtual
 	 * addresses to superpage mappings.
 	 */
 	vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
 
 	virtual_avail = (vm_offset_t) KERNBASE + *firstaddr;
 	virtual_avail = pmap_kmem_choose(virtual_avail);
 
 	virtual_end = VM_MAX_KERNEL_ADDRESS;
 
 
 	/* XXX do %cr0 as well */
 	load_cr4(rcr4() | CR4_PGE);
 	load_cr3(KPML4phys);
 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
 		load_cr4(rcr4() | CR4_SMEP);
 
 	/*
 	 * Initialize the kernel pmap (which is statically allocated).
 	 */
 	PMAP_LOCK_INIT(kernel_pmap);
 	kernel_pmap->pm_pml4 = (pdp_entry_t *)PHYS_TO_DMAP(KPML4phys);
 	kernel_pmap->pm_cr3 = KPML4phys;
 	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
 	kernel_pmap->pm_flags = pmap_flags;
 
  	/*
 	 * Initialize the TLB invalidations generation number lock.
 	 */
 	mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
 
 	/*
 	 * Reserve some special page table entries/VA space for temporary
 	 * mapping of pages.
 	 */
 #define	SYSMAP(c, p, v, n)	\
 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
 
 	va = virtual_avail;
 	pte = vtopte(va);
 
 	/*
 	 * Crashdump maps.  The first page is reused as CMAP1 for the
 	 * memory test.
 	 */
 	SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
 	CADDR1 = crashdumpmap;
 
 	virtual_avail = va;
 
 	/* Initialize the PAT MSR. */
 	pmap_init_pat();
 
 	/* Initialize TLB Context Id. */
 	TUNABLE_INT_FETCH("vm.pmap.pcid_enabled", &pmap_pcid_enabled);
 	if ((cpu_feature2 & CPUID2_PCID) != 0 && pmap_pcid_enabled) {
 		/* Check for INVPCID support */
 		invpcid_works = (cpu_stdext_feature & CPUID_STDEXT_INVPCID)
 		    != 0;
 		for (i = 0; i < MAXCPU; i++) {
 			kernel_pmap->pm_pcids[i].pm_pcid = PMAP_PCID_KERN;
 			kernel_pmap->pm_pcids[i].pm_gen = 1;
 		}
 		__pcpu[0].pc_pcid_next = PMAP_PCID_KERN + 1;
 		__pcpu[0].pc_pcid_gen = 1;
 		/*
 		 * pcpu area for APs is zeroed during AP startup.
 		 * pc_pcid_next and pc_pcid_gen are initialized by AP
 		 * during pcpu setup.
 		 */
 		load_cr4(rcr4() | CR4_PCIDE);
 	} else {
 		pmap_pcid_enabled = 0;
 	}
 }
 
 /*
  * Setup the PAT MSR.
  */
 void
 pmap_init_pat(void)
 {
 	int pat_table[PAT_INDEX_SIZE];
 	uint64_t pat_msr;
 	u_long cr0, cr4;
 	int i;
 
 	/* Bail if this CPU doesn't implement PAT. */
 	if ((cpu_feature & CPUID_PAT) == 0)
 		panic("no PAT??");
 
 	/* Set default PAT index table. */
 	for (i = 0; i < PAT_INDEX_SIZE; i++)
 		pat_table[i] = -1;
 	pat_table[PAT_WRITE_BACK] = 0;
 	pat_table[PAT_WRITE_THROUGH] = 1;
 	pat_table[PAT_UNCACHEABLE] = 3;
 	pat_table[PAT_WRITE_COMBINING] = 3;
 	pat_table[PAT_WRITE_PROTECTED] = 3;
 	pat_table[PAT_UNCACHED] = 3;
 
 	/* Initialize default PAT entries. */
 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
 	    PAT_VALUE(2, PAT_UNCACHED) |
 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
 	    PAT_VALUE(4, PAT_WRITE_BACK) |
 	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
 	    PAT_VALUE(6, PAT_UNCACHED) |
 	    PAT_VALUE(7, PAT_UNCACHEABLE);
 
 	if (pat_works) {
 		/*
 		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
 		 * Program 5 and 6 as WP and WC.
 		 * Leave 4 and 7 as WB and UC.
 		 */
 		pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
 		pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
 		    PAT_VALUE(6, PAT_WRITE_COMBINING);
 		pat_table[PAT_UNCACHED] = 2;
 		pat_table[PAT_WRITE_PROTECTED] = 5;
 		pat_table[PAT_WRITE_COMBINING] = 6;
 	} else {
 		/*
 		 * Just replace PAT Index 2 with WC instead of UC-.
 		 */
 		pat_msr &= ~PAT_MASK(2);
 		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
 		pat_table[PAT_WRITE_COMBINING] = 2;
 	}
 
 	/* Disable PGE. */
 	cr4 = rcr4();
 	load_cr4(cr4 & ~CR4_PGE);
 
 	/* Disable caches (CD = 1, NW = 0). */
 	cr0 = rcr0();
 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
 
 	/* Flushes caches and TLBs. */
 	wbinvd();
 	invltlb();
 
 	/* Update PAT and index table. */
 	wrmsr(MSR_PAT, pat_msr);
 	for (i = 0; i < PAT_INDEX_SIZE; i++)
 		pat_index[i] = pat_table[i];
 
 	/* Flush caches and TLBs again. */
 	wbinvd();
 	invltlb();
 
 	/* Restore caches and PGE. */
 	load_cr0(cr0);
 	load_cr4(cr4);
 }
 
 /*
  *	Initialize a vm_page's machine-dependent fields.
  */
 void
 pmap_page_init(vm_page_t m)
 {
 
 	TAILQ_INIT(&m->md.pv_list);
 	m->md.pat_mode = PAT_WRITE_BACK;
 }
 
 /*
  *	Initialize the pmap module.
  *	Called by vm_init, to initialize any structures that the pmap
  *	system needs to map virtual memory.
  */
 void
 pmap_init(void)
 {
 	struct pmap_preinit_mapping *ppim;
 	vm_page_t mpte;
 	vm_size_t s;
 	int error, i, pv_npg;
 
 	/*
 	 * Initialize the vm page array entries for the kernel pmap's
 	 * page table pages.
 	 */ 
 	for (i = 0; i < nkpt; i++) {
 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
 		KASSERT(mpte >= vm_page_array &&
 		    mpte < &vm_page_array[vm_page_array_size],
 		    ("pmap_init: page table page is out of range"));
 		mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
 	}
 
 	/*
 	 * If the kernel is running on a virtual machine, then it must assume
 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
 	 * be prepared for the hypervisor changing the vendor and family that
 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
 	 * 10h Erratum 383 is enabled if the processor's feature set does not
 	 * include at least one feature that is only supported by older Intel
 	 * or newer AMD processors.
 	 */
 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
 	    AMDID2_FMA4)) == 0)
 		workaround_erratum383 = 1;
 
 	/*
 	 * Are large page mappings enabled?
 	 */
 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
 	if (pg_ps_enabled) {
 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
 		    ("pmap_init: can't assign to pagesizes[1]"));
 		pagesizes[1] = NBPDR;
 	}
 
 	/*
 	 * Initialize the pv chunk list mutex.
 	 */
 	mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
 
 	/*
 	 * Initialize the pool of pv list locks.
 	 */
 	for (i = 0; i < NPV_LIST_LOCKS; i++)
 		rw_init(&pv_list_locks[i], "pmap pv list");
 
 	/*
 	 * Calculate the size of the pv head table for superpages.
 	 */
 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
 
 	/*
 	 * Allocate memory for the pv head table for superpages.
 	 */
 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
 	s = round_page(s);
 	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
 	    M_WAITOK | M_ZERO);
 	for (i = 0; i < pv_npg; i++)
 		TAILQ_INIT(&pv_table[i].pv_list);
 	TAILQ_INIT(&pv_dummy.pv_list);
 
 	pmap_initialized = 1;
 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
 		ppim = pmap_preinit_mapping + i;
 		if (ppim->va == 0)
 			continue;
 		/* Make the direct map consistent */
 		if (ppim->pa < dmaplimit && ppim->pa + ppim->sz < dmaplimit) {
 			(void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
 			    ppim->sz, ppim->mode);
 		}
 		if (!bootverbose)
 			continue;
 		printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
 		    ppim->pa, ppim->va, ppim->sz, ppim->mode);
 	}
 
 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
 	    (vmem_addr_t *)&qframe);
 	if (error != 0)
 		panic("qframe allocation failed");
 }
 
 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
     "2MB page mapping counters");
 
 static u_long pmap_pde_demotions;
 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
     &pmap_pde_demotions, 0, "2MB page demotions");
 
 static u_long pmap_pde_mappings;
 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
     &pmap_pde_mappings, 0, "2MB page mappings");
 
 static u_long pmap_pde_p_failures;
 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
     &pmap_pde_p_failures, 0, "2MB page promotion failures");
 
 static u_long pmap_pde_promotions;
 SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
     &pmap_pde_promotions, 0, "2MB page promotions");
 
 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD, 0,
     "1GB page mapping counters");
 
 static u_long pmap_pdpe_demotions;
 SYSCTL_ULONG(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
     &pmap_pdpe_demotions, 0, "1GB page demotions");
 
 /***************************************************
  * Low level helper routines.....
  ***************************************************/
 
 static pt_entry_t
 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
 {
 	int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
 
 	switch (pmap->pm_type) {
 	case PT_X86:
 	case PT_RVI:
 		/* Verify that both PAT bits are not set at the same time */
 		KASSERT((entry & x86_pat_bits) != x86_pat_bits,
 		    ("Invalid PAT bits in entry %#lx", entry));
 
 		/* Swap the PAT bits if one of them is set */
 		if ((entry & x86_pat_bits) != 0)
 			entry ^= x86_pat_bits;
 		break;
 	case PT_EPT:
 		/*
 		 * Nothing to do - the memory attributes are represented
 		 * the same way for regular pages and superpages.
 		 */
 		break;
 	default:
 		panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
 	}
 
 	return (entry);
 }
 
 /*
  * Determine the appropriate bits to set in a PTE or PDE for a specified
  * caching mode.
  */
 static int
 pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde)
 {
 	int cache_bits, pat_flag, pat_idx;
 
 	if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
 		panic("Unknown caching mode %d\n", mode);
 
 	switch (pmap->pm_type) {
 	case PT_X86:
 	case PT_RVI:
 		/* The PAT bit is different for PTE's and PDE's. */
 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
 
 		/* Map the caching mode to a PAT index. */
 		pat_idx = pat_index[mode];
 
 		/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
 		cache_bits = 0;
 		if (pat_idx & 0x4)
 			cache_bits |= pat_flag;
 		if (pat_idx & 0x2)
 			cache_bits |= PG_NC_PCD;
 		if (pat_idx & 0x1)
 			cache_bits |= PG_NC_PWT;
 		break;
 
 	case PT_EPT:
 		cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
 		break;
 
 	default:
 		panic("unsupported pmap type %d", pmap->pm_type);
 	}
 
 	return (cache_bits);
 }
 
 static int
 pmap_cache_mask(pmap_t pmap, boolean_t is_pde)
 {
 	int mask;
 
 	switch (pmap->pm_type) {
 	case PT_X86:
 	case PT_RVI:
 		mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
 		break;
 	case PT_EPT:
 		mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
 		break;
 	default:
 		panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
 	}
 
 	return (mask);
 }
 
 static __inline boolean_t
 pmap_ps_enabled(pmap_t pmap)
 {
 
 	return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
 }
 
 static void
 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
 {
 
 	switch (pmap->pm_type) {
 	case PT_X86:
 		break;
 	case PT_RVI:
 	case PT_EPT:
 		/*
 		 * XXX
 		 * This is a little bogus since the generation number is
 		 * supposed to be bumped up when a region of the address
 		 * space is invalidated in the page tables.
 		 *
 		 * In this case the old PDE entry is valid but yet we want
 		 * to make sure that any mappings using the old entry are
 		 * invalidated in the TLB.
 		 *
 		 * The reason this works as expected is because we rendezvous
 		 * "all" host cpus and force any vcpu context to exit as a
 		 * side-effect.
 		 */
 		atomic_add_acq_long(&pmap->pm_eptgen, 1);
 		break;
 	default:
 		panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
 	}
 	pde_store(pde, newpde);
 }
 
 /*
  * After changing the page size for the specified virtual address in the page
  * table, flush the corresponding entries from the processor's TLB.  Only the
  * calling processor's TLB is affected.
  *
  * The calling thread must be pinned to a processor.
  */
 static void
 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
 {
 	pt_entry_t PG_G;
 
 	if (pmap_type_guest(pmap))
 		return;
 
 	KASSERT(pmap->pm_type == PT_X86,
 	    ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
 
 	PG_G = pmap_global_bit(pmap);
 
 	if ((newpde & PG_PS) == 0)
 		/* Demotion: flush a specific 2MB page mapping. */
 		invlpg(va);
 	else if ((newpde & PG_G) == 0)
 		/*
 		 * Promotion: flush every 4KB page mapping from the TLB
 		 * because there are too many to flush individually.
 		 */
 		invltlb();
 	else {
 		/*
 		 * Promotion: flush every 4KB page mapping from the TLB,
 		 * including any global (PG_G) mappings.
 		 */
 		invltlb_glob();
 	}
 }
 #ifdef SMP
 
 /*
  * For SMP, these functions have to use the IPI mechanism for coherence.
  *
  * N.B.: Before calling any of the following TLB invalidation functions,
  * the calling processor must ensure that all stores updating a non-
  * kernel page table are globally performed.  Otherwise, another
  * processor could cache an old, pre-update entry without being
  * invalidated.  This can happen one of two ways: (1) The pmap becomes
  * active on another processor after its pm_active field is checked by
  * one of the following functions but before a store updating the page
  * table is globally performed. (2) The pmap becomes active on another
  * processor before its pm_active field is checked but due to
  * speculative loads one of the following functions stills reads the
  * pmap as inactive on the other processor.
  * 
  * The kernel page table is exempt because its pm_active field is
  * immutable.  The kernel page table is always active on every
  * processor.
  */
 
 /*
  * Interrupt the cpus that are executing in the guest context.
  * This will force the vcpu to exit and the cached EPT mappings
  * will be invalidated by the host before the next vmresume.
  */
 static __inline void
 pmap_invalidate_ept(pmap_t pmap)
 {
 	int ipinum;
 
 	sched_pin();
 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
 	    ("pmap_invalidate_ept: absurd pm_active"));
 
 	/*
 	 * The TLB mappings associated with a vcpu context are not
 	 * flushed each time a different vcpu is chosen to execute.
 	 *
 	 * This is in contrast with a process's vtop mappings that
 	 * are flushed from the TLB on each context switch.
 	 *
 	 * Therefore we need to do more than just a TLB shootdown on
 	 * the active cpus in 'pmap->pm_active'. To do this we keep
 	 * track of the number of invalidations performed on this pmap.
 	 *
 	 * Each vcpu keeps a cache of this counter and compares it
 	 * just before a vmresume. If the counter is out-of-date an
 	 * invept will be done to flush stale mappings from the TLB.
 	 */
 	atomic_add_acq_long(&pmap->pm_eptgen, 1);
 
 	/*
 	 * Force the vcpu to exit and trap back into the hypervisor.
 	 */
 	ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
 	ipi_selected(pmap->pm_active, ipinum);
 	sched_unpin();
 }
 
 void
 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
 {
 	cpuset_t *mask;
 	u_int cpuid, i;
 
 	if (pmap_type_guest(pmap)) {
 		pmap_invalidate_ept(pmap);
 		return;
 	}
 
 	KASSERT(pmap->pm_type == PT_X86,
 	    ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
 
 	sched_pin();
 	if (pmap == kernel_pmap) {
 		invlpg(va);
 		mask = &all_cpus;
 	} else {
 		cpuid = PCPU_GET(cpuid);
 		if (pmap == PCPU_GET(curpmap))
 			invlpg(va);
 		else if (pmap_pcid_enabled)
 			pmap->pm_pcids[cpuid].pm_gen = 0;
 		if (pmap_pcid_enabled) {
 			CPU_FOREACH(i) {
 				if (cpuid != i)
 					pmap->pm_pcids[i].pm_gen = 0;
 			}
 		}
 		mask = &pmap->pm_active;
 	}
 	smp_masked_invlpg(*mask, va);
 	sched_unpin();
 }
 
 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
 
 void
 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 {
 	cpuset_t *mask;
 	vm_offset_t addr;
 	u_int cpuid, i;
 
 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
 		pmap_invalidate_all(pmap);
 		return;
 	}
 
 	if (pmap_type_guest(pmap)) {
 		pmap_invalidate_ept(pmap);
 		return;
 	}
 
 	KASSERT(pmap->pm_type == PT_X86,
 	    ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
 
 	sched_pin();
 	cpuid = PCPU_GET(cpuid);
 	if (pmap == kernel_pmap) {
 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
 			invlpg(addr);
 		mask = &all_cpus;
 	} else {
 		if (pmap == PCPU_GET(curpmap)) {
 			for (addr = sva; addr < eva; addr += PAGE_SIZE)
 				invlpg(addr);
 		} else if (pmap_pcid_enabled) {
 			pmap->pm_pcids[cpuid].pm_gen = 0;
 		}
 		if (pmap_pcid_enabled) {
 			CPU_FOREACH(i) {
 				if (cpuid != i)
 					pmap->pm_pcids[i].pm_gen = 0;
 			}
 		}
 		mask = &pmap->pm_active;
 	}
 	smp_masked_invlpg_range(*mask, sva, eva);
 	sched_unpin();
 }
 
 void
 pmap_invalidate_all(pmap_t pmap)
 {
 	cpuset_t *mask;
 	struct invpcid_descr d;
 	u_int cpuid, i;
 
 	if (pmap_type_guest(pmap)) {
 		pmap_invalidate_ept(pmap);
 		return;
 	}
 
 	KASSERT(pmap->pm_type == PT_X86,
 	    ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
 
 	sched_pin();
 	if (pmap == kernel_pmap) {
 		if (pmap_pcid_enabled && invpcid_works) {
 			bzero(&d, sizeof(d));
 			invpcid(&d, INVPCID_CTXGLOB);
 		} else {
 			invltlb_glob();
 		}
 		mask = &all_cpus;
 	} else {
 		cpuid = PCPU_GET(cpuid);
 		if (pmap == PCPU_GET(curpmap)) {
 			if (pmap_pcid_enabled) {
 				if (invpcid_works) {
 					d.pcid = pmap->pm_pcids[cpuid].pm_pcid;
 					d.pad = 0;
 					d.addr = 0;
 					invpcid(&d, INVPCID_CTX);
 				} else {
 					load_cr3(pmap->pm_cr3 | pmap->pm_pcids
 					    [PCPU_GET(cpuid)].pm_pcid);
 				}
 			} else {
 				invltlb();
 			}
 		} else if (pmap_pcid_enabled) {
 			pmap->pm_pcids[cpuid].pm_gen = 0;
 		}
 		if (pmap_pcid_enabled) {
 			CPU_FOREACH(i) {
 				if (cpuid != i)
 					pmap->pm_pcids[i].pm_gen = 0;
 			}
 		}
 		mask = &pmap->pm_active;
 	}
 	smp_masked_invltlb(*mask, pmap);
 	sched_unpin();
 }
 
 void
 pmap_invalidate_cache(void)
 {
 
 	sched_pin();
 	wbinvd();
 	smp_cache_flush();
 	sched_unpin();
 }
 
 struct pde_action {
 	cpuset_t invalidate;	/* processors that invalidate their TLB */
 	pmap_t pmap;
 	vm_offset_t va;
 	pd_entry_t *pde;
 	pd_entry_t newpde;
 	u_int store;		/* processor that updates the PDE */
 };
 
 static void
 pmap_update_pde_action(void *arg)
 {
 	struct pde_action *act = arg;
 
 	if (act->store == PCPU_GET(cpuid))
 		pmap_update_pde_store(act->pmap, act->pde, act->newpde);
 }
 
 static void
 pmap_update_pde_teardown(void *arg)
 {
 	struct pde_action *act = arg;
 
 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
 		pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
 }
 
 /*
  * Change the page size for the specified virtual address in a way that
  * prevents any possibility of the TLB ever having two entries that map the
  * same virtual address using different page sizes.  This is the recommended
  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
  * machine check exception for a TLB state that is improperly diagnosed as a
  * hardware error.
  */
 static void
 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
 {
 	struct pde_action act;
 	cpuset_t active, other_cpus;
 	u_int cpuid;
 
 	sched_pin();
 	cpuid = PCPU_GET(cpuid);
 	other_cpus = all_cpus;
 	CPU_CLR(cpuid, &other_cpus);
 	if (pmap == kernel_pmap || pmap_type_guest(pmap)) 
 		active = all_cpus;
 	else {
 		active = pmap->pm_active;
 	}
 	if (CPU_OVERLAP(&active, &other_cpus)) { 
 		act.store = cpuid;
 		act.invalidate = active;
 		act.va = va;
 		act.pmap = pmap;
 		act.pde = pde;
 		act.newpde = newpde;
 		CPU_SET(cpuid, &active);
 		smp_rendezvous_cpus(active,
 		    smp_no_rendevous_barrier, pmap_update_pde_action,
 		    pmap_update_pde_teardown, &act);
 	} else {
 		pmap_update_pde_store(pmap, pde, newpde);
 		if (CPU_ISSET(cpuid, &active))
 			pmap_update_pde_invalidate(pmap, va, newpde);
 	}
 	sched_unpin();
 }
 #else /* !SMP */
 /*
  * Normal, non-SMP, invalidation functions.
  */
 void
 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
 {
 
 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
 		pmap->pm_eptgen++;
 		return;
 	}
 	KASSERT(pmap->pm_type == PT_X86,
 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
 
 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
 		invlpg(va);
 	else if (pmap_pcid_enabled)
 		pmap->pm_pcids[0].pm_gen = 0;
 }
 
 void
 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 {
 	vm_offset_t addr;
 
 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
 		pmap->pm_eptgen++;
 		return;
 	}
 	KASSERT(pmap->pm_type == PT_X86,
 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
 
 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
 			invlpg(addr);
 	} else if (pmap_pcid_enabled) {
 		pmap->pm_pcids[0].pm_gen = 0;
 	}
 }
 
 void
 pmap_invalidate_all(pmap_t pmap)
 {
 	struct invpcid_descr d;
 
 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
 		pmap->pm_eptgen++;
 		return;
 	}
 	KASSERT(pmap->pm_type == PT_X86,
 	    ("pmap_invalidate_all: unknown type %d", pmap->pm_type));
 
 	if (pmap == kernel_pmap) {
 		if (pmap_pcid_enabled && invpcid_works) {
 			bzero(&d, sizeof(d));
 			invpcid(&d, INVPCID_CTXGLOB);
 		} else {
 			invltlb_glob();
 		}
 	} else if (pmap == PCPU_GET(curpmap)) {
 		if (pmap_pcid_enabled) {
 			if (invpcid_works) {
 				d.pcid = pmap->pm_pcids[0].pm_pcid;
 				d.pad = 0;
 				d.addr = 0;
 				invpcid(&d, INVPCID_CTX);
 			} else {
 				load_cr3(pmap->pm_cr3 | pmap->pm_pcids[0].
 				    pm_pcid);
 			}
 		} else {
 			invltlb();
 		}
 	} else if (pmap_pcid_enabled) {
 		pmap->pm_pcids[0].pm_gen = 0;
 	}
 }
 
 PMAP_INLINE void
 pmap_invalidate_cache(void)
 {
 
 	wbinvd();
 }
 
 static void
 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
 {
 
 	pmap_update_pde_store(pmap, pde, newpde);
 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
 		pmap_update_pde_invalidate(pmap, va, newpde);
 	else
 		pmap->pm_pcids[0].pm_gen = 0;
 }
 #endif /* !SMP */
 
 #define PMAP_CLFLUSH_THRESHOLD   (2 * 1024 * 1024)
 
 void
 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva, boolean_t force)
 {
 
 	if (force) {
 		sva &= ~(vm_offset_t)cpu_clflush_line_size;
 	} else {
 		KASSERT((sva & PAGE_MASK) == 0,
 		    ("pmap_invalidate_cache_range: sva not page-aligned"));
 		KASSERT((eva & PAGE_MASK) == 0,
 		    ("pmap_invalidate_cache_range: eva not page-aligned"));
 	}
 
 	if ((cpu_feature & CPUID_SS) != 0 && !force)
 		; /* If "Self Snoop" is supported and allowed, do nothing. */
 	else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0 &&
 	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
 		/*
 		 * XXX: Some CPUs fault, hang, or trash the local APIC
 		 * registers if we use CLFLUSH on the local APIC
 		 * range.  The local APIC is always uncached, so we
 		 * don't need to flush for that range anyway.
 		 */
 		if (pmap_kextract(sva) == lapic_paddr)
 			return;
 
