Index: vendor-sys/acpica/dist/changes.txt =================================================================== --- vendor-sys/acpica/dist/changes.txt (revision 305161) +++ vendor-sys/acpica/dist/changes.txt (revision 305162) @@ -1,16666 +1,16728 @@ ---------------------------------------- -29 July 2016. Summary of changes for version 20160729: +31 August 2016. Summary of changes for version 20160831: -This release is available at https://acpica.org/downloads +1) ACPICA kernel-resident subsystem: +Improve support for the so-called "module-level code", which is defined +to be math, logical and control AML opcodes that appear outside of any +control method. This change improves the support by adding more opcodes +that can be executed in the manner. Some other issues have been solved, +and the ASL grammar changes to support such code under all scope +operators (Device, etc.) are complete. Lv Zheng. + +UEFI support: these OSL functions have been implemented. This is an +additional step toward supporting the AcpiExec utility natively (with +full hardware access) under UEFI. Marcelo Ferreira. + AcpiOsReadPciConfiguration + AcpiOsWritePciConfiguration + +Fixed a possible mutex error during control method auto-serialization. Lv +Zheng. + +Updated support for the Generic Address Structure by fully implementing +all GAS fields when a 32-bit address is expanded to a 64-bit GAS. Lv +Zheng. + +Updated the return value for the internal _OSI method. Instead of +0xFFFFFFFF, the "Ones" value is now returned, which is 0xFFFFFFFFFFFFFFFF +for 64-bit ACPI tables. This fixes an incompatibility with other ACPI +implementations, and will be reflected and clarified in the next version +of the ACPI specification. + +Implemented two new table events that can be passed to an ACPICA table +handler. These events are used to indicate a table installation or +uninstallation. These events are used in addition to existed table load +and unload events. Lv Zheng. + +Implemented a cleanup for all internal string-to-integer conversions. +Consolidate multiple versions of this functionality and limit possible +bases to either 10 or 16 to simplify the code. Adds a new file, +utstrtoul64. + +Cleanup the inclusion order of the various compiler-specific headers. +This simplifies build configuration management. The compiler-specific +headers are now split out from the host-specific headers. Lv Zheng. + +Example Code and Data Size: These are the sizes for the OS-independent +acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The +debug version of the code includes the debug output trace mechanism and +has a much larger code and data size. + + Current Release: + Non-Debug Version: 140.1K Code, 58.1K Data, 198.1K Total + Debug Version: 200.3K Code, 82.1K Data, 282.4K Total + + +2) iASL Compiler/Disassembler and Tools: + +iASL/AcpiExec: Added a command line option to display the build date/time +of the tool (-vd). This can be useful to verify that the correct version +of the tools are being used. + +AML Debugger: Implemented a new subcommand ("execute predef") to execute +all predefined control methods and names within the current namespace. +This can be useful for debugging problems with ACPI tables and the ACPI +namespace. + +---------------------------------------- +29 July 2016. Summary of changes for version 20160729: + + 1) ACPICA kernel-resident subsystem: Implemented basic UEFI support for the various ACPICA tools. This includes: 1) An OSL to implement the various AcpiOs* interfaces on UEFI. 2) Support to obtain the ACPI tables on UEFI. 3) Local implementation of required C library functions not available on UEFI. 4) A front-end (main) function for the tools for UEFI-related initialization. The initial deployment of this support is the AcpiDump utility executing as an UEFI application via EDK2 (EDKII, "UEFI Firmware Development Kit"). Current environments supported are Linux/Unix. MSVC generation is not supported at this time. See the generate/efi/README file for build instructions. Lv Zheng. Future plans include porting the AcpiExec utility to execute natively on the platform with I/O and memory access. This will allow viewing/dump of the platform namespace and native execution of ACPI control methods that access the actual hardware. To fully implement this support, the OSL functions below must be implemented with UEFI interfaces. Any community help in the implementation of these functions would be appreciated: AcpiOsReadPort AcpiOsWritePort AcpiOsReadMemory AcpiOsWriteMemory AcpiOsReadPciConfiguration AcpiOsWritePciConfiguration - Restructured and standardized the C library configuration for ACPICA, resulting in the various configuration options below. This includes a global restructuring of the compiler-dependent and platform-dependent include files. These changes may affect the existing platform-dependent configuration files on some hosts. Lv Zheng. The current C library configuration options appear below. For any issues, it may be helpful to examine the existing compiler-dependent and platform-dependent files as examples. Lv Zheng. 1) Linux kernel: ACPI_USE_STANDARD_HEADERS=n in order not to use system-provided C library. ACPI_USE_SYSTEM_CLIBRARY=y in order not to use ACPICA mini C library. 2) Unix/Windows/BSD applications: ACPI_USE_STANDARD_HEADERS=y in order to use system-provided C library. ACPI_USE_SYSTEM_CLIBRARY=y in order not to use ACPICA mini C library. 3) UEFI applications: ACPI_USE_STANDARD_HEADERS=n in order not to use system-provided C library. ACPI_USE_SYSTEM_CLIBRARY=n in order to use ACPICA mini C library. 4) UEFI applications (EDK2/StdLib): ACPI_USE_STANDARD_HEADERS=y in order to use EDK2 StdLib C library. ACPI_USE_SYSTEM_CLIBRARY=y in order to use EDK2 StdLib C library. AML interpreter: "module-level code" support. Allows for execution of so- called "executable" AML code (math/logical operations, etc.) outside of control methods not just at the module level (top level) but also within any scope declared outside of a control method - Scope{}, Device{}, Processor{}, PowerResource{}, and ThermalZone{}. Lv Zheng. Simplified the configuration of the "maximum AML loops" global option by adding a global public variable, "AcpiGbl_MaxLoopIterations" which can be modified at runtime. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 139.1K Code, 22.9K Data, 162.0K Total Debug Version: 199.0K Code, 81.8K Data, 280.8K Total 2) iASL Compiler/Disassembler and Tools: iASL: Add full support for the RASF ACPI table (RAS Features Table). Includes disassembler, data table compiler, and header support. iASL Expand "module-level code" support. Allows for compilation/disassembly of so-called "executable" AML code (math/logical operations, etc.) outside of control methods not just at the module level (top level) but also within any scope declared outside of a control method - Scope{}, Device{}, Processor{}, PowerResource{}, and ThermalZone{}. AcpiDump: Added support for dumping all SSDTs on newer versions of Windows. These tables are now easily available -- SSDTs are not available through the registry on older versions. ---------------------------------------- 27 May 2016. Summary of changes for version 20160527: - -This release is available at https://acpica.org/downloads 1) ACPICA kernel-resident subsystem: Temporarily reverted the new arbitrary bit length/alignment support in AcpiHwRead/AcpiHwWrite for the Generic Address Structure. There have been a number of regressions with the new code that need to be fully resolved and tested before this support can be finally integrated into ACPICA. Apologies for any inconveniences these issues may have caused. The ACPI message macros are not configurable (ACPI_MSG_ERROR, ACPI_MSG_EXCEPTION, ACPI_MSG_WARNING, ACPI_MSG_INFO, ACPI_MSG_BIOS_ERROR, and ACPI_MSG_BIOS_WARNING). Lv Zheng. Fixed a couple of GCC warnings associated with the use of the -Wcast-qual option. Adds a new return macro, return_STR. Junk-uk Kim. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 136.8K Code, 51.6K Data, 188.4K Total Debug Version: 201.5K Code, 82.2K Data, 283.7K Total Previous Release: Non-Debug Version: 137.4K Code, 52.6K Data, 190.0K Total Debug Version: 200.9K Code, 82.2K Data, 283.1K Total ---------------------------------------- 22 April 2016. Summary of changes for version 20160422: 1) ACPICA kernel-resident subsystem: Fixed a regression in the GAS (generic address structure) arbitrary bit support in AcpiHwRead/AcpiHwWrite. Problem could cause incorrect behavior and incorrect return values. Lv Zheng. ACPICA BZ 1270. ACPI 6.0: Added support for new/renamed resource macros. One new argument was added to each of these macros, and the original name has been deprecated. The AML disassembler will always disassemble to the new names. Support for the new macros was added to iASL, disassembler, resource manager, and the acpihelp utility. ACPICA BZ 1274. I2cSerialBus -> I2cSerialBusV2 SpiSerialBus -> SpiSerialBusV2 UartSerialBus -> UartSerialBusV2 ACPI 6.0: Added support for a new integer field that was appended to the package object returned by the _BIX method. This adds iASL compile-time and AML runtime error checking. ACPICA BZ 1273. ACPI 6.1: Added support for a new PCCT subtable, "HW-Reduced Comm Subspace Type2" (Headers, Disassembler, and data table compiler). Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 137.4K Code, 52.6K Data, 190.0K Total Debug Version: 201.5K Code, 82.2K Data, 283.7K Total Previous Release: Non-Debug Version: 137.1K Code, 51.5K Data, 188.6K Total Debug Version: 201.0K Code, 82.0K Data, 283.0K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented an ASL grammar extension to allow/enable executable "module-level code" to be created and executed under the various operators that create new scopes. This type of AML code is already supported in all known AML interpreters, and the grammar change will appear in the next version of the ACPI specification. Simplifies the conditional runtime creation of named objects under these object types: Device PowerResource Processor Scope ThermalZone iASL: Implemented a new ASL extension, a "For" loop macro to add greater ease-of-use to the ASL language. The syntax is similar to the corresponding C operator, and is implemented with the existing AML While opcode -- thus requiring no changes to existing AML interpreters. For (Initialize, Predicate, Update) {TermList} Grammar: ForTerm := For ( Initializer // Nothing | TermArg => ComputationalData Predicate // Nothing | TermArg => ComputationalData Update // Nothing | TermArg => ComputationalData ) {TermList} iASL: The _HID/_ADR detection and validation has been enhanced to search under conditionals in order to allow these objects to be conditionally created at runtime. iASL: Fixed several issues with the constant folding feature. The improvement allows better detection and resolution of statements that can be folded at compile time. ACPICA BZ 1266. iASL/Disassembler: Fixed a couple issues with the Else{If{}...} conversion to the ASL ElseIf operator where incorrect ASL code could be generated. iASL/Disassembler: Fixed a problem with the ASL+ code disassembly where sometimes an extra (and extraneous) set of parentheses were emitted for some combinations of operators. Although this did not cause any problems with recompilation of the disassembled code, it made the code more difficult to read. David Box. ACPICA BZ 1231. iASL: Changed to ignore the unreferenced detection for predefined names of resource descriptor elements, when the resource descriptor is created/defined within a control method. iASL: Disassembler: Fix a possible fault with externally declared Buffer objects. ---------------------------------------- 18 March 2016. Summary of changes for version 20160318: 1) ACPICA kernel-resident subsystem: Added support for arbitrary bit lengths and bit offsets for registers defined by the Generic Address Structure. Previously, only aligned bit lengths of 8/16/32/64 were supported. This was sufficient for many years, but recently some machines have been seen that require arbitrary bit- level support. ACPICA BZ 1240. Lv Zheng. Fixed an issue where the \_SB._INI method sometimes must be evaluated before any _REG methods are evaluated. Lv Zheng. Implemented several changes related to ACPI table support (Headers/Disassembler/TableCompiler): NFIT: For ACPI 6.1, updated to add some additional new fields and constants. FADT: Updated a warning message and set compliance to ACPI 6.1 (Version 6). DMAR: Added new constants per the 10/2014 DMAR spec. IORT: Added new subtable per the 10/2015 IORT spec. HEST: For ACPI 6.1, added new constants and new subtable. DBG2: Added new constants per the 12/2015 DBG2 spec. FPDT: Fixed several incorrect fields, add the FPDT boot record structure. ACPICA BZ 1249. ERST/EINJ: Updated disassembler with new "Execute Timings" actions. Updated header support for the DMAR table to match the current version of the related spec. Added extensions to the ASL Concatenate operator to allow any ACPI object to be passed as an operand. Any object other than Integer/String/Buffer simply returns a string containing the object type. This extends the usefulness of the Printf macros. Previously, Concatenate would abort the control method if a non-data object was encountered. ACPICA source code: Deployed the C "const" keyword across the source code where appropriate. ACPICA BZ 732. Joerg Sonnenberger (NetBSD). Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 137.1K Code, 51.5K Data, 188.6K Total Debug Version: 201.0K Code, 82.0K Data, 283.0K Total Previous Release: Non-Debug Version: 136.2K Code, 51.5K Data, 187.7K Total Debug Version: 200.4K Code, 82.0K Data, 282.4K Total 2) iASL Compiler/Disassembler and Tools: iASL/Disassembler: Improved the heuristic used to determine the number of arguments for an externally defined control method (a method in another table). Although this is an improvement, there is no deterministic way to "guess" the number of method arguments. Only the ACPI 6.0 External opcode will completely solve this problem as it is deployed (automatically) in newer BIOS code. iASL/Disassembler: Fixed an ordering issue for emitted External() ASL statements that could cause errors when the disassembled file is compiled. ACPICA BZ 1243. David Box. iASL: Fixed a regression caused by the merger of the two versions of the local strtoul64. Because of a dependency on a global variable, strtoul64 could return an error for integers greater than a 32-bit value. ACPICA BZ 1260. iASL: Fixed a regression where a fault could occur for an ASL Return statement if it invokes a control method that is not resolved. ACPICA BZ 1264. AcpiXtract: Improved input file validation: detection of binary files and non-acpidump text files. ---------------------------------------- 12 February 2016. Summary of changes for version 20160212: 1) ACPICA kernel-resident subsystem: Implemented full support for the ACPI 6.1 specification (released in January). This version of the specification is available at: http://www.uefi.org/specifications Only a relatively small number of changes were required in ACPICA to support ACPI 6.1, in these areas: - New predefined names - New _HID values - A new subtable for HEST - A few other header changes for new values Ensure \_SB_._INI is executed before any _REG methods are executed. There appears to be existing BIOS code that relies on this behavior. Lv Zheng. Reverted a change made in version 20151218 which enabled method invocations to be targets of various ASL operators (SuperName and Target grammar elements). While the new behavior is supported by the ACPI specification, other AML interpreters do not support this behavior and never will. The ACPI specification will be updated for ACPI 6.2 to remove this support. Therefore, the change was reverted to the original ACPICA behavior. ACPICA now supports the GCC 6 compiler. Current Release: (Note: build changes increased sizes) Non-Debug Version: 136.2K Code, 51.5K Data, 187.7K Total Debug Version: 200.4K Code, 82.0K Data, 282.4K Total Previous Release: Non-Debug Version: 102.7K Code, 28.4K Data, 131.1K Total Debug Version: 200.4K Code, 81.9K Data, 282.3K Total 2) iASL Compiler/Disassembler and Tools: Completed full support for the ACPI 6.0 External() AML opcode. The compiler emits an external AML opcode for each ASL External statement. This opcode is used by the disassembler to assist with the disassembly of external control methods by specifying the required number of arguments for the method. AML interpreters do not use this opcode. To ensure that interpreters do not even see the opcode, a block of one or more external opcodes is surrounded by an "If(0)" construct. As this feature becomes commonly deployed in BIOS code, the ability of disassemblers to correctly disassemble AML code will be greatly improved. David Box. iASL: Implemented support for an optional cross-reference output file. The -lx option will create a the cross-reference file with the suffix "xrf". Three different types of cross-reference are created in this file: - List of object references made from within each control method - Invocation (caller) list for each user-defined control method - List of references to each non-method object in the namespace iASL: Method invocations as ASL Target operands are now disallowed and flagged as errors in preparation for ACPI 6.2 (see the description of the problem above). ---------------------------------------- 8 January 2016. Summary of changes for version 20160108: 1) ACPICA kernel-resident subsystem: Updated all ACPICA copyrights and signons to 2016: Added the 2016 copyright to all source code module headers and utility/tool signons. This includes the standard Linux dual-license header. This affects virtually every file in the ACPICA core subsystem, iASL compiler, all ACPICA utilities, and the ACPICA test suite. Fixed a regression introduced in version 20151218 concerning the execution of so-called module-level ASL/AML code. Namespace objects created under a module-level If() construct were not properly/fully entered into the namespace and could cause an interpreter fault when accessed. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 102.7K Code, 28.4K Data, 131.1K Total Debug Version: 200.4K Code, 81.9K Data, 282.4K Total Previous Release: Non-Debug Version: 102.6K Code, 28.4K Data, 131.0K Total Debug Version: 200.3K Code, 81.9K Data, 282.3K Total 2) iASL Compiler/Disassembler and Tools: Fixed a problem with the compilation of the GpioIo and GpioInt resource descriptors. The _PIN field name was incorrectly defined to be an array of 32-bit values, but the _PIN values are in fact 16 bits each. This would cause incorrect bit width warnings when using Word (16-bit) fields to access the descriptors. ---------------------------------------- 18 December 2015. Summary of changes for version 20151218: 1) ACPICA kernel-resident subsystem: Implemented per-AML-table execution of "module-level code" as individual ACPI tables are loaded into the namespace during ACPICA initialization. In other words, any module-level code within an AML table is executed immediately after the table is loaded, instead of batched and executed after all of the tables have been loaded. This provides compatibility with other ACPI implementations. ACPICA BZ 1219. Bob Moore, Lv Zheng, David Box. To fully support the feature above, the default operation region handlers for the SystemMemory, SystemIO, and PCI_Config address spaces are now installed before any ACPI tables are loaded. This enables module-level code to access these address spaces during the table load and module- level code execution phase. ACPICA BZ 1220. Bob Moore, Lv Zheng, David Box. Implemented several changes to the internal _REG support in conjunction with the changes above. Also, changes to the AcpiExec/AcpiNames/Examples utilities for the changes above. Although these tools were changed, host operating systems that simply use the default handlers for SystemMemory, SystemIO, and PCI_Config spaces should not require any update. Lv Zheng. For example, in the code below, DEV1 is conditionally added to the namespace by the DSDT via module-level code that accesses an operation region. The SSDT references DEV1 via the Scope operator. DEV1 must be created immediately after the DSDT is loaded in order for the SSDT to successfully reference DEV1. Previously, this code would cause an AE_NOT_EXIST exception during the load of the SSDT. Now, this code is fully supported by ACPICA. DefinitionBlock ("", "DSDT", 2, "Intel", "DSDT1", 1) { OperationRegion (OPR1, SystemMemory, 0x400, 32) Field (OPR1, AnyAcc, NoLock, Preserve) { FLD1, 1 } If (FLD1) { Device (\DEV1) { } } } DefinitionBlock ("", "SSDT", 2, "Intel", "SSDT1", 1) { External (\DEV1, DeviceObj) Scope (\DEV1) { } } Fixed an AML interpreter problem where control method invocations were not handled correctly when the invocation was itself a SuperName argument to another ASL operator. In these cases, the method was not invoked. ACPICA BZ 1002. Affects the following ASL operators that have a SuperName argument: Store Acquire, Wait CondRefOf, RefOf Decrement, Increment Load, Unload Notify Signal, Release, Reset SizeOf Implemented automatic String-to-ObjectReference conversion support for packages returned by predefined names (such as _DEP). A common BIOS error is to add double quotes around an ObjectReference namepath, which turns the reference into an unexpected string object. This support detects the problem and corrects it before the package is returned to the caller that invoked the method. Lv Zheng. Implemented extensions to the Concatenate operator. Concatenate now accepts any type of object, it is not restricted to simply Integer/String/Buffer. For objects other than these 3 basic data types, the argument is treated as a string containing the name of the object type. This expands the utility of Concatenate and the Printf/Fprintf macros. ACPICA BZ 1222. Cleaned up the output of the ASL Debug object. The timer() value is now optional and no longer emitted by default. Also, the basic data types of Integer/String/Buffer are simply emitted as their values, without a data type string -- since the data type is obvious from the output. ACPICA BZ 1221. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 102.6K Code, 28.4K Data, 131.0K Total Debug Version: 200.3K Code, 81.9K Data, 282.3K Total Previous Release: Non-Debug Version: 102.0K Code, 28.3K Data, 130.3K Total Debug Version: 199.6K Code, 81.8K Data, 281.4K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed some issues with the ASL Include() operator. This operator was incorrectly defined in the iASL parser rules, causing a new scope to be opened for the code within the include file. This could lead to several issues, including allowing ASL code that is technically illegal and not supported by AML interpreters. Note, this does not affect the related #include preprocessor operator. ACPICA BZ 1212. iASL/Disassembler: Implemented support for the ASL ElseIf operator. This operator is essentially an ASL macro since there is no AML opcode associated with it. The code emitted by the iASL compiler for ElseIf is an Else opcode followed immediately by an If opcode. The disassembler will now emit an ElseIf if it finds an Else immediately followed by an If. This simplifies the decoded ASL, especially for deeply nested If..Else and large Switch constructs. Thus, the disassembled code more closely follows the original source ASL. ACPICA BZ 1211. Example: Old disassembly: Else { If (Arg0 == 0x02) { Local0 = 0x05 } } New disassembly: ElseIf (Arg0 == 0x02) { Local0 = 0x05 } AcpiExec: Added support for the new module level code behavior and the early region installation. This required a small change to the initialization, since AcpiExec must install its own operation region handlers. AcpiExec: Added support to make the debug object timer optional. Default is timer disabled. This cleans up the debug object output -- the timer data is rarely used. AcpiExec: Multiple ACPI tables are now loaded in the order that they appear on the command line. This can be important when there are interdependencies/references between the tables. iASL/Templates. Add support to generate template files with multiple SSDTs within a single output file. Also added ommand line support to specify the number of SSDTs (in addition to a single DSDT). ACPICA BZ 1223, 1225. ---------------------------------------- 24 November 2015. Summary of changes for version 20151124: 1) ACPICA kernel-resident subsystem: Fixed a possible regression for a previous update to FADT handling. The FADT no longer has a fixed table ID, causing some issues with code that was hardwired to a specific ID. Lv Zheng. Fixed a problem where the method auto-serialization could interfere with the current SyncLevel. This change makes the auto-serialization support transparent to the SyncLevel support and management. Removed support for the _SUB predefined name in AcpiGetObjectInfo. This interface is intended for early access to the namespace during the initial namespace device discovery walk. The _SUB method has been seen to access operation regions in some cases, causing errors because the operation regions are not fully initialized. AML Debugger: Fixed some issues with the terminate/quit/exit commands that can cause faults. Lv Zheng. AML Debugger: Add thread ID support so that single-step mode only applies to the AML Debugger thread. This prevents runtime errors within some kernels. Lv Zheng. Eliminated extraneous warnings from AcpiGetSleepTypeData. Since the _Sx methods that are invoked by this interface are optional, removed warnings emitted for the case where one or more of these methods do not exist. ACPICA BZ 1208, original change by Prarit Bhargava. Made a major pass through the entire ACPICA source code base to standardize formatting that has diverged a bit over time. There are no functional changes, but this will of course cause quite a few code differences from the previous ACPICA release. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 102.0K Code, 28.3K Data, 130.3K Total Debug Version: 199.6K Code, 81.8K Data, 281.4K Total Previous Release: Non-Debug Version: 101.7K Code, 27.9K Data, 129.6K Total Debug Version: 199.3K Code, 81.4K Data, 280.7K Total 2) iASL Compiler/Disassembler and Tools: iASL/acpiexec/acpixtract/disassembler: Added support to allow multiple definition blocks within a single ASL file and the resulting AML file. Support for this type of file was also added to the various tools that use binary AML files: acpiexec, acpixtract, and the AML disassembler. The example code below shows two definition blocks within the same file: DefinitionBlock ("dsdt.aml", "DSDT", 2, "Intel", "Template", 0x12345678) { } DefinitionBlock ("", "SSDT", 2, "Intel", "Template", 0xABCDEF01) { } iASL: Enhanced typechecking for the Name() operator. All expressions for the value of the named object must be reduced/folded to a single constant at compile time, as per the ACPI specification (the AML definition of Name()). iASL: Fixed some code indentation issues for the -ic and -ia options (C and assembly headers). Now all emitted code correctly begins in column 1. iASL: Added an error message for an attempt to open a Scope() on an object defined in an SSDT. The DSDT is always loaded into the namespace first, so any attempt to open a Scope on an SSDT object will fail at runtime. ---------------------------------------- 30 September 2015. Summary of changes for version 20150930: 1) ACPICA kernel-resident subsystem: Debugger: Implemented several changes and bug fixes to assist support for the in-kernel version of the AML debugger. Lv Zheng. - Fix the "predefined" command for in-kernel debugger. - Do not enter debug command loop for the help and version commands. - Disallow "execute" command during execution/single-step of a method. Interpreter: Updated runtime typechecking for all operators that have target operands. The operand is resolved and validated that it is legal. For example, the target cannot be a non-data object such as a Device, Mutex, ThermalZone, etc., as per the ACPI specification. Debugger: Fixed the double-mutex user I/O handshake to work when local deadlock detection is enabled. Debugger: limited display of method locals and arguments (LocalX and ArgX) to only those that have actually been initialized. This prevents lines of extraneous output. Updated the definition of the NFIT table to correct the bit polarity of one flag: ACPI_NFIT_MEM_ARMED --> ACPI_NFIT_MEM_NOT_ARMED Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 101.7K Code, 27.9K Data, 129.6K Total Debug Version: 199.3K Code, 81.4K Data, 280.7K Total Previous Release: Non-Debug Version: 101.3K Code, 27.7K Data, 129.0K Total Debug Version: 198.6K Code, 80.9K Data, 279.5K Total 2) iASL Compiler/Disassembler and Tools: iASL: Improved the compile-time typechecking for operands of many of the ASL operators: -- Added an option to disable compiler operand/operator typechecking (- ot). -- For the following operators, the TermArg operands are now validated when possible to be Integer data objects: BankField, OperationRegion, DataTableRegion, Buffer, and Package. -- Store (Source, Target): Both the source and target operands are resolved and checked that the operands are both legal. For example, neither operand can be a non-data object such as a Device, Mutex, ThermalZone, etc. Note, as per the ACPI specification, the CopyObject operator can be used to store an object to any type of target object. -- Store (Source, Target): If the source is a Package object, the target must be a Package object, LocalX, ArgX, or Debug. Likewise, if the target is a Package, the source must also be a Package. -- Store (Source, Target): A warning is issued if the source and target resolve to the identical named object. -- Store (Source, ): An error is generated for the target method invocation, as this construct is not supported by the AML interpreter. -- For all ASL math and logic operators, the target operand must be a data object (Integer, String, Buffer, LocalX, ArgX, or Debug). This includes the function return value also. -- External declarations are also included in the typechecking where possible. External objects defined using the UnknownObj keyword cannot be typechecked, however. iASL and Disassembler: Added symbolic (ASL+) support for the ASL Index operator: - Legacy code: Index(PKG1, 3) - New ASL+ code: PKG1[3] This completes the ACPI 6.0 ASL+ support as it was the only operator not supported. iASL: Fixed the file suffix for the preprocessor output file (.i). Two spaces were inadvertently appended to the filename, causing file access and deletion problems on some systems. ASL Test Suite (ASLTS): Updated the master makefile to generate all possible compiler output files when building the test suite -- thus exercising these features of the compiler. These files are automatically deleted when the test suite exits. ---------------------------------------- 18 August 2015. Summary of changes for version 20150818: 1) ACPICA kernel-resident subsystem: Fix a regression for AcpiGetTableByIndex interface causing it to fail. Lv Zheng. ACPICA BZ 1186. Completed development to ensure that the ACPICA Disassembler and Debugger are fully standalone components of ACPICA. Removed cross-component dependences. Lv Zheng. The max-number-of-AML-loops is now runtime configurable (previously was compile-time only). This is essentially a loop timeout to force-abort infinite AML loops. ACPCIA BZ 1192. Debugger: Cleanup output to dump ACPI names and namepaths without any trailing underscores. Lv Zheng. ACPICA BZ 1135. Removed unnecessary conditional compilations across the Debugger and Disassembler components where entire modules could be left uncompiled. The aapits test is deprecated and has been removed from the ACPICA git tree. The test has never been completed and has not been maintained, thus becoming rather useless. ACPICA BZ 1015, 794. A batch of small changes to close bugzilla and other reports: - Remove duplicate code for _PLD processing. ACPICA BZ 1176. - Correctly cleanup after a ACPI table load failure. ACPICA BZ 1185. - iASL: Support POSIX yacc again in makefile. Jung-uk Kim. - ACPI table support: general cleanup and simplification. Lv Zheng, Bob Moore. - ACPI table support: fix for a buffer read overrun in AcpiTbFindTable. ACPICA BZ 1184. - Enhance parameter validation for DataTableRegion and LoadTable ASL/AML operators. - Debugger: Split debugger initialization/termination interfaces. Lv Zheng. - AcpiExec: Emit OemTableId for SSDTs during the load phase for table identification. - AcpiExec: Add debug message during _REG method phase during table load/init. - AcpiNames: Fix a regression where some output was missing and no longer emitted. - Debugger: General cleanup and simplification. Lv Zheng. - Disassembler: Cleanup use of several global option variables. Lv Zheng. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 101.3K Code, 27.7K Data, 129.0K Total Debug Version: 198.6K Code, 80.9K Data, 279.5K Total Previous Release: Non-Debug Version: 100.9K Code, 24.5K Data, 125.4K Total Debug Version: 197.8K Code, 81.5K Data, 279.3K Total 2) iASL Compiler/Disassembler and Tools: AcpiExec: Fixed a problem where any more than 32 ACPI tables in the XSDT were not handled properly and caused load errors. Now, properly invoke and use the ACPICA auto-reallocate mechanism for ACPI table data structures. ACPICA BZ 1188 AcpiNames: Add command-line wildcard support for ACPI table files. ACPICA BZ 1190. AcpiExec and AcpiNames: Add -l option to load ACPI tables only. For AcpiExec, this means that no control methods (like _REG/_INI/_STA) are executed during initialization. ACPICA BZ 1187, 1189. iASL/Disassembler: Implemented a prototype "listing" mode that emits AML that corresponds to each disassembled ASL statement, to simplify debugging. ACPICA BZ 1191. Debugger: Add option to the "objects" command to display a summary of the current namespace objects (Object type and count). This is displayed if the command is entered with no arguments. AcpiNames: Add -x option to specify debug level, similar to AcpiExec. ---------------------------------------- 17 July 2015. Summary of changes for version 20150717: 1) ACPICA kernel-resident subsystem: Improved the partitioning between the Debugger and Disassembler components. This allows the Debugger to be used standalone within kernel code without the Disassembler (which is used for single stepping also). This renames and moves one file, dmobject.c to dbobject.c. Lv Zheng. Debugger: Implemented a new command to trace the execution of control methods (Trace). This is especially useful for the in-kernel version of the debugger when file I/O may not be available for method trace output. See the ACPICA reference for more information. Lv Zheng. Moved all C library prototypes (used for the local versions of these functions when requested) to a new header, acclib.h Cleaned up the use of non-ANSI C library functions. These functions are implemented locally in ACPICA. Moved all such functions to a common source file, utnonansi.c Debugger: Fixed a problem with the "!!" command (get last command executed) where the debugger could enter an infinite loop and eventually crash. Removed the use of local macros that were used for some of the standard C library functions to automatically cast input parameters. This mostly affected the is* functions where the input parameter is defined to be an int. This required a few modifications to the main ACPICA source code to provide casting for these functions and eliminate possible compiler warnings for these parameters. Across the source code, added additional status/error checking to resolve issues discovered by static source code analysis tools such as Coverity. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 100.9K Code, 24.5K Data, 125.4K Total Debug Version: 197.8K Code, 81.5K Data, 279.3K Total Previous Release: Non-Debug Version: 100.6K Code, 27.6K Data, 128.2K Total Debug Version: 196.2K Code, 81.0K Data, 277.2K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a regression where the device map file feature no longer worked properly when used in conjunction with the disassembler. It only worked properly with the compiler itself. iASL: Implemented a new warning for method LocalX variables that are set but never used (similar to a C compiler such as gcc). This also applies to ArgX variables that are not defined by the parent method, and are instead (legally) used as local variables. iASL/Preprocessor: Finished the pass-through of line numbers from the preprocessor to the compiler. This ensures that compiler errors/warnings have the correct original line numbers and filenames, regardless of any #include files. iASL/Preprocessor: Fixed a couple of issues with comment handling and the pass-through of comments to the preprocessor output file (which becomes the compiler input file). Also fixed a problem with // comments that appear after a math expression. iASL: Added support for the TCPA server table to the table compiler and template generator. (The client table was already previously supported) iASL/Preprocessor: Added a permanent #define of the symbol "__IASL__" to identify the iASL compiler. Cleaned up the use of the macros NEGATIVE and POSITIVE which were defined multiple times. The new names are ACPI_SIGN_NEGATIVE and ACPI_SIGN_POSITIVE. AcpiHelp: Update to expand help messages for the iASL preprocessor directives. ---------------------------------------- 19 June 2015. Summary of changes for version 20150619: Two regressions in version 20150616 have been addressed: Fixes some problems/issues with the C library macro removal (ACPI_STRLEN, etc.) This update changes ACPICA to only use the standard headers for functions, or the prototypes for the local versions of the C library functions. Across the source code, this required some additional casts for some Clib invocations for portability. Moved all local prototypes to a new file, acclib.h Fixes several problems with recent changes to the handling of the FACS table that could cause some systems not to boot. ---------------------------------------- 16 June 2015. Summary of changes for version 20150616: 1) ACPICA kernel-resident subsystem: Across the entire ACPICA source code base, the various macros for the C library functions (such as ACPI_STRLEN, etc.) have been removed and replaced by the standard C library names (strlen, etc.) The original purpose for these macros is no longer applicable. This simplification reduces the number of macros used in the ACPICA source code significantly, improving readability and maintainability. Implemented support for a new ACPI table, the OSDT. This table, the "override" SDT, can be loaded directly by the host OS at boot time. It enables the replacement of existing namespace objects that were installed via the DSDT and/or SSDTs. The primary purpose for this is to replace buggy or incorrect ASL/AML code obtained via the BIOS. The OSDT is slated for inclusion in a future version of the ACPI Specification. Lv Zheng/Bob Moore. Added support for systems with (improperly) two FACS tables -- a "32-bit" table (via FADT 32-bit legacy field) and a "64-bit" table (via the 64-bit X field). This change will support both automatically. There continues to be systems found with this issue. This support requires a change to the AcpiSetFirmwareWakingVector interface. Also, a public global variable has been added to allow the host to select which FACS is desired (AcpiGbl_Use32BitFacsAddresses). See the ACPICA reference for more details Lv Zheng. Added a new feature to allow for systems that do not contain an FACS. Although this is already supported on hardware-reduced platforms, the feature has been extended for all platforms. The reasoning is that we do not want to abort the entire ACPICA initialization just because the system is seriously buggy and has no FACS. Fixed a problem where the GUID strings for NFIT tables (in acuuid.h) were not correctly transcribed from the ACPI specification in ACPICA version 20150515. Implemented support for the _CLS object in the AcpiGetObjectInfo external interface. Updated the definitions of the TCPA and TPM2 ACPI tables to the more recent TCG ACPI Specification, December 14, 2014. Table disassembler and compiler also updated. Note: The TCPA "server" table is not supported by the disassembler/table-compiler at this time. ACPI 6.0: Added definitions for the new GIC version field in the MADT. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 100.6K Code, 27.6K Data, 128.2K Total Debug Version: 196.2K Code, 81.0K Data, 277.2K Total Previous Release: Non-Debug Version: 99.9K Code, 27.5K Data, 127.4K Total Debug Version: 195.2K Code, 80.8K Data, 276.0K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Fixed a problem with the new symbolic operator disassembler where incorrect ASL code could be emitted in some cases for the "non- commutative" operators -- Subtract, Divide, Modulo, ShiftLeft, and ShiftRight. The actual problem cases seem to be rather unusual in common ASL code, however. David Box. Modified the linux version of acpidump to obtain ACPI tables from not just /dev/mem (which may not exist) and /sys/firmware/acpi/tables. Lv Zheng. iASL: Fixed a problem where the user preprocessor output file (.i) contained extra data that was not expected. The compiler was using this file as a temporary file and passed through #line directives in order to keep compiler error messages in sync with the input file and line number across multiple include files. The (.i) is no longer a temporary file as the compiler uses a new, different file for the original purpose. iASL: Fixed a problem where comments within the original ASL source code file were not passed through to the preprocessor output file, nor any listing files. iASL: Fixed some issues for the handling of the "#include" preprocessor directive and the similar (but not the same) "Include" ASL operator. iASL: Add support for the new OSDT in both the disassembler and compiler. iASL: Fixed a problem with the constant folding support where a Buffer object could be incorrectly generated (incorrectly formed) during a conversion to a Store() operator. AcpiHelp: Updated for new NFIT GUIDs, "External" AML opcode, and new description text for the _REV predefined name. _REV now permanently returns 2, as per the ACPI 6.0 specification. Debugger: Enhanced the output of the Debug ASL object for references produced by the Index operator. For Buffers and strings, only output the actual byte pointed to by the index. For packages, only print the single package element decoded by the index. Previously, the entire buffer/string/package was emitted. iASL/Table-compiler: Fixed a regression where the "generic" data types were no longer recognized, causing errors. ---------------------------------------- 15 May 2015. Summary of changes for version 20150515: This release implements most of ACPI 6.0 as described below. 1) ACPICA kernel-resident subsystem: Implemented runtime argument checking and return value checking for all new ACPI 6.0 predefined names. This includes: _BTH, _CR3, _DSD, _LPI, _MTL, _PRR, _RDI, _RST, _TFP, _TSN. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 99.9K Code, 27.5K Data, 127.4K Total Debug Version: 195.2K Code, 80.8K Data, 276.0K Total Previous Release: Non-Debug Version: 99.1K Code, 27.3K Data, 126.4K Total Debug Version: 192.8K Code, 79.9K Data, 272.7K Total 2) iASL Compiler/Disassembler and Tools: iASL compiler: Added compile-time support for all new ACPI 6.0 predefined names (argument count validation and return value typechecking.) iASL disassembler and table compiler: implemented support for all new ACPI 6.0 tables. This includes: DRTM, IORT, LPIT, NFIT, STAO, WPBT, XENV. iASL disassembler and table compiler: Added ACPI 6.0 changes to existing tables: FADT, MADT. iASL preprocessor: Added a new directive to enable inclusion of binary blobs into ASL code. The new directive is #includebuffer. It takes a binary file as input and emits a named ascii buffer object into the ASL code. AcpiHelp: Added support for all new ACPI 6.0 predefined names. AcpiHelp: Added a new option, -d, to display all iASL preprocessor directives. AcpiHelp: Added a new option, -t, to display all known/supported ACPI tables. ---------------------------------------- 10 April 2015. Summary of changes for version 20150410: Reverted a change introduced in version 20150408 that caused a regression in the disassembler where incorrect operator symbols could be emitted. ---------------------------------------- 08 April 2015. Summary of changes for version 20150408: 1) ACPICA kernel-resident subsystem: Permanently set the return value for the _REV predefined name. It now returns 2 (was 5). This matches other ACPI implementations. _REV will be deprecated in the future, and is now defined to be 1 for ACPI 1.0, and 2 for ACPI 2.0 and later. It should never be used to differentiate or identify operating systems. Added the "Windows 2015" string to the _OSI support. ACPICA will now return TRUE to a query with this string. Fixed several issues with the local version of the printf function. Added the C99 compiler option (-std=c99) to the Unix makefiles. Current Release: Non-Debug Version: 99.9K Code, 27.4K Data, 127.3K Total Debug Version: 195.2K Code, 80.7K Data, 275.9K Total Previous Release: Non-Debug Version: 98.8K Code, 27.3K Data, 126.1K Total Debug Version: 192.1K Code, 79.8K Data, 271.9K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented an enhancement to the constant folding feature to transform the parse tree to a simple Store operation whenever possible: Add (2, 3, X) ==> is converted to: Store (5, X) X = 2 + 3 ==> is converted to: Store (5, X) Updated support for the SLIC table (Software Licensing Description Table) in both the Data Table compiler and the disassembler. The SLIC table support now conforms to "Microsoft Software Licensing Tables (SLIC and MSDM). November 29, 2011. Copyright 2011 Microsoft". Note: Any SLIC data following the ACPI header is now defined to be "Proprietary Data", and as such, can only be entered or displayed as a hex data block. Implemented full support for the MSDM table as described in the document above. Note: The format of MSDM is similar to SLIC. Any MSDM data following the ACPI header is defined to be "Proprietary Data", and can only be entered or displayed as a hex data block. Implemented the -Pn option for the iASL Table Compiler (was only implemented for the ASL compiler). This option disables the iASL preprocessor. Disassembler: For disassembly of Data Tables, added a comment field around the Ascii equivalent data that is emitted as part of the "Raw Table Data" block. This prevents the iASL Preprocessor from possible confusion if/when the table is compiled. Disassembler: Added an option (-df) to force the disassembler to assume that the table being disassembled contains valid AML. This feature is useful for disassembling AML files that contain ACPI signatures other than DSDT or SSDT (such as OEMx or other signatures). Changes for the EFI version of the tools: 1) Fixed a build error/issue 2) Fixed a cast warning iASL: Fixed a path issue with the __FILE__ operator by making the directory prefix optional within the internal SplitInputFilename function. Debugger: Removed some unused global variables. Tests: Updated the makefile for proper generation of the AAPITS suite. ---------------------------------------- 04 February 2015. Summary of changes for version 20150204: ACPICA kernel-resident subsystem: Updated all ACPICA copyrights and signons to 2014. Added the 2014 copyright to all module headers and signons, including the standard Linux header. This affects virtually every file in the ACPICA core subsystem, iASL compiler, all ACPICA utilities, and the test suites. Events: Introduce ACPI_GPE_DISPATCH_RAW_HANDLER to fix GPE storm issues. A raw gpe handling mechanism was created to allow better handling of GPE storms that aren't easily managed by the normal handler. The raw handler allows disabling/renabling of the the GPE so that interrupt storms can be avoided in cases where events cannot be timely serviced. In this scenario, handlers should use the AcpiSetGpe() API to disable/enable the GPE. This API will leave the reference counts undisturbed, thereby preventing unintentional clearing of the GPE when the intent in only to temporarily disable it. Raw handlers allow enabling and disabling of a GPE by removing GPE register locking. As such, raw handlers much provide their own locks while using GPE API's to protect access to GPE data structures. Lv Zheng Events: Always modify GPE registers under the GPE lock. Applies GPE lock around AcpiFinishGpe() to protect access to GPE register values. Reported as bug by joe.liu@apple.com. Unix makefiles: Separate option to disable optimizations and _FORTIFY_SOURCE. This change removes the _FORTIFY_SOURCE flag from the NOOPT disable option and creates a separate flag (NOFORTIFY) for this purpose. Some toolchains may define _FORTIFY_SOURCE which leads redefined errors when building ACPICA. This allows disabling the option without also having to disable optimazations. David Box Current Release: Non-Debug Version: 101.7K Code, 27.9K Data, 129.6K Total Debug Version: 199.2K Code, 82.4K Data, 281.6K Total -- -------------------------------------- 07 November 2014. Summary of changes for version 20141107: This release is available at https://acpica.org/downloads This release introduces and implements language extensions to ASL that provide support for symbolic ("C-style") operators and expressions. These language extensions are known collectively as ASL+. 1) iASL Compiler/Disassembler and Tools: Disassembler: Fixed a problem with disassembly of the UartSerialBus macro. Changed "StopBitsNone" to the correct "StopBitsZero". David E. Box. Disassembler: Fixed the Unicode macro support to add escape sequences. All non-printable ASCII values are emitted as escape sequences, as well as the standard escapes for quote and backslash. Ensures that the disassembled macro can be correctly recompiled. iASL: Added Printf/Fprintf macros for formatted output. These macros are translated to existing AML Concatenate and Store operations. Printf writes to the ASL Debug object. Fprintf allows the specification of an ASL name as the target. Only a single format specifier is required, %o, since the AML interpreter dynamically converts objects to the required type. David E. Box. (old) Store (Concatenate (Concatenate (Concatenate (Concatenate (Concatenate (Concatenate (Concatenate ("", Arg0), ": Unexpected value for "), Arg1), ", "), Arg2), " at line "), Arg3), Debug) (new) Printf ("%o: Unexpected value for %o, %o at line %o", Arg0, Arg1, Arg2, Arg3) (old) Store (Concatenate (Concatenate (Concatenate (Concatenate ("", Arg1), ": "), Arg0), " Successful"), STR1) (new) Fprintf (STR1, "%o: %o Successful", Arg1, Arg0) iASL: Added debug options (-bp, -bt) to dynamically prune levels of the ASL parse tree before the AML code is generated. This allows blocks of ASL code to be removed in order to help locate and identify problem devices and/or code. David E. Box. AcpiExec: Added support (-fi) for an optional namespace object initialization file. This file specifies initial values for namespace objects as necessary for debugging and testing different ASL code paths that may be taken as a result of BIOS options. 2) Overview of symbolic operator support for ASL (ASL+) ------------------------------------------------------- As an extension to the ASL language, iASL implements support for symbolic (C-style) operators for math and logical expressions. This can greatly simplify ASL code as well as improve both readability and maintainability. These language extensions can exist concurrently with all legacy ASL code and expressions. The symbolic extensions are 100% compatible with existing AML interpreters, since no new AML opcodes are created. To implement the extensions, the iASL compiler transforms the symbolic expressions into the legacy ASL/AML equivalents at compile time. Full symbolic expressions are supported, along with the standard C precedence and associativity rules. Full disassembler support for the symbolic expressions is provided, and creates an automatic migration path for existing ASL code to ASL+ code via the disassembly process. By default, the disassembler now emits ASL+ code with symbolic expressions. An option (-dl) is provided to force the disassembler to emit legacy ASL code if desired. Below is the complete list of the currently supported symbolic operators with examples. See the iASL User Guide for additional information. ASL+ Syntax Legacy ASL Equivalent ----------- --------------------- // Math operators Z = X + Y Add (X, Y, Z) Z = X - Y Subtract (X, Y, Z) Z = X * Y Multiply (X, Y, Z) Z = X / Y Divide (X, Y, , Z) Z = X % Y Mod (X, Y, Z) Z = X << Y ShiftLeft (X, Y, Z) Z = X >> Y ShiftRight (X, Y, Z) Z = X & Y And (X, Y, Z) Z = X | Y Or (X, Y, Z) Z = X ^ Y Xor (X, Y, Z) Z = ~X Not (X, Z) X++ Increment (X) X-- Decrement (X) // Logical operators (X == Y) LEqual (X, Y) (X != Y) LNotEqual (X, Y) (X < Y) LLess (X, Y) (X > Y) LGreater (X, Y) (X <= Y) LLessEqual (X, Y) (X >= Y) LGreaterEqual (X, Y) (X && Y) LAnd (X, Y) (X || Y) LOr (X, Y) (!X) LNot (X) // Assignment and compound assignment operations X = Y Store (Y, X) X += Y Add (X, Y, X) X -= Y Subtract (X, Y, X) X *= Y Multiply (X, Y, X) X /= Y Divide (X, Y, , X) X %= Y Mod (X, Y, X) X <<= Y ShiftLeft (X, Y, X) X >>= Y ShiftRight (X, Y, X) X &= Y And (X, Y, X) X |= Y Or (X, Y, X) X ^= Y Xor (X, Y, X) 3) ASL+ Examples: ----------------- Legacy ASL: If (LOr (LOr (LEqual (And (R510, 0x03FB), 0x02E0), LEqual ( And (R520, 0x03FB), 0x02E0)), LOr (LEqual (And (R530, 0x03FB), 0x02E0), LEqual (And (R540, 0x03FB), 0x02E0)))) { And (MEMB, 0xFFFFFFF0, SRMB) Store (MEMB, Local2) Store (PDBM, Local1) And (PDBM, 0xFFFFFFFFFFFFFFF9, PDBM) Store (SRMB, MEMB) Or (PDBM, 0x02, PDBM) } ASL+ version: If (((R510 & 0x03FB) == 0x02E0) || ((R520 & 0x03FB) == 0x02E0) || ((R530 & 0x03FB) == 0x02E0) || ((R540 & 0x03FB) == 0x02E0)) { SRMB = (MEMB & 0xFFFFFFF0) Local2 = MEMB Local1 = PDBM PDBM &= 0xFFFFFFFFFFFFFFF9 MEMB = SRMB PDBM |= 0x02 } Legacy ASL: Store (0x1234, Local1) Multiply (Add (Add (Local1, TEST), 0x20), Local2, Local3) Multiply (Local2, Add (Add (Local1, TEST), 0x20), Local3) Add (Local1, Add (TEST, Multiply (0x20, Local2)), Local3) Store (Index (PKG1, 0x03), Local6) Store (Add (Local3, Local2), Debug) Add (Local1, 0x0F, Local2) Add (Local1, Multiply (Local2, Local3), Local2) Multiply (Add (Add (Local1, TEST), 0x20), ToBCD (Local1), Local3) ASL+ version: Local1 = 0x1234 Local3 = (((Local1 + TEST) + 0x20) * Local2) Local3 = (Local2 * ((Local1 + TEST) + 0x20)) Local3 = (Local1 + (TEST + (0x20 * Local2))) Local6 = Index (PKG1, 0x03) Debug = (Local3 + Local2) Local2 = (Local1 + 0x0F) Local2 = (Local1 + (Local2 * Local3)) Local3 = (((Local1 + TEST) + 0x20) * ToBCD (Local1)) ---------------------------------------- 26 September 2014. Summary of changes for version 20140926: 1) ACPICA kernel-resident subsystem: Updated the GPIO operation region handler interface (GeneralPurposeIo). In order to support GPIO Connection objects with multiple pins, along with the related Field objects, the following changes to the interface have been made: The Address is now defined to be the offset in bits of the field unit from the previous invocation of a Connection. It can be viewed as a "Pin Number Index" into the connection resource descriptor. The BitWidth is the exact bit width of the field. It is usually one bit, but not always. See the ACPICA reference guide (section 8.8.6.2.1) for additional information and examples. GPE support: During ACPICA/GPE initialization, ensure that all GPEs with corresponding _Lxx/_Exx methods are disabled (they may have been enabled by the firmware), so that they cannot fire until they are enabled via AcpiUpdateAllGpes. Rafael J. Wysocki. Added a new return flag for the Event/GPE status interfaces -- AcpiGetEventStatus and AcpiGetGpeStatus. The new ACPI_EVENT_FLAGS_HAS_HANDLER flag is used to indicate that the event or GPE currently has a handler associated with it, and can thus actually affect the system. Lv Zheng. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 99.1K Code, 27.3K Data, 126.4K Total Debug Version: 192.8K Code, 79.9K Data, 272.7K Total Previous Release: Non-Debug Version: 98.8K Code, 27.3K Data, 126.1K Total Debug Version: 192.1K Code, 79.8K Data, 271.9K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a memory allocation/free regression introduced in 20140828 that could cause the compiler to crash. This was introduced inadvertently during the effort to eliminate compiler memory leaks. ACPICA BZ 1111, 1113. iASL: Removed two error messages that have been found to create false positives, until they can be fixed and fully validated (ACPICA BZ 1112): 1) Illegal forward reference within a method 2) Illegal reference across two methods iASL: Implemented a new option (-lm) to create a hardware mapping file that summarizes all GPIO, I2C, SPI, and UART connections. This option works for both the compiler and disassembler. See the iASL compiler user guide for additional information and examples (section 6.4.6). AcpiDump: Added support for the version 1 (ACPI 1.0) RSDP in addition to version 2. This corrects the AE_BAD_HEADER exception seen on systems with a version 1 RSDP. Lv Zheng ACPICA BZ 1097. AcpiExec: For Unix versions, don't attempt to put STDIN into raw mode unless STDIN is actually a terminal. Assists with batch-mode processing. ACPICA BZ 1114. Disassembler/AcpiHelp: Added another large group of recognized _HID values. ---------------------------------------- 28 August 2014. Summary of changes for version 20140828: 1) ACPICA kernel-resident subsystem: Fixed a problem related to the internal use of the Timer() operator where a 64-bit divide could cause an attempted link to a double-precision math library. This divide is not actually necessary, so the code was restructured to eliminate it. Lv Zheng. ACPI 5.1: Added support for the runtime validation of the _DSD package (similar to the iASL support). ACPI 5.1/Headers: Added support for the GICC affinity subtable to the SRAT table. Hanjun Guo . Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 98.8K Code, 27.3K Data, 126.1K Total Debug Version: 192.1K Code, 79.8K Data, 271.9K Total Previous Release: Non-Debug Version: 98.7K Code, 27.3K Data, 126.0K Total1 Debug Version: 192.0K Code, 79.7K Data, 271.7K Total 2) iASL Compiler/Disassembler and Tools: AcpiExec: Fixed a problem on unix systems where the original terminal state was not always properly restored upon exit. Seen when using the -v option. ACPICA BZ 1104. iASL: Fixed a problem with the validation of the ranges/length within the Memory24 resource descriptor. There was a boundary condition when the range was equal to the (length -1) caused by the fact that these values are defined in 256-byte blocks, not bytes. ACPICA BZ 1098 Disassembler: Fixed a problem with the GpioInt descriptor interrupt polarity flags. The flags are actually 2 bits, not 1, and the "ActiveBoth" keyword is now supported properly. ACPI 5.1: Added the GICC affinity subtable to the SRAT table. Supported in the disassembler, data table compiler, and table template generator. iASL: Added a requirement for Device() objects that one of either a _HID or _ADR must exist within the scope of a Device, as per the ACPI specification. Remove a similar requirement that was incorrectly in place for the _DSD object. iASL: Added error detection for illegal named references within control methods that would cause runtime failures. Now trapped as errors are: 1) References to objects within a non-parent control method. 2) Forward references (within a method) -- for control methods, AML interpreters use a one-pass parse of control methods. ACPICA BZ 1008. iASL: Added error checking for dependencies related to the _PSx power methods. ACPICA BZ 1029. 1) For _PS0, one of these must exist within the same scope: _PS1, _PS2, _PS3. 2) For _PS1, _PS2, and PS3: A _PS0 object must exist within the same scope. iASL and table compiler: Cleanup miscellaneous memory leaks by fully deploying the existing object and string caches and adding new caches for the table compiler. iASL: Split the huge parser source file into multiple subfiles to improve manageability. Generation now requires the M4 macro preprocessor, which is part of the Bison distribution on both unix and windows platforms. AcpiSrc: Fixed and removed all extraneous warnings generated during entire ACPICA source code scan and/or conversion. ---------------------------------------- 24 July 2014. Summary of changes for version 20140724: The ACPI 5.1 specification has been released and is available at: http://uefi.org/specs/access 0) ACPI 5.1 support in ACPICA: ACPI 5.1 is fully supported in ACPICA as of this release. New predefined names. Support includes iASL and runtime ACPICA validation. _CCA (Cache Coherency Attribute). _DSD (Device-Specific Data). David Box. Modifications to existing ACPI tables. Support includes headers, iASL Data Table compiler, disassembler, and the template generator. FADT - New fields and flags. Graeme Gregory. GTDT - One new subtable and new fields. Tomasz Nowicki. MADT - Two new subtables. Tomasz Nowicki. PCCT - One new subtable. Miscellaneous. New notification type for System Resource Affinity change events. 1) ACPICA kernel-resident subsystem: Fixed a regression introduced in 20140627 where a fault can happen during the deletion of Alias AML namespace objects. The problem affected both the core ACPICA and the ACPICA tools including iASL and AcpiExec. Implemented a new GPE public interface, AcpiMarkGpeForWake. Provides a simple mechanism to enable wake GPEs that have no associated handler or control method. Rafael Wysocki. Updated the AcpiEnableGpe interface to disallow the enable if there is no handler or control method associated with the particular GPE. This will help avoid meaningless GPEs and even GPE floods. Rafael Wysocki. Updated GPE handling and dispatch by disabling the GPE before clearing the status bit for edge-triggered GPEs. Lv Zheng. Added Timer() support to the AML Debug object. The current timer value is now displayed with each invocation of (Store to) the debug object to enable simple generation of execution times for AML code (method execution for example.) ACPICA BZ 1093. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 98.7K Code, 27.3K Data, 126.0K Total Debug Version: 192.0K Code, 79.7K Data, 271.7K Total Previous Release: Non-Debug Version: 98.7K Code, 27.2K Data, 125.9K Total Debug Version: 191.7K Code, 79.6K Data, 271.3K Total 2) iASL Compiler/Disassembler and Tools: Fixed an issue with the recently added local printf implementation, concerning width/precision specifiers that could cause incorrect output. Lv Zheng. ACPICA BZ 1094. Disassembler: Added support to detect buffers that contain UUIDs and disassemble them to an invocation of the ToUUID operator. Also emit commented descriptions of known ACPI-related UUIDs. AcpiHelp: Added support to display known ACPI-related UUIDs. New option, -u. Adds three new files. iASL: Update table compiler and disassembler for DMAR table changes that were introduced in September 2013. With assistance by David Woodhouse. ---------------------------------------- 27 June 2014. Summary of changes for version 20140627: 1) ACPICA kernel-resident subsystem: Formatted Output: Implemented local versions of standard formatted output utilities such as printf, etc. Over time, it has been discovered that there are in fact many portability issues with printf, and the addition of this feature will fix/prevent these issues once and for all. Some known issues are summarized below: 1) Output of 64-bit values is not portable. For example, UINT64 is %ull for the Linux kernel and is %uI64 for some MSVC versions. 2) Invoking printf consistently in a manner that is portable across both 32-bit and 64-bit platforms is difficult at best in many situations. 3) The output format for pointers varies from system to system (leading zeros especially), and leads to inconsistent output from ACPICA across platforms. 4) Certain platform-specific printf formats may conflict with ACPICA use. 5) If there is no local C library available, ACPICA now has local support for printf. -- To address these printf issues in a complete manner, ACPICA now directly implements a small subset of printf format specifiers, only those that it requires. Adds a new file, utilities/utprint.c. Lv Zheng. Implemented support for ACPICA generation within the EFI environment. Initially, the AcpiDump utility is supported in the UEFI shell environment. Lv Zheng. Added a new external interface, AcpiLogError, to improve ACPICA portability. This allows the host to redirect error messages from the ACPICA utilities. Lv Zheng. Added and deployed new OSL file I/O interfaces to improve ACPICA portability: AcpiOsOpenFile AcpiOsCloseFile AcpiOsReadFile AcpiOsWriteFile AcpiOsGetFileOffset AcpiOsSetFileOffset There are C library implementations of these functions in the new file service_layers/oslibcfs.c -- however, the functions can be implemented by the local host in any way necessary. Lv Zheng. Implemented a mechanism to disable/enable ACPI table checksum validation at runtime. This can be useful when loading tables very early during OS initialization when it may not be possible to map the entire table in order to compute the checksum. Lv Zheng. Fixed a buffer allocation issue for the Generic Serial Bus support. Originally, a fixed buffer length was used. This change allows for variable-length buffers based upon the protocol indicated by the field access attributes. Reported by Lan Tianyu. Lv Zheng. Fixed a problem where an object detached from a namespace node was not properly terminated/cleared and could cause a circular list problem if reattached. ACPICA BZ 1063. David Box. Fixed a possible recursive lock acquisition in hwregs.c. Rakib Mullick. Fixed a possible memory leak in an error return path within the function AcpiUtCopyIobjectToIobject. ACPICA BZ 1087. Colin Ian King. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 98.7K Code, 27.2K Data, 125.9K Total Debug Version: 191.7K Code, 79.6K Data, 271.3K Total Previous Release: Non-Debug Version: 96.8K Code, 27.2K Data, 124.0K Total Debug Version: 189.5K Code, 79.7K Data, 269.2K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Add dump of ASCII equivalent text within a comment at the end of each line of the output for the Buffer() ASL operator. AcpiDump: Miscellaneous changes: Fixed repetitive table dump in -n mode. For older EFI platforms, use the ACPI 1.0 GUID during RSDP search if the ACPI 2.0 GUID fails. iASL: Fixed a problem where the compiler could fault if incorrectly given an acpidump output file as input. ACPICA BZ 1088. David Box. AcpiExec/AcpiNames: Fixed a problem where these utilities could fault if they are invoked without any arguments. Debugger: Fixed a possible memory leak in an error return path. ACPICA BZ 1086. Colin Ian King. Disassembler: Cleaned up a block of code that extracts a parent Op object. Added a comment that explains that the parent is guaranteed to be valid in this case. ACPICA BZ 1069. ---------------------------------------- 24 April 2014. Summary of changes for version 20140424: 1) ACPICA kernel-resident subsystem: Implemented support to skip/ignore NULL address entries in the RSDT/XSDT. Some of these tables are known to contain a trailing NULL entry. Lv Zheng. Removed an extraneous error message for the case where there are a large number of system GPEs (> 124). This was the "32-bit FADT register is too long to convert to GAS struct" message, which is irrelevant for GPEs since the GPEx_BLK_LEN fields of the FADT are always used instead of the (limited capacity) GAS bit length. Also, several changes to ensure proper support for GPE numbers > 255, where some "GPE number" fields were 8-bits internally. Implemented and deployed additional configuration support for the public ACPICA external interfaces. Entire classes of interfaces can now be easily modified or configured out, replaced by stubbed inline functions by default. Lv Zheng. Moved all public ACPICA runtime configuration globals to the public ACPICA external interface file for convenience. Also, removed some obsolete/unused globals. See the file acpixf.h. Lv Zheng. Documentation: Added a new section to the ACPICA reference describing the maximum number of GPEs that can be supported by the FADT-defined GPEs in block zero and one. About 1200 total. See section 4.4.1 of the ACPICA reference. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.8K Code, 27.2K Data, 124.0K Total Debug Version: 189.5K Code, 79.7K Data, 269.2K Total Previous Release: Non-Debug Version: 97.0K Code, 27.2K Data, 124.2K Total Debug Version: 189.7K Code, 79.5K Data, 269.2K Total 2) iASL Compiler/Disassembler and Tools: iASL and disassembler: Add full support for the LPIT table (Low Power Idle Table). Includes support in the disassembler, data table compiler, and template generator. AcpiDump utility: 1) Add option to force the use of the RSDT (over the XSDT). 2) Improve validation of the RSDP signature (use 8 chars instead of 4). iASL: Add check for predefined packages that are too large. For predefined names that contain subpackages, check if each subpackage is too large. (Check for too small already exists.) Debugger: Updated the GPE command (which simulates a GPE by executing the GPE code paths in ACPICA). The GPE device is now optional, and defaults to the GPE 0/1 FADT-defined blocks. Unix application OSL: Update line-editing support. Add additional error checking and take care not to reset terminal attributes on exit if they were never set. This should help guarantee that the terminal is always left in the previous state on program exit. ---------------------------------------- 25 March 2014. Summary of changes for version 20140325: 1) ACPICA kernel-resident subsystem: Updated the auto-serialize feature for control methods. This feature automatically serializes all methods that create named objects in order to prevent runtime errors. The update adds support to ignore the currently executing AML SyncLevel when invoking such a method, in order to prevent disruption of any existing SyncLevel priorities that may exist in the AML code. Although the use of SyncLevels is relatively rare, this change fixes a regression where an AE_AML_MUTEX_ORDER exception can appear on some machines starting with the 20140214 release. Added a new external interface to allow the host to install ACPI tables very early, before the namespace is even created. AcpiInstallTable gives the host additional flexibility for ACPI table management. Tables can be installed directly by the host as if they had originally appeared in the XSDT/RSDT. Installed tables can be SSDTs or other ACPI data tables (anything except the DSDT and FACS). Adds a new file, tbdata.c, along with additional internal restructuring and cleanup. See the ACPICA Reference for interface details. Lv Zheng. Added validation of the checksum for all incoming dynamically loaded tables (via external interfaces or via AML Load/LoadTable operators). Lv Zheng. Updated the use of the AcpiOsWaitEventsComplete interface during Notify and GPE handler removal. Restructured calls to eliminate possible race conditions. Lv Zheng. Added a warning for the use/execution of the ASL/AML Unload (table) operator. This will help detect and identify machines that use this operator if and when it is ever used. This operator has never been seen in the field and the usage model and possible side-effects of the drastic runtime action of a full table removal are unknown. Reverted the use of #pragma push/pop which was introduced in the 20140214 release. It appears that push and pop are not implemented by enough compilers to make the use of this feature feasible for ACPICA at this time. However, these operators may be deployed in a future ACPICA release. Added the missing EXPORT_SYMBOL macros for the install and remove SCI handler interfaces. Source code generation: 1) Disabled the use of the "strchr" macro for the gcc-specific generation. For some versions of gcc, this macro can periodically expose a compiler bug which in turn causes compile-time error(s). 2) Added support for PPC64 compilation. Colin Ian King. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 97.0K Code, 27.2K Data, 124.2K Total Debug Version: 189.7K Code, 79.5K Data, 269.2K Total Previous Release: Non-Debug Version: 96.5K Code, 27.2K Data, 123.7K Total Debug Version: 188.6K Code, 79.0K Data, 267.6K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Added several new features to improve the readability of the resulting ASL code. Extra information is emitted within comment fields in the ASL code: 1) Known _HID/_CID values are decoded to descriptive text. 2) Standard values for the Notify() operator are decoded to descriptive text. 3) Target operands are expanded to full pathnames (in a comment) when possible. Disassembler: Miscellaneous updates for extern() handling: 1) Abort compiler if file specified by -fe option does not exist. 2) Silence unnecessary warnings about argument count mismatches. 3) Update warning messages concerning unresolved method externals. 4) Emit "UnknownObj" keyword for externals whose type cannot be determined. AcpiHelp utility: 1) Added the -a option to display both the ASL syntax and the AML encoding for an input ASL operator. This effectively displays all known information about an ASL operator with one AcpiHelp invocation. 2) Added substring match support (similar to a wildcard) for the -i (_HID/PNP IDs) option. iASL/Disassembler: Since this tool does not yet support execution on big- endian machines, added detection of endianness and an error message if execution is attempted on big-endian. Support for big-endian within iASL is a feature that is on the ACPICA to-be-done list. AcpiBin utility: 1) Remove option to extract binary files from an acpidump; this function is made obsolete by the AcpiXtract utility. 2) General cleanup of open files and allocated buffers. ---------------------------------------- 14 February 2014. Summary of changes for version 20140214: 1) ACPICA kernel-resident subsystem: Implemented a new mechanism to proactively prevent problems with ill- behaved reentrant control methods that create named ACPI objects. This behavior is illegal as per the ACPI specification, but is nonetheless frequently seen in the field. Previously, this could lead to an AE_ALREADY_EXISTS exception if the method was actually entered by more than one thread. This new mechanism detects such methods at table load time and marks them "serialized" to prevent reentrancy. A new global option, AcpiGbl_AutoSerializeMethods, has been added to disable this feature if desired. This mechanism and global option obsoletes and supersedes the previous AcpiGbl_SerializeAllMethods option. Added the "Windows 2013" string to the _OSI support. ACPICA will now respond TRUE to _OSI queries with this string. It is the stated policy of ACPICA to add new strings to the _OSI support as soon as possible after they are defined. See the full ACPICA _OSI policy which has been added to the utilities/utosi.c file. Hardened/updated the _PRT return value auto-repair code: 1) Do not abort the repair on a single subpackage failure, continue to check all subpackages. 2) Add check for the minimum subpackage length (4). 3) Properly handle extraneous NULL package elements. Added support to avoid the possibility of infinite loops when traversing object linked lists. Never allow an infinite loop, even in the face of corrupted object lists. ACPICA headers: Deployed the use of #pragma pack(push) and #pragma pack(pop) directives to ensure that the ACPICA headers are independent of compiler settings or other host headers. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.5K Code, 27.2K Data, 123.7K Total Debug Version: 188.6K Code, 79.0K Data, 267.6K Total Previous Release: Non-Debug Version: 96.2K Code, 27.0K Data, 123.2K Total Debug Version: 187.5K Code, 78.3K Data, 265.8K Total 2) iASL Compiler/Disassembler and Tools: iASL/Table-compiler: Fixed a problem with support for the SPMI table. The first reserved field was incorrectly forced to have a value of zero. This change correctly forces the field to have a value of one. ACPICA BZ 1081. Debugger: Added missing support for the "Extra" and "Data" subobjects when displaying object data. Debugger: Added support to display entire object linked lists when displaying object data. iASL: Removed the obsolete -g option to obtain ACPI tables from the Windows registry. This feature has been superseded by the acpidump utility. ---------------------------------------- 14 January 2014. Summary of changes for version 20140114: 1) ACPICA kernel-resident subsystem: Updated all ACPICA copyrights and signons to 2014. Added the 2014 copyright to all module headers and signons, including the standard Linux header. This affects virtually every file in the ACPICA core subsystem, iASL compiler, all ACPICA utilities, and the test suites. Improved parameter validation for AcpiInstallGpeBlock. Added the following checks: 1) The incoming device handle refers to type ACPI_TYPE_DEVICE. 2) There is not already a GPE block attached to the device. Likewise, with AcpiRemoveGpeBlock, ensure that the incoming object is a device. Correctly support "references" in the ACPI_OBJECT. This change fixes the support to allow references (namespace nodes) to be passed as arguments to control methods via the evaluate object interface. This is probably most useful for testing purposes, however. Improved support for 32/64 bit physical addresses in printf()-like output. This change improves the support for physical addresses in printf debug statements and other output on both 32-bit and 64-bit hosts. It consistently outputs the appropriate number of bytes for each host. The %p specifier is unsatisfactory since it does not emit uniform output on all hosts/clib implementations (on some, leading zeros are not supported, leading to difficult-to-read output). Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.2K Code, 27.0K Data, 123.2K Total Debug Version: 187.5K Code, 78.3K Data, 265.8K Total Previous Release: Non-Debug Version: 96.1K Code, 27.0K Data, 123.1K Total Debug Version: 185.6K Code, 77.3K Data, 262.9K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fix a possible fault when using the Connection() operator. Fixes a problem if the parent Field definition for the Connection operator refers to an operation region that does not exist. ACPICA BZ 1064. AcpiExec: Load of local test tables is now optional. The utility has the capability to load some various tables to test features of ACPICA. However, there are enough of them that the output of the utility became confusing. With this change, only the required local tables are displayed (RSDP, XSDT, etc.) along with the actual tables loaded via the command line specification. This makes the default output simler and easier to understand. The -el command line option restores the original behavior for testing purposes. AcpiExec: Added support for overlapping operation regions. This change expands the simulation of operation regions by supporting regions that overlap within the given address space. Supports SystemMemory and SystemIO. ASLTS test suite updated also. David Box. ACPICA BZ 1031. AcpiExec: Added region handler support for PCI_Config and EC spaces. This allows AcpiExec to simulate these address spaces, similar to the current support for SystemMemory and SystemIO. Debugger: Added new command to read/write/compare all namespace objects. The command "test objects" will exercise the entire namespace by writing new values to each data object, and ensuring that the write was successful. The original value is then restored and verified. Debugger: Added the "test predefined" command. This change makes this test public and puts it under the new "test" command. The test executes each and every predefined name within the current namespace. ---------------------------------------- 18 December 2013. Summary of changes for version 20131218: Global note: The ACPI 5.0A specification was released this month. There are no changes needed for ACPICA since this release of ACPI is an errata/clarification release. The specification is available at acpi.info. 1) ACPICA kernel-resident subsystem: Added validation of the XSDT root table if it is present. Some older platforms contain an XSDT that is ill-formed or otherwise invalid (such as containing some or all entries that are NULL pointers). This change adds a new function to validate the XSDT before actually using it. If the XSDT is found to be invalid, ACPICA will now automatically fall back to using the RSDT instead. Original implementation by Zhao Yakui. Ported to ACPICA and enhanced by Lv Zheng and Bob Moore. Added a runtime option to ignore the XSDT and force the use of the RSDT. This change adds a runtime option that will force ACPICA to use the RSDT instead of the XSDT (AcpiGbl_DoNotUseXsdt). Although the ACPI spec requires that an XSDT be used instead of the RSDT, the XSDT has been found to be corrupt or ill-formed on some machines. Lv Zheng. Added a runtime option to favor 32-bit FADT register addresses over the 64-bit addresses. This change adds an option to favor 32-bit FADT addresses when there is a conflict between the 32-bit and 64-bit versions of the same register. The default behavior is to use the 64-bit version in accordance with the ACPI specification. This can now be overridden via the AcpiGbl_Use32BitFadtAddresses flag. ACPICA BZ 885. Lv Zheng. During the change above, the internal "Convert FADT" and "Verify FADT" functions have been merged to simplify the code, making it easier to understand and maintain. ACPICA BZ 933. Improve exception reporting and handling for GPE block installation. Return an actual status from AcpiEvGetGpeXruptBlock and don't clobber the status when exiting AcpiEvInstallGpeBlock. ACPICA BZ 1019. Added helper macros to extract bus/segment numbers from the HEST table. This change adds two macros to extract the encoded bus and segment numbers from the HEST Bus field - ACPI_HEST_BUS and ACPI_HEST_SEGMENT. Betty Dall Removed the unused ACPI_FREE_BUFFER macro. This macro is no longer used by ACPICA. It is not a public macro, so it should have no effect on existing OSV code. Lv Zheng. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.1K Code, 27.0K Data, 123.1K Total Debug Version: 185.6K Code, 77.3K Data, 262.9K Total Previous Release: Non-Debug Version: 95.9K Code, 27.0K Data, 122.9K Total Debug Version: 185.1K Code, 77.2K Data, 262.3K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Improved pathname support for emitted External() statements. This change adds full pathname support for external names that have been resolved internally by the inclusion of additional ACPI tables (via the iASL -e option). Without this change, the disassembler can emit multiple externals for the same object, or it become confused when the Scope() operator is used on an external object. Overall, greatly improves the ability to actually recompile the emitted ASL code when objects a referenced across multiple ACPI tables. Reported by Michael Tsirkin (mst@redhat.com). Tests/ASLTS: Updated functional control suite to execute with no errors. David Box. Fixed several errors related to the testing of the interpreter slack mode. Lv Zheng. iASL: Added support to detect names that are declared within a control method, but are unused (these are temporary names that are only valid during the time the method is executing). A remark is issued for these cases. ACPICA BZ 1022. iASL: Added full support for the DBG2 table. Adds full disassembler, table compiler, and template generator support for the DBG2 table (Debug Port 2 table). iASL: Added full support for the PCCT table, update the table definition. Updates the PCCT table definition in the actbl3.h header and adds table compiler and template generator support. iASL: Added an option to emit only error messages (no warnings/remarks). The -ve option will enable only error messages, warnings and remarks are suppressed. This can simplify debugging when only the errors are important, such as when an ACPI table is disassembled and there are many warnings and remarks -- but only the actual errors are of real interest. Example ACPICA code (source/tools/examples): Updated the example code so that it builds to an actual working program, not just example code. Added ACPI tables and execution of an example control method in the DSDT. Added makefile support for Unix generation. ---------------------------------------- 15 November 2013. Summary of changes for version 20131115: This release is available at https://acpica.org/downloads 1) ACPICA kernel-resident subsystem: Resource Manager: Fixed loop termination for the "get AML length" function. The loop previously had an error termination on a NULL resource pointer, which can never happen since the loop simply increments a valid resource pointer. This fix changes the loop to terminate with an error on an invalid end-of-buffer condition. The problem can be seen as an infinite loop by callers to AcpiSetCurrentResources with an invalid or corrupted resource descriptor, or a resource descriptor that is missing an END_TAG descriptor. Reported by Dan Carpenter . Lv Zheng, Bob Moore. Table unload and ACPICA termination: Delete all attached data objects during namespace node deletion. This fix updates namespace node deletion to delete the entire list of attached objects (attached via AcpiAttachObject) instead of just one of the attached items. ACPICA BZ 1024. Tomasz Nowicki (tomasz.nowicki@linaro.org). ACPICA termination: Added support to delete all objects attached to the root namespace node. This fix deletes any and all objects that have been attached to the root node via AcpiAttachData. Previously, none of these objects were deleted. Reported by Tomasz Nowicki. ACPICA BZ 1026. Debug output: Do not emit the function nesting level for the in-kernel build. The nesting level is really only useful during a single-thread execution. Therefore, only enable this output for the AcpiExec utility. Also, only emit the thread ID when executing under AcpiExec (Context switches are still always detected and a message is emitted). ACPICA BZ 972. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 95.9K Code, 27.0K Data, 122.9K Total Debug Version: 185.1K Code, 77.2K Data, 262.3K Total Previous Release: Non-Debug Version: 95.8K Code, 27.0K Data, 122.8K Total Debug Version: 185.2K Code, 77.2K Data, 262.4K Total 2) iASL Compiler/Disassembler and Tools: AcpiExec/Unix-OSL: Use instead of . This is the correct portable POSIX header for terminal control functions. Disassembler: Fixed control method invocation issues related to the use of the CondRefOf() operator. The problem is seen in the disassembly where control method invocations may not be disassembled properly if the control method name has been used previously as an argument to CondRefOf. The solution is to not attempt to emit an external declaration for the CondRefOf target (it is not necessary in the first place). This prevents disassembler object type confusion. ACPICA BZ 988. Unix Makefiles: Added an option to disable compiler optimizations and the _FORTIFY_SOURCE flag. Some older compilers have problems compiling ACPICA with optimizations (reportedly, gcc 4.4 for example). This change adds a command line option for make (NOOPT) that disables all compiler optimizations and the _FORTIFY_SOURCE compiler flag. The default optimization is -O2 with the _FORTIFY_SOURCE flag specified. ACPICA BZ 1034. Lv Zheng, Bob Moore. Tests/ASLTS: Added options to specify individual test cases and modes. This allows testers running aslts.sh to optionally specify individual test modes and test cases. Also added an option to disable the forced generation of the ACPICA tools from source if desired. Lv Zheng. ---------------------------------------- 27 September 2013. Summary of changes for version 20130927: This release is available at https://acpica.org/downloads 1) ACPICA kernel-resident subsystem: Fixed a problem with store operations to reference objects. This change fixes a problem where a Store operation to an ArgX object that contained a reference to a field object did not complete the automatic dereference and then write to the actual field object. Instead, the object type of the field object was inadvertently changed to match the type of the source operand. The new behavior will actually write to the field object (buffer field or field unit), thus matching the correct ACPI-defined behavior. Implemented support to allow the host to redefine individual OSL prototypes. This change enables the host to redefine OSL prototypes found in the acpiosxf.h file. This allows the host to implement OSL interfaces with a macro or inlined function. Further, it allows the host to add any additional required modifiers such as __iomem, __init, __exit, etc., as necessary on a per-interface basis. Enables maximum flexibility for the OSL interfaces. Lv Zheng. Hardcoded the access width for the FADT-defined reset register. The ACPI specification requires the reset register width to be 8 bits. ACPICA now hardcodes the width to 8 and ignores the FADT width value. This provides compatibility with other ACPI implementations that have allowed BIOS code with bad register width values to go unnoticed. Matthew Garett, Bob Moore, Lv Zheng. Changed the position/use of the ACPI_PRINTF_LIKE macro. This macro is used in the OSL header (acpiosxf). The change modifies the position of this macro in each instance where it is used (AcpiDebugPrint, etc.) to avoid build issues if the OSL defines the implementation of the interface to be an inline stub function. Lv Zheng. Deployed a new macro ACPI_EXPORT_SYMBOL_INIT for the main ACPICA initialization interfaces. This change adds a new macro for the main init and terminate external interfaces in order to support hosts that require additional or different processing for these functions. Changed from ACPI_EXPORT_SYMBOL to ACPI_EXPORT_SYMBOL_INIT for these functions. Lv Zheng, Bob Moore. Cleaned up the memory allocation macros for configurability. In the common case, the ACPI_ALLOCATE and related macros now resolve directly to their respective AcpiOs* OSL interfaces. Two options: 1) The ACPI_ALLOCATE_ZEROED macro uses a simple local implementation by default, unless overridden by the USE_NATIVE_ALLOCATE_ZEROED define. 2) For AcpiExec (and for debugging), the macros can optionally be resolved to the local ACPICA interfaces that track each allocation (local tracking is used to immediately detect memory leaks). Lv Zheng. Simplified the configuration for ACPI_REDUCED_HARDWARE. Allows the kernel to predefine this macro to either TRUE or FALSE during the system build. Replaced __FUNCTION_ with __func__ in the gcc-specific header. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 95.8K Code, 27.0K Data, 122.8K Total Debug Version: 185.2K Code, 77.2K Data, 262.4K Total Previous Release: Non-Debug Version: 96.7K Code, 27.1K Data, 123.9K Total Debug Version: 184.4K Code, 76.8K Data, 261.2K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented wildcard support for the -e option. This simplifies use when there are many SSDTs that must be included to resolve external method declarations. ACPICA BZ 1041. Example: iasl -e ssdt*.dat -d dsdt.dat AcpiExec: Add history/line-editing for Unix/Linux systems. This change adds a portable module that implements full history and limited line editing for Unix and Linux systems. It does not use readline() due to portability issues. Instead it uses the POSIX termio interface to put the terminal in raw input mode so that the various special keys can be trapped (such as up/down-arrow for history support and left/right-arrow for line editing). Uses the existing debugger history mechanism. ACPICA BZ 1036. AcpiXtract: Add support to handle (ignore) "empty" lines containing only one or more spaces. This provides compatible with early or different versions of the AcpiDump utility. ACPICA BZ 1044. AcpiDump: Do not ignore tables that contain only an ACPI table header. Apparently, some BIOSs create SSDTs that contain an ACPI table header but no other data. This change adds support to dump these tables. Any tables shorter than the length of an ACPI table header remain in error (an error message is emitted). Reported by Yi Li. Debugger: Echo actual command along with the "unknown command" message. ---------------------------------------- 23 August 2013. Summary of changes for version 20130823: 1) ACPICA kernel-resident subsystem: Implemented support for host-installed System Control Interrupt (SCI) handlers. Certain ACPI functionality requires the host to handle raw SCIs. For example, the "SCI Doorbell" that is defined for memory power state support requires the host device driver to handle SCIs to examine if the doorbell has been activated. Multiple SCI handlers can be installed to allow for future expansion. New external interfaces are AcpiInstallSciHandler, AcpiRemoveSciHandler; see the ACPICA reference for details. Lv Zheng, Bob Moore. ACPICA BZ 1032. Operation region support: Never locally free the handler "context" pointer. This change removes some dangerous code that attempts to free the handler context pointer in some (rare) circumstances. The owner of the handler owns this pointer and the ACPICA code should never touch it. Although not seen to be an issue in any kernel, it did show up as a problem (fault) under AcpiExec. Also, set the internal storage field for the context pointer to zero when the region is deactivated, simply for sanity. David Box. ACPICA BZ 1039. AcpiRead: On error, do not modify the return value target location. If an error happens in the middle of a split 32/32 64-bit I/O operation, do not modify the target of the return value pointer. Makes the code consistent with the rest of ACPICA. Bjorn Helgaas. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.7K Code, 27.1K Data, 123.9K Total Debug Version: 184.4K Code, 76.8K Data, 261.2K Total Previous Release: Non-Debug Version: 96.2K Code, 27.1K Data, 123.3K Total Debug Version: 185.4K Code, 77.1K Data, 262.5K Total 2) iASL Compiler/Disassembler and Tools: AcpiDump: Implemented several new features and fixed some problems: 1) Added support to dump the RSDP, RSDT, and XSDT tables. 2) Added support for multiple table instances (SSDT, UEFI). 3) Added option to dump "customized" (overridden) tables (-c). 4) Fixed a problem where some table filenames were improperly constructed. 5) Improved some error messages, removed some unnecessary messages. iASL: Implemented additional support for disassembly of ACPI tables that contain invocations of external control methods. The -fe option allows the import of a file that specifies the external methods along with the required number of arguments for each -- allowing for the correct disassembly of the table. This is a workaround for a limitation of AML code where the disassembler often cannot determine the number of arguments required for an external control method and generates incorrect ASL code. See the iASL reference for details. ACPICA BZ 1030. Debugger: Implemented a new command (paths) that displays the full pathnames (namepaths) and object types of all objects in the namespace. This is an alternative to the namespace command. Debugger: Implemented a new command (sci) that invokes the SCI dispatch mechanism and any installed handlers. iASL: Fixed a possible segfault for "too many parent prefixes" condition. This can occur if there are too many parent prefixes in a namepath (for example, ^^^^^^PCI0.ECRD). ACPICA BZ 1035. Application OSLs: Set the return value for the PCI read functions. These functions simply return AE_OK, but should set the return value to zero also. This change implements this. ACPICA BZ 1038. Debugger: Prevent possible command line buffer overflow. Increase the size of a couple of the debugger line buffers, and ensure that overflow cannot happen. ACPICA BZ 1037. iASL: Changed to abort immediately on serious errors during the parsing phase. Due to the nature of ASL, there is no point in attempting to compile these types of errors, and they typically end up causing a cascade of hundreds of errors which obscure the original problem. ---------------------------------------- 25 July 2013. Summary of changes for version 20130725: 1) ACPICA kernel-resident subsystem: Fixed a problem with the DerefOf operator where references to FieldUnits and BufferFields incorrectly returned the parent object, not the actual value of the object. After this change, a dereference of a FieldUnit reference results in a read operation on the field to get the value, and likewise, the appropriate BufferField value is extracted from the target buffer. Fixed a problem where the _WAK method could cause a fault under these circumstances: 1) Interpreter slack mode was not enabled, and 2) the _WAK method returned no value. The problem is rarely seen because most kernels run ACPICA in slack mode. For the DerefOf operator, a fatal error now results if an attempt is made to dereference a reference (created by the Index operator) to a NULL package element. Provides compatibility with other ACPI implementations, and this behavior will be added to a future version of the ACPI specification. The ACPI Power Management Timer (defined in the FADT) is now optional. This provides compatibility with other ACPI implementations and will appear in the next version of the ACPI specification. If there is no PM Timer on the platform, AcpiGetTimer returns AE_SUPPORT. An address of zero in the FADT indicates no PM timer. Implemented a new interface for _OSI support, AcpiUpdateInterfaces. This allows the host to globally enable/disable all vendor strings, all feature strings, or both. Intended to be primarily used for debugging purposes only. Lv Zheng. Expose the collected _OSI data to the host via a global variable. This data tracks the highest level vendor ID that has been invoked by the BIOS so that the host (and potentially ACPICA itself) can change behaviors based upon the age of the BIOS. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.2K Code, 27.1K Data, 123.3K Total Debug Version: 184.4K Code, 76.8K Data, 261.2K Total Previous Release: Non-Debug Version: 95.9K Code, 26.9K Data, 122.8K Total Debug Version: 184.1K Code, 76.7K Data, 260.8K Total 2) iASL Compiler/Disassembler and Tools: iASL: Created the following enhancements for the -so option (create offset table): 1)Add offsets for the last nameseg in each namepath for every supported object type 2)Add support for Processor, Device, Thermal Zone, and Scope objects 3)Add the actual AML opcode for the parent object of every supported object type 4)Add support for the ZERO/ONE/ONES AML opcodes for integer objects Disassembler: Emit all unresolved external symbols in a single block. These are external references to control methods that could not be resolved, and thus, the disassembler had to make a guess at the number of arguments to parse. iASL: The argument to the -T option (create table template) is now optional. If not specified, the default table is a DSDT, typically the most common case. ---------------------------------------- 26 June 2013. Summary of changes for version 20130626: 1) ACPICA kernel-resident subsystem: Fixed an issue with runtime repair of the _CST object. Null or invalid elements were not always removed properly. Lv Zheng. Removed an arbitrary restriction of 256 GPEs per GPE block (such as the FADT-defined GPE0 and GPE1). For GPE0, GPE1, and each GPE Block Device, the maximum number of GPEs is 1016. Use of multiple GPE block devices makes the system-wide number of GPEs essentially unlimited. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 95.9K Code, 26.9K Data, 122.8K Total Debug Version: 184.1K Code, 76.7K Data, 260.8K Total Previous Release: Non-Debug Version: 96.0K Code, 27.0K Data, 123.0K Total Debug Version: 184.1K Code, 76.8K Data, 260.9K Total 2) iASL Compiler/Disassembler and Tools: Portable AcpiDump: Implemented full support for the Linux and FreeBSD hosts. Now supports Linux, FreeBSD, and Windows. Disassembler: Added some missing types for the HEST and EINJ tables: "Set Error Type With Address", "CMCI", "MCE", and "Flush Cacheline". iASL/Preprocessor: Implemented full support for nested #if/#else/#elif/#endif blocks. Allows arbitrary depth of nested blocks. Disassembler: Expanded maximum output string length to 64K. Was 256 bytes max. The original purpose of this constraint was to limit the amount of debug output. However, the string function in question (UtPrintString) is now used for the disassembler also, where 256 bytes is insufficient. Reported by RehabMan@GitHub. iASL/DataTables: Fixed some problems and issues with compilation of DMAR tables. ACPICA BZ 999. Lv Zheng. iASL: Fixed a couple of error exit issues that could result in a "Could not delete " message during ASL compilation. AcpiDump: Allow "FADT" and "MADT" as valid table signatures, even though the actual signatures for these tables are "FACP" and "APIC", respectively. AcpiDump: Added support for multiple UEFI tables. Only SSDT and UEFI tables are allowed to have multiple instances. ---------------------------------------- 17 May 2013. Summary of changes for version 20130517: 1) ACPICA kernel-resident subsystem: Fixed a regression introduced in version 20130328 for _INI methods. This change fixes a problem introduced in 20130328 where _INI methods are no longer executed properly because of a memory block that was not initialized correctly. ACPICA BZ 1016. Tomasz Nowicki . Fixed a possible problem with the new extended sleep registers in the ACPI 5.0 FADT. Do not use these registers (even if populated) unless the HW- reduced bit is set in the FADT (as per the ACPI specification). ACPICA BZ 1020. Lv Zheng. Implemented return value repair code for _CST predefined objects: Sort the list and detect/remove invalid entries. ACPICA BZ 890. Lv Zheng. Implemented a debug-only option to disable loading of SSDTs from the RSDT/XSDT during ACPICA initialization. This can be useful for debugging ACPI problems on some machines. Set AcpiGbl_DisableSsdtTableLoad in acglobal.h - ACPICA BZ 1005. Lv Zheng. Fixed some issues in the ACPICA initialization and termination code: Tomasz Nowicki 1) Clear events initialized flag upon event component termination. ACPICA BZ 1013. 2) Fixed a possible memory leak in GPE init error path. ACPICA BZ 1018. 3) Delete global lock pending lock during termination. ACPICA BZ 1012. 4) Clear debug buffer global on termination to prevent possible multiple delete. ACPICA BZ 1010. Standardized all switch() blocks across the entire source base. After many years, different formatting for switch() had crept in. This change makes the formatting of every switch block identical. ACPICA BZ 997. Chao Guan. Split some files to enhance ACPICA modularity and configurability: 1) Split buffer dump routines into utilities/utbuffer.c 2) Split internal error message routines into utilities/uterror.c 3) Split table print utilities into tables/tbprint.c 4) Split iASL command-line option processing into asloptions.c Makefile enhancements: 1) Support for all new files above. 2) Abort make on errors from any subcomponent. Chao Guan. 3) Add build support for Apple Mac OS X. Liang Qi. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 96.0K Code, 27.0K Data, 123.0K Total Debug Version: 184.1K Code, 76.8K Data, 260.9K Total Previous Release: Non-Debug Version: 95.6K Code, 26.8K Data, 122.4K Total Debug Version: 183.5K Code, 76.6K Data, 260.1K Total 2) iASL Compiler/Disassembler and Tools: New utility: Implemented an easily portable version of the acpidump utility to extract ACPI tables from the system (or a file) in an ASCII hex dump format. The top-level code implements the various command line options, file I/O, and table dump routines. To port to a new host, only three functions need to be implemented to get tables -- since this functionality is OS-dependent. See the tools/acpidump/apmain.c module and the ACPICA reference for porting instructions. ACPICA BZ 859. Notes: 1) The Windows version obtains the ACPI tables from the Registry. 2) The Linux version is under development. 3) Other hosts - If an OS-dependent module is submitted, it will be distributed with ACPICA. iASL: Fixed a regression for -D preprocessor option (define symbol). A restructuring/change to the initialization sequence caused this option to no longer work properly. iASL: Implemented a mechanism to disable specific warnings and remarks. Adds a new command line option, "-vw as well as "#pragma disable ". ACPICA BZ 989. Chao Guan, Bob Moore. iASL: Fix for too-strict package object validation. The package object validation for return values from the predefined names is a bit too strict, it does not allow names references within the package (which will be resolved at runtime.) These types of references cannot be validated at compile time. This change ignores named references within package objects for names that return or define static packages. Debugger: Fixed the 80-character command line limitation for the History command. Now allows lines of arbitrary length. ACPICA BZ 1000. Chao Guan. iASL: Added control method and package support for the -so option (generates AML offset table for BIOS support.) iASL: issue a remark if a non-serialized method creates named objects. If a thread blocks within the method for any reason, and another thread enters the method, the method will fail because an attempt will be made to create the same (named) object twice. In this case, issue a remark that the method should be marked serialized. NOTE: may become a warning later. ACPICA BZ 909. ---------------------------------------- 18 April 2013. Summary of changes for version 20130418: 1) ACPICA kernel-resident subsystem: Fixed a possible buffer overrun during some rare but specific field unit read operations. This overrun can only happen if the DSDT version is 1 -- meaning that all AML integers are 32 bits -- and the field length is between 33 and 55 bits long. During the read, an internal buffer object is created for the field unit because the field is larger than an integer (32 bits). However, in this case, the buffer will be incorrectly written beyond the end because the buffer length is less than the internal minimum of 64 bits (8 bytes) long. The buffer will be either 5, 6, or 7 bytes long, but a full 8 bytes will be written. Updated the Embedded Controller "orphan" _REG method support. This refers to _REG methods under the EC device that have no corresponding operation region. This is allowed by the ACPI specification. This update removes a dependency on the existence an ECDT table. It will execute an orphan _REG method as long as the operation region handler for the EC is installed at the EC device node and not the namespace root. Rui Zhang (original update), Bob Moore (update/integrate). Implemented run-time argument typechecking for all predefined ACPI names (_STA, _BIF, etc.) This change performs object typechecking on all incoming arguments for all predefined names executed via AcpiEvaluateObject. This ensures that ACPI-related device drivers are passing correct object types as well as the correct number of arguments (therefore identifying any issues immediately). Also, the ASL/namespace definition of the predefined name is checked against the ACPI specification for the proper argument count. Adds one new file, nsarguments.c Changed an exception code for the ASL UnLoad() operator. Changed the exception code for the case where the input DdbHandle is invalid, from AE_BAD_PARAMETER to the more appropriate AE_AML_OPERAND_TYPE. Unix/Linux makefiles: Removed the use of the -O2 optimization flag in the global makefile. The use of this flag causes compiler errors on earlier versions of GCC, so it has been removed for compatibility. Miscellaneous cleanup: 1) Removed some unused/obsolete macros 2) Fixed a possible memory leak in the _OSI support 3) Removed an unused variable in the predefined name support 4) Windows OSL: remove obsolete reference to a memory list field Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Current Release: Non-Debug Version: 95.2K Code, 26.4K Data, 121.6K Total Debug Version: 183.0K Code, 76.0K Data, 259.0K Total Previous Release: Non-Debug Version: 95.6K Code, 26.8K Data, 122.4K Total Debug Version: 183.5K Code, 76.6K Data, 260.1K Total 2) iASL Compiler/Disassembler and Tools: AcpiExec: Added installation of a handler for the SystemCMOS address space. This prevents control method abort if a method accesses this space. AcpiExec: Added support for multiple EC devices, and now install EC operation region handler(s) at the actual EC device instead of the namespace root. This reflects the typical behavior of host operating systems. AcpiExec: Updated to ensure that all operation region handlers are installed before the _REG methods are executed. This prevents a _REG method from aborting if it accesses an address space has no handler. AcpiExec installs a handler for every possible address space. Debugger: Enhanced the "handlers" command to display non-root handlers. This change enhances the handlers command to display handlers associated with individual devices throughout the namespace, in addition to the currently supported display of handlers associated with the root namespace node. ASL Test Suite: Several test suite errors have been identified and resolved, reducing the total error count during execution. Chao Guan. ---------------------------------------- 28 March 2013. Summary of changes for version 20130328: 1) ACPICA kernel-resident subsystem: Fixed several possible race conditions with the internal object reference counting mechanism. Some of the external ACPICA interfaces update object reference counts without holding the interpreter or namespace lock. This change adds a spinlock to protect reference count updates on the internal ACPICA objects. Reported by and with assistance from Andriy Gapon (avg@FreeBSD.org). FADT support: Removed an extraneous warning for very large GPE register sets. This change removes a size mismatch warning if the legacy length field for a GPE register set is larger than the 64-bit GAS structure can accommodate. GPE register sets can be larger than the 255-bit width limitation of the GAS structure. Linn Crosetto (linn@hp.com). _OSI Support: handle any errors from AcpiOsAcquireMutex. Check for error return from this interface. Handles a possible timeout case if ACPI_WAIT_FOREVER is modified by the host to be a value less than "forever". Jung-uk Kim. Predefined name support: Add allowed/required argument type information to the master predefined info table. This change adds the infrastructure to enable typechecking on incoming arguments for all predefined methods/objects. It does not actually contain the code that will fully utilize this information, this is still under development. Also condenses some duplicate code for the predefined names into a new module, utilities/utpredef.c Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 95.0K Code, 25.9K Data, 120.9K Total Debug Version: 182.9K Code, 75.6K Data, 258.5K Total Current Release: Non-Debug Version: 95.2K Code, 26.4K Data, 121.6K Total Debug Version: 183.0K Code, 76.0K Data, 259.0K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented a new option to simplify the development of ACPI- related BIOS code. Adds support for a new "offset table" output file. The -so option will create a C table containing the AML table offsets of various named objects in the namespace so that BIOS code can modify them easily at boot time. This can simplify BIOS runtime code by eliminating expensive searches for "magic values", enhancing boot times and adding greater reliability. With assistance from Lee Hamel. iASL: Allow additional predefined names to return zero-length packages. Now, all predefined names that are defined by the ACPI specification to return a "variable-length package of packages" are allowed to return a zero length top-level package. This allows the BIOS to tell the host that the requested feature is not supported, and supports existing BIOS/ASL code and practices. iASL: Changed the "result not used" warning to an error. This is the case where an ASL operator is effectively a NOOP because the result of the operation is not stored anywhere. For example: Add (4, Local0) There is no target (missing 3rd argument), nor is the function return value used. This is potentially a very serious problem -- since the code was probably intended to do something, but for whatever reason, the value was not stored. Therefore, this issue has been upgraded from a warning to an error. AcpiHelp: Added allowable/required argument types to the predefined names info display. This feature utilizes the recent update to the predefined names table (above). ---------------------------------------- 14 February 2013. Summary of changes for version 20130214: 1) ACPICA Kernel-resident Subsystem: Fixed a possible regression on some hosts: Reinstated the safe return macros (return_ACPI_STATUS, etc.) that ensure that the argument is evaluated only once. Although these macros are not needed for the ACPICA code itself, they are often used by ACPI-related host device drivers where the safe feature may be necessary. Fixed several issues related to the ACPI 5.0 reduced hardware support (SOC): Now ensure that if the platform declares itself as hardware- reduced via the FADT, the following functions become NOOPs (and always return AE_OK) because ACPI is always enabled by definition on these machines: AcpiEnable AcpiDisable AcpiHwGetMode AcpiHwSetMode Dynamic Object Repair: Implemented additional runtime repairs for predefined name return values. Both of these repairs can simplify code in the related device drivers that invoke these methods: 1) For the _STR and _MLS names, automatically repair/convert an ASCII string to a Unicode buffer. 2) For the _CRS, _PRS, and _DMA names, return a resource descriptor with a lone end tag descriptor in the following cases: A Return(0) was executed, a null buffer was returned, or no object at all was returned (non-slack mode only). Adds a new file, nsconvert.c ACPICA BZ 998. Bob Moore, Lv Zheng. Resource Manager: Added additional code to prevent possible infinite loops while traversing corrupted or ill-formed resource template buffers. Check for zero-length resource descriptors in all code that loops through resource templates (the length field is used to index through the template). This change also hardens the external AcpiWalkResources and AcpiWalkResourceBuffer interfaces. Local Cache Manager: Enhanced the main data structure to eliminate an unnecessary mechanism to access the next object in the list. Actually provides a small performance enhancement for hosts that use the local ACPICA cache manager. Jung-uk Kim. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 94.5K Code, 25.4K Data, 119.9K Total Debug Version: 182.3K Code, 75.0K Data, 257.3K Total Current Release: Non-Debug Version: 95.0K Code, 25.9K Data, 120.9K Total Debug Version: 182.9K Code, 75.6K Data, 258.5K Total 2) iASL Compiler/Disassembler and Tools: iASL/Disassembler: Fixed several issues with the definition of the ACPI 5.0 RASF table (RAS Feature Table). This change incorporates late changes that were made to the ACPI 5.0 specification. iASL/Disassembler: Added full support for the following new ACPI tables: 1) The MTMR table (MID Timer Table) 2) The VRTC table (Virtual Real Time Clock Table). Includes header file, disassembler, table compiler, and template support for both tables. iASL: Implemented compile-time validation of package objects returned by predefined names. This new feature validates static package objects returned by the various predefined names defined to return packages. Both object types and package lengths are validated, for both parent packages and sub-packages, if any. The code is similar in structure and behavior to the runtime repair mechanism within the AML interpreter and uses the existing predefined name information table. Adds a new file, aslprepkg.c. ACPICA BZ 938. iASL: Implemented auto-detection of binary ACPI tables for disassembly. This feature detects a binary file with a valid ACPI table header and invokes the disassembler automatically. Eliminates the need to specifically invoke the disassembler with the -d option. ACPICA BZ 862. iASL/Disassembler: Added several warnings for the case where there are unresolved control methods during the disassembly. This can potentially cause errors when the output file is compiled, because the disassembler assumes zero method arguments in these cases (it cannot determine the actual number of arguments without resolution/definition of the method). Debugger: Added support to display all resources with a single command. Invocation of the resources command with no arguments will now display all resources within the current namespace. AcpiHelp: Added descriptive text for each ACPICA exception code displayed via the -e option. ---------------------------------------- 17 January 2013. Summary of changes for version 20130117: 1) ACPICA Kernel-resident Subsystem: Updated the AcpiGetSleepTypeData interface: Allow the \_Sx methods to return either 1 or 2 integers. Although the ACPI spec defines the \_Sx objects to return a package containing one integer, most BIOS code returns two integers and the previous code reflects that. However, we also need to support BIOS code that actually implements to the ACPI spec, and this change reflects this. Fixed two issues with the ACPI_DEBUG_PRINT macros: 1) Added the ACPI_DO_WHILE macro to the main DEBUG_PRINT helper macro for C compilers that require this support. 2) Renamed the internal ACPI_DEBUG macro to ACPI_DO_DEBUG_PRINT since ACPI_DEBUG is already used by many of the various hosts. Updated all ACPICA copyrights and signons to 2013. Added the 2013 copyright to all module headers and signons, including the standard Linux header. This affects virtually every file in the ACPICA core subsystem, iASL compiler, all ACPICA utilities, and the test suites. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 94.5K Code, 25.5K Data, 120.0K Total Debug Version: 182.2K Code, 74.9K Data, 257.1K Total Current Release: Non-Debug Version: 94.5K Code, 25.4K Data, 119.9K Total Debug Version: 182.3K Code, 75.0K Data, 257.3K Total 2) iASL Compiler/Disassembler and Tools: Generic Unix OSL: Use a buffer to eliminate multiple vfprintf()s and prevent a possible fault on some hosts. Some C libraries modify the arg pointer parameter to vfprintf making it difficult to call it twice in the AcpiOsVprintf function. Use a local buffer to workaround this issue. This does not affect the Windows OSL since the Win C library does not modify the arg pointer. Chao Guan, Bob Moore. iASL: Fixed a possible infinite loop when the maximum error count is reached. If an output file other than the .AML file is specified (such as a listing file), and the maximum number of errors is reached, do not attempt to flush data to the output file(s) as the compiler is aborting. This can cause an infinite loop as the max error count code essentially keeps calling itself. iASL/Disassembler: Added an option (-in) to ignore NOOP opcodes/operators. Implemented for both the compiler and the disassembler. Often, the NOOP opcode is used as padding for packages that are changed dynamically by the BIOS. When disassembled and recompiled, these NOOPs will cause syntax errors. This option causes the disassembler to ignore all NOOP opcodes (0xA3), and it also causes the compiler to ignore all ASL source code NOOP statements as well. Debugger: Enhanced the Sleep command to execute all sleep states. This change allows Sleep to be invoked with no arguments and causes the debugger to execute all of the sleep states, 0-5, automatically. ---------------------------------------- 20 December 2012. Summary of changes for version 20121220: 1) ACPICA Kernel-resident Subsystem: Implemented a new interface, AcpiWalkResourceBuffer. This interface is an alternate entry point for AcpiWalkResources and improves the usability of the resource manager by accepting as input a buffer containing the output of either a _CRS, _PRS, or _AEI method. The key functionality is that the input buffer is not deleted by this interface so that it can be used by the host later. See the ACPICA reference for details. Interpreter: Add a warning if a 64-bit constant appears in a 32-bit table (DSDT version < 2). The constant will be truncated and this warning reflects that behavior. Resource Manager: Add support for the new ACPI 5.0 wake bit in the IRQ, ExtendedInterrupt, and GpioInt descriptors. This change adds support to both get and set the new wake bit in these descriptors, separately from the existing share bit. Reported by Aaron Lu. Interpreter: Fix Store() when an implicit conversion is not possible. For example, in the cases such as a store of a string to an existing package object, implement the store as a CopyObject(). This is a small departure from the ACPI specification which states that the control method should be aborted in this case. However, the ASLTS suite depends on this behavior. Performance improvement for the various FUNCTION_TRACE and DEBUG_PRINT macros: check if debug output is currently enabled as soon as possible to minimize performance impact if debug is in fact not enabled. Source code restructuring: Cleanup to improve modularity. The following new files have been added: dbconvert.c, evhandler.c, nsprepkg.c, psopinfo.c, psobject.c, rsdumpinfo.c, utstring.c, and utownerid.c. Associated makefiles and project files have been updated. Changed an exception code for LoadTable operator. For the case where one of the input strings is too long, change the returned exception code from AE_BAD_PARAMETER to AE_AML_STRING_LIMIT. Fixed a possible memory leak in dispatcher error path. On error, delete the mutex object created during method mutex creation. Reported by tim.gardner@canonical.com. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 94.3K Code, 25.3K Data, 119.6K Total Debug Version: 175.5K Code, 74.5K Data, 250.0K Total Current Release: Non-Debug Version: 94.5K Code, 25.5K Data, 120.0K Total Debug Version: 182.2K Code, 74.9K Data, 257.1K Total 2) iASL Compiler/Disassembler and Tools: iASL: Disallow a method call as argument to the ObjectType ASL operator. This change tracks an errata to the ACPI 5.0 document. The AML grammar will not allow the interpreter to differentiate between a method and a method invocation when these are used as an argument to the ObjectType operator. The ACPI specification change is to disallow a method invocation (UserTerm) for the ObjectType operator. Finish support for the TPM2 and CSRT tables in the headers, table compiler, and disassembler. Unix user-space OSL: Fix a problem with WaitSemaphore where the timeout always expires immediately if the semaphore is not available. The original code was using a relative-time timeout, but sem_timedwait requires the use of an absolute time. iASL: Added a remark if the Timer() operator is used within a 32-bit table. This operator returns a 64-bit time value that will be truncated within a 32-bit table. iASL Source code restructuring: Cleanup to improve modularity. The following new files have been added: aslhex.c, aslxref.c, aslnamesp.c, aslmethod.c, and aslfileio.c. Associated makefiles and project files have been updated. ---------------------------------------- 14 November 2012. Summary of changes for version 20121114: 1) ACPICA Kernel-resident Subsystem: Implemented a performance enhancement for ACPI/AML Package objects. This change greatly increases the performance of Package objects within the interpreter. It changes the processing of reference counts for packages by optimizing for the most common case where the package sub-objects are either Integers, Strings, or Buffers. Increases the overall performance of the ASLTS test suite by 1.5X (Increases the Slack Mode performance by 2X.) Chao Guan. ACPICA BZ 943. Implemented and deployed common macros to extract flag bits from resource descriptors. Improves readability and maintainability of the code. Fixes a problem with the UART serial bus descriptor for the number of data bits flags (was incorrectly 2 bits, should be 3). Enhanced the ACPI_GETx and ACPI_SETx macros. Improved the implementation of the macros and changed the SETx macros to the style of (destination, source). Also added ACPI_CASTx companion macros. Lv Zheng. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.9K Code, 25.2K Data, 119.1K Total Debug Version: 175.5K Code, 74.5K Data, 250.0K Total Current Release: Non-Debug Version: 94.3K Code, 25.3K Data, 119.6K Total Debug Version: 175.5K Code, 74.5K Data, 250.0K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Added the new ACPI 5.0 interrupt sharing flags. This change adds the ShareAndWake and ExclusiveAndWake flags which were added to the Irq, Interrupt, and Gpio resource descriptors in ACPI 5.0. ACPICA BZ 986. Disassembler: Fixed a problem with external declaration generation. Fixes a problem where an incorrect pathname could be generated for an external declaration if the original reference to the object includes leading carats (^). ACPICA BZ 984. Debugger: Completed a major update for the Disassemble command. This command was out-of-date and did not properly disassemble control methods that had any reasonable complexity. This fix brings the command up to the same level as the rest of the disassembler. Adds one new file, dmdeferred.c, which is existing code that is now common with the main disassembler and the debugger disassemble command. ACPICA MZ 978. iASL: Moved the parser entry prototype to avoid a duplicate declaration. Newer versions of Bison emit this prototype, so moved the prototype out of the iASL header to where it is actually used in order to avoid a duplicate declaration. iASL/Tools: Standardized use of the stream I/O functions: 1) Ensure check for I/O error after every fopen/fread/fwrite 2) Ensure proper order of size/count arguments for fread/fwrite 3) Use test of (Actual != Requested) after all fwrite, and most fread 4) Standardize I/O error messages Improves reliability and maintainability of the code. Bob Moore, Lv Zheng. ACPICA BZ 981. Disassembler: Prevent duplicate External() statements. During generation of external statements, detect similar pathnames that are actually duplicates such as these: External (\ABCD) External (ABCD) Remove all leading '\' characters from pathnames during the external statement generation so that duplicates will be detected and tossed. ACPICA BZ 985. Tools: Replace low-level I/O with stream I/O functions. Replace open/read/write/close with the stream I/O equivalents fopen/fread/fwrite/fclose for portability and performance. Lv Zheng, Bob Moore. AcpiBin: Fix for the dump-to-hex function. Now correctly output the table name header so that AcpiXtract recognizes the output file/table. iASL: Remove obsolete -2 option flag. Originally intended to force the compiler/disassembler into an ACPI 2.0 mode, this was never implemented and the entire concept is now obsolete. ---------------------------------------- 18 October 2012. Summary of changes for version 20121018: 1) ACPICA Kernel-resident Subsystem: Updated support for the ACPI 5.0 MPST table. Fixes some problems introduced by late changes to the table as it was added to the ACPI 5.0 specification. Includes header, disassembler, and data table compiler support as well as a new version of the MPST template. AcpiGetObjectInfo: Enhanced the device object support to include the ACPI 5.0 _SUB method. Now calls _SUB in addition to the other PNP-related ID methods: _HID, _CID, and _UID. Changed ACPI_DEVICE_ID to ACPI_PNP_DEVICE_ID. Also changed ACPI_DEVICE_ID_LIST to ACPI_PNP_DEVICE_ID_LIST. These changes prevent name collisions on hosts that reserve the *_DEVICE_ID (or *DeviceId) names for their various drivers. Affects the AcpiGetObjectInfo external interface, and other internal interfaces as well. Added and deployed a new macro for ACPI_NAME management: ACPI_MOVE_NAME. This macro resolves to a simple 32-bit move of the 4-character ACPI_NAME on machines that support non-aligned transfers. Optimizes for this case rather than using a strncpy. With assistance from Zheng Lv. Resource Manager: Small fix for buffer size calculation. Fixed a one byte error in the output buffer calculation. Feng Tang. ACPICA BZ 849. Added a new debug print message for AML mutex objects that are force- released. At control method termination, any currently acquired mutex objects are force-released. Adds a new debug-only message for each one that is released. Audited/updated all ACPICA return macros and the function debug depth counter: 1) Ensure that all functions that use the various TRACE macros also use the appropriate ACPICA return macros. 2) Ensure that all normal return statements surround the return expression (value) with parens to ensure consistency across the ACPICA code base. Guan Chao, Tang Feng, Zheng Lv, Bob Moore. ACPICA Bugzilla 972. Global source code changes/maintenance: All extra lines at the start and end of each source file have been removed for consistency. Also, within comments, all new sentences start with a single space instead of a double space, again for consistency across the code base. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.7K Code, 25.3K Data, 119.0K Total Debug Version: 175.0K Code, 74.4K Data, 249.4K Total Current Release: Non-Debug Version: 93.9K Code, 25.2K Data, 119.1K Total Debug Version: 175.5K Code, 74.5K Data, 250.0K Total 2) iASL Compiler/Disassembler and Tools: AcpiExec: Improved the algorithm used for memory leak/corruption detection. Added some intelligence to the code that maintains the global list of allocated memory. The list is now ordered by allocated memory address, significantly improving performance. When running AcpiExec on the ASLTS test suite, speed improvements of 3X to 5X are seen, depending on the platform and/or the environment. Note, this performance enhancement affects the AcpiExec utility only, not the kernel-resident ACPICA code. Enhanced error reporting for invalid AML opcodes and bad ACPI_NAMEs. For the disassembler, dump the 48 bytes surrounding the invalid opcode. Fix incorrect table offset reported for invalid opcodes. Report the original 32-bit value for bad ACPI_NAMEs (as well as the repaired name.) Disassembler: Enhanced the -vt option to emit the binary table data in hex format to assist with debugging. Fixed a potential filename buffer overflow in osunixdir.c. Increased the size of file structure. Colin Ian King. ---------------------------------------- 13 September 2012. Summary of changes for version 20120913: 1) ACPICA Kernel-resident Subsystem: ACPI 5.0: Added two new notify types for the Hardware Error Notification Structure within the Hardware Error Source Table (HEST) table -- CMCI(5) and MCE(6). Table Manager: Merged/removed duplicate code in the root table resize functions. One function is external, the other is internal. Lv Zheng, ACPICA BZ 846. Makefiles: Completely removed the obsolete "Linux" makefiles under acpica/generate/linux. These makefiles are obsolete and have been replaced by the generic unix makefiles under acpica/generate/unix. Makefiles: Ensure that binary files always copied properly. Minor rule change to ensure that the final binary output files are always copied up to the appropriate binary directory (bin32 or bin64.) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.8K Code, 25.3K Data, 119.1K Total Debug Version: 175.7K Code, 74.8K Data, 250.5K Total Current Release: Non-Debug Version: 93.7K Code, 25.3K Data, 119.0K Total Debug Version: 175.0K Code, 74.4K Data, 249.4K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Fixed a possible fault during the disassembly of resource descriptors when a second parse is required because of the invocation of external control methods within the table. With assistance from adq@lidskialf.net. ACPICA BZ 976. iASL: Fixed a namepath optimization problem. An error can occur if the parse node that contains the namepath to be optimized does not have a parent node that is a named object. This change fixes the problem. iASL: Fixed a regression where the AML file is not deleted on errors. The AML output file should be deleted if there are any errors during the compiler. The only exception is if the -f (force output) option is used. ACPICA BZ 974. iASL: Added a feature to automatically increase internal line buffer sizes. Via realloc(), automatically increase the internal line buffer sizes as necessary to support very long source code lines. The current version of the preprocessor requires a buffer long enough to contain full source code lines. This change increases the line buffer(s) if the input lines go beyond the current buffer size. This eliminates errors that occurred when a source code line was longer than the buffer. iASL: Fixed a problem with constant folding in method declarations. The SyncLevel term is a ByteConstExpr, and incorrect code would be generated if a Type3 opcode was used. Debugger: Improved command help support. For incorrect argument count, display full help for the command. For help command itself, allow an argument to specify a command. Test Suites: Several bug fixes for the ASLTS suite reduces the number of errors during execution of the suite. Guan Chao. ---------------------------------------- 16 August 2012. Summary of changes for version 20120816: 1) ACPICA Kernel-resident Subsystem: Removed all use of the deprecated _GTS and _BFS predefined methods. The _GTS (Going To Sleep) and _BFS (Back From Sleep) methods are essentially deprecated and will probably be removed from the ACPI specification. Windows does not invoke them, and reportedly never will. The final nail in the coffin is that the ACPI specification states that these methods must be run with interrupts off, which is not going to happen in a kernel interpreter. Note: Linux has removed all use of the methods also. It was discovered that invoking these functions caused failures on some machines, probably because they were never tested since Windows does not call them. Affects two external interfaces, AcpiEnterSleepState and AcpiLeaveSleepStatePrep. Tang Feng. ACPICA BZ 969. Implemented support for complex bit-packed buffers returned from the _PLD (Physical Location of Device) predefined method. Adds a new external interface, AcpiDecodePldBuffer that parses the buffer into a more usable C structure. Note: C Bitfields cannot be used for this type of predefined structure since the memory layout of individual bitfields is not defined by the C language. In addition, there are endian concerns where a compiler will change the bitfield ordering based on the machine type. The new ACPICA interface eliminates these issues, and should be called after _PLD is executed. ACPICA BZ 954. Implemented a change to allow a scope change to root (via "Scope (\)") during execution of module-level ASL code (code that is executed at table load time.) Lin Ming. Added the Windows8/Server2012 string for the _OSI method. This change adds a new _OSI string, "Windows 2012" for both Windows 8 and Windows Server 2012. Added header support for the new ACPI tables DBG2 (Debug Port Table Type 2) and CSRT (Core System Resource Table). Added struct header support for the _FDE, _GRT, _GTM, and _SRT predefined names. This simplifies access to the buffers returned by these predefined names. Adds a new file, include/acbuffer.h. ACPICA BZ 956. GPE support: Removed an extraneous parameter from the various low-level internal GPE functions. Tang Feng. Removed the linux makefiles from the unix packages. The generate/linux makefiles are obsolete and have been removed from the unix tarball release packages. The replacement makefiles are under generate/unix, and there is a top-level makefile under the main acpica directory. ACPICA BZ 967, 912. Updates for Unix makefiles: 1) Add -D_FORTIFY_SOURCE=2 for gcc generation. Arjan van de Ven. 2) Update linker flags (move to end of command line) for AcpiExec utility. Guan Chao. Split ACPICA initialization functions to new file, utxfinit.c. Split from utxface.c to improve modularity and reduce file size. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.5K Code, 25.3K Data, 118.8K Total Debug Version: 173.7K Code, 74.0K Data, 247.7K Total Current Release: Non-Debug Version: 93.8K Code, 25.3K Data, 119.1K Total Debug Version: 175.7K Code, 74.8K Data, 250.5K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a problem with constant folding for fixed-length constant expressions. The constant-folding code was not being invoked for constant expressions that allow the use of type 3/4/5 opcodes to generate constants for expressions such as ByteConstExpr, WordConstExpr, etc. This could result in the generation of invalid AML bytecode. ACPICA BZ 970. iASL: Fixed a generation issue on newer versions of Bison. Newer versions apparently automatically emit some of the necessary externals. This change handles these versions in order to eliminate generation warnings. Disassembler: Added support to decode the DBG2 and CSRT ACPI tables. Disassembler: Add support to decode _PLD buffers. The decoded buffer appears within comments in the output file. Debugger: Fixed a regression with the "Threads" command where AE_BAD_PARAMETER was always returned. ---------------------------------------- 11 July 2012. Summary of changes for version 20120711: 1) ACPICA Kernel-resident Subsystem: Fixed a possible fault in the return package object repair code. Fixes a problem that can occur when a lone package object is wrapped with an outer package object in order to force conformance to the ACPI specification. Can affect these predefined names: _ALR, _MLS, _PSS, _TRT, _TSS, _PRT, _HPX, _DLM, _CSD, _PSD, _TSD. Removed code to disable/enable bus master arbitration (ARB_DIS bit in the PM2_CNT register) in the ACPICA sleep/wake interfaces. Management of the ARB_DIS bit must be implemented in the host-dependent C3 processor power state support. Note, ARB_DIS is obsolete and only applies to older chipsets, both Intel and other vendors. (for Intel: ICH4-M and earlier) This change removes the code to disable/enable bus master arbitration during suspend/resume. Use of the ARB_DIS bit in the optional PM2_CNT register causes resume problems on some machines. The change has been in use for over seven years within Linux. Implemented two new external interfaces to support host-directed dynamic ACPI table load and unload. They are intended to simplify the host implementation of hot-plug support: AcpiLoadTable: Load an SSDT from a buffer into the namespace. AcpiUnloadParentTable: Unload an SSDT via a named object owned by the table. See the ACPICA reference for additional details. Adds one new file, components/tables/tbxfload.c Implemented and deployed two new interfaces for errors and warnings that are known to be caused by BIOS/firmware issues: AcpiBiosError: Prints "ACPI Firmware Error" message. AcpiBiosWarning: Prints "ACPI Firmware Warning" message. Deployed these new interfaces in the ACPICA Table Manager code for ACPI table and FADT errors. Additional deployment to be completed as appropriate in the future. The associated conditional macros are ACPI_BIOS_ERROR and ACPI_BIOS_WARNING. See the ACPICA reference for additional details. ACPICA BZ 843. Implicit notify support: ensure that no memory allocation occurs within a critical region. This fix moves a memory allocation outside of the time that a spinlock is held. Fixes issues on systems that do not allow this behavior. Jung-uk Kim. Split exception code utilities and tables into a new file, utilities/utexcep.c Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.1K Code, 25.1K Data, 118.2K Total Debug Version: 172.9K Code, 73.6K Data, 246.5K Total Current Release: Non-Debug Version: 93.5K Code, 25.3K Data, 118.8K Total Debug Version: 173.7K Code, 74.0K Data, 247.7K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a parser problem for hosts where EOF is defined as -1 instead of 0. Jung-uk Kim. Debugger: Enhanced the "tables" command to emit additional information about the current set of ACPI tables, including the owner ID and flags decode. Debugger: Reimplemented the "unload" command to use the new AcpiUnloadParentTable external interface. This command was disable previously due to need for an unload interface. AcpiHelp: Added a new option to decode ACPICA exception codes. The -e option will decode 16-bit hex status codes (ACPI_STATUS) to name strings. ---------------------------------------- 20 June 2012. Summary of changes for version 20120620: 1) ACPICA Kernel-resident Subsystem: Implemented support to expand the "implicit notify" feature to allow multiple devices to be notified by a single GPE. This feature automatically generates a runtime device notification in the absence of a BIOS-provided GPE control method (_Lxx/_Exx) or a host-installed handler for the GPE. Implicit notify is provided by ACPICA for Windows compatibility, and is a workaround for BIOS AML code errors. See the description of the AcpiSetupGpeForWake interface in the APCICA reference. Bob Moore, Rafael Wysocki. ACPICA BZ 918. Changed some comments and internal function names to simplify and ensure correctness of the Linux code translation. No functional changes. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.0K Code, 25.1K Data, 118.1K Total Debug Version: 172.7K Code, 73.6K Data, 246.3K Total Current Release: Non-Debug Version: 93.1K Code, 25.1K Data, 118.2K Total Debug Version: 172.9K Code, 73.6K Data, 246.5K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Added support to emit short, commented descriptions for the ACPI predefined names in order to improve the readability of the disassembled output. ACPICA BZ 959. Changes include: 1) Emit descriptions for all standard predefined names (_INI, _STA, _PRW, etc.) 2) Emit generic descriptions for the special names (_Exx, _Qxx, etc.) 3) Emit descriptions for the resource descriptor names (_MIN, _LEN, etc.) AcpiSrc: Fixed several long-standing Linux code translation issues. Argument descriptions in function headers are now translated properly to lower case and underscores. ACPICA BZ 961. Also fixes translation problems such as these: (old -> new) i_aSL -> iASL 00-7_f -> 00-7F 16_k -> 16K local_fADT -> local_FADT execute_oSI -> execute_OSI iASL: Fixed a problem where null bytes were inadvertently emitted into some listing files. iASL: Added the existing debug options to the standard help screen. There are no longer two different help screens. ACPICA BZ 957. AcpiHelp: Fixed some typos in the various predefined name descriptions. Also expand some of the descriptions where appropriate. iASL: Fixed the -ot option (display compile times/statistics). Was not working properly for standard output; only worked for the debug file case. ---------------------------------------- 18 May 2012. Summary of changes for version 20120518: 1) ACPICA Core Subsystem: Added a new OSL interface, AcpiOsWaitEventsComplete. This interface is defined to block until asynchronous events such as notifies and GPEs have completed. Within ACPICA, it is only called before a notify or GPE handler is removed/uninstalled. It also may be useful for the host OS within related drivers such as the Embedded Controller driver. See the ACPICA reference for additional information. ACPICA BZ 868. ACPI Tables: Added a new error message for a possible overflow failure during the conversion of FADT 32-bit legacy register addresses to internal common 64- bit GAS structure representation. The GAS has a one-byte "bit length" field, thus limiting the register length to 255 bits. ACPICA BZ 953. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 92.9K Code, 25.0K Data, 117.9K Total Debug Version: 172.6K Code, 73.4K Data, 246.0K Total Current Release: Non-Debug Version: 93.0K Code, 25.1K Data, 118.1K Total Debug Version: 172.7K Code, 73.6K Data, 246.3K Total 2) iASL Compiler/Disassembler and Tools: iASL: Added the ACPI 5.0 "PCC" keyword for use in the Register() ASL macro. This keyword was added late in the ACPI 5.0 release cycle and was not implemented until now. Disassembler: Added support for Operation Region externals. Adds missing support for operation regions that are defined in another table, and referenced locally via a Field or BankField ASL operator. Now generates the correct External statement. Disassembler: Several additional fixes for the External() statement generation related to some ASL operators. Also, order the External() statements alphabetically in the disassembler output. Fixes the External() generation for the Create* field, Alias, and Scope operators: 1) Create* buffer field operators - fix type mismatch warning on disassembly 2) Alias - implement missing External support 3) Scope - fix to make sure all necessary externals are emitted. iASL: Improved pathname support. For include files, merge the prefix pathname with the file pathname and eliminate unnecessary components. Convert backslashes in all pathnames to forward slashes, for readability. Include file pathname changes affect both #include and Include() type operators. iASL/DTC/Preprocessor: Gracefully handle early EOF. Handle an EOF at the end of a valid line by inserting a newline and then returning the EOF during the next call to GetNextLine. Prevents the line from being ignored due to EOF condition. iASL: Implemented some changes to enhance the IDE support (-vi option.) Error and Warning messages are now correctly recognized for both the source code browser and the global error and warning counts. ---------------------------------------- 20 April 2012. Summary of changes for version 20120420: 1) ACPICA Core Subsystem: Implemented support for multiple notify handlers. This change adds support to allow multiple system and device notify handlers on Device, Thermal Zone, and Processor objects. This can simplify the host OS notification implementation. Also re-worked and restructured the entire notify support code to simplify handler installation, handler removal, notify event queuing, and notify dispatch to handler(s). Note: there can still only be two global notify handlers - one for system notifies and one for device notifies. There are no changes to the existing handler install/remove interfaces. Lin Ming, Bob Moore, Rafael Wysocki. Fixed a regression in the package repair code where the object reference count was calculated incorrectly. Regression was introduced in the commit "Support to add Package wrappers". Fixed a couple possible memory leaks in the AML parser, in the error recovery path. Jesper Juhl, Lin Ming. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 92.9K Code, 25.0K Data, 117.9K Total Debug Version: 172.5K Code, 73.2K Data, 245.7K Total Current Release: Non-Debug Version: 92.9K Code, 25.0K Data, 117.9K Total Debug Version: 172.6K Code, 73.4K Data, 246.0K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a problem with the resource descriptor support where the length of the StartDependentFn and StartDependentFnNoPrio descriptors were not included in cumulative descriptor offset, resulting in incorrect values for resource tags within resource descriptors appearing after a StartDependent* descriptor. Reported by Petr Vandrovec. ACPICA BZ 949. iASL and Preprocessor: Implemented full support for the #line directive to correctly track original source file line numbers through the .i preprocessor output file - for error and warning messages. iASL: Expand the allowable byte constants for address space IDs. Previously, the allowable range was 0x80-0xFF (user-defined spaces), now the range is 0x0A-0xFF to allow for custom and new IDs without changing the compiler. iASL: Add option to treat all warnings as errors (-we). ACPICA BZ 948. iASL: Add option to completely disable the preprocessor (-Pn). iASL: Now emit all error/warning messages to standard error (stderr) by default (instead of the previous stdout). ASL Test Suite (ASLTS): Reduce iASL warnings due to use of Switch(). Update for resource descriptor offset fix above. Update/cleanup error output routines. Enable and send iASL errors/warnings to an error logfile (error.txt). Send all other iASL output to a logfile (compiler.txt). Fixed several extraneous "unrecognized operator" messages. ---------------------------------------- 20 March 2012. Summary of changes for version 20120320: 1) ACPICA Core Subsystem: Enhanced the sleep/wake interfaces to optionally execute the _GTS method (Going To Sleep) and the _BFS method (Back From Sleep). Windows apparently does not execute these methods, and therefore these methods are often untested. It has been seen on some systems where the execution of these methods causes errors and also prevents the machine from entering S5. It is therefore suggested that host operating systems do not execute these methods by default. In the future, perhaps these methods can be optionally executed based on the age of the system and/or what is the newest version of Windows that the BIOS asks for via _OSI. Changed interfaces: AcpiEnterSleepState and AcpileaveSleepStatePrep. See the ACPICA reference and Linux BZ 13041. Lin Ming. Fixed a problem where the length of the local/common FADT was set too early. The local FADT table length cannot be set to the common length until the original length has been examined. There is code that checks the table length and sets various fields appropriately. This can affect older machines with early FADT versions. For example, this can cause inadvertent writes to the CST_CNT register. Julian Anastasov. Fixed a mapping issue related to a physical table override. Use the deferred mapping mechanism for tables loaded via the physical override OSL interface. This allows for early mapping before the virtual memory manager is available. Thomas Renninger, Bob Moore. Enhanced the automatic return-object repair code: Repair a common problem with predefined methods that are defined to return a variable-length Package of sub-objects. If there is only one sub-object, some BIOS ASL code mistakenly simply returns the single object instead of a Package with one sub- object. This new support will repair this error by wrapping a Package object around the original object, creating the correct and expected Package with one sub- object. Names that can be repaired in this manner include: _ALR, _CSD, _HPX, _MLS, _PLD, _PRT, _PSS, _TRT, _TSS, _BCL, _DOD, _FIX, and _Sx. ACPICA BZ 939. Changed the exception code returned for invalid ACPI paths passed as parameters to external interfaces such as AcpiEvaluateObject. Was AE_BAD_PARAMETER, now is the more sensible AE_BAD_PATHNAME. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 93.0K Code, 25.0K Data, 118.0K Total Debug Version: 172.5K Code, 73.2K Data, 245.7K Total Current Release: Non-Debug Version: 92.9K Code, 25.0K Data, 117.9K Total Debug Version: 172.5K Code, 73.2K Data, 245.7K Total 2) iASL Compiler/Disassembler and Tools: iASL: Added the infrastructure and initial implementation of a integrated C- like preprocessor. This will simplify BIOS development process by eliminating the need for a separate preprocessing step during builds. On Windows, it also eliminates the need to install a separate C compiler. ACPICA BZ 761. Some features including full #define() macro support are still under development. These preprocessor directives are supported: #define #elif #else #endif #error #if #ifdef #ifndef #include #pragma message #undef #warning In addition, these new command line options are supported: -D Define symbol for preprocessor use -li Create preprocessed output file (*.i) -P Preprocess only and create preprocessor output file (*.i) Table Compiler: Fixed a problem where the equals operator within an expression did not work properly. Updated iASL to use the current versions of Bison/Flex. Updated the Windows project file to invoke these tools from the standard location. ACPICA BZ 904. Versions supported: Flex for Windows: V2.5.4 Bison for Windows: V2.4.1 ---------------------------------------- 15 February 2012. Summary of changes for version 20120215: 1) ACPICA Core Subsystem: There have been some major changes to the sleep/wake support code, as described below (a - e). a) The AcpiLeaveSleepState has been split into two interfaces, similar to AcpiEnterSleepStatePrep and AcpiEnterSleepState. The new interface is AcpiLeaveSleepStatePrep. This allows the host to perform actions between the time the _BFS method is called and the _WAK method is called. NOTE: all hosts must update their wake/resume code or else sleep/wake will not work properly. Rafael Wysocki. b) In AcpiLeaveSleepState, now enable all runtime GPEs before calling the _WAK method. Some machines require that the GPEs are enabled before the _WAK method is executed. Thomas Renninger. c) In AcpiLeaveSleepState, now always clear the WAK_STS (wake status) bit. Some BIOS code assumes that WAK_STS will be cleared on resume and use it to determine whether the system is rebooting or resuming. Matthew Garrett. d) Move the invocations of _GTS (Going To Sleep) and _BFS (Back From Sleep) to match the ACPI specification requirement. Rafael Wysocki. e) Implemented full support for the ACPI 5.0 SleepStatus and SleepControl registers within the V5 FADT. This support adds two new files: hardware/hwesleep.c implements the support for the new registers. Moved all sleep/wake external interfaces to hardware/hwxfsleep.c. Added a new OSL interface for ACPI table overrides, AcpiOsPhysicalTableOverride. This interface allows the host to override a table via a physical address, instead of the logical address required by AcpiOsTableOverride. This simplifies the host implementation. Initial implementation by Thomas Renninger. The ACPICA implementation creates a single shared function for table overrides that attempts both a logical and a physical override. Expanded the OSL memory read/write interfaces to 64-bit data (AcpiOsReadMemory, AcpiOsWriteMemory.) This enables full 64-bit memory transfer support for GAS register structures passed to AcpiRead and AcpiWrite. Implemented the ACPI_REDUCED_HARDWARE option to allow the creation of a custom build of ACPICA that supports only the ACPI 5.0 reduced hardware (SoC) model. See the ACPICA reference for details. ACPICA BZ 942. This option removes about 10% of the code and 5% of the static data, and the following hardware ACPI features become unavailable: PM Event and Control registers SCI interrupt (and handler) Fixed Events General Purpose Events (GPEs) Global Lock ACPI PM timer FACS table (Waking vectors and Global Lock) Updated the unix tarball directory structure to match the ACPICA git source tree. This ensures that the generic unix makefiles work properly (in generate/unix). Also updated the Linux makefiles to match. ACPICA BZ 867. Updated the return value of the _REV predefined method to integer value 5 to reflect ACPI 5.0 support. Moved the external ACPI PM timer interface prototypes to the public acpixf.h file where they belong. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 92.8K Code, 24.9K Data, 117.7K Total Debug Version: 171.7K Code, 72.9K Data, 244.5K Total Current Release: Non-Debug Version: 93.0K Code, 25.0K Data, 118.0K Total Debug Version: 172.5K Code, 73.2K Data, 245.7K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Fixed a problem with the new ACPI 5.0 serial resource descriptors (I2C, SPI, UART) where the resource produce/consumer bit was incorrectly displayed. AcpiHelp: Add display of ACPI/PNP device IDs that are defined in the ACPI specification. ---------------------------------------- 11 January 2012. Summary of changes for version 20120111: 1) ACPICA Core Subsystem: Implemented a new mechanism to allow host device drivers to check for address range conflicts with ACPI Operation Regions. Both SystemMemory and SystemIO address spaces are supported. A new external interface, AcpiCheckAddressRange, allows drivers to check an address range against the ACPI namespace. See the ACPICA reference for additional details. Adds one new file, utilities/utaddress.c. Lin Ming, Bob Moore. Fixed several issues with the ACPI 5.0 FADT support: Add the sleep Control and Status registers, update the ACPI 5.0 flags, and update internal data structures to handle an FADT larger than 256 bytes. The size of the ACPI 5.0 FADT is 268 bytes. Updated all ACPICA copyrights and signons to 2012. Added the 2012 copyright to all module headers and signons, including the standard Linux header. This affects virtually every file in the ACPICA core subsystem, iASL compiler, and all ACPICA utilities. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 92.3K Code, 24.9K Data, 117.2K Total Debug Version: 170.8K Code, 72.6K Data, 243.4K Total Current Release: Non-Debug Version: 92.8K Code, 24.9K Data, 117.7K Total Debug Version: 171.7K Code, 72.9K Data, 244.5K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: fixed a problem with the automatic resource tag generation support. Fixes a problem where the resource tags are inadvertently not constructed if the table being disassembled contains external references to control methods. Moved the actual construction of the tags to after the final namespace is constructed (after 2nd parse is invoked due to external control method references.) ACPICA BZ 941. Table Compiler: Make all "generic" operators caseless. These are the operators like UINT8, String, etc. Making these caseless improves ease-of-use. ACPICA BZ 934. ---------------------------------------- 23 November 2011. Summary of changes for version 20111123: 0) ACPI 5.0 Support: This release contains full support for the ACPI 5.0 specification, as summarized below. Reduced Hardware Support: ------------------------- This support allows for ACPI systems without the usual ACPI hardware. This support is enabled by a flag in the revision 5 FADT. If it is set, ACPICA will not attempt to initialize or use any of the usual ACPI hardware. Note, when this flag is set, all of the following ACPI hardware is assumed to be not present and is not initialized or accessed: General Purpose Events (GPEs) Fixed Events (PM1a/PM1b and PM Control) Power Management Timer and Console Buttons (power/sleep) Real-time Clock Alarm Global Lock System Control Interrupt (SCI) The FACS is assumed to be non-existent ACPI Tables: ------------ All new tables and updates to existing tables are fully supported in the ACPICA headers (for use by device drivers), the disassembler, and the iASL Data Table Compiler. ACPI 5.0 defines these new tables: BGRT /* Boot Graphics Resource Table */ DRTM /* Dynamic Root of Trust for Measurement table */ FPDT /* Firmware Performance Data Table */ GTDT /* Generic Timer Description Table */ MPST /* Memory Power State Table */ PCCT /* Platform Communications Channel Table */ PMTT /* Platform Memory Topology Table */ RASF /* RAS Feature table */ Operation Regions/SpaceIDs: --------------------------- All new operation regions are fully supported by the iASL compiler, the disassembler, and the ACPICA runtime code (for dispatch to region handlers.) The new operation region Space IDs are: GeneralPurposeIo GenericSerialBus Resource Descriptors: --------------------- All new ASL resource descriptors are fully supported by the iASL compiler, the ASL/AML disassembler, and the ACPICA runtime Resource Manager code (including all new predefined resource tags). New descriptors are: FixedDma GpioIo GpioInt I2cSerialBus SpiSerialBus UartSerialBus ASL/AML Operators, New and Modified: ------------------------------------ One new operator is added, the Connection operator, which is used to associate a GeneralPurposeIo or GenericSerialBus resource descriptor with individual field objects within an operation region. Several new protocols are associated with the AccessAs operator. All are fully supported by the iASL compiler, disassembler, and runtime ACPICA AML interpreter: Connection // Declare Field Connection attributes AccessAs: AttribBytes (n) // Read/Write N-Bytes Protocol AccessAs: AttribRawBytes (n) // Raw Read/Write N-Bytes Protocol AccessAs: AttribRawProcessBytes (n) // Raw Process Call Protocol RawDataBuffer // Data type for Vendor Data fields Predefined ASL/AML Objects: --------------------------- All new predefined objects/control-methods are supported by the iASL compiler and the ACPICA runtime validation/repair (arguments and return values.) New predefined names include the following: Standard Predefined Names (Objects or Control Methods): _AEI, _CLS, _CPC, _CWS, _DEP, _DLM, _EVT, _GCP, _CRT, _GWS, _HRV, _PRE, _PSE, _SRT, _SUB. Resource Tags (Names used to access individual fields within resource descriptors): _DBT, _DPL, _DRS, _END, _FLC, _IOR, _LIN, _MOD, _PAR, _PHA, _PIN, _PPI, _POL, _RXL, _SLV, _SPE, _STB, _TXL, _VEN. ACPICA External Interfaces: --------------------------- Several new interfaces have been defined for use by ACPI-related device drivers and other host OS services: AcpiAcquireMutex and AcpiReleaseMutex: These interfaces allow the host OS to acquire and release AML mutexes that are defined in the DSDT/SSDT tables provided by the BIOS. They are intended to be used in conjunction with the ACPI 5.0 _DLM (Device Lock Method) in order to provide transaction-level mutual exclusion with the AML code/interpreter. AcpiGetEventResources: Returns the (formatted) resource descriptors as defined by the ACPI 5.0 _AEI object (ACPI Event Information). This object provides resource descriptors associated with hardware-reduced platform events, similar to the AcpiGetCurrentResources interface. Operation Region Handlers: For General Purpose IO and Generic Serial Bus operation regions, information about the Connection() object and any optional length information is passed to the region handler within the Context parameter. AcpiBufferToResource: This interface converts a raw AML buffer containing a resource template or resource descriptor to the ACPI_RESOURCE internal format suitable for use by device drivers. Can be used by an operation region handler to convert the Connection() buffer object into a ACPI_RESOURCE. Miscellaneous/Tools/TestSuites: ------------------------------- Support for extended _HID names (Four alpha characters instead of three). Support for ACPI 5.0 features in the AcpiExec and AcpiHelp utilities. Support for ACPI 5.0 features in the ASLTS test suite. Fully updated documentation (ACPICA and iASL reference documents.) ACPI Table Definition Language: ------------------------------- Support for this language was implemented and released as a subsystem of the iASL compiler in 2010. (See the iASL compiler User Guide.) Non-ACPI 5.0 changes for this release: -------------------------------------- 1) ACPICA Core Subsystem: Fix a problem with operation region declarations where a failure can occur if the region name and an argument that evaluates to an object (such as the region address) are in different namespace scopes. Lin Ming, ACPICA BZ 937. Do not abort an ACPI table load if an invalid space ID is found within. This will be caught later if the offending method is executed. ACPICA BZ 925. Fixed an issue with the FFixedHW space ID where the ID was not always recognized properly (Both ACPICA and iASL). ACPICA BZ 926. Fixed a problem with the 32-bit generation of the unix-specific OSL (osunixxf.c). Lin Ming, ACPICA BZ 936. Several changes made to enable generation with the GCC 4.6 compiler. ACPICA BZ 935. New error messages: Unsupported I/O requests (not 8/16/32 bit), and Index/Bank field registers out-of-range. 2) iASL Compiler/Disassembler and Tools: iASL: Implemented the __PATH__ operator, which returns the full pathname of the current source file. AcpiHelp: Automatically display expanded keyword information for all ASL operators. Debugger: Add "Template" command to disassemble/dump resource template buffers. Added a new master script to generate and execute the ASLTS test suite. Automatically handles 32- and 64-bit generation. See tests/aslts.sh iASL: Fix problem with listing generation during processing of the Switch() operator where AML listing was disabled until the entire Switch block was completed. iASL: Improve support for semicolon statement terminators. Fix "invalid character" message for some cases when the semicolon is used. Semicolons are now allowed after every grammar element. ACPICA BZ 927. iASL: Fixed some possible aliasing warnings during generation. ACPICA BZ 923. Disassembler: Fix problem with disassembly of the DataTableRegion operator where an inadvertent "Unhandled deferred opcode" message could be generated. 3) Example Code and Data Size These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 90.2K Code, 23.9K Data, 114.1K Total Debug Version: 165.6K Code, 68.4K Data, 234.0K Total Current Release: Non-Debug Version: 92.3K Code, 24.9K Data, 117.2K Total Debug Version: 170.8K Code, 72.6K Data, 243.4K Total ---------------------------------------- 22 September 2011. Summary of changes for version 20110922: 0) ACPI 5.0 News: Support for ACPI 5.0 in ACPICA has been underway for several months and will be released at the same time that ACPI 5.0 is officially released. The ACPI 5.0 specification is on track for release in the next few months. 1) ACPICA Core Subsystem: Fixed a problem where the maximum sleep time for the Sleep() operator was intended to be limited to two seconds, but was inadvertently limited to 20 seconds instead. Linux and Unix makefiles: Added header file dependencies to ensure correct generation of ACPICA core code and utilities. Also simplified the makefiles considerably through the use of the vpath variable to specify search paths. ACPICA BZ 924. 2) iASL Compiler/Disassembler and Tools: iASL: Implemented support to check the access length for all fields created to access named Resource Descriptor fields. For example, if a resource field is defined to be two bits, a warning is issued if a CreateXxxxField() is used with an incorrect bit length. This is implemented for all current resource descriptor names. ACPICA BZ 930. Disassembler: Fixed a byte ordering problem with the output of 24-bit and 56- bit integers. iASL: Fixed a couple of issues associated with variable-length package objects. 1) properly handle constants like One, Ones, Zero -- do not make a VAR_PACKAGE when these are used as a package length. 2) Allow the VAR_PACKAGE opcode (in addition to PACKAGE) when validating object types for predefined names. iASL: Emit statistics for all output files (instead of just the ASL input and AML output). Includes listings, hex files, etc. iASL: Added -G option to the table compiler to allow the compilation of custom ACPI tables. The only part of a table that is required is the standard 36- byte ACPI header. AcpiXtract: Ported to the standard ACPICA environment (with ACPICA headers), which also adds correct 64-bit support. Also, now all output filenames are completely lower case. AcpiExec: Ignore any non-AML tables (tables other than DSDT or SSDT) when loading table files. A warning is issued for any such tables. The only exception is an FADT. This also fixes a possible fault when attempting to load non-AML tables. ACPICA BZ 932. AcpiHelp: Added the AccessAs and Offset operators. Fixed a problem where a missing table terminator could cause a fault when using the -p option. AcpiSrc: Fixed a possible divide-by-zero fault when generating file statistics. 3) Example Code and Data Size These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 9.0): Non-Debug Version: 90.2K Code, 23.9K Data, 114.1K Total Debug Version: 165.6K Code, 68.4K Data, 234.0K Total Current Release (VC 9.0): Non-Debug Version: 90.2K Code, 23.9K Data, 114.1K Total Debug Version: 165.6K Code, 68.4K Data, 234.0K Total ---------------------------------------- 23 June 2011. Summary of changes for version 20110623: 1) ACPI CA Core Subsystem: Updated the predefined name repair mechanism to not attempt repair of a _TSS return object if a _PSS object is present. We can only sort the _TSS return package if there is no _PSS within the same scope. This is because if _PSS is present, the ACPI specification dictates that the _TSS Power Dissipation field is to be ignored, and therefore some BIOSs leave garbage values in the _TSS Power field(s). In this case, it is best to just return the _TSS package as- is. Reported by, and fixed with assistance from Fenghua Yu. Added an option to globally disable the control method return value validation and repair. This runtime option can be used to disable return value repair if this is causing a problem on a particular machine. Also added an option to AcpiExec (-dr) to set this disable flag. All makefiles and project files: Major changes to improve generation of ACPICA tools. ACPICA BZ 912: Reduce default optimization levels to improve compatibility For Linux, add strict-aliasing=0 for gcc 4 Cleanup and simplify use of command line defines Cleanup multithread library support Improve usage messages Linux-specific header: update handling of THREAD_ID and pthread. For the 32- bit case, improve casting to eliminate possible warnings, especially with the acpica tools. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 9.0): Non-Debug Version: 90.1K Code, 23.9K Data, 114.0K Total Debug Version: 165.6K Code, 68.4K Data, 234.0K Total Current Release (VC 9.0): Non-Debug Version: 90.2K Code, 23.9K Data, 114.1K Total Debug Version: 165.6K Code, 68.4K Data, 234.0K Total 2) iASL Compiler/Disassembler and Tools: With this release, a new utility named "acpihelp" has been added to the ACPICA package. This utility summarizes the ACPI specification chapters for the ASL and AML languages. It generates under Linux/Unix as well as Windows, and provides the following functionality: Find/display ASL operator(s) -- with description and syntax. Find/display ASL keyword(s) -- with exact spelling and descriptions. Find/display ACPI predefined name(s) -- with description, number of arguments, and the return value data type. Find/display AML opcode name(s) -- with opcode, arguments, and grammar. Decode/display AML opcode -- with opcode name, arguments, and grammar. Service Layers: Make multi-thread support configurable. Conditionally compile the multi-thread support so that threading libraries will not be linked if not necessary. The only tool that requires multi-thread support is AcpiExec. iASL: Update yyerrror/AslCompilerError for "const" errors. Newer versions of Bison appear to want the interface to yyerror to be a const char * (or at least this is a problem when generating iASL on some systems.) ACPICA BZ 923 Pierre Lejeune. Tools: Fix for systems where O_BINARY is not defined. Only used for Windows versions of the tools. ---------------------------------------- 27 May 2011. Summary of changes for version 20110527: 1) ACPI CA Core Subsystem: ASL Load() operator: Reinstate most restrictions on the incoming ACPI table signature. Now, only allow SSDT, OEMx, and a null signature. History: 1) Originally, we checked the table signature for "SSDT" or "PSDT". (PSDT is now obsolete.) 2) We added support for OEMx tables, signature "OEM" plus a fourth "don't care" character. 3) Valid tables were encountered with a null signature, so we just gave up on validating the signature, (05/2008). 4) We encountered non-AML tables such as the MADT, which caused interpreter errors and kernel faults. So now, we once again allow only SSDT, OEMx, and now, also a null signature. (05/2011). Added the missing _TDL predefined name to the global name list in order to enable validation. Affects both the core ACPICA code and the iASL compiler. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 9.0): Non-Debug Version: 90.0K Code, 23.8K Data, 113.8K Total Debug Version: 164.5K Code, 68.0K Data, 232.5K Total Current Release (VC 9.0): Non-Debug Version: 90.1K Code, 23.9K Data, 114.0K Total Debug Version: 165.6K Code, 68.4K Data, 234.0K Total 2) iASL Compiler/Disassembler and Tools: Debugger/AcpiExec: Implemented support for "complex" method arguments on the debugger command line. This adds support beyond simple integers -- including Strings, Buffers, and Packages. Includes support for nested packages. Increased the default command line buffer size to accommodate these arguments. See the ACPICA reference for details and syntax. ACPICA BZ 917. Debugger/AcpiExec: Implemented support for "default" method arguments for the Execute/Debug command. Now, the debugger will always invoke a control method with the required number of arguments -- even if the command line specifies none or insufficient arguments. It uses default integer values for any missing arguments. Also fixes a bug where only six method arguments maximum were supported instead of the required seven. Debugger/AcpiExec: Add a maximum buffer length parameter to AcpiOsGetLine and also return status in order to prevent buffer overruns. See the ACPICA reference for details and syntax. ACPICA BZ 921 iASL: Cleaned up support for Berkeley yacc. A general cleanup of code and makefiles to simplify support for the two different but similar parser generators, bison and yacc. Updated the generic unix makefile for gcc 4. The default gcc version is now expected to be 4 or greater, since options specific to gcc 4 are used. ---------------------------------------- 13 April 2011. Summary of changes for version 20110413: 1) ACPI CA Core Subsystem: Implemented support to execute a so-called "orphan" _REG method under the EC device. This change will force the execution of a _REG method underneath the EC device even if there is no corresponding operation region of type EmbeddedControl. Fixes a problem seen on some machines and apparently is compatible with Windows behavior. ACPICA BZ 875. Added more predefined methods that are eligible for automatic NULL package element removal. This change adds another group of predefined names to the list of names that can be repaired by having NULL package elements dynamically removed. This group are those methods that return a single variable- length package containing simple data types such as integers, buffers, strings. This includes: _ALx, _BCL, _CID,_ DOD, _EDL, _FIX, _PCL, _PLD, _PMD, _PRx, _PSL, _Sx, and _TZD. ACPICA BZ 914. Split and segregated all internal global lock functions to a new file, evglock.c. Updated internal address SpaceID for DataTable regions. Moved this internal space id in preparation for ACPI 5.0 changes that will include some new space IDs. This change should not affect user/host code. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 9.0): Non-Debug Version: 89.8K Code, 23.8K Data, 113.6K Total Debug Version: 164.2K Code, 67.9K Data, 232.1K Total Current Release (VC 9.0): Non-Debug Version: 90.0K Code, 23.8K Data, 113.8K Total Debug Version: 164.5K Code, 68.0K Data, 232.5K Total 2) iASL Compiler/Disassembler and Tools: iASL/DTC: Major update for new grammar features. Allow generic data types in custom ACPI tables. Field names are now optional. Any line can be split to multiple lines using the continuation char (\). Large buffers now use line- continuation character(s) and no colon on the continuation lines. See the grammar update in the iASL compiler reference. ACPI BZ 910,911. Lin Ming, Bob Moore. iASL: Mark ASL "Return()" and the simple "Return" as "Null" return statements. Since the parser stuffs a "zero" as the return value for these statements (due to the underlying AML grammar), they were seen as "return with value" by the iASL semantic checking. They are now seen correctly as "null" return statements. iASL: Check if a_REG declaration has a corresponding Operation Region. Adds a check for each _REG to ensure that there is in fact a corresponding operation region declaration in the same scope. If not, the _REG method is not very useful since it probably won't be executed. ACPICA BZ 915. iASL/DTC: Finish support for expression evaluation. Added a new expression parser that implements c-style operator precedence and parenthesization. ACPICA bugzilla 908. Disassembler/DTC: Remove support for () and <> style comments in data tables. Now that DTC has full expression support, we don't want to have comment strings that start with a parentheses or a less-than symbol. Now, only the standard /* and // comments are supported, as well as the bracket [] comments. AcpiXtract: Fix for RSDP and dynamic SSDT extraction. These tables have "unusual" headers in the acpidump file. Update the header validation to support these tables. Problem introduced in previous AcpiXtract version in the change to support "wrong checksum" error messages emitted by acpidump utility. iASL: Add a * option to generate all template files (as a synonym for ALL) as in "iasl -T *" or "iasl -T ALL". iASL/DTC: Do not abort compiler on fatal errors. We do not want to completely abort the compiler on "fatal" errors, simply should abort the current compile. This allows multiple compiles with a single (possibly wildcard) compiler invocation. ---------------------------------------- 16 March 2011. Summary of changes for version 20110316: 1) ACPI CA Core Subsystem: Fixed a problem caused by a _PRW method appearing at the namespace root scope during the setup of wake GPEs. A fault could occur if a _PRW directly under the root object was passed to the AcpiSetupGpeForWake interface. Lin Ming. Implemented support for "spurious" Global Lock interrupts. On some systems, a global lock interrupt can occur without the pending flag being set. Upon a GL interrupt, we now ensure that a thread is actually waiting for the lock before signaling GL availability. Rafael Wysocki, Bob Moore. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 9.0): Non-Debug Version: 89.7K Code, 23.7K Data, 113.4K Total Debug Version: 163.9K Code, 67.5K Data, 231.4K Total Current Release (VC 9.0): Non-Debug Version: 89.8K Code, 23.8K Data, 113.6K Total Debug Version: 164.2K Code, 67.9K Data, 232.1K Total 2) iASL Compiler/Disassembler and Tools: Implemented full support for the "SLIC" ACPI table. Includes support in the header files, disassembler, table compiler, and template generator. Bob Moore, Lin Ming. AcpiXtract: Correctly handle embedded comments and messages from AcpiDump. Apparently some or all versions of acpidump will occasionally emit a comment like "Wrong checksum", etc., into the dump file. This was causing problems for AcpiXtract. ACPICA BZ 905. iASL: Fix the Linux makefile by removing an inadvertent double file inclusion. ACPICA BZ 913. AcpiExec: Update installation of operation region handlers. Install one handler for a user-defined address space. This is used by the ASL test suite (ASLTS). ---------------------------------------- 11 February 2011. Summary of changes for version 20110211: 1) ACPI CA Core Subsystem: Added a mechanism to defer _REG methods for some early-installed handlers. Most user handlers should be installed before call to AcpiEnableSubsystem. However, Event handlers and region handlers should be installed after AcpiInitializeObjects. Override handlers for the "default" regions should be installed early, however. This change executes all _REG methods for the default regions (Memory/IO/PCI/DataTable) simultaneously to prevent any chicken/egg issues between them. ACPICA BZ 848. Implemented an optimization for GPE detection. This optimization will simply ignore GPE registers that contain no enabled GPEs -- there is no need to read the register since this information is available internally. This becomes more important on machines with a large GPE space. ACPICA bugzilla 884. Lin Ming. Suggestion from Joe Liu. Removed all use of the highly unreliable FADT revision field. The revision number in the FADT has been found to be completely unreliable and cannot be trusted. Only the actual table length can be used to infer the version. This change updates the ACPICA core and the disassembler so that both no longer even look at the FADT version and instead depend solely upon the FADT length. Fix an unresolved name issue for the no-debug and no-error-message source generation cases. The _AcpiModuleName was left undefined in these cases, but it is actually needed as a parameter to some interfaces. Define _AcpiModuleName as a null string in these cases. ACPICA Bugzilla 888. Split several large files (makefiles and project files updated) utglobal.c -> utdecode.c dbcomds.c -> dbmethod.c dbnames.c dsopcode.c -> dsargs.c dscontrol.c dsload.c -> dsload2.c aslanalyze.c -> aslbtypes.c aslwalks.c Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 9.0): Non-Debug Version: 89.7K Code, 23.7K Data, 113.4K Total Debug Version: 163.9K Code, 67.5K Data, 231.4K Total Current Release (VC 9.0): Non-Debug Version: 89.7K Code, 23.7K Data, 113.4K Total Debug Version: 163.9K Code, 67.5K Data, 231.4K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented the predefined macros __LINE__, __FILE__, and __DATE__. These are useful C-style macros with the standard definitions. ACPICA bugzilla 898. iASL/DTC: Added support for integer expressions and labels. Support for full expressions for all integer fields in all ACPI tables. Support for labels in "generic" portions of tables such as UEFI. See the iASL reference manual. Debugger: Added a command to display the status of global handlers. The "handlers" command will display op region, fixed event, and miscellaneous global handlers. installation status -- and for op regions, whether default or user-installed handler will be used. iASL: Warn if reserved method incorrectly returns a value. Many predefined names are defined such that they do not return a value. If implemented as a method, issue a warning if such a name explicitly returns a value. ACPICA Bugzilla 855. iASL: Added detection of GPE method name conflicts. Detects a conflict where there are two GPE methods of the form _Lxy and _Exy in the same scope. (For example, _L1D and _E1D in the same scope.) ACPICA bugzilla 848. iASL/DTC: Fixed a couple input scanner issues with comments and line numbers. Comment remover could get confused and miss a comment ending. Fixed a problem with line counter maintenance. iASL/DTC: Reduced the severity of some errors from fatal to error. There is no need to abort on simple errors within a field definition. Debugger: Simplified the output of the help command. All help output now in a single screen, instead of help subcommands. ACPICA Bugzilla 897. ---------------------------------------- 12 January 2011. Summary of changes for version 20110112: 1) ACPI CA Core Subsystem: Fixed a race condition between method execution and namespace walks that can possibly cause a fault. The problem was apparently introduced in version 20100528 as a result of a performance optimization that reduces the number of namespace walks upon method exit by using the delete_namespace_subtree function instead of the delete_namespace_by_owner function used previously. Bug is a missing namespace lock in the delete_namespace_subtree function. dana.myers@oracle.com Fixed several issues and a possible fault with the automatic "serialized" method support. History: This support changes a method to "serialized" on the fly if the method generates an AE_ALREADY_EXISTS error, indicating the possibility that it cannot handle reentrancy. This fix repairs a couple of issues seen in the field, especially on machines with many cores: 1) Delete method children only upon the exit of the last thread, so as to not delete objects out from under other running threads (and possibly causing a fault.) 2) Set the "serialized" bit for the method only upon the exit of the Last thread, so as to not cause deadlock when running threads attempt to exit. 3) Cleanup the use of the AML "MethodFlags" and internal method flags so that there is no longer any confusion between the two. Lin Ming, Bob Moore. Reported by dana.myers@oracle.com. Debugger: Now lock the namespace for duration of a namespace dump. Prevents issues if the namespace is changing dynamically underneath the debugger. Especially affects temporary namespace nodes, since the debugger displays these also. Updated the ordering of include files. The ACPICA headers should appear before any compiler-specific headers (stdio.h, etc.) so that acenv.h can set any necessary compiler-specific defines, etc. Affects the ACPI-related tools and utilities. Updated all ACPICA copyrights and signons to 2011. Added the 2011 copyright to all module headers and signons, including the Linux header. This affects virtually every file in the ACPICA core subsystem, iASL compiler, and all utilities. Added project files for MS Visual Studio 2008 (VC++ 9.0). The original project files for VC++ 6.0 are now obsolete. New project files can be found under acpica/generate/msvc9. See acpica/generate/msvc9/readme.txt for details. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 9.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release (VC 6.0): Non-Debug Version: 89.8K Code, 18.9K Data, 108.7K Total Debug Version: 166.6K Code, 52.1K Data, 218.7K Total Current Release (VC 9.0): Non-Debug Version: 89.7K Code, 23.7K Data, 113.4K Total Debug Version: 163.9K Code, 67.5K Data, 231.4K Total 2) iASL Compiler/Disassembler and Tools: iASL: Added generic data types to the Data Table compiler. Add "generic" data types such as UINT32, String, Unicode, etc., to simplify the generation of platform-defined tables such as UEFI. Lin Ming. iASL: Added listing support for the Data Table Compiler. Adds listing support (-l) to display actual binary output for each line of input code. ---------------------------------------- 09 December 2010. Summary of changes for version 20101209: 1) ACPI CA Core Subsystem: Completed the major overhaul of the GPE support code that was begun in July 2010. Major features include: removal of _PRW execution in ACPICA (host executes _PRWs anyway), cleanup of "wake" GPE interfaces and processing, changes to existing interfaces, simplification of GPE handler operation, and a handful of new interfaces: AcpiUpdateAllGpes AcpiFinishGpe AcpiSetupGpeForWake AcpiSetGpeWakeMask One new file, evxfgpe.c to consolidate all external GPE interfaces. See the ACPICA Programmer Reference for full details and programming information. See the new section 4.4 "General Purpose Event (GPE) Support" for a full overview, and section 8.7 "ACPI General Purpose Event Management" for programming details. ACPICA BZ 858,870,877. Matthew Garrett, Lin Ming, Bob Moore, Rafael Wysocki. Implemented a new GPE feature for Windows compatibility, the "Implicit Wake GPE Notify". This feature will automatically issue a Notify(2) on a device when a Wake GPE is received if there is no corresponding GPE method or handler. ACPICA BZ 870. Fixed a problem with the Scope() operator during table parse and load phase. During load phase (table load or method execution), the scope operator should not enter the target into the namespace. Instead, it should open a new scope at the target location. Linux BZ 19462, ACPICA BZ 882. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 89.8K Code, 18.9K Data, 108.7K Total Debug Version: 166.6K Code, 52.1K Data, 218.7K Total Current Release: Non-Debug Version: 89.9K Code, 19.0K Data, 108.9K Total Debug Version: 166.3K Code, 52.1K Data, 218.4K Total 2) iASL Compiler/Disassembler and Tools: iASL: Relax the alphanumeric restriction on _CID strings. These strings are "bus-specific" per the ACPI specification, and therefore any characters are acceptable. The only checks that can be performed are for a null string and perhaps for a leading asterisk. ACPICA BZ 886. iASL: Fixed a problem where a syntax error that caused a premature EOF condition on the source file emitted a very confusing error message. The premature EOF is now detected correctly. ACPICA BZ 891. Disassembler: Decode the AccessSize within a Generic Address Structure (byte access, word access, etc.) Note, this field does not allow arbitrary bit access, the size is encoded as 1=byte, 2=word, 3=dword, and 4=qword. New: AcpiNames utility - Example namespace dump utility. Shows an example of ACPICA configuration for a minimal namespace dump utility. Uses table and namespace managers, but no AML interpreter. Does not add any functionality over AcpiExec, it is a subset of AcpiExec. The purpose is to show how to partition and configure ACPICA. ACPICA BZ 883. AML Debugger: Increased the debugger buffer size for method return objects. Was 4K, increased to 16K. Also enhanced error messages for debugger method execution, including the buffer overflow case. ---------------------------------------- 13 October 2010. Summary of changes for version 20101013: 1) ACPI CA Core Subsystem: Added support to clear the PCIEXP_WAKE event. When clearing ACPI events, now clear the PCIEXP_WAKE_STS bit in the ACPI PM1 Status Register, via HwClearAcpiStatus. Original change from Colin King. ACPICA BZ 880. Changed the type of the predefined namespace object _TZ from ThermalZone to Device. This was found to be confusing to the host software that processes the various thermal zones, since _TZ is not really a ThermalZone. However, a Notify() can still be performed on it. ACPICA BZ 876. Suggestion from Rui Zhang. Added Windows Vista SP2 to the list of supported _OSI strings. The actual string is "Windows 2006 SP2". Eliminated duplicate code in AcpiUtExecute* functions. Now that the nsrepair code automatically repairs _HID-related strings, this type of code is no longer needed in Execute_HID, Execute_CID, and Execute_UID. ACPICA BZ 878. