Index: vendor/elftoolchain/dist/common/elfdefinitions.h =================================================================== --- vendor/elftoolchain/dist/common/elfdefinitions.h (revision 305125) +++ vendor/elftoolchain/dist/common/elfdefinitions.h (revision 305126) @@ -1,2889 +1,2892 @@ /*- * Copyright (c) 2010 Joseph Koshy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * - * $Id: elfdefinitions.h 3455 2016-05-09 13:47:29Z emaste $ + * $Id: elfdefinitions.h 3485 2016-08-18 13:38:52Z emaste $ */ /* * These definitions are based on: * - The public specification of the ELF format as defined in the * October 2009 draft of System V ABI. * See: http://www.sco.com/developers/gabi/latest/ch4.intro.html * - The May 1998 (version 1.5) draft of "The ELF-64 object format". * - Processor-specific ELF ABI definitions for sparc, i386, amd64, mips, * ia64, and powerpc processors. * - The "Linkers and Libraries Guide", from Sun Microsystems. */ #ifndef _ELFDEFINITIONS_H_ #define _ELFDEFINITIONS_H_ #include /* * Types of capabilities. */ #define _ELF_DEFINE_CAPABILITIES() \ _ELF_DEFINE_CA(CA_SUNW_NULL, 0, "ignored") \ _ELF_DEFINE_CA(CA_SUNW_HW_1, 1, "hardware capability") \ _ELF_DEFINE_CA(CA_SUNW_SW_1, 2, "software capability") #undef _ELF_DEFINE_CA #define _ELF_DEFINE_CA(N, V, DESCR) N = V , enum { _ELF_DEFINE_CAPABILITIES() CA__LAST__ }; /* * Flags used with dynamic linking entries. */ #define _ELF_DEFINE_DYN_FLAGS() \ _ELF_DEFINE_DF(DF_ORIGIN, 0x1, \ "object being loaded may refer to $ORIGIN") \ _ELF_DEFINE_DF(DF_SYMBOLIC, 0x2, \ "search library for references before executable") \ _ELF_DEFINE_DF(DF_TEXTREL, 0x4, \ "relocation entries may modify text segment") \ _ELF_DEFINE_DF(DF_BIND_NOW, 0x8, \ "process relocation entries at load time") \ _ELF_DEFINE_DF(DF_STATIC_TLS, 0x10, \ "uses static thread-local storage") #undef _ELF_DEFINE_DF #define _ELF_DEFINE_DF(N, V, DESCR) N = V , enum { _ELF_DEFINE_DYN_FLAGS() DF__LAST__ }; /* * Dynamic linking entry types. */ #define _ELF_DEFINE_DYN_TYPES() \ _ELF_DEFINE_DT(DT_NULL, 0, "end of array") \ _ELF_DEFINE_DT(DT_NEEDED, 1, "names a needed library") \ _ELF_DEFINE_DT(DT_PLTRELSZ, 2, \ "size in bytes of associated relocation entries") \ _ELF_DEFINE_DT(DT_PLTGOT, 3, \ "address associated with the procedure linkage table") \ _ELF_DEFINE_DT(DT_HASH, 4, \ "address of the symbol hash table") \ _ELF_DEFINE_DT(DT_STRTAB, 5, \ "address of the string table") \ _ELF_DEFINE_DT(DT_SYMTAB, 6, \ "address of the symbol table") \ _ELF_DEFINE_DT(DT_RELA, 7, \ "address of the relocation table") \ _ELF_DEFINE_DT(DT_RELASZ, 8, "size of the DT_RELA table") \ _ELF_DEFINE_DT(DT_RELAENT, 9, "size of each DT_RELA entry") \ _ELF_DEFINE_DT(DT_STRSZ, 10, "size of the string table") \ _ELF_DEFINE_DT(DT_SYMENT, 11, \ "size of a symbol table entry") \ _ELF_DEFINE_DT(DT_INIT, 12, \ "address of the initialization function") \ _ELF_DEFINE_DT(DT_FINI, 13, \ "address of the finalization function") \ _ELF_DEFINE_DT(DT_SONAME, 14, "names the shared object") \ _ELF_DEFINE_DT(DT_RPATH, 15, \ "runtime library search path") \ _ELF_DEFINE_DT(DT_SYMBOLIC, 16, \ "alter symbol resolution algorithm") \ _ELF_DEFINE_DT(DT_REL, 17, \ "address of the DT_REL table") \ _ELF_DEFINE_DT(DT_RELSZ, 18, "size of the DT_REL table") \ _ELF_DEFINE_DT(DT_RELENT, 19, "size of each DT_REL entry") \ _ELF_DEFINE_DT(DT_PLTREL, 20, \ "type of relocation entry in the procedure linkage table") \ _ELF_DEFINE_DT(DT_DEBUG, 21, "used for debugging") \ _ELF_DEFINE_DT(DT_TEXTREL, 22, \ "text segment may be written to during relocation") \ _ELF_DEFINE_DT(DT_JMPREL, 23, \ "address of relocation entries associated with the procedure linkage table") \ _ELF_DEFINE_DT(DT_BIND_NOW, 24, \ "bind symbols at loading time") \ _ELF_DEFINE_DT(DT_INIT_ARRAY, 25, \ "pointers to initialization functions") \ _ELF_DEFINE_DT(DT_FINI_ARRAY, 26, \ "pointers to termination functions") \ _ELF_DEFINE_DT(DT_INIT_ARRAYSZ, 27, "size of the DT_INIT_ARRAY") \ _ELF_DEFINE_DT(DT_FINI_ARRAYSZ, 28, "size of the DT_FINI_ARRAY") \ _ELF_DEFINE_DT(DT_RUNPATH, 29, \ "index of library search path string") \ _ELF_DEFINE_DT(DT_FLAGS, 30, \ "flags specific to the object being loaded") \ _ELF_DEFINE_DT(DT_ENCODING, 32, "standard semantics") \ _ELF_DEFINE_DT(DT_PREINIT_ARRAY, 32, \ "pointers to pre-initialization functions") \ _ELF_DEFINE_DT(DT_PREINIT_ARRAYSZ, 33, \ "size of pre-initialization array") \ _ELF_DEFINE_DT(DT_MAXPOSTAGS, 34, \ "the number of positive tags") \ _ELF_DEFINE_DT(DT_LOOS, 0x6000000DUL, \ "start of OS-specific types") \ _ELF_DEFINE_DT(DT_SUNW_AUXILIARY, 0x6000000DUL, \ "offset of string naming auxiliary filtees") \ _ELF_DEFINE_DT(DT_SUNW_RTLDINF, 0x6000000EUL, "rtld internal use") \ _ELF_DEFINE_DT(DT_SUNW_FILTER, 0x6000000FUL, \ "offset of string naming standard filtees") \ _ELF_DEFINE_DT(DT_SUNW_CAP, 0x60000010UL, \ "address of hardware capabilities section") \ _ELF_DEFINE_DT(DT_HIOS, 0x6FFFF000UL, \ "end of OS-specific types") \ _ELF_DEFINE_DT(DT_VALRNGLO, 0x6FFFFD00UL, \ "start of range using the d_val field") \ _ELF_DEFINE_DT(DT_GNU_PRELINKED, 0x6FFFFDF5UL, \ "prelinking timestamp") \ _ELF_DEFINE_DT(DT_GNU_CONFLICTSZ, 0x6FFFFDF6UL, \ "size of conflict section") \ _ELF_DEFINE_DT(DT_GNU_LIBLISTSZ, 0x6FFFFDF7UL, \ "size of library list") \ _ELF_DEFINE_DT(DT_CHECKSUM, 0x6FFFFDF8UL, \ "checksum for the object") \ _ELF_DEFINE_DT(DT_PLTPADSZ, 0x6FFFFDF9UL, \ "size of PLT padding") \ _ELF_DEFINE_DT(DT_MOVEENT, 0x6FFFFDFAUL, \ "size of DT_MOVETAB entries") \ _ELF_DEFINE_DT(DT_MOVESZ, 0x6FFFFDFBUL, \ "total size of the MOVETAB table") \ _ELF_DEFINE_DT(DT_FEATURE, 0x6FFFFDFCUL, "feature values") \ _ELF_DEFINE_DT(DT_POSFLAG_1, 0x6FFFFDFDUL, \ "dynamic position flags") \ _ELF_DEFINE_DT(DT_SYMINSZ, 0x6FFFFDFEUL, \ "size of the DT_SYMINFO table") \ _ELF_DEFINE_DT(DT_SYMINENT, 0x6FFFFDFFUL, \ "size of a DT_SYMINFO entry") \ _ELF_DEFINE_DT(DT_VALRNGHI, 0x6FFFFDFFUL, \ "end of range using the d_val field") \ _ELF_DEFINE_DT(DT_ADDRRNGLO, 0x6FFFFE00UL, \ "start of range using the d_ptr field") \ _ELF_DEFINE_DT(DT_GNU_HASH, 0x6FFFFEF5UL, \ "GNU style hash tables") \ _ELF_DEFINE_DT(DT_TLSDESC_PLT, 0x6FFFFEF6UL, \ "location of PLT entry for TLS descriptor resolver calls") \ _ELF_DEFINE_DT(DT_TLSDESC_GOT, 0x6FFFFEF7UL, \ "location of GOT entry used by TLS descriptor resolver PLT entry") \ _ELF_DEFINE_DT(DT_GNU_CONFLICT, 0x6FFFFEF8UL, \ "address of conflict section") \ _ELF_DEFINE_DT(DT_GNU_LIBLIST, 0x6FFFFEF9UL, \ "address of conflict section") \ _ELF_DEFINE_DT(DT_CONFIG, 0x6FFFFEFAUL, \ "configuration file") \ _ELF_DEFINE_DT(DT_DEPAUDIT, 0x6FFFFEFBUL, \ "string defining audit libraries") \ _ELF_DEFINE_DT(DT_AUDIT, 0x6FFFFEFCUL, \ "string defining audit libraries") \ _ELF_DEFINE_DT(DT_PLTPAD, 0x6FFFFEFDUL, "PLT padding") \ _ELF_DEFINE_DT(DT_MOVETAB, 0x6FFFFEFEUL, \ "address of a move table") \ _ELF_DEFINE_DT(DT_SYMINFO, 0x6FFFFEFFUL, \ "address of the symbol information table") \ _ELF_DEFINE_DT(DT_ADDRRNGHI, 0x6FFFFEFFUL, \ "end of range using the d_ptr field") \ _ELF_DEFINE_DT(DT_VERSYM, 0x6FFFFFF0UL, \ "address of the version section") \ _ELF_DEFINE_DT(DT_RELACOUNT, 0x6FFFFFF9UL, \ "count of RELA relocations") \ _ELF_DEFINE_DT(DT_RELCOUNT, 0x6FFFFFFAUL, \ "count of REL relocations") \ _ELF_DEFINE_DT(DT_FLAGS_1, 0x6FFFFFFBUL, "flag values") \ _ELF_DEFINE_DT(DT_VERDEF, 0x6FFFFFFCUL, \ "address of the version definition segment") \ _ELF_DEFINE_DT(DT_VERDEFNUM, 0x6FFFFFFDUL, \ "the number of version definition entries") \ _ELF_DEFINE_DT(DT_VERNEED, 0x6FFFFFFEUL, \ "address of section with needed versions") \ _ELF_DEFINE_DT(DT_VERNEEDNUM, 0x6FFFFFFFUL, \ "the number of version needed entries") \ _ELF_DEFINE_DT(DT_LOPROC, 0x70000000UL, \ "start of processor-specific types") \ _ELF_DEFINE_DT(DT_ARM_SYMTABSZ, 0x70000001UL, \ "number of entries in the dynamic symbol table") \ _ELF_DEFINE_DT(DT_SPARC_REGISTER, 0x70000001UL, \ "index of an STT_SPARC_REGISTER symbol") \ _ELF_DEFINE_DT(DT_ARM_PREEMPTMAP, 0x70000002UL, \ "address of the preemption map") \ _ELF_DEFINE_DT(DT_MIPS_RLD_VERSION, 0x70000001UL, \ "version ID for runtime linker interface") \ _ELF_DEFINE_DT(DT_MIPS_TIME_STAMP, 0x70000002UL, \ "timestamp") \ _ELF_DEFINE_DT(DT_MIPS_ICHECKSUM, 0x70000003UL, \ "checksum of all external strings and common sizes") \ _ELF_DEFINE_DT(DT_MIPS_IVERSION, 0x70000004UL, \ "string table index of a version string") \ _ELF_DEFINE_DT(DT_MIPS_FLAGS, 0x70000005UL, \ "MIPS-specific flags") \ _ELF_DEFINE_DT(DT_MIPS_BASE_ADDRESS, 0x70000006UL, \ "base address for the executable/DSO") \ _ELF_DEFINE_DT(DT_MIPS_CONFLICT, 0x70000008UL, \ "address of .conflict section") \ _ELF_DEFINE_DT(DT_MIPS_LIBLIST, 0x70000009UL, \ "address of .liblist section") \ _ELF_DEFINE_DT(DT_MIPS_LOCAL_GOTNO, 0x7000000AUL, \ "number of local GOT entries") \ _ELF_DEFINE_DT(DT_MIPS_CONFLICTNO, 0x7000000BUL, \ "number of entries in the .conflict section") \ _ELF_DEFINE_DT(DT_MIPS_LIBLISTNO, 0x70000010UL, \ "number of entries in the .liblist section") \ _ELF_DEFINE_DT(DT_MIPS_SYMTABNO, 0x70000011UL, \ "number of entries in the .dynsym section") \ _ELF_DEFINE_DT(DT_MIPS_UNREFEXTNO, 0x70000012UL, \ "index of first external dynamic symbol not ref'ed locally") \ _ELF_DEFINE_DT(DT_MIPS_GOTSYM, 0x70000013UL, \ "index of first dynamic symbol corresponds to a GOT entry") \ _ELF_DEFINE_DT(DT_MIPS_HIPAGENO, 0x70000014UL, \ "number of page table entries in GOT") \ _ELF_DEFINE_DT(DT_MIPS_RLD_MAP, 0x70000016UL, \ "address of runtime linker map") \ _ELF_DEFINE_DT(DT_MIPS_DELTA_CLASS, 0x70000017UL, \ "Delta C++ class definition") \ _ELF_DEFINE_DT(DT_MIPS_DELTA_CLASS_NO, 0x70000018UL, \ "number of entries in DT_MIPS_DELTA_CLASS") \ _ELF_DEFINE_DT(DT_MIPS_DELTA_INSTANCE, 0x70000019UL, \ "Delta C++ class instances") \ _ELF_DEFINE_DT(DT_MIPS_DELTA_INSTANCE_NO, 0x7000001AUL, \ "number of entries in DT_MIPS_DELTA_INSTANCE") \ _ELF_DEFINE_DT(DT_MIPS_DELTA_RELOC, 0x7000001BUL, \ "Delta relocations") \ _ELF_DEFINE_DT(DT_MIPS_DELTA_RELOC_NO, 0x7000001CUL, \ "number of entries in DT_MIPS_DELTA_RELOC") \ _ELF_DEFINE_DT(DT_MIPS_DELTA_SYM, 0x7000001DUL, \ "Delta symbols referred by Delta relocations") \ _ELF_DEFINE_DT(DT_MIPS_DELTA_SYM_NO, 0x7000001EUL, \ "number of entries in DT_MIPS_DELTA_SYM") \ _ELF_DEFINE_DT(DT_MIPS_DELTA_CLASSSYM, 0x70000020UL, \ "Delta symbols for class declarations") \ _ELF_DEFINE_DT(DT_MIPS_DELTA_CLASSSYM_NO, 0x70000021UL, \ "number of entries in DT_MIPS_DELTA_CLASSSYM") \ _ELF_DEFINE_DT(DT_MIPS_CXX_FLAGS, 0x70000022UL, \ "C++ flavor flags") \ _ELF_DEFINE_DT(DT_MIPS_PIXIE_INIT, 0x70000023UL, \ "address of an initialization routine created by pixie") \ _ELF_DEFINE_DT(DT_MIPS_SYMBOL_LIB, 0x70000024UL, \ "address of .MIPS.symlib section") \ _ELF_DEFINE_DT(DT_MIPS_LOCALPAGE_GOTIDX, 0x70000025UL, \ "GOT index of first page table entry for a segment") \ _ELF_DEFINE_DT(DT_MIPS_LOCAL_GOTIDX, 0x70000026UL, \ "GOT index of first page table entry for a local symbol") \ _ELF_DEFINE_DT(DT_MIPS_HIDDEN_GOTIDX, 0x70000027UL, \ "GOT index of first page table entry for a hidden symbol") \ _ELF_DEFINE_DT(DT_MIPS_PROTECTED_GOTIDX, 0x70000028UL, \ "GOT index of first page table entry for a protected symbol") \ _ELF_DEFINE_DT(DT_MIPS_OPTIONS, 0x70000029UL, \ "address of .MIPS.options section") \ _ELF_DEFINE_DT(DT_MIPS_INTERFACE, 0x7000002AUL, \ "address of .MIPS.interface section") \ _ELF_DEFINE_DT(DT_MIPS_DYNSTR_ALIGN, 0x7000002BUL, "???") \ _ELF_DEFINE_DT(DT_MIPS_INTERFACE_SIZE, 0x7000002CUL, \ "size of .MIPS.interface section") \ _ELF_DEFINE_DT(DT_MIPS_RLD_TEXT_RESOLVE_ADDR, 0x7000002DUL, \ "address of _rld_text_resolve in GOT") \ _ELF_DEFINE_DT(DT_MIPS_PERF_SUFFIX, 0x7000002EUL, \ "default suffix of DSO to be appended by dlopen") \ _ELF_DEFINE_DT(DT_MIPS_COMPACT_SIZE, 0x7000002FUL, \ "size of a ucode compact relocation record (o32)") \ _ELF_DEFINE_DT(DT_MIPS_GP_VALUE, 0x70000030UL, \ "GP value of a specified GP relative range") \ _ELF_DEFINE_DT(DT_MIPS_AUX_DYNAMIC, 0x70000031UL, \ "address of an auxiliary dynamic table") \ _ELF_DEFINE_DT(DT_MIPS_PLTGOT, 0x70000032UL, \ "address of the PLTGOT") \ _ELF_DEFINE_DT(DT_MIPS_RLD_OBJ_UPDATE, 0x70000033UL, \ "object list update callback") \ _ELF_DEFINE_DT(DT_MIPS_RWPLT, 0x70000034UL, \ "address of a writable PLT") \ _ELF_DEFINE_DT(DT_PPC_GOT, 0x70000000UL, \ "value of _GLOBAL_OFFSET_TABLE_") \ _ELF_DEFINE_DT(DT_PPC_TLSOPT, 0x70000001UL, \ "TLS descriptor should be optimized") \ _ELF_DEFINE_DT(DT_PPC64_GLINK, 0x70000000UL, \ "address of .glink section") \ _ELF_DEFINE_DT(DT_PPC64_OPD, 0x70000001UL, \ "address of .opd section") \ _ELF_DEFINE_DT(DT_PPC64_OPDSZ, 0x70000002UL, \ "size of .opd section") \ _ELF_DEFINE_DT(DT_PPC64_TLSOPT, 0x70000003UL, \ "TLS descriptor should be optimized") \ _ELF_DEFINE_DT(DT_AUXILIARY, 0x7FFFFFFDUL, \ "offset of string naming auxiliary filtees") \ _ELF_DEFINE_DT(DT_USED, 0x7FFFFFFEUL, "ignored") \ _ELF_DEFINE_DT(DT_FILTER, 0x7FFFFFFFUL, \ "index of string naming filtees") \ _ELF_DEFINE_DT(DT_HIPROC, 0x7FFFFFFFUL, \ "end of processor-specific types") #undef _ELF_DEFINE_DT #define _ELF_DEFINE_DT(N, V, DESCR) N = V , enum { _ELF_DEFINE_DYN_TYPES() DT__LAST__ = DT_HIPROC }; #define DT_DEPRECATED_SPARC_REGISTER DT_SPARC_REGISTER /* * Flags used in the executable header (field: e_flags). */ #define _ELF_DEFINE_EHDR_FLAGS() \ _ELF_DEFINE_EF(EF_ARM_RELEXEC, 0x00000001UL, \ "dynamic segment describes only how to relocate segments") \ _ELF_DEFINE_EF(EF_ARM_HASENTRY, 0x00000002UL, \ "e_entry contains a program entry point") \ _ELF_DEFINE_EF(EF_ARM_SYMSARESORTED, 0x00000004UL, \ "subsection of symbol table is sorted by symbol value") \ _ELF_DEFINE_EF(EF_ARM_DYNSYMSUSESEGIDX, 0x00000008UL, \ "dynamic symbol st_shndx = containing segment index + 1") \ _ELF_DEFINE_EF(EF_ARM_MAPSYMSFIRST, 0x00000010UL, \ "mapping symbols precede other local symbols in symtab") \ _ELF_DEFINE_EF(EF_ARM_BE8, 0x00800000UL, \ "file contains BE-8 code") \ _ELF_DEFINE_EF(EF_ARM_LE8, 0x00400000UL, \ "file contains LE-8 code") \ _ELF_DEFINE_EF(EF_ARM_EABIMASK, 0xFF000000UL, \ "mask for ARM EABI version number (0 denotes GNU or unknown)") \ _ELF_DEFINE_EF(EF_ARM_EABI_UNKNOWN, 0x00000000UL, \ "Unknown or GNU ARM EABI version number") \ _ELF_DEFINE_EF(EF_ARM_EABI_VER1, 0x01000000UL, \ "ARM EABI version 1") \ _ELF_DEFINE_EF(EF_ARM_EABI_VER2, 0x02000000UL, \ "ARM EABI version 2") \ _ELF_DEFINE_EF(EF_ARM_EABI_VER3, 0x03000000UL, \ "ARM EABI version 3") \ _ELF_DEFINE_EF(EF_ARM_EABI_VER4, 0x04000000UL, \ "ARM EABI version 4") \ _ELF_DEFINE_EF(EF_ARM_EABI_VER5, 0x05000000UL, \ "ARM EABI version 5") \ _ELF_DEFINE_EF(EF_ARM_INTERWORK, 0x00000004UL, \ "GNU EABI extension") \ _ELF_DEFINE_EF(EF_ARM_APCS_26, 0x00000008UL, \ "GNU EABI extension") \ _ELF_DEFINE_EF(EF_ARM_APCS_FLOAT, 0x00000010UL, \ "GNU EABI extension") \ _ELF_DEFINE_EF(EF_ARM_PIC, 0x00000020UL, \ "GNU EABI extension") \ _ELF_DEFINE_EF(EF_ARM_ALIGN8, 0x00000040UL, \ "GNU EABI extension") \ _ELF_DEFINE_EF(EF_ARM_NEW_ABI, 0x00000080UL, \ "GNU EABI extension") \ _ELF_DEFINE_EF(EF_ARM_OLD_ABI, 0x00000100UL, \ "GNU EABI extension") \ _ELF_DEFINE_EF(EF_ARM_SOFT_FLOAT, 0x00000200UL, \ "GNU EABI extension") \ _ELF_DEFINE_EF(EF_ARM_VFP_FLOAT, 0x00000400UL, \ "GNU EABI extension") \ _ELF_DEFINE_EF(EF_ARM_MAVERICK_FLOAT, 0x00000800UL, \ "GNU EABI extension") \ _ELF_DEFINE_EF(EF_MIPS_NOREORDER, 0x00000001UL, \ "at least one .noreorder directive appeared in the source") \ _ELF_DEFINE_EF(EF_MIPS_PIC, 0x00000002UL, \ "file contains position independent code") \ _ELF_DEFINE_EF(EF_MIPS_CPIC, 0x00000004UL, \ "file's code uses standard conventions for calling PIC") \ _ELF_DEFINE_EF(EF_MIPS_UCODE, 0x00000010UL, \ "file contains UCODE (obsolete)") \ _ELF_DEFINE_EF(EF_MIPS_ABI2, 0x00000020UL, \ "file follows MIPS III 32-bit ABI") \ _ELF_DEFINE_EF(EF_MIPS_OPTIONS_FIRST, 0x00000080UL, \ "ld(1) should process .MIPS.options section first") \ _ELF_DEFINE_EF(EF_MIPS_ARCH_ASE, 0x0F000000UL, \ "file uses application-specific architectural extensions") \ _ELF_DEFINE_EF(EF_MIPS_ARCH_ASE_MDMX, 0x08000000UL, \ "file uses MDMX multimedia extensions") \ _ELF_DEFINE_EF(EF_MIPS_ARCH_ASE_M16, 0x04000000UL, \ "file uses MIPS-16 ISA extensions") \ _ELF_DEFINE_EF(EF_MIPS_ARCH, 0xF0000000UL, \ "4-bit MIPS architecture field") \ _ELF_DEFINE_EF(EF_PPC_EMB, 0x80000000UL, \ "Embedded PowerPC flag") \ _ELF_DEFINE_EF(EF_PPC_RELOCATABLE, 0x00010000UL, \ "-mrelocatable flag") \ _ELF_DEFINE_EF(EF_PPC_RELOCATABLE_LIB, 0x00008000UL, \ "-mrelocatable-lib flag") \ _ELF_DEFINE_EF(EF_SPARC_EXT_MASK, 0x00ffff00UL, \ "Vendor Extension mask") \ _ELF_DEFINE_EF(EF_SPARC_32PLUS, 0x00000100UL, \ "Generic V8+ features") \ _ELF_DEFINE_EF(EF_SPARC_SUN_US1, 0x00000200UL, \ "Sun UltraSPARCTM 1 Extensions") \ _ELF_DEFINE_EF(EF_SPARC_HAL_R1, 0x00000400UL, "HAL R1 Extensions") \ _ELF_DEFINE_EF(EF_SPARC_SUN_US3, 0x00000800UL, \ "Sun UltraSPARC 3 Extensions") \ _ELF_DEFINE_EF(EF_SPARCV9_MM, 0x00000003UL, \ "Mask for Memory Model") \ _ELF_DEFINE_EF(EF_SPARCV9_TSO, 0x00000000UL, \ "Total Store Ordering") \ _ELF_DEFINE_EF(EF_SPARCV9_PSO, 0x00000001UL, \ "Partial Store Ordering") \ _ELF_DEFINE_EF(EF_SPARCV9_RMO, 0x00000002UL, \ "Relaxed Memory Ordering") #undef _ELF_DEFINE_EF #define _ELF_DEFINE_EF(N, V, DESCR) N = V , enum { _ELF_DEFINE_EHDR_FLAGS() EF__LAST__ }; /* * Offsets in the `ei_ident[]` field of an ELF executable header. */ #define _ELF_DEFINE_EI_OFFSETS() \ _ELF_DEFINE_EI(EI_MAG0, 0, "magic number") \ _ELF_DEFINE_EI(EI_MAG1, 1, "magic number") \ _ELF_DEFINE_EI(EI_MAG2, 2, "magic number") \ _ELF_DEFINE_EI(EI_MAG3, 3, "magic number") \ _ELF_DEFINE_EI(EI_CLASS, 4, "file class") \ _ELF_DEFINE_EI(EI_DATA, 5, "data encoding") \ _ELF_DEFINE_EI(EI_VERSION, 6, "file version") \ _ELF_DEFINE_EI(EI_OSABI, 7, "OS ABI kind") \ _ELF_DEFINE_EI(EI_ABIVERSION, 8, "OS ABI version") \ _ELF_DEFINE_EI(EI_PAD, 9, "padding start") \ _ELF_DEFINE_EI(EI_NIDENT, 16, "total size") #undef _ELF_DEFINE_EI #define _ELF_DEFINE_EI(N, V, DESCR) N = V , enum { _ELF_DEFINE_EI_OFFSETS() EI__LAST__ }; /* * The ELF class of an object. */ #define _ELF_DEFINE_ELFCLASS() \ _ELF_DEFINE_EC(ELFCLASSNONE, 0, "Unknown ELF class") \ _ELF_DEFINE_EC(ELFCLASS32, 1, "32 bit objects") \ _ELF_DEFINE_EC(ELFCLASS64, 2, "64 bit objects") #undef _ELF_DEFINE_EC #define _ELF_DEFINE_EC(N, V, DESCR) N = V , enum { _ELF_DEFINE_ELFCLASS() EC__LAST__ }; /* * Endianness of data in an ELF object. */ #define _ELF_DEFINE_ELF_DATA_ENDIANNESS() \ _ELF_DEFINE_ED(ELFDATANONE, 0, "Unknown data endianness") \ _ELF_DEFINE_ED(ELFDATA2LSB, 1, "little endian") \ _ELF_DEFINE_ED(ELFDATA2MSB, 2, "big endian") #undef _ELF_DEFINE_ED #define _ELF_DEFINE_ED(N, V, DESCR) N = V , enum { _ELF_DEFINE_ELF_DATA_ENDIANNESS() ED__LAST__ }; /* * Values of the magic numbers used in identification array. */ #define _ELF_DEFINE_ELF_MAGIC() \ _ELF_DEFINE_EMAG(ELFMAG0, 0x7FU) \ _ELF_DEFINE_EMAG(ELFMAG1, 'E') \ _ELF_DEFINE_EMAG(ELFMAG2, 'L') \ _ELF_DEFINE_EMAG(ELFMAG3, 'F') #undef _ELF_DEFINE_EMAG #define _ELF_DEFINE_EMAG(N, V) N = V , enum { _ELF_DEFINE_ELF_MAGIC() ELFMAG__LAST__ }; /* * ELF OS ABI field. */ #define _ELF_DEFINE_ELF_OSABI() \ _ELF_DEFINE_EABI(ELFOSABI_NONE, 0, \ "No extensions or unspecified") \ _ELF_DEFINE_EABI(ELFOSABI_SYSV, 0, "SYSV") \ _ELF_DEFINE_EABI(ELFOSABI_HPUX, 1, "Hewlett-Packard HP-UX") \ _ELF_DEFINE_EABI(ELFOSABI_NETBSD, 2, "NetBSD") \ _ELF_DEFINE_EABI(ELFOSABI_GNU, 3, "GNU") \ _ELF_DEFINE_EABI(ELFOSABI_HURD, 4, "GNU/HURD") \ _ELF_DEFINE_EABI(ELFOSABI_86OPEN, 5, "86Open Common ABI") \ _ELF_DEFINE_EABI(ELFOSABI_SOLARIS, 6, "Sun Solaris") \ _ELF_DEFINE_EABI(ELFOSABI_AIX, 7, "AIX") \ _ELF_DEFINE_EABI(ELFOSABI_IRIX, 8, "IRIX") \ _ELF_DEFINE_EABI(ELFOSABI_FREEBSD, 9, "FreeBSD") \ _ELF_DEFINE_EABI(ELFOSABI_TRU64, 10, "Compaq TRU64 UNIX") \ _ELF_DEFINE_EABI(ELFOSABI_MODESTO, 11, "Novell Modesto") \ _ELF_DEFINE_EABI(ELFOSABI_OPENBSD, 12, "Open BSD") \ _ELF_DEFINE_EABI(ELFOSABI_OPENVMS, 13, "Open VMS") \ _ELF_DEFINE_EABI(ELFOSABI_NSK, 14, \ "Hewlett-Packard Non-Stop Kernel") \ _ELF_DEFINE_EABI(ELFOSABI_AROS, 15, "Amiga Research OS") \ _ELF_DEFINE_EABI(ELFOSABI_FENIXOS, 16, \ "The FenixOS highly scalable multi-core OS") \ _ELF_DEFINE_EABI(ELFOSABI_CLOUDABI, 17, "Nuxi CloudABI") \ _ELF_DEFINE_EABI(ELFOSABI_ARM_AEABI, 64, \ "ARM specific symbol versioning extensions") \ _ELF_DEFINE_EABI(ELFOSABI_ARM, 97, "ARM ABI") \ _ELF_DEFINE_EABI(ELFOSABI_STANDALONE, 255, \ "Standalone (embedded) application") #undef _ELF_DEFINE_EABI #define _ELF_DEFINE_EABI(N, V, DESCR) N = V , enum { _ELF_DEFINE_ELF_OSABI() ELFOSABI__LAST__ }; #define ELFOSABI_LINUX ELFOSABI_GNU /* * ELF Machine types: (EM_*). */ #define _ELF_DEFINE_ELF_MACHINES() \ _ELF_DEFINE_EM(EM_NONE, 0, "No machine") \ _ELF_DEFINE_EM(EM_M32, 1, "AT&T WE 32100") \ _ELF_DEFINE_EM(EM_SPARC, 2, "SPARC") \ _ELF_DEFINE_EM(EM_386, 3, "Intel 80386") \ _ELF_DEFINE_EM(EM_68K, 4, "Motorola 68000") \ _ELF_DEFINE_EM(EM_88K, 5, "Motorola 88000") \ _ELF_DEFINE_EM(EM_IAMCU, 6, "Intel MCU") \ _ELF_DEFINE_EM(EM_860, 7, "Intel 80860") \ _ELF_DEFINE_EM(EM_MIPS, 8, "MIPS I Architecture") \ _ELF_DEFINE_EM(EM_S370, 9, "IBM System/370 Processor") \ _ELF_DEFINE_EM(EM_MIPS_RS3_LE, 10, "MIPS RS3000 Little-endian") \ _ELF_DEFINE_EM(EM_PARISC, 15, "Hewlett-Packard PA-RISC") \ _ELF_DEFINE_EM(EM_VPP500, 17, "Fujitsu VPP500") \ _ELF_DEFINE_EM(EM_SPARC32PLUS, 18, \ "Enhanced instruction set SPARC") \ _ELF_DEFINE_EM(EM_960, 19, "Intel 80960") \ _ELF_DEFINE_EM(EM_PPC, 20, "PowerPC") \ _ELF_DEFINE_EM(EM_PPC64, 21, "64-bit PowerPC") \ _ELF_DEFINE_EM(EM_S390, 22, "IBM System/390 Processor") \ _ELF_DEFINE_EM(EM_SPU, 23, "IBM SPU/SPC") \ _ELF_DEFINE_EM(EM_V800, 36, "NEC V800") \ _ELF_DEFINE_EM(EM_FR20, 37, "Fujitsu FR20") \ _ELF_DEFINE_EM(EM_RH32, 38, "TRW RH-32") \ _ELF_DEFINE_EM(EM_RCE, 39, "Motorola RCE") \ _ELF_DEFINE_EM(EM_ARM, 40, "Advanced RISC Machines ARM") \ _ELF_DEFINE_EM(EM_ALPHA, 41, "Digital Alpha") \ _ELF_DEFINE_EM(EM_SH, 42, "Hitachi SH") \ _ELF_DEFINE_EM(EM_SPARCV9, 43, "SPARC Version 9") \ _ELF_DEFINE_EM(EM_TRICORE, 44, \ "Siemens TriCore embedded processor") \ _ELF_DEFINE_EM(EM_ARC, 45, \ "Argonaut RISC Core, Argonaut Technologies Inc.") \ _ELF_DEFINE_EM(EM_H8_300, 46, "Hitachi H8/300") \ _ELF_DEFINE_EM(EM_H8_300H, 47, "Hitachi H8/300H") \ _ELF_DEFINE_EM(EM_H8S, 48, "Hitachi H8S") \ _ELF_DEFINE_EM(EM_H8_500, 49, "Hitachi H8/500") \ _ELF_DEFINE_EM(EM_IA_64, 50, \ "Intel IA-64 processor architecture") \ _ELF_DEFINE_EM(EM_MIPS_X, 51, "Stanford MIPS-X") \ _ELF_DEFINE_EM(EM_COLDFIRE, 52, "Motorola ColdFire") \ _ELF_DEFINE_EM(EM_68HC12, 53, "Motorola M68HC12") \ _ELF_DEFINE_EM(EM_MMA, 54, \ "Fujitsu MMA Multimedia Accelerator") \ _ELF_DEFINE_EM(EM_PCP, 55, "Siemens PCP") \ _ELF_DEFINE_EM(EM_NCPU, 56, \ "Sony nCPU embedded RISC processor") \ _ELF_DEFINE_EM(EM_NDR1, 57, "Denso NDR1 microprocessor") \ _ELF_DEFINE_EM(EM_STARCORE, 58, "Motorola Star*Core processor") \ _ELF_DEFINE_EM(EM_ME16, 59, "Toyota ME16 processor") \ _ELF_DEFINE_EM(EM_ST100, 60, \ "STMicroelectronics ST100 processor") \ _ELF_DEFINE_EM(EM_TINYJ, 61, \ "Advanced Logic Corp. TinyJ embedded processor family") \ _ELF_DEFINE_EM(EM_X86_64, 62, "AMD x86-64 architecture") \ _ELF_DEFINE_EM(EM_PDSP, 63, "Sony DSP Processor") \ _ELF_DEFINE_EM(EM_PDP10, 64, \ "Digital Equipment Corp. PDP-10") \ _ELF_DEFINE_EM(EM_PDP11, 65, \ "Digital Equipment Corp. PDP-11") \ _ELF_DEFINE_EM(EM_FX66, 66, "Siemens FX66 microcontroller") \ _ELF_DEFINE_EM(EM_ST9PLUS, 67, \ "STMicroelectronics ST9+ 8/16 bit microcontroller") \ _ELF_DEFINE_EM(EM_ST7, 68, \ "STMicroelectronics ST7 8-bit microcontroller") \ _ELF_DEFINE_EM(EM_68HC16, 69, \ "Motorola MC68HC16 Microcontroller") \ _ELF_DEFINE_EM(EM_68HC11, 70, \ "Motorola MC68HC11 Microcontroller") \ _ELF_DEFINE_EM(EM_68HC08, 71, \ "Motorola MC68HC08 Microcontroller") \ _ELF_DEFINE_EM(EM_68HC05, 72, \ "Motorola MC68HC05 Microcontroller") \ _ELF_DEFINE_EM(EM_SVX, 73, "Silicon Graphics SVx") \ _ELF_DEFINE_EM(EM_ST19, 74, \ "STMicroelectronics ST19 8-bit microcontroller") \ _ELF_DEFINE_EM(EM_VAX, 75, "Digital VAX") \ _ELF_DEFINE_EM(EM_CRIS, 76, \ "Axis Communications 32-bit embedded processor") \ _ELF_DEFINE_EM(EM_JAVELIN, 77, \ "Infineon Technologies 32-bit embedded processor") \ _ELF_DEFINE_EM(EM_FIREPATH, 78, \ "Element 14 64-bit DSP Processor") \ _ELF_DEFINE_EM(EM_ZSP, 79, \ "LSI Logic 16-bit DSP Processor") \ _ELF_DEFINE_EM(EM_MMIX, 80, \ "Donald Knuth's educational 64-bit processor") \ _ELF_DEFINE_EM(EM_HUANY, 81, \ "Harvard University machine-independent object files") \ _ELF_DEFINE_EM(EM_PRISM, 82, "SiTera Prism") \ _ELF_DEFINE_EM(EM_AVR, 83, \ "Atmel AVR 8-bit microcontroller") \ _ELF_DEFINE_EM(EM_FR30, 84, "Fujitsu FR30") \ _ELF_DEFINE_EM(EM_D10V, 85, "Mitsubishi D10V") \ _ELF_DEFINE_EM(EM_D30V, 86, "Mitsubishi D30V") \ _ELF_DEFINE_EM(EM_V850, 87, "NEC v850") \ _ELF_DEFINE_EM(EM_M32R, 88, "Mitsubishi M32R") \ _ELF_DEFINE_EM(EM_MN10300, 89, "Matsushita MN10300") \ _ELF_DEFINE_EM(EM_MN10200, 90, "Matsushita MN10200") \ _ELF_DEFINE_EM(EM_PJ, 91, "picoJava") \ _ELF_DEFINE_EM(EM_OPENRISC, 92, \ "OpenRISC 32-bit embedded processor") \ _ELF_DEFINE_EM(EM_ARC_COMPACT, 93, \ "ARC International ARCompact processor") \ _ELF_DEFINE_EM(EM_XTENSA, 94, \ "Tensilica Xtensa Architecture") \ _ELF_DEFINE_EM(EM_VIDEOCORE, 95, \ "Alphamosaic VideoCore processor") \ _ELF_DEFINE_EM(EM_TMM_GPP, 96, \ "Thompson Multimedia General Purpose Processor") \ _ELF_DEFINE_EM(EM_NS32K, 97, \ "National Semiconductor 32000 series") \ _ELF_DEFINE_EM(EM_TPC, 98, "Tenor Network TPC processor") \ _ELF_DEFINE_EM(EM_SNP1K, 99, "Trebia SNP 1000 processor") \ _ELF_DEFINE_EM(EM_ST200, 100, \ "STMicroelectronics (www.st.com) ST200 microcontroller") \ _ELF_DEFINE_EM(EM_IP2K, 101, \ "Ubicom IP2xxx microcontroller family") \ _ELF_DEFINE_EM(EM_MAX, 102, "MAX Processor") \ _ELF_DEFINE_EM(EM_CR, 103, \ "National Semiconductor CompactRISC microprocessor") \ _ELF_DEFINE_EM(EM_F2MC16, 104, "Fujitsu F2MC16") \ _ELF_DEFINE_EM(EM_MSP430, 105, \ "Texas Instruments embedded microcontroller msp430") \ _ELF_DEFINE_EM(EM_BLACKFIN, 106, \ "Analog Devices Blackfin (DSP) processor") \ _ELF_DEFINE_EM(EM_SE_C33, 107, \ "S1C33 Family of Seiko Epson processors") \ _ELF_DEFINE_EM(EM_SEP, 108, \ "Sharp embedded microprocessor") \ _ELF_DEFINE_EM(EM_ARCA, 109, "Arca RISC Microprocessor") \ _ELF_DEFINE_EM(EM_UNICORE, 110, \ "Microprocessor series from PKU-Unity Ltd. and MPRC of Peking University") \ _ELF_DEFINE_EM(EM_EXCESS, 111, \ "eXcess: 16/32/64-bit configurable embedded CPU") \ _ELF_DEFINE_EM(EM_DXP, 112, \ "Icera Semiconductor Inc. Deep Execution Processor") \ _ELF_DEFINE_EM(EM_ALTERA_NIOS2, 113, \ "Altera Nios II soft-core processor") \ _ELF_DEFINE_EM(EM_CRX, 114, \ "National Semiconductor CompactRISC CRX microprocessor") \ _ELF_DEFINE_EM(EM_XGATE, 115, \ "Motorola XGATE embedded processor") \ _ELF_DEFINE_EM(EM_C166, 116, \ "Infineon C16x/XC16x processor") \ _ELF_DEFINE_EM(EM_M16C, 117, \ "Renesas M16C series microprocessors") \ _ELF_DEFINE_EM(EM_DSPIC30F, 118, \ "Microchip Technology dsPIC30F Digital Signal Controller") \ _ELF_DEFINE_EM(EM_CE, 119, \ "Freescale Communication Engine RISC core") \ _ELF_DEFINE_EM(EM_M32C, 120, \ "Renesas M32C series microprocessors") \ _ELF_DEFINE_EM(EM_TSK3000, 131, "Altium TSK3000 core") \ _ELF_DEFINE_EM(EM_RS08, 132, \ "Freescale RS08 embedded processor") \ _ELF_DEFINE_EM(EM_SHARC, 133, \ "Analog Devices SHARC family of 32-bit DSP processors") \ _ELF_DEFINE_EM(EM_ECOG2, 134, \ "Cyan Technology eCOG2 microprocessor") \ _ELF_DEFINE_EM(EM_SCORE7, 135, \ "Sunplus S+core7 RISC processor") \ _ELF_DEFINE_EM(EM_DSP24, 136, \ "New Japan Radio (NJR) 24-bit DSP Processor") \ _ELF_DEFINE_EM(EM_VIDEOCORE3, 137, \ "Broadcom VideoCore III processor") \ _ELF_DEFINE_EM(EM_LATTICEMICO32, 138, \ "RISC processor for Lattice FPGA architecture") \ _ELF_DEFINE_EM(EM_SE_C17, 139, "Seiko Epson C17 family") \ _ELF_DEFINE_EM(EM_TI_C6000, 140, \ "The Texas Instruments TMS320C6000 DSP family") \ _ELF_DEFINE_EM(EM_TI_C2000, 141, \ "The Texas Instruments TMS320C2000 DSP family") \ _ELF_DEFINE_EM(EM_TI_C5500, 142, \ "The Texas Instruments TMS320C55x DSP family") \ _ELF_DEFINE_EM(EM_MMDSP_PLUS, 160, \ "STMicroelectronics 64bit VLIW Data Signal Processor") \ _ELF_DEFINE_EM(EM_CYPRESS_M8C, 161, "Cypress M8C microprocessor") \ _ELF_DEFINE_EM(EM_R32C, 162, \ "Renesas R32C series microprocessors") \ _ELF_DEFINE_EM(EM_TRIMEDIA, 163, \ "NXP Semiconductors TriMedia architecture family") \ _ELF_DEFINE_EM(EM_QDSP6, 164, "QUALCOMM DSP6 Processor") \ _ELF_DEFINE_EM(EM_8051, 165, "Intel 8051 and variants") \ _ELF_DEFINE_EM(EM_STXP7X, 166, \ "STMicroelectronics STxP7x family of configurable and extensible RISC processors") \ _ELF_DEFINE_EM(EM_NDS32, 167, \ "Andes Technology compact code size embedded RISC processor family") \ _ELF_DEFINE_EM(EM_ECOG1, 168, \ "Cyan Technology eCOG1X family") \ _ELF_DEFINE_EM(EM_ECOG1X, 168, \ "Cyan Technology eCOG1X family") \ _ELF_DEFINE_EM(EM_MAXQ30, 169, \ "Dallas Semiconductor MAXQ30 Core Micro-controllers") \ _ELF_DEFINE_EM(EM_XIMO16, 170, \ "New Japan Radio (NJR) 16-bit DSP Processor") \ _ELF_DEFINE_EM(EM_MANIK, 171, \ "M2000 Reconfigurable RISC Microprocessor") \ _ELF_DEFINE_EM(EM_CRAYNV2, 172, \ "Cray Inc. NV2 vector architecture") \ _ELF_DEFINE_EM(EM_RX, 173, "Renesas RX family") \ _ELF_DEFINE_EM(EM_METAG, 174, \ "Imagination Technologies META processor architecture") \ _ELF_DEFINE_EM(EM_MCST_ELBRUS, 175, \ "MCST Elbrus general purpose hardware architecture") \ _ELF_DEFINE_EM(EM_ECOG16, 176, \ "Cyan Technology eCOG16 family") \ _ELF_DEFINE_EM(EM_CR16, 177, \ "National Semiconductor CompactRISC CR16 16-bit microprocessor") \ _ELF_DEFINE_EM(EM_ETPU, 178, \ "Freescale Extended Time Processing Unit") \ _ELF_DEFINE_EM(EM_SLE9X, 179, \ "Infineon Technologies SLE9X core") \ _ELF_DEFINE_EM(EM_AARCH64, 183, \ "AArch64 (64-bit ARM)") \ _ELF_DEFINE_EM(EM_AVR32, 185, \ "Atmel Corporation 32-bit microprocessor family") \ _ELF_DEFINE_EM(EM_STM8, 186, \ "STMicroeletronics STM8 8-bit microcontroller") \ _ELF_DEFINE_EM(EM_TILE64, 187, \ "Tilera TILE64 multicore architecture family") \ _ELF_DEFINE_EM(EM_TILEPRO, 188, \ "Tilera TILEPro multicore architecture family") \ _ELF_DEFINE_EM(EM_MICROBLAZE, 189, \ "Xilinx MicroBlaze 32-bit RISC soft processor core") \ _ELF_DEFINE_EM(EM_CUDA, 190, "NVIDIA CUDA architecture") \ _ELF_DEFINE_EM(EM_TILEGX, 191, \ "Tilera TILE-Gx multicore architecture family") \ _ELF_DEFINE_EM(EM_CLOUDSHIELD, 192, \ "CloudShield architecture family") \ _ELF_DEFINE_EM(EM_COREA_1ST, 193, \ "KIPO-KAIST Core-A 1st generation processor family") \ _ELF_DEFINE_EM(EM_COREA_2ND, 194, \ "KIPO-KAIST Core-A 2nd generation processor family") \ _ELF_DEFINE_EM(EM_ARC_COMPACT2, 195, "Synopsys ARCompact V2") \ _ELF_DEFINE_EM(EM_OPEN8, 196, \ "Open8 8-bit RISC soft processor core") \ _ELF_DEFINE_EM(EM_RL78, 197, "Renesas RL78 family") \ _ELF_DEFINE_EM(EM_VIDEOCORE5, 198, "Broadcom VideoCore V processor") \ _ELF_DEFINE_EM(EM_78KOR, 199, "Renesas 78KOR family") \ _ELF_DEFINE_EM(EM_56800EX, 200, \ "Freescale 56800EX Digital Signal Controller") \ _ELF_DEFINE_EM(EM_BA1, 201, "Beyond BA1 CPU architecture") \ _ELF_DEFINE_EM(EM_BA2, 202, "Beyond BA2 CPU architecture") \ _ELF_DEFINE_EM(EM_XCORE, 203, "XMOS xCORE processor family") \ _ELF_DEFINE_EM(EM_MCHP_PIC, 204, "Microchip 8-bit PIC(r) family") \ _ELF_DEFINE_EM(EM_INTEL205, 205, "Reserved by Intel") \ _ELF_DEFINE_EM(EM_INTEL206, 206, "Reserved by Intel") \ _ELF_DEFINE_EM(EM_INTEL207, 207, "Reserved by Intel") \ _ELF_DEFINE_EM(EM_INTEL208, 208, "Reserved by Intel") \ _ELF_DEFINE_EM(EM_INTEL209, 209, "Reserved by Intel") \ _ELF_DEFINE_EM(EM_KM32, 210, "KM211 KM32 32-bit processor") \ _ELF_DEFINE_EM(EM_KMX32, 211, "KM211 KMX32 32-bit processor") \ _ELF_DEFINE_EM(EM_KMX16, 212, "KM211 KMX16 16-bit processor") \ _ELF_DEFINE_EM(EM_KMX8, 213, "KM211 KMX8 8-bit processor") \ _ELF_DEFINE_EM(EM_KVARC, 214, "KM211 KMX32 KVARC processor") \ _ELF_DEFINE_EM(EM_RISCV, 243, "RISC-V") #undef _ELF_DEFINE_EM #define _ELF_DEFINE_EM(N, V, DESCR) N = V , enum { _ELF_DEFINE_ELF_MACHINES() EM__LAST__ }; /* Other synonyms. */ #define EM_AMD64 EM_X86_64 #define EM_ARC_A5 EM_ARC_COMPACT /* * ELF file types: (ET_*). */ #define _ELF_DEFINE_ELF_TYPES() \ _ELF_DEFINE_ET(ET_NONE, 0, "No file type") \ _ELF_DEFINE_ET(ET_REL, 1, "Relocatable object") \ _ELF_DEFINE_ET(ET_EXEC, 2, "Executable") \ _ELF_DEFINE_ET(ET_DYN, 3, "Shared object") \ _ELF_DEFINE_ET(ET_CORE, 4, "Core file") \ _ELF_DEFINE_ET(ET_LOOS, 0xFE00U, "Begin OS-specific range") \ _ELF_DEFINE_ET(ET_HIOS, 0xFEFFU, "End OS-specific range") \ _ELF_DEFINE_ET(ET_LOPROC, 0xFF00U, "Begin processor-specific range") \ _ELF_DEFINE_ET(ET_HIPROC, 0xFFFFU, "End processor-specific range") #undef _ELF_DEFINE_ET #define _ELF_DEFINE_ET(N, V, DESCR) N = V , enum { _ELF_DEFINE_ELF_TYPES() ET__LAST__ }; /* ELF file format version numbers. */ #define EV_NONE 0 #define EV_CURRENT 1 /* * Flags for section groups. */ #define GRP_COMDAT 0x1 /* COMDAT semantics */ #define GRP_MASKOS 0x0ff00000 /* OS-specific flags */ #define GRP_MASKPROC 0xf0000000 /* processor-specific flags */ /* * Flags / mask for .gnu.versym sections. */ #define VERSYM_VERSION 0x7fff #define VERSYM_HIDDEN 0x8000 /* * Flags used by program header table entries. */ #define _ELF_DEFINE_PHDR_FLAGS() \ _ELF_DEFINE_PF(PF_X, 0x1, "Execute") \ _ELF_DEFINE_PF(PF_W, 0x2, "Write") \ _ELF_DEFINE_PF(PF_R, 0x4, "Read") \ _ELF_DEFINE_PF(PF_MASKOS, 0x0ff00000, "OS-specific flags") \ _ELF_DEFINE_PF(PF_MASKPROC, 0xf0000000, "Processor-specific flags") \ _ELF_DEFINE_PF(PF_ARM_SB, 0x10000000, \ "segment contains the location addressed by the static base") \ _ELF_DEFINE_PF(PF_ARM_PI, 0x20000000, \ "segment is position-independent") \ _ELF_DEFINE_PF(PF_ARM_ABS, 0x40000000, \ "segment must be loaded at its base address") #undef _ELF_DEFINE_PF #define _ELF_DEFINE_PF(N, V, DESCR) N = V , enum { _ELF_DEFINE_PHDR_FLAGS() PF__LAST__ }; /* * Types of program header table entries. */ #define _ELF_DEFINE_PHDR_TYPES() \ _ELF_DEFINE_PT(PT_NULL, 0, "ignored entry") \ _ELF_DEFINE_PT(PT_LOAD, 1, "loadable segment") \ _ELF_DEFINE_PT(PT_DYNAMIC, 2, \ "contains dynamic linking information") \ _ELF_DEFINE_PT(PT_INTERP, 3, "names an interpreter") \ _ELF_DEFINE_PT(PT_NOTE, 4, "auxiliary information") \ _ELF_DEFINE_PT(PT_SHLIB, 5, "reserved") \ _ELF_DEFINE_PT(PT_PHDR, 6, \ "describes the program header itself") \ _ELF_DEFINE_PT(PT_TLS, 7, "thread local storage") \ _ELF_DEFINE_PT(PT_LOOS, 0x60000000UL, \ "start of OS-specific range") \ _ELF_DEFINE_PT(PT_SUNW_UNWIND, 0x6464E550UL, \ "Solaris/amd64 stack unwind tables") \ _ELF_DEFINE_PT(PT_GNU_EH_FRAME, 0x6474E550UL, \ "GCC generated .eh_frame_hdr segment") \ _ELF_DEFINE_PT(PT_GNU_STACK, 0x6474E551UL, \ "Stack flags") \ _ELF_DEFINE_PT(PT_GNU_RELRO, 0x6474E552UL, \ "Segment becomes read-only after relocation") \ _ELF_DEFINE_PT(PT_SUNWBSS, 0x6FFFFFFAUL, \ "A Solaris .SUNW_bss section") \ _ELF_DEFINE_PT(PT_SUNWSTACK, 0x6FFFFFFBUL, \ "A Solaris process stack") \ _ELF_DEFINE_PT(PT_SUNWDTRACE, 0x6FFFFFFCUL, \ "Used by dtrace(1)") \ _ELF_DEFINE_PT(PT_SUNWCAP, 0x6FFFFFFDUL, \ "Special hardware capability requirements") \ _ELF_DEFINE_PT(PT_HIOS, 0x6FFFFFFFUL, \ "end of OS-specific range") \ _ELF_DEFINE_PT(PT_LOPROC, 0x70000000UL, \ "start of processor-specific range") \ _ELF_DEFINE_PT(PT_ARM_ARCHEXT, 0x70000000UL, \ "platform architecture compatibility information") \ _ELF_DEFINE_PT(PT_ARM_EXIDX, 0x70000001UL, \ "exception unwind tables") \ _ELF_DEFINE_PT(PT_MIPS_REGINFO, 0x70000000UL, \ "register usage information") \ _ELF_DEFINE_PT(PT_MIPS_RTPROC, 0x70000001UL, \ "runtime procedure table") \ _ELF_DEFINE_PT(PT_MIPS_OPTIONS, 0x70000002UL, \ "options segment") \ _ELF_DEFINE_PT(PT_HIPROC, 0x7FFFFFFFUL, \ "end of processor-specific range") #undef _ELF_DEFINE_PT #define _ELF_DEFINE_PT(N, V, DESCR) N = V , enum { _ELF_DEFINE_PHDR_TYPES() PT__LAST__ = PT_HIPROC }; /* synonyms. */ #define PT_ARM_UNWIND PT_ARM_EXIDX #define PT_HISUNW PT_HIOS #define PT_LOSUNW PT_SUNWBSS /* * Section flags. */ #define _ELF_DEFINE_SECTION_FLAGS() \ _ELF_DEFINE_SHF(SHF_WRITE, 0x1, \ "writable during program execution") \ _ELF_DEFINE_SHF(SHF_ALLOC, 0x2, \ "occupies memory during program execution") \ _ELF_DEFINE_SHF(SHF_EXECINSTR, 0x4, "executable instructions") \ _ELF_DEFINE_SHF(SHF_MERGE, 0x10, \ "may be merged to prevent duplication") \ _ELF_DEFINE_SHF(SHF_STRINGS, 0x20, \ "NUL-terminated character strings") \ _ELF_DEFINE_SHF(SHF_INFO_LINK, 0x40, \ "the sh_info field holds a link") \ _ELF_DEFINE_SHF(SHF_LINK_ORDER, 0x80, \ "special ordering requirements during linking") \ _ELF_DEFINE_SHF(SHF_OS_NONCONFORMING, 0x100, \ "requires OS-specific processing during linking") \ _ELF_DEFINE_SHF(SHF_GROUP, 0x200, \ "member of a section group") \ _ELF_DEFINE_SHF(SHF_TLS, 0x400, \ "holds thread-local storage") \ _ELF_DEFINE_SHF(SHF_COMPRESSED, 0x800, \ "holds compressed data") \ _ELF_DEFINE_SHF(SHF_MASKOS, 0x0FF00000UL, \ "bits reserved for OS-specific semantics") \ _ELF_DEFINE_SHF(SHF_AMD64_LARGE, 0x10000000UL, \ "section uses large code model") \ _ELF_DEFINE_SHF(SHF_ENTRYSECT, 0x10000000UL, \ "section contains an entry point (ARM)") \ _ELF_DEFINE_SHF(SHF_COMDEF, 0x80000000UL, \ "section may be multiply defined in input to link step (ARM)") \ _ELF_DEFINE_SHF(SHF_MIPS_GPREL, 0x10000000UL, \ "section must be part of global data area") \ _ELF_DEFINE_SHF(SHF_MIPS_MERGE, 0x20000000UL, \ "section data should be merged to eliminate duplication") \ _ELF_DEFINE_SHF(SHF_MIPS_ADDR, 0x40000000UL, \ "section data is addressed by default") \ _ELF_DEFINE_SHF(SHF_MIPS_STRING, 0x80000000UL, \ "section data is string data by default") \ _ELF_DEFINE_SHF(SHF_MIPS_NOSTRIP, 0x08000000UL, \ "section data may not be stripped") \ _ELF_DEFINE_SHF(SHF_MIPS_LOCAL, 0x04000000UL, \ "section data local to process") \ _ELF_DEFINE_SHF(SHF_MIPS_NAMES, 0x02000000UL, \ "linker must generate implicit hidden weak names") \ _ELF_DEFINE_SHF(SHF_MIPS_NODUPE, 0x01000000UL, \ "linker must retain only one copy") \ _ELF_DEFINE_SHF(SHF_ORDERED, 0x40000000UL, \ "section is ordered with respect to other sections") \ _ELF_DEFINE_SHF(SHF_EXCLUDE, 0x80000000UL, \ "section is excluded from executables and shared objects") \ _ELF_DEFINE_SHF(SHF_MASKPROC, 0xF0000000UL, \ "bits reserved for processor-specific semantics") #undef _ELF_DEFINE_SHF #define _ELF_DEFINE_SHF(N, V, DESCR) N = V , enum { _ELF_DEFINE_SECTION_FLAGS() SHF__LAST__ }; /* * Special section indices. */ #define _ELF_DEFINE_SECTION_INDICES() \ _ELF_DEFINE_SHN(SHN_UNDEF, 0, "undefined section") \ _ELF_DEFINE_SHN(SHN_LORESERVE, 0xFF00U, "start of reserved area") \ _ELF_DEFINE_SHN(SHN_LOPROC, 0xFF00U, \ "start of processor-specific range") \ _ELF_DEFINE_SHN(SHN_BEFORE, 0xFF00U, "used for section ordering") \ _ELF_DEFINE_SHN(SHN_AFTER, 0xFF01U, "used for section ordering") \ _ELF_DEFINE_SHN(SHN_AMD64_LCOMMON, 0xFF02U, "large common block label") \ _ELF_DEFINE_SHN(SHN_MIPS_ACOMMON, 0xFF00U, \ "allocated common symbols in a DSO") \ _ELF_DEFINE_SHN(SHN_MIPS_TEXT, 0xFF01U, "Reserved (obsolete)") \ _ELF_DEFINE_SHN(SHN_MIPS_DATA, 0xFF02U, "Reserved (obsolete)") \ _ELF_DEFINE_SHN(SHN_MIPS_SCOMMON, 0xFF03U, \ "gp-addressable common symbols") \ _ELF_DEFINE_SHN(SHN_MIPS_SUNDEFINED, 0xFF04U, \ "gp-addressable undefined symbols") \ _ELF_DEFINE_SHN(SHN_MIPS_LCOMMON, 0xFF05U, "local common symbols") \ _ELF_DEFINE_SHN(SHN_MIPS_LUNDEFINED, 0xFF06U, \ "local undefined symbols") \ _ELF_DEFINE_SHN(SHN_HIPROC, 0xFF1FU, \ "end of processor-specific range") \ _ELF_DEFINE_SHN(SHN_LOOS, 0xFF20U, \ "start of OS-specific range") \ _ELF_DEFINE_SHN(SHN_SUNW_IGNORE, 0xFF3FU, "used by dtrace") \ _ELF_DEFINE_SHN(SHN_HIOS, 0xFF3FU, \ "end of OS-specific range") \ _ELF_DEFINE_SHN(SHN_ABS, 0xFFF1U, "absolute references") \ _ELF_DEFINE_SHN(SHN_COMMON, 0xFFF2U, "references to COMMON areas") \ _ELF_DEFINE_SHN(SHN_XINDEX, 0xFFFFU, "extended index") \ _ELF_DEFINE_SHN(SHN_HIRESERVE, 0xFFFFU, "end of reserved area") #undef _ELF_DEFINE_SHN #define _ELF_DEFINE_SHN(N, V, DESCR) N = V , enum { _ELF_DEFINE_SECTION_INDICES() SHN__LAST__ }; /* * Section types. */ #define _ELF_DEFINE_SECTION_TYPES() \ _ELF_DEFINE_SHT(SHT_NULL, 0, "inactive header") \ _ELF_DEFINE_SHT(SHT_PROGBITS, 1, "program defined information") \ _ELF_DEFINE_SHT(SHT_SYMTAB, 2, "symbol table") \ _ELF_DEFINE_SHT(SHT_STRTAB, 3, "string table") \ _ELF_DEFINE_SHT(SHT_RELA, 4, \ "relocation entries with addends") \ _ELF_DEFINE_SHT(SHT_HASH, 5, "symbol hash table") \ _ELF_DEFINE_SHT(SHT_DYNAMIC, 6, \ "information for dynamic linking") \ _ELF_DEFINE_SHT(SHT_NOTE, 7, "additional notes") \ _ELF_DEFINE_SHT(SHT_NOBITS, 8, "section occupying no space") \ _ELF_DEFINE_SHT(SHT_REL, 9, \ "relocation entries without addends") \ _ELF_DEFINE_SHT(SHT_SHLIB, 10, "reserved") \ _ELF_DEFINE_SHT(SHT_DYNSYM, 11, "symbol table") \ _ELF_DEFINE_SHT(SHT_INIT_ARRAY, 14, \ "pointers to initialization functions") \ _ELF_DEFINE_SHT(SHT_FINI_ARRAY, 15, \ "pointers to termination functions") \ _ELF_DEFINE_SHT(SHT_PREINIT_ARRAY, 16, \ "pointers to functions called before initialization") \ _ELF_DEFINE_SHT(SHT_GROUP, 17, "defines a section group") \ _ELF_DEFINE_SHT(SHT_SYMTAB_SHNDX, 18, \ "used for extended section numbering") \ _ELF_DEFINE_SHT(SHT_LOOS, 0x60000000UL, \ "start of OS-specific range") \ _ELF_DEFINE_SHT(SHT_SUNW_dof, 0x6FFFFFF4UL, \ "used by dtrace") \ _ELF_DEFINE_SHT(SHT_SUNW_cap, 0x6FFFFFF5UL, \ "capability requirements") \ _ELF_DEFINE_SHT(SHT_GNU_ATTRIBUTES, 0x6FFFFFF5UL, \ "object attributes") \ _ELF_DEFINE_SHT(SHT_SUNW_SIGNATURE, 0x6FFFFFF6UL, \ "module verification signature") \ _ELF_DEFINE_SHT(SHT_GNU_HASH, 0x6FFFFFF6UL, \ "GNU Hash sections") \ _ELF_DEFINE_SHT(SHT_GNU_LIBLIST, 0x6FFFFFF7UL, \ "List of libraries to be prelinked") \ _ELF_DEFINE_SHT(SHT_SUNW_ANNOTATE, 0x6FFFFFF7UL, \ "special section where unresolved references are allowed") \ _ELF_DEFINE_SHT(SHT_SUNW_DEBUGSTR, 0x6FFFFFF8UL, \ "debugging information") \ _ELF_DEFINE_SHT(SHT_CHECKSUM, 0x6FFFFFF8UL, \ "checksum for dynamic shared objects") \ _ELF_DEFINE_SHT(SHT_SUNW_DEBUG, 0x6FFFFFF9UL, \ "debugging information") \ _ELF_DEFINE_SHT(SHT_SUNW_move, 0x6FFFFFFAUL, \ "information to handle partially initialized symbols") \ _ELF_DEFINE_SHT(SHT_SUNW_COMDAT, 0x6FFFFFFBUL, \ "section supporting merging of multiple copies of data") \ _ELF_DEFINE_SHT(SHT_SUNW_syminfo, 0x6FFFFFFCUL, \ "additional symbol information") \ _ELF_DEFINE_SHT(SHT_SUNW_verdef, 0x6FFFFFFDUL, \ "symbol versioning information") \ _ELF_DEFINE_SHT(SHT_SUNW_verneed, 0x6FFFFFFEUL, \ "symbol versioning requirements") \ _ELF_DEFINE_SHT(SHT_SUNW_versym, 0x6FFFFFFFUL, \ "symbol versioning table") \ _ELF_DEFINE_SHT(SHT_HIOS, 0x6FFFFFFFUL, \ "end of OS-specific range") \ _ELF_DEFINE_SHT(SHT_LOPROC, 0x70000000UL, \ "start of processor-specific range") \ _ELF_DEFINE_SHT(SHT_ARM_EXIDX, 0x70000001UL, \ "exception index table") \ _ELF_DEFINE_SHT(SHT_ARM_PREEMPTMAP, 0x70000002UL, \ "BPABI DLL dynamic linking preemption map") \ _ELF_DEFINE_SHT(SHT_ARM_ATTRIBUTES, 0x70000003UL, \ "object file compatibility attributes") \ _ELF_DEFINE_SHT(SHT_ARM_DEBUGOVERLAY, 0x70000004UL, \ "overlay debug information") \ _ELF_DEFINE_SHT(SHT_ARM_OVERLAYSECTION, 0x70000005UL, \ "overlay debug information") \ _ELF_DEFINE_SHT(SHT_MIPS_LIBLIST, 0x70000000UL, \ "DSO library information used in link") \ _ELF_DEFINE_SHT(SHT_MIPS_MSYM, 0x70000001UL, \ "MIPS symbol table extension") \ _ELF_DEFINE_SHT(SHT_MIPS_CONFLICT, 0x70000002UL, \ "symbol conflicting with DSO-defined symbols ") \ _ELF_DEFINE_SHT(SHT_MIPS_GPTAB, 0x70000003UL, \ "global pointer table") \ _ELF_DEFINE_SHT(SHT_MIPS_UCODE, 0x70000004UL, \ "reserved") \ _ELF_DEFINE_SHT(SHT_MIPS_DEBUG, 0x70000005UL, \ "reserved (obsolete debug information)") \ _ELF_DEFINE_SHT(SHT_MIPS_REGINFO, 0x70000006UL, \ "register usage information") \ _ELF_DEFINE_SHT(SHT_MIPS_PACKAGE, 0x70000007UL, \ "OSF reserved") \ _ELF_DEFINE_SHT(SHT_MIPS_PACKSYM, 0x70000008UL, \ "OSF reserved") \ _ELF_DEFINE_SHT(SHT_MIPS_RELD, 0x70000009UL, \ "dynamic relocation") \ _ELF_DEFINE_SHT(SHT_MIPS_IFACE, 0x7000000BUL, \ "subprogram interface information") \ _ELF_DEFINE_SHT(SHT_MIPS_CONTENT, 0x7000000CUL, \ "section content classification") \ _ELF_DEFINE_SHT(SHT_MIPS_OPTIONS, 0x7000000DUL, \ "general options") \ _ELF_DEFINE_SHT(SHT_MIPS_DELTASYM, 0x7000001BUL, \ "Delta C++: symbol table") \ _ELF_DEFINE_SHT(SHT_MIPS_DELTAINST, 0x7000001CUL, \ "Delta C++: instance table") \ _ELF_DEFINE_SHT(SHT_MIPS_DELTACLASS, 0x7000001DUL, \ "Delta C++: class table") \ _ELF_DEFINE_SHT(SHT_MIPS_DWARF, 0x7000001EUL, \ "DWARF debug information") \ _ELF_DEFINE_SHT(SHT_MIPS_DELTADECL, 0x7000001FUL, \ "Delta C++: declarations") \ _ELF_DEFINE_SHT(SHT_MIPS_SYMBOL_LIB, 0x70000020UL, \ "symbol-to-library mapping") \ _ELF_DEFINE_SHT(SHT_MIPS_EVENTS, 0x70000021UL, \ "event locations") \ _ELF_DEFINE_SHT(SHT_MIPS_TRANSLATE, 0x70000022UL, \ "???") \ _ELF_DEFINE_SHT(SHT_MIPS_PIXIE, 0x70000023UL, \ "special pixie sections") \ _ELF_DEFINE_SHT(SHT_MIPS_XLATE, 0x70000024UL, \ "address translation table") \ _ELF_DEFINE_SHT(SHT_MIPS_XLATE_DEBUG, 0x70000025UL, \ "SGI internal address translation table") \ _ELF_DEFINE_SHT(SHT_MIPS_WHIRL, 0x70000026UL, \ "intermediate code") \ _ELF_DEFINE_SHT(SHT_MIPS_EH_REGION, 0x70000027UL, \ "C++ exception handling region info") \ _ELF_DEFINE_SHT(SHT_MIPS_XLATE_OLD, 0x70000028UL, \ "obsolete") \ _ELF_DEFINE_SHT(SHT_MIPS_PDR_EXCEPTION, 0x70000029UL, \ "runtime procedure descriptor table exception information") \ _ELF_DEFINE_SHT(SHT_MIPS_ABIFLAGS, 0x7000002AUL, \ "ABI flags") \ _ELF_DEFINE_SHT(SHT_SPARC_GOTDATA, 0x70000000UL, \ "SPARC-specific data") \ _ELF_DEFINE_SHT(SHT_X86_64_UNWIND, 0x70000001UL, \ "unwind tables for the AMD64") \ _ELF_DEFINE_SHT(SHT_ORDERED, 0x7FFFFFFFUL, \ "sort entries in the section") \ _ELF_DEFINE_SHT(SHT_HIPROC, 0x7FFFFFFFUL, \ "end of processor-specific range") \ _ELF_DEFINE_SHT(SHT_LOUSER, 0x80000000UL, \ "start of application-specific range") \ _ELF_DEFINE_SHT(SHT_HIUSER, 0xFFFFFFFFUL, \ "end of application-specific range") #undef _ELF_DEFINE_SHT #define _ELF_DEFINE_SHT(N, V, DESCR) N = V , enum { _ELF_DEFINE_SECTION_TYPES() SHT__LAST__ = SHT_HIUSER }; /* Aliases for section types. */ #define SHT_AMD64_UNWIND SHT_X86_64_UNWIND #define SHT_GNU_verdef SHT_SUNW_verdef #define SHT_GNU_verneed SHT_SUNW_verneed #define SHT_GNU_versym SHT_SUNW_versym /* * Symbol binding information. */ #define _ELF_DEFINE_SYMBOL_BINDING() \ _ELF_DEFINE_STB(STB_LOCAL, 0, \ "not visible outside defining object file") \ _ELF_DEFINE_STB(STB_GLOBAL, 1, \ "visible across all object files being combined") \ _ELF_DEFINE_STB(STB_WEAK, 2, \ "visible across all object files but with low precedence") \ _ELF_DEFINE_STB(STB_LOOS, 10, "start of OS-specific range") \ _ELF_DEFINE_STB(STB_GNU_UNIQUE, 10, "unique symbol (GNU)") \ _ELF_DEFINE_STB(STB_HIOS, 12, "end of OS-specific range") \ _ELF_DEFINE_STB(STB_LOPROC, 13, \ "start of processor-specific range") \ _ELF_DEFINE_STB(STB_HIPROC, 15, \ "end of processor-specific range") #undef _ELF_DEFINE_STB #define _ELF_DEFINE_STB(N, V, DESCR) N = V , enum { _ELF_DEFINE_SYMBOL_BINDING() STB__LAST__ }; /* * Symbol types */ #define _ELF_DEFINE_SYMBOL_TYPES() \ _ELF_DEFINE_STT(STT_NOTYPE, 0, "unspecified type") \ _ELF_DEFINE_STT(STT_OBJECT, 1, "data object") \ _ELF_DEFINE_STT(STT_FUNC, 2, "executable code") \ _ELF_DEFINE_STT(STT_SECTION, 3, "section") \ _ELF_DEFINE_STT(STT_FILE, 4, "source file") \ _ELF_DEFINE_STT(STT_COMMON, 5, "uninitialized common block") \ _ELF_DEFINE_STT(STT_TLS, 6, "thread local storage") \ _ELF_DEFINE_STT(STT_LOOS, 10, "start of OS-specific types") \ _ELF_DEFINE_STT(STT_GNU_IFUNC, 10, "indirect function") \ _ELF_DEFINE_STT(STT_HIOS, 12, "end of OS-specific types") \ _ELF_DEFINE_STT(STT_LOPROC, 13, \ "start of processor-specific types") \ _ELF_DEFINE_STT(STT_ARM_TFUNC, 13, "Thumb function (GNU)") \ _ELF_DEFINE_STT(STT_ARM_16BIT, 15, "Thumb label (GNU)") \ _ELF_DEFINE_STT(STT_SPARC_REGISTER, 13, "SPARC register information") \ _ELF_DEFINE_STT(STT_HIPROC, 15, \ "end of processor-specific types") #undef _ELF_DEFINE_STT #define _ELF_DEFINE_STT(N, V, DESCR) N = V , enum { _ELF_DEFINE_SYMBOL_TYPES() STT__LAST__ }; /* * Symbol binding. */ #define _ELF_DEFINE_SYMBOL_BINDING_KINDS() \ _ELF_DEFINE_SYB(SYMINFO_BT_SELF, 0xFFFFU, \ "bound to self") \ _ELF_DEFINE_SYB(SYMINFO_BT_PARENT, 0xFFFEU, \ "bound to parent") \ _ELF_DEFINE_SYB(SYMINFO_BT_NONE, 0xFFFDU, \ "no special binding") #undef _ELF_DEFINE_SYB #define _ELF_DEFINE_SYB(N, V, DESCR) N = V , enum { _ELF_DEFINE_SYMBOL_BINDING_KINDS() SYMINFO__LAST__ }; /* * Symbol visibility. */ #define _ELF_DEFINE_SYMBOL_VISIBILITY() \ _ELF_DEFINE_STV(STV_DEFAULT, 0, \ "as specified by symbol type") \ _ELF_DEFINE_STV(STV_INTERNAL, 1, \ "as defined by processor semantics") \ _ELF_DEFINE_STV(STV_HIDDEN, 2, \ "hidden from other components") \ _ELF_DEFINE_STV(STV_PROTECTED, 3, \ "local references are not preemptable") #undef _ELF_DEFINE_STV #define _ELF_DEFINE_STV(N, V, DESCR) N = V , enum { _ELF_DEFINE_SYMBOL_VISIBILITY() STV__LAST__ }; /* * Symbol flags. */ #define _ELF_DEFINE_SYMBOL_FLAGS() \ _ELF_DEFINE_SYF(SYMINFO_FLG_DIRECT, 0x01, \ "directly assocated reference") \ _ELF_DEFINE_SYF(SYMINFO_FLG_COPY, 0x04, \ "definition by copy-relocation") \ _ELF_DEFINE_SYF(SYMINFO_FLG_LAZYLOAD, 0x08, \ "object should be lazily loaded") \ _ELF_DEFINE_SYF(SYMINFO_FLG_DIRECTBIND, 0x10, \ "reference should be directly bound") \ _ELF_DEFINE_SYF(SYMINFO_FLG_NOEXTDIRECT, 0x20, \ "external references not allowed to bind to definition") #undef _ELF_DEFINE_SYF #define _ELF_DEFINE_SYF(N, V, DESCR) N = V , enum { _ELF_DEFINE_SYMBOL_FLAGS() SYMINFO_FLG__LAST__ }; /* * Version dependencies. */ #define _ELF_DEFINE_VERSIONING_DEPENDENCIES() \ _ELF_DEFINE_VERD(VER_NDX_LOCAL, 0, "local scope") \ _ELF_DEFINE_VERD(VER_NDX_GLOBAL, 1, "global scope") #undef _ELF_DEFINE_VERD #define _ELF_DEFINE_VERD(N, V, DESCR) N = V , enum { _ELF_DEFINE_VERSIONING_DEPENDENCIES() VER_NDX__LAST__ }; /* * Version flags. */ #define _ELF_DEFINE_VERSIONING_FLAGS() \ _ELF_DEFINE_VERF(VER_FLG_BASE, 0x1, "file version") \ _ELF_DEFINE_VERF(VER_FLG_WEAK, 0x2, "weak version") #undef _ELF_DEFINE_VERF #define _ELF_DEFINE_VERF(N, V, DESCR) N = V , enum { _ELF_DEFINE_VERSIONING_FLAGS() VER_FLG__LAST__ }; /* * Version needs */ #define _ELF_DEFINE_VERSIONING_NEEDS() \ _ELF_DEFINE_VRN(VER_NEED_NONE, 0, "invalid version") \ _ELF_DEFINE_VRN(VER_NEED_CURRENT, 1, "current version") #undef _ELF_DEFINE_VRN #define _ELF_DEFINE_VRN(N, V, DESCR) N = V , enum { _ELF_DEFINE_VERSIONING_NEEDS() VER_NEED__LAST__ }; /* * Version numbers. */ #define _ELF_DEFINE_VERSIONING_NUMBERS() \ _ELF_DEFINE_VRNU(VER_DEF_NONE, 0, "invalid version") \ _ELF_DEFINE_VRNU(VER_DEF_CURRENT, 1, "current version") #undef _ELF_DEFINE_VRNU #define _ELF_DEFINE_VRNU(N, V, DESCR) N = V , enum { _ELF_DEFINE_VERSIONING_NUMBERS() VER_DEF__LAST__ }; /** ** Relocation types. **/ #define _ELF_DEFINE_386_RELOCATIONS() \ _ELF_DEFINE_RELOC(R_386_NONE, 0) \ _ELF_DEFINE_RELOC(R_386_32, 1) \ _ELF_DEFINE_RELOC(R_386_PC32, 2) \ _ELF_DEFINE_RELOC(R_386_GOT32, 3) \ _ELF_DEFINE_RELOC(R_386_PLT32, 4) \ _ELF_DEFINE_RELOC(R_386_COPY, 5) \ _ELF_DEFINE_RELOC(R_386_GLOB_DAT, 6) \ _ELF_DEFINE_RELOC(R_386_JUMP_SLOT, 7) \ _ELF_DEFINE_RELOC(R_386_RELATIVE, 8) \ _ELF_DEFINE_RELOC(R_386_GOTOFF, 9) \ _ELF_DEFINE_RELOC(R_386_GOTPC, 10) \ _ELF_DEFINE_RELOC(R_386_32PLT, 11) \ _ELF_DEFINE_RELOC(R_386_TLS_TPOFF, 14) \ _ELF_DEFINE_RELOC(R_386_TLS_IE, 15) \ _ELF_DEFINE_RELOC(R_386_TLS_GOTIE, 16) \ _ELF_DEFINE_RELOC(R_386_TLS_LE, 17) \ _ELF_DEFINE_RELOC(R_386_TLS_GD, 18) \ _ELF_DEFINE_RELOC(R_386_TLS_LDM, 19) \ _ELF_DEFINE_RELOC(R_386_16, 20) \ _ELF_DEFINE_RELOC(R_386_PC16, 21) \ _ELF_DEFINE_RELOC(R_386_8, 22) \ _ELF_DEFINE_RELOC(R_386_PC8, 23) \ _ELF_DEFINE_RELOC(R_386_TLS_GD_32, 24) \ _ELF_DEFINE_RELOC(R_386_TLS_GD_PUSH, 25) \ _ELF_DEFINE_RELOC(R_386_TLS_GD_CALL, 26) \ _ELF_DEFINE_RELOC(R_386_TLS_GD_POP, 27) \ _ELF_DEFINE_RELOC(R_386_TLS_LDM_32, 28) \ _ELF_DEFINE_RELOC(R_386_TLS_LDM_PUSH, 29) \ _ELF_DEFINE_RELOC(R_386_TLS_LDM_CALL, 30) \ _ELF_DEFINE_RELOC(R_386_TLS_LDM_POP, 31) \ _ELF_DEFINE_RELOC(R_386_TLS_LDO_32, 32) \ _ELF_DEFINE_RELOC(R_386_TLS_IE_32, 33) \ _ELF_DEFINE_RELOC(R_386_TLS_LE_32, 34) \ _ELF_DEFINE_RELOC(R_386_TLS_DTPMOD32, 35) \ _ELF_DEFINE_RELOC(R_386_TLS_DTPOFF32, 36) \ _ELF_DEFINE_RELOC(R_386_TLS_TPOFF32, 37) \ _ELF_DEFINE_RELOC(R_386_SIZE32, 38) \ _ELF_DEFINE_RELOC(R_386_TLS_GOTDESC, 39) \ _ELF_DEFINE_RELOC(R_386_TLS_DESC_CALL, 40) \ _ELF_DEFINE_RELOC(R_386_TLS_DESC, 41) \ _ELF_DEFINE_RELOC(R_386_IRELATIVE, 42) \ _ELF_DEFINE_RELOC(R_386_GOT32X, 43) /* */ #define _ELF_DEFINE_AARCH64_RELOCATIONS() \ _ELF_DEFINE_RELOC(R_AARCH64_NONE, 0) \ _ELF_DEFINE_RELOC(R_AARCH64_ABS64, 257) \ _ELF_DEFINE_RELOC(R_AARCH64_ABS32, 258) \ _ELF_DEFINE_RELOC(R_AARCH64_ABS16, 259) \ _ELF_DEFINE_RELOC(R_AARCH64_PREL64, 260) \ _ELF_DEFINE_RELOC(R_AARCH64_PREL32, 261) \ _ELF_DEFINE_RELOC(R_AARCH64_PREL16, 262) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_UABS_G0, 263) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_UABS_G0_NC, 264) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_UABS_G1, 265) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_UABS_G1_NC, 266) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_UABS_G2, 267) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_UABS_G2_NC, 268) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_UABS_G3, 269) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_SABS_G0, 270) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_SABS_G1, 271) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_SABS_G2, 272) \ _ELF_DEFINE_RELOC(R_AARCH64_LD_PREL_LO19, 273) \ _ELF_DEFINE_RELOC(R_AARCH64_ADR_PREL_LO21, 274) \ _ELF_DEFINE_RELOC(R_AARCH64_ADR_PREL_PG_HI21, 275) \ _ELF_DEFINE_RELOC(R_AARCH64_ADR_PREL_PG_HI21_NC, 276) \ _ELF_DEFINE_RELOC(R_AARCH64_ADD_ABS_LO12_NC, 277) \ _ELF_DEFINE_RELOC(R_AARCH64_LDST8_ABS_LO12_NC, 278) \ _ELF_DEFINE_RELOC(R_AARCH64_TSTBR14, 279) \ _ELF_DEFINE_RELOC(R_AARCH64_CONDBR19, 280) \ _ELF_DEFINE_RELOC(R_AARCH64_JUMP26, 282) \ _ELF_DEFINE_RELOC(R_AARCH64_CALL26, 283) \ _ELF_DEFINE_RELOC(R_AARCH64_LDST16_ABS_LO12_NC, 284) \ _ELF_DEFINE_RELOC(R_AARCH64_LDST32_ABS_LO12_NC, 285) \ _ELF_DEFINE_RELOC(R_AARCH64_LDST64_ABS_LO12_NC, 286) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_PREL_G0, 287) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_PREL_G0_NC, 288) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_PREL_G1, 289) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_PREL_G1_NC, 290) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_PREL_G2, 291) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_PREL_G2_NC, 292) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_PREL_G3, 293) \ _ELF_DEFINE_RELOC(R_AARCH64_LDST128_ABS_LO12_NC, 299) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_GOTOFF_G0, 300) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_GOTOFF_G0_NC, 301) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_GOTOFF_G1, 302) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_GOTOFF_G1_NC, 303) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_GOTOFF_G2, 304) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_GOTOFF_G2_NC, 305) \ _ELF_DEFINE_RELOC(R_AARCH64_MOVW_GOTOFF_G3, 306) \ _ELF_DEFINE_RELOC(R_AARCH64_GOTREL64, 307) \ _ELF_DEFINE_RELOC(R_AARCH64_GOTREL32, 308) \ _ELF_DEFINE_RELOC(R_AARCH64_GOT_LD_PREL19, 309) \ _ELF_DEFINE_RELOC(R_AARCH64_LD64_GOTOFF_LO15, 310) \ _ELF_DEFINE_RELOC(R_AARCH64_ADR_GOT_PAGE, 311) \ _ELF_DEFINE_RELOC(R_AARCH64_LD64_GOT_LO12_NC, 312) \ _ELF_DEFINE_RELOC(R_AARCH64_LD64_GOTPAGE_LO15, 313) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSGD_ADR_PREL21, 512) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSGD_ADR_PAGE21, 513) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSGD_ADD_LO12_NC, 514) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSGD_MOVW_G1, 515) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSGD_MOVW_G0_NC, 516) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_ADR_PREL21, 517) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_ADR_PAGE21, 518) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_ADD_LO12_NC, 519) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_MOVW_G1, 520) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_MOVW_G0_NC, 521) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_LD_PREL19, 522) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_MOVW_DTPREL_G2, 523) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_MOVW_DTPREL_G1, 524) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_MOVW_DTPREL_G1_NC, 525) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_MOVW_DTPREL_G0, 526) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC, 527) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_ADD_DTPREL_HI12, 529) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC, 530) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_LDST8_DTPREL_LO12, 531) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC, 532) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_LDST16_DTPREL_LO12, 533) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC, 534) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_LDST32_DTPREL_LO12, 535) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC, 536) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_LDST64_DTPREL_LO12, 537) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC, 538) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSIE_MOVW_GOTTPREL_G1, 539) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC, 540) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, 541) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, 542) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSIE_LD_GOTTPREL_PREL19, 543) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLE_MOVW_TPREL_G2, 544) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLE_MOVW_TPREL_G1, 545) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLE_MOVW_TPREL_G1_NC, 546) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLE_MOVW_TPREL_G0, 547) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLE_MOVW_TPREL_G0_NC, 548) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLE_ADD_TPREL_HI12, 549) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLE_ADD_TPREL_LO12, 550) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLE_ADD_TPREL_LO12_NC, 551) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLE_LDST8_TPREL_LO12, 552) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC, 553) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLE_LDST16_TPREL_LO12, 554) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC, 555) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLE_LDST32_TPREL_LO12, 556) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC, 557) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLE_LDST64_TPREL_LO12, 558) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC, 559) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSDESC_LD_PREL19, 560) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSDESC_ADR_PREL21, 561) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSDESC_ADR_PAGE21, 562) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSDESC_LD64_LO12, 563) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSDESC_ADD_LO12, 564) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSDESC_OFF_G1, 565) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSDESC_OFF_G0_NC, 566) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSDESC_LDR, 567) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSDESC_ADD, 568) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSDESC_CALL, 569) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLE_LDST128_TPREL_LO12, 570) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC, 571) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_LDST128_DTPREL_LO12, 572) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSLD_LDST128_DTPREL_LO12_NC, 573) \ _ELF_DEFINE_RELOC(R_AARCH64_COPY, 1024) \ _ELF_DEFINE_RELOC(R_AARCH64_GLOB_DAT, 1025) \ _ELF_DEFINE_RELOC(R_AARCH64_JUMP_SLOT, 1026) \ _ELF_DEFINE_RELOC(R_AARCH64_RELATIVE, 1027) \ _ELF_DEFINE_RELOC(R_AARCH64_TLS_DTPREL64, 1028) \ _ELF_DEFINE_RELOC(R_AARCH64_TLS_DTPMOD64, 1029) \ _ELF_DEFINE_RELOC(R_AARCH64_TLS_TPREL64, 1030) \ _ELF_DEFINE_RELOC(R_AARCH64_TLSDESC, 1031) \ _ELF_DEFINE_RELOC(R_AARCH64_IRELATIVE, 1032) /* * These are the symbols used in the Sun ``Linkers and Loaders * Guide'', Document No: 817-1984-17. See the X86_64 relocations list * below for the spellings used in the ELF specification. */ #define _ELF_DEFINE_AMD64_RELOCATIONS() \ _ELF_DEFINE_RELOC(R_AMD64_NONE, 0) \ _ELF_DEFINE_RELOC(R_AMD64_64, 1) \ _ELF_DEFINE_RELOC(R_AMD64_PC32, 2) \ _ELF_DEFINE_RELOC(R_AMD64_GOT32, 3) \ _ELF_DEFINE_RELOC(R_AMD64_PLT32, 4) \ _ELF_DEFINE_RELOC(R_AMD64_COPY, 5) \ _ELF_DEFINE_RELOC(R_AMD64_GLOB_DAT, 6) \ _ELF_DEFINE_RELOC(R_AMD64_JUMP_SLOT, 7) \ _ELF_DEFINE_RELOC(R_AMD64_RELATIVE, 8) \ _ELF_DEFINE_RELOC(R_AMD64_GOTPCREL, 9) \ _ELF_DEFINE_RELOC(R_AMD64_32, 10) \ _ELF_DEFINE_RELOC(R_AMD64_32S, 11) \ _ELF_DEFINE_RELOC(R_AMD64_16, 12) \ _ELF_DEFINE_RELOC(R_AMD64_PC16, 13) \ _ELF_DEFINE_RELOC(R_AMD64_8, 14) \ _ELF_DEFINE_RELOC(R_AMD64_PC8, 15) \ _ELF_DEFINE_RELOC(R_AMD64_PC64, 24) \ _ELF_DEFINE_RELOC(R_AMD64_GOTOFF64, 25) \ _ELF_DEFINE_RELOC(R_AMD64_GOTPC32, 26) /* * Relocation definitions from the ARM ELF ABI, version "ARM IHI * 0044E" released on 30th November 2012. */ #define _ELF_DEFINE_ARM_RELOCATIONS() \ _ELF_DEFINE_RELOC(R_ARM_NONE, 0) \ _ELF_DEFINE_RELOC(R_ARM_PC24, 1) \ _ELF_DEFINE_RELOC(R_ARM_ABS32, 2) \ _ELF_DEFINE_RELOC(R_ARM_REL32, 3) \ _ELF_DEFINE_RELOC(R_ARM_LDR_PC_G0, 4) \ _ELF_DEFINE_RELOC(R_ARM_ABS16, 5) \ _ELF_DEFINE_RELOC(R_ARM_ABS12, 6) \ _ELF_DEFINE_RELOC(R_ARM_THM_ABS5, 7) \ _ELF_DEFINE_RELOC(R_ARM_ABS8, 8) \ _ELF_DEFINE_RELOC(R_ARM_SBREL32, 9) \ _ELF_DEFINE_RELOC(R_ARM_THM_CALL, 10) \ _ELF_DEFINE_RELOC(R_ARM_THM_PC8, 11) \ _ELF_DEFINE_RELOC(R_ARM_BREL_ADJ, 12) \ _ELF_DEFINE_RELOC(R_ARM_SWI24, 13) \ _ELF_DEFINE_RELOC(R_ARM_TLS_DESC, 13) \ _ELF_DEFINE_RELOC(R_ARM_THM_SWI8, 14) \ _ELF_DEFINE_RELOC(R_ARM_XPC25, 15) \ _ELF_DEFINE_RELOC(R_ARM_THM_XPC22, 16) \ _ELF_DEFINE_RELOC(R_ARM_TLS_DTPMOD32, 17) \ _ELF_DEFINE_RELOC(R_ARM_TLS_DTPOFF32, 18) \ _ELF_DEFINE_RELOC(R_ARM_TLS_TPOFF32, 19) \ _ELF_DEFINE_RELOC(R_ARM_COPY, 20) \ _ELF_DEFINE_RELOC(R_ARM_GLOB_DAT, 21) \ _ELF_DEFINE_RELOC(R_ARM_JUMP_SLOT, 22) \ _ELF_DEFINE_RELOC(R_ARM_RELATIVE, 23) \ _ELF_DEFINE_RELOC(R_ARM_GOTOFF32, 24) \ _ELF_DEFINE_RELOC(R_ARM_BASE_PREL, 25) \ _ELF_DEFINE_RELOC(R_ARM_GOT_BREL, 26) \ _ELF_DEFINE_RELOC(R_ARM_PLT32, 27) \ _ELF_DEFINE_RELOC(R_ARM_CALL, 28) \ _ELF_DEFINE_RELOC(R_ARM_JUMP24, 29) \ _ELF_DEFINE_RELOC(R_ARM_THM_JUMP24, 30) \ _ELF_DEFINE_RELOC(R_ARM_BASE_ABS, 31) \ _ELF_DEFINE_RELOC(R_ARM_ALU_PCREL_7_0, 32) \ _ELF_DEFINE_RELOC(R_ARM_ALU_PCREL_15_8, 33) \ _ELF_DEFINE_RELOC(R_ARM_ALU_PCREL_23_15, 34) \ _ELF_DEFINE_RELOC(R_ARM_LDR_SBREL_11_0_NC, 35) \ _ELF_DEFINE_RELOC(R_ARM_ALU_SBREL_19_12_NC, 36) \ _ELF_DEFINE_RELOC(R_ARM_ALU_SBREL_27_20_CK, 37) \ _ELF_DEFINE_RELOC(R_ARM_TARGET1, 38) \ _ELF_DEFINE_RELOC(R_ARM_SBREL31, 39) \ _ELF_DEFINE_RELOC(R_ARM_V4BX, 40) \ _ELF_DEFINE_RELOC(R_ARM_TARGET2, 41) \ _ELF_DEFINE_RELOC(R_ARM_PREL31, 42) \ _ELF_DEFINE_RELOC(R_ARM_MOVW_ABS_NC, 43) \ _ELF_DEFINE_RELOC(R_ARM_MOVT_ABS, 