Index: head/sys/dev/pci/pci_pci.c =================================================================== --- head/sys/dev/pci/pci_pci.c (revision 303787) +++ head/sys/dev/pci/pci_pci.c (revision 303788) @@ -1,2816 +1,2816 @@ /*- * Copyright (c) 1994,1995 Stefan Esser, Wolfgang StanglMeier * Copyright (c) 2000 Michael Smith * Copyright (c) 2000 BSDi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * PCI:PCI bridge support. */ #include "opt_pci.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pcib_if.h" static int pcib_probe(device_t dev); static int pcib_suspend(device_t dev); static int pcib_resume(device_t dev); static int pcib_power_for_sleep(device_t pcib, device_t dev, int *pstate); static int pcib_ari_get_id(device_t pcib, device_t dev, enum pci_id_type type, uintptr_t *id); static uint32_t pcib_read_config(device_t dev, u_int b, u_int s, u_int f, u_int reg, int width); static void pcib_write_config(device_t dev, u_int b, u_int s, u_int f, u_int reg, uint32_t val, int width); static int pcib_ari_maxslots(device_t dev); static int pcib_ari_maxfuncs(device_t dev); static int pcib_try_enable_ari(device_t pcib, device_t dev); static int pcib_ari_enabled(device_t pcib); static void pcib_ari_decode_rid(device_t pcib, uint16_t rid, int *bus, int *slot, int *func); #ifdef PCI_HP static void pcib_pcie_ab_timeout(void *arg); static void pcib_pcie_cc_timeout(void *arg); static void pcib_pcie_dll_timeout(void *arg); #endif static device_method_t pcib_methods[] = { /* Device interface */ DEVMETHOD(device_probe, pcib_probe), DEVMETHOD(device_attach, pcib_attach), DEVMETHOD(device_detach, pcib_detach), DEVMETHOD(device_shutdown, bus_generic_shutdown), DEVMETHOD(device_suspend, pcib_suspend), DEVMETHOD(device_resume, pcib_resume), /* Bus interface */ DEVMETHOD(bus_child_present, pcib_child_present), DEVMETHOD(bus_read_ivar, pcib_read_ivar), DEVMETHOD(bus_write_ivar, pcib_write_ivar), DEVMETHOD(bus_alloc_resource, pcib_alloc_resource), #ifdef NEW_PCIB DEVMETHOD(bus_adjust_resource, pcib_adjust_resource), DEVMETHOD(bus_release_resource, pcib_release_resource), #else DEVMETHOD(bus_adjust_resource, bus_generic_adjust_resource), DEVMETHOD(bus_release_resource, bus_generic_release_resource), #endif DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), /* pcib interface */ DEVMETHOD(pcib_maxslots, pcib_ari_maxslots), DEVMETHOD(pcib_maxfuncs, pcib_ari_maxfuncs), DEVMETHOD(pcib_read_config, pcib_read_config), DEVMETHOD(pcib_write_config, pcib_write_config), DEVMETHOD(pcib_route_interrupt, pcib_route_interrupt), DEVMETHOD(pcib_alloc_msi, pcib_alloc_msi), DEVMETHOD(pcib_release_msi, pcib_release_msi), DEVMETHOD(pcib_alloc_msix, pcib_alloc_msix), DEVMETHOD(pcib_release_msix, pcib_release_msix), DEVMETHOD(pcib_map_msi, pcib_map_msi), DEVMETHOD(pcib_power_for_sleep, pcib_power_for_sleep), DEVMETHOD(pcib_get_id, pcib_ari_get_id), DEVMETHOD(pcib_try_enable_ari, pcib_try_enable_ari), DEVMETHOD(pcib_ari_enabled, pcib_ari_enabled), DEVMETHOD(pcib_decode_rid, pcib_ari_decode_rid), DEVMETHOD_END }; static devclass_t pcib_devclass; DEFINE_CLASS_0(pcib, pcib_driver, pcib_methods, sizeof(struct pcib_softc)); DRIVER_MODULE(pcib, pci, pcib_driver, pcib_devclass, NULL, NULL); #if defined(NEW_PCIB) || defined(PCI_HP) SYSCTL_DECL(_hw_pci); #endif #ifdef NEW_PCIB static int pci_clear_pcib; SYSCTL_INT(_hw_pci, OID_AUTO, clear_pcib, CTLFLAG_RDTUN, &pci_clear_pcib, 0, "Clear firmware-assigned resources for PCI-PCI bridge I/O windows."); /* * Is a resource from a child device sub-allocated from one of our * resource managers? */ static int pcib_is_resource_managed(struct pcib_softc *sc, int type, struct resource *r) { switch (type) { #ifdef PCI_RES_BUS case PCI_RES_BUS: return (rman_is_region_manager(r, &sc->bus.rman)); #endif case SYS_RES_IOPORT: return (rman_is_region_manager(r, &sc->io.rman)); case SYS_RES_MEMORY: /* Prefetchable resources may live in either memory rman. */ if (rman_get_flags(r) & RF_PREFETCHABLE && rman_is_region_manager(r, &sc->pmem.rman)) return (1); return (rman_is_region_manager(r, &sc->mem.rman)); } return (0); } static int pcib_is_window_open(struct pcib_window *pw) { return (pw->valid && pw->base < pw->limit); } /* * XXX: If RF_ACTIVE did not also imply allocating a bus space tag and * handle for the resource, we could pass RF_ACTIVE up to the PCI bus * when allocating the resource windows and rely on the PCI bus driver * to do this for us. */ static void pcib_activate_window(struct pcib_softc *sc, int type) { PCI_ENABLE_IO(device_get_parent(sc->dev), sc->dev, type); } static void pcib_write_windows(struct pcib_softc *sc, int mask) { device_t dev; uint32_t val; dev = sc->dev; if (sc->io.valid && mask & WIN_IO) { val = pci_read_config(dev, PCIR_IOBASEL_1, 1); if ((val & PCIM_BRIO_MASK) == PCIM_BRIO_32) { pci_write_config(dev, PCIR_IOBASEH_1, sc->io.base >> 16, 2); pci_write_config(dev, PCIR_IOLIMITH_1, sc->io.limit >> 16, 2); } pci_write_config(dev, PCIR_IOBASEL_1, sc->io.base >> 8, 1); pci_write_config(dev, PCIR_IOLIMITL_1, sc->io.limit >> 8, 1); } if (mask & WIN_MEM) { pci_write_config(dev, PCIR_MEMBASE_1, sc->mem.base >> 16, 2); pci_write_config(dev, PCIR_MEMLIMIT_1, sc->mem.limit >> 16, 2); } if (sc->pmem.valid && mask & WIN_PMEM) { val = pci_read_config(dev, PCIR_PMBASEL_1, 2); if ((val & PCIM_BRPM_MASK) == PCIM_BRPM_64) { pci_write_config(dev, PCIR_PMBASEH_1, sc->pmem.base >> 32, 4); pci_write_config(dev, PCIR_PMLIMITH_1, sc->pmem.limit >> 32, 4); } pci_write_config(dev, PCIR_PMBASEL_1, sc->pmem.base >> 16, 2); pci_write_config(dev, PCIR_PMLIMITL_1, sc->pmem.limit >> 16, 2); } } /* * This is used to reject I/O port allocations that conflict with an * ISA alias range. */ static int pcib_is_isa_range(struct pcib_softc *sc, rman_res_t start, rman_res_t end, rman_res_t count) { rman_res_t next_alias; if (!(sc->bridgectl & PCIB_BCR_ISA_ENABLE)) return (0); /* Only check fixed ranges for overlap. */ if (start + count - 1 != end) return (0); /* ISA aliases are only in the lower 64KB of I/O space. */ if (start >= 65536) return (0); /* Check for overlap with 0x000 - 0x0ff as a special case. */ if (start < 0x100) goto alias; /* * If the start address is an alias, the range is an alias. * Otherwise, compute the start of the next alias range and * check if it is before the end of the candidate range. */ if ((start & 0x300) != 0) goto alias; next_alias = (start & ~0x3fful) | 0x100; if (next_alias <= end) goto alias; return (0); alias: if (bootverbose) device_printf(sc->dev, "I/O range %#jx-%#jx overlaps with an ISA alias\n", start, end); return (1); } static void pcib_add_window_resources(struct pcib_window *w, struct resource **res, int count) { struct resource **newarray; int error, i; newarray = malloc(sizeof(struct resource *) * (w->count + count), M_DEVBUF, M_WAITOK); if (w->res != NULL) bcopy(w->res, newarray, sizeof(struct resource *) * w->count); bcopy(res, newarray + w->count, sizeof(struct resource *) * count); free(w->res, M_DEVBUF); w->res = newarray; w->count += count; for (i = 0; i < count; i++) { error = rman_manage_region(&w->rman, rman_get_start(res[i]), rman_get_end(res[i])); if (error) panic("Failed to add resource to rman"); } } typedef void (nonisa_callback)(rman_res_t start, rman_res_t end, void *arg); static void pcib_walk_nonisa_ranges(rman_res_t start, rman_res_t end, nonisa_callback *cb, void *arg) { rman_res_t next_end; /* * If start is within an ISA alias range, move up to the start * of the next non-alias range. As a special case, addresses * in the range 0x000 - 0x0ff should also be skipped since * those are used for various system I/O devices in ISA * systems. */ if (start <= 65535) { if (start < 0x100 || (start & 0x300) != 0) { start &= ~0x3ff; start += 0x400; } } /* ISA aliases are only in the lower 64KB of I/O space. */ while (start <= MIN(end, 65535)) { next_end = MIN(start | 0xff, end); cb(start, next_end, arg); start += 0x400; } if (start <= end) cb(start, end, arg); } static void count_ranges(rman_res_t start, rman_res_t end, void *arg) { int *countp; countp = arg; (*countp)++; } struct alloc_state { struct resource **res; struct pcib_softc *sc; int count, error; }; static void alloc_ranges(rman_res_t start, rman_res_t end, void *arg) { struct alloc_state *as; struct pcib_window *w; int rid; as = arg; if (as->error != 0) return; w = &as->sc->io; rid = w->reg; if (bootverbose) device_printf(as->sc->dev, "allocating non-ISA range %#jx-%#jx\n", start, end); as->res[as->count] = bus_alloc_resource(as->sc->dev, SYS_RES_IOPORT, &rid, start, end, end - start + 1, 0); if (as->res[as->count] == NULL) as->error = ENXIO; else as->count++; } static int pcib_alloc_nonisa_ranges(struct pcib_softc *sc, rman_res_t start, rman_res_t end) { struct alloc_state as; int i, new_count; /* First, see how many ranges we need. */ new_count = 0; pcib_walk_nonisa_ranges(start, end, count_ranges, &new_count); /* Second, allocate the ranges. */ as.res = malloc(sizeof(struct resource *) * new_count, M_DEVBUF, M_WAITOK); as.sc = sc; as.count = 0; as.error = 0; pcib_walk_nonisa_ranges(start, end, alloc_ranges, &as); if (as.error != 0) { for (i = 0; i < as.count; i++) bus_release_resource(sc->dev, SYS_RES_IOPORT, sc->io.reg, as.res[i]); free(as.res, M_DEVBUF); return (as.error); } KASSERT(as.count == new_count, ("%s: count mismatch", __func__)); /* Third, add the ranges to the window. */ pcib_add_window_resources(&sc->io, as.res, as.count); free(as.res, M_DEVBUF); return (0); } static void pcib_alloc_window(struct pcib_softc *sc, struct pcib_window *w, int type, int flags, pci_addr_t max_address) { struct resource *res; char buf[64]; int error, rid; if (max_address != (rman_res_t)max_address) max_address = ~0; w->rman.rm_start = 0; w->rman.rm_end = max_address; w->rman.rm_type = RMAN_ARRAY; snprintf(buf, sizeof(buf), "%s %s window", device_get_nameunit(sc->dev), w->name); w->rman.rm_descr = strdup(buf, M_DEVBUF); error = rman_init(&w->rman); if (error) panic("Failed to initialize %s %s rman", device_get_nameunit(sc->dev), w->name); if (!pcib_is_window_open(w)) return; if (w->base > max_address || w->limit > max_address) { device_printf(sc->dev, "initial %s window has too many bits, ignoring\n", w->name); return; } if (type == SYS_RES_IOPORT && sc->bridgectl & PCIB_BCR_ISA_ENABLE) (void)pcib_alloc_nonisa_ranges(sc, w->base, w->limit); else { rid = w->reg; res = bus_alloc_resource(sc->dev, type, &rid, w->base, w->limit, w->limit - w->base + 1, flags); if (res != NULL) pcib_add_window_resources(w, &res, 1); } if (w->res == NULL) { device_printf(sc->dev, "failed to allocate initial %s window: %#jx-%#jx\n", w->name, (uintmax_t)w->base, (uintmax_t)w->limit); w->base = max_address; w->limit = 0; pcib_write_windows(sc, w->mask); return; } pcib_activate_window(sc, type); } /* * Initialize I/O windows. */ static void pcib_probe_windows(struct pcib_softc *sc) { pci_addr_t max; device_t dev; uint32_t val; dev = sc->dev; if (pci_clear_pcib) { pcib_bridge_init(dev); } /* Determine if the I/O port window is implemented. */ val = pci_read_config(dev, PCIR_IOBASEL_1, 1); if (val == 0) { /* * If 'val' is zero, then only 16-bits of I/O space * are supported. */ pci_write_config(dev, PCIR_IOBASEL_1, 0xff, 1); if (pci_read_config(dev, PCIR_IOBASEL_1, 1) != 0) { sc->io.valid = 1; pci_write_config(dev, PCIR_IOBASEL_1, 0, 1); } } else sc->io.valid = 1; /* Read the existing I/O port window. */ if (sc->io.valid) { sc->io.reg = PCIR_IOBASEL_1; sc->io.step = 12; sc->io.mask = WIN_IO; sc->io.name = "I/O port"; if ((val & PCIM_BRIO_MASK) == PCIM_BRIO_32) { sc->io.base = PCI_PPBIOBASE( pci_read_config(dev, PCIR_IOBASEH_1, 2), val); sc->io.limit = PCI_PPBIOLIMIT( pci_read_config(dev, PCIR_IOLIMITH_1, 2), pci_read_config(dev, PCIR_IOLIMITL_1, 1)); max = 0xffffffff; } else { sc->io.base = PCI_PPBIOBASE(0, val); sc->io.limit = PCI_PPBIOLIMIT(0, pci_read_config(dev, PCIR_IOLIMITL_1, 1)); max = 0xffff; } pcib_alloc_window(sc, &sc->io, SYS_RES_IOPORT, 0, max); } /* Read the existing memory window. */ sc->mem.valid = 1; sc->mem.reg = PCIR_MEMBASE_1; sc->mem.step = 20; sc->mem.mask = WIN_MEM; sc->mem.name = "memory"; sc->mem.base = PCI_PPBMEMBASE(0, pci_read_config(dev, PCIR_MEMBASE_1, 2)); sc->mem.limit = PCI_PPBMEMLIMIT(0, pci_read_config(dev, PCIR_MEMLIMIT_1, 2)); pcib_alloc_window(sc, &sc->mem, SYS_RES_MEMORY, 0, 0xffffffff); /* Determine if the prefetchable memory window is implemented. */ val = pci_read_config(dev, PCIR_PMBASEL_1, 2); if (val == 0) { /* * If 'val' is zero, then only 32-bits of memory space * are supported. */ pci_write_config(dev, PCIR_PMBASEL_1, 0xffff, 2); if (pci_read_config(dev, PCIR_PMBASEL_1, 2) != 0) { sc->pmem.valid = 1; pci_write_config(dev, PCIR_PMBASEL_1, 0, 2); } } else sc->pmem.valid = 1; /* Read the existing prefetchable memory window. */ if (sc->pmem.valid) { sc->pmem.reg = PCIR_PMBASEL_1; sc->pmem.step = 20; sc->pmem.mask = WIN_PMEM; sc->pmem.name = "prefetch"; if ((val & PCIM_BRPM_MASK) == PCIM_BRPM_64) { sc->pmem.base = PCI_PPBMEMBASE( pci_read_config(dev, PCIR_PMBASEH_1, 4), val); sc->pmem.limit = PCI_PPBMEMLIMIT( pci_read_config(dev, PCIR_PMLIMITH_1, 4), pci_read_config(dev, PCIR_PMLIMITL_1, 2)); max = 0xffffffffffffffff; } else { sc->pmem.base = PCI_PPBMEMBASE(0, val); sc->pmem.limit = PCI_PPBMEMLIMIT(0, pci_read_config(dev, PCIR_PMLIMITL_1, 2)); max = 0xffffffff; } pcib_alloc_window(sc, &sc->pmem, SYS_RES_MEMORY, RF_PREFETCHABLE, max); } } static void pcib_release_window(struct pcib_softc *sc, struct pcib_window *w, int type) { device_t dev; int error, i; if (!w->valid) return; dev = sc->dev; error = rman_fini(&w->rman); if (error) { device_printf(dev, "failed to release %s rman\n", w->name); return; } free(__DECONST(char *, w->rman.rm_descr), M_DEVBUF); for (i = 0; i < w->count; i++) { error = bus_free_resource(dev, type, w->res[i]); if (error) device_printf(dev, "failed to release %s resource: %d\n", w->name, error); } free(w->res, M_DEVBUF); } static void pcib_free_windows(struct pcib_softc *sc) { pcib_release_window(sc, &sc->pmem, SYS_RES_MEMORY); pcib_release_window(sc, &sc->mem, SYS_RES_MEMORY); pcib_release_window(sc, &sc->io, SYS_RES_IOPORT); } #ifdef PCI_RES_BUS /* * Allocate a suitable secondary bus for this bridge if needed and * initialize the resource manager for the secondary bus range. Note * that the minimum count is a desired value and this may allocate a * smaller range. */ void pcib_setup_secbus(device_t dev, struct pcib_secbus *bus, int min_count) { char buf[64]; int error, rid, sec_reg; switch (pci_read_config(dev, PCIR_HDRTYPE, 1) & PCIM_HDRTYPE) { case PCIM_HDRTYPE_BRIDGE: sec_reg = PCIR_SECBUS_1; bus->sub_reg = PCIR_SUBBUS_1; break; case PCIM_HDRTYPE_CARDBUS: sec_reg = PCIR_SECBUS_2; bus->sub_reg = PCIR_SUBBUS_2; break; default: panic("not a PCI bridge"); } bus->sec = pci_read_config(dev, sec_reg, 1); bus->sub = pci_read_config(dev, bus->sub_reg, 1); bus->dev = dev; bus->rman.rm_start = 0; bus->rman.rm_end = PCI_BUSMAX; bus->rman.rm_type = RMAN_ARRAY; snprintf(buf, sizeof(buf), "%s bus numbers", device_get_nameunit(dev)); bus->rman.rm_descr = strdup(buf, M_DEVBUF); error = rman_init(&bus->rman); if (error) panic("Failed to initialize %s bus number rman", device_get_nameunit(dev)); /* * Allocate a bus range. This will return an existing bus range * if one exists, or a new bus range if one does not. */ rid = 0; bus->res = bus_alloc_resource_anywhere(dev, PCI_RES_BUS, &rid, min_count, 0); if (bus->res == NULL) { /* * Fall back to just allocating a range of a single bus * number. */ bus->res = bus_alloc_resource_anywhere(dev, PCI_RES_BUS, &rid, 1, 0); } else if (rman_get_size(bus->res) < min_count) /* * Attempt to grow the existing range to satisfy the * minimum desired count. */ (void)bus_adjust_resource(dev, PCI_RES_BUS, bus->res, rman_get_start(bus->res), rman_get_start(bus->res) + min_count - 1); /* * Add the initial resource to the rman. */ if (bus->res != NULL) { error = rman_manage_region(&bus->rman, rman_get_start(bus->res), rman_get_end(bus->res)); if (error) panic("Failed to add resource to rman"); bus->sec = rman_get_start(bus->res); bus->sub = rman_get_end(bus->res); } } void pcib_free_secbus(device_t dev, struct pcib_secbus *bus) { int error; error = rman_fini(&bus->rman); if (error) { device_printf(dev, "failed to release bus number rman\n"); return; } free(__DECONST(char *, bus->rman.rm_descr), M_DEVBUF); error = bus_free_resource(dev, PCI_RES_BUS, bus->res); if (error) device_printf(dev, "failed to release bus numbers resource: %d\n", error); } static struct resource * pcib_suballoc_bus(struct pcib_secbus *bus, device_t child, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct resource *res; res = rman_reserve_resource(&bus->rman, start, end, count, flags, child); if (res == NULL) return (NULL); if (bootverbose) device_printf(bus->dev, "allocated bus range (%ju-%ju) for rid %d of %s\n", rman_get_start(res), rman_get_end(res), *rid, pcib_child_name(child)); rman_set_rid(res, *rid); return (res); } /* * Attempt to grow the secondary bus range. This is much simpler than * for I/O windows as the range can only be grown by increasing * subbus. */ static int pcib_grow_subbus(struct pcib_secbus *bus, rman_res_t new_end) { rman_res_t old_end; int error; old_end = rman_get_end(bus->res); KASSERT(new_end > old_end, ("attempt to shrink subbus")); error = bus_adjust_resource(bus->dev, PCI_RES_BUS, bus->res, rman_get_start(bus->res), new_end); if (error) return (error); if (bootverbose) device_printf(bus->dev, "grew bus range to %ju-%ju\n", rman_get_start(bus->res), rman_get_end(bus->res)); error = rman_manage_region(&bus->rman, old_end + 1, rman_get_end(bus->res)); if (error) panic("Failed to add resource to rman"); bus->sub = rman_get_end(bus->res); pci_write_config(bus->dev, bus->sub_reg, bus->sub, 1); return (0); } struct resource * pcib_alloc_subbus(struct pcib_secbus *bus, device_t child, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct resource *res; rman_res_t start_free, end_free, new_end; /* * First, see if the request can be satisified by the existing * bus range. */ res = pcib_suballoc_bus(bus, child, rid, start, end, count, flags); if (res != NULL) return (res); /* * Figure out a range to grow the bus range. First, find the * first bus number after the last allocated bus in the rman and * enforce that as a minimum starting point for the range. */ if (rman_last_free_region(&bus->rman, &start_free, &end_free) != 0 || end_free != bus->sub) start_free = bus->sub + 1; if (start_free < start) start_free = start; new_end = start_free + count - 1; /* * See if this new range would satisfy the request if it * succeeds. */ if (new_end > end) return (NULL); /* Finally, attempt to grow the existing resource. */ if (bootverbose) { device_printf(bus->dev, "attempting to grow bus range for %ju buses\n", count); printf("\tback candidate range: %ju-%ju\n", start_free, new_end); } if (pcib_grow_subbus(bus, new_end) == 0) return (pcib_suballoc_bus(bus, child, rid, start, end, count, flags)); return (NULL); } #endif #else /* * Is the prefetch window open (eg, can we allocate memory in it?) */ static int pcib_is_prefetch_open(struct pcib_softc *sc) { return (sc->pmembase > 0 && sc->pmembase < sc->pmemlimit); } /* * Is the nonprefetch window open (eg, can we allocate memory in it?) */ static int pcib_is_nonprefetch_open(struct pcib_softc *sc) { return (sc->membase > 0 && sc->membase < sc->memlimit); } /* * Is the io window open (eg, can we allocate ports in it?) */ static int pcib_is_io_open(struct pcib_softc *sc) { return (sc->iobase > 0 && sc->iobase < sc->iolimit); } /* * Get current I/O decode. */ static void pcib_get_io_decode(struct pcib_softc *sc) { device_t dev; uint32_t iolow; dev = sc->dev; iolow = pci_read_config(dev, PCIR_IOBASEL_1, 1); if ((iolow & PCIM_BRIO_MASK) == PCIM_BRIO_32) sc->iobase = PCI_PPBIOBASE( pci_read_config(dev, PCIR_IOBASEH_1, 2), iolow); else sc->iobase = PCI_PPBIOBASE(0, iolow); iolow = pci_read_config(dev, PCIR_IOLIMITL_1, 1); if ((iolow & PCIM_BRIO_MASK) == PCIM_BRIO_32) sc->iolimit = PCI_PPBIOLIMIT( pci_read_config(dev, PCIR_IOLIMITH_1, 2), iolow); else sc->iolimit = PCI_PPBIOLIMIT(0, iolow); } /* * Get current memory decode. */ static void pcib_get_mem_decode(struct pcib_softc *sc) { device_t dev; pci_addr_t pmemlow; dev = sc->dev; sc->membase = PCI_PPBMEMBASE(0, pci_read_config(dev, PCIR_MEMBASE_1, 2)); sc->memlimit = PCI_PPBMEMLIMIT(0, pci_read_config(dev, PCIR_MEMLIMIT_1, 2)); pmemlow = pci_read_config(dev, PCIR_PMBASEL_1, 2); if ((pmemlow & PCIM_BRPM_MASK) == PCIM_BRPM_64) sc->pmembase = PCI_PPBMEMBASE( pci_read_config(dev, PCIR_PMBASEH_1, 4), pmemlow); else sc->pmembase = PCI_PPBMEMBASE(0, pmemlow); pmemlow = pci_read_config(dev, PCIR_PMLIMITL_1, 2); if ((pmemlow & PCIM_BRPM_MASK) == PCIM_BRPM_64) sc->pmemlimit = PCI_PPBMEMLIMIT( pci_read_config(dev, PCIR_PMLIMITH_1, 4), pmemlow); else sc->pmemlimit = PCI_PPBMEMLIMIT(0, pmemlow); } /* * Restore previous I/O decode. */ static void pcib_set_io_decode(struct pcib_softc *sc) { device_t dev; uint32_t iohi; dev = sc->dev; iohi = sc->iobase >> 16; if (iohi > 0) pci_write_config(dev, PCIR_IOBASEH_1, iohi, 2); pci_write_config(dev, PCIR_IOBASEL_1, sc->iobase >> 8, 1); iohi = sc->iolimit >> 16; if (iohi > 0) pci_write_config(dev, PCIR_IOLIMITH_1, iohi, 2); pci_write_config(dev, PCIR_IOLIMITL_1, sc->iolimit >> 8, 1); } /* * Restore previous memory decode. */ static void pcib_set_mem_decode(struct pcib_softc *sc) { device_t dev; pci_addr_t pmemhi; dev = sc->dev; pci_write_config(dev, PCIR_MEMBASE_1, sc->membase >> 16, 2); pci_write_config(dev, PCIR_MEMLIMIT_1, sc->memlimit >> 16, 2); pmemhi = sc->pmembase >> 32; if (pmemhi > 0) pci_write_config(dev, PCIR_PMBASEH_1, pmemhi, 4); pci_write_config(dev, PCIR_PMBASEL_1, sc->pmembase >> 16, 2); pmemhi = sc->pmemlimit >> 32; if (pmemhi > 0) pci_write_config(dev, PCIR_PMLIMITH_1, pmemhi, 4); pci_write_config(dev, PCIR_PMLIMITL_1, sc->pmemlimit >> 16, 2); } #endif #ifdef PCI_HP /* * PCI-express HotPlug support. */ static int pci_enable_pcie_hp = 1; SYSCTL_INT(_hw_pci, OID_AUTO, enable_pcie_hp, CTLFLAG_RDTUN, &pci_enable_pcie_hp, 0, "Enable support for native PCI-express HotPlug."); static void pcib_probe_hotplug(struct pcib_softc *sc) { device_t dev; if (!pci_enable_pcie_hp) return; dev = sc->dev; if (pci_find_cap(dev, PCIY_EXPRESS, NULL) != 0) return; if (!(pcie_read_config(dev, PCIER_FLAGS, 2) & PCIEM_FLAGS_SLOT)) return; sc->pcie_link_cap = pcie_read_config(dev, PCIER_LINK_CAP, 4); sc->pcie_slot_cap = pcie_read_config(dev, PCIER_SLOT_CAP, 4); /* * XXX: Handling of slots with a power controller needs to be * reexamined. Ignore hotplug on such slots for now. */ if (sc->pcie_slot_cap & PCIEM_SLOT_CAP_PCP) return; if (sc->pcie_slot_cap & PCIEM_SLOT_CAP_HPC) sc->flags |= PCIB_HOTPLUG; } /* * Send a HotPlug command to the slot control register. If this slot * uses command completion interrupts and a previous command is still * in progress, then the command is dropped. Once the previous * command completes or times out, pcib_pcie_hotplug_update() will be * invoked to post a new command based on the slot's state at that * time. */ static void pcib_pcie_hotplug_command(struct pcib_softc *sc, uint16_t val, uint16_t mask) { device_t dev; uint16_t ctl, new; dev = sc->dev; if (sc->flags & PCIB_HOTPLUG_CMD_PENDING) return; ctl = pcie_read_config(dev, PCIER_SLOT_CTL, 2); new = (ctl & ~mask) | val; if (new == ctl) return; pcie_write_config(dev, PCIER_SLOT_CTL, new, 2); if (!