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 89.9K Code, 19.0K Data, 108.9K Total Debug Version: 166.3K Code, 52.1K Data, 218.4K Total Current Release: Non-Debug Version: 89.9K Code, 19.0K Data, 108.9K Total Debug Version: 166.3K Code, 52.1K Data, 218.4K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented additional compile-time validation for _HID strings. The non-hex prefix (such as "PNP" or "ACPI") must be uppercase, and the length of the string must be exactly seven or eight characters. For both _HID and _CID strings, all characters must be alphanumeric. ACPICA BZ 874. iASL: Allow certain "null" resource descriptors. Some BIOS code creates descriptors that are mostly or all zeros, with the expectation that they will be filled in at runtime. iASL now allows this as long as there is a "resource tag" (name) associated with the descriptor, which gives the ASL a handle needed to modify the descriptor. ACPICA BZ 873. Added single-thread support to the generic Unix application OSL. Primarily for iASL support, this change removes the use of semaphores in the single- threaded ACPICA tools/applications - increasing performance. The _MULTI_THREADED option was replaced by the (reverse) ACPI_SINGLE_THREADED option. ACPICA BZ 879. AcpiExec: several fixes for the 64-bit version. Adds XSDT support and support for 64-bit DSDT/FACS addresses in the FADT. Lin Ming. iASL: Moved all compiler messages to a new file, aslmessages.h. ---------------------------------------- 15 September 2010. Summary of changes for version 20100915: 1) ACPI CA Core Subsystem: Removed the AcpiOsDerivePciId OSL interface. The various host implementations of this function were not OS-dependent and are now obsolete and can be removed from all host OSLs. This function has been replaced by AcpiHwDerivePciId, which is now part of the ACPICA core code. AcpiHwDerivePciId has been implemented without recursion. Adds one new module, hwpci.c. ACPICA BZ 857. Implemented a dynamic repair for _HID and _CID strings. The following problems are now repaired at runtime: 1) Remove a leading asterisk in the string, and 2) the entire string is uppercased. Both repairs are in accordance with the ACPI specification and will simplify host driver code. ACPICA BZ 871. The ACPI_THREAD_ID type is no longer configurable, internally it is now always UINT64. This simplifies the ACPICA code, especially any printf output. UINT64 is the only common data type for all thread_id types across all operating systems. It is now up to the host OSL to cast the native thread_id type to UINT64 before returning the value to ACPICA (via AcpiOsGetThreadId). Lin Ming, Bob Moore. Added the ACPI_INLINE type to enhance the ACPICA configuration. The "inline" keyword is not standard across compilers, and this type allows inline to be configured on a per-compiler basis. Lin Ming. Made the system global AcpiGbl_SystemAwakeAndRunning publically available. Added an extern for this boolean in acpixf.h. Some hosts utilize this value during suspend/restore operations. ACPICA BZ 869. All code that implements error/warning messages with the "ACPI:" prefix has been moved to a new module, utxferror.c. The UINT64_OVERLAY was moved to utmath.c, which is the only module where it is used. ACPICA BZ 829. Lin Ming, Bob Moore. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 89.1K Code, 19.0K Data, 108.1K Total Debug Version: 165.1K Code, 51.9K Data, 217.0K Total Current Release: Non-Debug Version: 89.9K Code, 19.0K Data, 108.9K Total Debug Version: 166.3K Code, 52.1K Data, 218.4K Total 2) iASL Compiler/Disassembler and Tools: iASL/Disassembler: Write ACPI errors to stderr instead of the output file. This keeps the output files free of random error messages that may originate from within the namespace/interpreter code. Used this opportunity to merge all ACPI:-style messages into a single new module, utxferror.c. ACPICA BZ 866. Lin Ming, Bob Moore. Tools: update some printfs for ansi warnings on size_t. Handle width change of size_t on 32-bit versus 64-bit generations. Lin Ming. ---------------------------------------- 06 August 2010. Summary of changes for version 20100806: 1) ACPI CA Core Subsystem: Designed and implemented a new host interface to the _OSI support code. This will allow the host to dynamically add or remove multiple _OSI strings, as well as install an optional handler that is called for each _OSI invocation. Also added a new AML debugger command, 'osi' to display and modify the global _OSI string table, and test support in the AcpiExec utility. See the ACPICA reference manual for full details. Lin Ming, Bob Moore. ACPICA BZ 836. New Functions: AcpiInstallInterface - Add an _OSI string. AcpiRemoveInterface - Delete an _OSI string. AcpiInstallInterfaceHandler - Install optional _OSI handler. Obsolete Functions: AcpiOsValidateInterface - no longer used. New Files: source/components/utilities/utosi.c Re-introduced the support to enable multi-byte transfers for Embedded Controller (EC) operation regions. A reported problem was found to be a bug in the host OS, not in the multi-byte support. Previously, the maximum data size passed to the EC operation region handler was a single byte. There are often EC Fields larger than one byte that need to be transferred, and it is useful for the EC driver to lock these as a single transaction. This change enables single transfers larger than 8 bits. This effectively changes the access to the EC space from ByteAcc to AnyAcc, and will probably require changes to the host OS Embedded Controller driver to enable 16/32/64/256- bit transfers in addition to 8-bit transfers. Alexey Starikovskiy, Lin Ming. Fixed a problem with the prototype for AcpiOsReadPciConfiguration. The prototype in acpiosxf.h had the output value pointer as a (void *). It should be a (UINT64 *). This may affect some host OSL code. Fixed a couple problems with the recently modified Linux makefiles for iASL and AcpiExec. These new makefiles place the generated object files in the local directory so that there can be no collisions between the files that are shared between them that are compiled with different options. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 88.3K Code, 18.8K Data, 107.1K Total Debug Version: 164.0K Code, 51.5K Data, 215.5K Total Current Release: Non-Debug Version: 89.1K Code, 19.0K Data, 108.1K Total Debug Version: 165.1K Code, 51.9K Data, 217.0K Total 2) iASL Compiler/Disassembler and Tools: iASL/Disassembler: Added a new option (-da, "disassemble all") to load the namespace from and disassemble an entire group of AML files. Useful for loading all of the AML tables for a given machine (DSDT, SSDT1...SSDTn) and disassembling with one simple command. ACPICA BZ 865. Lin Ming. iASL: Allow multiple invocations of -e option. This change allows multiple uses of -e on the command line: "-e ssdt1.dat -e ssdt2.dat". ACPICA BZ 834. Lin Ming. ---------------------------------------- 02 July 2010. Summary of changes for version 20100702: 1) ACPI CA Core Subsystem: Implemented several updates to the recently added GPE reference count support. The model for "wake" GPEs is changing to give the host OS complete control of these GPEs. Eventually, the ACPICA core will not execute any _PRW methods, since the host already must execute them. Also, additional changes were made to help ensure that the reference counts are kept in proper synchronization with reality. Rafael J. Wysocki. 1) Ensure that GPEs are not enabled twice during initialization. 2) Ensure that GPE enable masks stay in sync with the reference count. 3) Do not inadvertently enable GPEs when writing GPE registers. 4) Remove the internal wake reference counter and add new AcpiGpeWakeup interface. This interface will set or clear individual GPEs for wakeup. 5) Remove GpeType argument from AcpiEnable and AcpiDisable. These interfaces are now used for "runtime" GPEs only. Changed the behavior of the GPE install/remove handler interfaces. The GPE is no longer disabled during this process, as it was found to cause problems on some machines. Rafael J. Wysocki. Reverted a change introduced in version 20100528 to enable Embedded Controller multi-byte transfers. This change was found to cause problems with Index Fields and possibly Bank Fields. It will be reintroduced when these problems have been resolved. Fixed a problem with references to Alias objects within Package Objects. A reference to an Alias within the definition of a Package was not always resolved properly. Aliases to objects like Processors, Thermal zones, etc. were resolved to the actual object instead of a reference to the object as it should be. Package objects are only allowed to contain integer, string, buffer, package, and reference objects. Redhat bugzilla 608648. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 88.3K Code, 18.8K Data, 107.1K Total Debug Version: 164.1K Code, 51.5K Data, 215.6K Total Current Release: Non-Debug Version: 88.3K Code, 18.8K Data, 107.1K Total Debug Version: 164.0K Code, 51.5K Data, 215.5K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented a new compiler subsystem to allow definition and compilation of the non-AML ACPI tables such as FADT, MADT, SRAT, etc. These are called "ACPI Data Tables", and the new compiler is the "Data Table Compiler". This compiler is intended to simplify the existing error-prone process of creating these tables for the BIOS, as well as allowing the disassembly, modification, recompilation, and override of existing ACPI data tables. See the iASL User Guide for detailed information. iASL: Implemented a new Template Generator option in support of the new Data Table Compiler. This option will create examples of all known ACPI tables that can be used as the basis for table development. See the iASL documentation and the -T option. Disassembler and headers: Added support for the WDDT ACPI table (Watchdog Descriptor Table). Updated the Linux makefiles for iASL and AcpiExec to place the generated object files in the local directory so that there can be no collisions between the shared files between them that are generated with different options. Added support for Mac OS X in the Unix OSL used for iASL and AcpiExec. Use the #define __APPLE__ to enable this support. ---------------------------------------- 28 May 2010. Summary of changes for version 20100528: Note: The ACPI 4.0a specification was released on April 5, 2010 and is available at www.acpi.info. This is primarily an errata release. 1) ACPI CA Core Subsystem: Undefined ACPI tables: We are looking for the definitions for the following ACPI tables that have been seen in the field: ATKG, IEIT, GSCI. Implemented support to enable multi-byte transfers for Embedded Controller (EC) operation regions. Previously, the maximum data size passed to the EC operation region handler was a single byte. There are often EC Fields larger than one byte that need to be transferred, and it is useful for the EC driver to lock these as a single transaction. This change enables single transfers larger than 8 bits. This effectively changes the access to the EC space from ByteAcc to AnyAcc, and will probably require changes to the host OS Embedded Controller driver to enable 16/32/64/256-bit transfers in addition to 8- bit transfers. Alexey Starikovskiy, Lin Ming Implemented a performance enhancement for namespace search and access. This change enhances the performance of namespace searches and walks by adding a backpointer to the parent in each namespace node. On large namespaces, this change can improve overall ACPI performance by up to 9X. Adding a pointer to each namespace node increases the overall size of the internal namespace by about 5%, since each namespace entry usually consists of both a namespace node and an ACPI operand object. However, this is the first growth of the namespace in ten years. ACPICA bugzilla 817. Alexey Starikovskiy. Implemented a performance optimization that reduces the number of namespace walks. On control method exit, only walk the namespace if the method is known to have created namespace objects outside of its local scope. Previously, the entire namespace was traversed on each control method exit. This change can improve overall ACPI performance by up to 3X. Alexey Starikovskiy, Bob Moore. Added support to truncate I/O addresses to 16 bits for Windows compatibility. Some ASL code has been seen in the field that inadvertently has bits set above bit 15. This feature is optional and is enabled if the BIOS requests any Windows OSI strings. It can also be enabled by the host OS. Matthew Garrett, Bob Moore. Added support to limit the maximum time for the ASL Sleep() operator. To prevent accidental deep sleeps, limit the maximum time that Sleep() will actually sleep. Configurable, the default maximum is two seconds. ACPICA bugzilla 854. Added run-time validation support for the _WDG and_WED Microsoft predefined methods. These objects are defined by "Windows Instrumentation", and are not part of the ACPI spec. ACPICA BZ 860. Expanded all statistic counters used during namespace and device initialization from 16 to 32 bits in order to support very large namespaces. Replaced all instances of %d in printf format specifiers with %u since nearly all integers in ACPICA are unsigned. Fixed the exception namestring for AE_WAKE_ONLY_GPE. Was incorrectly returned as AE_NO_HANDLER. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 88.4K Code, 18.8K Data, 107.2K Total Debug Version: 164.2K Code, 51.5K Data, 215.7K Total Current Release: Non-Debug Version: 88.3K Code, 18.8K Data, 107.1K Total Debug Version: 164.1K Code, 51.5K Data, 215.6K Total 2) iASL Compiler/Disassembler and Tools: iASL: Added compiler support for the _WDG and_WED Microsoft predefined methods. These objects are defined by "Windows Instrumentation", and are not part of the ACPI spec. ACPICA BZ 860. AcpiExec: added option to disable the memory tracking mechanism. The -dt option will disable the tracking mechanism, which improves performance considerably. AcpiExec: Restructured the command line options into -d (disable) and -e (enable) options. ---------------------------------------- 28 April 2010. Summary of changes for version 20100428: 1) ACPI CA Core Subsystem: Implemented GPE support for dynamically loaded ACPI tables. For all GPEs, including FADT-based and GPE Block Devices, execute any _PRW methods in the new table, and process any _Lxx/_Exx GPE methods in the new table. Any runtime GPE that is referenced by an _Lxx/_Exx method in the new table is immediately enabled. Handles the FADT-defined GPEs as well as GPE Block Devices. Provides compatibility with other ACPI implementations. Two new files added, evgpeinit.c and evgpeutil.c. ACPICA BZ 833. Lin Ming, Bob Moore. Fixed a regression introduced in version 20100331 within the table manager where initial table loading could fail. This was introduced in the fix for AcpiReallocateRootTable. Also, renamed some of fields in the table manager data structures to clarify their meaning and use. Fixed a possible allocation overrun during internal object copy in AcpiUtCopySimpleObject. The original code did not correctly handle the case where the object to be copied was a namespace node. Lin Ming. ACPICA BZ 847. Updated the allocation dump routine, AcpiUtDumpAllocation and fixed a possible access beyond end-of-allocation. Also, now fully validate descriptor (size and type) before output. Lin Ming, Bob Moore. ACPICA BZ 847 Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 87.9K Code, 18.6K Data, 106.5K Total Debug Version: 163.5K Code, 51.3K Data, 214.8K Total Current Release: Non-Debug Version: 88.4K Code, 18.8K Data, 107.2K Total Debug Version: 164.2K Code, 51.5K Data, 215.7K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented Min/Max/Len/Gran validation for address resource descriptors. This change implements validation for the address fields that are common to all address-type resource descriptors. These checks are implemented: Checks for valid Min/Max, length within the Min/Max window, valid granularity, Min/Max a multiple of granularity, and _MIF/_MAF as per table 6-40 in the ACPI 4.0a specification. Also split the large aslrestype1.c and aslrestype2.c files into five new files. ACPICA BZ 840. iASL: Added support for the _Wxx predefined names. This support was missing and these names were not recognized by the compiler as valid predefined names. ACPICA BZ 851. iASL: Added an error for all predefined names that are defined to return no value and thus must be implemented as Control Methods. These include all of the _Lxx, _Exx, _Wxx, and _Qxx names, as well as some other miscellaneous names such as _DIS, _INI, _IRC, _OFF, _ON, and _PSx. ACPICA BZ 850, 856. iASL: Implemented the -ts option to emit hex AML data in ASL format, as an ASL Buffer. Allows ACPI tables to be easily included within ASL files, to be dynamically loaded via the Load() operator. Also cleaned up output for the - ta and -tc options. ACPICA BZ 853. Tests: Added a new file with examples of extended iASL error checking. Demonstrates the advanced error checking ability of the iASL compiler. Available at tests/misc/badcode.asl. ---------------------------------------- 31 March 2010. Summary of changes for version 20100331: 1) ACPI CA Core Subsystem: Completed a major update for the GPE support in order to improve support for shared GPEs and to simplify both host OS and ACPICA code. Added a reference count mechanism to support shared GPEs that require multiple device drivers. Several external interfaces have changed. One external interface has been removed. One new external interface was added. Most of the GPE external interfaces now use the GPE spinlock instead of the events mutex (and the Flags parameter for many GPE interfaces has been removed.) See the updated ACPICA Programmer Reference for details. Matthew Garrett, Bob Moore, Rafael Wysocki. ACPICA BZ 831. Changed: AcpiEnableGpe, AcpiDisableGpe, AcpiClearGpe, AcpiGetGpeStatus Removed: AcpiSetGpeType New: AcpiSetGpe Implemented write support for DataTable operation regions. These regions are defined via the DataTableRegion() operator. Previously, only read support was implemented. The ACPI specification allows DataTableRegions to be read/write, however. Implemented a new subsystem option to force a copy of the DSDT to local memory. Optionally copy the entire DSDT to local memory (instead of simply mapping it.) There are some (albeit very rare) BIOSs that corrupt or replace the original DSDT, creating the need for this option. Default is FALSE, do not copy the DSDT. Implemented detection of a corrupted or replaced DSDT. This change adds support to detect a DSDT that has been corrupted and/or replaced from outside the OS (by firmware). This is typically catastrophic for the system, but has been seen on some machines. Once this problem has been detected, the DSDT copy option can be enabled via system configuration. Lin Ming, Bob Moore. Fixed two problems with AcpiReallocateRootTable during the root table copy. When copying the root table to the new allocation, the length used was incorrect. The new size was used instead of the current table size, meaning too much data was copied. Also, the count of available slots for ACPI tables was not set correctly. Alexey Starikovskiy, Bob Moore. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 87.5K Code, 18.4K Data, 105.9K Total Debug Version: 163.4K Code, 51.1K Data, 214.5K Total Current Release: Non-Debug Version: 87.9K Code, 18.6K Data, 106.5K Total Debug Version: 163.5K Code, 51.3K Data, 214.8K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implement limited typechecking for values returned from predefined control methods. The type of any returned static (unnamed) object is now validated. For example, Return(1). ACPICA BZ 786. iASL: Fixed a predefined name object verification regression. Fixes a problem introduced in version 20100304. An error is incorrectly generated if a predefined name is declared as a static named object with a value defined using the keywords "Zero", "One", or "Ones". Lin Ming. iASL: Added Windows 7 support for the -g option (get local ACPI tables) by reducing the requested registry access rights. ACPICA BZ 842. Disassembler: fixed a possible fault when generating External() statements. Introduced in commit ae7d6fd: Properly handle externals with parent- prefix (carat). Fixes a string length allocation calculation. Lin Ming. ---------------------------------------- 04 March 2010. Summary of changes for version 20100304: 1) ACPI CA Core Subsystem: Fixed a possible problem with the AML Mutex handling function AcpiExReleaseMutex where the function could fault under the very rare condition when the interpreter has blocked, the interpreter lock is released, the interpreter is then reentered via the same thread, and attempts to acquire an AML mutex that was previously acquired. FreeBSD report 140979. Lin Ming. Implemented additional configuration support for the AML "Debug Object". Output from the debug object can now be enabled via a global variable, AcpiGbl_EnableAmlDebugObject. This will assist with remote machine debugging. This debug output is now available in the release version of ACPICA instead of just the debug version. Also, the entire debug output module can now be configured out of the ACPICA build if desired. One new file added, executer/exdebug.c. Lin Ming, Bob Moore. Added header support for the ACPI MCHI table (Management Controller Host Interface Table). This table was added in ACPI 4.0, but the defining document has only recently become available. Standardized output of integer values for ACPICA warnings/errors. Always use 0x prefix for hex output, always use %u for unsigned integer decimal output. Affects ACPI_INFO, ACPI_ERROR, ACPI_EXCEPTION, and ACPI_WARNING (about 400 invocations.) These invocations were converted from the original ACPI_DEBUG_PRINT invocations and were not consistent. ACPICA BZ 835. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 87.1K Code, 18.0K Data, 105.1K Total Debug Version: 163.5K Code, 50.9K Data, 214.4K Total Current Release: Non-Debug Version: 87.5K Code, 18.4K Data, 105.9K Total Debug Version: 163.4K Code, 51.1K Data, 214.5K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented typechecking support for static (non-control method) predefined named objects that are declared with the Name() operator. For example, the type of this object is now validated to be of type Integer: Name(_BBN, 1). This change migrates the compiler to using the core predefined name table instead of maintaining a local version. Added a new file, aslpredef.c. ACPICA BZ 832. Disassembler: Added support for the ACPI 4.0 MCHI table. ---------------------------------------- 21 January 2010. Summary of changes for version 20100121: 1) ACPI CA Core Subsystem: Added the 2010 copyright to all module headers and signons. This affects virtually every file in the ACPICA core subsystem, the iASL compiler, the tools/utilities, and the test suites. Implemented a change to the AcpiGetDevices interface to eliminate unnecessary invocations of the _STA method. In the case where a specific _HID is requested, do not run _STA until a _HID match is found. This eliminates potentially dozens of _STA calls during a search for a particular device/HID, which in turn can improve boot times. ACPICA BZ 828. Lin Ming. Implemented an additional repair for predefined method return values. Attempt to repair unexpected NULL elements within returned Package objects. Create an Integer of value zero, a NULL String, or a zero-length Buffer as appropriate. ACPICA BZ 818. Lin Ming, Bob Moore. Removed the obsolete ACPI_INTEGER data type. This type was introduced as the code was migrated from ACPI 1.0 (with 32-bit AML integers) to ACPI 2.0 (with 64-bit AML integers). It is now obsolete and this change removes it from the ACPICA code base, replaced by UINT64. The original typedef has been retained for now for compatibility with existing device driver code. ACPICA BZ 824. Removed the unused UINT32_STRUCT type, and the obsolete Integer64 field in the parse tree object. Added additional warning options for the gcc-4 generation. Updated the source accordingly. This includes some code restructuring to eliminate unreachable code, elimination of some gotos, elimination of unused return values, some additional casting, and removal of redundant declarations. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 87.0K Code, 18.0K Data, 105.0K Total Debug Version: 163.4K Code, 50.8K Data, 214.2K Total Current Release: Non-Debug Version: 87.1K Code, 18.0K Data, 105.1K Total Debug Version: 163.5K Code, 50.9K Data, 214.4K Total 2) iASL Compiler/Disassembler and Tools: No functional changes for this release. ---------------------------------------- 14 December 2009. Summary of changes for version 20091214: 1) ACPI CA Core Subsystem: Enhanced automatic data type conversions for predefined name repairs. This change expands the automatic repairs/conversions for predefined name return values to make Integers, Strings, and Buffers fully interchangeable. Also, a Buffer can be converted to a Package of Integers if necessary. The nsrepair.c module was completely restructured. Lin Ming, Bob Moore. Implemented automatic removal of null package elements during predefined name repairs. This change will automatically remove embedded and trailing NULL package elements from returned package objects that are defined to contain a variable number of sub-packages. The driver is then presented with a package with no null elements to deal with. ACPICA BZ 819. Implemented a repair for the predefined _FDE and _GTM names. The expected return value for both names is a Buffer of 5 DWORDs. This repair fixes two possible problems (both seen in the field), where a package of integers is returned, or a buffer of BYTEs is returned. With assistance from Jung-uk Kim. Implemented additional module-level code support. This change will properly execute module-level code that is not at the root of the namespace (under a Device object, etc.). Now executes the code within the current scope instead of the root. ACPICA BZ 762. Lin Ming. Fixed possible mutex acquisition errors when running _REG methods. Fixes a problem where mutex errors can occur when running a _REG method that is in the same scope as a method-defined operation region or an operation region under a module-level IF block. This type of code is rare, so the problem has not been seen before. ACPICA BZ 826. Lin Ming, Bob Moore. Fixed a possible memory leak during module-level code execution. An object could be leaked for each block of executed module-level code if the interpreter slack mode is enabled This change deletes any implicitly returned object from the module-level code block. Lin Ming. Removed messages for successful predefined repair(s). The repair mechanism was considered too wordy. Now, messages are only unconditionally emitted if the return object cannot be repaired. Existing messages for successful repairs were converted to ACPI_DEBUG_PRINT messages for now. ACPICA BZ 827. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 86.6K Code, 18.2K Data, 104.8K Total Debug Version: 162.7K Code, 50.8K Data, 213.5K Total Current Release: Non-Debug Version: 87.0K Code, 18.0K Data, 105.0K Total Debug Version: 163.4K Code, 50.8K Data, 214.2K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a regression introduced in 20091112 where intermediate .SRC files were no longer automatically removed at the termination of the compile. acpiexec: Implemented the -f option to specify default region fill value. This option specifies the value used to initialize buffers that simulate operation regions. Default value is zero. Useful for debugging problems that depend on a specific initial value for a region or field. ---------------------------------------- 12 November 2009. Summary of changes for version 20091112: 1) ACPI CA Core Subsystem: Implemented a post-order callback to AcpiWalkNamespace. The existing interface only has a pre-order callback. This change adds an additional parameter for a post-order callback which will be more useful for bus scans. ACPICA BZ 779. Lin Ming. Updated the ACPICA Programmer Reference. Modified the behavior of the operation region memory mapping cache for SystemMemory. Ensure that the memory mappings created for operation regions do not cross 4K page boundaries. Crossing a page boundary while mapping regions can cause kernel warnings on some hosts if the pages have different attributes. Such regions are probably BIOS bugs, and this is the workaround. Linux BZ 14445. Lin Ming. Implemented an automatic repair for predefined methods that must return sorted lists. This change will repair (by sorting) packages returned by _ALR, _PSS, and _TSS. Drivers can now assume that the packages are correctly sorted and do not contain NULL package elements. Adds one new file, namespace/nsrepair2.c. ACPICA BZ 784. Lin Ming, Bob Moore. Fixed a possible fault during predefined name validation if a return Package object contains NULL elements. Also adds a warning if a NULL element is followed by any non-null elements. ACPICA BZ 813, 814. Future enhancement may include repair or removal of all such NULL elements where possible. Implemented additional module-level executable AML code support. This change will execute module-level code that is not at the root of the namespace (under a Device object, etc.) at table load time. Module-level executable AML code has been illegal since ACPI 2.0. ACPICA BZ 762. Lin Ming. Implemented a new internal function to create Integer objects. This function simplifies miscellaneous object creation code. ACPICA BZ 823. Reduced the severity of predefined repair messages, Warning to Info. Since the object was successfully repaired, a warning is too severe. Reduced to an info message for now. These messages may eventually be changed to debug- only. ACPICA BZ 812. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 85.8K Code, 18.0K Data, 103.8K Total Debug Version: 161.8K Code, 50.6K Data, 212.4K Total Current Release: Non-Debug Version: 86.6K Code, 18.2K Data, 104.8K Total Debug Version: 162.7K Code, 50.8K Data, 213.5K Total 2) iASL Compiler/Disassembler and Tools: iASL: Implemented Switch() with While(1) so that Break works correctly. This change correctly implements the Switch operator with a surrounding While(1) so that the Break operator works as expected. ACPICA BZ 461. Lin Ming. iASL: Added a message if a package initializer list is shorter than package length. Adds a new remark for a Package() declaration if an initializer list exists, but is shorter than the declared length of the package. Although technically legal, this is probably a coding error and it is seen in the field. ACPICA BZ 815. Lin Ming, Bob Moore. iASL: Fixed a problem where the compiler could fault after the maximum number of errors was reached (200). acpixtract: Fixed a possible warning for pointer cast if the compiler warning level set very high. ---------------------------------------- 13 October 2009. Summary of changes for version 20091013: 1) ACPI CA Core Subsystem: Fixed a problem where an Operation Region _REG method could be executed more than once. If a custom address space handler is installed by the host before the "initialize operation regions" phase of the ACPICA initialization, any _REG methods for that address space could be executed twice. This change fixes the problem. ACPICA BZ 427. Lin Ming. Fixed a possible memory leak for the Scope() ASL operator. When the exact invocation of "Scope(\)" is executed (change scope to root), one internal operand object was leaked. Lin Ming. Implemented a run-time repair for the _MAT predefined method. If the _MAT return value is defined as a Field object in the AML, and the field size is less than or equal to the default width of an integer (32 or 64),_MAT can incorrectly return an Integer instead of a Buffer. ACPICA now automatically repairs this problem. ACPICA BZ 810. Implemented a run-time repair for the _BIF and _BIX predefined methods. The "OEM Information" field is often incorrectly returned as an Integer with value zero if the field is not supported by the platform. This is due to an ambiguity in the ACPI specification. The field should always be a string. ACPICA now automatically repairs this problem by returning a NULL string within the returned Package. ACPICA BZ 807. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 85.6K Code, 18.0K Data, 103.6K Total Debug Version: 161.7K Code, 50.9K Data, 212.6K Total Current Release: Non-Debug Version: 85.8K Code, 18.0K Data, 103.8K Total Debug Version: 161.8K Code, 50.6K Data, 212.4K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Fixed a problem where references to external symbols that contained one or more parent-prefixes (carats) were not handled correctly, possibly causing a fault. ACPICA BZ 806. Lin Ming. Disassembler: Restructured the code so that all functions that handle external symbols are in a single module. One new file is added, common/dmextern.c. AML Debugger: Added a max count argument for the Batch command (which executes multiple predefined methods within the namespace.) iASL: Updated the compiler documentation (User Reference.) Available at http://www.acpica.org/documentation/. ACPICA BZ 750. AcpiXtract: Updated for Lint and other formatting changes. Close all open files. ---------------------------------------- 03 September 2009. Summary of changes for version 20090903: 1) ACPI CA Core Subsystem: For Windows Vista compatibility, added the automatic execution of an _INI method located at the namespace root (\_INI). This method is executed at table load time. This support is in addition to the automatic execution of \_SB._INI. Lin Ming. Fixed a possible memory leak in the interpreter for AML package objects if the package initializer list is longer than the defined size of the package. This apparently can only happen if the BIOS changes the package size on the fly (seen in a _PSS object), as ASL compilers do not allow this. The interpreter will truncate the package to the defined size (and issue an error message), but previously could leave the extra objects undeleted if they were pre-created during the argument processing (such is the case if the package consists of a number of sub-packages as in the _PSS.) ACPICA BZ 805. Fixed a problem seen when a Buffer or String is stored to itself via ASL. This has been reported in the field. Previously, ACPICA would zero out the buffer/string. Now, the operation is treated as a noop. Provides Windows compatibility. ACPICA BZ 803. Lin Ming. Removed an extraneous error message for ASL constructs of the form Store(LocalX,LocalX) when LocalX is uninitialized. These curious statements are seen in many BIOSs and are once again treated as NOOPs and no error is emitted when they are encountered. ACPICA BZ 785. Fixed an extraneous warning message if a _DSM reserved method returns a Package object. _DSM can return any type of object, so validation on the return type cannot be performed. ACPICA BZ 802. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 85.5K Code, 18.0K Data, 103.5K Total Debug Version: 161.6K Code, 50.9K Data, 212.5K Total Current Release: Non-Debug Version: 85.6K Code, 18.0K Data, 103.6K Total Debug Version: 161.7K Code, 50.9K Data, 212.6K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a problem with the use of the Alias operator and Resource Templates. The correct alias is now constructed and no error is emitted. ACPICA BZ 738. iASL: Implemented the -I option to specify additional search directories for include files. Allows multiple additional search paths for include files. Directories are searched in the order specified on the command line (after the local directory is searched.) ACPICA BZ 800. iASL: Fixed a problem where the full pathname for include files was not emitted for warnings/errors. This caused the IDE support to not work properly. ACPICA BZ 765. iASL: Implemented the -@ option to specify a Windows-style response file containing additional command line options. ACPICA BZ 801. AcpiExec: Added support to load multiple AML files simultaneously (such as a DSDT and multiple SSDTs). Also added support for wildcards within the AML pathname. These features allow all machine tables to be easily loaded and debugged together. ACPICA BZ 804. Disassembler: Added missing support for disassembly of HEST table Error Bank subtables. ---------------------------------------- 30 July 2009. Summary of changes for version 20090730: The ACPI 4.0 implementation for ACPICA is complete with this release. 1) ACPI CA Core Subsystem: ACPI 4.0: Added header file support for all new and changed ACPI tables. Completely new tables are: IBFT, IVRS, MSCT, and WAET. Tables that are new for ACPI 4.0, but have previously been supported in ACPICA are: CPEP, BERT, EINJ, ERST, and HEST. Other newly supported tables are: UEFI and WDAT. There have been some ACPI 4.0 changes to other existing tables. Split the large actbl1.h header into the existing actbl2.h header. ACPICA BZ 774. ACPI 4.0: Implemented predefined name validation for all new names. There are 31 new names in ACPI 4.0. The predefined validation module was split into two files. The new file is namespace/nsrepair.c. ACPICA BZ 770. Implemented support for so-called "module-level executable code". This is executable AML code that exists outside of any control method and is intended to be executed at table load time. Although illegal since ACPI 2.0, this type of code still exists and is apparently still being created. Blocks of this code are now detected and executed as intended. Currently, the code blocks must exist under either an If, Else, or While construct; these are the typical cases seen in the field. ACPICA BZ 762. Lin Ming. Implemented an automatic dynamic repair for predefined names that return nested Package objects. This applies to predefined names that are defined to return a variable-length Package of sub-packages. If the number of sub- packages is one, BIOS code is occasionally seen that creates a simple single package with no sub-packages. This code attempts to fix the problem by wrapping a new package object around the existing package. These methods can be repaired: _ALR, _CSD, _HPX, _MLS, _PRT, _PSS, _TRT, and _TSS. ACPICA BZ 790. Fixed a regression introduced in 20090625 for the AcpiGetDevices interface. The _HID/_CID matching was broken and no longer matched IDs correctly. ACPICA BZ 793. Fixed a problem with AcpiReset where the reset would silently fail if the register was one of the protected I/O ports. AcpiReset now bypasses the port validation mechanism. This may eventually be driven into the AcpiRead/Write interfaces. Fixed a regression related to the recent update of the AcpiRead/Write interfaces. A sleep/suspend could fail if the optional PM2 Control register does not exist during an attempt to write the Bus Master Arbitration bit. (However, some hosts already delete the code that writes this bit, and the code may in fact be obsolete at this date.) ACPICA BZ 799. Fixed a problem where AcpiTerminate could fault if inadvertently called twice in succession. ACPICA BZ 795. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 84.7K Code, 17.8K Data, 102.5K Total Debug Version: 160.5K Code, 50.6K Data, 211.1K Total Current Release: Non-Debug Version: 85.5K Code, 18.0K Data, 103.5K Total Debug Version: 161.6K Code, 50.9K Data, 212.5K Total 2) iASL Compiler/Disassembler and Tools: ACPI 4.0: Implemented disassembler support for all new ACPI tables and changes to existing tables. ACPICA BZ 775. ---------------------------------------- 25 June 2009. Summary of changes for version 20090625: The ACPI 4.0 Specification was released on June 16 and is available at www.acpi.info. ACPICA implementation of ACPI 4.0 is underway and will continue for the next few releases. 1) ACPI CA Core Subsystem: ACPI 4.0: Implemented interpreter support for the IPMI operation region address space. Includes support for bi-directional data buffers and an IPMI address space handler (to be installed by an IPMI device driver.) ACPICA BZ 773. Lin Ming. ACPI 4.0: Added changes for existing ACPI tables - FACS and SRAT. Includes support in both the header files and the disassembler. Completed a major update for the AcpiGetObjectInfo external interface. Changes include: - Support for variable, unlimited length HID, UID, and CID strings. - Support Processor objects the same as Devices (HID,UID,CID,ADR,STA, etc.) - Call the _SxW power methods on behalf of a device object. - Determine if a device is a PCI root bridge. - Change the ACPI_BUFFER parameter to ACPI_DEVICE_INFO. These changes will require an update to all callers of this interface. See the updated ACPICA Programmer Reference for details. One new source file has been added - utilities/utids.c. ACPICA BZ 368, 780. Updated the AcpiRead and AcpiWrite external interfaces to support 64-bit transfers. The Value parameter has been extended from 32 bits to 64 bits in order to support new ACPI 4.0 tables. These changes will require an update to all callers of these interfaces. See the ACPICA Programmer Reference for details. ACPICA BZ 768. Fixed several problems with AcpiAttachData. The handler was not invoked when the host node was deleted. The data sub-object was not automatically deleted when the host node was deleted. The interface to the handler had an unused parameter, this was removed. ACPICA BZ 778. Enhanced the function that dumps ACPI table headers. All non-printable characters in the string fields are now replaced with '?' (Signature, OemId, OemTableId, and CompilerId.) ACPI tables with non-printable characters in these fields are occasionally seen in the field. ACPICA BZ 788. Fixed a problem with predefined method repair code where the code that attempts to repair/convert an object of incorrect type is only executed on the first time the predefined method is called. The mechanism that disables warnings on subsequent calls was interfering with the repair mechanism. ACPICA BZ 781. Fixed a possible memory leak in the predefined validation/repair code when a buffer is automatically converted to an expected string object. Removed obsolete 16-bit files from the distribution and from the current git tree head. ACPICA BZ 776. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 83.4K Code, 17.5K Data, 100.9K Total Debug Version: 158.9K Code, 50.0K Data, 208.9K Total Current Release: Non-Debug Version: 84.7K Code, 17.8K Data, 102.5K Total Debug Version: 160.5K Code, 50.6K Data, 211.1K Total 2) iASL Compiler/Disassembler and Tools: ACPI 4.0: iASL and Disassembler - implemented support for the new IPMI operation region keyword. ACPICA BZ 771, 772. Lin Ming. ACPI 4.0: iASL - implemented compile-time validation support for all new predefined names and control methods (31 total). ACPICA BZ 769. ---------------------------------------- 21 May 2009. Summary of changes for version 20090521: 1) ACPI CA Core Subsystem: Disabled the preservation of the SCI enable bit in the PM1 control register. The SCI enable bit (bit 0, SCI_EN) is defined by the ACPI specification to be a "preserved" bit - "OSPM always preserves this bit position", section 4.7.3.2.1. However, some machines fail if this bit is in fact preserved because the bit needs to be explicitly set by the OS as a workaround. No machines fail if the bit is not preserved. Therefore, ACPICA no longer attempts to preserve this bit. Fixed a problem in AcpiRsGetPciRoutingTableLength where an invalid or incorrectly formed _PRT package could cause a fault. Added validation to ensure that each package element is actually a sub-package. Implemented a new interface to install or override a single control method, AcpiInstallMethod. This interface is useful when debugging in order to repair an existing method or to install a missing method without having to override the entire ACPI table. See the ACPICA Programmer Reference for use and examples. Lin Ming, Bob Moore. Fixed several reference count issues with the DdbHandle object that is created from a Load or LoadTable operator. Prevent premature deletion of the object. Also, mark the object as invalid once the table has been unloaded. This is needed because the handle itself may not be deleted after the table unload, depending on whether it has been stored in a named object by the caller. Lin Ming. Fixed a problem with Mutex Sync Levels. Fixed a problem where if multiple mutexes of the same sync level are acquired but then not released in strict opposite order, the internally maintained Current Sync Level becomes confused and can cause subsequent execution errors. ACPICA BZ 471. Changed the allowable release order for ASL mutex objects. The ACPI 4.0 specification has been changed to make the SyncLevel for mutex objects more useful. When releasing a mutex, the SyncLevel of the mutex must now be the same as the current sync level. This makes more sense than the previous rule (SyncLevel less than or equal). This change updates the code to match the specification. Fixed a problem with the local version of the AcpiOsPurgeCache function. The (local) cache must be locked during all cache object deletions. Andrew Baumann. Updated the Load operator to use operation region interfaces. This replaces direct memory mapping with region access calls. Now, all region accesses go through the installed region handler as they should. Simplified and optimized the NsGetNextNode function. Reduced parameter count and reduced code for this frequently used function. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 82.8K Code, 17.5K Data, 100.3K Total Debug Version: 158.0K Code, 49.9K Data, 207.9K Total Current Release: Non-Debug Version: 83.4K Code, 17.5K Data, 100.9K Total Debug Version: 158.9K Code, 50.0K Data, 208.9K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Fixed some issues with DMAR, HEST, MADT tables. Some problems with sub-table disassembly and handling invalid sub-tables. Attempt recovery after an invalid sub-table ID. ---------------------------------------- 22 April 2009. Summary of changes for version 20090422: 1) ACPI CA Core Subsystem: Fixed a compatibility issue with the recently released I/O port protection mechanism. For windows compatibility, 1) On a port protection violation, simply ignore the request and do not return an exception (allow the control method to continue execution.) 2) If only part of the request overlaps a protected port, read/write the individual ports that are not protected. Linux BZ 13036. Lin Ming Enhanced the execution of the ASL/AML BreakPoint operator so that it actually breaks into the AML debugger if the debugger is present. This matches the ACPI-defined behavior. Fixed several possible warnings related to the use of the configurable ACPI_THREAD_ID. This type can now be configured as either an integer or a pointer with no warnings. Also fixes several warnings in printf-like statements for the 64-bit build when the type is configured as a pointer. ACPICA BZ 766, 767. Fixed a number of possible warnings when compiling with gcc 4+ (depending on warning options.) Examples include printf formats, aliasing, unused globals, missing prototypes, missing switch default statements, use of non-ANSI library functions, use of non-ANSI constructs. See generate/unix/Makefile for a list of warning options used with gcc 3 and 4. ACPICA BZ 735. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 82.6K Code, 17.6K Data, 100.2K Total Debug Version: 157.7K Code, 49.9K Data, 207.6K Total Current Release: Non-Debug Version: 82.8K Code, 17.5K Data, 100.3K Total Debug Version: 158.0K Code, 49.9K Data, 207.9K Total 2) iASL Compiler/Disassembler and Tools: iASL: Fixed a generation warning from Bison 2.3 and fixed several warnings on the 64-bit build. iASL: Fixed a problem where the Unix/Linux versions of the compiler could not correctly digest Windows/DOS formatted files (with CR/LF). iASL: Added a new option for "quiet mode" (-va) that produces only the compilation summary, not individual errors and warnings. Useful for large batch compilations. AcpiExec: Implemented a new option (-z) to enable a forced semaphore/mutex timeout that can be used to detect hang conditions during execution of AML code (includes both internal semaphores and AML-defined mutexes and events.) Added new makefiles for the generation of acpica in a generic unix-like environment. These makefiles are intended to generate the acpica tools and utilities from the original acpica git source tree structure. Test Suites: Updated and cleaned up the documentation files. Updated the copyrights to 2009, affecting all source files. Use the new version of iASL with quiet mode. Increased the number of available semaphores in the Windows OSL, allowing the aslts to execute fully on Windows. For the Unix OSL, added an alternate implementation of the semaphore timeout to allow aslts to execute fully on Cygwin. ---------------------------------------- 20 March 2009. Summary of changes for version 20090320: 1) ACPI CA Core Subsystem: Fixed a possible race condition between AcpiWalkNamespace and dynamic table unloads. Added a reader/writer locking mechanism to allow multiple concurrent namespace walks (readers), but block a dynamic table unload until it can gain exclusive write access to the namespace. This fixes a problem where a table unload could (possibly catastrophically) delete the portion of the namespace that is currently being examined by a walk. Adds a new file, utlock.c, that implements the reader/writer lock mechanism. ACPICA BZ 749. Fixed a regression introduced in version 20090220 where a change to the FADT handling could cause the ACPICA subsystem to access non-existent I/O ports. Modified the handling of FADT register and table (FACS/DSDT) addresses. The FADT can contain both 32-bit and 64-bit versions of these addresses. Previously, the 64-bit versions were favored, meaning that if both 32 and 64 versions were valid, but not equal, the 64-bit version was used. This was found to cause some machines to fail. Now, in this case, the 32-bit version is used instead. This now matches the Windows behavior. Implemented a new mechanism to protect certain I/O ports. Provides Microsoft compatibility and protects the standard PC I/O ports from access via AML code. Adds a new file, hwvalid.c Fixed a possible extraneous warning message from the FADT support. The message warns of a 32/64 length mismatch between the legacy and GAS definitions for a register. Removed the obsolete AcpiOsValidateAddress OSL interface. This interface is made obsolete by the port protection mechanism above. It was previously used to validate the entire address range of an operation region, which could be incorrect if the range included illegal ports, but fields within the operation region did not actually access those ports. Validation is now performed on a per-field basis instead of the entire region. Modified the handling of the PM1 Status Register ignored bit (bit 11.) Ignored bits must be "preserved" according to the ACPI spec. Usually, this means a read/modify/write when writing to the register. However, for status registers, writing a one means clear the event. Writing a zero means preserve the event (do not clear.) This behavior is clarified in the ACPI 4.0 spec, and the ACPICA code now simply always writes a zero to the ignored bit. Modified the handling of ignored bits for the PM1 A/B Control Registers. As per the ACPI specification, for the control registers, preserve (read/modify/write) all bits that are defined as either reserved or ignored. Updated the handling of write-only bits in the PM1 A/B Control Registers. When reading the register, zero the write-only bits as per the ACPI spec. ACPICA BZ 443. Lin Ming. Removed "Linux" from the list of supported _OSI strings. Linux no longer wants to reply true to this request. The Windows strings are the only paths through the AML that are tested and known to work properly. Previous Release: Non-Debug Version: 82.0K Code, 17.5K Data, 99.5K Total Debug Version: 156.9K Code, 49.8K Data, 206.7K Total Current Release: Non-Debug Version: 82.6K Code, 17.6K Data, 100.2K Total Debug Version: 157.7K Code, 49.9K Data, 207.6K Total 2) iASL Compiler/Disassembler and Tools: Acpiexec: Split the large aeexec.c file into two new files, aehandlers.c and aetables.c ---------------------------------------- 20 February 2009. Summary of changes for version 20090220: 1) ACPI CA Core Subsystem: Optimized the ACPI register locking. Removed locking for reads from the ACPI bit registers in PM1 Status, Enable, Control, and PM2 Control. The lock is not required when reading the single-bit registers. The AcpiGetRegisterUnlocked function is no longer needed and has been removed. This will improve performance for reads on these registers. ACPICA BZ 760. Fixed the parameter validation for AcpiRead/Write. Now return AE_BAD_PARAMETER if the input register pointer is null, and AE_BAD_ADDRESS if the register has an address of zero. Previously, these cases simply returned AE_OK. For optional registers such as PM1B status/enable/control, the caller should check for a valid register address before calling. ACPICA BZ 748. Renamed the external ACPI bit register access functions. Renamed AcpiGetRegister and AcpiSetRegister to clarify the purpose of these functions. The new names are AcpiReadBitRegister and AcpiWriteBitRegister. Also, restructured the code for these functions by simplifying the code path and condensing duplicate code to reduce code size. Added new functions to transparently handle the possibly split PM1 A/B registers. AcpiHwReadMultiple and AcpiHwWriteMultiple. These two functions now handle the split registers for PM1 Status, Enable, and Control. ACPICA BZ 746. Added a function to handle the PM1 control registers, AcpiHwWritePm1Control. This function writes both of the PM1 control registers (A/B). These registers are different than the PM1 A/B status and enable registers in that different values can be written to the A/B registers. Most notably, the SLP_TYP bits can be different, as per the values returned from the _Sx predefined methods. Removed an extra register write within AcpiHwClearAcpiStatus. This function was writing an optional PM1B status register twice. The existing call to the low-level AcpiHwRegisterWrite automatically handles a possibly split PM1 A/B register. ACPICA BZ 751. Split out the PM1 Status registers from the FADT. Added new globals for these registers (A/B), similar to the way the PM1 Enable registers are handled. Instead of overloading the FADT Event Register blocks. This makes the code clearer and less prone to error. Fixed the warning message for when the platform contains too many ACPI tables for the default size of the global root table data structure. The calculation for the truncation value was incorrect. Removed the ACPI_GET_OBJECT_TYPE macro. Removed all instances of this obsolete macro, since it is now a simple reference to ->common.type. There were about 150 invocations of the macro across 41 files. ACPICA BZ 755. Removed the redundant ACPI_BITREG_SLEEP_TYPE_B. This type is the same as TYPE_A. Removed this and all related instances. Renamed SLEEP_TYPE_A to simply SLEEP_TYPE. ACPICA BZ 754. Conditionally compile the AcpiSetFirmwareWakingVector64 function. This function is only needed on 64-bit host operating systems and is thus not included for 32-bit hosts. Debug output: print the input and result for invocations of the _OSI reserved control method via the ACPI_LV_INFO debug level. Also, reduced some of the verbosity of this debug level. Len Brown. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 82.3K Code, 17.5K Data, 99.8K Total Debug Version: 157.3K Code, 49.8K Data, 207.1K Total Current Release: Non-Debug Version: 82.0K Code, 17.5K Data, 99.5K Total Debug Version: 156.9K Code, 49.8K Data, 206.7K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Decode the FADT PM_Profile field. Emit ascii names for the various legal performance profiles. ---------------------------------------- 23 January 2009. Summary of changes for version 20090123: 1) ACPI CA Core Subsystem: Added the 2009 copyright to all module headers and signons. This affects virtually every file in the ACPICA core subsystem, the iASL compiler, and the tools/utilities. Implemented a change to allow the host to override any ACPI table, including dynamically loaded tables. Previously, only the DSDT could be replaced by the host. With this change, the AcpiOsTableOverride interface is called for each table found in the RSDT/XSDT during ACPICA initialization, and also whenever a table is dynamically loaded via the AML Load operator. Updated FADT flag definitions, especially the Boot Architecture flags. Debugger: For the Find command, automatically pad the input ACPI name with underscores if the name is shorter than 4 characters. This enables a match with the actual namespace entry which is itself padded with underscores. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 82.3K Code, 17.4K Data, 99.7K Total Debug Version: 157.1K Code, 49.7K Data, 206.8K Total Current Release: Non-Debug Version: 82.3K Code, 17.5K Data, 99.8K Total Debug Version: 157.3K Code, 49.8K Data, 207.1K Total 2) iASL Compiler/Disassembler and Tools: Fix build error under Bison-2.4. Dissasembler: Enhanced FADT support. Added decoding of the Boot Architecture flags. Now decode all flags, regardless of the FADT version. Flag output includes the FADT version which first defined each flag. The iASL -g option now dumps the RSDT to a file (in addition to the FADT and DSDT). Windows only. ---------------------------------------- 04 December 2008. Summary of changes for version 20081204: 1) ACPI CA Core Subsystem: The ACPICA Programmer Reference has been completely updated and revamped for this release. This includes updates to the external interfaces, OSL interfaces, the overview sections, and the debugger reference. Several new ACPICA interfaces have been implemented and documented in the programmer reference: AcpiReset - Writes the reset value to the FADT-defined reset register. AcpiDisableAllGpes - Disable all available GPEs. AcpiEnableAllRuntimeGpes - Enable all available runtime GPEs. AcpiGetGpeDevice - Get the GPE block device associated with a GPE. AcpiGbl_CurrentGpeCount - Tracks the current number of available GPEs. AcpiRead - Low-level read ACPI register (was HwLowLevelRead.) AcpiWrite - Low-level write ACPI register (was HwLowLevelWrite.) Most of the public ACPI hardware-related interfaces have been moved to a new file, components/hardware/hwxface.c Enhanced the FADT parsing and low-level ACPI register access: The ACPI register lengths within the FADT are now used, and the low level ACPI register access no longer hardcodes the ACPI register lengths. Given that there may be some risk in actually trusting the FADT register lengths, a run- time option was added to fall back to the default hardcoded lengths if the FADT proves to contain incorrect values - UseDefaultRegisterWidths. This option is set to true for now, and a warning is issued if a suspicious FADT register length is overridden with the default value. Fixed a reference count issue in NsRepairObject. This problem was introduced in version 20081031 as part of a fix to repair Buffer objects within Packages. Lin Ming. Added semaphore support to the Linux/Unix application OS-services layer (OSL). ACPICA BZ 448. Lin Ming. Added the ACPI_MUTEX_TYPE configuration option to select whether mutexes will be implemented in the OSL, or will binary semaphores be used instead. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 81.7K Code, 17.3K Data, 99.0K Total Debug Version: 156.4K Code, 49.4K Data, 205.8K Total Current Release: Non-Debug Version: 82.3K Code, 17.4K Data, 99.7K Total Debug Version: 157.1K Code, 49.7K Data, 206.8K Total 2) iASL Compiler/Disassembler and Tools: iASL: Completed the '-e' option to include additional ACPI tables in order to aid with disassembly and External statement generation. ACPICA BZ 742. Lin Ming. iASL: Removed the "named object in while loop" error. The compiler cannot determine how many times a loop will execute. ACPICA BZ 730. Disassembler: Implemented support for FADT revision 2 (MS extension). ACPICA BZ 743. Disassembler: Updates for several ACPI data tables (HEST, EINJ, and MCFG). ---------------------------------------- 31 October 2008. Summary of changes for version 20081031: 1) ACPI CA Core Subsystem: Restructured the ACPICA header files into public/private. acpi.h now includes only the "public" acpica headers. All other acpica headers are "private" and should not be included by acpica users. One new file, accommon.h is used to include the commonly used private headers for acpica code generation. Future plans include moving all private headers to a new subdirectory. Implemented an automatic Buffer->String return value conversion for predefined ACPI methods. For these methods (such as _BIF), added automatic conversion for return objects that are required to be a String, but a Buffer was found instead. This can happen when reading string battery data from an operation region, because it used to be difficult to convert the data from buffer to string from within the ASL. Ensures that the host OS is provided with a valid null-terminated string. Linux BZ 11822. Updated the FACS waking vector interfaces. Split AcpiSetFirmwareWakingVector into two: one for the 32-bit vector, another for the 64-bit vector. This is required because the host OS must setup the wake much differently for each vector (real vs. protected mode, etc.) and the interface itself should not be deciding which vector to use. Also, eliminated the GetFirmwareWakingVector interface, as it served no purpose (only the firmware reads the vector, OS only writes the vector.) ACPICA BZ 731. Implemented a mechanism to escape infinite AML While() loops. Added a loop counter to force exit from AML While loops if the count becomes too large. This can occur in poorly written AML when the hardware does not respond within a while loop and the loop does not implement a timeout. The maximum loop count is configurable. A new exception code is returned when a loop is broken, AE_AML_INFINITE_LOOP. Alexey Starikovskiy, Bob Moore. Optimized the execution of AML While loops. Previously, a control state object was allocated and freed for each execution of the loop. The optimization is to simply reuse the control state for each iteration. This speeds up the raw loop execution time by about 5%. Enhanced the implicit return mechanism. For Windows compatibility, return an implicit integer of value zero for methods that contain no executable code. Such methods are seen in the field as stubs (presumably), and can cause drivers to fail if they expect a return value. Lin Ming. Allow multiple backslashes as root prefixes in namepaths. In a fully qualified namepath, allow multiple backslash prefixes. This can happen (and is seen in the field) because of the use of a double-backslash in strings (since backslash is the escape character) causing confusion. ACPICA BZ 739 Lin Ming. Emit a warning if two different FACS or DSDT tables are discovered in the FADT. Checks if there are two valid but different addresses for the FACS and DSDT within the FADT (mismatch between the 32-bit and 64-bit fields.) Consolidated the method argument count validation code. Merged the code that validates control method argument counts into the predefined validation module. Eliminates possible multiple warnings for incorrect argument counts. Implemented ACPICA example code. Includes code for ACPICA initialization, handler installation, and calling a control method. Available at source/tools/examples. Added a global pointer for FACS table to simplify internal FACS access. Use the global pointer instead of using AcpiGetTableByIndex for each FACS access. This simplifies the code for the Global Lock and the Firmware Waking Vector(s). Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 81.2K Code, 17.0K Data, 98.2K Total Debug Version: 155.8K Code, 49.1K Data, 204.9K Total Current Release: Non-Debug Version: 81.7K Code, 17.3K Data, 99.0K Total Debug Version: 156.4K Code, 49.4K Data, 205.8K Total 2) iASL Compiler/Disassembler and Tools: iASL: Improved disassembly of external method calls. Added the -e option to allow the inclusion of additional ACPI tables to help with the disassembly of method invocations and the generation of external declarations during the disassembly. Certain external method invocations cannot be disassembled properly without the actual declaration of the method. Use the -e option to include the table where the external method(s) are actually declared. Most useful for disassembling SSDTs that make method calls back to the master DSDT. Lin Ming. Example: To disassemble an SSDT with calls to DSDT: iasl -d -e dsdt.aml ssdt1.aml iASL: Fix to allow references to aliases within ASL namepaths. Fixes a problem where the use of an alias within a namepath would result in a not found error or cause the compiler to fault. Also now allows forward references from the Alias operator itself. ACPICA BZ 738. ---------------------------------------- 26 September 2008. Summary of changes for version 20080926: 1) ACPI CA Core Subsystem: Designed and implemented a mechanism to validate predefined ACPI methods and objects. This code validates the predefined ACPI objects (objects whose names start with underscore) that appear in the namespace, at the time they are evaluated. The argument count and the type of the returned object are validated against the ACPI specification. The purpose of this validation is to detect problems with the BIOS-implemented predefined ACPI objects before the results are returned to the ACPI-related drivers. Future enhancements may include actual repair of incorrect return objects where possible. Two new files are nspredef.c and acpredef.h. Fixed a fault in the AML parser if a memory allocation fails during the Op completion routine AcpiPsCompleteThisOp. Lin Ming. ACPICA BZ 492. Fixed an issue with implicit return compatibility. This change improves the implicit return mechanism to be more compatible with the MS interpreter. Lin Ming, ACPICA BZ 349. Implemented support for zero-length buffer-to-string conversions. Allow zero length strings during interpreter buffer-to-string conversions. For example, during the ToDecimalString and ToHexString operators, as well as implicit conversions. Fiodor Suietov, ACPICA BZ 585. Fixed two possible memory leaks in the error exit paths of AcpiUtUpdateObjectReference and AcpiUtWalkPackageTree. These functions are similar in that they use a stack of state objects in order to eliminate recursion. The stack must be fully unwound and deallocated if an error occurs. Lin Ming. ACPICA BZ 383. Removed the unused ACPI_BITREG_WAKE_ENABLE definition and entry in the global ACPI register table. This bit does not exist and is unused. Lin Ming, Bob Moore ACPICA BZ 442. Removed the obsolete version number in module headers. Removed the "$Revision" number that appeared in each module header. This version number was useful under SourceSafe and CVS, but has no meaning under git. It is not only incorrect, it could also be misleading. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.7K Code, 16.4K Data, 96.1K Total Debug Version: 153.7K Code, 48.2K Data, 201.9K Total Current Release: Non-Debug Version: 81.2K Code, 17.0K Data, 98.2K Total Debug Version: 155.8K Code, 49.1K Data, 204.9K Total ---------------------------------------- 29 August 2008. Summary of changes for version 20080829: 1) ACPI CA Core Subsystem: Completed a major cleanup of the internal ACPI_OPERAND_OBJECT of type Reference. Changes include the elimination of cheating on the Object field for the DdbHandle subtype, addition of a reference class field to differentiate the various reference types (instead of an AML opcode), and the cleanup of debug output for this object. Lin Ming, Bob Moore. BZ 723 Reduce an error to a warning for an incorrect method argument count. Previously aborted with an error if too few arguments were passed to a control method via the external ACPICA interface. Now issue a warning instead and continue. Handles the case where the method inadvertently declares too many arguments, but does not actually use the extra ones. Applies mainly to the predefined methods. Lin Ming. Linux BZ 11032. Disallow the evaluation of named object types with no intrinsic value. Return AE_TYPE for objects that have no value and therefore evaluation is undefined: Device, Event, Mutex, Region, Thermal, and Scope. Previously, evaluation of these types were allowed, but an exception would be generated at some point during the evaluation. Now, the error is generated up front. Fixed a possible memory leak in the AcpiNsGetExternalPathname function (nsnames.c). Fixes a leak in the error exit path. Removed the obsolete debug levels ACPI_DB_WARN and ACPI_DB_ERROR. These debug levels were made obsolete by the ACPI_WARNING, ACPI_ERROR, and ACPI_EXCEPTION interfaces. Also added ACPI_DB_EVENTS to correspond with the existing ACPI_LV_EVENTS. Removed obsolete and/or unused exception codes from the acexcep.h header. There is the possibility that certain device drivers may be affected if they use any of these exceptions. The ACPICA documentation has been added to the public git source tree, under acpica/documents. Included are the ACPICA programmer reference, the iASL compiler reference, and the changes.txt release logfile. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.7K Code, 16.4K Data, 96.1K Total Debug Version: 153.9K Code, 48.4K Data, 202.3K Total Current Release: Non-Debug Version: 79.7K Code, 16.4K Data, 96.1K Total Debug Version: 153.7K Code, 48.2K Data, 201.9K Total 2) iASL Compiler/Disassembler and Tools: Allow multiple argument counts for the predefined _SCP method. ACPI 3.0 defines _SCP with 3 arguments. Previous versions defined it with only 1 argument. iASL now allows both definitions. iASL/disassembler: avoid infinite loop on bad ACPI tables. Check for zero- length subtables when disassembling ACPI tables. Also fixed a couple of errors where a full 16-bit table type field was not extracted from the input properly. acpisrc: Improve comment counting mechanism for generating source code statistics. Count first and last lines of multi-line comments as whitespace, not comment lines. Handle Linux legal header in addition to standard acpica header. ---------------------------------------- 29 July 2008. Summary of changes for version 20080729: 1) ACPI CA Core Subsystem: Fix a possible deadlock in the GPE dispatch. Remove call to AcpiHwDisableAllGpes during wake in AcpiEvGpeDispatch. This call will attempt to acquire the GPE lock but can deadlock since the GPE lock is already held at dispatch time. This code was introduced in version 20060831 as a response to Linux BZ 6881 and has since been removed from Linux. Add a function to dereference returned reference objects. Examines the return object from a call to AcpiEvaluateObject. Any Index or RefOf references are automatically dereferenced in an attempt to return something useful (these reference types cannot be converted into an external ACPI_OBJECT.) Provides MS compatibility. Lin Ming, Bob Moore. Linux BZ 11105 x2APIC support: changes for MADT and SRAT ACPI tables. There are 2 new subtables for the MADT and one new subtable for the SRAT. Includes disassembler and AcpiSrc support. Data from the Intel 64 Architecture x2APIC Specification, June 2008. Additional error checking for pathname utilities. Add error check after all calls to AcpiNsGetPathnameLength. Add status return from AcpiNsBuildExternalPath and check after all calls. Add parameter validation to AcpiUtInitializeBuffer. Reported by and initial patch by Ingo Molnar. Return status from the global init function AcpiUtGlobalInitialize. This is used by both the kernel subsystem and the utilities such as iASL compiler. The function could possibly fail when the caches are initialized. Yang Yi. Add a function to decode reference object types to strings. Created for improved error messages. Improve object conversion error messages. Better error messages during object conversion from internal to the external ACPI_OBJECT. Used for external calls to AcpiEvaluateObject. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.6K Code, 16.2K Data, 95.8K Total Debug Version: 153.5K Code, 48.2K Data, 201.7K Total Current Release: Non-Debug Version: 79.7K Code, 16.4K Data, 96.1K Total Debug Version: 153.9K Code, 48.4K Data, 202.3K Total 2) iASL Compiler/Disassembler and Tools: Debugger: fix a possible hang when evaluating non-methods. Fixes a problem introduced in version 20080701. If the object being evaluated (via execute command) is not a method, the debugger can hang while trying to obtain non- existent parameters. iASL: relax error for using reserved "_T_x" identifiers. These names can appear in a disassembled ASL file if they were emitted by the original compiler. Instead of issuing an error or warning and forcing the user to manually change these names, issue a remark instead. iASL: error if named object created in while loop. Emit an error if any named object is created within a While loop. If allowed, this code will generate a run-time error on the second iteration of the loop when an attempt is made to create the same named object twice. ACPICA bugzilla 730. iASL: Support absolute pathnames for include files. Add support for absolute pathnames within the Include operator. previously, only relative pathnames were supported. iASL: Enforce minimum 1 interrupt in interrupt macro and Resource Descriptor. The ACPI spec requires one interrupt minimum. BZ 423 iASL: Handle a missing ResourceSource arg, with a present SourceIndex. Handles the case for the Interrupt Resource Descriptor where the ResourceSource argument is omitted but ResourceSourceIndex is present. Now leave room for the Index. BZ 426 iASL: Prevent error message if CondRefOf target does not exist. Fixes cases where an error message is emitted if the target does not exist. BZ 516 iASL: Fix broken -g option (get Windows ACPI tables). Fixes the -g option (get ACPI tables on Windows). This was apparently broken in version 20070919. AcpiXtract: Handle EOF while extracting data. Correctly handle the case where the EOF happens immediately after the last table in the input file. Print completion message. Previously, no message was displayed in this case. ---------------------------------------- 01 July 2008. Summary of changes for version 20080701: 0) Git source tree / acpica.org Fixed a problem where a git-clone from http would not transfer the entire source tree. 1) ACPI CA Core Subsystem: Implemented a "careful" GPE disable in AcpiEvDisableGpe, only modify one enable bit. Now performs a read-change-write of the enable register instead of simply writing out the cached enable mask. This will prevent inadvertent enabling of GPEs if a rogue GPE is received during initialization (before GPE handlers are installed.) Implemented a copy for dynamically loaded tables. Previously, dynamically loaded tables were simply mapped - but on some machines this memory is corrupted after suspend. Now copy the table to a local buffer. For the OpRegion case, added checksum verify. Use the table length from the table header, not the region length. For the Buffer case, use the table length also. Dennis Noordsij, Bob Moore. BZ 10734 Fixed a problem where the same ACPI table could not be dynamically loaded and unloaded more than once. Without this change, a table cannot be loaded again once it has been loaded/unloaded one time. The current mechanism does not unregister a table upon an unload. During a load, if the same table is found, this no longer returns an exception. BZ 722 Fixed a problem where the wrong descriptor length was calculated for the EndTag descriptor in 64-bit mode. The "minimal" descriptors such as EndTag are calculated as 12 bytes long, but the actual length in the internal descriptor is 16 because of the round-up to 8 on the 64-bit build. Reported by Linn Crosetto. BZ 728 Fixed a possible memory leak in the Unload operator. The DdbHandle returned by Load() did not have its reference count decremented during unload, leading to a memory leak. Lin Ming. BZ 727 Fixed a possible memory leak when deleting thermal/processor objects. Any associated notify handlers (and objects) were not being deleted. Fiodor Suietov. BZ 506 Fixed the ordering of the ASCII names in the global mutex table to match the actual mutex IDs. Used by AcpiUtGetMutexName, a function used for debug only. Vegard Nossum. BZ 726 Enhanced the AcpiGetObjectInfo interface to return the number of required arguments if the object is a control method. Added this call to the debugger so the proper number of default arguments are passed to a method. This prevents a warning when executing methods from AcpiExec. Added a check for an invalid handle in AcpiGetObjectInfo. Return AE_BAD_PARAMETER if input handle is invalid. BZ 474 Fixed an extraneous warning from exconfig.c on the 64-bit build. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.3K Code, 16.2K Data, 95.5K Total Debug Version: 153.0K Code, 48.2K Data, 201.2K Total Current Release: Non-Debug Version: 79.6K Code, 16.2K Data, 95.8K Total Debug Version: 153.5K Code, 48.2K Data, 201.7K Total 2) iASL Compiler/Disassembler and Tools: iASL: Added two missing ACPI reserved names. Added _MTP and _ASZ, both resource descriptor names. iASL: Detect invalid ASCII characters in input (windows version). Removed the "-CF" flag from the flex compile, enables correct detection of non-ASCII characters in the input. BZ 441 iASL: Eliminate warning when result of LoadTable is not used. Eliminate the "result of operation not used" warning when the DDB handle returned from LoadTable is not used. The warning is not needed. BZ 590 AcpiExec: Add support for dynamic table load/unload. Now calls _CFG method to pass address of table to the AML. Added option to disable OpRegion simulation to allow creation of an OpRegion with a real address that was passed to _CFG. All of this allows testing of the Load and Unload operators from AcpiExec. Debugger: update tables command for unloaded tables. Handle unloaded tables and use the standard table header output routine. ---------------------------------------- 09 June 2008. Summary of changes for version 20080609: 1) ACPI CA Core Subsystem: Implemented a workaround for reversed _PRT entries. A significant number of BIOSs erroneously reverse the _PRT SourceName and the SourceIndex. This change dynamically detects and repairs this problem. Provides compatibility with MS ACPI. BZ 6859 Simplified the internal ACPI hardware interfaces to eliminate the locking flag parameter from Register Read/Write. Added a new external interface, AcpiGetRegisterUnlocked. Fixed a problem where the invocation of a GPE control method could hang. This was a regression introduced in 20080514. The new method argument count validation mechanism can enter an infinite loop when a GPE method is dispatched. Problem fixed by removing the obsolete code that passed GPE block information to the notify handler via the control method parameter pointer. Fixed a problem where the _SST execution status was incorrectly returned to the caller of AcpiEnterSleepStatePrep. This was a regression introduced in 20080514. _SST is optional and a NOT_FOUND exception should never be returned. BZ 716 Fixed a problem where a deleted object could be accessed from within the AML parser. This was a regression introduced in version 20080123 as a fix for the Unload operator. Lin Ming. BZ 10669 Cleaned up the debug operand dump mechanism. Eliminated unnecessary operands and eliminated the use of a negative index in a loop. Operands are now displayed in the correct order, not backwards. This also fixes a regression introduced in 20080514 on 64-bit systems where the elimination of ACPI_NATIVE_UINT caused the negative index to go large and positive. BZ 715 Fixed a possible memory leak in EvPciConfigRegionSetup where the error exit path did not delete a locally allocated structure. Updated definitions for the DMAR and SRAT tables to synchronize with the current specifications. Includes disassembler support. Fixed a problem in the mutex debug code (in utmutex.c) where an incorrect loop termination value was used. Loop terminated on iteration early, missing one mutex. Linn Crosetto Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.5K Code, 16.2K Data, 95.7K Total Debug Version: 153.3K Code, 48.3K Data, 201.6K Total Current Release: Non-Debug Version: 79.3K Code, 16.2K Data, 95.5K Total Debug Version: 153.0K Code, 48.2K Data, 201.2K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Implemented support for EisaId() within _CID objects. Now disassemble integer _CID objects back to EisaId invocations, including multiple integers within _CID packages. Includes single-step support for debugger also. Disassembler: Added support for DMAR and SRAT table definition changes. ---------------------------------------- 14 May 2008. Summary of changes for version 20080514: 1) ACPI CA Core Subsystem: Fixed a problem where GPEs were enabled too early during the ACPICA initialization. This could lead to "handler not installed" errors on some machines. Moved GPE enable until after _REG/_STA/_INI methods are run. This ensures that all operation regions and devices throughout the namespace have been initialized before GPEs are enabled. Alexey Starikovskiy, BZ 9916. Implemented a change to the enter sleep code. Moved execution of the _GTS method to just before setting sleep enable bit. The execution was moved from AcpiEnterSleepStatePrep to AcpiEnterSleepState. _GTS is now executed immediately before the SLP_EN bit is set, as per the ACPI specification. Luming Yu, BZ 1653. Implemented a fix to disable unknown GPEs (2nd version). Now always disable the GPE, even if ACPICA thinks that that it is already disabled. It is possible that the AML or some other code has enabled the GPE unbeknownst to the ACPICA code. Fixed a problem with the Field operator where zero-length fields would return an AE_AML_NO_OPERAND exception during table load. Fix enables zero-length ASL field declarations in Field(), BankField(), and IndexField(). BZ 10606. Implemented a fix for the Load operator, now load the table at the namespace root. This reverts a change introduced in version 20071019. The table is now loaded at the namespace root even though this goes against the ACPI specification. This provides compatibility with other ACPI implementations. The ACPI specification will be updated to reflect this in ACPI 4.0. Lin Ming. Fixed a problem where ACPICA would not Load() tables with unusual signatures. Now ignore ACPI table signature for Load() operator. Only "SSDT" is acceptable to the ACPI spec, but tables are seen with OEMx and null sigs. Therefore, signature validation is worthless. Apparently MS ACPI accepts such signatures, ACPICA must be compatible. BZ 10454. Fixed a possible negative array index in AcpiUtValidateException. Added NULL fields to the exception string arrays to eliminate a -1 subtraction on the SubStatus field. Updated the debug tracking macros to reduce overall code and data size. Changed ACPI_MODULE_NAME and ACPI_FUNCTION_NAME to use arrays of strings instead of pointers to static strings. Jan Beulich and Bob Moore. Implemented argument count checking in control method invocation via AcpiEvaluateObject. Now emit an error if too few arguments, warning if too many. This applies only to extern programmatic control method execution, not method-to-method calls within the AML. Lin Ming. Eliminated the ACPI_NATIVE_UINT type across all ACPICA code. This type is no longer needed, especially with the removal of 16-bit support. It was replaced mostly with UINT32, but also ACPI_SIZE where a type that changes 32/64 bit on 32/64-bit platforms is required. Added the C const qualifier for appropriate string constants -- mostly MODULE_NAME and printf format strings. Jan Beulich. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.0K Code, 17.4K Data, 97.4K Total Debug Version: 159.4K Code, 64.4K Data, 223.8K Total Current Release: Non-Debug Version: 79.5K Code, 16.2K Data, 95.7K Total Debug Version: 153.3K Code, 48.3K Data, 201.6K Total 2) iASL Compiler/Disassembler and Tools: Implemented ACPI table revision ID validation in the disassembler. Zero is always invalid. For DSDTs, the ID controls the interpreter integer width. 1 means 32-bit and this is unusual. 2 or greater is 64-bit. ---------------------------------------- 21 March 2008. Summary of changes for version 20080321: 1) ACPI CA Core Subsystem: Implemented an additional change to the GPE support in order to suppress spurious or stray GPEs. The AcpiEvDisableGpe function will now permanently disable incoming GPEs that are neither enabled nor disabled -- meaning that the GPE is unknown to the system. This should prevent future interrupt floods from that GPE. BZ 6217 (Zhang Rui) Fixed a problem where NULL package elements were not returned to the AcpiEvaluateObject interface correctly. The element was simply ignored instead of returning a NULL ACPI_OBJECT package element, potentially causing a buffer overflow and/or confusing the caller who expected a fixed number of elements. BZ 10132 (Lin Ming, Bob Moore) Fixed a problem with the CreateField, CreateXXXField (Bit, Byte, Word, Dword, Qword), Field, BankField, and IndexField operators when invoked from inside an executing control method. In this case, these operators created namespace nodes that were incorrectly left marked as permanent nodes instead of temporary nodes. This could cause a problem if there is race condition between an exiting control method and a running namespace walk. (Reported by Linn Crosetto) Fixed a problem where the CreateField and CreateXXXField operators would incorrectly allow duplicate names (the name of the field) with no exception generated. Implemented several changes for Notify handling. Added support for new Notify values (ACPI 2.0+) and improved the Notify debug output. Notify on PowerResource objects is no longer allowed, as per the ACPI specification. (Bob Moore, Zhang Rui) All Reference Objects returned via the AcpiEvaluateObject interface are now marked as type "REFERENCE" instead of "ANY". The type ANY is now reserved for NULL objects - either NULL package elements or unresolved named references. Fixed a problem where an extraneous debug message was produced for package objects (when debugging enabled). The message "Package List length larger than NumElements count" is now produced in the correct case, and is now an error message rather than a debug message. Added a debug message for the opposite case, where NumElements is larger than the Package List (the package will be padded out with NULL elements as per the ACPI spec.) Implemented several improvements for the output of the ASL "Debug" object to clarify and keep all data for a given object on one output line. Fixed two size calculation issues with the variable-length Start Dependent resource descriptor. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.7K Code, 17.3K Data, 97.0K Total Debug Version: 158.9K Code, 64.0K Data, 222.9K Total Current Release: Non-Debug Version: 80.0K Code, 17.4K Data, 97.4K Total Debug Version: 159.4K Code, 64.4K Data, 223.8K Total 2) iASL Compiler/Disassembler and Tools: Fixed a problem with the use of the Switch operator where execution of the containing method by multiple concurrent threads could cause an AE_ALREADY_EXISTS exception. This is caused by the fact that there is no actual Switch opcode, it must be simulated with local named temporary variables and if/else pairs. The solution chosen was to mark any method that uses Switch as Serialized, thus preventing multiple thread entries. BZ 469. ---------------------------------------- 13 February 2008. Summary of changes for version 20080213: 1) ACPI CA Core Subsystem: Implemented another MS compatibility design change for GPE/Notify handling. GPEs are now cleared/enabled asynchronously to allow all pending notifies to complete first. It is expected that the OSL will queue the enable request behind all pending notify requests (may require changes to the local host OSL in AcpiOsExecute). Alexey Starikovskiy. Fixed a problem where buffer and package objects passed as arguments to a control method via the external AcpiEvaluateObject interface could cause an AE_AML_INTERNAL exception depending on the order and type of operators executed by the target control method. Fixed a problem where resource descriptor size optimization could cause a problem when a _CRS resource template is passed to a _SRS method. The _SRS resource template must use the same descriptors (with the same size) as returned from _CRS. This change affects the following resource descriptors: IRQ / IRQNoFlags and StartDependendentFn / StartDependentFnNoPri. (BZ 9487) Fixed a problem where a CopyObject to RegionField, BankField, and IndexField objects did not perform an implicit conversion as it should. These types must retain their initial type permanently as per the ACPI specification. However, a CopyObject to all other object types should not perform an implicit conversion, as per the ACPI specification. (Lin Ming, Bob Moore) BZ 388 Fixed a problem with the AcpiGetDevices interface where the mechanism to match device CIDs did not examine the entire list of available CIDs, but instead aborted on the first non-matching CID. Andrew Patterson. Fixed a regression introduced in version 20071114. The ACPI_HIDWORD macro was inadvertently changed to return a 16-bit value instead of a 32-bit value, truncating the upper dword of a 64-bit value. This macro is only used to display debug output, so no incorrect calculations were made. Also, reimplemented the macro so that a 64-bit shift is not performed by inefficient compilers. Added missing va_end statements that should correspond with each va_start statement. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.5K Code, 17.2K Data, 96.7K Total Debug Version: 159.0K Code, 63.8K Data, 222.8K Total Current Release: Non-Debug Version: 79.7K Code, 17.3K Data, 97.0K Total Debug Version: 158.9K Code, 64.0K Data, 222.9K Total 2) iASL Compiler/Disassembler and Tools: Implemented full disassembler support for the following new ACPI tables: BERT, EINJ, and ERST. Implemented partial disassembler support for the complicated HEST table. These tables support the Windows Hardware Error Architecture (WHEA). ---------------------------------------- 23 January 2008. Summary of changes for version 20080123: 1) ACPI CA Core Subsystem: Added the 2008 copyright to all module headers and signons. This affects virtually every file in the ACPICA core subsystem, the iASL compiler, and the tools/utilities. Fixed a problem with the SizeOf operator when used with Package and Buffer objects. These objects have deferred execution for some arguments, and the execution is now completed before the SizeOf is executed. This problem caused unexpected AE_PACKAGE_LIMIT errors on some systems (Lin Ming, Bob Moore) BZ 9558 Implemented an enhancement to the interpreter "slack mode". In the absence of an explicit return or an implicitly returned object from the last executed opcode, a control method will now implicitly return an integer of value 0 for Microsoft compatibility. (Lin Ming) BZ 392 Fixed a problem with the Load operator where an exception was not returned in the case where the table is already loaded. (Lin Ming) BZ 463 Implemented support for the use of DDBHandles as an Indexed Reference, as per the ACPI spec. (Lin Ming) BZ 486 Implemented support for UserTerm (Method invocation) for the Unload operator as per the ACPI spec. (Lin Ming) BZ 580 Fixed a problem with the LoadTable operator where the OemId and OemTableId input strings could cause unexpected failures if they were shorter than the maximum lengths allowed. (Lin Ming, Bob Moore) BZ 576 Implemented support for UserTerm (Method invocation) for the Unload operator as per the ACPI spec. (Lin Ming) BZ 580 Implemented header file support for new ACPI tables - BERT, ERST, EINJ, HEST, IBFT, UEFI, WDAT. Disassembler support is forthcoming. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.3K Code, 17.2K Data, 96.5K Total Debug Version: 158.6K Code, 63.8K Data, 222.4K Total Current Release: Non-Debug Version: 79.5K Code, 17.2K Data, 96.7K Total Debug Version: 159.0K Code, 63.8K Data, 222.8K Total 2) iASL Compiler/Disassembler and Tools: Implemented support in the disassembler for checksum validation on incoming binary DSDTs and SSDTs. If incorrect, a message is displayed within the table header dump at the start of the disassembly. Implemented additional debugging information in the namespace listing file created during compilation. In addition to the namespace hierarchy, the full pathname to each namespace object is displayed. Fixed a problem with the disassembler where invalid ACPI tables could cause faults or infinite loops. Fixed an unexpected parse error when using the optional "parameter types" list in a control method declaration. (Lin Ming) BZ 397 Fixed a problem where two External declarations with the same name did not cause an error (Lin Ming) BZ 509 Implemented support for full TermArgs (adding Argx, Localx and method invocation) for the ParameterData parameter to the LoadTable operator. (Lin Ming) BZ 583,587 ---------------------------------------- 19 December 2007. Summary of changes for version 20071219: 1) ACPI CA Core Subsystem: Implemented full support for deferred execution for the TermArg string arguments for DataTableRegion. This enables forward references and full operand resolution for the three string arguments. Similar to OperationRegion deferred argument execution.) Lin Ming. BZ 430 Implemented full argument resolution support for the BankValue argument to BankField. Previously, only constants were supported, now any TermArg may be used. Lin Ming BZ 387, 393 Fixed a problem with AcpiGetDevices where the search of a branch of the device tree could be terminated prematurely. In accordance with the ACPI specification, the search down the current branch is terminated if a device is both not present and not functional (instead of just not present.) Yakui Zhao. Fixed a problem where "unknown" GPEs could be allowed to fire repeatedly if the underlying AML code changed the GPE enable registers. Now, any unknown incoming GPE (no _Lxx/_Exx method and not the EC GPE) is immediately disabled instead of simply ignored. Rui Zhang. Fixed a problem with Index Fields where the Index register was incorrectly limited to a maximum of 32 bits. Now any size may be used. Fixed a couple memory leaks associated with "implicit return" objects when the AML Interpreter slack mode is enabled. Lin Ming BZ 349 Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.0K Code, 17.2K Data, 96.2K Total Debug Version: 157.9K Code, 63.6K Data, 221.5K Total Current Release: Non-Debug Version: 79.3K Code, 17.2K Data, 96.5K Total Debug Version: 158.6K Code, 63.8K Data, 222.4K Total ---------------------------------------- 14 November 2007. Summary of changes for version 20071114: 1) ACPI CA Core Subsystem: Implemented event counters for each of the Fixed Events, the ACPI SCI (interrupt) itself, and control methods executed. Named AcpiFixedEventCount[], AcpiSciCount, and AcpiMethodCount respectively. These should be useful for debugging and statistics. Implemented a new external interface, AcpiGetStatistics, to retrieve the contents of the various event counters. Returns the current values for AcpiSciCount, AcpiGpeCount, the AcpiFixedEventCount array, and AcpiMethodCount. The interface can be expanded in the future if new counters are added. Device drivers should use this interface rather than access the counters directly. Fixed a problem with the FromBCD and ToBCD operators. With some compilers, the ShortDivide function worked incorrectly, causing problems with the BCD functions with large input values. A truncation from 64-bit to 32-bit inadvertently occurred. Internal BZ 435. Lin Ming Fixed a problem with Index references passed as method arguments. References passed as arguments to control methods were dereferenced immediately (before control was passed to the called method). The references are now correctly passed directly to the called method. BZ 5389. Lin Ming Fixed a problem with CopyObject used in conjunction with the Index operator. The reference was incorrectly dereferenced before the copy. The reference is now correctly copied. BZ 5391. Lin Ming Fixed a problem with Control Method references within Package objects. These references are now correctly generated. This completes the package construction overhaul that began in version 20071019. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.8K Code, 17.2K Data, 96.0K Total Debug Version: 157.2K Code, 63.4K Data, 220.6K Total Current Release: Non-Debug Version: 79.0K Code, 17.2K Data, 96.2K Total Debug Version: 157.9K Code, 63.6K Data, 221.5K Total 2) iASL Compiler/Disassembler and Tools: The AcpiExec utility now installs handlers for all of the predefined Operation Region types. New types supported are: PCI_Config, CMOS, and PCIBARTarget. Fixed a problem with the 64-bit version of AcpiExec where the extended (64- bit) address fields for the DSDT and FACS within the FADT were not being used, causing truncation of the upper 32-bits of these addresses. Lin Ming and Bob Moore ---------------------------------------- 19 October 2007. Summary of changes for version 20071019: 1) ACPI CA Core Subsystem: Fixed a problem with the Alias operator when the target of the alias is a named ASL operator that opens a new scope -- Scope, Device, PowerResource, Processor, and ThermalZone. In these cases, any children of the original operator could not be accessed via the alias, potentially causing unexpected AE_NOT_FOUND exceptions. (BZ 9067) Fixed a problem with the Package operator where all named references were created as object references and left otherwise unresolved. According to the ACPI specification, a Package can only contain Data Objects or references to control methods. The implication is that named references to Data Objects (Integer, Buffer, String, Package, BufferField, Field) should be resolved immediately upon package creation. This is the approach taken with this change. References to all other named objects (Methods, Devices, Scopes, etc.) are all now properly created as reference objects. (BZ 5328) Reverted a change to Notify handling that was introduced in version 20070508. This version changed the Notify handling from asynchronous to fully synchronous (Device driver Notify handling with respect to the Notify ASL operator). It was found that this change caused more problems than it solved and was removed by most users. Fixed a problem with the Increment and Decrement operators where the type of the target object could be unexpectedly and incorrectly changed. (BZ 353) Lin Ming. Fixed a problem with the Load and LoadTable operators where the table location within the namespace was ignored. Instead, the table was always loaded into the root or current scope. Lin Ming. Fixed a problem with the Load operator when loading a table from a buffer object. The input buffer was prematurely zeroed and/or deleted. (BZ 577) Fixed a problem with the Debug object where a store of a DdbHandle reference object to the Debug object could cause a fault. Added a table checksum verification for the Load operator, in the case where the load is from a buffer. (BZ 578). Implemented additional parameter validation for the LoadTable operator. The length of the input strings SignatureString, OemIdString, and OemTableId are now checked for maximum lengths. (BZ 582) Lin Ming. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.5K Code, 17.1K Data, 95.6K Total Debug Version: 156.7K Code, 63.2K Data, 219.9K Total Current Release: Non-Debug Version: 78.8K Code, 17.2K Data, 96.0K Total Debug Version: 157.2K Code, 63.4K Data, 220.6K Total 2) iASL Compiler/Disassembler: Fixed a problem where if a single file was specified and the file did not exist, no error message was emitted. (Introduced with wildcard support in version 20070917.) ---------------------------------------- 19 September 2007. Summary of changes for version 20070919: 1) ACPI CA Core Subsystem: Designed and implemented new external interfaces to install and remove handlers for ACPI table-related events. Current events that are defined are LOAD and UNLOAD. These interfaces allow the host to track ACPI tables as they are dynamically loaded and unloaded. See AcpiInstallTableHandler and AcpiRemoveTableHandler. (Lin Ming and Bob Moore) Fixed a problem where the use of the AcpiGbl_AllMethodsSerialized flag (acpi_serialized option on Linux) could cause some systems to hang during initialization. (Bob Moore) BZ 8171 Fixed a problem where objects of certain types (Device, ThermalZone, Processor, PowerResource) can be not found if they are declared and referenced from within the same control method (Lin Ming) BZ 341 Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.3K Code, 17.0K Data, 95.3K Total Debug Version: 156.3K Code, 63.1K Data, 219.4K Total Current Release: Non-Debug Version: 78.5K Code, 17.1K Data, 95.6K Total Debug Version: 156.7K Code, 63.2K Data, 219.9K Total 2) iASL Compiler/Disassembler: Implemented support to allow multiple files to be compiled/disassembled in a single invocation. This includes command line wildcard support for both the Windows and Unix versions of the compiler. This feature simplifies the disassembly and compilation of multiple ACPI tables in a single directory. ---------------------------------------- 08 May 2007. Summary of changes for version 20070508: 1) ACPI CA Core Subsystem: Implemented a Microsoft compatibility design change for the handling of the Notify AML operator. Previously, notify handlers were dispatched and executed completely asynchronously in a deferred thread. The new design still executes the notify handlers in a different thread, but the original thread that executed the Notify() now waits at a synchronization point for the notify handler to complete. Some machines depend on a synchronous Notify operator in order to operate correctly. Implemented support to allow Package objects to be passed as method arguments to the external AcpiEvaluateObject interface. Previously, this would return the AE_NOT_IMPLEMENTED exception. This feature had not been implemented since there were no reserved control methods that required it until recently. Fixed a problem with the internal FADT conversion where ACPI 1.0 FADTs that contained invalid non-zero values in reserved fields could cause later failures because these fields have meaning in later revisions of the FADT. For incoming ACPI 1.0 FADTs, these fields are now always zeroed. (The fields are: Preferred_PM_Profile, PSTATE_CNT, CST_CNT, and IAPC_BOOT_FLAGS.) Fixed a problem where the Global Lock handle was not properly updated if a thread that acquired the Global Lock via executing AML code then attempted to acquire the lock via the AcpiAcquireGlobalLock interface. Reported by Joe Liu. Fixed a problem in AcpiEvDeleteGpeXrupt where the global interrupt list could be corrupted if the interrupt being removed was at the head of the list. Reported by Linn Crosetto. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total Debug Version: 155.9K Code, 63.1K Data, 219.0K Total Current Release: Non-Debug Version: 78.3K Code, 17.0K Data, 95.3K Total Debug Version: 156.3K Code, 63.1K Data, 219.4K Total ---------------------------------------- 20 March 2007. Summary of changes for version 20070320: 1) ACPI CA Core Subsystem: Implemented a change to the order of interpretation and evaluation of AML operand objects within the AML interpreter. The interpreter now evaluates operands in the order that they appear in the AML stream (and the corresponding ASL code), instead of in the reverse order (after the entire operand list has been parsed). The previous behavior caused several subtle incompatibilities with the Microsoft AML interpreter as well as being somewhat non-intuitive. BZ 7871, local BZ 263. Valery Podrezov. Implemented a change to the ACPI Global Lock support. All interfaces to the global lock now allow the same thread to acquire the lock multiple times. This affects the AcpiAcquireGlobalLock external interface to the global lock as well as the internal use of the global lock to support AML fields -- a control method that is holding the global lock can now simultaneously access AML fields that require global lock protection. Previously, in both cases, this would have resulted in an AE_ALREADY_ACQUIRED exception. The change to AcpiAcquireGlobalLock is of special interest to drivers for the Embedded Controller. There is no change to the behavior of the AML Acquire operator, as this can already be used to acquire a mutex multiple times by the same thread. BZ 8066. With assistance from Alexey Starikovskiy. Fixed a problem where invalid objects could be referenced in the AML Interpreter after error conditions. During operand evaluation, ensure that the internal "Return Object" field is cleared on error and only valid pointers are stored there. Caused occasional access to deleted objects that resulted in "large reference count" warning messages. Valery Podrezov. Fixed a problem where an AE_STACK_OVERFLOW internal exception could occur on deeply nested control method invocations. BZ 7873, local BZ 487. Valery Podrezov. Fixed an internal problem with the handling of result objects on the interpreter result stack. BZ 7872. Valery Podrezov. Removed obsolete code that handled the case where AML_NAME_OP is the target of a reference (Reference.Opcode). This code was no longer necessary. BZ 7874. Valery Podrezov. Removed obsolete ACPI_NO_INTEGER64_SUPPORT from two header files. This was a remnant from the previously discontinued 16-bit support. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total Debug Version: 155.8K Code, 63.3K Data, 219.1K Total Current Release: Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total Debug Version: 155.9K Code, 63.1K Data, 219.0K Total ---------------------------------------- 26 January 2007. Summary of changes for version 20070126: 1) ACPI CA Core Subsystem: Added the 2007 copyright to all module headers and signons. This affects virtually every file in the ACPICA core subsystem, the iASL compiler, and the utilities. Implemented a fix for an incorrect parameter passed to AcpiTbDeleteTable during a table load. A bad pointer was passed in the case where the DSDT is overridden, causing a fault in this case. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total Debug Version: 155.8K Code, 63.3K Data, 219.1K Total Current Release: Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total Debug Version: 155.8K Code, 63.3K Data, 219.1K Total ---------------------------------------- 15 December 2006. Summary of changes for version 20061215: 1) ACPI CA Core Subsystem: Support for 16-bit ACPICA has been completely removed since it is no longer necessary and it clutters the code. All 16-bit macros, types, and conditional compiles have been removed, cleaning up and simplifying the code across the entire subsystem. DOS support is no longer needed since the bootable Linux firmware kit is now available. The handler for the Global Lock is now removed during AcpiTerminate to enable a clean subsystem restart, via the implementation of the AcpiEvRemoveGlobalLockHandler function. (With assistance from Joel Bretz, HP) Implemented enhancements to the multithreading support within the debugger to enable improved multithreading debugging and evaluation of the subsystem. (Valery Podrezov) Debugger: Enhanced the Statistics/Memory command to emit the total (maximum) memory used during the execution, as well as the maximum memory consumed by each of the various object types. (Valery Podrezov) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 77.9K Code, 17.0K Data, 94.9K Total Debug Version: 155.2K Code, 63.1K Data, 218.3K Total Current Release: Non-Debug Version: 78.0K Code, 17.1K Data, 95.1K Total Debug Version: 155.8K Code, 63.3K Data, 219.1K Total 2) iASL Compiler/Disassembler and Tools: AcpiExec: Implemented a new option (-m) to display full memory use statistics upon subsystem/program termination. (Valery Podrezov) ---------------------------------------- 09 November 2006. Summary of changes for version 20061109: 1) ACPI CA Core Subsystem: Optimized the Load ASL operator in the case where the source operand is an operation region. Simply map the operation region memory, instead of performing a bytewise read. (Region must be of type SystemMemory, see below.) Fixed the Load ASL operator for the case where the source operand is a region field. A buffer object is also allowed as the source operand. BZ 480 Fixed a problem where the Load ASL operator allowed the source operand to be an operation region of any type. It is now restricted to regions of type SystemMemory, as per the ACPI specification. BZ 481 Additional cleanup and optimizations for the new Table Manager code. AcpiEnable will now fail if all of the required ACPI tables are not loaded (FADT, FACS, DSDT). BZ 477 Added #pragma pack(8/4) to acobject.h to ensure that the structures in this header are always compiled as aligned. The ACPI_OPERAND_OBJECT has been manually optimized to be aligned and will not work if it is byte-packed. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 78.1K Code, 17.1K Data, 95.2K Total Debug Version: 155.4K Code, 63.1K Data, 218.5K Total Current Release: Non-Debug Version: 77.9K Code, 17.0K Data, 94.9K Total Debug Version: 155.2K Code, 63.1K Data, 218.3K Total 2) iASL Compiler/Disassembler and Tools: Fixed a problem where the presence of the _OSI predefined control method within complex expressions could cause an internal compiler error. AcpiExec: Implemented full region support for multiple address spaces. SpaceId is now part of the REGION object. BZ 429 ---------------------------------------- 11 October 2006. Summary of changes for version 20061011: 1) ACPI CA Core Subsystem: Completed an AML interpreter performance enhancement for control method execution. Previously a 2-pass parse/execution, control methods are now completely parsed and executed in a single pass. This improves overall interpreter performance by ~25%, reduces code size, and reduces CPU stack use. (Valery Podrezov + interpreter changes in version 20051202 that eliminated namespace loading during the pass one parse.) Implemented _CID support for PCI Root Bridge detection. If the _HID does not match the predefined PCI Root Bridge IDs, the _CID list (if present) is now obtained and also checked for an ID match. Implemented additional support for the PCI _ADR execution: upsearch until a device scope is found before executing _ADR. This allows PCI_Config operation regions to be declared locally within control methods underneath PCI device objects. Fixed a problem with a possible race condition between threads executing AcpiWalkNamespace and the AML interpreter. This condition was removed by modifying AcpiWalkNamespace to (by default) ignore all temporary namespace entries created during any concurrent control method execution. An additional namespace race condition is known to exist between AcpiWalkNamespace and the Load/Unload ASL operators and is still under investigation. Restructured the AML ParseLoop function, breaking it into several subfunctions in order to reduce CPU stack use and improve maintainability. (Mikhail Kouzmich) AcpiGetHandle: Fix for parameter validation to detect invalid combinations of prefix handle and pathname. BZ 478 Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 77.9K Code, 17.1K Data, 95.0K Total Debug Version: 154.6K Code, 63.0K Data, 217.6K Total Current Release: Non-Debug Version: 78.1K Code, 17.1K Data, 95.2K Total Debug Version: 155.4K Code, 63.1K Data, 218.5K Total 2) iASL Compiler/Disassembler and Tools: Ported the -g option (get local ACPI tables) to the new ACPICA Table Manager to restore original behavior. ---------------------------------------- 27 September 2006. Summary of changes for version 20060927: 1) ACPI CA Core Subsystem: Removed the "Flags" parameter from AcpiGetRegister and AcpiSetRegister. These functions now use a spinlock for mutual exclusion and the interrupt level indication flag is not needed. Fixed a problem with the Global Lock where the lock could appear to be obtained before it is actually obtained. The global lock semaphore was inadvertently created with one unit instead of zero units. (BZ 464) Fiodor Suietov. Fixed a possible memory leak and fault in AcpiExResolveObjectToValue during a read from a buffer or region field. (BZ 458) Fiodor Suietov. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 77.9K Code, 17.1K Data, 95.0K Total Debug Version: 154.7K Code, 63.0K Data, 217.7K Total Current Release: Non-Debug Version: 77.9K Code, 17.1K Data, 95.0K Total Debug Version: 154.6K Code, 63.0K Data, 217.6K Total 2) iASL Compiler/Disassembler and Tools: Fixed a compilation problem with the pre-defined Resource Descriptor field names where an "object does not exist" error could be incorrectly generated if the parent ResourceTemplate pathname places the template within a different namespace scope than the current scope. (BZ 7212) Fixed a problem where the compiler could hang after syntax errors detected in an ElseIf construct. (BZ 453) Fixed a problem with the AmlFilename parameter to the DefinitionBlock() operator. An incorrect output filename was produced when this parameter was a null string (""). Now, the original input filename is used as the AML output filename, with an ".aml" extension. Implemented a generic batch command mode for the AcpiExec utility (execute any AML debugger command) (Valery Podrezov). ---------------------------------------- 12 September 2006. Summary of changes for version 20060912: 1) ACPI CA Core Subsystem: Enhanced the implementation of the "serialized mode" of the interpreter (enabled via the AcpiGbl_AllMethodsSerialized flag.) When this mode is specified, instead of creating a serialization semaphore per control method, the interpreter lock is simply no longer released before a blocking operation during control method execution. This effectively makes the AML Interpreter single-threaded. The overhead of a semaphore per-method is eliminated. Fixed a regression where an error was no longer emitted if a control method attempts to create 2 objects of the same name. This once again returns AE_ALREADY_EXISTS. When this exception occurs, it invokes the mechanism that will dynamically serialize the control method to possible prevent future errors. (BZ 440) Integrated a fix for a problem with PCI Express HID detection in the PCI Config Space setup procedure. (BZ 7145) Moved all FADT-related functions to a new file, tbfadt.c. Eliminated the AcpiHwInitialize function - the FADT registers are now validated when the table is loaded. Added two new warnings during FADT verification - 1) if the FADT is larger than the largest known FADT version, and 2) if there is a mismatch between a 32-bit block address and the 64-bit X counterpart (when both are non- zero.) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 77.9K Code, 16.7K Data, 94.6K Total Debug Version: 154.9K Code, 62.6K Data, 217.5K Total Current Release: Non-Debug Version: 77.9K Code, 17.1K Data, 95.0K Total Debug Version: 154.7K Code, 63.0K Data, 217.7K Total 2) iASL Compiler/Disassembler and Tools: Fixed a problem with the implementation of the Switch() operator where the temporary variable was declared too close to the actual Switch, instead of at method level. This could cause a problem if the Switch() operator is within a while loop, causing an error on the second iteration. (BZ 460) Disassembler - fix for error emitted for unknown type for target of scope operator. Now, ignore it and continue. Disassembly of an FADT now verifies the input FADT and reports any errors found. Fix for proper disassembly of full-sized (ACPI 2.0) FADTs. Disassembly of raw data buffers with byte initialization data now prefixes each output line with the current buffer offset. Disassembly of ASF! table now includes all variable-length data fields at the end of some of the subtables. The disassembler now emits a comment if a buffer appears to be a ResourceTemplate, but cannot be disassembled as such because the EndTag does not appear at the very end of the buffer. AcpiExec - Added the "-t" command line option to enable the serialized mode of the AML interpreter. ---------------------------------------- 31 August 2006. Summary of changes for version 20060831: 1) ACPI CA Core Subsystem: Miscellaneous fixes for the Table Manager: - Correctly initialize internal common FADT for all 64-bit "X" fields - Fixed a couple table mapping issues during table load - Fixed a couple alignment issues for IA64 - Initialize input array to zero in AcpiInitializeTables - Additional parameter validation for AcpiGetTable, AcpiGetTableHeader, AcpiGetTableByIndex Change for GPE support: when a "wake" GPE is received, all wake GPEs are now immediately disabled to prevent the waking GPE from firing again and to prevent other wake GPEs from interrupting the wake process. Added the AcpiGpeCount global that tracks the number of processed GPEs, to be used for debugging systems with a large number of ACPI interrupts. Implemented support for the "DMAR" ACPI table (DMA Redirection Table) in both the ACPICA headers and the disassembler. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 77.8K Code, 16.5K Data, 94.3K Total Debug Version: 154.6K Code, 62.3K Data, 216.9K Total Current Release: Non-Debug Version: 77.9K Code, 16.7K Data, 94.6K Total Debug Version: 154.9K Code, 62.6K Data, 217.5K Total 2) iASL Compiler/Disassembler and Tools: Disassembler support for the DMAR ACPI table. ---------------------------------------- 23 August 2006. Summary of changes for version 20060823: 1) ACPI CA Core Subsystem: The Table Manager component has been completely redesigned and reimplemented. The new design is much simpler, and reduces the overall code and data size of the kernel-resident ACPICA by approximately 5%. Also, it is now possible to obtain the ACPI tables very early during kernel initialization, even before dynamic memory management is initialized. (Alexey Starikovskiy, Fiodor Suietov, Bob Moore) Obsolete ACPICA interfaces: - AcpiGetFirmwareTable: Use AcpiGetTable instead (works at early kernel init time). - AcpiLoadTable: Not needed. - AcpiUnloadTable: Not needed. New ACPICA interfaces: - AcpiInitializeTables: Must be called before the table manager can be used. - AcpiReallocateRootTable: Used to transfer the root table to dynamically allocated memory after it becomes available. - AcpiGetTableByIndex: Allows the host to easily enumerate all ACPI tables in the RSDT/XSDT. Other ACPICA changes: - AcpiGetTableHeader returns the actual mapped table header, not a copy. Use AcpiOsUnmapMemory to free this mapping. - AcpiGetTable returns the actual mapped table. The mapping is managed internally and must not be deleted by the caller. Use of this interface causes no additional dynamic memory allocation. - AcpiFindRootPointer: Support for physical addressing has been eliminated, it appeared to be unused. - The interface to AcpiOsMapMemory has changed to be consistent with the other allocation interfaces. - The interface to AcpiOsGetRootPointer has changed to eliminate unnecessary parameters. - ACPI_PHYSICAL_ADDRESS is now 32 bits on 32-bit platforms, 64 bits on 64- bit platforms. Was previously 64 bits on all platforms. - The interface to the ACPI Global Lock acquire/release macros have changed slightly since ACPICA no longer keeps a local copy of the FACS with a constructed pointer to the actual global lock. Porting to the new table manager: - AcpiInitializeTables: Must be called once, and can be called anytime during the OS initialization process. It allows the host to specify an area of memory to be used to store the internal version of the RSDT/XSDT (root table). This allows the host to access ACPI tables before memory management is initialized and running. - AcpiReallocateRootTable: Can be called after memory management is running to copy the root table to a dynamically allocated array, freeing up the scratch memory specified in the call to AcpiInitializeTables. - AcpiSubsystemInitialize: This existing interface is independent of the Table Manager, and does not have to be called before the Table Manager can be used, it only must be called before the rest of ACPICA can be used. - ACPI Tables: Some changes have been made to the names and structure of the actbl.h and actbl1.h header files and may require changes to existing code. For example, bitfields have been completely removed because of their lack of portability across C compilers. - Update interfaces to the Global Lock acquire/release macros if local versions are used. (see acwin.h) Obsolete files: tbconvrt.c, tbget.c, tbgetall.c, tbrsdt.c New files: tbfind.c Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.7K Code, 17.9K Data, 98.6K Total Debug Version: 161.0K Code, 65.1K Data, 226.1K Total Current Release: Non-Debug Version: 77.8K Code, 16.5K Data, 94.3K Total Debug Version: 154.6K Code, 62.3K Data, 216.9K Total 2) iASL Compiler/Disassembler and Tools: No changes for this release. ---------------------------------------- 21 July 2006. Summary of changes for version 20060721: 1) ACPI CA Core Subsystem: The full source code for the ASL test suite used to validate the iASL compiler and the ACPICA core subsystem is being released with the ACPICA source for the first time. The source is contained in a separate package and consists of over 1100 files that exercise all ASL/AML operators. The package should appear on the Intel/ACPI web site shortly. (Valery Podrezov, Fiodor Suietov) Completed a new design and implementation for support of the ACPI Global Lock. On the OS side, the global lock is now treated as a standard AML mutex. Previously, multiple OS threads could "acquire" the global lock simultaneously. However, this could cause the BIOS to be starved out of the lock - especially in cases such as the Embedded Controller driver where there is a tight coupling between the OS and the BIOS. Implemented an optimization for the ACPI Global Lock interrupt mechanism. The Global Lock interrupt handler no longer queues the execution of a separate thread to signal the global lock semaphore. Instead, the semaphore is signaled directly from the interrupt handler. Implemented support within the AML interpreter for package objects that contain a larger AML length (package list length) than the package element count. In this case, the length of the package is truncated to match the package element count. Some BIOS code apparently modifies the package length on the fly, and this change supports this behavior. Provides compatibility with the MS AML interpreter. (With assistance from Fiodor Suietov) Implemented a temporary fix for the BankValue parameter of a Bank Field to support all constant values, now including the Zero and One opcodes. Evaluation of this parameter must eventually be converted to a full TermArg evaluation. A not-implemented error is now returned (temporarily) for non- constant values for this parameter. Fixed problem reports (Fiodor Suietov) integrated: - Fix for premature object deletion after CopyObject on Operation Region (BZ 350) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.7K Code, 18.0K Data, 98.7K Total Debug Version: 160.9K Code, 65.1K Data, 226.0K Total Current Release: Non-Debug Version: 80.7K Code, 17.9K Data, 98.6K Total Debug Version: 161.0K Code, 65.1K Data, 226.1K Total 2) iASL Compiler/Disassembler and Tools: No changes for this release. ---------------------------------------- 07 July 2006. Summary of changes for version 20060707: 1) ACPI CA Core Subsystem: Added the ACPI_PACKED_POINTERS_NOT_SUPPORTED macro to support C compilers that do not allow the initialization of address pointers within packed structures - even though the hardware itself may support misaligned transfers. Some of the debug data structures are packed by default to minimize size. Added an error message for the case where AcpiOsGetThreadId() returns zero. A non-zero value is required by the core ACPICA code to ensure the proper operation of AML mutexes and recursive control methods. The DSDT is now the only ACPI table that determines whether the AML interpreter is in 32-bit or 64-bit mode. Not really a functional change, but the hooks for per-table 32/64 switching have been removed from the code. A clarification to the ACPI specification is forthcoming in ACPI 3.0B. Fixed a possible leak of an OwnerID in the error path of AcpiTbInitTableDescriptor (tbinstal.c), and migrated all table OwnerID deletion to a single place in AcpiTbUninstallTable to correct possible leaks when using the AcpiTbDeleteTablesByType interface (with assistance from Lance Ortiz.) Fixed a problem with Serialized control methods where the semaphore associated with the method could be over-signaled after multiple method invocations. Fixed two issues with the locking of the internal namespace data structure. Both the Unload() operator and AcpiUnloadTable interface now lock the namespace during the namespace deletion associated with the table unload (with assistance from Linn Crosetto.) Fixed problem reports (Valery Podrezov) integrated: - Eliminate unnecessary memory allocation for CreateXxxxField (BZ 5426) Fixed problem reports (Fiodor Suietov) integrated: - Incomplete cleanup branches in AcpiTbGetTableRsdt (BZ 369) - On Address Space handler deletion, needless deactivation call (BZ 374) - AcpiRemoveAddressSpaceHandler: validate Device handle parameter (BZ 375) - Possible memory leak, Notify sub-objects of Processor, Power, ThermalZone (BZ 376) - AcpiRemoveAddressSpaceHandler: validate Handler parameter (BZ 378) - Minimum Length of RSDT should be validated (BZ 379) - AcpiRemoveNotifyHandler: return AE_NOT_EXIST if Processor Obj has no Handler (BZ (380) - AcpiUnloadTable: return AE_NOT_EXIST if no table of specified type loaded (BZ 381) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.5K Code, 17.8K Data, 98.3K Total Debug Version: 160.8K Code, 64.8K Data, 225.6K Total Current Release: Non-Debug Version: 80.7K Code, 17.9K Data, 98.6K Total Debug Version: 161.0K Code, 65.1K Data, 226.1K Total 2) iASL Compiler/Disassembler and Tools: Fixed problem reports: Compiler segfault when ASL contains a long (>1024) String declaration (BZ 436) ---------------------------------------- 23 June 2006. Summary of changes for version 20060623: 1) ACPI CA Core Subsystem: Implemented a new ACPI_SPINLOCK type for the OSL lock interfaces. This allows the type to be customized to the host OS for improved efficiency (since a spinlock is usually a very small object.) Implemented support for "ignored" bits in the ACPI registers. According to the ACPI specification, these bits should be preserved when writing the registers via a read/modify/write cycle. There are 3 bits preserved in this manner: PM1_CONTROL[0] (SCI_EN), PM1_CONTROL[9], and PM1_STATUS[11]. Implemented the initial deployment of new OSL mutex interfaces. Since some host operating systems have separate mutex and semaphore objects, this feature was requested. The base code now uses mutexes (and the new mutex interfaces) wherever a binary semaphore was used previously. However, for the current release, the mutex interfaces are defined as macros to map them to the existing semaphore interfaces. Therefore, no OSL changes are required at this time. (See acpiosxf.h) Fixed several problems with the support for the control method SyncLevel parameter. The SyncLevel now works according to the ACPI specification and in concert with the Mutex SyncLevel parameter, since the current SyncLevel is a property of the executing thread. Mutual exclusion for control methods is now implemented with a mutex instead of a semaphore. Fixed three instances of the use of the C shift operator in the bitfield support code (exfldio.c) to avoid the use of a shift value larger than the target data width. The behavior of C compilers is undefined in this case and can cause unpredictable results, and therefore the case must be detected and avoided. (Fiodor Suietov) Added an info message whenever an SSDT or OEM table is loaded dynamically via the Load() or LoadTable() ASL operators. This should improve debugging capability since it will show exactly what tables have been loaded (beyond the tables present in the RSDT/XSDT.) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.0K Code, 17.6K Data, 97.6K Total Debug Version: 160.2K Code, 64.7K Data, 224.9K Total Current Release: Non-Debug Version: 80.5K Code, 17.8K Data, 98.3K Total Debug Version: 160.8K Code, 64.8K Data, 225.6K Total 2) iASL Compiler/Disassembler and Tools: No changes for this release. ---------------------------------------- 08 June 2006. Summary of changes for version 20060608: 1) ACPI CA Core Subsystem: Converted the locking mutex used for the ACPI hardware to a spinlock. This change should eliminate all problems caused by attempting to acquire a semaphore at interrupt level, and it means that all ACPICA external interfaces that directly access the ACPI hardware can be safely called from interrupt level. OSL code that implements the semaphore interfaces should be able to eliminate any workarounds for being called at interrupt level. Fixed a regression introduced in 20060526 where the ACPI device initialization could be prematurely aborted with an AE_NOT_FOUND if a device did not have an optional _INI method. Fixed an IndexField issue where a write to the Data Register should be limited in size to the AccessSize (width) of the IndexField itself. (BZ 433, Fiodor Suietov) Fixed problem reports (Valery Podrezov) integrated: - Allow store of ThermalZone objects to Debug object (BZ 5369/5370) Fixed problem reports (Fiodor Suietov) integrated: - AcpiGetTableHeader doesn't handle multiple instances correctly (BZ 364) Removed four global mutexes that were obsolete and were no longer being used. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.0K Code, 17.7K Data, 97.7K Total Debug Version: 160.3K Code, 64.9K Data, 225.2K Total Current Release: Non-Debug Version: 80.0K Code, 17.6K Data, 97.6K Total Debug Version: 160.2K Code, 64.7K Data, 224.9K Total 2) iASL Compiler/Disassembler and Tools: Fixed a fault when using -g option (get tables from registry) on Windows machines. Fixed problem reports integrated: - Generate error if CreateField NumBits parameter is zero. (BZ 405) - Fault if Offset/Length in Field unit is very large (BZ 432, Fiodor Suietov) - Global table revision override (-r) is ignored (BZ 413) ---------------------------------------- 26 May 2006. Summary of changes for version 20060526: 1) ACPI CA Core Subsystem: Restructured, flattened, and simplified the internal interfaces for namespace object evaluation - resulting in smaller code, less CPU stack use, and fewer interfaces. (With assistance from Mikhail Kouzmich) Fixed a problem with the CopyObject operator where the first parameter was not typed correctly for the parser, interpreter, compiler, and disassembler. Caused various errors and unexpected behavior. Fixed a problem where a ShiftLeft or ShiftRight of more than 64 bits produced incorrect results with some C compilers. Since the behavior of C compilers when the shift value is larger than the datatype width is apparently not well defined, the interpreter now detects this condition and simply returns zero as expected in all such cases. (BZ 395) Fixed problem reports (Valery Podrezov) integrated: - Update String-to-Integer conversion to match ACPI 3.0A spec (BZ 5329) - Allow interpreter to handle nested method declarations (BZ 5361) Fixed problem reports (Fiodor Suietov) integrated: - AcpiTerminate doesn't free debug memory allocation list objects (BZ 355) - After Core Subsystem shutdown, AcpiSubsystemStatus returns AE_OK (BZ 356) - AcpiOsUnmapMemory for RSDP can be invoked inconsistently (BZ 357) - Resource Manager should return AE_TYPE for non-device objects (BZ 358) - Incomplete cleanup branch in AcpiNsEvaluateRelative (BZ 359) - Use AcpiOsFree instead of ACPI_FREE in AcpiRsSetSrsMethodData (BZ 360) - Incomplete cleanup branch in AcpiPsParseAml (BZ 361) - Incomplete cleanup branch in AcpiDsDeleteWalkState (BZ 362) - AcpiGetTableHeader returns AE_NO_ACPI_TABLES until DSDT is loaded (BZ 365) - Status of the Global Initialization Handler call not used (BZ 366) - Incorrect object parameter to Global Initialization Handler (BZ 367) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.8K Code, 17.7K Data, 97.5K Total Debug Version: 160.5K Code, 65.1K Data, 225.6K Total Current Release: Non-Debug Version: 80.0K Code, 17.7K Data, 97.7K Total Debug Version: 160.3K Code, 64.9K Data, 225.2K Total 2) iASL Compiler/Disassembler and Tools: Modified the parser to allow the names IO, DMA, and IRQ to be used as namespace identifiers with no collision with existing resource descriptor macro names. This provides compatibility with other ASL compilers and is most useful for disassembly/recompilation of existing tables without parse errors. (With assistance from Thomas Renninger) Disassembler: fixed an incorrect disassembly problem with the DataTableRegion and CopyObject operators. Fixed a possible fault during disassembly of some Alias operators. ---------------------------------------- 12 May 2006. Summary of changes for version 20060512: 1) ACPI CA Core Subsystem: Replaced the AcpiOsQueueForExecution interface with a new interface named AcpiOsExecute. The major difference is that the new interface does not have a Priority parameter, this appeared to be useless and has been replaced by a Type parameter. The Type tells the host what type of execution is being requested, such as global lock handler, notify handler, GPE handler, etc. This allows the host to queue and execute the request as appropriate for the request type, possibly using different work queues and different priorities for the various request types. This enables fixes for multithreading deadlock problems such as BZ #5534, and will require changes to all existing OS interface layers. (Alexey Starikovskiy and Bob Moore) Fixed a possible memory leak associated with the support for the so- called "implicit return" ACPI extension. Reported by FreeBSD, BZ #6514. (Fiodor Suietov) Fixed a problem with the Load() operator where a table load from an operation region could overwrite an internal table buffer by up to 7 bytes and cause alignment faults on IPF systems. (With assistance from Luming Yu) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 79.7K Code, 17.7K Data, 97.4K Total Debug Version: 160.1K Code, 65.2K Data, 225.3K Total Current Release: Non-Debug Version: 79.8K Code, 17.7K Data, 97.5K Total Debug Version: 160.5K Code, 65.1K Data, 225.6K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Implemented support to cross reference the internal namespace and automatically generate ASL External() statements for symbols not defined within the current table being disassembled. This will simplify the disassembly and recompilation of interdependent tables such as SSDTs since these statements will no longer have to be added manually. Disassembler: Implemented experimental support to automatically detect invocations of external control methods and generate appropriate External() statements. This is problematic because the AML cannot be correctly parsed until the number of arguments for each control method is known. Currently, standalone method invocations and invocations as the source operand of a Store() statement are supported. Disassembler: Implemented support for the ASL pseudo-operators LNotEqual, LLessEqual, and LGreaterEqual. Previously disassembled as LNot(LEqual()), LNot(LGreater()), and LNot(LLess()), this makes the disassembled ASL code more readable and likely closer to the original ASL source. ---------------------------------------- 21 April 2006. Summary of changes for version 20060421: 1) ACPI CA Core Subsystem: Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree. (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, AcpiOsValidateAddress. This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) See oswinxf or osunixxf for an example implementation. Defined and deployed a new OSL interface, AcpiOsValidateInterface. This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) See oswinxf or osunixxf for an example implementation. Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 81.1K Code, 17.7K Data, 98.8K Total Debug Version: 158.9K Code, 64.9K Data, 223.8K Total Current Release: Non-Debug Version: 79.7K Code, 17.7K Data, 97.4K Total Debug Version: 160.1K Code, 65.2K Data, 225.3K Total 2) iASL Compiler/Disassembler and Tools: Implemented 3 new warnings for iASL, and implemented multiple warning levels (w2 flag). 1) Ignored timeouts: If the TimeoutValue parameter to Wait or Acquire is not WAIT_FOREVER (0xFFFF) and the code does not examine the return value to check for the possible timeout, a warning is issued. 2) Useless operators: If an ASL operator does not specify an optional target operand and it also does not use the function return value from the operator, a warning is issued since the operator effectively does nothing. 3) Unreferenced objects: If a namespace object is created, but never referenced, a warning is issued. This is a warning level 2 since there are cases where this is ok, such as when a secondary table is loaded that uses the unreferenced objects. Even so, care is taken to only flag objects that don't look like they will ever be used. For example, the reserved methods (starting with an underscore) are usually not referenced because it is expected that the OS will invoke them. ---------------------------------------- 31 March 2006. Summary of changes for version 20060331: 1) ACPI CA Core Subsystem: Implemented header file support for the following additional ACPI tables: ASF!, BOOT, CPEP, DBGP, MCFG, SPCR, SPMI, TCPA, and WDRT. With this support, all current and known ACPI tables are now defined in the ACPICA headers and are available for use by device drivers and other software. Implemented support to allow tables that contain ACPI names with invalid characters to be loaded. Previously, this would cause the table load to fail, but since there are several known cases of such tables on existing machines, this change was made to enable ACPI support for them. Also, this matches the behavior of the Microsoft ACPI implementation. Fixed a couple regressions introduced during the memory optimization in the 20060317 release. The namespace node definition required additional reorganization and an internal datatype that had been changed to 8-bit was restored to 32-bit. (Valery Podrezov) Fixed a problem where a null pointer passed to AcpiUtDeleteGenericState could be passed through to AcpiOsReleaseObject which is unexpected. Such null pointers are now trapped and ignored, matching the behavior of the previous implementation before the deployment of AcpiOsReleaseObject. (Valery Podrezov, Fiodor Suietov) Fixed a memory mapping leak during the deletion of a SystemMemory operation region where a cached memory mapping was not deleted. This became a noticeable problem for operation regions that are defined within frequently used control methods. (Dana Meyers) Reorganized the ACPI table header files into two main files: one for the ACPI tables consumed by the ACPICA core, and another for the miscellaneous ACPI tables that are consumed by the drivers and other software. The various FADT definitions were merged into one common section and three different tables (ACPI 1.0, 1.0+, and 2.0) Example Code and Data Size: These are the sizes for the OS-independent acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Previous Release: Non-Debug Version: 80.9K Code, 17.7K Data, 98.6K Total Debug Version: 158.7K Code, 64.8K Data, 223.5K Total Current Release: Non-Debug Version: 81.1K Code, 17.7K Data, 98.8K Total Debug Version: 158.9K Code, 64.9K Data, 223.8K Total 2) iASL Compiler/Disassembler and Tools: Disassembler: Implemented support to decode and format all non-AML ACPI tables (tables other than DSDTs and SSDTs.) This includes the new tables added to the ACPICA headers, therefore all current and known ACPI tables are supported. Disassembler: The change to allow ACPI names with invalid characters also enables the disassembly of such tables. Invalid characters within names are changed to '*' to make the name printable; the iASL compiler will still generate an error for such names, however, since this is an invalid ACPI character. Implemented an option for AcpiXtract (-a) to extract all tables found in the input file. The default invocation extracts only the DSDTs and SSDTs. Fixed a couple of gcc generation issues for iASL and AcpiExec and added a makefile for the AcpiXtract utility. ---------------------------------------- 17 March 2006. Summary of changes for version 20060317: 1) ACPI CA Core Subsystem: Implemented the use of a cache object for all internal namespace nodes. Since there are about 1000 static nodes in a typical system, this will decrease memory use for cache implementations that minimize per- allocation overhead (such as a slab allocator.) Removed the reference count mechanism for internal namespace nodes, since it was deemed unnecessary. This reduces the size of each namespace node by about 5%-10% on all platforms. Nodes are now 20 bytes for the 32-bit case, and 32 bytes for the 64-bit case. Optimized several internal data structures to reduce object size on 64- bit platforms by packing data within the 64-bit alignment. This includes the frequently used ACPI_OPERAND_OBJECT, of which there can be ~1000 static instances corresponding to the namespace objects. Added two new strings for the predefined _OSI method: "Windows 2001.1 SP1" and "Windows 2006". Split the allocation tracking mechanism out to a separate file, from utalloc.c to uttrack.c. This mechanism appears to be only useful for application-level code. Kernels may wish to not include uttrack.c in distributions. Removed all remnants of the obsolete ACPI_REPORT_* macros and the associated code. (These macros have been replaced by the ACPI_ERROR and ACPI_WARNING macros.) Code and Data Size: These are the sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 81.1K Code, 17.8K Data, 98.9K Total Debug Version: 161.6K Code, 65.7K Data, 227.3K Total Current Release: Non-Debug Version: 80.9K Code, 17.7K Data, 98.6K Total Debug Version: 158.7K Code, 64.8K Data, 223.5K Total 2) iASL Compiler/Disassembler and Tools: Implemented an ANSI C version of the acpixtract utility. This version will automatically extract the DSDT and all SSDTs from the input acpidump text file and dump the binary output to separate files. It can also display a summary of the input file including the headers for each table found and will extract any single ACPI table, with any signature. (See source/tools/acpixtract) ---------------------------------------- 10 March 2006. Summary of changes for version 20060310: 1) ACPI CA Core Subsystem: Tagged all external interfaces to the subsystem with the new ACPI_EXPORT_SYMBOL macro. This macro can be defined as necessary to assist kernel integration. For Linux, the macro resolves to the EXPORT_SYMBOL macro. The default definition is NULL. Added the ACPI_THREAD_ID type for the return value from AcpiOsGetThreadId. This allows the host to define this as necessary to simplify kernel integration. The default definition is ACPI_NATIVE_UINT. Fixed two interpreter problems related to error processing, the deletion of objects, and placing invalid pointers onto the internal operator result stack. BZ 6028, 6151 (Valery Podrezov) Increased the reference count threshold where a warning is emitted for large reference counts in order to eliminate unnecessary warnings on systems with large namespaces (especially 64-bit.) Increased the value from 0x400 to 0x800. Due to universal disagreement as to the meaning of the 'c' in the calloc() function, the ACPI_MEM_CALLOCATE macro has been renamed to ACPI_ALLOCATE_ZEROED so that the purpose of the interface is 'clear'. ACPI_MEM_ALLOCATE and ACPI_MEM_FREE are renamed to ACPI_ALLOCATE and ACPI_FREE. Code and Data Size: These are the sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 81.0K Code, 17.8K Data, 98.8K Total Debug Version: 161.4K Code, 65.7K Data, 227.1K Total Current Release: Non-Debug Version: 81.1K Code, 17.8K Data, 98.9K Total Debug Version: 161.6K Code, 65.7K Data, 227.3K Total 2) iASL Compiler/Disassembler: Disassembler: implemented support for symbolic resource descriptor references. If a CreateXxxxField operator references a fixed offset within a resource descriptor, a name is assigned to the descriptor and the offset is translated to the appropriate resource tag and pathname. The addition of this support brings the disassembled code very close to the original ASL source code and helps eliminate run-time errors when the disassembled code is modified (and recompiled) in such a way as to invalidate the original fixed offsets. Implemented support for a Descriptor Name as the last parameter to the ASL Register() macro. This parameter was inadvertently left out of the ACPI specification, and will be added for ACPI 3.0b. Fixed a problem where the use of the "_OSI" string (versus the full path "\_OSI") caused an internal compiler error. ("No back ptr to op") Fixed a problem with the error message that occurs when an invalid string is used for a _HID object (such as one with an embedded asterisk: "*PNP010A".) The correct message is now displayed. ---------------------------------------- 17 February 2006. Summary of changes for version 20060217: 1) ACPI CA Core Subsystem: Implemented a change to the IndexField support to match the behavior of the Microsoft AML interpreter. The value written to the Index register is now a byte offset, no longer an index based upon the width of the Data register. This should fix IndexField problems seen on some machines where the Data register is not exactly one byte wide. The ACPI specification will be clarified on this point. Fixed a problem where several resource descriptor types could overrun the internal descriptor buffer due to size miscalculation: VendorShort, VendorLong, and Interrupt. This was noticed on IA64 machines, but could affect all platforms. Fixed a problem where individual resource descriptors were misaligned within the internal buffer, causing alignment faults on IA64 platforms. Code and Data Size: These are the sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. The values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 81.1K Code, 17.8K Data, 98.9K Total Debug Version: 161.3K Code, 65.6K Data, 226.9K Total Current Release: Non-Debug Version: 81.0K Code, 17.8K Data, 98.8K Total Debug Version: 161.4K Code, 65.7K Data, 227.1K Total 2) iASL Compiler/Disassembler: Implemented support for new reserved names: _WDG and _WED are Microsoft extensions for Windows Instrumentation Management, _TDL is a new ACPI- defined method (Throttling Depth Limit.) Fixed a problem where a zero-length VendorShort or VendorLong resource descriptor was incorrectly emitted as a descriptor of length one. ---------------------------------------- 10 February 2006. Summary of changes for version 20060210: 1) ACPI CA Core Subsystem: Removed a couple of extraneous ACPI_ERROR messages that appeared during normal execution. These became apparent after the conversion from ACPI_DEBUG_PRINT. Fixed a problem where the CreateField operator could hang if the BitIndex or NumBits parameter referred to a named object. (Valery Podrezov, BZ 5359) Fixed a problem where a DeRefOf operation on a buffer object incorrectly failed with an exception. This also fixes a couple of related RefOf and DeRefOf issues. (Valery Podrezov, BZ 5360/5392/5387) Fixed a problem where the AE_BUFFER_LIMIT exception was returned instead of AE_STRING_LIMIT on an out-of-bounds Index() operation. (Valery Podrezov, BZ 5480) Implemented a memory cleanup at the end of the execution of each iteration of an AML While() loop, preventing the accumulation of outstanding objects. (Valery Podrezov, BZ 5427) Eliminated a chunk of duplicate code in the object resolution code. (Valery Podrezov, BZ 5336) Fixed several warnings during the 64-bit code generation. The AcpiSrc source code conversion tool now inserts one line of whitespace after an if() statement that is followed immediately by a comment, improving readability of the Linux code. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 81.0K Code, 17.9K Data, 98.9K Total Debug Version: 161.3K Code, 65.7K Data, 227.0K Total Current Release: Non-Debug Version: 81.1K Code, 17.8K Data, 98.9K Total Debug Version: 161.3K Code, 65.6K Data, 226.9K Total 2) iASL Compiler/Disassembler: Fixed a problem with the disassembly of a BankField operator with a complex expression for the BankValue parameter. ---------------------------------------- 27 January 2006. Summary of changes for version 20060127: 1) ACPI CA Core Subsystem: Implemented support in the Resource Manager to allow unresolved namestring references within resource package objects for the _PRT method. This support is in addition to the previously implemented unresolved reference support within the AML parser. If the interpreter slack mode is enabled, these unresolved references will be passed through to the caller as a NULL package entry. Implemented and deployed new macros and functions for error and warning messages across the subsystem. These macros are simpler and generate less code than their predecessors. The new macros ACPI_ERROR, ACPI_EXCEPTION, ACPI_WARNING, and ACPI_INFO replace the ACPI_REPORT_* macros. The older macros remain defined to allow ACPI drivers time to migrate to the new macros. Implemented the ACPI_CPU_FLAGS type to simplify host OS integration of the Acquire/Release Lock OSL interfaces. Fixed a problem where Alias ASL operators are sometimes not correctly resolved, in both the interpreter and the iASL compiler. Fixed several problems with the implementation of the ConcatenateResTemplate ASL operator. As per the ACPI specification, zero length buffers are now treated as a single EndTag. One-length buffers always cause a fatal exception. Non-zero length buffers that do not end with a full 2-byte EndTag cause a fatal exception. Fixed a possible structure overwrite in the AcpiGetObjectInfo external interface. (With assistance from Thomas Renninger) Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 83.1K Code, 18.4K Data, 101.5K Total Debug Version: 163.2K Code, 66.2K Data, 229.4K Total Current Release: Non-Debug Version: 81.0K Code, 17.9K Data, 98.9K Total Debug Version: 161.3K Code, 65.7K Data, 227.0K Total 2) iASL Compiler/Disassembler: Fixed an internal error that was generated for any forward references to ASL Alias objects. ---------------------------------------- 13 January 2006. Summary of changes for version 20060113: 1) ACPI CA Core Subsystem: Added 2006 copyright to all module headers and signons. This affects virtually every file in the ACPICA core subsystem, iASL compiler, and the utilities. Enhanced the ACPICA error reporting in order to simplify user migration to the non-debug version of ACPICA. Replaced all instances of the ACPI_DEBUG_PRINT macro invoked at the ACPI_DB_ERROR and ACPI_DB_WARN debug levels with the ACPI_REPORT_ERROR and ACPI_REPORT_WARNING macros, respectively. This preserves all error and warning messages in the non- debug version of the ACPICA code (this has been referred to as the "debug lite" option.) Over 200 cases were converted to create a total of over 380 error/warning messages across the ACPICA code. This increases the code and data size of the default non-debug version of the code somewhat (about 13K), but all error/warning reporting may be disabled if desired (and code eliminated) by specifying the ACPI_NO_ERROR_MESSAGES compile-time configuration option. The size of the debug version of ACPICA remains about the same. Fixed a memory leak within the AML Debugger "Set" command. One object was not properly deleted for every successful invocation of the command. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.6K Code, 12.3K Data, 88.9K Total Debug Version: 163.7K Code, 67.5K Data, 231.2K Total Current Release: Non-Debug Version: 83.1K Code, 18.4K Data, 101.5K Total Debug Version: 163.2K Code, 66.2K Data, 229.4K Total 2) iASL Compiler/Disassembler: The compiler now officially supports the ACPI 3.0a specification that was released on December 30, 2005. (Specification is available at www.acpi.info) ---------------------------------------- 16 December 2005. Summary of changes for version 20051216: 1) ACPI CA Core Subsystem: Implemented optional support to allow unresolved names within ASL Package objects. A null object is inserted in the package when a named reference cannot be located in the current namespace. Enabled via the interpreter slack flag, this should eliminate AE_NOT_FOUND exceptions seen on machines that contain such code. Implemented an optimization to the initialization sequence that can improve boot time. During ACPI device initialization, the _STA method is now run if and only if the _INI method exists. The _STA method is used to determine if the device is present; An _INI can only be run if _STA returns present, but it is a waste of time to run the _STA method if the _INI does not exist. (Prototype and assistance from Dong Wei) Implemented use of the C99 uintptr_t for the pointer casting macros if it is available in the current compiler. Otherwise, the default (void *) cast is used as before. Fixed some possible memory leaks found within the execution path of the Break, Continue, If, and CreateField operators. (Valery Podrezov) Fixed a problem introduced in the 20051202 release where an exception is generated during method execution if a control method attempts to declare another method. Moved resource descriptor string constants that are used by both the AML disassembler and AML debugger to the common utilities directory so that these components are independent. Implemented support in the AcpiExec utility (-e switch) to globally ignore exceptions during control method execution (method is not aborted.) Added the rsinfo.c source file to the AcpiExec makefile for Linux/Unix generation. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.3K Code, 12.3K Data, 88.6K Total Debug Version: 163.2K Code, 67.4K Data, 230.6K Total Current Release: Non-Debug Version: 76.6K Code, 12.3K Data, 88.9K Total Debug Version: 163.7K Code, 67.5K Data, 231.2K Total 2) iASL Compiler/Disassembler: Fixed a problem where a CPU stack overflow fault could occur if a recursive method call was made from within a Return statement. ---------------------------------------- 02 December 2005. Summary of changes for version 20051202: 1) ACPI CA Core Subsystem: Modified the parsing of control methods to no longer create namespace objects during the first pass of the parse. Objects are now created only during the execute phase, at the moment the namespace creation operator is encountered in the AML (Name, OperationRegion, CreateByteField, etc.) This should eliminate ALREADY_EXISTS exceptions seen on some machines where reentrant control methods are protected by an AML mutex. The mutex will now correctly block multiple threads from attempting to create the same object more than once. Increased the number of available Owner Ids for namespace object tracking from 32 to 255. This should eliminate the OWNER_ID_LIMIT exceptions seen on some machines with a large number of ACPI tables (either static or dynamic). Fixed a problem with the AcpiExec utility where a fault could occur when the -b switch (batch mode) is used. Enhanced the namespace dump routine to output the owner ID for each namespace object. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.3K Code, 12.3K Data, 88.6K Total Debug Version: 163.0K Code, 67.4K Data, 230.4K Total Current Release: Non-Debug Version: 76.3K Code, 12.3K Data, 88.6K Total Debug Version: 163.2K Code, 67.4K Data, 230.6K Total 2) iASL Compiler/Disassembler: Fixed a parse error during compilation of certain Switch/Case constructs. To simplify the parse, the grammar now allows for multiple Default statements and this error is now detected and flagged during the analysis phase. Disassembler: The disassembly now includes the contents of the original table header within a comment at the start of the file. This includes the name and version of the original ASL compiler. ---------------------------------------- 17 November 2005. Summary of changes for version 20051117: 1) ACPI CA Core Subsystem: Fixed a problem in the AML parser where the method thread count could be decremented below zero if any errors occurred during the method parse phase. This should eliminate AE_AML_METHOD_LIMIT exceptions seen on some machines. This also fixed a related regression with the mechanism that detects and corrects methods that cannot properly handle reentrancy (related to the deployment of the new OwnerId mechanism.) Eliminated the pre-parsing of control methods (to detect errors) during table load. Related to the problem above, this was causing unwind issues if any errors occurred during the parse, and it seemed to be overkill. A table load should not be aborted if there are problems with any single control method, thus rendering this feature rather pointless. Fixed a problem with the new table-driven resource manager where an internal buffer overflow could occur for small resource templates. Implemented a new external interface, AcpiGetVendorResource. This interface will find and return a vendor-defined resource descriptor within a _CRS or _PRS method via an ACPI 3.0 UUID match. With assistance from Bjorn Helgaas. Removed the length limit (200) on string objects as per the upcoming ACPI 3.0A specification. This affects the following areas of the interpreter: 1) any implicit conversion of a Buffer to a String, 2) a String object result of the ASL Concatentate operator, 3) the String object result of the ASL ToString operator. Fixed a problem in the Windows OS interface layer (OSL) where a WAIT_FOREVER on a semaphore object would incorrectly timeout. This allows the multithreading features of the AcpiExec utility to work properly under Windows. Updated the Linux makefiles for the iASL compiler and AcpiExec to include the recently added file named "utresrc.c". Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.2K Code, 12.3K Data, 88.5K Total Debug Version: 163.0K Code, 67.4K Data, 230.4K Total Current Release: Non-Debug Version: 76.3K Code, 12.3K Data, 88.6K Total Debug Version: 163.0K Code, 67.4K Data, 230.4K Total 2) iASL Compiler/Disassembler: Removed the limit (200) on string objects as per the upcoming ACPI 3.0A specification. For the iASL compiler, this means that string literals within the source ASL can be of any length. Enhanced the listing output to dump the AML code for resource descriptors immediately after the ASL code for each descriptor, instead of in a block at the end of the entire resource template. Enhanced the compiler debug output to dump the entire original parse tree constructed during the parse phase, before any transforms are applied to the tree. The transformed tree is dumped also. ---------------------------------------- 02 November 2005. Summary of changes for version 20051102: 1) ACPI CA Core Subsystem: Modified the subsystem initialization sequence to improve GPE support. The GPE initialization has been split into two parts in order to defer execution of the _PRW methods (Power Resources for Wake) until after the hardware is fully initialized and the SCI handler is installed. This allows the _PRW methods to access fields protected by the Global Lock. This will fix systems where a NO_GLOBAL_LOCK exception has been seen during initialization. Converted the ACPI internal object disassemble and display code within the AML debugger to fully table-driven operation, reducing code size and increasing maintainability. Fixed a regression with the ConcatenateResTemplate() ASL operator introduced in the 20051021 release. Implemented support for "local" internal ACPI object types within the debugger "Object" command and the AcpiWalkNamespace external interfaces. These local types include RegionFields, BankFields, IndexFields, Alias, and reference objects. Moved common AML resource handling code into a new file, "utresrc.c". This code is shared by both the Resource Manager and the AML Debugger. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.1K Code, 12.2K Data, 88.3K Total Debug Version: 163.5K Code, 67.0K Data, 230.5K Total Current Release: Non-Debug Version: 76.2K Code, 12.3K Data, 88.5K Total Debug Version: 163.0K Code, 67.4K Data, 230.4K Total 2) iASL Compiler/Disassembler: Fixed a problem with very large initializer lists (more than 4000 elements) for both Buffer and Package objects where the parse stack could overflow. Enhanced the pre-compile source code scan for non-ASCII characters to ignore characters within comment fields. The scan is now always performed and is no longer optional, detecting invalid characters within a source file immediately rather than during the parse phase or later. Enhanced the ASL grammar definition to force early reductions on all list- style grammar elements so that the overall parse stack usage is greatly reduced. This should improve performance and reduce the possibility of parse stack overflow. Eliminated all reduce/reduce conflicts in the iASL parser generation. Also, with the addition of a %expected statement, the compiler generates from source with no warnings. Fixed a possible segment fault in the disassembler if the input filename does not contain a "dot" extension (Thomas Renninger). ---------------------------------------- 21 October 2005. Summary of changes for version 20051021: 1) ACPI CA Core Subsystem: Implemented support for the EM64T and other x86-64 processors. This essentially entails recognizing that these processors support non-aligned memory transfers. Previously, all 64-bit processors were assumed to lack hardware support for non-aligned transfers. Completed conversion of the Resource Manager to nearly full table-driven operation. Specifically, the resource conversion code (convert AML to internal format and the reverse) and the debug code to dump internal resource descriptors are fully table-driven, reducing code and data size and improving maintainability. The OSL interfaces for Acquire and Release Lock now use a 64-bit flag word on 64-bit processors instead of a fixed 32-bit word. (With assistance from Alexey Starikovskiy) Implemented support within the resource conversion code for the Type- Specific byte within the various ACPI 3.0 *WordSpace macros. Fixed some issues within the resource conversion code for the type- specific flags for both Memory and I/O address resource descriptors. For Memory, implemented support for the MTP and TTP flags. For I/O, split the TRS and TTP flags into two separate fields. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.1K Code, 12.1K Data, 89.2K Total Debug Version: 168.0K Code, 68.3K Data, 236.3K Total Current Release: Non-Debug Version: 76.1K Code, 12.2K Data, 88.3K Total Debug Version: 163.5K Code, 67.0K Data, 230.5K Total 2) iASL Compiler/Disassembler: Relaxed a compiler restriction that disallowed a ResourceIndex byte if the corresponding ResourceSource string was not also present in a resource descriptor declaration. This restriction caused problems with existing AML/ASL code that includes the Index byte without the string. When such AML was disassembled, it could not be compiled without modification. Further, the modified code created a resource template with a different size than the original, breaking code that used fixed offsets into the resource template buffer. Removed a recent feature of the disassembler to ignore a lone ResourceIndex byte. This byte is now emitted if present so that the exact AML can be reproduced when the disassembled code is recompiled. Improved comments and text alignment for the resource descriptor code emitted by the disassembler. Implemented disassembler support for the ACPI 3.0 AccessSize field within a Register() resource descriptor. ---------------------------------------- 30 September 2005. Summary of changes for version 20050930: 1) ACPI CA Core Subsystem: Completed a major overhaul of the Resource Manager code - specifically, optimizations in the area of the AML/internal resource conversion code. The code has been optimized to simplify and eliminate duplicated code, CPU stack use has been decreased by optimizing function parameters and local variables, and naming conventions across the manager have been standardized for clarity and ease of maintenance (this includes function, parameter, variable, and struct/typedef names.) The update may force changes in some driver code, depending on how resources are handled by the host OS. All Resource Manager dispatch and information tables have been moved to a single location for clarity and ease of maintenance. One new file was created, named "rsinfo.c". The ACPI return macros (return_ACPI_STATUS, etc.) have been modified to guarantee that the argument is not evaluated twice, making them less prone to macro side-effects. However, since there exists the possibility of additional stack use if a particular compiler cannot optimize them (such as in the debug generation case), the original macros are optionally available. Note that some invocations of the return_VALUE macro may now cause size mismatch warnings; the return_UINT8 and return_UINT32 macros are provided to eliminate these. (From Randy Dunlap) Implemented a new mechanism to enable debug tracing for individual control methods. A new external interface, AcpiDebugTrace, is provided to enable this mechanism. The intent is to allow the host OS to easily enable and disable tracing for problematic control methods. This interface can be easily exposed to a user or debugger interface if desired. See the file psxface.c for details. AcpiUtCallocate will now return a valid pointer if a length of zero is specified - a length of one is used and a warning is issued. This matches the behavior of AcpiUtAllocate. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.5K Code, 12.0K Data, 89.5K Total Debug Version: 168.1K Code, 68.4K Data, 236.5K Total Current Release: Non-Debug Version: 77.1K Code, 12.1K Data, 89.2K Total Debug Version: 168.0K Code, 68.3K Data, 236.3K Total 2) iASL Compiler/Disassembler: A remark is issued if the effective compile-time length of a package or buffer is zero. Previously, this was a warning. ---------------------------------------- 16 September 2005. Summary of changes for version 20050916: 1) ACPI CA Core Subsystem: Fixed a problem within the Resource Manager where support for the Generic Register descriptor was not fully implemented. This descriptor is now fully recognized, parsed, disassembled, and displayed. Completely restructured the Resource Manager code to utilize table-driven dispatch and lookup, eliminating many of the large switch() statements. This reduces overall subsystem code size and code complexity. Affects the resource parsing and construction, disassembly, and debug dump output. Cleaned up and restructured the debug dump output for all resource descriptors. Improved readability of the output and reduced code size. Fixed a problem where changes to internal data structures caused the optional ACPI_MUTEX_DEBUG code to fail compilation if specified. Code and Data Size: The current and previous library sizes for the core subsystem are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 32-bit compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.4K Code, 11.8K Data, 90.2K Total Debug Version: 169.6K Code, 69.9K Data, 239.5K Total Current Release: Non-Debug Version: 77.5K Code, 12.0K Data, 89.5K Total Debug Version: 168.1K Code, 68.4K Data, 236.5K Total 2) iASL Compiler/Disassembler: Updated the disassembler to automatically insert an EndDependentFn() macro into the ASL stream if this macro is missing in the original AML code, simplifying compilation of the resulting ASL module. Fixed a problem in the disassembler where a disassembled ResourceSource string (within a large resource descriptor) was not surrounded by quotes and not followed by a comma, causing errors when the resulting ASL module was compiled. Also, escape sequences within a ResourceSource string are now handled correctly (especially "\\") ---------------------------------------- 02 September 2005. Summary of changes for version 20050902: 1) ACPI CA Core Subsystem: Fixed a problem with the internal Owner ID allocation and deallocation mechanisms for control method execution and recursive method invocation. This should eliminate the OWNER_ID_LIMIT exceptions and "Invalid OwnerId" messages seen on some systems. Recursive method invocation depth is currently limited to 255. (Alexey Starikovskiy) Completely eliminated all vestiges of support for the "module-level executable code" until this support is fully implemented and debugged. This should eliminate the NO_RETURN_VALUE exceptions seen during table load on some systems that invoke this support. Fixed a problem within the resource manager code where the transaction flags for a 64-bit address descriptor were handled incorrectly in the type- specific flag byte. Consolidated duplicate code within the address descriptor resource manager code, reducing overall subsystem code size. Fixed a fault when using the AML debugger "disassemble" command to disassemble individual control methods. Removed references to the "release_current" directory within the Unix release package. Code and Data Size: The current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler. These values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.6K Code, 11.7K Data, 90.3K Total Debug Version: 170.0K Code, 69.9K Data, 239.9K Total Current Release: Non-Debug Version: 78.4K Code, 11.8K Data, 90.2K Total Debug Version: 169.6K Code, 69.9K Data, 239.5K Total 2) iASL Compiler/Disassembler: Implemented an error check for illegal duplicate values in the interrupt and dma lists for the following ASL macros: Dma(), Irq(), IrqNoFlags(), and Interrupt(). Implemented error checking for the Irq() and IrqNoFlags() macros to detect too many values in the interrupt list (16 max) and invalid values in the list (range 0 - 15) The maximum length string literal within an ASL file is now restricted to 200 characters as per the ACPI specification. Fixed a fault when using the -ln option (generate namespace listing). Implemented an error check to determine if a DescriptorName within a resource descriptor has already been used within the current scope. ---------------------------------------- 15 August 2005. Summary of changes for version 20050815: 1) ACPI CA Core Subsystem: Implemented a full bytewise compare to determine if a table load request is attempting to load a duplicate table. The compare is performed if the table signatures and table lengths match. This will allow different tables with the same OEM Table ID and revision to be loaded - probably against the ACPI specification, but discovered in the field nonetheless. Added the changes.txt logfile to each of the zipped release packages. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.6K Code, 11.7K Data, 90.3K Total Debug Version: 167.0K Code, 69.9K Data, 236.9K Total Current Release: Non-Debug Version: 78.6K Code, 11.7K Data, 90.3K Total Debug Version: 170.0K Code, 69.9K Data, 239.9K Total 2) iASL Compiler/Disassembler: Fixed a problem where incorrect AML code could be generated for Package objects if optimization is disabled (via the -oa switch). Fixed a problem with where incorrect AML code is generated for variable- length packages when the package length is not specified and the number of initializer values is greater than 255. ---------------------------------------- 29 July 2005. Summary of changes for version 20050729: 1) ACPI CA Core Subsystem: Implemented support to ignore an attempt to install/load a particular ACPI table more than once. Apparently there exists BIOS code that repeatedly attempts to load the same SSDT upon certain events. With assistance from Venkatesh Pallipadi. Restructured the main interface to the AML parser in order to correctly handle all exceptional conditions. This will prevent leakage of the OwnerId resource and should eliminate the AE_OWNER_ID_LIMIT exceptions seen on some machines. With assistance from Alexey Starikovskiy. Support for "module level code" has been disabled in this version due to a number of issues that have appeared on various machines. The support can be enabled by defining ACPI_ENABLE_MODULE_LEVEL_CODE during subsystem compilation. When the issues are fully resolved, the code will be enabled by default again. Modified the internal functions for debug print support to define the FunctionName parameter as a (const char *) for compatibility with compiler built-in macros such as __FUNCTION__, etc. Linted the entire ACPICA source tree for both 32-bit and 64-bit. Implemented support to display an object count summary for the AML Debugger commands Object and Methods. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.6K Code, 11.6K Data, 90.2K Total Debug Version: 170.0K Code, 69.7K Data, 239.7K Total Current Release: Non-Debug Version: 78.6K Code, 11.7K Data, 90.3K Total Debug Version: 167.0K Code, 69.9K Data, 236.9K Total 2) iASL Compiler/Disassembler: Fixed a regression that appeared in the 20050708 version of the compiler where an error message was inadvertently emitted for invocations of the _OSI reserved control method. ---------------------------------------- 08 July 2005. Summary of changes for version 20050708: 1) ACPI CA Core Subsystem: The use of the CPU stack in the debug version of the subsystem has been considerably reduced. Previously, a debug structure was declared in every function that used the debug macros. This structure has been removed in favor of declaring the individual elements as parameters to the debug functions. This reduces the cumulative stack use during nested execution of ACPI function calls at the cost of a small increase in the code size of the debug version of the subsystem. With assistance from Alexey Starikovskiy and Len Brown. Added the ACPI_GET_FUNCTION_NAME macro to enable the compiler-dependent headers to define a macro that will return the current function name at runtime (such as __FUNCTION__ or _func_, etc.) The function name is used by the debug trace output. If ACPI_GET_FUNCTION_NAME is not defined in the compiler-dependent header, the function name is saved on the CPU stack (one pointer per function.) This mechanism is used because apparently there exists no standard ANSI-C defined macro that that returns the function name. Redesigned and reimplemented the "Owner ID" mechanism used to track namespace objects created/deleted by ACPI tables and control method execution. A bitmap is now used to allocate and free the IDs, thus solving the wraparound problem present in the previous implementation. The size of the namespace node descriptor was reduced by 2 bytes as a result (Alexey Starikovskiy). Removed the UINT32_BIT and UINT16_BIT types that were used for the bitfield flag definitions within the headers for the predefined ACPI tables. These have been replaced by UINT8_BIT in order to increase the code portability of the subsystem. If the use of UINT8 remains a problem, we may be forced to eliminate bitfields entirely because of a lack of portability. Enhanced the performance of the AcpiUtUpdateObjectReference procedure. This is a frequently used function and this improvement increases the performance of the entire subsystem (Alexey Starikovskiy). Fixed several possible memory leaks and the inverse - premature object deletion (Alexey Starikovskiy). Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.6K Code, 11.5K Data, 90.1K Total Debug Version: 165.2K Code, 69.6K Data, 234.8K Total Current Release: Non-Debug Version: 78.6K Code, 11.6K Data, 90.2K Total Debug Version: 170.0K Code, 69.7K Data, 239.7K Total ---------------------------------------- 24 June 2005. Summary of changes for version 20050624: 1) ACPI CA Core Subsystem: Modified the new OSL cache interfaces to use ACPI_CACHE_T as the type for the host-defined cache object. This allows the OSL implementation to define and type this object in any manner desired, simplifying the OSL implementation. For example, ACPI_CACHE_T is defined as kmem_cache_t for Linux, and should be defined in the OS-specific header file for other operating systems as required. Changed the interface to AcpiOsAcquireObject to directly return the requested object as the function return (instead of ACPI_STATUS.) This change was made for performance reasons, since this is the purpose of the interface in the first place. AcpiOsAcquireObject is now similar to the AcpiOsAllocate interface. Implemented a new AML debugger command named Businfo. This command displays information about all devices that have an associate _PRT object. The _ADR, _HID, _UID, and _CID are displayed for these devices. Modified the initialization sequence in AcpiInitializeSubsystem to call the OSL interface AcpiOslInitialize first, before any local initialization. This change was required because the global initialization now calls OSL interfaces. Enhanced the Dump command to display the entire contents of Package objects (including all sub-objects and their values.) Restructured the code base to split some files because of size and/or because the code logically belonged in a separate file. New files are listed below. All makefiles and project files included in the ACPI CA release have been updated. utilities/utcache.c /* Local cache interfaces */ utilities/utmutex.c /* Local mutex support */ utilities/utstate.c /* State object support */ interpreter/parser/psloop.c /* Main AML parse loop */ Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.3K Code, 11.6K Data, 89.9K Total Debug Version: 164.0K Code, 69.1K Data, 233.1K Total Current Release: Non-Debug Version: 78.6K Code, 11.5K Data, 90.1K Total Debug Version: 165.2K Code, 69.6K Data, 234.8K Total 2) iASL Compiler/Disassembler: Fixed a regression introduced in version 20050513 where the use of a Package object within a Case() statement caused a compile time exception. The original behavior has been restored (a Match() operator is emitted.) ---------------------------------------- 17 June 2005. Summary of changes for version 20050617: 1) ACPI CA Core Subsystem: Moved the object cache operations into the OS interface layer (OSL) to allow the host OS to handle these operations if desired (for example, the Linux OSL will invoke the slab allocator). This support is optional; the compile time define ACPI_USE_LOCAL_CACHE may be used to utilize the original cache code in the ACPI CA core. The new OSL interfaces are shown below. See utalloc.c for an example implementation, and acpiosxf.h for the exact interface definitions. With assistance from Alexey Starikovskiy. AcpiOsCreateCache AcpiOsDeleteCache AcpiOsPurgeCache AcpiOsAcquireObject AcpiOsReleaseObject Modified the interfaces to AcpiOsAcquireLock and AcpiOsReleaseLock to return and restore a flags parameter. This fits better with many OS lock models. Note: the current execution state (interrupt handler or not) is no longer passed to these interfaces. If necessary, the OSL must determine this state by itself, a simple and fast operation. With assistance from Alexey Starikovskiy. Fixed a problem in the ACPI table handling where a valid XSDT was assumed present if the revision of the RSDP was 2 or greater. According to the ACPI specification, the XSDT is optional in all cases, and the table manager therefore now checks for both an RSDP >=2 and a valid XSDT pointer. Otherwise, the RSDT pointer is used. Some ACPI 2.0 compliant BIOSs contain only the RSDT. Fixed an interpreter problem with the Mid() operator in the case of an input string where the resulting output string is of zero length. It now correctly returns a valid, null terminated string object instead of a string object with a null pointer. Fixed a problem with the control method argument handling to allow a store to an Arg object that already contains an object of type Device. The Device object is now correctly overwritten. Previously, an error was returned. Enhanced the debugger Find command to emit object values in addition to the found object pathnames. The output format is the same as the dump namespace command. Enhanced the debugger Set command. It now has the ability to set the value of any Named integer object in the namespace (Previously, only method locals and args could be set.) Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.1K Code, 11.6K Data, 89.7K Total Debug Version: 164.0K Code, 69.3K Data, 233.3K Total Current Release: Non-Debug Version: 78.3K Code, 11.6K Data, 89.9K Total Debug Version: 164.0K Code, 69.1K Data, 233.1K Total 2) iASL Compiler/Disassembler: Fixed a regression in the disassembler where if/else/while constructs were output incorrectly. This problem was introduced in the previous release (20050526). This problem also affected the single-step disassembly in the debugger. Fixed a problem where compiling the reserved _OSI method would randomly (but rarely) produce compile errors. Enhanced the disassembler to emit compilable code in the face of incorrect AML resource descriptors. If the optional ResourceSourceIndex is present, but the ResourceSource is not, do not emit the ResourceSourceIndex in the disassembly. Otherwise, the resulting code cannot be compiled without errors. ---------------------------------------- 26 May 2005. Summary of changes for version 20050526: 1) ACPI CA Core Subsystem: Implemented support to execute Type 1 and Type 2 AML opcodes appearing at the module level (not within a control method.) These opcodes are executed exactly once at the time the table is loaded. This type of code was legal up until the release of ACPI 2.0B (2002) and is now supported within ACPI CA in order to provide backwards compatibility with earlier BIOS implementations. This eliminates the "Encountered executable code at module level" warning that was previously generated upon detection of such code. Fixed a problem in the interpreter where an AE_NOT_FOUND exception could inadvertently be generated during the lookup of namespace objects in the second pass parse of ACPI tables and control methods. It appears that this problem could occur during the resolution of forward references to namespace objects. Added the ACPI_MUTEX_DEBUG #ifdef to the AcpiUtReleaseMutex function, corresponding to the same #ifdef in the AcpiUtAcquireMutex function. This allows the deadlock detection debug code to be compiled out in the normal case, improving mutex performance (and overall subsystem performance) considerably. Implemented a handful of miscellaneous fixes for possible memory leaks on error conditions and error handling control paths. These fixes were suggested by FreeBSD and the Coverity Prevent source code analysis tool. Added a check for a null RSDT pointer in AcpiGetFirmwareTable (tbxfroot.c) to prevent a fault in this error case. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.2K Code, 11.6K Data, 89.8K Total Debug Version: 163.7K Code, 69.3K Data, 233.0K Total Current Release: Non-Debug Version: 78.1K Code, 11.6K Data, 89.7K Total Debug Version: 164.0K Code, 69.3K Data, 233.3K Total 2) iASL Compiler/Disassembler: Implemented support to allow Type 1 and Type 2 ASL operators to appear at the module level (not within a control method.) These operators will be executed once at the time the table is loaded. This type of code was legal up until the release of ACPI 2.0B (2002) and is now supported by the iASL compiler in order to provide backwards compatibility with earlier BIOS ASL code. The ACPI integer width (specified via the table revision ID or the -r override, 32 or 64 bits) is now used internally during compile-time constant folding to ensure that constants are truncated to 32 bits if necessary. Previously, the revision ID value was only emitted in the AML table header. An error message is now generated for the Mutex and Method operators if the SyncLevel parameter is outside the legal range of 0 through 15. Fixed a problem with the Method operator ParameterTypes list handling (ACPI 3.0). Previously, more than 2 types or 2 arguments generated a syntax error. The actual underlying implementation of method argument typechecking is still under development, however. ---------------------------------------- 13 May 2005. Summary of changes for version 20050513: 1) ACPI CA Core Subsystem: Implemented support for PCI Express root bridges -- added support for device PNP0A08 in the root bridge search within AcpiEvPciConfigRegionSetup. The interpreter now automatically truncates incoming 64-bit constants to 32 bits if currently executing out of a 32-bit ACPI table (Revision < 2). This also affects the iASL compiler constant folding. (Note: as per below, the iASL compiler no longer allows 64-bit constants within 32-bit tables.) Fixed a problem where string and buffer objects with "static" pointers (pointers to initialization data within an ACPI table) were not handled consistently. The internal object copy operation now always copies the data to a newly allocated buffer, regardless of whether the source object is static or not. Fixed a problem with the FromBCD operator where an implicit result conversion was improperly performed while storing the result to the target operand. Since this is an "explicit conversion" operator, the implicit conversion should never be performed on the output. Fixed a problem with the CopyObject operator where a copy to an existing named object did not always completely overwrite the existing object stored at name. Specifically, a buffer-to-buffer copy did not delete the existing buffer. Replaced "InterruptLevel" with "InterruptNumber" in all GPE interfaces and structs for consistency. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.2K Code, 11.6K Data, 89.8K Total Debug Version: 163.7K Code, 69.3K Data, 233.0K Total Current Release: (Same sizes) Non-Debug Version: 78.2K Code, 11.6K Data, 89.8K Total Debug Version: 163.7K Code, 69.3K Data, 233.0K Total 2) iASL Compiler/Disassembler: The compiler now emits a warning if an attempt is made to generate a 64- bit integer constant from within a 32-bit ACPI table (Revision < 2). The integer is truncated to 32 bits. Fixed a problem with large package objects: if the static length of the package is greater than 255, the "variable length package" opcode is emitted. Previously, this caused an error. This requires an update to the ACPI spec, since it currently (incorrectly) states that packages larger than 255 elements are not allowed. The disassembler now correctly handles variable length packages and packages larger than 255 elements. ---------------------------------------- 08 April 2005. Summary of changes for version 20050408: 1) ACPI CA Core Subsystem: Fixed three cases in the interpreter where an "index" argument to an ASL function was still (internally) 32 bits instead of the required 64 bits. This was the Index argument to the Index, Mid, and Match operators. The "strupr" function is now permanently local (AcpiUtStrupr), since this is not a POSIX-defined function and not present in most kernel-level C libraries. All references to the C library strupr function have been removed from the headers. Completed the deployment of static functions/prototypes. All prototypes with the static attribute have been moved from the headers to the owning C file. Implemented an extract option (-e) for the AcpiBin utility (AML binary utility). This option allows the utility to extract individual ACPI tables from the output of AcpiDmp. It provides the same functionality of the acpixtract.pl perl script without the worry of setting the correct perl options. AcpiBin runs on Windows and has not yet been generated/validated in the Linux/Unix environment (but should be soon). Updated and fixed the table dump option for AcpiBin (-d). This option converts a single ACPI table to a hex/ascii file, similar to the output of AcpiDmp. