Index: head/sys/dev/hyperv/include/hyperv.h =================================================================== --- head/sys/dev/hyperv/include/hyperv.h (revision 302693) +++ head/sys/dev/hyperv/include/hyperv.h (revision 302694) @@ -1,734 +1,735 @@ /*- * Copyright (c) 2009-2012,2016 Microsoft Corp. * Copyright (c) 2012 NetApp Inc. * Copyright (c) 2012 Citrix Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /** * HyperV definitions for messages that are sent between instances of the * Channel Management Library in separate partitions, or in some cases, * back to itself. */ #ifndef __HYPERV_H__ #define __HYPERV_H__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef uint8_t hv_bool_uint8_t; #define HV_S_OK 0x00000000 #define HV_E_FAIL 0x80004005 #define HV_ERROR_NOT_SUPPORTED 0x80070032 #define HV_ERROR_MACHINE_LOCKED 0x800704F7 /* * VMBUS version is 32 bit, upper 16 bit for major_number and lower * 16 bit for minor_number. * * 0.13 -- Windows Server 2008 * 1.1 -- Windows 7 * 2.4 -- Windows 8 * 3.0 -- Windows 8.1 */ #define VMBUS_VERSION_WS2008 ((0 << 16) | (13)) #define VMBUS_VERSION_WIN7 ((1 << 16) | (1)) #define VMBUS_VERSION_WIN8 ((2 << 16) | (4)) #define VMBUS_VERSION_WIN8_1 ((3 << 16) | (0)) #define VMBUS_VERSION_MAJOR(ver) (((uint32_t)(ver)) >> 16) #define VMBUS_VERSION_MINOR(ver) (((uint32_t)(ver)) & 0xffff) /* * Make maximum size of pipe payload of 16K */ #define HV_MAX_PIPE_DATA_PAYLOAD (sizeof(BYTE) * 16384) /* * Define pipe_mode values */ #define HV_VMBUS_PIPE_TYPE_BYTE 0x00000000 #define HV_VMBUS_PIPE_TYPE_MESSAGE 0x00000004 /* * The size of the user defined data buffer for non-pipe offers */ #define HV_MAX_USER_DEFINED_BYTES 120 /* * The size of the user defined data buffer for pipe offers */ #define HV_MAX_PIPE_USER_DEFINED_BYTES 116 #define HV_MAX_PAGE_BUFFER_COUNT 32 #define HV_MAX_MULTIPAGE_BUFFER_COUNT 32 #define HV_ALIGN_UP(value, align) \ (((value) & (align-1)) ? \ (((value) + (align-1)) & ~(align-1) ) : (value)) #define HV_ALIGN_DOWN(value, align) ( (value) & ~(align-1) ) #define HV_NUM_PAGES_SPANNED(addr, len) \ ((HV_ALIGN_UP(addr+len, PAGE_SIZE) - \ HV_ALIGN_DOWN(addr, PAGE_SIZE)) >> PAGE_SHIFT ) typedef struct hv_guid { uint8_t data[16]; } __packed hv_guid; #define HYPERV_GUID_STRLEN 40 int hyperv_guid2str(const struct hv_guid *, char *, size_t); #define HV_NIC_GUID \ .data = {0x63, 0x51, 0x61, 0xF8, 0x3E, 0xDF, 0xc5, 0x46, \ 0x91, 0x3F, 0xF2, 0xD2, 0xF9, 0x65, 0xED, 0x0E} #define HV_IDE_GUID \ .data = {0x32, 0x26, 0x41, 0x32, 0xcb, 0x86, 0xa2, 0x44, \ 0x9b, 0x5c, 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5} #define HV_SCSI_GUID \ .data = {0xd9, 0x63, 0x61, 0xba, 0xa1, 0x04, 0x29, 0x4d, \ 0xb6, 0x05, 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f} /* * At the center of the Channel Management library is * the Channel Offer. This struct contains the * fundamental information about an offer. */ typedef struct hv_vmbus_channel_offer { hv_guid interface_type; hv_guid interface_instance; uint64_t interrupt_latency_in_100ns_units; uint32_t interface_revision; uint32_t server_context_area_size; /* in bytes */ uint16_t channel_flags; uint16_t mmio_megabytes; /* in bytes * 1024 * 1024 */ union { /* * Non-pipes: The user has HV_MAX_USER_DEFINED_BYTES bytes. */ struct { uint8_t user_defined[HV_MAX_USER_DEFINED_BYTES]; } __packed standard; /* * Pipes: The following structure is an integrated pipe protocol, which * is implemented on top of standard user-defined data. pipe * clients have HV_MAX_PIPE_USER_DEFINED_BYTES left for their * own use. */ struct { uint32_t pipe_mode; uint8_t user_defined[HV_MAX_PIPE_USER_DEFINED_BYTES]; } __packed pipe; } u; /* * Sub_channel_index, newly added in Win8. */ uint16_t sub_channel_index; uint16_t padding; } __packed hv_vmbus_channel_offer; typedef struct { uint16_t type; uint16_t data_offset8; uint16_t length8; uint16_t flags; uint64_t transaction_id; } __packed hv_vm_packet_descriptor; typedef uint32_t hv_previous_packet_offset; typedef struct { hv_previous_packet_offset previous_packet_start_offset; hv_vm_packet_descriptor descriptor; } __packed hv_vm_packet_header; typedef struct { uint32_t byte_count; uint32_t byte_offset; } __packed hv_vm_transfer_page; typedef struct { hv_vm_packet_descriptor d; uint16_t transfer_page_set_id; hv_bool_uint8_t sender_owns_set; uint8_t reserved; uint32_t range_count; hv_vm_transfer_page ranges[1]; } __packed hv_vm_transfer_page_packet_header; typedef struct { hv_vm_packet_descriptor d; uint32_t gpadl; uint32_t reserved; } __packed hv_vm_gpadl_packet_header; typedef struct { hv_vm_packet_descriptor d; uint32_t gpadl; uint16_t transfer_page_set_id; uint16_t reserved; } __packed hv_vm_add_remove_transfer_page_set; /* * This structure defines a range in guest * physical space that can be made * to look virtually contiguous. */ typedef struct { uint32_t byte_count; uint32_t byte_offset; uint64_t pfn_array[0]; } __packed hv_gpa_range; /* * This is the format for an Establish Gpadl packet, which contains a handle * by which this GPADL will be known and a set of