(sc->pcie_slot_cap & PCIEM_SLOT_CAP_NCCS) && (ctl & new) & PCIEM_SLOT_CTL_CCIE) { sc->flags |= PCIB_HOTPLUG_CMD_PENDING; if (!cold) callout_reset(&sc->pcie_cc_timer, hz, pcib_pcie_cc_timeout, sc); } } static void pcib_pcie_hotplug_command_completed(struct pcib_softc *sc) { device_t dev; dev = sc->dev; if (bootverbose) device_printf(dev, "Command Completed\n"); if (!(sc->flags & PCIB_HOTPLUG_CMD_PENDING)) return; callout_stop(&sc->pcie_cc_timer); sc->flags &= ~PCIB_HOTPLUG_CMD_PENDING; wakeup(sc); } /* * Returns true if a card is fully inserted from the user's * perspective. It may not yet be ready for access, but the driver * can now start enabling access if necessary. */ static bool pcib_hotplug_inserted(struct pcib_softc *sc) { /* Pretend the card isn't present if a detach is forced. */ if (sc->flags & PCIB_DETACHING) return (false); /* Card must be present in the slot. */ if ((sc->pcie_slot_sta & PCIEM_SLOT_STA_PDS) == 0) return (false); /* A power fault implicitly turns off power to the slot. */ if (sc->pcie_slot_sta & PCIEM_SLOT_STA_PFD) return (false); /* If the MRL is disengaged, the slot is powered off. */ if (sc->pcie_slot_cap & PCIEM_SLOT_CAP_MRLSP && (sc->pcie_slot_sta & PCIEM_SLOT_STA_MRLSS) != 0) return (false); return (true); } /* * Returns -1 if the card is fully inserted, powered, and ready for * access. Otherwise, returns 0. */ static int pcib_hotplug_present(struct pcib_softc *sc) { device_t dev; dev = sc->dev; /* Card must be inserted. */ if (!pcib_hotplug_inserted(sc)) return (0); /* * Require the Electromechanical Interlock to be engaged if * present. */ if (sc->pcie_slot_cap & PCIEM_SLOT_CAP_EIP && (sc->pcie_slot_sta & PCIEM_SLOT_STA_EIS) == 0) return (0); /* Require the Data Link Layer to be active. */ if (sc->pcie_link_cap & PCIEM_LINK_CAP_DL_ACTIVE) { if (!(sc->pcie_link_sta & PCIEM_LINK_STA_DL_ACTIVE)) return (0); } return (-1); } static void pcib_pcie_hotplug_update(struct pcib_softc *sc, uint16_t val, uint16_t mask, bool schedule_task) { - bool card_inserted; + bool card_inserted, ei_engaged; /* Clear DETACHING if Present Detect has cleared. */ if ((sc->pcie_slot_sta & (PCIEM_SLOT_STA_PDC | PCIEM_SLOT_STA_PDS)) == PCIEM_SLOT_STA_PDC) sc->flags &= ~PCIB_DETACHING; card_inserted = pcib_hotplug_inserted(sc); /* Turn the power indicator on if a card is inserted. */ if (sc->pcie_slot_cap & PCIEM_SLOT_CAP_PIP) { mask |= PCIEM_SLOT_CTL_PIC; if (card_inserted) val |= PCIEM_SLOT_CTL_PI_ON; else if (sc->flags & PCIB_DETACH_PENDING) val |= PCIEM_SLOT_CTL_PI_BLINK; else val |= PCIEM_SLOT_CTL_PI_OFF; } /* Turn the power on via the Power Controller if a card is inserted. */ if (sc->pcie_slot_cap & PCIEM_SLOT_CAP_PCP) { mask |= PCIEM_SLOT_CTL_PCC; if (card_inserted) val |= PCIEM_SLOT_CTL_PC_ON; else val |= PCIEM_SLOT_CTL_PC_OFF; } /* * If a card is inserted, enable the Electromechanical * Interlock. If a card is not inserted (or we are in the * process of detaching), disable the Electromechanical * Interlock. */ if (sc->pcie_slot_cap & PCIEM_SLOT_CAP_EIP) { mask |= PCIEM_SLOT_CTL_EIC; - if (card_inserted != - !(sc->pcie_slot_sta & PCIEM_SLOT_STA_EIS)) + ei_engaged = (sc->pcie_slot_sta & PCIEM_SLOT_STA_EIS) != 0; + if (card_inserted != ei_engaged) val |= PCIEM_SLOT_CTL_EIC; } /* * Start a timer to see if the Data Link Layer times out. * Note that we only start the timer if Presence Detect * changed on this interrupt. Stop any scheduled timer if * the Data Link Layer is active. */ if (sc->pcie_link_cap & PCIEM_LINK_CAP_DL_ACTIVE) { if (card_inserted && !(sc->pcie_link_sta & PCIEM_LINK_STA_DL_ACTIVE) && sc->pcie_slot_sta & PCIEM_SLOT_STA_PDC) { if (cold) device_printf(sc->dev, "Data Link Layer inactive\n"); else callout_reset(&sc->pcie_dll_timer, hz, pcib_pcie_dll_timeout, sc); } else if (sc->pcie_link_sta & PCIEM_LINK_STA_DL_ACTIVE) callout_stop(&sc->pcie_dll_timer); } pcib_pcie_hotplug_command(sc, val, mask); /* - * During attach the child "pci" device is added sychronously; + * During attach the child "pci" device is added synchronously; * otherwise, the task is scheduled to manage the child * device. */ if (schedule_task && (pcib_hotplug_present(sc) != 0) != (sc->child != NULL)) taskqueue_enqueue(taskqueue_thread, &sc->pcie_hp_task); } static void pcib_pcie_intr(void *arg) { struct pcib_softc *sc; device_t dev; sc = arg; dev = sc->dev; sc->pcie_slot_sta = pcie_read_config(dev, PCIER_SLOT_STA, 2); /* Clear the events just reported. */ pcie_write_config(dev, PCIER_SLOT_STA, sc->pcie_slot_sta, 2); if (sc->pcie_slot_sta & PCIEM_SLOT_STA_ABP) { if (sc->flags & PCIB_DETACH_PENDING) { device_printf(dev, "Attention Button Pressed: Detach Cancelled\n"); sc->flags &= ~PCIB_DETACH_PENDING; callout_stop(&sc->pcie_ab_timer); } else { device_printf(dev, "Attention Button Pressed: Detaching in 5 seconds\n"); sc->flags |= PCIB_DETACH_PENDING; callout_reset(&sc->pcie_ab_timer, 5 * hz, pcib_pcie_ab_timeout, sc); } } if (sc->pcie_slot_sta & PCIEM_SLOT_STA_PFD) device_printf(dev, "Power Fault Detected\n"); if (sc->pcie_slot_sta & PCIEM_SLOT_STA_MRLSC) device_printf(dev, "MRL Sensor Changed to %s\n", sc->pcie_slot_sta & PCIEM_SLOT_STA_MRLSS ? "open" : "closed"); if (bootverbose && sc->pcie_slot_sta & PCIEM_SLOT_STA_PDC) device_printf(dev, "Present Detect Changed to %s\n", sc->pcie_slot_sta & PCIEM_SLOT_STA_PDS ? "card present" : "empty"); if (sc->pcie_slot_sta & PCIEM_SLOT_STA_CC) pcib_pcie_hotplug_command_completed(sc); if (sc->pcie_slot_sta & PCIEM_SLOT_STA_DLLSC) { sc->pcie_link_sta = pcie_read_config(dev, PCIER_LINK_STA, 2); if (bootverbose) device_printf(dev, "Data Link Layer State Changed to %s\n", sc->pcie_link_sta & PCIEM_LINK_STA_DL_ACTIVE ? "active" : "inactive"); } pcib_pcie_hotplug_update(sc, 0, 0, true); } static void pcib_pcie_hotplug_task(void *context, int pending) { struct pcib_softc *sc; device_t dev; sc = context; mtx_lock(&Giant); dev = sc->dev; if (pcib_hotplug_present(sc) != 0) { if (sc->child == NULL) { sc->child = device_add_child(dev, "pci", -1); bus_generic_attach(dev); } } else { if (sc->child != NULL) { if (device_delete_child(dev, sc->child) == 0) sc->child = NULL; } } mtx_unlock(&Giant); } static void pcib_pcie_ab_timeout(void *arg) { struct pcib_softc *sc; device_t dev; sc = arg; dev = sc->dev; mtx_assert(&Giant, MA_OWNED); if (sc->flags & PCIB_DETACH_PENDING) { sc->flags |= PCIB_DETACHING; sc->flags &= ~PCIB_DETACH_PENDING; pcib_pcie_hotplug_update(sc, 0, 0, true); } } static void pcib_pcie_cc_timeout(void *arg) { struct pcib_softc *sc; device_t dev; uint16_t sta; sc = arg; dev = sc->dev; mtx_assert(&Giant, MA_OWNED); sta = pcie_read_config(dev, PCIER_SLOT_STA, 2); if (!(sta & PCIEM_SLOT_STA_CC)) { device_printf(dev, "Hotplug Command Timed Out - forcing detach\n"); sc->flags &= ~(PCIB_HOTPLUG_CMD_PENDING | PCIB_DETACH_PENDING); sc->flags |= PCIB_DETACHING; pcib_pcie_hotplug_update(sc, 0, 0, true); } else { device_printf(dev, "Missed HotPlug interrupt waiting for Command Completion\n"); pcib_pcie_intr(sc); } } static void pcib_pcie_dll_timeout(void *arg) { struct pcib_softc *sc; device_t dev; uint16_t sta; sc = arg; dev = sc->dev; mtx_assert(&Giant, MA_OWNED); sta = pcie_read_config(dev, PCIER_LINK_STA, 2); if (!(sta & PCIEM_LINK_STA_DL_ACTIVE)) { device_printf(dev, "Timed out waiting for Data Link Layer Active\n"); sc->flags |= PCIB_DETACHING; pcib_pcie_hotplug_update(sc, 0, 0, true); } else if (sta != sc->pcie_link_sta) { device_printf(dev, "Missed HotPlug interrupt waiting for DLL Active\n"); pcib_pcie_intr(sc); } } static int pcib_alloc_pcie_irq(struct pcib_softc *sc) { device_t dev; int count, error, rid; rid = -1; dev = sc->dev; /* * For simplicity, only use MSI-X if there is a single message. * To support a device with multiple messages we would have to * use remap intr if the MSI number is not 0. */ count = pci_msix_count(dev); if (count == 1) { error = pci_alloc_msix(dev, &count); if (error == 0) rid = 1; } if (rid < 0 && pci_msi_count(dev) > 0) { count = 1; error = pci_alloc_msi(dev, &count); if (error == 0) rid = 1; } if (rid < 0) rid = 0; sc->pcie_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE); if (sc->pcie_irq == NULL) { device_printf(dev, "Failed to allocate interrupt for PCI-e events\n"); if (rid > 0) pci_release_msi(dev); return (ENXIO); } error = bus_setup_intr(dev, sc->pcie_irq, INTR_TYPE_MISC, NULL, pcib_pcie_intr, sc, &sc->pcie_ihand); if (error) { device_printf(dev, "Failed to setup PCI-e interrupt handler\n"); bus_release_resource(dev, SYS_RES_IRQ, rid, sc->pcie_irq); if (rid > 0) pci_release_msi(dev); return (error); } return (0); } static int pcib_release_pcie_irq(struct pcib_softc *sc) { device_t dev; int error; dev = sc->dev; error = bus_teardown_intr(dev, sc->pcie_irq, sc->pcie_ihand); if (error) return (error); error = bus_free_resource(dev, SYS_RES_IRQ, sc->pcie_irq); if (error) return (error); return (pci_release_msi(dev)); } static void pcib_setup_hotplug(struct pcib_softc *sc) { device_t dev; uint16_t mask, val; dev = sc->dev; callout_init(&sc->pcie_ab_timer, 0); callout_init(&sc->pcie_cc_timer, 0); callout_init(&sc->pcie_dll_timer, 0); TASK_INIT(&sc->pcie_hp_task, 0, pcib_pcie_hotplug_task, sc); /* Allocate IRQ. */ if (pcib_alloc_pcie_irq(sc) != 0) return; sc->pcie_link_sta = pcie_read_config(dev, PCIER_LINK_STA, 2); sc->pcie_slot_sta = pcie_read_config(dev, PCIER_SLOT_STA, 2); /* Clear any events previously pending. */ pcie_write_config(dev, PCIER_SLOT_STA, sc->pcie_slot_sta, 2); /* Enable HotPlug events. */ mask = PCIEM_SLOT_CTL_DLLSCE | PCIEM_SLOT_CTL_HPIE | PCIEM_SLOT_CTL_CCIE | PCIEM_SLOT_CTL_PDCE | PCIEM_SLOT_CTL_MRLSCE | PCIEM_SLOT_CTL_PFDE | PCIEM_SLOT_CTL_ABPE; val = PCIEM_SLOT_CTL_PDCE | PCIEM_SLOT_CTL_HPIE; if (sc->pcie_slot_cap & PCIEM_SLOT_CAP_APB) val |= PCIEM_SLOT_CTL_ABPE; if (sc->pcie_slot_cap & PCIEM_SLOT_CAP_PCP) val |= PCIEM_SLOT_CTL_PFDE; if (sc->pcie_slot_cap & PCIEM_SLOT_CAP_MRLSP) val |= PCIEM_SLOT_CTL_MRLSCE; if (!