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.0K Code, 11.6K Data, 89.6K Total Debug Version: 163.5K Code, 69.3K Data, 232.8K Total Current Release: Non-Debug Version: 78.2K Code, 11.6K Data, 89.8K Total Debug Version: 163.7K Code, 69.3K Data, 233.0K Total 2) iASL Compiler/Disassembler: Disassembler fix: Added a check to ensure that the table length found in the ACPI table header within the input file is not longer than the actual input file size. This indicates some kind of file or table corruption. ---------------------------------------- 29 March 2005. Summary of changes for version 20050329: 1) ACPI CA Core Subsystem: An error is now generated if an attempt is made to create a Buffer Field of length zero (A CreateField with a length operand of zero.) The interpreter now issues a warning whenever executable code at the module level is detected during ACPI table load. This will give some idea of the prevalence of this type of code. Implemented support for references to named objects (other than control methods) within package objects. Enhanced package object output for the debug object. Package objects are now completely dumped, showing all elements. Enhanced miscellaneous object output for the debug object. Any object can now be written to the debug object (for example, a device object can be written, and the type of the object will be displayed.) The "static" qualifier has been added to all local functions across both the core subsystem and the iASL compiler. The number of "long" lines (> 80 chars) within the source has been significantly reduced, by about 1/3. Cleaned up all header files to ensure that all CA/iASL functions are prototyped (even static functions) and the formatting is consistent. Two new header files have been added, acopcode.h and acnames.h. Removed several obsolete functions that were no longer used. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 165.4K Code, 69.7K Data, 236.1K Total Current Release: Non-Debug Version: 78.0K Code, 11.6K Data, 89.6K Total Debug Version: 163.5K Code, 69.3K Data, 232.8K Total 2) iASL Compiler/Disassembler: Fixed a problem with the resource descriptor generation/support. For the ResourceSourceIndex and the ResourceSource fields, both must be present, or both must be not present - can't have one without the other. The compiler now returns non-zero from the main procedure if any errors have occurred during the compilation. ---------------------------------------- 09 March 2005. Summary of changes for version 20050309: 1) ACPI CA Core Subsystem: The string-to-buffer implicit conversion code has been modified again after a change to the ACPI specification. In order to match the behavior of the other major ACPI implementation, the target buffer is no longer truncated if the source string is smaller than an existing target buffer. This change requires an update to the ACPI spec, and should eliminate the recent AE_AML_BUFFER_LIMIT issues. The "implicit return" support was rewritten to a new algorithm that solves the general case. Rather than attempt to determine when a method is about to exit, the result of every ASL operator is saved momentarily until the very next ASL operator is executed. Therefore, no matter how the method exits, there will always be a saved implicit return value. This feature is only enabled with the AcpiGbl_EnableInterpreterSlack flag, and should eliminate AE_AML_NO_RETURN_VALUE errors when enabled. Implemented implicit conversion support for the predicate (operand) of the If, Else, and While operators. String and Buffer arguments are automatically converted to Integers. Changed the string-to-integer conversion behavior to match the new ACPI errata: "If no integer object exists, a new integer is created. The ASCII string is interpreted as a hexadecimal constant. Each string character is interpreted as a hexadecimal value ('0'-'9', 'A'-'F', 'a', 'f'), starting with the first character as the most significant digit, and ending with the first non-hexadecimal character or end-of-string." This means that the first non-hex character terminates the conversion and this is the code that was changed. Fixed a problem where the ObjectType operator would fail (fault) when used on an Index of a Package which pointed to a null package element. The operator now properly returns zero (Uninitialized) in this case. Fixed a problem where the While operator used excessive memory by not properly popping the result stack during execution. There was no memory leak after execution, however. (Code provided by Valery Podrezov.) Fixed a problem where references to control methods within Package objects caused the method to be invoked, instead of producing a reference object pointing to the method. Restructured and simplified the pswalk.c module (AcpiPsDeleteParseTree) to improve performance and reduce code size. (Code provided by Alexey Starikovskiy.) Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 165.4K Code, 69.6K Data, 236.0K Total Current Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 165.4K Code, 69.7K Data, 236.1K Total 2) iASL Compiler/Disassembler: Fixed a problem with the Return operator with no arguments. Since the AML grammar for the byte encoding requires an operand for the Return opcode, the compiler now emits a Return(Zero) for this case. An ACPI specification update has been written for this case. For tables other than the DSDT, namepath optimization is automatically disabled. This is because SSDTs can be loaded anywhere in the namespace, the compiler has no knowledge of where, and thus cannot optimize namepaths. Added "ProcessorObj" to the ObjectTypeKeyword list. This object type was inadvertently omitted from the ACPI specification, and will require an update to the spec. The source file scan for ASCII characters is now optional (-a). This change was made because some vendors place non-ascii characters within comments. However, the scan is simply a brute-force byte compare to ensure all characters in the file are in the range 0x00 to 0x7F. Fixed a problem with the CondRefOf operator where the compiler was inappropriately checking for the existence of the target. Since the point of the operator is to check for the existence of the target at run-time, the compiler no longer checks for the target existence. Fixed a problem where errors generated from the internal AML interpreter during constant folding were not handled properly, causing a fault. Fixed a problem with overly aggressive range checking for the Stall operator. The valid range (max 255) is now only checked if the operand is of type Integer. All other operand types cannot be statically checked. Fixed a problem where control method references within the RefOf, DeRefOf, and ObjectType operators were not treated properly. They are now treated as actual references, not method invocations. Fixed and enhanced the "list namespace" option (-ln). This option was broken a number of releases ago. Improved error handling for the Field, IndexField, and BankField operators. The compiler now cleanly reports and recovers from errors in the field component (FieldUnit) list. Fixed a disassembler problem where the optional ResourceDescriptor fields TRS and TTP were not always handled correctly. Disassembler - Comments in output now use "//" instead of "/*" ---------------------------------------- 28 February 2005. Summary of changes for version 20050228: 1) ACPI CA Core Subsystem: Fixed a problem where the result of an Index() operator (an object reference) must increment the reference count on the target object for the life of the object reference. Implemented AML Interpreter and Debugger support for the new ACPI 3.0 Extended Address (IO, Memory, Space), QwordSpace, DwordSpace, and WordSpace resource descriptors. Implemented support in the _OSI method for the ACPI 3.0 "Extended Address Space Descriptor" string, indicating interpreter support for the descriptors above. Implemented header support for the new ACPI 3.0 FADT flag bits. Implemented header support for the new ACPI 3.0 PCI Express bits for the PM1 status/enable registers. Updated header support for the MADT processor local Apic struct and MADT platform interrupt source struct for new ACPI 3.0 fields. Implemented header support for the SRAT and SLIT ACPI tables. Implemented the -s switch in AcpiExec to enable the "InterpreterSlack" flag at runtime. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.2K Code, 11.5K Data, 89.7K Total Debug Version: 164.9K Code, 69.2K Data, 234.1K Total Current Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 165.4K Code, 69.6K Data, 236.0K Total 2) iASL Compiler/Disassembler: Fixed a problem with the internal 64-bit String-to-integer conversion with strings less than two characters long. Fixed a problem with constant folding where the result of the Index() operator can not be considered a constant. This means that Index() cannot be a type3 opcode and this will require an update to the ACPI specification. Disassembler: Implemented support for the TTP, MTP, and TRS resource descriptor fields. These fields were inadvertently ignored and not output in the disassembly of the resource descriptor. ---------------------------------------- 11 February 2005. Summary of changes for version 20050211: 1) ACPI CA Core Subsystem: Implemented ACPI 3.0 support for implicit conversion within the Match() operator. MatchObjects can now be of type integer, buffer, or string instead of just type integer. Package elements are implicitly converted to the type of the MatchObject. This change aligns the behavior of Match() with the behavior of the other logical operators (LLess(), etc.) It also requires an errata change to the ACPI specification as this support was intended for ACPI 3.0, but was inadvertently omitted. Fixed a problem with the internal implicit "to buffer" conversion. Strings that are converted to buffers will cause buffer truncation if the string is smaller than the target buffer. Integers that are converted to buffers will not cause buffer truncation, only zero extension (both as per the ACPI spec.) The problem was introduced when code was added to truncate the buffer, but this should not be performed in all cases, only the string case. Fixed a problem with the Buffer and Package operators where the interpreter would get confused if two such operators were used as operands to an ASL operator (such as LLess(Buffer(1){0},Buffer(1){1}). The internal result stack was not being popped after the execution of these operators, resulting in an AE_NO_RETURN_VALUE exception. Fixed a problem with constructs of the form Store(Index(...),...). The reference object returned from Index was inadvertently resolved to an actual value. This problem was introduced in version 20050114 when the behavior of Store() was modified to restrict the object types that can be used as the source operand (to match the ACPI specification.) Reduced excessive stack use within the AcpiGetObjectInfo procedure. Added a fix to aclinux.h to allow generation of AcpiExec on Linux. Updated the AcpiSrc utility to add the FADT_DESCRIPTOR_REV2_MINUS struct. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.1K Code, 11.5K Data, 89.6K Total Debug Version: 164.8K Code, 69.2K Data, 234.0K Total Current Release: Non-Debug Version: 78.2K Code, 11.5K Data, 89.7K Total Debug Version: 164.9K Code, 69.2K Data, 234.1K Total 2) iASL Compiler/Disassembler: Fixed a code generation problem in the constant folding optimization code where incorrect code was generated if a constant was reduced to a buffer object (i.e., a reduced type 5 opcode.) Fixed a typechecking problem for the ToBuffer operator. Caused by an incorrect return type in the internal opcode information table. ---------------------------------------- 25 January 2005. Summary of changes for version 20050125: 1) ACPI CA Core Subsystem: Fixed a recently introduced problem with the Global Lock where the underlying semaphore was not created. This problem was introduced in version 20050114, and caused an AE_AML_NO_OPERAND exception during an Acquire() operation on _GL. The local object cache is now optional, and is disabled by default. Both AcpiExec and the iASL compiler enable the cache because they run in user mode and this enhances their performance. #define ACPI_ENABLE_OBJECT_CACHE to enable the local cache. Fixed an issue in the internal function AcpiUtEvaluateObject concerning the optional "implicit return" support where an error was returned if no return object was expected, but one was implicitly returned. AE_OK is now returned in this case and the implicitly returned object is deleted. AcpiUtEvaluateObject is only occasionally used, and only to execute reserved methods such as _STA and _INI where the return type is known up front. Fixed a few issues with the internal convert-to-integer code. It now returns an error if an attempt is made to convert a null string, a string of only blanks/tabs, or a zero-length buffer. This affects both implicit conversion and explicit conversion via the ToInteger() operator. The internal debug code in AcpiUtAcquireMutex has been commented out. It is not needed for normal operation and should increase the performance of the entire subsystem. The code remains in case it is needed for debug purposes again. The AcpiExec source and makefile are included in the Unix/Linux package for the first time. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.4K Code, 11.5K Data, 89.9K Total Debug Version: 165.4K Code, 69.4K Data, 234.8K Total Current Release: Non-Debug Version: 78.1K Code, 11.5K Data, 89.6K Total Debug Version: 164.8K Code, 69.2K Data, 234.0K Total 2) iASL Compiler/Disassembler: Switch/Case support: A warning is now issued if the type of the Switch value cannot be determined at compile time. For example, Switch(Arg0) will generate the warning, and the type is assumed to be an integer. As per the ACPI spec, use a construct such as Switch(ToInteger(Arg0)) to eliminate the warning. Switch/Case support: Implemented support for buffer and string objects as the switch value. This is an ACPI 3.0 feature, now that LEqual supports buffers and strings. Switch/Case support: The emitted code for the LEqual() comparisons now uses the switch value as the first operand, not the second. The case value is now the second operand, and this allows the case value to be implicitly converted to the type of the switch value, not the other way around. Switch/Case support: Temporary variables are now emitted immediately within the control method, not at the global level. This means that there are now 36 temps available per-method, not 36 temps per-module as was the case with the earlier implementation (_T_0 through _T_9 and _T_A through _T_Z.) ---------------------------------------- 14 January 2005. Summary of changes for version 20050114: Added 2005 copyright to all module headers. This affects every module in the core subsystem, iASL compiler, and the utilities. 1) ACPI CA Core Subsystem: Fixed an issue with the String-to-Buffer conversion code where the string null terminator was not included in the buffer after conversion, but there is existing ASL that assumes the string null terminator is included. This is the root of the ACPI_AML_BUFFER_LIMIT regression. This problem was introduced in the previous version when the code was updated to correctly set the converted buffer size as per the ACPI specification. The ACPI spec is ambiguous and will be updated to specify that the null terminator must be included in the converted buffer. This also affects the ToBuffer() ASL operator. Fixed a problem with the Mid() ASL/AML operator where it did not work correctly on Buffer objects. Newly created sub-buffers were not being marked as initialized. Fixed a problem in AcpiTbFindTable where incorrect string compares were performed on the OemId and OemTableId table header fields. These fields are not null terminated, so strncmp is now used instead of strcmp. Implemented a restriction on the Store() ASL/AML operator to align the behavior with the ACPI specification. Previously, any object could be used as the source operand. Now, the only objects that may be used are Integers, Buffers, Strings, Packages, Object References, and DDB Handles. If necessary, the original behavior can be restored by enabling the EnableInterpreterSlack flag. Enhanced the optional "implicit return" support to allow an implicit return value from methods that are invoked externally via the AcpiEvaluateObject interface. This enables implicit returns from the _STA and _INI methods, for example. Changed the Revision() ASL/AML operator to return the current version of the AML interpreter, in the YYYYMMDD format. Previously, it incorrectly returned the supported ACPI version (This is the function of the _REV method). Updated the _REV predefined method to return the currently supported version of ACPI, now 3. Implemented batch mode option for the AcpiExec utility (-b). Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 165.3K Code, 69.4K Data, 234.7K Total Current Release: Non-Debug Version: 78.4K Code, 11.5K Data, 89.9K Total Debug Version: 165.4K Code, 69.4K Data, 234.8K Total ---------------------------------------- 10 December 2004. Summary of changes for version 20041210: ACPI 3.0 support is nearing completion in both the iASL compiler and the ACPI CA core subsystem. 1) ACPI CA Core Subsystem: Fixed a problem in the ToDecimalString operator where the resulting string length was incorrectly calculated. The length is now calculated exactly, eliminating incorrect AE_STRING_LIMIT exceptions. Fixed a problem in the ToHexString operator to allow a maximum 200 character string to be produced. Fixed a problem in the internal string-to-buffer and buffer-to-buffer copy routine where the length of the resulting buffer was not truncated to the new size (if the target buffer already existed). Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 164.7K Code, 68.5K Data, 233.2K Total Current Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 165.3K Code, 69.4K Data, 234.7K Total 2) iASL Compiler/Disassembler: Implemented the new ACPI 3.0 resource template macros - DWordSpace, ExtendedIO, ExtendedMemory, ExtendedSpace, QWordSpace, and WordSpace. Includes support in the disassembler. Implemented support for the new (ACPI 3.0) parameter to the Register macro, AccessSize. Fixed a problem where the _HE resource name for the Interrupt macro was referencing bit 0 instead of bit 1. Implemented check for maximum 255 interrupts in the Interrupt macro. Fixed a problem with the predefined resource descriptor names where incorrect AML code was generated if the offset within the resource buffer was 0 or 1. The optimizer shortened the AML code to a single byte opcode but did not update the surrounding package lengths. Changes to the Dma macro: All channels within the channel list must be in the range 0-7. Maximum 8 channels can be specified. BusMaster operand is optional (default is BusMaster). Implemented check for maximum 7 data bytes for the VendorShort macro. The ReadWrite parameter is now optional for the Memory32 and similar macros. ---------------------------------------- 03 December 2004. Summary of changes for version 20041203: 1) ACPI CA Core Subsystem: The low-level field insertion/extraction code (exfldio) has been completely rewritten to eliminate unnecessary complexity, bugs, and boundary conditions. Fixed a problem in the ToInteger, ToBuffer, ToHexString, and ToDecimalString operators where the input operand could be inadvertently deleted if no conversion was necessary (e.g., if the input to ToInteger was an Integer object.) Fixed a problem with the ToDecimalString and ToHexString where an incorrect exception code was returned if the resulting string would be > 200 chars. AE_STRING_LIMIT is now returned. Fixed a problem with the Concatenate operator where AE_OK was always returned, even if the operation failed. Fixed a problem in oswinxf (used by AcpiExec and iASL) to allow > 128 semaphores to be allocated. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.5K Code, 11.5K Data, 90.0K Total Debug Version: 165.2K Code, 68.6K Data, 233.8K Total Current Release: Non-Debug Version: 78.3K Code, 11.5K Data, 89.8K Total Debug Version: 164.7K Code, 68.5K Data, 233.2K Total 2) iASL Compiler/Disassembler: Fixed typechecking for the ObjectType and SizeOf operators. Problem was recently introduced in 20041119. Fixed a problem with the ToUUID macro where the upper nybble of each buffer byte was inadvertently set to zero. ---------------------------------------- 19 November 2004. Summary of changes for version 20041119: 1) ACPI CA Core Subsystem: Fixed a problem in the internal ConvertToInteger routine where new integers were not truncated to 32 bits for 32-bit ACPI tables. This routine converts buffers and strings to integers. Implemented support to store a value to an Index() on a String object. This is an ACPI 2.0 feature that had not yet been implemented. Implemented new behavior for storing objects to individual package elements (via the Index() operator). The previous behavior was to invoke the implicit conversion rules if an object was already present at the index. The new behavior is to simply delete any existing object and directly store the new object. Although the ACPI specification seems unclear on this subject, other ACPI implementations behave in this manner. (This is the root of the AE_BAD_HEX_CONSTANT issue.) Modified the RSDP memory scan mechanism to support the extended checksum for ACPI 2.0 (and above) RSDPs. Note that the search continues until a valid RSDP signature is found with a valid checksum. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.5K Code, 11.5K Data, 90.0K Total Debug Version: 165.2K Code, 68.6K Data, 233.8K Total Current Release: Non-Debug Version: 78.5K Code, 11.5K Data, 90.0K Total Debug Version: 165.2K Code, 68.6K Data, 233.8K Total 2) iASL Compiler/Disassembler: Fixed a missing semicolon in the aslcompiler.y file. ---------------------------------------- 05 November 2004. Summary of changes for version 20041105: 1) ACPI CA Core Subsystem: Implemented support for FADT revision 2. This was an interim table (between ACPI 1.0 and ACPI 2.0) that adds support for the FADT reset register. Implemented optional support to allow uninitialized LocalX and ArgX variables in a control method. The variables are initialized to an Integer object with a value of zero. This support is enabled by setting the AcpiGbl_EnableInterpreterSlack flag to TRUE. Implemented support for Integer objects for the SizeOf operator. Either 4 or 8 is returned, depending on the current integer size (32-bit or 64- bit, depending on the parent table revision). Fixed a problem in the implementation of the SizeOf and ObjectType operators where the operand was resolved to a value too early, causing incorrect return values for some objects. Fixed some possible memory leaks during exceptional conditions. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.0K Code, 11.5K Data, 89.5K Total Debug Version: 164.8K Code, 68.6K Data, 233.4K Total Current Release: Non-Debug Version: 78.5K Code, 11.5K Data, 90.0K Total Debug Version: 165.2K Code, 68.6K Data, 233.8K Total 2) iASL Compiler/Disassembler: Implemented support for all ACPI 3.0 reserved names and methods. Implemented all ACPI 3.0 grammar elements in the front-end, including support for semicolons. Implemented the ACPI 3.0 Function() and ToUUID() macros Fixed a problem in the disassembler where a Scope() operator would not be emitted properly if the target of the scope was in another table. ---------------------------------------- 15 October 2004. Summary of changes for version 20041015: Note: ACPI CA is currently undergoing an in-depth and complete formal evaluation to test/verify the following areas. Other suggestions are welcome. This will result in an increase in the frequency of releases and the number of bug fixes in the next few months. - Functional tests for all ASL/AML operators - All implicit/explicit type conversions - Bit fields and operation regions - 64-bit math support and 32-bit-only "truncated" math support - Exceptional conditions, both compiler and interpreter - Dynamic object deletion and memory leaks - ACPI 3.0 support when implemented - External interfaces to the ACPI subsystem 1) ACPI CA Core Subsystem: Fixed two alignment issues on 64-bit platforms - within debug statements in AcpiEvGpeDetect and AcpiEvCreateGpeBlock. Removed references to the Address field within the non-aligned ACPI generic address structure. Fixed a problem in the Increment and Decrement operators where incorrect operand resolution could result in the inadvertent modification of the original integer when the integer is passed into another method as an argument and the arg is then incremented/decremented. Fixed a problem in the FromBCD operator where the upper 32-bits of a 64- bit BCD number were truncated during conversion. Fixed a problem in the ToDecimal operator where the length of the resulting string could be set incorrectly too long if the input operand was a Buffer object. Fixed a problem in the Logical operators (LLess, etc.) where a NULL byte (0) within a buffer would prematurely terminate a compare between buffer objects. Added a check for string overflow (>200 characters as per the ACPI specification) during the Concatenate operator with two string operands. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.8K Code, 11.5K Data, 89.3K Total Debug Version: 164.6K Code, 68.5K Data, 233.1K Total Current Release: Non-Debug Version: 78.0K Code, 11.5K Data, 89.5K Total Debug Version: 164.8K Code, 68.6K Data, 233.4K Total 2) iASL Compiler/Disassembler: Allow the use of the ObjectType operator on uninitialized Locals and Args (returns 0 as per the ACPI specification). Fixed a problem where the compiler would fault if there was a syntax error in the FieldName of all of the various CreateXXXField operators. Disallow the use of lower case letters within the EISAID macro, as per the ACPI specification. All EISAID strings must be of the form "UUUNNNN" Where U is an uppercase letter and N is a hex digit. ---------------------------------------- 06 October 2004. Summary of changes for version 20041006: 1) ACPI CA Core Subsystem: Implemented support for the ACPI 3.0 Timer operator. This ASL function implements a 64-bit timer with 100 nanosecond granularity. Defined a new OSL interface, AcpiOsGetTimer. This interface is used to implement the ACPI 3.0 Timer operator. This allows the host OS to implement the timer with the best clock available. Also, it keeps the core subsystem out of the clock handling business, since the host OS (usually) performs this function. Fixed an alignment issue on 64-bit platforms. The HwLowLevelRead(Write) functions use a 64-bit address which is part of the packed ACPI Generic Address Structure. Since the structure is non-aligned, the alignment macros are now used to extract the address to a local variable before use. Fixed a problem where the ToInteger operator assumed all input strings were hexadecimal. The operator now handles both decimal strings and hex strings (prefixed with "0x"). Fixed a problem where the string length in the string object created as a result of the internal ConvertToString procedure could be incorrect. This potentially affected all implicit conversions and also the ToDecimalString and ToHexString operators. Fixed two problems in the ToString operator. If the length parameter was zero, an incorrect string object was created and the value of the input length parameter was inadvertently changed from zero to Ones. Fixed a problem where the optional ResourceSource string in the ExtendedIRQ resource macro was ignored. Simplified the interfaces to the internal division functions, reducing code size and complexity. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.9K Code, 11.4K Data, 89.3K Total Debug Version: 164.5K Code, 68.3K Data, 232.8K Total Current Release: Non-Debug Version: 77.8K Code, 11.5K Data, 89.3K Total Debug Version: 164.6K Code, 68.5K Data, 233.1K Total 2) iASL Compiler/Disassembler: Implemented support for the ACPI 3.0 Timer operator. Fixed a problem where the Default() operator was inadvertently ignored in a Switch/Case block. This was a problem in the translation of the Switch statement to If...Else pairs. Added support to allow a standalone Return operator, with no parentheses (or operands). Fixed a problem with code generation for the ElseIf operator where the translated Else...If parse tree was improperly constructed leading to the loss of some code. ---------------------------------------- 22 September 2004. Summary of changes for version 20040922: 1) ACPI CA Core Subsystem: Fixed a problem with the implementation of the LNot() operator where "Ones" was not returned for the TRUE case. Changed the code to return Ones instead of (!Arg) which was usually 1. This change affects iASL constant folding for this operator also. Fixed a problem in AcpiUtInitializeBuffer where an existing buffer was not initialized properly -- Now zero the entire buffer in this case where the buffer already exists. Changed the interface to AcpiOsSleep from (UINT32 Seconds, UINT32 Milliseconds) to simply (ACPI_INTEGER Milliseconds). This simplifies all related code considerably. This will require changes/updates to all OS interface layers (OSLs.) Implemented a new external interface, AcpiInstallExceptionHandler, to allow a system exception handler to be installed. This handler is invoked upon any run-time exception that occurs during control method execution. Added support for the DSDT in AcpiTbFindTable. This allows the DataTableRegion() operator to access the local copy of the DSDT. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.8K Code, 11.4K Data, 89.2K Total Debug Version: 164.2K Code, 68.2K Data, 232.4K Total Current Release: Non-Debug Version: 77.9K Code, 11.4K Data, 89.3K Total Debug Version: 164.5K Code, 68.3K Data, 232.8K Total 2) iASL Compiler/Disassembler: Fixed a problem with constant folding and the LNot operator. LNot was returning 1 in the TRUE case, not Ones as per the ACPI specification. This could result in the generation of an incorrect folded/reduced constant. End-Of-File is now allowed within a "//"-style comment. A parse error no longer occurs if such a comment is at the very end of the input ASL source file. Implemented the "-r" option to override the Revision in the table header. The initial use of this option will be to simplify the evaluation of the AML interpreter by allowing a single ASL source module to be compiled for either 32-bit or 64-bit integers. ---------------------------------------- 27 August 2004. Summary of changes for version 20040827: 1) ACPI CA Core Subsystem: - Implemented support for implicit object conversion in the non-numeric logical operators (LEqual, LGreater, LGreaterEqual, LLess, LLessEqual, and LNotEqual.) Any combination of Integers/Strings/Buffers may now be used; the second operand is implicitly converted on the fly to match the type of the first operand. For example: LEqual (Source1, Source2) Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1 dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of Source1. - Updated and corrected the behavior of the string conversion support. The rules concerning conversion of buffers to strings (according to the ACPI specification) are as follows: ToDecimalString - explicit byte-wise conversion of buffer to string of decimal values (0-255) separated by commas. ToHexString - explicit byte- wise conversion of buffer to string of hex values (0-FF) separated by commas. ToString - explicit byte-wise conversion of buffer to string. Byte-by- byte copy with no transform except NULL terminated. Any other implicit buffer- to- string conversion - byte-wise conversion of buffer to string of hex values (0-FF) separated by spaces. - Fixed typo in definition of AcpiGbl_EnableInterpreterSlack. - Fixed a problem in AcpiNsGetPathnameLength where the returned length was one byte too short in the case of a node in the root scope. This could cause a fault during debug output. - Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.9K Code, 11.5K Data, 89.4K Total Debug Version: 164.1K Code, 68.3K Data, 232.4K Total Current Release: Non-Debug Version: 77.8K Code, 11.4K Data, 89.2K Total Debug Version: 164.2K Code, 68.2K Data, 232.4K Total 2) iASL Compiler/Disassembler: - Fixed a Linux generation error. ---------------------------------------- 16 August 2004. Summary of changes for version 20040816: 1) ACPI CA Core Subsystem: Designed and implemented support within the AML interpreter for the so- called "implicit return". This support returns the result of the last ASL operation within a control method, in the absence of an explicit Return() operator. A few machines depend on this behavior, even though it is not explicitly supported by the ASL language. It is optional support that can be enabled at runtime via the AcpiGbl_EnableInterpreterSlack flag. Removed support for the PCI_Config address space from the internal low level hardware interfaces (AcpiHwLowLevelRead and AcpiHwLowLevelWrite). This support was not used internally, and would not work correctly anyway because the PCI bus number and segment number were not supported. There are separate interfaces for PCI configuration space access because of the unique interface. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 78.0K Code, 11.5K Data, 89.5K Total Debug Version: 164.1K Code, 68.2K Data, 232.3K Total Current Release: Non-Debug Version: 77.9K Code, 11.5K Data, 89.4K Total Debug Version: 164.1K Code, 68.3K Data, 232.4K Total 2) iASL Compiler/Disassembler: Fixed a problem where constants in ASL expressions at the root level (not within a control method) could be inadvertently truncated during code generation. This problem was introduced in the 20040715 release. ---------------------------------------- 15 July 2004. Summary of changes for version 20040715: 1) ACPI CA Core Subsystem: Restructured the internal HW GPE interfaces to pass/track the current state of interrupts (enabled/disabled) in order to avoid possible deadlock and increase flexibility of the interfaces. Implemented a "lexicographical compare" for String and Buffer objects within the logical operators -- LGreater, LLess, LGreaterEqual, and LLessEqual - - as per further clarification to the ACPI specification. Behavior is similar to C library "strcmp". Completed a major reduction in CPU stack use for the AcpiGetFirmwareTable external function. In the 32-bit non-debug case, the stack use has been reduced from 168 bytes to 32 bytes. Deployed a new run-time configuration flag, AcpiGbl_EnableInterpreterSlack, whose purpose is to allow the AML interpreter to forgive certain bad AML constructs. Default setting is FALSE. Implemented the first use of AcpiGbl_EnableInterpreterSlack in the Field IO support code. If enabled, it allows field access to go beyond the end of a region definition if the field is within the region length rounded up to the next access width boundary (a common coding error.) Renamed OSD_HANDLER to ACPI_OSD_HANDLER, and OSD_EXECUTION_CALLBACK to ACPI_OSD_EXEC_CALLBACK for consistency with other ACPI symbols. Also, these symbols are lowercased by the latest version of the AcpiSrc tool. The prototypes for the PCI interfaces in acpiosxf.h have been updated to rename "Register" to simply "Reg" to prevent certain compilers from complaining. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.8K Code, 11.5K Data, 89.3K Total Debug Version: 163.8K Code, 68.2K Data, 232.0K Total Current Release: Non-Debug Version: 78.0K Code, 11.5K Data, 89.5K Total Debug Version: 164.1K Code, 68.2K Data, 232.3K Total 2) iASL Compiler/Disassembler: Implemented full support for Package objects within the Case() operator. Note: The Break() operator is currently not supported within Case blocks (TermLists) as there is some question about backward compatibility with ACPI 1.0 interpreters. Fixed a problem where complex terms were not supported properly within the Switch() operator. Eliminated extraneous warning for compiler-emitted reserved names of the form "_T_x". (Used in Switch/Case operators.) Eliminated optimization messages for "_T_x" objects and small constants within the DefinitionBlock operator. ---------------------------------------- 15 June 2004. Summary of changes for version 20040615: 1) ACPI CA Core Subsystem: Implemented support for Buffer and String objects (as per ACPI 2.0) for the following ASL operators: LEqual, LGreater, LLess, LGreaterEqual, and LLessEqual. All directory names in the entire source package are lower case, as they were in earlier releases. Implemented "Disassemble" command in the AML debugger that will disassemble a single control method. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.7K Code, 11.5K Data, 89.2K Total Debug Version: 163.3K Code, 67.2K Data, 230.5K Total Current Release: Non-Debug Version: 77.8K Code, 11.5K Data, 89.3K Total Debug Version: 163.8K Code, 68.2K Data, 232.0K Total 2) iASL Compiler/Disassembler: Implemented support for Buffer and String objects (as per ACPI 2.0) for the following ASL operators: LEqual, LGreater, LLess, LGreaterEqual, and LLessEqual. All directory names in the entire source package are lower case, as they were in earlier releases. Fixed a fault when using the -g or -d options if the FADT was not found. Fixed an issue with the Windows version of the compiler where later versions of Windows place the FADT in the registry under the name "FADT" and not "FACP" as earlier versions did. This applies when using the -g or - d options. The compiler now looks for both strings as necessary. Fixed a problem with compiler namepath optimization where a namepath within the Scope() operator could not be optimized if the namepath was a subpath of the current scope path. ---------------------------------------- 27 May 2004. Summary of changes for version 20040527: 1) ACPI CA Core Subsystem: Completed a new design and implementation for EBDA (Extended BIOS Data Area) support in the RSDP scan code. The original code improperly scanned for the EBDA by simply scanning from memory location 0 to 0x400. The correct method is to first obtain the EBDA pointer from within the BIOS data area, then scan 1K of memory starting at the EBDA pointer. There appear to be few if any machines that place the RSDP in the EBDA, however. Integrated a fix for a possible fault during evaluation of BufferField arguments. Obsolete code that was causing the problem was removed. Found and fixed a problem in the Field Support Code where data could be corrupted on a bit field read that starts on an aligned boundary but does not end on an aligned boundary. Merged the read/write "datum length" calculation code into a common procedure. Rolled in a couple of changes to the FreeBSD-specific header. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.6K Code, 11.5K Data, 89.1K Total Debug Version: 163.2K Code, 67.2K Data, 230.4K Total Current Release: Non-Debug Version: 77.7K Code, 11.5K Data, 89.2K Total Debug Version: 163.3K Code, 67.2K Data, 230.5K Total 2) iASL Compiler/Disassembler: Fixed a generation warning produced by some overly-verbose compilers for a 64-bit constant. ---------------------------------------- 14 May 2004. Summary of changes for version 20040514: 1) ACPI CA Core Subsystem: Fixed a problem where hardware GPE enable bits sometimes not set properly during and after GPE method execution. Result of 04/27 changes. Removed extra "clear all GPEs" when sleeping/waking. Removed AcpiHwEnableGpe and AcpiHwDisableGpe, replaced by the single AcpiHwWriteGpeEnableReg. Changed a couple of calls to the functions above to the new AcpiEv* calls as appropriate. ACPI_OS_NAME was removed from the OS-specific headers. The default name is now "Microsoft Windows NT" for maximum compatibility. However this can be changed by modifying the acconfig.h file. Allow a single invocation of AcpiInstallNotifyHandler for a handler that traps both types of notifies (System, Device). Use ACPI_ALL_NOTIFY flag. Run _INI methods on ThermalZone objects. This is against the ACPI specification, but there is apparently ASL code in the field that has these _INI methods, and apparently "other" AML interpreters execute them. Performed a full 16/32/64 bit lint that resulted in some small changes. Added a sleep simulation command to the AML debugger to test sleep code. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.6K Code, 11.5K Data, 89.1K Total Debug Version: 162.9K Code, 67.0K Data, 229.9K Total Current Release: Non-Debug Version: 77.6K Code, 11.5K Data, 89.1K Total Debug Version: 163.2K Code, 67.2K Data, 230.4K Total ---------------------------------------- 27 April 2004. Summary of changes for version 20040427: 1) ACPI CA Core Subsystem: Completed a major overhaul of the GPE handling within ACPI CA. There are now three types of GPEs: wake-only, runtime-only, and combination wake/run. The only GPEs allowed to be combination wake/run are for button-style devices such as a control-method power button, control-method sleep button, or a notebook lid switch. GPEs that have an _Lxx or _Exx method and are not referenced by any _PRW methods are marked for "runtime" and hardware enabled. Any GPE that is referenced by a _PRW method is marked for "wake" (and disabled at runtime). However, at sleep time, only those GPEs that have been specifically enabled for wake via the AcpiEnableGpe interface will actually be hardware enabled. A new external interface has been added, AcpiSetGpeType(), that is meant to be used by device drivers to force a GPE to a particular type. It will be especially useful for the drivers for the button devices mentioned above. Completed restructuring of the ACPI CA initialization sequence so that default operation region handlers are installed before GPEs are initialized and the _PRW methods are executed. This will prevent errors when the _PRW methods attempt to access system memory or I/O space. GPE enable/disable no longer reads the GPE enable register. We now keep the enable info for runtime and wake separate and in the GPE_EVENT_INFO. We thus no longer depend on the hardware to maintain these bits. Always clear the wake status and fixed/GPE status bits before sleep, even for state S5. Improved the AML debugger output for displaying the GPE blocks and their current status. Added new strings for the _OSI method, of the form "Windows 2001 SPx" where x = 0,1,2,3,4. Fixed a problem where the physical address was incorrectly calculated when the Load() operator was used to directly load from an Operation Region (vs. loading from a Field object.) Also added check for minimum table length for this case. Fix for multiple mutex acquisition. Restore original thread SyncLevel on mutex release. Added ACPI_VALID_SXDS flag to the AcpiGetObjectInfo interface for consistency with the other fields returned. Shrunk the ACPI_GPE_EVENT_INFO structure by 40%. There is one such structure for each GPE in the system, so the size of this structure is important. CPU stack requirement reduction: Cleaned up the method execution and object evaluation paths so that now a parameter structure is passed, instead of copying the various method parameters over and over again. In evregion.c: Correctly exit and reenter the interpreter region if and only if dispatching an operation region request to a user-installed handler. Do not exit/reenter when dispatching to a default handler (e.g., default system memory or I/O handlers) Notes for updating drivers for the new GPE support. The following changes must be made to ACPI-related device drivers that are attached to one or more GPEs: (This information will be added to the ACPI CA Programmer Reference.) 1) AcpiInstallGpeHandler no longer automatically enables the GPE, you must explicitly call AcpiEnableGpe. 2) There is a new interface called AcpiSetGpeType. This should be called before enabling the GPE. Also, this interface will automatically disable the GPE if it is currently enabled. 3) AcpiEnableGpe no longer supports a GPE type flag. Specific drivers that must be changed: 1) EC driver: AcpiInstallGpeHandler (NULL, GpeNum, ACPI_GPE_EDGE_TRIGGERED, AeGpeHandler, NULL); AcpiSetGpeType (NULL, GpeNum, ACPI_GPE_TYPE_RUNTIME); AcpiEnableGpe (NULL, GpeNum, ACPI_NOT_ISR); 2) Button Drivers (Power, Lid, Sleep): Run _PRW method under parent device If _PRW exists: /* This is a control-method button */ Extract GPE number and possibly GpeDevice AcpiSetGpeType (GpeDevice, GpeNum, ACPI_GPE_TYPE_WAKE_RUN); AcpiEnableGpe (GpeDevice, GpeNum, ACPI_NOT_ISR); For all other devices that have _PRWs, we automatically set the GPE type to ACPI_GPE_TYPE_WAKE, but the GPE is NOT automatically (wake) enabled. This must be done on a selective basis, usually requiring some kind of user app to allow the user to pick the wake devices. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 77.0K Code, 11.4K Data, 88.4K Total Debug Version: 161.0K Code, 66.3K Data, 227.3K Total Current Release: Non-Debug Version: 77.6K Code, 11.5K Data, 89.1K Total Debug Version: 162.9K Code, 67.0K Data, 229.9K Total ---------------------------------------- 02 April 2004. Summary of changes for version 20040402: 1) ACPI CA Core Subsystem: Fixed an interpreter problem where an indirect store through an ArgX parameter was incorrectly applying the "implicit conversion rules" during the store. From the ACPI specification: "If the target is a method local or argument (LocalX or ArgX), no conversion is performed and the result is stored directly to the target". The new behavior is to disable implicit conversion during ALL stores to an ArgX. Changed the behavior of the _PRW method scan to ignore any and all errors returned by a given _PRW. This prevents the scan from aborting from the failure of any single _PRW. Moved the runtime configuration parameters from the global init procedure to static variables in acglobal.h. This will allow the host to override the default values easily. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.9K Code, 11.4K Data, 88.3K Total Debug Version: 160.8K Code, 66.1K Data, 226.9K Total Current Release: Non-Debug Version: 77.0K Code, 11.4K Data, 88.4K Total Debug Version: 161.0K Code, 66.3K Data, 227.3K Total 2) iASL Compiler/Disassembler: iASL now fully disassembles SSDTs. However, External() statements are not generated automatically for unresolved symbols at this time. This is a planned feature for future implementation. Fixed a scoping problem in the disassembler that occurs when the type of the target of a Scope() operator is overridden. This problem caused an incorrectly nested internal namespace to be constructed. Any warnings or errors that are emitted during disassembly are now commented out automatically so that the resulting file can be recompiled without any hand editing. ---------------------------------------- 26 March 2004. Summary of changes for version 20040326: 1) ACPI CA Core Subsystem: Implemented support for "wake" GPEs via interaction between GPEs and the _PRW methods. Every GPE that is pointed to by one or more _PRWs is identified as a WAKE GPE and by default will no longer be enabled at runtime. Previously, we were blindly enabling all GPEs with a corresponding _Lxx or _Exx method - but most of these turn out to be WAKE GPEs anyway. We believe this has been the cause of thousands of "spurious" GPEs on some systems. This new GPE behavior is can be reverted to the original behavior (enable ALL GPEs at runtime) via a runtime flag. Fixed a problem where aliased control methods could not access objects properly. The proper scope within the namespace was not initialized (transferred to the target of the aliased method) before executing the target method. Fixed a potential race condition on internal object deletion on the return object in AcpiEvaluateObject. Integrated a fix for resource descriptors where both _MEM and _MTP were being extracted instead of just _MEM. (i.e. bitmask was incorrectly too wide, 0x0F instead of 0x03.) Added a special case for ACPI_ROOT_OBJECT in AcpiUtGetNodeName, preventing a fault in some cases. Updated Notify() values for debug statements in evmisc.c Return proper status from AcpiUtMutexInitialize, not just simply AE_OK. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 76.5K Code, 11.3K Data, 87.8K Total Debug Version: 160.3K Code, 66.0K Data, 226.3K Total Current Release: Non-Debug Version: 76.9K Code, 11.4K Data, 88.3K Total Debug Version: 160.8K Code, 66.1K Data, 226.9K Total ---------------------------------------- 11 March 2004. Summary of changes for version 20040311: 1) ACPI CA Core Subsystem: Fixed a problem where errors occurring during the parse phase of control method execution did not abort cleanly. For example, objects created and installed in the namespace were not deleted. This caused all subsequent invocations of the method to return the AE_ALREADY_EXISTS exception. Implemented a mechanism to force a control method to "Serialized" execution if the method attempts to create namespace objects. (The root of the AE_ALREADY_EXISTS problem.) Implemented support for the predefined _OSI "internal" control method. Initial supported strings are "Linux", "Windows 2000", "Windows 2001", and "Windows 2001.1", and can be easily upgraded for new strings as necessary. This feature will allow "other" operating systems to execute the fully tested, "Windows" code path through the ASL code Global Lock Support: Now allows multiple acquires and releases with any internal thread. Removed concept of "owning thread" for this special mutex. Fixed two functions that were inappropriately declaring large objects on the CPU stack: PsParseLoop, NsEvaluateRelative. Reduces the stack usage during method execution considerably. Fixed a problem in the ACPI 2.0 FACS descriptor (actbl2.h) where the S4Bios_f field was incorrectly defined as UINT32 instead of UINT32_BIT. Fixed a problem where AcpiEvGpeDetect would fault if there were no GPEs defined on the machine. Implemented two runtime options: One to force all control method execution to "Serialized" to mimic Windows behavior, another to disable _OSI support if it causes problems on a given machine. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 74.8K Code, 10.1K Data, 84.9K Total Debug Version: 158.7K Code, 65.1K Data, 223.8K Total Current Release: Non-Debug Version: 76.5K Code, 11.3K Data, 87.8K Total Debug Version: 160.3K Code, 66.0K Data, 226.3K Total 2) iASL Compiler/Disassembler: Fixed an array size problem for FreeBSD that would cause the compiler to fault. ---------------------------------------- 20 February 2004. Summary of changes for version 20040220: 1) ACPI CA Core Subsystem: Implemented execution of _SxD methods for Device objects in the GetObjectInfo interface. Fixed calls to _SST method to pass the correct arguments. Added a call to _SST on wake to restore to "working" state. Check for End-Of-Buffer failure case in the WalkResources interface. Integrated fix for 64-bit alignment issue in acglobal.h by moving two structures to the beginning of the file. After wake, clear GPE status register(s) before enabling GPEs. After wake, clear/enable power button. (Perhaps we should clear/enable all fixed events upon wake.) Fixed a couple of possible memory leaks in the Namespace manager. Integrated latest acnetbsd.h file. ---------------------------------------- 11 February 2004. Summary of changes for version 20040211: 1) ACPI CA Core Subsystem: Completed investigation and implementation of the call-by-reference mechanism for control method arguments. Fixed a problem where a store of an object into an indexed package could fail if the store occurs within a different method than the method that created the package. Fixed a problem where the ToDecimal operator could return incorrect results. Fixed a problem where the CopyObject operator could fail on some of the more obscure objects (e.g., Reference objects.) Improved the output of the Debug object to display buffer, package, and index objects. Fixed a problem where constructs of the form "RefOf (ArgX)" did not return the expected result. Added permanent ACPI_REPORT_ERROR macros for all instances of the ACPI_AML_INTERNAL exception. Integrated latest version of acfreebsd.h ---------------------------------------- 16 January 2004. Summary of changes for version 20040116: The purpose of this release is primarily to update the copyright years in each module, thus causing a huge number of diffs. There are a few small functional changes, however. 1) ACPI CA Core Subsystem: Improved error messages when there is a problem finding one or more of the required base ACPI tables Reintroduced the definition of APIC_HEADER in actbl.h Changed definition of MADT_ADDRESS_OVERRIDE to 64 bits (actbl.h) Removed extraneous reference to NewObj in dsmthdat.c 2) iASL compiler Fixed a problem introduced in December that disabled the correct disassembly of Resource Templates ---------------------------------------- 03 December 2003. Summary of changes for version 20031203: 1) ACPI CA Core Subsystem: Changed the initialization of Operation Regions during subsystem init to perform two entire walks of the ACPI namespace; The first to initialize the regions themselves, the second to execute the _REG methods. This fixed some interdependencies across _REG methods found on some machines. Fixed a problem where a Store(Local0, Local1) could simply update the object reference count, and not create a new copy of the object if the Local1 is uninitialized. Implemented support for the _SST reserved method during sleep transitions. Implemented support to clear the SLP_TYP and SLP_EN bits when waking up, this is apparently required by some machines. When sleeping, clear the wake status only if SleepState is not S5. Fixed a problem in AcpiRsExtendedIrqResource() where an incorrect pointer arithmetic advanced a string pointer too far. Fixed a problem in AcpiTbGetTablePtr() where a garbage pointer could be returned if the requested table has not been loaded. Within the support for IRQ resources, restructured the handling of the active and edge/level bits. Fixed a few problems in AcpiPsxExecute() where memory could be leaked under certain error conditions. Improved error messages for the cases where the ACPI mode could not be entered. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (20031029): Non-Debug Version: 74.4K Code, 10.1K Data, 84.5K Total Debug Version: 158.3K Code, 65.0K Data, 223.3K Total Current Release: Non-Debug Version: 74.8K Code, 10.1K Data, 84.9K Total Debug Version: 158.7K Code, 65.1K Data, 223.8K Total 2) iASL Compiler/Disassembler: Implemented a fix for the iASL disassembler where a bad index was generated. This was most noticeable on 64-bit platforms ---------------------------------------- 29 October 2003. Summary of changes for version 20031029: 1) ACPI CA Core Subsystem: Fixed a problem where a level-triggered GPE with an associated _Lxx control method was incorrectly cleared twice. Fixed a problem with the Field support code where an access can occur beyond the end-of-region if the field is non-aligned but extends to the very end of the parent region (resulted in an AE_AML_REGION_LIMIT exception.) Fixed a problem with ACPI Fixed Events where an RT Clock handler would not get invoked on an RTC event. The RTC event bitmasks for the PM1 registers were not being initialized properly. Implemented support for executing _STA and _INI methods for Processor objects. Although this is currently not part of the ACPI specification, there is existing ASL code that depends on the init-time execution of these methods. Implemented and deployed a GetDescriptorName function to decode the various types of internal descriptors. Guards against null descriptors during debug output also. Implemented and deployed a GetNodeName function to extract the 4- character namespace node name. This function simplifies the debug and error output, as well as guarding against null pointers during output. Implemented and deployed the ACPI_FORMAT_UINT64 helper macro to simplify the debug and error output of 64-bit integers. This macro replaces the HIDWORD and LODWORD macros for dumping these integers. Updated the implementation of the Stall() operator to only call AcpiOsStall(), and also return an error if the operand is larger than 255. This preserves the required behavior of not relinquishing the processor, as would happen if AcpiOsSleep() was called for "long stalls". Constructs of the form "Store(LocalX,LocalX)" where LocalX is not initialized are now treated as NOOPs. Cleaned up a handful of warnings during 64-bit generation. Fixed a reported error where and incorrect GPE number was passed to the GPE dispatch handler. This value is only used for error output, however. Used this opportunity to clean up and streamline the GPE dispatch code. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (20031002): Non-Debug Version: 74.1K Code, 9.7K Data, 83.8K Total Debug Version: 157.9K Code, 64.8K Data, 222.7K Total Current Release: Non-Debug Version: 74.4K Code, 10.1K Data, 84.5K Total Debug Version: 158.3K Code, 65.0K Data, 223.3K Total 2) iASL Compiler/Disassembler: Updated the iASL compiler to return an error if the operand to the Stall() operator is larger than 255. ---------------------------------------- 02 October 2003. Summary of changes for version 20031002: 1) ACPI CA Core Subsystem: Fixed a problem with Index Fields where the index was not incremented for fields that require multiple writes to the index/data registers (Fields that are wider than the data register.) Fixed a problem with all Field objects where a write could go beyond the end-of-field if the field was larger than the access granularity and therefore required multiple writes to complete the request. An extra write beyond the end of the field could happen inadvertently. Fixed a problem with Index Fields where a BUFFER_OVERFLOW error would incorrectly be returned if the width of the Data Register was larger than the specified field access width. Completed fixes for LoadTable() and Unload() and verified their operation. Implemented full support for the "DdbHandle" object throughout the ACPI CA subsystem. Implemented full support for the MADT and ECDT tables in the ACPI CA header files. Even though these tables are not directly consumed by ACPI CA, the header definitions are useful for ACPI device drivers. Integrated resource descriptor fixes posted to the Linux ACPI list. This included checks for minimum descriptor length, and support for trailing NULL strings within descriptors that have optional string elements. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (20030918): Non-Debug Version: 73.9K Code, 9.7K Data, 83.6K Total Debug Version: 157.3K Code, 64.5K Data, 221.8K Total Current Release: Non-Debug Version: 74.1K Code, 9.7K Data, 83.8K Total Debug Version: 157.9K Code, 64.8K Data, 222.7K Total 2) iASL Compiler: Implemented detection of non-ASCII characters within the input source ASL file. This catches attempts to compile binary (AML) files early in the compile, with an informative error message. Fixed a problem where the disassembler would fault if the output filename could not be generated or if the output file could not be opened. ---------------------------------------- 18 September 2003. Summary of changes for version 20030918: 1) ACPI CA Core Subsystem: Found and fixed a longstanding problem with the late execution of the various deferred AML opcodes (such as Operation Regions, Buffer Fields, Buffers, and Packages). If the name string specified for the name of the new object placed the object in a scope other than the current scope, the initialization/execution of the opcode failed. The solution to this problem was to implement a mechanism where the late execution of such opcodes does not attempt to lookup/create the name a second time in an incorrect scope. This fixes the "region size computed incorrectly" problem. Fixed a call to AcpiHwRegisterWrite in hwregs.c that was causing a Global Lock AE_BAD_PARAMETER error. Fixed several 64-bit issues with prototypes, casting and data types. Removed duplicate prototype from acdisasm.h Fixed an issue involving EC Operation Region Detach (Shaohua Li) Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release: Non-Debug Version: 73.7K Code, 9.7K Data, 83.4K Total Debug Version: 156.9K Code, 64.2K Data, 221.1K Total Current Release: Non-Debug Version: 73.9K Code, 9.7K Data, 83.6K Total Debug Version: 157.3K Code, 64.5K Data, 221.8K Total 2) Linux: Fixed the AcpiOsSleep implementation in osunixxf.c to pass the correct sleep time in seconds. ---------------------------------------- 14 July 2003. Summary of changes for version 20030619: 1) ACPI CA Core Subsystem: Parse SSDTs in order discovered, as opposed to reverse order (Hrvoje Habjanic) Fixes from FreeBSD and NetBSD. (Frank van der Linden, Thomas Klausner, Nate Lawson) 2) Linux: Dynamically allocate SDT list (suggested by Andi Kleen) proc function return value cleanups (Andi Kleen) Correctly handle NMI watchdog during long stalls (Andrew Morton) Make it so acpismp=force works (reported by Andrew Morton) ---------------------------------------- 19 June 2003. Summary of changes for version 20030619: 1) ACPI CA Core Subsystem: Fix To/FromBCD, eliminating the need for an arch-specific #define. Do not acquire a semaphore in the S5 shutdown path. Fix ex_digits_needed for 0. (Takayoshi Kochi) Fix sleep/stall code reversal. (Andi Kleen) Revert a change having to do with control method calling semantics. 2) Linux: acpiphp update (Takayoshi Kochi) Export acpi_disabled for sonypi (Stelian Pop) Mention acpismp=force in config help Re-add acpitable.c and acpismp=force. This improves backwards compatibility and also cleans up the code to a significant degree. Add ASUS Value-add driver (Karol Kozimor and Julien Lerouge) ---------------------------------------- 22 May 2003. Summary of changes for version 20030522: 1) ACPI CA Core Subsystem: Found and fixed a reported problem where an AE_NOT_FOUND error occurred occasionally during _BST evaluation. This turned out to be an Owner ID allocation issue where a called method did not get a new ID assigned to it. Eventually, (after 64k calls), the Owner ID UINT16 would wraparound so that the ID would be the same as the caller's and the called method would delete the caller's namespace. Implemented extended error reporting for control methods that are aborted due to a run-time exception. Output includes the exact AML instruction that caused the method abort, a dump of the method locals and arguments at the time of the abort, and a trace of all nested control method calls. Modified the interpreter to allow the creation of buffers of zero length from the AML code. Implemented new code to ensure that no attempt is made to actually allocate a memory buffer (of length zero) - instead, a simple buffer object with a NULL buffer pointer and length zero is created. A warning is no longer issued when the AML attempts to create a zero-length buffer. Implemented a workaround for the "leading asterisk issue" in _HIDs, _UIDs, and _CIDs in the AML interpreter. One leading asterisk is automatically removed if present in any HID, UID, or CID strings. The iASL compiler will still flag this asterisk as an error, however. Implemented full support for _CID methods that return a package of multiple CIDs (Compatible IDs). The AcpiGetObjectInfo() interface now additionally returns a device _CID list if present. This required a change to the external interface in order to pass an ACPI_BUFFER object as a parameter since the _CID list is of variable length. Fixed a problem with the new AE_SAME_HANDLER exception where handler initialization code did not know about this exception. Code and Data Size: Current and previous core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (20030509): Non-Debug Version: 73.4K Code, 9.7K Data, 83.1K Total Debug Version: 156.1K Code, 63.9K Data, 220.0K Total Current Release: Non-Debug Version: 73.7K Code, 9.7K Data, 83.4K Total Debug Version: 156.9K Code, 64.2K Data, 221.1K Total 2) Linux: Fixed a bug in which we would reinitialize the ACPI interrupt after it was already working, thus disabling all ACPI and the IRQs for any other device sharing the interrupt. (Thanks to Stian Jordet) Toshiba driver update (John Belmonte) Return only 0 or 1 for our interrupt handler status (Andrew Morton) 3) iASL Compiler: Fixed a reported problem where multiple (nested) ElseIf() statements were not handled correctly by the compiler, resulting in incorrect warnings and incorrect AML code. This was a problem in both the ASL parser and the code generator. 4) Documentation: Added changes to existing interfaces, new exception codes, and new text concerning reference count object management versus garbage collection. ---------------------------------------- 09 May 2003. Summary of changes for version 20030509. 1) ACPI CA Core Subsystem: Changed the subsystem initialization sequence to hold off installation of address space handlers until the hardware has been initialized and the system has entered ACPI mode. This is because the installation of space handlers can cause _REG methods to be run. Previously, the _REG methods could potentially be run before ACPI mode was enabled. Fixed some memory leak issues related to address space handler and notify handler installation. There were some problems with the reference count mechanism caused by the fact that the handler objects are shared across several namespace objects. Fixed a reported problem where reference counts within the namespace were not properly updated when named objects created by method execution were deleted. Fixed a reported problem where multiple SSDTs caused a deletion issue during subsystem termination. Restructured the table data structures to simplify the linked lists and the related code. Fixed a problem where the table ID associated with secondary tables (SSDTs) was not being propagated into the namespace objects created by those tables. This would only present a problem for tables that are unloaded at run-time, however. Updated AcpiOsReadable and AcpiOsWritable to use the ACPI_SIZE type as the length parameter (instead of UINT32). Solved a long-standing problem where an ALREADY_EXISTS error appears on various systems. This problem could happen when there are multiple PCI_Config operation regions under a single PCI root bus. This doesn't happen very frequently, but there are some systems that do this in the ASL. Fixed a reported problem where the internal DeleteNode function was incorrectly handling the case where a namespace node was the first in the parent's child list, and had additional peers (not the only child, but first in the list of children.) Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 73.7K Code, 9.5K Data, 83.2K Total Debug Version: 156.1K Code, 63.6K Data, 219.7K Total Current Release: Non-Debug Version: 73.4K Code, 9.7K Data, 83.1K Total Debug Version: 156.1K Code, 63.9K Data, 220.0K Total 2) Linux: Allow ":" in OS override string (Ducrot Bruno) Kobject fix (Greg KH) 3 iASL Compiler/Disassembler: Fixed a problem in the generation of the C source code files (AML is emitted in C source statements for BIOS inclusion) where the Ascii dump that appears within a C comment at the end of each line could cause a compile time error if the AML sequence happens to have an open comment or close comment sequence embedded. ---------------------------------------- 24 April 2003. Summary of changes for version 20030424. 1) ACPI CA Core Subsystem: Support for big-endian systems has been implemented. Most of the support has been invisibly added behind big-endian versions of the ACPI_MOVE_* macros. Fixed a problem in AcpiHwDisableGpeBlock() and AcpiHwClearGpeBlock() where an incorrect offset was passed to the low level hardware write routine. The offset parameter was actually eliminated from the low level read/write routines because they had become obsolete. Fixed a problem where a handler object was deleted twice during the removal of a fixed event handler. 2) Linux: A fix for SMP systems with link devices was contributed by Compaq's Dan Zink. (2.5) Return whether we handled the interrupt in our IRQ handler. (Linux ISRs no longer return void, so we can propagate the handler return value from the ACPI CA core back to the OS.) 3) Documentation: The ACPI CA Programmer Reference has been updated to reflect new interfaces and changes to existing interfaces. ---------------------------------------- 28 March 2003. Summary of changes for version 20030328. 1) ACPI CA Core Subsystem: The GPE Block Device support has been completed. New interfaces are AcpiInstallGpeBlock and AcpiRemoveGpeBlock. The Event interfaces (enable, disable, clear, getstatus) have been split into separate interfaces for Fixed Events and General Purpose Events (GPEs) in order to support GPE Block Devices properly. Fixed a problem where the error message "Failed to acquire semaphore" would appear during operations on the embedded controller (EC). Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 72.3K Code, 9.5K Data, 81.8K Total Debug Version: 154.0K Code, 63.4K Data, 217.4K Total Current Release: Non-Debug Version: 73.7K Code, 9.5K Data, 83.2K Total Debug Version: 156.1K Code, 63.6K Data, 219.7K Total ---------------------------------------- 28 February 2003. Summary of changes for version 20030228. 1) ACPI CA Core Subsystem: The GPE handling and dispatch code has been completely overhauled in preparation for support of GPE Block Devices (ID ACPI0006). This affects internal data structures and code only; there should be no differences visible externally. One new file has been added, evgpeblk.c The FADT fields GPE0_BLK_LEN and GPE1_BLK_LEN are now the only fields that are used to determine the GPE block lengths. The REGISTER_BIT_WIDTH field of the X_GPEx_BLK extended address structures are ignored. This is per the ACPI specification but it isn't very clear. The full 256 Block 0/1 GPEs are now supported (the use of REGISTER_BIT_WIDTH limited the number of GPEs to 128). In the SCI interrupt handler, removed the read of the PM1_CONTROL register to look at the SCI_EN bit. On some machines, this read causes an SMI event and greatly slows down SCI events. (This may in fact be the cause of slow battery status response on some systems.) Fixed a problem where a store of a NULL string to a package object could cause the premature deletion of the object. This was seen during execution of the battery _BIF method on some systems, resulting in no battery data being returned. Added AcpiWalkResources interface to simplify parsing of resource lists. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 72.0K Code, 9.5K Data, 81.5K Total Debug Version: 153.0K Code, 62.9K Data, 215.9K Total Current Release: Non-Debug Version: 72.3K Code, 9.5K Data, 81.8K Total Debug Version: 154.0K Code, 63.4K Data, 217.4K Total 2) Linux S3 fixes (Ole Rohne) Update ACPI PHP driver with to use new acpi_walk_resource API (Bjorn Helgaas) Add S4BIOS support (Pavel Machek) Map in entire table before performing checksum (John Stultz) Expand the mem= cmdline to allow the specification of reserved and ACPI DATA blocks (Pavel Machek) Never use ACPI on VISWS Fix derive_pci_id (Ducrot Bruno, Alvaro Lopez) Revert a change that allowed P_BLK lengths to be 4 or 5. This is causing us to think that some systems support C2 when they really don't. Do not count processor objects for non-present CPUs (Thanks to Dominik Brodowski) 3) iASL Compiler: Fixed a problem where ASL include files could not be found and opened. Added support for the _PDC reserved name. ---------------------------------------- 22 January 2003. Summary of changes for version 20030122. 1) ACPI CA Core Subsystem: Added a check for constructs of the form: Store (Local0, Local0) where Local0 is not initialized. Apparently, some BIOS programmers believe that this is a NOOP. Since this store doesn't do anything anyway, the new prototype behavior will ignore this error. This is a case where we can relax the strict checking in the interpreter in the name of compatibility. 2) Linux The AcpiSrc Source Conversion Utility has been released with the Linux package for the first time. This is the utility that is used to convert the ACPI CA base source code to the Linux version. (Both) Handle P_BLK lengths shorter than 6 more gracefully (Both) Move more headers to include/acpi, and delete an unused header. (Both) Move drivers/acpi/include directory to include/acpi (Both) Boot functions don't use cmdline, so don't pass it around (Both) Remove include of unused header (Adrian Bunk) (Both) acpiphp.h includes both linux/acpi.h and acpi_bus.h. Since the former now also includes the latter, acpiphp.h only needs the one, now. (2.5) Make it possible to select method of bios restoring after S3 resume. [=> no more ugly ifdefs] (Pavel Machek) (2.5) Make proc write interfaces work (Pavel Machek) (2.5) Properly init/clean up in cpufreq/acpi (Dominik Brodowski) (2.5) Break out ACPI Perf code into its own module, under cpufreq (Dominik Brodowski) (2.4) S4BIOS support (Ducrot Bruno) (2.4) Fix acpiphp_glue.c for latest ACPI struct changes (Sergio Visinoni) 3) iASL Compiler: Added support to disassemble SSDT and PSDTs. Implemented support to obtain SSDTs from the Windows registry if available. ---------------------------------------- 09 January 2003. Summary of changes for version 20030109. 1) ACPI CA Core Subsystem: Changed the behavior of the internal Buffer-to-String conversion function. The current ACPI specification states that the contents of the buffer are "converted to a string of two-character hexadecimal numbers, each separated by a space". Unfortunately, this definition is not backwards compatible with existing ACPI 1.0 implementations (although the behavior was not defined in the ACPI 1.0 specification). The new behavior simply copies data from the buffer to the string until a null character is found or the end of the buffer is reached. The new String object is always null terminated. This problem was seen during the generation of _BIF battery data where incorrect strings were returned for battery type, etc. This will also require an errata to the ACPI specification. Renamed all instances of NATIVE_UINT and NATIVE_INT to ACPI_NATIVE_UINT and ACPI_NATIVE_INT, respectively. Copyright in all module headers (both Linux and non-Linux) has be updated to 2003. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 72.0K Code, 9.5K Data, 81.5K Total Debug Version: 153.0K Code, 62.9K Data, 215.9K Total Current Release: Non-Debug Version: 72.0K Code, 9.5K Data, 81.5K Total Debug Version: 153.0K Code, 62.9K Data, 215.9K Total 2) Linux Fixed an oops on module insertion/removal (Matthew Tippett) (2.4) Fix to handle dynamic size of mp_irqs (Joerg Prante) (2.5) Replace pr_debug (Randy Dunlap) (2.5) Remove usage of CPUFREQ_ALL_CPUS (Dominik Brodowski) (Both) Eliminate spawning of thread from timer callback, in favor of schedule_work() (Both) Show Lid status in /proc (Zdenek OGAR Skalak) (Both) Added define for Fixed Function HW region (Matthew Wilcox) (Both) Add missing statics to button.c (Pavel Machek) Several changes have been made to the source code translation utility that generates the Linux Code in order to make the code more "Linux-like": All typedefs on structs and unions have been removed in keeping with the Linux coding style. Removed the non-Linux SourceSafe module revision number from each module header. Completed major overhaul of symbols to be lowercased for linux. Doubled the number of symbols that are lowercased. Fixed a problem where identifiers within procedure headers and within quotes were not fully lower cased (they were left with a starting capital.) Some C macros whose only purpose is to allow the generation of 16- bit code are now completely removed in the Linux code, increasing readability and maintainability. ---------------------------------------- 12 December 2002. Summary of changes for version 20021212. 1) ACPI CA Core Subsystem: Fixed a problem where the creation of a zero-length AML Buffer would cause a fault. Fixed a problem where a Buffer object that pointed to a static AML buffer (in an ACPI table) could inadvertently be deleted, causing memory corruption. Fixed a problem where a user buffer (passed in to the external ACPI CA interfaces) could be overwritten if the buffer was too small to complete the operation, causing memory corruption. Fixed a problem in the Buffer-to-String conversion code where a string of length one was always returned, regardless of the size of the input Buffer object. Removed the NATIVE_CHAR data type across the entire source due to lack of need and lack of consistent use. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 72.1K Code, 9.5K Data, 81.6K Total Debug Version: 152.7K Code, 62.7K Data, 215.4K Total Current Release: Non-Debug Version: 72.0K Code, 9.5K Data, 81.5K Total Debug Version: 153.0K Code, 62.9K Data, 215.9K Total ---------------------------------------- 05 December 2002. Summary of changes for version 20021205. 1) ACPI CA Core Subsystem: Fixed a problem where a store to a String or Buffer object could cause corruption of the DSDT if the object type being stored was the same as the target object type and the length of the object being stored was equal to or smaller than the original (existing) target object. This was seen to cause corruption of battery _BIF buffers if the _BIF method modified the buffer on the fly. Fixed a problem where an internal error was generated if a control method invocation was used in an OperationRegion, Buffer, or Package declaration. This was caused by the deferred parsing of the control method and thus the deferred creation of the internal method object. The solution to this problem was to create the internal method object at the moment the method is encountered in the first pass - so that subsequent references to the method will able to obtain the required parameter count and thus properly parse the method invocation. This problem presented itself as an AE_AML_INTERNAL during the pass 1 parse phase during table load. Fixed a problem where the internal String object copy routine did not always allocate sufficient memory for the target String object and caused memory corruption. This problem was seen to cause "Allocation already present in list!" errors as memory allocation became corrupted. Implemented a new function for the evaluation of namespace objects that allows the specification of the allowable return object types. This simplifies a lot of code that checks for a return object of one or more specific objects returned from the evaluation (such as _STA, etc.) This may become and external function if it would be useful to ACPI-related drivers. Completed another round of prefixing #defines with "ACPI_" for clarity. Completed additional code restructuring to allow more modular linking for iASL compiler and AcpiExec. Several files were split creating new files. New files: nsparse.c dsinit.c evgpe.c Implemented an abort mechanism to terminate an executing control method via the AML debugger. This feature is useful for debugging control methods that depend (wait) for specific hardware responses. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 71.4K Code, 9.0K Data, 80.4K Total Debug Version: 152.9K Code, 63.3K Data, 216.2K Total Current Release: Non-Debug Version: 72.1K Code, 9.5K Data, 81.6K Total Debug Version: 152.7K Code, 62.7K Data, 215.4K Total 2) iASL Compiler/Disassembler Fixed a compiler code generation problem for "Interrupt" Resource Descriptors. If specified in the ASL, the optional "Resource Source Index" and "Resource Source" fields were not inserted into the correct location within the AML resource descriptor, creating an invalid descriptor. Fixed a disassembler problem for "Interrupt" resource descriptors. The optional "Resource Source Index" and "Resource Source" fields were ignored. ---------------------------------------- 22 November 2002. Summary of changes for version 20021122. 1) ACPI CA Core Subsystem: Fixed a reported problem where an object stored to a Method Local or Arg was not copied to a new object during the store - the object pointer was simply copied to the Local/Arg. This caused all subsequent operations on the Local/Arg to also affect the original source of the store operation. Fixed a problem where a store operation to a Method Local or Arg was not completed properly if the Local/Arg contained a reference (from RefOf) to a named field. The general-purpose store-to- namespace-node code is now used so that this case is handled automatically. Fixed a problem where the internal object copy routine would cause a protection fault if the object being copied was a Package and contained either 1) a NULL package element or 2) a nested sub- package. Fixed a problem with the GPE initialization that resulted from an ambiguity in the ACPI specification. One section of the specification states that both the address and length of the GPE block must be zero if the block is not supported. Another section implies that only the address need be zero if the block is not supported. The code has been changed so that both the address and the length must be non-zero to indicate a valid GPE block (i.e., if either the address or the length is zero, the GPE block is invalid.) Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 71.3K Code, 9.0K Data, 80.3K Total Debug Version: 152.7K Code, 63.2K Data, 215.5K Total Current Release: Non-Debug Version: 71.4K Code, 9.0K Data, 80.4K Total Debug Version: 152.9K Code, 63.3K Data, 216.2K Total 2) Linux Cleaned up EC driver. Exported an external EC read/write interface. By going through this, other drivers (most notably sonypi) will be able to serialize access to the EC. 3) iASL Compiler/Disassembler Implemented support to optionally generate include files for both ASM and C (the -i switch). This simplifies BIOS development by automatically creating include files that contain external declarations for the symbols that are created within the (optionally generated) ASM and C AML source files. ---------------------------------------- 15 November 2002. Summary of changes for version 20021115. 1) ACPI CA Core Subsystem: Fixed a memory leak problem where an error during resolution of method arguments during a method invocation from another method failed to cleanup properly by deleting all successfully resolved argument objects. Fixed a problem where the target of the Index() operator was not correctly constructed if the source object was a package. This problem has not been detected because the use of a target operand with Index() is very rare. Fixed a problem with the Index() operator where an attempt was made to delete the operand objects twice. Fixed a problem where an attempt was made to delete an operand twice during execution of the CondRefOf() operator if the target did not exist. Implemented the first of perhaps several internal create object functions that create and initialize a specific object type. This consolidates duplicated code wherever the object is created, thus shrinking the size of the subsystem. Implemented improved debug/error messages for errors that occur during nested method invocations. All executing method pathnames are displayed (with the error) as the call stack is unwound - thus simplifying debug. Fixed a problem introduced in the 10/02 release that caused premature deletion of a buffer object if a buffer was used as an ASL operand where an integer operand is required (Thus causing an implicit object conversion from Buffer to Integer.) The change in the 10/02 release was attempting to fix a memory leak (albeit incorrectly.) Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 71.9K Code, 9.1K Data, 81.0K Total Debug Version: 153.1K Code, 63.3K Data, 216.4K Total Current Release: Non-Debug Version: 71.3K Code, 9.0K Data, 80.3K Total Debug Version: 152.7K Code, 63.2K Data, 215.5K Total 2) Linux Changed the implementation of the ACPI semaphores to use down() instead of down_interruptable(). It is important that the execution of ACPI control methods not be interrupted by signals. Methods must run to completion, or the system may be left in an unknown/unstable state. Fixed a compilation error when CONFIG_SOFTWARE_SUSPEND is not set. (Shawn Starr) 3) iASL Compiler/Disassembler Changed the default location of output files. All output files are now placed in the current directory by default instead of in the directory of the source file. This change may affect some existing makefiles, but it brings the behavior of the compiler in line with other similar tools. The location of the output files can be overridden with the -p command line switch. ---------------------------------------- 11 November 2002. Summary of changes for version 20021111. 0) ACPI Specification 2.0B is released and is now available at: http://www.acpi.info/index.html 1) ACPI CA Core Subsystem: Implemented support for the ACPI 2.0 SMBus Operation Regions. This includes the early detection and handoff of the request to the SMBus region handler (avoiding all of the complex field support code), and support for the bidirectional return packet from an SMBus write operation. This paves the way for the development of SMBus drivers in each host operating system. Fixed a problem where the semaphore WAIT_FOREVER constant was defined as 32 bits, but must be 16 bits according to the ACPI specification. This had the side effect of causing ASL Mutex/Event timeouts even though the ASL code requested a wait forever. Changed all internal references to the ACPI timeout parameter to 16 bits to prevent future problems. Changed the name of WAIT_FOREVER to ACPI_WAIT_FOREVER. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 71.4K Code, 9.0K Data, 80.4K Total Debug Version: 152.3K Code, 63.0K Data, 215.3K Total Current Release: Non-Debug Version: 71.9K Code, 9.1K Data, 81.0K Total Debug Version: 153.1K Code, 63.3K Data, 216.4K Total 2) Linux Module loading/unloading fixes (John Cagle) 3) iASL Compiler/Disassembler Added support for the SMBBlockProcessCall keyword (ACPI 2.0) Implemented support for the disassembly of all SMBus protocol keywords (SMBQuick, SMBWord, etc.) ---------------------------------------- 01 November 2002. Summary of changes for version 20021101. 1) ACPI CA Core Subsystem: Fixed a problem where platforms that have a GPE1 block but no GPE0 block were not handled correctly. This resulted in a "GPE overlap" error message. GPE0 is no longer required. Removed code added in the previous release that inserted nodes into the namespace in alphabetical order. This caused some side- effects on various machines. The root cause of the problem is still under investigation since in theory, the internal ordering of the namespace nodes should not matter. Enhanced error reporting for the case where a named object is not found during control method execution. The full ACPI namepath (name reference) of the object that was not found is displayed in this case. Note: as a result of the overhaul of the namespace object types in the previous release, the namespace nodes for the predefined scopes (_TZ, _PR, etc.) are now of the type ACPI_TYPE_LOCAL_SCOPE instead of ACPI_TYPE_ANY. This simplifies the namespace management code but may affect code that walks the namespace tree looking for specific object types. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 70.7K Code, 8.6K Data, 79.3K Total Debug Version: 151.7K Code, 62.4K Data, 214.1K Total Current Release: Non-Debug Version: 71.4K Code, 9.0K Data, 80.4K Total Debug Version: 152.3K Code, 63.0K Data, 215.3K Total 2) Linux Fixed a problem introduced in the previous release where the Processor and Thermal objects were not recognized and installed in /proc. This was related to the scope type change described above. 3) iASL Compiler/Disassembler Implemented the -g option to get all of the required ACPI tables from the registry and save them to files (Windows version of the compiler only.) The required tables are the FADT, FACS, and DSDT. Added ACPI table checksum validation during table disassembly in order to catch corrupted tables. ---------------------------------------- 22 October 2002. Summary of changes for version 20021022. 1) ACPI CA Core Subsystem: Implemented a restriction on the Scope operator that the target must already exist in the namespace at the time the operator is encountered (during table load or method execution). In other words, forward references are not allowed and Scope() cannot create a new object. This changes the previous behavior where the interpreter would create the name if not found. This new behavior correctly enables the search-to-root algorithm during namespace lookup of the target name. Because of this upsearch, this fixes the known Compaq _SB_.OKEC problem and makes both the AML interpreter and iASL compiler compatible with other ACPI implementations. Completed a major overhaul of the internal ACPI object types for the ACPI Namespace and the associated operand objects. Many of these types had become obsolete with the introduction of the two- pass namespace load. This cleanup simplifies the code and makes the entire namespace load mechanism much clearer and easier to understand. Improved debug output for tracking scope opening/closing to help diagnose scoping issues. The old scope name as well as the new scope name are displayed. Also improved error messages for problems with ASL Mutex objects and error messages for GPE problems. Cleaned up the namespace dump code, removed obsolete code. All string output (for all namespace/object dumps) now uses the common ACPI string output procedure which handles escapes properly and does not emit non-printable characters. Fixed some issues with constants in the 64-bit version of the local C library (utclib.c) 2) Linux EC Driver: No longer attempts to acquire the Global Lock at interrupt level. 3) iASL Compiler/Disassembler Implemented ACPI 2.0B grammar change that disallows all Type 1 and 2 opcodes outside of a control method. This means that the "executable" operators (versus the "namespace" operators) cannot be used at the table level; they can only be used within a control method. Implemented the restriction on the Scope() operator where the target must already exist in the namespace at the time the operator is encountered (during ASL compilation). In other words, forward references are not allowed and Scope() cannot create a new object. This makes the iASL compiler compatible with other ACPI implementations and makes the Scope() implementation adhere to the ACPI specification. Fixed a problem where namepath optimization for the Alias operator was optimizing the wrong path (of the two namepaths.) This caused a "Missing alias link" error message. Fixed a problem where an "unknown reserved name" warning could be incorrectly generated for names like "_SB" when the trailing underscore is not used in the original ASL. Fixed a problem where the reserved name check did not handle NamePaths with multiple NameSegs correctly. The first nameseg of the NamePath was examined instead of the last NameSeg. ---------------------------------------- 02 October 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem version 20021002: Fixed a problem where a store/copy of a string to an existing string did not always set the string length properly in the String object. Fixed a reported problem with the ToString operator where the behavior was identical to the ToHexString operator instead of just simply converting a raw buffer to a string data type. Fixed a problem where CopyObject and the other "explicit" conversion operators were not updating the internal namespace node type as part of the store operation. Fixed a memory leak during implicit source operand conversion where the original object was not deleted if it was converted to a new object of a different type. Enhanced error messages for all problems associated with namespace lookups. Common procedure generates and prints the lookup name as well as the formatted status. Completed implementation of a new design for the Alias support within the namespace. The existing design did not handle the case where a new object was assigned to one of the two names due to the use of an explicit conversion operator, resulting in the two names pointing to two different objects. The new design simply points the Alias name to the original name node - not to the object. This results in a level of indirection that must be handled in the name resolution mechanism. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 69.6K Code, 8.3K Data, 77.9K Total Debug Version: 150.0K Code, 61.7K Data, 211.7K Total Current Release: Non-Debug Version: 70.7K Code, 8.6K Data, 79.3K Total Debug Version: 151.7K Code, 62.4K Data, 214.1K Total 2) Linux Initialize thermal driver's timer before it is used. (Knut Neumann) Allow handling negative celsius values. (Kochi Takayoshi) Fix thermal management and make trip points. R/W (Pavel Machek) Fix /proc/acpi/sleep. (P. Christeas) IA64 fixes. (David Mosberger) Fix reversed logic in blacklist code. (Sergio Monteiro Basto) Replace ACPI_DEBUG define with ACPI_DEBUG_OUTPUT. (Dominik Brodowski) 3) iASL Compiler/Disassembler Clarified some warning/error messages. ---------------------------------------- 18 September 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem version 20020918: Fixed a reported problem with reference chaining (via the Index() and RefOf() operators) in the ObjectType() and SizeOf() operators. The definition of these operators includes the dereferencing of all chained references to return information on the base object. Fixed a problem with stores to indexed package elements - the existing code would not complete the store if an "implicit conversion" was not performed. In other words, if the existing object (package element) was to be replaced completely, the code didn't handle this case. Relaxed typechecking on the ASL "Scope" operator to allow the target name to refer to an object of type Integer, String, or Buffer, in addition to the scoping object types (Device, predefined Scopes, Processor, PowerResource, and ThermalZone.) This allows existing AML code that has workarounds for a bug in Windows to function properly. A warning is issued, however. This affects both the AML interpreter and the iASL compiler. Below is an example of this type of ASL code: Name(DEB,0x00) Scope(DEB) { Fixed some reported problems with 64-bit integer support in the local implementation of C library functions (clib.c) 2) Linux Use ACPI fix map region instead of IOAPIC region, since it is undefined in non-SMP. Ensure that the SCI has the proper polarity and trigger, even on systems that do not have an interrupt override entry in the MADT. 2.5 big driver reorganization (Pat Mochel) Use early table mapping code from acpitable.c (Andi Kleen) New blacklist entries (Andi Kleen) Blacklist improvements. Split blacklist code out into a separate file. Move checking the blacklist to very early. Previously, we would use ACPI tables, and then halfway through init, check the blacklist -- too late. Now, it's early enough to completely fall- back to non-ACPI. 3) iASL Compiler/Disassembler version 20020918: Fixed a problem where the typechecking code didn't know that an alias could point to a method. In other words, aliases were not being dereferenced during typechecking. ---------------------------------------- 29 August 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020829: If the target of a Scope() operator already exists, it must be an object type that actually opens a scope -- such as a Device, Method, Scope, etc. This is a fatal runtime error. Similar error check has been added to the iASL compiler also. Tightened up the namespace load to disallow multiple names in the same scope. This previously was allowed if both objects were of the same type. (i.e., a lookup was the same as entering a new name). 2) Linux Ensure that the ACPI interrupt has the proper trigger and polarity. local_irq_disable is extraneous. (Matthew Wilcox) Make "acpi=off" actually do what it says, and not use the ACPI interpreter *or* the tables. Added arch-neutral support for parsing SLIT and SRAT tables (Kochi Takayoshi) 3) iASL Compiler/Disassembler Version 20020829: Implemented namepath optimization for name declarations. For example, a declaration like "Method (\_SB_.ABCD)" would get optimized to "Method (ABCD)" if the declaration is within the \_SB_ scope. This optimization is in addition to the named reference path optimization first released in the previous version. This would seem to complete all possible optimizations for namepaths within the ASL/AML. If the target of a Scope() operator already exists, it must be an object type that actually opens a scope -- such as a Device, Method, Scope, etc. Implemented a check and warning for unreachable code in the same block below a Return() statement. Fixed a problem where the listing file was not generated if the compiler aborted if the maximum error count was exceeded (200). Fixed a problem where the typechecking of method return values was broken. This includes the check for a return value when the method is invoked as a TermArg (a return value is expected.) Fixed a reported problem where EOF conditions during a quoted string or comment caused a fault. ---------------------------------------- 15 August 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020815: Fixed a reported problem where a Store to a method argument that contains a reference did not perform the indirect store correctly. This problem was created during the conversion to the new reference object model - the indirect store to a method argument code was not updated to reflect the new model. Reworked the ACPI mode change code to better conform to ACPI 2.0, handle corner cases, and improve code legibility (Kochi Takayoshi) Fixed a problem with the pathname parsing for the carat (^) prefix. The heavy use of the carat operator by the new namepath optimization in the iASL compiler uncovered a problem with the AML interpreter handling of this prefix. In the case where one or more carats precede a single nameseg, the nameseg was treated as standalone and the search rule (to root) was inadvertently applied. This could cause both the iASL compiler and the interpreter to find the wrong object or to miss the error that should occur if the object does not exist at that exact pathname. Found and fixed the problem where the HP Pavilion DSDT would not load. This was a relatively minor tweak to the table loading code (a problem caused by the unexpected encounter with a method invocation not within a control method), but it does not solve the overall issue of the execution of AML code at the table level. This investigation is still ongoing. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 69.1K Code, 8.2K Data, 77.3K Total Debug Version: 149.4K Code, 61.6K Data, 211.0K Total Current Release: Non-Debug Version: 69.6K Code, 8.3K Data, 77.9K Total Debug Version: 150.0K Code, 61.7K Data, 211.7K Total 2) Linux Remove redundant slab.h include (Brad Hards) Fix several bugs in thermal.c (Herbert Nachtnebel) Make CONFIG_ACPI_BOOT work properly (Pavel Machek) Change acpi_system_suspend to use updated irq functions (Pavel Machek) Export acpi_get_firmware_table (Matthew Wilcox) Use proper root proc entry for ACPI (Kochi Takayoshi) Fix early-boot table parsing (Bjorn Helgaas) 3) iASL Compiler/Disassembler Reworked the compiler options to make them more consistent and to use two-letter options where appropriate. We were running out of sensible letters. This may break some makefiles, so check the current options list by invoking the compiler with no parameters. Completed the design and implementation of the ASL namepath optimization option for the compiler. This option optimizes all references to named objects to the shortest possible path. The first attempt tries to utilize a single nameseg (4 characters) and the "search-to-root" algorithm used by the interpreter. If that cannot be used (because either the name is not in the search path or there is a conflict with another object with the same name), the pathname is optimized using the carat prefix (usually a shorter string than specifying the entire path from the root.) Implemented support to obtain the DSDT from the Windows registry (when the disassembly option is specified with no input file). Added this code as the implementation for AcpiOsTableOverride in the Windows OSL. Migrated the 16-bit code (used in the AcpiDump utility) to scan memory for the DSDT to the AcpiOsTableOverride function in the DOS OSL to make the disassembler truly OS independent. Implemented a new option to disassemble and compile in one step. When used without an input filename, this option will grab the DSDT from the local machine, disassemble it, and compile it in one step. Added a warning message for invalid escapes (a backslash followed by any character other than the allowable escapes). This catches the quoted string error "\_SB_" (which should be "\\_SB_" ). Also, there are numerous instances in the ACPI specification where this error occurs. Added a compiler option to disable all optimizations. This is basically the "compatibility mode" because by using this option, the AML code will come out exactly the same as other ASL compilers. Added error messages for incorrectly ordered dependent resource functions. This includes: missing EndDependentFn macro at end of dependent resource list, nested dependent function macros (both start and end), and missing StartDependentFn macro. These are common errors that should be caught at compile time. Implemented _OSI support for the disassembler and compiler. _OSI must be included in the namespace for proper disassembly (because the disassembler must know the number of arguments.) Added an "optimization" message type that is optional (off by default). This message is used for all optimizations - including constant folding, integer optimization, and namepath optimization. ---------------------------------------- 25 July 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020725: The AML Disassembler has been enhanced to produce compilable ASL code and has been integrated into the iASL compiler (see below) as well as the single-step disassembly for the AML debugger and the disassembler for the AcpiDump utility. All ACPI 2.0A opcodes, resource templates and macros are fully supported. The disassembler has been tested on over 30 different AML files, producing identical AML when the resulting disassembled ASL file is recompiled with the same ASL compiler. Modified the Resource Manager to allow zero interrupts and zero dma channels during the GetCurrentResources call. This was causing problems on some platforms. Added the AcpiOsRedirectOutput interface to the OSL to simplify output redirection for the AcpiOsPrintf and AcpiOsVprintf interfaces. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 68.7K Code, 7.4K Data, 76.1K Total Debug Version: 142.9K Code, 58.7K Data, 201.6K Total Current Release: Non-Debug Version: 69.1K Code, 8.2K Data, 77.3K Total Debug Version: 149.4K Code, 61.6K Data, 211.0K Total 2) Linux Fixed a panic in the EC driver (Dominik Brodowski) Implemented checksum of the R/XSDT itself during Linux table scan (Richard Schaal) 3) iASL compiler The AML disassembler is integrated into the compiler. The "-d" option invokes the disassembler to completely disassemble an input AML file, producing as output a text ASL file with the extension ".dsl" (to avoid name collisions with existing .asl source files.) A future enhancement will allow the disassembler to obtain the BIOS DSDT from the registry under Windows. Fixed a problem with the VendorShort and VendorLong resource descriptors where an invalid AML sequence was created. Implemented a fix for BufferData term in the ASL parser. It was inadvertently defined twice, allowing invalid syntax to pass and causing reduction conflicts. Fixed a problem where the Ones opcode could get converted to a value of zero if "Ones" was used where a byte, word or dword value was expected. The 64-bit value is now truncated to the correct size with the correct value. ---------------------------------------- 02 July 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020702: The Table Manager code has been restructured to add several new features. Tables that are not required by the core subsystem (other than the FADT, DSDT, FACS, PSDTs, etc.) are no longer validated in any way and are returned from AcpiGetFirmwareTable if requested. The AcpiOsTableOverride interface is now called for each table that is loaded by the subsystem in order to allow the host to override any table it chooses. Previously, only the DSDT could be overridden. Added one new files, tbrsdt.c and tbgetall.c. Fixed a problem with the conversion of internal package objects to external objects (when a package is returned from a control method.) The return buffer length was set to zero instead of the proper length of the package object. Fixed a reported problem with the use of the RefOf and DeRefOf operators when passing reference arguments to control methods. A new type of Reference object is used internally for references produced by the RefOf operator. Added additional error messages in the Resource Manager to explain AE_BAD_DATA errors when they occur during resource parsing. Split the AcpiEnableSubsystem into two primitives to enable a finer granularity initialization sequence. These two calls should be called in this order: AcpiEnableSubsystem (flags), AcpiInitializeObjects (flags). The flags parameter remains the same. 2) Linux Updated the ACPI utilities module to understand the new style of fully resolved package objects that are now returned from the core subsystem. This eliminates errors of the form: ACPI: PCI Interrupt Routing Table [\_SB_.PCI0.PPB_._PRT] acpi_utils-0430 [145] acpi_evaluate_reference: Invalid element in package (not a device reference) The method evaluation utility uses the new buffer allocation scheme instead of calling AcpiEvaluate Object twice. Added support for ECDT. This allows the use of the Embedded Controller before the namespace has been fully initialized, which is necessary for ACPI 2.0 support, and for some laptops to initialize properly. (Laptops using ECDT are still rare, so only limited testing was performed of the added functionality.) Fixed memory leaks in the EC driver. Eliminated a brittle code structure in acpi_bus_init(). Eliminated the acpi_evaluate() helper function in utils.c. It is no longer needed since acpi_evaluate_object can optionally allocate memory for the return object. Implemented fix for keyboard hang when getting battery readings on some systems (Stephen White) PCI IRQ routing update (Dominik Brodowski) Fix an ifdef to allow compilation on UP with LAPIC but no IOAPIC support ---------------------------------------- 11 June 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020611: Fixed a reported problem where constants such as Zero and One appearing within _PRT packages were not handled correctly within the resource manager code. Originally reported against the ASL compiler because the code generator now optimizes integers to their minimal AML representation (i.e. AML constants if possible.) The _PRT code now handles all AML constant opcodes correctly (Zero, One, Ones, Revision). Fixed a problem with the Concatenate operator in the AML interpreter where a buffer result object was incorrectly marked as not fully evaluated, causing a run-time error of AE_AML_INTERNAL. All package sub-objects are now fully resolved before they are returned from the external ACPI interfaces. This means that name strings are resolved to object handles, and constant operators (Zero, One, Ones, Revision) are resolved to Integers. Implemented immediate resolution of the AML Constant opcodes (Zero, One, Ones, Revision) to Integer objects upon detection within the AML stream. This has simplified and reduced the generated code size of the subsystem by eliminating about 10 switch statements for these constants (which previously were contained in Reference objects.) The complicating issues are that the Zero opcode is used as a "placeholder" for unspecified optional target operands and stores to constants are defined to be no-ops. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 69.3K Code, 7.4K Data, 76.7K Total Debug Version: 143.8K Code, 58.8K Data, 202.6K Total Current Release: Non-Debug Version: 68.7K Code, 7.4K Data, 76.1K Total Debug Version: 142.9K Code, 58.7K Data, 201.6K Total 2) Linux Added preliminary support for obtaining _TRA data for PCI root bridges (Bjorn Helgaas). 3) iASL Compiler Version X2046: Fixed a problem where the "_DDN" reserved name was defined to be a control method with one argument. There are no arguments, and _DDN does not have to be a control method. Fixed a problem with the Linux version of the compiler where the source lines printed with error messages were the wrong lines. This turned out to be the "LF versus CR/LF" difference between Windows and Unix. This appears to be the longstanding issue concerning listing output and error messages. Fixed a problem with the Linux version of compiler where opcode names within error messages were wrong. This was caused by a slight difference in the output of the Flex tool on Linux versus Windows. Fixed a problem with the Linux compiler where the hex output files contained some garbage data caused by an internal buffer overrun. ---------------------------------------- 17 May 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020517: Implemented a workaround to an BIOS bug discovered on the HP OmniBook where the FADT revision number and the table size are inconsistent (ACPI 2.0 revision vs. ACPI 1.0 table size). The new behavior is to fallback to using only the ACPI 1.0 fields of the FADT if the table is too small to be a ACPI 2.0 table as claimed by the revision number. Although this is a BIOS bug, this is a case where the workaround is simple enough and with no side effects, so it seemed prudent to add it. A warning message is issued, however. Implemented minimum size checks for the fixed-length ACPI tables - - the FADT and FACS, as well as consistency checks between the revision number and the table size. Fixed a reported problem in the table override support where the new table pointer was incorrectly treated as a physical address instead of a logical address. Eliminated the use of the AE_AML_ERROR exception and replaced it with more descriptive codes. Fixed a problem where an exception would occur if an ASL Field was defined with no named Field Units underneath it (used by some index fields). Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 68.8K Code, 7.1K Data, 75.9K Total Debug Version: 142.9K Code, 58.4K Data, 201.3K Total Current Release: Non-Debug Version: 69.3K Code, 7.4K Data, 76.7K Total Debug Version: 143.8K Code, 58.8K Data, 202.6K Total 2) Linux Much work done on ACPI init (MADT and PCI IRQ routing support). (Paul D. and Dominik Brodowski) Fix PCI IRQ-related panic on boot (Sam Revitch) Set BM_ARB_DIS when entering a sleep state (Ducrot Bruno) Fix "MHz" typo (Dominik Brodowski) Fix RTC year 2000 issue (Dominik Brodowski) Preclude multiple button proc entries (Eric Brunet) Moved arch-specific code out of include/platform/aclinux.h 3) iASL Compiler Version X2044: Implemented error checking for the string used in the EISAID macro (Usually used in the definition of the _HID object.) The code now strictly enforces the PnP format - exactly 7 characters, 3 uppercase letters and 4 hex digits. If a raw string is used in the definition of the _HID object (instead of the EISAID macro), the string must contain all alphanumeric characters (e.g., "*PNP0011" is not allowed because of the asterisk.) Implemented checking for invalid use of ACPI reserved names for most of the name creation operators (Name, Device, Event, Mutex, OperationRegion, PowerResource, Processor, and ThermalZone.) Previously, this check was only performed for control methods. Implemented an additional check on the Name operator to emit an error if a reserved name that must be implemented in ASL as a control method is used. We know that a reserved name must be a method if it is defined with input arguments. The warning emitted when a namespace object reference is not found during the cross reference phase has been changed into an error. The "External" directive should be used for names defined in other modules. 4) Tools and Utilities The 16-bit tools (adump16 and aexec16) have been regenerated and tested. Fixed a problem with the output of both acpidump and adump16 where the indentation of closing parentheses and brackets was not aligned properly with the parent block. ---------------------------------------- 03 May 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020503: Added support a new OSL interface that allows the host operating system software to override the DSDT found in the firmware - AcpiOsTableOverride. With this interface, the OSL can examine the version of the firmware DSDT and replace it with a different one if desired. Added new external interfaces for accessing ACPI registers from device drivers and other system software - AcpiGetRegister and AcpiSetRegister. This was simply an externalization of the existing AcpiHwBitRegister interfaces. Fixed a regression introduced in the previous build where the ASL/AML CreateField operator always returned an error, "destination must be a NS Node". Extended the maximum time (before failure) to successfully enable ACPI mode to 3 seconds. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 68.5K Code, 7.0K Data, 75.5K Total Debug Version: 142.4K Code, 58.3K Data, 200.7K Total Current Release: Non-Debug Version: 68.8K Code, 7.1K Data, 75.9K Total Debug Version: 142.9K Code, 58.4K Data, 201.3K Total 2) Linux Enhanced ACPI init code for SMP. We are now fully MPS and $PIR- free. While 3 out of 4 of our in-house systems work fine, the last one still hangs when testing the LAPIC timer. Renamed many files in 2.5 kernel release to omit "acpi_" from the name. Added warning on boot for Presario 711FR. Sleep improvements (Pavel Machek) ACPI can now be built without CONFIG_PCI enabled. IA64: Fixed memory map functions (JI Lee) 3) iASL Compiler Version X2043: Added support to allow the compiler to be integrated into the MS VC++ development environment for one-button compilation of single files or entire projects -- with error-to-source-line mapping. Implemented support for compile-time constant folding for the Type3, Type4, and Type5 opcodes first defined in the ACPI 2.0 specification. This allows the ASL writer to use expressions instead of Integer/Buffer/String constants in terms that must evaluate to constants at compile time and will also simplify the emitted AML in any such sub-expressions that can be folded (evaluated at compile-time.) This increases the size of the compiler significantly because a portion of the ACPI CA AML interpreter is included within the compiler in order to pre- evaluate constant expressions. Fixed a problem with the "Unicode" ASL macro that caused the compiler to fault. (This macro is used in conjunction with the _STR reserved name.) Implemented an AML opcode optimization to use the Zero, One, and Ones opcodes where possible to further reduce the size of integer constants and thus reduce the overall size of the generated AML code. Implemented error checking for new reserved terms for ACPI version 2.0A. Implemented the -qr option to display the current list of ACPI reserved names known to the compiler. Implemented the -qc option to display the current list of ASL operators that are allowed within constant expressions and can therefore be folded at compile time if the operands are constants. 4) Documentation Updated the Programmer's Reference for new interfaces, data types, and memory allocation model options. Updated the iASL Compiler User Reference to apply new format and add information about new features and options. ---------------------------------------- 19 April 2002. Summary of changes for this release. 1) ACPI CA Core Subsystem Version 20020419: The source code base for the Core Subsystem has been completely cleaned with PC-lint (FlexLint) for both 32-bit and 64-bit versions. The Lint option files used are included in the /acpi/generate/lint directory. Implemented enhanced status/error checking across the entire Hardware manager subsystem. Any hardware errors (reported from the OSL) are now bubbled up and will abort a running control method. Fixed a problem where the per-ACPI-table integer width (32 or 64) was stored only with control method nodes, causing a fault when non-control method code was executed during table loading. The solution implemented uses a global variable to indicate table width across the entire ACPI subsystem. Therefore, ACPI CA does not support mixed integer widths across different ACPI tables (DSDT, SSDT). Fixed a problem where NULL extended fields (X fields) in an ACPI 2.0 ACPI FADT caused the table load to fail. Although the existing ACPI specification is a bit fuzzy on this topic, the new behavior is to fall back on a ACPI 1.0 field if the corresponding ACPI 2.0 X field is zero (even though the table revision indicates a full ACPI 2.0 table.) The ACPI specification will be updated to clarify this issue. Fixed a problem with the SystemMemory operation region handler where memory was always accessed byte-wise even if the AML- specified access width was larger than a byte. This caused problems on systems with memory-mapped I/O. Memory is now accessed with the width specified. On systems that do not support non-aligned transfers, a check is made to guarantee proper address alignment before proceeding in order to avoid an AML-caused alignment fault within the kernel. Fixed a problem with the ExtendedIrq resource where only one byte of the 4-byte Irq field was extracted. Fixed the AcpiExDigitsNeeded() procedure to support _UID. This function was out of date and required a rewrite. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 66.6K Code, 6.5K Data, 73.1K Total Debug Version: 139.8K Code, 57.4K Data, 197.2K Total Current Release: Non-Debug Version: 68.5K Code, 7.0K Data, 75.5K Total Debug Version: 142.4K Code, 58.3K Data, 200.7K Total 2) Linux PCI IRQ routing fixes (Dominik Brodowski) 3) iASL Compiler Version X2042: Implemented an additional compile-time error check for a field unit whose size + minimum access width would cause a run-time access beyond the end-of-region. Previously, only the field size itself was checked. The Core subsystem and iASL compiler now share a common parse object in preparation for compile-time evaluation of the type 3/4/5 ASL operators. ---------------------------------------- Summary of changes for this release: 03_29_02 1) ACPI CA Core Subsystem Version 20020329: Implemented support for late evaluation of TermArg operands to Buffer and Package objects. This allows complex expressions to be used in the declarations of these object types. Fixed an ACPI 1.0 compatibility issue when reading Fields. In ACPI 1.0, if the field was larger than 32 bits, it was returned as a buffer - otherwise it was returned as an integer. In ACPI 2.0, the field is returned as a buffer only if the field is larger than 64 bits. The TableRevision is now considered when making this conversion to avoid incompatibility with existing ASL code. Implemented logical addressing for AcpiOsGetRootPointer. This allows an RSDP with either a logical or physical address. With this support, the host OS can now override all ACPI tables with one logical RSDP. Includes implementation of "typed" pointer support to allow a common data type for both physical and logical pointers internally. This required a change to the AcpiOsGetRootPointer interface. Implemented the use of ACPI 2.0 Generic Address Structures for all GPE, Fixed Event, and PM Timer I/O. This allows the use of memory mapped I/O for these ACPI features. Initialization now ignores not only non-required tables (All tables other than the FADT, FACS, DSDT, and SSDTs), but also does not validate the table headers of unrecognized tables. Fixed a problem where a notify handler could only be installed/removed on an object of type Device. All "notify" objects are now supported -- Devices, Processor, Power, and Thermal. Removed most verbosity from the ACPI_DB_INFO debug level. Only critical information is returned when this debug level is enabled. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release Non-Debug Version: 65.4K Code, 6.2K Data, 71.6K Total Debug Version: 138.0K Code, 56.6K Data, 194.6K Total Current Release: Non-Debug Version: 66.6K Code, 6.5K Data, 73.1K Total Debug Version: 139.8K Code, 57.4K Data, 197.2K Total 2) Linux: The processor driver (acpi_processor.c) now fully supports ACPI 2.0-based processor performance control (e.g. Intel(R) SpeedStep(TM) technology) Note that older laptops that only have the Intel "applet" interface are not supported through this. The 'limit' and 'performance' interface (/proc) are fully functional. [Note that basic policy for controlling performance state transitions will be included in the next version of ospmd.] The idle handler was modified to more aggressively use C2, and PIIX4 errata handling underwent a complete overhaul (big thanks to Dominik Brodowski). Added support for ACPI-PCI device binding (acpi_pci_root.c). _ADR- based devices in the ACPI namespace are now dynamically bound (associated) with their PCI counterparts (e.g. PCI1->01:00.0). This allows, among other things, ACPI to resolve bus numbers for subordinate PCI bridges. Enhanced PCI IRQ routing to get the proper bus number for _PRT entries defined underneath PCI bridges. Added IBM 600E to bad bios list due to invalid _ADR value for PIIX4 PCI-ISA bridge, resulting in improper PCI IRQ routing. In the process of adding full MADT support (e.g. IOAPIC) for IA32 (acpi.c, mpparse.c) -- stay tuned. Added back visual differentiation between fixed-feature and control-method buttons in dmesg. Buttons are also subtyped (e.g. button/power/PWRF) to simplify button identification. We no longer use -Wno-unused when compiling debug. Please ignore any "_THIS_MODULE defined but not used" messages. Can now shut down the system using "magic sysrq" key. 3) iASL Compiler version 2041: Fixed a problem where conversion errors for hex/octal/decimal constants were not reported. Implemented a fix for the General Register template Address field. This field was 8 bits when it should be 64. Fixed a problem where errors/warnings were no longer being emitted within the listing output file. Implemented the ACPI 2.0A restriction on ACPI Table Signatures to exactly 4 characters, alphanumeric only. ---------------------------------------- Summary of changes for this release: 03_08_02 1) ACPI CA Core Subsystem Version 20020308: Fixed a problem with AML Fields where the use of the "AccessAny" keyword could cause an interpreter error due to attempting to read or write beyond the end of the parent Operation Region. Fixed a problem in the SystemMemory Operation Region handler where an attempt was made to map memory beyond the end of the region. This was the root cause of the "AE_ERROR" and "AE_NO_MEMORY" errors on some Linux systems. Fixed a problem where the interpreter/namespace "search to root" algorithm was not functioning for some object types. Relaxed the internal restriction on the search to allow upsearches for all external object types as well as most internal types. 2) Linux: We now use safe_halt() macro versus individual calls to sti | hlt. Writing to the processor limit interface should now work. "echo 1" will increase the limit, 2 will decrease, and 0 will reset to the default. 3) ASL compiler: Fixed segfault on Linux version. ---------------------------------------- Summary of changes for this release: 02_25_02 1) ACPI CA Core Subsystem: Fixed a problem where the GPE bit masks were not initialized properly, causing erratic GPE behavior. Implemented limited support for multiple calling conventions. The code can be generated with either the VPL (variable parameter list, or "C") convention, or the FPL (fixed parameter list, or "Pascal") convention. The core subsystem is about 3.4% smaller when generated with FPL. 2) Linux Re-add some /proc/acpi/event functionality that was lost during the rewrite Resolved issue with /proc events for fixed-feature buttons showing up as the system device. Fixed checks on C2/C3 latencies to be inclusive of maximum values. Replaced AE_ERRORs in acpi_osl.c with more specific error codes. Changed ACPI PRT option from "pci=noacpi-routing" to "pci=noacpi" Fixed limit interface & usage to fix bugs with passive cooling hysterisis. Restructured PRT support. ---------------------------------------- Summary of changes for this label: 02_14_02 1) ACPI CA Core Subsystem: Implemented support in AcpiLoadTable to allow loading of FACS and FADT tables. Suport for the now-obsolete interim 0.71 64-bit ACPI tables has been removed. All 64-bit platforms should be migrated to the ACPI 2.0 tables. The actbl71.h header has been removed from the source tree. All C macros defined within the subsystem have been prefixed with "ACPI_" to avoid collision with other system include files. Removed the return value for the two AcpiOsPrint interfaces, since it is never used and causes lint warnings for ignoring the return value. Added error checking to all internal mutex acquire and release calls. Although a failure from one of these interfaces is probably a fatal system error, these checks will cause the immediate abort of the currently executing method or interface. Fixed a problem where the AcpiSetCurrentResources interface could fault. This was a side effect of the deployment of the new memory allocation model. Fixed a couple of problems with the Global Lock support introduced in the last major build. The "common" (1.0/2.0) internal FACS was being overwritten with the FACS signature and clobbering the Global Lock pointer. Also, the actual firmware FACS was being unmapped after construction of the "common" FACS, preventing access to the actual Global Lock field within it. The "common" internal FACS is no longer installed as an actual ACPI table; it is used simply as a global. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (02_07_01) Non-Debug Version: 65.2K Code, 6.2K Data, 71.4K Total Debug Version: 136.9K Code, 56.4K Data, 193.3K Total Current Release: Non-Debug Version: 65.4K Code, 6.2K Data, 71.6K Total Debug Version: 138.0K Code, 56.6K Data, 194.6K Total 2) Linux Updated Linux-specific code for core macro and OSL interface changes described above. Improved /proc/acpi/event. It now can be opened only once and has proper poll functionality. Fixed and restructured power management (acpi_bus). Only create /proc "view by type" when devices of that class exist. Fixed "charging/discharging" bug (and others) in acpi_battery. Improved thermal zone code. 3) ASL Compiler, version X2039: Implemented the new compiler restriction on ASL String hex/octal escapes to non-null, ASCII values. An error results if an invalid value is used. (This will require an ACPI 2.0 specification change.) AML object labels that are output to the optional C and ASM source are now prefixed with both the ACPI table signature and table ID to help guarantee uniqueness within a large BIOS project. ---------------------------------------- Summary of changes for this label: 02_01_02 1) ACPI CA Core Subsystem: ACPI 2.0 support is complete in the entire Core Subsystem and the ASL compiler. All new ACPI 2.0 operators are implemented and all other changes for ACPI 2.0 support are complete. With simultaneous code and data optimizations throughout the subsystem, ACPI 2.0 support has been implemented with almost no additional cost in terms of code and data size. Implemented a new mechanism for allocation of return buffers. If the buffer length is set to ACPI_ALLOCATE_BUFFER, the buffer will be allocated on behalf of the caller. Consolidated all return buffer validation and allocation to a common procedure. Return buffers will be allocated via the primary OSL allocation interface since it appears that a separate pool is not needed by most users. If a separate pool is required for these buffers, the caller can still use the original mechanism and pre-allocate the buffer(s). Implemented support for string operands within the DerefOf operator. Restructured the Hardware and Event managers to be table driven, simplifying the source code and reducing the amount of generated code. Split the common read/write low-level ACPI register bitfield procedure into a separate read and write, simplifying the code considerably. Obsoleted the AcpiOsCallocate OSL interface. This interface was used only a handful of times and didn't have enough critical mass for a separate interface. Replaced with a common calloc procedure in the core. Fixed a reported problem with the GPE number mapping mechanism that allows GPE1 numbers to be non-contiguous with GPE0. Reorganized the GPE information and shrunk a large array that was originally large enough to hold info for all possible GPEs (256) to simply large enough to hold all GPEs up to the largest GPE number on the machine. Fixed a reported problem with resource structure alignment on 64- bit platforms. Changed the AcpiEnableEvent and AcpiDisableEvent external interfaces to not require any flags for the common case of enabling/disabling a GPE. Implemented support to allow a "Notify" on a Processor object. Most TBDs in comments within the source code have been resolved and eliminated. Fixed a problem in the interpreter where a standalone parent prefix (^) was not handled correctly in the interpreter and debugger. Removed obsolete and unnecessary GPE save/restore code. Implemented Field support in the ASL Load operator. This allows a table to be loaded from a named field, in addition to loading a table directly from an Operation Region. Implemented timeout and handle support in the external Global Lock interfaces. Fixed a problem in the AcpiDump utility where pathnames were no longer being generated correctly during the dump of named objects. Modified the AML debugger to give a full display of if/while predicates instead of just one AML opcode at a time. (The predicate can have several nested ASL statements.) The old method was confusing during single stepping. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (12_18_01) Non-Debug Version: 66.1K Code, 5.5K Data, 71.6K Total Debug Version: 138.3K Code, 55.9K Data, 194.2K Total Current Release: Non-Debug Version: 65.2K Code, 6.2K Data, 71.4K Total Debug Version: 136.9K Code, 56.4K Data, 193.3K Total 2) Linux Implemented fix for PIIX reverse throttling errata (Processor driver) Added new Limit interface (Processor and Thermal drivers) New thermal policy (Thermal driver) Many updates to /proc Battery "low" event support (Battery driver) Supports ACPI PCI IRQ routing (PCI Link and PCI root drivers) IA32 - IA64 initialization unification, no longer experimental Menuconfig options redesigned 3) ASL Compiler, version X2037: Implemented several new output features to simplify integration of AML code into firmware: 1) Output the AML in C source code with labels for each named ASL object. The original ASL source code is interleaved as C comments. 2) Output the AML in ASM source code with labels and interleaved ASL source. 3) Output the AML in raw hex table form, in either C or ASM. Implemented support for optional string parameters to the LoadTable operator. Completed support for embedded escape sequences within string literals. The compiler now supports all single character escapes as well as the Octal and Hex escapes. Note: the insertion of a null byte into a string literal (via the hex/octal escape) causes the string to be immediately terminated. A warning is issued. Fixed a problem where incorrect AML was generated for the case where an ASL namepath consists of a single parent prefix ( ) with no trailing name segments. The compiler has been successfully generated with a 64-bit C compiler. ---------------------------------------- Summary of changes for this label: 12_18_01 1) Linux Enhanced blacklist with reason and severity fields. Any table's signature may now be used to identify a blacklisted system. Call _PIC control method to inform the firmware which interrupt model the OS is using. Turn on any disabled link devices. Cleaned up busmgr /proc error handling (Andreas Dilger) 2) ACPI CA Core Subsystem: Implemented ACPI 2.0 semantics for the "Break" operator (Exit from while loop) Completed implementation of the ACPI 2.0 "Continue", "ConcatenateResTemplate", "DataTableRegion", and "LoadTable" operators. All new ACPI 2.0 operators are now implemented in both the ASL compiler and the AML interpreter. The only remaining ACPI 2.0 task is support for the String data type in the DerefOf operator. Fixed a problem with AcquireMutex where the status code was lost if the caller had to actually wait for the mutex. Increased the maximum ASL Field size from 64K bits to 4G bits. Completed implementation of the external Global Lock interfaces -- AcpiAcquireGlobalLock and AcpiReleaseGlobalLock. The Timeout and Handler parameters were added. Completed another pass at removing warnings and issues when compiling with 64-bit compilers. The code now compiles cleanly with the Intel 64-bit C/C++ compiler. Most notably, the pointer add and subtract (diff) macros have changed considerably. Created and deployed a new ACPI_SIZE type that is 64-bits wide on 64-bit platforms, 32-bits on all others. This type is used wherever memory allocation and/or the C sizeof() operator is used, and affects the OSL memory allocation interfaces AcpiOsAllocate and AcpiOsCallocate. Implemented sticky user breakpoints in the AML debugger. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (12_05_01) Non-Debug Version: 64.7K Code, 5.3K Data, 70.0K Total Debug Version: 136.2K Code, 55.6K Data, 191.8K Total Current Release: Non-Debug Version: 66.1K Code, 5.5K Data, 71.6K Total Debug Version: 138.3K Code, 55.9K Data, 194.2K Total 3) ASL Compiler, version X2034: Now checks for (and generates an error if detected) the use of a Break or Continue statement without an enclosing While statement. Successfully generated the compiler with the Intel 64-bit C compiler. ---------------------------------------- Summary of changes for this label: 12_05_01 1) ACPI CA Core Subsystem: The ACPI 2.0 CopyObject operator is fully implemented. This operator creates a new copy of an object (and is also used to bypass the "implicit conversion" mechanism of the Store operator.) The ACPI 2.0 semantics for the SizeOf operator are fully implemented. The change is that performing a SizeOf on a reference object causes an automatic dereference of the object to tha actual value before the size is evaluated. This behavior was undefined in ACPI 1.0. The ACPI 2.0 semantics for the Extended IRQ resource descriptor have been implemented. The interrupt polarity and mode are now independently set. Fixed a problem where ASL Constants (Zero, One, Ones, Revision) appearing in Package objects were not properly converted to integers when the internal Package was converted to an external object (via the AcpiEvaluateObject interface.) Fixed a problem with the namespace object deletion mechanism for objects created by control methods. There were two parts to this problem: 1) Objects created during the initialization phase method parse were not being deleted, and 2) The object owner ID mechanism to track objects was broken. Fixed a problem where the use of the ASL Scope operator within a control method would result in an invalid opcode exception. Fixed a problem introduced in the previous label where the buffer length required for the _PRT structure was not being returned correctly. Code and Data Size: Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (11_20_01) Non-Debug Version: 64.1K Code, 5.3K Data, 69.4K Total Debug Version: 135.1K Code, 55.4K Data, 190.5K Total Current Release: Non-Debug Version: 64.7K Code, 5.3K Data, 70.0K Total Debug Version: 136.2K Code, 55.6K Data, 191.8K Total 2) Linux: Updated all files to apply cleanly against 2.4.16. Added basic PCI Interrupt Routing Table (PRT) support for IA32 (acpi_pci.c), and unified the PRT code for IA32 and IA64. This version supports both static and dyanmic PRT entries, but dynamic entries are treated as if they were static (not yet reconfigurable). Architecture- specific code to use this data is absent on IA32 but should be available shortly. Changed the initialization sequence to start the ACPI interpreter (acpi_init) prior to initialization of the PCI driver (pci_init) in init/main.c. This ordering is required to support PRT and facilitate other (future) enhancement. A side effect is that the ACPI bus driver and certain device drivers can no longer be loaded as modules. Modified the 'make menuconfig' options to allow PCI Interrupt Routing support to be included without the ACPI Bus and other device drivers. 3) ASL Compiler, version X2033: Fixed some issues with the use of the new CopyObject and DataTableRegion operators. Both are fully functional. ---------------------------------------- Summary of changes for this label: 11_20_01 20 November 2001. Summary of changes for this release. 1) ACPI CA Core Subsystem: Updated Index support to match ACPI 2.0 semantics. Storing a Integer, String, or Buffer to an Index of a Buffer will store only the least-significant byte of the source to the Indexed buffer byte. Multiple writes are not performed. Fixed a problem where the access type used in an AccessAs ASL operator was not recorded correctly into the field object. Fixed a problem where ASL Event objects were created in a signalled state. Events are now created in an unsignalled state. The internal object cache is now purged after table loading and initialization to reduce the use of dynamic kernel memory -- on the assumption that object use is greatest during the parse phase of the entire table (versus the run-time use of individual control methods.) ACPI 2.0 variable-length packages are now fully operational. Code and Data Size: Code and Data optimizations have permitted new feature development with an actual reduction in the library size. Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (11_09_01): Non-Debug Version: 63.7K Code, 5.2K Data, 68.9K Total Debug Version: 134.5K Code, 55.4K Data, 189.9K Total Current Release: Non-Debug Version: 64.1K Code, 5.3K Data, 69.4K Total Debug Version: 135.1K Code, 55.4K Data, 190.5K Total 2) Linux: Enhanced the ACPI boot-time initialization code to allow the use of Local APIC tables for processor enumeration on IA-32, and to pave the way for a fully MPS-free boot (on SMP systems) in the near future. This functionality replaces arch/i386/kernel/acpitables.c, which was introduced in an earlier 2.4.15-preX release. To enable this feature you must add "acpi_boot=on" to the kernel command line -- see the help entry for CONFIG_ACPI_BOOT for more information. An IA-64 release is in the works... Restructured the configuration options to allow boot-time table parsing support without inclusion of the ACPI Interpreter (and other) code. NOTE: This release does not include fixes for the reported events, power-down, and thermal passive cooling issues (coming soon). 3) ASL Compiler: Added additional typechecking for Fields within restricted access Operation Regions. All fields within EC and CMOS regions must be declared with ByteAcc. All fields withing SMBus regions must be declared with the BufferAcc access type. Fixed a problem where the listing file output of control methods no longer interleaved the actual AML code with the ASL source code. ---------------------------------------- Summary of changes for this label: 11_09_01 1) ACPI CA Core Subsystem: Implemented ACPI 2.0-defined support for writes to fields with a Buffer, String, or Integer source operand that is smaller than the target field. In these cases, the source operand is zero-extended to fill the target field. Fixed a problem where a Field starting bit offset (within the parent operation region) was calculated incorrectly if the alignment of the field differed from the access width. This affected CreateWordField, CreateDwordField, CreateQwordField, and possibly other fields that use the "AccessAny" keyword. Fixed a problem introduced in the 11_02_01 release where indirect stores through method arguments did not operate correctly. 2) Linux: Implemented boot-time ACPI table parsing support (CONFIG_ACPI_BOOT) for IA32 and IA64 UP/SMP systems. This code facilitates the use of ACPI tables (e.g. MADT, SRAT) rather than legacy BIOS interfaces (e.g. MPS) for the configuration of system processors, memory, and interrupts during setup_arch(). Note that this patch does not include the required architecture-specific changes required to apply this information -- subsequent patches will be posted for both IA32 and IA64 to achieve this. Added low-level sleep support for IA32 platforms, courtesy of Pat Mochel. This allows IA32 systems to transition to/from various sleeping states (e.g. S1, S3), although the lack of a centralized driver model and power-manageable drivers will prevent its (successful) use on most systems. Revamped the ACPI 'menuconfig' layout: created new "ACPI Support" submenu, unified IA32 and IA64 options, added new "Boot using ACPI tables" option, etc. Increased the default timeout for the EC driver from 1ms to 10ms (1000 cycles of 10us) to try to address AE_TIME errors during EC transactions. ---------------------------------------- Summary of changes for this label: 11_02_01 1) ACPI CA Core Subsystem: ACPI 2.0 Support: Implemented ACPI 2.0 64-bit Field access (QWordAcc keyword). All ACPI 2.0 64-bit support is now implemented. OSL Interfaces: Several of the OSL (AcpiOs*) interfaces required changes to support ACPI 2.0 Qword field access. Read/Write PciConfiguration(), Read/Write Memory(), and Read/Write Port() now accept an ACPI_INTEGER (64 bits) as the value parameter. Also, the value parameter for the address space handler interface is now an ACPI_INTEGER. OSL implementations of these interfaces must now handle the case where the Width parameter is 64. Index Fields: Fixed a problem where unaligned bit assembly and disassembly for IndexFields was not supported correctly. Index and Bank Fields: Nested Index and Bank Fields are now supported. During field access, a check is performed to ensure that the value written to an Index or Bank register is not out of the range of the register. The Index (or Bank) register is written before each access to the field data. Future support will include allowing individual IndexFields to be wider than the DataRegister width. Fields: Fixed a problem where the AML interpreter was incorrectly attempting to write beyond the end of a Field/OpRegion. This was a boundary case that occurred when a DWORD field was written to a BYTE access OpRegion, forcing multiple writes and causing the interpreter to write one datum too many. Fields: Fixed a problem with Field/OpRegion access where the starting bit address of a field was incorrectly calculated if the current access type was wider than a byte (WordAcc, DwordAcc, or QwordAcc). Fields: Fixed a problem where forward references to individual FieldUnits (individual Field names within a Field definition) were not resolved during the AML table load. Fields: Fixed a problem where forward references from a Field definition to the parent Operation Region definition were not resolved during the AML table load. Fields: Duplicate FieldUnit names within a scope are now detected during AML table load. Acpi Interfaces: Fixed a problem where the AcpiGetName() interface returned an incorrect name for the root node. Code and Data Size: Code and Data optimizations have permitted new feature development with an actual reduction in the library size. Current core subsystem library sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the debug output trace mechanism and has a larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Release (10_18_01): Non-Debug Version: 63.9K Code, 5.1K Data, 69.0K Total Debug Version: 136.7K Code, 57.4K Data, 194.2K Total Current Release: Non-Debug Version: 63.7K Code, 5.2K Data, 68.9K Total Debug Version: 134.5K Code, 55.4K Data, 189.9K Total 2) Linux: Improved /proc processor output (Pavel Machek) Re-added MODULE_LICENSE("GPL") to all modules. 3) ASL Compiler version X2030: Duplicate FieldUnit names within a scope are now detected and flagged as errors. 4) Documentation: Programmer Reference updated to reflect OSL and address space handler interface changes described above. ---------------------------------------- Summary of changes for this label: 10_18_01 ACPI CA Core Subsystem: Fixed a problem with the internal object reference count mechanism that occasionally caused premature object deletion. This resolves all of the outstanding problem reports where an object is deleted in the middle of an interpreter evaluation. Although this problem only showed up in rather obscure cases, the solution to the problem involved an adjustment of all reference counts involving objects attached to namespace nodes. Fixed a problem with Field support in the interpreter where writing to an aligned field whose length is an exact multiple (2 or greater) of the field access granularity would cause an attempt to write beyond the end of the field. The top level AML opcode execution functions within the interpreter have been renamed with a more meaningful and consistent naming convention. The modules exmonad.c and exdyadic.c were eliminated. New modules are exoparg1.c, exoparg2.c, exoparg3.c, and exoparg6.c. Support for the ACPI 2.0 "Mid" ASL operator has been implemented. Fixed a problem where the AML debugger was causing some internal objects to not be deleted during subsystem termination. Fixed a problem with the external AcpiEvaluateObject interface where the subsystem would fault if the named object to be evaluated refered to a constant such as Zero, Ones, etc. Fixed a problem with IndexFields and BankFields where the subsystem would fault if the index, data, or bank registers were not defined in the same scope as the field itself. Added printf format string checking for compilers that support this feature. Corrected more than 50 instances of issues with format specifiers within invocations of ACPI_DEBUG_PRINT throughout the core subsystem code. The ASL "Revision" operator now returns the ACPI support level implemented in the core - the value "2" since the ACPI 2.0 support is more than 50% implemented. Enhanced the output of the AML debugger "dump namespace" command to output in a more human-readable form. Current core subsystem library code sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the full debug trace mechanism -- leading to a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Previous Label (09_20_01): Non-Debug Version: 65K Code, 5K Data, 70K Total Debug Version: 138K Code, 58K Data, 196K Total This Label: Non-Debug Version: 63.9K Code, 5.1K Data, 69.0K Total Debug Version: 136.7K Code, 57.4K Data, 194.2K Total Linux: Implemented a "Bad BIOS Blacklist" to track machines that have known ASL/AML problems. Enhanced the /proc interface for the thermal zone driver and added support for _HOT (the critical suspend trip point). The 'info' file now includes threshold/policy information, and allows setting of _SCP (cooling preference) and _TZP (polling frequency) values to the 'info' file. Examples: "echo tzp=5 > info" sets the polling frequency to 5 seconds, and "echo scp=1 > info" sets the cooling preference to the passive/quiet mode (if supported by the ASL). Implemented a workaround for a gcc bug that resuted in an OOPs when loading the control method battery driver. ---------------------------------------- Summary of changes for this label: 09_20_01 ACPI CA Core Subsystem: The AcpiEnableEvent and AcpiDisableEvent interfaces have been modified to allow individual GPE levels to be flagged as wake- enabled (i.e., these GPEs are to remain enabled when the platform sleeps.) The AcpiEnterSleepState and AcpiLeaveSleepState interfaces now support wake-enabled GPEs. This means that upon entering the sleep state, all GPEs that are not wake-enabled are disabled. When leaving the sleep state, these GPEs are reenabled. A local double-precision divide/modulo module has been added to enhance portability to OS kernels where a 64-bit math library is not available. The new module is "utmath.c". Several optimizations have been made to reduce the use of CPU stack. Originally over 2K, the maximum stack usage is now below 2K at 1860 bytes (1.82k) Fixed a problem with the AcpiGetFirmwareTable interface where the root table pointer was not mapped into a logical address properly. Fixed a problem where a NULL pointer was being dereferenced in the interpreter code for the ASL Notify operator. Fixed a problem where the use of the ASL Revision operator returned an error. This operator now returns the current version of the ACPI CA core subsystem. Fixed a problem where objects passed as control method parameters to AcpiEvaluateObject were always deleted at method termination. However, these objects may end up being stored into the namespace by the called method. The object reference count mechanism was applied to these objects instead of a force delete. Fixed a problem where static strings or buffers (contained in the AML code) that are declared as package elements within the ASL code could cause a fault because the interpreter would attempt to delete them. These objects are now marked with the "static object" flag to prevent any attempt to delete them. Implemented an interpreter optimization to use operands directly from the state object instead of extracting the operands to local variables. This reduces stack use and code size, and improves performance. The module exxface.c was eliminated as it was an unnecessary extra layer of code. Current core subsystem library code sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the full debug trace mechanism -- leading to a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Non-Debug Version: 65K Code, 5K Data, 70K Total (Previously 69K) Debug Version: 138K Code, 58K Data, 196K Total (Previously 195K) Linux: Support for ACPI 2.0 64-bit integers has been added. All ACPI Integer objects are now 64 bits wide All Acpi data types and structures are now in lower case. Only Acpi macros are upper case for differentiation. Documentation: Changes to the external interfaces as described above. ---------------------------------------- Summary of changes for this label: 08_31_01 ACPI CA Core Subsystem: A bug with interpreter implementation of the ASL Divide operator was found and fixed. The implicit function return value (not the explicit store operands) was returning the remainder instead of the quotient. This was a longstanding bug and it fixes several known outstanding issues on various platforms. The ACPI_DEBUG_PRINT and function trace entry/exit macros have been further optimized for size. There are 700 invocations of the DEBUG_PRINT macro alone, so each optimization reduces the size of the debug version of the subsystem significantly. A stack trace mechanism has been implemented. The maximum stack usage is about 2K on 32-bit platforms. The debugger command "stat stack" will display the current maximum stack usage. All public symbols and global variables within the subsystem are now prefixed with the string "Acpi". This keeps all of the symbols grouped together in a kernel map, and avoids conflicts with other kernel subsystems. Most of the internal fixed lookup tables have been moved into the code segment via the const operator. Several enhancements have been made to the interpreter to both reduce the code size and improve performance. Current core subsystem library code sizes are shown below. These are the code and data sizes for the acpica.lib produced by the Microsoft Visual C++ 6.0 compiler, and these values do not include any ACPI driver or OSPM code. The debug version of the code includes the full debug trace mechanism which contains over 700 invocations of the DEBUG_PRINT macro, 500 function entry macro invocations, and over 900 function exit macro invocations -- leading to a much larger code and data size. Note that these values will vary depending on the efficiency of the compiler and the compiler options used during generation. Non-Debug Version: 64K Code, 5K Data, 69K Total Debug Version: 137K Code, 58K Data, 195K Total Linux: Implemented wbinvd() macro, pending a kernel-wide definition. Fixed /proc/acpi/event to handle poll() and short reads. ASL Compiler, version X2026: Fixed a problem introduced in the previous label where the AML code emitted for package objects produced packages with zero length. ---------------------------------------- Summary of changes for this label: 08_16_01 ACPI CA Core Subsystem: The following ACPI 2.0 ASL operators have been implemented in the AML interpreter (These are already supported by the Intel ASL compiler): ToDecimalString, ToHexString, ToString, ToInteger, and ToBuffer. Support for 64-bit AML constants is implemented in the AML parser, debugger, and disassembler. The internal memory tracking mechanism (leak detection code) has been upgraded to reduce the memory overhead (a separate tracking block is no longer allocated for each memory allocation), and now supports all of the internal object caches. The data structures and code for the internal object caches have been coelesced and optimized so that there is a single cache and memory list data structure and a single group of functions that implement generic cache management. This has reduced the code size in both the debug and release versions of the subsystem. The DEBUG_PRINT macro(s) have been optimized for size and replaced by ACPI_DEBUG_PRINT. The syntax for this macro is slightly different, because it generates a single call to an internal function. This results in a savings of about 90 bytes per invocation, resulting in an overall code and data savings of about 16% in the debug version of the subsystem. Linux: Fixed C3 disk corruption problems and re-enabled C3 on supporting machines. Integrated low-level sleep code by Patrick Mochel. Further tweaked source code Linuxization. Other minor fixes. ASL Compiler: Support for ACPI 2.0 variable length packages is fixed/completed. Fixed a problem where the optional length parameter for the ACPI 2.0 ToString operator. Fixed multiple extraneous error messages when a syntax error is detected within the declaration line of a control method. ---------------------------------------- Summary of changes for this label: 07_17_01 ACPI CA Core Subsystem: Added a new interface named AcpiGetFirmwareTable to obtain any ACPI table via the ACPI signature. The interface can be called at any time during kernel initialization, even before the kernel virtual memory manager is initialized and paging is enabled. This allows kernel subsystems to obtain ACPI tables very early, even before the ACPI CA subsystem is initialized. Fixed a problem where Fields defined with the AnyAcc attribute could be resolved to the incorrect address under the following conditions: 1) the field width is larger than 8 bits and 2) the parent operation region is not defined on a DWORD boundary. Fixed a problem where the interpreter is not being locked during namespace initialization (during execution of the _INI control methods), causing an error when an attempt is made to release it later. ACPI 2.0 support in the AML Interpreter has begun and will be ongoing throughout the rest of this year. In this label, The Mod operator is implemented. Added a new data type to contain full PCI addresses named ACPI_PCI_ID. This structure contains the PCI Segment, Bus, Device, and Function values. Linux: Enhanced the Linux version of the source code to change most capitalized ACPI type names to lowercase. For example, all instances of ACPI_STATUS are changed to acpi_status. This will result in a large diff, but the change is strictly cosmetic and aligns the CA code closer to the Linux coding standard. OSL Interfaces: The interfaces to the PCI configuration space have been changed to add the PCI Segment number and to split the single 32-bit combined DeviceFunction field into two 16-bit fields. This was accomplished by moving the four values that define an address in PCI configuration space (segment, bus, device, and function) to the new ACPI_PCI_ID structure. The changes to the PCI configuration space interfaces led to a reexamination of the complete set of address space access interfaces for PCI, I/O, and Memory. The previously existing 18 interfaces have proven difficult to maintain (any small change must be propagated across at least 6 interfaces) and do not easily allow for future expansion to 64 bits if necessary. Also, on some systems, it would not be appropriate to demultiplex the access width (8, 16, 32,or 64) before calling the OSL if the corresponding native OS interfaces contain a similar access width parameter. For these reasons, the 18 address space interfaces have been replaced by these 6 new ones: AcpiOsReadPciConfiguration AcpiOsWritePciConfiguration AcpiOsReadMemory AcpiOsWriteMemory AcpiOsReadPort AcpiOsWritePort Added a new interface named AcpiOsGetRootPointer to allow the OSL to perform the platform and/or OS-specific actions necessary to obtain the ACPI RSDP table pointer. On IA-32 platforms, this interface will simply call down to the CA core to perform the low- memory search for the table. On IA-64, the RSDP is obtained from EFI. Migrating this interface to the OSL allows the CA core to remain OS and platform independent. Added a new interface named AcpiOsSignal to provide a generic "function code and pointer" interface for various miscellaneous signals and notifications that must be made to the host OS. The first such signals are intended to support the ASL Fatal and Breakpoint operators. In the latter case, the AcpiOsBreakpoint interface has been obsoleted. The definition of the AcpiFormatException interface has been changed to simplify its use. The caller no longer must supply a buffer to the call; A pointer to a const string is now returned directly. This allows the call to be easily used in printf statements, etc. since the caller does not have to manage a local buffer. ASL Compiler, Version X2025: The ACPI 2.0 Switch/Case/Default operators have been implemented and are fully functional. They will work with all ACPI 1.0 interpreters, since the operators are simply translated to If/Else pairs. The ACPI 2.0 ElseIf operator is implemented and will also work with 1.0 interpreters, for the same reason. Implemented support for ACPI 2.0 variable-length packages. These packages have a separate opcode, and their size is determined by the interpreter at run-time. Documentation The ACPI CA Programmer Reference has been updated to reflect the new interfaces and changes to existing interfaces. ------------------------------------------ Summary of changes for this label: 06_15_01 ACPI CA Core Subsystem: Fixed a problem where a DWORD-accessed field within a Buffer object would get its byte address inadvertently rounded down to the nearest DWORD. Buffers are always Byte-accessible. ASL Compiler, version X2024: Fixed a problem where the Switch() operator would either fault or hang the compiler. Note however, that the AML code for this ACPI 2.0 operator is not yet implemented. Compiler uses the new AcpiOsGetTimer interface to obtain compile timings. Implementation of the CreateField operator automatically converts a reference to a named field within a resource descriptor from a byte offset to a bit offset if required. Added some missing named fields from the resource descriptor support. These are the names that are automatically created by the compiler to reference fields within a descriptor. They are only valid at compile time and are not passed through to the AML interpreter. Resource descriptor named fields are now typed as Integers and subject to compile-time typechecking when used in expressions. ------------------------------------------ Summary of changes for this label: 05_18_01 ACPI CA Core Subsystem: Fixed a couple of problems in the Field support code where bits from adjacent fields could be returned along with the proper field bits. Restructured the field support code to improve performance, readability and maintainability. New DEBUG_PRINTP macro automatically inserts the procedure name into the output, saving hundreds of copies of procedure name strings within the source, shrinking the memory footprint of the debug version of the core subsystem. Source Code Structure: The source code directory tree was restructured to reflect the current organization of the component architecture. Some files and directories have been moved and/or renamed. Linux: Fixed leaking kacpidpc processes. Fixed queueing event data even when /proc/acpi/event is not opened. ASL Compiler, version X2020: Memory allocation performance enhancement - over 24X compile time improvement on large ASL files. Parse nodes and namestring buffers are now allocated from a large internal compiler buffer. The temporary .SRC file is deleted unless the "-s" option is specified The "-d" debug output option now sends all output to the .DBG file instead of the console. "External" second parameter is now optional "ElseIf" syntax now properly allows the predicate Last operand to "Load" now recognized as a Target operand Debug object can now be used anywhere as a normal object. ResourceTemplate now returns an object of type BUFFER EISAID now returns an object of type INTEGER "Index" now works with a STRING operand "LoadTable" now accepts optional parameters "ToString" length parameter is now optional "Interrupt (ResourceType," parse error fixed. "Register" with a user-defined region space parse error fixed Escaped backslash at the end of a string ("\\") scan/parse error fixed "Revision" is now an object of type INTEGER. ------------------------------------------ Summary of changes for this label: 05_02_01 Linux: /proc/acpi/event now blocks properly. Removed /proc/sys/acpi. You can still dump your DSDT from /proc/acpi/dsdt. ACPI CA Core Subsystem: Fixed a problem introduced in the previous label where some of the "small" resource descriptor types were not recognized. Improved error messages for the case where an ASL Field is outside the range of the parent operation region. ASL Compiler, version X2018: Added error detection for ASL Fields that extend beyond the length of the parent operation region (only if the length of the region is known at compile time.) This includes fields that have a minimum access width that is smaller than the parent region, and individual field units that are partially or entirely beyond the extent of the parent. ------------------------------------------ Summary of changes for this label: 04_27_01 ACPI CA Core Subsystem: Fixed a problem where the namespace mutex could be released at the wrong time during execution of AcpiRemoveAddressSpaceHandler. Added optional thread ID output for debug traces, to simplify debugging of multiple threads. Added context switch notification when the debug code realizes that a different thread is now executing ACPI code. Some additional external data types have been prefixed with the string "ACPI_" for consistency. This may effect existing code. The data types affected are the external callback typedefs - e.g., WALK_CALLBACK becomes ACPI_WALK_CALLBACK. Linux: Fixed an issue with the OSL semaphore implementation where a thread was waking up with an error from receiving a SIGCHLD signal. Linux version of ACPI CA now uses the system C library for string manipulation routines instead of a local implementation. Cleaned up comments and removed TBDs. ASL Compiler, version X2017: Enhanced error detection and reporting for all file I/O operations. Documentation: Programmer Reference updated to version 1.06. ------------------------------------------ Summary of changes for this label: 04_13_01 ACPI CA Core Subsystem: Restructured support for BufferFields and RegionFields. BankFields support is now fully operational. All known 32-bit limitations on field sizes have been removed. Both BufferFields and (Operation) RegionFields are now supported by the same field management code. Resource support now supports QWORD address and IO resources. The 16/32/64 bit address structures and the Extended IRQ structure have been changed to properly handle Source Resource strings. A ThreadId of -1 is now used to indicate a "mutex not acquired" condition internally and must never be returned by AcpiOsThreadId. This reserved value was changed from 0 since Unix systems allow a thread ID of 0. Linux: Driver code reorganized to enhance portability Added a kernel configuration option to control ACPI_DEBUG Fixed the EC driver to honor _GLK. ASL Compiler, version X2016: Fixed support for the "FixedHw" keyword. Previously, the FixedHw address space was set to 0, not 0x7f as it should be. ------------------------------------------ Summary of changes for this label: 03_13_01 ACPI CA Core Subsystem: During ACPI initialization, the _SB_._INI method is now run if present. Notify handler fix - notifies are deferred until the parent method completes execution. This fixes the "mutex already acquired" issue seen occasionally. Part of the "implicit conversion" rules in ACPI 2.0 have been found to cause compatibility problems with existing ASL/AML. The convert "result-to-target-type" implementation has been removed for stores to method Args and Locals. Source operand conversion is still fully implemented. Possible changes to ACPI 2.0 specification pending. Fix to AcpiRsCalculatePciRoutingTableLength to return correct length. Fix for compiler warnings for 64-bit compiles. Linux: /proc output aligned for easier parsing. Release-version compile problem fixed. New kernel configuration options documented in Configure.help. IBM 600E - Fixed Sleep button may generate "Invalid context" message. OSPM: Power resource driver integrated with bus manager. Fixed kernel fault during active cooling for thermal zones. Source Code: The source code tree has been restructured. ------------------------------------------ Summary of changes for this label: 03_02_01 Linux OS Services Layer (OSL): Major revision of all Linux-specific code. Modularized all ACPI-specific drivers. Added new thermal zone and power resource drivers. Revamped /proc interface (new functionality is under /proc/acpi). New kernel configuration options. Linux known issues: New kernel configuration options not documented in Configure.help yet. Module dependencies not currently implemented. If used, they should be loaded in this order: busmgr, power, ec, system, processor, battery, ac_adapter, button, thermal. Modules will not load if CONFIG_MODVERSION is set. IBM 600E - entering S5 may reboot instead of shutting down. IBM 600E - Sleep button may generate "Invalid context" message. Some systems may fail with "execution mutex already acquired" message. ACPI CA Core Subsystem: Added a new OSL Interface, AcpiOsGetThreadId. This was required for the deadlock detection code. Defined to return a non-zero, 32- bit thread ID for the currently executing thread. May be a non- zero constant integer on single-thread systems. Implemented deadlock detection for internal subsystem mutexes. We may add conditional compilation for this code (debug only) later. ASL/AML Mutex object semantics are now fully supported. This includes multiple acquires/releases by owner and support for the Mutex SyncLevel parameter. A new "Force Release" mechanism automatically frees all ASL Mutexes that have been acquired but not released when a thread exits the interpreter. This forces conformance to the ACPI spec ("All mutexes must be released when an invocation exits") and prevents deadlocked ASL threads. This mechanism can be expanded (later) to monitor other resource acquisitions if OEM ASL code continues to misbehave (which it will). Several new ACPI exception codes have been added for the Mutex support. Recursive method calls are now allowed and supported (the ACPI spec does in fact allow recursive method calls.) The number of recursive calls is subject to the restrictions imposed by the SERIALIZED method keyword and SyncLevel (ACPI 2.0) method parameter. Implemented support for the SyncLevel parameter for control methods (ACPI 2.0 feature) Fixed a deadlock problem when multiple threads attempted to use the interpreter. Fixed a problem where the string length of a String package element was not always set in a package returned from AcpiEvaluateObject. Fixed a problem where the length of a String package element was not always included in the length of the overall package returned from AcpiEvaluateObject. Added external interfaces (Acpi*) to the ACPI debug memory manager. This manager keeps a list of all outstanding allocations, and can therefore detect memory leaks and attempts to free memory blocks more than once. Useful for code such as the power manager, etc. May not be appropriate for device drivers. Performance with the debug code enabled is slow. The ACPI Global Lock is now an optional hardware element. ASL Compiler Version X2015: Integrated changes to allow the compiler to be generated on multiple platforms. Linux makefile added to generate the compiler on Linux Source Code: All platform-specific headers have been moved to their own subdirectory, Include/Platform. New source file added, Interpreter/ammutex.c New header file, Include/acstruct.h Documentation: The programmer reference has been updated for the following new interfaces: AcpiOsGetThreadId AcpiAllocate AcpiCallocate AcpiFree ------------------------------------------ Summary of changes for this label: 02_08_01 Core ACPI CA Subsystem: Fixed a problem where an error was incorrectly returned if the return resource buffer was larger than the actual data (in the resource interfaces). References to named objects within packages are resolved to the full pathname string before packages are returned directly (via the AcpiEvaluateObject interface) or indirectly via the resource interfaces. Linux OS Services Layer (OSL): Improved /proc battery interface. Added C-state debugging output and other miscellaneous fixes. ASL Compiler Version X2014: All defined method arguments can now be used as local variables, including the ones that are not actually passed in as parameters. The compiler tracks initialization of the arguments and issues an exception if they are used without prior assignment (just like locals). The -o option now specifies a filename prefix that is used for all output files, including the AML output file. Otherwise, the default behavior is as follows: 1) the AML goes to the file specified in the DSDT. 2) all other output files use the input source filename as the base. ------------------------------------------ Summary of changes for this label: 01_25_01 Core ACPI CA Subsystem: Restructured the implementation of object store support within the interpreter. This includes support for the Store operator as well as any ASL operators that include a target operand. Partially implemented support for Implicit Result-to-Target conversion. This is when a result object is converted on the fly to the type of an existing target object. Completion of this support is pending further analysis of the ACPI specification concerning this matter. CPU-specific code has been removed from the subsystem (hardware directory). New Power Management Timer functions added Linux OS Services Layer (OSL): Moved system state transition code to the core, fixed it, and modified Linux OSL accordingly. Fixed C2 and C3 latency calculations. We no longer use the compilation date for the version message on initialization, but retrieve the version from AcpiGetSystemInfo(). Incorporated for fix Sony VAIO machines. Documentation: The Programmer Reference has been updated and reformatted. ASL Compiler: Version X2013: Fixed a problem where the line numbering and error reporting could get out of sync in the presence of multiple include files. ------------------------------------------ Summary of changes for this label: 01_15_01 Core ACPI CA Subsystem: Implemented support for type conversions in the execution of the ASL Concatenate operator (The second operand is converted to match the type of the first operand before concatenation.) Support for implicit source operand conversion is partially implemented. The ASL source operand types Integer, Buffer, and String are freely interchangeable for most ASL operators and are converted by the interpreter on the fly as required. Implicit Target operand conversion (where the result is converted to the target type before storing) is not yet implemented. Support for 32-bit and 64-bit BCD integers is implemented. Problem fixed where a field read on an aligned field could cause a read past the end of the field. New exception, AE_AML_NO_RETURN_VALUE, is returned when a method does not return a value, but the caller expects one. (The ASL compiler flags this as a warning.) ASL Compiler: Version X2011: 1. Static typechecking of all operands is implemented. This prevents the use of invalid objects (such as using a Package where an Integer is required) at compile time instead of at interpreter run-time. 2. The ASL source line is printed with ALL errors and warnings. 3. Bug fix for source EOF without final linefeed. 4. Debug option is split into a parse trace and a namespace trace. 5. Namespace output option (-n) includes initial values for integers and strings. 6. Parse-only option added for quick syntax checking. 7. Compiler checks for duplicate ACPI name declarations Version X2012: 1. Relaxed typechecking to allow interchangeability between strings, integers, and buffers. These types are now converted by the interpreter at runtime. 