GPA ranges associated with * it. This can be converted to a MDL by the guest OS. If there are multiple * GPA ranges, then the resulting MDL will be "chained," representing multiple * VA ranges. */ typedef struct { hv_vm_packet_descriptor d; uint32_t gpadl; uint32_t range_count; hv_gpa_range range[1]; } __packed hv_vm_establish_gpadl; /* * This is the format for a Teardown Gpadl packet, which indicates that the * GPADL handle in the Establish Gpadl packet will never be referenced again. */ typedef struct { hv_vm_packet_descriptor d; uint32_t gpadl; /* for alignment to a 8-byte boundary */ uint32_t reserved; } __packed hv_vm_teardown_gpadl; /* * This is the format for a GPA-Direct packet, which contains a set of GPA * ranges, in addition to commands and/or data. */ typedef struct { hv_vm_packet_descriptor d; uint32_t reserved; uint32_t range_count; hv_gpa_range range[1]; } __packed hv_vm_data_gpa_direct; /* * This is the format for a Additional data Packet. */ typedef struct { hv_vm_packet_descriptor d; uint64_t total_bytes; uint32_t byte_offset; uint32_t byte_count; uint8_t data[1]; } __packed hv_vm_additional_data; typedef union { hv_vm_packet_descriptor simple_header; hv_vm_transfer_page_packet_header transfer_page_header; hv_vm_gpadl_packet_header gpadl_header; hv_vm_add_remove_transfer_page_set add_remove_transfer_page_header; hv_vm_establish_gpadl establish_gpadl_header; hv_vm_teardown_gpadl teardown_gpadl_header; hv_vm_data_gpa_direct data_gpa_direct_header; } __packed hv_vm_packet_largest_possible_header; typedef enum { HV_VMBUS_PACKET_TYPE_INVALID = 0x0, HV_VMBUS_PACKET_TYPES_SYNCH = 0x1, HV_VMBUS_PACKET_TYPE_ADD_TRANSFER_PAGE_SET = 0x2, HV_VMBUS_PACKET_TYPE_REMOVE_TRANSFER_PAGE_SET = 0x3, HV_VMBUS_PACKET_TYPE_ESTABLISH_GPADL = 0x4, HV_VMBUS_PACKET_TYPE_TEAR_DOWN_GPADL = 0x5, HV_VMBUS_PACKET_TYPE_DATA_IN_BAND = 0x6, HV_VMBUS_PACKET_TYPE_DATA_USING_TRANSFER_PAGES = 0x7, HV_VMBUS_PACKET_TYPE_DATA_USING_GPADL = 0x8, HV_VMBUS_PACKET_TYPE_DATA_USING_GPA_DIRECT = 0x9, HV_VMBUS_PACKET_TYPE_CANCEL_REQUEST = 0xa, HV_VMBUS_PACKET_TYPE_COMPLETION = 0xb, HV_VMBUS_PACKET_TYPE_DATA_USING_ADDITIONAL_PACKETS = 0xc, HV_VMBUS_PACKET_TYPE_ADDITIONAL_DATA = 0xd } hv_vmbus_packet_type; #define HV_VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 /* * Version 1 messages */ typedef enum { HV_CHANNEL_MESSAGE_INVALID = 0, HV_CHANNEL_MESSAGE_OFFER_CHANNEL = 1, HV_CHANNEL_MESSAGE_RESCIND_CHANNEL_OFFER = 2, HV_CHANNEL_MESSAGE_REQUEST_OFFERS = 3, HV_CHANNEL_MESSAGE_ALL_OFFERS_DELIVERED = 4, HV_CHANNEL_MESSAGE_OPEN_CHANNEL = 5, HV_CHANNEL_MESSAGE_OPEN_CHANNEL_RESULT = 6, HV_CHANNEL_MESSAGE_CLOSE_CHANNEL = 7, HV_CHANNEL_MESSAGEL_GPADL_HEADER = 8, HV_CHANNEL_MESSAGE_GPADL_BODY = 9, HV_CHANNEL_MESSAGE_GPADL_CREATED = 10, HV_CHANNEL_MESSAGE_GPADL_TEARDOWN = 11, HV_CHANNEL_MESSAGE_GPADL_TORNDOWN = 12, HV_CHANNEL_MESSAGE_REL_ID_RELEASED = 13, HV_CHANNEL_MESSAGE_INITIATED_CONTACT = 14, HV_CHANNEL_MESSAGE_VERSION_RESPONSE = 15, HV_CHANNEL_MESSAGE_UNLOAD = 16, HV_CHANNEL_MESSAGE_COUNT } hv_vmbus_channel_msg_type; typedef struct { hv_vmbus_channel_msg_type message_type; uint32_t padding; } __packed hv_vmbus_channel_msg_header; /* * Query VMBus Version parameters */ typedef struct { hv_vmbus_channel_msg_header header; uint32_t version; } __packed hv_vmbus_channel_query_vmbus_version; /* * Channel Offer parameters */ typedef struct { hv_vmbus_channel_msg_header header; hv_vmbus_channel_offer offer; uint32_t child_rel_id; uint8_t monitor_id; /* * This field has been split into a bit field on Win7 * and higher. */ uint8_t monitor_allocated:1; uint8_t reserved:7; /* * Following fields were added in win7 and higher. * Make sure to check the version before accessing these fields. * * If "is_dedicated_interrupt" is set, we must not set the * associated bit in the channel bitmap while sending the * interrupt to the host. * * connection_id is used in signaling the host. */ uint16_t is_dedicated_interrupt:1; uint16_t reserved1:15; uint32_t connection_id; } __packed hv_vmbus_channel_offer_channel; /* * Rescind Offer parameters */ typedef struct { hv_vmbus_channel_msg_header header; uint32_t child_rel_id; } __packed hv_vmbus_channel_rescind_offer; typedef struct { hv_vmbus_channel_msg_header header; uint32_t child_rel_id; } __packed hv_vmbus_channel_relid_released; #define HW_MACADDR_LEN 6 enum { HV_VMBUS_IVAR_TYPE, HV_VMBUS_IVAR_INSTANCE, HV_VMBUS_IVAR_NODE, HV_VMBUS_IVAR_DEVCTX }; #define HV_VMBUS_ACCESSOR(var, ivar, type) \ __BUS_ACCESSOR(vmbus, var, HV_VMBUS, ivar, type) HV_VMBUS_ACCESSOR(type, TYPE, const char *) HV_VMBUS_ACCESSOR(devctx, DEVCTX, struct hv_device *) /* * Common defines for Hyper-V ICs */ #define HV_ICMSGTYPE_NEGOTIATE 0 #define HV_ICMSGTYPE_HEARTBEAT 1 #define HV_ICMSGTYPE_KVPEXCHANGE 2 #define HV_ICMSGTYPE_SHUTDOWN 3 #define HV_ICMSGTYPE_TIMESYNC 4 #define HV_ICMSGTYPE_VSS 5 #define HV_ICMSGHDRFLAG_TRANSACTION 1 #define HV_ICMSGHDRFLAG_REQUEST 2 #define HV_ICMSGHDRFLAG_RESPONSE 4 typedef struct hv_vmbus_pipe_hdr { uint32_t flags; uint32_t msgsize; } __packed hv_vmbus_pipe_hdr; typedef