(sc->pcie_slot_cap & PCIEM_SLOT_CAP_NCCS)) val |= PCIEM_SLOT_CTL_CCIE; if (sc->pcie_link_cap & PCIEM_LINK_CAP_DL_ACTIVE) val |= PCIEM_SLOT_CTL_DLLSCE; /* Turn the attention indicator off. */ if (sc->pcie_slot_cap & PCIEM_SLOT_CAP_AIP) { mask |= PCIEM_SLOT_CTL_AIC; val |= PCIEM_SLOT_CTL_AI_OFF; } pcib_pcie_hotplug_update(sc, val, mask, false); } static int pcib_detach_hotplug(struct pcib_softc *sc) { uint16_t mask, val; int error; /* Disable the card in the slot and force it to detach. */ if (sc->flags & PCIB_DETACH_PENDING) { sc->flags &= ~PCIB_DETACH_PENDING; callout_stop(&sc->pcie_ab_timer); } sc->flags |= PCIB_DETACHING; if (sc->flags & PCIB_HOTPLUG_CMD_PENDING) { callout_stop(&sc->pcie_cc_timer); tsleep(sc, 0, "hpcmd", hz); sc->flags &= ~PCIB_HOTPLUG_CMD_PENDING; } /* Disable HotPlug events. */ mask = PCIEM_SLOT_CTL_DLLSCE | PCIEM_SLOT_CTL_HPIE | PCIEM_SLOT_CTL_CCIE | PCIEM_SLOT_CTL_PDCE | PCIEM_SLOT_CTL_MRLSCE | PCIEM_SLOT_CTL_PFDE | PCIEM_SLOT_CTL_ABPE; val = 0; /* Turn the attention indicator off. */ if (sc->pcie_slot_cap & PCIEM_SLOT_CAP_AIP) { mask |= PCIEM_SLOT_CTL_AIC; val |= PCIEM_SLOT_CTL_AI_OFF; } pcib_pcie_hotplug_update(sc, val, mask, false); error = pcib_release_pcie_irq(sc); if (error) return (error); taskqueue_drain(taskqueue_thread, &sc->pcie_hp_task); callout_drain(&sc->pcie_ab_timer); callout_drain(&sc->pcie_cc_timer); callout_drain(&sc->pcie_dll_timer); return (0); } #endif /* * Get current bridge configuration. */ static void pcib_cfg_save(struct pcib_softc *sc) { #ifndef NEW_PCIB device_t dev; uint16_t command; dev = sc->dev; command = pci_read_config(dev, PCIR_COMMAND, 2); if (command & PCIM_CMD_PORTEN) pcib_get_io_decode(sc); if (command & PCIM_CMD_MEMEN) pcib_get_mem_decode(sc); #endif } /* * Restore previous bridge configuration. */ static void pcib_cfg_restore(struct pcib_softc *sc) { device_t dev; #ifndef NEW_PCIB uint16_t command; #endif dev = sc->dev; #ifdef NEW_PCIB pcib_write_windows(sc, WIN_IO | WIN_MEM | WIN_PMEM); #else command = pci_read_config(dev, PCIR_COMMAND, 2); if (command & PCIM_CMD_PORTEN) pcib_set_io_decode(sc); if (command & PCIM_CMD_MEMEN) pcib_set_mem_decode(sc); #endif } /* * Generic device interface */ static int pcib_probe(device_t dev) { if ((pci_get_class(dev) == PCIC_BRIDGE) && (pci_get_subclass(dev) == PCIS_BRIDGE_PCI)) { device_set_desc(dev, "PCI-PCI bridge"); return(-10000); } return(ENXIO); } void pcib_attach_common(device_t dev) { struct pcib_softc *sc; struct sysctl_ctx_list *sctx; struct sysctl_oid *soid; int comma; sc = device_get_softc(dev); sc->dev = dev; /* * Get current bridge configuration. */ sc->domain = pci_get_domain(dev); #if !(defined(NEW_PCIB) && defined(PCI_RES_BUS)) sc->bus.sec = pci_read_config(dev, PCIR_SECBUS_1, 1); sc->bus.sub = pci_read_config(dev, PCIR_SUBBUS_1, 1); #endif sc->bridgectl = pci_read_config(dev, PCIR_BRIDGECTL_1, 2); pcib_cfg_save(sc); /* * The primary bus register should always be the bus of the * parent. */ sc->pribus = pci_get_bus(dev); pci_write_config(dev, PCIR_PRIBUS_1, sc->pribus, 1); /* * Setup sysctl reporting nodes */ sctx = device_get_sysctl_ctx(dev); soid = device_get_sysctl_tree(dev); SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "domain", CTLFLAG_RD, &sc->domain, 0, "Domain number"); SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "pribus", CTLFLAG_RD, &sc->pribus, 0, "Primary bus number"); SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "secbus", CTLFLAG_RD, &sc->bus.sec, 0, "Secondary bus number"); SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "subbus", CTLFLAG_RD, &sc->bus.sub, 0, "Subordinate bus number"); /* * Quirk handling. */ switch (pci_get_devid(dev)) { #if !(defined(NEW_PCIB) && defined(PCI_RES_BUS)) case 0x12258086: /* Intel 82454KX/GX (Orion) */ { uint8_t supbus; supbus = pci_read_config(dev, 0x41, 1); if (supbus != 0xff) { sc->bus.sec = supbus + 1; sc->bus.sub = supbus + 1; } break; } #endif /* * The i82380FB mobile docking controller is a PCI-PCI bridge, * and it is a subtractive bridge. However, the ProgIf is wrong * so the normal setting of PCIB_SUBTRACTIVE bit doesn't * happen. There are also Toshiba and Cavium ThunderX bridges * that behave this way. */ case 0xa002177d: /* Cavium ThunderX */ case 0x124b8086: /* Intel 82380FB Mobile */ case 0x060513d7: /* Toshiba ???? */ sc->flags |= PCIB_SUBTRACTIVE; break; #if !(defined(NEW_PCIB) && defined(PCI_RES_BUS)) /* Compaq R3000 BIOS sets wrong subordinate bus number. */ case 0x00dd10de: { char *cp; if ((cp = kern_getenv("smbios.planar.maker")) == NULL) break; if (strncmp(cp, "Compal", 6) != 0) { freeenv(cp); break; } freeenv(cp); if ((cp = kern_getenv("smbios.planar.product")) == NULL) break; if (strncmp(cp, "08A0", 4) != 0) { freeenv(cp); break; } freeenv(cp); if (sc->bus.sub < 0xa) { pci_write_config(dev, PCIR_SUBBUS_1, 0xa, 1); sc->bus.sub = pci_read_config(dev, PCIR_SUBBUS_1, 1); } break; } #endif } if (pci_msi_device_blacklisted(dev)) sc->flags |= PCIB_DISABLE_MSI; if (pci_msix_device_blacklisted(dev)) sc->flags |= PCIB_DISABLE_MSIX; /* * Intel 815, 845 and other chipsets say they are PCI-PCI bridges, * but have a ProgIF of 0x80. The 82801 family (AA, AB, BAM/CAM, * BA/CA/DB and E) PCI bridges are HUB-PCI bridges, in Intelese. * This means they act as if they were subtractively decoding * bridges and pass all transactions. Mark them and real ProgIf 1 * parts as subtractive. */ if ((pci_get_devid(dev) & 0xff00ffff) == 0x24008086 || pci_read_config(dev, PCIR_PROGIF, 1) == PCIP_BRIDGE_PCI_SUBTRACTIVE) sc->flags |= PCIB_SUBTRACTIVE; #ifdef PCI_HP pcib_probe_hotplug(sc); #endif #ifdef NEW_PCIB #ifdef PCI_RES_BUS pcib_setup_secbus(dev, &sc->bus, 1); #endif pcib_probe_windows(sc); #endif #ifdef PCI_HP if (sc->flags & PCIB_HOTPLUG) pcib_setup_hotplug(sc); #endif if (bootverbose) { device_printf(dev, " domain %d\n", sc->domain); device_printf(dev, " secondary bus %d\n", sc->bus.sec); device_printf(dev, " subordinate bus %d\n", sc->bus.sub); #ifdef NEW_PCIB if (pcib_is_window_open(&sc->io)) device_printf(dev, " I/O decode 0x%jx-0x%jx\n", (uintmax_t)sc->io.base, (uintmax_t)sc->io.limit); if (pcib_is_window_open(&sc->mem)) device_printf(dev, " memory decode 0x%jx-0x%jx\n", (uintmax_t)sc->mem.base, (uintmax_t)sc->mem.limit); if (pcib_is_window_open(&sc->pmem)) device_printf(dev, " prefetched decode 0x%jx-0x%jx\n", (uintmax_t)sc->pmem.base, (uintmax_t)sc->pmem.limit); #else if (pcib_is_io_open(sc)) device_printf(dev, " I/O decode 0x%x-0x%x\n", sc->iobase, sc->iolimit); if (pcib_is_nonprefetch_open(sc)) device_printf(dev, " memory decode 0x%jx-0x%jx\n", (uintmax_t)sc->membase, (uintmax_t)sc->memlimit); if (pcib_is_prefetch_open(sc)) device_printf(dev, " prefetched decode 0x%jx-0x%jx\n", (uintmax_t)sc->pmembase, (uintmax_t)sc->pmemlimit); #endif if (sc->bridgectl & (PCIB_BCR_ISA_ENABLE | PCIB_BCR_VGA_ENABLE) || sc->flags & PCIB_SUBTRACTIVE) { device_printf(dev, " special decode "); comma = 0; if (sc->bridgectl & PCIB_BCR_ISA_ENABLE) { printf("ISA"); comma = 1; } if (sc->bridgectl & PCIB_BCR_VGA_ENABLE) { printf("%sVGA", comma ? ", " : ""); comma = 1; } if (sc->flags & PCIB_SUBTRACTIVE) printf("%ssubtractive", comma ? ", " : ""); printf("\n"); } } /* * Always enable busmastering on bridges so that transactions * initiated on the secondary bus are passed through to the * primary bus. */ pci_enable_busmaster(dev); } #ifdef PCI_HP static int pcib_present(struct pcib_softc *sc) { if (sc->flags & PCIB_HOTPLUG) return (pcib_hotplug_present(sc) != 0); return (1); } #endif int pcib_attach_child(device_t dev) { struct pcib_softc *sc; sc = device_get_softc(dev); if (sc->bus.sec == 0) { /* no secondary bus; we should have fixed this */ return(0); } #ifdef PCI_HP if (!pcib_present(sc)) { /* An empty HotPlug slot, so don't add a PCI bus yet. */ return (0); } #endif sc->child = device_add_child(dev, "pci", -1); return (bus_generic_attach(dev)); } int pcib_attach(device_t dev) { pcib_attach_common(dev); return (pcib_attach_child(dev)); } int pcib_detach(device_t dev) { #if defined(PCI_HP) || defined(NEW_PCIB) struct pcib_softc *sc; #endif int error; #if defined(PCI_HP) || defined(NEW_PCIB) sc = device_get_softc(dev); #endif error = bus_generic_detach(dev); if (error) return (error); #ifdef PCI_HP if (sc->flags & PCIB_HOTPLUG) { error = pcib_detach_hotplug(sc); if (error) return (error); } #endif error = device_delete_children(dev); if (error) return (error); #ifdef NEW_PCIB pcib_free_windows(sc); #ifdef PCI_RES_BUS pcib_free_secbus(dev, &sc->bus); #endif #endif return (0); } int pcib_suspend(device_t dev) { pcib_cfg_save(device_get_softc(dev)); return (bus_generic_suspend(dev)); } int pcib_resume(device_t dev) { pcib_cfg_restore(device_get_softc(dev)); return (bus_generic_resume(dev)); } void pcib_bridge_init(device_t dev) { pci_write_config(dev, PCIR_IOBASEL_1, 0xff, 1); pci_write_config(dev, PCIR_IOBASEH_1, 0xffff, 2); pci_write_config(dev, PCIR_IOLIMITL_1, 0, 1); pci_write_config(dev, PCIR_IOLIMITH_1, 0, 2); pci_write_config(dev, PCIR_MEMBASE_1, 0xffff, 2); pci_write_config(dev, PCIR_MEMLIMIT_1, 0, 2); pci_write_config(dev, PCIR_PMBASEL_1, 0xffff, 2); pci_write_config(dev, PCIR_PMBASEH_1, 0xffffffff, 4); pci_write_config(dev, PCIR_PMLIMITL_1, 0, 2); pci_write_config(dev, PCIR_PMLIMITH_1, 0, 4); } int pcib_child_present(device_t dev, device_t child) { #ifdef PCI_HP struct pcib_softc *sc = device_get_softc(dev); int retval; retval = bus_child_present(dev); if (retval != 0 && sc->flags & PCIB_HOTPLUG) retval = pcib_hotplug_present(sc); return (retval); #else return (bus_child_present(dev)); #endif } int pcib_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) { struct pcib_softc *sc = device_get_softc(dev); switch (which) { case PCIB_IVAR_DOMAIN: *result = sc->domain; return(0); case PCIB_IVAR_BUS: *result = sc->bus.sec; return(0); } return(ENOENT); } int pcib_write_ivar(device_t dev, device_t child, int which, uintptr_t value) { switch (which) { case PCIB_IVAR_DOMAIN: return(EINVAL); case PCIB_IVAR_BUS: return(EINVAL); } return(ENOENT); } #ifdef NEW_PCIB /* * Attempt to allocate a resource from the existing resources assigned * to a window. */ static struct resource * pcib_suballoc_resource(struct pcib_softc *sc, struct pcib_window *w, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct resource *res; if (!pcib_is_window_open(w)) return (NULL); res = rman_reserve_resource(&w->rman, start, end, count, flags & ~RF_ACTIVE, child); if (res == NULL) return (NULL); if (bootverbose) device_printf(sc->dev, "allocated %s range (%#jx-%#jx) for rid %x of %s\n", w->name, rman_get_start(res), rman_get_end(res), *rid, pcib_child_name(child)); rman_set_rid(res, *rid); /* * If the resource should be active, pass that request up the * tree. This assumes the parent drivers can handle * activating sub-allocated resources. */ if (flags & RF_ACTIVE) { if (bus_activate_resource(child, type, *rid, res) != 0) { rman_release_resource(res); return (NULL); } } return (res); } /* Allocate a fresh resource range for an unconfigured window. */ static int pcib_alloc_new_window(struct pcib_softc *sc, struct pcib_window *w, int type, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct resource *res; rman_res_t base, limit, wmask; int rid; /* * If this is an I/O window on a bridge with ISA enable set * and the start address is below 64k, then try to allocate an * initial window of 0x1000 bytes long starting at address * 0xf000 and walking down. Note that if the original request * was larger than the non-aliased range size of 0x100 our * caller would have raised the start address up to 64k * already. */ if (type == SYS_RES_IOPORT && sc->bridgectl & PCIB_BCR_ISA_ENABLE && start < 65536) { for (base = 0xf000; (long)base >= 0; base -= 0x1000) { limit = base + 0xfff; /* * Skip ranges that wouldn't work for the * original request. Note that the actual * window that overlaps are the non-alias * ranges within [base, limit], so this isn't * quite a simple comparison. */ if (start + count > limit - 0x400) continue; if (base == 0) { /* * The first open region for the window at * 0 is 0x400-0x4ff. */ if (end - count + 1 < 0x400) continue; } else { if (end - count + 1 < base) continue; } if (pcib_alloc_nonisa_ranges(sc, base, limit) == 0) { w->base = base; w->limit = limit; return (0); } } return (ENOSPC); } wmask = ((rman_res_t)1 << w->step) - 1; if (RF_ALIGNMENT(flags) < w->step) { flags &= ~RF_ALIGNMENT_MASK; flags |= RF_ALIGNMENT_LOG2(w->step); } start &= ~wmask; end |= wmask; count = roundup2(count, (rman_res_t)1 << w->step); rid = w->reg; res = bus_alloc_resource(sc->dev, type, &rid, start, end, count, flags & ~RF_ACTIVE); if (res == NULL) return (ENOSPC); pcib_add_window_resources(w, &res, 1); pcib_activate_window(sc, type); w->base = rman_get_start(res); w->limit = rman_get_end(res); return (0); } /* Try to expand an existing window to the requested base and limit. */ static int pcib_expand_window(struct pcib_softc *sc, struct pcib_window *w, int type, rman_res_t base, rman_res_t limit) { struct resource *res; int error, i, force_64k_base; KASSERT(base <= w->base && limit >= w->limit, ("attempting to shrink window")); /* * XXX: pcib_grow_window() doesn't try to do this anyway and * the error handling for all the edge cases would be tedious. */ KASSERT(limit == w->limit || base == w->base, ("attempting to grow both ends of a window")); /* * Yet more special handling for requests to expand an I/O * window behind an ISA-enabled bridge. Since I/O windows * have to grow in 0x1000 increments and the end of the 0xffff * range is an alias, growing a window below 64k will always * result in allocating new resources and never adjusting an * existing resource. */ if (type == SYS_RES_IOPORT && sc->bridgectl & PCIB_BCR_ISA_ENABLE && (limit <= 65535 || (base <= 65535 && base != w->base))) { KASSERT(limit == w->limit || limit <= 65535, ("attempting to grow both ends across 64k ISA alias")); if (base != w->base) error = pcib_alloc_nonisa_ranges(sc, base, w->base - 1); else error = pcib_alloc_nonisa_ranges(sc, w->limit + 1, limit); if (error == 0) { w->base = base; w->limit = limit; } return (error); } /* * Find the existing resource to adjust. Usually there is only one, * but for an ISA-enabled bridge we might be growing the I/O window * above 64k and need to find the existing resource that maps all * of the area above 64k. */ for (i = 0; i < w->count; i++) { if (rman_get_end(w->res[i]) == w->limit) break; } KASSERT(i != w->count, ("did not find existing resource")); res = w->res[i]; /* * Usually the resource we found should match the window's * existing range. The one exception is the ISA-enabled case * mentioned above in which case the resource should start at * 64k. */ if (type == SYS_RES_IOPORT && sc->bridgectl & PCIB_BCR_ISA_ENABLE && w->base <= 65535) { KASSERT(rman_get_start(res) == 65536, ("existing resource mismatch")); force_64k_base = 1; } else { KASSERT(w->base == rman_get_start(res), ("existing resource mismatch")); force_64k_base = 0; } error = bus_adjust_resource(sc->dev, type, res, force_64k_base ? rman_get_start(res) : base, limit); if (error) return (error); /* Add the newly allocated region to the resource manager. */ if (w->base != base) { error = rman_manage_region(&w->rman, base, w->base - 1); w->base = base; } else { error = rman_manage_region(&w->rman, w->limit + 1, limit); w->limit = limit; } if (error) { if (bootverbose) device_printf(sc->dev, "failed to expand %s resource manager\n", w->name); (void)bus_adjust_resource(sc->dev, type, res, force_64k_base ? rman_get_start(res) : w->base, w->limit); } return (error); } /* * Attempt to grow a window to make room for a given resource request. */ static int pcib_grow_window(struct pcib_softc *sc, struct pcib_window *w, int type, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { rman_res_t align, start_free, end_free, front, back, wmask; int error; /* * Clamp the desired resource range to the maximum address * this window supports. Reject impossible requests. * * For I/O port requests behind a bridge with the ISA enable * bit set, force large allocations to start above 64k. */ if (!w->valid) return (EINVAL); if (sc->bridgectl & PCIB_BCR_ISA_ENABLE && count > 0x100 && start < 65536) start = 65536; if (end > w->rman.rm_end) end = w->rman.rm_end; if (start + count - 1 > end || start + count < start) return (EINVAL); wmask = ((rman_res_t)1 << w->step) - 1; /* * If there is no resource at all, just try to allocate enough * aligned space for this resource. */ if (w->res == NULL) { error = pcib_alloc_new_window(sc, w, type, start, end, count, flags); if (error) { if (bootverbose) device_printf(sc->dev, "failed to allocate initial %s window (%#jx-%#jx,%#jx)\n", w->name, start, end, count); return (error); } if (bootverbose) device_printf(sc->dev, "allocated initial %s window of %#jx-%#jx\n", w->name, (uintmax_t)w->base, (uintmax_t)w->limit); goto updatewin; } /* * See if growing the window would help. Compute the minimum * amount of address space needed on both the front and back * ends of the existing window to satisfy the allocation. * * For each end, build a candidate region adjusting for the * required alignment, etc. If there is a free region at the * edge of the window, grow from the inner edge of the free * region. Otherwise grow from the window boundary. * * Growing an I/O window below 64k for a bridge with the ISA * enable bit doesn't require any special magic as the step * size of an I/O window (1k) always includes multiple * non-alias ranges when it is grown in either direction. * * XXX: Special case: if w->res is completely empty and the * request size is larger than w->res, we should find the * optimal aligned buffer containing w->res and allocate that. */ if (bootverbose) device_printf(sc->dev, "attempting to grow %s window for (%#jx-%#jx,%#jx)\n", w->name, start, end, count); align = (rman_res_t)1 << RF_ALIGNMENT(flags); if (start < w->base) { if (rman_first_free_region(&w->rman, &start_free, &end_free) != 0 || start_free != w->base) end_free = w->base; if (end_free > end) end_free = end + 1; /* Move end_free down until it is properly aligned. */ end_free &= ~(align - 1); end_free--; front = end_free - (count - 1); /* * The resource would now be allocated at (front, * end_free). Ensure that fits in the (start, end) * bounds. end_free is checked above. If 'front' is * ok, ensure it is properly aligned for this window. * Also check for underflow. */ if (front >= start && front <= end_free) { if (bootverbose) printf("\tfront candidate range: %#jx-%#jx\n", front, end_free); front &= ~wmask; front = w->base - front; } else front = 0; } else front = 0; if (end > w->limit) { if (rman_last_free_region(&w->rman, &start_free, &end_free) != 0 || end_free != w->limit) start_free = w->limit + 1; if (start_free < start) start_free = start; /* Move start_free up until it is properly aligned. */ start_free = roundup2(start_free, align); back = start_free + count - 1; /* * The resource would now be allocated at (start_free, * back). Ensure that fits in the (start, end) * bounds. start_free is checked above. If 'back' is * ok, ensure it is properly aligned for this window. * Also check for overflow. */ if (back <= end && start_free <= back) { if (bootverbose) printf("\tback candidate range: %#jx-%#jx\n", start_free, back); back |= wmask; back -= w->limit; } else back = 0; } else back = 0; /* * Try to allocate the smallest needed region first. * If that fails, fall back to the other region. */ error = ENOSPC; while (front != 0 || back != 0) { if (front != 0 && (front <= back || back == 0)) { error = pcib_expand_window(sc, w, type, w->base - front, w->limit); if (error == 0) break; front = 0; } else { error = pcib_expand_window(sc, w, type, w->base, w->limit + back); if (error == 0) break; back = 0; } } if (error) return (error); if (bootverbose) device_printf(sc->dev, "grew %s window to %#jx-%#jx\n", w->name, (uintmax_t)w->base, (uintmax_t)w->limit); updatewin: /* Write the new window. */ KASSERT((w->base & wmask) == 0, ("start address is not aligned")); KASSERT((w->limit & wmask) == wmask, ("end address is not aligned")); pcib_write_windows(sc, w->mask); return (0); } /* * We have to trap resource allocation requests and ensure that the bridge * is set up to, or capable of handling them. */ struct resource * pcib_alloc_resource(device_t dev, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct pcib_softc *sc; struct resource *r; sc = device_get_softc(dev); /* * VGA resources are decoded iff the VGA enable bit is set in * the bridge control register. VGA resources do not fall into * the resource windows and are passed up to the parent. */ if ((type == SYS_RES_IOPORT && pci_is_vga_ioport_range(start, end)) || (type == SYS_RES_MEMORY && pci_is_vga_memory_range(start, end))) { if (sc->bridgectl & PCIB_BCR_VGA_ENABLE) return (bus_generic_alloc_resource(dev, child, type, rid, start, end, count, flags)); else return (NULL); } switch (type) { #ifdef PCI_RES_BUS case PCI_RES_BUS: return (pcib_alloc_subbus(&sc->bus, child, rid, start, end, count, flags)); #endif case SYS_RES_IOPORT: if (pcib_is_isa_range(sc, start, end, count)) return (NULL); r = pcib_suballoc_resource(sc, &sc->io, child, type, rid, start, end, count, flags); if (r != NULL || (sc->flags & PCIB_SUBTRACTIVE) != 0) break; if (pcib_grow_window(sc, &sc->io, type, start, end, count, flags) == 0) r = pcib_suballoc_resource(sc, &sc->io, child, type, rid, start, end, count, flags); break; case SYS_RES_MEMORY: /* * For prefetchable resources, prefer the prefetchable * memory window, but fall back to the regular memory * window if that fails. Try both windows before * attempting to grow a window in case the firmware * has used a range in the regular memory window to * map a prefetchable BAR. */ if (flags & RF_PREFETCHABLE) { r = pcib_suballoc_resource(sc, &sc->pmem, child, type, rid, start, end, count, flags); if (r != NULL) break; } r = pcib_suballoc_resource(sc, &sc->mem, child, type, rid, start, end, count, flags); if (r != NULL || (sc->flags & PCIB_SUBTRACTIVE) != 0) break; if (flags & RF_PREFETCHABLE) { if (pcib_grow_window(sc, &sc->pmem, type, start, end, count, flags) == 0) { r = pcib_suballoc_resource(sc, &sc->pmem, child, type, rid, start, end, count, flags); if (r != NULL) break; } } if (pcib_grow_window(sc, &sc->mem, type, start, end, count, flags & ~RF_PREFETCHABLE) == 0) r = pcib_suballoc_resource(sc, &sc->mem, child, type, rid, start, end, count, flags); break; default: return (bus_generic_alloc_resource(dev, child, type, rid, start, end, count, flags)); } /* * If attempts to suballocate from the window fail but this is a * subtractive bridge, pass the request up the tree. */ if (sc->flags & PCIB_SUBTRACTIVE && r == NULL) return (bus_generic_alloc_resource(dev, child, type, rid, start, end, count, flags)); return (r); } int pcib_adjust_resource(device_t bus, device_t child, int type, struct resource *r, rman_res_t start, rman_res_t end) { struct pcib_softc *sc; sc = device_get_softc(bus); if (pcib_is_resource_managed(sc, type, r)) return (rman_adjust_resource(r, start, end)); return (bus_generic_adjust_resource(bus, child, type, r, start, end)); } int pcib_release_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { struct pcib_softc *sc; int error; sc = device_get_softc(dev); if (pcib_is_resource_managed(sc, type, r)) { if (rman_get_flags(r) & RF_ACTIVE) { error = bus_deactivate_resource(child, type, rid, r); if (error) return (error); } return (rman_release_resource(r)); } return (bus_generic_release_resource(dev, child, type, rid, r)); } #else /* * We have to trap resource allocation requests and ensure that the bridge * is set up to, or capable of handling them. */ struct resource * pcib_alloc_resource(device_t dev, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct pcib_softc *sc = device_get_softc(dev); const char *name, *suffix; int ok; /* * Fail the allocation for this range if it's not supported. */ name = device_get_nameunit(child); if (name == NULL) { name = ""; suffix = ""; } else suffix = " "; switch (type) { case SYS_RES_IOPORT: ok = 0; if (!pcib_is_io_open(sc)) break; ok = (start >= sc->iobase && end <= sc->iolimit); /* * Make sure we allow access to VGA I/O addresses when the * bridge has the "VGA Enable" bit set. */ if (!ok && pci_is_vga_ioport_range(start, end)) ok = (sc->bridgectl & PCIB_BCR_VGA_ENABLE) ? 