2. Compiler reports time taken by each internal subsystem in the debug output file. ------------------------------------------ Summary of changes for this label: 12_14_00 ASL Compiler: This is the first official release of the compiler. Since the compiler requires elements of the Core Subsystem, this label synchronizes everything. ------------------------------------------ Summary of changes for this label: 12_08_00 Fixed a problem where named references within the ASL definition of both OperationRegions and CreateXXXFields did not work properly. The symptom was an AE_AML_OPERAND_TYPE during initialization of the region/field. This is similar (but not related internally) to the problem that was fixed in the last label. Implemented both 32-bit and 64-bit support for the BCD ASL functions ToBCD and FromBCD. Updated all legal headers to include "2000" in the copyright years. ------------------------------------------ Summary of changes for this label: 12_01_00 Fixed a problem where method invocations within the ASL definition of both OperationRegions and CreateXXXFields did not work properly. The symptom was an AE_AML_OPERAND_TYPE during initialization of the region/field: nsinit-0209: AE_AML_OPERAND_TYPE while getting region arguments [DEBG] ammonad-0284: Exec_monadic2_r/Not: bad operand(s) (0x3005) Fixed a problem where operators with more than one nested subexpression would fail. The symptoms were varied, by mostly AE_AML_OPERAND_TYPE errors. This was actually a rather serious problem that has gone unnoticed until now. Subtract (Add (1,2), Multiply (3,4)) Fixed a problem where AcpiGetHandle didn't quite get fixed in the previous build (The prefix part of a relative path was handled incorrectly). Fixed a problem where Operation Region initialization failed if the operation region name was a "namepath" instead of a simple "nameseg". Symptom was an AE_NO_OPERAND error. Fixed a problem where an assignment to a local variable via the indirect RefOf mechanism only worked for the first such assignment. Subsequent assignments were ignored. ------------------------------------------ Summary of changes for this label: 11_15_00 ACPI 2.0 table support with backwards support for ACPI 1.0 and the 0.71 extensions. Note: although we can read ACPI 2.0 BIOS tables, the AML interpreter does NOT have support for the new 2.0 ASL grammar terms at this time. All ACPI hardware access is via the GAS structures in the ACPI 2.0 FADT. All physical memory addresses across all platforms are now 64 bits wide. Logical address width remains dependent on the platform (i.e., "void *"). AcpiOsMapMemory interface changed to a 64-bit physical address. The AML interpreter integer size is now 64 bits, as per the ACPI 2.0 specification. For backwards compatibility with ACPI 1.0, ACPI tables with a revision number less than 2 use 32-bit integers only. Fixed a problem where the evaluation of OpRegion operands did not always resolve them to numbers properly. ------------------------------------------ Summary of changes for this label: 10_20_00 Fix for CBN_._STA issue. This fix will allow correct access to CBN_ OpRegions when the _STA returns 0x8. Support to convert ACPI constants (Ones, Zeros, One) to actual values before a package object is returned Fix for method call as predicate to if/while construct causing incorrect if/while behavior Fix for Else block package lengths sometimes calculated wrong (if block > 63 bytes) Fix for Processor object length field, was always zero Table load abort if FACP sanity check fails Fix for problem with Scope(name) if name already exists Warning emitted if a named object referenced cannot be found (resolved) during method execution. ------------------------------------------ Summary of changes for this label: 9_29_00 New table initialization interfaces: AcpiInitializeSubsystem no longer has any parameters AcpiFindRootPointer - Find the RSDP (if necessary) AcpiLoadTables (RSDP) - load all tables found at RSDP- >RSDT Obsolete Interfaces AcpiLoadFirmwareTables - replaced by AcpiLoadTables Note: These interface changes require changes to all existing OSDs The PCI_Config default address space handler is always installed at the root namespace object. ------------------------------------------- Summary of changes for this label: 09_15_00 The new initialization architecture is implemented. New interfaces are: AcpiInitializeSubsystem (replaces AcpiInitialize) AcpiEnableSubsystem Obsolete Interfaces: AcpiLoadNamespace (Namespace is automatically loaded when a table is loaded) The ACPI_OPERAND_OBJECT has been optimized to shrink its size from 52 bytes to 32 bytes. There is usually one of these for every namespace object, so the memory savings is significant. Implemented just-in-time evaluation of the CreateField operators. Bug fixes for IA-64 support have been integrated. Additional code review comments have been implemented The so-called "third pass parse" has been replaced by a final walk through the namespace to initialize all operation regions (address spaces) and fields that have not yet been initialized during the execution of the various _INI and REG methods. New file - namespace/nsinit.c ------------------------------------------- Summary of changes for this label: 09_01_00 Namespace manager data structures have been reworked to change the primary object from a table to a single object. This has resulted in dynamic memory savings of 3X within the namespace and 2X overall in the ACPI CA subsystem. Fixed problem where the call to AcpiEvFindPciRootBuses was inadvertently left commented out. Reduced the warning count when generating the source with the GCC compiler. Revision numbers added to each module header showing the SourceSafe version of the file. Please refer to this version number when giving us feedback or comments on individual modules. The main object types within the subsystem have been renamed to clarify their purpose: ACPI_INTERNAL_OBJECT -> ACPI_OPERAND_OBJECT ACPI_GENERIC_OP -> ACPI_PARSE_OBJECT ACPI_NAME_TABLE_ENTRY -> ACPI_NAMESPACE_NODE NOTE: no changes to the initialization sequence are included in this label. ------------------------------------------- Summary of changes for this label: 08_23_00 Fixed problem where TerminateControlMethod was being called multiple times per method Fixed debugger problem where single stepping caused a semaphore to be oversignalled Improved performance through additional parse object caching - added ACPI_EXTENDED_OP type ------------------------------------------- Summary of changes for this label: 08_10_00 Parser/Interpreter integration: Eliminated the creation of complete parse trees for ACPI tables and control methods. Instead, parse subtrees are created and then deleted as soon as they are processed (Either entered into the namespace or executed by the interpreter). This reduces the use of dynamic kernel memory significantly. (about 10X) Exception codes broken into classes and renumbered. Be sure to recompile all code that includes acexcep.h. Hopefully we won't have to renumber the codes again now that they are split into classes (environment, programmer, AML code, ACPI table, and internal). Fixed some additional alignment issues in the Resource Manager subcomponent Implemented semaphore tracking in the AcpiExec utility, and fixed several places where mutexes/semaphores were being unlocked without a corresponding lock operation. There are no known semaphore or mutex "leaks" at this time. Fixed the case where an ASL Return operator is used to return an unnamed package. ------------------------------------------- Summary of changes for this label: 07_28_00 Fixed a problem with the way addresses were calculated in AcpiAmlReadFieldData() and AcpiAmlWriteFieldData(). This problem manifested itself when a Field was created with WordAccess or DwordAccess, but the field unit defined within the Field was less than a Word or Dword. Fixed a problem in AmlDumpOperands() module's loop to pull operands off of the operand stack to display information. The problem manifested itself as a TLB error on 64-bit systems when accessing an operand stack with two or more operands. Fixed a problem with the PCI configuration space handlers where context was getting confused between accesses. This required a change to the generic address space handler and address space setup definitions. Handlers now get both a global handler context (this is the one passed in by the user when executing AcpiInstallAddressSpaceHandler() and a specific region context that is unique to each region (For example, the _ADR, _SEG and _BBN values associated with a specific region). The generic function definitions have changed to the following: typedef ACPI_STATUS (*ADDRESS_SPACE_HANDLER) ( UINT32 Function, UINT32 Address, UINT32 BitWidth, UINT32 *Value, void *HandlerContext, // This used to be void *Context void *RegionContext); // This is an additional parameter typedef ACPI_STATUS (*ADDRESS_SPACE_SETUP) ( ACPI_HANDLE RegionHandle, UINT32 Function, void *HandlerContext, void **RegionContext); // This used to be **ReturnContext ------------------------------------------- Summary of changes for this label: 07_21_00 Major file consolidation and rename. All files within the interpreter have been renamed as well as most header files. This was done to prevent collisions with existing files in the host OSs -- filenames such as "config.h" and "global.h" seem to be quite common. The VC project files have been updated. All makefiles will require modification. The parser/interpreter integration continues in Phase 5 with the implementation of a complete 2-pass parse (the AML is parsed twice) for each table; This avoids the construction of a huge parse tree and therefore reduces the amount of dynamic memory required by the subsystem. Greater use of the parse object cache means that performance is unaffected. Many comments from the two code reviews have been rolled in. The 64-bit alignment support is complete. ------------------------------------------- Summary of changes for this label: 06_30_00 With a nod and a tip of the hat to the technology of yesteryear, we've added support in the source code for 80 column output devices. The code is now mostly constrained to 80 columns or less to support environments and editors that 1) cannot display or print more than 80 characters on a single line, and 2) cannot disable line wrapping. A major restructuring of the namespace data structure has been completed. The result is 1) cleaner and more understandable/maintainable code, and 2) a significant reduction in the dynamic memory requirement for each named ACPI object (almost half). ------------------------------------------- Summary of changes for this label: 06_23_00 Linux support has been added. In order to obtain approval to get the ACPI CA subsystem into the Linux kernel, we've had to make quite a few changes to the base subsystem that will affect all users (all the changes are generic and OS- independent). The effects of these global changes have been somewhat far reaching. Files have been merged and/or renamed and interfaces have been renamed. The major changes are described below. Osd* interfaces renamed to AcpiOs* to eliminate namespace pollution/confusion within our target kernels. All OSD interfaces must be modified to match the new naming convention. Files merged across the subsystem. A number of the smaller source and header files have been merged to reduce the file count and increase the density of the existing files. There are too many to list here. In general, makefiles that call out individual files will require rebuilding. Interpreter files renamed. All interpreter files now have the prefix am* instead of ie* and is*. Header files renamed: The acapi.h file is now acpixf.h. The acpiosd.h file is now acpiosxf.h. We are removing references to the acronym "API" since it is somewhat windowsy. The new name is "external interface" or xface or xf in the filenames.j All manifest constants have been forced to upper case (some were mixed case.) Also, the string "ACPI_" has been prepended to many (not all) of the constants, typedefs, and structs. The globals "DebugLevel" and "DebugLayer" have been renamed "AcpiDbgLevel" and "AcpiDbgLayer" respectively. All other globals within the subsystem are now prefixed with "AcpiGbl_" Internal procedures within the subsystem are now prefixed with "Acpi" (with only a few exceptions). The original two-letter abbreviation for the subcomponent remains after "Acpi" - for example, CmCallocate became AcpiCmCallocate. Added a source code translation/conversion utility. Used to generate the Linux source code, it can be modified to generate other types of source as well. Can also be used to cleanup existing source by removing extraneous spaces and blank lines. Found in tools/acpisrc/* OsdUnMapMemory was renamed to OsdUnmapMemory and then AcpiOsUnmapMemory. (UnMap became Unmap). A "MaxUnits" parameter has been added to AcpiOsCreateSemaphore. When set to one, this indicates that the caller wants to use the semaphore as a mutex, not a counting semaphore. ACPI CA uses both types. However, implementers of this call may want to use different OS primitives depending on the type of semaphore requested. For example, some operating systems provide separate "mutex" and "semaphore" interfaces - where the mutex interface is much faster because it doesn't have all the overhead of a full semaphore implementation. Fixed a deadlock problem where a method that accesses the PCI address space can block forever if it is the first access to the space. ------------------------------------------- Summary of changes for this label: 06_02_00 Support for environments that cannot handle unaligned data accesses (e.g. firmware and OS environments devoid of alignment handler technology namely SAL/EFI and the IA-64 Linux kernel) has been added (via configurable macros) in these three areas: - Transfer of data from the raw AML byte stream is done via byte moves instead of word/dword/qword moves. - External objects are aligned within the user buffer, including package elements (sub- objects). - Conversion of name strings to UINT32 Acpi Names is now done byte-wise. The Store operator was modified to mimic Microsoft's implementation when storing to a Buffer Field. Added a check of the BM_STS bit before entering C3. The methods subdirectory has been obsoleted and removed. A new file, cmeval.c subsumes the functionality. A 16-bit (DOS) version of AcpiExec has been developed. The makefile is under the acpiexec directory. Index: vendor-sys/acpica/dist/generate/unix/acpidump/Makefile =================================================================== --- vendor-sys/acpica/dist/generate/unix/acpidump/Makefile (revision 305161) +++ vendor-sys/acpica/dist/generate/unix/acpidump/Makefile (revision 305162) @@ -1,88 +1,90 @@ # # acpidump - ACPI table dump utility (binary to ascii hex) # # # Note: This makefile is intended to be used from within the native # ACPICA directory structure, from under generate/unix. It specifically # places all object files in a generate/unix subdirectory, not within # the various ACPICA source directories. This prevents collisions # between different compilations of the same source file with different # compile options, and prevents pollution of the source code. # include ../Makefile.config FINAL_PROG = ../$(BINDIR)/acpidump PROG = $(OBJDIR)/acpidump # # Search paths for source files # vpath %.c \ $(ACPIDUMP)\ $(ACPICA_TABLES)\ $(ACPICA_UTILITIES)\ $(ACPICA_COMMON)\ $(ACPICA_OSL) HEADERS = \ $(wildcard $(ACPIDUMP)/*.h) OBJECTS = \ $(OBJDIR)/apdump.o\ $(OBJDIR)/apfiles.o\ $(OBJDIR)/apmain.o\ $(OBJDIR)/cmfsize.o\ $(OBJDIR)/getopt.o\ $(OBJDIR)/osunixdir.o\ $(OBJDIR)/osunixmap.o\ $(OBJDIR)/osunixxf.o\ $(OBJDIR)/tbprint.o\ $(OBJDIR)/tbxfroot.o\ $(OBJDIR)/utascii.o\ $(OBJDIR)/utbuffer.o\ $(OBJDIR)/utdebug.o\ $(OBJDIR)/utexcep.o\ $(OBJDIR)/utglobal.o\ + $(OBJDIR)/uthex.o\ $(OBJDIR)/utmath.o\ $(OBJDIR)/utnonansi.o\ $(OBJDIR)/utstring.o\ + $(OBJDIR)/utstrtoul64.o\ $(OBJDIR)/utxferror.o # # Per-host interfaces # ifeq ($(HOST), _DragonFly) HOST_FAMILY = BSD endif ifeq ($(HOST), _FreeBSD) HOST_FAMILY = BSD endif ifeq ($(HOST), _NetBSD) HOST_FAMILY = BSD endif ifeq ($(HOST), _QNX) HOST_FAMILY = BSD endif ifeq ($(HOST_FAMILY), BSD) OBJECTS += \ $(OBJDIR)/osbsdtbl.o else OBJECTS += \ $(OBJDIR)/oslinuxtbl.o endif # # Flags specific to acpidump # CFLAGS += \ -DACPI_DUMP_APP\ -I$(ACPIDUMP) # # Common Rules # include ../Makefile.rules Index: vendor-sys/acpica/dist/generate/unix/acpiexamples/Makefile =================================================================== --- vendor-sys/acpica/dist/generate/unix/acpiexamples/Makefile (revision 305161) +++ vendor-sys/acpica/dist/generate/unix/acpiexamples/Makefile (revision 305162) @@ -1,173 +1,174 @@ # # acpiexamples - Example ACPICA initialization code and control # method execution. # # # Note: This makefile is intended to be used from within the native # ACPICA directory structure, from under generate/unix. It specifically # places all object files in a generate/unix subdirectory, not within # the various ACPICA source directories. This prevents collisions # between different compilations of the same source file with different # compile options, and prevents pollution of the source code. # include ../Makefile.config FINAL_PROG = ../$(BINDIR)/acpiexamples PROG = $(OBJDIR)/acpiexamples # # Search paths for source files # vpath %.c \ $(ACPIEXAMPLES)\ $(ACPICA_DISPATCHER)\ $(ACPICA_EVENTS)\ $(ACPICA_EXECUTER)\ $(ACPICA_HARDWARE)\ $(ACPICA_NAMESPACE)\ $(ACPICA_PARSER)\ $(ACPICA_TABLES)\ $(ACPICA_UTILITIES)\ $(ACPICA_COMMON)\ $(ACPICA_OSL) HEADERS = \ $(wildcard $(ACPIEXAMPLES)/*.h) OBJECTS = \ $(OBJDIR)/examples.o\ $(OBJDIR)/exstubs.o\ $(OBJDIR)/extables.o\ $(OBJDIR)/dsargs.o\ $(OBJDIR)/dscontrol.o\ $(OBJDIR)/dsdebug.o\ $(OBJDIR)/dsfield.o\ $(OBJDIR)/dsinit.o\ $(OBJDIR)/dsmethod.o\ $(OBJDIR)/dsmthdat.o\ $(OBJDIR)/dsobject.o\ $(OBJDIR)/dsopcode.o\ $(OBJDIR)/dsutils.o\ $(OBJDIR)/dswexec.o\ $(OBJDIR)/dswload.o\ $(OBJDIR)/dswload2.o\ $(OBJDIR)/dswscope.o\ $(OBJDIR)/dswstate.o\ $(OBJDIR)/evhandler.o\ $(OBJDIR)/evmisc.o\ $(OBJDIR)/evregion.o\ $(OBJDIR)/evrgnini.o\ $(OBJDIR)/evxface.o\ $(OBJDIR)/evxfregn.o\ $(OBJDIR)/exconcat.o\ $(OBJDIR)/exconfig.o\ $(OBJDIR)/exconvrt.o\ $(OBJDIR)/excreate.o\ $(OBJDIR)/exdebug.o\ $(OBJDIR)/exdump.o\ $(OBJDIR)/exfield.o\ $(OBJDIR)/exfldio.o\ $(OBJDIR)/exmisc.o\ $(OBJDIR)/exmutex.o\ $(OBJDIR)/exnames.o\ $(OBJDIR)/exoparg1.o\ $(OBJDIR)/exoparg2.o\ $(OBJDIR)/exoparg3.o\ $(OBJDIR)/exoparg6.o\ $(OBJDIR)/exprep.o\ $(OBJDIR)/exregion.o\ $(OBJDIR)/exresnte.o\ $(OBJDIR)/exresolv.o\ $(OBJDIR)/exresop.o\ $(OBJDIR)/exstore.o\ $(OBJDIR)/exstoren.o\ $(OBJDIR)/exstorob.o\ $(OBJDIR)/exsystem.o\ $(OBJDIR)/extrace.o\ $(OBJDIR)/exutils.o\ $(OBJDIR)/hwpci.o\ $(OBJDIR)/nsaccess.o\ $(OBJDIR)/nsalloc.o\ $(OBJDIR)/nsarguments.o\ $(OBJDIR)/nsconvert.o\ $(OBJDIR)/nsdump.o\ $(OBJDIR)/nseval.o\ $(OBJDIR)/nsinit.o\ $(OBJDIR)/nsload.o\ $(OBJDIR)/nsnames.o\ $(OBJDIR)/nsobject.o\ $(OBJDIR)/nsparse.o\ $(OBJDIR)/nspredef.o\ $(OBJDIR)/nsprepkg.o\ $(OBJDIR)/nsrepair.o\ $(OBJDIR)/nsrepair2.o\ $(OBJDIR)/nssearch.o\ $(OBJDIR)/nsutils.o\ $(OBJDIR)/nswalk.o\ $(OBJDIR)/nsxfeval.o\ $(OBJDIR)/nsxfname.o\ $(OBJDIR)/nsxfobj.o\ $(OBJDIR)/osunixxf.o\ $(OBJDIR)/psargs.o\ $(OBJDIR)/psloop.o\ $(OBJDIR)/psobject.o\ $(OBJDIR)/psopcode.o\ $(OBJDIR)/psopinfo.o\ $(OBJDIR)/psparse.o\ $(OBJDIR)/psscope.o\ $(OBJDIR)/pstree.o\ $(OBJDIR)/psutils.o\ $(OBJDIR)/pswalk.o\ $(OBJDIR)/psxface.o\ $(OBJDIR)/tbdata.o\ $(OBJDIR)/tbfadt.o\ $(OBJDIR)/tbfind.o\ $(OBJDIR)/tbinstal.o\ $(OBJDIR)/tbprint.o\ $(OBJDIR)/tbutils.o\ $(OBJDIR)/tbxface.o\ $(OBJDIR)/tbxfload.o\ $(OBJDIR)/tbxfroot.o\ $(OBJDIR)/utaddress.o\ $(OBJDIR)/utalloc.o\ $(OBJDIR)/utascii.o\ $(OBJDIR)/utbuffer.o\ $(OBJDIR)/utcache.o\ $(OBJDIR)/utcopy.o\ $(OBJDIR)/utdebug.o\ $(OBJDIR)/utdecode.o\ $(OBJDIR)/utdelete.o\ $(OBJDIR)/uterror.o\ $(OBJDIR)/uteval.o\ $(OBJDIR)/utexcep.o\ $(OBJDIR)/utglobal.o\ $(OBJDIR)/uthex.o\ $(OBJDIR)/utids.o\ $(OBJDIR)/utinit.o\ $(OBJDIR)/utlock.o\ $(OBJDIR)/utmath.o\ $(OBJDIR)/utmisc.o\ $(OBJDIR)/utmutex.o\ $(OBJDIR)/utobject.o\ $(OBJDIR)/utosi.o\ $(OBJDIR)/utownerid.o\ $(OBJDIR)/utnonansi.o\ $(OBJDIR)/utpredef.o\ $(OBJDIR)/utresrc.o\ $(OBJDIR)/utstate.o\ $(OBJDIR)/utstring.o\ + $(OBJDIR)/utstrtoul64.o\ $(OBJDIR)/utxface.o\ $(OBJDIR)/utxferror.o\ $(OBJDIR)/utxfinit.o # # Flags specific to acpinames utility # CFLAGS += \ -DACPI_EXAMPLE_APP\ -I$(ACPIEXAMPLES) # # Common Rules # include ../Makefile.rules Index: vendor-sys/acpica/dist/generate/unix/acpiexec/Makefile =================================================================== --- vendor-sys/acpica/dist/generate/unix/acpiexec/Makefile (revision 305161) +++ vendor-sys/acpica/dist/generate/unix/acpiexec/Makefile (revision 305162) @@ -1,261 +1,262 @@ # # acpiexec: ACPI execution simulator. Runs ACPICA code in user # space. Loads ACPI tables, displays the namespace, and allows # execution of control methods. # # # Note: This makefile is intended to be used from within the native # ACPICA directory structure, from under generate/unix. It specifically # places all object files in a generate/unix subdirectory, not within # the various ACPICA source directories. This prevents collisions # between different compilations of the same source file with different # compile options, and prevents pollution of the source code. # include ../Makefile.config FINAL_PROG = ../$(BINDIR)/acpiexec PROG = $(OBJDIR)/acpiexec # # Search paths for source files # vpath %.c \ $(ACPIEXEC)\ $(ACPICA_DEBUGGER)\ $(ACPICA_DISASSEMBLER)\ $(ACPICA_DISPATCHER)\ $(ACPICA_EVENTS)\ $(ACPICA_EXECUTER)\ $(ACPICA_HARDWARE)\ $(ACPICA_NAMESPACE)\ $(ACPICA_PARSER)\ $(ACPICA_RESOURCES)\ $(ACPICA_TABLES)\ $(ACPICA_UTILITIES)\ $(ACPICA_COMMON)\ $(ACPICA_OSL) HEADERS = \ $(wildcard $(ACPIEXEC)/*.h) OBJECTS = \ $(OBJDIR)/acgetline.o\ $(OBJDIR)/acfileio.o\ $(OBJDIR)/aeexec.o\ $(OBJDIR)/aehandlers.o\ $(OBJDIR)/aeinitfile.o\ $(OBJDIR)/aemain.o\ $(OBJDIR)/aeregion.o\ $(OBJDIR)/aetables.o\ $(OBJDIR)/ahids.o\ $(OBJDIR)/ahuuids.o\ $(OBJDIR)/cmfsize.o\ $(OBJDIR)/dbcmds.o\ $(OBJDIR)/dbconvert.o\ $(OBJDIR)/dbdisply.o\ $(OBJDIR)/dbexec.o\ $(OBJDIR)/dbfileio.o\ $(OBJDIR)/dbhistry.o\ $(OBJDIR)/dbinput.o\ $(OBJDIR)/dbmethod.o\ $(OBJDIR)/dbnames.o\ $(OBJDIR)/dbobject.o\ $(OBJDIR)/dbstats.o\ $(OBJDIR)/dbtest.o\ $(OBJDIR)/dbutils.o\ $(OBJDIR)/dbxface.o\ $(OBJDIR)/dmbuffer.o\ $(OBJDIR)/dmcstyle.o\ $(OBJDIR)/dmdeferred.o\ $(OBJDIR)/dmnames.o\ $(OBJDIR)/dmopcode.o\ $(OBJDIR)/dmresrc.o\ $(OBJDIR)/dmresrcl.o\ $(OBJDIR)/dmresrcl2.o\ $(OBJDIR)/dmresrcs.o\ $(OBJDIR)/dmutils.o\ $(OBJDIR)/dmwalk.o\ $(OBJDIR)/dsargs.o\ $(OBJDIR)/dscontrol.o\ $(OBJDIR)/dsdebug.o\ $(OBJDIR)/dsfield.o\ $(OBJDIR)/dsinit.o\ $(OBJDIR)/dsmethod.o\ $(OBJDIR)/dsmthdat.o\ $(OBJDIR)/dsobject.o\ $(OBJDIR)/dsopcode.o\ $(OBJDIR)/dsutils.o\ $(OBJDIR)/dswexec.o\ $(OBJDIR)/dswload.o\ $(OBJDIR)/dswload2.o\ $(OBJDIR)/dswscope.o\ $(OBJDIR)/dswstate.o\ $(OBJDIR)/evevent.o\ $(OBJDIR)/evglock.o\ $(OBJDIR)/evgpe.o\ $(OBJDIR)/evgpeblk.o\ $(OBJDIR)/evgpeinit.o\ $(OBJDIR)/evgpeutil.o\ $(OBJDIR)/evhandler.o\ $(OBJDIR)/evmisc.o\ $(OBJDIR)/evregion.o\ $(OBJDIR)/evrgnini.o\ $(OBJDIR)/evsci.o\ $(OBJDIR)/evxface.o\ $(OBJDIR)/evxfevnt.o\ $(OBJDIR)/evxfgpe.o\ $(OBJDIR)/evxfregn.o\ $(OBJDIR)/exconfig.o\ $(OBJDIR)/exconcat.o\ $(OBJDIR)/exconvrt.o\ $(OBJDIR)/excreate.o\ $(OBJDIR)/exdebug.o\ $(OBJDIR)/exdump.o\ $(OBJDIR)/exfield.o\ $(OBJDIR)/exfldio.o\ $(OBJDIR)/exmisc.o\ $(OBJDIR)/exmutex.o\ $(OBJDIR)/exnames.o\ $(OBJDIR)/exoparg1.o\ $(OBJDIR)/exoparg2.o\ $(OBJDIR)/exoparg3.o\ $(OBJDIR)/exoparg6.o\ $(OBJDIR)/exprep.o\ $(OBJDIR)/exregion.o\ $(OBJDIR)/exresnte.o\ $(OBJDIR)/exresolv.o\ $(OBJDIR)/exresop.o\ $(OBJDIR)/exstore.o\ $(OBJDIR)/exstoren.o\ $(OBJDIR)/exstorob.o\ $(OBJDIR)/exsystem.o\ $(OBJDIR)/extrace.o\ $(OBJDIR)/exutils.o\ $(OBJDIR)/getopt.o\ $(OBJDIR)/hwacpi.o\ $(OBJDIR)/hwesleep.o\ $(OBJDIR)/hwgpe.o\ $(OBJDIR)/hwpci.o\ $(OBJDIR)/hwregs.o\ $(OBJDIR)/hwsleep.o\ $(OBJDIR)/hwvalid.o\ $(OBJDIR)/hwxface.o\ $(OBJDIR)/hwxfsleep.o\ $(OBJDIR)/nsaccess.o\ $(OBJDIR)/nsalloc.o\ $(OBJDIR)/nsarguments.o\ $(OBJDIR)/nsconvert.o\ $(OBJDIR)/nsdump.o\ $(OBJDIR)/nsdumpdv.o\ $(OBJDIR)/nseval.o\ $(OBJDIR)/nsinit.o\ $(OBJDIR)/nsload.o\ $(OBJDIR)/nsnames.o\ $(OBJDIR)/nsobject.o\ $(OBJDIR)/nsparse.o\ $(OBJDIR)/nspredef.o\ $(OBJDIR)/nsprepkg.o\ $(OBJDIR)/nsrepair.o\ $(OBJDIR)/nsrepair2.o\ $(OBJDIR)/nssearch.o\ $(OBJDIR)/nsutils.o\ $(OBJDIR)/nswalk.o\ $(OBJDIR)/nsxfeval.o\ $(OBJDIR)/nsxfname.o\ $(OBJDIR)/nsxfobj.o\ $(OBJDIR)/osunixxf.o\ $(OBJDIR)/psargs.o\ $(OBJDIR)/psloop.o\ $(OBJDIR)/psobject.o\ $(OBJDIR)/psopcode.o\ $(OBJDIR)/psopinfo.o\ $(OBJDIR)/psparse.o\ $(OBJDIR)/psscope.o\ $(OBJDIR)/pstree.o\ $(OBJDIR)/psutils.o\ $(OBJDIR)/pswalk.o\ $(OBJDIR)/psxface.o\ $(OBJDIR)/rsaddr.o\ $(OBJDIR)/rscalc.o\ $(OBJDIR)/rscreate.o\ $(OBJDIR)/rsdump.o\ $(OBJDIR)/rsdumpinfo.o\ $(OBJDIR)/rsinfo.o\ $(OBJDIR)/rsio.o\ $(OBJDIR)/rsirq.o\ $(OBJDIR)/rslist.o\ $(OBJDIR)/rsmemory.o\ $(OBJDIR)/rsmisc.o\ $(OBJDIR)/rsserial.o\ $(OBJDIR)/rsutils.o\ $(OBJDIR)/rsxface.o\ $(OBJDIR)/tbdata.o\ $(OBJDIR)/tbfadt.o\ $(OBJDIR)/tbfind.o\ $(OBJDIR)/tbinstal.o\ $(OBJDIR)/tbprint.o\ $(OBJDIR)/tbutils.o\ $(OBJDIR)/tbxface.o\ $(OBJDIR)/tbxfload.o\ $(OBJDIR)/tbxfroot.o\ $(OBJDIR)/utaddress.o\ $(OBJDIR)/utalloc.o\ $(OBJDIR)/utascii.o\ $(OBJDIR)/utbuffer.o\ $(OBJDIR)/utcache.o\ $(OBJDIR)/utcopy.o\ $(OBJDIR)/utdebug.o\ $(OBJDIR)/utdecode.o\ $(OBJDIR)/utdelete.o\ $(OBJDIR)/uterror.o\ $(OBJDIR)/uteval.o\ $(OBJDIR)/utexcep.o\ $(OBJDIR)/utglobal.o\ $(OBJDIR)/uthex.o\ $(OBJDIR)/utids.o\ $(OBJDIR)/utinit.o\ $(OBJDIR)/utlock.o\ $(OBJDIR)/utmath.o\ $(OBJDIR)/utmisc.o\ $(OBJDIR)/utmutex.o\ $(OBJDIR)/utobject.o\ $(OBJDIR)/utosi.o\ $(OBJDIR)/utownerid.o\ $(OBJDIR)/utnonansi.o\ $(OBJDIR)/utpredef.o\ $(OBJDIR)/utresrc.o\ $(OBJDIR)/utstate.o\ $(OBJDIR)/utstring.o\ + $(OBJDIR)/utstrtoul64.o\ $(OBJDIR)/uttrack.o\ $(OBJDIR)/utuuid.o\ $(OBJDIR)/utxface.o\ $(OBJDIR)/utxferror.o\ $(OBJDIR)/utxfinit.o\ $(OBJDIR)/utxfmutex.o # # Flags specific to acpiexec utility # CFLAGS += \ -DACPI_EXEC_APP\ -I$(ACPIEXEC) ifeq ($(ASLTS),TRUE) CFLAGS += \ -DACPI_CHECKSUM_ABORT=TRUE endif ifneq ($(HOST),_QNX) LDFLAGS += -lpthread endif ifneq ($(HOST),_APPLE) ifneq ($(HOST),_QNX) LDFLAGS += -lrt endif endif # # Common Rules # include ../Makefile.rules Index: vendor-sys/acpica/dist/generate/unix/acpisrc/Makefile =================================================================== --- vendor-sys/acpica/dist/generate/unix/acpisrc/Makefile (revision 305161) +++ vendor-sys/acpica/dist/generate/unix/acpisrc/Makefile (revision 305162) @@ -1,60 +1,61 @@ # # acpisrc - ACPICA source code conversion utility # # # Note: This makefile is intended to be used from within the native # ACPICA directory structure, from under generate/unix. It specifically # places all object files in a generate/unix subdirectory, not within # the various ACPICA source directories. This prevents collisions # between different compilations of the same source file with different # compile options, and prevents pollution of the source code. # include ../Makefile.config FINAL_PROG = ../$(BINDIR)/acpisrc PROG = $(OBJDIR)/acpisrc # # Search path for source files and individual source files # vpath %.c \ $(ACPISRC)\ $(ACPICA_UTILITIES)\ $(ACPICA_COMMON)\ $(ACPICA_OSL) HEADERS = \ $(wildcard $(ACPISRC)/*.h) OBJECTS = \ $(OBJDIR)/ascase.o\ $(OBJDIR)/asconvrt.o\ $(OBJDIR)/asfile.o\ $(OBJDIR)/asmain.o\ $(OBJDIR)/asremove.o\ $(OBJDIR)/astable.o\ $(OBJDIR)/asutils.o\ $(OBJDIR)/cmfsize.o\ $(OBJDIR)/getopt.o \ $(OBJDIR)/osunixdir.o\ $(OBJDIR)/osunixxf.o\ $(OBJDIR)/utascii.o\ $(OBJDIR)/utdebug.o\ $(OBJDIR)/utexcep.o\ $(OBJDIR)/utglobal.o\ + $(OBJDIR)/uthex.o\ $(OBJDIR)/utmath.o\ $(OBJDIR)/utnonansi.o\ $(OBJDIR)/utstring.o\ $(OBJDIR)/utxferror.o # # Compile flags specific to acpisrc # CFLAGS += \ -DACPI_SRC_APP\ -I$(ACPISRC) # # Common Rules # include ../Makefile.rules Index: vendor-sys/acpica/dist/generate/unix/acpixtract/Makefile =================================================================== --- vendor-sys/acpica/dist/generate/unix/acpixtract/Makefile (revision 305161) +++ vendor-sys/acpica/dist/generate/unix/acpixtract/Makefile (revision 305162) @@ -1,52 +1,53 @@ # # acpixtract - extract binary ACPI tables from acpidump text output # # # Note: This makefile is intended to be used from within the native # ACPICA directory structure, from under generate/unix. It specifically # places all object files in a generate/unix subdirectory, not within # the various ACPICA source directories. This prevents collisions # between different compilations of the same source file with different # compile options, and prevents pollution of the source code. # include ../Makefile.config FINAL_PROG = ../$(BINDIR)/acpixtract PROG = $(OBJDIR)/acpixtract # # Search paths for source files # vpath %.c \ $(ACPIXTRACT)\ $(ACPICA_UTILITIES)\ $(ACPICA_COMMON)\ $(ACPICA_OSL) HEADERS = \ $(wildcard $(ACPIXTRACT)/*.h) OBJECTS = \ $(OBJDIR)/acpixtract.o\ $(OBJDIR)/axmain.o\ $(OBJDIR)/axutils.o\ $(OBJDIR)/getopt.o\ $(OBJDIR)/osunixxf.o\ $(OBJDIR)/utascii.o\ $(OBJDIR)/utdebug.o\ $(OBJDIR)/utexcep.o\ $(OBJDIR)/utglobal.o\ + $(OBJDIR)/uthex.o\ $(OBJDIR)/utmath.o\ $(OBJDIR)/utnonansi.o\ $(OBJDIR)/utxferror.o # # Flags specific to acpixtract # CFLAGS += \ -DACPI_XTRACT_APP # # Common Rules # include ../Makefile.rules Index: vendor-sys/acpica/dist/generate/unix/iasl/Makefile =================================================================== --- vendor-sys/acpica/dist/generate/unix/iasl/Makefile (revision 305161) +++ vendor-sys/acpica/dist/generate/unix/iasl/Makefile (revision 305162) @@ -1,336 +1,338 @@ # # iASL compiler/disassembler # # # Note: This makefile is intended to be used from within the native # ACPICA directory structure, from under generate/unix. It specifically # places all object files in a generate/unix subdirectory, not within # the various ACPICA source directories. This prevents collisions # between different compilations of the same source file with different # compile options, and prevents pollution of the source code. # include ../Makefile.config FINAL_PROG = ../$(BINDIR)/iasl PROG = $(OBJDIR)/iasl # # Search paths for source files # vpath %.c \ $(ASL_COMPILER)\ $(ACPICA_DEBUGGER)\ $(ACPICA_DISASSEMBLER)\ $(ACPICA_DISPATCHER)\ $(ACPICA_EXECUTER)\ $(ACPICA_NAMESPACE)\ $(ACPICA_PARSER)\ $(ACPICA_TABLES)\ $(ACPICA_UTILITIES)\ $(ACPICA_COMMON)\ $(ACPICA_OSL) HEADERS = \ $(wildcard $(ASL_COMPILER)/*.h)\ $(OBJDIR)/aslcompiler.y.h\ $(OBJDIR)/dtparser.y.h\ $(OBJDIR)/prparser.y.h OBJECTS = \ $(OBJDIR)/aslcompilerlex.o\ $(OBJDIR)/aslcompilerparse.o\ $(OBJDIR)/dtparserlex.o\ $(OBJDIR)/dtparserparse.o\ $(OBJDIR)/prparserlex.o\ $(OBJDIR)/prparserparse.o\ $(OBJDIR)/acfileio.o\ $(OBJDIR)/adfile.o\ $(OBJDIR)/adisasm.o\ $(OBJDIR)/adwalk.o\ $(OBJDIR)/ahids.o\ $(OBJDIR)/ahpredef.o\ $(OBJDIR)/ahtable.o\ $(OBJDIR)/ahuuids.o\ $(OBJDIR)/aslanalyze.o\ $(OBJDIR)/aslascii.o\ $(OBJDIR)/aslbtypes.o\ $(OBJDIR)/aslcodegen.o\ $(OBJDIR)/aslcompile.o\ $(OBJDIR)/asldebug.o\ $(OBJDIR)/aslerror.o\ $(OBJDIR)/aslexternal.o\ $(OBJDIR)/aslfiles.o\ $(OBJDIR)/aslfileio.o\ $(OBJDIR)/aslfold.o\ + $(OBJDIR)/aslhelp.o\ $(OBJDIR)/aslhex.o\ $(OBJDIR)/asllength.o\ $(OBJDIR)/asllisting.o\ $(OBJDIR)/asllistsup.o\ $(OBJDIR)/aslload.o\ $(OBJDIR)/asllookup.o\ $(OBJDIR)/aslmain.o\ $(OBJDIR)/aslmap.o\ $(OBJDIR)/aslmapenter.o\ $(OBJDIR)/aslmapoutput.o\ $(OBJDIR)/aslmaputils.o\ $(OBJDIR)/aslmessages.o\ $(OBJDIR)/aslmethod.o\ $(OBJDIR)/aslnamesp.o\ $(OBJDIR)/asloffset.o\ $(OBJDIR)/aslopcodes.o\ $(OBJDIR)/asloperands.o\ $(OBJDIR)/aslopt.o\ $(OBJDIR)/asloptions.o\ $(OBJDIR)/aslpredef.o\ $(OBJDIR)/aslprepkg.o\ $(OBJDIR)/aslprintf.o\ $(OBJDIR)/aslprune.o\ $(OBJDIR)/aslresource.o\ $(OBJDIR)/aslrestype1.o\ $(OBJDIR)/aslrestype1i.o\ $(OBJDIR)/aslrestype2.o\ $(OBJDIR)/aslrestype2d.o\ $(OBJDIR)/aslrestype2e.o\ $(OBJDIR)/aslrestype2q.o\ $(OBJDIR)/aslrestype2s.o\ $(OBJDIR)/aslrestype2w.o\ $(OBJDIR)/aslstartup.o\ $(OBJDIR)/aslstubs.o\ $(OBJDIR)/aslpld.o\ $(OBJDIR)/asltransform.o\ $(OBJDIR)/asltree.o\ $(OBJDIR)/aslutils.o\ $(OBJDIR)/asluuid.o\ $(OBJDIR)/aslwalks.o\ $(OBJDIR)/aslxref.o\ $(OBJDIR)/aslxrefout.o\ $(OBJDIR)/cmfsize.o\ $(OBJDIR)/dbfileio.o\ $(OBJDIR)/dmbuffer.o\ $(OBJDIR)/dmcstyle.o\ $(OBJDIR)/dmdeferred.o\ $(OBJDIR)/dmextern.o\ $(OBJDIR)/dmnames.o\ $(OBJDIR)/dmopcode.o\ $(OBJDIR)/dmresrc.o\ $(OBJDIR)/dmresrcl.o\ $(OBJDIR)/dmresrcl2.o\ $(OBJDIR)/dmresrcs.o\ $(OBJDIR)/dmrestag.o\ $(OBJDIR)/dmtable.o\ $(OBJDIR)/dmtables.o\ $(OBJDIR)/dmtbdump.o\ $(OBJDIR)/dmtbinfo.o\ $(OBJDIR)/dmutils.o\ $(OBJDIR)/dmwalk.o\ $(OBJDIR)/dsargs.o\ $(OBJDIR)/dscontrol.o\ $(OBJDIR)/dsfield.o\ $(OBJDIR)/dsobject.o\ $(OBJDIR)/dsopcode.o\ $(OBJDIR)/dsutils.o\ $(OBJDIR)/dswexec.o\ $(OBJDIR)/dswload.o\ $(OBJDIR)/dswload2.o\ $(OBJDIR)/dswscope.o\ $(OBJDIR)/dswstate.o\ $(OBJDIR)/dtcompile.o\ $(OBJDIR)/dtexpress.o\ $(OBJDIR)/dtfield.o\ $(OBJDIR)/dtio.o\ $(OBJDIR)/dtsubtable.o\ $(OBJDIR)/dttable.o\ $(OBJDIR)/dttable1.o\ $(OBJDIR)/dttable2.o\ $(OBJDIR)/dttemplate.o\ $(OBJDIR)/dtutils.o\ $(OBJDIR)/exconcat.o\ $(OBJDIR)/exconvrt.o\ $(OBJDIR)/excreate.o\ $(OBJDIR)/exdump.o\ $(OBJDIR)/exmisc.o\ $(OBJDIR)/exmutex.o\ $(OBJDIR)/exnames.o\ $(OBJDIR)/exoparg1.o\ $(OBJDIR)/exoparg2.o\ $(OBJDIR)/exoparg3.o\ $(OBJDIR)/exoparg6.o\ $(OBJDIR)/exprep.o\ $(OBJDIR)/exregion.o\ $(OBJDIR)/exresnte.o\ $(OBJDIR)/exresolv.o\ $(OBJDIR)/exresop.o\ $(OBJDIR)/exstore.o\ $(OBJDIR)/exstoren.o\ $(OBJDIR)/exstorob.o\ $(OBJDIR)/exsystem.o\ $(OBJDIR)/exutils.o\ $(OBJDIR)/getopt.o\ $(OBJDIR)/nsaccess.o\ $(OBJDIR)/nsalloc.o\ $(OBJDIR)/nsdump.o\ $(OBJDIR)/nsnames.o\ $(OBJDIR)/nsobject.o\ $(OBJDIR)/nsparse.o\ $(OBJDIR)/nssearch.o\ $(OBJDIR)/nsutils.o\ $(OBJDIR)/nswalk.o\ $(OBJDIR)/nsxfobj.o\ $(OBJDIR)/osunixxf.o\ $(OBJDIR)/prexpress.o\ $(OBJDIR)/prmacros.o\ $(OBJDIR)/prscan.o\ $(OBJDIR)/prutils.o\ $(OBJDIR)/psargs.o\ $(OBJDIR)/psloop.o\ $(OBJDIR)/psobject.o\ $(OBJDIR)/psopcode.o\ $(OBJDIR)/psopinfo.o\ $(OBJDIR)/psparse.o\ $(OBJDIR)/psscope.o\ $(OBJDIR)/pstree.o\ $(OBJDIR)/psutils.o\ $(OBJDIR)/pswalk.o\ $(OBJDIR)/tbdata.o\ $(OBJDIR)/tbfadt.o\ $(OBJDIR)/tbinstal.o\ $(OBJDIR)/tbprint.o\ $(OBJDIR)/tbutils.o\ $(OBJDIR)/tbxface.o\ $(OBJDIR)/tbxfload.o\ $(OBJDIR)/utaddress.o\ $(OBJDIR)/utalloc.o\ $(OBJDIR)/utascii.o\ $(OBJDIR)/utbuffer.o\ $(OBJDIR)/utcache.o\ $(OBJDIR)/utcopy.o\ $(OBJDIR)/utdebug.o\ $(OBJDIR)/utdecode.o\ $(OBJDIR)/utdelete.o\ $(OBJDIR)/uterror.o\ $(OBJDIR)/utexcep.o\ $(OBJDIR)/utglobal.o\ $(OBJDIR)/uthex.o\ $(OBJDIR)/utinit.o\ $(OBJDIR)/utlock.o\ $(OBJDIR)/utmath.o\ $(OBJDIR)/utmisc.o\ $(OBJDIR)/utmutex.o\ $(OBJDIR)/utnonansi.o\ $(OBJDIR)/utobject.o\ $(OBJDIR)/utownerid.o\ $(OBJDIR)/utpredef.o\ $(OBJDIR)/utresrc.o\ $(OBJDIR)/utstate.o\ + $(OBJDIR)/utstrtoul64.o\ $(OBJDIR)/utstring.o\ $(OBJDIR)/utuuid.o\ $(OBJDIR)/utxface.o\ $(OBJDIR)/utxferror.o INTERMEDIATES = \ $(OBJDIR)/aslcompiler.y\ $(OBJDIR)/aslcompilerlex.c\ $(OBJDIR)/aslcompilerparse.c\ $(OBJDIR)/dtparserlex.c\ $(OBJDIR)/dtparserparse.c\ $(OBJDIR)/prparserlex.c\ $(OBJDIR)/prparserparse.c MISC = \ $(OBJDIR)/aslcompiler.y.h\ $(OBJDIR)/dtparser.y.h\ $(OBJDIR)/prparser.y.h ASL_PARSER = \ $(ASL_COMPILER)/aslcstyle.y\ $(ASL_COMPILER)/aslhelpers.y\ $(ASL_COMPILER)/aslparser.y\ $(ASL_COMPILER)/aslprimaries.y\ $(ASL_COMPILER)/aslresources.y\ $(ASL_COMPILER)/aslrules.y\ $(ASL_COMPILER)/aslsupport.y\ $(ASL_COMPILER)/asltokens.y\ $(ASL_COMPILER)/asltypes.y ASL_LEXER = \ $(ASL_COMPILER)/aslcompiler.l\ $(ASL_COMPILER)/aslsupport.l\ $(OBJDIR)/aslcompiler.y.h # # Flags specific to iASL compiler # CFLAGS += \ -DACPI_ASL_COMPILER\ -I$(ASL_COMPILER)\ -I$(OBJDIR) # # Common Rules # include ../Makefile.rules # # Function to safely execute yacc # safe_yacc = \ _d=`mktemp -d $(OBJDIR)/$(1).XXXXXX` &&\ cd $$_d &&\ $(YACC) $(YFLAGS) -v -d -p$(1) $(abspath $(2)) &&\ cd - &&\ mv $$_d/y.tab$(suffix $(3)) $(3);\ _r=$$?;\ rm -fr $$_d;\ exit $$_r # # Macro processing for iASL .y files # $(OBJDIR)/aslcompiler.y : $(ASL_PARSER) $(MACROPROC) $(MFLAGS) $(ASL_COMPILER)/aslparser.y > $@ # # Parser and Lexer - intermediate C files # $(OBJDIR)/aslcompilerlex.c : $(ASL_LEXER) $(LEX) $(LFLAGS) -PAslCompiler -o$@ $(ASL_COMPILER)/aslcompiler.l $(OBJDIR)/aslcompilerparse.c $(OBJDIR)/aslcompiler.y.h : $(OBJDIR)/aslcompiler.y $(call safe_yacc,AslCompiler,$<,$@) $(OBJDIR)/dtparserlex.c : $(ASL_COMPILER)/dtparser.l $(OBJDIR)/dtparser.y.h $(LEX) $(LFLAGS) -PDtParser -o$@ $< $(OBJDIR)/dtparserparse.c $(OBJDIR)/dtparser.y.h : $(ASL_COMPILER)/dtparser.y $(call safe_yacc,DtParser,$<,$@) $(OBJDIR)/prparserlex.c : $(ASL_COMPILER)/prparser.l $(OBJDIR)/prparser.y.h $(LEX) $(LFLAGS) -PPrParser -o$@ $< $(OBJDIR)/prparserparse.c $(OBJDIR)/prparser.y.h : $(ASL_COMPILER)/prparser.y $(call safe_yacc,PrParser,$<,$@) # # Parsers and Lexers - final object files # # Cannot use the common compile warning flags since the C files are created # by the utilities above and they are not necessarily ANSI C, etc. # $(OBJDIR)/aslcompilerlex.o : $(OBJDIR)/aslcompilerlex.c $(CC) -c $(CFLAGS) -Wall -Werror -o$@ $< $(OBJDIR)/aslcompilerparse.o : $(OBJDIR)/aslcompilerparse.c $(CC) -c $(CFLAGS) -Wall -Werror -o$@ $< $(OBJDIR)/dtparserlex.o : $(OBJDIR)/dtparserlex.c $(CC) -c $(CFLAGS) -Wall -Werror -o$@ $< $(OBJDIR)/dtparserparse.o : $(OBJDIR)/dtparserparse.c $(CC) -c $(CFLAGS) -Wall -Werror -o$@ $< $(OBJDIR)/prparserlex.o : $(OBJDIR)/prparserlex.c $(CC) -c $(CFLAGS) -Wall -Werror -o$@ $< $(OBJDIR)/prparserparse.o : $(OBJDIR)/prparserparse.c $(CC) -c $(CFLAGS) -Wall -Werror -o$@ $< Index: vendor-sys/acpica/dist/source/compiler/aslcompiler.h =================================================================== --- vendor-sys/acpica/dist/source/compiler/aslcompiler.h (revision 305161) +++ vendor-sys/acpica/dist/source/compiler/aslcompiler.h (revision 305162) @@ -1,1358 +1,1362 @@ /****************************************************************************** * * Module Name: aslcompiler.h - common include file for iASL * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef __ASLCOMPILER_H #define __ASLCOMPILER_H #include "acpi.h" #include "accommon.h" #include "amlresrc.h" #include "acdebug.h" /* Microsoft-specific */ #if (defined WIN32 || defined WIN64) /* warn : used #pragma pack */ #pragma warning(disable:4103) /* warn : named type definition in parentheses */ #pragma warning(disable:4115) #endif #include #include #include #include #include /* Compiler headers */ #include "asldefine.h" #include "asltypes.h" #include "aslmessages.h" #include "aslglobal.h" #include "preprocess.h" /******************************************************************************* * * Compiler prototypes * ******************************************************************************/ /* * Main ASL parser - generated from flex/bison, lex/yacc, etc. */ ACPI_PARSE_OBJECT * AslDoError ( void); int AslCompilerlex( void); void AslResetCurrentLineBuffer ( void); void AslInsertLineBuffer ( int SourceChar); int AslPopInputFileStack ( void); void AslPushInputFileStack ( FILE *InputFile, char *Filename); void AslParserCleanup ( void); /* * aslstartup - entered from main() */ void AslInitializeGlobals ( void); typedef ACPI_STATUS (*ASL_PATHNAME_CALLBACK) ( char *); ACPI_STATUS AslDoOneFile ( char *Filename); ACPI_STATUS AslCheckForErrorExit ( void); /* * aslcompile - compile mainline */ void AslCompilerSignon ( UINT32 FileId); void AslCompilerFileHeader ( UINT32 FileId); int CmDoCompile ( void); void CmDoOutputFiles ( void); void CmCleanupAndExit ( void); void CmDeleteCaches ( void); /* * aslascii - ascii support */ ACPI_STATUS FlIsFileAsciiSource ( char *Filename, BOOLEAN DisplayErrors); /* * aslwalks - semantic analysis and parse tree walks */ ACPI_STATUS AnOtherSemanticAnalysisWalkBegin ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); ACPI_STATUS AnOtherSemanticAnalysisWalkEnd ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); ACPI_STATUS AnOperandTypecheckWalkEnd ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); ACPI_STATUS AnMethodTypingWalkEnd ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); /* * aslmethod - Control method analysis walk */ ACPI_STATUS MtMethodAnalysisWalkBegin ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); ACPI_STATUS MtMethodAnalysisWalkEnd ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); /* * aslbtypes - bitfield data types */ UINT32 AnMapObjTypeToBtype ( ACPI_PARSE_OBJECT *Op); UINT32 AnMapArgTypeToBtype ( UINT32 ArgType); UINT32 AnGetBtype ( ACPI_PARSE_OBJECT *Op); void AnFormatBtype ( char *Buffer, UINT32 Btype); /* * aslanalyze - Support functions for parse tree walks */ void AnCheckId ( ACPI_PARSE_OBJECT *Op, ACPI_NAME Type); /* Values for Type argument above */ #define ASL_TYPE_HID 0 #define ASL_TYPE_CID 1 BOOLEAN AnIsInternalMethod ( ACPI_PARSE_OBJECT *Op); UINT32 AnGetInternalMethodReturnType ( ACPI_PARSE_OBJECT *Op); BOOLEAN AnLastStatementIsReturn ( ACPI_PARSE_OBJECT *Op); void AnCheckMethodReturnValue ( ACPI_PARSE_OBJECT *Op, const ACPI_OPCODE_INFO *OpInfo, ACPI_PARSE_OBJECT *ArgOp, UINT32 RequiredBtypes, UINT32 ThisNodeBtype); BOOLEAN AnIsResultUsed ( ACPI_PARSE_OBJECT *Op); void ApCheckForGpeNameConflict ( ACPI_PARSE_OBJECT *Op); void ApCheckRegMethod ( ACPI_PARSE_OBJECT *Op); BOOLEAN ApFindNameInScope ( char *Name, ACPI_PARSE_OBJECT *Op); BOOLEAN ApFindNameInDeviceTree ( char *Name, ACPI_PARSE_OBJECT *Op); /* * aslerror - error handling/reporting */ void AslAbort ( void); void AslError ( UINT8 Level, UINT16 MessageId, ACPI_PARSE_OBJECT *Op, char *ExtraMessage); ACPI_STATUS AslDisableException ( char *MessageIdString); BOOLEAN AslIsExceptionDisabled ( UINT8 Level, UINT16 MessageId); void AslCoreSubsystemError ( ACPI_PARSE_OBJECT *Op, ACPI_STATUS Status, char *ExtraMessage, BOOLEAN Abort); int AslCompilererror( const char *s); void AslCommonError ( UINT8 Level, UINT16 MessageId, UINT32 CurrentLineNumber, UINT32 LogicalLineNumber, UINT32 LogicalByteOffset, UINT32 Column, char *Filename, char *ExtraMessage); void AslCommonError2 ( UINT8 Level, UINT16 MessageId, UINT32 LineNumber, UINT32 Column, char *SourceLine, char *Filename, char *ExtraMessage); void AePrintException ( UINT32 FileId, ASL_ERROR_MSG *Enode, char *Header); void AePrintErrorLog ( UINT32 FileId); void AeClearErrorLog ( void); /* * asllisting - generate all "listing" type files */ void LsDoListings ( void); void LsWriteNodeToAsmListing ( ACPI_PARSE_OBJECT *Op); void LsWriteNode ( ACPI_PARSE_OBJECT *Op, UINT32 FileId); void LsDumpParseTree ( void); /* * asllistsup - Listing file support utilities */ void LsDumpAscii ( UINT32 FileId, UINT32 Count, UINT8 *Buffer); void LsDumpAsciiInComment ( UINT32 FileId, UINT32 Count, UINT8 *Buffer); void LsCheckException ( UINT32 LineNumber, UINT32 FileId); void LsFlushListingBuffer ( UINT32 FileId); void LsWriteListingHexBytes ( UINT8 *Buffer, UINT32 Length, UINT32 FileId); void LsWriteSourceLines ( UINT32 ToLineNumber, UINT32 ToLogicalLineNumber, UINT32 FileId); UINT32 LsWriteOneSourceLine ( UINT32 FileId); void LsPushNode ( char *Filename); ASL_LISTING_NODE * LsPopNode ( void); /* * aslhex - generate all "hex" output files (C, ASM, ASL) */ void HxDoHexOutput ( void); /* * aslfold - constant folding */ ACPI_STATUS OpcAmlConstantWalk ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); /* * aslmessages - exception strings */ const char * AeDecodeMessageId ( UINT16 MessageId); const char * AeDecodeExceptionLevel ( UINT8 Level); UINT16 AeBuildFullExceptionCode ( UINT8 Level, UINT16 MessageId); /* * asloffset - generate C offset file for BIOS support */ ACPI_STATUS LsAmlOffsetWalk ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); void LsDoOffsetTableHeader ( UINT32 FileId); void LsDoOffsetTableFooter ( UINT32 FileId); /* * aslopcodes - generate AML opcodes */ ACPI_STATUS OpcAmlOpcodeWalk ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); ACPI_STATUS OpcAmlOpcodeUpdateWalk ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); void OpcGenerateAmlOpcode ( ACPI_PARSE_OBJECT *Op); UINT32 OpcSetOptimalIntegerSize ( ACPI_PARSE_OBJECT *Op); void OpcGetIntegerWidth ( ACPI_PARSE_OBJECT *Op); /* * asloperands - generate AML operands for the AML opcodes */ ACPI_PARSE_OBJECT * UtGetArg ( ACPI_PARSE_OBJECT *Op, UINT32 Argn); void OpnGenerateAmlOperands ( ACPI_PARSE_OBJECT *Op); void OpnDoPackage ( ACPI_PARSE_OBJECT *Op); /* * aslopt - optmization */ void OptOptimizeNamePath ( ACPI_PARSE_OBJECT *Op, UINT32 Flags, ACPI_WALK_STATE *WalkState, char *AmlNameString, ACPI_NAMESPACE_NODE *TargetNode); /* * aslpld - ToPLD macro support */ void OpcDoPld ( ACPI_PARSE_OBJECT *Op); /* * aslprintf - Printf/Fprintf macros */ void OpcDoPrintf ( ACPI_PARSE_OBJECT *Op); void OpcDoFprintf ( ACPI_PARSE_OBJECT *Op); /* * aslprune - parse tree pruner */ void AslPruneParseTree ( UINT32 PruneDepth, UINT32 Type); /* * aslcodegen - code generation */ void CgGenerateAmlOutput ( void); /* * aslfile */ void FlOpenFile ( UINT32 FileId, char *Filename, char *Mode); /* * asllength - calculate/adjust AML package lengths */ ACPI_STATUS LnPackageLengthWalk ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); ACPI_STATUS LnInitLengthsWalk ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); void CgGenerateAmlLengths ( ACPI_PARSE_OBJECT *Op); /* * aslmap - opcode mappings and reserved method names */ ACPI_OBJECT_TYPE AslMapNamedOpcodeToDataType ( UINT16 Opcode); /* * aslpredef - ACPI predefined names support */ BOOLEAN ApCheckForPredefinedMethod ( ACPI_PARSE_OBJECT *Op, ASL_METHOD_INFO *MethodInfo); void ApCheckPredefinedReturnValue ( ACPI_PARSE_OBJECT *Op, ASL_METHOD_INFO *MethodInfo); UINT32 ApCheckForPredefinedName ( ACPI_PARSE_OBJECT *Op, char *Name); void ApCheckForPredefinedObject ( ACPI_PARSE_OBJECT *Op, char *Name); ACPI_STATUS ApCheckObjectType ( const char *PredefinedName, ACPI_PARSE_OBJECT *Op, UINT32 ExpectedBtypes, UINT32 PackageIndex); void ApDisplayReservedNames ( void); /* * aslprepkg - ACPI predefined names support for packages */ void ApCheckPackage ( ACPI_PARSE_OBJECT *ParentOp, const ACPI_PREDEFINED_INFO *Predefined); /* * asltransform - parse tree transformations */ ACPI_STATUS TrAmlTransformWalkBegin ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); ACPI_STATUS TrAmlTransformWalkEnd ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); /* * asltree - parse tree support */ ACPI_STATUS TrWalkParseTree ( ACPI_PARSE_OBJECT *Op, UINT32 Visitation, ASL_WALK_CALLBACK DescendingCallback, ASL_WALK_CALLBACK AscendingCallback, void *Context); /* * aslexternal - External opcode support */ ACPI_STATUS ExAmlExternalWalkBegin ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); ACPI_STATUS ExAmlExternalWalkEnd ( ACPI_PARSE_OBJECT *Op, UINT32 Level, void *Context); void ExDoExternal ( ACPI_PARSE_OBJECT *Op); /* Values for "Visitation" parameter above */ #define ASL_WALK_VISIT_DOWNWARD 0x01 #define ASL_WALK_VISIT_UPWARD 0x02 #define ASL_WALK_VISIT_TWICE (ASL_WALK_VISIT_DOWNWARD | ASL_WALK_VISIT_UPWARD) void TrSetParent ( ACPI_PARSE_OBJECT *Op, ACPI_PARSE_OBJECT *ParentOp); ACPI_PARSE_OBJECT * TrAllocateNode ( UINT32 ParseOpcode); void TrPrintNodeCompileFlags ( UINT32 Flags); void TrReleaseNode ( ACPI_PARSE_OBJECT *Op); ACPI_PARSE_OBJECT * TrUpdateNode ( UINT32 ParseOpcode, ACPI_PARSE_OBJECT *Op); ACPI_PARSE_OBJECT * TrCreateNode ( UINT32 ParseOpcode, UINT32 NumChildren, ...); ACPI_PARSE_OBJECT * TrCreateLeafNode ( UINT32 ParseOpcode); ACPI_PARSE_OBJECT * TrCreateNullTarget ( void); ACPI_PARSE_OBJECT * TrCreateAssignmentNode ( ACPI_PARSE_OBJECT *Target, ACPI_PARSE_OBJECT *Source); ACPI_PARSE_OBJECT * TrCreateTargetOperand ( ACPI_PARSE_OBJECT *OriginalOp, ACPI_PARSE_OBJECT *ParentOp); ACPI_PARSE_OBJECT * TrCreateValuedLeafNode ( UINT32 ParseOpcode, UINT64 Value); ACPI_PARSE_OBJECT * TrCreateConstantLeafNode ( UINT32 ParseOpcode); ACPI_PARSE_OBJECT * TrLinkChildren ( ACPI_PARSE_OBJECT *Op, UINT32 NumChildren, ...); void TrSetEndLineNumber ( ACPI_PARSE_OBJECT *Op); void TrSetCurrentFilename ( ACPI_PARSE_OBJECT *Op); void TrWalkTree ( void); ACPI_PARSE_OBJECT * TrLinkPeerNode ( ACPI_PARSE_OBJECT *Op1, ACPI_PARSE_OBJECT *Op2); ACPI_PARSE_OBJECT * TrLinkChildNode ( ACPI_PARSE_OBJECT *Op1, ACPI_PARSE_OBJECT *Op2); ACPI_PARSE_OBJECT * TrSetNodeFlags ( ACPI_PARSE_OBJECT *Op, UINT32 Flags); ACPI_PARSE_OBJECT * TrSetNodeAmlLength ( ACPI_PARSE_OBJECT *Op, UINT32 Length); ACPI_PARSE_OBJECT * TrLinkPeerNodes ( UINT32 NumPeers, ...); /* * aslfiles - File I/O support */ void FlAddIncludeDirectory ( char *Dir); char * FlMergePathnames ( char *PrefixDir, char *FilePathname); void FlOpenIncludeFile ( ACPI_PARSE_OBJECT *Op); void FlFileError ( UINT32 FileId, UINT8 ErrorId); UINT32 FlGetFileSize ( UINT32 FileId); ACPI_STATUS FlReadFile ( UINT32 FileId, void *Buffer, UINT32 Length); void FlWriteFile ( UINT32 FileId, void *Buffer, UINT32 Length); void FlSeekFile ( UINT32 FileId, long Offset); void FlCloseFile ( UINT32 FileId); void FlPrintFile ( UINT32 FileId, char *Format, ...); void FlDeleteFile ( UINT32 FileId); void FlSetLineNumber ( UINT32 LineNumber); void FlSetFilename ( char *Filename); ACPI_STATUS FlOpenInputFile ( char *InputFilename); ACPI_STATUS FlOpenAmlOutputFile ( char *InputFilename); ACPI_STATUS FlOpenMiscOutputFiles ( char *InputFilename); /* * aslhwmap - hardware map summary */ void MpEmitMappingInfo ( void); /* * asload - load namespace in prep for cross reference */ ACPI_STATUS LdLoadNamespace ( ACPI_PARSE_OBJECT *RootOp); /* * asllookup - namespace lookup functions */ void LkFindUnreferencedObjects ( void); /* - * aslmain - startup + * aslhelp - help screens */ void Usage ( void); void AslFilenameHelp ( + void); + +void +AslDisassemblyHelp ( void); /* * aslnamesp - namespace output file generation */ ACPI_STATUS NsDisplayNamespace ( void); void NsSetupNamespaceListing ( void *Handle); /* * asloptions - command line processing */ int AslCommandLine ( int argc, char **argv); /* * aslxref - namespace cross reference */ ACPI_STATUS XfCrossReferenceNamespace ( void); /* * aslxrefout */ void OtPrintHeaders ( char *Message); void OtCreateXrefFile ( void); void OtXrefWalkPart1 ( ACPI_PARSE_OBJECT *Op, UINT32 Level, ASL_METHOD_INFO *MethodInfo); /* * aslutils - common compiler utilites */ void DbgPrint ( UINT32 Type, char *Format, ...); /* Type values for above */ #define ASL_DEBUG_OUTPUT 0 #define ASL_PARSE_OUTPUT 1 #define ASL_TREE_OUTPUT 2 UINT8 UtIsBigEndianMachine ( void); BOOLEAN UtQueryForOverwrite ( char *Pathname); void UtDumpStringOp ( ACPI_PARSE_OBJECT *Op, UINT32 Level); void UtDumpIntegerOp ( ACPI_PARSE_OBJECT *Op, UINT32 Level, UINT32 IntegerLength); void UtDumpBasicOp ( ACPI_PARSE_OBJECT *Op, UINT32 Level); void UtDisplaySupportedTables ( void); void UtDisplayConstantOpcodes ( void); UINT8 UtBeginEvent ( char *Name); void UtEndEvent ( UINT8 Event); void * UtLocalCalloc ( UINT32 Size); void UtDisplaySummary ( UINT32 FileId); void UtConvertByteToHex ( UINT8 RawByte, UINT8 *Buffer); void UtConvertByteToAsmHex ( UINT8 RawByte, UINT8 *Buffer); char * UtGetOpName ( UINT32 ParseOpcode); void UtSetParseOpName ( ACPI_PARSE_OBJECT *Op); char * UtStringCacheCalloc ( UINT32 Length); void UtExpandLineBuffers ( void); void UtFreeLineBuffers ( void); ACPI_STATUS UtInternalizeName ( char *ExternalName, char **ConvertedName); void UtAttachNamepathToOwner ( ACPI_PARSE_OBJECT *Op, ACPI_PARSE_OBJECT *NameNode); ACPI_PARSE_OBJECT * UtCheckIntegerRange ( ACPI_PARSE_OBJECT *Op, UINT32 LowValue, UINT32 HighValue); UINT64 UtDoConstant ( char *String); /* * asluuid - UUID support */ ACPI_STATUS AuValidateUuid ( char *InString); ACPI_STATUS AuConvertUuidToString ( char *UuIdBuffer, char *OutString); /* * aslresource - Resource template generation utilities */ void RsSmallAddressCheck ( UINT8 Type, UINT32 Minimum, UINT32 Maximum, UINT32 Length, UINT32 Alignment, ACPI_PARSE_OBJECT *MinOp, ACPI_PARSE_OBJECT *MaxOp, ACPI_PARSE_OBJECT *LengthOp, ACPI_PARSE_OBJECT *AlignOp, ACPI_PARSE_OBJECT *Op); void RsLargeAddressCheck ( UINT64 Minimum, UINT64 Maximum, UINT64 Length, UINT64 Granularity, UINT8 Flags, ACPI_PARSE_OBJECT *MinOp, ACPI_PARSE_OBJECT *MaxOp, ACPI_PARSE_OBJECT *LengthOp, ACPI_PARSE_OBJECT *GranOp, ACPI_PARSE_OBJECT *Op); UINT16 RsGetStringDataLength ( ACPI_PARSE_OBJECT *InitializerOp); ASL_RESOURCE_NODE * RsAllocateResourceNode ( UINT32 Size); void RsCreateResourceField ( ACPI_PARSE_OBJECT *Op, char *Name, UINT32 ByteOffset, UINT32 BitOffset, UINT32 BitLength); void RsSetFlagBits ( UINT8 *Flags, ACPI_PARSE_OBJECT *Op, UINT8 Position, UINT8 DefaultBit); void RsSetFlagBits16 ( UINT16 *Flags, ACPI_PARSE_OBJECT *Op, UINT8 Position, UINT8 DefaultBit); ACPI_PARSE_OBJECT * RsCompleteNodeAndGetNext ( ACPI_PARSE_OBJECT *Op); void RsCheckListForDuplicates ( ACPI_PARSE_OBJECT *Op); ASL_RESOURCE_NODE * RsDoOneResourceDescriptor ( ASL_RESOURCE_INFO *Info, UINT8 *State); /* Values for State above */ #define ACPI_RSTATE_NORMAL 0 #define ACPI_RSTATE_START_DEPENDENT 1 #define ACPI_RSTATE_DEPENDENT_LIST 2 UINT32 RsLinkDescriptorChain ( ASL_RESOURCE_NODE **PreviousRnode, ASL_RESOURCE_NODE *Rnode); void RsDoResourceTemplate ( ACPI_PARSE_OBJECT *Op); /* * aslrestype1 - Miscellaneous Small descriptors */ ASL_RESOURCE_NODE * RsDoEndTagDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoEndDependentDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoMemory24Descriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoMemory32Descriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoMemory32FixedDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoStartDependentDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoStartDependentNoPriDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoVendorSmallDescriptor ( ASL_RESOURCE_INFO *Info); /* * aslrestype1i - I/O-related Small descriptors */ ASL_RESOURCE_NODE * RsDoDmaDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoFixedDmaDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoFixedIoDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoIoDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoIrqDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoIrqNoFlagsDescriptor ( ASL_RESOURCE_INFO *Info); /* * aslrestype2 - Large resource descriptors */ ASL_RESOURCE_NODE * RsDoInterruptDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoVendorLargeDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoGeneralRegisterDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoGpioIntDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoGpioIoDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoI2cSerialBusDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoSpiSerialBusDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoUartSerialBusDescriptor ( ASL_RESOURCE_INFO *Info); /* * aslrestype2d - DWord address descriptors */ ASL_RESOURCE_NODE * RsDoDwordIoDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoDwordMemoryDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoDwordSpaceDescriptor ( ASL_RESOURCE_INFO *Info); /* * aslrestype2e - Extended address descriptors */ ASL_RESOURCE_NODE * RsDoExtendedIoDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoExtendedMemoryDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoExtendedSpaceDescriptor ( ASL_RESOURCE_INFO *Info); /* * aslrestype2q - QWord address descriptors */ ASL_RESOURCE_NODE * RsDoQwordIoDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoQwordMemoryDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoQwordSpaceDescriptor ( ASL_RESOURCE_INFO *Info); /* * aslrestype2w - Word address descriptors */ ASL_RESOURCE_NODE * RsDoWordIoDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoWordSpaceDescriptor ( ASL_RESOURCE_INFO *Info); ASL_RESOURCE_NODE * RsDoWordBusNumberDescriptor ( ASL_RESOURCE_INFO *Info); /* * Entry to data table compiler subsystem */ ACPI_STATUS DtDoCompile( void); ACPI_STATUS DtCreateTemplates ( char **argv); #endif /* __ASLCOMPILER_H */ Index: vendor-sys/acpica/dist/source/compiler/aslhelp.c =================================================================== --- vendor-sys/acpica/dist/source/compiler/aslhelp.c (nonexistent) +++ vendor-sys/acpica/dist/source/compiler/aslhelp.c (revision 305162) @@ -0,0 +1,220 @@ +/****************************************************************************** + * + * Module Name: aslhelp - iASL help screens + * + *****************************************************************************/ + +/* + * Copyright (C) 2000 - 2016, Intel Corp. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions, and the following disclaimer, + * without modification. + * 2. Redistributions in binary form must reproduce at minimum a disclaimer + * substantially similar to the "NO WARRANTY" disclaimer below + * ("Disclaimer") and any redistribution must be conditioned upon + * including a substantially similar Disclaimer requirement for further + * binary redistribution. + * 3. Neither the names of the above-listed copyright holders nor the names + * of any contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * Alternatively, this software may be distributed under the terms of the + * GNU General Public License ("GPL") version 2 as published by the Free + * Software Foundation. + * + * NO WARRANTY + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING + * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGES. + */ + +#include "aslcompiler.h" +#include "acapps.h" + +#define _COMPONENT ACPI_COMPILER + ACPI_MODULE_NAME ("aslhelp") + + +/******************************************************************************* + * + * FUNCTION: Usage + * + * PARAMETERS: None + * + * RETURN: None + * + * DESCRIPTION: Display option help message. + * Optional items in square brackets. + * + ******************************************************************************/ + +void +Usage ( + void) +{ + printf ("%s\n\n", ASL_COMPLIANCE); + ACPI_USAGE_HEADER ("iasl [Options] [Files]"); + + printf ("\nGeneral:\n"); + ACPI_OPTION ("-@ ", "Specify command file"); + ACPI_OPTION ("-I ", "Specify additional include directory"); + ACPI_OPTION ("-p ", "Specify path/filename prefix for all output files"); + ACPI_OPTION ("-v", "Display compiler version"); + ACPI_OPTION ("-vd", "Display compiler build date and time"); + ACPI_OPTION ("-vo", "Enable optimization comments"); + ACPI_OPTION ("-vs", "Disable signon"); + + printf ("\nHelp:\n"); + ACPI_OPTION ("-h", "This message"); + ACPI_OPTION ("-hc", "Display operators allowed in constant expressions"); + ACPI_OPTION ("-hd", "Info for obtaining and disassembling binary ACPI tables"); + ACPI_OPTION ("-hf", "Display help for output filename generation"); + ACPI_OPTION ("-hr", "Display ACPI reserved method names"); + ACPI_OPTION ("-ht", "Display currently supported ACPI table names"); + + printf ("\nPreprocessor:\n"); + ACPI_OPTION ("-D ", "Define symbol for preprocessor use"); + ACPI_OPTION ("-li", "Create preprocessed output file (*.i)"); + ACPI_OPTION ("-P", "Preprocess only and create preprocessor output file (*.i)"); + ACPI_OPTION ("-Pn", "Disable preprocessor"); + + printf ("\nErrors, Warnings, and Remarks:\n"); + ACPI_OPTION ("-va", "Disable all errors/warnings/remarks"); + ACPI_OPTION ("-ve", "Report only errors (ignore warnings and remarks)"); + ACPI_OPTION ("-vi", "Less verbose errors and warnings for use with IDEs"); + ACPI_OPTION ("-vr", "Disable remarks"); + ACPI_OPTION ("-vw ", "Disable specific warning or remark"); + ACPI_OPTION ("-w <1|2|3>", "Set warning reporting level"); + ACPI_OPTION ("-we", "Report warnings as errors"); + + printf ("\nAML Code Generation (*.aml):\n"); + ACPI_OPTION ("-oa", "Disable all optimizations (compatibility mode)"); + ACPI_OPTION ("-of", "Disable constant folding"); + ACPI_OPTION ("-oi", "Disable integer optimization to Zero/One/Ones"); + ACPI_OPTION ("-on", "Disable named reference string optimization"); + ACPI_OPTION ("-ot", "Disable typechecking"); + ACPI_OPTION ("-cr", "Disable Resource Descriptor error checking"); + ACPI_OPTION ("-in", "Ignore NoOp operators"); + ACPI_OPTION ("-r ", "Override table header Revision (1-255)"); + + printf ("\nListings:\n"); + ACPI_OPTION ("-l", "Create mixed listing file (ASL source and AML) (*.lst)"); + ACPI_OPTION ("-lm", "Create hardware summary map file (*.map)"); + ACPI_OPTION ("-ln", "Create namespace file (*.nsp)"); + ACPI_OPTION ("-ls", "Create combined source file (expanded includes) (*.src)"); + ACPI_OPTION ("-lx", "Create cross-reference file (*.xrf)"); + + printf ("\nFirmware Support - C Output:\n"); + ACPI_OPTION ("-tc", "Create hex AML table in C (*.hex)"); + ACPI_OPTION ("-sc", "Create named hex AML arrays in C (*.c)"); + ACPI_OPTION ("-ic", "Create include file in C for -sc symbols (*.h)"); + ACPI_OPTION ("-so", "Create namespace AML offset table in C (*.offset.h)"); + + printf ("\nFirmware Support - Assembler Output:\n"); + ACPI_OPTION ("-ta", "Create hex AML table in assembler (*.hex)"); + ACPI_OPTION ("-sa", "Create named hex AML arrays in assembler (*.asm)"); + ACPI_OPTION ("-ia", "Create include file in assembler for -sa symbols (*.inc)"); + + printf ("\nFirmware Support - ASL Output:\n"); + ACPI_OPTION ("-ts", "Create hex AML table in ASL (Buffer object) (*.hex)"); + + printf ("\nData Table Compiler:\n"); + ACPI_OPTION ("-G", "Compile custom table that contains generic operators"); + ACPI_OPTION ("-T |ALL", "Create ACPI table template/example files"); + ACPI_OPTION ("-T ", "Emit DSDT and SSDTs to same file"); + ACPI_OPTION ("-vt", "Create verbose template files (full disassembly)"); + + printf ("\nAML Disassembler:\n"); + ACPI_OPTION ("-d ", "Disassemble or decode binary ACPI tables to file (*.dsl)"); + ACPI_OPTION ("", " (Optional, file type is automatically detected)"); + ACPI_OPTION ("-da ", "Disassemble multiple tables from single namespace"); + ACPI_OPTION ("-db", "Do not translate Buffers to Resource Templates"); + ACPI_OPTION ("-dc ", "Disassemble AML and immediately compile it"); + ACPI_OPTION ("", " (Obtain DSDT from current system if no input file)"); + ACPI_OPTION ("-df", "Force disassembler to assume table contains valid AML"); + ACPI_OPTION ("-dl", "Emit legacy ASL code only (no C-style operators)"); + ACPI_OPTION ("-e ", "Include ACPI table(s) for external symbol resolution"); + ACPI_OPTION ("-fe ", "Specify external symbol declaration file"); + ACPI_OPTION ("-in", "Ignore NoOp opcodes"); + ACPI_OPTION ("-l", "Disassemble to mixed ASL and AML code"); + ACPI_OPTION ("-vt", "Dump binary table data in hex format within output file"); + + printf ("\nDebug Options:\n"); + ACPI_OPTION ("-bf", "Create debug file (full output) (*.txt)"); + ACPI_OPTION ("-bs", "Create debug file (parse tree only) (*.txt)"); + ACPI_OPTION ("-bp ", "Prune ASL parse tree"); + ACPI_OPTION ("-bt ", "Object type to be pruned from the parse tree"); + ACPI_OPTION ("-f", "Ignore errors, force creation of AML output file(s)"); + ACPI_OPTION ("-m ", "Set internal line buffer size (in Kbytes)"); + ACPI_OPTION ("-n", "Parse only, no output generation"); + ACPI_OPTION ("-oc", "Display compile times and statistics"); + ACPI_OPTION ("-x ", "Set debug level for trace output"); + ACPI_OPTION ("-z", "Do not insert new compiler ID for DataTables"); +} + + +/******************************************************************************* + * + * FUNCTION: FilenameHelp + * + * PARAMETERS: None + * + * RETURN: None + * + * DESCRIPTION: Display help message for output filename generation + * + ******************************************************************************/ + +void +AslFilenameHelp ( + void) +{ + + printf ("\nAML output filename generation:\n"); + printf (" Output filenames are generated by appending an extension to a common\n"); + printf (" filename prefix. The filename prefix is obtained via one of the\n"); + printf (" following methods (in priority order):\n"); + printf (" 1) The -p option specifies the prefix\n"); + printf (" 2) The prefix of the AMLFileName in the ASL Definition Block\n"); + printf (" 3) The prefix of the input filename\n"); + printf ("\n"); +} + +/******************************************************************************* + * + * FUNCTION: AslDisassemblyHelp + * + * PARAMETERS: None + * + * RETURN: None + * + * DESCRIPTION: Display help message for obtaining and disassembling AML/ASL + * files. + * + ******************************************************************************/ + +void +AslDisassemblyHelp ( + void) +{ + + printf ("\nObtaining binary ACPI tables and disassembling to ASL source code.\n\n"); + printf ("Use the following ACPICA toolchain:\n"); + printf (" AcpiDump: Dump all ACPI tables to a hex ascii file\n"); + printf (" AcpiXtract: Extract one or more binary ACPI tables from AcpiDump output\n"); + printf (" iASL -d : Disassemble a binary ACPI table to ASL source code\n"); + printf ("\n"); +} Property changes on: vendor-sys/acpica/dist/source/compiler/aslhelp.c ___________________________________________________________________ Added: fbsd:nokeywords ## -0,0 +1 ## +yes \ No newline at end of property Added: svn:eol-style ## -0,0 +1 ## +native \ No newline at end of property Added: svn:mime-type ## -0,0 +1 ## +text/plain \ No newline at end of property Index: vendor-sys/acpica/dist/source/compiler/aslmain.c =================================================================== --- vendor-sys/acpica/dist/source/compiler/aslmain.c (revision 305161) +++ vendor-sys/acpica/dist/source/compiler/aslmain.c (revision 305162) @@ -1,411 +1,269 @@ /****************************************************************************** * * Module Name: aslmain - compiler main and utilities * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #define _DECLARE_GLOBALS #include "aslcompiler.h" #include "acapps.h" #include "acdisasm.h" #include #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("aslmain") /* * Main routine for the iASL compiler. * * Portability note: The compiler depends upon the host for command-line * wildcard support - it is not implemented locally. For example: * * Linux/Unix systems: Shell expands wildcards automatically. * * Windows: The setargv.obj module must be linked in to automatically * expand wildcards. */ /* Local prototypes */ static void ACPI_SYSTEM_XFACE AslSignalHandler ( int Sig); static void AslInitialize ( void); /******************************************************************************* * - * FUNCTION: Usage + * FUNCTION: main * - * PARAMETERS: None + * PARAMETERS: Standard argc/argv * - * RETURN: None + * RETURN: Program termination code * - * DESCRIPTION: Display option help message. - * Optional items in square brackets. + * DESCRIPTION: C main routine for the iASL Compiler/Disassembler. Process + * command line options and begin the compile/disassembly for each file on + * the command line (wildcards supported). * ******************************************************************************/ -void -Usage ( - void) +int ACPI_SYSTEM_XFACE +main ( + int argc, + char **argv) { - printf ("%s\n\n", ASL_COMPLIANCE); - ACPI_USAGE_HEADER ("iasl [Options] [Files]"); + ACPI_STATUS Status; + int Index1; + int Index2; + int ReturnStatus = 0; - printf ("\nGeneral:\n"); - ACPI_OPTION ("-@ ", "Specify command file"); - ACPI_OPTION ("-I ", "Specify additional include directory"); - ACPI_OPTION ("-p ", "Specify path/filename prefix for all output files"); - ACPI_OPTION ("-v", "Display compiler version"); - ACPI_OPTION ("-vo", "Enable optimization comments"); - ACPI_OPTION ("-vs", "Disable signon"); - printf ("\nHelp:\n"); - ACPI_OPTION ("-h", "This message"); - ACPI_OPTION ("-hc", "Display operators allowed in constant expressions"); - ACPI_OPTION ("-hf", "Display help for output filename generation"); - ACPI_OPTION ("-hr", "Display ACPI reserved method names"); - ACPI_OPTION ("-ht", "Display currently supported ACPI table names"); + /* + * Big-endian machines are not currently supported. ACPI tables must + * be little-endian, and support for big-endian machines needs to + * be implemented. + */ + if (UtIsBigEndianMachine ()) + { + fprintf (stderr, + "iASL is not currently supported on big-endian machines.\n"); + return (-1); + } - printf ("\nPreprocessor:\n"); - ACPI_OPTION ("-D ", "Define symbol for preprocessor use"); - ACPI_OPTION ("-li", "Create preprocessed output file (*.i)"); - ACPI_OPTION ("-P", "Preprocess only and create preprocessor output file (*.i)"); - ACPI_OPTION ("-Pn", "Disable preprocessor"); + AcpiOsInitialize (); + ACPI_DEBUG_INITIALIZE (); /* For debug version only */ - printf ("\nErrors, Warnings, and Remarks:\n"); - ACPI_OPTION ("-va", "Disable all errors/warnings/remarks"); - ACPI_OPTION ("-ve", "Report only errors (ignore warnings and remarks)"); - ACPI_OPTION ("-vi", "Less verbose errors and warnings for use with IDEs"); - ACPI_OPTION ("-vr", "Disable remarks"); - ACPI_OPTION ("-vw ", "Disable specific warning or remark"); - ACPI_OPTION ("-w <1|2|3>", "Set warning reporting level"); - ACPI_OPTION ("-we", "Report warnings as errors"); + /* Initialize preprocessor and compiler before command line processing */ - printf ("\nAML Code Generation (*.aml):\n"); - ACPI_OPTION ("-oa", "Disable all optimizations (compatibility mode)"); - ACPI_OPTION ("-of", "Disable constant folding"); - ACPI_OPTION ("-oi", "Disable integer optimization to Zero/One/Ones"); - ACPI_OPTION ("-on", "Disable named reference string optimization"); - ACPI_OPTION ("-ot", "Disable typechecking"); - ACPI_OPTION ("-cr", "Disable Resource Descriptor error checking"); - ACPI_OPTION ("-in", "Ignore NoOp operators"); - ACPI_OPTION ("-r ", "Override table header Revision (1-255)"); + signal (SIGINT, AslSignalHandler); + AcpiGbl_ExternalFileList = NULL; + AcpiDbgLevel = 0; + PrInitializePreprocessor (); + AslInitialize (); - printf ("\nListings:\n"); - ACPI_OPTION ("-l", "Create mixed listing file (ASL source and AML) (*.lst)"); - ACPI_OPTION ("-lm", "Create hardware summary map file (*.map)"); - ACPI_OPTION ("-ln", "Create namespace file (*.nsp)"); - ACPI_OPTION ("-ls", "Create combined source file (expanded includes) (*.src)"); - ACPI_OPTION ("-lx", "Create cross-reference file (*.xrf)"); + Index1 = Index2 = + AslCommandLine (argc, argv); - printf ("\nFirmware Support - C Output:\n"); - ACPI_OPTION ("-tc", "Create hex AML table in C (*.hex)"); - ACPI_OPTION ("-sc", "Create named hex AML arrays in C (*.c)"); - ACPI_OPTION ("-ic", "Create include file in C for -sc symbols (*.h)"); - ACPI_OPTION ("-so", "Create namespace AML offset table in C (*.offset.h)"); + /* Allocate the line buffer(s), must be after command line */ - printf ("\nFirmware Support - Assembler Output:\n"); - ACPI_OPTION ("-ta", "Create hex AML table in assembler (*.hex)"); - ACPI_OPTION ("-sa", "Create named hex AML arrays in assembler (*.asm)"); - ACPI_OPTION ("-ia", "Create include file in assembler for -sa symbols (*.inc)"); + Gbl_LineBufferSize /= 2; + UtExpandLineBuffers (); - printf ("\nFirmware Support - ASL Output:\n"); - ACPI_OPTION ("-ts", "Create hex AML table in ASL (Buffer object) (*.hex)"); + /* Perform global actions first/only */ - printf ("\nData Table Compiler:\n"); - ACPI_OPTION ("-G", "Compile custom table that contains generic operators"); - ACPI_OPTION ("-T |ALL", "Create ACPI table template/example files"); - ACPI_OPTION ("-T ", "Emit DSDT and SSDTs to same file"); - ACPI_OPTION ("-vt", "Create verbose template files (full disassembly)"); + if (Gbl_DisassembleAll) + { + while (argv[Index1]) + { + Status = AcpiDmAddToExternalFileList (argv[Index1]); + if (ACPI_FAILURE (Status)) + { + return (-1); + } - printf ("\nAML Disassembler:\n"); - ACPI_OPTION ("-d ", "Disassemble or decode binary ACPI tables to file (*.dsl)"); - ACPI_OPTION ("", " (Optional, file type is automatically detected)"); - ACPI_OPTION ("-da ", "Disassemble multiple tables from single namespace"); - ACPI_OPTION ("-db", "Do not translate Buffers to Resource Templates"); - ACPI_OPTION ("-dc ", "Disassemble AML and immediately compile it"); - ACPI_OPTION ("", " (Obtain DSDT from current system if no input file)"); - ACPI_OPTION ("-df", "Force disassembler to assume table contains valid AML"); - ACPI_OPTION ("-dl", "Emit legacy ASL code only (no C-style operators)"); - ACPI_OPTION ("-e ", "Include ACPI table(s) for external symbol resolution"); - ACPI_OPTION ("-fe ", "Specify external symbol declaration file"); - ACPI_OPTION ("-in", "Ignore NoOp opcodes"); - ACPI_OPTION ("-l", "Disassemble to mixed ASL and AML code"); - ACPI_OPTION ("-vt", "Dump binary table data in hex format within output file"); + Index1++; + } + } - printf ("\nDebug Options:\n"); - ACPI_OPTION ("-bf", "Create debug file (full output) (*.txt)"); - ACPI_OPTION ("-bs", "Create debug file (parse tree only) (*.txt)"); - ACPI_OPTION ("-bp ", "Prune ASL parse tree"); - ACPI_OPTION ("-bt ", "Object type to be pruned from the parse tree"); - ACPI_OPTION ("-f", "Ignore errors, force creation of AML output file(s)"); - ACPI_OPTION ("-m ", "Set internal line buffer size (in Kbytes)"); - ACPI_OPTION ("-n", "Parse only, no output generation"); - ACPI_OPTION ("-oc", "Display compile times and statistics"); - ACPI_OPTION ("-x ", "Set debug level for trace output"); - ACPI_OPTION ("-z", "Do not insert new compiler ID for DataTables"); -} + /* Process each pathname/filename in the list, with possible wildcards */ + while (argv[Index2]) + { + /* + * If -p not specified, we will use the input filename as the + * output filename prefix + */ + if (Gbl_UseDefaultAmlFilename) + { + Gbl_OutputFilenamePrefix = argv[Index2]; + UtConvertBackslashes (Gbl_OutputFilenamePrefix); + } -/******************************************************************************* - * - * FUNCTION: FilenameHelp - * - * PARAMETERS: None - * - * RETURN: None - * - * DESCRIPTION: Display help message for output filename generation - * - ******************************************************************************/ + Status = AslDoOneFile (argv[Index2]); + if (ACPI_FAILURE (Status)) + { + ReturnStatus = -1; + goto CleanupAndExit; + } -void -AslFilenameHelp ( - void) -{ + Index2++; + } - printf ("\nAML output filename generation:\n"); - printf (" Output filenames are generated by appending an extension to a common\n"); - printf (" filename prefix. The filename prefix is obtained via one of the\n"); - printf (" following methods (in priority order):\n"); - printf (" 1) The -p option specifies the prefix\n"); - printf (" 2) The prefix of the AMLFileName in the ASL Definition Block\n"); - printf (" 3) The prefix of the input filename\n"); - printf ("\n"); + +CleanupAndExit: + + UtFreeLineBuffers (); + AslParserCleanup (); + + if (AcpiGbl_ExternalFileList) + { + AcpiDmClearExternalFileList(); + } + + return (ReturnStatus); } /****************************************************************************** * * FUNCTION: AslSignalHandler * * PARAMETERS: Sig - Signal that invoked this handler * * RETURN: None * * DESCRIPTION: Control-C handler. Delete any intermediate files and any * output files that may be left in an indeterminate state. * *****************************************************************************/ static void ACPI_SYSTEM_XFACE AslSignalHandler ( int Sig) { UINT32 i; signal (Sig, SIG_IGN); printf ("Aborting\n\n"); /* Close all open files */ Gbl_Files[ASL_FILE_PREPROCESSOR].Handle = NULL; /* the .pre file is same as source file */ for (i = ASL_FILE_INPUT; i < ASL_MAX_FILE_TYPE; i++) { FlCloseFile (i); } /* Delete any output files */ for (i = ASL_FILE_AML_OUTPUT; i < ASL_MAX_FILE_TYPE; i++) { FlDeleteFile (i); } exit (0); } /******************************************************************************* * * FUNCTION: AslInitialize * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Initialize compiler globals * ******************************************************************************/ static void AslInitialize ( void) { UINT32 i; AcpiGbl_DmOpt_Verbose = FALSE; /* Default integer width is 64 bits */ AcpiGbl_IntegerBitWidth = 64; AcpiGbl_IntegerNybbleWidth = 16; AcpiGbl_IntegerByteWidth = 8; for (i = 0; i < ASL_NUM_FILES; i++) { Gbl_Files[i].Handle = NULL; Gbl_Files[i].Filename = NULL; } Gbl_Files[ASL_FILE_STDOUT].Handle = stdout; Gbl_Files[ASL_FILE_STDOUT].Filename = "STDOUT"; Gbl_Files[ASL_FILE_STDERR].Handle = stderr; Gbl_Files[ASL_FILE_STDERR].Filename = "STDERR"; -} - - -/******************************************************************************* - * - * FUNCTION: main - * - * PARAMETERS: Standard argc/argv - * - * RETURN: Program termination code - * - * DESCRIPTION: C main routine for the Asl Compiler. Handle command line - * options and begin the compile for each file on the command line - * - ******************************************************************************/ - -int ACPI_SYSTEM_XFACE -main ( - int argc, - char **argv) -{ - ACPI_STATUS Status; - int Index1; - int Index2; - int ReturnStatus = 0; - - - /* - * Big-endian machines are not currently supported. ACPI tables must - * be little-endian, and support for big-endian machines needs to - * be implemented. - */ - if (UtIsBigEndianMachine ()) - { - fprintf (stderr, - "iASL is not currently supported on big-endian machines.\n"); - return (-1); - } - - AcpiOsInitialize (); - ACPI_DEBUG_INITIALIZE (); /* For debug version only */ - - /* Initialize preprocessor and compiler before command line processing */ - - signal (SIGINT, AslSignalHandler); - AcpiGbl_ExternalFileList = NULL; - AcpiDbgLevel = 0; - PrInitializePreprocessor (); - AslInitialize (); - - Index1 = Index2 = AslCommandLine (argc, argv); - - /* Allocate the line buffer(s), must be after command line */ - - Gbl_LineBufferSize /= 2; - UtExpandLineBuffers (); - - /* Perform global actions first/only */ - - if (Gbl_DisassembleAll) - { - while (argv[Index1]) - { - Status = AcpiDmAddToExternalFileList (argv[Index1]); - if (ACPI_FAILURE (Status)) - { - return (-1); - } - - Index1++; - } - } - - /* Process each pathname/filename in the list, with possible wildcards */ - - while (argv[Index2]) - { - /* - * If -p not specified, we will use the input filename as the - * output filename prefix - */ - if (Gbl_UseDefaultAmlFilename) - { - Gbl_OutputFilenamePrefix = argv[Index2]; - UtConvertBackslashes (Gbl_OutputFilenamePrefix); - } - - Status = AslDoOneFile (argv[Index2]); - if (ACPI_FAILURE (Status)) - { - ReturnStatus = -1; - goto CleanupAndExit; - } - - Index2++; - } - - -CleanupAndExit: - - UtFreeLineBuffers (); - AslParserCleanup (); - - if (AcpiGbl_ExternalFileList) - { - AcpiDmClearExternalFileList(); - } - - return (ReturnStatus); } Index: vendor-sys/acpica/dist/source/compiler/aslopt.c =================================================================== --- vendor-sys/acpica/dist/source/compiler/aslopt.c (revision 305161) +++ vendor-sys/acpica/dist/source/compiler/aslopt.c (revision 305162) @@ -1,817 +1,817 @@ /****************************************************************************** * * Module Name: aslopt- Compiler optimizations * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "aslcompiler.h" #include "aslcompiler.y.h" #include "acparser.h" #include "amlcode.h" #include "acnamesp.h" #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("aslopt") static UINT32 OptTotal = 0; /* Local prototypes */ static ACPI_STATUS OptSearchToRoot ( ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState, ACPI_NAMESPACE_NODE *CurrentNode, ACPI_NAMESPACE_NODE *TargetNode, ACPI_BUFFER *TargetPath, char **NewPath); static ACPI_STATUS OptBuildShortestPath ( ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState, ACPI_NAMESPACE_NODE *CurrentNode, ACPI_NAMESPACE_NODE *TargetNode, ACPI_BUFFER *CurrentPath, ACPI_BUFFER *TargetPath, ACPI_SIZE AmlNameStringLength, UINT8 IsDeclaration, char **ReturnNewPath); static ACPI_STATUS OptOptimizeNameDeclaration ( ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState, ACPI_NAMESPACE_NODE *CurrentNode, ACPI_NAMESPACE_NODE *TargetNode, char *AmlNameString, char **NewPath); /******************************************************************************* * * FUNCTION: OptSearchToRoot * * PARAMETERS: Op - Current parser op * WalkState - Current state * CurrentNode - Where we are in the namespace * TargetNode - Node to which we are referring * TargetPath - External full path to the target node * NewPath - Where the optimized path is returned * * RETURN: Status * * DESCRIPTION: Attempt to optimize a reference to a single 4-character ACPI * name utilizing the search-to-root name resolution algorithm * that is used by AML interpreters. * ******************************************************************************/ static ACPI_STATUS OptSearchToRoot ( ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState, ACPI_NAMESPACE_NODE *CurrentNode, ACPI_NAMESPACE_NODE *TargetNode, ACPI_BUFFER *TargetPath, char **NewPath) { ACPI_NAMESPACE_NODE *Node; ACPI_GENERIC_STATE ScopeInfo; ACPI_STATUS Status; char *Path; ACPI_FUNCTION_NAME (OptSearchToRoot); /* * Check if search-to-root can be utilized. Use the last NameSeg of * the NamePath and 1) See if can be found and 2) If found, make * sure that it is the same node that we want. If there is another * name in the search path before the one we want, the nodes will * not match, and we cannot use this optimization. */ Path = &(((char *) TargetPath->Pointer)[ - TargetPath->Length - ACPI_NAME_SIZE]), + TargetPath->Length - ACPI_NAME_SIZE]); ScopeInfo.Scope.Node = CurrentNode; /* Lookup the NameSeg using SEARCH_PARENT (search-to-root) */ Status = AcpiNsLookup (&ScopeInfo, Path, ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT | ACPI_NS_DONT_OPEN_SCOPE, WalkState, &(Node)); if (ACPI_FAILURE (Status)) { return (Status); } /* * We found the name, but we must check to make sure that the node * matches. Otherwise, there is another identical name in the search * path that precludes the use of this optimization. */ if (Node != TargetNode) { /* * This means that another object with the same name was found first, * and we cannot use this optimization. */ return (AE_NOT_FOUND); } /* Found the node, we can use this optimization */ ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "NAMESEG: %-24s", Path)); /* We must allocate a new string for the name (TargetPath gets deleted) */ *NewPath = UtStringCacheCalloc (ACPI_NAME_SIZE + 1); strcpy (*NewPath, Path); if (strncmp (*NewPath, "_T_", 3)) { AslError (ASL_OPTIMIZATION, ASL_MSG_SINGLE_NAME_OPTIMIZATION, Op, *NewPath); } return (AE_OK); } /******************************************************************************* * * FUNCTION: OptBuildShortestPath * * PARAMETERS: Op - Current parser op * WalkState - Current state * CurrentNode - Where we are in the namespace * TargetNode - Node to which we are referring * CurrentPath - External full path to the current node * TargetPath - External full path to the target node * AmlNameStringLength - Length of the original namepath * IsDeclaration - TRUE for declaration, FALSE for reference * ReturnNewPath - Where the optimized path is returned * * RETURN: Status * * DESCRIPTION: Build an optimal NamePath using carats * ******************************************************************************/ static ACPI_STATUS OptBuildShortestPath ( ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState, ACPI_NAMESPACE_NODE *CurrentNode, ACPI_NAMESPACE_NODE *TargetNode, ACPI_BUFFER *CurrentPath, ACPI_BUFFER *TargetPath, ACPI_SIZE AmlNameStringLength, UINT8 IsDeclaration, char **ReturnNewPath) { UINT32 NumCommonSegments; UINT32 MaxCommonSegments; UINT32 Index; UINT32 NumCarats; UINT32 i; char *NewPathInternal; char *NewPathExternal; ACPI_NAMESPACE_NODE *Node; ACPI_GENERIC_STATE ScopeInfo; ACPI_STATUS Status; BOOLEAN SubPath = FALSE; ACPI_FUNCTION_NAME (OptBuildShortestPath); ScopeInfo.Scope.Node = CurrentNode; /* * Determine the maximum number of NameSegs that the Target and Current paths * can possibly have in common. (To optimize, we have to have at least 1) * * Note: The external NamePath string lengths are always a multiple of 5 * (ACPI_NAME_SIZE + separator) */ MaxCommonSegments = TargetPath->Length / ACPI_PATH_SEGMENT_LENGTH; if (CurrentPath->Length < TargetPath->Length) { MaxCommonSegments = CurrentPath->Length / ACPI_PATH_SEGMENT_LENGTH; } /* * Determine how many NameSegs the two paths have in common. * (Starting from the root) */ for (NumCommonSegments = 0; NumCommonSegments < MaxCommonSegments; NumCommonSegments++) { /* Compare two single NameSegs */ Index = (NumCommonSegments * ACPI_PATH_SEGMENT_LENGTH) + 1; if (!ACPI_COMPARE_NAME ( &(ACPI_CAST_PTR (char, TargetPath->Pointer)) [Index], &(ACPI_CAST_PTR (char, CurrentPath->Pointer)) [Index])) { /* Mismatch */ break; } } ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " COMMON: %u", NumCommonSegments)); /* There must be at least 1 common NameSeg in order to optimize */ if (NumCommonSegments == 0) { return (AE_NOT_FOUND); } if (NumCommonSegments == MaxCommonSegments) { if (CurrentPath->Length == TargetPath->Length) { ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " SAME PATH")); return (AE_NOT_FOUND); } else { ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " SUBPATH")); SubPath = TRUE; } } /* Determine how many prefix Carats are required */ NumCarats = (CurrentPath->Length / ACPI_PATH_SEGMENT_LENGTH) - NumCommonSegments; /* * Construct a new target string */ NewPathExternal = ACPI_ALLOCATE_ZEROED (TargetPath->Length + NumCarats + 1); /* Insert the Carats into the Target string */ for (i = 0; i < NumCarats; i++) { NewPathExternal[i] = AML_PARENT_PREFIX; } /* * Copy only the necessary (optimal) segments from the original * target string */ Index = (NumCommonSegments * ACPI_PATH_SEGMENT_LENGTH) + 1; /* Special handling for exact subpath in a name declaration */ if (IsDeclaration && SubPath && (CurrentPath->Length > TargetPath->Length)) { /* * The current path is longer than the target, and the target is a * subpath of the current path. We must include one more NameSeg of * the target path */ Index -= ACPI_PATH_SEGMENT_LENGTH; /* Special handling for Scope() operator */ if (Op->Asl.AmlOpcode == AML_SCOPE_OP) { NewPathExternal[i] = AML_PARENT_PREFIX; i++; ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "(EXTRA ^)")); } } /* Make sure we haven't gone off the end of the target path */ if (Index > TargetPath->Length) { Index = TargetPath->Length; } strcpy (&NewPathExternal[i], &(ACPI_CAST_PTR (char, TargetPath->Pointer))[Index]); ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " %-24s", NewPathExternal)); /* * Internalize the new target string and check it against the original * string to make sure that this is in fact an optimization. If the * original string is already optimal, there is no point in continuing. */ Status = AcpiNsInternalizeName (NewPathExternal, &NewPathInternal); if (ACPI_FAILURE (Status)) { AslCoreSubsystemError (Op, Status, "Internalizing new NamePath", ASL_NO_ABORT); goto Cleanup; } if (strlen (NewPathInternal) >= AmlNameStringLength) { ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " NOT SHORTER (New %u old %u)", (UINT32) strlen (NewPathInternal), (UINT32) AmlNameStringLength)); ACPI_FREE (NewPathInternal); Status = AE_NOT_FOUND; goto Cleanup; } /* * Check to make sure that the optimization finds the node we are * looking for. This is simply a sanity check on the new * path that has been created. */ Status = AcpiNsLookup (&ScopeInfo, NewPathInternal, ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE, ACPI_NS_DONT_OPEN_SCOPE, WalkState, &(Node)); if (ACPI_SUCCESS (Status)) { /* Found the namepath, but make sure the node is correct */ if (Node == TargetNode) { /* The lookup matched the node, accept this optimization */ AslError (ASL_OPTIMIZATION, ASL_MSG_NAME_OPTIMIZATION, Op, NewPathExternal); *ReturnNewPath = NewPathInternal; } else { /* Node is not correct, do not use this optimization */ Status = AE_NOT_FOUND; ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " ***** WRONG NODE")); AslError (ASL_WARNING, ASL_MSG_COMPILER_INTERNAL, Op, "Not using optimized name - found wrong node"); } } else { /* The lookup failed, we obviously cannot use this optimization */ ACPI_FREE (NewPathInternal); ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " ***** NOT FOUND")); AslError (ASL_WARNING, ASL_MSG_COMPILER_INTERNAL, Op, "Not using optimized name - did not find node"); } Cleanup: ACPI_FREE (NewPathExternal); return (Status); } /******************************************************************************* * * FUNCTION: OptOptimizeNameDeclaration * * PARAMETERS: Op - Current parser op * WalkState - Current state * CurrentNode - Where we are in the namespace * AmlNameString - Unoptimized namepath * NewPath - Where the optimized path is returned * * RETURN: Status. AE_OK If path is optimized * * DESCRIPTION: Perform a simple optimization of removing an extraneous * backslash prefix if we are already at the root scope. * ******************************************************************************/ static ACPI_STATUS OptOptimizeNameDeclaration ( ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState, ACPI_NAMESPACE_NODE *CurrentNode, ACPI_NAMESPACE_NODE *TargetNode, char *AmlNameString, char **NewPath) { ACPI_STATUS Status; char *NewPathExternal; ACPI_NAMESPACE_NODE *Node; ACPI_FUNCTION_TRACE (OptOptimizeNameDeclaration); if (((CurrentNode == AcpiGbl_RootNode) || (Op->Common.Parent->Asl.ParseOpcode == PARSEOP_DEFINITION_BLOCK)) && (ACPI_IS_ROOT_PREFIX (AmlNameString[0]))) { /* * The current scope is the root, and the namepath has a root prefix * that is therefore extraneous. Remove it. */ *NewPath = &AmlNameString[1]; /* Debug output */ Status = AcpiNsExternalizeName (ACPI_UINT32_MAX, *NewPath, NULL, &NewPathExternal); if (ACPI_FAILURE (Status)) { AslCoreSubsystemError (Op, Status, "Externalizing NamePath", ASL_NO_ABORT); return (Status); } /* * Check to make sure that the optimization finds the node we are * looking for. This is simply a sanity check on the new * path that has been created. * * We know that we are at the root, so NULL is used for the scope. */ Status = AcpiNsLookup (NULL, *NewPath, ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE, ACPI_NS_DONT_OPEN_SCOPE, WalkState, &(Node)); if (ACPI_SUCCESS (Status)) { /* Found the namepath, but make sure the node is correct */ if (Node == TargetNode) { /* The lookup matched the node, accept this optimization */ AslError (ASL_OPTIMIZATION, ASL_MSG_NAME_OPTIMIZATION, Op, NewPathExternal); ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "AT ROOT: %-24s", NewPathExternal)); } else { /* Node is not correct, do not use this optimization */ Status = AE_NOT_FOUND; ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " ***** WRONG NODE")); AslError (ASL_WARNING, ASL_MSG_COMPILER_INTERNAL, Op, "Not using optimized name - found wrong node"); } } else { /* The lookup failed, we obviously cannot use this optimization */ ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " ***** NOT FOUND")); AslError (ASL_WARNING, ASL_MSG_COMPILER_INTERNAL, Op, "Not using optimized name - did not find node"); } ACPI_FREE (NewPathExternal); return (Status); } /* Could not optimize */ return (AE_NOT_FOUND); } /******************************************************************************* * * FUNCTION: OptOptimizeNamePath * * PARAMETERS: Op - Current parser op * Flags - Opcode info flags * WalkState - Current state * AmlNameString - Unoptimized namepath * TargetNode - Node to which AmlNameString refers * * RETURN: None. If path is optimized, the Op is updated with new path * * DESCRIPTION: Optimize a Named Declaration or Reference to the minimal length. * Must take into account both the current location in the * namespace and the actual reference path. * ******************************************************************************/ void OptOptimizeNamePath ( ACPI_PARSE_OBJECT *Op, UINT32 Flags, ACPI_WALK_STATE *WalkState, char *AmlNameString, ACPI_NAMESPACE_NODE *TargetNode) { ACPI_STATUS Status; ACPI_BUFFER TargetPath; ACPI_BUFFER CurrentPath; ACPI_SIZE AmlNameStringLength; ACPI_NAMESPACE_NODE *CurrentNode; char *ExternalNameString; char *NewPath = NULL; ACPI_SIZE HowMuchShorter; ACPI_PARSE_OBJECT *NextOp; ACPI_FUNCTION_TRACE (OptOptimizeNamePath); /* This is an optional optimization */ if (!Gbl_ReferenceOptimizationFlag) { return_VOID; } /* Various required items */ if (!TargetNode || !WalkState || !AmlNameString || !Op->Common.Parent) { return_VOID; } ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "PATH OPTIMIZE: Line %5d ParentOp [%12.12s] ThisOp [%12.12s] ", Op->Asl.LogicalLineNumber, AcpiPsGetOpcodeName (Op->Common.Parent->Common.AmlOpcode), AcpiPsGetOpcodeName (Op->Common.AmlOpcode))); if (!(Flags & (AML_NAMED | AML_CREATE))) { if (Op->Asl.CompileFlags & NODE_IS_NAME_DECLARATION) { /* We don't want to fuss with actual name declaration nodes here */ ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "******* NAME DECLARATION\n")); return_VOID; } } /* * The original path must be longer than one NameSeg (4 chars) for there * to be any possibility that it can be optimized to a shorter string */ AmlNameStringLength = strlen (AmlNameString); if (AmlNameStringLength <= ACPI_NAME_SIZE) { ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "NAMESEG %4.4s\n", AmlNameString)); return_VOID; } /* * We need to obtain the node that represents the current scope -- where * we are right now in the namespace. We will compare this path * against the Namepath, looking for commonality. */ CurrentNode = AcpiGbl_RootNode; if (WalkState->ScopeInfo) { CurrentNode = WalkState->ScopeInfo->Scope.Node; } if (Flags & (AML_NAMED | AML_CREATE)) { /* This is the declaration of a new name */ ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "NAME\n")); /* * The node of interest is the parent of this node (the containing * scope). The actual namespace node may be up more than one level * of parse op or it may not exist at all (if we traverse back * up to the root.) */ NextOp = Op->Asl.Parent; while (NextOp && (!NextOp->Asl.Node)) { NextOp = NextOp->Asl.Parent; } if (NextOp && NextOp->Asl.Node) { CurrentNode = NextOp->Asl.Node; } else { CurrentNode = AcpiGbl_RootNode; } } else { /* This is a reference to an existing named object */ ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "REFERENCE\n")); } /* * Obtain the full paths to the two nodes that we are interested in * (Target and current namespace location) in external * format -- something we can easily manipulate */ TargetPath.Length = ACPI_ALLOCATE_LOCAL_BUFFER; Status = AcpiNsHandleToPathname (TargetNode, &TargetPath, FALSE); if (ACPI_FAILURE (Status)) { AslCoreSubsystemError (Op, Status, "Getting Target NamePath", ASL_NO_ABORT); return_VOID; } TargetPath.Length--; /* Subtract one for null terminator */ /* CurrentPath is the path to this scope (where we are in the namespace) */ CurrentPath.Length = ACPI_ALLOCATE_LOCAL_BUFFER; Status = AcpiNsHandleToPathname (CurrentNode, &CurrentPath, FALSE); if (ACPI_FAILURE (Status)) { AslCoreSubsystemError (Op, Status, "Getting Current NamePath", ASL_NO_ABORT); return_VOID; } CurrentPath.Length--; /* Subtract one for null terminator */ /* Debug output only */ Status = AcpiNsExternalizeName (ACPI_UINT32_MAX, AmlNameString, NULL, &ExternalNameString); if (ACPI_FAILURE (Status)) { AslCoreSubsystemError (Op, Status, "Externalizing NamePath", ASL_NO_ABORT); return_VOID; } ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "CURRENT SCOPE: (%2u) %-37s FULL PATH TO NAME: (%2u) %-32s ACTUAL AML:%-32s\n", (UINT32) CurrentPath.Length, (char *) CurrentPath.Pointer, (UINT32) TargetPath.Length, (char *) TargetPath.Pointer, ExternalNameString)); ACPI_FREE (ExternalNameString); /* * Attempt an optmization depending on the type of namepath */ if (Flags & (AML_NAMED | AML_CREATE)) { /* * This is a named opcode and the namepath is a name declaration, not * a reference. */ Status = OptOptimizeNameDeclaration (Op, WalkState, CurrentNode, TargetNode, AmlNameString, &NewPath); if (ACPI_FAILURE (Status)) { /* * 2) now attempt to * optimize the namestring with carats (up-arrow) */ Status = OptBuildShortestPath (Op, WalkState, CurrentNode, TargetNode, &CurrentPath, &TargetPath, AmlNameStringLength, 1, &NewPath); } } else { /* * This is a reference to an existing named object * * 1) Check if search-to-root can be utilized using the last * NameSeg of the NamePath */ Status = OptSearchToRoot (Op, WalkState, CurrentNode, TargetNode, &TargetPath, &NewPath); if (ACPI_FAILURE (Status)) { /* * 2) Search-to-root could not be used, now attempt to * optimize the namestring with carats (up-arrow) */ Status = OptBuildShortestPath (Op, WalkState, CurrentNode, TargetNode, &CurrentPath, &TargetPath, AmlNameStringLength, 0, &NewPath); } } /* * Success from above indicates that the NamePath was successfully * optimized. We need to update the parse op with the new name */ if (ACPI_SUCCESS (Status)) { HowMuchShorter = (AmlNameStringLength - strlen (NewPath)); OptTotal += HowMuchShorter; ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " REDUCED BY %2u (TOTAL SAVED %2u)", (UINT32) HowMuchShorter, OptTotal)); if (Flags & AML_NAMED) { if (Op->Asl.AmlOpcode == AML_ALIAS_OP) { /* * ALIAS is the only oddball opcode, the name declaration * (alias name) is the second operand */ Op->Asl.Child->Asl.Next->Asl.Value.String = NewPath; Op->Asl.Child->Asl.Next->Asl.AmlLength = strlen (NewPath); } else { Op->Asl.Child->Asl.Value.String = NewPath; Op->Asl.Child->Asl.AmlLength = strlen (NewPath); } } else if (Flags & AML_CREATE) { /* Name must appear as the last parameter */ NextOp = Op->Asl.Child; while (!(NextOp->Asl.CompileFlags & NODE_IS_NAME_DECLARATION)) { NextOp = NextOp->Asl.Next; } /* Update the parse node with the new NamePath */ NextOp->Asl.Value.String = NewPath; NextOp->Asl.AmlLength = strlen (NewPath); } else { /* Update the parse node with the new NamePath */ Op->Asl.Value.String = NewPath; Op->Asl.AmlLength = strlen (NewPath); } } else { ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, " ALREADY OPTIMAL")); } /* Cleanup path buffers */ ACPI_FREE (TargetPath.Pointer); ACPI_FREE (CurrentPath.Pointer); ACPI_DEBUG_PRINT_RAW ((ACPI_DB_OPTIMIZATIONS, "\n")); return_VOID; } Index: vendor-sys/acpica/dist/source/compiler/asloptions.c =================================================================== --- vendor-sys/acpica/dist/source/compiler/asloptions.c (revision 305161) +++ vendor-sys/acpica/dist/source/compiler/asloptions.c (revision 305162) @@ -1,930 +1,944 @@ /****************************************************************************** * * Module Name: asloptions - compiler command line processing * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "aslcompiler.h" #include "acapps.h" #include "acdisasm.h" #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("asloption") /* Local prototypes */ static int AslDoOptions ( int argc, char **argv, BOOLEAN IsResponseFile); static void AslMergeOptionTokens ( char *InBuffer, char *OutBuffer); static int AslDoResponseFile ( char *Filename); #define ASL_TOKEN_SEPARATORS " \t\n" #define ASL_SUPPORTED_OPTIONS "@:a:b|c|d^D:e:f^gh^i|I:l^m:no|p:P^r:s|t|T+G^v^w|x:z" +static char ASL_BUILD_DATE[] = __DATE__; +static char ASL_BUILD_TIME[] = __TIME__; + /******************************************************************************* * * FUNCTION: AslCommandLine * * PARAMETERS: argc/argv * * RETURN: Last argv index * * DESCRIPTION: Command line processing * ******************************************************************************/ int AslCommandLine ( int argc, char **argv) { int BadCommandLine = 0; ACPI_STATUS Status; /* Minimum command line contains at least the command and an input file */ if (argc < 2) { printf (ACPI_COMMON_SIGNON (ASL_COMPILER_NAME)); Usage (); exit (1); } /* Process all command line options */ BadCommandLine = AslDoOptions (argc, argv, FALSE); if (Gbl_DoTemplates) { Status = DtCreateTemplates (argv); if (ACPI_FAILURE (Status)) { exit (-1); } exit (1); } /* Next parameter must be the input filename */ if (!argv[AcpiGbl_Optind] && !Gbl_DisasmFlag) { printf ("Missing input filename\n"); BadCommandLine = TRUE; } if (Gbl_DoSignon) { printf (ACPI_COMMON_SIGNON (ASL_COMPILER_NAME)); if (Gbl_IgnoreErrors) { printf ("Ignoring all errors, forcing AML file generation\n\n"); } } if (BadCommandLine) { printf ("Use -h option for help information\n"); exit (1); } return (AcpiGbl_Optind); } /******************************************************************************* * * FUNCTION: AslDoOptions * * PARAMETERS: argc/argv - Standard argc/argv * IsResponseFile - TRUE if executing a response file. * * RETURN: Status * * DESCRIPTION: Command line option processing * ******************************************************************************/ static int AslDoOptions ( int argc, char **argv, BOOLEAN IsResponseFile) { ACPI_STATUS Status; UINT32 j; /* Get the command line options */ while ((j = AcpiGetopt (argc, argv, ASL_SUPPORTED_OPTIONS)) != ACPI_OPT_END) switch (j) { case '@': /* Begin a response file */ if (IsResponseFile) { printf ("Nested command files are not supported\n"); return (-1); } if (AslDoResponseFile (AcpiGbl_Optarg)) { return (-1); } break; case 'a': /* Debug options */ switch (AcpiGbl_Optarg[0]) { case 'r': Gbl_EnableReferenceTypechecking = TRUE; break; default: printf ("Unknown option: -a%s\n", AcpiGbl_Optarg); return (-1); } break; case 'b': /* Debug options */ switch (AcpiGbl_Optarg[0]) { case 'f': AslCompilerdebug = 1; /* same as yydebug */ DtParserdebug = 1; PrParserdebug = 1; Gbl_DebugFlag = TRUE; Gbl_KeepPreprocessorTempFile = TRUE; break; case 'p': /* Prune ASL parse tree */ /* Get the required argument */ if (AcpiGetoptArgument (argc, argv)) { return (-1); } Gbl_PruneParseTree = TRUE; Gbl_PruneDepth = (UINT8) strtoul (AcpiGbl_Optarg, NULL, 0); break; case 's': Gbl_DebugFlag = TRUE; break; case 't': /* Get the required argument */ if (AcpiGetoptArgument (argc, argv)) { return (-1); } Gbl_PruneType = (UINT8) strtoul (AcpiGbl_Optarg, NULL, 0); break; default: printf ("Unknown option: -b%s\n", AcpiGbl_Optarg); return (-1); } break; case 'c': switch (AcpiGbl_Optarg[0]) { case 'r': Gbl_NoResourceChecking = TRUE; break; default: printf ("Unknown option: -c%s\n", AcpiGbl_Optarg); return (-1); } break; case 'd': /* Disassembler */ switch (AcpiGbl_Optarg[0]) { case '^': /* Get the required argument */ if (AcpiGetoptArgument (argc, argv)) { return (-1); } Gbl_DoCompile = FALSE; break; case 'a': /* Get the required argument */ if (AcpiGetoptArgument (argc, argv)) { return (-1); } Gbl_DoCompile = FALSE; Gbl_DisassembleAll = TRUE; break; case 'b': /* Do not convert buffers to resource descriptors */ AcpiGbl_NoResourceDisassembly = TRUE; break; case 'c': break; case 'f': AcpiGbl_ForceAmlDisassembly = TRUE; break; case 'l': /* Use legacy ASL code (not ASL+) for disassembly */ Gbl_DoCompile = FALSE; AcpiGbl_CstyleDisassembly = FALSE; break; default: printf ("Unknown option: -d%s\n", AcpiGbl_Optarg); return (-1); } Gbl_DisasmFlag = TRUE; break; case 'D': /* Define a symbol */ PrAddDefine (AcpiGbl_Optarg, NULL, TRUE); break; case 'e': /* External files for disassembler */ /* Get entire list of external files */ AcpiGbl_Optind--; argv[AcpiGbl_Optind] = AcpiGbl_Optarg; while (argv[AcpiGbl_Optind] && (argv[AcpiGbl_Optind][0] != '-')) { Status = AcpiDmAddToExternalFileList (argv[AcpiGbl_Optind]); if (ACPI_FAILURE (Status)) { printf ("Could not add %s to external list\n", argv[AcpiGbl_Optind]); return (-1); } AcpiGbl_Optind++; } break; case 'f': switch (AcpiGbl_Optarg[0]) { case '^': /* Ignore errors and force creation of aml file */ Gbl_IgnoreErrors = TRUE; break; case 'e': /* Disassembler: Get external declaration file */ if (AcpiGetoptArgument (argc, argv)) { return (-1); } Gbl_ExternalRefFilename = AcpiGbl_Optarg; break; default: printf ("Unknown option: -f%s\n", AcpiGbl_Optarg); return (-1); } break; case 'G': Gbl_CompileGeneric = TRUE; break; case 'g': /* Get all ACPI tables */ printf ("-g option is deprecated, use acpidump utility instead\n"); exit (1); case 'h': switch (AcpiGbl_Optarg[0]) { case '^': Usage (); exit (0); case 'c': UtDisplayConstantOpcodes (); exit (0); + case 'd': + + AslDisassemblyHelp (); + exit (0); + case 'f': AslFilenameHelp (); exit (0); case 'r': /* reserved names */ ApDisplayReservedNames (); exit (0); case 't': UtDisplaySupportedTables (); exit (0); default: printf ("Unknown option: -h%s\n", AcpiGbl_Optarg); return (-1); } case 'I': /* Add an include file search directory */ FlAddIncludeDirectory (AcpiGbl_Optarg); break; case 'i': /* Output AML as an include file */ switch (AcpiGbl_Optarg[0]) { case 'a': /* Produce assembly code include file */ Gbl_AsmIncludeOutputFlag = TRUE; break; case 'c': /* Produce C include file */ Gbl_C_IncludeOutputFlag = TRUE; break; case 'n': /* Compiler/Disassembler: Ignore the NOOP operator */ AcpiGbl_IgnoreNoopOperator = TRUE; break; default: printf ("Unknown option: -i%s\n", AcpiGbl_Optarg); return (-1); } break; case 'l': /* Listing files */ switch (AcpiGbl_Optarg[0]) { case '^': /* Produce listing file (Mixed source/aml) */ Gbl_ListingFlag = TRUE; AcpiGbl_DmOpt_Listing = TRUE; break; case 'i': /* Produce preprocessor output file */ Gbl_PreprocessorOutputFlag = TRUE; break; case 'm': /* Produce hardware map summary file */ Gbl_MapfileFlag = TRUE; break; case 'n': /* Produce namespace file */ Gbl_NsOutputFlag = TRUE; break; case 's': /* Produce combined source file */ Gbl_SourceOutputFlag = TRUE; break; case 'x': /* Produce cross-reference file */ Gbl_CrossReferenceOutput = TRUE; break; default: printf ("Unknown option: -l%s\n", AcpiGbl_Optarg); return (-1); } break; case 'm': /* Set line buffer size */ Gbl_LineBufferSize = (UINT32) strtoul (AcpiGbl_Optarg, NULL, 0) * 1024; if (Gbl_LineBufferSize < ASL_DEFAULT_LINE_BUFFER_SIZE) { Gbl_LineBufferSize = ASL_DEFAULT_LINE_BUFFER_SIZE; } printf ("Line Buffer Size: %u\n", Gbl_LineBufferSize); break; case 'n': /* Parse only */ Gbl_ParseOnlyFlag = TRUE; break; case 'o': /* Control compiler AML optimizations */ switch (AcpiGbl_Optarg[0]) { case 'a': /* Disable all optimizations */ Gbl_FoldConstants = FALSE; Gbl_IntegerOptimizationFlag = FALSE; Gbl_ReferenceOptimizationFlag = FALSE; break; case 'c': /* Display compile time(s) */ Gbl_CompileTimesFlag = TRUE; break; case 'e': /* iASL: Disable External opcode generation */ Gbl_DoExternals = FALSE; /* Disassembler: Emit embedded external operators */ AcpiGbl_DmEmitExternalOpcodes = TRUE; break; case 'f': /* Disable folding on "normal" expressions */ Gbl_FoldConstants = FALSE; break; case 'i': /* Disable integer optimization to constants */ Gbl_IntegerOptimizationFlag = FALSE; break; case 'n': /* Disable named reference optimization */ Gbl_ReferenceOptimizationFlag = FALSE; break; case 't': /* Disable heavy typechecking */ Gbl_DoTypechecking = FALSE; break; default: printf ("Unknown option: -c%s\n", AcpiGbl_Optarg); return (-1); } break; case 'P': /* Preprocessor options */ switch (AcpiGbl_Optarg[0]) { case '^': /* Proprocess only, emit (.i) file */ Gbl_PreprocessOnly = TRUE; Gbl_PreprocessorOutputFlag = TRUE; break; case 'n': /* Disable preprocessor */ Gbl_PreprocessFlag = FALSE; break; default: printf ("Unknown option: -P%s\n", AcpiGbl_Optarg); return (-1); } break; case 'p': /* Override default AML output filename */ Gbl_OutputFilenamePrefix = AcpiGbl_Optarg; UtConvertBackslashes (Gbl_OutputFilenamePrefix); Gbl_UseDefaultAmlFilename = FALSE; break; case 'r': /* Override revision found in table header */ Gbl_RevisionOverride = (UINT8) strtoul (AcpiGbl_Optarg, NULL, 0); break; case 's': /* Create AML in a source code file */ switch (AcpiGbl_Optarg[0]) { case 'a': /* Produce assembly code output file */ Gbl_AsmOutputFlag = TRUE; break; case 'c': /* Produce C hex output file */ Gbl_C_OutputFlag = TRUE; break; case 'o': /* Produce AML offset table in C */ Gbl_C_OffsetTableFlag = TRUE; break; default: printf ("Unknown option: -s%s\n", AcpiGbl_Optarg); return (-1); } break; case 't': /* Produce hex table output file */ switch (AcpiGbl_Optarg[0]) { case 'a': Gbl_HexOutputFlag = HEX_OUTPUT_ASM; break; case 'c': Gbl_HexOutputFlag = HEX_OUTPUT_C; break; case 's': Gbl_HexOutputFlag = HEX_OUTPUT_ASL; break; default: printf ("Unknown option: -t%s\n", AcpiGbl_Optarg); return (-1); } break; case 'T': /* Create a ACPI table template file */ Gbl_DoTemplates = TRUE; break; case 'v': /* Version and verbosity settings */ switch (AcpiGbl_Optarg[0]) { case '^': printf (ACPI_COMMON_SIGNON (ASL_COMPILER_NAME)); exit (0); case 'a': /* Disable all error/warning/remark messages */ Gbl_NoErrors = TRUE; break; + + case 'd': + + printf ("%s Build date/time: %s %s\n", + ASL_COMPILER_NAME, ASL_BUILD_DATE, ASL_BUILD_TIME); + exit (0); case 'e': /* Disable all warning/remark messages (errors only) */ Gbl_DisplayRemarks = FALSE; Gbl_DisplayWarnings = FALSE; break; case 'i': /* * Support for integrated development environment(s). * * 1) No compiler signon * 2) Send stderr messages to stdout * 3) Less verbose error messages (single line only for each) * 4) Error/warning messages are formatted appropriately to * be recognized by MS Visual Studio */ Gbl_VerboseErrors = FALSE; Gbl_DoSignon = FALSE; Gbl_Files[ASL_FILE_STDERR].Handle = stdout; break; case 'o': Gbl_DisplayOptimizations = TRUE; break; case 'r': Gbl_DisplayRemarks = FALSE; break; case 's': Gbl_DoSignon = FALSE; break; case 't': Gbl_VerboseTemplates = TRUE; break; case 'w': /* Get the required argument */ if (AcpiGetoptArgument (argc, argv)) { return (-1); } Status = AslDisableException (AcpiGbl_Optarg); if (ACPI_FAILURE (Status)) { return (-1); } break; default: printf ("Unknown option: -v%s\n", AcpiGbl_Optarg); return (-1); } break; case 'w': /* Set warning levels */ switch (AcpiGbl_Optarg[0]) { case '1': Gbl_WarningLevel = ASL_WARNING; break; case '2': Gbl_WarningLevel = ASL_WARNING2; break; case '3': Gbl_WarningLevel = ASL_WARNING3; break; case 'e': Gbl_WarningsAsErrors = TRUE; break; default: printf ("Unknown option: -w%s\n", AcpiGbl_Optarg); return (-1); } break; case 'x': /* Set debug print output level */ AcpiDbgLevel = strtoul (AcpiGbl_Optarg, NULL, 16); break; case 'z': Gbl_UseOriginalCompilerId = TRUE; break; default: return (-1); } return (0); } /******************************************************************************* * * FUNCTION: AslMergeOptionTokens * * PARAMETERS: InBuffer - Input containing an option string * OutBuffer - Merged output buffer * * RETURN: None * * DESCRIPTION: Remove all whitespace from an option string. * ******************************************************************************/ static void AslMergeOptionTokens ( char *InBuffer, char *OutBuffer) { char *Token; *OutBuffer = 0; Token = strtok (InBuffer, ASL_TOKEN_SEPARATORS); while (Token) { strcat (OutBuffer, Token); Token = strtok (NULL, ASL_TOKEN_SEPARATORS); } } /******************************************************************************* * * FUNCTION: AslDoResponseFile * * PARAMETERS: Filename - Name of the response file * * RETURN: Status * * DESCRIPTION: Open a response file and process all options within. * ******************************************************************************/ static int AslDoResponseFile ( char *Filename) { char *argv = StringBuffer2; FILE *ResponseFile; int OptStatus = 0; int Opterr; int Optind; ResponseFile = fopen (Filename, "r"); if (!ResponseFile) { printf ("Could not open command file %s, %s\n", Filename, strerror (errno)); return (-1); } /* Must save the current GetOpt globals */ Opterr = AcpiGbl_Opterr; Optind = AcpiGbl_Optind; /* * Process all lines in the response file. There must be one complete * option per line */ while (fgets (StringBuffer, ASL_MSG_BUFFER_SIZE, ResponseFile)) { /* Compress all tokens, allowing us to use a single argv entry */ AslMergeOptionTokens (StringBuffer, StringBuffer2); /* Process the option */ AcpiGbl_Opterr = 0; AcpiGbl_Optind = 0; OptStatus = AslDoOptions (1, &argv, TRUE); if (OptStatus) { printf ("Invalid option in command file %s: %s\n", Filename, StringBuffer); break; } } /* Restore the GetOpt globals */ AcpiGbl_Opterr = Opterr; AcpiGbl_Optind = Optind; fclose (ResponseFile); return (OptStatus); } Index: vendor-sys/acpica/dist/source/compiler/aslstubs.c =================================================================== --- vendor-sys/acpica/dist/source/compiler/aslstubs.c (revision 305161) +++ vendor-sys/acpica/dist/source/compiler/aslstubs.c (revision 305162) @@ -1,328 +1,343 @@ /****************************************************************************** * * Module Name: aslstubs - Stubs used to link to Aml interpreter * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "aslcompiler.h" #include "acdispat.h" #include "actables.h" #include "acevents.h" #include "acinterp.h" #include "acnamesp.h" +#include "acparser.h" #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("aslstubs") /* * Stubs to simplify linkage to the ACPICA core subsystem. * Things like Events, Global Lock, etc. are not used * by the compiler, so they are stubbed out here. */ void AcpiNsExecModuleCodeList ( void) { } ACPI_STATUS AcpiNsInitializeObjects ( void) { return (AE_OK); } ACPI_STATUS +AcpiPsExecuteTable ( + ACPI_EVALUATE_INFO *Info) +{ + return (AE_OK); +} + +ACPI_STATUS AcpiHwReadPort ( ACPI_IO_ADDRESS Address, UINT32 *Value, UINT32 Width) { return (AE_OK); } ACPI_STATUS AcpiHwWritePort ( ACPI_IO_ADDRESS Address, UINT32 Value, UINT32 Width) { return (AE_OK); } ACPI_STATUS AcpiDsMethodError ( ACPI_STATUS Status, ACPI_WALK_STATE *WalkState) { return (Status); } ACPI_STATUS AcpiDsMethodDataGetValue ( UINT8 Type, UINT32 Index, ACPI_WALK_STATE *WalkState, ACPI_OPERAND_OBJECT **DestDesc) { return (AE_OK); } ACPI_STATUS AcpiDsMethodDataGetNode ( UINT8 Type, UINT32 Index, ACPI_WALK_STATE *WalkState, ACPI_NAMESPACE_NODE **Node) { return (AE_OK); } ACPI_STATUS AcpiDsStoreObjectToLocal ( UINT8 Type, UINT32 Index, ACPI_OPERAND_OBJECT *SrcDesc, ACPI_WALK_STATE *WalkState) { return (AE_OK); } ACPI_STATUS AcpiEvInstallRegionHandlers ( void) { return (AE_OK); } ACPI_STATUS AcpiEvQueueNotifyRequest ( ACPI_NAMESPACE_NODE *Node, UINT32 NotifyValue) { return (AE_OK); } BOOLEAN AcpiEvIsNotifyObject ( ACPI_NAMESPACE_NODE *Node) { return (FALSE); } #if (!ACPI_REDUCED_HARDWARE) ACPI_STATUS AcpiEvDeleteGpeBlock ( ACPI_GPE_BLOCK_INFO *GpeBlock) { return (AE_OK); +} + +void +AcpiEvUpdateGpes ( + ACPI_OWNER_ID TableOwnerId) +{ + return; } ACPI_STATUS AcpiEvAcquireGlobalLock ( UINT16 Timeout) { return (AE_OK); } ACPI_STATUS AcpiEvReleaseGlobalLock ( void) { return (AE_OK); } #endif /* !ACPI_REDUCED_HARDWARE */ ACPI_STATUS AcpiEvInitializeRegion ( ACPI_OPERAND_OBJECT *RegionObj, BOOLEAN AcpiNsLocked) { return (AE_OK); } ACPI_STATUS AcpiExReadDataFromField ( ACPI_WALK_STATE *WalkState, ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT **RetBufferDesc) { return (AE_SUPPORT); } ACPI_STATUS AcpiExWriteDataToField ( ACPI_OPERAND_OBJECT *SourceDesc, ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT **ResultDesc) { return (AE_SUPPORT); } ACPI_STATUS AcpiExLoadTableOp ( ACPI_WALK_STATE *WalkState, ACPI_OPERAND_OBJECT **ReturnDesc) { return (AE_SUPPORT); } ACPI_STATUS AcpiExUnloadTable ( ACPI_OPERAND_OBJECT *DdbHandle) { return (AE_SUPPORT); } ACPI_STATUS AcpiExLoadOp ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT *Target, ACPI_WALK_STATE *WalkState) { return (AE_SUPPORT); } void AcpiExDoDebugObject ( ACPI_OPERAND_OBJECT *SourceDesc, UINT32 Level, UINT32 Index) { return; } void AcpiExStartTraceMethod ( ACPI_NAMESPACE_NODE *MethodNode, ACPI_OPERAND_OBJECT *ObjDesc, ACPI_WALK_STATE *WalkState) { return; } void AcpiExStopTraceMethod ( ACPI_NAMESPACE_NODE *MethodNode, ACPI_OPERAND_OBJECT *ObjDesc, ACPI_WALK_STATE *WalkState) { return; } void AcpiExStartTraceOpcode ( ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState) { return; } void AcpiExStopTraceOpcode ( ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState) { return; } void AcpiExTracePoint ( ACPI_TRACE_EVENT_TYPE Type, BOOLEAN Begin, UINT8 *Aml, char *Pathname) { return; } ACPI_STATUS AcpiTbFindTable ( char *Signature, char *OemId, char *OemTableId, UINT32 *TableIndex) { return (AE_SUPPORT); } ACPI_STATUS AcpiNsLoadTable ( UINT32 TableIndex, ACPI_NAMESPACE_NODE *Node) { return (AE_NOT_IMPLEMENTED); } ACPI_STATUS AcpiDsRestartControlMethod ( ACPI_WALK_STATE *WalkState, ACPI_OPERAND_OBJECT *ReturnDesc) { return (AE_OK); } void AcpiDsTerminateControlMethod ( ACPI_OPERAND_OBJECT *MethodDesc, ACPI_WALK_STATE *WalkState) { return; } ACPI_STATUS AcpiDsCallControlMethod ( ACPI_THREAD_STATE *Thread, ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op) { return (AE_OK); } ACPI_STATUS AcpiDsMethodDataInitArgs ( ACPI_OPERAND_OBJECT **Params, UINT32 MaxParamCount, ACPI_WALK_STATE *WalkState) { return (AE_OK); } Index: vendor-sys/acpica/dist/source/compiler/aslutils.c =================================================================== --- vendor-sys/acpica/dist/source/compiler/aslutils.c (revision 305161) +++ vendor-sys/acpica/dist/source/compiler/aslutils.c (revision 305162) @@ -1,981 +1,918 @@ /****************************************************************************** * * Module Name: aslutils -- compiler utilities * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "aslcompiler.h" #include "aslcompiler.y.h" #include "acdisasm.h" #include "acnamesp.h" #include "amlcode.h" #include "acapps.h" #include #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("aslutils") /* Local prototypes */ static void UtPadNameWithUnderscores ( char *NameSeg, char *PaddedNameSeg); static void UtAttachNameseg ( ACPI_PARSE_OBJECT *Op, char *Name); /******************************************************************************* * * FUNCTION: UtIsBigEndianMachine * * PARAMETERS: None * * RETURN: TRUE if machine is big endian * FALSE if machine is little endian * * DESCRIPTION: Detect whether machine is little endian or big endian. * ******************************************************************************/ UINT8 UtIsBigEndianMachine ( void) { union { UINT32 Integer; UINT8 Bytes[4]; } Overlay = {0xFF000000}; return (Overlay.Bytes[0]); /* Returns 0xFF (TRUE) for big endian */ } /****************************************************************************** * * FUNCTION: UtQueryForOverwrite * * PARAMETERS: Pathname - Output filename * * RETURN: TRUE if file does not exist or overwrite is authorized * * DESCRIPTION: Query for file overwrite if it already exists. * ******************************************************************************/ BOOLEAN UtQueryForOverwrite ( char *Pathname) { struct stat StatInfo; if (!stat (Pathname, &StatInfo)) { fprintf (stderr, "Target file \"%s\" already exists, overwrite? [y|n] ", Pathname); if (getchar () != 'y') { return (FALSE); } } return (TRUE); } /******************************************************************************* * * FUNCTION: UtDisplaySupportedTables * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Print all supported ACPI table names. * ******************************************************************************/ void UtDisplaySupportedTables ( void) { const AH_TABLE *TableData; UINT32 i; printf ("\nACPI tables supported by iASL version %8.8X:\n" " (Compiler, Disassembler, Template Generator)\n\n", ACPI_CA_VERSION); /* All ACPI tables with the common table header */ printf ("\n Supported ACPI tables:\n"); for (TableData = AcpiSupportedTables, i = 1; TableData->Signature; TableData++, i++) { printf ("%8u) %s %s\n", i, TableData->Signature, TableData->Description); } } /******************************************************************************* * * FUNCTION: UtDisplayConstantOpcodes * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Print AML opcodes that can be used in constant expressions. * ******************************************************************************/ void UtDisplayConstantOpcodes ( void) { UINT32 i; printf ("Constant expression opcode information\n\n"); for (i = 0; i < sizeof (AcpiGbl_AmlOpInfo) / sizeof (ACPI_OPCODE_INFO); i++) { if (AcpiGbl_AmlOpInfo[i].Flags & AML_CONSTANT) { printf ("%s\n", AcpiGbl_AmlOpInfo[i].Name); } } } /******************************************************************************* * * FUNCTION: UtLocalCalloc * * PARAMETERS: Size - Bytes to be allocated * * RETURN: Pointer to the allocated memory. Guaranteed to be valid. * * DESCRIPTION: Allocate zero-initialized memory. Aborts the compile on an * allocation failure, on the assumption that nothing more can be * accomplished. * ******************************************************************************/ void * UtLocalCalloc ( UINT32 Size) { void *Allocated; Allocated = ACPI_ALLOCATE_ZEROED (Size); if (!Allocated) { AslCommonError (ASL_ERROR, ASL_MSG_MEMORY_ALLOCATION, Gbl_CurrentLineNumber, Gbl_LogicalLineNumber, Gbl_InputByteCount, Gbl_CurrentColumn, Gbl_Files[ASL_FILE_INPUT].Filename, NULL); CmCleanupAndExit (); exit (1); } TotalAllocations++; TotalAllocated += Size; return (Allocated); } /******************************************************************************* * * FUNCTION: UtBeginEvent * * PARAMETERS: Name - Ascii name of this event * * RETURN: Event number (integer index) * * DESCRIPTION: Saves the current time with this event * ******************************************************************************/ UINT8 UtBeginEvent ( char *Name) { if (AslGbl_NextEvent >= ASL_NUM_EVENTS) { AcpiOsPrintf ("Ran out of compiler event structs!\n"); return (AslGbl_NextEvent); } /* Init event with current (start) time */ AslGbl_Events[AslGbl_NextEvent].StartTime = AcpiOsGetTimer (); AslGbl_Events[AslGbl_NextEvent].EventName = Name; AslGbl_Events[AslGbl_NextEvent].Valid = TRUE; return (AslGbl_NextEvent++); } /******************************************************************************* * * FUNCTION: UtEndEvent * * PARAMETERS: Event - Event number (integer index) * * RETURN: None * * DESCRIPTION: Saves the current time (end time) with this event * ******************************************************************************/ void UtEndEvent ( UINT8 Event) { if (Event >= ASL_NUM_EVENTS) { return; } /* Insert end time for event */ AslGbl_Events[Event].EndTime = AcpiOsGetTimer (); } /******************************************************************************* * * FUNCTION: DbgPrint * * PARAMETERS: Type - Type of output * Fmt - Printf format string * ... - variable printf list * * RETURN: None * * DESCRIPTION: Conditional print statement. Prints to stderr only if the * debug flag is set. * ******************************************************************************/ void DbgPrint ( UINT32 Type, char *Fmt, ...) { va_list Args; if (!Gbl_DebugFlag) { return; } if ((Type == ASL_PARSE_OUTPUT) && (!(AslCompilerdebug))) { return; } va_start (Args, Fmt); (void) vfprintf (stderr, Fmt, Args); va_end (Args); return; } /******************************************************************************* * * FUNCTION: UtSetParseOpName * * PARAMETERS: Op - Parse op to be named. * * RETURN: None * * DESCRIPTION: Insert the ascii name of the parse opcode * ******************************************************************************/ void UtSetParseOpName ( ACPI_PARSE_OBJECT *Op) { strncpy (Op->Asl.ParseOpName, UtGetOpName (Op->Asl.ParseOpcode), ACPI_MAX_PARSEOP_NAME); } /******************************************************************************* * * FUNCTION: UtDisplaySummary * * PARAMETERS: FileID - ID of outpout file * * RETURN: None * * DESCRIPTION: Display compilation statistics * ******************************************************************************/ void UtDisplaySummary ( UINT32 FileId) { UINT32 i; if (FileId != ASL_FILE_STDOUT) { /* Compiler name and version number */ FlPrintFile (FileId, "%s version %X%s [%s]\n\n", ASL_COMPILER_NAME, (UINT32) ACPI_CA_VERSION, ACPI_WIDTH, __DATE__); } /* Summary of main input and output files */ if (Gbl_FileType == ASL_INPUT_TYPE_ASCII_DATA) { FlPrintFile (FileId, "%-14s %s - %u lines, %u bytes, %u fields\n", "Table Input:", Gbl_Files[ASL_FILE_INPUT].Filename, Gbl_CurrentLineNumber, Gbl_InputByteCount, Gbl_InputFieldCount); if ((Gbl_ExceptionCount[ASL_ERROR] == 0) || (Gbl_IgnoreErrors)) { FlPrintFile (FileId, "%-14s %s - %u bytes\n", "Binary Output:", Gbl_Files[ASL_FILE_AML_OUTPUT].Filename, Gbl_TableLength); } } else { FlPrintFile (FileId, "%-14s %s - %u lines, %u bytes, %u keywords\n", "ASL Input:", Gbl_Files[ASL_FILE_INPUT].Filename, Gbl_CurrentLineNumber, Gbl_OriginalInputFileSize, TotalKeywords); /* AML summary */ if ((Gbl_ExceptionCount[ASL_ERROR] == 0) || (Gbl_IgnoreErrors)) { if (Gbl_Files[ASL_FILE_AML_OUTPUT].Handle) { FlPrintFile (FileId, "%-14s %s - %u bytes, %u named objects, " "%u executable opcodes\n", "AML Output:", Gbl_Files[ASL_FILE_AML_OUTPUT].Filename, FlGetFileSize (ASL_FILE_AML_OUTPUT), TotalNamedObjects, TotalExecutableOpcodes); } } } /* Display summary of any optional files */ for (i = ASL_FILE_SOURCE_OUTPUT; i <= ASL_MAX_FILE_TYPE; i++) { if (!Gbl_Files[i].Filename || !Gbl_Files[i].Handle) { continue; } /* .SRC is a temp file unless specifically requested */ if ((i == ASL_FILE_SOURCE_OUTPUT) && (!Gbl_SourceOutputFlag)) { continue; } /* .PRE is the preprocessor intermediate file */ if ((i == ASL_FILE_PREPROCESSOR) && (!Gbl_KeepPreprocessorTempFile)) { continue; } FlPrintFile (FileId, "%14s %s - %u bytes\n", Gbl_Files[i].ShortDescription, Gbl_Files[i].Filename, FlGetFileSize (i)); } /* Error summary */ FlPrintFile (FileId, "\nCompilation complete. %u Errors, %u Warnings, %u Remarks", Gbl_ExceptionCount[ASL_ERROR], Gbl_ExceptionCount[ASL_WARNING] + Gbl_ExceptionCount[ASL_WARNING2] + Gbl_ExceptionCount[ASL_WARNING3], Gbl_ExceptionCount[ASL_REMARK]); if (Gbl_FileType != ASL_INPUT_TYPE_ASCII_DATA) { FlPrintFile (FileId, ", %u Optimizations", Gbl_ExceptionCount[ASL_OPTIMIZATION]); if (TotalFolds) { FlPrintFile (FileId, ", %u Constants Folded", TotalFolds); } } FlPrintFile (FileId, "\n"); } /******************************************************************************* * * FUNCTION: UtCheckIntegerRange * * PARAMETERS: Op - Integer parse node * LowValue - Smallest allowed value * HighValue - Largest allowed value * * RETURN: Op if OK, otherwise NULL * * DESCRIPTION: Check integer for an allowable range * ******************************************************************************/ ACPI_PARSE_OBJECT * UtCheckIntegerRange ( ACPI_PARSE_OBJECT *Op, UINT32 LowValue, UINT32 HighValue) { if (!Op) { return (NULL); } if ((Op->Asl.Value.Integer < LowValue) || (Op->Asl.Value.Integer > HighValue)) { sprintf (MsgBuffer, "0x%X, allowable: 0x%X-0x%X", (UINT32) Op->Asl.Value.Integer, LowValue, HighValue); AslError (ASL_ERROR, ASL_MSG_RANGE, Op, MsgBuffer); return (NULL); } return (Op); } /******************************************************************************* * * FUNCTION: UtStringCacheCalloc * * PARAMETERS: Length - Size of buffer requested * * RETURN: Pointer to the buffer. Aborts on allocation failure * * DESCRIPTION: Allocate a string buffer. Bypass the local * dynamic memory manager for performance reasons (This has a * major impact on the speed of the compiler.) * ******************************************************************************/ char * UtStringCacheCalloc ( UINT32 Length) { char *Buffer; ASL_CACHE_INFO *Cache; UINT32 CacheSize = ASL_STRING_CACHE_SIZE; if (Length > CacheSize) { CacheSize = Length; if (Gbl_StringCacheList) { Cache = UtLocalCalloc (sizeof (Cache->Next) + CacheSize); /* Link new cache buffer just following head of list */ Cache->Next = Gbl_StringCacheList->Next; Gbl_StringCacheList->Next = Cache; /* Leave cache management pointers alone as they pertain to head */ Gbl_StringCount++; Gbl_StringSize += Length; return (Cache->Buffer); } } if ((Gbl_StringCacheNext + Length) >= Gbl_StringCacheLast) { /* Allocate a new buffer */ Cache = UtLocalCalloc (sizeof (Cache->Next) + CacheSize); /* Link new cache buffer to head of list */ Cache->Next = Gbl_StringCacheList; Gbl_StringCacheList = Cache; /* Setup cache management pointers */ Gbl_StringCacheNext = Cache->Buffer; Gbl_StringCacheLast = Gbl_StringCacheNext + CacheSize; } Gbl_StringCount++; Gbl_StringSize += Length; Buffer = Gbl_StringCacheNext; Gbl_StringCacheNext += Length; return (Buffer); } /****************************************************************************** * * FUNCTION: UtExpandLineBuffers * * PARAMETERS: None. Updates global line buffer pointers. * * RETURN: None. Reallocates the global line buffers * * DESCRIPTION: Called if the current line buffer becomes filled. Reallocates * all global line buffers and updates Gbl_LineBufferSize. NOTE: * Also used for the initial allocation of the buffers, when * all of the buffer pointers are NULL. Initial allocations are * of size ASL_DEFAULT_LINE_BUFFER_SIZE * *****************************************************************************/ void UtExpandLineBuffers ( void) { UINT32 NewSize; /* Attempt to double the size of all line buffers */ NewSize = Gbl_LineBufferSize * 2; if (Gbl_CurrentLineBuffer) { DbgPrint (ASL_DEBUG_OUTPUT, "Increasing line buffer size from %u to %u\n", Gbl_LineBufferSize, NewSize); } Gbl_CurrentLineBuffer = realloc (Gbl_CurrentLineBuffer, NewSize); Gbl_LineBufPtr = Gbl_CurrentLineBuffer; if (!Gbl_CurrentLineBuffer) { goto ErrorExit; } Gbl_MainTokenBuffer = realloc (Gbl_MainTokenBuffer, NewSize); if (!Gbl_MainTokenBuffer) { goto ErrorExit; } Gbl_MacroTokenBuffer = realloc (Gbl_MacroTokenBuffer, NewSize); if (!Gbl_MacroTokenBuffer) { goto ErrorExit; } Gbl_ExpressionTokenBuffer = realloc (Gbl_ExpressionTokenBuffer, NewSize); if (!Gbl_ExpressionTokenBuffer) { goto ErrorExit; } Gbl_LineBufferSize = NewSize; return; /* On error above, simply issue error messages and abort, cannot continue */ ErrorExit: printf ("Could not increase line buffer size from %u to %u\n", Gbl_LineBufferSize, Gbl_LineBufferSize * 2); AslError (ASL_ERROR, ASL_MSG_BUFFER_ALLOCATION, NULL, NULL); AslAbort (); } /****************************************************************************** * * FUNCTION: UtFreeLineBuffers * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Free all line buffers * *****************************************************************************/ void UtFreeLineBuffers ( void) { free (Gbl_CurrentLineBuffer); free (Gbl_MainTokenBuffer); free (Gbl_MacroTokenBuffer); free (Gbl_ExpressionTokenBuffer); } /******************************************************************************* * * FUNCTION: UtInternalizeName * * PARAMETERS: ExternalName - Name to convert * ConvertedName - Where the converted name is returned * * RETURN: Status * * DESCRIPTION: Convert an external (ASL) name to an internal (AML) name * ******************************************************************************/ ACPI_STATUS UtInternalizeName ( char *ExternalName, char **ConvertedName) { ACPI_NAMESTRING_INFO Info; ACPI_STATUS Status; if (!ExternalName) { return (AE_OK); } /* Get the length of the new internal name */ Info.ExternalName = ExternalName; AcpiNsGetInternalNameLength (&Info); /* We need a segment to store the internal name */ Info.InternalName = UtStringCacheCalloc (Info.Length); if (!Info.InternalName) { return (AE_NO_MEMORY); } /* Build the name */ Status = AcpiNsBuildInternalName (&Info); if (ACPI_FAILURE (Status)) { return (Status); } *ConvertedName = Info.InternalName; return (AE_OK); } /******************************************************************************* * * FUNCTION: UtPadNameWithUnderscores * * PARAMETERS: NameSeg - Input nameseg * PaddedNameSeg - Output padded nameseg * * RETURN: Padded nameseg. * * DESCRIPTION: Pads a NameSeg with underscores if necessary to form a full * ACPI_NAME. * ******************************************************************************/ static void UtPadNameWithUnderscores ( char *NameSeg, char *PaddedNameSeg) { UINT32 i; for (i = 0; (i < ACPI_NAME_SIZE); i++) { if (*NameSeg) { *PaddedNameSeg = *NameSeg; NameSeg++; } else { *PaddedNameSeg = '_'; } PaddedNameSeg++; } } /******************************************************************************* * * FUNCTION: UtAttachNameseg * * PARAMETERS: Op - Parent parse node * Name - Full ExternalName * * RETURN: None; Sets the NameSeg field in parent node * * DESCRIPTION: Extract the last nameseg of the ExternalName and store it * in the NameSeg field of the Op. * ******************************************************************************/ static void UtAttachNameseg ( ACPI_PARSE_OBJECT *Op, char *Name) { char *NameSeg; char PaddedNameSeg[4]; if (!Name) { return; } /* Look for the last dot in the namepath */ NameSeg = strrchr (Name, '.'); if (NameSeg) { /* Found last dot, we have also found the final nameseg */ NameSeg++; UtPadNameWithUnderscores (NameSeg, PaddedNameSeg); } else { /* No dots in the namepath, there is only a single nameseg. */ /* Handle prefixes */ while (ACPI_IS_ROOT_PREFIX (*Name) || ACPI_IS_PARENT_PREFIX (*Name)) { Name++; } /* Remaining string should be one single nameseg */ UtPadNameWithUnderscores (Name, PaddedNameSeg); } ACPI_MOVE_NAME (Op->Asl.NameSeg, PaddedNameSeg); } /******************************************************************************* * * FUNCTION: UtAttachNamepathToOwner * * PARAMETERS: Op - Parent parse node * NameOp - Node that contains the name * * RETURN: Sets the ExternalName and Namepath in the parent node * * DESCRIPTION: Store the name in two forms in the parent node: The original * (external) name, and the internalized name that is used within * the ACPI namespace manager. * ******************************************************************************/ void UtAttachNamepathToOwner ( ACPI_PARSE_OBJECT *Op, ACPI_PARSE_OBJECT *NameOp) { ACPI_STATUS Status; /* Full external path */ Op->Asl.ExternalName = NameOp->Asl.Value.String; /* Save the NameOp for possible error reporting later */ Op->Asl.ParentMethod = (void *) NameOp; /* Last nameseg of the path */ UtAttachNameseg (Op, Op->Asl.ExternalName); /* Create internalized path */ Status = UtInternalizeName (NameOp->Asl.Value.String, &Op->Asl.Namepath); if (ACPI_FAILURE (Status)) { /* TBD: abort on no memory */ } } /******************************************************************************* * * FUNCTION: UtDoConstant * - * PARAMETERS: String - Hex, Octal, or Decimal string + * PARAMETERS: String - Hexadecimal or decimal string * * RETURN: Converted Integer * * DESCRIPTION: Convert a string to an integer, with error checking. * ******************************************************************************/ UINT64 UtDoConstant ( char *String) { ACPI_STATUS Status; UINT64 Converted; char ErrBuf[64]; - Status = AcpiUtStrtoul64 (String, ACPI_ANY_BASE, - ACPI_MAX64_BYTE_WIDTH, &Converted); - + Status = AcpiUtStrtoul64 (String, ACPI_STRTOUL_64BIT, &Converted); if (ACPI_FAILURE (Status)) { sprintf (ErrBuf, "%s %s\n", "Conversion error:", AcpiFormatException (Status)); AslCompilererror (ErrBuf); } return (Converted); } - - -#ifdef _OBSOLETE_FUNCTIONS -/* Removed 01/2016 */ - -/******************************************************************************* - * - * FUNCTION: UtConvertByteToHex - * - * PARAMETERS: RawByte - Binary data - * Buffer - Pointer to where the hex bytes will be - * stored - * - * RETURN: Ascii hex byte is stored in Buffer. - * - * DESCRIPTION: Perform hex-to-ascii translation. The return data is prefixed - * with "0x" - * - ******************************************************************************/ - -void -UtConvertByteToHex ( - UINT8 RawByte, - UINT8 *Buffer) -{ - - Buffer[0] = '0'; - Buffer[1] = 'x'; - - Buffer[2] = (UINT8) AcpiUtHexToAsciiChar (RawByte, 4); - Buffer[3] = (UINT8) AcpiUtHexToAsciiChar (RawByte, 0); -} - - -/******************************************************************************* - * - * FUNCTION: UtConvertByteToAsmHex - * - * PARAMETERS: RawByte - Binary data - * Buffer - Pointer to where the hex bytes will be - * stored - * - * RETURN: Ascii hex byte is stored in Buffer. - * - * DESCRIPTION: Perform hex-to-ascii translation. The return data is prefixed - * with '0', and a trailing 'h' is added. - * - ******************************************************************************/ - -void -UtConvertByteToAsmHex ( - UINT8 RawByte, - UINT8 *Buffer) -{ - - Buffer[0] = '0'; - Buffer[1] = (UINT8) AcpiUtHexToAsciiChar (RawByte, 4); - Buffer[2] = (UINT8) AcpiUtHexToAsciiChar (RawByte, 0); - Buffer[3] = 'h'; -} -#endif /* OBSOLETE_FUNCTIONS */ Index: vendor-sys/acpica/dist/source/compiler/dtcompiler.h =================================================================== --- vendor-sys/acpica/dist/source/compiler/dtcompiler.h (revision 305161) +++ vendor-sys/acpica/dist/source/compiler/dtcompiler.h (revision 305162) @@ -1,634 +1,629 @@ /****************************************************************************** * * Module Name: dtcompiler.h - header for data table compiler * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #define __DTCOMPILER_H__ #ifndef _DTCOMPILER #define _DTCOMPILER #include #include "acdisasm.h" #define ASL_FIELD_CACHE_SIZE 512 #define ASL_SUBTABLE_CACHE_SIZE 128 #undef DT_EXTERN #ifdef _DECLARE_DT_GLOBALS #define DT_EXTERN #define DT_INIT_GLOBAL(a,b) (a)=(b) #else #define DT_EXTERN extern #define DT_INIT_GLOBAL(a,b) (a) #endif /* Types for individual fields (one per input line) */ #define DT_FIELD_TYPE_STRING 0 #define DT_FIELD_TYPE_INTEGER 1 #define DT_FIELD_TYPE_BUFFER 2 #define DT_FIELD_TYPE_PCI_PATH 3 #define DT_FIELD_TYPE_FLAG 4 #define DT_FIELD_TYPE_FLAGS_INTEGER 5 #define DT_FIELD_TYPE_INLINE_SUBTABLE 6 #define DT_FIELD_TYPE_UUID 7 #define DT_FIELD_TYPE_UNICODE 8 #define DT_FIELD_TYPE_DEVICE_PATH 9 #define DT_FIELD_TYPE_LABEL 10 /* * Structure used for each individual field within an ACPI table */ typedef struct dt_field { char *Name; /* Field name (from name : value) */ char *Value; /* Field value (from name : value) */ UINT32 StringLength;/* Length of Value */ struct dt_field *Next; /* Next field */ struct dt_field *NextLabel; /* If field is a label, next label */ UINT32 Line; /* Line number for this field */ UINT32 ByteOffset; /* Offset in source file for field */ UINT32 NameColumn; /* Start column for field name */ UINT32 Column; /* Start column for field value */ UINT32 TableOffset; /* Binary offset within ACPI table */ UINT8 Flags; } DT_FIELD; /* Flags for above */ #define DT_FIELD_NOT_ALLOCATED 1 /* * Structure used for individual subtables within an ACPI table */ typedef struct dt_subtable { struct dt_subtable *Parent; struct dt_subtable *Child; struct dt_subtable *Peer; struct dt_subtable *StackTop; UINT8 *Buffer; UINT8 *LengthField; char *Name; UINT32 Length; UINT32 TotalLength; UINT32 SizeOfLengthField; UINT16 Depth; UINT8 Flags; } DT_SUBTABLE; /* * Globals */ /* List of all field names and values from the input source */ DT_EXTERN DT_FIELD DT_INIT_GLOBAL (*Gbl_FieldList, NULL); /* List of all compiled tables and subtables */ DT_EXTERN DT_SUBTABLE DT_INIT_GLOBAL (*Gbl_RootTable, NULL); /* Stack for subtables */ DT_EXTERN DT_SUBTABLE DT_INIT_GLOBAL (*Gbl_SubtableStack, NULL); /* List for defined labels */ DT_EXTERN DT_FIELD DT_INIT_GLOBAL (*Gbl_LabelList, NULL); /* Current offset within the binary output table */ DT_EXTERN UINT32 DT_INIT_GLOBAL (Gbl_CurrentTableOffset, 0); /* Local caches */ DT_EXTERN UINT32 DT_INIT_GLOBAL (Gbl_SubtableCount, 0); DT_EXTERN ASL_CACHE_INFO DT_INIT_GLOBAL (*Gbl_SubtableCacheList, NULL); DT_EXTERN DT_SUBTABLE DT_INIT_GLOBAL (*Gbl_SubtableCacheNext, NULL); DT_EXTERN DT_SUBTABLE DT_INIT_GLOBAL (*Gbl_SubtableCacheLast, NULL); DT_EXTERN UINT32 DT_INIT_GLOBAL (Gbl_FieldCount, 0); DT_EXTERN ASL_CACHE_INFO DT_INIT_GLOBAL (*Gbl_FieldCacheList, NULL); DT_EXTERN DT_FIELD DT_INIT_GLOBAL (*Gbl_FieldCacheNext, NULL); DT_EXTERN DT_FIELD DT_INIT_GLOBAL (*Gbl_FieldCacheLast, NULL); /* dtcompiler - main module */ ACPI_STATUS DtCompileTable ( DT_FIELD **Field, ACPI_DMTABLE_INFO *Info, DT_SUBTABLE **RetSubtable, BOOLEAN Required); ACPI_STATUS DtCompileTwoSubtables ( void **List, ACPI_DMTABLE_INFO *TableInfo1, ACPI_DMTABLE_INFO *TableInfo2); ACPI_STATUS DtCompilePadding ( UINT32 Length, DT_SUBTABLE **RetSubtable); /* dtio - binary and text input/output */ UINT32 DtGetNextLine ( FILE *Handle, UINT32 Flags); /* Flags for DtGetNextLine */ #define DT_ALLOW_MULTILINE_QUOTES 0x01 DT_FIELD * DtScanFile ( FILE *Handle); void DtOutputBinary ( DT_SUBTABLE *RootTable); void DtDumpSubtableList ( void); void DtDumpFieldList ( DT_FIELD *Field); void DtWriteFieldToListing ( UINT8 *Buffer, DT_FIELD *Field, UINT32 Length); void DtWriteTableToListing ( void); /* dtsubtable - compile subtables */ void DtCreateSubtable ( UINT8 *Buffer, UINT32 Length, DT_SUBTABLE **RetSubtable); UINT32 DtGetSubtableLength ( DT_FIELD *Field, ACPI_DMTABLE_INFO *Info); void DtSetSubtableLength ( DT_SUBTABLE *Subtable); void DtPushSubtable ( DT_SUBTABLE *Subtable); void DtPopSubtable ( void); DT_SUBTABLE * DtPeekSubtable ( void); void DtInsertSubtable ( DT_SUBTABLE *ParentTable, DT_SUBTABLE *Subtable); DT_SUBTABLE * DtGetNextSubtable ( DT_SUBTABLE *ParentTable, DT_SUBTABLE *ChildTable); DT_SUBTABLE * DtGetParentSubtable ( DT_SUBTABLE *Subtable); /* dtexpress - Integer expressions and labels */ ACPI_STATUS DtResolveIntegerExpression ( DT_FIELD *Field, UINT64 *ReturnValue); UINT64 DtDoOperator ( UINT64 LeftValue, UINT32 Operator, UINT64 RightValue); UINT64 DtResolveLabel ( char *LabelString); void DtDetectAllLabels ( DT_FIELD *FieldList); /* dtfield - Compile individual fields within a table */ void DtCompileOneField ( UINT8 *Buffer, DT_FIELD *Field, UINT32 ByteLength, UINT8 Type, UINT8 Flags); void DtCompileInteger ( UINT8 *Buffer, DT_FIELD *Field, UINT32 ByteLength, UINT8 Flags); UINT32 DtCompileBuffer ( UINT8 *Buffer, char *Value, DT_FIELD *Field, UINT32 ByteLength); void DtCompileFlag ( UINT8 *Buffer, DT_FIELD *Field, ACPI_DMTABLE_INFO *Info); /* dtparser - lex/yacc files */ UINT64 DtEvaluateExpression ( char *ExprString); int DtInitLexer ( char *String); void DtTerminateLexer ( void); char * DtGetOpName ( UINT32 ParseOpcode); /* dtutils - Miscellaneous utilities */ typedef void (*DT_WALK_CALLBACK) ( DT_SUBTABLE *Subtable, void *Context, void *ReturnValue); void DtWalkTableTree ( DT_SUBTABLE *StartTable, DT_WALK_CALLBACK UserFunction, void *Context, void *ReturnValue); void DtError ( UINT8 Level, UINT16 MessageId, DT_FIELD *FieldObject, char *ExtraMessage); void DtNameError ( UINT8 Level, UINT16 MessageId, DT_FIELD *FieldObject, char *ExtraMessage); void DtFatal ( UINT16 MessageId, DT_FIELD *FieldObject, char *ExtraMessage); -ACPI_STATUS -DtStrtoul64 ( - char *String, - UINT64 *ReturnInteger); - char* DtGetFieldValue ( DT_FIELD *Field); UINT8 DtGetFieldType ( ACPI_DMTABLE_INFO *Info); UINT32 DtGetBufferLength ( char *Buffer); UINT32 DtGetFieldLength ( DT_FIELD *Field, ACPI_DMTABLE_INFO *Info); void DtSetTableChecksum ( UINT8 *ChecksumPointer); void DtSetTableLength( void); DT_SUBTABLE * UtSubtableCacheCalloc ( void); DT_FIELD * UtFieldCacheCalloc ( void); void DtDeleteCaches ( void); /* dttable - individual table compilation */ ACPI_STATUS DtCompileFacs ( DT_FIELD **PFieldList); ACPI_STATUS DtCompileRsdp ( DT_FIELD **PFieldList); ACPI_STATUS DtCompileAsf ( void **PFieldList); ACPI_STATUS DtCompileCpep ( void **PFieldList); ACPI_STATUS DtCompileCsrt ( void **PFieldList); ACPI_STATUS DtCompileDbg2 ( void **PFieldList); ACPI_STATUS DtCompileDmar ( void **PFieldList); ACPI_STATUS DtCompileDrtm ( void **PFieldList); ACPI_STATUS DtCompileEinj ( void **PFieldList); ACPI_STATUS DtCompileErst ( void **PFieldList); ACPI_STATUS DtCompileFadt ( void **PFieldList); ACPI_STATUS DtCompileFpdt ( void **PFieldList); ACPI_STATUS DtCompileGtdt ( void **PFieldList); ACPI_STATUS DtCompileHest ( void **PFieldList); ACPI_STATUS DtCompileIort ( void **PFieldList); ACPI_STATUS DtCompileIvrs ( void **PFieldList); ACPI_STATUS DtCompileLpit ( void **PFieldList); ACPI_STATUS DtCompileMadt ( void **PFieldList); ACPI_STATUS DtCompileMcfg ( void **PFieldList); ACPI_STATUS DtCompileMpst ( void **PFieldList); ACPI_STATUS DtCompileMsct ( void **PFieldList); ACPI_STATUS DtCompileMtmr ( void **PFieldList); ACPI_STATUS DtCompileNfit ( void **PFieldList); ACPI_STATUS DtCompilePmtt ( void **PFieldList); ACPI_STATUS DtCompilePcct ( void **PFieldList); ACPI_STATUS DtCompileRsdt ( void **PFieldList); ACPI_STATUS DtCompileS3pt ( DT_FIELD **PFieldList); ACPI_STATUS DtCompileSlic ( void **PFieldList); ACPI_STATUS DtCompileSlit ( void **PFieldList); ACPI_STATUS DtCompileSrat ( void **PFieldList); ACPI_STATUS DtCompileStao ( void **PFieldList); ACPI_STATUS DtCompileTcpa ( void **PFieldList); ACPI_STATUS DtCompileUefi ( void **PFieldList); ACPI_STATUS DtCompileVrtc ( void **PFieldList); ACPI_STATUS DtCompileWdat ( void **PFieldList); ACPI_STATUS DtCompileWpbt ( void **PFieldList); ACPI_STATUS DtCompileXsdt ( void **PFieldList); ACPI_STATUS DtCompileGeneric ( void **PFieldList, char *TermFieldName, UINT32 *PFieldLength); ACPI_DMTABLE_INFO * DtGetGenericTableInfo ( char *Name); /* ACPI Table templates */ extern const unsigned char TemplateAsf[]; extern const unsigned char TemplateBoot[]; extern const unsigned char TemplateBert[]; extern const unsigned char TemplateBgrt[]; extern const unsigned char TemplateCpep[]; extern const unsigned char TemplateCsrt[]; extern const unsigned char TemplateDbg2[]; extern const unsigned char TemplateDbgp[]; extern const unsigned char TemplateDmar[]; extern const unsigned char TemplateDrtm[]; extern const unsigned char TemplateEcdt[]; extern const unsigned char TemplateEinj[]; extern const unsigned char TemplateErst[]; extern const unsigned char TemplateFadt[]; extern const unsigned char TemplateFpdt[]; extern const unsigned char TemplateGtdt[]; extern const unsigned char TemplateHest[]; extern const unsigned char TemplateHpet[]; extern const unsigned char TemplateIort[]; extern const unsigned char TemplateIvrs[]; extern const unsigned char TemplateLpit[]; extern const unsigned char TemplateMadt[]; extern const unsigned char TemplateMcfg[]; extern const unsigned char TemplateMchi[]; extern const unsigned char TemplateMpst[]; extern const unsigned char TemplateMsct[]; extern const unsigned char TemplateMsdm[]; extern const unsigned char TemplateMtmr[]; extern const unsigned char TemplateNfit[]; extern const unsigned char TemplatePcct[]; extern const unsigned char TemplatePmtt[]; extern const unsigned char TemplateRasf[]; extern const unsigned char TemplateRsdt[]; extern const unsigned char TemplateS3pt[]; extern const unsigned char TemplateSbst[]; extern const unsigned char TemplateSlic[]; extern const unsigned char TemplateSlit[]; extern const unsigned char TemplateSpcr[]; extern const unsigned char TemplateSpmi[]; extern const unsigned char TemplateSrat[]; extern const unsigned char TemplateStao[]; extern const unsigned char TemplateTcpa[]; extern const unsigned char TemplateTpm2[]; extern const unsigned char TemplateUefi[]; extern const unsigned char TemplateVrtc[]; extern const unsigned char TemplateWaet[]; extern const unsigned char TemplateWdat[]; extern const unsigned char TemplateWddt[]; extern const unsigned char TemplateWdrt[]; extern const unsigned char TemplateWpbt[]; extern const unsigned char TemplateXenv[]; extern const unsigned char TemplateXsdt[]; #endif Index: vendor-sys/acpica/dist/source/compiler/dtfield.c =================================================================== --- vendor-sys/acpica/dist/source/compiler/dtfield.c (revision 305161) +++ vendor-sys/acpica/dist/source/compiler/dtfield.c (revision 305162) @@ -1,587 +1,590 @@ /****************************************************************************** * * Module Name: dtfield.c - Code generation for individual source fields * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "aslcompiler.h" #include "dtcompiler.h" #define _COMPONENT DT_COMPILER ACPI_MODULE_NAME ("dtfield") /* Local prototypes */ static void DtCompileString ( UINT8 *Buffer, DT_FIELD *Field, UINT32 ByteLength); static void DtCompileUnicode ( UINT8 *Buffer, DT_FIELD *Field, UINT32 ByteLength); static ACPI_STATUS DtCompileUuid ( UINT8 *Buffer, DT_FIELD *Field, UINT32 ByteLength); static char * DtNormalizeBuffer ( char *Buffer, UINT32 *Count); /****************************************************************************** * * FUNCTION: DtCompileOneField * * PARAMETERS: Buffer - Output buffer * Field - Field to be compiled * ByteLength - Byte length of the field * Type - Field type * * RETURN: None * * DESCRIPTION: Compile a field value to binary * *****************************************************************************/ void DtCompileOneField ( UINT8 *Buffer, DT_FIELD *Field, UINT32 ByteLength, UINT8 Type, UINT8 Flags) { ACPI_STATUS Status; switch (Type) { case DT_FIELD_TYPE_INTEGER: DtCompileInteger (Buffer, Field, ByteLength, Flags); break; case DT_FIELD_TYPE_STRING: DtCompileString (Buffer, Field, ByteLength); break; case DT_FIELD_TYPE_UUID: Status = DtCompileUuid (Buffer, Field, ByteLength); if (ACPI_SUCCESS (Status)) { break; } /* Fall through. */ case DT_FIELD_TYPE_BUFFER: DtCompileBuffer (Buffer, Field->Value, Field, ByteLength); break; case DT_FIELD_TYPE_UNICODE: DtCompileUnicode (Buffer, Field, ByteLength); break; case DT_FIELD_TYPE_DEVICE_PATH: break; default: DtFatal (ASL_MSG_COMPILER_INTERNAL, Field, "Invalid field type"); break; } } /****************************************************************************** * * FUNCTION: DtCompileString * * PARAMETERS: Buffer - Output buffer * Field - String to be copied to buffer * ByteLength - Maximum length of string * * RETURN: None * * DESCRIPTION: Copy string to the buffer * *****************************************************************************/ static void DtCompileString ( UINT8 *Buffer, DT_FIELD *Field, UINT32 ByteLength) { UINT32 Length; Length = strlen (Field->Value); /* Check if the string is too long for the field */ if (Length > ByteLength) { sprintf (MsgBuffer, "Maximum %u characters", ByteLength); DtError (ASL_ERROR, ASL_MSG_STRING_LENGTH, Field, MsgBuffer); Length = ByteLength; } memcpy (Buffer, Field->Value, Length); } /****************************************************************************** * * FUNCTION: DtCompileUnicode * * PARAMETERS: Buffer - Output buffer * Field - String to be copied to buffer * ByteLength - Maximum length of string * * RETURN: None * * DESCRIPTION: Convert ASCII string to Unicode string * * Note: The Unicode string is 16 bits per character, no leading signature, * with a 16-bit terminating NULL. * *****************************************************************************/ static void DtCompileUnicode ( UINT8 *Buffer, DT_FIELD *Field, UINT32 ByteLength) { UINT32 Count; UINT32 i; char *AsciiString; UINT16 *UnicodeString; AsciiString = Field->Value; UnicodeString = (UINT16 *) Buffer; Count = strlen (AsciiString) + 1; /* Convert to Unicode string (including null terminator) */ for (i = 0; i < Count; i++) { UnicodeString[i] = (UINT16) AsciiString[i]; } } /******************************************************************************* * * FUNCTION: DtCompileUuid * * PARAMETERS: Buffer - Output buffer * Field - String to be copied to buffer * ByteLength - Maximum length of string * * RETURN: None * * DESCRIPTION: Convert UUID string to 16-byte buffer * ******************************************************************************/ static ACPI_STATUS DtCompileUuid ( UINT8 *Buffer, DT_FIELD *Field, UINT32 ByteLength) { char *InString; ACPI_STATUS Status; InString = Field->Value; Status = AuValidateUuid (InString); if (ACPI_FAILURE (Status)) { sprintf (MsgBuffer, "%s", Field->Value); DtNameError (ASL_ERROR, ASL_MSG_INVALID_UUID, Field, MsgBuffer); } else { AcpiUtConvertStringToUuid (InString, Buffer); } return (Status); } /****************************************************************************** * * FUNCTION: DtCompileInteger * * PARAMETERS: Buffer - Output buffer * Field - Field obj with Integer to be compiled * ByteLength - Byte length of the integer * Flags - Additional compile info * * RETURN: None * * DESCRIPTION: Compile an integer. Supports integer expressions with C-style * operators. * *****************************************************************************/ void DtCompileInteger ( UINT8 *Buffer, DT_FIELD *Field, UINT32 ByteLength, UINT8 Flags) { UINT64 Value; UINT64 MaxValue; ACPI_STATUS Status; /* Output buffer byte length must be in range 1-8 */ if ((ByteLength > 8) || (ByteLength == 0)) { DtFatal (ASL_MSG_COMPILER_INTERNAL, Field, "Invalid internal Byte length"); return; } /* Resolve integer expression to a single integer value */ Status = DtResolveIntegerExpression (Field, &Value); if (ACPI_FAILURE (Status)) { return; } /* * Ensure that reserved fields are set properly. Note: uses * the DT_NON_ZERO flag to indicate that the reserved value * must be exactly one. Otherwise, the value must be zero. * This is sufficient for now. */ /* TBD: Should use a flag rather than compare "Reserved" */ if (!strcmp (Field->Name, "Reserved")) { if (Flags & DT_NON_ZERO) { if (Value != 1) { DtError (ASL_WARNING, ASL_MSG_RESERVED_VALUE, Field, "Must be one, setting to one"); Value = 1; } } else if (Value != 0) { DtError (ASL_WARNING, ASL_MSG_RESERVED_VALUE, Field, "Must be zero, setting to zero"); Value = 0; } } /* Check if the value must be non-zero */ else if ((Flags & DT_NON_ZERO) && (Value == 0)) { DtError (ASL_ERROR, ASL_MSG_ZERO_VALUE, Field, NULL); } /* * Generate the maximum value for the data type (ByteLength) * Note: construct chosen for maximum portability */ MaxValue = ((UINT64) (-1)) >> (64 - (ByteLength * 8)); /* Validate that the input value is within range of the target */ if (Value > MaxValue) { sprintf (MsgBuffer, "%8.8X%8.8X - max %u bytes", ACPI_FORMAT_UINT64 (Value), ByteLength); DtError (ASL_ERROR, ASL_MSG_INTEGER_SIZE, Field, MsgBuffer); } memcpy (Buffer, &Value, ByteLength); return; } /****************************************************************************** * * FUNCTION: DtNormalizeBuffer * * PARAMETERS: Buffer - Input buffer - * Count - Output the count of hex number in + * Count - Output the count of hex numbers in * the Buffer * - * RETURN: The normalized buffer, freed by caller + * RETURN: The normalized buffer, must be freed by caller * * DESCRIPTION: [1A,2B,3C,4D] or 1A, 2B, 3C, 4D will be normalized * to 1A 2B 3C 4D * *****************************************************************************/ static char * DtNormalizeBuffer ( char *Buffer, UINT32 *Count) { char *NewBuffer; char *TmpBuffer; UINT32 BufferCount = 0; BOOLEAN Separator = TRUE; char c; NewBuffer = UtLocalCalloc (strlen (Buffer) + 1); TmpBuffer = NewBuffer; while ((c = *Buffer++)) { switch (c) { /* Valid separators */ case '[': case ']': case ' ': case ',': Separator = TRUE; break; default: if (Separator) { /* Insert blank as the standard separator */ if (NewBuffer[0]) { *TmpBuffer++ = ' '; BufferCount++; } Separator = FALSE; } *TmpBuffer++ = c; break; } } *Count = BufferCount + 1; return (NewBuffer); } /****************************************************************************** * * FUNCTION: DtCompileBuffer * * PARAMETERS: Buffer - Output buffer * StringValue - Integer list to be compiled * Field - Current field object * ByteLength - Byte length of the integer list * * RETURN: Count of remaining data in the input list * * DESCRIPTION: Compile and pack an integer list, for example * "AA 1F 20 3B" ==> Buffer[] = {0xAA,0x1F,0x20,0x3B} * *****************************************************************************/ UINT32 DtCompileBuffer ( UINT8 *Buffer, char *StringValue, DT_FIELD *Field, UINT32 ByteLength) { + char *Substring; ACPI_STATUS Status; - char Hex[3]; - UINT64 Value; - UINT32 i; UINT32 Count; + UINT32 i; /* Allow several different types of value separators */ StringValue = DtNormalizeBuffer (StringValue, &Count); + Substring = StringValue; - Hex[2] = 0; - for (i = 0; i < Count; i++) + /* Each element of StringValue is now three chars (2 hex + 1 space) */ + + for (i = 0; i < Count; i++, Substring += 3) { - /* Each element of StringValue is three chars */ + /* Check for byte value too long */ - Hex[0] = StringValue[(3 * i)]; - Hex[1] = StringValue[(3 * i) + 1]; + if (*(&Substring[2]) && + (*(&Substring[2]) != ' ')) + { + DtError (ASL_ERROR, ASL_MSG_BUFFER_ELEMENT, Field, Substring); + goto Exit; + } - /* Convert one hex byte */ + /* Convert two ASCII characters to one hex byte */ - Value = 0; - Status = DtStrtoul64 (Hex, &Value); + Status = AcpiUtAsciiToHexByte (Substring, &Buffer[i]); if (ACPI_FAILURE (Status)) { - DtError (ASL_ERROR, ASL_MSG_BUFFER_ELEMENT, Field, MsgBuffer); + DtError (ASL_ERROR, ASL_MSG_BUFFER_ELEMENT, Field, Substring); goto Exit; } - - Buffer[i] = (UINT8) Value; } Exit: ACPI_FREE (StringValue); return (ByteLength - Count); } /****************************************************************************** * * FUNCTION: DtCompileFlag * - * PARAMETERS: Buffer - Output buffer - * Field - Field to be compiled - * Info - Flag info + * PARAMETERS: Buffer - Output buffer + * Field - Field to be compiled + * Info - Flag info * - * RETURN: + * RETURN: None * - * DESCRIPTION: Compile a flag + * DESCRIPTION: Compile a flag field. Handles flags up to 64 bits. * *****************************************************************************/ void DtCompileFlag ( UINT8 *Buffer, DT_FIELD *Field, ACPI_DMTABLE_INFO *Info) { UINT64 Value = 0; UINT32 BitLength = 1; UINT8 BitPosition = 0; ACPI_STATUS Status; - Status = DtStrtoul64 (Field->Value, &Value); + Status = AcpiUtStrtoul64 (Field->Value, + (ACPI_STRTOUL_64BIT | ACPI_STRTOUL_BASE16), &Value); if (ACPI_FAILURE (Status)) { DtError (ASL_ERROR, ASL_MSG_INVALID_HEX_INTEGER, Field, NULL); } switch (Info->Opcode) { case ACPI_DMT_FLAG0: case ACPI_DMT_FLAG1: case ACPI_DMT_FLAG2: case ACPI_DMT_FLAG3: case ACPI_DMT_FLAG4: case ACPI_DMT_FLAG5: case ACPI_DMT_FLAG6: case ACPI_DMT_FLAG7: BitPosition = Info->Opcode; BitLength = 1; break; case ACPI_DMT_FLAGS0: BitPosition = 0; BitLength = 2; break; case ACPI_DMT_FLAGS1: BitPosition = 1; BitLength = 2; break; case ACPI_DMT_FLAGS2: BitPosition = 2; BitLength = 2; break; case ACPI_DMT_FLAGS4: BitPosition = 4; BitLength = 2; break; default: DtFatal (ASL_MSG_COMPILER_INTERNAL, Field, "Invalid flag opcode"); break; } /* Check range of the input flag value */ if (Value >= ((UINT64) 1 << BitLength)) { sprintf (MsgBuffer, "Maximum %u bit", BitLength); DtError (ASL_ERROR, ASL_MSG_FLAG_VALUE, Field, MsgBuffer); Value = 0; } *Buffer |= (UINT8) (Value << BitPosition); } Index: vendor-sys/acpica/dist/source/compiler/dtparser.y =================================================================== --- vendor-sys/acpica/dist/source/compiler/dtparser.y (revision 305161) +++ vendor-sys/acpica/dist/source/compiler/dtparser.y (revision 305162) @@ -1,284 +1,284 @@ %{ /****************************************************************************** * * Module Name: dtparser.y - Bison input file for table compiler parser * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "aslcompiler.h" #include "dtcompiler.h" #define _COMPONENT DT_COMPILER ACPI_MODULE_NAME ("dtparser") void * AslLocalAllocate (unsigned int Size); /* Bison/yacc configuration */ #undef alloca #define alloca AslLocalAllocate int DtParserlex (void); int DtParserparse (void); void DtParsererror (char const *msg); extern char *DtParsertext; extern DT_FIELD *Gbl_CurrentField; UINT64 DtParserResult; /* Expression return value */ /* Bison/yacc configuration */ #define yytname DtParsername #define YYDEBUG 1 /* Enable debug output */ #define YYERROR_VERBOSE 1 /* Verbose error messages */ #define YYFLAG -32768 /* Define YYMALLOC/YYFREE to prevent redefinition errors */ #define YYMALLOC malloc #define YYFREE free %} %union { UINT64 value; UINT32 op; } /*! [Begin] no source code translation */ %type Expression %token EXPOP_EOF %token EXPOP_NEW_LINE %token EXPOP_NUMBER %token EXPOP_HEX_NUMBER %token EXPOP_DECIMAL_NUMBER %token EXPOP_LABEL %token EXPOP_PAREN_OPEN %token EXPOP_PAREN_CLOSE %left EXPOP_LOGICAL_OR %left EXPOP_LOGICAL_AND %left EXPOP_OR %left EXPOP_XOR %left EXPOP_AND %left EXPOP_EQUAL EXPOP_NOT_EQUAL %left EXPOP_GREATER EXPOP_LESS EXPOP_GREATER_EQUAL EXPOP_LESS_EQUAL %left EXPOP_SHIFT_RIGHT EXPOP_SHIFT_LEFT %left EXPOP_ADD EXPOP_SUBTRACT %left EXPOP_MULTIPLY EXPOP_DIVIDE EXPOP_MODULO %right EXPOP_ONES_COMPLIMENT EXPOP_LOGICAL_NOT %% /* * Operator precedence rules (from K&R) * * 1) ( ) * 2) ! ~ (unary operators that are supported here) * 3) * / % * 4) + - * 5) >> << * 6) < > <= >= * 7) == != * 8) & * 9) ^ * 10) | * 11) && * 12) || */ Value : Expression EXPOP_NEW_LINE { DtParserResult=$1; return 0; } /* End of line (newline) */ | Expression EXPOP_EOF { DtParserResult=$1; return 0; } /* End of string (0) */ ; Expression /* Unary operators */ : EXPOP_LOGICAL_NOT Expression { $$ = DtDoOperator ($2, EXPOP_LOGICAL_NOT, $2);} | EXPOP_ONES_COMPLIMENT Expression { $$ = DtDoOperator ($2, EXPOP_ONES_COMPLIMENT, $2);} /* Binary operators */ | Expression EXPOP_MULTIPLY Expression { $$ = DtDoOperator ($1, EXPOP_MULTIPLY, $3);} | Expression EXPOP_DIVIDE Expression { $$ = DtDoOperator ($1, EXPOP_DIVIDE, $3);} | Expression EXPOP_MODULO Expression { $$ = DtDoOperator ($1, EXPOP_MODULO, $3);} | Expression EXPOP_ADD Expression { $$ = DtDoOperator ($1, EXPOP_ADD, $3);} | Expression EXPOP_SUBTRACT Expression { $$ = DtDoOperator ($1, EXPOP_SUBTRACT, $3);} | Expression EXPOP_SHIFT_RIGHT Expression { $$ = DtDoOperator ($1, EXPOP_SHIFT_RIGHT, $3);} | Expression EXPOP_SHIFT_LEFT Expression { $$ = DtDoOperator ($1, EXPOP_SHIFT_LEFT, $3);} | Expression EXPOP_GREATER Expression { $$ = DtDoOperator ($1, EXPOP_GREATER, $3);} | Expression EXPOP_LESS Expression { $$ = DtDoOperator ($1, EXPOP_LESS, $3);} | Expression EXPOP_GREATER_EQUAL Expression { $$ = DtDoOperator ($1, EXPOP_GREATER_EQUAL, $3);} | Expression EXPOP_LESS_EQUAL Expression { $$ = DtDoOperator ($1, EXPOP_LESS_EQUAL, $3);} | Expression EXPOP_EQUAL Expression { $$ = DtDoOperator ($1, EXPOP_EQUAL, $3);} | Expression EXPOP_NOT_EQUAL Expression { $$ = DtDoOperator ($1, EXPOP_NOT_EQUAL, $3);} | Expression EXPOP_AND Expression { $$ = DtDoOperator ($1, EXPOP_AND, $3);} | Expression EXPOP_XOR Expression { $$ = DtDoOperator ($1, EXPOP_XOR, $3);} | Expression EXPOP_OR Expression { $$ = DtDoOperator ($1, EXPOP_OR, $3);} | Expression EXPOP_LOGICAL_AND Expression { $$ = DtDoOperator ($1, EXPOP_LOGICAL_AND, $3);} | Expression EXPOP_LOGICAL_OR Expression { $$ = DtDoOperator ($1, EXPOP_LOGICAL_OR, $3);} /* Parentheses: '(' Expression ')' */ | EXPOP_PAREN_OPEN Expression EXPOP_PAREN_CLOSE { $$ = $2;} /* Label references (prefixed with $) */ | EXPOP_LABEL { $$ = DtResolveLabel (DtParsertext);} /* Default base for a non-prefixed integer is 16 */ - | EXPOP_NUMBER { AcpiUtStrtoul64 (DtParsertext, 16, ACPI_MAX64_BYTE_WIDTH, &$$);} + | EXPOP_NUMBER { AcpiUtStrtoul64 (DtParsertext, (ACPI_STRTOUL_BASE16 | ACPI_STRTOUL_64BIT), &$$);} /* Standard hex number (0x1234) */ - | EXPOP_HEX_NUMBER { AcpiUtStrtoul64 (DtParsertext, 16, ACPI_MAX64_BYTE_WIDTH, &$$);} + | EXPOP_HEX_NUMBER { AcpiUtStrtoul64 (DtParsertext, (ACPI_STRTOUL_BASE16 | ACPI_STRTOUL_64BIT), &$$);} /* TBD: Decimal number with prefix (0d1234) - Not supported by strtoul64 at this time */ - | EXPOP_DECIMAL_NUMBER { AcpiUtStrtoul64 (DtParsertext, 10, ACPI_MAX64_BYTE_WIDTH, &$$);} + | EXPOP_DECIMAL_NUMBER { AcpiUtStrtoul64 (DtParsertext, ACPI_STRTOUL_64BIT, &$$);} ; %% /*! [End] no source code translation !*/ /* * Local support functions, including parser entry point */ #define PR_FIRST_PARSE_OPCODE EXPOP_EOF #define PR_YYTNAME_START 3 /****************************************************************************** * * FUNCTION: DtParsererror * * PARAMETERS: Message - Parser-generated error message * * RETURN: None * * DESCRIPTION: Handler for parser errors * *****************************************************************************/ void DtParsererror ( char const *Message) { DtError (ASL_ERROR, ASL_MSG_SYNTAX, Gbl_CurrentField, (char *) Message); } /****************************************************************************** * * FUNCTION: DtGetOpName * * PARAMETERS: ParseOpcode - Parser token (EXPOP_*) * * RETURN: Pointer to the opcode name * * DESCRIPTION: Get the ascii name of the parse opcode for debug output * *****************************************************************************/ char * DtGetOpName ( UINT32 ParseOpcode) { #ifdef ASL_YYTNAME_START /* * First entries (PR_YYTNAME_START) in yytname are special reserved names. * Ignore first 6 characters of name (EXPOP_) */ return ((char *) yytname [(ParseOpcode - PR_FIRST_PARSE_OPCODE) + PR_YYTNAME_START] + 6); #else return ("[Unknown parser generator]"); #endif } /****************************************************************************** * * FUNCTION: DtEvaluateExpression * * PARAMETERS: ExprString - Expression to be evaluated. Must be * terminated by either a newline or a NUL * string terminator * * RETURN: 64-bit value for the expression * * DESCRIPTION: Main entry point for the DT expression parser * *****************************************************************************/ UINT64 DtEvaluateExpression ( char *ExprString) { DbgPrint (ASL_DEBUG_OUTPUT, "**** Input expression: %s (Base 16)\n", ExprString); /* Point lexer to the input string */ if (DtInitLexer (ExprString)) { DtError (ASL_ERROR, ASL_MSG_COMPILER_INTERNAL, Gbl_CurrentField, "Could not initialize lexer"); return (0); } /* Parse/Evaluate the input string (value returned in DtParserResult) */ DtParserparse (); DtTerminateLexer (); DbgPrint (ASL_DEBUG_OUTPUT, "**** Parser returned value: %u (%8.8X%8.8X)\n", (UINT32) DtParserResult, ACPI_FORMAT_UINT64 (DtParserResult)); return (DtParserResult); } Index: vendor-sys/acpica/dist/source/compiler/dtutils.c =================================================================== --- vendor-sys/acpica/dist/source/compiler/dtutils.c (revision 305161) +++ vendor-sys/acpica/dist/source/compiler/dtutils.c (revision 305162) @@ -1,1007 +1,920 @@ /****************************************************************************** * * Module Name: dtutils.c - Utility routines for the data table compiler * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "aslcompiler.h" #include "dtcompiler.h" #include "actables.h" #define _COMPONENT DT_COMPILER ACPI_MODULE_NAME ("dtutils") /* Local prototypes */ static void DtSum ( DT_SUBTABLE *Subtable, void *Context, void *ReturnValue); /****************************************************************************** * * FUNCTION: DtError * * PARAMETERS: Level - Seriousness (Warning/error, etc.) * MessageId - Index into global message buffer * Op - Parse node where error happened * ExtraMessage - additional error message * * RETURN: None * * DESCRIPTION: Common error interface for data table compiler * *****************************************************************************/ void DtError ( UINT8 Level, UINT16 MessageId, DT_FIELD *FieldObject, char *ExtraMessage) { /* Check if user wants to ignore this exception */ if (AslIsExceptionDisabled (Level, MessageId)) { return; } if (FieldObject) { AslCommonError (Level, MessageId, FieldObject->Line, FieldObject->Line, FieldObject->ByteOffset, FieldObject->Column, Gbl_Files[ASL_FILE_INPUT].Filename, ExtraMessage); } else { AslCommonError (Level, MessageId, 0, 0, 0, 0, 0, ExtraMessage); } } /****************************************************************************** * * FUNCTION: DtNameError * * PARAMETERS: Level - Seriousness (Warning/error, etc.) * MessageId - Index into global message buffer * Op - Parse node where error happened * ExtraMessage - additional error message * * RETURN: None * * DESCRIPTION: Error interface for named objects * *****************************************************************************/ void DtNameError ( UINT8 Level, UINT16 MessageId, DT_FIELD *FieldObject, char *ExtraMessage) { switch (Level) { case ASL_WARNING2: case ASL_WARNING3: if (Gbl_WarningLevel < Level) { return; } break; default: break; } if (FieldObject) { AslCommonError (Level, MessageId, FieldObject->Line, FieldObject->Line, FieldObject->ByteOffset, FieldObject->NameColumn, Gbl_Files[ASL_FILE_INPUT].Filename, ExtraMessage); } else { AslCommonError (Level, MessageId, 0, 0, 0, 0, 0, ExtraMessage); } } /******************************************************************************* * * FUNCTION: DtFatal * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Dump the error log and abort the compiler. Used for serious * compile or I/O errors * ******************************************************************************/ void DtFatal ( UINT16 MessageId, DT_FIELD *FieldObject, char *ExtraMessage) { DtError (ASL_ERROR, MessageId, FieldObject, ExtraMessage); /* * TBD: remove this entire function, DtFatal * * We cannot abort the compiler on error, because we may be compiling a * list of files. We must move on to the next file. */ #ifdef __OBSOLETE CmCleanupAndExit (); exit (1); #endif } /****************************************************************************** * - * FUNCTION: DtStrtoul64 - * - * PARAMETERS: String - Null terminated string - * ReturnInteger - Where the converted integer is returned - * - * RETURN: Status - * - * DESCRIPTION: Simple conversion of a string hex integer constant to unsigned - * value. Assumes no leading "0x" for the constant. - * - * Portability note: The reason this function exists is because a 64-bit - * sscanf is not available in all environments. - * - *****************************************************************************/ - -ACPI_STATUS -DtStrtoul64 ( - char *String, - UINT64 *ReturnInteger) -{ - char *ThisChar = String; - UINT32 ThisDigit; - UINT64 ReturnValue = 0; - int DigitCount = 0; - - - /* Skip over any white space in the buffer */ - - while ((*ThisChar == ' ') || (*ThisChar == '\t')) - { - ThisChar++; - } - - /* Skip leading zeros */ - - while ((*ThisChar) == '0') - { - ThisChar++; - } - - /* Convert character-by-character */ - - while (*ThisChar) - { - if (isdigit ((int) *ThisChar)) - { - /* Convert ASCII 0-9 to Decimal value */ - - ThisDigit = ((UINT8) *ThisChar) - '0'; - } - else /* Letter */ - { - ThisDigit = (UINT32) toupper ((int) *ThisChar); - if (!isxdigit ((int) ThisDigit)) - { - /* Not A-F */ - - return (AE_BAD_CHARACTER); - } - - /* Convert ASCII Hex char (A-F) to value */ - - ThisDigit = (ThisDigit - 'A') + 10; - } - - /* Insert the 4-bit hex digit */ - - ReturnValue <<= 4; - ReturnValue += ThisDigit; - - ThisChar++; - DigitCount++; - if (DigitCount > 16) - { - /* Value is too large (> 64 bits/8 bytes/16 hex digits) */ - - return (AE_LIMIT); - } - } - - *ReturnInteger = ReturnValue; - return (AE_OK); -} - - -/****************************************************************************** - * * FUNCTION: DtGetFieldValue * * PARAMETERS: Field - Current field list pointer * * RETURN: Field value * * DESCRIPTION: Get field value * *****************************************************************************/ char * DtGetFieldValue ( DT_FIELD *Field) { if (!Field) { return (NULL); } return (Field->Value); } /****************************************************************************** * * FUNCTION: DtGetFieldType * * PARAMETERS: Info - Data table info * * RETURN: Field type * * DESCRIPTION: Get field type * *****************************************************************************/ UINT8 DtGetFieldType ( ACPI_DMTABLE_INFO *Info) { UINT8 Type; /* DT_FLAG means that this is the start of a block of flag bits */ /* TBD - we can make these a separate opcode later */ if (Info->Flags & DT_FLAG) { return (DT_FIELD_TYPE_FLAGS_INTEGER); } /* Type is based upon the opcode for this field in the info table */ switch (Info->Opcode) { case ACPI_DMT_FLAG0: case ACPI_DMT_FLAG1: case ACPI_DMT_FLAG2: case ACPI_DMT_FLAG3: case ACPI_DMT_FLAG4: case ACPI_DMT_FLAG5: case ACPI_DMT_FLAG6: case ACPI_DMT_FLAG7: case ACPI_DMT_FLAGS0: case ACPI_DMT_FLAGS1: case ACPI_DMT_FLAGS2: case ACPI_DMT_FLAGS4: Type = DT_FIELD_TYPE_FLAG; break; case ACPI_DMT_NAME4: case ACPI_DMT_SIG: case ACPI_DMT_NAME6: case ACPI_DMT_NAME8: case ACPI_DMT_STRING: Type = DT_FIELD_TYPE_STRING; break; case ACPI_DMT_BUFFER: case ACPI_DMT_RAW_BUFFER: case ACPI_DMT_BUF7: case ACPI_DMT_BUF10: case ACPI_DMT_BUF12: case ACPI_DMT_BUF16: case ACPI_DMT_BUF128: case ACPI_DMT_PCI_PATH: Type = DT_FIELD_TYPE_BUFFER; break; case ACPI_DMT_GAS: case ACPI_DMT_HESTNTFY: case ACPI_DMT_IORTMEM: Type = DT_FIELD_TYPE_INLINE_SUBTABLE; break; case ACPI_DMT_UNICODE: Type = DT_FIELD_TYPE_UNICODE; break; case ACPI_DMT_UUID: Type = DT_FIELD_TYPE_UUID; break; case ACPI_DMT_DEVICE_PATH: Type = DT_FIELD_TYPE_DEVICE_PATH; break; case ACPI_DMT_LABEL: Type = DT_FIELD_TYPE_LABEL; break; default: Type = DT_FIELD_TYPE_INTEGER; break; } return (Type); } /****************************************************************************** * * FUNCTION: DtGetBufferLength * * PARAMETERS: Buffer - List of integers, * for example "10 3A 4F 2E" * * RETURN: Count of integer * * DESCRIPTION: Get length of bytes needed to store the integers * *****************************************************************************/ UINT32 DtGetBufferLength ( char *Buffer) { UINT32 ByteLength = 0; while (*Buffer) { if (*Buffer == ' ') { ByteLength++; while (*Buffer == ' ') { Buffer++; } } Buffer++; } return (++ByteLength); } /****************************************************************************** * * FUNCTION: DtGetFieldLength * * PARAMETERS: Field - Current field * Info - Data table info * * RETURN: Field length * * DESCRIPTION: Get length of bytes needed to compile the field * * Note: This function must remain in sync with AcpiDmDumpTable. * *****************************************************************************/ UINT32 DtGetFieldLength ( DT_FIELD *Field, ACPI_DMTABLE_INFO *Info) { UINT32 ByteLength = 0; char *Value; /* Length is based upon the opcode for this field in the info table */ switch (Info->Opcode) { case ACPI_DMT_FLAG0: case ACPI_DMT_FLAG1: case ACPI_DMT_FLAG2: case ACPI_DMT_FLAG3: case ACPI_DMT_FLAG4: case ACPI_DMT_FLAG5: case ACPI_DMT_FLAG6: case ACPI_DMT_FLAG7: case ACPI_DMT_FLAGS0: case ACPI_DMT_FLAGS1: case ACPI_DMT_FLAGS2: case ACPI_DMT_FLAGS4: case ACPI_DMT_LABEL: case ACPI_DMT_EXTRA_TEXT: ByteLength = 0; break; case ACPI_DMT_UINT8: case ACPI_DMT_CHKSUM: case ACPI_DMT_SPACEID: case ACPI_DMT_ACCWIDTH: case ACPI_DMT_IVRS: case ACPI_DMT_GTDT: case ACPI_DMT_MADT: case ACPI_DMT_PCCT: case ACPI_DMT_PMTT: case ACPI_DMT_SRAT: case ACPI_DMT_ASF: case ACPI_DMT_HESTNTYP: case ACPI_DMT_FADTPM: case ACPI_DMT_EINJACT: case ACPI_DMT_EINJINST: case ACPI_DMT_ERSTACT: case ACPI_DMT_ERSTINST: case ACPI_DMT_DMAR_SCOPE: ByteLength = 1; break; case ACPI_DMT_UINT16: case ACPI_DMT_DMAR: case ACPI_DMT_HEST: case ACPI_DMT_NFIT: case ACPI_DMT_PCI_PATH: ByteLength = 2; break; case ACPI_DMT_UINT24: ByteLength = 3; break; case ACPI_DMT_UINT32: case ACPI_DMT_NAME4: case ACPI_DMT_SIG: case ACPI_DMT_LPIT: ByteLength = 4; break; case ACPI_DMT_UINT40: ByteLength = 5; break; case ACPI_DMT_UINT48: case ACPI_DMT_NAME6: ByteLength = 6; break; case ACPI_DMT_UINT56: case ACPI_DMT_BUF7: ByteLength = 7; break; case ACPI_DMT_UINT64: case ACPI_DMT_NAME8: ByteLength = 8; break; case ACPI_DMT_STRING: Value = DtGetFieldValue (Field); if (Value) { ByteLength = strlen (Value) + 1; } else { /* At this point, this is a fatal error */ sprintf (MsgBuffer, "Expected \"%s\"", Info->Name); DtFatal (ASL_MSG_COMPILER_INTERNAL, NULL, MsgBuffer); return (0); } break; case ACPI_DMT_GAS: ByteLength = sizeof (ACPI_GENERIC_ADDRESS); break; case ACPI_DMT_HESTNTFY: ByteLength = sizeof (ACPI_HEST_NOTIFY); break; case ACPI_DMT_IORTMEM: ByteLength = sizeof (ACPI_IORT_MEMORY_ACCESS); break; case ACPI_DMT_BUFFER: case ACPI_DMT_RAW_BUFFER: Value = DtGetFieldValue (Field); if (Value) { ByteLength = DtGetBufferLength (Value); } else { /* At this point, this is a fatal error */ sprintf (MsgBuffer, "Expected \"%s\"", Info->Name); DtFatal (ASL_MSG_COMPILER_INTERNAL, NULL, MsgBuffer); return (0); } break; case ACPI_DMT_BUF10: ByteLength = 10; break; case ACPI_DMT_BUF12: ByteLength = 12; break; case ACPI_DMT_BUF16: case ACPI_DMT_UUID: ByteLength = 16; break; case ACPI_DMT_BUF128: ByteLength = 128; break; case ACPI_DMT_UNICODE: Value = DtGetFieldValue (Field); /* TBD: error if Value is NULL? (as below?) */ ByteLength = (strlen (Value) + 1) * sizeof(UINT16); break; default: DtFatal (ASL_MSG_COMPILER_INTERNAL, Field, "Invalid table opcode"); return (0); } return (ByteLength); } /****************************************************************************** * * FUNCTION: DtSum * * PARAMETERS: DT_WALK_CALLBACK: * Subtable - Subtable * Context - Unused * ReturnValue - Store the checksum of subtable * * RETURN: Status * * DESCRIPTION: Get the checksum of subtable * *****************************************************************************/ static void DtSum ( DT_SUBTABLE *Subtable, void *Context, void *ReturnValue) { UINT8 Checksum; UINT8 *Sum = ReturnValue; Checksum = AcpiTbChecksum (Subtable->Buffer, Subtable->Length); *Sum = (UINT8) (*Sum + Checksum); } /****************************************************************************** * * FUNCTION: DtSetTableChecksum * * PARAMETERS: ChecksumPointer - Where to return the checksum * * RETURN: None * * DESCRIPTION: Set checksum of the whole data table into the checksum field * *****************************************************************************/ void DtSetTableChecksum ( UINT8 *ChecksumPointer) { UINT8 Checksum = 0; UINT8 OldSum; DtWalkTableTree (Gbl_RootTable, DtSum, NULL, &Checksum); OldSum = *ChecksumPointer; Checksum = (UINT8) (Checksum - OldSum); /* Compute the final checksum */ Checksum = (UINT8) (0 - Checksum); *ChecksumPointer = Checksum; } /****************************************************************************** * * FUNCTION: DtSetTableLength * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Walk the subtables and set all the length fields * *****************************************************************************/ void DtSetTableLength ( void) { DT_SUBTABLE *ParentTable; DT_SUBTABLE *ChildTable; ParentTable = Gbl_RootTable; ChildTable = NULL; if (!ParentTable) { return; } DtSetSubtableLength (ParentTable); while (1) { ChildTable = DtGetNextSubtable (ParentTable, ChildTable); if (ChildTable) { if (ChildTable->LengthField) { DtSetSubtableLength (ChildTable); } if (ChildTable->Child) { ParentTable = ChildTable; ChildTable = NULL; } else { ParentTable->TotalLength += ChildTable->TotalLength; if (ParentTable->LengthField) { DtSetSubtableLength (ParentTable); } } } else { ChildTable = ParentTable; if (ChildTable == Gbl_RootTable) { break; } ParentTable = DtGetParentSubtable (ParentTable); ParentTable->TotalLength += ChildTable->TotalLength; if (ParentTable->LengthField) { DtSetSubtableLength (ParentTable); } } } } /****************************************************************************** * * FUNCTION: DtWalkTableTree * * PARAMETERS: StartTable - Subtable in the tree where walking begins * UserFunction - Called during the walk * Context - Passed to user function * ReturnValue - The return value of UserFunction * * RETURN: None * * DESCRIPTION: Performs a depth-first walk of the subtable tree * *****************************************************************************/ void DtWalkTableTree ( DT_SUBTABLE *StartTable, DT_WALK_CALLBACK UserFunction, void *Context, void *ReturnValue) { DT_SUBTABLE *ParentTable; DT_SUBTABLE *ChildTable; ParentTable = StartTable; ChildTable = NULL; if (!ParentTable) { return; } UserFunction (ParentTable, Context, ReturnValue); while (1) { ChildTable = DtGetNextSubtable (ParentTable, ChildTable); if (ChildTable) { UserFunction (ChildTable, Context, ReturnValue); if (ChildTable->Child) { ParentTable = ChildTable; ChildTable = NULL; } } else { ChildTable = ParentTable; if (ChildTable == Gbl_RootTable) { break; } ParentTable = DtGetParentSubtable (ParentTable); if (ChildTable->Peer == StartTable) { break; } } } } /******************************************************************************* * * FUNCTION: UtSubtableCacheCalloc * * PARAMETERS: None * * RETURN: Pointer to the buffer. Aborts on allocation failure * * DESCRIPTION: Allocate a subtable object buffer. Bypass the local * dynamic memory manager for performance reasons (This has a * major impact on the speed of the compiler.) * ******************************************************************************/ DT_SUBTABLE * UtSubtableCacheCalloc ( void) { ASL_CACHE_INFO *Cache; if (Gbl_SubtableCacheNext >= Gbl_SubtableCacheLast) { /* Allocate a new buffer */ Cache = UtLocalCalloc (sizeof (Cache->Next) + (sizeof (DT_SUBTABLE) * ASL_SUBTABLE_CACHE_SIZE)); /* Link new cache buffer to head of list */ Cache->Next = Gbl_SubtableCacheList; Gbl_SubtableCacheList = Cache; /* Setup cache management pointers */ Gbl_SubtableCacheNext = ACPI_CAST_PTR (DT_SUBTABLE, Cache->Buffer); Gbl_SubtableCacheLast = Gbl_SubtableCacheNext + ASL_SUBTABLE_CACHE_SIZE; } Gbl_SubtableCount++; return (Gbl_SubtableCacheNext++); } /******************************************************************************* * * FUNCTION: UtFieldCacheCalloc * * PARAMETERS: None * * RETURN: Pointer to the buffer. Aborts on allocation failure * * DESCRIPTION: Allocate a field object buffer. Bypass the local * dynamic memory manager for performance reasons (This has a * major impact on the speed of the compiler.) * ******************************************************************************/ DT_FIELD * UtFieldCacheCalloc ( void) { ASL_CACHE_INFO *Cache; if (Gbl_FieldCacheNext >= Gbl_FieldCacheLast) { /* Allocate a new buffer */ Cache = UtLocalCalloc (sizeof (Cache->Next) + (sizeof (DT_FIELD) * ASL_FIELD_CACHE_SIZE)); /* Link new cache buffer to head of list */ Cache->Next = Gbl_FieldCacheList; Gbl_FieldCacheList = Cache; /* Setup cache management pointers */ Gbl_FieldCacheNext = ACPI_CAST_PTR (DT_FIELD, Cache->Buffer); Gbl_FieldCacheLast = Gbl_FieldCacheNext + ASL_FIELD_CACHE_SIZE; } Gbl_FieldCount++; return (Gbl_FieldCacheNext++); } /******************************************************************************* * * FUNCTION: DtDeleteCaches * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Delete all local cache buffer blocks * ******************************************************************************/ void DtDeleteCaches ( void) { UINT32 BufferCount; ASL_CACHE_INFO *Next; /* Field cache */ BufferCount = 0; while (Gbl_FieldCacheList) { Next = Gbl_FieldCacheList->Next; ACPI_FREE (Gbl_FieldCacheList); Gbl_FieldCacheList = Next; BufferCount++; } DbgPrint (ASL_DEBUG_OUTPUT, "%u Fields, Buffer size: %u fields (%u bytes), %u Buffers\n", Gbl_FieldCount, ASL_FIELD_CACHE_SIZE, (sizeof (DT_FIELD) * ASL_FIELD_CACHE_SIZE), BufferCount); Gbl_FieldCount = 0; Gbl_FieldCacheNext = NULL; Gbl_FieldCacheLast = NULL; /* Subtable cache */ BufferCount = 0; while (Gbl_SubtableCacheList) { Next = Gbl_SubtableCacheList->Next; ACPI_FREE (Gbl_SubtableCacheList); Gbl_SubtableCacheList = Next; BufferCount++; } DbgPrint (ASL_DEBUG_OUTPUT, "%u Subtables, Buffer size: %u subtables (%u bytes), %u Buffers\n", Gbl_SubtableCount, ASL_SUBTABLE_CACHE_SIZE, (sizeof (DT_SUBTABLE) * ASL_SUBTABLE_CACHE_SIZE), BufferCount); Gbl_SubtableCount = 0; Gbl_SubtableCacheNext = NULL; Gbl_SubtableCacheLast = NULL; } Index: vendor-sys/acpica/dist/source/compiler/prparser.y =================================================================== --- vendor-sys/acpica/dist/source/compiler/prparser.y (revision 305161) +++ vendor-sys/acpica/dist/source/compiler/prparser.y (revision 305162) @@ -1,294 +1,294 @@ %{ /****************************************************************************** * * Module Name: prparser.y - Bison input file for preprocessor parser * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "aslcompiler.h" #include "dtcompiler.h" #define _COMPONENT ASL_PREPROCESSOR ACPI_MODULE_NAME ("prparser") void * AslLocalAllocate (unsigned int Size); /* Bison/yacc configuration */ #undef alloca #define alloca AslLocalAllocate int PrParserlex (void); int PrParserparse (void); void PrParsererror (char const *msg); extern char *PrParsertext; UINT64 PrParserResult; /* Expression return value */ /* Bison/yacc configuration */ #define yytname PrParsername #define YYDEBUG 1 /* Enable debug output */ #define YYERROR_VERBOSE 1 /* Verbose error messages */ #define YYFLAG -32768 /* Define YYMALLOC/YYFREE to prevent redefinition errors */ #define YYMALLOC malloc #define YYFREE free %} %union { UINT64 value; UINT32 op; char *str; } /*! [Begin] no source code translation */ %type Expression %token EXPOP_EOF %token EXPOP_NEW_LINE %token EXPOP_NUMBER %token EXPOP_HEX_NUMBER %token EXPOP_RESERVED1 %token EXPOP_RESERVED2 %token EXPOP_PAREN_OPEN %token EXPOP_PAREN_CLOSE %left EXPOP_LOGICAL_OR %left EXPOP_LOGICAL_AND %left EXPOP_OR %left EXPOP_XOR %left EXPOP_AND %left EXPOP_EQUAL EXPOP_NOT_EQUAL %left EXPOP_GREATER EXPOP_LESS EXPOP_GREATER_EQUAL EXPOP_LESS_EQUAL %left EXPOP_SHIFT_RIGHT EXPOP_SHIFT_LEFT %left EXPOP_ADD EXPOP_SUBTRACT %left EXPOP_MULTIPLY EXPOP_DIVIDE EXPOP_MODULO %right EXPOP_ONES_COMPLIMENT EXPOP_LOGICAL_NOT /* Tokens above must be kept in synch with dtparser.y */ %token EXPOP_DEFINE %token EXPOP_IDENTIFIER %% /* * Operator precedence rules (from K&R) * * 1) ( ) * 2) ! ~ (unary operators that are supported here) * 3) * / % * 4) + - * 5) >> << * 6) < > <= >= * 7) == != * 8) & * 9) ^ * 10) | * 11) && * 12) || */ /*! [End] no source code translation !*/ Value : Expression EXPOP_NEW_LINE { PrParserResult=$1; return 0; } /* End of line (newline) */ | Expression EXPOP_EOF { PrParserResult=$1; return 0; } /* End of string (0) */ ; Expression /* Unary operators */ : EXPOP_LOGICAL_NOT Expression { $$ = DtDoOperator ($2, EXPOP_LOGICAL_NOT, $2);} | EXPOP_ONES_COMPLIMENT Expression { $$ = DtDoOperator ($2, EXPOP_ONES_COMPLIMENT, $2);} /* Binary operators */ | Expression EXPOP_MULTIPLY Expression { $$ = DtDoOperator ($1, EXPOP_MULTIPLY, $3);} | Expression EXPOP_DIVIDE Expression { $$ = DtDoOperator ($1, EXPOP_DIVIDE, $3);} | Expression EXPOP_MODULO Expression { $$ = DtDoOperator ($1, EXPOP_MODULO, $3);} | Expression EXPOP_ADD Expression { $$ = DtDoOperator ($1, EXPOP_ADD, $3);} | Expression EXPOP_SUBTRACT Expression { $$ = DtDoOperator ($1, EXPOP_SUBTRACT, $3);} | Expression EXPOP_SHIFT_RIGHT Expression { $$ = DtDoOperator ($1, EXPOP_SHIFT_RIGHT, $3);} | Expression EXPOP_SHIFT_LEFT Expression { $$ = DtDoOperator ($1, EXPOP_SHIFT_LEFT, $3);} | Expression EXPOP_GREATER Expression { $$ = DtDoOperator ($1, EXPOP_GREATER, $3);} | Expression EXPOP_LESS Expression { $$ = DtDoOperator ($1, EXPOP_LESS, $3);} | Expression EXPOP_GREATER_EQUAL Expression { $$ = DtDoOperator ($1, EXPOP_GREATER_EQUAL, $3);} | Expression EXPOP_LESS_EQUAL Expression { $$ = DtDoOperator ($1, EXPOP_LESS_EQUAL, $3);} | Expression EXPOP_EQUAL Expression { $$ = DtDoOperator ($1, EXPOP_EQUAL, $3);} | Expression EXPOP_NOT_EQUAL Expression { $$ = DtDoOperator ($1, EXPOP_NOT_EQUAL, $3);} | Expression EXPOP_AND Expression { $$ = DtDoOperator ($1, EXPOP_AND, $3);} | Expression EXPOP_XOR Expression { $$ = DtDoOperator ($1, EXPOP_XOR, $3);} | Expression EXPOP_OR Expression { $$ = DtDoOperator ($1, EXPOP_OR, $3);} | Expression EXPOP_LOGICAL_AND Expression { $$ = DtDoOperator ($1, EXPOP_LOGICAL_AND, $3);} | Expression EXPOP_LOGICAL_OR Expression { $$ = DtDoOperator ($1, EXPOP_LOGICAL_OR, $3);} /* Parentheses: '(' Expression ')' */ | EXPOP_PAREN_OPEN Expression EXPOP_PAREN_CLOSE { $$ = $2;} /* #if defined (ID) or #if defined ID */ | EXPOP_DEFINE EXPOP_PAREN_OPEN EXPOP_IDENTIFIER EXPOP_PAREN_CLOSE { $$ = PrIsDefined (PrParserlval.str);} | EXPOP_DEFINE EXPOP_IDENTIFIER { $$ = PrIsDefined (PrParserlval.str);} | EXPOP_IDENTIFIER { $$ = PrResolveDefine (PrParserlval.str);} /* Default base for a non-prefixed integer is 10 */ - | EXPOP_NUMBER { AcpiUtStrtoul64 (PrParsertext, 10, ACPI_MAX64_BYTE_WIDTH, &$$);} + | EXPOP_NUMBER { AcpiUtStrtoul64 (PrParsertext, ACPI_STRTOUL_64BIT, &$$);} /* Standard hex number (0x1234) */ - | EXPOP_HEX_NUMBER { AcpiUtStrtoul64 (PrParsertext, 16, ACPI_MAX64_BYTE_WIDTH, &$$);} + | EXPOP_HEX_NUMBER { AcpiUtStrtoul64 (PrParsertext, (ACPI_STRTOUL_BASE16 | ACPI_STRTOUL_64BIT), &$$);} ; %% /* * Local support functions, including parser entry point */ #define PR_FIRST_PARSE_OPCODE EXPOP_EOF #define PR_YYTNAME_START 3 /****************************************************************************** * * FUNCTION: PrParsererror * * PARAMETERS: Message - Parser-generated error message * * RETURN: None * * DESCRIPTION: Handler for parser errors * *****************************************************************************/ void PrParsererror ( char const *Message) { sprintf (StringBuffer, "Preprocessor Parser : %s (near line %u)", Message, Gbl_CurrentLineNumber); DtError (ASL_ERROR, ASL_MSG_SYNTAX, NULL, (char *) StringBuffer); } /****************************************************************************** * * FUNCTION: PrGetOpName * * PARAMETERS: ParseOpcode - Parser token (EXPOP_*) * * RETURN: Pointer to the opcode name * * DESCRIPTION: Get the ascii name of the parse opcode for debug output * *****************************************************************************/ char * PrGetOpName ( UINT32 ParseOpcode) { #ifdef ASL_YYTNAME_START /* * First entries (PR_YYTNAME_START) in yytname are special reserved names. * Ignore first 6 characters of name (EXPOP_) */ return ((char *) yytname [(ParseOpcode - PR_FIRST_PARSE_OPCODE) + PR_YYTNAME_START] + 6); #else return ("[Unknown parser generator]"); #endif } /****************************************************************************** * * FUNCTION: PrEvaluateExpression * * PARAMETERS: ExprString - Expression to be evaluated. Must be * terminated by either a newline or a NUL * string terminator * * RETURN: 64-bit value for the expression * * DESCRIPTION: Main entry point for the DT expression parser * *****************************************************************************/ UINT64 PrEvaluateExpression ( char *ExprString) { DbgPrint (ASL_DEBUG_OUTPUT, "**** Input expression: %s\n", ExprString); /* Point lexer to the input string */ if (PrInitLexer (ExprString)) { DtError (ASL_ERROR, ASL_MSG_COMPILER_INTERNAL, NULL, "Could not initialize lexer"); return (0); } /* Parse/Evaluate the input string (value returned in PrParserResult) */ PrParserparse (); PrTerminateLexer (); DbgPrint (ASL_DEBUG_OUTPUT, "**** Parser returned value: %u (%8.8X%8.8X)\n", (UINT32) PrParserResult, ACPI_FORMAT_UINT64 (PrParserResult)); return (PrParserResult); } Index: vendor-sys/acpica/dist/source/components/debugger/dbconvert.c =================================================================== --- vendor-sys/acpica/dist/source/components/debugger/dbconvert.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/debugger/dbconvert.c (revision 305162) @@ -1,531 +1,532 @@ /******************************************************************************* * * Module Name: dbconvert - debugger miscellaneous conversion routines * ******************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acdebug.h" #define _COMPONENT ACPI_CA_DEBUGGER ACPI_MODULE_NAME ("dbconvert") #define DB_DEFAULT_PKG_ELEMENTS 33 /******************************************************************************* * * FUNCTION: AcpiDbHexCharToValue * * PARAMETERS: HexChar - Ascii Hex digit, 0-9|a-f|A-F * ReturnValue - Where the converted value is returned * * RETURN: Status * * DESCRIPTION: Convert a single hex character to a 4-bit number (0-16). * ******************************************************************************/ ACPI_STATUS AcpiDbHexCharToValue ( int HexChar, UINT8 *ReturnValue) { UINT8 Value; /* Digit must be ascii [0-9a-fA-F] */ if (!isxdigit (HexChar)) { return (AE_BAD_HEX_CONSTANT); } if (HexChar <= 0x39) { Value = (UINT8) (HexChar - 0x30); } else { Value = (UINT8) (toupper (HexChar) - 0x37); } *ReturnValue = Value; return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiDbHexByteToBinary * * PARAMETERS: HexByte - Double hex digit (0x00 - 0xFF) in format: * HiByte then LoByte. * ReturnValue - Where the converted value is returned * * RETURN: Status * * DESCRIPTION: Convert two hex characters to an 8 bit number (0 - 255). * ******************************************************************************/ static ACPI_STATUS AcpiDbHexByteToBinary ( char *HexByte, UINT8 *ReturnValue) { UINT8 Local0; UINT8 Local1; ACPI_STATUS Status; /* High byte */ Status = AcpiDbHexCharToValue (HexByte[0], &Local0); if (ACPI_FAILURE (Status)) { return (Status); } /* Low byte */ Status = AcpiDbHexCharToValue (HexByte[1], &Local1); if (ACPI_FAILURE (Status)) { return (Status); } *ReturnValue = (UINT8) ((Local0 << 4) | Local1); return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiDbConvertToBuffer * * PARAMETERS: String - Input string to be converted * Object - Where the buffer object is returned * * RETURN: Status * * DESCRIPTION: Convert a string to a buffer object. String is treated a list * of buffer elements, each separated by a space or comma. * ******************************************************************************/ static ACPI_STATUS AcpiDbConvertToBuffer ( char *String, ACPI_OBJECT *Object) { UINT32 i; UINT32 j; UINT32 Length; UINT8 *Buffer; ACPI_STATUS Status; /* Generate the final buffer length */ for (i = 0, Length = 0; String[i];) { i+=2; Length++; while (String[i] && ((String[i] == ',') || (String[i] == ' '))) { i++; } } Buffer = ACPI_ALLOCATE (Length); if (!Buffer) { return (AE_NO_MEMORY); } /* Convert the command line bytes to the buffer */ for (i = 0, j = 0; String[i];) { Status = AcpiDbHexByteToBinary (&String[i], &Buffer[j]); if (ACPI_FAILURE (Status)) { ACPI_FREE (Buffer); return (Status); } j++; i += 2; while (String[i] && ((String[i] == ',') || (String[i] == ' '))) { i++; } } Object->Type = ACPI_TYPE_BUFFER; Object->Buffer.Pointer = Buffer; Object->Buffer.Length = Length; return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiDbConvertToPackage * * PARAMETERS: String - Input string to be converted * Object - Where the package object is returned * * RETURN: Status * * DESCRIPTION: Convert a string to a package object. Handles nested packages * via recursion with AcpiDbConvertToObject. * ******************************************************************************/ ACPI_STATUS AcpiDbConvertToPackage ( char *String, ACPI_OBJECT *Object) { char *This; char *Next; UINT32 i; ACPI_OBJECT_TYPE Type; ACPI_OBJECT *Elements; ACPI_STATUS Status; Elements = ACPI_ALLOCATE_ZEROED ( DB_DEFAULT_PKG_ELEMENTS * sizeof (ACPI_OBJECT)); This = String; for (i = 0; i < (DB_DEFAULT_PKG_ELEMENTS - 1); i++) { This = AcpiDbGetNextToken (This, &Next, &Type); if (!This) { break; } /* Recursive call to convert each package element */ Status = AcpiDbConvertToObject (Type, This, &Elements[i]); if (ACPI_FAILURE (Status)) { AcpiDbDeleteObjects (i + 1, Elements); ACPI_FREE (Elements); return (Status); } This = Next; } Object->Type = ACPI_TYPE_PACKAGE; Object->Package.Count = i; Object->Package.Elements = Elements; return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiDbConvertToObject * * PARAMETERS: Type - Object type as determined by parser * String - Input string to be converted * Object - Where the new object is returned * * RETURN: Status * * DESCRIPTION: Convert a typed and tokenized string to an ACPI_OBJECT. Typing: * 1) String objects were surrounded by quotes. * 2) Buffer objects were surrounded by parentheses. * 3) Package objects were surrounded by brackets "[]". * 4) All standalone tokens are treated as integers. * ******************************************************************************/ ACPI_STATUS AcpiDbConvertToObject ( ACPI_OBJECT_TYPE Type, char *String, ACPI_OBJECT *Object) { ACPI_STATUS Status = AE_OK; switch (Type) { case ACPI_TYPE_STRING: Object->Type = ACPI_TYPE_STRING; Object->String.Pointer = String; Object->String.Length = (UINT32) strlen (String); break; case ACPI_TYPE_BUFFER: Status = AcpiDbConvertToBuffer (String, Object); break; case ACPI_TYPE_PACKAGE: Status = AcpiDbConvertToPackage (String, Object); break; default: Object->Type = ACPI_TYPE_INTEGER; - Status = AcpiUtStrtoul64 (String, 16, AcpiGbl_IntegerByteWidth, + Status = AcpiUtStrtoul64 (String, + (AcpiGbl_IntegerByteWidth | ACPI_STRTOUL_BASE16), &Object->Integer.Value); break; } return (Status); } /******************************************************************************* * * FUNCTION: AcpiDbEncodePldBuffer * * PARAMETERS: PldInfo - _PLD buffer struct (Using local struct) * * RETURN: Encode _PLD buffer suitable for return value from _PLD * * DESCRIPTION: Bit-packs a _PLD buffer struct. Used to test the _PLD macros * ******************************************************************************/ UINT8 * AcpiDbEncodePldBuffer ( ACPI_PLD_INFO *PldInfo) { UINT32 *Buffer; UINT32 Dword; Buffer = ACPI_ALLOCATE_ZEROED (ACPI_PLD_BUFFER_SIZE); if (!Buffer) { return (NULL); } /* First 32 bits */ Dword = 0; ACPI_PLD_SET_REVISION (&Dword, PldInfo->Revision); ACPI_PLD_SET_IGNORE_COLOR (&Dword, PldInfo->IgnoreColor); ACPI_PLD_SET_RED (&Dword, PldInfo->Red); ACPI_PLD_SET_GREEN (&Dword, PldInfo->Green); ACPI_PLD_SET_BLUE (&Dword, PldInfo->Blue); ACPI_MOVE_32_TO_32 (&Buffer[0], &Dword); /* Second 32 bits */ Dword = 0; ACPI_PLD_SET_WIDTH (&Dword, PldInfo->Width); ACPI_PLD_SET_HEIGHT (&Dword, PldInfo->Height); ACPI_MOVE_32_TO_32 (&Buffer[1], &Dword); /* Third 32 bits */ Dword = 0; ACPI_PLD_SET_USER_VISIBLE (&Dword, PldInfo->UserVisible); ACPI_PLD_SET_DOCK (&Dword, PldInfo->Dock); ACPI_PLD_SET_LID (&Dword, PldInfo->Lid); ACPI_PLD_SET_PANEL (&Dword, PldInfo->Panel); ACPI_PLD_SET_VERTICAL (&Dword, PldInfo->VerticalPosition); ACPI_PLD_SET_HORIZONTAL (&Dword, PldInfo->HorizontalPosition); ACPI_PLD_SET_SHAPE (&Dword, PldInfo->Shape); ACPI_PLD_SET_ORIENTATION (&Dword, PldInfo->GroupOrientation); ACPI_PLD_SET_TOKEN (&Dword, PldInfo->GroupToken); ACPI_PLD_SET_POSITION (&Dword, PldInfo->GroupPosition); ACPI_PLD_SET_BAY (&Dword, PldInfo->Bay); ACPI_MOVE_32_TO_32 (&Buffer[2], &Dword); /* Fourth 32 bits */ Dword = 0; ACPI_PLD_SET_EJECTABLE (&Dword, PldInfo->Ejectable); ACPI_PLD_SET_OSPM_EJECT (&Dword, PldInfo->OspmEjectRequired); ACPI_PLD_SET_CABINET (&Dword, PldInfo->CabinetNumber); ACPI_PLD_SET_CARD_CAGE (&Dword, PldInfo->CardCageNumber); ACPI_PLD_SET_REFERENCE (&Dword, PldInfo->Reference); ACPI_PLD_SET_ROTATION (&Dword, PldInfo->Rotation); ACPI_PLD_SET_ORDER (&Dword, PldInfo->Order); ACPI_MOVE_32_TO_32 (&Buffer[3], &Dword); if (PldInfo->Revision >= 2) { /* Fifth 32 bits */ Dword = 0; ACPI_PLD_SET_VERT_OFFSET (&Dword, PldInfo->VerticalOffset); ACPI_PLD_SET_HORIZ_OFFSET (&Dword, PldInfo->HorizontalOffset); ACPI_MOVE_32_TO_32 (&Buffer[4], &Dword); } return (ACPI_CAST_PTR (UINT8, Buffer)); } /******************************************************************************* * * FUNCTION: AcpiDbDumpPldBuffer * * PARAMETERS: ObjDesc - Object returned from _PLD method * * RETURN: None. * * DESCRIPTION: Dumps formatted contents of a _PLD return buffer. * ******************************************************************************/ #define ACPI_PLD_OUTPUT "%20s : %-6X\n" void AcpiDbDumpPldBuffer ( ACPI_OBJECT *ObjDesc) { ACPI_OBJECT *BufferDesc; ACPI_PLD_INFO *PldInfo; UINT8 *NewBuffer; ACPI_STATUS Status; /* Object must be of type Package with at least one Buffer element */ if (ObjDesc->Type != ACPI_TYPE_PACKAGE) { return; } BufferDesc = &ObjDesc->Package.Elements[0]; if (BufferDesc->Type != ACPI_TYPE_BUFFER) { return; } /* Convert _PLD buffer to local _PLD struct */ Status = AcpiDecodePldBuffer (BufferDesc->Buffer.Pointer, BufferDesc->Buffer.Length, &PldInfo); if (ACPI_FAILURE (Status)) { return; } /* Encode local _PLD struct back to a _PLD buffer */ NewBuffer = AcpiDbEncodePldBuffer (PldInfo); if (!NewBuffer) { goto Exit; } /* The two bit-packed buffers should match */ if (memcmp (NewBuffer, BufferDesc->Buffer.Pointer, BufferDesc->Buffer.Length)) { AcpiOsPrintf ("Converted _PLD buffer does not compare. New:\n"); AcpiUtDumpBuffer (NewBuffer, BufferDesc->Buffer.Length, DB_BYTE_DISPLAY, 0); } /* First 32-bit dword */ AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_Revision", PldInfo->Revision); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_IgnoreColor", PldInfo->IgnoreColor); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_Red", PldInfo->Red); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_Green", PldInfo->Green); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_Blue", PldInfo->Blue); /* Second 32-bit dword */ AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_Width", PldInfo->Width); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_Height", PldInfo->Height); /* Third 32-bit dword */ AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_UserVisible", PldInfo->UserVisible); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_Dock", PldInfo->Dock); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_Lid", PldInfo->Lid); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_Panel", PldInfo->Panel); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_VerticalPosition", PldInfo->VerticalPosition); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_HorizontalPosition", PldInfo->HorizontalPosition); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_Shape", PldInfo->Shape); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_GroupOrientation", PldInfo->GroupOrientation); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_GroupToken", PldInfo->GroupToken); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_GroupPosition", PldInfo->GroupPosition); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_Bay", PldInfo->Bay); /* Fourth 32-bit dword */ AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_Ejectable", PldInfo->Ejectable); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_EjectRequired", PldInfo->OspmEjectRequired); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_CabinetNumber", PldInfo->CabinetNumber); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_CardCageNumber", PldInfo->CardCageNumber); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_Reference", PldInfo->Reference); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_Rotation", PldInfo->Rotation); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_Order", PldInfo->Order); /* Fifth 32-bit dword */ if (BufferDesc->Buffer.Length > 16) { AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_VerticalOffset", PldInfo->VerticalOffset); AcpiOsPrintf (ACPI_PLD_OUTPUT, "PLD_HorizontalOffset", PldInfo->HorizontalOffset); } ACPI_FREE (NewBuffer); Exit: ACPI_FREE (PldInfo); } Index: vendor-sys/acpica/dist/source/components/debugger/dbexec.c =================================================================== --- vendor-sys/acpica/dist/source/components/debugger/dbexec.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/debugger/dbexec.c (revision 305162) @@ -1,840 +1,847 @@ /******************************************************************************* * * Module Name: dbexec - debugger control method execution * ******************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acdebug.h" #include "acnamesp.h" #define _COMPONENT ACPI_CA_DEBUGGER ACPI_MODULE_NAME ("dbexec") static ACPI_DB_METHOD_INFO AcpiGbl_DbMethodInfo; /* Local prototypes */ static ACPI_STATUS AcpiDbExecuteMethod ( ACPI_DB_METHOD_INFO *Info, ACPI_BUFFER *ReturnObj); static ACPI_STATUS AcpiDbExecuteSetup ( ACPI_DB_METHOD_INFO *Info); static UINT32 AcpiDbGetOutstandingAllocations ( void); static void ACPI_SYSTEM_XFACE AcpiDbMethodThread ( void *Context); static ACPI_STATUS AcpiDbExecutionWalk ( ACPI_HANDLE ObjHandle, UINT32 NestingLevel, void *Context, void **ReturnValue); /******************************************************************************* * * FUNCTION: AcpiDbDeleteObjects * * PARAMETERS: Count - Count of objects in the list * Objects - Array of ACPI_OBJECTs to be deleted * * RETURN: None * * DESCRIPTION: Delete a list of ACPI_OBJECTS. Handles packages and nested * packages via recursion. * ******************************************************************************/ void AcpiDbDeleteObjects ( UINT32 Count, ACPI_OBJECT *Objects) { UINT32 i; for (i = 0; i < Count; i++) { switch (Objects[i].Type) { case ACPI_TYPE_BUFFER: ACPI_FREE (Objects[i].Buffer.Pointer); break; case ACPI_TYPE_PACKAGE: /* Recursive call to delete package elements */ AcpiDbDeleteObjects (Objects[i].Package.Count, Objects[i].Package.Elements); /* Free the elements array */ ACPI_FREE (Objects[i].Package.Elements); break; default: break; } } } /******************************************************************************* * * FUNCTION: AcpiDbExecuteMethod * * PARAMETERS: Info - Valid info segment * ReturnObj - Where to put return object * * RETURN: Status * * DESCRIPTION: Execute a control method. * ******************************************************************************/ static ACPI_STATUS AcpiDbExecuteMethod ( ACPI_DB_METHOD_INFO *Info, ACPI_BUFFER *ReturnObj) { ACPI_STATUS Status; ACPI_OBJECT_LIST ParamObjects; ACPI_OBJECT Params[ACPI_DEBUGGER_MAX_ARGS + 1]; UINT32 i; ACPI_FUNCTION_TRACE (DbExecuteMethod); if (AcpiGbl_DbOutputToFile && !AcpiDbgLevel) { AcpiOsPrintf ("Warning: debug output is not enabled!\n"); } ParamObjects.Count = 0; ParamObjects.Pointer = NULL; /* Pass through any command-line arguments */ if (Info->Args && Info->Args[0]) { /* Get arguments passed on the command line */ for (i = 0; (Info->Args[i] && *(Info->Args[i])); i++) { /* Convert input string (token) to an actual ACPI_OBJECT */ Status = AcpiDbConvertToObject (Info->Types[i], Info->Args[i], &Params[i]); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "While parsing method arguments")); goto Cleanup; } } ParamObjects.Count = i; ParamObjects.Pointer = Params; } /* Prepare for a return object of arbitrary size */ ReturnObj->Pointer = AcpiGbl_DbBuffer; ReturnObj->Length = ACPI_DEBUG_BUFFER_SIZE; /* Do the actual method execution */ AcpiGbl_MethodExecuting = TRUE; Status = AcpiEvaluateObject (NULL, Info->Pathname, &ParamObjects, ReturnObj); AcpiGbl_CmSingleStep = FALSE; AcpiGbl_MethodExecuting = FALSE; if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "while executing %s from debugger", Info->Pathname)); if (Status == AE_BUFFER_OVERFLOW) { ACPI_ERROR ((AE_INFO, "Possible overflow of internal debugger " "buffer (size 0x%X needed 0x%X)", ACPI_DEBUG_BUFFER_SIZE, (UINT32) ReturnObj->Length)); } } Cleanup: AcpiDbDeleteObjects (ParamObjects.Count, Params); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiDbExecuteSetup * * PARAMETERS: Info - Valid method info * * RETURN: None * * DESCRIPTION: Setup info segment prior to method execution * ******************************************************************************/ static ACPI_STATUS AcpiDbExecuteSetup ( ACPI_DB_METHOD_INFO *Info) { ACPI_STATUS Status; ACPI_FUNCTION_NAME (DbExecuteSetup); /* Catenate the current scope to the supplied name */ Info->Pathname[0] = 0; if ((Info->Name[0] != '\\') && (Info->Name[0] != '/')) { if (AcpiUtSafeStrcat (Info->Pathname, sizeof (Info->Pathname), AcpiGbl_DbScopeBuf)) { Status = AE_BUFFER_OVERFLOW; goto ErrorExit; } } if (AcpiUtSafeStrcat (Info->Pathname, sizeof (Info->Pathname), Info->Name)) { Status = AE_BUFFER_OVERFLOW; goto ErrorExit; } AcpiDbPrepNamestring (Info->Pathname); AcpiDbSetOutputDestination (ACPI_DB_DUPLICATE_OUTPUT); AcpiOsPrintf ("Evaluating %s\n", Info->Pathname); if (Info->Flags & EX_SINGLE_STEP) { AcpiGbl_CmSingleStep = TRUE; AcpiDbSetOutputDestination (ACPI_DB_CONSOLE_OUTPUT); } else { /* No single step, allow redirection to a file */ AcpiDbSetOutputDestination (ACPI_DB_REDIRECTABLE_OUTPUT); } return (AE_OK); ErrorExit: ACPI_EXCEPTION ((AE_INFO, Status, "During setup for method execution")); return (Status); } #ifdef ACPI_DBG_TRACK_ALLOCATIONS UINT32 AcpiDbGetCacheInfo ( ACPI_MEMORY_LIST *Cache) { return (Cache->TotalAllocated - Cache->TotalFreed - Cache->CurrentDepth); } #endif /******************************************************************************* * * FUNCTION: AcpiDbGetOutstandingAllocations * * PARAMETERS: None * * RETURN: Current global allocation count minus cache entries * * DESCRIPTION: Determine the current number of "outstanding" allocations -- * those allocations that have not been freed and also are not * in one of the various object caches. * ******************************************************************************/ static UINT32 AcpiDbGetOutstandingAllocations ( void) { UINT32 Outstanding = 0; #ifdef ACPI_DBG_TRACK_ALLOCATIONS Outstanding += AcpiDbGetCacheInfo (AcpiGbl_StateCache); Outstanding += AcpiDbGetCacheInfo (AcpiGbl_PsNodeCache); Outstanding += AcpiDbGetCacheInfo (AcpiGbl_PsNodeExtCache); Outstanding += AcpiDbGetCacheInfo (AcpiGbl_OperandCache); #endif return (Outstanding); } /******************************************************************************* * * FUNCTION: AcpiDbExecutionWalk * * PARAMETERS: WALK_CALLBACK * * RETURN: Status * * DESCRIPTION: Execute a control method. Name is relative to the current * scope. * ******************************************************************************/ static ACPI_STATUS AcpiDbExecutionWalk ( ACPI_HANDLE ObjHandle, UINT32 NestingLevel, void *Context, void **ReturnValue) { ACPI_OPERAND_OBJECT *ObjDesc; ACPI_NAMESPACE_NODE *Node = (ACPI_NAMESPACE_NODE *) ObjHandle; ACPI_BUFFER ReturnObj; ACPI_STATUS Status; ObjDesc = AcpiNsGetAttachedObject (Node); if (ObjDesc->Method.ParamCount) { return (AE_OK); } ReturnObj.Pointer = NULL; ReturnObj.Length = ACPI_ALLOCATE_BUFFER; AcpiNsPrintNodePathname (Node, "Evaluating"); /* Do the actual method execution */ AcpiOsPrintf ("\n"); AcpiGbl_MethodExecuting = TRUE; Status = AcpiEvaluateObject (Node, NULL, NULL, &ReturnObj); AcpiOsPrintf ("Evaluation of [%4.4s] returned %s\n", AcpiUtGetNodeName (Node), AcpiFormatException (Status)); AcpiGbl_MethodExecuting = FALSE; return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiDbExecute * * PARAMETERS: Name - Name of method to execute * Args - Parameters to the method * Types - * Flags - single step/no single step * * RETURN: None * * DESCRIPTION: Execute a control method. Name is relative to the current * scope. * ******************************************************************************/ void AcpiDbExecute ( char *Name, char **Args, ACPI_OBJECT_TYPE *Types, UINT32 Flags) { ACPI_STATUS Status; ACPI_BUFFER ReturnObj; char *NameString; #ifdef ACPI_DEBUG_OUTPUT UINT32 PreviousAllocations; UINT32 Allocations; #endif /* * Allow one execution to be performed by debugger or single step * execution will be dead locked by the interpreter mutexes. */ if (AcpiGbl_MethodExecuting) { AcpiOsPrintf ("Only one debugger execution is allowed.\n"); return; } #ifdef ACPI_DEBUG_OUTPUT /* Memory allocation tracking */ PreviousAllocations = AcpiDbGetOutstandingAllocations (); #endif if (*Name == '*') { (void) AcpiWalkNamespace (ACPI_TYPE_METHOD, ACPI_ROOT_OBJECT, ACPI_UINT32_MAX, AcpiDbExecutionWalk, NULL, NULL, NULL); return; } - else + + NameString = ACPI_ALLOCATE (strlen (Name) + 1); + if (!NameString) { - NameString = ACPI_ALLOCATE (strlen (Name) + 1); - if (!NameString) - { - return; - } + return; + } - memset (&AcpiGbl_DbMethodInfo, 0, sizeof (ACPI_DB_METHOD_INFO)); + memset (&AcpiGbl_DbMethodInfo, 0, sizeof (ACPI_DB_METHOD_INFO)); + strcpy (NameString, Name); + AcpiUtStrupr (NameString); - strcpy (NameString, Name); - AcpiUtStrupr (NameString); - AcpiGbl_DbMethodInfo.Name = NameString; - AcpiGbl_DbMethodInfo.Args = Args; - AcpiGbl_DbMethodInfo.Types = Types; - AcpiGbl_DbMethodInfo.Flags = Flags; + /* Subcommand to Execute all predefined names in the namespace */ - ReturnObj.Pointer = NULL; - ReturnObj.Length = ACPI_ALLOCATE_BUFFER; + if (!strncmp (NameString, "PREDEF", 6)) + { + AcpiDbEvaluatePredefinedNames (); + ACPI_FREE (NameString); + return; + } - Status = AcpiDbExecuteSetup (&AcpiGbl_DbMethodInfo); - if (ACPI_FAILURE (Status)) - { - ACPI_FREE (NameString); - return; - } + AcpiGbl_DbMethodInfo.Name = NameString; + AcpiGbl_DbMethodInfo.Args = Args; + AcpiGbl_DbMethodInfo.Types = Types; + AcpiGbl_DbMethodInfo.Flags = Flags; - /* Get the NS node, determines existence also */ + ReturnObj.Pointer = NULL; + ReturnObj.Length = ACPI_ALLOCATE_BUFFER; - Status = AcpiGetHandle (NULL, AcpiGbl_DbMethodInfo.Pathname, - &AcpiGbl_DbMethodInfo.Method); - if (ACPI_SUCCESS (Status)) - { - Status = AcpiDbExecuteMethod (&AcpiGbl_DbMethodInfo, - &ReturnObj); - } + Status = AcpiDbExecuteSetup (&AcpiGbl_DbMethodInfo); + if (ACPI_FAILURE (Status)) + { ACPI_FREE (NameString); + return; } + + /* Get the NS node, determines existence also */ + + Status = AcpiGetHandle (NULL, AcpiGbl_DbMethodInfo.Pathname, + &AcpiGbl_DbMethodInfo.Method); + if (ACPI_SUCCESS (Status)) + { + Status = AcpiDbExecuteMethod (&AcpiGbl_DbMethodInfo, + &ReturnObj); + } + ACPI_FREE (NameString); /* * Allow any handlers in separate threads to complete. * (Such as Notify handlers invoked from AML executed above). */ AcpiOsSleep ((UINT64) 10); #ifdef ACPI_DEBUG_OUTPUT /* Memory allocation tracking */ Allocations = AcpiDbGetOutstandingAllocations () - PreviousAllocations; AcpiDbSetOutputDestination (ACPI_DB_DUPLICATE_OUTPUT); if (Allocations > 0) { AcpiOsPrintf ( "0x%X Outstanding allocations after evaluation of %s\n", Allocations, AcpiGbl_DbMethodInfo.Pathname); } #endif if (ACPI_FAILURE (Status)) { AcpiOsPrintf ("Evaluation of %s failed with status %s\n", AcpiGbl_DbMethodInfo.Pathname, AcpiFormatException (Status)); } else { /* Display a return object, if any */ if (ReturnObj.Length) { AcpiOsPrintf ( "Evaluation of %s returned object %p, " "external buffer length %X\n", AcpiGbl_DbMethodInfo.Pathname, ReturnObj.Pointer, (UINT32) ReturnObj.Length); AcpiDbDumpExternalObject (ReturnObj.Pointer, 1); /* Dump a _PLD buffer if present */ if (ACPI_COMPARE_NAME ((ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, AcpiGbl_DbMethodInfo.Method)->Name.Ascii), METHOD_NAME__PLD)) { AcpiDbDumpPldBuffer (ReturnObj.Pointer); } } else { AcpiOsPrintf ("No object was returned from evaluation of %s\n", AcpiGbl_DbMethodInfo.Pathname); } } AcpiDbSetOutputDestination (ACPI_DB_CONSOLE_OUTPUT); } /******************************************************************************* * * FUNCTION: AcpiDbMethodThread * * PARAMETERS: Context - Execution info segment * * RETURN: None * * DESCRIPTION: Debugger execute thread. Waits for a command line, then * simply dispatches it. * ******************************************************************************/ static void ACPI_SYSTEM_XFACE AcpiDbMethodThread ( void *Context) { ACPI_STATUS Status; ACPI_DB_METHOD_INFO *Info = Context; ACPI_DB_METHOD_INFO LocalInfo; UINT32 i; UINT8 Allow; ACPI_BUFFER ReturnObj; /* * AcpiGbl_DbMethodInfo.Arguments will be passed as method arguments. * Prevent AcpiGbl_DbMethodInfo from being modified by multiple threads * concurrently. * * Note: The arguments we are passing are used by the ASL test suite * (aslts). Do not change them without updating the tests. */ (void) AcpiOsWaitSemaphore (Info->InfoGate, 1, ACPI_WAIT_FOREVER); if (Info->InitArgs) { AcpiDbUint32ToHexString (Info->NumCreated, Info->IndexOfThreadStr); AcpiDbUint32ToHexString ((UINT32) AcpiOsGetThreadId (), Info->IdOfThreadStr); } if (Info->Threads && (Info->NumCreated < Info->NumThreads)) { Info->Threads[Info->NumCreated++] = AcpiOsGetThreadId(); } LocalInfo = *Info; LocalInfo.Args = LocalInfo.Arguments; LocalInfo.Arguments[0] = LocalInfo.NumThreadsStr; LocalInfo.Arguments[1] = LocalInfo.IdOfThreadStr; LocalInfo.Arguments[2] = LocalInfo.IndexOfThreadStr; LocalInfo.Arguments[3] = NULL; LocalInfo.Types = LocalInfo.ArgTypes; (void) AcpiOsSignalSemaphore (Info->InfoGate, 1); for (i = 0; i < Info->NumLoops; i++) { Status = AcpiDbExecuteMethod (&LocalInfo, &ReturnObj); if (ACPI_FAILURE (Status)) { AcpiOsPrintf ("%s During evaluation of %s at iteration %X\n", AcpiFormatException (Status), Info->Pathname, i); if (Status == AE_ABORT_METHOD) { break; } } #if 0 if ((i % 100) == 0) { AcpiOsPrintf ("%u loops, Thread 0x%x\n", i, AcpiOsGetThreadId ()); } if (ReturnObj.Length) { AcpiOsPrintf ("Evaluation of %s returned object %p Buflen %X\n", Info->Pathname, ReturnObj.Pointer, (UINT32) ReturnObj.Length); AcpiDbDumpExternalObject (ReturnObj.Pointer, 1); } #endif } /* Signal our completion */ Allow = 0; (void) AcpiOsWaitSemaphore (Info->ThreadCompleteGate, 1, ACPI_WAIT_FOREVER); Info->NumCompleted++; if (Info->NumCompleted == Info->NumThreads) { /* Do signal for main thread once only */ Allow = 1; } (void) AcpiOsSignalSemaphore (Info->ThreadCompleteGate, 1); if (Allow) { Status = AcpiOsSignalSemaphore (Info->MainThreadGate, 1); if (ACPI_FAILURE (Status)) { AcpiOsPrintf ( "Could not signal debugger thread sync semaphore, %s\n", AcpiFormatException (Status)); } } } /******************************************************************************* * * FUNCTION: AcpiDbCreateExecutionThreads * * PARAMETERS: NumThreadsArg - Number of threads to create * NumLoopsArg - Loop count for the thread(s) * MethodNameArg - Control method to execute * * RETURN: None * * DESCRIPTION: Create threads to execute method(s) * ******************************************************************************/ void AcpiDbCreateExecutionThreads ( char *NumThreadsArg, char *NumLoopsArg, char *MethodNameArg) { ACPI_STATUS Status; UINT32 NumThreads; UINT32 NumLoops; UINT32 i; UINT32 Size; ACPI_MUTEX MainThreadGate; ACPI_MUTEX ThreadCompleteGate; ACPI_MUTEX InfoGate; /* Get the arguments */ NumThreads = strtoul (NumThreadsArg, NULL, 0); NumLoops = strtoul (NumLoopsArg, NULL, 0); if (!NumThreads || !NumLoops) { AcpiOsPrintf ("Bad argument: Threads %X, Loops %X\n", NumThreads, NumLoops); return; } /* * Create the semaphore for synchronization of * the created threads with the main thread. */ Status = AcpiOsCreateSemaphore (1, 0, &MainThreadGate); if (ACPI_FAILURE (Status)) { AcpiOsPrintf ("Could not create semaphore for " "synchronization with the main thread, %s\n", AcpiFormatException (Status)); return; } /* * Create the semaphore for synchronization * between the created threads. */ Status = AcpiOsCreateSemaphore (1, 1, &ThreadCompleteGate); if (ACPI_FAILURE (Status)) { AcpiOsPrintf ("Could not create semaphore for " "synchronization between the created threads, %s\n", AcpiFormatException (Status)); (void) AcpiOsDeleteSemaphore (MainThreadGate); return; } Status = AcpiOsCreateSemaphore (1, 1, &InfoGate); if (ACPI_FAILURE (Status)) { AcpiOsPrintf ("Could not create semaphore for " "synchronization of AcpiGbl_DbMethodInfo, %s\n", AcpiFormatException (Status)); (void) AcpiOsDeleteSemaphore (ThreadCompleteGate); (void) AcpiOsDeleteSemaphore (MainThreadGate); return; } memset (&AcpiGbl_DbMethodInfo, 0, sizeof (ACPI_DB_METHOD_INFO)); /* Array to store IDs of threads */ AcpiGbl_DbMethodInfo.NumThreads = NumThreads; Size = sizeof (ACPI_THREAD_ID) * AcpiGbl_DbMethodInfo.NumThreads; AcpiGbl_DbMethodInfo.Threads = AcpiOsAllocate (Size); if (AcpiGbl_DbMethodInfo.Threads == NULL) { AcpiOsPrintf ("No memory for thread IDs array\n"); (void) AcpiOsDeleteSemaphore (MainThreadGate); (void) AcpiOsDeleteSemaphore (ThreadCompleteGate); (void) AcpiOsDeleteSemaphore (InfoGate); return; } memset (AcpiGbl_DbMethodInfo.Threads, 0, Size); /* Setup the context to be passed to each thread */ AcpiGbl_DbMethodInfo.Name = MethodNameArg; AcpiGbl_DbMethodInfo.Flags = 0; AcpiGbl_DbMethodInfo.NumLoops = NumLoops; AcpiGbl_DbMethodInfo.MainThreadGate = MainThreadGate; AcpiGbl_DbMethodInfo.ThreadCompleteGate = ThreadCompleteGate; AcpiGbl_DbMethodInfo.InfoGate = InfoGate; /* Init arguments to be passed to method */ AcpiGbl_DbMethodInfo.InitArgs = 1; AcpiGbl_DbMethodInfo.Args = AcpiGbl_DbMethodInfo.Arguments; AcpiGbl_DbMethodInfo.Arguments[0] = AcpiGbl_DbMethodInfo.NumThreadsStr; AcpiGbl_DbMethodInfo.Arguments[1] = AcpiGbl_DbMethodInfo.IdOfThreadStr; AcpiGbl_DbMethodInfo.Arguments[2] = AcpiGbl_DbMethodInfo.IndexOfThreadStr; AcpiGbl_DbMethodInfo.Arguments[3] = NULL; AcpiGbl_DbMethodInfo.Types = AcpiGbl_DbMethodInfo.ArgTypes; AcpiGbl_DbMethodInfo.ArgTypes[0] = ACPI_TYPE_INTEGER; AcpiGbl_DbMethodInfo.ArgTypes[1] = ACPI_TYPE_INTEGER; AcpiGbl_DbMethodInfo.ArgTypes[2] = ACPI_TYPE_INTEGER; AcpiDbUint32ToHexString (NumThreads, AcpiGbl_DbMethodInfo.NumThreadsStr); Status = AcpiDbExecuteSetup (&AcpiGbl_DbMethodInfo); if (ACPI_FAILURE (Status)) { goto CleanupAndExit; } /* Get the NS node, determines existence also */ Status = AcpiGetHandle (NULL, AcpiGbl_DbMethodInfo.Pathname, &AcpiGbl_DbMethodInfo.Method); if (ACPI_FAILURE (Status)) { AcpiOsPrintf ("%s Could not get handle for %s\n", AcpiFormatException (Status), AcpiGbl_DbMethodInfo.Pathname); goto CleanupAndExit; } /* Create the threads */ AcpiOsPrintf ("Creating %X threads to execute %X times each\n", NumThreads, NumLoops); for (i = 0; i < (NumThreads); i++) { Status = AcpiOsExecute (OSL_DEBUGGER_EXEC_THREAD, AcpiDbMethodThread, &AcpiGbl_DbMethodInfo); if (ACPI_FAILURE (Status)) { break; } } /* Wait for all threads to complete */ (void) AcpiOsWaitSemaphore (MainThreadGate, 1, ACPI_WAIT_FOREVER); AcpiDbSetOutputDestination (ACPI_DB_DUPLICATE_OUTPUT); AcpiOsPrintf ("All threads (%X) have completed\n", NumThreads); AcpiDbSetOutputDestination (ACPI_DB_CONSOLE_OUTPUT); CleanupAndExit: /* Cleanup and exit */ (void) AcpiOsDeleteSemaphore (MainThreadGate); (void) AcpiOsDeleteSemaphore (ThreadCompleteGate); (void) AcpiOsDeleteSemaphore (InfoGate); AcpiOsFree (AcpiGbl_DbMethodInfo.Threads); AcpiGbl_DbMethodInfo.Threads = NULL; } Index: vendor-sys/acpica/dist/source/components/debugger/dbinput.c =================================================================== --- vendor-sys/acpica/dist/source/components/debugger/dbinput.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/debugger/dbinput.c (revision 305162) @@ -1,1361 +1,1362 @@ /******************************************************************************* * * Module Name: dbinput - user front-end to the AML debugger * ******************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acdebug.h" #ifdef ACPI_APPLICATION #include "acapps.h" #endif #define _COMPONENT ACPI_CA_DEBUGGER ACPI_MODULE_NAME ("dbinput") /* Local prototypes */ static UINT32 AcpiDbGetLine ( char *InputBuffer); static UINT32 AcpiDbMatchCommand ( char *UserCommand); static void AcpiDbSingleThread ( void); static void AcpiDbDisplayCommandInfo ( const char *Command, BOOLEAN DisplayAll); static void AcpiDbDisplayHelp ( char *Command); static BOOLEAN AcpiDbMatchCommandHelp ( const char *Command, const ACPI_DB_COMMAND_HELP *Help); /* * Top-level debugger commands. * * This list of commands must match the string table below it */ enum AcpiExDebuggerCommands { CMD_NOT_FOUND = 0, CMD_NULL, CMD_ALLOCATIONS, CMD_ARGS, CMD_ARGUMENTS, CMD_BREAKPOINT, CMD_BUSINFO, CMD_CALL, CMD_DEBUG, CMD_DISASSEMBLE, CMD_DISASM, CMD_DUMP, CMD_EVALUATE, CMD_EXECUTE, CMD_EXIT, CMD_FIND, CMD_GO, CMD_HANDLERS, CMD_HELP, CMD_HELP2, CMD_HISTORY, CMD_HISTORY_EXE, CMD_HISTORY_LAST, CMD_INFORMATION, CMD_INTEGRITY, CMD_INTO, CMD_LEVEL, CMD_LIST, CMD_LOCALS, CMD_LOCKS, CMD_METHODS, CMD_NAMESPACE, CMD_NOTIFY, CMD_OBJECTS, CMD_OSI, CMD_OWNER, CMD_PATHS, CMD_PREDEFINED, CMD_PREFIX, CMD_QUIT, CMD_REFERENCES, CMD_RESOURCES, CMD_RESULTS, CMD_SET, CMD_STATS, CMD_STOP, CMD_TABLES, CMD_TEMPLATE, CMD_TRACE, CMD_TREE, CMD_TYPE, #ifdef ACPI_APPLICATION CMD_ENABLEACPI, CMD_EVENT, CMD_GPE, CMD_GPES, CMD_SCI, CMD_SLEEP, CMD_CLOSE, CMD_LOAD, CMD_OPEN, CMD_UNLOAD, CMD_TERMINATE, CMD_THREADS, CMD_TEST, #endif }; #define CMD_FIRST_VALID 2 /* Second parameter is the required argument count */ static const ACPI_DB_COMMAND_INFO AcpiGbl_DbCommands[] = { {"", 0}, {"", 0}, {"ALLOCATIONS", 0}, {"ARGS", 0}, {"ARGUMENTS", 0}, {"BREAKPOINT", 1}, {"BUSINFO", 0}, {"CALL", 0}, {"DEBUG", 1}, {"DISASSEMBLE", 1}, {"DISASM", 1}, {"DUMP", 1}, {"EVALUATE", 1}, {"EXECUTE", 1}, {"EXIT", 0}, {"FIND", 1}, {"GO", 0}, {"HANDLERS", 0}, {"HELP", 0}, {"?", 0}, {"HISTORY", 0}, {"!", 1}, {"!!", 0}, {"INFORMATION", 0}, {"INTEGRITY", 0}, {"INTO", 0}, {"LEVEL", 0}, {"LIST", 0}, {"LOCALS", 0}, {"LOCKS", 0}, {"METHODS", 0}, {"NAMESPACE", 0}, {"NOTIFY", 2}, {"OBJECTS", 0}, {"OSI", 0}, {"OWNER", 1}, {"PATHS", 0}, {"PREDEFINED", 0}, {"PREFIX", 0}, {"QUIT", 0}, {"REFERENCES", 1}, {"RESOURCES", 0}, {"RESULTS", 0}, {"SET", 3}, {"STATS", 1}, {"STOP", 0}, {"TABLES", 0}, {"TEMPLATE", 1}, {"TRACE", 1}, {"TREE", 0}, {"TYPE", 1}, #ifdef ACPI_APPLICATION {"ENABLEACPI", 0}, {"EVENT", 1}, {"GPE", 1}, {"GPES", 0}, {"SCI", 0}, {"SLEEP", 0}, {"CLOSE", 0}, {"LOAD", 1}, {"OPEN", 1}, {"UNLOAD", 1}, {"TERMINATE", 0}, {"THREADS", 3}, {"TEST", 1}, #endif {NULL, 0} }; /* * Help for all debugger commands. First argument is the number of lines * of help to output for the command. */ static const ACPI_DB_COMMAND_HELP AcpiGbl_DbCommandHelp[] = { {0, "\nGeneral-Purpose Commands:", "\n"}, {1, " Allocations", "Display list of current memory allocations\n"}, {2, " Dump