struct hv_vmbus_ic_version { uint16_t major; uint16_t minor; } __packed hv_vmbus_ic_version; typedef struct hv_vmbus_icmsg_hdr { hv_vmbus_ic_version icverframe; uint16_t icmsgtype; hv_vmbus_ic_version icvermsg; uint16_t icmsgsize; uint32_t status; uint8_t ictransaction_id; uint8_t icflags; uint8_t reserved[2]; } __packed hv_vmbus_icmsg_hdr; typedef struct hv_vmbus_icmsg_negotiate { uint16_t icframe_vercnt; uint16_t icmsg_vercnt; uint32_t reserved; hv_vmbus_ic_version icversion_data[1]; /* any size array */ } __packed hv_vmbus_icmsg_negotiate; typedef struct hv_vmbus_shutdown_msg_data { uint32_t reason_code; uint32_t timeout_seconds; uint32_t flags; uint8_t display_message[2048]; } __packed hv_vmbus_shutdown_msg_data; typedef struct hv_vmbus_heartbeat_msg_data { uint64_t seq_num; uint32_t reserved[8]; } __packed hv_vmbus_heartbeat_msg_data; typedef struct { /* * offset in bytes from the start of ring data below */ volatile uint32_t write_index; /* * offset in bytes from the start of ring data below */ volatile uint32_t read_index; /* * NOTE: The interrupt_mask field is used only for channels, but * vmbus connection also uses this data structure */ volatile uint32_t interrupt_mask; /* pad it to PAGE_SIZE so that data starts on a page */ uint8_t reserved[4084]; /* * WARNING: Ring data starts here + ring_data_start_offset * !!! DO NOT place any fields below this !!! */ uint8_t buffer[0]; /* doubles as interrupt mask */ } __packed hv_vmbus_ring_buffer; typedef struct { int length; int offset; uint64_t pfn; } __packed hv_vmbus_page_buffer; typedef struct { int length; int offset; uint64_t pfn_array[HV_MAX_MULTIPAGE_BUFFER_COUNT]; } __packed hv_vmbus_multipage_buffer; typedef struct { hv_vmbus_ring_buffer* ring_buffer; uint32_t ring_size; /* Include the shared header */ struct mtx ring_lock; uint32_t ring_data_size; /* ring_size */ uint32_t ring_data_start_offset; } hv_vmbus_ring_buffer_info; typedef void (*hv_vmbus_pfn_channel_callback)(void *context); typedef enum { HV_CHANNEL_OFFER_STATE, HV_CHANNEL_OPENING_STATE, HV_CHANNEL_OPEN_STATE, HV_CHANNEL_OPENED_STATE, HV_CHANNEL_CLOSING_NONDESTRUCTIVE_STATE, } hv_vmbus_channel_state; /* * Connection identifier type */ typedef union { uint32_t as_uint32_t; struct { uint32_t id:24; uint32_t reserved:8; } u; } __packed hv_vmbus_connection_id; typedef struct hv_vmbus_channel { struct hv_device* device; struct vmbus_softc *vmbus_sc; hv_vmbus_channel_state state; hv_vmbus_channel_offer_channel offer_msg; uint32_t ch_id; /* channel id */ /* * These are based on the offer_msg.monitor_id. * Save it here for easy access. */ uint8_t monitor_group; uint8_t monitor_bit; uint32_t ring_buffer_gpadl_handle; /* * Allocated memory for ring buffer */ void* ring_buffer_pages; unsigned long ring_buffer_size; uint32_t ring_buffer_page_count; /* * send to parent */ hv_vmbus_ring_buffer_info outbound; /* * receive from parent */ hv_vmbus_ring_buffer_info inbound; struct taskqueue * rxq; struct task channel_task; hv_vmbus_pfn_channel_callback on_channel_callback; void* channel_callback_context; /* * If batched_reading is set to "true", mask the interrupt * and read until the channel is empty. * If batched_reading is set to "false", the channel is not * going to perform batched reading. * * Batched reading is enabled by default; specific * drivers that don't want this behavior can turn it off. */ boolean_t batched_reading; boolean_t is_dedicated_interrupt; struct hypercall_sigevt_in *ch_sigevt; struct hyperv_dma ch_sigevt_dma; /* * From Win8, this field specifies the target virtual process * on which to deliver the interrupt from the host to guest. * Before Win8, all channel interrupts would only be * delivered on cpu 0. Setting this value to 0 would preserve * the earlier behavior. */ uint32_t target_vcpu; /* The corresponding CPUID in the guest */ uint32_t target_cpu; /* * Support for multi-channels. * The initial offer is considered the primary channel and this * offer message will indicate if the host supports multi-channels. * The guest is free to ask for multi-channels to be offerred and can * open these multi-channels as a normal "primary" channel. However, * all multi-channels will have the same type and instance guids as the * primary channel. Requests sent on a given channel will result in a * response on the same channel. */ struct mtx sc_lock; /* * Link list of all the multi-channels if this is a primary channel */ TAILQ_HEAD(, hv_vmbus_channel) sc_list_anchor; TAILQ_ENTRY(hv_vmbus_channel) sc_list_entry; int subchan_cnt; /* * The primary channel this sub-channle belongs to. * This will be NULL for the primary channel. */ struct hv_vmbus_channel *primary_channel; /* * Driver private data */ void *hv_chan_priv1; void *hv_chan_priv2; void *hv_chan_priv3; struct task ch_detach_task; TAILQ_ENTRY(hv_vmbus_channel) ch_link; + uint32_t ch_subidx; /* subchan index */ struct sysctl_ctx_list ch_sysctl_ctx; } hv_vmbus_channel; #define HV_VMBUS_CHAN_ISPRIMARY(chan) ((chan)->primary_channel == NULL) static inline void