 		/*
 		 * Otherwise, do per-cache line flush.  Use the mfence
 		 * instruction to insure that previous stores are
 		 * included in the write-back.  The processor
 		 * propagates flush to other processors in the cache
 		 * coherence domain.
 		 */
 		mfence();
 		for (; sva < eva; sva += cpu_clflush_line_size)
 			clflushopt(sva);
 		mfence();
 	} else if ((cpu_feature & CPUID_CLFSH) != 0 &&
 	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
 		if (pmap_kextract(sva) == lapic_paddr)
 			return;
 		/*
 		 * Writes are ordered by CLFLUSH on Intel CPUs.
 		 */
 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
 			mfence();
 		for (; sva < eva; sva += cpu_clflush_line_size)
 			clflush(sva);
 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
 			mfence();
 	} else {
 
 		/*
 		 * No targeted cache flush methods are supported by CPU,
 		 * or the supplied range is bigger than 2MB.
 		 * Globally invalidate cache.
 		 */
 		pmap_invalidate_cache();
 	}
 }
 
 /*
  * Remove the specified set of pages from the data and instruction caches.
  *
  * In contrast to pmap_invalidate_cache_range(), this function does not
  * rely on the CPU's self-snoop feature, because it is intended for use
  * when moving pages into a different cache domain.
  */
 void
 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
 {
 	vm_offset_t daddr, eva;
 	int i;
 	bool useclflushopt;
 
 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
 	    ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
 		pmap_invalidate_cache();
 	else {
 		if (useclflushopt || cpu_vendor_id != CPU_VENDOR_INTEL)
 			mfence();
 		for (i = 0; i < count; i++) {
 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
 			eva = daddr + PAGE_SIZE;
 			for (; daddr < eva; daddr += cpu_clflush_line_size) {
 				if (useclflushopt)
 					clflushopt(daddr);
 				else
 					clflush(daddr);
 			}
 		}
 		if (useclflushopt || cpu_vendor_id != CPU_VENDOR_INTEL)
 			mfence();
 	}
 }
 
 /*
  *	Routine:	pmap_extract
  *	Function:
  *		Extract the physical page address associated
  *		with the given map/virtual_address pair.
  */
 vm_paddr_t 
 pmap_extract(pmap_t pmap, vm_offset_t va)
 {
 	pdp_entry_t *pdpe;
 	pd_entry_t *pde;
 	pt_entry_t *pte, PG_V;
 	vm_paddr_t pa;
 
 	pa = 0;
 	PG_V = pmap_valid_bit(pmap);
 	PMAP_LOCK(pmap);
 	pdpe = pmap_pdpe(pmap, va);
 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
 		if ((*pdpe & PG_PS) != 0)
 			pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
 		else {
 			pde = pmap_pdpe_to_pde(pdpe, va);
 			if ((*pde & PG_V) != 0) {
 				if ((*pde & PG_PS) != 0) {
 					pa = (*pde & PG_PS_FRAME) |
 					    (va & PDRMASK);
 				} else {
 					pte = pmap_pde_to_pte(pde, va);
 					pa = (*pte & PG_FRAME) |
 					    (va & PAGE_MASK);
 				}
 			}
 		}
 	}
 	PMAP_UNLOCK(pmap);
 	return (pa);
 }
 
 /*
  *	Routine:	pmap_extract_and_hold
  *	Function:
  *		Atomically extract and hold the physical page
  *		with the given pmap and virtual address pair
  *		if that mapping permits the given protection.
  */
 vm_page_t
 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
 {
 	pd_entry_t pde, *pdep;
 	pt_entry_t pte, PG_RW, PG_V;
 	vm_paddr_t pa;
 	vm_page_t m;
 
 	pa = 0;
 	m = NULL;
 	PG_RW = pmap_rw_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PMAP_LOCK(pmap);
 retry:
 	pdep = pmap_pde(pmap, va);
 	if (pdep != NULL && (pde = *pdep)) {
 		if (pde & PG_PS) {
 			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
 				if (vm_page_pa_tryrelock(pmap, (pde &
 				    PG_PS_FRAME) | (va & PDRMASK), &pa))
 					goto retry;
 				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
 				    (va & PDRMASK));
 				vm_page_hold(m);
 			}
 		} else {
 			pte = *pmap_pde_to_pte(pdep, va);
 			if ((pte & PG_V) &&
 			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
 				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
 				    &pa))
 					goto retry;
 				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
 				vm_page_hold(m);
 			}
 		}
 	}
 	PA_UNLOCK_COND(pa);
 	PMAP_UNLOCK(pmap);
 	return (m);
 }
 
 vm_paddr_t
 pmap_kextract(vm_offset_t va)
 {
 	pd_entry_t pde;
 	vm_paddr_t pa;
 
 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
 		pa = DMAP_TO_PHYS(va);
 	} else {
 		pde = *vtopde(va);
 		if (pde & PG_PS) {
 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
 		} else {
 			/*
 			 * Beware of a concurrent promotion that changes the
 			 * PDE at this point!  For example, vtopte() must not
 			 * be used to access the PTE because it would use the
 			 * new PDE.  It is, however, safe to use the old PDE
 			 * because the page table page is preserved by the
 			 * promotion.
 			 */
 			pa = *pmap_pde_to_pte(&pde, va);
 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
 		}
 	}
 	return (pa);
 }
 
 /***************************************************
  * Low level mapping routines.....
  ***************************************************/
 
 /*
  * Add a wired page to the kva.
  * Note: not SMP coherent.
  */
 PMAP_INLINE void 
 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
 {
 	pt_entry_t *pte;
 
 	pte = vtopte(va);
 	pte_store(pte, pa | X86_PG_RW | X86_PG_V | X86_PG_G);
 }
 
 static __inline void
 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
 {
 	pt_entry_t *pte;
 	int cache_bits;
 
 	pte = vtopte(va);
 	cache_bits = pmap_cache_bits(kernel_pmap, mode, 0);
 	pte_store(pte, pa | X86_PG_RW | X86_PG_V | X86_PG_G | cache_bits);
 }
 
 /*
  * Remove a page from the kernel pagetables.
  * Note: not SMP coherent.
  */
 PMAP_INLINE void
 pmap_kremove(vm_offset_t va)
 {
 	pt_entry_t *pte;
 
 	pte = vtopte(va);
 	pte_clear(pte);
 }
 
 /*
  *	Used to map a range of physical addresses into kernel
  *	virtual address space.
  *
  *	The value passed in '*virt' is a suggested virtual address for
  *	the mapping. Architectures which can support a direct-mapped
  *	physical to virtual region can return the appropriate address
  *	within that region, leaving '*virt' unchanged. Other
  *	architectures should map the pages starting at '*virt' and
  *	update '*virt' with the first usable address after the mapped
  *	region.
  */
 vm_offset_t
 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
 {
 	return PHYS_TO_DMAP(start);
 }
 
 
 /*
  * Add a list of wired pages to the kva
  * this routine is only used for temporary
  * kernel mappings that do not need to have
  * page modification or references recorded.
  * Note that old mappings are simply written
  * over.  The page *must* be wired.
  * Note: SMP coherent.  Uses a ranged shootdown IPI.
  */
 void
 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
 {
 	pt_entry_t *endpte, oldpte, pa, *pte;
 	vm_page_t m;
 	int cache_bits;
 
 	oldpte = 0;
 	pte = vtopte(sva);
 	endpte = pte + count;
 	while (pte < endpte) {
 		m = *ma++;
 		cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
 		pa = VM_PAGE_TO_PHYS(m) | cache_bits;
 		if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
 			oldpte |= *pte;
 			pte_store(pte, pa | X86_PG_G | X86_PG_RW | X86_PG_V);
 		}
 		pte++;
 	}
 	if (__predict_false((oldpte & X86_PG_V) != 0))
 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
 		    PAGE_SIZE);
 }
 
 /*
  * This routine tears out page mappings from the
  * kernel -- it is meant only for temporary mappings.
  * Note: SMP coherent.  Uses a ranged shootdown IPI.
  */
 void
 pmap_qremove(vm_offset_t sva, int count)
 {
 	vm_offset_t va;
 
 	va = sva;
 	while (count-- > 0) {
 		KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
 		pmap_kremove(va);
 		va += PAGE_SIZE;
 	}
 	pmap_invalidate_range(kernel_pmap, sva, va);
 }
 
 /***************************************************
  * Page table page management routines.....
  ***************************************************/
 static __inline void
 pmap_free_zero_pages(struct spglist *free)
 {
 	vm_page_t m;
 
 	while ((m = SLIST_FIRST(free)) != NULL) {
 		SLIST_REMOVE_HEAD(free, plinks.s.ss);
 		/* Preserve the page's PG_ZERO setting. */
 		vm_page_free_toq(m);
 	}
 }
 
 /*
  * Schedule the specified unused page table page to be freed.  Specifically,
  * add the page to the specified list of pages that will be released to the
  * physical memory manager after the TLB has been updated.
  */
 static __inline void
 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
     boolean_t set_PG_ZERO)
 {
 
 	if (set_PG_ZERO)
 		m->flags |= PG_ZERO;
 	else
 		m->flags &= ~PG_ZERO;
 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
 }
 	
 /*
  * Inserts the specified page table page into the specified pmap's collection
  * of idle page table pages.  Each of a pmap's page table pages is responsible
  * for mapping a distinct range of virtual addresses.  The pmap's collection is
  * ordered by this virtual address range.
  */
 static __inline int
 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
 {
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	return (vm_radix_insert(&pmap->pm_root, mpte));
 }
 
 /*
  * Looks for a page table page mapping the specified virtual address in the
  * specified pmap's collection of idle page table pages.  Returns NULL if there
  * is no page table page corresponding to the specified virtual address.
  */
 static __inline vm_page_t
 pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
 {
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	return (vm_radix_lookup(&pmap->pm_root, pmap_pde_pindex(va)));
 }
 
 /*
  * Removes the specified page table page from the specified pmap's collection
  * of idle page table pages.  The specified page table page must be a member of
  * the pmap's collection.
  */
 static __inline void
 pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
 {
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	vm_radix_remove(&pmap->pm_root, mpte->pindex);
 }
 
 /*
  * Decrements a page table page's wire count, which is used to record the
  * number of valid page table entries within the page.  If the wire count
  * drops to zero, then the page table page is unmapped.  Returns TRUE if the
  * page table page was unmapped and FALSE otherwise.
  */
 static inline boolean_t
 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
 {
 
 	--m->wire_count;
 	if (m->wire_count == 0) {
 		_pmap_unwire_ptp(pmap, va, m, free);
 		return (TRUE);
 	} else
 		return (FALSE);
 }
 
 static void
 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
 {
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	/*
 	 * unmap the page table page
 	 */
 	if (m->pindex >= (NUPDE + NUPDPE)) {
 		/* PDP page */
 		pml4_entry_t *pml4;
 		pml4 = pmap_pml4e(pmap, va);
 		*pml4 = 0;
 	} else if (m->pindex >= NUPDE) {
 		/* PD page */
 		pdp_entry_t *pdp;
 		pdp = pmap_pdpe(pmap, va);
 		*pdp = 0;
 	} else {
 		/* PTE page */
 		pd_entry_t *pd;
 		pd = pmap_pde(pmap, va);
 		*pd = 0;
 	}
 	pmap_resident_count_dec(pmap, 1);
 	if (m->pindex < NUPDE) {
 		/* We just released a PT, unhold the matching PD */
 		vm_page_t pdpg;
 
 		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
 		pmap_unwire_ptp(pmap, va, pdpg, free);
 	}
 	if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
 		/* We just released a PD, unhold the matching PDP */
 		vm_page_t pdppg;
 
 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
 		pmap_unwire_ptp(pmap, va, pdppg, free);
 	}
 
 	/*
 	 * This is a release store so that the ordinary store unmapping
 	 * the page table page is globally performed before TLB shoot-
 	 * down is begun.
 	 */
 	atomic_subtract_rel_int(&vm_cnt.v_wire_count, 1);
 
 	/* 
 	 * Put page on a list so that it is released after
 	 * *ALL* TLB shootdown is done
 	 */
 	pmap_add_delayed_free_list(m, free, TRUE);
 }
 
 /*
  * After removing a page table entry, this routine is used to
  * conditionally free the page, and manage the hold/wire counts.
  */
 static int
 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
     struct spglist *free)
 {
 	vm_page_t mpte;
 
 	if (va >= VM_MAXUSER_ADDRESS)
 		return (0);
 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
 	return (pmap_unwire_ptp(pmap, va, mpte, free));
 }
 
 void
 pmap_pinit0(pmap_t pmap)
 {
 	int i;
 
 	PMAP_LOCK_INIT(pmap);
 	pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
 	pmap->pm_cr3 = KPML4phys;
 	pmap->pm_root.rt_root = 0;
 	CPU_ZERO(&pmap->pm_active);
 	TAILQ_INIT(&pmap->pm_pvchunk);
 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 	pmap->pm_flags = pmap_flags;
 	CPU_FOREACH(i) {
 		pmap->pm_pcids[i].pm_pcid = PMAP_PCID_NONE;
 		pmap->pm_pcids[i].pm_gen = 0;
 	}
 	PCPU_SET(curpmap, kernel_pmap);
 	pmap_activate(curthread);
 	CPU_FILL(&kernel_pmap->pm_active);
 }
 
 /*
  * Initialize a preallocated and zeroed pmap structure,
  * such as one in a vmspace structure.
  */
 int
 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
 {
 	vm_page_t pml4pg;
 	vm_paddr_t pml4phys;
 	int i;
 
 	/*
 	 * allocate the page directory page
 	 */
 	while ((pml4pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL)
 		VM_WAIT;
 
 	pml4phys = VM_PAGE_TO_PHYS(pml4pg);
 	pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(pml4phys);
 	CPU_FOREACH(i) {
 		pmap->pm_pcids[i].pm_pcid = PMAP_PCID_NONE;
 		pmap->pm_pcids[i].pm_gen = 0;
 	}
 	pmap->pm_cr3 = ~0;	/* initialize to an invalid value */
 
 	if ((pml4pg->flags & PG_ZERO) == 0)
 		pagezero(pmap->pm_pml4);
 
 	/*
 	 * Do not install the host kernel mappings in the nested page
 	 * tables. These mappings are meaningless in the guest physical
 	 * address space.
 	 */
 	if ((pmap->pm_type = pm_type) == PT_X86) {
 		pmap->pm_cr3 = pml4phys;
 
 		/* Wire in kernel global address entries. */
 		for (i = 0; i < NKPML4E; i++) {
 			pmap->pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) |
 			    X86_PG_RW | X86_PG_V | PG_U;
 		}
 		for (i = 0; i < ndmpdpphys; i++) {
 			pmap->pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) |
 			    X86_PG_RW | X86_PG_V | PG_U;
 		}
 
 		/* install self-referential address mapping entry(s) */
 		pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) |
 		    X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
 	}
 
 	pmap->pm_root.rt_root = 0;
 	CPU_ZERO(&pmap->pm_active);
 	TAILQ_INIT(&pmap->pm_pvchunk);
 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 	pmap->pm_flags = flags;
 	pmap->pm_eptgen = 0;
 
 	return (1);
 }
 
 int
 pmap_pinit(pmap_t pmap)
 {
 
 	return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
 }
 
 /*
  * This routine is called if the desired page table page does not exist.
  *
  * If page table page allocation fails, this routine may sleep before
  * returning NULL.  It sleeps only if a lock pointer was given.
  *
  * Note: If a page allocation fails at page table level two or three,
  * one or two pages may be held during the wait, only to be released
  * afterwards.  This conservative approach is easily argued to avoid
  * race conditions.
  */
 static vm_page_t
 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
 {
 	vm_page_t m, pdppg, pdpg;
 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 
 	PG_A = pmap_accessed_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 
 	/*
 	 * Allocate a page table page.
 	 */
 	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
 		if (lockp != NULL) {
 			RELEASE_PV_LIST_LOCK(lockp);
 			PMAP_UNLOCK(pmap);
 			PMAP_ASSERT_NOT_IN_DI();
 			VM_WAIT;
 			PMAP_LOCK(pmap);
 		}
 
 		/*
 		 * Indicate the need to retry.  While waiting, the page table
 		 * page may have been allocated.
 		 */
 		return (NULL);
 	}
 	if ((m->flags & PG_ZERO) == 0)
 		pmap_zero_page(m);
 
 	/*
 	 * Map the pagetable page into the process address space, if
 	 * it isn't already there.
 	 */
 
 	if (ptepindex >= (NUPDE + NUPDPE)) {
 		pml4_entry_t *pml4;
 		vm_pindex_t pml4index;
 
 		/* Wire up a new PDPE page */
 		pml4index = ptepindex - (NUPDE + NUPDPE);
 		pml4 = &pmap->pm_pml4[pml4index];
 		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
 
 	} else if (ptepindex >= NUPDE) {
 		vm_pindex_t pml4index;
 		vm_pindex_t pdpindex;
 		pml4_entry_t *pml4;
 		pdp_entry_t *pdp;
 
 		/* Wire up a new PDE page */
 		pdpindex = ptepindex - NUPDE;
 		pml4index = pdpindex >> NPML4EPGSHIFT;
 
 		pml4 = &pmap->pm_pml4[pml4index];
 		if ((*pml4 & PG_V) == 0) {
 			/* Have to allocate a new pdp, recurse */
 			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index,
 			    lockp) == NULL) {
 				--m->wire_count;
 				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
 				vm_page_free_zero(m);
 				return (NULL);
 			}
 		} else {
 			/* Add reference to pdp page */
 			pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
 			pdppg->wire_count++;
 		}
 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
 
 		/* Now find the pdp page */
 		pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
 		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
 
 	} else {
 		vm_pindex_t pml4index;
 		vm_pindex_t pdpindex;
 		pml4_entry_t *pml4;
 		pdp_entry_t *pdp;
 		pd_entry_t *pd;
 
 		/* Wire up a new PTE page */
 		pdpindex = ptepindex >> NPDPEPGSHIFT;
 		pml4index = pdpindex >> NPML4EPGSHIFT;
 
 		/* First, find the pdp and check that its valid. */
 		pml4 = &pmap->pm_pml4[pml4index];
 		if ((*pml4 & PG_V) == 0) {
 			/* Have to allocate a new pd, recurse */
 			if (_pmap_allocpte(pmap, NUPDE + pdpindex,
 			    lockp) == NULL) {
 				--m->wire_count;
 				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
 				vm_page_free_zero(m);
 				return (NULL);
 			}
 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
 		} else {
 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
 			if ((*pdp & PG_V) == 0) {
 				/* Have to allocate a new pd, recurse */
 				if (_pmap_allocpte(pmap, NUPDE + pdpindex,
 				    lockp) == NULL) {
 					--m->wire_count;
 					atomic_subtract_int(&vm_cnt.v_wire_count,
 					    1);
 					vm_page_free_zero(m);
 					return (NULL);
 				}
 			} else {
 				/* Add reference to the pd page */
 				pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
 				pdpg->wire_count++;
 			}
 		}
 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
 
 		/* Now we know where the page directory page is */
 		pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
 		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
 	}
 
 	pmap_resident_count_inc(pmap, 1);
 
 	return (m);
 }
 
 static vm_page_t
 pmap_allocpde(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
 {
 	vm_pindex_t pdpindex, ptepindex;
 	pdp_entry_t *pdpe, PG_V;
 	vm_page_t pdpg;
 
 	PG_V = pmap_valid_bit(pmap);
 
 retry:
 	pdpe = pmap_pdpe(pmap, va);
 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
 		/* Add a reference to the pd page. */
 		pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
 		pdpg->wire_count++;
 	} else {
 		/* Allocate a pd page. */
 		ptepindex = pmap_pde_pindex(va);
 		pdpindex = ptepindex >> NPDPEPGSHIFT;
 		pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex, lockp);
 		if (pdpg == NULL && lockp != NULL)
 			goto retry;
 	}
 	return (pdpg);
 }
 
 static vm_page_t
 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
 {
 	vm_pindex_t ptepindex;
 	pd_entry_t *pd, PG_V;
 	vm_page_t m;
 
 	PG_V = pmap_valid_bit(pmap);
 
 	/*
 	 * Calculate pagetable page index
 	 */
 	ptepindex = pmap_pde_pindex(va);
 retry:
 	/*
 	 * Get the page directory entry
 	 */
 	pd = pmap_pde(pmap, va);
 
 	/*
 	 * This supports switching from a 2MB page to a
 	 * normal 4K page.
 	 */
 	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
 		if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
 			/*
 			 * Invalidation of the 2MB page mapping may have caused
 			 * the deallocation of the underlying PD page.
 			 */
 			pd = NULL;
 		}
 	}
 
 	/*
 	 * If the page table page is mapped, we just increment the
 	 * hold count, and activate it.
 	 */
 	if (pd != NULL && (*pd & PG_V) != 0) {
 		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
 		m->wire_count++;
 	} else {
 		/*
 		 * Here if the pte page isn't mapped, or if it has been
 		 * deallocated.
 		 */
 		m = _pmap_allocpte(pmap, ptepindex, lockp);
 		if (m == NULL && lockp != NULL)
 			goto retry;
 	}
 	return (m);
 }
 
 
 /***************************************************
  * Pmap allocation/deallocation routines.
  ***************************************************/
 
 /*
  * Release any resources held by the given physical map.
  * Called when a pmap initialized by pmap_pinit is being released.
  * Should only be called if the map contains no valid mappings.
  */
 void
 pmap_release(pmap_t pmap)
 {
 	vm_page_t m;
 	int i;
 
 	KASSERT(pmap->pm_stats.resident_count == 0,
 	    ("pmap_release: pmap resident count %ld != 0",
 	    pmap->pm_stats.resident_count));
 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
 	    ("pmap_release: pmap has reserved page table page(s)"));
 	KASSERT(CPU_EMPTY(&pmap->pm_active),
 	    ("releasing active pmap %p", pmap));
 
 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml4));
 
 	for (i = 0; i < NKPML4E; i++)	/* KVA */
 		pmap->pm_pml4[KPML4BASE + i] = 0;
 	for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
 		pmap->pm_pml4[DMPML4I + i] = 0;
 	pmap->pm_pml4[PML4PML4I] = 0;	/* Recursive Mapping */
 
 	m->wire_count--;
 	atomic_subtract_int(&vm_cnt.v_wire_count, 1);
 	vm_page_free_zero(m);
 }
 
 static int
 kvm_size(SYSCTL_HANDLER_ARGS)
 {
 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
 
 	return sysctl_handle_long(oidp, &ksize, 0, req);
 }
 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD, 
     0, 0, kvm_size, "LU", "Size of KVM");
 
 static int
 kvm_free(SYSCTL_HANDLER_ARGS)
 {
 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
 
 	return sysctl_handle_long(oidp, &kfree, 0, req);
 }
 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD, 
     0, 0, kvm_free, "LU", "Amount of KVM free");
 
 /*
  * grow the number of kernel page table entries, if needed
  */
 void
 pmap_growkernel(vm_offset_t addr)
 {
 	vm_paddr_t paddr;
 	vm_page_t nkpg;
 	pd_entry_t *pde, newpdir;
 	pdp_entry_t *pdpe;
 
 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 
 	/*
 	 * Return if "addr" is within the range of kernel page table pages
 	 * that were preallocated during pmap bootstrap.  Moreover, leave
 	 * "kernel_vm_end" and the kernel page table as they were.
 	 *
 	 * The correctness of this action is based on the following
 	 * argument: vm_map_insert() allocates contiguous ranges of the
 	 * kernel virtual address space.  It calls this function if a range
 	 * ends after "kernel_vm_end".  If the kernel is mapped between
 	 * "kernel_vm_end" and "addr", then the range cannot begin at
 	 * "kernel_vm_end".  In fact, its beginning address cannot be less
 	 * than the kernel.  Thus, there is no immediate need to allocate
 	 * any new kernel page table pages between "kernel_vm_end" and
 	 * "KERNBASE".
 	 */
 	if (KERNBASE < addr && addr <= KERNBASE + nkpt * NBPDR)
 		return;
 
 	addr = roundup2(addr, NBPDR);
 	if (addr - 1 >= kernel_map->max_offset)
 		addr = kernel_map->max_offset;
 	while (kernel_vm_end < addr) {
 		pdpe = pmap_pdpe(kernel_pmap, kernel_vm_end);
 		if ((*pdpe & X86_PG_V) == 0) {
 			/* We need a new PDP entry */
 			nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDPSHIFT,
 			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
 			if (nkpg == NULL)
 				panic("pmap_growkernel: no memory to grow kernel");
 			if ((nkpg->flags & PG_ZERO) == 0)
 				pmap_zero_page(nkpg);
 			paddr = VM_PAGE_TO_PHYS(nkpg);
 			*pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
 			    X86_PG_A | X86_PG_M);
 			continue; /* try again */
 		}
 		pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
 		if ((*pde & X86_PG_V) != 0) {
 			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 				kernel_vm_end = kernel_map->max_offset;
 				break;                       
 			}
 			continue;
 		}
 
 		nkpg = vm_page_alloc(NULL, pmap_pde_pindex(kernel_vm_end),
 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
 		    VM_ALLOC_ZERO);
 		if (nkpg == NULL)
 			panic("pmap_growkernel: no memory to grow kernel");
 		if ((nkpg->flags & PG_ZERO) == 0)
 			pmap_zero_page(nkpg);
 		paddr = VM_PAGE_TO_PHYS(nkpg);
 		newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
 		pde_store(pde, newpdir);
 