|", "\n"}, {0, " [Byte|Word|Dword|Qword]", "Display ACPI objects or memory\n"}, {1, " Handlers", "Info about global handlers\n"}, {1, " Help [Command]", "This help screen or individual command\n"}, {1, " History", "Display command history buffer\n"}, {1, " Level ] [console]", "Get/Set debug level for file or console\n"}, {1, " Locks", "Current status of internal mutexes\n"}, {1, " Osi [Install|Remove ]", "Display or modify global _OSI list\n"}, {1, " Quit or Exit", "Exit this command\n"}, {8, " Stats ", "Display namespace and memory statistics\n"}, {1, " Allocations", "Display list of current memory allocations\n"}, {1, " Memory", "Dump internal memory lists\n"}, {1, " Misc", "Namespace search and mutex stats\n"}, {1, " Objects", "Summary of namespace objects\n"}, {1, " Sizes", "Sizes for each of the internal objects\n"}, {1, " Stack", "Display CPU stack usage\n"}, {1, " Tables", "Info about current ACPI table(s)\n"}, {1, " Tables", "Display info about loaded ACPI tables\n"}, {1, " ! ", "Execute command from history buffer\n"}, {1, " !!", "Execute last command again\n"}, {0, "\nNamespace Access Commands:", "\n"}, {1, " Businfo", "Display system bus info\n"}, {1, " Disassemble ", "Disassemble a control method\n"}, {1, " Find (? is wildcard)", "Find ACPI name(s) with wildcards\n"}, {1, " Integrity", "Validate namespace integrity\n"}, {1, " Methods", "Display list of loaded control methods\n"}, {1, " Namespace [Object] [Depth]", "Display loaded namespace tree/subtree\n"}, {1, " Notify ", "Send a notification on Object\n"}, {1, " Objects [ObjectType]", "Display summary of all objects or just given type\n"}, {1, " Owner [Depth]", "Display loaded namespace by object owner\n"}, {1, " Paths", "Display full pathnames of namespace objects\n"}, {1, " Predefined", "Check all predefined names\n"}, {1, " Prefix []", "Set or Get current execution prefix\n"}, {1, " References ", "Find all references to object at addr\n"}, {1, " Resources [DeviceName]", "Display Device resources (no arg = all devices)\n"}, {1, " Set N ", "Set value for named integer\n"}, {1, " Template ", "Format/dump a Buffer/ResourceTemplate\n"}, {1, " Type ", "Display object type\n"}, {0, "\nControl Method Execution Commands:","\n"}, {1, " Arguments (or Args)", "Display method arguments\n"}, {1, " Breakpoint ", "Set an AML execution breakpoint\n"}, {1, " Call", "Run to next control method invocation\n"}, {1, " Debug [Arguments]", "Single Step a control method\n"}, {6, " Evaluate", "Synonym for Execute\n"}, {5, " Execute [Arguments]", "Execute control method\n"}, {1, " Hex Integer", "Integer method argument\n"}, {1, " \"Ascii String\"", "String method argument\n"}, {1, " (Hex Byte List)", "Buffer method argument\n"}, {1, " [Package Element List]", "Package method argument\n"}, + {5, " Execute predefined", "Execute all predefined (public) methods\n"}, {1, " Go", "Allow method to run to completion\n"}, {1, " Information", "Display info about the current method\n"}, {1, " Into", "Step into (not over) a method call\n"}, {1, " List [# of Aml Opcodes]", "Display method ASL statements\n"}, {1, " Locals", "Display method local variables\n"}, {1, " Results", "Display method result stack\n"}, {1, " Set <#> ", "Set method data (Arguments/Locals)\n"}, {1, " Stop", "Terminate control method\n"}, {5, " Trace [] [Once]", "Trace control method execution\n"}, {1, " Enable", "Enable all messages\n"}, {1, " Disable", "Disable tracing\n"}, {1, " Method", "Enable method execution messages\n"}, {1, " Opcode", "Enable opcode execution messages\n"}, {1, " Tree", "Display control method calling tree\n"}, {1, " ", "Single step next AML opcode (over calls)\n"}, #ifdef ACPI_APPLICATION {0, "\nHardware Simulation Commands:", "\n"}, {1, " EnableAcpi", "Enable ACPI (hardware) mode\n"}, {1, " Event ", "Generate AcpiEvent (Fixed/GPE)\n"}, {1, " Gpe [GpeBlockDevice]", "Simulate a GPE\n"}, {1, " Gpes", "Display info on all GPE devices\n"}, {1, " Sci", "Generate an SCI\n"}, {1, " Sleep [SleepState]", "Simulate sleep/wake sequence(s) (0-5)\n"}, {0, "\nFile I/O Commands:", "\n"}, {1, " Close", "Close debug output file\n"}, {1, " Load ", "Load ACPI table from a file\n"}, {1, " Open ", "Open a file for debug output\n"}, {1, " Unload ", "Unload an ACPI table via namespace object\n"}, {0, "\nUser Space Commands:", "\n"}, {1, " Terminate", "Delete namespace and all internal objects\n"}, {1, " Thread ", "Spawn threads to execute method(s)\n"}, {0, "\nDebug Test Commands:", "\n"}, {3, " Test ", "Invoke a debug test\n"}, {1, " Objects", "Read/write/compare all namespace data objects\n"}, {1, " Predefined", "Execute all ACPI predefined names (_STA, etc.)\n"}, #endif {0, NULL, NULL} }; /******************************************************************************* * * FUNCTION: AcpiDbMatchCommandHelp * * PARAMETERS: Command - Command string to match * Help - Help table entry to attempt match * * RETURN: TRUE if command matched, FALSE otherwise * * DESCRIPTION: Attempt to match a command in the help table in order to * print help information for a single command. * ******************************************************************************/ static BOOLEAN AcpiDbMatchCommandHelp ( const char *Command, const ACPI_DB_COMMAND_HELP *Help) { char *Invocation = Help->Invocation; UINT32 LineCount; /* Valid commands in the help table begin with a couple of spaces */ if (*Invocation != ' ') { return (FALSE); } while (*Invocation == ' ') { Invocation++; } /* Match command name (full command or substring) */ while ((*Command) && (*Invocation) && (*Invocation != ' ')) { if (tolower ((int) *Command) != tolower ((int) *Invocation)) { return (FALSE); } Invocation++; Command++; } /* Print the appropriate number of help lines */ LineCount = Help->LineCount; while (LineCount) { AcpiOsPrintf ("%-38s : %s", Help->Invocation, Help->Description); Help++; LineCount--; } return (TRUE); } /******************************************************************************* * * FUNCTION: AcpiDbDisplayCommandInfo * * PARAMETERS: Command - Command string to match * DisplayAll - Display all matching commands, or just * the first one (substring match) * * RETURN: None * * DESCRIPTION: Display help information for a Debugger command. * ******************************************************************************/ static void AcpiDbDisplayCommandInfo ( const char *Command, BOOLEAN DisplayAll) { const ACPI_DB_COMMAND_HELP *Next; BOOLEAN Matched; Next = AcpiGbl_DbCommandHelp; while (Next->Invocation) { Matched = AcpiDbMatchCommandHelp (Command, Next); if (!DisplayAll && Matched) { return; } Next++; } } /******************************************************************************* * * FUNCTION: AcpiDbDisplayHelp * * PARAMETERS: Command - Optional command string to display help. * if not specified, all debugger command * help strings are displayed * * RETURN: None * * DESCRIPTION: Display help for a single debugger command, or all of them. * ******************************************************************************/ static void AcpiDbDisplayHelp ( char *Command) { const ACPI_DB_COMMAND_HELP *Next = AcpiGbl_DbCommandHelp; if (!Command) { /* No argument to help, display help for all commands */ while (Next->Invocation) { AcpiOsPrintf ("%-38s%s", Next->Invocation, Next->Description); Next++; } } else { /* Display help for all commands that match the subtring */ AcpiDbDisplayCommandInfo (Command, TRUE); } } /******************************************************************************* * * FUNCTION: AcpiDbGetNextToken * * PARAMETERS: String - Command buffer * Next - Return value, end of next token * * RETURN: Pointer to the start of the next token. * * DESCRIPTION: Command line parsing. Get the next token on the command line * ******************************************************************************/ char * AcpiDbGetNextToken ( char *String, char **Next, ACPI_OBJECT_TYPE *ReturnType) { char *Start; UINT32 Depth; ACPI_OBJECT_TYPE Type = ACPI_TYPE_INTEGER; /* At end of buffer? */ if (!String || !(*String)) { return (NULL); } /* Remove any spaces at the beginning */ if (*String == ' ') { while (*String && (*String == ' ')) { String++; } if (!(*String)) { return (NULL); } } switch (*String) { case '"': /* This is a quoted string, scan until closing quote */ String++; Start = String; Type = ACPI_TYPE_STRING; /* Find end of string */ while (*String && (*String != '"')) { String++; } break; case '(': /* This is the start of a buffer, scan until closing paren */ String++; Start = String; Type = ACPI_TYPE_BUFFER; /* Find end of buffer */ while (*String && (*String != ')')) { String++; } break; case '[': /* This is the start of a package, scan until closing bracket */ String++; Depth = 1; Start = String; Type = ACPI_TYPE_PACKAGE; /* Find end of package (closing bracket) */ while (*String) { /* Handle String package elements */ if (*String == '"') { /* Find end of string */ String++; while (*String && (*String != '"')) { String++; } if (!(*String)) { break; } } else if (*String == '[') { Depth++; /* A nested package declaration */ } else if (*String == ']') { Depth--; if (Depth == 0) /* Found final package closing bracket */ { break; } } String++; } break; default: Start = String; /* Find end of token */ while (*String && (*String != ' ')) { String++; } break; } if (!(*String)) { *Next = NULL; } else { *String = 0; *Next = String + 1; } *ReturnType = Type; return (Start); } /******************************************************************************* * * FUNCTION: AcpiDbGetLine * * PARAMETERS: InputBuffer - Command line buffer * * RETURN: Count of arguments to the command * * DESCRIPTION: Get the next command line from the user. Gets entire line * up to the next newline * ******************************************************************************/ static UINT32 AcpiDbGetLine ( char *InputBuffer) { UINT32 i; UINT32 Count; char *Next; char *This; if (AcpiUtSafeStrcpy (AcpiGbl_DbParsedBuf, sizeof (AcpiGbl_DbParsedBuf), InputBuffer)) { AcpiOsPrintf ( "Buffer overflow while parsing input line (max %u characters)\n", sizeof (AcpiGbl_DbParsedBuf)); return (0); } This = AcpiGbl_DbParsedBuf; for (i = 0; i < ACPI_DEBUGGER_MAX_ARGS; i++) { AcpiGbl_DbArgs[i] = AcpiDbGetNextToken (This, &Next, &AcpiGbl_DbArgTypes[i]); if (!AcpiGbl_DbArgs[i]) { break; } This = Next; } /* Uppercase the actual command */ AcpiUtStrupr (AcpiGbl_DbArgs[0]); Count = i; if (Count) { Count--; /* Number of args only */ } return (Count); } /******************************************************************************* * * FUNCTION: AcpiDbMatchCommand * * PARAMETERS: UserCommand - User command line * * RETURN: Index into command array, -1 if not found * * DESCRIPTION: Search command array for a command match * ******************************************************************************/ static UINT32 AcpiDbMatchCommand ( char *UserCommand) { UINT32 i; if (!UserCommand || UserCommand[0] == 0) { return (CMD_NULL); } for (i = CMD_FIRST_VALID; AcpiGbl_DbCommands[i].Name; i++) { if (strstr ( ACPI_CAST_PTR (char, AcpiGbl_DbCommands[i].Name), UserCommand) == AcpiGbl_DbCommands[i].Name) { return (i); } } /* Command not recognized */ return (CMD_NOT_FOUND); } /******************************************************************************* * * FUNCTION: AcpiDbCommandDispatch * * PARAMETERS: InputBuffer - Command line buffer * WalkState - Current walk * Op - Current (executing) parse op * * RETURN: Status * * DESCRIPTION: Command dispatcher. * ******************************************************************************/ ACPI_STATUS AcpiDbCommandDispatch ( char *InputBuffer, ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op) { UINT32 Temp; UINT32 CommandIndex; UINT32 ParamCount; char *CommandLine; ACPI_STATUS Status = AE_CTRL_TRUE; /* If AcpiTerminate has been called, terminate this thread */ if (AcpiGbl_DbTerminateLoop) { return (AE_CTRL_TERMINATE); } /* Find command and add to the history buffer */ ParamCount = AcpiDbGetLine (InputBuffer); CommandIndex = AcpiDbMatchCommand (AcpiGbl_DbArgs[0]); Temp = 0; /* * We don't want to add the !! command to the history buffer. It * would cause an infinite loop because it would always be the * previous command. */ if (CommandIndex != CMD_HISTORY_LAST) { AcpiDbAddToHistory (InputBuffer); } /* Verify that we have the minimum number of params */ if (ParamCount < AcpiGbl_DbCommands[CommandIndex].MinArgs) { AcpiOsPrintf ("%u parameters entered, [%s] requires %u parameters\n", ParamCount, AcpiGbl_DbCommands[CommandIndex].Name, AcpiGbl_DbCommands[CommandIndex].MinArgs); AcpiDbDisplayCommandInfo ( AcpiGbl_DbCommands[CommandIndex].Name, FALSE); return (AE_CTRL_TRUE); } /* Decode and dispatch the command */ switch (CommandIndex) { case CMD_NULL: if (Op) { return (AE_OK); } break; case CMD_ALLOCATIONS: #ifdef ACPI_DBG_TRACK_ALLOCATIONS AcpiUtDumpAllocations ((UINT32) -1, NULL); #endif break; case CMD_ARGS: case CMD_ARGUMENTS: AcpiDbDisplayArguments (); break; case CMD_BREAKPOINT: AcpiDbSetMethodBreakpoint (AcpiGbl_DbArgs[1], WalkState, Op); break; case CMD_BUSINFO: AcpiDbGetBusInfo (); break; case CMD_CALL: AcpiDbSetMethodCallBreakpoint (Op); Status = AE_OK; break; case CMD_DEBUG: AcpiDbExecute (AcpiGbl_DbArgs[1], &AcpiGbl_DbArgs[2], &AcpiGbl_DbArgTypes[2], EX_SINGLE_STEP); break; case CMD_DISASSEMBLE: case CMD_DISASM: (void) AcpiDbDisassembleMethod (AcpiGbl_DbArgs[1]); break; case CMD_DUMP: AcpiDbDecodeAndDisplayObject (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2]); break; case CMD_EVALUATE: case CMD_EXECUTE: AcpiDbExecute (AcpiGbl_DbArgs[1], &AcpiGbl_DbArgs[2], &AcpiGbl_DbArgTypes[2], EX_NO_SINGLE_STEP); break; case CMD_FIND: Status = AcpiDbFindNameInNamespace (AcpiGbl_DbArgs[1]); break; case CMD_GO: AcpiGbl_CmSingleStep = FALSE; return (AE_OK); case CMD_HANDLERS: AcpiDbDisplayHandlers (); break; case CMD_HELP: case CMD_HELP2: AcpiDbDisplayHelp (AcpiGbl_DbArgs[1]); break; case CMD_HISTORY: AcpiDbDisplayHistory (); break; case CMD_HISTORY_EXE: /* ! command */ CommandLine = AcpiDbGetFromHistory (AcpiGbl_DbArgs[1]); if (!CommandLine) { return (AE_CTRL_TRUE); } Status = AcpiDbCommandDispatch (CommandLine, WalkState, Op); return (Status); case CMD_HISTORY_LAST: /* !! command */ CommandLine = AcpiDbGetFromHistory (NULL); if (!CommandLine) { return (AE_CTRL_TRUE); } Status = AcpiDbCommandDispatch (CommandLine, WalkState, Op); return (Status); case CMD_INFORMATION: AcpiDbDisplayMethodInfo (Op); break; case CMD_INTEGRITY: AcpiDbCheckIntegrity (); break; case CMD_INTO: if (Op) { AcpiGbl_CmSingleStep = TRUE; return (AE_OK); } break; case CMD_LEVEL: if (ParamCount == 0) { AcpiOsPrintf ( "Current debug level for file output is: %8.8lX\n", AcpiGbl_DbDebugLevel); AcpiOsPrintf ( "Current debug level for console output is: %8.8lX\n", AcpiGbl_DbConsoleDebugLevel); } else if (ParamCount == 2) { Temp = AcpiGbl_DbConsoleDebugLevel; AcpiGbl_DbConsoleDebugLevel = strtoul (AcpiGbl_DbArgs[1], NULL, 16); AcpiOsPrintf ( "Debug Level for console output was %8.8lX, now %8.8lX\n", Temp, AcpiGbl_DbConsoleDebugLevel); } else { Temp = AcpiGbl_DbDebugLevel; AcpiGbl_DbDebugLevel = strtoul (AcpiGbl_DbArgs[1], NULL, 16); AcpiOsPrintf ( "Debug Level for file output was %8.8lX, now %8.8lX\n", Temp, AcpiGbl_DbDebugLevel); } break; case CMD_LIST: AcpiDbDisassembleAml (AcpiGbl_DbArgs[1], Op); break; case CMD_LOCKS: AcpiDbDisplayLocks (); break; case CMD_LOCALS: AcpiDbDisplayLocals (); break; case CMD_METHODS: Status = AcpiDbDisplayObjects ("METHOD", AcpiGbl_DbArgs[1]); break; case CMD_NAMESPACE: AcpiDbDumpNamespace (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2]); break; case CMD_NOTIFY: Temp = strtoul (AcpiGbl_DbArgs[2], NULL, 0); AcpiDbSendNotify (AcpiGbl_DbArgs[1], Temp); break; case CMD_OBJECTS: AcpiUtStrupr (AcpiGbl_DbArgs[1]); Status = AcpiDbDisplayObjects (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2]); break; case CMD_OSI: AcpiDbDisplayInterfaces (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2]); break; case CMD_OWNER: AcpiDbDumpNamespaceByOwner (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2]); break; case CMD_PATHS: AcpiDbDumpNamespacePaths (); break; case CMD_PREFIX: AcpiDbSetScope (AcpiGbl_DbArgs[1]); break; case CMD_REFERENCES: AcpiDbFindReferences (AcpiGbl_DbArgs[1]); break; case CMD_RESOURCES: AcpiDbDisplayResources (AcpiGbl_DbArgs[1]); break; case CMD_RESULTS: AcpiDbDisplayResults (); break; case CMD_SET: AcpiDbSetMethodData (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2], AcpiGbl_DbArgs[3]); break; case CMD_STATS: Status = AcpiDbDisplayStatistics (AcpiGbl_DbArgs[1]); break; case CMD_STOP: return (AE_NOT_IMPLEMENTED); case CMD_TABLES: AcpiDbDisplayTableInfo (AcpiGbl_DbArgs[1]); break; case CMD_TEMPLATE: AcpiDbDisplayTemplate (AcpiGbl_DbArgs[1]); break; case CMD_TRACE: AcpiDbTrace (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2], AcpiGbl_DbArgs[3]); break; case CMD_TREE: AcpiDbDisplayCallingTree (); break; case CMD_TYPE: AcpiDbDisplayObjectType (AcpiGbl_DbArgs[1]); break; #ifdef ACPI_APPLICATION /* Hardware simulation commands. */ case CMD_ENABLEACPI: #if (!ACPI_REDUCED_HARDWARE) Status = AcpiEnable(); if (ACPI_FAILURE(Status)) { AcpiOsPrintf("AcpiEnable failed (Status=%X)\n", Status); return (Status); } #endif /* !ACPI_REDUCED_HARDWARE */ break; case CMD_EVENT: AcpiOsPrintf ("Event command not implemented\n"); break; case CMD_GPE: AcpiDbGenerateGpe (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2]); break; case CMD_GPES: AcpiDbDisplayGpes (); break; case CMD_SCI: AcpiDbGenerateSci (); break; case CMD_SLEEP: Status = AcpiDbSleep (AcpiGbl_DbArgs[1]); break; /* File I/O commands. */ case CMD_CLOSE: AcpiDbCloseDebugFile (); break; case CMD_LOAD: { ACPI_NEW_TABLE_DESC *ListHead = NULL; Status = AcGetAllTablesFromFile (AcpiGbl_DbArgs[1], ACPI_GET_ALL_TABLES, &ListHead); if (ACPI_SUCCESS (Status)) { AcpiDbLoadTables (ListHead); } } break; case CMD_OPEN: AcpiDbOpenDebugFile (AcpiGbl_DbArgs[1]); break; /* User space commands. */ case CMD_TERMINATE: AcpiDbSetOutputDestination (ACPI_DB_REDIRECTABLE_OUTPUT); AcpiUtSubsystemShutdown (); /* * TBD: [Restructure] Need some way to re-initialize without * re-creating the semaphores! */ AcpiGbl_DbTerminateLoop = TRUE; /* AcpiInitialize (NULL); */ break; case CMD_THREADS: AcpiDbCreateExecutionThreads (AcpiGbl_DbArgs[1], AcpiGbl_DbArgs[2], AcpiGbl_DbArgs[3]); break; /* Debug test commands. */ case CMD_PREDEFINED: AcpiDbCheckPredefinedNames (); break; case CMD_TEST: AcpiDbExecuteTest (AcpiGbl_DbArgs[1]); break; case CMD_UNLOAD: AcpiDbUnloadAcpiTable (AcpiGbl_DbArgs[1]); break; #endif case CMD_EXIT: case CMD_QUIT: if (Op) { AcpiOsPrintf ("Method execution terminated\n"); return (AE_CTRL_TERMINATE); } if (!AcpiGbl_DbOutputToFile) { AcpiDbgLevel = ACPI_DEBUG_DEFAULT; } #ifdef ACPI_APPLICATION AcpiDbCloseDebugFile (); #endif AcpiGbl_DbTerminateLoop = TRUE; return (AE_CTRL_TERMINATE); case CMD_NOT_FOUND: default: AcpiOsPrintf ("%s: unknown command\n", AcpiGbl_DbArgs[0]); return (AE_CTRL_TRUE); } if (ACPI_SUCCESS (Status)) { Status = AE_CTRL_TRUE; } return (Status); } /******************************************************************************* * * FUNCTION: AcpiDbExecuteThread * * PARAMETERS: Context - Not used * * RETURN: None * * DESCRIPTION: Debugger execute thread. Waits for a command line, then * simply dispatches it. * ******************************************************************************/ void ACPI_SYSTEM_XFACE AcpiDbExecuteThread ( void *Context) { ACPI_STATUS Status = AE_OK; ACPI_STATUS MStatus; while (Status != AE_CTRL_TERMINATE && !AcpiGbl_DbTerminateLoop) { AcpiGbl_MethodExecuting = FALSE; AcpiGbl_StepToNextCall = FALSE; MStatus = AcpiOsAcquireMutex (AcpiGbl_DbCommandReady, ACPI_WAIT_FOREVER); if (ACPI_FAILURE (MStatus)) { return; } Status = AcpiDbCommandDispatch (AcpiGbl_DbLineBuf, NULL, NULL); AcpiOsReleaseMutex (AcpiGbl_DbCommandComplete); } AcpiGbl_DbThreadsTerminated = TRUE; } /******************************************************************************* * * FUNCTION: AcpiDbSingleThread * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Debugger execute thread. Waits for a command line, then * simply dispatches it. * ******************************************************************************/ static void AcpiDbSingleThread ( void) { AcpiGbl_MethodExecuting = FALSE; AcpiGbl_StepToNextCall = FALSE; (void) AcpiDbCommandDispatch (AcpiGbl_DbLineBuf, NULL, NULL); } /******************************************************************************* * * FUNCTION: AcpiDbUserCommands * * PARAMETERS: Prompt - User prompt (depends on mode) * Op - Current executing parse op * * RETURN: None * * DESCRIPTION: Command line execution for the AML debugger. Commands are * matched and dispatched here. * ******************************************************************************/ ACPI_STATUS AcpiDbUserCommands ( char Prompt, ACPI_PARSE_OBJECT *Op) { ACPI_STATUS Status = AE_OK; AcpiOsPrintf ("\n"); /* TBD: [Restructure] Need a separate command line buffer for step mode */ while (!AcpiGbl_DbTerminateLoop) { /* Force output to console until a command is entered */ AcpiDbSetOutputDestination (ACPI_DB_CONSOLE_OUTPUT); /* Different prompt if method is executing */ if (!AcpiGbl_MethodExecuting) { AcpiOsPrintf ("%1c ", ACPI_DEBUGGER_COMMAND_PROMPT); } else { AcpiOsPrintf ("%1c ", ACPI_DEBUGGER_EXECUTE_PROMPT); } /* Get the user input line */ Status = AcpiOsGetLine (AcpiGbl_DbLineBuf, ACPI_DB_LINE_BUFFER_SIZE, NULL); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "While parsing command line")); return (Status); } /* Check for single or multithreaded debug */ if (AcpiGbl_DebuggerConfiguration & DEBUGGER_MULTI_THREADED) { /* * Signal the debug thread that we have a command to execute, * and wait for the command to complete. */ AcpiOsReleaseMutex (AcpiGbl_DbCommandReady); Status = AcpiOsAcquireMutex (AcpiGbl_DbCommandComplete, ACPI_WAIT_FOREVER); if (ACPI_FAILURE (Status)) { return (Status); } } else { /* Just call to the command line interpreter */ AcpiDbSingleThread (); } } return (Status); } Index: vendor-sys/acpica/dist/source/components/debugger/dbmethod.c =================================================================== --- vendor-sys/acpica/dist/source/components/debugger/dbmethod.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/debugger/dbmethod.c (revision 305162) @@ -1,416 +1,561 @@ /******************************************************************************* * * Module Name: dbmethod - Debug commands for control methods * ******************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acdispat.h" #include "acnamesp.h" #include "acdebug.h" #include "acparser.h" #include "acpredef.h" #define _COMPONENT ACPI_CA_DEBUGGER ACPI_MODULE_NAME ("dbmethod") +/* Local prototypes */ +static ACPI_STATUS +AcpiDbWalkForExecute ( + ACPI_HANDLE ObjHandle, + UINT32 NestingLevel, + void *Context, + void **ReturnValue); + + /******************************************************************************* * * FUNCTION: AcpiDbSetMethodBreakpoint * * PARAMETERS: Location - AML offset of breakpoint * WalkState - Current walk info * Op - Current Op (from parse walk) * * RETURN: None * * DESCRIPTION: Set a breakpoint in a control method at the specified * AML offset * ******************************************************************************/ void AcpiDbSetMethodBreakpoint ( char *Location, ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op) { UINT32 Address; UINT32 AmlOffset; if (!Op) { AcpiOsPrintf ("There is no method currently executing\n"); return; } /* Get and verify the breakpoint address */ Address = strtoul (Location, NULL, 16); AmlOffset = (UINT32) ACPI_PTR_DIFF (Op->Common.Aml, WalkState->ParserState.AmlStart); if (Address <= AmlOffset) { AcpiOsPrintf ("Breakpoint %X is beyond current address %X\n", Address, AmlOffset); } /* Save breakpoint in current walk */ WalkState->UserBreakpoint = Address; AcpiOsPrintf ("Breakpoint set at AML offset %X\n", Address); } /******************************************************************************* * * FUNCTION: AcpiDbSetMethodCallBreakpoint * * PARAMETERS: Op - Current Op (from parse walk) * * RETURN: None * * DESCRIPTION: Set a breakpoint in a control method at the specified * AML offset * ******************************************************************************/ void AcpiDbSetMethodCallBreakpoint ( ACPI_PARSE_OBJECT *Op) { if (!Op) { AcpiOsPrintf ("There is no method currently executing\n"); return; } AcpiGbl_StepToNextCall = TRUE; } /******************************************************************************* * * FUNCTION: AcpiDbSetMethodData * * PARAMETERS: TypeArg - L for local, A for argument * IndexArg - which one * ValueArg - Value to set. * * RETURN: None * * DESCRIPTION: Set a local or argument for the running control method. * NOTE: only object supported is Number. * ******************************************************************************/ void AcpiDbSetMethodData ( char *TypeArg, char *IndexArg, char *ValueArg) { char Type; UINT32 Index; UINT32 Value; ACPI_WALK_STATE *WalkState; ACPI_OPERAND_OBJECT *ObjDesc; ACPI_STATUS Status; ACPI_NAMESPACE_NODE *Node; /* Validate TypeArg */ AcpiUtStrupr (TypeArg); Type = TypeArg[0]; if ((Type != 'L') && (Type != 'A') && (Type != 'N')) { AcpiOsPrintf ("Invalid SET operand: %s\n", TypeArg); return; } Value = strtoul (ValueArg, NULL, 16); if (Type == 'N') { Node = AcpiDbConvertToNode (IndexArg); if (!Node) { return; } if (Node->Type != ACPI_TYPE_INTEGER) { AcpiOsPrintf ("Can only set Integer nodes\n"); return; } ObjDesc = Node->Object; ObjDesc->Integer.Value = Value; return; } /* Get the index and value */ Index = strtoul (IndexArg, NULL, 16); WalkState = AcpiDsGetCurrentWalkState (AcpiGbl_CurrentWalkList); if (!WalkState) { AcpiOsPrintf ("There is no method currently executing\n"); return; } /* Create and initialize the new object */ ObjDesc = AcpiUtCreateIntegerObject ((UINT64) Value); if (!ObjDesc) { AcpiOsPrintf ("Could not create an internal object\n"); return; } /* Store the new object into the target */ switch (Type) { case 'A': /* Set a method argument */ if (Index > ACPI_METHOD_MAX_ARG) { AcpiOsPrintf ("Arg%u - Invalid argument name\n", Index); goto Cleanup; } Status = AcpiDsStoreObjectToLocal (ACPI_REFCLASS_ARG, Index, ObjDesc, WalkState); if (ACPI_FAILURE (Status)) { goto Cleanup; } ObjDesc = WalkState->Arguments[Index].Object; AcpiOsPrintf ("Arg%u: ", Index); AcpiDbDisplayInternalObject (ObjDesc, WalkState); break; case 'L': /* Set a method local */ if (Index > ACPI_METHOD_MAX_LOCAL) { AcpiOsPrintf ("Local%u - Invalid local variable name\n", Index); goto Cleanup; } Status = AcpiDsStoreObjectToLocal (ACPI_REFCLASS_LOCAL, Index, ObjDesc, WalkState); if (ACPI_FAILURE (Status)) { goto Cleanup; } ObjDesc = WalkState->LocalVariables[Index].Object; AcpiOsPrintf ("Local%u: ", Index); AcpiDbDisplayInternalObject (ObjDesc, WalkState); break; default: break; } Cleanup: AcpiUtRemoveReference (ObjDesc); } /******************************************************************************* * * FUNCTION: AcpiDbDisassembleAml * * PARAMETERS: Statements - Number of statements to disassemble * Op - Current Op (from parse walk) * * RETURN: None * * DESCRIPTION: Display disassembled AML (ASL) starting from Op for the number * of statements specified. * ******************************************************************************/ void AcpiDbDisassembleAml ( char *Statements, ACPI_PARSE_OBJECT *Op) { UINT32 NumStatements = 8; if (!Op) { AcpiOsPrintf ("There is no method currently executing\n"); return; } if (Statements) { NumStatements = strtoul (Statements, NULL, 0); } #ifdef ACPI_DISASSEMBLER AcpiDmDisassemble (NULL, Op, NumStatements); #endif } /******************************************************************************* * * FUNCTION: AcpiDbDisassembleMethod * * PARAMETERS: Name - Name of control method * * RETURN: None * * DESCRIPTION: Display disassembled AML (ASL) starting from Op for the number * of statements specified. * ******************************************************************************/ ACPI_STATUS AcpiDbDisassembleMethod ( char *Name) { ACPI_STATUS Status; ACPI_PARSE_OBJECT *Op; ACPI_WALK_STATE *WalkState; ACPI_OPERAND_OBJECT *ObjDesc; ACPI_NAMESPACE_NODE *Method; Method = AcpiDbConvertToNode (Name); if (!Method) { return (AE_BAD_PARAMETER); } if (Method->Type != ACPI_TYPE_METHOD) { ACPI_ERROR ((AE_INFO, "%s (%s): Object must be a control method", Name, AcpiUtGetTypeName (Method->Type))); return (AE_BAD_PARAMETER); } ObjDesc = Method->Object; Op = AcpiPsCreateScopeOp (ObjDesc->Method.AmlStart); if (!Op) { return (AE_NO_MEMORY); } /* Create and initialize a new walk state */ WalkState = AcpiDsCreateWalkState (0, Op, NULL, NULL); if (!WalkState) { return (AE_NO_MEMORY); } Status = AcpiDsInitAmlWalk (WalkState, Op, NULL, ObjDesc->Method.AmlStart, ObjDesc->Method.AmlLength, NULL, ACPI_IMODE_LOAD_PASS1); if (ACPI_FAILURE (Status)) { return (Status); } Status = AcpiUtAllocateOwnerId (&ObjDesc->Method.OwnerId); WalkState->OwnerId = ObjDesc->Method.OwnerId; /* Push start scope on scope stack and make it current */ Status = AcpiDsScopeStackPush (Method, Method->Type, WalkState); if (ACPI_FAILURE (Status)) { return (Status); } /* Parse the entire method AML including deferred operators */ WalkState->ParseFlags &= ~ACPI_PARSE_DELETE_TREE; WalkState->ParseFlags |= ACPI_PARSE_DISASSEMBLE; Status = AcpiPsParseAml (WalkState); #ifdef ACPI_DISASSEMBLER (void) AcpiDmParseDeferredOps (Op); /* Now we can disassemble the method */ AcpiGbl_DmOpt_Verbose = FALSE; AcpiDmDisassemble (NULL, Op, 0); AcpiGbl_DmOpt_Verbose = TRUE; #endif AcpiPsDeleteParseTree (Op); /* Method cleanup */ AcpiNsDeleteNamespaceSubtree (Method); AcpiNsDeleteNamespaceByOwner (ObjDesc->Method.OwnerId); AcpiUtReleaseOwnerId (&ObjDesc->Method.OwnerId); return (AE_OK); +} + + +/******************************************************************************* + * + * FUNCTION: AcpiDbWalkForExecute + * + * PARAMETERS: Callback from WalkNamespace + * + * RETURN: Status + * + * DESCRIPTION: Batch execution module. Currently only executes predefined + * ACPI names. + * + ******************************************************************************/ + +static ACPI_STATUS +AcpiDbWalkForExecute ( + ACPI_HANDLE ObjHandle, + UINT32 NestingLevel, + void *Context, + void **ReturnValue) +{ + ACPI_NAMESPACE_NODE *Node = (ACPI_NAMESPACE_NODE *) ObjHandle; + ACPI_DB_EXECUTE_WALK *Info = (ACPI_DB_EXECUTE_WALK *) Context; + ACPI_BUFFER ReturnObj; + ACPI_STATUS Status; + char *Pathname; + UINT32 i; + ACPI_DEVICE_INFO *ObjInfo; + ACPI_OBJECT_LIST ParamObjects; + ACPI_OBJECT Params[ACPI_METHOD_NUM_ARGS]; + const ACPI_PREDEFINED_INFO *Predefined; + + + Predefined = AcpiUtMatchPredefinedMethod (Node->Name.Ascii); + if (!Predefined) + { + return (AE_OK); + } + + if (Node->Type == ACPI_TYPE_LOCAL_SCOPE) + { + return (AE_OK); + } + + Pathname = AcpiNsGetExternalPathname (Node); + if (!Pathname) + { + return (AE_OK); + } + + /* Get the object info for number of method parameters */ + + Status = AcpiGetObjectInfo (ObjHandle, &ObjInfo); + if (ACPI_FAILURE (Status)) + { + return (Status); + } + + ParamObjects.Pointer = NULL; + ParamObjects.Count = 0; + + if (ObjInfo->Type == ACPI_TYPE_METHOD) + { + /* Setup default parameters */ + + for (i = 0; i < ObjInfo->ParamCount; i++) + { + Params[i].Type = ACPI_TYPE_INTEGER; + Params[i].Integer.Value = 1; + } + + ParamObjects.Pointer = Params; + ParamObjects.Count = ObjInfo->ParamCount; + } + + ACPI_FREE (ObjInfo); + ReturnObj.Pointer = NULL; + ReturnObj.Length = ACPI_ALLOCATE_BUFFER; + + /* Do the actual method execution */ + + AcpiGbl_MethodExecuting = TRUE; + + Status = AcpiEvaluateObject (Node, NULL, &ParamObjects, &ReturnObj); + + AcpiOsPrintf ("%-32s returned %s\n", Pathname, AcpiFormatException (Status)); + AcpiGbl_MethodExecuting = FALSE; + ACPI_FREE (Pathname); + + /* Ignore status from method execution */ + + Status = AE_OK; + + /* Update count, check if we have executed enough methods */ + + Info->Count++; + if (Info->Count >= Info->MaxCount) + { + Status = AE_CTRL_TERMINATE; + } + + return (Status); +} + + +/******************************************************************************* + * + * FUNCTION: AcpiDbEvaluatePredefinedNames + * + * PARAMETERS: None + * + * RETURN: None + * + * DESCRIPTION: Namespace batch execution. Execute predefined names in the + * namespace, up to the max count, if specified. + * + ******************************************************************************/ + +void +AcpiDbEvaluatePredefinedNames ( + void) +{ + ACPI_DB_EXECUTE_WALK Info; + + + Info.Count = 0; + Info.MaxCount = ACPI_UINT32_MAX; + + /* Search all nodes in namespace */ + + (void) AcpiWalkNamespace (ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, ACPI_UINT32_MAX, + AcpiDbWalkForExecute, NULL, (void *) &Info, NULL); + + AcpiOsPrintf ("Evaluated %u predefined names in the namespace\n", Info.Count); } Index: vendor-sys/acpica/dist/source/components/disassembler/dmresrcl2.c =================================================================== --- vendor-sys/acpica/dist/source/components/disassembler/dmresrcl2.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/disassembler/dmresrcl2.c (revision 305162) @@ -1,742 +1,742 @@ /******************************************************************************* * * Module Name: dmresrcl2.c - "Large" Resource Descriptor disassembly (#2) * ******************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acdisasm.h" #define _COMPONENT ACPI_CA_DEBUGGER ACPI_MODULE_NAME ("dbresrcl2") /* Local prototypes */ static void AcpiDmI2cSerialBusDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); static void AcpiDmSpiSerialBusDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); static void AcpiDmUartSerialBusDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level); static void AcpiDmGpioCommon ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Level); static void AcpiDmDumpRawDataBuffer ( UINT8 *Buffer, UINT32 Length, UINT32 Level); /* Dispatch table for the serial bus descriptors */ static ACPI_RESOURCE_HANDLER SerialBusResourceDispatch [] = { NULL, AcpiDmI2cSerialBusDescriptor, AcpiDmSpiSerialBusDescriptor, AcpiDmUartSerialBusDescriptor }; /******************************************************************************* * * FUNCTION: AcpiDmDumpRawDataBuffer * * PARAMETERS: Buffer - Pointer to the data bytes * Length - Length of the descriptor in bytes * Level - Current source code indentation level * * RETURN: None * * DESCRIPTION: Dump a data buffer as a RawDataBuffer() object. Used for * vendor data bytes. * ******************************************************************************/ static void AcpiDmDumpRawDataBuffer ( UINT8 *Buffer, UINT32 Length, UINT32 Level) { UINT32 Index; UINT32 i; UINT32 j; if (!Length) { return; } AcpiOsPrintf ("RawDataBuffer (0x%.2X) // Vendor Data", Length); AcpiOsPrintf ("\n"); AcpiDmIndent (Level + 1); AcpiOsPrintf ("{\n"); AcpiDmIndent (Level + 2); for (i = 0; i < Length;) { for (j = 0; j < 8; j++) { Index = i + j; if (Index >= Length) { goto Finish; } AcpiOsPrintf ("0x%2.2X", Buffer[Index]); if ((Index + 1) >= Length) { goto Finish; } AcpiOsPrintf (", "); } AcpiOsPrintf ("\n"); AcpiDmIndent (Level + 2); i += 8; } Finish: AcpiOsPrintf ("\n"); AcpiDmIndent (Level + 1); AcpiOsPrintf ("}"); } /******************************************************************************* * * FUNCTION: AcpiDmGpioCommon * * PARAMETERS: Info - Extra resource info * Resource - Pointer to the resource descriptor * Level - Current source code indentation level * * RETURN: None * * DESCRIPTION: Decode common parts of a GPIO Interrupt descriptor * ******************************************************************************/ static void AcpiDmGpioCommon ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Level) { UINT16 *PinList; UINT8 *VendorData; char *DeviceName = NULL; UINT32 PinCount; UINT32 i; /* ResourceSource, ResourceSourceIndex, ResourceType */ AcpiDmIndent (Level + 1); if (Resource->Gpio.ResSourceOffset) { DeviceName = ACPI_ADD_PTR (char, Resource, Resource->Gpio.ResSourceOffset), AcpiUtPrintString (DeviceName, ACPI_UINT16_MAX); } AcpiOsPrintf (", "); AcpiOsPrintf ("0x%2.2X, ", Resource->Gpio.ResSourceIndex); AcpiOsPrintf ("%s, ", AcpiGbl_ConsumeDecode [ACPI_GET_1BIT_FLAG (Resource->Gpio.Flags)]); /* Insert a descriptor name */ AcpiDmDescriptorName (); AcpiOsPrintf (","); /* Dump the vendor data */ if (Resource->Gpio.VendorOffset) { AcpiOsPrintf ("\n"); AcpiDmIndent (Level + 1); VendorData = ACPI_ADD_PTR (UINT8, Resource, Resource->Gpio.VendorOffset); AcpiDmDumpRawDataBuffer (VendorData, Resource->Gpio.VendorLength, Level); } AcpiOsPrintf (")\n"); /* Dump the interrupt list */ AcpiDmIndent (Level + 1); AcpiOsPrintf ("{ // Pin list\n"); PinCount = ((UINT32) (Resource->Gpio.ResSourceOffset - Resource->Gpio.PinTableOffset)) / sizeof (UINT16); PinList = (UINT16 *) ACPI_ADD_PTR (char, Resource, Resource->Gpio.PinTableOffset); for (i = 0; i < PinCount; i++) { AcpiDmIndent (Level + 2); AcpiOsPrintf ("0x%4.4X%s\n", PinList[i], ((i + 1) < PinCount) ? "," : ""); } AcpiDmIndent (Level + 1); AcpiOsPrintf ("}\n"); MpSaveGpioInfo (Info->MappingOp, Resource, PinCount, PinList, DeviceName); } /******************************************************************************* * * FUNCTION: AcpiDmGpioIntDescriptor * * PARAMETERS: Info - Extra resource info * Resource - Pointer to the resource descriptor * Length - Length of the descriptor in bytes * Level - Current source code indentation level * * RETURN: None * * DESCRIPTION: Decode a GPIO Interrupt descriptor * ******************************************************************************/ static void AcpiDmGpioIntDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level) { /* Dump the GpioInt-specific portion of the descriptor */ /* EdgeLevel, ActiveLevel, Shared */ AcpiDmIndent (Level); AcpiOsPrintf ("GpioInt (%s, %s, %s, ", AcpiGbl_HeDecode [ACPI_GET_1BIT_FLAG (Resource->Gpio.IntFlags)], AcpiGbl_LlDecode [ACPI_EXTRACT_2BIT_FLAG (Resource->Gpio.IntFlags, 1)], AcpiGbl_ShrDecode [ACPI_EXTRACT_2BIT_FLAG (Resource->Gpio.IntFlags, 3)]); /* PinConfig, DebounceTimeout */ if (Resource->Gpio.PinConfig <= 3) { AcpiOsPrintf ("%s, ", AcpiGbl_PpcDecode[Resource->Gpio.PinConfig]); } else { AcpiOsPrintf ("0x%2.2X, ", Resource->Gpio.PinConfig); } AcpiOsPrintf ("0x%4.4X,\n", Resource->Gpio.DebounceTimeout); /* Dump the GpioInt/GpioIo common portion of the descriptor */ AcpiDmGpioCommon (Info, Resource, Level); } /******************************************************************************* * * FUNCTION: AcpiDmGpioIoDescriptor * * PARAMETERS: Info - Extra resource info * Resource - Pointer to the resource descriptor * Length - Length of the descriptor in bytes * Level - Current source code indentation level * * RETURN: None * * DESCRIPTION: Decode a GPIO I/O descriptor * ******************************************************************************/ static void AcpiDmGpioIoDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level) { /* Dump the GpioIo-specific portion of the descriptor */ /* Shared, PinConfig */ AcpiDmIndent (Level); AcpiOsPrintf ("GpioIo (%s, ", AcpiGbl_ShrDecode [ACPI_EXTRACT_2BIT_FLAG (Resource->Gpio.IntFlags, 3)]); if (Resource->Gpio.PinConfig <= 3) { AcpiOsPrintf ("%s, ", AcpiGbl_PpcDecode[Resource->Gpio.PinConfig]); } else { AcpiOsPrintf ("0x%2.2X, ", Resource->Gpio.PinConfig); } /* DebounceTimeout, DriveStrength, IoRestriction */ AcpiOsPrintf ("0x%4.4X, ", Resource->Gpio.DebounceTimeout); AcpiOsPrintf ("0x%4.4X, ", Resource->Gpio.DriveStrength); AcpiOsPrintf ("%s,\n", AcpiGbl_IorDecode [ACPI_GET_2BIT_FLAG (Resource->Gpio.IntFlags)]); /* Dump the GpioInt/GpioIo common portion of the descriptor */ AcpiDmGpioCommon (Info, Resource, Level); } /******************************************************************************* * * FUNCTION: AcpiDmGpioDescriptor * * PARAMETERS: Info - Extra resource info * Resource - Pointer to the resource descriptor * Length - Length of the descriptor in bytes * Level - Current source code indentation level * * RETURN: None * * DESCRIPTION: Decode a GpioInt/GpioIo GPIO Interrupt/IO descriptor * ******************************************************************************/ void AcpiDmGpioDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level) { UINT8 ConnectionType; ConnectionType = Resource->Gpio.ConnectionType; switch (ConnectionType) { case AML_RESOURCE_GPIO_TYPE_INT: AcpiDmGpioIntDescriptor (Info, Resource, Length, Level); break; case AML_RESOURCE_GPIO_TYPE_IO: AcpiDmGpioIoDescriptor (Info, Resource, Length, Level); break; default: AcpiOsPrintf ("Unknown GPIO type\n"); break; } } /******************************************************************************* * * FUNCTION: AcpiDmDumpSerialBusVendorData * * PARAMETERS: Resource - Pointer to the resource descriptor * * RETURN: None * * DESCRIPTION: Dump optional serial bus vendor data * ******************************************************************************/ static void AcpiDmDumpSerialBusVendorData ( AML_RESOURCE *Resource, UINT32 Level) { UINT8 *VendorData; UINT32 VendorLength; /* Get the (optional) vendor data and length */ switch (Resource->CommonSerialBus.Type) { case AML_RESOURCE_I2C_SERIALBUSTYPE: VendorLength = Resource->CommonSerialBus.TypeDataLength - AML_RESOURCE_I2C_MIN_DATA_LEN; VendorData = ACPI_ADD_PTR (UINT8, Resource, sizeof (AML_RESOURCE_I2C_SERIALBUS)); break; case AML_RESOURCE_SPI_SERIALBUSTYPE: VendorLength = Resource->CommonSerialBus.TypeDataLength - AML_RESOURCE_SPI_MIN_DATA_LEN; VendorData = ACPI_ADD_PTR (UINT8, Resource, sizeof (AML_RESOURCE_SPI_SERIALBUS)); break; case AML_RESOURCE_UART_SERIALBUSTYPE: VendorLength = Resource->CommonSerialBus.TypeDataLength - AML_RESOURCE_UART_MIN_DATA_LEN; VendorData = ACPI_ADD_PTR (UINT8, Resource, sizeof (AML_RESOURCE_UART_SERIALBUS)); break; default: return; } /* Dump the vendor bytes as a RawDataBuffer object */ AcpiDmDumpRawDataBuffer (VendorData, VendorLength, Level); } /******************************************************************************* * * FUNCTION: AcpiDmI2cSerialBusDescriptor * * PARAMETERS: Info - Extra resource info * Resource - Pointer to the resource descriptor * Length - Length of the descriptor in bytes * Level - Current source code indentation level * * RETURN: None * * DESCRIPTION: Decode a I2C serial bus descriptor * ******************************************************************************/ static void AcpiDmI2cSerialBusDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level) { UINT32 ResourceSourceOffset; char *DeviceName; /* SlaveAddress, SlaveMode, ConnectionSpeed, AddressingMode */ AcpiDmIndent (Level); AcpiOsPrintf ("I2cSerialBusV2 (0x%4.4X, %s, 0x%8.8X,\n", Resource->I2cSerialBus.SlaveAddress, AcpiGbl_SmDecode [ACPI_GET_1BIT_FLAG (Resource->I2cSerialBus.Flags)], Resource->I2cSerialBus.ConnectionSpeed); AcpiDmIndent (Level + 1); AcpiOsPrintf ("%s, ", AcpiGbl_AmDecode [ACPI_GET_1BIT_FLAG (Resource->I2cSerialBus.TypeSpecificFlags)]); /* ResourceSource is a required field */ ResourceSourceOffset = sizeof (AML_RESOURCE_COMMON_SERIALBUS) + Resource->CommonSerialBus.TypeDataLength; - DeviceName = ACPI_ADD_PTR (char, Resource, ResourceSourceOffset), + DeviceName = ACPI_ADD_PTR (char, Resource, ResourceSourceOffset); AcpiUtPrintString (DeviceName, ACPI_UINT16_MAX); /* ResourceSourceIndex, ResourceUsage */ AcpiOsPrintf (",\n"); AcpiDmIndent (Level + 1); AcpiOsPrintf ("0x%2.2X, ", Resource->I2cSerialBus.ResSourceIndex); AcpiOsPrintf ("%s, ", AcpiGbl_ConsumeDecode [ACPI_EXTRACT_1BIT_FLAG (Resource->I2cSerialBus.Flags, 1)]); /* Insert a descriptor name */ AcpiDmDescriptorName (); /* Share */ AcpiOsPrintf (", %s,\n", AcpiGbl_ShrDecode [ACPI_EXTRACT_1BIT_FLAG (Resource->I2cSerialBus.Flags, 2)]); /* Dump the vendor data */ AcpiDmIndent (Level + 1); AcpiDmDumpSerialBusVendorData (Resource, Level); AcpiOsPrintf (")\n"); MpSaveSerialInfo (Info->MappingOp, Resource, DeviceName); } /******************************************************************************* * * FUNCTION: AcpiDmSpiSerialBusDescriptor * * PARAMETERS: Info - Extra resource info * Resource - Pointer to the resource descriptor * Length - Length of the descriptor in bytes * Level - Current source code indentation level * * RETURN: None * * DESCRIPTION: Decode a SPI serial bus descriptor * ******************************************************************************/ static void AcpiDmSpiSerialBusDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level) { UINT32 ResourceSourceOffset; char *DeviceName; /* DeviceSelection, DeviceSelectionPolarity, WireMode, DataBitLength */ AcpiDmIndent (Level); AcpiOsPrintf ("SpiSerialBusV2 (0x%4.4X, %s, %s, 0x%2.2X,\n", Resource->SpiSerialBus.DeviceSelection, AcpiGbl_DpDecode [ACPI_EXTRACT_1BIT_FLAG (Resource->SpiSerialBus.TypeSpecificFlags, 1)], AcpiGbl_WmDecode [ACPI_GET_1BIT_FLAG (Resource->SpiSerialBus.TypeSpecificFlags)], Resource->SpiSerialBus.DataBitLength); /* SlaveMode, ConnectionSpeed, ClockPolarity, ClockPhase */ AcpiDmIndent (Level + 1); AcpiOsPrintf ("%s, 0x%8.8X, %s,\n", AcpiGbl_SmDecode [ACPI_GET_1BIT_FLAG (Resource->SpiSerialBus.Flags)], Resource->SpiSerialBus.ConnectionSpeed, AcpiGbl_CpoDecode [ACPI_GET_1BIT_FLAG (Resource->SpiSerialBus.ClockPolarity)]); AcpiDmIndent (Level + 1); AcpiOsPrintf ("%s, ", AcpiGbl_CphDecode [ACPI_GET_1BIT_FLAG (Resource->SpiSerialBus.ClockPhase)]); /* ResourceSource is a required field */ ResourceSourceOffset = sizeof (AML_RESOURCE_COMMON_SERIALBUS) + Resource->CommonSerialBus.TypeDataLength; - DeviceName = ACPI_ADD_PTR (char, Resource, ResourceSourceOffset), + DeviceName = ACPI_ADD_PTR (char, Resource, ResourceSourceOffset); AcpiUtPrintString (DeviceName, ACPI_UINT16_MAX); /* ResourceSourceIndex, ResourceUsage */ AcpiOsPrintf (",\n"); AcpiDmIndent (Level + 1); AcpiOsPrintf ("0x%2.2X, ", Resource->SpiSerialBus.ResSourceIndex); AcpiOsPrintf ("%s, ", AcpiGbl_ConsumeDecode [ACPI_EXTRACT_1BIT_FLAG (Resource->SpiSerialBus.Flags, 1)]); /* Insert a descriptor name */ AcpiDmDescriptorName (); /* Share */ AcpiOsPrintf (", %s,\n", AcpiGbl_ShrDecode [ACPI_EXTRACT_1BIT_FLAG (Resource->SpiSerialBus.Flags, 2)]); /* Dump the vendor data */ AcpiDmIndent (Level + 1); AcpiDmDumpSerialBusVendorData (Resource, Level); AcpiOsPrintf (")\n"); MpSaveSerialInfo (Info->MappingOp, Resource, DeviceName); } /******************************************************************************* * * FUNCTION: AcpiDmUartSerialBusDescriptor * * PARAMETERS: Info - Extra resource info * Resource - Pointer to the resource descriptor * Length - Length of the descriptor in bytes * Level - Current source code indentation level * * RETURN: None * * DESCRIPTION: Decode a UART serial bus descriptor * ******************************************************************************/ static void AcpiDmUartSerialBusDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level) { UINT32 ResourceSourceOffset; char *DeviceName; /* ConnectionSpeed, BitsPerByte, StopBits */ AcpiDmIndent (Level); AcpiOsPrintf ("UartSerialBusV2 (0x%8.8X, %s, %s,\n", Resource->UartSerialBus.DefaultBaudRate, AcpiGbl_BpbDecode [ACPI_EXTRACT_3BIT_FLAG (Resource->UartSerialBus.TypeSpecificFlags, 4)], AcpiGbl_SbDecode [ACPI_EXTRACT_2BIT_FLAG (Resource->UartSerialBus.TypeSpecificFlags, 2)]); /* LinesInUse, IsBigEndian, Parity, FlowControl */ AcpiDmIndent (Level + 1); AcpiOsPrintf ("0x%2.2X, %s, %s, %s,\n", Resource->UartSerialBus.LinesEnabled, AcpiGbl_EdDecode [ACPI_EXTRACT_1BIT_FLAG (Resource->UartSerialBus.TypeSpecificFlags, 7)], AcpiGbl_PtDecode [ACPI_GET_3BIT_FLAG (Resource->UartSerialBus.Parity)], AcpiGbl_FcDecode [ACPI_GET_2BIT_FLAG (Resource->UartSerialBus.TypeSpecificFlags)]); /* ReceiveBufferSize, TransmitBufferSize */ AcpiDmIndent (Level + 1); AcpiOsPrintf ("0x%4.4X, 0x%4.4X, ", Resource->UartSerialBus.RxFifoSize, Resource->UartSerialBus.TxFifoSize); /* ResourceSource is a required field */ ResourceSourceOffset = sizeof (AML_RESOURCE_COMMON_SERIALBUS) + Resource->CommonSerialBus.TypeDataLength; - DeviceName = ACPI_ADD_PTR (char, Resource, ResourceSourceOffset), + DeviceName = ACPI_ADD_PTR (char, Resource, ResourceSourceOffset); AcpiUtPrintString (DeviceName, ACPI_UINT16_MAX); /* ResourceSourceIndex, ResourceUsage */ AcpiOsPrintf (",\n"); AcpiDmIndent (Level + 1); AcpiOsPrintf ("0x%2.2X, ", Resource->UartSerialBus.ResSourceIndex); AcpiOsPrintf ("%s, ", AcpiGbl_ConsumeDecode [ACPI_EXTRACT_1BIT_FLAG (Resource->UartSerialBus.Flags, 1)]); /* Insert a descriptor name */ AcpiDmDescriptorName (); /* Share */ AcpiOsPrintf (", %s,\n", AcpiGbl_ShrDecode [ACPI_EXTRACT_1BIT_FLAG (Resource->UartSerialBus.Flags, 2)]); /* Dump the vendor data */ AcpiDmIndent (Level + 1); AcpiDmDumpSerialBusVendorData (Resource, Level); AcpiOsPrintf (")\n"); MpSaveSerialInfo (Info->MappingOp, Resource, DeviceName); } /******************************************************************************* * * FUNCTION: AcpiDmSerialBusDescriptor * * PARAMETERS: Info - Extra resource info * Resource - Pointer to the resource descriptor * Length - Length of the descriptor in bytes * Level - Current source code indentation level * * RETURN: None * * DESCRIPTION: Decode a I2C/SPI/UART serial bus descriptor * ******************************************************************************/ void AcpiDmSerialBusDescriptor ( ACPI_OP_WALK_INFO *Info, AML_RESOURCE *Resource, UINT32 Length, UINT32 Level) { SerialBusResourceDispatch [Resource->CommonSerialBus.Type] ( Info, Resource, Length, Level); } Index: vendor-sys/acpica/dist/source/components/dispatcher/dsmethod.c =================================================================== --- vendor-sys/acpica/dist/source/components/dispatcher/dsmethod.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/dispatcher/dsmethod.c (revision 305162) @@ -1,910 +1,920 @@ /****************************************************************************** * * Module Name: dsmethod - Parser/Interpreter interface - control method parsing * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acdispat.h" #include "acinterp.h" #include "acnamesp.h" #include "acparser.h" #include "amlcode.h" #include "acdebug.h" #define _COMPONENT ACPI_DISPATCHER ACPI_MODULE_NAME ("dsmethod") /* Local prototypes */ static ACPI_STATUS AcpiDsDetectNamedOpcodes ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT **OutOp); static ACPI_STATUS AcpiDsCreateMethodMutex ( ACPI_OPERAND_OBJECT *MethodDesc); /******************************************************************************* * * FUNCTION: AcpiDsAutoSerializeMethod * * PARAMETERS: Node - Namespace Node of the method * ObjDesc - Method object attached to node * * RETURN: Status * * DESCRIPTION: Parse a control method AML to scan for control methods that * need serialization due to the creation of named objects. * * NOTE: It is a bit of overkill to mark all such methods serialized, since * there is only a problem if the method actually blocks during execution. * A blocking operation is, for example, a Sleep() operation, or any access * to an operation region. However, it is probably not possible to easily * detect whether a method will block or not, so we simply mark all suspicious * methods as serialized. * * NOTE2: This code is essentially a generic routine for parsing a single * control method. * ******************************************************************************/ ACPI_STATUS AcpiDsAutoSerializeMethod ( ACPI_NAMESPACE_NODE *Node, ACPI_OPERAND_OBJECT *ObjDesc) { ACPI_STATUS Status; ACPI_PARSE_OBJECT *Op = NULL; ACPI_WALK_STATE *WalkState; ACPI_FUNCTION_TRACE_PTR (DsAutoSerializeMethod, Node); ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "Method auto-serialization parse [%4.4s] %p\n", AcpiUtGetNodeName (Node), Node)); + AcpiExEnterInterpreter (); + /* Create/Init a root op for the method parse tree */ Op = AcpiPsAllocOp (AML_METHOD_OP, ObjDesc->Method.AmlStart); if (!Op) { - return_ACPI_STATUS (AE_NO_MEMORY); + Status = AE_NO_MEMORY; + goto Unlock; } AcpiPsSetName (Op, Node->Name.Integer); Op->Common.Node = Node; /* Create and initialize a new walk state */ WalkState = AcpiDsCreateWalkState (Node->OwnerId, NULL, NULL, NULL); if (!WalkState) { AcpiPsFreeOp (Op); - return_ACPI_STATUS (AE_NO_MEMORY); + Status = AE_NO_MEMORY; + goto Unlock; } Status = AcpiDsInitAmlWalk (WalkState, Op, Node, ObjDesc->Method.AmlStart, ObjDesc->Method.AmlLength, NULL, 0); if (ACPI_FAILURE (Status)) { AcpiDsDeleteWalkState (WalkState); AcpiPsFreeOp (Op); return_ACPI_STATUS (Status); } WalkState->DescendingCallback = AcpiDsDetectNamedOpcodes; /* Parse the method, scan for creation of named objects */ Status = AcpiPsParseAml (WalkState); AcpiPsDeleteParseTree (Op); +Unlock: + AcpiExExitInterpreter (); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiDsDetectNamedOpcodes * * PARAMETERS: WalkState - Current state of the parse tree walk * OutOp - Unused, required for parser interface * * RETURN: Status * * DESCRIPTION: Descending callback used during the loading of ACPI tables. * Currently used to detect methods that must be marked serialized * in order to avoid problems with the creation of named objects. * ******************************************************************************/ static ACPI_STATUS AcpiDsDetectNamedOpcodes ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT **OutOp) { ACPI_FUNCTION_NAME (AcpiDsDetectNamedOpcodes); /* We are only interested in opcodes that create a new name */ if (!(WalkState->OpInfo->Flags & (AML_NAMED | AML_CREATE | AML_FIELD))) { return (AE_OK); } /* * At this point, we know we have a Named object opcode. * Mark the method as serialized. Later code will create a mutex for * this method to enforce serialization. * * Note, ACPI_METHOD_IGNORE_SYNC_LEVEL flag means that we will ignore the * Sync Level mechanism for this method, even though it is now serialized. * Otherwise, there can be conflicts with existing ASL code that actually * uses sync levels. */ WalkState->MethodDesc->Method.SyncLevel = 0; WalkState->MethodDesc->Method.InfoFlags |= (ACPI_METHOD_SERIALIZED | ACPI_METHOD_IGNORE_SYNC_LEVEL); ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Method serialized [%4.4s] %p - [%s] (%4.4X)\n", WalkState->MethodNode->Name.Ascii, WalkState->MethodNode, WalkState->OpInfo->Name, WalkState->Opcode)); /* Abort the parse, no need to examine this method any further */ return (AE_CTRL_TERMINATE); } /******************************************************************************* * * FUNCTION: AcpiDsMethodError * * PARAMETERS: Status - Execution status * WalkState - Current state * * RETURN: Status * * DESCRIPTION: Called on method error. Invoke the global exception handler if * present, dump the method data if the debugger is configured * * Note: Allows the exception handler to change the status code * ******************************************************************************/ ACPI_STATUS AcpiDsMethodError ( ACPI_STATUS Status, ACPI_WALK_STATE *WalkState) { UINT32 AmlOffset; ACPI_FUNCTION_ENTRY (); /* Ignore AE_OK and control exception codes */ if (ACPI_SUCCESS (Status) || (Status & AE_CODE_CONTROL)) { return (Status); } /* Invoke the global exception handler */ if (AcpiGbl_ExceptionHandler) { /* Exit the interpreter, allow handler to execute methods */ AcpiExExitInterpreter (); /* * Handler can map the exception code to anything it wants, including * AE_OK, in which case the executing method will not be aborted. */ AmlOffset = (UINT32) ACPI_PTR_DIFF (WalkState->Aml, WalkState->ParserState.AmlStart); Status = AcpiGbl_ExceptionHandler (Status, WalkState->MethodNode ? WalkState->MethodNode->Name.Integer : 0, WalkState->Opcode, AmlOffset, NULL); AcpiExEnterInterpreter (); } AcpiDsClearImplicitReturn (WalkState); if (ACPI_FAILURE (Status)) { AcpiDsDumpMethodStack (Status, WalkState, WalkState->Op); /* Display method locals/args if debugger is present */ #ifdef ACPI_DEBUGGER AcpiDbDumpMethodInfo (Status, WalkState); #endif } return (Status); } /******************************************************************************* * * FUNCTION: AcpiDsCreateMethodMutex * * PARAMETERS: ObjDesc - The method object * * RETURN: Status * * DESCRIPTION: Create a mutex object for a serialized control method * ******************************************************************************/ static ACPI_STATUS AcpiDsCreateMethodMutex ( ACPI_OPERAND_OBJECT *MethodDesc) { ACPI_OPERAND_OBJECT *MutexDesc; ACPI_STATUS Status; ACPI_FUNCTION_TRACE (DsCreateMethodMutex); /* Create the new mutex object */ MutexDesc = AcpiUtCreateInternalObject (ACPI_TYPE_MUTEX); if (!MutexDesc) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Create the actual OS Mutex */ Status = AcpiOsCreateMutex (&MutexDesc->Mutex.OsMutex); if (ACPI_FAILURE (Status)) { AcpiUtDeleteObjectDesc (MutexDesc); return_ACPI_STATUS (Status); } MutexDesc->Mutex.SyncLevel = MethodDesc->Method.SyncLevel; MethodDesc->Method.Mutex = MutexDesc; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiDsBeginMethodExecution * * PARAMETERS: MethodNode - Node of the method * ObjDesc - The method object * WalkState - current state, NULL if not yet executing * a method. * * RETURN: Status * * DESCRIPTION: Prepare a method for execution. Parses the method if necessary, * increments the thread count, and waits at the method semaphore * for clearance to execute. * ******************************************************************************/ ACPI_STATUS AcpiDsBeginMethodExecution ( ACPI_NAMESPACE_NODE *MethodNode, ACPI_OPERAND_OBJECT *ObjDesc, ACPI_WALK_STATE *WalkState) { ACPI_STATUS Status = AE_OK; ACPI_FUNCTION_TRACE_PTR (DsBeginMethodExecution, MethodNode); if (!MethodNode) { return_ACPI_STATUS (AE_NULL_ENTRY); } AcpiExStartTraceMethod (MethodNode, ObjDesc, WalkState); /* Prevent wraparound of thread count */ if (ObjDesc->Method.ThreadCount == ACPI_UINT8_MAX) { ACPI_ERROR ((AE_INFO, "Method reached maximum reentrancy limit (255)")); return_ACPI_STATUS (AE_AML_METHOD_LIMIT); } /* * If this method is serialized, we need to acquire the method mutex. */ if (ObjDesc->Method.InfoFlags & ACPI_METHOD_SERIALIZED) { /* * Create a mutex for the method if it is defined to be Serialized * and a mutex has not already been created. We defer the mutex creation * until a method is actually executed, to minimize the object count */ if (!ObjDesc->Method.Mutex) { Status = AcpiDsCreateMethodMutex (ObjDesc); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } /* * The CurrentSyncLevel (per-thread) must be less than or equal to * the sync level of the method. This mechanism provides some * deadlock prevention. * * If the method was auto-serialized, we just ignore the sync level * mechanism, because auto-serialization of methods can interfere * with ASL code that actually uses sync levels. * * Top-level method invocation has no walk state at this point */ if (WalkState && (!(ObjDesc->Method.InfoFlags & ACPI_METHOD_IGNORE_SYNC_LEVEL)) && (WalkState->Thread->CurrentSyncLevel > ObjDesc->Method.Mutex->Mutex.SyncLevel)) { ACPI_ERROR ((AE_INFO, "Cannot acquire Mutex for method [%4.4s]" ", current SyncLevel is too large (%u)", AcpiUtGetNodeName (MethodNode), WalkState->Thread->CurrentSyncLevel)); return_ACPI_STATUS (AE_AML_MUTEX_ORDER); } /* * Obtain the method mutex if necessary. Do not acquire mutex for a * recursive call. */ if (!WalkState || !ObjDesc->Method.Mutex->Mutex.ThreadId || (WalkState->Thread->ThreadId != ObjDesc->Method.Mutex->Mutex.ThreadId)) { /* * Acquire the method mutex. This releases the interpreter if we * block (and reacquires it before it returns) */ Status = AcpiExSystemWaitMutex ( ObjDesc->Method.Mutex->Mutex.OsMutex, ACPI_WAIT_FOREVER); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Update the mutex and walk info and save the original SyncLevel */ if (WalkState) { ObjDesc->Method.Mutex->Mutex.OriginalSyncLevel = WalkState->Thread->CurrentSyncLevel; ObjDesc->Method.Mutex->Mutex.ThreadId = WalkState->Thread->ThreadId; /* * Update the current SyncLevel only if this is not an auto- * serialized method. In the auto case, we have to ignore * the sync level for the method mutex (created for the * auto-serialization) because we have no idea of what the * sync level should be. Therefore, just ignore it. */ if (!(ObjDesc->Method.InfoFlags & ACPI_METHOD_IGNORE_SYNC_LEVEL)) { WalkState->Thread->CurrentSyncLevel = ObjDesc->Method.SyncLevel; } } else { ObjDesc->Method.Mutex->Mutex.OriginalSyncLevel = ObjDesc->Method.Mutex->Mutex.SyncLevel; ObjDesc->Method.Mutex->Mutex.ThreadId = AcpiOsGetThreadId (); } } /* Always increase acquisition depth */ ObjDesc->Method.Mutex->Mutex.AcquisitionDepth++; } /* * Allocate an Owner ID for this method, only if this is the first thread * to begin concurrent execution. We only need one OwnerId, even if the * method is invoked recursively. */ if (!ObjDesc->Method.OwnerId) { Status = AcpiUtAllocateOwnerId (&ObjDesc->Method.OwnerId); if (ACPI_FAILURE (Status)) { goto Cleanup; } } /* * Increment the method parse tree thread count since it has been * reentered one more time (even if it is the same thread) */ ObjDesc->Method.ThreadCount++; AcpiMethodCount++; return_ACPI_STATUS (Status); Cleanup: /* On error, must release the method mutex (if present) */ if (ObjDesc->Method.Mutex) { AcpiOsReleaseMutex (ObjDesc->Method.Mutex->Mutex.OsMutex); } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiDsCallControlMethod * * PARAMETERS: Thread - Info for this thread * ThisWalkState - Current walk state * Op - Current Op to be walked * * RETURN: Status * * DESCRIPTION: Transfer execution to a called control method * ******************************************************************************/ ACPI_STATUS AcpiDsCallControlMethod ( ACPI_THREAD_STATE *Thread, ACPI_WALK_STATE *ThisWalkState, ACPI_PARSE_OBJECT *Op) { ACPI_STATUS Status; ACPI_NAMESPACE_NODE *MethodNode; ACPI_WALK_STATE *NextWalkState = NULL; ACPI_OPERAND_OBJECT *ObjDesc; ACPI_EVALUATE_INFO *Info; UINT32 i; ACPI_FUNCTION_TRACE_PTR (DsCallControlMethod, ThisWalkState); ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Calling method %p, currentstate=%p\n", ThisWalkState->PrevOp, ThisWalkState)); /* * Get the namespace entry for the control method we are about to call */ MethodNode = ThisWalkState->MethodCallNode; if (!MethodNode) { return_ACPI_STATUS (AE_NULL_ENTRY); } ObjDesc = AcpiNsGetAttachedObject (MethodNode); if (!ObjDesc) { return_ACPI_STATUS (AE_NULL_OBJECT); } /* Init for new method, possibly wait on method mutex */ Status = AcpiDsBeginMethodExecution ( MethodNode, ObjDesc, ThisWalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Begin method parse/execution. Create a new walk state */ NextWalkState = AcpiDsCreateWalkState ( ObjDesc->Method.OwnerId, NULL, ObjDesc, Thread); if (!NextWalkState) { Status = AE_NO_MEMORY; goto Cleanup; } /* * The resolved arguments were put on the previous walk state's operand * stack. Operands on the previous walk state stack always * start at index 0. Also, null terminate the list of arguments */ ThisWalkState->Operands [ThisWalkState->NumOperands] = NULL; /* * Allocate and initialize the evaluation information block * TBD: this is somewhat inefficient, should change interface to * DsInitAmlWalk. For now, keeps this struct off the CPU stack */ Info = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_EVALUATE_INFO)); if (!Info) { Status = AE_NO_MEMORY; goto Cleanup; } Info->Parameters = &ThisWalkState->Operands[0]; Status = AcpiDsInitAmlWalk (NextWalkState, NULL, MethodNode, ObjDesc->Method.AmlStart, ObjDesc->Method.AmlLength, Info, ACPI_IMODE_EXECUTE); ACPI_FREE (Info); if (ACPI_FAILURE (Status)) { goto Cleanup; } /* * Delete the operands on the previous walkstate operand stack * (they were copied to new objects) */ for (i = 0; i < ObjDesc->Method.ParamCount; i++) { AcpiUtRemoveReference (ThisWalkState->Operands [i]); ThisWalkState->Operands [i] = NULL; } /* Clear the operand stack */ ThisWalkState->NumOperands = 0; ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "**** Begin nested execution of [%4.4s] **** WalkState=%p\n", MethodNode->Name.Ascii, NextWalkState)); /* Invoke an internal method if necessary */ if (ObjDesc->Method.InfoFlags & ACPI_METHOD_INTERNAL_ONLY) { Status = ObjDesc->Method.Dispatch.Implementation (NextWalkState); if (Status == AE_OK) { Status = AE_CTRL_TERMINATE; } } return_ACPI_STATUS (Status); Cleanup: /* On error, we must terminate the method properly */ AcpiDsTerminateControlMethod (ObjDesc, NextWalkState); AcpiDsDeleteWalkState (NextWalkState); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiDsRestartControlMethod * * PARAMETERS: WalkState - State for preempted method (caller) * ReturnDesc - Return value from the called method * * RETURN: Status * * DESCRIPTION: Restart a method that was preempted by another (nested) method * invocation. Handle the return value (if any) from the callee. * ******************************************************************************/ ACPI_STATUS AcpiDsRestartControlMethod ( ACPI_WALK_STATE *WalkState, ACPI_OPERAND_OBJECT *ReturnDesc) { ACPI_STATUS Status; int SameAsImplicitReturn; ACPI_FUNCTION_TRACE_PTR (DsRestartControlMethod, WalkState); ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "****Restart [%4.4s] Op %p ReturnValueFromCallee %p\n", AcpiUtGetNodeName (WalkState->MethodNode), WalkState->MethodCallOp, ReturnDesc)); ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, " ReturnFromThisMethodUsed?=%X ResStack %p Walk %p\n", WalkState->ReturnUsed, WalkState->Results, WalkState)); /* Did the called method return a value? */ if (ReturnDesc) { /* Is the implicit return object the same as the return desc? */ SameAsImplicitReturn = (WalkState->ImplicitReturnObj == ReturnDesc); /* Are we actually going to use the return value? */ if (WalkState->ReturnUsed) { /* Save the return value from the previous method */ Status = AcpiDsResultPush (ReturnDesc, WalkState); if (ACPI_FAILURE (Status)) { AcpiUtRemoveReference (ReturnDesc); return_ACPI_STATUS (Status); } /* * Save as THIS method's return value in case it is returned * immediately to yet another method */ WalkState->ReturnDesc = ReturnDesc; } /* * The following code is the optional support for the so-called * "implicit return". Some AML code assumes that the last value of the * method is "implicitly" returned to the caller, in the absence of an * explicit return value. * * Just save the last result of the method as the return value. * * NOTE: this is optional because the ASL language does not actually * support this behavior. */ else if (!AcpiDsDoImplicitReturn (ReturnDesc, WalkState, FALSE) || SameAsImplicitReturn) { /* * Delete the return value if it will not be used by the * calling method or remove one reference if the explicit return * is the same as the implicit return value. */ AcpiUtRemoveReference (ReturnDesc); } } return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiDsTerminateControlMethod * * PARAMETERS: MethodDesc - Method object * WalkState - State associated with the method * * RETURN: None * * DESCRIPTION: Terminate a control method. Delete everything that the method * created, delete all locals and arguments, and delete the parse * tree if requested. * * MUTEX: Interpreter is locked * ******************************************************************************/ void AcpiDsTerminateControlMethod ( ACPI_OPERAND_OBJECT *MethodDesc, ACPI_WALK_STATE *WalkState) { ACPI_FUNCTION_TRACE_PTR (DsTerminateControlMethod, WalkState); /* MethodDesc is required, WalkState is optional */ if (!MethodDesc) { return_VOID; } if (WalkState) { /* Delete all arguments and locals */ AcpiDsMethodDataDeleteAll (WalkState); /* * If method is serialized, release the mutex and restore the * current sync level for this thread */ if (MethodDesc->Method.Mutex) { /* Acquisition Depth handles recursive calls */ MethodDesc->Method.Mutex->Mutex.AcquisitionDepth--; if (!MethodDesc->Method.Mutex->Mutex.AcquisitionDepth) { WalkState->Thread->CurrentSyncLevel = MethodDesc->Method.Mutex->Mutex.OriginalSyncLevel; AcpiOsReleaseMutex ( MethodDesc->Method.Mutex->Mutex.OsMutex); MethodDesc->Method.Mutex->Mutex.ThreadId = 0; } } /* * Delete any namespace objects created anywhere within the * namespace by the execution of this method. Unless: * 1) This method is a module-level executable code method, in which * case we want make the objects permanent. * 2) There are other threads executing the method, in which case we * will wait until the last thread has completed. */ if (!(MethodDesc->Method.InfoFlags & ACPI_METHOD_MODULE_LEVEL) && (MethodDesc->Method.ThreadCount == 1)) { /* Delete any direct children of (created by) this method */ + (void) AcpiExExitInterpreter (); AcpiNsDeleteNamespaceSubtree (WalkState->MethodNode); + (void) AcpiExEnterInterpreter (); /* * Delete any objects that were created by this method * elsewhere in the namespace (if any were created). * Use of the ACPI_METHOD_MODIFIED_NAMESPACE optimizes the * deletion such that we don't have to perform an entire * namespace walk for every control method execution. */ if (MethodDesc->Method.InfoFlags & ACPI_METHOD_MODIFIED_NAMESPACE) { + (void) AcpiExExitInterpreter (); AcpiNsDeleteNamespaceByOwner (MethodDesc->Method.OwnerId); + (void) AcpiExEnterInterpreter (); MethodDesc->Method.InfoFlags &= ~ACPI_METHOD_MODIFIED_NAMESPACE; } } } /* Decrement the thread count on the method */ if (MethodDesc->Method.ThreadCount) { MethodDesc->Method.ThreadCount--; } else { ACPI_ERROR ((AE_INFO, "Invalid zero thread count in method")); } /* Are there any other threads currently executing this method? */ if (MethodDesc->Method.ThreadCount) { /* * Additional threads. Do not release the OwnerId in this case, * we immediately reuse it for the next thread executing this method */ ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "*** Completed execution of one thread, %u threads remaining\n", MethodDesc->Method.ThreadCount)); } else { /* This is the only executing thread for this method */ /* * Support to dynamically change a method from NotSerialized to * Serialized if it appears that the method is incorrectly written and * does not support multiple thread execution. The best example of this * is if such a method creates namespace objects and blocks. A second * thread will fail with an AE_ALREADY_EXISTS exception. * * This code is here because we must wait until the last thread exits * before marking the method as serialized. */ if (MethodDesc->Method.InfoFlags & ACPI_METHOD_SERIALIZED_PENDING) { if (WalkState) { ACPI_INFO (( "Marking method %4.4s as Serialized " "because of AE_ALREADY_EXISTS error", WalkState->MethodNode->Name.Ascii)); } /* * Method tried to create an object twice and was marked as * "pending serialized". The probable cause is that the method * cannot handle reentrancy. * * The method was created as NotSerialized, but it tried to create * a named object and then blocked, causing the second thread * entrance to begin and then fail. Workaround this problem by * marking the method permanently as Serialized when the last * thread exits here. */ MethodDesc->Method.InfoFlags &= ~ACPI_METHOD_SERIALIZED_PENDING; MethodDesc->Method.InfoFlags |= (ACPI_METHOD_SERIALIZED | ACPI_METHOD_IGNORE_SYNC_LEVEL); MethodDesc->Method.SyncLevel = 0; } /* No more threads, we can free the OwnerId */ if (!(MethodDesc->Method.InfoFlags & ACPI_METHOD_MODULE_LEVEL)) { AcpiUtReleaseOwnerId (&MethodDesc->Method.OwnerId); } } AcpiExStopTraceMethod ((ACPI_NAMESPACE_NODE *) MethodDesc->Method.Node, MethodDesc, WalkState); return_VOID; } Index: vendor-sys/acpica/dist/source/components/dispatcher/dswexec.c =================================================================== --- vendor-sys/acpica/dist/source/components/dispatcher/dswexec.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/dispatcher/dswexec.c (revision 305162) @@ -1,789 +1,790 @@ /****************************************************************************** * * Module Name: dswexec - Dispatcher method execution callbacks; * dispatch to interpreter. * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acparser.h" #include "amlcode.h" #include "acdispat.h" #include "acinterp.h" #include "acnamesp.h" #include "acdebug.h" #define _COMPONENT ACPI_DISPATCHER ACPI_MODULE_NAME ("dswexec") /* * Dispatch table for opcode classes */ static ACPI_EXECUTE_OP AcpiGbl_OpTypeDispatch [] = { AcpiExOpcode_0A_0T_1R, AcpiExOpcode_1A_0T_0R, AcpiExOpcode_1A_0T_1R, AcpiExOpcode_1A_1T_0R, AcpiExOpcode_1A_1T_1R, AcpiExOpcode_2A_0T_0R, AcpiExOpcode_2A_0T_1R, AcpiExOpcode_2A_1T_1R, AcpiExOpcode_2A_2T_1R, AcpiExOpcode_3A_0T_0R, AcpiExOpcode_3A_1T_1R, AcpiExOpcode_6A_0T_1R }; /***************************************************************************** * * FUNCTION: AcpiDsGetPredicateValue * * PARAMETERS: WalkState - Current state of the parse tree walk * ResultObj - if non-zero, pop result from result stack * * RETURN: Status * * DESCRIPTION: Get the result of a predicate evaluation * ****************************************************************************/ ACPI_STATUS AcpiDsGetPredicateValue ( ACPI_WALK_STATE *WalkState, ACPI_OPERAND_OBJECT *ResultObj) { ACPI_STATUS Status = AE_OK; ACPI_OPERAND_OBJECT *ObjDesc; ACPI_OPERAND_OBJECT *LocalObjDesc = NULL; ACPI_FUNCTION_TRACE_PTR (DsGetPredicateValue, WalkState); WalkState->ControlState->Common.State = 0; if (ResultObj) { Status = AcpiDsResultPop (&ObjDesc, WalkState); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "Could not get result from predicate evaluation")); return_ACPI_STATUS (Status); } } else { Status = AcpiDsCreateOperand (WalkState, WalkState->Op, 0); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } Status = AcpiExResolveToValue (&WalkState->Operands [0], WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } ObjDesc = WalkState->Operands [0]; } if (!ObjDesc) { ACPI_ERROR ((AE_INFO, "No predicate ObjDesc=%p State=%p", ObjDesc, WalkState)); return_ACPI_STATUS (AE_AML_NO_OPERAND); } /* * Result of predicate evaluation must be an Integer * object. Implicitly convert the argument if necessary. */ - Status = AcpiExConvertToInteger (ObjDesc, &LocalObjDesc, 16); + Status = AcpiExConvertToInteger (ObjDesc, &LocalObjDesc, + ACPI_STRTOUL_BASE16); if (ACPI_FAILURE (Status)) { goto Cleanup; } if (LocalObjDesc->Common.Type != ACPI_TYPE_INTEGER) { ACPI_ERROR ((AE_INFO, "Bad predicate (not an integer) ObjDesc=%p State=%p Type=0x%X", ObjDesc, WalkState, ObjDesc->Common.Type)); Status = AE_AML_OPERAND_TYPE; goto Cleanup; } /* Truncate the predicate to 32-bits if necessary */ (void) AcpiExTruncateFor32bitTable (LocalObjDesc); /* * Save the result of the predicate evaluation on * the control stack */ if (LocalObjDesc->Integer.Value) { WalkState->ControlState->Common.Value = TRUE; } else { /* * Predicate is FALSE, we will just toss the * rest of the package */ WalkState->ControlState->Common.Value = FALSE; Status = AE_CTRL_FALSE; } /* Predicate can be used for an implicit return value */ (void) AcpiDsDoImplicitReturn (LocalObjDesc, WalkState, TRUE); Cleanup: ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Completed a predicate eval=%X Op=%p\n", WalkState->ControlState->Common.Value, WalkState->Op)); /* Break to debugger to display result */ AcpiDbDisplayResultObject (LocalObjDesc, WalkState); /* * Delete the predicate result object (we know that * we don't need it anymore) */ if (LocalObjDesc != ObjDesc) { AcpiUtRemoveReference (LocalObjDesc); } AcpiUtRemoveReference (ObjDesc); WalkState->ControlState->Common.State = ACPI_CONTROL_NORMAL; return_ACPI_STATUS (Status); } /***************************************************************************** * * FUNCTION: AcpiDsExecBeginOp * * PARAMETERS: WalkState - Current state of the parse tree walk * OutOp - Where to return op if a new one is created * * RETURN: Status * * DESCRIPTION: Descending callback used during the execution of control * methods. This is where most operators and operands are * dispatched to the interpreter. * ****************************************************************************/ ACPI_STATUS AcpiDsExecBeginOp ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT **OutOp) { ACPI_PARSE_OBJECT *Op; ACPI_STATUS Status = AE_OK; UINT32 OpcodeClass; ACPI_FUNCTION_TRACE_PTR (DsExecBeginOp, WalkState); Op = WalkState->Op; if (!Op) { Status = AcpiDsLoad2BeginOp (WalkState, OutOp); if (ACPI_FAILURE (Status)) { goto ErrorExit; } Op = *OutOp; WalkState->Op = Op; WalkState->Opcode = Op->Common.AmlOpcode; WalkState->OpInfo = AcpiPsGetOpcodeInfo (Op->Common.AmlOpcode); if (AcpiNsOpensScope (WalkState->OpInfo->ObjectType)) { ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "(%s) Popping scope for Op %p\n", AcpiUtGetTypeName (WalkState->OpInfo->ObjectType), Op)); Status = AcpiDsScopeStackPop (WalkState); if (ACPI_FAILURE (Status)) { goto ErrorExit; } } } if (Op == WalkState->Origin) { if (OutOp) { *OutOp = Op; } return_ACPI_STATUS (AE_OK); } /* * If the previous opcode was a conditional, this opcode * must be the beginning of the associated predicate. * Save this knowledge in the current scope descriptor */ if ((WalkState->ControlState) && (WalkState->ControlState->Common.State == ACPI_CONTROL_CONDITIONAL_EXECUTING)) { ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Exec predicate Op=%p State=%p\n", Op, WalkState)); WalkState->ControlState->Common.State = ACPI_CONTROL_PREDICATE_EXECUTING; /* Save start of predicate */ WalkState->ControlState->Control.PredicateOp = Op; } OpcodeClass = WalkState->OpInfo->Class; /* We want to send namepaths to the load code */ if (Op->Common.AmlOpcode == AML_INT_NAMEPATH_OP) { OpcodeClass = AML_CLASS_NAMED_OBJECT; } /* * Handle the opcode based upon the opcode type */ switch (OpcodeClass) { case AML_CLASS_CONTROL: Status = AcpiDsExecBeginControlOp (WalkState, Op); break; case AML_CLASS_NAMED_OBJECT: if (WalkState->WalkType & ACPI_WALK_METHOD) { /* * Found a named object declaration during method execution; * we must enter this object into the namespace. The created * object is temporary and will be deleted upon completion of * the execution of this method. * * Note 10/2010: Except for the Scope() op. This opcode does * not actually create a new object, it refers to an existing * object. However, for Scope(), we want to indeed open a * new scope. */ if (Op->Common.AmlOpcode != AML_SCOPE_OP) { Status = AcpiDsLoad2BeginOp (WalkState, NULL); } else { Status = AcpiDsScopeStackPush ( Op->Named.Node, Op->Named.Node->Type, WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } } break; case AML_CLASS_EXECUTE: case AML_CLASS_CREATE: break; default: break; } /* Nothing to do here during method execution */ return_ACPI_STATUS (Status); ErrorExit: Status = AcpiDsMethodError (Status, WalkState); return_ACPI_STATUS (Status); } /***************************************************************************** * * FUNCTION: AcpiDsExecEndOp * * PARAMETERS: WalkState - Current state of the parse tree walk * * RETURN: Status * * DESCRIPTION: Ascending callback used during the execution of control * methods. The only thing we really need to do here is to * notice the beginning of IF, ELSE, and WHILE blocks. * ****************************************************************************/ ACPI_STATUS AcpiDsExecEndOp ( ACPI_WALK_STATE *WalkState) { ACPI_PARSE_OBJECT *Op; ACPI_STATUS Status = AE_OK; UINT32 OpType; UINT32 OpClass; ACPI_PARSE_OBJECT *NextOp; ACPI_PARSE_OBJECT *FirstArg; ACPI_FUNCTION_TRACE_PTR (DsExecEndOp, WalkState); Op = WalkState->Op; OpType = WalkState->OpInfo->Type; OpClass = WalkState->OpInfo->Class; if (OpClass == AML_CLASS_UNKNOWN) { ACPI_ERROR ((AE_INFO, "Unknown opcode 0x%X", Op->Common.AmlOpcode)); return_ACPI_STATUS (AE_NOT_IMPLEMENTED); } FirstArg = Op->Common.Value.Arg; /* Init the walk state */ WalkState->NumOperands = 0; WalkState->OperandIndex = 0; WalkState->ReturnDesc = NULL; WalkState->ResultObj = NULL; /* Call debugger for single step support (DEBUG build only) */ Status = AcpiDbSingleStep (WalkState, Op, OpClass); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Decode the Opcode Class */ switch (OpClass) { case AML_CLASS_ARGUMENT: /* Constants, literals, etc. */ if (WalkState->Opcode == AML_INT_NAMEPATH_OP) { Status = AcpiDsEvaluateNamePath (WalkState); if (ACPI_FAILURE (Status)) { goto Cleanup; } } break; case AML_CLASS_EXECUTE: /* Most operators with arguments */ /* Build resolved operand stack */ Status = AcpiDsCreateOperands (WalkState, FirstArg); if (ACPI_FAILURE (Status)) { goto Cleanup; } /* * All opcodes require operand resolution, with the only exceptions * being the ObjectType and SizeOf operators. */ if (!(WalkState->OpInfo->Flags & AML_NO_OPERAND_RESOLVE)) { /* Resolve all operands */ Status = AcpiExResolveOperands (WalkState->Opcode, &(WalkState->Operands [WalkState->NumOperands -1]), WalkState); } if (ACPI_SUCCESS (Status)) { /* * Dispatch the request to the appropriate interpreter handler * routine. There is one routine per opcode "type" based upon the * number of opcode arguments and return type. */ Status = AcpiGbl_OpTypeDispatch[OpType] (WalkState); } else { /* * Treat constructs of the form "Store(LocalX,LocalX)" as noops when the * Local is uninitialized. */ if ((Status == AE_AML_UNINITIALIZED_LOCAL) && (WalkState->Opcode == AML_STORE_OP) && (WalkState->Operands[0]->Common.Type == ACPI_TYPE_LOCAL_REFERENCE) && (WalkState->Operands[1]->Common.Type == ACPI_TYPE_LOCAL_REFERENCE) && (WalkState->Operands[0]->Reference.Class == WalkState->Operands[1]->Reference.Class) && (WalkState->Operands[0]->Reference.Value == WalkState->Operands[1]->Reference.Value)) { Status = AE_OK; } else { ACPI_EXCEPTION ((AE_INFO, Status, "While resolving operands for [%s]", AcpiPsGetOpcodeName (WalkState->Opcode))); } } /* Always delete the argument objects and clear the operand stack */ AcpiDsClearOperands (WalkState); /* * If a result object was returned from above, push it on the * current result stack */ if (ACPI_SUCCESS (Status) && WalkState->ResultObj) { Status = AcpiDsResultPush (WalkState->ResultObj, WalkState); } break; default: switch (OpType) { case AML_TYPE_CONTROL: /* Type 1 opcode, IF/ELSE/WHILE/NOOP */ /* 1 Operand, 0 ExternalResult, 0 InternalResult */ Status = AcpiDsExecEndControlOp (WalkState, Op); break; case AML_TYPE_METHOD_CALL: /* * If the method is referenced from within a package * declaration, it is not a invocation of the method, just * a reference to it. */ if ((Op->Asl.Parent) && ((Op->Asl.Parent->Asl.AmlOpcode == AML_PACKAGE_OP) || (Op->Asl.Parent->Asl.AmlOpcode == AML_VAR_PACKAGE_OP))) { ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Method Reference in a Package, Op=%p\n", Op)); Op->Common.Node = (ACPI_NAMESPACE_NODE *) Op->Asl.Value.Arg->Asl.Node; AcpiUtAddReference (Op->Asl.Value.Arg->Asl.Node->Object); return_ACPI_STATUS (AE_OK); } ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Method invocation, Op=%p\n", Op)); /* * (AML_METHODCALL) Op->Asl.Value.Arg->Asl.Node contains * the method Node pointer */ /* NextOp points to the op that holds the method name */ NextOp = FirstArg; /* NextOp points to first argument op */ NextOp = NextOp->Common.Next; /* * Get the method's arguments and put them on the operand stack */ Status = AcpiDsCreateOperands (WalkState, NextOp); if (ACPI_FAILURE (Status)) { break; } /* * Since the operands will be passed to another control method, * we must resolve all local references here (Local variables, * arguments to *this* method, etc.) */ Status = AcpiDsResolveOperands (WalkState); if (ACPI_FAILURE (Status)) { /* On error, clear all resolved operands */ AcpiDsClearOperands (WalkState); break; } /* * Tell the walk loop to preempt this running method and * execute the new method */ Status = AE_CTRL_TRANSFER; /* * Return now; we don't want to disturb anything, * especially the operand count! */ return_ACPI_STATUS (Status); case AML_TYPE_CREATE_FIELD: ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Executing CreateField Buffer/Index Op=%p\n", Op)); Status = AcpiDsLoad2EndOp (WalkState); if (ACPI_FAILURE (Status)) { break; } Status = AcpiDsEvalBufferFieldOperands (WalkState, Op); break; case AML_TYPE_CREATE_OBJECT: ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Executing CreateObject (Buffer/Package) Op=%p\n", Op)); switch (Op->Common.Parent->Common.AmlOpcode) { case AML_NAME_OP: /* * Put the Node on the object stack (Contains the ACPI Name * of this object) */ WalkState->Operands[0] = (void *) Op->Common.Parent->Common.Node; WalkState->NumOperands = 1; Status = AcpiDsCreateNode (WalkState, Op->Common.Parent->Common.Node, Op->Common.Parent); if (ACPI_FAILURE (Status)) { break; } /* Fall through */ /*lint -fallthrough */ case AML_INT_EVAL_SUBTREE_OP: Status = AcpiDsEvalDataObjectOperands (WalkState, Op, AcpiNsGetAttachedObject (Op->Common.Parent->Common.Node)); break; default: Status = AcpiDsEvalDataObjectOperands (WalkState, Op, NULL); break; } /* * If a result object was returned from above, push it on the * current result stack */ if (WalkState->ResultObj) { Status = AcpiDsResultPush (WalkState->ResultObj, WalkState); } break; case AML_TYPE_NAMED_FIELD: case AML_TYPE_NAMED_COMPLEX: case AML_TYPE_NAMED_SIMPLE: case AML_TYPE_NAMED_NO_OBJ: Status = AcpiDsLoad2EndOp (WalkState); if (ACPI_FAILURE (Status)) { break; } if (Op->Common.AmlOpcode == AML_REGION_OP) { ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Executing OpRegion Address/Length Op=%p\n", Op)); Status = AcpiDsEvalRegionOperands (WalkState, Op); if (ACPI_FAILURE (Status)) { break; } } else if (Op->Common.AmlOpcode == AML_DATA_REGION_OP) { ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Executing DataTableRegion Strings Op=%p\n", Op)); Status = AcpiDsEvalTableRegionOperands (WalkState, Op); if (ACPI_FAILURE (Status)) { break; } } else if (Op->Common.AmlOpcode == AML_BANK_FIELD_OP) { ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Executing BankField Op=%p\n", Op)); Status = AcpiDsEvalBankFieldOperands (WalkState, Op); if (ACPI_FAILURE (Status)) { break; } } break; case AML_TYPE_UNDEFINED: ACPI_ERROR ((AE_INFO, "Undefined opcode type Op=%p", Op)); return_ACPI_STATUS (AE_NOT_IMPLEMENTED); case AML_TYPE_BOGUS: ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Internal opcode=%X type Op=%p\n", WalkState->Opcode, Op)); break; default: ACPI_ERROR ((AE_INFO, "Unimplemented opcode, class=0x%X " "type=0x%X Opcode=0x%X Op=%p", OpClass, OpType, Op->Common.AmlOpcode, Op)); Status = AE_NOT_IMPLEMENTED; break; } } /* * ACPI 2.0 support for 64-bit integers: Truncate numeric * result value if we are executing from a 32-bit ACPI table */ (void) AcpiExTruncateFor32bitTable (WalkState->ResultObj); /* * Check if we just completed the evaluation of a * conditional predicate */ if ((ACPI_SUCCESS (Status)) && (WalkState->ControlState) && (WalkState->ControlState->Common.State == ACPI_CONTROL_PREDICATE_EXECUTING) && (WalkState->ControlState->Control.PredicateOp == Op)) { Status = AcpiDsGetPredicateValue (WalkState, WalkState->ResultObj); WalkState->ResultObj = NULL; } Cleanup: if (WalkState->ResultObj) { /* Break to debugger to display result */ AcpiDbDisplayResultObject (WalkState->ResultObj,WalkState); /* * Delete the result op if and only if: * Parent will not use the result -- such as any * non-nested type2 op in a method (parent will be method) */ AcpiDsDeleteResultIfNotUsed (Op, WalkState->ResultObj, WalkState); } #ifdef _UNDER_DEVELOPMENT if (WalkState->ParserState.Aml == WalkState->ParserState.AmlEnd) { AcpiDbMethodEnd (WalkState); } #endif /* Invoke exception handler on error */ if (ACPI_FAILURE (Status)) { Status = AcpiDsMethodError (Status, WalkState); } /* Always clear the object stack */ WalkState->NumOperands = 0; return_ACPI_STATUS (Status); } Index: vendor-sys/acpica/dist/source/components/dispatcher/dswload2.c =================================================================== --- vendor-sys/acpica/dist/source/components/dispatcher/dswload2.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/dispatcher/dswload2.c (revision 305162) @@ -1,757 +1,753 @@ /****************************************************************************** * * Module Name: dswload2 - Dispatcher second pass namespace load callbacks * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acparser.h" #include "amlcode.h" #include "acdispat.h" #include "acinterp.h" #include "acnamesp.h" #include "acevents.h" #define _COMPONENT ACPI_DISPATCHER ACPI_MODULE_NAME ("dswload2") /******************************************************************************* * * FUNCTION: AcpiDsLoad2BeginOp * * PARAMETERS: WalkState - Current state of the parse tree walk * OutOp - Wher to return op if a new one is created * * RETURN: Status * * DESCRIPTION: Descending callback used during the loading of ACPI tables. * ******************************************************************************/ ACPI_STATUS AcpiDsLoad2BeginOp ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT **OutOp) { ACPI_PARSE_OBJECT *Op; ACPI_NAMESPACE_NODE *Node; ACPI_STATUS Status; ACPI_OBJECT_TYPE ObjectType; char *BufferPtr; UINT32 Flags; ACPI_FUNCTION_TRACE (DsLoad2BeginOp); Op = WalkState->Op; ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Op=%p State=%p\n", Op, WalkState)); if (Op) { if ((WalkState->ControlState) && (WalkState->ControlState->Common.State == ACPI_CONTROL_CONDITIONAL_EXECUTING)) { /* We are executing a while loop outside of a method */ Status = AcpiDsExecBeginOp (WalkState, OutOp); return_ACPI_STATUS (Status); } /* We only care about Namespace opcodes here */ if ((!(WalkState->OpInfo->Flags & AML_NSOPCODE) && (WalkState->Opcode != AML_INT_NAMEPATH_OP)) || (!(WalkState->OpInfo->Flags & AML_NAMED))) { return_ACPI_STATUS (AE_OK); } /* Get the name we are going to enter or lookup in the namespace */ if (WalkState->Opcode == AML_INT_NAMEPATH_OP) { /* For Namepath op, get the path string */ BufferPtr = Op->Common.Value.String; if (!BufferPtr) { /* No name, just exit */ return_ACPI_STATUS (AE_OK); } } else { /* Get name from the op */ BufferPtr = ACPI_CAST_PTR (char, &Op->Named.Name); } } else { /* Get the namestring from the raw AML */ BufferPtr = AcpiPsGetNextNamestring (&WalkState->ParserState); } /* Map the opcode into an internal object type */ ObjectType = WalkState->OpInfo->ObjectType; ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "State=%p Op=%p Type=%X\n", WalkState, Op, ObjectType)); switch (WalkState->Opcode) { case AML_FIELD_OP: case AML_BANK_FIELD_OP: case AML_INDEX_FIELD_OP: Node = NULL; Status = AE_OK; break; case AML_INT_NAMEPATH_OP: /* * The NamePath is an object reference to an existing object. * Don't enter the name into the namespace, but look it up * for use later. */ Status = AcpiNsLookup (WalkState->ScopeInfo, BufferPtr, ObjectType, ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT, WalkState, &(Node)); break; case AML_SCOPE_OP: /* Special case for Scope(\) -> refers to the Root node */ if (Op && (Op->Named.Node == AcpiGbl_RootNode)) { Node = Op->Named.Node; Status = AcpiDsScopeStackPush (Node, ObjectType, WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } else { /* * The Path is an object reference to an existing object. * Don't enter the name into the namespace, but look it up * for use later. */ Status = AcpiNsLookup (WalkState->ScopeInfo, BufferPtr, ObjectType, ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT, WalkState, &(Node)); if (ACPI_FAILURE (Status)) { #ifdef ACPI_ASL_COMPILER if (Status == AE_NOT_FOUND) { Status = AE_OK; } else { ACPI_ERROR_NAMESPACE (BufferPtr, Status); } #else ACPI_ERROR_NAMESPACE (BufferPtr, Status); #endif return_ACPI_STATUS (Status); } } /* * We must check to make sure that the target is * one of the opcodes that actually opens a scope */ switch (Node->Type) { case ACPI_TYPE_ANY: case ACPI_TYPE_LOCAL_SCOPE: /* Scope */ case ACPI_TYPE_DEVICE: case ACPI_TYPE_POWER: case ACPI_TYPE_PROCESSOR: case ACPI_TYPE_THERMAL: /* These are acceptable types */ break; case ACPI_TYPE_INTEGER: case ACPI_TYPE_STRING: case ACPI_TYPE_BUFFER: /* * These types we will allow, but we will change the type. * This enables some existing code of the form: * * Name (DEB, 0) * Scope (DEB) { ... } */ ACPI_WARNING ((AE_INFO, "Type override - [%4.4s] had invalid type (%s) " "for Scope operator, changed to type ANY", AcpiUtGetNodeName (Node), AcpiUtGetTypeName (Node->Type))); Node->Type = ACPI_TYPE_ANY; WalkState->ScopeInfo->Common.Value = ACPI_TYPE_ANY; break; case ACPI_TYPE_METHOD: /* * Allow scope change to root during execution of module-level * code. Root is typed METHOD during this time. */ if ((Node == AcpiGbl_RootNode) && (WalkState->ParseFlags & ACPI_PARSE_MODULE_LEVEL)) { break; } /*lint -fallthrough */ default: /* All other types are an error */ ACPI_ERROR ((AE_INFO, "Invalid type (%s) for target of " "Scope operator [%4.4s] (Cannot override)", AcpiUtGetTypeName (Node->Type), AcpiUtGetNodeName (Node))); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } break; default: /* All other opcodes */ if (Op && Op->Common.Node) { /* This op/node was previously entered into the namespace */ Node = Op->Common.Node; if (AcpiNsOpensScope (ObjectType)) { Status = AcpiDsScopeStackPush (Node, ObjectType, WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } return_ACPI_STATUS (AE_OK); } /* * Enter the named type into the internal namespace. We enter the name * as we go downward in the parse tree. Any necessary subobjects that * involve arguments to the opcode must be created as we go back up the * parse tree later. * * Note: Name may already exist if we are executing a deferred opcode. */ if (WalkState->DeferredNode) { /* This name is already in the namespace, get the node */ Node = WalkState->DeferredNode; Status = AE_OK; break; } Flags = ACPI_NS_NO_UPSEARCH; if (WalkState->PassNumber == ACPI_IMODE_EXECUTE) { /* Execution mode, node cannot already exist, node is temporary */ Flags |= ACPI_NS_ERROR_IF_FOUND; if (!(WalkState->ParseFlags & ACPI_PARSE_MODULE_LEVEL)) { Flags |= ACPI_NS_TEMPORARY; } } /* Add new entry or lookup existing entry */ Status = AcpiNsLookup (WalkState->ScopeInfo, BufferPtr, ObjectType, ACPI_IMODE_LOAD_PASS2, Flags, WalkState, &Node); if (ACPI_SUCCESS (Status) && (Flags & ACPI_NS_TEMPORARY)) { ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "***New Node [%4.4s] %p is temporary\n", AcpiUtGetNodeName (Node), Node)); } break; } if (ACPI_FAILURE (Status)) { ACPI_ERROR_NAMESPACE (BufferPtr, Status); return_ACPI_STATUS (Status); } if (!Op) { /* Create a new op */ Op = AcpiPsAllocOp (WalkState->Opcode, WalkState->Aml); if (!Op) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Initialize the new op */ if (Node) { Op->Named.Name = Node->Name.Integer; } *OutOp = Op; } /* * Put the Node in the "op" object that the parser uses, so we * can get it again quickly when this scope is closed */ Op->Common.Node = Node; return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiDsLoad2EndOp * * PARAMETERS: WalkState - Current state of the parse tree walk * * RETURN: Status * * DESCRIPTION: Ascending callback used during the loading of the namespace, * both control methods and everything else. * ******************************************************************************/ ACPI_STATUS AcpiDsLoad2EndOp ( ACPI_WALK_STATE *WalkState) { ACPI_PARSE_OBJECT *Op; ACPI_STATUS Status = AE_OK; ACPI_OBJECT_TYPE ObjectType; ACPI_NAMESPACE_NODE *Node; ACPI_PARSE_OBJECT *Arg; ACPI_NAMESPACE_NODE *NewNode; #ifndef ACPI_NO_METHOD_EXECUTION UINT32 i; UINT8 RegionSpace; #endif ACPI_FUNCTION_TRACE (DsLoad2EndOp); Op = WalkState->Op; ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Opcode [%s] Op %p State %p\n", WalkState->OpInfo->Name, Op, WalkState)); /* Check if opcode had an associated namespace object */ if (!(WalkState->OpInfo->Flags & AML_NSOBJECT)) { return_ACPI_STATUS (AE_OK); } if (Op->Common.AmlOpcode == AML_SCOPE_OP) { ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Ending scope Op=%p State=%p\n", Op, WalkState)); } ObjectType = WalkState->OpInfo->ObjectType; /* * Get the Node/name from the earlier lookup * (It was saved in the *op structure) */ Node = Op->Common.Node; /* * Put the Node on the object stack (Contains the ACPI Name of * this object) */ WalkState->Operands[0] = (void *) Node; WalkState->NumOperands = 1; /* Pop the scope stack */ if (AcpiNsOpensScope (ObjectType) && (Op->Common.AmlOpcode != AML_INT_METHODCALL_OP)) { ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "(%s) Popping scope for Op %p\n", AcpiUtGetTypeName (ObjectType), Op)); Status = AcpiDsScopeStackPop (WalkState); if (ACPI_FAILURE (Status)) { goto Cleanup; } } /* * Named operations are as follows: * * AML_ALIAS * AML_BANKFIELD * AML_CREATEBITFIELD * AML_CREATEBYTEFIELD * AML_CREATEDWORDFIELD * AML_CREATEFIELD * AML_CREATEQWORDFIELD * AML_CREATEWORDFIELD * AML_DATA_REGION * AML_DEVICE * AML_EVENT * AML_FIELD * AML_INDEXFIELD * AML_METHOD * AML_METHODCALL * AML_MUTEX * AML_NAME * AML_NAMEDFIELD * AML_OPREGION * AML_POWERRES * AML_PROCESSOR * AML_SCOPE * AML_THERMALZONE */ ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Create-Load [%s] State=%p Op=%p NamedObj=%p\n", AcpiPsGetOpcodeName (Op->Common.AmlOpcode), WalkState, Op, Node)); /* Decode the opcode */ Arg = Op->Common.Value.Arg; switch (WalkState->OpInfo->Type) { #ifndef ACPI_NO_METHOD_EXECUTION case AML_TYPE_CREATE_FIELD: /* * Create the field object, but the field buffer and index must * be evaluated later during the execution phase */ Status = AcpiDsCreateBufferField (Op, WalkState); break; case AML_TYPE_NAMED_FIELD: /* * If we are executing a method, initialize the field */ if (WalkState->MethodNode) { Status = AcpiDsInitFieldObjects (Op, WalkState); } switch (Op->Common.AmlOpcode) { case AML_INDEX_FIELD_OP: Status = AcpiDsCreateIndexField ( Op, (ACPI_HANDLE) Arg->Common.Node, WalkState); break; case AML_BANK_FIELD_OP: Status = AcpiDsCreateBankField (Op, Arg->Common.Node, WalkState); break; case AML_FIELD_OP: Status = AcpiDsCreateField (Op, Arg->Common.Node, WalkState); break; default: /* All NAMED_FIELD opcodes must be handled above */ break; } break; case AML_TYPE_NAMED_SIMPLE: Status = AcpiDsCreateOperands (WalkState, Arg); if (ACPI_FAILURE (Status)) { goto Cleanup; } switch (Op->Common.AmlOpcode) { case AML_PROCESSOR_OP: Status = AcpiExCreateProcessor (WalkState); break; case AML_POWER_RES_OP: Status = AcpiExCreatePowerResource (WalkState); break; case AML_MUTEX_OP: Status = AcpiExCreateMutex (WalkState); break; case AML_EVENT_OP: Status = AcpiExCreateEvent (WalkState); break; case AML_ALIAS_OP: Status = AcpiExCreateAlias (WalkState); break; default: /* Unknown opcode */ Status = AE_OK; goto Cleanup; } /* Delete operands */ for (i = 1; i < WalkState->NumOperands; i++) { AcpiUtRemoveReference (WalkState->Operands[i]); WalkState->Operands[i] = NULL; } break; #endif /* ACPI_NO_METHOD_EXECUTION */ case AML_TYPE_NAMED_COMPLEX: switch (Op->Common.AmlOpcode) { #ifndef ACPI_NO_METHOD_EXECUTION case AML_REGION_OP: case AML_DATA_REGION_OP: if (Op->Common.AmlOpcode == AML_REGION_OP) { RegionSpace = (ACPI_ADR_SPACE_TYPE) ((Op->Common.Value.Arg)->Common.Value.Integer); } else { RegionSpace = ACPI_ADR_SPACE_DATA_TABLE; } /* * The OpRegion is not fully parsed at this time. The only valid * argument is the SpaceId. (We must save the address of the * AML of the address and length operands) * * If we have a valid region, initialize it. The namespace is * unlocked at this point. * * Need to unlock interpreter if it is locked (if we are running * a control method), in order to allow _REG methods to be run * during AcpiEvInitializeRegion. */ if (WalkState->MethodNode) { /* * Executing a method: initialize the region and unlock * the interpreter */ Status = AcpiExCreateRegion (Op->Named.Data, Op->Named.Length, RegionSpace, WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } - - AcpiExExitInterpreter (); } + AcpiExExitInterpreter (); Status = AcpiEvInitializeRegion ( AcpiNsGetAttachedObject (Node), FALSE); - if (WalkState->MethodNode) - { - AcpiExEnterInterpreter (); - } + AcpiExEnterInterpreter (); if (ACPI_FAILURE (Status)) { /* * If AE_NOT_EXIST is returned, it is not fatal * because many regions get created before a handler * is installed for said region. */ if (AE_NOT_EXIST == Status) { Status = AE_OK; } } break; case AML_NAME_OP: Status = AcpiDsCreateNode (WalkState, Node, Op); break; case AML_METHOD_OP: /* * MethodOp PkgLength NameString MethodFlags TermList * * Note: We must create the method node/object pair as soon as we * see the method declaration. This allows later pass1 parsing * of invocations of the method (need to know the number of * arguments.) */ ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "LOADING-Method: State=%p Op=%p NamedObj=%p\n", WalkState, Op, Op->Named.Node)); if (!AcpiNsGetAttachedObject (Op->Named.Node)) { WalkState->Operands[0] = ACPI_CAST_PTR (void, Op->Named.Node); WalkState->NumOperands = 1; Status = AcpiDsCreateOperands ( WalkState, Op->Common.Value.Arg); if (ACPI_SUCCESS (Status)) { Status = AcpiExCreateMethod ( Op->Named.Data, Op->Named.Length, WalkState); } WalkState->Operands[0] = NULL; WalkState->NumOperands = 0; if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } break; #endif /* ACPI_NO_METHOD_EXECUTION */ default: /* All NAMED_COMPLEX opcodes must be handled above */ break; } break; case AML_CLASS_INTERNAL: /* case AML_INT_NAMEPATH_OP: */ break; case AML_CLASS_METHOD_CALL: ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "RESOLVING-MethodCall: State=%p Op=%p NamedObj=%p\n", WalkState, Op, Node)); /* * Lookup the method name and save the Node */ Status = AcpiNsLookup (WalkState->ScopeInfo, Arg->Common.Value.String, ACPI_TYPE_ANY, ACPI_IMODE_LOAD_PASS2, ACPI_NS_SEARCH_PARENT | ACPI_NS_DONT_OPEN_SCOPE, WalkState, &(NewNode)); if (ACPI_SUCCESS (Status)) { /* * Make sure that what we found is indeed a method * We didn't search for a method on purpose, to see if the name * would resolve */ if (NewNode->Type != ACPI_TYPE_METHOD) { Status = AE_AML_OPERAND_TYPE; } /* We could put the returned object (Node) on the object stack for * later, but for now, we will put it in the "op" object that the * parser uses, so we can get it again at the end of this scope */ Op->Common.Node = NewNode; } else { ACPI_ERROR_NAMESPACE (Arg->Common.Value.String, Status); } break; default: break; } Cleanup: /* Remove the Node pushed at the very beginning */ WalkState->Operands[0] = NULL; WalkState->NumOperands = 0; return_ACPI_STATUS (Status); } Index: vendor-sys/acpica/dist/source/components/events/evgpe.c =================================================================== --- vendor-sys/acpica/dist/source/components/events/evgpe.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/events/evgpe.c (revision 305162) @@ -1,843 +1,910 @@ /****************************************************************************** * * Module Name: evgpe - General Purpose Event handling and dispatch * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acevents.h" #include "acnamesp.h" #define _COMPONENT ACPI_EVENTS ACPI_MODULE_NAME ("evgpe") #if (!ACPI_REDUCED_HARDWARE) /* Entire module */ /* Local prototypes */ static void ACPI_SYSTEM_XFACE AcpiEvAsynchExecuteGpeMethod ( void *Context); static void ACPI_SYSTEM_XFACE AcpiEvAsynchEnableGpe ( void *Context); /******************************************************************************* * * FUNCTION: AcpiEvUpdateGpeEnableMask * * PARAMETERS: GpeEventInfo - GPE to update * * RETURN: Status * * DESCRIPTION: Updates GPE register enable mask based upon whether there are * runtime references to this GPE * ******************************************************************************/ ACPI_STATUS AcpiEvUpdateGpeEnableMask ( ACPI_GPE_EVENT_INFO *GpeEventInfo) { ACPI_GPE_REGISTER_INFO *GpeRegisterInfo; UINT32 RegisterBit; ACPI_FUNCTION_TRACE (EvUpdateGpeEnableMask); GpeRegisterInfo = GpeEventInfo->RegisterInfo; if (!GpeRegisterInfo) { return_ACPI_STATUS (AE_NOT_EXIST); } RegisterBit = AcpiHwGetGpeRegisterBit (GpeEventInfo); /* Clear the run bit up front */ ACPI_CLEAR_BIT (GpeRegisterInfo->EnableForRun, RegisterBit); /* Set the mask bit only if there are references to this GPE */ if (GpeEventInfo->RuntimeCount) { ACPI_SET_BIT (GpeRegisterInfo->EnableForRun, (UINT8) RegisterBit); } GpeRegisterInfo->EnableMask = GpeRegisterInfo->EnableForRun; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvEnableGpe * * PARAMETERS: GpeEventInfo - GPE to enable * * RETURN: Status * * DESCRIPTION: Clear a GPE of stale events and enable it. * ******************************************************************************/ ACPI_STATUS AcpiEvEnableGpe ( ACPI_GPE_EVENT_INFO *GpeEventInfo) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (EvEnableGpe); /* Clear the GPE (of stale events) */ Status = AcpiHwClearGpe (GpeEventInfo); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Enable the requested GPE */ Status = AcpiHwLowSetGpe (GpeEventInfo, ACPI_GPE_ENABLE); return_ACPI_STATUS (Status); } /******************************************************************************* * + * FUNCTION: AcpiEvMaskGpe + * + * PARAMETERS: GpeEventInfo - GPE to be blocked/unblocked + * IsMasked - Whether the GPE is masked or not + * + * RETURN: Status + * + * DESCRIPTION: Unconditionally mask/unmask a GPE during runtime. + * + ******************************************************************************/ + +ACPI_STATUS +AcpiEvMaskGpe ( + ACPI_GPE_EVENT_INFO *GpeEventInfo, + BOOLEAN IsMasked) +{ + ACPI_GPE_REGISTER_INFO *GpeRegisterInfo; + UINT32 RegisterBit; + + + ACPI_FUNCTION_TRACE (EvMaskGpe); + + + GpeRegisterInfo = GpeEventInfo->RegisterInfo; + if (!GpeRegisterInfo) + { + return_ACPI_STATUS (AE_NOT_EXIST); + } + + RegisterBit = AcpiHwGetGpeRegisterBit (GpeEventInfo); + + /* Perform the action */ + + if (IsMasked) + { + if (RegisterBit & GpeRegisterInfo->MaskForRun) + { + return_ACPI_STATUS (AE_BAD_PARAMETER); + } + + (void) AcpiHwLowSetGpe (GpeEventInfo, ACPI_GPE_DISABLE); + ACPI_SET_BIT (GpeRegisterInfo->MaskForRun, (UINT8) RegisterBit); + } + else + { + if (!(RegisterBit & GpeRegisterInfo->MaskForRun)) + { + return_ACPI_STATUS (AE_BAD_PARAMETER); + } + + ACPI_CLEAR_BIT (GpeRegisterInfo->MaskForRun, (UINT8) RegisterBit); + if (GpeEventInfo->RuntimeCount && + !GpeEventInfo->DisableForDispatch) + { + (void) AcpiHwLowSetGpe (GpeEventInfo, ACPI_GPE_ENABLE); + } + } + + return_ACPI_STATUS (AE_OK); +} + + +/******************************************************************************* + * * FUNCTION: AcpiEvAddGpeReference * * PARAMETERS: GpeEventInfo - Add a reference to this GPE * * RETURN: Status * * DESCRIPTION: Add a reference to a GPE. On the first reference, the GPE is * hardware-enabled. * ******************************************************************************/ ACPI_STATUS AcpiEvAddGpeReference ( ACPI_GPE_EVENT_INFO *GpeEventInfo) { ACPI_STATUS Status = AE_OK; ACPI_FUNCTION_TRACE (EvAddGpeReference); if (GpeEventInfo->RuntimeCount == ACPI_UINT8_MAX) { return_ACPI_STATUS (AE_LIMIT); } GpeEventInfo->RuntimeCount++; if (GpeEventInfo->RuntimeCount == 1) { /* Enable on first reference */ Status = AcpiEvUpdateGpeEnableMask (GpeEventInfo); if (ACPI_SUCCESS (Status)) { Status = AcpiEvEnableGpe (GpeEventInfo); } if (ACPI_FAILURE (Status)) { GpeEventInfo->RuntimeCount--; } } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiEvRemoveGpeReference * * PARAMETERS: GpeEventInfo - Remove a reference to this GPE * * RETURN: Status * * DESCRIPTION: Remove a reference to a GPE. When the last reference is * removed, the GPE is hardware-disabled. * ******************************************************************************/ ACPI_STATUS AcpiEvRemoveGpeReference ( ACPI_GPE_EVENT_INFO *GpeEventInfo) { ACPI_STATUS Status = AE_OK; ACPI_FUNCTION_TRACE (EvRemoveGpeReference); if (!GpeEventInfo->RuntimeCount) { return_ACPI_STATUS (AE_LIMIT); } GpeEventInfo->RuntimeCount--; if (!GpeEventInfo->RuntimeCount) { /* Disable on last reference */ Status = AcpiEvUpdateGpeEnableMask (GpeEventInfo); if (ACPI_SUCCESS (Status)) { Status = AcpiHwLowSetGpe (GpeEventInfo, ACPI_GPE_DISABLE); } if (ACPI_FAILURE (Status)) { GpeEventInfo->RuntimeCount++; } } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiEvLowGetGpeInfo * * PARAMETERS: GpeNumber - Raw GPE number * GpeBlock - A GPE info block * * RETURN: A GPE EventInfo struct. NULL if not a valid GPE (The GpeNumber * is not within the specified GPE block) * * DESCRIPTION: Returns the EventInfo struct associated with this GPE. This is * the low-level implementation of EvGetGpeEventInfo. * ******************************************************************************/ ACPI_GPE_EVENT_INFO * AcpiEvLowGetGpeInfo ( UINT32 GpeNumber, ACPI_GPE_BLOCK_INFO *GpeBlock) { UINT32 GpeIndex; /* * Validate that the GpeNumber is within the specified GpeBlock. * (Two steps) */ if (!GpeBlock || (GpeNumber < GpeBlock->BlockBaseNumber)) { return (NULL); } GpeIndex = GpeNumber - GpeBlock->BlockBaseNumber; if (GpeIndex >= GpeBlock->GpeCount) { return (NULL); } return (&GpeBlock->EventInfo[GpeIndex]); } /******************************************************************************* * * FUNCTION: AcpiEvGetGpeEventInfo * * PARAMETERS: GpeDevice - Device node. NULL for GPE0/GPE1 * GpeNumber - Raw GPE number * * RETURN: A GPE EventInfo struct. NULL if not a valid GPE * * DESCRIPTION: Returns the EventInfo struct associated with this GPE. * Validates the GpeBlock and the GpeNumber * * Should be called only when the GPE lists are semaphore locked * and not subject to change. * ******************************************************************************/ ACPI_GPE_EVENT_INFO * AcpiEvGetGpeEventInfo ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber) { ACPI_OPERAND_OBJECT *ObjDesc; ACPI_GPE_EVENT_INFO *GpeInfo; UINT32 i; ACPI_FUNCTION_ENTRY (); /* A NULL GpeDevice means use the FADT-defined GPE block(s) */ if (!GpeDevice) { /* Examine GPE Block 0 and 1 (These blocks are permanent) */ for (i = 0; i < ACPI_MAX_GPE_BLOCKS; i++) { GpeInfo = AcpiEvLowGetGpeInfo (GpeNumber, AcpiGbl_GpeFadtBlocks[i]); if (GpeInfo) { return (GpeInfo); } } /* The GpeNumber was not in the range of either FADT GPE block */ return (NULL); } /* A Non-NULL GpeDevice means this is a GPE Block Device */ ObjDesc = AcpiNsGetAttachedObject ((ACPI_NAMESPACE_NODE *) GpeDevice); if (!ObjDesc || !ObjDesc->Device.GpeBlock) { return (NULL); } return (AcpiEvLowGetGpeInfo (GpeNumber, ObjDesc->Device.GpeBlock)); } /******************************************************************************* * * FUNCTION: AcpiEvGpeDetect * * PARAMETERS: GpeXruptList - Interrupt block for this interrupt. * Can have multiple GPE blocks attached. * * RETURN: INTERRUPT_HANDLED or INTERRUPT_NOT_HANDLED * * DESCRIPTION: Detect if any GP events have occurred. This function is * executed at interrupt level. * ******************************************************************************/ UINT32 AcpiEvGpeDetect ( ACPI_GPE_XRUPT_INFO *GpeXruptList) { ACPI_STATUS Status; ACPI_GPE_BLOCK_INFO *GpeBlock; ACPI_NAMESPACE_NODE *GpeDevice; ACPI_GPE_REGISTER_INFO *GpeRegisterInfo; ACPI_GPE_EVENT_INFO *GpeEventInfo; UINT32 GpeNumber; ACPI_GPE_HANDLER_INFO *GpeHandlerInfo; UINT32 IntStatus = ACPI_INTERRUPT_NOT_HANDLED; UINT8 EnabledStatusByte; UINT32 StatusReg; UINT32 EnableReg; ACPI_CPU_FLAGS Flags; UINT32 i; UINT32 j; ACPI_FUNCTION_NAME (EvGpeDetect); /* Check for the case where there are no GPEs */ if (!GpeXruptList) { return (IntStatus); } /* * We need to obtain the GPE lock for both the data structs and registers * Note: Not necessary to obtain the hardware lock, since the GPE * registers are owned by the GpeLock. */ Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock); /* Examine all GPE blocks attached to this interrupt level */ GpeBlock = GpeXruptList->GpeBlockListHead; while (GpeBlock) { GpeDevice = GpeBlock->Node; /* * Read all of the 8-bit GPE status and enable registers in this GPE * block, saving all of them. Find all currently active GP events. */ for (i = 0; i < GpeBlock->RegisterCount; i++) { /* Get the next status/enable pair */ GpeRegisterInfo = &GpeBlock->RegisterInfo[i]; /* * Optimization: If there are no GPEs enabled within this * register, we can safely ignore the entire register. */ if (!(GpeRegisterInfo->EnableForRun | GpeRegisterInfo->EnableForWake)) { ACPI_DEBUG_PRINT ((ACPI_DB_INTERRUPTS, "Ignore disabled registers for GPE %02X-%02X: " "RunEnable=%02X, WakeEnable=%02X\n", GpeRegisterInfo->BaseGpeNumber, GpeRegisterInfo->BaseGpeNumber + (ACPI_GPE_REGISTER_WIDTH - 1), GpeRegisterInfo->EnableForRun, GpeRegisterInfo->EnableForWake)); continue; } /* Read the Status Register */ Status = AcpiHwRead (&StatusReg, &GpeRegisterInfo->StatusAddress); if (ACPI_FAILURE (Status)) { goto UnlockAndExit; } /* Read the Enable Register */ Status = AcpiHwRead (&EnableReg, &GpeRegisterInfo->EnableAddress); if (ACPI_FAILURE (Status)) { goto UnlockAndExit; } ACPI_DEBUG_PRINT ((ACPI_DB_INTERRUPTS, "Read registers for GPE %02X-%02X: Status=%02X, Enable=%02X, " "RunEnable=%02X, WakeEnable=%02X\n", GpeRegisterInfo->BaseGpeNumber, GpeRegisterInfo->BaseGpeNumber + (ACPI_GPE_REGISTER_WIDTH - 1), StatusReg, EnableReg, GpeRegisterInfo->EnableForRun, GpeRegisterInfo->EnableForWake)); /* Check if there is anything active at all in this register */ EnabledStatusByte = (UINT8) (StatusReg & EnableReg); if (!EnabledStatusByte) { /* No active GPEs in this register, move on */ continue; } /* Now look at the individual GPEs in this byte register */ for (j = 0; j < ACPI_GPE_REGISTER_WIDTH; j++) { /* Examine one GPE bit */ GpeEventInfo = &GpeBlock->EventInfo[((ACPI_SIZE) i * ACPI_GPE_REGISTER_WIDTH) + j]; GpeNumber = j + GpeRegisterInfo->BaseGpeNumber; if (EnabledStatusByte & (1 << j)) { /* Invoke global event handler if present */ AcpiGpeCount++; if (AcpiGbl_GlobalEventHandler) { AcpiGbl_GlobalEventHandler (ACPI_EVENT_TYPE_GPE, GpeDevice, GpeNumber, AcpiGbl_GlobalEventHandlerContext); } /* Found an active GPE */ if (ACPI_GPE_DISPATCH_TYPE (GpeEventInfo->Flags) == ACPI_GPE_DISPATCH_RAW_HANDLER) { /* Dispatch the event to a raw handler */ GpeHandlerInfo = GpeEventInfo->Dispatch.Handler; /* * There is no protection around the namespace node * and the GPE handler to ensure a safe destruction * because: * 1. The namespace node is expected to always * exist after loading a table. * 2. The GPE handler is expected to be flushed by * AcpiOsWaitEventsComplete() before the * destruction. */ AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags); IntStatus |= GpeHandlerInfo->Address ( GpeDevice, GpeNumber, GpeHandlerInfo->Context); Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock); } else { /* * Dispatch the event to a standard handler or * method. */ IntStatus |= AcpiEvGpeDispatch (GpeDevice, GpeEventInfo, GpeNumber); } } } } GpeBlock = GpeBlock->Next; } UnlockAndExit: AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags); return (IntStatus); } /******************************************************************************* * * FUNCTION: AcpiEvAsynchExecuteGpeMethod * * PARAMETERS: Context (GpeEventInfo) - Info for this GPE * * RETURN: None * * DESCRIPTION: Perform the actual execution of a GPE control method. This * function is called from an invocation of AcpiOsExecute and * therefore does NOT execute at interrupt level - so that * the control method itself is not executed in the context of * an interrupt handler. * ******************************************************************************/ static void ACPI_SYSTEM_XFACE AcpiEvAsynchExecuteGpeMethod ( void *Context) { ACPI_GPE_EVENT_INFO *GpeEventInfo = Context; ACPI_STATUS Status = AE_OK; ACPI_EVALUATE_INFO *Info; ACPI_GPE_NOTIFY_INFO *Notify; ACPI_FUNCTION_TRACE (EvAsynchExecuteGpeMethod); /* Do the correct dispatch - normal method or implicit notify */ switch (ACPI_GPE_DISPATCH_TYPE (GpeEventInfo->Flags)) { case ACPI_GPE_DISPATCH_NOTIFY: /* * Implicit notify. * Dispatch a DEVICE_WAKE notify to the appropriate handler. * NOTE: the request is queued for execution after this method * completes. The notify handlers are NOT invoked synchronously * from this thread -- because handlers may in turn run other * control methods. * * June 2012: Expand implicit notify mechanism to support * notifies on multiple device objects. */ Notify = GpeEventInfo->Dispatch.NotifyList; while (ACPI_SUCCESS (Status) && Notify) { Status = AcpiEvQueueNotifyRequest ( Notify->DeviceNode, ACPI_NOTIFY_DEVICE_WAKE); Notify = Notify->Next; } break; case ACPI_GPE_DISPATCH_METHOD: /* Allocate the evaluation information block */ Info = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_EVALUATE_INFO)); if (!Info) { Status = AE_NO_MEMORY; } else { /* * Invoke the GPE Method (_Lxx, _Exx) i.e., evaluate the * _Lxx/_Exx control method that corresponds to this GPE */ Info->PrefixNode = GpeEventInfo->Dispatch.MethodNode; Info->Flags = ACPI_IGNORE_RETURN_VALUE; Status = AcpiNsEvaluate (Info); ACPI_FREE (Info); } if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "while evaluating GPE method [%4.4s]", AcpiUtGetNodeName (GpeEventInfo->Dispatch.MethodNode))); } break; default: goto ErrorExit; /* Should never happen */ } /* Defer enabling of GPE until all notify handlers are done */ Status = AcpiOsExecute (OSL_NOTIFY_HANDLER, AcpiEvAsynchEnableGpe, GpeEventInfo); if (ACPI_SUCCESS (Status)) { return_VOID; } ErrorExit: AcpiEvAsynchEnableGpe (GpeEventInfo); return_VOID; } /******************************************************************************* * * FUNCTION: AcpiEvAsynchEnableGpe * * PARAMETERS: Context (GpeEventInfo) - Info for this GPE * Callback from AcpiOsExecute * * RETURN: None * * DESCRIPTION: Asynchronous clear/enable for GPE. This allows the GPE to * complete (i.e., finish execution of Notify) * ******************************************************************************/ static void ACPI_SYSTEM_XFACE AcpiEvAsynchEnableGpe ( void *Context) { ACPI_GPE_EVENT_INFO *GpeEventInfo = Context; ACPI_CPU_FLAGS Flags; Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock); (void) AcpiEvFinishGpe (GpeEventInfo); AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags); return; } /******************************************************************************* * * FUNCTION: AcpiEvFinishGpe * * PARAMETERS: GpeEventInfo - Info for this GPE * * RETURN: Status * * DESCRIPTION: Clear/Enable a GPE. Common code that is used after execution * of a GPE method or a synchronous or asynchronous GPE handler. * ******************************************************************************/ ACPI_STATUS AcpiEvFinishGpe ( ACPI_GPE_EVENT_INFO *GpeEventInfo) { ACPI_STATUS Status; if ((GpeEventInfo->Flags & ACPI_GPE_XRUPT_TYPE_MASK) == ACPI_GPE_LEVEL_TRIGGERED) { /* * GPE is level-triggered, we clear the GPE status bit after * handling the event. */ Status = AcpiHwClearGpe (GpeEventInfo); if (ACPI_FAILURE (Status)) { return (Status); } } /* * Enable this GPE, conditionally. This means that the GPE will * only be physically enabled if the EnableMask bit is set * in the EventInfo. */ (void) AcpiHwLowSetGpe (GpeEventInfo, ACPI_GPE_CONDITIONAL_ENABLE); + GpeEventInfo->DisableForDispatch = FALSE; return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvGpeDispatch * * PARAMETERS: GpeDevice - Device node. NULL for GPE0/GPE1 * GpeEventInfo - Info for this GPE * GpeNumber - Number relative to the parent GPE block * * RETURN: INTERRUPT_HANDLED or INTERRUPT_NOT_HANDLED * * DESCRIPTION: Dispatch a General Purpose Event to either a function (e.g. EC) * or method (e.g. _Lxx/_Exx) handler. * * This function executes at interrupt level. * ******************************************************************************/ UINT32 AcpiEvGpeDispatch ( ACPI_NAMESPACE_NODE *GpeDevice, ACPI_GPE_EVENT_INFO *GpeEventInfo, UINT32 GpeNumber) { ACPI_STATUS Status; UINT32 ReturnValue; ACPI_FUNCTION_TRACE (EvGpeDispatch); /* * Always disable the GPE so that it does not keep firing before * any asynchronous activity completes (either from the execution * of a GPE method or an asynchronous GPE handler.) * * If there is no handler or method to run, just disable the * GPE and leave it disabled permanently to prevent further such * pointless events from firing. */ Status = AcpiHwLowSetGpe (GpeEventInfo, ACPI_GPE_DISABLE); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "Unable to disable GPE %02X", GpeNumber)); return_UINT32 (ACPI_INTERRUPT_NOT_HANDLED); } /* * If edge-triggered, clear the GPE status bit now. Note that * level-triggered events are cleared after the GPE is serviced. */ if ((GpeEventInfo->Flags & ACPI_GPE_XRUPT_TYPE_MASK) == ACPI_GPE_EDGE_TRIGGERED) { Status = AcpiHwClearGpe (GpeEventInfo); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "Unable to clear GPE %02X", GpeNumber)); (void) AcpiHwLowSetGpe ( GpeEventInfo, ACPI_GPE_CONDITIONAL_ENABLE); return_UINT32 (ACPI_INTERRUPT_NOT_HANDLED); } } + + GpeEventInfo->DisableForDispatch = TRUE; /* * Dispatch the GPE to either an installed handler or the control * method associated with this GPE (_Lxx or _Exx). If a handler * exists, we invoke it and do not attempt to run the method. * If there is neither a handler nor a method, leave the GPE * disabled. */ switch (ACPI_GPE_DISPATCH_TYPE (GpeEventInfo->Flags)) { case ACPI_GPE_DISPATCH_HANDLER: /* Invoke the installed handler (at interrupt level) */ ReturnValue = GpeEventInfo->Dispatch.Handler->Address ( GpeDevice, GpeNumber, GpeEventInfo->Dispatch.Handler->Context); /* If requested, clear (if level-triggered) and reenable the GPE */ if (ReturnValue & ACPI_REENABLE_GPE) { (void) AcpiEvFinishGpe (GpeEventInfo); } break; case ACPI_GPE_DISPATCH_METHOD: case ACPI_GPE_DISPATCH_NOTIFY: /* * Execute the method associated with the GPE * NOTE: Level-triggered GPEs are cleared after the method completes. */ Status = AcpiOsExecute (OSL_GPE_HANDLER, AcpiEvAsynchExecuteGpeMethod, GpeEventInfo); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "Unable to queue handler for GPE %02X - event disabled", GpeNumber)); } break; default: /* * No handler or method to run! * 03/2010: This case should no longer be possible. We will not allow * a GPE to be enabled if it has no handler or method. */ ACPI_ERROR ((AE_INFO, "No handler or method for GPE %02X, disabling event", GpeNumber)); break; } return_UINT32 (ACPI_INTERRUPT_HANDLED); } #endif /* !ACPI_REDUCED_HARDWARE */ Index: vendor-sys/acpica/dist/source/components/events/evgpeinit.c =================================================================== --- vendor-sys/acpica/dist/source/components/events/evgpeinit.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/events/evgpeinit.c (revision 305162) @@ -1,466 +1,469 @@ /****************************************************************************** * * Module Name: evgpeinit - System GPE initialization and update * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acevents.h" #include "acnamesp.h" #define _COMPONENT ACPI_EVENTS ACPI_MODULE_NAME ("evgpeinit") #if (!ACPI_REDUCED_HARDWARE) /* Entire module */ /* * Note: History of _PRW support in ACPICA * * Originally (2000 - 2010), the GPE initialization code performed a walk of * the entire namespace to execute the _PRW methods and detect all GPEs * capable of waking the system. * * As of 10/2010, the _PRW method execution has been removed since it is * actually unnecessary. The host OS must in fact execute all _PRW methods * in order to identify the device/power-resource dependencies. We now put * the onus on the host OS to identify the wake GPEs as part of this process * and to inform ACPICA of these GPEs via the AcpiSetupGpeForWake interface. This * not only reduces the complexity of the ACPICA initialization code, but in * some cases (on systems with very large namespaces) it should reduce the * kernel boot time as well. */ /******************************************************************************* * * FUNCTION: AcpiEvGpeInitialize * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Initialize the GPE data structures and the FADT GPE 0/1 blocks * ******************************************************************************/ ACPI_STATUS AcpiEvGpeInitialize ( void) { UINT32 RegisterCount0 = 0; UINT32 RegisterCount1 = 0; UINT32 GpeNumberMax = 0; ACPI_STATUS Status; ACPI_FUNCTION_TRACE (EvGpeInitialize); ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INIT, "Initializing General Purpose Events (GPEs):\n")); Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* * Initialize the GPE Block(s) defined in the FADT * * Why the GPE register block lengths are divided by 2: From the ACPI * Spec, section "General-Purpose Event Registers", we have: * * "Each register block contains two registers of equal length * GPEx_STS and GPEx_EN (where x is 0 or 1). The length of the * GPE0_STS and GPE0_EN registers is equal to half the GPE0_LEN * The length of the GPE1_STS and GPE1_EN registers is equal to * half the GPE1_LEN. If a generic register block is not supported * then its respective block pointer and block length values in the * FADT table contain zeros. The GPE0_LEN and GPE1_LEN do not need * to be the same size." */ /* * Determine the maximum GPE number for this machine. * * Note: both GPE0 and GPE1 are optional, and either can exist without * the other. * * If EITHER the register length OR the block address are zero, then that * particular block is not supported. */ if (AcpiGbl_FADT.Gpe0BlockLength && AcpiGbl_FADT.XGpe0Block.Address) { /* GPE block 0 exists (has both length and address > 0) */ RegisterCount0 = (UINT16) (AcpiGbl_FADT.Gpe0BlockLength / 2); GpeNumberMax = (RegisterCount0 * ACPI_GPE_REGISTER_WIDTH) - 1; /* Install GPE Block 0 */ Status = AcpiEvCreateGpeBlock (AcpiGbl_FadtGpeDevice, AcpiGbl_FADT.XGpe0Block.Address, AcpiGbl_FADT.XGpe0Block.SpaceId, RegisterCount0, 0, AcpiGbl_FADT.SciInterrupt, &AcpiGbl_GpeFadtBlocks[0]); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "Could not create GPE Block 0")); } } if (AcpiGbl_FADT.Gpe1BlockLength && AcpiGbl_FADT.XGpe1Block.Address) { /* GPE block 1 exists (has both length and address > 0) */ RegisterCount1 = (UINT16) (AcpiGbl_FADT.Gpe1BlockLength / 2); /* Check for GPE0/GPE1 overlap (if both banks exist) */ if ((RegisterCount0) && (GpeNumberMax >= AcpiGbl_FADT.Gpe1Base)) { ACPI_ERROR ((AE_INFO, "GPE0 block (GPE 0 to %u) overlaps the GPE1 block " "(GPE %u to %u) - Ignoring GPE1", GpeNumberMax, AcpiGbl_FADT.Gpe1Base, AcpiGbl_FADT.Gpe1Base + ((RegisterCount1 * ACPI_GPE_REGISTER_WIDTH) - 1))); /* Ignore GPE1 block by setting the register count to zero */ RegisterCount1 = 0; } else { /* Install GPE Block 1 */ Status = AcpiEvCreateGpeBlock (AcpiGbl_FadtGpeDevice, AcpiGbl_FADT.XGpe1Block.Address, AcpiGbl_FADT.XGpe1Block.SpaceId, RegisterCount1, AcpiGbl_FADT.Gpe1Base, AcpiGbl_FADT.SciInterrupt, &AcpiGbl_GpeFadtBlocks[1]); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "Could not create GPE Block 1")); } /* * GPE0 and GPE1 do not have to be contiguous in the GPE number * space. However, GPE0 always starts at GPE number zero. */ GpeNumberMax = AcpiGbl_FADT.Gpe1Base + ((RegisterCount1 * ACPI_GPE_REGISTER_WIDTH) - 1); } } /* Exit if there are no GPE registers */ if ((RegisterCount0 + RegisterCount1) == 0) { /* GPEs are not required by ACPI, this is OK */ ACPI_DEBUG_PRINT ((ACPI_DB_INIT, "There are no GPE blocks defined in the FADT\n")); Status = AE_OK; goto Cleanup; } Cleanup: (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvUpdateGpes * * PARAMETERS: TableOwnerId - ID of the newly-loaded ACPI table * * RETURN: None * * DESCRIPTION: Check for new GPE methods (_Lxx/_Exx) made available as a * result of a Load() or LoadTable() operation. If new GPE * methods have been installed, register the new methods. * ******************************************************************************/ void AcpiEvUpdateGpes ( ACPI_OWNER_ID TableOwnerId) { ACPI_GPE_XRUPT_INFO *GpeXruptInfo; ACPI_GPE_BLOCK_INFO *GpeBlock; ACPI_GPE_WALK_INFO WalkInfo; ACPI_STATUS Status = AE_OK; /* * Find any _Lxx/_Exx GPE methods that have just been loaded. * * Any GPEs that correspond to new _Lxx/_Exx methods are immediately * enabled. * * Examine the namespace underneath each GpeDevice within the * GpeBlock lists. */ Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS); if (ACPI_FAILURE (Status)) { return; } WalkInfo.Count = 0; WalkInfo.OwnerId = TableOwnerId; WalkInfo.ExecuteByOwnerId = TRUE; /* Walk the interrupt level descriptor list */ GpeXruptInfo = AcpiGbl_GpeXruptListHead; while (GpeXruptInfo) { /* Walk all Gpe Blocks attached to this interrupt level */ GpeBlock = GpeXruptInfo->GpeBlockListHead; while (GpeBlock) { WalkInfo.GpeBlock = GpeBlock; WalkInfo.GpeDevice = GpeBlock->Node; Status = AcpiNsWalkNamespace (ACPI_TYPE_METHOD, WalkInfo.GpeDevice, ACPI_UINT32_MAX, ACPI_NS_WALK_NO_UNLOCK, AcpiEvMatchGpeMethod, NULL, &WalkInfo, NULL); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "While decoding _Lxx/_Exx methods")); } GpeBlock = GpeBlock->Next; } GpeXruptInfo = GpeXruptInfo->Next; } if (WalkInfo.Count) { ACPI_INFO (("Enabled %u new GPEs", WalkInfo.Count)); } (void) AcpiUtReleaseMutex (ACPI_MTX_EVENTS); return; } /******************************************************************************* * * FUNCTION: AcpiEvMatchGpeMethod * * PARAMETERS: Callback from WalkNamespace * * RETURN: Status * * DESCRIPTION: Called from AcpiWalkNamespace. Expects each object to be a * control method under the _GPE portion of the namespace. * Extract the name and GPE type from the object, saving this * information for quick lookup during GPE dispatch. Allows a * per-OwnerId evaluation if ExecuteByOwnerId is TRUE in the * WalkInfo parameter block. * * The name of each GPE control method is of the form: * "_Lxx" or "_Exx", where: * L - means that the GPE is level triggered * E - means that the GPE is edge triggered * xx - is the GPE number [in HEX] * * If WalkInfo->ExecuteByOwnerId is TRUE, we only execute examine GPE methods * with that owner. * ******************************************************************************/ ACPI_STATUS AcpiEvMatchGpeMethod ( ACPI_HANDLE ObjHandle, UINT32 Level, void *Context, void **ReturnValue) { ACPI_NAMESPACE_NODE *MethodNode = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, ObjHandle); ACPI_GPE_WALK_INFO *WalkInfo = ACPI_CAST_PTR (ACPI_GPE_WALK_INFO, Context); ACPI_GPE_EVENT_INFO *GpeEventInfo; + ACPI_STATUS Status; UINT32 GpeNumber; + UINT8 TempGpeNumber; char Name[ACPI_NAME_SIZE + 1]; UINT8 Type; ACPI_FUNCTION_TRACE (EvMatchGpeMethod); /* Check if requested OwnerId matches this OwnerId */ if ((WalkInfo->ExecuteByOwnerId) && (MethodNode->OwnerId != WalkInfo->OwnerId)) { return_ACPI_STATUS (AE_OK); } /* * Match and decode the _Lxx and _Exx GPE method names * * 1) Extract the method name and null terminate it */ ACPI_MOVE_32_TO_32 (Name, &MethodNode->Name.Integer); Name[ACPI_NAME_SIZE] = 0; /* 2) Name must begin with an underscore */ if (Name[0] != '_') { return_ACPI_STATUS (AE_OK); /* Ignore this method */ } /* * 3) Edge/Level determination is based on the 2nd character * of the method name */ switch (Name[1]) { case 'L': Type = ACPI_GPE_LEVEL_TRIGGERED; break; case 'E': Type = ACPI_GPE_EDGE_TRIGGERED; break; default: /* Unknown method type, just ignore it */ ACPI_DEBUG_PRINT ((ACPI_DB_LOAD, "Ignoring unknown GPE method type: %s " "(name not of form _Lxx or _Exx)", Name)); return_ACPI_STATUS (AE_OK); } /* 4) The last two characters of the name are the hex GPE Number */ - GpeNumber = strtoul (&Name[2], NULL, 16); - if (GpeNumber == ACPI_UINT32_MAX) + Status = AcpiUtAsciiToHexByte (&Name[2], &TempGpeNumber); + if (ACPI_FAILURE (Status)) { /* Conversion failed; invalid method, just ignore it */ ACPI_DEBUG_PRINT ((ACPI_DB_LOAD, "Could not extract GPE number from name: %s " "(name is not of form _Lxx or _Exx)", Name)); return_ACPI_STATUS (AE_OK); } /* Ensure that we have a valid GPE number for this GPE block */ + GpeNumber = (UINT32) TempGpeNumber; GpeEventInfo = AcpiEvLowGetGpeInfo (GpeNumber, WalkInfo->GpeBlock); if (!GpeEventInfo) { /* * This GpeNumber is not valid for this GPE block, just ignore it. * However, it may be valid for a different GPE block, since GPE0 * and GPE1 methods both appear under \_GPE. */ return_ACPI_STATUS (AE_OK); } if ((ACPI_GPE_DISPATCH_TYPE (GpeEventInfo->Flags) == ACPI_GPE_DISPATCH_HANDLER) || (ACPI_GPE_DISPATCH_TYPE (GpeEventInfo->Flags) == ACPI_GPE_DISPATCH_RAW_HANDLER)) { /* If there is already a handler, ignore this GPE method */ return_ACPI_STATUS (AE_OK); } if (ACPI_GPE_DISPATCH_TYPE (GpeEventInfo->Flags) == ACPI_GPE_DISPATCH_METHOD) { /* * If there is already a method, ignore this method. But check * for a type mismatch (if both the _Lxx AND _Exx exist) */ if (Type != (GpeEventInfo->Flags & ACPI_GPE_XRUPT_TYPE_MASK)) { ACPI_ERROR ((AE_INFO, "For GPE 0x%.2X, found both _L%2.2X and _E%2.2X methods", GpeNumber, GpeNumber, GpeNumber)); } return_ACPI_STATUS (AE_OK); } /* Disable the GPE in case it's been enabled already. */ (void) AcpiHwLowSetGpe (GpeEventInfo, ACPI_GPE_DISABLE); /* * Add the GPE information from above to the GpeEventInfo block for * use during dispatch of this GPE. */ GpeEventInfo->Flags &= ~(ACPI_GPE_DISPATCH_MASK); GpeEventInfo->Flags |= (UINT8) (Type | ACPI_GPE_DISPATCH_METHOD); GpeEventInfo->Dispatch.MethodNode = MethodNode; ACPI_DEBUG_PRINT ((ACPI_DB_LOAD, "Registered GPE method %s as GPE number 0x%.2X\n", Name, GpeNumber)); return_ACPI_STATUS (AE_OK); } #endif /* !ACPI_REDUCED_HARDWARE */ Index: vendor-sys/acpica/dist/source/components/events/evrgnini.c =================================================================== --- vendor-sys/acpica/dist/source/components/events/evrgnini.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/events/evrgnini.c (revision 305162) @@ -1,686 +1,687 @@ /****************************************************************************** * * Module Name: evrgnini- ACPI AddressSpace (OpRegion) init * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acevents.h" #include "acnamesp.h" #define _COMPONENT ACPI_EVENTS ACPI_MODULE_NAME ("evrgnini") /* Local prototypes */ static BOOLEAN AcpiEvIsPciRootBridge ( ACPI_NAMESPACE_NODE *Node); /******************************************************************************* * * FUNCTION: AcpiEvSystemMemoryRegionSetup * * PARAMETERS: Handle - Region we are interested in * Function - Start or stop * HandlerContext - Address space handler context * RegionContext - Region specific context * * RETURN: Status * * DESCRIPTION: Setup a SystemMemory operation region * ******************************************************************************/ ACPI_STATUS AcpiEvSystemMemoryRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext) { ACPI_OPERAND_OBJECT *RegionDesc = (ACPI_OPERAND_OBJECT *) Handle; ACPI_MEM_SPACE_CONTEXT *LocalRegionContext; ACPI_FUNCTION_TRACE (EvSystemMemoryRegionSetup); if (Function == ACPI_REGION_DEACTIVATE) { if (*RegionContext) { LocalRegionContext = (ACPI_MEM_SPACE_CONTEXT *) *RegionContext; /* Delete a cached mapping if present */ if (LocalRegionContext->MappedLength) { AcpiOsUnmapMemory (LocalRegionContext->MappedLogicalAddress, LocalRegionContext->MappedLength); } ACPI_FREE (LocalRegionContext); *RegionContext = NULL; } return_ACPI_STATUS (AE_OK); } /* Create a new context */ LocalRegionContext = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_MEM_SPACE_CONTEXT)); if (!(LocalRegionContext)) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Save the region length and address for use in the handler */ LocalRegionContext->Length = RegionDesc->Region.Length; LocalRegionContext->Address = RegionDesc->Region.Address; *RegionContext = LocalRegionContext; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvIoSpaceRegionSetup * * PARAMETERS: Handle - Region we are interested in * Function - Start or stop * HandlerContext - Address space handler context * RegionContext - Region specific context * * RETURN: Status * * DESCRIPTION: Setup a IO operation region * ******************************************************************************/ ACPI_STATUS AcpiEvIoSpaceRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext) { ACPI_FUNCTION_TRACE (EvIoSpaceRegionSetup); if (Function == ACPI_REGION_DEACTIVATE) { *RegionContext = NULL; } else { *RegionContext = HandlerContext; } return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvPciConfigRegionSetup * * PARAMETERS: Handle - Region we are interested in * Function - Start or stop * HandlerContext - Address space handler context * RegionContext - Region specific context * * RETURN: Status * * DESCRIPTION: Setup a PCI_Config operation region * * MUTEX: Assumes namespace is not locked * ******************************************************************************/ ACPI_STATUS AcpiEvPciConfigRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext) { ACPI_STATUS Status = AE_OK; UINT64 PciValue; ACPI_PCI_ID *PciId = *RegionContext; ACPI_OPERAND_OBJECT *HandlerObj; ACPI_NAMESPACE_NODE *ParentNode; ACPI_NAMESPACE_NODE *PciRootNode; ACPI_NAMESPACE_NODE *PciDeviceNode; ACPI_OPERAND_OBJECT *RegionObj = (ACPI_OPERAND_OBJECT *) Handle; ACPI_FUNCTION_TRACE (EvPciConfigRegionSetup); HandlerObj = RegionObj->Region.Handler; if (!HandlerObj) { /* * No installed handler. This shouldn't happen because the dispatch * routine checks before we get here, but we check again just in case. */ ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION, "Attempting to init a region %p, with no handler\n", RegionObj)); return_ACPI_STATUS (AE_NOT_EXIST); } *RegionContext = NULL; if (Function == ACPI_REGION_DEACTIVATE) { if (PciId) { ACPI_FREE (PciId); } return_ACPI_STATUS (Status); } ParentNode = RegionObj->Region.Node->Parent; /* * Get the _SEG and _BBN values from the device upon which the handler * is installed. * * We need to get the _SEG and _BBN objects relative to the PCI BUS device. * This is the device the handler has been registered to handle. */ /* * If the AddressSpace.Node is still pointing to the root, we need * to scan upward for a PCI Root bridge and re-associate the OpRegion * handlers with that device. */ if (HandlerObj->AddressSpace.Node == AcpiGbl_RootNode) { /* Start search from the parent object */ PciRootNode = ParentNode; while (PciRootNode != AcpiGbl_RootNode) { /* Get the _HID/_CID in order to detect a RootBridge */ if (AcpiEvIsPciRootBridge (PciRootNode)) { /* Install a handler for this PCI root bridge */ Status = AcpiInstallAddressSpaceHandler ( (ACPI_HANDLE) PciRootNode, ACPI_ADR_SPACE_PCI_CONFIG, ACPI_DEFAULT_HANDLER, NULL, NULL); if (ACPI_FAILURE (Status)) { if (Status == AE_SAME_HANDLER) { /* * It is OK if the handler is already installed on the * root bridge. Still need to return a context object * for the new PCI_Config operation region, however. */ Status = AE_OK; } else { ACPI_EXCEPTION ((AE_INFO, Status, "Could not install PciConfig handler " "for Root Bridge %4.4s", AcpiUtGetNodeName (PciRootNode))); } } break; } PciRootNode = PciRootNode->Parent; } /* PCI root bridge not found, use namespace root node */ } else { PciRootNode = HandlerObj->AddressSpace.Node; } /* * If this region is now initialized, we are done. * (InstallAddressSpaceHandler could have initialized it) */ if (RegionObj->Region.Flags & AOPOBJ_SETUP_COMPLETE) { return_ACPI_STATUS (AE_OK); } /* Region is still not initialized. Create a new context */ PciId = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_PCI_ID)); if (!PciId) { return_ACPI_STATUS (AE_NO_MEMORY); } /* * For PCI_Config space access, we need the segment, bus, device and * function numbers. Acquire them here. * * Find the parent device object. (This allows the operation region to be * within a subscope under the device, such as a control method.) */ PciDeviceNode = RegionObj->Region.Node; while (PciDeviceNode && (PciDeviceNode->Type != ACPI_TYPE_DEVICE)) { PciDeviceNode = PciDeviceNode->Parent; } if (!PciDeviceNode) { ACPI_FREE (PciId); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } /* * Get the PCI device and function numbers from the _ADR object * contained in the parent's scope. */ Status = AcpiUtEvaluateNumericObject (METHOD_NAME__ADR, PciDeviceNode, &PciValue); /* * The default is zero, and since the allocation above zeroed the data, * just do nothing on failure. */ if (ACPI_SUCCESS (Status)) { PciId->Device = ACPI_HIWORD (ACPI_LODWORD (PciValue)); PciId->Function = ACPI_LOWORD (ACPI_LODWORD (PciValue)); } /* The PCI segment number comes from the _SEG method */ Status = AcpiUtEvaluateNumericObject (METHOD_NAME__SEG, PciRootNode, &PciValue); if (ACPI_SUCCESS (Status)) { PciId->Segment = ACPI_LOWORD (PciValue); } /* The PCI bus number comes from the _BBN method */ Status = AcpiUtEvaluateNumericObject (METHOD_NAME__BBN, PciRootNode, &PciValue); if (ACPI_SUCCESS (Status)) { PciId->Bus = ACPI_LOWORD (PciValue); } /* Complete/update the PCI ID for this device */ Status = AcpiHwDerivePciId (PciId, PciRootNode, RegionObj->Region.Node); if (ACPI_FAILURE (Status)) { ACPI_FREE (PciId); return_ACPI_STATUS (Status); } *RegionContext = PciId; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvIsPciRootBridge * * PARAMETERS: Node - Device node being examined * * RETURN: TRUE if device is a PCI/PCI-Express Root Bridge * * DESCRIPTION: Determine if the input device represents a PCI Root Bridge by * examining the _HID and _CID for the device. * ******************************************************************************/ static BOOLEAN AcpiEvIsPciRootBridge ( ACPI_NAMESPACE_NODE *Node) { ACPI_STATUS Status; ACPI_PNP_DEVICE_ID *Hid; ACPI_PNP_DEVICE_ID_LIST *Cid; UINT32 i; BOOLEAN Match; /* Get the _HID and check for a PCI Root Bridge */ Status = AcpiUtExecute_HID (Node, &Hid); if (ACPI_FAILURE (Status)) { return (FALSE); } Match = AcpiUtIsPciRootBridge (Hid->String); ACPI_FREE (Hid); if (Match) { return (TRUE); } /* The _HID did not match. Get the _CID and check for a PCI Root Bridge */ Status = AcpiUtExecute_CID (Node, &Cid); if (ACPI_FAILURE (Status)) { return (FALSE); } /* Check all _CIDs in the returned list */ for (i = 0; i < Cid->Count; i++) { if (AcpiUtIsPciRootBridge (Cid->Ids[i].String)) { ACPI_FREE (Cid); return (TRUE); } } ACPI_FREE (Cid); return (FALSE); } /******************************************************************************* * * FUNCTION: AcpiEvPciBarRegionSetup * * PARAMETERS: Handle - Region we are interested in * Function - Start or stop * HandlerContext - Address space handler context * RegionContext - Region specific context * * RETURN: Status * * DESCRIPTION: Setup a PciBAR operation region * * MUTEX: Assumes namespace is not locked * ******************************************************************************/ ACPI_STATUS AcpiEvPciBarRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext) { ACPI_FUNCTION_TRACE (EvPciBarRegionSetup); return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvCmosRegionSetup * * PARAMETERS: Handle - Region we are interested in * Function - Start or stop * HandlerContext - Address space handler context * RegionContext - Region specific context * * RETURN: Status * * DESCRIPTION: Setup a CMOS operation region * * MUTEX: Assumes namespace is not locked * ******************************************************************************/ ACPI_STATUS AcpiEvCmosRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext) { ACPI_FUNCTION_TRACE (EvCmosRegionSetup); return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvDefaultRegionSetup * * PARAMETERS: Handle - Region we are interested in * Function - Start or stop * HandlerContext - Address space handler context * RegionContext - Region specific context * * RETURN: Status * * DESCRIPTION: Default region initialization * ******************************************************************************/ ACPI_STATUS AcpiEvDefaultRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext) { ACPI_FUNCTION_TRACE (EvDefaultRegionSetup); if (Function == ACPI_REGION_DEACTIVATE) { *RegionContext = NULL; } else { *RegionContext = HandlerContext; } return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiEvInitializeRegion * * PARAMETERS: RegionObj - Region we are initializing * AcpiNsLocked - Is namespace locked? * * RETURN: Status * * DESCRIPTION: Initializes the region, finds any _REG methods and saves them * for execution at a later time * * Get the appropriate address space handler for a newly * created region. * * This also performs address space specific initialization. For * example, PCI regions must have an _ADR object that contains * a PCI address in the scope of the definition. This address is * required to perform an access to PCI config space. * * MUTEX: Interpreter should be unlocked, because we may run the _REG * method for this region. * ******************************************************************************/ ACPI_STATUS AcpiEvInitializeRegion ( ACPI_OPERAND_OBJECT *RegionObj, BOOLEAN AcpiNsLocked) { ACPI_OPERAND_OBJECT *HandlerObj; ACPI_OPERAND_OBJECT *ObjDesc; ACPI_ADR_SPACE_TYPE SpaceId; ACPI_NAMESPACE_NODE *Node; ACPI_STATUS Status; ACPI_FUNCTION_TRACE_U32 (EvInitializeRegion, AcpiNsLocked); if (!RegionObj) { return_ACPI_STATUS (AE_BAD_PARAMETER); } if (RegionObj->Common.Flags & AOPOBJ_OBJECT_INITIALIZED) { return_ACPI_STATUS (AE_OK); } RegionObj->Common.Flags |= AOPOBJ_OBJECT_INITIALIZED; Node = RegionObj->Region.Node->Parent; SpaceId = RegionObj->Region.SpaceId; /* * The following loop depends upon the root Node having no parent * ie: AcpiGbl_RootNode->Parent being set to NULL */ while (Node) { /* Check to see if a handler exists */ HandlerObj = NULL; ObjDesc = AcpiNsGetAttachedObject (Node); if (ObjDesc) { /* Can only be a handler if the object exists */ switch (Node->Type) { case ACPI_TYPE_DEVICE: case ACPI_TYPE_PROCESSOR: case ACPI_TYPE_THERMAL: HandlerObj = ObjDesc->CommonNotify.Handler; break; case ACPI_TYPE_METHOD: /* * If we are executing module level code, the original * Node's object was replaced by this Method object and we * saved the handler in the method object. * * See AcpiNsExecModuleCode */ - if (ObjDesc->Method.InfoFlags & ACPI_METHOD_MODULE_LEVEL) + if (!AcpiGbl_ParseTableAsTermList && + ObjDesc->Method.InfoFlags & ACPI_METHOD_MODULE_LEVEL) { HandlerObj = ObjDesc->Method.Dispatch.Handler; } break; default: /* Ignore other objects */ break; } HandlerObj = AcpiEvFindRegionHandler (SpaceId, HandlerObj); if (HandlerObj) { /* Found correct handler */ ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION, "Found handler %p for region %p in obj %p\n", HandlerObj, RegionObj, ObjDesc)); Status = AcpiEvAttachRegion (HandlerObj, RegionObj, AcpiNsLocked); /* * Tell all users that this region is usable by * running the _REG method */ if (AcpiNsLocked) { Status = AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } Status = AcpiEvExecuteRegMethod (RegionObj, ACPI_REG_CONNECT); if (AcpiNsLocked) { Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } return_ACPI_STATUS (AE_OK); } } /* This node does not have the handler we need; Pop up one level */ Node = Node->Parent; } /* If we get here, there is no handler for this region */ ACPI_DEBUG_PRINT ((ACPI_DB_OPREGION, "No handler for RegionType %s(%X) (RegionObj %p)\n", AcpiUtGetRegionName (SpaceId), SpaceId, RegionObj)); return_ACPI_STATUS (AE_NOT_EXIST); } Index: vendor-sys/acpica/dist/source/components/events/evxfgpe.c =================================================================== --- vendor-sys/acpica/dist/source/components/events/evxfgpe.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/events/evxfgpe.c (revision 305162) @@ -1,1101 +1,1153 @@ /****************************************************************************** * * Module Name: evxfgpe - External Interfaces for General Purpose Events (GPEs) * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #define EXPORT_ACPI_INTERFACES #include "acpi.h" #include "accommon.h" #include "acevents.h" #include "acnamesp.h" #define _COMPONENT ACPI_EVENTS ACPI_MODULE_NAME ("evxfgpe") #if (!ACPI_REDUCED_HARDWARE) /* Entire module */ /******************************************************************************* * * FUNCTION: AcpiUpdateAllGpes * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Complete GPE initialization and enable all GPEs that have * associated _Lxx or _Exx methods and are not pointed to by any * device _PRW methods (this indicates that these GPEs are * generally intended for system or device wakeup. Such GPEs * have to be enabled directly when the devices whose _PRW * methods point to them are set up for wakeup signaling.) * * NOTE: Should be called after any GPEs are added to the system. Primarily, * after the system _PRW methods have been run, but also after a GPE Block * Device has been added or if any new GPE methods have been added via a * dynamic table load. * ******************************************************************************/ ACPI_STATUS AcpiUpdateAllGpes ( void) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (AcpiUpdateAllGpes); Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } if (AcpiGbl_AllGpesInitialized) { goto UnlockAndExit; } Status = AcpiEvWalkGpeList (AcpiEvInitializeGpeBlock, NULL); if (ACPI_SUCCESS (Status)) { AcpiGbl_AllGpesInitialized = TRUE; } UnlockAndExit: (void) AcpiUtReleaseMutex (ACPI_MTX_EVENTS); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiUpdateAllGpes) /******************************************************************************* * * FUNCTION: AcpiEnableGpe * * PARAMETERS: GpeDevice - Parent GPE Device. NULL for GPE0/GPE1 * GpeNumber - GPE level within the GPE block * * RETURN: Status * * DESCRIPTION: Add a reference to a GPE. On the first reference, the GPE is * hardware-enabled. * ******************************************************************************/ ACPI_STATUS AcpiEnableGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber) { ACPI_STATUS Status = AE_BAD_PARAMETER; ACPI_GPE_EVENT_INFO *GpeEventInfo; ACPI_CPU_FLAGS Flags; ACPI_FUNCTION_TRACE (AcpiEnableGpe); Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock); /* * Ensure that we have a valid GPE number and that there is some way * of handling the GPE (handler or a GPE method). In other words, we * won't allow a valid GPE to be enabled if there is no way to handle it. */ GpeEventInfo = AcpiEvGetGpeEventInfo (GpeDevice, GpeNumber); if (GpeEventInfo) { if (ACPI_GPE_DISPATCH_TYPE (GpeEventInfo->Flags) != ACPI_GPE_DISPATCH_NONE) { Status = AcpiEvAddGpeReference (GpeEventInfo); } else { Status = AE_NO_HANDLER; } } AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiEnableGpe) /******************************************************************************* * * FUNCTION: AcpiDisableGpe * * PARAMETERS: GpeDevice - Parent GPE Device. NULL for GPE0/GPE1 * GpeNumber - GPE level within the GPE block * * RETURN: Status * * DESCRIPTION: Remove a reference to a GPE. When the last reference is * removed, only then is the GPE disabled (for runtime GPEs), or * the GPE mask bit disabled (for wake GPEs) * ******************************************************************************/ ACPI_STATUS AcpiDisableGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber) { ACPI_STATUS Status = AE_BAD_PARAMETER; ACPI_GPE_EVENT_INFO *GpeEventInfo; ACPI_CPU_FLAGS Flags; ACPI_FUNCTION_TRACE (AcpiDisableGpe); Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock); /* Ensure that we have a valid GPE number */ GpeEventInfo = AcpiEvGetGpeEventInfo (GpeDevice, GpeNumber); if (GpeEventInfo) { Status = AcpiEvRemoveGpeReference (GpeEventInfo); } AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiDisableGpe) /******************************************************************************* * * FUNCTION: AcpiSetGpe * * PARAMETERS: GpeDevice - Parent GPE Device. NULL for GPE0/GPE1 * GpeNumber - GPE level within the GPE block * Action - ACPI_GPE_ENABLE or ACPI_GPE_DISABLE * * RETURN: Status * * DESCRIPTION: Enable or disable an individual GPE. This function bypasses * the reference count mechanism used in the AcpiEnableGpe(), * AcpiDisableGpe() interfaces. * This API is typically used by the GPE raw handler mode driver * to switch between the polling mode and the interrupt mode after * the driver has enabled the GPE. * The APIs should be invoked in this order: * AcpiEnableGpe() <- Ensure the reference count > 0 * AcpiSetGpe(ACPI_GPE_DISABLE) <- Enter polling mode * AcpiSetGpe(ACPI_GPE_ENABLE) <- Leave polling mode * AcpiDisableGpe() <- Decrease the reference count * * Note: If a GPE is shared by 2 silicon components, then both the drivers * should support GPE polling mode or disabling the GPE for long period * for one driver may break the other. So use it with care since all * firmware _Lxx/_Exx handlers currently rely on the GPE interrupt mode. * ******************************************************************************/ ACPI_STATUS AcpiSetGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, UINT8 Action) { ACPI_GPE_EVENT_INFO *GpeEventInfo; ACPI_STATUS Status; ACPI_CPU_FLAGS Flags; ACPI_FUNCTION_TRACE (AcpiSetGpe); Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock); /* Ensure that we have a valid GPE number */ GpeEventInfo = AcpiEvGetGpeEventInfo (GpeDevice, GpeNumber); if (!GpeEventInfo) { Status = AE_BAD_PARAMETER; goto UnlockAndExit; } /* Perform the action */ switch (Action) { case ACPI_GPE_ENABLE: Status = AcpiHwLowSetGpe (GpeEventInfo, ACPI_GPE_ENABLE); + GpeEventInfo->DisableForDispatch = FALSE; break; case ACPI_GPE_DISABLE: Status = AcpiHwLowSetGpe (GpeEventInfo, ACPI_GPE_DISABLE); + GpeEventInfo->DisableForDispatch = TRUE; break; default: Status = AE_BAD_PARAMETER; break; } UnlockAndExit: AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiSetGpe) + + +/******************************************************************************* + * + * FUNCTION: AcpiMaskGpe + * + * PARAMETERS: GpeDevice - Parent GPE Device. NULL for GPE0/GPE1 + * GpeNumber - GPE level within the GPE block + * IsMasked - Whether the GPE is masked or not + * + * RETURN: Status + * + * DESCRIPTION: Unconditionally mask/unmask the an individual GPE, ex., to + * prevent a GPE flooding. + * + ******************************************************************************/ + +ACPI_STATUS +AcpiMaskGpe ( + ACPI_HANDLE GpeDevice, + UINT32 GpeNumber, + BOOLEAN IsMasked) +{ + ACPI_GPE_EVENT_INFO *GpeEventInfo; + ACPI_STATUS Status; + ACPI_CPU_FLAGS Flags; + + + ACPI_FUNCTION_TRACE (AcpiMaskGpe); + + + Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock); + + /* Ensure that we have a valid GPE number */ + + GpeEventInfo = AcpiEvGetGpeEventInfo (GpeDevice, GpeNumber); + if (!GpeEventInfo) + { + Status = AE_BAD_PARAMETER; + goto UnlockAndExit; + } + + Status = AcpiEvMaskGpe (GpeEventInfo, IsMasked); + +UnlockAndExit: + AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags); + return_ACPI_STATUS (Status); +} + +ACPI_EXPORT_SYMBOL (AcpiMaskGpe) /******************************************************************************* * * FUNCTION: AcpiMarkGpeForWake * * PARAMETERS: GpeDevice - Parent GPE Device. NULL for GPE0/GPE1 * GpeNumber - GPE level within the GPE block * * RETURN: Status * * DESCRIPTION: Mark a GPE as having the ability to wake the system. Simply * sets the ACPI_GPE_CAN_WAKE flag. * * Some potential callers of AcpiSetupGpeForWake may know in advance that * there won't be any notify handlers installed for device wake notifications * from the given GPE (one example is a button GPE in Linux). For these cases, * AcpiMarkGpeForWake should be used instead of AcpiSetupGpeForWake. * This will set the ACPI_GPE_CAN_WAKE flag for the GPE without trying to * setup implicit wake notification for it (since there's no handler method). * ******************************************************************************/ ACPI_STATUS AcpiMarkGpeForWake ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber) { ACPI_GPE_EVENT_INFO *GpeEventInfo; ACPI_STATUS Status = AE_BAD_PARAMETER; ACPI_CPU_FLAGS Flags; ACPI_FUNCTION_TRACE (AcpiMarkGpeForWake); Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock); /* Ensure that we have a valid GPE number */ GpeEventInfo = AcpiEvGetGpeEventInfo (GpeDevice, GpeNumber); if (GpeEventInfo) { /* Mark the GPE as a possible wake event */ GpeEventInfo->Flags |= ACPI_GPE_CAN_WAKE; Status = AE_OK; } AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiMarkGpeForWake) /******************************************************************************* * * FUNCTION: AcpiSetupGpeForWake * * PARAMETERS: WakeDevice - Device associated with the GPE (via _PRW) * GpeDevice - Parent GPE Device. NULL for GPE0/GPE1 * GpeNumber - GPE level within the GPE block * * RETURN: Status * * DESCRIPTION: Mark a GPE as having the ability to wake the system. This * interface is intended to be used as the host executes the * _PRW methods (Power Resources for Wake) in the system tables. * Each _PRW appears under a Device Object (The WakeDevice), and * contains the info for the wake GPE associated with the * WakeDevice. * ******************************************************************************/ ACPI_STATUS AcpiSetupGpeForWake ( ACPI_HANDLE WakeDevice, ACPI_HANDLE GpeDevice, UINT32 GpeNumber) { ACPI_STATUS Status; ACPI_GPE_EVENT_INFO *GpeEventInfo; ACPI_NAMESPACE_NODE *DeviceNode; ACPI_GPE_NOTIFY_INFO *Notify; ACPI_GPE_NOTIFY_INFO *NewNotify; ACPI_CPU_FLAGS Flags; ACPI_FUNCTION_TRACE (AcpiSetupGpeForWake); /* Parameter Validation */ if (!WakeDevice) { /* * By forcing WakeDevice to be valid, we automatically enable the * implicit notify feature on all hosts. */ return_ACPI_STATUS (AE_BAD_PARAMETER); } /* Handle root object case */ if (WakeDevice == ACPI_ROOT_OBJECT) { DeviceNode = AcpiGbl_RootNode; } else { DeviceNode = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, WakeDevice); } /* Validate WakeDevice is of type Device */ if (DeviceNode->Type != ACPI_TYPE_DEVICE) { return_ACPI_STATUS (AE_BAD_PARAMETER); } /* * Allocate a new notify object up front, in case it is needed. * Memory allocation while holding a spinlock is a big no-no * on some hosts. */ NewNotify = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_GPE_NOTIFY_INFO)); if (!NewNotify) { return_ACPI_STATUS (AE_NO_MEMORY); } Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock); /* Ensure that we have a valid GPE number */ GpeEventInfo = AcpiEvGetGpeEventInfo (GpeDevice, GpeNumber); if (!GpeEventInfo) { Status = AE_BAD_PARAMETER; goto UnlockAndExit; } /* * If there is no method or handler for this GPE, then the * WakeDevice will be notified whenever this GPE fires. This is * known as an "implicit notify". Note: The GPE is assumed to be * level-triggered (for windows compatibility). */ if (ACPI_GPE_DISPATCH_TYPE (GpeEventInfo->Flags) == ACPI_GPE_DISPATCH_NONE) { /* * This is the first device for implicit notify on this GPE. * Just set the flags here, and enter the NOTIFY block below. */ GpeEventInfo->Flags = (ACPI_GPE_DISPATCH_NOTIFY | ACPI_GPE_LEVEL_TRIGGERED); } /* * If we already have an implicit notify on this GPE, add * this device to the notify list. */ if (ACPI_GPE_DISPATCH_TYPE (GpeEventInfo->Flags) == ACPI_GPE_DISPATCH_NOTIFY) { /* Ensure that the device is not already in the list */ Notify = GpeEventInfo->Dispatch.NotifyList; while (Notify) { if (Notify->DeviceNode == DeviceNode) { Status = AE_ALREADY_EXISTS; goto UnlockAndExit; } Notify = Notify->Next; } /* Add this device to the notify list for this GPE */ NewNotify->DeviceNode = DeviceNode; NewNotify->Next = GpeEventInfo->Dispatch.NotifyList; GpeEventInfo->Dispatch.NotifyList = NewNotify; NewNotify = NULL; } /* Mark the GPE as a possible wake event */ GpeEventInfo->Flags |= ACPI_GPE_CAN_WAKE; Status = AE_OK; UnlockAndExit: AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags); /* Delete the notify object if it was not used above */ if (NewNotify) { ACPI_FREE (NewNotify); } return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiSetupGpeForWake) /******************************************************************************* * * FUNCTION: AcpiSetGpeWakeMask * * PARAMETERS: GpeDevice - Parent GPE Device. NULL for GPE0/GPE1 * GpeNumber - GPE level within the GPE block * Action - Enable or Disable * * RETURN: Status * * DESCRIPTION: Set or clear the GPE's wakeup enable mask bit. The GPE must * already be marked as a WAKE GPE. * ******************************************************************************/ ACPI_STATUS AcpiSetGpeWakeMask ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, UINT8 Action) { ACPI_STATUS Status = AE_OK; ACPI_GPE_EVENT_INFO *GpeEventInfo; ACPI_GPE_REGISTER_INFO *GpeRegisterInfo; ACPI_CPU_FLAGS Flags; UINT32 RegisterBit; ACPI_FUNCTION_TRACE (AcpiSetGpeWakeMask); Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock); /* * Ensure that we have a valid GPE number and that this GPE is in * fact a wake GPE */ GpeEventInfo = AcpiEvGetGpeEventInfo (GpeDevice, GpeNumber); if (!GpeEventInfo) { Status = AE_BAD_PARAMETER; goto UnlockAndExit; } if (!(GpeEventInfo->Flags & ACPI_GPE_CAN_WAKE)) { Status = AE_TYPE; goto UnlockAndExit; } GpeRegisterInfo = GpeEventInfo->RegisterInfo; if (!GpeRegisterInfo) { Status = AE_NOT_EXIST; goto UnlockAndExit; } RegisterBit = AcpiHwGetGpeRegisterBit (GpeEventInfo); /* Perform the action */ switch (Action) { case ACPI_GPE_ENABLE: ACPI_SET_BIT (GpeRegisterInfo->EnableForWake, (UINT8) RegisterBit); break; case ACPI_GPE_DISABLE: ACPI_CLEAR_BIT (GpeRegisterInfo->EnableForWake, (UINT8) RegisterBit); break; default: ACPI_ERROR ((AE_INFO, "%u, Invalid action", Action)); Status = AE_BAD_PARAMETER; break; } UnlockAndExit: AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiSetGpeWakeMask) /******************************************************************************* * * FUNCTION: AcpiClearGpe * * PARAMETERS: GpeDevice - Parent GPE Device. NULL for GPE0/GPE1 * GpeNumber - GPE level within the GPE block * * RETURN: Status * * DESCRIPTION: Clear an ACPI event (general purpose) * ******************************************************************************/ ACPI_STATUS AcpiClearGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber) { ACPI_STATUS Status = AE_OK; ACPI_GPE_EVENT_INFO *GpeEventInfo; ACPI_CPU_FLAGS Flags; ACPI_FUNCTION_TRACE (AcpiClearGpe); Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock); /* Ensure that we have a valid GPE number */ GpeEventInfo = AcpiEvGetGpeEventInfo (GpeDevice, GpeNumber); if (!GpeEventInfo) { Status = AE_BAD_PARAMETER; goto UnlockAndExit; } Status = AcpiHwClearGpe (GpeEventInfo); UnlockAndExit: AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiClearGpe) /******************************************************************************* * * FUNCTION: AcpiGetGpeStatus * * PARAMETERS: GpeDevice - Parent GPE Device. NULL for GPE0/GPE1 * GpeNumber - GPE level within the GPE block * EventStatus - Where the current status of the event * will be returned * * RETURN: Status * * DESCRIPTION: Get the current status of a GPE (signalled/not_signalled) * ******************************************************************************/ ACPI_STATUS AcpiGetGpeStatus ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, ACPI_EVENT_STATUS *EventStatus) { ACPI_STATUS Status = AE_OK; ACPI_GPE_EVENT_INFO *GpeEventInfo; ACPI_CPU_FLAGS Flags; ACPI_FUNCTION_TRACE (AcpiGetGpeStatus); Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock); /* Ensure that we have a valid GPE number */ GpeEventInfo = AcpiEvGetGpeEventInfo (GpeDevice, GpeNumber); if (!GpeEventInfo) { Status = AE_BAD_PARAMETER; goto UnlockAndExit; } /* Obtain status on the requested GPE number */ Status = AcpiHwGetGpeStatus (GpeEventInfo, EventStatus); UnlockAndExit: AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiGetGpeStatus) /******************************************************************************* * * FUNCTION: AcpiFinishGpe * * PARAMETERS: GpeDevice - Namespace node for the GPE Block * (NULL for FADT defined GPEs) * GpeNumber - GPE level within the GPE block * * RETURN: Status * * DESCRIPTION: Clear and conditionally reenable a GPE. This completes the GPE * processing. Intended for use by asynchronous host-installed * GPE handlers. The GPE is only reenabled if the EnableForRun bit * is set in the GPE info. * ******************************************************************************/ ACPI_STATUS AcpiFinishGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber) { ACPI_GPE_EVENT_INFO *GpeEventInfo; ACPI_STATUS Status; ACPI_CPU_FLAGS Flags; ACPI_FUNCTION_TRACE (AcpiFinishGpe); Flags = AcpiOsAcquireLock (AcpiGbl_GpeLock); /* Ensure that we have a valid GPE number */ GpeEventInfo = AcpiEvGetGpeEventInfo (GpeDevice, GpeNumber); if (!GpeEventInfo) { Status = AE_BAD_PARAMETER; goto UnlockAndExit; } Status = AcpiEvFinishGpe (GpeEventInfo); UnlockAndExit: AcpiOsReleaseLock (AcpiGbl_GpeLock, Flags); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiFinishGpe) /****************************************************************************** * * FUNCTION: AcpiDisableAllGpes * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Disable and clear all GPEs in all GPE blocks * ******************************************************************************/ ACPI_STATUS AcpiDisableAllGpes ( void) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (AcpiDisableAllGpes); Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } Status = AcpiHwDisableAllGpes (); (void) AcpiUtReleaseMutex (ACPI_MTX_EVENTS); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiDisableAllGpes) /****************************************************************************** * * FUNCTION: AcpiEnableAllRuntimeGpes * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Enable all "runtime" GPEs, in all GPE blocks * ******************************************************************************/ ACPI_STATUS AcpiEnableAllRuntimeGpes ( void) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (AcpiEnableAllRuntimeGpes); Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } Status = AcpiHwEnableAllRuntimeGpes (); (void) AcpiUtReleaseMutex (ACPI_MTX_EVENTS); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiEnableAllRuntimeGpes) /****************************************************************************** * * FUNCTION: AcpiEnableAllWakeupGpes * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Enable all "wakeup" GPEs and disable all of the other GPEs, in * all GPE blocks. * ******************************************************************************/ ACPI_STATUS AcpiEnableAllWakeupGpes ( void) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (AcpiEnableAllWakeupGpes); Status = AcpiUtAcquireMutex (ACPI_MTX_EVENTS); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } Status = AcpiHwEnableAllWakeupGpes (); (void) AcpiUtReleaseMutex (ACPI_MTX_EVENTS); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiEnableAllWakeupGpes) /******************************************************************************* * * FUNCTION: AcpiInstallGpeBlock * * PARAMETERS: GpeDevice - Handle to the parent GPE Block Device * GpeBlockAddress - Address and SpaceID * RegisterCount - Number of GPE register pairs in the block * InterruptNumber - H/W interrupt for the block * * RETURN: Status * * DESCRIPTION: Create and Install a block of GPE registers. The GPEs are not * enabled here. * ******************************************************************************/ ACPI_STATUS AcpiInstallGpeBlock ( ACPI_HANDLE GpeDevice, ACPI_GENERIC_ADDRESS *GpeBlockAddress, UINT32 RegisterCount, UINT32 InterruptNumber) { ACPI_STATUS Status; ACPI_OPERAND_OBJECT *ObjDesc; ACPI_NAMESPACE_NODE *Node; ACPI_GPE_BLOCK_INFO *GpeBlock; ACPI_FUNCTION_TRACE (AcpiInstallGpeBlock); if ((!GpeDevice) || (!GpeBlockAddress) || (!RegisterCount)) { return_ACPI_STATUS (AE_BAD_PARAMETER); } Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } Node = AcpiNsValidateHandle (GpeDevice); if (!Node) { Status = AE_BAD_PARAMETER; goto UnlockAndExit; } /* Validate the parent device */ if (Node->Type != ACPI_TYPE_DEVICE) { Status = AE_TYPE; goto UnlockAndExit; } if (Node->Object) { Status = AE_ALREADY_EXISTS; goto UnlockAndExit; } /* * For user-installed GPE Block Devices, the GpeBlockBaseNumber * is always zero */ Status = AcpiEvCreateGpeBlock (Node, GpeBlockAddress->Address, GpeBlockAddress->SpaceId, RegisterCount, 0, InterruptNumber, &GpeBlock); if (ACPI_FAILURE (Status)) { goto UnlockAndExit; } /* Install block in the DeviceObject attached to the node */ ObjDesc = AcpiNsGetAttachedObject (Node); if (!ObjDesc) { /* * No object, create a new one (Device nodes do not always have * an attached object) */ ObjDesc = AcpiUtCreateInternalObject (ACPI_TYPE_DEVICE); if (!ObjDesc) { Status = AE_NO_MEMORY; goto UnlockAndExit; } Status = AcpiNsAttachObject (Node, ObjDesc, ACPI_TYPE_DEVICE); /* Remove local reference to the object */ AcpiUtRemoveReference (ObjDesc); if (ACPI_FAILURE (Status)) { goto UnlockAndExit; } } /* Now install the GPE block in the DeviceObject */ ObjDesc->Device.GpeBlock = GpeBlock; UnlockAndExit: (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiInstallGpeBlock) /******************************************************************************* * * FUNCTION: AcpiRemoveGpeBlock * * PARAMETERS: GpeDevice - Handle to the parent GPE Block Device * * RETURN: Status * * DESCRIPTION: Remove a previously installed block of GPE registers * ******************************************************************************/ ACPI_STATUS AcpiRemoveGpeBlock ( ACPI_HANDLE GpeDevice) { ACPI_OPERAND_OBJECT *ObjDesc; ACPI_STATUS Status; ACPI_NAMESPACE_NODE *Node; ACPI_FUNCTION_TRACE (AcpiRemoveGpeBlock); if (!GpeDevice) { return_ACPI_STATUS (AE_BAD_PARAMETER); } Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } Node = AcpiNsValidateHandle (GpeDevice); if (!Node) { Status = AE_BAD_PARAMETER; goto UnlockAndExit; } /* Validate the parent device */ if (Node->Type != ACPI_TYPE_DEVICE) { Status = AE_TYPE; goto UnlockAndExit; } /* Get the DeviceObject attached to the node */ ObjDesc = AcpiNsGetAttachedObject (Node); if (!ObjDesc || !ObjDesc->Device.GpeBlock) { return_ACPI_STATUS (AE_NULL_OBJECT); } /* Delete the GPE block (but not the DeviceObject) */ Status = AcpiEvDeleteGpeBlock (ObjDesc->Device.GpeBlock); if (ACPI_SUCCESS (Status)) { ObjDesc->Device.GpeBlock = NULL; } UnlockAndExit: (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiRemoveGpeBlock) /******************************************************************************* * * FUNCTION: AcpiGetGpeDevice * * PARAMETERS: Index - System GPE index (0-CurrentGpeCount) * GpeDevice - Where the parent GPE Device is returned * * RETURN: Status * * DESCRIPTION: Obtain the GPE device associated with the input index. A NULL * gpe device indicates that the gpe number is contained in one of * the FADT-defined gpe blocks. Otherwise, the GPE block device. * ******************************************************************************/ ACPI_STATUS AcpiGetGpeDevice ( UINT32 Index, ACPI_HANDLE *GpeDevice) { ACPI_GPE_DEVICE_INFO Info; ACPI_STATUS Status; ACPI_FUNCTION_TRACE (AcpiGetGpeDevice); if (!GpeDevice) { return_ACPI_STATUS (AE_BAD_PARAMETER); } if (Index >= AcpiCurrentGpeCount) { return_ACPI_STATUS (AE_NOT_EXIST); } /* Setup and walk the GPE list */ Info.Index = Index; Info.Status = AE_NOT_EXIST; Info.GpeDevice = NULL; Info.NextBlockBaseIndex = 0; Status = AcpiEvWalkGpeList (AcpiEvGetGpeDevice, &Info); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } *GpeDevice = ACPI_CAST_PTR (ACPI_HANDLE, Info.GpeDevice); return_ACPI_STATUS (Info.Status); } ACPI_EXPORT_SYMBOL (AcpiGetGpeDevice) #endif /* !ACPI_REDUCED_HARDWARE */ Index: vendor-sys/acpica/dist/source/components/executer/exconcat.c =================================================================== --- vendor-sys/acpica/dist/source/components/executer/exconcat.