1 : 0; if ((sc->flags & PCIB_SUBTRACTIVE) == 0) { if (!ok) { if (start < sc->iobase) start = sc->iobase; if (end > sc->iolimit) end = sc->iolimit; if (start < end) ok = 1; } } else { ok = 1; #if 0 /* * If we overlap with the subtractive range, then * pick the upper range to use. */ if (start < sc->iolimit && end > sc->iobase) start = sc->iolimit + 1; #endif } if (end < start) { device_printf(dev, "ioport: end (%jx) < start (%jx)\n", end, start); start = 0; end = 0; ok = 0; } if (!ok) { device_printf(dev, "%s%srequested unsupported I/O " "range 0x%jx-0x%jx (decoding 0x%x-0x%x)\n", name, suffix, start, end, sc->iobase, sc->iolimit); return (NULL); } if (bootverbose) device_printf(dev, "%s%srequested I/O range 0x%jx-0x%jx: in range\n", name, suffix, start, end); break; case SYS_RES_MEMORY: ok = 0; if (pcib_is_nonprefetch_open(sc)) ok = ok || (start >= sc->membase && end <= sc->memlimit); if (pcib_is_prefetch_open(sc)) ok = ok || (start >= sc->pmembase && end <= sc->pmemlimit); /* * Make sure we allow access to VGA memory addresses when the * bridge has the "VGA Enable" bit set. */ if (!ok && pci_is_vga_memory_range(start, end)) ok = (sc->bridgectl & PCIB_BCR_VGA_ENABLE) ? 1 : 0; if ((sc->flags & PCIB_SUBTRACTIVE) == 0) { if (!ok) { ok = 1; if (flags & RF_PREFETCHABLE) { if (pcib_is_prefetch_open(sc)) { if (start < sc->pmembase) start = sc->pmembase; if (end > sc->pmemlimit) end = sc->pmemlimit; } else { ok = 0; } } else { /* non-prefetchable */ if (pcib_is_nonprefetch_open(sc)) { if (start < sc->membase) start = sc->membase; if (end > sc->memlimit) end = sc->memlimit; } else { ok = 0; } } } } else if (!ok) { ok = 1; /* subtractive bridge: always ok */ #if 0 if (pcib_is_nonprefetch_open(sc)) { if (start < sc->memlimit && end > sc->membase) start = sc->memlimit + 1; } if (pcib_is_prefetch_open(sc)) { if (start < sc->pmemlimit && end > sc->pmembase) start = sc->pmemlimit + 1; } #endif } if (end < start) { device_printf(dev, "memory: end (%jx) < start (%jx)\n", end, start); start = 0; end = 0; ok = 0; } if (!ok && bootverbose) device_printf(dev, "%s%srequested unsupported memory range %#jx-%#jx " "(decoding %#jx-%#jx, %#jx-%#jx)\n", name, suffix, start, end, (uintmax_t)sc->membase, (uintmax_t)sc->memlimit, (uintmax_t)sc->pmembase, (uintmax_t)sc->pmemlimit); if (!ok) return (NULL); if (bootverbose) device_printf(dev,"%s%srequested memory range " "0x%jx-0x%jx: good\n", name, suffix, start, end); break; default: break; } /* * Bridge is OK decoding this resource, so pass it up. */ return (bus_generic_alloc_resource(dev, child, type, rid, start, end, count, flags)); } #endif /* * If ARI is enabled on this downstream port, translate the function number * to the non-ARI slot/function. The downstream port will convert it back in * hardware. If ARI is not enabled slot and func are not modified. */ static __inline void pcib_xlate_ari(device_t pcib, int bus, int *slot, int *func) { struct pcib_softc *sc; int ari_func; sc = device_get_softc(pcib); ari_func = *func; if (sc->flags & PCIB_ENABLE_ARI) { KASSERT(*slot == 0, ("Non-zero slot number with ARI enabled!")); *slot = PCIE_ARI_SLOT(ari_func); *func = PCIE_ARI_FUNC(ari_func); } } static void pcib_enable_ari(struct pcib_softc *sc, uint32_t pcie_pos) { uint32_t ctl2; ctl2 = pci_read_config(sc->dev, pcie_pos + PCIER_DEVICE_CTL2, 4); ctl2 |= PCIEM_CTL2_ARI; pci_write_config(sc->dev, pcie_pos + PCIER_DEVICE_CTL2, ctl2, 4); sc->flags |= PCIB_ENABLE_ARI; } /* * PCIB interface. */ int pcib_maxslots(device_t dev) { return (PCI_SLOTMAX); } static int pcib_ari_maxslots(device_t dev) { struct pcib_softc *sc; sc = device_get_softc(dev); if (sc->flags & PCIB_ENABLE_ARI) return (PCIE_ARI_SLOTMAX); else return (PCI_SLOTMAX); } static int pcib_ari_maxfuncs(device_t dev) { struct pcib_softc *sc; sc = device_get_softc(dev); if (sc->flags & PCIB_ENABLE_ARI) return (PCIE_ARI_FUNCMAX); else return (PCI_FUNCMAX); } static void pcib_ari_decode_rid(device_t pcib, uint16_t rid, int *bus, int *slot, int *func) { struct pcib_softc *sc; sc = device_get_softc(pcib); *bus = PCI_RID2BUS(rid); if (sc->flags & PCIB_ENABLE_ARI) { *slot = PCIE_ARI_RID2SLOT(rid); *func = PCIE_ARI_RID2FUNC(rid); } else { *slot = PCI_RID2SLOT(rid); *func = PCI_RID2FUNC(rid); } } /* * Since we are a child of a PCI bus, its parent must support the pcib interface. */ static uint32_t pcib_read_config(device_t dev, u_int b, u_int s, u_int f, u_int reg, int width) { #ifdef PCI_HP struct pcib_softc *sc; sc = device_get_softc(dev); if (!pcib_present(sc)) { switch (width) { case 2: return (0xffff); case 1: return (0xff); default: return (0xffffffff); } } #endif pcib_xlate_ari(dev, b, &s, &f); return(PCIB_READ_CONFIG(device_get_parent(device_get_parent(dev)), b, s, f, reg, width)); } static void pcib_write_config(device_t dev, u_int b, u_int s, u_int f, u_int reg, uint32_t val, int width) { #ifdef PCI_HP struct pcib_softc *sc; sc = device_get_softc(dev); if (!pcib_present(sc)) return; #endif pcib_xlate_ari(dev, b, &s, &f); PCIB_WRITE_CONFIG(device_get_parent(device_get_parent(dev)), b, s, f, reg, val, width); } /* * Route an interrupt across a PCI bridge. */ int pcib_route_interrupt(device_t pcib, device_t dev, int pin) { device_t bus; int parent_intpin; int intnum; /* * * The PCI standard defines a swizzle of the child-side device/intpin to * the parent-side intpin as follows. * * device = device on child bus * child_intpin = intpin on child bus slot (0-3) * parent_intpin = intpin on parent bus slot (0-3) * * parent_intpin = (device + child_intpin) % 4 */ parent_intpin = (pci_get_slot(dev) + (pin - 1)) % 4; /* * Our parent is a PCI bus. Its parent must export the pcib interface * which includes the ability to route interrupts. */ bus = device_get_parent(pcib); intnum = PCIB_ROUTE_INTERRUPT(device_get_parent(bus), pcib, parent_intpin + 1); if (PCI_INTERRUPT_VALID(intnum) && bootverbose) { device_printf(pcib, "slot %d INT%c is routed to irq %d\n", pci_get_slot(dev), 'A' + pin - 1, intnum); } return(intnum); } /* Pass request to alloc MSI/MSI-X messages up to the parent bridge. */ int pcib_alloc_msi(device_t pcib, device_t dev, int count, int maxcount, int *irqs) { struct pcib_softc *sc = device_get_softc(pcib); device_t bus; if (sc->flags & PCIB_DISABLE_MSI) return (ENXIO); bus = device_get_parent(pcib); return (PCIB_ALLOC_MSI(device_get_parent(bus), dev, count, maxcount, irqs)); } /* Pass request to release MSI/MSI-X messages up to the parent bridge. */ int pcib_release_msi(device_t pcib, device_t dev, int count, int *irqs) { device_t bus; bus = device_get_parent(pcib); return (PCIB_RELEASE_MSI(device_get_parent(bus), dev, count, irqs)); } /* Pass request to alloc an MSI-X message up to the parent bridge. */ int pcib_alloc_msix(device_t pcib, device_t dev, int *irq) { struct pcib_softc *sc = device_get_softc(pcib); device_t bus; if (sc->flags & PCIB_DISABLE_MSIX) return (ENXIO); bus = device_get_parent(pcib); return (PCIB_ALLOC_MSIX(device_get_parent(bus), dev, irq)); } /* Pass request to release an MSI-X message up to the parent bridge. */ int pcib_release_msix(device_t pcib, device_t dev, int irq) { device_t bus; bus = device_get_parent(pcib); return (PCIB_RELEASE_MSIX(device_get_parent(bus), dev, irq)); } /* Pass request to map MSI/MSI-X message up to parent bridge. */ int pcib_map_msi(device_t pcib, device_t dev, int irq, uint64_t *addr, uint32_t *data) { device_t bus; int error; bus = device_get_parent(pcib); error = PCIB_MAP_MSI(device_get_parent(bus), dev, irq, addr, data); if (error) return (error); pci_ht_map_msi(pcib, *addr); return (0); } /* Pass request for device power state up to parent bridge. */ int pcib_power_for_sleep(device_t pcib, device_t dev, int *pstate) { device_t bus; bus = device_get_parent(pcib); return (PCIB_POWER_FOR_SLEEP(bus, dev, pstate)); } static int pcib_ari_enabled(device_t pcib) { struct pcib_softc *sc; sc = device_get_softc(pcib); return ((sc->flags & PCIB_ENABLE_ARI) != 0); } static int pcib_ari_get_id(device_t pcib, device_t dev, enum pci_id_type type, uintptr_t *id) { struct pcib_softc *sc; device_t bus_dev; uint8_t bus, slot, func; if (type != PCI_ID_RID) { bus_dev = device_get_parent(pcib); return (PCIB_GET_ID(device_get_parent(bus_dev), dev, type, id)); } sc = device_get_softc(pcib); if (sc->flags & PCIB_ENABLE_ARI) { bus = pci_get_bus(dev); func = pci_get_function(dev); *id = (PCI_ARI_RID(bus, func)); } else { bus = pci_get_bus(dev); slot = pci_get_slot(dev); func = pci_get_function(dev); *id = (PCI_RID(bus, slot, func)); } return (0); } /* * Check that the downstream port (pcib) and the endpoint device (dev) both * support ARI. If so, enable it and return 0, otherwise return an error. */ static int pcib_try_enable_ari(device_t pcib, device_t dev) { struct pcib_softc *sc; int error; uint32_t cap2; int ari_cap_off; uint32_t ari_ver; uint32_t pcie_pos; sc = device_get_softc(pcib); /* * ARI is controlled in a register in the PCIe capability structure. * If the downstream port does not have the PCIe capability structure * then it does not support ARI. */ error = pci_find_cap(pcib, PCIY_EXPRESS, &pcie_pos); if (error != 0) return (ENODEV); /* Check that the PCIe port advertises ARI support. */ cap2 = pci_read_config(pcib, pcie_pos + PCIER_DEVICE_CAP2, 4); if (!(cap2 & PCIEM_CAP2_ARI)) return (ENODEV); /* * Check that the endpoint device advertises ARI support via the ARI * extended capability structure. */ error = pci_find_extcap(dev, PCIZ_ARI, &ari_cap_off); if (error != 0) return (ENODEV); /* * Finally, check that the endpoint device supports the same version * of ARI that we do. */ ari_ver = pci_read_config(dev, ari_cap_off, 4); if (PCI_EXTCAP_VER(ari_ver) != PCIB_SUPPORTED_ARI_VER) { if (bootverbose) device_printf(pcib, "Unsupported version of ARI (%d) detected\n", PCI_EXTCAP_VER(ari_ver)); return (ENXIO); } pcib_enable_ari(sc, pcie_pos); return (0); } Index: head/usr.sbin/pciconf/cap.c =================================================================== --- head/usr.sbin/pciconf/cap.c (revision 303787) +++ head/usr.sbin/pciconf/cap.c (revision 303788) @@ -1,1073 +1,1076 @@ /*- * Copyright (c) 2007 Yahoo!, Inc. * All rights reserved. * Written by: John Baldwin * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint static const char rcsid[] = "$FreeBSD$"; #endif /* not lint */ #include #include #include #include #include #include #include #include #include "pciconf.h" static void list_ecaps(int fd, struct pci_conf *p); static void cap_power(int fd, struct pci_conf *p, uint8_t ptr) { uint16_t cap, status; cap = read_config(fd, &p->pc_sel, ptr + PCIR_POWER_CAP, 2); status = read_config(fd, &p->pc_sel, ptr + PCIR_POWER_STATUS, 2); printf("powerspec %d supports D0%s%s D3 current D%d", cap & PCIM_PCAP_SPEC, cap & PCIM_PCAP_D1SUPP ? " D1" : "", cap & PCIM_PCAP_D2SUPP ? " D2" : "", status & PCIM_PSTAT_DMASK); } static void cap_agp(int fd, struct pci_conf *p, uint8_t ptr) { uint32_t status, command; status = read_config(fd, &p->pc_sel, ptr + AGP_STATUS, 4); command = read_config(fd, &p->pc_sel, ptr + AGP_CAPID, 4); printf("AGP "); if (AGP_MODE_GET_MODE_3(status)) { printf("v3 "); if (AGP_MODE_GET_RATE(status) & AGP_MODE_V3_RATE_8x) printf("8x "); if (AGP_MODE_GET_RATE(status) & AGP_MODE_V3_RATE_4x) printf("4x "); } else { if (AGP_MODE_GET_RATE(status) & AGP_MODE_V2_RATE_4x) printf("4x "); if (AGP_MODE_GET_RATE(status) & AGP_MODE_V2_RATE_2x) printf("2x "); if (AGP_MODE_GET_RATE(status) & AGP_MODE_V2_RATE_1x) printf("1x "); } if (AGP_MODE_GET_SBA(status)) printf("SBA "); if (AGP_MODE_GET_AGP(command)) { printf("enabled at "); if (AGP_MODE_GET_MODE_3(command)) { printf("v3 "); switch (AGP_MODE_GET_RATE(command)) { case AGP_MODE_V3_RATE_8x: printf("8x "); break; case AGP_MODE_V3_RATE_4x: printf("4x "); break; } } else switch (AGP_MODE_GET_RATE(command)) { case AGP_MODE_V2_RATE_4x: printf("4x "); break; case AGP_MODE_V2_RATE_2x: printf("2x "); break; case AGP_MODE_V2_RATE_1x: printf("1x "); break; } if (AGP_MODE_GET_SBA(command)) printf("SBA "); } else printf("disabled"); } static void cap_vpd(int fd __unused, struct pci_conf *p __unused, uint8_t ptr __unused) { printf("VPD"); } static void cap_msi(int fd, struct pci_conf *p, uint8_t ptr) { uint16_t ctrl; int msgnum; ctrl = read_config(fd, &p->pc_sel, ptr + PCIR_MSI_CTRL, 2); msgnum = 1 << ((ctrl & PCIM_MSICTRL_MMC_MASK) >> 1); printf("MSI supports %d message%s%s%s ", msgnum, (msgnum == 1) ? "" : "s", (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "", (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks" : ""); if (ctrl & PCIM_MSICTRL_MSI_ENABLE) { msgnum = 1 << ((ctrl & PCIM_MSICTRL_MME_MASK) >> 4); printf("enabled with %d message%s", msgnum, (msgnum == 1) ? "" : "s"); } } static void cap_pcix(int fd, struct pci_conf *p, uint8_t ptr) { uint32_t status; int comma, max_splits, max_burst_read; status = read_config(fd, &p->pc_sel, ptr + PCIXR_STATUS, 4); printf("PCI-X "); if (status & PCIXM_STATUS_64BIT) printf("64-bit "); if ((p->pc_hdr & PCIM_HDRTYPE) == 1) printf("bridge "); if ((p->pc_hdr & PCIM_HDRTYPE) != 1 || (status & (PCIXM_STATUS_133CAP | PCIXM_STATUS_266CAP | PCIXM_STATUS_533CAP)) != 0) printf("supports"); comma = 0; if (status & PCIXM_STATUS_133CAP) { printf("%s 133MHz", comma ? "," : ""); comma = 1; } if (status & PCIXM_STATUS_266CAP) { printf("%s 266MHz", comma ? "," : ""); comma = 1; } if (status & PCIXM_STATUS_533CAP) { printf("%s 533MHz", comma ? "," : ""); comma = 1; } if ((p->pc_hdr & PCIM_HDRTYPE) == 1) return; max_burst_read = 0; switch (status & PCIXM_STATUS_MAX_READ) { case PCIXM_STATUS_MAX_READ_512: max_burst_read = 512; break; case PCIXM_STATUS_MAX_READ_1024: max_burst_read = 1024; break; case PCIXM_STATUS_MAX_READ_2048: max_burst_read = 2048; break; case PCIXM_STATUS_MAX_READ_4096: max_burst_read = 4096; break; } max_splits = 0; switch (status & PCIXM_STATUS_MAX_SPLITS) { case PCIXM_STATUS_MAX_SPLITS_1: max_splits = 1; break; case PCIXM_STATUS_MAX_SPLITS_2: max_splits = 2; break; case PCIXM_STATUS_MAX_SPLITS_3: max_splits = 3; break; case PCIXM_STATUS_MAX_SPLITS_4: max_splits = 4; break; case PCIXM_STATUS_MAX_SPLITS_8: max_splits = 8; break; case PCIXM_STATUS_MAX_SPLITS_12: max_splits = 12; break; case PCIXM_STATUS_MAX_SPLITS_16: max_splits = 16; break; case PCIXM_STATUS_MAX_SPLITS_32: max_splits = 32; break; } printf("%s %d burst read, %d split transaction%s", comma ? "," : "", max_burst_read, max_splits, max_splits == 1 ? "" : "s"); } static void cap_ht(int fd, struct pci_conf *p, uint8_t ptr) { uint32_t reg; uint16_t command; command = read_config(fd, &p->pc_sel, ptr + PCIR_HT_COMMAND, 2); printf("HT "); if ((command & 0xe000) == PCIM_HTCAP_SLAVE) printf("slave"); else if ((command & 0xe000) == PCIM_HTCAP_HOST) printf("host"); else switch (command & PCIM_HTCMD_CAP_MASK) { case PCIM_HTCAP_SWITCH: printf("switch"); break; case PCIM_HTCAP_INTERRUPT: printf("interrupt"); break; case PCIM_HTCAP_REVISION_ID: printf("revision ID"); break; case PCIM_HTCAP_UNITID_CLUMPING: printf("unit ID clumping"); break; case PCIM_HTCAP_EXT_CONFIG_SPACE: printf("extended config space"); break; case PCIM_HTCAP_ADDRESS_MAPPING: printf("address mapping"); break; case PCIM_HTCAP_MSI_MAPPING: printf("MSI %saddress window %s at 0x", command & PCIM_HTCMD_MSI_FIXED ? "fixed " : "", command & PCIM_HTCMD_MSI_ENABLE ? "enabled" : "disabled"); if (command & PCIM_HTCMD_MSI_FIXED) printf("fee00000"); else { reg = read_config(fd, &p->pc_sel, ptr + PCIR_HTMSI_ADDRESS_HI, 4); if (reg != 0) printf("%08x", reg); reg = read_config(fd, &p->pc_sel, ptr + PCIR_HTMSI_ADDRESS_LO, 4); printf("%08x", reg); } break; case PCIM_HTCAP_DIRECT_ROUTE: printf("direct route"); break; case PCIM_HTCAP_VCSET: printf("VC set"); break; case PCIM_HTCAP_RETRY_MODE: printf("retry mode"); break; case PCIM_HTCAP_X86_ENCODING: printf("X86 encoding"); break; case PCIM_HTCAP_GEN3: printf("Gen3"); break; case PCIM_HTCAP_FLE: printf("function-level extension"); break; case PCIM_HTCAP_PM: printf("power management"); break; case PCIM_HTCAP_HIGH_NODE_COUNT: printf("high node count"); break; default: printf("unknown %02x", command); break; } } static void cap_vendor(int fd, struct pci_conf *p, uint8_t ptr) { uint8_t length; length = read_config(fd, &p->pc_sel, ptr + PCIR_VENDOR_LENGTH, 1); printf("vendor (length %d)", length); if (p->pc_vendor == 0x8086) { /* Intel */ uint8_t version; version = read_config(fd, &p->pc_sel, ptr + PCIR_VENDOR_DATA, 1); printf(" Intel cap %d version %d", version >> 4, version & 0xf); if (version >> 4 == 1 && length == 12) { /* Feature Detection */ uint32_t fvec; int comma; comma = 0; fvec = read_config(fd, &p->pc_sel, ptr + PCIR_VENDOR_DATA + 5, 4); printf("\n\t\t features:"); if (fvec & (1 << 0)) { printf(" AMT"); comma = 1; } fvec = read_config(fd, &p->pc_sel, ptr + PCIR_VENDOR_DATA + 1, 4); if (fvec & (1 << 21)) { printf("%s Quick Resume", comma ? "," : ""); comma = 1; } if (fvec & (1 << 18)) { printf("%s SATA RAID-5", comma ? "," : ""); comma = 1; } if (fvec & (1 << 9)) { printf("%s Mobile", comma ? "," : ""); comma = 1; } if (fvec & (1 << 7)) { printf("%s 6 PCI-e x1 slots", comma ? "," : ""); comma = 1; } else { printf("%s 4 PCI-e x1 slots", comma ? "," : ""); comma = 1; } if (fvec & (1 << 5)) { printf("%s SATA RAID-0/1/10", comma ? "," : ""); comma = 1; } if (fvec & (1 << 3)) { printf("%s SATA AHCI", comma ? "," : ""); comma = 1; } } } } static void cap_debug(int fd, struct pci_conf *p, uint8_t ptr) { uint16_t debug_port; debug_port = read_config(fd, &p->pc_sel, ptr + PCIR_DEBUG_PORT, 2); printf("EHCI Debug Port at offset 0x%x in map 0x%x", debug_port & PCIM_DEBUG_PORT_OFFSET, PCIR_BAR(debug_port >> 13)); } static void cap_subvendor(int fd, struct pci_conf *p, uint8_t ptr) { uint32_t id; id = read_config(fd, &p->pc_sel, ptr + PCIR_SUBVENDCAP_ID, 4); printf("PCI Bridge card=0x%08x", id); } #define MAX_PAYLOAD(field) (128 << (field)) static const char * link_speed_string(uint8_t speed) { switch (speed) { case 1: return ("2.5"); case 2: return ("5.0"); case 3: return ("8.0"); default: return ("undef"); } } static const char * aspm_string(uint8_t aspm) { switch (aspm) { case 1: return ("L0s"); case 2: return ("L1"); case 3: return ("L0s/L1"); default: return ("disabled"); } } static int slot_power(uint32_t cap) { int mwatts; mwatts = (cap & PCIEM_SLOT_CAP_SPLV) >> 7; switch (cap & PCIEM_SLOT_CAP_SPLS) { case 0x0: mwatts *= 1000; break; case 0x1: mwatts *= 100; break; case 0x2: mwatts *= 10; break; default: break; } return (mwatts); } static void cap_express(int fd, struct pci_conf *p, uint8_t ptr) { uint32_t cap; uint16_t ctl, flags, sta; unsigned int version; flags = read_config(fd, &p->pc_sel, ptr + PCIER_FLAGS, 2); version = flags & PCIEM_FLAGS_VERSION; printf("PCI-Express %u ", version); switch (flags & PCIEM_FLAGS_TYPE) { case PCIEM_TYPE_ENDPOINT: printf("endpoint"); break; case PCIEM_TYPE_LEGACY_ENDPOINT: printf("legacy endpoint"); break; case PCIEM_TYPE_ROOT_PORT: printf("root port"); break; case PCIEM_TYPE_UPSTREAM_PORT: printf("upstream port"); break; case PCIEM_TYPE_DOWNSTREAM_PORT: printf("downstream port"); break; case PCIEM_TYPE_PCI_BRIDGE: printf("PCI bridge"); break; case PCIEM_TYPE_PCIE_BRIDGE: printf("PCI to PCIe bridge"); break; case PCIEM_TYPE_ROOT_INT_EP: printf("root endpoint"); break; case PCIEM_TYPE_ROOT_EC: printf("event collector"); break; default: printf("type %d", (flags & PCIEM_FLAGS_TYPE) >> 4); break; } if (flags & PCIEM_FLAGS_IRQ) printf(" MSI %d", (flags & PCIEM_FLAGS_IRQ) >> 9); cap = read_config(fd, &p->pc_sel, ptr + PCIER_DEVICE_CAP, 4); ctl = read_config(fd, &p->pc_sel, ptr + PCIER_DEVICE_CTL, 2); printf(" max data %d(%d)", MAX_PAYLOAD((ctl & PCIEM_CTL_MAX_PAYLOAD) >> 5), MAX_PAYLOAD(cap & PCIEM_CAP_MAX_PAYLOAD)); if ((cap & PCIEM_CAP_FLR) != 0) printf(" FLR"); if (ctl & PCIEM_CTL_RELAXED_ORD_ENABLE) printf(" RO"); if (ctl & PCIEM_CTL_NOSNOOP_ENABLE) printf(" NS"); if (version >= 2) { cap = read_config(fd, &p->pc_sel, ptr + PCIER_DEVICE_CAP2, 4); if ((cap & PCIEM_CAP2_ARI) != 0) { ctl = read_config(fd, &p->pc_sel, ptr + PCIER_DEVICE_CTL2, 4); printf(" ARI %s", (ctl & PCIEM_CTL2_ARI) ? "enabled" : "disabled"); } } cap = read_config(fd, &p->pc_sel, ptr + PCIER_LINK_CAP, 4); sta = read_config(fd, &p->pc_sel, ptr + PCIER_LINK_STA, 2); if (cap == 0 && sta == 0) return; printf("\n "); printf(" link x%d(x%d)", (sta & PCIEM_LINK_STA_WIDTH) >> 4, (cap & PCIEM_LINK_CAP_MAX_WIDTH) >> 4); if ((cap & PCIEM_LINK_CAP_MAX_WIDTH) != 0) { printf(" speed %s(%s)", (sta & PCIEM_LINK_STA_WIDTH) == 0 ? "0.0" : link_speed_string(sta & PCIEM_LINK_STA_SPEED), link_speed_string(cap & PCIEM_LINK_CAP_MAX_SPEED)); } if ((cap & PCIEM_LINK_CAP_ASPM) != 0) { ctl = read_config(fd, &p->pc_sel, ptr + PCIER_LINK_CTL, 2); printf(" ASPM %s(%s)", aspm_string(ctl & PCIEM_LINK_CTL_ASPMC), aspm_string((cap & PCIEM_LINK_CAP_ASPM) >> 10)); } if (!(flags & PCIEM_FLAGS_SLOT)) return; cap = read_config(fd, &p->pc_sel, ptr + PCIER_SLOT_CAP, 4); sta = read_config(fd, &p->pc_sel, ptr + PCIER_SLOT_STA, 2); ctl = read_config(fd, &p->pc_sel, ptr + PCIER_SLOT_CTL, 2); printf("\n "); printf(" slot %d", (cap & PCIEM_SLOT_CAP_PSN) >> 19); printf(" power limit %d mW", slot_power(cap)); if (cap & PCIEM_SLOT_CAP_HPC) printf(" HotPlug(%s)", sta & PCIEM_SLOT_STA_PDS ? "present" : "empty"); if (cap & PCIEM_SLOT_CAP_HPS) printf(" surprise"); if (cap & PCIEM_SLOT_CAP_APB) printf(" Attn Button"); if (cap & PCIEM_SLOT_CAP_PCP) - printf(" PC(%s)", ctl & PCIEM_SLOT_CTL_PCC ? "on" : "off"); + printf(" PC(%s)", ctl & PCIEM_SLOT_CTL_PCC ? "off" : "on"); if (cap & PCIEM_SLOT_CAP_MRLSP) printf(" MRL(%s)", sta & PCIEM_SLOT_STA_MRLSS ? "open" : "closed"); + if (cap & PCIEM_SLOT_CAP_EIP) + printf(" EI(%s)", sta & PCIEM_SLOT_STA_EIS ? "engaged" : + "disengaged"); } static void cap_msix(int fd, struct pci_conf *p, uint8_t ptr) { uint32_t pba_offset, table_offset, val; int msgnum, pba_bar, table_bar; uint16_t ctrl; ctrl = read_config(fd, &p->pc_sel, ptr + PCIR_MSIX_CTRL, 2); msgnum = (ctrl & PCIM_MSIXCTRL_TABLE_SIZE) + 1; val = read_config(fd, &p->pc_sel, ptr + PCIR_MSIX_TABLE, 4); table_bar = PCIR_BAR(val & PCIM_MSIX_BIR_MASK); table_offset = val & ~PCIM_MSIX_BIR_MASK; val = read_config(fd, &p->pc_sel, ptr + PCIR_MSIX_PBA, 4); pba_bar = PCIR_BAR(val & PCIM_MSIX_BIR_MASK); pba_offset = val & ~PCIM_MSIX_BIR_MASK; printf("MSI-X supports %d message%s%s\n", msgnum, (msgnum == 1) ? "" : "s", (ctrl & PCIM_MSIXCTRL_MSIX_ENABLE) ? ", enabled" : ""); printf(" "); printf("Table in map 0x%x[0x%x], PBA in map 0x%x[0x%x]", table_bar, table_offset, pba_bar, pba_offset); } static void cap_sata(int fd __unused, struct pci_conf *p __unused, uint8_t ptr __unused) { printf("SATA Index-Data Pair"); } static