 		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
 		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
 			kernel_vm_end = kernel_map->max_offset;
 			break;                       
 		}
 	}
 }
 
 
 /***************************************************
  * page management routines.
  ***************************************************/
 
 CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
 CTASSERT(_NPCM == 3);
 CTASSERT(_NPCPV == 168);
 
 static __inline struct pv_chunk *
 pv_to_chunk(pv_entry_t pv)
 {
 
 	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
 }
 
 #define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
 
 #define	PC_FREE0	0xfffffffffffffffful
 #define	PC_FREE1	0xfffffffffffffffful
 #define	PC_FREE2	0x000000fffffffffful
 
 static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 };
 
 #ifdef PV_STATS
 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
 
 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
 	"Current number of pv entry chunks");
 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
 	"Current number of pv entry chunks allocated");
 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
 	"Current number of pv entry chunks frees");
 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
 	"Number of times tried to get a chunk page but failed.");
 
 static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
 static int pv_entry_spare;
 
 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
 	"Current number of pv entry frees");
 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
 	"Current number of pv entry allocs");
 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
 	"Current number of pv entries");
 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
 	"Current number of spare pv entries");
 #endif
 
 /*
  * We are in a serious low memory condition.  Resort to
  * drastic measures to free some pages so we can allocate
  * another pv entry chunk.
  *
  * Returns NULL if PV entries were reclaimed from the specified pmap.
  *
  * We do not, however, unmap 2mpages because subsequent accesses will
  * allocate per-page pv entries until repromotion occurs, thereby
  * exacerbating the shortage of free pv entries.
  */
 static vm_page_t
 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
 {
 	struct pch new_tail;
 	struct pv_chunk *pc;
 	struct md_page *pvh;
 	pd_entry_t *pde;
 	pmap_t pmap;
 	pt_entry_t *pte, tpte;
 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
 	pv_entry_t pv;
 	vm_offset_t va;
 	vm_page_t m, m_pc;
 	struct spglist free;
 	uint64_t inuse;
 	int bit, field, freed;
 
 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
 	pmap = NULL;
 	m_pc = NULL;
 	PG_G = PG_A = PG_M = PG_RW = 0;
 	SLIST_INIT(&free);
 	TAILQ_INIT(&new_tail);
 	pmap_delayed_invl_started();
 	mtx_lock(&pv_chunks_mutex);
 	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && SLIST_EMPTY(&free)) {
 		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
 		mtx_unlock(&pv_chunks_mutex);
 		if (pmap != pc->pc_pmap) {
 			if (pmap != NULL) {
 				pmap_invalidate_all(pmap);
 				if (pmap != locked_pmap)
 					PMAP_UNLOCK(pmap);
 			}
 			pmap_delayed_invl_finished();
 			pmap_delayed_invl_started();
 			pmap = pc->pc_pmap;
 			/* Avoid deadlock and lock recursion. */
 			if (pmap > locked_pmap) {
 				RELEASE_PV_LIST_LOCK(lockp);
 				PMAP_LOCK(pmap);
 			} else if (pmap != locked_pmap &&
 			    !PMAP_TRYLOCK(pmap)) {
 				pmap = NULL;
 				TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
 				mtx_lock(&pv_chunks_mutex);
 				continue;
 			}
 			PG_G = pmap_global_bit(pmap);
 			PG_A = pmap_accessed_bit(pmap);
 			PG_M = pmap_modified_bit(pmap);
 			PG_RW = pmap_rw_bit(pmap);
 		}
 
 		/*
 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
 		 */
 		freed = 0;
 		for (field = 0; field < _NPCM; field++) {
 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
 			    inuse != 0; inuse &= ~(1UL << bit)) {
 				bit = bsfq(inuse);
 				pv = &pc->pc_pventry[field * 64 + bit];
 				va = pv->pv_va;
 				pde = pmap_pde(pmap, va);
 				if ((*pde & PG_PS) != 0)
 					continue;
 				pte = pmap_pde_to_pte(pde, va);
 				if ((*pte & PG_W) != 0)
 					continue;
 				tpte = pte_load_clear(pte);
 				if ((tpte & PG_G) != 0)
 					pmap_invalidate_page(pmap, va);
 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 					vm_page_dirty(m);
 				if ((tpte & PG_A) != 0)
 					vm_page_aflag_set(m, PGA_REFERENCED);
 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 				m->md.pv_gen++;
 				if (TAILQ_EMPTY(&m->md.pv_list) &&
 				    (m->flags & PG_FICTITIOUS) == 0) {
 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 					if (TAILQ_EMPTY(&pvh->pv_list)) {
 						vm_page_aflag_clear(m,
 						    PGA_WRITEABLE);
 					}
 				}
 				pmap_delayed_invl_page(m);
 				pc->pc_map[field] |= 1UL << bit;
 				pmap_unuse_pt(pmap, va, *pde, &free);
 				freed++;
 			}
 		}
 		if (freed == 0) {
 			TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
 			mtx_lock(&pv_chunks_mutex);
 			continue;
 		}
 		/* Every freed mapping is for a 4 KB page. */
 		pmap_resident_count_dec(pmap, freed);
 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 		if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1 &&
 		    pc->pc_map[2] == PC_FREE2) {
 			PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
 			PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
 			PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
 			/* Entire chunk is free; return it. */
 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
 			dump_drop_page(m_pc->phys_addr);
 			mtx_lock(&pv_chunks_mutex);
 			break;
 		}
 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
 		mtx_lock(&pv_chunks_mutex);
 		/* One freed pv entry in locked_pmap is sufficient. */
 		if (pmap == locked_pmap)
 			break;
 	}
 	TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
 	mtx_unlock(&pv_chunks_mutex);
 	if (pmap != NULL) {
 		pmap_invalidate_all(pmap);
 		if (pmap != locked_pmap)
 			PMAP_UNLOCK(pmap);
 	}
 	pmap_delayed_invl_finished();
 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
 		m_pc = SLIST_FIRST(&free);
 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
 		/* Recycle a freed page table page. */
 		m_pc->wire_count = 1;
 		atomic_add_int(&vm_cnt.v_wire_count, 1);
 	}
 	pmap_free_zero_pages(&free);
 	return (m_pc);
 }
 
 /*
  * free the pv_entry back to the free list
  */
 static void
 free_pv_entry(pmap_t pmap, pv_entry_t pv)
 {
 	struct pv_chunk *pc;
 	int idx, field, bit;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	PV_STAT(atomic_add_long(&pv_entry_frees, 1));
 	PV_STAT(atomic_add_int(&pv_entry_spare, 1));
 	PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
 	pc = pv_to_chunk(pv);
 	idx = pv - &pc->pc_pventry[0];
 	field = idx / 64;
 	bit = idx % 64;
 	pc->pc_map[field] |= 1ul << bit;
 	if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 ||
 	    pc->pc_map[2] != PC_FREE2) {
 		/* 98% of the time, pc is already at the head of the list. */
 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 		}
 		return;
 	}
 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 	free_pv_chunk(pc);
 }
 
 static void
 free_pv_chunk(struct pv_chunk *pc)
 {
 	vm_page_t m;
 
 	mtx_lock(&pv_chunks_mutex);
  	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
 	mtx_unlock(&pv_chunks_mutex);
 	PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
 	PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
 	PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
 	/* entire chunk is free, return it */
 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
 	dump_drop_page(m->phys_addr);
 	vm_page_unwire(m, PQ_NONE);
 	vm_page_free(m);
 }
 
 /*
  * Returns a new PV entry, allocating a new PV chunk from the system when
  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
  * returned.
  *
  * The given PV list lock may be released.
  */
 static pv_entry_t
 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
 {
 	int bit, field;
 	pv_entry_t pv;
 	struct pv_chunk *pc;
 	vm_page_t m;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
 retry:
 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
 	if (pc != NULL) {
 		for (field = 0; field < _NPCM; field++) {
 			if (pc->pc_map[field]) {
 				bit = bsfq(pc->pc_map[field]);
 				break;
 			}
 		}
 		if (field < _NPCM) {
 			pv = &pc->pc_pventry[field * 64 + bit];
 			pc->pc_map[field] &= ~(1ul << bit);
 			/* If this was the last item, move it to tail */
 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
 			    pc->pc_map[2] == 0) {
 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
 				    pc_list);
 			}
 			PV_STAT(atomic_add_long(&pv_entry_count, 1));
 			PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
 			return (pv);
 		}
 	}
 	/* No free items, allocate another chunk */
 	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
 	    VM_ALLOC_WIRED);
 	if (m == NULL) {
 		if (lockp == NULL) {
 			PV_STAT(pc_chunk_tryfail++);
 			return (NULL);
 		}
 		m = reclaim_pv_chunk(pmap, lockp);
 		if (m == NULL)
 			goto retry;
 	}
 	PV_STAT(atomic_add_int(&pc_chunk_count, 1));
 	PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
 	dump_add_page(m->phys_addr);
 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
 	pc->pc_pmap = pmap;
 	pc->pc_map[0] = PC_FREE0 & ~1ul;	/* preallocated bit 0 */
 	pc->pc_map[1] = PC_FREE1;
 	pc->pc_map[2] = PC_FREE2;
 	mtx_lock(&pv_chunks_mutex);
 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
 	mtx_unlock(&pv_chunks_mutex);
 	pv = &pc->pc_pventry[0];
 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 	PV_STAT(atomic_add_long(&pv_entry_count, 1));
 	PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
 	return (pv);
 }
 
 /*
  * Returns the number of one bits within the given PV chunk map.
  *
  * The erratas for Intel processors state that "POPCNT Instruction May
  * Take Longer to Execute Than Expected".  It is believed that the
  * issue is the spurious dependency on the destination register.
  * Provide a hint to the register rename logic that the destination
  * value is overwritten, by clearing it, as suggested in the
  * optimization manual.  It should be cheap for unaffected processors
  * as well.
  *
  * Reference numbers for erratas are
  * 4th Gen Core: HSD146
  * 5th Gen Core: BDM85
  * 6th Gen Core: SKL029
  */
 static int
 popcnt_pc_map_pq(uint64_t *map)
 {
 	u_long result, tmp;
 
 	__asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
 	    "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
 	    "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
 	    : "=&r" (result), "=&r" (tmp)
 	    : "m" (map[0]), "m" (map[1]), "m" (map[2]));
 	return (result);
 }
 
 /*
  * Ensure that the number of spare PV entries in the specified pmap meets or
  * exceeds the given count, "needed".
  *
  * The given PV list lock may be released.
  */
 static void
 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
 {
 	struct pch new_tail;
 	struct pv_chunk *pc;
 	int avail, free;
 	vm_page_t m;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
 
 	/*
 	 * Newly allocated PV chunks must be stored in a private list until
 	 * the required number of PV chunks have been allocated.  Otherwise,
 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
 	 * contrast, these chunks must be added to the pmap upon allocation.
 	 */
 	TAILQ_INIT(&new_tail);
 retry:
 	avail = 0;
 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
 #ifndef __POPCNT__
 		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
 			bit_count((bitstr_t *)pc->pc_map, 0,
 			    sizeof(pc->pc_map) * NBBY, &free);
 		else
 #endif
 		free = popcnt_pc_map_pq(pc->pc_map);
 		if (free == 0)
 			break;
 		avail += free;
 		if (avail >= needed)
 			break;
 	}
 	for (; avail < needed; avail += _NPCPV) {
 		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
 		    VM_ALLOC_WIRED);
 		if (m == NULL) {
 			m = reclaim_pv_chunk(pmap, lockp);
 			if (m == NULL)
 				goto retry;
 		}
 		PV_STAT(atomic_add_int(&pc_chunk_count, 1));
 		PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
 		dump_add_page(m->phys_addr);
 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
 		pc->pc_pmap = pmap;
 		pc->pc_map[0] = PC_FREE0;
 		pc->pc_map[1] = PC_FREE1;
 		pc->pc_map[2] = PC_FREE2;
 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 		TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
 		PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
 	}
 	if (!TAILQ_EMPTY(&new_tail)) {
 		mtx_lock(&pv_chunks_mutex);
 		TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
 		mtx_unlock(&pv_chunks_mutex);
 	}
 }
 
 /*
  * First find and then remove the pv entry for the specified pmap and virtual
  * address from the specified pv list.  Returns the pv entry if found and NULL
  * otherwise.  This operation can be performed on pv lists for either 4KB or
  * 2MB page mappings.
  */
 static __inline pv_entry_t
 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 {
 	pv_entry_t pv;
 
 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
 			pvh->pv_gen++;
 			break;
 		}
 	}
 	return (pv);
 }
 
 /*
  * After demotion from a 2MB page mapping to 512 4KB page mappings,
  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
  * entries for each of the 4KB page mappings.
  */
 static void
 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
     struct rwlock **lockp)
 {
 	struct md_page *pvh;
 	struct pv_chunk *pc;
 	pv_entry_t pv;
 	vm_offset_t va_last;
 	vm_page_t m;
 	int bit, field;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	KASSERT((pa & PDRMASK) == 0,
 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
 
 	/*
 	 * Transfer the 2mpage's pv entry for this mapping to the first
 	 * page's pv list.  Once this transfer begins, the pv list lock
 	 * must not be released until the last pv entry is reinstantiated.
 	 */
 	pvh = pa_to_pvh(pa);
 	va = trunc_2mpage(va);
 	pv = pmap_pvh_remove(pvh, pmap, va);
 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
 	m = PHYS_TO_VM_PAGE(pa);
 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 	m->md.pv_gen++;
 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
 	PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1));
 	va_last = va + NBPDR - PAGE_SIZE;
 	for (;;) {
 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
 		    pc->pc_map[2] != 0, ("pmap_pv_demote_pde: missing spare"));
 		for (field = 0; field < _NPCM; field++) {
 			while (pc->pc_map[field]) {
 				bit = bsfq(pc->pc_map[field]);
 				pc->pc_map[field] &= ~(1ul << bit);
 				pv = &pc->pc_pventry[field * 64 + bit];
 				va += PAGE_SIZE;
 				pv->pv_va = va;
 				m++;
 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 			    ("pmap_pv_demote_pde: page %p is not managed", m));
 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 				m->md.pv_gen++;
 				if (va == va_last)
 					goto out;
 			}
 		}
 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
 	}
 out:
 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
 	}
 	PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1));
 	PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1));
 }
 
 /*
  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
  * replace the many pv entries for the 4KB page mappings by a single pv entry
  * for the 2MB page mapping.
  */
 static void
 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
     struct rwlock **lockp)
 {
 	struct md_page *pvh;
 	pv_entry_t pv;
 	vm_offset_t va_last;
 	vm_page_t m;
 
 	KASSERT((pa & PDRMASK) == 0,
 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
 
 	/*
 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
 	 * a transfer avoids the possibility that get_pv_entry() calls
 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
 	 * mappings that is being promoted.
 	 */
 	m = PHYS_TO_VM_PAGE(pa);
 	va = trunc_2mpage(va);
 	pv = pmap_pvh_remove(&m->md, pmap, va);
 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
 	pvh = pa_to_pvh(pa);
 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
 	pvh->pv_gen++;
 	/* Free the remaining NPTEPG - 1 pv entries. */
 	va_last = va + NBPDR - PAGE_SIZE;
 	do {
 		m++;
 		va += PAGE_SIZE;
 		pmap_pvh_free(&m->md, pmap, va);
 	} while (va < va_last);
 }
 
 /*
  * First find and then destroy the pv entry for the specified pmap and virtual
  * address.  This operation can be performed on pv lists for either 4KB or 2MB
  * page mappings.
  */
 static void
 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 {
 	pv_entry_t pv;
 
 	pv = pmap_pvh_remove(pvh, pmap, va);
 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
 	free_pv_entry(pmap, pv);
 }
 
 /*
  * Conditionally create the PV entry for a 4KB page mapping if the required
  * memory can be allocated without resorting to reclamation.
  */
 static boolean_t
 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
     struct rwlock **lockp)
 {
 	pv_entry_t pv;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	/* Pass NULL instead of the lock pointer to disable reclamation. */
 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
 		pv->pv_va = va;
 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 		m->md.pv_gen++;
 		return (TRUE);
 	} else
 		return (FALSE);
 }
 
 /*
  * Conditionally create the PV entry for a 2MB page mapping if the required
  * memory can be allocated without resorting to reclamation.
  */
 static boolean_t
 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
     struct rwlock **lockp)
 {
 	struct md_page *pvh;
 	pv_entry_t pv;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	/* Pass NULL instead of the lock pointer to disable reclamation. */
 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
 		pv->pv_va = va;
 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
 		pvh = pa_to_pvh(pa);
 		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
 		pvh->pv_gen++;
 		return (TRUE);
 	} else
 		return (FALSE);
 }
 
 /*
  * Fills a page table page with mappings to consecutive physical pages.
  */
 static void
 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
 {
 	pt_entry_t *pte;
 
 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
 		*pte = newpte;
 		newpte += PAGE_SIZE;
 	}
 }
 
 /*
  * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
  * mapping is invalidated.
  */
 static boolean_t
 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
 {
 	struct rwlock *lock;
 	boolean_t rv;
 
 	lock = NULL;
 	rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
 	if (lock != NULL)
 		rw_wunlock(lock);
 	return (rv);
 }
 
 static boolean_t
 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
     struct rwlock **lockp)
 {
 	pd_entry_t newpde, oldpde;
 	pt_entry_t *firstpte, newpte;
 	pt_entry_t PG_A, PG_G, PG_M, PG_RW, PG_V;
 	vm_paddr_t mptepa;
 	vm_page_t mpte;
 	struct spglist free;
 	int PG_PTE_CACHE;
 
 	PG_G = pmap_global_bit(pmap);
 	PG_A = pmap_accessed_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	oldpde = *pde;
 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
 	if ((oldpde & PG_A) != 0 && (mpte = pmap_lookup_pt_page(pmap, va)) !=
 	    NULL)
 		pmap_remove_pt_page(pmap, mpte);
 	else {
 		KASSERT((oldpde & PG_W) == 0,
 		    ("pmap_demote_pde: page table page for a wired mapping"
 		    " is missing"));
 
 		/*
 		 * Invalidate the 2MB page mapping and return "failure" if the
 		 * mapping was never accessed or the allocation of the new
 		 * page table page fails.  If the 2MB page mapping belongs to
 		 * the direct map region of the kernel's address space, then
 		 * the page allocation request specifies the highest possible
 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the priority is
 		 * normal.  Page table pages are preallocated for every other
 		 * part of the kernel address space, so the direct map region
 		 * is the only part of the kernel address space that must be
 		 * handled here.
 		 */
 		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
 		    pmap_pde_pindex(va), (va >= DMAP_MIN_ADDRESS && va <
 		    DMAP_MAX_ADDRESS ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
 		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
 			SLIST_INIT(&free);
 			pmap_remove_pde(pmap, pde, trunc_2mpage(va), &free,
 			    lockp);
 			pmap_invalidate_page(pmap, trunc_2mpage(va));
 			pmap_free_zero_pages(&free);
 			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx"
 			    " in pmap %p", va, pmap);
 			return (FALSE);
 		}
 		if (va < VM_MAXUSER_ADDRESS)
 			pmap_resident_count_inc(pmap, 1);
 	}
 	mptepa = VM_PAGE_TO_PHYS(mpte);
 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
 	KASSERT((oldpde & PG_A) != 0,
 	    ("pmap_demote_pde: oldpde is missing PG_A"));
 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
 	    ("pmap_demote_pde: oldpde is missing PG_M"));
 	newpte = oldpde & ~PG_PS;
 	newpte = pmap_swap_pat(pmap, newpte);
 
 	/*
 	 * If the page table page is new, initialize it.
 	 */
 	if (mpte->wire_count == 1) {
 		mpte->wire_count = NPTEPG;
 		pmap_fill_ptp(firstpte, newpte);
 	}
 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
 	    ("pmap_demote_pde: firstpte and newpte map different physical"
 	    " addresses"));
 
 	/*
 	 * If the mapping has changed attributes, update the page table
 	 * entries.
 	 */
 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
 		pmap_fill_ptp(firstpte, newpte);
 
 	/*
 	 * The spare PV entries must be reserved prior to demoting the
 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
 	 * of the PDE and the PV lists will be inconsistent, which can result
 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
 	 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
 	 * PV entry for the 2MB page mapping that is being demoted.
 	 */
 	if ((oldpde & PG_MANAGED) != 0)
 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
 
 	/*
 	 * Demote the mapping.  This pmap is locked.  The old PDE has
 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
 	 * set.  Thus, there is no danger of a race with another
 	 * processor changing the setting of PG_A and/or PG_M between
 	 * the read above and the store below. 
 	 */
 	if (workaround_erratum383)
 		pmap_update_pde(pmap, va, pde, newpde);
 	else
 		pde_store(pde, newpde);
 
 	/*
 	 * Invalidate a stale recursive mapping of the page table page.
 	 */
 	if (va >= VM_MAXUSER_ADDRESS)
 		pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
 
 	/*
 	 * Demote the PV entry.
 	 */
 	if ((oldpde & PG_MANAGED) != 0)
 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
 
 	atomic_add_long(&pmap_pde_demotions, 1);
 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx"
 	    " in pmap %p", va, pmap);
 	return (TRUE);
 }
 
 /*
  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
  */
 static void
 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
 {
 	pd_entry_t newpde;
 	vm_paddr_t mptepa;
 	vm_page_t mpte;
 
 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	mpte = pmap_lookup_pt_page(pmap, va);
 	if (mpte == NULL)
 		panic("pmap_remove_kernel_pde: Missing pt page.");
 
 	pmap_remove_pt_page(pmap, mpte);
 	mptepa = VM_PAGE_TO_PHYS(mpte);
 	newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
 
 	/*
 	 * Initialize the page table page.
 	 */
 	pagezero((void *)PHYS_TO_DMAP(mptepa));
 
 	/*
 	 * Demote the mapping.
 	 */
 	if (workaround_erratum383)
 		pmap_update_pde(pmap, va, pde, newpde);
 	else
 		pde_store(pde, newpde);
 
 	/*
 	 * Invalidate a stale recursive mapping of the page table page.
 	 */
 	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
 }
 
 /*
  * pmap_remove_pde: do the things to unmap a superpage in a process
  */
 static int
 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
     struct spglist *free, struct rwlock **lockp)
 {
 	struct md_page *pvh;
 	pd_entry_t oldpde;
 	vm_offset_t eva, va;
 	vm_page_t m, mpte;
 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
 
 	PG_G = pmap_global_bit(pmap);
 	PG_A = pmap_accessed_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	KASSERT((sva & PDRMASK) == 0,
 	    ("pmap_remove_pde: sva is not 2mpage aligned"));
 	oldpde = pte_load_clear(pdq);
 	if (oldpde & PG_W)
 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
 
 	/*
 	 * Machines that don't support invlpg, also don't support
 	 * PG_G.
 	 */
 	if (oldpde & PG_G)
 		pmap_invalidate_page(kernel_pmap, sva);
 	pmap_resident_count_dec(pmap, NBPDR / PAGE_SIZE);
 	if (oldpde & PG_MANAGED) {
 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
 		pmap_pvh_free(pvh, pmap, sva);
 		eva = sva + NBPDR;
 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
 		    va < eva; va += PAGE_SIZE, m++) {
 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
 				vm_page_dirty(m);
 			if (oldpde & PG_A)
 				vm_page_aflag_set(m, PGA_REFERENCED);
 			if (TAILQ_EMPTY(&m->md.pv_list) &&
 			    TAILQ_EMPTY(&pvh->pv_list))
 				vm_page_aflag_clear(m, PGA_WRITEABLE);
 			pmap_delayed_invl_page(m);
 		}
 	}
 	if (pmap == kernel_pmap) {
 		pmap_remove_kernel_pde(pmap, pdq, sva);
 	} else {
 		mpte = pmap_lookup_pt_page(pmap, sva);
 		if (mpte != NULL) {
 			pmap_remove_pt_page(pmap, mpte);
 			pmap_resident_count_dec(pmap, 1);
 			KASSERT(mpte->wire_count == NPTEPG,
 			    ("pmap_remove_pde: pte page wire count error"));
 			mpte->wire_count = 0;
 			pmap_add_delayed_free_list(mpte, free, FALSE);
 			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
 		}
 	}
 	return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
 }
 
 /*
  * pmap_remove_pte: do the things to unmap a page in a process
  */
 static int
 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, 
     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
 {
 	struct md_page *pvh;
 	pt_entry_t oldpte, PG_A, PG_M, PG_RW;
 	vm_page_t m;
 