hv_set_channel_read_state(hv_vmbus_channel* channel, boolean_t state) { channel->batched_reading = state; } typedef struct hv_device { hv_guid class_id; hv_guid device_id; device_t device; hv_vmbus_channel* channel; } hv_device; int hv_vmbus_channel_recv_packet( hv_vmbus_channel* channel, void* buffer, uint32_t buffer_len, uint32_t* buffer_actual_len, uint64_t* request_id); int hv_vmbus_channel_recv_packet_raw( hv_vmbus_channel* channel, void* buffer, uint32_t buffer_len, uint32_t* buffer_actual_len, uint64_t* request_id); int hv_vmbus_channel_open( hv_vmbus_channel* channel, uint32_t send_ring_buffer_size, uint32_t recv_ring_buffer_size, void* user_data, uint32_t user_data_len, hv_vmbus_pfn_channel_callback pfn_on_channel_callback, void* context); void hv_vmbus_channel_close(hv_vmbus_channel *channel); int hv_vmbus_channel_send_packet( hv_vmbus_channel* channel, void* buffer, uint32_t buffer_len, uint64_t request_id, hv_vmbus_packet_type type, uint32_t flags); int hv_vmbus_channel_send_packet_pagebuffer( hv_vmbus_channel* channel, hv_vmbus_page_buffer page_buffers[], uint32_t page_count, void* buffer, uint32_t buffer_len, uint64_t request_id); int hv_vmbus_channel_send_packet_multipagebuffer( hv_vmbus_channel* channel, hv_vmbus_multipage_buffer* multi_page_buffer, void* buffer, uint32_t buffer_len, uint64_t request_id); int hv_vmbus_channel_establish_gpadl( hv_vmbus_channel* channel, /* must be phys and virt contiguous */ void* contig_buffer, /* page-size multiple */ uint32_t size, uint32_t* gpadl_handle); int hv_vmbus_channel_teardown_gpdal( hv_vmbus_channel* channel, uint32_t gpadl_handle); struct hv_vmbus_channel* vmbus_select_outgoing_channel(struct hv_vmbus_channel *promary); void vmbus_channel_cpu_set(struct hv_vmbus_channel *chan, int cpu); void vmbus_channel_cpu_rr(struct hv_vmbus_channel *chan); struct hv_vmbus_channel ** vmbus_get_subchan(struct hv_vmbus_channel *pri_chan, int subchan_cnt); void vmbus_rel_subchan(struct hv_vmbus_channel **subchan, int subchan_cnt); void vmbus_drain_subchan(struct hv_vmbus_channel *pri_chan); /** * @brief Get physical address from virtual */ static inline unsigned long hv_get_phys_addr(void *virt) { unsigned long ret; ret = (vtophys(virt) | ((vm_offset_t) virt & PAGE_MASK)); return (ret); } #endif /* __HYPERV_H__ */ Index: head/sys/dev/hyperv/netvsc/hv_netvsc_drv_freebsd.c =================================================================== --- head/sys/dev/hyperv/netvsc/hv_netvsc_drv_freebsd.c (revision 302693) +++ head/sys/dev/hyperv/netvsc/hv_netvsc_drv_freebsd.c (revision 302694) @@ -1,3066 +1,3066 @@ /*- * Copyright (c) 2010-2012 Citrix Inc. * Copyright (c) 2009-2012,2016 Microsoft Corp. * Copyright (c) 2012 NetApp Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2004-2006 Kip Macy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet6.h" #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hv_net_vsc.h" #include "hv_rndis.h" #include "hv_rndis_filter.h" #include "vmbus_if.h" #define hv_chan_rxr hv_chan_priv1 #define hv_chan_txr hv_chan_priv2 /* Short for Hyper-V network interface */ #define NETVSC_DEVNAME "hn" /* * It looks like offset 0 of buf is reserved to hold the softc pointer. * The sc pointer evidently not needed, and is not presently populated. * The packet offset is where the netvsc_packet starts in the buffer. */ #define HV_NV_SC_PTR_OFFSET_IN_BUF 0 #define HV_NV_PACKET_OFFSET_IN_BUF 16 /* YYY should get it from the underlying channel */ #define HN_TX_DESC_CNT 512 #define HN_LROENT_CNT_DEF 128 #define HN_RING_CNT_DEF_MAX 8 #define HN_RNDIS_MSG_LEN \ (sizeof(rndis_msg) + \ RNDIS_HASHVAL_PPI_SIZE + \ RNDIS_VLAN_PPI_SIZE + \ RNDIS_TSO_PPI_SIZE + \ RNDIS_CSUM_PPI_SIZE) #define HN_RNDIS_MSG_BOUNDARY PAGE_SIZE #define HN_RNDIS_MSG_ALIGN CACHE_LINE_SIZE #define HN_TX_DATA_BOUNDARY PAGE_SIZE #define HN_TX_DATA_MAXSIZE IP_MAXPACKET #define HN_TX_DATA_SEGSIZE PAGE_SIZE #define HN_TX_DATA_SEGCNT_MAX \ (NETVSC_PACKET_MAXPAGE - HV_RF_NUM_TX_RESERVED_PAGE_BUFS) #define HN_DIRECT_TX_SIZE_DEF 128 #define HN_EARLY_TXEOF_THRESH 8 struct hn_txdesc { #ifndef HN_USE_TXDESC_BUFRING SLIST_ENTRY(hn_txdesc) link; #endif struct mbuf *m; struct hn_tx_ring *txr; int refs; uint32_t flags; /* HN_TXD_FLAG_ */ netvsc_packet netvsc_pkt; /* XXX to be removed */ bus_dmamap_t data_dmap; bus_addr_t rndis_msg_paddr; rndis_msg *rndis_msg; bus_dmamap_t rndis_msg_dmap; }; #define HN_TXD_FLAG_ONLIST 0x1 #define HN_TXD_FLAG_DMAMAP 0x2 /* * Only enable UDP checksum offloading when it is on 2012R2 or * later. UDP checksum offloading doesn't work on earlier * Windows releases. */ #define HN_CSUM_ASSIST_WIN8 (CSUM_IP | CSUM_TCP) #define HN_CSUM_ASSIST (CSUM_IP | CSUM_UDP | CSUM_TCP) #define HN_LRO_LENLIM_MULTIRX_DEF (12 * ETHERMTU) #define HN_LRO_LENLIM_DEF (25 * ETHERMTU) /* YYY 2*MTU is a bit rough, but should be good enough. */ #define HN_LRO_LENLIM_MIN(ifp) (2 * (ifp)->if_mtu) #define HN_LRO_ACKCNT_DEF 1 /* * Be aware that this sleepable mutex will exhibit WITNESS errors when * certain TCP and ARP code paths are taken. This appears to be a * well-known