44) \ _ELF_DEFINE_RELOC(R_ARM_MOVW_PREL_NC, 45) \ _ELF_DEFINE_RELOC(R_ARM_MOVT_PREL, 46) \ _ELF_DEFINE_RELOC(R_ARM_THM_MOVW_ABS_NC, 47) \ _ELF_DEFINE_RELOC(R_ARM_THM_MOVT_ABS, 48) \ _ELF_DEFINE_RELOC(R_ARM_THM_MOVW_PREL_NC, 49) \ _ELF_DEFINE_RELOC(R_ARM_THM_MOVT_PREL, 50) \ _ELF_DEFINE_RELOC(R_ARM_THM_JUMP19, 51) \ _ELF_DEFINE_RELOC(R_ARM_THM_JUMP6, 52) \ _ELF_DEFINE_RELOC(R_ARM_THM_ALU_PREL_11_0, 53) \ _ELF_DEFINE_RELOC(R_ARM_THM_PC12, 54) \ _ELF_DEFINE_RELOC(R_ARM_ABS32_NOI, 55) \ _ELF_DEFINE_RELOC(R_ARM_REL32_NOI, 56) \ _ELF_DEFINE_RELOC(R_ARM_ALU_PC_G0_NC, 57) \ _ELF_DEFINE_RELOC(R_ARM_ALU_PC_G0, 58) \ _ELF_DEFINE_RELOC(R_ARM_ALU_PC_G1_NC, 59) \ _ELF_DEFINE_RELOC(R_ARM_ALU_PC_G1, 60) \ _ELF_DEFINE_RELOC(R_ARM_ALU_PC_G2, 61) \ _ELF_DEFINE_RELOC(R_ARM_LDR_PC_G1, 62) \ _ELF_DEFINE_RELOC(R_ARM_LDR_PC_G2, 63) \ _ELF_DEFINE_RELOC(R_ARM_LDRS_PC_G0, 64) \ _ELF_DEFINE_RELOC(R_ARM_LDRS_PC_G1, 65) \ _ELF_DEFINE_RELOC(R_ARM_LDRS_PC_G2, 66) \ _ELF_DEFINE_RELOC(R_ARM_LDC_PC_G0, 67) \ _ELF_DEFINE_RELOC(R_ARM_LDC_PC_G1, 68) \ _ELF_DEFINE_RELOC(R_ARM_LDC_PC_G2, 69) \ _ELF_DEFINE_RELOC(R_ARM_ALU_SB_G0_NC, 70) \ _ELF_DEFINE_RELOC(R_ARM_ALU_SB_G0, 71) \ _ELF_DEFINE_RELOC(R_ARM_ALU_SB_G1_NC, 72) \ _ELF_DEFINE_RELOC(R_ARM_ALU_SB_G1, 73) \ _ELF_DEFINE_RELOC(R_ARM_ALU_SB_G2, 74) \ _ELF_DEFINE_RELOC(R_ARM_LDR_SB_G0, 75) \ _ELF_DEFINE_RELOC(R_ARM_LDR_SB_G1, 76) \ _ELF_DEFINE_RELOC(R_ARM_LDR_SB_G2, 77) \ _ELF_DEFINE_RELOC(R_ARM_LDRS_SB_G0, 78) \ _ELF_DEFINE_RELOC(R_ARM_LDRS_SB_G1, 79) \ _ELF_DEFINE_RELOC(R_ARM_LDRS_SB_G2, 80) \ _ELF_DEFINE_RELOC(R_ARM_LDC_SB_G0, 81) \ _ELF_DEFINE_RELOC(R_ARM_LDC_SB_G1, 82) \ _ELF_DEFINE_RELOC(R_ARM_LDC_SB_G2, 83) \ _ELF_DEFINE_RELOC(R_ARM_MOVW_BREL_NC, 84) \ _ELF_DEFINE_RELOC(R_ARM_MOVT_BREL, 85) \ _ELF_DEFINE_RELOC(R_ARM_MOVW_BREL, 86) \ _ELF_DEFINE_RELOC(R_ARM_THM_MOVW_BREL_NC, 87) \ _ELF_DEFINE_RELOC(R_ARM_THM_MOVT_BREL, 88) \ _ELF_DEFINE_RELOC(R_ARM_THM_MOVW_BREL, 89) \ _ELF_DEFINE_RELOC(R_ARM_TLS_GOTDESC, 90) \ _ELF_DEFINE_RELOC(R_ARM_TLS_CALL, 91) \ _ELF_DEFINE_RELOC(R_ARM_TLS_DESCSEQ, 92) \ _ELF_DEFINE_RELOC(R_ARM_THM_TLS_CALL, 93) \ _ELF_DEFINE_RELOC(R_ARM_PLT32_ABS, 94) \ _ELF_DEFINE_RELOC(R_ARM_GOT_ABS, 95) \ _ELF_DEFINE_RELOC(R_ARM_GOT_PREL, 96) \ _ELF_DEFINE_RELOC(R_ARM_GOT_BREL12, 97) \ _ELF_DEFINE_RELOC(R_ARM_GOTOFF12, 98) \ _ELF_DEFINE_RELOC(R_ARM_GOTRELAX, 99) \ _ELF_DEFINE_RELOC(R_ARM_GNU_VTENTRY, 100) \ _ELF_DEFINE_RELOC(R_ARM_GNU_VTINHERIT, 101) \ _ELF_DEFINE_RELOC(R_ARM_THM_JUMP11, 102) \ _ELF_DEFINE_RELOC(R_ARM_THM_JUMP8, 103) \ _ELF_DEFINE_RELOC(R_ARM_TLS_GD32, 104) \ _ELF_DEFINE_RELOC(R_ARM_TLS_LDM32, 105) \ _ELF_DEFINE_RELOC(R_ARM_TLS_LDO32, 106) \ _ELF_DEFINE_RELOC(R_ARM_TLS_IE32, 107) \ _ELF_DEFINE_RELOC(R_ARM_TLS_LE32, 108) \ _ELF_DEFINE_RELOC(R_ARM_TLS_LDO12, 109) \ _ELF_DEFINE_RELOC(R_ARM_TLS_LE12, 110) \ _ELF_DEFINE_RELOC(R_ARM_TLS_IE12GP, 111) \ _ELF_DEFINE_RELOC(R_ARM_PRIVATE_0, 112) \ _ELF_DEFINE_RELOC(R_ARM_PRIVATE_1, 113) \ _ELF_DEFINE_RELOC(R_ARM_PRIVATE_2, 114) \ _ELF_DEFINE_RELOC(R_ARM_PRIVATE_3, 115) \ _ELF_DEFINE_RELOC(R_ARM_PRIVATE_4, 116) \ _ELF_DEFINE_RELOC(R_ARM_PRIVATE_5, 117) \ _ELF_DEFINE_RELOC(R_ARM_PRIVATE_6, 118) \ _ELF_DEFINE_RELOC(R_ARM_PRIVATE_7, 119) \ _ELF_DEFINE_RELOC(R_ARM_PRIVATE_8, 120) \ _ELF_DEFINE_RELOC(R_ARM_PRIVATE_9, 121) \ _ELF_DEFINE_RELOC(R_ARM_PRIVATE_10, 122) \ _ELF_DEFINE_RELOC(R_ARM_PRIVATE_11, 123) \ _ELF_DEFINE_RELOC(R_ARM_PRIVATE_12, 124) \ _ELF_DEFINE_RELOC(R_ARM_PRIVATE_13, 125) \ _ELF_DEFINE_RELOC(R_ARM_PRIVATE_14, 126) \ _ELF_DEFINE_RELOC(R_ARM_PRIVATE_15, 127) \ _ELF_DEFINE_RELOC(R_ARM_ME_TOO, 128) \ _ELF_DEFINE_RELOC(R_ARM_THM_TLS_DESCSEQ16, 129) \ _ELF_DEFINE_RELOC(R_ARM_THM_TLS_DESCSEQ32, 130) \ _ELF_DEFINE_RELOC(R_ARM_THM_GOT_BREL12, 131) \ _ELF_DEFINE_RELOC(R_ARM_IRELATIVE, 140) #define _ELF_DEFINE_IA64_RELOCATIONS() \ _ELF_DEFINE_RELOC(R_IA_64_NONE, 0) \ _ELF_DEFINE_RELOC(R_IA_64_IMM14, 0x21) \ _ELF_DEFINE_RELOC(R_IA_64_IMM22, 0x22) \ _ELF_DEFINE_RELOC(R_IA_64_IMM64, 0x23) \ _ELF_DEFINE_RELOC(R_IA_64_DIR32MSB, 0x24) \ _ELF_DEFINE_RELOC(R_IA_64_DIR32LSB, 0x25) \ _ELF_DEFINE_RELOC(R_IA_64_DIR64MSB, 0x26) \ _ELF_DEFINE_RELOC(R_IA_64_DIR64LSB, 0x27) \ _ELF_DEFINE_RELOC(R_IA_64_GPREL22, 0x2a) \ _ELF_DEFINE_RELOC(R_IA_64_GPREL64I, 0x2b) \ _ELF_DEFINE_RELOC(R_IA_64_GPREL32MSB, 0x2c) \ _ELF_DEFINE_RELOC(R_IA_64_GPREL32LSB, 0x2d) \ _ELF_DEFINE_RELOC(R_IA_64_GPREL64MSB, 0x2e) \ _ELF_DEFINE_RELOC(R_IA_64_GPREL64LSB, 0x2f) \ _ELF_DEFINE_RELOC(R_IA_64_LTOFF22, 0x32) \ _ELF_DEFINE_RELOC(R_IA_64_LTOFF64I, 0x33) \ _ELF_DEFINE_RELOC(R_IA_64_PLTOFF22, 0x3a) \ _ELF_DEFINE_RELOC(R_IA_64_PLTOFF64I, 0x3b) \ _ELF_DEFINE_RELOC(R_IA_64_PLTOFF64MSB, 0x3e) \ _ELF_DEFINE_RELOC(R_IA_64_PLTOFF64LSB, 0x3f) \ _ELF_DEFINE_RELOC(R_IA_64_FPTR64I, 0x43) \ _ELF_DEFINE_RELOC(R_IA_64_FPTR32MSB, 0x44) \ _ELF_DEFINE_RELOC(R_IA_64_FPTR32LSB, 0x45) \ _ELF_DEFINE_RELOC(R_IA_64_FPTR64MSB, 0x46) \ _ELF_DEFINE_RELOC(R_IA_64_FPTR64LSB, 0x47) \ _ELF_DEFINE_RELOC(R_IA_64_PCREL60B, 0x48) \ _ELF_DEFINE_RELOC(R_IA_64_PCREL21B, 0x49) \ _ELF_DEFINE_RELOC(R_IA_64_PCREL21M, 0x4a) \ _ELF_DEFINE_RELOC(R_IA_64_PCREL21F, 0x4b) \ _ELF_DEFINE_RELOC(R_IA_64_PCREL32MSB, 0x4c) \ _ELF_DEFINE_RELOC(R_IA_64_PCREL32LSB, 0x4d) \ _ELF_DEFINE_RELOC(R_IA_64_PCREL64MSB, 0x4e) \ _ELF_DEFINE_RELOC(R_IA_64_PCREL64LSB, 0x4f) \ _ELF_DEFINE_RELOC(R_IA_64_LTOFF_FPTR22, 0x52) \ _ELF_DEFINE_RELOC(R_IA_64_LTOFF_FPTR64I, 0x53) \ _ELF_DEFINE_RELOC(R_IA_64_LTOFF_FPTR32MSB, 0x54) \ _ELF_DEFINE_RELOC(R_IA_64_LTOFF_FPTR32LSB, 0x55) \ _ELF_DEFINE_RELOC(R_IA_64_LTOFF_FPTR64MSB, 0x56) \ _ELF_DEFINE_RELOC(R_IA_64_LTOFF_FPTR64LSB, 0x57) \ _ELF_DEFINE_RELOC(R_IA_64_SEGREL32MSB, 0x5c) \ _ELF_DEFINE_RELOC(R_IA_64_SEGREL32LSB, 0x5d) \ _ELF_DEFINE_RELOC(R_IA_64_SEGREL64MSB, 0x5e) \ _ELF_DEFINE_RELOC(R_IA_64_SEGREL64LSB, 0x5f) \ _ELF_DEFINE_RELOC(R_IA_64_SECREL32MSB, 0x64) \ _ELF_DEFINE_RELOC(R_IA_64_SECREL32LSB, 0x65) \ _ELF_DEFINE_RELOC(R_IA_64_SECREL64MSB, 0x66) \ _ELF_DEFINE_RELOC(R_IA_64_SECREL64LSB, 0x67) \ _ELF_DEFINE_RELOC(R_IA_64_REL32MSB, 0x6c) \ _ELF_DEFINE_RELOC(R_IA_64_REL32LSB, 0x6d) \ _ELF_DEFINE_RELOC(R_IA_64_REL64MSB, 0x6e) \ _ELF_DEFINE_RELOC(R_IA_64_REL64LSB, 0x6f) \ _ELF_DEFINE_RELOC(R_IA_64_LTV32MSB, 0x74) \ _ELF_DEFINE_RELOC(R_IA_64_LTV32LSB, 0x75) \ _ELF_DEFINE_RELOC(R_IA_64_LTV64MSB, 0x76) \ _ELF_DEFINE_RELOC(R_IA_64_LTV64LSB, 0x77) \ _ELF_DEFINE_RELOC(R_IA_64_PCREL21BI, 0x79) \ _ELF_DEFINE_RELOC(R_IA_64_PCREL22, 0x7A) \ _ELF_DEFINE_RELOC(R_IA_64_PCREL64I, 0x7B) \ _ELF_DEFINE_RELOC(R_IA_64_IPLTMSB, 0x80) \ _ELF_DEFINE_RELOC(R_IA_64_IPLTLSB, 0x81) \ _ELF_DEFINE_RELOC(R_IA_64_SUB, 0x85) \ _ELF_DEFINE_RELOC(R_IA_64_LTOFF22X, 0x86) \ _ELF_DEFINE_RELOC(R_IA_64_LDXMOV, 0x87) \ _ELF_DEFINE_RELOC(R_IA_64_TPREL14, 0x91) \ _ELF_DEFINE_RELOC(R_IA_64_TPREL22, 0x92) \ _ELF_DEFINE_RELOC(R_IA_64_TPREL64I, 0x93) \ _ELF_DEFINE_RELOC(R_IA_64_TPREL64MSB, 0x96) \ _ELF_DEFINE_RELOC(R_IA_64_TPREL64LSB, 0x97) \ _ELF_DEFINE_RELOC(R_IA_64_LTOFF_TPREL22, 0x9A) \ _ELF_DEFINE_RELOC(R_IA_64_DTPMOD64MSB, 0xA6) \ _ELF_DEFINE_RELOC(R_IA_64_DTPMOD64LSB, 0xA7) \ _ELF_DEFINE_RELOC(R_IA_64_LTOFF_DTPMOD22, 0xAA) \ _ELF_DEFINE_RELOC(R_IA_64_DTPREL14, 0xB1) \ _ELF_DEFINE_RELOC(R_IA_64_DTPREL22, 0xB2) \ _ELF_DEFINE_RELOC(R_IA_64_DTPREL64I, 0xB3) \ _ELF_DEFINE_RELOC(R_IA_64_DTPREL32MSB, 0xB4) \ _ELF_DEFINE_RELOC(R_IA_64_DTPREL32LSB, 0xB5) \ _ELF_DEFINE_RELOC(R_IA_64_DTPREL64MSB, 0xB6) \ _ELF_DEFINE_RELOC(R_IA_64_DTPREL64LSB, 0xB7) \ _ELF_DEFINE_RELOC(R_IA_64_LTOFF_DTPREL22, 0xBA) #define _ELF_DEFINE_MIPS_RELOCATIONS() \ _ELF_DEFINE_RELOC(R_MIPS_NONE, 0) \ _ELF_DEFINE_RELOC(R_MIPS_16, 1) \ _ELF_DEFINE_RELOC(R_MIPS_32, 2) \ _ELF_DEFINE_RELOC(R_MIPS_REL32, 3) \ _ELF_DEFINE_RELOC(R_MIPS_26, 4) \ _ELF_DEFINE_RELOC(R_MIPS_HI16, 5) \ _ELF_DEFINE_RELOC(R_MIPS_LO16, 6) \ _ELF_DEFINE_RELOC(R_MIPS_GPREL16, 7) \ _ELF_DEFINE_RELOC(R_MIPS_LITERAL, 8) \ _ELF_DEFINE_RELOC(R_MIPS_GOT16, 9) \ _ELF_DEFINE_RELOC(R_MIPS_PC16, 10) \ _ELF_DEFINE_RELOC(R_MIPS_CALL16, 11) \ _ELF_DEFINE_RELOC(R_MIPS_GPREL32, 12) \ _ELF_DEFINE_RELOC(R_MIPS_SHIFT5, 16) \ _ELF_DEFINE_RELOC(R_MIPS_SHIFT6, 17) \ _ELF_DEFINE_RELOC(R_MIPS_64, 18) \ _ELF_DEFINE_RELOC(R_MIPS_GOT_DISP, 19) \ _ELF_DEFINE_RELOC(R_MIPS_GOT_PAGE, 20) \ _ELF_DEFINE_RELOC(R_MIPS_GOT_OFST, 21) \ _ELF_DEFINE_RELOC(R_MIPS_GOT_HI16, 22) \ _ELF_DEFINE_RELOC(R_MIPS_GOT_LO16, 23) \ _ELF_DEFINE_RELOC(R_MIPS_SUB, 24) \ _ELF_DEFINE_RELOC(R_MIPS_CALLHI16, 30) \ _ELF_DEFINE_RELOC(R_MIPS_CALLLO16, 31) \ _ELF_DEFINE_RELOC(R_MIPS_JALR, 37) \ _ELF_DEFINE_RELOC(R_MIPS_TLS_DTPMOD32, 38) \ _ELF_DEFINE_RELOC(R_MIPS_TLS_DTPREL32, 39) \ _ELF_DEFINE_RELOC(R_MIPS_TLS_DTPMOD64, 40) \ _ELF_DEFINE_RELOC(R_MIPS_TLS_DTPREL64, 41) \ _ELF_DEFINE_RELOC(R_MIPS_TLS_GD, 42) \ _ELF_DEFINE_RELOC(R_MIPS_TLS_LDM, 43) \ _ELF_DEFINE_RELOC(R_MIPS_TLS_DTPREL_HI16, 44) \ _ELF_DEFINE_RELOC(R_MIPS_TLS_DTPREL_LO16, 45) \ _ELF_DEFINE_RELOC(R_MIPS_TLS_GOTTPREL, 46) \ _ELF_DEFINE_RELOC(R_MIPS_TLS_TPREL32, 47) \ _ELF_DEFINE_RELOC(R_MIPS_TLS_TPREL64, 48) \ _ELF_DEFINE_RELOC(R_MIPS_TLS_TPREL_HI16, 49) \ _ELF_DEFINE_RELOC(R_MIPS_TLS_TPREL_LO16, 50) #define _ELF_DEFINE_PPC32_RELOCATIONS() \ _ELF_DEFINE_RELOC(R_PPC_NONE, 0) \ _ELF_DEFINE_RELOC(R_PPC_ADDR32, 1) \ _ELF_DEFINE_RELOC(R_PPC_ADDR24, 2) \ _ELF_DEFINE_RELOC(R_PPC_ADDR16, 3) \ _ELF_DEFINE_RELOC(R_PPC_ADDR16_LO, 4) \ _ELF_DEFINE_RELOC(R_PPC_ADDR16_HI, 5) \ _ELF_DEFINE_RELOC(R_PPC_ADDR16_HA, 6) \ _ELF_DEFINE_RELOC(R_PPC_ADDR14, 7) \ _ELF_DEFINE_RELOC(R_PPC_ADDR14_BRTAKEN, 8) \ _ELF_DEFINE_RELOC(R_PPC_ADDR14_BRNTAKEN, 9) \ _ELF_DEFINE_RELOC(R_PPC_REL24, 10) \ _ELF_DEFINE_RELOC(R_PPC_REL14, 11) \ _ELF_DEFINE_RELOC(R_PPC_REL14_BRTAKEN, 12) \ _ELF_DEFINE_RELOC(R_PPC_REL14_BRNTAKEN, 13) \ _ELF_DEFINE_RELOC(R_PPC_GOT16, 14) \ _ELF_DEFINE_RELOC(R_PPC_GOT16_LO, 15) \ _ELF_DEFINE_RELOC(R_PPC_GOT16_HI, 16) \ _ELF_DEFINE_RELOC(R_PPC_GOT16_HA, 17) \ _ELF_DEFINE_RELOC(R_PPC_PLTREL24, 18) \ _ELF_DEFINE_RELOC(R_PPC_COPY, 19) \ _ELF_DEFINE_RELOC(R_PPC_GLOB_DAT, 20) \ _ELF_DEFINE_RELOC(R_PPC_JMP_SLOT, 21) \ _ELF_DEFINE_RELOC(R_PPC_RELATIVE, 22) \ _ELF_DEFINE_RELOC(R_PPC_LOCAL24PC, 23) \ _ELF_DEFINE_RELOC(R_PPC_UADDR32, 24) \ _ELF_DEFINE_RELOC(R_PPC_UADDR16, 25) \ _ELF_DEFINE_RELOC(R_PPC_REL32, 26) \ _ELF_DEFINE_RELOC(R_PPC_PLT32, 27) \ _ELF_DEFINE_RELOC(R_PPC_PLTREL32, 28) \ _ELF_DEFINE_RELOC(R_PPC_PLT16_LO, 29) \ _ELF_DEFINE_RELOC(R_PPC_PLT16_HI, 30) \ _ELF_DEFINE_RELOC(R_PPC_PLT16_HA, 31) \ _ELF_DEFINE_RELOC(R_PPC_SDAREL16, 32) \ _ELF_DEFINE_RELOC(R_PPC_SECTOFF, 33) \ _ELF_DEFINE_RELOC(R_PPC_SECTOFF_LO, 34) \ _ELF_DEFINE_RELOC(R_PPC_SECTOFF_HI, 35) \ _ELF_DEFINE_RELOC(R_PPC_SECTOFF_HA, 36) \ _ELF_DEFINE_RELOC(R_PPC_ADDR30, 37) \ _ELF_DEFINE_RELOC(R_PPC_TLS, 67) \ _ELF_DEFINE_RELOC(R_PPC_DTPMOD32, 68) \ _ELF_DEFINE_RELOC(R_PPC_TPREL16, 69) \ _ELF_DEFINE_RELOC(R_PPC_TPREL16_LO, 70) \ _ELF_DEFINE_RELOC(R_PPC_TPREL16_HI, 71) \ _ELF_DEFINE_RELOC(R_PPC_TPREL16_HA, 72) \ _ELF_DEFINE_RELOC(R_PPC_TPREL32, 73) \ _ELF_DEFINE_RELOC(R_PPC_DTPREL16, 74) \ _ELF_DEFINE_RELOC(R_PPC_DTPREL16_LO, 75) \ _ELF_DEFINE_RELOC(R_PPC_DTPREL16_HI, 76) \ _ELF_DEFINE_RELOC(R_PPC_DTPREL16_HA, 77) \ _ELF_DEFINE_RELOC(R_PPC_DTPREL32, 78) \ _ELF_DEFINE_RELOC(R_PPC_GOT_TLSGD16, 79) \ _ELF_DEFINE_RELOC(R_PPC_GOT_TLSGD16_LO, 80) \ _ELF_DEFINE_RELOC(R_PPC_GOT_TLSGD16_HI, 81) \ _ELF_DEFINE_RELOC(R_PPC_GOT_TLSGD16_HA, 82) \ _ELF_DEFINE_RELOC(R_PPC_GOT_TLSLD16, 83) \ _ELF_DEFINE_RELOC(R_PPC_GOT_TLSLD16_LO, 84) \ _ELF_DEFINE_RELOC(R_PPC_GOT_TLSLD16_HI, 85) \ _ELF_DEFINE_RELOC(R_PPC_GOT_TLSLD16_HA, 86) \ _ELF_DEFINE_RELOC(R_PPC_GOT_TPREL16, 87) \ _ELF_DEFINE_RELOC(R_PPC_GOT_TPREL16_LO, 88) \ _ELF_DEFINE_RELOC(R_PPC_GOT_TPREL16_HI, 89) \ _ELF_DEFINE_RELOC(R_PPC_GOT_TPREL16_HA, 90) \ _ELF_DEFINE_RELOC(R_PPC_GOT_DTPREL16, 91) \ _ELF_DEFINE_RELOC(R_PPC_GOT_DTPREL16_LO, 92) \ _ELF_DEFINE_RELOC(R_PPC_GOT_DTPREL16_HI, 93) \ _ELF_DEFINE_RELOC(R_PPC_GOT_DTPREL16_HA, 94) \ _ELF_DEFINE_RELOC(R_PPC_TLSGD, 95) \ _ELF_DEFINE_RELOC(R_PPC_TLSLD, 96) \ _ELF_DEFINE_RELOC(R_PPC_EMB_NADDR32, 101) \ _ELF_DEFINE_RELOC(R_PPC_EMB_NADDR16, 102) \ _ELF_DEFINE_RELOC(R_PPC_EMB_NADDR16_LO, 103) \ _ELF_DEFINE_RELOC(R_PPC_EMB_NADDR16_HI, 104) \ _ELF_DEFINE_RELOC(R_PPC_EMB_NADDR16_HA, 105) \ _ELF_DEFINE_RELOC(R_PPC_EMB_SDAI16, 106) \ _ELF_DEFINE_RELOC(R_PPC_EMB_SDA2I16, 107) \ _ELF_DEFINE_RELOC(R_PPC_EMB_SDA2REL, 108) \ _ELF_DEFINE_RELOC(R_PPC_EMB_SDA21, 109) \ _ELF_DEFINE_RELOC(R_PPC_EMB_MRKREF, 110) \ _ELF_DEFINE_RELOC(R_PPC_EMB_RELSEC16, 111) \ _ELF_DEFINE_RELOC(R_PPC_EMB_RELST_LO, 112) \ _ELF_DEFINE_RELOC(R_PPC_EMB_RELST_HI, 113) \ _ELF_DEFINE_RELOC(R_PPC_EMB_RELST_HA, 114) \ _ELF_DEFINE_RELOC(R_PPC_EMB_BIT_FLD, 115) \ _ELF_DEFINE_RELOC(R_PPC_EMB_RELSDA, 116) \ #define _ELF_DEFINE_PPC64_RELOCATIONS() \ _ELF_DEFINE_RELOC(R_PPC64_NONE, 0) \ _ELF_DEFINE_RELOC(R_PPC64_ADDR32, 1) \ _ELF_DEFINE_RELOC(R_PPC64_ADDR24, 2) \ _ELF_DEFINE_RELOC(R_PPC64_ADDR16, 3) \ _ELF_DEFINE_RELOC(R_PPC64_ADDR16_LO, 4) \ _ELF_DEFINE_RELOC(R_PPC64_ADDR16_HI, 5) \ _ELF_DEFINE_RELOC(R_PPC64_ADDR16_HA, 6) \ _ELF_DEFINE_RELOC(R_PPC64_ADDR14, 7) \ _ELF_DEFINE_RELOC(R_PPC64_ADDR14_BRTAKEN, 8) \ _ELF_DEFINE_RELOC(R_PPC64_ADDR14_BRNTAKEN, 9) \ _ELF_DEFINE_RELOC(R_PPC64_REL24, 10) \ _ELF_DEFINE_RELOC(R_PPC64_REL14, 11) \ _ELF_DEFINE_RELOC(R_PPC64_REL14_BRTAKEN, 12) \ _ELF_DEFINE_RELOC(R_PPC64_REL14_BRNTAKEN, 13) \ _ELF_DEFINE_RELOC(R_PPC64_GOT16, 14) \ _ELF_DEFINE_RELOC(R_PPC64_GOT16_LO, 15) \ _ELF_DEFINE_RELOC(R_PPC64_GOT16_HI, 16) \ _ELF_DEFINE_RELOC(R_PPC64_GOT16_HA, 17) \ _ELF_DEFINE_RELOC(R_PPC64_COPY, 19) \ _ELF_DEFINE_RELOC(R_PPC64_GLOB_DAT, 20) \ _ELF_DEFINE_RELOC(R_PPC64_JMP_SLOT, 21) \ _ELF_DEFINE_RELOC(R_PPC64_RELATIVE, 22) \ _ELF_DEFINE_RELOC(R_PPC64_UADDR32, 24) \ _ELF_DEFINE_RELOC(R_PPC64_UADDR16, 25) \ _ELF_DEFINE_RELOC(R_PPC64_REL32, 26) \ _ELF_DEFINE_RELOC(R_PPC64_PLT32, 27) \ _ELF_DEFINE_RELOC(R_PPC64_PLTREL32, 28) \ _ELF_DEFINE_RELOC(R_PPC64_PLT16_LO, 29) \ _ELF_DEFINE_RELOC(R_PPC64_PLT16_HI, 30) \ _ELF_DEFINE_RELOC(R_PPC64_PLT16_HA, 31) \ _ELF_DEFINE_RELOC(R_PPC64_SECTOFF, 33) \ _ELF_DEFINE_RELOC(R_PPC64_SECTOFF_LO, 34) \ _ELF_DEFINE_RELOC(R_PPC64_SECTOFF_HI, 35) \ _ELF_DEFINE_RELOC(R_PPC64_SECTOFF_HA, 36) \ _ELF_DEFINE_RELOC(R_PPC64_ADDR30, 37) \ _ELF_DEFINE_RELOC(R_PPC64_ADDR64, 38) \ _ELF_DEFINE_RELOC(R_PPC64_ADDR16_HIGHER, 39) \ _ELF_DEFINE_RELOC(R_PPC64_ADDR16_HIGHERA, 40) \ _ELF_DEFINE_RELOC(R_PPC64_ADDR16_HIGHEST, 41) \ _ELF_DEFINE_RELOC(R_PPC64_ADDR16_HIGHESTA, 42) \ _ELF_DEFINE_RELOC(R_PPC64_UADDR64, 43) \ _ELF_DEFINE_RELOC(R_PPC64_REL64, 44) \ _ELF_DEFINE_RELOC(R_PPC64_PLT64, 45) \ _ELF_DEFINE_RELOC(R_PPC64_PLTREL64, 46) \ _ELF_DEFINE_RELOC(R_PPC64_TOC16, 47) \ _ELF_DEFINE_RELOC(R_PPC64_TOC16_LO, 48) \ _ELF_DEFINE_RELOC(R_PPC64_TOC16_HI, 49) \ _ELF_DEFINE_RELOC(R_PPC64_TOC16_HA, 50) \ _ELF_DEFINE_RELOC(R_PPC64_TOC, 51) \ _ELF_DEFINE_RELOC(R_PPC64_PLTGOT16, 52) \ _ELF_DEFINE_RELOC(R_PPC64_PLTGOT16_LO, 53) \ _ELF_DEFINE_RELOC(R_PPC64_PLTGOT16_HI, 54) \ _ELF_DEFINE_RELOC(R_PPC64_PLTGOT16_HA, 55) \ _ELF_DEFINE_RELOC(R_PPC64_ADDR16_DS, 56) \ _ELF_DEFINE_RELOC(R_PPC64_ADDR16_LO_DS, 57) \ _ELF_DEFINE_RELOC(R_PPC64_GOT16_DS, 58) \ _ELF_DEFINE_RELOC(R_PPC64_GOT16_LO_DS, 59) \ _ELF_DEFINE_RELOC(R_PPC64_PLT16_LO_DS, 60) \ _ELF_DEFINE_RELOC(R_PPC64_SECTOFF_DS, 61) \ _ELF_DEFINE_RELOC(R_PPC64_SECTOFF_LO_DS, 62) \ _ELF_DEFINE_RELOC(R_PPC64_TOC16_DS, 63) \ _ELF_DEFINE_RELOC(R_PPC64_TOC16_LO_DS, 64) \ _ELF_DEFINE_RELOC(R_PPC64_PLTGOT16_DS, 65) \ _ELF_DEFINE_RELOC(R_PPC64_PLTGOT16_LO_DS, 66) \ _ELF_DEFINE_RELOC(R_PPC64_TLS, 67) \ _ELF_DEFINE_RELOC(R_PPC64_DTPMOD64, 68) \ _ELF_DEFINE_RELOC(R_PPC64_TPREL16, 69) \ _ELF_DEFINE_RELOC(R_PPC64_TPREL16_LO, 60) \ _ELF_DEFINE_RELOC(R_PPC64_TPREL16_HI, 71) \ _ELF_DEFINE_RELOC(R_PPC64_TPREL16_HA, 72) \ _ELF_DEFINE_RELOC(R_PPC64_TPREL64, 73) \ _ELF_DEFINE_RELOC(R_PPC64_DTPREL16, 74) \ _ELF_DEFINE_RELOC(R_PPC64_DTPREL16_LO, 75) \ _ELF_DEFINE_RELOC(R_PPC64_DTPREL16_HI, 76) \ _ELF_DEFINE_RELOC(R_PPC64_DTPREL16_HA, 77) \ _ELF_DEFINE_RELOC(R_PPC64_DTPREL64, 78) \ _ELF_DEFINE_RELOC(R_PPC64_GOT_TLSGD16, 79) \ _ELF_DEFINE_RELOC(R_PPC64_GOT_TLSGD16_LO, 80) \ _ELF_DEFINE_RELOC(R_PPC64_GOT_TLSGD16_HI, 81) \ _ELF_DEFINE_RELOC(R_PPC64_GOT_TLSGD16_HA, 82) \ _ELF_DEFINE_RELOC(R_PPC64_GOT_TLSLD16, 83) \ _ELF_DEFINE_RELOC(R_PPC64_GOT_TLSLD16_LO, 84) \ _ELF_DEFINE_RELOC(R_PPC64_GOT_TLSLD16_HI, 85) \ _ELF_DEFINE_RELOC(R_PPC64_GOT_TLSLD16_HA, 86) \ _ELF_DEFINE_RELOC(R_PPC64_GOT_TPREL16_DS, 87) \ _ELF_DEFINE_RELOC(R_PPC64_GOT_TPREL16_LO_DS, 88) \ _ELF_DEFINE_RELOC(R_PPC64_GOT_TPREL16_HI, 89) \ _ELF_DEFINE_RELOC(R_PPC64_GOT_TPREL16_HA, 90) \ _ELF_DEFINE_RELOC(R_PPC64_GOT_DTPREL16_DS, 91) \ _ELF_DEFINE_RELOC(R_PPC64_GOT_DTPREL16_LO_DS, 92) \ _ELF_DEFINE_RELOC(R_PPC64_GOT_DTPREL16_HI, 93) \ _ELF_DEFINE_RELOC(R_PPC64_GOT_DTPREL16_HA, 94) \ _ELF_DEFINE_RELOC(R_PPC64_TPREL16_DS, 95) \ _ELF_DEFINE_RELOC(R_PPC64_TPREL16_LO_DS, 96) \ _ELF_DEFINE_RELOC(R_PPC64_TPREL16_HIGHER, 97) \ _ELF_DEFINE_RELOC(R_PPC64_TPREL16_HIGHERA, 98) \ _ELF_DEFINE_RELOC(R_PPC64_TPREL16_HIGHEST, 99) \ _ELF_DEFINE_RELOC(R_PPC64_TPREL16_HIGHESTA, 100) \ _ELF_DEFINE_RELOC(R_PPC64_DTPREL16_DS, 101) \ _ELF_DEFINE_RELOC(R_PPC64_DTPREL16_LO_DS, 102) \ _ELF_DEFINE_RELOC(R_PPC64_DTPREL16_HIGHER, 103) \ _ELF_DEFINE_RELOC(R_PPC64_DTPREL16_HIGHERA, 104) \ _ELF_DEFINE_RELOC(R_PPC64_DTPREL16_HIGHEST, 105) \ _ELF_DEFINE_RELOC(R_PPC64_DTPREL16_HIGHESTA, 106) \ _ELF_DEFINE_RELOC(R_PPC64_TLSGD, 107) \ _ELF_DEFINE_RELOC(R_PPC64_TLSLD, 108) #define _ELF_DEFINE_RISCV_RELOCATIONS() \ _ELF_DEFINE_RELOC(R_RISCV_NONE, 0) \ _ELF_DEFINE_RELOC(R_RISCV_32, 1) \ _ELF_DEFINE_RELOC(R_RISCV_64, 2) \ _ELF_DEFINE_RELOC(R_RISCV_RELATIVE, 3) \ _ELF_DEFINE_RELOC(R_RISCV_COPY, 4) \ _ELF_DEFINE_RELOC(R_RISCV_JUMP_SLOT, 5) \ _ELF_DEFINE_RELOC(R_RISCV_TLS_DTPMOD32, 6) \ _ELF_DEFINE_RELOC(R_RISCV_TLS_DTPMOD64, 7) \ _ELF_DEFINE_RELOC(R_RISCV_TLS_DTPREL32, 8) \ _ELF_DEFINE_RELOC(R_RISCV_TLS_DTPREL64, 9) \ _ELF_DEFINE_RELOC(R_RISCV_TLS_TPREL32, 10) \ _ELF_DEFINE_RELOC(R_RISCV_TLS_TPREL64, 11) \ _ELF_DEFINE_RELOC(R_RISCV_BRANCH, 16) \ _ELF_DEFINE_RELOC(R_RISCV_JAL, 17) \ _ELF_DEFINE_RELOC(R_RISCV_CALL, 18) \ _ELF_DEFINE_RELOC(R_RISCV_CALL_PLT, 19) \ _ELF_DEFINE_RELOC(R_RISCV_GOT_HI20, 20) \ _ELF_DEFINE_RELOC(R_RISCV_TLS_GOT_HI20, 21) \ _ELF_DEFINE_RELOC(R_RISCV_TLS_GD_HI20, 22) \ _ELF_DEFINE_RELOC(R_RISCV_PCREL_HI20, 23) \ _ELF_DEFINE_RELOC(R_RISCV_PCREL_LO12_I, 24) \ _ELF_DEFINE_RELOC(R_RISCV_PCREL_LO12_S, 25) \ _ELF_DEFINE_RELOC(R_RISCV_HI20, 26) \ _ELF_DEFINE_RELOC(R_RISCV_LO12_I, 27) \ _ELF_DEFINE_RELOC(R_RISCV_LO12_S, 28) \ _ELF_DEFINE_RELOC(R_RISCV_TPREL_HI20, 29) \ _ELF_DEFINE_RELOC(R_RISCV_TPREL_LO12_I, 30) \ _ELF_DEFINE_RELOC(R_RISCV_TPREL_LO12_S, 31) \ _ELF_DEFINE_RELOC(R_RISCV_TPREL_ADD, 32) \ _ELF_DEFINE_RELOC(R_RISCV_ADD8, 33) \ _ELF_DEFINE_RELOC(R_RISCV_ADD16, 34) \ _ELF_DEFINE_RELOC(R_RISCV_ADD32, 35) \ _ELF_DEFINE_RELOC(R_RISCV_ADD64, 36) \ _ELF_DEFINE_RELOC(R_RISCV_SUB8, 37) \ _ELF_DEFINE_RELOC(R_RISCV_SUB16, 38) \ _ELF_DEFINE_RELOC(R_RISCV_SUB32, 39) \ _ELF_DEFINE_RELOC(R_RISCV_SUB64, 40) \ _ELF_DEFINE_RELOC(R_RISCV_GNU_VTINHERIT, 41) \ _ELF_DEFINE_RELOC(R_RISCV_GNU_VTENTRY, 42) \ _ELF_DEFINE_RELOC(R_RISCV_ALIGN, 43) \ _ELF_DEFINE_RELOC(R_RISCV_RVC_BRANCH, 44) \ -_ELF_DEFINE_RELOC(R_RISCV_RVC_JUMP, 45) +_ELF_DEFINE_RELOC(R_RISCV_RVC_JUMP, 45) \ +_ELF_DEFINE_RELOC(R_RISCV_RVC_LUI, 46) \ +_ELF_DEFINE_RELOC(R_RISCV_GPREL_I, 47) \ +_ELF_DEFINE_RELOC(R_RISCV_GPREL_S, 48) #define _ELF_DEFINE_SPARC_RELOCATIONS() \ _ELF_DEFINE_RELOC(R_SPARC_NONE, 0) \ _ELF_DEFINE_RELOC(R_SPARC_8, 1) \ _ELF_DEFINE_RELOC(R_SPARC_16, 2) \ _ELF_DEFINE_RELOC(R_SPARC_32, 3) \ _ELF_DEFINE_RELOC(R_SPARC_DISP8, 4) \ _ELF_DEFINE_RELOC(R_SPARC_DISP16, 5) \ _ELF_DEFINE_RELOC(R_SPARC_DISP32, 6) \ _ELF_DEFINE_RELOC(R_SPARC_WDISP30, 7) \ _ELF_DEFINE_RELOC(R_SPARC_WDISP22, 8) \ _ELF_DEFINE_RELOC(R_SPARC_HI22, 9) \ _ELF_DEFINE_RELOC(R_SPARC_22, 10) \ _ELF_DEFINE_RELOC(R_SPARC_13, 11) \ _ELF_DEFINE_RELOC(R_SPARC_LO10, 12) \ _ELF_DEFINE_RELOC(R_SPARC_GOT10, 13) \ _ELF_DEFINE_RELOC(R_SPARC_GOT13, 14) \ _ELF_DEFINE_RELOC(R_SPARC_GOT22, 15) \ _ELF_DEFINE_RELOC(R_SPARC_PC10, 16) \ _ELF_DEFINE_RELOC(R_SPARC_PC22, 17) \ _ELF_DEFINE_RELOC(R_SPARC_WPLT30, 18) \ _ELF_DEFINE_RELOC(R_SPARC_COPY, 19) \ _ELF_DEFINE_RELOC(R_SPARC_GLOB_DAT, 20) \ _ELF_DEFINE_RELOC(R_SPARC_JMP_SLOT, 21) \ _ELF_DEFINE_RELOC(R_SPARC_RELATIVE, 22) \ _ELF_DEFINE_RELOC(R_SPARC_UA32, 23) \ _ELF_DEFINE_RELOC(R_SPARC_PLT32, 24) \ _ELF_DEFINE_RELOC(R_SPARC_HIPLT22, 25) \ _ELF_DEFINE_RELOC(R_SPARC_LOPLT10, 26) \ _ELF_DEFINE_RELOC(R_SPARC_PCPLT32, 27) \ _ELF_DEFINE_RELOC(R_SPARC_PCPLT22, 28) \ _ELF_DEFINE_RELOC(R_SPARC_PCPLT10, 29) \ _ELF_DEFINE_RELOC(R_SPARC_10, 30) \ _ELF_DEFINE_RELOC(R_SPARC_11, 31) \ _ELF_DEFINE_RELOC(R_SPARC_64, 32) \ _ELF_DEFINE_RELOC(R_SPARC_OLO10, 33) \ _ELF_DEFINE_RELOC(R_SPARC_HH22, 34) \ _ELF_DEFINE_RELOC(R_SPARC_HM10, 35) \ _ELF_DEFINE_RELOC(R_SPARC_LM22, 36) \ _ELF_DEFINE_RELOC(R_SPARC_PC_HH22, 37) \ _ELF_DEFINE_RELOC(R_SPARC_PC_HM10, 38) \ _ELF_DEFINE_RELOC(R_SPARC_PC_LM22, 39) \ _ELF_DEFINE_RELOC(R_SPARC_WDISP16, 40) \ _ELF_DEFINE_RELOC(R_SPARC_WDISP19, 41) \ _ELF_DEFINE_RELOC(R_SPARC_GLOB_JMP, 42) \ _ELF_DEFINE_RELOC(R_SPARC_7, 43) \ _ELF_DEFINE_RELOC(R_SPARC_5, 44) \ _ELF_DEFINE_RELOC(R_SPARC_6, 45) \ _ELF_DEFINE_RELOC(R_SPARC_DISP64, 46) \ _ELF_DEFINE_RELOC(R_SPARC_PLT64, 47) \ _ELF_DEFINE_RELOC(R_SPARC_HIX22, 48) \ _ELF_DEFINE_RELOC(R_SPARC_LOX10, 49) \ _ELF_DEFINE_RELOC(R_SPARC_H44, 50) \ _ELF_DEFINE_RELOC(R_SPARC_M44, 51) \ _ELF_DEFINE_RELOC(R_SPARC_L44, 52) \ _ELF_DEFINE_RELOC(R_SPARC_REGISTER, 53) \ _ELF_DEFINE_RELOC(R_SPARC_UA64, 54) \ _ELF_DEFINE_RELOC(R_SPARC_UA16, 55) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_GD_HI22, 56) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_GD_LO10, 57) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_GD_ADD, 58) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_GD_CALL, 59) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_LDM_HI22, 60) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_LDM_LO10, 61) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_LDM_ADD, 62) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_LDM_CALL, 63) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_LDO_HIX22, 64) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_LDO_LOX10, 65) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_LDO_ADD, 66) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_IE_HI22, 67) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_IE_LO10, 68) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_IE_LD, 69) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_IE_LDX, 70) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_IE_ADD, 71) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_LE_HIX22, 72) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_LE_LOX10, 73) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_DTPMOD32, 74) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_DTPMOD64, 75) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_DTPOFF32, 76) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_DTPOFF64, 77) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_TPOFF32, 78) \ _ELF_DEFINE_RELOC(R_SPARC_TLS_TPOFF64, 79) \ _ELF_DEFINE_RELOC(R_SPARC_GOTDATA_HIX22, 80) \ _ELF_DEFINE_RELOC(R_SPARC_GOTDATA_LOX10, 81) \ _ELF_DEFINE_RELOC(R_SPARC_GOTDATA_OP_HIX22, 82) \ _ELF_DEFINE_RELOC(R_SPARC_GOTDATA_OP_LOX10, 83) \ _ELF_DEFINE_RELOC(R_SPARC_GOTDATA_OP, 84) \ _ELF_DEFINE_RELOC(R_SPARC_H34, 85) #define _ELF_DEFINE_X86_64_RELOCATIONS() \ _ELF_DEFINE_RELOC(R_X86_64_NONE, 0) \ _ELF_DEFINE_RELOC(R_X86_64_64, 1) \ _ELF_DEFINE_RELOC(R_X86_64_PC32, 2) \ _ELF_DEFINE_RELOC(R_X86_64_GOT32, 3) \ _ELF_DEFINE_RELOC(R_X86_64_PLT32, 4) \ _ELF_DEFINE_RELOC(R_X86_64_COPY, 5) \ _ELF_DEFINE_RELOC(R_X86_64_GLOB_DAT, 6) \ _ELF_DEFINE_RELOC(R_X86_64_JUMP_SLOT, 7) \ _ELF_DEFINE_RELOC(R_X86_64_RELATIVE, 8) \ _ELF_DEFINE_RELOC(R_X86_64_GOTPCREL, 9) \ _ELF_DEFINE_RELOC(R_X86_64_32, 10) \ _ELF_DEFINE_RELOC(R_X86_64_32S, 11) \ _ELF_DEFINE_RELOC(R_X86_64_16, 12) \ _ELF_DEFINE_RELOC(R_X86_64_PC16, 13) \ _ELF_DEFINE_RELOC(R_X86_64_8, 14) \ _ELF_DEFINE_RELOC(R_X86_64_PC8, 15) \ _ELF_DEFINE_RELOC(R_X86_64_DTPMOD64, 16) \ _ELF_DEFINE_RELOC(R_X86_64_DTPOFF64, 17) \ _ELF_DEFINE_RELOC(R_X86_64_TPOFF64, 18) \ _ELF_DEFINE_RELOC(R_X86_64_TLSGD, 19) \ _ELF_DEFINE_RELOC(R_X86_64_TLSLD, 20) \ _ELF_DEFINE_RELOC(R_X86_64_DTPOFF32, 21) \ _ELF_DEFINE_RELOC(R_X86_64_GOTTPOFF, 22) \ _ELF_DEFINE_RELOC(R_X86_64_TPOFF32, 23) \ _ELF_DEFINE_RELOC(R_X86_64_PC64, 24) \ _ELF_DEFINE_RELOC(R_X86_64_GOTOFF64, 25) \ _ELF_DEFINE_RELOC(R_X86_64_GOTPC32, 26) \ _ELF_DEFINE_RELOC(R_X86_64_GOT64, 27) \ _ELF_DEFINE_RELOC(R_X86_64_GOTPCREL64, 28) \ _ELF_DEFINE_RELOC(R_X86_64_GOTPC64, 29) \ _ELF_DEFINE_RELOC(R_X86_64_GOTPLT64, 30) \ _ELF_DEFINE_RELOC(R_X86_64_PLTOFF64, 31) \ _ELF_DEFINE_RELOC(R_X86_64_SIZE32, 32) \ _ELF_DEFINE_RELOC(R_X86_64_SIZE64, 33) \ _ELF_DEFINE_RELOC(R_X86_64_GOTPC32_TLSDESC, 34) \ _ELF_DEFINE_RELOC(R_X86_64_TLSDESC_CALL, 35) \ _ELF_DEFINE_RELOC(R_X86_64_TLSDESC, 36) \ _ELF_DEFINE_RELOC(R_X86_64_IRELATIVE, 37) \ _ELF_DEFINE_RELOC(R_X86_64_RELATIVE64, 38) \ _ELF_DEFINE_RELOC(R_X86_64_GOTPCRELX, 41) \ _ELF_DEFINE_RELOC(R_X86_64_REX_GOTPCRELX, 42) #define _ELF_DEFINE_RELOCATIONS() \ _ELF_DEFINE_386_RELOCATIONS() \ _ELF_DEFINE_AARCH64_RELOCATIONS() \ _ELF_DEFINE_AMD64_RELOCATIONS() \ _ELF_DEFINE_ARM_RELOCATIONS() \ _ELF_DEFINE_IA64_RELOCATIONS() \ _ELF_DEFINE_MIPS_RELOCATIONS() \ _ELF_DEFINE_PPC32_RELOCATIONS() \ _ELF_DEFINE_PPC64_RELOCATIONS() \ _ELF_DEFINE_RISCV_RELOCATIONS() \ _ELF_DEFINE_SPARC_RELOCATIONS() \ _ELF_DEFINE_X86_64_RELOCATIONS() #undef _ELF_DEFINE_RELOC #define _ELF_DEFINE_RELOC(N, V) N = V , enum { _ELF_DEFINE_RELOCATIONS() R__LAST__ }; #define PN_XNUM 0xFFFFU /* Use extended section numbering. */ /** ** ELF Types. **/ typedef uint32_t Elf32_Addr; /* Program address. */ typedef uint8_t Elf32_Byte; /* Unsigned tiny integer. */ typedef uint16_t Elf32_Half; /* Unsigned medium integer. */ typedef uint32_t Elf32_Off; /* File offset. */ typedef uint16_t Elf32_Section; /* Section index. */ typedef int32_t Elf32_Sword; /* Signed integer. */ typedef uint32_t Elf32_Word; /* Unsigned integer. */ typedef uint64_t Elf32_Lword; /* Unsigned long integer. */ typedef uint64_t Elf64_Addr; /* Program address. */ typedef uint8_t Elf64_Byte; /* Unsigned tiny integer. */ typedef uint16_t Elf64_Half; /* Unsigned medium integer. */ typedef uint64_t Elf64_Off; /* File offset. */ typedef uint16_t Elf64_Section; /* Section index. */ typedef int32_t Elf64_Sword; /* Signed integer. */ typedef uint32_t Elf64_Word; /* Unsigned integer. */ typedef uint64_t Elf64_Lword; /* Unsigned long integer. */ typedef uint64_t Elf64_Xword; /* Unsigned long integer. */ typedef int64_t Elf64_Sxword; /* Signed long integer. */ /* * Capability descriptors. */ /* 32-bit capability descriptor. */ typedef struct { Elf32_Word c_tag; /* Type of entry. */ union { Elf32_Word c_val; /* Integer value. */ Elf32_Addr c_ptr; /* Pointer value. */ } c_un; } Elf32_Cap; /* 64-bit capability descriptor. */ typedef struct { Elf64_Xword c_tag; /* Type of entry. */ union { Elf64_Xword c_val; /* Integer value. */ Elf64_Addr c_ptr; /* Pointer value. */ } c_un; } Elf64_Cap; /* * MIPS .conflict section entries. */ /* 32-bit entry. */ typedef struct { Elf32_Addr c_index; } Elf32_Conflict; /* 64-bit entry. */ typedef struct { Elf64_Addr c_index; } Elf64_Conflict; /* * Dynamic section entries. */ /* 32-bit entry. */ typedef struct { Elf32_Sword d_tag; /* Type of entry. */ union { Elf32_Word d_val; /* Integer value. */ Elf32_Addr d_ptr; /* Pointer value. */ } d_un; } Elf32_Dyn; /* 64-bit entry. */ typedef struct { Elf64_Sxword d_tag; /* Type of entry. */ union { Elf64_Xword d_val; /* Integer value. */ Elf64_Addr d_ptr; /* Pointer value; */ } d_un; } Elf64_Dyn; /* * The executable header (EHDR). */ /* 32 bit EHDR. */ typedef struct { unsigned char e_ident[EI_NIDENT]; /* ELF identification. */ Elf32_Half e_type; /* Object file type (ET_*). */ Elf32_Half e_machine; /* Machine type (EM_*). */ Elf32_Word e_version; /* File format version (EV_*). */ Elf32_Addr e_entry; /* Start address. */ Elf32_Off e_phoff; /* File offset to the PHDR table. */ Elf32_Off e_shoff; /* File offset to the SHDRheader. */ Elf32_Word e_flags; /* Flags (EF_*). */ Elf32_Half e_ehsize; /* Elf header size in bytes. */ Elf32_Half e_phentsize; /* PHDR table entry size in bytes. */ Elf32_Half e_phnum; /* Number of PHDR entries. */ Elf32_Half e_shentsize; /* SHDR table entry size in bytes. */ Elf32_Half e_shnum; /* Number of SHDR entries. */ Elf32_Half e_shstrndx; /* Index of section name string table. */ } Elf32_Ehdr; /* 64 bit EHDR. */ typedef struct { unsigned char e_ident[EI_NIDENT]; /* ELF identification. */ Elf64_Half e_type; /* Object file type (ET_*). */ Elf64_Half e_machine; /* Machine type (EM_*). */ Elf64_Word e_version; /* File format version (EV_*). */ Elf64_Addr e_entry; /* Start address. */ Elf64_Off e_phoff; /* File offset to the PHDR table. */ Elf64_Off e_shoff; /* File offset to the SHDRheader. */ Elf64_Word e_flags; /* Flags (EF_*). */ Elf64_Half e_ehsize; /* Elf header size in bytes. */ Elf64_Half e_phentsize; /* PHDR table entry size in bytes. */ Elf64_Half e_phnum; /* Number of PHDR entries. */ Elf64_Half e_shentsize; /* SHDR table entry size in bytes. */ Elf64_Half e_shnum; /* Number of SHDR entries. */ Elf64_Half e_shstrndx; /* Index of section name string table. */ } Elf64_Ehdr; /* * Shared object information. */ /* 32-bit entry. */ typedef struct { Elf32_Word l_name; /* The name of a shared object. */ Elf32_Word l_time_stamp; /* 32-bit timestamp. */ Elf32_Word l_checksum; /* Checksum of visible symbols, sizes. */ Elf32_Word l_version; /* Interface version string index. */ Elf32_Word l_flags; /* Flags (LL_*). */ } Elf32_Lib; /* 64-bit entry. */ typedef struct { Elf64_Word l_name; /* The name of a shared object. */ Elf64_Word l_time_stamp; /* 32-bit timestamp. */ Elf64_Word l_checksum; /* Checksum of visible symbols, sizes. */ Elf64_Word l_version; /* Interface version string index. */ Elf64_Word l_flags; /* Flags (LL_*). */ } Elf64_Lib; #define _ELF_DEFINE_LL_FLAGS() \ _ELF_DEFINE_LL(LL_NONE, 0, \ "no flags") \ _ELF_DEFINE_LL(LL_EXACT_MATCH, 0x1, \ "require an exact match") \ _ELF_DEFINE_LL(LL_IGNORE_INT_VER, 0x2, \ "ignore version incompatibilities") \ _ELF_DEFINE_LL(LL_REQUIRE_MINOR, 0x4, \ "") \ _ELF_DEFINE_LL(LL_EXPORTS, 0x8, \ "") \ _ELF_DEFINE_LL(LL_DELAY_LOAD, 0x10, \ "") \ _ELF_DEFINE_LL(LL_DELTA, 0x20, \ "") #undef _ELF_DEFINE_LL #define _ELF_DEFINE_LL(N, V, DESCR) N = V , enum { _ELF_DEFINE_LL_FLAGS() LL__LAST__ }; /* * Note tags */ #define _ELF_DEFINE_NOTE_ENTRY_TYPES() \ _ELF_DEFINE_NT(NT_ABI_TAG, 1, "Tag indicating the ABI") \ _ELF_DEFINE_NT(NT_GNU_HWCAP, 2, "Hardware capabilities") \ _ELF_DEFINE_NT(NT_GNU_BUILD_ID, 3, "Build id, set by ld(1)") \ _ELF_DEFINE_NT(NT_GNU_GOLD_VERSION, 4, \ "Version number of the GNU gold linker") \ _ELF_DEFINE_NT(NT_PRSTATUS, 1, "Process status") \ _ELF_DEFINE_NT(NT_FPREGSET, 2, "Floating point information") \ _ELF_DEFINE_NT(NT_PRPSINFO, 3, "Process information") \ _ELF_DEFINE_NT(NT_AUXV, 6, "Auxiliary vector") \ _ELF_DEFINE_NT(NT_PRXFPREG, 0x46E62B7FUL, \ "Linux user_xfpregs structure") \ _ELF_DEFINE_NT(NT_PSTATUS, 10, "Linux process status") \ _ELF_DEFINE_NT(NT_FPREGS, 12, "Linux floating point regset") \ _ELF_DEFINE_NT(NT_PSINFO, 13, "Linux process information") \ _ELF_DEFINE_NT(NT_LWPSTATUS, 16, "Linux lwpstatus_t type") \ _ELF_DEFINE_NT(NT_LWPSINFO, 17, "Linux lwpinfo_t type") #undef _ELF_DEFINE_NT #define _ELF_DEFINE_NT(N, V, DESCR) N = V , enum { _ELF_DEFINE_NOTE_ENTRY_TYPES() NT__LAST__ }; /* Aliases for the ABI tag. */ #define NT_FREEBSD_ABI_TAG NT_ABI_TAG #define NT_GNU_ABI_TAG NT_ABI_TAG #define NT_NETBSD_IDENT NT_ABI_TAG #define NT_OPENBSD_IDENT NT_ABI_TAG /* * Note descriptors. */ typedef struct { uint32_t n_namesz; /* Length of note's name. */ uint32_t n_descsz; /* Length of note's value. */ uint32_t n_type; /* Type of note. */ } Elf_Note; typedef Elf_Note Elf32_Nhdr; /* 32-bit note header. */ typedef Elf_Note Elf64_Nhdr; /* 64-bit note header. */ /* * MIPS ELF options descriptor header. */ typedef struct { Elf64_Byte kind; /* Type of options. */ Elf64_Byte size; /* Size of option descriptor. */ Elf64_Half section; /* Index of section affected. */ Elf64_Word info; /* Kind-specific information. */ } Elf_Options; /* * Option kinds. */ #define _ELF_DEFINE_OPTION_KINDS() \ _ELF_DEFINE_ODK(ODK_NULL, 0, "undefined") \ _ELF_DEFINE_ODK(ODK_REGINFO, 1, "register usage info") \ _ELF_DEFINE_ODK(ODK_EXCEPTIONS, 2, "exception processing info") \ _ELF_DEFINE_ODK(ODK_PAD, 3, "section padding") \ _ELF_DEFINE_ODK(ODK_HWPATCH, 4, "hardware patch applied") \ _ELF_DEFINE_ODK(ODK_FILL, 5, "fill value used by linker") \ _ELF_DEFINE_ODK(ODK_TAGS, 6, "reserved space for tools") \ _ELF_DEFINE_ODK(ODK_HWAND, 7, "hardware AND patch applied") \ _ELF_DEFINE_ODK(ODK_HWOR, 8, "hardware OR patch applied") \ _ELF_DEFINE_ODK(ODK_GP_GROUP, 9, \ "GP group to use for text/data sections") \ _ELF_DEFINE_ODK(ODK_IDENT, 10, "ID information") \ _ELF_DEFINE_ODK(ODK_PAGESIZE, 11, "page size information") #undef _ELF_DEFINE_ODK #define _ELF_DEFINE_ODK(N, V, DESCR) N = V , enum { _ELF_DEFINE_OPTION_KINDS() ODK__LAST__ }; /* * ODK_EXCEPTIONS info field masks. */ #define _ELF_DEFINE_ODK_EXCEPTIONS_MASK() \ _ELF_DEFINE_OEX(OEX_FPU_MIN, 0x0000001FUL, \ "minimum FPU exception which must be enabled") \ _ELF_DEFINE_OEX(OEX_FPU_MAX, 0x00001F00UL, \ "maximum FPU exception which can be enabled") \ _ELF_DEFINE_OEX(OEX_PAGE0, 0x00010000UL, \ "page zero must be mapped") \ _ELF_DEFINE_OEX(OEX_SMM, 0x00020000UL, \ "run in sequential memory mode") \ _ELF_DEFINE_OEX(OEX_PRECISEFP, 0x00040000UL, \ "run in precise FP exception mode") \ _ELF_DEFINE_OEX(OEX_DISMISS, 0x00080000UL, \ "dismiss invalid address traps") #undef _ELF_DEFINE_OEX #define _ELF_DEFINE_OEX(N, V, DESCR) N = V , enum { _ELF_DEFINE_ODK_EXCEPTIONS_MASK() OEX__LAST__ }; /* * ODK_PAD info field masks. */ #define _ELF_DEFINE_ODK_PAD_MASK() \ _ELF_DEFINE_OPAD(OPAD_PREFIX, 0x0001) \ _ELF_DEFINE_OPAD(OPAD_POSTFIX, 0x0002) \ _ELF_DEFINE_OPAD(OPAD_SYMBOL, 0x0004) #undef _ELF_DEFINE_OPAD #define _ELF_DEFINE_OPAD(N, V) N = V , enum { _ELF_DEFINE_ODK_PAD_MASK() OPAD__LAST__ }; /* * ODK_HWPATCH info field masks. */ #define _ELF_DEFINE_ODK_HWPATCH_MASK() \ _ELF_DEFINE_OHW(OHW_R4KEOP, 0x00000001UL, \ "patch for R4000 branch at end-of-page bug") \ _ELF_DEFINE_OHW(OHW_R8KPFETCH, 0x00000002UL, \ "R8000 prefetch bug may occur") \ _ELF_DEFINE_OHW(OHW_R5KEOP, 0x00000004UL, \ "patch for R5000 branch at end-of-page bug") \ _ELF_DEFINE_OHW(OHW_R5KCVTL, 0x00000008UL, \ "R5000 cvt.[ds].l bug: clean == 1") \ _ELF_DEFINE_OHW(OHW_R10KLDL, 0x00000010UL, \ "needd patch for R10000 misaligned load") #undef _ELF_DEFINE_OHW #define _ELF_DEFINE_OHW(N, V, DESCR) N = V , enum { _ELF_DEFINE_ODK_HWPATCH_MASK() OHW__LAST__ }; /* * ODK_HWAND/ODK_HWOR info field and hwp_flags[12] masks. */ #define _ELF_DEFINE_ODK_HWP_MASK() \ _ELF_DEFINE_HWP(OHWA0_R4KEOP_CHECKED, 0x00000001UL, \ "object checked for R4000 end-of-page bug") \ _ELF_DEFINE_HWP(OHWA0_R4KEOP_CLEAN, 0x00000002UL, \ "object verified clean for R4000 end-of-page bug") \ _ELF_DEFINE_HWP(OHWO0_FIXADE, 0x00000001UL, \ "object requires call to fixade") #undef _ELF_DEFINE_HWP #define _ELF_DEFINE_HWP(N, V, DESCR) N = V , enum { _ELF_DEFINE_ODK_HWP_MASK() OHWX0__LAST__ }; /* * ODK_IDENT/ODK_GP_GROUP info field masks. */ #define _ELF_DEFINE_ODK_GP_MASK() \ _ELF_DEFINE_OGP(OGP_GROUP, 0x0000FFFFUL, "GP group number") \ _ELF_DEFINE_OGP(OGP_SELF, 0x00010000UL, \ "GP group is self-contained") #undef _ELF_DEFINE_OGP #define _ELF_DEFINE_OGP(N, V, DESCR) N = V , enum { _ELF_DEFINE_ODK_GP_MASK() OGP__LAST__ }; /* * MIPS ELF register info descriptor. */ /* 32 bit RegInfo entry. */ typedef struct { Elf32_Word ri_gprmask; /* Mask of general register used. */ Elf32_Word ri_cprmask[4]; /* Mask of coprocessor register used. */ Elf32_Addr ri_gp_value; /* GP register value. */ } Elf32_RegInfo; /* 64 bit RegInfo entry. */ typedef struct { Elf64_Word ri_gprmask; /* Mask of general register used. */ Elf64_Word ri_pad; /* Padding. */ Elf64_Word ri_cprmask[4]; /* Mask of coprocessor register used. */ Elf64_Addr ri_gp_value; /* GP register value. */ } Elf64_RegInfo; /* * Program Header Table (PHDR) entries. */ /* 32 bit PHDR entry. */ typedef struct { Elf32_Word p_type; /* Type of segment. */ Elf32_Off p_offset; /* File offset to segment. */ Elf32_Addr p_vaddr; /* Virtual address in memory. */ Elf32_Addr p_paddr; /* Physical address (if relevant). */ Elf32_Word p_filesz; /* Size of segment in file. */ Elf32_Word p_memsz; /* Size of segment in memory. */ Elf32_Word p_flags; /* Segment flags. */ Elf32_Word p_align; /* Alignment constraints. */ } Elf32_Phdr; /* 64 bit PHDR entry. */ typedef struct { Elf64_Word p_type; /* Type of segment. */ Elf64_Word p_flags; /* Segment flags. */ Elf64_Off p_offset; /* File offset to segment. */ Elf64_Addr p_vaddr; /* Virtual address in memory. */ Elf64_Addr p_paddr; /* Physical address (if relevant). */ Elf64_Xword p_filesz; /* Size of segment in file. */ Elf64_Xword p_memsz; /* Size of segment in memory. */ Elf64_Xword p_align; /* Alignment constraints. */ } Elf64_Phdr; /* * Move entries, for describing data in COMMON blocks in a compact * manner. */ /* 32-bit move entry. */ typedef struct { Elf32_Lword m_value; /* Initialization value. */ Elf32_Word m_info; /* Encoded size and index. */ Elf32_Word m_poffset; /* Offset relative to symbol. */ Elf32_Half m_repeat; /* Repeat count. */ Elf32_Half m_stride; /* Number of units to skip. */ } Elf32_Move; /* 64-bit move entry. */ typedef struct { Elf64_Lword m_value; /* Initialization value. */ Elf64_Xword m_info; /* Encoded size and index. */ Elf64_Xword m_poffset; /* Offset relative to symbol. */ Elf64_Half m_repeat; /* Repeat count. */ Elf64_Half m_stride; /* Number of units to skip. */ } Elf64_Move; #define ELF32_M_SYM(I) ((I) >> 8) #define ELF32_M_SIZE(I) ((unsigned char) (I)) #define ELF32_M_INFO(M, S) (((M) << 8) + (unsigned char) (S)) #define ELF64_M_SYM(I) ((I) >> 8) #define ELF64_M_SIZE(I) ((unsigned char) (I)) #define ELF64_M_INFO(M, S) (((M) << 8) + (unsigned char) (S)) /* * Section Header Table (SHDR) entries. */ /* 32 bit SHDR */ typedef struct { Elf32_Word sh_name; /* index of section name */ Elf32_Word sh_type; /* section type */ Elf32_Word sh_flags; /* section flags */ Elf32_Addr sh_addr; /* in-memory address of section */ Elf32_Off sh_offset; /* file offset of section */ Elf32_Word sh_size; /* section size in bytes */ Elf32_Word sh_link; /* section header table link */ Elf32_Word sh_info; /* extra information */ Elf32_Word sh_addralign; /* alignment constraint */ Elf32_Word sh_entsize; /* size for fixed-size entries */ } Elf32_Shdr; /* 64 bit SHDR */ typedef struct { Elf64_Word sh_name; /* index of section name */ Elf64_Word sh_type; /* section type */ Elf64_Xword sh_flags; /* section flags */ Elf64_Addr sh_addr; /* in-memory address of section */ Elf64_Off sh_offset; /* file offset of section */ Elf64_Xword sh_size; /* section size in bytes */ Elf64_Word sh_link; /* section header table link */ Elf64_Word sh_info; /* extra information */ Elf64_Xword sh_addralign; /* alignment constraint */ Elf64_Xword sh_entsize; /* size for fixed-size entries */ } Elf64_Shdr; /* * Symbol table entries. */ typedef struct { Elf32_Word st_name; /* index of symbol's name */ Elf32_Addr st_value; /* value for the symbol */ Elf32_Word st_size; /* size of associated data */ unsigned char st_info; /* type and binding attributes */ unsigned char st_other; /* visibility */ Elf32_Half st_shndx; /* index of related section */ } Elf32_Sym; typedef struct { Elf64_Word st_name; /* index of symbol's name */ unsigned char st_info; /* type and binding attributes */ unsigned char st_other; /* visibility */ Elf64_Half st_shndx; /* index of related section */ Elf64_Addr st_value; /* value for the symbol */ Elf64_Xword st_size; /* size of associated data */ } Elf64_Sym; #define ELF32_ST_BIND(I) ((I) >> 4) #define ELF32_ST_TYPE(I) ((I) & 0xFU) #define ELF32_ST_INFO(B,T) (((B) << 4) + ((T) & 0xF)) #define ELF64_ST_BIND(I) ((I) >> 4) #define ELF64_ST_TYPE(I) ((I) & 0xFU) #define ELF64_ST_INFO(B,T) (((B) << 4) + ((T) & 0xF)) #define ELF32_ST_VISIBILITY(O) ((O) & 0x3) #define ELF64_ST_VISIBILITY(O) ((O) & 0x3) /* * Syminfo descriptors, containing additional symbol information. */ /* 32-bit entry. */ typedef struct { Elf32_Half si_boundto; /* Entry index with additional flags. */ Elf32_Half si_flags; /* Flags. */ } Elf32_Syminfo; /* 64-bit entry. */ typedef struct { Elf64_Half si_boundto; /* Entry index with additional flags. */ Elf64_Half si_flags; /* Flags. */ } Elf64_Syminfo; /* * Relocation descriptors. */ typedef struct { Elf32_Addr r_offset; /* location to apply relocation to */ Elf32_Word r_info; /* type+section for relocation */ } Elf32_Rel; typedef struct { Elf32_Addr r_offset; /* location to apply relocation to */ Elf32_Word r_info; /* type+section for relocation */ Elf32_Sword r_addend; /* constant addend */ } Elf32_Rela; typedef struct { Elf64_Addr r_offset; /* location to apply relocation to */ Elf64_Xword r_info; /* type+section for relocation */ } Elf64_Rel; typedef struct { Elf64_Addr r_offset; /* location to apply relocation to */ Elf64_Xword r_info; /* type+section for relocation */ Elf64_Sxword r_addend; /* constant addend */ } Elf64_Rela; #define ELF32_R_SYM(I) ((I) >> 8) #define ELF32_R_TYPE(I) ((unsigned char) (I)) #define ELF32_R_INFO(S,T) (((S) << 8) + (unsigned char) (T)) #define ELF64_R_SYM(I) ((I) >> 32) #define ELF64_R_TYPE(I) ((I) & 0xFFFFFFFFUL) #define ELF64_R_INFO(S,T) (((S) << 32) + ((T) & 0xFFFFFFFFUL)) /* * Symbol versioning structures. */ /* 32-bit structures. */ typedef struct { Elf32_Word vda_name; /* Index to name. */ Elf32_Word vda_next; /* Offset to next entry. */ } Elf32_Verdaux; typedef struct { Elf32_Word vna_hash; /* Hash value of dependency name. */ Elf32_Half vna_flags; /* Flags. */ Elf32_Half vna_other; /* Unused. */ Elf32_Word vna_name; /* Offset to dependency name. */ Elf32_Word vna_next; /* Offset to next vernaux entry. */ } Elf32_Vernaux; typedef struct { Elf32_Half vd_version; /* Version information. */ Elf32_Half vd_flags; /* Flags. */ Elf32_Half vd_ndx; /* Index into the versym section. */ Elf32_Half vd_cnt; /* Number of aux entries. */ Elf32_Word vd_hash; /* Hash value of name. */ Elf32_Word vd_aux; /* Offset to aux entries. */ Elf32_Word vd_next; /* Offset to next version definition. */ } Elf32_Verdef; typedef struct { Elf32_Half vn_version; /* Version number. */ Elf32_Half vn_cnt; /* Number of aux entries. */ Elf32_Word vn_file; /* Offset of associated file name. */ Elf32_Word vn_aux; /* Offset of vernaux array. */ Elf32_Word vn_next; /* Offset of next verneed entry. */ } Elf32_Verneed; typedef Elf32_Half Elf32_Versym; /* 64-bit structures. */ typedef struct { Elf64_Word vda_name; /* Index to name. */ Elf64_Word vda_next; /* Offset to next entry. */ } Elf64_Verdaux; typedef struct { Elf64_Word vna_hash; /* Hash value of dependency name. */ Elf64_Half vna_flags; /* Flags. */ Elf64_Half vna_other; /* Unused. */ Elf64_Word vna_name; /* Offset to dependency name. */ Elf64_Word vna_next; /* Offset to next vernaux entry. */ } Elf64_Vernaux; typedef struct { Elf64_Half vd_version; /* Version information. */ Elf64_Half vd_flags; /* Flags. */ Elf64_Half vd_ndx; /* Index into the versym section. */ Elf64_Half vd_cnt; /* Number of aux entries. */ Elf64_Word vd_hash; /* Hash value of name. */ Elf64_Word vd_aux; /* Offset to aux entries. */ Elf64_Word vd_next; /* Offset to next version definition. */ } Elf64_Verdef; typedef struct { Elf64_Half vn_version; /* Version number. */ Elf64_Half vn_cnt; /* Number of aux entries. */ Elf64_Word vn_file; /* Offset of associated file name. */ Elf64_Word vn_aux; /* Offset of vernaux array. */ Elf64_Word vn_next; /* Offset of next verneed entry. */ } Elf64_Verneed; typedef Elf64_Half Elf64_Versym; /* * The header for GNU-style hash sections. */ typedef struct { uint32_t gh_nbuckets; /* Number of hash buckets. */ uint32_t gh_symndx; /* First visible symbol in .dynsym. */ uint32_t gh_maskwords; /* #maskwords used in bloom filter. */ uint32_t gh_shift2; /* Bloom filter shift count. */ } Elf_GNU_Hash_Header; #endif /* _ELFDEFINITIONS_H_ */ Index: vendor/elftoolchain/dist/elfcopy/archive.c =================================================================== --- vendor/elftoolchain/dist/elfcopy/archive.c (revision 305125) +++ vendor/elftoolchain/dist/elfcopy/archive.c (revision 305126) @@ -1,523 +1,526 @@ /*- * Copyright (c) 2007-2009 Kai Wang * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #ifndef LIBELF_AR #include #include #endif /* ! LIBELF_AR */ #include "elfcopy.h" -ELFTC_VCSID("$Id: archive.c 3287 2015-12-31 16:58:48Z emaste $"); +ELFTC_VCSID("$Id: archive.c 3490 2016-08-31 00:12:22Z emaste $"); #define _ARMAG_LEN 8 /* length of ar magic string */ #define _ARHDR_LEN 60 /* length of ar header */ #define _INIT_AS_CAP 128 /* initial archive string table size */ #define _INIT_SYMOFF_CAP (256*(sizeof(uint32_t))) /* initial so table size */ #define _INIT_SYMNAME_CAP 1024 /* initial sn table size */ #define _MAXNAMELEN_SVR4 15 /* max member name length in svr4 variant */ #ifndef LIBELF_AR static void ac_read_objs(struct elfcopy *ecp, int ifd); static void ac_write_cleanup(struct elfcopy *ecp); static void ac_write_data(struct archive *a, const void *buf, size_t s); static void ac_write_objs(struct elfcopy *ecp, int ofd); #endif /* ! LIBELF_AR */ static void add_to_ar_str_table(struct elfcopy *elfcopy, const char *name); static void add_to_ar_sym_table(struct elfcopy *ecp, const char *name); static void extract_arsym(struct elfcopy *ecp); static void process_ar_obj(struct elfcopy *ecp, struct ar_obj *obj); static void sync_ar(struct elfcopy *ecp); static void process_ar_obj(struct elfcopy *ecp, struct ar_obj *obj) { struct stat sb; char *tempfile; int fd; /* Output to a temporary file. */ create_tempfile(&tempfile, &fd); if ((ecp->eout = elf_begin(fd, ELF_C_WRITE, NULL)) == NULL) errx(EXIT_FAILURE, "elf_begin() failed: %s", elf_errmsg(-1)); elf_flagelf(ecp->eout, ELF_C_SET, ELF_F_LAYOUT); create_elf(ecp); elf_end(ecp->ein); elf_end(ecp->eout); free(obj->buf); obj->buf = NULL; /* Extract archive symbols. */ if (lseek(fd, 0, SEEK_SET) < 0) err(EXIT_FAILURE, "lseek failed for '%s'", tempfile); if ((ecp->eout = elf_begin(fd, ELF_C_READ, NULL)) == NULL) errx(EXIT_FAILURE, "elf_begin() failed: %s", elf_errmsg(-1)); extract_arsym(ecp); elf_end(ecp->eout); if (fstat(fd, &sb) == -1) err(EXIT_FAILURE, "fstat %s failed", tempfile); if (lseek(fd, 0, SEEK_SET) < 0) err(EXIT_FAILURE, "lseek %s failed", tempfile); obj->size = sb.st_size; if ((obj->maddr = malloc(obj->size)) == NULL) err(EXIT_FAILURE, "memory allocation failed for '%s'", tempfile); if ((size_t) read(fd, obj->maddr, obj->size) != obj->size) err(EXIT_FAILURE, "read failed for '%s'", tempfile); if (unlink(tempfile)) err(EXIT_FAILURE, "unlink %s failed", tempfile); free(tempfile); close(fd); if (strlen(obj->name) > _MAXNAMELEN_SVR4) add_to_ar_str_table(ecp, obj->name); ecp->rela_off += _ARHDR_LEN + obj->size + obj->size % 2; STAILQ_INSERT_TAIL(&ecp->v_arobj, obj, objs); } /* * Append to the archive string table buffer. */ static void add_to_ar_str_table(struct elfcopy *ecp, const char *name) { if (ecp->as == NULL) { ecp->as_cap = _INIT_AS_CAP; ecp->as_sz = 0; if ((ecp->as = malloc(ecp->as_cap)) == NULL) err(EXIT_FAILURE, "malloc failed"); } /* * The space required for holding one member name in as table includes: * strlen(name) + (1 for '/') + (1 for '\n') + (possibly 1 for padding). */ while (ecp->as_sz + strlen(name) + 3 > ecp->as_cap) { ecp->as_cap *= 2; ecp->as = realloc(ecp->as, ecp->as_cap); if (ecp->as == NULL) err(EXIT_FAILURE, "realloc failed"); } strncpy(&ecp->as[ecp->as_sz], name, strlen(name)); ecp->as_sz += strlen(name); ecp->as[ecp->as_sz++] = '/'; ecp->as[ecp->as_sz++] = '\n'; } /* * Append to the archive symbol table buffer. */ static void add_to_ar_sym_table(struct elfcopy *ecp, const char *name) { if (ecp->s_so == NULL) { if ((ecp->s_so = malloc(_INIT_SYMOFF_CAP)) == NULL) err(EXIT_FAILURE, "malloc failed"); ecp->s_so_cap = _INIT_SYMOFF_CAP; ecp->s_cnt = 0; } if (ecp->s_sn == NULL) { if ((ecp->s_sn = malloc(_INIT_SYMNAME_CAP)) == NULL) err(EXIT_FAILURE, "malloc failed"); ecp->s_sn_cap = _INIT_SYMNAME_CAP; ecp->s_sn_sz = 0; } if (ecp->s_cnt * sizeof(uint32_t) >= ecp->s_so_cap) { ecp->s_so_cap *= 2; ecp->s_so = realloc(ecp->s_so, ecp->s_so_cap); if (ecp->s_so == NULL) err(EXIT_FAILURE, "realloc failed"); } ecp->s_so[ecp->s_cnt] = ecp->rela_off; ecp->s_cnt++; /* * The space required for holding one symbol name in sn table includes: * strlen(name) + (1 for '\n') + (possibly 1 for padding). */ while (ecp->s_sn_sz + strlen(name) + 2 > ecp->s_sn_cap) { ecp->s_sn_cap *= 2; ecp->s_sn = realloc(ecp->s_sn, ecp->s_sn_cap); if (ecp->s_sn == NULL) err(EXIT_FAILURE, "realloc failed"); } strncpy(&ecp->s_sn[ecp->s_sn_sz], name, strlen(name)); ecp->s_sn_sz += strlen(name); ecp->s_sn[ecp->s_sn_sz++] = '\0'; } static void sync_ar(struct elfcopy *ecp) { size_t s_sz; /* size of archive symbol table. */ size_t pm_sz; /* size of pseudo members */ int i; /* * Pad the symbol name string table. It is treated specially because * symbol name table should be padded by a '\0', not the common '\n' * for other members. The size of sn table includes the pad bit. */ if (ecp->s_cnt != 0 && ecp->s_sn_sz % 2 != 0) ecp->s_sn[ecp->s_sn_sz++] = '\0'; /* * Archive string table is padded by a "\n" as the normal members. * The difference is that the size of archive string table counts * in the pad bit, while normal members' size fileds do not. */ if (ecp->as != NULL && ecp->as_sz % 2 != 0) ecp->as[ecp->as_sz++] = '\n'; /* * If there is a symbol table, calculate the size of pseudo members, * convert previously stored relative offsets to absolute ones, and * then make them Big Endian. * * absolute_offset = htobe32(relative_offset + size_of_pseudo_members) */ if (ecp->s_cnt != 0) { s_sz = (ecp->s_cnt + 1) * sizeof(uint32_t) + ecp->s_sn_sz; pm_sz = _ARMAG_LEN + (_ARHDR_LEN + s_sz); if (ecp->as != NULL) pm_sz += _ARHDR_LEN + ecp->as_sz; for (i = 0; (size_t)i < ecp->s_cnt; i++) *(ecp->s_so + i) = htobe32(*(ecp->s_so + i) + pm_sz); } } /* * Extract global symbols from archive members. */ static void extract_arsym(struct elfcopy *ecp) { Elf_Scn *scn; GElf_Shdr shdr; GElf_Sym sym; Elf_Data *data; char *name; size_t n, shstrndx; int elferr, tabndx, len, i; if (elf_kind(ecp->eout) != ELF_K_ELF) { warnx("internal: cannot extract symbols from non-elf object"); return; } if (elf_getshstrndx(ecp->eout, &shstrndx) == 0) { warnx("elf_getshstrndx failed: %s", elf_errmsg(-1)); return; } tabndx = -1; scn = NULL; while ((scn = elf_nextscn(ecp->eout, scn)) != NULL) { if (gelf_getshdr(scn, &shdr) != &shdr) { warnx("elf_getshdr failed: %s", elf_errmsg(-1)); continue; } if ((name = elf_strptr(ecp->eout, shstrndx, shdr.sh_name)) == NULL) { warnx("elf_strptr failed: %s", elf_errmsg(-1)); continue; } if (strcmp(name, ".strtab") == 0) { tabndx = elf_ndxscn(scn); break; } } elferr = elf_errno(); if (elferr != 0) warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); /* Ignore members without symbol table. */ if (tabndx == -1) return; scn = NULL; while ((scn = elf_nextscn(ecp->eout, scn)) != NULL) { if (gelf_getshdr(scn, &shdr) != &shdr) { warnx("elf_getshdr failed: %s", elf_errmsg(-1)); continue; } if (shdr.sh_type != SHT_SYMTAB) continue; data = NULL; n = 0; while (n < shdr.sh_size && (data = elf_getdata(scn, data)) != NULL) { len = data->d_size / shdr.sh_entsize; for (i = 0; i < len; i++) { if (gelf_getsym(data, i, &sym) != &sym) { warnx("gelf_getsym failed: %s", elf_errmsg(-1)); continue; } /* keep only global or weak symbols */ if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL && GELF_ST_BIND(sym.st_info) != STB_WEAK) continue; /* keep only defined symbols */ if (sym.st_shndx == SHN_UNDEF) continue; if ((name = elf_strptr(ecp->eout, tabndx, sym.st_name)) == NULL) { warnx("elf_strptr failed: %s", elf_errmsg(-1)); continue; } add_to_ar_sym_table(ecp, name); } } } elferr = elf_errno(); if (elferr != 0) warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); } #ifndef LIBELF_AR /* * Convenient wrapper for general libarchive error handling. */ #define AC(CALL) do { \ if ((CALL)) \ errx(EXIT_FAILURE, "%s", archive_error_string(a)); \ } while (0) /* Earlier versions of libarchive had some functions that returned 'void'. */ #if ARCHIVE_VERSION_NUMBER >= 2000000 #define ACV(CALL) AC(CALL) #else #define ACV(CALL) do { \ (CALL); \ } while (0) #endif int ac_detect_ar(int ifd) { struct archive *a; struct archive_entry *entry; int r; r = -1; if ((a = archive_read_new()) == NULL) return (0); archive_read_support_format_ar(a); if (archive_read_open_fd(a, ifd, 10240) == ARCHIVE_OK) r = archive_read_next_header(a, &entry); archive_read_close(a); archive_read_free(a); return (r == ARCHIVE_OK); } void ac_create_ar(struct elfcopy *ecp, int ifd, int ofd) { ac_read_objs(ecp, ifd); sync_ar(ecp); ac_write_objs(ecp, ofd); ac_write_cleanup(ecp); } static void ac_read_objs(struct elfcopy *ecp, int ifd) { struct archive *a; struct archive_entry *entry; struct ar_obj *obj; const char *name; char *buff; size_t size; int r; ecp->rela_off = 0; if (lseek(ifd, 0, SEEK_SET) == -1) err(EXIT_FAILURE, "lseek failed"); if ((a = archive_read_new()) == NULL) errx(EXIT_FAILURE, "archive_read_new failed"); archive_read_support_format_ar(a); AC(archive_read_open_fd(a, ifd, 10240)); for(;;) { r = archive_read_next_header(a, &entry); if (r == ARCHIVE_FATAL) errx(EXIT_FAILURE, "%s", archive_error_string(a)); if (r == ARCHIVE_EOF) break; if (r == ARCHIVE_WARN || r == ARCHIVE_RETRY) warnx("%s", archive_error_string(a)); if (r == ARCHIVE_RETRY) continue; name = archive_entry_pathname(entry); /* skip pseudo members. */ if (strcmp(name, "/") == 0 || strcmp(name, "//") == 0) continue; size = archive_entry_size(entry); if (size > 0) { if ((buff = malloc(size)) == NULL) err(EXIT_FAILURE, "malloc failed"); if (archive_read_data(a, buff, size) != (ssize_t)size) { warnx("%s", archive_error_string(a)); free(buff); continue; } if ((obj = malloc(sizeof(*obj))) == NULL) err(EXIT_FAILURE, "malloc failed"); if ((obj->name = strdup(name)) == NULL) err(EXIT_FAILURE, "strdup failed"); obj->buf = buff; obj->uid = archive_entry_uid(entry); obj->gid = archive_entry_gid(entry); obj->md = archive_entry_mode(entry); obj->mtime = archive_entry_mtime(entry); if ((ecp->ein = elf_memory(buff, size)) == NULL) errx(EXIT_FAILURE, "elf_memory() failed: %s", elf_errmsg(-1)); if (elf_kind(ecp->ein) != ELF_K_ELF) errx(EXIT_FAILURE, "file format not recognized"); process_ar_obj(ecp, obj); } } AC(archive_read_close(a)); ACV(archive_read_free(a)); } static void ac_write_objs(struct elfcopy *ecp, int ofd) { struct archive *a; struct archive_entry *entry; struct ar_obj *obj; + time_t timestamp; int nr; if ((a = archive_write_new()) == NULL) errx(EXIT_FAILURE, "archive_write_new failed"); archive_write_set_format_ar_svr4(a); AC(archive_write_open_fd(a, ofd)); /* Write the archive symbol table, even if it's empty. */ entry = archive_entry_new(); archive_entry_copy_pathname(entry, "/"); - archive_entry_set_mtime(entry, time(NULL), 0); + if (elftc_timestamp(×tamp) != 0) + err(EXIT_FAILURE, "elftc_timestamp"); + archive_entry_set_mtime(entry, timestamp, 0); archive_entry_set_size(entry, (ecp->s_cnt + 1) * sizeof(uint32_t) + ecp->s_sn_sz); AC(archive_write_header(a, entry)); nr = htobe32(ecp->s_cnt); ac_write_data(a, &nr, sizeof(uint32_t)); ac_write_data(a, ecp->s_so, sizeof(uint32_t) * ecp->s_cnt); ac_write_data(a, ecp->s_sn, ecp->s_sn_sz); archive_entry_free(entry); /* Write the archive string table, if exist. */ if (ecp->as != NULL) { entry = archive_entry_new(); archive_entry_copy_pathname(entry, "//"); archive_entry_set_size(entry, ecp->as_sz); AC(archive_write_header(a, entry)); ac_write_data(a, ecp->as, ecp->as_sz); archive_entry_free(entry); } /* Write normal members. */ STAILQ_FOREACH(obj, &ecp->v_arobj, objs) { entry = archive_entry_new(); archive_entry_copy_pathname(entry, obj->name); archive_entry_set_uid(entry, obj->uid); archive_entry_set_gid(entry, obj->gid); archive_entry_set_mode(entry, obj->md); archive_entry_set_size(entry, obj->size); archive_entry_set_mtime(entry, obj->mtime, 0); archive_entry_set_filetype(entry, AE_IFREG); AC(archive_write_header(a, entry)); ac_write_data(a, obj->maddr, obj->size); archive_entry_free(entry); } AC(archive_write_close(a)); ACV(archive_write_free(a)); } static void ac_write_cleanup(struct elfcopy *ecp) { struct ar_obj *obj, *obj_temp; STAILQ_FOREACH_SAFE(obj, &ecp->v_arobj, objs, obj_temp) { STAILQ_REMOVE(&ecp->v_arobj, obj, ar_obj, objs); if (obj->maddr != NULL) free(obj->maddr); free(obj->name); free(obj); } free(ecp->as); free(ecp->s_so); free(ecp->s_sn); ecp->as = NULL; ecp->s_so = NULL; ecp->s_sn = NULL; } /* * Wrapper for archive_write_data(). */ static void ac_write_data(struct archive *a, const void *buf, size_t s) { if (archive_write_data(a, buf, s) != (ssize_t)s) errx(EXIT_FAILURE, "%s", archive_error_string(a)); } #endif /* ! LIBELF_AR */ Index: vendor/elftoolchain/dist/elfcopy/ascii.c =================================================================== --- vendor/elftoolchain/dist/elfcopy/ascii.c (revision 305125) +++ vendor/elftoolchain/dist/elfcopy/ascii.c (revision 305126) @@ -1,1078 +1,1079 @@ /*- * Copyright (c) 2010,2011 Kai Wang * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include "elfcopy.h" -ELFTC_VCSID("$Id: ascii.c 3446 2016-05-03 01:31:17Z emaste $"); +ELFTC_VCSID("$Id: ascii.c 3487 2016-08-24 18:12:08Z emaste $"); static void append_data(struct section *s, const void *buf, size_t sz); static char hex_digit(uint8_t n); static int hex_value(int x); static void finalize_data_section(struct section *s); static int ishexdigit(int x); static int ihex_read(const char *line, char *type, uint64_t *addr, uint64_t *num, uint8_t *data, size_t *sz); static void ihex_write(int ofd, int type, uint64_t addr, uint64_t num, const void *buf, size_t sz); static void ihex_write_00(int ofd, uint64_t addr, const void *buf, size_t sz); static void ihex_write_01(int ofd); static void ihex_write_04(int ofd, uint16_t addr); static void ihex_write_05(int ofd, uint64_t e_entry); static struct section *new_data_section(struct elfcopy *ecp, int sec_index, uint64_t off, uint64_t addr); static int read_num(const char *line, int *len, uint64_t *num, size_t sz, int *checksum); static int srec_read(const char *line, char *type, uint64_t *addr, uint8_t *data, size_t *sz); static void srec_write(int ofd, char type, uint64_t addr, const void *buf, size_t sz); static void srec_write_symtab(int ofd, const char *ofn, Elf *e, Elf_Scn *scn, GElf_Shdr *sh); static void srec_write_S0(int ofd, const char *ofn); static void srec_write_Sd(int ofd, char dr, uint64_t addr, const void *buf, size_t sz, size_t rlen); static void srec_write_Se(int ofd, uint64_t e_entry, int forceS3); static void write_num(char *line, int *len, uint64_t num, size_t sz, int *checksum); #define _LINE_BUFSZ 1024 #define _DATA_BUFSZ 256 /* * Convert ELF object to S-Record. */ void create_srec(struct elfcopy *ecp, int ifd, int ofd, const char *ofn) { Elf *e; Elf_Scn *scn; Elf_Data *d; GElf_Ehdr eh; GElf_Shdr sh; uint64_t max_addr; size_t rlen; int elferr, addr_sz; char dr; if ((e = elf_begin(ifd, ELF_C_READ, NULL)) == NULL) errx(EXIT_FAILURE, "elf_begin() failed: %s", elf_errmsg(-1)); /* Output a symbol table for `symbolsrec' target. */ if (!strncmp(ecp->otgt, "symbolsrec", strlen("symbolsrec"))) { scn = NULL; while ((scn = elf_nextscn(e, scn)) != NULL) { if (gelf_getshdr(scn, &sh) == NULL) { warnx("gelf_getshdr failed: %s", elf_errmsg(-1)); (void) elf_errno(); continue; } if (sh.sh_type != SHT_SYMTAB) continue; srec_write_symtab(ofd, ofn, e, scn, &sh); break; } } if (ecp->flags & SREC_FORCE_S3) dr = '3'; else { /* * Find maximum address size in the first iteration. */ max_addr = 0; scn = NULL; while ((scn = elf_nextscn(e, scn)) != NULL) { if (gelf_getshdr(scn, &sh) == NULL) { warnx("gelf_getshdr failed: %s", elf_errmsg(-1)); (void) elf_errno(); continue; } if ((sh.sh_flags & SHF_ALLOC) == 0 || sh.sh_type == SHT_NOBITS || sh.sh_size == 0) continue; if ((uint64_t) sh.sh_addr > max_addr) max_addr = sh.sh_addr; } elferr = elf_errno(); if (elferr != 0) warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); if (max_addr <= 0xFFFF) dr = '1'; else if (max_addr <= 0xFFFFFF) dr = '2'; else dr = '3'; } if (ecp->flags & SREC_FORCE_LEN) { addr_sz = dr - '0' + 1; if (ecp->srec_len < 1) rlen = 1; else if (ecp->srec_len + addr_sz + 1 > 255) rlen = 255 - (addr_sz + 1); else rlen = ecp->srec_len; } else rlen = 16; /* Generate S0 record which contains the output filename. */ srec_write_S0(ofd, ofn); /* Generate S{1,2,3} data records for section data. */ scn = NULL; while ((scn = elf_nextscn(e, scn)) != NULL) { if (gelf_getshdr(scn, &sh) == NULL) { warnx("gelf_getshdr failed: %s", elf_errmsg(-1)); (void) elf_errno(); continue; } if ((sh.sh_flags & SHF_ALLOC) == 0 || sh.sh_type == SHT_NOBITS || sh.sh_size == 0) continue; if (sh.sh_addr > 0xFFFFFFFF) { warnx("address space too big for S-Record file"); continue; } (void) elf_errno(); if ((d = elf_getdata(scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(-1)); continue; } if (d->d_buf == NULL || d->d_size == 0) continue; srec_write_Sd(ofd, dr, sh.sh_addr, d->d_buf, d->d_size, rlen); } elferr = elf_errno(); if (elferr != 0) warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); /* Generate S{7,8,9} end of block record. */ if (gelf_getehdr(e, &eh) == NULL) errx(EXIT_FAILURE, "gelf_getehdr() failed: %s", elf_errmsg(-1)); srec_write_Se(ofd, eh.e_entry, ecp->flags & SREC_FORCE_S3); } void create_elf_from_srec(struct elfcopy *ecp, int ifd) { char line[_LINE_BUFSZ], name[_LINE_BUFSZ]; uint8_t data[_DATA_BUFSZ]; GElf_Ehdr oeh; struct section *s, *shtab; FILE *ifp; uint64_t addr, entry, off, sec_addr; uintmax_t st_value; size_t sz; int _ifd, first, sec_index, in_symtab, symtab_created; char *rlt; char type; if ((_ifd = dup(ifd)) < 0) err(EXIT_FAILURE, "dup failed"); if ((ifp = fdopen(_ifd, "r")) == NULL) err(EXIT_FAILURE, "fdopen failed"); /* Create EHDR for output .o file. */ if (gelf_newehdr(ecp->eout, ecp->oec) == NULL) errx(EXIT_FAILURE, "gelf_newehdr failed: %s", elf_errmsg(-1)); if (gelf_getehdr(ecp->eout, &oeh) == NULL) errx(EXIT_FAILURE, "gelf_getehdr() failed: %s", elf_errmsg(-1)); /* Initialise e_ident fields. */ oeh.e_ident[EI_CLASS] = ecp->oec; oeh.e_ident[EI_DATA] = ecp->oed; /* * TODO: Set OSABI according to the OS platform where elfcopy(1) * was build. (probably) */ oeh.e_ident[EI_OSABI] = ELFOSABI_NONE; oeh.e_machine = ecp->oem; oeh.e_type = ET_REL; oeh.e_entry = 0; ecp->flags |= RELOCATABLE; /* Create .shstrtab section */ init_shstrtab(ecp); ecp->shstrtab->off = 0; /* Data sections are inserted after EHDR. */ off = gelf_fsize(ecp->eout, ELF_T_EHDR, 1, EV_CURRENT); if (off == 0) errx(EXIT_FAILURE, "gelf_fsize() failed: %s", elf_errmsg(-1)); /* Create data sections. */ s = NULL; first = 1; sec_index = 1; sec_addr = entry = 0; while (fgets(line, _LINE_BUFSZ, ifp) != NULL) { + sz = 0; if (line[0] == '\r' || line[0] == '\n') continue; if (line[0] == '$' && line[1] == '$') { ecp->flags |= SYMTAB_EXIST; while ((rlt = fgets(line, _LINE_BUFSZ, ifp)) != NULL) { if (line[0] == '$' && line[1] == '$') break; } if (rlt == NULL) break; continue; } if (line[0] != 'S' || line[1] < '0' || line[1] > '9') { warnx("Invalid srec record"); continue; } if (srec_read(line, &type, &addr, data, &sz) < 0) { warnx("Invalid srec record or mismatched checksum"); continue; } switch (type) { case '1': case '2': case '3': if (sz == 0) break; if (first || sec_addr != addr) { if (s != NULL) finalize_data_section(s); s = new_data_section(ecp, sec_index, off, addr); if (s == NULL) { warnx("new_data_section failed"); break; } sec_index++; sec_addr = addr; first = 0; } append_data(s, data, sz); off += sz; sec_addr += sz; break; case '7': case '8': case '9': entry = addr; break; default: break; } } if (s != NULL) finalize_data_section(s); if (ferror(ifp)) warn("fgets failed"); /* Insert .shstrtab after data sections. */ if ((ecp->shstrtab->os = elf_newscn(ecp->eout)) == NULL) errx(EXIT_FAILURE, "elf_newscn failed: %s", elf_errmsg(-1)); insert_to_sec_list(ecp, ecp->shstrtab, 1); /* Insert section header table here. */ shtab = insert_shtab(ecp, 1); /* * Rescan and create symbol table if we found '$$' section in * the first scan. */ symtab_created = 0; in_symtab = 0; if (ecp->flags & SYMTAB_EXIST) { if (fseek(ifp, 0, SEEK_SET) < 0) { warn("fseek failed"); ecp->flags &= ~SYMTAB_EXIST; goto done; } while (fgets(line, _LINE_BUFSZ, ifp) != NULL) { if (in_symtab) { if (line[0] == '$' && line[1] == '$') { in_symtab = 0; continue; } if (sscanf(line, "%s $%jx", name, &st_value) != 2) { warnx("Invalid symbolsrec record"); continue; } if (!symtab_created) { create_external_symtab(ecp); symtab_created = 1; } add_to_symtab(ecp, name, st_value, 0, SHN_ABS, ELF32_ST_INFO(STB_GLOBAL, STT_NOTYPE), 0, 1); } if (line[0] == '$' && line[1] == '$') { in_symtab = 1; continue; } } } if (ferror(ifp)) warn("fgets failed"); if (symtab_created) { finalize_external_symtab(ecp); create_symtab_data(ecp); /* Count in .symtab and .strtab section headers. */ shtab->sz += gelf_fsize(ecp->eout, ELF_T_SHDR, 2, EV_CURRENT); } else ecp->flags &= ~SYMTAB_EXIST; done: fclose(ifp); /* Set entry point. */ oeh.e_entry = entry; /* * Write the underlying ehdr. Note that it should be called * before elf_setshstrndx() since it will overwrite e->e_shstrndx. */ if (gelf_update_ehdr(ecp->eout, &oeh) == 0) errx(EXIT_FAILURE, "gelf_update_ehdr() failed: %s", elf_errmsg(-1)); /* Generate section name string table (.shstrtab). */ set_shstrtab(ecp); /* Update sh_name pointer for each section header entry. */ update_shdr(ecp, 0); /* Renew oeh to get the updated e_shstrndx. */ if (gelf_getehdr(ecp->eout, &oeh) == NULL) errx(EXIT_FAILURE, "gelf_getehdr() failed: %s", elf_errmsg(-1)); /* Resync section offsets. */ resync_sections(ecp); /* Store SHDR offset in EHDR. */ oeh.e_shoff = shtab->off; /* Update ehdr since we modified e_shoff. */ if (gelf_update_ehdr(ecp->eout, &oeh) == 0) errx(EXIT_FAILURE, "gelf_update_ehdr() failed: %s", elf_errmsg(-1)); /* Write out the output elf object. */ if (elf_update(ecp->eout, ELF_C_WRITE) < 0) errx(EXIT_FAILURE, "elf_update() failed: %s", elf_errmsg(-1)); /* Release allocated resource. */ free_elf(ecp); } void create_ihex(int ifd, int ofd) { Elf *e; Elf_Scn *scn; Elf_Data *d; GElf_Ehdr eh; GElf_Shdr sh; int elferr; uint16_t addr_hi, old_addr_hi; if ((e = elf_begin(ifd, ELF_C_READ, NULL)) == NULL) errx(EXIT_FAILURE, "elf_begin() failed: %s", elf_errmsg(-1)); old_addr_hi = 0; scn = NULL; while ((scn = elf_nextscn(e, scn)) != NULL) { if (gelf_getshdr(scn, &sh) == NULL) { warnx("gelf_getshdr failed: %s", elf_errmsg(-1)); (void) elf_errno(); continue; } if ((sh.sh_flags & SHF_ALLOC) == 0 || sh.sh_type == SHT_NOBITS || sh.sh_size == 0) continue; if (sh.sh_addr > 0xFFFFFFFF) { warnx("address space too big for Intel Hex file"); continue; } (void) elf_errno(); if ((d = elf_getdata(scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(-1)); continue; } if (d->d_buf == NULL || d->d_size == 0) continue; addr_hi = (sh.sh_addr >> 16) & 0xFFFF; if (addr_hi > 0 && addr_hi != old_addr_hi) { /* Write 04 record if addr_hi is new. */ old_addr_hi = addr_hi; ihex_write_04(ofd, addr_hi); } ihex_write_00(ofd, sh.sh_addr, d->d_buf, d->d_size); } elferr = elf_errno(); if (elferr != 0) warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); if (gelf_getehdr(e, &eh) == NULL) errx(EXIT_FAILURE, "gelf_getehdr() failed: %s", elf_errmsg(-1)); ihex_write_05(ofd, eh.e_entry); ihex_write_01(ofd); } void create_elf_from_ihex(struct elfcopy *ecp, int ifd) { char line[_LINE_BUFSZ]; uint8_t data[_DATA_BUFSZ]; GElf_Ehdr oeh; struct section *s, *shtab; FILE *ifp; uint64_t addr, addr_base, entry, num, off, rec_addr, sec_addr; size_t sz; int _ifd, first, sec_index; char type; if ((_ifd = dup(ifd)) < 0) err(EXIT_FAILURE, "dup failed"); if ((ifp = fdopen(_ifd, "r")) == NULL) err(EXIT_FAILURE, "fdopen failed"); /* Create EHDR for output .o file. */ if (gelf_newehdr(ecp->eout, ecp->oec) == NULL) errx(EXIT_FAILURE, "gelf_newehdr failed: %s", elf_errmsg(-1)); if (gelf_getehdr(ecp->eout, &oeh) == NULL) errx(EXIT_FAILURE, "gelf_getehdr() failed: %s", elf_errmsg(-1)); /* Initialise e_ident fields. */ oeh.e_ident[EI_CLASS] = ecp->oec; oeh.e_ident[EI_DATA] = ecp->oed; /* * TODO: Set OSABI according to the OS platform where elfcopy(1) * was build. (probably) */ oeh.e_ident[EI_OSABI] = ELFOSABI_NONE; oeh.e_machine = ecp->oem; oeh.e_type = ET_REL; oeh.e_entry = 0; ecp->flags |= RELOCATABLE; /* Create .shstrtab section */ init_shstrtab(ecp); ecp->shstrtab->off = 0; /* Data sections are inserted after EHDR. */ off = gelf_fsize(ecp->eout, ELF_T_EHDR, 1, EV_CURRENT); if (off == 0) errx(EXIT_FAILURE, "gelf_fsize() failed: %s", elf_errmsg(-1)); /* Create data sections. */ s = NULL; first = 1; sec_index = 1; addr_base = rec_addr = sec_addr = entry = 0; while (fgets(line, _LINE_BUFSZ, ifp) != NULL) { if (line[0] == '\r' || line[0] == '\n') continue; if (line[0] != ':') { warnx("Invalid ihex record"); continue; } if (ihex_read(line, &type, &addr, &num, data, &sz) < 0) { warnx("Invalid ihex record or mismatched checksum"); continue; } switch (type) { case '0': /* Data record. */ if (sz == 0) break; rec_addr = addr_base + addr; if (first || sec_addr != rec_addr) { if (s != NULL) finalize_data_section(s); s = new_data_section(ecp, sec_index, off, rec_addr); if (s == NULL) { warnx("new_data_section failed"); break; } sec_index++; sec_addr = rec_addr; first = 0; } append_data(s, data, sz); off += sz; sec_addr += sz; break; case '1': /* End of file record. */ goto done; case '2': /* Extended segment address record. */ addr_base = addr << 4; break; case '3': /* Start segment address record (CS:IP). Ignored. */ break; case '4': /* Extended linear address record. */ addr_base = num << 16; break; case '5': /* Start linear address record. */ entry = num; break; default: break; } } done: if (s != NULL) finalize_data_section(s); if (ferror(ifp)) warn("fgets failed"); fclose(ifp); /* Insert .shstrtab after data sections. */ if ((ecp->shstrtab->os = elf_newscn(ecp->eout)) == NULL) errx(EXIT_FAILURE, "elf_newscn failed: %s", elf_errmsg(-1)); insert_to_sec_list(ecp, ecp->shstrtab, 1); /* Insert section header table here. */ shtab = insert_shtab(ecp, 1); /* Set entry point. */ oeh.e_entry = entry; /* * Write the underlying ehdr. Note that it should be called * before elf_setshstrndx() since it will overwrite e->e_shstrndx. */ if (gelf_update_ehdr(ecp->eout, &oeh) == 0) errx(EXIT_FAILURE, "gelf_update_ehdr() failed: %s", elf_errmsg(-1)); /* Generate section name string table (.shstrtab). */ set_shstrtab(ecp); /* Update sh_name pointer for each section header entry. */ update_shdr(ecp, 0); /* Renew oeh to get the updated e_shstrndx. */ if (gelf_getehdr(ecp->eout, &oeh) == NULL) errx(EXIT_FAILURE, "gelf_getehdr() failed: %s", elf_errmsg(-1)); /* Resync section offsets. */ resync_sections(ecp); /* Store SHDR offset in EHDR. */ oeh.e_shoff = shtab->off; /* Update ehdr since we modified e_shoff. */ if (gelf_update_ehdr(ecp->eout, &oeh) == 0) errx(EXIT_FAILURE, "gelf_update_ehdr() failed: %s", elf_errmsg(-1)); /* Write out the output elf object. */ if (elf_update(ecp->eout, ELF_C_WRITE) < 0) errx(EXIT_FAILURE, "elf_update() failed: %s", elf_errmsg(-1)); /* Release allocated resource. */ free_elf(ecp); } #define _SEC_NAMESZ 64 #define _SEC_INIT_CAP 1024 static struct section * new_data_section(struct elfcopy *ecp, int sec_index, uint64_t off, uint64_t addr) { char *name; if ((name = malloc(_SEC_NAMESZ)) == NULL) errx(EXIT_FAILURE, "malloc failed"); snprintf(name, _SEC_NAMESZ, ".sec%d", sec_index); return (create_external_section(ecp, name, name, NULL, 0, off, SHT_PROGBITS, ELF_T_BYTE, SHF_ALLOC | SHF_WRITE, 1, addr, 0)); } static void finalize_data_section(struct section *s) { Elf_Data *od; if ((od = elf_newdata(s->os)) == NULL) errx(EXIT_FAILURE, "elf_newdata() failed: %s", elf_errmsg(-1)); od->d_align = s->align; od->d_off = 0; od->d_buf = s->buf; od->d_size = s->sz; od->d_version = EV_CURRENT; } static void append_data(struct section *s, const void *buf, size_t sz) { uint8_t *p; if (s->buf == NULL) { s->sz = 0; s->cap = _SEC_INIT_CAP; if ((s->buf = malloc(s->cap)) == NULL) err(EXIT_FAILURE, "malloc failed"); } while (sz + s->sz > s->cap) { s->cap *= 2; if ((s->buf = realloc(s->buf, s->cap)) == NULL) err(EXIT_FAILURE, "realloc failed"); } p = s->buf; memcpy(&p[s->sz], buf, sz); s->sz += sz; } static int srec_read(const char *line, char *type, uint64_t *addr, uint8_t *data, size_t *sz) { uint64_t count, _checksum, num; size_t addr_sz; int checksum, i, len; checksum = 0; len = 2; if (read_num(line, &len, &count, 1, &checksum) < 0) return (-1); *type = line[1]; switch (*type) { case '0': case '1': case '5': case '9': addr_sz = 2; break; case '2': case '8': addr_sz = 3; break; case '3': case '7': addr_sz = 4; break; default: return (-1); } if (read_num(line, &len, addr, addr_sz, &checksum) < 0) return (-1); count -= addr_sz + 1; if (*type >= '0' && *type <= '3') { for (i = 0; (uint64_t) i < count; i++) { if (read_num(line, &len, &num, 1, &checksum) < 0) return -1; data[i] = (uint8_t) num; } *sz = count; } else *sz = 0; if (read_num(line, &len, &_checksum, 1, NULL) < 0) return (-1); if ((int) _checksum != (~checksum & 0xFF)) return (-1); return (0); } static void srec_write_symtab(int ofd, const char *ofn, Elf *e, Elf_Scn *scn, GElf_Shdr *sh) { char line[_LINE_BUFSZ]; GElf_Sym sym; Elf_Data *d; const char *name; size_t sc; int elferr, i; #define _WRITE_LINE do { \ if (write(ofd, line, strlen(line)) != (ssize_t) strlen(line)) \ errx(EXIT_FAILURE, "write failed"); \ } while (0) (void) elf_errno(); if ((d = elf_getdata(scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(-1)); return; } if (d->d_buf == NULL || d->d_size == 0) return; snprintf(line, sizeof(line), "$$ %s\r\n", ofn); _WRITE_LINE; sc = d->d_size / sh->sh_entsize; for (i = 1; (size_t) i < sc; i++) { if (gelf_getsym(d, i, &sym) != &sym) { warnx("gelf_getsym failed: %s", elf_errmsg(-1)); continue; } if (GELF_ST_TYPE(sym.st_info) == STT_SECTION || GELF_ST_TYPE(sym.st_info) == STT_FILE) continue; if ((name = elf_strptr(e, sh->sh_link, sym.st_name)) == NULL) { warnx("elf_strptr failed: %s", elf_errmsg(-1)); continue; } snprintf(line, sizeof(line), " %s $%jx\r\n", name, (uintmax_t) sym.st_value); _WRITE_LINE; } snprintf(line, sizeof(line), "$$ \r\n"); _WRITE_LINE; #undef _WRITE_LINE } static void srec_write_S0(int ofd, const char *ofn) { srec_write(ofd, '0', 0, ofn, strlen(ofn)); } static void srec_write_Sd(int ofd, char dr, uint64_t addr, const void *buf, size_t sz, size_t rlen) { const uint8_t *p, *pe; p = buf; pe = p + sz; while (pe - p >= (int) rlen) { srec_write(ofd, dr, addr, p, rlen); addr += rlen; p += rlen; } if (pe - p > 0) srec_write(ofd, dr, addr, p, pe - p); } static void srec_write_Se(int ofd, uint64_t e_entry, int forceS3) { char er; if (e_entry > 0xFFFFFFFF) { warnx("address space too big for S-Record file"); return; } if (forceS3) er = '7'; else { if (e_entry <= 0xFFFF) er = '9'; else if (e_entry <= 0xFFFFFF) er = '8'; else er = '7'; } srec_write(ofd, er, e_entry, NULL, 0); } static void srec_write(int ofd, char type, uint64_t addr, const void *buf, size_t sz) { char line[_LINE_BUFSZ]; const uint8_t *p, *pe; int len, addr_sz, checksum; if (type == '0' || type == '1' || type == '5' || type == '9') addr_sz = 2; else if (type == '2' || type == '8') addr_sz = 3; else addr_sz = 4; checksum = 0; line[0] = 'S'; line[1] = type; len = 2; write_num(line, &len, addr_sz + sz + 1, 1, &checksum); write_num(line, &len, addr, addr_sz, &checksum); for (p = buf, pe = p + sz; p < pe; p++) write_num(line, &len, *p, 1, &checksum); write_num(line, &len, ~checksum & 0xFF, 1, NULL); line[len++] = '\r'; line[len++] = '\n'; if (write(ofd, line, len) != (ssize_t) len) err(EXIT_FAILURE, "write failed"); } static void ihex_write_00(int ofd, uint64_t addr, const void *buf, size_t sz) { uint16_t addr_hi, old_addr_hi; const uint8_t *p, *pe; old_addr_hi = (addr >> 16) & 0xFFFF; p = buf; pe = p + sz; while (pe - p >= 16) { ihex_write(ofd, 0, addr, 0, p, 16); addr += 16; p += 16; addr_hi = (addr >> 16) & 0xFFFF; if (addr_hi != old_addr_hi) { old_addr_hi = addr_hi; ihex_write_04(ofd, addr_hi); } } if (pe - p > 0) ihex_write(ofd, 0, addr, 0, p, pe - p); } static int ihex_read(const char *line, char *type, uint64_t *addr, uint64_t *num, uint8_t *data, size_t *sz) { uint64_t count, _checksum; int checksum, i, len; *sz = 0; checksum = 0; len = 1; if (read_num(line, &len, &count, 1, &checksum) < 0) return (-1); if (read_num(line, &len, addr, 2, &checksum) < 0) return (-1); if (line[len++] != '0') return (-1); *type = line[len++]; checksum += *type - '0'; switch (*type) { case '0': for (i = 0; (uint64_t) i < count; i++) { if (read_num(line, &len, num, 1, &checksum) < 0) return (-1); data[i] = (uint8_t) *num; } *sz = count; break; case '1': if (count != 0) return (-1); break; case '2': case '4': if (count != 2) return (-1); if (read_num(line, &len, num, 2, &checksum) < 0) return (-1); break; case '3': case '5': if (count != 4) return (-1); if (read_num(line, &len, num, 4, &checksum) < 0) return (-1); break; default: return (-1); } if (read_num(line, &len, &_checksum, 1, &checksum) < 0) return (-1); if ((checksum & 0xFF) != 0) { return (-1); } return (0); } static void ihex_write_01(int ofd) { ihex_write(ofd, 1, 0, 0, NULL, 0); } static void ihex_write_04(int ofd, uint16_t addr) { ihex_write(ofd, 4, 0, addr, NULL, 2); } static void ihex_write_05(int ofd, uint64_t e_entry) { if (e_entry > 0xFFFFFFFF) { warnx("address space too big for Intel Hex file"); return; } ihex_write(ofd, 5, 0, e_entry, NULL, 4); } static void ihex_write(int ofd, int type, uint64_t addr, uint64_t num, const void *buf, size_t sz) { char line[_LINE_BUFSZ]; const uint8_t *p, *pe; int len, checksum; if (sz > 16) errx(EXIT_FAILURE, "Internal: ihex_write() sz too big"); checksum = 0; line[0] = ':'; len = 1; write_num(line, &len, sz, 1, &checksum); write_num(line, &len, addr, 2, &checksum); write_num(line, &len, type, 1, &checksum); if (sz > 0) { if (buf != NULL) { for (p = buf, pe = p + sz; p < pe; p++) write_num(line, &len, *p, 1, &checksum); } else write_num(line, &len, num, sz, &checksum); } write_num(line, &len, (~checksum + 1) & 0xFF, 1, NULL); line[len++] = '\r'; line[len++] = '\n'; if (write(ofd, line, len) != (ssize_t) len) err(EXIT_FAILURE, "write failed"); } static int read_num(const char *line, int *len, uint64_t *num, size_t sz, int *checksum) { uint8_t b; *num = 0; for (; sz > 0; sz--) { if (!ishexdigit(line[*len]) || !ishexdigit(line[*len + 1])) return (-1); b = (hex_value(line[*len]) << 4) | hex_value(line[*len + 1]); *num = (*num << 8) | b; *len += 2; if (checksum != NULL) *checksum = (*checksum + b) & 0xFF; } return (0); } static void write_num(char *line, int *len, uint64_t num, size_t sz, int *checksum) { uint8_t b; for (; sz > 0; sz--) { b = (num >> ((sz - 1) * 8)) & 0xFF; line[*len] = hex_digit((b >> 4) & 0xF); line[*len + 1] = hex_digit(b & 0xF); *len += 2; if (checksum != NULL) *checksum = (*checksum + b) & 0xFF; } } static char hex_digit(uint8_t n) { return ((n < 10) ? '0' + n : 'A' + (n - 10)); } static int hex_value(int x) { if (isdigit(x)) return (x - '0'); else if (x >= 'a' && x <= 'f') return (x - 'a' + 10); else return (x - 'A' + 10); } static int ishexdigit(int x) { if (isdigit(x)) return (1); if ((x >= 'a' && x <= 'f') || (x >= 'A' && x <= 'F')) return (1); return (0); } Index: vendor/elftoolchain/dist/elfcopy/pe.c =================================================================== --- vendor/elftoolchain/dist/elfcopy/pe.c (revision 305125) +++ vendor/elftoolchain/dist/elfcopy/pe.c (revision 305126) @@ -1,231 +1,234 @@ /*- * Copyright (c) 2016 Kai Wang * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include "elfcopy.h" -ELFTC_VCSID("$Id: pe.c 3477 2016-05-25 20:00:42Z kaiwang27 $"); +ELFTC_VCSID("$Id: pe.c 3490 2016-08-31 00:12:22Z emaste $"); /* Convert ELF object to Portable Executable (PE). */ void create_pe(struct elfcopy *ecp, int ifd, int ofd) { Elf *e; Elf_Scn *scn; Elf_Data *d; GElf_Ehdr eh; GElf_Shdr sh; PE *pe; PE_Scn *ps; PE_SecHdr psh; PE_CoffHdr pch; PE_OptHdr poh; PE_Object po; PE_Buffer *pb; const char *name; size_t indx; + time_t timestamp; int elferr; if (ecp->otf == ETF_EFI || ecp->oem == EM_X86_64) po = PE_O_PE32P; else po = PE_O_PE32; if ((e = elf_begin(ifd, ELF_C_READ, NULL)) == NULL) errx(EXIT_FAILURE, "elf_begin() failed: %s", elf_errmsg(-1)); if (gelf_getehdr(e, &eh) == NULL) errx(EXIT_FAILURE, "gelf_getehdr() failed: %s", elf_errmsg(-1)); if (elf_getshstrndx(ecp->ein, &indx) == 0) errx(EXIT_FAILURE, "elf_getshstrndx() failed: %s", elf_errmsg(-1)); if ((pe = pe_init(ofd, PE_C_WRITE, po)) == NULL) err(EXIT_FAILURE, "pe_init() failed"); /* Setup PE COFF header. */ memset(&pch, 0, sizeof(pch)); switch (ecp->oem) { case EM_386: pch.ch_machine = IMAGE_FILE_MACHINE_I386; break; case EM_X86_64: pch.ch_machine = IMAGE_FILE_MACHINE_AMD64; break; default: pch.ch_machine = IMAGE_FILE_MACHINE_UNKNOWN; break; } - pch.ch_timestamp = (uint32_t) time(NULL); + if (elftc_timestamp(×tamp) != 0) + err(EXIT_FAILURE, "elftc_timestamp"); + pch.ch_timestamp = (uint32_t) timestamp; if (pe_update_coff_header(pe, &pch) < 0) err(EXIT_FAILURE, "pe_update_coff_header() failed"); /* Setup PE optional header. */ memset(&poh, 0, sizeof(poh)); if (ecp->otf == ETF_EFI) poh.oh_subsystem = IMAGE_SUBSYSTEM_EFI_APPLICATION; poh.oh_entry = (uint32_t) eh.e_entry; /* * Default section alignment and file alignment. (Here the * section alignment is set to the default page size of the * archs supported. We should use different section alignment * for some arch. (e.g. IA64) */ poh.oh_secalign = 0x1000; poh.oh_filealign = 0x200; /* Copy sections. */ scn = NULL; while ((scn = elf_nextscn(e, scn)) != NULL) { /* * Read in ELF section. */ if (gelf_getshdr(scn, &sh) == NULL) { warnx("gelf_getshdr() failed: %s", elf_errmsg(-1)); (void) elf_errno(); continue; } if ((name = elf_strptr(ecp->ein, indx, sh.sh_name)) == NULL) { warnx("elf_strptr() failed: %s", elf_errmsg(-1)); (void) elf_errno(); continue; } /* Skip sections unneeded. */ if (strcmp(name, ".shstrtab") == 0 || strcmp(name, ".symtab") == 0 || strcmp(name, ".strtab") == 0) continue; if ((d = elf_getdata(scn, NULL)) == NULL) { warnx("elf_getdata() failed: %s", elf_errmsg(-1)); (void) elf_errno(); continue; } if (strcmp(name, ".text") == 0) { poh.oh_textbase = (uint32_t) sh.sh_addr; poh.oh_textsize = (uint32_t) roundup(sh.sh_size, poh.oh_filealign); } else { if (po == PE_O_PE32 && strcmp(name, ".data") == 0) poh.oh_database = sh.sh_addr; if (sh.sh_type == SHT_NOBITS) poh.oh_bsssize += (uint32_t) roundup(sh.sh_size, poh.oh_filealign); else if (sh.sh_flags & SHF_ALLOC) poh.oh_datasize += (uint32_t) roundup(sh.sh_size, poh.oh_filealign); } /* * Create PE/COFF section. */ if ((ps = pe_newscn(pe)) == NULL) { warn("pe_newscn() failed"); continue; } /* * Setup PE/COFF section header. The section name is not * NUL-terminated if its length happens to be 8. Long * section name should be truncated for PE image according * to the PE/COFF specification. */ memset(&psh, 0, sizeof(psh)); strncpy(psh.sh_name, name, sizeof(psh.sh_name)); psh.sh_addr = sh.sh_addr; psh.sh_virtsize = sh.sh_size; if (sh.sh_type != SHT_NOBITS) psh.sh_rawsize = roundup(sh.sh_size, poh.oh_filealign); else psh.sh_char |= IMAGE_SCN_CNT_UNINITIALIZED_DATA; /* * Translate ELF section flags to PE/COFF section flags. */ psh.sh_char |= IMAGE_SCN_MEM_READ; if (sh.sh_flags & SHF_WRITE) psh.sh_char |= IMAGE_SCN_MEM_WRITE; if (sh.sh_flags & SHF_EXECINSTR) psh.sh_char |= IMAGE_SCN_MEM_EXECUTE | IMAGE_SCN_CNT_CODE; if ((sh.sh_flags & SHF_ALLOC) && (psh.sh_char & 0xF0) == 0) psh.sh_char |= IMAGE_SCN_CNT_INITIALIZED_DATA; /* Mark relocation section "discardable". */ if (strcmp(name, ".reloc") == 0) psh.sh_char |= IMAGE_SCN_MEM_DISCARDABLE; if (pe_update_section_header(ps, &psh) < 0) { warn("pe_update_section_header() failed"); continue; } /* Copy section content. */ if ((pb = pe_newbuffer(ps)) == NULL) { warn("pe_newbuffer() failed"); continue; } pb->pb_align = 1; pb->pb_off = 0; pb->pb_size = roundup(sh.sh_size, poh.oh_filealign); if ((pb->pb_buf = calloc(1, pb->pb_size)) == NULL) { warn("calloc failed"); continue; } memcpy(pb->pb_buf, d->d_buf, sh.sh_size); } elferr = elf_errno(); if (elferr != 0) warnx("elf_nextscn() failed: %s", elf_errmsg(elferr)); /* Update PE optional header. */ if (pe_update_opt_header(pe, &poh) < 0) err(EXIT_FAILURE, "pe_update_opt_header() failed"); /* Write out PE/COFF object. */ if (pe_update(pe) < 0) err(EXIT_FAILURE, "pe_update() failed"); pe_finish(pe); elf_end(e); } Index: vendor/elftoolchain/dist/elfdump/elfdump.c =================================================================== --- vendor/elftoolchain/dist/elfdump/elfdump.c (revision 305125) +++ vendor/elftoolchain/dist/elfdump/elfdump.c (revision 305126) @@ -1,2678 +1,2680 @@ /*- * Copyright (c) 2007-2012 Kai Wang * Copyright (c) 2003 David O'Brien. All rights reserved. * Copyright (c) 2001 Jake Burkholder * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef USE_LIBARCHIVE_AR #include #include #endif #include "_elftc.h" -ELFTC_VCSID("$Id: elfdump.c 3474 2016-05-17 20:44:53Z emaste $"); +ELFTC_VCSID("$Id: elfdump.c 3482 2016-08-02 18:47:00Z emaste $"); #if defined(ELFTC_NEED_ELF_NOTE_DEFINITION) #include "native-elf-format.h" #if ELFTC_CLASS == ELFCLASS32 typedef Elf32_Nhdr Elf_Note; #else typedef Elf64_Nhdr Elf_Note; #endif #endif /* elfdump(1) options. */ #define ED_DYN (1<<0) #define ED_EHDR (1<<1) #define ED_GOT (1<<2) #define ED_HASH (1<<3) #define ED_INTERP (1<<4) #define ED_NOTE (1<<5) #define ED_PHDR (1<<6) #define ED_REL (1<<7) #define ED_SHDR (1<<8) #define ED_SYMTAB (1<<9) #define ED_SYMVER (1<<10) #define ED_CHECKSUM (1<<11) #define ED_ALL ((1<<12)-1) /* elfdump(1) run control flags. */ #define SOLARIS_FMT (1<<0) #define PRINT_FILENAME (1<<1) #define PRINT_ARSYM (1<<2) #define ONLY_ARSYM (1<<3) /* Convenient print macro. */ #define PRT(...) fprintf(ed->out, __VA_ARGS__) /* Internal data structure for sections. */ struct section { const char *name; /* section name */ Elf_Scn *scn; /* section scn */ uint64_t off; /* section offset */ uint64_t sz; /* section size */ uint64_t entsize; /* section entsize */ uint64_t align; /* section alignment */ uint64_t type; /* section type */ uint64_t flags; /* section flags */ uint64_t addr; /* section virtual addr */ uint32_t link; /* section link ndx */ uint32_t info; /* section info ndx */ }; struct spec_name { const char *name; STAILQ_ENTRY(spec_name) sn_list; }; /* Structure encapsulates the global data for readelf(1). */ struct elfdump { FILE *out; /* output redirection. */ const char *filename; /* current processing file. */ const char *archive; /* archive name */ int options; /* command line options. */ int flags; /* run control flags. */ Elf *elf; /* underlying ELF descriptor. */ #ifndef USE_LIBARCHIVE_AR Elf *ar; /* ar(1) archive descriptor. */ #endif GElf_Ehdr ehdr; /* ELF header. */ int ec; /* ELF class. */ size_t shnum; /* #sections. */ struct section *sl; /* list of sections. */ STAILQ_HEAD(, spec_name) snl; /* list of names specified by -N. */ }; /* Relocation entry. */ struct rel_entry { union { GElf_Rel rel; GElf_Rela rela; } u_r; const char *symn; uint32_t type; }; #if defined(ELFTC_NEED_BYTEORDER_EXTENSIONS) static __inline uint32_t be32dec(const void *pp) { unsigned char const *p = (unsigned char const *)pp; return ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]); } static __inline uint32_t le32dec(const void *pp) { unsigned char const *p = (unsigned char const *)pp; return ((p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0]); } #endif /* http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#tag_encodings */ static const char * d_tags(uint64_t tag) { static char unknown_buf[64]; switch (tag) { case DT_NULL: return "DT_NULL"; case DT_NEEDED: return "DT_NEEDED"; case DT_PLTRELSZ: return "DT_PLTRELSZ"; case DT_PLTGOT: return "DT_PLTGOT"; case DT_HASH: return "DT_HASH"; case DT_STRTAB: return "DT_STRTAB"; case DT_SYMTAB: return "DT_SYMTAB"; case DT_RELA: return "DT_RELA"; case DT_RELASZ: return "DT_RELASZ"; case DT_RELAENT: return "DT_RELAENT"; case DT_STRSZ: return "DT_STRSZ"; case DT_SYMENT: return "DT_SYMENT"; case DT_INIT: return "DT_INIT"; case DT_FINI: return "DT_FINI"; case DT_SONAME: return "DT_SONAME"; case DT_RPATH: return "DT_RPATH"; case DT_SYMBOLIC: return "DT_SYMBOLIC"; case DT_REL: return "DT_REL"; case DT_RELSZ: return "DT_RELSZ"; case DT_RELENT: return "DT_RELENT"; case DT_PLTREL: return "DT_PLTREL"; case DT_DEBUG: return "DT_DEBUG"; case DT_TEXTREL: return "DT_TEXTREL"; case DT_JMPREL: return "DT_JMPREL"; case DT_BIND_NOW: return "DT_BIND_NOW"; case DT_INIT_ARRAY: return "DT_INIT_ARRAY"; case DT_FINI_ARRAY: return "DT_FINI_ARRAY"; case DT_INIT_ARRAYSZ: return "DT_INIT_ARRAYSZ"; case DT_FINI_ARRAYSZ: return "DT_FINI_ARRAYSZ"; case DT_RUNPATH: return "DT_RUNPATH"; case DT_FLAGS: return "DT_FLAGS"; case DT_PREINIT_ARRAY: return "DT_PREINIT_ARRAY"; /* XXX DT_ENCODING */ case DT_PREINIT_ARRAYSZ:return "DT_PREINIT_ARRAYSZ"; /* 0x6000000D - 0x6ffff000 operating system-specific semantics */ case 0x6ffffdf5: return "DT_GNU_PRELINKED"; case 0x6ffffdf6: return "DT_GNU_CONFLICTSZ"; case 0x6ffffdf7: return "DT_GNU_LIBLISTSZ"; case 0x6ffffdf8: return "DT_SUNW_CHECKSUM"; case DT_PLTPADSZ: return "DT_PLTPADSZ"; case DT_MOVEENT: return "DT_MOVEENT"; case DT_MOVESZ: return "DT_MOVESZ"; case 0x6ffffdfc: return "DT_FEATURE"; case DT_POSFLAG_1: return "DT_POSFLAG_1"; case DT_SYMINSZ: return "DT_SYMINSZ"; case DT_SYMINENT: return "DT_SYMINENT (DT_VALRNGHI)"; case DT_ADDRRNGLO: return "DT_ADDRRNGLO"; case DT_GNU_HASH: return "DT_GNU_HASH"; case 0x6ffffef8: return "DT_GNU_CONFLICT"; case 0x6ffffef9: return "DT_GNU_LIBLIST"; case 0x6ffffefa: return "DT_CONFIG"; case 0x6ffffefb: return "DT_DEPAUDIT"; case 0x6ffffefc: return "DT_AUDIT"; case 0x6ffffefd: return "DT_PLTPAD"; case 0x6ffffefe: return "DT_MOVETAB"; case DT_SYMINFO: return "DT_SYMINFO (DT_ADDRRNGHI)"; case DT_RELACOUNT: return "DT_RELACOUNT"; case DT_RELCOUNT: return "DT_RELCOUNT"; case DT_FLAGS_1: return "DT_FLAGS_1"; case DT_VERDEF: return "DT_VERDEF"; case DT_VERDEFNUM: return "DT_VERDEFNUM"; case DT_VERNEED: return "DT_VERNEED"; case DT_VERNEEDNUM: return "DT_VERNEEDNUM"; case 0x6ffffff0: return "DT_GNU_VERSYM"; /* 0x70000000 - 0x7fffffff processor-specific semantics */ case 0x70000000: return "DT_IA_64_PLT_RESERVE"; case 0x7ffffffd: return "DT_SUNW_AUXILIARY"; case 0x7ffffffe: return "DT_SUNW_USED"; case 0x7fffffff: return "DT_SUNW_FILTER"; } snprintf(unknown_buf, sizeof(unknown_buf), "", (unsigned long long)tag); return (unknown_buf); } static const char * e_machines(unsigned int mach) { static char machdesc[64]; switch (mach) { case EM_NONE: return "EM_NONE"; case EM_M32: return "EM_M32"; case EM_SPARC: return "EM_SPARC"; case EM_386: return "EM_386"; case EM_68K: return "EM_68K"; case EM_88K: return "EM_88K"; case EM_IAMCU: return "EM_IAMCU"; case EM_860: return "EM_860"; case EM_MIPS: return "EM_MIPS"; case EM_PPC: return "EM_PPC"; case EM_PPC64: return "EM_PPC64"; case EM_ARM: return "EM_ARM"; case EM_ALPHA: return "EM_ALPHA (legacy)"; case EM_SPARCV9:return "EM_SPARCV9"; case EM_IA_64: return "EM_IA_64"; case EM_X86_64: return "EM_X86_64"; case EM_AARCH64:return "EM_AARCH64"; case EM_RISCV: return "EM_RISCV"; } snprintf(machdesc, sizeof(machdesc), "(unknown machine) -- type 0x%x", mach); return (machdesc); } static const char * elf_type_str(unsigned int type) { static char s_type[32]; switch (type) { case ET_NONE: return "ET_NONE"; case ET_REL: return "ET_REL"; case ET_EXEC: return "ET_EXEC"; case ET_DYN: return "ET_DYN"; case ET_CORE: return "ET_CORE"; } if (type >= ET_LOPROC) snprintf(s_type, sizeof(s_type), "", type); else if (type >= ET_LOOS && type <= ET_HIOS) snprintf(s_type, sizeof(s_type), "", type); else snprintf(s_type, sizeof(s_type), "", ver); return (s_ver); } static const char * elf_class_str(unsigned int class) { static char s_class[32]; switch (class) { case ELFCLASSNONE: return "ELFCLASSNONE"; case ELFCLASS32: return "ELFCLASS32"; case ELFCLASS64: return "ELFCLASS64"; } snprintf(s_class, sizeof(s_class), "", class); return (s_class); } static const char * elf_data_str(unsigned int data) { static char s_data[32]; switch (data) { case ELFDATANONE: return "ELFDATANONE"; case ELFDATA2LSB: return "ELFDATA2LSB"; case ELFDATA2MSB: return "ELFDATA2MSB"; } snprintf(s_data, sizeof(s_data), "", data); return (s_data); } static const char *ei_abis[256] = { "ELFOSABI_NONE", "ELFOSABI_HPUX", "ELFOSABI_NETBSD", "ELFOSABI_LINUX", "ELFOSABI_HURD", "ELFOSABI_86OPEN", "ELFOSABI_SOLARIS", "ELFOSABI_AIX", "ELFOSABI_IRIX", "ELFOSABI_FREEBSD", "ELFOSABI_TRU64", "ELFOSABI_MODESTO", "ELFOSABI_OPENBSD", [17] = "ELFOSABI_CLOUDABI", + [64] = "ELFOSABI_ARM_AEABI", + [97] = "ELFOSABI_ARM", [255] = "ELFOSABI_STANDALONE" }; static const char * elf_phdr_type_str(unsigned int type) { static char s_type[32]; switch (type) { case PT_NULL: return "PT_NULL"; case PT_LOAD: return "PT_LOAD"; case PT_DYNAMIC: return "PT_DYNAMIC"; case PT_INTERP: return "PT_INTERP"; case PT_NOTE: return "PT_NOTE"; case PT_SHLIB: return "PT_SHLIB"; case PT_PHDR: return "PT_PHDR"; case PT_TLS: return "PT_TLS"; case PT_GNU_EH_FRAME: return "PT_GNU_EH_FRAME"; case PT_GNU_STACK: return "PT_GNU_STACK"; case PT_GNU_RELRO: return "PT_GNU_RELRO"; } snprintf(s_type, sizeof(s_type), "", type); return (s_type); } static const char *p_flags[] = { "", "PF_X", "PF_W", "PF_X|PF_W", "PF_R", "PF_X|PF_R", "PF_W|PF_R", "PF_X|PF_W|PF_R" }; static const char * sh_name(struct elfdump *ed, int ndx) { static char num[10]; switch (ndx) { case SHN_UNDEF: return "UNDEF"; case SHN_ABS: return "ABS"; case SHN_COMMON: return "COMMON"; default: if ((uint64_t)ndx < ed->shnum) return (ed->sl[ndx].name); else { snprintf(num, sizeof(num), "%d", ndx); return (num); } } } /* http://www.sco.com/developers/gabi/latest/ch4.sheader.html#sh_type */ static const char * sh_types(uint64_t mach, uint64_t sht) { static char unknown_buf[64]; if (sht < 0x60000000) { switch (sht) { case SHT_NULL: return "SHT_NULL"; case SHT_PROGBITS: return "SHT_PROGBITS"; case SHT_SYMTAB: return "SHT_SYMTAB"; case SHT_STRTAB: return "SHT_STRTAB"; case SHT_RELA: return "SHT_RELA"; case SHT_HASH: return "SHT_HASH"; case SHT_DYNAMIC: return "SHT_DYNAMIC"; case SHT_NOTE: return "SHT_NOTE"; case SHT_NOBITS: return "SHT_NOBITS"; case SHT_REL: return "SHT_REL"; case SHT_SHLIB: return "SHT_SHLIB"; case SHT_DYNSYM: return "SHT_DYNSYM"; case SHT_INIT_ARRAY: return "SHT_INIT_ARRAY"; case SHT_FINI_ARRAY: return "SHT_FINI_ARRAY"; case SHT_PREINIT_ARRAY: return "SHT_PREINIT_ARRAY"; case SHT_GROUP: return "SHT_GROUP"; case SHT_SYMTAB_SHNDX: return "SHT_SYMTAB_SHNDX"; } } else if (sht < 0x70000000) { /* 0x60000000-0x6fffffff operating system-specific semantics */ switch (sht) { case 0x6ffffff0: return "XXX:VERSYM"; case SHT_SUNW_dof: return "SHT_SUNW_dof"; case SHT_GNU_HASH: return "SHT_GNU_HASH"; case 0x6ffffff7: return "SHT_GNU_LIBLIST"; case 0x6ffffffc: return "XXX:VERDEF"; case SHT_SUNW_verdef: return "SHT_SUNW(GNU)_verdef"; case SHT_SUNW_verneed: return "SHT_SUNW(GNU)_verneed"; case SHT_SUNW_versym: return "SHT_SUNW(GNU)_versym"; } } else if (sht < 0x80000000) { /* 0x70000000 - 0x7fffffff processor-specific semantics */ switch (mach) { case EM_ARM: switch (sht) { case SHT_ARM_EXIDX: return "SHT_ARM_EXIDX"; case SHT_ARM_PREEMPTMAP: return "SHT_ARM_PREEMPTMAP"; case SHT_ARM_ATTRIBUTES: return "SHT_ARM_ATTRIBUTES"; case SHT_ARM_DEBUGOVERLAY: return "SHT_ARM_DEBUGOVERLAY"; case SHT_ARM_OVERLAYSECTION: return "SHT_ARM_OVERLAYSECTION"; } break; case EM_IA_64: switch (sht) { case 0x70000000: return "SHT_IA_64_EXT"; case 0x70000001: return "SHT_IA_64_UNWIND"; } break; case EM_MIPS: switch (sht) { case SHT_MIPS_REGINFO: return "SHT_MIPS_REGINFO"; case SHT_MIPS_OPTIONS: return "SHT_MIPS_OPTIONS"; case SHT_MIPS_ABIFLAGS: return "SHT_MIPS_ABIFLAGS"; } break; } switch (sht) { case 0x7ffffffd: return "XXX:AUXILIARY"; case 0x7fffffff: return "XXX:FILTER"; } } /* 0x80000000 - 0xffffffff application programs */ snprintf(unknown_buf, sizeof(unknown_buf), "", (unsigned long long)sht); return (unknown_buf); } /* * Define known section flags. These flags are defined in the order * they are to be printed out. */ #define DEFINE_SHFLAGS() \ DEFINE_SHF(WRITE) \ DEFINE_SHF(ALLOC) \ DEFINE_SHF(EXECINSTR) \ DEFINE_SHF(MERGE) \ DEFINE_SHF(STRINGS) \ DEFINE_SHF(INFO_LINK) \ DEFINE_SHF(LINK_ORDER) \ DEFINE_SHF(OS_NONCONFORMING) \ DEFINE_SHF(GROUP) \ DEFINE_SHF(TLS) \ DEFINE_SHF(COMPRESSED) #undef DEFINE_SHF #define DEFINE_SHF(F) "SHF_" #F "|" #define ALLSHFLAGS DEFINE_SHFLAGS() static const char * sh_flags(uint64_t shf) { static char flg[sizeof(ALLSHFLAGS)+1]; flg[0] = '\0'; #undef DEFINE_SHF #define DEFINE_SHF(N) \ if (shf & SHF_##N) \ strcat(flg, "SHF_" #N "|"); \ DEFINE_SHFLAGS() flg[strlen(flg) - 1] = '\0'; /* Remove the trailing "|". */ return (flg); } static const char * st_type(unsigned int mach, unsigned int type) { static char s_type[32]; switch (type) { case STT_NOTYPE: return "STT_NOTYPE"; case STT_OBJECT: return "STT_OBJECT"; case STT_FUNC: return "STT_FUNC"; case STT_SECTION: return "STT_SECTION"; case STT_FILE: return "STT_FILE"; case STT_COMMON: return "STT_COMMON"; case STT_TLS: return "STT_TLS"; case 13: if (mach == EM_SPARCV9) return "STT_SPARC_REGISTER"; break; } snprintf(s_type, sizeof(s_type), "", type); return (s_type); } static const char * st_type_S(unsigned int type) { static char s_type[32]; switch (type) { case STT_NOTYPE: return "NOTY"; case STT_OBJECT: return "OBJT"; case STT_FUNC: return "FUNC"; case STT_SECTION: return "SECT"; case STT_FILE: return "FILE"; } snprintf(s_type, sizeof(s_type), "", type); return (s_type); } static const char * st_bindings(unsigned int sbind) { static char s_sbind[32]; switch (sbind) { case STB_LOCAL: return "STB_LOCAL"; case STB_GLOBAL: return "STB_GLOBAL"; case STB_WEAK: return "STB_WEAK"; case STB_GNU_UNIQUE: return "STB_GNU_UNIQUE"; default: if (sbind >= STB_LOOS && sbind <= STB_HIOS) return "OS"; else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC) return "PROC"; else snprintf(s_sbind, sizeof(s_sbind), "", sbind); return (s_sbind); } } static const char * st_bindings_S(unsigned int sbind) { static char s_sbind[32]; switch (sbind) { case STB_LOCAL: return "LOCL"; case STB_GLOBAL: return "GLOB"; case STB_WEAK: return "WEAK"; case STB_GNU_UNIQUE: return "UNIQ"; default: if (sbind >= STB_LOOS && sbind <= STB_HIOS) return "OS"; else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC) return "PROC"; else snprintf(s_sbind, sizeof(s_sbind), "<%#x>", sbind); return (s_sbind); } } static unsigned char st_others[] = { 'D', 'I', 'H', 'P' }; static void add_name(struct elfdump *ed, const char *name); static void elf_print_object(struct elfdump *ed); static void elf_print_elf(struct elfdump *ed); static void elf_print_ehdr(struct elfdump *ed); static void elf_print_phdr(struct elfdump *ed); static void elf_print_shdr(struct elfdump *ed); static void elf_print_symtab(struct elfdump *ed, int i); static void elf_print_symtabs(struct elfdump *ed); static void elf_print_symver(struct elfdump *ed); static void elf_print_verdef(struct elfdump *ed, struct section *s); static void elf_print_verneed(struct elfdump *ed, struct section *s); static void elf_print_interp(struct elfdump *ed); static void elf_print_dynamic(struct elfdump *ed); static void elf_print_rel_entry(struct elfdump *ed, struct section *s, int j, struct rel_entry *r); static void elf_print_rela(struct elfdump *ed, struct section *s, Elf_Data *data); static void elf_print_rel(struct elfdump *ed, struct section *s, Elf_Data *data); static void elf_print_reloc(struct elfdump *ed); static void elf_print_got(struct elfdump *ed); static void elf_print_got_section(struct elfdump *ed, struct section *s); static void elf_print_note(struct elfdump *ed); static void elf_print_svr4_hash(struct elfdump *ed, struct section *s); static void elf_print_svr4_hash64(struct elfdump *ed, struct section *s); static void elf_print_gnu_hash(struct elfdump *ed, struct section *s); static void elf_print_hash(struct elfdump *ed); static void elf_print_checksum(struct elfdump *ed); static void find_gotrel(struct elfdump *ed, struct section *gs, struct rel_entry *got); static struct spec_name *find_name(struct elfdump *ed, const char *name); static int get_ent_count(const struct section *s, int *ent_count); static const char *get_symbol_name(struct elfdump *ed, uint32_t symtab, int i); static const char *get_string(struct elfdump *ed, int strtab, size_t off); static void get_versym(struct elfdump *ed, int i, uint16_t **vs, int *nvs); static void load_sections(struct elfdump *ed); static void unload_sections(struct elfdump *ed); static void usage(void); #ifdef USE_LIBARCHIVE_AR static int ac_detect_ar(int fd); static void ac_print_ar(struct elfdump *ed, int fd); #else static void elf_print_ar(struct elfdump *ed, int fd); #endif /* USE_LIBARCHIVE_AR */ static struct option elfdump_longopts[] = { { "help", no_argument, NULL, 'H' }, { "version", no_argument, NULL, 'V' }, { NULL, 0, NULL, 0 } }; int main(int ac, char **av) { struct elfdump *ed, ed_storage; struct spec_name *sn; int ch, i; ed = &ed_storage; memset(ed, 0, sizeof(*ed)); STAILQ_INIT(&ed->snl); ed->out = stdout; while ((ch = getopt_long(ac, av, "acdeiGHhknN:prsSvVw:", elfdump_longopts, NULL)) != -1) switch (ch) { case 'a': ed->options = ED_ALL; break; case 'c': ed->options |= ED_SHDR; break; case 'd': ed->options |= ED_DYN; break; case 'e': ed->options |= ED_EHDR; break; case 'i': ed->options |= ED_INTERP; break; case 'G': ed->options |= ED_GOT; break; case 'h': ed->options |= ED_HASH; break; case 'k': ed->options |= ED_CHECKSUM; break; case 'n': ed->options |= ED_NOTE; break; case 'N': add_name(ed, optarg); break; case 'p': ed->options |= ED_PHDR; break; case 'r': ed->options |= ED_REL; break; case 's': ed->options |= ED_SYMTAB; break; case 'S': ed->flags |= SOLARIS_FMT; break; case 'v': ed->options |= ED_SYMVER; break; case 'V': (void) printf("%s (%s)\n", ELFTC_GETPROGNAME(), elftc_version()); exit(EXIT_SUCCESS); break; case 'w': if ((ed->out = fopen(optarg, "w")) == NULL) err(EXIT_FAILURE, "%s", optarg); break; case '?': case 'H': default: usage(); } ac -= optind; av += optind; if (ed->options == 0) ed->options = ED_ALL; sn = NULL; if (ed->options & ED_SYMTAB && (STAILQ_EMPTY(&ed->snl) || (sn = find_name(ed, "ARSYM")) != NULL)) { ed->flags |= PRINT_ARSYM; if (sn != NULL) { STAILQ_REMOVE(&ed->snl, sn, spec_name, sn_list); if (STAILQ_EMPTY(&ed->snl)) ed->flags |= ONLY_ARSYM; } } if (ac == 0) usage(); if (ac > 1) ed->flags |= PRINT_FILENAME; if (elf_version(EV_CURRENT) == EV_NONE) errx(EXIT_FAILURE, "ELF library initialization failed: %s", elf_errmsg(-1)); for (i = 0; i < ac; i++) { ed->filename = av[i]; ed->archive = NULL; elf_print_object(ed); } exit(EXIT_SUCCESS); } #ifdef USE_LIBARCHIVE_AR /* Archive symbol table entry. */ struct arsym_entry { char *sym_name; size_t off; }; /* * Convenient wrapper for general libarchive error handling. */ #define AC(CALL) do { \ if ((CALL)) { \ warnx("%s", archive_error_string(a)); \ return; \ } \ } while (0) /* * Detect an ar(1) archive using libarchive(3). */ static int ac_detect_ar(int fd) { struct archive *a; struct archive_entry *entry; int r; r = -1; if ((a = archive_read_new()) == NULL) return (0); archive_read_support_format_ar(a); if (archive_read_open_fd(a, fd, 10240) == ARCHIVE_OK) r = archive_read_next_header(a, &entry); archive_read_close(a); archive_read_free(a); return (r == ARCHIVE_OK); } /* * Dump an ar(1) archive using libarchive(3). */ static void ac_print_ar(struct elfdump *ed, int fd) { struct archive *a; struct archive_entry *entry; struct arsym_entry *arsym; const char *name; char idx[10], *b; void *buff; size_t size; uint32_t cnt, i; int r; if (lseek(fd, 0, SEEK_SET) == -1) err(EXIT_FAILURE, "lseek failed"); if ((a = archive_read_new()) == NULL) errx(EXIT_FAILURE, "%s", archive_error_string(a)); archive_read_support_format_ar(a); AC(archive_read_open_fd(a, fd, 10240)); for(;;) { r = archive_read_next_header(a, &entry); if (r == ARCHIVE_FATAL) errx(EXIT_FAILURE, "%s", archive_error_string(a)); if (r == ARCHIVE_EOF) break; if (r == ARCHIVE_WARN || r == ARCHIVE_RETRY) warnx("%s", archive_error_string(a)); if (r == ARCHIVE_RETRY) continue; name = archive_entry_pathname(entry); size = archive_entry_size(entry); if (size == 0) continue; if ((buff = malloc(size)) == NULL) { warn("malloc failed"); continue; } if (archive_read_data(a, buff, size) != (ssize_t)size) { warnx("%s", archive_error_string(a)); free(buff); continue; } /* * Note that when processing arsym via libarchive, there is * no way to tell which member a certain symbol belongs to, * since we can not just "lseek" to a member offset and read * the member header. */ if (!strcmp(name, "/") && ed->flags & PRINT_ARSYM) { b = buff; cnt = be32dec(b); if (cnt == 0) { free(buff); continue; } arsym = calloc(cnt, sizeof(*arsym)); if (arsym == NULL) err(EXIT_FAILURE, "calloc failed"); b += sizeof(uint32_t); for (i = 0; i < cnt; i++) { arsym[i].off = be32dec(b); b += sizeof(uint32_t); } for (i = 0; i < cnt; i++) { arsym[i].sym_name = b; b += strlen(b) + 1; } if (ed->flags & SOLARIS_FMT) { PRT("\nSymbol Table: (archive)\n"); PRT(" index offset symbol\n"); } else PRT("\nsymbol table (archive):\n"); for (i = 0; i < cnt; i++) { if (ed->flags & SOLARIS_FMT) { snprintf(idx, sizeof(idx), "[%d]", i); PRT("%10s ", idx); PRT("0x%8.8jx ", (uintmax_t)arsym[i].off); PRT("%s\n", arsym[i].sym_name); } else { PRT("\nentry: %d\n", i); PRT("\toffset: %#jx\n", (uintmax_t)arsym[i].off); PRT("\tsymbol: %s\n", arsym[i].sym_name); } } free(arsym); free(buff); /* No need to continue if we only dump ARSYM. */ if (ed->flags & ONLY_ARSYM) { AC(archive_read_close(a)); AC(archive_read_free(a)); return; } continue; } if ((ed->elf = elf_memory(buff, size)) == NULL) { warnx("elf_memroy() failed: %s", elf_errmsg(-1)); free(buff); continue; } /* Skip non-ELF member. */ if (elf_kind(ed->elf) == ELF_K_ELF) { printf("\n%s(%s):\n", ed->archive, name); elf_print_elf(ed); } elf_end(ed->elf); free(buff); } AC(archive_read_close(a)); AC(archive_read_free(a)); } #else /* USE_LIBARCHIVE_AR */ /* * Dump an ar(1) archive. */ static void elf_print_ar(struct elfdump *ed, int fd) { Elf *e; Elf_Arhdr *arh; Elf_Arsym *arsym; Elf_Cmd cmd; char idx[10]; size_t cnt, i; ed->ar = ed->elf; if (ed->flags & PRINT_ARSYM) { cnt = 0; if ((arsym = elf_getarsym(ed->ar, &cnt)) == NULL) { warnx("elf_getarsym failed: %s", elf_errmsg(-1)); goto print_members; } if (cnt == 0) goto print_members; if (ed->flags & SOLARIS_FMT) { PRT("\nSymbol Table: (archive)\n"); PRT(" index offset member name and symbol\n"); } else PRT("\nsymbol table (archive):\n"); for (i = 0; i < cnt - 1; i++) { if (elf_rand(ed->ar, arsym[i].as_off) != arsym[i].as_off) { warnx("elf_rand failed: %s", elf_errmsg(-1)); break; } if ((e = elf_begin(fd, ELF_C_READ, ed->ar)) == NULL) { warnx("elf_begin failed: %s", elf_errmsg(-1)); break; } if ((arh = elf_getarhdr(e)) == NULL) { warnx("elf_getarhdr failed: %s", elf_errmsg(-1)); break; } if (ed->flags & SOLARIS_FMT) { snprintf(idx, sizeof(idx), "[%zu]", i); PRT("%10s ", idx); PRT("0x%8.8jx ", (uintmax_t)arsym[i].as_off); PRT("(%s):%s\n", arh->ar_name, arsym[i].as_name); } else { PRT("\nentry: %zu\n", i); PRT("\toffset: %#jx\n", (uintmax_t)arsym[i].as_off); PRT("\tmember: %s\n", arh->ar_name); PRT("\tsymbol: %s\n", arsym[i].as_name); } elf_end(e); } /* No need to continue if we only dump ARSYM. */ if (ed->flags & ONLY_ARSYM) return; } print_members: /* Rewind the archive. */ if (elf_rand(ed->ar, SARMAG) != SARMAG) { warnx("elf_rand failed: %s", elf_errmsg(-1)); return; } /* Dump each member of the archive. */ cmd = ELF_C_READ; while ((ed->elf = elf_begin(fd, cmd, ed->ar)) != NULL) { /* Skip non-ELF member. */ if (elf_kind(ed->elf) == ELF_K_ELF) { if ((arh = elf_getarhdr(ed->elf)) == NULL) { warnx("elf_getarhdr failed: %s", elf_errmsg(-1)); break; } printf("\n%s(%s):\n", ed->archive, arh->ar_name); elf_print_elf(ed); } cmd = elf_next(ed->elf); elf_end(ed->elf); } } #endif /* USE_LIBARCHIVE_AR */ /* * Dump an object. (ELF object or ar(1) archive) */ static void elf_print_object(struct elfdump *ed) { int fd; if ((fd = open(ed->filename, O_RDONLY)) == -1) { warn("open %s failed", ed->filename); return; } #ifdef USE_LIBARCHIVE_AR if (ac_detect_ar(fd)) { ed->archive = ed->filename; ac_print_ar(ed, fd); return; } #endif /* USE_LIBARCHIVE_AR */ if ((ed->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) { warnx("elf_begin() failed: %s", elf_errmsg(-1)); return; } switch (elf_kind(ed->elf)) { case ELF_K_NONE: warnx("Not an ELF file."); return; case ELF_K_ELF: if (ed->flags & PRINT_FILENAME) printf("\n%s:\n", ed->filename); elf_print_elf(ed); break; case ELF_K_AR: #ifndef USE_LIBARCHIVE_AR ed->archive = ed->filename; elf_print_ar(ed, fd); #endif break; default: warnx("Internal: libelf returned unknown elf kind."); return; } elf_end(ed->elf); } /* * Dump an ELF object. */ static void elf_print_elf(struct elfdump *ed) { if (gelf_getehdr(ed->elf, &ed->ehdr) == NULL) { warnx("gelf_getehdr failed: %s", elf_errmsg(-1)); return; } if ((ed->ec = gelf_getclass(ed->elf)) == ELFCLASSNONE) { warnx("gelf_getclass failed: %s", elf_errmsg(-1)); return; } if (ed->options & (ED_SHDR | ED_DYN | ED_REL | ED_GOT | ED_SYMTAB | ED_SYMVER | ED_NOTE | ED_HASH)) load_sections(ed); if (ed->options & ED_EHDR) elf_print_ehdr(ed); if (ed->options & ED_PHDR) elf_print_phdr(ed); if (ed->options & ED_INTERP) elf_print_interp(ed); if (ed->options & ED_SHDR) elf_print_shdr(ed); if (ed->options & ED_DYN) elf_print_dynamic(ed); if (ed->options & ED_REL) elf_print_reloc(ed); if (ed->options & ED_GOT) elf_print_got(ed); if (ed->options & ED_SYMTAB) elf_print_symtabs(ed); if (ed->options & ED_SYMVER) elf_print_symver(ed); if (ed->options & ED_NOTE) elf_print_note(ed); if (ed->options & ED_HASH) elf_print_hash(ed); if (ed->options & ED_CHECKSUM) elf_print_checksum(ed); unload_sections(ed); } /* * Read the section headers from ELF object and store them in the * internal cache. */ static void load_sections(struct elfdump *ed) { struct section *s; const char *name; Elf_Scn *scn; GElf_Shdr sh; size_t shstrndx, ndx; int elferr; assert(ed->sl == NULL); if (!elf_getshnum(ed->elf, &ed->shnum)) { warnx("elf_getshnum failed: %s", elf_errmsg(-1)); return; } if (ed->shnum == 0) return; if ((ed->sl = calloc(ed->shnum, sizeof(*ed->sl))) == NULL) err(EXIT_FAILURE, "calloc failed"); if (!elf_getshstrndx(ed->elf, &shstrndx)) { warnx("elf_getshstrndx failed: %s", elf_errmsg(-1)); return; } if ((scn = elf_getscn(ed->elf, 0)) == NULL) { warnx("elf_getscn failed: %s", elf_errmsg(-1)); return; } (void) elf_errno(); do { if (gelf_getshdr(scn, &sh) == NULL) { warnx("gelf_getshdr failed: %s", elf_errmsg(-1)); (void) elf_errno(); continue; } if ((name = elf_strptr(ed->elf, shstrndx, sh.sh_name)) == NULL) { (void) elf_errno(); name = "ERROR"; } if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) if ((elferr = elf_errno()) != 0) { warnx("elf_ndxscn failed: %s", elf_errmsg(elferr)); continue; } if (ndx >= ed->shnum) { warnx("section index of '%s' out of range", name); continue; } s = &ed->sl[ndx]; s->name = name; s->scn = scn; s->off = sh.sh_offset; s->sz = sh.sh_size; s->entsize = sh.sh_entsize; s->align = sh.sh_addralign; s->type = sh.sh_type; s->flags = sh.sh_flags; s->addr = sh.sh_addr; s->link = sh.sh_link; s->info = sh.sh_info; } while ((scn = elf_nextscn(ed->elf, scn)) != NULL); elferr = elf_errno(); if (elferr != 0) warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); } /* * Release section related resources. */ static void unload_sections(struct elfdump *ed) { if (ed->sl != NULL) { free(ed->sl); ed->sl = NULL; } } /* * Add a name to the '-N' name list. */ static void add_name(struct elfdump *ed, const char *name) { struct spec_name *sn; if (find_name(ed, name)) return; if ((sn = malloc(sizeof(*sn))) == NULL) { warn("malloc failed"); return; } sn->name = name; STAILQ_INSERT_TAIL(&ed->snl, sn, sn_list); } /* * Lookup a name in the '-N' name list. */ static struct spec_name * find_name(struct elfdump *ed, const char *name) { struct spec_name *sn; STAILQ_FOREACH(sn, &ed->snl, sn_list) { if (!strcmp(sn->name, name)) return (sn); } return (NULL); } /* * Retrieve the name of a symbol using the section index of the symbol * table and the index of the symbol within that table. */ static const char * get_symbol_name(struct elfdump *ed, uint32_t symtab, int i) { static char sname[64]; struct section *s; const char *name; GElf_Sym sym; Elf_Data *data; int elferr; if (symtab >= ed->shnum) return (""); s = &ed->sl[symtab]; if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) return (""); (void) elf_errno(); if ((data = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return (""); } if (gelf_getsym(data, i, &sym) != &sym) return (""); if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) { if (sym.st_shndx < ed->shnum) { snprintf(sname, sizeof(sname), "%s (section)", ed->sl[sym.st_shndx].name); return (sname); } else return (""); } if ((name = elf_strptr(ed->elf, s->link, sym.st_name)) == NULL) return (""); return (name); } /* * Retrieve a string using string table section index and the string offset. */ static const char* get_string(struct elfdump *ed, int strtab, size_t off) { const char *name; if ((name = elf_strptr(ed->elf, strtab, off)) == NULL) return (""); return (name); } /* * Dump the ELF Executable Header. */ static void elf_print_ehdr(struct elfdump *ed) { if (!STAILQ_EMPTY(&ed->snl)) return; if (ed->flags & SOLARIS_FMT) { PRT("\nELF Header\n"); PRT(" ei_magic: { %#x, %c, %c, %c }\n", ed->ehdr.e_ident[0], ed->ehdr.e_ident[1], ed->ehdr.e_ident[2], ed->ehdr.e_ident[3]); PRT(" ei_class: %-18s", elf_class_str(ed->ehdr.e_ident[EI_CLASS])); PRT(" ei_data: %s\n", elf_data_str(ed->ehdr.e_ident[EI_DATA])); PRT(" e_machine: %-18s", e_machines(ed->ehdr.e_machine)); PRT(" e_version: %s\n", elf_version_str(ed->ehdr.e_version)); PRT(" e_type: %s\n", elf_type_str(ed->ehdr.e_type)); PRT(" e_flags: %18d\n", ed->ehdr.e_flags); PRT(" e_entry: %#18jx", (uintmax_t)ed->ehdr.e_entry); PRT(" e_ehsize: %6d", ed->ehdr.e_ehsize); PRT(" e_shstrndx:%5d\n", ed->ehdr.e_shstrndx); PRT(" e_shoff: %#18jx", (uintmax_t)ed->ehdr.e_shoff); PRT(" e_shentsize: %3d", ed->ehdr.e_shentsize); PRT(" e_shnum: %5d\n", ed->ehdr.e_shnum); PRT(" e_phoff: %#18jx", (uintmax_t)ed->ehdr.e_phoff); PRT(" e_phentsize: %3d", ed->ehdr.e_phentsize); PRT(" e_phnum: %5d\n", ed->ehdr.e_phnum); } else { PRT("\nelf header:\n"); PRT("\n"); PRT("\te_ident: %s %s %s\n", elf_class_str(ed->ehdr.e_ident[EI_CLASS]), elf_data_str(ed->ehdr.e_ident[EI_DATA]), ei_abis[ed->ehdr.e_ident[EI_OSABI]]); PRT("\te_type: %s\n", elf_type_str(ed->ehdr.e_type)); PRT("\te_machine: %s\n", e_machines(ed->ehdr.e_machine)); PRT("\te_version: %s\n", elf_version_str(ed->ehdr.e_version)); PRT("\te_entry: %#jx\n", (uintmax_t)ed->ehdr.e_entry); PRT("\te_phoff: %ju\n", (uintmax_t)ed->ehdr.e_phoff); PRT("\te_shoff: %ju\n", (uintmax_t) ed->ehdr.e_shoff); PRT("\te_flags: %u\n", ed->ehdr.e_flags); PRT("\te_ehsize: %u\n", ed->ehdr.e_ehsize); PRT("\te_phentsize: %u\n", ed->ehdr.e_phentsize); PRT("\te_phnum: %u\n", ed->ehdr.e_phnum); PRT("\te_shentsize: %u\n", ed->ehdr.e_shentsize); PRT("\te_shnum: %u\n", ed->ehdr.e_shnum); PRT("\te_shstrndx: %u\n", ed->ehdr.e_shstrndx); } } /* * Dump the ELF Program Header Table. */ static void elf_print_phdr(struct elfdump *ed) { GElf_Phdr ph; size_t phnum, i; int header; if (elf_getphnum(ed->elf, &phnum) == 0) { warnx("elf_getphnum failed: %s", elf_errmsg(-1)); return; } header = 0; for (i = 0; i < phnum; i++) { if (gelf_getphdr(ed->elf, i, &ph) != &ph) { warnx("elf_getphdr failed: %s", elf_errmsg(-1)); continue; } if (!STAILQ_EMPTY(&ed->snl) && find_name(ed, elf_phdr_type_str(ph.p_type)) == NULL) continue; if (ed->flags & SOLARIS_FMT) { PRT("\nProgram Header[%zu]:\n", i); PRT(" p_vaddr: %#-14jx", (uintmax_t)ph.p_vaddr); PRT(" p_flags: [ %s ]\n", p_flags[ph.p_flags & 0x7]); PRT(" p_paddr: %#-14jx", (uintmax_t)ph.p_paddr); PRT(" p_type: [ %s ]\n", elf_phdr_type_str(ph.p_type)); PRT(" p_filesz: %#-14jx", (uintmax_t)ph.p_filesz); PRT(" p_memsz: %#jx\n", (uintmax_t)ph.p_memsz); PRT(" p_offset: %#-14jx", (uintmax_t)ph.p_offset); PRT(" p_align: %#jx\n", (uintmax_t)ph.p_align); } else { if (!header) { PRT("\nprogram header:\n"); header = 1; } PRT("\n"); PRT("entry: %zu\n", i); PRT("\tp_type: %s\n", elf_phdr_type_str(ph.p_type)); PRT("\tp_offset: %ju\n", (uintmax_t)ph.p_offset); PRT("\tp_vaddr: %#jx\n", (uintmax_t)ph.p_vaddr); PRT("\tp_paddr: %#jx\n", (uintmax_t)ph.p_paddr); PRT("\tp_filesz: %ju\n", (uintmax_t)ph.p_filesz); PRT("\tp_memsz: %ju\n", (uintmax_t)ph.p_memsz); PRT("\tp_flags: %s\n", p_flags[ph.p_flags & 0x7]); PRT("\tp_align: %ju\n", (uintmax_t)ph.p_align); } } } /* * Dump the ELF Section Header Table. */ static void elf_print_shdr(struct elfdump *ed) { struct section *s; size_t i; if (!STAILQ_EMPTY(&ed->snl)) return; if ((ed->flags & SOLARIS_FMT) == 0) PRT("\nsection header:\n"); for (i = 0; i < ed->shnum; i++) { s = &ed->sl[i]; if (ed->flags & SOLARIS_FMT) { if (i == 0) continue; PRT("\nSection Header[%zu]:", i); PRT(" sh_name: %s\n", s->name); PRT(" sh_addr: %#-14jx", (uintmax_t)s->addr); if (s->flags != 0) PRT(" sh_flags: [ %s ]\n", sh_flags(s->flags)); else PRT(" sh_flags: 0\n"); PRT(" sh_size: %#-14jx", (uintmax_t)s->sz); PRT(" sh_type: [ %s ]\n", sh_types(ed->ehdr.e_machine, s->type)); PRT(" sh_offset: %#-14jx", (uintmax_t)s->off); PRT(" sh_entsize: %#jx\n", (uintmax_t)s->entsize); PRT(" sh_link: %-14u", s->link); PRT(" sh_info: %u\n", s->info); PRT(" sh_addralign: %#jx\n", (uintmax_t)s->align); } else { PRT("\n"); PRT("entry: %ju\n", (uintmax_t)i); PRT("\tsh_name: %s\n", s->name); PRT("\tsh_type: %s\n", sh_types(ed->ehdr.e_machine, s->type)); PRT("\tsh_flags: %s\n", sh_flags(s->flags)); PRT("\tsh_addr: %#jx\n", (uintmax_t)s->addr); PRT("\tsh_offset: %ju\n", (uintmax_t)s->off); PRT("\tsh_size: %ju\n", (uintmax_t)s->sz); PRT("\tsh_link: %u\n", s->link); PRT("\tsh_info: %u\n", s->info); PRT("\tsh_addralign: %ju\n", (uintmax_t)s->align); PRT("\tsh_entsize: %ju\n", (uintmax_t)s->entsize); } } } /* * Return number of entries in the given section. We'd prefer ent_count be a * size_t, but libelf APIs already use int for section indices. */ static int get_ent_count(const struct section *s, int *ent_count) { if (s->entsize == 0) { warnx("section %s has entry size 0", s->name); return (0); } else if (s->sz / s->entsize > INT_MAX) { warnx("section %s has invalid section count", s->name); return (0); } *ent_count = (int)(s->sz / s->entsize); return (1); } /* * Retrieve the content of the corresponding SHT_SUNW_versym section for * a symbol table section. */ static void get_versym(struct elfdump *ed, int i, uint16_t **vs, int *nvs) { struct section *s; Elf_Data *data; size_t j; int elferr; s = NULL; for (j = 0; j < ed->shnum; j++) { s = &ed->sl[j]; if (s->type == SHT_SUNW_versym && s->link == (uint32_t)i) break; } if (j >= ed->shnum) { *vs = NULL; return; } (void) elf_errno(); if ((data = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); *vs = NULL; return; } *vs = data->d_buf; assert(data->d_size == s->sz); if (!get_ent_count(s, nvs)) *nvs = 0; } /* * Dump the symbol table section. */ static void elf_print_symtab(struct elfdump *ed, int i) { struct section *s; const char *name; uint16_t *vs; char idx[10]; Elf_Data *data; GElf_Sym sym; int len, j, elferr, nvs; s = &ed->sl[i]; if (ed->flags & SOLARIS_FMT) PRT("\nSymbol Table Section: %s\n", s->name); else PRT("\nsymbol table (%s):\n", s->name); (void) elf_errno(); if ((data = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } vs = NULL; nvs = 0; assert(data->d_size == s->sz); if (!get_ent_count(s, &len)) return; if (ed->flags & SOLARIS_FMT) { if (ed->ec == ELFCLASS32) PRT(" index value "); else PRT(" index value "); PRT("size type bind oth ver shndx name\n"); get_versym(ed, i, &vs, &nvs); if (vs != NULL && nvs != len) { warnx("#symbol not equal to #versym"); vs = NULL; } } for (j = 0; j < len; j++) { if (gelf_getsym(data, j, &sym) != &sym) { warnx("gelf_getsym failed: %s", elf_errmsg(-1)); continue; } name = get_string(ed, s->link, sym.st_name); if (ed->flags & SOLARIS_FMT) { snprintf(idx, sizeof(idx), "[%d]", j); if (ed->ec == ELFCLASS32) PRT("%10s ", idx); else PRT("%10s ", idx); PRT("0x%8.8jx ", (uintmax_t)sym.st_value); if (ed->ec == ELFCLASS32) PRT("0x%8.8jx ", (uintmax_t)sym.st_size); else PRT("0x%12.12jx ", (uintmax_t)sym.st_size); PRT("%s ", st_type_S(GELF_ST_TYPE(sym.st_info))); PRT("%s ", st_bindings_S(GELF_ST_BIND(sym.st_info))); PRT("%c ", st_others[sym.st_other]); PRT("%3u ", (vs == NULL ? 