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/executer/exconcat.c (revision 305162) @@ -1,460 +1,461 @@ /****************************************************************************** * * Module Name: exconcat - Concatenate-type AML operators * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acinterp.h" #include "amlresrc.h" #define _COMPONENT ACPI_EXECUTER ACPI_MODULE_NAME ("exconcat") /* Local Prototypes */ static ACPI_STATUS AcpiExConvertToObjectTypeString ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT **ResultDesc); /******************************************************************************* * * FUNCTION: AcpiExDoConcatenate * * PARAMETERS: Operand0 - First source object * Operand1 - Second source object * ActualReturnDesc - Where to place the return object * WalkState - Current walk state * * RETURN: Status * * DESCRIPTION: Concatenate two objects with the ACPI-defined conversion * rules as necessary. * NOTE: * Per the ACPI spec (up to 6.1), Concatenate only supports Integer, * String, and Buffer objects. However, we support all objects here * as an extension. This improves the usefulness of both Concatenate * and the Printf/Fprintf macros. The extension returns a string * describing the object type for the other objects. * 02/2016. * ******************************************************************************/ ACPI_STATUS AcpiExDoConcatenate ( ACPI_OPERAND_OBJECT *Operand0, ACPI_OPERAND_OBJECT *Operand1, ACPI_OPERAND_OBJECT **ActualReturnDesc, ACPI_WALK_STATE *WalkState) { ACPI_OPERAND_OBJECT *LocalOperand0 = Operand0; ACPI_OPERAND_OBJECT *LocalOperand1 = Operand1; ACPI_OPERAND_OBJECT *TempOperand1 = NULL; ACPI_OPERAND_OBJECT *ReturnDesc; char *Buffer; ACPI_OBJECT_TYPE Operand0Type; ACPI_OBJECT_TYPE Operand1Type; ACPI_STATUS Status; ACPI_FUNCTION_TRACE (ExDoConcatenate); /* Operand 0 preprocessing */ switch (Operand0->Common.Type) { case ACPI_TYPE_INTEGER: case ACPI_TYPE_STRING: case ACPI_TYPE_BUFFER: Operand0Type = Operand0->Common.Type; break; default: /* For all other types, get the "object type" string */ Status = AcpiExConvertToObjectTypeString ( Operand0, &LocalOperand0); if (ACPI_FAILURE (Status)) { goto Cleanup; } Operand0Type = ACPI_TYPE_STRING; break; } /* Operand 1 preprocessing */ switch (Operand1->Common.Type) { case ACPI_TYPE_INTEGER: case ACPI_TYPE_STRING: case ACPI_TYPE_BUFFER: Operand1Type = Operand1->Common.Type; break; default: /* For all other types, get the "object type" string */ Status = AcpiExConvertToObjectTypeString ( Operand1, &LocalOperand1); if (ACPI_FAILURE (Status)) { goto Cleanup; } Operand1Type = ACPI_TYPE_STRING; break; } /* * Convert the second operand if necessary. The first operand (0) * determines the type of the second operand (1) (See the Data Types * section of the ACPI specification). Both object types are * guaranteed to be either Integer/String/Buffer by the operand * resolution mechanism. */ switch (Operand0Type) { case ACPI_TYPE_INTEGER: - Status = AcpiExConvertToInteger (LocalOperand1, &TempOperand1, 16); + Status = AcpiExConvertToInteger (LocalOperand1, &TempOperand1, + ACPI_STRTOUL_BASE16); break; case ACPI_TYPE_BUFFER: Status = AcpiExConvertToBuffer (LocalOperand1, &TempOperand1); break; case ACPI_TYPE_STRING: switch (Operand1Type) { case ACPI_TYPE_INTEGER: case ACPI_TYPE_STRING: case ACPI_TYPE_BUFFER: /* Other types have already been converted to string */ Status = AcpiExConvertToString ( LocalOperand1, &TempOperand1, ACPI_IMPLICIT_CONVERT_HEX); break; default: Status = AE_OK; break; } break; default: ACPI_ERROR ((AE_INFO, "Invalid object type: 0x%X", Operand0->Common.Type)); Status = AE_AML_INTERNAL; } if (ACPI_FAILURE (Status)) { goto Cleanup; } /* Take care with any newly created operand objects */ if ((LocalOperand1 != Operand1) && (LocalOperand1 != TempOperand1)) { AcpiUtRemoveReference (LocalOperand1); } LocalOperand1 = TempOperand1; /* * Both operands are now known to be the same object type * (Both are Integer, String, or Buffer), and we can now perform * the concatenation. * * There are three cases to handle, as per the ACPI spec: * * 1) Two Integers concatenated to produce a new Buffer * 2) Two Strings concatenated to produce a new String * 3) Two Buffers concatenated to produce a new Buffer */ switch (Operand0Type) { case ACPI_TYPE_INTEGER: /* Result of two Integers is a Buffer */ /* Need enough buffer space for two integers */ ReturnDesc = AcpiUtCreateBufferObject ( (ACPI_SIZE) ACPI_MUL_2 (AcpiGbl_IntegerByteWidth)); if (!ReturnDesc) { Status = AE_NO_MEMORY; goto Cleanup; } Buffer = (char *) ReturnDesc->Buffer.Pointer; /* Copy the first integer, LSB first */ memcpy (Buffer, &Operand0->Integer.Value, AcpiGbl_IntegerByteWidth); /* Copy the second integer (LSB first) after the first */ memcpy (Buffer + AcpiGbl_IntegerByteWidth, &LocalOperand1->Integer.Value, AcpiGbl_IntegerByteWidth); break; case ACPI_TYPE_STRING: /* Result of two Strings is a String */ ReturnDesc = AcpiUtCreateStringObject ( ((ACPI_SIZE) LocalOperand0->String.Length + LocalOperand1->String.Length)); if (!ReturnDesc) { Status = AE_NO_MEMORY; goto Cleanup; } Buffer = ReturnDesc->String.Pointer; /* Concatenate the strings */ strcpy (Buffer, LocalOperand0->String.Pointer); strcat (Buffer, LocalOperand1->String.Pointer); break; case ACPI_TYPE_BUFFER: /* Result of two Buffers is a Buffer */ ReturnDesc = AcpiUtCreateBufferObject ( ((ACPI_SIZE) Operand0->Buffer.Length + LocalOperand1->Buffer.Length)); if (!ReturnDesc) { Status = AE_NO_MEMORY; goto Cleanup; } Buffer = (char *) ReturnDesc->Buffer.Pointer; /* Concatenate the buffers */ memcpy (Buffer, Operand0->Buffer.Pointer, Operand0->Buffer.Length); memcpy (Buffer + Operand0->Buffer.Length, LocalOperand1->Buffer.Pointer, LocalOperand1->Buffer.Length); break; default: /* Invalid object type, should not happen here */ ACPI_ERROR ((AE_INFO, "Invalid object type: 0x%X", Operand0->Common.Type)); Status = AE_AML_INTERNAL; goto Cleanup; } *ActualReturnDesc = ReturnDesc; Cleanup: if (LocalOperand0 != Operand0) { AcpiUtRemoveReference (LocalOperand0); } if (LocalOperand1 != Operand1) { AcpiUtRemoveReference (LocalOperand1); } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExConvertToObjectTypeString * * PARAMETERS: ObjDesc - Object to be converted * ReturnDesc - Where to place the return object * * RETURN: Status * * DESCRIPTION: Convert an object of arbitrary type to a string object that * contains the namestring for the object. Used for the * concatenate operator. * ******************************************************************************/ static ACPI_STATUS AcpiExConvertToObjectTypeString ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT **ResultDesc) { ACPI_OPERAND_OBJECT *ReturnDesc; const char *TypeString; TypeString = AcpiUtGetTypeName (ObjDesc->Common.Type); ReturnDesc = AcpiUtCreateStringObject ( ((ACPI_SIZE) strlen (TypeString) + 9)); /* 9 For "[ Object]" */ if (!ReturnDesc) { return (AE_NO_MEMORY); } strcpy (ReturnDesc->String.Pointer, "["); strcat (ReturnDesc->String.Pointer, TypeString); strcat (ReturnDesc->String.Pointer, " Object]"); *ResultDesc = ReturnDesc; return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiExConcatTemplate * * PARAMETERS: Operand0 - First source object * Operand1 - Second source object * ActualReturnDesc - Where to place the return object * WalkState - Current walk state * * RETURN: Status * * DESCRIPTION: Concatenate two resource templates * ******************************************************************************/ ACPI_STATUS AcpiExConcatTemplate ( ACPI_OPERAND_OBJECT *Operand0, ACPI_OPERAND_OBJECT *Operand1, ACPI_OPERAND_OBJECT **ActualReturnDesc, ACPI_WALK_STATE *WalkState) { ACPI_STATUS Status; ACPI_OPERAND_OBJECT *ReturnDesc; UINT8 *NewBuf; UINT8 *EndTag; ACPI_SIZE Length0; ACPI_SIZE Length1; ACPI_SIZE NewLength; ACPI_FUNCTION_TRACE (ExConcatTemplate); /* * Find the EndTag descriptor in each resource template. * Note1: returned pointers point TO the EndTag, not past it. * Note2: zero-length buffers are allowed; treated like one EndTag */ /* Get the length of the first resource template */ Status = AcpiUtGetResourceEndTag (Operand0, &EndTag); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } Length0 = ACPI_PTR_DIFF (EndTag, Operand0->Buffer.Pointer); /* Get the length of the second resource template */ Status = AcpiUtGetResourceEndTag (Operand1, &EndTag); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } Length1 = ACPI_PTR_DIFF (EndTag, Operand1->Buffer.Pointer); /* Combine both lengths, minimum size will be 2 for EndTag */ NewLength = Length0 + Length1 + sizeof (AML_RESOURCE_END_TAG); /* Create a new buffer object for the result (with one EndTag) */ ReturnDesc = AcpiUtCreateBufferObject (NewLength); if (!ReturnDesc) { return_ACPI_STATUS (AE_NO_MEMORY); } /* * Copy the templates to the new buffer, 0 first, then 1 follows. One * EndTag descriptor is copied from Operand1. */ NewBuf = ReturnDesc->Buffer.Pointer; memcpy (NewBuf, Operand0->Buffer.Pointer, Length0); memcpy (NewBuf + Length0, Operand1->Buffer.Pointer, Length1); /* Insert EndTag and set the checksum to zero, means "ignore checksum" */ NewBuf[NewLength - 1] = 0; NewBuf[NewLength - 2] = ACPI_RESOURCE_NAME_END_TAG | 1; /* Return the completed resource template */ *ActualReturnDesc = ReturnDesc; return_ACPI_STATUS (AE_OK); } Index: vendor-sys/acpica/dist/source/components/executer/exconfig.c =================================================================== --- vendor-sys/acpica/dist/source/components/executer/exconfig.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/executer/exconfig.c (revision 305162) @@ -1,684 +1,620 @@ /****************************************************************************** * * Module Name: exconfig - Namespace reconfiguration (Load/Unload opcodes) * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acinterp.h" #include "acnamesp.h" #include "actables.h" #include "acdispat.h" #include "acevents.h" #include "amlcode.h" #define _COMPONENT ACPI_EXECUTER ACPI_MODULE_NAME ("exconfig") /* Local prototypes */ static ACPI_STATUS AcpiExAddTable ( UINT32 TableIndex, - ACPI_NAMESPACE_NODE *ParentNode, ACPI_OPERAND_OBJECT **DdbHandle); static ACPI_STATUS AcpiExRegionRead ( ACPI_OPERAND_OBJECT *ObjDesc, UINT32 Length, UINT8 *Buffer); /******************************************************************************* * * FUNCTION: AcpiExAddTable * * PARAMETERS: Table - Pointer to raw table * ParentNode - Where to load the table (scope) * DdbHandle - Where to return the table handle. * * RETURN: Status * * DESCRIPTION: Common function to Install and Load an ACPI table with a * returned table handle. * ******************************************************************************/ static ACPI_STATUS AcpiExAddTable ( UINT32 TableIndex, - ACPI_NAMESPACE_NODE *ParentNode, ACPI_OPERAND_OBJECT **DdbHandle) { ACPI_OPERAND_OBJECT *ObjDesc; - ACPI_STATUS Status; - ACPI_OWNER_ID OwnerId; ACPI_FUNCTION_TRACE (ExAddTable); /* Create an object to be the table handle */ ObjDesc = AcpiUtCreateInternalObject (ACPI_TYPE_LOCAL_REFERENCE); if (!ObjDesc) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Init the table handle */ ObjDesc->Common.Flags |= AOPOBJ_DATA_VALID; ObjDesc->Reference.Class = ACPI_REFCLASS_TABLE; - *DdbHandle = ObjDesc; - - /* Install the new table into the local data structures */ - ObjDesc->Reference.Value = TableIndex; - - /* Add the table to the namespace */ - - Status = AcpiNsLoadTable (TableIndex, ParentNode); - if (ACPI_FAILURE (Status)) - { - AcpiUtRemoveReference (ObjDesc); - *DdbHandle = NULL; - return_ACPI_STATUS (Status); - } - - /* Execute any module-level code that was found in the table */ - - AcpiExExitInterpreter (); - if (AcpiGbl_GroupModuleLevelCode) - { - AcpiNsExecModuleCodeList (); - } - AcpiExEnterInterpreter (); - - /* - * Update GPEs for any new _Lxx/_Exx methods. Ignore errors. The host is - * responsible for discovering any new wake GPEs by running _PRW methods - * that may have been loaded by this table. - */ - Status = AcpiTbGetOwnerId (TableIndex, &OwnerId); - if (ACPI_SUCCESS (Status)) - { - AcpiEvUpdateGpes (OwnerId); - } - + *DdbHandle = ObjDesc; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiExLoadTableOp * * PARAMETERS: WalkState - Current state with operands * ReturnDesc - Where to store the return object * * RETURN: Status * * DESCRIPTION: Load an ACPI table from the RSDT/XSDT * ******************************************************************************/ ACPI_STATUS AcpiExLoadTableOp ( ACPI_WALK_STATE *WalkState, ACPI_OPERAND_OBJECT **ReturnDesc) { ACPI_STATUS Status; ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0]; ACPI_NAMESPACE_NODE *ParentNode; ACPI_NAMESPACE_NODE *StartNode; ACPI_NAMESPACE_NODE *ParameterNode = NULL; ACPI_OPERAND_OBJECT *DdbHandle; - ACPI_TABLE_HEADER *Table; UINT32 TableIndex; ACPI_FUNCTION_TRACE (ExLoadTableOp); /* Find the ACPI table in the RSDT/XSDT */ + AcpiExExitInterpreter (); Status = AcpiTbFindTable ( Operand[0]->String.Pointer, Operand[1]->String.Pointer, Operand[2]->String.Pointer, &TableIndex); + AcpiExEnterInterpreter (); if (ACPI_FAILURE (Status)) { if (Status != AE_NOT_FOUND) { return_ACPI_STATUS (Status); } /* Table not found, return an Integer=0 and AE_OK */ DdbHandle = AcpiUtCreateIntegerObject ((UINT64) 0); if (!DdbHandle) { return_ACPI_STATUS (AE_NO_MEMORY); } *ReturnDesc = DdbHandle; return_ACPI_STATUS (AE_OK); } /* Default nodes */ StartNode = WalkState->ScopeInfo->Scope.Node; ParentNode = AcpiGbl_RootNode; /* RootPath (optional parameter) */ if (Operand[3]->String.Length > 0) { /* * Find the node referenced by the RootPathString. This is the * location within the namespace where the table will be loaded. */ - Status = AcpiNsGetNode (StartNode, Operand[3]->String.Pointer, - ACPI_NS_SEARCH_PARENT, &ParentNode); + Status = AcpiNsGetNodeUnlocked (StartNode, + Operand[3]->String.Pointer, ACPI_NS_SEARCH_PARENT, + &ParentNode); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } /* ParameterPath (optional parameter) */ if (Operand[4]->String.Length > 0) { if ((Operand[4]->String.Pointer[0] != AML_ROOT_PREFIX) && (Operand[4]->String.Pointer[0] != AML_PARENT_PREFIX)) { /* * Path is not absolute, so it will be relative to the node * referenced by the RootPathString (or the NS root if omitted) */ StartNode = ParentNode; } /* Find the node referenced by the ParameterPathString */ - Status = AcpiNsGetNode (StartNode, Operand[4]->String.Pointer, - ACPI_NS_SEARCH_PARENT, &ParameterNode); + Status = AcpiNsGetNodeUnlocked (StartNode, + Operand[4]->String.Pointer, ACPI_NS_SEARCH_PARENT, + &ParameterNode); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } /* Load the table into the namespace */ - Status = AcpiExAddTable (TableIndex, ParentNode, &DdbHandle); + ACPI_INFO (("Dynamic OEM Table Load:")); + AcpiExExitInterpreter (); + Status = AcpiTbLoadTable (TableIndex, ParentNode); + AcpiExEnterInterpreter (); if (ACPI_FAILURE (Status)) { + return_ACPI_STATUS (Status); + } + + Status = AcpiExAddTable (TableIndex, &DdbHandle); + if (ACPI_FAILURE (Status)) + { return_ACPI_STATUS (Status); } /* Parameter Data (optional) */ if (ParameterNode) { /* Store the parameter data into the optional parameter object */ Status = AcpiExStore (Operand[5], ACPI_CAST_PTR (ACPI_OPERAND_OBJECT, ParameterNode), WalkState); if (ACPI_FAILURE (Status)) { (void) AcpiExUnloadTable (DdbHandle); AcpiUtRemoveReference (DdbHandle); return_ACPI_STATUS (Status); } } - Status = AcpiGetTableByIndex (TableIndex, &Table); - if (ACPI_SUCCESS (Status)) - { - ACPI_INFO (("Dynamic OEM Table Load:")); - AcpiTbPrintTableHeader (0, Table); - } - - /* Invoke table handler if present */ - - if (AcpiGbl_TableHandler) - { - (void) AcpiGbl_TableHandler (ACPI_TABLE_EVENT_LOAD, Table, - AcpiGbl_TableHandlerContext); - } - *ReturnDesc = DdbHandle; return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExRegionRead * * PARAMETERS: ObjDesc - Region descriptor * Length - Number of bytes to read * Buffer - Pointer to where to put the data * * RETURN: Status * * DESCRIPTION: Read data from an operation region. The read starts from the * beginning of the region. * ******************************************************************************/ static ACPI_STATUS AcpiExRegionRead ( ACPI_OPERAND_OBJECT *ObjDesc, UINT32 Length, UINT8 *Buffer) { ACPI_STATUS Status; UINT64 Value; UINT32 RegionOffset = 0; UINT32 i; /* Bytewise reads */ for (i = 0; i < Length; i++) { Status = AcpiEvAddressSpaceDispatch (ObjDesc, NULL, ACPI_READ, RegionOffset, 8, &Value); if (ACPI_FAILURE (Status)) { return (Status); } *Buffer = (UINT8) Value; Buffer++; RegionOffset++; } return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiExLoadOp * * PARAMETERS: ObjDesc - Region or Buffer/Field where the table will be * obtained * Target - Where a handle to the table will be stored * WalkState - Current state * * RETURN: Status * * DESCRIPTION: Load an ACPI table from a field or operation region * * NOTE: Region Fields (Field, BankField, IndexFields) are resolved to buffer * objects before this code is reached. * * If source is an operation region, it must refer to SystemMemory, as * per the ACPI specification. * ******************************************************************************/ ACPI_STATUS AcpiExLoadOp ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT *Target, ACPI_WALK_STATE *WalkState) { ACPI_OPERAND_OBJECT *DdbHandle; ACPI_TABLE_HEADER *TableHeader; ACPI_TABLE_HEADER *Table; UINT32 TableIndex; ACPI_STATUS Status; UINT32 Length; ACPI_FUNCTION_TRACE (ExLoadOp); /* Source Object can be either an OpRegion or a Buffer/Field */ switch (ObjDesc->Common.Type) { case ACPI_TYPE_REGION: ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Load table from Region %p\n", ObjDesc)); /* Region must be SystemMemory (from ACPI spec) */ if (ObjDesc->Region.SpaceId != ACPI_ADR_SPACE_SYSTEM_MEMORY) { return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } /* * If the Region Address and Length have not been previously * evaluated, evaluate them now and save the results. */ if (!(ObjDesc->Common.Flags & AOPOBJ_DATA_VALID)) { Status = AcpiDsGetRegionArguments (ObjDesc); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } /* Get the table header first so we can get the table length */ TableHeader = ACPI_ALLOCATE (sizeof (ACPI_TABLE_HEADER)); if (!TableHeader) { return_ACPI_STATUS (AE_NO_MEMORY); } Status = AcpiExRegionRead (ObjDesc, sizeof (ACPI_TABLE_HEADER), ACPI_CAST_PTR (UINT8, TableHeader)); Length = TableHeader->Length; ACPI_FREE (TableHeader); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Must have at least an ACPI table header */ if (Length < sizeof (ACPI_TABLE_HEADER)) { return_ACPI_STATUS (AE_INVALID_TABLE_LENGTH); } /* * The original implementation simply mapped the table, with no copy. * However, the memory region is not guaranteed to remain stable and * we must copy the table to a local buffer. For example, the memory * region is corrupted after suspend on some machines. Dynamically * loaded tables are usually small, so this overhead is minimal. * * The latest implementation (5/2009) does not use a mapping at all. * We use the low-level operation region interface to read the table * instead of the obvious optimization of using a direct mapping. * This maintains a consistent use of operation regions across the * entire subsystem. This is important if additional processing must * be performed in the (possibly user-installed) operation region * handler. For example, AcpiExec and ASLTS depend on this. */ /* Allocate a buffer for the table */ Table = ACPI_ALLOCATE (Length); if (!Table) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Read the entire table */ Status = AcpiExRegionRead (ObjDesc, Length, ACPI_CAST_PTR (UINT8, Table)); if (ACPI_FAILURE (Status)) { ACPI_FREE (Table); return_ACPI_STATUS (Status); } break; case ACPI_TYPE_BUFFER: /* Buffer or resolved RegionField */ ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Load table from Buffer or Field %p\n", ObjDesc)); /* Must have at least an ACPI table header */ if (ObjDesc->Buffer.Length < sizeof (ACPI_TABLE_HEADER)) { return_ACPI_STATUS (AE_INVALID_TABLE_LENGTH); } /* Get the actual table length from the table header */ TableHeader = ACPI_CAST_PTR ( ACPI_TABLE_HEADER, ObjDesc->Buffer.Pointer); Length = TableHeader->Length; /* Table cannot extend beyond the buffer */ if (Length > ObjDesc->Buffer.Length) { return_ACPI_STATUS (AE_AML_BUFFER_LIMIT); } if (Length < sizeof (ACPI_TABLE_HEADER)) { return_ACPI_STATUS (AE_INVALID_TABLE_LENGTH); } /* * Copy the table from the buffer because the buffer could be * modified or even deleted in the future */ Table = ACPI_ALLOCATE (Length); if (!Table) { return_ACPI_STATUS (AE_NO_MEMORY); } memcpy (Table, TableHeader, Length); break; default: return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } /* Install the new table into the local data structures */ ACPI_INFO (("Dynamic OEM Table Load:")); - (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); - - Status = AcpiTbInstallStandardTable (ACPI_PTR_TO_PHYSADDR (Table), - ACPI_TABLE_ORIGIN_INTERNAL_VIRTUAL, TRUE, TRUE, - &TableIndex); - - (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); + AcpiExExitInterpreter (); + Status = AcpiTbInstallAndLoadTable (Table, ACPI_PTR_TO_PHYSADDR (Table), + ACPI_TABLE_ORIGIN_INTERNAL_VIRTUAL, TRUE, &TableIndex); + AcpiExEnterInterpreter (); if (ACPI_FAILURE (Status)) { /* Delete allocated table buffer */ ACPI_FREE (Table); return_ACPI_STATUS (Status); } /* - * Note: Now table is "INSTALLED", it must be validated before - * loading. - */ - Status = AcpiTbValidateTable ( - &AcpiGbl_RootTableList.Tables[TableIndex]); - if (ACPI_FAILURE (Status)) - { - return_ACPI_STATUS (Status); - } - - /* * Add the table to the namespace. * * Note: Load the table objects relative to the root of the namespace. * This appears to go against the ACPI specification, but we do it for * compatibility with other ACPI implementations. */ - Status = AcpiExAddTable (TableIndex, AcpiGbl_RootNode, &DdbHandle); + Status = AcpiExAddTable (TableIndex, &DdbHandle); if (ACPI_FAILURE (Status)) { /* On error, TablePtr was deallocated above */ return_ACPI_STATUS (Status); } /* Store the DdbHandle into the Target operand */ Status = AcpiExStore (DdbHandle, Target, WalkState); if (ACPI_FAILURE (Status)) { (void) AcpiExUnloadTable (DdbHandle); /* TablePtr was deallocated above */ AcpiUtRemoveReference (DdbHandle); return_ACPI_STATUS (Status); } /* Remove the reference by added by AcpiExStore above */ AcpiUtRemoveReference (DdbHandle); - - /* Invoke table handler if present */ - - if (AcpiGbl_TableHandler) - { - (void) AcpiGbl_TableHandler (ACPI_TABLE_EVENT_LOAD, Table, - AcpiGbl_TableHandlerContext); - } - return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExUnloadTable * * PARAMETERS: DdbHandle - Handle to a previously loaded table * * RETURN: Status * * DESCRIPTION: Unload an ACPI table * ******************************************************************************/ ACPI_STATUS AcpiExUnloadTable ( ACPI_OPERAND_OBJECT *DdbHandle) { ACPI_STATUS Status = AE_OK; ACPI_OPERAND_OBJECT *TableDesc = DdbHandle; UINT32 TableIndex; ACPI_TABLE_HEADER *Table; ACPI_FUNCTION_TRACE (ExUnloadTable); /* * Temporarily emit a warning so that the ASL for the machine can be * hopefully obtained. This is to say that the Unload() operator is * extremely rare if not completely unused. */ ACPI_WARNING ((AE_INFO, "Received request to unload an ACPI table")); /* * Validate the handle * Although the handle is partially validated in AcpiExReconfiguration() * when it calls AcpiExResolveOperands(), the handle is more completely * validated here. * * Handle must be a valid operand object of type reference. Also, the * DdbHandle must still be marked valid (table has not been previously * unloaded) */ if ((!DdbHandle) || (ACPI_GET_DESCRIPTOR_TYPE (DdbHandle) != ACPI_DESC_TYPE_OPERAND) || (DdbHandle->Common.Type != ACPI_TYPE_LOCAL_REFERENCE) || (!(DdbHandle->Common.Flags & AOPOBJ_DATA_VALID))) { return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } /* Get the table index from the DdbHandle */ TableIndex = TableDesc->Reference.Value; /* Ensure the table is still loaded */ if (!AcpiTbIsTableLoaded (TableIndex)) { return_ACPI_STATUS (AE_NOT_EXIST); } /* Invoke table handler if present */ if (AcpiGbl_TableHandler) { Status = AcpiGetTableByIndex (TableIndex, &Table); if (ACPI_SUCCESS (Status)) { (void) AcpiGbl_TableHandler (ACPI_TABLE_EVENT_UNLOAD, Table, AcpiGbl_TableHandlerContext); } } /* Delete the portion of the namespace owned by this table */ Status = AcpiTbDeleteNamespaceByOwner (TableIndex); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } (void) AcpiTbReleaseOwnerId (TableIndex); AcpiTbSetTableLoadedFlag (TableIndex, FALSE); /* * Invalidate the handle. We do this because the handle may be stored * in a named object and may not be actually deleted until much later. */ DdbHandle->Common.Flags &= ~AOPOBJ_DATA_VALID; return_ACPI_STATUS (AE_OK); } Index: vendor-sys/acpica/dist/source/components/executer/exconvrt.c =================================================================== --- vendor-sys/acpica/dist/source/components/executer/exconvrt.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/executer/exconvrt.c (revision 305162) @@ -1,744 +1,745 @@ /****************************************************************************** * * Module Name: exconvrt - Object conversion routines * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acinterp.h" #include "amlcode.h" #define _COMPONENT ACPI_EXECUTER ACPI_MODULE_NAME ("exconvrt") /* Local prototypes */ static UINT32 AcpiExConvertToAscii ( UINT64 Integer, UINT16 Base, UINT8 *String, UINT8 MaxLength); /******************************************************************************* * * FUNCTION: AcpiExConvertToInteger * * PARAMETERS: ObjDesc - Object to be converted. Must be an * Integer, Buffer, or String * ResultDesc - Where the new Integer object is returned * Flags - Used for string conversion * * RETURN: Status * * DESCRIPTION: Convert an ACPI Object to an integer. * ******************************************************************************/ ACPI_STATUS AcpiExConvertToInteger ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT **ResultDesc, UINT32 Flags) { ACPI_OPERAND_OBJECT *ReturnDesc; UINT8 *Pointer; UINT64 Result; UINT32 i; UINT32 Count; ACPI_STATUS Status; ACPI_FUNCTION_TRACE_PTR (ExConvertToInteger, ObjDesc); switch (ObjDesc->Common.Type) { case ACPI_TYPE_INTEGER: /* No conversion necessary */ *ResultDesc = ObjDesc; return_ACPI_STATUS (AE_OK); case ACPI_TYPE_BUFFER: case ACPI_TYPE_STRING: /* Note: Takes advantage of common buffer/string fields */ Pointer = ObjDesc->Buffer.Pointer; Count = ObjDesc->Buffer.Length; break; default: return_ACPI_STATUS (AE_TYPE); } /* * Convert the buffer/string to an integer. Note that both buffers and * strings are treated as raw data - we don't convert ascii to hex for * strings. * * There are two terminating conditions for the loop: * 1) The size of an integer has been reached, or * 2) The end of the buffer or string has been reached */ Result = 0; /* String conversion is different than Buffer conversion */ switch (ObjDesc->Common.Type) { case ACPI_TYPE_STRING: /* * Convert string to an integer - for most cases, the string must be * hexadecimal as per the ACPI specification. The only exception (as * of ACPI 3.0) is that the ToInteger() operator allows both decimal * and hexadecimal strings (hex prefixed with "0x"). */ - Status = AcpiUtStrtoul64 ((char *) Pointer, Flags, - AcpiGbl_IntegerByteWidth, &Result); + Status = AcpiUtStrtoul64 (ACPI_CAST_PTR (char, Pointer), + (AcpiGbl_IntegerByteWidth | Flags), &Result); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } break; case ACPI_TYPE_BUFFER: /* Check for zero-length buffer */ if (!Count) { return_ACPI_STATUS (AE_AML_BUFFER_LIMIT); } /* Transfer no more than an integer's worth of data */ if (Count > AcpiGbl_IntegerByteWidth) { Count = AcpiGbl_IntegerByteWidth; } /* * Convert buffer to an integer - we simply grab enough raw data * from the buffer to fill an integer */ for (i = 0; i < Count; i++) { /* * Get next byte and shift it into the Result. * Little endian is used, meaning that the first byte of the buffer * is the LSB of the integer */ Result |= (((UINT64) Pointer[i]) << (i * 8)); } break; default: /* No other types can get here */ break; } /* Create a new integer */ ReturnDesc = AcpiUtCreateIntegerObject (Result); if (!ReturnDesc) { return_ACPI_STATUS (AE_NO_MEMORY); } ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Converted value: %8.8X%8.8X\n", ACPI_FORMAT_UINT64 (Result))); /* Save the Result */ (void) AcpiExTruncateFor32bitTable (ReturnDesc); *ResultDesc = ReturnDesc; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiExConvertToBuffer * * PARAMETERS: ObjDesc - Object to be converted. Must be an * Integer, Buffer, or String * ResultDesc - Where the new buffer object is returned * * RETURN: Status * * DESCRIPTION: Convert an ACPI Object to a Buffer * ******************************************************************************/ ACPI_STATUS AcpiExConvertToBuffer ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT **ResultDesc) { ACPI_OPERAND_OBJECT *ReturnDesc; UINT8 *NewBuf; ACPI_FUNCTION_TRACE_PTR (ExConvertToBuffer, ObjDesc); switch (ObjDesc->Common.Type) { case ACPI_TYPE_BUFFER: /* No conversion necessary */ *ResultDesc = ObjDesc; return_ACPI_STATUS (AE_OK); case ACPI_TYPE_INTEGER: /* * Create a new Buffer object. * Need enough space for one integer */ ReturnDesc = AcpiUtCreateBufferObject (AcpiGbl_IntegerByteWidth); if (!ReturnDesc) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Copy the integer to the buffer, LSB first */ NewBuf = ReturnDesc->Buffer.Pointer; memcpy (NewBuf, &ObjDesc->Integer.Value, AcpiGbl_IntegerByteWidth); break; case ACPI_TYPE_STRING: /* * Create a new Buffer object * Size will be the string length * * NOTE: Add one to the string length to include the null terminator. * The ACPI spec is unclear on this subject, but there is existing * ASL/AML code that depends on the null being transferred to the new * buffer. */ ReturnDesc = AcpiUtCreateBufferObject ((ACPI_SIZE) ObjDesc->String.Length + 1); if (!ReturnDesc) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Copy the string to the buffer */ NewBuf = ReturnDesc->Buffer.Pointer; strncpy ((char *) NewBuf, (char *) ObjDesc->String.Pointer, ObjDesc->String.Length); break; default: return_ACPI_STATUS (AE_TYPE); } /* Mark buffer initialized */ ReturnDesc->Common.Flags |= AOPOBJ_DATA_VALID; *ResultDesc = ReturnDesc; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiExConvertToAscii * * PARAMETERS: Integer - Value to be converted * Base - ACPI_STRING_DECIMAL or ACPI_STRING_HEX * String - Where the string is returned * DataWidth - Size of data item to be converted, in bytes * * RETURN: Actual string length * * DESCRIPTION: Convert an ACPI Integer to a hex or decimal string * ******************************************************************************/ static UINT32 AcpiExConvertToAscii ( UINT64 Integer, UINT16 Base, UINT8 *String, UINT8 DataWidth) { UINT64 Digit; UINT32 i; UINT32 j; UINT32 k = 0; UINT32 HexLength; UINT32 DecimalLength; UINT32 Remainder; BOOLEAN SupressZeros; ACPI_FUNCTION_ENTRY (); switch (Base) { case 10: /* Setup max length for the decimal number */ switch (DataWidth) { case 1: DecimalLength = ACPI_MAX8_DECIMAL_DIGITS; break; case 4: DecimalLength = ACPI_MAX32_DECIMAL_DIGITS; break; case 8: default: DecimalLength = ACPI_MAX64_DECIMAL_DIGITS; break; } SupressZeros = TRUE; /* No leading zeros */ Remainder = 0; for (i = DecimalLength; i > 0; i--) { /* Divide by nth factor of 10 */ Digit = Integer; for (j = 0; j < i; j++) { (void) AcpiUtShortDivide (Digit, 10, &Digit, &Remainder); } /* Handle leading zeros */ if (Remainder != 0) { SupressZeros = FALSE; } if (!SupressZeros) { String[k] = (UINT8) (ACPI_ASCII_ZERO + Remainder); k++; } } break; case 16: /* HexLength: 2 ascii hex chars per data byte */ HexLength = ACPI_MUL_2 (DataWidth); for (i = 0, j = (HexLength-1); i < HexLength; i++, j--) { /* Get one hex digit, most significant digits first */ String[k] = (UINT8) AcpiUtHexToAsciiChar (Integer, ACPI_MUL_4 (j)); k++; } break; default: return (0); } /* * Since leading zeros are suppressed, we must check for the case where * the integer equals 0 * * Finally, null terminate the string and return the length */ if (!k) { String [0] = ACPI_ASCII_ZERO; k = 1; } String [k] = 0; return ((UINT32) k); } /******************************************************************************* * * FUNCTION: AcpiExConvertToString * * PARAMETERS: ObjDesc - Object to be converted. Must be an * Integer, Buffer, or String * ResultDesc - Where the string object is returned * Type - String flags (base and conversion type) * * RETURN: Status * * DESCRIPTION: Convert an ACPI Object to a string * ******************************************************************************/ ACPI_STATUS AcpiExConvertToString ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT **ResultDesc, UINT32 Type) { ACPI_OPERAND_OBJECT *ReturnDesc; UINT8 *NewBuf; UINT32 i; UINT32 StringLength = 0; UINT16 Base = 16; UINT8 Separator = ','; ACPI_FUNCTION_TRACE_PTR (ExConvertToString, ObjDesc); switch (ObjDesc->Common.Type) { case ACPI_TYPE_STRING: /* No conversion necessary */ *ResultDesc = ObjDesc; return_ACPI_STATUS (AE_OK); case ACPI_TYPE_INTEGER: switch (Type) { case ACPI_EXPLICIT_CONVERT_DECIMAL: /* Make room for maximum decimal number */ StringLength = ACPI_MAX_DECIMAL_DIGITS; Base = 10; break; default: /* Two hex string characters for each integer byte */ StringLength = ACPI_MUL_2 (AcpiGbl_IntegerByteWidth); break; } /* * Create a new String * Need enough space for one ASCII integer (plus null terminator) */ ReturnDesc = AcpiUtCreateStringObject ((ACPI_SIZE) StringLength); if (!ReturnDesc) { return_ACPI_STATUS (AE_NO_MEMORY); } NewBuf = ReturnDesc->Buffer.Pointer; /* Convert integer to string */ StringLength = AcpiExConvertToAscii ( ObjDesc->Integer.Value, Base, NewBuf, AcpiGbl_IntegerByteWidth); /* Null terminate at the correct place */ ReturnDesc->String.Length = StringLength; NewBuf [StringLength] = 0; break; case ACPI_TYPE_BUFFER: /* Setup string length, base, and separator */ switch (Type) { case ACPI_EXPLICIT_CONVERT_DECIMAL: /* Used by ToDecimalString */ /* * From ACPI: "If Data is a buffer, it is converted to a string of * decimal values separated by commas." */ Base = 10; /* * Calculate the final string length. Individual string values * are variable length (include separator for each) */ for (i = 0; i < ObjDesc->Buffer.Length; i++) { if (ObjDesc->Buffer.Pointer[i] >= 100) { StringLength += 4; } else if (ObjDesc->Buffer.Pointer[i] >= 10) { StringLength += 3; } else { StringLength += 2; } } break; case ACPI_IMPLICIT_CONVERT_HEX: /* * From the ACPI spec: *"The entire contents of the buffer are converted to a string of * two-character hexadecimal numbers, each separated by a space." */ Separator = ' '; StringLength = (ObjDesc->Buffer.Length * 3); break; case ACPI_EXPLICIT_CONVERT_HEX: /* Used by ToHexString */ /* * From ACPI: "If Data is a buffer, it is converted to a string of * hexadecimal values separated by commas." */ StringLength = (ObjDesc->Buffer.Length * 3); break; default: return_ACPI_STATUS (AE_BAD_PARAMETER); } /* * Create a new string object and string buffer * (-1 because of extra separator included in StringLength from above) * Allow creation of zero-length strings from zero-length buffers. */ if (StringLength) { StringLength--; } ReturnDesc = AcpiUtCreateStringObject ((ACPI_SIZE) StringLength); if (!ReturnDesc) { return_ACPI_STATUS (AE_NO_MEMORY); } NewBuf = ReturnDesc->Buffer.Pointer; /* * Convert buffer bytes to hex or decimal values * (separated by commas or spaces) */ for (i = 0; i < ObjDesc->Buffer.Length; i++) { NewBuf += AcpiExConvertToAscii ( (UINT64) ObjDesc->Buffer.Pointer[i], Base, NewBuf, 1); *NewBuf++ = Separator; /* each separated by a comma or space */ } /* * Null terminate the string * (overwrites final comma/space from above) */ if (ObjDesc->Buffer.Length) { NewBuf--; } *NewBuf = 0; break; default: return_ACPI_STATUS (AE_TYPE); } *ResultDesc = ReturnDesc; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiExConvertToTargetType * * PARAMETERS: DestinationType - Current type of the destination * SourceDesc - Source object to be converted. * ResultDesc - Where the converted object is returned * WalkState - Current method state * * RETURN: Status * * DESCRIPTION: Implements "implicit conversion" rules for storing an object. * ******************************************************************************/ ACPI_STATUS AcpiExConvertToTargetType ( ACPI_OBJECT_TYPE DestinationType, ACPI_OPERAND_OBJECT *SourceDesc, ACPI_OPERAND_OBJECT **ResultDesc, ACPI_WALK_STATE *WalkState) { ACPI_STATUS Status = AE_OK; ACPI_FUNCTION_TRACE (ExConvertToTargetType); /* Default behavior */ *ResultDesc = SourceDesc; /* * If required by the target, * perform implicit conversion on the source before we store it. */ switch (GET_CURRENT_ARG_TYPE (WalkState->OpInfo->RuntimeArgs)) { case ARGI_SIMPLE_TARGET: case ARGI_FIXED_TARGET: case ARGI_INTEGER_REF: /* Handles Increment, Decrement cases */ switch (DestinationType) { case ACPI_TYPE_LOCAL_REGION_FIELD: /* * Named field can always handle conversions */ break; default: /* No conversion allowed for these types */ if (DestinationType != SourceDesc->Common.Type) { ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Explicit operator, will store (%s) over existing type (%s)\n", AcpiUtGetObjectTypeName (SourceDesc), AcpiUtGetTypeName (DestinationType))); Status = AE_TYPE; } } break; case ARGI_TARGETREF: case ARGI_STORE_TARGET: switch (DestinationType) { case ACPI_TYPE_INTEGER: case ACPI_TYPE_BUFFER_FIELD: case ACPI_TYPE_LOCAL_BANK_FIELD: case ACPI_TYPE_LOCAL_INDEX_FIELD: /* * These types require an Integer operand. We can convert * a Buffer or a String to an Integer if necessary. */ - Status = AcpiExConvertToInteger (SourceDesc, ResultDesc, 16); + Status = AcpiExConvertToInteger (SourceDesc, ResultDesc, + ACPI_STRTOUL_BASE16); break; case ACPI_TYPE_STRING: /* * The operand must be a String. We can convert an * Integer or Buffer if necessary */ Status = AcpiExConvertToString (SourceDesc, ResultDesc, ACPI_IMPLICIT_CONVERT_HEX); break; case ACPI_TYPE_BUFFER: /* * The operand must be a Buffer. We can convert an * Integer or String if necessary */ Status = AcpiExConvertToBuffer (SourceDesc, ResultDesc); break; default: ACPI_ERROR ((AE_INFO, "Bad destination type during conversion: 0x%X", DestinationType)); Status = AE_AML_INTERNAL; break; } break; case ARGI_REFERENCE: /* * CreateXxxxField cases - we are storing the field object into the name */ break; default: ACPI_ERROR ((AE_INFO, "Unknown Target type ID 0x%X AmlOpcode 0x%X DestType %s", GET_CURRENT_ARG_TYPE (WalkState->OpInfo->RuntimeArgs), WalkState->Opcode, AcpiUtGetTypeName (DestinationType))); Status = AE_AML_INTERNAL; } /* * Source-to-Target conversion semantics: * * If conversion to the target type cannot be performed, then simply * overwrite the target with the new object and type. */ if (Status == AE_TYPE) { Status = AE_OK; } return_ACPI_STATUS (Status); } Index: vendor-sys/acpica/dist/source/components/executer/exmisc.c =================================================================== --- vendor-sys/acpica/dist/source/components/executer/exmisc.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/executer/exmisc.c (revision 305162) @@ -1,524 +1,525 @@ /****************************************************************************** * * Module Name: exmisc - ACPI AML (p-code) execution - specific opcodes * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acinterp.h" #include "amlcode.h" #define _COMPONENT ACPI_EXECUTER ACPI_MODULE_NAME ("exmisc") /******************************************************************************* * * FUNCTION: AcpiExGetObjectReference * * PARAMETERS: ObjDesc - Create a reference to this object * ReturnDesc - Where to store the reference * WalkState - Current state * * RETURN: Status * * DESCRIPTION: Obtain and return a "reference" to the target object * Common code for the RefOfOp and the CondRefOfOp. * ******************************************************************************/ ACPI_STATUS AcpiExGetObjectReference ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_OPERAND_OBJECT **ReturnDesc, ACPI_WALK_STATE *WalkState) { ACPI_OPERAND_OBJECT *ReferenceObj; ACPI_OPERAND_OBJECT *ReferencedObj; ACPI_FUNCTION_TRACE_PTR (ExGetObjectReference, ObjDesc); *ReturnDesc = NULL; switch (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc)) { case ACPI_DESC_TYPE_OPERAND: if (ObjDesc->Common.Type != ACPI_TYPE_LOCAL_REFERENCE) { return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } /* * Must be a reference to a Local or Arg */ switch (ObjDesc->Reference.Class) { case ACPI_REFCLASS_LOCAL: case ACPI_REFCLASS_ARG: case ACPI_REFCLASS_DEBUG: /* The referenced object is the pseudo-node for the local/arg */ ReferencedObj = ObjDesc->Reference.Object; break; default: ACPI_ERROR ((AE_INFO, "Invalid Reference Class 0x%2.2X", ObjDesc->Reference.Class)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } break; case ACPI_DESC_TYPE_NAMED: /* * A named reference that has already been resolved to a Node */ ReferencedObj = ObjDesc; break; default: ACPI_ERROR ((AE_INFO, "Invalid descriptor type 0x%X", ACPI_GET_DESCRIPTOR_TYPE (ObjDesc))); return_ACPI_STATUS (AE_TYPE); } /* Create a new reference object */ ReferenceObj = AcpiUtCreateInternalObject (ACPI_TYPE_LOCAL_REFERENCE); if (!ReferenceObj) { return_ACPI_STATUS (AE_NO_MEMORY); } ReferenceObj->Reference.Class = ACPI_REFCLASS_REFOF; ReferenceObj->Reference.Object = ReferencedObj; *ReturnDesc = ReferenceObj; ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Object %p Type [%s], returning Reference %p\n", ObjDesc, AcpiUtGetObjectTypeName (ObjDesc), *ReturnDesc)); return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiExDoMathOp * * PARAMETERS: Opcode - AML opcode * Integer0 - Integer operand #0 * Integer1 - Integer operand #1 * * RETURN: Integer result of the operation * * DESCRIPTION: Execute a math AML opcode. The purpose of having all of the * math functions here is to prevent a lot of pointer dereferencing * to obtain the operands. * ******************************************************************************/ UINT64 AcpiExDoMathOp ( UINT16 Opcode, UINT64 Integer0, UINT64 Integer1) { ACPI_FUNCTION_ENTRY (); switch (Opcode) { case AML_ADD_OP: /* Add (Integer0, Integer1, Result) */ return (Integer0 + Integer1); case AML_BIT_AND_OP: /* And (Integer0, Integer1, Result) */ return (Integer0 & Integer1); case AML_BIT_NAND_OP: /* NAnd (Integer0, Integer1, Result) */ return (~(Integer0 & Integer1)); case AML_BIT_OR_OP: /* Or (Integer0, Integer1, Result) */ return (Integer0 | Integer1); case AML_BIT_NOR_OP: /* NOr (Integer0, Integer1, Result) */ return (~(Integer0 | Integer1)); case AML_BIT_XOR_OP: /* XOr (Integer0, Integer1, Result) */ return (Integer0 ^ Integer1); case AML_MULTIPLY_OP: /* Multiply (Integer0, Integer1, Result) */ return (Integer0 * Integer1); case AML_SHIFT_LEFT_OP: /* ShiftLeft (Operand, ShiftCount, Result)*/ /* * We need to check if the shiftcount is larger than the integer bit * width since the behavior of this is not well-defined in the C language. */ if (Integer1 >= AcpiGbl_IntegerBitWidth) { return (0); } return (Integer0 << Integer1); case AML_SHIFT_RIGHT_OP: /* ShiftRight (Operand, ShiftCount, Result) */ /* * We need to check if the shiftcount is larger than the integer bit * width since the behavior of this is not well-defined in the C language. */ if (Integer1 >= AcpiGbl_IntegerBitWidth) { return (0); } return (Integer0 >> Integer1); case AML_SUBTRACT_OP: /* Subtract (Integer0, Integer1, Result) */ return (Integer0 - Integer1); default: return (0); } } /******************************************************************************* * * FUNCTION: AcpiExDoLogicalNumericOp * * PARAMETERS: Opcode - AML opcode * Integer0 - Integer operand #0 * Integer1 - Integer operand #1 * LogicalResult - TRUE/FALSE result of the operation * * RETURN: Status * * DESCRIPTION: Execute a logical "Numeric" AML opcode. For these Numeric * operators (LAnd and LOr), both operands must be integers. * * Note: cleanest machine code seems to be produced by the code * below, rather than using statements of the form: * Result = (Integer0 && Integer1); * ******************************************************************************/ ACPI_STATUS AcpiExDoLogicalNumericOp ( UINT16 Opcode, UINT64 Integer0, UINT64 Integer1, BOOLEAN *LogicalResult) { ACPI_STATUS Status = AE_OK; BOOLEAN LocalResult = FALSE; ACPI_FUNCTION_TRACE (ExDoLogicalNumericOp); switch (Opcode) { case AML_LAND_OP: /* LAnd (Integer0, Integer1) */ if (Integer0 && Integer1) { LocalResult = TRUE; } break; case AML_LOR_OP: /* LOr (Integer0, Integer1) */ if (Integer0 || Integer1) { LocalResult = TRUE; } break; default: Status = AE_AML_INTERNAL; break; } /* Return the logical result and status */ *LogicalResult = LocalResult; return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExDoLogicalOp * * PARAMETERS: Opcode - AML opcode * Operand0 - operand #0 * Operand1 - operand #1 * LogicalResult - TRUE/FALSE result of the operation * * RETURN: Status * * DESCRIPTION: Execute a logical AML opcode. The purpose of having all of the * functions here is to prevent a lot of pointer dereferencing * to obtain the operands and to simplify the generation of the * logical value. For the Numeric operators (LAnd and LOr), both * operands must be integers. For the other logical operators, * operands can be any combination of Integer/String/Buffer. The * first operand determines the type to which the second operand * will be converted. * * Note: cleanest machine code seems to be produced by the code * below, rather than using statements of the form: * Result = (Operand0 == Operand1); * ******************************************************************************/ ACPI_STATUS AcpiExDoLogicalOp ( UINT16 Opcode, ACPI_OPERAND_OBJECT *Operand0, ACPI_OPERAND_OBJECT *Operand1, BOOLEAN *LogicalResult) { ACPI_OPERAND_OBJECT *LocalOperand1 = Operand1; UINT64 Integer0; UINT64 Integer1; UINT32 Length0; UINT32 Length1; ACPI_STATUS Status = AE_OK; BOOLEAN LocalResult = FALSE; int Compare; ACPI_FUNCTION_TRACE (ExDoLogicalOp); /* * Convert the second operand if necessary. The first operand * determines the type of the second operand, (See the Data Types * section of the ACPI 3.0+ specification.) Both object types are * guaranteed to be either Integer/String/Buffer by the operand * resolution mechanism. */ switch (Operand0->Common.Type) { case ACPI_TYPE_INTEGER: - Status = AcpiExConvertToInteger (Operand1, &LocalOperand1, 16); + Status = AcpiExConvertToInteger (Operand1, &LocalOperand1, + ACPI_STRTOUL_BASE16); break; case ACPI_TYPE_STRING: Status = AcpiExConvertToString ( Operand1, &LocalOperand1, ACPI_IMPLICIT_CONVERT_HEX); break; case ACPI_TYPE_BUFFER: Status = AcpiExConvertToBuffer (Operand1, &LocalOperand1); break; default: Status = AE_AML_INTERNAL; break; } if (ACPI_FAILURE (Status)) { goto Cleanup; } /* * Two cases: 1) Both Integers, 2) Both Strings or Buffers */ if (Operand0->Common.Type == ACPI_TYPE_INTEGER) { /* * 1) Both operands are of type integer * Note: LocalOperand1 may have changed above */ Integer0 = Operand0->Integer.Value; Integer1 = LocalOperand1->Integer.Value; switch (Opcode) { case AML_LEQUAL_OP: /* LEqual (Operand0, Operand1) */ if (Integer0 == Integer1) { LocalResult = TRUE; } break; case AML_LGREATER_OP: /* LGreater (Operand0, Operand1) */ if (Integer0 > Integer1) { LocalResult = TRUE; } break; case AML_LLESS_OP: /* LLess (Operand0, Operand1) */ if (Integer0 < Integer1) { LocalResult = TRUE; } break; default: Status = AE_AML_INTERNAL; break; } } else { /* * 2) Both operands are Strings or both are Buffers * Note: Code below takes advantage of common Buffer/String * object fields. LocalOperand1 may have changed above. Use * memcmp to handle nulls in buffers. */ Length0 = Operand0->Buffer.Length; Length1 = LocalOperand1->Buffer.Length; /* Lexicographic compare: compare the data bytes */ Compare = memcmp (Operand0->Buffer.Pointer, LocalOperand1->Buffer.Pointer, (Length0 > Length1) ? Length1 : Length0); switch (Opcode) { case AML_LEQUAL_OP: /* LEqual (Operand0, Operand1) */ /* Length and all bytes must be equal */ if ((Length0 == Length1) && (Compare == 0)) { /* Length and all bytes match ==> TRUE */ LocalResult = TRUE; } break; case AML_LGREATER_OP: /* LGreater (Operand0, Operand1) */ if (Compare > 0) { LocalResult = TRUE; goto Cleanup; /* TRUE */ } if (Compare < 0) { goto Cleanup; /* FALSE */ } /* Bytes match (to shortest length), compare lengths */ if (Length0 > Length1) { LocalResult = TRUE; } break; case AML_LLESS_OP: /* LLess (Operand0, Operand1) */ if (Compare > 0) { goto Cleanup; /* FALSE */ } if (Compare < 0) { LocalResult = TRUE; goto Cleanup; /* TRUE */ } /* Bytes match (to shortest length), compare lengths */ if (Length0 < Length1) { LocalResult = TRUE; } break; default: Status = AE_AML_INTERNAL; break; } } Cleanup: /* New object was created if implicit conversion performed - delete */ if (LocalOperand1 != Operand1) { AcpiUtRemoveReference (LocalOperand1); } /* Return the logical result and status */ *LogicalResult = LocalResult; return_ACPI_STATUS (Status); } Index: vendor-sys/acpica/dist/source/components/executer/exoparg1.c =================================================================== --- vendor-sys/acpica/dist/source/components/executer/exoparg1.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/executer/exoparg1.c (revision 305162) @@ -1,1125 +1,1126 @@ /****************************************************************************** * * Module Name: exoparg1 - AML execution - opcodes with 1 argument * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acparser.h" #include "acdispat.h" #include "acinterp.h" #include "amlcode.h" #include "acnamesp.h" #define _COMPONENT ACPI_EXECUTER ACPI_MODULE_NAME ("exoparg1") /*! * Naming convention for AML interpreter execution routines. * * The routines that begin execution of AML opcodes are named with a common * convention based upon the number of arguments, the number of target operands, * and whether or not a value is returned: * * AcpiExOpcode_xA_yT_zR * * Where: * * xA - ARGUMENTS: The number of arguments (input operands) that are * required for this opcode type (0 through 6 args). * yT - TARGETS: The number of targets (output operands) that are required * for this opcode type (0, 1, or 2 targets). * zR - RETURN VALUE: Indicates whether this opcode type returns a value * as the function return (0 or 1). * * The AcpiExOpcode* functions are called via the Dispatcher component with * fully resolved operands. !*/ /******************************************************************************* * * FUNCTION: AcpiExOpcode_0A_0T_1R * * PARAMETERS: WalkState - Current state (contains AML opcode) * * RETURN: Status * * DESCRIPTION: Execute operator with no operands, one return value * ******************************************************************************/ ACPI_STATUS AcpiExOpcode_0A_0T_1R ( ACPI_WALK_STATE *WalkState) { ACPI_STATUS Status = AE_OK; ACPI_OPERAND_OBJECT *ReturnDesc = NULL; ACPI_FUNCTION_TRACE_STR (ExOpcode_0A_0T_1R, AcpiPsGetOpcodeName (WalkState->Opcode)); /* Examine the AML opcode */ switch (WalkState->Opcode) { case AML_TIMER_OP: /* Timer () */ /* Create a return object of type Integer */ ReturnDesc = AcpiUtCreateIntegerObject (AcpiOsGetTimer ()); if (!ReturnDesc) { Status = AE_NO_MEMORY; goto Cleanup; } break; default: /* Unknown opcode */ ACPI_ERROR ((AE_INFO, "Unknown AML opcode 0x%X", WalkState->Opcode)); Status = AE_AML_BAD_OPCODE; break; } Cleanup: /* Delete return object on error */ if ((ACPI_FAILURE (Status)) || WalkState->ResultObj) { AcpiUtRemoveReference (ReturnDesc); WalkState->ResultObj = NULL; } else { /* Save the return value */ WalkState->ResultObj = ReturnDesc; } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExOpcode_1A_0T_0R * * PARAMETERS: WalkState - Current state (contains AML opcode) * * RETURN: Status * * DESCRIPTION: Execute Type 1 monadic operator with numeric operand on * object stack * ******************************************************************************/ ACPI_STATUS AcpiExOpcode_1A_0T_0R ( ACPI_WALK_STATE *WalkState) { ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0]; ACPI_STATUS Status = AE_OK; ACPI_FUNCTION_TRACE_STR (ExOpcode_1A_0T_0R, AcpiPsGetOpcodeName (WalkState->Opcode)); /* Examine the AML opcode */ switch (WalkState->Opcode) { case AML_RELEASE_OP: /* Release (MutexObject) */ Status = AcpiExReleaseMutex (Operand[0], WalkState); break; case AML_RESET_OP: /* Reset (EventObject) */ Status = AcpiExSystemResetEvent (Operand[0]); break; case AML_SIGNAL_OP: /* Signal (EventObject) */ Status = AcpiExSystemSignalEvent (Operand[0]); break; case AML_SLEEP_OP: /* Sleep (MsecTime) */ Status = AcpiExSystemDoSleep (Operand[0]->Integer.Value); break; case AML_STALL_OP: /* Stall (UsecTime) */ Status = AcpiExSystemDoStall ((UINT32) Operand[0]->Integer.Value); break; case AML_UNLOAD_OP: /* Unload (Handle) */ Status = AcpiExUnloadTable (Operand[0]); break; default: /* Unknown opcode */ ACPI_ERROR ((AE_INFO, "Unknown AML opcode 0x%X", WalkState->Opcode)); Status = AE_AML_BAD_OPCODE; break; } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExOpcode_1A_1T_0R * * PARAMETERS: WalkState - Current state (contains AML opcode) * * RETURN: Status * * DESCRIPTION: Execute opcode with one argument, one target, and no * return value. * ******************************************************************************/ ACPI_STATUS AcpiExOpcode_1A_1T_0R ( ACPI_WALK_STATE *WalkState) { ACPI_STATUS Status = AE_OK; ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0]; ACPI_FUNCTION_TRACE_STR (ExOpcode_1A_1T_0R, AcpiPsGetOpcodeName (WalkState->Opcode)); /* Examine the AML opcode */ switch (WalkState->Opcode) { case AML_LOAD_OP: Status = AcpiExLoadOp (Operand[0], Operand[1], WalkState); break; default: /* Unknown opcode */ ACPI_ERROR ((AE_INFO, "Unknown AML opcode 0x%X", WalkState->Opcode)); Status = AE_AML_BAD_OPCODE; goto Cleanup; } Cleanup: return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExOpcode_1A_1T_1R * * PARAMETERS: WalkState - Current state (contains AML opcode) * * RETURN: Status * * DESCRIPTION: Execute opcode with one argument, one target, and a * return value. * ******************************************************************************/ ACPI_STATUS AcpiExOpcode_1A_1T_1R ( ACPI_WALK_STATE *WalkState) { ACPI_STATUS Status = AE_OK; ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0]; ACPI_OPERAND_OBJECT *ReturnDesc = NULL; ACPI_OPERAND_OBJECT *ReturnDesc2 = NULL; UINT32 Temp32; UINT32 i; UINT64 PowerOfTen; UINT64 Digit; ACPI_FUNCTION_TRACE_STR (ExOpcode_1A_1T_1R, AcpiPsGetOpcodeName (WalkState->Opcode)); /* Examine the AML opcode */ switch (WalkState->Opcode) { case AML_BIT_NOT_OP: case AML_FIND_SET_LEFT_BIT_OP: case AML_FIND_SET_RIGHT_BIT_OP: case AML_FROM_BCD_OP: case AML_TO_BCD_OP: case AML_COND_REF_OF_OP: /* Create a return object of type Integer for these opcodes */ ReturnDesc = AcpiUtCreateInternalObject (ACPI_TYPE_INTEGER); if (!ReturnDesc) { Status = AE_NO_MEMORY; goto Cleanup; } switch (WalkState->Opcode) { case AML_BIT_NOT_OP: /* Not (Operand, Result) */ ReturnDesc->Integer.Value = ~Operand[0]->Integer.Value; break; case AML_FIND_SET_LEFT_BIT_OP: /* FindSetLeftBit (Operand, Result) */ ReturnDesc->Integer.Value = Operand[0]->Integer.Value; /* * Acpi specification describes Integer type as a little * endian unsigned value, so this boundary condition is valid. */ for (Temp32 = 0; ReturnDesc->Integer.Value && Temp32 < ACPI_INTEGER_BIT_SIZE; ++Temp32) { ReturnDesc->Integer.Value >>= 1; } ReturnDesc->Integer.Value = Temp32; break; case AML_FIND_SET_RIGHT_BIT_OP: /* FindSetRightBit (Operand, Result) */ ReturnDesc->Integer.Value = Operand[0]->Integer.Value; /* * The Acpi specification describes Integer type as a little * endian unsigned value, so this boundary condition is valid. */ for (Temp32 = 0; ReturnDesc->Integer.Value && Temp32 < ACPI_INTEGER_BIT_SIZE; ++Temp32) { ReturnDesc->Integer.Value <<= 1; } /* Since the bit position is one-based, subtract from 33 (65) */ ReturnDesc->Integer.Value = Temp32 == 0 ? 0 : (ACPI_INTEGER_BIT_SIZE + 1) - Temp32; break; case AML_FROM_BCD_OP: /* FromBcd (BCDValue, Result) */ /* * The 64-bit ACPI integer can hold 16 4-bit BCD characters * (if table is 32-bit, integer can hold 8 BCD characters) * Convert each 4-bit BCD value */ PowerOfTen = 1; ReturnDesc->Integer.Value = 0; Digit = Operand[0]->Integer.Value; /* Convert each BCD digit (each is one nybble wide) */ for (i = 0; (i < AcpiGbl_IntegerNybbleWidth) && (Digit > 0); i++) { /* Get the least significant 4-bit BCD digit */ Temp32 = ((UINT32) Digit) & 0xF; /* Check the range of the digit */ if (Temp32 > 9) { ACPI_ERROR ((AE_INFO, "BCD digit too large (not decimal): 0x%X", Temp32)); Status = AE_AML_NUMERIC_OVERFLOW; goto Cleanup; } /* Sum the digit into the result with the current power of 10 */ ReturnDesc->Integer.Value += (((UINT64) Temp32) * PowerOfTen); /* Shift to next BCD digit */ Digit >>= 4; /* Next power of 10 */ PowerOfTen *= 10; } break; case AML_TO_BCD_OP: /* ToBcd (Operand, Result) */ ReturnDesc->Integer.Value = 0; Digit = Operand[0]->Integer.Value; /* Each BCD digit is one nybble wide */ for (i = 0; (i < AcpiGbl_IntegerNybbleWidth) && (Digit > 0); i++) { (void) AcpiUtShortDivide (Digit, 10, &Digit, &Temp32); /* * Insert the BCD digit that resides in the * remainder from above */ ReturnDesc->Integer.Value |= (((UINT64) Temp32) << ACPI_MUL_4 (i)); } /* Overflow if there is any data left in Digit */ if (Digit > 0) { ACPI_ERROR ((AE_INFO, "Integer too large to convert to BCD: 0x%8.8X%8.8X", ACPI_FORMAT_UINT64 (Operand[0]->Integer.Value))); Status = AE_AML_NUMERIC_OVERFLOW; goto Cleanup; } break; case AML_COND_REF_OF_OP: /* CondRefOf (SourceObject, Result) */ /* * This op is a little strange because the internal return value is * different than the return value stored in the result descriptor * (There are really two return values) */ if ((ACPI_NAMESPACE_NODE *) Operand[0] == AcpiGbl_RootNode) { /* * This means that the object does not exist in the namespace, * return FALSE */ ReturnDesc->Integer.Value = 0; goto Cleanup; } /* Get the object reference, store it, and remove our reference */ Status = AcpiExGetObjectReference (Operand[0], &ReturnDesc2, WalkState); if (ACPI_FAILURE (Status)) { goto Cleanup; } Status = AcpiExStore (ReturnDesc2, Operand[1], WalkState); AcpiUtRemoveReference (ReturnDesc2); /* The object exists in the namespace, return TRUE */ ReturnDesc->Integer.Value = ACPI_UINT64_MAX; goto Cleanup; default: /* No other opcodes get here */ break; } break; case AML_STORE_OP: /* Store (Source, Target) */ /* * A store operand is typically a number, string, buffer or lvalue * Be careful about deleting the source object, * since the object itself may have been stored. */ Status = AcpiExStore (Operand[0], Operand[1], WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* It is possible that the Store already produced a return object */ if (!WalkState->ResultObj) { /* * Normally, we would remove a reference on the Operand[0] * parameter; But since it is being used as the internal return * object (meaning we would normally increment it), the two * cancel out, and we simply don't do anything. */ WalkState->ResultObj = Operand[0]; WalkState->Operands[0] = NULL; /* Prevent deletion */ } return_ACPI_STATUS (Status); /* * ACPI 2.0 Opcodes */ case AML_COPY_OP: /* Copy (Source, Target) */ Status = AcpiUtCopyIobjectToIobject ( Operand[0], &ReturnDesc, WalkState); break; case AML_TO_DECSTRING_OP: /* ToDecimalString (Data, Result) */ Status = AcpiExConvertToString ( Operand[0], &ReturnDesc, ACPI_EXPLICIT_CONVERT_DECIMAL); if (ReturnDesc == Operand[0]) { /* No conversion performed, add ref to handle return value */ AcpiUtAddReference (ReturnDesc); } break; case AML_TO_HEXSTRING_OP: /* ToHexString (Data, Result) */ Status = AcpiExConvertToString ( Operand[0], &ReturnDesc, ACPI_EXPLICIT_CONVERT_HEX); if (ReturnDesc == Operand[0]) { /* No conversion performed, add ref to handle return value */ AcpiUtAddReference (ReturnDesc); } break; case AML_TO_BUFFER_OP: /* ToBuffer (Data, Result) */ Status = AcpiExConvertToBuffer (Operand[0], &ReturnDesc); if (ReturnDesc == Operand[0]) { /* No conversion performed, add ref to handle return value */ AcpiUtAddReference (ReturnDesc); } break; case AML_TO_INTEGER_OP: /* ToInteger (Data, Result) */ - Status = AcpiExConvertToInteger ( - Operand[0], &ReturnDesc, ACPI_ANY_BASE); + /* Perform "explicit" conversion */ + + Status = AcpiExConvertToInteger (Operand[0], &ReturnDesc, 0); if (ReturnDesc == Operand[0]) { /* No conversion performed, add ref to handle return value */ AcpiUtAddReference (ReturnDesc); } break; case AML_SHIFT_LEFT_BIT_OP: /* ShiftLeftBit (Source, BitNum) */ case AML_SHIFT_RIGHT_BIT_OP: /* ShiftRightBit (Source, BitNum) */ /* These are two obsolete opcodes */ ACPI_ERROR ((AE_INFO, "%s is obsolete and not implemented", AcpiPsGetOpcodeName (WalkState->Opcode))); Status = AE_SUPPORT; goto Cleanup; default: /* Unknown opcode */ ACPI_ERROR ((AE_INFO, "Unknown AML opcode 0x%X", WalkState->Opcode)); Status = AE_AML_BAD_OPCODE; goto Cleanup; } if (ACPI_SUCCESS (Status)) { /* Store the return value computed above into the target object */ Status = AcpiExStore (ReturnDesc, Operand[1], WalkState); } Cleanup: /* Delete return object on error */ if (ACPI_FAILURE (Status)) { AcpiUtRemoveReference (ReturnDesc); } /* Save return object on success */ else if (!WalkState->ResultObj) { WalkState->ResultObj = ReturnDesc; } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiExOpcode_1A_0T_1R * * PARAMETERS: WalkState - Current state (contains AML opcode) * * RETURN: Status * * DESCRIPTION: Execute opcode with one argument, no target, and a return value * ******************************************************************************/ ACPI_STATUS AcpiExOpcode_1A_0T_1R ( ACPI_WALK_STATE *WalkState) { ACPI_OPERAND_OBJECT **Operand = &WalkState->Operands[0]; ACPI_OPERAND_OBJECT *TempDesc; ACPI_OPERAND_OBJECT *ReturnDesc = NULL; ACPI_STATUS Status = AE_OK; UINT32 Type; UINT64 Value; ACPI_FUNCTION_TRACE_STR (ExOpcode_1A_0T_1R, AcpiPsGetOpcodeName (WalkState->Opcode)); /* Examine the AML opcode */ switch (WalkState->Opcode) { case AML_LNOT_OP: /* LNot (Operand) */ ReturnDesc = AcpiUtCreateIntegerObject ((UINT64) 0); if (!ReturnDesc) { Status = AE_NO_MEMORY; goto Cleanup; } /* * Set result to ONES (TRUE) if Value == 0. Note: * ReturnDesc->Integer.Value is initially == 0 (FALSE) from above. */ if (!Operand[0]->Integer.Value) { ReturnDesc->Integer.Value = ACPI_UINT64_MAX; } break; case AML_DECREMENT_OP: /* Decrement (Operand) */ case AML_INCREMENT_OP: /* Increment (Operand) */ /* * Create a new integer. Can't just get the base integer and * increment it because it may be an Arg or Field. */ ReturnDesc = AcpiUtCreateInternalObject (ACPI_TYPE_INTEGER); if (!ReturnDesc) { Status = AE_NO_MEMORY; goto Cleanup; } /* * Since we are expecting a Reference operand, it can be either a * NS Node or an internal object. */ TempDesc = Operand[0]; if (ACPI_GET_DESCRIPTOR_TYPE (TempDesc) == ACPI_DESC_TYPE_OPERAND) { /* Internal reference object - prevent deletion */ AcpiUtAddReference (TempDesc); } /* * Convert the Reference operand to an Integer (This removes a * reference on the Operand[0] object) * * NOTE: We use LNOT_OP here in order to force resolution of the * reference operand to an actual integer. */ Status = AcpiExResolveOperands (AML_LNOT_OP, &TempDesc, WalkState); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "While resolving operands for [%s]", AcpiPsGetOpcodeName (WalkState->Opcode))); goto Cleanup; } /* * TempDesc is now guaranteed to be an Integer object -- * Perform the actual increment or decrement */ if (WalkState->Opcode == AML_INCREMENT_OP) { ReturnDesc->Integer.Value = TempDesc->Integer.Value + 1; } else { ReturnDesc->Integer.Value = TempDesc->Integer.Value - 1; } /* Finished with this Integer object */ AcpiUtRemoveReference (TempDesc); /* * Store the result back (indirectly) through the original * Reference object */ Status = AcpiExStore (ReturnDesc, Operand[0], WalkState); break; case AML_OBJECT_TYPE_OP: /* ObjectType (SourceObject) */ /* * Note: The operand is not resolved at this point because we want to * get the associated object, not its value. For example, we don't * want to resolve a FieldUnit to its value, we want the actual * FieldUnit object. */ /* Get the type of the base object */ Status = AcpiExResolveMultiple (WalkState, Operand[0], &Type, NULL); if (ACPI_FAILURE (Status)) { goto Cleanup; } /* Allocate a descriptor to hold the type. */ ReturnDesc = AcpiUtCreateIntegerObject ((UINT64) Type); if (!ReturnDesc) { Status = AE_NO_MEMORY; goto Cleanup; } break; case AML_SIZE_OF_OP: /* SizeOf (SourceObject) */ /* * Note: The operand is not resolved at this point because we want to * get the associated object, not its value. */ /* Get the base object */ Status = AcpiExResolveMultiple ( WalkState, Operand[0], &Type, &TempDesc); if (ACPI_FAILURE (Status)) { goto Cleanup; } /* * The type of the base object must be integer, buffer, string, or * package. All others are not supported. * * NOTE: Integer is not specifically supported by the ACPI spec, * but is supported implicitly via implicit operand conversion. * rather than bother with conversion, we just use the byte width * global (4 or 8 bytes). */ switch (Type) { case ACPI_TYPE_INTEGER: Value = AcpiGbl_IntegerByteWidth; break; case ACPI_TYPE_STRING: Value = TempDesc->String.Length; break; case ACPI_TYPE_BUFFER: /* Buffer arguments may not be evaluated at this point */ Status = AcpiDsGetBufferArguments (TempDesc); Value = TempDesc->Buffer.Length; break; case ACPI_TYPE_PACKAGE: /* Package arguments may not be evaluated at this point */ Status = AcpiDsGetPackageArguments (TempDesc); Value = TempDesc->Package.Count; break; default: ACPI_ERROR ((AE_INFO, "Operand must be Buffer/Integer/String/Package" " - found type %s", AcpiUtGetTypeName (Type))); Status = AE_AML_OPERAND_TYPE; goto Cleanup; } if (ACPI_FAILURE (Status)) { goto Cleanup; } /* * Now that we have the size of the object, create a result * object to hold the value */ ReturnDesc = AcpiUtCreateIntegerObject (Value); if (!ReturnDesc) { Status = AE_NO_MEMORY; goto Cleanup; } break; case AML_REF_OF_OP: /* RefOf (SourceObject) */ Status = AcpiExGetObjectReference ( Operand[0], &ReturnDesc, WalkState); if (ACPI_FAILURE (Status)) { goto Cleanup; } break; case AML_DEREF_OF_OP: /* DerefOf (ObjReference | String) */ /* Check for a method local or argument, or standalone String */ if (ACPI_GET_DESCRIPTOR_TYPE (Operand[0]) == ACPI_DESC_TYPE_NAMED) { TempDesc = AcpiNsGetAttachedObject ( (ACPI_NAMESPACE_NODE *) Operand[0]); if (TempDesc && ((TempDesc->Common.Type == ACPI_TYPE_STRING) || (TempDesc->Common.Type == ACPI_TYPE_LOCAL_REFERENCE))) { Operand[0] = TempDesc; AcpiUtAddReference (TempDesc); } else { Status = AE_AML_OPERAND_TYPE; goto Cleanup; } } else { switch ((Operand[0])->Common.Type) { case ACPI_TYPE_LOCAL_REFERENCE: /* * This is a DerefOf (LocalX | ArgX) * * Must resolve/dereference the local/arg reference first */ switch (Operand[0]->Reference.Class) { case ACPI_REFCLASS_LOCAL: case ACPI_REFCLASS_ARG: /* Set Operand[0] to the value of the local/arg */ Status = AcpiDsMethodDataGetValue ( Operand[0]->Reference.Class, Operand[0]->Reference.Value, WalkState, &TempDesc); if (ACPI_FAILURE (Status)) { goto Cleanup; } /* * Delete our reference to the input object and * point to the object just retrieved */ AcpiUtRemoveReference (Operand[0]); Operand[0] = TempDesc; break; case ACPI_REFCLASS_REFOF: /* Get the object to which the reference refers */ TempDesc = Operand[0]->Reference.Object; AcpiUtRemoveReference (Operand[0]); Operand[0] = TempDesc; break; default: /* Must be an Index op - handled below */ break; } break; case ACPI_TYPE_STRING: break; default: Status = AE_AML_OPERAND_TYPE; goto Cleanup; } } if (ACPI_GET_DESCRIPTOR_TYPE (Operand[0]) != ACPI_DESC_TYPE_NAMED) { if ((Operand[0])->Common.Type == ACPI_TYPE_STRING) { /* * This is a DerefOf (String). The string is a reference * to a named ACPI object. * * 1) Find the owning Node * 2) Dereference the node to an actual object. Could be a * Field, so we need to resolve the node to a value. */ - Status = AcpiNsGetNode (WalkState->ScopeInfo->Scope.Node, + Status = AcpiNsGetNodeUnlocked (WalkState->ScopeInfo->Scope.Node, Operand[0]->String.Pointer, ACPI_NS_SEARCH_PARENT, ACPI_CAST_INDIRECT_PTR ( ACPI_NAMESPACE_NODE, &ReturnDesc)); if (ACPI_FAILURE (Status)) { goto Cleanup; } Status = AcpiExResolveNodeToValue ( ACPI_CAST_INDIRECT_PTR ( ACPI_NAMESPACE_NODE, &ReturnDesc), WalkState); goto Cleanup; } } /* Operand[0] may have changed from the code above */ if (ACPI_GET_DESCRIPTOR_TYPE (Operand[0]) == ACPI_DESC_TYPE_NAMED) { /* * This is a DerefOf (ObjectReference) * Get the actual object from the Node (This is the dereference). * This case may only happen when a LocalX or ArgX is * dereferenced above. */ ReturnDesc = AcpiNsGetAttachedObject ( (ACPI_NAMESPACE_NODE *) Operand[0]); AcpiUtAddReference (ReturnDesc); } else { /* * This must be a reference object produced by either the * Index() or RefOf() operator */ switch (Operand[0]->Reference.Class) { case ACPI_REFCLASS_INDEX: /* * The target type for the Index operator must be * either a Buffer or a Package */ switch (Operand[0]->Reference.TargetType) { case ACPI_TYPE_BUFFER_FIELD: TempDesc = Operand[0]->Reference.Object; /* * Create a new object that contains one element of the * buffer -- the element pointed to by the index. * * NOTE: index into a buffer is NOT a pointer to a * sub-buffer of the main buffer, it is only a pointer to a * single element (byte) of the buffer! * * Since we are returning the value of the buffer at the * indexed location, we don't need to add an additional * reference to the buffer itself. */ ReturnDesc = AcpiUtCreateIntegerObject ((UINT64) TempDesc->Buffer.Pointer[Operand[0]->Reference.Value]); if (!ReturnDesc) { Status = AE_NO_MEMORY; goto Cleanup; } break; case ACPI_TYPE_PACKAGE: /* * Return the referenced element of the package. We must * add another reference to the referenced object, however. */ ReturnDesc = *(Operand[0]->Reference.Where); if (!ReturnDesc) { /* * Element is NULL, do not allow the dereference. * This provides compatibility with other ACPI * implementations. */ return_ACPI_STATUS (AE_AML_UNINITIALIZED_ELEMENT); } AcpiUtAddReference (ReturnDesc); break; default: ACPI_ERROR ((AE_INFO, "Unknown Index TargetType 0x%X in reference object %p", Operand[0]->Reference.TargetType, Operand[0])); Status = AE_AML_OPERAND_TYPE; goto Cleanup; } break; case ACPI_REFCLASS_REFOF: ReturnDesc = Operand[0]->Reference.Object; if (ACPI_GET_DESCRIPTOR_TYPE (ReturnDesc) == ACPI_DESC_TYPE_NAMED) { ReturnDesc = AcpiNsGetAttachedObject ( (ACPI_NAMESPACE_NODE *) ReturnDesc); if (!ReturnDesc) { break; } /* * June 2013: * BufferFields/FieldUnits require additional resolution */ switch (ReturnDesc->Common.Type) { case ACPI_TYPE_BUFFER_FIELD: case ACPI_TYPE_LOCAL_REGION_FIELD: case ACPI_TYPE_LOCAL_BANK_FIELD: case ACPI_TYPE_LOCAL_INDEX_FIELD: Status = AcpiExReadDataFromField ( WalkState, ReturnDesc, &TempDesc); if (ACPI_FAILURE (Status)) { goto Cleanup; } ReturnDesc = TempDesc; break; default: /* Add another reference to the object */ AcpiUtAddReference (ReturnDesc); break; } } break; default: ACPI_ERROR ((AE_INFO, "Unknown class in reference(%p) - 0x%2.2X", Operand[0], Operand[0]->Reference.Class)); Status = AE_TYPE; goto Cleanup; } } break; default: ACPI_ERROR ((AE_INFO, "Unknown AML opcode 0x%X", WalkState->Opcode)); Status = AE_AML_BAD_OPCODE; goto Cleanup; } Cleanup: /* Delete return object on error */ if (ACPI_FAILURE (Status)) { AcpiUtRemoveReference (ReturnDesc); } /* Save return object on success */ else { WalkState->ResultObj = ReturnDesc; } return_ACPI_STATUS (Status); } Index: vendor-sys/acpica/dist/source/components/executer/exresop.c =================================================================== --- vendor-sys/acpica/dist/source/components/executer/exresop.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/executer/exresop.c (revision 305162) @@ -1,730 +1,732 @@ /****************************************************************************** * * Module Name: exresop - AML Interpreter operand/object resolution * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "amlcode.h" #include "acparser.h" #include "acinterp.h" #include "acnamesp.h" #define _COMPONENT ACPI_EXECUTER ACPI_MODULE_NAME ("exresop") /* Local prototypes */ static ACPI_STATUS AcpiExCheckObjectType ( ACPI_OBJECT_TYPE TypeNeeded, ACPI_OBJECT_TYPE ThisType, void *Object); /******************************************************************************* * * FUNCTION: AcpiExCheckObjectType * * PARAMETERS: TypeNeeded Object type needed * ThisType Actual object type * Object Object pointer * * RETURN: Status * * DESCRIPTION: Check required type against actual type * ******************************************************************************/ static ACPI_STATUS AcpiExCheckObjectType ( ACPI_OBJECT_TYPE TypeNeeded, ACPI_OBJECT_TYPE ThisType, void *Object) { ACPI_FUNCTION_ENTRY (); if (TypeNeeded == ACPI_TYPE_ANY) { /* All types OK, so we don't perform any typechecks */ return (AE_OK); } if (TypeNeeded == ACPI_TYPE_LOCAL_REFERENCE) { /* * Allow the AML "Constant" opcodes (Zero, One, etc.) to be reference * objects and thus allow them to be targets. (As per the ACPI * specification, a store to a constant is a noop.) */ if ((ThisType == ACPI_TYPE_INTEGER) && (((ACPI_OPERAND_OBJECT *) Object)->Common.Flags & AOPOBJ_AML_CONSTANT)) { return (AE_OK); } } if (TypeNeeded != ThisType) { ACPI_ERROR ((AE_INFO, "Needed type [%s], found [%s] %p", AcpiUtGetTypeName (TypeNeeded), AcpiUtGetTypeName (ThisType), Object)); return (AE_AML_OPERAND_TYPE); } return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiExResolveOperands * * PARAMETERS: Opcode - Opcode being interpreted * StackPtr - Pointer to the operand stack to be * resolved * WalkState - Current state * * RETURN: Status * * DESCRIPTION: Convert multiple input operands to the types required by the * target operator. * * Each 5-bit group in ArgTypes represents one required * operand and indicates the required Type. The corresponding operand * will be converted to the required type if possible, otherwise we * abort with an exception. * ******************************************************************************/ ACPI_STATUS AcpiExResolveOperands ( UINT16 Opcode, ACPI_OPERAND_OBJECT **StackPtr, ACPI_WALK_STATE *WalkState) { ACPI_OPERAND_OBJECT *ObjDesc; ACPI_STATUS Status = AE_OK; UINT8 ObjectType; UINT32 ArgTypes; const ACPI_OPCODE_INFO *OpInfo; UINT32 ThisArgType; ACPI_OBJECT_TYPE TypeNeeded; UINT16 TargetOp = 0; ACPI_FUNCTION_TRACE_U32 (ExResolveOperands, Opcode); OpInfo = AcpiPsGetOpcodeInfo (Opcode); if (OpInfo->Class == AML_CLASS_UNKNOWN) { return_ACPI_STATUS (AE_AML_BAD_OPCODE); } ArgTypes = OpInfo->RuntimeArgs; if (ArgTypes == ARGI_INVALID_OPCODE) { ACPI_ERROR ((AE_INFO, "Unknown AML opcode 0x%X", Opcode)); return_ACPI_STATUS (AE_AML_INTERNAL); } ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Opcode %X [%s] RequiredOperandTypes=%8.8X\n", Opcode, OpInfo->Name, ArgTypes)); /* * Normal exit is with (ArgTypes == 0) at end of argument list. * Function will return an exception from within the loop upon * finding an entry which is not (or cannot be converted * to) the required type; if stack underflows; or upon * finding a NULL stack entry (which should not happen). */ while (GET_CURRENT_ARG_TYPE (ArgTypes)) { if (!StackPtr || !*StackPtr) { ACPI_ERROR ((AE_INFO, "Null stack entry at %p", StackPtr)); return_ACPI_STATUS (AE_AML_INTERNAL); } /* Extract useful items */ ObjDesc = *StackPtr; /* Decode the descriptor type */ switch (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc)) { case ACPI_DESC_TYPE_NAMED: /* Namespace Node */ ObjectType = ((ACPI_NAMESPACE_NODE *) ObjDesc)->Type; /* * Resolve an alias object. The construction of these objects * guarantees that there is only one level of alias indirection; * thus, the attached object is always the aliased namespace node */ if (ObjectType == ACPI_TYPE_LOCAL_ALIAS) { ObjDesc = AcpiNsGetAttachedObject ( (ACPI_NAMESPACE_NODE *) ObjDesc); *StackPtr = ObjDesc; ObjectType = ((ACPI_NAMESPACE_NODE *) ObjDesc)->Type; } break; case ACPI_DESC_TYPE_OPERAND: /* ACPI internal object */ ObjectType = ObjDesc->Common.Type; /* Check for bad ACPI_OBJECT_TYPE */ if (!AcpiUtValidObjectType (ObjectType)) { ACPI_ERROR ((AE_INFO, "Bad operand object type [0x%X]", ObjectType)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } if (ObjectType == (UINT8) ACPI_TYPE_LOCAL_REFERENCE) { /* Validate the Reference */ switch (ObjDesc->Reference.Class) { case ACPI_REFCLASS_DEBUG: TargetOp = AML_DEBUG_OP; /*lint -fallthrough */ case ACPI_REFCLASS_ARG: case ACPI_REFCLASS_LOCAL: case ACPI_REFCLASS_INDEX: case ACPI_REFCLASS_REFOF: case ACPI_REFCLASS_TABLE: /* DdbHandle from LOAD_OP or LOAD_TABLE_OP */ case ACPI_REFCLASS_NAME: /* Reference to a named object */ ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Operand is a Reference, Class [%s] %2.2X\n", AcpiUtGetReferenceName (ObjDesc), ObjDesc->Reference.Class)); break; default: ACPI_ERROR ((AE_INFO, "Unknown Reference Class 0x%2.2X in %p", ObjDesc->Reference.Class, ObjDesc)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } } break; default: /* Invalid descriptor */ ACPI_ERROR ((AE_INFO, "Invalid descriptor %p [%s]", ObjDesc, AcpiUtGetDescriptorName (ObjDesc))); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } /* Get one argument type, point to the next */ ThisArgType = GET_CURRENT_ARG_TYPE (ArgTypes); INCREMENT_ARG_LIST (ArgTypes); /* * Handle cases where the object does not need to be * resolved to a value */ switch (ThisArgType) { case ARGI_REF_OR_STRING: /* Can be a String or Reference */ if ((ACPI_GET_DESCRIPTOR_TYPE (ObjDesc) == ACPI_DESC_TYPE_OPERAND) && (ObjDesc->Common.Type == ACPI_TYPE_STRING)) { /* * String found - the string references a named object and * must be resolved to a node */ goto NextOperand; } /* * Else not a string - fall through to the normal Reference * case below */ /*lint -fallthrough */ case ARGI_REFERENCE: /* References: */ case ARGI_INTEGER_REF: case ARGI_OBJECT_REF: case ARGI_DEVICE_REF: case ARGI_TARGETREF: /* Allows implicit conversion rules before store */ case ARGI_FIXED_TARGET: /* No implicit conversion before store to target */ case ARGI_SIMPLE_TARGET: /* Name, Local, or Arg - no implicit conversion */ case ARGI_STORE_TARGET: /* * Need an operand of type ACPI_TYPE_LOCAL_REFERENCE * A Namespace Node is OK as-is */ if (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc) == ACPI_DESC_TYPE_NAMED) { goto NextOperand; } Status = AcpiExCheckObjectType ( ACPI_TYPE_LOCAL_REFERENCE, ObjectType, ObjDesc); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } goto NextOperand; case ARGI_DATAREFOBJ: /* Store operator only */ /* * We don't want to resolve IndexOp reference objects during * a store because this would be an implicit DeRefOf operation. * Instead, we just want to store the reference object. * -- All others must be resolved below. */ if ((Opcode == AML_STORE_OP) && ((*StackPtr)->Common.Type == ACPI_TYPE_LOCAL_REFERENCE) && ((*StackPtr)->Reference.Class == ACPI_REFCLASS_INDEX)) { goto NextOperand; } break; default: /* All cases covered above */ break; } /* * Resolve this object to a value */ Status = AcpiExResolveToValue (StackPtr, WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Get the resolved object */ ObjDesc = *StackPtr; /* * Check the resulting object (value) type */ switch (ThisArgType) { /* * For the simple cases, only one type of resolved object * is allowed */ case ARGI_MUTEX: /* Need an operand of type ACPI_TYPE_MUTEX */ TypeNeeded = ACPI_TYPE_MUTEX; break; case ARGI_EVENT: /* Need an operand of type ACPI_TYPE_EVENT */ TypeNeeded = ACPI_TYPE_EVENT; break; case ARGI_PACKAGE: /* Package */ /* Need an operand of type ACPI_TYPE_PACKAGE */ TypeNeeded = ACPI_TYPE_PACKAGE; break; case ARGI_ANYTYPE: /* Any operand type will do */ TypeNeeded = ACPI_TYPE_ANY; break; case ARGI_DDBHANDLE: /* Need an operand of type ACPI_TYPE_DDB_HANDLE */ TypeNeeded = ACPI_TYPE_LOCAL_REFERENCE; break; /* * The more complex cases allow multiple resolved object types */ case ARGI_INTEGER: /* - * Need an operand of type ACPI_TYPE_INTEGER, - * But we can implicitly convert from a STRING or BUFFER - * Aka - "Implicit Source Operand Conversion" + * Need an operand of type ACPI_TYPE_INTEGER, but we can + * implicitly convert from a STRING or BUFFER. + * + * Known as "Implicit Source Operand Conversion" */ - Status = AcpiExConvertToInteger (ObjDesc, StackPtr, 16); + Status = AcpiExConvertToInteger (ObjDesc, StackPtr, + ACPI_STRTOUL_BASE16); if (ACPI_FAILURE (Status)) { if (Status == AE_TYPE) { ACPI_ERROR ((AE_INFO, "Needed [Integer/String/Buffer], found [%s] %p", AcpiUtGetObjectTypeName (ObjDesc), ObjDesc)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } return_ACPI_STATUS (Status); } if (ObjDesc != *StackPtr) { AcpiUtRemoveReference (ObjDesc); } goto NextOperand; case ARGI_BUFFER: /* * Need an operand of type ACPI_TYPE_BUFFER, * But we can implicitly convert from a STRING or INTEGER * Aka - "Implicit Source Operand Conversion" */ Status = AcpiExConvertToBuffer (ObjDesc, StackPtr); if (ACPI_FAILURE (Status)) { if (Status == AE_TYPE) { ACPI_ERROR ((AE_INFO, "Needed [Integer/String/Buffer], found [%s] %p", AcpiUtGetObjectTypeName (ObjDesc), ObjDesc)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } return_ACPI_STATUS (Status); } if (ObjDesc != *StackPtr) { AcpiUtRemoveReference (ObjDesc); } goto NextOperand; case ARGI_STRING: /* * Need an operand of type ACPI_TYPE_STRING, * But we can implicitly convert from a BUFFER or INTEGER * Aka - "Implicit Source Operand Conversion" */ Status = AcpiExConvertToString ( ObjDesc, StackPtr, ACPI_IMPLICIT_CONVERT_HEX); if (ACPI_FAILURE (Status)) { if (Status == AE_TYPE) { ACPI_ERROR ((AE_INFO, "Needed [Integer/String/Buffer], found [%s] %p", AcpiUtGetObjectTypeName (ObjDesc), ObjDesc)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } return_ACPI_STATUS (Status); } if (ObjDesc != *StackPtr) { AcpiUtRemoveReference (ObjDesc); } goto NextOperand; case ARGI_COMPUTEDATA: /* Need an operand of type INTEGER, STRING or BUFFER */ switch (ObjDesc->Common.Type) { case ACPI_TYPE_INTEGER: case ACPI_TYPE_STRING: case ACPI_TYPE_BUFFER: /* Valid operand */ break; default: ACPI_ERROR ((AE_INFO, "Needed [Integer/String/Buffer], found [%s] %p", AcpiUtGetObjectTypeName (ObjDesc), ObjDesc)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } goto NextOperand; case ARGI_BUFFER_OR_STRING: /* Need an operand of type STRING or BUFFER */ switch (ObjDesc->Common.Type) { case ACPI_TYPE_STRING: case ACPI_TYPE_BUFFER: /* Valid operand */ break; case ACPI_TYPE_INTEGER: /* Highest priority conversion is to type Buffer */ Status = AcpiExConvertToBuffer (ObjDesc, StackPtr); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } if (ObjDesc != *StackPtr) { AcpiUtRemoveReference (ObjDesc); } break; default: ACPI_ERROR ((AE_INFO, "Needed [Integer/String/Buffer], found [%s] %p", AcpiUtGetObjectTypeName (ObjDesc), ObjDesc)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } goto NextOperand; case ARGI_DATAOBJECT: /* * ARGI_DATAOBJECT is only used by the SizeOf operator. * Need a buffer, string, package, or RefOf reference. * * The only reference allowed here is a direct reference to * a namespace node. */ switch (ObjDesc->Common.Type) { case ACPI_TYPE_PACKAGE: case ACPI_TYPE_STRING: case ACPI_TYPE_BUFFER: case ACPI_TYPE_LOCAL_REFERENCE: /* Valid operand */ break; default: ACPI_ERROR ((AE_INFO, "Needed [Buffer/String/Package/Reference], found [%s] %p", AcpiUtGetObjectTypeName (ObjDesc), ObjDesc)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } goto NextOperand; case ARGI_COMPLEXOBJ: /* Need a buffer or package or (ACPI 2.0) String */ switch (ObjDesc->Common.Type) { case ACPI_TYPE_PACKAGE: case ACPI_TYPE_STRING: case ACPI_TYPE_BUFFER: /* Valid operand */ break; default: ACPI_ERROR ((AE_INFO, "Needed [Buffer/String/Package], found [%s] %p", AcpiUtGetObjectTypeName (ObjDesc), ObjDesc)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } goto NextOperand; case ARGI_REGION_OR_BUFFER: /* Used by Load() only */ /* * Need an operand of type REGION or a BUFFER * (which could be a resolved region field) */ switch (ObjDesc->Common.Type) { case ACPI_TYPE_BUFFER: case ACPI_TYPE_REGION: /* Valid operand */ break; default: ACPI_ERROR ((AE_INFO, "Needed [Region/Buffer], found [%s] %p", AcpiUtGetObjectTypeName (ObjDesc), ObjDesc)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } goto NextOperand; case ARGI_DATAREFOBJ: /* Used by the Store() operator only */ switch (ObjDesc->Common.Type) { case ACPI_TYPE_INTEGER: case ACPI_TYPE_PACKAGE: case ACPI_TYPE_STRING: case ACPI_TYPE_BUFFER: case ACPI_TYPE_BUFFER_FIELD: case ACPI_TYPE_LOCAL_REFERENCE: case ACPI_TYPE_LOCAL_REGION_FIELD: case ACPI_TYPE_LOCAL_BANK_FIELD: case ACPI_TYPE_LOCAL_INDEX_FIELD: case ACPI_TYPE_DDB_HANDLE: /* Valid operand */ break; default: if (AcpiGbl_EnableInterpreterSlack) { /* * Enable original behavior of Store(), allowing any * and all objects as the source operand. The ACPI * spec does not allow this, however. */ break; } if (TargetOp == AML_DEBUG_OP) { /* Allow store of any object to the Debug object */ break; } ACPI_ERROR ((AE_INFO, "Needed Integer/Buffer/String/Package/Ref/Ddb]" ", found [%s] %p", AcpiUtGetObjectTypeName (ObjDesc), ObjDesc)); return_ACPI_STATUS (AE_AML_OPERAND_TYPE); } goto NextOperand; default: /* Unknown type */ ACPI_ERROR ((AE_INFO, "Internal - Unknown ARGI (required operand) type 0x%X", ThisArgType)); return_ACPI_STATUS (AE_BAD_PARAMETER); } /* * Make sure that the original object was resolved to the * required object type (Simple cases only). */ Status = AcpiExCheckObjectType ( TypeNeeded, (*StackPtr)->Common.Type, *StackPtr); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } NextOperand: /* * If more operands needed, decrement StackPtr to point * to next operand on stack */ if (GET_CURRENT_ARG_TYPE (ArgTypes)) { StackPtr--; } } ACPI_DUMP_OPERANDS (WalkState->Operands, AcpiPsGetOpcodeName (Opcode), WalkState->NumOperands); return_ACPI_STATUS (Status); } Index: vendor-sys/acpica/dist/source/components/executer/extrace.c =================================================================== --- vendor-sys/acpica/dist/source/components/executer/extrace.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/executer/extrace.c (revision 305162) @@ -1,427 +1,399 @@ /****************************************************************************** * * Module Name: extrace - Support for interpreter execution tracing * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acnamesp.h" #include "acinterp.h" #define _COMPONENT ACPI_EXECUTER ACPI_MODULE_NAME ("extrace") static ACPI_OPERAND_OBJECT *AcpiGbl_TraceMethodObject = NULL; /* Local prototypes */ #ifdef ACPI_DEBUG_OUTPUT static const char * AcpiExGetTraceEventName ( ACPI_TRACE_EVENT_TYPE Type); #endif /******************************************************************************* * * FUNCTION: AcpiExInterpreterTraceEnabled * * PARAMETERS: Name - Whether method name should be matched, * this should be checked before starting * the tracer * * RETURN: TRUE if interpreter trace is enabled. * * DESCRIPTION: Check whether interpreter trace is enabled * ******************************************************************************/ static BOOLEAN AcpiExInterpreterTraceEnabled ( char *Name) { /* Check if tracing is enabled */ if (!(AcpiGbl_TraceFlags & ACPI_TRACE_ENABLED)) { return (FALSE); } /* * Check if tracing is filtered: * * 1. If the tracer is started, AcpiGbl_TraceMethodObject should have * been filled by the trace starter * 2. If the tracer is not started, AcpiGbl_TraceMethodName should be * matched if it is specified * 3. If the tracer is oneshot style, AcpiGbl_TraceMethodName should * not be cleared by the trace stopper during the first match */ if (AcpiGbl_TraceMethodObject) { return (TRUE); } if (Name && (AcpiGbl_TraceMethodName && strcmp (AcpiGbl_TraceMethodName, Name))) { return (FALSE); } if ((AcpiGbl_TraceFlags & ACPI_TRACE_ONESHOT) && !AcpiGbl_TraceMethodName) { return (FALSE); } return (TRUE); } /******************************************************************************* * * FUNCTION: AcpiExGetTraceEventName * * PARAMETERS: Type - Trace event type * * RETURN: Trace event name. * * DESCRIPTION: Used to obtain the full trace event name. * ******************************************************************************/ #ifdef ACPI_DEBUG_OUTPUT static const char * AcpiExGetTraceEventName ( ACPI_TRACE_EVENT_TYPE Type) { switch (Type) { case ACPI_TRACE_AML_METHOD: return "Method"; case ACPI_TRACE_AML_OPCODE: return "Opcode"; case ACPI_TRACE_AML_REGION: return "Region"; default: return ""; } } #endif /******************************************************************************* * * FUNCTION: AcpiExTracePoint * * PARAMETERS: Type - Trace event type * Begin - TRUE if before execution * Aml - Executed AML address * Pathname - Object path * * RETURN: None * * DESCRIPTION: Internal interpreter execution trace. * ******************************************************************************/ void AcpiExTracePoint ( ACPI_TRACE_EVENT_TYPE Type, BOOLEAN Begin, UINT8 *Aml, char *Pathname) { ACPI_FUNCTION_NAME (ExTracePoint); if (Pathname) { ACPI_DEBUG_PRINT ((ACPI_DB_TRACE_POINT, "%s %s [0x%p:%s] execution.\n", AcpiExGetTraceEventName (Type), Begin ? "Begin" : "End", Aml, Pathname)); } else { ACPI_DEBUG_PRINT ((ACPI_DB_TRACE_POINT, "%s %s [0x%p] execution.\n", AcpiExGetTraceEventName (Type), Begin ? "Begin" : "End", Aml)); } } /******************************************************************************* * * FUNCTION: AcpiExStartTraceMethod * * PARAMETERS: MethodNode - Node of the method * ObjDesc - The method object * WalkState - current state, NULL if not yet executing * a method. * * RETURN: None * * DESCRIPTION: Start control method execution trace * ******************************************************************************/ void AcpiExStartTraceMethod ( ACPI_NAMESPACE_NODE *MethodNode, ACPI_OPERAND_OBJECT *ObjDesc, ACPI_WALK_STATE *WalkState) { - ACPI_STATUS Status; char *Pathname = NULL; BOOLEAN Enabled = FALSE; ACPI_FUNCTION_NAME (ExStartTraceMethod); if (MethodNode) { Pathname = AcpiNsGetNormalizedPathname (MethodNode, TRUE); } - Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); - if (ACPI_FAILURE (Status)) - { - goto Exit; - } - Enabled = AcpiExInterpreterTraceEnabled (Pathname); if (Enabled && !AcpiGbl_TraceMethodObject) { AcpiGbl_TraceMethodObject = ObjDesc; AcpiGbl_OriginalDbgLevel = AcpiDbgLevel; AcpiGbl_OriginalDbgLayer = AcpiDbgLayer; AcpiDbgLevel = ACPI_TRACE_LEVEL_ALL; AcpiDbgLayer = ACPI_TRACE_LAYER_ALL; if (AcpiGbl_TraceDbgLevel) { AcpiDbgLevel = AcpiGbl_TraceDbgLevel; } if (AcpiGbl_TraceDbgLayer) { AcpiDbgLayer = AcpiGbl_TraceDbgLayer; } } - (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); - -Exit: if (Enabled) { ACPI_TRACE_POINT (ACPI_TRACE_AML_METHOD, TRUE, ObjDesc ? ObjDesc->Method.AmlStart : NULL, Pathname); } if (Pathname) { ACPI_FREE (Pathname); } } /******************************************************************************* * * FUNCTION: AcpiExStopTraceMethod * * PARAMETERS: MethodNode - Node of the method * ObjDesc - The method object * WalkState - current state, NULL if not yet executing * a method. * * RETURN: None * * DESCRIPTION: Stop control method execution trace * ******************************************************************************/ void AcpiExStopTraceMethod ( ACPI_NAMESPACE_NODE *MethodNode, ACPI_OPERAND_OBJECT *ObjDesc, ACPI_WALK_STATE *WalkState) { - ACPI_STATUS Status; char *Pathname = NULL; BOOLEAN Enabled; ACPI_FUNCTION_NAME (ExStopTraceMethod); if (MethodNode) { Pathname = AcpiNsGetNormalizedPathname (MethodNode, TRUE); } - Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); - if (ACPI_FAILURE (Status)) - { - goto ExitPath; - } - Enabled = AcpiExInterpreterTraceEnabled (NULL); - (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); - if (Enabled) { ACPI_TRACE_POINT (ACPI_TRACE_AML_METHOD, FALSE, ObjDesc ? ObjDesc->Method.AmlStart : NULL, Pathname); } - Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); - if (ACPI_FAILURE (Status)) - { - goto ExitPath; - } - /* Check whether the tracer should be stopped */ if (AcpiGbl_TraceMethodObject == ObjDesc) { /* Disable further tracing if type is one-shot */ if (AcpiGbl_TraceFlags & ACPI_TRACE_ONESHOT) { AcpiGbl_TraceMethodName = NULL; } AcpiDbgLevel = AcpiGbl_OriginalDbgLevel; AcpiDbgLayer = AcpiGbl_OriginalDbgLayer; AcpiGbl_TraceMethodObject = NULL; } - (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); - -ExitPath: if (Pathname) { ACPI_FREE (Pathname); } } /******************************************************************************* * * FUNCTION: AcpiExStartTraceOpcode * * PARAMETERS: Op - The parser opcode object * WalkState - current state, NULL if not yet executing * a method. * * RETURN: None * * DESCRIPTION: Start opcode execution trace * ******************************************************************************/ void AcpiExStartTraceOpcode ( ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState) { ACPI_FUNCTION_NAME (ExStartTraceOpcode); if (AcpiExInterpreterTraceEnabled (NULL) && (AcpiGbl_TraceFlags & ACPI_TRACE_OPCODE)) { ACPI_TRACE_POINT (ACPI_TRACE_AML_OPCODE, TRUE, Op->Common.Aml, Op->Common.AmlOpName); } } /******************************************************************************* * * FUNCTION: AcpiExStopTraceOpcode * * PARAMETERS: Op - The parser opcode object * WalkState - current state, NULL if not yet executing * a method. * * RETURN: None * * DESCRIPTION: Stop opcode execution trace * ******************************************************************************/ void AcpiExStopTraceOpcode ( ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState) { ACPI_FUNCTION_NAME (ExStopTraceOpcode); if (AcpiExInterpreterTraceEnabled (NULL) && (AcpiGbl_TraceFlags & ACPI_TRACE_OPCODE)) { ACPI_TRACE_POINT (ACPI_TRACE_AML_OPCODE, FALSE, Op->Common.Aml, Op->Common.AmlOpName); } } Index: vendor-sys/acpica/dist/source/components/executer/exutils.c =================================================================== --- vendor-sys/acpica/dist/source/components/executer/exutils.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/executer/exutils.c (revision 305162) @@ -1,500 +1,510 @@ /****************************************************************************** * * Module Name: exutils - interpreter/scanner utilities * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ /* * DEFINE_AML_GLOBALS is tested in amlcode.h * to determine whether certain global names should be "defined" or only * "declared" in the current compilation. This enhances maintainability * by enabling a single header file to embody all knowledge of the names * in question. * * Exactly one module of any executable should #define DEFINE_GLOBALS * before #including the header files which use this convention. The * names in question will be defined and initialized in that module, * and declared as extern in all other modules which #include those * header files. */ #define DEFINE_AML_GLOBALS #include "acpi.h" #include "accommon.h" #include "acinterp.h" #include "amlcode.h" #define _COMPONENT ACPI_EXECUTER ACPI_MODULE_NAME ("exutils") /* Local prototypes */ static UINT32 AcpiExDigitsNeeded ( UINT64 Value, UINT32 Base); #ifndef ACPI_NO_METHOD_EXECUTION /******************************************************************************* * * FUNCTION: AcpiExEnterInterpreter * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Enter the interpreter execution region. Failure to enter * the interpreter region is a fatal system error. Used in * conjunction with ExitInterpreter. * ******************************************************************************/ void AcpiExEnterInterpreter ( void) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (ExEnterInterpreter); Status = AcpiUtAcquireMutex (ACPI_MTX_INTERPRETER); if (ACPI_FAILURE (Status)) { ACPI_ERROR ((AE_INFO, "Could not acquire AML Interpreter mutex")); } + Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); + if (ACPI_FAILURE (Status)) + { + ACPI_ERROR ((AE_INFO, "Could not acquire AML Namespace mutex")); + } return_VOID; } /******************************************************************************* * * FUNCTION: AcpiExExitInterpreter * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Exit the interpreter execution region. This is the top level * routine used to exit the interpreter when all processing has * been completed, or when the method blocks. * * Cases where the interpreter is unlocked internally: * 1) Method will be blocked on a Sleep() AML opcode * 2) Method will be blocked on an Acquire() AML opcode * 3) Method will be blocked on a Wait() AML opcode * 4) Method will be blocked to acquire the global lock * 5) Method will be blocked waiting to execute a serialized control * method that is currently executing * 6) About to invoke a user-installed opregion handler * ******************************************************************************/ void AcpiExExitInterpreter ( void) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (ExExitInterpreter); + Status = AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); + if (ACPI_FAILURE (Status)) + { + ACPI_ERROR ((AE_INFO, "Could not release AML Namespace mutex")); + } Status = AcpiUtReleaseMutex (ACPI_MTX_INTERPRETER); if (ACPI_FAILURE (Status)) { ACPI_ERROR ((AE_INFO, "Could not release AML Interpreter mutex")); } return_VOID; } /******************************************************************************* * * FUNCTION: AcpiExTruncateFor32bitTable * * PARAMETERS: ObjDesc - Object to be truncated * * RETURN: TRUE if a truncation was performed, FALSE otherwise. * * DESCRIPTION: Truncate an ACPI Integer to 32 bits if the execution mode is * 32-bit, as determined by the revision of the DSDT. * ******************************************************************************/ BOOLEAN AcpiExTruncateFor32bitTable ( ACPI_OPERAND_OBJECT *ObjDesc) { ACPI_FUNCTION_ENTRY (); /* * Object must be a valid number and we must be executing * a control method. Object could be NS node for AML_INT_NAMEPATH_OP. */ if ((!ObjDesc) || (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc) != ACPI_DESC_TYPE_OPERAND) || (ObjDesc->Common.Type != ACPI_TYPE_INTEGER)) { return (FALSE); } if ((AcpiGbl_IntegerByteWidth == 4) && (ObjDesc->Integer.Value > (UINT64) ACPI_UINT32_MAX)) { /* * We are executing in a 32-bit ACPI table. Truncate * the value to 32 bits by zeroing out the upper 32-bit field */ ObjDesc->Integer.Value &= (UINT64) ACPI_UINT32_MAX; return (TRUE); } return (FALSE); } /******************************************************************************* * * FUNCTION: AcpiExAcquireGlobalLock * * PARAMETERS: FieldFlags - Flags with Lock rule: * AlwaysLock or NeverLock * * RETURN: None * * DESCRIPTION: Obtain the ACPI hardware Global Lock, only if the field * flags specifiy that it is to be obtained before field access. * ******************************************************************************/ void AcpiExAcquireGlobalLock ( UINT32 FieldFlags) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (ExAcquireGlobalLock); /* Only use the lock if the AlwaysLock bit is set */ if (!(FieldFlags & AML_FIELD_LOCK_RULE_MASK)) { return_VOID; } /* Attempt to get the global lock, wait forever */ Status = AcpiExAcquireMutexObject (ACPI_WAIT_FOREVER, AcpiGbl_GlobalLockMutex, AcpiOsGetThreadId ()); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "Could not acquire Global Lock")); } return_VOID; } /******************************************************************************* * * FUNCTION: AcpiExReleaseGlobalLock * * PARAMETERS: FieldFlags - Flags with Lock rule: * AlwaysLock or NeverLock * * RETURN: None * * DESCRIPTION: Release the ACPI hardware Global Lock * ******************************************************************************/ void AcpiExReleaseGlobalLock ( UINT32 FieldFlags) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (ExReleaseGlobalLock); /* Only use the lock if the AlwaysLock bit is set */ if (!(FieldFlags & AML_FIELD_LOCK_RULE_MASK)) { return_VOID; } /* Release the global lock */ Status = AcpiExReleaseMutexObject (AcpiGbl_GlobalLockMutex); if (ACPI_FAILURE (Status)) { /* Report the error, but there isn't much else we can do */ ACPI_EXCEPTION ((AE_INFO, Status, "Could not release Global Lock")); } return_VOID; } /******************************************************************************* * * FUNCTION: AcpiExDigitsNeeded * * PARAMETERS: Value - Value to be represented * Base - Base of representation * * RETURN: The number of digits. * * DESCRIPTION: Calculate the number of digits needed to represent the Value * in the given Base (Radix) * ******************************************************************************/ static UINT32 AcpiExDigitsNeeded ( UINT64 Value, UINT32 Base) { UINT32 NumDigits; UINT64 CurrentValue; ACPI_FUNCTION_TRACE (ExDigitsNeeded); /* UINT64 is unsigned, so we don't worry about a '-' prefix */ if (Value == 0) { return_UINT32 (1); } CurrentValue = Value; NumDigits = 0; /* Count the digits in the requested base */ while (CurrentValue) { (void) AcpiUtShortDivide (CurrentValue, Base, &CurrentValue, NULL); NumDigits++; } return_UINT32 (NumDigits); } /******************************************************************************* * * FUNCTION: AcpiExEisaIdToString * * PARAMETERS: OutString - Where to put the converted string (8 bytes) * CompressedId - EISAID to be converted * * RETURN: None * * DESCRIPTION: Convert a numeric EISAID to string representation. Return * buffer must be large enough to hold the string. The string * returned is always exactly of length ACPI_EISAID_STRING_SIZE * (includes null terminator). The EISAID is always 32 bits. * ******************************************************************************/ void AcpiExEisaIdToString ( char *OutString, UINT64 CompressedId) { UINT32 SwappedId; ACPI_FUNCTION_ENTRY (); /* The EISAID should be a 32-bit integer */ if (CompressedId > ACPI_UINT32_MAX) { ACPI_WARNING ((AE_INFO, "Expected EISAID is larger than 32 bits: " "0x%8.8X%8.8X, truncating", ACPI_FORMAT_UINT64 (CompressedId))); } /* Swap ID to big-endian to get contiguous bits */ SwappedId = AcpiUtDwordByteSwap ((UINT32) CompressedId); /* First 3 bytes are uppercase letters. Next 4 bytes are hexadecimal */ OutString[0] = (char) (0x40 + (((unsigned long) SwappedId >> 26) & 0x1F)); OutString[1] = (char) (0x40 + ((SwappedId >> 21) & 0x1F)); OutString[2] = (char) (0x40 + ((SwappedId >> 16) & 0x1F)); OutString[3] = AcpiUtHexToAsciiChar ((UINT64) SwappedId, 12); OutString[4] = AcpiUtHexToAsciiChar ((UINT64) SwappedId, 8); OutString[5] = AcpiUtHexToAsciiChar ((UINT64) SwappedId, 4); OutString[6] = AcpiUtHexToAsciiChar ((UINT64) SwappedId, 0); OutString[7] = 0; } /******************************************************************************* * * FUNCTION: AcpiExIntegerToString * * PARAMETERS: OutString - Where to put the converted string. At least * 21 bytes are needed to hold the largest * possible 64-bit integer. * Value - Value to be converted * * RETURN: Converted string in OutString * * DESCRIPTION: Convert a 64-bit integer to decimal string representation. * Assumes string buffer is large enough to hold the string. The * largest string is (ACPI_MAX64_DECIMAL_DIGITS + 1). * ******************************************************************************/ void AcpiExIntegerToString ( char *OutString, UINT64 Value) { UINT32 Count; UINT32 DigitsNeeded; UINT32 Remainder; ACPI_FUNCTION_ENTRY (); DigitsNeeded = AcpiExDigitsNeeded (Value, 10); OutString[DigitsNeeded] = 0; for (Count = DigitsNeeded; Count > 0; Count--) { (void) AcpiUtShortDivide (Value, 10, &Value, &Remainder); OutString[Count-1] = (char) ('0' + Remainder);\ } } /******************************************************************************* * * FUNCTION: AcpiExPciClsToString * * PARAMETERS: OutString - Where to put the converted string (7 bytes) * ClassCode - PCI class code to be converted (3 bytes) * * RETURN: Converted string in OutString * * DESCRIPTION: Convert 3-bytes PCI class code to string representation. * Return buffer must be large enough to hold the string. The * string returned is always exactly of length * ACPI_PCICLS_STRING_SIZE (includes null terminator). * ******************************************************************************/ void AcpiExPciClsToString ( char *OutString, UINT8 ClassCode[3]) { ACPI_FUNCTION_ENTRY (); /* All 3 bytes are hexadecimal */ OutString[0] = AcpiUtHexToAsciiChar ((UINT64) ClassCode[0], 4); OutString[1] = AcpiUtHexToAsciiChar ((UINT64) ClassCode[0], 0); OutString[2] = AcpiUtHexToAsciiChar ((UINT64) ClassCode[1], 4); OutString[3] = AcpiUtHexToAsciiChar ((UINT64) ClassCode[1], 0); OutString[4] = AcpiUtHexToAsciiChar ((UINT64) ClassCode[2], 4); OutString[5] = AcpiUtHexToAsciiChar ((UINT64) ClassCode[2], 0); OutString[6] = 0; } /******************************************************************************* * * FUNCTION: AcpiIsValidSpaceId * * PARAMETERS: SpaceId - ID to be validated * * RETURN: TRUE if SpaceId is a valid/supported ID. * * DESCRIPTION: Validate an operation region SpaceID. * ******************************************************************************/ BOOLEAN AcpiIsValidSpaceId ( UINT8 SpaceId) { if ((SpaceId >= ACPI_NUM_PREDEFINED_REGIONS) && (SpaceId < ACPI_USER_REGION_BEGIN) && (SpaceId != ACPI_ADR_SPACE_DATA_TABLE) && (SpaceId != ACPI_ADR_SPACE_FIXED_HARDWARE)) { return (FALSE); } return (TRUE); } #endif Index: vendor-sys/acpica/dist/source/components/hardware/hwgpe.c =================================================================== --- vendor-sys/acpica/dist/source/components/hardware/hwgpe.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/hardware/hwgpe.c (revision 305162) @@ -1,599 +1,611 @@ /****************************************************************************** * * Module Name: hwgpe - Low level GPE enable/disable/clear functions * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acevents.h" #define _COMPONENT ACPI_HARDWARE ACPI_MODULE_NAME ("hwgpe") #if (!ACPI_REDUCED_HARDWARE) /* Entire module */ /* Local prototypes */ static ACPI_STATUS AcpiHwEnableWakeupGpeBlock ( ACPI_GPE_XRUPT_INFO *GpeXruptInfo, ACPI_GPE_BLOCK_INFO *GpeBlock, void *Context); static ACPI_STATUS AcpiHwGpeEnableWrite ( UINT8 EnableMask, ACPI_GPE_REGISTER_INFO *GpeRegisterInfo); /****************************************************************************** * * FUNCTION: AcpiHwGetGpeRegisterBit * * PARAMETERS: GpeEventInfo - Info block for the GPE * * RETURN: Register mask with a one in the GPE bit position * * DESCRIPTION: Compute the register mask for this GPE. One bit is set in the * correct position for the input GPE. * ******************************************************************************/ UINT32 AcpiHwGetGpeRegisterBit ( ACPI_GPE_EVENT_INFO *GpeEventInfo) { return ((UINT32) 1 << (GpeEventInfo->GpeNumber - GpeEventInfo->RegisterInfo->BaseGpeNumber)); } /****************************************************************************** * * FUNCTION: AcpiHwLowSetGpe * * PARAMETERS: GpeEventInfo - Info block for the GPE to be disabled * Action - Enable or disable * * RETURN: Status * * DESCRIPTION: Enable or disable a single GPE in the parent enable register. * The EnableMask field of the involved GPE register must be * updated by the caller if necessary. * ******************************************************************************/ ACPI_STATUS AcpiHwLowSetGpe ( ACPI_GPE_EVENT_INFO *GpeEventInfo, UINT32 Action) { ACPI_GPE_REGISTER_INFO *GpeRegisterInfo; - ACPI_STATUS Status; + ACPI_STATUS Status = AE_OK; UINT32 EnableMask; UINT32 RegisterBit; ACPI_FUNCTION_ENTRY (); /* Get the info block for the entire GPE register */ GpeRegisterInfo = GpeEventInfo->RegisterInfo; if (!GpeRegisterInfo) { return (AE_NOT_EXIST); } /* Get current value of the enable register that contains this GPE */ Status = AcpiHwRead (&EnableMask, &GpeRegisterInfo->EnableAddress); if (ACPI_FAILURE (Status)) { return (Status); } /* Set or clear just the bit that corresponds to this GPE */ RegisterBit = AcpiHwGetGpeRegisterBit (GpeEventInfo); switch (Action) { case ACPI_GPE_CONDITIONAL_ENABLE: /* Only enable if the corresponding EnableMask bit is set */ if (!(RegisterBit & GpeRegisterInfo->EnableMask)) { return (AE_BAD_PARAMETER); } /*lint -fallthrough */ case ACPI_GPE_ENABLE: ACPI_SET_BIT (EnableMask, RegisterBit); break; case ACPI_GPE_DISABLE: ACPI_CLEAR_BIT (EnableMask, RegisterBit); break; default: ACPI_ERROR ((AE_INFO, "Invalid GPE Action, %u", Action)); return (AE_BAD_PARAMETER); } - /* Write the updated enable mask */ + if (!(RegisterBit & GpeRegisterInfo->MaskForRun)) + { + /* Write the updated enable mask */ - Status = AcpiHwWrite (EnableMask, &GpeRegisterInfo->EnableAddress); + Status = AcpiHwWrite (EnableMask, &GpeRegisterInfo->EnableAddress); + } return (Status); } /****************************************************************************** * * FUNCTION: AcpiHwClearGpe * * PARAMETERS: GpeEventInfo - Info block for the GPE to be cleared * * RETURN: Status * * DESCRIPTION: Clear the status bit for a single GPE. * ******************************************************************************/ ACPI_STATUS AcpiHwClearGpe ( ACPI_GPE_EVENT_INFO *GpeEventInfo) { ACPI_GPE_REGISTER_INFO *GpeRegisterInfo; ACPI_STATUS Status; UINT32 RegisterBit; ACPI_FUNCTION_ENTRY (); /* Get the info block for the entire GPE register */ GpeRegisterInfo = GpeEventInfo->RegisterInfo; if (!GpeRegisterInfo) { return (AE_NOT_EXIST); } /* * Write a one to the appropriate bit in the status register to * clear this GPE. */ RegisterBit = AcpiHwGetGpeRegisterBit (GpeEventInfo); Status = AcpiHwWrite (RegisterBit, &GpeRegisterInfo->StatusAddress); return (Status); } /****************************************************************************** * * FUNCTION: AcpiHwGetGpeStatus * * PARAMETERS: GpeEventInfo - Info block for the GPE to queried * EventStatus - Where the GPE status is returned * * RETURN: Status * * DESCRIPTION: Return the status of a single GPE. * ******************************************************************************/ ACPI_STATUS AcpiHwGetGpeStatus ( ACPI_GPE_EVENT_INFO *GpeEventInfo, ACPI_EVENT_STATUS *EventStatus) { UINT32 InByte; UINT32 RegisterBit; ACPI_GPE_REGISTER_INFO *GpeRegisterInfo; ACPI_EVENT_STATUS LocalEventStatus = 0; ACPI_STATUS Status; ACPI_FUNCTION_ENTRY (); if (!EventStatus) { return (AE_BAD_PARAMETER); } /* GPE currently handled? */ if (ACPI_GPE_DISPATCH_TYPE (GpeEventInfo->Flags) != ACPI_GPE_DISPATCH_NONE) { LocalEventStatus |= ACPI_EVENT_FLAG_HAS_HANDLER; } /* Get the info block for the entire GPE register */ GpeRegisterInfo = GpeEventInfo->RegisterInfo; /* Get the register bitmask for this GPE */ RegisterBit = AcpiHwGetGpeRegisterBit (GpeEventInfo); /* GPE currently enabled? (enabled for runtime?) */ if (RegisterBit & GpeRegisterInfo->EnableForRun) { LocalEventStatus |= ACPI_EVENT_FLAG_ENABLED; } + /* GPE currently masked? (masked for runtime?) */ + + if (RegisterBit & GpeRegisterInfo->MaskForRun) + { + LocalEventStatus |= ACPI_EVENT_FLAG_MASKED; + } + /* GPE enabled for wake? */ if (RegisterBit & GpeRegisterInfo->EnableForWake) { LocalEventStatus |= ACPI_EVENT_FLAG_WAKE_ENABLED; } /* GPE currently enabled (enable bit == 1)? */ Status = AcpiHwRead (&InByte, &GpeRegisterInfo->EnableAddress); if (ACPI_FAILURE (Status)) { return (Status); } if (RegisterBit & InByte) { LocalEventStatus |= ACPI_EVENT_FLAG_ENABLE_SET; } /* GPE currently active (status bit == 1)? */ Status = AcpiHwRead (&InByte, &GpeRegisterInfo->StatusAddress); if (ACPI_FAILURE (Status)) { return (Status); } if (RegisterBit & InByte) { LocalEventStatus |= ACPI_EVENT_FLAG_STATUS_SET; } /* Set return value */ (*EventStatus) = LocalEventStatus; return (AE_OK); } /****************************************************************************** * * FUNCTION: AcpiHwGpeEnableWrite * * PARAMETERS: EnableMask - Bit mask to write to the GPE register * GpeRegisterInfo - Gpe Register info * * RETURN: Status * * DESCRIPTION: Write the enable mask byte to the given GPE register. * ******************************************************************************/ static ACPI_STATUS AcpiHwGpeEnableWrite ( UINT8 EnableMask, ACPI_GPE_REGISTER_INFO *GpeRegisterInfo) { ACPI_STATUS Status; GpeRegisterInfo->EnableMask = EnableMask; Status = AcpiHwWrite (EnableMask, &GpeRegisterInfo->EnableAddress); return (Status); } /****************************************************************************** * * FUNCTION: AcpiHwDisableGpeBlock * * PARAMETERS: GpeXruptInfo - GPE Interrupt info * GpeBlock - Gpe Block info * * RETURN: Status * * DESCRIPTION: Disable all GPEs within a single GPE block * ******************************************************************************/ ACPI_STATUS AcpiHwDisableGpeBlock ( ACPI_GPE_XRUPT_INFO *GpeXruptInfo, ACPI_GPE_BLOCK_INFO *GpeBlock, void *Context) { UINT32 i; ACPI_STATUS Status; /* Examine each GPE Register within the block */ for (i = 0; i < GpeBlock->RegisterCount; i++) { /* Disable all GPEs in this register */ Status = AcpiHwGpeEnableWrite (0x00, &GpeBlock->RegisterInfo[i]); if (ACPI_FAILURE (Status)) { return (Status); } } return (AE_OK); } /****************************************************************************** * * FUNCTION: AcpiHwClearGpeBlock * * PARAMETERS: GpeXruptInfo - GPE Interrupt info * GpeBlock - Gpe Block info * * RETURN: Status * * DESCRIPTION: Clear status bits for all GPEs within a single GPE block * ******************************************************************************/ ACPI_STATUS AcpiHwClearGpeBlock ( ACPI_GPE_XRUPT_INFO *GpeXruptInfo, ACPI_GPE_BLOCK_INFO *GpeBlock, void *Context) { UINT32 i; ACPI_STATUS Status; /* Examine each GPE Register within the block */ for (i = 0; i < GpeBlock->RegisterCount; i++) { /* Clear status on all GPEs in this register */ Status = AcpiHwWrite (0xFF, &GpeBlock->RegisterInfo[i].StatusAddress); if (ACPI_FAILURE (Status)) { return (Status); } } return (AE_OK); } /****************************************************************************** * * FUNCTION: AcpiHwEnableRuntimeGpeBlock * * PARAMETERS: GpeXruptInfo - GPE Interrupt info * GpeBlock - Gpe Block info * * RETURN: Status * * DESCRIPTION: Enable all "runtime" GPEs within a single GPE block. Includes * combination wake/run GPEs. * ******************************************************************************/ ACPI_STATUS AcpiHwEnableRuntimeGpeBlock ( ACPI_GPE_XRUPT_INFO *GpeXruptInfo, ACPI_GPE_BLOCK_INFO *GpeBlock, void *Context) { UINT32 i; ACPI_STATUS Status; ACPI_GPE_REGISTER_INFO *GpeRegisterInfo; + UINT8 EnableMask; /* NOTE: assumes that all GPEs are currently disabled */ /* Examine each GPE Register within the block */ for (i = 0; i < GpeBlock->RegisterCount; i++) { GpeRegisterInfo = &GpeBlock->RegisterInfo[i]; if (!GpeRegisterInfo->EnableForRun) { continue; } /* Enable all "runtime" GPEs in this register */ - Status = AcpiHwGpeEnableWrite (GpeRegisterInfo->EnableForRun, - GpeRegisterInfo); + EnableMask = GpeRegisterInfo->EnableForRun & + ~GpeRegisterInfo->MaskForRun; + Status = AcpiHwGpeEnableWrite (EnableMask, GpeRegisterInfo); if (ACPI_FAILURE (Status)) { return (Status); } } return (AE_OK); } /****************************************************************************** * * FUNCTION: AcpiHwEnableWakeupGpeBlock * * PARAMETERS: GpeXruptInfo - GPE Interrupt info * GpeBlock - Gpe Block info * * RETURN: Status * * DESCRIPTION: Enable all "wake" GPEs within a single GPE block. Includes * combination wake/run GPEs. * ******************************************************************************/ static ACPI_STATUS AcpiHwEnableWakeupGpeBlock ( ACPI_GPE_XRUPT_INFO *GpeXruptInfo, ACPI_GPE_BLOCK_INFO *GpeBlock, void *Context) { UINT32 i; ACPI_STATUS Status; ACPI_GPE_REGISTER_INFO *GpeRegisterInfo; /* Examine each GPE Register within the block */ for (i = 0; i < GpeBlock->RegisterCount; i++) { GpeRegisterInfo = &GpeBlock->RegisterInfo[i]; /* * Enable all "wake" GPEs in this register and disable the * remaining ones. */ Status = AcpiHwGpeEnableWrite (GpeRegisterInfo->EnableForWake, GpeRegisterInfo); if (ACPI_FAILURE (Status)) { return (Status); } } return (AE_OK); } /****************************************************************************** * * FUNCTION: AcpiHwDisableAllGpes * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Disable and clear all GPEs in all GPE blocks * ******************************************************************************/ ACPI_STATUS AcpiHwDisableAllGpes ( void) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (HwDisableAllGpes); Status = AcpiEvWalkGpeList (AcpiHwDisableGpeBlock, NULL); Status = AcpiEvWalkGpeList (AcpiHwClearGpeBlock, NULL); return_ACPI_STATUS (Status); } /****************************************************************************** * * FUNCTION: AcpiHwEnableAllRuntimeGpes * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Enable all "runtime" GPEs, in all GPE blocks * ******************************************************************************/ ACPI_STATUS AcpiHwEnableAllRuntimeGpes ( void) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (HwEnableAllRuntimeGpes); Status = AcpiEvWalkGpeList (AcpiHwEnableRuntimeGpeBlock, NULL); return_ACPI_STATUS (Status); } /****************************************************************************** * * FUNCTION: AcpiHwEnableAllWakeupGpes * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Enable all "wakeup" GPEs, in all GPE blocks * ******************************************************************************/ ACPI_STATUS AcpiHwEnableAllWakeupGpes ( void) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (HwEnableAllWakeupGpes); Status = AcpiEvWalkGpeList (AcpiHwEnableWakeupGpeBlock, NULL); return_ACPI_STATUS (Status); } #endif /* !ACPI_REDUCED_HARDWARE */ Index: vendor-sys/acpica/dist/source/components/namespace/nsconvert.c =================================================================== --- vendor-sys/acpica/dist/source/components/namespace/nsconvert.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/namespace/nsconvert.c (revision 305162) @@ -1,566 +1,566 @@ /****************************************************************************** * * Module Name: nsconvert - Object conversions for objects returned by * predefined methods * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acnamesp.h" #include "acinterp.h" #include "acpredef.h" #include "amlresrc.h" #define _COMPONENT ACPI_NAMESPACE ACPI_MODULE_NAME ("nsconvert") /******************************************************************************* * * FUNCTION: AcpiNsConvertToInteger * * PARAMETERS: OriginalObject - Object to be converted * ReturnObject - Where the new converted object is returned * * RETURN: Status. AE_OK if conversion was successful. * * DESCRIPTION: Attempt to convert a String/Buffer object to an Integer. * ******************************************************************************/ ACPI_STATUS AcpiNsConvertToInteger ( ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ReturnObject) { ACPI_OPERAND_OBJECT *NewObject; ACPI_STATUS Status; UINT64 Value = 0; UINT32 i; switch (OriginalObject->Common.Type) { case ACPI_TYPE_STRING: /* String-to-Integer conversion */ Status = AcpiUtStrtoul64 (OriginalObject->String.Pointer, - ACPI_ANY_BASE, AcpiGbl_IntegerByteWidth, &Value); + AcpiGbl_IntegerByteWidth, &Value); if (ACPI_FAILURE (Status)) { return (Status); } break; case ACPI_TYPE_BUFFER: /* Buffer-to-Integer conversion. Max buffer size is 64 bits. */ if (OriginalObject->Buffer.Length > 8) { return (AE_AML_OPERAND_TYPE); } /* Extract each buffer byte to create the integer */ for (i = 0; i < OriginalObject->Buffer.Length; i++) { Value |= ((UINT64) OriginalObject->Buffer.Pointer[i] << (i * 8)); } break; default: return (AE_AML_OPERAND_TYPE); } NewObject = AcpiUtCreateIntegerObject (Value); if (!NewObject) { return (AE_NO_MEMORY); } *ReturnObject = NewObject; return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiNsConvertToString * * PARAMETERS: OriginalObject - Object to be converted * ReturnObject - Where the new converted object is returned * * RETURN: Status. AE_OK if conversion was successful. * * DESCRIPTION: Attempt to convert a Integer/Buffer object to a String. * ******************************************************************************/ ACPI_STATUS AcpiNsConvertToString ( ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ReturnObject) { ACPI_OPERAND_OBJECT *NewObject; ACPI_SIZE Length; ACPI_STATUS Status; switch (OriginalObject->Common.Type) { case ACPI_TYPE_INTEGER: /* * Integer-to-String conversion. Commonly, convert * an integer of value 0 to a NULL string. The last element of * _BIF and _BIX packages occasionally need this fix. */ if (OriginalObject->Integer.Value == 0) { /* Allocate a new NULL string object */ NewObject = AcpiUtCreateStringObject (0); if (!NewObject) { return (AE_NO_MEMORY); } } else { Status = AcpiExConvertToString (OriginalObject, &NewObject, ACPI_IMPLICIT_CONVERT_HEX); if (ACPI_FAILURE (Status)) { return (Status); } } break; case ACPI_TYPE_BUFFER: /* * Buffer-to-String conversion. Use a ToString * conversion, no transform performed on the buffer data. The best * example of this is the _BIF method, where the string data from * the battery is often (incorrectly) returned as buffer object(s). */ Length = 0; while ((Length < OriginalObject->Buffer.Length) && (OriginalObject->Buffer.Pointer[Length])) { Length++; } /* Allocate a new string object */ NewObject = AcpiUtCreateStringObject (Length); if (!NewObject) { return (AE_NO_MEMORY); } /* * Copy the raw buffer data with no transform. String is already NULL * terminated at Length+1. */ memcpy (NewObject->String.Pointer, OriginalObject->Buffer.Pointer, Length); break; default: return (AE_AML_OPERAND_TYPE); } *ReturnObject = NewObject; return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiNsConvertToBuffer * * PARAMETERS: OriginalObject - Object to be converted * ReturnObject - Where the new converted object is returned * * RETURN: Status. AE_OK if conversion was successful. * * DESCRIPTION: Attempt to convert a Integer/String/Package object to a Buffer. * ******************************************************************************/ ACPI_STATUS AcpiNsConvertToBuffer ( ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ReturnObject) { ACPI_OPERAND_OBJECT *NewObject; ACPI_STATUS Status; ACPI_OPERAND_OBJECT **Elements; UINT32 *DwordBuffer; UINT32 Count; UINT32 i; switch (OriginalObject->Common.Type) { case ACPI_TYPE_INTEGER: /* * Integer-to-Buffer conversion. * Convert the Integer to a packed-byte buffer. _MAT and other * objects need this sometimes, if a read has been performed on a * Field object that is less than or equal to the global integer * size (32 or 64 bits). */ Status = AcpiExConvertToBuffer (OriginalObject, &NewObject); if (ACPI_FAILURE (Status)) { return (Status); } break; case ACPI_TYPE_STRING: /* String-to-Buffer conversion. Simple data copy */ NewObject = AcpiUtCreateBufferObject (OriginalObject->String.Length); if (!NewObject) { return (AE_NO_MEMORY); } memcpy (NewObject->Buffer.Pointer, OriginalObject->String.Pointer, OriginalObject->String.Length); break; case ACPI_TYPE_PACKAGE: /* * This case is often seen for predefined names that must return a * Buffer object with multiple DWORD integers within. For example, * _FDE and _GTM. The Package can be converted to a Buffer. */ /* All elements of the Package must be integers */ Elements = OriginalObject->Package.Elements; Count = OriginalObject->Package.Count; for (i = 0; i < Count; i++) { if ((!*Elements) || ((*Elements)->Common.Type != ACPI_TYPE_INTEGER)) { return (AE_AML_OPERAND_TYPE); } Elements++; } /* Create the new buffer object to replace the Package */ NewObject = AcpiUtCreateBufferObject (ACPI_MUL_4 (Count)); if (!NewObject) { return (AE_NO_MEMORY); } /* Copy the package elements (integers) to the buffer as DWORDs */ Elements = OriginalObject->Package.Elements; DwordBuffer = ACPI_CAST_PTR (UINT32, NewObject->Buffer.Pointer); for (i = 0; i < Count; i++) { *DwordBuffer = (UINT32) (*Elements)->Integer.Value; DwordBuffer++; Elements++; } break; default: return (AE_AML_OPERAND_TYPE); } *ReturnObject = NewObject; return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiNsConvertToUnicode * * PARAMETERS: Scope - Namespace node for the method/object * OriginalObject - ASCII String Object to be converted * ReturnObject - Where the new converted object is returned * * RETURN: Status. AE_OK if conversion was successful. * * DESCRIPTION: Attempt to convert a String object to a Unicode string Buffer. * ******************************************************************************/ ACPI_STATUS AcpiNsConvertToUnicode ( ACPI_NAMESPACE_NODE *Scope, ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ReturnObject) { ACPI_OPERAND_OBJECT *NewObject; char *AsciiString; UINT16 *UnicodeBuffer; UINT32 UnicodeLength; UINT32 i; if (!OriginalObject) { return (AE_OK); } /* If a Buffer was returned, it must be at least two bytes long */ if (OriginalObject->Common.Type == ACPI_TYPE_BUFFER) { if (OriginalObject->Buffer.Length < 2) { return (AE_AML_OPERAND_VALUE); } *ReturnObject = NULL; return (AE_OK); } /* * The original object is an ASCII string. Convert this string to * a unicode buffer. */ AsciiString = OriginalObject->String.Pointer; UnicodeLength = (OriginalObject->String.Length * 2) + 2; /* Create a new buffer object for the Unicode data */ NewObject = AcpiUtCreateBufferObject (UnicodeLength); if (!NewObject) { return (AE_NO_MEMORY); } UnicodeBuffer = ACPI_CAST_PTR (UINT16, NewObject->Buffer.Pointer); /* Convert ASCII to Unicode */ for (i = 0; i < OriginalObject->String.Length; i++) { UnicodeBuffer[i] = (UINT16) AsciiString[i]; } *ReturnObject = NewObject; return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiNsConvertToResource * * PARAMETERS: Scope - Namespace node for the method/object * OriginalObject - Object to be converted * ReturnObject - Where the new converted object is returned * * RETURN: Status. AE_OK if conversion was successful * * DESCRIPTION: Attempt to convert a Integer object to a ResourceTemplate * Buffer. * ******************************************************************************/ ACPI_STATUS AcpiNsConvertToResource ( ACPI_NAMESPACE_NODE *Scope, ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ReturnObject) { ACPI_OPERAND_OBJECT *NewObject; UINT8 *Buffer; /* * We can fix the following cases for an expected resource template: * 1. No return value (interpreter slack mode is disabled) * 2. A "Return (Zero)" statement * 3. A "Return empty buffer" statement * * We will return a buffer containing a single EndTag * resource descriptor. */ if (OriginalObject) { switch (OriginalObject->Common.Type) { case ACPI_TYPE_INTEGER: /* We can only repair an Integer==0 */ if (OriginalObject->Integer.Value) { return (AE_AML_OPERAND_TYPE); } break; case ACPI_TYPE_BUFFER: if (OriginalObject->Buffer.Length) { /* Additional checks can be added in the future */ *ReturnObject = NULL; return (AE_OK); } break; case ACPI_TYPE_STRING: default: return (AE_AML_OPERAND_TYPE); } } /* Create the new buffer object for the resource descriptor */ NewObject = AcpiUtCreateBufferObject (2); if (!NewObject) { return (AE_NO_MEMORY); } Buffer = ACPI_CAST_PTR (UINT8, NewObject->Buffer.Pointer); /* Initialize the Buffer with a single EndTag descriptor */ Buffer[0] = (ACPI_RESOURCE_NAME_END_TAG | ASL_RDESC_END_TAG_SIZE); Buffer[1] = 0x00; *ReturnObject = NewObject; return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiNsConvertToReference * * PARAMETERS: Scope - Namespace node for the method/object * OriginalObject - Object to be converted * ReturnObject - Where the new converted object is returned * * RETURN: Status. AE_OK if conversion was successful * * DESCRIPTION: Attempt to convert a Integer object to a ObjectReference. * Buffer. * ******************************************************************************/ ACPI_STATUS AcpiNsConvertToReference ( ACPI_NAMESPACE_NODE *Scope, ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ReturnObject) { ACPI_OPERAND_OBJECT *NewObject = NULL; ACPI_STATUS Status; ACPI_NAMESPACE_NODE *Node; ACPI_GENERIC_STATE ScopeInfo; char *Name; ACPI_FUNCTION_NAME (NsConvertToReference); /* Convert path into internal presentation */ Status = AcpiNsInternalizeName (OriginalObject->String.Pointer, &Name); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Find the namespace node */ ScopeInfo.Scope.Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, Scope); Status = AcpiNsLookup (&ScopeInfo, Name, ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE, ACPI_NS_SEARCH_PARENT | ACPI_NS_DONT_OPEN_SCOPE, NULL, &Node); if (ACPI_FAILURE (Status)) { /* Check if we are resolving a named reference within a package */ ACPI_ERROR_NAMESPACE (OriginalObject->String.Pointer, Status); goto ErrorExit; } /* Create and init a new internal ACPI object */ NewObject = AcpiUtCreateInternalObject (ACPI_TYPE_LOCAL_REFERENCE); if (!NewObject) { Status = AE_NO_MEMORY; goto ErrorExit; } NewObject->Reference.Node = Node; NewObject->Reference.Object = Node->Object; NewObject->Reference.Class = ACPI_REFCLASS_NAME; /* * Increase reference of the object if needed (the object is likely a * null for device nodes). */ AcpiUtAddReference (Node->Object); ErrorExit: ACPI_FREE (Name); *ReturnObject = NewObject; return (AE_OK); } Index: vendor-sys/acpica/dist/source/components/namespace/nsload.c =================================================================== --- vendor-sys/acpica/dist/source/components/namespace/nsload.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/namespace/nsload.c (revision 305162) @@ -1,384 +1,376 @@ /****************************************************************************** * * Module Name: nsload - namespace loading/expanding/contracting procedures * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acnamesp.h" #include "acdispat.h" #include "actables.h" +#include "acinterp.h" #define _COMPONENT ACPI_NAMESPACE ACPI_MODULE_NAME ("nsload") /* Local prototypes */ #ifdef ACPI_FUTURE_IMPLEMENTATION ACPI_STATUS AcpiNsUnloadNamespace ( ACPI_HANDLE Handle); static ACPI_STATUS AcpiNsDeleteSubtree ( ACPI_HANDLE StartHandle); #endif #ifndef ACPI_NO_METHOD_EXECUTION /******************************************************************************* * * FUNCTION: AcpiNsLoadTable * * PARAMETERS: TableIndex - Index for table to be loaded * Node - Owning NS node * * RETURN: Status * * DESCRIPTION: Load one ACPI table into the namespace * ******************************************************************************/ ACPI_STATUS AcpiNsLoadTable ( UINT32 TableIndex, ACPI_NAMESPACE_NODE *Node) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (NsLoadTable); - /* - * Parse the table and load the namespace with all named - * objects found within. Control methods are NOT parsed - * at this time. In fact, the control methods cannot be - * parsed until the entire namespace is loaded, because - * if a control method makes a forward reference (call) - * to another control method, we can't continue parsing - * because we don't know how many arguments to parse next! - */ - Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); - if (ACPI_FAILURE (Status)) - { - return_ACPI_STATUS (Status); - } - /* If table already loaded into namespace, just return */ if (AcpiTbIsTableLoaded (TableIndex)) { Status = AE_ALREADY_EXISTS; goto Unlock; } ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "**** Loading table into namespace ****\n")); Status = AcpiTbAllocateOwnerId (TableIndex); if (ACPI_FAILURE (Status)) { goto Unlock; } + /* + * Parse the table and load the namespace with all named + * objects found within. Control methods are NOT parsed + * at this time. In fact, the control methods cannot be + * parsed until the entire namespace is loaded, because + * if a control method makes a forward reference (call) + * to another control method, we can't continue parsing + * because we don't know how many arguments to parse next! + */ Status = AcpiNsParseTable (TableIndex, Node); if (ACPI_SUCCESS (Status)) { AcpiTbSetTableLoadedFlag (TableIndex, TRUE); } else { /* * On error, delete any namespace objects created by this table. * We cannot initialize these objects, so delete them. There are * a couple of expecially bad cases: * AE_ALREADY_EXISTS - namespace collision. * AE_NOT_FOUND - the target of a Scope operator does not * exist. This target of Scope must already exist in the * namespace, as per the ACPI specification. */ - (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); AcpiNsDeleteNamespaceByOwner ( AcpiGbl_RootTableList.Tables[TableIndex].OwnerId); AcpiTbReleaseOwnerId (TableIndex); return_ACPI_STATUS (Status); } Unlock: - (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); - if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* * Now we can parse the control methods. We always parse * them here for a sanity check, and if configured for * just-in-time parsing, we delete the control method * parse trees. */ ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "**** Begin Table Object Initialization\n")); Status = AcpiDsInitializeObjects (TableIndex, Node); ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "**** Completed Table Object Initialization\n")); /* * Execute any module-level code that was detected during the table load * phase. Although illegal since ACPI 2.0, there are many machines that * contain this type of code. Each block of detected executable AML code * outside of any control method is wrapped with a temporary control * method object and placed on a global list. The methods on this list * are executed below. * * This case executes the module-level code for each table immediately * after the table has been loaded. This provides compatibility with * other ACPI implementations. Optionally, the execution can be deferred * until later, see AcpiInitializeObjects. */ - if (!AcpiGbl_GroupModuleLevelCode) + if (!AcpiGbl_ParseTableAsTermList && !AcpiGbl_GroupModuleLevelCode) { AcpiNsExecModuleCodeList (); } return_ACPI_STATUS (Status); } #ifdef ACPI_OBSOLETE_FUNCTIONS /******************************************************************************* * * FUNCTION: AcpiLoadNamespace * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Load the name space from what ever is pointed to by DSDT. * (DSDT points to either the BIOS or a buffer.) * ******************************************************************************/ ACPI_STATUS AcpiNsLoadNamespace ( void) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (AcpiLoadNameSpace); /* There must be at least a DSDT installed */ if (AcpiGbl_DSDT == NULL) { ACPI_ERROR ((AE_INFO, "DSDT is not in memory")); return_ACPI_STATUS (AE_NO_ACPI_TABLES); } /* * Load the namespace. The DSDT is required, * but the SSDT and PSDT tables are optional. */ Status = AcpiNsLoadTableByType (ACPI_TABLE_ID_DSDT); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Ignore exceptions from these */ (void) AcpiNsLoadTableByType (ACPI_TABLE_ID_SSDT); (void) AcpiNsLoadTableByType (ACPI_TABLE_ID_PSDT); ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INIT, "ACPI Namespace successfully loaded at root %p\n", AcpiGbl_RootNode)); return_ACPI_STATUS (Status); } #endif #ifdef ACPI_FUTURE_IMPLEMENTATION /******************************************************************************* * * FUNCTION: AcpiNsDeleteSubtree * * PARAMETERS: StartHandle - Handle in namespace where search begins * * RETURNS Status * * DESCRIPTION: Walks the namespace starting at the given handle and deletes * all objects, entries, and scopes in the entire subtree. * * Namespace/Interpreter should be locked or the subsystem should * be in shutdown before this routine is called. * ******************************************************************************/ static ACPI_STATUS AcpiNsDeleteSubtree ( ACPI_HANDLE StartHandle) { ACPI_STATUS Status; ACPI_HANDLE ChildHandle; ACPI_HANDLE ParentHandle; ACPI_HANDLE NextChildHandle; ACPI_HANDLE Dummy; UINT32 Level; ACPI_FUNCTION_TRACE (NsDeleteSubtree); ParentHandle = StartHandle; ChildHandle = NULL; Level = 1; /* * Traverse the tree of objects until we bubble back up * to where we started. */ while (Level > 0) { /* Attempt to get the next object in this scope */ Status = AcpiGetNextObject (ACPI_TYPE_ANY, ParentHandle, ChildHandle, &NextChildHandle); ChildHandle = NextChildHandle; /* Did we get a new object? */ if (ACPI_SUCCESS (Status)) { /* Check if this object has any children */ if (ACPI_SUCCESS (AcpiGetNextObject (ACPI_TYPE_ANY, ChildHandle, NULL, &Dummy))) { /* * There is at least one child of this object, * visit the object */ Level++; ParentHandle = ChildHandle; ChildHandle = NULL; } } else { /* * No more children in this object, go back up to * the object's parent */ Level--; /* Delete all children now */ AcpiNsDeleteChildren (ChildHandle); ChildHandle = ParentHandle; Status = AcpiGetParent (ParentHandle, &ParentHandle); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } } /* Now delete the starting object, and we are done */ AcpiNsRemoveNode (ChildHandle); return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiNsUnloadNameSpace * * PARAMETERS: Handle - Root of namespace subtree to be deleted * * RETURN: Status * * DESCRIPTION: Shrinks the namespace, typically in response to an undocking * event. Deletes an entire subtree starting from (and * including) the given handle. * ******************************************************************************/ ACPI_STATUS AcpiNsUnloadNamespace ( ACPI_HANDLE Handle) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (NsUnloadNameSpace); /* Parameter validation */ if (!AcpiGbl_RootNode) { return_ACPI_STATUS (AE_NO_NAMESPACE); } if (!Handle) { return_ACPI_STATUS (AE_BAD_PARAMETER); } /* This function does the real work */ Status = AcpiNsDeleteSubtree (Handle); return_ACPI_STATUS (Status); } #endif #endif Index: vendor-sys/acpica/dist/source/components/namespace/nsparse.c =================================================================== --- vendor-sys/acpica/dist/source/components/namespace/nsparse.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/namespace/nsparse.c (revision 305162) @@ -1,228 +1,347 @@ /****************************************************************************** * * Module Name: nsparse - namespace interface to AML parser * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acnamesp.h" #include "acparser.h" #include "acdispat.h" #include "actables.h" +#include "acinterp.h" #define _COMPONENT ACPI_NAMESPACE ACPI_MODULE_NAME ("nsparse") /******************************************************************************* * + * FUNCTION: NsExecuteTable + * + * PARAMETERS: TableDesc - An ACPI table descriptor for table to parse + * StartNode - Where to enter the table into the namespace + * + * RETURN: Status + * + * DESCRIPTION: Load ACPI/AML table by executing the entire table as a + * TermList. + * + ******************************************************************************/ + +ACPI_STATUS +AcpiNsExecuteTable ( + UINT32 TableIndex, + ACPI_NAMESPACE_NODE *StartNode) +{ + ACPI_STATUS Status; + ACPI_TABLE_HEADER *Table; + ACPI_OWNER_ID OwnerId; + ACPI_EVALUATE_INFO *Info = NULL; + UINT32 AmlLength; + UINT8 *AmlStart; + ACPI_OPERAND_OBJECT *MethodObj = NULL; + + + ACPI_FUNCTION_TRACE (NsExecuteTable); + + + Status = AcpiGetTableByIndex (TableIndex, &Table); + if (ACPI_FAILURE (Status)) + { + return_ACPI_STATUS (Status); + } + + /* Table must consist of at least a complete header */ + + if (Table->Length < sizeof (ACPI_TABLE_HEADER)) + { + return_ACPI_STATUS (AE_BAD_HEADER); + } + + AmlStart = (UINT8 *) Table + sizeof (ACPI_TABLE_HEADER); + AmlLength = Table->Length - sizeof (ACPI_TABLE_HEADER); + + Status = AcpiTbGetOwnerId (TableIndex, &OwnerId); + if (ACPI_FAILURE (Status)) + { + return_ACPI_STATUS (Status); + } + + /* Create, initialize, and link a new temporary method object */ + + MethodObj = AcpiUtCreateInternalObject (ACPI_TYPE_METHOD); + if (!MethodObj) + { + return_ACPI_STATUS (AE_NO_MEMORY); + } + + /* Allocate the evaluation information block */ + + Info = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_EVALUATE_INFO)); + if (!Info) + { + Status = AE_NO_MEMORY; + goto Cleanup; + } + + ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, + "Create table code block: %p\n", MethodObj)); + + MethodObj->Method.AmlStart = AmlStart; + MethodObj->Method.AmlLength = AmlLength; + MethodObj->Method.OwnerId = OwnerId; + MethodObj->Method.InfoFlags |= ACPI_METHOD_MODULE_LEVEL; + + Info->PassNumber = ACPI_IMODE_EXECUTE; + Info->Node = StartNode; + Info->ObjDesc = MethodObj; + Info->NodeFlags = Info->Node->Flags; + Info->FullPathname = AcpiNsGetNormalizedPathname (Info->Node, TRUE); + if (!Info->FullPathname) + { + Status = AE_NO_MEMORY; + goto Cleanup; + } + + Status = AcpiPsExecuteTable (Info); + +Cleanup: + if (Info) + { + ACPI_FREE (Info->FullPathname); + Info->FullPathname = NULL; + } + ACPI_FREE (Info); + AcpiUtRemoveReference (MethodObj); + return_ACPI_STATUS (Status); +} + + +/******************************************************************************* + * * FUNCTION: NsOneCompleteParse * * PARAMETERS: PassNumber - 1 or 2 * TableDesc - The table to be parsed. * * RETURN: Status * * DESCRIPTION: Perform one complete parse of an ACPI/AML table. * ******************************************************************************/ ACPI_STATUS AcpiNsOneCompleteParse ( UINT32 PassNumber, UINT32 TableIndex, ACPI_NAMESPACE_NODE *StartNode) { ACPI_PARSE_OBJECT *ParseRoot; ACPI_STATUS Status; UINT32 AmlLength; UINT8 *AmlStart; ACPI_WALK_STATE *WalkState; ACPI_TABLE_HEADER *Table; ACPI_OWNER_ID OwnerId; ACPI_FUNCTION_TRACE (NsOneCompleteParse); Status = AcpiGetTableByIndex (TableIndex, &Table); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Table must consist of at least a complete header */ if (Table->Length < sizeof (ACPI_TABLE_HEADER)) { return_ACPI_STATUS (AE_BAD_HEADER); } AmlStart = (UINT8 *) Table + sizeof (ACPI_TABLE_HEADER); AmlLength = Table->Length - sizeof (ACPI_TABLE_HEADER); Status = AcpiTbGetOwnerId (TableIndex, &OwnerId); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Create and init a Root Node */ ParseRoot = AcpiPsCreateScopeOp (AmlStart); if (!ParseRoot) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Create and initialize a new walk state */ WalkState = AcpiDsCreateWalkState (OwnerId, NULL, NULL, NULL); if (!WalkState) { AcpiPsFreeOp (ParseRoot); return_ACPI_STATUS (AE_NO_MEMORY); } Status = AcpiDsInitAmlWalk (WalkState, ParseRoot, NULL, AmlStart, AmlLength, NULL, (UINT8) PassNumber); if (ACPI_FAILURE (Status)) { AcpiDsDeleteWalkState (WalkState); goto Cleanup; } /* Found OSDT table, enable the namespace override feature */ if (ACPI_COMPARE_NAME(Table->Signature, ACPI_SIG_OSDT) && PassNumber == ACPI_IMODE_LOAD_PASS1) { WalkState->NamespaceOverride = TRUE; } /* StartNode is the default location to load the table */ if (StartNode && StartNode != AcpiGbl_RootNode) { Status = AcpiDsScopeStackPush ( StartNode, ACPI_TYPE_METHOD, WalkState); if (ACPI_FAILURE (Status)) { AcpiDsDeleteWalkState (WalkState); goto Cleanup; } } /* Parse the AML */ ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "*PARSE* pass %u parse\n", PassNumber)); + AcpiExEnterInterpreter (); Status = AcpiPsParseAml (WalkState); + AcpiExExitInterpreter (); Cleanup: AcpiPsDeleteParseTree (ParseRoot); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiNsParseTable * * PARAMETERS: TableDesc - An ACPI table descriptor for table to parse * StartNode - Where to enter the table into the namespace * * RETURN: Status * * DESCRIPTION: Parse AML within an ACPI table and return a tree of ops * ******************************************************************************/ ACPI_STATUS AcpiNsParseTable ( UINT32 TableIndex, ACPI_NAMESPACE_NODE *StartNode) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (NsParseTable); - /* - * AML Parse, pass 1 - * - * In this pass, we load most of the namespace. Control methods - * are not parsed until later. A parse tree is not created. Instead, - * each Parser Op subtree is deleted when it is finished. This saves - * a great deal of memory, and allows a small cache of parse objects - * to service the entire parse. The second pass of the parse then - * performs another complete parse of the AML. - */ - ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "**** Start pass 1\n")); - - Status = AcpiNsOneCompleteParse (ACPI_IMODE_LOAD_PASS1, - TableIndex, StartNode); - if (ACPI_FAILURE (Status)) + if (AcpiGbl_ParseTableAsTermList) { - return_ACPI_STATUS (Status); - } + ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "**** Start load pass\n")); - /* - * AML Parse, pass 2 - * - * In this pass, we resolve forward references and other things - * that could not be completed during the first pass. - * Another complete parse of the AML is performed, but the - * overhead of this is compensated for by the fact that the - * parse objects are all cached. - */ - ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "**** Start pass 2\n")); - Status = AcpiNsOneCompleteParse (ACPI_IMODE_LOAD_PASS2, - TableIndex, StartNode); - if (ACPI_FAILURE (Status)) + Status = AcpiNsExecuteTable (TableIndex, StartNode); + if (ACPI_FAILURE (Status)) + { + return_ACPI_STATUS (Status); + } + } + else { - return_ACPI_STATUS (Status); + /* + * AML Parse, pass 1 + * + * In this pass, we load most of the namespace. Control methods + * are not parsed until later. A parse tree is not created. + * Instead, each Parser Op subtree is deleted when it is finished. + * This saves a great deal of memory, and allows a small cache of + * parse objects to service the entire parse. The second pass of + * the parse then performs another complete parse of the AML. + */ + ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "**** Start pass 1\n")); + + Status = AcpiNsOneCompleteParse (ACPI_IMODE_LOAD_PASS1, + TableIndex, StartNode); + if (ACPI_FAILURE (Status)) + { + return_ACPI_STATUS (Status); + } + + /* + * AML Parse, pass 2 + * + * In this pass, we resolve forward references and other things + * that could not be completed during the first pass. + * Another complete parse of the AML is performed, but the + * overhead of this is compensated for by the fact that the + * parse objects are all cached. + */ + ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "**** Start pass 2\n")); + Status = AcpiNsOneCompleteParse (ACPI_IMODE_LOAD_PASS2, + TableIndex, StartNode); + if (ACPI_FAILURE (Status)) + { + return_ACPI_STATUS (Status); + } } return_ACPI_STATUS (Status); } Index: vendor-sys/acpica/dist/source/components/namespace/nsutils.c =================================================================== --- vendor-sys/acpica/dist/source/components/namespace/nsutils.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/namespace/nsutils.c (revision 305162) @@ -1,866 +1,904 @@ /****************************************************************************** * * Module Name: nsutils - Utilities for accessing ACPI namespace, accessing * parents and siblings and Scope manipulation * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acnamesp.h" #include "amlcode.h" #define _COMPONENT ACPI_NAMESPACE ACPI_MODULE_NAME ("nsutils") /* Local prototypes */ #ifdef ACPI_OBSOLETE_FUNCTIONS ACPI_NAME AcpiNsFindParentName ( ACPI_NAMESPACE_NODE *NodeToSearch); #endif /******************************************************************************* * * FUNCTION: AcpiNsPrintNodePathname * * PARAMETERS: Node - Object * Message - Prefix message * * DESCRIPTION: Print an object's full namespace pathname * Manages allocation/freeing of a pathname buffer * ******************************************************************************/ void AcpiNsPrintNodePathname ( ACPI_NAMESPACE_NODE *Node, const char *Message) { ACPI_BUFFER Buffer; ACPI_STATUS Status; if (!Node) { AcpiOsPrintf ("[NULL NAME]"); return; } /* Convert handle to full pathname and print it (with supplied message) */ Buffer.Length = ACPI_ALLOCATE_LOCAL_BUFFER; Status = AcpiNsHandleToPathname (Node, &Buffer, TRUE); if (ACPI_SUCCESS (Status)) { if (Message) { AcpiOsPrintf ("%s ", Message); } AcpiOsPrintf ("[%s] (Node %p)", (char *) Buffer.Pointer, Node); ACPI_FREE (Buffer.Pointer); } } /******************************************************************************* * * FUNCTION: AcpiNsGetType * * PARAMETERS: Node - Parent Node to be examined * * RETURN: Type field from Node whose handle is passed * * DESCRIPTION: Return the type of a Namespace node * ******************************************************************************/ ACPI_OBJECT_TYPE AcpiNsGetType ( ACPI_NAMESPACE_NODE *Node) { ACPI_FUNCTION_TRACE (NsGetType); if (!Node) { ACPI_WARNING ((AE_INFO, "Null Node parameter")); return_UINT8 (ACPI_TYPE_ANY); } return_UINT8 (Node->Type); } /******************************************************************************* * * FUNCTION: AcpiNsLocal * * PARAMETERS: Type - A namespace object type * * RETURN: LOCAL if names must be found locally in objects of the * passed type, 0 if enclosing scopes should be searched * * DESCRIPTION: Returns scope rule for the given object type. * ******************************************************************************/ UINT32 AcpiNsLocal ( ACPI_OBJECT_TYPE Type) { ACPI_FUNCTION_TRACE (NsLocal); if (!AcpiUtValidObjectType (Type)) { /* Type code out of range */ ACPI_WARNING ((AE_INFO, "Invalid Object Type 0x%X", Type)); return_UINT32 (ACPI_NS_NORMAL); } return_UINT32 (AcpiGbl_NsProperties[Type] & ACPI_NS_LOCAL); } /******************************************************************************* * * FUNCTION: AcpiNsGetInternalNameLength * * PARAMETERS: Info - Info struct initialized with the * external name pointer. * * RETURN: None * * DESCRIPTION: Calculate the length of the internal (AML) namestring * corresponding to the external (ASL) namestring. * ******************************************************************************/ void AcpiNsGetInternalNameLength ( ACPI_NAMESTRING_INFO *Info) { const char *NextExternalChar; UINT32 i; ACPI_FUNCTION_ENTRY (); NextExternalChar = Info->ExternalName; Info->NumCarats = 0; Info->NumSegments = 0; Info->FullyQualified = FALSE; /* * For the internal name, the required length is 4 bytes per segment, * plus 1 each for RootPrefix, MultiNamePrefixOp, segment count, * trailing null (which is not really needed, but no there's harm in * putting it there) * * strlen() + 1 covers the first NameSeg, which has no path separator */ if (ACPI_IS_ROOT_PREFIX (*NextExternalChar)) { Info->FullyQualified = TRUE; NextExternalChar++; /* Skip redundant RootPrefix, like \\_SB.PCI0.SBRG.EC0 */ while (ACPI_IS_ROOT_PREFIX (*NextExternalChar)) { NextExternalChar++; } } else { /* Handle Carat prefixes */ while (ACPI_IS_PARENT_PREFIX (*NextExternalChar)) { Info->NumCarats++; NextExternalChar++; } } /* * Determine the number of ACPI name "segments" by counting the number of * path separators within the string. Start with one segment since the * segment count is [(# separators) + 1], and zero separators is ok. */ if (*NextExternalChar) { Info->NumSegments = 1; for (i = 0; NextExternalChar[i]; i++) { if (ACPI_IS_PATH_SEPARATOR (NextExternalChar[i])) { Info->NumSegments++; } } } Info->Length = (ACPI_NAME_SIZE * Info->NumSegments) + 4 + Info->NumCarats; Info->NextExternalChar = NextExternalChar; } /******************************************************************************* * * FUNCTION: AcpiNsBuildInternalName * * PARAMETERS: Info - Info struct fully initialized * * RETURN: Status * * DESCRIPTION: Construct the internal (AML) namestring * corresponding to the external (ASL) namestring. * ******************************************************************************/ ACPI_STATUS AcpiNsBuildInternalName ( ACPI_NAMESTRING_INFO *Info) { UINT32 NumSegments = Info->NumSegments; char *InternalName = Info->InternalName; const char *ExternalName = Info->NextExternalChar; char *Result = NULL; UINT32 i; ACPI_FUNCTION_TRACE (NsBuildInternalName); /* Setup the correct prefixes, counts, and pointers */ if (Info->FullyQualified) { InternalName[0] = AML_ROOT_PREFIX; if (NumSegments <= 1) { Result = &InternalName[1]; } else if (NumSegments == 2) { InternalName[1] = AML_DUAL_NAME_PREFIX; Result = &InternalName[2]; } else { InternalName[1] = AML_MULTI_NAME_PREFIX_OP; InternalName[2] = (char) NumSegments; Result = &InternalName[3]; } } else { /* * Not fully qualified. * Handle Carats first, then append the name segments */ i = 0; if (Info->NumCarats) { for (i = 0; i < Info->NumCarats; i++) { InternalName[i] = AML_PARENT_PREFIX; } } if (NumSegments <= 1) { Result = &InternalName[i]; } else if (NumSegments == 2) { InternalName[i] = AML_DUAL_NAME_PREFIX; Result = &InternalName[(ACPI_SIZE) i+1]; } else { InternalName[i] = AML_MULTI_NAME_PREFIX_OP; InternalName[(ACPI_SIZE) i+1] = (char) NumSegments; Result = &InternalName[(ACPI_SIZE) i+2]; } } /* Build the name (minus path separators) */ for (; NumSegments; NumSegments--) { for (i = 0; i < ACPI_NAME_SIZE; i++) { if (ACPI_IS_PATH_SEPARATOR (*ExternalName) || (*ExternalName == 0)) { /* Pad the segment with underscore(s) if segment is short */ Result[i] = '_'; } else { /* Convert the character to uppercase and save it */ Result[i] = (char) toupper ((int) *ExternalName); ExternalName++; } } /* Now we must have a path separator, or the pathname is bad */ if (!ACPI_IS_PATH_SEPARATOR (*ExternalName) && (*ExternalName != 0)) { return_ACPI_STATUS (AE_BAD_PATHNAME); } /* Move on the next segment */ ExternalName++; Result += ACPI_NAME_SIZE; } /* Terminate the string */ *Result = 0; if (Info->FullyQualified) { ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Returning [%p] (abs) \"\\%s\"\n", InternalName, InternalName)); } else { ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Returning [%p] (rel) \"%s\"\n", InternalName, InternalName)); } return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiNsInternalizeName * * PARAMETERS: *ExternalName - External representation of name * **Converted Name - Where to return the resulting * internal represention of the name * * RETURN: Status * * DESCRIPTION: Convert an external representation (e.g. "\_PR_.CPU0") * to internal form (e.g. 5c 2f 02 5f 50 52 5f 43 50 55 30) * *******************************************************************************/ ACPI_STATUS AcpiNsInternalizeName ( const char *ExternalName, char **ConvertedName) { char *InternalName; ACPI_NAMESTRING_INFO Info; ACPI_STATUS Status; ACPI_FUNCTION_TRACE (NsInternalizeName); if ((!ExternalName) || (*ExternalName == 0) || (!ConvertedName)) { return_ACPI_STATUS (AE_BAD_PARAMETER); } /* Get the length of the new internal name */ Info.ExternalName = ExternalName; AcpiNsGetInternalNameLength (&Info); /* We need a segment to store the internal name */ InternalName = ACPI_ALLOCATE_ZEROED (Info.Length); if (!InternalName) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Build the name */ Info.InternalName = InternalName; Status = AcpiNsBuildInternalName (&Info); if (ACPI_FAILURE (Status)) { ACPI_FREE (InternalName); return_ACPI_STATUS (Status); } *ConvertedName = InternalName; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiNsExternalizeName * * PARAMETERS: InternalNameLength - Lenth of the internal name below * InternalName - Internal representation of name * ConvertedNameLength - Where the length is returned * ConvertedName - Where the resulting external name * is returned * * RETURN: Status * * DESCRIPTION: Convert internal name (e.g. 5c 2f 02 5f 50 52 5f 43 50 55 30) * to its external (printable) form (e.g. "\_PR_.CPU0") * ******************************************************************************/ ACPI_STATUS AcpiNsExternalizeName ( UINT32 InternalNameLength, const char *InternalName, UINT32 *ConvertedNameLength, char **ConvertedName) { UINT32 NamesIndex = 0; UINT32 NumSegments = 0; UINT32 RequiredLength; UINT32 PrefixLength = 0; UINT32 i = 0; UINT32 j = 0; ACPI_FUNCTION_TRACE (NsExternalizeName); if (!InternalNameLength || !InternalName || !ConvertedName) { return_ACPI_STATUS (AE_BAD_PARAMETER); } /* Check for a prefix (one '\' | one or more '^') */ switch (InternalName[0]) { case AML_ROOT_PREFIX: PrefixLength = 1; break; case AML_PARENT_PREFIX: for (i = 0; i < InternalNameLength; i++) { if (ACPI_IS_PARENT_PREFIX (InternalName[i])) { PrefixLength = i + 1; } else { break; } } if (i == InternalNameLength) { PrefixLength = i; } break; default: break; } /* * Check for object names. Note that there could be 0-255 of these * 4-byte elements. */ if (PrefixLength < InternalNameLength) { switch (InternalName[PrefixLength]) { case AML_MULTI_NAME_PREFIX_OP: /* 4-byte names */ NamesIndex = PrefixLength + 2; NumSegments = (UINT8) InternalName[(ACPI_SIZE) PrefixLength + 1]; break; case AML_DUAL_NAME_PREFIX: /* Two 4-byte names */ NamesIndex = PrefixLength + 1; NumSegments = 2; break; case 0: /* NullName */ NamesIndex = 0; NumSegments = 0; break; default: /* one 4-byte name */ NamesIndex = PrefixLength; NumSegments = 1; break; } } /* * Calculate the length of ConvertedName, which equals the length * of the prefix, length of all object names, length of any required * punctuation ('.') between object names, plus the NULL terminator. */ RequiredLength = PrefixLength + (4 * NumSegments) + ((NumSegments > 0) ? (NumSegments - 1) : 0) + 1; /* * Check to see if we're still in bounds. If not, there's a problem * with InternalName (invalid format). */ if (RequiredLength > InternalNameLength) { ACPI_ERROR ((AE_INFO, "Invalid internal name")); return_ACPI_STATUS (AE_BAD_PATHNAME); } /* Build the ConvertedName */ *ConvertedName = ACPI_ALLOCATE_ZEROED (RequiredLength); if (!(*ConvertedName)) { return_ACPI_STATUS (AE_NO_MEMORY); } j = 0; for (i = 0; i < PrefixLength; i++) { (*ConvertedName)[j++] = InternalName[i]; } if (NumSegments > 0) { for (i = 0; i < NumSegments; i++) { if (i > 0) { (*ConvertedName)[j++] = '.'; } /* Copy and validate the 4-char name segment */ ACPI_MOVE_NAME (&(*ConvertedName)[j], &InternalName[NamesIndex]); AcpiUtRepairName (&(*ConvertedName)[j]); j += ACPI_NAME_SIZE; NamesIndex += ACPI_NAME_SIZE; } } if (ConvertedNameLength) { *ConvertedNameLength = (UINT32) RequiredLength; } return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiNsValidateHandle * * PARAMETERS: Handle - Handle to be validated and typecast to a * namespace node. * * RETURN: A pointer to a namespace node * * DESCRIPTION: Convert a namespace handle to a namespace node. Handles special * cases for the root node. * * NOTE: Real integer handles would allow for more verification * and keep all pointers within this subsystem - however this introduces * more overhead and has not been necessary to this point. Drivers * holding handles are typically notified before a node becomes invalid * due to a table unload. * ******************************************************************************/ ACPI_NAMESPACE_NODE * AcpiNsValidateHandle ( ACPI_HANDLE Handle) { ACPI_FUNCTION_ENTRY (); /* Parameter validation */ if ((!Handle) || (Handle == ACPI_ROOT_OBJECT)) { return (AcpiGbl_RootNode); } /* We can at least attempt to verify the handle */ if (ACPI_GET_DESCRIPTOR_TYPE (Handle) != ACPI_DESC_TYPE_NAMED) { return (NULL); } return (ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, Handle)); } /******************************************************************************* * * FUNCTION: AcpiNsTerminate * * PARAMETERS: none * * RETURN: none * * DESCRIPTION: free memory allocated for namespace and ACPI table storage. * ******************************************************************************/ void AcpiNsTerminate ( void) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (NsTerminate); #ifdef ACPI_EXEC_APP { ACPI_OPERAND_OBJECT *Prev; ACPI_OPERAND_OBJECT *Next; /* Delete any module-level code blocks */ Next = AcpiGbl_ModuleCodeList; while (Next) { Prev = Next; Next = Next->Method.Mutex; Prev->Method.Mutex = NULL; /* Clear the Mutex (cheated) field */ AcpiUtRemoveReference (Prev); } } #endif /* * Free the entire namespace -- all nodes and all objects * attached to the nodes */ AcpiNsDeleteNamespaceSubtree (AcpiGbl_RootNode); /* Delete any objects attached to the root node */ Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); if (ACPI_FAILURE (Status)) { return_VOID; } AcpiNsDeleteNode (AcpiGbl_RootNode); (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Namespace freed\n")); return_VOID; } /******************************************************************************* * * FUNCTION: AcpiNsOpensScope * * PARAMETERS: Type - A valid namespace type * * RETURN: NEWSCOPE if the passed type "opens a name scope" according * to the ACPI specification, else 0 * ******************************************************************************/ UINT32 AcpiNsOpensScope ( ACPI_OBJECT_TYPE Type) { ACPI_FUNCTION_ENTRY (); if (Type > ACPI_TYPE_LOCAL_MAX) { /* type code out of range */ ACPI_WARNING ((AE_INFO, "Invalid Object Type 0x%X", Type)); return (ACPI_NS_NORMAL); } return (((UINT32) AcpiGbl_NsProperties[Type]) & ACPI_NS_NEWSCOPE); } /******************************************************************************* * - * FUNCTION: AcpiNsGetNode + * FUNCTION: AcpiNsGetNodeUnlocked * * PARAMETERS: *Pathname - Name to be found, in external (ASL) format. The * \ (backslash) and ^ (carat) prefixes, and the * . (period) to separate segments are supported. * PrefixNode - Root of subtree to be searched, or NS_ALL for the * root of the name space. If Name is fully * qualified (first INT8 is '\'), the passed value * of Scope will not be accessed. * Flags - Used to indicate whether to perform upsearch or * not. * ReturnNode - Where the Node is returned * * DESCRIPTION: Look up a name relative to a given scope and return the * corresponding Node. NOTE: Scope can be null. * - * MUTEX: Locks namespace + * MUTEX: Doesn't locks namespace * ******************************************************************************/ ACPI_STATUS -AcpiNsGetNode ( +AcpiNsGetNodeUnlocked ( ACPI_NAMESPACE_NODE *PrefixNode, const char *Pathname, UINT32 Flags, ACPI_NAMESPACE_NODE **ReturnNode) { ACPI_GENERIC_STATE ScopeInfo; ACPI_STATUS Status; char *InternalPath; - ACPI_FUNCTION_TRACE_PTR (NsGetNode, ACPI_CAST_PTR (char, Pathname)); + ACPI_FUNCTION_TRACE_PTR (NsGetNodeUnlocked, ACPI_CAST_PTR (char, Pathname)); /* Simplest case is a null pathname */ if (!Pathname) { *ReturnNode = PrefixNode; if (!PrefixNode) { *ReturnNode = AcpiGbl_RootNode; } return_ACPI_STATUS (AE_OK); } /* Quick check for a reference to the root */ if (ACPI_IS_ROOT_PREFIX (Pathname[0]) && (!Pathname[1])) { *ReturnNode = AcpiGbl_RootNode; return_ACPI_STATUS (AE_OK); } /* Convert path to internal representation */ Status = AcpiNsInternalizeName (Pathname, &InternalPath); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } - /* Must lock namespace during lookup */ - - Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); - if (ACPI_FAILURE (Status)) - { - goto Cleanup; - } - /* Setup lookup scope (search starting point) */ ScopeInfo.Scope.Node = PrefixNode; /* Lookup the name in the namespace */ Status = AcpiNsLookup (&ScopeInfo, InternalPath, ACPI_TYPE_ANY, ACPI_IMODE_EXECUTE, (Flags | ACPI_NS_DONT_OPEN_SCOPE), NULL, ReturnNode); if (ACPI_FAILURE (Status)) { ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "%s, %s\n", Pathname, AcpiFormatException (Status))); } - (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); - -Cleanup: ACPI_FREE (InternalPath); + return_ACPI_STATUS (Status); +} + + +/******************************************************************************* + * + * FUNCTION: AcpiNsGetNode + * + * PARAMETERS: *Pathname - Name to be found, in external (ASL) format. The + * \ (backslash) and ^ (carat) prefixes, and the + * . (period) to separate segments are supported. + * PrefixNode - Root of subtree to be searched, or NS_ALL for the + * root of the name space. If Name is fully + * qualified (first INT8 is '\'), the passed value + * of Scope will not be accessed. + * Flags - Used to indicate whether to perform upsearch or + * not. + * ReturnNode - Where the Node is returned + * + * DESCRIPTION: Look up a name relative to a given scope and return the + * corresponding Node. NOTE: Scope can be null. + * + * MUTEX: Locks namespace + * + ******************************************************************************/ + +ACPI_STATUS +AcpiNsGetNode ( + ACPI_NAMESPACE_NODE *PrefixNode, + const char *Pathname, + UINT32 Flags, + ACPI_NAMESPACE_NODE **ReturnNode) +{ + ACPI_STATUS Status; + + + ACPI_FUNCTION_TRACE_PTR (NsGetNode, ACPI_CAST_PTR (char, Pathname)); + + + Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); + if (ACPI_FAILURE (Status)) + { + return_ACPI_STATUS (Status); + } + + Status = AcpiNsGetNodeUnlocked (PrefixNode, Pathname, + Flags, ReturnNode); + + (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); return_ACPI_STATUS (Status); } Index: vendor-sys/acpica/dist/source/components/parser/psparse.c =================================================================== --- vendor-sys/acpica/dist/source/components/parser/psparse.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/parser/psparse.c (revision 305162) @@ -1,710 +1,713 @@ /****************************************************************************** * * Module Name: psparse - Parser top level AML parse routines * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ /* * Parse the AML and build an operation tree as most interpreters, * like Perl, do. Parsing is done by hand rather than with a YACC * generated parser to tightly constrain stack and dynamic memory * usage. At the same time, parsing is kept flexible and the code * fairly compact by parsing based on a list of AML opcode * templates in AmlOpInfo[] */ #include "acpi.h" #include "accommon.h" #include "acparser.h" #include "acdispat.h" #include "amlcode.h" #include "acinterp.h" #define _COMPONENT ACPI_PARSER ACPI_MODULE_NAME ("psparse") /******************************************************************************* * * FUNCTION: AcpiPsGetOpcodeSize * * PARAMETERS: Opcode - An AML opcode * * RETURN: Size of the opcode, in bytes (1 or 2) * * DESCRIPTION: Get the size of the current opcode. * ******************************************************************************/ UINT32 AcpiPsGetOpcodeSize ( UINT32 Opcode) { /* Extended (2-byte) opcode if > 255 */ if (Opcode > 0x00FF) { return (2); } /* Otherwise, just a single byte opcode */ return (1); } /******************************************************************************* * * FUNCTION: AcpiPsPeekOpcode * * PARAMETERS: ParserState - A parser state object * * RETURN: Next AML opcode * * DESCRIPTION: Get next AML opcode (without incrementing AML pointer) * ******************************************************************************/ UINT16 AcpiPsPeekOpcode ( ACPI_PARSE_STATE *ParserState) { UINT8 *Aml; UINT16 Opcode; Aml = ParserState->Aml; Opcode = (UINT16) ACPI_GET8 (Aml); if (Opcode == AML_EXTENDED_OP_PREFIX) { /* Extended opcode, get the second opcode byte */ Aml++; Opcode = (UINT16) ((Opcode << 8) | ACPI_GET8 (Aml)); } return (Opcode); } /******************************************************************************* * * FUNCTION: AcpiPsCompleteThisOp * * PARAMETERS: WalkState - Current State * Op - Op to complete * * RETURN: Status * * DESCRIPTION: Perform any cleanup at the completion of an Op. * ******************************************************************************/ ACPI_STATUS AcpiPsCompleteThisOp ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op) { ACPI_PARSE_OBJECT *Prev; ACPI_PARSE_OBJECT *Next; const ACPI_OPCODE_INFO *ParentInfo; ACPI_PARSE_OBJECT *ReplacementOp = NULL; ACPI_STATUS Status = AE_OK; ACPI_FUNCTION_TRACE_PTR (PsCompleteThisOp, Op); /* Check for null Op, can happen if AML code is corrupt */ if (!Op) { return_ACPI_STATUS (AE_OK); /* OK for now */ } AcpiExStopTraceOpcode (Op, WalkState); /* Delete this op and the subtree below it if asked to */ if (((WalkState->ParseFlags & ACPI_PARSE_TREE_MASK) != ACPI_PARSE_DELETE_TREE) || (WalkState->OpInfo->Class == AML_CLASS_ARGUMENT)) { return_ACPI_STATUS (AE_OK); } /* Make sure that we only delete this subtree */ if (Op->Common.Parent) { Prev = Op->Common.Parent->Common.Value.Arg; if (!Prev) { /* Nothing more to do */ goto Cleanup; } /* * Check if we need to replace the operator and its subtree * with a return value op (placeholder op) */ ParentInfo = AcpiPsGetOpcodeInfo (Op->Common.Parent->Common.AmlOpcode); switch (ParentInfo->Class) { case AML_CLASS_CONTROL: break; case AML_CLASS_CREATE: /* * These opcodes contain TermArg operands. The current * op must be replaced by a placeholder return op */ ReplacementOp = AcpiPsAllocOp ( AML_INT_RETURN_VALUE_OP, Op->Common.Aml); if (!ReplacementOp) { Status = AE_NO_MEMORY; } break; case AML_CLASS_NAMED_OBJECT: /* * These opcodes contain TermArg operands. The current * op must be replaced by a placeholder return op */ if ((Op->Common.Parent->Common.AmlOpcode == AML_REGION_OP) || (Op->Common.Parent->Common.AmlOpcode == AML_DATA_REGION_OP) || (Op->Common.Parent->Common.AmlOpcode == AML_BUFFER_OP) || (Op->Common.Parent->Common.AmlOpcode == AML_PACKAGE_OP) || (Op->Common.Parent->Common.AmlOpcode == AML_BANK_FIELD_OP) || (Op->Common.Parent->Common.AmlOpcode == AML_VAR_PACKAGE_OP)) { ReplacementOp = AcpiPsAllocOp ( AML_INT_RETURN_VALUE_OP, Op->Common.Aml); if (!ReplacementOp) { Status = AE_NO_MEMORY; } } else if ((Op->Common.Parent->Common.AmlOpcode == AML_NAME_OP) && (WalkState->PassNumber <= ACPI_IMODE_LOAD_PASS2)) { if ((Op->Common.AmlOpcode == AML_BUFFER_OP) || (Op->Common.AmlOpcode == AML_PACKAGE_OP) || (Op->Common.AmlOpcode == AML_VAR_PACKAGE_OP)) { ReplacementOp = AcpiPsAllocOp (Op->Common.AmlOpcode, Op->Common.Aml); if (!ReplacementOp) { Status = AE_NO_MEMORY; } else { ReplacementOp->Named.Data = Op->Named.Data; ReplacementOp->Named.Length = Op->Named.Length; } } } break; default: ReplacementOp = AcpiPsAllocOp ( AML_INT_RETURN_VALUE_OP, Op->Common.Aml); if (!ReplacementOp) { Status = AE_NO_MEMORY; } } /* We must unlink this op from the parent tree */ if (Prev == Op) { /* This op is the first in the list */ if (ReplacementOp) { ReplacementOp->Common.Parent = Op->Common.Parent; ReplacementOp->Common.Value.Arg = NULL; ReplacementOp->Common.Node = Op->Common.Node; Op->Common.Parent->Common.Value.Arg = ReplacementOp; ReplacementOp->Common.Next = Op->Common.Next; } else { Op->Common.Parent->Common.Value.Arg = Op->Common.Next; } } /* Search the parent list */ else while (Prev) { /* Traverse all siblings in the parent's argument list */ Next = Prev->Common.Next; if (Next == Op) { if (ReplacementOp) { ReplacementOp->Common.Parent = Op->Common.Parent; ReplacementOp->Common.Value.Arg = NULL; ReplacementOp->Common.Node = Op->Common.Node; Prev->Common.Next = ReplacementOp; ReplacementOp->Common.Next = Op->Common.Next; Next = NULL; } else { Prev->Common.Next = Op->Common.Next; Next = NULL; } } Prev = Next; } } Cleanup: /* Now we can actually delete the subtree rooted at Op */ AcpiPsDeleteParseTree (Op); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiPsNextParseState * * PARAMETERS: WalkState - Current state * Op - Current parse op * CallbackStatus - Status from previous operation * * RETURN: Status * * DESCRIPTION: Update the parser state based upon the return exception from * the parser callback. * ******************************************************************************/ ACPI_STATUS AcpiPsNextParseState ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op, ACPI_STATUS CallbackStatus) { ACPI_PARSE_STATE *ParserState = &WalkState->ParserState; ACPI_STATUS Status = AE_CTRL_PENDING; ACPI_FUNCTION_TRACE_PTR (PsNextParseState, Op); switch (CallbackStatus) { case AE_CTRL_TERMINATE: /* * A control method was terminated via a RETURN statement. * The walk of this method is complete. */ ParserState->Aml = ParserState->AmlEnd; Status = AE_CTRL_TERMINATE; break; case AE_CTRL_BREAK: ParserState->Aml = WalkState->AmlLastWhile; WalkState->ControlState->Common.Value = FALSE; Status = AE_CTRL_BREAK; break; case AE_CTRL_CONTINUE: ParserState->Aml = WalkState->AmlLastWhile; Status = AE_CTRL_CONTINUE; break; case AE_CTRL_PENDING: ParserState->Aml = WalkState->AmlLastWhile; break; #if 0 case AE_CTRL_SKIP: ParserState->Aml = ParserState->Scope->ParseScope.PkgEnd; Status = AE_OK; break; #endif case AE_CTRL_TRUE: /* * Predicate of an IF was true, and we are at the matching ELSE. * Just close out this package */ ParserState->Aml = AcpiPsGetNextPackageEnd (ParserState); Status = AE_CTRL_PENDING; break; case AE_CTRL_FALSE: /* * Either an IF/WHILE Predicate was false or we encountered a BREAK * opcode. In both cases, we do not execute the rest of the * package; We simply close out the parent (finishing the walk of * this branch of the tree) and continue execution at the parent * level. */ ParserState->Aml = ParserState->Scope->ParseScope.PkgEnd; /* In the case of a BREAK, just force a predicate (if any) to FALSE */ WalkState->ControlState->Common.Value = FALSE; Status = AE_CTRL_END; break; case AE_CTRL_TRANSFER: /* A method call (invocation) -- transfer control */ Status = AE_CTRL_TRANSFER; WalkState->PrevOp = Op; WalkState->MethodCallOp = Op; WalkState->MethodCallNode = (Op->Common.Value.Arg)->Common.Node; /* Will return value (if any) be used by the caller? */ WalkState->ReturnUsed = AcpiDsIsResultUsed (Op, WalkState); break; default: Status = CallbackStatus; if ((CallbackStatus & AE_CODE_MASK) == AE_CODE_CONTROL) { Status = AE_OK; } break; } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiPsParseAml * * PARAMETERS: WalkState - Current state * * * RETURN: Status * * DESCRIPTION: Parse raw AML and return a tree of ops * ******************************************************************************/ ACPI_STATUS AcpiPsParseAml ( ACPI_WALK_STATE *WalkState) { ACPI_STATUS Status; ACPI_THREAD_STATE *Thread; ACPI_THREAD_STATE *PrevWalkList = AcpiGbl_CurrentWalkList; ACPI_WALK_STATE *PreviousWalkState; ACPI_FUNCTION_TRACE (PsParseAml); ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "Entered with WalkState=%p Aml=%p size=%X\n", WalkState, WalkState->ParserState.Aml, WalkState->ParserState.AmlSize)); if (!WalkState->ParserState.Aml) { return_ACPI_STATUS (AE_NULL_OBJECT); } /* Create and initialize a new thread state */ Thread = AcpiUtCreateThreadState (); if (!Thread) { if (WalkState->MethodDesc) { /* Executing a control method - additional cleanup */ AcpiDsTerminateControlMethod (WalkState->MethodDesc, WalkState); } AcpiDsDeleteWalkState (WalkState); return_ACPI_STATUS (AE_NO_MEMORY); } WalkState->Thread = Thread; /* * If executing a method, the starting SyncLevel is this method's * SyncLevel */ if (WalkState->MethodDesc) { WalkState->Thread->CurrentSyncLevel = WalkState->MethodDesc->Method.SyncLevel; } AcpiDsPushWalkState (WalkState, Thread); /* * This global allows the AML debugger to get a handle to the currently * executing control method. */ AcpiGbl_CurrentWalkList = Thread; /* * Execute the walk loop as long as there is a valid Walk State. This * handles nested control method invocations without recursion. */ ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "State=%p\n", WalkState)); Status = AE_OK; while (WalkState) { if (ACPI_SUCCESS (Status)) { /* * The ParseLoop executes AML until the method terminates * or calls another method. */ Status = AcpiPsParseLoop (WalkState); } ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "Completed one call to walk loop, %s State=%p\n", AcpiFormatException (Status), WalkState)); if (Status == AE_CTRL_TRANSFER) { /* * A method call was detected. * Transfer control to the called control method */ Status = AcpiDsCallControlMethod (Thread, WalkState, NULL); if (ACPI_FAILURE (Status)) { Status = AcpiDsMethodError (Status, WalkState); } /* * If the transfer to the new method method call worked *, a new walk state was created -- get it */ WalkState = AcpiDsGetCurrentWalkState (Thread); continue; } else if (Status == AE_CTRL_TERMINATE) { Status = AE_OK; } else if ((Status != AE_OK) && (WalkState->MethodDesc)) { /* Either the method parse or actual execution failed */ + AcpiExExitInterpreter (); ACPI_ERROR_METHOD ("Method parse/execution failed", WalkState->MethodNode, NULL, Status); + AcpiExEnterInterpreter (); /* Check for possible multi-thread reentrancy problem */ if ((Status == AE_ALREADY_EXISTS) && (!(WalkState->MethodDesc->Method.InfoFlags & ACPI_METHOD_SERIALIZED))) { /* * Method is not serialized and tried to create an object * twice. The probable cause is that the method cannot * handle reentrancy. Mark as "pending serialized" now, and * then mark "serialized" when the last thread exits. */ WalkState->MethodDesc->Method.InfoFlags |= ACPI_METHOD_SERIALIZED_PENDING; } } /* We are done with this walk, move on to the parent if any */ WalkState = AcpiDsPopWalkState (Thread); /* Reset the current scope to the beginning of scope stack */ AcpiDsScopeStackClear (WalkState); /* * If we just returned from the execution of a control method or if we * encountered an error during the method parse phase, there's lots of * cleanup to do */ if (((WalkState->ParseFlags & ACPI_PARSE_MODE_MASK) == - ACPI_PARSE_EXECUTE) || + ACPI_PARSE_EXECUTE && + !(WalkState->ParseFlags & ACPI_PARSE_MODULE_LEVEL)) || (ACPI_FAILURE (Status))) { AcpiDsTerminateControlMethod (WalkState->MethodDesc, WalkState); } /* Delete this walk state and all linked control states */ AcpiPsCleanupScope (&WalkState->ParserState); PreviousWalkState = WalkState; ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "ReturnValue=%p, ImplicitValue=%p State=%p\n", WalkState->ReturnDesc, WalkState->ImplicitReturnObj, WalkState)); /* Check if we have restarted a preempted walk */ WalkState = AcpiDsGetCurrentWalkState (Thread); if (WalkState) { if (ACPI_SUCCESS (Status)) { /* * There is another walk state, restart it. * If the method return value is not used by the parent, * The object is deleted */ if (!PreviousWalkState->ReturnDesc) { /* * In slack mode execution, if there is no return value * we should implicitly return zero (0) as a default value. */ if (AcpiGbl_EnableInterpreterSlack && !PreviousWalkState->ImplicitReturnObj) { PreviousWalkState->ImplicitReturnObj = AcpiUtCreateIntegerObject ((UINT64) 0); if (!PreviousWalkState->ImplicitReturnObj) { return_ACPI_STATUS (AE_NO_MEMORY); } } /* Restart the calling control method */ Status = AcpiDsRestartControlMethod (WalkState, PreviousWalkState->ImplicitReturnObj); } else { /* * We have a valid return value, delete any implicit * return value. */ AcpiDsClearImplicitReturn (PreviousWalkState); Status = AcpiDsRestartControlMethod (WalkState, PreviousWalkState->ReturnDesc); } if (ACPI_SUCCESS (Status)) { WalkState->WalkType |= ACPI_WALK_METHOD_RESTART; } } else { /* On error, delete any return object or implicit return */ AcpiUtRemoveReference (PreviousWalkState->ReturnDesc); AcpiDsClearImplicitReturn (PreviousWalkState); } } /* * Just completed a 1st-level method, save the final internal return * value (if any) */ else if (PreviousWalkState->CallerReturnDesc) { if (PreviousWalkState->ImplicitReturnObj) { *(PreviousWalkState->CallerReturnDesc) = PreviousWalkState->ImplicitReturnObj; } else { /* NULL if no return value */ *(PreviousWalkState->CallerReturnDesc) = PreviousWalkState->ReturnDesc; } } else { if (PreviousWalkState->ReturnDesc) { /* Caller doesn't want it, must delete it */ AcpiUtRemoveReference (PreviousWalkState->ReturnDesc); } if (PreviousWalkState->ImplicitReturnObj) { /* Caller doesn't want it, must delete it */ AcpiUtRemoveReference (PreviousWalkState->ImplicitReturnObj); } } AcpiDsDeleteWalkState (PreviousWalkState); } /* Normal exit */ AcpiExReleaseAllMutexes (Thread); AcpiUtDeleteGenericState (ACPI_CAST_PTR (ACPI_GENERIC_STATE, Thread)); AcpiGbl_CurrentWalkList = PrevWalkList; return_ACPI_STATUS (Status); } Index: vendor-sys/acpica/dist/source/components/parser/psxface.c =================================================================== --- vendor-sys/acpica/dist/source/components/parser/psxface.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/parser/psxface.c (revision 305162) @@ -1,310 +1,392 @@ /****************************************************************************** * * Module Name: psxface - Parser external interfaces * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acparser.h" #include "acdispat.h" #include "acinterp.h" #include "actables.h" #include "acnamesp.h" #define _COMPONENT ACPI_PARSER ACPI_MODULE_NAME ("psxface") /* Local Prototypes */ static void AcpiPsUpdateParameterList ( ACPI_EVALUATE_INFO *Info, UINT16 Action); /******************************************************************************* * * FUNCTION: AcpiDebugTrace * * PARAMETERS: MethodName - Valid ACPI name string * DebugLevel - Optional level mask. 0 to use default * DebugLayer - Optional layer mask. 0 to use default * Flags - bit 1: one shot(1) or persistent(0) * * RETURN: Status * * DESCRIPTION: External interface to enable debug tracing during control * method execution * ******************************************************************************/ ACPI_STATUS AcpiDebugTrace ( const char *Name, UINT32 DebugLevel, UINT32 DebugLayer, UINT32 Flags) { ACPI_STATUS Status; Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); if (ACPI_FAILURE (Status)) { return (Status); } AcpiGbl_TraceMethodName = Name; AcpiGbl_TraceFlags = Flags; AcpiGbl_TraceDbgLevel = DebugLevel; AcpiGbl_TraceDbgLayer = DebugLayer; Status = AE_OK; (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); return (Status); } /******************************************************************************* * * FUNCTION: AcpiPsExecuteMethod * * PARAMETERS: Info - Method info block, contains: * Node - Method Node to execute * ObjDesc - Method object * Parameters - List of parameters to pass to the method, * terminated by NULL. Params itself may be * NULL if no parameters are being passed. * ReturnObject - Where to put method's return value (if * any). If NULL, no value is returned. * ParameterType - Type of Parameter list * ReturnObject - Where to put method's return value (if * any). If NULL, no value is returned. * PassNumber - Parse or execute pass * * RETURN: Status * * DESCRIPTION: Execute a control method * ******************************************************************************/ ACPI_STATUS AcpiPsExecuteMethod ( ACPI_EVALUATE_INFO *Info) { ACPI_STATUS Status; ACPI_PARSE_OBJECT *Op; ACPI_WALK_STATE *WalkState; ACPI_FUNCTION_TRACE (PsExecuteMethod); /* Quick validation of DSDT header */ AcpiTbCheckDsdtHeader (); /* Validate the Info and method Node */ if (!Info || !Info->Node) { return_ACPI_STATUS (AE_NULL_ENTRY); } /* Init for new method, wait on concurrency semaphore */ Status = AcpiDsBeginMethodExecution (Info->Node, Info->ObjDesc, NULL); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* * The caller "owns" the parameters, so give each one an extra reference */ AcpiPsUpdateParameterList (Info, REF_INCREMENT); /* * Execute the method. Performs parse simultaneously */ ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "**** Begin Method Parse/Execute [%4.4s] **** Node=%p Obj=%p\n", Info->Node->Name.Ascii, Info->Node, Info->ObjDesc)); /* Create and init a Root Node */ Op = AcpiPsCreateScopeOp (Info->ObjDesc->Method.AmlStart); if (!Op) { Status = AE_NO_MEMORY; goto Cleanup; } /* Create and initialize a new walk state */ Info->PassNumber = ACPI_IMODE_EXECUTE; WalkState = AcpiDsCreateWalkState ( Info->ObjDesc->Method.OwnerId, NULL, NULL, NULL); if (!WalkState) { Status = AE_NO_MEMORY; goto Cleanup; } Status = AcpiDsInitAmlWalk (WalkState, Op, Info->Node, Info->ObjDesc->Method.AmlStart, Info->ObjDesc->Method.AmlLength, Info, Info->PassNumber); if (ACPI_FAILURE (Status)) { AcpiDsDeleteWalkState (WalkState); goto Cleanup; } if (Info->ObjDesc->Method.InfoFlags & ACPI_METHOD_MODULE_LEVEL) { WalkState->ParseFlags |= ACPI_PARSE_MODULE_LEVEL; } /* Invoke an internal method if necessary */ if (Info->ObjDesc->Method.InfoFlags & ACPI_METHOD_INTERNAL_ONLY) { Status = Info->ObjDesc->Method.Dispatch.Implementation (WalkState); Info->ReturnObject = WalkState->ReturnDesc; /* Cleanup states */ AcpiDsScopeStackClear (WalkState); AcpiPsCleanupScope (&WalkState->ParserState); AcpiDsTerminateControlMethod (WalkState->MethodDesc, WalkState); AcpiDsDeleteWalkState (WalkState); goto Cleanup; } /* * Start method evaluation with an implicit return of zero. * This is done for Windows compatibility. */ if (AcpiGbl_EnableInterpreterSlack) { WalkState->ImplicitReturnObj = AcpiUtCreateIntegerObject ((UINT64) 0); if (!WalkState->ImplicitReturnObj) { Status = AE_NO_MEMORY; AcpiDsDeleteWalkState (WalkState); goto Cleanup; } } /* Parse the AML */ Status = AcpiPsParseAml (WalkState); /* WalkState was deleted by ParseAml */ Cleanup: AcpiPsDeleteParseTree (Op); /* Take away the extra reference that we gave the parameters above */ AcpiPsUpdateParameterList (Info, REF_DECREMENT); /* Exit now if error above */ if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* * If the method has returned an object, signal this to the caller with * a control exception code */ if (Info->ReturnObject) { ACPI_DEBUG_PRINT ((ACPI_DB_PARSE, "Method returned ObjDesc=%p\n", Info->ReturnObject)); ACPI_DUMP_STACK_ENTRY (Info->ReturnObject); Status = AE_CTRL_RETURN_VALUE; } return_ACPI_STATUS (Status); } /******************************************************************************* * + * FUNCTION: AcpiPsExecuteTable + * + * PARAMETERS: Info - Method info block, contains: + * Node - Node to where the is entered into the + * namespace + * ObjDesc - Pseudo method object describing the AML + * code of the entire table + * PassNumber - Parse or execute pass + * + * RETURN: Status + * + * DESCRIPTION: Execute a table + * + ******************************************************************************/ + +ACPI_STATUS +AcpiPsExecuteTable ( + ACPI_EVALUATE_INFO *Info) +{ + ACPI_STATUS Status; + ACPI_PARSE_OBJECT *Op = NULL; + ACPI_WALK_STATE *WalkState = NULL; + + + ACPI_FUNCTION_TRACE (PsExecuteTable); + + + /* Create and init a Root Node */ + + Op = AcpiPsCreateScopeOp (Info->ObjDesc->Method.AmlStart); + if (!Op) + { + Status = AE_NO_MEMORY; + goto Cleanup; + } + + /* Create and initialize a new walk state */ + + WalkState = AcpiDsCreateWalkState ( + Info->ObjDesc->Method.OwnerId, NULL, NULL, NULL); + if (!WalkState) + { + Status = AE_NO_MEMORY; + goto Cleanup; + } + + Status = AcpiDsInitAmlWalk (WalkState, Op, Info->Node, + Info->ObjDesc->Method.AmlStart, + Info->ObjDesc->Method.AmlLength, Info, Info->PassNumber); + if (ACPI_FAILURE (Status)) + { + goto Cleanup; + } + + if (Info->ObjDesc->Method.InfoFlags & ACPI_METHOD_MODULE_LEVEL) + { + WalkState->ParseFlags |= ACPI_PARSE_MODULE_LEVEL; + } + + /* + * Parse the AML, WalkState will be deleted by ParseAml + */ + AcpiExEnterInterpreter (); + Status = AcpiPsParseAml (WalkState); + AcpiExExitInterpreter (); + WalkState = NULL; + +Cleanup: + if (WalkState) + { + AcpiDsDeleteWalkState (WalkState); + } + if (Op) + { + AcpiPsDeleteParseTree (Op); + } + return_ACPI_STATUS (Status); +} + + +/******************************************************************************* + * * FUNCTION: AcpiPsUpdateParameterList * * PARAMETERS: Info - See ACPI_EVALUATE_INFO * (Used: ParameterType and Parameters) * Action - Add or Remove reference * * RETURN: Status * * DESCRIPTION: Update reference count on all method parameter objects * ******************************************************************************/ static void AcpiPsUpdateParameterList ( ACPI_EVALUATE_INFO *Info, UINT16 Action) { UINT32 i; if (Info->Parameters) { /* Update reference count for each parameter */ for (i = 0; Info->Parameters[i]; i++) { /* Ignore errors, just do them all */ (void) AcpiUtUpdateObjectReference ( Info->Parameters[i], Action); } } } Index: vendor-sys/acpica/dist/source/components/tables/tbdata.c =================================================================== --- vendor-sys/acpica/dist/source/components/tables/tbdata.