condition, as all other drivers checked use a sleeping * mutex to protect their transmit paths. * Also Be aware that mutexes do not play well with semaphores, and there * is a conflicting semaphore in a certain channel code path. */ #define NV_LOCK_INIT(_sc, _name) \ mtx_init(&(_sc)->hn_lock, _name, MTX_NETWORK_LOCK, MTX_DEF) #define NV_LOCK(_sc) mtx_lock(&(_sc)->hn_lock) #define NV_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->hn_lock, MA_OWNED) #define NV_UNLOCK(_sc) mtx_unlock(&(_sc)->hn_lock) #define NV_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->hn_lock) /* * Globals */ int hv_promisc_mode = 0; /* normal mode by default */ SYSCTL_NODE(_hw, OID_AUTO, hn, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Hyper-V network interface"); /* Trust tcp segements verification on host side. */ static int hn_trust_hosttcp = 1; SYSCTL_INT(_hw_hn, OID_AUTO, trust_hosttcp, CTLFLAG_RDTUN, &hn_trust_hosttcp, 0, "Trust tcp segement verification on host side, " "when csum info is missing (global setting)"); /* Trust udp datagrams verification on host side. */ static int hn_trust_hostudp = 1; SYSCTL_INT(_hw_hn, OID_AUTO, trust_hostudp, CTLFLAG_RDTUN, &hn_trust_hostudp, 0, "Trust udp datagram verification on host side, " "when csum info is missing (global setting)"); /* Trust ip packets verification on host side. */ static int hn_trust_hostip = 1; SYSCTL_INT(_hw_hn, OID_AUTO, trust_hostip, CTLFLAG_RDTUN, &hn_trust_hostip, 0, "Trust ip packet verification on host side, " "when csum info is missing (global setting)"); #if __FreeBSD_version >= 1100045 /* Limit TSO burst size */ static int hn_tso_maxlen = 0; SYSCTL_INT(_hw_hn, OID_AUTO, tso_maxlen, CTLFLAG_RDTUN, &hn_tso_maxlen, 0, "TSO burst limit"); #endif /* Limit chimney send size */ static int hn_tx_chimney_size = 0; SYSCTL_INT(_hw_hn, OID_AUTO, tx_chimney_size, CTLFLAG_RDTUN, &hn_tx_chimney_size, 0, "Chimney send packet size limit"); /* Limit the size of packet for direct transmission */ static int hn_direct_tx_size = HN_DIRECT_TX_SIZE_DEF; SYSCTL_INT(_hw_hn, OID_AUTO, direct_tx_size, CTLFLAG_RDTUN, &hn_direct_tx_size, 0, "Size of the packet for direct transmission"); #if defined(INET) || defined(INET6) #if __FreeBSD_version >= 1100095 static int hn_lro_entry_count = HN_LROENT_CNT_DEF; SYSCTL_INT(_hw_hn, OID_AUTO, lro_entry_count, CTLFLAG_RDTUN, &hn_lro_entry_count, 0, "LRO entry count"); #endif #endif static int hn_share_tx_taskq = 0; SYSCTL_INT(_hw_hn, OID_AUTO, share_tx_taskq, CTLFLAG_RDTUN, &hn_share_tx_taskq, 0, "Enable shared TX taskqueue"); static struct taskqueue *hn_tx_taskq; #ifndef HN_USE_TXDESC_BUFRING static int hn_use_txdesc_bufring = 0; #else static int hn_use_txdesc_bufring = 1; #endif SYSCTL_INT(_hw_hn, OID_AUTO, use_txdesc_bufring, CTLFLAG_RD, &hn_use_txdesc_bufring, 0, "Use buf_ring for TX descriptors"); static int hn_bind_tx_taskq = -1; SYSCTL_INT(_hw_hn, OID_AUTO, bind_tx_taskq, CTLFLAG_RDTUN, &hn_bind_tx_taskq, 0, "Bind TX taskqueue to the specified cpu"); static int hn_use_if_start = 0; SYSCTL_INT(_hw_hn, OID_AUTO, use_if_start, CTLFLAG_RDTUN, &hn_use_if_start, 0, "Use if_start TX method"); static int hn_chan_cnt = 0; SYSCTL_INT(_hw_hn, OID_AUTO, chan_cnt, CTLFLAG_RDTUN, &hn_chan_cnt, 0, "# of channels to use; each channel has one RX ring and one TX ring"); static int hn_tx_ring_cnt = 0; SYSCTL_INT(_hw_hn, OID_AUTO, tx_ring_cnt, CTLFLAG_RDTUN, &hn_tx_ring_cnt, 0, "# of TX rings to use"); static int hn_tx_swq_depth = 0; SYSCTL_INT(_hw_hn, OID_AUTO, tx_swq_depth, CTLFLAG_RDTUN, &hn_tx_swq_depth, 0, "Depth of IFQ or BUFRING"); #if __FreeBSD_version >= 1100095 static u_int hn_lro_mbufq_depth = 0; SYSCTL_UINT(_hw_hn, OID_AUTO, lro_mbufq_depth, CTLFLAG_RDTUN, &hn_lro_mbufq_depth, 0, "Depth of LRO mbuf queue"); #endif static u_int hn_cpu_index; /* * Forward declarations */ static void hn_stop(hn_softc_t *sc); static void hn_ifinit_locked(hn_softc_t *sc); static void hn_ifinit(void *xsc); static int hn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data); static int hn_start_locked(struct hn_tx_ring *txr, int len); static void hn_start(struct ifnet *ifp); static void hn_start_txeof(struct hn_tx_ring *); static int hn_ifmedia_upd(struct ifnet *ifp); static void hn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); #if __FreeBSD_version >= 1100099 static int hn_lro_lenlim_sysctl(SYSCTL_HANDLER_ARGS); static int hn_lro_ackcnt_sysctl(SYSCTL_HANDLER_ARGS); #endif static int hn_trust_hcsum_sysctl(SYSCTL_HANDLER_ARGS); static int hn_tx_chimney_size_sysctl(SYSCTL_HANDLER_ARGS); static int hn_rx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS); static int hn_rx_stat_u64_sysctl(SYSCTL_HANDLER_ARGS); static int hn_tx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS); static int hn_tx_conf_int_sysctl(SYSCTL_HANDLER_ARGS); static int hn_check_iplen(const struct mbuf *, int); static int hn_create_tx_ring(struct hn_softc *, int); static void hn_destroy_tx_ring(struct hn_tx_ring *); static int hn_create_tx_data(struct hn_softc *, int); static void hn_destroy_tx_data(struct hn_softc *); static