0 : vs[j])); PRT("%-11.11s ", sh_name(ed, sym.st_shndx)); PRT("%s\n", name); } else { PRT("\nentry: %d\n", j); PRT("\tst_name: %s\n", name); PRT("\tst_value: %#jx\n", (uintmax_t)sym.st_value); PRT("\tst_size: %ju\n", (uintmax_t)sym.st_size); PRT("\tst_info: %s %s\n", st_type(ed->ehdr.e_machine, GELF_ST_TYPE(sym.st_info)), st_bindings(GELF_ST_BIND(sym.st_info))); PRT("\tst_shndx: %ju\n", (uintmax_t)sym.st_shndx); } } } /* * Dump the symbol tables. (.dynsym and .symtab) */ static void elf_print_symtabs(struct elfdump *ed) { size_t i; for (i = 0; i < ed->shnum; i++) if ((ed->sl[i].type == SHT_SYMTAB || ed->sl[i].type == SHT_DYNSYM) && (STAILQ_EMPTY(&ed->snl) || find_name(ed, ed->sl[i].name))) elf_print_symtab(ed, i); } /* * Dump the content of .dynamic section. */ static void elf_print_dynamic(struct elfdump *ed) { struct section *s; const char *name; char idx[10]; Elf_Data *data; GElf_Dyn dyn; int elferr, i, len; s = NULL; for (i = 0; (size_t)i < ed->shnum; i++) { s = &ed->sl[i]; if (s->type == SHT_DYNAMIC && (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name))) break; } if ((size_t)i >= ed->shnum) return; if (ed->flags & SOLARIS_FMT) { PRT("Dynamic Section: %s\n", s->name); PRT(" index tag value\n"); } else PRT("\ndynamic:\n"); (void) elf_errno(); if ((data = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } assert(data->d_size == s->sz); if (!get_ent_count(s, &len)) return; for (i = 0; i < len; i++) { if (gelf_getdyn(data, i, &dyn) != &dyn) { warnx("gelf_getdyn failed: %s", elf_errmsg(-1)); continue; } if (ed->flags & SOLARIS_FMT) { snprintf(idx, sizeof(idx), "[%d]", i); PRT("%10s %-16s ", idx, d_tags(dyn.d_tag)); } else { PRT("\n"); PRT("entry: %d\n", i); PRT("\td_tag: %s\n", d_tags(dyn.d_tag)); } switch(dyn.d_tag) { case DT_NEEDED: case DT_SONAME: case DT_RPATH: case DT_RUNPATH: if ((name = elf_strptr(ed->elf, s->link, dyn.d_un.d_val)) == NULL) name = ""; if (ed->flags & SOLARIS_FMT) PRT("%#-16jx %s\n", (uintmax_t)dyn.d_un.d_val, name); else PRT("\td_val: %s\n", name); break; case DT_PLTRELSZ: case DT_RELA: case DT_RELASZ: case DT_RELAENT: case DT_RELACOUNT: case DT_STRSZ: case DT_SYMENT: case DT_RELSZ: case DT_RELENT: case DT_PLTREL: case DT_VERDEF: case DT_VERDEFNUM: case DT_VERNEED: case DT_VERNEEDNUM: case DT_VERSYM: if (ed->flags & SOLARIS_FMT) PRT("%#jx\n", (uintmax_t)dyn.d_un.d_val); else PRT("\td_val: %ju\n", (uintmax_t)dyn.d_un.d_val); break; case DT_PLTGOT: case DT_HASH: case DT_GNU_HASH: case DT_STRTAB: case DT_SYMTAB: case DT_INIT: case DT_FINI: case DT_REL: case DT_JMPREL: case DT_DEBUG: if (ed->flags & SOLARIS_FMT) PRT("%#jx\n", (uintmax_t)dyn.d_un.d_ptr); else PRT("\td_ptr: %#jx\n", (uintmax_t)dyn.d_un.d_ptr); break; case DT_NULL: case DT_SYMBOLIC: case DT_TEXTREL: default: if (ed->flags & SOLARIS_FMT) PRT("\n"); break; } } } /* * Dump a .rel/.rela section entry. */ static void elf_print_rel_entry(struct elfdump *ed, struct section *s, int j, struct rel_entry *r) { if (ed->flags & SOLARIS_FMT) { PRT(" %-23s ", elftc_reloc_type_str(ed->ehdr.e_machine, GELF_R_TYPE(r->u_r.rel.r_info))); PRT("%#12jx ", (uintmax_t)r->u_r.rel.r_offset); if (r->type == SHT_RELA) PRT("%10jd ", (intmax_t)r->u_r.rela.r_addend); else PRT(" "); PRT("%-14s ", s->name); PRT("%s\n", r->symn); } else { PRT("\n"); PRT("entry: %d\n", j); PRT("\tr_offset: %#jx\n", (uintmax_t)r->u_r.rel.r_offset); if (ed->ec == ELFCLASS32) PRT("\tr_info: %#jx\n", (uintmax_t) ELF32_R_INFO(ELF64_R_SYM(r->u_r.rel.r_info), ELF64_R_TYPE(r->u_r.rel.r_info))); else PRT("\tr_info: %#jx\n", (uintmax_t)r->u_r.rel.r_info); if (r->type == SHT_RELA) PRT("\tr_addend: %jd\n", (intmax_t)r->u_r.rela.r_addend); } } /* * Dump a relocation section of type SHT_RELA. */ static void elf_print_rela(struct elfdump *ed, struct section *s, Elf_Data *data) { struct rel_entry r; int j, len; if (ed->flags & SOLARIS_FMT) { PRT("\nRelocation Section: %s\n", s->name); PRT(" type offset " "addend section with respect to\n"); } else PRT("\nrelocation with addend (%s):\n", s->name); r.type = SHT_RELA; assert(data->d_size == s->sz); if (!get_ent_count(s, &len)) return; for (j = 0; j < len; j++) { if (gelf_getrela(data, j, &r.u_r.rela) != &r.u_r.rela) { warnx("gelf_getrela failed: %s", elf_errmsg(-1)); continue; } r.symn = get_symbol_name(ed, s->link, GELF_R_SYM(r.u_r.rela.r_info)); elf_print_rel_entry(ed, s, j, &r); } } /* * Dump a relocation section of type SHT_REL. */ static void elf_print_rel(struct elfdump *ed, struct section *s, Elf_Data *data) { struct rel_entry r; int j, len; if (ed->flags & SOLARIS_FMT) { PRT("\nRelocation Section: %s\n", s->name); PRT(" type offset " "section with respect to\n"); } else PRT("\nrelocation (%s):\n", s->name); r.type = SHT_REL; assert(data->d_size == s->sz); if (!get_ent_count(s, &len)) return; for (j = 0; j < len; j++) { if (gelf_getrel(data, j, &r.u_r.rel) != &r.u_r.rel) { warnx("gelf_getrel failed: %s", elf_errmsg(-1)); continue; } r.symn = get_symbol_name(ed, s->link, GELF_R_SYM(r.u_r.rel.r_info)); elf_print_rel_entry(ed, s, j, &r); } } /* * Dump relocation sections. */ static void elf_print_reloc(struct elfdump *ed) { struct section *s; Elf_Data *data; size_t i; int elferr; for (i = 0; i < ed->shnum; i++) { s = &ed->sl[i]; if ((s->type == SHT_REL || s->type == SHT_RELA) && (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name))) { (void) elf_errno(); if ((data = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); continue; } if (s->type == SHT_REL) elf_print_rel(ed, s, data); else elf_print_rela(ed, s, data); } } } /* * Dump the content of PT_INTERP segment. */ static void elf_print_interp(struct elfdump *ed) { const char *s; GElf_Phdr phdr; size_t filesize, i, phnum; if (!STAILQ_EMPTY(&ed->snl) && find_name(ed, "PT_INTERP") == NULL) return; if ((s = elf_rawfile(ed->elf, &filesize)) == NULL) { warnx("elf_rawfile failed: %s", elf_errmsg(-1)); return; } if (!elf_getphnum(ed->elf, &phnum)) { warnx("elf_getphnum failed: %s", elf_errmsg(-1)); return; } for (i = 0; i < phnum; i++) { if (gelf_getphdr(ed->elf, i, &phdr) != &phdr) { warnx("elf_getphdr failed: %s", elf_errmsg(-1)); continue; } if (phdr.p_type == PT_INTERP) { if (phdr.p_offset >= filesize) { warnx("invalid phdr offset"); continue; } PRT("\ninterp:\n"); PRT("\t%s\n", s + phdr.p_offset); } } } /* * Search the relocation sections for entries referring to the .got section. */ static void find_gotrel(struct elfdump *ed, struct section *gs, struct rel_entry *got) { struct section *s; struct rel_entry r; Elf_Data *data; size_t i; int elferr, j, k, len; for(i = 0; i < ed->shnum; i++) { s = &ed->sl[i]; if (s->type != SHT_REL && s->type != SHT_RELA) continue; (void) elf_errno(); if ((data = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } memset(&r, 0, sizeof(struct rel_entry)); r.type = s->type; assert(data->d_size == s->sz); if (!get_ent_count(s, &len)) return; for (j = 0; j < len; j++) { if (s->type == SHT_REL) { if (gelf_getrel(data, j, &r.u_r.rel) != &r.u_r.rel) { warnx("gelf_getrel failed: %s", elf_errmsg(-1)); continue; } } else { if (gelf_getrela(data, j, &r.u_r.rela) != &r.u_r.rela) { warnx("gelf_getrel failed: %s", elf_errmsg(-1)); continue; } } if (r.u_r.rel.r_offset >= gs->addr && r.u_r.rel.r_offset < gs->addr + gs->sz) { r.symn = get_symbol_name(ed, s->link, GELF_R_SYM(r.u_r.rel.r_info)); k = (r.u_r.rel.r_offset - gs->addr) / gs->entsize; memcpy(&got[k], &r, sizeof(struct rel_entry)); } } } } static void elf_print_got_section(struct elfdump *ed, struct section *s) { struct rel_entry *got; Elf_Data *data, dst; int elferr, i, len; if (s->entsize == 0) { /* XXX IA64 GOT section generated by gcc has entry size 0. */ if (s->align != 0) s->entsize = s->align; else return; } if (!get_ent_count(s, &len)) return; if (ed->flags & SOLARIS_FMT) PRT("\nGlobal Offset Table Section: %s (%d entries)\n", s->name, len); else PRT("\nglobal offset table: %s\n", s->name); (void) elf_errno(); if ((data = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } /* * GOT section has section type SHT_PROGBITS, thus libelf treats it as * byte stream and will not perform any translation on it. As a result, * an exlicit call to gelf_xlatetom is needed here. Depends on arch, * GOT section should be translated to either WORD or XWORD. */ if (ed->ec == ELFCLASS32) data->d_type = ELF_T_WORD; else data->d_type = ELF_T_XWORD; memcpy(&dst, data, sizeof(Elf_Data)); if (gelf_xlatetom(ed->elf, &dst, data, ed->ehdr.e_ident[EI_DATA]) != &dst) { warnx("gelf_xlatetom failed: %s", elf_errmsg(-1)); return; } assert(dst.d_size == s->sz); if (ed->flags & SOLARIS_FMT) { /* * In verbose/Solaris mode, we search the relocation sections * and try to find the corresponding reloc entry for each GOT * section entry. */ if ((got = calloc(len, sizeof(struct rel_entry))) == NULL) err(EXIT_FAILURE, "calloc failed"); find_gotrel(ed, s, got); if (ed->ec == ELFCLASS32) { PRT(" ndx addr value reloc "); PRT("addend symbol\n"); } else { PRT(" ndx addr value "); PRT("reloc addend symbol\n"); } for(i = 0; i < len; i++) { PRT("[%5.5d] ", i); if (ed->ec == ELFCLASS32) { PRT("%-8.8jx ", (uintmax_t) (s->addr + i * s->entsize)); PRT("%-8.8x ", *((uint32_t *)dst.d_buf + i)); } else { PRT("%-16.16jx ", (uintmax_t) (s->addr + i * s->entsize)); PRT("%-16.16jx ", (uintmax_t) *((uint64_t *)dst.d_buf + i)); } PRT("%-18s ", elftc_reloc_type_str(ed->ehdr.e_machine, GELF_R_TYPE(got[i].u_r.rel.r_info))); if (ed->ec == ELFCLASS32) PRT("%-8.8jd ", (intmax_t)got[i].u_r.rela.r_addend); else PRT("%-12.12jd ", (intmax_t)got[i].u_r.rela.r_addend); if (got[i].symn == NULL) got[i].symn = ""; PRT("%s\n", got[i].symn); } free(got); } else { for(i = 0; i < len; i++) { PRT("\nentry: %d\n", i); if (ed->ec == ELFCLASS32) PRT("\t%#x\n", *((uint32_t *)dst.d_buf + i)); else PRT("\t%#jx\n", (uintmax_t) *((uint64_t *)dst.d_buf + i)); } } } /* * Dump the content of Global Offset Table section. */ static void elf_print_got(struct elfdump *ed) { struct section *s; size_t i; if (!STAILQ_EMPTY(&ed->snl)) return; s = NULL; for (i = 0; i < ed->shnum; i++) { s = &ed->sl[i]; if (s->name && !strncmp(s->name, ".got", 4) && (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name))) elf_print_got_section(ed, s); } } /* * Dump the content of .note.ABI-tag section. */ static void elf_print_note(struct elfdump *ed) { struct section *s; Elf_Data *data; Elf_Note *en; uint32_t namesz; uint32_t descsz; uint32_t desc; size_t count; int elferr, i; uint8_t *src; char idx[10]; s = NULL; for (i = 0; (size_t)i < ed->shnum; i++) { s = &ed->sl[i]; if (s->type == SHT_NOTE && s->name && !strcmp(s->name, ".note.ABI-tag") && (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name))) break; } if ((size_t)i >= ed->shnum) return; if (ed->flags & SOLARIS_FMT) PRT("\nNote Section: %s\n", s->name); else PRT("\nnote (%s):\n", s->name); (void) elf_errno(); if ((data = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } src = data->d_buf; count = data->d_size; while (count > sizeof(Elf_Note)) { en = (Elf_Note *) (uintptr_t) src; namesz = en->n_namesz; descsz = en->n_descsz; src += sizeof(Elf_Note); count -= sizeof(Elf_Note); if (roundup2(namesz, 4) + roundup2(descsz, 4) > count) { warnx("truncated note section"); return; } if (ed->flags & SOLARIS_FMT) { PRT("\n type %#x\n", en->n_type); PRT(" namesz %#x:\n", en->n_namesz); PRT("%s\n", src); } else PRT("\t%s ", src); src += roundup2(namesz, 4); count -= roundup2(namesz, 4); /* * Note that we dump the whole desc part if we're in * "Solaris mode", while in the normal mode, we only look * at the first 4 bytes (a 32bit word) of the desc, i.e, * we assume that it's always a FreeBSD version number. */ if (ed->flags & SOLARIS_FMT) { PRT(" descsz %#x:", en->n_descsz); for (i = 0; (uint32_t)i < descsz; i++) { if ((i & 0xF) == 0) { snprintf(idx, sizeof(idx), "desc[%d]", i); PRT("\n %-9s", idx); } else if ((i & 0x3) == 0) PRT(" "); PRT(" %2.2x", src[i]); } PRT("\n"); } else { if (ed->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) desc = be32dec(src); else desc = le32dec(src); PRT("%d\n", desc); } src += roundup2(descsz, 4); count -= roundup2(descsz, 4); } } /* * Dump a hash table. */ static void elf_print_svr4_hash(struct elfdump *ed, struct section *s) { Elf_Data *data; uint32_t *buf; uint32_t *bucket, *chain; uint32_t nbucket, nchain; uint32_t *bl, *c, maxl, total; uint32_t i, j; int first, elferr; char idx[10]; if (ed->flags & SOLARIS_FMT) PRT("\nHash Section: %s\n", s->name); else PRT("\nhash table (%s):\n", s->name); (void) elf_errno(); if ((data = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } if (data->d_size < 2 * sizeof(uint32_t)) { warnx(".hash section too small"); return; } buf = data->d_buf; nbucket = buf[0]; nchain = buf[1]; if (nbucket <= 0 || nchain <= 0) { warnx("Malformed .hash section"); return; } if (data->d_size != ((uint64_t)nbucket + (uint64_t)nchain + 2) * sizeof(uint32_t)) { warnx("Malformed .hash section"); return; } bucket = &buf[2]; chain = &buf[2 + nbucket]; if (ed->flags & SOLARIS_FMT) { maxl = 0; if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) err(EXIT_FAILURE, "calloc failed"); for (i = 0; i < nbucket; i++) for (j = bucket[i]; j > 0 && j < nchain; j = chain[j]) if (++bl[i] > maxl) maxl = bl[i]; if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) err(EXIT_FAILURE, "calloc failed"); for (i = 0; i < nbucket; i++) c[bl[i]]++; PRT(" bucket symndx name\n"); for (i = 0; i < nbucket; i++) { first = 1; for (j = bucket[i]; j > 0 && j < nchain; j = chain[j]) { if (first) { PRT("%10d ", i); first = 0; } else PRT(" "); snprintf(idx, sizeof(idx), "[%d]", j); PRT("%-10s ", idx); PRT("%s\n", get_symbol_name(ed, s->link, j)); } } PRT("\n"); total = 0; for (i = 0; i <= maxl; i++) { total += c[i] * i; PRT("%10u buckets contain %8d symbols\n", c[i], i); } PRT("%10u buckets %8u symbols (globals)\n", nbucket, total); } else { PRT("\nnbucket: %u\n", nbucket); PRT("nchain: %u\n\n", nchain); for (i = 0; i < nbucket; i++) PRT("bucket[%d]:\n\t%u\n\n", i, bucket[i]); for (i = 0; i < nchain; i++) PRT("chain[%d]:\n\t%u\n\n", i, chain[i]); } } /* * Dump a 64bit hash table. */ static void elf_print_svr4_hash64(struct elfdump *ed, struct section *s) { Elf_Data *data, dst; uint64_t *buf; uint64_t *bucket, *chain; uint64_t nbucket, nchain; uint64_t *bl, *c, maxl, total; uint64_t i, j; int elferr, first; char idx[10]; if (ed->flags & SOLARIS_FMT) PRT("\nHash Section: %s\n", s->name); else PRT("\nhash table (%s):\n", s->name); /* * ALPHA uses 64-bit hash entries. Since libelf assumes that * .hash section contains only 32-bit entry, an explicit * gelf_xlatetom is needed here. */ (void) elf_errno(); if ((data = elf_rawdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_rawdata failed: %s", elf_errmsg(elferr)); return; } data->d_type = ELF_T_XWORD; memcpy(&dst, data, sizeof(Elf_Data)); if (gelf_xlatetom(ed->elf, &dst, data, ed->ehdr.e_ident[EI_DATA]) != &dst) { warnx("gelf_xlatetom failed: %s", elf_errmsg(-1)); return; } if (dst.d_size < 2 * sizeof(uint64_t)) { warnx(".hash section too small"); return; } buf = dst.d_buf; nbucket = buf[0]; nchain = buf[1]; if (nbucket <= 0 || nchain <= 0) { warnx("Malformed .hash section"); return; } if (dst.d_size != (nbucket + nchain + 2) * sizeof(uint64_t)) { warnx("Malformed .hash section"); return; } bucket = &buf[2]; chain = &buf[2 + nbucket]; if (ed->flags & SOLARIS_FMT) { maxl = 0; if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) err(EXIT_FAILURE, "calloc failed"); for (i = 0; i < nbucket; i++) for (j = bucket[i]; j > 0 && j < nchain; j = chain[j]) if (++bl[i] > maxl) maxl = bl[i]; if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) err(EXIT_FAILURE, "calloc failed"); for (i = 0; i < nbucket; i++) c[bl[i]]++; PRT(" bucket symndx name\n"); for (i = 0; i < nbucket; i++) { first = 1; for (j = bucket[i]; j > 0 && j < nchain; j = chain[j]) { if (first) { PRT("%10zu ", i); first = 0; } else PRT(" "); snprintf(idx, sizeof(idx), "[%zu]", (size_t)j); PRT("%-10s ", idx); PRT("%s\n", get_symbol_name(ed, s->link, j)); } } PRT("\n"); total = 0; for (i = 0; i <= maxl; i++) { total += c[i] * i; PRT("%10ju buckets contain %8zu symbols\n", (uintmax_t)c[i], i); } PRT("%10ju buckets %8ju symbols (globals)\n", (uintmax_t)nbucket, (uintmax_t)total); } else { PRT("\nnbucket: %ju\n", (uintmax_t)nbucket); PRT("nchain: %ju\n\n", (uintmax_t)nchain); for (i = 0; i < nbucket; i++) PRT("bucket[%zu]:\n\t%ju\n\n", i, (uintmax_t)bucket[i]); for (i = 0; i < nchain; i++) PRT("chain[%zu]:\n\t%ju\n\n", i, (uintmax_t)chain[i]); } } /* * Dump a GNU hash table. */ static void elf_print_gnu_hash(struct elfdump *ed, struct section *s) { struct section *ds; Elf_Data *data; uint32_t *buf; uint32_t *bucket, *chain; uint32_t nbucket, nchain, symndx, maskwords, shift2; uint32_t *bl, *c, maxl, total; uint32_t i, j; int first, elferr, dynsymcount; char idx[10]; if (ed->flags & SOLARIS_FMT) PRT("\nGNU Hash Section: %s\n", s->name); else PRT("\ngnu hash table (%s):\n", s->name); (void) elf_errno(); if ((data = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } if (data->d_size < 4 * sizeof(uint32_t)) { warnx(".gnu.hash section too small"); return; } buf = data->d_buf; nbucket = buf[0]; symndx = buf[1]; maskwords = buf[2]; shift2 = buf[3]; buf += 4; if (s->link >= ed->shnum) { warnx("Malformed .gnu.hash section"); return; } ds = &ed->sl[s->link]; if (!get_ent_count(ds, &dynsymcount)) return; if (symndx >= (uint32_t)dynsymcount) { warnx("Malformed .gnu.hash section"); return; } nchain = dynsymcount - symndx; if (data->d_size != 4 * sizeof(uint32_t) + maskwords * (ed->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) + ((uint64_t)nbucket + (uint64_t)nchain) * sizeof(uint32_t)) { warnx("Malformed .gnu.hash section"); return; } bucket = buf + (ed->ec == ELFCLASS32 ? maskwords : maskwords * 2); chain = bucket + nbucket; if (ed->flags & SOLARIS_FMT) { maxl = 0; if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) err(EXIT_FAILURE, "calloc failed"); for (i = 0; i < nbucket; i++) for (j = bucket[i]; j > 0 && j - symndx < nchain; j++) { if (++bl[i] > maxl) maxl = bl[i]; if (chain[j - symndx] & 1) break; } if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) err(EXIT_FAILURE, "calloc failed"); for (i = 0; i < nbucket; i++) c[bl[i]]++; PRT(" bucket symndx name\n"); for (i = 0; i < nbucket; i++) { first = 1; for (j = bucket[i]; j > 0 && j - symndx < nchain; j++) { if (first) { PRT("%10d ", i); first = 0; } else PRT(" "); snprintf(idx, sizeof(idx), "[%d]", j ); PRT("%-10s ", idx); PRT("%s\n", get_symbol_name(ed, s->link, j)); if (chain[j - symndx] & 1) break; } } PRT("\n"); total = 0; for (i = 0; i <= maxl; i++) { total += c[i] * i; PRT("%10u buckets contain %8d symbols\n", c[i], i); } PRT("%10u buckets %8u symbols (globals)\n", nbucket, total); } else { PRT("\nnbucket: %u\n", nbucket); PRT("symndx: %u\n", symndx); PRT("maskwords: %u\n", maskwords); PRT("shift2: %u\n", shift2); PRT("nchain: %u\n\n", nchain); for (i = 0; i < nbucket; i++) PRT("bucket[%d]:\n\t%u\n\n", i, bucket[i]); for (i = 0; i < nchain; i++) PRT("chain[%d]:\n\t%u\n\n", i, chain[i]); } } /* * Dump hash tables. */ static void elf_print_hash(struct elfdump *ed) { struct section *s; size_t i; for (i = 0; i < ed->shnum; i++) { s = &ed->sl[i]; if ((s->type == SHT_HASH || s->type == SHT_GNU_HASH) && (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name))) { if (s->type == SHT_GNU_HASH) elf_print_gnu_hash(ed, s); else if (ed->ehdr.e_machine == EM_ALPHA && s->entsize == 8) elf_print_svr4_hash64(ed, s); else elf_print_svr4_hash(ed, s); } } } /* * Dump the content of a Version Definition(SHT_SUNW_Verdef) Section. */ static void elf_print_verdef(struct elfdump *ed, struct section *s) { Elf_Data *data; Elf32_Verdef *vd; Elf32_Verdaux *vda; const char *str; char idx[10]; uint8_t *buf, *end, *buf2; int i, j, elferr, count; if (ed->flags & SOLARIS_FMT) PRT("Version Definition Section: %s\n", s->name); else PRT("\nversion definition section (%s):\n", s->name); (void) elf_errno(); if ((data = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } buf = data->d_buf; end = buf + data->d_size; i = 0; if (ed->flags & SOLARIS_FMT) PRT(" index version dependency\n"); while (buf + sizeof(Elf32_Verdef) <= end) { vd = (Elf32_Verdef *) (uintptr_t) buf; if (ed->flags & SOLARIS_FMT) { snprintf(idx, sizeof(idx), "[%d]", vd->vd_ndx); PRT("%10s ", idx); } else { PRT("\nentry: %d\n", i++); PRT("\tvd_version: %u\n", vd->vd_version); PRT("\tvd_flags: %u\n", vd->vd_flags); PRT("\tvd_ndx: %u\n", vd->vd_ndx); PRT("\tvd_cnt: %u\n", vd->vd_cnt); PRT("\tvd_hash: %u\n", vd->vd_hash); PRT("\tvd_aux: %u\n", vd->vd_aux); PRT("\tvd_next: %u\n\n", vd->vd_next); } buf2 = buf + vd->vd_aux; j = 0; count = 0; while (buf2 + sizeof(Elf32_Verdaux) <= end && j < vd->vd_cnt) { vda = (Elf32_Verdaux *) (uintptr_t) buf2; str = get_string(ed, s->link, vda->vda_name); if (ed->flags & SOLARIS_FMT) { if (count == 0) PRT("%-26.26s", str); else if (count == 1) PRT(" %-20.20s", str); else { PRT("\n%40.40s", ""); PRT("%s", str); } } else { PRT("\t\tvda: %d\n", j++); PRT("\t\t\tvda_name: %s\n", str); PRT("\t\t\tvda_next: %u\n", vda->vda_next); } if (vda->vda_next == 0) { if (ed->flags & SOLARIS_FMT) { if (vd->vd_flags & VER_FLG_BASE) { if (count == 0) PRT("%-20.20s", ""); PRT("%s", "[ BASE ]"); } PRT("\n"); } break; } if (ed->flags & SOLARIS_FMT) count++; buf2 += vda->vda_next; } if (vd->vd_next == 0) break; buf += vd->vd_next; } } /* * Dump the content of a Version Needed(SHT_SUNW_Verneed) Section. */ static void elf_print_verneed(struct elfdump *ed, struct section *s) { Elf_Data *data; Elf32_Verneed *vn; Elf32_Vernaux *vna; uint8_t *buf, *end, *buf2; int i, j, elferr, first; if (ed->flags & SOLARIS_FMT) PRT("\nVersion Needed Section: %s\n", s->name); else PRT("\nversion need section (%s):\n", s->name); (void) elf_errno(); if ((data = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } buf = data->d_buf; end = buf + data->d_size; if (ed->flags & SOLARIS_FMT) PRT(" file version\n"); i = 0; while (buf + sizeof(Elf32_Verneed) <= end) { vn = (Elf32_Verneed *) (uintptr_t) buf; if (ed->flags & SOLARIS_FMT) PRT(" %-26.26s ", get_string(ed, s->link, vn->vn_file)); else { PRT("\nentry: %d\n", i++); PRT("\tvn_version: %u\n", vn->vn_version); PRT("\tvn_cnt: %u\n", vn->vn_cnt); PRT("\tvn_file: %s\n", get_string(ed, s->link, vn->vn_file)); PRT("\tvn_aux: %u\n", vn->vn_aux); PRT("\tvn_next: %u\n\n", vn->vn_next); } buf2 = buf + vn->vn_aux; j = 0; first = 1; while (buf2 + sizeof(Elf32_Vernaux) <= end && j < vn->vn_cnt) { vna = (Elf32_Vernaux *) (uintptr_t) buf2; if (ed->flags & SOLARIS_FMT) { if (!first) PRT("%40.40s", ""); else first = 0; PRT("%s\n", get_string(ed, s->link, vna->vna_name)); } else { PRT("\t\tvna: %d\n", j++); PRT("\t\t\tvna_hash: %u\n", vna->vna_hash); PRT("\t\t\tvna_flags: %u\n", vna->vna_flags); PRT("\t\t\tvna_other: %u\n", vna->vna_other); PRT("\t\t\tvna_name: %s\n", get_string(ed, s->link, vna->vna_name)); PRT("\t\t\tvna_next: %u\n", vna->vna_next); } if (vna->vna_next == 0) break; buf2 += vna->vna_next; } if (vn->vn_next == 0) break; buf += vn->vn_next; } } /* * Dump the symbol-versioning sections. */ static void elf_print_symver(struct elfdump *ed) { struct section *s; size_t i; for (i = 0; i < ed->shnum; i++) { s = &ed->sl[i]; if (!STAILQ_EMPTY(&ed->snl) && !find_name(ed, s->name)) continue; if (s->type == SHT_SUNW_verdef) elf_print_verdef(ed, s); if (s->type == SHT_SUNW_verneed) elf_print_verneed(ed, s); } } /* * Dump the ELF checksum. See gelf_checksum(3) for details. */ static void elf_print_checksum(struct elfdump *ed) { if (!STAILQ_EMPTY(&ed->snl)) return; PRT("\nelf checksum: %#lx\n", gelf_checksum(ed->elf)); } #define USAGE_MESSAGE "\ Usage: %s [options] file...\n\ Display information about ELF objects and ar(1) archives.\n\n\ Options:\n\ -a Show all information.\n\ -c Show shared headers.\n\ -d Show dynamic symbols.\n\ -e Show the ELF header.\n\ -G Show the GOT.\n\ -H | --help Show a usage message and exit.\n\ -h Show hash values.\n\ -i Show the dynamic interpreter.\n\ -k Show the ELF checksum.\n\ -n Show the contents of note sections.\n\ -N NAME Show the section named \"NAME\".\n\ -p Show the program header.\n\ -r Show relocations.\n\ -s Show the symbol table.\n\ -S Use the Solaris elfdump format.\n\ -v Show symbol-versioning information.\n\ -V | --version Print a version identifier and exit.\n\ -w FILE Write output to \"FILE\".\n" static void usage(void) { fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME()); exit(EXIT_FAILURE); } Index: vendor/elftoolchain/dist/libelf/elf_flagdata.3 =================================================================== --- vendor/elftoolchain/dist/libelf/elf_flagdata.3 (revision 305125) +++ vendor/elftoolchain/dist/libelf/elf_flagdata.3 (revision 305126) @@ -1,226 +1,223 @@ .\" Copyright (c) 2006-2008,2011 Joseph Koshy. All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" .\" This software is provided by Joseph Koshy ``as is'' and .\" any express or implied warranties, including, but not limited to, the .\" implied warranties of merchantability and fitness for a particular purpose .\" are disclaimed. in no event shall Joseph Koshy be liable .\" for any direct, indirect, incidental, special, exemplary, or consequential .\" damages (including, but not limited to, procurement of substitute goods .\" or services; loss of use, data, or profits; or business interruption) .\" however caused and on any theory of liability, whether in contract, strict .\" liability, or tort (including negligence or otherwise) arising in any way .\" out of the use of this software, even if advised of the possibility of .\" such damage. .\" -.\" $Id: elf_flagdata.3 2884 2013-01-11 02:03:46Z jkoshy $ +.\" $Id: elf_flagdata.3 3479 2016-06-25 20:44:33Z jkoshy $ .\" .Dd December 3, 2011 .Os .Dt ELF_FLAGDATA 3 .Sh NAME .Nm elf_flagarhdr , .Nm elf_flagdata , .Nm elf_flagehdr , .Nm elf_flagelf , .Nm elf_flagphdr , .Nm elf_flagscn , .Nm elf_flagshdr .Nd manipulate flags associated with ELF(3) data structures .Sh LIBRARY .Lb libelf .Sh SYNOPSIS .In libelf.h .Ft "unsigned int" .Fn elf_flagarhdr "Elf_Arhdr *arhdr" "Elf_Cmd cmd" "unsigned int flags" .Ft "unsigned int" .Fn elf_flagdata "Elf_Data *data" "Elf_Cmd cmd" "unsigned int flags" .Ft "unsigned int" .Fn elf_flagehdr "Elf *elf" "Elf_Cmd cmd" "unsigned int flags" .Ft "unsigned int" .Fn elf_flagelf "Elf *elf" "Elf_Cmd cmd" "unsigned int flags" .Ft "unsigned int" .Fn elf_flagphdr "Elf *elf" "Elf_Cmd cmd" "unsigned int flags" .Ft "unsigned int" .Fn elf_flagscn "Elf_Scn *scn" "Elf_Cmd cmd" "unsigned int flags" .Ft "unsigned int" .Fn elf_flagshdr "Elf_Scn *scn" "Elf_Cmd cmd" "unsigned int flags" .Sh DESCRIPTION These functions are used to query, set or reset flags on data structures associated with an ELF file. .Pp Arguments .Ar arhdr , .Ar data , .Ar elf and .Ar scn denote the data structures whose flags need to be changed. These values should have been returned by prior calls to functions in the ELF(3) API set: .Bl -bullet -compact .It Argument .Ar arhdr should have been returned by a prior call to .Xr elf_getarhdr 3 . .It Argument .Ar data should have been returned by a prior call to one of .Xr elf_newdata 3 , .Xr elf_getdata 3 or .Xr elf_rawdata 3 . .It Argument .Ar elf should have been allocated by a prior call to one of .Xr elf_begin 3 or .Xr elf_memory 3 . .It Argument .Ar scn should have been returned by a prior call to one of .Xr elf_getscn 3 , .Xr elf_newscn 3 or .Xr elf_nextscn 3 . .El These values are allowed to be NULL to simplify error handling in application code. .Pp Argument .Ar cmd may have the following values: .Bl -tag -width ELF_C_SET .It Dv ELF_C_CLR The argument .Ar flags specifies the flags to be cleared. .It Dv ELF_C_SET The argument .Ar flags specifies the flags to be set. .El .Pp The argument .Ar flags is allowed to have the following flags set: .Bl -tag -width ELF_F_ARCHIVE_SYSV .It Dv ELF_F_ARCHIVE This flag is only valid with the .Fn elf_flagelf API. It informs the library that the application desires to create an .Xr ar 1 archive. Argument .Ar elf should have been opened for writing using the .Dv ELF_C_WRITE command to function .Fn elf_begin . .It Dv ELF_F_ARCHIVE_SYSV This flag is used in conjunction with the .Dv ELF_F_ARCHIVE flag to indicate that library should create archives that conform to System V layout rules. The default is to create BSD style archives. .It Dv ELF_F_DIRTY Mark the associated data structure as needing to be written back to the underlying file. A subsequent call to .Xr elf_update 3 will resynchronize the library's internal data structures. .It Dv ELF_F_LAYOUT This flag is only valid with the .Fn elf_flagelf API. It informs the library that the application will take responsibility for the layout of the file and that the library is not to insert any padding in between sections. .El .Pp Marking a given data structure as .Dq dirty affects all of its contained elements. Thus marking an ELF descriptor .Ar elf with .Fn elf_flagelf "elf" "ELF_C_SET" "ELF_F_DIRTY" means that the entire contents of the descriptor are .Dq dirty . .Pp Using a value of zero for argument .Ar flags will return the current set of flags for the data structure being queried. .Sh RETURN VALUES These functions return the updated flags if successful, or zero if an error is detected. .Sh COMPATIBILITY The .Fn elf_flagarhdr function and the .Dv ELF_F_ARCHIVE and .Dv ELF_F_ARCHIVE_SYSV flags are an extension to the ELF(3) API. .Sh ERRORS These functions may fail with the following errors: .Bl -tag -width "[ELF_E_RESOURCE]" .It Bq Er ELF_E_ARGUMENT An unsupported value was used for the .Ar cmd argument. .It Bq Er ELF_E_ARGUMENT Argument .Ar flags had unsupported flags set. .It Bq Er ELF_E_ARGUMENT The argument .Ar elf was not a descriptor for an ELF object. .It Bq Er ELF_E_MODE The .Dv ELF_F_ARCHIVE flag was used with an ELF descriptor that had not been opened for writing. .It Bq Er ELF_E_SEQUENCE Function .Fn elf_flagehdr was called without an executable header being allocated. .It Bq Er ELF_E_SEQUENCE Function .Fn elf_flagphdr was called without a program header being allocated. .El .Sh SEE ALSO .Xr elf 3 , .Xr elf32_newehdr 3 , .Xr elf32_newphdr 3 , -.Xr elf32_newshdr 3 , .Xr elf64_newehdr 3 , .Xr elf64_newphdr 3 , -.Xr elf64_newshdr 3 , .Xr elf_newdata 3 , .Xr elf_update 3 , .Xr gelf 3 , .Xr gelf_newehdr 3 , .Xr gelf_newphdr 3 , -.Xr gelf_newshdr 3 , .Xr gelf_update_dyn 3 , .Xr gelf_update_move 3 , .Xr gelf_update_rel 3 , .Xr gelf_update_rela 3 , .Xr gelf_update_sym 3 , .Xr gelf_update_syminfo 3 Index: vendor/elftoolchain/dist/libelftc/Makefile =================================================================== --- vendor/elftoolchain/dist/libelftc/Makefile (revision 305125) +++ vendor/elftoolchain/dist/libelftc/Makefile (revision 305126) @@ -1,58 +1,59 @@ -# $Id: Makefile 3418 2016-02-19 20:04:42Z emaste $ +# $Id: Makefile 3489 2016-08-31 00:12:15Z emaste $ TOP= ${.CURDIR}/.. LIB= elftc SRCS= elftc_bfdtarget.c \ elftc_copyfile.c \ elftc_demangle.c \ elftc_reloc_type_str.c \ elftc_set_timestamps.c \ elftc_string_table.c \ + elftc_timestamp.c \ elftc_version.c \ libelftc_bfdtarget.c \ libelftc_dem_arm.c \ libelftc_dem_gnu2.c \ libelftc_dem_gnu3.c \ libelftc_hash.c \ libelftc_vstr.c INCS= libelftc.h INCSDIR= /usr/include RELEASE= HEAD # Change this on release branches. SHLIB_MAJOR= 1 WARNS?= 6 CLEANFILES+= elftc_version.c LDADD+= -lelf MAN= elftc.3 \ elftc_bfd_find_target.3 \ elftc_copyfile.3 \ elftc_demangle.3 \ elftc_reloc_type_str.3 \ elftc_set_timestamps.3 \ elftc_string_table_create.3 \ elftc_version.3 MLINKS= elftc_bfd_find_target.3 elftc_bfd_target_byteorder.3 \ elftc_bfd_find_target.3 elftc_bfd_target_class.3 \ elftc_bfd_find_target.3 elftc_bfd_target_flavor.3 \ elftc_string_table_create.3 elftc_string_table_from_section.3 \ elftc_string_table_create.3 elftc_string_table_destroy.3 \ elftc_string_table_create.3 elftc_string_table_image.3 \ elftc_string_table_create.3 elftc_string_table_insert.3 \ elftc_string_table_create.3 elftc_string_table_lookup.3 .if !make(clean) && !make(clobber) .BEGIN: .SILENT ${.CURDIR}/make-toolchain-version -t ${TOP} -r ${RELEASE} \ -h ${OS_HOST} .endif .include "${TOP}/mk/elftoolchain.lib.mk" Index: vendor/elftoolchain/dist/libelftc/elftc_bfd_find_target.3 =================================================================== --- vendor/elftoolchain/dist/libelftc/elftc_bfd_find_target.3 (revision 305125) +++ vendor/elftoolchain/dist/libelftc/elftc_bfd_find_target.3 (revision 305126) @@ -1,193 +1,194 @@ .\" Copyright (c) 2010-2011 Joseph Koshy. All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" .\" This software is provided by Joseph Koshy ``as is'' and .\" any express or implied warranties, including, but not limited to, the .\" implied warranties of merchantability and fitness for a particular purpose .\" are disclaimed. in no event shall Joseph Koshy be liable .\" for any direct, indirect, incidental, special, exemplary, or consequential .\" damages (including, but not limited to, procurement of substitute goods .\" or services; loss of use, data, or profits; or business interruption) .\" however caused and on any theory of liability, whether in contract, strict .\" liability, or tort (including negligence or otherwise) arising in any way .\" out of the use of this software, even if advised of the possibility of .\" such damage. .\" -.\" $Id: elftc_bfd_find_target.3 3348 2016-01-18 14:18:50Z emaste $ +.\" $Id: elftc_bfd_find_target.3 3488 2016-08-24 18:15:57Z emaste $ .\" .Dd November 30, 2011 .Os .Dt ELFTC_BFD_FIND_TARGET .Sh NAME .Nm elftc_bfd_find_target , .Nm elftc_bfd_target_byteorder , .Nm elftc_bfd_target_class , .Nm elftc_bfd_target_flavor , .Nm elftc_bfd_target_machine .Nd binary object descriptor handling .Sh LIBRARY .Lb libelftc .Sh SYNOPSIS .In libelftc.h .Vt struct Elftc_Bfd_Target; .Ft "Elftc_Bfd_Target *" .Fn elftc_bfd_find_target "const char *target_name" .Ft "unsigned int" .Fn elftc_bfd_target_class "Elftc_Bfd_Target *target" .Ft "unsigned int" .Fn elftc_bfd_target_byteorder "Elftc_Bfd_Target *target" .Ft Elftc_Bfd_Target_Flavor .Fn elftc_bfd_target_flavor "Elftc_Bfd_Target *target" .Ft "unsigned int" .Fn elftc_bfd_target_machine "Elftc_Bfd_Target *target" .Sh DESCRIPTION Function .Fn elftc_bfd_find_target locates a binary object descriptor corresponding to the descriptor name in argument .Ar "target_name" . Binary object descriptors encapsulate properties of an object format such as its file representation, ELF class, and byte endianness. .Pp Known descriptor names and their properties include: .Bl -column -offset "XXXX" ".Li elf32-x86-64-freebsd" "Object format" "Byte Order" "Bit Width" .It Em Name Ta Em "Object Format" Ta Em "Byte Order" Ta Em "Bit Width" .It Li binary Ta Binary Ta - Ta - .It Li efi-app-ia32 Ta PE Ta LSB Ta 32 .It Li efi-app-x86_64 Ta PE Ta LSB Ta 64 .It Li elf32-avr Ta ELF Ta LSB Ta 32 .It Li elf32-big Ta ELF Ta MSB Ta 32 .It Li elf32-bigarm Ta ELF Ta MSB Ta 32 .It Li elf32-bigmips Ta ELF Ta MSB Ta 32 .It Li elf32-i386 Ta ELF Ta LSB Ta 32 .It Li elf32-i386-freebsd Ta ELF Ta LSB Ta 32 .It Li elf32-ia64-big Ta ELF Ta MSB Ta 32 .It Li elf32-little Ta ELF Ta LSB Ta 32 .It Li elf32-littlearm Ta ELF Ta LSB Ta 32 .It Li elf32-littlemips Ta ELF Ta LSB Ta 32 .It Li elf32-powerpc Ta ELF Ta MSB Ta 32 .It Li elf32-powerpcle Ta ELF Ta LSB Ta 32 .It Li elf32-sh Ta ELF Ta MSB Ta 32 .It Li elf32-shl Ta ELF Ta LSB Ta 32 .It Li elf32-sh-nbsd Ta ELF Ta MSB Ta 32 .It Li elf32-shl-nbsd Ta ELF Ta LSB Ta 32 .It Li elf32-shbig-linux Ta ELF Ta MSB Ta 32 .It Li elf32-shl-linux Ta ELF Ta LSB Ta 32 .It Li elf32-sparc Ta ELF Ta MSB Ta 32 .It Li elf64-alpha Ta ELF Ta LSB Ta 64 .It Li elf64-alpha-freebsd Ta ELF Ta LSB Ta 64 .It Li elf64-big Ta ELF Ta MSB Ta 64 .It Li elf64-bigmips Ta ELF Ta MSB Ta 64 .It Li elf64-ia64-big Ta ELF Ta MSB Ta 64 .It Li elf64-ia64-little Ta ELF Ta LSB Ta 64 .It Li elf64-little Ta ELF Ta LSB Ta 64 +.It Li elf64-littleaarch64 Ta ELF Ta LSB Ta 64 .It Li elf64-littlemips Ta ELF Ta LSB Ta 64 .It Li elf64-powerpc Ta ELF Ta MSB Ta 64 .It Li elf64-powerpcle Ta ELF Ta LSB Ta 64 .It Li elf64-sh64 Ta ELF Ta MSB Ta 64 .It Li elf64-sh64l Ta ELF Ta LSB Ta 64 .It Li elf64-sh64-nbsd Ta ELF Ta MSB Ta 64 .It Li elf64-sh64l-nbsd Ta ELF Ta LSB Ta 64 .It Li elf64-sh64big-linux Ta ELF Ta MSB Ta 64 .It Li elf64-sh64-linux Ta ELF Ta LSB Ta 64 .It Li elf64-sparc Ta ELF Ta MSB Ta 64 .It Li elf64-sparc-freebsd Ta ELF Ta MSB Ta 64 .It Li elf64-x86-64 Ta ELF Ta LSB Ta 64 .It Li elf64-x86-64-freebsd Ta ELF Ta LSB Ta 64 .It Li ihex Ta IHEX Ta - Ta - .It Li pei-i386 Ta PE Ta LSB Ta 32 .It Li pei-x86-64 Ta PE Ta LSB Ta 64 .It Li srec Ta SREC Ta - Ta - .It Li symbolsrec Ta SREC Ta - Ta - .El .Pp Function .Fn elftc_bfd_target_byteorder returns the ELF byte order associated with target descriptor .Ar target . .Pp Function .Fn elftc_bfd_target_class returns the ELF class associated with target descriptor .Ar target . .Pp Function .Fn elftc_bfd_target_flavor returns the object format associated with target descriptor .Ar target . The known object formats are: .Bl -tag -offset "XXXX" -width ".Dv ETF_BINARY" -compact .It Dv ETF_ELF An ELF object. .It Dv ETF_BINARY Raw binary. .It Dv ETF_IHEX An object encoded in .Tn Intel hex format. .It Dv ETF_NONE An unknown object format. .It Dv ETF_SREC An object encoded as S-records. .El .Sh RETURN VALUES Function .Fn elftc_bfd_find_target returns a valid pointer to an opaque binary target descriptor if successful, or NULL in case of an error. .Pp Function .Fn elftc_bfd_target_byteorder returns the ELF byte order associated with the target descriptor; one of .Dv ELFDATA2MSB or .Dv ELFDATA2LSB . .Pp Function .Fn elftc_bfd_target_class returns the ELF class associated with the target descriptor; one of .Dv ELFCLASS32 or .Dv ELFCLASS64 . .Pp Function .Fn elftc_bfd_target_machine returns the ELF architecture associated with the target descriptor. .Pp Function .Fn elftc_bfd_target_flavor returns one of .Dv ETF_BINARY , .Dv ETF_ELF , .Dv ETF_IHEX or .Dv ETF_SREC if successful or .Dv ETF_NONE in case of error. .Sh EXAMPLES To return descriptor information associated with target name .Dq elf64-big use: .Bd -literal -offset indent struct Elftc_Bfd_Target *t; if ((t = elftc_bfd_find_target("elf64-big")) == NULL) errx(EXIT_FAILURE, "Cannot find target descriptor"); printf("Class: %s\\n", elftc_bfd_target_class(t) == ELFCLASS32 ? "ELFCLASS32" : "ELFCLASS64"); printf("Byteorder: %s\\n", elftc_bfd_target_byteorder(t) == ELFDATA2LSB ? "LSB" : "MSB"); printf("Flavor: %d\\n", elftc_bfd_target_flavor(t)); .Ed .Sh SEE ALSO .Xr elf 3 Index: vendor/elftoolchain/dist/libelftc/elftc_reloc_type_str.c =================================================================== --- vendor/elftoolchain/dist/libelftc/elftc_reloc_type_str.c (revision 305125) +++ vendor/elftoolchain/dist/libelftc/elftc_reloc_type_str.c (revision 305126) @@ -1,684 +1,687 @@ /*- * Copyright (c) 2009-2015 Kai Wang * Copyright (c) 2016 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by Ed Maste under sponsorship * of the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include const char * elftc_reloc_type_str(unsigned int mach, unsigned int type) { static char s_type[32]; switch(mach) { case EM_386: case EM_IAMCU: switch(type) { case 0: return "R_386_NONE"; case 1: return "R_386_32"; case 2: return "R_386_PC32"; case 3: return "R_386_GOT32"; case 4: return "R_386_PLT32"; case 5: return "R_386_COPY"; case 6: return "R_386_GLOB_DAT"; case 7: return "R_386_JUMP_SLOT"; case 8: return "R_386_RELATIVE"; case 9: return "R_386_GOTOFF"; case 10: return "R_386_GOTPC"; case 11: return "R_386_32PLT"; /* Not in psabi */ case 14: return "R_386_TLS_TPOFF"; case 15: return "R_386_TLS_IE"; case 16: return "R_386_TLS_GOTIE"; case 17: return "R_386_TLS_LE"; case 18: return "R_386_TLS_GD"; case 19: return "R_386_TLS_LDM"; case 20: return "R_386_16"; case 21: return "R_386_PC16"; case 22: return "R_386_8"; case 23: return "R_386_PC8"; case 24: return "R_386_TLS_GD_32"; case 25: return "R_386_TLS_GD_PUSH"; case 26: return "R_386_TLS_GD_CALL"; case 27: return "R_386_TLS_GD_POP"; case 28: return "R_386_TLS_LDM_32"; case 29: return "R_386_TLS_LDM_PUSH"; case 30: return "R_386_TLS_LDM_CALL"; case 31: return "R_386_TLS_LDM_POP"; case 32: return "R_386_TLS_LDO_32"; case 33: return "R_386_TLS_IE_32"; case 34: return "R_386_TLS_LE_32"; case 35: return "R_386_TLS_DTPMOD32"; case 36: return "R_386_TLS_DTPOFF32"; case 37: return "R_386_TLS_TPOFF32"; case 38: return "R_386_SIZE32"; case 39: return "R_386_TLS_GOTDESC"; case 40: return "R_386_TLS_DESC_CALL"; case 41: return "R_386_TLS_DESC"; case 42: return "R_386_IRELATIVE"; case 43: return "R_386_GOT32X"; } break; case EM_AARCH64: switch(type) { case 0: return "R_AARCH64_NONE"; case 257: return "R_AARCH64_ABS64"; case 258: return "R_AARCH64_ABS32"; case 259: return "R_AARCH64_ABS16"; case 260: return "R_AARCH64_PREL64"; case 261: return "R_AARCH64_PREL32"; case 262: return "R_AARCH64_PREL16"; case 263: return "R_AARCH64_MOVW_UABS_G0"; case 264: return "R_AARCH64_MOVW_UABS_G0_NC"; case 265: return "R_AARCH64_MOVW_UABS_G1"; case 266: return "R_AARCH64_MOVW_UABS_G1_NC"; case 267: return "R_AARCH64_MOVW_UABS_G2"; case 268: return "R_AARCH64_MOVW_UABS_G2_NC"; case 269: return "R_AARCH64_MOVW_UABS_G3"; case 270: return "R_AARCH64_MOVW_SABS_G0"; case 271: return "R_AARCH64_MOVW_SABS_G1"; case 272: return "R_AARCH64_MOVW_SABS_G2"; case 273: return "R_AARCH64_LD_PREL_LO19"; case 274: return "R_AARCH64_ADR_PREL_LO21"; case 275: return "R_AARCH64_ADR_PREL_PG_HI21"; case 276: return "R_AARCH64_ADR_PREL_PG_HI21_NC"; case 277: return "R_AARCH64_ADD_ABS_LO12_NC"; case 278: return "R_AARCH64_LDST8_ABS_LO12_NC"; case 279: return "R_AARCH64_TSTBR14"; case 280: return "R_AARCH64_CONDBR19"; case 282: return "R_AARCH64_JUMP26"; case 283: return "R_AARCH64_CALL26"; case 284: return "R_AARCH64_LDST16_ABS_LO12_NC"; case 285: return "R_AARCH64_LDST32_ABS_LO12_NC"; case 286: return "R_AARCH64_LDST64_ABS_LO12_NC"; case 287: return "R_AARCH64_MOVW_PREL_G0"; case 288: return "R_AARCH64_MOVW_PREL_G0_NC"; case 289: return "R_AARCH64_MOVW_PREL_G1"; case 290: return "R_AARCH64_MOVW_PREL_G1_NC"; case 291: return "R_AARCH64_MOVW_PREL_G2"; case 292: return "R_AARCH64_MOVW_PREL_G2_NC"; case 293: return "R_AARCH64_MOVW_PREL_G3"; case 299: return "R_AARCH64_LDST128_ABS_LO12_NC"; case 300: return "R_AARCH64_MOVW_GOTOFF_G0"; case 301: return "R_AARCH64_MOVW_GOTOFF_G0_NC"; case 302: return "R_AARCH64_MOVW_GOTOFF_G1"; case 303: return "R_AARCH64_MOVW_GOTOFF_G1_NC"; case 304: return "R_AARCH64_MOVW_GOTOFF_G2"; case 305: return "R_AARCH64_MOVW_GOTOFF_G2_NC"; case 306: return "R_AARCH64_MOVW_GOTOFF_G3"; case 307: return "R_AARCH64_GOTREL64"; case 308: return "R_AARCH64_GOTREL32"; case 309: return "R_AARCH64_GOT_LD_PREL19"; case 310: return "R_AARCH64_LD64_GOTOFF_LO15"; case 311: return "R_AARCH64_ADR_GOT_PAGE"; case 312: return "R_AARCH64_LD64_GOT_LO12_NC"; case 313: return "R_AARCH64_LD64_GOTPAGE_LO15"; case 560: return "R_AARCH64_TLSDESC_LD_PREL19"; case 561: return "R_AARCH64_TLSDESC_ADR_PREL21"; case 562: return "R_AARCH64_TLSDESC_ADR_PAGE21"; case 563: return "R_AARCH64_TLSDESC_LD64_LO12"; case 564: return "R_AARCH64_TLSDESC_ADD_LO12"; case 565: return "R_AARCH64_TLSDESC_OFF_G1"; case 566: return "R_AARCH64_TLSDESC_OFF_G0_NC"; case 567: return "R_AARCH64_TLSDESC_LDR"; case 568: return "R_AARCH64_TLSDESC_ADD"; case 569: return "R_AARCH64_TLSDESC_CALL"; case 1024: return "R_AARCH64_COPY"; case 1025: return "R_AARCH64_GLOB_DAT"; case 1026: return "R_AARCH64_JUMP_SLOT"; case 1027: return "R_AARCH64_RELATIVE"; case 1028: return "R_AARCH64_TLS_DTPREL64"; case 1029: return "R_AARCH64_TLS_DTPMOD64"; case 1030: return "R_AARCH64_TLS_TPREL64"; case 1031: return "R_AARCH64_TLSDESC"; case 1032: return "R_AARCH64_IRELATIVE"; } break; case EM_ARM: switch(type) { case 0: return "R_ARM_NONE"; case 1: return "R_ARM_PC24"; /* Deprecated */ case 2: return "R_ARM_ABS32"; case 3: return "R_ARM_REL32"; case 4: return "R_ARM_LDR_PC_G0"; /* Also R_ARM_PC13 */ case 5: return "R_ARM_ABS16"; case 6: return "R_ARM_ABS12"; case 7: return "R_ARM_THM_ABS5"; case 8: return "R_ARM_ABS8"; case 9: return "R_ARM_SBREL32"; case 10: return "R_ARM_THM_CALL"; /* Also R_ARM_THM_PC22 */ case 11: return "R_ARM_THM_PC8"; case 12: return "R_ARM_BREL_ADJ"; /* Also R_ARM_AMP_VCALL9 */ case 13: return "R_ARM_TLS_DESC"; /* Also R_ARM_SWI24 */ case 14: return "R_ARM_THM_SWI8"; /* Obsolete */ case 15: return "R_ARM_XPC25"; /* Obsolete */ case 16: return "R_ARM_THM_XPC22"; /* Obsolete */ case 17: return "R_ARM_TLS_DTPMOD32"; case 18: return "R_ARM_TLS_DTPOFF32"; case 19: return "R_ARM_TLS_TPOFF32"; case 20: return "R_ARM_COPY"; case 21: return "R_ARM_GLOB_DAT"; case 22: return "R_ARM_JUMP_SLOT"; case 23: return "R_ARM_RELATIVE"; case 24: return "R_ARM_GOTOFF32"; /* Also R_ARM_GOTOFF */ case 25: return "R_ARM_BASE_PREL"; /* GNU R_ARM_GOTPC */ case 26: return "R_ARM_GOT_BREL"; /* GNU R_ARM_GOT32 */ case 27: return "R_ARM_PLT32"; /* Deprecated */ case 28: return "R_ARM_CALL"; case 29: return "R_ARM_JUMP24"; case 30: return "R_ARM_THM_JUMP24"; case 31: return "R_ARM_BASE_ABS"; case 32: return "R_ARM_ALU_PCREL_7_0"; /* Obsolete */ case 33: return "R_ARM_ALU_PCREL_15_8"; /* Obsolete */ case 34: return "R_ARM_ALU_PCREL_23_15"; /* Obsolete */ case 35: return "R_ARM_LDR_SBREL_11_0_NC"; /* Deprecated */ case 36: return "R_ARM_ALU_SBREL_19_12_NC"; /* Deprecated */ case 37: return "R_ARM_ALU_SBREL_27_20_CK"; /* Deprecated */ case 38: return "R_ARM_TARGET1"; case 39: return "R_ARM_SBREL31"; /* Deprecated. */ case 40: return "R_ARM_V4BX"; case 41: return "R_ARM_TARGET2"; case 42: return "R_ARM_PREL31"; case 43: return "R_ARM_MOVW_ABS_NC"; case 44: return "R_ARM_MOVT_ABS"; case 45: return "R_ARM_MOVW_PREL_NC"; case 46: return "R_ARM_MOVT_PREL"; case 47: return "R_ARM_THM_MOVW_ABS_NC"; case 48: return "R_ARM_THM_MOVT_ABS"; case 49: return "R_ARM_THM_MOVW_PREL_NC"; case 50: return "R_ARM_THM_MOVT_PREL"; case 51: return "R_ARM_THM_JUMP19"; case 52: return "R_ARM_THM_JUMP6"; case 53: return "R_ARM_THM_ALU_PREL_11_0"; case 54: return "R_ARM_THM_PC12"; case 55: return "R_ARM_ABS32_NOI"; case 56: return "R_ARM_REL32_NOI"; case 57: return "R_ARM_ALU_PC_G0_NC"; case 58: return "R_ARM_ALU_PC_G0"; case 59: return "R_ARM_ALU_PC_G1_NC"; case 60: return "R_ARM_ALU_PC_G1"; case 61: return "R_ARM_ALU_PC_G2"; case 62: return "R_ARM_LDR_PC_G1"; case 63: return "R_ARM_LDR_PC_G2"; case 64: return "R_ARM_LDRS_PC_G0"; case 65: return "R_ARM_LDRS_PC_G1"; case 66: return "R_ARM_LDRS_PC_G2"; case 67: return "R_ARM_LDC_PC_G0"; case 68: return "R_ARM_LDC_PC_G1"; case 69: return "R_ARM_LDC_PC_G2"; case 70: return "R_ARM_ALU_SB_G0_NC"; case 71: return "R_ARM_ALU_SB_G0"; case 72: return "R_ARM_ALU_SB_G1_NC"; case 73: return "R_ARM_ALU_SB_G1"; case 74: return "R_ARM_ALU_SB_G2"; case 75: return "R_ARM_LDR_SB_G0"; case 76: return "R_ARM_LDR_SB_G1"; case 77: return "R_ARM_LDR_SB_G2"; case 78: return "R_ARM_LDRS_SB_G0"; case 79: return "R_ARM_LDRS_SB_G1"; case 80: return "R_ARM_LDRS_SB_G2"; case 81: return "R_ARM_LDC_SB_G0"; case 82: return "R_ARM_LDC_SB_G1"; case 83: return "R_ARM_LDC_SB_G2"; case 84: return "R_ARM_MOVW_BREL_NC"; case 85: return "R_ARM_MOVT_BREL"; case 86: return "R_ARM_MOVW_BREL"; case 87: return "R_ARM_THM_MOVW_BREL_NC"; case 88: return "R_ARM_THM_MOVT_BREL"; case 89: return "R_ARM_THM_MOVW_BREL"; case 90: return "R_ARM_TLS_GOTDESC"; case 91: return "R_ARM_TLS_CALL"; case 92: return "R_ARM_TLS_DESCSEQ"; case 93: return "R_ARM_THM_TLS_CALL"; case 94: return "R_ARM_PLT32_ABS"; case 95: return "R_ARM_GOT_ABS"; case 96: return "R_ARM_GOT_PREL"; case 97: return "R_ARM_GOT_BREL12"; case 98: return "R_ARM_GOTOFF12"; case 99: return "R_ARM_GOTRELAX"; case 100: return "R_ARM_GNU_VTENTRY"; case 101: return "R_ARM_GNU_VTINHERIT"; case 102: return "R_ARM_THM_JUMP11"; /* Also R_ARM_THM_PC11 */ case 103: return "R_ARM_THM_JUMP8"; /* Also R_ARM_THM_PC9 */ case 104: return "R_ARM_TLS_GD32"; case 105: return "R_ARM_TLS_LDM32"; case 106: return "R_ARM_TLS_LDO32"; case 107: return "R_ARM_TLS_IE32"; case 108: return "R_ARM_TLS_LE32"; case 109: return "R_ARM_TLS_LDO12"; case 110: return "R_ARM_TLS_LE12"; case 111: return "R_ARM_TLS_IE12GP"; /* 112-127 R_ARM_PRIVATE_ */ case 128: return "R_ARM_ME_TOO"; /* Obsolete */ case 129: return "R_ARM_THM_TLS_DESCSEQ16"; case 130: return "R_ARM_THM_TLS_DESCSEQ32"; case 131: return "R_ARM_THM_GOT_BREL12"; case 132: return "R_ARM_THM_ALU_ABS_G0_NC"; case 133: return "R_ARM_THM_ALU_ABS_G1_NC"; case 134: return "R_ARM_THM_ALU_ABS_G2_NC"; case 135: return "R_ARM_THM_ALU_ABS_G3"; /* 136-159 Reserved for future allocation. */ case 160: return "R_ARM_IRELATIVE"; /* 161-255 Reserved for future allocation. */ case 249: return "R_ARM_RXPC25"; case 250: return "R_ARM_RSBREL32"; case 251: return "R_ARM_THM_RPC22"; case 252: return "R_ARM_RREL32"; case 253: return "R_ARM_RABS32"; case 254: return "R_ARM_RPC24"; case 255: return "R_ARM_RBASE"; } break; case EM_IA_64: switch(type) { case 0: return "R_IA_64_NONE"; case 33: return "R_IA_64_IMM14"; case 34: return "R_IA_64_IMM22"; case 35: return "R_IA_64_IMM64"; case 36: return "R_IA_64_DIR32MSB"; case 37: return "R_IA_64_DIR32LSB"; case 38: return "R_IA_64_DIR64MSB"; case 39: return "R_IA_64_DIR64LSB"; case 42: return "R_IA_64_GPREL22"; case 43: return "R_IA_64_GPREL64I"; case 44: return "R_IA_64_GPREL32MSB"; case 45: return "R_IA_64_GPREL32LSB"; case 46: return "R_IA_64_GPREL64MSB"; case 47: return "R_IA_64_GPREL64LSB"; case 50: return "R_IA_64_LTOFF22"; case 51: return "R_IA_64_LTOFF64I"; case 58: return "R_IA_64_PLTOFF22"; case 59: return "R_IA_64_PLTOFF64I"; case 62: return "R_IA_64_PLTOFF64MSB"; case 63: return "R_IA_64_PLTOFF64LSB"; case 67: return "R_IA_64_FPTR64I"; case 68: return "R_IA_64_FPTR32MSB"; case 69: return "R_IA_64_FPTR32LSB"; case 70: return "R_IA_64_FPTR64MSB"; case 71: return "R_IA_64_FPTR64LSB"; case 72: return "R_IA_64_PCREL60B"; case 73: return "R_IA_64_PCREL21B"; case 74: return "R_IA_64_PCREL21M"; case 75: return "R_IA_64_PCREL21F"; case 76: return "R_IA_64_PCREL32MSB"; case 77: return "R_IA_64_PCREL32LSB"; case 78: return "R_IA_64_PCREL64MSB"; case 79: return "R_IA_64_PCREL64LSB"; case 82: return "R_IA_64_LTOFF_FPTR22"; case 83: return "R_IA_64_LTOFF_FPTR64I"; case 84: return "R_IA_64_LTOFF_FPTR32MSB"; case 85: return "R_IA_64_LTOFF_FPTR32LSB"; case 86: return "R_IA_64_LTOFF_FPTR64MSB"; case 87: return "R_IA_64_LTOFF_FPTR64LSB"; case 92: return "R_IA_64_SEGREL32MSB"; case 93: return "R_IA_64_SEGREL32LSB"; case 94: return "R_IA_64_SEGREL64MSB"; case 95: return "R_IA_64_SEGREL64LSB"; case 100: return "R_IA_64_SECREL32MSB"; case 101: return "R_IA_64_SECREL32LSB"; case 102: return "R_IA_64_SECREL64MSB"; case 103: return "R_IA_64_SECREL64LSB"; case 108: return "R_IA_64_REL32MSB"; case 109: return "R_IA_64_REL32LSB"; case 110: return "R_IA_64_REL64MSB"; case 111: return "R_IA_64_REL64LSB"; case 116: return "R_IA_64_LTV32MSB"; case 117: return "R_IA_64_LTV32LSB"; case 118: return "R_IA_64_LTV64MSB"; case 119: return "R_IA_64_LTV64LSB"; case 121: return "R_IA_64_PCREL21BI"; case 122: return "R_IA_64_PCREL22"; case 123: return "R_IA_64_PCREL64I"; case 128: return "R_IA_64_IPLTMSB"; case 129: return "R_IA_64_IPLTLSB"; case 133: return "R_IA_64_SUB"; case 134: return "R_IA_64_LTOFF22X"; case 135: return "R_IA_64_LDXMOV"; case 145: return "R_IA_64_TPREL14"; case 146: return "R_IA_64_TPREL22"; case 147: return "R_IA_64_TPREL64I"; case 150: return "R_IA_64_TPREL64MSB"; case 151: return "R_IA_64_TPREL64LSB"; case 154: return "R_IA_64_LTOFF_TPREL22"; case 166: return "R_IA_64_DTPMOD64MSB"; case 167: return "R_IA_64_DTPMOD64LSB"; case 170: return "R_IA_64_LTOFF_DTPMOD22"; case 177: return "R_IA_64_DTPREL14"; case 178: return "R_IA_64_DTPREL22"; case 179: return "R_IA_64_DTPREL64I"; case 180: return "R_IA_64_DTPREL32MSB"; case 181: return "R_IA_64_DTPREL32LSB"; case 182: return "R_IA_64_DTPREL64MSB"; case 183: return "R_IA_64_DTPREL64LSB"; case 186: return "R_IA_64_LTOFF_DTPREL22"; } break; case EM_MIPS: switch(type) { case 0: return "R_MIPS_NONE"; case 1: return "R_MIPS_16"; case 2: return "R_MIPS_32"; case 3: return "R_MIPS_REL32"; case 4: return "R_MIPS_26"; case 5: return "R_MIPS_HI16"; case 6: return "R_MIPS_LO16"; case 7: return "R_MIPS_GPREL16"; case 8: return "R_MIPS_LITERAL"; case 9: return "R_MIPS_GOT16"; case 10: return "R_MIPS_PC16"; case 11: return "R_MIPS_CALL16"; case 12: return "R_MIPS_GPREL32"; case 16: return "R_MIPS_SHIFT5"; case 17: return "R_MIPS_SHIFT6"; case 18: return "R_MIPS_64"; case 19: return "R_MIPS_GOT_DISP"; case 20: return "R_MIPS_GOT_PAGE"; case 21: return "R_MIPS_GOT_OFST"; case 22: return "R_MIPS_GOT_HI16"; case 23: return "R_MIPS_GOT_LO16"; case 24: return "R_MIPS_SUB"; case 30: return "R_MIPS_CALLHI16"; case 31: return "R_MIPS_CALLLO16"; case 37: return "R_MIPS_JALR"; case 38: return "R_MIPS_TLS_DTPMOD32"; case 39: return "R_MIPS_TLS_DTPREL32"; case 40: return "R_MIPS_TLS_DTPMOD64"; case 41: return "R_MIPS_TLS_DTPREL64"; case 42: return "R_MIPS_TLS_GD"; case 43: return "R_MIPS_TLS_LDM"; case 44: return "R_MIPS_TLS_DTPREL_HI16"; case 45: return "R_MIPS_TLS_DTPREL_LO16"; case 46: return "R_MIPS_TLS_GOTTPREL"; case 47: return "R_MIPS_TLS_TPREL32"; case 48: return "R_MIPS_TLS_TPREL64"; case 49: return "R_MIPS_TLS_TPREL_HI16"; case 50: return "R_MIPS_TLS_TPREL_LO16"; } break; case EM_PPC: switch(type) { case 0: return "R_PPC_NONE"; case 1: return "R_PPC_ADDR32"; case 2: return "R_PPC_ADDR24"; case 3: return "R_PPC_ADDR16"; case 4: return "R_PPC_ADDR16_LO"; case 5: return "R_PPC_ADDR16_HI"; case 6: return "R_PPC_ADDR16_HA"; case 7: return "R_PPC_ADDR14"; case 8: return "R_PPC_ADDR14_BRTAKEN"; case 9: return "R_PPC_ADDR14_BRNTAKEN"; case 10: return "R_PPC_REL24"; case 11: return "R_PPC_REL14"; case 12: return "R_PPC_REL14_BRTAKEN"; case 13: return "R_PPC_REL14_BRNTAKEN"; case 14: return "R_PPC_GOT16"; case 15: return "R_PPC_GOT16_LO"; case 16: return "R_PPC_GOT16_HI"; case 17: return "R_PPC_GOT16_HA"; case 18: return "R_PPC_PLTREL24"; case 19: return "R_PPC_COPY"; case 20: return "R_PPC_GLOB_DAT"; case 21: return "R_PPC_JMP_SLOT"; case 22: return "R_PPC_RELATIVE"; case 23: return "R_PPC_LOCAL24PC"; case 24: return "R_PPC_UADDR32"; case 25: return "R_PPC_UADDR16"; case 26: return "R_PPC_REL32"; case 27: return "R_PPC_PLT32"; case 28: return "R_PPC_PLTREL32"; case 29: return "R_PPC_PLT16_LO"; case 30: return "R_PPC_PLT16_HI"; case 31: return "R_PPC_PLT16_HA"; case 32: return "R_PPC_SDAREL16"; case 33: return "R_PPC_SECTOFF"; case 34: return "R_PPC_SECTOFF_LO"; case 35: return "R_PPC_SECTOFF_HI"; case 36: return "R_PPC_SECTOFF_HA"; case 67: return "R_PPC_TLS"; case 68: return "R_PPC_DTPMOD32"; case 69: return "R_PPC_TPREL16"; case 70: return "R_PPC_TPREL16_LO"; case 71: return "R_PPC_TPREL16_HI"; case 72: return "R_PPC_TPREL16_HA"; case 73: return "R_PPC_TPREL32"; case 74: return "R_PPC_DTPREL16"; case 75: return "R_PPC_DTPREL16_LO"; case 76: return "R_PPC_DTPREL16_HI"; case 77: return "R_PPC_DTPREL16_HA"; case 78: return "R_PPC_DTPREL32"; case 79: return "R_PPC_GOT_TLSGD16"; case 80: return "R_PPC_GOT_TLSGD16_LO"; case 81: return "R_PPC_GOT_TLSGD16_HI"; case 82: return "R_PPC_GOT_TLSGD16_HA"; case 83: return "R_PPC_GOT_TLSLD16"; case 84: return "R_PPC_GOT_TLSLD16_LO"; case 85: return "R_PPC_GOT_TLSLD16_HI"; case 86: return "R_PPC_GOT_TLSLD16_HA"; case 87: return "R_PPC_GOT_TPREL16"; case 88: return "R_PPC_GOT_TPREL16_LO"; case 89: return "R_PPC_GOT_TPREL16_HI"; case 90: return "R_PPC_GOT_TPREL16_HA"; case 101: return "R_PPC_EMB_NADDR32"; case 102: return "R_PPC_EMB_NADDR16"; case 103: return "R_PPC_EMB_NADDR16_LO"; case 104: return "R_PPC_EMB_NADDR16_HI"; case 105: return "R_PPC_EMB_NADDR16_HA"; case 106: return "R_PPC_EMB_SDAI16"; case 107: return "R_PPC_EMB_SDA2I16"; case 108: return "R_PPC_EMB_SDA2REL"; case 109: return "R_PPC_EMB_SDA21"; case 110: return "R_PPC_EMB_MRKREF"; case 111: return "R_PPC_EMB_RELSEC16"; case 112: return "R_PPC_EMB_RELST_LO"; case 113: return "R_PPC_EMB_RELST_HI"; case 114: return "R_PPC_EMB_RELST_HA"; case 115: return "R_PPC_EMB_BIT_FLD"; case 116: return "R_PPC_EMB_RELSDA"; } break; case EM_RISCV: switch(type) { case 0: return "R_RISCV_NONE"; case 1: return "R_RISCV_32"; case 2: return "R_RISCV_64"; case 3: return "R_RISCV_RELATIVE"; case 4: return "R_RISCV_COPY"; case 5: return "R_RISCV_JUMP_SLOT"; case 6: return "R_RISCV_TLS_DTPMOD32"; case 7: return "R_RISCV_TLS_DTPMOD64"; case 8: return "R_RISCV_TLS_DTPREL32"; case 9: return "R_RISCV_TLS_DTPREL64"; case 10: return "R_RISCV_TLS_TPREL32"; case 11: return "R_RISCV_TLS_TPREL64"; case 16: return "R_RISCV_BRANCH"; case 17: return "R_RISCV_JAL"; case 18: return "R_RISCV_CALL"; case 19: return "R_RISCV_CALL_PLT"; case 20: return "R_RISCV_GOT_HI20"; case 21: return "R_RISCV_TLS_GOT_HI20"; case 22: return "R_RISCV_TLS_GD_HI20"; case 23: return "R_RISCV_PCREL_HI20"; case 24: return "R_RISCV_PCREL_LO12_I"; case 25: return "R_RISCV_PCREL_LO12_S"; case 26: return "R_RISCV_HI20"; case 27: return "R_RISCV_LO12_I"; case 28: return "R_RISCV_LO12_S"; case 29: return "R_RISCV_TPREL_HI20"; case 30: return "R_RISCV_TPREL_LO12_I"; case 31: return "R_RISCV_TPREL_LO12_S"; case 32: return "R_RISCV_TPREL_ADD"; case 33: return "R_RISCV_ADD8"; case 34: return "R_RISCV_ADD16"; case 35: return "R_RISCV_ADD32"; case 36: return "R_RISCV_ADD64"; case 37: return "R_RISCV_SUB8"; case 38: return "R_RISCV_SUB16"; case 39: return "R_RISCV_SUB32"; case 40: return "R_RISCV_SUB64"; case 41: return "R_RISCV_GNU_VTINHERIT"; case 42: return "R_RISCV_GNU_VTENTRY"; case 43: return "R_RISCV_ALIGN"; case 44: return "R_RISCV_RVC_BRANCH"; case 45: return "R_RISCV_RVC_JUMP"; + case 46: return "R_RISCV_RVC_LUI"; + case 47: return "R_RISCV_GPREL_I"; + case 48: return "R_RISCV_GPREL_S"; } break; case EM_SPARC: case EM_SPARCV9: switch(type) { case 0: return "R_SPARC_NONE"; case 1: return "R_SPARC_8"; case 2: return "R_SPARC_16"; case 3: return "R_SPARC_32"; case 4: return "R_SPARC_DISP8"; case 5: return "R_SPARC_DISP16"; case 6: return "R_SPARC_DISP32"; case 7: return "R_SPARC_WDISP30"; case 8: return "R_SPARC_WDISP22"; case 9: return "R_SPARC_HI22"; case 10: return "R_SPARC_22"; case 11: return "R_SPARC_13"; case 12: return "R_SPARC_LO10"; case 13: return "R_SPARC_GOT10"; case 14: return "R_SPARC_GOT13"; case 15: return "R_SPARC_GOT22"; case 16: return "R_SPARC_PC10"; case 17: return "R_SPARC_PC22"; case 18: return "R_SPARC_WPLT30"; case 19: return "R_SPARC_COPY"; case 20: return "R_SPARC_GLOB_DAT"; case 21: return "R_SPARC_JMP_SLOT"; case 22: return "R_SPARC_RELATIVE"; case 23: return "R_SPARC_UA32"; case 24: return "R_SPARC_PLT32"; case 25: return "R_SPARC_HIPLT22"; case 26: return "R_SPARC_LOPLT10"; case 27: return "R_SPARC_PCPLT32"; case 28: return "R_SPARC_PCPLT22"; case 29: return "R_SPARC_PCPLT10"; case 30: return "R_SPARC_10"; case 31: return "R_SPARC_11"; case 32: return "R_SPARC_64"; case 33: return "R_SPARC_OLO10"; case 34: return "R_SPARC_HH22"; case 35: return "R_SPARC_HM10"; case 36: return "R_SPARC_LM22"; case 37: return "R_SPARC_PC_HH22"; case 38: return "R_SPARC_PC_HM10"; case 39: return "R_SPARC_PC_LM22"; case 40: return "R_SPARC_WDISP16"; case 41: return "R_SPARC_WDISP19"; case 42: return "R_SPARC_GLOB_JMP"; case 43: return "R_SPARC_7"; case 44: return "R_SPARC_5"; case 45: return "R_SPARC_6"; case 46: return "R_SPARC_DISP64"; case 47: return "R_SPARC_PLT64"; case 48: return "R_SPARC_HIX22"; case 49: return "R_SPARC_LOX10"; case 50: return "R_SPARC_H44"; case 51: return "R_SPARC_M44"; case 52: return "R_SPARC_L44"; case 53: return "R_SPARC_REGISTER"; case 54: return "R_SPARC_UA64"; case 55: return "R_SPARC_UA16"; case 56: return "R_SPARC_TLS_GD_HI22"; case 57: return "R_SPARC_TLS_GD_LO10"; case 58: return "R_SPARC_TLS_GD_ADD"; case 59: return "R_SPARC_TLS_GD_CALL"; case 60: return "R_SPARC_TLS_LDM_HI22"; case 61: return "R_SPARC_TLS_LDM_LO10"; case 62: return "R_SPARC_TLS_LDM_ADD"; case 63: return "R_SPARC_TLS_LDM_CALL"; case 64: return "R_SPARC_TLS_LDO_HIX22"; case 65: return "R_SPARC_TLS_LDO_LOX10"; case 66: return "R_SPARC_TLS_LDO_ADD"; case 67: return "R_SPARC_TLS_IE_HI22"; case 68: return "R_SPARC_TLS_IE_LO10"; case 69: return "R_SPARC_TLS_IE_LD"; case 70: return "R_SPARC_TLS_IE_LDX"; case 71: return "R_SPARC_TLS_IE_ADD"; case 72: return "R_SPARC_TLS_LE_HIX22"; case 73: return "R_SPARC_TLS_LE_LOX10"; case 74: return "R_SPARC_TLS_DTPMOD32"; case 75: return "R_SPARC_TLS_DTPMOD64"; case 76: return "R_SPARC_TLS_DTPOFF32"; case 77: return "R_SPARC_TLS_DTPOFF64"; case 78: return "R_SPARC_TLS_TPOFF32"; case 79: return "R_SPARC_TLS_TPOFF64"; } break; case EM_X86_64: switch(type) { case 0: return "R_X86_64_NONE"; case 1: return "R_X86_64_64"; case 2: return "R_X86_64_PC32"; case 3: return "R_X86_64_GOT32"; case 4: return "R_X86_64_PLT32"; case 5: return "R_X86_64_COPY"; case 6: return "R_X86_64_GLOB_DAT"; case 7: return "R_X86_64_JUMP_SLOT"; case 8: return "R_X86_64_RELATIVE"; case 9: return "R_X86_64_GOTPCREL"; case 10: return "R_X86_64_32"; case 11: return "R_X86_64_32S"; case 12: return "R_X86_64_16"; case 13: return "R_X86_64_PC16"; case 14: return "R_X86_64_8"; case 15: return "R_X86_64_PC8"; case 16: return "R_X86_64_DTPMOD64"; case 17: return "R_X86_64_DTPOFF64"; case 18: return "R_X86_64_TPOFF64"; case 19: return "R_X86_64_TLSGD"; case 20: return "R_X86_64_TLSLD"; case 21: return "R_X86_64_DTPOFF32"; case 22: return "R_X86_64_GOTTPOFF"; case 23: return "R_X86_64_TPOFF32"; case 24: return "R_X86_64_PC64"; case 25: return "R_X86_64_GOTOFF64"; case 26: return "R_X86_64_GOTPC32"; case 27: return "R_X86_64_GOT64"; case 28: return "R_X86_64_GOTPCREL64"; case 29: return "R_X86_64_GOTPC64"; case 30: return "R_X86_64_GOTPLT64"; case 31: return "R_X86_64_PLTOFF64"; case 32: return "R_X86_64_SIZE32"; case 33: return "R_X86_64_SIZE64"; case 34: return "R_X86_64_GOTPC32_TLSDESC"; case 35: return "R_X86_64_TLSDESC_CALL"; case 36: return "R_X86_64_TLSDESC"; case 37: return "R_X86_64_IRELATIVE"; case 38: return "R_X86_64_RELATIVE64"; case 41: return "R_X86_64_GOTPCRELX"; case 42: return "R_X86_64_REX_GOTPCRELX"; } break; } snprintf(s_type, sizeof(s_type), "", type); return (s_type); } Index: vendor/elftoolchain/dist/libelftc/elftc_timestamp.3 =================================================================== --- vendor/elftoolchain/dist/libelftc/elftc_timestamp.3 (nonexistent) +++ vendor/elftoolchain/dist/libelftc/elftc_timestamp.3 (revision 305126) @@ -0,0 +1,79 @@ +.\" Copyright (c) 2016 The FreeBSD Foundation. All rights reserved. +.\" +.\" This documentation was written by Ed Maste under sponsorship of +.\" the FreeBSD Foundation. +.\" +.\" Redistribution and use in source and binary forms, with or without +.\" modification, are permitted provided that the following conditions +.\" are met: +.\" 1. Redistributions of source code must retain the above copyright +.\" notice, this list of conditions and the following disclaimer. +.\" 2. Redistributions in binary form must reproduce the above copyright +.\" notice, this list of conditions and the following disclaimer in the +.\" documentation and/or other materials provided with the distribution. +.\" +.\" This software is provided by the author and contributors ``as is'' and +.\" any express or implied warranties, including, but not limited to, the +.\" implied warranties of merchantability and fitness for a particular purpose +.\" are disclaimed. In no event shall the author or contributors be liable +.\" for any direct, indirect, incidental, special, exemplary, or consequential +.\" damages (including, but not limited to, procurement of substitute goods +.\" or services; loss of use, data, or profits; or business interruption) +.\" however caused and on any theory of liability, whether in contract, strict +.\" liability, or tort (including negligence or otherwise) arising in any way +.\" out of the use of this software, even if advised of the possibility of +.\" such damage. +.\" +.\" $Id$ +.\" +.Dd August 24, 2016 +.Os +.Dt ELFTC_TIMESTAMP 3 +.Sh NAME +.Nm elftc_timestamp +.Nd return the current or environment-provided timestamp +.Sh LIBRARY +.Lb libelftc +.Sh SYNOPSIS +.In libelftc.h +.Ft int +.Fo elftc_timestamp +.Fa "time_t *timestamp" +.Fc +.Sh DESCRIPTION +The +.Fn elftc_timestamp +function returns a timestamp supplied by the +.Ev SOURCE_DATE_EPOCH +environment variable, or the current time provided by +.Xr time 3 +if the environment variable is not set. +.Pp +The +.Ar timestamp +argument specifies a pointer to the location where the timestamp will be +stored. +.Sh RETURN VALUE +Function +.Fn elftc_timestamp +returns 0 on success, and -1 in the event of an error. +.Sh ERRORS +The +.Fn elftc_timestamp +function may fail with the following errors: +.Bl -tag -width ".Bq Er ERANGE" +.It Bq Er EINVAL +.Ev SOURCE_DATE_EPOCH +contains invalid characters. +.It Bq Er ERANGE +.Ev SOURCE_DATE_EPOCH +specifies a negative value or a value that cannot be stored in a +time_t. +.El +The +.Fn elftc_timestamp +function may also fail for any of the reasons described in +.Xr strtoll 3 . +.Sh SEE ALSO +.Xr strtoll 3 , +.Xr time 3 Property changes on: vendor/elftoolchain/dist/libelftc/elftc_timestamp.3 ___________________________________________________________________ Added: svn:eol-style ## -0,0 +1 ## +native \ No newline at end of property Added: svn:keywords ## -0,0 +1 ## +FreeBSD=%H \ No newline at end of property Added: svn:mime-type ## -0,0 +1 ## +text/plain \ No newline at end of property Index: vendor/elftoolchain/dist/libelftc/elftc_timestamp.c =================================================================== --- vendor/elftoolchain/dist/libelftc/elftc_timestamp.c (nonexistent) +++ vendor/elftoolchain/dist/libelftc/elftc_timestamp.c (revision 305126) @@ -0,0 +1,55 @@ +/*- + * Copyright (c) 2016 The FreeBSD Foundation + * All rights reserved. + * + * This software was developed by Ed Maste under sponsorship + * of the FreeBSD Foundation. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#include +#include +#include +#include + +int +elftc_timestamp(time_t *timestamp) +{ + long long source_date_epoch; + char *env, *eptr; + + if ((env = getenv("SOURCE_DATE_EPOCH")) != NULL) { + errno = 0; + source_date_epoch = strtoll(env, &eptr, 10); + if (*eptr != '\0') + errno = EINVAL; + if (source_date_epoch < 0) + errno = ERANGE; + if (errno != 0) + return (-1); + *timestamp = source_date_epoch; + return (0); + } + *timestamp = time(NULL); + return (0); +} Property changes on: vendor/elftoolchain/dist/libelftc/elftc_timestamp.c ___________________________________________________________________ Added: svn:eol-style ## -0,0 +1 ## +native \ No newline at end of property Added: svn:keywords ## -0,0 +1 ## +FreeBSD=%H \ No newline at end of property Added: svn:mime-type ## -0,0 +1 ## +text/plain \ No newline at end of property Index: vendor/elftoolchain/dist/libelftc/libelftc.h =================================================================== --- vendor/elftoolchain/dist/libelftc/libelftc.h (revision 305125) +++ vendor/elftoolchain/dist/libelftc/libelftc.h (revision 305126) @@ -1,99 +1,100 @@ /*- * Copyright (c) 2009 Kai Wang * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: users/kaiwang27/elftc/libelftc.h 392 2009-05-31 19:17:46Z kaiwang27 $ - * $Id: libelftc.h 3418 2016-02-19 20:04:42Z emaste $ + * $Id: libelftc.h 3489 2016-08-31 00:12:15Z emaste $ */ #ifndef _LIBELFTC_H_ #define _LIBELFTC_H_ #include #include /* * Types meant to be opaque to the consumers of these APIs. */ typedef struct _Elftc_Bfd_Target Elftc_Bfd_Target; typedef struct _Elftc_String_Table Elftc_String_Table; /* Target types. */ typedef enum { ETF_NONE, ETF_ELF, ETF_BINARY, ETF_SREC, ETF_IHEX, ETF_PE, ETF_EFI, } Elftc_Bfd_Target_Flavor; /* * Demangler flags. */ /* Name mangling style. */ #define ELFTC_DEM_UNKNOWN 0x00000000U /* Not specified. */ #define ELFTC_DEM_ARM 0x00000001U /* C++ Ann. Ref. Manual. */ #define ELFTC_DEM_GNU2 0x00000002U /* GNU version 2. */ #define ELFTC_DEM_GNU3 0x00000004U /* GNU version 3. */ /* Demangling behaviour control. */ #define ELFTC_DEM_NOPARAM 0x00010000U #ifdef __cplusplus extern "C" { #endif Elftc_Bfd_Target *elftc_bfd_find_target(const char *_tgt_name); Elftc_Bfd_Target_Flavor elftc_bfd_target_flavor(Elftc_Bfd_Target *_tgt); unsigned int elftc_bfd_target_byteorder(Elftc_Bfd_Target *_tgt); unsigned int elftc_bfd_target_class(Elftc_Bfd_Target *_tgt); unsigned int elftc_bfd_target_machine(Elftc_Bfd_Target *_tgt); int elftc_copyfile(int _srcfd, int _dstfd); int elftc_demangle(const char *_mangledname, char *_buffer, size_t _bufsize, unsigned int _flags); const char *elftc_reloc_type_str(unsigned int mach, unsigned int type); int elftc_set_timestamps(const char *_filename, struct stat *_sb); Elftc_String_Table *elftc_string_table_create(int _hint); void elftc_string_table_destroy(Elftc_String_Table *_table); Elftc_String_Table *elftc_string_table_from_section(Elf_Scn *_scn, int _hint); const char *elftc_string_table_image(Elftc_String_Table *_table, size_t *_sz); size_t elftc_string_table_insert(Elftc_String_Table *_table, const char *_string); size_t elftc_string_table_lookup(Elftc_String_Table *_table, const char *_string); int elftc_string_table_remove(Elftc_String_Table *_table, const char *_string); const char *elftc_string_table_to_string(Elftc_String_Table *_table, size_t offset); +int elftc_timestamp(time_t *_timestamp); const char *elftc_version(void); #ifdef __cplusplus } #endif #endif /* _LIBELFTC_H_ */ Index: vendor/elftoolchain/dist/libelftc/libelftc_bfdtarget.c =================================================================== --- vendor/elftoolchain/dist/libelftc/libelftc_bfdtarget.c (revision 305125) +++ vendor/elftoolchain/dist/libelftc/libelftc_bfdtarget.c (revision 305126) @@ -1,405 +1,413 @@ /*- * Copyright (c) 2008,2009 Kai Wang * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include "_libelftc.h" -ELFTC_VCSID("$Id: libelftc_bfdtarget.c 3309 2016-01-10 09:10:51Z kaiwang27 $"); +ELFTC_VCSID("$Id: libelftc_bfdtarget.c 3488 2016-08-24 18:15:57Z emaste $"); struct _Elftc_Bfd_Target _libelftc_targets[] = { { .bt_name = "binary", .bt_type = ETF_BINARY, }, { .bt_name = "elf32-avr", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS32, .bt_machine = EM_AVR, }, { .bt_name = "elf32-big", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2MSB, .bt_elfclass = ELFCLASS32, }, { .bt_name = "elf32-bigarm", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2MSB, .bt_elfclass = ELFCLASS32, .bt_machine = EM_ARM, }, { .bt_name = "elf32-bigmips", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2MSB, .bt_elfclass = ELFCLASS32, .bt_machine = EM_MIPS, }, { .bt_name = "elf32-i386", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS32, .bt_machine = EM_386, }, { .bt_name = "elf32-i386-freebsd", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS32, .bt_machine = EM_386, .bt_osabi = ELFOSABI_FREEBSD, }, { .bt_name = "elf32-ia64-big", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2MSB, .bt_elfclass = ELFCLASS32, .bt_machine = EM_IA_64, }, { .bt_name = "elf32-little", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS32, }, { .bt_name = "elf32-littlearm", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS32, .bt_machine = EM_ARM, }, { .bt_name = "elf32-littlemips", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS32, .bt_machine = EM_MIPS, }, { .bt_name = "elf32-powerpc", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2MSB, .bt_elfclass = ELFCLASS32, .bt_machine = EM_PPC, }, { .bt_name = "elf32-powerpcle", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS32, .bt_machine = EM_PPC, }, { .bt_name = "elf32-sh", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2MSB, .bt_elfclass = ELFCLASS32, .bt_machine = EM_SH, }, { .bt_name = "elf32-shl", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS32, .bt_machine = EM_SH, }, { .bt_name = "elf32-sh-nbsd", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2MSB, .bt_elfclass = ELFCLASS32, .bt_machine = EM_SH, .bt_osabi = ELFOSABI_NETBSD, }, { .bt_name = "elf32-shl-nbsd", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS32, .bt_machine = EM_SH, .bt_osabi = ELFOSABI_NETBSD, }, { .bt_name = "elf32-shbig-linux", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2MSB, .bt_elfclass = ELFCLASS32, .bt_machine = EM_SH, .bt_osabi = ELFOSABI_LINUX, }, { .bt_name = "elf32-sh-linux", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS32, .bt_machine = EM_SH, .bt_osabi = ELFOSABI_LINUX, }, { .bt_name = "elf32-sparc", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2MSB, .bt_elfclass = ELFCLASS32, .bt_machine = EM_SPARC, }, { .bt_name = "elf64-alpha", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS64, .bt_machine = EM_ALPHA, }, { .bt_name = "elf64-alpha-freebsd", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS64, .bt_machine = EM_ALPHA, .bt_osabi = ELFOSABI_FREEBSD }, { .bt_name = "elf64-big", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2MSB, .bt_elfclass = ELFCLASS64, }, { .bt_name = "elf64-bigmips", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2MSB, .bt_elfclass = ELFCLASS64, .bt_machine = EM_MIPS, }, { .bt_name = "elf64-ia64-big", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2MSB, .bt_elfclass = ELFCLASS64, .bt_machine = EM_IA_64, }, { .bt_name = "elf64-ia64-little", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS64, .bt_machine = EM_IA_64, }, { .bt_name = "elf64-little", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS64, + }, + + { + .bt_name = "elf64-littleaarch64", + .bt_type = ETF_ELF, + .bt_byteorder = ELFDATA2LSB, + .bt_elfclass = ELFCLASS64, + .bt_machine = EM_AARCH64, }, { .bt_name = "elf64-littlemips", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS64, .bt_machine = EM_MIPS, }, { .bt_name = "elf64-powerpc", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2MSB, .bt_elfclass = ELFCLASS64, .bt_machine = EM_PPC64, }, { .bt_name = "elf64-powerpcle", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS64, .bt_machine = EM_PPC64, }, { .bt_name = "elf64-sh64", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2MSB, .bt_elfclass = ELFCLASS64, .bt_machine = EM_SH, }, { .bt_name = "elf64-sh64l", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS64, .bt_machine = EM_SH, }, { .bt_name = "elf64-sh64-nbsd", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2MSB, .bt_elfclass = ELFCLASS64, .bt_machine = EM_SH, .bt_osabi = ELFOSABI_NETBSD, }, { .bt_name = "elf64-sh64l-nbsd", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS64, .bt_machine = EM_SH, .bt_osabi = ELFOSABI_NETBSD, }, { .bt_name = "elf64-sh64big-linux", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2MSB, .bt_elfclass = ELFCLASS64, .bt_machine = EM_SH, .bt_osabi = ELFOSABI_LINUX, }, { .bt_name = "elf64-sh64-linux", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS64, .bt_machine = EM_SH, .bt_osabi = ELFOSABI_LINUX, }, { .bt_name = "elf64-sparc", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2MSB, .bt_elfclass = ELFCLASS64, .bt_machine = EM_SPARCV9, }, { .bt_name = "elf64-sparc-freebsd", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2MSB, .bt_elfclass = ELFCLASS64, .bt_machine = EM_SPARCV9, .bt_osabi = ELFOSABI_FREEBSD }, { .bt_name = "elf64-x86-64", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS64, .bt_machine = EM_X86_64, }, { .bt_name = "elf64-x86-64-freebsd", .bt_type = ETF_ELF, .bt_byteorder = ELFDATA2LSB, .bt_elfclass = ELFCLASS64, .bt_machine = EM_X86_64, .bt_osabi = ELFOSABI_FREEBSD }, { .bt_name = "ihex", .bt_type = ETF_IHEX, }, { .bt_name = "srec", .bt_type = ETF_SREC, }, { .bt_name = "symbolsrec", .bt_type = ETF_SREC, }, { .bt_name = "efi-app-ia32", .bt_type = ETF_EFI, .bt_machine = EM_386, }, { .bt_name = "efi-app-x86_64", .bt_type = ETF_EFI, .bt_machine = EM_X86_64, }, { .bt_name = "pei-i386", .bt_type = ETF_PE, .bt_machine = EM_386, }, { .bt_name = "pei-x86-64", .bt_type = ETF_PE, .bt_machine = EM_X86_64, }, { .bt_name = NULL, .bt_type = ETF_NONE, }, }; Index: vendor/elftoolchain/dist/libelftc/libelftc_dem_gnu3.c =================================================================== --- vendor/elftoolchain/dist/libelftc/libelftc_dem_gnu3.c (revision 305125) +++ vendor/elftoolchain/dist/libelftc/libelftc_dem_gnu3.c (revision 305126) @@ -1,3618 +1,3618 @@ /*- * Copyright (c) 2007 Hyogeol Lee * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include "_libelftc.h" -ELFTC_VCSID("$Id: libelftc_dem_gnu3.c 3447 2016-05-03 13:32:23Z emaste $"); +ELFTC_VCSID("$Id: libelftc_dem_gnu3.c 3480 2016-07-24 23:38:41Z emaste $"); /** * @file cpp_demangle.c * @brief Decode IA-64 C++ ABI style implementation. * * IA-64 standard ABI(Itanium C++ ABI) references. * * http://www.codesourcery.com/cxx-abi/abi.html#mangling \n * http://www.codesourcery.com/cxx-abi/abi-mangling.html */ enum type_qualifier { TYPE_PTR, TYPE_REF, TYPE_CMX, TYPE_IMG, TYPE_EXT, TYPE_RST, TYPE_VAT, TYPE_CST, TYPE_VEC }; struct vector_type_qualifier { size_t size, capacity; enum type_qualifier *q_container; struct vector_str ext_name; }; enum read_cmd { READ_FAIL, READ_NEST, READ_TMPL, READ_EXPR, READ_EXPL, READ_LOCAL, READ_TYPE, READ_FUNC, READ_PTRMEM }; struct vector_read_cmd { size_t size, capacity; enum read_cmd *r_container; }; struct cpp_demangle_data { struct vector_str output; /* output string vector */ struct vector_str output_tmp; struct vector_str subst; /* substitution string vector */ struct vector_str tmpl; struct vector_str class_type; struct vector_read_cmd cmd; bool paren; /* parenthesis opened */ bool pfirst; /* first element of parameter */ bool mem_rst; /* restrict member function */ bool mem_vat; /* volatile member function */ bool mem_cst; /* const member function */ int func_type; const char *cur; /* current mangled name ptr */ const char *last_sname; /* last source name */ int push_head; }; #define CPP_DEMANGLE_TRY_LIMIT 128 #define FLOAT_SPRINTF_TRY_LIMIT 5 #define FLOAT_QUADRUPLE_BYTES 16 #define FLOAT_EXTENED_BYTES 10 #define SIMPLE_HASH(x,y) (64 * x + y) static void cpp_demangle_data_dest(struct cpp_demangle_data *); static int cpp_demangle_data_init(struct cpp_demangle_data *, const char *); static int cpp_demangle_get_subst(struct cpp_demangle_data *, size_t); static int cpp_demangle_get_tmpl_param(struct cpp_demangle_data *, size_t); static int cpp_demangle_push_fp(struct cpp_demangle_data *, char *(*)(const char *, size_t)); static int cpp_demangle_push_str(struct cpp_demangle_data *, const char *, size_t); static int cpp_demangle_push_subst(struct cpp_demangle_data *, const char *, size_t); static int cpp_demangle_push_subst_v(struct cpp_demangle_data *, struct vector_str *); static int cpp_demangle_push_type_qualifier(struct cpp_demangle_data *, struct vector_type_qualifier *, const char *); static int cpp_demangle_read_array(struct cpp_demangle_data *); static int cpp_demangle_read_encoding(struct cpp_demangle_data *); static int cpp_demangle_read_expr_primary(struct cpp_demangle_data *); static int cpp_demangle_read_expression(struct cpp_demangle_data *); static int cpp_demangle_read_expression_flat(struct cpp_demangle_data *, char **); static int cpp_demangle_read_expression_binary(struct cpp_demangle_data *, const char *, size_t); static int cpp_demangle_read_expression_unary(struct cpp_demangle_data *, const char *, size_t); static int cpp_demangle_read_expression_trinary(struct cpp_demangle_data *, const char *, size_t, const char *, size_t); static int cpp_demangle_read_function(struct cpp_demangle_data *, int *, struct vector_type_qualifier *); static int cpp_demangle_local_source_name(struct cpp_demangle_data *ddata); static int cpp_demangle_read_local_name(struct cpp_demangle_data *); static int cpp_demangle_read_name(struct cpp_demangle_data *); static int cpp_demangle_read_name_flat(struct cpp_demangle_data *, char**); static int cpp_demangle_read_nested_name(struct cpp_demangle_data *); static int cpp_demangle_read_number(struct cpp_demangle_data *, long *); static int cpp_demangle_read_number_as_string(struct cpp_demangle_data *, char **); static int cpp_demangle_read_nv_offset(struct cpp_demangle_data *); static int cpp_demangle_read_offset(struct cpp_demangle_data *); static int cpp_demangle_read_offset_number(struct cpp_demangle_data *); static int cpp_demangle_read_pointer_to_member(struct cpp_demangle_data *); static int cpp_demangle_read_sname(struct cpp_demangle_data *); static int cpp_demangle_read_subst(struct cpp_demangle_data *); static int cpp_demangle_read_subst_std(struct cpp_demangle_data *); static int cpp_demangle_read_subst_stdtmpl(struct cpp_demangle_data *, const char *, size_t); static int cpp_demangle_read_tmpl_arg(struct cpp_demangle_data *); static int cpp_demangle_read_tmpl_args(struct cpp_demangle_data *); static int cpp_demangle_read_tmpl_param(struct cpp_demangle_data *); static int cpp_demangle_read_type(struct cpp_demangle_data *, int); static int cpp_demangle_read_type_flat(struct cpp_demangle_data *, char **); static int cpp_demangle_read_uqname(struct cpp_demangle_data *); static int cpp_demangle_read_v_offset(struct cpp_demangle_data *); static char *decode_fp_to_double(const char *, size_t); static char *decode_fp_to_float(const char *, size_t); static char *decode_fp_to_float128(const char *, size_t); static char *decode_fp_to_float80(const char *, size_t); static char *decode_fp_to_long_double(const char *, size_t); static int hex_to_dec(char); static void vector_read_cmd_dest(struct vector_read_cmd *); static int vector_read_cmd_find(struct vector_read_cmd *, enum read_cmd); static int vector_read_cmd_init(struct vector_read_cmd *); static int vector_read_cmd_pop(struct vector_read_cmd *); static int vector_read_cmd_push(struct vector_read_cmd *, enum read_cmd); static void vector_type_qualifier_dest(struct vector_type_qualifier *); static int vector_type_qualifier_init(struct vector_type_qualifier *); static int vector_type_qualifier_push(struct vector_type_qualifier *, enum type_qualifier); /** * @brief Decode the input string by IA-64 C++ ABI style. * * GNU GCC v3 use IA-64 standard ABI. * @return New allocated demangled string or NULL if failed. * @todo 1. Testing and more test case. 2. Code cleaning. */ char * cpp_demangle_gnu3(const char *org) { struct cpp_demangle_data ddata; ssize_t org_len; unsigned int limit; char *rtn; if (org == NULL || (org_len = strlen(org)) < 2) return (NULL); if (org_len > 11 && !strncmp(org, "_GLOBAL__I_", 11)) { if ((rtn = malloc(org_len + 19)) == NULL) return (NULL); snprintf(rtn, org_len + 19, "global constructors keyed to %s", org + 11); return (rtn); } if (org[0] != '_' || org[1] != 'Z') return (NULL); if (!cpp_demangle_data_init(&ddata, org + 2)) return (NULL); rtn = NULL; if (!cpp_demangle_read_encoding(&ddata)) goto clean; limit = 0; while (*ddata.cur != '\0') { /* * Breaking at some gcc info at tail. e.g) @@GLIBCXX_3.4 */ if (*ddata.cur == '@' && *(ddata.cur + 1) == '@') break; if (!cpp_demangle_read_type(&ddata, 1)) goto clean; if (limit++ > CPP_DEMANGLE_TRY_LIMIT) goto clean; } if (ddata.output.size == 0) goto clean; if (ddata.paren && !vector_str_push(&ddata.output, ")", 1)) goto clean; if (ddata.mem_vat && !vector_str_push(&ddata.output, " volatile", 9)) goto clean; if (ddata.mem_cst && !vector_str_push(&ddata.output, " const", 6)) goto clean; if (ddata.mem_rst && !vector_str_push(&ddata.output, " restrict", 9)) goto clean; rtn = vector_str_get_flat(&ddata.output, (size_t *) NULL); clean: cpp_demangle_data_dest(&ddata); return (rtn); } static void cpp_demangle_data_dest(struct cpp_demangle_data *d) { if (d == NULL) return; vector_read_cmd_dest(&d->cmd); vector_str_dest(&d->class_type); vector_str_dest(&d->tmpl); vector_str_dest(&d->subst); vector_str_dest(&d->output_tmp); vector_str_dest(&d->output); } static int cpp_demangle_data_init(struct cpp_demangle_data *d, const char *cur) { if (d == NULL || cur == NULL) return (0); if (!vector_str_init(&d->output)) return (0); if (!vector_str_init(&d->output_tmp)) goto clean1; if (!vector_str_init(&d->subst)) goto clean2; if (!vector_str_init(&d->tmpl)) goto clean3; if (!vector_str_init(&d->class_type)) goto clean4; if (!vector_read_cmd_init(&d->cmd)) goto clean5; assert(d->output.container != NULL); assert(d->output_tmp.container != NULL); assert(d->subst.container != NULL); assert(d->tmpl.container != NULL); assert(d->class_type.container != NULL); d->paren = false; d->pfirst = false; d->mem_rst = false; d->mem_vat = false; d->mem_cst = false; d->func_type = 0; d->cur = cur; d->last_sname = NULL; d->push_head = 0; return (1); clean5: vector_str_dest(&d->class_type); clean4: vector_str_dest(&d->tmpl); clean3: vector_str_dest(&d->subst); clean2: vector_str_dest(&d->output_tmp); clean1: vector_str_dest(&d->output); return (0); } static int cpp_demangle_push_fp(struct cpp_demangle_data *ddata, char *(*decoder)(const char *, size_t)) { size_t len; int rtn; const char *fp; char *f; if (ddata == NULL || decoder == NULL) return (0); fp = ddata->cur; while (*ddata->cur != 'E') ++ddata->cur; if ((f = decoder(fp, ddata->cur - fp)) == NULL) return (0); rtn = 0; if ((len = strlen(f)) > 0) rtn = cpp_demangle_push_str(ddata, f, len); free(f); ++ddata->cur; return (rtn); } static int cpp_demangle_push_str(struct cpp_demangle_data *ddata, const char *str, size_t len) { if (ddata == NULL || str == NULL || len == 0) return (0); if (ddata->push_head > 0) return (vector_str_push(&ddata->output_tmp, str, len)); return (vector_str_push(&ddata->output, str, len)); } static int cpp_demangle_push_subst(struct cpp_demangle_data *ddata, const char *str, size_t len) { if (ddata == NULL || str == NULL || len == 0) return (0); if (!vector_str_find(&ddata->subst, str, len)) return (vector_str_push(&ddata->subst, str, len)); return (1); } static int cpp_demangle_push_subst_v(struct cpp_demangle_data *ddata, struct vector_str *v) { size_t str_len; int rtn; char *str; if (ddata == NULL || v == NULL) return (0); if ((str = vector_str_get_flat(v, &str_len)) == NULL) return (0); rtn = cpp_demangle_push_subst(ddata, str, str_len); free(str); return (rtn); } static int cpp_demangle_push_type_qualifier(struct cpp_demangle_data *ddata, struct vector_type_qualifier *v, const char *type_str) { struct vector_str subst_v; size_t idx, e_idx, e_len; int rtn; char *buf; if (ddata == NULL || v == NULL) return (0); if ((idx = v->size) == 0) return (1); rtn = 0; if (type_str != NULL) { if (!vector_str_init(&subst_v)) return (0); if (!vector_str_push(&subst_v, type_str, strlen(type_str))) goto clean; } e_idx = 0; while (idx > 0) { switch (v->q_container[idx - 1]) { case TYPE_PTR: if (!cpp_demangle_push_str(ddata, "*", 1)) goto clean; if (type_str != NULL) { if (!vector_str_push(&subst_v, "*", 1)) goto clean; if (!cpp_demangle_push_subst_v(ddata, &subst_v)) goto clean; } break; case TYPE_REF: if (!cpp_demangle_push_str(ddata, "&", 1)) goto clean; if (type_str != NULL) { if (!vector_str_push(&subst_v, "&", 1)) goto clean; if (!cpp_demangle_push_subst_v(ddata, &subst_v)) goto clean; } break; case TYPE_CMX: if (!cpp_demangle_push_str(ddata, " complex", 8)) goto clean; if (type_str != NULL) { if (!vector_str_push(&subst_v, " complex", 8)) goto clean; if (!cpp_demangle_push_subst_v(ddata, &subst_v)) goto clean; } break; case TYPE_IMG: if (!cpp_demangle_push_str(ddata, " imaginary", 10)) goto clean; if (type_str != NULL) { if (!vector_str_push(&subst_v, " imaginary", 10)) goto clean; if (!cpp_demangle_push_subst_v(ddata, &subst_v)) goto clean; } break; case TYPE_EXT: if (v->ext_name.size == 0 || e_idx > v->ext_name.size - 1) goto clean; if ((e_len = strlen(v->ext_name.container[e_idx])) == 0) goto clean; if ((buf = malloc(e_len + 2)) == NULL) goto clean; snprintf(buf, e_len + 2, " %s", v->ext_name.container[e_idx]); if (!cpp_demangle_push_str(ddata, buf, e_len + 1)) { free(buf); goto clean; } if (type_str != NULL) { if (!vector_str_push(&subst_v, buf, e_len + 1)) { free(buf); goto clean; } if (!cpp_demangle_push_subst_v(ddata, &subst_v)) { free(buf); goto clean; } } free(buf); ++e_idx; break; case TYPE_RST: if (!cpp_demangle_push_str(ddata, " restrict", 9)) goto clean; if (type_str != NULL) { if (!vector_str_push(&subst_v, " restrict", 9)) goto clean; if (!cpp_demangle_push_subst_v(ddata, &subst_v)) goto clean; } break; case TYPE_VAT: if (!cpp_demangle_push_str(ddata, " volatile", 9)) goto clean; if (type_str != NULL) { if (!vector_str_push(&subst_v, " volatile", 9)) goto clean; if (!cpp_demangle_push_subst_v(ddata, &subst_v)) goto clean; } break; case TYPE_CST: if (!cpp_demangle_push_str(ddata, " const", 6)) goto clean; if (type_str != NULL) { if (!vector_str_push(&subst_v, " const", 6)) goto clean; if (!cpp_demangle_push_subst_v(ddata, &subst_v)) goto clean; } break; case TYPE_VEC: if (v->ext_name.size == 0 || e_idx > v->ext_name.size - 1) goto clean; if ((e_len = strlen(v->ext_name.container[e_idx])) == 0) goto clean; if ((buf = malloc(e_len + 12)) == NULL) goto clean; snprintf(buf, e_len + 12, " __vector(%s)", v->ext_name.container[e_idx]); if (!cpp_demangle_push_str(ddata, buf, e_len + 11)) { free(buf); goto clean; } if (type_str != NULL) { if (!vector_str_push(&subst_v, buf, e_len + 11)) { free(buf); goto clean; } if (!cpp_demangle_push_subst_v(ddata, &subst_v)) { free(buf); goto clean; } } free(buf); ++e_idx; break; } --idx; } rtn = 1; clean: if (type_str != NULL) vector_str_dest(&subst_v); return (rtn); } static int cpp_demangle_get_subst(struct cpp_demangle_data *ddata, size_t idx) { size_t len; if (ddata == NULL || ddata->subst.size <= idx) return (0); if ((len = strlen(ddata->subst.container[idx])) == 0) return (0); if (!cpp_demangle_push_str(ddata, ddata->subst.container[idx], len)) return (0); /* skip '_' */ ++ddata->cur; return (1); } static int cpp_demangle_get_tmpl_param(struct cpp_demangle_data *ddata, size_t idx) { size_t len; if (ddata == NULL || ddata->tmpl.size <= idx) return (0); if ((len = strlen(ddata->tmpl.container[idx])) == 0) return (0); if (!cpp_demangle_push_str(ddata, ddata->tmpl.container[idx], len)) return (0); ++ddata->cur; return (1); } static int cpp_demangle_read_array(struct cpp_demangle_data *ddata) { size_t i, num_len, exp_len, p_idx, idx; const char *num; char *exp; if (ddata == NULL || *(++ddata->cur) == '\0') return (0); if (*ddata->cur == '_') { if (*(++ddata->cur) == '\0') return (0); if (!cpp_demangle_read_type(ddata, 0)) return (0); if (!cpp_demangle_push_str(ddata, "[]", 2)) return (0); } else { if (ELFTC_ISDIGIT(*ddata->cur) != 0) { num = ddata->cur; while (ELFTC_ISDIGIT(*ddata->cur) != 0) ++ddata->cur; if (*ddata->cur != '_') return (0); num_len = ddata->cur - num; assert(num_len > 0); if (*(++ddata->cur) == '\0') return (0); if (!cpp_demangle_read_type(ddata, 0)) return (0); if (!cpp_demangle_push_str(ddata, "[", 1)) return (0); if (!cpp_demangle_push_str(ddata, num, num_len)) return (0); if (!cpp_demangle_push_str(ddata, "]", 1)) return (0); } else { p_idx = ddata->output.size; if (!cpp_demangle_read_expression(ddata)) return (0); if ((exp = vector_str_substr(&ddata->output, p_idx, ddata->output.size - 1, &exp_len)) == NULL) return (0); idx = ddata->output.size; for (i = p_idx; i < idx; ++i) if (!vector_str_pop(&ddata->output)) { free(exp); return (0); } if (*ddata->cur != '_') { free(exp); return (0); } ++ddata->cur; if (*ddata->cur == '\0') { free(exp); return (0); } if (!cpp_demangle_read_type(ddata, 0)) { free(exp); return (0); } if (!cpp_demangle_push_str(ddata, "[", 1)) { free(exp); return (0); } if (!cpp_demangle_push_str(ddata, exp, exp_len)) { free(exp); return (0); } if (!cpp_demangle_push_str(ddata, "]", 1)) { free(exp); return (0); } free(exp); } } return (1); } static int cpp_demangle_read_expr_primary(struct cpp_demangle_data *ddata) { const char *num; if (ddata == NULL || *(++ddata->cur) == '\0') return (0); if (*ddata->cur == '_' && *(ddata->cur + 1) == 'Z') { ddata->cur += 2; if (*ddata->cur == '\0') return (0); if (!cpp_demangle_read_encoding(ddata)) return (0); ++ddata->cur; return (1); } switch (*ddata->cur) { case 'b': if (*(ddata->cur + 2) != 'E') return (0); switch (*(++ddata->cur)) { case '0': ddata->cur += 2; return (cpp_demangle_push_str(ddata, "false", 5)); case '1': ddata->cur += 2; return (cpp_demangle_push_str(ddata, "true", 4)); default: return (0); } case 'd': ++ddata->cur; return (cpp_demangle_push_fp(ddata, decode_fp_to_double)); case 'e': ++ddata->cur; if (sizeof(long double) == 10) return (cpp_demangle_push_fp(ddata, decode_fp_to_double)); return (cpp_demangle_push_fp(ddata, decode_fp_to_float80)); case 'f': ++ddata->cur; return (cpp_demangle_push_fp(ddata, decode_fp_to_float)); case 'g': ++ddata->cur; if (sizeof(long double) == 16) return (cpp_demangle_push_fp(ddata, decode_fp_to_double)); return (cpp_demangle_push_fp(ddata, decode_fp_to_float128)); case 'i': case 'j': case 'l': case 'm': case 'n': case 's': case 't': case 'x': case 'y': if (*(++ddata->cur) == 'n') { if (!cpp_demangle_push_str(ddata, "-", 1)) return (0); ++ddata->cur; } num = ddata->cur; while (*ddata->cur != 'E') { if (!ELFTC_ISDIGIT(*ddata->cur)) return (0); ++ddata->cur; } ++ddata->cur; return (cpp_demangle_push_str(ddata, num, ddata->cur - num - 1)); default: return (0); } } static int cpp_demangle_read_expression(struct cpp_demangle_data *ddata) { if (ddata == NULL || *ddata->cur == '\0') return (0); switch (SIMPLE_HASH(*ddata->cur, *(ddata->cur + 1))) { case SIMPLE_HASH('s', 't'): ddata->cur += 2; return (cpp_demangle_read_type(ddata, 0)); case SIMPLE_HASH('s', 'r'): ddata->cur += 2; if (!cpp_demangle_read_type(ddata, 0)) return (0); if (!cpp_demangle_read_uqname(ddata)) return (0); if (*ddata->cur == 'I') return (cpp_demangle_read_tmpl_args(ddata)); return (1); case SIMPLE_HASH('a', 'a'): /* operator && */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "&&", 2)); case SIMPLE_HASH('a', 'd'): /* operator & (unary) */ ddata->cur += 2; return (cpp_demangle_read_expression_unary(ddata, "&", 1)); case SIMPLE_HASH('a', 'n'): /* operator & */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "&", 1)); case SIMPLE_HASH('a', 'N'): /* operator &= */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "&=", 2)); case SIMPLE_HASH('a', 'S'): /* operator = */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "=", 1)); case SIMPLE_HASH('c', 'l'): /* operator () */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "()", 2)); case SIMPLE_HASH('c', 'm'): /* operator , */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, ",", 1)); case SIMPLE_HASH('c', 'o'): /* operator ~ */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "~", 1)); case SIMPLE_HASH('c', 'v'): /* operator (cast) */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "(cast)", 6)); case SIMPLE_HASH('d', 'a'): /* operator delete [] */ ddata->cur += 2; return (cpp_demangle_read_expression_unary(ddata, "delete []", 9)); case SIMPLE_HASH('d', 'e'): /* operator * (unary) */ ddata->cur += 2; return (cpp_demangle_read_expression_unary(ddata, "*", 1)); case SIMPLE_HASH('d', 'l'): /* operator delete */ ddata->cur += 2; return (cpp_demangle_read_expression_unary(ddata, "delete", 6)); case SIMPLE_HASH('d', 'v'): /* operator / */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "/", 1)); case SIMPLE_HASH('d', 'V'): /* operator /= */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "/=", 2)); case SIMPLE_HASH('e', 'o'): /* operator ^ */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "^", 1)); case SIMPLE_HASH('e', 'O'): /* operator ^= */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "^=", 2)); case SIMPLE_HASH('e', 'q'): /* operator == */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "==", 2)); case SIMPLE_HASH('g', 'e'): /* operator >= */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, ">=", 2)); case SIMPLE_HASH('g', 't'): /* operator > */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, ">", 1)); case SIMPLE_HASH('i', 'x'): /* operator [] */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "[]", 2)); case SIMPLE_HASH('l', 'e'): /* operator <= */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "<=", 2)); case SIMPLE_HASH('l', 's'): /* operator << */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "<<", 2)); case SIMPLE_HASH('l', 'S'): /* operator <<= */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "<<=", 3)); case SIMPLE_HASH('l', 't'): /* operator < */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "<", 1)); case SIMPLE_HASH('m', 'i'): /* operator - */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "-", 1)); case SIMPLE_HASH('m', 'I'): /* operator -= */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "-=", 2)); case SIMPLE_HASH('m', 'l'): /* operator * */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "*", 1)); case SIMPLE_HASH('m', 'L'): /* operator *= */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "*=", 2)); case SIMPLE_HASH('m', 'm'): /* operator -- */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "--", 2)); case SIMPLE_HASH('n', 'a'): /* operator new[] */ ddata->cur += 2; return (cpp_demangle_read_expression_unary(ddata, "new []", 6)); case SIMPLE_HASH('n', 'e'): /* operator != */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "!=", 2)); case SIMPLE_HASH('n', 'g'): /* operator - (unary) */ ddata->cur += 2; return (cpp_demangle_read_expression_unary(ddata, "-", 1)); case SIMPLE_HASH('n', 't'): /* operator ! */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "!", 1)); case SIMPLE_HASH('n', 'w'): /* operator new */ ddata->cur += 2; return (cpp_demangle_read_expression_unary(ddata, "new", 3)); case SIMPLE_HASH('o', 'o'): /* operator || */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "||", 2)); case SIMPLE_HASH('o', 'r'): /* operator | */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "|", 1)); case SIMPLE_HASH('o', 'R'): /* operator |= */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "|=", 2)); case SIMPLE_HASH('p', 'l'): /* operator + */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "+", 1)); case SIMPLE_HASH('p', 'L'): /* operator += */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "+=", 2)); case SIMPLE_HASH('p', 'm'): /* operator ->* */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "->*", 3)); case SIMPLE_HASH('p', 'p'): /* operator ++ */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "++", 2)); case SIMPLE_HASH('p', 's'): /* operator + (unary) */ ddata->cur += 2; return (cpp_demangle_read_expression_unary(ddata, "+", 1)); case SIMPLE_HASH('p', 't'): /* operator -> */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "->", 2)); case SIMPLE_HASH('q', 'u'): /* operator ? */ ddata->cur += 2; return (cpp_demangle_read_expression_trinary(ddata, "?", 1, ":", 1)); case SIMPLE_HASH('r', 'm'): /* operator % */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "%", 1)); case SIMPLE_HASH('r', 'M'): /* operator %= */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, "%=", 2)); case SIMPLE_HASH('r', 's'): /* operator >> */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, ">>", 2)); case SIMPLE_HASH('r', 'S'): /* operator >>= */ ddata->cur += 2; return (cpp_demangle_read_expression_binary(ddata, ">>=", 3)); case SIMPLE_HASH('r', 'z'): /* operator sizeof */ ddata->cur += 2; return (cpp_demangle_read_expression_unary(ddata, "sizeof", 6)); case SIMPLE_HASH('s', 'v'): /* operator sizeof */ ddata->cur += 2; return (cpp_demangle_read_expression_unary(ddata, "sizeof", 6)); } switch (*ddata->cur) { case 'L': return (cpp_demangle_read_expr_primary(ddata)); case 'T': return (cpp_demangle_read_tmpl_param(ddata)); } return (0); } static int cpp_demangle_read_expression_flat(struct cpp_demangle_data *ddata, char **str) { struct vector_str *output; size_t i, p_idx, idx, exp_len; char *exp; output = ddata->push_head > 0 ? &ddata->output_tmp : &ddata->output; p_idx = output->size; if (!cpp_demangle_read_expression(ddata)) return (0); if ((exp = vector_str_substr(output, p_idx, output->size - 1, &exp_len)) == NULL) return (0); idx = output->size; for (i = p_idx; i < idx; ++i) { if (!vector_str_pop(output)) { free(exp); return (0); } } *str = exp; return (1); } static int cpp_demangle_read_expression_binary(struct cpp_demangle_data *ddata, const char *name, size_t len) { if (ddata == NULL || name == NULL || len == 0) return (0); if (!cpp_demangle_read_expression(ddata)) return (0); if (!cpp_demangle_push_str(ddata, name, len)) return (0); return (cpp_demangle_read_expression(ddata)); } static int cpp_demangle_read_expression_unary(struct cpp_demangle_data *ddata, const char *name, size_t len) { if (ddata == NULL || name == NULL || len == 0) return (0); if (!cpp_demangle_read_expression(ddata)) return (0); return (cpp_demangle_push_str(ddata, name, len)); } static int cpp_demangle_read_expression_trinary(struct cpp_demangle_data *ddata, const char *name1, size_t len1, const char *name2, size_t len2) { if (ddata == NULL || name1 == NULL || len1 == 0 || name2 == NULL || len2 == 0) return (0); if (!cpp_demangle_read_expression(ddata)) return (0); if (!cpp_demangle_push_str(ddata, name1, len1)) return (0); if (!cpp_demangle_read_expression(ddata)) return (0); if (!cpp_demangle_push_str(ddata, name2, len2)) return (0); return (cpp_demangle_read_expression(ddata)); } static int cpp_demangle_read_function(struct cpp_demangle_data *ddata, int *ext_c, struct vector_type_qualifier *v) { size_t class_type_size, class_type_len, limit; const char *class_type; if (ddata == NULL || *ddata->cur != 'F' || v == NULL) return (0); ++ddata->cur; if (*ddata->cur == 'Y') { if (ext_c != NULL) *ext_c = 1; ++ddata->cur; } if (!cpp_demangle_read_type(ddata, 0)) return (0); if (*ddata->cur != 'E') { if (!cpp_demangle_push_str(ddata, "(", 1)) return (0); if (vector_read_cmd_find(&ddata->cmd, READ_PTRMEM)) { if ((class_type_size = ddata->class_type.size) == 0) return (0); class_type = ddata->class_type.container[class_type_size - 1]; if (class_type == NULL) return (0); if ((class_type_len = strlen(class_type)) == 0) return (0); if (!cpp_demangle_push_str(ddata, class_type, class_type_len)) return (0); if (!cpp_demangle_push_str(ddata, "::*", 3)) return (0); ++ddata->func_type; } else { if (!cpp_demangle_push_type_qualifier(ddata, v, (const char *) NULL)) return (0); vector_type_qualifier_dest(v); if (!vector_type_qualifier_init(v)) return (0); } if (!cpp_demangle_push_str(ddata, ")(", 2)) return (0); limit = 0; for (;;) { if (!cpp_demangle_read_type(ddata, 0)) return (0); if (*ddata->cur == 'E') break; if (limit++ > CPP_DEMANGLE_TRY_LIMIT) return (0); } if (vector_read_cmd_find(&ddata->cmd, READ_PTRMEM) == 1) { if (!cpp_demangle_push_type_qualifier(ddata, v, (const char *) NULL)) return (0); vector_type_qualifier_dest(v); if (!vector_type_qualifier_init(v)) return (0); } if (!cpp_demangle_push_str(ddata, ")", 1)) return (0); } ++ddata->cur; return (1); } /* read encoding, encoding are function name, data name, special-name */ static int cpp_demangle_read_encoding(struct cpp_demangle_data *ddata) { char *name, *type, *num_str; long offset; int rtn; if (ddata == NULL || *ddata->cur == '\0') return (0); /* special name */ switch (SIMPLE_HASH(*ddata->cur, *(ddata->cur + 1))) { case SIMPLE_HASH('G', 'A'): if (!cpp_demangle_push_str(ddata, "hidden alias for ", 17)) return (0); ddata->cur += 2; if (*ddata->cur == '\0') return (0); return (cpp_demangle_read_encoding(ddata)); case SIMPLE_HASH('G', 'R'): if (!cpp_demangle_push_str(ddata, "reference temporary #", 21)) return (0); ddata->cur += 2; if (*ddata->cur == '\0') return (0); if (!cpp_demangle_read_name_flat(ddata, &name)) return (0); rtn = 0; if (!cpp_demangle_read_number_as_string(ddata, &num_str)) goto clean1; if (!cpp_demangle_push_str(ddata, num_str, strlen(num_str))) goto clean2; if (!cpp_demangle_push_str(ddata, " for ", 5)) goto clean2; if (!cpp_demangle_push_str(ddata, name, strlen(name))) goto clean2; rtn = 1; clean2: free(num_str); clean1: free(name); return (rtn); case SIMPLE_HASH('G', 'T'): ddata->cur += 2; if (*ddata->cur == '\0') return (0); switch (*ddata->cur) { case 'n': if (!cpp_demangle_push_str(ddata, "non-transaction clone for ", 26)) return (0); break; case 't': default: if (!cpp_demangle_push_str(ddata, "transaction clone for ", 22)) return (0); break; } ++ddata->cur; return (cpp_demangle_read_encoding(ddata)); case SIMPLE_HASH('G', 'V'): /* sentry object for 1 time init */ if (!cpp_demangle_push_str(ddata, "guard variable for ", 20)) return (0); ddata->cur += 2; break; case SIMPLE_HASH('T', 'c'): /* virtual function covariant override thunk */ if (!cpp_demangle_push_str(ddata, "virtual function covariant override ", 36)) return (0); ddata->cur += 2; if (*ddata->cur == '\0') return (0); if (!cpp_demangle_read_offset(ddata)) return (0); if (!cpp_demangle_read_offset(ddata)) return (0); return (cpp_demangle_read_encoding(ddata)); case SIMPLE_HASH('T', 'C'): /* construction vtable */ if (!cpp_demangle_push_str(ddata, "construction vtable for ", 24)) return (0); ddata->cur += 2; if (*ddata->cur == '\0') return (0); if (!cpp_demangle_read_type_flat(ddata, &type)) return (0); rtn = 0; if (!cpp_demangle_read_number(ddata, &offset)) goto clean3; if (*ddata->cur++ != '_') goto clean3; if (!cpp_demangle_read_type(ddata, 0)) goto clean3; if (!cpp_demangle_push_str(ddata, "-in-", 4)) goto clean3; if (!cpp_demangle_push_str(ddata, type, strlen(type))) goto clean3; rtn = 1; clean3: free(type); return (rtn); case SIMPLE_HASH('T', 'D'): /* typeinfo common proxy */ break; case SIMPLE_HASH('T', 'F'): /* typeinfo fn */ if (!cpp_demangle_push_str(ddata, "typeinfo fn for ", 16)) return (0); ddata->cur += 2; if (*ddata->cur == '\0') return (0); return (cpp_demangle_read_type(ddata, 0)); case SIMPLE_HASH('T', 'h'): /* virtual function non-virtual override thunk */ if (!cpp_demangle_push_str(ddata, "virtual function non-virtual override ", 38)) return (0); ddata->cur += 2; if (*ddata->cur == '\0') return (0); if (!cpp_demangle_read_nv_offset(ddata)) return (0); return (cpp_demangle_read_encoding(ddata)); case SIMPLE_HASH('T', 'H'): /* TLS init function */ if (!cpp_demangle_push_str(ddata, "TLS init function for ", 22)) return (0); ddata->cur += 2; if (*ddata->cur == '\0') return (0); break; case SIMPLE_HASH('T', 'I'): /* typeinfo structure */ if (!cpp_demangle_push_str(ddata, "typeinfo for ", 13)) return (0); ddata->cur += 2; if (*ddata->cur == '\0') return (0); return (cpp_demangle_read_type(ddata, 0)); case SIMPLE_HASH('T', 'J'): /* java class */ if (!cpp_demangle_push_str(ddata, "java Class for ", 15)) return (0); ddata->cur += 2; if (*ddata->cur == '\0') return (0); return (cpp_demangle_read_type(ddata, 0)); case SIMPLE_HASH('T', 'S'): /* RTTI name (NTBS) */ if (!cpp_demangle_push_str(ddata, "typeinfo name for ", 18)) return (0); ddata->cur += 2; if (*ddata->cur == '\0') return (0); return (cpp_demangle_read_type(ddata, 0)); case SIMPLE_HASH('T', 'T'): /* VTT table */ if (!cpp_demangle_push_str(ddata, "VTT for ", 8)) return (0); ddata->cur += 2; if (*ddata->cur == '\0') return (0); return (cpp_demangle_read_type(ddata, 0)); case SIMPLE_HASH('T', 'v'): /* virtual function virtual override thunk */ if (!cpp_demangle_push_str(ddata, "virtual function virtual override ", 34)) return (0); ddata->cur += 2; if (*ddata->cur == '\0') return (0); if (!cpp_demangle_read_v_offset(ddata)) return (0); return (cpp_demangle_read_encoding(ddata)); case SIMPLE_HASH('T', 'V'): /* virtual table */ if (!cpp_demangle_push_str(ddata, "vtable for ", 12)) return (0); ddata->cur += 2; if (*ddata->cur == '\0') return (0); return (cpp_demangle_read_type(ddata, 0)); case SIMPLE_HASH('T', 'W'): /* TLS wrapper function */ if (!cpp_demangle_push_str(ddata, "TLS wrapper function for ", 25)) return (0); ddata->cur += 2; if (*ddata->cur == '\0') return (0); break; } return (cpp_demangle_read_name(ddata)); } static int cpp_demangle_read_local_name(struct cpp_demangle_data *ddata) { size_t limit; if (ddata == NULL) return (0); if (*(++ddata->cur) == '\0') return (0); if (!cpp_demangle_read_encoding(ddata)) return (0); limit = 0; for (;;) { if (!cpp_demangle_read_type(ddata, 1)) return (0); if (*ddata->cur == 'E') break; if (limit++ > CPP_DEMANGLE_TRY_LIMIT) return (0); } if (*(++ddata->cur) == '\0') return (0); if (ddata->paren == true) { if (!cpp_demangle_push_str(ddata, ")", 1)) return (0); ddata->paren = false; } if (*ddata->cur == 's') ++ddata->cur; else { if (!cpp_demangle_push_str(ddata, "::", 2)) return (0); if (!cpp_demangle_read_name(ddata)) return (0); } if (*ddata->cur == '_') { ++ddata->cur; while (ELFTC_ISDIGIT(*ddata->cur) != 0) ++ddata->cur; } return (1); } static int cpp_demangle_read_name(struct cpp_demangle_data *ddata) { struct vector_str *output, v; size_t p_idx, subst_str_len; int rtn; char *subst_str; if (ddata == NULL || *ddata->cur == '\0') return (0); output = ddata->push_head > 0 ? &ddata->output_tmp : &ddata->output; subst_str = NULL; switch (*ddata->cur) { case 'S': return (cpp_demangle_read_subst(ddata)); case 'N': return (cpp_demangle_read_nested_name(ddata)); case 'Z': return (cpp_demangle_read_local_name(ddata)); } if (!vector_str_init(&v)) return (0); p_idx = output->size; rtn = 0; if (!cpp_demangle_read_uqname(ddata)) goto clean; if ((subst_str = vector_str_substr(output, p_idx, output->size - 1, &subst_str_len)) == NULL) goto clean; if (subst_str_len > 8 && strstr(subst_str, "operator") != NULL) { rtn = 1; goto clean; } if (!vector_str_push(&v, subst_str, subst_str_len)) goto clean; if (!cpp_demangle_push_subst_v(ddata, &v)) goto clean; if (*ddata->cur == 'I') { p_idx = output->size; if (!cpp_demangle_read_tmpl_args(ddata)) goto clean; free(subst_str); if ((subst_str = vector_str_substr(output, p_idx, output->size - 1, &subst_str_len)) == NULL) goto clean; if (!vector_str_push(&v, subst_str, subst_str_len)) goto clean; if (!cpp_demangle_push_subst_v(ddata, &v)) goto clean; } rtn = 1; clean: free(subst_str); vector_str_dest(&v); return (rtn); } static int cpp_demangle_read_name_flat(struct cpp_demangle_data *ddata, char **str) { struct vector_str *output; size_t i, p_idx, idx, name_len; char *name; output = ddata->push_head > 0 ? &ddata->output_tmp : &ddata->output; p_idx = output->size; if (!cpp_demangle_read_name(ddata)) return (0); if ((name = vector_str_substr(output, p_idx, output->size - 1, &name_len)) == NULL) return (0); idx = output->size; for (i = p_idx; i < idx; ++i) { if (!vector_str_pop(output)) { free(name); return (0); } } *str = name; return (1); } static int cpp_demangle_read_nested_name(struct cpp_demangle_data *ddata) { struct vector_str *output, v; size_t limit, p_idx, subst_str_len; int rtn; char *subst_str; if (ddata == NULL || *ddata->cur != 'N') return (0); if (*(++ddata->cur) == '\0') return (0); while (*ddata->cur == 'r' || *ddata->cur == 'V' || *ddata->cur == 'K') { switch (*ddata->cur) { case 'r': ddata->mem_rst = true; break; case 'V': ddata->mem_vat = true; break; case 'K': ddata->mem_cst = true; break; } ++ddata->cur; } output = ddata->push_head > 0 ? &ddata->output_tmp : &ddata->output; if (!vector_str_init(&v)) return (0); rtn = 0; limit = 0; for (;;) { p_idx = output->size; switch (*ddata->cur) { case 'I': if (!cpp_demangle_read_tmpl_args(ddata)) goto clean; break; case 'S': if (!cpp_demangle_read_subst(ddata)) goto clean; break; case 'T': if (!cpp_demangle_read_tmpl_param(ddata)) goto clean; break; default: if (!cpp_demangle_read_uqname(ddata)) goto clean; } if ((subst_str = vector_str_substr(output, p_idx, output->size - 1, &subst_str_len)) == NULL) goto clean; if (!vector_str_push(&v, subst_str, subst_str_len)) { free(subst_str); goto clean; } free(subst_str); if (!cpp_demangle_push_subst_v(ddata, &v)) goto clean; if (*ddata->cur == 'E') break; else if (*ddata->cur != 'I' && *ddata->cur != 'C' && *ddata->cur != 'D') { if (!cpp_demangle_push_str(ddata, "::", 2)) goto clean; if (!vector_str_push(&v, "::", 2)) goto clean; } if (limit++ > CPP_DEMANGLE_TRY_LIMIT) goto clean; } ++ddata->cur; rtn = 1; clean: vector_str_dest(&v); return (rtn); } /* * read number * number ::= [n] */ static int cpp_demangle_read_number(struct cpp_demangle_data *ddata, long *rtn) { long len, negative_factor; if (ddata == NULL || rtn == NULL) return (0); negative_factor = 1; if (*ddata->cur == 'n') { negative_factor = -1; ++ddata->cur; } if (ELFTC_ISDIGIT(*ddata->cur) == 0) return (0); errno = 0; if ((len = strtol(ddata->cur, (char **) NULL, 10)) == 0 && errno != 0) return (0); while (ELFTC_ISDIGIT(*ddata->cur) != 0) ++ddata->cur; assert(len >= 0); assert(negative_factor == 1 || negative_factor == -1); *rtn = len * negative_factor; return (1); } static int cpp_demangle_read_number_as_string(struct cpp_demangle_data *ddata, char **str) { long n; if (!cpp_demangle_read_number(ddata, &n)) { *str = NULL; return (0); } if (asprintf(str, "%ld", n) < 0) { *str = NULL; return (0); } return (1); } static int cpp_demangle_read_nv_offset(struct cpp_demangle_data *ddata) { if (ddata == NULL) return (0); if (!cpp_demangle_push_str(ddata, "offset : ", 9)) return (0); return (cpp_demangle_read_offset_number(ddata)); } /* read offset, offset are nv-offset, v-offset */ static int cpp_demangle_read_offset(struct cpp_demangle_data *ddata) { if (ddata == NULL) return (0); if (*ddata->cur == 'h') { ++ddata->cur; return (cpp_demangle_read_nv_offset(ddata)); } else if (*ddata->cur == 'v') { ++ddata->cur; return (cpp_demangle_read_v_offset(ddata)); } return (0); } static int cpp_demangle_read_offset_number(struct cpp_demangle_data *ddata) { bool negative; const char *start; if (ddata == NULL || *ddata->cur == '\0') return (0); /* offset could be negative */ if (*ddata->cur == 'n') { negative = true; start = ddata->cur + 1; } else { negative = false; start = ddata->cur; } while (*ddata->cur != '_') ++ddata->cur; if (negative && !cpp_demangle_push_str(ddata, "-", 1)) return (0); assert(start != NULL); if (!cpp_demangle_push_str(ddata, start, ddata->cur - start)) return (0); if (!cpp_demangle_push_str(ddata, " ", 1)) return (0); ++ddata->cur; return (1); } static int cpp_demangle_read_pointer_to_member(struct cpp_demangle_data *ddata) { size_t class_type_len, i, idx, p_idx; int p_func_type, rtn; char *class_type; if (ddata == NULL || *ddata->cur != 'M' || *(++ddata->cur) == '\0') return (0); p_idx = ddata->output.size; if (!cpp_demangle_read_type(ddata, 0)) return (0); if ((class_type = vector_str_substr(&ddata->output, p_idx, ddata->output.size - 1, &class_type_len)) == NULL) return (0); rtn = 0; idx = ddata->output.size; for (i = p_idx; i < idx; ++i) if (!vector_str_pop(&ddata->output)) goto clean1; if (!vector_read_cmd_push(&ddata->cmd, READ_PTRMEM)) goto clean1; if (!vector_str_push(&ddata->class_type, class_type, class_type_len)) goto clean2; p_func_type = ddata->func_type; if (!cpp_demangle_read_type(ddata, 0)) goto clean3; if (p_func_type == ddata->func_type) { if (!cpp_demangle_push_str(ddata, " ", 1)) goto clean3; if (!cpp_demangle_push_str(ddata, class_type, class_type_len)) goto clean3; if (!cpp_demangle_push_str(ddata, "::*", 3)) goto clean3; } rtn = 1; clean3: if (!vector_str_pop(&ddata->class_type)) rtn = 0; clean2: if (!vector_read_cmd_pop(&ddata->cmd)) rtn = 0; clean1: free(class_type); return (rtn); } /* read source-name, source-name is */ static int cpp_demangle_read_sname(struct cpp_demangle_data *ddata) { long len; int err; if (ddata == NULL || cpp_demangle_read_number(ddata, &len) == 0 || len <= 0) return (0); if (len == 12 && (memcmp("_GLOBAL__N_1", ddata->cur, 12) == 0)) err = cpp_demangle_push_str(ddata, "(anonymous namespace)", 21); else err = cpp_demangle_push_str(ddata, ddata->cur, len); if (err == 0) return (0); assert(ddata->output.size > 0); if (vector_read_cmd_find(&ddata->cmd, READ_TMPL) == 0) ddata->last_sname = ddata->output.container[ddata->output.size - 1]; ddata->cur += len; return (1); } static int cpp_demangle_read_subst(struct cpp_demangle_data *ddata) { long nth; if (ddata == NULL || *ddata->cur == '\0') return (0); /* abbreviations of the form Sx */ switch (SIMPLE_HASH(*ddata->cur, *(ddata->cur + 1))) { case SIMPLE_HASH('S', 'a'): /* std::allocator */ if (cpp_demangle_push_str(ddata, "std::allocator", 14) == 0) return (0); ddata->cur += 2; if (*ddata->cur == 'I') return (cpp_demangle_read_subst_stdtmpl(ddata, "std::allocator", 14)); return (1); case SIMPLE_HASH('S', 'b'): /* std::basic_string */ if (!cpp_demangle_push_str(ddata, "std::basic_string", 17)) return (0); ddata->cur += 2; if (*ddata->cur == 'I') return (cpp_demangle_read_subst_stdtmpl(ddata, "std::basic_string", 17)); return (1); case SIMPLE_HASH('S', 'd'): /* std::basic_iostream > */ if (!cpp_demangle_push_str(ddata, "std::basic_iostream", 19)) return (0); ddata->last_sname = "basic_iostream"; ddata->cur += 2; if (*ddata->cur == 'I') return (cpp_demangle_read_subst_stdtmpl(ddata, "std::basic_iostream", 19)); return (1); case SIMPLE_HASH('S', 'i'): /* std::basic_istream > */ if (!cpp_demangle_push_str(ddata, "std::basic_istream", 18)) return (0); ddata->last_sname = "basic_istream"; ddata->cur += 2; if (*ddata->cur == 'I') return (cpp_demangle_read_subst_stdtmpl(ddata, "std::basic_istream", 18)); return (1); case SIMPLE_HASH('S', 'o'): /* std::basic_ostream > */ if (!cpp_demangle_push_str(ddata, "std::basic_ostream", 18)) return (0); ddata->last_sname = "basic_ostream"; ddata->cur += 2; if (*ddata->cur == 'I') return (cpp_demangle_read_subst_stdtmpl(ddata, "std::basic_ostream", 18)); return (1); case SIMPLE_HASH('S', 's'): /* * std::basic_string, * std::allocator > * * a.k.a std::string */ if (!cpp_demangle_push_str(ddata, "std::string", 11)) return (0); ddata->last_sname = "string"; ddata->cur += 2; if (*ddata->cur == 'I') return (cpp_demangle_read_subst_stdtmpl(ddata, "std::string", 11)); return (1); case SIMPLE_HASH('S', 't'): /* std:: */ return (cpp_demangle_read_subst_std(ddata)); } if (*(++ddata->cur) == '\0') return (0); /* substitution */ if (*ddata->cur == '_') return (cpp_demangle_get_subst(ddata, 0)); else { errno = 0; /* substitution number is base 36 */ if ((nth = strtol(ddata->cur, (char **) NULL, 36)) == 0 && errno != 0) return (0); /* first was '_', so increase one */ ++nth; while (*ddata->cur != '_') ++ddata->cur; assert(nth > 0); return (cpp_demangle_get_subst(ddata, nth)); } /* NOTREACHED */ return (0); } static int cpp_demangle_read_subst_std(struct cpp_demangle_data *ddata) { struct vector_str *output, v; size_t p_idx, subst_str_len; int rtn; char *subst_str; if (ddata == NULL) return (0); if (!vector_str_init(&v)) return (0); subst_str = NULL; rtn = 0; if (!cpp_demangle_push_str(ddata, "std::", 5)) goto clean; if (!vector_str_push(&v, "std::", 5)) goto clean; ddata->cur += 2; output = ddata->push_head > 0 ? &ddata->output_tmp : &ddata->output; p_idx = output->size; if (!cpp_demangle_read_uqname(ddata)) goto clean; if ((subst_str = vector_str_substr(output, p_idx, output->size - 1, &subst_str_len)) == NULL) goto clean; if (!vector_str_push(&v, subst_str, subst_str_len)) goto clean; if (!cpp_demangle_push_subst_v(ddata, &v)) goto clean; if (*ddata->cur == 'I') { p_idx = output->size; if (!cpp_demangle_read_tmpl_args(ddata)) goto clean; free(subst_str); if ((subst_str = vector_str_substr(output, p_idx, output->size - 1, &subst_str_len)) == NULL) goto clean; if (!vector_str_push(&v, subst_str, subst_str_len)) goto clean; if (!cpp_demangle_push_subst_v(ddata, &v)) goto clean; } rtn = 1; clean: free(subst_str); vector_str_dest(&v); return (rtn); } static int cpp_demangle_read_subst_stdtmpl(struct cpp_demangle_data *ddata, const char *str, size_t len) { struct vector_str *output; size_t p_idx, substr_len; int rtn; char *subst_str, *substr; if (ddata == NULL || str == NULL || len == 0) return (0); output = ddata->push_head > 0 ? &ddata->output_tmp : &ddata->output; p_idx = output->size; substr = NULL; subst_str = NULL; if (!cpp_demangle_read_tmpl_args(ddata)) return (0); if ((substr = vector_str_substr(output, p_idx, output->size - 1, &substr_len)) == NULL) return (0); rtn = 0; if ((subst_str = malloc(sizeof(char) * (substr_len + len + 1))) == NULL) goto clean; memcpy(subst_str, str, len); memcpy(subst_str + len, substr, substr_len); subst_str[substr_len + len] = '\0'; if (!cpp_demangle_push_subst(ddata, subst_str, substr_len + len)) goto clean; rtn = 1; clean: free(subst_str); free(substr); return (rtn); } static int cpp_demangle_read_tmpl_arg(struct cpp_demangle_data *ddata) { if (ddata == NULL || *ddata->cur == '\0') return (0); switch (*ddata->cur) { case 'L': return (cpp_demangle_read_expr_primary(ddata)); case 'X': return (cpp_demangle_read_expression(ddata)); } return (cpp_demangle_read_type(ddata, 0)); } static int cpp_demangle_read_tmpl_args(struct cpp_demangle_data *ddata) { struct vector_str *v; size_t arg_len, idx, limit, size; char *arg; if (ddata == NULL || *ddata->cur == '\0') return (0); ++ddata->cur; if (!vector_read_cmd_push(&ddata->cmd, READ_TMPL)) return (0); if (!cpp_demangle_push_str(ddata, "<", 1)) return (0); limit = 0; v = ddata->push_head > 0 ? &ddata->output_tmp : &ddata->output; for (;;) { idx = v->size; if (!cpp_demangle_read_tmpl_arg(ddata)) return (0); if ((arg = vector_str_substr(v, idx, v->size - 1, &arg_len)) == NULL) return (0); if (!vector_str_find(&ddata->tmpl, arg, arg_len) && !vector_str_push(&ddata->tmpl, arg, arg_len)) { free(arg); return (0); } free(arg); if (*ddata->cur == 'E') { ++ddata->cur; size = v->size; assert(size > 0); if (!strncmp(v->container[size - 1], ">", 1)) { if (!cpp_demangle_push_str(ddata, " >", 2)) return (0); } else if (!cpp_demangle_push_str(ddata, ">", 1)) return (0); break; } else if (*ddata->cur != 'I' && !cpp_demangle_push_str(ddata, ", ", 2)) return (0); if (limit++ > CPP_DEMANGLE_TRY_LIMIT) return (0); } return (vector_read_cmd_pop(&ddata->cmd)); } /* * Read template parameter that forms in 'T[number]_'. * This function much like to read_subst but only for types. */ static int cpp_demangle_read_tmpl_param(struct cpp_demangle_data *ddata) { long nth; if (ddata == NULL || *ddata->cur != 'T') return (0); ++ddata->cur; if (*ddata->cur == '_') return (cpp_demangle_get_tmpl_param(ddata, 0)); else { errno = 0; if ((nth = strtol(ddata->cur, (char **) NULL, 36)) == 0 && errno != 0) return (0); /* T_ is first */ ++nth; while (*ddata->cur != '_') ++ddata->cur; assert(nth > 0); return (cpp_demangle_get_tmpl_param(ddata, nth)); } /* NOTREACHED */ return (0); } static int cpp_demangle_read_type(struct cpp_demangle_data *ddata, int delimit) { struct vector_type_qualifier v; struct vector_str *output; size_t p_idx, type_str_len; int extern_c, is_builtin; long len; char *type_str, *exp_str, *num_str; if (ddata == NULL) return (0); output = &ddata->output; if (!strncmp(ddata->output.container[ddata->output.size - 1], ">", 1)) { ddata->push_head++; output = &ddata->output_tmp; } else if (delimit == 1) { if (ddata->paren == false) { if (!cpp_demangle_push_str(ddata, "(", 1)) return (0); if (ddata->output.size < 2) return (0); ddata->paren = true; ddata->pfirst = true; /* Need pop function name */ if (ddata->subst.size == 1 && !vector_str_pop(&ddata->subst)) return (0); } if (ddata->pfirst) ddata->pfirst = false; else if (*ddata->cur != 'I' && !cpp_demangle_push_str(ddata, ", ", 2)) return (0); } assert(output != NULL); /* * [r, V, K] [P, R, C, G, U] builtin, function, class-enum, array * pointer-to-member, template-param, template-template-param, subst */ if (!vector_type_qualifier_init(&v)) return (0); extern_c = 0; is_builtin = 1; p_idx = output->size; type_str = exp_str = num_str = NULL; again: /* builtin type */ switch (*ddata->cur) { case 'a': /* signed char */ if (!cpp_demangle_push_str(ddata, "signed char", 11)) goto clean; ++ddata->cur; goto rtn; case 'A': /* array type */ if (!cpp_demangle_read_array(ddata)) goto clean; is_builtin = 0; goto rtn; case 'b': /* bool */ if (!cpp_demangle_push_str(ddata, "bool", 4)) goto clean; ++ddata->cur; goto rtn; case 'C': /* complex pair */ if (!vector_type_qualifier_push(&v, TYPE_CMX)) goto clean; ++ddata->cur; goto again; case 'c': /* char */ if (!cpp_demangle_push_str(ddata, "char", 4)) goto clean; ++ddata->cur; goto rtn; case 'd': /* double */ if (!cpp_demangle_push_str(ddata, "double", 6)) goto clean; ++ddata->cur; goto rtn; case 'D': ++ddata->cur; switch (*ddata->cur) { case 'd': /* IEEE 754r decimal floating point (64 bits) */ if (!cpp_demangle_push_str(ddata, "decimal64", 9)) goto clean; ++ddata->cur; break; case 'e': /* IEEE 754r decimal floating point (128 bits) */ if (!cpp_demangle_push_str(ddata, "decimal128", 10)) goto clean; ++ddata->cur; break; case 'f': /* IEEE 754r decimal floating point (32 bits) */ if (!cpp_demangle_push_str(ddata, "decimal32", 9)) goto clean; ++ddata->cur; break; case 'h': /* IEEE 754r half-precision floating point (16 bits) */ if (!cpp_demangle_push_str(ddata, "half", 4)) goto clean; ++ddata->cur; break; case 'i': /* char32_t */ if (!cpp_demangle_push_str(ddata, "char32_t", 8)) goto clean; ++ddata->cur; break; case 'n': /* std::nullptr_t (i.e., decltype(nullptr)) */ if (!cpp_demangle_push_str(ddata, "decltype(nullptr)", 17)) goto clean; ++ddata->cur; break; case 's': /* char16_t */ if (!cpp_demangle_push_str(ddata, "char16_t", 8)) goto clean; ++ddata->cur; break; case 'v': /* gcc vector_size extension. */ ++ddata->cur; if (*ddata->cur == '_') { ++ddata->cur; if (!cpp_demangle_read_expression_flat(ddata, &exp_str)) goto clean; if (!vector_str_push(&v.ext_name, exp_str, strlen(exp_str))) goto clean; } else { if (!cpp_demangle_read_number_as_string(ddata, &num_str)) goto clean; if (!vector_str_push(&v.ext_name, num_str, strlen(num_str))) goto clean; } if (*ddata->cur != '_') goto clean; ++ddata->cur; if (!vector_type_qualifier_push(&v, TYPE_VEC)) goto clean; goto again; default: goto clean; } goto rtn; case 'e': /* long double */ if (!cpp_demangle_push_str(ddata, "long double", 11)) goto clean; ++ddata->cur; goto rtn; case 'f': /* float */ if (!cpp_demangle_push_str(ddata, "float", 5)) goto clean; ++ddata->cur; goto rtn; case 'F': /* function */ if (!cpp_demangle_read_function(ddata, &extern_c, &v)) goto clean; is_builtin = 0; goto rtn; case 'g': /* __float128 */ if (!cpp_demangle_push_str(ddata, "__float128", 10)) goto clean; ++ddata->cur; goto rtn; case 'G': /* imaginary */ if (!vector_type_qualifier_push(&v, TYPE_IMG)) goto clean; ++ddata->cur; goto again; case 'h': /* unsigned char */ if (!cpp_demangle_push_str(ddata, "unsigned char", 13)) goto clean; ++ddata->cur; goto rtn; case 'i': /* int */ if (!cpp_demangle_push_str(ddata, "int", 3)) goto clean; ++ddata->cur; goto rtn; case 'j': /* unsigned int */ if (!cpp_demangle_push_str(ddata, "unsigned int", 12)) goto clean; ++ddata->cur; goto rtn; case 'K': /* const */ if (!vector_type_qualifier_push(&v, TYPE_CST)) goto clean; ++ddata->cur; goto again; case 'l': /* long */ if (!cpp_demangle_push_str(ddata, "long", 4)) goto clean; ++ddata->cur; goto rtn; case 'm': /* unsigned long */ if (!cpp_demangle_push_str(ddata, "unsigned long", 13)) goto clean; ++ddata->cur; goto rtn; case 'M': /* pointer to member */ if (!cpp_demangle_read_pointer_to_member(ddata)) goto clean; is_builtin = 0; goto rtn; case 'n': /* __int128 */ if (!cpp_demangle_push_str(ddata, "__int128", 8)) goto clean; ++ddata->cur; goto rtn; case 'o': /* unsigned __int128 */ if (!cpp_demangle_push_str(ddata, "unsigned __int128", 17)) goto clean; ++ddata->cur; goto rtn; case 'P': /* pointer */ if (!vector_type_qualifier_push(&v, TYPE_PTR)) goto clean; ++ddata->cur; goto again; case 'r': /* restrict */ if (!vector_type_qualifier_push(&v, TYPE_RST)) goto clean; ++ddata->cur; goto again; case 'R': /* reference */ if (!vector_type_qualifier_push(&v, TYPE_REF)) goto clean; ++ddata->cur; goto again; case 's': /* short, local string */ if (!cpp_demangle_push_str(ddata, "short", 5)) goto clean; ++ddata->cur; goto rtn; case 'S': /* substitution */ if (!cpp_demangle_read_subst(ddata)) goto clean; is_builtin = 0; goto rtn; case 't': /* unsigned short */ if (!cpp_demangle_push_str(ddata, "unsigned short", 14)) goto clean; ++ddata->cur; goto rtn; case 'T': /* template parameter */ if (!cpp_demangle_read_tmpl_param(ddata)) goto clean; is_builtin = 0; goto rtn; case 'u': /* vendor extended builtin */ ++ddata->cur; if (!cpp_demangle_read_sname(ddata)) goto clean; is_builtin = 0; goto rtn; case 'U': /* vendor extended type qualifier */ if (!cpp_demangle_read_number(ddata, &len)) goto clean; if (len <= 0) goto clean; if (!vector_str_push(&v.ext_name, ddata->cur, len)) return (0); ddata->cur += len; if (!vector_type_qualifier_push(&v, TYPE_EXT)) goto clean; goto again; case 'v': /* void */ if (!cpp_demangle_push_str(ddata, "void", 4)) goto clean; ++ddata->cur; goto rtn; case 'V': /* volatile */ if (!vector_type_qualifier_push(&v, TYPE_VAT)) goto clean; ++ddata->cur; goto again; case 'w': /* wchar_t */ - if (!cpp_demangle_push_str(ddata, "wchar_t", 6)) + if (!cpp_demangle_push_str(ddata, "wchar_t", 7)) goto clean; ++ddata->cur; goto rtn; case 'x': /* long long */ if (!cpp_demangle_push_str(ddata, "long long", 9)) goto clean; ++ddata->cur; goto rtn; case 'y': /* unsigned long long */ if (!cpp_demangle_push_str(ddata, "unsigned long long", 18)) goto clean; ++ddata->cur; goto rtn; case 'z': /* ellipsis */ if (!cpp_demangle_push_str(ddata, "ellipsis", 8)) goto clean; ++ddata->cur; goto rtn; } if (!cpp_demangle_read_name(ddata)) goto clean; is_builtin = 0; rtn: if ((type_str = vector_str_substr(output, p_idx, output->size - 1, &type_str_len)) == NULL) goto clean; if (is_builtin == 0) { if (!vector_str_find(&ddata->subst, type_str, type_str_len) && !vector_str_push(&ddata->subst, type_str, type_str_len)) goto clean; } if (!cpp_demangle_push_type_qualifier(ddata, &v, type_str)) goto clean; free(type_str); free(exp_str); free(num_str); vector_type_qualifier_dest(&v); if (ddata->push_head > 0) { if (*ddata->cur == 'I' && cpp_demangle_read_tmpl_args(ddata) == 0) return (0); if (--ddata->push_head > 0) return (1); if (!vector_str_push(&ddata->output_tmp, " ", 1)) return (0); if (!vector_str_push_vector_head(&ddata->output, &ddata->output_tmp)) return (0); vector_str_dest(&ddata->output_tmp); if (!vector_str_init(&ddata->output_tmp)) return (0); if (!cpp_demangle_push_str(ddata, "(", 1)) return (0); ddata->paren = true; ddata->pfirst = true; } return (1); clean: free(type_str); free(exp_str); free(num_str); vector_type_qualifier_dest(&v); return (0); } static int cpp_demangle_read_type_flat(struct cpp_demangle_data *ddata, char **str) { struct vector_str *output; size_t i, p_idx, idx, type_len; char *type; output = ddata->push_head > 0 ? &ddata->output_tmp : &ddata->output; p_idx = output->size; if (!cpp_demangle_read_type(ddata, 0)) return (0); if ((type = vector_str_substr(output, p_idx, output->size - 1, &type_len)) == NULL) return (0); idx = output->size; for (i = p_idx; i < idx; ++i) { if (!vector_str_pop(output)) { free(type); return (0); } } *str = type; return (1); } /* * read unqualified-name, unqualified name are operator-name, ctor-dtor-name, * source-name */ static int cpp_demangle_read_uqname(struct cpp_demangle_data *ddata) { size_t len; if (ddata == NULL || *ddata->cur == '\0') return (0); /* operator name */ switch (SIMPLE_HASH(*ddata->cur, *(ddata->cur + 1))) { case SIMPLE_HASH('a', 'a'): /* operator && */ if (!cpp_demangle_push_str(ddata, "operator&&", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('a', 'd'): /* operator & (unary) */ if (!cpp_demangle_push_str(ddata, "operator&", 9)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('a', 'n'): /* operator & */ if (!cpp_demangle_push_str(ddata, "operator&", 9)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('a', 'N'): /* operator &= */ if (!cpp_demangle_push_str(ddata, "operator&=", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('a', 'S'): /* operator = */ if (!cpp_demangle_push_str(ddata, "operator=", 9)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('c', 'l'): /* operator () */ if (!cpp_demangle_push_str(ddata, "operator()", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('c', 'm'): /* operator , */ if (!cpp_demangle_push_str(ddata, "operator,", 9)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('c', 'o'): /* operator ~ */ if (!cpp_demangle_push_str(ddata, "operator~", 9)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('c', 'v'): /* operator (cast) */ if (!cpp_demangle_push_str(ddata, "operator(cast)", 14)) return (0); ddata->cur += 2; return (cpp_demangle_read_type(ddata, 1)); case SIMPLE_HASH('d', 'a'): /* operator delete [] */ if (!cpp_demangle_push_str(ddata, "operator delete []", 18)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('d', 'e'): /* operator * (unary) */ if (!cpp_demangle_push_str(ddata, "operator*", 9)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('d', 'l'): /* operator delete */ if (!cpp_demangle_push_str(ddata, "operator delete", 15)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('d', 'v'): /* operator / */ if (!cpp_demangle_push_str(ddata, "operator/", 9)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('d', 'V'): /* operator /= */ if (!cpp_demangle_push_str(ddata, "operator/=", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('e', 'o'): /* operator ^ */ if (!cpp_demangle_push_str(ddata, "operator^", 9)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('e', 'O'): /* operator ^= */ if (!cpp_demangle_push_str(ddata, "operator^=", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('e', 'q'): /* operator == */ if (!cpp_demangle_push_str(ddata, "operator==", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('g', 'e'): /* operator >= */ if (!cpp_demangle_push_str(ddata, "operator>=", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('g', 't'): /* operator > */ if (!cpp_demangle_push_str(ddata, "operator>", 9)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('i', 'x'): /* operator [] */ if (!cpp_demangle_push_str(ddata, "operator[]", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('l', 'e'): /* operator <= */ if (!cpp_demangle_push_str(ddata, "operator<=", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('l', 's'): /* operator << */ if (!cpp_demangle_push_str(ddata, "operator<<", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('l', 'S'): /* operator <<= */ if (!cpp_demangle_push_str(ddata, "operator<<=", 11)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('l', 't'): /* operator < */ if (!cpp_demangle_push_str(ddata, "operator<", 9)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('m', 'i'): /* operator - */ if (!cpp_demangle_push_str(ddata, "operator-", 9)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('m', 'I'): /* operator -= */ if (!cpp_demangle_push_str(ddata, "operator-=", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('m', 'l'): /* operator * */ if (!cpp_demangle_push_str(ddata, "operator*", 9)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('m', 'L'): /* operator *= */ if (!cpp_demangle_push_str(ddata, "operator*=", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('m', 'm'): /* operator -- */ if (!cpp_demangle_push_str(ddata, "operator--", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('n', 'a'): /* operator new[] */ if (!cpp_demangle_push_str(ddata, "operator new []", 15)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('n', 'e'): /* operator != */ if (!cpp_demangle_push_str(ddata, "operator!=", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('n', 'g'): /* operator - (unary) */ if (!cpp_demangle_push_str(ddata, "operator-", 9)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('n', 't'): /* operator ! */ if (!cpp_demangle_push_str(ddata, "operator!", 9)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('n', 'w'): /* operator new */ if (!cpp_demangle_push_str(ddata, "operator new", 12)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('o', 'o'): /* operator || */ if (!cpp_demangle_push_str(ddata, "operator||", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('o', 'r'): /* operator | */ if (!cpp_demangle_push_str(ddata, "operator|", 9)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('o', 'R'): /* operator |= */ if (!cpp_demangle_push_str(ddata, "operator|=", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('p', 'l'): /* operator + */ if (!cpp_demangle_push_str(ddata, "operator+", 9)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('p', 'L'): /* operator += */ if (!cpp_demangle_push_str(ddata, "operator+=", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('p', 'm'): /* operator ->* */ if (!cpp_demangle_push_str(ddata, "operator->*", 11)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('p', 'p'): /* operator ++ */ if (!cpp_demangle_push_str(ddata, "operator++", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('p', 's'): /* operator + (unary) */ if (!cpp_demangle_push_str(ddata, "operator+", 9)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('p', 't'): /* operator -> */ if (!cpp_demangle_push_str(ddata, "operator->", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('q', 'u'): /* operator ? */ if (!cpp_demangle_push_str(ddata, "operator?", 9)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('r', 'm'): /* operator % */ if (!cpp_demangle_push_str(ddata, "operator%", 9)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('r', 'M'): /* operator %= */ if (!cpp_demangle_push_str(ddata, "operator%=", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('r', 's'): /* operator >> */ if (!cpp_demangle_push_str(ddata, "operator>>", 10)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('r', 'S'): /* operator >>= */ if (!cpp_demangle_push_str(ddata, "operator>>=", 11)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('r', 'z'): /* operator sizeof */ if (!cpp_demangle_push_str(ddata, "operator sizeof ", 16)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('s', 'r'): /* scope resolution operator */ if (!cpp_demangle_push_str(ddata, "scope resolution operator ", 26)) return (0); ddata->cur += 2; return (1); case SIMPLE_HASH('s', 'v'): /* operator sizeof */ if (!cpp_demangle_push_str(ddata, "operator sizeof ", 16)) return (0); ddata->cur += 2; return (1); } /* vendor extened operator */ if (*ddata->cur == 'v' && ELFTC_ISDIGIT(*(ddata->cur + 1))) { if (!cpp_demangle_push_str(ddata, "vendor extened operator ", 24)) return (0); if (!cpp_demangle_push_str(ddata, ddata->cur + 1, 1)) return (0); ddata->cur += 2; return (cpp_demangle_read_sname(ddata)); } /* ctor-dtor-name */ switch (SIMPLE_HASH(*ddata->cur, *(ddata->cur + 1))) { case SIMPLE_HASH('C', '1'): /* FALLTHROUGH */ case SIMPLE_HASH('C', '2'): /* FALLTHROUGH */ case SIMPLE_HASH('C', '3'): if (ddata->last_sname == NULL) return (0); if ((len = strlen(ddata->last_sname)) == 0) return (0); if (!cpp_demangle_push_str(ddata, "::", 2)) return (0); if (!cpp_demangle_push_str(ddata, ddata->last_sname, len)) return (0); ddata->cur +=2; return (1); case SIMPLE_HASH('D', '0'): /* FALLTHROUGH */ case SIMPLE_HASH('D', '1'): /* FALLTHROUGH */ case SIMPLE_HASH('D', '2'): if (ddata->last_sname == NULL) return (0); if ((len = strlen(ddata->last_sname)) == 0) return (0); if (!cpp_demangle_push_str(ddata, "::~", 3)) return (0); if (!cpp_demangle_push_str(ddata, ddata->last_sname, len)) return (0); ddata->cur +=2; return (1); } /* source name */ if (ELFTC_ISDIGIT(*ddata->cur) != 0) return (cpp_demangle_read_sname(ddata)); /* local source name */ if (*ddata->cur == 'L') return (cpp_demangle_local_source_name(ddata)); return (1); } /* * Read local source name. * * References: * http://gcc.gnu.org/bugzilla/show_bug.cgi?id=31775 * http://gcc.gnu.org/viewcvs?view=rev&revision=124467 */ static int cpp_demangle_local_source_name(struct cpp_demangle_data *ddata) { /* L */ if (ddata == NULL || *ddata->cur != 'L') return (0); ++ddata->cur; /* source name */ if (!cpp_demangle_read_sname(ddata)) return (0); /* discriminator */ if (*ddata->cur == '_') { ++ddata->cur; while (ELFTC_ISDIGIT(*ddata->cur) != 0) ++ddata->cur; } return (1); } static int cpp_demangle_read_v_offset(struct cpp_demangle_data *ddata) { if (ddata == NULL) return (0); if (!cpp_demangle_push_str(ddata, "offset : ", 9)) return (0); if (!cpp_demangle_read_offset_number(ddata)) return (0); if (!cpp_demangle_push_str(ddata, "virtual offset : ", 17)) return (0); return (!cpp_demangle_read_offset_number(ddata)); } /* * Decode floating point representation to string * Return new allocated string or NULL * * Todo * Replace these functions to macro. */ static char * decode_fp_to_double(const char *p, size_t len) { double f; size_t rtn_len, limit, i; int byte; char *rtn; if (p == NULL || len == 0 || len % 2 != 0 || len / 2 > sizeof(double)) return (NULL); memset(&f, 0, sizeof(double)); for (i = 0; i < len / 2; ++i) { byte = hex_to_dec(p[len - i * 2 - 1]) + hex_to_dec(p[len - i * 2 - 2]) * 16; if (byte < 0 || byte > 255) return (NULL); #if ELFTC_BYTE_ORDER == ELFTC_BYTE_ORDER_LITTLE_ENDIAN ((unsigned char *)&f)[i] = (unsigned char)(byte); #else /* ELFTC_BYTE_ORDER != ELFTC_BYTE_ORDER_LITTLE_ENDIAN */ ((unsigned char *)&f)[sizeof(double) - i - 1] = (unsigned char)(byte); #endif /* ELFTC_BYTE_ORDER == ELFTC_BYTE_ORDER_LITTLE_ENDIAN */ } rtn_len = 64; limit = 0; again: if ((rtn = malloc(sizeof(char) * rtn_len)) == NULL) return (NULL); if (snprintf(rtn, rtn_len, "%fld", f) >= (int)rtn_len) { free(rtn); if (limit++ > FLOAT_SPRINTF_TRY_LIMIT) return (NULL); rtn_len *= BUFFER_GROWFACTOR; goto again; } return rtn; } static char * decode_fp_to_float(const char *p, size_t len) { size_t i, rtn_len, limit; float f; int byte; char *rtn; if (p == NULL || len == 0 || len % 2 != 0 || len / 2 > sizeof(float)) return (NULL); memset(&f, 0, sizeof(float)); for (i = 0; i < len / 2; ++i) { byte = hex_to_dec(p[len - i * 2 - 1]) + hex_to_dec(p[len - i * 2 - 2]) * 16; if (byte < 0 || byte > 255) return (NULL); #if ELFTC_BYTE_ORDER == ELFTC_BYTE_ORDER_LITTLE_ENDIAN ((unsigned char *)&f)[i] = (unsigned char)(byte); #else /* ELFTC_BYTE_ORDER != ELFTC_BYTE_ORDER_LITTLE_ENDIAN */ ((unsigned char *)&f)[sizeof(float) - i - 1] = (unsigned char)(byte); #endif /* ELFTC_BYTE_ORDER == ELFTC_BYTE_ORDER_LITTLE_ENDIAN */ } rtn_len = 64; limit = 0; again: if ((rtn = malloc(sizeof(char) * rtn_len)) == NULL) return (NULL); if (snprintf(rtn, rtn_len, "%ff", f) >= (int)rtn_len) { free(rtn); if (limit++ > FLOAT_SPRINTF_TRY_LIMIT) return (NULL); rtn_len *= BUFFER_GROWFACTOR; goto again; } return rtn; } static char * decode_fp_to_float128(const char *p, size_t len) { long double f; size_t rtn_len, limit, i; int byte; unsigned char buf[FLOAT_QUADRUPLE_BYTES]; char *rtn; switch(sizeof(long double)) { case FLOAT_QUADRUPLE_BYTES: return (decode_fp_to_long_double(p, len)); case FLOAT_EXTENED_BYTES: if (p == NULL || len == 0 || len % 2 != 0 || len / 2 > FLOAT_QUADRUPLE_BYTES) return (NULL); memset(buf, 0, FLOAT_QUADRUPLE_BYTES); for (i = 0; i < len / 2; ++i) { byte = hex_to_dec(p[len - i * 2 - 1]) + hex_to_dec(p[len - i * 2 - 2]) * 16; if (byte < 0 || byte > 255) return (NULL); #if ELFTC_BYTE_ORDER == ELFTC_BYTE_ORDER_LITTLE_ENDIAN buf[i] = (unsigned char)(byte); #else /* ELFTC_BYTE_ORDER != ELFTC_BYTE_ORDER_LITTLE_ENDIAN */ buf[FLOAT_QUADRUPLE_BYTES - i -1] = (unsigned char)(byte); #endif /* ELFTC_BYTE_ORDER == ELFTC_BYTE_ORDER_LITTLE_ENDIAN */ } memset(&f, 0, FLOAT_EXTENED_BYTES); #if ELFTC_BYTE_ORDER == ELFTC_BYTE_ORDER_LITTLE_ENDIAN memcpy(&f, buf, FLOAT_EXTENED_BYTES); #else /* ELFTC_BYTE_ORDER != ELFTC_BYTE_ORDER_LITTLE_ENDIAN */ memcpy(&f, buf + 6, FLOAT_EXTENED_BYTES); #endif /* ELFTC_BYTE_ORDER == ELFTC_BYTE_ORDER_LITTLE_ENDIAN */ rtn_len = 256; limit = 0; again: if ((rtn = malloc(sizeof(char) * rtn_len)) == NULL) return (NULL); if (snprintf(rtn, rtn_len, "%Lfd", f) >= (int)rtn_len) { free(rtn); if (limit++ > FLOAT_SPRINTF_TRY_LIMIT) return (NULL); rtn_len *= BUFFER_GROWFACTOR; goto again; } return (rtn); default: return (NULL); } } static char * decode_fp_to_float80(const char *p, size_t len) { long double f; size_t rtn_len, limit, i; int byte; unsigned char buf[FLOAT_EXTENED_BYTES]; char *rtn; switch(sizeof(long double)) { case FLOAT_QUADRUPLE_BYTES: if (p == NULL || len == 0 || len % 2 != 0 || len / 2 > FLOAT_EXTENED_BYTES) return (NULL); memset(buf, 0, FLOAT_EXTENED_BYTES); for (i = 0; i < len / 2; ++i) { byte = hex_to_dec(p[len - i * 2 - 1]) + hex_to_dec(p[len - i * 2 - 2]) * 16; if (byte < 0 || byte > 255) return (NULL); #if ELFTC_BYTE_ORDER == ELFTC_BYTE_ORDER_LITTLE_ENDIAN buf[i] = (unsigned char)(byte); #else /* ELFTC_BYTE_ORDER != ELFTC_BYTE_ORDER_LITTLE_ENDIAN */ buf[FLOAT_EXTENED_BYTES - i -1] = (unsigned char)(byte); #endif /* ELFTC_BYTE_ORDER == ELFTC_BYTE_ORDER_LITTLE_ENDIAN */ } memset(&f, 0, FLOAT_QUADRUPLE_BYTES); #if ELFTC_BYTE_ORDER == ELFTC_BYTE_ORDER_LITTLE_ENDIAN memcpy(&f, buf, FLOAT_EXTENED_BYTES); #else /* ELFTC_BYTE_ORDER != ELFTC_BYTE_ORDER_LITTLE_ENDIAN */ memcpy((unsigned char *)(&f) + 6, buf, FLOAT_EXTENED_BYTES); #endif /* ELFTC_BYTE_ORDER == ELFTC_BYTE_ORDER_LITTLE_ENDIAN */ rtn_len = 256; limit = 0; again: if ((rtn = malloc(sizeof(char) * rtn_len)) == NULL) return (NULL); if (snprintf(rtn, rtn_len, "%Lfd", f) >= (int)rtn_len) { free(rtn); if (limit++ > FLOAT_SPRINTF_TRY_LIMIT) return (NULL); rtn_len *= BUFFER_GROWFACTOR; goto again; } return (rtn); case FLOAT_EXTENED_BYTES: return (decode_fp_to_long_double(p, len)); default: return (NULL); } } static char * decode_fp_to_long_double(const char *p, size_t len) { long double f; size_t rtn_len, limit, i; int byte; char *rtn; if (p == NULL || len == 0 || len % 2 != 0 || len / 2 > sizeof(long double)) return (NULL); memset(&f, 0, sizeof(long double)); for (i = 0; i < len / 2; ++i) { byte = hex_to_dec(p[len - i * 2 - 1]) + hex_to_dec(p[len - i * 2 - 2]) * 16; if (byte < 0 || byte > 255) return (NULL); #if ELFTC_BYTE_ORDER == ELFTC_BYTE_ORDER_LITTLE_ENDIAN ((unsigned char *)&f)[i] = (unsigned char)(byte); #else /* ELFTC_BYTE_ORDER != ELFTC_BYTE_ORDER_LITTLE_ENDIAN */ ((unsigned char *)&f)[sizeof(long double) - i - 1] = (unsigned char)(byte); #endif /* ELFTC_BYTE_ORDER == ELFTC_BYTE_ORDER_LITTLE_ENDIAN */ } rtn_len = 256; limit = 0; again: if ((rtn = malloc(sizeof(char) * rtn_len)) == NULL) return (NULL); if (snprintf(rtn, rtn_len, "%Lfd", f) >= (int)rtn_len) { free(rtn); if (limit++ > FLOAT_SPRINTF_TRY_LIMIT) return (NULL); rtn_len *= BUFFER_GROWFACTOR; goto again; } return (rtn); } /* Simple hex to integer function used by decode_to_* function. */ static int hex_to_dec(char c) { switch (c) { case '0': return (0); case '1': return (1); case '2': return (2); case '3': return (3); case '4': return (4); case '5': return (5); case '6': return (6); case '7': return (7); case '8': return (8); case '9': return (9); case 'a': return (10); case 'b': return (11); case 'c': return (12); case 'd': return (13); case 'e': return (14); case 'f': return (15); default: return (-1); } } /** * @brief Test input string is mangled by IA-64 C++ ABI style. * * Test string heads with "_Z" or "_GLOBAL__I_". * @return Return 0 at false. */ bool is_cpp_mangled_gnu3(const char *org) { size_t len; len = strlen(org); return ((len > 2 && *org == '_' && *(org + 1) == 'Z') || (len > 11 && !strncmp(org, "_GLOBAL__I_", 11))); } static void vector_read_cmd_dest(struct vector_read_cmd *v) { if (v == NULL) return; free(v->r_container); } /* return -1 at failed, 0 at not found, 1 at found. */ static int vector_read_cmd_find(struct vector_read_cmd *v, enum read_cmd dst) { size_t i; if (v == NULL || dst == READ_FAIL) return (-1); for (i = 0; i < v->size; ++i) if (v->r_container[i] == dst) return (1); return (0); } static int vector_read_cmd_init(struct vector_read_cmd *v) { if (v == NULL) return (0); v->size = 0; v->capacity = VECTOR_DEF_CAPACITY; if ((v->r_container = malloc(sizeof(enum read_cmd) * v->capacity)) == NULL) return (0); return (1); } static int vector_read_cmd_pop(struct vector_read_cmd *v) { if (v == NULL || v->size == 0) return (0); --v->size; v->r_container[v->size] = READ_FAIL; return (1); } static int vector_read_cmd_push(struct vector_read_cmd *v, enum read_cmd cmd) { enum read_cmd *tmp_r_ctn; size_t tmp_cap; size_t i; if (v == NULL) return (0); if (v->size == v->capacity) { tmp_cap = v->capacity * BUFFER_GROWFACTOR; if ((tmp_r_ctn = malloc(sizeof(enum read_cmd) * tmp_cap)) == NULL) return (0); for (i = 0; i < v->size; ++i) tmp_r_ctn[i] = v->r_container[i]; free(v->r_container); v->r_container = tmp_r_ctn; v->capacity = tmp_cap; } v->r_container[v->size] = cmd; ++v->size; return (1); } static void vector_type_qualifier_dest(struct vector_type_qualifier *v) { if (v == NULL) return; free(v->q_container); vector_str_dest(&v->ext_name); } /* size, capacity, ext_name */ static int vector_type_qualifier_init(struct vector_type_qualifier *v) { if (v == NULL) return (0); v->size = 0; v->capacity = VECTOR_DEF_CAPACITY; if ((v->q_container = malloc(sizeof(enum type_qualifier) * v->capacity)) == NULL) return (0); assert(v->q_container != NULL); if (vector_str_init(&v->ext_name) == false) { free(v->q_container); return (0); } return (1); } static int vector_type_qualifier_push(struct vector_type_qualifier *v, enum type_qualifier t) { enum type_qualifier *tmp_ctn; size_t tmp_cap; size_t i; if (v == NULL) return (0); if (v->size == v->capacity) { tmp_cap = v->capacity * BUFFER_GROWFACTOR; if ((tmp_ctn = malloc(sizeof(enum type_qualifier) * tmp_cap)) == NULL) return (0); for (i = 0; i < v->size; ++i) tmp_ctn[i] = v->q_container[i]; free(v->q_container); v->q_container = tmp_ctn; v->capacity = tmp_cap; } v->q_container[v->size] = t; ++v->size; return (1); } Index: vendor/elftoolchain/dist/readelf/readelf.1 =================================================================== --- vendor/elftoolchain/dist/readelf/readelf.1 (revision 305125) +++ vendor/elftoolchain/dist/readelf/readelf.1 (revision 305126) @@ -1,197 +1,197 @@ .\" Copyright (c) 2009,2011 Joseph Koshy .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer .\" in this position and unchanged. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" .\" THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR .\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES .\" OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. .\" IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, .\" INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT .\" NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, .\" DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY .\" THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT .\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF .\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. .\" -.\" $Id: readelf.1 3219 2015-05-24 23:42:34Z kaiwang27 $ +.\" $Id: readelf.1 3486 2016-08-22 14:10:05Z emaste $ .\" .Dd September 13, 2012 .Os .Dt READELF 1 .Sh NAME .Nm readelf .Nd display information about ELF objects .Sh SYNOPSIS .Nm .Op Fl a | Fl -all .Op Fl c | Fl -archive-index .Op Fl d | Fl -dynamic .Op Fl e | Fl -headers .Op Fl g | Fl -section-groups .Op Fl h | Fl -file-header .Op Fl l | Fl -program-headers .Op Fl n | Fl -notes .Op Fl p Ar section | Fl -string-dump Ns = Ns Ar section .Op Fl r | Fl -relocs .Op Fl t | Fl -section-details -.Op Fl x Ar section | Fl -hex-dump Ns = Ns Ar section .Op Fl v | Fl -version .Oo .Fl w Ns Oo Ns Ar afilmoprsFLR Ns Oc | .Fl -debug-dump Ns Op Ns = Ns Ar long-option-name , Ns ... .Oc +.Op Fl x Ar section | Fl -hex-dump Ns = Ns Ar section .Op Fl A | Fl -arch-specific .Op Fl D | Fl -use-dynamic .Op Fl H | Fl -help .Op Fl I | Fl -histogram .Op Fl N | -full-section-name .Op Fl S | Fl -sections | Fl -section-headers .Op Fl V | Fl -version-info .Op Fl W | Fl -wide .Ar file... .Sh DESCRIPTION The .Nm utility displays information about ELF objects and .Xr ar 1 archives. .Pp The .Nm utility recognizes the following options: .Bl -tag -width indent .It Fl a | Fl -all Turn on the following flags: .Fl d , .Fl h , .Fl I , .Fl l , .Fl r , .Fl s , .Fl A , .Fl S and .Fl V . .It Fl c | Fl -archive-index Print the archive symbol table for archives. .It Fl d | Fl -dynamic Print the contents of the .Li SHT_DYNAMIC sections in the ELF object. .It Fl e | Fl -headers Print all program, file and section headers in the ELF object. .It Fl g | Fl -section-groups Print the contents of the section groups in the ELF object. .It Fl h | Fl -file-header Print the file header of the ELF object. .It Fl l | Fl -program-headers Print the content of the program header table for the object. .It Fl n | Fl -notes Print the contents of .Li PT_NOTE segments or .Li SHT_NOTE sections present in the ELF object. .It Fl p Ar section | Fl -string-dump Ns = Ns Ar section Print the contents of the specified section as printable strings. The argument .Ar section should be the name of a section or a numeric section index. .It Fl r | Fl -relocs Print relocation information. .It Fl s | Fl -syms | Fl -symbols Print symbol tables. .It Fl t | Fl -section-details Print additional information about sections, such as the flags fields in section headers. .It Fl v | Fl -version Prints a version identifier for .Nm and exits. .It Fl w Ns Oo afilmoprsFLR Oc | Xo .Fl -debug-dump Ns Op Ns = Ns Ar long-option-name , Ns ... .Xc Display DWARF information. The .Fl w option is used with the short options in the following table; the .Fl -debug-dump option is used with a comma-separated list of the corresponding long option names: .Bl -column ".Em Short Option" "aranges|ranges" .It Em Short Option Ta Em Long Option Ta Em Description .It a Ta abbrev Ta Show abbreviation information. .It f Ta frames Ta Show frame information, displaying frame instructions. .It i Ta info Ta Show debugging information entries. .It l Ta rawline Ta Show line information in raw form. .It m Ta macro Ta Show macro information. .It o Ta loc Ta Show location list information. .It p Ta pubnames Ta Show global names. .It r Ta aranges|ranges Ta Show address range information. .It s Ta str Ta Show the debug string table. .It F Ta frames-interp Ta Show frame information, displaying register rules. .It L Ta decodedline Ta Show line information in decoded form. .It R Ta Ranges Ta Show range lists. .El .Pp If no sub-options are specified, the default is to show information corresponding to the .Ar a , f , i, l , o , p , r , s and .Ar R short options. .It Fl x Ar section | Fl -hex-dump Ns = Ns Ar section Display the contents of the specified section in hexadecimal. The argument .Ar section should be the name of a section or a numeric section index. .It Fl A | Fl -arch-specific This option is accepted but is currently unimplemented. .It Fl D | Fl -use-dynamic Print the symbol table specified by the .Li DT_SYMTAB entry in the .Dq Li .dynamic section. .It Fl H | Fl -help Print a help message. .It Fl I | Fl -histogram Print information on bucket list lengths for sections of type .Li SHT_HASH and .Li SHT_GNU_HASH . .It Fl N | Fl -full-section-name This option is accepted but is currently unimplemented. .It Fl S | Fl -sections | Fl -section-headers Print information in the section headers for each ELF object. .It Fl V | Fl -version-info Print symbol versioning information. .It Fl W | Fl -wide Print information about ELF structures using one long line per structure. If this option is not specified, .Nm will list information in the headers of 64 bit ELF objects on two separate lines. .El .Sh EXIT STATUS .Ex -std .Sh SEE ALSO .Xr nm 1 , .Xr addr2line 1 , .Xr elfcopy 1 , .Sh AUTHORS The .Nm utility was written by .An Kai Wang Aq Mt kaiwang27@users.sourceforge.net . Index: vendor/elftoolchain/dist/readelf/readelf.c =================================================================== --- vendor/elftoolchain/dist/readelf/readelf.c (revision 305125) +++ vendor/elftoolchain/dist/readelf/readelf.c (revision 305126) @@ -1,7206 +1,7278 @@ /*- * Copyright (c) 2009-2015 Kai Wang * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "_elftc.h" -ELFTC_VCSID("$Id: readelf.c 3469 2016-05-15 23:16:09Z emaste $"); +ELFTC_VCSID("$Id: readelf.c 3484 2016-08-03 13:36:49Z emaste $"); /* * readelf(1) options. */ #define RE_AA 0x00000001 #define RE_C 0x00000002 #define RE_DD 0x00000004 #define RE_D 0x00000008 #define RE_G 0x00000010 #define RE_H 0x00000020 #define RE_II 0x00000040 #define RE_I 0x00000080 #define RE_L 0x00000100 #define RE_NN 0x00000200 #define RE_N 0x00000400 #define RE_P 0x00000800 #define RE_R 0x00001000 #define RE_SS 0x00002000 #define RE_S 0x00004000 #define RE_T 0x00008000 #define RE_U 0x00010000 #define RE_VV 0x00020000 #define RE_WW 0x00040000 #define RE_W 0x00080000 #define RE_X 0x00100000 /* * dwarf dump options. */ #define DW_A 0x00000001 #define DW_FF 0x00000002 #define DW_F 0x00000004 #define DW_I 0x00000008 #define DW_LL 0x00000010 #define DW_L 0x00000020 #define DW_M 0x00000040 #define DW_O 0x00000080 #define DW_P 0x00000100 #define DW_RR 0x00000200 #define DW_R 0x00000400 #define DW_S 0x00000800 #define DW_DEFAULT_OPTIONS (DW_A | DW_F | DW_I | DW_L | DW_O | DW_P | \ DW_R | DW_RR | DW_S) /* * readelf(1) run control flags. */ #define DISPLAY_FILENAME 0x0001 /* * Internal data structure for sections. */ struct section { const char *name; /* section name */ Elf_Scn *scn; /* section scn */ uint64_t off; /* section offset */ uint64_t sz; /* section size */ uint64_t entsize; /* section entsize */ uint64_t align; /* section alignment */ uint64_t type; /* section type */ uint64_t flags; /* section flags */ uint64_t addr; /* section virtual addr */ uint32_t link; /* section link ndx */ uint32_t info; /* section info ndx */ }; struct dumpop { union { size_t si; /* section index */ const char *sn; /* section name */ } u; enum { DUMP_BY_INDEX = 0, DUMP_BY_NAME } type; /* dump type */ #define HEX_DUMP 0x0001 #define STR_DUMP 0x0002 int op; /* dump operation */ STAILQ_ENTRY(dumpop) dumpop_list; }; struct symver { const char *name; int type; }; /* * Structure encapsulates the global data for readelf(1). */ struct readelf { const char *filename; /* current processing file. */ int options; /* command line options. */ int flags; /* run control flags. */ int dop; /* dwarf dump options. */ Elf *elf; /* underlying ELF descriptor. */ Elf *ar; /* archive ELF descriptor. */ Dwarf_Debug dbg; /* DWARF handle. */ Dwarf_Half cu_psize; /* DWARF CU pointer size. */ Dwarf_Half cu_osize; /* DWARF CU offset size. */ Dwarf_Half cu_ver; /* DWARF CU version. */ GElf_Ehdr ehdr; /* ELF header. */ int ec; /* ELF class. */ size_t shnum; /* #sections. */ struct section *vd_s; /* Verdef section. */ struct section *vn_s; /* Verneed section. */ struct section *vs_s; /* Versym section. */ uint16_t *vs; /* Versym array. */ int vs_sz; /* Versym array size. */ struct symver *ver; /* Version array. */ int ver_sz; /* Size of version array. */ struct section *sl; /* list of sections. */ STAILQ_HEAD(, dumpop) v_dumpop; /* list of dump ops. */ uint64_t (*dw_read)(Elf_Data *, uint64_t *, int); uint64_t (*dw_decode)(uint8_t **, int); }; enum options { OPTION_DEBUG_DUMP }; static struct option longopts[] = { {"all", no_argument, NULL, 'a'}, {"arch-specific", no_argument, NULL, 'A'}, {"archive-index", no_argument, NULL, 'c'}, {"debug-dump", optional_argument, NULL, OPTION_DEBUG_DUMP}, {"dynamic", no_argument, NULL, 'd'}, {"file-header", no_argument, NULL, 'h'}, {"full-section-name", no_argument, NULL, 'N'}, {"headers", no_argument, NULL, 'e'}, {"help", no_argument, 0, 'H'}, {"hex-dump", required_argument, NULL, 'x'}, {"histogram", no_argument, NULL, 'I'}, {"notes", no_argument, NULL, 'n'}, {"program-headers", no_argument, NULL, 'l'}, {"relocs", no_argument, NULL, 'r'}, {"sections", no_argument, NULL, 'S'}, {"section-headers", no_argument, NULL, 'S'}, {"section-groups", no_argument, NULL, 'g'}, {"section-details", no_argument, NULL, 't'}, {"segments", no_argument, NULL, 'l'}, {"string-dump", required_argument, NULL, 'p'}, {"symbols", no_argument, NULL, 's'}, {"syms", no_argument, NULL, 's'}, {"unwind", no_argument, NULL, 'u'}, {"use-dynamic", no_argument, NULL, 'D'}, {"version-info", no_argument, 0, 'V'}, {"version", no_argument, 0, 'v'}, {"wide", no_argument, 0, 'W'}, {NULL, 0, NULL, 0} }; struct eflags_desc { uint64_t flag; const char *desc; }; struct mips_option { uint64_t flag; const char *desc; }; static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t); static const char *aeabi_adv_simd_arch(uint64_t simd); static const char *aeabi_align_needed(uint64_t an); static const char *aeabi_align_preserved(uint64_t ap); static const char *aeabi_arm_isa(uint64_t ai); static const char *aeabi_cpu_arch(uint64_t arch); static const char *aeabi_cpu_arch_profile(uint64_t pf); static const char *aeabi_div(uint64_t du); static const char *aeabi_enum_size(uint64_t es); static const char *aeabi_fp_16bit_format(uint64_t fp16); static const char *aeabi_fp_arch(uint64_t fp); static const char *aeabi_fp_denormal(uint64_t fd); static const char *aeabi_fp_exceptions(uint64_t fe); static const char *aeabi_fp_hpext(uint64_t fh); static const char *aeabi_fp_number_model(uint64_t fn); static const char *aeabi_fp_optm_goal(uint64_t fog); static const char *aeabi_fp_rounding(uint64_t fr); static const char *aeabi_hardfp(uint64_t hfp); static const char *aeabi_mpext(uint64_t mp); static const char *aeabi_optm_goal(uint64_t og); static const char *aeabi_pcs_config(uint64_t pcs); static const char *aeabi_pcs_got(uint64_t got); static const char *aeabi_pcs_r9(uint64_t r9); static const char *aeabi_pcs_ro(uint64_t ro); static const char *aeabi_pcs_rw(uint64_t rw); static const char *aeabi_pcs_wchar_t(uint64_t wt); static const char *aeabi_t2ee(uint64_t t2ee); static const char *aeabi_thumb_isa(uint64_t ti); static const char *aeabi_fp_user_exceptions(uint64_t fu); static const char *aeabi_unaligned_access(uint64_t ua); static const char *aeabi_vfp_args(uint64_t va); static const char *aeabi_virtual(uint64_t vt); static const char *aeabi_wmmx_arch(uint64_t wmmx); static const char *aeabi_wmmx_args(uint64_t wa); static const char *elf_class(unsigned int class); static const char *elf_endian(unsigned int endian); static const char *elf_machine(unsigned int mach); static const char *elf_osabi(unsigned int abi); static const char *elf_type(unsigned int type); static const char *elf_ver(unsigned int ver); static const char *dt_type(unsigned int mach, unsigned int dtype); static void dump_ar(struct readelf *re, int); static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); static void dump_attributes(struct readelf *re); static uint8_t *dump_compatibility_tag(uint8_t *p, uint8_t *pe); static void dump_dwarf(struct readelf *re); static void dump_dwarf_abbrev(struct readelf *re); static void dump_dwarf_aranges(struct readelf *re); static void dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len); static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level); static void dump_dwarf_frame(struct readelf *re, int alt); static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc, Dwarf_Debug dbg); static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra); static void dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt); static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info); static void dump_dwarf_macinfo(struct readelf *re); static void dump_dwarf_line(struct readelf *re); static void dump_dwarf_line_decoded(struct readelf *re); static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr); static void dump_dwarf_loclist(struct readelf *re); static void dump_dwarf_pubnames(struct readelf *re); static void dump_dwarf_ranges(struct readelf *re); static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base); static void dump_dwarf_str(struct readelf *re); static void dump_eflags(struct readelf *re, uint64_t e_flags); static void dump_elf(struct readelf *re); static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab); static void dump_dynamic(struct readelf *re); static void dump_liblist(struct readelf *re); static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz); static void dump_mips_options(struct readelf *re, struct section *s); static void dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info); static void dump_mips_reginfo(struct readelf *re, struct section *s); static void dump_mips_specific_info(struct readelf *re); static void dump_notes(struct readelf *re); static void dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off); static void dump_svr4_hash(struct section *s); static void dump_svr4_hash64(struct readelf *re, struct section *s); static void dump_gnu_hash(struct readelf *re, struct section *s); static void dump_hash(struct readelf *re); static void dump_phdr(struct readelf *re); static void dump_ppc_attributes(uint8_t *p, uint8_t *pe); static void dump_section_groups(struct readelf *re); static void dump_symtab(struct readelf *re, int i); static void dump_symtabs(struct readelf *re); static uint8_t *dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe); static void dump_ver(struct readelf *re); static void dump_verdef(struct readelf *re, int dump); static void dump_verneed(struct readelf *re, int dump); static void dump_versym(struct readelf *re); static const char *dwarf_reg(unsigned int mach, unsigned int reg); static const char *dwarf_regname(struct readelf *re, unsigned int num); static struct dumpop *find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t); static int get_ent_count(struct section *s, int *ent_count); static char *get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off); static const char *get_string(struct readelf *re, int strtab, size_t off); static const char *get_symbol_name(struct readelf *re, int symtab, int i); static uint64_t get_symbol_value(struct readelf *re, int symtab, int i); static void load_sections(struct readelf *re); static const char *mips_abi_fp(uint64_t fp); static const char *note_type(const char *note_name, unsigned int et, unsigned int nt); static const char *note_type_freebsd(unsigned int nt); static const char *note_type_freebsd_core(unsigned int nt); static const char *note_type_linux_core(unsigned int nt); static const char *note_type_gnu(unsigned int nt); static const char *note_type_netbsd(unsigned int nt); static const char *note_type_openbsd(unsigned int nt); static const char *note_type_unknown(unsigned int nt); static const char *note_type_xen(unsigned int nt); static const char *option_kind(uint8_t kind); -static const char *phdr_type(unsigned int ptype); +static const char *phdr_type(unsigned int mach, unsigned int ptype); static const char *ppc_abi_fp(uint64_t fp); static const char *ppc_abi_vector(uint64_t vec); static void readelf_usage(int status); static void readelf_version(void); static void search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc); static void search_ver(struct readelf *re); static const char *section_type(unsigned int mach, unsigned int stype); static void set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize, Dwarf_Half ver); static const char *st_bind(unsigned int sbind); static const char *st_shndx(unsigned int shndx); static const char *st_type(unsigned int mach, unsigned int os, unsigned int stype); static const char *st_vis(unsigned int svis); static const char *top_tag(unsigned int tag); static void unload_sections(struct readelf *re); static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read); static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read); static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read); static uint64_t _decode_msb(uint8_t **data, int bytes_to_read); static int64_t _decode_sleb128(uint8_t **dp, uint8_t *dpe); static uint64_t _decode_uleb128(uint8_t **dp, uint8_t *dpe); static struct eflags_desc arm_eflags_desc[] = { {EF_ARM_RELEXEC, "relocatable executable"}, {EF_ARM_HASENTRY, "has entry point"}, {EF_ARM_SYMSARESORTED, "sorted symbol tables"}, {EF_ARM_DYNSYMSUSESEGIDX, "dynamic symbols use segment index"}, {EF_ARM_MAPSYMSFIRST, "mapping symbols precede others"}, {EF_ARM_BE8, "BE8"}, {EF_ARM_LE8, "LE8"}, {EF_ARM_INTERWORK, "interworking enabled"}, {EF_ARM_APCS_26, "uses APCS/26"}, {EF_ARM_APCS_FLOAT, "uses APCS/float"}, {EF_ARM_PIC, "position independent"}, {EF_ARM_ALIGN8, "8 bit structure alignment"}, {EF_ARM_NEW_ABI, "uses new ABI"}, {EF_ARM_OLD_ABI, "uses old ABI"}, {EF_ARM_SOFT_FLOAT, "software FP"}, {EF_ARM_VFP_FLOAT, "VFP"}, {EF_ARM_MAVERICK_FLOAT, "Maverick FP"}, {0, NULL} }; static struct eflags_desc mips_eflags_desc[] = { {EF_MIPS_NOREORDER, "noreorder"}, {EF_MIPS_PIC, "pic"}, {EF_MIPS_CPIC, "cpic"}, {EF_MIPS_UCODE, "ugen_reserved"}, {EF_MIPS_ABI2, "abi2"}, {EF_MIPS_OPTIONS_FIRST, "odk first"}, {EF_MIPS_ARCH_ASE_MDMX, "mdmx"}, {EF_MIPS_ARCH_ASE_M16, "mips16"}, {0, NULL} }; static struct eflags_desc powerpc_eflags_desc[] = { {EF_PPC_EMB, "emb"}, {EF_PPC_RELOCATABLE, "relocatable"}, {EF_PPC_RELOCATABLE_LIB, "relocatable-lib"}, {0, NULL} }; static struct eflags_desc sparc_eflags_desc[] = { {EF_SPARC_32PLUS, "v8+"}, {EF_SPARC_SUN_US1, "ultrasparcI"}, {EF_SPARC_HAL_R1, "halr1"}, {EF_SPARC_SUN_US3, "ultrasparcIII"}, {0, NULL} }; static const char * elf_osabi(unsigned int abi) { static char s_abi[32]; switch(abi) { case ELFOSABI_NONE: return "NONE"; case ELFOSABI_HPUX: return "HPUX"; case ELFOSABI_NETBSD: return "NetBSD"; case ELFOSABI_GNU: return "GNU"; case ELFOSABI_HURD: return "HURD"; case ELFOSABI_86OPEN: return "86OPEN"; case ELFOSABI_SOLARIS: return "Solaris"; case ELFOSABI_AIX: return "AIX"; case ELFOSABI_IRIX: return "IRIX"; case ELFOSABI_FREEBSD: return "FreeBSD"; case ELFOSABI_TRU64: return "TRU64"; case ELFOSABI_MODESTO: return "MODESTO"; case ELFOSABI_OPENBSD: return "OpenBSD"; case ELFOSABI_OPENVMS: return "OpenVMS"; case ELFOSABI_NSK: return "NSK"; case ELFOSABI_CLOUDABI: return "CloudABI"; + case ELFOSABI_ARM_AEABI: return "ARM EABI"; case ELFOSABI_ARM: return "ARM"; case ELFOSABI_STANDALONE: return "StandAlone"; default: snprintf(s_abi, sizeof(s_abi), "", abi); return (s_abi); } }; static const char * elf_machine(unsigned int mach) { static char s_mach[32]; switch (mach) { case EM_NONE: return "Unknown machine"; case EM_M32: return "AT&T WE32100"; case EM_SPARC: return "Sun SPARC"; case EM_386: return "Intel i386"; case EM_68K: return "Motorola 68000"; case EM_IAMCU: return "Intel MCU"; case EM_88K: return "Motorola 88000"; case EM_860: return "Intel i860"; case EM_MIPS: return "MIPS R3000 Big-Endian only"; case EM_S370: return "IBM System/370"; case EM_MIPS_RS3_LE: return "MIPS R3000 Little-Endian"; case EM_PARISC: return "HP PA-RISC"; case EM_VPP500: return "Fujitsu VPP500"; case EM_SPARC32PLUS: return "SPARC v8plus"; case EM_960: return "Intel 80960"; case EM_PPC: return "PowerPC 32-bit"; case EM_PPC64: return "PowerPC 64-bit"; case EM_S390: return "IBM System/390"; case EM_V800: return "NEC V800"; case EM_FR20: return "Fujitsu FR20"; case EM_RH32: return "TRW RH-32"; case EM_RCE: return "Motorola RCE"; case EM_ARM: return "ARM"; case EM_SH: return "Hitachi SH"; case EM_SPARCV9: return "SPARC v9 64-bit"; case EM_TRICORE: return "Siemens TriCore embedded processor"; case EM_ARC: return "Argonaut RISC Core"; case EM_H8_300: return "Hitachi H8/300"; case EM_H8_300H: return "Hitachi H8/300H"; case EM_H8S: return "Hitachi H8S"; case EM_H8_500: return "Hitachi H8/500"; case EM_IA_64: return "Intel IA-64 Processor"; case EM_MIPS_X: return "Stanford MIPS-X"; case EM_COLDFIRE: return "Motorola ColdFire"; case EM_68HC12: return "Motorola M68HC12"; case EM_MMA: return "Fujitsu MMA"; case EM_PCP: return "Siemens PCP"; case EM_NCPU: return "Sony nCPU"; case EM_NDR1: return "Denso NDR1 microprocessor"; case EM_STARCORE: return "Motorola Star*Core processor"; case EM_ME16: return "Toyota ME16 processor"; case EM_ST100: return "STMicroelectronics ST100 processor"; case EM_TINYJ: return "Advanced Logic Corp. TinyJ processor"; case EM_X86_64: return "Advanced Micro Devices x86-64"; case EM_PDSP: return "Sony DSP Processor"; case EM_FX66: return "Siemens FX66 microcontroller"; case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 microcontroller"; case EM_ST7: return "STmicroelectronics ST7 8-bit microcontroller"; case EM_68HC16: return "Motorola MC68HC16 microcontroller"; case EM_68HC11: return "Motorola MC68HC11 microcontroller"; case EM_68HC08: return "Motorola MC68HC08 microcontroller"; case EM_68HC05: return "Motorola MC68HC05 microcontroller"; case EM_SVX: return "Silicon Graphics SVx"; case EM_ST19: return "STMicroelectronics ST19 8-bit mc"; case EM_VAX: return "Digital VAX"; case EM_CRIS: return "Axis Communications 32-bit embedded processor"; case EM_JAVELIN: return "Infineon Tech. 32bit embedded processor"; case EM_FIREPATH: return "Element 14 64-bit DSP Processor"; case EM_ZSP: return "LSI Logic 16-bit DSP Processor"; case EM_MMIX: return "Donald Knuth's educational 64-bit proc"; case EM_HUANY: return "Harvard University MI object files"; case EM_PRISM: return "SiTera Prism"; case EM_AVR: return "Atmel AVR 8-bit microcontroller"; case EM_FR30: return "Fujitsu FR30"; case EM_D10V: return "Mitsubishi D10V"; case EM_D30V: return "Mitsubishi D30V"; case EM_V850: return "NEC v850"; case EM_M32R: return "Mitsubishi M32R"; case EM_MN10300: return "Matsushita MN10300"; case EM_MN10200: return "Matsushita MN10200"; case EM_PJ: return "picoJava"; case EM_OPENRISC: return "OpenRISC 32-bit embedded processor"; case EM_ARC_A5: return "ARC Cores Tangent-A5"; case EM_XTENSA: return "Tensilica Xtensa Architecture"; case EM_VIDEOCORE: return "Alphamosaic VideoCore processor"; case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor"; case EM_NS32K: return "National Semiconductor 32000 series"; case EM_TPC: return "Tenor Network TPC processor"; case EM_SNP1K: return "Trebia SNP 1000 processor"; case EM_ST200: return "STMicroelectronics ST200 microcontroller"; case EM_IP2K: return "Ubicom IP2xxx microcontroller family"; case EM_MAX: return "MAX Processor"; case EM_CR: return "National Semiconductor CompactRISC microprocessor"; case EM_F2MC16: return "Fujitsu F2MC16"; case EM_MSP430: return "TI embedded microcontroller msp430"; case EM_BLACKFIN: return "Analog Devices Blackfin (DSP) processor"; case EM_SE_C33: return "S1C33 Family of Seiko Epson processors"; case EM_SEP: return "Sharp embedded microprocessor"; case EM_ARCA: return "Arca RISC Microprocessor"; case EM_UNICORE: return "Microprocessor series from PKU-Unity Ltd"; case EM_AARCH64: return "AArch64"; case EM_RISCV: return "RISC-V"; default: snprintf(s_mach, sizeof(s_mach), "", mach); return (s_mach); } } static const char * elf_class(unsigned int class) { static char s_class[32]; switch (class) { case ELFCLASSNONE: return "none"; case ELFCLASS32: return "ELF32"; case ELFCLASS64: return "ELF64"; default: snprintf(s_class, sizeof(s_class), "", class); return (s_class); } } static const char * elf_endian(unsigned int endian) { static char s_endian[32]; switch (endian) { case ELFDATANONE: return "none"; case ELFDATA2LSB: return "2's complement, little endian"; case ELFDATA2MSB: return "2's complement, big endian"; default: snprintf(s_endian, sizeof(s_endian), "", endian); return (s_endian); } } static const char * elf_type(unsigned int type) { static char s_type[32]; switch (type) { case ET_NONE: return "NONE (None)"; case ET_REL: return "REL (Relocatable file)"; case ET_EXEC: return "EXEC (Executable file)"; case ET_DYN: return "DYN (Shared object file)"; case ET_CORE: return "CORE (Core file)"; default: if (type >= ET_LOPROC) snprintf(s_type, sizeof(s_type), "", type); else if (type >= ET_LOOS && type <= ET_HIOS) snprintf(s_type, sizeof(s_type), "", type); else snprintf(s_type, sizeof(s_type), "", type); return (s_type); } } static const char * elf_ver(unsigned int ver) { static char s_ver[32]; switch (ver) { case EV_CURRENT: return "(current)"; case EV_NONE: return "(none)"; default: snprintf(s_ver, sizeof(s_ver), "", ver); return (s_ver); } } static const char * -phdr_type(unsigned int ptype) +phdr_type(unsigned int mach, unsigned int ptype) { static char s_ptype[32]; + if (ptype >= PT_LOPROC && ptype <= PT_HIPROC) { + switch (mach) { + case EM_ARM: + switch (ptype) { + case PT_ARM_ARCHEXT: return "ARM_ARCHEXT"; + case PT_ARM_EXIDX: return "ARM_EXIDX"; + } + break; + } + snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x", + ptype - PT_LOPROC); + return (s_ptype); + } + switch (ptype) { case PT_NULL: return "NULL"; case PT_LOAD: return "LOAD"; case PT_DYNAMIC: return "DYNAMIC"; case PT_INTERP: return "INTERP"; case PT_NOTE: return "NOTE"; case PT_SHLIB: return "SHLIB"; case PT_PHDR: return "PHDR"; case PT_TLS: return "TLS"; case PT_GNU_EH_FRAME: return "GNU_EH_FRAME"; case PT_GNU_STACK: return "GNU_STACK"; case PT_GNU_RELRO: return "GNU_RELRO"; default: - if (ptype >= PT_LOPROC && ptype <= PT_HIPROC) - snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x", - ptype - PT_LOPROC); - else if (ptype >= PT_LOOS && ptype <= PT_HIOS) + if (ptype >= PT_LOOS && ptype <= PT_HIOS) snprintf(s_ptype, sizeof(s_ptype), "LOOS+%#x", ptype - PT_LOOS); else snprintf(s_ptype, sizeof(s_ptype), "", ptype); return (s_ptype); } } static const char * section_type(unsigned int mach, unsigned int stype) { static char s_stype[32]; if (stype >= SHT_LOPROC && stype <= SHT_HIPROC) { switch (mach) { + case EM_ARM: + switch (stype) { + case SHT_ARM_EXIDX: return "ARM_EXIDX"; + case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP"; + case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES"; + case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY"; + case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION"; + } + break; case EM_X86_64: switch (stype) { case SHT_X86_64_UNWIND: return "X86_64_UNWIND"; default: break; } break; case EM_MIPS: case EM_MIPS_RS3_LE: switch (stype) { case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST"; case SHT_MIPS_MSYM: return "MIPS_MSYM"; case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT"; case SHT_MIPS_GPTAB: return "MIPS_GPTAB"; case SHT_MIPS_UCODE: return "MIPS_UCODE"; case SHT_MIPS_DEBUG: return "MIPS_DEBUG"; case SHT_MIPS_REGINFO: return "MIPS_REGINFO"; case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE"; case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM"; case SHT_MIPS_RELD: return "MIPS_RELD"; case SHT_MIPS_IFACE: return "MIPS_IFACE"; case SHT_MIPS_CONTENT: return "MIPS_CONTENT"; case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS"; case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM"; case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST"; case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS"; case SHT_MIPS_DWARF: return "MIPS_DWARF"; case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL"; case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB"; case SHT_MIPS_EVENTS: return "MIPS_EVENTS"; case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE"; case SHT_MIPS_PIXIE: return "MIPS_PIXIE"; case SHT_MIPS_XLATE: return "MIPS_XLATE"; case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG"; case SHT_MIPS_WHIRL: return "MIPS_WHIRL"; case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION"; case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD"; case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION"; default: break; } break; default: break; } snprintf(s_stype, sizeof(s_stype), "LOPROC+%#x", stype - SHT_LOPROC); return (s_stype); } switch (stype) { case SHT_NULL: return "NULL"; case SHT_PROGBITS: return "PROGBITS"; case SHT_SYMTAB: return "SYMTAB"; case SHT_STRTAB: return "STRTAB"; case SHT_RELA: return "RELA"; case SHT_HASH: return "HASH"; case SHT_DYNAMIC: return "DYNAMIC"; case SHT_NOTE: return "NOTE"; case SHT_NOBITS: return "NOBITS"; case SHT_REL: return "REL"; case SHT_SHLIB: return "SHLIB"; case SHT_DYNSYM: return "DYNSYM"; case SHT_INIT_ARRAY: return "INIT_ARRAY"; case SHT_FINI_ARRAY: return "FINI_ARRAY"; case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY"; case SHT_GROUP: return "GROUP"; case SHT_SYMTAB_SHNDX: return "SYMTAB_SHNDX"; case SHT_SUNW_dof: return "SUNW_dof"; case SHT_SUNW_cap: return "SUNW_cap"; case SHT_GNU_HASH: return "GNU_HASH"; case SHT_SUNW_ANNOTATE: return "SUNW_ANNOTATE"; case SHT_SUNW_DEBUGSTR: return "SUNW_DEBUGSTR"; case SHT_SUNW_DEBUG: return "SUNW_DEBUG"; case SHT_SUNW_move: return "SUNW_move"; case SHT_SUNW_COMDAT: return "SUNW_COMDAT"; case SHT_SUNW_syminfo: return "SUNW_syminfo"; case SHT_SUNW_verdef: return "SUNW_verdef"; case SHT_SUNW_verneed: return "SUNW_verneed"; case SHT_SUNW_versym: return "SUNW_versym"; default: if (stype >= SHT_LOOS && stype <= SHT_HIOS) snprintf(s_stype, sizeof(s_stype), "LOOS+%#x", stype - SHT_LOOS); else if (stype >= SHT_LOUSER) snprintf(s_stype, sizeof(s_stype), "LOUSER+%#x", stype - SHT_LOUSER); else snprintf(s_stype, sizeof(s_stype), "", stype); return (s_stype); } } static const char * dt_type(unsigned int mach, unsigned int dtype) { static char s_dtype[32]; if (dtype >= DT_LOPROC && dtype <= DT_HIPROC) { switch (mach) { case EM_ARM: switch (dtype) { case DT_ARM_SYMTABSZ: return "ARM_SYMTABSZ"; default: break; } break; case EM_MIPS: case EM_MIPS_RS3_LE: switch (dtype) { case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION"; case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP"; case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM"; case DT_MIPS_IVERSION: return "MIPS_IVERSION"; case DT_MIPS_FLAGS: return "MIPS_FLAGS"; case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS"; case DT_MIPS_CONFLICT: return "MIPS_CONFLICT"; case DT_MIPS_LIBLIST: return "MIPS_LIBLIST"; case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO"; case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO"; case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO"; case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO"; case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO"; case DT_MIPS_GOTSYM: return "MIPS_GOTSYM"; case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO"; case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP"; case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS"; case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO"; case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE"; case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO"; case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC"; case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO"; case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM"; case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO"; case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM"; case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO"; case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS"; case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT"; case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB"; case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX"; case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX"; case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX"; case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX"; case DT_MIPS_OPTIONS: return "MIPS_OPTIONS"; case DT_MIPS_INTERFACE: return "MIPS_INTERFACE"; case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN"; case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE"; case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR"; case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX"; case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE"; case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE"; case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC"; case DT_MIPS_PLTGOT: return "MIPS_PLTGOT"; case DT_MIPS_RLD_OBJ_UPDATE: return "MIPS_RLD_OBJ_UPDATE"; case DT_MIPS_RWPLT: return "MIPS_RWPLT"; default: break; } break; case EM_SPARC: case EM_SPARC32PLUS: case EM_SPARCV9: switch (dtype) { case DT_SPARC_REGISTER: return "DT_SPARC_REGISTER"; default: break; } break; default: break; } snprintf(s_dtype, sizeof(s_dtype), "", dtype); return (s_dtype); } switch (dtype) { case DT_NULL: return "NULL"; case DT_NEEDED: return "NEEDED"; case DT_PLTRELSZ: return "PLTRELSZ"; case DT_PLTGOT: return "PLTGOT"; case DT_HASH: return "HASH"; case DT_STRTAB: return "STRTAB"; case DT_SYMTAB: return "SYMTAB"; case DT_RELA: return "RELA"; case DT_RELASZ: return "RELASZ"; case DT_RELAENT: return "RELAENT"; case DT_STRSZ: return "STRSZ"; case DT_SYMENT: return "SYMENT"; case DT_INIT: return "INIT"; case DT_FINI: return "FINI"; case DT_SONAME: return "SONAME"; case DT_RPATH: return "RPATH"; case DT_SYMBOLIC: return "SYMBOLIC"; case DT_REL: return "REL"; case DT_RELSZ: return "RELSZ"; case DT_RELENT: return "RELENT"; case DT_PLTREL: return "PLTREL"; case DT_DEBUG: return "DEBUG"; case DT_TEXTREL: return "TEXTREL"; case DT_JMPREL: return "JMPREL"; case DT_BIND_NOW: return "BIND_NOW"; case DT_INIT_ARRAY: return "INIT_ARRAY"; case DT_FINI_ARRAY: return "FINI_ARRAY"; case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ"; case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ"; case DT_RUNPATH: return "RUNPATH"; case DT_FLAGS: return "FLAGS"; case DT_PREINIT_ARRAY: return "PREINIT_ARRAY"; case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ"; case DT_MAXPOSTAGS: return "MAXPOSTAGS"; case DT_SUNW_AUXILIARY: return "SUNW_AUXILIARY"; case DT_SUNW_RTLDINF: return "SUNW_RTLDINF"; case DT_SUNW_FILTER: return "SUNW_FILTER"; case DT_SUNW_CAP: return "SUNW_CAP"; case DT_CHECKSUM: return "CHECKSUM"; case DT_PLTPADSZ: return "PLTPADSZ"; case DT_MOVEENT: return "MOVEENT"; case DT_MOVESZ: return "MOVESZ"; case DT_FEATURE: return "FEATURE"; case DT_POSFLAG_1: return "POSFLAG_1"; case DT_SYMINSZ: return "SYMINSZ"; case DT_SYMINENT: return "SYMINENT"; case DT_GNU_HASH: return "GNU_HASH"; case DT_TLSDESC_PLT: return "DT_TLSDESC_PLT"; case DT_TLSDESC_GOT: return "DT_TLSDESC_GOT"; case DT_GNU_CONFLICT: return "GNU_CONFLICT"; case DT_GNU_LIBLIST: return "GNU_LIBLIST"; case DT_CONFIG: return "CONFIG"; case DT_DEPAUDIT: return "DEPAUDIT"; case DT_AUDIT: return "AUDIT"; case DT_PLTPAD: return "PLTPAD"; case DT_MOVETAB: return "MOVETAB"; case DT_SYMINFO: return "SYMINFO"; case DT_VERSYM: return "VERSYM"; case DT_RELACOUNT: return "RELACOUNT"; case DT_RELCOUNT: return "RELCOUNT"; case DT_FLAGS_1: return "FLAGS_1"; case DT_VERDEF: return "VERDEF"; case DT_VERDEFNUM: return "VERDEFNUM"; case DT_VERNEED: return "VERNEED"; case DT_VERNEEDNUM: return "VERNEEDNUM"; case DT_AUXILIARY: return "AUXILIARY"; case DT_USED: return "USED"; case DT_FILTER: return "FILTER"; case DT_GNU_PRELINKED: return "GNU_PRELINKED"; case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ"; case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ"; default: snprintf(s_dtype, sizeof(s_dtype), "", dtype); return (s_dtype); } } static const char * st_bind(unsigned int sbind) { static char s_sbind[32]; switch (sbind) { case STB_LOCAL: return "LOCAL"; case STB_GLOBAL: return "GLOBAL"; case STB_WEAK: return "WEAK"; case STB_GNU_UNIQUE: return "UNIQUE"; default: if (sbind >= STB_LOOS && sbind <= STB_HIOS) return "OS"; else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC) return "PROC"; else snprintf(s_sbind, sizeof(s_sbind), "", sbind); return (s_sbind); } } static const char * st_type(unsigned int mach, unsigned int os, unsigned int stype) { static char s_stype[32]; switch (stype) { case STT_NOTYPE: return "NOTYPE"; case STT_OBJECT: return "OBJECT"; case STT_FUNC: return "FUNC"; case STT_SECTION: return "SECTION"; case STT_FILE: return "FILE"; case STT_COMMON: return "COMMON"; case STT_TLS: return "TLS"; default: if (stype >= STT_LOOS && stype <= STT_HIOS) { if ((os == ELFOSABI_GNU || os == ELFOSABI_FREEBSD) && stype == STT_GNU_IFUNC) return "IFUNC"; snprintf(s_stype, sizeof(s_stype), "OS+%#x", stype - STT_LOOS); } else if (stype >= STT_LOPROC && stype <= STT_HIPROC) { if (mach == EM_SPARCV9 && stype == STT_SPARC_REGISTER) return "REGISTER"; snprintf(s_stype, sizeof(s_stype), "PROC+%#x", stype - STT_LOPROC); } else snprintf(s_stype, sizeof(s_stype), "", stype); return (s_stype); } } static const char * st_vis(unsigned int svis) { static char s_svis[32]; switch(svis) { case STV_DEFAULT: return "DEFAULT"; case STV_INTERNAL: return "INTERNAL"; case STV_HIDDEN: return "HIDDEN"; case STV_PROTECTED: return "PROTECTED"; default: snprintf(s_svis, sizeof(s_svis), "", svis); return (s_svis); } } static const char * st_shndx(unsigned int shndx) { static char s_shndx[32]; switch (shndx) { case SHN_UNDEF: return "UND"; case SHN_ABS: return "ABS"; case SHN_COMMON: return "COM"; default: if (shndx >= SHN_LOPROC && shndx <= SHN_HIPROC) return "PRC"; else if (shndx >= SHN_LOOS && shndx <= SHN_HIOS) return "OS"; else snprintf(s_shndx, sizeof(s_shndx), "%u", shndx); return (s_shndx); } } static struct { const char *ln; char sn; int value; } section_flag[] = { {"WRITE", 'W', SHF_WRITE}, {"ALLOC", 'A', SHF_ALLOC}, {"EXEC", 'X', SHF_EXECINSTR}, {"MERGE", 'M', SHF_MERGE}, {"STRINGS", 'S', SHF_STRINGS}, {"INFO LINK", 'I', SHF_INFO_LINK}, {"OS NONCONF", 'O', SHF_OS_NONCONFORMING}, {"GROUP", 'G', SHF_GROUP}, {"TLS", 'T', SHF_TLS}, {"COMPRESSED", 'C', SHF_COMPRESSED}, {NULL, 0, 0} }; static const char * note_type(const char *name, unsigned int et, unsigned int nt) { if ((strcmp(name, "CORE") == 0 || strcmp(name, "LINUX") == 0) && et == ET_CORE) return note_type_linux_core(nt); else if (strcmp(name, "FreeBSD") == 0) if (et == ET_CORE) return note_type_freebsd_core(nt); else return note_type_freebsd(nt); else if (strcmp(name, "GNU") == 0 && et != ET_CORE) return note_type_gnu(nt); else if (strcmp(name, "NetBSD") == 0 && et != ET_CORE) return note_type_netbsd(nt); else if (strcmp(name, "OpenBSD") == 0 && et != ET_CORE) return note_type_openbsd(nt); else if (strcmp(name, "Xen") == 0 && et != ET_CORE) return note_type_xen(nt); return note_type_unknown(nt); } static const char * note_type_freebsd(unsigned int nt) { switch (nt) { case 1: return "NT_FREEBSD_ABI_TAG"; case 2: return "NT_FREEBSD_NOINIT_TAG"; case 3: return "NT_FREEBSD_ARCH_TAG"; default: return (note_type_unknown(nt)); } } static const char * note_type_freebsd_core(unsigned int nt) { switch (nt) { case 1: return "NT_PRSTATUS"; case 2: return "NT_FPREGSET"; case 3: return "NT_PRPSINFO"; case 7: return "NT_THRMISC"; case 8: return "NT_PROCSTAT_PROC"; case 9: return "NT_PROCSTAT_FILES"; case 10: return "NT_PROCSTAT_VMMAP"; case 11: return "NT_PROCSTAT_GROUPS"; case 12: return "NT_PROCSTAT_UMASK"; case 13: return "NT_PROCSTAT_RLIMIT"; case 14: return "NT_PROCSTAT_OSREL"; case 15: return "NT_PROCSTAT_PSSTRINGS"; case 16: return "NT_PROCSTAT_AUXV"; case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; default: return (note_type_unknown(nt)); } } static const char * note_type_linux_core(unsigned int nt) { switch (nt) { case 1: return "NT_PRSTATUS (Process status)"; case 2: return "NT_FPREGSET (Floating point information)"; case 3: return "NT_PRPSINFO (Process information)"; case 4: return "NT_TASKSTRUCT (Task structure)"; case 6: return "NT_AUXV (Auxiliary vector)"; case 10: return "NT_PSTATUS (Linux process status)"; case 12: return "NT_FPREGS (Linux floating point regset)"; case 13: return "NT_PSINFO (Linux process information)"; case 16: return "NT_LWPSTATUS (Linux lwpstatus_t type)"; case 17: return "NT_LWPSINFO (Linux lwpinfo_t type)"; case 18: return "NT_WIN32PSTATUS (win32_pstatus structure)"; case 0x100: return "NT_PPC_VMX (ppc Altivec registers)"; case 0x102: return "NT_PPC_VSX (ppc VSX registers)"; case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; case 0x300: return "NT_S390_HIGH_GPRS (s390 upper register halves)"; case 0x301: return "NT_S390_TIMER (s390 timer register)"; case 0x302: return "NT_S390_TODCMP (s390 TOD comparator register)"; case 0x303: return "NT_S390_TODPREG (s390 TOD programmable register)"; case 0x304: return "NT_S390_CTRS (s390 control registers)"; case 0x305: return "NT_S390_PREFIX (s390 prefix register)"; case 0x400: return "NT_ARM_VFP (arm VFP registers)"; case 0x46494c45UL: return "NT_FILE (mapped files)"; case 0x46E62B7FUL: return "NT_PRXFPREG (Linux user_xfpregs structure)"; case 0x53494749UL: return "NT_SIGINFO (siginfo_t data)"; default: return (note_type_unknown(nt)); } } static const char * note_type_gnu(unsigned int nt) { switch (nt) { case 1: return "NT_GNU_ABI_TAG"; case 2: return "NT_GNU_HWCAP (Hardware capabilities)"; case 3: return "NT_GNU_BUILD_ID (Build id set by ld(1))"; case 4: return "NT_GNU_GOLD_VERSION (GNU gold version)"; default: return (note_type_unknown(nt)); } } static const char * note_type_netbsd(unsigned int nt) { switch (nt) { case 1: return "NT_NETBSD_IDENT"; default: return (note_type_unknown(nt)); } } static const char * note_type_openbsd(unsigned int nt) { switch (nt) { case 1: return "NT_OPENBSD_IDENT"; default: return (note_type_unknown(nt)); } } static const char * note_type_unknown(unsigned int nt) { static char s_nt[32]; snprintf(s_nt, sizeof(s_nt), nt >= 0x100 ? "" : "", nt); return (s_nt); } static const char * note_type_xen(unsigned int nt) { switch (nt) { case 0: return "XEN_ELFNOTE_INFO"; case 1: return "XEN_ELFNOTE_ENTRY"; case 2: return "XEN_ELFNOTE_HYPERCALL_PAGE"; case 3: return "XEN_ELFNOTE_VIRT_BASE"; case 4: return "XEN_ELFNOTE_PADDR_OFFSET"; case 5: return "XEN_ELFNOTE_XEN_VERSION"; case 6: return "XEN_ELFNOTE_GUEST_OS"; case 7: return "XEN_ELFNOTE_GUEST_VERSION"; case 8: return "XEN_ELFNOTE_LOADER"; case 9: return "XEN_ELFNOTE_PAE_MODE"; case 10: return "XEN_ELFNOTE_FEATURES"; case 11: return "XEN_ELFNOTE_BSD_SYMTAB"; case 12: return "XEN_ELFNOTE_HV_START_LOW"; case 13: return "XEN_ELFNOTE_L1_MFN_VALID"; case 14: return "XEN_ELFNOTE_SUSPEND_CANCEL"; case 15: return "XEN_ELFNOTE_INIT_P2M"; case 16: return "XEN_ELFNOTE_MOD_START_PFN"; case 17: return "XEN_ELFNOTE_SUPPORTED_FEATURES"; default: return (note_type_unknown(nt)); } } static struct { const char *name; int value; } l_flag[] = { {"EXACT_MATCH", LL_EXACT_MATCH}, {"IGNORE_INT_VER", LL_IGNORE_INT_VER}, {"REQUIRE_MINOR", LL_REQUIRE_MINOR}, {"EXPORTS", LL_EXPORTS}, {"DELAY_LOAD", LL_DELAY_LOAD}, {"DELTA", LL_DELTA}, {NULL, 0} }; static struct mips_option mips_exceptions_option[] = { {OEX_PAGE0, "PAGE0"}, {OEX_SMM, "SMM"}, {OEX_PRECISEFP, "PRECISEFP"}, {OEX_DISMISS, "DISMISS"}, {0, NULL} }; static struct mips_option mips_pad_option[] = { {OPAD_PREFIX, "PREFIX"}, {OPAD_POSTFIX, "POSTFIX"}, {OPAD_SYMBOL, "SYMBOL"}, {0, NULL} }; static struct mips_option mips_hwpatch_option[] = { {OHW_R4KEOP, "R4KEOP"}, {OHW_R8KPFETCH, "R8KPFETCH"}, {OHW_R5KEOP, "R5KEOP"}, {OHW_R5KCVTL, "R5KCVTL"}, {0, NULL} }; static struct mips_option mips_hwa_option[] = { {OHWA0_R4KEOP_CHECKED, "R4KEOP_CHECKED"}, {OHWA0_R4KEOP_CLEAN, "R4KEOP_CLEAN"}, {0, NULL} }; static struct mips_option mips_hwo_option[] = { {OHWO0_FIXADE, "FIXADE"}, {0, NULL} }; static const char * option_kind(uint8_t kind) { static char s_kind[32]; switch (kind) { case ODK_NULL: return "NULL"; case ODK_REGINFO: return "REGINFO"; case ODK_EXCEPTIONS: return "EXCEPTIONS"; case ODK_PAD: return "PAD"; case ODK_HWPATCH: return "HWPATCH"; case ODK_FILL: return "FILL"; case ODK_TAGS: return "TAGS"; case ODK_HWAND: return "HWAND"; case ODK_HWOR: return "HWOR"; case ODK_GP_GROUP: return "GP_GROUP"; case ODK_IDENT: return "IDENT"; default: snprintf(s_kind, sizeof(s_kind), "", kind); return (s_kind); } } static const char * top_tag(unsigned int tag) { static char s_top_tag[32]; switch (tag) { case 1: return "File Attributes"; case 2: return "Section