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/tables/tbdata.c (revision 305162) @@ -1,869 +1,1027 @@ /****************************************************************************** * * Module Name: tbdata - Table manager data structure functions * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acnamesp.h" #include "actables.h" +#include "acevents.h" #define _COMPONENT ACPI_TABLES ACPI_MODULE_NAME ("tbdata") /******************************************************************************* * * FUNCTION: AcpiTbInitTableDescriptor * * PARAMETERS: TableDesc - Table descriptor * Address - Physical address of the table * Flags - Allocation flags of the table * Table - Pointer to the table * * RETURN: None * * DESCRIPTION: Initialize a new table descriptor * ******************************************************************************/ void AcpiTbInitTableDescriptor ( ACPI_TABLE_DESC *TableDesc, ACPI_PHYSICAL_ADDRESS Address, UINT8 Flags, ACPI_TABLE_HEADER *Table) { /* * Initialize the table descriptor. Set the pointer to NULL, since the * table is not fully mapped at this time. */ memset (TableDesc, 0, sizeof (ACPI_TABLE_DESC)); TableDesc->Address = Address; TableDesc->Length = Table->Length; TableDesc->Flags = Flags; ACPI_MOVE_32_TO_32 (TableDesc->Signature.Ascii, Table->Signature); } /******************************************************************************* * * FUNCTION: AcpiTbAcquireTable * * PARAMETERS: TableDesc - Table descriptor * TablePtr - Where table is returned * TableLength - Where table length is returned * TableFlags - Where table allocation flags are returned * * RETURN: Status * * DESCRIPTION: Acquire an ACPI table. It can be used for tables not * maintained in the AcpiGbl_RootTableList. * ******************************************************************************/ ACPI_STATUS AcpiTbAcquireTable ( ACPI_TABLE_DESC *TableDesc, ACPI_TABLE_HEADER **TablePtr, UINT32 *TableLength, UINT8 *TableFlags) { ACPI_TABLE_HEADER *Table = NULL; switch (TableDesc->Flags & ACPI_TABLE_ORIGIN_MASK) { case ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL: Table = AcpiOsMapMemory (TableDesc->Address, TableDesc->Length); break; case ACPI_TABLE_ORIGIN_INTERNAL_VIRTUAL: case ACPI_TABLE_ORIGIN_EXTERNAL_VIRTUAL: Table = ACPI_CAST_PTR (ACPI_TABLE_HEADER, ACPI_PHYSADDR_TO_PTR (TableDesc->Address)); break; default: break; } /* Table is not valid yet */ if (!Table) { return (AE_NO_MEMORY); } /* Fill the return values */ *TablePtr = Table; *TableLength = TableDesc->Length; *TableFlags = TableDesc->Flags; return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiTbReleaseTable * * PARAMETERS: Table - Pointer for the table * TableLength - Length for the table * TableFlags - Allocation flags for the table * * RETURN: None * * DESCRIPTION: Release a table. The inverse of AcpiTbAcquireTable(). * ******************************************************************************/ void AcpiTbReleaseTable ( ACPI_TABLE_HEADER *Table, UINT32 TableLength, UINT8 TableFlags) { switch (TableFlags & ACPI_TABLE_ORIGIN_MASK) { case ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL: AcpiOsUnmapMemory (Table, TableLength); break; case ACPI_TABLE_ORIGIN_INTERNAL_VIRTUAL: case ACPI_TABLE_ORIGIN_EXTERNAL_VIRTUAL: default: break; } } /******************************************************************************* * * FUNCTION: AcpiTbAcquireTempTable * * PARAMETERS: TableDesc - Table descriptor to be acquired * Address - Address of the table * Flags - Allocation flags of the table * * RETURN: Status * * DESCRIPTION: This function validates the table header to obtain the length * of a table and fills the table descriptor to make its state as * "INSTALLED". Such a table descriptor is only used for verified * installation. * ******************************************************************************/ ACPI_STATUS AcpiTbAcquireTempTable ( ACPI_TABLE_DESC *TableDesc, ACPI_PHYSICAL_ADDRESS Address, UINT8 Flags) { ACPI_TABLE_HEADER *TableHeader; switch (Flags & ACPI_TABLE_ORIGIN_MASK) { case ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL: /* Get the length of the full table from the header */ TableHeader = AcpiOsMapMemory (Address, sizeof (ACPI_TABLE_HEADER)); if (!TableHeader) { return (AE_NO_MEMORY); } AcpiTbInitTableDescriptor (TableDesc, Address, Flags, TableHeader); AcpiOsUnmapMemory (TableHeader, sizeof (ACPI_TABLE_HEADER)); return (AE_OK); case ACPI_TABLE_ORIGIN_INTERNAL_VIRTUAL: case ACPI_TABLE_ORIGIN_EXTERNAL_VIRTUAL: TableHeader = ACPI_CAST_PTR (ACPI_TABLE_HEADER, ACPI_PHYSADDR_TO_PTR (Address)); if (!TableHeader) { return (AE_NO_MEMORY); } AcpiTbInitTableDescriptor (TableDesc, Address, Flags, TableHeader); return (AE_OK); default: break; } /* Table is not valid yet */ return (AE_NO_MEMORY); } /******************************************************************************* * * FUNCTION: AcpiTbReleaseTempTable * * PARAMETERS: TableDesc - Table descriptor to be released * * RETURN: Status * * DESCRIPTION: The inverse of AcpiTbAcquireTempTable(). * *****************************************************************************/ void AcpiTbReleaseTempTable ( ACPI_TABLE_DESC *TableDesc) { /* * Note that the .Address is maintained by the callers of * AcpiTbAcquireTempTable(), thus do not invoke AcpiTbUninstallTable() * where .Address will be freed. */ AcpiTbInvalidateTable (TableDesc); } /****************************************************************************** * * FUNCTION: AcpiTbValidateTable * * PARAMETERS: TableDesc - Table descriptor * * RETURN: Status * * DESCRIPTION: This function is called to validate the table, the returned * table descriptor is in "VALIDATED" state. * *****************************************************************************/ ACPI_STATUS AcpiTbValidateTable ( ACPI_TABLE_DESC *TableDesc) { ACPI_STATUS Status = AE_OK; ACPI_FUNCTION_TRACE (TbValidateTable); /* Validate the table if necessary */ if (!TableDesc->Pointer) { Status = AcpiTbAcquireTable (TableDesc, &TableDesc->Pointer, &TableDesc->Length, &TableDesc->Flags); if (!TableDesc->Pointer) { Status = AE_NO_MEMORY; } } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiTbInvalidateTable * * PARAMETERS: TableDesc - Table descriptor * * RETURN: None * * DESCRIPTION: Invalidate one internal ACPI table, this is the inverse of * AcpiTbValidateTable(). * ******************************************************************************/ void AcpiTbInvalidateTable ( ACPI_TABLE_DESC *TableDesc) { ACPI_FUNCTION_TRACE (TbInvalidateTable); /* Table must be validated */ if (!TableDesc->Pointer) { return_VOID; } AcpiTbReleaseTable (TableDesc->Pointer, TableDesc->Length, TableDesc->Flags); TableDesc->Pointer = NULL; return_VOID; } /****************************************************************************** * * FUNCTION: AcpiTbValidateTempTable * * PARAMETERS: TableDesc - Table descriptor * * RETURN: Status * * DESCRIPTION: This function is called to validate the table, the returned * table descriptor is in "VALIDATED" state. * *****************************************************************************/ ACPI_STATUS AcpiTbValidateTempTable ( ACPI_TABLE_DESC *TableDesc) { if (!TableDesc->Pointer && !AcpiGbl_VerifyTableChecksum) { /* * Only validates the header of the table. * Note that Length contains the size of the mapping after invoking * this work around, this value is required by * AcpiTbReleaseTempTable(). * We can do this because in AcpiInitTableDescriptor(), the Length * field of the installed descriptor is filled with the actual * table length obtaining from the table header. */ TableDesc->Length = sizeof (ACPI_TABLE_HEADER); } return (AcpiTbValidateTable (TableDesc)); } /****************************************************************************** * * FUNCTION: AcpiTbVerifyTempTable * * PARAMETERS: TableDesc - Table descriptor * Signature - Table signature to verify * * RETURN: Status * * DESCRIPTION: This function is called to validate and verify the table, the * returned table descriptor is in "VALIDATED" state. * *****************************************************************************/ ACPI_STATUS AcpiTbVerifyTempTable ( ACPI_TABLE_DESC *TableDesc, char *Signature) { ACPI_STATUS Status = AE_OK; ACPI_FUNCTION_TRACE (TbVerifyTempTable); /* Validate the table */ Status = AcpiTbValidateTempTable (TableDesc); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (AE_NO_MEMORY); } /* If a particular signature is expected (DSDT/FACS), it must match */ if (Signature && !ACPI_COMPARE_NAME (&TableDesc->Signature, Signature)) { ACPI_BIOS_ERROR ((AE_INFO, "Invalid signature 0x%X for ACPI table, expected [%s]", TableDesc->Signature.Integer, Signature)); Status = AE_BAD_SIGNATURE; goto InvalidateAndExit; } /* Verify the checksum */ if (AcpiGbl_VerifyTableChecksum) { Status = AcpiTbVerifyChecksum (TableDesc->Pointer, TableDesc->Length); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, AE_NO_MEMORY, "%4.4s 0x%8.8X%8.8X" " Attempted table install failed", AcpiUtValidNameseg (TableDesc->Signature.Ascii) ? TableDesc->Signature.Ascii : "????", ACPI_FORMAT_UINT64 (TableDesc->Address))); goto InvalidateAndExit; } } return_ACPI_STATUS (AE_OK); InvalidateAndExit: AcpiTbInvalidateTable (TableDesc); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiTbResizeRootTableList * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Expand the size of global table array * ******************************************************************************/ ACPI_STATUS AcpiTbResizeRootTableList ( void) { ACPI_TABLE_DESC *Tables; UINT32 TableCount; ACPI_FUNCTION_TRACE (TbResizeRootTableList); /* AllowResize flag is a parameter to AcpiInitializeTables */ if (!(AcpiGbl_RootTableList.Flags & ACPI_ROOT_ALLOW_RESIZE)) { ACPI_ERROR ((AE_INFO, "Resize of Root Table Array is not allowed")); return_ACPI_STATUS (AE_SUPPORT); } /* Increase the Table Array size */ if (AcpiGbl_RootTableList.Flags & ACPI_ROOT_ORIGIN_ALLOCATED) { TableCount = AcpiGbl_RootTableList.MaxTableCount; } else { TableCount = AcpiGbl_RootTableList.CurrentTableCount; } Tables = ACPI_ALLOCATE_ZEROED ( ((ACPI_SIZE) TableCount + ACPI_ROOT_TABLE_SIZE_INCREMENT) * sizeof (ACPI_TABLE_DESC)); if (!Tables) { ACPI_ERROR ((AE_INFO, "Could not allocate new root table array")); return_ACPI_STATUS (AE_NO_MEMORY); } /* Copy and free the previous table array */ if (AcpiGbl_RootTableList.Tables) { memcpy (Tables, AcpiGbl_RootTableList.Tables, (ACPI_SIZE) TableCount * sizeof (ACPI_TABLE_DESC)); if (AcpiGbl_RootTableList.Flags & ACPI_ROOT_ORIGIN_ALLOCATED) { ACPI_FREE (AcpiGbl_RootTableList.Tables); } } AcpiGbl_RootTableList.Tables = Tables; AcpiGbl_RootTableList.MaxTableCount = TableCount + ACPI_ROOT_TABLE_SIZE_INCREMENT; AcpiGbl_RootTableList.Flags |= ACPI_ROOT_ORIGIN_ALLOCATED; return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiTbGetNextTableDescriptor * * PARAMETERS: TableIndex - Where table index is returned * TableDesc - Where table descriptor is returned * * RETURN: Status and table index/descriptor. * * DESCRIPTION: Allocate a new ACPI table entry to the global table list * ******************************************************************************/ ACPI_STATUS AcpiTbGetNextTableDescriptor ( UINT32 *TableIndex, ACPI_TABLE_DESC **TableDesc) { ACPI_STATUS Status; UINT32 i; /* Ensure that there is room for the table in the Root Table List */ if (AcpiGbl_RootTableList.CurrentTableCount >= AcpiGbl_RootTableList.MaxTableCount) { Status = AcpiTbResizeRootTableList(); if (ACPI_FAILURE (Status)) { return (Status); } } i = AcpiGbl_RootTableList.CurrentTableCount; AcpiGbl_RootTableList.CurrentTableCount++; if (TableIndex) { *TableIndex = i; } if (TableDesc) { *TableDesc = &AcpiGbl_RootTableList.Tables[i]; } return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiTbTerminate * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Delete all internal ACPI tables * ******************************************************************************/ void AcpiTbTerminate ( void) { UINT32 i; ACPI_FUNCTION_TRACE (TbTerminate); (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); /* Delete the individual tables */ for (i = 0; i < AcpiGbl_RootTableList.CurrentTableCount; i++) { AcpiTbUninstallTable (&AcpiGbl_RootTableList.Tables[i]); } /* * Delete the root table array if allocated locally. Array cannot be * mapped, so we don't need to check for that flag. */ if (AcpiGbl_RootTableList.Flags & ACPI_ROOT_ORIGIN_ALLOCATED) { ACPI_FREE (AcpiGbl_RootTableList.Tables); } AcpiGbl_RootTableList.Tables = NULL; AcpiGbl_RootTableList.Flags = 0; AcpiGbl_RootTableList.CurrentTableCount = 0; ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "ACPI Tables freed\n")); (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); return_VOID; } /******************************************************************************* * * FUNCTION: AcpiTbDeleteNamespaceByOwner * * PARAMETERS: TableIndex - Table index * * RETURN: Status * * DESCRIPTION: Delete all namespace objects created when this table was loaded. * ******************************************************************************/ ACPI_STATUS AcpiTbDeleteNamespaceByOwner ( UINT32 TableIndex) { ACPI_OWNER_ID OwnerId; ACPI_STATUS Status; ACPI_FUNCTION_TRACE (TbDeleteNamespaceByOwner); Status = AcpiUtAcquireMutex (ACPI_MTX_TABLES); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } if (TableIndex >= AcpiGbl_RootTableList.CurrentTableCount) { /* The table index does not exist */ (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); return_ACPI_STATUS (AE_NOT_EXIST); } /* Get the owner ID for this table, used to delete namespace nodes */ OwnerId = AcpiGbl_RootTableList.Tables[TableIndex].OwnerId; (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); /* * Need to acquire the namespace writer lock to prevent interference * with any concurrent namespace walks. The interpreter must be * released during the deletion since the acquisition of the deletion * lock may block, and also since the execution of a namespace walk * must be allowed to use the interpreter. */ (void) AcpiUtReleaseMutex (ACPI_MTX_INTERPRETER); Status = AcpiUtAcquireWriteLock (&AcpiGbl_NamespaceRwLock); AcpiNsDeleteNamespaceByOwner (OwnerId); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } AcpiUtReleaseWriteLock (&AcpiGbl_NamespaceRwLock); Status = AcpiUtAcquireMutex (ACPI_MTX_INTERPRETER); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiTbAllocateOwnerId * * PARAMETERS: TableIndex - Table index * * RETURN: Status * * DESCRIPTION: Allocates OwnerId in TableDesc * ******************************************************************************/ ACPI_STATUS AcpiTbAllocateOwnerId ( UINT32 TableIndex) { ACPI_STATUS Status = AE_BAD_PARAMETER; ACPI_FUNCTION_TRACE (TbAllocateOwnerId); (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); if (TableIndex < AcpiGbl_RootTableList.CurrentTableCount) { Status = AcpiUtAllocateOwnerId ( &(AcpiGbl_RootTableList.Tables[TableIndex].OwnerId)); } (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiTbReleaseOwnerId * * PARAMETERS: TableIndex - Table index * * RETURN: Status * * DESCRIPTION: Releases OwnerId in TableDesc * ******************************************************************************/ ACPI_STATUS AcpiTbReleaseOwnerId ( UINT32 TableIndex) { ACPI_STATUS Status = AE_BAD_PARAMETER; ACPI_FUNCTION_TRACE (TbReleaseOwnerId); (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); if (TableIndex < AcpiGbl_RootTableList.CurrentTableCount) { AcpiUtReleaseOwnerId ( &(AcpiGbl_RootTableList.Tables[TableIndex].OwnerId)); Status = AE_OK; } (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiTbGetOwnerId * * PARAMETERS: TableIndex - Table index * OwnerId - Where the table OwnerId is returned * * RETURN: Status * * DESCRIPTION: returns OwnerId for the ACPI table * ******************************************************************************/ ACPI_STATUS AcpiTbGetOwnerId ( UINT32 TableIndex, ACPI_OWNER_ID *OwnerId) { ACPI_STATUS Status = AE_BAD_PARAMETER; ACPI_FUNCTION_TRACE (TbGetOwnerId); (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); if (TableIndex < AcpiGbl_RootTableList.CurrentTableCount) { *OwnerId = AcpiGbl_RootTableList.Tables[TableIndex].OwnerId; Status = AE_OK; } (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiTbIsTableLoaded * * PARAMETERS: TableIndex - Index into the root table * * RETURN: Table Loaded Flag * ******************************************************************************/ BOOLEAN AcpiTbIsTableLoaded ( UINT32 TableIndex) { BOOLEAN IsLoaded = FALSE; (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); if (TableIndex < AcpiGbl_RootTableList.CurrentTableCount) { IsLoaded = (BOOLEAN) (AcpiGbl_RootTableList.Tables[TableIndex].Flags & ACPI_TABLE_IS_LOADED); } (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); return (IsLoaded); } /******************************************************************************* * * FUNCTION: AcpiTbSetTableLoadedFlag * * PARAMETERS: TableIndex - Table index * IsLoaded - TRUE if table is loaded, FALSE otherwise * * RETURN: None * * DESCRIPTION: Sets the table loaded flag to either TRUE or FALSE. * ******************************************************************************/ void AcpiTbSetTableLoadedFlag ( UINT32 TableIndex, BOOLEAN IsLoaded) { (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); if (TableIndex < AcpiGbl_RootTableList.CurrentTableCount) { if (IsLoaded) { AcpiGbl_RootTableList.Tables[TableIndex].Flags |= ACPI_TABLE_IS_LOADED; } else { AcpiGbl_RootTableList.Tables[TableIndex].Flags &= ~ACPI_TABLE_IS_LOADED; } } (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); +} + + +/******************************************************************************* + * + * FUNCTION: AcpiTbLoadTable + * + * PARAMETERS: TableIndex - Table index + * ParentNode - Where table index is returned + * + * RETURN: Status + * + * DESCRIPTION: Load an ACPI table + * + ******************************************************************************/ + +ACPI_STATUS +AcpiTbLoadTable ( + UINT32 TableIndex, + ACPI_NAMESPACE_NODE *ParentNode) +{ + ACPI_TABLE_HEADER *Table; + ACPI_STATUS Status; + ACPI_OWNER_ID OwnerId; + + + ACPI_FUNCTION_TRACE (TbLoadTable); + + + /* + * Note: Now table is "INSTALLED", it must be validated before + * using. + */ + Status = AcpiGetTableByIndex (TableIndex, &Table); + if (ACPI_FAILURE (Status)) + { + return_ACPI_STATUS (Status); + } + + Status = AcpiNsLoadTable (TableIndex, ParentNode); + + /* Execute any module-level code that was found in the table */ + + if (!AcpiGbl_ParseTableAsTermList && AcpiGbl_GroupModuleLevelCode) + { + AcpiNsExecModuleCodeList (); + } + + /* + * Update GPEs for any new _Lxx/_Exx methods. Ignore errors. The host is + * responsible for discovering any new wake GPEs by running _PRW methods + * that may have been loaded by this table. + */ + Status = AcpiTbGetOwnerId (TableIndex, &OwnerId); + if (ACPI_SUCCESS (Status)) + { + AcpiEvUpdateGpes (OwnerId); + } + + /* Invoke table handler if present */ + + if (AcpiGbl_TableHandler) + { + (void) AcpiGbl_TableHandler (ACPI_TABLE_EVENT_LOAD, Table, + AcpiGbl_TableHandlerContext); + } + + return_ACPI_STATUS (Status); +} + + +/******************************************************************************* + * + * FUNCTION: AcpiTbInstallAndLoadTable + * + * PARAMETERS: Table - Pointer to the table + * Address - Physical address of the table + * Flags - Allocation flags of the table + * TableIndex - Where table index is returned + * + * RETURN: Status + * + * DESCRIPTION: Install and load an ACPI table + * + ******************************************************************************/ + +ACPI_STATUS +AcpiTbInstallAndLoadTable ( + ACPI_TABLE_HEADER *Table, + ACPI_PHYSICAL_ADDRESS Address, + UINT8 Flags, + BOOLEAN Override, + UINT32 *TableIndex) +{ + ACPI_STATUS Status; + UINT32 i; + ACPI_OWNER_ID OwnerId; + + + ACPI_FUNCTION_TRACE (AcpiLoadTable); + + + (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); + + /* Install the table and load it into the namespace */ + + Status = AcpiTbInstallStandardTable (Address, Flags, TRUE, + Override, &i); + if (ACPI_FAILURE (Status)) + { + goto UnlockAndExit; + } + + /* + * Note: Now table is "INSTALLED", it must be validated before + * using. + */ + Status = AcpiTbValidateTable (&AcpiGbl_RootTableList.Tables[i]); + if (ACPI_FAILURE (Status)) + { + goto UnlockAndExit; + } + + (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); + Status = AcpiNsLoadTable (i, AcpiGbl_RootNode); + + /* Execute any module-level code that was found in the table */ + + if (!AcpiGbl_ParseTableAsTermList && AcpiGbl_GroupModuleLevelCode) + { + AcpiNsExecModuleCodeList (); + } + + /* + * Update GPEs for any new _Lxx/_Exx methods. Ignore errors. The host is + * responsible for discovering any new wake GPEs by running _PRW methods + * that may have been loaded by this table. + */ + Status = AcpiTbGetOwnerId (i, &OwnerId); + if (ACPI_SUCCESS (Status)) + { + AcpiEvUpdateGpes (OwnerId); + } + + /* Invoke table handler if present */ + + if (AcpiGbl_TableHandler) + { + (void) AcpiGbl_TableHandler (ACPI_TABLE_EVENT_LOAD, Table, + AcpiGbl_TableHandlerContext); + } + (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); + +UnlockAndExit: + *TableIndex = i; + (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); + return_ACPI_STATUS (Status); } Index: vendor-sys/acpica/dist/source/components/tables/tbfadt.c =================================================================== --- vendor-sys/acpica/dist/source/components/tables/tbfadt.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/tables/tbfadt.c (revision 305162) @@ -1,783 +1,791 @@ /****************************************************************************** * * Module Name: tbfadt - FADT table utilities * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "actables.h" #define _COMPONENT ACPI_TABLES ACPI_MODULE_NAME ("tbfadt") /* Local prototypes */ static void AcpiTbInitGenericAddress ( ACPI_GENERIC_ADDRESS *GenericAddress, UINT8 SpaceId, UINT8 ByteWidth, UINT64 Address, const char *RegisterName, UINT8 Flags); static void AcpiTbConvertFadt ( void); static void AcpiTbSetupFadtRegisters ( void); static UINT64 AcpiTbSelectAddress ( char *RegisterName, UINT32 Address32, UINT64 Address64); /* Table for conversion of FADT to common internal format and FADT validation */ typedef struct acpi_fadt_info { const char *Name; UINT16 Address64; UINT16 Address32; UINT16 Length; UINT8 DefaultLength; UINT8 Flags; } ACPI_FADT_INFO; #define ACPI_FADT_OPTIONAL 0 #define ACPI_FADT_REQUIRED 1 #define ACPI_FADT_SEPARATE_LENGTH 2 #define ACPI_FADT_GPE_REGISTER 4 static ACPI_FADT_INFO FadtInfoTable[] = { {"Pm1aEventBlock", ACPI_FADT_OFFSET (XPm1aEventBlock), ACPI_FADT_OFFSET (Pm1aEventBlock), ACPI_FADT_OFFSET (Pm1EventLength), ACPI_PM1_REGISTER_WIDTH * 2, /* Enable + Status register */ ACPI_FADT_REQUIRED}, {"Pm1bEventBlock", ACPI_FADT_OFFSET (XPm1bEventBlock), ACPI_FADT_OFFSET (Pm1bEventBlock), ACPI_FADT_OFFSET (Pm1EventLength), ACPI_PM1_REGISTER_WIDTH * 2, /* Enable + Status register */ ACPI_FADT_OPTIONAL}, {"Pm1aControlBlock", ACPI_FADT_OFFSET (XPm1aControlBlock), ACPI_FADT_OFFSET (Pm1aControlBlock), ACPI_FADT_OFFSET (Pm1ControlLength), ACPI_PM1_REGISTER_WIDTH, ACPI_FADT_REQUIRED}, {"Pm1bControlBlock", ACPI_FADT_OFFSET (XPm1bControlBlock), ACPI_FADT_OFFSET (Pm1bControlBlock), ACPI_FADT_OFFSET (Pm1ControlLength), ACPI_PM1_REGISTER_WIDTH, ACPI_FADT_OPTIONAL}, {"Pm2ControlBlock", ACPI_FADT_OFFSET (XPm2ControlBlock), ACPI_FADT_OFFSET (Pm2ControlBlock), ACPI_FADT_OFFSET (Pm2ControlLength), ACPI_PM2_REGISTER_WIDTH, ACPI_FADT_SEPARATE_LENGTH}, {"PmTimerBlock", ACPI_FADT_OFFSET (XPmTimerBlock), ACPI_FADT_OFFSET (PmTimerBlock), ACPI_FADT_OFFSET (PmTimerLength), ACPI_PM_TIMER_WIDTH, ACPI_FADT_SEPARATE_LENGTH}, /* ACPI 5.0A: Timer is optional */ {"Gpe0Block", ACPI_FADT_OFFSET (XGpe0Block), ACPI_FADT_OFFSET (Gpe0Block), ACPI_FADT_OFFSET (Gpe0BlockLength), 0, ACPI_FADT_SEPARATE_LENGTH | ACPI_FADT_GPE_REGISTER}, {"Gpe1Block", ACPI_FADT_OFFSET (XGpe1Block), ACPI_FADT_OFFSET (Gpe1Block), ACPI_FADT_OFFSET (Gpe1BlockLength), 0, ACPI_FADT_SEPARATE_LENGTH | ACPI_FADT_GPE_REGISTER} }; #define ACPI_FADT_INFO_ENTRIES \ (sizeof (FadtInfoTable) / sizeof (ACPI_FADT_INFO)) /* Table used to split Event Blocks into separate status/enable registers */ typedef struct acpi_fadt_pm_info { ACPI_GENERIC_ADDRESS *Target; UINT16 Source; UINT8 RegisterNum; } ACPI_FADT_PM_INFO; static ACPI_FADT_PM_INFO FadtPmInfoTable[] = { {&AcpiGbl_XPm1aStatus, ACPI_FADT_OFFSET (XPm1aEventBlock), 0}, {&AcpiGbl_XPm1aEnable, ACPI_FADT_OFFSET (XPm1aEventBlock), 1}, {&AcpiGbl_XPm1bStatus, ACPI_FADT_OFFSET (XPm1bEventBlock), 0}, {&AcpiGbl_XPm1bEnable, ACPI_FADT_OFFSET (XPm1bEventBlock), 1} }; #define ACPI_FADT_PM_INFO_ENTRIES \ (sizeof (FadtPmInfoTable) / sizeof (ACPI_FADT_PM_INFO)) /******************************************************************************* * * FUNCTION: AcpiTbInitGenericAddress * * PARAMETERS: GenericAddress - GAS struct to be initialized * SpaceId - ACPI Space ID for this register * ByteWidth - Width of this register * Address - Address of the register * RegisterName - ASCII name of the ACPI register * * RETURN: None * * DESCRIPTION: Initialize a Generic Address Structure (GAS) * See the ACPI specification for a full description and * definition of this structure. * ******************************************************************************/ static void AcpiTbInitGenericAddress ( ACPI_GENERIC_ADDRESS *GenericAddress, UINT8 SpaceId, UINT8 ByteWidth, UINT64 Address, const char *RegisterName, UINT8 Flags) { UINT8 BitWidth; /* * Bit width field in the GAS is only one byte long, 255 max. * Check for BitWidth overflow in GAS. */ BitWidth = (UINT8) (ByteWidth * 8); if (ByteWidth > 31) /* (31*8)=248, (32*8)=256 */ { /* * No error for GPE blocks, because we do not use the BitWidth * for GPEs, the legacy length (ByteWidth) is used instead to * allow for a large number of GPEs. */ if (!(Flags & ACPI_FADT_GPE_REGISTER)) { ACPI_ERROR ((AE_INFO, "%s - 32-bit FADT register is too long (%u bytes, %u bits) " "to convert to GAS struct - 255 bits max, truncating", RegisterName, ByteWidth, (ByteWidth * 8))); } BitWidth = 255; } /* * The 64-bit Address field is non-aligned in the byte packed * GAS struct. */ ACPI_MOVE_64_TO_64 (&GenericAddress->Address, &Address); /* All other fields are byte-wide */ GenericAddress->SpaceId = SpaceId; GenericAddress->BitWidth = BitWidth; GenericAddress->BitOffset = 0; GenericAddress->AccessWidth = 0; /* Access width ANY */ } /******************************************************************************* * * FUNCTION: AcpiTbSelectAddress * * PARAMETERS: RegisterName - ASCII name of the ACPI register * Address32 - 32-bit address of the register * Address64 - 64-bit address of the register * * RETURN: The resolved 64-bit address * * DESCRIPTION: Select between 32-bit and 64-bit versions of addresses within * the FADT. Used for the FACS and DSDT addresses. * * NOTES: * * Check for FACS and DSDT address mismatches. An address mismatch between * the 32-bit and 64-bit address fields (FIRMWARE_CTRL/X_FIRMWARE_CTRL and * DSDT/X_DSDT) could be a corrupted address field or it might indicate * the presence of two FACS or two DSDT tables. * * November 2013: * By default, as per the ACPICA specification, a valid 64-bit address is * used regardless of the value of the 32-bit address. However, this * behavior can be overridden via the AcpiGbl_Use32BitFadtAddresses flag. * ******************************************************************************/ static UINT64 AcpiTbSelectAddress ( char *RegisterName, UINT32 Address32, UINT64 Address64) { if (!Address64) { /* 64-bit address is zero, use 32-bit address */ return ((UINT64) Address32); } if (Address32 && (Address64 != (UINT64) Address32)) { /* Address mismatch between 32-bit and 64-bit versions */ ACPI_BIOS_WARNING ((AE_INFO, "32/64X %s address mismatch in FADT: " "0x%8.8X/0x%8.8X%8.8X, using %u-bit address", RegisterName, Address32, ACPI_FORMAT_UINT64 (Address64), AcpiGbl_Use32BitFadtAddresses ? 32 : 64)); /* 32-bit address override */ if (AcpiGbl_Use32BitFadtAddresses) { return ((UINT64) Address32); } } /* Default is to use the 64-bit address */ return (Address64); } /******************************************************************************* * * FUNCTION: AcpiTbParseFadt * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Initialize the FADT, DSDT and FACS tables * (FADT contains the addresses of the DSDT and FACS) * ******************************************************************************/ void AcpiTbParseFadt ( void) { UINT32 Length; ACPI_TABLE_HEADER *Table; /* * The FADT has multiple versions with different lengths, * and it contains pointers to both the DSDT and FACS tables. * * Get a local copy of the FADT and convert it to a common format * Map entire FADT, assumed to be smaller than one page. */ Length = AcpiGbl_RootTableList.Tables[AcpiGbl_FadtIndex].Length; Table = AcpiOsMapMemory ( AcpiGbl_RootTableList.Tables[AcpiGbl_FadtIndex].Address, Length); if (!Table) { return; } /* * Validate the FADT checksum before we copy the table. Ignore * checksum error as we want to try to get the DSDT and FACS. */ (void) AcpiTbVerifyChecksum (Table, Length); /* Create a local copy of the FADT in common ACPI 2.0+ format */ AcpiTbCreateLocalFadt (Table, Length); /* All done with the real FADT, unmap it */ AcpiOsUnmapMemory (Table, Length); /* Obtain the DSDT and FACS tables via their addresses within the FADT */ - AcpiTbInstallFixedTable ((ACPI_PHYSICAL_ADDRESS) AcpiGbl_FADT.XDsdt, - ACPI_SIG_DSDT, &AcpiGbl_DsdtIndex); + AcpiTbInstallStandardTable ( + (ACPI_PHYSICAL_ADDRESS) AcpiGbl_FADT.XDsdt, + ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL, FALSE, TRUE, + &AcpiGbl_DsdtIndex); /* If Hardware Reduced flag is set, there is no FACS */ if (!AcpiGbl_ReducedHardware) { if (AcpiGbl_FADT.Facs) { - AcpiTbInstallFixedTable ((ACPI_PHYSICAL_ADDRESS) AcpiGbl_FADT.Facs, - ACPI_SIG_FACS, &AcpiGbl_FacsIndex); + AcpiTbInstallStandardTable ( + (ACPI_PHYSICAL_ADDRESS) AcpiGbl_FADT.Facs, + ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL, FALSE, TRUE, + &AcpiGbl_FacsIndex); } if (AcpiGbl_FADT.XFacs) { - AcpiTbInstallFixedTable ((ACPI_PHYSICAL_ADDRESS) AcpiGbl_FADT.XFacs, - ACPI_SIG_FACS, &AcpiGbl_XFacsIndex); + AcpiTbInstallStandardTable ( + (ACPI_PHYSICAL_ADDRESS) AcpiGbl_FADT.XFacs, + ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL, FALSE, TRUE, + &AcpiGbl_XFacsIndex); } } } /******************************************************************************* * * FUNCTION: AcpiTbCreateLocalFadt * * PARAMETERS: Table - Pointer to BIOS FADT * Length - Length of the table * * RETURN: None * * DESCRIPTION: Get a local copy of the FADT and convert it to a common format. * Performs validation on some important FADT fields. * * NOTE: We create a local copy of the FADT regardless of the version. * ******************************************************************************/ void AcpiTbCreateLocalFadt ( ACPI_TABLE_HEADER *Table, UINT32 Length) { /* * Check if the FADT is larger than the largest table that we expect * (typically the current ACPI specification version). If so, truncate * the table, and issue a warning. */ if (Length > sizeof (ACPI_TABLE_FADT)) { ACPI_BIOS_WARNING ((AE_INFO, "FADT (revision %u) is longer than %s length, " "truncating length %u to %u", Table->Revision, ACPI_FADT_CONFORMANCE, Length, (UINT32) sizeof (ACPI_TABLE_FADT))); } /* Clear the entire local FADT */ memset (&AcpiGbl_FADT, 0, sizeof (ACPI_TABLE_FADT)); /* Copy the original FADT, up to sizeof (ACPI_TABLE_FADT) */ memcpy (&AcpiGbl_FADT, Table, ACPI_MIN (Length, sizeof (ACPI_TABLE_FADT))); /* Take a copy of the Hardware Reduced flag */ AcpiGbl_ReducedHardware = FALSE; if (AcpiGbl_FADT.Flags & ACPI_FADT_HW_REDUCED) { AcpiGbl_ReducedHardware = TRUE; } /* Convert the local copy of the FADT to the common internal format */ AcpiTbConvertFadt (); /* Initialize the global ACPI register structures */ AcpiTbSetupFadtRegisters (); } /******************************************************************************* * * FUNCTION: AcpiTbConvertFadt * * PARAMETERS: None - AcpiGbl_FADT is used. * * RETURN: None * * DESCRIPTION: Converts all versions of the FADT to a common internal format. * Expand 32-bit addresses to 64-bit as necessary. Also validate * important fields within the FADT. * * NOTE: AcpiGbl_FADT must be of size (ACPI_TABLE_FADT), and must * contain a copy of the actual BIOS-provided FADT. * * Notes on 64-bit register addresses: * * After this FADT conversion, later ACPICA code will only use the 64-bit "X" * fields of the FADT for all ACPI register addresses. * * The 64-bit X fields are optional extensions to the original 32-bit FADT * V1.0 fields. Even if they are present in the FADT, they are optional and * are unused if the BIOS sets them to zero. Therefore, we must copy/expand * 32-bit V1.0 fields to the 64-bit X fields if the the 64-bit X field is * originally zero. * * For ACPI 1.0 FADTs (that contain no 64-bit addresses), all 32-bit address * fields are expanded to the corresponding 64-bit X fields in the internal * common FADT. * * For ACPI 2.0+ FADTs, all valid (non-zero) 32-bit address fields are expanded * to the corresponding 64-bit X fields, if the 64-bit field is originally * zero. Adhering to the ACPI specification, we completely ignore the 32-bit * field if the 64-bit field is valid, regardless of whether the host OS is * 32-bit or 64-bit. * * Possible additional checks: * (AcpiGbl_FADT.Pm1EventLength >= 4) * (AcpiGbl_FADT.Pm1ControlLength >= 2) * (AcpiGbl_FADT.PmTimerLength >= 4) * Gpe block lengths must be multiple of 2 * ******************************************************************************/ static void AcpiTbConvertFadt ( void) { const char *Name; ACPI_GENERIC_ADDRESS *Address64; UINT32 Address32; UINT8 Length; UINT8 Flags; UINT32 i; /* * For ACPI 1.0 FADTs (revision 1), ensure that reserved fields which * should be zero are indeed zero. This will workaround BIOSs that * inadvertently place values in these fields. * * The ACPI 1.0 reserved fields that will be zeroed are the bytes located * at offset 45, 55, 95, and the word located at offset 109, 110. * * Note: The FADT revision value is unreliable because of BIOS errors. * The table length is instead used as the final word on the version. * * Note: FADT revision 3 is the ACPI 2.0 version of the FADT. */ if (AcpiGbl_FADT.Header.Length <= ACPI_FADT_V3_SIZE) { AcpiGbl_FADT.PreferredProfile = 0; AcpiGbl_FADT.PstateControl = 0; AcpiGbl_FADT.CstControl = 0; AcpiGbl_FADT.BootFlags = 0; } /* * Now we can update the local FADT length to the length of the * current FADT version as defined by the ACPI specification. * Thus, we will have a common FADT internally. */ AcpiGbl_FADT.Header.Length = sizeof (ACPI_TABLE_FADT); /* * Expand the 32-bit DSDT addresses to 64-bit as necessary. * Later ACPICA code will always use the X 64-bit field. */ AcpiGbl_FADT.XDsdt = AcpiTbSelectAddress ("DSDT", AcpiGbl_FADT.Dsdt, AcpiGbl_FADT.XDsdt); /* If Hardware Reduced flag is set, we are all done */ if (AcpiGbl_ReducedHardware) { return; } /* Examine all of the 64-bit extended address fields (X fields) */ for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++) { /* * Get the 32-bit and 64-bit addresses, as well as the register * length and register name. */ Address32 = *ACPI_ADD_PTR (UINT32, &AcpiGbl_FADT, FadtInfoTable[i].Address32); Address64 = ACPI_ADD_PTR (ACPI_GENERIC_ADDRESS, &AcpiGbl_FADT, FadtInfoTable[i].Address64); Length = *ACPI_ADD_PTR (UINT8, &AcpiGbl_FADT, FadtInfoTable[i].Length); Name = FadtInfoTable[i].Name; Flags = FadtInfoTable[i].Flags; /* * Expand the ACPI 1.0 32-bit addresses to the ACPI 2.0 64-bit "X" * generic address structures as necessary. Later code will always use * the 64-bit address structures. * * November 2013: * Now always use the 64-bit address if it is valid (non-zero), in * accordance with the ACPI specification which states that a 64-bit * address supersedes the 32-bit version. This behavior can be * overridden by the AcpiGbl_Use32BitFadtAddresses flag. * * During 64-bit address construction and verification, * these cases are handled: * * Address32 zero, Address64 [don't care] - Use Address64 * + * No override: if AcpiGbl_Use32BitFadtAddresses is FALSE, and: * Address32 non-zero, Address64 zero - Copy/use Address32 * Address32 non-zero == Address64 non-zero - Use Address64 * Address32 non-zero != Address64 non-zero - Warning, use Address64 * * Override: if AcpiGbl_Use32BitFadtAddresses is TRUE, and: + * Address32 non-zero, Address64 zero - Copy/use Address32 + * Address32 non-zero == Address64 non-zero - Copy/use Address32 * Address32 non-zero != Address64 non-zero - Warning, copy/use Address32 * * Note: SpaceId is always I/O for 32-bit legacy address fields */ if (Address32) { - if (!Address64->Address) + if (Address64->Address) { - /* 64-bit address is zero, use 32-bit address */ + if (Address64->Address != (UINT64) Address32) + { + /* Address mismatch */ - AcpiTbInitGenericAddress (Address64, - ACPI_ADR_SPACE_SYSTEM_IO, - *ACPI_ADD_PTR (UINT8, &AcpiGbl_FADT, - FadtInfoTable[i].Length), - (UINT64) Address32, Name, Flags); - } - else if (Address64->Address != (UINT64) Address32) - { - /* Address mismatch */ + ACPI_BIOS_WARNING ((AE_INFO, + "32/64X address mismatch in FADT/%s: " + "0x%8.8X/0x%8.8X%8.8X, using %u-bit address", + Name, Address32, + ACPI_FORMAT_UINT64 (Address64->Address), + AcpiGbl_Use32BitFadtAddresses ? 32 : 64)); + } - ACPI_BIOS_WARNING ((AE_INFO, - "32/64X address mismatch in FADT/%s: " - "0x%8.8X/0x%8.8X%8.8X, using %u-bit address", - Name, Address32, - ACPI_FORMAT_UINT64 (Address64->Address), - AcpiGbl_Use32BitFadtAddresses ? 32 : 64)); - - if (AcpiGbl_Use32BitFadtAddresses) + /* + * For each extended field, check for length mismatch + * between the legacy length field and the corresponding + * 64-bit X length field. + * Note: If the legacy length field is > 0xFF bits, ignore + * this check. (GPE registers can be larger than the + * 64-bit GAS structure can accomodate, 0xFF bits). + */ + if ((ACPI_MUL_8 (Length) <= ACPI_UINT8_MAX) && + (Address64->BitWidth != ACPI_MUL_8 (Length))) { - /* 32-bit address override */ - - AcpiTbInitGenericAddress (Address64, - ACPI_ADR_SPACE_SYSTEM_IO, - *ACPI_ADD_PTR (UINT8, &AcpiGbl_FADT, - FadtInfoTable[i].Length), - (UINT64) Address32, Name, Flags); + ACPI_BIOS_WARNING ((AE_INFO, + "32/64X length mismatch in FADT/%s: %u/%u", + Name, ACPI_MUL_8 (Length), Address64->BitWidth)); } } - } - /* - * For each extended field, check for length mismatch between the - * legacy length field and the corresponding 64-bit X length field. - * Note: If the legacy length field is > 0xFF bits, ignore this - * check. (GPE registers can be larger than the 64-bit GAS structure - * can accomodate, 0xFF bits). - */ - if (Address64->Address && - (ACPI_MUL_8 (Length) <= ACPI_UINT8_MAX) && - (Address64->BitWidth != ACPI_MUL_8 (Length))) - { - ACPI_BIOS_WARNING ((AE_INFO, - "32/64X length mismatch in FADT/%s: %u/%u", - Name, ACPI_MUL_8 (Length), Address64->BitWidth)); + /* + * Hardware register access code always uses the 64-bit fields. + * So if the 64-bit field is zero or is to be overridden, + * initialize it with the 32-bit fields. + * Note that when the 32-bit address favor is specified, the + * 64-bit fields are always re-initialized so that + * AccessSize/BitWidth/BitOffset fields can be correctly + * configured to the values to trigger a 32-bit compatible + * access mode in the hardware register access code. + */ + if (!Address64->Address || AcpiGbl_Use32BitFadtAddresses) + { + AcpiTbInitGenericAddress (Address64, + ACPI_ADR_SPACE_SYSTEM_IO, Length, + (UINT64) Address32, Name, Flags); + } } if (FadtInfoTable[i].Flags & ACPI_FADT_REQUIRED) { /* * Field is required (PM1aEvent, PM1aControl). * Both the address and length must be non-zero. */ if (!Address64->Address || !Length) { ACPI_BIOS_ERROR ((AE_INFO, "Required FADT field %s has zero address and/or length: " "0x%8.8X%8.8X/0x%X", Name, ACPI_FORMAT_UINT64 (Address64->Address), Length)); } } else if (FadtInfoTable[i].Flags & ACPI_FADT_SEPARATE_LENGTH) { /* * Field is optional (PM2Control, GPE0, GPE1) AND has its own * length field. If present, both the address and length must * be valid. */ if ((Address64->Address && !Length) || (!Address64->Address && Length)) { ACPI_BIOS_WARNING ((AE_INFO, "Optional FADT field %s has valid %s but zero %s: " "0x%8.8X%8.8X/0x%X", Name, (Length ? "Length" : "Address"), (Length ? "Address": "Length"), ACPI_FORMAT_UINT64 (Address64->Address), Length)); } } } } /******************************************************************************* * * FUNCTION: AcpiTbSetupFadtRegisters * * PARAMETERS: None, uses AcpiGbl_FADT. * * RETURN: None * * DESCRIPTION: Initialize global ACPI PM1 register definitions. Optionally, * force FADT register definitions to their default lengths. * ******************************************************************************/ static void AcpiTbSetupFadtRegisters ( void) { ACPI_GENERIC_ADDRESS *Target64; ACPI_GENERIC_ADDRESS *Source64; UINT8 Pm1RegisterByteWidth; UINT32 i; /* * Optionally check all register lengths against the default values and * update them if they are incorrect. */ if (AcpiGbl_UseDefaultRegisterWidths) { for (i = 0; i < ACPI_FADT_INFO_ENTRIES; i++) { Target64 = ACPI_ADD_PTR (ACPI_GENERIC_ADDRESS, &AcpiGbl_FADT, FadtInfoTable[i].Address64); /* * If a valid register (Address != 0) and the (DefaultLength > 0) * (Not a GPE register), then check the width against the default. */ if ((Target64->Address) && (FadtInfoTable[i].DefaultLength > 0) && (FadtInfoTable[i].DefaultLength != Target64->BitWidth)) { ACPI_BIOS_WARNING ((AE_INFO, "Invalid length for FADT/%s: %u, using default %u", FadtInfoTable[i].Name, Target64->BitWidth, FadtInfoTable[i].DefaultLength)); /* Incorrect size, set width to the default */ Target64->BitWidth = FadtInfoTable[i].DefaultLength; } } } /* * Get the length of the individual PM1 registers (enable and status). * Each register is defined to be (event block length / 2). Extra divide * by 8 converts bits to bytes. */ Pm1RegisterByteWidth = (UINT8) ACPI_DIV_16 (AcpiGbl_FADT.XPm1aEventBlock.BitWidth); /* * Calculate separate GAS structs for the PM1x (A/B) Status and Enable * registers. These addresses do not appear (directly) in the FADT, so it * is useful to pre-calculate them from the PM1 Event Block definitions. * * The PM event blocks are split into two register blocks, first is the * PM Status Register block, followed immediately by the PM Enable * Register block. Each is of length (Pm1EventLength/2) * * Note: The PM1A event block is required by the ACPI specification. * However, the PM1B event block is optional and is rarely, if ever, * used. */ for (i = 0; i < ACPI_FADT_PM_INFO_ENTRIES; i++) { Source64 = ACPI_ADD_PTR (ACPI_GENERIC_ADDRESS, &AcpiGbl_FADT, FadtPmInfoTable[i].Source); if (Source64->Address) { AcpiTbInitGenericAddress (FadtPmInfoTable[i].Target, Source64->SpaceId, Pm1RegisterByteWidth, Source64->Address + (FadtPmInfoTable[i].RegisterNum * Pm1RegisterByteWidth), "PmRegisters", 0); } } } Index: vendor-sys/acpica/dist/source/components/tables/tbfind.c =================================================================== --- vendor-sys/acpica/dist/source/components/tables/tbfind.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/tables/tbfind.c (revision 305162) @@ -1,156 +1,160 @@ /****************************************************************************** * * Module Name: tbfind - find table * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "actables.h" #define _COMPONENT ACPI_TABLES ACPI_MODULE_NAME ("tbfind") /******************************************************************************* * * FUNCTION: AcpiTbFindTable * * PARAMETERS: Signature - String with ACPI table signature * OemId - String with the table OEM ID * OemTableId - String with the OEM Table ID * TableIndex - Where the table index is returned * * RETURN: Status and table index * * DESCRIPTION: Find an ACPI table (in the RSDT/XSDT) that matches the * Signature, OEM ID and OEM Table ID. Returns an index that can * be used to get the table header or entire table. * ******************************************************************************/ ACPI_STATUS AcpiTbFindTable ( char *Signature, char *OemId, char *OemTableId, UINT32 *TableIndex) { - ACPI_STATUS Status; + ACPI_STATUS Status = AE_OK; ACPI_TABLE_HEADER Header; UINT32 i; ACPI_FUNCTION_TRACE (TbFindTable); /* Validate the input table signature */ if (!AcpiUtValidNameseg (Signature)) { return_ACPI_STATUS (AE_BAD_SIGNATURE); } /* Don't allow the OEM strings to be too long */ if ((strlen (OemId) > ACPI_OEM_ID_SIZE) || (strlen (OemTableId) > ACPI_OEM_TABLE_ID_SIZE)) { return_ACPI_STATUS (AE_AML_STRING_LIMIT); } /* Normalize the input strings */ memset (&Header, 0, sizeof (ACPI_TABLE_HEADER)); ACPI_MOVE_NAME (Header.Signature, Signature); strncpy (Header.OemId, OemId, ACPI_OEM_ID_SIZE); strncpy (Header.OemTableId, OemTableId, ACPI_OEM_TABLE_ID_SIZE); /* Search for the table */ + (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); for (i = 0; i < AcpiGbl_RootTableList.CurrentTableCount; ++i) { if (memcmp (&(AcpiGbl_RootTableList.Tables[i].Signature), Header.Signature, ACPI_NAME_SIZE)) { /* Not the requested table */ continue; } /* Table with matching signature has been found */ if (!AcpiGbl_RootTableList.Tables[i].Pointer) { /* Table is not currently mapped, map it */ Status = AcpiTbValidateTable (&AcpiGbl_RootTableList.Tables[i]); if (ACPI_FAILURE (Status)) { - return_ACPI_STATUS (Status); + goto UnlockAndExit; } if (!AcpiGbl_RootTableList.Tables[i].Pointer) { continue; } } /* Check for table match on all IDs */ if (!memcmp (AcpiGbl_RootTableList.Tables[i].Pointer->Signature, Header.Signature, ACPI_NAME_SIZE) && (!OemId[0] || !memcmp (AcpiGbl_RootTableList.Tables[i].Pointer->OemId, Header.OemId, ACPI_OEM_ID_SIZE)) && (!OemTableId[0] || !memcmp (AcpiGbl_RootTableList.Tables[i].Pointer->OemTableId, Header.OemTableId, ACPI_OEM_TABLE_ID_SIZE))) { *TableIndex = i; ACPI_DEBUG_PRINT ((ACPI_DB_TABLES, "Found table [%4.4s]\n", Header.Signature)); - return_ACPI_STATUS (AE_OK); + goto UnlockAndExit; } } + Status = AE_NOT_FOUND; +UnlockAndExit: + (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); return_ACPI_STATUS (AE_NOT_FOUND); } Index: vendor-sys/acpica/dist/source/components/tables/tbinstal.c =================================================================== --- vendor-sys/acpica/dist/source/components/tables/tbinstal.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/tables/tbinstal.c (revision 305162) @@ -1,528 +1,467 @@ /****************************************************************************** * * Module Name: tbinstal - ACPI table installation and removal * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "actables.h" #define _COMPONENT ACPI_TABLES ACPI_MODULE_NAME ("tbinstal") /* Local prototypes */ static BOOLEAN AcpiTbCompareTables ( ACPI_TABLE_DESC *TableDesc, UINT32 TableIndex); /******************************************************************************* * * FUNCTION: AcpiTbCompareTables * * PARAMETERS: TableDesc - Table 1 descriptor to be compared * TableIndex - Index of table 2 to be compared * * RETURN: TRUE if both tables are identical. * * DESCRIPTION: This function compares a table with another table that has * already been installed in the root table list. * ******************************************************************************/ static BOOLEAN AcpiTbCompareTables ( ACPI_TABLE_DESC *TableDesc, UINT32 TableIndex) { ACPI_STATUS Status = AE_OK; BOOLEAN IsIdentical; ACPI_TABLE_HEADER *Table; UINT32 TableLength; UINT8 TableFlags; Status = AcpiTbAcquireTable (&AcpiGbl_RootTableList.Tables[TableIndex], &Table, &TableLength, &TableFlags); if (ACPI_FAILURE (Status)) { return (FALSE); } /* * Check for a table match on the entire table length, * not just the header. */ IsIdentical = (BOOLEAN)((TableDesc->Length != TableLength || memcmp (TableDesc->Pointer, Table, TableLength)) ? FALSE : TRUE); /* Release the acquired table */ AcpiTbReleaseTable (Table, TableLength, TableFlags); return (IsIdentical); } /******************************************************************************* * * FUNCTION: AcpiTbInstallTableWithOverride * * PARAMETERS: NewTableDesc - New table descriptor to install * Override - Whether override should be performed * TableIndex - Where the table index is returned * * RETURN: None * * DESCRIPTION: Install an ACPI table into the global data structure. The * table override mechanism is called to allow the host * OS to replace any table before it is installed in the root * table array. * ******************************************************************************/ void AcpiTbInstallTableWithOverride ( ACPI_TABLE_DESC *NewTableDesc, BOOLEAN Override, UINT32 *TableIndex) { UINT32 i; ACPI_STATUS Status; Status = AcpiTbGetNextTableDescriptor (&i, NULL); if (ACPI_FAILURE (Status)) { return; } /* * ACPI Table Override: * * Before we install the table, let the host OS override it with a new * one if desired. Any table within the RSDT/XSDT can be replaced, * including the DSDT which is pointed to by the FADT. */ if (Override) { AcpiTbOverrideTable (NewTableDesc); } AcpiTbInitTableDescriptor (&AcpiGbl_RootTableList.Tables[i], NewTableDesc->Address, NewTableDesc->Flags, NewTableDesc->Pointer); AcpiTbPrintTableHeader (NewTableDesc->Address, NewTableDesc->Pointer); /* This synchronizes AcpiGbl_DsdtIndex */ *TableIndex = i; /* Set the global integer width (based upon revision of the DSDT) */ if (i == AcpiGbl_DsdtIndex) { AcpiUtSetIntegerWidth (NewTableDesc->Pointer->Revision); } } /******************************************************************************* * - * FUNCTION: AcpiTbInstallFixedTable - * - * PARAMETERS: Address - Physical address of DSDT or FACS - * Signature - Table signature, NULL if no need to - * match - * TableIndex - Where the table index is returned - * - * RETURN: Status - * - * DESCRIPTION: Install a fixed ACPI table (DSDT/FACS) into the global data - * structure. - * - ******************************************************************************/ - -ACPI_STATUS -AcpiTbInstallFixedTable ( - ACPI_PHYSICAL_ADDRESS Address, - char *Signature, - UINT32 *TableIndex) -{ - ACPI_TABLE_DESC NewTableDesc; - ACPI_STATUS Status; - - - ACPI_FUNCTION_TRACE (TbInstallFixedTable); - - - if (!Address) - { - ACPI_ERROR ((AE_INFO, "Null physical address for ACPI table [%s]", - Signature)); - return (AE_NO_MEMORY); - } - - /* Fill a table descriptor for validation */ - - Status = AcpiTbAcquireTempTable (&NewTableDesc, Address, - ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL); - if (ACPI_FAILURE (Status)) - { - ACPI_ERROR ((AE_INFO, "Could not acquire table length at %8.8X%8.8X", - ACPI_FORMAT_UINT64 (Address))); - return_ACPI_STATUS (Status); - } - - /* Validate and verify a table before installation */ - - Status = AcpiTbVerifyTempTable (&NewTableDesc, Signature); - if (ACPI_FAILURE (Status)) - { - goto ReleaseAndExit; - } - - /* Add the table to the global root table list */ - - AcpiTbInstallTableWithOverride (&NewTableDesc, TRUE, TableIndex); - -ReleaseAndExit: - - /* Release the temporary table descriptor */ - - AcpiTbReleaseTempTable (&NewTableDesc); - return_ACPI_STATUS (Status); -} - - -/******************************************************************************* - * * FUNCTION: AcpiTbInstallStandardTable * * PARAMETERS: Address - Address of the table (might be a virtual * address depending on the TableFlags) * Flags - Flags for the table * Reload - Whether reload should be performed * Override - Whether override should be performed * TableIndex - Where the table index is returned * * RETURN: Status * - * DESCRIPTION: This function is called to install an ACPI table that is - * neither DSDT nor FACS (a "standard" table.) + * DESCRIPTION: This function is called to verify and install an ACPI table. * When this function is called by "Load" or "LoadTable" opcodes, * or by AcpiLoadTable() API, the "Reload" parameter is set. * After sucessfully returning from this function, table is * "INSTALLED" but not "VALIDATED". * ******************************************************************************/ ACPI_STATUS AcpiTbInstallStandardTable ( ACPI_PHYSICAL_ADDRESS Address, UINT8 Flags, BOOLEAN Reload, BOOLEAN Override, UINT32 *TableIndex) { UINT32 i; ACPI_STATUS Status = AE_OK; ACPI_TABLE_DESC NewTableDesc; ACPI_FUNCTION_TRACE (TbInstallStandardTable); /* Acquire a temporary table descriptor for validation */ Status = AcpiTbAcquireTempTable (&NewTableDesc, Address, Flags); if (ACPI_FAILURE (Status)) { ACPI_ERROR ((AE_INFO, "Could not acquire table length at %8.8X%8.8X", ACPI_FORMAT_UINT64 (Address))); return_ACPI_STATUS (Status); } /* * Optionally do not load any SSDTs from the RSDT/XSDT. This can * be useful for debugging ACPI problems on some machines. */ if (!Reload && AcpiGbl_DisableSsdtTableInstall && ACPI_COMPARE_NAME (&NewTableDesc.Signature, ACPI_SIG_SSDT)) { ACPI_INFO (( "Ignoring installation of %4.4s at %8.8X%8.8X", NewTableDesc.Signature.Ascii, ACPI_FORMAT_UINT64 (Address))); goto ReleaseAndExit; } /* Validate and verify a table before installation */ Status = AcpiTbVerifyTempTable (&NewTableDesc, NULL); if (ACPI_FAILURE (Status)) { goto ReleaseAndExit; } if (Reload) { /* * Validate the incoming table signature. * * 1) Originally, we checked the table signature for "SSDT" or "PSDT". * 2) We added support for OEMx tables, signature "OEM". * 3) Valid tables were encountered with a null signature, so we just * gave up on validating the signature, (05/2008). * 4) We encountered non-AML tables such as the MADT, which caused * interpreter errors and kernel faults. So now, we once again allow * only "SSDT", "OEMx", and now, also a null signature. (05/2011). */ if ((NewTableDesc.Signature.Ascii[0] != 0x00) && (!ACPI_COMPARE_NAME (&NewTableDesc.Signature, ACPI_SIG_SSDT)) && (strncmp (NewTableDesc.Signature.Ascii, "OEM", 3))) { ACPI_BIOS_ERROR ((AE_INFO, "Table has invalid signature [%4.4s] (0x%8.8X), " "must be SSDT or OEMx", AcpiUtValidNameseg (NewTableDesc.Signature.Ascii) ? NewTableDesc.Signature.Ascii : "????", NewTableDesc.Signature.Integer)); Status = AE_BAD_SIGNATURE; goto ReleaseAndExit; } /* Check if table is already registered */ for (i = 0; i < AcpiGbl_RootTableList.CurrentTableCount; ++i) { /* * Check for a table match on the entire table length, * not just the header. */ if (!AcpiTbCompareTables (&NewTableDesc, i)) { continue; } /* * Note: the current mechanism does not unregister a table if it is * dynamically unloaded. The related namespace entries are deleted, * but the table remains in the root table list. * * The assumption here is that the number of different tables that * will be loaded is actually small, and there is minimal overhead * in just keeping the table in case it is needed again. * * If this assumption changes in the future (perhaps on large * machines with many table load/unload operations), tables will * need to be unregistered when they are unloaded, and slots in the * root table list should be reused when empty. */ if (AcpiGbl_RootTableList.Tables[i].Flags & ACPI_TABLE_IS_LOADED) { /* Table is still loaded, this is an error */ Status = AE_ALREADY_EXISTS; goto ReleaseAndExit; } else { /* * Table was unloaded, allow it to be reloaded. * As we are going to return AE_OK to the caller, we should * take the responsibility of freeing the input descriptor. * Refill the input descriptor to ensure * AcpiTbInstallTableWithOverride() can be called again to * indicate the re-installation. */ AcpiTbUninstallTable (&NewTableDesc); *TableIndex = i; return_ACPI_STATUS (AE_OK); } } } /* Add the table to the global root table list */ AcpiTbInstallTableWithOverride (&NewTableDesc, Override, TableIndex); + + /* Invoke table handler if present */ + + if (AcpiGbl_TableHandler) + { + (void) AcpiGbl_TableHandler (ACPI_TABLE_EVENT_INSTALL, + NewTableDesc.Pointer, AcpiGbl_TableHandlerContext); + } ReleaseAndExit: /* Release the temporary table descriptor */ AcpiTbReleaseTempTable (&NewTableDesc); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiTbOverrideTable * * PARAMETERS: OldTableDesc - Validated table descriptor to be * overridden * * RETURN: None * * DESCRIPTION: Attempt table override by calling the OSL override functions. * Note: If the table is overridden, then the entire new table * is acquired and returned by this function. * Before/after invocation, the table descriptor is in a state * that is "VALIDATED". * ******************************************************************************/ void AcpiTbOverrideTable ( ACPI_TABLE_DESC *OldTableDesc) { ACPI_STATUS Status; char *OverrideType; ACPI_TABLE_DESC NewTableDesc; ACPI_TABLE_HEADER *Table; ACPI_PHYSICAL_ADDRESS Address; UINT32 Length; /* (1) Attempt logical override (returns a logical address) */ Status = AcpiOsTableOverride (OldTableDesc->Pointer, &Table); if (ACPI_SUCCESS (Status) && Table) { AcpiTbAcquireTempTable (&NewTableDesc, ACPI_PTR_TO_PHYSADDR (Table), ACPI_TABLE_ORIGIN_EXTERNAL_VIRTUAL); OverrideType = "Logical"; goto FinishOverride; } /* (2) Attempt physical override (returns a physical address) */ Status = AcpiOsPhysicalTableOverride (OldTableDesc->Pointer, &Address, &Length); if (ACPI_SUCCESS (Status) && Address && Length) { AcpiTbAcquireTempTable (&NewTableDesc, Address, ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL); OverrideType = "Physical"; goto FinishOverride; } return; /* There was no override */ FinishOverride: /* Validate and verify a table before overriding */ Status = AcpiTbVerifyTempTable (&NewTableDesc, NULL); if (ACPI_FAILURE (Status)) { return; } ACPI_INFO (("%4.4s 0x%8.8X%8.8X" " %s table override, new table: 0x%8.8X%8.8X", OldTableDesc->Signature.Ascii, ACPI_FORMAT_UINT64 (OldTableDesc->Address), OverrideType, ACPI_FORMAT_UINT64 (NewTableDesc.Address))); /* We can now uninstall the original table */ AcpiTbUninstallTable (OldTableDesc); /* * Replace the original table descriptor and keep its state as * "VALIDATED". */ AcpiTbInitTableDescriptor (OldTableDesc, NewTableDesc.Address, NewTableDesc.Flags, NewTableDesc.Pointer); AcpiTbValidateTempTable (OldTableDesc); /* Release the temporary table descriptor */ AcpiTbReleaseTempTable (&NewTableDesc); } /******************************************************************************* * * FUNCTION: AcpiTbUninstallTable * * PARAMETERS: TableDesc - Table descriptor * * RETURN: None * * DESCRIPTION: Delete one internal ACPI table * ******************************************************************************/ void AcpiTbUninstallTable ( ACPI_TABLE_DESC *TableDesc) { ACPI_FUNCTION_TRACE (TbUninstallTable); /* Table must be installed */ if (!TableDesc->Address) { return_VOID; } AcpiTbInvalidateTable (TableDesc); if ((TableDesc->Flags & ACPI_TABLE_ORIGIN_MASK) == ACPI_TABLE_ORIGIN_INTERNAL_VIRTUAL) { ACPI_FREE (ACPI_PHYSADDR_TO_PTR (TableDesc->Address)); } TableDesc->Address = ACPI_PTR_TO_PHYSADDR (NULL); return_VOID; } Index: vendor-sys/acpica/dist/source/components/tables/tbxfload.c =================================================================== --- vendor-sys/acpica/dist/source/components/tables/tbxfload.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/tables/tbxfload.c (revision 305162) @@ -1,538 +1,495 @@ /****************************************************************************** * * Module Name: tbxfload - Table load/unload external interfaces * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #define EXPORT_ACPI_INTERFACES #include "acpi.h" #include "accommon.h" #include "acnamesp.h" #include "actables.h" #include "acevents.h" #define _COMPONENT ACPI_TABLES ACPI_MODULE_NAME ("tbxfload") /******************************************************************************* * * FUNCTION: AcpiLoadTables * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Load the ACPI tables from the RSDT/XSDT * ******************************************************************************/ ACPI_STATUS ACPI_INIT_FUNCTION AcpiLoadTables ( void) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (AcpiLoadTables); /* * Install the default operation region handlers. These are the * handlers that are defined by the ACPI specification to be * "always accessible" -- namely, SystemMemory, SystemIO, and * PCI_Config. This also means that no _REG methods need to be * run for these address spaces. We need to have these handlers * installed before any AML code can be executed, especially any * module-level code (11/2015). * Note that we allow OSPMs to install their own region handlers * between AcpiInitializeSubsystem() and AcpiLoadTables() to use * their customized default region handlers. */ Status = AcpiEvInstallRegionHandlers (); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "During Region initialization")); return_ACPI_STATUS (Status); } /* Load the namespace from the tables */ Status = AcpiTbLoadNamespace (); /* Don't let single failures abort the load */ if (Status == AE_CTRL_TERMINATE) { Status = AE_OK; } if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "While loading namespace from ACPI tables")); } - if (!AcpiGbl_GroupModuleLevelCode) + if (AcpiGbl_ParseTableAsTermList || !AcpiGbl_GroupModuleLevelCode) { /* * Initialize the objects that remain uninitialized. This * runs the executable AML that may be part of the * declaration of these objects: * OperationRegions, BufferFields, Buffers, and Packages. */ Status = AcpiNsInitializeObjects (); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } AcpiGbl_NamespaceInitialized = TRUE; return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL_INIT (AcpiLoadTables) /******************************************************************************* * * FUNCTION: AcpiTbLoadNamespace * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Load the namespace from the DSDT and all SSDTs/PSDTs found in * the RSDT/XSDT. * ******************************************************************************/ ACPI_STATUS AcpiTbLoadNamespace ( void) { ACPI_STATUS Status; UINT32 i; ACPI_TABLE_HEADER *NewDsdt; ACPI_TABLE_DESC *Table; UINT32 TablesLoaded = 0; UINT32 TablesFailed = 0; ACPI_FUNCTION_TRACE (TbLoadNamespace); (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); /* * Load the namespace. The DSDT is required, but any SSDT and * PSDT tables are optional. Verify the DSDT. */ Table = &AcpiGbl_RootTableList.Tables[AcpiGbl_DsdtIndex]; if (!AcpiGbl_RootTableList.CurrentTableCount || !ACPI_COMPARE_NAME (Table->Signature.Ascii, ACPI_SIG_DSDT) || ACPI_FAILURE (AcpiTbValidateTable (Table))) { Status = AE_NO_ACPI_TABLES; goto UnlockAndExit; } /* * Save the DSDT pointer for simple access. This is the mapped memory * address. We must take care here because the address of the .Tables * array can change dynamically as tables are loaded at run-time. Note: * .Pointer field is not validated until after call to AcpiTbValidateTable. */ AcpiGbl_DSDT = Table->Pointer; /* * Optionally copy the entire DSDT to local memory (instead of simply * mapping it.) There are some BIOSs that corrupt or replace the original * DSDT, creating the need for this option. Default is FALSE, do not copy * the DSDT. */ if (AcpiGbl_CopyDsdtLocally) { NewDsdt = AcpiTbCopyDsdt (AcpiGbl_DsdtIndex); if (NewDsdt) { AcpiGbl_DSDT = NewDsdt; } } /* * Save the original DSDT header for detection of table corruption * and/or replacement of the DSDT from outside the OS. */ memcpy (&AcpiGbl_OriginalDsdtHeader, AcpiGbl_DSDT, sizeof (ACPI_TABLE_HEADER)); - (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); - /* Load and parse tables */ + (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); Status = AcpiNsLoadTable (AcpiGbl_DsdtIndex, AcpiGbl_RootNode); + (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "[DSDT] table load failed")); TablesFailed++; } else { TablesLoaded++; } /* Load any SSDT or PSDT tables. Note: Loop leaves tables locked */ - (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); for (i = 0; i < AcpiGbl_RootTableList.CurrentTableCount; ++i) { Table = &AcpiGbl_RootTableList.Tables[i]; if (!AcpiGbl_RootTableList.Tables[i].Address || (!ACPI_COMPARE_NAME (Table->Signature.Ascii, ACPI_SIG_SSDT) && !ACPI_COMPARE_NAME (Table->Signature.Ascii, ACPI_SIG_PSDT) && !ACPI_COMPARE_NAME (Table->Signature.Ascii, ACPI_SIG_OSDT)) || ACPI_FAILURE (AcpiTbValidateTable (Table))) { continue; } /* Ignore errors while loading tables, get as many as possible */ (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); Status = AcpiNsLoadTable (i, AcpiGbl_RootNode); + (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "(%4.4s:%8.8s) while loading table", Table->Signature.Ascii, Table->Pointer->OemTableId)); TablesFailed++; ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INIT, "Table [%4.4s:%8.8s] (id FF) - Table namespace load failed\n\n", Table->Signature.Ascii, Table->Pointer->OemTableId)); } else { TablesLoaded++; } - - (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); } if (!TablesFailed) { ACPI_INFO (( "%u ACPI AML tables successfully acquired and loaded\n", TablesLoaded)); } else { ACPI_ERROR ((AE_INFO, "%u table load failures, %u successful", TablesFailed, TablesLoaded)); /* Indicate at least one failure */ Status = AE_CTRL_TERMINATE; } UnlockAndExit: (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiInstallTable * * PARAMETERS: Address - Address of the ACPI table to be installed. * Physical - Whether the address is a physical table * address or not * * RETURN: Status * * DESCRIPTION: Dynamically install an ACPI table. * Note: This function should only be invoked after * AcpiInitializeTables() and before AcpiLoadTables(). * ******************************************************************************/ ACPI_STATUS ACPI_INIT_FUNCTION AcpiInstallTable ( ACPI_PHYSICAL_ADDRESS Address, BOOLEAN Physical) { ACPI_STATUS Status; UINT8 Flags; UINT32 TableIndex; ACPI_FUNCTION_TRACE (AcpiInstallTable); if (Physical) { Flags = ACPI_TABLE_ORIGIN_INTERNAL_PHYSICAL; } else { Flags = ACPI_TABLE_ORIGIN_EXTERNAL_VIRTUAL; } Status = AcpiTbInstallStandardTable (Address, Flags, FALSE, FALSE, &TableIndex); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL_INIT (AcpiInstallTable) /******************************************************************************* * * FUNCTION: AcpiLoadTable * * PARAMETERS: Table - Pointer to a buffer containing the ACPI * table to be loaded. * * RETURN: Status * * DESCRIPTION: Dynamically load an ACPI table from the caller's buffer. Must * be a valid ACPI table with a valid ACPI table header. * Note1: Mainly intended to support hotplug addition of SSDTs. * Note2: Does not copy the incoming table. User is responsible * to ensure that the table is not deleted or unmapped. * ******************************************************************************/ ACPI_STATUS AcpiLoadTable ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; UINT32 TableIndex; ACPI_FUNCTION_TRACE (AcpiLoadTable); /* Parameter validation */ if (!Table) { return_ACPI_STATUS (AE_BAD_PARAMETER); } - /* Must acquire the interpreter lock during this operation */ - - Status = AcpiUtAcquireMutex (ACPI_MTX_INTERPRETER); - if (ACPI_FAILURE (Status)) - { - return_ACPI_STATUS (Status); - } - /* Install the table and load it into the namespace */ ACPI_INFO (("Host-directed Dynamic ACPI Table Load:")); - (void) AcpiUtAcquireMutex (ACPI_MTX_TABLES); - - Status = AcpiTbInstallStandardTable (ACPI_PTR_TO_PHYSADDR (Table), - ACPI_TABLE_ORIGIN_EXTERNAL_VIRTUAL, TRUE, FALSE, - &TableIndex); - - (void) AcpiUtReleaseMutex (ACPI_MTX_TABLES); - if (ACPI_FAILURE (Status)) - { - goto UnlockAndExit; - } - - /* - * Note: Now table is "INSTALLED", it must be validated before - * using. - */ - Status = AcpiTbValidateTable ( - &AcpiGbl_RootTableList.Tables[TableIndex]); - if (ACPI_FAILURE (Status)) - { - goto UnlockAndExit; - } - - Status = AcpiNsLoadTable (TableIndex, AcpiGbl_RootNode); - - /* Invoke table handler if present */ - - if (AcpiGbl_TableHandler) - { - (void) AcpiGbl_TableHandler (ACPI_TABLE_EVENT_LOAD, Table, - AcpiGbl_TableHandlerContext); - } - -UnlockAndExit: - (void) AcpiUtReleaseMutex (ACPI_MTX_INTERPRETER); + Status = AcpiTbInstallAndLoadTable (Table, ACPI_PTR_TO_PHYSADDR (Table), + ACPI_TABLE_ORIGIN_EXTERNAL_VIRTUAL, FALSE, &TableIndex); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiLoadTable) /******************************************************************************* * * FUNCTION: AcpiUnloadParentTable * * PARAMETERS: Object - Handle to any namespace object owned by * the table to be unloaded * * RETURN: Status * * DESCRIPTION: Via any namespace object within an SSDT or OEMx table, unloads * the table and deletes all namespace objects associated with * that table. Unloading of the DSDT is not allowed. * Note: Mainly intended to support hotplug removal of SSDTs. * ******************************************************************************/ ACPI_STATUS AcpiUnloadParentTable ( ACPI_HANDLE Object) { ACPI_NAMESPACE_NODE *Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, Object); ACPI_STATUS Status = AE_NOT_EXIST; ACPI_OWNER_ID OwnerId; UINT32 i; ACPI_FUNCTION_TRACE (AcpiUnloadParentTable); /* Parameter validation */ if (!Object) { return_ACPI_STATUS (AE_BAD_PARAMETER); } /* * The node OwnerId is currently the same as the parent table ID. * However, this could change in the future. */ OwnerId = Node->OwnerId; if (!OwnerId) { /* OwnerId==0 means DSDT is the owner. DSDT cannot be unloaded */ return_ACPI_STATUS (AE_TYPE); } /* Must acquire the interpreter lock during this operation */ Status = AcpiUtAcquireMutex (ACPI_MTX_INTERPRETER); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Find the table in the global table list */ for (i = 0; i < AcpiGbl_RootTableList.CurrentTableCount; i++) { if (OwnerId != AcpiGbl_RootTableList.Tables[i].OwnerId) { continue; } /* * Allow unload of SSDT and OEMx tables only. Do not allow unload * of the DSDT. No other types of tables should get here, since * only these types can contain AML and thus are the only types * that can create namespace objects. */ if (ACPI_COMPARE_NAME ( AcpiGbl_RootTableList.Tables[i].Signature.Ascii, ACPI_SIG_DSDT)) { Status = AE_TYPE; break; } /* Ensure the table is actually loaded */ if (!AcpiTbIsTableLoaded (i)) { Status = AE_NOT_EXIST; break; } /* Invoke table handler if present */ if (AcpiGbl_TableHandler) { (void) AcpiGbl_TableHandler (ACPI_TABLE_EVENT_UNLOAD, AcpiGbl_RootTableList.Tables[i].Pointer, AcpiGbl_TableHandlerContext); } /* * Delete all namespace objects owned by this table. Note that * these objects can appear anywhere in the namespace by virtue * of the AML "Scope" operator. Thus, we need to track ownership * by an ID, not simply a position within the hierarchy. */ Status = AcpiTbDeleteNamespaceByOwner (i); if (ACPI_FAILURE (Status)) { break; } Status = AcpiTbReleaseOwnerId (i); AcpiTbSetTableLoadedFlag (i, FALSE); break; } (void) AcpiUtReleaseMutex (ACPI_MTX_INTERPRETER); return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL (AcpiUnloadParentTable) Index: vendor-sys/acpica/dist/source/components/utilities/utaddress.c =================================================================== --- vendor-sys/acpica/dist/source/components/utilities/utaddress.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/utilities/utaddress.c (revision 305162) @@ -1,324 +1,315 @@ /****************************************************************************** * * Module Name: utaddress - OpRegion address range check * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #include "acnamesp.h" #define _COMPONENT ACPI_UTILITIES ACPI_MODULE_NAME ("utaddress") /******************************************************************************* * * FUNCTION: AcpiUtAddAddressRange * * PARAMETERS: SpaceId - Address space ID * Address - OpRegion start address * Length - OpRegion length * RegionNode - OpRegion namespace node * * RETURN: Status * * DESCRIPTION: Add the Operation Region address range to the global list. * The only supported Space IDs are Memory and I/O. Called when * the OpRegion address/length operands are fully evaluated. * * MUTEX: Locks the namespace * * NOTE: Because this interface is only called when an OpRegion argument * list is evaluated, there cannot be any duplicate RegionNodes. * Duplicate Address/Length values are allowed, however, so that multiple * address conflicts can be detected. * ******************************************************************************/ ACPI_STATUS AcpiUtAddAddressRange ( ACPI_ADR_SPACE_TYPE SpaceId, ACPI_PHYSICAL_ADDRESS Address, UINT32 Length, ACPI_NAMESPACE_NODE *RegionNode) { ACPI_ADDRESS_RANGE *RangeInfo; - ACPI_STATUS Status; ACPI_FUNCTION_TRACE (UtAddAddressRange); if ((SpaceId != ACPI_ADR_SPACE_SYSTEM_MEMORY) && (SpaceId != ACPI_ADR_SPACE_SYSTEM_IO)) { return_ACPI_STATUS (AE_OK); } /* Allocate/init a new info block, add it to the appropriate list */ RangeInfo = ACPI_ALLOCATE (sizeof (ACPI_ADDRESS_RANGE)); if (!RangeInfo) { return_ACPI_STATUS (AE_NO_MEMORY); } RangeInfo->StartAddress = Address; RangeInfo->EndAddress = (Address + Length - 1); RangeInfo->RegionNode = RegionNode; - Status = AcpiUtAcquireMutex (ACPI_MTX_NAMESPACE); - if (ACPI_FAILURE (Status)) - { - ACPI_FREE (RangeInfo); - return_ACPI_STATUS (Status); - } - RangeInfo->Next = AcpiGbl_AddressRangeList[SpaceId]; AcpiGbl_AddressRangeList[SpaceId] = RangeInfo; ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "\nAdded [%4.4s] address range: 0x%8.8X%8.8X-0x%8.8X%8.8X\n", AcpiUtGetNodeName (RangeInfo->RegionNode), ACPI_FORMAT_UINT64 (Address), ACPI_FORMAT_UINT64 (RangeInfo->EndAddress))); - (void) AcpiUtReleaseMutex (ACPI_MTX_NAMESPACE); return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiUtRemoveAddressRange * * PARAMETERS: SpaceId - Address space ID * RegionNode - OpRegion namespace node * * RETURN: None * * DESCRIPTION: Remove the Operation Region from the global list. The only * supported Space IDs are Memory and I/O. Called when an * OpRegion is deleted. * * MUTEX: Assumes the namespace is locked * ******************************************************************************/ void AcpiUtRemoveAddressRange ( ACPI_ADR_SPACE_TYPE SpaceId, ACPI_NAMESPACE_NODE *RegionNode) { ACPI_ADDRESS_RANGE *RangeInfo; ACPI_ADDRESS_RANGE *Prev; ACPI_FUNCTION_TRACE (UtRemoveAddressRange); if ((SpaceId != ACPI_ADR_SPACE_SYSTEM_MEMORY) && (SpaceId != ACPI_ADR_SPACE_SYSTEM_IO)) { return_VOID; } /* Get the appropriate list head and check the list */ RangeInfo = Prev = AcpiGbl_AddressRangeList[SpaceId]; while (RangeInfo) { if (RangeInfo->RegionNode == RegionNode) { if (RangeInfo == Prev) /* Found at list head */ { AcpiGbl_AddressRangeList[SpaceId] = RangeInfo->Next; } else { Prev->Next = RangeInfo->Next; } ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "\nRemoved [%4.4s] address range: 0x%8.8X%8.8X-0x%8.8X%8.8X\n", AcpiUtGetNodeName (RangeInfo->RegionNode), ACPI_FORMAT_UINT64 (RangeInfo->StartAddress), ACPI_FORMAT_UINT64 (RangeInfo->EndAddress))); ACPI_FREE (RangeInfo); return_VOID; } Prev = RangeInfo; RangeInfo = RangeInfo->Next; } return_VOID; } /******************************************************************************* * * FUNCTION: AcpiUtCheckAddressRange * * PARAMETERS: SpaceId - Address space ID * Address - Start address * Length - Length of address range * Warn - TRUE if warning on overlap desired * * RETURN: Count of the number of conflicts detected. Zero is always * returned for Space IDs other than Memory or I/O. * * DESCRIPTION: Check if the input address range overlaps any of the * ASL operation region address ranges. The only supported * Space IDs are Memory and I/O. * * MUTEX: Assumes the namespace is locked. * ******************************************************************************/ UINT32 AcpiUtCheckAddressRange ( ACPI_ADR_SPACE_TYPE SpaceId, ACPI_PHYSICAL_ADDRESS Address, UINT32 Length, BOOLEAN Warn) { ACPI_ADDRESS_RANGE *RangeInfo; ACPI_PHYSICAL_ADDRESS EndAddress; char *Pathname; UINT32 OverlapCount = 0; ACPI_FUNCTION_TRACE (UtCheckAddressRange); if ((SpaceId != ACPI_ADR_SPACE_SYSTEM_MEMORY) && (SpaceId != ACPI_ADR_SPACE_SYSTEM_IO)) { return_UINT32 (0); } RangeInfo = AcpiGbl_AddressRangeList[SpaceId]; EndAddress = Address + Length - 1; /* Check entire list for all possible conflicts */ while (RangeInfo) { /* * Check if the requested address/length overlaps this * address range. There are four cases to consider: * * 1) Input address/length is contained completely in the * address range * 2) Input address/length overlaps range at the range start * 3) Input address/length overlaps range at the range end * 4) Input address/length completely encompasses the range */ if ((Address <= RangeInfo->EndAddress) && (EndAddress >= RangeInfo->StartAddress)) { /* Found an address range overlap */ OverlapCount++; if (Warn) /* Optional warning message */ { Pathname = AcpiNsGetNormalizedPathname (RangeInfo->RegionNode, TRUE); ACPI_WARNING ((AE_INFO, "%s range 0x%8.8X%8.8X-0x%8.8X%8.8X conflicts with OpRegion 0x%8.8X%8.8X-0x%8.8X%8.8X (%s)", AcpiUtGetRegionName (SpaceId), ACPI_FORMAT_UINT64 (Address), ACPI_FORMAT_UINT64 (EndAddress), ACPI_FORMAT_UINT64 (RangeInfo->StartAddress), ACPI_FORMAT_UINT64 (RangeInfo->EndAddress), Pathname)); ACPI_FREE (Pathname); } } RangeInfo = RangeInfo->Next; } return_UINT32 (OverlapCount); } /******************************************************************************* * * FUNCTION: AcpiUtDeleteAddressLists * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Delete all global address range lists (called during * subsystem shutdown). * ******************************************************************************/ void AcpiUtDeleteAddressLists ( void) { ACPI_ADDRESS_RANGE *Next; ACPI_ADDRESS_RANGE *RangeInfo; int i; /* Delete all elements in all address range lists */ for (i = 0; i < ACPI_ADDRESS_RANGE_MAX; i++) { Next = AcpiGbl_AddressRangeList[i]; while (Next) { RangeInfo = Next; Next = RangeInfo->Next; ACPI_FREE (RangeInfo); } AcpiGbl_AddressRangeList[i] = NULL; } } Index: vendor-sys/acpica/dist/source/components/utilities/uthex.c =================================================================== --- vendor-sys/acpica/dist/source/components/utilities/uthex.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/utilities/uthex.c (revision 305162) @@ -1,111 +1,154 @@ /****************************************************************************** * * Module Name: uthex -- Hex/ASCII support functions * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #define _COMPONENT ACPI_COMPILER ACPI_MODULE_NAME ("uthex") /* Hex to ASCII conversion table */ static const char AcpiGbl_HexToAscii[] = { '0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F' }; /******************************************************************************* * * FUNCTION: AcpiUtHexToAsciiChar * * PARAMETERS: Integer - Contains the hex digit * Position - bit position of the digit within the * integer (multiple of 4) * * RETURN: The converted Ascii character * * DESCRIPTION: Convert a hex digit to an Ascii character * ******************************************************************************/ char AcpiUtHexToAsciiChar ( UINT64 Integer, UINT32 Position) { return (AcpiGbl_HexToAscii[(Integer >> Position) & 0xF]); } /******************************************************************************* * + * FUNCTION: AcpiUtAsciiToHexByte + * + * PARAMETERS: TwoAsciiChars - Pointer to two ASCII characters + * ReturnByte - Where converted byte is returned + * + * RETURN: Status and converted hex byte + * + * DESCRIPTION: Perform ascii-to-hex translation, exactly two ASCII characters + * to a single converted byte value. + * + ******************************************************************************/ + +ACPI_STATUS +AcpiUtAsciiToHexByte ( + char *TwoAsciiChars, + UINT8 *ReturnByte) +{ + + /* Both ASCII characters must be valid hex digits */ + + if (!isxdigit ((int) TwoAsciiChars[0]) || + !isxdigit ((int) TwoAsciiChars[1])) + { + return (AE_BAD_HEX_CONSTANT); + } + + *ReturnByte = + AcpiUtAsciiCharToHex (TwoAsciiChars[1]) | + (AcpiUtAsciiCharToHex (TwoAsciiChars[0]) << 4); + + return (AE_OK); +} + + +/******************************************************************************* + * * FUNCTION: AcpiUtAsciiCharToHex * - * PARAMETERS: HexChar - Hex character in Ascii + * PARAMETERS: HexChar - Hex character in Ascii. Must be: + * 0-9 or A-F or a-f * * RETURN: The binary value of the ascii/hex character * * DESCRIPTION: Perform ascii-to-hex translation * ******************************************************************************/ UINT8 AcpiUtAsciiCharToHex ( int HexChar) { - if (HexChar <= 0x39) + /* Values 0-9 */ + + if (HexChar <= '9') { - return ((UINT8) (HexChar - 0x30)); + return ((UINT8) (HexChar - '0')); } - if (HexChar <= 0x46) + /* Upper case A-F */ + + if (HexChar <= 'F') { return ((UINT8) (HexChar - 0x37)); } + + /* Lower case a-f */ return ((UINT8) (HexChar - 0x57)); } Index: vendor-sys/acpica/dist/source/components/utilities/utnonansi.c =================================================================== --- vendor-sys/acpica/dist/source/components/utilities/utnonansi.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/utilities/utnonansi.c (revision 305162) @@ -1,667 +1,239 @@ /******************************************************************************* * * Module Name: utnonansi - Non-ansi C library functions * ******************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #define _COMPONENT ACPI_UTILITIES ACPI_MODULE_NAME ("utnonansi") - /* - * Non-ANSI C library functions - strlwr, strupr, stricmp, and a 64-bit - * version of strtoul. + * Non-ANSI C library functions - strlwr, strupr, stricmp, and "safe" + * string functions. */ /******************************************************************************* * * FUNCTION: AcpiUtStrlwr (strlwr) * * PARAMETERS: SrcString - The source string to convert * * RETURN: None * * DESCRIPTION: Convert a string to lowercase * ******************************************************************************/ void AcpiUtStrlwr ( char *SrcString) { char *String; ACPI_FUNCTION_ENTRY (); if (!SrcString) { return; } /* Walk entire string, lowercasing the letters */ for (String = SrcString; *String; String++) { *String = (char) tolower ((int) *String); } } /******************************************************************************* * * FUNCTION: AcpiUtStrupr (strupr) * * PARAMETERS: SrcString - The source string to convert * * RETURN: None * * DESCRIPTION: Convert a string to uppercase * ******************************************************************************/ void AcpiUtStrupr ( char *SrcString) { char *String; ACPI_FUNCTION_ENTRY (); if (!SrcString) { return; } /* Walk entire string, uppercasing the letters */ for (String = SrcString; *String; String++) { *String = (char) toupper ((int) *String); } } /****************************************************************************** * * FUNCTION: AcpiUtStricmp (stricmp) * * PARAMETERS: String1 - first string to compare * String2 - second string to compare * * RETURN: int that signifies string relationship. Zero means strings * are equal. * * DESCRIPTION: Case-insensitive string compare. Implementation of the * non-ANSI stricmp function. * ******************************************************************************/ int AcpiUtStricmp ( char *String1, char *String2) { int c1; int c2; do { c1 = tolower ((int) *String1); c2 = tolower ((int) *String2); String1++; String2++; } while ((c1 == c2) && (c1)); return (c1 - c2); } #if defined (ACPI_DEBUGGER) || defined (ACPI_APPLICATION) /******************************************************************************* * * FUNCTION: AcpiUtSafeStrcpy, AcpiUtSafeStrcat, AcpiUtSafeStrncat * * PARAMETERS: Adds a "DestSize" parameter to each of the standard string * functions. This is the size of the Destination buffer. * * RETURN: TRUE if the operation would overflow the destination buffer. * * DESCRIPTION: Safe versions of standard Clib string functions. Ensure that * the result of the operation will not overflow the output string * buffer. * * NOTE: These functions are typically only helpful for processing * user input and command lines. For most ACPICA code, the * required buffer length is precisely calculated before buffer * allocation, so the use of these functions is unnecessary. * ******************************************************************************/ BOOLEAN AcpiUtSafeStrcpy ( char *Dest, ACPI_SIZE DestSize, char *Source) { if (strlen (Source) >= DestSize) { return (TRUE); } strcpy (Dest, Source); return (FALSE); } BOOLEAN AcpiUtSafeStrcat ( char *Dest, ACPI_SIZE DestSize, char *Source) { if ((strlen (Dest) + strlen (Source)) >= DestSize) { return (TRUE); } strcat (Dest, Source); return (FALSE); } BOOLEAN AcpiUtSafeStrncat ( char *Dest, ACPI_SIZE DestSize, char *Source, ACPI_SIZE MaxTransferLength) { ACPI_SIZE ActualTransferLength; ActualTransferLength = ACPI_MIN (MaxTransferLength, strlen (Source)); if ((strlen (Dest) + ActualTransferLength) >= DestSize) { return (TRUE); } strncat (Dest, Source, MaxTransferLength); return (FALSE); -} -#endif - - -/******************************************************************************* - * - * FUNCTION: AcpiUtStrtoul64 - * - * PARAMETERS: String - Null terminated string - * Base - Radix of the string: 16 or 10 or - * ACPI_ANY_BASE - * MaxIntegerByteWidth - Maximum allowable integer,in bytes: - * 4 or 8 (32 or 64 bits) - * RetInteger - Where the converted integer is - * returned - * - * RETURN: Status and Converted value - * - * DESCRIPTION: Convert a string into an unsigned value. Performs either a - * 32-bit or 64-bit conversion, depending on the input integer - * size (often the current mode of the interpreter). - * - * NOTES: Negative numbers are not supported, as they are not supported - * by ACPI. - * - * AcpiGbl_IntegerByteWidth should be set to the proper width. - * For the core ACPICA code, this width depends on the DSDT - * version. For iASL, the default byte width is always 8 for the - * parser, but error checking is performed later to flag cases - * where a 64-bit constant is defined in a 32-bit DSDT/SSDT. - * - * Does not support Octal strings, not needed at this time. - * - ******************************************************************************/ - -ACPI_STATUS -AcpiUtStrtoul64 ( - char *String, - UINT32 Base, - UINT32 MaxIntegerByteWidth, - UINT64 *RetInteger) -{ - UINT32 ThisDigit = 0; - UINT64 ReturnValue = 0; - UINT64 Quotient; - UINT64 Dividend; - UINT8 ValidDigits = 0; - UINT8 SignOf0x = 0; - UINT8 Term = 0; - - - ACPI_FUNCTION_TRACE_STR (UtStrtoul64, String); - - - switch (Base) - { - case ACPI_ANY_BASE: - case 10: - case 16: - - break; - - default: - - /* Invalid Base */ - - return_ACPI_STATUS (AE_BAD_PARAMETER); - } - - if (!String) - { - goto ErrorExit; - } - - /* Skip over any white space in the buffer */ - - while ((*String) && (isspace ((int) *String) || *String == '\t')) - { - String++; - } - - if (Base == ACPI_ANY_BASE) - { - /* - * Base equal to ACPI_ANY_BASE means 'Either decimal or hex'. - * We need to determine if it is decimal or hexadecimal. - */ - if ((*String == '0') && (tolower ((int) *(String + 1)) == 'x')) - { - SignOf0x = 1; - Base = 16; - - /* Skip over the leading '0x' */ - String += 2; - } - else - { - Base = 10; - } - } - - /* Any string left? Check that '0x' is not followed by white space. */ - - if (!(*String) || isspace ((int) *String) || *String == '\t') - { - if (Base == ACPI_ANY_BASE) - { - goto ErrorExit; - } - else - { - goto AllDone; - } - } - - /* - * Perform a 32-bit or 64-bit conversion, depending upon the input - * byte width - */ - Dividend = (MaxIntegerByteWidth <= ACPI_MAX32_BYTE_WIDTH) ? - ACPI_UINT32_MAX : ACPI_UINT64_MAX; - - /* Main loop: convert the string to a 32- or 64-bit integer */ - - while (*String) - { - if (isdigit ((int) *String)) - { - /* Convert ASCII 0-9 to Decimal value */ - - ThisDigit = ((UINT8) *String) - '0'; - } - else if (Base == 10) - { - /* Digit is out of range; possible in ToInteger case only */ - - Term = 1; - } - else - { - ThisDigit = (UINT8) toupper ((int) *String); - if (isxdigit ((int) ThisDigit)) - { - /* Convert ASCII Hex char to value */ - - ThisDigit = ThisDigit - 'A' + 10; - } - else - { - Term = 1; - } - } - - if (Term) - { - if (Base == ACPI_ANY_BASE) - { - goto ErrorExit; - } - else - { - break; - } - } - else if ((ValidDigits == 0) && (ThisDigit == 0) && !SignOf0x) - { - /* Skip zeros */ - String++; - continue; - } - - ValidDigits++; - - if (SignOf0x && ((ValidDigits > 16) || - ((ValidDigits > 8) && (MaxIntegerByteWidth <= ACPI_MAX32_BYTE_WIDTH)))) - { - /* - * This is ToInteger operation case. - * No restrictions for string-to-integer conversion, - * see ACPI spec. - */ - goto ErrorExit; - } - - /* Divide the digit into the correct position */ - - (void) AcpiUtShortDivide ( - (Dividend - (UINT64) ThisDigit), Base, &Quotient, NULL); - - if (ReturnValue > Quotient) - { - if (Base == ACPI_ANY_BASE) - { - goto ErrorExit; - } - else - { - break; - } - } - - ReturnValue *= Base; - ReturnValue += ThisDigit; - String++; - } - - /* All done, normal exit */ - -AllDone: - - ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Converted value: %8.8X%8.8X\n", - ACPI_FORMAT_UINT64 (ReturnValue))); - - *RetInteger = ReturnValue; - return_ACPI_STATUS (AE_OK); - - -ErrorExit: - - /* Base was set/validated above (10 or 16) */ - - if (Base == 10) - { - return_ACPI_STATUS (AE_BAD_DECIMAL_CONSTANT); - } - else - { - return_ACPI_STATUS (AE_BAD_HEX_CONSTANT); - } -} - - -#ifdef _OBSOLETE_FUNCTIONS -/* Removed: 01/2016 */ - -/******************************************************************************* - * - * FUNCTION: strtoul64 - * - * PARAMETERS: String - Null terminated string - * Terminater - Where a pointer to the terminating byte - * is returned - * Base - Radix of the string - * - * RETURN: Converted value - * - * DESCRIPTION: Convert a string into an unsigned value. - * - ******************************************************************************/ - -ACPI_STATUS -strtoul64 ( - char *String, - UINT32 Base, - UINT64 *RetInteger) -{ - UINT32 Index; - UINT32 Sign; - UINT64 ReturnValue = 0; - ACPI_STATUS Status = AE_OK; - - - *RetInteger = 0; - - switch (Base) - { - case 0: - case 8: - case 10: - case 16: - - break; - - default: - /* - * The specified Base parameter is not in the domain of - * this function: - */ - return (AE_BAD_PARAMETER); - } - - /* Skip over any white space in the buffer: */ - - while (isspace ((int) *String) || *String == '\t') - { - ++String; - } - - /* - * The buffer may contain an optional plus or minus sign. - * If it does, then skip over it but remember what is was: - */ - if (*String == '-') - { - Sign = ACPI_SIGN_NEGATIVE; - ++String; - } - else if (*String == '+') - { - ++String; - Sign = ACPI_SIGN_POSITIVE; - } - else - { - Sign = ACPI_SIGN_POSITIVE; - } - - /* - * If the input parameter Base is zero, then we need to - * determine if it is octal, decimal, or hexadecimal: - */ - if (Base == 0) - { - if (*String == '0') - { - if (tolower ((int) *(++String)) == 'x') - { - Base = 16; - ++String; - } - else - { - Base = 8; - } - } - else - { - Base = 10; - } - } - - /* - * For octal and hexadecimal bases, skip over the leading - * 0 or 0x, if they are present. - */ - if (Base == 8 && *String == '0') - { - String++; - } - - if (Base == 16 && - *String == '0' && - tolower ((int) *(++String)) == 'x') - { - String++; - } - - /* Main loop: convert the string to an unsigned long */ - - while (*String) - { - if (isdigit ((int) *String)) - { - Index = ((UINT8) *String) - '0'; - } - else - { - Index = (UINT8) toupper ((int) *String); - if (isupper ((int) Index)) - { - Index = Index - 'A' + 10; - } - else - { - goto ErrorExit; - } - } - - if (Index >= Base) - { - goto ErrorExit; - } - - /* Check to see if value is out of range: */ - - if (ReturnValue > ((ACPI_UINT64_MAX - (UINT64) Index) / - (UINT64) Base)) - { - goto ErrorExit; - } - else - { - ReturnValue *= Base; - ReturnValue += Index; - } - - ++String; - } - - - /* If a minus sign was present, then "the conversion is negated": */ - - if (Sign == ACPI_SIGN_NEGATIVE) - { - ReturnValue = (ACPI_UINT32_MAX - ReturnValue) + 1; - } - - *RetInteger = ReturnValue; - return (Status); - - -ErrorExit: - switch (Base) - { - case 8: - - Status = AE_BAD_OCTAL_CONSTANT; - break; - - case 10: - - Status = AE_BAD_DECIMAL_CONSTANT; - break; - - case 16: - - Status = AE_BAD_HEX_CONSTANT; - break; - - default: - - /* Base validated above */ - - break; - } - - return (Status); } #endif Index: vendor-sys/acpica/dist/source/components/utilities/utosi.c =================================================================== --- vendor-sys/acpica/dist/source/components/utilities/utosi.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/utilities/utosi.c (revision 305162) @@ -1,536 +1,550 @@ /****************************************************************************** * * Module Name: utosi - Support for the _OSI predefined control method * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpi.h" #include "accommon.h" #define _COMPONENT ACPI_UTILITIES ACPI_MODULE_NAME ("utosi") /****************************************************************************** * * ACPICA policy for new _OSI strings: * * It is the stated policy of ACPICA that new _OSI strings will be integrated * into this module as soon as possible after they are defined. It is strongly * recommended that all ACPICA hosts mirror this policy and integrate any * changes to this module as soon as possible. There are several historical * reasons behind this policy: * * 1) New BIOSs tend to test only the case where the host responds TRUE to * the latest version of Windows, which would respond to the latest/newest * _OSI string. Not responding TRUE to the latest version of Windows will * risk executing untested code paths throughout the DSDT and SSDTs. * * 2) If a new _OSI string is recognized only after a significant delay, this * has the potential to cause problems on existing working machines because * of the possibility that a new and different path through the ASL code * will be executed. * * 3) New _OSI strings are tending to come out about once per year. A delay * in recognizing a new string for a significant amount of time risks the * release of another string which only compounds the initial problem. * *****************************************************************************/ /* * Strings supported by the _OSI predefined control method (which is * implemented internally within this module.) * * March 2009: Removed "Linux" as this host no longer wants to respond true * for this string. Basically, the only safe OS strings are windows-related * and in many or most cases represent the only test path within the * BIOS-provided ASL code. * * The last element of each entry is used to track the newest version of * Windows that the BIOS has requested. */ static ACPI_INTERFACE_INFO AcpiDefaultSupportedInterfaces[] = { /* Operating System Vendor Strings */ {"Windows 2000", NULL, 0, ACPI_OSI_WIN_2000}, /* Windows 2000 */ {"Windows 2001", NULL, 0, ACPI_OSI_WIN_XP}, /* Windows XP */ {"Windows 2001 SP1", NULL, 0, ACPI_OSI_WIN_XP_SP1}, /* Windows XP SP1 */ {"Windows 2001.1", NULL, 0, ACPI_OSI_WINSRV_2003}, /* Windows Server 2003 */ {"Windows 2001 SP2", NULL, 0, ACPI_OSI_WIN_XP_SP2}, /* Windows XP SP2 */ {"Windows 2001.1 SP1", NULL, 0, ACPI_OSI_WINSRV_2003_SP1}, /* Windows Server 2003 SP1 - Added 03/2006 */ {"Windows 2006", NULL, 0, ACPI_OSI_WIN_VISTA}, /* Windows Vista - Added 03/2006 */ {"Windows 2006.1", NULL, 0, ACPI_OSI_WINSRV_2008}, /* Windows Server 2008 - Added 09/2009 */ {"Windows 2006 SP1", NULL, 0, ACPI_OSI_WIN_VISTA_SP1}, /* Windows Vista SP1 - Added 09/2009 */ {"Windows 2006 SP2", NULL, 0, ACPI_OSI_WIN_VISTA_SP2}, /* Windows Vista SP2 - Added 09/2010 */ {"Windows 2009", NULL, 0, ACPI_OSI_WIN_7}, /* Windows 7 and Server 2008 R2 - Added 09/2009 */ {"Windows 2012", NULL, 0, ACPI_OSI_WIN_8}, /* Windows 8 and Server 2012 - Added 08/2012 */ {"Windows 2013", NULL, 0, ACPI_OSI_WIN_8}, /* Windows 8.1 and Server 2012 R2 - Added 01/2014 */ {"Windows 2015", NULL, 0, ACPI_OSI_WIN_10}, /* Windows 10 - Added 03/2015 */ /* Feature Group Strings */ {"Extended Address Space Descriptor", NULL, ACPI_OSI_FEATURE, 0}, /* * All "optional" feature group strings (features that are implemented * by the host) should be dynamically modified to VALID by the host via * AcpiInstallInterface or AcpiUpdateInterfaces. Such optional feature * group strings are set as INVALID by default here. */ {"Module Device", NULL, ACPI_OSI_OPTIONAL_FEATURE, 0}, {"Processor Device", NULL, ACPI_OSI_OPTIONAL_FEATURE, 0}, {"3.0 Thermal Model", NULL, ACPI_OSI_OPTIONAL_FEATURE, 0}, {"3.0 _SCP Extensions", NULL, ACPI_OSI_OPTIONAL_FEATURE, 0}, {"Processor Aggregator Device", NULL, ACPI_OSI_OPTIONAL_FEATURE, 0} }; /******************************************************************************* * * FUNCTION: AcpiUtInitializeInterfaces * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Initialize the global _OSI supported interfaces list * ******************************************************************************/ ACPI_STATUS AcpiUtInitializeInterfaces ( void) { ACPI_STATUS Status; UINT32 i; Status = AcpiOsAcquireMutex (AcpiGbl_OsiMutex, ACPI_WAIT_FOREVER); if (ACPI_FAILURE (Status)) { return (Status); } AcpiGbl_SupportedInterfaces = AcpiDefaultSupportedInterfaces; /* Link the static list of supported interfaces */ for (i = 0; i < (ACPI_ARRAY_LENGTH (AcpiDefaultSupportedInterfaces) - 1); i++) { AcpiDefaultSupportedInterfaces[i].Next = &AcpiDefaultSupportedInterfaces[(ACPI_SIZE) i + 1]; } AcpiOsReleaseMutex (AcpiGbl_OsiMutex); return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiUtInterfaceTerminate * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Delete all interfaces in the global list. Sets * AcpiGbl_SupportedInterfaces to NULL. * ******************************************************************************/ ACPI_STATUS AcpiUtInterfaceTerminate ( void) { ACPI_STATUS Status; ACPI_INTERFACE_INFO *NextInterface; Status = AcpiOsAcquireMutex (AcpiGbl_OsiMutex, ACPI_WAIT_FOREVER); if (ACPI_FAILURE (Status)) { return (Status); } NextInterface = AcpiGbl_SupportedInterfaces; while (NextInterface) { AcpiGbl_SupportedInterfaces = NextInterface->Next; if (NextInterface->Flags & ACPI_OSI_DYNAMIC) { /* Only interfaces added at runtime can be freed */ ACPI_FREE (NextInterface->Name); ACPI_FREE (NextInterface); } else { /* Interface is in static list. Reset it to invalid or valid. */ if (NextInterface->Flags & ACPI_OSI_DEFAULT_INVALID) { NextInterface->Flags |= ACPI_OSI_INVALID; } else { NextInterface->Flags &= ~ACPI_OSI_INVALID; } } NextInterface = AcpiGbl_SupportedInterfaces; } AcpiOsReleaseMutex (AcpiGbl_OsiMutex); return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiUtInstallInterface * * PARAMETERS: InterfaceName - The interface to install * * RETURN: Status * * DESCRIPTION: Install the interface into the global interface list. * Caller MUST hold AcpiGbl_OsiMutex * ******************************************************************************/ ACPI_STATUS AcpiUtInstallInterface ( ACPI_STRING InterfaceName) { ACPI_INTERFACE_INFO *InterfaceInfo; /* Allocate info block and space for the name string */ InterfaceInfo = ACPI_ALLOCATE_ZEROED (sizeof (ACPI_INTERFACE_INFO)); if (!InterfaceInfo) { return (AE_NO_MEMORY); } InterfaceInfo->Name = ACPI_ALLOCATE_ZEROED (strlen (InterfaceName) + 1); if (!InterfaceInfo->Name) { ACPI_FREE (InterfaceInfo); return (AE_NO_MEMORY); } /* Initialize new info and insert at the head of the global list */ strcpy (InterfaceInfo->Name, InterfaceName); InterfaceInfo->Flags = ACPI_OSI_DYNAMIC; InterfaceInfo->Next = AcpiGbl_SupportedInterfaces; AcpiGbl_SupportedInterfaces = InterfaceInfo; return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiUtRemoveInterface * * PARAMETERS: InterfaceName - The interface to remove * * RETURN: Status * * DESCRIPTION: Remove the interface from the global interface list. * Caller MUST hold AcpiGbl_OsiMutex * ******************************************************************************/ ACPI_STATUS AcpiUtRemoveInterface ( ACPI_STRING InterfaceName) { ACPI_INTERFACE_INFO *PreviousInterface; ACPI_INTERFACE_INFO *NextInterface; PreviousInterface = NextInterface = AcpiGbl_SupportedInterfaces; while (NextInterface) { if (!strcmp (InterfaceName, NextInterface->Name)) { /* * Found: name is in either the static list * or was added at runtime */ if (NextInterface->Flags & ACPI_OSI_DYNAMIC) { /* Interface was added dynamically, remove and free it */ if (PreviousInterface == NextInterface) { AcpiGbl_SupportedInterfaces = NextInterface->Next; } else { PreviousInterface->Next = NextInterface->Next; } ACPI_FREE (NextInterface->Name); ACPI_FREE (NextInterface); } else { /* * Interface is in static list. If marked invalid, then * it does not actually exist. Else, mark it invalid. */ if (NextInterface->Flags & ACPI_OSI_INVALID) { return (AE_NOT_EXIST); } NextInterface->Flags |= ACPI_OSI_INVALID; } return (AE_OK); } PreviousInterface = NextInterface; NextInterface = NextInterface->Next; } /* Interface was not found */ return (AE_NOT_EXIST); } /******************************************************************************* * * FUNCTION: AcpiUtUpdateInterfaces * * PARAMETERS: Action - Actions to be performed during the * update * * RETURN: Status * * DESCRIPTION: Update _OSI interface strings, disabling or enabling OS vendor * strings or/and feature group strings. * Caller MUST hold AcpiGbl_OsiMutex * ******************************************************************************/ ACPI_STATUS AcpiUtUpdateInterfaces ( UINT8 Action) { ACPI_INTERFACE_INFO *NextInterface; NextInterface = AcpiGbl_SupportedInterfaces; while (NextInterface) { if (((NextInterface->Flags & ACPI_OSI_FEATURE) && (Action & ACPI_FEATURE_STRINGS)) || (!(NextInterface->Flags & ACPI_OSI_FEATURE) && (Action & ACPI_VENDOR_STRINGS))) { if (Action & ACPI_DISABLE_INTERFACES) { /* Mark the interfaces as invalid */ NextInterface->Flags |= ACPI_OSI_INVALID; } else { /* Mark the interfaces as valid */ NextInterface->Flags &= ~ACPI_OSI_INVALID; } } NextInterface = NextInterface->Next; } return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiUtGetInterface * * PARAMETERS: InterfaceName - The interface to find * * RETURN: ACPI_INTERFACE_INFO if found. NULL if not found. * * DESCRIPTION: Search for the specified interface name in the global list. * Caller MUST hold AcpiGbl_OsiMutex * ******************************************************************************/ ACPI_INTERFACE_INFO * AcpiUtGetInterface ( ACPI_STRING InterfaceName) { ACPI_INTERFACE_INFO *NextInterface; NextInterface = AcpiGbl_SupportedInterfaces; while (NextInterface) { if (!strcmp (InterfaceName, NextInterface->Name)) { return (NextInterface); } NextInterface = NextInterface->Next; } return (NULL); } /******************************************************************************* * * FUNCTION: AcpiUtOsiImplementation * * PARAMETERS: WalkState - Current walk state * * RETURN: Status + * Integer: TRUE (0) if input string is matched + * FALSE (-1) if string is not matched * * DESCRIPTION: Implementation of the _OSI predefined control method. When * an invocation of _OSI is encountered in the system AML, * control is transferred to this function. * + * (August 2016) + * Note: _OSI is now defined to return "Ones" to indicate a match, for + * compatibility with other ACPI implementations. On a 32-bit DSDT, Ones + * is 0xFFFFFFFF. On a 64-bit DSDT, Ones is 0xFFFFFFFFFFFFFFFF + * (ACPI_UINT64_MAX). + * + * This function always returns ACPI_UINT64_MAX for TRUE, and later code + * will truncate this to 32 bits if necessary. + * ******************************************************************************/ ACPI_STATUS AcpiUtOsiImplementation ( ACPI_WALK_STATE *WalkState) { ACPI_OPERAND_OBJECT *StringDesc; ACPI_OPERAND_OBJECT *ReturnDesc; ACPI_INTERFACE_INFO *InterfaceInfo; ACPI_INTERFACE_HANDLER InterfaceHandler; ACPI_STATUS Status; - UINT32 ReturnValue; + UINT64 ReturnValue; ACPI_FUNCTION_TRACE (UtOsiImplementation); /* Validate the string input argument (from the AML caller) */ StringDesc = WalkState->Arguments[0].Object; if (!StringDesc || (StringDesc->Common.Type != ACPI_TYPE_STRING)) { return_ACPI_STATUS (AE_TYPE); } /* Create a return object */ ReturnDesc = AcpiUtCreateInternalObject (ACPI_TYPE_INTEGER); if (!ReturnDesc) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Default return value is 0, NOT SUPPORTED */ ReturnValue = 0; Status = AcpiOsAcquireMutex (AcpiGbl_OsiMutex, ACPI_WAIT_FOREVER); if (ACPI_FAILURE (Status)) { AcpiUtRemoveReference (ReturnDesc); return_ACPI_STATUS (Status); } /* Lookup the interface in the global _OSI list */ InterfaceInfo = AcpiUtGetInterface (StringDesc->String.Pointer); if (InterfaceInfo && !(InterfaceInfo->Flags & ACPI_OSI_INVALID)) { /* * The interface is supported. * Update the OsiData if necessary. We keep track of the latest * version of Windows that has been requested by the BIOS. */ if (InterfaceInfo->Value > AcpiGbl_OsiData) { AcpiGbl_OsiData = InterfaceInfo->Value; } - ReturnValue = ACPI_UINT32_MAX; + ReturnValue = ACPI_UINT64_MAX; } AcpiOsReleaseMutex (AcpiGbl_OsiMutex); /* * Invoke an optional _OSI interface handler. The host OS may wish * to do some interface-specific handling. For example, warn about * certain interfaces or override the true/false support value. */ InterfaceHandler = AcpiGbl_InterfaceHandler; if (InterfaceHandler) { - ReturnValue = InterfaceHandler ( - StringDesc->String.Pointer, ReturnValue); + if (InterfaceHandler ( + StringDesc->String.Pointer, (UINT32) ReturnValue)) + { + ReturnValue = ACPI_UINT64_MAX; + } } ACPI_DEBUG_PRINT_RAW ((ACPI_DB_INFO, "ACPI: BIOS _OSI(\"%s\") is %ssupported\n", StringDesc->String.Pointer, ReturnValue == 0 ? "not " : "")); /* Complete the return object */ ReturnDesc->Integer.Value = ReturnValue; WalkState->ReturnDesc = ReturnDesc; return_ACPI_STATUS (AE_OK); } Index: vendor-sys/acpica/dist/source/components/utilities/utstrtoul64.c =================================================================== --- vendor-sys/acpica/dist/source/components/utilities/utstrtoul64.c (nonexistent) +++ vendor-sys/acpica/dist/source/components/utilities/utstrtoul64.c (revision 305162) @@ -0,0 +1,390 @@ +/******************************************************************************* + * + * Module Name: utstrtoul64 - string to 64-bit integer support + * + ******************************************************************************/ + +/* + * Copyright (C) 2000 - 2016, Intel Corp. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions, and the following disclaimer, + * without modification. + * 2. Redistributions in binary form must reproduce at minimum a disclaimer + * substantially similar to the "NO WARRANTY" disclaimer below + * ("Disclaimer") and any redistribution must be conditioned upon + * including a substantially similar Disclaimer requirement for further + * binary redistribution. + * 3. Neither the names of the above-listed copyright holders nor the names + * of any contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * Alternatively, this software may be distributed under the terms of the + * GNU General Public License ("GPL") version 2 as published by the Free + * Software Foundation. + * + * NO WARRANTY + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING + * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGES. + */ + +#include "acpi.h" +#include "accommon.h" + + +/******************************************************************************* + * + * The functions in this module satisfy the need for 64-bit string-to-integer + * conversions on both 32-bit and 64-bit platforms. + * + ******************************************************************************/ + +#define _COMPONENT ACPI_UTILITIES + ACPI_MODULE_NAME ("utstrtoul64") + +/* Local prototypes */ + +static UINT64 +AcpiUtStrtoulBase10 ( + char *String, + UINT32 Flags); + +static UINT64 +AcpiUtStrtoulBase16 ( + char *String, + UINT32 Flags); + + +/******************************************************************************* + * + * String conversion rules as written in the ACPI specification. The error + * conditions and behavior are different depending on the type of conversion. + * + * + * Implicit data type conversion: string-to-integer + * -------------------------------------------------- + * + * Base is always 16. This is the ACPI_STRTOUL_BASE16 case. + * + * Example: + * Add ("BA98", Arg0, Local0) + * + * The integer is initialized to the value zero. + * The ASCII string is interpreted as a hexadecimal constant. + * + * 1) A “0x” prefix is not allowed. However, ACPICA allows this for + * compatibility with previous ACPICA. (NO ERROR) + * + * 2) Terminates when the size of an integer is reached (32 or 64 bits). + * (NO ERROR) + * + * 3) The first non-hex character terminates the conversion without error. + * (NO ERROR) + * + * 4) Conversion of a null (zero-length) string to an integer is not + * allowed. However, ACPICA allows this for compatibility with previous + * ACPICA. This conversion returns the value 0. (NO ERROR) + * + * + * Explicit data type conversion: ToInteger() with string operand + * --------------------------------------------------------------- + * + * Base is either 10 (default) or 16 (with 0x prefix) + * + * Examples: + * ToInteger ("1000") + * ToInteger ("0xABCD") + * + * 1) Can be (must be) either a decimal or hexadecimal numeric string. + * A hex value must be prefixed by "0x" or it is interpreted as a decimal. + * + * 2) The value must not exceed the maximum of an integer value. ACPI spec + * states the behavior is "unpredictable", so ACPICA matches the behavior + * of the implicit conversion case.(NO ERROR) + * + * 3) Behavior on the first non-hex character is not specified by the ACPI + * spec, so ACPICA matches the behavior of the implicit conversion case + * and terminates. (NO ERROR) + * + * 4) A null (zero-length) string is illegal. + * However, ACPICA allows this for compatibility with previous ACPICA. + * This conversion returns the value 0. (NO ERROR) + * + ******************************************************************************/ + + +/******************************************************************************* + * + * FUNCTION: AcpiUtStrtoul64 + * + * PARAMETERS: String - Null terminated input string + * Flags - Conversion info, see below + * ReturnValue - Where the converted integer is + * returned + * + * RETURN: Status and Converted value + * + * DESCRIPTION: Convert a string into an unsigned value. Performs either a + * 32-bit or 64-bit conversion, depending on the input integer + * size in Flags (often the current mode of the interpreter). + * + * Values for Flags: + * ACPI_STRTOUL_32BIT - Max integer value is 32 bits + * ACPI_STRTOUL_64BIT - Max integer value is 64 bits + * ACPI_STRTOUL_BASE16 - Input string is hexadecimal. Default + * is 10/16 based on string prefix (0x). + * + * NOTES: + * Negative numbers are not supported, as they are not supported by ACPI. + * + * Supports only base 16 or base 10 strings/values. Does not + * support Octal strings, as these are not supported by ACPI. + * + * Current users of this support: + * + * Interpreter - Implicit and explicit conversions, GPE method names + * Debugger - Command line input string conversion + * iASL - Main parser, conversion of constants to integers + * iASL - Data Table Compiler parser (constant math expressions) + * iASL - Preprocessor (constant math expressions) + * AcpiDump - Input table addresses + * AcpiExec - Testing of the AcpiUtStrtoul64 function + * + * Note concerning callers: + * AcpiGbl_IntegerByteWidth can be used to set the 32/64 limit. If used, + * this global should be set to the proper width. For the core ACPICA code, + * this width depends on the DSDT version. For iASL, the default byte + * width is always 8 for the parser, but error checking is performed later + * to flag cases where a 64-bit constant is defined in a 32-bit DSDT/SSDT. + * + ******************************************************************************/ + +ACPI_STATUS +AcpiUtStrtoul64 ( + char *String, + UINT32 Flags, + UINT64 *ReturnValue) +{ + ACPI_STATUS Status = AE_OK; + UINT32 Base; + + + ACPI_FUNCTION_TRACE_STR (UtStrtoul64, String); + + + /* Parameter validation */ + + if (!String || !ReturnValue) + { + return_ACPI_STATUS (AE_BAD_PARAMETER); + } + + *ReturnValue = 0; + + /* Check for zero-length string, returns 0 */ + + if (*String == 0) + { + return_ACPI_STATUS (AE_OK); + } + + /* Skip over any white space at start of string */ + + while (isspace ((int) *String)) + { + String++; + } + + /* End of string? return 0 */ + + if (*String == 0) + { + return_ACPI_STATUS (AE_OK); + } + + /* + * 1) The "0x" prefix indicates base 16. Per the ACPI specification, + * the "0x" prefix is only allowed for implicit (non-strict) conversions. + * However, we always allow it for compatibility with older ACPICA. + */ + if ((*String == ACPI_ASCII_ZERO) && + (tolower ((int) *(String + 1)) == 'x')) + { + String += 2; /* Go past the 0x */ + if (*String == 0) + { + return_ACPI_STATUS (AE_OK); /* Return value 0 */ + } + + Base = 16; + } + + /* 2) Force to base 16 (implicit conversion case) */ + + else if (Flags & ACPI_STRTOUL_BASE16) + { + Base = 16; + } + + /* 3) Default fallback is to Base 10 */ + + else + { + Base = 10; + } + + /* Skip all leading zeros */ + + while (*String == ACPI_ASCII_ZERO) + { + String++; + if (*String == 0) + { + return_ACPI_STATUS (AE_OK); /* Return value 0 */ + } + } + + /* Perform the base 16 or 10 conversion */ + + if (Base == 16) + { + *ReturnValue = AcpiUtStrtoulBase16 (String, Flags); + } + else + { + *ReturnValue = AcpiUtStrtoulBase10 (String, Flags); + } + + return_ACPI_STATUS (Status); +} + + +/******************************************************************************* + * + * FUNCTION: AcpiUtStrtoulBase10 + * + * PARAMETERS: String - Null terminated input string + * Flags - Conversion info + * + * RETURN: 64-bit converted integer + * + * DESCRIPTION: Performs a base 10 conversion of the input string to an + * integer value, either 32 or 64 bits. + * Note: String must be valid and non-null. + * + ******************************************************************************/ + +static UINT64 +AcpiUtStrtoulBase10 ( + char *String, + UINT32 Flags) +{ + int AsciiDigit; + UINT64 NextValue; + UINT64 ReturnValue = 0; + + + /* Main loop: convert each ASCII byte in the input string */ + + while (*String) + { + AsciiDigit = *String; + if (!isdigit (AsciiDigit)) + { + /* Not ASCII 0-9, terminate */ + + goto Exit; + } + + /* Convert and insert (add) the decimal digit */ + + NextValue = + (ReturnValue * 10) + (AsciiDigit - ACPI_ASCII_ZERO); + + /* Check for overflow (32 or 64 bit) - return current converted value */ + + if (((Flags & ACPI_STRTOUL_32BIT) && (NextValue > ACPI_UINT32_MAX)) || + (NextValue < ReturnValue)) /* 64-bit overflow case */ + { + goto Exit; + } + + ReturnValue = NextValue; + String++; + } + +Exit: + return (ReturnValue); +} + + +/******************************************************************************* + * + * FUNCTION: AcpiUtStrtoulBase16 + * + * PARAMETERS: String - Null terminated input string + * Flags - conversion info + * + * RETURN: 64-bit converted integer + * + * DESCRIPTION: Performs a base 16 conversion of the input string to an + * integer value, either 32 or 64 bits. + * Note: String must be valid and non-null. + * + ******************************************************************************/ + +static UINT64 +AcpiUtStrtoulBase16 ( + char *String, + UINT32 Flags) +{ + int AsciiDigit; + UINT32 ValidDigits = 1; + UINT64 ReturnValue = 0; + + + /* Main loop: convert each ASCII byte in the input string */ + + while (*String) + { + /* Check for overflow (32 or 64 bit) - return current converted value */ + + if ((ValidDigits > 16) || + ((ValidDigits > 8) && (Flags & ACPI_STRTOUL_32BIT))) + { + goto Exit; + } + + AsciiDigit = *String; + if (!isxdigit (AsciiDigit)) + { + /* Not Hex ASCII A-F, a-f, or 0-9, terminate */ + + goto Exit; + } + + /* Convert and insert the hex digit */ + + ReturnValue = + (ReturnValue << 4) | AcpiUtAsciiCharToHex (AsciiDigit); + + String++; + ValidDigits++; + } + +Exit: + return (ReturnValue); +} Property changes on: vendor-sys/acpica/dist/source/components/utilities/utstrtoul64.c ___________________________________________________________________ Added: fbsd:nokeywords ## -0,0 +1 ## +yes \ No newline at end of property Added: svn:eol-style ## -0,0 +1 ## +native \ No newline at end of property Added: svn:mime-type ## -0,0 +1 ## +text/plain \ No newline at end of property Index: vendor-sys/acpica/dist/source/components/utilities/utxfinit.c =================================================================== --- vendor-sys/acpica/dist/source/components/utilities/utxfinit.c (revision 305161) +++ vendor-sys/acpica/dist/source/components/utilities/utxfinit.c (revision 305162) @@ -1,340 +1,340 @@ /****************************************************************************** * * Module Name: utxfinit - External interfaces for ACPICA initialization * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #define EXPORT_ACPI_INTERFACES #include "acpi.h" #include "accommon.h" #include "acevents.h" #include "acnamesp.h" #include "acdebug.h" #include "actables.h" #define _COMPONENT ACPI_UTILITIES ACPI_MODULE_NAME ("utxfinit") /* For AcpiExec only */ void AeDoObjectOverrides ( void); /******************************************************************************* * * FUNCTION: AcpiInitializeSubsystem * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Initializes all global variables. This is the first function * called, so any early initialization belongs here. * ******************************************************************************/ ACPI_STATUS ACPI_INIT_FUNCTION AcpiInitializeSubsystem ( void) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (AcpiInitializeSubsystem); AcpiGbl_StartupFlags = ACPI_SUBSYSTEM_INITIALIZE; ACPI_DEBUG_EXEC (AcpiUtInitStackPtrTrace ()); /* Initialize the OS-Dependent layer */ Status = AcpiOsInitialize (); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "During OSL initialization")); return_ACPI_STATUS (Status); } /* Initialize all globals used by the subsystem */ Status = AcpiUtInitGlobals (); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "During initialization of globals")); return_ACPI_STATUS (Status); } /* Create the default mutex objects */ Status = AcpiUtMutexInitialize (); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "During Global Mutex creation")); return_ACPI_STATUS (Status); } /* * Initialize the namespace manager and * the root of the namespace tree */ Status = AcpiNsRootInitialize (); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "During Namespace initialization")); return_ACPI_STATUS (Status); } /* Initialize the global OSI interfaces list with the static names */ Status = AcpiUtInitializeInterfaces (); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "During OSI interfaces initialization")); return_ACPI_STATUS (Status); } return_ACPI_STATUS (AE_OK); } ACPI_EXPORT_SYMBOL_INIT (AcpiInitializeSubsystem) /******************************************************************************* * * FUNCTION: AcpiEnableSubsystem * * PARAMETERS: Flags - Init/enable Options * * RETURN: Status * * DESCRIPTION: Completes the subsystem initialization including hardware. * Puts system into ACPI mode if it isn't already. * ******************************************************************************/ ACPI_STATUS ACPI_INIT_FUNCTION AcpiEnableSubsystem ( UINT32 Flags) { ACPI_STATUS Status = AE_OK; ACPI_FUNCTION_TRACE (AcpiEnableSubsystem); /* * The early initialization phase is complete. The namespace is loaded, * and we can now support address spaces other than Memory, I/O, and * PCI_Config. */ AcpiGbl_EarlyInitialization = FALSE; #if (!ACPI_REDUCED_HARDWARE) /* Enable ACPI mode */ if (!(Flags & ACPI_NO_ACPI_ENABLE)) { ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "[Init] Going into ACPI mode\n")); AcpiGbl_OriginalMode = AcpiHwGetMode(); Status = AcpiEnable (); if (ACPI_FAILURE (Status)) { ACPI_WARNING ((AE_INFO, "AcpiEnable failed")); return_ACPI_STATUS (Status); } } /* * Obtain a permanent mapping for the FACS. This is required for the * Global Lock and the Firmware Waking Vector */ if (!(Flags & ACPI_NO_FACS_INIT)) { Status = AcpiTbInitializeFacs (); if (ACPI_FAILURE (Status)) { ACPI_WARNING ((AE_INFO, "Could not map the FACS table")); return_ACPI_STATUS (Status); } } /* * Initialize ACPI Event handling (Fixed and General Purpose) * * Note1: We must have the hardware and events initialized before we can * execute any control methods safely. Any control method can require * ACPI hardware support, so the hardware must be fully initialized before * any method execution! * * Note2: Fixed events are initialized and enabled here. GPEs are * initialized, but cannot be enabled until after the hardware is * completely initialized (SCI and GlobalLock activated) and the various * initialization control methods are run (_REG, _STA, _INI) on the * entire namespace. */ if (!(Flags & ACPI_NO_EVENT_INIT)) { ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "[Init] Initializing ACPI events\n")); Status = AcpiEvInitializeEvents (); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } /* * Install the SCI handler and Global Lock handler. This completes the * hardware initialization. */ if (!(Flags & ACPI_NO_HANDLER_INIT)) { ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "[Init] Installing SCI/GL handlers\n")); Status = AcpiEvInstallXruptHandlers (); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } #endif /* !ACPI_REDUCED_HARDWARE */ return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL_INIT (AcpiEnableSubsystem) /******************************************************************************* * * FUNCTION: AcpiInitializeObjects * * PARAMETERS: Flags - Init/enable Options * * RETURN: Status * * DESCRIPTION: Completes namespace initialization by initializing device * objects and executing AML code for Regions, buffers, etc. * ******************************************************************************/ ACPI_STATUS ACPI_INIT_FUNCTION AcpiInitializeObjects ( UINT32 Flags) { ACPI_STATUS Status = AE_OK; ACPI_FUNCTION_TRACE (AcpiInitializeObjects); #ifdef ACPI_EXEC_APP /* * This call implements the "initialization file" option for AcpiExec. * This is the precise point that we want to perform the overrides. */ AeDoObjectOverrides (); #endif /* * Execute any module-level code that was detected during the table load * phase. Although illegal since ACPI 2.0, there are many machines that * contain this type of code. Each block of detected executable AML code * outside of any control method is wrapped with a temporary control * method object and placed on a global list. The methods on this list * are executed below. * * This case executes the module-level code for all tables only after * all of the tables have been loaded. It is a legacy option and is * not compatible with other ACPI implementations. See AcpiNsLoadTable. */ - if (AcpiGbl_GroupModuleLevelCode) + if (!AcpiGbl_ParseTableAsTermList && AcpiGbl_GroupModuleLevelCode) { AcpiNsExecModuleCodeList (); /* * Initialize the objects that remain uninitialized. This * runs the executable AML that may be part of the * declaration of these objects: * OperationRegions, BufferFields, Buffers, and Packages. */ if (!(Flags & ACPI_NO_OBJECT_INIT)) { Status = AcpiNsInitializeObjects (); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } } /* * Initialize all device/region objects in the namespace. This runs * the device _STA and _INI methods and region _REG methods. */ if (!(Flags & (ACPI_NO_DEVICE_INIT | ACPI_NO_ADDRESS_SPACE_INIT))) { Status = AcpiNsInitializeDevices (Flags); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } /* * Empty the caches (delete the cached objects) on the assumption that * the table load filled them up more than they will be at runtime -- * thus wasting non-paged memory. */ Status = AcpiPurgeCachedObjects (); AcpiGbl_StartupFlags |= ACPI_INITIALIZED_OK; return_ACPI_STATUS (Status); } ACPI_EXPORT_SYMBOL_INIT (AcpiInitializeObjects) Index: vendor-sys/acpica/dist/source/include/acdebug.h =================================================================== --- vendor-sys/acpica/dist/source/include/acdebug.h (revision 305161) +++ vendor-sys/acpica/dist/source/include/acdebug.h (revision 305162) @@ -1,498 +1,498 @@ /****************************************************************************** * * Name: acdebug.h - ACPI/AML debugger * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef __ACDEBUG_H__ #define __ACDEBUG_H__ /* The debugger is used in conjunction with the disassembler most of time */ #ifdef ACPI_DISASSEMBLER #include "acdisasm.h" #endif #define ACPI_DEBUG_BUFFER_SIZE 0x4000 /* 16K buffer for return objects */ typedef struct acpi_db_command_info { const char *Name; /* Command Name */ UINT8 MinArgs; /* Minimum arguments required */ } ACPI_DB_COMMAND_INFO; typedef struct acpi_db_command_help { UINT8 LineCount; /* Number of help lines */ char *Invocation; /* Command Invocation */ char *Description; /* Command Description */ } ACPI_DB_COMMAND_HELP; typedef struct acpi_db_argument_info { const char *Name; /* Argument Name */ } ACPI_DB_ARGUMENT_INFO; typedef struct acpi_db_execute_walk { UINT32 Count; UINT32 MaxCount; } ACPI_DB_EXECUTE_WALK; #define PARAM_LIST(pl) pl #define EX_NO_SINGLE_STEP 1 #define EX_SINGLE_STEP 2 /* * dbxface - external debugger interfaces */ ACPI_DBR_DEPENDENT_RETURN_OK ( ACPI_STATUS AcpiDbSingleStep ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op, UINT32 OpType)) ACPI_DBR_DEPENDENT_RETURN_VOID ( void AcpiDbSignalBreakPoint ( ACPI_WALK_STATE *WalkState)) /* * dbcmds - debug commands and output routines */ ACPI_NAMESPACE_NODE * AcpiDbConvertToNode ( char *InString); void AcpiDbDisplayTableInfo ( char *TableArg); void AcpiDbDisplayTemplate ( char *BufferArg); void AcpiDbUnloadAcpiTable ( char *Name); void AcpiDbSendNotify ( char *Name, UINT32 Value); void AcpiDbDisplayInterfaces ( char *ActionArg, char *InterfaceNameArg); ACPI_STATUS AcpiDbSleep ( char *ObjectArg); void AcpiDbTrace ( char *EnableArg, char *MethodArg, char *OnceArg); void AcpiDbDisplayLocks ( void); void AcpiDbDisplayResources ( char *ObjectArg); ACPI_HW_DEPENDENT_RETURN_VOID ( void AcpiDbDisplayGpes ( void)) void AcpiDbDisplayHandlers ( void); ACPI_HW_DEPENDENT_RETURN_VOID ( void AcpiDbGenerateGpe ( char *GpeArg, char *BlockArg)) ACPI_HW_DEPENDENT_RETURN_VOID ( void AcpiDbGenerateSci ( void)) void AcpiDbExecuteTest ( char *TypeArg); /* * dbconvert - miscellaneous conversion routines */ ACPI_STATUS AcpiDbHexCharToValue ( int HexChar, UINT8 *ReturnValue); ACPI_STATUS AcpiDbConvertToPackage ( char *String, ACPI_OBJECT *Object); ACPI_STATUS AcpiDbConvertToObject ( ACPI_OBJECT_TYPE Type, char *String, ACPI_OBJECT *Object); UINT8 * AcpiDbEncodePldBuffer ( ACPI_PLD_INFO *PldInfo); void AcpiDbDumpPldBuffer ( ACPI_OBJECT *ObjDesc); /* * dbmethod - control method commands */ void AcpiDbSetMethodBreakpoint ( char *Location, ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op); void AcpiDbSetMethodCallBreakpoint ( ACPI_PARSE_OBJECT *Op); void AcpiDbSetMethodData ( char *TypeArg, char *IndexArg, char *ValueArg); ACPI_STATUS AcpiDbDisassembleMethod ( char *Name); void AcpiDbDisassembleAml ( char *Statements, ACPI_PARSE_OBJECT *Op); void -AcpiDbBatchExecute ( - char *CountArg); +AcpiDbEvaluatePredefinedNames ( + void); /* * dbnames - namespace commands */ void AcpiDbSetScope ( char *Name); void AcpiDbDumpNamespace ( char *StartArg, char *DepthArg); void AcpiDbDumpNamespacePaths ( void); void AcpiDbDumpNamespaceByOwner ( char *OwnerArg, char *DepthArg); ACPI_STATUS AcpiDbFindNameInNamespace ( char *NameArg); void AcpiDbCheckPredefinedNames ( void); ACPI_STATUS AcpiDbDisplayObjects ( char *ObjTypeArg, char *DisplayCountArg); void AcpiDbCheckIntegrity ( void); void AcpiDbFindReferences ( char *ObjectArg); void AcpiDbGetBusInfo ( void); /* * dbdisply - debug display commands */ void AcpiDbDisplayMethodInfo ( ACPI_PARSE_OBJECT *Op); void AcpiDbDecodeAndDisplayObject ( char *Target, char *OutputType); ACPI_DBR_DEPENDENT_RETURN_VOID ( void AcpiDbDisplayResultObject ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_WALK_STATE *WalkState)) ACPI_STATUS AcpiDbDisplayAllMethods ( char *DisplayCountArg); void AcpiDbDisplayArguments ( void); void AcpiDbDisplayLocals ( void); void AcpiDbDisplayResults ( void); void AcpiDbDisplayCallingTree ( void); void AcpiDbDisplayObjectType ( char *ObjectArg); ACPI_DBR_DEPENDENT_RETURN_VOID ( void AcpiDbDisplayArgumentObject ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_WALK_STATE *WalkState)) /* * dbexec - debugger control method execution */ void AcpiDbExecute ( char *Name, char **Args, ACPI_OBJECT_TYPE *Types, UINT32 Flags); void AcpiDbCreateExecutionThreads ( char *NumThreadsArg, char *NumLoopsArg, char *MethodNameArg); void AcpiDbDeleteObjects ( UINT32 Count, ACPI_OBJECT *Objects); #ifdef ACPI_DBG_TRACK_ALLOCATIONS UINT32 AcpiDbGetCacheInfo ( ACPI_MEMORY_LIST *Cache); #endif /* * dbfileio - Debugger file I/O commands */ ACPI_OBJECT_TYPE AcpiDbMatchArgument ( char *UserArgument, ACPI_DB_ARGUMENT_INFO *Arguments); void AcpiDbCloseDebugFile ( void); void AcpiDbOpenDebugFile ( char *Name); ACPI_STATUS AcpiDbLoadAcpiTable ( char *Filename); ACPI_STATUS AcpiDbLoadTables ( ACPI_NEW_TABLE_DESC *ListHead); /* * dbhistry - debugger HISTORY command */ void AcpiDbAddToHistory ( char *CommandLine); void AcpiDbDisplayHistory ( void); char * AcpiDbGetFromHistory ( char *CommandNumArg); char * AcpiDbGetHistoryByIndex ( UINT32 CommanddNum); /* * dbinput - user front-end to the AML debugger */ ACPI_STATUS AcpiDbCommandDispatch ( char *InputBuffer, ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op); void ACPI_SYSTEM_XFACE AcpiDbExecuteThread ( void *Context); ACPI_STATUS AcpiDbUserCommands ( char Prompt, ACPI_PARSE_OBJECT *Op); char * AcpiDbGetNextToken ( char *String, char **Next, ACPI_OBJECT_TYPE *ReturnType); /* * dbobject */ void AcpiDbDecodeInternalObject ( ACPI_OPERAND_OBJECT *ObjDesc); void AcpiDbDisplayInternalObject ( ACPI_OPERAND_OBJECT *ObjDesc, ACPI_WALK_STATE *WalkState); void AcpiDbDecodeArguments ( ACPI_WALK_STATE *WalkState); void AcpiDbDecodeLocals ( ACPI_WALK_STATE *WalkState); void AcpiDbDumpMethodInfo ( ACPI_STATUS Status, ACPI_WALK_STATE *WalkState); /* * dbstats - Generation and display of ACPI table statistics */ void AcpiDbGenerateStatistics ( ACPI_PARSE_OBJECT *Root, BOOLEAN IsMethod); ACPI_STATUS AcpiDbDisplayStatistics ( char *TypeArg); /* * dbutils - AML debugger utilities */ void AcpiDbSetOutputDestination ( UINT32 Where); void AcpiDbDumpExternalObject ( ACPI_OBJECT *ObjDesc, UINT32 Level); void AcpiDbPrepNamestring ( char *Name); ACPI_NAMESPACE_NODE * AcpiDbLocalNsLookup ( char *Name); void AcpiDbUint32ToHexString ( UINT32 Value, char *Buffer); #endif /* __ACDEBUG_H__ */ Index: vendor-sys/acpica/dist/source/include/acevents.h =================================================================== --- vendor-sys/acpica/dist/source/include/acevents.h (revision 305161) +++ vendor-sys/acpica/dist/source/include/acevents.h (revision 305162) @@ -1,362 +1,367 @@ /****************************************************************************** * * Name: acevents.h - Event subcomponent prototypes and defines * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef __ACEVENTS_H__ #define __ACEVENTS_H__ /* * evevent */ ACPI_STATUS AcpiEvInitializeEvents ( void); ACPI_STATUS AcpiEvInstallXruptHandlers ( void); UINT32 AcpiEvFixedEventDetect ( void); /* * evmisc */ BOOLEAN AcpiEvIsNotifyObject ( ACPI_NAMESPACE_NODE *Node); UINT32 AcpiEvGetGpeNumberIndex ( UINT32 GpeNumber); ACPI_STATUS AcpiEvQueueNotifyRequest ( ACPI_NAMESPACE_NODE *Node, UINT32 NotifyValue); /* * evglock - Global Lock support */ ACPI_STATUS AcpiEvInitGlobalLockHandler ( void); ACPI_HW_DEPENDENT_RETURN_OK ( ACPI_STATUS AcpiEvAcquireGlobalLock( UINT16 Timeout)) ACPI_HW_DEPENDENT_RETURN_OK ( ACPI_STATUS AcpiEvReleaseGlobalLock( void)) ACPI_STATUS AcpiEvRemoveGlobalLockHandler ( void); /* * evgpe - Low-level GPE support */ UINT32 AcpiEvGpeDetect ( ACPI_GPE_XRUPT_INFO *GpeXruptList); ACPI_STATUS AcpiEvUpdateGpeEnableMask ( ACPI_GPE_EVENT_INFO *GpeEventInfo); ACPI_STATUS AcpiEvEnableGpe ( ACPI_GPE_EVENT_INFO *GpeEventInfo); ACPI_STATUS +AcpiEvMaskGpe ( + ACPI_GPE_EVENT_INFO *GpeEventInfo, + BOOLEAN IsMasked); + +ACPI_STATUS AcpiEvAddGpeReference ( ACPI_GPE_EVENT_INFO *GpeEventInfo); ACPI_STATUS AcpiEvRemoveGpeReference ( ACPI_GPE_EVENT_INFO *GpeEventInfo); ACPI_GPE_EVENT_INFO * AcpiEvGetGpeEventInfo ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber); ACPI_GPE_EVENT_INFO * AcpiEvLowGetGpeInfo ( UINT32 GpeNumber, ACPI_GPE_BLOCK_INFO *GpeBlock); ACPI_STATUS AcpiEvFinishGpe ( ACPI_GPE_EVENT_INFO *GpeEventInfo); /* * evgpeblk - Upper-level GPE block support */ ACPI_STATUS AcpiEvCreateGpeBlock ( ACPI_NAMESPACE_NODE *GpeDevice, UINT64 Address, UINT8 SpaceId, UINT32 RegisterCount, UINT16 GpeBlockBaseNumber, UINT32 InterruptNumber, ACPI_GPE_BLOCK_INFO **ReturnGpeBlock); ACPI_STATUS AcpiEvInitializeGpeBlock ( ACPI_GPE_XRUPT_INFO *GpeXruptInfo, ACPI_GPE_BLOCK_INFO *GpeBlock, void *Context); ACPI_HW_DEPENDENT_RETURN_OK ( ACPI_STATUS AcpiEvDeleteGpeBlock ( ACPI_GPE_BLOCK_INFO *GpeBlock)) UINT32 AcpiEvGpeDispatch ( ACPI_NAMESPACE_NODE *GpeDevice, ACPI_GPE_EVENT_INFO *GpeEventInfo, UINT32 GpeNumber); /* * evgpeinit - GPE initialization and update */ ACPI_STATUS AcpiEvGpeInitialize ( void); ACPI_HW_DEPENDENT_RETURN_VOID ( void AcpiEvUpdateGpes ( ACPI_OWNER_ID TableOwnerId)) ACPI_STATUS AcpiEvMatchGpeMethod ( ACPI_HANDLE ObjHandle, UINT32 Level, void *Context, void **ReturnValue); /* * evgpeutil - GPE utilities */ ACPI_STATUS AcpiEvWalkGpeList ( ACPI_GPE_CALLBACK GpeWalkCallback, void *Context); ACPI_STATUS AcpiEvGetGpeDevice ( ACPI_GPE_XRUPT_INFO *GpeXruptInfo, ACPI_GPE_BLOCK_INFO *GpeBlock, void *Context); ACPI_STATUS AcpiEvGetGpeXruptBlock ( UINT32 InterruptNumber, ACPI_GPE_XRUPT_INFO **GpeXruptBlock); ACPI_STATUS AcpiEvDeleteGpeXrupt ( ACPI_GPE_XRUPT_INFO *GpeXrupt); ACPI_STATUS AcpiEvDeleteGpeHandlers ( ACPI_GPE_XRUPT_INFO *GpeXruptInfo, ACPI_GPE_BLOCK_INFO *GpeBlock, void *Context); /* * evhandler - Address space handling */ ACPI_OPERAND_OBJECT * AcpiEvFindRegionHandler ( ACPI_ADR_SPACE_TYPE SpaceId, ACPI_OPERAND_OBJECT *HandlerObj); BOOLEAN AcpiEvHasDefaultHandler ( ACPI_NAMESPACE_NODE *Node, ACPI_ADR_SPACE_TYPE SpaceId); ACPI_STATUS AcpiEvInstallRegionHandlers ( void); ACPI_STATUS AcpiEvInstallSpaceHandler ( ACPI_NAMESPACE_NODE *Node, ACPI_ADR_SPACE_TYPE SpaceId, ACPI_ADR_SPACE_HANDLER Handler, ACPI_ADR_SPACE_SETUP Setup, void *Context); /* * evregion - Operation region support */ ACPI_STATUS AcpiEvInitializeOpRegions ( void); ACPI_STATUS AcpiEvAddressSpaceDispatch ( ACPI_OPERAND_OBJECT *RegionObj, ACPI_OPERAND_OBJECT *FieldObj, UINT32 Function, UINT32 RegionOffset, UINT32 BitWidth, UINT64 *Value); ACPI_STATUS AcpiEvAttachRegion ( ACPI_OPERAND_OBJECT *HandlerObj, ACPI_OPERAND_OBJECT *RegionObj, BOOLEAN AcpiNsIsLocked); void AcpiEvDetachRegion ( ACPI_OPERAND_OBJECT *RegionObj, BOOLEAN AcpiNsIsLocked); void AcpiEvExecuteRegMethods ( ACPI_NAMESPACE_NODE *Node, ACPI_ADR_SPACE_TYPE SpaceId, UINT32 Function); ACPI_STATUS AcpiEvExecuteRegMethod ( ACPI_OPERAND_OBJECT *RegionObj, UINT32 Function); /* * evregini - Region initialization and setup */ ACPI_STATUS AcpiEvSystemMemoryRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext); ACPI_STATUS AcpiEvIoSpaceRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext); ACPI_STATUS AcpiEvPciConfigRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext); ACPI_STATUS AcpiEvCmosRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext); ACPI_STATUS AcpiEvPciBarRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext); ACPI_STATUS AcpiEvDefaultRegionSetup ( ACPI_HANDLE Handle, UINT32 Function, void *HandlerContext, void **RegionContext); ACPI_STATUS AcpiEvInitializeRegion ( ACPI_OPERAND_OBJECT *RegionObj, BOOLEAN AcpiNsLocked); /* * evsci - SCI (System Control Interrupt) handling/dispatch */ UINT32 ACPI_SYSTEM_XFACE AcpiEvGpeXruptHandler ( void *Context); UINT32 AcpiEvSciDispatch ( void); UINT32 AcpiEvInstallSciHandler ( void); ACPI_STATUS AcpiEvRemoveAllSciHandlers ( void); ACPI_HW_DEPENDENT_RETURN_VOID ( void AcpiEvTerminate ( void)) #endif /* __ACEVENTS_H__ */ Index: vendor-sys/acpica/dist/source/include/aclocal.h =================================================================== --- vendor-sys/acpica/dist/source/include/aclocal.h (revision 305161) +++ vendor-sys/acpica/dist/source/include/aclocal.h (revision 305162) @@ -1,1439 +1,1441 @@ /****************************************************************************** * * Name: aclocal.h - Internal data types used across the ACPI subsystem * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef __ACLOCAL_H__ #define __ACLOCAL_H__ /* acpisrc:StructDefs -- for acpisrc conversion */ #define ACPI_SERIALIZED 0xFF typedef UINT32 ACPI_MUTEX_HANDLE; #define ACPI_GLOBAL_LOCK (ACPI_SEMAPHORE) (-1) /* Total number of aml opcodes defined */ #define AML_NUM_OPCODES 0x82 /* Forward declarations */ struct acpi_walk_state; struct acpi_obj_mutex; union acpi_parse_object; /***************************************************************************** * * Mutex typedefs and structs * ****************************************************************************/ /* * Predefined handles for the mutex objects used within the subsystem * All mutex objects are automatically created by AcpiUtMutexInitialize. * * The acquire/release ordering protocol is implied via this list. Mutexes * with a lower value must be acquired before mutexes with a higher value. * * NOTE: any changes here must be reflected in the AcpiGbl_MutexNames * table below also! */ #define ACPI_MTX_INTERPRETER 0 /* AML Interpreter, main lock */ #define ACPI_MTX_NAMESPACE 1 /* ACPI Namespace */ #define ACPI_MTX_TABLES 2 /* Data for ACPI tables */ #define ACPI_MTX_EVENTS 3 /* Data for ACPI events */ #define ACPI_MTX_CACHES 4 /* Internal caches, general purposes */ #define ACPI_MTX_MEMORY 5 /* Debug memory tracking lists */ #define ACPI_MAX_MUTEX 5 #define ACPI_NUM_MUTEX (ACPI_MAX_MUTEX+1) /* Lock structure for reader/writer interfaces */ typedef struct acpi_rw_lock { ACPI_MUTEX WriterMutex; ACPI_MUTEX ReaderMutex; UINT32 NumReaders; } ACPI_RW_LOCK; /* * Predefined handles for spinlocks used within the subsystem. * These spinlocks are created by AcpiUtMutexInitialize */ #define ACPI_LOCK_GPES 0 #define ACPI_LOCK_HARDWARE 1 #define ACPI_MAX_LOCK 1 #define ACPI_NUM_LOCK (ACPI_MAX_LOCK+1) /* This Thread ID means that the mutex is not in use (unlocked) */ #define ACPI_MUTEX_NOT_ACQUIRED ((ACPI_THREAD_ID) -1) /* This Thread ID means an invalid thread ID */ #ifdef ACPI_OS_INVALID_THREAD_ID #define ACPI_INVALID_THREAD_ID ACPI_OS_INVALID_THREAD_ID #else #define ACPI_INVALID_THREAD_ID ((ACPI_THREAD_ID) 0xFFFFFFFF) #endif /* Table for the global mutexes */ typedef struct acpi_mutex_info { ACPI_MUTEX Mutex; UINT32 UseCount; ACPI_THREAD_ID ThreadId; } ACPI_MUTEX_INFO; /* Lock flag parameter for various interfaces */ #define ACPI_MTX_DO_NOT_LOCK 0 #define ACPI_MTX_LOCK 1 /* Field access granularities */ #define ACPI_FIELD_BYTE_GRANULARITY 1 #define ACPI_FIELD_WORD_GRANULARITY 2 #define ACPI_FIELD_DWORD_GRANULARITY 4 #define ACPI_FIELD_QWORD_GRANULARITY 8 #define ACPI_ENTRY_NOT_FOUND NULL /***************************************************************************** * * Namespace typedefs and structs * ****************************************************************************/ /* Operational modes of the AML interpreter/scanner */ typedef enum { ACPI_IMODE_LOAD_PASS1 = 0x01, ACPI_IMODE_LOAD_PASS2 = 0x02, ACPI_IMODE_EXECUTE = 0x03 } ACPI_INTERPRETER_MODE; /* * The Namespace Node describes a named object that appears in the AML. * DescriptorType is used to differentiate between internal descriptors. * * The node is optimized for both 32-bit and 64-bit platforms: * 20 bytes for the 32-bit case, 32 bytes for the 64-bit case. * * Note: The DescriptorType and Type fields must appear in the identical * position in both the ACPI_NAMESPACE_NODE and ACPI_OPERAND_OBJECT * structures. */ typedef struct acpi_namespace_node { union acpi_operand_object *Object; /* Interpreter object */ UINT8 DescriptorType; /* Differentiate object descriptor types */ UINT8 Type; /* ACPI Type associated with this name */ UINT8 Flags; /* Miscellaneous flags */ ACPI_OWNER_ID OwnerId; /* Node creator */ ACPI_NAME_UNION Name; /* ACPI Name, always 4 chars per ACPI spec */ struct acpi_namespace_node *Parent; /* Parent node */ struct acpi_namespace_node *Child; /* First child */ struct acpi_namespace_node *Peer; /* First peer */ /* * The following fields are used by the ASL compiler and disassembler only */ #ifdef ACPI_LARGE_NAMESPACE_NODE union acpi_parse_object *Op; void *MethodLocals; void *MethodArgs; UINT32 Value; UINT32 Length; UINT8 ArgCount; #endif } ACPI_NAMESPACE_NODE; /* Namespace Node flags */ #define ANOBJ_RESERVED 0x01 /* Available for use */ #define ANOBJ_TEMPORARY 0x02 /* Node is create by a method and is temporary */ #define ANOBJ_METHOD_ARG 0x04 /* Node is a method argument */ #define ANOBJ_METHOD_LOCAL 0x08 /* Node is a method local */ #define ANOBJ_SUBTREE_HAS_INI 0x10 /* Used to optimize device initialization */ #define ANOBJ_EVALUATED 0x20 /* Set on first evaluation of node */ #define ANOBJ_ALLOCATED_BUFFER 0x40 /* Method AML buffer is dynamic (InstallMethod) */ #define ANOBJ_IS_EXTERNAL 0x08 /* iASL only: This object created via External() */ #define ANOBJ_METHOD_NO_RETVAL 0x10 /* iASL only: Method has no return value */ #define ANOBJ_METHOD_SOME_NO_RETVAL 0x20 /* iASL only: Method has at least one return value */ #define ANOBJ_IS_REFERENCED 0x80 /* iASL only: Object was referenced */ /* Internal ACPI table management - master table list */ typedef struct acpi_table_list { ACPI_TABLE_DESC *Tables; /* Table descriptor array */ UINT32 CurrentTableCount; /* Tables currently in the array */ UINT32 MaxTableCount; /* Max tables array will hold */ UINT8 Flags; } ACPI_TABLE_LIST; /* Flags for above */ #define ACPI_ROOT_ORIGIN_UNKNOWN (0) /* ~ORIGIN_ALLOCATED */ #define ACPI_ROOT_ORIGIN_ALLOCATED (1) #define ACPI_ROOT_ALLOW_RESIZE (2) /* List to manage incoming ACPI tables */ typedef struct acpi_new_table_desc { ACPI_TABLE_HEADER *Table; struct acpi_new_table_desc *Next; } ACPI_NEW_TABLE_DESC; /* Predefined table indexes */ #define ACPI_INVALID_TABLE_INDEX (0xFFFFFFFF) typedef struct acpi_find_context { char *SearchFor; ACPI_HANDLE *List; UINT32 *Count; } ACPI_FIND_CONTEXT; typedef struct acpi_ns_search_data { ACPI_NAMESPACE_NODE *Node; } ACPI_NS_SEARCH_DATA; /* Object types used during package copies */ #define ACPI_COPY_TYPE_SIMPLE 0 #define ACPI_COPY_TYPE_PACKAGE 1 /* Info structure used to convert external<->internal namestrings */ typedef struct acpi_namestring_info { const char *ExternalName; const char *NextExternalChar; char *InternalName; UINT32 Length; UINT32 NumSegments; UINT32 NumCarats; BOOLEAN FullyQualified; } ACPI_NAMESTRING_INFO; /* Field creation info */ typedef struct acpi_create_field_info { ACPI_NAMESPACE_NODE *RegionNode; ACPI_NAMESPACE_NODE *FieldNode; ACPI_NAMESPACE_NODE *RegisterNode; ACPI_NAMESPACE_NODE *DataRegisterNode; ACPI_NAMESPACE_NODE *ConnectionNode; UINT8 *ResourceBuffer; UINT32 BankValue; UINT32 FieldBitPosition; UINT32 FieldBitLength; UINT16 ResourceLength; UINT16 PinNumberIndex; UINT8 FieldFlags; UINT8 Attribute; UINT8 FieldType; UINT8 AccessLength; } ACPI_CREATE_FIELD_INFO; typedef ACPI_STATUS (*ACPI_INTERNAL_METHOD) ( struct acpi_walk_state *WalkState); /* * Bitmapped ACPI types. Used internally only */ #define ACPI_BTYPE_ANY 0x00000000 #define ACPI_BTYPE_INTEGER 0x00000001 #define ACPI_BTYPE_STRING 0x00000002 #define ACPI_BTYPE_BUFFER 0x00000004 #define ACPI_BTYPE_PACKAGE 0x00000008 #define ACPI_BTYPE_FIELD_UNIT 0x00000010 #define ACPI_BTYPE_DEVICE 0x00000020 #define ACPI_BTYPE_EVENT 0x00000040 #define ACPI_BTYPE_METHOD 0x00000080 #define ACPI_BTYPE_MUTEX 0x00000100 #define ACPI_BTYPE_REGION 0x00000200 #define ACPI_BTYPE_POWER 0x00000400 #define ACPI_BTYPE_PROCESSOR 0x00000800 #define ACPI_BTYPE_THERMAL 0x00001000 #define ACPI_BTYPE_BUFFER_FIELD 0x00002000 #define ACPI_BTYPE_DDB_HANDLE 0x00004000 #define ACPI_BTYPE_DEBUG_OBJECT 0x00008000 #define ACPI_BTYPE_REFERENCE_OBJECT 0x00010000 /* From Index(), RefOf(), etc (Type6Opcodes) */ #define ACPI_BTYPE_RESOURCE 0x00020000 #define ACPI_BTYPE_NAMED_REFERENCE 0x00040000 /* Generic unresolved Name or Namepath */ #define ACPI_BTYPE_COMPUTE_DATA (ACPI_BTYPE_INTEGER | ACPI_BTYPE_STRING | ACPI_BTYPE_BUFFER) #define ACPI_BTYPE_DATA (ACPI_BTYPE_COMPUTE_DATA | ACPI_BTYPE_PACKAGE) /* Used by Copy, DeRefOf, Store, Printf, Fprintf */ #define ACPI_BTYPE_DATA_REFERENCE (ACPI_BTYPE_DATA | ACPI_BTYPE_REFERENCE_OBJECT | ACPI_BTYPE_DDB_HANDLE) #define ACPI_BTYPE_DEVICE_OBJECTS (ACPI_BTYPE_DEVICE | ACPI_BTYPE_THERMAL | ACPI_BTYPE_PROCESSOR) #define ACPI_BTYPE_OBJECTS_AND_REFS 0x0001FFFF /* ARG or LOCAL */ #define ACPI_BTYPE_ALL_OBJECTS 0x0000FFFF #pragma pack(1) /* * Information structure for ACPI predefined names. * Each entry in the table contains the following items: * * Name - The ACPI reserved name * ParamCount - Number of arguments to the method * ExpectedReturnBtypes - Allowed type(s) for the return value */ typedef struct acpi_name_info { char Name[ACPI_NAME_SIZE]; UINT16 ArgumentList; UINT8 ExpectedBtypes; } ACPI_NAME_INFO; /* * Secondary information structures for ACPI predefined objects that return * package objects. This structure appears as the next entry in the table * after the NAME_INFO structure above. * * The reason for this is to minimize the size of the predefined name table. */ /* * Used for ACPI_PTYPE1_FIXED, ACPI_PTYPE1_VAR, ACPI_PTYPE2, * ACPI_PTYPE2_MIN, ACPI_PTYPE2_PKG_COUNT, ACPI_PTYPE2_COUNT, * ACPI_PTYPE2_FIX_VAR */ typedef struct acpi_package_info { UINT8 Type; UINT8 ObjectType1; UINT8 Count1; UINT8 ObjectType2; UINT8 Count2; UINT16 Reserved; } ACPI_PACKAGE_INFO; /* Used for ACPI_PTYPE2_FIXED */ typedef struct acpi_package_info2 { UINT8 Type; UINT8 Count; UINT8 ObjectType[4]; UINT8 Reserved; } ACPI_PACKAGE_INFO2; /* Used for ACPI_PTYPE1_OPTION */ typedef struct acpi_package_info3 { UINT8 Type; UINT8 Count; UINT8 ObjectType[2]; UINT8 TailObjectType; UINT16 Reserved; } ACPI_PACKAGE_INFO3; typedef struct acpi_package_info4 { UINT8 Type; UINT8 ObjectType1; UINT8 Count1; UINT8 SubObjectTypes; UINT8 PkgCount; UINT16 Reserved; } ACPI_PACKAGE_INFO4; typedef union acpi_predefined_info { ACPI_NAME_INFO Info; ACPI_PACKAGE_INFO RetInfo; ACPI_PACKAGE_INFO2 RetInfo2; ACPI_PACKAGE_INFO3 RetInfo3; ACPI_PACKAGE_INFO4 RetInfo4; } ACPI_PREDEFINED_INFO; /* Reset to default packing */ #pragma pack() /* Return object auto-repair info */ typedef ACPI_STATUS (*ACPI_OBJECT_CONVERTER) ( struct acpi_namespace_node *Scope, union acpi_operand_object *OriginalObject, union acpi_operand_object **ConvertedObject); typedef struct acpi_simple_repair_info { char Name[ACPI_NAME_SIZE]; UINT32 UnexpectedBtypes; UINT32 PackageIndex; ACPI_OBJECT_CONVERTER ObjectConverter; } ACPI_SIMPLE_REPAIR_INFO; /* * Bitmapped return value types * Note: the actual data types must be contiguous, a loop in nspredef.c * depends on this. */ #define ACPI_RTYPE_ANY 0x00 #define ACPI_RTYPE_NONE 0x01 #define ACPI_RTYPE_INTEGER 0x02 #define ACPI_RTYPE_STRING 0x04 #define ACPI_RTYPE_BUFFER 0x08 #define ACPI_RTYPE_PACKAGE 0x10 #define ACPI_RTYPE_REFERENCE 0x20 #define ACPI_RTYPE_ALL 0x3F #define ACPI_NUM_RTYPES 5 /* Number of actual object types */ /* Info for running the _REG methods */ typedef struct acpi_reg_walk_info { ACPI_ADR_SPACE_TYPE SpaceId; UINT32 Function; UINT32 RegRunCount; } ACPI_REG_WALK_INFO; /***************************************************************************** * * Event typedefs and structs * ****************************************************************************/ /* Dispatch info for each host-installed SCI handler */ typedef struct acpi_sci_handler_info { struct acpi_sci_handler_info *Next; ACPI_SCI_HANDLER Address; /* Address of handler */ void *Context; /* Context to be passed to handler */ } ACPI_SCI_HANDLER_INFO; /* Dispatch info for each GPE -- either a method or handler, cannot be both */ typedef struct acpi_gpe_handler_info { ACPI_GPE_HANDLER Address; /* Address of handler, if any */ void *Context; /* Context to be passed to handler */ ACPI_NAMESPACE_NODE *MethodNode; /* Method node for this GPE level (saved) */ UINT8 OriginalFlags; /* Original (pre-handler) GPE info */ BOOLEAN OriginallyEnabled; /* True if GPE was originally enabled */ } ACPI_GPE_HANDLER_INFO; /* Notify info for implicit notify, multiple device objects */ typedef struct acpi_gpe_notify_info { ACPI_NAMESPACE_NODE *DeviceNode; /* Device to be notified */ struct acpi_gpe_notify_info *Next; } ACPI_GPE_NOTIFY_INFO; /* * GPE dispatch info. At any time, the GPE can have at most one type * of dispatch - Method, Handler, or Implicit Notify. */ typedef union acpi_gpe_dispatch_info { ACPI_NAMESPACE_NODE *MethodNode; /* Method node for this GPE level */ ACPI_GPE_HANDLER_INFO *Handler; /* Installed GPE handler */ ACPI_GPE_NOTIFY_INFO *NotifyList; /* List of _PRW devices for implicit notifies */ } ACPI_GPE_DISPATCH_INFO; /* * Information about a GPE, one per each GPE in an array. * NOTE: Important to keep this struct as small as possible. */ typedef struct acpi_gpe_event_info { - union acpi_gpe_dispatch_info Dispatch; /* Either Method, Handler, or NotifyList */ - struct acpi_gpe_register_info *RegisterInfo; /* Backpointer to register info */ - UINT8 Flags; /* Misc info about this GPE */ - UINT8 GpeNumber; /* This GPE */ - UINT8 RuntimeCount; /* References to a run GPE */ + union acpi_gpe_dispatch_info Dispatch; /* Either Method, Handler, or NotifyList */ + struct acpi_gpe_register_info *RegisterInfo; /* Backpointer to register info */ + UINT8 Flags; /* Misc info about this GPE */ + UINT8 GpeNumber; /* This GPE */ + UINT8 RuntimeCount; /* References to a run GPE */ + BOOLEAN DisableForDispatch; /* Masked during dispatching */ } ACPI_GPE_EVENT_INFO; /* Information about a GPE register pair, one per each status/enable pair in an array */ typedef struct acpi_gpe_register_info { ACPI_GENERIC_ADDRESS StatusAddress; /* Address of status reg */ ACPI_GENERIC_ADDRESS EnableAddress; /* Address of enable reg */ UINT16 BaseGpeNumber; /* Base GPE number for this register */ UINT8 EnableForWake; /* GPEs to keep enabled when sleeping */ UINT8 EnableForRun; /* GPEs to keep enabled when running */ + UINT8 MaskForRun; /* GPEs to keep masked when running */ UINT8 EnableMask; /* Current mask of enabled GPEs */ } ACPI_GPE_REGISTER_INFO; /* * Information about a GPE register block, one per each installed block -- * GPE0, GPE1, and one per each installed GPE Block Device. */ typedef struct acpi_gpe_block_info { ACPI_NAMESPACE_NODE *Node; struct acpi_gpe_block_info *Previous; struct acpi_gpe_block_info *Next; struct acpi_gpe_xrupt_info *XruptBlock; /* Backpointer to interrupt block */ ACPI_GPE_REGISTER_INFO *RegisterInfo; /* One per GPE register pair */ ACPI_GPE_EVENT_INFO *EventInfo; /* One for each GPE */ UINT64 Address; /* Base address of the block */ UINT32 RegisterCount; /* Number of register pairs in block */ UINT16 GpeCount; /* Number of individual GPEs in block */ UINT16 BlockBaseNumber;/* Base GPE number for this block */ UINT8 SpaceId; BOOLEAN Initialized; /* TRUE if this block is initialized */ } ACPI_GPE_BLOCK_INFO; /* Information about GPE interrupt handlers, one per each interrupt level used for GPEs */ typedef struct acpi_gpe_xrupt_info { struct acpi_gpe_xrupt_info *Previous; struct acpi_gpe_xrupt_info *Next; ACPI_GPE_BLOCK_INFO *GpeBlockListHead; /* List of GPE blocks for this xrupt */ UINT32 InterruptNumber; /* System interrupt number */ } ACPI_GPE_XRUPT_INFO; typedef struct acpi_gpe_walk_info { ACPI_NAMESPACE_NODE *GpeDevice; ACPI_GPE_BLOCK_INFO *GpeBlock; UINT16 Count; ACPI_OWNER_ID OwnerId; BOOLEAN ExecuteByOwnerId; } ACPI_GPE_WALK_INFO; typedef struct acpi_gpe_device_info { UINT32 Index; UINT32 NextBlockBaseIndex; ACPI_STATUS Status; ACPI_NAMESPACE_NODE *GpeDevice; } ACPI_GPE_DEVICE_INFO; typedef ACPI_STATUS (*ACPI_GPE_CALLBACK) ( ACPI_GPE_XRUPT_INFO *GpeXruptInfo, ACPI_GPE_BLOCK_INFO *GpeBlock, void *Context); /* Information about each particular fixed event */ typedef struct acpi_fixed_event_handler { ACPI_EVENT_HANDLER Handler; /* Address of handler. */ void *Context; /* Context to be passed to handler */ } ACPI_FIXED_EVENT_HANDLER; typedef struct acpi_fixed_event_info { UINT8 StatusRegisterId; UINT8 EnableRegisterId; UINT16 StatusBitMask; UINT16 EnableBitMask; } ACPI_FIXED_EVENT_INFO; /* Information used during field processing */ typedef struct acpi_field_info { UINT8 SkipField; UINT8 FieldFlag; UINT32 PkgLength; } ACPI_FIELD_INFO; /***************************************************************************** * * Generic "state" object for stacks * ****************************************************************************/ #define ACPI_CONTROL_NORMAL 0xC0 #define ACPI_CONTROL_CONDITIONAL_EXECUTING 0xC1 #define ACPI_CONTROL_PREDICATE_EXECUTING 0xC2 #define ACPI_CONTROL_PREDICATE_FALSE 0xC3 #define ACPI_CONTROL_PREDICATE_TRUE 0xC4 #define ACPI_STATE_COMMON \ void *Next; \ UINT8 DescriptorType; /* To differentiate various internal objs */\ UINT8 Flags; \ UINT16 Value; \ UINT16 State; /* There are 2 bytes available here until the next natural alignment boundary */ typedef struct acpi_common_state { ACPI_STATE_COMMON } ACPI_COMMON_STATE; /* * Update state - used to traverse complex objects such as packages */ typedef struct acpi_update_state { ACPI_STATE_COMMON union acpi_operand_object *Object; } ACPI_UPDATE_STATE; /* * Pkg state - used to traverse nested package structures */ typedef struct acpi_pkg_state { ACPI_STATE_COMMON UINT16 Index; union acpi_operand_object *SourceObject; union acpi_operand_object *DestObject; struct acpi_walk_state *WalkState; void *ThisTargetObj; UINT32 NumPackages; } ACPI_PKG_STATE; /* * Control state - one per if/else and while constructs. * Allows nesting of these constructs */ typedef struct acpi_control_state { ACPI_STATE_COMMON UINT16 Opcode; union acpi_parse_object *PredicateOp; UINT8 *AmlPredicateStart; /* Start of if/while predicate */ UINT8 *PackageEnd; /* End of if/while block */ UINT32 LoopCount; /* While() loop counter */ } ACPI_CONTROL_STATE; /* * Scope state - current scope during namespace lookups */ typedef struct acpi_scope_state { ACPI_STATE_COMMON ACPI_NAMESPACE_NODE *Node; } ACPI_SCOPE_STATE; typedef struct acpi_pscope_state { ACPI_STATE_COMMON UINT32 ArgCount; /* Number of fixed arguments */ union acpi_parse_object *Op; /* Current op being parsed */ UINT8 *ArgEnd; /* Current argument end */ UINT8 *PkgEnd; /* Current package end */ UINT32 ArgList; /* Next argument to parse */ } ACPI_PSCOPE_STATE; /* * Thread state - one per thread across multiple walk states. Multiple walk * states are created when there are nested control methods executing. */ typedef struct acpi_thread_state { ACPI_STATE_COMMON UINT8 CurrentSyncLevel; /* Mutex Sync (nested acquire) level */ struct acpi_walk_state *WalkStateList; /* Head of list of WalkStates for this thread */ union acpi_operand_object *AcquiredMutexList; /* List of all currently acquired mutexes */ ACPI_THREAD_ID ThreadId; /* Running thread ID */ } ACPI_THREAD_STATE; /* * Result values - used to accumulate the results of nested * AML arguments */ typedef struct acpi_result_values { ACPI_STATE_COMMON union acpi_operand_object *ObjDesc [ACPI_RESULTS_FRAME_OBJ_NUM]; } ACPI_RESULT_VALUES; typedef ACPI_STATUS (*ACPI_PARSE_DOWNWARDS) ( struct acpi_walk_state *WalkState, union acpi_parse_object **OutOp); typedef ACPI_STATUS (*ACPI_PARSE_UPWARDS) ( struct acpi_walk_state *WalkState); /* Global handlers for AML Notifies */ typedef struct acpi_global_notify_handler { ACPI_NOTIFY_HANDLER Handler; void *Context; } ACPI_GLOBAL_NOTIFY_HANDLER; /* * Notify info - used to pass info to the deferred notify * handler/dispatcher. */ typedef struct acpi_notify_info { ACPI_STATE_COMMON UINT8 HandlerListId; ACPI_NAMESPACE_NODE *Node; union acpi_operand_object *HandlerListHead; ACPI_GLOBAL_NOTIFY_HANDLER *Global; } ACPI_NOTIFY_INFO; /* Generic state is union of structs above */ typedef union acpi_generic_state { ACPI_COMMON_STATE Common; ACPI_CONTROL_STATE Control; ACPI_UPDATE_STATE Update; ACPI_SCOPE_STATE Scope; ACPI_PSCOPE_STATE ParseScope; ACPI_PKG_STATE Pkg; ACPI_THREAD_STATE Thread; ACPI_RESULT_VALUES Results; ACPI_NOTIFY_INFO Notify; } ACPI_GENERIC_STATE; /***************************************************************************** * * Interpreter typedefs and structs * ****************************************************************************/ typedef ACPI_STATUS (*ACPI_EXECUTE_OP) ( struct acpi_walk_state *WalkState); /* Address Range info block */ typedef struct acpi_address_range { struct acpi_address_range *Next; ACPI_NAMESPACE_NODE *RegionNode; ACPI_PHYSICAL_ADDRESS StartAddress; ACPI_PHYSICAL_ADDRESS EndAddress; } ACPI_ADDRESS_RANGE; /***************************************************************************** * * Parser typedefs and structs * ****************************************************************************/ /* * AML opcode, name, and argument layout */ typedef struct acpi_opcode_info { #if defined(ACPI_DISASSEMBLER) || defined(ACPI_DEBUG_OUTPUT) char *Name; /* Opcode name (disassembler/debug only) */ #endif UINT32 ParseArgs; /* Grammar/Parse time arguments */ UINT32 RuntimeArgs; /* Interpret time arguments */ UINT16 Flags; /* Misc flags */ UINT8 ObjectType; /* Corresponding internal object type */ UINT8 Class; /* Opcode class */ UINT8 Type; /* Opcode type */ } ACPI_OPCODE_INFO; /* Structure for Resource Tag information */ typedef struct acpi_tag_info { UINT32 BitOffset; UINT32 BitLength; } ACPI_TAG_INFO; /* Value associated with the parse object */ typedef union acpi_parse_value { UINT64 Integer; /* Integer constant (Up to 64 bits) */ UINT32 Size; /* bytelist or field size */ char *String; /* NULL terminated string */ UINT8 *Buffer; /* buffer or string */ char *Name; /* NULL terminated string */ union acpi_parse_object *Arg; /* arguments and contained ops */ ACPI_TAG_INFO Tag; /* Resource descriptor tag info */ } ACPI_PARSE_VALUE; #if defined(ACPI_DISASSEMBLER) || defined(ACPI_DEBUG_OUTPUT) #define ACPI_DISASM_ONLY_MEMBERS(a) a; #else #define ACPI_DISASM_ONLY_MEMBERS(a) #endif #define ACPI_PARSE_COMMON \ union acpi_parse_object *Parent; /* Parent op */\ UINT8 DescriptorType; /* To differentiate various internal objs */\ UINT8 Flags; /* Type of Op */\ UINT16 AmlOpcode; /* AML opcode */\ UINT8 *Aml; /* Address of declaration in AML */\ union acpi_parse_object *Next; /* Next op */\ ACPI_NAMESPACE_NODE *Node; /* For use by interpreter */\ ACPI_PARSE_VALUE Value; /* Value or args associated with the opcode */\ UINT8 ArgListLength; /* Number of elements in the arg list */\ ACPI_DISASM_ONLY_MEMBERS (\ UINT8 DisasmFlags; /* Used during AML disassembly */\ UINT8 DisasmOpcode; /* Subtype used for disassembly */\ char *OperatorSymbol;/* Used for C-style operator name strings */\ char AmlOpName[16]) /* Op name (debug only) */ /* Flags for DisasmFlags field above */ #define ACPI_DASM_BUFFER 0x00 /* Buffer is a simple data buffer */ #define ACPI_DASM_RESOURCE 0x01 /* Buffer is a Resource Descriptor */ #define ACPI_DASM_STRING 0x02 /* Buffer is a ASCII string */ #define ACPI_DASM_UNICODE 0x03 /* Buffer is a Unicode string */ #define ACPI_DASM_PLD_METHOD 0x04 /* Buffer is a _PLD method bit-packed buffer */ #define ACPI_DASM_UUID 0x05 /* Buffer is a UUID/GUID */ #define ACPI_DASM_EISAID 0x06 /* Integer is an EISAID */ #define ACPI_DASM_MATCHOP 0x07 /* Parent opcode is a Match() operator */ #define ACPI_DASM_LNOT_PREFIX 0x08 /* Start of a LNotEqual (etc.) pair of opcodes */ #define ACPI_DASM_LNOT_SUFFIX 0x09 /* End of a LNotEqual (etc.) pair of opcodes */ #define ACPI_DASM_HID_STRING 0x0A /* String is a _HID or _CID */ #define ACPI_DASM_IGNORE 0x0B /* Not used at this time */ /* * Generic operation (for example: If, While, Store) */ typedef struct acpi_parse_obj_common { ACPI_PARSE_COMMON } ACPI_PARSE_OBJ_COMMON; /* * Extended Op for named ops (Scope, Method, etc.), deferred ops (Methods and OpRegions), * and bytelists. */ typedef struct acpi_parse_obj_named { ACPI_PARSE_COMMON UINT8 *Path; UINT8 *Data; /* AML body or bytelist data */ UINT32 Length; /* AML length */ UINT32 Name; /* 4-byte name or zero if no name */ } ACPI_PARSE_OBJ_NAMED; /* This version is used by the iASL compiler only */ #define ACPI_MAX_PARSEOP_NAME 20 typedef struct acpi_parse_obj_asl { ACPI_PARSE_COMMON union acpi_parse_object *Child; union acpi_parse_object *ParentMethod; char *Filename; char *ExternalName; char *Namepath; char NameSeg[4]; UINT32 ExtraValue; UINT32 Column; UINT32 LineNumber; UINT32 LogicalLineNumber; UINT32 LogicalByteOffset; UINT32 EndLine; UINT32 EndLogicalLine; UINT32 AcpiBtype; UINT32 AmlLength; UINT32 AmlSubtreeLength; UINT32 FinalAmlLength; UINT32 FinalAmlOffset; UINT32 CompileFlags; UINT16 ParseOpcode; UINT8 AmlOpcodeLength; UINT8 AmlPkgLenBytes; UINT8 Extra; char ParseOpName[ACPI_MAX_PARSEOP_NAME]; } ACPI_PARSE_OBJ_ASL; typedef union acpi_parse_object { ACPI_PARSE_OBJ_COMMON Common; ACPI_PARSE_OBJ_NAMED Named; ACPI_PARSE_OBJ_ASL Asl; } ACPI_PARSE_OBJECT; /* * Parse state - one state per parser invocation and each control * method. */ typedef struct acpi_parse_state { UINT8 *AmlStart; /* First AML byte */ UINT8 *Aml; /* Next AML byte */ UINT8 *AmlEnd; /* (last + 1) AML byte */ UINT8 *PkgStart; /* Current package begin */ UINT8 *PkgEnd; /* Current package end */ union acpi_parse_object *StartOp; /* Root of parse tree */ struct acpi_namespace_node *StartNode; union acpi_generic_state *Scope; /* Current scope */ union acpi_parse_object *StartScope; UINT32 AmlSize; } ACPI_PARSE_STATE; /* Parse object flags */ #define ACPI_PARSEOP_GENERIC 0x01 #define ACPI_PARSEOP_NAMED_OBJECT 0x02 #define ACPI_PARSEOP_DEFERRED 0x04 #define ACPI_PARSEOP_BYTELIST 0x08 #define ACPI_PARSEOP_IN_STACK 0x10 #define ACPI_PARSEOP_TARGET 0x20 #define ACPI_PARSEOP_IN_CACHE 0x80 /* Parse object DisasmFlags */ #define ACPI_PARSEOP_IGNORE 0x01 #define ACPI_PARSEOP_PARAMETER_LIST 0x02 #define ACPI_PARSEOP_EMPTY_TERMLIST 0x04 #define ACPI_PARSEOP_PREDEFINED_CHECKED 0x08 #define ACPI_PARSEOP_CLOSING_PAREN 0x10 #define ACPI_PARSEOP_COMPOUND_ASSIGNMENT 0x20 #define ACPI_PARSEOP_ASSIGNMENT 0x40 #define ACPI_PARSEOP_ELSEIF 0x80 /***************************************************************************** * * Hardware (ACPI registers) and PNP * ****************************************************************************/ typedef struct acpi_bit_register_info { UINT8 ParentRegister; UINT8 BitPosition; UINT16 AccessBitMask; } ACPI_BIT_REGISTER_INFO; /* * Some ACPI registers have bits that must be ignored -- meaning that they * must be preserved. */ #define ACPI_PM1_STATUS_PRESERVED_BITS 0x0800 /* Bit 11 */ /* Write-only bits must be zeroed by software */ #define ACPI_PM1_CONTROL_WRITEONLY_BITS 0x2004 /* Bits 13, 2 */ /* For control registers, both ignored and reserved bits must be preserved */ /* * For PM1 control, the SCI enable bit (bit 0, SCI_EN) is defined by the * ACPI specification to be a "preserved" bit - "OSPM always preserves this * bit position", section 4.7.3.2.1. However, on some machines the OS must * write a one to this bit after resume for the machine to work properly. * To enable this, we no longer attempt to preserve this bit. No machines * are known to fail if the bit is not preserved. (May 2009) */ #define ACPI_PM1_CONTROL_IGNORED_BITS 0x0200 /* Bit 9 */ #define ACPI_PM1_CONTROL_RESERVED_BITS 0xC1F8 /* Bits 14-15, 3-8 */ #define ACPI_PM1_CONTROL_PRESERVED_BITS \ (ACPI_PM1_CONTROL_IGNORED_BITS | ACPI_PM1_CONTROL_RESERVED_BITS) #define ACPI_PM2_CONTROL_PRESERVED_BITS 0xFFFFFFFE /* All except bit 0 */ /* * Register IDs * These are the full ACPI registers */ #define ACPI_REGISTER_PM1_STATUS 0x01 #define ACPI_REGISTER_PM1_ENABLE 0x02 #define ACPI_REGISTER_PM1_CONTROL 0x03 #define ACPI_REGISTER_PM2_CONTROL 0x04 #define ACPI_REGISTER_PM_TIMER 0x05 #define ACPI_REGISTER_PROCESSOR_BLOCK 0x06 #define ACPI_REGISTER_SMI_COMMAND_BLOCK 0x07 /* Masks used to access the BitRegisters */ #define ACPI_BITMASK_TIMER_STATUS 0x0001 #define ACPI_BITMASK_BUS_MASTER_STATUS 0x0010 #define ACPI_BITMASK_GLOBAL_LOCK_STATUS 0x0020 #define ACPI_BITMASK_POWER_BUTTON_STATUS 0x0100 #define ACPI_BITMASK_SLEEP_BUTTON_STATUS 0x0200 #define ACPI_BITMASK_RT_CLOCK_STATUS 0x0400 #define ACPI_BITMASK_PCIEXP_WAKE_STATUS 0x4000 /* ACPI 3.0 */ #define ACPI_BITMASK_WAKE_STATUS 0x8000 #define ACPI_BITMASK_ALL_FIXED_STATUS (\ ACPI_BITMASK_TIMER_STATUS | \ ACPI_BITMASK_BUS_MASTER_STATUS | \ ACPI_BITMASK_GLOBAL_LOCK_STATUS | \ ACPI_BITMASK_POWER_BUTTON_STATUS | \ ACPI_BITMASK_SLEEP_BUTTON_STATUS | \ ACPI_BITMASK_RT_CLOCK_STATUS | \ ACPI_BITMASK_PCIEXP_WAKE_STATUS | \ ACPI_BITMASK_WAKE_STATUS) #define ACPI_BITMASK_TIMER_ENABLE 0x0001 #define ACPI_BITMASK_GLOBAL_LOCK_ENABLE 0x0020 #define ACPI_BITMASK_POWER_BUTTON_ENABLE 0x0100 #define ACPI_BITMASK_SLEEP_BUTTON_ENABLE 0x0200 #define ACPI_BITMASK_RT_CLOCK_ENABLE 0x0400 #define ACPI_BITMASK_PCIEXP_WAKE_DISABLE 0x4000 /* ACPI 3.0 */ #define ACPI_BITMASK_SCI_ENABLE 0x0001 #define ACPI_BITMASK_BUS_MASTER_RLD 0x0002 #define ACPI_BITMASK_GLOBAL_LOCK_RELEASE 0x0004 #define ACPI_BITMASK_SLEEP_TYPE 0x1C00 #define ACPI_BITMASK_SLEEP_ENABLE 0x2000 #define ACPI_BITMASK_ARB_DISABLE 0x0001 /* Raw bit position of each BitRegister */ #define ACPI_BITPOSITION_TIMER_STATUS 0x00 #define ACPI_BITPOSITION_BUS_MASTER_STATUS 0x04 #define ACPI_BITPOSITION_GLOBAL_LOCK_STATUS 0x05 #define ACPI_BITPOSITION_POWER_BUTTON_STATUS 0x08 #define ACPI_BITPOSITION_SLEEP_BUTTON_STATUS 0x09 #define ACPI_BITPOSITION_RT_CLOCK_STATUS 0x0A #define ACPI_BITPOSITION_PCIEXP_WAKE_STATUS 0x0E /* ACPI 3.0 */ #define ACPI_BITPOSITION_WAKE_STATUS 0x0F #define ACPI_BITPOSITION_TIMER_ENABLE 0x00 #define ACPI_BITPOSITION_GLOBAL_LOCK_ENABLE 0x05 #define ACPI_BITPOSITION_POWER_BUTTON_ENABLE 0x08 #define ACPI_BITPOSITION_SLEEP_BUTTON_ENABLE 0x09 #define ACPI_BITPOSITION_RT_CLOCK_ENABLE 0x0A #define ACPI_BITPOSITION_PCIEXP_WAKE_DISABLE 0x0E /* ACPI 3.0 */ #define ACPI_BITPOSITION_SCI_ENABLE 0x00 #define ACPI_BITPOSITION_BUS_MASTER_RLD 0x01 #define ACPI_BITPOSITION_GLOBAL_LOCK_RELEASE 0x02 #define ACPI_BITPOSITION_SLEEP_TYPE 0x0A #define ACPI_BITPOSITION_SLEEP_ENABLE 0x0D #define ACPI_BITPOSITION_ARB_DISABLE 0x00 /* Structs and definitions for _OSI support and I/O port validation */ #define ACPI_ALWAYS_ILLEGAL 0x00 typedef struct acpi_interface_info { char *Name; struct acpi_interface_info *Next; UINT8 Flags; UINT8 Value; } ACPI_INTERFACE_INFO; #define ACPI_OSI_INVALID 0x01 #define ACPI_OSI_DYNAMIC 0x02 #define ACPI_OSI_FEATURE 0x04 #define ACPI_OSI_DEFAULT_INVALID 0x08 #define ACPI_OSI_OPTIONAL_FEATURE (ACPI_OSI_FEATURE | ACPI_OSI_DEFAULT_INVALID | ACPI_OSI_INVALID) typedef struct acpi_port_info { char *Name; UINT16 Start; UINT16 End; UINT8 OsiDependency; } ACPI_PORT_INFO; /***************************************************************************** * * Resource descriptors * ****************************************************************************/ /* ResourceType values */ #define ACPI_ADDRESS_TYPE_MEMORY_RANGE 0 #define ACPI_ADDRESS_TYPE_IO_RANGE 1 #define ACPI_ADDRESS_TYPE_BUS_NUMBER_RANGE 2 /* Resource descriptor types and masks */ #define ACPI_RESOURCE_NAME_LARGE 0x80 #define ACPI_RESOURCE_NAME_SMALL 0x00 #define ACPI_RESOURCE_NAME_SMALL_MASK 0x78 /* Bits 6:3 contain the type */ #define ACPI_RESOURCE_NAME_SMALL_LENGTH_MASK 0x07 /* Bits 2:0 contain the length */ #define ACPI_RESOURCE_NAME_LARGE_MASK 0x7F /* Bits 6:0 contain the type */ /* * Small resource descriptor "names" as defined by the ACPI specification. * Note: Bits 2:0 are used for the descriptor length */ #define ACPI_RESOURCE_NAME_IRQ 0x20 #define ACPI_RESOURCE_NAME_DMA 0x28 #define ACPI_RESOURCE_NAME_START_DEPENDENT 0x30 #define ACPI_RESOURCE_NAME_END_DEPENDENT 0x38 #define ACPI_RESOURCE_NAME_IO 0x40 #define ACPI_RESOURCE_NAME_FIXED_IO 0x48 #define ACPI_RESOURCE_NAME_FIXED_DMA 0x50 #define ACPI_RESOURCE_NAME_RESERVED_S2 0x58 #define ACPI_RESOURCE_NAME_RESERVED_S3 0x60 #define ACPI_RESOURCE_NAME_RESERVED_S4 0x68 #define ACPI_RESOURCE_NAME_VENDOR_SMALL 0x70 #define ACPI_RESOURCE_NAME_END_TAG 0x78 /* * Large resource descriptor "names" as defined by the ACPI specification. * Note: includes the Large Descriptor bit in bit[7] */ #define ACPI_RESOURCE_NAME_MEMORY24 0x81 #define ACPI_RESOURCE_NAME_GENERIC_REGISTER 0x82 #define ACPI_RESOURCE_NAME_RESERVED_L1 0x83 #define ACPI_RESOURCE_NAME_VENDOR_LARGE 0x84 #define ACPI_RESOURCE_NAME_MEMORY32 0x85 #define ACPI_RESOURCE_NAME_FIXED_MEMORY32 0x86 #define ACPI_RESOURCE_NAME_ADDRESS32 0x87 #define ACPI_RESOURCE_NAME_ADDRESS16 0x88 #define ACPI_RESOURCE_NAME_EXTENDED_IRQ 0x89 #define ACPI_RESOURCE_NAME_ADDRESS64 0x8A #define ACPI_RESOURCE_NAME_EXTENDED_ADDRESS64 0x8B #define ACPI_RESOURCE_NAME_GPIO 0x8C #define ACPI_RESOURCE_NAME_SERIAL_BUS 0x8E #define ACPI_RESOURCE_NAME_LARGE_MAX 0x8E /***************************************************************************** * * Miscellaneous * ****************************************************************************/ #define ACPI_ASCII_ZERO 0x30 /***************************************************************************** * * Disassembler * ****************************************************************************/ typedef struct acpi_external_list { char *Path; char *InternalPath; struct acpi_external_list *Next; UINT32 Value; UINT16 Length; UINT16 Flags; UINT8 Type; } ACPI_EXTERNAL_LIST; /* Values for Flags field above */ #define ACPI_EXT_RESOLVED_REFERENCE 0x01 /* Object was resolved during cross ref */ #define ACPI_EXT_ORIGIN_FROM_FILE 0x02 /* External came from a file */ #define ACPI_EXT_INTERNAL_PATH_ALLOCATED 0x04 /* Deallocate internal path on completion */ #define ACPI_EXT_EXTERNAL_EMITTED 0x08 /* External() statement has been emitted */ #define ACPI_EXT_ORIGIN_FROM_OPCODE 0x10 /* External came from a External() opcode */ typedef struct acpi_external_file { char *Path; struct acpi_external_file *Next; } ACPI_EXTERNAL_FILE; /***************************************************************************** * * Debugger * ****************************************************************************/ typedef struct acpi_db_method_info { ACPI_HANDLE Method; ACPI_HANDLE MainThreadGate; ACPI_HANDLE ThreadCompleteGate; ACPI_HANDLE InfoGate; ACPI_THREAD_ID *Threads; UINT32 NumThreads; UINT32 NumCreated; UINT32 NumCompleted; char *Name; UINT32 Flags; UINT32 NumLoops; char Pathname[ACPI_DB_LINE_BUFFER_SIZE]; char **Args; ACPI_OBJECT_TYPE *Types; /* * Arguments to be passed to method for the command * Threads - * the Number of threads, ID of current thread and * Index of current thread inside all them created. */ char InitArgs; #ifdef ACPI_DEBUGGER ACPI_OBJECT_TYPE ArgTypes[4]; #endif char *Arguments[4]; char NumThreadsStr[11]; char IdOfThreadStr[11]; char IndexOfThreadStr[11]; } ACPI_DB_METHOD_INFO; typedef struct acpi_integrity_info { UINT32 Nodes; UINT32 Objects; } ACPI_INTEGRITY_INFO; #define ACPI_DB_DISABLE_OUTPUT 0x00 #define ACPI_DB_REDIRECTABLE_OUTPUT 0x01 #define ACPI_DB_CONSOLE_OUTPUT 0x02 #define ACPI_DB_DUPLICATE_OUTPUT 0x03 typedef struct acpi_object_info { UINT32 Types[ACPI_TOTAL_TYPES]; } ACPI_OBJECT_INFO; /***************************************************************************** * * Debug * ****************************************************************************/ /* Entry for a memory allocation (debug only) */ #define ACPI_MEM_MALLOC 0 #define ACPI_MEM_CALLOC 1 #define ACPI_MAX_MODULE_NAME 16 #define ACPI_COMMON_DEBUG_MEM_HEADER \ struct acpi_debug_mem_block *Previous; \ struct acpi_debug_mem_block *Next; \ UINT32 Size; \ UINT32 Component; \ UINT32 Line; \ char Module[ACPI_MAX_MODULE_NAME]; \ UINT8 AllocType; typedef struct acpi_debug_mem_header { ACPI_COMMON_DEBUG_MEM_HEADER } ACPI_DEBUG_MEM_HEADER; typedef struct acpi_debug_mem_block { ACPI_COMMON_DEBUG_MEM_HEADER UINT64 UserSpace; } ACPI_DEBUG_MEM_BLOCK; #define ACPI_MEM_LIST_GLOBAL 0 #define ACPI_MEM_LIST_NSNODE 1 #define ACPI_MEM_LIST_MAX 1 #define ACPI_NUM_MEM_LISTS 2 /***************************************************************************** * * Info/help support * ****************************************************************************/ typedef struct ah_predefined_name { char *Name; char *Description; #ifndef ACPI_ASL_COMPILER char *Action; #endif } AH_PREDEFINED_NAME; typedef struct ah_device_id { char *Name; char *Description; } AH_DEVICE_ID; typedef struct ah_uuid { char *Description; char *String; } AH_UUID; typedef struct ah_table { char *Signature; char *Description; } AH_TABLE; #endif /* __ACLOCAL_H__ */ Index: vendor-sys/acpica/dist/source/include/acnamesp.h =================================================================== --- vendor-sys/acpica/dist/source/include/acnamesp.h (revision 305161) +++ vendor-sys/acpica/dist/source/include/acnamesp.h (revision 305162) @@ -1,555 +1,567 @@ /****************************************************************************** * * Name: acnamesp.h - Namespace subcomponent prototypes and defines * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef __ACNAMESP_H__ #define __ACNAMESP_H__ /* To search the entire name space, pass this as SearchBase */ #define ACPI_NS_ALL ((ACPI_HANDLE)0) /* * Elements of AcpiNsProperties are bit significant * and should be one-to-one with values of ACPI_OBJECT_TYPE */ #define ACPI_NS_NORMAL 0 #define ACPI_NS_NEWSCOPE 1 /* a definition of this type opens a name scope */ #define ACPI_NS_LOCAL 2 /* suppress search of enclosing scopes */ /* Flags for AcpiNsLookup, AcpiNsSearchAndEnter */ #define ACPI_NS_NO_UPSEARCH 0 #define ACPI_NS_SEARCH_PARENT 0x01 #define ACPI_NS_DONT_OPEN_SCOPE 0x02 #define ACPI_NS_NO_PEER_SEARCH 0x04 #define ACPI_NS_ERROR_IF_FOUND 0x08 #define ACPI_NS_PREFIX_IS_SCOPE 0x10 #define ACPI_NS_EXTERNAL 0x20 #define ACPI_NS_TEMPORARY 0x40 #define ACPI_NS_OVERRIDE_IF_FOUND 0x80 /* Flags for AcpiNsWalkNamespace */ #define ACPI_NS_WALK_NO_UNLOCK 0 #define ACPI_NS_WALK_UNLOCK 0x01 #define ACPI_NS_WALK_TEMP_NODES 0x02 /* Object is not a package element */ #define ACPI_NOT_PACKAGE_ELEMENT ACPI_UINT32_MAX #define ACPI_ALL_PACKAGE_ELEMENTS (ACPI_UINT32_MAX-1) /* Always emit warning message, not dependent on node flags */ #define ACPI_WARN_ALWAYS 0 /* * nsinit - Namespace initialization */ ACPI_STATUS AcpiNsInitializeObjects ( void); ACPI_STATUS AcpiNsInitializeDevices ( UINT32 Flags); /* * nsload - Namespace loading */ ACPI_STATUS AcpiNsLoadNamespace ( void); ACPI_STATUS AcpiNsLoadTable ( UINT32 TableIndex, ACPI_NAMESPACE_NODE *Node); /* * nswalk - walk the namespace */ ACPI_STATUS AcpiNsWalkNamespace ( ACPI_OBJECT_TYPE Type, ACPI_HANDLE StartObject, UINT32 MaxDepth, UINT32 Flags, ACPI_WALK_CALLBACK DescendingCallback, ACPI_WALK_CALLBACK AscendingCallback, void *Context, void **ReturnValue); ACPI_NAMESPACE_NODE * AcpiNsGetNextNode ( ACPI_NAMESPACE_NODE *Parent, ACPI_NAMESPACE_NODE *Child); ACPI_NAMESPACE_NODE * AcpiNsGetNextNodeTyped ( ACPI_OBJECT_TYPE Type, ACPI_NAMESPACE_NODE *Parent, ACPI_NAMESPACE_NODE *Child); /* * nsparse - table parsing */ ACPI_STATUS AcpiNsParseTable ( UINT32 TableIndex, ACPI_NAMESPACE_NODE *StartNode); ACPI_STATUS +AcpiNsExecuteTable ( + UINT32 TableIndex, + ACPI_NAMESPACE_NODE *StartNode); + +ACPI_STATUS AcpiNsOneCompleteParse ( UINT32 PassNumber, UINT32 TableIndex, ACPI_NAMESPACE_NODE *StartNode); /* * nsaccess - Top-level namespace access */ ACPI_STATUS AcpiNsRootInitialize ( void); ACPI_STATUS AcpiNsLookup ( ACPI_GENERIC_STATE *ScopeInfo, char *Name, ACPI_OBJECT_TYPE Type, ACPI_INTERPRETER_MODE InterpreterMode, UINT32 Flags, ACPI_WALK_STATE *WalkState, ACPI_NAMESPACE_NODE **RetNode); /* * nsalloc - Named object allocation/deallocation */ ACPI_NAMESPACE_NODE * AcpiNsCreateNode ( UINT32 Name); void AcpiNsDeleteNode ( ACPI_NAMESPACE_NODE *Node); void AcpiNsRemoveNode ( ACPI_NAMESPACE_NODE *Node); void AcpiNsDeleteNamespaceSubtree ( ACPI_NAMESPACE_NODE *ParentHandle); void AcpiNsDeleteNamespaceByOwner ( ACPI_OWNER_ID OwnerId); void AcpiNsDetachObject ( ACPI_NAMESPACE_NODE *Node); void AcpiNsDeleteChildren ( ACPI_NAMESPACE_NODE *Parent); int AcpiNsCompareNames ( char *Name1, char *Name2); /* * nsconvert - Dynamic object conversion routines */ ACPI_STATUS AcpiNsConvertToInteger ( ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ReturnObject); ACPI_STATUS AcpiNsConvertToString ( ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ReturnObject); ACPI_STATUS AcpiNsConvertToBuffer ( ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ReturnObject); ACPI_STATUS AcpiNsConvertToUnicode ( ACPI_NAMESPACE_NODE *Scope, ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ReturnObject); ACPI_STATUS AcpiNsConvertToResource ( ACPI_NAMESPACE_NODE *Scope, ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ReturnObject); ACPI_STATUS AcpiNsConvertToReference ( ACPI_NAMESPACE_NODE *Scope, ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ReturnObject); /* * nsdump - Namespace dump/print utilities */ void AcpiNsDumpTables ( ACPI_HANDLE SearchBase, UINT32 MaxDepth); void AcpiNsDumpEntry ( ACPI_HANDLE Handle, UINT32 DebugLevel); void AcpiNsDumpPathname ( ACPI_HANDLE Handle, const char *Msg, UINT32 Level, UINT32 Component); void AcpiNsPrintPathname ( UINT32 NumSegments, const char *Pathname); ACPI_STATUS AcpiNsDumpOneObject ( ACPI_HANDLE ObjHandle, UINT32 Level, void *Context, void **ReturnValue); void AcpiNsDumpObjects ( ACPI_OBJECT_TYPE Type, UINT8 DisplayType, UINT32 MaxDepth, ACPI_OWNER_ID OwnerId, ACPI_HANDLE StartHandle); void AcpiNsDumpObjectPaths ( ACPI_OBJECT_TYPE Type, UINT8 DisplayType, UINT32 MaxDepth, ACPI_OWNER_ID OwnerId, ACPI_HANDLE StartHandle); /* * nseval - Namespace evaluation functions */ ACPI_STATUS AcpiNsEvaluate ( ACPI_EVALUATE_INFO *Info); void AcpiNsExecModuleCodeList ( void); /* * nsarguments - Argument count/type checking for predefined/reserved names */ void AcpiNsCheckArgumentCount ( char *Pathname, ACPI_NAMESPACE_NODE *Node, UINT32 UserParamCount, const ACPI_PREDEFINED_INFO *Info); void AcpiNsCheckAcpiCompliance ( char *Pathname, ACPI_NAMESPACE_NODE *Node, const ACPI_PREDEFINED_INFO *Predefined); void AcpiNsCheckArgumentTypes ( ACPI_EVALUATE_INFO *Info); /* * nspredef - Return value checking for predefined/reserved names */ ACPI_STATUS AcpiNsCheckReturnValue ( ACPI_NAMESPACE_NODE *Node, ACPI_EVALUATE_INFO *Info, UINT32 UserParamCount, ACPI_STATUS ReturnStatus, ACPI_OPERAND_OBJECT **ReturnObject); ACPI_STATUS AcpiNsCheckObjectType ( ACPI_EVALUATE_INFO *Info, ACPI_OPERAND_OBJECT **ReturnObjectPtr, UINT32 ExpectedBtypes, UINT32 PackageIndex); /* * nsprepkg - Validation of predefined name packages */ ACPI_STATUS AcpiNsCheckPackage ( ACPI_EVALUATE_INFO *Info, ACPI_OPERAND_OBJECT **ReturnObjectPtr); /* * nsnames - Name and Scope manipulation */ UINT32 AcpiNsOpensScope ( ACPI_OBJECT_TYPE Type); char * AcpiNsGetExternalPathname ( ACPI_NAMESPACE_NODE *Node); UINT32 AcpiNsBuildNormalizedPath ( ACPI_NAMESPACE_NODE *Node, char *FullPath, UINT32 PathSize, BOOLEAN NoTrailing); char * AcpiNsGetNormalizedPathname ( ACPI_NAMESPACE_NODE *Node, BOOLEAN NoTrailing); char * AcpiNsNameOfCurrentScope ( ACPI_WALK_STATE *WalkState); ACPI_STATUS AcpiNsHandleToPathname ( ACPI_HANDLE TargetHandle, ACPI_BUFFER *Buffer, BOOLEAN NoTrailing); BOOLEAN AcpiNsPatternMatch ( ACPI_NAMESPACE_NODE *ObjNode, char *SearchFor); + +ACPI_STATUS +AcpiNsGetNodeUnlocked ( + ACPI_NAMESPACE_NODE *PrefixNode, + const char *ExternalPathname, + UINT32 Flags, + ACPI_NAMESPACE_NODE **OutNode); ACPI_STATUS AcpiNsGetNode ( ACPI_NAMESPACE_NODE *PrefixNode, const char *ExternalPathname, UINT32 Flags, ACPI_NAMESPACE_NODE **OutNode); ACPI_SIZE AcpiNsGetPathnameLength ( ACPI_NAMESPACE_NODE *Node); /* * nsobject - Object management for namespace nodes */ ACPI_STATUS AcpiNsAttachObject ( ACPI_NAMESPACE_NODE *Node, ACPI_OPERAND_OBJECT *Object, ACPI_OBJECT_TYPE Type); ACPI_OPERAND_OBJECT * AcpiNsGetAttachedObject ( ACPI_NAMESPACE_NODE *Node); ACPI_OPERAND_OBJECT * AcpiNsGetSecondaryObject ( ACPI_OPERAND_OBJECT *ObjDesc); ACPI_STATUS AcpiNsAttachData ( ACPI_NAMESPACE_NODE *Node, ACPI_OBJECT_HANDLER Handler, void *Data); ACPI_STATUS AcpiNsDetachData ( ACPI_NAMESPACE_NODE *Node, ACPI_OBJECT_HANDLER Handler); ACPI_STATUS AcpiNsGetAttachedData ( ACPI_NAMESPACE_NODE *Node, ACPI_OBJECT_HANDLER Handler, void **Data); /* * nsrepair - General return object repair for all * predefined methods/objects */ ACPI_STATUS AcpiNsSimpleRepair ( ACPI_EVALUATE_INFO *Info, UINT32 ExpectedBtypes, UINT32 PackageIndex, ACPI_OPERAND_OBJECT **ReturnObjectPtr); ACPI_STATUS AcpiNsWrapWithPackage ( ACPI_EVALUATE_INFO *Info, ACPI_OPERAND_OBJECT *OriginalObject, ACPI_OPERAND_OBJECT **ObjDescPtr); ACPI_STATUS AcpiNsRepairNullElement ( ACPI_EVALUATE_INFO *Info, UINT32 ExpectedBtypes, UINT32 PackageIndex, ACPI_OPERAND_OBJECT **ReturnObjectPtr); void AcpiNsRemoveNullElements ( ACPI_EVALUATE_INFO *Info, UINT8 PackageType, ACPI_OPERAND_OBJECT *ObjDesc); /* * nsrepair2 - Return object repair for specific * predefined methods/objects */ ACPI_STATUS AcpiNsComplexRepairs ( ACPI_EVALUATE_INFO *Info, ACPI_NAMESPACE_NODE *Node, ACPI_STATUS ValidateStatus, ACPI_OPERAND_OBJECT **ReturnObjectPtr); /* * nssearch - Namespace searching and entry */ ACPI_STATUS AcpiNsSearchAndEnter ( UINT32 EntryName, ACPI_WALK_STATE *WalkState, ACPI_NAMESPACE_NODE *Node, ACPI_INTERPRETER_MODE InterpreterMode, ACPI_OBJECT_TYPE Type, UINT32 Flags, ACPI_NAMESPACE_NODE **RetNode); ACPI_STATUS AcpiNsSearchOneScope ( UINT32 EntryName, ACPI_NAMESPACE_NODE *Node, ACPI_OBJECT_TYPE Type, ACPI_NAMESPACE_NODE **RetNode); void AcpiNsInstallNode ( ACPI_WALK_STATE *WalkState, ACPI_NAMESPACE_NODE *ParentNode, ACPI_NAMESPACE_NODE *Node, ACPI_OBJECT_TYPE Type); /* * nsutils - Utility functions */ ACPI_OBJECT_TYPE AcpiNsGetType ( ACPI_NAMESPACE_NODE *Node); UINT32 AcpiNsLocal ( ACPI_OBJECT_TYPE Type); void AcpiNsPrintNodePathname ( ACPI_NAMESPACE_NODE *Node, const char *Msg); ACPI_STATUS AcpiNsBuildInternalName ( ACPI_NAMESTRING_INFO *Info); void AcpiNsGetInternalNameLength ( ACPI_NAMESTRING_INFO *Info); ACPI_STATUS AcpiNsInternalizeName ( const char *DottedName, char **ConvertedName); ACPI_STATUS AcpiNsExternalizeName ( UINT32 InternalNameLength, const char *InternalName, UINT32 *ConvertedNameLength, char **ConvertedName); ACPI_NAMESPACE_NODE * AcpiNsValidateHandle ( ACPI_HANDLE Handle); void AcpiNsTerminate ( void); #endif /* __ACNAMESP_H__ */ Index: vendor-sys/acpica/dist/source/include/acparser.h =================================================================== --- vendor-sys/acpica/dist/source/include/acparser.h (revision 305161) +++ vendor-sys/acpica/dist/source/include/acparser.h (revision 305162) @@ -1,364 +1,368 @@ /****************************************************************************** * * Module Name: acparser.h - AML Parser subcomponent prototypes and defines * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef __ACPARSER_H__ #define __ACPARSER_H__ #define OP_HAS_RETURN_VALUE 1 /* Variable number of arguments. This field must be 32 bits */ #define ACPI_VAR_ARGS ACPI_UINT32_MAX #define ACPI_PARSE_DELETE_TREE 0x0001 #define ACPI_PARSE_NO_TREE_DELETE 0x0000 #define ACPI_PARSE_TREE_MASK 0x0001 #define ACPI_PARSE_LOAD_PASS1 0x0010 #define ACPI_PARSE_LOAD_PASS2 0x0020 #define ACPI_PARSE_EXECUTE 0x0030 #define ACPI_PARSE_MODE_MASK 0x0030 #define ACPI_PARSE_DEFERRED_OP 0x0100 #define ACPI_PARSE_DISASSEMBLE 0x0200 #define ACPI_PARSE_MODULE_LEVEL 0x0400 /****************************************************************************** * * Parser interfaces * *****************************************************************************/ extern const UINT8 AcpiGbl_ShortOpIndex[]; extern const UINT8 AcpiGbl_LongOpIndex[]; /* * psxface - Parser external interfaces */ ACPI_STATUS AcpiPsExecuteMethod ( ACPI_EVALUATE_INFO *Info); +ACPI_STATUS +AcpiPsExecuteTable ( + ACPI_EVALUATE_INFO *Info); + /* * psargs - Parse AML opcode arguments */ UINT8 * AcpiPsGetNextPackageEnd ( ACPI_PARSE_STATE *ParserState); char * AcpiPsGetNextNamestring ( ACPI_PARSE_STATE *ParserState); void AcpiPsGetNextSimpleArg ( ACPI_PARSE_STATE *ParserState, UINT32 ArgType, ACPI_PARSE_OBJECT *Arg); ACPI_STATUS AcpiPsGetNextNamepath ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_STATE *ParserState, ACPI_PARSE_OBJECT *Arg, BOOLEAN PossibleMethodCall); /* Values for BOOLEAN above */ #define ACPI_NOT_METHOD_CALL FALSE #define ACPI_POSSIBLE_METHOD_CALL TRUE ACPI_STATUS AcpiPsGetNextArg ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_STATE *ParserState, UINT32 ArgType, ACPI_PARSE_OBJECT **ReturnArg); /* * psfind */ ACPI_PARSE_OBJECT * AcpiPsFindName ( ACPI_PARSE_OBJECT *Scope, UINT32 Name, UINT32 Opcode); ACPI_PARSE_OBJECT* AcpiPsGetParent ( ACPI_PARSE_OBJECT *Op); /* * psobject - support for parse object processing */ ACPI_STATUS AcpiPsBuildNamedOp ( ACPI_WALK_STATE *WalkState, UINT8 *AmlOpStart, ACPI_PARSE_OBJECT *UnnamedOp, ACPI_PARSE_OBJECT **Op); ACPI_STATUS AcpiPsCreateOp ( ACPI_WALK_STATE *WalkState, UINT8 *AmlOpStart, ACPI_PARSE_OBJECT **NewOp); ACPI_STATUS AcpiPsCompleteOp ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT **Op, ACPI_STATUS Status); ACPI_STATUS AcpiPsCompleteFinalOp ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op, ACPI_STATUS Status); /* * psopinfo - AML Opcode information */ const ACPI_OPCODE_INFO * AcpiPsGetOpcodeInfo ( UINT16 Opcode); const char * AcpiPsGetOpcodeName ( UINT16 Opcode); UINT8 AcpiPsGetArgumentCount ( UINT32 OpType); /* * psparse - top level parsing routines */ ACPI_STATUS AcpiPsParseAml ( ACPI_WALK_STATE *WalkState); UINT32 AcpiPsGetOpcodeSize ( UINT32 Opcode); UINT16 AcpiPsPeekOpcode ( ACPI_PARSE_STATE *state); ACPI_STATUS AcpiPsCompleteThisOp ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op); ACPI_STATUS AcpiPsNextParseState ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op, ACPI_STATUS CallbackStatus); /* * psloop - main parse loop */ ACPI_STATUS AcpiPsParseLoop ( ACPI_WALK_STATE *WalkState); /* * psscope - Scope stack management routines */ ACPI_STATUS AcpiPsInitScope ( ACPI_PARSE_STATE *ParserState, ACPI_PARSE_OBJECT *Root); ACPI_PARSE_OBJECT * AcpiPsGetParentScope ( ACPI_PARSE_STATE *state); BOOLEAN AcpiPsHasCompletedScope ( ACPI_PARSE_STATE *ParserState); void AcpiPsPopScope ( ACPI_PARSE_STATE *ParserState, ACPI_PARSE_OBJECT **Op, UINT32 *ArgList, UINT32 *ArgCount); ACPI_STATUS AcpiPsPushScope ( ACPI_PARSE_STATE *ParserState, ACPI_PARSE_OBJECT *Op, UINT32 RemainingArgs, UINT32 ArgCount); void AcpiPsCleanupScope ( ACPI_PARSE_STATE *state); /* * pstree - parse tree manipulation routines */ void AcpiPsAppendArg( ACPI_PARSE_OBJECT *op, ACPI_PARSE_OBJECT *arg); ACPI_PARSE_OBJECT* AcpiPsFind ( ACPI_PARSE_OBJECT *Scope, char *Path, UINT16 Opcode, UINT32 Create); ACPI_PARSE_OBJECT * AcpiPsGetArg( ACPI_PARSE_OBJECT *op, UINT32 argn); ACPI_PARSE_OBJECT * AcpiPsGetDepthNext ( ACPI_PARSE_OBJECT *Origin, ACPI_PARSE_OBJECT *Op); /* * pswalk - parse tree walk routines */ ACPI_STATUS AcpiPsWalkParsedAml ( ACPI_PARSE_OBJECT *StartOp, ACPI_PARSE_OBJECT *EndOp, ACPI_OPERAND_OBJECT *MthDesc, ACPI_NAMESPACE_NODE *StartNode, ACPI_OPERAND_OBJECT **Params, ACPI_OPERAND_OBJECT **CallerReturnDesc, ACPI_OWNER_ID OwnerId, ACPI_PARSE_DOWNWARDS DescendingCallback, ACPI_PARSE_UPWARDS AscendingCallback); ACPI_STATUS AcpiPsGetNextWalkOp ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Op, ACPI_PARSE_UPWARDS AscendingCallback); ACPI_STATUS AcpiPsDeleteCompletedOp ( ACPI_WALK_STATE *WalkState); void AcpiPsDeleteParseTree ( ACPI_PARSE_OBJECT *root); /* * psutils - parser utilities */ ACPI_PARSE_OBJECT * AcpiPsCreateScopeOp ( UINT8 *Aml); void AcpiPsInitOp ( ACPI_PARSE_OBJECT *op, UINT16 opcode); ACPI_PARSE_OBJECT * AcpiPsAllocOp ( UINT16 Opcode, UINT8 *Aml); void AcpiPsFreeOp ( ACPI_PARSE_OBJECT *Op); BOOLEAN AcpiPsIsLeadingChar ( UINT32 c); UINT32 AcpiPsGetName( ACPI_PARSE_OBJECT *op); void AcpiPsSetName( ACPI_PARSE_OBJECT *op, UINT32 name); /* * psdump - display parser tree */ UINT32 AcpiPsSprintPath ( char *BufferStart, UINT32 BufferSize, ACPI_PARSE_OBJECT *Op); UINT32 AcpiPsSprintOp ( char *BufferStart, UINT32 BufferSize, ACPI_PARSE_OBJECT *Op); void AcpiPsShow ( ACPI_PARSE_OBJECT *op); #endif /* __ACPARSER_H__ */ Index: vendor-sys/acpica/dist/source/include/acpixf.h =================================================================== --- vendor-sys/acpica/dist/source/include/acpixf.h (revision 305161) +++ vendor-sys/acpica/dist/source/include/acpixf.h (revision 305162) @@ -1,1247 +1,1261 @@ /****************************************************************************** * * Name: acpixf.h - External interfaces to the ACPI subsystem * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef __ACXFACE_H__ #define __ACXFACE_H__ /* Current ACPICA subsystem version in YYYYMMDD format */ -#define ACPI_CA_VERSION 0x20160729 +#define ACPI_CA_VERSION 0x20160831 #include "acconfig.h" #include "actypes.h" #include "actbl.h" #include "acbuffer.h" /***************************************************************************** * * Macros used for ACPICA globals and configuration * ****************************************************************************/ /* * Ensure that global variables are defined and initialized only once. * * The use of these macros allows for a single list of globals (here) * in order to simplify maintenance of the code. */ #ifdef DEFINE_ACPI_GLOBALS #define ACPI_GLOBAL(type,name) \ extern type name; \ type name #define ACPI_INIT_GLOBAL(type,name,value) \ type name=value #else #ifndef ACPI_GLOBAL #define ACPI_GLOBAL(type,name) \ extern type name #endif #ifndef ACPI_INIT_GLOBAL #define ACPI_INIT_GLOBAL(type,name,value) \ extern type name #endif #endif /* * These macros configure the various ACPICA interfaces. They are * useful for generating stub inline functions for features that are * configured out of the current kernel or ACPICA application. */ #ifndef ACPI_EXTERNAL_RETURN_STATUS #define ACPI_EXTERNAL_RETURN_STATUS(Prototype) \ Prototype; #endif #ifndef ACPI_EXTERNAL_RETURN_OK #define ACPI_EXTERNAL_RETURN_OK(Prototype) \ Prototype; #endif #ifndef ACPI_EXTERNAL_RETURN_VOID #define ACPI_EXTERNAL_RETURN_VOID(Prototype) \ Prototype; #endif #ifndef ACPI_EXTERNAL_RETURN_UINT32 #define ACPI_EXTERNAL_RETURN_UINT32(Prototype) \ Prototype; #endif #ifndef ACPI_EXTERNAL_RETURN_PTR #define ACPI_EXTERNAL_RETURN_PTR(Prototype) \ Prototype; #endif /***************************************************************************** * * Public globals and runtime configuration options * ****************************************************************************/ /* * Enable "slack mode" of the AML interpreter? Default is FALSE, and the * interpreter strictly follows the ACPI specification. Setting to TRUE * allows the interpreter to ignore certain errors and/or bad AML constructs. * * Currently, these features are enabled by this flag: * * 1) Allow "implicit return" of last value in a control method * 2) Allow access beyond the end of an operation region * 3) Allow access to uninitialized locals/args (auto-init to integer 0) * 4) Allow ANY object type to be a source operand for the Store() operator * 5) Allow unresolved references (invalid target name) in package objects * 6) Enable warning messages for behavior that is not ACPI spec compliant */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_EnableInterpreterSlack, FALSE); /* * Automatically serialize all methods that create named objects? Default * is TRUE, meaning that all NonSerialized methods are scanned once at * table load time to determine those that create named objects. Methods * that create named objects are marked Serialized in order to prevent * possible run-time problems if they are entered by more than one thread. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_AutoSerializeMethods, TRUE); /* * Create the predefined _OSI method in the namespace? Default is TRUE * because ACPICA is fully compatible with other ACPI implementations. * Changing this will revert ACPICA (and machine ASL) to pre-OSI behavior. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_CreateOsiMethod, TRUE); /* * Optionally use default values for the ACPI register widths. Set this to * TRUE to use the defaults, if an FADT contains incorrect widths/lengths. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_UseDefaultRegisterWidths, TRUE); /* * Whether or not to verify the table checksum before installation. Set * this to TRUE to verify the table checksum before install it to the table * manager. Note that enabling this option causes errors to happen in some * OSPMs during early initialization stages. Default behavior is to do such * verification. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_VerifyTableChecksum, TRUE); /* * Optionally enable output from the AML Debug Object. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_EnableAmlDebugObject, FALSE); /* * Optionally copy the entire DSDT to local memory (instead of simply * mapping it.) There are some BIOSs that corrupt or replace the original * DSDT, creating the need for this option. Default is FALSE, do not copy * the DSDT. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_CopyDsdtLocally, FALSE); /* * Optionally ignore an XSDT if present and use the RSDT instead. * Although the ACPI specification requires that an XSDT be used instead * of the RSDT, the XSDT has been found to be corrupt or ill-formed on * some machines. Default behavior is to use the XSDT if present. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_DoNotUseXsdt, FALSE); /* * Optionally support group module level code. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_GroupModuleLevelCode, FALSE); /* + * Optionally support module level code by parsing the entire table as + * a TermList. Default is FALSE, do not execute entire table until some + * lock order issues are fixed. + */ +ACPI_INIT_GLOBAL (UINT8, AcpiGbl_ParseTableAsTermList, FALSE); + +/* * Optionally use 32-bit FADT addresses if and when there is a conflict * (address mismatch) between the 32-bit and 64-bit versions of the * address. Although ACPICA adheres to the ACPI specification which * requires the use of the corresponding 64-bit address if it is non-zero, * some machines have been found to have a corrupted non-zero 64-bit * address. Default is FALSE, do not favor the 32-bit addresses. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_Use32BitFadtAddresses, FALSE); /* * Optionally use 32-bit FACS table addresses. * It is reported that some platforms fail to resume from system suspending * if 64-bit FACS table address is selected: * https://bugzilla.kernel.org/show_bug.cgi?id=74021 * Default is TRUE, favor the 32-bit addresses. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_Use32BitFacsAddresses, TRUE); /* * Optionally truncate I/O addresses to 16 bits. Provides compatibility * with other ACPI implementations. NOTE: During ACPICA initialization, * this value is set to TRUE if any Windows OSI strings have been * requested by the BIOS. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_TruncateIoAddresses, FALSE); /* * Disable runtime checking and repair of values returned by control methods. * Use only if the repair is causing a problem on a particular machine. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_DisableAutoRepair, FALSE); /* * Optionally do not install any SSDTs from the RSDT/XSDT during initialization. * This can be useful for debugging ACPI problems on some machines. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_DisableSsdtTableInstall, FALSE); /* * Optionally enable runtime namespace override. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_RuntimeNamespaceOverride, TRUE); /* * We keep track of the latest version of Windows that has been requested by * the BIOS. ACPI 5.0. */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_OsiData, 0); /* * ACPI 5.0 introduces the concept of a "reduced hardware platform", meaning * that the ACPI hardware is no longer required. A flag in the FADT indicates * a reduced HW machine, and that flag is duplicated here for convenience. */ ACPI_INIT_GLOBAL (BOOLEAN, AcpiGbl_ReducedHardware, FALSE); /* * This mechanism is used to trace a specified AML method. The method is * traced each time it is executed. */ ACPI_INIT_GLOBAL (UINT32, AcpiGbl_TraceFlags, 0); ACPI_INIT_GLOBAL (const char *, AcpiGbl_TraceMethodName, NULL); ACPI_INIT_GLOBAL (UINT32, AcpiGbl_TraceDbgLevel, ACPI_TRACE_LEVEL_DEFAULT); ACPI_INIT_GLOBAL (UINT32, AcpiGbl_TraceDbgLayer, ACPI_TRACE_LAYER_DEFAULT); /* * Runtime configuration of debug output control masks. We want the debug * switches statically initialized so they are already set when the debugger * is entered. */ #ifdef ACPI_DEBUG_OUTPUT ACPI_INIT_GLOBAL (UINT32, AcpiDbgLevel, ACPI_DEBUG_DEFAULT); #else ACPI_INIT_GLOBAL (UINT32, AcpiDbgLevel, ACPI_NORMAL_DEFAULT); #endif ACPI_INIT_GLOBAL (UINT32, AcpiDbgLayer, ACPI_COMPONENT_DEFAULT); /* Optionally enable timer output with Debug Object output */ ACPI_INIT_GLOBAL (UINT8, AcpiGbl_DisplayDebugTimer, FALSE); /* * Other miscellaneous globals */ ACPI_GLOBAL (ACPI_TABLE_FADT, AcpiGbl_FADT); ACPI_GLOBAL (UINT32, AcpiCurrentGpeCount); ACPI_GLOBAL (BOOLEAN, AcpiGbl_SystemAwakeAndRunning); /***************************************************************************** * * ACPICA public interface configuration. * * Interfaces that are configured out of the ACPICA build are replaced * by inlined stubs by default. * ****************************************************************************/ /* * Hardware-reduced prototypes (default: Not hardware reduced). * * All ACPICA hardware-related interfaces that use these macros will be * configured out of the ACPICA build if the ACPI_REDUCED_HARDWARE flag * is set to TRUE. * * Note: This static build option for reduced hardware is intended to * reduce ACPICA code size if desired or necessary. However, even if this * option is not specified, the runtime behavior of ACPICA is dependent * on the actual FADT reduced hardware flag (HW_REDUCED_ACPI). If set, * the flag will enable similar behavior -- ACPICA will not attempt * to access any ACPI-relate hardware (SCI, GPEs, Fixed Events, etc.) */ #if (!ACPI_REDUCED_HARDWARE) #define ACPI_HW_DEPENDENT_RETURN_STATUS(Prototype) \ ACPI_EXTERNAL_RETURN_STATUS(Prototype) #define ACPI_HW_DEPENDENT_RETURN_OK(Prototype) \ ACPI_EXTERNAL_RETURN_OK(Prototype) #define ACPI_HW_DEPENDENT_RETURN_VOID(Prototype) \ ACPI_EXTERNAL_RETURN_VOID(Prototype) #else #define ACPI_HW_DEPENDENT_RETURN_STATUS(Prototype) \ static ACPI_INLINE Prototype {return(AE_NOT_CONFIGURED);} #define ACPI_HW_DEPENDENT_RETURN_OK(Prototype) \ static ACPI_INLINE Prototype {return(AE_OK);} #define ACPI_HW_DEPENDENT_RETURN_VOID(Prototype) \ static ACPI_INLINE Prototype {return;} #endif /* !ACPI_REDUCED_HARDWARE */ /* * Error message prototypes (default: error messages enabled). * * All interfaces related to error and warning messages * will be configured out of the ACPICA build if the * ACPI_NO_ERROR_MESSAGE flag is defined. */ #ifndef ACPI_NO_ERROR_MESSAGES #define ACPI_MSG_DEPENDENT_RETURN_VOID(Prototype) \ Prototype; #else #define ACPI_MSG_DEPENDENT_RETURN_VOID(Prototype) \ static ACPI_INLINE Prototype {return;} #endif /* ACPI_NO_ERROR_MESSAGES */ /* * Debugging output prototypes (default: no debug output). * * All interfaces related to debug output messages * will be configured out of the ACPICA build unless the * ACPI_DEBUG_OUTPUT flag is defined. */ #ifdef ACPI_DEBUG_OUTPUT #define ACPI_DBG_DEPENDENT_RETURN_VOID(Prototype) \ Prototype; #else #define ACPI_DBG_DEPENDENT_RETURN_VOID(Prototype) \ static ACPI_INLINE Prototype {return;} #endif /* ACPI_DEBUG_OUTPUT */ /* * Application prototypes * * All interfaces used by application will be configured * out of the ACPICA build unless the ACPI_APPLICATION * flag is defined. */ #ifdef ACPI_APPLICATION #define ACPI_APP_DEPENDENT_RETURN_VOID(Prototype) \ Prototype; #else #define ACPI_APP_DEPENDENT_RETURN_VOID(Prototype) \ static ACPI_INLINE Prototype {return;} #endif /* ACPI_APPLICATION */ /* * Debugger prototypes * * All interfaces used by debugger will be configured * out of the ACPICA build unless the ACPI_DEBUGGER * flag is defined. */ #ifdef ACPI_DEBUGGER #define ACPI_DBR_DEPENDENT_RETURN_OK(Prototype) \ ACPI_EXTERNAL_RETURN_OK(Prototype) #define ACPI_DBR_DEPENDENT_RETURN_VOID(Prototype) \ ACPI_EXTERNAL_RETURN_VOID(Prototype) #else #define ACPI_DBR_DEPENDENT_RETURN_OK(Prototype) \ static ACPI_INLINE Prototype {return(AE_OK);} #define ACPI_DBR_DEPENDENT_RETURN_VOID(Prototype) \ static ACPI_INLINE Prototype {return;} #endif /* ACPI_DEBUGGER */ /***************************************************************************** * * ACPICA public interface prototypes * ****************************************************************************/ /* * Initialization */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiInitializeTables ( ACPI_TABLE_DESC *InitialStorage, UINT32 InitialTableCount, BOOLEAN AllowResize)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiInitializeSubsystem ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiEnableSubsystem ( UINT32 Flags)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiInitializeObjects ( UINT32 Flags)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiTerminate ( void)) /* * Miscellaneous global interfaces */ ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiEnable ( void)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiDisable ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiSubsystemStatus ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetSystemInfo ( ACPI_BUFFER *RetBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetStatistics ( ACPI_STATISTICS *Stats)) ACPI_EXTERNAL_RETURN_PTR ( const char * AcpiFormatException ( ACPI_STATUS Exception)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiPurgeCachedObjects ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallInterface ( ACPI_STRING InterfaceName)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiRemoveInterface ( ACPI_STRING InterfaceName)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiUpdateInterfaces ( UINT8 Action)) ACPI_EXTERNAL_RETURN_UINT32 ( UINT32 AcpiCheckAddressRange ( ACPI_ADR_SPACE_TYPE SpaceId, ACPI_PHYSICAL_ADDRESS Address, ACPI_SIZE Length, BOOLEAN Warn)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiDecodePldBuffer ( UINT8 *InBuffer, ACPI_SIZE Length, ACPI_PLD_INFO **ReturnBuffer)) /* * ACPI table load/unload interfaces */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiInstallTable ( ACPI_PHYSICAL_ADDRESS Address, BOOLEAN Physical)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiLoadTable ( ACPI_TABLE_HEADER *Table)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiUnloadParentTable ( ACPI_HANDLE Object)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiLoadTables ( void)) /* * ACPI table manipulation interfaces */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiReallocateRootTable ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS ACPI_INIT_FUNCTION AcpiFindRootPointer ( ACPI_PHYSICAL_ADDRESS *RsdpAddress)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetTableHeader ( ACPI_STRING Signature, UINT32 Instance, ACPI_TABLE_HEADER *OutTableHeader)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetTable ( ACPI_STRING Signature, UINT32 Instance, ACPI_TABLE_HEADER **OutTable)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetTableByIndex ( UINT32 TableIndex, ACPI_TABLE_HEADER **OutTable)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallTableHandler ( ACPI_TABLE_HANDLER Handler, void *Context)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiRemoveTableHandler ( ACPI_TABLE_HANDLER Handler)) /* * Namespace and name interfaces */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiWalkNamespace ( ACPI_OBJECT_TYPE Type, ACPI_HANDLE StartObject, UINT32 MaxDepth, ACPI_WALK_CALLBACK DescendingCallback, ACPI_WALK_CALLBACK AscendingCallback, void *Context, void **ReturnValue)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetDevices ( char *HID, ACPI_WALK_CALLBACK UserFunction, void *Context, void **ReturnValue)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetName ( ACPI_HANDLE Object, UINT32 NameType, ACPI_BUFFER *RetPathPtr)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetHandle ( ACPI_HANDLE Parent, ACPI_STRING Pathname, ACPI_HANDLE *RetHandle)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiAttachData ( ACPI_HANDLE Object, ACPI_OBJECT_HANDLER Handler, void *Data)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiDetachData ( ACPI_HANDLE Object, ACPI_OBJECT_HANDLER Handler)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetData ( ACPI_HANDLE Object, ACPI_OBJECT_HANDLER Handler, void **Data)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiDebugTrace ( const char *Name, UINT32 DebugLevel, UINT32 DebugLayer, UINT32 Flags)) /* * Object manipulation and enumeration */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiEvaluateObject ( ACPI_HANDLE Object, ACPI_STRING Pathname, ACPI_OBJECT_LIST *ParameterObjects, ACPI_BUFFER *ReturnObjectBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiEvaluateObjectTyped ( ACPI_HANDLE Object, ACPI_STRING Pathname, ACPI_OBJECT_LIST *ExternalParams, ACPI_BUFFER *ReturnBuffer, ACPI_OBJECT_TYPE ReturnType)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetObjectInfo ( ACPI_HANDLE Object, ACPI_DEVICE_INFO **ReturnBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallMethod ( UINT8 *Buffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetNextObject ( ACPI_OBJECT_TYPE Type, ACPI_HANDLE Parent, ACPI_HANDLE Child, ACPI_HANDLE *OutHandle)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetType ( ACPI_HANDLE Object, ACPI_OBJECT_TYPE *OutType)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetParent ( ACPI_HANDLE Object, ACPI_HANDLE *OutHandle)) /* * Handler interfaces */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallInitializationHandler ( ACPI_INIT_HANDLER Handler, UINT32 Function)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiInstallSciHandler ( ACPI_SCI_HANDLER Address, void *Context)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiRemoveSciHandler ( ACPI_SCI_HANDLER Address)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiInstallGlobalEventHandler ( ACPI_GBL_EVENT_HANDLER Handler, void *Context)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiInstallFixedEventHandler ( UINT32 AcpiEvent, ACPI_EVENT_HANDLER Handler, void *Context)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiRemoveFixedEventHandler ( UINT32 AcpiEvent, ACPI_EVENT_HANDLER Handler)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiInstallGpeHandler ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, UINT32 Type, ACPI_GPE_HANDLER Address, void *Context)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiInstallGpeRawHandler ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, UINT32 Type, ACPI_GPE_HANDLER Address, void *Context)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiRemoveGpeHandler ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, ACPI_GPE_HANDLER Address)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallNotifyHandler ( ACPI_HANDLE Device, UINT32 HandlerType, ACPI_NOTIFY_HANDLER Handler, void *Context)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiRemoveNotifyHandler ( ACPI_HANDLE Device, UINT32 HandlerType, ACPI_NOTIFY_HANDLER Handler)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallAddressSpaceHandler ( ACPI_HANDLE Device, ACPI_ADR_SPACE_TYPE SpaceId, ACPI_ADR_SPACE_HANDLER Handler, ACPI_ADR_SPACE_SETUP Setup, void *Context)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiRemoveAddressSpaceHandler ( ACPI_HANDLE Device, ACPI_ADR_SPACE_TYPE SpaceId, ACPI_ADR_SPACE_HANDLER Handler)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallExceptionHandler ( ACPI_EXCEPTION_HANDLER Handler)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiInstallInterfaceHandler ( ACPI_INTERFACE_HANDLER Handler)) /* * Global Lock interfaces */ ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiAcquireGlobalLock ( UINT16 Timeout, UINT32 *Handle)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiReleaseGlobalLock ( UINT32 Handle)) /* * Interfaces to AML mutex objects */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiAcquireMutex ( ACPI_HANDLE Handle, ACPI_STRING Pathname, UINT16 Timeout)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiReleaseMutex ( ACPI_HANDLE Handle, ACPI_STRING Pathname)) /* * Fixed Event interfaces */ ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiEnableEvent ( UINT32 Event, UINT32 Flags)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiDisableEvent ( UINT32 Event, UINT32 Flags)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiClearEvent ( UINT32 Event)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiGetEventStatus ( UINT32 Event, ACPI_EVENT_STATUS *EventStatus)) /* * General Purpose Event (GPE) Interfaces */ ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiUpdateAllGpes ( void)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiEnableGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiDisableGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiClearGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiSetGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, UINT8 Action)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiFinishGpe ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber)) + +ACPI_HW_DEPENDENT_RETURN_STATUS ( +ACPI_STATUS +AcpiMaskGpe ( + ACPI_HANDLE GpeDevice, + UINT32 GpeNumber, + BOOLEAN IsMasked)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiMarkGpeForWake ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiSetupGpeForWake ( ACPI_HANDLE ParentDevice, ACPI_HANDLE GpeDevice, UINT32 GpeNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiSetGpeWakeMask ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, UINT8 Action)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiGetGpeStatus ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, ACPI_EVENT_STATUS *EventStatus)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiDisableAllGpes ( void)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiEnableAllRuntimeGpes ( void)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiEnableAllWakeupGpes ( void)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiGetGpeDevice ( UINT32 GpeIndex, ACPI_HANDLE *GpeDevice)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiInstallGpeBlock ( ACPI_HANDLE GpeDevice, ACPI_GENERIC_ADDRESS *GpeBlockAddress, UINT32 RegisterCount, UINT32 InterruptNumber)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiRemoveGpeBlock ( ACPI_HANDLE GpeDevice)) /* * Resource interfaces */ typedef ACPI_STATUS (*ACPI_WALK_RESOURCE_CALLBACK) ( ACPI_RESOURCE *Resource, void *Context); ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetVendorResource ( ACPI_HANDLE Device, char *Name, ACPI_VENDOR_UUID *Uuid, ACPI_BUFFER *RetBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetCurrentResources ( ACPI_HANDLE Device, ACPI_BUFFER *RetBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetPossibleResources ( ACPI_HANDLE Device, ACPI_BUFFER *RetBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetEventResources ( ACPI_HANDLE DeviceHandle, ACPI_BUFFER *RetBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiWalkResourceBuffer ( ACPI_BUFFER *Buffer, ACPI_WALK_RESOURCE_CALLBACK UserFunction, void *Context)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiWalkResources ( ACPI_HANDLE Device, char *Name, ACPI_WALK_RESOURCE_CALLBACK UserFunction, void *Context)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiSetCurrentResources ( ACPI_HANDLE Device, ACPI_BUFFER *InBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetIrqRoutingTable ( ACPI_HANDLE Device, ACPI_BUFFER *RetBuffer)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiResourceToAddress64 ( ACPI_RESOURCE *Resource, ACPI_RESOURCE_ADDRESS64 *Out)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiBufferToResource ( UINT8 *AmlBuffer, UINT16 AmlBufferLength, ACPI_RESOURCE **ResourcePtr)) /* * Hardware (ACPI device) interfaces */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiReset ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiRead ( UINT64 *Value, ACPI_GENERIC_ADDRESS *Reg)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiWrite ( UINT64 Value, ACPI_GENERIC_ADDRESS *Reg)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiReadBitRegister ( UINT32 RegisterId, UINT32 *ReturnValue)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiWriteBitRegister ( UINT32 RegisterId, UINT32 Value)) /* * Sleep/Wake interfaces */ ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiGetSleepTypeData ( UINT8 SleepState, UINT8 *Slp_TypA, UINT8 *Slp_TypB)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiEnterSleepStatePrep ( UINT8 SleepState)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiEnterSleepState ( UINT8 SleepState)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiEnterSleepStateS4bios ( void)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiLeaveSleepStatePrep ( UINT8 SleepState)) ACPI_EXTERNAL_RETURN_STATUS ( ACPI_STATUS AcpiLeaveSleepState ( UINT8 SleepState)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiSetFirmwareWakingVector ( ACPI_PHYSICAL_ADDRESS PhysicalAddress, ACPI_PHYSICAL_ADDRESS PhysicalAddress64)) /* * ACPI Timer interfaces */ ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiGetTimerResolution ( UINT32 *Resolution)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiGetTimer ( UINT32 *Ticks)) ACPI_HW_DEPENDENT_RETURN_STATUS ( ACPI_STATUS AcpiGetTimerDuration ( UINT32 StartTicks, UINT32 EndTicks, UINT32 *TimeElapsed)) /* * Error/Warning output */ ACPI_MSG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(3) void ACPI_INTERNAL_VAR_XFACE AcpiError ( const char *ModuleName, UINT32 LineNumber, const char *Format, ...)) ACPI_MSG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(4) void ACPI_INTERNAL_VAR_XFACE AcpiException ( const char *ModuleName, UINT32 LineNumber, ACPI_STATUS Status, const char *Format, ...)) ACPI_MSG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(3) void ACPI_INTERNAL_VAR_XFACE AcpiWarning ( const char *ModuleName, UINT32 LineNumber, const char *Format, ...)) ACPI_MSG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(1) void ACPI_INTERNAL_VAR_XFACE AcpiInfo ( const char *Format, ...)) ACPI_MSG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(3) void ACPI_INTERNAL_VAR_XFACE AcpiBiosError ( const char *ModuleName, UINT32 LineNumber, const char *Format, ...)) ACPI_MSG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(3) void ACPI_INTERNAL_VAR_XFACE AcpiBiosWarning ( const char *ModuleName, UINT32 LineNumber, const char *Format, ...)) /* * Debug output */ ACPI_DBG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(6) void ACPI_INTERNAL_VAR_XFACE AcpiDebugPrint ( UINT32 RequestedDebugLevel, UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId, const char *Format, ...)) ACPI_DBG_DEPENDENT_RETURN_VOID ( ACPI_PRINTF_LIKE(6) void ACPI_INTERNAL_VAR_XFACE AcpiDebugPrintRaw ( UINT32 RequestedDebugLevel, UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId, const char *Format, ...)) ACPI_DBG_DEPENDENT_RETURN_VOID ( void AcpiTracePoint ( ACPI_TRACE_EVENT_TYPE Type, BOOLEAN Begin, UINT8 *Aml, char *Pathname)) ACPI_STATUS AcpiInitializeDebugger ( void); void AcpiTerminateDebugger ( void); void AcpiSetDebuggerThreadId ( ACPI_THREAD_ID ThreadId); #endif /* __ACXFACE_H__ */ Index: vendor-sys/acpica/dist/source/include/actables.h =================================================================== --- vendor-sys/acpica/dist/source/include/actables.h (revision 305161) +++ vendor-sys/acpica/dist/source/include/actables.h (revision 305162) @@ -1,257 +1,264 @@ /****************************************************************************** * * Name: actables.h - ACPI table management * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef __ACTABLES_H__ #define __ACTABLES_H__ ACPI_STATUS AcpiAllocateRootTable ( UINT32 InitialTableCount); /* * tbxfroot - Root pointer utilities */ UINT32 AcpiTbGetRsdpLength ( ACPI_TABLE_RSDP *Rsdp); ACPI_STATUS AcpiTbValidateRsdp ( ACPI_TABLE_RSDP *Rsdp); UINT8 * AcpiTbScanMemoryForRsdp ( UINT8 *StartAddress, UINT32 Length); /* * tbdata - table data structure management */ ACPI_STATUS AcpiTbGetNextTableDescriptor ( UINT32 *TableIndex, ACPI_TABLE_DESC **TableDesc); void AcpiTbInitTableDescriptor ( ACPI_TABLE_DESC *TableDesc, ACPI_PHYSICAL_ADDRESS Address, UINT8 Flags, ACPI_TABLE_HEADER *Table); ACPI_STATUS AcpiTbAcquireTempTable ( ACPI_TABLE_DESC *TableDesc, ACPI_PHYSICAL_ADDRESS Address, UINT8 Flags); void AcpiTbReleaseTempTable ( ACPI_TABLE_DESC *TableDesc); ACPI_STATUS AcpiTbValidateTempTable ( ACPI_TABLE_DESC *TableDesc); ACPI_STATUS AcpiTbVerifyTempTable ( ACPI_TABLE_DESC *TableDesc, char *Signature); BOOLEAN AcpiTbIsTableLoaded ( UINT32 TableIndex); void AcpiTbSetTableLoadedFlag ( UINT32 TableIndex, BOOLEAN IsLoaded); /* * tbfadt - FADT parse/convert/validate */ void AcpiTbParseFadt ( void); void AcpiTbCreateLocalFadt ( ACPI_TABLE_HEADER *Table, UINT32 Length); /* * tbfind - find ACPI table */ ACPI_STATUS AcpiTbFindTable ( char *Signature, char *OemId, char *OemTableId, UINT32 *TableIndex); /* * tbinstal - Table removal and deletion */ ACPI_STATUS AcpiTbResizeRootTableList ( void); ACPI_STATUS AcpiTbValidateTable ( ACPI_TABLE_DESC *TableDesc); void AcpiTbInvalidateTable ( ACPI_TABLE_DESC *TableDesc); void AcpiTbOverrideTable ( ACPI_TABLE_DESC *OldTableDesc); ACPI_STATUS AcpiTbAcquireTable ( ACPI_TABLE_DESC *TableDesc, ACPI_TABLE_HEADER **TablePtr, UINT32 *TableLength, UINT8 *TableFlags); void AcpiTbReleaseTable ( ACPI_TABLE_HEADER *Table, UINT32 TableLength, UINT8 TableFlags); ACPI_STATUS AcpiTbInstallStandardTable ( ACPI_PHYSICAL_ADDRESS Address, UINT8 Flags, BOOLEAN Reload, BOOLEAN Override, UINT32 *TableIndex); void AcpiTbUninstallTable ( ACPI_TABLE_DESC *TableDesc); +ACPI_STATUS +AcpiTbLoadTable ( + UINT32 TableIndex, + ACPI_NAMESPACE_NODE *ParentNode); + +ACPI_STATUS +AcpiTbInstallAndLoadTable ( + ACPI_TABLE_HEADER *Table, + ACPI_PHYSICAL_ADDRESS Address, + UINT8 Flags, + BOOLEAN Override, + UINT32 *TableIndex); + void AcpiTbTerminate ( void); ACPI_STATUS AcpiTbDeleteNamespaceByOwner ( UINT32 TableIndex); ACPI_STATUS AcpiTbAllocateOwnerId ( UINT32 TableIndex); ACPI_STATUS AcpiTbReleaseOwnerId ( UINT32 TableIndex); ACPI_STATUS AcpiTbGetOwnerId ( UINT32 TableIndex, ACPI_OWNER_ID *OwnerId); /* * tbutils - table manager utilities */ ACPI_STATUS AcpiTbInitializeFacs ( void); void AcpiTbPrintTableHeader( ACPI_PHYSICAL_ADDRESS Address, ACPI_TABLE_HEADER *Header); UINT8 AcpiTbChecksum ( UINT8 *Buffer, UINT32 Length); ACPI_STATUS AcpiTbVerifyChecksum ( ACPI_TABLE_HEADER *Table, UINT32 Length); void AcpiTbCheckDsdtHeader ( void); ACPI_TABLE_HEADER * AcpiTbCopyDsdt ( UINT32 TableIndex); void AcpiTbInstallTableWithOverride ( ACPI_TABLE_DESC *NewTableDesc, BOOLEAN Override, UINT32 *TableIndex); ACPI_STATUS -AcpiTbInstallFixedTable ( - ACPI_PHYSICAL_ADDRESS Address, - char *Signature, - UINT32 *TableIndex); - -ACPI_STATUS ACPI_INIT_FUNCTION AcpiTbParseRootTable ( ACPI_PHYSICAL_ADDRESS RsdpAddress); /* * tbxfload */ ACPI_STATUS AcpiTbLoadNamespace ( void); #endif /* __ACTABLES_H__ */ Index: vendor-sys/acpica/dist/source/include/actypes.h =================================================================== --- vendor-sys/acpica/dist/source/include/actypes.h (revision 305161) +++ vendor-sys/acpica/dist/source/include/actypes.h (revision 305162) @@ -1,1395 +1,1396 @@ /****************************************************************************** * * Name: actypes.h - Common data types for the entire ACPI subsystem * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef __ACTYPES_H__ #define __ACTYPES_H__ /* acpisrc:StructDefs -- for acpisrc conversion */ /* * ACPI_MACHINE_WIDTH must be specified in an OS- or compiler-dependent header * and must be either 32 or 64. 16-bit ACPICA is no longer supported, as of * 12/2006. */ #ifndef ACPI_MACHINE_WIDTH #error ACPI_MACHINE_WIDTH not defined #endif /* * Data type ranges * Note: These macros are designed to be compiler independent as well as * working around problems that some 32-bit compilers have with 64-bit * constants. */ #define ACPI_UINT8_MAX (UINT8) (~((UINT8) 0)) /* 0xFF */ #define ACPI_UINT16_MAX (UINT16)(~((UINT16) 0)) /* 0xFFFF */ #define ACPI_UINT32_MAX (UINT32)(~((UINT32) 0)) /* 0xFFFFFFFF */ #define ACPI_UINT64_MAX (UINT64)(~((UINT64) 0)) /* 0xFFFFFFFFFFFFFFFF */ #define ACPI_ASCII_MAX 0x7F /* * Architecture-specific ACPICA Subsystem Data Types * * The goal of these types is to provide source code portability across * 16-bit, 32-bit, and 64-bit targets. * * 1) The following types are of fixed size for all targets (16/32/64): * * BOOLEAN Logical boolean * * UINT8 8-bit (1 byte) unsigned value * UINT16 16-bit (2 byte) unsigned value * UINT32 32-bit (4 byte) unsigned value * UINT64 64-bit (8 byte) unsigned value * * INT16 16-bit (2 byte) signed value * INT32 32-bit (4 byte) signed value * INT64 64-bit (8 byte) signed value * * COMPILER_DEPENDENT_UINT64/INT64 - These types are defined in the * compiler-dependent header(s) and were introduced because there is no common * 64-bit integer type across the various compilation models, as shown in * the table below. * * Datatype LP64 ILP64 LLP64 ILP32 LP32 16bit * char 8 8 8 8 8 8 * short 16 16 16 16 16 16 * _int32 32 * int 32 64 32 32 16 16 * long 64 64 32 32 32 32 * long long 64 64 * pointer 64 64 64 32 32 32 * * Note: ILP64 and LP32 are currently not supported. * * * 2) These types represent the native word size of the target mode of the * processor, and may be 16-bit, 32-bit, or 64-bit as required. They are * usually used for memory allocation, efficient loop counters, and array * indexes. The types are similar to the size_t type in the C library and are * required because there is no C type that consistently represents the native * data width. ACPI_SIZE is needed because there is no guarantee that a * kernel-level C library is present. * * ACPI_SIZE 16/32/64-bit unsigned value * ACPI_NATIVE_INT 16/32/64-bit signed value */ /******************************************************************************* * * Common types for all compilers, all targets * ******************************************************************************/ #ifndef ACPI_USE_SYSTEM_INTTYPES typedef unsigned char BOOLEAN; typedef unsigned char UINT8; typedef unsigned short UINT16; typedef short INT16; typedef COMPILER_DEPENDENT_UINT64 UINT64; typedef COMPILER_DEPENDENT_INT64 INT64; #endif /* ACPI_USE_SYSTEM_INTTYPES */ /* * Value returned by AcpiOsGetThreadId. There is no standard "thread_id" * across operating systems or even the various UNIX systems. Since ACPICA * only needs the thread ID as a unique thread identifier, we use a UINT64 * as the only common data type - it will accommodate any type of pointer or * any type of integer. It is up to the host-dependent OSL to cast the * native thread ID type to a UINT64 (in AcpiOsGetThreadId). */ #define ACPI_THREAD_ID UINT64 /******************************************************************************* * * Types specific to 64-bit targets * ******************************************************************************/ #if ACPI_MACHINE_WIDTH == 64 #ifndef ACPI_USE_SYSTEM_INTTYPES typedef unsigned int UINT32; typedef int INT32; #endif /* ACPI_USE_SYSTEM_INTTYPES */ typedef INT64 ACPI_NATIVE_INT; typedef UINT64 ACPI_SIZE; typedef UINT64 ACPI_IO_ADDRESS; typedef UINT64 ACPI_PHYSICAL_ADDRESS; #define ACPI_MAX_PTR ACPI_UINT64_MAX #define ACPI_SIZE_MAX ACPI_UINT64_MAX #define ACPI_USE_NATIVE_DIVIDE /* Has native 64-bit integer support */ /* * In the case of the Itanium Processor Family (IPF), the hardware does not * support misaligned memory transfers. Set the MISALIGNMENT_NOT_SUPPORTED flag * to indicate that special precautions must be taken to avoid alignment faults. * (IA64 or ia64 is currently used by existing compilers to indicate IPF.) * * Note: EM64T and other X86-64 processors support misaligned transfers, * so there is no need to define this flag. */ #if defined (__IA64__) || defined (__ia64__) #define ACPI_MISALIGNMENT_NOT_SUPPORTED #endif /******************************************************************************* * * Types specific to 32-bit targets * ******************************************************************************/ #elif ACPI_MACHINE_WIDTH == 32 #ifndef ACPI_USE_SYSTEM_INTTYPES typedef unsigned int UINT32; typedef int INT32; #endif /* ACPI_USE_SYSTEM_INTTYPES */ typedef INT32 ACPI_NATIVE_INT; typedef UINT32 ACPI_SIZE; #ifdef ACPI_32BIT_PHYSICAL_ADDRESS /* * OSPMs can define this to shrink the size of the structures for 32-bit * none PAE environment. ASL compiler may always define this to generate * 32-bit OSPM compliant tables. */ typedef UINT32 ACPI_IO_ADDRESS; typedef UINT32 ACPI_PHYSICAL_ADDRESS; #else /* ACPI_32BIT_PHYSICAL_ADDRESS */ /* * It is reported that, after some calculations, the physical addresses can * wrap over the 32-bit boundary on 32-bit PAE environment. * https://bugzilla.kernel.org/show_bug.cgi?id=87971 */ typedef UINT64 ACPI_IO_ADDRESS; typedef UINT64 ACPI_PHYSICAL_ADDRESS; #endif /* ACPI_32BIT_PHYSICAL_ADDRESS */ #define ACPI_MAX_PTR ACPI_UINT32_MAX #define ACPI_SIZE_MAX ACPI_UINT32_MAX #else /* ACPI_MACHINE_WIDTH must be either 64 or 32 */ #error unknown ACPI_MACHINE_WIDTH #endif /******************************************************************************* * * OS-dependent types * * If the defaults below are not appropriate for the host system, they can * be defined in the OS-specific header, and this will take precedence. * ******************************************************************************/ /* Flags for AcpiOsAcquireLock/AcpiOsReleaseLock */ #ifndef ACPI_CPU_FLAGS #define ACPI_CPU_FLAGS ACPI_SIZE #endif /* Object returned from AcpiOsCreateCache */ #ifndef ACPI_CACHE_T #ifdef ACPI_USE_LOCAL_CACHE #define ACPI_CACHE_T ACPI_MEMORY_LIST #else #define ACPI_CACHE_T void * #endif #endif /* * Synchronization objects - Mutexes, Semaphores, and SpinLocks */ #if (ACPI_MUTEX_TYPE == ACPI_BINARY_SEMAPHORE) /* * These macros are used if the host OS does not support a mutex object. * Map the OSL Mutex interfaces to binary semaphores. */ #define ACPI_MUTEX ACPI_SEMAPHORE #define AcpiOsCreateMutex(OutHandle) AcpiOsCreateSemaphore (1, 1, OutHandle) #define AcpiOsDeleteMutex(Handle) (void) AcpiOsDeleteSemaphore (Handle) #define AcpiOsAcquireMutex(Handle,Time) AcpiOsWaitSemaphore (Handle, 1, Time) #define AcpiOsReleaseMutex(Handle) (void) AcpiOsSignalSemaphore (Handle, 1) #endif /* Configurable types for synchronization objects */ #ifndef ACPI_SPINLOCK #define ACPI_SPINLOCK void * #endif #ifndef ACPI_SEMAPHORE #define ACPI_SEMAPHORE void * #endif #ifndef ACPI_MUTEX #define ACPI_MUTEX void * #endif /******************************************************************************* * * Compiler-dependent types * * If the defaults below are not appropriate for the host compiler, they can * be defined in the compiler-specific header, and this will take precedence. * ******************************************************************************/ /* Use C99 uintptr_t for pointer casting if available, "void *" otherwise */ #ifndef ACPI_UINTPTR_T #define ACPI_UINTPTR_T void * #endif /* * ACPI_PRINTF_LIKE is used to tag functions as "printf-like" because * some compilers can catch printf format string problems */ #ifndef ACPI_PRINTF_LIKE #define ACPI_PRINTF_LIKE(c) #endif /* * Some compilers complain about unused variables. Sometimes we don't want to * use all the variables (for example, _AcpiModuleName). This allows us * to tell the compiler in a per-variable manner that a variable * is unused */ #ifndef ACPI_UNUSED_VAR #define ACPI_UNUSED_VAR #endif /* * All ACPICA external functions that are available to the rest of the kernel * are tagged with thes macros which can be defined as appropriate for the host. * * Notes: * ACPI_EXPORT_SYMBOL_INIT is used for initialization and termination * interfaces that may need special processing. * ACPI_EXPORT_SYMBOL is used for all other public external functions. */ #ifndef ACPI_EXPORT_SYMBOL_INIT #define ACPI_EXPORT_SYMBOL_INIT(Symbol) #endif #ifndef ACPI_EXPORT_SYMBOL #define ACPI_EXPORT_SYMBOL(Symbol) #endif /* * Compiler/Clibrary-dependent debug initialization. Used for ACPICA * utilities only. */ #ifndef ACPI_DEBUG_INITIALIZE #define ACPI_DEBUG_INITIALIZE() #endif /******************************************************************************* * * Configuration * ******************************************************************************/ #ifdef ACPI_NO_MEM_ALLOCATIONS #define ACPI_ALLOCATE(a) NULL #define ACPI_ALLOCATE_ZEROED(a) NULL #define ACPI_FREE(a) #define ACPI_MEM_TRACKING(a) #else /* ACPI_NO_MEM_ALLOCATIONS */ #ifdef ACPI_DBG_TRACK_ALLOCATIONS /* * Memory allocation tracking (used by AcpiExec to detect memory leaks) */ #define ACPI_MEM_PARAMETERS _COMPONENT, _AcpiModuleName, __LINE__ #define ACPI_ALLOCATE(a) AcpiUtAllocateAndTrack ((ACPI_SIZE) (a), ACPI_MEM_PARAMETERS) #define ACPI_ALLOCATE_ZEROED(a) AcpiUtAllocateZeroedAndTrack ((ACPI_SIZE) (a), ACPI_MEM_PARAMETERS) #define ACPI_FREE(a) AcpiUtFreeAndTrack (a, ACPI_MEM_PARAMETERS) #define ACPI_MEM_TRACKING(a) a #else /* * Normal memory allocation directly via the OS services layer */ #define ACPI_ALLOCATE(a) AcpiOsAllocate ((ACPI_SIZE) (a)) #define ACPI_ALLOCATE_ZEROED(a) AcpiOsAllocateZeroed ((ACPI_SIZE) (a)) #define ACPI_FREE(a) AcpiOsFree (a) #define ACPI_MEM_TRACKING(a) #endif /* ACPI_DBG_TRACK_ALLOCATIONS */ #endif /* ACPI_NO_MEM_ALLOCATIONS */ /****************************************************************************** * * ACPI Specification constants (Do not change unless the specification changes) * *****************************************************************************/ /* Number of distinct FADT-based GPE register blocks (GPE0 and GPE1) */ #define ACPI_MAX_GPE_BLOCKS 2 /* Default ACPI register widths */ #define ACPI_GPE_REGISTER_WIDTH 8 #define ACPI_PM1_REGISTER_WIDTH 16 #define ACPI_PM2_REGISTER_WIDTH 8 #define ACPI_PM_TIMER_WIDTH 32 #define ACPI_RESET_REGISTER_WIDTH 8 /* Names within the namespace are 4 bytes long */ #define ACPI_NAME_SIZE 4 #define ACPI_PATH_SEGMENT_LENGTH 5 /* 4 chars for name + 1 char for separator */ #define ACPI_PATH_SEPARATOR '.' /* Sizes for ACPI table headers */ #define ACPI_OEM_ID_SIZE 6 #define ACPI_OEM_TABLE_ID_SIZE 8 /* ACPI/PNP hardware IDs */ #define PCI_ROOT_HID_STRING "PNP0A03" #define PCI_EXPRESS_ROOT_HID_STRING "PNP0A08" /* PM Timer ticks per second (HZ) */ #define ACPI_PM_TIMER_FREQUENCY 3579545 /******************************************************************************* * * Independent types * ******************************************************************************/ /* Logical defines and NULL */ #ifdef FALSE #undef FALSE #endif #define FALSE (1 == 0) #ifdef TRUE #undef TRUE #endif #define TRUE (1 == 1) #ifndef NULL #define NULL (void *) 0 #endif /* * Miscellaneous types */ typedef UINT32 ACPI_STATUS; /* All ACPI Exceptions */ typedef UINT32 ACPI_NAME; /* 4-byte ACPI name */ typedef char * ACPI_STRING; /* Null terminated ASCII string */ typedef void * ACPI_HANDLE; /* Actually a ptr to a NS Node */ /* Time constants for timer calculations */ #define ACPI_MSEC_PER_SEC 1000L #define ACPI_USEC_PER_MSEC 1000L #define ACPI_USEC_PER_SEC 1000000L #define ACPI_100NSEC_PER_USEC 10L #define ACPI_100NSEC_PER_MSEC 10000L #define ACPI_100NSEC_PER_SEC 10000000L #define ACPI_NSEC_PER_USEC 1000L #define ACPI_NSEC_PER_MSEC 1000000L #define ACPI_NSEC_PER_SEC 1000000000L /* Owner IDs are used to track namespace nodes for selective deletion */ typedef UINT8 ACPI_OWNER_ID; #define ACPI_OWNER_ID_MAX 0xFF #define ACPI_INTEGER_BIT_SIZE 64 #define ACPI_MAX_DECIMAL_DIGITS 20 /* 2^64 = 18,446,744,073,709,551,616 */ #define ACPI_MAX64_DECIMAL_DIGITS 20 #define ACPI_MAX32_DECIMAL_DIGITS 10 #define ACPI_MAX16_DECIMAL_DIGITS 5 #define ACPI_MAX8_DECIMAL_DIGITS 3 /* * Constants with special meanings */ #define ACPI_ROOT_OBJECT ACPI_ADD_PTR (ACPI_HANDLE, NULL, ACPI_MAX_PTR) #define ACPI_WAIT_FOREVER 0xFFFF /* UINT16, as per ACPI spec */ #define ACPI_DO_NOT_WAIT 0 /* * Obsolete: Acpi integer width. In ACPI version 1 (1996), integers are 32 bits. * In ACPI version 2 (2000) and later, integers are 64 bits. Note that this * pertains to the ACPI integer type only, not to other integers used in the * implementation of the ACPICA subsystem. * * 01/2010: This type is obsolete and has been removed from the entire ACPICA * code base. It remains here for compatibility with device drivers that use * the type. However, it will be removed in the future. */ typedef UINT64 ACPI_INTEGER; #define ACPI_INTEGER_MAX ACPI_UINT64_MAX /******************************************************************************* * * Commonly used macros * ******************************************************************************/ /* Data manipulation */ #define ACPI_LOBYTE(Integer) ((UINT8) (UINT16)(Integer)) #define ACPI_HIBYTE(Integer) ((UINT8) (((UINT16)(Integer)) >> 8)) #define ACPI_LOWORD(Integer) ((UINT16) (UINT32)(Integer)) #define ACPI_HIWORD(Integer) ((UINT16)(((UINT32)(Integer)) >> 16)) #define ACPI_LODWORD(Integer64) ((UINT32) (UINT64)(Integer64)) #define ACPI_HIDWORD(Integer64) ((UINT32)(((UINT64)(Integer64)) >> 32)) #define ACPI_SET_BIT(target,bit) ((target) |= (bit)) #define ACPI_CLEAR_BIT(target,bit) ((target) &= ~(bit)) #define ACPI_MIN(a,b) (((a)<(b))?(a):(b)) #define ACPI_MAX(a,b) (((a)>(b))?(a):(b)) /* Size calculation */ #define ACPI_ARRAY_LENGTH(x) (sizeof(x) / sizeof((x)[0])) /* Pointer manipulation */ #define ACPI_CAST_PTR(t, p) ((t *) (ACPI_UINTPTR_T) (p)) #define ACPI_CAST_INDIRECT_PTR(t, p) ((t **) (ACPI_UINTPTR_T) (p)) #define ACPI_ADD_PTR(t, a, b) ACPI_CAST_PTR (t, (ACPI_CAST_PTR (UINT8, (a)) + (ACPI_SIZE)(b))) #define ACPI_SUB_PTR(t, a, b) ACPI_CAST_PTR (t, (ACPI_CAST_PTR (UINT8, (a)) - (ACPI_SIZE)(b))) #define ACPI_PTR_DIFF(a, b) (ACPI_SIZE) (ACPI_CAST_PTR (UINT8, (a)) - ACPI_CAST_PTR (UINT8, (b))) /* Pointer/Integer type conversions */ #define ACPI_TO_POINTER(i) ACPI_ADD_PTR (void, (void *) NULL,(ACPI_SIZE) i) #define ACPI_TO_INTEGER(p) ACPI_PTR_DIFF (p, (void *) NULL) #define ACPI_OFFSET(d, f) ACPI_PTR_DIFF (&(((d *) 0)->f), (void *) NULL) #define ACPI_PHYSADDR_TO_PTR(i) ACPI_TO_POINTER(i) #define ACPI_PTR_TO_PHYSADDR(i) ACPI_TO_INTEGER(i) /* Optimizations for 4-character (32-bit) ACPI_NAME manipulation */ #ifndef ACPI_MISALIGNMENT_NOT_SUPPORTED #define ACPI_COMPARE_NAME(a,b) (*ACPI_CAST_PTR (UINT32, (a)) == *ACPI_CAST_PTR (UINT32, (b))) #define ACPI_MOVE_NAME(dest,src) (*ACPI_CAST_PTR (UINT32, (dest)) = *ACPI_CAST_PTR (UINT32, (src))) #else #define ACPI_COMPARE_NAME(a,b) (!strncmp (ACPI_CAST_PTR (char, (a)), ACPI_CAST_PTR (char, (b)), ACPI_NAME_SIZE)) #define ACPI_MOVE_NAME(dest,src) (strncpy (ACPI_CAST_PTR (char, (dest)), ACPI_CAST_PTR (char, (src)), ACPI_NAME_SIZE)) #endif /* Support for the special RSDP signature (8 characters) */ #define ACPI_VALIDATE_RSDP_SIG(a) (!strncmp (ACPI_CAST_PTR (char, (a)), ACPI_SIG_RSDP, 8)) #define ACPI_MAKE_RSDP_SIG(dest) (memcpy (ACPI_CAST_PTR (char, (dest)), ACPI_SIG_RSDP, 8)) /******************************************************************************* * * Miscellaneous constants * ******************************************************************************/ /* * Initialization sequence */ #define ACPI_FULL_INITIALIZATION 0x00 #define ACPI_NO_ADDRESS_SPACE_INIT 0x01 #define ACPI_NO_HARDWARE_INIT 0x02 #define ACPI_NO_EVENT_INIT 0x04 #define ACPI_NO_HANDLER_INIT 0x08 #define ACPI_NO_ACPI_ENABLE 0x10 #define ACPI_NO_DEVICE_INIT 0x20 #define ACPI_NO_OBJECT_INIT 0x40 #define ACPI_NO_FACS_INIT 0x80 /* * Initialization state */ #define ACPI_SUBSYSTEM_INITIALIZE 0x01 #define ACPI_INITIALIZED_OK 0x02 /* * Power state values */ #define ACPI_STATE_UNKNOWN (UINT8) 0xFF #define ACPI_STATE_S0 (UINT8) 0 #define ACPI_STATE_S1 (UINT8) 1 #define ACPI_STATE_S2 (UINT8) 2 #define ACPI_STATE_S3 (UINT8) 3 #define ACPI_STATE_S4 (UINT8) 4 #define ACPI_STATE_S5 (UINT8) 5 #define ACPI_S_STATES_MAX ACPI_STATE_S5 #define ACPI_S_STATE_COUNT 6 #define ACPI_STATE_D0 (UINT8) 0 #define ACPI_STATE_D1 (UINT8) 1 #define ACPI_STATE_D2 (UINT8) 2 #define ACPI_STATE_D3 (UINT8) 3 #define ACPI_D_STATES_MAX ACPI_STATE_D3 #define ACPI_D_STATE_COUNT 4 #define ACPI_STATE_C0 (UINT8) 0 #define ACPI_STATE_C1 (UINT8) 1 #define ACPI_STATE_C2 (UINT8) 2 #define ACPI_STATE_C3 (UINT8) 3 #define ACPI_C_STATES_MAX ACPI_STATE_C3 #define ACPI_C_STATE_COUNT 4 /* * Sleep type invalid value */ #define ACPI_SLEEP_TYPE_MAX 0x7 #define ACPI_SLEEP_TYPE_INVALID 0xFF /* * Standard notify values */ #define ACPI_NOTIFY_BUS_CHECK (UINT8) 0x00 #define ACPI_NOTIFY_DEVICE_CHECK (UINT8) 0x01 #define ACPI_NOTIFY_DEVICE_WAKE (UINT8) 0x02 #define ACPI_NOTIFY_EJECT_REQUEST (UINT8) 0x03 #define ACPI_NOTIFY_DEVICE_CHECK_LIGHT (UINT8) 0x04 #define ACPI_NOTIFY_FREQUENCY_MISMATCH (UINT8) 0x05 #define ACPI_NOTIFY_BUS_MODE_MISMATCH (UINT8) 0x06 #define ACPI_NOTIFY_POWER_FAULT (UINT8) 0x07 #define ACPI_NOTIFY_CAPABILITIES_CHECK (UINT8) 0x08 #define ACPI_NOTIFY_DEVICE_PLD_CHECK (UINT8) 0x09 #define ACPI_NOTIFY_RESERVED (UINT8) 0x0A #define ACPI_NOTIFY_LOCALITY_UPDATE (UINT8) 0x0B #define ACPI_NOTIFY_SHUTDOWN_REQUEST (UINT8) 0x0C #define ACPI_NOTIFY_AFFINITY_UPDATE (UINT8) 0x0D #define ACPI_GENERIC_NOTIFY_MAX 0x0D #define ACPI_SPECIFIC_NOTIFY_MAX 0x84 /* * Types associated with ACPI names and objects. The first group of * values (up to ACPI_TYPE_EXTERNAL_MAX) correspond to the definition * of the ACPI ObjectType() operator (See the ACPI Spec). Therefore, * only add to the first group if the spec changes. * * NOTE: Types must be kept in sync with the global AcpiNsProperties * and AcpiNsTypeNames arrays. */ typedef UINT32 ACPI_OBJECT_TYPE; #define ACPI_TYPE_ANY 0x00 #define ACPI_TYPE_INTEGER 0x01 /* Byte/Word/Dword/Zero/One/Ones */ #define ACPI_TYPE_STRING 0x02 #define ACPI_TYPE_BUFFER 0x03 #define ACPI_TYPE_PACKAGE 0x04 /* ByteConst, multiple DataTerm/Constant/SuperName */ #define ACPI_TYPE_FIELD_UNIT 0x05 #define ACPI_TYPE_DEVICE 0x06 /* Name, multiple Node */ #define ACPI_TYPE_EVENT 0x07 #define ACPI_TYPE_METHOD 0x08 /* Name, ByteConst, multiple Code */ #define ACPI_TYPE_MUTEX 0x09 #define ACPI_TYPE_REGION 0x0A #define ACPI_TYPE_POWER 0x0B /* Name,ByteConst,WordConst,multi Node */ #define ACPI_TYPE_PROCESSOR 0x0C /* Name,ByteConst,DWordConst,ByteConst,multi NmO */ #define ACPI_TYPE_THERMAL 0x0D /* Name, multiple Node */ #define ACPI_TYPE_BUFFER_FIELD 0x0E #define ACPI_TYPE_DDB_HANDLE 0x0F #define ACPI_TYPE_DEBUG_OBJECT 0x10 #define ACPI_TYPE_EXTERNAL_MAX 0x10 #define ACPI_NUM_TYPES (ACPI_TYPE_EXTERNAL_MAX + 1) /* * These are object types that do not map directly to the ACPI * ObjectType() operator. They are used for various internal purposes only. * If new predefined ACPI_TYPEs are added (via the ACPI specification), these * internal types must move upwards. (There is code that depends on these * values being contiguous with the external types above.) */ #define ACPI_TYPE_LOCAL_REGION_FIELD 0x11 #define ACPI_TYPE_LOCAL_BANK_FIELD 0x12 #define ACPI_TYPE_LOCAL_INDEX_FIELD 0x13 #define ACPI_TYPE_LOCAL_REFERENCE 0x14 /* Arg#, Local#, Name, Debug, RefOf, Index */ #define ACPI_TYPE_LOCAL_ALIAS 0x15 #define ACPI_TYPE_LOCAL_METHOD_ALIAS 0x16 #define ACPI_TYPE_LOCAL_NOTIFY 0x17 #define ACPI_TYPE_LOCAL_ADDRESS_HANDLER 0x18 #define ACPI_TYPE_LOCAL_RESOURCE 0x19 #define ACPI_TYPE_LOCAL_RESOURCE_FIELD 0x1A #define ACPI_TYPE_LOCAL_SCOPE 0x1B /* 1 Name, multiple ObjectList Nodes */ #define ACPI_TYPE_NS_NODE_MAX 0x1B /* Last typecode used within a NS Node */ #define ACPI_TOTAL_TYPES (ACPI_TYPE_NS_NODE_MAX + 1) /* * These are special object types that never appear in * a Namespace node, only in an object of ACPI_OPERAND_OBJECT */ #define ACPI_TYPE_LOCAL_EXTRA 0x1C #define ACPI_TYPE_LOCAL_DATA 0x1D #define ACPI_TYPE_LOCAL_MAX 0x1D /* All types above here are invalid */ #define ACPI_TYPE_INVALID 0x1E #define ACPI_TYPE_NOT_FOUND 0xFF #define ACPI_NUM_NS_TYPES (ACPI_TYPE_INVALID + 1) /* * All I/O */ #define ACPI_READ 0 #define ACPI_WRITE 1 #define ACPI_IO_MASK 1 /* * Event Types: Fixed & General Purpose */ typedef UINT32 ACPI_EVENT_TYPE; /* * Fixed events */ #define ACPI_EVENT_PMTIMER 0 #define ACPI_EVENT_GLOBAL 1 #define ACPI_EVENT_POWER_BUTTON 2 #define ACPI_EVENT_SLEEP_BUTTON 3 #define ACPI_EVENT_RTC 4 #define ACPI_EVENT_MAX 4 #define ACPI_NUM_FIXED_EVENTS ACPI_EVENT_MAX + 1 /* * Event Status - Per event * ------------- * The encoding of ACPI_EVENT_STATUS is illustrated below. * Note that a set bit (1) indicates the property is TRUE * (e.g. if bit 0 is set then the event is enabled). - * +-------------+-+-+-+-+-+ - * | Bits 31:5 |4|3|2|1|0| - * +-------------+-+-+-+-+-+ - * | | | | | | - * | | | | | +- Enabled? - * | | | | +--- Enabled for wake? - * | | | +----- Status bit set? - * | | +------- Enable bit set? - * | +--------- Has a handler? - * +--------------- + * +-------------+-+-+-+-+-+-+ + * | Bits 31:6 |5|4|3|2|1|0| + * +-------------+-+-+-+-+-+-+ + * | | | | | | | + * | | | | | | +- Enabled? + * | | | | | +--- Enabled for wake? + * | | | | +----- Status bit set? + * | | | +------- Enable bit set? + * | | +--------- Has a handler? + * | +----------- Masked? + * +----------------- */ typedef UINT32 ACPI_EVENT_STATUS; #define ACPI_EVENT_FLAG_DISABLED (ACPI_EVENT_STATUS) 0x00 #define ACPI_EVENT_FLAG_ENABLED (ACPI_EVENT_STATUS) 0x01 #define ACPI_EVENT_FLAG_WAKE_ENABLED (ACPI_EVENT_STATUS) 0x02 #define ACPI_EVENT_FLAG_STATUS_SET (ACPI_EVENT_STATUS) 0x04 #define ACPI_EVENT_FLAG_ENABLE_SET (ACPI_EVENT_STATUS) 0x08 #define ACPI_EVENT_FLAG_HAS_HANDLER (ACPI_EVENT_STATUS) 0x10 +#define ACPI_EVENT_FLAG_MASKED (ACPI_EVENT_STATUS) 0x20 #define ACPI_EVENT_FLAG_SET ACPI_EVENT_FLAG_STATUS_SET /* Actions for AcpiSetGpe, AcpiGpeWakeup, AcpiHwLowSetGpe */ #define ACPI_GPE_ENABLE 0 #define ACPI_GPE_DISABLE 1 #define ACPI_GPE_CONDITIONAL_ENABLE 2 /* * GPE info flags - Per GPE - * +-------+-+-+---+ - * | 7:5 |4|3|2:0| - * +-------+-+-+---+ - * | | | | - * | | | +-- Type of dispatch:to method, handler, notify, or none - * | | +----- Interrupt type: edge or level triggered - * | +------- Is a Wake GPE - * +------------ + * +---+-+-+-+---+ + * |7:6|5|4|3|2:0| + * +---+-+-+-+---+ + * | | | | | + * | | | | +-- Type of dispatch:to method, handler, notify, or none + * | | | +----- Interrupt type: edge or level triggered + * | | +------- Is a Wake GPE + * | +--------- Is GPE masked by the software GPE masking machanism + * +------------ */ #define ACPI_GPE_DISPATCH_NONE (UINT8) 0x00 #define ACPI_GPE_DISPATCH_METHOD (UINT8) 0x01 #define ACPI_GPE_DISPATCH_HANDLER (UINT8) 0x02 #define ACPI_GPE_DISPATCH_NOTIFY (UINT8) 0x03 #define ACPI_GPE_DISPATCH_RAW_HANDLER (UINT8) 0x04 #define ACPI_GPE_DISPATCH_MASK (UINT8) 0x07 #define ACPI_GPE_DISPATCH_TYPE(flags) ((UINT8) ((flags) & ACPI_GPE_DISPATCH_MASK)) #define ACPI_GPE_LEVEL_TRIGGERED (UINT8) 0x08 #define ACPI_GPE_EDGE_TRIGGERED (UINT8) 0x00 #define ACPI_GPE_XRUPT_TYPE_MASK (UINT8) 0x08 #define ACPI_GPE_CAN_WAKE (UINT8) 0x10 /* * Flags for GPE and Lock interfaces */ #define ACPI_NOT_ISR 0x1 #define ACPI_ISR 0x0 /* Notify types */ #define ACPI_SYSTEM_NOTIFY 0x1 #define ACPI_DEVICE_NOTIFY 0x2 #define ACPI_ALL_NOTIFY (ACPI_SYSTEM_NOTIFY | ACPI_DEVICE_NOTIFY) #define ACPI_MAX_NOTIFY_HANDLER_TYPE 0x3 #define ACPI_NUM_NOTIFY_TYPES 2 #define ACPI_MAX_SYS_NOTIFY 0x7F #define ACPI_MAX_DEVICE_SPECIFIC_NOTIFY 0xBF #define ACPI_SYSTEM_HANDLER_LIST 0 /* Used as index, must be SYSTEM_NOTIFY -1 */ #define ACPI_DEVICE_HANDLER_LIST 1 /* Used as index, must be DEVICE_NOTIFY -1 */ /* Address Space (Operation Region) Types */ typedef UINT8 ACPI_ADR_SPACE_TYPE; #define ACPI_ADR_SPACE_SYSTEM_MEMORY (ACPI_ADR_SPACE_TYPE) 0 #define ACPI_ADR_SPACE_SYSTEM_IO (ACPI_ADR_SPACE_TYPE) 1 #define ACPI_ADR_SPACE_PCI_CONFIG (ACPI_ADR_SPACE_TYPE) 2 #define ACPI_ADR_SPACE_EC (ACPI_ADR_SPACE_TYPE) 3 #define ACPI_ADR_SPACE_SMBUS (ACPI_ADR_SPACE_TYPE) 4 #define ACPI_ADR_SPACE_CMOS (ACPI_ADR_SPACE_TYPE) 5 #define ACPI_ADR_SPACE_PCI_BAR_TARGET (ACPI_ADR_SPACE_TYPE) 6 #define ACPI_ADR_SPACE_IPMI (ACPI_ADR_SPACE_TYPE) 7 #define ACPI_ADR_SPACE_GPIO (ACPI_ADR_SPACE_TYPE) 8 #define ACPI_ADR_SPACE_GSBUS (ACPI_ADR_SPACE_TYPE) 9 #define ACPI_ADR_SPACE_PLATFORM_COMM (ACPI_ADR_SPACE_TYPE) 10 #define ACPI_NUM_PREDEFINED_REGIONS 11 /* * Special Address Spaces * * Note: A Data Table region is a special type of operation region * that has its own AML opcode. However, internally, the AML * interpreter simply creates an operation region with an an address * space type of ACPI_ADR_SPACE_DATA_TABLE. */ #define ACPI_ADR_SPACE_DATA_TABLE (ACPI_ADR_SPACE_TYPE) 0x7E /* Internal to ACPICA only */ #define ACPI_ADR_SPACE_FIXED_HARDWARE (ACPI_ADR_SPACE_TYPE) 0x7F /* Values for _REG connection code */ #define ACPI_REG_DISCONNECT 0 #define ACPI_REG_CONNECT 1 /* * BitRegister IDs * * These values are intended to be used by the hardware interfaces * and are mapped to individual bitfields defined within the ACPI * registers. See the AcpiGbl_BitRegisterInfo global table in utglobal.c * for this mapping. */ /* PM1 Status register */ #define ACPI_BITREG_TIMER_STATUS 0x00 #define ACPI_BITREG_BUS_MASTER_STATUS 0x01 #define ACPI_BITREG_GLOBAL_LOCK_STATUS 0x02 #define ACPI_BITREG_POWER_BUTTON_STATUS 0x03 #define ACPI_BITREG_SLEEP_BUTTON_STATUS 0x04 #define ACPI_BITREG_RT_CLOCK_STATUS 0x05 #define ACPI_BITREG_WAKE_STATUS 0x06 #define ACPI_BITREG_PCIEXP_WAKE_STATUS 0x07 /* PM1 Enable register */ #define ACPI_BITREG_TIMER_ENABLE 0x08 #define ACPI_BITREG_GLOBAL_LOCK_ENABLE 0x09 #define ACPI_BITREG_POWER_BUTTON_ENABLE 0x0A #define ACPI_BITREG_SLEEP_BUTTON_ENABLE 0x0B #define ACPI_BITREG_RT_CLOCK_ENABLE 0x0C #define ACPI_BITREG_PCIEXP_WAKE_DISABLE 0x0D /* PM1 Control register */ #define ACPI_BITREG_SCI_ENABLE 0x0E #define ACPI_BITREG_BUS_MASTER_RLD 0x0F #define ACPI_BITREG_GLOBAL_LOCK_RELEASE 0x10 #define ACPI_BITREG_SLEEP_TYPE 0x11 #define ACPI_BITREG_SLEEP_ENABLE 0x12 /* PM2 Control register */ #define ACPI_BITREG_ARB_DISABLE 0x13 #define ACPI_BITREG_MAX 0x13 #define ACPI_NUM_BITREG ACPI_BITREG_MAX + 1 /* Status register values. A 1 clears a status bit. 0 = no effect */ #define ACPI_CLEAR_STATUS 1 /* Enable and Control register values */ #define ACPI_ENABLE_EVENT 1 #define ACPI_DISABLE_EVENT 0 /* Sleep function dispatch */ typedef ACPI_STATUS (*ACPI_SLEEP_FUNCTION) ( UINT8 SleepState); typedef struct acpi_sleep_functions { ACPI_SLEEP_FUNCTION LegacyFunction; ACPI_SLEEP_FUNCTION ExtendedFunction; } ACPI_SLEEP_FUNCTIONS; /* * External ACPI object definition */ /* * Note: Type == ACPI_TYPE_ANY (0) is used to indicate a NULL package element * or an unresolved named reference. */ typedef union acpi_object { ACPI_OBJECT_TYPE Type; /* See definition of AcpiNsType for values */ struct { ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_INTEGER */ UINT64 Value; /* The actual number */ } Integer; struct { ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_STRING */ UINT32 Length; /* # of bytes in string, excluding trailing null */ char *Pointer; /* points to the string value */ } String; struct { ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_BUFFER */ UINT32 Length; /* # of bytes in buffer */ UINT8 *Pointer; /* points to the buffer */ } Buffer; struct { ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_PACKAGE */ UINT32 Count; /* # of elements in package */ union acpi_object *Elements; /* Pointer to an array of ACPI_OBJECTs */ } Package; struct { ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_LOCAL_REFERENCE */ ACPI_OBJECT_TYPE ActualType; /* Type associated with the Handle */ ACPI_HANDLE Handle; /* object reference */ } Reference; struct { ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_PROCESSOR */ UINT32 ProcId; ACPI_IO_ADDRESS PblkAddress; UINT32 PblkLength; } Processor; struct { ACPI_OBJECT_TYPE Type; /* ACPI_TYPE_POWER */ UINT32 SystemLevel; UINT32 ResourceOrder; } PowerResource; } ACPI_OBJECT; /* * List of objects, used as a parameter list for control method evaluation */ typedef struct acpi_object_list { UINT32 Count; ACPI_OBJECT *Pointer; } ACPI_OBJECT_LIST; /* * Miscellaneous common Data Structures used by the interfaces */ #define ACPI_NO_BUFFER 0 #ifdef ACPI_NO_MEM_ALLOCATIONS #define ACPI_ALLOCATE_BUFFER (ACPI_SIZE) (0) #define ACPI_ALLOCATE_LOCAL_BUFFER (ACPI_SIZE) (0) #else /* ACPI_NO_MEM_ALLOCATIONS */ #define ACPI_ALLOCATE_BUFFER (ACPI_SIZE) (-1) /* Let ACPICA allocate buffer */ #define ACPI_ALLOCATE_LOCAL_BUFFER (ACPI_SIZE) (-2) /* For internal use only (enables tracking) */ #endif /* ACPI_NO_MEM_ALLOCATIONS */ typedef struct acpi_buffer { ACPI_SIZE Length; /* Length in bytes of the buffer */ void *Pointer; /* pointer to buffer */ } ACPI_BUFFER; /* * NameType for AcpiGetName */ #define ACPI_FULL_PATHNAME 0 #define ACPI_SINGLE_NAME 1 #define ACPI_FULL_PATHNAME_NO_TRAILING 2 #define ACPI_NAME_TYPE_MAX 2 /* * Predefined Namespace items */ typedef struct acpi_predefined_names { const char *Name; UINT8 Type; char *Val; } ACPI_PREDEFINED_NAMES; /* * Structure and flags for AcpiGetSystemInfo */ #define ACPI_SYS_MODE_UNKNOWN 0x0000 #define ACPI_SYS_MODE_ACPI 0x0001 #define ACPI_SYS_MODE_LEGACY 0x0002 #define ACPI_SYS_MODES_MASK 0x0003 /* * System info returned by AcpiGetSystemInfo() */ typedef struct acpi_system_info { UINT32 AcpiCaVersion; UINT32 Flags; UINT32 TimerResolution; UINT32 Reserved1; UINT32 Reserved2; UINT32 DebugLevel; UINT32 DebugLayer; } ACPI_SYSTEM_INFO; /* * System statistics returned by AcpiGetStatistics() */ typedef struct acpi_statistics { UINT32 SciCount; UINT32 GpeCount; UINT32 FixedEventCount[ACPI_NUM_FIXED_EVENTS]; UINT32 MethodCount; } ACPI_STATISTICS; -/* Table Event Types */ - -#define ACPI_TABLE_EVENT_LOAD 0x0 -#define ACPI_TABLE_EVENT_UNLOAD 0x1 -#define ACPI_NUM_TABLE_EVENTS 2 - - /* * Types specific to the OS service interfaces */ typedef UINT32 (ACPI_SYSTEM_XFACE *ACPI_OSD_HANDLER) ( void *Context); typedef void (ACPI_SYSTEM_XFACE *ACPI_OSD_EXEC_CALLBACK) ( void *Context); /* * Various handlers and callback procedures */ typedef UINT32 (*ACPI_SCI_HANDLER) ( void *Context); typedef void (*ACPI_GBL_EVENT_HANDLER) ( UINT32 EventType, ACPI_HANDLE Device, UINT32 EventNumber, void *Context); #define ACPI_EVENT_TYPE_GPE 0 #define ACPI_EVENT_TYPE_FIXED 1 typedef UINT32 (*ACPI_EVENT_HANDLER) ( void *Context); typedef UINT32 (*ACPI_GPE_HANDLER) ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, void *Context); typedef void (*ACPI_NOTIFY_HANDLER) ( ACPI_HANDLE Device, UINT32 Value, void *Context); typedef void (*ACPI_OBJECT_HANDLER) ( ACPI_HANDLE Object, void *Data); typedef ACPI_STATUS (*ACPI_INIT_HANDLER) ( ACPI_HANDLE Object, UINT32 Function); #define ACPI_INIT_DEVICE_INI 1 typedef ACPI_STATUS (*ACPI_EXCEPTION_HANDLER) ( ACPI_STATUS AmlStatus, ACPI_NAME Name, UINT16 Opcode, UINT32 AmlOffset, void *Context); /* Table Event handler (Load, LoadTable, etc.) and types */ typedef ACPI_STATUS (*ACPI_TABLE_HANDLER) ( UINT32 Event, void *Table, void *Context); -#define ACPI_TABLE_LOAD 0x0 -#define ACPI_TABLE_UNLOAD 0x1 -#define ACPI_NUM_TABLE_EVENTS 2 + +/* Table Event Types */ + +#define ACPI_TABLE_EVENT_LOAD 0x0 +#define ACPI_TABLE_EVENT_UNLOAD 0x1 +#define ACPI_TABLE_EVENT_INSTALL 0x2 +#define ACPI_TABLE_EVENT_UNINSTALL 0x3 +#define ACPI_NUM_TABLE_EVENTS 4 /* Address Spaces (For Operation Regions) */ typedef ACPI_STATUS (*ACPI_ADR_SPACE_HANDLER) ( UINT32 Function, ACPI_PHYSICAL_ADDRESS Address, UINT32 BitWidth, UINT64 *Value, void *HandlerContext, void *RegionContext); #define ACPI_DEFAULT_HANDLER NULL /* Special Context data for GenericSerialBus/GeneralPurposeIo (ACPI 5.0) */ typedef struct acpi_connection_info { UINT8 *Connection; UINT16 Length; UINT8 AccessLength; } ACPI_CONNECTION_INFO; typedef ACPI_STATUS (*ACPI_ADR_SPACE_SETUP) ( ACPI_HANDLE RegionHandle, UINT32 Function, void *HandlerContext, void **RegionContext); #define ACPI_REGION_ACTIVATE 0 #define ACPI_REGION_DEACTIVATE 1 typedef ACPI_STATUS (*ACPI_WALK_CALLBACK) ( ACPI_HANDLE Object, UINT32 NestingLevel, void *Context, void **ReturnValue); typedef UINT32 (*ACPI_INTERFACE_HANDLER) ( ACPI_STRING InterfaceName, UINT32 Supported); /* Interrupt handler return values */ #define ACPI_INTERRUPT_NOT_HANDLED 0x00 #define ACPI_INTERRUPT_HANDLED 0x01 /* GPE handler return values */ #define ACPI_REENABLE_GPE 0x80 /* Length of 32-bit EISAID values when converted back to a string */ #define ACPI_EISAID_STRING_SIZE 8 /* Includes null terminator */ /* Length of UUID (string) values */ #define ACPI_UUID_LENGTH 16 /* Length of 3-byte PCI class code values when converted back to a string */ #define ACPI_PCICLS_STRING_SIZE 7 /* Includes null terminator */ /* Structures used for device/processor HID, UID, CID */ typedef struct acpi_pnp_device_id { UINT32 Length; /* Length of string + null */ char *String; } ACPI_PNP_DEVICE_ID; typedef struct acpi_pnp_device_id_list { UINT32 Count; /* Number of IDs in Ids array */ UINT32 ListSize; /* Size of list, including ID strings */ ACPI_PNP_DEVICE_ID Ids[1]; /* ID array */ } ACPI_PNP_DEVICE_ID_LIST; /* * Structure returned from AcpiGetObjectInfo. * Optimized for both 32- and 64-bit builds */ typedef struct acpi_device_info { UINT32 InfoSize; /* Size of info, including ID strings */ UINT32 Name; /* ACPI object Name */ ACPI_OBJECT_TYPE Type; /* ACPI object Type */ UINT8 ParamCount; /* If a method, required parameter count */ UINT16 Valid; /* Indicates which optional fields are valid */ UINT8 Flags; /* Miscellaneous info */ UINT8 HighestDstates[4]; /* _SxD values: 0xFF indicates not valid */ UINT8 LowestDstates[5]; /* _SxW values: 0xFF indicates not valid */ UINT32 CurrentStatus; /* _STA value */ UINT64 Address; /* _ADR value */ ACPI_PNP_DEVICE_ID HardwareId; /* _HID value */ ACPI_PNP_DEVICE_ID UniqueId; /* _UID value */ ACPI_PNP_DEVICE_ID ClassCode; /* _CLS value */ ACPI_PNP_DEVICE_ID_LIST CompatibleIdList; /* _CID list */ } ACPI_DEVICE_INFO; /* Values for Flags field above (AcpiGetObjectInfo) */ #define ACPI_PCI_ROOT_BRIDGE 0x01 /* Flags for Valid field above (AcpiGetObjectInfo) */ #define ACPI_VALID_STA 0x0001 #define ACPI_VALID_ADR 0x0002 #define ACPI_VALID_HID 0x0004 #define ACPI_VALID_UID 0x0008 #define ACPI_VALID_CID 0x0020 #define ACPI_VALID_CLS 0x0040 #define ACPI_VALID_SXDS 0x0100 #define ACPI_VALID_SXWS 0x0200 /* Flags for _STA method */ #define ACPI_STA_DEVICE_PRESENT 0x01 #define ACPI_STA_DEVICE_ENABLED 0x02 #define ACPI_STA_DEVICE_UI 0x04 #define ACPI_STA_DEVICE_FUNCTIONING 0x08 #define ACPI_STA_DEVICE_OK 0x08 /* Synonym */ #define ACPI_STA_BATTERY_PRESENT 0x10 /* Context structs for address space handlers */ typedef struct acpi_pci_id { UINT16 Segment; UINT16 Bus; UINT16 Device; UINT16 Function; } ACPI_PCI_ID; typedef struct acpi_mem_space_context { UINT32 Length; ACPI_PHYSICAL_ADDRESS Address; ACPI_PHYSICAL_ADDRESS MappedPhysicalAddress; UINT8 *MappedLogicalAddress; ACPI_SIZE MappedLength; } ACPI_MEM_SPACE_CONTEXT; /* * ACPI_MEMORY_LIST is used only if the ACPICA local cache is enabled */ typedef struct acpi_memory_list { const char *ListName; void *ListHead; UINT16 ObjectSize; UINT16 MaxDepth; UINT16 CurrentDepth; #ifdef ACPI_DBG_TRACK_ALLOCATIONS /* Statistics for debug memory tracking only */ UINT32 TotalAllocated; UINT32 TotalFreed; UINT32 MaxOccupied; UINT32 TotalSize; UINT32 CurrentTotalSize; UINT32 Requests; UINT32 Hits; #endif } ACPI_MEMORY_LIST; /* Definitions of trace event types */ typedef enum { ACPI_TRACE_AML_METHOD, ACPI_TRACE_AML_OPCODE, ACPI_TRACE_AML_REGION } ACPI_TRACE_EVENT_TYPE; /* Definitions of _OSI support */ #define ACPI_VENDOR_STRINGS 0x01 #define ACPI_FEATURE_STRINGS 0x02 #define ACPI_ENABLE_INTERFACES 0x00 #define ACPI_DISABLE_INTERFACES 0x04 #define ACPI_DISABLE_ALL_VENDOR_STRINGS (ACPI_DISABLE_INTERFACES | ACPI_VENDOR_STRINGS) #define ACPI_DISABLE_ALL_FEATURE_STRINGS (ACPI_DISABLE_INTERFACES | ACPI_FEATURE_STRINGS) #define ACPI_DISABLE_ALL_STRINGS (ACPI_DISABLE_INTERFACES | ACPI_VENDOR_STRINGS | ACPI_FEATURE_STRINGS) #define ACPI_ENABLE_ALL_VENDOR_STRINGS (ACPI_ENABLE_INTERFACES | ACPI_VENDOR_STRINGS) #define ACPI_ENABLE_ALL_FEATURE_STRINGS (ACPI_ENABLE_INTERFACES | ACPI_FEATURE_STRINGS) #define ACPI_ENABLE_ALL_STRINGS (ACPI_ENABLE_INTERFACES | ACPI_VENDOR_STRINGS | ACPI_FEATURE_STRINGS) #define ACPI_OSI_WIN_2000 0x01 #define ACPI_OSI_WIN_XP 0x02 #define ACPI_OSI_WIN_XP_SP1 0x03 #define ACPI_OSI_WINSRV_2003 0x04 #define ACPI_OSI_WIN_XP_SP2 0x05 #define ACPI_OSI_WINSRV_2003_SP1 0x06 #define ACPI_OSI_WIN_VISTA 0x07 #define ACPI_OSI_WINSRV_2008 0x08 #define ACPI_OSI_WIN_VISTA_SP1 0x09 #define ACPI_OSI_WIN_VISTA_SP2 0x0A #define ACPI_OSI_WIN_7 0x0B #define ACPI_OSI_WIN_8 0x0C #define ACPI_OSI_WIN_10 0x0D /* Definitions of getopt */ #define ACPI_OPT_END -1 #endif /* __ACTYPES_H__ */ Index: vendor-sys/acpica/dist/source/include/acutils.h =================================================================== --- vendor-sys/acpica/dist/source/include/acutils.h (revision 305161) +++ vendor-sys/acpica/dist/source/include/acutils.h (revision 305162) @@ -1,1080 +1,1087 @@ /****************************************************************************** * * Name: acutils.h -- prototypes for the common (subsystem-wide) procedures * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef _ACUTILS_H #define _ACUTILS_H extern const UINT8 AcpiGbl_ResourceAmlSizes[]; extern const UINT8 AcpiGbl_ResourceAmlSerialBusSizes[]; /* Strings used by the disassembler and debugger resource dump routines */ #if defined(ACPI_DEBUG_OUTPUT) || defined (ACPI_DISASSEMBLER) || defined (ACPI_DEBUGGER) extern const char *AcpiGbl_BmDecode[]; extern const char *AcpiGbl_ConfigDecode[]; extern const char *AcpiGbl_ConsumeDecode[]; extern const char *AcpiGbl_DecDecode[]; extern const char *AcpiGbl_HeDecode[]; extern const char *AcpiGbl_IoDecode[]; extern const char *AcpiGbl_LlDecode[]; extern const char *AcpiGbl_MaxDecode[]; extern const char *AcpiGbl_MemDecode[]; extern const char *AcpiGbl_MinDecode[]; extern const char *AcpiGbl_MtpDecode[]; extern const char *AcpiGbl_RngDecode[]; extern const char *AcpiGbl_RwDecode[]; extern const char *AcpiGbl_ShrDecode[]; extern const char *AcpiGbl_SizDecode[]; extern const char *AcpiGbl_TrsDecode[]; extern const char *AcpiGbl_TtpDecode[]; extern const char *AcpiGbl_TypDecode[]; extern const char *AcpiGbl_PpcDecode[]; extern const char *AcpiGbl_IorDecode[]; extern const char *AcpiGbl_DtsDecode[]; extern const char *AcpiGbl_CtDecode[]; extern const char *AcpiGbl_SbtDecode[]; extern const char *AcpiGbl_AmDecode[]; extern const char *AcpiGbl_SmDecode[]; extern const char *AcpiGbl_WmDecode[]; extern const char *AcpiGbl_CphDecode[]; extern const char *AcpiGbl_CpoDecode[]; extern const char *AcpiGbl_DpDecode[]; extern const char *AcpiGbl_EdDecode[]; extern const char *AcpiGbl_BpbDecode[]; extern const char *AcpiGbl_SbDecode[]; extern const char *AcpiGbl_FcDecode[]; extern const char *AcpiGbl_PtDecode[]; #endif /* * For the iASL compiler case, the output is redirected to stderr so that * any of the various ACPI errors and warnings do not appear in the output * files, for either the compiler or disassembler portions of the tool. */ #ifdef ACPI_ASL_COMPILER #include #define ACPI_MSG_REDIRECT_BEGIN \ FILE *OutputFile = AcpiGbl_OutputFile; \ AcpiOsRedirectOutput (stderr); #define ACPI_MSG_REDIRECT_END \ AcpiOsRedirectOutput (OutputFile); #else /* * non-iASL case - no redirection, nothing to do */ #define ACPI_MSG_REDIRECT_BEGIN #define ACPI_MSG_REDIRECT_END #endif /* * Common error message prefixes */ #ifndef ACPI_MSG_ERROR #define ACPI_MSG_ERROR "ACPI Error: " #endif #ifndef ACPI_MSG_EXCEPTION #define ACPI_MSG_EXCEPTION "ACPI Exception: " #endif #ifndef ACPI_MSG_WARNING #define ACPI_MSG_WARNING "ACPI Warning: " #endif #ifndef ACPI_MSG_INFO #define ACPI_MSG_INFO "ACPI: " #endif #ifndef ACPI_MSG_BIOS_ERROR #define ACPI_MSG_BIOS_ERROR "ACPI BIOS Error (bug): " #endif #ifndef ACPI_MSG_BIOS_WARNING #define ACPI_MSG_BIOS_WARNING "ACPI BIOS Warning (bug): " #endif /* * Common message suffix */ #define ACPI_MSG_SUFFIX \ AcpiOsPrintf (" (%8.8X/%s-%u)\n", ACPI_CA_VERSION, ModuleName, LineNumber) /* Types for Resource descriptor entries */ #define ACPI_INVALID_RESOURCE 0 #define ACPI_FIXED_LENGTH 1 #define ACPI_VARIABLE_LENGTH 2 #define ACPI_SMALL_VARIABLE_LENGTH 3 typedef ACPI_STATUS (*ACPI_WALK_AML_CALLBACK) ( UINT8 *Aml, UINT32 Length, UINT32 Offset, UINT8 ResourceIndex, void **Context); typedef ACPI_STATUS (*ACPI_PKG_CALLBACK) ( UINT8 ObjectType, ACPI_OPERAND_OBJECT *SourceObject, ACPI_GENERIC_STATE *State, void *Context); typedef struct acpi_pkg_info { UINT8 *FreeSpace; ACPI_SIZE Length; UINT32 ObjectSpace; UINT32 NumPackages; } ACPI_PKG_INFO; /* Object reference counts */ #define REF_INCREMENT (UINT16) 0 #define REF_DECREMENT (UINT16) 1 /* AcpiUtDumpBuffer */ #define DB_BYTE_DISPLAY 1 #define DB_WORD_DISPLAY 2 #define DB_DWORD_DISPLAY 4 #define DB_QWORD_DISPLAY 8 /* * utascii - ASCII utilities */ BOOLEAN AcpiUtValidNameseg ( char *Signature); BOOLEAN AcpiUtValidNameChar ( char Character, UINT32 Position); void AcpiUtCheckAndRepairAscii ( UINT8 *Name, char *RepairedName, UINT32 Count); /* * utnonansi - Non-ANSI C library functions */ void AcpiUtStrupr ( char *SrcString); void AcpiUtStrlwr ( char *SrcString); int AcpiUtStricmp ( char *String1, char *String2); ACPI_STATUS AcpiUtStrtoul64 ( char *String, - UINT32 Base, - UINT32 MaxIntegerByteWidth, + UINT32 Flags, UINT64 *RetInteger); -/* Values for MaxIntegerByteWidth above */ +/* + * Values for Flags above + * Note: LIMIT values correspond to AcpiGbl_IntegerByteWidth values (4/8) + */ +#define ACPI_STRTOUL_32BIT 0x04 /* 4 bytes */ +#define ACPI_STRTOUL_64BIT 0x08 /* 8 bytes */ +#define ACPI_STRTOUL_BASE16 0x10 /* Default: Base10/16 */ -#define ACPI_MAX32_BYTE_WIDTH 4 -#define ACPI_MAX64_BYTE_WIDTH 8 - /* * utglobal - Global data structures and procedures */ ACPI_STATUS AcpiUtInitGlobals ( void); #if defined(ACPI_DEBUG_OUTPUT) || defined(ACPI_DEBUGGER) const char * AcpiUtGetMutexName ( UINT32 MutexId); const char * AcpiUtGetNotifyName ( UINT32 NotifyValue, ACPI_OBJECT_TYPE Type); #endif const char * AcpiUtGetTypeName ( ACPI_OBJECT_TYPE Type); const char * AcpiUtGetNodeName ( void *Object); const char * AcpiUtGetDescriptorName ( void *Object); const char * AcpiUtGetReferenceName ( ACPI_OPERAND_OBJECT *Object); const char * AcpiUtGetObjectTypeName ( ACPI_OPERAND_OBJECT *ObjDesc); const char * AcpiUtGetRegionName ( UINT8 SpaceId); const char * AcpiUtGetEventName ( UINT32 EventId); char AcpiUtHexToAsciiChar ( UINT64 Integer, UINT32 Position); + +ACPI_STATUS +AcpiUtAsciiToHexByte ( + char *TwoAsciiChars, + UINT8 *ReturnByte); UINT8 AcpiUtAsciiCharToHex ( int HexChar); BOOLEAN AcpiUtValidObjectType ( ACPI_OBJECT_TYPE Type); /* * utinit - miscellaneous initialization and shutdown */ ACPI_STATUS AcpiUtHardwareInitialize ( void); void AcpiUtSubsystemShutdown ( void); /* * utcopy - Object construction and conversion interfaces */ ACPI_STATUS AcpiUtBuildSimpleObject( ACPI_OPERAND_OBJECT *Obj, ACPI_OBJECT *UserObj, UINT8 *DataSpace, UINT32 *BufferSpaceUsed); ACPI_STATUS AcpiUtBuildPackageObject ( ACPI_OPERAND_OBJECT *Obj, UINT8 *Buffer, UINT32 *SpaceUsed); ACPI_STATUS AcpiUtCopyIobjectToEobject ( ACPI_OPERAND_OBJECT *Obj, ACPI_BUFFER *RetBuffer); ACPI_STATUS AcpiUtCopyEobjectToIobject ( ACPI_OBJECT *Obj, ACPI_OPERAND_OBJECT **InternalObj); ACPI_STATUS AcpiUtCopyISimpleToIsimple ( ACPI_OPERAND_OBJECT *SourceObj, ACPI_OPERAND_OBJECT *DestObj); ACPI_STATUS AcpiUtCopyIobjectToIobject ( ACPI_OPERAND_OBJECT *SourceDesc, ACPI_OPERAND_OBJECT **DestDesc, ACPI_WALK_STATE *WalkState); /* * utcreate - Object creation */ ACPI_STATUS AcpiUtUpdateObjectReference ( ACPI_OPERAND_OBJECT *Object, UINT16 Action); /* * utdebug - Debug interfaces */ void AcpiUtInitStackPtrTrace ( void); void AcpiUtTrackStackPtr ( void); void AcpiUtTrace ( UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId); void AcpiUtTracePtr ( UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId, const void *Pointer); void AcpiUtTraceU32 ( UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId, UINT32 Integer); void AcpiUtTraceStr ( UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId, const char *String); void AcpiUtExit ( UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId); void AcpiUtStatusExit ( UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId, ACPI_STATUS Status); void AcpiUtValueExit ( UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId, UINT64 Value); void AcpiUtPtrExit ( UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId, UINT8 *Ptr); void AcpiUtStrExit ( UINT32 LineNumber, const char *FunctionName, const char *ModuleName, UINT32 ComponentId, const char *String); void AcpiUtDebugDumpBuffer ( UINT8 *Buffer, UINT32 Count, UINT32 Display, UINT32 ComponentId); void AcpiUtDumpBuffer ( UINT8 *Buffer, UINT32 Count, UINT32 Display, UINT32 Offset); #ifdef ACPI_APPLICATION void AcpiUtDumpBufferToFile ( ACPI_FILE File, UINT8 *Buffer, UINT32 Count, UINT32 Display, UINT32 BaseOffset); #endif void AcpiUtReportError ( char *ModuleName, UINT32 LineNumber); void AcpiUtReportInfo ( char *ModuleName, UINT32 LineNumber); void AcpiUtReportWarning ( char *ModuleName, UINT32 LineNumber); /* * utdelete - Object deletion and reference counts */ void AcpiUtAddReference ( ACPI_OPERAND_OBJECT *Object); void AcpiUtRemoveReference ( ACPI_OPERAND_OBJECT *Object); void AcpiUtDeleteInternalPackageObject ( ACPI_OPERAND_OBJECT *Object); void AcpiUtDeleteInternalSimpleObject ( ACPI_OPERAND_OBJECT *Object); void AcpiUtDeleteInternalObjectList ( ACPI_OPERAND_OBJECT **ObjList); /* * uteval - object evaluation */ ACPI_STATUS AcpiUtEvaluateObject ( ACPI_NAMESPACE_NODE *PrefixNode, const char *Path, UINT32 ExpectedReturnBtypes, ACPI_OPERAND_OBJECT **ReturnDesc); ACPI_STATUS AcpiUtEvaluateNumericObject ( const char *ObjectName, ACPI_NAMESPACE_NODE *DeviceNode, UINT64 *Value); ACPI_STATUS AcpiUtExecute_STA ( ACPI_NAMESPACE_NODE *DeviceNode, UINT32 *StatusFlags); ACPI_STATUS AcpiUtExecutePowerMethods ( ACPI_NAMESPACE_NODE *DeviceNode, const char **MethodNames, UINT8 MethodCount, UINT8 *OutValues); /* * utids - device ID support */ ACPI_STATUS AcpiUtExecute_HID ( ACPI_NAMESPACE_NODE *DeviceNode, ACPI_PNP_DEVICE_ID **ReturnId); ACPI_STATUS AcpiUtExecute_UID ( ACPI_NAMESPACE_NODE *DeviceNode, ACPI_PNP_DEVICE_ID **ReturnId); ACPI_STATUS AcpiUtExecute_CID ( ACPI_NAMESPACE_NODE *DeviceNode, ACPI_PNP_DEVICE_ID_LIST **ReturnCidList); ACPI_STATUS AcpiUtExecute_CLS ( ACPI_NAMESPACE_NODE *DeviceNode, ACPI_PNP_DEVICE_ID **ReturnId); /* * utlock - reader/writer locks */ ACPI_STATUS AcpiUtCreateRwLock ( ACPI_RW_LOCK *Lock); void AcpiUtDeleteRwLock ( ACPI_RW_LOCK *Lock); ACPI_STATUS AcpiUtAcquireReadLock ( ACPI_RW_LOCK *Lock); ACPI_STATUS AcpiUtReleaseReadLock ( ACPI_RW_LOCK *Lock); ACPI_STATUS AcpiUtAcquireWriteLock ( ACPI_RW_LOCK *Lock); void AcpiUtReleaseWriteLock ( ACPI_RW_LOCK *Lock); /* * utobject - internal object create/delete/cache routines */ ACPI_OPERAND_OBJECT * AcpiUtCreateInternalObjectDbg ( const char *ModuleName, UINT32 LineNumber, UINT32 ComponentId, ACPI_OBJECT_TYPE Type); void * AcpiUtAllocateObjectDescDbg ( const char *ModuleName, UINT32 LineNumber, UINT32 ComponentId); #define AcpiUtCreateInternalObject(t) AcpiUtCreateInternalObjectDbg (_AcpiModuleName,__LINE__,_COMPONENT,t) #define AcpiUtAllocateObjectDesc() AcpiUtAllocateObjectDescDbg (_AcpiModuleName,__LINE__,_COMPONENT) void AcpiUtDeleteObjectDesc ( ACPI_OPERAND_OBJECT *Object); BOOLEAN AcpiUtValidInternalObject ( void *Object); ACPI_OPERAND_OBJECT * AcpiUtCreatePackageObject ( UINT32 Count); ACPI_OPERAND_OBJECT * AcpiUtCreateIntegerObject ( UINT64 Value); ACPI_OPERAND_OBJECT * AcpiUtCreateBufferObject ( ACPI_SIZE BufferSize); ACPI_OPERAND_OBJECT * AcpiUtCreateStringObject ( ACPI_SIZE StringSize); ACPI_STATUS AcpiUtGetObjectSize( ACPI_OPERAND_OBJECT *Obj, ACPI_SIZE *ObjLength); /* * utosi - Support for the _OSI predefined control method */ ACPI_STATUS AcpiUtInitializeInterfaces ( void); ACPI_STATUS AcpiUtInterfaceTerminate ( void); ACPI_STATUS AcpiUtInstallInterface ( ACPI_STRING InterfaceName); ACPI_STATUS AcpiUtRemoveInterface ( ACPI_STRING InterfaceName); ACPI_STATUS AcpiUtUpdateInterfaces ( UINT8 Action); ACPI_INTERFACE_INFO * AcpiUtGetInterface ( ACPI_STRING InterfaceName); ACPI_STATUS AcpiUtOsiImplementation ( ACPI_WALK_STATE *WalkState); /* * utpredef - support for predefined names */ const ACPI_PREDEFINED_INFO * AcpiUtGetNextPredefinedMethod ( const ACPI_PREDEFINED_INFO *ThisName); const ACPI_PREDEFINED_INFO * AcpiUtMatchPredefinedMethod ( char *Name); void AcpiUtGetExpectedReturnTypes ( char *Buffer, UINT32 ExpectedBtypes); #if (defined ACPI_ASL_COMPILER || defined ACPI_HELP_APP) const ACPI_PREDEFINED_INFO * AcpiUtMatchResourceName ( char *Name); void AcpiUtDisplayPredefinedMethod ( char *Buffer, const ACPI_PREDEFINED_INFO *ThisName, BOOLEAN MultiLine); UINT32 AcpiUtGetResourceBitWidth ( char *Buffer, UINT16 Types); #endif /* * utstate - Generic state creation/cache routines */ void AcpiUtPushGenericState ( ACPI_GENERIC_STATE **ListHead, ACPI_GENERIC_STATE *State); ACPI_GENERIC_STATE * AcpiUtPopGenericState ( ACPI_GENERIC_STATE **ListHead); ACPI_GENERIC_STATE * AcpiUtCreateGenericState ( void); ACPI_THREAD_STATE * AcpiUtCreateThreadState ( void); ACPI_GENERIC_STATE * AcpiUtCreateUpdateState ( ACPI_OPERAND_OBJECT *Object, UINT16 Action); ACPI_GENERIC_STATE * AcpiUtCreatePkgState ( void *InternalObject, void *ExternalObject, UINT16 Index); ACPI_STATUS AcpiUtCreateUpdateStateAndPush ( ACPI_OPERAND_OBJECT *Object, UINT16 Action, ACPI_GENERIC_STATE **StateList); ACPI_GENERIC_STATE * AcpiUtCreateControlState ( void); void AcpiUtDeleteGenericState ( ACPI_GENERIC_STATE *State); /* * utmath */ ACPI_STATUS AcpiUtDivide ( UINT64 InDividend, UINT64 InDivisor, UINT64 *OutQuotient, UINT64 *OutRemainder); ACPI_STATUS AcpiUtShortDivide ( UINT64 InDividend, UINT32 Divisor, UINT64 *OutQuotient, UINT32 *OutRemainder); /* * utmisc */ const ACPI_EXCEPTION_INFO * AcpiUtValidateException ( ACPI_STATUS Status); BOOLEAN AcpiUtIsPciRootBridge ( char *Id); #if (defined ACPI_ASL_COMPILER || defined ACPI_EXEC_APP || defined ACPI_NAMES_APP) BOOLEAN AcpiUtIsAmlTable ( ACPI_TABLE_HEADER *Table); #endif ACPI_STATUS AcpiUtWalkPackageTree ( ACPI_OPERAND_OBJECT *SourceObject, void *TargetObject, ACPI_PKG_CALLBACK WalkCallback, void *Context); /* Values for Base above (16=Hex, 10=Decimal) */ #define ACPI_ANY_BASE 0 UINT32 AcpiUtDwordByteSwap ( UINT32 Value); void AcpiUtSetIntegerWidth ( UINT8 Revision); #ifdef ACPI_DEBUG_OUTPUT void AcpiUtDisplayInitPathname ( UINT8 Type, ACPI_NAMESPACE_NODE *ObjHandle, const char *Path); #endif /* * utownerid - Support for Table/Method Owner IDs */ ACPI_STATUS AcpiUtAllocateOwnerId ( ACPI_OWNER_ID *OwnerId); void AcpiUtReleaseOwnerId ( ACPI_OWNER_ID *OwnerId); /* * utresrc */ ACPI_STATUS AcpiUtWalkAmlResources ( ACPI_WALK_STATE *WalkState, UINT8 *Aml, ACPI_SIZE AmlLength, ACPI_WALK_AML_CALLBACK UserFunction, void **Context); ACPI_STATUS AcpiUtValidateResource ( ACPI_WALK_STATE *WalkState, void *Aml, UINT8 *ReturnIndex); UINT32 AcpiUtGetDescriptorLength ( void *Aml); UINT16 AcpiUtGetResourceLength ( void *Aml); UINT8 AcpiUtGetResourceHeaderLength ( void *Aml); UINT8 AcpiUtGetResourceType ( void *Aml); ACPI_STATUS AcpiUtGetResourceEndTag ( ACPI_OPERAND_OBJECT *ObjDesc, UINT8 **EndTag); /* * utstring - String and character utilities */ void AcpiUtPrintString ( char *String, UINT16 MaxLength); #if defined ACPI_ASL_COMPILER || defined ACPI_EXEC_APP void UtConvertBackslashes ( char *Pathname); #endif void AcpiUtRepairName ( char *Name); #if defined (ACPI_DEBUGGER) || defined (ACPI_APPLICATION) BOOLEAN AcpiUtSafeStrcpy ( char *Dest, ACPI_SIZE DestSize, char *Source); BOOLEAN AcpiUtSafeStrcat ( char *Dest, ACPI_SIZE DestSize, char *Source); BOOLEAN AcpiUtSafeStrncat ( char *Dest, ACPI_SIZE DestSize, char *Source, ACPI_SIZE MaxTransferLength); #endif /* * utmutex - mutex support */ ACPI_STATUS AcpiUtMutexInitialize ( void); void AcpiUtMutexTerminate ( void); ACPI_STATUS AcpiUtAcquireMutex ( ACPI_MUTEX_HANDLE MutexId); ACPI_STATUS AcpiUtReleaseMutex ( ACPI_MUTEX_HANDLE MutexId); /* * utalloc - memory allocation and object caching */ ACPI_STATUS AcpiUtCreateCaches ( void); ACPI_STATUS AcpiUtDeleteCaches ( void); ACPI_STATUS AcpiUtValidateBuffer ( ACPI_BUFFER *Buffer); ACPI_STATUS AcpiUtInitializeBuffer ( ACPI_BUFFER *Buffer, ACPI_SIZE RequiredLength); #ifdef ACPI_DBG_TRACK_ALLOCATIONS void * AcpiUtAllocateAndTrack ( ACPI_SIZE Size, UINT32 Component, const char *Module, UINT32 Line); void * AcpiUtAllocateZeroedAndTrack ( ACPI_SIZE Size, UINT32 Component, const char *Module, UINT32 Line); void AcpiUtFreeAndTrack ( void *Address, UINT32 Component, const char *Module, UINT32 Line); void AcpiUtDumpAllocationInfo ( void); void AcpiUtDumpAllocations ( UINT32 Component, const char *Module); ACPI_STATUS AcpiUtCreateList ( const char *ListName, UINT16 ObjectSize, ACPI_MEMORY_LIST **ReturnCache); #endif /* ACPI_DBG_TRACK_ALLOCATIONS */ /* * utaddress - address range check */ ACPI_STATUS AcpiUtAddAddressRange ( ACPI_ADR_SPACE_TYPE SpaceId, ACPI_PHYSICAL_ADDRESS Address, UINT32 Length, ACPI_NAMESPACE_NODE *RegionNode); void AcpiUtRemoveAddressRange ( ACPI_ADR_SPACE_TYPE SpaceId, ACPI_NAMESPACE_NODE *RegionNode); UINT32 AcpiUtCheckAddressRange ( ACPI_ADR_SPACE_TYPE SpaceId, ACPI_PHYSICAL_ADDRESS Address, UINT32 Length, BOOLEAN Warn); void AcpiUtDeleteAddressLists ( void); /* * utxferror - various error/warning output functions */ void ACPI_INTERNAL_VAR_XFACE AcpiUtPredefinedWarning ( const char *ModuleName, UINT32 LineNumber, char *Pathname, UINT8 NodeFlags, const char *Format, ...); void ACPI_INTERNAL_VAR_XFACE AcpiUtPredefinedInfo ( const char *ModuleName, UINT32 LineNumber, char *Pathname, UINT8 NodeFlags, const char *Format, ...); void ACPI_INTERNAL_VAR_XFACE AcpiUtPredefinedBiosError ( const char *ModuleName, UINT32 LineNumber, char *Pathname, UINT8 NodeFlags, const char *Format, ...); void AcpiUtNamespaceError ( const char *ModuleName, UINT32 LineNumber, const char *InternalName, ACPI_STATUS LookupStatus); void AcpiUtMethodError ( const char *ModuleName, UINT32 LineNumber, const char *Message, ACPI_NAMESPACE_NODE *Node, const char *Path, ACPI_STATUS LookupStatus); /* * Utility functions for ACPI names and IDs */ const AH_PREDEFINED_NAME * AcpiAhMatchPredefinedName ( char *Nameseg); const AH_DEVICE_ID * AcpiAhMatchHardwareId ( char *Hid); const char * AcpiAhMatchUuid ( UINT8 *Data); /* * utuuid -- UUID support functions */ #if (defined ACPI_ASL_COMPILER || defined ACPI_EXEC_APP || defined ACPI_HELP_APP) void AcpiUtConvertStringToUuid ( char *InString, UINT8 *UuidBuffer); #endif #endif /* _ACUTILS_H */ Index: vendor-sys/acpica/dist/source/include/platform/acefi.h =================================================================== --- vendor-sys/acpica/dist/source/include/platform/acefi.h (revision 305161) +++ vendor-sys/acpica/dist/source/include/platform/acefi.h (revision 305162) @@ -1,257 +1,259 @@ /****************************************************************************** * * Name: acefi.h - OS specific defines, etc. * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef __ACEFI_H__ #define __ACEFI_H__ /* EDK2 EFI environemnt */ #if defined(_EDK2_EFI) #define _GNU_EFI #endif #if defined(__x86_64__) #if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7)) #define USE_MS_ABI 1 #endif #endif #ifdef _MSC_EXTENSIONS #define ACPI_EFI_API __cdecl #elif USE_MS_ABI #define ACPI_EFI_API __attribute__((ms_abi)) #else #define ACPI_EFI_API #endif #define VOID void #if defined(__ia64__) || defined(__x86_64__) #define ACPI_MACHINE_WIDTH 64 #if defined(__x86_64__) /* for x86_64, EFI_FUNCTION_WRAPPER must be defined */ #ifndef USE_MS_ABI #define USE_EFI_FUNCTION_WRAPPER #endif #ifdef _MSC_EXTENSIONS #pragma warning ( disable : 4731 ) /* Suppress warnings about modification of EBP */ #endif #endif #define UINTN uint64_t #define INTN int64_t #define ACPI_EFI_ERR(a) (0x8000000000000000 | a) #else #define ACPI_MACHINE_WIDTH 32 #define UINTN uint32_t #define INTN int32_t #define ACPI_EFI_ERR(a) (0x80000000 | a) #endif #define CHAR16 uint16_t #ifdef USE_EFI_FUNCTION_WRAPPER #define __VA_NARG__(...) \ __VA_NARG_(_0, ## __VA_ARGS__, __RSEQ_N()) #define __VA_NARG_(...) \ __VA_ARG_N(__VA_ARGS__) #define __VA_ARG_N( \ _0,_1,_2,_3,_4,_5,_6,_7,_8,_9,_10,N,...) N #define __RSEQ_N() \ 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 #define __VA_ARG_NSUFFIX__(prefix,...) \ __VA_ARG_NSUFFIX_N(prefix, __VA_NARG__(__VA_ARGS__)) #define __VA_ARG_NSUFFIX_N(prefix,nargs) \ __VA_ARG_NSUFFIX_N_(prefix, nargs) #define __VA_ARG_NSUFFIX_N_(prefix,nargs) \ prefix ## nargs /* Prototypes of EFI cdecl -> stdcall trampolines */ UINT64 efi_call0(void *func); UINT64 efi_call1(void *func, UINT64 arg1); UINT64 efi_call2(void *func, UINT64 arg1, UINT64 arg2); UINT64 efi_call3(void *func, UINT64 arg1, UINT64 arg2, UINT64 arg3); UINT64 efi_call4(void *func, UINT64 arg1, UINT64 arg2, UINT64 arg3, UINT64 arg4); UINT64 efi_call5(void *func, UINT64 arg1, UINT64 arg2, UINT64 arg3, UINT64 arg4, UINT64 arg5); UINT64 efi_call6(void *func, UINT64 arg1, UINT64 arg2, UINT64 arg3, UINT64 arg4, UINT64 arg5, UINT64 arg6); UINT64 efi_call7(void *func, UINT64 arg1, UINT64 arg2, UINT64 arg3, UINT64 arg4, UINT64 arg5, UINT64 arg6, UINT64 arg7); UINT64 efi_call8(void *func, UINT64 arg1, UINT64 arg2, UINT64 arg3, UINT64 arg4, UINT64 arg5, UINT64 arg6, UINT64 arg7, UINT64 arg8); UINT64 efi_call9(void *func, UINT64 arg1, UINT64 arg2, UINT64 arg3, UINT64 arg4, UINT64 arg5, UINT64 arg6, UINT64 arg7, UINT64 arg8, UINT64 arg9); UINT64 efi_call10(void *func, UINT64 arg1, UINT64 arg2, UINT64 arg3, UINT64 arg4, UINT64 arg5, UINT64 arg6, UINT64 arg7, UINT64 arg8, UINT64 arg9, UINT64 arg10); /* Front-ends to efi_callX to avoid compiler warnings */ #define _cast64_efi_call0(f) \ efi_call0(f) #define _cast64_efi_call1(f,a1) \ efi_call1(f, (UINT64)(a1)) #define _cast64_efi_call2(f,a1,a2) \ efi_call2(f, (UINT64)(a1), (UINT64)(a2)) #define _cast64_efi_call3(f,a1,a2,a3) \ efi_call3(f, (UINT64)(a1), (UINT64)(a2), (UINT64)(a3)) #define _cast64_efi_call4(f,a1,a2,a3,a4) \ efi_call4(f, (UINT64)(a1), (UINT64)(a2), (UINT64)(a3), (UINT64)(a4)) #define _cast64_efi_call5(f,a1,a2,a3,a4,a5) \ efi_call5(f, (UINT64)(a1), (UINT64)(a2), (UINT64)(a3), (UINT64)(a4), \ (UINT64)(a5)) #define _cast64_efi_call6(f,a1,a2,a3,a4,a5,a6) \ efi_call6(f, (UINT64)(a1), (UINT64)(a2), (UINT64)(a3), (UINT64)(a4), \ (UINT64)(a5), (UINT64)(a6)) #define _cast64_efi_call7(f,a1,a2,a3,a4,a5,a6,a7) \ efi_call7(f, (UINT64)(a1), (UINT64)(a2), (UINT64)(a3), (UINT64)(a4), \ (UINT64)(a5), (UINT64)(a6), (UINT64)(a7)) #define _cast64_efi_call8(f,a1,a2,a3,a4,a5,a6,a7,a8) \ efi_call8(f, (UINT64)(a1), (UINT64)(a2), (UINT64)(a3), (UINT64)(a4), \ (UINT64)(a5), (UINT64)(a6), (UINT64)(a7), (UINT64)(a8)) #define _cast64_efi_call9(f,a1,a2,a3,a4,a5,a6,a7,a8,a9) \ efi_call9(f, (UINT64)(a1), (UINT64)(a2), (UINT64)(a3), (UINT64)(a4), \ (UINT64)(a5), (UINT64)(a6), (UINT64)(a7), (UINT64)(a8), \ (UINT64)(a9)) #define _cast64_efi_call10(f,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10) \ efi_call10(f, (UINT64)(a1), (UINT64)(a2), (UINT64)(a3), (UINT64)(a4), \ (UINT64)(a5), (UINT64)(a6), (UINT64)(a7), (UINT64)(a8), \ (UINT64)(a9), (UINT64)(a10)) /* main wrapper (va_num ignored) */ #define uefi_call_wrapper(func,va_num,...) \ __VA_ARG_NSUFFIX__(_cast64_efi_call, __VA_ARGS__) (func , ##__VA_ARGS__) #else #define uefi_call_wrapper(func, va_num, ...) func(__VA_ARGS__) #endif /* AED EFI definitions */ #if defined(_AED_EFI) /* _int64 works for both IA32 and IA64 */ #define COMPILER_DEPENDENT_INT64 __int64 #define COMPILER_DEPENDENT_UINT64 unsigned __int64 /* * Calling conventions: * * ACPI_SYSTEM_XFACE - Interfaces to host OS (handlers, threads) * ACPI_EXTERNAL_XFACE - External ACPI interfaces * ACPI_INTERNAL_XFACE - Internal ACPI interfaces * ACPI_INTERNAL_VAR_XFACE - Internal variable-parameter list interfaces */ #define ACPI_SYSTEM_XFACE #define ACPI_EXTERNAL_XFACE #define ACPI_INTERNAL_XFACE #define ACPI_INTERNAL_VAR_XFACE /* warn C4142: redefinition of type */ #pragma warning(disable:4142) #endif /* GNU EFI definitions */ #if defined(_GNU_EFI) /* * Math helpers */ #define ACPI_DIV_64_BY_32(n_hi, n_lo, d32, q32, r32) \ do { \ UINT64 __n = ((UINT64) n_hi) << 32 | (n_lo); \ (q32) = DivU64x32 ((__n), (d32), &(r32)); \ } while (0) #define ACPI_SHIFT_RIGHT_64(n_hi, n_lo) \ do { \ (n_lo) >>= 1; \ (n_lo) |= (((n_hi) & 1) << 31); \ (n_hi) >>= 1; \ } while (0) #endif struct _ACPI_SIMPLE_TEXT_OUTPUT_INTERFACE; struct _ACPI_SIMPLE_INPUT_INTERFACE; struct _ACPI_EFI_FILE_IO_INTERFACE; struct _ACPI_EFI_FILE_HANDLE; struct _ACPI_EFI_BOOT_SERVICES; struct _ACPI_EFI_SYSTEM_TABLE; +struct _ACPI_EFI_PCI_IO; extern struct _ACPI_EFI_SYSTEM_TABLE *ST; extern struct _ACPI_EFI_BOOT_SERVICES *BS; #define FILE struct _ACPI_SIMPLE_TEXT_OUTPUT_INTERFACE -#define stdout ST->ConOut -#define stderr ST->ConOut + +extern FILE *stdout; +extern FILE *stderr; #endif /* __ACEFI_H__ */ Index: vendor-sys/acpica/dist/source/include/platform/acefiex.h =================================================================== --- vendor-sys/acpica/dist/source/include/platform/acefiex.h (revision 305161) +++ vendor-sys/acpica/dist/source/include/platform/acefiex.h (revision 305162) @@ -1,868 +1,933 @@ /****************************************************************************** * * Name: acefiex.h - Extra OS specific defines, etc. for EFI * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef __ACEFIEX_H__ #define __ACEFIEX_H__ #ifndef ACPI_USE_SYSTEM_CLIBRARY typedef signed char int8_t; typedef short int int16_t; typedef int int32_t; typedef unsigned char uint8_t; typedef unsigned short int uint16_t; typedef unsigned int uint32_t; typedef COMPILER_DEPENDENT_INT64 int64_t; typedef COMPILER_DEPENDENT_UINT64 uint64_t; #endif /* ACPI_USE_SYSTEM_CLIBRARY */ #define ACPI_EFI_ERROR(a) (((INTN) a) < 0) #define ACPI_EFI_SUCCESS 0 #define ACPI_EFI_LOAD_ERROR ACPI_EFI_ERR(1) #define ACPI_EFI_INVALID_PARAMETER ACPI_EFI_ERR(2) #define ACPI_EFI_UNSUPPORTED ACPI_EFI_ERR(3) #define ACPI_EFI_BAD_BUFFER_SIZE ACPI_EFI_ERR(4) #define ACPI_EFI_BUFFER_TOO_SMALL ACPI_EFI_ERR(5) #define ACPI_EFI_NOT_READY ACPI_EFI_ERR(6) #define ACPI_EFI_DEVICE_ERROR ACPI_EFI_ERR(7) #define ACPI_EFI_WRITE_PROTECTED ACPI_EFI_ERR(8) #define ACPI_EFI_OUT_OF_RESOURCES ACPI_EFI_ERR(9) #define ACPI_EFI_VOLUME_CORRUPTED ACPI_EFI_ERR(10) #define ACPI_EFI_VOLUME_FULL ACPI_EFI_ERR(11) #define ACPI_EFI_NO_MEDIA ACPI_EFI_ERR(12) #define ACPI_EFI_MEDIA_CHANGED ACPI_EFI_ERR(13) #define ACPI_EFI_NOT_FOUND ACPI_EFI_ERR(14) #define ACPI_EFI_ACCESS_DENIED ACPI_EFI_ERR(15) #define ACPI_EFI_NO_RESPONSE ACPI_EFI_ERR(16) #define ACPI_EFI_NO_MAPPING ACPI_EFI_ERR(17) #define ACPI_EFI_TIMEOUT ACPI_EFI_ERR(18) #define ACPI_EFI_NOT_STARTED ACPI_EFI_ERR(19) #define ACPI_EFI_ALREADY_STARTED ACPI_EFI_ERR(20) #define ACPI_EFI_ABORTED ACPI_EFI_ERR(21) #define ACPI_EFI_PROTOCOL_ERROR ACPI_EFI_ERR(24) typedef UINTN ACPI_EFI_STATUS; typedef VOID *ACPI_EFI_HANDLE; typedef VOID *ACPI_EFI_EVENT; typedef struct { UINT32 Data1; UINT16 Data2; UINT16 Data3; UINT8 Data4[8]; } ACPI_EFI_GUID; typedef struct _ACPI_EFI_DEVICE_PATH { UINT8 Type; UINT8 SubType; UINT8 Length[2]; } ACPI_EFI_DEVICE_PATH; typedef UINT64 ACPI_EFI_PHYSICAL_ADDRESS; typedef UINT64 ACPI_EFI_VIRTUAL_ADDRESS; typedef enum { AcpiEfiAllocateAnyPages, AcpiEfiAllocateMaxAddress, AcpiEfiAllocateAddress, AcpiEfiMaxAllocateType } ACPI_EFI_ALLOCATE_TYPE; typedef enum { AcpiEfiReservedMemoryType, AcpiEfiLoaderCode, AcpiEfiLoaderData, AcpiEfiBootServicesCode, AcpiEfiBootServicesData, AcpiEfiRuntimeServicesCode, AcpiEfiRuntimeServicesData, AcpiEfiConventionalMemory, AcpiEfiUnusableMemory, AcpiEfiACPIReclaimMemory, AcpiEfiACPIMemoryNVS, AcpiEfiMemoryMappedIO, AcpiEfiMemoryMappedIOPortSpace, AcpiEfiPalCode, AcpiEfiMaxMemoryType } ACPI_EFI_MEMORY_TYPE; /* possible caching types for the memory range */ #define ACPI_EFI_MEMORY_UC 0x0000000000000001 #define ACPI_EFI_MEMORY_WC 0x0000000000000002 #define ACPI_EFI_MEMORY_WT 0x0000000000000004 #define ACPI_EFI_MEMORY_WB 0x0000000000000008 #define ACPI_EFI_MEMORY_UCE 0x0000000000000010 /* physical memory protection on range */ #define ACPI_EFI_MEMORY_WP 0x0000000000001000 #define ACPI_EFI_MEMORY_RP 0x0000000000002000 #define ACPI_EFI_MEMORY_XP 0x0000000000004000 /* range requires a runtime mapping */ #define ACPI_EFI_MEMORY_RUNTIME 0x8000000000000000 #define ACPI_EFI_MEMORY_DESCRIPTOR_VERSION 1 typedef struct { UINT32 Type; UINT32 Pad; ACPI_EFI_PHYSICAL_ADDRESS PhysicalStart; ACPI_EFI_VIRTUAL_ADDRESS VirtualStart; UINT64 NumberOfPages; UINT64 Attribute; } ACPI_EFI_MEMORY_DESCRIPTOR; typedef struct _ACPI_EFI_TABLE_HEARDER { UINT64 Signature; UINT32 Revision; UINT32 HeaderSize; UINT32 CRC32; UINT32 Reserved; } ACPI_EFI_TABLE_HEADER; typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_UNKNOWN_INTERFACE) ( void); /* * Text output protocol */ #define ACPI_SIMPLE_TEXT_OUTPUT_PROTOCOL \ { 0x387477c2, 0x69c7, 0x11d2, {0x8e, 0x39, 0x0, 0xa0, 0xc9, 0x69, 0x72, 0x3b} } typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_TEXT_RESET) ( struct _ACPI_SIMPLE_TEXT_OUTPUT_INTERFACE *This, BOOLEAN ExtendedVerification); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_TEXT_OUTPUT_STRING) ( struct _ACPI_SIMPLE_TEXT_OUTPUT_INTERFACE *This, CHAR16 *String); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_TEXT_TEST_STRING) ( struct _ACPI_SIMPLE_TEXT_OUTPUT_INTERFACE *This, CHAR16 *String); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_TEXT_QUERY_MODE) ( struct _ACPI_SIMPLE_TEXT_OUTPUT_INTERFACE *This, UINTN ModeNumber, UINTN *Columns, UINTN *Rows); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_TEXT_SET_MODE) ( struct _ACPI_SIMPLE_TEXT_OUTPUT_INTERFACE *This, UINTN ModeNumber); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_TEXT_SET_ATTRIBUTE) ( struct _ACPI_SIMPLE_TEXT_OUTPUT_INTERFACE *This, UINTN Attribute); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_TEXT_CLEAR_SCREEN) ( struct _ACPI_SIMPLE_TEXT_OUTPUT_INTERFACE *This); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_TEXT_SET_CURSOR_POSITION) ( struct _ACPI_SIMPLE_TEXT_OUTPUT_INTERFACE *This, UINTN Column, UINTN Row); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_TEXT_ENABLE_CURSOR) ( struct _ACPI_SIMPLE_TEXT_OUTPUT_INTERFACE *This, BOOLEAN Enable); typedef struct { INT32 MaxMode; INT32 Mode; INT32 Attribute; INT32 CursorColumn; INT32 CursorRow; BOOLEAN CursorVisible; } ACPI_SIMPLE_TEXT_OUTPUT_MODE; typedef struct _ACPI_SIMPLE_TEXT_OUTPUT_INTERFACE { ACPI_EFI_TEXT_RESET Reset; ACPI_EFI_TEXT_OUTPUT_STRING OutputString; ACPI_EFI_TEXT_TEST_STRING TestString; ACPI_EFI_TEXT_QUERY_MODE QueryMode; ACPI_EFI_TEXT_SET_MODE SetMode; ACPI_EFI_TEXT_SET_ATTRIBUTE SetAttribute; ACPI_EFI_TEXT_CLEAR_SCREEN ClearScreen; ACPI_EFI_TEXT_SET_CURSOR_POSITION SetCursorPosition; ACPI_EFI_TEXT_ENABLE_CURSOR EnableCursor; ACPI_SIMPLE_TEXT_OUTPUT_MODE *Mode; } ACPI_SIMPLE_TEXT_OUTPUT_INTERFACE; /* * Text input protocol */ #define ACPI_SIMPLE_TEXT_INPUT_PROTOCOL \ { 0x387477c1, 0x69c7, 0x11d2, {0x8e, 0x39, 0x0, 0xa0, 0xc9, 0x69, 0x72, 0x3b} } typedef struct { UINT16 ScanCode; CHAR16 UnicodeChar; } ACPI_EFI_INPUT_KEY; /* * Baseline unicode control chars */ #define CHAR_NULL 0x0000 #define CHAR_BACKSPACE 0x0008 #define CHAR_TAB 0x0009 #define CHAR_LINEFEED 0x000A #define CHAR_CARRIAGE_RETURN 0x000D typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_INPUT_RESET) ( struct _ACPI_SIMPLE_INPUT_INTERFACE *This, BOOLEAN ExtendedVerification); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_INPUT_READ_KEY) ( struct _ACPI_SIMPLE_INPUT_INTERFACE *This, ACPI_EFI_INPUT_KEY *Key); typedef struct _ACPI_SIMPLE_INPUT_INTERFACE { ACPI_EFI_INPUT_RESET Reset; ACPI_EFI_INPUT_READ_KEY ReadKeyStroke; ACPI_EFI_EVENT WaitForKey; } ACPI_SIMPLE_INPUT_INTERFACE; /* * Simple file system protocol */ #define ACPI_SIMPLE_FILE_SYSTEM_PROTOCOL \ { 0x964e5b22, 0x6459, 0x11d2, {0x8e, 0x39, 0x0, 0xa0, 0xc9, 0x69, 0x72, 0x3b} } typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_VOLUME_OPEN) ( struct _ACPI_EFI_FILE_IO_INTERFACE *This, struct _ACPI_EFI_FILE_HANDLE **Root); #define ACPI_EFI_FILE_IO_INTERFACE_REVISION 0x00010000 typedef struct _ACPI_EFI_FILE_IO_INTERFACE { UINT64 Revision; ACPI_EFI_VOLUME_OPEN OpenVolume; } ACPI_EFI_FILE_IO_INTERFACE; typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_FILE_OPEN) ( struct _ACPI_EFI_FILE_HANDLE *File, struct _ACPI_EFI_FILE_HANDLE **NewHandle, CHAR16 *FileName, UINT64 OpenMode, UINT64 Attributes); /* Values for OpenMode used above */ #define ACPI_EFI_FILE_MODE_READ 0x0000000000000001 #define ACPI_EFI_FILE_MODE_WRITE 0x0000000000000002 #define ACPI_EFI_FILE_MODE_CREATE 0x8000000000000000 /* Values for Attribute used above */ #define ACPI_EFI_FILE_READ_ONLY 0x0000000000000001 #define ACPI_EFI_FILE_HIDDEN 0x0000000000000002 #define ACPI_EFI_FILE_SYSTEM 0x0000000000000004 #define ACPI_EFI_FILE_RESERVIED 0x0000000000000008 #define ACPI_EFI_FILE_DIRECTORY 0x0000000000000010 #define ACPI_EFI_FILE_ARCHIVE 0x0000000000000020 #define ACPI_EFI_FILE_VALID_ATTR 0x0000000000000037 typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_FILE_CLOSE) ( struct _ACPI_EFI_FILE_HANDLE *File); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_FILE_DELETE) ( struct _ACPI_EFI_FILE_HANDLE *File); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_FILE_READ) ( struct _ACPI_EFI_FILE_HANDLE *File, UINTN *BufferSize, VOID *Buffer); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_FILE_WRITE) ( struct _ACPI_EFI_FILE_HANDLE *File, UINTN *BufferSize, VOID *Buffer); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_FILE_SET_POSITION) ( struct _ACPI_EFI_FILE_HANDLE *File, UINT64 Position); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_FILE_GET_POSITION) ( struct _ACPI_EFI_FILE_HANDLE *File, UINT64 *Position); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_FILE_GET_INFO) ( struct _ACPI_EFI_FILE_HANDLE *File, ACPI_EFI_GUID *InformationType, UINTN *BufferSize, VOID *Buffer); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_FILE_SET_INFO) ( struct _ACPI_EFI_FILE_HANDLE *File, ACPI_EFI_GUID *InformationType, UINTN BufferSize, VOID *Buffer); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_FILE_FLUSH) ( struct _ACPI_EFI_FILE_HANDLE *File); #define ACPI_EFI_FILE_HANDLE_REVISION 0x00010000 typedef struct _ACPI_EFI_FILE_HANDLE { UINT64 Revision; ACPI_EFI_FILE_OPEN Open; ACPI_EFI_FILE_CLOSE Close; ACPI_EFI_FILE_DELETE Delete; ACPI_EFI_FILE_READ Read; ACPI_EFI_FILE_WRITE Write; ACPI_EFI_FILE_GET_POSITION GetPosition; ACPI_EFI_FILE_SET_POSITION SetPosition; ACPI_EFI_FILE_GET_INFO GetInfo; ACPI_EFI_FILE_SET_INFO SetInfo; ACPI_EFI_FILE_FLUSH Flush; } ACPI_EFI_FILE_STRUCT, *ACPI_EFI_FILE_HANDLE; /* * Loaded image protocol */ #define ACPI_EFI_LOADED_IMAGE_PROTOCOL \ { 0x5B1B31A1, 0x9562, 0x11d2, {0x8E, 0x3F, 0x00, 0xA0, 0xC9, 0x69, 0x72, 0x3B} } typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_IMAGE_ENTRY_POINT) ( ACPI_EFI_HANDLE ImageHandle, struct _ACPI_EFI_SYSTEM_TABLE *SystemTable); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_IMAGE_LOAD) ( BOOLEAN BootPolicy, ACPI_EFI_HANDLE ParentImageHandle, ACPI_EFI_DEVICE_PATH *FilePath, VOID *SourceBuffer, UINTN SourceSize, ACPI_EFI_HANDLE *ImageHandle); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_IMAGE_START) ( ACPI_EFI_HANDLE ImageHandle, UINTN *ExitDataSize, CHAR16 **ExitData); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_EXIT) ( ACPI_EFI_HANDLE ImageHandle, ACPI_EFI_STATUS ExitStatus, UINTN ExitDataSize, CHAR16 *ExitData); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_IMAGE_UNLOAD) ( ACPI_EFI_HANDLE ImageHandle); #define EFI_IMAGE_INFORMATION_REVISION 0x1000 typedef struct { UINT32 Revision; ACPI_EFI_HANDLE ParentHandle; struct _ACPI_EFI_SYSTEM_TABLE *SystemTable; ACPI_EFI_HANDLE DeviceHandle; ACPI_EFI_DEVICE_PATH *FilePath; VOID *Reserved; UINT32 LoadOptionsSize; VOID *LoadOptions; VOID *ImageBase; UINT64 ImageSize; ACPI_EFI_MEMORY_TYPE ImageCodeType; ACPI_EFI_MEMORY_TYPE ImageDataType; ACPI_EFI_IMAGE_UNLOAD Unload; } ACPI_EFI_LOADED_IMAGE; /* * EFI Memory */ typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_ALLOCATE_PAGES) ( ACPI_EFI_ALLOCATE_TYPE Type, ACPI_EFI_MEMORY_TYPE MemoryType, UINTN NoPages, ACPI_EFI_PHYSICAL_ADDRESS *Memory); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_FREE_PAGES) ( ACPI_EFI_PHYSICAL_ADDRESS Memory, UINTN NoPages); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_GET_MEMORY_MAP) ( UINTN *MemoryMapSize, ACPI_EFI_MEMORY_DESCRIPTOR *MemoryMap, UINTN *MapKey, UINTN *DescriptorSize, UINT32 *DescriptorVersion); #define NextMemoryDescriptor(Ptr,Size) ((ACPI_EFI_MEMORY_DESCRIPTOR *) (((UINT8 *) Ptr) + Size)) typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_ALLOCATE_POOL) ( ACPI_EFI_MEMORY_TYPE PoolType, UINTN Size, VOID **Buffer); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_FREE_POOL) ( VOID *Buffer); /* * Protocol handler functions */ typedef enum { ACPI_EFI_NATIVE_INTERFACE, ACPI_EFI_PCODE_INTERFACE } ACPI_EFI_INTERFACE_TYPE; typedef enum { AcpiEfiAllHandles, AcpiEfiByRegisterNotify, AcpiEfiByProtocol } ACPI_EFI_LOCATE_SEARCH_TYPE; typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_INSTALL_PROTOCOL_INTERFACE) ( ACPI_EFI_HANDLE *Handle, ACPI_EFI_GUID *Protocol, ACPI_EFI_INTERFACE_TYPE InterfaceType, VOID *Interface); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_REINSTALL_PROTOCOL_INTERFACE) ( ACPI_EFI_HANDLE Handle, ACPI_EFI_GUID *Protocol, VOID *OldInterface, VOID *NewInterface); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_UNINSTALL_PROTOCOL_INTERFACE) ( ACPI_EFI_HANDLE Handle, ACPI_EFI_GUID *Protocol, VOID *Interface); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_HANDLE_PROTOCOL) ( ACPI_EFI_HANDLE Handle, ACPI_EFI_GUID *Protocol, VOID **Interface); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_REGISTER_PROTOCOL_NOTIFY) ( ACPI_EFI_GUID *Protocol, ACPI_EFI_EVENT Event, VOID **Registration); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_LOCATE_HANDLE) ( ACPI_EFI_LOCATE_SEARCH_TYPE SearchType, ACPI_EFI_GUID *Protocol, VOID *SearchKey, UINTN *BufferSize, ACPI_EFI_HANDLE *Buffer); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_LOCATE_DEVICE_PATH) ( ACPI_EFI_GUID *Protocol, ACPI_EFI_DEVICE_PATH **DevicePath, ACPI_EFI_HANDLE *Device); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_INSTALL_CONFIGURATION_TABLE) ( ACPI_EFI_GUID *Guid, VOID *Table); #define ACPI_EFI_OPEN_PROTOCOL_BY_HANDLE_PROTOCOL 0x00000001 #define ACPI_EFI_OPEN_PROTOCOL_GET_PROTOCOL 0x00000002 #define ACPI_EFI_OPEN_PROTOCOL_TEST_PROTOCOL 0x00000004 #define ACPI_EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER 0x00000008 #define ACPI_EFI_OPEN_PROTOCOL_BY_DRIVER 0x00000010 #define ACPI_EFI_OPEN_PROTOCOL_EXCLUSIVE 0x00000020 typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_OPEN_PROTOCOL) ( ACPI_EFI_HANDLE Handle, ACPI_EFI_GUID *Protocol, VOID **Interface, ACPI_EFI_HANDLE AgentHandle, ACPI_EFI_HANDLE ControllerHandle, UINT32 Attributes); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_CLOSE_PROTOCOL) ( ACPI_EFI_HANDLE Handle, ACPI_EFI_GUID *Protocol, ACPI_EFI_HANDLE AgentHandle, ACPI_EFI_HANDLE ControllerHandle); typedef struct { ACPI_EFI_HANDLE AgentHandle; ACPI_EFI_HANDLE ControllerHandle; UINT32 Attributes; UINT32 OpenCount; } ACPI_EFI_OPEN_PROTOCOL_INFORMATION_ENTRY; typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_OPEN_PROTOCOL_INFORMATION) ( ACPI_EFI_HANDLE Handle, ACPI_EFI_GUID *Protocol, ACPI_EFI_OPEN_PROTOCOL_INFORMATION_ENTRY **EntryBuffer, UINTN *EntryCount); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_PROTOCOLS_PER_HANDLE) ( ACPI_EFI_HANDLE Handle, ACPI_EFI_GUID ***ProtocolBuffer, UINTN *ProtocolBufferCount); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_LOCATE_HANDLE_BUFFER) ( ACPI_EFI_LOCATE_SEARCH_TYPE SearchType, ACPI_EFI_GUID *Protocol, VOID *SearchKey, UINTN *NoHandles, ACPI_EFI_HANDLE **Buffer); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_LOCATE_PROTOCOL) ( ACPI_EFI_GUID *Protocol, VOID *Registration, VOID **Interface); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_INSTALL_MULTIPLE_PROTOCOL_INTERFACES) ( ACPI_EFI_HANDLE *Handle, ...); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_UNINSTALL_MULTIPLE_PROTOCOL_INTERFACES) ( ACPI_EFI_HANDLE Handle, ...); typedef ACPI_EFI_STATUS (ACPI_EFI_API *ACPI_EFI_CALCULATE_CRC32) ( VOID *Data, UINTN DataSize, UINT32 *Crc32); typedef VOID (ACPI_EFI_API *ACPI_EFI_COPY_MEM) ( VOID *Destination, VOID *Source, UINTN Length); typedef VOID (ACPI_EFI_API *ACPI_EFI_SET_MEM) ( VOID *Buffer, UINTN Size, UINT8 Value); /* * EFI Boot Services Table */ #define ACPI_EFI_BOOT_SERVICES_SIGNATURE 0x56524553544f4f42 #define ACPI_EFI_BOOT_SERVICES_REVISION (ACPI_EFI_SPECIFICATION_MAJOR_REVISION<<16) | (ACPI_EFI_SPECIFICATION_MINOR_REVISION) typedef struct _ACPI_EFI_BOOT_SERVICES { ACPI_EFI_TABLE_HEADER Hdr; #if 0 ACPI_EFI_RAISE_TPL RaiseTPL; ACPI_EFI_RESTORE_TPL RestoreTPL; #else ACPI_EFI_UNKNOWN_INTERFACE RaiseTPL; ACPI_EFI_UNKNOWN_INTERFACE RestoreTPL; #endif ACPI_EFI_ALLOCATE_PAGES AllocatePages; ACPI_EFI_FREE_PAGES FreePages; ACPI_EFI_GET_MEMORY_MAP GetMemoryMap; ACPI_EFI_ALLOCATE_POOL AllocatePool; ACPI_EFI_FREE_POOL FreePool; #if 0 ACPI_EFI_CREATE_EVENT CreateEvent; ACPI_EFI_SET_TIMER SetTimer; ACPI_EFI_WAIT_FOR_EVENT WaitForEvent; ACPI_EFI_SIGNAL_EVENT SignalEvent; ACPI_EFI_CLOSE_EVENT CloseEvent; ACPI_EFI_CHECK_EVENT CheckEvent; #else ACPI_EFI_UNKNOWN_INTERFACE CreateEvent; ACPI_EFI_UNKNOWN_INTERFACE SetTimer; ACPI_EFI_UNKNOWN_INTERFACE WaitForEvent; ACPI_EFI_UNKNOWN_INTERFACE SignalEvent; ACPI_EFI_UNKNOWN_INTERFACE CloseEvent; ACPI_EFI_UNKNOWN_INTERFACE CheckEvent; #endif ACPI_EFI_INSTALL_PROTOCOL_INTERFACE InstallProtocolInterface; ACPI_EFI_REINSTALL_PROTOCOL_INTERFACE ReinstallProtocolInterface; ACPI_EFI_UNINSTALL_PROTOCOL_INTERFACE UninstallProtocolInterface; ACPI_EFI_HANDLE_PROTOCOL HandleProtocol; ACPI_EFI_HANDLE_PROTOCOL PCHandleProtocol; ACPI_EFI_REGISTER_PROTOCOL_NOTIFY RegisterProtocolNotify; ACPI_EFI_LOCATE_HANDLE LocateHandle; ACPI_EFI_LOCATE_DEVICE_PATH LocateDevicePath; ACPI_EFI_INSTALL_CONFIGURATION_TABLE InstallConfigurationTable; ACPI_EFI_IMAGE_LOAD LoadImage; ACPI_EFI_IMAGE_START StartImage; ACPI_EFI_EXIT Exit; ACPI_EFI_IMAGE_UNLOAD UnloadImage; #if 0 ACPI_EFI_EXIT_BOOT_SERVICES ExitBootServices; ACPI_EFI_GET_NEXT_MONOTONIC_COUNT GetNextMonotonicCount; ACPI_EFI_STALL Stall; ACPI_EFI_SET_WATCHDOG_TIMER SetWatchdogTimer; #else ACPI_EFI_UNKNOWN_INTERFACE ExitBootServices; ACPI_EFI_UNKNOWN_INTERFACE GetNextMonotonicCount; ACPI_EFI_UNKNOWN_INTERFACE Stall; ACPI_EFI_UNKNOWN_INTERFACE SetWatchdogTimer; #endif #if 0 ACPI_EFI_CONNECT_CONTROLLER ConnectController; ACPI_EFI_DISCONNECT_CONTROLLER DisconnectController; #else ACPI_EFI_UNKNOWN_INTERFACE ConnectController; ACPI_EFI_UNKNOWN_INTERFACE DisconnectController; #endif ACPI_EFI_OPEN_PROTOCOL OpenProtocol; ACPI_EFI_CLOSE_PROTOCOL CloseProtocol; ACPI_EFI_OPEN_PROTOCOL_INFORMATION OpenProtocolInformation; ACPI_EFI_PROTOCOLS_PER_HANDLE ProtocolsPerHandle; ACPI_EFI_LOCATE_HANDLE_BUFFER LocateHandleBuffer; ACPI_EFI_LOCATE_PROTOCOL LocateProtocol; ACPI_EFI_INSTALL_MULTIPLE_PROTOCOL_INTERFACES InstallMultipleProtocolInterfaces; ACPI_EFI_UNINSTALL_MULTIPLE_PROTOCOL_INTERFACES UninstallMultipleProtocolInterfaces; ACPI_EFI_CALCULATE_CRC32 CalculateCrc32; ACPI_EFI_COPY_MEM CopyMem; ACPI_EFI_SET_MEM SetMem; #if 0 ACPI_EFI_CREATE_EVENT_EX CreateEventEx; #else ACPI_EFI_UNKNOWN_INTERFACE CreateEventEx; #endif } ACPI_EFI_BOOT_SERVICES; /* * EFI System Table */ /* * EFI Configuration Table and GUID definitions */ #define ACPI_TABLE_GUID \ { 0xeb9d2d30, 0x2d88, 0x11d3, {0x9a, 0x16, 0x0, 0x90, 0x27, 0x3f, 0xc1, 0x4d} } #define ACPI_20_TABLE_GUID \ { 0x8868e871, 0xe4f1, 0x11d3, {0xbc, 0x22, 0x0, 0x80, 0xc7, 0x3c, 0x88, 0x81} } typedef struct _ACPI_EFI_CONFIGURATION_TABLE { ACPI_EFI_GUID VendorGuid; VOID *VendorTable; } ACPI_EFI_CONFIGURATION_TABLE; #define ACPI_EFI_SYSTEM_TABLE_SIGNATURE 0x5453595320494249 #define ACPI_EFI_SYSTEM_TABLE_REVISION (ACPI_EFI_SPECIFICATION_MAJOR_REVISION<<16) | (ACPI_EFI_SPECIFICATION_MINOR_REVISION) typedef struct _ACPI_EFI_SYSTEM_TABLE { ACPI_EFI_TABLE_HEADER Hdr; CHAR16 *FirmwareVendor; UINT32 FirmwareRevision; ACPI_EFI_HANDLE ConsoleInHandle; ACPI_SIMPLE_INPUT_INTERFACE *ConIn; ACPI_EFI_HANDLE ConsoleOutHandle; ACPI_SIMPLE_TEXT_OUTPUT_INTERFACE *ConOut; ACPI_EFI_HANDLE StandardErrorHandle; ACPI_SIMPLE_TEXT_OUTPUT_INTERFACE *StdErr; #if 0 ACPI_EFI_RUNTIME_SERVICES *RuntimeServices; #else ACPI_EFI_HANDLE *RuntimeServices; #endif ACPI_EFI_BOOT_SERVICES *BootServices; UINTN NumberOfTableEntries; ACPI_EFI_CONFIGURATION_TABLE *ConfigurationTable; } ACPI_EFI_SYSTEM_TABLE; +/* + * EFI PCI I/O Protocol + */ +#define ACPI_EFI_PCI_IO_PROTOCOL \ + { 0x4cf5b200, 0x68b8, 0x4ca5, {0x9e, 0xec, 0xb2, 0x3e, 0x3f, 0x50, 0x2, 0x9a} } + +typedef enum { + AcpiEfiPciIoWidthUint8 = 0, + AcpiEfiPciIoWidthUint16, + AcpiEfiPciIoWidthUint32, + AcpiEfiPciIoWidthUint64, + AcpiEfiPciIoWidthFifoUint8, + AcpiEfiPciIoWidthFifoUint16, + AcpiEfiPciIoWidthFifoUint32, + AcpiEfiPciIoWidthFifoUint64, + AcpiEfiPciIoWidthFillUint8, + AcpiEfiPciIoWidthFillUint16, + AcpiEfiPciIoWidthFillUint32, + AcpiEfiPciIoWidthFillUint64, + AcpiEfiPciIoWidthMaximum +} ACPI_EFI_PCI_IO_PROTOCOL_WIDTH; + +typedef +ACPI_EFI_STATUS +(ACPI_EFI_API *ACPI_EFI_PCI_IO_PROTOCOL_CONFIG)( + struct _ACPI_EFI_PCI_IO *This, + ACPI_EFI_PCI_IO_PROTOCOL_WIDTH Width, + UINT32 Offset, + UINTN Count, + VOID *Buffer); + +typedef struct { + ACPI_EFI_PCI_IO_PROTOCOL_CONFIG Read; + ACPI_EFI_PCI_IO_PROTOCOL_CONFIG Write; +} ACPI_EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS; + +typedef +ACPI_EFI_STATUS +(ACPI_EFI_API *ACPI_EFI_PCI_IO_PROTOCOL_GET_LOCATION)( + struct _ACPI_EFI_PCI_IO *This, + UINTN *SegmentNumber, + UINTN *BusNumber, + UINTN *DeviceNumber, + UINTN *FunctionNumber); + +typedef struct _ACPI_EFI_PCI_IO { + ACPI_EFI_UNKNOWN_INTERFACE PollMem; + ACPI_EFI_UNKNOWN_INTERFACE PollIo; + ACPI_EFI_UNKNOWN_INTERFACE Mem; + ACPI_EFI_UNKNOWN_INTERFACE Io; + ACPI_EFI_PCI_IO_PROTOCOL_CONFIG_ACCESS Pci; + ACPI_EFI_UNKNOWN_INTERFACE CopyMem; + ACPI_EFI_UNKNOWN_INTERFACE Map; + ACPI_EFI_UNKNOWN_INTERFACE Unmap; + ACPI_EFI_UNKNOWN_INTERFACE AllocateBuffer; + ACPI_EFI_UNKNOWN_INTERFACE FreeBuffer; + ACPI_EFI_UNKNOWN_INTERFACE Flush; + ACPI_EFI_PCI_IO_PROTOCOL_GET_LOCATION GetLocation; + ACPI_EFI_UNKNOWN_INTERFACE Attributes; + ACPI_EFI_UNKNOWN_INTERFACE GetBarAttributes; + ACPI_EFI_UNKNOWN_INTERFACE SetBarAttributes; + UINT64 RomSize; + VOID *RomImage; +} ACPI_EFI_PCI_IO; + /* GNU EFI definitions */ #if defined(_GNU_EFI) /* * This is needed to hide platform specific code from ACPICA */ UINT64 DivU64x32 ( UINT64 Dividend, UINTN Divisor, UINTN *Remainder); /* * EFI specific prototypes */ ACPI_EFI_STATUS efi_main ( ACPI_EFI_HANDLE Image, ACPI_EFI_SYSTEM_TABLE *SystemTab); int acpi_main ( int argc, char *argv[]); #endif extern ACPI_EFI_GUID AcpiGbl_LoadedImageProtocol; extern ACPI_EFI_GUID AcpiGbl_TextInProtocol; extern ACPI_EFI_GUID AcpiGbl_TextOutProtocol; extern ACPI_EFI_GUID AcpiGbl_FileSystemProtocol; #endif /* __ACEFIEX_H__ */ Index: vendor-sys/acpica/dist/source/tools/acpidump/apdump.c =================================================================== --- vendor-sys/acpica/dist/source/tools/acpidump/apdump.c (revision 305161) +++ vendor-sys/acpica/dist/source/tools/acpidump/apdump.c (revision 305162) @@ -1,497 +1,497 @@ /****************************************************************************** * * Module Name: apdump - Dump routines for ACPI tables (acpidump) * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "acpidump.h" /* Local prototypes */ static int ApDumpTableBuffer ( ACPI_TABLE_HEADER *Table, UINT32 Instance, ACPI_PHYSICAL_ADDRESS Address); /****************************************************************************** * * FUNCTION: ApIsValidHeader * * PARAMETERS: Table - Pointer to table to be validated * * RETURN: TRUE if the header appears to be valid. FALSE otherwise * * DESCRIPTION: Check for a valid ACPI table header * ******************************************************************************/ BOOLEAN ApIsValidHeader ( ACPI_TABLE_HEADER *Table) { if (!ACPI_VALIDATE_RSDP_SIG (Table->Signature)) { /* Make sure signature is all ASCII and a valid ACPI name */ if (!AcpiUtValidNameseg (Table->Signature)) { fprintf (stderr, "Table signature (0x%8.8X) is invalid\n", *(UINT32 *) Table->Signature); return (FALSE); } /* Check for minimum table length */ if (Table->Length < sizeof (ACPI_TABLE_HEADER)) { fprintf (stderr, "Table length (0x%8.8X) is invalid\n", Table->Length); return (FALSE); } } return (TRUE); } /****************************************************************************** * * FUNCTION: ApIsValidChecksum * * PARAMETERS: Table - Pointer to table to be validated * * RETURN: TRUE if the checksum appears to be valid. FALSE otherwise. * * DESCRIPTION: Check for a valid ACPI table checksum. * ******************************************************************************/ BOOLEAN ApIsValidChecksum ( ACPI_TABLE_HEADER *Table) { ACPI_STATUS Status; ACPI_TABLE_RSDP *Rsdp; if (ACPI_VALIDATE_RSDP_SIG (Table->Signature)) { /* * Checksum for RSDP. * Note: Other checksums are computed during the table dump. */ Rsdp = ACPI_CAST_PTR (ACPI_TABLE_RSDP, Table); Status = AcpiTbValidateRsdp (Rsdp); } else { Status = AcpiTbVerifyChecksum (Table, Table->Length); } if (ACPI_FAILURE (Status)) { fprintf (stderr, "%4.4s: Warning: wrong checksum in table\n", Table->Signature); } return (AE_OK); } /****************************************************************************** * * FUNCTION: ApGetTableLength * * PARAMETERS: Table - Pointer to the table * * RETURN: Table length * * DESCRIPTION: Obtain table length according to table signature. * ******************************************************************************/ UINT32 ApGetTableLength ( ACPI_TABLE_HEADER *Table) { ACPI_TABLE_RSDP *Rsdp; /* Check if table is valid */ if (!ApIsValidHeader (Table)) { return (0); } if (ACPI_VALIDATE_RSDP_SIG (Table->Signature)) { Rsdp = ACPI_CAST_PTR (ACPI_TABLE_RSDP, Table); return (AcpiTbGetRsdpLength (Rsdp)); } /* Normal ACPI table */ return (Table->Length); } /****************************************************************************** * * FUNCTION: ApDumpTableBuffer * * PARAMETERS: Table - ACPI table to be dumped * Instance - ACPI table instance no. to be dumped * Address - Physical address of the table * * RETURN: None * * DESCRIPTION: Dump an ACPI table in standard ASCII hex format, with a * header that is compatible with the AcpiXtract utility. * ******************************************************************************/ static int ApDumpTableBuffer ( ACPI_TABLE_HEADER *Table, UINT32 Instance, ACPI_PHYSICAL_ADDRESS Address) { UINT32 TableLength; TableLength = ApGetTableLength (Table); /* Print only the header if requested */ if (Gbl_SummaryMode) { AcpiTbPrintTableHeader (Address, Table); return (0); } /* Dump to binary file if requested */ if (Gbl_BinaryMode) { return (ApWriteToBinaryFile (Table, Instance)); } /* * Dump the table with header for use with acpixtract utility. * Note: simplest to just always emit a 64-bit address. AcpiXtract * utility can handle this. */ fprintf (Gbl_OutputFile, "%4.4s @ 0x%8.8X%8.8X\n", Table->Signature, ACPI_FORMAT_UINT64 (Address)); AcpiUtDumpBufferToFile (Gbl_OutputFile, ACPI_CAST_PTR (UINT8, Table), TableLength, DB_BYTE_DISPLAY, 0); fprintf (Gbl_OutputFile, "\n"); return (0); } /****************************************************************************** * * FUNCTION: ApDumpAllTables * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Get all tables from the RSDT/XSDT (or at least all of the * tables that we can possibly get). * ******************************************************************************/ int ApDumpAllTables ( void) { ACPI_TABLE_HEADER *Table; UINT32 Instance = 0; ACPI_PHYSICAL_ADDRESS Address; ACPI_STATUS Status; int TableStatus; UINT32 i; /* Get and dump all available ACPI tables */ for (i = 0; i < AP_MAX_ACPI_FILES; i++) { Status = AcpiOsGetTableByIndex (i, &Table, &Instance, &Address); if (ACPI_FAILURE (Status)) { /* AE_LIMIT means that no more tables are available */ if (Status == AE_LIMIT) { return (0); } else if (i == 0) { fprintf (stderr, "Could not get ACPI tables, %s\n", AcpiFormatException (Status)); return (-1); } else { fprintf (stderr, "Could not get ACPI table at index %u, %s\n", i, AcpiFormatException (Status)); continue; } } TableStatus = ApDumpTableBuffer (Table, Instance, Address); ACPI_FREE (Table); if (TableStatus) { break; } } /* Something seriously bad happened if the loop terminates here */ return (-1); } /****************************************************************************** * * FUNCTION: ApDumpTableByAddress * * PARAMETERS: AsciiAddress - Address for requested ACPI table * * RETURN: Status * * DESCRIPTION: Get an ACPI table via a physical address and dump it. * ******************************************************************************/ int ApDumpTableByAddress ( char *AsciiAddress) { ACPI_PHYSICAL_ADDRESS Address; ACPI_TABLE_HEADER *Table; ACPI_STATUS Status; int TableStatus; UINT64 LongAddress; /* Convert argument to an integer physical address */ - Status = AcpiUtStrtoul64 (AsciiAddress, ACPI_ANY_BASE, - ACPI_MAX64_BYTE_WIDTH, &LongAddress); + Status = AcpiUtStrtoul64 (AsciiAddress, ACPI_STRTOUL_64BIT, + &LongAddress); if (ACPI_FAILURE (Status)) { fprintf (stderr, "%s: Could not convert to a physical address\n", AsciiAddress); return (-1); } Address = (ACPI_PHYSICAL_ADDRESS) LongAddress; Status = AcpiOsGetTableByAddress (Address, &Table); if (ACPI_FAILURE (Status)) { fprintf (stderr, "Could not get table at 0x%8.8X%8.8X, %s\n", ACPI_FORMAT_UINT64 (Address), AcpiFormatException (Status)); return (-1); } TableStatus = ApDumpTableBuffer (Table, 0, Address); ACPI_FREE (Table); return (TableStatus); } /****************************************************************************** * * FUNCTION: ApDumpTableByName * * PARAMETERS: Signature - Requested ACPI table signature * * RETURN: Status * * DESCRIPTION: Get an ACPI table via a signature and dump it. Handles * multiple tables with the same signature (SSDTs). * ******************************************************************************/ int ApDumpTableByName ( char *Signature) { char LocalSignature [ACPI_NAME_SIZE + 1]; UINT32 Instance; ACPI_TABLE_HEADER *Table; ACPI_PHYSICAL_ADDRESS Address; ACPI_STATUS Status; int TableStatus; if (strlen (Signature) != ACPI_NAME_SIZE) { fprintf (stderr, "Invalid table signature [%s]: must be exactly 4 characters\n", Signature); return (-1); } /* Table signatures are expected to be uppercase */ strcpy (LocalSignature, Signature); AcpiUtStrupr (LocalSignature); /* To be friendly, handle tables whose signatures do not match the name */ if (ACPI_COMPARE_NAME (LocalSignature, "FADT")) { strcpy (LocalSignature, ACPI_SIG_FADT); } else if (ACPI_COMPARE_NAME (LocalSignature, "MADT")) { strcpy (LocalSignature, ACPI_SIG_MADT); } /* Dump all instances of this signature (to handle multiple SSDTs) */ for (Instance = 0; Instance < AP_MAX_ACPI_FILES; Instance++) { Status = AcpiOsGetTableByName (LocalSignature, Instance, &Table, &Address); if (ACPI_FAILURE (Status)) { /* AE_LIMIT means that no more tables are available */ if (Status == AE_LIMIT) { return (0); } fprintf (stderr, "Could not get ACPI table with signature [%s], %s\n", LocalSignature, AcpiFormatException (Status)); return (-1); } TableStatus = ApDumpTableBuffer (Table, Instance, Address); ACPI_FREE (Table); if (TableStatus) { break; } } /* Something seriously bad happened if the loop terminates here */ return (-1); } /****************************************************************************** * * FUNCTION: ApDumpTableFromFile * * PARAMETERS: Pathname - File containing the binary ACPI table * * RETURN: Status * * DESCRIPTION: Dump an ACPI table from a binary file * ******************************************************************************/ int ApDumpTableFromFile ( char *Pathname) { ACPI_TABLE_HEADER *Table; UINT32 FileSize = 0; int TableStatus = -1; /* Get the entire ACPI table from the file */ Table = ApGetTableFromFile (Pathname, &FileSize); if (!Table) { return (-1); } if (!AcpiUtValidNameseg (Table->Signature)) { fprintf (stderr, "No valid ACPI signature was found in input file %s\n", Pathname); } /* File must be at least as long as the table length */ if (Table->Length > FileSize) { fprintf (stderr, "Table length (0x%X) is too large for input file (0x%X) %s\n", Table->Length, FileSize, Pathname); goto Exit; } if (Gbl_VerboseMode) { fprintf (stderr, "Input file: %s contains table [%4.4s], 0x%X (%u) bytes\n", Pathname, Table->Signature, FileSize, FileSize); } TableStatus = ApDumpTableBuffer (Table, 0, 0); Exit: ACPI_FREE (Table); return (TableStatus); } Index: vendor-sys/acpica/dist/source/tools/acpidump/apmain.c =================================================================== --- vendor-sys/acpica/dist/source/tools/acpidump/apmain.c (revision 305161) +++ vendor-sys/acpica/dist/source/tools/acpidump/apmain.c (revision 305162) @@ -1,426 +1,426 @@ /****************************************************************************** * * Module Name: apmain - Main module for the acpidump utility * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #define _DECLARE_GLOBALS #include "acpidump.h" /* * acpidump - A portable utility for obtaining system ACPI tables and dumping * them in an ASCII hex format suitable for binary extraction via acpixtract. * * Obtaining the system ACPI tables is an OS-specific operation. * * This utility can be ported to any host operating system by providing a * module containing system-specific versions of these interfaces: * * AcpiOsGetTableByAddress * AcpiOsGetTableByIndex * AcpiOsGetTableByName * * See the ACPICA Reference Guide for the exact definitions of these * interfaces. Also, see these ACPICA source code modules for example * implementations: * * source/os_specific/service_layers/oswintbl.c * source/os_specific/service_layers/oslinuxtbl.c */ /* Local prototypes */ static void ApDisplayUsage ( void); static int ApDoOptions ( int argc, char **argv); static int ApInsertAction ( char *Argument, UINT32 ToBeDone); /* Table for deferred actions from command line options */ AP_DUMP_ACTION ActionTable [AP_MAX_ACTIONS]; UINT32 CurrentAction = 0; #define AP_UTILITY_NAME "ACPI Binary Table Dump Utility" #define AP_SUPPORTED_OPTIONS "?a:bc:f:hn:o:r:svxz" /****************************************************************************** * * FUNCTION: ApDisplayUsage * * DESCRIPTION: Usage message for the AcpiDump utility * ******************************************************************************/ static void ApDisplayUsage ( void) { ACPI_USAGE_HEADER ("acpidump [options]"); ACPI_OPTION ("-b", "Dump tables to binary files"); ACPI_OPTION ("-h -?", "This help message"); ACPI_OPTION ("-o ", "Redirect output to file"); ACPI_OPTION ("-r
", "Dump tables from specified RSDP"); ACPI_OPTION ("-s", "Print table summaries only"); ACPI_OPTION ("-v", "Display version information"); ACPI_OPTION ("-z", "Verbose mode"); ACPI_USAGE_TEXT ("\nTable Options:\n"); ACPI_OPTION ("-a
", "Get table via a physical address"); ACPI_OPTION ("-c ", "Turning on/off customized table dumping"); ACPI_OPTION ("-f ", "Get table via a binary file"); ACPI_OPTION ("-n ", "Get table via a name/signature"); ACPI_OPTION ("-x", "Do not use but dump XSDT"); ACPI_OPTION ("-x -x", "Do not use or dump XSDT"); ACPI_USAGE_TEXT ( "\n" "Invocation without parameters dumps all available tables\n" "Multiple mixed instances of -a, -f, and -n are supported\n\n"); } /****************************************************************************** * * FUNCTION: ApInsertAction * * PARAMETERS: Argument - Pointer to the argument for this action * ToBeDone - What to do to process this action * * RETURN: Status * * DESCRIPTION: Add an action item to the action table * ******************************************************************************/ static int ApInsertAction ( char *Argument, UINT32 ToBeDone) { /* Insert action and check for table overflow */ ActionTable [CurrentAction].Argument = Argument; ActionTable [CurrentAction].ToBeDone = ToBeDone; CurrentAction++; if (CurrentAction > AP_MAX_ACTIONS) { fprintf (stderr, "Too many table options (max %u)\n", AP_MAX_ACTIONS); return (-1); } return (0); } /****************************************************************************** * * FUNCTION: ApDoOptions * * PARAMETERS: argc/argv - Standard argc/argv * * RETURN: Status * * DESCRIPTION: Command line option processing. The main actions for getting * and dumping tables are deferred via the action table. * *****************************************************************************/ static int ApDoOptions ( int argc, char **argv) { int j; ACPI_STATUS Status; /* Command line options */ while ((j = AcpiGetopt (argc, argv, AP_SUPPORTED_OPTIONS)) != ACPI_OPT_END) switch (j) { /* * Global options */ case 'b': /* Dump all input tables to binary files */ Gbl_BinaryMode = TRUE; continue; case 'c': /* Dump customized tables */ if (!strcmp (AcpiGbl_Optarg, "on")) { Gbl_DumpCustomizedTables = TRUE; } else if (!strcmp (AcpiGbl_Optarg, "off")) { Gbl_DumpCustomizedTables = FALSE; } else { fprintf (stderr, "%s: Cannot handle this switch, please use on|off\n", AcpiGbl_Optarg); return (-1); } continue; case 'h': case '?': ApDisplayUsage (); return (1); case 'o': /* Redirect output to a single file */ if (ApOpenOutputFile (AcpiGbl_Optarg)) { return (-1); } continue; case 'r': /* Dump tables from specified RSDP */ - Status = AcpiUtStrtoul64 (AcpiGbl_Optarg, ACPI_ANY_BASE, - ACPI_MAX64_BYTE_WIDTH, &Gbl_RsdpBase); + Status = AcpiUtStrtoul64 (AcpiGbl_Optarg, ACPI_STRTOUL_64BIT, + &Gbl_RsdpBase); if (ACPI_FAILURE (Status)) { fprintf (stderr, "%s: Could not convert to a physical address\n", AcpiGbl_Optarg); return (-1); } continue; case 's': /* Print table summaries only */ Gbl_SummaryMode = TRUE; continue; case 'x': /* Do not use XSDT */ if (!AcpiGbl_DoNotUseXsdt) { AcpiGbl_DoNotUseXsdt = TRUE; } else { Gbl_DoNotDumpXsdt = TRUE; } continue; case 'v': /* Revision/version */ AcpiOsPrintf (ACPI_COMMON_SIGNON (AP_UTILITY_NAME)); return (1); case 'z': /* Verbose mode */ Gbl_VerboseMode = TRUE; fprintf (stderr, ACPI_COMMON_SIGNON (AP_UTILITY_NAME)); continue; /* * Table options */ case 'a': /* Get table by physical address */ if (ApInsertAction (AcpiGbl_Optarg, AP_DUMP_TABLE_BY_ADDRESS)) { return (-1); } break; case 'f': /* Get table from a file */ if (ApInsertAction (AcpiGbl_Optarg, AP_DUMP_TABLE_BY_FILE)) { return (-1); } break; case 'n': /* Get table by input name (signature) */ if (ApInsertAction (AcpiGbl_Optarg, AP_DUMP_TABLE_BY_NAME)) { return (-1); } break; default: ApDisplayUsage (); return (-1); } /* If there are no actions, this means "get/dump all tables" */ if (CurrentAction == 0) { if (ApInsertAction (NULL, AP_DUMP_ALL_TABLES)) { return (-1); } } return (0); } /****************************************************************************** * * FUNCTION: main * * PARAMETERS: argc/argv - Standard argc/argv * * RETURN: Status * * DESCRIPTION: C main function for acpidump utility * ******************************************************************************/ #ifndef _GNU_EFI int ACPI_SYSTEM_XFACE main ( int argc, char *argv[]) #else int ACPI_SYSTEM_XFACE acpi_main ( int argc, char *argv[]) #endif { int Status = 0; AP_DUMP_ACTION *Action; UINT32 FileSize; UINT32 i; ACPI_DEBUG_INITIALIZE (); /* For debug version only */ AcpiOsInitialize (); Gbl_OutputFile = ACPI_FILE_OUT; AcpiGbl_IntegerByteWidth = 8; /* Process command line options */ Status = ApDoOptions (argc, argv); if (Status > 0) { return (0); } if (Status < 0) { return (Status); } /* Get/dump ACPI table(s) as requested */ for (i = 0; i < CurrentAction; i++) { Action = &ActionTable[i]; switch (Action->ToBeDone) { case AP_DUMP_ALL_TABLES: Status = ApDumpAllTables (); break; case AP_DUMP_TABLE_BY_ADDRESS: Status = ApDumpTableByAddress (Action->Argument); break; case AP_DUMP_TABLE_BY_NAME: Status = ApDumpTableByName (Action->Argument); break; case AP_DUMP_TABLE_BY_FILE: Status = ApDumpTableFromFile (Action->Argument); break; default: fprintf (stderr, "Internal error, invalid action: 0x%X\n", Action->ToBeDone); return (-1); } if (Status) { return (Status); } } if (Gbl_OutputFilename) { if (Gbl_VerboseMode) { /* Summary for the output file */ FileSize = CmGetFileSize (Gbl_OutputFile); fprintf (stderr, "Output file %s contains 0x%X (%u) bytes\n\n", Gbl_OutputFilename, FileSize, FileSize); } fclose (Gbl_OutputFile); } return (Status); } Index: vendor-sys/acpica/dist/source/tools/acpiexec/aeexec.c =================================================================== --- vendor-sys/acpica/dist/source/tools/acpiexec/aeexec.c (revision 305161) +++ vendor-sys/acpica/dist/source/tools/acpiexec/aeexec.c (revision 305162) @@ -1,868 +1,869 @@ /****************************************************************************** * * Module Name: aeexec - Support routines for AcpiExec utility * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "aecommon.h" #define _COMPONENT ACPI_TOOLS ACPI_MODULE_NAME ("aeexec") /* Local prototypes */ static ACPI_STATUS AeSetupConfiguration ( void *RegionAddr); static void AeTestBufferArgument ( void); static void AeTestPackageArgument ( void); static ACPI_STATUS AeGetDevices ( ACPI_HANDLE ObjHandle, UINT32 NestingLevel, void *Context, void **ReturnValue); static ACPI_STATUS ExecuteOSI ( char *OsiString, - UINT32 ExpectedResult); + UINT64 ExpectedResult); static void AeMutexInterfaces ( void); static void AeHardwareInterfaces ( void); static void AeGenericRegisters ( void); static void AeTestSleepData ( void); #if (!ACPI_REDUCED_HARDWARE) static void AfInstallGpeBlock ( void); #endif /* !ACPI_REDUCED_HARDWARE */ extern unsigned char Ssdt2Code[]; extern unsigned char Ssdt3Code[]; extern unsigned char Ssdt4Code[]; /****************************************************************************** * * FUNCTION: AeSetupConfiguration * * PARAMETERS: RegionAddr - Address for an ACPI table to be loaded * dynamically. Test purposes only. * * RETURN: Status * * DESCRIPTION: Call AML _CFG configuration control method * *****************************************************************************/ static ACPI_STATUS AeSetupConfiguration ( void *RegionAddr) { ACPI_OBJECT_LIST ArgList; ACPI_OBJECT Arg[3]; /* * Invoke _CFG method if present */ ArgList.Count = 1; ArgList.Pointer = Arg; Arg[0].Type = ACPI_TYPE_INTEGER; Arg[0].Integer.Value = ACPI_TO_INTEGER (RegionAddr); (void) AcpiEvaluateObject (NULL, "\\_CFG", &ArgList, NULL); return (AE_OK); } #if (!ACPI_REDUCED_HARDWARE) /****************************************************************************** * * FUNCTION: AfInstallGpeBlock * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Test GPE block device initialization. Requires test ASL with * A \GPE2 device. * *****************************************************************************/ static void AfInstallGpeBlock ( void) { ACPI_STATUS Status; ACPI_HANDLE Handle; ACPI_GENERIC_ADDRESS BlockAddress; ACPI_HANDLE GpeDevice; ACPI_OBJECT_TYPE Type; /* _GPE should always exist */ Status = AcpiGetHandle (NULL, "\\_GPE", &Handle); ACPI_CHECK_OK (AcpiGetHandle, Status); if (ACPI_FAILURE (Status)) { return; } memset (&BlockAddress, 0, sizeof (ACPI_GENERIC_ADDRESS)); BlockAddress.SpaceId = ACPI_ADR_SPACE_SYSTEM_MEMORY; BlockAddress.Address = 0x76540000; /* Attempt to install a GPE block on GPE2 (if present) */ Status = AcpiGetHandle (NULL, "\\GPE2", &Handle); if (ACPI_SUCCESS (Status)) { Status = AcpiGetType (Handle, &Type); if (ACPI_FAILURE (Status) || (Type != ACPI_TYPE_DEVICE)) { return; } Status = AcpiInstallGpeBlock (Handle, &BlockAddress, 7, 8); ACPI_CHECK_OK (AcpiInstallGpeBlock, Status); Status = AcpiInstallGpeHandler (Handle, 8, ACPI_GPE_LEVEL_TRIGGERED, AeGpeHandler, NULL); ACPI_CHECK_OK (AcpiInstallGpeHandler, Status); Status = AcpiEnableGpe (Handle, 8); ACPI_CHECK_OK (AcpiEnableGpe, Status); Status = AcpiGetGpeDevice (0x30, &GpeDevice); ACPI_CHECK_OK (AcpiGetGpeDevice, Status); Status = AcpiGetGpeDevice (0x42, &GpeDevice); ACPI_CHECK_OK (AcpiGetGpeDevice, Status); Status = AcpiGetGpeDevice (AcpiCurrentGpeCount-1, &GpeDevice); ACPI_CHECK_OK (AcpiGetGpeDevice, Status); Status = AcpiGetGpeDevice (AcpiCurrentGpeCount, &GpeDevice); ACPI_CHECK_STATUS (AcpiGetGpeDevice, Status, AE_NOT_EXIST); Status = AcpiRemoveGpeHandler (Handle, 8, AeGpeHandler); ACPI_CHECK_OK (AcpiRemoveGpeHandler, Status); } /* Attempt to install a GPE block on GPE3 (if present) */ Status = AcpiGetHandle (NULL, "\\GPE3", &Handle); if (ACPI_SUCCESS (Status)) { Status = AcpiGetType (Handle, &Type); if (ACPI_FAILURE (Status) || (Type != ACPI_TYPE_DEVICE)) { return; } Status = AcpiInstallGpeBlock (Handle, &BlockAddress, 8, 11); ACPI_CHECK_OK (AcpiInstallGpeBlock, Status); } } #endif /* !ACPI_REDUCED_HARDWARE */ /* Test using a Buffer object as a method argument */ static void AeTestBufferArgument ( void) { ACPI_OBJECT_LIST Params; ACPI_OBJECT BufArg; UINT8 Buffer[] = { 0,0,0,0, 4,0,0,0, 1,2,3,4 }; BufArg.Type = ACPI_TYPE_BUFFER; BufArg.Buffer.Length = 12; BufArg.Buffer.Pointer = Buffer; Params.Count = 1; Params.Pointer = &BufArg; (void) AcpiEvaluateObject (NULL, "\\BUF", &Params, NULL); } static ACPI_OBJECT PkgArg; static ACPI_OBJECT PkgElements[5]; static ACPI_OBJECT Pkg2Elements[5]; static ACPI_OBJECT_LIST Params; /* * Test using a Package object as an method argument */ static void AeTestPackageArgument ( void) { /* Main package */ PkgArg.Type = ACPI_TYPE_PACKAGE; PkgArg.Package.Count = 4; PkgArg.Package.Elements = PkgElements; /* Main package elements */ PkgElements[0].Type = ACPI_TYPE_INTEGER; PkgElements[0].Integer.Value = 0x22228888; PkgElements[1].Type = ACPI_TYPE_STRING; PkgElements[1].String.Length = sizeof ("Top-level package"); PkgElements[1].String.Pointer = "Top-level package"; PkgElements[2].Type = ACPI_TYPE_BUFFER; PkgElements[2].Buffer.Length = sizeof ("XXXX"); PkgElements[2].Buffer.Pointer = (UINT8 *) "XXXX"; PkgElements[3].Type = ACPI_TYPE_PACKAGE; PkgElements[3].Package.Count = 2; PkgElements[3].Package.Elements = Pkg2Elements; /* Subpackage elements */ Pkg2Elements[0].Type = ACPI_TYPE_INTEGER; Pkg2Elements[0].Integer.Value = 0xAAAABBBB; Pkg2Elements[1].Type = ACPI_TYPE_STRING; Pkg2Elements[1].String.Length = sizeof ("Nested Package"); Pkg2Elements[1].String.Pointer = "Nested Package"; /* Parameter object */ Params.Count = 1; Params.Pointer = &PkgArg; (void) AcpiEvaluateObject (NULL, "\\_PKG", &Params, NULL); } static ACPI_STATUS AeGetDevices ( ACPI_HANDLE ObjHandle, UINT32 NestingLevel, void *Context, void **ReturnValue) { return (AE_OK); } /****************************************************************************** * * FUNCTION: ExecuteOSI * * PARAMETERS: OsiString - String passed to _OSI method - * ExpectedResult - 0 (FALSE) or 0xFFFFFFFF (TRUE) + * ExpectedResult - 0 (FALSE) or ACPI_UINT64_MAX (TRUE) * * RETURN: Status * * DESCRIPTION: Execute the internally implemented (in ACPICA) _OSI method. * *****************************************************************************/ static ACPI_STATUS ExecuteOSI ( char *OsiString, - UINT32 ExpectedResult) + UINT64 ExpectedResult) { ACPI_STATUS Status; ACPI_OBJECT_LIST ArgList; ACPI_OBJECT Arg[1]; ACPI_BUFFER ReturnValue; ACPI_OBJECT *Obj; /* Setup input argument */ ArgList.Count = 1; ArgList.Pointer = Arg; Arg[0].Type = ACPI_TYPE_STRING; Arg[0].String.Pointer = OsiString; Arg[0].String.Length = strlen (Arg[0].String.Pointer); /* Ask ACPICA to allocate space for the return object */ ReturnValue.Length = ACPI_ALLOCATE_BUFFER; Status = AcpiEvaluateObject (NULL, "\\_OSI", &ArgList, &ReturnValue); if (ACPI_FAILURE (Status)) { AcpiOsPrintf ( "Could not execute _OSI method, %s\n", AcpiFormatException (Status)); return (Status); } Status = AE_ERROR; if (ReturnValue.Length < sizeof (ACPI_OBJECT)) { AcpiOsPrintf ( "Return value from _OSI method too small, %.8X\n", ReturnValue.Length); goto ErrorExit; } Obj = ReturnValue.Pointer; if (Obj->Type != ACPI_TYPE_INTEGER) { AcpiOsPrintf ( "Invalid return type from _OSI method, %.2X\n", Obj->Type); goto ErrorExit; } if (Obj->Integer.Value != ExpectedResult) { AcpiOsPrintf ( - "Invalid return value from _OSI, expected %.8X found %.8X\n", - ExpectedResult, (UINT32) Obj->Integer.Value); + "Invalid return value from _OSI, expected %8.8X%8.8X found %8.8X%8.8X\n", + ACPI_FORMAT_UINT64 (ExpectedResult), + ACPI_FORMAT_UINT64 (Obj->Integer.Value)); goto ErrorExit; } Status = AE_OK; /* Reset the OSI data */ AcpiGbl_OsiData = 0; ErrorExit: /* Free a buffer created via ACPI_ALLOCATE_BUFFER */ AcpiOsFree (ReturnValue.Pointer); return (Status); } /****************************************************************************** * * FUNCTION: AeGenericRegisters * * DESCRIPTION: Call the AcpiRead/Write interfaces. * *****************************************************************************/ static ACPI_GENERIC_ADDRESS GenericRegister; static void AeGenericRegisters ( void) { ACPI_STATUS Status; UINT64 Value; GenericRegister.Address = 0x1234; GenericRegister.BitWidth = 64; GenericRegister.BitOffset = 0; GenericRegister.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO; Status = AcpiRead (&Value, &GenericRegister); ACPI_CHECK_OK (AcpiRead, Status); Status = AcpiWrite (Value, &GenericRegister); ACPI_CHECK_OK (AcpiWrite, Status); GenericRegister.Address = 0x12345678; GenericRegister.BitOffset = 0; GenericRegister.SpaceId = ACPI_ADR_SPACE_SYSTEM_MEMORY; Status = AcpiRead (&Value, &GenericRegister); ACPI_CHECK_OK (AcpiRead, Status); Status = AcpiWrite (Value, &GenericRegister); ACPI_CHECK_OK (AcpiWrite, Status); } /****************************************************************************** * * FUNCTION: AeMutexInterfaces * * DESCRIPTION: Exercise the AML mutex access interfaces * *****************************************************************************/ static void AeMutexInterfaces ( void) { ACPI_STATUS Status; ACPI_HANDLE MutexHandle; /* Get a handle to an AML mutex */ Status = AcpiGetHandle (NULL, "\\MTX1", &MutexHandle); if (Status == AE_NOT_FOUND) { return; } ACPI_CHECK_OK (AcpiGetHandle, Status); if (ACPI_FAILURE (Status)) { return; } /* Acquire the mutex */ Status = AcpiAcquireMutex (NULL, "\\MTX1", 0xFFFF); ACPI_CHECK_OK (AcpiAcquireMutex, Status); if (ACPI_FAILURE (Status)) { return; } /* Release mutex with different parameters */ Status = AcpiReleaseMutex (MutexHandle, NULL); ACPI_CHECK_OK (AcpiReleaseMutex, Status); } /****************************************************************************** * * FUNCTION: AeHardwareInterfaces * * DESCRIPTION: Call various hardware support interfaces * *****************************************************************************/ static void AeHardwareInterfaces ( void) { #if (!ACPI_REDUCED_HARDWARE) ACPI_STATUS Status; UINT32 Value; /* If Hardware Reduced flag is set, we are all done */ if (AcpiGbl_ReducedHardware) { return; } Status = AcpiWriteBitRegister (ACPI_BITREG_WAKE_STATUS, 1); ACPI_CHECK_OK (AcpiWriteBitRegister, Status); Status = AcpiWriteBitRegister (ACPI_BITREG_GLOBAL_LOCK_ENABLE, 1); ACPI_CHECK_OK (AcpiWriteBitRegister, Status); Status = AcpiWriteBitRegister (ACPI_BITREG_SLEEP_ENABLE, 1); ACPI_CHECK_OK (AcpiWriteBitRegister, Status); Status = AcpiWriteBitRegister (ACPI_BITREG_ARB_DISABLE, 1); ACPI_CHECK_OK (AcpiWriteBitRegister, Status); Status = AcpiReadBitRegister (ACPI_BITREG_WAKE_STATUS, &Value); ACPI_CHECK_OK (AcpiReadBitRegister, Status); Status = AcpiReadBitRegister (ACPI_BITREG_GLOBAL_LOCK_ENABLE, &Value); ACPI_CHECK_OK (AcpiReadBitRegister, Status); Status = AcpiReadBitRegister (ACPI_BITREG_SLEEP_ENABLE, &Value); ACPI_CHECK_OK (AcpiReadBitRegister, Status); Status = AcpiReadBitRegister (ACPI_BITREG_ARB_DISABLE, &Value); ACPI_CHECK_OK (AcpiReadBitRegister, Status); #endif /* !ACPI_REDUCED_HARDWARE */ } /****************************************************************************** * * FUNCTION: AeTestSleepData * * DESCRIPTION: Exercise the sleep/wake support (_S0, _S1, etc.) * *****************************************************************************/ static void AeTestSleepData ( void) { int State; UINT8 TypeA; UINT8 TypeB; ACPI_STATUS Status; /* Attempt to get sleep data for all known sleep states */ for (State = ACPI_STATE_S0; State <= ACPI_S_STATES_MAX; State++) { Status = AcpiGetSleepTypeData ((UINT8) State, &TypeA, &TypeB); /* All sleep methods are optional */ if (Status != AE_NOT_FOUND) { ACPI_CHECK_OK (AcpiGetSleepTypeData, Status); } } } /****************************************************************************** * * FUNCTION: AeMiscellaneousTests * * DESCRIPTION: Various ACPICA validation tests. * *****************************************************************************/ void AeMiscellaneousTests ( void) { ACPI_BUFFER ReturnBuf; char Buffer[32]; ACPI_STATUS Status; ACPI_STATISTICS Stats; ACPI_HANDLE Handle; #if (!ACPI_REDUCED_HARDWARE) UINT32 LockHandle1; UINT32 LockHandle2; ACPI_VENDOR_UUID Uuid = {0, {ACPI_INIT_UUID (0,0,0,0,0,0,0,0,0,0,0)}}; #endif /* !ACPI_REDUCED_HARDWARE */ Status = AcpiGetHandle (NULL, "\\", &Handle); ACPI_CHECK_OK (AcpiGetHandle, Status); if (AcpiGbl_DoInterfaceTests) { /* * Tests for AcpiLoadTable and AcpiUnloadParentTable */ /* Attempt unload of DSDT, should fail */ Status = AcpiGetHandle (NULL, "\\_SB_", &Handle); ACPI_CHECK_OK (AcpiGetHandle, Status); Status = AcpiUnloadParentTable (Handle); ACPI_CHECK_STATUS (AcpiUnloadParentTable, Status, AE_TYPE); /* Load and unload SSDT4 */ Status = AcpiLoadTable ((ACPI_TABLE_HEADER *) Ssdt4Code); ACPI_CHECK_OK (AcpiLoadTable, Status); Status = AcpiGetHandle (NULL, "\\_T96", &Handle); ACPI_CHECK_OK (AcpiGetHandle, Status); Status = AcpiUnloadParentTable (Handle); ACPI_CHECK_OK (AcpiUnloadParentTable, Status); /* Re-load SSDT4 */ Status = AcpiLoadTable ((ACPI_TABLE_HEADER *) Ssdt4Code); ACPI_CHECK_OK (AcpiLoadTable, Status); /* Unload and re-load SSDT2 (SSDT2 is in the XSDT) */ Status = AcpiGetHandle (NULL, "\\_T99", &Handle); ACPI_CHECK_OK (AcpiGetHandle, Status); Status = AcpiUnloadParentTable (Handle); ACPI_CHECK_OK (AcpiUnloadParentTable, Status); Status = AcpiLoadTable ((ACPI_TABLE_HEADER *) Ssdt2Code); ACPI_CHECK_OK (AcpiLoadTable, Status); /* Load OEM9 table (causes table override) */ Status = AcpiLoadTable ((ACPI_TABLE_HEADER *) Ssdt3Code); ACPI_CHECK_OK (AcpiLoadTable, Status); } AeHardwareInterfaces (); AeGenericRegisters (); AeSetupConfiguration (Ssdt3Code); AeTestBufferArgument(); AeTestPackageArgument (); AeMutexInterfaces (); AeTestSleepData (); /* Test _OSI install/remove */ Status = AcpiInstallInterface (""); ACPI_CHECK_STATUS (AcpiInstallInterface, Status, AE_BAD_PARAMETER); Status = AcpiInstallInterface ("TestString"); ACPI_CHECK_OK (AcpiInstallInterface, Status); Status = AcpiInstallInterface ("TestString"); ACPI_CHECK_STATUS (AcpiInstallInterface, Status, AE_ALREADY_EXISTS); Status = AcpiRemoveInterface ("Windows 2006"); ACPI_CHECK_OK (AcpiRemoveInterface, Status); Status = AcpiRemoveInterface ("TestString"); ACPI_CHECK_OK (AcpiRemoveInterface, Status); Status = AcpiRemoveInterface ("XXXXXX"); ACPI_CHECK_STATUS (AcpiRemoveInterface, Status, AE_NOT_EXIST); Status = AcpiInstallInterface ("AnotherTestString"); ACPI_CHECK_OK (AcpiInstallInterface, Status); /* Test _OSI execution */ - Status = ExecuteOSI ("Extended Address Space Descriptor", 0xFFFFFFFF); + Status = ExecuteOSI ("Extended Address Space Descriptor", ACPI_UINT64_MAX); ACPI_CHECK_OK (ExecuteOSI, Status); - Status = ExecuteOSI ("Windows 2001", 0xFFFFFFFF); + Status = ExecuteOSI ("Windows 2001", ACPI_UINT64_MAX); ACPI_CHECK_OK (ExecuteOSI, Status); Status = ExecuteOSI ("MichiganTerminalSystem", 0); ACPI_CHECK_OK (ExecuteOSI, Status); ReturnBuf.Length = 32; ReturnBuf.Pointer = Buffer; Status = AcpiGetName (ACPI_ROOT_OBJECT, ACPI_FULL_PATHNAME_NO_TRAILING, &ReturnBuf); ACPI_CHECK_OK (AcpiGetName, Status); /* Get Devices */ Status = AcpiGetDevices (NULL, AeGetDevices, NULL, NULL); ACPI_CHECK_OK (AcpiGetDevices, Status); Status = AcpiGetStatistics (&Stats); ACPI_CHECK_OK (AcpiGetStatistics, Status); #if (!ACPI_REDUCED_HARDWARE) Status = AcpiInstallGlobalEventHandler (AeGlobalEventHandler, NULL); ACPI_CHECK_OK (AcpiInstallGlobalEventHandler, Status); /* If Hardware Reduced flag is set, we are all done */ if (AcpiGbl_ReducedHardware) { return; } Status = AcpiEnableEvent (ACPI_EVENT_GLOBAL, 0); ACPI_CHECK_OK (AcpiEnableEvent, Status); /* * GPEs: Handlers, enable/disable, etc. */ Status = AcpiInstallGpeHandler (NULL, 0, ACPI_GPE_LEVEL_TRIGGERED, AeGpeHandler, NULL); ACPI_CHECK_OK (AcpiInstallGpeHandler, Status); Status = AcpiEnableGpe (NULL, 0); ACPI_CHECK_OK (AcpiEnableGpe, Status); Status = AcpiRemoveGpeHandler (NULL, 0, AeGpeHandler); ACPI_CHECK_OK (AcpiRemoveGpeHandler, Status); Status = AcpiInstallGpeHandler (NULL, 0, ACPI_GPE_LEVEL_TRIGGERED, AeGpeHandler, NULL); ACPI_CHECK_OK (AcpiInstallGpeHandler, Status); Status = AcpiEnableGpe (NULL, 0); ACPI_CHECK_OK (AcpiEnableGpe, Status); Status = AcpiSetGpe (NULL, 0, ACPI_GPE_DISABLE); ACPI_CHECK_OK (AcpiSetGpe, Status); Status = AcpiSetGpe (NULL, 0, ACPI_GPE_ENABLE); ACPI_CHECK_OK (AcpiSetGpe, Status); Status = AcpiInstallGpeHandler (NULL, 1, ACPI_GPE_EDGE_TRIGGERED, AeGpeHandler, NULL); ACPI_CHECK_OK (AcpiInstallGpeHandler, Status); Status = AcpiEnableGpe (NULL, 1); ACPI_CHECK_OK (AcpiEnableGpe, Status); Status = AcpiInstallGpeHandler (NULL, 2, ACPI_GPE_LEVEL_TRIGGERED, AeGpeHandler, NULL); ACPI_CHECK_OK (AcpiInstallGpeHandler, Status); Status = AcpiEnableGpe (NULL, 2); ACPI_CHECK_OK (AcpiEnableGpe, Status); Status = AcpiInstallGpeHandler (NULL, 3, ACPI_GPE_EDGE_TRIGGERED, AeGpeHandler, NULL); ACPI_CHECK_OK (AcpiInstallGpeHandler, Status); Status = AcpiInstallGpeHandler (NULL, 4, ACPI_GPE_LEVEL_TRIGGERED, AeGpeHandler, NULL); ACPI_CHECK_OK (AcpiInstallGpeHandler, Status); Status = AcpiInstallGpeHandler (NULL, 5, ACPI_GPE_EDGE_TRIGGERED, AeGpeHandler, NULL); ACPI_CHECK_OK (AcpiInstallGpeHandler, Status); Status = AcpiGetHandle (NULL, "\\_SB", &Handle); ACPI_CHECK_OK (AcpiGetHandle, Status); Status = AcpiSetupGpeForWake (Handle, NULL, 5); ACPI_CHECK_OK (AcpiSetupGpeForWake, Status); Status = AcpiSetGpeWakeMask (NULL, 5, ACPI_GPE_ENABLE); ACPI_CHECK_OK (AcpiSetGpeWakeMask, Status); Status = AcpiSetupGpeForWake (Handle, NULL, 6); ACPI_CHECK_OK (AcpiSetupGpeForWake, Status); Status = AcpiSetupGpeForWake (ACPI_ROOT_OBJECT, NULL, 6); ACPI_CHECK_OK (AcpiSetupGpeForWake, Status); Status = AcpiSetupGpeForWake (Handle, NULL, 9); ACPI_CHECK_OK (AcpiSetupGpeForWake, Status); Status = AcpiInstallGpeHandler (NULL, 0x19, ACPI_GPE_LEVEL_TRIGGERED, AeGpeHandler, NULL); ACPI_CHECK_OK (AcpiInstallGpeHandler, Status); Status = AcpiEnableGpe (NULL, 0x19); ACPI_CHECK_OK (AcpiEnableGpe, Status); /* GPE block 1 */ Status = AcpiInstallGpeHandler (NULL, 101, ACPI_GPE_LEVEL_TRIGGERED, AeGpeHandler, NULL); ACPI_CHECK_OK (AcpiInstallGpeHandler, Status); Status = AcpiEnableGpe (NULL, 101); ACPI_CHECK_OK (AcpiEnableGpe, Status); Status = AcpiDisableGpe (NULL, 101); ACPI_CHECK_OK (AcpiDisableGpe, Status); AfInstallGpeBlock (); /* Here is where the GPEs are actually "enabled" */ Status = AcpiUpdateAllGpes (); ACPI_CHECK_OK (AcpiUpdateAllGpes, Status); Status = AcpiGetHandle (NULL, "RSRC", &Handle); if (ACPI_SUCCESS (Status)) { ReturnBuf.Length = ACPI_ALLOCATE_BUFFER; Status = AcpiGetVendorResource (Handle, "_CRS", &Uuid, &ReturnBuf); if (ACPI_SUCCESS (Status)) { AcpiOsFree (ReturnBuf.Pointer); } } /* Test global lock */ Status = AcpiAcquireGlobalLock (0xFFFF, &LockHandle1); ACPI_CHECK_OK (AcpiAcquireGlobalLock, Status); Status = AcpiAcquireGlobalLock (0x5, &LockHandle2); ACPI_CHECK_OK (AcpiAcquireGlobalLock, Status); Status = AcpiReleaseGlobalLock (LockHandle1); ACPI_CHECK_OK (AcpiReleaseGlobalLock, Status); Status = AcpiReleaseGlobalLock (LockHandle2); ACPI_CHECK_OK (AcpiReleaseGlobalLock, Status); #endif /* !ACPI_REDUCED_HARDWARE */ } Index: vendor-sys/acpica/dist/source/tools/acpiexec/aehandlers.c =================================================================== --- vendor-sys/acpica/dist/source/tools/acpiexec/aehandlers.c (revision 305161) +++ vendor-sys/acpica/dist/source/tools/acpiexec/aehandlers.c (revision 305162) @@ -1,927 +1,929 @@ /****************************************************************************** * * Module Name: aehandlers - Various handlers for acpiexec * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "aecommon.h" #define _COMPONENT ACPI_TOOLS ACPI_MODULE_NAME ("aehandlers") /* Local prototypes */ static void AeNotifyHandler1 ( ACPI_HANDLE Device, UINT32 Value, void *Context); static void AeNotifyHandler2 ( ACPI_HANDLE Device, UINT32 Value, void *Context); static void AeCommonNotifyHandler ( ACPI_HANDLE Device, UINT32 Value, UINT32 HandlerId); static void AeDeviceNotifyHandler ( ACPI_HANDLE Device, UINT32 Value, void *Context); static ACPI_STATUS AeExceptionHandler ( ACPI_STATUS AmlStatus, ACPI_NAME Name, UINT16 Opcode, UINT32 AmlOffset, void *Context); static ACPI_STATUS AeTableHandler ( UINT32 Event, void *Table, void *Context); static void AeAttachedDataHandler ( ACPI_HANDLE Object, void *Data); static void AeAttachedDataHandler2 ( ACPI_HANDLE Object, void *Data); static UINT32 AeInterfaceHandler ( ACPI_STRING InterfaceName, UINT32 Supported); #if (!ACPI_REDUCED_HARDWARE) static UINT32 AeEventHandler ( void *Context); static UINT32 AeSciHandler ( void *Context); static char *TableEvents[] = { "LOAD", "UNLOAD", + "INSTALL", + "UNINSTALL", "UNKNOWN" }; #endif /* !ACPI_REDUCED_HARDWARE */ static UINT32 SigintCount = 0; static AE_DEBUG_REGIONS AeRegions; /****************************************************************************** * * FUNCTION: AeCtrlCHandler * * PARAMETERS: Sig * * RETURN: none * * DESCRIPTION: Control-C handler. Abort running control method if any. * *****************************************************************************/ void ACPI_SYSTEM_XFACE AeCtrlCHandler ( int Sig) { signal (SIGINT, SIG_IGN); SigintCount++; AcpiOsPrintf ("Caught a ctrl-c (#%u)\n\n", SigintCount); if (AcpiGbl_MethodExecuting) { AcpiGbl_AbortMethod = TRUE; signal (SIGINT, AeCtrlCHandler); if (SigintCount < 10) { return; } } (void) AcpiOsTerminate (); exit (0); } /****************************************************************************** * * FUNCTION: AeNotifyHandler(s) * * PARAMETERS: Standard notify handler parameters * * RETURN: Status * * DESCRIPTION: Notify handlers for AcpiExec utility. Used by the ASL * test suite(s) to communicate errors and other information to * this utility via the Notify() operator. Tests notify handling * and multiple notify handler support. * *****************************************************************************/ static void AeNotifyHandler1 ( ACPI_HANDLE Device, UINT32 Value, void *Context) { AeCommonNotifyHandler (Device, Value, 1); } static void AeNotifyHandler2 ( ACPI_HANDLE Device, UINT32 Value, void *Context) { AeCommonNotifyHandler (Device, Value, 2); } static void AeCommonNotifyHandler ( ACPI_HANDLE Device, UINT32 Value, UINT32 HandlerId) { char *Type; Type = "Device"; if (Value <= ACPI_MAX_SYS_NOTIFY) { Type = "System"; } switch (Value) { #if 0 case 0: printf ("[AcpiExec] Method Error 0x%X: Results not equal\n", Value); if (AcpiGbl_DebugFile) { AcpiOsPrintf ("[AcpiExec] Method Error: Results not equal\n"); } break; case 1: printf ("[AcpiExec] Method Error: Incorrect numeric result\n"); if (AcpiGbl_DebugFile) { AcpiOsPrintf ("[AcpiExec] Method Error: Incorrect numeric result\n"); } break; case 2: printf ("[AcpiExec] Method Error: An operand was overwritten\n"); if (AcpiGbl_DebugFile) { AcpiOsPrintf ("[AcpiExec] Method Error: An operand was overwritten\n"); } break; #endif default: printf ("[AcpiExec] Handler %u: Received a %s Notify on [%4.4s] %p Value 0x%2.2X (%s)\n", HandlerId, Type, AcpiUtGetNodeName (Device), Device, Value, AcpiUtGetNotifyName (Value, ACPI_TYPE_ANY)); if (AcpiGbl_DebugFile) { AcpiOsPrintf ("[AcpiExec] Handler %u: Received a %s notify, Value 0x%2.2X\n", HandlerId, Type, Value); } (void) AcpiEvaluateObject (Device, "_NOT", NULL, NULL); break; } } /****************************************************************************** * * FUNCTION: AeSystemNotifyHandler * * PARAMETERS: Standard notify handler parameters * * RETURN: Status * * DESCRIPTION: System notify handler for AcpiExec utility. Used by the ASL * test suite(s) to communicate errors and other information to * this utility via the Notify() operator. * *****************************************************************************/ static void AeSystemNotifyHandler ( ACPI_HANDLE Device, UINT32 Value, void *Context) { printf ("[AcpiExec] Global: Received a System Notify on [%4.4s] %p Value 0x%2.2X (%s)\n", AcpiUtGetNodeName (Device), Device, Value, AcpiUtGetNotifyName (Value, ACPI_TYPE_ANY)); if (AcpiGbl_DebugFile) { AcpiOsPrintf ("[AcpiExec] Global: Received a System Notify, Value 0x%2.2X\n", Value); } (void) AcpiEvaluateObject (Device, "_NOT", NULL, NULL); } /****************************************************************************** * * FUNCTION: AeDeviceNotifyHandler * * PARAMETERS: Standard notify handler parameters * * RETURN: Status * * DESCRIPTION: Device notify handler for AcpiExec utility. Used by the ASL * test suite(s) to communicate errors and other information to * this utility via the Notify() operator. * *****************************************************************************/ static void AeDeviceNotifyHandler ( ACPI_HANDLE Device, UINT32 Value, void *Context) { printf ("[AcpiExec] Global: Received a Device Notify on [%4.4s] %p Value 0x%2.2X (%s)\n", AcpiUtGetNodeName (Device), Device, Value, AcpiUtGetNotifyName (Value, ACPI_TYPE_ANY)); if (AcpiGbl_DebugFile) { AcpiOsPrintf ("[AcpiExec] Global: Received a Device Notify, Value 0x%2.2X\n", Value); } (void) AcpiEvaluateObject (Device, "_NOT", NULL, NULL); } /****************************************************************************** * * FUNCTION: AeExceptionHandler * * PARAMETERS: Standard exception handler parameters * * RETURN: Status * * DESCRIPTION: System exception handler for AcpiExec utility. * *****************************************************************************/ static ACPI_STATUS AeExceptionHandler ( ACPI_STATUS AmlStatus, ACPI_NAME Name, UINT16 Opcode, UINT32 AmlOffset, void *Context) { ACPI_STATUS NewAmlStatus = AmlStatus; ACPI_STATUS Status; ACPI_BUFFER ReturnObj; ACPI_OBJECT_LIST ArgList; ACPI_OBJECT Arg[3]; const char *Exception; Exception = AcpiFormatException (AmlStatus); AcpiOsPrintf ("[AcpiExec] Exception %s during execution ", Exception); if (Name) { AcpiOsPrintf ("of method [%4.4s]", (char *) &Name); } else { AcpiOsPrintf ("at module level (table load)"); } AcpiOsPrintf (" Opcode [%s] @%X\n", AcpiPsGetOpcodeName (Opcode), AmlOffset); /* * Invoke the _ERR method if present * * Setup parameter object */ ArgList.Count = 3; ArgList.Pointer = Arg; Arg[0].Type = ACPI_TYPE_INTEGER; Arg[0].Integer.Value = AmlStatus; Arg[1].Type = ACPI_TYPE_STRING; Arg[1].String.Pointer = ACPI_CAST_PTR (char, Exception); Arg[1].String.Length = strlen (Exception); Arg[2].Type = ACPI_TYPE_INTEGER; Arg[2].Integer.Value = AcpiOsGetThreadId(); /* Setup return buffer */ ReturnObj.Pointer = NULL; ReturnObj.Length = ACPI_ALLOCATE_BUFFER; Status = AcpiEvaluateObject (NULL, "\\_ERR", &ArgList, &ReturnObj); if (ACPI_SUCCESS (Status)) { if (ReturnObj.Pointer) { /* Override original status */ NewAmlStatus = (ACPI_STATUS) ((ACPI_OBJECT *) ReturnObj.Pointer)->Integer.Value; /* Free a buffer created via ACPI_ALLOCATE_BUFFER */ AcpiOsFree (ReturnObj.Pointer); } } else if (Status != AE_NOT_FOUND) { AcpiOsPrintf ("[AcpiExec] Could not execute _ERR method, %s\n", AcpiFormatException (Status)); } /* Global override */ if (AcpiGbl_IgnoreErrors) { NewAmlStatus = AE_OK; } if (NewAmlStatus != AmlStatus) { AcpiOsPrintf ("[AcpiExec] Exception override, new status %s\n\n", AcpiFormatException (NewAmlStatus)); } return (NewAmlStatus); } /****************************************************************************** * * FUNCTION: AeTableHandler * * PARAMETERS: Table handler * * RETURN: Status * * DESCRIPTION: System table handler for AcpiExec utility. * *****************************************************************************/ static ACPI_STATUS AeTableHandler ( UINT32 Event, void *Table, void *Context) { #if (!ACPI_REDUCED_HARDWARE) ACPI_STATUS Status; #endif /* !ACPI_REDUCED_HARDWARE */ if (Event > ACPI_NUM_TABLE_EVENTS) { Event = ACPI_NUM_TABLE_EVENTS; } #if (!ACPI_REDUCED_HARDWARE) /* Enable any GPEs associated with newly-loaded GPE methods */ Status = AcpiUpdateAllGpes (); ACPI_CHECK_OK (AcpiUpdateAllGpes, Status); printf ("[AcpiExec] Table Event %s, [%4.4s] %p\n", TableEvents[Event], ((ACPI_TABLE_HEADER *) Table)->Signature, Table); #endif /* !ACPI_REDUCED_HARDWARE */ return (AE_OK); } /****************************************************************************** * * FUNCTION: AeGpeHandler * * DESCRIPTION: Common GPE handler for acpiexec * *****************************************************************************/ UINT32 AeGpeHandler ( ACPI_HANDLE GpeDevice, UINT32 GpeNumber, void *Context) { ACPI_NAMESPACE_NODE *DeviceNode = (ACPI_NAMESPACE_NODE *) GpeDevice; AcpiOsPrintf ("[AcpiExec] GPE Handler received GPE %02X (GPE block %4.4s)\n", GpeNumber, GpeDevice ? DeviceNode->Name.Ascii : "FADT"); return (ACPI_REENABLE_GPE); } /****************************************************************************** * * FUNCTION: AeGlobalEventHandler * * DESCRIPTION: Global GPE/Fixed event handler * *****************************************************************************/ void AeGlobalEventHandler ( UINT32 Type, ACPI_HANDLE Device, UINT32 EventNumber, void *Context) { char *TypeName; switch (Type) { case ACPI_EVENT_TYPE_GPE: TypeName = "GPE"; break; case ACPI_EVENT_TYPE_FIXED: TypeName = "FixedEvent"; break; default: TypeName = "UNKNOWN"; break; } AcpiOsPrintf ( "[AcpiExec] Global Event Handler received: Type %s Number %.2X Dev %p\n", TypeName, EventNumber, Device); } /****************************************************************************** * * FUNCTION: AeAttachedDataHandler * * DESCRIPTION: Handler for deletion of nodes with attached data (attached via * AcpiAttachData) * *****************************************************************************/ static void AeAttachedDataHandler ( ACPI_HANDLE Object, void *Data) { ACPI_NAMESPACE_NODE *Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, Data); AcpiOsPrintf ("Received an attached data deletion (1) on %4.4s\n", Node->Name.Ascii); } /****************************************************************************** * * FUNCTION: AeAttachedDataHandler2 * * DESCRIPTION: Handler for deletion of nodes with attached data (attached via * AcpiAttachData) * *****************************************************************************/ static void AeAttachedDataHandler2 ( ACPI_HANDLE Object, void *Data) { ACPI_NAMESPACE_NODE *Node = ACPI_CAST_PTR (ACPI_NAMESPACE_NODE, Data); AcpiOsPrintf ("Received an attached data deletion (2) on %4.4s\n", Node->Name.Ascii); } /****************************************************************************** * * FUNCTION: AeInterfaceHandler * * DESCRIPTION: Handler for _OSI invocations * *****************************************************************************/ static UINT32 AeInterfaceHandler ( ACPI_STRING InterfaceName, UINT32 Supported) { ACPI_FUNCTION_NAME (AeInterfaceHandler); ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Received _OSI (\"%s\"), is %ssupported\n", InterfaceName, Supported == 0 ? "not " : "")); return (Supported); } #if (!ACPI_REDUCED_HARDWARE) /****************************************************************************** * * FUNCTION: AeEventHandler, AeSciHandler * * DESCRIPTION: Handler for Fixed Events and SCIs * *****************************************************************************/ static UINT32 AeEventHandler ( void *Context) { return (0); } static UINT32 AeSciHandler ( void *Context) { AcpiOsPrintf ("[AcpiExec] Received an SCI at handler\n"); return (0); } #endif /* !ACPI_REDUCED_HARDWARE */ /******************************************************************************* * * FUNCTION: AeInstallSciHandler * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Install handler for SCIs. Exercise the code by doing an * install/remove/install. * ******************************************************************************/ static ACPI_STATUS AeInstallSciHandler ( void) { ACPI_STATUS Status; Status = AcpiInstallSciHandler (AeSciHandler, &AeMyContext); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "Could not install an SCI handler (1)")); } Status = AcpiRemoveSciHandler (AeSciHandler); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "Could not remove an SCI handler")); } Status = AcpiInstallSciHandler (AeSciHandler, &AeMyContext); if (ACPI_FAILURE (Status)) { ACPI_EXCEPTION ((AE_INFO, Status, "Could not install an SCI handler (2)")); } return (Status); } /****************************************************************************** * * FUNCTION: AeInstallLateHandlers * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Install handlers for the AcpiExec utility. * *****************************************************************************/ ACPI_STATUS AeInstallLateHandlers ( void) { ACPI_STATUS Status; ACPI_HANDLE Handle; Status = AcpiGetHandle (NULL, "\\_TZ.TZ1", &Handle); if (ACPI_SUCCESS (Status)) { Status = AcpiInstallNotifyHandler (Handle, ACPI_ALL_NOTIFY, AeNotifyHandler1, ACPI_CAST_PTR (void, 0x01234567)); Status = AcpiInstallNotifyHandler (Handle, ACPI_ALL_NOTIFY, AeNotifyHandler2, ACPI_CAST_PTR (void, 0x89ABCDEF)); Status = AcpiRemoveNotifyHandler (Handle, ACPI_ALL_NOTIFY, AeNotifyHandler1); Status = AcpiRemoveNotifyHandler (Handle, ACPI_ALL_NOTIFY, AeNotifyHandler2); Status = AcpiInstallNotifyHandler (Handle, ACPI_ALL_NOTIFY, AeNotifyHandler2, ACPI_CAST_PTR (void, 0x89ABCDEF)); Status = AcpiInstallNotifyHandler (Handle, ACPI_ALL_NOTIFY, AeNotifyHandler1, ACPI_CAST_PTR (void, 0x01234567)); } Status = AcpiGetHandle (NULL, "\\_PR.CPU0", &Handle); if (ACPI_SUCCESS (Status)) { Status = AcpiInstallNotifyHandler (Handle, ACPI_ALL_NOTIFY, AeNotifyHandler1, ACPI_CAST_PTR (void, 0x01234567)); Status = AcpiInstallNotifyHandler (Handle, ACPI_SYSTEM_NOTIFY, AeNotifyHandler2, ACPI_CAST_PTR (void, 0x89ABCDEF)); } #if (!ACPI_REDUCED_HARDWARE) if (!AcpiGbl_ReducedHardware) { /* Install a user SCI handler */ Status = AeInstallSciHandler (); ACPI_CHECK_OK (AeInstallSciHandler, Status); /* Install some fixed event handlers */ Status = AcpiInstallFixedEventHandler ( ACPI_EVENT_GLOBAL, AeEventHandler, NULL); ACPI_CHECK_OK (AcpiInstallFixedEventHandler, Status); Status = AcpiInstallFixedEventHandler ( ACPI_EVENT_RTC, AeEventHandler, NULL); ACPI_CHECK_OK (AcpiInstallFixedEventHandler, Status); } #endif /* !ACPI_REDUCED_HARDWARE */ AeMyContext.Connection = NULL; AeMyContext.AccessLength = 0xA5; /* * We will install a handler for each EC device, directly under the EC * device definition. This is unlike the other handlers which we install * at the root node. Also install memory and I/O handlers at any PCI * devices. */ AeInstallDeviceHandlers (); /* * Install handlers for some of the "device driver" address spaces * such as SMBus, etc. */ AeInstallRegionHandlers (); return (AE_OK); } /****************************************************************************** * * FUNCTION: AeInstallEarlyHandlers * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Install handlers for the AcpiExec utility. * * Notes: Don't install handler for PCI_Config, we want to use the * default handler to exercise that code. * *****************************************************************************/ ACPI_STATUS AeInstallEarlyHandlers ( void) { ACPI_STATUS Status; ACPI_HANDLE Handle; ACPI_FUNCTION_ENTRY (); Status = AcpiInstallInterfaceHandler (AeInterfaceHandler); if (ACPI_FAILURE (Status)) { printf ("Could not install interface handler, %s\n", AcpiFormatException (Status)); } Status = AcpiInstallTableHandler (AeTableHandler, NULL); if (ACPI_FAILURE (Status)) { printf ("Could not install table handler, %s\n", AcpiFormatException (Status)); } Status = AcpiInstallExceptionHandler (AeExceptionHandler); if (ACPI_FAILURE (Status)) { printf ("Could not install exception handler, %s\n", AcpiFormatException (Status)); } /* Install global notify handlers */ Status = AcpiInstallNotifyHandler (ACPI_ROOT_OBJECT, ACPI_SYSTEM_NOTIFY, AeSystemNotifyHandler, NULL); if (ACPI_FAILURE (Status)) { printf ("Could not install a global system notify handler, %s\n", AcpiFormatException (Status)); } Status = AcpiInstallNotifyHandler (ACPI_ROOT_OBJECT, ACPI_DEVICE_NOTIFY, AeDeviceNotifyHandler, NULL); if (ACPI_FAILURE (Status)) { printf ("Could not install a global notify handler, %s\n", AcpiFormatException (Status)); } Status = AcpiGetHandle (NULL, "\\_SB", &Handle); if (ACPI_SUCCESS (Status)) { Status = AcpiInstallNotifyHandler (Handle, ACPI_SYSTEM_NOTIFY, AeNotifyHandler1, NULL); if (ACPI_FAILURE (Status)) { printf ("Could not install a notify handler, %s\n", AcpiFormatException (Status)); } Status = AcpiRemoveNotifyHandler (Handle, ACPI_SYSTEM_NOTIFY, AeNotifyHandler1); if (ACPI_FAILURE (Status)) { printf ("Could not remove a notify handler, %s\n", AcpiFormatException (Status)); } Status = AcpiInstallNotifyHandler (Handle, ACPI_ALL_NOTIFY, AeNotifyHandler1, NULL); ACPI_CHECK_OK (AcpiInstallNotifyHandler, Status); Status = AcpiRemoveNotifyHandler (Handle, ACPI_ALL_NOTIFY, AeNotifyHandler1); ACPI_CHECK_OK (AcpiRemoveNotifyHandler, Status); #if 0 Status = AcpiInstallNotifyHandler (Handle, ACPI_ALL_NOTIFY, AeNotifyHandler1, NULL); if (ACPI_FAILURE (Status)) { printf ("Could not install a notify handler, %s\n", AcpiFormatException (Status)); } #endif /* Install two handlers for _SB_ */ Status = AcpiInstallNotifyHandler (Handle, ACPI_SYSTEM_NOTIFY, AeNotifyHandler1, ACPI_CAST_PTR (void, 0x01234567)); Status = AcpiInstallNotifyHandler (Handle, ACPI_SYSTEM_NOTIFY, AeNotifyHandler2, ACPI_CAST_PTR (void, 0x89ABCDEF)); /* Attempt duplicate handler installation, should fail */ Status = AcpiInstallNotifyHandler (Handle, ACPI_SYSTEM_NOTIFY, AeNotifyHandler1, ACPI_CAST_PTR (void, 0x77777777)); Status = AcpiAttachData (Handle, AeAttachedDataHandler, Handle); ACPI_CHECK_OK (AcpiAttachData, Status); Status = AcpiDetachData (Handle, AeAttachedDataHandler); ACPI_CHECK_OK (AcpiDetachData, Status); /* Test attach data at the root object */ Status = AcpiAttachData (ACPI_ROOT_OBJECT, AeAttachedDataHandler, AcpiGbl_RootNode); ACPI_CHECK_OK (AcpiAttachData, Status); Status = AcpiAttachData (ACPI_ROOT_OBJECT, AeAttachedDataHandler2, AcpiGbl_RootNode); ACPI_CHECK_OK (AcpiAttachData, Status); /* Test support for multiple attaches */ Status = AcpiAttachData (Handle, AeAttachedDataHandler, Handle); ACPI_CHECK_OK (AcpiAttachData, Status); Status = AcpiAttachData (Handle, AeAttachedDataHandler2, Handle); ACPI_CHECK_OK (AcpiAttachData, Status); } else { printf ("No _SB_ found, %s\n", AcpiFormatException (Status)); } /* * Install handlers that will override the default handlers for some of * the space IDs. */ AeOverrideRegionHandlers (); /* * Initialize the global Region Handler space * MCW 3/23/00 */ AeRegions.NumberOfRegions = 0; AeRegions.RegionList = NULL; return (AE_OK); } Index: vendor-sys/acpica/dist/source/tools/acpiexec/aeinitfile.c =================================================================== --- vendor-sys/acpica/dist/source/tools/acpiexec/aeinitfile.c (revision 305161) +++ vendor-sys/acpica/dist/source/tools/acpiexec/aeinitfile.c (revision 305162) @@ -1,234 +1,234 @@ /****************************************************************************** * * Module Name: aeinitfile - Support for optional initialization file * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "aecommon.h" #include "acdispat.h" #define _COMPONENT ACPI_TOOLS ACPI_MODULE_NAME ("aeinitfile") /* Local prototypes */ static void AeDoOneOverride ( char *Pathname, char *ValueString, ACPI_OPERAND_OBJECT *ObjDesc, ACPI_WALK_STATE *WalkState); #define AE_FILE_BUFFER_SIZE 512 static char LineBuffer[AE_FILE_BUFFER_SIZE]; static char NameBuffer[AE_FILE_BUFFER_SIZE]; static char ValueBuffer[AE_FILE_BUFFER_SIZE]; static FILE *InitFile; /****************************************************************************** * * FUNCTION: AeOpenInitializationFile * * PARAMETERS: Filename - Path to the init file * * RETURN: Status * * DESCRIPTION: Open the initialization file for the -fi option * *****************************************************************************/ int AeOpenInitializationFile ( char *Filename) { InitFile = fopen (Filename, "r"); if (!InitFile) { fprintf (stderr, "Could not open initialization file: %s\n", Filename); return (-1); } AcpiOsPrintf ("Opened initialization file [%s]\n", Filename); return (0); } /****************************************************************************** * * FUNCTION: AeDoObjectOverrides * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Read the initialization file and perform all overrides * * NOTE: The format of the file is multiple lines, each of format: * * *****************************************************************************/ void AeDoObjectOverrides ( void) { ACPI_OPERAND_OBJECT *ObjDesc; ACPI_WALK_STATE *WalkState; int i; if (!InitFile) { return; } /* Create needed objects to be reused for each init entry */ ObjDesc = AcpiUtCreateIntegerObject (0); WalkState = AcpiDsCreateWalkState (0, NULL, NULL, NULL); NameBuffer[0] = '\\'; /* Read the entire file line-by-line */ while (fgets (LineBuffer, AE_FILE_BUFFER_SIZE, InitFile) != NULL) { if (sscanf (LineBuffer, "%s %s\n", &NameBuffer[1], ValueBuffer) != 2) { goto CleanupAndExit; } /* Add a root prefix if not present in the string */ i = 0; if (NameBuffer[1] == '\\') { i = 1; } AeDoOneOverride (&NameBuffer[i], ValueBuffer, ObjDesc, WalkState); } /* Cleanup */ CleanupAndExit: fclose (InitFile); AcpiDsDeleteWalkState (WalkState); AcpiUtRemoveReference (ObjDesc); } /****************************************************************************** * * FUNCTION: AeDoOneOverride * * PARAMETERS: Pathname - AML namepath * ValueString - New integer value to be stored * ObjDesc - Descriptor with integer override value * WalkState - Used for the Store operation * * RETURN: None * - * DESCRIPTION: Perform an overrided for a single namespace object + * DESCRIPTION: Perform an override for a single namespace object * *****************************************************************************/ static void AeDoOneOverride ( char *Pathname, char *ValueString, ACPI_OPERAND_OBJECT *ObjDesc, ACPI_WALK_STATE *WalkState) { ACPI_HANDLE Handle; ACPI_STATUS Status; UINT64 Value; AcpiOsPrintf ("Value Override: %s, ", Pathname); /* * Get the namespace node associated with the override * pathname from the init file. */ Status = AcpiGetHandle (NULL, Pathname, &Handle); if (ACPI_FAILURE (Status)) { AcpiOsPrintf ("%s\n", AcpiFormatException (Status)); return; } /* Extract the 64-bit integer */ - Status = AcpiUtStrtoul64 (ValueString, ACPI_ANY_BASE, - ACPI_MAX64_BYTE_WIDTH, &Value); + Status = AcpiUtStrtoul64 (ValueString, + (ACPI_STRTOUL_BASE16 | ACPI_STRTOUL_64BIT), &Value); if (ACPI_FAILURE (Status)) { AcpiOsPrintf ("%s %s\n", ValueString, AcpiFormatException (Status)); return; } ObjDesc->Integer.Value = Value; /* * At the point this function is called, the namespace is fully * built and initialized. We can simply store the new object to * the target node. */ AcpiExEnterInterpreter (); Status = AcpiExStore (ObjDesc, Handle, WalkState); AcpiExExitInterpreter (); if (ACPI_FAILURE (Status)) { AcpiOsPrintf ("%s\n", AcpiFormatException (Status)); return; } AcpiOsPrintf ("New value: 0x%8.8X%8.8X\n", ACPI_FORMAT_UINT64 (Value)); } Index: vendor-sys/acpica/dist/source/tools/acpiexec/aemain.c =================================================================== --- vendor-sys/acpica/dist/source/tools/acpiexec/aemain.c (revision 305161) +++ vendor-sys/acpica/dist/source/tools/acpiexec/aemain.c (revision 305162) @@ -1,724 +1,747 @@ /****************************************************************************** * * Module Name: aemain - Main routine for the AcpiExec utility * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #include "aecommon.h" #define _COMPONENT ACPI_TOOLS ACPI_MODULE_NAME ("aemain") /* * Main routine for the ACPI user-space execution utility. * * Portability note: The utility depends upon the host for command-line * wildcard support - it is not implemented locally. For example: * * Linux/Unix systems: Shell expands wildcards automatically. * * Windows: The setargv.obj module must be linked in to automatically * expand wildcards. */ /* Local prototypes */ static int AeDoOptions ( int argc, char **argv); static void AcpiDbRunBatchMode ( void); #define AE_BUFFER_SIZE 1024 #define ASL_MAX_FILES 256 /* Execution modes */ #define AE_MODE_COMMAND_LOOP 0 /* Normal command execution loop */ #define AE_MODE_BATCH_MULTIPLE 1 /* -b option to execute a command line */ #define AE_MODE_BATCH_SINGLE 2 /* -m option to execute a single control method */ /* Globals */ UINT8 AcpiGbl_RegionFillValue = 0; BOOLEAN AcpiGbl_IgnoreErrors = FALSE; BOOLEAN AcpiGbl_DbOpt_NoRegionSupport = FALSE; UINT8 AcpiGbl_UseHwReducedFadt = FALSE; BOOLEAN AcpiGbl_DoInterfaceTests = FALSE; BOOLEAN AcpiGbl_LoadTestTables = FALSE; BOOLEAN AcpiGbl_AeLoadOnly = FALSE; static UINT8 AcpiGbl_ExecutionMode = AE_MODE_COMMAND_LOOP; static char BatchBuffer[AE_BUFFER_SIZE]; /* Batch command buffer */ +static char AeBuildDate[] = __DATE__; +static char AeBuildTime[] = __TIME__; #define ACPIEXEC_NAME "AML Execution/Debug Utility" #define AE_SUPPORTED_OPTIONS "?b:d:e:f^ghi:lm^rv^:x:" /* Stubs for the disassembler */ void MpSaveGpioInfo ( ACPI_PARSE_OBJECT *Op, AML_RESOURCE *Resource, UINT32 PinCount, UINT16 *PinList, char *DeviceName) { } void MpSaveSerialInfo ( ACPI_PARSE_OBJECT *Op, AML_RESOURCE *Resource, char *DeviceName) { } /****************************************************************************** * * FUNCTION: usage * * PARAMETERS: None * * RETURN: None * * DESCRIPTION: Print a usage message * *****************************************************************************/ static void usage ( void) { ACPI_USAGE_HEADER ("acpiexec [options] AMLfile1 AMLfile2 ..."); ACPI_OPTION ("-b \"CommandLine\"", "Batch mode command line execution (cmd1;cmd2;...)"); ACPI_OPTION ("-h -?", "Display this help message"); ACPI_OPTION ("-m [Method]", "Batch mode method execution. Default=MAIN"); printf ("\n"); ACPI_OPTION ("-da", "Disable method abort on error"); ACPI_OPTION ("-di", "Disable execution of STA/INI methods during init"); ACPI_OPTION ("-do", "Disable Operation Region address simulation"); ACPI_OPTION ("-dr", "Disable repair of method return values"); ACPI_OPTION ("-ds", "Disable method auto-serialization"); ACPI_OPTION ("-dt", "Disable allocation tracking (performance)"); printf ("\n"); ACPI_OPTION ("-ed", "Enable timer output for Debug Object"); ACPI_OPTION ("-ef", "Enable display of final memory statistics"); ACPI_OPTION ("-ei", "Enable additional tests for ACPICA interfaces"); ACPI_OPTION ("-el", "Enable loading of additional test tables"); ACPI_OPTION ("-em", "Enable grouping of module-level code"); + ACPI_OPTION ("-ep", "Enable TermList parsing for scope objects"); ACPI_OPTION ("-es", "Enable Interpreter Slack Mode"); ACPI_OPTION ("-et", "Enable debug semaphore timeout"); printf ("\n"); ACPI_OPTION ("-fi ", "Specify namespace initialization file"); ACPI_OPTION ("-fv ", "Operation Region initialization fill value"); printf ("\n"); ACPI_OPTION ("-i ", "Maximum iterations for AML while loops"); ACPI_OPTION ("-l", "Load tables and namespace only"); ACPI_OPTION ("-r", "Use hardware-reduced FADT V5"); ACPI_OPTION ("-v", "Display version information"); + ACPI_OPTION ("-vd", "Display build date and time"); ACPI_OPTION ("-vi", "Verbose initialization output"); ACPI_OPTION ("-vr", "Verbose region handler output"); ACPI_OPTION ("-x ", "Debug output level"); printf ("\n From within the interactive mode, use '?' or \"help\" to see\n" " a list of available AML Debugger commands\n"); } /****************************************************************************** * * FUNCTION: AeDoOptions * * PARAMETERS: argc/argv - Standard argc/argv * * RETURN: Status * * DESCRIPTION: Command line option processing * *****************************************************************************/ static int AeDoOptions ( int argc, char **argv) { int j; UINT32 Temp; while ((j = AcpiGetopt (argc, argv, AE_SUPPORTED_OPTIONS)) != ACPI_OPT_END) switch (j) { case 'b': if (strlen (AcpiGbl_Optarg) > (AE_BUFFER_SIZE -1)) { printf ("**** The length of command line (%u) exceeded maximum (%u)\n", (UINT32) strlen (AcpiGbl_Optarg), (AE_BUFFER_SIZE -1)); return (-1); } AcpiGbl_ExecutionMode = AE_MODE_BATCH_MULTIPLE; strcpy (BatchBuffer, AcpiGbl_Optarg); break; case 'd': switch (AcpiGbl_Optarg[0]) { case 'a': AcpiGbl_IgnoreErrors = TRUE; break; case 'i': AcpiGbl_DbOpt_NoIniMethods = TRUE; break; case 'o': AcpiGbl_DbOpt_NoRegionSupport = TRUE; break; case 'r': AcpiGbl_DisableAutoRepair = TRUE; break; case 's': AcpiGbl_AutoSerializeMethods = FALSE; break; case 't': #ifdef ACPI_DBG_TRACK_ALLOCATIONS AcpiGbl_DisableMemTracking = TRUE; #endif break; default: printf ("Unknown option: -d%s\n", AcpiGbl_Optarg); return (-1); } break; case 'e': switch (AcpiGbl_Optarg[0]) { case 'd': AcpiGbl_DisplayDebugTimer = TRUE; break; case 'f': #ifdef ACPI_DBG_TRACK_ALLOCATIONS AcpiGbl_DisplayFinalMemStats = TRUE; #endif break; case 'i': AcpiGbl_DoInterfaceTests = TRUE; break; case 'l': AcpiGbl_LoadTestTables = TRUE; break; case 'm': AcpiGbl_GroupModuleLevelCode = TRUE; break; + case 'p': + + AcpiGbl_ParseTableAsTermList = TRUE; + break; + case 's': AcpiGbl_EnableInterpreterSlack = TRUE; printf ("Enabling AML Interpreter slack mode\n"); break; case 't': AcpiGbl_DebugTimeout = TRUE; break; default: printf ("Unknown option: -e%s\n", AcpiGbl_Optarg); return (-1); } break; case 'f': switch (AcpiGbl_Optarg[0]) { case 'v': /* -fv: region fill value */ if (AcpiGetoptArgument (argc, argv)) { return (-1); } AcpiGbl_RegionFillValue = (UINT8) strtoul (AcpiGbl_Optarg, NULL, 0); break; case 'i': /* -fi: specify initialization file */ if (AcpiGetoptArgument (argc, argv)) { return (-1); } if (AeOpenInitializationFile (AcpiGbl_Optarg)) { return (-1); } break; default: printf ("Unknown option: -f%s\n", AcpiGbl_Optarg); return (-1); } break; case 'g': AcpiGbl_DbFilename = NULL; break; case 'h': case '?': usage(); return (1); case 'i': Temp = strtoul (AcpiGbl_Optarg, NULL, 0); if (!Temp || (Temp > ACPI_UINT16_MAX)) { printf ("%s: Invalid max loops value\n", AcpiGbl_Optarg); return (-1); } AcpiGbl_MaxLoopIterations = (UINT16) Temp; printf ("Max Loop Iterations is %u (0x%X)\n", AcpiGbl_MaxLoopIterations, AcpiGbl_MaxLoopIterations); break; case 'l': AcpiGbl_AeLoadOnly = TRUE; break; case 'm': AcpiGbl_ExecutionMode = AE_MODE_BATCH_SINGLE; switch (AcpiGbl_Optarg[0]) { case '^': strcpy (BatchBuffer, "MAIN"); break; default: strcpy (BatchBuffer, AcpiGbl_Optarg); break; } break; case 'r': AcpiGbl_UseHwReducedFadt = TRUE; printf ("Using ACPI 5.0 Hardware Reduced Mode via version 5 FADT\n"); break; case 'v': switch (AcpiGbl_Optarg[0]) { case '^': /* -v: (Version): signon already emitted, just exit */ (void) AcpiOsTerminate (); return (1); + case 'd': + + printf ("Build date/time: %s %s\n", AeBuildDate, AeBuildTime); + return (1); + case 'i': AcpiDbgLevel |= ACPI_LV_INIT_NAMES; break; case 'r': AcpiGbl_DisplayRegionAccess = TRUE; break; default: printf ("Unknown option: -v%s\n", AcpiGbl_Optarg); return (-1); } break; case 'x': AcpiDbgLevel = strtoul (AcpiGbl_Optarg, NULL, 0); AcpiGbl_DbConsoleDebugLevel = AcpiDbgLevel; printf ("Debug Level: 0x%8.8X\n", AcpiDbgLevel); break; default: usage(); return (-1); } return (0); } /****************************************************************************** * * FUNCTION: main * * PARAMETERS: argc, argv * * RETURN: Status * * DESCRIPTION: Main routine for AcpiExec utility * *****************************************************************************/ int ACPI_SYSTEM_XFACE main ( int argc, char **argv) { ACPI_NEW_TABLE_DESC *ListHead = NULL; ACPI_STATUS Status; UINT32 InitFlags; int ExitCode = 0; ACPI_DEBUG_INITIALIZE (); /* For debug version only */ signal (SIGINT, AeCtrlCHandler); /* Init debug globals */ AcpiDbgLevel = ACPI_NORMAL_DEFAULT; AcpiDbgLayer = 0xFFFFFFFF; - /* Init ACPICA and start debugger thread */ - + /* + * Initialize ACPICA and start debugger thread. + * + * NOTE: After ACPICA initialization, AcpiTerminate MUST be called + * before this procedure exits -- otherwise, the console may be + * left in an incorrect state. + */ Status = AcpiInitializeSubsystem (); ACPI_CHECK_OK (AcpiInitializeSubsystem, Status); if (ACPI_FAILURE (Status)) { goto ErrorExit; } /* ACPICA runtime configuration */ AcpiGbl_MaxLoopIterations = 400; /* Initialize the AML debugger */ Status = AcpiInitializeDebugger (); ACPI_CHECK_OK (AcpiInitializeDebugger, Status); if (ACPI_FAILURE (Status)) { goto ErrorExit; } printf (ACPI_COMMON_SIGNON (ACPIEXEC_NAME)); if (argc < 2) { usage (); - (void) AcpiOsTerminate (); - return (0); + goto NormalExit; } /* Get the command line options */ ExitCode = AeDoOptions (argc, argv); if (ExitCode) { if (ExitCode > 0) { ExitCode = 0; } goto ErrorExit; } /* The remaining arguments are filenames for ACPI tables */ if (!argv[AcpiGbl_Optind]) { goto EnterDebugger; } AcpiGbl_CstyleDisassembly = FALSE; /* Not supported for AcpiExec */ /* Get each of the ACPI table files on the command line */ while (argv[AcpiGbl_Optind]) { /* Get all ACPI AML tables in this file */ Status = AcGetAllTablesFromFile (argv[AcpiGbl_Optind], ACPI_GET_ONLY_AML_TABLES, &ListHead); if (ACPI_FAILURE (Status)) { ExitCode = -1; goto ErrorExit; } AcpiGbl_Optind++; } printf ("\n"); /* Build a local RSDT with all tables and let ACPICA process the RSDT */ Status = AeBuildLocalTables (ListHead); if (ACPI_FAILURE (Status)) { goto ErrorExit; } /* Install all of the ACPI tables */ Status = AeInstallTables (); - if (ACPI_FAILURE (Status)) { printf ("**** Could not install ACPI tables, %s\n", AcpiFormatException (Status)); goto EnterDebugger; } /* * Install most of the handlers (Regions, Notify, Table, etc.) * Override the default region handlers, especially SystemMemory, * which is simulated in this utility. */ Status = AeInstallEarlyHandlers (); if (ACPI_FAILURE (Status)) { goto EnterDebugger; } /* Setup initialization flags for ACPICA */ InitFlags = (ACPI_NO_HANDLER_INIT | ACPI_NO_ACPI_ENABLE); if (AcpiGbl_DbOpt_NoIniMethods) { InitFlags |= (ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT); } /* * Main initialization for ACPICA subsystem - * TBD: Need a way to call this after the ACPI table "LOAD" command + * TBD: Need a way to call this after the ACPI table "LOAD" command? + * + * NOTE: This initialization does not match the _Lxx and _Exx methods + * to individual GPEs, as there are no real GPEs when the hardware + * is simulated - because there is no namespace until AeLoadTables is + * executed. This may have to change if AcpiExec is ever run natively + * on actual hardware (such as under UEFI). */ Status = AcpiEnableSubsystem (InitFlags); if (ACPI_FAILURE (Status)) { printf ("**** Could not EnableSubsystem, %s\n", AcpiFormatException (Status)); goto EnterDebugger; } Status = AeLoadTables (); /* * Exit namespace initialization for the "load namespace only" option. * No control methods will be executed. However, still enter the * the debugger. */ if (AcpiGbl_AeLoadOnly) { goto EnterDebugger; } if (ACPI_FAILURE (Status)) { printf ("**** Could not load ACPI tables, %s\n", AcpiFormatException (Status)); goto EnterDebugger; } /* * Install handlers for "device driver" space IDs (EC,SMBus, etc.) * and fixed event handlers */ AeInstallLateHandlers (); /* Finish the ACPICA initialization */ Status = AcpiInitializeObjects (InitFlags); if (ACPI_FAILURE (Status)) { printf ("**** Could not InitializeObjects, %s\n", AcpiFormatException (Status)); goto EnterDebugger; } AeMiscellaneousTests (); EnterDebugger: /* Exit if error above and we are in one of the batch modes */ if (ACPI_FAILURE (Status) && (AcpiGbl_ExecutionMode > 0)) { goto ErrorExit; } /* Run a batch command or enter the command loop */ switch (AcpiGbl_ExecutionMode) { default: case AE_MODE_COMMAND_LOOP: AcpiDbUserCommands (ACPI_DEBUGGER_COMMAND_PROMPT, NULL); break; case AE_MODE_BATCH_MULTIPLE: AcpiDbRunBatchMode (); break; case AE_MODE_BATCH_SINGLE: AcpiDbExecute (BatchBuffer, NULL, NULL, EX_NO_SINGLE_STEP); break; } /* Shut down the debugger and ACPICA */ #if 0 /* Temporarily removed */ AcpiTerminateDebugger (); - Status = AcpiTerminate (); + (void) AcpiTerminate (); #endif - Status = AcpiOsTerminate (); - return (0); +NormalExit: + ExitCode = 0; - ErrorExit: + (void) AcpiOsTerminate (); return (ExitCode); } /****************************************************************************** * * FUNCTION: AcpiDbRunBatchMode * * PARAMETERS: BatchCommandLine - A semicolon separated list of commands * to be executed. * Use only commas to separate elements of * particular command. * RETURN: None * * DESCRIPTION: For each command of list separated by ';' prepare the command * buffer and pass it to AcpiDbCommandDispatch. * *****************************************************************************/ static void AcpiDbRunBatchMode ( void) { char *Ptr = BatchBuffer; char *Cmd = Ptr; UINT8 Run = 0; AcpiGbl_MethodExecuting = FALSE; AcpiGbl_StepToNextCall = FALSE; while (*Ptr) { if (*Ptr == ',') { /* Convert commas to spaces */ *Ptr = ' '; } else if (*Ptr == ';') { *Ptr = '\0'; Run = 1; } Ptr++; if (Run || (*Ptr == '\0')) { (void) AcpiDbCommandDispatch (Cmd, NULL, NULL); Run = 0; Cmd = Ptr; } } }