void hn_start_taskfunc(void *, int); static void hn_start_txeof_taskfunc(void *, int); static void hn_stop_tx_tasks(struct hn_softc *); static int hn_encap(struct hn_tx_ring *, struct hn_txdesc *, struct mbuf **); static void hn_create_rx_data(struct hn_softc *sc, int); static void hn_destroy_rx_data(struct hn_softc *sc); static void hn_set_tx_chimney_size(struct hn_softc *, int); static void hn_channel_attach(struct hn_softc *, struct hv_vmbus_channel *); static void hn_subchan_attach(struct hn_softc *, struct hv_vmbus_channel *); static void hn_subchan_setup(struct hn_softc *); static int hn_transmit(struct ifnet *, struct mbuf *); static void hn_xmit_qflush(struct ifnet *); static int hn_xmit(struct hn_tx_ring *, int); static void hn_xmit_txeof(struct hn_tx_ring *); static void hn_xmit_taskfunc(void *, int); static void hn_xmit_txeof_taskfunc(void *, int); #if __FreeBSD_version >= 1100099 static void hn_set_lro_lenlim(struct hn_softc *sc, int lenlim) { int i; for (i = 0; i < sc->hn_rx_ring_inuse; ++i) sc->hn_rx_ring[i].hn_lro.lro_length_lim = lenlim; } #endif static int hn_get_txswq_depth(const struct hn_tx_ring *txr) { KASSERT(txr->hn_txdesc_cnt > 0, ("tx ring is not setup yet")); if (hn_tx_swq_depth < txr->hn_txdesc_cnt) return txr->hn_txdesc_cnt; return hn_tx_swq_depth; } static int hn_ifmedia_upd(struct ifnet *ifp __unused) { return EOPNOTSUPP; } static void hn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct hn_softc *sc = ifp->if_softc; ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (!sc->hn_carrier) { ifmr->ifm_active |= IFM_NONE; return; } ifmr->ifm_status |= IFM_ACTIVE; ifmr->ifm_active |= IFM_10G_T | IFM_FDX; } /* {F8615163-DF3E-46c5-913F-F2D2F965ED0E} */ static const hv_guid g_net_vsc_device_type = { .data = {0x63, 0x51, 0x61, 0xF8, 0x3E, 0xDF, 0xc5, 0x46, 0x91, 0x3F, 0xF2, 0xD2, 0xF9, 0x65, 0xED, 0x0E} }; /* * Standard probe entry point. * */ static int netvsc_probe(device_t dev) { const char *p; p = vmbus_get_type(dev); if (!memcmp(p, &g_net_vsc_device_type.data, sizeof(hv_guid))) { device_set_desc(dev, "Hyper-V Network Interface"); if (bootverbose) printf("Netvsc probe... DONE \n"); return (BUS_PROBE_DEFAULT); } return (ENXIO); } /* * Standard attach entry point. * * Called when the driver is loaded. It allocates needed resources, * and initializes the "hardware" and software. */ static int netvsc_attach(device_t dev) { struct hv_device *device_ctx = vmbus_get_devctx(dev); struct hv_vmbus_channel *pri_chan; netvsc_device_info device_info; hn_softc_t *sc; int unit = device_get_unit(dev); struct ifnet *ifp = NULL; int error, ring_cnt, tx_ring_cnt; #if __FreeBSD_version >= 1100045 int tso_maxlen; #endif sc = device_get_softc(dev); sc->hn_unit = unit; sc->hn_dev = dev; if (hn_tx_taskq == NULL) { sc->hn_tx_taskq = taskqueue_create("hn_tx", M_WAITOK, taskqueue_thread_enqueue, &sc->hn_tx_taskq); if (hn_bind_tx_taskq >= 0) { int cpu = hn_bind_tx_taskq; cpuset_t cpu_set; if (cpu > mp_ncpus - 1) cpu = mp_ncpus - 1; CPU_SETOF(cpu, &cpu_set); taskqueue_start_threads_cpuset(&sc->hn_tx_taskq, 1, PI_NET, &cpu_set, "%s tx", device_get_nameunit(dev)); } else { taskqueue_start_threads(&sc->hn_tx_taskq, 1, PI_NET, "%s tx", device_get_nameunit(dev)); } } else { sc->hn_tx_taskq = hn_tx_taskq; } NV_LOCK_INIT(sc, "NetVSCLock"); sc->hn_dev_obj = device_ctx; ifp = sc->hn_ifp = if_alloc(IFT_ETHER); ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); /* * Figure out the # of RX rings (ring_cnt) and the # of TX rings * to use (tx_ring_cnt). * * NOTE: * The # of RX rings to use is same as the # of channels to use. */ ring_cnt = hn_chan_cnt; if (ring_cnt <= 0) { /* Default */ ring_cnt = mp_ncpus; if (ring_cnt > HN_RING_CNT_DEF_MAX) ring_cnt = HN_RING_CNT_DEF_MAX; } else if (ring_cnt > mp_ncpus) { ring_cnt = mp_ncpus; } tx_ring_cnt = hn_tx_ring_cnt; if (tx_ring_cnt <= 0 || tx_ring_cnt > ring_cnt) tx_ring_cnt = ring_cnt; if (hn_use_if_start) { /* ifnet.if_start only needs one TX ring. */ tx_ring_cnt = 1; } /* * Set the leader CPU for channels. */ sc->hn_cpu = atomic_fetchadd_int(&hn_cpu_index, ring_cnt) % mp_ncpus; error = hn_create_tx_data(sc, tx_ring_cnt); if (error) goto failed; hn_create_rx_data(sc, ring_cnt); /* * Associate the first TX/RX ring w/ the primary channel. */ pri_chan = device_ctx->channel; KASSERT(HV_VMBUS_CHAN_ISPRIMARY(pri_chan), ("not primary channel")); - KASSERT(pri_chan->offer_msg.offer.sub_channel_index == 0, + KASSERT(pri_chan->ch_subidx == 0, ("primary channel subidx %u", - pri_chan->offer_msg.offer.sub_channel_index)); + pri_chan->ch_subidx)); hn_channel_attach(sc, pri_chan); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = hn_ioctl; ifp->if_init = hn_ifinit; /* needed by hv_rf_on_device_add() code */ ifp->if_mtu = ETHERMTU; if (hn_use_if_start) { int qdepth = hn_get_txswq_depth(&sc->hn_tx_ring[0]); ifp->if_start = hn_start; IFQ_SET_MAXLEN(&ifp->if_snd, qdepth); ifp->if_snd.ifq_drv_maxlen = qdepth - 1; IFQ_SET_READY(&ifp->if_snd); } else { ifp->if_transmit = hn_transmit; ifp->if_qflush = hn_xmit_qflush; } ifmedia_init(&sc->hn_media, 