 	PG_A = pmap_accessed_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	oldpte = pte_load_clear(ptq);
 	if (oldpte & PG_W)
 		pmap->pm_stats.wired_count -= 1;
 	pmap_resident_count_dec(pmap, 1);
 	if (oldpte & PG_MANAGED) {
 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 			vm_page_dirty(m);
 		if (oldpte & PG_A)
 			vm_page_aflag_set(m, PGA_REFERENCED);
 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
 		pmap_pvh_free(&m->md, pmap, va);
 		if (TAILQ_EMPTY(&m->md.pv_list) &&
 		    (m->flags & PG_FICTITIOUS) == 0) {
 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 			if (TAILQ_EMPTY(&pvh->pv_list))
 				vm_page_aflag_clear(m, PGA_WRITEABLE);
 		}
 		pmap_delayed_invl_page(m);
 	}
 	return (pmap_unuse_pt(pmap, va, ptepde, free));
 }
 
 /*
  * Remove a single page from a process address space
  */
 static void
 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
     struct spglist *free)
 {
 	struct rwlock *lock;
 	pt_entry_t *pte, PG_V;
 
 	PG_V = pmap_valid_bit(pmap);
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	if ((*pde & PG_V) == 0)
 		return;
 	pte = pmap_pde_to_pte(pde, va);
 	if ((*pte & PG_V) == 0)
 		return;
 	lock = NULL;
 	pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
 	if (lock != NULL)
 		rw_wunlock(lock);
 	pmap_invalidate_page(pmap, va);
 }
 
 /*
  *	Remove the given range of addresses from the specified map.
  *
  *	It is assumed that the start and end are properly
  *	rounded to the page size.
  */
 void
 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 {
 	struct rwlock *lock;
 	vm_offset_t va, va_next;
 	pml4_entry_t *pml4e;
 	pdp_entry_t *pdpe;
 	pd_entry_t ptpaddr, *pde;
 	pt_entry_t *pte, PG_G, PG_V;
 	struct spglist free;
 	int anyvalid;
 
 	PG_G = pmap_global_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 
 	/*
 	 * Perform an unsynchronized read.  This is, however, safe.
 	 */
 	if (pmap->pm_stats.resident_count == 0)
 		return;
 
 	anyvalid = 0;
 	SLIST_INIT(&free);
 
 	pmap_delayed_invl_started();
 	PMAP_LOCK(pmap);
 
 	/*
 	 * special handling of removing one page.  a very
 	 * common operation and easy to short circuit some
 	 * code.
 	 */
 	if (sva + PAGE_SIZE == eva) {
 		pde = pmap_pde(pmap, sva);
 		if (pde && (*pde & PG_PS) == 0) {
 			pmap_remove_page(pmap, sva, pde, &free);
 			goto out;
 		}
 	}
 
 	lock = NULL;
 	for (; sva < eva; sva = va_next) {
 
 		if (pmap->pm_stats.resident_count == 0)
 			break;
 
 		pml4e = pmap_pml4e(pmap, sva);
 		if ((*pml4e & PG_V) == 0) {
 			va_next = (sva + NBPML4) & ~PML4MASK;
 			if (va_next < sva)
 				va_next = eva;
 			continue;
 		}
 
 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
 		if ((*pdpe & PG_V) == 0) {
 			va_next = (sva + NBPDP) & ~PDPMASK;
 			if (va_next < sva)
 				va_next = eva;
 			continue;
 		}
 
 		/*
 		 * Calculate index for next page table.
 		 */
 		va_next = (sva + NBPDR) & ~PDRMASK;
 		if (va_next < sva)
 			va_next = eva;
 
 		pde = pmap_pdpe_to_pde(pdpe, sva);
 		ptpaddr = *pde;
 
 		/*
 		 * Weed out invalid mappings.
 		 */
 		if (ptpaddr == 0)
 			continue;
 
 		/*
 		 * Check for large page.
 		 */
 		if ((ptpaddr & PG_PS) != 0) {
 			/*
 			 * Are we removing the entire large page?  If not,
 			 * demote the mapping and fall through.
 			 */
 			if (sva + NBPDR == va_next && eva >= va_next) {
 				/*
 				 * The TLB entry for a PG_G mapping is
 				 * invalidated by pmap_remove_pde().
 				 */
 				if ((ptpaddr & PG_G) == 0)
 					anyvalid = 1;
 				pmap_remove_pde(pmap, pde, sva, &free, &lock);
 				continue;
 			} else if (!pmap_demote_pde_locked(pmap, pde, sva,
 			    &lock)) {
 				/* The large page mapping was destroyed. */
 				continue;
 			} else
 				ptpaddr = *pde;
 		}
 
 		/*
 		 * Limit our scan to either the end of the va represented
 		 * by the current page table page, or to the end of the
 		 * range being removed.
 		 */
 		if (va_next > eva)
 			va_next = eva;
 
 		va = va_next;
 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 		    sva += PAGE_SIZE) {
 			if (*pte == 0) {
 				if (va != va_next) {
 					pmap_invalidate_range(pmap, va, sva);
 					va = va_next;
 				}
 				continue;
 			}
 			if ((*pte & PG_G) == 0)
 				anyvalid = 1;
 			else if (va == va_next)
 				va = sva;
 			if (pmap_remove_pte(pmap, pte, sva, ptpaddr, &free,
 			    &lock)) {
 				sva += PAGE_SIZE;
 				break;
 			}
 		}
 		if (va != va_next)
 			pmap_invalidate_range(pmap, va, sva);
 	}
 	if (lock != NULL)
 		rw_wunlock(lock);
 out:
 	if (anyvalid)
 		pmap_invalidate_all(pmap);
 	PMAP_UNLOCK(pmap);
 	pmap_delayed_invl_finished();
 	pmap_free_zero_pages(&free);
 }
 
 /*
  *	Routine:	pmap_remove_all
  *	Function:
  *		Removes this physical page from
  *		all physical maps in which it resides.
  *		Reflects back modify bits to the pager.
  *
  *	Notes:
  *		Original versions of this routine were very
  *		inefficient because they iteratively called
  *		pmap_remove (slow...)
  */
 
 void
 pmap_remove_all(vm_page_t m)
 {
 	struct md_page *pvh;
 	pv_entry_t pv;
 	pmap_t pmap;
 	struct rwlock *lock;
 	pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
 	pd_entry_t *pde;
 	vm_offset_t va;
 	struct spglist free;
 	int pvh_gen, md_gen;
 
 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 	    ("pmap_remove_all: page %p is not managed", m));
 	SLIST_INIT(&free);
 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
 retry:
 	rw_wlock(lock);
 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
 		pmap = PV_PMAP(pv);
 		if (!PMAP_TRYLOCK(pmap)) {
 			pvh_gen = pvh->pv_gen;
 			rw_wunlock(lock);
 			PMAP_LOCK(pmap);
 			rw_wlock(lock);
 			if (pvh_gen != pvh->pv_gen) {
 				rw_wunlock(lock);
 				PMAP_UNLOCK(pmap);
 				goto retry;
 			}
 		}
 		va = pv->pv_va;
 		pde = pmap_pde(pmap, va);
 		(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
 		PMAP_UNLOCK(pmap);
 	}
 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 		pmap = PV_PMAP(pv);
 		if (!PMAP_TRYLOCK(pmap)) {
 			pvh_gen = pvh->pv_gen;
 			md_gen = m->md.pv_gen;
 			rw_wunlock(lock);
 			PMAP_LOCK(pmap);
 			rw_wlock(lock);
 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
 				rw_wunlock(lock);
 				PMAP_UNLOCK(pmap);
 				goto retry;
 			}
 		}
 		PG_A = pmap_accessed_bit(pmap);
 		PG_M = pmap_modified_bit(pmap);
 		PG_RW = pmap_rw_bit(pmap);
 		pmap_resident_count_dec(pmap, 1);
 		pde = pmap_pde(pmap, pv->pv_va);
 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
 		    " a 2mpage in page %p's pv list", m));
 		pte = pmap_pde_to_pte(pde, pv->pv_va);
 		tpte = pte_load_clear(pte);
 		if (tpte & PG_W)
 			pmap->pm_stats.wired_count--;
 		if (tpte & PG_A)
 			vm_page_aflag_set(m, PGA_REFERENCED);
 
 		/*
 		 * Update the vm_page_t clean and reference bits.
 		 */
 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 			vm_page_dirty(m);
 		pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
 		pmap_invalidate_page(pmap, pv->pv_va);
 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 		m->md.pv_gen++;
 		free_pv_entry(pmap, pv);
 		PMAP_UNLOCK(pmap);
 	}
 	vm_page_aflag_clear(m, PGA_WRITEABLE);
 	rw_wunlock(lock);
 	pmap_delayed_invl_wait(m);
 	pmap_free_zero_pages(&free);
 }
 
 /*
  * pmap_protect_pde: do the things to protect a 2mpage in a process
  */
 static boolean_t
 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
 {
 	pd_entry_t newpde, oldpde;
 	vm_offset_t eva, va;
 	vm_page_t m;
 	boolean_t anychanged;
 	pt_entry_t PG_G, PG_M, PG_RW;
 
 	PG_G = pmap_global_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	KASSERT((sva & PDRMASK) == 0,
 	    ("pmap_protect_pde: sva is not 2mpage aligned"));
 	anychanged = FALSE;
 retry:
 	oldpde = newpde = *pde;
 	if (oldpde & PG_MANAGED) {
 		eva = sva + NBPDR;
 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
 		    va < eva; va += PAGE_SIZE, m++)
 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
 				vm_page_dirty(m);
 	}
 	if ((prot & VM_PROT_WRITE) == 0)
 		newpde &= ~(PG_RW | PG_M);
 	if ((prot & VM_PROT_EXECUTE) == 0)
 		newpde |= pg_nx;
 	if (newpde != oldpde) {
 		if (!atomic_cmpset_long(pde, oldpde, newpde))
 			goto retry;
 		if (oldpde & PG_G)
 			pmap_invalidate_page(pmap, sva);
 		else
 			anychanged = TRUE;
 	}
 	return (anychanged);
 }
 
 /*
  *	Set the physical protection on the
  *	specified range of this map as requested.
  */
 void
 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 {
 	vm_offset_t va_next;
 	pml4_entry_t *pml4e;
 	pdp_entry_t *pdpe;
 	pd_entry_t ptpaddr, *pde;
 	pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
 	boolean_t anychanged;
 
 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
 	if (prot == VM_PROT_NONE) {
 		pmap_remove(pmap, sva, eva);
 		return;
 	}
 
 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
 		return;
 
 	PG_G = pmap_global_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 	anychanged = FALSE;
 
 	PMAP_LOCK(pmap);
 	for (; sva < eva; sva = va_next) {
 
 		pml4e = pmap_pml4e(pmap, sva);
 		if ((*pml4e & PG_V) == 0) {
 			va_next = (sva + NBPML4) & ~PML4MASK;
 			if (va_next < sva)
 				va_next = eva;
 			continue;
 		}
 
 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
 		if ((*pdpe & PG_V) == 0) {
 			va_next = (sva + NBPDP) & ~PDPMASK;
 			if (va_next < sva)
 				va_next = eva;
 			continue;
 		}
 
 		va_next = (sva + NBPDR) & ~PDRMASK;
 		if (va_next < sva)
 			va_next = eva;
 
 		pde = pmap_pdpe_to_pde(pdpe, sva);
 		ptpaddr = *pde;
 
 		/*
 		 * Weed out invalid mappings.
 		 */
 		if (ptpaddr == 0)
 			continue;
 
 		/*
 		 * Check for large page.
 		 */
 		if ((ptpaddr & PG_PS) != 0) {
 			/*
 			 * Are we protecting the entire large page?  If not,
 			 * demote the mapping and fall through.
 			 */
 			if (sva + NBPDR == va_next && eva >= va_next) {
 				/*
 				 * The TLB entry for a PG_G mapping is
 				 * invalidated by pmap_protect_pde().
 				 */
 				if (pmap_protect_pde(pmap, pde, sva, prot))
 					anychanged = TRUE;
 				continue;
 			} else if (!pmap_demote_pde(pmap, pde, sva)) {
 				/*
 				 * The large page mapping was destroyed.
 				 */
 				continue;
 			}
 		}
 
 		if (va_next > eva)
 			va_next = eva;
 
 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 		    sva += PAGE_SIZE) {
 			pt_entry_t obits, pbits;
 			vm_page_t m;
 
 retry:
 			obits = pbits = *pte;
 			if ((pbits & PG_V) == 0)
 				continue;
 
 			if ((prot & VM_PROT_WRITE) == 0) {
 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
 				    (PG_MANAGED | PG_M | PG_RW)) {
 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
 					vm_page_dirty(m);
 				}
 				pbits &= ~(PG_RW | PG_M);
 			}
 			if ((prot & VM_PROT_EXECUTE) == 0)
 				pbits |= pg_nx;
 
 			if (pbits != obits) {
 				if (!atomic_cmpset_long(pte, obits, pbits))
 					goto retry;
 				if (obits & PG_G)
 					pmap_invalidate_page(pmap, sva);
 				else
 					anychanged = TRUE;
 			}
 		}
 	}
 	if (anychanged)
 		pmap_invalidate_all(pmap);
 	PMAP_UNLOCK(pmap);
 }
 
 /*
  * Tries to promote the 512, contiguous 4KB page mappings that are within a
  * single page table page (PTP) to a single 2MB page mapping.  For promotion
  * to occur, two conditions must be met: (1) the 4KB page mappings must map
  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
  * identical characteristics. 
  */
 static void
 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
     struct rwlock **lockp)
 {
 	pd_entry_t newpde;
 	pt_entry_t *firstpte, oldpte, pa, *pte;
 	pt_entry_t PG_G, PG_A, PG_M, PG_RW, PG_V;
 	vm_page_t mpte;
 	int PG_PTE_CACHE;
 
 	PG_A = pmap_accessed_bit(pmap);
 	PG_G = pmap_global_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 	PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 
 	/*
 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
 	 * either invalid, unused, or does not map the first 4KB physical page
 	 * within a 2MB page. 
 	 */
 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
 setpde:
 	newpde = *firstpte;
 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
 		atomic_add_long(&pmap_pde_p_failures, 1);
 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
 		    " in pmap %p", va, pmap);
 		return;
 	}
 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
 		/*
 		 * When PG_M is already clear, PG_RW can be cleared without
 		 * a TLB invalidation.
 		 */
 		if (!atomic_cmpset_long(firstpte, newpde, newpde & ~PG_RW))
 			goto setpde;
 		newpde &= ~PG_RW;
 	}
 
 	/*
 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
 	 * PTE maps an unexpected 4KB physical page or does not have identical
 	 * characteristics to the first PTE.
 	 */
 	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
 setpte:
 		oldpte = *pte;
 		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
 			atomic_add_long(&pmap_pde_p_failures, 1);
 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
 			    " in pmap %p", va, pmap);
 			return;
 		}
 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
 			/*
 			 * When PG_M is already clear, PG_RW can be cleared
 			 * without a TLB invalidation.
 			 */
 			if (!atomic_cmpset_long(pte, oldpte, oldpte & ~PG_RW))
 				goto setpte;
 			oldpte &= ~PG_RW;
 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
 			    " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
 			    (va & ~PDRMASK), pmap);
 		}
 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
 			atomic_add_long(&pmap_pde_p_failures, 1);
 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
 			    " in pmap %p", va, pmap);
 			return;
 		}
 		pa -= PAGE_SIZE;
 	}
 
 	/*
 	 * Save the page table page in its current state until the PDE
 	 * mapping the superpage is demoted by pmap_demote_pde() or
 	 * destroyed by pmap_remove_pde(). 
 	 */
 	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
 	KASSERT(mpte >= vm_page_array &&
 	    mpte < &vm_page_array[vm_page_array_size],
 	    ("pmap_promote_pde: page table page is out of range"));
 	KASSERT(mpte->pindex == pmap_pde_pindex(va),
 	    ("pmap_promote_pde: page table page's pindex is wrong"));
 	if (pmap_insert_pt_page(pmap, mpte)) {
 		atomic_add_long(&pmap_pde_p_failures, 1);
 		CTR2(KTR_PMAP,
 		    "pmap_promote_pde: failure for va %#lx in pmap %p", va,
 		    pmap);
 		return;
 	}
 
 	/*
 	 * Promote the pv entries.
 	 */
 	if ((newpde & PG_MANAGED) != 0)
 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
 
 	/*
 	 * Propagate the PAT index to its proper position.
 	 */
 	newpde = pmap_swap_pat(pmap, newpde);
 
 	/*
 	 * Map the superpage.
 	 */
 	if (workaround_erratum383)
 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
 	else
 		pde_store(pde, PG_PS | newpde);
 
 	atomic_add_long(&pmap_pde_promotions, 1);
 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
 	    " in pmap %p", va, pmap);
 }
 
 /*
  *	Insert the given physical page (p) at
  *	the specified virtual address (v) in the
  *	target physical map with the protection requested.
  *
  *	If specified, the page will be wired down, meaning
  *	that the related pte can not be reclaimed.
  *
  *	NB:  This is the only routine which MAY NOT lazy-evaluate
  *	or lose information.  That is, this routine must actually
  *	insert this page into the given map NOW.
  *
  *	When destroying both a page table and PV entry, this function
  *	performs the TLB invalidation before releasing the PV list
  *	lock, so we do not need pmap_delayed_invl_page() calls here.
  */
 int
 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
     u_int flags, int8_t psind __unused)
 {
 	struct rwlock *lock;
 	pd_entry_t *pde;
 	pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
 	pt_entry_t newpte, origpte;
 	pv_entry_t pv;
 	vm_paddr_t opa, pa;
 	vm_page_t mpte, om;
 	boolean_t nosleep;
 
 	PG_A = pmap_accessed_bit(pmap);
 	PG_G = pmap_global_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 
 	va = trunc_page(va);
 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
 	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
 	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
 	    va));
 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
 	    va >= kmi.clean_eva,
 	    ("pmap_enter: managed mapping within the clean submap"));
 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
 		VM_OBJECT_ASSERT_LOCKED(m->object);
 	pa = VM_PAGE_TO_PHYS(m);
 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
 	if ((flags & VM_PROT_WRITE) != 0)
 		newpte |= PG_M;
 	if ((prot & VM_PROT_WRITE) != 0)
 		newpte |= PG_RW;
 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
 	if ((prot & VM_PROT_EXECUTE) == 0)
 		newpte |= pg_nx;
 	if ((flags & PMAP_ENTER_WIRED) != 0)
 		newpte |= PG_W;
 	if (va < VM_MAXUSER_ADDRESS)
 		newpte |= PG_U;
 	if (pmap == kernel_pmap)
 		newpte |= PG_G;
 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, 0);
 
 	/*
 	 * Set modified bit gratuitously for writeable mappings if
 	 * the page is unmanaged. We do not want to take a fault
 	 * to do the dirty bit accounting for these mappings.
 	 */
 	if ((m->oflags & VPO_UNMANAGED) != 0) {
 		if ((newpte & PG_RW) != 0)
 			newpte |= PG_M;
 	}
 
 	mpte = NULL;
 
 	lock = NULL;
 	PMAP_LOCK(pmap);
 
 	/*
 	 * In the case that a page table page is not
 	 * resident, we are creating it here.
 	 */
 retry:
 	pde = pmap_pde(pmap, va);
 	if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
 	    pmap_demote_pde_locked(pmap, pde, va, &lock))) {
 		pte = pmap_pde_to_pte(pde, va);
 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
 			mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
 			mpte->wire_count++;
 		}
 	} else if (va < VM_MAXUSER_ADDRESS) {
 		/*
 		 * Here if the pte page isn't mapped, or if it has been
 		 * deallocated.
 		 */
 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
 		mpte = _pmap_allocpte(pmap, pmap_pde_pindex(va),
 		    nosleep ? NULL : &lock);
 		if (mpte == NULL && nosleep) {
 			if (lock != NULL)
 				rw_wunlock(lock);
 			PMAP_UNLOCK(pmap);
 			return (KERN_RESOURCE_SHORTAGE);
 		}
 		goto retry;
 	} else
 		panic("pmap_enter: invalid page directory va=%#lx", va);
 
 	origpte = *pte;
 
 	/*
 	 * Is the specified virtual address already mapped?
 	 */
 	if ((origpte & PG_V) != 0) {
 		/*
 		 * Wiring change, just update stats. We don't worry about
 		 * wiring PT pages as they remain resident as long as there
 		 * are valid mappings in them. Hence, if a user page is wired,
 		 * the PT page will be also.
 		 */
 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
 			pmap->pm_stats.wired_count++;
 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
 			pmap->pm_stats.wired_count--;
 
 		/*
 		 * Remove the extra PT page reference.
 		 */
 		if (mpte != NULL) {
 			mpte->wire_count--;
 			KASSERT(mpte->wire_count > 0,
 			    ("pmap_enter: missing reference to page table page,"
 			     " va: 0x%lx", va));
 		}
 
 		/*
 		 * Has the physical page changed?
 		 */
 		opa = origpte & PG_FRAME;
 		if (opa == pa) {
 			/*
 			 * No, might be a protection or wiring change.
 			 */
 			if ((origpte & PG_MANAGED) != 0) {
 				newpte |= PG_MANAGED;
 				if ((newpte & PG_RW) != 0)
 					vm_page_aflag_set(m, PGA_WRITEABLE);
 			}
 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
 				goto unchanged;
 			goto validate;
 		}
 	} else {
 		/*
 		 * Increment the counters.
 		 */
 		if ((newpte & PG_W) != 0)
 			pmap->pm_stats.wired_count++;
 		pmap_resident_count_inc(pmap, 1);
 	}
 
 	/*
 	 * Enter on the PV list if part of our managed memory.
 	 */
 	if ((m->oflags & VPO_UNMANAGED) == 0) {
 		newpte |= PG_MANAGED;
 		pv = get_pv_entry(pmap, &lock);
 		pv->pv_va = va;
 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 		m->md.pv_gen++;
 		if ((newpte & PG_RW) != 0)
 			vm_page_aflag_set(m, PGA_WRITEABLE);
 	}
 
 	/*
 	 * Update the PTE.
 	 */
 	if ((origpte & PG_V) != 0) {
 validate:
 		origpte = pte_load_store(pte, newpte);
 		opa = origpte & PG_FRAME;
 		if (opa != pa) {
 			if ((origpte & PG_MANAGED) != 0) {
 				om = PHYS_TO_VM_PAGE(opa);
 				if ((origpte & (PG_M | PG_RW)) == (PG_M |
 				    PG_RW))
 					vm_page_dirty(om);
 				if ((origpte & PG_A) != 0)
 					vm_page_aflag_set(om, PGA_REFERENCED);
 				CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
 				pmap_pvh_free(&om->md, pmap, va);
 				if ((om->aflags & PGA_WRITEABLE) != 0 &&
 				    TAILQ_EMPTY(&om->md.pv_list) &&
 				    ((om->flags & PG_FICTITIOUS) != 0 ||
 				    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
 					vm_page_aflag_clear(om, PGA_WRITEABLE);
 			}
 		} else if ((newpte & PG_M) == 0 && (origpte & (PG_M |
 		    PG_RW)) == (PG_M | PG_RW)) {
 			if ((origpte & PG_MANAGED) != 0)
 				vm_page_dirty(m);
 
 			/*
 			 * Although the PTE may still have PG_RW set, TLB
 			 * invalidation may nonetheless be required because
 			 * the PTE no longer has PG_M set.
 			 */
 		} else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
 			/*
 			 * This PTE change does not require TLB invalidation.
 			 */
 			goto unchanged;
 		}
 		if ((origpte & PG_A) != 0)
 			pmap_invalidate_page(pmap, va);
 	} else
 		pte_store(pte, newpte);
 
 unchanged:
 
 	/*
 	 * If both the page table page and the reservation are fully
 	 * populated, then attempt promotion.
 	 */
 	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
 	    pmap_ps_enabled(pmap) &&
 	    (m->flags & PG_FICTITIOUS) == 0 &&
 	    vm_reserv_level_iffullpop(m) == 0)
 		pmap_promote_pde(pmap, pde, va, &lock);
 
 	if (lock != NULL)
 		rw_wunlock(lock);
 	PMAP_UNLOCK(pmap);
 	return (KERN_SUCCESS);
 }
 
 /*
  * Tries to create a 2MB page mapping.  Returns TRUE if successful and FALSE
  * otherwise.  Fails if (1) a page table page cannot be allocated without
  * blocking, (2) a mapping already exists at the specified virtual address, or
  * (3) a pv entry cannot be allocated without reclaiming another pv entry. 
  */
 static boolean_t
 pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
     struct rwlock **lockp)
 {
 	pd_entry_t *pde, newpde;
 	pt_entry_t PG_V;
 	vm_page_t mpde;
 	struct spglist free;
 
 	PG_V = pmap_valid_bit(pmap);
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 
 	if ((mpde = pmap_allocpde(pmap, va, NULL)) == NULL) {
 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
 		    " in pmap %p", va, pmap);
 		return (FALSE);
 	}
 	pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpde));
 	pde = &pde[pmap_pde_index(va)];
 	if ((*pde & PG_V) != 0) {
 		KASSERT(mpde->wire_count > 1,
 		    ("pmap_enter_pde: mpde's wire count is too low"));
 		mpde->wire_count--;
 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
 		    " in pmap %p", va, pmap);
 		return (FALSE);
 	}
 	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 1) |
 	    PG_PS | PG_V;
 	if ((m->oflags & VPO_UNMANAGED) == 0) {
 		newpde |= PG_MANAGED;
 