void cap_pciaf(int fd, struct pci_conf *p, uint8_t ptr) { uint8_t cap; cap = read_config(fd, &p->pc_sel, ptr + PCIR_PCIAF_CAP, 1); printf("PCI Advanced Features:%s%s", cap & PCIM_PCIAFCAP_FLR ? " FLR" : "", cap & PCIM_PCIAFCAP_TP ? " TP" : ""); } static const char * ea_bei_to_name(int bei) { static const char *barstr[] = { "BAR0", "BAR1", "BAR2", "BAR3", "BAR4", "BAR5" }; static const char *vfbarstr[] = { "VFBAR0", "VFBAR1", "VFBAR2", "VFBAR3", "VFBAR4", "VFBAR5" }; if ((bei >= PCIM_EA_BEI_BAR_0) && (bei <= PCIM_EA_BEI_BAR_5)) return (barstr[bei - PCIM_EA_BEI_BAR_0]); if ((bei >= PCIM_EA_BEI_VF_BAR_0) && (bei <= PCIM_EA_BEI_VF_BAR_5)) return (vfbarstr[bei - PCIM_EA_BEI_VF_BAR_0]); switch (bei) { case PCIM_EA_BEI_BRIDGE: return "BRIDGE"; case PCIM_EA_BEI_ENI: return "ENI"; case PCIM_EA_BEI_ROM: return "ROM"; case PCIM_EA_BEI_RESERVED: default: return "RSVD"; } } static const char * ea_prop_to_name(uint8_t prop) { switch (prop) { case PCIM_EA_P_MEM: return "Non-Prefetchable Memory"; case PCIM_EA_P_MEM_PREFETCH: return "Prefetchable Memory"; case PCIM_EA_P_IO: return "I/O Space"; case PCIM_EA_P_VF_MEM_PREFETCH: return "VF Prefetchable Memory"; case PCIM_EA_P_VF_MEM: return "VF Non-Prefetchable Memory"; case PCIM_EA_P_BRIDGE_MEM: return "Bridge Non-Prefetchable Memory"; case PCIM_EA_P_BRIDGE_MEM_PREFETCH: return "Bridge Prefetchable Memory"; case PCIM_EA_P_BRIDGE_IO: return "Bridge I/O Space"; case PCIM_EA_P_MEM_RESERVED: return "Reserved Memory"; case PCIM_EA_P_IO_RESERVED: return "Reserved I/O Space"; case PCIM_EA_P_UNAVAILABLE: return "Unavailable"; default: return "Reserved"; } } static void cap_ea(int fd, struct pci_conf *p, uint8_t ptr) { int num_ent; int a, b; uint32_t bei; uint32_t val; int ent_size; uint32_t dw[4]; uint32_t flags, flags_pp, flags_sp; uint64_t base, max_offset; uint8_t fixed_sub_bus_nr, fixed_sec_bus_nr; /* Determine the number of entries */ num_ent = read_config(fd, &p->pc_sel, ptr + PCIR_EA_NUM_ENT, 2); num_ent &= PCIM_EA_NUM_ENT_MASK; printf("PCI Enhanced Allocation (%d entries)", num_ent); /* Find the first entry to care of */ ptr += PCIR_EA_FIRST_ENT; /* Print BUS numbers for bridges */ if ((p->pc_hdr & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE) { val = read_config(fd, &p->pc_sel, ptr, 4); fixed_sec_bus_nr = PCIM_EA_SEC_NR(val); fixed_sub_bus_nr = PCIM_EA_SUB_NR(val); printf("\n\t\t BRIDGE, sec bus [%d], sub bus [%d]", fixed_sec_bus_nr, fixed_sub_bus_nr); ptr += 4; } for (a = 0; a < num_ent; a++) { /* Read a number of dwords in the entry */ val = read_config(fd, &p->pc_sel, ptr, 4); ptr += 4; ent_size = (val & PCIM_EA_ES); for (b = 0; b < ent_size; b++) { dw[b] = read_config(fd, &p->pc_sel, ptr, 4); ptr += 4; } flags = val; flags_pp = (flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET; flags_sp = (flags & PCIM_EA_SP) >> PCIM_EA_SP_OFFSET; bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET; base = dw[0] & PCIM_EA_FIELD_MASK; max_offset = dw[1] | ~PCIM_EA_FIELD_MASK; b = 2; if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) { base |= (uint64_t)dw[b] << 32UL; b++; } if (((dw[1] & PCIM_EA_IS_64) != 0) && (b < ent_size)) { max_offset |= (uint64_t)dw[b] << 32UL; b++; } printf("\n\t\t [%d] %s, %s, %s, base [0x%jx], size [0x%jx]" "\n\t\t\tPrimary properties [0x%x] (%s)" "\n\t\t\tSecondary properties [0x%x] (%s)", bei, ea_bei_to_name(bei), (flags & PCIM_EA_ENABLE ? "Enabled" : "Disabled"), (flags & PCIM_EA_WRITABLE ? "Writable" : "Read-only"), (uintmax_t)base, (uintmax_t)(max_offset + 1), flags_pp, ea_prop_to_name(flags_pp), flags_sp, ea_prop_to_name(flags_sp)); } } void list_caps(int fd, struct pci_conf *p) { int express; uint16_t sta; uint8_t ptr, cap; /* Are capabilities present for this device? */ sta = read_config(fd, &p->pc_sel, PCIR_STATUS, 2); if (!(sta & PCIM_STATUS_CAPPRESENT)) return; switch (p->pc_hdr & PCIM_HDRTYPE) { case PCIM_HDRTYPE_NORMAL: case PCIM_HDRTYPE_BRIDGE: ptr = PCIR_CAP_PTR; break; case PCIM_HDRTYPE_CARDBUS: ptr = PCIR_CAP_PTR_2; break; default: errx(1, "list_caps: bad header type"); } /* Walk the capability list. */ express = 0; ptr = read_config(fd, &p->pc_sel, ptr, 1); while (ptr != 0 && ptr != 0xff) { cap = read_config(fd, &p->pc_sel, ptr + PCICAP_ID, 1); printf(" cap %02x[%02x] = ", cap, ptr); switch (cap) { case PCIY_PMG: cap_power(fd, p, ptr); break; case PCIY_AGP: cap_agp(fd, p, ptr); break; case PCIY_VPD: cap_vpd(fd, p, ptr); break; case PCIY_MSI: cap_msi(fd, p, ptr); break; case PCIY_PCIX: cap_pcix(fd, p, ptr); break; case PCIY_HT: cap_ht(fd, p, ptr); break; case PCIY_VENDOR: cap_vendor(fd, p, ptr); break; case PCIY_DEBUG: cap_debug(fd, p, ptr); break; case PCIY_SUBVENDOR: cap_subvendor(fd, p, ptr); break; case PCIY_EXPRESS: express = 1; cap_express(fd, p, ptr); break; case PCIY_MSIX: cap_msix(fd, p, ptr); break; case PCIY_SATA: cap_sata(fd, p, ptr); break; case PCIY_PCIAF: cap_pciaf(fd, p, ptr); break; case PCIY_EA: cap_ea(fd, p, ptr); break; default: printf("unknown"); break; } printf("\n"); ptr = read_config(fd, &p->pc_sel, ptr + PCICAP_NEXTPTR, 1); } if (express) list_ecaps(fd, p); } /* From . */ static __inline uint32_t bitcount32(uint32_t x) { x = (x & 0x55555555) + ((x & 0xaaaaaaaa) >> 1); x = (x & 0x33333333) + ((x & 0xcccccccc) >> 2); x = (x + (x >> 4)) & 0x0f0f0f0f; x = (x + (x >> 8)); x = (x + (x >> 16)) & 0x000000ff; return (x); } static void ecap_aer(int fd, struct pci_conf *p, uint16_t ptr, uint8_t ver) { uint32_t sta, mask; printf("AER %d", ver); if (ver < 1) return; sta = read_config(fd, &p->pc_sel, ptr + PCIR_AER_UC_STATUS, 4); mask = read_config(fd, &p->pc_sel, ptr + PCIR_AER_UC_SEVERITY, 4); printf(" %d fatal", bitcount32(sta & mask)); printf(" %d non-fatal", bitcount32(sta & ~mask)); sta = read_config(fd, &p->pc_sel, ptr + PCIR_AER_COR_STATUS, 4); printf(" %d corrected\n", bitcount32(sta)); } static void ecap_vc(int fd, struct pci_conf *p, uint16_t ptr, uint8_t ver) { uint32_t cap1; printf("VC %d", ver); if (ver < 1) return; cap1 = read_config(fd, &p->pc_sel, ptr + PCIR_VC_CAP1, 4); printf(" max VC%d", cap1 & PCIM_VC_CAP1_EXT_COUNT); if ((cap1 & PCIM_VC_CAP1_LOWPRI_EXT_COUNT) != 0) printf(" lowpri VC0-VC%d", (cap1 & PCIM_VC_CAP1_LOWPRI_EXT_COUNT) >> 4); printf("\n"); } static void ecap_sernum(int fd, struct pci_conf *p, uint16_t ptr, uint8_t ver) { uint32_t high, low; printf("Serial %d", ver); if (ver < 1) return; low = read_config(fd, &p->pc_sel, ptr + PCIR_SERIAL_LOW, 4); high = read_config(fd, &p->pc_sel, ptr + PCIR_SERIAL_HIGH, 4); printf(" %08x%08x\n", high, low); } static void ecap_vendor(int fd, struct pci_conf *p, uint16_t ptr, uint8_t ver) { uint32_t val; printf("Vendor %d", ver); if (ver < 1) return; val = read_config(fd, &p->pc_sel, ptr + 4, 4); printf(" ID %d\n", val & 0xffff); } static void ecap_sec_pcie(int fd, struct pci_conf *p, uint16_t ptr, uint8_t ver) { uint32_t val; printf("PCIe Sec %d", ver); if (ver < 1) return; val = read_config(fd, &p->pc_sel, ptr + 8, 4); printf(" lane errors %#x\n", val); } static const char * check_enabled(int value) { return (value ? "enabled" : "disabled"); } static void ecap_sriov(int fd, struct pci_conf *p, uint16_t ptr, uint8_t ver) { const char *comma, *enabled; uint16_t iov_ctl, total_vfs, num_vfs, vf_offset, vf_stride, vf_did; uint32_t page_caps, page_size, page_shift, size; int i; printf("SR-IOV %d ", ver); iov_ctl = read_config(fd, &p->pc_sel, ptr + PCIR_SRIOV_CTL, 2); printf("IOV %s, Memory Space %s, ARI %s\n", check_enabled(iov_ctl & PCIM_SRIOV_VF_EN), check_enabled(iov_ctl & PCIM_SRIOV_VF_MSE), check_enabled(iov_ctl & PCIM_SRIOV_ARI_EN)); total_vfs = read_config(fd, &p->pc_sel, ptr + PCIR_SRIOV_TOTAL_VFS, 2); num_vfs = read_config(fd, &p->pc_sel, ptr + PCIR_SRIOV_NUM_VFS, 2); printf(" "); printf("%d VFs configured out of %d supported\n", num_vfs, total_vfs); vf_offset = read_config(fd, &p->pc_sel, ptr + PCIR_SRIOV_VF_OFF, 2); vf_stride = read_config(fd, &p->pc_sel, ptr + PCIR_SRIOV_VF_STRIDE, 2); printf(" "); printf("First VF RID Offset 0x%04x, VF RID Stride 0x%04x\n", vf_offset, vf_stride); vf_did = read_config(fd, &p->pc_sel, ptr + PCIR_SRIOV_VF_DID, 2); printf(" VF Device ID 0x%04x\n", vf_did); page_caps = read_config(fd, &p->pc_sel, ptr + PCIR_SRIOV_PAGE_CAP, 4); page_size = read_config(fd, &p->pc_sel, ptr + PCIR_SRIOV_PAGE_SIZE, 4); printf(" "); printf("Page Sizes: "); comma = ""; while (page_caps != 0) { page_shift = ffs(page_caps) - 1; if (page_caps & page_size) enabled = " (enabled)"; else enabled = ""; size = (1 << (page_shift + PCI_SRIOV_BASE_PAGE_SHIFT)); printf("%s%d%s", comma, size, enabled); comma = ", "; page_caps &= ~(1 << page_shift); } printf("\n"); for (i = 0; i <= PCIR_MAX_BAR_0; i++) print_bar(fd, p, "iov bar ", ptr + PCIR_SRIOV_BAR(i)); } static struct { uint16_t id; const char *name; } ecap_names[] = { { PCIZ_PWRBDGT, "Power Budgeting" }, { PCIZ_RCLINK_DCL, "Root Complex Link Declaration" }, { PCIZ_RCLINK_CTL, "Root Complex Internal Link Control" }, { PCIZ_RCEC_ASSOC, "Root Complex Event Collector ASsociation" }, { PCIZ_MFVC, "MFVC" }, { PCIZ_RCRB, "RCRB" }, { PCIZ_ACS, "ACS" }, { PCIZ_ARI, "ARI" }, { PCIZ_ATS, "ATS" }, { PCIZ_MULTICAST, "Multicast" }, { PCIZ_RESIZE_BAR, "Resizable BAR" }, { PCIZ_DPA, "DPA" }, { PCIZ_TPH_REQ, "TPH Requester" }, { PCIZ_LTR, "LTR" }, { 0, NULL } }; static void list_ecaps(int fd, struct pci_conf *p) { const char *name; uint32_t ecap; uint16_t ptr; int i; ptr = PCIR_EXTCAP; ecap = read_config(fd, &p->pc_sel, ptr, 4); if (ecap == 0xffffffff || ecap == 0) return; for (;;) { printf(" ecap %04x[%03x] = ", PCI_EXTCAP_ID(ecap), ptr); switch (PCI_EXTCAP_ID(ecap)) { case PCIZ_AER: ecap_aer(fd, p, ptr, PCI_EXTCAP_VER(ecap)); break; case PCIZ_VC: ecap_vc(fd, p, ptr, PCI_EXTCAP_VER(ecap)); break; case PCIZ_SERNUM: ecap_sernum(fd, p, ptr, PCI_EXTCAP_VER(ecap)); break; case PCIZ_VENDOR: ecap_vendor(fd, p, ptr, PCI_EXTCAP_VER(ecap)); break; case PCIZ_SEC_PCIE: ecap_sec_pcie(fd, p, ptr, PCI_EXTCAP_VER(ecap)); break; case PCIZ_SRIOV: ecap_sriov(fd, p, ptr, PCI_EXTCAP_VER(ecap)); break; default: name = "unknown"; for (i = 0; ecap_names[i].name != NULL; i++) if (ecap_names[i].id == PCI_EXTCAP_ID(ecap)) { name = ecap_names[i].name; break; } printf("%s %d\n", name, PCI_EXTCAP_VER(ecap)); break; } ptr = PCI_EXTCAP_NEXTPTR(ecap); if (ptr == 0) break; ecap = read_config(fd, &p->pc_sel, ptr, 4); } } /* Find offset of a specific capability. Returns 0 on failure. */ uint8_t pci_find_cap(int fd, struct pci_conf *p, uint8_t id) { uint16_t sta; uint8_t ptr, cap; /* Are capabilities present for this device? */ sta = read_config(fd, &p->pc_sel, PCIR_STATUS, 2); if (!(sta & PCIM_STATUS_CAPPRESENT)) return (0); switch (p->pc_hdr & PCIM_HDRTYPE) { case PCIM_HDRTYPE_NORMAL: case PCIM_HDRTYPE_BRIDGE: ptr = PCIR_CAP_PTR; break; case PCIM_HDRTYPE_CARDBUS: ptr = PCIR_CAP_PTR_2; break; default: return (0); } ptr = read_config(fd, &p->pc_sel, ptr, 1); while (ptr != 0 && ptr != 0xff) { cap = read_config(fd, &p->pc_sel, ptr + PCICAP_ID, 1); if (cap == id) return (ptr); ptr = read_config(fd, &p->pc_sel, ptr + PCICAP_NEXTPTR, 1); } return (0); } /* Find offset of a specific extended capability. Returns 0 on failure. */ uint16_t pcie_find_cap(int fd, struct pci_conf *p, uint16_t id) { uint32_t ecap; uint16_t ptr; ptr = PCIR_EXTCAP; ecap = read_config(fd, &p->pc_sel, ptr, 4); if (ecap == 0xffffffff || ecap == 0) return (0); for (;;) { if (PCI_EXTCAP_ID(ecap) == id) return (ptr); ptr = PCI_EXTCAP_NEXTPTR(ecap); if (ptr == 0) break; ecap = read_config(fd, &p->pc_sel, ptr, 4); } return (0); }