0, hn_ifmedia_upd, hn_ifmedia_sts); ifmedia_add(&sc->hn_media, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&sc->hn_media, IFM_ETHER | IFM_AUTO); /* XXX ifmedia_set really should do this for us */ sc->hn_media.ifm_media = sc->hn_media.ifm_cur->ifm_media; /* * Tell upper layers that we support full VLAN capability. */ ifp->if_hdrlen = sizeof(struct ether_vlan_header); ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | IFCAP_TSO | IFCAP_LRO; ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | IFCAP_TSO | IFCAP_LRO; ifp->if_hwassist = sc->hn_tx_ring[0].hn_csum_assist | CSUM_TSO; error = hv_rf_on_device_add(device_ctx, &device_info, ring_cnt); if (error) goto failed; KASSERT(sc->net_dev->num_channel > 0 && sc->net_dev->num_channel <= sc->hn_rx_ring_inuse, ("invalid channel count %u, should be less than %d", sc->net_dev->num_channel, sc->hn_rx_ring_inuse)); /* * Set the # of TX/RX rings that could be used according to * the # of channels that host offered. */ if (sc->hn_tx_ring_inuse > sc->net_dev->num_channel) sc->hn_tx_ring_inuse = sc->net_dev->num_channel; sc->hn_rx_ring_inuse = sc->net_dev->num_channel; device_printf(dev, "%d TX ring, %d RX ring\n", sc->hn_tx_ring_inuse, sc->hn_rx_ring_inuse); if (sc->net_dev->num_channel > 1) hn_subchan_setup(sc); #if __FreeBSD_version >= 1100099 if (sc->hn_rx_ring_inuse > 1) { /* * Reduce TCP segment aggregation limit for multiple * RX rings to increase ACK timeliness. */ hn_set_lro_lenlim(sc, HN_LRO_LENLIM_MULTIRX_DEF); } #endif if (device_info.link_state == 0) { sc->hn_carrier = 1; } #if __FreeBSD_version >= 1100045 tso_maxlen = hn_tso_maxlen; if (tso_maxlen <= 0 || tso_maxlen > IP_MAXPACKET) tso_maxlen = IP_MAXPACKET; ifp->if_hw_tsomaxsegcount = HN_TX_DATA_SEGCNT_MAX; ifp->if_hw_tsomaxsegsize = PAGE_SIZE; ifp->if_hw_tsomax = tso_maxlen - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); #endif ether_ifattach(ifp, device_info.mac_addr); #if __FreeBSD_version >= 1100045 if_printf(ifp, "TSO: %u/%u/%u\n", ifp->if_hw_tsomax, ifp->if_hw_tsomaxsegcount, ifp->if_hw_tsomaxsegsize); #endif sc->hn_tx_chimney_max = sc->net_dev->send_section_size; hn_set_tx_chimney_size(sc, sc->hn_tx_chimney_max); if (hn_tx_chimney_size > 0 && hn_tx_chimney_size < sc->hn_tx_chimney_max) hn_set_tx_chimney_size(sc, hn_tx_chimney_size); return (0); failed: hn_destroy_tx_data(sc); if (ifp != NULL) if_free(ifp); return (error); } /* * Standard detach entry point */ static int netvsc_detach(device_t dev) { struct hn_softc *sc = device_get_softc(dev); struct hv_device *hv_device = vmbus_get_devctx(dev); if (bootverbose) printf("netvsc_detach\n"); /* * XXXKYS: Need to clean up all our * driver state; this is the driver * unloading. */ /* * XXXKYS: Need to stop outgoing traffic and unregister * the netdevice. */ hv_rf_on_device_remove(hv_device, HV_RF_NV_DESTROY_CHANNEL); hn_stop_tx_tasks(sc); ifmedia_removeall(&sc->hn_media); hn_destroy_rx_data(sc); hn_destroy_tx_data(sc); if (sc->hn_tx_taskq != hn_tx_taskq) taskqueue_free(sc->hn_tx_taskq); return (0); } /* * Standard shutdown entry point */ static int netvsc_shutdown(device_t dev) { return (0); } static __inline int hn_txdesc_dmamap_load(struct hn_tx_ring *txr, struct hn_txdesc *txd, struct mbuf **m_head, bus_dma_segment_t *segs, int *nsegs) { struct mbuf *m = *m_head; int error; error = bus_dmamap_load_mbuf_sg(txr->hn_tx_data_dtag, txd->data_dmap, m, segs, nsegs, BUS_DMA_NOWAIT); if (error == EFBIG) { struct mbuf *m_new; m_new = m_collapse(m, M_NOWAIT, HN_TX_DATA_SEGCNT_MAX); if (m_new == NULL) return ENOBUFS; else *m_head = m = m_new; txr->hn_tx_collapsed++; error = bus_dmamap_load_mbuf_sg(txr->hn_tx_data_dtag, txd->data_dmap, m, segs, nsegs, BUS_DMA_NOWAIT); } if (!error) { bus_dmamap_sync(txr->hn_tx_data_dtag, txd->data_dmap, BUS_DMASYNC_PREWRITE); txd->flags |= HN_TXD_FLAG_DMAMAP; } return error; } static __inline void hn_txdesc_dmamap_unload(struct hn_tx_ring *txr, struct hn_txdesc *txd) { if (txd->flags & HN_TXD_FLAG_DMAMAP) { bus_dmamap_sync(txr->hn_tx_data_dtag, txd->data_dmap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txr->hn_tx_data_dtag, txd->data_dmap); txd->flags &= ~HN_TXD_FLAG_DMAMAP; } } static __inline int hn_txdesc_put(struct hn_tx_ring *txr, struct hn_txdesc *txd) { KASSERT((txd->flags & HN_TXD_FLAG_ONLIST) == 0, ("put an onlist txd %#x", txd->flags)); KASSERT(txd->refs > 0, ("invalid txd refs %d", txd->refs)); if (atomic_fetchadd_int(&txd->refs, -1) != 1) return 0; hn_txdesc_dmamap_unload(txr, txd); if (txd->m != NULL) { m_freem(txd->m); txd->m = NULL; } txd->flags |= HN_TXD_FLAG_ONLIST; #ifndef HN_USE_TXDESC_BUFRING mtx_lock_spin(&txr->hn_txlist_spin); KASSERT(txr->hn_txdesc_avail >= 0 && txr->hn_txdesc_avail < txr->hn_txdesc_cnt, ("txdesc_put: invalid txd avail %d", txr->hn_txdesc_avail)); txr->hn_txdesc_avail++; SLIST_INSERT_HEAD(&txr->hn_txlist, txd, link); mtx_unlock_spin(&txr->hn_txlist_spin); #else atomic_add_int(&txr->hn_txdesc_avail, 1); buf_ring_enqueue(txr->hn_txdesc_br, txd); #endif return 1; } static __inline struct hn_txdesc * hn_txdesc_get(struct