 		/*
 		 * Abort this mapping if its PV entry could not be created.
 		 */
 		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m),
 		    lockp)) {
 			SLIST_INIT(&free);
 			if (pmap_unwire_ptp(pmap, va, mpde, &free)) {
 				/*
 				 * Although "va" is not mapped, paging-
 				 * structure caches could nonetheless have
 				 * entries that refer to the freed page table
 				 * pages.  Invalidate those entries.
 				 */
 				pmap_invalidate_page(pmap, va);
 				pmap_free_zero_pages(&free);
 			}
 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
 			    " in pmap %p", va, pmap);
 			return (FALSE);
 		}
 	}
 	if ((prot & VM_PROT_EXECUTE) == 0)
 		newpde |= pg_nx;
 	if (va < VM_MAXUSER_ADDRESS)
 		newpde |= PG_U;
 
 	/*
 	 * Increment counters.
 	 */
 	pmap_resident_count_inc(pmap, NBPDR / PAGE_SIZE);
 
 	/*
 	 * Map the superpage.
 	 */
 	pde_store(pde, newpde);
 
 	atomic_add_long(&pmap_pde_mappings, 1);
 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
 	    " in pmap %p", va, pmap);
 	return (TRUE);
 }
 
 /*
  * Maps a sequence of resident pages belonging to the same object.
  * The sequence begins with the given page m_start.  This page is
  * mapped at the given virtual address start.  Each subsequent page is
  * mapped at a virtual address that is offset from start by the same
  * amount as the page is offset from m_start within the object.  The
  * last page in the sequence is the page with the largest offset from
  * m_start that can be mapped at a virtual address less than the given
  * virtual address end.  Not every virtual page between start and end
  * is mapped; only those for which a resident page exists with the
  * corresponding offset from m_start are mapped.
  */
 void
 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
     vm_page_t m_start, vm_prot_t prot)
 {
 	struct rwlock *lock;
 	vm_offset_t va;
 	vm_page_t m, mpte;
 	vm_pindex_t diff, psize;
 
 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
 
 	psize = atop(end - start);
 	mpte = NULL;
 	m = m_start;
 	lock = NULL;
 	PMAP_LOCK(pmap);
 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 		va = start + ptoa(diff);
 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
 		    pmap_enter_pde(pmap, va, m, prot, &lock))
 			m = &m[NBPDR / PAGE_SIZE - 1];
 		else
 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
 			    mpte, &lock);
 		m = TAILQ_NEXT(m, listq);
 	}
 	if (lock != NULL)
 		rw_wunlock(lock);
 	PMAP_UNLOCK(pmap);
 }
 
 /*
  * this code makes some *MAJOR* assumptions:
  * 1. Current pmap & pmap exists.
  * 2. Not wired.
  * 3. Read access.
  * 4. No page table pages.
  * but is *MUCH* faster than pmap_enter...
  */
 
 void
 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 {
 	struct rwlock *lock;
 
 	lock = NULL;
 	PMAP_LOCK(pmap);
 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
 	if (lock != NULL)
 		rw_wunlock(lock);
 	PMAP_UNLOCK(pmap);
 }
 
 static vm_page_t
 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
 {
 	struct spglist free;
 	pt_entry_t *pte, PG_V;
 	vm_paddr_t pa;
 
 	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
 	    (m->oflags & VPO_UNMANAGED) != 0,
 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
 	PG_V = pmap_valid_bit(pmap);
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 
 	/*
 	 * In the case that a page table page is not
 	 * resident, we are creating it here.
 	 */
 	if (va < VM_MAXUSER_ADDRESS) {
 		vm_pindex_t ptepindex;
 		pd_entry_t *ptepa;
 
 		/*
 		 * Calculate pagetable page index
 		 */
 		ptepindex = pmap_pde_pindex(va);
 		if (mpte && (mpte->pindex == ptepindex)) {
 			mpte->wire_count++;
 		} else {
 			/*
 			 * Get the page directory entry
 			 */
 			ptepa = pmap_pde(pmap, va);
 
 			/*
 			 * If the page table page is mapped, we just increment
 			 * the hold count, and activate it.  Otherwise, we
 			 * attempt to allocate a page table page.  If this
 			 * attempt fails, we don't retry.  Instead, we give up.
 			 */
 			if (ptepa && (*ptepa & PG_V) != 0) {
 				if (*ptepa & PG_PS)
 					return (NULL);
 				mpte = PHYS_TO_VM_PAGE(*ptepa & PG_FRAME);
 				mpte->wire_count++;
 			} else {
 				/*
 				 * Pass NULL instead of the PV list lock
 				 * pointer, because we don't intend to sleep.
 				 */
 				mpte = _pmap_allocpte(pmap, ptepindex, NULL);
 				if (mpte == NULL)
 					return (mpte);
 			}
 		}
 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
 		pte = &pte[pmap_pte_index(va)];
 	} else {
 		mpte = NULL;
 		pte = vtopte(va);
 	}
 	if (*pte) {
 		if (mpte != NULL) {
 			mpte->wire_count--;
 			mpte = NULL;
 		}
 		return (mpte);
 	}
 
 	/*
 	 * Enter on the PV list if part of our managed memory.
 	 */
 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
 		if (mpte != NULL) {
 			SLIST_INIT(&free);
 			if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
 				/*
 				 * Although "va" is not mapped, paging-
 				 * structure caches could nonetheless have
 				 * entries that refer to the freed page table
 				 * pages.  Invalidate those entries.
 				 */
 				pmap_invalidate_page(pmap, va);
 				pmap_free_zero_pages(&free);
 			}
 			mpte = NULL;
 		}
 		return (mpte);
 	}
 
 	/*
 	 * Increment counters
 	 */
 	pmap_resident_count_inc(pmap, 1);
 
 	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 0);
 	if ((prot & VM_PROT_EXECUTE) == 0)
 		pa |= pg_nx;
 
 	/*
 	 * Now validate mapping with RO protection
 	 */
 	if ((m->oflags & VPO_UNMANAGED) != 0)
 		pte_store(pte, pa | PG_V | PG_U);
 	else
 		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
 	return (mpte);
 }
 
 /*
  * Make a temporary mapping for a physical address.  This is only intended
  * to be used for panic dumps.
  */
 void *
 pmap_kenter_temporary(vm_paddr_t pa, int i)
 {
 	vm_offset_t va;
 
 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
 	pmap_kenter(va, pa);
 	invlpg(va);
 	return ((void *)crashdumpmap);
 }
 
 /*
  * This code maps large physical mmap regions into the
  * processor address space.  Note that some shortcuts
  * are taken, but the code works.
  */
 void
 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
     vm_pindex_t pindex, vm_size_t size)
 {
 	pd_entry_t *pde;
 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
 	vm_paddr_t pa, ptepa;
 	vm_page_t p, pdpg;
 	int pat_mode;
 
 	PG_A = pmap_accessed_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 
 	VM_OBJECT_ASSERT_WLOCKED(object);
 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
 	    ("pmap_object_init_pt: non-device object"));
 	if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
 		if (!pmap_ps_enabled(pmap))
 			return;
 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
 			return;
 		p = vm_page_lookup(object, pindex);
 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
 		    ("pmap_object_init_pt: invalid page %p", p));
 		pat_mode = p->md.pat_mode;
 
 		/*
 		 * Abort the mapping if the first page is not physically
 		 * aligned to a 2MB page boundary.
 		 */
 		ptepa = VM_PAGE_TO_PHYS(p);
 		if (ptepa & (NBPDR - 1))
 			return;
 
 		/*
 		 * Skip the first page.  Abort the mapping if the rest of
 		 * the pages are not physically contiguous or have differing
 		 * memory attributes.
 		 */
 		p = TAILQ_NEXT(p, listq);
 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
 		    pa += PAGE_SIZE) {
 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
 			    ("pmap_object_init_pt: invalid page %p", p));
 			if (pa != VM_PAGE_TO_PHYS(p) ||
 			    pat_mode != p->md.pat_mode)
 				return;
 			p = TAILQ_NEXT(p, listq);
 		}
 
 		/*
 		 * Map using 2MB pages.  Since "ptepa" is 2M aligned and
 		 * "size" is a multiple of 2M, adding the PAT setting to "pa"
 		 * will not affect the termination of this loop.
 		 */ 
 		PMAP_LOCK(pmap);
 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, 1);
 		    pa < ptepa + size; pa += NBPDR) {
 			pdpg = pmap_allocpde(pmap, addr, NULL);
 			if (pdpg == NULL) {
 				/*
 				 * The creation of mappings below is only an
 				 * optimization.  If a page directory page
 				 * cannot be allocated without blocking,
 				 * continue on to the next mapping rather than
 				 * blocking.
 				 */
 				addr += NBPDR;
 				continue;
 			}
 			pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
 			pde = &pde[pmap_pde_index(addr)];
 			if ((*pde & PG_V) == 0) {
 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
 				    PG_U | PG_RW | PG_V);
 				pmap_resident_count_inc(pmap, NBPDR / PAGE_SIZE);
 				atomic_add_long(&pmap_pde_mappings, 1);
 			} else {
 				/* Continue on if the PDE is already valid. */
 				pdpg->wire_count--;
 				KASSERT(pdpg->wire_count > 0,
 				    ("pmap_object_init_pt: missing reference "
 				    "to page directory page, va: 0x%lx", addr));
 			}
 			addr += NBPDR;
 		}
 		PMAP_UNLOCK(pmap);
 	}
 }
 
 /*
  *	Clear the wired attribute from the mappings for the specified range of
  *	addresses in the given pmap.  Every valid mapping within that range
  *	must have the wired attribute set.  In contrast, invalid mappings
  *	cannot have the wired attribute set, so they are ignored.
  *
  *	The wired attribute of the page table entry is not a hardware
  *	feature, so there is no need to invalidate any TLB entries.
  *	Since pmap_demote_pde() for the wired entry must never fail,
  *	pmap_delayed_invl_started()/finished() calls around the
  *	function are not needed.
  */
 void
 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 {
 	vm_offset_t va_next;
 	pml4_entry_t *pml4e;
 	pdp_entry_t *pdpe;
 	pd_entry_t *pde;
 	pt_entry_t *pte, PG_V;
 
 	PG_V = pmap_valid_bit(pmap);
 	PMAP_LOCK(pmap);
 	for (; sva < eva; sva = va_next) {
 		pml4e = pmap_pml4e(pmap, sva);
 		if ((*pml4e & PG_V) == 0) {
 			va_next = (sva + NBPML4) & ~PML4MASK;
 			if (va_next < sva)
 				va_next = eva;
 			continue;
 		}
 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
 		if ((*pdpe & PG_V) == 0) {
 			va_next = (sva + NBPDP) & ~PDPMASK;
 			if (va_next < sva)
 				va_next = eva;
 			continue;
 		}
 		va_next = (sva + NBPDR) & ~PDRMASK;
 		if (va_next < sva)
 			va_next = eva;
 		pde = pmap_pdpe_to_pde(pdpe, sva);
 		if ((*pde & PG_V) == 0)
 			continue;
 		if ((*pde & PG_PS) != 0) {
 			if ((*pde & PG_W) == 0)
 				panic("pmap_unwire: pde %#jx is missing PG_W",
 				    (uintmax_t)*pde);
 
 			/*
 			 * Are we unwiring the entire large page?  If not,
 			 * demote the mapping and fall through.
 			 */
 			if (sva + NBPDR == va_next && eva >= va_next) {
 				atomic_clear_long(pde, PG_W);
 				pmap->pm_stats.wired_count -= NBPDR /
 				    PAGE_SIZE;
 				continue;
 			} else if (!pmap_demote_pde(pmap, pde, sva))
 				panic("pmap_unwire: demotion failed");
 		}
 		if (va_next > eva)
 			va_next = eva;
 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 		    sva += PAGE_SIZE) {
 			if ((*pte & PG_V) == 0)
 				continue;
 			if ((*pte & PG_W) == 0)
 				panic("pmap_unwire: pte %#jx is missing PG_W",
 				    (uintmax_t)*pte);
 
 			/*
 			 * PG_W must be cleared atomically.  Although the pmap
 			 * lock synchronizes access to PG_W, another processor
 			 * could be setting PG_M and/or PG_A concurrently.
 			 */
 			atomic_clear_long(pte, PG_W);
 			pmap->pm_stats.wired_count--;
 		}
 	}
 	PMAP_UNLOCK(pmap);
 }
 
 /*
  *	Copy the range specified by src_addr/len
  *	from the source map to the range dst_addr/len
  *	in the destination map.
  *
  *	This routine is only advisory and need not do anything.
  */
 
 void
 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
     vm_offset_t src_addr)
 {
 	struct rwlock *lock;
 	struct spglist free;
 	vm_offset_t addr;
 	vm_offset_t end_addr = src_addr + len;
 	vm_offset_t va_next;
 	pt_entry_t PG_A, PG_M, PG_V;
 
 	if (dst_addr != src_addr)
 		return;
 
 	if (dst_pmap->pm_type != src_pmap->pm_type)
 		return;
 
 	/*
 	 * EPT page table entries that require emulation of A/D bits are
 	 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
 	 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
 	 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
 	 * implementations flag an EPT misconfiguration for exec-only
 	 * mappings we skip this function entirely for emulated pmaps.
 	 */
 	if (pmap_emulate_ad_bits(dst_pmap))
 		return;
 
 	lock = NULL;
 	if (dst_pmap < src_pmap) {
 		PMAP_LOCK(dst_pmap);
 		PMAP_LOCK(src_pmap);
 	} else {
 		PMAP_LOCK(src_pmap);
 		PMAP_LOCK(dst_pmap);
 	}
 
 	PG_A = pmap_accessed_bit(dst_pmap);
 	PG_M = pmap_modified_bit(dst_pmap);
 	PG_V = pmap_valid_bit(dst_pmap);
 
 	for (addr = src_addr; addr < end_addr; addr = va_next) {
 		pt_entry_t *src_pte, *dst_pte;
 		vm_page_t dstmpde, dstmpte, srcmpte;
 		pml4_entry_t *pml4e;
 		pdp_entry_t *pdpe;
 		pd_entry_t srcptepaddr, *pde;
 
 		KASSERT(addr < UPT_MIN_ADDRESS,
 		    ("pmap_copy: invalid to pmap_copy page tables"));
 
 		pml4e = pmap_pml4e(src_pmap, addr);
 		if ((*pml4e & PG_V) == 0) {
 			va_next = (addr + NBPML4) & ~PML4MASK;
 			if (va_next < addr)
 				va_next = end_addr;
 			continue;
 		}
 
 		pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
 		if ((*pdpe & PG_V) == 0) {
 			va_next = (addr + NBPDP) & ~PDPMASK;
 			if (va_next < addr)
 				va_next = end_addr;
 			continue;
 		}
 
 		va_next = (addr + NBPDR) & ~PDRMASK;
 		if (va_next < addr)
 			va_next = end_addr;
 
 		pde = pmap_pdpe_to_pde(pdpe, addr);
 		srcptepaddr = *pde;
 		if (srcptepaddr == 0)
 			continue;
 			
 		if (srcptepaddr & PG_PS) {
 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
 				continue;
 			dstmpde = pmap_allocpde(dst_pmap, addr, NULL);
 			if (dstmpde == NULL)
 				break;
 			pde = (pd_entry_t *)
 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpde));
 			pde = &pde[pmap_pde_index(addr)];
 			if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
 			    PG_PS_FRAME, &lock))) {
 				*pde = srcptepaddr & ~PG_W;
 				pmap_resident_count_inc(dst_pmap, NBPDR / PAGE_SIZE);
 				atomic_add_long(&pmap_pde_mappings, 1);
 			} else
 				dstmpde->wire_count--;
 			continue;
 		}
 
 		srcptepaddr &= PG_FRAME;
 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
 		KASSERT(srcmpte->wire_count > 0,
 		    ("pmap_copy: source page table page is unused"));
 
 		if (va_next > end_addr)
 			va_next = end_addr;
 
 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
 		src_pte = &src_pte[pmap_pte_index(addr)];
 		dstmpte = NULL;
 		while (addr < va_next) {
 			pt_entry_t ptetemp;
 			ptetemp = *src_pte;
 			/*
 			 * we only virtual copy managed pages
 			 */
 			if ((ptetemp & PG_MANAGED) != 0) {
 				if (dstmpte != NULL &&
 				    dstmpte->pindex == pmap_pde_pindex(addr))
 					dstmpte->wire_count++;
 				else if ((dstmpte = pmap_allocpte(dst_pmap,
 				    addr, NULL)) == NULL)
 					goto out;
 				dst_pte = (pt_entry_t *)
 				    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
 				dst_pte = &dst_pte[pmap_pte_index(addr)];
 				if (*dst_pte == 0 &&
 				    pmap_try_insert_pv_entry(dst_pmap, addr,
 				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME),
 				    &lock)) {
 					/*
 					 * Clear the wired, modified, and
 					 * accessed (referenced) bits
 					 * during the copy.
 					 */
 					*dst_pte = ptetemp & ~(PG_W | PG_M |
 					    PG_A);
 					pmap_resident_count_inc(dst_pmap, 1);
 				} else {
 					SLIST_INIT(&free);
 					if (pmap_unwire_ptp(dst_pmap, addr,
 					    dstmpte, &free)) {
 						/*
 						 * Although "addr" is not
 						 * mapped, paging-structure
 						 * caches could nonetheless
 						 * have entries that refer to
 						 * the freed page table pages.
 						 * Invalidate those entries.
 						 */
 						pmap_invalidate_page(dst_pmap,
 						    addr);
 						pmap_free_zero_pages(&free);
 					}
 					goto out;
 				}
 				if (dstmpte->wire_count >= srcmpte->wire_count)
 					break;
 			}
 			addr += PAGE_SIZE;
 			src_pte++;
 		}
 	}
 out:
 	if (lock != NULL)
 		rw_wunlock(lock);
 	PMAP_UNLOCK(src_pmap);
 	PMAP_UNLOCK(dst_pmap);
 }
 
 /*
  * Zero the specified hardware page.
  */
 void
 pmap_zero_page(vm_page_t m)
 {
 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
 
 	pagezero((void *)va);
 }
 
 /*
  * Zero an an area within a single hardware page.  off and size must not
  * cover an area beyond a single hardware page.
  */
 void
 pmap_zero_page_area(vm_page_t m, int off, int size)
 {
 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
 
 	if (off == 0 && size == PAGE_SIZE)
 		pagezero((void *)va);
 	else
 		bzero((char *)va + off, size);
 }
 
 /*
  * Copy 1 specified hardware page to another.
  */
 void
 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
 {
 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
 
 	pagecopy((void *)src, (void *)dst);
 }
 
 int unmapped_buf_allowed = 1;
 
 void
 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
     vm_offset_t b_offset, int xfersize)
 {
 	void *a_cp, *b_cp;
 	vm_page_t pages[2];
 	vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
 	int cnt;
 	boolean_t mapped;
 
 	while (xfersize > 0) {
 		a_pg_offset = a_offset & PAGE_MASK;
 		pages[0] = ma[a_offset >> PAGE_SHIFT];
 		b_pg_offset = b_offset & PAGE_MASK;
 		pages[1] = mb[b_offset >> PAGE_SHIFT];
 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
 		mapped = pmap_map_io_transient(pages, vaddr, 2, FALSE);
 		a_cp = (char *)vaddr[0] + a_pg_offset;
 		b_cp = (char *)vaddr[1] + b_pg_offset;
 		bcopy(a_cp, b_cp, cnt);
 		if (__predict_false(mapped))
 			pmap_unmap_io_transient(pages, vaddr, 2, FALSE);
 		a_offset += cnt;
 		b_offset += cnt;
 		xfersize -= cnt;
 	}
 }
 
 /*
  * Returns true if the pmap's pv is one of the first
  * 16 pvs linked to from this page.  This count may
  * be changed upwards or downwards in the future; it
  * is only necessary that true be returned for a small
  * subset of pmaps for proper page aging.
  */
 boolean_t
 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
 {
 	struct md_page *pvh;
 	struct rwlock *lock;
 	pv_entry_t pv;
 	int loops = 0;
 	boolean_t rv;
 
 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 	    ("pmap_page_exists_quick: page %p is not managed", m));
 	rv = FALSE;
 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
 	rw_rlock(lock);
 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 		if (PV_PMAP(pv) == pmap) {
 			rv = TRUE;
 			break;
 		}
 		loops++;
 		if (loops >= 16)
 			break;
 	}
 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 			if (PV_PMAP(pv) == pmap) {
 				rv = TRUE;
 				break;
 			}
 			loops++;
 			if (loops >= 16)
 				break;
 		}
 	}
 	rw_runlock(lock);
 	return (rv);
 }
 
 /*
  *	pmap_page_wired_mappings:
  *
  *	Return the number of managed mappings to the given physical page
  *	that are wired.
  */
 int
 pmap_page_wired_mappings(vm_page_t m)
 {
 	struct rwlock *lock;
 	struct md_page *pvh;
 	pmap_t pmap;
 	pt_entry_t *pte;
 	pv_entry_t pv;
 	int count, md_gen, pvh_gen;
 
 	if ((m->oflags & VPO_UNMANAGED) != 0)
 		return (0);
 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
 	rw_rlock(lock);
 restart:
 	count = 0;
 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 		pmap = PV_PMAP(pv);
 		if (!PMAP_TRYLOCK(pmap)) {
 			md_gen = m->md.pv_gen;
 			rw_runlock(lock);
 			PMAP_LOCK(pmap);
 			rw_rlock(lock);
 			if (md_gen != m->md.pv_gen) {
 				PMAP_UNLOCK(pmap);
 				goto restart;
 			}
 		}
 		pte = pmap_pte(pmap, pv->pv_va);
 		if ((*pte & PG_W) != 0)
 			count++;
 		PMAP_UNLOCK(pmap);
 	}
 	if ((m->flags & PG_FICTITIOUS) == 0) {
 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 			pmap = PV_PMAP(pv);
 			if (!PMAP_TRYLOCK(pmap)) {
 				md_gen = m->md.pv_gen;
 				pvh_gen = pvh->pv_gen;
 				rw_runlock(lock);
 				PMAP_LOCK(pmap);
 				rw_rlock(lock);
 				if (md_gen != m->md.pv_gen ||
 				    pvh_gen != pvh->pv_gen) {
 					PMAP_UNLOCK(pmap);
 					goto restart;
 				}
 			}
 			pte = pmap_pde(pmap, pv->pv_va);
 			if ((*pte & PG_W) != 0)
 				count++;
 			PMAP_UNLOCK(pmap);
 		}
 	}
 	rw_runlock(lock);
 	return (count);
 }
 
 /*
  * Returns TRUE if the given page is mapped individually or as part of
  * a 2mpage.  Otherwise, returns FALSE.
  */
 boolean_t
 pmap_page_is_mapped(vm_page_t m)
 {
 	struct rwlock *lock;
 	boolean_t rv;
 
 	if ((m->oflags & VPO_UNMANAGED) != 0)
 		return (FALSE);
 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
 	rw_rlock(lock);
 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
 	    ((m->flags & PG_FICTITIOUS) == 0 &&
 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
 	rw_runlock(lock);
 	return (rv);
 }
 
 /*
  * Destroy all managed, non-wired mappings in the given user-space
  * pmap.  This pmap cannot be active on any processor besides the
  * caller.
  *
  * This function cannot be applied to the kernel pmap.  Moreover, it
  * is not intended for general use.  It is only to be used during
  * process termination.  Consequently, it can be implemented in ways
  * that make it faster than pmap_remove().  First, it can more quickly
  * destroy mappings by iterating over the pmap's collection of PV
  * entries, rather than searching the page table.  Second, it doesn't
  * have to test and clear the page table entries atomically, because
  * no processor is currently accessing the user address space.  In
  * particular, a page table entry's dirty bit won't change state once
  * this function starts.
  */
 void
 pmap_remove_pages(pmap_t pmap)
 {
 	pd_entry_t ptepde;
 	pt_entry_t *pte, tpte;
 	pt_entry_t PG_M, PG_RW, PG_V;
 	struct spglist free;
 	vm_page_t m, mpte, mt;
 	pv_entry_t pv;
 	struct md_page *pvh;
 	struct pv_chunk *pc, *npc;
 	struct rwlock *lock;
 	int64_t bit;
 	uint64_t inuse, bitmask;
 	int allfree, field, freed, idx;
 	boolean_t superpage;
 	vm_paddr_t pa;
 