Attributes"; case 3: return "Symbol Attributes"; default: snprintf(s_top_tag, sizeof(s_top_tag), "Unknown tag: %u", tag); return (s_top_tag); } } static const char * aeabi_cpu_arch(uint64_t arch) { static char s_cpu_arch[32]; switch (arch) { case 0: return "Pre-V4"; case 1: return "ARM v4"; case 2: return "ARM v4T"; case 3: return "ARM v5T"; case 4: return "ARM v5TE"; case 5: return "ARM v5TEJ"; case 6: return "ARM v6"; case 7: return "ARM v6KZ"; case 8: return "ARM v6T2"; case 9: return "ARM v6K"; case 10: return "ARM v7"; case 11: return "ARM v6-M"; case 12: return "ARM v6S-M"; case 13: return "ARM v7E-M"; default: snprintf(s_cpu_arch, sizeof(s_cpu_arch), "Unknown (%ju)", (uintmax_t) arch); return (s_cpu_arch); } } static const char * aeabi_cpu_arch_profile(uint64_t pf) { static char s_arch_profile[32]; switch (pf) { case 0: return "Not applicable"; case 0x41: /* 'A' */ return "Application Profile"; case 0x52: /* 'R' */ return "Real-Time Profile"; case 0x4D: /* 'M' */ return "Microcontroller Profile"; case 0x53: /* 'S' */ return "Application or Real-Time Profile"; default: snprintf(s_arch_profile, sizeof(s_arch_profile), "Unknown (%ju)\n", (uintmax_t) pf); return (s_arch_profile); } } static const char * aeabi_arm_isa(uint64_t ai) { static char s_ai[32]; switch (ai) { case 0: return "No"; case 1: return "Yes"; default: snprintf(s_ai, sizeof(s_ai), "Unknown (%ju)\n", (uintmax_t) ai); return (s_ai); } } static const char * aeabi_thumb_isa(uint64_t ti) { static char s_ti[32]; switch (ti) { case 0: return "No"; case 1: return "16-bit Thumb"; case 2: return "32-bit Thumb"; default: snprintf(s_ti, sizeof(s_ti), "Unknown (%ju)\n", (uintmax_t) ti); return (s_ti); } } static const char * aeabi_fp_arch(uint64_t fp) { static char s_fp_arch[32]; switch (fp) { case 0: return "No"; case 1: return "VFPv1"; case 2: return "VFPv2"; case 3: return "VFPv3"; case 4: return "VFPv3-D16"; case 5: return "VFPv4"; case 6: return "VFPv4-D16"; default: snprintf(s_fp_arch, sizeof(s_fp_arch), "Unknown (%ju)", (uintmax_t) fp); return (s_fp_arch); } } static const char * aeabi_wmmx_arch(uint64_t wmmx) { static char s_wmmx[32]; switch (wmmx) { case 0: return "No"; case 1: return "WMMXv1"; case 2: return "WMMXv2"; default: snprintf(s_wmmx, sizeof(s_wmmx), "Unknown (%ju)", (uintmax_t) wmmx); return (s_wmmx); } } static const char * aeabi_adv_simd_arch(uint64_t simd) { static char s_simd[32]; switch (simd) { case 0: return "No"; case 1: return "NEONv1"; case 2: return "NEONv2"; default: snprintf(s_simd, sizeof(s_simd), "Unknown (%ju)", (uintmax_t) simd); return (s_simd); } } static const char * aeabi_pcs_config(uint64_t pcs) { static char s_pcs[32]; switch (pcs) { case 0: return "None"; case 1: return "Bare platform"; case 2: return "Linux"; case 3: return "Linux DSO"; case 4: return "Palm OS 2004"; case 5: return "Palm OS (future)"; case 6: return "Symbian OS 2004"; case 7: return "Symbian OS (future)"; default: snprintf(s_pcs, sizeof(s_pcs), "Unknown (%ju)", (uintmax_t) pcs); return (s_pcs); } } static const char * aeabi_pcs_r9(uint64_t r9) { static char s_r9[32]; switch (r9) { case 0: return "V6"; case 1: return "SB"; case 2: return "TLS pointer"; case 3: return "Unused"; default: snprintf(s_r9, sizeof(s_r9), "Unknown (%ju)", (uintmax_t) r9); return (s_r9); } } static const char * aeabi_pcs_rw(uint64_t rw) { static char s_rw[32]; switch (rw) { case 0: return "Absolute"; case 1: return "PC-relative"; case 2: return "SB-relative"; case 3: return "None"; default: snprintf(s_rw, sizeof(s_rw), "Unknown (%ju)", (uintmax_t) rw); return (s_rw); } } static const char * aeabi_pcs_ro(uint64_t ro) { static char s_ro[32]; switch (ro) { case 0: return "Absolute"; case 1: return "PC-relative"; case 2: return "None"; default: snprintf(s_ro, sizeof(s_ro), "Unknown (%ju)", (uintmax_t) ro); return (s_ro); } } static const char * aeabi_pcs_got(uint64_t got) { static char s_got[32]; switch (got) { case 0: return "None"; case 1: return "direct"; case 2: return "indirect via GOT"; default: snprintf(s_got, sizeof(s_got), "Unknown (%ju)", (uintmax_t) got); return (s_got); } } static const char * aeabi_pcs_wchar_t(uint64_t wt) { static char s_wt[32]; switch (wt) { case 0: return "None"; case 2: return "wchar_t size 2"; case 4: return "wchar_t size 4"; default: snprintf(s_wt, sizeof(s_wt), "Unknown (%ju)", (uintmax_t) wt); return (s_wt); } } static const char * aeabi_enum_size(uint64_t es) { static char s_es[32]; switch (es) { case 0: return "None"; case 1: return "smallest"; case 2: return "32-bit"; case 3: return "visible 32-bit"; default: snprintf(s_es, sizeof(s_es), "Unknown (%ju)", (uintmax_t) es); return (s_es); } } static const char * aeabi_align_needed(uint64_t an) { static char s_align_n[64]; switch (an) { case 0: return "No"; case 1: return "8-byte align"; case 2: return "4-byte align"; case 3: return "Reserved"; default: if (an >= 4 && an <= 12) snprintf(s_align_n, sizeof(s_align_n), "8-byte align" " and up to 2^%ju-byte extended align", (uintmax_t) an); else snprintf(s_align_n, sizeof(s_align_n), "Unknown (%ju)", (uintmax_t) an); return (s_align_n); } } static const char * aeabi_align_preserved(uint64_t ap) { static char s_align_p[128]; switch (ap) { case 0: return "No"; case 1: return "8-byte align"; case 2: return "8-byte align and SP % 8 == 0"; case 3: return "Reserved"; default: if (ap >= 4 && ap <= 12) snprintf(s_align_p, sizeof(s_align_p), "8-byte align" " and SP %% 8 == 0 and up to 2^%ju-byte extended" " align", (uintmax_t) ap); else snprintf(s_align_p, sizeof(s_align_p), "Unknown (%ju)", (uintmax_t) ap); return (s_align_p); } } static const char * aeabi_fp_rounding(uint64_t fr) { static char s_fp_r[32]; switch (fr) { case 0: return "Unused"; case 1: return "Needed"; default: snprintf(s_fp_r, sizeof(s_fp_r), "Unknown (%ju)", (uintmax_t) fr); return (s_fp_r); } } static const char * aeabi_fp_denormal(uint64_t fd) { static char s_fp_d[32]; switch (fd) { case 0: return "Unused"; case 1: return "Needed"; case 2: return "Sign Only"; default: snprintf(s_fp_d, sizeof(s_fp_d), "Unknown (%ju)", (uintmax_t) fd); return (s_fp_d); } } static const char * aeabi_fp_exceptions(uint64_t fe) { static char s_fp_e[32]; switch (fe) { case 0: return "Unused"; case 1: return "Needed"; default: snprintf(s_fp_e, sizeof(s_fp_e), "Unknown (%ju)", (uintmax_t) fe); return (s_fp_e); } } static const char * aeabi_fp_user_exceptions(uint64_t fu) { static char s_fp_u[32]; switch (fu) { case 0: return "Unused"; case 1: return "Needed"; default: snprintf(s_fp_u, sizeof(s_fp_u), "Unknown (%ju)", (uintmax_t) fu); return (s_fp_u); } } static const char * aeabi_fp_number_model(uint64_t fn) { static char s_fp_n[32]; switch (fn) { case 0: return "Unused"; case 1: return "IEEE 754 normal"; case 2: return "RTABI"; case 3: return "IEEE 754"; default: snprintf(s_fp_n, sizeof(s_fp_n), "Unknown (%ju)", (uintmax_t) fn); return (s_fp_n); } } static const char * aeabi_fp_16bit_format(uint64_t fp16) { static char s_fp_16[64]; switch (fp16) { case 0: return "None"; case 1: return "IEEE 754"; case 2: return "VFPv3/Advanced SIMD (alternative format)"; default: snprintf(s_fp_16, sizeof(s_fp_16), "Unknown (%ju)", (uintmax_t) fp16); return (s_fp_16); } } static const char * aeabi_mpext(uint64_t mp) { static char s_mp[32]; switch (mp) { case 0: return "Not allowed"; case 1: return "Allowed"; default: snprintf(s_mp, sizeof(s_mp), "Unknown (%ju)", (uintmax_t) mp); return (s_mp); } } static const char * aeabi_div(uint64_t du) { static char s_du[32]; switch (du) { case 0: return "Yes (V7-R/V7-M)"; case 1: return "No"; case 2: return "Yes (V7-A)"; default: snprintf(s_du, sizeof(s_du), "Unknown (%ju)", (uintmax_t) du); return (s_du); } } static const char * aeabi_t2ee(uint64_t t2ee) { static char s_t2ee[32]; switch (t2ee) { case 0: return "Not allowed"; case 1: return "Allowed"; default: snprintf(s_t2ee, sizeof(s_t2ee), "Unknown(%ju)", (uintmax_t) t2ee); return (s_t2ee); } } static const char * aeabi_hardfp(uint64_t hfp) { static char s_hfp[32]; switch (hfp) { case 0: return "Tag_FP_arch"; case 1: return "only SP"; case 2: return "only DP"; case 3: return "both SP and DP"; default: snprintf(s_hfp, sizeof(s_hfp), "Unknown (%ju)", (uintmax_t) hfp); return (s_hfp); } } static const char * aeabi_vfp_args(uint64_t va) { static char s_va[32]; switch (va) { case 0: return "AAPCS (base variant)"; case 1: return "AAPCS (VFP variant)"; case 2: return "toolchain-specific"; default: snprintf(s_va, sizeof(s_va), "Unknown (%ju)", (uintmax_t) va); return (s_va); } } static const char * aeabi_wmmx_args(uint64_t wa) { static char s_wa[32]; switch (wa) { case 0: return "AAPCS (base variant)"; case 1: return "Intel WMMX"; case 2: return "toolchain-specific"; default: snprintf(s_wa, sizeof(s_wa), "Unknown(%ju)", (uintmax_t) wa); return (s_wa); } } static const char * aeabi_unaligned_access(uint64_t ua) { static char s_ua[32]; switch (ua) { case 0: return "Not allowed"; case 1: return "Allowed"; default: snprintf(s_ua, sizeof(s_ua), "Unknown(%ju)", (uintmax_t) ua); return (s_ua); } } static const char * aeabi_fp_hpext(uint64_t fh) { static char s_fh[32]; switch (fh) { case 0: return "Not allowed"; case 1: return "Allowed"; default: snprintf(s_fh, sizeof(s_fh), "Unknown(%ju)", (uintmax_t) fh); return (s_fh); } } static const char * aeabi_optm_goal(uint64_t og) { static char s_og[32]; switch (og) { case 0: return "None"; case 1: return "Speed"; case 2: return "Speed aggressive"; case 3: return "Space"; case 4: return "Space aggressive"; case 5: return "Debugging"; case 6: return "Best Debugging"; default: snprintf(s_og, sizeof(s_og), "Unknown(%ju)", (uintmax_t) og); return (s_og); } } static const char * aeabi_fp_optm_goal(uint64_t fog) { static char s_fog[32]; switch (fog) { case 0: return "None"; case 1: return "Speed"; case 2: return "Speed aggressive"; case 3: return "Space"; case 4: return "Space aggressive"; case 5: return "Accurary"; case 6: return "Best Accurary"; default: snprintf(s_fog, sizeof(s_fog), "Unknown(%ju)", (uintmax_t) fog); return (s_fog); } } static const char * aeabi_virtual(uint64_t vt) { static char s_virtual[64]; switch (vt) { case 0: return "No"; case 1: return "TrustZone"; case 2: return "Virtualization extension"; case 3: return "TrustZone and virtualization extension"; default: snprintf(s_virtual, sizeof(s_virtual), "Unknown(%ju)", (uintmax_t) vt); return (s_virtual); } } static struct { uint64_t tag; const char *s_tag; const char *(*get_desc)(uint64_t val); } aeabi_tags[] = { {4, "Tag_CPU_raw_name", NULL}, {5, "Tag_CPU_name", NULL}, {6, "Tag_CPU_arch", aeabi_cpu_arch}, {7, "Tag_CPU_arch_profile", aeabi_cpu_arch_profile}, {8, "Tag_ARM_ISA_use", aeabi_arm_isa}, {9, "Tag_THUMB_ISA_use", aeabi_thumb_isa}, {10, "Tag_FP_arch", aeabi_fp_arch}, {11, "Tag_WMMX_arch", aeabi_wmmx_arch}, {12, "Tag_Advanced_SIMD_arch", aeabi_adv_simd_arch}, {13, "Tag_PCS_config", aeabi_pcs_config}, {14, "Tag_ABI_PCS_R9_use", aeabi_pcs_r9}, {15, "Tag_ABI_PCS_RW_data", aeabi_pcs_rw}, {16, "Tag_ABI_PCS_RO_data", aeabi_pcs_ro}, {17, "Tag_ABI_PCS_GOT_use", aeabi_pcs_got}, {18, "Tag_ABI_PCS_wchar_t", aeabi_pcs_wchar_t}, {19, "Tag_ABI_FP_rounding", aeabi_fp_rounding}, {20, "Tag_ABI_FP_denormal", aeabi_fp_denormal}, {21, "Tag_ABI_FP_exceptions", aeabi_fp_exceptions}, {22, "Tag_ABI_FP_user_exceptions", aeabi_fp_user_exceptions}, {23, "Tag_ABI_FP_number_model", aeabi_fp_number_model}, {24, "Tag_ABI_align_needed", aeabi_align_needed}, {25, "Tag_ABI_align_preserved", aeabi_align_preserved}, {26, "Tag_ABI_enum_size", aeabi_enum_size}, {27, "Tag_ABI_HardFP_use", aeabi_hardfp}, {28, "Tag_ABI_VFP_args", aeabi_vfp_args}, {29, "Tag_ABI_WMMX_args", aeabi_wmmx_args}, {30, "Tag_ABI_optimization_goals", aeabi_optm_goal}, {31, "Tag_ABI_FP_optimization_goals", aeabi_fp_optm_goal}, {32, "Tag_compatibility", NULL}, {34, "Tag_CPU_unaligned_access", aeabi_unaligned_access}, {36, "Tag_FP_HP_extension", aeabi_fp_hpext}, {38, "Tag_ABI_FP_16bit_format", aeabi_fp_16bit_format}, {42, "Tag_MPextension_use", aeabi_mpext}, {44, "Tag_DIV_use", aeabi_div}, {64, "Tag_nodefaults", NULL}, {65, "Tag_also_compatible_with", NULL}, {66, "Tag_T2EE_use", aeabi_t2ee}, {67, "Tag_conformance", NULL}, {68, "Tag_Virtualization_use", aeabi_virtual}, {70, "Tag_MPextension_use", aeabi_mpext}, }; static const char * mips_abi_fp(uint64_t fp) { static char s_mips_abi_fp[64]; switch (fp) { case 0: return "N/A"; case 1: return "Hard float (double precision)"; case 2: return "Hard float (single precision)"; case 3: return "Soft float"; case 4: return "64-bit float (-mips32r2 -mfp64)"; default: snprintf(s_mips_abi_fp, sizeof(s_mips_abi_fp), "Unknown(%ju)", (uintmax_t) fp); return (s_mips_abi_fp); } } static const char * ppc_abi_fp(uint64_t fp) { static char s_ppc_abi_fp[64]; switch (fp) { case 0: return "N/A"; case 1: return "Hard float (double precision)"; case 2: return "Soft float"; case 3: return "Hard float (single precision)"; default: snprintf(s_ppc_abi_fp, sizeof(s_ppc_abi_fp), "Unknown(%ju)", (uintmax_t) fp); return (s_ppc_abi_fp); } } static const char * ppc_abi_vector(uint64_t vec) { static char s_vec[64]; switch (vec) { case 0: return "N/A"; case 1: return "Generic purpose registers"; case 2: return "AltiVec registers"; case 3: return "SPE registers"; default: snprintf(s_vec, sizeof(s_vec), "Unknown(%ju)", (uintmax_t) vec); return (s_vec); } } static const char * dwarf_reg(unsigned int mach, unsigned int reg) { switch (mach) { case EM_386: case EM_IAMCU: switch (reg) { case 0: return "eax"; case 1: return "ecx"; case 2: return "edx"; case 3: return "ebx"; case 4: return "esp"; case 5: return "ebp"; case 6: return "esi"; case 7: return "edi"; case 8: return "eip"; case 9: return "eflags"; case 11: return "st0"; case 12: return "st1"; case 13: return "st2"; case 14: return "st3"; case 15: return "st4"; case 16: return "st5"; case 17: return "st6"; case 18: return "st7"; case 21: return "xmm0"; case 22: return "xmm1"; case 23: return "xmm2"; case 24: return "xmm3"; case 25: return "xmm4"; case 26: return "xmm5"; case 27: return "xmm6"; case 28: return "xmm7"; case 29: return "mm0"; case 30: return "mm1"; case 31: return "mm2"; case 32: return "mm3"; case 33: return "mm4"; case 34: return "mm5"; case 35: return "mm6"; case 36: return "mm7"; case 37: return "fcw"; case 38: return "fsw"; case 39: return "mxcsr"; case 40: return "es"; case 41: return "cs"; case 42: return "ss"; case 43: return "ds"; case 44: return "fs"; case 45: return "gs"; case 48: return "tr"; case 49: return "ldtr"; default: return (NULL); } case EM_X86_64: switch (reg) { case 0: return "rax"; case 1: return "rdx"; case 2: return "rcx"; case 3: return "rbx"; case 4: return "rsi"; case 5: return "rdi"; case 6: return "rbp"; case 7: return "rsp"; case 16: return "rip"; case 17: return "xmm0"; case 18: return "xmm1"; case 19: return "xmm2"; case 20: return "xmm3"; case 21: return "xmm4"; case 22: return "xmm5"; case 23: return "xmm6"; case 24: return "xmm7"; case 25: return "xmm8"; case 26: return "xmm9"; case 27: return "xmm10"; case 28: return "xmm11"; case 29: return "xmm12"; case 30: return "xmm13"; case 31: return "xmm14"; case 32: return "xmm15"; case 33: return "st0"; case 34: return "st1"; case 35: return "st2"; case 36: return "st3"; case 37: return "st4"; case 38: return "st5"; case 39: return "st6"; case 40: return "st7"; case 41: return "mm0"; case 42: return "mm1"; case 43: return "mm2"; case 44: return "mm3"; case 45: return "mm4"; case 46: return "mm5"; case 47: return "mm6"; case 48: return "mm7"; case 49: return "rflags"; case 50: return "es"; case 51: return "cs"; case 52: return "ss"; case 53: return "ds"; case 54: return "fs"; case 55: return "gs"; case 58: return "fs.base"; case 59: return "gs.base"; case 62: return "tr"; case 63: return "ldtr"; case 64: return "mxcsr"; case 65: return "fcw"; case 66: return "fsw"; default: return (NULL); } default: return (NULL); } } static void dump_ehdr(struct readelf *re) { size_t shnum, shstrndx; int i; printf("ELF Header:\n"); /* e_ident[]. */ printf(" Magic: "); for (i = 0; i < EI_NIDENT; i++) printf("%.2x ", re->ehdr.e_ident[i]); putchar('\n'); /* EI_CLASS. */ printf("%-37s%s\n", " Class:", elf_class(re->ehdr.e_ident[EI_CLASS])); /* EI_DATA. */ printf("%-37s%s\n", " Data:", elf_endian(re->ehdr.e_ident[EI_DATA])); /* EI_VERSION. */ printf("%-37s%d %s\n", " Version:", re->ehdr.e_ident[EI_VERSION], elf_ver(re->ehdr.e_ident[EI_VERSION])); /* EI_OSABI. */ printf("%-37s%s\n", " OS/ABI:", elf_osabi(re->ehdr.e_ident[EI_OSABI])); /* EI_ABIVERSION. */ printf("%-37s%d\n", " ABI Version:", re->ehdr.e_ident[EI_ABIVERSION]); /* e_type. */ printf("%-37s%s\n", " Type:", elf_type(re->ehdr.e_type)); /* e_machine. */ printf("%-37s%s\n", " Machine:", elf_machine(re->ehdr.e_machine)); /* e_version. */ printf("%-37s%#x\n", " Version:", re->ehdr.e_version); /* e_entry. */ printf("%-37s%#jx\n", " Entry point address:", (uintmax_t)re->ehdr.e_entry); /* e_phoff. */ printf("%-37s%ju (bytes into file)\n", " Start of program headers:", (uintmax_t)re->ehdr.e_phoff); /* e_shoff. */ printf("%-37s%ju (bytes into file)\n", " Start of section headers:", (uintmax_t)re->ehdr.e_shoff); /* e_flags. */ printf("%-37s%#x", " Flags:", re->ehdr.e_flags); dump_eflags(re, re->ehdr.e_flags); putchar('\n'); /* e_ehsize. */ printf("%-37s%u (bytes)\n", " Size of this header:", re->ehdr.e_ehsize); /* e_phentsize. */ printf("%-37s%u (bytes)\n", " Size of program headers:", re->ehdr.e_phentsize); /* e_phnum. */ printf("%-37s%u\n", " Number of program headers:", re->ehdr.e_phnum); /* e_shentsize. */ printf("%-37s%u (bytes)\n", " Size of section headers:", re->ehdr.e_shentsize); /* e_shnum. */ printf("%-37s%u", " Number of section headers:", re->ehdr.e_shnum); if (re->ehdr.e_shnum == SHN_UNDEF) { /* Extended section numbering is in use. */ if (elf_getshnum(re->elf, &shnum)) printf(" (%ju)", (uintmax_t)shnum); } putchar('\n'); /* e_shstrndx. */ printf("%-37s%u", " Section header string table index:", re->ehdr.e_shstrndx); if (re->ehdr.e_shstrndx == SHN_XINDEX) { /* Extended section numbering is in use. */ if (elf_getshstrndx(re->elf, &shstrndx)) printf(" (%ju)", (uintmax_t)shstrndx); } putchar('\n'); } static void dump_eflags(struct readelf *re, uint64_t e_flags) { struct eflags_desc *edesc; int arm_eabi; edesc = NULL; switch (re->ehdr.e_machine) { case EM_ARM: arm_eabi = (e_flags & EF_ARM_EABIMASK) >> 24; if (arm_eabi == 0) printf(", GNU EABI"); else if (arm_eabi <= 5) printf(", Version%d EABI", arm_eabi); edesc = arm_eflags_desc; break; case EM_MIPS: case EM_MIPS_RS3_LE: switch ((e_flags & EF_MIPS_ARCH) >> 28) { case 0: printf(", mips1"); break; case 1: printf(", mips2"); break; case 2: printf(", mips3"); break; case 3: printf(", mips4"); break; case 4: printf(", mips5"); break; case 5: printf(", mips32"); break; case 6: printf(", mips64"); break; case 7: printf(", mips32r2"); break; case 8: printf(", mips64r2"); break; default: break; } switch ((e_flags & 0x00FF0000) >> 16) { case 0x81: printf(", 3900"); break; case 0x82: printf(", 4010"); break; case 0x83: printf(", 4100"); break; case 0x85: printf(", 4650"); break; case 0x87: printf(", 4120"); break; case 0x88: printf(", 4111"); break; case 0x8a: printf(", sb1"); break; case 0x8b: printf(", octeon"); break; case 0x8c: printf(", xlr"); break; case 0x91: printf(", 5400"); break; case 0x98: printf(", 5500"); break; case 0x99: printf(", 9000"); break; case 0xa0: printf(", loongson-2e"); break; case 0xa1: printf(", loongson-2f"); break; default: break; } switch ((e_flags & 0x0000F000) >> 12) { case 1: printf(", o32"); break; case 2: printf(", o64"); break; case 3: printf(", eabi32"); break; case 4: printf(", eabi64"); break; default: break; } edesc = mips_eflags_desc; break; case EM_PPC: case EM_PPC64: edesc = powerpc_eflags_desc; break; case EM_SPARC: case EM_SPARC32PLUS: case EM_SPARCV9: switch ((e_flags & EF_SPARCV9_MM)) { case EF_SPARCV9_TSO: printf(", tso"); break; case EF_SPARCV9_PSO: printf(", pso"); break; case EF_SPARCV9_MM: printf(", rmo"); break; default: break; } edesc = sparc_eflags_desc; break; default: break; } if (edesc != NULL) { while (edesc->desc != NULL) { if (e_flags & edesc->flag) printf(", %s", edesc->desc); edesc++; } } } static void dump_phdr(struct readelf *re) { const char *rawfile; GElf_Phdr phdr; size_t phnum, size; int i, j; #define PH_HDR "Type", "Offset", "VirtAddr", "PhysAddr", "FileSiz", \ "MemSiz", "Flg", "Align" -#define PH_CT phdr_type(phdr.p_type), (uintmax_t)phdr.p_offset, \ - (uintmax_t)phdr.p_vaddr, (uintmax_t)phdr.p_paddr, \ - (uintmax_t)phdr.p_filesz, (uintmax_t)phdr.p_memsz, \ +#define PH_CT phdr_type(re->ehdr.e_machine, phdr.p_type), \ + (uintmax_t)phdr.p_offset, (uintmax_t)phdr.p_vaddr, \ + (uintmax_t)phdr.p_paddr, (uintmax_t)phdr.p_filesz, \ + (uintmax_t)phdr.p_memsz, \ phdr.p_flags & PF_R ? 'R' : ' ', \ phdr.p_flags & PF_W ? 'W' : ' ', \ phdr.p_flags & PF_X ? 'E' : ' ', \ (uintmax_t)phdr.p_align if (elf_getphnum(re->elf, &phnum) == 0) { warnx("elf_getphnum failed: %s", elf_errmsg(-1)); return; } if (phnum == 0) { printf("\nThere are no program headers in this file.\n"); return; } printf("\nElf file type is %s", elf_type(re->ehdr.e_type)); printf("\nEntry point 0x%jx\n", (uintmax_t)re->ehdr.e_entry); printf("There are %ju program headers, starting at offset %ju\n", (uintmax_t)phnum, (uintmax_t)re->ehdr.e_phoff); /* Dump program headers. */ printf("\nProgram Headers:\n"); if (re->ec == ELFCLASS32) printf(" %-15s%-9s%-11s%-11s%-8s%-8s%-4s%s\n", PH_HDR); else if (re->options & RE_WW) printf(" %-15s%-9s%-19s%-19s%-9s%-9s%-4s%s\n", PH_HDR); else printf(" %-15s%-19s%-19s%s\n %-19s%-20s" "%-7s%s\n", PH_HDR); for (i = 0; (size_t) i < phnum; i++) { if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); continue; } /* TODO: Add arch-specific segment type dump. */ if (re->ec == ELFCLASS32) printf(" %-14.14s 0x%6.6jx 0x%8.8jx 0x%8.8jx " "0x%5.5jx 0x%5.5jx %c%c%c %#jx\n", PH_CT); else if (re->options & RE_WW) printf(" %-14.14s 0x%6.6jx 0x%16.16jx 0x%16.16jx " "0x%6.6jx 0x%6.6jx %c%c%c %#jx\n", PH_CT); else printf(" %-14.14s 0x%16.16jx 0x%16.16jx 0x%16.16jx\n" " 0x%16.16jx 0x%16.16jx %c%c%c" " %#jx\n", PH_CT); if (phdr.p_type == PT_INTERP) { if ((rawfile = elf_rawfile(re->elf, &size)) == NULL) { warnx("elf_rawfile failed: %s", elf_errmsg(-1)); continue; } if (phdr.p_offset >= size) { warnx("invalid program header offset"); continue; } printf(" [Requesting program interpreter: %s]\n", rawfile + phdr.p_offset); } } /* Dump section to segment mapping. */ if (re->shnum == 0) return; printf("\n Section to Segment mapping:\n"); printf(" Segment Sections...\n"); for (i = 0; (size_t)i < phnum; i++) { if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); continue; } printf(" %2.2d ", i); /* skip NULL section. */ for (j = 1; (size_t)j < re->shnum; j++) if (re->sl[j].addr >= phdr.p_vaddr && re->sl[j].addr + re->sl[j].sz <= phdr.p_vaddr + phdr.p_memsz) printf("%s ", re->sl[j].name); printf("\n"); } #undef PH_HDR #undef PH_CT } static char * section_flags(struct readelf *re, struct section *s) { #define BUF_SZ 256 static char buf[BUF_SZ]; int i, p, nb; p = 0; nb = re->ec == ELFCLASS32 ? 8 : 16; if (re->options & RE_T) { snprintf(buf, BUF_SZ, "[%*.*jx]: ", nb, nb, (uintmax_t)s->flags); p += nb + 4; } for (i = 0; section_flag[i].ln != NULL; i++) { if ((s->flags & section_flag[i].value) == 0) continue; if (re->options & RE_T) { snprintf(&buf[p], BUF_SZ - p, "%s, ", section_flag[i].ln); p += strlen(section_flag[i].ln) + 2; } else buf[p++] = section_flag[i].sn; } if (re->options & RE_T && p > nb + 4) p -= 2; buf[p] = '\0'; return (buf); } static void dump_shdr(struct readelf *re) { struct section *s; int i; #define S_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ "Flg", "Lk", "Inf", "Al" #define S_HDRL "[Nr] Name", "Type", "Address", "Offset", "Size", \ "EntSize", "Flags", "Link", "Info", "Align" #define ST_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ "Lk", "Inf", "Al", "Flags" #define ST_HDRL "[Nr] Name", "Type", "Address", "Offset", "Link", \ "Size", "EntSize", "Info", "Align", "Flags" #define S_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ (uintmax_t)s->entsize, section_flags(re, s), \ s->link, s->info, (uintmax_t)s->align #define ST_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ (uintmax_t)s->entsize, s->link, s->info, \ (uintmax_t)s->align, section_flags(re, s) #define ST_CTL i, s->name, section_type(re->ehdr.e_machine, s->type), \ (uintmax_t)s->addr, (uintmax_t)s->off, s->link, \ (uintmax_t)s->sz, (uintmax_t)s->entsize, s->info, \ (uintmax_t)s->align, section_flags(re, s) if (re->shnum == 0) { printf("\nThere are no sections in this file.\n"); return; } printf("There are %ju section headers, starting at offset 0x%jx:\n", (uintmax_t)re->shnum, (uintmax_t)re->ehdr.e_shoff); printf("\nSection Headers:\n"); if (re->ec == ELFCLASS32) { if (re->options & RE_T) printf(" %s\n %-16s%-9s%-7s%-7s%-5s%-3s%-4s%s\n" "%12s\n", ST_HDR); else printf(" %-23s%-16s%-9s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", S_HDR); } else if (re->options & RE_WW) { if (re->options & RE_T) printf(" %s\n %-16s%-17s%-7s%-7s%-5s%-3s%-4s%s\n" "%12s\n", ST_HDR); else printf(" %-23s%-16s%-17s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", S_HDR); } else { if (re->options & RE_T) printf(" %s\n %-18s%-17s%-18s%s\n %-18s" "%-17s%-18s%s\n%12s\n", ST_HDRL); else printf(" %-23s%-17s%-18s%s\n %-18s%-17s%-7s%" "-6s%-6s%s\n", S_HDRL); } for (i = 0; (size_t)i < re->shnum; i++) { s = &re->sl[i]; if (re->ec == ELFCLASS32) { if (re->options & RE_T) printf(" [%2d] %s\n %-15.15s %8.8jx" " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" " %s\n", ST_CT); else printf(" [%2d] %-17.17s %-15.15s %8.8jx" " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", S_CT); } else if (re->options & RE_WW) { if (re->options & RE_T) printf(" [%2d] %s\n %-15.15s %16.16jx" " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" " %s\n", ST_CT); else printf(" [%2d] %-17.17s %-15.15s %16.16jx" " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", S_CT); } else { if (re->options & RE_T) printf(" [%2d] %s\n %-15.15s %16.16jx" " %16.16jx %u\n %16.16jx %16.16jx" " %-16u %ju\n %s\n", ST_CTL); else printf(" [%2d] %-17.17s %-15.15s %16.16jx" " %8.8jx\n %16.16jx %16.16jx " "%3s %2u %3u %ju\n", S_CT); } } if ((re->options & RE_T) == 0) printf("Key to Flags:\n W (write), A (alloc)," " X (execute), M (merge), S (strings)\n" " I (info), L (link order), G (group), x (unknown)\n" " O (extra OS processing required)" " o (OS specific), p (processor specific)\n"); #undef S_HDR #undef S_HDRL #undef ST_HDR #undef ST_HDRL #undef S_CT #undef ST_CT #undef ST_CTL } /* * Return number of entries in the given section. We'd prefer ent_count be a * size_t *, but libelf APIs already use int for section indices. */ static int get_ent_count(struct section *s, int *ent_count) { if (s->entsize == 0) { warnx("section %s has entry size 0", s->name); return (0); } else if (s->sz / s->entsize > INT_MAX) { warnx("section %s has invalid section count", s->name); return (0); } *ent_count = (int)(s->sz / s->entsize); return (1); } static void dump_dynamic(struct readelf *re) { GElf_Dyn dyn; Elf_Data *d; struct section *s; int elferr, i, is_dynamic, j, jmax, nentries; is_dynamic = 0; for (i = 0; (size_t)i < re->shnum; i++) { s = &re->sl[i]; if (s->type != SHT_DYNAMIC) continue; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(-1)); continue; } if (d->d_size <= 0) continue; is_dynamic = 1; /* Determine the actual number of table entries. */ nentries = 0; if (!get_ent_count(s, &jmax)) continue; for (j = 0; j < jmax; j++) { if (gelf_getdyn(d, j, &dyn) != &dyn) { warnx("gelf_getdyn failed: %s", elf_errmsg(-1)); continue; } nentries ++; if (dyn.d_tag == DT_NULL) break; } printf("\nDynamic section at offset 0x%jx", (uintmax_t)s->off); printf(" contains %u entries:\n", nentries); if (re->ec == ELFCLASS32) printf("%5s%12s%28s\n", "Tag", "Type", "Name/Value"); else printf("%5s%20s%28s\n", "Tag", "Type", "Name/Value"); for (j = 0; j < nentries; j++) { if (gelf_getdyn(d, j, &dyn) != &dyn) continue; /* Dump dynamic entry type. */ if (re->ec == ELFCLASS32) printf(" 0x%8.8jx", (uintmax_t)dyn.d_tag); else printf(" 0x%16.16jx", (uintmax_t)dyn.d_tag); printf(" %-20s", dt_type(re->ehdr.e_machine, dyn.d_tag)); /* Dump dynamic entry value. */ dump_dyn_val(re, &dyn, s->link); } } if (!is_dynamic) printf("\nThere is no dynamic section in this file.\n"); } static char * timestamp(time_t ti) { static char ts[32]; struct tm *t; t = gmtime(&ti); snprintf(ts, sizeof(ts), "%04d-%02d-%02dT%02d:%02d:%02d", t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec); return (ts); } static const char * dyn_str(struct readelf *re, uint32_t stab, uint64_t d_val) { const char *name; if (stab == SHN_UNDEF) name = "ERROR"; else if ((name = elf_strptr(re->elf, stab, d_val)) == NULL) { (void) elf_errno(); /* clear error */ name = "ERROR"; } return (name); } static void dump_arch_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) { const char *name; switch (re->ehdr.e_machine) { case EM_MIPS: case EM_MIPS_RS3_LE: switch (dyn->d_tag) { case DT_MIPS_RLD_VERSION: case DT_MIPS_LOCAL_GOTNO: case DT_MIPS_CONFLICTNO: case DT_MIPS_LIBLISTNO: case DT_MIPS_SYMTABNO: case DT_MIPS_UNREFEXTNO: case DT_MIPS_GOTSYM: case DT_MIPS_HIPAGENO: case DT_MIPS_DELTA_CLASS_NO: case DT_MIPS_DELTA_INSTANCE_NO: case DT_MIPS_DELTA_RELOC_NO: case DT_MIPS_DELTA_SYM_NO: case DT_MIPS_DELTA_CLASSSYM_NO: case DT_MIPS_LOCALPAGE_GOTIDX: case DT_MIPS_LOCAL_GOTIDX: case DT_MIPS_HIDDEN_GOTIDX: case DT_MIPS_PROTECTED_GOTIDX: printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); break; case DT_MIPS_ICHECKSUM: case DT_MIPS_FLAGS: case DT_MIPS_BASE_ADDRESS: case DT_MIPS_CONFLICT: case DT_MIPS_LIBLIST: case DT_MIPS_RLD_MAP: case DT_MIPS_DELTA_CLASS: case DT_MIPS_DELTA_INSTANCE: case DT_MIPS_DELTA_RELOC: case DT_MIPS_DELTA_SYM: case DT_MIPS_DELTA_CLASSSYM: case DT_MIPS_CXX_FLAGS: case DT_MIPS_PIXIE_INIT: case DT_MIPS_SYMBOL_LIB: case DT_MIPS_OPTIONS: case DT_MIPS_INTERFACE: case DT_MIPS_DYNSTR_ALIGN: case DT_MIPS_INTERFACE_SIZE: case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: case DT_MIPS_COMPACT_SIZE: case DT_MIPS_GP_VALUE: case DT_MIPS_AUX_DYNAMIC: case DT_MIPS_PLTGOT: case DT_MIPS_RLD_OBJ_UPDATE: case DT_MIPS_RWPLT: printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); break; case DT_MIPS_IVERSION: case DT_MIPS_PERF_SUFFIX: case DT_AUXILIARY: case DT_FILTER: name = dyn_str(re, stab, dyn->d_un.d_val); printf(" %s\n", name); break; case DT_MIPS_TIME_STAMP: printf(" %s\n", timestamp(dyn->d_un.d_val)); break; } break; default: printf("\n"); break; } } static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) { const char *name; if (dyn->d_tag >= DT_LOPROC && dyn->d_tag <= DT_HIPROC) { dump_arch_dyn_val(re, dyn, stab); return; } /* These entry values are index into the string table. */ name = NULL; if (dyn->d_tag == DT_NEEDED || dyn->d_tag == DT_SONAME || dyn->d_tag == DT_RPATH || dyn->d_tag == DT_RUNPATH) name = dyn_str(re, stab, dyn->d_un.d_val); switch(dyn->d_tag) { case DT_NULL: case DT_PLTGOT: case DT_HASH: case DT_STRTAB: case DT_SYMTAB: case DT_RELA: case DT_INIT: case DT_SYMBOLIC: case DT_REL: case DT_DEBUG: case DT_TEXTREL: case DT_JMPREL: case DT_FINI: case DT_VERDEF: case DT_VERNEED: case DT_VERSYM: case DT_GNU_HASH: case DT_GNU_LIBLIST: case DT_GNU_CONFLICT: printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); break; case DT_PLTRELSZ: case DT_RELASZ: case DT_RELAENT: case DT_STRSZ: case DT_SYMENT: case DT_RELSZ: case DT_RELENT: case DT_INIT_ARRAYSZ: case DT_FINI_ARRAYSZ: case DT_GNU_CONFLICTSZ: case DT_GNU_LIBLISTSZ: printf(" %ju (bytes)\n", (uintmax_t) dyn->d_un.d_val); break; case DT_RELACOUNT: case DT_RELCOUNT: case DT_VERDEFNUM: case DT_VERNEEDNUM: printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); break; case DT_NEEDED: printf(" Shared library: [%s]\n", name); break; case DT_SONAME: printf(" Library soname: [%s]\n", name); break; case DT_RPATH: printf(" Library rpath: [%s]\n", name); break; case DT_RUNPATH: printf(" Library runpath: [%s]\n", name); break; case DT_PLTREL: printf(" %s\n", dt_type(re->ehdr.e_machine, dyn->d_un.d_val)); break; case DT_GNU_PRELINKED: printf(" %s\n", timestamp(dyn->d_un.d_val)); break; default: printf("\n"); } } static void dump_rel(struct readelf *re, struct section *s, Elf_Data *d) { GElf_Rel r; const char *symname; uint64_t symval; int i, len; + uint32_t type; + uint8_t type2, type3; if (s->link >= re->shnum) return; #define REL_HDR "r_offset", "r_info", "r_type", "st_value", "st_name" #define REL_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ elftc_reloc_type_str(re->ehdr.e_machine, \ ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname #define REL_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ - elftc_reloc_type_str(re->ehdr.e_machine, \ - ELF64_R_TYPE(r.r_info)), (uintmax_t)symval, symname + elftc_reloc_type_str(re->ehdr.e_machine, type), \ + (uintmax_t)symval, symname printf("\nRelocation section (%s):\n", s->name); if (re->ec == ELFCLASS32) printf("%-8s %-8s %-19s %-8s %s\n", REL_HDR); else { if (re->options & RE_WW) printf("%-16s %-16s %-24s %-16s %s\n", REL_HDR); else printf("%-12s %-12s %-19s %-16s %s\n", REL_HDR); } assert(d->d_size == s->sz); if (!get_ent_count(s, &len)) return; for (i = 0; i < len; i++) { if (gelf_getrel(d, i, &r) != &r) { warnx("gelf_getrel failed: %s", elf_errmsg(-1)); continue; } symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); if (re->ec == ELFCLASS32) { r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), ELF64_R_TYPE(r.r_info)); printf("%8.8jx %8.8jx %-19.19s %8.8jx %s\n", REL_CT32); } else { + type = ELF64_R_TYPE(r.r_info); + if (re->ehdr.e_machine == EM_MIPS) { + type2 = (type >> 8) & 0xFF; + type3 = (type >> 16) & 0xFF; + type = type & 0xFF; + } if (re->options & RE_WW) printf("%16.16jx %16.16jx %-24.24s" " %16.16jx %s\n", REL_CT64); else printf("%12.12jx %12.12jx %-19.19s" " %16.16jx %s\n", REL_CT64); + if (re->ehdr.e_machine == EM_MIPS) { + if (re->options & RE_WW) { + printf("%32s: %s\n", "Type2", + elftc_reloc_type_str(EM_MIPS, + type2)); + printf("%32s: %s\n", "Type3", + elftc_reloc_type_str(EM_MIPS, + type3)); + } else { + printf("%24s: %s\n", "Type2", + elftc_reloc_type_str(EM_MIPS, + type2)); + printf("%24s: %s\n", "Type3", + elftc_reloc_type_str(EM_MIPS, + type3)); + } + } } } #undef REL_HDR #undef REL_CT } static void dump_rela(struct readelf *re, struct section *s, Elf_Data *d) { GElf_Rela r; const char *symname; uint64_t symval; int i, len; + uint32_t type; + uint8_t type2, type3; if (s->link >= re->shnum) return; #define RELA_HDR "r_offset", "r_info", "r_type", "st_value", \ "st_name + r_addend" #define RELA_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ elftc_reloc_type_str(re->ehdr.e_machine, \ ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname #define RELA_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ - elftc_reloc_type_str(re->ehdr.e_machine, \ - ELF64_R_TYPE(r.r_info)), (uintmax_t)symval, symname + elftc_reloc_type_str(re->ehdr.e_machine, type), \ + (uintmax_t)symval, symname printf("\nRelocation section with addend (%s):\n", s->name); if (re->ec == ELFCLASS32) printf("%-8s %-8s %-19s %-8s %s\n", RELA_HDR); else { if (re->options & RE_WW) printf("%-16s %-16s %-24s %-16s %s\n", RELA_HDR); else printf("%-12s %-12s %-19s %-16s %s\n", RELA_HDR); } assert(d->d_size == s->sz); if (!get_ent_count(s, &len)) return; for (i = 0; i < len; i++) { if (gelf_getrela(d, i, &r) != &r) { warnx("gelf_getrel failed: %s", elf_errmsg(-1)); continue; } symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); if (re->ec == ELFCLASS32) { r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), ELF64_R_TYPE(r.r_info)); printf("%8.8jx %8.8jx %-19.19s %8.8jx %s", RELA_CT32); printf(" + %x\n", (uint32_t) r.r_addend); } else { + type = ELF64_R_TYPE(r.r_info); + if (re->ehdr.e_machine == EM_MIPS) { + type2 = (type >> 8) & 0xFF; + type3 = (type >> 16) & 0xFF; + type = type & 0xFF; + } if (re->options & RE_WW) printf("%16.16jx %16.16jx %-24.24s" " %16.16jx %s", RELA_CT64); else printf("%12.12jx %12.12jx %-19.19s" " %16.16jx %s", RELA_CT64); printf(" + %jx\n", (uintmax_t) r.r_addend); + if (re->ehdr.e_machine == EM_MIPS) { + if (re->options & RE_WW) { + printf("%32s: %s\n", "Type2", + elftc_reloc_type_str(EM_MIPS, + type2)); + printf("%32s: %s\n", "Type3", + elftc_reloc_type_str(EM_MIPS, + type3)); + } else { + printf("%24s: %s\n", "Type2", + elftc_reloc_type_str(EM_MIPS, + type2)); + printf("%24s: %s\n", "Type3", + elftc_reloc_type_str(EM_MIPS, + type3)); + } + } } } #undef RELA_HDR #undef RELA_CT } static void dump_reloc(struct readelf *re) { struct section *s; Elf_Data *d; int i, elferr; for (i = 0; (size_t)i < re->shnum; i++) { s = &re->sl[i]; if (s->type == SHT_REL || s->type == SHT_RELA) { (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); continue; } if (s->type == SHT_REL) dump_rel(re, s, d); else dump_rela(re, s, d); } } } static void dump_symtab(struct readelf *re, int i) { struct section *s; Elf_Data *d; GElf_Sym sym; const char *name; uint32_t stab; int elferr, j, len; uint16_t vs; s = &re->sl[i]; if (s->link >= re->shnum) return; stab = s->link; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } if (d->d_size <= 0) return; if (!get_ent_count(s, &len)) return; printf("Symbol table (%s)", s->name); printf(" contains %d entries:\n", len); printf("%7s%9s%14s%5s%8s%6s%9s%5s\n", "Num:", "Value", "Size", "Type", "Bind", "Vis", "Ndx", "Name"); for (j = 0; j < len; j++) { if (gelf_getsym(d, j, &sym) != &sym) { warnx("gelf_getsym failed: %s", elf_errmsg(-1)); continue; } printf("%6d:", j); printf(" %16.16jx", (uintmax_t) sym.st_value); printf(" %5ju", (uintmax_t) sym.st_size); printf(" %-7s", st_type(re->ehdr.e_machine, re->ehdr.e_ident[EI_OSABI], GELF_ST_TYPE(sym.st_info))); printf(" %-6s", st_bind(GELF_ST_BIND(sym.st_info))); printf(" %-8s", st_vis(GELF_ST_VISIBILITY(sym.st_other))); printf(" %3s", st_shndx(sym.st_shndx)); if ((name = elf_strptr(re->elf, stab, sym.st_name)) != NULL) printf(" %s", name); /* Append symbol version string for SHT_DYNSYM symbol table. */ if (s->type == SHT_DYNSYM && re->ver != NULL && re->vs != NULL && re->vs[j] > 1) { vs = re->vs[j] & VERSYM_VERSION; if (vs >= re->ver_sz || re->ver[vs].name == NULL) { warnx("invalid versym version index %u", vs); break; } if (re->vs[j] & VERSYM_HIDDEN || re->ver[vs].type == 0) printf("@%s (%d)", re->ver[vs].name, vs); else printf("@@%s (%d)", re->ver[vs].name, vs); } putchar('\n'); } } static void dump_symtabs(struct readelf *re) { GElf_Dyn dyn; Elf_Data *d; struct section *s; uint64_t dyn_off; int elferr, i, len; /* * If -D is specified, only dump the symbol table specified by * the DT_SYMTAB entry in the .dynamic section. */ dyn_off = 0; if (re->options & RE_DD) { s = NULL; for (i = 0; (size_t)i < re->shnum; i++) if (re->sl[i].type == SHT_DYNAMIC) { s = &re->sl[i]; break; } if (s == NULL) return; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(-1)); return; } if (d->d_size <= 0) return; if (!get_ent_count(s, &len)) return; for (i = 0; i < len; i++) { if (gelf_getdyn(d, i, &dyn) != &dyn) { warnx("gelf_getdyn failed: %s", elf_errmsg(-1)); continue; } if (dyn.d_tag == DT_SYMTAB) { dyn_off = dyn.d_un.d_val; break; } } } /* Find and dump symbol tables. */ for (i = 0; (size_t)i < re->shnum; i++) { s = &re->sl[i]; if (s->type == SHT_SYMTAB || s->type == SHT_DYNSYM) { if (re->options & RE_DD) { if (dyn_off == s->addr) { dump_symtab(re, i); break; } } else dump_symtab(re, i); } } } static void dump_svr4_hash(struct section *s) { Elf_Data *d; uint32_t *buf; uint32_t nbucket, nchain; uint32_t *bucket, *chain; uint32_t *bl, *c, maxl, total; int elferr, i, j; /* Read and parse the content of .hash section. */ (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } if (d->d_size < 2 * sizeof(uint32_t)) { warnx(".hash section too small"); return; } buf = d->d_buf; nbucket = buf[0]; nchain = buf[1]; if (nbucket <= 0 || nchain <= 0) { warnx("Malformed .hash section"); return; } if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { warnx("Malformed .hash section"); return; } bucket = &buf[2]; chain = &buf[2 + nbucket]; maxl = 0; if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) errx(EXIT_FAILURE, "calloc failed"); for (i = 0; (uint32_t)i < nbucket; i++) for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) if (++bl[i] > maxl) maxl = bl[i]; if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) errx(EXIT_FAILURE, "calloc failed"); for (i = 0; (uint32_t)i < nbucket; i++) c[bl[i]]++; printf("\nHistogram for bucket list length (total of %u buckets):\n", nbucket); printf(" Length\tNumber\t\t%% of total\tCoverage\n"); total = 0; for (i = 0; (uint32_t)i <= maxl; i++) { total += c[i] * i; printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); } free(c); free(bl); } static void dump_svr4_hash64(struct readelf *re, struct section *s) { Elf_Data *d, dst; uint64_t *buf; uint64_t nbucket, nchain; uint64_t *bucket, *chain; uint64_t *bl, *c, maxl, total; int elferr, i, j; /* * ALPHA uses 64-bit hash entries. Since libelf assumes that * .hash section contains only 32-bit entry, an explicit * gelf_xlatetom is needed here. */ (void) elf_errno(); if ((d = elf_rawdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_rawdata failed: %s", elf_errmsg(elferr)); return; } d->d_type = ELF_T_XWORD; memcpy(&dst, d, sizeof(Elf_Data)); if (gelf_xlatetom(re->elf, &dst, d, re->ehdr.e_ident[EI_DATA]) != &dst) { warnx("gelf_xlatetom failed: %s", elf_errmsg(-1)); return; } if (dst.d_size < 2 * sizeof(uint64_t)) { warnx(".hash section too small"); return; } buf = dst.d_buf; nbucket = buf[0]; nchain = buf[1]; if (nbucket <= 0 || nchain <= 0) { warnx("Malformed .hash section"); return; } if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { warnx("Malformed .hash section"); return; } bucket = &buf[2]; chain = &buf[2 + nbucket]; maxl = 0; if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) errx(EXIT_FAILURE, "calloc failed"); for (i = 0; (uint32_t)i < nbucket; i++) for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) if (++bl[i] > maxl) maxl = bl[i]; if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) errx(EXIT_FAILURE, "calloc failed"); for (i = 0; (uint64_t)i < nbucket; i++) c[bl[i]]++; printf("Histogram for bucket list length (total of %ju buckets):\n", (uintmax_t)nbucket); printf(" Length\tNumber\t\t%% of total\tCoverage\n"); total = 0; for (i = 0; (uint64_t)i <= maxl; i++) { total += c[i] * i; printf("%7u\t%-10ju\t(%5.1f%%)\t%5.1f%%\n", i, (uintmax_t)c[i], c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); } free(c); free(bl); } static void dump_gnu_hash(struct readelf *re, struct section *s) { struct section *ds; Elf_Data *d; uint32_t *buf; uint32_t *bucket, *chain; uint32_t nbucket, nchain, symndx, maskwords; uint32_t *bl, *c, maxl, total; int elferr, dynsymcount, i, j; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } if (d->d_size < 4 * sizeof(uint32_t)) { warnx(".gnu.hash section too small"); return; } buf = d->d_buf; nbucket = buf[0]; symndx = buf[1]; maskwords = buf[2]; buf += 4; if (s->link >= re->shnum) return; ds = &re->sl[s->link]; if (!get_ent_count(ds, &dynsymcount)) return; if (symndx >= (uint32_t)dynsymcount) { warnx("Malformed .gnu.hash section (symndx out of range)"); return; } nchain = dynsymcount - symndx; if (d->d_size != 4 * sizeof(uint32_t) + maskwords * (re->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) + (nbucket + nchain) * sizeof(uint32_t)) { warnx("Malformed .gnu.hash section"); return; } bucket = buf + (re->ec == ELFCLASS32 ? maskwords : maskwords * 2); chain = bucket + nbucket; maxl = 0; if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) errx(EXIT_FAILURE, "calloc failed"); for (i = 0; (uint32_t)i < nbucket; i++) for (j = bucket[i]; j > 0 && (uint32_t)j - symndx < nchain; j++) { if (++bl[i] > maxl) maxl = bl[i]; if (chain[j - symndx] & 1) break; } if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) errx(EXIT_FAILURE, "calloc failed"); for (i = 0; (uint32_t)i < nbucket; i++) c[bl[i]]++; printf("Histogram for bucket list length (total of %u buckets):\n", nbucket); printf(" Length\tNumber\t\t%% of total\tCoverage\n"); total = 0; for (i = 0; (uint32_t)i <= maxl; i++) { total += c[i] * i; printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); } free(c); free(bl); } static void dump_hash(struct readelf *re) { struct section *s; int i; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->type == SHT_HASH || s->type == SHT_GNU_HASH) { if (s->type == SHT_GNU_HASH) dump_gnu_hash(re, s); else if (re->ehdr.e_machine == EM_ALPHA && s->entsize == 8) dump_svr4_hash64(re, s); else dump_svr4_hash(s); } } } static void dump_notes(struct readelf *re) { struct section *s; const char *rawfile; GElf_Phdr phdr; Elf_Data *d; size_t filesize, phnum; int i, elferr; if (re->ehdr.e_type == ET_CORE) { /* * Search program headers in the core file for * PT_NOTE entry. */ if (elf_getphnum(re->elf, &phnum) == 0) { warnx("elf_getphnum failed: %s", elf_errmsg(-1)); return; } if (phnum == 0) return; if ((rawfile = elf_rawfile(re->elf, &filesize)) == NULL) { warnx("elf_rawfile failed: %s", elf_errmsg(-1)); return; } for (i = 0; (size_t) i < phnum; i++) { if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); continue; } if (phdr.p_type == PT_NOTE) { if (phdr.p_offset >= filesize || phdr.p_filesz > filesize - phdr.p_offset) { warnx("invalid PHDR offset"); continue; } dump_notes_content(re, rawfile + phdr.p_offset, phdr.p_filesz, phdr.p_offset); } } } else { /* * For objects other than core files, Search for * SHT_NOTE sections. */ for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->type == SHT_NOTE) { (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); continue; } dump_notes_content(re, d->d_buf, d->d_size, s->off); } } } } static void dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off) { Elf_Note *note; const char *end, *name; printf("\nNotes at offset %#010jx with length %#010jx:\n", (uintmax_t) off, (uintmax_t) sz); printf(" %-13s %-15s %s\n", "Owner", "Data size", "Description"); end = buf + sz; while (buf < end) { if (buf + sizeof(*note) > end) { warnx("invalid note header"); return; } note = (Elf_Note *)(uintptr_t) buf; name = (char *)(uintptr_t)(note + 1); /* * The name field is required to be nul-terminated, and * n_namesz includes the terminating nul in observed * implementations (contrary to the ELF-64 spec). A special * case is needed for cores generated by some older Linux * versions, which write a note named "CORE" without a nul * terminator and n_namesz = 4. */ if (note->n_namesz == 0) name = ""; else if (note->n_namesz == 4 && strncmp(name, "CORE", 4) == 0) name = "CORE"; else if (strnlen(name, note->n_namesz) >= note->n_namesz) name = ""; printf(" %-13s %#010jx", name, (uintmax_t) note->n_descsz); printf(" %s\n", note_type(name, re->ehdr.e_type, note->n_type)); buf += sizeof(Elf_Note) + roundup2(note->n_namesz, 4) + roundup2(note->n_descsz, 4); } } /* * Symbol versioning sections are the same for 32bit and 64bit * ELF objects. */ #define Elf_Verdef Elf32_Verdef #define Elf_Verdaux Elf32_Verdaux #define Elf_Verneed Elf32_Verneed #define Elf_Vernaux Elf32_Vernaux #define SAVE_VERSION_NAME(x, n, t) \ do { \ while (x >= re->ver_sz) { \ nv = realloc(re->ver, \ sizeof(*re->ver) * re->ver_sz * 2); \ if (nv == NULL) { \ warn("realloc failed"); \ free(re->ver); \ return; \ } \ re->ver = nv; \ for (i = re->ver_sz; i < re->ver_sz * 2; i++) { \ re->ver[i].name = NULL; \ re->ver[i].type = 0; \ } \ re->ver_sz *= 2; \ } \ if (x > 1) { \ re->ver[x].name = n; \ re->ver[x].type = t; \ } \ } while (0) static void dump_verdef(struct readelf *re, int dump) { struct section *s; struct symver *nv; Elf_Data *d; Elf_Verdef *vd; Elf_Verdaux *vda; uint8_t *buf, *end, *buf2; const char *name; int elferr, i, j; if ((s = re->vd_s) == NULL) return; if (s->link >= re->shnum) return; if (re->ver == NULL) { re->ver_sz = 16; if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == NULL) { warn("calloc failed"); return; } re->ver[0].name = "*local*"; re->ver[1].name = "*global*"; } if (dump) printf("\nVersion definition section (%s):\n", s->name); (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } if (d->d_size == 0) return; buf = d->d_buf; end = buf + d->d_size; while (buf + sizeof(Elf_Verdef) <= end) { vd = (Elf_Verdef *) (uintptr_t) buf; if (dump) { printf(" 0x%4.4lx", (unsigned long) (buf - (uint8_t *)d->d_buf)); printf(" vd_version: %u vd_flags: %d" " vd_ndx: %u vd_cnt: %u", vd->vd_version, vd->vd_flags, vd->vd_ndx, vd->vd_cnt); } buf2 = buf + vd->vd_aux; j = 0; while (buf2 + sizeof(Elf_Verdaux) <= end && j < vd->vd_cnt) { vda = (Elf_Verdaux *) (uintptr_t) buf2; name = get_string(re, s->link, vda->vda_name); if (j == 0) { if (dump) printf(" vda_name: %s\n", name); SAVE_VERSION_NAME((int)vd->vd_ndx, name, 1); } else if (dump) printf(" 0x%4.4lx parent: %s\n", (unsigned long) (buf2 - (uint8_t *)d->d_buf), name); if (vda->vda_next == 0) break; buf2 += vda->vda_next; j++; } if (vd->vd_next == 0) break; buf += vd->vd_next; } } static void dump_verneed(struct readelf *re, int dump) { struct section *s; struct symver *nv; Elf_Data *d; Elf_Verneed *vn; Elf_Vernaux *vna; uint8_t *buf, *end, *buf2; const char *name; int elferr, i, j; if ((s = re->vn_s) == NULL) return; if (s->link >= re->shnum) return; if (re->ver == NULL) { re->ver_sz = 16; if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == NULL) { warn("calloc failed"); return; } re->ver[0].name = "*local*"; re->ver[1].name = "*global*"; } if (dump) printf("\nVersion needed section (%s):\n", s->name); (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } if (d->d_size == 0) return; buf = d->d_buf; end = buf + d->d_size; while (buf + sizeof(Elf_Verneed) <= end) { vn = (Elf_Verneed *) (uintptr_t) buf; if (dump) { printf(" 0x%4.4lx", (unsigned long) (buf - (uint8_t *)d->d_buf)); printf(" vn_version: %u vn_file: %s vn_cnt: %u\n", vn->vn_version, get_string(re, s->link, vn->vn_file), vn->vn_cnt); } buf2 = buf + vn->vn_aux; j = 0; while (buf2 + sizeof(Elf_Vernaux) <= end && j < vn->vn_cnt) { vna = (Elf32_Vernaux *) (uintptr_t) buf2; if (dump) printf(" 0x%4.4lx", (unsigned long) (buf2 - (uint8_t *)d->d_buf)); name = get_string(re, s->link, vna->vna_name); if (dump) printf(" vna_name: %s vna_flags: %u" " vna_other: %u\n", name, vna->vna_flags, vna->vna_other); SAVE_VERSION_NAME((int)vna->vna_other, name, 0); if (vna->vna_next == 0) break; buf2 += vna->vna_next; j++; } if (vn->vn_next == 0) break; buf += vn->vn_next; } } static void dump_versym(struct readelf *re) { int i; uint16_t vs; if (re->vs_s == NULL || re->ver == NULL || re->vs == NULL) return; printf("\nVersion symbol section (%s):\n", re->vs_s->name); for (i = 0; i < re->vs_sz; i++) { if ((i & 3) == 0) { if (i > 0) putchar('\n'); printf(" %03x:", i); } vs = re->vs[i] & VERSYM_VERSION; if (vs >= re->ver_sz || re->ver[vs].name == NULL) { warnx("invalid versym version index %u", re->vs[i]); break; } if (re->vs[i] & VERSYM_HIDDEN) printf(" %3xh %-12s ", vs, re->ver[re->vs[i] & VERSYM_VERSION].name); else printf(" %3x %-12s ", vs, re->ver[re->vs[i]].name); } putchar('\n'); } static void dump_ver(struct readelf *re) { if (re->vs_s && re->ver && re->vs) dump_versym(re); if (re->vd_s) dump_verdef(re, 1); if (re->vn_s) dump_verneed(re, 1); } static void search_ver(struct readelf *re) { struct section *s; Elf_Data *d; int elferr, i; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->type == SHT_SUNW_versym) re->vs_s = s; if (s->type == SHT_SUNW_verneed) re->vn_s = s; if (s->type == SHT_SUNW_verdef) re->vd_s = s; } if (re->vd_s) dump_verdef(re, 0); if (re->vn_s) dump_verneed(re, 0); if (re->vs_s && re->ver != NULL) { (void) elf_errno(); if ((d = elf_getdata(re->vs_s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } if (d->d_size == 0) return; re->vs = d->d_buf; re->vs_sz = d->d_size / sizeof(Elf32_Half); } } #undef Elf_Verdef #undef Elf_Verdaux #undef Elf_Verneed #undef Elf_Vernaux #undef SAVE_VERSION_NAME /* * Elf32_Lib and Elf64_Lib are identical. */ #define Elf_Lib Elf32_Lib static void dump_liblist(struct readelf *re) { struct section *s; struct tm *t; time_t ti; char tbuf[20]; Elf_Data *d; Elf_Lib *lib; int i, j, k, elferr, first, len; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->type != SHT_GNU_LIBLIST) continue; if (s->link >= re->shnum) continue; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); continue; } if (d->d_size <= 0) continue; lib = d->d_buf; if (!get_ent_count(s, &len)) continue; printf("\nLibrary list section '%s' ", s->name); printf("contains %d entries:\n", len); printf("%12s%24s%18s%10s%6s\n", "Library", "Time Stamp", "Checksum", "Version", "Flags"); for (j = 0; (uint64_t) j < s->sz / s->entsize; j++) { printf("%3d: ", j); printf("%-20.20s ", get_string(re, s->link, lib->l_name)); ti = lib->l_time_stamp; t = gmtime(&ti); snprintf(tbuf, sizeof(tbuf), "%04d-%02d-%02dT%02d:%02d" ":%2d", t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec); printf("%-19.19s ", tbuf); printf("0x%08x ", lib->l_checksum); printf("%-7d %#x", lib->l_version, lib->l_flags); if (lib->l_flags != 0) { first = 1; putchar('('); for (k = 0; l_flag[k].name != NULL; k++) { if ((l_flag[k].value & lib->l_flags) == 0) continue; if (!first) putchar(','); else first = 0; printf("%s", l_flag[k].name); } putchar(')'); } putchar('\n'); lib++; } } } #undef Elf_Lib static void dump_section_groups(struct readelf *re) { struct section *s; const char *symname; Elf_Data *d; uint32_t *w; int i, j, elferr; size_t n; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->type != SHT_GROUP) continue; if (s->link >= re->shnum) continue; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); continue; } if (d->d_size <= 0) continue; w = d->d_buf; /* We only support COMDAT section. */ if ((*w++ & GRP_COMDAT) == 0) return; if (s->entsize == 0) s->entsize = 4; symname = get_symbol_name(re, s->link, s->info); n = s->sz / s->entsize; if (n-- < 1) return; printf("\nCOMDAT group section [%5d] `%s' [%s] contains %ju" " sections:\n", i, s->name, symname, (uintmax_t)n); printf(" %-10.10s %s\n", "[Index]", "Name"); for (j = 0; (size_t) j < n; j++, w++) { if (*w >= re->shnum) { warnx("invalid section index: %u", *w); continue; } printf(" [%5u] %s\n", *w, re->sl[*w].name); } } } static uint8_t * dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe) { uint64_t val; /* * According to ARM EABI: For tags > 32, even numbered tags have * a ULEB128 param and odd numbered ones have NUL-terminated * string param. This rule probably also applies for tags <= 32 * if the object arch is not ARM. */ printf(" Tag_unknown_%ju: ", (uintmax_t) tag); if (tag & 1) { printf("%s\n", (char *) p); p += strlen((char *) p) + 1; } else { val = _decode_uleb128(&p, pe); printf("%ju\n", (uintmax_t) val); } return (p); } static uint8_t * dump_compatibility_tag(uint8_t *p, uint8_t *pe) { uint64_t val; val = _decode_uleb128(&p, pe); printf("flag = %ju, vendor = %s\n", (uintmax_t) val, p); p += strlen((char *) p) + 1; return (p); } static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) { uint64_t tag, val; size_t i; int found, desc; (void) re; while (p < pe) { tag = _decode_uleb128(&p, pe); found = desc = 0; for (i = 0; i < sizeof(aeabi_tags) / sizeof(aeabi_tags[0]); i++) { if (tag == aeabi_tags[i].tag) { found = 1; printf(" %s: ", aeabi_tags[i].s_tag); if (aeabi_tags[i].get_desc) { desc = 1; val = _decode_uleb128(&p, pe); printf("%s\n", aeabi_tags[i].get_desc(val)); } break; } if (tag < aeabi_tags[i].tag) break; } if (!found) { p = dump_unknown_tag(tag, p, pe); continue; } if (desc) continue; switch (tag) { case 4: /* Tag_CPU_raw_name */ case 5: /* Tag_CPU_name */ case 67: /* Tag_conformance */ printf("%s\n", (char *) p); p += strlen((char *) p) + 1; break; case 32: /* Tag_compatibility */ p = dump_compatibility_tag(p, pe); break; case 64: /* Tag_nodefaults */ /* ignored, written as 0. */ (void) _decode_uleb128(&p, pe); printf("True\n"); break; case 65: /* Tag_also_compatible_with */ val = _decode_uleb128(&p, pe); /* Must be Tag_CPU_arch */ if (val != 6) { printf("unknown\n"); break; } val = _decode_uleb128(&p, pe); printf("%s\n", aeabi_cpu_arch(val)); /* Skip NUL terminator. */ p++; break; default: putchar('\n'); break; } } } #ifndef Tag_GNU_MIPS_ABI_FP #define Tag_GNU_MIPS_ABI_FP 4 #endif static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) { uint64_t tag, val; (void) re; while (p < pe) { tag = _decode_uleb128(&p, pe); switch (tag) { case Tag_GNU_MIPS_ABI_FP: val = _decode_uleb128(&p, pe); printf(" Tag_GNU_MIPS_ABI_FP: %s\n", mips_abi_fp(val)); break; case 32: /* Tag_compatibility */ p = dump_compatibility_tag(p, pe); break; default: p = dump_unknown_tag(tag, p, pe); break; } } } #ifndef Tag_GNU_Power_ABI_FP #define Tag_GNU_Power_ABI_FP 4 #endif #ifndef Tag_GNU_Power_ABI_Vector #define Tag_GNU_Power_ABI_Vector 8 #endif static void dump_ppc_attributes(uint8_t *p, uint8_t *pe) { uint64_t tag, val; while (p < pe) { tag = _decode_uleb128(&p, pe); switch (tag) { case Tag_GNU_Power_ABI_FP: val = _decode_uleb128(&p, pe); printf(" Tag_GNU_Power_ABI_FP: %s\n", ppc_abi_fp(val)); break; case Tag_GNU_Power_ABI_Vector: val = _decode_uleb128(&p, pe); printf(" Tag_GNU_Power_ABI_Vector: %s\n", ppc_abi_vector(val)); break; case 32: /* Tag_compatibility */ p = dump_compatibility_tag(p, pe); break; default: p = dump_unknown_tag(tag, p, pe); break; } } } static void dump_attributes(struct readelf *re) { struct section *s; Elf_Data *d; uint8_t *p, *pe, *sp; size_t len, seclen, nlen, sublen; uint64_t val; int tag, i, elferr; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->type != SHT_GNU_ATTRIBUTES && (re->ehdr.e_machine != EM_ARM || s->type != SHT_LOPROC + 3)) continue; (void) elf_errno(); if ((d = elf_rawdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_rawdata failed: %s", elf_errmsg(elferr)); continue; } if (d->d_size <= 0) continue; p = d->d_buf; pe = p + d->d_size; if (*p != 'A') { printf("Unknown Attribute Section Format: %c\n", (char) *p); continue; } len = d->d_size - 1; p++; while (len > 0) { if (len < 4) { warnx("truncated attribute section length"); return; } seclen = re->dw_decode(&p, 4); if (seclen > len) { warnx("invalid attribute section length"); return; } len -= seclen; nlen = strlen((char *) p) + 1; if (nlen + 4 > seclen) { warnx("invalid attribute section name"); return; } printf("Attribute Section: %s\n", (char *) p); p += nlen; seclen -= nlen + 4; while (seclen > 0) { sp = p; tag = *p++; sublen = re->dw_decode(&p, 4); if (sublen > seclen) { warnx("invalid attribute sub-section" " length"); return; } seclen -= sublen; printf("%s", top_tag(tag)); if (tag == 2 || tag == 3) { putchar(':'); for (;;) { val = _decode_uleb128(&p, pe); if (val == 0) break; printf(" %ju", (uintmax_t) val); } } putchar('\n'); if (re->ehdr.e_machine == EM_ARM && s->type == SHT_LOPROC + 3) dump_arm_attributes(re, p, sp + sublen); else if (re->ehdr.e_machine == EM_MIPS || re->ehdr.e_machine == EM_MIPS_RS3_LE) dump_mips_attributes(re, p, sp + sublen); else if (re->ehdr.e_machine == EM_PPC) dump_ppc_attributes(p, sp + sublen); p = sp + sublen; } } } } static void dump_mips_specific_info(struct readelf *re) { struct section *s; int i, options_found; options_found = 0; s = NULL; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->name != NULL && (!strcmp(s->name, ".MIPS.options") || (s->type == SHT_MIPS_OPTIONS))) { dump_mips_options(re, s); options_found = 1; } } /* * According to SGI mips64 spec, .reginfo should be ignored if * .MIPS.options section is present. */ if (!options_found) { for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->name != NULL && (!strcmp(s->name, ".reginfo") || (s->type == SHT_MIPS_REGINFO))) dump_mips_reginfo(re, s); } } } static void dump_mips_reginfo(struct readelf *re, struct section *s) { Elf_Data *d; int elferr, len; (void) elf_errno(); if ((d = elf_rawdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_rawdata failed: %s", elf_errmsg(elferr)); return; } if (d->d_size <= 0) return; if (!get_ent_count(s, &len)) return; printf("\nSection '%s' contains %d entries:\n", s->name, len); dump_mips_odk_reginfo(re, d->d_buf, d->d_size); } static void dump_mips_options(struct readelf *re, struct section *s) { Elf_Data *d; uint32_t info; uint16_t sndx; uint8_t *p, *pe; uint8_t kind, size; int elferr; (void) elf_errno(); if ((d = elf_rawdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_rawdata failed: %s", elf_errmsg(elferr)); return; } if (d->d_size == 0) return; printf("\nSection %s contains:\n", s->name); p = d->d_buf; pe = p + d->d_size; while (p < pe) { if (pe - p < 8) { warnx("Truncated MIPS option header"); return; } kind = re->dw_decode(&p, 1); size = re->dw_decode(&p, 1); sndx = re->dw_decode(&p, 2); info = re->dw_decode(&p, 4); if (size < 8 || size - 8 > pe - p) { warnx("Malformed MIPS option header"); return; } size -= 8; switch (kind) { case ODK_REGINFO: dump_mips_odk_reginfo(re, p, size); break; case ODK_EXCEPTIONS: printf(" EXCEPTIONS FPU_MIN: %#x\n", info & OEX_FPU_MIN); printf("%11.11s FPU_MAX: %#x\n", "", info & OEX_FPU_MAX); dump_mips_option_flags("", mips_exceptions_option, info); break; case ODK_PAD: printf(" %-10.10s section: %ju\n", "OPAD", (uintmax_t) sndx); dump_mips_option_flags("", mips_pad_option, info); break; case ODK_HWPATCH: dump_mips_option_flags("HWPATCH", mips_hwpatch_option, info); break; case ODK_HWAND: dump_mips_option_flags("HWAND", mips_hwa_option, info); break; case ODK_HWOR: dump_mips_option_flags("HWOR", mips_hwo_option, info); break; case ODK_FILL: printf(" %-10.10s %#jx\n", "FILL", (uintmax_t) info); break; case ODK_TAGS: printf(" %-10.10s\n", "TAGS"); break; case ODK_GP_GROUP: printf(" %-10.10s GP group number: %#x\n", "GP_GROUP", info & 0xFFFF); if (info & 0x10000) printf(" %-10.10s GP group is " "self-contained\n", ""); break; case ODK_IDENT: printf(" %-10.10s default GP group number: %#x\n", "IDENT", info & 0xFFFF); if (info & 0x10000) printf(" %-10.10s default GP group is " "self-contained\n", ""); break; case ODK_PAGESIZE: printf(" %-10.10s\n", "PAGESIZE"); break; default: break; } p += size; } } static void dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info) { int first; first = 1; for (; opt->desc != NULL; opt++) { if (info & opt->flag) { printf(" %-10.10s %s\n", first ? name : "", opt->desc); first = 0; } } } static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz) { uint32_t ri_gprmask; uint32_t ri_cprmask[4]; uint64_t ri_gp_value; uint8_t *pe; int i; pe = p + sz; while (p < pe) { ri_gprmask = re->dw_decode(&p, 4); /* Skip ri_pad padding field for mips64. */ if (re->ec == ELFCLASS64) re->dw_decode(&p, 4); for (i = 0; i < 4; i++) ri_cprmask[i] = re->dw_decode(&p, 4); if (re->ec == ELFCLASS32) ri_gp_value = re->dw_decode(&p, 4); else ri_gp_value = re->dw_decode(&p, 8); printf(" %s ", option_kind(ODK_REGINFO)); printf("ri_gprmask: 0x%08jx\n", (uintmax_t) ri_gprmask); for (i = 0; i < 4; i++) printf("%11.11s ri_cprmask[%d]: 0x%08jx\n", "", i, (uintmax_t) ri_cprmask[i]); printf("%12.12s", ""); printf("ri_gp_value: %#jx\n", (uintmax_t) ri_gp_value); } } static void dump_arch_specific_info(struct readelf *re) { dump_liblist(re); dump_attributes(re); switch (re->ehdr.e_machine) { case EM_MIPS: case EM_MIPS_RS3_LE: dump_mips_specific_info(re); default: break; } } static const char * dwarf_regname(struct readelf *re, unsigned int num) { static char rx[32]; const char *rn; if ((rn = dwarf_reg(re->ehdr.e_machine, num)) != NULL) return (rn); snprintf(rx, sizeof(rx), "r%u", num); return (rx); } static void dump_dwarf_line(struct readelf *re) { struct section *s; Dwarf_Die die; Dwarf_Error de; Dwarf_Half tag, version, pointer_size; Dwarf_Unsigned offset, endoff, length, hdrlen, dirndx, mtime, fsize; Dwarf_Small minlen, defstmt, lrange, opbase, oplen; Elf_Data *d; char *pn; uint64_t address, file, line, column, isa, opsize, udelta; int64_t sdelta; uint8_t *p, *pe; int8_t lbase; int i, is_stmt, dwarf_size, elferr, ret; printf("\nDump of debug contents of section .debug_line:\n"); s = NULL; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->name != NULL && !strcmp(s->name, ".debug_line")) break; } if ((size_t) i >= re->shnum) return; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(-1)); return; } if (d->d_size <= 0) return; while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, NULL, &de)) == DW_DLV_OK) { die = NULL; while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) { if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); return; } /* XXX: What about DW_TAG_partial_unit? */ if (tag == DW_TAG_compile_unit) break; } if (die == NULL) { warnx("could not find DW_TAG_compile_unit die"); return; } if (dwarf_attrval_unsigned(die, DW_AT_stmt_list, &offset, &de) != DW_DLV_OK) continue; length = re->dw_read(d, &offset, 4); if (length == 0xffffffff) { dwarf_size = 8; length = re->dw_read(d, &offset, 8); } else dwarf_size = 4; if (length > d->d_size - offset) { warnx("invalid .dwarf_line section"); continue; } endoff = offset + length; pe = (uint8_t *) d->d_buf + endoff; version = re->dw_read(d, &offset, 2); hdrlen = re->dw_read(d, &offset, dwarf_size); minlen = re->dw_read(d, &offset, 1); defstmt = re->dw_read(d, &offset, 1); lbase = re->dw_read(d, &offset, 1); lrange = re->dw_read(d, &offset, 1); opbase = re->dw_read(d, &offset, 1); printf("\n"); printf(" Length:\t\t\t%ju\n", (uintmax_t) length); printf(" DWARF version:\t\t%u\n", version); printf(" Prologue Length:\t\t%ju\n", (uintmax_t) hdrlen); printf(" Minimum Instruction Length:\t%u\n", minlen); printf(" Initial value of 'is_stmt':\t%u\n", defstmt); printf(" Line Base:\t\t\t%d\n", lbase); printf(" Line Range:\t\t\t%u\n", lrange); printf(" Opcode Base:\t\t\t%u\n", opbase); (void) dwarf_get_address_size(re->dbg, &pointer_size, &de); printf(" (Pointer size:\t\t%u)\n", pointer_size); printf("\n"); printf(" Opcodes:\n"); for (i = 1; i < opbase; i++) { oplen = re->dw_read(d, &offset, 1); printf(" Opcode %d has %u args\n", i, oplen); } printf("\n"); printf(" The Directory Table:\n"); p = (uint8_t *) d->d_buf + offset; while (*p != '\0') { printf(" %s\n", (char *) p); p += strlen((char *) p) + 1; } p++; printf("\n"); printf(" The File Name Table:\n"); printf(" Entry\tDir\tTime\tSize\tName\n"); i = 0; while (*p != '\0') { i++; pn = (char *) p; p += strlen(pn) + 1; dirndx = _decode_uleb128(&p, pe); mtime = _decode_uleb128(&p, pe); fsize = _decode_uleb128(&p, pe); printf(" %d\t%ju\t%ju\t%ju\t%s\n", i, (uintmax_t) dirndx, (uintmax_t) mtime, (uintmax_t) fsize, pn); } #define RESET_REGISTERS \ do { \ address = 0; \ file = 1; \ line = 1; \ column = 0; \ is_stmt = defstmt; \ } while(0) #define LINE(x) (lbase + (((x) - opbase) % lrange)) #define ADDRESS(x) ((((x) - opbase) / lrange) * minlen) p++; printf("\n"); printf(" Line Number Statements:\n"); RESET_REGISTERS; while (p < pe) { if (*p == 0) { /* * Extended Opcodes. */ p++; opsize = _decode_uleb128(&p, pe); printf(" Extended opcode %u: ", *p); switch (*p) { case DW_LNE_end_sequence: p++; RESET_REGISTERS; printf("End of Sequence\n"); break; case DW_LNE_set_address: p++; address = re->dw_decode(&p, pointer_size); printf("set Address to %#jx\n", (uintmax_t) address); break; case DW_LNE_define_file: p++; pn = (char *) p; p += strlen(pn) + 1; dirndx = _decode_uleb128(&p, pe); mtime = _decode_uleb128(&p, pe); fsize = _decode_uleb128(&p, pe); printf("define new file: %s\n", pn); break; default: /* Unrecognized extened opcodes. */ p += opsize; printf("unknown opcode\n"); } } else if (*p > 0 && *p < opbase) { /* * Standard Opcodes. */ switch(*p++) { case DW_LNS_copy: printf(" Copy\n"); break; case DW_LNS_advance_pc: udelta = _decode_uleb128(&p, pe) * minlen; address += udelta; printf(" Advance PC by %ju to %#jx\n", (uintmax_t) udelta, (uintmax_t) address); break; case DW_LNS_advance_line: sdelta = _decode_sleb128(&p, pe); line += sdelta; printf(" Advance Line by %jd to %ju\n", (intmax_t) sdelta, (uintmax_t) line); break; case DW_LNS_set_file: file = _decode_uleb128(&p, pe); printf(" Set File to %ju\n", (uintmax_t) file); break; case DW_LNS_set_column: column = _decode_uleb128(&p, pe); printf(" Set Column to %ju\n", (uintmax_t) column); break; case DW_LNS_negate_stmt: is_stmt = !is_stmt; printf(" Set is_stmt to %d\n", is_stmt); break; case DW_LNS_set_basic_block: printf(" Set basic block flag\n"); break; case DW_LNS_const_add_pc: address += ADDRESS(255); printf(" Advance PC by constant %ju" " to %#jx\n", (uintmax_t) ADDRESS(255), (uintmax_t) address); break; case DW_LNS_fixed_advance_pc: udelta = re->dw_decode(&p, 2); address += udelta; printf(" Advance PC by fixed value " "%ju to %#jx\n", (uintmax_t) udelta, (uintmax_t) address); break; case DW_LNS_set_prologue_end: printf(" Set prologue end flag\n"); break; case DW_LNS_set_epilogue_begin: printf(" Set epilogue begin flag\n"); break; case DW_LNS_set_isa: isa = _decode_uleb128(&p, pe); printf(" Set isa to %ju\n", (uintmax_t) isa); break; default: /* Unrecognized extended opcodes. */ printf(" Unknown extended opcode %u\n", *(p - 1)); break; } } else { /* * Special Opcodes. */ line += LINE(*p); address += ADDRESS(*p); printf(" Special opcode %u: advance Address " "by %ju to %#jx and Line by %jd to %ju\n", *p - opbase, (uintmax_t) ADDRESS(*p), (uintmax_t) address, (intmax_t) LINE(*p), (uintmax_t) line); p++; } } } if (ret == DW_DLV_ERROR) warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); #undef RESET_REGISTERS #undef LINE #undef ADDRESS } static void dump_dwarf_line_decoded(struct readelf *re) { Dwarf_Die die; Dwarf_Line *linebuf, ln; Dwarf_Addr lineaddr; Dwarf_Signed linecount, srccount; Dwarf_Unsigned lineno, fn; Dwarf_Error de; const char *dir, *file; char **srcfiles; int i, ret; printf("Decoded dump of debug contents of section .debug_line:\n\n"); while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, NULL, &de)) == DW_DLV_OK) { if (dwarf_siblingof(re->dbg, NULL, &die, &de) != DW_DLV_OK) continue; if (dwarf_attrval_string(die, DW_AT_name, &file, &de) != DW_DLV_OK) file = NULL; if (dwarf_attrval_string(die, DW_AT_comp_dir, &dir, &de) != DW_DLV_OK) dir = NULL; printf("CU: "); if (dir && file) printf("%s/", dir); if (file) printf("%s", file); putchar('\n'); printf("%-37s %11s %s\n", "Filename", "Line Number", "Starting Address"); if (dwarf_srclines(die, &linebuf, &linecount, &de) != DW_DLV_OK) continue; if (dwarf_srcfiles(die, &srcfiles, &srccount, &de) != DW_DLV_OK) continue; for (i = 0; i < linecount; i++) { ln = linebuf[i]; if (dwarf_line_srcfileno(ln, &fn, &de) != DW_DLV_OK) continue; if (dwarf_lineno(ln, &lineno, &de) != DW_DLV_OK) continue; if (dwarf_lineaddr(ln, &lineaddr, &de) != DW_DLV_OK) continue; printf("%-37s %11ju %#18jx\n", basename(srcfiles[fn - 1]), (uintmax_t) lineno, (uintmax_t) lineaddr); } putchar('\n'); } } static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level) { Dwarf_Attribute *attr_list; Dwarf_Die ret_die; Dwarf_Off dieoff, cuoff, culen, attroff; Dwarf_Unsigned ate, lang, v_udata, v_sig; Dwarf_Signed attr_count, v_sdata; Dwarf_Off v_off; Dwarf_Addr v_addr; Dwarf_Half tag, attr, form; Dwarf_Block *v_block; Dwarf_Bool v_bool, is_info; Dwarf_Sig8 v_sig8; Dwarf_Error de; Dwarf_Ptr v_expr; const char *tag_str, *attr_str, *ate_str, *lang_str; char unk_tag[32], unk_attr[32]; char *v_str; uint8_t *b, *p; int i, j, abc, ret; if (dwarf_dieoffset(die, &dieoff, &de) != DW_DLV_OK) { warnx("dwarf_dieoffset failed: %s", dwarf_errmsg(de)); goto cont_search; } printf(" <%d><%jx>: ", level, (uintmax_t) dieoff); if (dwarf_die_CU_offset_range(die, &cuoff, &culen, &de) != DW_DLV_OK) { warnx("dwarf_die_CU_offset_range failed: %s", dwarf_errmsg(de)); cuoff = 0; } abc = dwarf_die_abbrev_code(die); if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); goto cont_search; } if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag); tag_str = unk_tag; } printf("Abbrev Number: %d (%s)\n", abc, tag_str); if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != DW_DLV_OK) { if (ret == DW_DLV_ERROR) warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); goto cont_search; } for (i = 0; i < attr_count; i++) { if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); continue; } if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); continue; } if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) { snprintf(unk_attr, sizeof(unk_attr), "[Unknown AT: %#x]", attr); attr_str = unk_attr; } if (dwarf_attroffset(attr_list[i], &attroff, &de) != DW_DLV_OK) { warnx("dwarf_attroffset failed: %s", dwarf_errmsg(de)); attroff = 0; } printf(" <%jx> %-18s: ", (uintmax_t) attroff, attr_str); switch (form) { case DW_FORM_ref_addr: case DW_FORM_sec_offset: if (dwarf_global_formref(attr_list[i], &v_off, &de) != DW_DLV_OK) { warnx("dwarf_global_formref failed: %s", dwarf_errmsg(de)); continue; } if (form == DW_FORM_ref_addr) printf("<0x%jx>", (uintmax_t) v_off); else printf("0x%jx", (uintmax_t) v_off); break; case DW_FORM_ref1: case DW_FORM_ref2: case DW_FORM_ref4: case DW_FORM_ref8: case DW_FORM_ref_udata: if (dwarf_formref(attr_list[i], &v_off, &de) != DW_DLV_OK) { warnx("dwarf_formref failed: %s", dwarf_errmsg(de)); continue; } v_off += cuoff; printf("<0x%jx>", (uintmax_t) v_off); break; case DW_FORM_addr: if (dwarf_formaddr(attr_list[i], &v_addr, &de) != DW_DLV_OK) { warnx("dwarf_formaddr failed: %s", dwarf_errmsg(de)); continue; } printf("%#jx", (uintmax_t) v_addr); break; case DW_FORM_data1: case DW_FORM_data2: case DW_FORM_data4: case DW_FORM_data8: case DW_FORM_udata: if (dwarf_formudata(attr_list[i], &v_udata, &de) != DW_DLV_OK) { warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); continue; } if (attr == DW_AT_high_pc) printf("0x%jx", (uintmax_t) v_udata); else printf("%ju", (uintmax_t) v_udata); break; case DW_FORM_sdata: if (dwarf_formsdata(attr_list[i], &v_sdata, &de) != DW_DLV_OK) { warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); continue; } printf("%jd", (intmax_t) v_sdata); break; case DW_FORM_flag: if (dwarf_formflag(attr_list[i], &v_bool, &de) != DW_DLV_OK) { warnx("dwarf_formflag failed: %s", dwarf_errmsg(de)); continue; } printf("%jd", (intmax_t) v_bool); break; case DW_FORM_flag_present: putchar('1'); break; case DW_FORM_string: case DW_FORM_strp: if (dwarf_formstring(attr_list[i], &v_str, &de) != DW_DLV_OK) { warnx("dwarf_formstring failed: %s", dwarf_errmsg(de)); continue; } if (form == DW_FORM_string) printf("%s", v_str); else printf("(indirect string) %s", v_str); break; case DW_FORM_block: case DW_FORM_block1: case DW_FORM_block2: case DW_FORM_block4: if (dwarf_formblock(attr_list[i], &v_block, &de) != DW_DLV_OK) { warnx("dwarf_formblock failed: %s", dwarf_errmsg(de)); continue; } printf("%ju byte block:", (uintmax_t) v_block->bl_len); b = v_block->bl_data; for (j = 0; (Dwarf_Unsigned) j < v_block->bl_len; j++) printf(" %x", b[j]); printf("\t("); dump_dwarf_block(re, v_block->bl_data, v_block->bl_len); putchar(')'); break; case DW_FORM_exprloc: if (dwarf_formexprloc(attr_list[i], &v_udata, &v_expr, &de) != DW_DLV_OK) { warnx("dwarf_formexprloc failed: %s", dwarf_errmsg(de)); continue; } printf("%ju byte block:", (uintmax_t) v_udata); b = v_expr; for (j = 0; (Dwarf_Unsigned) j < v_udata; j++) printf(" %x", b[j]); printf("\t("); dump_dwarf_block(re, v_expr, v_udata); putchar(')'); break; case DW_FORM_ref_sig8: if (dwarf_formsig8(attr_list[i], &v_sig8, &de) != DW_DLV_OK) { warnx("dwarf_formsig8 failed: %s", dwarf_errmsg(de)); continue; } p = (uint8_t *)(uintptr_t) &v_sig8.signature[0]; v_sig = re->dw_decode(&p, 8); printf("signature: 0x%jx", (uintmax_t) v_sig); } switch (attr) { case DW_AT_encoding: if (dwarf_attrval_unsigned(die, attr, &ate, &de) != DW_DLV_OK) break; if (dwarf_get_ATE_name(ate, &ate_str) != DW_DLV_OK) ate_str = "DW_ATE_UNKNOWN"; printf("\t(%s)", &ate_str[strlen("DW_ATE_")]); break; case DW_AT_language: if (dwarf_attrval_unsigned(die, attr, &lang, &de) != DW_DLV_OK) break; if (dwarf_get_LANG_name(lang, &lang_str) != DW_DLV_OK) break; printf("\t(%s)", &lang_str[strlen("DW_LANG_")]); break; case DW_AT_location: case DW_AT_string_length: case DW_AT_return_addr: case DW_AT_data_member_location: case DW_AT_frame_base: case DW_AT_segment: case DW_AT_static_link: case DW_AT_use_location: case DW_AT_vtable_elem_location: switch (form) { case DW_FORM_data4: case DW_FORM_data8: case DW_FORM_sec_offset: printf("\t(location list)"); break; default: break; } default: break; } putchar('\n'); } cont_search: /* Search children. */ ret = dwarf_child(die, &ret_die, &de); if (ret == DW_DLV_ERROR) warnx("dwarf_child: %s", dwarf_errmsg(de)); else if (ret == DW_DLV_OK) dump_dwarf_die(re, ret_die, level + 1); /* Search sibling. */ is_info = dwarf_get_die_infotypes_flag(die); ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); if (ret == DW_DLV_ERROR) warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); else if (ret == DW_DLV_OK) dump_dwarf_die(re, ret_die, level); dwarf_dealloc(re->dbg, die, DW_DLA_DIE); } static void set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize, Dwarf_Half ver) { re->cu_psize = psize; re->cu_osize = osize; re->cu_ver = ver; } static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info) { struct section *s; Dwarf_Die die; Dwarf_Error de; Dwarf_Half tag, version, pointer_size, off_size; Dwarf_Off cu_offset, cu_length; Dwarf_Off aboff; Dwarf_Unsigned typeoff; Dwarf_Sig8 sig8; Dwarf_Unsigned sig; uint8_t *p; const char *sn; int i, ret; sn = is_info ? ".debug_info" : ".debug_types"; s = NULL; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->name != NULL && !strcmp(s->name, sn)) break; } if ((size_t) i >= re->shnum) return; do { printf("\nDump of debug contents of section %s:\n", sn); while ((ret = dwarf_next_cu_header_c(re->dbg, is_info, NULL, &version, &aboff, &pointer_size, &off_size, NULL, &sig8, &typeoff, NULL, &de)) == DW_DLV_OK) { set_cu_context(re, pointer_size, off_size, version); die = NULL; while (dwarf_siblingof_b(re->dbg, die, &die, is_info, &de) == DW_DLV_OK) { if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); continue; } /* XXX: What about DW_TAG_partial_unit? */ if ((is_info && tag == DW_TAG_compile_unit) || (!is_info && tag == DW_TAG_type_unit)) break; } if (die == NULL && is_info) { warnx("could not find DW_TAG_compile_unit " "die"); continue; } else if (die == NULL && !is_info) { warnx("could not find DW_TAG_type_unit die"); continue; } if (dwarf_die_CU_offset_range(die, &cu_offset, &cu_length, &de) != DW_DLV_OK) { warnx("dwarf_die_CU_offset failed: %s", dwarf_errmsg(de)); continue; } cu_length -= off_size == 4 ? 4 : 12; sig = 0; if (!is_info) { p = (uint8_t *)(uintptr_t) &sig8.signature[0]; sig = re->dw_decode(&p, 8); } printf("\n Type Unit @ offset 0x%jx:\n", (uintmax_t) cu_offset); printf(" Length:\t\t%#jx (%d-bit)\n", (uintmax_t) cu_length, off_size == 4 ? 32 : 64); printf(" Version:\t\t%u\n", version); printf(" Abbrev Offset:\t0x%jx\n", (uintmax_t) aboff); printf(" Pointer Size:\t%u\n", pointer_size); if (!is_info) { printf(" Signature:\t\t0x%016jx\n", (uintmax_t) sig); printf(" Type Offset:\t0x%jx\n", (uintmax_t) typeoff); } dump_dwarf_die(re, die, 0); } if (ret == DW_DLV_ERROR) warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); if (is_info) break; } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); } static void dump_dwarf_abbrev(struct readelf *re) { Dwarf_Abbrev ab; Dwarf_Off aboff, atoff; Dwarf_Unsigned length, attr_count; Dwarf_Signed flag, form; Dwarf_Half tag, attr; Dwarf_Error de; const char *tag_str, *attr_str, *form_str; char unk_tag[32], unk_attr[32], unk_form[32]; int i, j, ret; printf("\nContents of section .debug_abbrev:\n\n"); while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, &aboff, NULL, NULL, &de)) == DW_DLV_OK) { printf(" Number TAG\n"); i = 0; while ((ret = dwarf_get_abbrev(re->dbg, aboff, &ab, &length, &attr_count, &de)) == DW_DLV_OK) { if (length == 1) { dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); break; } aboff += length; printf("%4d", ++i); if (dwarf_get_abbrev_tag(ab, &tag, &de) != DW_DLV_OK) { warnx("dwarf_get_abbrev_tag failed: %s", dwarf_errmsg(de)); goto next_abbrev; } if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag); tag_str = unk_tag; } if (dwarf_get_abbrev_children_flag(ab, &flag, &de) != DW_DLV_OK) { warnx("dwarf_get_abbrev_children_flag failed:" " %s", dwarf_errmsg(de)); goto next_abbrev; } printf(" %s %s\n", tag_str, flag ? "[has children]" : "[no children]"); for (j = 0; (Dwarf_Unsigned) j < attr_count; j++) { if (dwarf_get_abbrev_entry(ab, (Dwarf_Signed) j, &attr, &form, &atoff, &de) != DW_DLV_OK) { warnx("dwarf_get_abbrev_entry failed:" " %s", dwarf_errmsg(de)); continue; } if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) { snprintf(unk_attr, sizeof(unk_attr), "[Unknown AT: %#x]", attr); attr_str = unk_attr; } if (dwarf_get_FORM_name(form, &form_str) != DW_DLV_OK) { snprintf(unk_form, sizeof(unk_form), "[Unknown Form: %#x]", (Dwarf_Half) form); form_str = unk_form; } printf(" %-18s %s\n", attr_str, form_str); } next_abbrev: dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); } if (ret != DW_DLV_OK) warnx("dwarf_get_abbrev: %s", dwarf_errmsg(de)); } if (ret == DW_DLV_ERROR) warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); } static void dump_dwarf_pubnames(struct readelf *re) { struct section *s; Dwarf_Off die_off; Dwarf_Unsigned offset, length, nt_cu_offset, nt_cu_length; Dwarf_Signed cnt; Dwarf_Global *globs; Dwarf_Half nt_version; Dwarf_Error de; Elf_Data *d; char *glob_name; int i, dwarf_size, elferr; printf("\nContents of the .debug_pubnames section:\n"); s = NULL; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->name != NULL && !strcmp(s->name, ".debug_pubnames")) break; } if ((size_t) i >= re->shnum) return; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(-1)); return; } if (d->d_size <= 0) return; /* Read in .debug_pubnames section table header. */ offset = 0; length = re->dw_read(d, &offset, 4); if (length == 0xffffffff) { dwarf_size = 8; length = re->dw_read(d, &offset, 8); } else dwarf_size = 4; if (length > d->d_size - offset) { warnx("invalid .dwarf_pubnames section"); return; } nt_version = re->dw_read(d, &offset, 2); nt_cu_offset = re->dw_read(d, &offset, dwarf_size); nt_cu_length = re->dw_read(d, &offset, dwarf_size); printf(" Length:\t\t\t\t%ju\n", (uintmax_t) length); printf(" Version:\t\t\t\t%u\n", nt_version); printf(" Offset into .debug_info section:\t%ju\n", (uintmax_t) nt_cu_offset); printf(" Size of area in .debug_info section:\t%ju\n", (uintmax_t) nt_cu_length); if (dwarf_get_globals(re->dbg, &globs, &cnt, &de) != DW_DLV_OK) { warnx("dwarf_get_globals failed: %s", dwarf_errmsg(de)); return; } printf("\n Offset Name\n"); for (i = 0; i < cnt; i++) { if (dwarf_globname(globs[i], &glob_name, &de) != DW_DLV_OK) { warnx("dwarf_globname failed: %s", dwarf_errmsg(de)); continue; } if (dwarf_global_die_offset(globs[i], &die_off, &de) != DW_DLV_OK) { warnx("dwarf_global_die_offset failed: %s", dwarf_errmsg(de)); continue; } printf(" %-11ju %s\n", (uintmax_t) die_off, glob_name); } } static void dump_dwarf_aranges(struct readelf *re) { struct section *s; Dwarf_Arange *aranges; Dwarf_Addr start; Dwarf_Unsigned offset, length, as_cu_offset; Dwarf_Off die_off; Dwarf_Signed cnt; Dwarf_Half as_version, as_addrsz, as_segsz; Dwarf_Error de; Elf_Data *d; int i, dwarf_size, elferr; printf("\nContents of section .debug_aranges:\n"); s = NULL; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->name != NULL && !strcmp(s->name, ".debug_aranges")) break; } if ((size_t) i >= re->shnum) return; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(-1)); return; } if (d->d_size <= 0) return; /* Read in the .debug_aranges section table header. */ offset = 0; length = re->dw_read(d, &offset, 4); if (length == 0xffffffff) { dwarf_size = 8; length = re->dw_read(d, &offset, 8); } else dwarf_size = 4; if (length > d->d_size - offset) { warnx("invalid .dwarf_aranges section"); return; } as_version = re->dw_read(d, &offset, 2); as_cu_offset = re->dw_read(d, &offset, dwarf_size); as_addrsz = re->dw_read(d, &offset, 1); as_segsz = re->dw_read(d, &offset, 1); printf(" Length:\t\t\t%ju\n", (uintmax_t) length); printf(" Version:\t\t\t%u\n", as_version); printf(" Offset into .debug_info:\t%ju\n", (uintmax_t) as_cu_offset); printf(" Pointer Size:\t\t\t%u\n", as_addrsz); printf(" Segment Size:\t\t\t%u\n", as_segsz); if (dwarf_get_aranges(re->dbg, &aranges, &cnt, &de) != DW_DLV_OK) { warnx("dwarf_get_aranges failed: %s", dwarf_errmsg(de)); return; } printf("\n Address Length\n"); for (i = 0; i < cnt; i++) { if (dwarf_get_arange_info(aranges[i], &start, &length, &die_off, &de) != DW_DLV_OK) { warnx("dwarf_get_arange_info failed: %s", dwarf_errmsg(de)); continue; } printf(" %08jx %ju\n", (uintmax_t) start, (uintmax_t) length); } } static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base) { Dwarf_Attribute *attr_list; Dwarf_Ranges *ranges; Dwarf_Die ret_die; Dwarf_Error de; Dwarf_Addr base0; Dwarf_Half attr; Dwarf_Signed attr_count, cnt; Dwarf_Unsigned off, bytecnt; int i, j, ret; if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != DW_DLV_OK) { if (ret == DW_DLV_ERROR) warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); goto cont_search; } for (i = 0; i < attr_count; i++) { if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); continue; } if (attr != DW_AT_ranges) continue; if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) { warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); continue; } if (dwarf_get_ranges(re->dbg, (Dwarf_Off) off, &ranges, &cnt, &bytecnt, &de) != DW_DLV_OK) continue; base0 = base; for (j = 0; j < cnt; j++) { printf(" %08jx ", (uintmax_t) off); if (ranges[j].dwr_type == DW_RANGES_END) { printf("%s\n", ""); continue; } else if (ranges[j].dwr_type == DW_RANGES_ADDRESS_SELECTION) { base0 = ranges[j].dwr_addr2; continue; } if (re->ec == ELFCLASS32) printf("%08jx %08jx\n", (uintmax_t) (ranges[j].dwr_addr1 + base0), (uintmax_t) (ranges[j].dwr_addr2 + base0)); else printf("%016jx %016jx\n", (uintmax_t) (ranges[j].dwr_addr1 + base0), (uintmax_t) (ranges[j].dwr_addr2 + base0)); } } cont_search: /* Search children. */ ret = dwarf_child(die, &ret_die, &de); if (ret == DW_DLV_ERROR) warnx("dwarf_child: %s", dwarf_errmsg(de)); else if (ret == DW_DLV_OK) dump_dwarf_ranges_foreach(re, ret_die, base); /* Search sibling. */ ret = dwarf_siblingof(re->dbg, die, &ret_die, &de); if (ret == DW_DLV_ERROR) warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); else if (ret == DW_DLV_OK) dump_dwarf_ranges_foreach(re, ret_die, base); } static void dump_dwarf_ranges(struct readelf *re) { Dwarf_Ranges *ranges; Dwarf_Die die; Dwarf_Signed cnt; Dwarf_Unsigned bytecnt; Dwarf_Half tag; Dwarf_Error de; Dwarf_Unsigned lowpc; int ret; if (dwarf_get_ranges(re->dbg, 0, &ranges, &cnt, &bytecnt, &de) != DW_DLV_OK) return; printf("Contents of the .debug_ranges section:\n\n"); if (re->ec == ELFCLASS32) printf(" %-8s %-8s %s\n", "Offset", "Begin", "End"); else printf(" %-8s %-16s %s\n", "Offset", "Begin", "End"); while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, NULL, &de)) == DW_DLV_OK) { die = NULL; if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) continue; if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); continue; } /* XXX: What about DW_TAG_partial_unit? */ lowpc = 0; if (tag == DW_TAG_compile_unit) { if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc, &de) != DW_DLV_OK) lowpc = 0; } dump_dwarf_ranges_foreach(re, die, (Dwarf_Addr) lowpc); } putchar('\n'); } static void dump_dwarf_macinfo(struct readelf *re) { Dwarf_Unsigned offset; Dwarf_Signed cnt; Dwarf_Macro_Details *md; Dwarf_Error de; const char *mi_str; char unk_mi[32]; int i; #define _MAX_MACINFO_ENTRY 65535 printf("\nContents of section .debug_macinfo:\n\n"); offset = 0; while (dwarf_get_macro_details(re->dbg, offset, _MAX_MACINFO_ENTRY, &cnt, &md, &de) == DW_DLV_OK) { for (i = 0; i < cnt; i++) { offset = md[i].dmd_offset + 1; if (md[i].dmd_type == 0) break; if (dwarf_get_MACINFO_name(md[i].dmd_type, &mi_str) != DW_DLV_OK) { snprintf(unk_mi, sizeof(unk_mi), "[Unknown MACINFO: %#x]", md[i].dmd_type); mi_str = unk_mi; } printf(" %s", mi_str); switch (md[i].dmd_type) { case DW_MACINFO_define: case DW_MACINFO_undef: printf(" - lineno : %jd macro : %s\n", (intmax_t) md[i].dmd_lineno, md[i].dmd_macro); break; case DW_MACINFO_start_file: printf(" - lineno : %jd filenum : %jd\n", (intmax_t) md[i].dmd_lineno, (intmax_t) md[i].dmd_fileindex); break; default: putchar('\n'); break; } } } #undef _MAX_MACINFO_ENTRY } static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc, Dwarf_Debug dbg) { Dwarf_Frame_Op *oplist; Dwarf_Signed opcnt, delta; Dwarf_Small op; Dwarf_Error de; const char *op_str; char unk_op[32]; int i; if (dwarf_expand_frame_instructions(cie, insts, len, &oplist, &opcnt, &de) != DW_DLV_OK) { warnx("dwarf_expand_frame_instructions failed: %s", dwarf_errmsg(de)); return; } for (i = 0; i < opcnt; i++) { if (oplist[i].fp_base_op != 0) op = oplist[i].fp_base_op << 6; else op = oplist[i].fp_extended_op; if (dwarf_get_CFA_name(op, &op_str) != DW_DLV_OK) { snprintf(unk_op, sizeof(unk_op), "[Unknown CFA: %#x]", op); op_str = unk_op; } printf(" %s", op_str); switch (op) { case DW_CFA_advance_loc: delta = oplist[i].fp_offset * caf; pc += delta; printf(": %ju to %08jx", (uintmax_t) delta, (uintmax_t) pc); break; case DW_CFA_offset: case DW_CFA_offset_extended: case DW_CFA_offset_extended_sf: delta = oplist[i].fp_offset * daf; printf(": r%u (%s) at cfa%+jd", oplist[i].fp_register, dwarf_regname(re, oplist[i].fp_register), (intmax_t) delta); break; case DW_CFA_restore: printf(": r%u (%s)", oplist[i].fp_register, dwarf_regname(re, oplist[i].fp_register)); break; case DW_CFA_set_loc: pc = oplist[i].fp_offset; printf(": to %08jx", (uintmax_t) pc); break; case DW_CFA_advance_loc1: case DW_CFA_advance_loc2: case DW_CFA_advance_loc4: pc += oplist[i].fp_offset; printf(": %jd to %08jx", (intmax_t) oplist[i].fp_offset, (uintmax_t) pc); break; case DW_CFA_def_cfa: printf(": r%u (%s) ofs %ju", oplist[i].fp_register, dwarf_regname(re, oplist[i].fp_register), (uintmax_t) oplist[i].fp_offset); break; case DW_CFA_def_cfa_sf: printf(": r%u (%s) ofs %jd", oplist[i].fp_register, dwarf_regname(re, oplist[i].fp_register), (intmax_t) (oplist[i].fp_offset * daf)); break; case DW_CFA_def_cfa_register: printf(": r%u (%s)", oplist[i].fp_register, dwarf_regname(re, oplist[i].fp_register)); break; case DW_CFA_def_cfa_offset: printf(": %ju", (uintmax_t) oplist[i].fp_offset); break; case DW_CFA_def_cfa_offset_sf: printf(": %jd", (intmax_t) (oplist[i].fp_offset * daf)); break; default: break; } putchar('\n'); } dwarf_dealloc(dbg, oplist, DW_DLA_FRAME_BLOCK); } static char * get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off) { static char rs[16]; if (reg == DW_FRAME_UNDEFINED_VAL || reg == DW_FRAME_REG_INITIAL_VALUE) snprintf(rs, sizeof(rs), "%c", 'u'); else if (reg == DW_FRAME_CFA_COL) snprintf(rs, sizeof(rs), "c%+jd", (intmax_t) off); else snprintf(rs, sizeof(rs), "%s%+jd", dwarf_regname(re, reg), (intmax_t) off); return (rs); } static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra) { Dwarf_Regtable rt; Dwarf_Addr row_pc, end_pc, pre_pc, cur_pc; Dwarf_Error de; char *vec; int i; #define BIT_SET(v, n) (v[(n)>>3] |= 1U << ((n) & 7)) #define BIT_CLR(v, n) (v[(n)>>3] &= ~(1U << ((n) & 7))) #define BIT_ISSET(v, n) (v[(n)>>3] & (1U << ((n) & 7))) #define RT(x) rt.rules[(x)] vec = calloc((DW_REG_TABLE_SIZE + 7) / 8, 1); if (vec == NULL) err(EXIT_FAILURE, "calloc failed"); pre_pc = ~((Dwarf_Addr) 0); cur_pc = pc; end_pc = pc + func_len; for (; cur_pc < end_pc; cur_pc++) { if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, &de) != DW_DLV_OK) { warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", dwarf_errmsg(de)); return (-1); } if (row_pc == pre_pc) continue; pre_pc = row_pc; for (i = 1; i < DW_REG_TABLE_SIZE; i++) { if (rt.rules[i].dw_regnum != DW_FRAME_REG_INITIAL_VALUE) BIT_SET(vec, i); } } printf(" LOC CFA "); for (i = 1; i < DW_REG_TABLE_SIZE; i++) { if (BIT_ISSET(vec, i)) { if ((Dwarf_Half) i == cie_ra) printf("ra "); else printf("%-5s", dwarf_regname(re, (unsigned int) i)); } } putchar('\n'); pre_pc = ~((Dwarf_Addr) 0); cur_pc = pc; end_pc = pc + func_len; for (; cur_pc < end_pc; cur_pc++) { if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, &de) != DW_DLV_OK) { warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", dwarf_errmsg(de)); return (-1); } if (row_pc == pre_pc) continue; pre_pc = row_pc; printf("%08jx ", (uintmax_t) row_pc); printf("%-8s ", get_regoff_str(re, RT(0).dw_regnum, RT(0).dw_offset)); for (i = 1; i < DW_REG_TABLE_SIZE; i++) { if (BIT_ISSET(vec, i)) { printf("%-5s", get_regoff_str(re, RT(i).dw_regnum, RT(i).dw_offset)); } } putchar('\n'); } free(vec); return (0); #undef BIT_SET #undef BIT_CLR #undef BIT_ISSET #undef RT } static void dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt) { Dwarf_Cie *cie_list, cie, pre_cie; Dwarf_Fde *fde_list, fde; Dwarf_Off cie_offset, fde_offset; Dwarf_Unsigned cie_length, fde_instlen; Dwarf_Unsigned cie_caf, cie_daf, cie_instlen, func_len, fde_length; Dwarf_Signed cie_count, fde_count, cie_index; Dwarf_Addr low_pc; Dwarf_Half cie_ra; Dwarf_Small cie_version; Dwarf_Ptr fde_addr, fde_inst, cie_inst; char *cie_aug, c; int i, eh_frame; Dwarf_Error de; printf("\nThe section %s contains:\n\n", s->name); if (!strcmp(s->name, ".debug_frame")) { eh_frame = 0; if (dwarf_get_fde_list(re->dbg, &cie_list, &cie_count, &fde_list, &fde_count, &de) != DW_DLV_OK) { warnx("dwarf_get_fde_list failed: %s", dwarf_errmsg(de)); return; } } else if (!strcmp(s->name, ".eh_frame")) { eh_frame = 1; if (dwarf_get_fde_list_eh(re->dbg, &cie_list, &cie_count, &fde_list, &fde_count, &de) != DW_DLV_OK) { warnx("dwarf_get_fde_list_eh failed: %s", dwarf_errmsg(de)); return; } } else return; pre_cie = NULL; for (i = 0; i < fde_count; i++) { if (dwarf_get_fde_n(fde_list, i, &fde, &de) != DW_DLV_OK) { warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); continue; } if (dwarf_get_cie_of_fde(fde, &cie, &de) != DW_DLV_OK) { warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); continue; } if (dwarf_get_fde_range(fde, &low_pc, &func_len, &fde_addr, &fde_length, &cie_offset, &cie_index, &fde_offset, &de) != DW_DLV_OK) { warnx("dwarf_get_fde_range failed: %s", dwarf_errmsg(de)); continue; } if (dwarf_get_fde_instr_bytes(fde, &fde_inst, &fde_instlen, &de) != DW_DLV_OK) { warnx("dwarf_get_fde_instr_bytes failed: %s", dwarf_errmsg(de)); continue; } if (pre_cie == NULL || cie != pre_cie) { pre_cie = cie; if (dwarf_get_cie_info(cie, &cie_length, &cie_version, &cie_aug, &cie_caf, &cie_daf, &cie_ra, &cie_inst, &cie_instlen, &de) != DW_DLV_OK) { warnx("dwarf_get_cie_info failed: %s", dwarf_errmsg(de)); continue; } printf("%08jx %08jx %8.8jx CIE", (uintmax_t) cie_offset, (uintmax_t) cie_length, (uintmax_t) (eh_frame ? 0 : ~0U)); if (!alt) { putchar('\n'); printf(" Version:\t\t\t%u\n", cie_version); printf(" Augmentation:\t\t\t\""); while ((c = *cie_aug++) != '\0') putchar(c); printf("\"\n"); printf(" Code alignment factor:\t%ju\n", (uintmax_t) cie_caf); printf(" Data alignment factor:\t%jd\n", (intmax_t) cie_daf); printf(" Return address column:\t%ju\n", (uintmax_t) cie_ra); putchar('\n'); dump_dwarf_frame_inst(re, cie, cie_inst, cie_instlen, cie_caf, cie_daf, 0, re->dbg); putchar('\n'); } else { printf(" \""); while ((c = *cie_aug++) != '\0') putchar(c); putchar('"'); printf(" cf=%ju df=%jd ra=%ju\n", (uintmax_t) cie_caf, (uintmax_t) cie_daf, (uintmax_t) cie_ra); dump_dwarf_frame_regtable(re, fde, low_pc, 1, cie_ra); putchar('\n'); } } printf("%08jx %08jx %08jx FDE cie=%08jx pc=%08jx..%08jx\n", (uintmax_t) fde_offset, (uintmax_t) fde_length, (uintmax_t) cie_offset, (uintmax_t) (eh_frame ? fde_offset + 4 - cie_offset : cie_offset), (uintmax_t) low_pc, (uintmax_t) (low_pc + func_len)); if (!alt) dump_dwarf_frame_inst(re, cie, fde_inst, fde_instlen, cie_caf, cie_daf, low_pc, re->dbg); else dump_dwarf_frame_regtable(re, fde, low_pc, func_len, cie_ra); putchar('\n'); } } static void dump_dwarf_frame(struct readelf *re, int alt) { struct section *s; int i; (void) dwarf_set_frame_cfa_value(re->dbg, DW_FRAME_CFA_COL); for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->name != NULL && (!strcmp(s->name, ".debug_frame") || !strcmp(s->name, ".eh_frame"))) dump_dwarf_frame_section(re, s, alt); } } static void dump_dwarf_str(struct readelf *re) { struct section *s; Elf_Data *d; unsigned char *p; int elferr, end, i, j; printf("\nContents of section .debug_str:\n"); s = NULL; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->name != NULL && !strcmp(s->name, ".debug_str")) break; } if ((size_t) i >= re->shnum) return; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(-1)); return; } if (d->d_size <= 0) return; for (i = 0, p = d->d_buf; (size_t) i < d->d_size; i += 16) { printf(" 0x%08x", (unsigned int) i); if ((size_t) i + 16 > d->d_size) end = d->d_size; else end = i + 16; for (j = i; j < i + 16; j++) { if ((j - i) % 4 == 0) putchar(' '); if (j >= end) { printf(" "); continue; } printf("%02x", (uint8_t) p[j]); } putchar(' '); for (j = i; j < end; j++) { if (isprint(p[j])) putchar(p[j]); else if (p[j] == 0) putchar('.'); else putchar(' '); } putchar('\n'); } } struct loc_at { Dwarf_Attribute la_at; Dwarf_Unsigned la_off; Dwarf_Unsigned la_lowpc; Dwarf_Half la_cu_psize; Dwarf_Half la_cu_osize; Dwarf_Half la_cu_ver; TAILQ_ENTRY(loc_at) la_next; }; static TAILQ_HEAD(, loc_at) lalist = TAILQ_HEAD_INITIALIZER(lalist); static void search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc) { Dwarf_Attribute *attr_list; Dwarf_Die ret_die; Dwarf_Unsigned off; Dwarf_Off ref; Dwarf_Signed attr_count; Dwarf_Half attr, form; Dwarf_Bool is_info; Dwarf_Error de; struct loc_at *la, *nla; int i, ret; is_info = dwarf_get_die_infotypes_flag(die); if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != DW_DLV_OK) { if (ret == DW_DLV_ERROR) warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); goto cont_search; } for (i = 0; i < attr_count; i++) { if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); continue; } if (attr != DW_AT_location && attr != DW_AT_string_length && attr != DW_AT_return_addr && attr != DW_AT_data_member_location && attr != DW_AT_frame_base && attr != DW_AT_segment && attr != DW_AT_static_link && attr != DW_AT_use_location && attr != DW_AT_vtable_elem_location) continue; if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); continue; } if (form == DW_FORM_data4 || form == DW_FORM_data8) { if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) { warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); continue; } } else if (form == DW_FORM_sec_offset) { if (dwarf_global_formref(attr_list[i], &ref, &de) != DW_DLV_OK) { warnx("dwarf_global_formref failed: %s", dwarf_errmsg(de)); continue; } off = ref; } else continue; TAILQ_FOREACH(la, &lalist, la_next) { if (off == la->la_off) break; if (off < la->la_off) { if ((nla = malloc(sizeof(*nla))) == NULL) err(EXIT_FAILURE, "malloc failed"); nla->la_at = attr_list[i]; nla->la_off = off; nla->la_lowpc = lowpc; nla->la_cu_psize = re->cu_psize; nla->la_cu_osize = re->cu_osize; nla->la_cu_ver = re->cu_ver; TAILQ_INSERT_BEFORE(la, nla, la_next); break; } } if (la == NULL) { if ((nla = malloc(sizeof(*nla))) == NULL) err(EXIT_FAILURE, "malloc failed"); nla->la_at = attr_list[i]; nla->la_off = off; nla->la_lowpc = lowpc; nla->la_cu_psize = re->cu_psize; nla->la_cu_osize = re->cu_osize; nla->la_cu_ver = re->cu_ver; TAILQ_INSERT_TAIL(&lalist, nla, la_next); } } cont_search: /* Search children. */ ret = dwarf_child(die, &ret_die, &de); if (ret == DW_DLV_ERROR) warnx("dwarf_child: %s", dwarf_errmsg(de)); else if (ret == DW_DLV_OK) search_loclist_at(re, ret_die, lowpc); /* Search sibling. */ ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); if (ret == DW_DLV_ERROR) warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); else if (ret == DW_DLV_OK) search_loclist_at(re, ret_die, lowpc); } static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr) { const char *op_str; char unk_op[32]; uint8_t *b, n; int i; if (dwarf_get_OP_name(lr->lr_atom, &op_str) != DW_DLV_OK) { snprintf(unk_op, sizeof(unk_op), "[Unknown OP: %#x]", lr->lr_atom); op_str = unk_op; } printf("%s", op_str); switch (lr->lr_atom) { case DW_OP_reg0: case DW_OP_reg1: case DW_OP_reg2: case DW_OP_reg3: case DW_OP_reg4: case DW_OP_reg5: case DW_OP_reg6: case DW_OP_reg7: case DW_OP_reg8: case DW_OP_reg9: case DW_OP_reg10: case DW_OP_reg11: case DW_OP_reg12: case DW_OP_reg13: case DW_OP_reg14: case DW_OP_reg15: case DW_OP_reg16: case DW_OP_reg17: case DW_OP_reg18: case DW_OP_reg19: case DW_OP_reg20: case DW_OP_reg21: case DW_OP_reg22: case DW_OP_reg23: case DW_OP_reg24: case DW_OP_reg25: case DW_OP_reg26: case DW_OP_reg27: case DW_OP_reg28: case DW_OP_reg29: case DW_OP_reg30: case DW_OP_reg31: printf(" (%s)", dwarf_regname(re, lr->lr_atom - DW_OP_reg0)); break; case DW_OP_deref: case DW_OP_lit0: case DW_OP_lit1: case DW_OP_lit2: case DW_OP_lit3: case DW_OP_lit4: case DW_OP_lit5: case DW_OP_lit6: case DW_OP_lit7: case DW_OP_lit8: case DW_OP_lit9: case DW_OP_lit10: case DW_OP_lit11: case DW_OP_lit12: case DW_OP_lit13: case DW_OP_lit14: case DW_OP_lit15: case DW_OP_lit16: case DW_OP_lit17: case DW_OP_lit18: case DW_OP_lit19: case DW_OP_lit20: case DW_OP_lit21: case DW_OP_lit22: case DW_OP_lit23: case DW_OP_lit24: case DW_OP_lit25: case DW_OP_lit26: case DW_OP_lit27: case DW_OP_lit28: case DW_OP_lit29: case DW_OP_lit30: case DW_OP_lit31: case DW_OP_dup: case DW_OP_drop: case DW_OP_over: case DW_OP_swap: case DW_OP_rot: case DW_OP_xderef: case DW_OP_abs: case DW_OP_and: case DW_OP_div: case DW_OP_minus: case DW_OP_mod: case DW_OP_mul: case DW_OP_neg: case DW_OP_not: case DW_OP_or: case DW_OP_plus: case DW_OP_shl: case DW_OP_shr: case DW_OP_shra: case DW_OP_xor: case DW_OP_eq: case DW_OP_ge: case DW_OP_gt: case DW_OP_le: case DW_OP_lt: case DW_OP_ne: case DW_OP_nop: case DW_OP_push_object_address: case DW_OP_form_tls_address: case DW_OP_call_frame_cfa: case DW_OP_stack_value: case DW_OP_GNU_push_tls_address: case DW_OP_GNU_uninit: break; case DW_OP_const1u: case DW_OP_pick: case DW_OP_deref_size: case DW_OP_xderef_size: case DW_OP_const2u: case DW_OP_bra: case DW_OP_skip: case DW_OP_const4u: case DW_OP_const8u: case DW_OP_constu: case DW_OP_plus_uconst: case DW_OP_regx: case DW_OP_piece: printf(": %ju", (uintmax_t) lr->lr_number); break; case DW_OP_const1s: case DW_OP_const2s: case DW_OP_const4s: case DW_OP_const8s: case DW_OP_consts: printf(": %jd", (intmax_t) lr->lr_number); break; case DW_OP_breg0: case DW_OP_breg1: case DW_OP_breg2: case DW_OP_breg3: case DW_OP_breg4: case DW_OP_breg5: case DW_OP_breg6: case DW_OP_breg7: case DW_OP_breg8: case DW_OP_breg9: case DW_OP_breg10: case DW_OP_breg11: case DW_OP_breg12: case DW_OP_breg13: case DW_OP_breg14: case DW_OP_breg15: case DW_OP_breg16: case DW_OP_breg17: case DW_OP_breg18: case DW_OP_breg19: case DW_OP_breg20: case DW_OP_breg21: case DW_OP_breg22: case DW_OP_breg23: case DW_OP_breg24: case DW_OP_breg25: case DW_OP_breg26: case DW_OP_breg27: case DW_OP_breg28: case DW_OP_breg29: case DW_OP_breg30: case DW_OP_breg31: printf(" (%s): %jd", dwarf_regname(re, lr->lr_atom - DW_OP_breg0), (intmax_t) lr->lr_number); break; case DW_OP_fbreg: printf(": %jd", (intmax_t) lr->lr_number); break; case DW_OP_bregx: printf(": %ju (%s) %jd", (uintmax_t) lr->lr_number, dwarf_regname(re, (unsigned int) lr->lr_number), (intmax_t) lr->lr_number2); break; case DW_OP_addr: case DW_OP_GNU_encoded_addr: printf(": %#jx", (uintmax_t) lr->lr_number); break; case DW_OP_GNU_implicit_pointer: printf(": <0x%jx> %jd", (uintmax_t) lr->lr_number, (intmax_t) lr->lr_number2); break; case DW_OP_implicit_value: printf(": %ju byte block:", (uintmax_t) lr->lr_number); b = (uint8_t *)(uintptr_t) lr->lr_number2; for (i = 0; (Dwarf_Unsigned) i < lr->lr_number; i++) printf(" %x", b[i]); break; case DW_OP_GNU_entry_value: printf(": ("); dump_dwarf_block(re, (uint8_t *)(uintptr_t) lr->lr_number2, lr->lr_number); putchar(')'); break; case DW_OP_GNU_const_type: printf(": <0x%jx> ", (uintmax_t) lr->lr_number); b = (uint8_t *)(uintptr_t) lr->lr_number2; n = *b; for (i = 1; (uint8_t) i < n; i++) printf(" %x", b[i]); break; case DW_OP_GNU_regval_type: printf(": %ju (%s) <0x%jx>", (uintmax_t) lr->lr_number, dwarf_regname(re, (unsigned int) lr->lr_number), (uintmax_t) lr->lr_number2); break; case DW_OP_GNU_convert: case DW_OP_GNU_deref_type: case DW_OP_GNU_parameter_ref: case DW_OP_GNU_reinterpret: printf(": <0x%jx>", (uintmax_t) lr->lr_number); break; default: break; } } static void dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len) { Dwarf_Locdesc *llbuf; Dwarf_Signed lcnt; Dwarf_Error de; int i; if (dwarf_loclist_from_expr_b(re->dbg, b, len, re->cu_psize, re->cu_osize, re->cu_ver, &llbuf, &lcnt, &de) != DW_DLV_OK) { warnx("dwarf_loclist_form_expr_b: %s", dwarf_errmsg(de)); return; } for (i = 0; (Dwarf_Half) i < llbuf->ld_cents; i++) { dump_dwarf_loc(re, &llbuf->ld_s[i]); if (i < llbuf->ld_cents - 1) printf("; "); } dwarf_dealloc(re->dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK); dwarf_dealloc(re->dbg, llbuf, DW_DLA_LOCDESC); } static void dump_dwarf_loclist(struct readelf *re) { Dwarf_Die die; Dwarf_Locdesc **llbuf; Dwarf_Unsigned lowpc; Dwarf_Signed lcnt; Dwarf_Half tag, version, pointer_size, off_size; Dwarf_Error de; struct loc_at *la; int i, j, ret; printf("\nContents of section .debug_loc:\n"); /* Search .debug_info section. */ while ((ret = dwarf_next_cu_header_b(re->dbg, NULL, &version, NULL, &pointer_size, &off_size, NULL, NULL, &de)) == DW_DLV_OK) { set_cu_context(re, pointer_size, off_size, version); die = NULL; if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) continue; if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); continue; } /* XXX: What about DW_TAG_partial_unit? */ lowpc = 0; if (tag == DW_TAG_compile_unit) { if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc, &de) != DW_DLV_OK) lowpc = 0; } /* Search attributes for reference to .debug_loc section. */ search_loclist_at(re, die, lowpc); } if (ret == DW_DLV_ERROR) warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); /* Search .debug_types section. */ do { while ((ret = dwarf_next_cu_header_c(re->dbg, 0, NULL, &version, NULL, &pointer_size, &off_size, NULL, NULL, NULL, NULL, &de)) == DW_DLV_OK) { set_cu_context(re, pointer_size, off_size, version); die = NULL; if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) continue; if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); continue; } lowpc = 0; if (tag == DW_TAG_type_unit) { if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc, &de) != DW_DLV_OK) lowpc = 0; } /* * Search attributes for reference to .debug_loc * section. */ search_loclist_at(re, die, lowpc); } if (ret == DW_DLV_ERROR) warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); if (TAILQ_EMPTY(&lalist)) return; printf(" Offset Begin End Expression\n"); TAILQ_FOREACH(la, &lalist, la_next) { if (dwarf_loclist_n(la->la_at, &llbuf, &lcnt, &de) != DW_DLV_OK) { warnx("dwarf_loclist_n failed: %s", dwarf_errmsg(de)); continue; } set_cu_context(re, la->la_cu_psize, la->la_cu_osize, la->la_cu_ver); for (i = 0; i < lcnt; i++) { printf(" %8.8jx ", (uintmax_t) la->la_off); if (llbuf[i]->ld_lopc == 0 && llbuf[i]->ld_hipc == 0) { printf("\n"); continue; } /* TODO: handle base selection entry. */ printf("%8.8jx %8.8jx ", (uintmax_t) (la->la_lowpc + llbuf[i]->ld_lopc), (uintmax_t) (la->la_lowpc + llbuf[i]->ld_hipc)); putchar('('); for (j = 0; (Dwarf_Half) j < llbuf[i]->ld_cents; j++) { dump_dwarf_loc(re, &llbuf[i]->ld_s[j]); if (j < llbuf[i]->ld_cents - 1) printf("; "); } putchar(')'); if (llbuf[i]->ld_lopc == llbuf[i]->ld_hipc) printf(" (start == end)"); putchar('\n'); } for (i = 0; i < lcnt; i++) { dwarf_dealloc(re->dbg, llbuf[i]->ld_s, DW_DLA_LOC_BLOCK); dwarf_dealloc(re->dbg, llbuf[i], DW_DLA_LOCDESC); } dwarf_dealloc(re->dbg, llbuf, DW_DLA_LIST); } } /* * Retrieve a string using string table section index and the string offset. */ static const char* get_string(struct readelf *re, int strtab, size_t off) { const char *name; if ((name = elf_strptr(re->elf, strtab, off)) == NULL) return (""); return (name); } /* * Retrieve the name of a symbol using the section index of the symbol * table and the index of the symbol within that table. */ static const char * get_symbol_name(struct readelf *re, int symtab, int i) { struct section *s; const char *name; GElf_Sym sym; Elf_Data *data; int elferr; s = &re->sl[symtab]; if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) return (""); (void) elf_errno(); if ((data = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return (""); } if (gelf_getsym(data, i, &sym) != &sym) return (""); /* Return section name for STT_SECTION symbol. */ if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) { if (sym.st_shndx < re->shnum && re->sl[sym.st_shndx].name != NULL) return (re->sl[sym.st_shndx].name); return (""); } if (s->link >= re->shnum || (name = elf_strptr(re->elf, s->link, sym.st_name)) == NULL) return (""); return (name); } static uint64_t get_symbol_value(struct readelf *re, int symtab, int i) { struct section *s; GElf_Sym sym; Elf_Data *data; int elferr; s = &re->sl[symtab]; if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) return (0); (void) elf_errno(); if ((data = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return (0); } if (gelf_getsym(data, i, &sym) != &sym) return (0); return (sym.st_value); } static void hex_dump(struct readelf *re) { struct section *s; Elf_Data *d; uint8_t *buf; size_t sz, nbytes; uint64_t addr; int elferr, i, j; for (i = 1; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (find_dumpop(re, (size_t) i, s->name, HEX_DUMP, -1) == NULL) continue; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL && (d = elf_rawdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); continue; } (void) elf_errno(); if (d->d_size <= 0 || d->d_buf == NULL) { printf("\nSection '%s' has no data to dump.\n", s->name); continue; } buf = d->d_buf; sz = d->d_size; addr = s->addr; printf("\nHex dump of section '%s':\n", s->name); while (sz > 0) { printf(" 0x%8.8jx ", (uintmax_t)addr); nbytes = sz > 16? 16 : sz; for (j = 0; j < 16; j++) { if ((size_t)j < nbytes) printf("%2.2x", buf[j]); else printf(" "); if ((j & 3) == 3) printf(" "); } for (j = 0; (size_t)j < nbytes; j++) { if (isprint(buf[j])) printf("%c", buf[j]); else printf("."); } printf("\n"); buf += nbytes; addr += nbytes; sz -= nbytes; } } } static void str_dump(struct readelf *re) { struct section *s; Elf_Data *d; unsigned char *start, *end, *buf_end; unsigned int len; int i, j, elferr, found; for (i = 1; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (find_dumpop(re, (size_t) i, s->name, STR_DUMP, -1) == NULL) continue; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL && (d = elf_rawdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); continue; } (void) elf_errno(); if (d->d_size <= 0 || d->d_buf == NULL) { printf("\nSection '%s' has no data to dump.\n", s->name); continue; } buf_end = (unsigned char *) d->d_buf + d->d_size; start = (unsigned char *) d->d_buf; found = 0; printf("\nString dump of section '%s':\n", s->name); for (;;) { while (start < buf_end && !isprint(*start)) start++; if (start >= buf_end) break; end = start + 1; while (end < buf_end && isprint(*end)) end++; printf(" [%6lx] ", (long) (start - (unsigned char *) d->d_buf)); len = end - start; for (j = 0; (unsigned int) j < len; j++) putchar(start[j]); putchar('\n'); found = 1; if (end >= buf_end) break; start = end + 1; } if (!found) printf(" No strings found in this section."); putchar('\n'); } } static void load_sections(struct readelf *re) { struct section *s; const char *name; Elf_Scn *scn; GElf_Shdr sh; size_t shstrndx, ndx; int elferr; /* Allocate storage for internal section list. */ if (!elf_getshnum(re->elf, &re->shnum)) { warnx("elf_getshnum failed: %s", elf_errmsg(-1)); return; } if (re->sl != NULL) free(re->sl); if ((re->sl = calloc(re->shnum, sizeof(*re->sl))) == NULL) err(EXIT_FAILURE, "calloc failed"); /* Get the index of .shstrtab section. */ if (!elf_getshstrndx(re->elf, &shstrndx)) { warnx("elf_getshstrndx failed: %s", elf_errmsg(-1)); return; } if ((scn = elf_getscn(re->elf, 0)) == NULL) return; (void) elf_errno(); do { if (gelf_getshdr(scn, &sh) == NULL) { warnx("gelf_getshdr failed: %s", elf_errmsg(-1)); (void) elf_errno(); continue; } if ((name = elf_strptr(re->elf, shstrndx, sh.sh_name)) == NULL) { (void) elf_errno(); name = "ERROR"; } if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) { if ((elferr = elf_errno()) != 0) warnx("elf_ndxscn failed: %s", elf_errmsg(elferr)); continue; } if (ndx >= re->shnum) { warnx("section index of '%s' out of range", name); continue; } if (sh.sh_link >= re->shnum) warnx("section link %llu of '%s' out of range", (unsigned long long)sh.sh_link, name); s = &re->sl[ndx]; s->name = name; s->scn = scn; s->off = sh.sh_offset; s->sz = sh.sh_size; s->entsize = sh.sh_entsize; s->align = sh.sh_addralign; s->type = sh.sh_type; s->flags = sh.sh_flags; s->addr = sh.sh_addr; s->link = sh.sh_link; s->info = sh.sh_info; } while ((scn = elf_nextscn(re->elf, scn)) != NULL); elferr = elf_errno(); if (elferr != 0) warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); } static void unload_sections(struct readelf *re) { if (re->sl != NULL) { free(re->sl); re->sl = NULL; } re->shnum = 0; re->vd_s = NULL; re->vn_s = NULL; re->vs_s = NULL; re->vs = NULL; re->vs_sz = 0; if (re->ver != NULL) { free(re->ver); re->ver = NULL; re->ver_sz = 0; } } static void dump_elf(struct readelf *re) { /* Fetch ELF header. No need to continue if it fails. */ if (gelf_getehdr(re->elf, &re->ehdr) == NULL) { warnx("gelf_getehdr failed: %s", elf_errmsg(-1)); return; } if ((re->ec = gelf_getclass(re->elf)) == ELFCLASSNONE) { warnx("gelf_getclass failed: %s", elf_errmsg(-1)); return; } if (re->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) { re->dw_read = _read_msb; re->dw_decode = _decode_msb; } else { re->dw_read = _read_lsb; re->dw_decode = _decode_lsb; } if (re->options & ~RE_H) load_sections(re); if ((re->options & RE_VV) || (re->options & RE_S)) search_ver(re); if (re->options & RE_H) dump_ehdr(re); if (re->options & RE_L) dump_phdr(re); if (re->options & RE_SS) dump_shdr(re); if (re->options & RE_G) dump_section_groups(re); if (re->options & RE_D) dump_dynamic(re); if (re->options & RE_R) dump_reloc(re); if (re->options & RE_S) dump_symtabs(re); if (re->options & RE_N) dump_notes(re); if (re->options & RE_II) dump_hash(re); if (re->options & RE_X) hex_dump(re); if (re->options & RE_P) str_dump(re); if (re->options & RE_VV) dump_ver(re); if (re->options & RE_AA) dump_arch_specific_info(re); if (re->options & RE_W) dump_dwarf(re); if (re->options & ~RE_H) unload_sections(re); } static void dump_dwarf(struct readelf *re) { int error; Dwarf_Error de; if (dwarf_elf_init(re->elf, DW_DLC_READ, NULL, NULL, &re->dbg, &de)) { if ((error = dwarf_errno(de)) != DW_DLE_DEBUG_INFO_NULL) errx(EXIT_FAILURE, "dwarf_elf_init failed: %s", dwarf_errmsg(de)); return; } if (re->dop & DW_A) dump_dwarf_abbrev(re); if (re->dop & DW_L) dump_dwarf_line(re); if (re->dop & DW_LL) dump_dwarf_line_decoded(re); if (re->dop & DW_I) { dump_dwarf_info(re, 0); dump_dwarf_info(re, 1); } if (re->dop & DW_P) dump_dwarf_pubnames(re); if (re->dop & DW_R) dump_dwarf_aranges(re); if (re->dop & DW_RR) dump_dwarf_ranges(re); if (re->dop & DW_M) dump_dwarf_macinfo(re); if (re->dop & DW_F) dump_dwarf_frame(re, 0); else if (re->dop & DW_FF) dump_dwarf_frame(re, 1); if (re->dop & DW_S) dump_dwarf_str(re); if (re->dop & DW_O) dump_dwarf_loclist(re); dwarf_finish(re->dbg, &de); } static void dump_ar(struct readelf *re, int fd) { Elf_Arsym *arsym; Elf_Arhdr *arhdr; Elf_Cmd cmd; Elf *e; size_t sz; off_t off; int i; re->ar = re->elf; if (re->options & RE_C) { if ((arsym = elf_getarsym(re->ar, &sz)) == NULL) { warnx("elf_getarsym() failed: %s", elf_errmsg(-1)); goto process_members; } printf("Index of archive %s: (%ju entries)\n", re->filename, (uintmax_t) sz - 1); off = 0; for (i = 0; (size_t) i < sz; i++) { if (arsym[i].as_name == NULL) break; if (arsym[i].as_off != off) { off = arsym[i].as_off; if (elf_rand(re->ar, off) != off) { warnx("elf_rand() failed: %s", elf_errmsg(-1)); continue; } if ((e = elf_begin(fd, ELF_C_READ, re->ar)) == NULL) { warnx("elf_begin() failed: %s", elf_errmsg(-1)); continue; } if ((arhdr = elf_getarhdr(e)) == NULL) { warnx("elf_getarhdr() failed: %s", elf_errmsg(-1)); elf_end(e); continue; } printf("Binary %s(%s) contains:\n", re->filename, arhdr->ar_name); } printf("\t%s\n", arsym[i].as_name); } if (elf_rand(re->ar, SARMAG) != SARMAG) { warnx("elf_rand() failed: %s", elf_errmsg(-1)); return; } } process_members: if ((re->options & ~RE_C) == 0) return; cmd = ELF_C_READ; while ((re->elf = elf_begin(fd, cmd, re->ar)) != NULL) { if ((arhdr = elf_getarhdr(re->elf)) == NULL) { warnx("elf_getarhdr() failed: %s", elf_errmsg(-1)); goto next_member; } if (strcmp(arhdr->ar_name, "/") == 0 || strcmp(arhdr->ar_name, "//") == 0 || strcmp(arhdr->ar_name, "__.SYMDEF") == 0) goto next_member; printf("\nFile: %s(%s)\n", re->filename, arhdr->ar_name); dump_elf(re); next_member: cmd = elf_next(re->elf); elf_end(re->elf); } re->elf = re->ar; } static void dump_object(struct readelf *re) { int fd; if ((fd = open(re->filename, O_RDONLY)) == -1) { warn("open %s failed", re->filename); return; } if ((re->flags & DISPLAY_FILENAME) != 0) printf("\nFile: %s\n", re->filename); if ((re->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) { warnx("elf_begin() failed: %s", elf_errmsg(-1)); return; } switch (elf_kind(re->elf)) { case ELF_K_NONE: warnx("Not an ELF file."); return; case ELF_K_ELF: dump_elf(re); break; case ELF_K_AR: dump_ar(re, fd); break; default: warnx("Internal: libelf returned unknown elf kind."); return; } elf_end(re->elf); } static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) { struct dumpop *d; if ((d = find_dumpop(re, si, sn, -1, t)) == NULL) { if ((d = calloc(1, sizeof(*d))) == NULL) err(EXIT_FAILURE, "calloc failed"); if (t == DUMP_BY_INDEX) d->u.si = si; else d->u.sn = sn; d->type = t; d->op = op; STAILQ_INSERT_TAIL(&re->v_dumpop, d, dumpop_list); } else d->op |= op; } static struct dumpop * find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) { struct dumpop *d; STAILQ_FOREACH(d, &re->v_dumpop, dumpop_list) { if ((op == -1 || op & d->op) && (t == -1 || (unsigned) t == d->type)) { if ((d->type == DUMP_BY_INDEX && d->u.si == si) || (d->type == DUMP_BY_NAME && !strcmp(d->u.sn, sn))) return (d); } } return (NULL); } static struct { const char *ln; char sn; int value; } dwarf_op[] = { {"rawline", 'l', DW_L}, {"decodedline", 'L', DW_LL}, {"info", 'i', DW_I}, {"abbrev", 'a', DW_A}, {"pubnames", 'p', DW_P}, {"aranges", 'r', DW_R}, {"ranges", 'r', DW_R}, {"Ranges", 'R', DW_RR}, {"macro", 'm', DW_M}, {"frames", 'f', DW_F}, {"frames-interp", 'F', DW_FF}, {"str", 's', DW_S}, {"loc", 'o', DW_O}, {NULL, 0, 0} }; static void parse_dwarf_op_short(struct readelf *re, const char *op) { int i; if (op == NULL) { re->dop |= DW_DEFAULT_OPTIONS; return; } for (; *op != '\0'; op++) { for (i = 0; dwarf_op[i].ln != NULL; i++) { if (dwarf_op[i].sn == *op) { re->dop |= dwarf_op[i].value; break; } } } } static void parse_dwarf_op_long(struct readelf *re, const char *op) { char *p, *token, *bp; int i; if (op == NULL) { re->dop |= DW_DEFAULT_OPTIONS; return; } if ((p = strdup(op)) == NULL) err(EXIT_FAILURE, "strdup failed"); bp = p; while ((token = strsep(&p, ",")) != NULL) { for (i = 0; dwarf_op[i].ln != NULL; i++) { if (!strcmp(token, dwarf_op[i].ln)) { re->dop |= dwarf_op[i].value; break; } } } free(bp); } static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) { uint64_t ret; uint8_t *src; src = (uint8_t *) d->d_buf + *offsetp; ret = 0; switch (bytes_to_read) { case 8: ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; /* FALLTHROUGH */ case 4: ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; /* FALLTHROUGH */ case 2: ret |= ((uint64_t) src[1]) << 8; /* FALLTHROUGH */ case 1: ret |= src[0]; break; default: return (0); } *offsetp += bytes_to_read; return (ret); } static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) { uint64_t ret; uint8_t *src; src = (uint8_t *) d->d_buf + *offsetp; switch (bytes_to_read) { case 1: ret = src[0]; break; case 2: ret = src[1] | ((uint64_t) src[0]) << 8; break; case 4: ret = src[3] | ((uint64_t) src[2]) << 8; ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; break; case 8: ret = src[7] | ((uint64_t) src[6]) << 8; ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; break; default: return (0); } *offsetp += bytes_to_read; return (ret); } static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read) { uint64_t ret; uint8_t *src; src = *data; ret = 0; switch (bytes_to_read) { case 8: ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; /* FALLTHROUGH */ case 4: ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; /* FALLTHROUGH */ case 2: ret |= ((uint64_t) src[1]) << 8; /* FALLTHROUGH */ case 1: ret |= src[0]; break; default: return (0); } *data += bytes_to_read; return (ret); } static uint64_t _decode_msb(uint8_t **data, int bytes_to_read) { uint64_t ret; uint8_t *src; src = *data; ret = 0; switch (bytes_to_read) { case 1: ret = src[0]; break; case 2: ret = src[1] | ((uint64_t) src[0]) << 8; break; case 4: ret = src[3] | ((uint64_t) src[2]) << 8; ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; break; case 8: ret = src[7] | ((uint64_t) src[6]) << 8; ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; break; default: return (0); break; } *data += bytes_to_read; return (ret); } static int64_t _decode_sleb128(uint8_t **dp, uint8_t *dpe) { int64_t ret = 0; uint8_t b = 0; int shift = 0; uint8_t *src = *dp; do { if (src >= dpe) break; b = *src++; ret |= ((b & 0x7f) << shift); shift += 7; } while ((b & 0x80) != 0); if (shift < 32 && (b & 0x40) != 0) ret |= (-1 << shift); *dp = src; return (ret); } static uint64_t _decode_uleb128(uint8_t **dp, uint8_t *dpe) { uint64_t ret = 0; uint8_t b; int shift = 0; uint8_t *src = *dp; do { if (src >= dpe) break; b = *src++; ret |= ((b & 0x7f) << shift); shift += 7; } while ((b & 0x80) != 0); *dp = src; return (ret); } static void readelf_version(void) { (void) printf("%s (%s)\n", ELFTC_GETPROGNAME(), elftc_version()); exit(EXIT_SUCCESS); } #define USAGE_MESSAGE "\ Usage: %s [options] file...\n\ Display information about ELF objects and ar(1) archives.\n\n\ Options:\n\ -a | --all Equivalent to specifying options '-dhIlrsASV'.\n\ -c | --archive-index Print the archive symbol table for archives.\n\ -d | --dynamic Print the contents of SHT_DYNAMIC sections.\n\ -e | --headers Print all headers in the object.\n\ -g | --section-groups Print the contents of the section groups.\n\ -h | --file-header Print the file header for the object.\n\ -l | --program-headers Print the PHDR table for the object.\n\ -n | --notes Print the contents of SHT_NOTE sections.\n\ -p INDEX | --string-dump=INDEX\n\ Print the contents of section at index INDEX.\n\ -r | --relocs Print relocation information.\n\ -s | --syms | --symbols Print symbol tables.\n\ -t | --section-details Print additional information about sections.\n\ -v | --version Print a version identifier and exit.\n\ -w[afilmoprsFLR] | --debug-dump={abbrev,aranges,decodedline,frames,\n\ frames-interp,info,loc,macro,pubnames,\n\ ranges,Ranges,rawline,str}\n\ Display DWARF information.\n\ -x INDEX | --hex-dump=INDEX\n\ Display contents of a section as hexadecimal.\n\ -A | --arch-specific (accepted, but ignored)\n\ -D | --use-dynamic Print the symbol table specified by the DT_SYMTAB\n\ entry in the \".dynamic\" section.\n\ -H | --help Print a help message.\n\ -I | --histogram Print information on bucket list lengths for \n\ hash sections.\n\ -N | --full-section-name (accepted, but ignored)\n\ -S | --sections | --section-headers\n\ Print information about section headers.\n\ -V | --version-info Print symbol versoning information.\n\ -W | --wide Print information without wrapping long lines.\n" static void readelf_usage(int status) { fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME()); exit(status); } int main(int argc, char **argv) { struct readelf *re, re_storage; unsigned long si; int opt, i; char *ep; re = &re_storage; memset(re, 0, sizeof(*re)); STAILQ_INIT(&re->v_dumpop); while ((opt = getopt_long(argc, argv, "AacDdegHhIi:lNnp:rSstuVvWw::x:", longopts, NULL)) != -1) { switch(opt) { case '?': readelf_usage(EXIT_SUCCESS); break; case 'A': re->options |= RE_AA; break; case 'a': re->options |= RE_AA | RE_D | RE_G | RE_H | RE_II | RE_L | RE_R | RE_SS | RE_S | RE_VV; break; case 'c': re->options |= RE_C; break; case 'D': re->options |= RE_DD; break; case 'd': re->options |= RE_D; break; case 'e': re->options |= RE_H | RE_L | RE_SS; break; case 'g': re->options |= RE_G; break; case 'H': readelf_usage(EXIT_SUCCESS); break; case 'h': re->options |= RE_H; break; case 'I': re->options |= RE_II; break; case 'i': /* Not implemented yet. */ break; case 'l': re->options |= RE_L; break; case 'N': re->options |= RE_NN; break; case 'n': re->options |= RE_N; break; case 'p': re->options |= RE_P; si = strtoul(optarg, &ep, 10); if (*ep == '\0') add_dumpop(re, (size_t) si, NULL, STR_DUMP, DUMP_BY_INDEX); else add_dumpop(re, 0, optarg, STR_DUMP, DUMP_BY_NAME); break; case 'r': re->options |= RE_R; break; case 'S': re->options |= RE_SS; break; case 's': re->options |= RE_S; break; case 't': re->options |= RE_T; break; case 'u': re->options |= RE_U; break; case 'V': re->options |= RE_VV; break; case 'v': readelf_version(); break; case 'W': re->options |= RE_WW; break; case 'w': re->options |= RE_W; parse_dwarf_op_short(re, optarg); break; case 'x': re->options |= RE_X; si = strtoul(optarg, &ep, 10); if (*ep == '\0') add_dumpop(re, (size_t) si, NULL, HEX_DUMP, DUMP_BY_INDEX); else add_dumpop(re, 0, optarg, HEX_DUMP, DUMP_BY_NAME); break; case OPTION_DEBUG_DUMP: re->options |= RE_W; parse_dwarf_op_long(re, optarg); } } argv += optind; argc -= optind; if (argc == 0 || re->options == 0) readelf_usage(EXIT_FAILURE); if (argc > 1) re->flags |= DISPLAY_FILENAME; if (elf_version(EV_CURRENT) == EV_NONE) errx(EXIT_FAILURE, "ELF library initialization failed: %s", elf_errmsg(-1)); for (i = 0; i < argc; i++) { re->filename = argv[i]; dump_object(re); } exit(EXIT_SUCCESS); }