 	/*
 	 * Assert that the given pmap is only active on the current
 	 * CPU.  Unfortunately, we cannot block another CPU from
 	 * activating the pmap while this function is executing.
 	 */
 	KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
 #ifdef INVARIANTS
 	{
 		cpuset_t other_cpus;
 
 		other_cpus = all_cpus;
 		critical_enter();
 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
 		CPU_AND(&other_cpus, &pmap->pm_active);
 		critical_exit();
 		KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
 	}
 #endif
 
 	lock = NULL;
 	PG_M = pmap_modified_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 
 	SLIST_INIT(&free);
 	PMAP_LOCK(pmap);
 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
 		allfree = 1;
 		freed = 0;
 		for (field = 0; field < _NPCM; field++) {
 			inuse = ~pc->pc_map[field] & pc_freemask[field];
 			while (inuse != 0) {
 				bit = bsfq(inuse);
 				bitmask = 1UL << bit;
 				idx = field * 64 + bit;
 				pv = &pc->pc_pventry[idx];
 				inuse &= ~bitmask;
 
 				pte = pmap_pdpe(pmap, pv->pv_va);
 				ptepde = *pte;
 				pte = pmap_pdpe_to_pde(pte, pv->pv_va);
 				tpte = *pte;
 				if ((tpte & (PG_PS | PG_V)) == PG_V) {
 					superpage = FALSE;
 					ptepde = tpte;
 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
 					    PG_FRAME);
 					pte = &pte[pmap_pte_index(pv->pv_va)];
 					tpte = *pte;
 				} else {
 					/*
 					 * Keep track whether 'tpte' is a
 					 * superpage explicitly instead of
 					 * relying on PG_PS being set.
 					 *
 					 * This is because PG_PS is numerically
 					 * identical to PG_PTE_PAT and thus a
 					 * regular page could be mistaken for
 					 * a superpage.
 					 */
 					superpage = TRUE;
 				}
 
 				if ((tpte & PG_V) == 0) {
 					panic("bad pte va %lx pte %lx",
 					    pv->pv_va, tpte);
 				}
 
 /*
  * We cannot remove wired pages from a process' mapping at this time
  */
 				if (tpte & PG_W) {
 					allfree = 0;
 					continue;
 				}
 
 				if (superpage)
 					pa = tpte & PG_PS_FRAME;
 				else
 					pa = tpte & PG_FRAME;
 
 				m = PHYS_TO_VM_PAGE(pa);
 				KASSERT(m->phys_addr == pa,
 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
 				    m, (uintmax_t)m->phys_addr,
 				    (uintmax_t)tpte));
 
 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
 				    m < &vm_page_array[vm_page_array_size],
 				    ("pmap_remove_pages: bad tpte %#jx",
 				    (uintmax_t)tpte));
 
 				pte_clear(pte);
 
 				/*
 				 * Update the vm_page_t clean/reference bits.
 				 */
 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 					if (superpage) {
 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
 							vm_page_dirty(mt);
 					} else
 						vm_page_dirty(m);
 				}
 
 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
 
 				/* Mark free */
 				pc->pc_map[field] |= bitmask;
 				if (superpage) {
 					pmap_resident_count_dec(pmap, NBPDR / PAGE_SIZE);
 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
 					pvh->pv_gen++;
 					if (TAILQ_EMPTY(&pvh->pv_list)) {
 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
 							if ((mt->aflags & PGA_WRITEABLE) != 0 &&
 							    TAILQ_EMPTY(&mt->md.pv_list))
 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
 					}
 					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
 					if (mpte != NULL) {
 						pmap_remove_pt_page(pmap, mpte);
 						pmap_resident_count_dec(pmap, 1);
 						KASSERT(mpte->wire_count == NPTEPG,
 						    ("pmap_remove_pages: pte page wire count error"));
 						mpte->wire_count = 0;
 						pmap_add_delayed_free_list(mpte, &free, FALSE);
 						atomic_subtract_int(&vm_cnt.v_wire_count, 1);
 					}
 				} else {
 					pmap_resident_count_dec(pmap, 1);
 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 					m->md.pv_gen++;
 					if ((m->aflags & PGA_WRITEABLE) != 0 &&
 					    TAILQ_EMPTY(&m->md.pv_list) &&
 					    (m->flags & PG_FICTITIOUS) == 0) {
 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 						if (TAILQ_EMPTY(&pvh->pv_list))
 							vm_page_aflag_clear(m, PGA_WRITEABLE);
 					}
 				}
 				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
 				freed++;
 			}
 		}
 		PV_STAT(atomic_add_long(&pv_entry_frees, freed));
 		PV_STAT(atomic_add_int(&pv_entry_spare, freed));
 		PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
 		if (allfree) {
 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 			free_pv_chunk(pc);
 		}
 	}
 	if (lock != NULL)
 		rw_wunlock(lock);
 	pmap_invalidate_all(pmap);
 	PMAP_UNLOCK(pmap);
 	pmap_free_zero_pages(&free);
 }
 
 static boolean_t
 pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
 {
 	struct rwlock *lock;
 	pv_entry_t pv;
 	struct md_page *pvh;
 	pt_entry_t *pte, mask;
 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
 	pmap_t pmap;
 	int md_gen, pvh_gen;
 	boolean_t rv;
 
 	rv = FALSE;
 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
 	rw_rlock(lock);
 restart:
 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 		pmap = PV_PMAP(pv);
 		if (!PMAP_TRYLOCK(pmap)) {
 			md_gen = m->md.pv_gen;
 			rw_runlock(lock);
 			PMAP_LOCK(pmap);
 			rw_rlock(lock);
 			if (md_gen != m->md.pv_gen) {
 				PMAP_UNLOCK(pmap);
 				goto restart;
 			}
 		}
 		pte = pmap_pte(pmap, pv->pv_va);
 		mask = 0;
 		if (modified) {
 			PG_M = pmap_modified_bit(pmap);
 			PG_RW = pmap_rw_bit(pmap);
 			mask |= PG_RW | PG_M;
 		}
 		if (accessed) {
 			PG_A = pmap_accessed_bit(pmap);
 			PG_V = pmap_valid_bit(pmap);
 			mask |= PG_V | PG_A;
 		}
 		rv = (*pte & mask) == mask;
 		PMAP_UNLOCK(pmap);
 		if (rv)
 			goto out;
 	}
 	if ((m->flags & PG_FICTITIOUS) == 0) {
 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 			pmap = PV_PMAP(pv);
 			if (!PMAP_TRYLOCK(pmap)) {
 				md_gen = m->md.pv_gen;
 				pvh_gen = pvh->pv_gen;
 				rw_runlock(lock);
 				PMAP_LOCK(pmap);
 				rw_rlock(lock);
 				if (md_gen != m->md.pv_gen ||
 				    pvh_gen != pvh->pv_gen) {
 					PMAP_UNLOCK(pmap);
 					goto restart;
 				}
 			}
 			pte = pmap_pde(pmap, pv->pv_va);
 			mask = 0;
 			if (modified) {
 				PG_M = pmap_modified_bit(pmap);
 				PG_RW = pmap_rw_bit(pmap);
 				mask |= PG_RW | PG_M;
 			}
 			if (accessed) {
 				PG_A = pmap_accessed_bit(pmap);
 				PG_V = pmap_valid_bit(pmap);
 				mask |= PG_V | PG_A;
 			}
 			rv = (*pte & mask) == mask;
 			PMAP_UNLOCK(pmap);
 			if (rv)
 				goto out;
 		}
 	}
 out:
 	rw_runlock(lock);
 	return (rv);
 }
 
 /*
  *	pmap_is_modified:
  *
  *	Return whether or not the specified physical page was modified
  *	in any physical maps.
  */
 boolean_t
 pmap_is_modified(vm_page_t m)
 {
 
 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 	    ("pmap_is_modified: page %p is not managed", m));
 
 	/*
 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
 	 * is clear, no PTEs can have PG_M set.
 	 */
 	VM_OBJECT_ASSERT_WLOCKED(m->object);
 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
 		return (FALSE);
 	return (pmap_page_test_mappings(m, FALSE, TRUE));
 }
 
 /*
  *	pmap_is_prefaultable:
  *
  *	Return whether or not the specified virtual address is eligible
  *	for prefault.
  */
 boolean_t
 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 {
 	pd_entry_t *pde;
 	pt_entry_t *pte, PG_V;
 	boolean_t rv;
 
 	PG_V = pmap_valid_bit(pmap);
 	rv = FALSE;
 	PMAP_LOCK(pmap);
 	pde = pmap_pde(pmap, addr);
 	if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
 		pte = pmap_pde_to_pte(pde, addr);
 		rv = (*pte & PG_V) == 0;
 	}
 	PMAP_UNLOCK(pmap);
 	return (rv);
 }
 
 /*
  *	pmap_is_referenced:
  *
  *	Return whether or not the specified physical page was referenced
  *	in any physical maps.
  */
 boolean_t
 pmap_is_referenced(vm_page_t m)
 {
 
 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 	    ("pmap_is_referenced: page %p is not managed", m));
 	return (pmap_page_test_mappings(m, TRUE, FALSE));
 }
 
 /*
  * Clear the write and modified bits in each of the given page's mappings.
  */
 void
 pmap_remove_write(vm_page_t m)
 {
 	struct md_page *pvh;
 	pmap_t pmap;
 	struct rwlock *lock;
 	pv_entry_t next_pv, pv;
 	pd_entry_t *pde;
 	pt_entry_t oldpte, *pte, PG_M, PG_RW;
 	vm_offset_t va;
 	int pvh_gen, md_gen;
 
 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 	    ("pmap_remove_write: page %p is not managed", m));
 
 	/*
 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
 	 * set by another thread while the object is locked.  Thus,
 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
 	 */
 	VM_OBJECT_ASSERT_WLOCKED(m->object);
 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
 		return;
 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
 retry_pv_loop:
 	rw_wlock(lock);
 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
 		pmap = PV_PMAP(pv);
 		if (!PMAP_TRYLOCK(pmap)) {
 			pvh_gen = pvh->pv_gen;
 			rw_wunlock(lock);
 			PMAP_LOCK(pmap);
 			rw_wlock(lock);
 			if (pvh_gen != pvh->pv_gen) {
 				PMAP_UNLOCK(pmap);
 				rw_wunlock(lock);
 				goto retry_pv_loop;
 			}
 		}
 		PG_RW = pmap_rw_bit(pmap);
 		va = pv->pv_va;
 		pde = pmap_pde(pmap, va);
 		if ((*pde & PG_RW) != 0)
 			(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
 		    ("inconsistent pv lock %p %p for page %p",
 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
 		PMAP_UNLOCK(pmap);
 	}
 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 		pmap = PV_PMAP(pv);
 		if (!PMAP_TRYLOCK(pmap)) {
 			pvh_gen = pvh->pv_gen;
 			md_gen = m->md.pv_gen;
 			rw_wunlock(lock);
 			PMAP_LOCK(pmap);
 			rw_wlock(lock);
 			if (pvh_gen != pvh->pv_gen ||
 			    md_gen != m->md.pv_gen) {
 				PMAP_UNLOCK(pmap);
 				rw_wunlock(lock);
 				goto retry_pv_loop;
 			}
 		}
 		PG_M = pmap_modified_bit(pmap);
 		PG_RW = pmap_rw_bit(pmap);
 		pde = pmap_pde(pmap, pv->pv_va);
 		KASSERT((*pde & PG_PS) == 0,
 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
 		    m));
 		pte = pmap_pde_to_pte(pde, pv->pv_va);
 retry:
 		oldpte = *pte;
 		if (oldpte & PG_RW) {
 			if (!atomic_cmpset_long(pte, oldpte, oldpte &
 			    ~(PG_RW | PG_M)))
 				goto retry;
 			if ((oldpte & PG_M) != 0)
 				vm_page_dirty(m);
 			pmap_invalidate_page(pmap, pv->pv_va);
 		}
 		PMAP_UNLOCK(pmap);
 	}
 	rw_wunlock(lock);
 	vm_page_aflag_clear(m, PGA_WRITEABLE);
 	pmap_delayed_invl_wait(m);
 }
 
 static __inline boolean_t
 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
 {
 
 	if (!pmap_emulate_ad_bits(pmap))
 		return (TRUE);
 
 	KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
 
 	/*
 	 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
 	 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
 	 * if the EPT_PG_WRITE bit is set.
 	 */
 	if ((pte & EPT_PG_WRITE) != 0)
 		return (FALSE);
 
 	/*
 	 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
 	 */
 	if ((pte & EPT_PG_EXECUTE) == 0 ||
 	    ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
 		return (TRUE);
 	else
 		return (FALSE);
 }
 
 /*
  *	pmap_ts_referenced:
  *
  *	Return a count of reference bits for a page, clearing those bits.
  *	It is not necessary for every reference bit to be cleared, but it
  *	is necessary that 0 only be returned when there are truly no
  *	reference bits set.
  *
  *	As an optimization, update the page's dirty field if a modified bit is
  *	found while counting reference bits.  This opportunistic update can be
  *	performed at low cost and can eliminate the need for some future calls
  *	to pmap_is_modified().  However, since this function stops after
  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
  *	dirty pages.  Those dirty pages will only be detected by a future call
  *	to pmap_is_modified().
  *
  *	A DI block is not needed within this function, because
  *	invalidations are performed before the PV list lock is
  *	released.
  */
 int
 pmap_ts_referenced(vm_page_t m)
 {
 	struct md_page *pvh;
 	pv_entry_t pv, pvf;
 	pmap_t pmap;
 	struct rwlock *lock;
 	pd_entry_t oldpde, *pde;
 	pt_entry_t *pte, PG_A, PG_M, PG_RW;
 	vm_offset_t va;
 	vm_paddr_t pa;
 	int cleared, md_gen, not_cleared, pvh_gen;
 	struct spglist free;
 	boolean_t demoted;
 
 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 	    ("pmap_ts_referenced: page %p is not managed", m));
 	SLIST_INIT(&free);
 	cleared = 0;
 	pa = VM_PAGE_TO_PHYS(m);
 	lock = PHYS_TO_PV_LIST_LOCK(pa);
 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
 	rw_wlock(lock);
 retry:
 	not_cleared = 0;
 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
 		goto small_mappings;
 	pv = pvf;
 	do {
 		if (pvf == NULL)
 			pvf = pv;
 		pmap = PV_PMAP(pv);
 		if (!PMAP_TRYLOCK(pmap)) {
 			pvh_gen = pvh->pv_gen;
 			rw_wunlock(lock);
 			PMAP_LOCK(pmap);
 			rw_wlock(lock);
 			if (pvh_gen != pvh->pv_gen) {
 				PMAP_UNLOCK(pmap);
 				goto retry;
 			}
 		}
 		PG_A = pmap_accessed_bit(pmap);
 		PG_M = pmap_modified_bit(pmap);
 		PG_RW = pmap_rw_bit(pmap);
 		va = pv->pv_va;
 		pde = pmap_pde(pmap, pv->pv_va);
 		oldpde = *pde;
 		if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 			/*
 			 * Although "oldpde" is mapping a 2MB page, because
 			 * this function is called at a 4KB page granularity,
 			 * we only update the 4KB page under test.
 			 */
 			vm_page_dirty(m);
 		}
 		if ((oldpde & PG_A) != 0) {
 			/*
 			 * Since this reference bit is shared by 512 4KB
 			 * pages, it should not be cleared every time it is
 			 * tested.  Apply a simple "hash" function on the
 			 * physical page number, the virtual superpage number,
 			 * and the pmap address to select one 4KB page out of
 			 * the 512 on which testing the reference bit will
 			 * result in clearing that reference bit.  This
 			 * function is designed to avoid the selection of the
 			 * same 4KB page for every 2MB page mapping.
 			 *
 			 * On demotion, a mapping that hasn't been referenced
 			 * is simply destroyed.  To avoid the possibility of a
 			 * subsequent page fault on a demoted wired mapping,
 			 * always leave its reference bit set.  Moreover,
 			 * since the superpage is wired, the current state of
 			 * its reference bit won't affect page replacement.
 			 */
 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
 			    (oldpde & PG_W) == 0) {
 				if (safe_to_clear_referenced(pmap, oldpde)) {
 					atomic_clear_long(pde, PG_A);
 					pmap_invalidate_page(pmap, pv->pv_va);
 					demoted = FALSE;
 				} else if (pmap_demote_pde_locked(pmap, pde,
 				    pv->pv_va, &lock)) {
 					/*
 					 * Remove the mapping to a single page
 					 * so that a subsequent access may
 					 * repromote.  Since the underlying
 					 * page table page is fully populated,
 					 * this removal never frees a page
 					 * table page.
 					 */
 					demoted = TRUE;
 					va += VM_PAGE_TO_PHYS(m) - (oldpde &
 					    PG_PS_FRAME);
 					pte = pmap_pde_to_pte(pde, va);
 					pmap_remove_pte(pmap, pte, va, *pde,
 					    NULL, &lock);
 					pmap_invalidate_page(pmap, va);
 				} else
 					demoted = TRUE;
 
 				if (demoted) {
 					/*
 					 * The superpage mapping was removed
 					 * entirely and therefore 'pv' is no
 					 * longer valid.
 					 */
 					if (pvf == pv)
 						pvf = NULL;
 					pv = NULL;
 				}
 				cleared++;
 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
 				    ("inconsistent pv lock %p %p for page %p",
 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
 			} else
 				not_cleared++;
 		}
 		PMAP_UNLOCK(pmap);
 		/* Rotate the PV list if it has more than one entry. */
 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
 			pvh->pv_gen++;
 		}
 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
 			goto out;
 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
 small_mappings:
 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
 		goto out;
 	pv = pvf;
 	do {
 		if (pvf == NULL)
 			pvf = pv;
 		pmap = PV_PMAP(pv);
 		if (!PMAP_TRYLOCK(pmap)) {
 			pvh_gen = pvh->pv_gen;
 			md_gen = m->md.pv_gen;
 			rw_wunlock(lock);
 			PMAP_LOCK(pmap);
 			rw_wlock(lock);
 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
 				PMAP_UNLOCK(pmap);
 				goto retry;
 			}
 		}
 		PG_A = pmap_accessed_bit(pmap);
 		PG_M = pmap_modified_bit(pmap);
 		PG_RW = pmap_rw_bit(pmap);
 		pde = pmap_pde(pmap, pv->pv_va);
 		KASSERT((*pde & PG_PS) == 0,
 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
 		    m));
 		pte = pmap_pde_to_pte(pde, pv->pv_va);
 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 			vm_page_dirty(m);
 		if ((*pte & PG_A) != 0) {
 			if (safe_to_clear_referenced(pmap, *pte)) {
 				atomic_clear_long(pte, PG_A);
 				pmap_invalidate_page(pmap, pv->pv_va);
 				cleared++;
 			} else if ((*pte & PG_W) == 0) {
 				/*
 				 * Wired pages cannot be paged out so
 				 * doing accessed bit emulation for
 				 * them is wasted effort. We do the
 				 * hard work for unwired pages only.
 				 */
 				pmap_remove_pte(pmap, pte, pv->pv_va,
 				    *pde, &free, &lock);
 				pmap_invalidate_page(pmap, pv->pv_va);
 				cleared++;
 				if (pvf == pv)
 					pvf = NULL;
 				pv = NULL;
 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
 				    ("inconsistent pv lock %p %p for page %p",
 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
 			} else
 				not_cleared++;
 		}
 		PMAP_UNLOCK(pmap);
 		/* Rotate the PV list if it has more than one entry. */
 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 			m->md.pv_gen++;
 		}
 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
 	    not_cleared < PMAP_TS_REFERENCED_MAX);
 out:
 	rw_wunlock(lock);
 	pmap_free_zero_pages(&free);
 	return (cleared + not_cleared);
 }
 
 /*
  *	Apply the given advice to the specified range of addresses within the
  *	given pmap.  Depending on the advice, clear the referenced and/or
  *	modified flags in each mapping and set the mapped page's dirty field.
  */
 void
 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
 {
 	struct rwlock *lock;
 	pml4_entry_t *pml4e;
 	pdp_entry_t *pdpe;
 	pd_entry_t oldpde, *pde;
 	pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
 	vm_offset_t va_next;
 	vm_page_t m;
 	boolean_t anychanged;
 
 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
 		return;
 
 	/*
 	 * A/D bit emulation requires an alternate code path when clearing
 	 * the modified and accessed bits below. Since this function is
 	 * advisory in nature we skip it entirely for pmaps that require
 	 * A/D bit emulation.
 	 */
 	if (pmap_emulate_ad_bits(pmap))
 		return;
 
 	PG_A = pmap_accessed_bit(pmap);
 	PG_G = pmap_global_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 	anychanged = FALSE;
 	pmap_delayed_invl_started();
 	PMAP_LOCK(pmap);
 	for (; sva < eva; sva = va_next) {
 		pml4e = pmap_pml4e(pmap, sva);
 		if ((*pml4e & PG_V) == 0) {
 			va_next = (sva + NBPML4) & ~PML4MASK;
 			if (va_next < sva)
 				va_next = eva;
 			continue;
 		}
 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
 		if ((*pdpe & PG_V) == 0) {
 			va_next = (sva + NBPDP) & ~PDPMASK;
 			if (va_next < sva)
 				va_next = eva;
 			continue;
 		}
 		va_next = (sva + NBPDR) & ~PDRMASK;
 		if (va_next < sva)
 			va_next = eva;
 		pde = pmap_pdpe_to_pde(pdpe, sva);
 		oldpde = *pde;
 		if ((oldpde & PG_V) == 0)
 			continue;
 		else if ((oldpde & PG_PS) != 0) {
 			if ((oldpde & PG_MANAGED) == 0)
 				continue;
 			lock = NULL;
 			if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
 				if (lock != NULL)
 					rw_wunlock(lock);
 
 				/*
 				 * The large page mapping was destroyed.
 				 */
 				continue;
 			}
 
 			/*
 			 * Unless the page mappings are wired, remove the
 			 * mapping to a single page so that a subsequent
 			 * access may repromote.  Since the underlying page
 			 * table page is fully populated, this removal never
 			 * frees a page table page.
 			 */
 			if ((oldpde & PG_W) == 0) {
 				pte = pmap_pde_to_pte(pde, sva);
 				KASSERT((*pte & PG_V) != 0,
 				    ("pmap_advise: invalid PTE"));
 				pmap_remove_pte(pmap, pte, sva, *pde, NULL,
 				    &lock);
 				anychanged = TRUE;
 			}
 			if (lock != NULL)
 				rw_wunlock(lock);
 		}
 		if (va_next > eva)
 			va_next = eva;
 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 		    sva += PAGE_SIZE) {
 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED |
 			    PG_V))
 				continue;
 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 				if (advice == MADV_DONTNEED) {
 					/*
 					 * Future calls to pmap_is_modified()
 					 * can be avoided by making the page
 					 * dirty now.
 					 */
 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
 					vm_page_dirty(m);
 				}
 				atomic_clear_long(pte, PG_M | PG_A);
 			} else if ((*pte & PG_A) != 0)
 				atomic_clear_long(pte, PG_A);
 			else
 				continue;
 			if ((*pte & PG_G) != 0)
 				pmap_invalidate_page(pmap, sva);
 			else
 				anychanged = TRUE;
 		}
 	}
 	if (anychanged)
 		pmap_invalidate_all(pmap);
 	PMAP_UNLOCK(pmap);
 	pmap_delayed_invl_finished();
 }
 
 /*
  *	Clear the modify bits on the specified physical page.
  */
 void
 pmap_clear_modify(vm_page_t m)
 {
 	struct md_page *pvh;
 	pmap_t pmap;
 	pv_entry_t next_pv, pv;
 	pd_entry_t oldpde, *pde;
 	pt_entry_t oldpte, *pte, PG_M, PG_RW, PG_V;
 	struct rwlock *lock;
 	vm_offset_t va;
 	int md_gen, pvh_gen;
 
 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 	    ("pmap_clear_modify: page %p is not managed", m));
 	VM_OBJECT_ASSERT_WLOCKED(m->object);
 	KASSERT(!vm_page_xbusied(m),
 	    ("pmap_clear_modify: page %p is exclusive busied", m));
 
 	/*
 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
 	 * If the object containing the page is locked and the page is not
 	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
 	 */
 	if ((m->aflags & PGA_WRITEABLE) == 0)
 		return;
 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
 	rw_wlock(lock);
 restart:
 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
 		pmap = PV_PMAP(pv);
 		if (!PMAP_TRYLOCK(pmap)) {
 			pvh_gen = pvh->pv_gen;
 			rw_wunlock(lock);
 			PMAP_LOCK(pmap);
 			rw_wlock(lock);
 			if (pvh_gen != pvh->pv_gen) {
 				PMAP_UNLOCK(pmap);
 				goto restart;
 			}
 		}
 		PG_M = pmap_modified_bit(pmap);
 		PG_V = pmap_valid_bit(pmap);
 		PG_RW = pmap_rw_bit(pmap);
 		va = pv->pv_va;
 		pde = pmap_pde(pmap, va);
 		oldpde = *pde;
 		if ((oldpde & PG_RW) != 0) {
 			if (pmap_demote_pde_locked(pmap, pde, va, &lock)) {
 				if ((oldpde & PG_W) == 0) {
 					/*
 					 * Write protect the mapping to a
 					 * single page so that a subsequent
 					 * write access may repromote.
 					 */
 					va += VM_PAGE_TO_PHYS(m) - (oldpde &
 					    PG_PS_FRAME);
 					pte = pmap_pde_to_pte(pde, va);
 					oldpte = *pte;
 					if ((oldpte & PG_V) != 0) {
 						while (!atomic_cmpset_long(pte,
 						    oldpte,
 						    oldpte & ~(PG_M | PG_RW)))
 							oldpte = *pte;
 						vm_page_dirty(m);
 						pmap_invalidate_page(pmap, va);
 					}
 				}
 			}
 		}
 		PMAP_UNLOCK(pmap);
 	}
 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 		pmap = PV_PMAP(pv);
 		if (!PMAP_TRYLOCK(pmap)) {
 			md_gen = m->md.pv_gen;
 			pvh_gen = pvh->pv_gen;
 			rw_wunlock(lock);
 			PMAP_LOCK(pmap);
 			rw_wlock(lock);
 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
 				PMAP_UNLOCK(pmap);
 				goto restart;
 			}
 		}
 		PG_M = pmap_modified_bit(pmap);
 		PG_RW = pmap_rw_bit(pmap);
 		pde = pmap_pde(pmap, pv->pv_va);
 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
 		    " a 2mpage in page %p's pv list", m));
 		pte = pmap_pde_to_pte(pde, pv->pv_va);
 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 			atomic_clear_long(pte, PG_M);
 			pmap_invalidate_page(pmap, pv->pv_va);
 		}
 		PMAP_UNLOCK(pmap);
 	}
 	rw_wunlock(lock);
 }
 
 /*
  * Miscellaneous support routines follow
  */
 
 /* Adjust the cache mode for a 4KB page mapped via a PTE. */
 static __inline void
 pmap_pte_attr(pt_entry_t *pte, int cache_bits, int mask)
 {
 	u_int opte, npte;
 
 	/*
 	 * The cache mode bits are all in the low 32-bits of the
 	 * PTE, so we can just spin on updating the low 32-bits.
 	 */
 	do {
 		opte = *(u_int *)pte;
 		npte = opte & ~mask;
 		npte |= cache_bits;
 	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
 }
 
 /* Adjust the cache mode for a 2MB page mapped via a PDE. */
 static __inline void
 pmap_pde_attr(pd_entry_t *pde, int cache_bits, int mask)
 {
 	u_int opde, npde;
 
 	/*
 	 * The cache mode bits are all in the low 32-bits of the
 	 * PDE, so we can just spin on updating the low 32-bits.
 	 */
 	do {
 		opde = *(u_int *)pde;
 		npde = opde & ~mask;
 		npde |= cache_bits;
 	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
 }
 
 /*
  * Map a set of physical memory pages into the kernel virtual
  * address space. Return a pointer to where it is mapped. This
  * routine is intended to be used for mapping device memory,
  * NOT real memory.
  */
 void *
 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
 {
 	struct pmap_preinit_mapping *ppim;
 	vm_offset_t va, offset;
 	vm_size_t tmpsize;
 	int i;
 
 	offset = pa & PAGE_MASK;
 	size = round_page(offset + size);
 	pa = trunc_page(pa);
 
 	if (!pmap_initialized) {
 		va = 0;
 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
 			ppim = pmap_preinit_mapping + i;
 			if (ppim->va == 0) {
 				ppim->pa = pa;
 				ppim->sz = size;
 				ppim->mode = mode;
 				ppim->va = virtual_avail;
 				virtual_avail += size;
 				va = ppim->va;
 				break;
 			}
 		}
 		if (va == 0)
 			panic("%s: too many preinit mappings", __func__);
 	} else {
 		/*
 		 * If we have a preinit mapping, re-use it.
 		 */
 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
 			ppim = pmap_preinit_mapping + i;
 			if (ppim->pa == pa && ppim->sz == size &&
 			    ppim->mode == mode)
 				return ((void *)(ppim->va + offset));
 		}
 		/*
 		 * If the specified range of physical addresses fits within
 		 * the direct map window, use the direct map.
 		 */
 		if (pa < dmaplimit && pa + size < dmaplimit) {
 			va = PHYS_TO_DMAP(pa);
 			if (!pmap_change_attr(va, size, mode))
 				return ((void *)(va + offset));
 		}
 		va = kva_alloc(size);
 		if (va == 0)
 			panic("%s: Couldn't allocate KVA", __func__);
 	}
 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
 	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
 	pmap_invalidate_cache_range(va, va + tmpsize, FALSE);
 	return ((void *)(va + offset));
 }
 
 void *
 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
 {
 
 	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
 }
 
 void *
 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
 {
 
 	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
 }
 
 void
 pmap_unmapdev(vm_offset_t va, vm_size_t size)
 {
 	struct pmap_preinit_mapping *ppim;
 	vm_offset_t offset;
 	int i;
 
 	/* If we gave a direct map region in pmap_mapdev, do nothing */
 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
 		return;
 	offset = va & PAGE_MASK;
 	size = round_page(offset + size);
 	va = trunc_page(va);
 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
 		ppim = pmap_preinit_mapping + i;
 		if (ppim->va == va && ppim->sz == size) {
 			if (pmap_initialized)
 				return;
 			ppim->pa = 0;
 			ppim->va = 0;
 			ppim->sz = 0;
 			ppim->mode = 0;
 			if (va + size == virtual_avail)
 				virtual_avail = va;
 			return;
 		}
 	}
 	if (pmap_initialized)
 		kva_free(va, size);
 }
 
 /*
  * Tries to demote a 1GB page mapping.
  */
 static boolean_t
 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
 {
 	pdp_entry_t newpdpe, oldpdpe;
 	pd_entry_t *firstpde, newpde, *pde;
 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
 	vm_paddr_t mpdepa;
 	vm_page_t mpde;
 
 	PG_A = pmap_accessed_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	oldpdpe = *pdpe;
 	KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
 	if ((mpde = vm_page_alloc(NULL, va >> PDPSHIFT, VM_ALLOC_INTERRUPT |
 	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
 		    " in pmap %p", va, pmap);
 		return (FALSE);
 	}
 	mpdepa = VM_PAGE_TO_PHYS(mpde);
 	firstpde = (pd_entry_t *)PHYS_TO_DMAP(mpdepa);
 	newpdpe = mpdepa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
 	KASSERT((oldpdpe & PG_A) != 0,
 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
 	newpde = oldpdpe;
 
 	/*
 	 * Initialize the page directory page.
 	 */
 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
 		*pde = newpde;
 		newpde += NBPDR;
 	}
 
 	/*
 	 * Demote the mapping.
 	 */
 	*pdpe = newpdpe;
 
 	/*
 	 * Invalidate a stale recursive mapping of the page directory page.
 	 */
 	pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
 
 	pmap_pdpe_demotions++;
 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
 	    " in pmap %p", va, pmap);
 	return (TRUE);
 }
 
 /*
  * Sets the memory attribute for the specified page.
  */
 void
 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
 {
 
 	m->md.pat_mode = ma;
 
 	/*
 	 * If "m" is a normal page, update its direct mapping.  This update
 	 * can be relied upon to perform any cache operations that are
 	 * required for data coherence.
 	 */
 	if ((m->flags & PG_FICTITIOUS) == 0 &&
 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
 	    m->md.pat_mode))
 		panic("memory attribute change on the direct map failed");
 }
 
 /*
  * Changes the specified virtual address range's memory type to that given by
  * the parameter "mode".  The specified virtual address range must be
  * completely contained within either the direct map or the kernel map.  If
  * the virtual address range is contained within the kernel map, then the
  * memory type for each of the corresponding ranges of the direct map is also
  * changed.  (The corresponding ranges of the direct map are those ranges that
  * map the same physical pages as the specified virtual address range.)  These
  * changes to the direct map are necessary because Intel describes the
  * behavior of their processors as "undefined" if two or more mappings to the
  * same physical page have different memory types.
  *
  * Returns zero if the change completed successfully, and either EINVAL or
  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
  * of the virtual address range was not mapped, and ENOMEM is returned if
  * there was insufficient memory available to complete the change.  In the
  * latter case, the memory type may have been changed on some part of the
  * virtual address range or the direct map.
  */
 int
 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
 {
 	int error;
 
 	PMAP_LOCK(kernel_pmap);
 	error = pmap_change_attr_locked(va, size, mode);
 	PMAP_UNLOCK(kernel_pmap);
 	return (error);
 }
 
 static int
 pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode)
 {
 	vm_offset_t base, offset, tmpva;
 	vm_paddr_t pa_start, pa_end, pa_end1;
 	pdp_entry_t *pdpe;
 	pd_entry_t *pde;
 	pt_entry_t *pte;
 	int cache_bits_pte, cache_bits_pde, error;
 	boolean_t changed;
 
 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
 	base = trunc_page(va);
 	offset = va & PAGE_MASK;
 	size = round_page(offset + size);
 
 	/*
 	 * Only supported on kernel virtual addresses, including the direct
 	 * map but excluding the recursive map.
 	 */
 	if (base < DMAP_MIN_ADDRESS)
 		return (EINVAL);
 
 	cache_bits_pde = pmap_cache_bits(kernel_pmap, mode, 1);
 	cache_bits_pte = pmap_cache_bits(kernel_pmap, mode, 0);
 	changed = FALSE;
 
 	/*
 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
 	 * into 4KB pages if required.
 	 */
 	for (tmpva = base; tmpva < base + size; ) {
 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
 		if (pdpe == NULL || *pdpe == 0)
 			return (EINVAL);
 		if (*pdpe & PG_PS) {
 			/*
 			 * If the current 1GB page already has the required
 			 * memory type, then we need not demote this page. Just
 			 * increment tmpva to the next 1GB page frame.
 			 */
 			if ((*pdpe & X86_PG_PDE_CACHE) == cache_bits_pde) {
 				tmpva = trunc_1gpage(tmpva) + NBPDP;
 				continue;
 			}
 
 			/*
 			 * If the current offset aligns with a 1GB page frame
 			 * and there is at least 1GB left within the range, then
 			 * we need not break down this page into 2MB pages.
 			 */
 			if ((tmpva & PDPMASK) == 0 &&
 			    tmpva + PDPMASK < base + size) {
 				tmpva += NBPDP;
 				continue;
 			}
 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
 				return (ENOMEM);
 		}
 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
 		if (*pde == 0)
 			return (EINVAL);
 		if (*pde & PG_PS) {
 			/*
 			 * If the current 2MB page already has the required
 			 * memory type, then we need not demote this page. Just
 			 * increment tmpva to the next 2MB page frame.
 			 */
 			if ((*pde & X86_PG_PDE_CACHE) == cache_bits_pde) {
 				tmpva = trunc_2mpage(tmpva) + NBPDR;
 				continue;
 			}
 
 			/*
 			 * If the current offset aligns with a 2MB page frame
 			 * and there is at least 2MB left within the range, then
 			 * we need not break down this page into 4KB pages.
 			 */
 			if ((tmpva & PDRMASK) == 0 &&
 			    tmpva + PDRMASK < base + size) {
 				tmpva += NBPDR;
 				continue;
 			}
 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
 				return (ENOMEM);
 		}
 		pte = pmap_pde_to_pte(pde, tmpva);
 		if (*pte == 0)
 			return (EINVAL);
 		tmpva += PAGE_SIZE;
 	}
 	error = 0;
 
 	/*
 	 * Ok, all the pages exist, so run through them updating their
 	 * cache mode if required.
 	 */
 	pa_start = pa_end = 0;
 	for (tmpva = base; tmpva < base + size; ) {
 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
 		if (*pdpe & PG_PS) {
 			if ((*pdpe & X86_PG_PDE_CACHE) != cache_bits_pde) {
 				pmap_pde_attr(pdpe, cache_bits_pde,
 				    X86_PG_PDE_CACHE);
 				changed = TRUE;
 			}
 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
 			    (*pdpe & PG_PS_FRAME) < dmaplimit) {
 				if (pa_start == pa_end) {
 					/* Start physical address run. */
 					pa_start = *pdpe & PG_PS_FRAME;
 					pa_end = pa_start + NBPDP;
 				} else if (pa_end == (*pdpe & PG_PS_FRAME))
 					pa_end += NBPDP;
 				else {
 					/* Run ended, update direct map. */
 					error = pmap_change_attr_locked(
 					    PHYS_TO_DMAP(pa_start),
 					    pa_end - pa_start, mode);
 					if (error != 0)
 						break;
 					/* Start physical address run. */
 					pa_start = *pdpe & PG_PS_FRAME;
 					pa_end = pa_start + NBPDP;
 				}
 			}
 			tmpva = trunc_1gpage(tmpva) + NBPDP;
 			continue;
 		}
 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
 		if (*pde & PG_PS) {
 			if ((*pde & X86_PG_PDE_CACHE) != cache_bits_pde) {
 				pmap_pde_attr(pde, cache_bits_pde,
 				    X86_PG_PDE_CACHE);
 				changed = TRUE;
 			}
 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
 			    (*pde & PG_PS_FRAME) < dmaplimit) {
 				if (pa_start == pa_end) {
 					/* Start physical address run. */
 					pa_start = *pde & PG_PS_FRAME;
 					pa_end = pa_start + NBPDR;
 				} else if (pa_end == (*pde & PG_PS_FRAME))
 					pa_end += NBPDR;
 				else {
 					/* Run ended, update direct map. */
 					error = pmap_change_attr_locked(
 					    PHYS_TO_DMAP(pa_start),
 					    pa_end - pa_start, mode);
 					if (error != 0)
 						break;
 					/* Start physical address run. */
 					pa_start = *pde & PG_PS_FRAME;
 					pa_end = pa_start + NBPDR;
 				}
 			}
 			tmpva = trunc_2mpage(tmpva) + NBPDR;
 		} else {
 			pte = pmap_pde_to_pte(pde, tmpva);
 			if ((*pte & X86_PG_PTE_CACHE) != cache_bits_pte) {
 				pmap_pte_attr(pte, cache_bits_pte,
 				    X86_PG_PTE_CACHE);
 				changed = TRUE;
 			}
 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
 			    (*pte & PG_PS_FRAME) < dmaplimit) {
 				if (pa_start == pa_end) {
 					/* Start physical address run. */
 					pa_start = *pte & PG_FRAME;
 					pa_end = pa_start + PAGE_SIZE;
 				} else if (pa_end == (*pte & PG_FRAME))
 					pa_end += PAGE_SIZE;
 				else {
 					/* Run ended, update direct map. */
 					error = pmap_change_attr_locked(
 					    PHYS_TO_DMAP(pa_start),
 					    pa_end - pa_start, mode);
 					if (error != 0)
 						break;
 					/* Start physical address run. */
 					pa_start = *pte & PG_FRAME;
 					pa_end = pa_start + PAGE_SIZE;
 				}
 			}
 			tmpva += PAGE_SIZE;
 		}
 	}
 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
 		pa_end1 = MIN(pa_end, dmaplimit);
 		if (pa_start != pa_end1)
 			error = pmap_change_attr_locked(PHYS_TO_DMAP(pa_start),
 			    pa_end1 - pa_start, mode);
 	}
 
 	/*
 	 * Flush CPU caches if required to make sure any data isn't cached that
 	 * shouldn't be, etc.
 	 */
 	if (changed) {
 		pmap_invalidate_range(kernel_pmap, base, tmpva);
 		pmap_invalidate_cache_range(base, tmpva, FALSE);
 	}
 	return (error);
 }
 
 /*
  * Demotes any mapping within the direct map region that covers more than the
  * specified range of physical addresses.  This range's size must be a power
  * of two and its starting address must be a multiple of its size.  Since the
  * demotion does not change any attributes of the mapping, a TLB invalidation
  * is not mandatory.  The caller may, however, request a TLB invalidation.
  */
 void
 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate)
 {
 	pdp_entry_t *pdpe;
 	pd_entry_t *pde;
 	vm_offset_t va;
 	boolean_t changed;
 
 	if (len == 0)
 		return;
 	KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
 	KASSERT((base & (len - 1)) == 0,
 	    ("pmap_demote_DMAP: base is not a multiple of len"));
 	if (len < NBPDP && base < dmaplimit) {
 		va = PHYS_TO_DMAP(base);
 		changed = FALSE;
 		PMAP_LOCK(kernel_pmap);
 		pdpe = pmap_pdpe(kernel_pmap, va);
 		if ((*pdpe & X86_PG_V) == 0)
 			panic("pmap_demote_DMAP: invalid PDPE");
 		if ((*pdpe & PG_PS) != 0) {
 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, va))
 				panic("pmap_demote_DMAP: PDPE failed");
 			changed = TRUE;
 		}
 		if (len < NBPDR) {
 			pde = pmap_pdpe_to_pde(pdpe, va);
 			if ((*pde & X86_PG_V) == 0)
 				panic("pmap_demote_DMAP: invalid PDE");
 			if ((*pde & PG_PS) != 0) {
 				if (!pmap_demote_pde(kernel_pmap, pde, va))
 					panic("pmap_demote_DMAP: PDE failed");
 				changed = TRUE;
 			}
 		}
 		if (changed && invalidate)
 			pmap_invalidate_page(kernel_pmap, va);
 		PMAP_UNLOCK(kernel_pmap);
 	}
 }
 
 /*
  * perform the pmap work for mincore
  */
 int
 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
 {
 	pd_entry_t *pdep;
 	pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
 	vm_paddr_t pa;
 	int val;
 
 	PG_A = pmap_accessed_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 
 	PMAP_LOCK(pmap);
 retry:
 	pdep = pmap_pde(pmap, addr);
 	if (pdep != NULL && (*pdep & PG_V)) {
 		if (*pdep & PG_PS) {
 			pte = *pdep;
 			/* Compute the physical address of the 4KB page. */
 			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
 			    PG_FRAME;
 			val = MINCORE_SUPER;
 		} else {
 			pte = *pmap_pde_to_pte(pdep, addr);
 			pa = pte & PG_FRAME;
 			val = 0;
 		}
 	} else {
 		pte = 0;
 		pa = 0;
 		val = 0;
 	}
 	if ((pte & PG_V) != 0) {
 		val |= MINCORE_INCORE;
 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
 		if ((pte & PG_A) != 0)
 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
 	}
 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
 		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
 		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
 			goto retry;
 	} else
 		PA_UNLOCK_COND(*locked_pa);
 	PMAP_UNLOCK(pmap);
 	return (val);
 }
 
 static uint64_t
 pmap_pcid_alloc(pmap_t pmap, u_int cpuid)
 {
 	uint32_t gen, new_gen, pcid_next;
 
 	CRITICAL_ASSERT(curthread);
 	gen = PCPU_GET(pcid_gen);
 	if (pmap->pm_pcids[cpuid].pm_pcid == PMAP_PCID_KERN ||
 	    pmap->pm_pcids[cpuid].pm_gen == gen)
 		return (CR3_PCID_SAVE);
 	pcid_next = PCPU_GET(pcid_next);
 	KASSERT(pcid_next <= PMAP_PCID_OVERMAX, ("cpu %d pcid_next %#x",
 	    cpuid, pcid_next));
 	if (pcid_next == PMAP_PCID_OVERMAX) {
 		new_gen = gen + 1;
 		if (new_gen == 0)
 			new_gen = 1;
 		PCPU_SET(pcid_gen, new_gen);
 		pcid_next = PMAP_PCID_KERN + 1;
 	} else {
 		new_gen = gen;
 	}
 	pmap->pm_pcids[cpuid].pm_pcid = pcid_next;
 	pmap->pm_pcids[cpuid].pm_gen = new_gen;
 	PCPU_SET(pcid_next, pcid_next + 1);
 	return (0);
 }
 
 void
 pmap_activate_sw(struct thread *td)
 {
 	pmap_t oldpmap, pmap;
 	uint64_t cached, cr3;
 	u_int cpuid;
 
 	oldpmap = PCPU_GET(curpmap);
 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
 	if (oldpmap == pmap)
 		return;
 	cpuid = PCPU_GET(cpuid);
 #ifdef SMP
 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
 #else
 	CPU_SET(cpuid, &pmap->pm_active);
 #endif
 	cr3 = rcr3();
 	if (pmap_pcid_enabled) {
 		cached = pmap_pcid_alloc(pmap, cpuid);
 		KASSERT(pmap->pm_pcids[cpuid].pm_pcid >= 0 &&
 		    pmap->pm_pcids[cpuid].pm_pcid < PMAP_PCID_OVERMAX,
 		    ("pmap %p cpu %d pcid %#x", pmap, cpuid,
 		    pmap->pm_pcids[cpuid].pm_pcid));
 		KASSERT(pmap->pm_pcids[cpuid].pm_pcid != PMAP_PCID_KERN ||
 		    pmap == kernel_pmap,
 		    ("non-kernel pmap thread %p pmap %p cpu %d pcid %#x",
 		    td, pmap, cpuid, pmap->pm_pcids[cpuid].pm_pcid));
 		if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3) {
 			load_cr3(pmap->pm_cr3 | pmap->pm_pcids[cpuid].pm_pcid |
 			    cached);
 			if (cached)
 				PCPU_INC(pm_save_cnt);
 		}
 	} else if (cr3 != pmap->pm_cr3) {
 		load_cr3(pmap->pm_cr3);
 	}
 	PCPU_SET(curpmap, pmap);
 #ifdef SMP
 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
 #else
 	CPU_CLR(cpuid, &oldpmap->pm_active);
 #endif
 }
 
 void
 pmap_activate(struct thread *td)
 {
 
 	critical_enter();
 	pmap_activate_sw(td);
 	critical_exit();
 }
 
 void
 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
 {
 }
 
 /*
  *	Increase the starting virtual address of the given mapping if a
  *	different alignment might result in more superpage mappings.
  */
 void
 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
     vm_offset_t *addr, vm_size_t size)
 {
 	vm_offset_t superpage_offset;
 
 	if (size < NBPDR)
 		return;
 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
 		offset += ptoa(object->pg_color);
 	superpage_offset = offset & PDRMASK;
 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
 	    (*addr & PDRMASK) == superpage_offset)
 		return;
 	if ((*addr & PDRMASK) < superpage_offset)
 		*addr = (*addr & ~PDRMASK) + superpage_offset;
 	else
 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
 }
 
 #ifdef INVARIANTS
 static unsigned long num_dirty_emulations;
 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
 	     &num_dirty_emulations, 0, NULL);
 
 static unsigned long num_accessed_emulations;
 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
 	     &num_accessed_emulations, 0, NULL);
 
 static unsigned long num_superpage_accessed_emulations;
 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
 	     &num_superpage_accessed_emulations, 0, NULL);
 
 static unsigned long ad_emulation_superpage_promotions;
 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
 	     &ad_emulation_superpage_promotions, 0, NULL);
 #endif	/* INVARIANTS */
 
 int
 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
 {
 	int rv;
 	struct rwlock *lock;
 	vm_page_t m, mpte;
 	pd_entry_t *pde;
 	pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
 
 	KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
 	    ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
 
 	if (!pmap_emulate_ad_bits(pmap))
 		return (-1);
 
 	PG_A = pmap_accessed_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 
 	rv = -1;
 	lock = NULL;
 	PMAP_LOCK(pmap);
 
 	pde = pmap_pde(pmap, va);
 	if (pde == NULL || (*pde & PG_V) == 0)
 		goto done;
 
 	if ((*pde & PG_PS) != 0) {
 		if (ftype == VM_PROT_READ) {
 #ifdef INVARIANTS
 			atomic_add_long(&num_superpage_accessed_emulations, 1);
 #endif
 			*pde |= PG_A;
 			rv = 0;
 		}
 		goto done;
 	}
 
 	pte = pmap_pde_to_pte(pde, va);
 	if ((*pte & PG_V) == 0)
 		goto done;
 
 	if (ftype == VM_PROT_WRITE) {
 		if ((*pte & PG_RW) == 0)
 			goto done;
 		/*
 		 * Set the modified and accessed bits simultaneously.
 		 *
 		 * Intel EPT PTEs that do software emulation of A/D bits map
 		 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
 		 * An EPT misconfiguration is triggered if the PTE is writable
 		 * but not readable (WR=10). This is avoided by setting PG_A
 		 * and PG_M simultaneously.
 		 */
 		*pte |= PG_M | PG_A;
 	} else {
 		*pte |= PG_A;
 	}
 
 	/* try to promote the mapping */
 	if (va < VM_MAXUSER_ADDRESS)
 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
 	else
 		mpte = NULL;
 
 	m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
 
 	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
 	    pmap_ps_enabled(pmap) &&
 	    (m->flags & PG_FICTITIOUS) == 0 &&
 	    vm_reserv_level_iffullpop(m) == 0) {
 		pmap_promote_pde(pmap, pde, va, &lock);
 #ifdef INVARIANTS
 		atomic_add_long(&ad_emulation_superpage_promotions, 1);
 #endif
 	}
 #ifdef INVARIANTS
 	if (ftype == VM_PROT_WRITE)
 		atomic_add_long(&num_dirty_emulations, 1);
 	else
 		atomic_add_long(&num_accessed_emulations, 1);
 #endif
 	rv = 0;		/* success */
 done:
 	if (lock != NULL)
 		rw_wunlock(lock);
 	PMAP_UNLOCK(pmap);
 	return (rv);
 }
 
 void
 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
 {
 	pml4_entry_t *pml4;
 	pdp_entry_t *pdp;
 	pd_entry_t *pde;
 	pt_entry_t *pte, PG_V;
 	int idx;
 
 	idx = 0;
 	PG_V = pmap_valid_bit(pmap);
 	PMAP_LOCK(pmap);
 
 	pml4 = pmap_pml4e(pmap, va);
 	ptr[idx++] = *pml4;
 	if ((*pml4 & PG_V) == 0)
 		goto done;
 
 	pdp = pmap_pml4e_to_pdpe(pml4, va);
 	ptr[idx++] = *pdp;
 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
 		goto done;
 
 	pde = pmap_pdpe_to_pde(pdp, va);
 	ptr[idx++] = *pde;
 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
 		goto done;
 
 	pte = pmap_pde_to_pte(pde, va);
 	ptr[idx++] = *pte;
 
 done:
 	PMAP_UNLOCK(pmap);
 	*num = idx;
 }
 
 /**
  * Get the kernel virtual address of a set of physical pages. If there are
  * physical addresses not covered by the DMAP perform a transient mapping
  * that will be removed when calling pmap_unmap_io_transient.
  *
  * \param page        The pages the caller wishes to obtain the virtual
  *                    address on the kernel memory map.
  * \param vaddr       On return contains the kernel virtual memory address
  *                    of the pages passed in the page parameter.
  * \param count       Number of pages passed in.
  * \param can_fault   TRUE if the thread using the mapped pages can take
  *                    page faults, FALSE otherwise.
  *
  * \returns TRUE if the caller must call pmap_unmap_io_transient when
  *          finished or FALSE otherwise.
  *
  */
 boolean_t
 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
     boolean_t can_fault)
 {
 	vm_paddr_t paddr;
 	boolean_t needs_mapping;
 	pt_entry_t *pte;
 	int cache_bits, error, i;
 
 	/*
 	 * Allocate any KVA space that we need, this is done in a separate
 	 * loop to prevent calling vmem_alloc while pinned.
 	 */
 	needs_mapping = FALSE;
 	for (i = 0; i < count; i++) {
 		paddr = VM_PAGE_TO_PHYS(page[i]);
 		if (__predict_false(paddr >= dmaplimit)) {
 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
 			needs_mapping = TRUE;
 		} else {
 			vaddr[i] = PHYS_TO_DMAP(paddr);
 		}
 	}
 
 	/* Exit early if everything is covered by the DMAP */
 	if (!needs_mapping)
 		return (FALSE);
 
 	/*
 	 * NB:  The sequence of updating a page table followed by accesses
 	 * to the corresponding pages used in the !DMAP case is subject to
 	 * the situation described in the "AMD64 Architecture Programmer's
 	 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
 	 * Coherency Considerations".  Therefore, issuing the INVLPG right
 	 * after modifying the PTE bits is crucial.
 	 */
 	if (!can_fault)
 		sched_pin();
 	for (i = 0; i < count; i++) {
 		paddr = VM_PAGE_TO_PHYS(page[i]);
 		if (paddr >= dmaplimit) {
 			if (can_fault) {
 				/*
 				 * Slow path, since we can get page faults
 				 * while mappings are active don't pin the
 				 * thread to the CPU and instead add a global
 				 * mapping visible to all CPUs.
 				 */
 				pmap_qenter(vaddr[i], &page[i], 1);
 			} else {
 				pte = vtopte(vaddr[i]);
 				cache_bits = pmap_cache_bits(kernel_pmap,
 				    page[i]->md.pat_mode, 0);
 				pte_store(pte, paddr | X86_PG_RW | X86_PG_V |
 				    cache_bits);
 				invlpg(vaddr[i]);
 			}
 		}
 	}
 
 	return (needs_mapping);
 }
 
 void
 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
     boolean_t can_fault)
 {
 	vm_paddr_t paddr;
 	int i;
 
 	if (!can_fault)
 		sched_unpin();
 	for (i = 0; i < count; i++) {
 		paddr = VM_PAGE_TO_PHYS(page[i]);
 		if (paddr >= dmaplimit) {
 			if (can_fault)
 				pmap_qremove(vaddr[i], 1);
 			vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
 		}
 	}
 }
 
 vm_offset_t
 pmap_quick_enter_page(vm_page_t m)
 {
 	vm_paddr_t paddr;
 
 	paddr = VM_PAGE_TO_PHYS(m);
 	if (paddr < dmaplimit)
 		return (PHYS_TO_DMAP(paddr));
 	mtx_lock_spin(&qframe_mtx);
 	KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
 	pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
 	    X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0));
 	return (qframe);
 }
 
 void
 pmap_quick_remove_page(vm_offset_t addr)
 {
 
 	if (addr != qframe)
 		return;
 	pte_store(vtopte(qframe), 0);
 	invlpg(qframe);
 	mtx_unlock_spin(&qframe_mtx);
 }
 
 #include "opt_ddb.h"
 #ifdef DDB
 #include <ddb/ddb.h>
 
 DB_SHOW_COMMAND(pte, pmap_print_pte)
 {
 	pmap_t pmap;
 	pml4_entry_t *pml4;
 	pdp_entry_t *pdp;
 	pd_entry_t *pde;
 	pt_entry_t *pte, PG_V;
 	vm_offset_t va;
 
 	if (have_addr) {
 		va = (vm_offset_t)addr;
 		pmap = PCPU_GET(curpmap); /* XXX */
 	} else {
 		db_printf("show pte addr\n");
 		return;
 	}
 	PG_V = pmap_valid_bit(pmap);
 	pml4 = pmap_pml4e(pmap, va);
 	db_printf("VA %#016lx pml4e %#016lx", va, *pml4);
 	if ((*pml4 & PG_V) == 0) {
 		db_printf("\n");
 		return;
 	}
 	pdp = pmap_pml4e_to_pdpe(pml4, va);
 	db_printf(" pdpe %#016lx", *pdp);
 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
 		db_printf("\n");
 		return;
 	}
 	pde = pmap_pdpe_to_pde(pdp, va);
 	db_printf(" pde %#016lx", *pde);
 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
 		db_printf("\n");
 		return;
 	}
 	pte = pmap_pde_to_pte(pde, va);
 	db_printf(" pte %#016lx\n", *pte);
 }
 
 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
 {
 	vm_paddr_t a;
 
 	if (have_addr) {
 		a = (vm_paddr_t)addr;
 		db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
 	} else {
 		db_printf("show phys2dmap addr\n");
 	}
 }
 #endif
Index: head/sys/amd64/include/pmap.h
===================================================================
--- head/sys/amd64/include/pmap.h	(revision 306019)
+++ head/sys/amd64/include/pmap.h	(revision 306020)
@@ -1,421 +1,450 @@
 /*-
  * Copyright (c) 2003 Peter Wemm.
  * Copyright (c) 1991 Regents of the University of California.
  * All rights reserved.
  *
  * This code is derived from software contributed to Berkeley by
  * the Systems Programming Group of the University of Utah Computer
  * Science Department and William Jolitz of UUNET Technologies Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 4. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  * Derived from hp300 version by Mike Hibler, this version by William
  * Jolitz uses a recursive map [a pde points to the page directory] to
  * map the page tables using the pagetables themselves. This is done to
  * reduce the impact on kernel virtual memory for lots of sparse address
  * space, and to reduce the cost of memory to each process.
  *
  *	from: hp300: @(#)pmap.h	7.2 (Berkeley) 12/16/90
  *	from: @(#)pmap.h	7.4 (Berkeley) 5/12/91
  * $FreeBSD$
  */
 
 #ifndef _MACHINE_PMAP_H_
 #define	_MACHINE_PMAP_H_
 
 /*
  * Page-directory and page-table entries follow this format, with a few
  * of the fields not present here and there, depending on a lot of things.
  */
 				/* ---- Intel Nomenclature ---- */
 #define	X86_PG_V	0x001	/* P	Valid			*/
 #define	X86_PG_RW	0x002	/* R/W	Read/Write		*/
 #define	X86_PG_U	0x004	/* U/S  User/Supervisor		*/
 #define	X86_PG_NC_PWT	0x008	/* PWT	Write through		*/
 #define	X86_PG_NC_PCD	0x010	/* PCD	Cache disable		*/
 #define	X86_PG_A	0x020	/* A	Accessed		*/
 #define	X86_PG_M	0x040	/* D	Dirty			*/
 #define	X86_PG_PS	0x080	/* PS	Page size (0=4k,1=2M)	*/
 #define	X86_PG_PTE_PAT	0x080	/* PAT	PAT index		*/
 #define	X86_PG_G	0x100	/* G	Global			*/
 #define	X86_PG_AVAIL1	0x200	/*    /	Available for system	*/
 #define	X86_PG_AVAIL2	0x400	/*   <	programmers use		*/
 #define	X86_PG_AVAIL3	0x800	/*    \				*/
 #define	X86_PG_PDE_PAT	0x1000	/* PAT	PAT index		*/
 #define	X86_PG_NX	(1ul<<63) /* No-execute */
 #define	X86_PG_AVAIL(x)	(1ul << (x))
 
 /* Page level cache control fields used to determine the PAT type */
 #define	X86_PG_PDE_CACHE (X86_PG_PDE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD)
 #define	X86_PG_PTE_CACHE (X86_PG_PTE_PAT | X86_PG_NC_PWT | X86_PG_NC_PCD)
 
 /*
  * Intel extended page table (EPT) bit definitions.
  */
 #define	EPT_PG_READ		0x001	/* R	Read		*/
 #define	EPT_PG_WRITE		0x002	/* W	Write		*/
 #define	EPT_PG_EXECUTE		0x004	/* X	Execute		*/
 #define	EPT_PG_IGNORE_PAT	0x040	/* IPAT	Ignore PAT	*/
 #define	EPT_PG_PS		0x080	/* PS	Page size	*/
 #define	EPT_PG_A		0x100	/* A	Accessed	*/
 #define	EPT_PG_M		0x200	/* D	Dirty		*/
 #define	EPT_PG_MEMORY_TYPE(x)	((x) << 3) /* MT Memory Type	*/
 
 /*
  * Define the PG_xx macros in terms of the bits on x86 PTEs.
  */
 #define	PG_V		X86_PG_V
 #define	PG_RW		X86_PG_RW
 #define	PG_U		X86_PG_U
 #define	PG_NC_PWT	X86_PG_NC_PWT
 #define	PG_NC_PCD	X86_PG_NC_PCD
 #define	PG_A		X86_PG_A
 #define	PG_M		X86_PG_M
 #define	PG_PS		X86_PG_PS
 #define	PG_PTE_PAT	X86_PG_PTE_PAT
 #define	PG_G		X86_PG_G
 #define	PG_AVAIL1	X86_PG_AVAIL1
 #define	PG_AVAIL2	X86_PG_AVAIL2
 #define	PG_AVAIL3	X86_PG_AVAIL3
 #define	PG_PDE_PAT	X86_PG_PDE_PAT
 #define	PG_NX		X86_PG_NX
 #define	PG_PDE_CACHE	X86_PG_PDE_CACHE
 #define	PG_PTE_CACHE	X86_PG_PTE_CACHE
 
 /* Our various interpretations of the above */
 #define	PG_W		X86_PG_AVAIL3	/* "Wired" pseudoflag */
 #define	PG_MANAGED	X86_PG_AVAIL2
 #define	EPT_PG_EMUL_V	X86_PG_AVAIL(52)
 #define	EPT_PG_EMUL_RW	X86_PG_AVAIL(53)
 #define	PG_FRAME	(0x000ffffffffff000ul)
 #define	PG_PS_FRAME	(0x000fffffffe00000ul)
 
 /*
  * Promotion to a 2MB (PDE) page mapping requires that the corresponding 4KB
  * (PTE) page mappings have identical settings for the following fields:
  */
 #define	PG_PTE_PROMOTE	(PG_NX | PG_MANAGED | PG_W | PG_G | PG_PTE_CACHE | \
 	    PG_M | PG_A | PG_U | PG_RW | PG_V)
 
 /*
  * Page Protection Exception bits
  */
 
 #define PGEX_P		0x01	/* Protection violation vs. not present */
 #define PGEX_W		0x02	/* during a Write cycle */
 #define PGEX_U		0x04	/* access from User mode (UPL) */
 #define PGEX_RSV	0x08	/* reserved PTE field is non-zero */
 #define PGEX_I		0x10	/* during an instruction fetch */
 
 /* 
  * undef the PG_xx macros that define bits in the regular x86 PTEs that
  * have a different position in nested PTEs. This is done when compiling
  * code that needs to be aware of the differences between regular x86 and
  * nested PTEs.
  *
  * The appropriate bitmask will be calculated at runtime based on the pmap
  * type.
  */
 #ifdef AMD64_NPT_AWARE
 #undef PG_AVAIL1		/* X86_PG_AVAIL1 aliases with EPT_PG_M */
 #undef PG_G
 #undef PG_A
 #undef PG_M
 #undef PG_PDE_PAT
 #undef PG_PDE_CACHE
 #undef PG_PTE_PAT
 #undef PG_PTE_CACHE
 #undef PG_RW
 #undef PG_V
 #endif
 
 /*
  * Pte related macros.  This is complicated by having to deal with
  * the sign extension of the 48th bit.
  */
 #define KVADDR(l4, l3, l2, l1) ( \
 	((unsigned long)-1 << 47) | \
 	((unsigned long)(l4) << PML4SHIFT) | \
 	((unsigned long)(l3) << PDPSHIFT) | \
 	((unsigned long)(l2) << PDRSHIFT) | \
 	((unsigned long)(l1) << PAGE_SHIFT))
 
 #define UVADDR(l4, l3, l2, l1) ( \
 	((unsigned long)(l4) << PML4SHIFT) | \
 	((unsigned long)(l3) << PDPSHIFT) | \
 	((unsigned long)(l2) << PDRSHIFT) | \
 	((unsigned long)(l1) << PAGE_SHIFT))
 
 /*
  * Number of kernel PML4 slots.  Can be anywhere from 1 to 64 or so,
  * but setting it larger than NDMPML4E makes no sense.
  *
  * Each slot provides .5 TB of kernel virtual space.
  */
 #define NKPML4E		4
 
 #define	NUPML4E		(NPML4EPG/2)	/* number of userland PML4 pages */
 #define	NUPDPE		(NUPML4E*NPDPEPG)/* number of userland PDP pages */
 #define	NUPDE		(NUPDPE*NPDEPG)	/* number of userland PD entries */
 
 /*
  * NDMPML4E is the maximum number of PML4 entries that will be
  * used to implement the direct map.  It must be a power of two,
  * and should generally exceed NKPML4E.  The maximum possible
  * value is 64; using 128 will make the direct map intrude into
  * the recursive page table map.
  */
 #define	NDMPML4E	8
 
 /*
  * These values control the layout of virtual memory.  The starting address
  * of the direct map, which is controlled by DMPML4I, must be a multiple of
  * its size.  (See the PHYS_TO_DMAP() and DMAP_TO_PHYS() macros.)
  *
  * Note: KPML4I is the index of the (single) level 4 page that maps
  * the KVA that holds KERNBASE, while KPML4BASE is the index of the
  * first level 4 page that maps VM_MIN_KERNEL_ADDRESS.  If NKPML4E
  * is 1, these are the same, otherwise KPML4BASE < KPML4I and extra
  * level 4 PDEs are needed to map from VM_MIN_KERNEL_ADDRESS up to
  * KERNBASE.
  *
  * (KPML4I combines with KPDPI to choose where KERNBASE starts.
  * Or, in other words, KPML4I provides bits 39..47 of KERNBASE,
  * and KPDPI provides bits 30..38.)
  */
 #define	PML4PML4I	(NPML4EPG/2)	/* Index of recursive pml4 mapping */
 
 #define	KPML4BASE	(NPML4EPG-NKPML4E) /* KVM at highest addresses */
 #define	DMPML4I		rounddown(KPML4BASE-NDMPML4E, NDMPML4E) /* Below KVM */
 
 #define	KPML4I		(NPML4EPG-1)
 #define	KPDPI		(NPDPEPG-2)	/* kernbase at -2GB */
 
 /*
  * XXX doesn't really belong here I guess...
  */
 #define ISA_HOLE_START    0xa0000
 #define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START)
 
 #define	PMAP_PCID_NONE		0xffffffff
 #define	PMAP_PCID_KERN		0
 #define	PMAP_PCID_OVERMAX	0x1000
 
 #ifndef LOCORE
 
 #include <sys/queue.h>
 #include <sys/_cpuset.h>
 #include <sys/_lock.h>
 #include <sys/_mutex.h>
 
 #include <vm/_vm_radix.h>
 
 typedef u_int64_t pd_entry_t;
 typedef u_int64_t pt_entry_t;
 typedef u_int64_t pdp_entry_t;
 typedef u_int64_t pml4_entry_t;
 
 /*
  * Address of current address space page table maps and directories.
  */
 #ifdef _KERNEL
 #define	addr_PTmap	(KVADDR(PML4PML4I, 0, 0, 0))
 #define	addr_PDmap	(KVADDR(PML4PML4I, PML4PML4I, 0, 0))
 #define	addr_PDPmap	(KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, 0))
 #define	addr_PML4map	(KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I))
 #define	addr_PML4pml4e	(addr_PML4map + (PML4PML4I * sizeof(pml4_entry_t)))
 #define	PTmap		((pt_entry_t *)(addr_PTmap))
 #define	PDmap		((pd_entry_t *)(addr_PDmap))
 #define	PDPmap		((pd_entry_t *)(addr_PDPmap))
 #define	PML4map		((pd_entry_t *)(addr_PML4map))
 #define	PML4pml4e	((pd_entry_t *)(addr_PML4pml4e))
 
 extern int nkpt;		/* Initial number of kernel page tables */
 extern u_int64_t KPDPphys;	/* physical address of kernel level 3 */
 extern u_int64_t KPML4phys;	/* physical address of kernel level 4 */
 
 /*
  * virtual address to page table entry and
  * to physical address.
  * Note: these work recursively, thus vtopte of a pte will give
  * the corresponding pde that in turn maps it.
  */
 pt_entry_t *vtopte(vm_offset_t);
 #define	vtophys(va)	pmap_kextract(((vm_offset_t) (va)))
 
 #define	pte_load_store(ptep, pte)	atomic_swap_long(ptep, pte)
 #define	pte_load_clear(ptep)		atomic_swap_long(ptep, 0)
 #define	pte_store(ptep, pte) do { \
 	*(u_long *)(ptep) = (u_long)(pte); \
 } while (0)
 #define	pte_clear(ptep)			pte_store(ptep, 0)
 
 #define	pde_store(pdep, pde)		pte_store(pdep, pde)
 
 extern pt_entry_t pg_nx;
 
 #endif /* _KERNEL */
 
 /*
  * Pmap stuff
  */
 struct	pv_entry;
 struct	pv_chunk;
 
 /*
  * Locks
  * (p) PV list lock
  */
 struct md_page {
 	TAILQ_HEAD(, pv_entry)	pv_list;  /* (p) */
 	int			pv_gen;   /* (p) */
 	int			pat_mode;
 };
 
 enum pmap_type {
 	PT_X86,			/* regular x86 page tables */
 	PT_EPT,			/* Intel's nested page tables */
 	PT_RVI,			/* AMD's nested page tables */
 };
 
 struct pmap_pcids {
 	uint32_t	pm_pcid;
 	uint32_t	pm_gen;
 };
 
 /*
  * The kernel virtual address (KVA) of the level 4 page table page is always
  * within the direct map (DMAP) region.
  */
 struct pmap {
 	struct mtx		pm_mtx;
 	pml4_entry_t		*pm_pml4;	/* KVA of level 4 page table */
 	uint64_t		pm_cr3;
 	TAILQ_HEAD(,pv_chunk)	pm_pvchunk;	/* list of mappings in pmap */
 	cpuset_t		pm_active;	/* active on cpus */
 	enum pmap_type		pm_type;	/* regular or nested tables */
 	struct pmap_statistics	pm_stats;	/* pmap statistics */
 	struct vm_radix		pm_root;	/* spare page table pages */
 	long			pm_eptgen;	/* EPT pmap generation id */
 	int			pm_flags;
 	struct pmap_pcids	pm_pcids[MAXCPU];
 };
 
 /* flags */
 #define	PMAP_NESTED_IPIMASK	0xff
 #define	PMAP_PDE_SUPERPAGE	(1 << 8)	/* supports 2MB superpages */
 #define	PMAP_EMULATE_AD_BITS	(1 << 9)	/* needs A/D bits emulation */
 #define	PMAP_SUPPORTS_EXEC_ONLY	(1 << 10)	/* execute only mappings ok */
 
 typedef struct pmap	*pmap_t;
 
 #ifdef _KERNEL
 extern struct pmap	kernel_pmap_store;
 #define kernel_pmap	(&kernel_pmap_store)
 
 #define	PMAP_LOCK(pmap)		mtx_lock(&(pmap)->pm_mtx)
 #define	PMAP_LOCK_ASSERT(pmap, type) \
 				mtx_assert(&(pmap)->pm_mtx, (type))
 #define	PMAP_LOCK_DESTROY(pmap)	mtx_destroy(&(pmap)->pm_mtx)
 #define	PMAP_LOCK_INIT(pmap)	mtx_init(&(pmap)->pm_mtx, "pmap", \
 				    NULL, MTX_DEF | MTX_DUPOK)
 #define	PMAP_LOCKED(pmap)	mtx_owned(&(pmap)->pm_mtx)
 #define	PMAP_MTX(pmap)		(&(pmap)->pm_mtx)
 #define	PMAP_TRYLOCK(pmap)	mtx_trylock(&(pmap)->pm_mtx)
 #define	PMAP_UNLOCK(pmap)	mtx_unlock(&(pmap)->pm_mtx)
 
 int	pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags);
 int	pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype);
 #endif
 
 /*
  * For each vm_page_t, there is a list of all currently valid virtual
  * mappings of that page.  An entry is a pv_entry_t, the list is pv_list.
  */
 typedef struct pv_entry {
 	vm_offset_t	pv_va;		/* virtual address for mapping */
 	TAILQ_ENTRY(pv_entry)	pv_next;
 } *pv_entry_t;
 
 /*
  * pv_entries are allocated in chunks per-process.  This avoids the
  * need to track per-pmap assignments.
  */
 #define	_NPCM	3
 #define	_NPCPV	168
 struct pv_chunk {
 	pmap_t			pc_pmap;
 	TAILQ_ENTRY(pv_chunk)	pc_list;
 	uint64_t		pc_map[_NPCM];	/* bitmap; 1 = free */
 	TAILQ_ENTRY(pv_chunk)	pc_lru;
 	struct pv_entry		pc_pventry[_NPCPV];
 };
 
 #ifdef	_KERNEL
 
 extern caddr_t	CADDR1;
 extern pt_entry_t *CMAP1;
 extern vm_paddr_t phys_avail[];
 extern vm_paddr_t dump_avail[];
 extern vm_offset_t virtual_avail;
 extern vm_offset_t virtual_end;
 extern vm_paddr_t dmaplimit;
 
 #define	pmap_page_get_memattr(m)	((vm_memattr_t)(m)->md.pat_mode)
 #define	pmap_page_is_write_mapped(m)	(((m)->aflags & PGA_WRITEABLE) != 0)
 #define	pmap_unmapbios(va, sz)	pmap_unmapdev((va), (sz))
 
 struct thread;
 
 void	pmap_activate_sw(struct thread *);
 void	pmap_bootstrap(vm_paddr_t *);
 int	pmap_change_attr(vm_offset_t, vm_size_t, int);
 void	pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate);
 void	pmap_init_pat(void);
 void	pmap_kenter(vm_offset_t va, vm_paddr_t pa);
 void	*pmap_kenter_temporary(vm_paddr_t pa, int i);
 vm_paddr_t pmap_kextract(vm_offset_t);
 void	pmap_kremove(vm_offset_t);
 void	*pmap_mapbios(vm_paddr_t, vm_size_t);
 void	*pmap_mapdev(vm_paddr_t, vm_size_t);
 void	*pmap_mapdev_attr(vm_paddr_t, vm_size_t, int);
 boolean_t pmap_page_is_mapped(vm_page_t m);
 void	pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma);
 void	pmap_unmapdev(vm_offset_t, vm_size_t);
 void	pmap_invalidate_page(pmap_t, vm_offset_t);
 void	pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t);
 void	pmap_invalidate_all(pmap_t);
 void	pmap_invalidate_cache(void);
 void	pmap_invalidate_cache_pages(vm_page_t *pages, int count);
 void	pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva,
 	    boolean_t force);
 void	pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num);
 boolean_t pmap_map_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t);
 void	pmap_unmap_io_transient(vm_page_t *, vm_offset_t *, int, boolean_t);
 #endif /* _KERNEL */
 
+/* Return various clipped indexes for a given VA */
+static __inline vm_pindex_t
+pmap_pte_index(vm_offset_t va)
+{
+
+	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
+}
+
+static __inline vm_pindex_t
+pmap_pde_index(vm_offset_t va)
+{
+
+	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
+}
+
+static __inline vm_pindex_t
+pmap_pdpe_index(vm_offset_t va)
+{
+
+	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
+}
+
+static __inline vm_pindex_t
+pmap_pml4e_index(vm_offset_t va)
+{
+
+	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
+}
+
 #endif /* !LOCORE */
 
 #endif /* !_MACHINE_PMAP_H_ */