hn_tx_ring *txr) { struct hn_txdesc *txd; #ifndef HN_USE_TXDESC_BUFRING mtx_lock_spin(&txr->hn_txlist_spin); txd = SLIST_FIRST(&txr->hn_txlist); if (txd != NULL) { KASSERT(txr->hn_txdesc_avail > 0, ("txdesc_get: invalid txd avail %d", txr->hn_txdesc_avail)); txr->hn_txdesc_avail--; SLIST_REMOVE_HEAD(&txr->hn_txlist, link); } mtx_unlock_spin(&txr->hn_txlist_spin); #else txd = buf_ring_dequeue_sc(txr->hn_txdesc_br); #endif if (txd != NULL) { #ifdef HN_USE_TXDESC_BUFRING atomic_subtract_int(&txr->hn_txdesc_avail, 1); #endif KASSERT(txd->m == NULL && txd->refs == 0 && (txd->flags & HN_TXD_FLAG_ONLIST), ("invalid txd")); txd->flags &= ~HN_TXD_FLAG_ONLIST; txd->refs = 1; } return txd; } static __inline void hn_txdesc_hold(struct hn_txdesc *txd) { /* 0->1 transition will never work */ KASSERT(txd->refs > 0, ("invalid refs %d", txd->refs)); atomic_add_int(&txd->refs, 1); } static __inline void hn_txeof(struct hn_tx_ring *txr) { txr->hn_has_txeof = 0; txr->hn_txeof(txr); } static void hn_tx_done(struct hv_vmbus_channel *chan, void *xpkt) { netvsc_packet *packet = xpkt; struct hn_txdesc *txd; struct hn_tx_ring *txr; txd = (struct hn_txdesc *)(uintptr_t) packet->compl.send.send_completion_tid; txr = txd->txr; KASSERT(txr->hn_chan == chan, ("channel mismatch, on channel%u, should be channel%u", - chan->offer_msg.offer.sub_channel_index, - txr->hn_chan->offer_msg.offer.sub_channel_index)); + chan->ch_subidx, + txr->hn_chan->ch_subidx)); txr->hn_has_txeof = 1; hn_txdesc_put(txr, txd); ++txr->hn_txdone_cnt; if (txr->hn_txdone_cnt >= HN_EARLY_TXEOF_THRESH) { txr->hn_txdone_cnt = 0; if (txr->hn_oactive) hn_txeof(txr); } } void netvsc_channel_rollup(struct hv_vmbus_channel *chan) { struct hn_tx_ring *txr = chan->hv_chan_txr; #if defined(INET) || defined(INET6) struct hn_rx_ring *rxr = chan->hv_chan_rxr; tcp_lro_flush_all(&rxr->hn_lro); #endif /* * NOTE: * 'txr' could be NULL, if multiple channels and * ifnet.if_start method are enabled. */ if (txr == NULL || !txr->hn_has_txeof) return; txr->hn_txdone_cnt = 0; hn_txeof(txr); } /* * NOTE: * If this function fails, then both txd and m_head0 will be freed. */ static int hn_encap(struct hn_tx_ring *txr, struct hn_txdesc *txd, struct mbuf **m_head0) { bus_dma_segment_t segs[HN_TX_DATA_SEGCNT_MAX]; int error, nsegs, i; struct mbuf *m_head = *m_head0; netvsc_packet *packet; rndis_msg *rndis_mesg; rndis_packet *rndis_pkt; rndis_per_packet_info *rppi; struct rndis_hash_value *hash_value; uint32_t rndis_msg_size; packet = &txd->netvsc_pkt; packet->is_data_pkt = TRUE; packet->tot_data_buf_len = m_head->m_pkthdr.len; /* * extension points to the area reserved for the * rndis_filter_packet, which is placed just after * the netvsc_packet (and rppi struct, if present; * length is updated later). */ rndis_mesg = txd->rndis_msg; /* XXX not necessary */ memset(rndis_mesg, 0, HN_RNDIS_MSG_LEN); rndis_mesg->ndis_msg_type = REMOTE_NDIS_PACKET_MSG; rndis_pkt = &rndis_mesg->msg.packet; rndis_pkt->data_offset = sizeof(rndis_packet); rndis_pkt->data_length = packet->tot_data_buf_len; rndis_pkt->per_pkt_info_offset = sizeof(rndis_packet); rndis_msg_size = RNDIS_MESSAGE_SIZE(rndis_packet); /* * Set the hash value for this packet, so that the host could * dispatch the TX done event for this packet back to this TX * ring's channel. */ rndis_msg_size += RNDIS_HASHVAL_PPI_SIZE; rppi = hv_set_rppi_data(rndis_mesg, RNDIS_HASHVAL_PPI_SIZE, nbl_hash_value); hash_value = (struct rndis_hash_value *)((uint8_t *)rppi + rppi->per_packet_info_offset); hash_value->hash_value = txr->hn_tx_idx; if (m_head->m_flags & M_VLANTAG) { ndis_8021q_info *rppi_vlan_info; rndis_msg_size += RNDIS_VLAN_PPI_SIZE; rppi = hv_set_rppi_data(rndis_mesg, RNDIS_VLAN_PPI_SIZE, ieee_8021q_info); rppi_vlan_info = (ndis_8021q_info *)((uint8_t *)rppi + rppi->per_packet_info_offset); rppi_vlan_info->u1.s1.vlan_id = m_head->m_pkthdr.ether_vtag & 0xfff; } if (m_head->m_pkthdr.csum_flags & CSUM_TSO) { rndis_tcp_tso_info *tso_info; struct ether_vlan_header *eh; int ether_len; /* * XXX need m_pullup and use mtodo */ eh = mtod(m_head, struct ether_vlan_header*); if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ether_len = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; else ether_len = ETHER_HDR_LEN; rndis_msg_size += RNDIS_TSO_PPI_SIZE; rppi = hv_set_rppi_data(rndis_mesg, RNDIS_TSO_PPI_SIZE, tcp_large_send_info); tso_info = (rndis_tcp_tso_info *)((uint8_t *)rppi + rppi->per_packet_info_offset); tso_info->lso_v2_xmit.type = RNDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; #ifdef INET if (m_head->m_pkthdr.csum_flags & CSUM_IP_TSO) { struct ip *ip = (struct ip *)(m_head->m_data + ether_len); unsigned long iph_len = ip->ip_hl << 2; struct tcphdr *th = (struct tcphdr *)((caddr_t)ip + iph_len); tso_info->lso_v2_xmit.ip_version = RNDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; ip->ip_len = 0; ip->ip_sum = 0; th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(IPPROTO_TCP)); } #endif #if defined(INET6) && defined(INET) else #endif #ifdef INET6 { struct ip6_hdr *ip6 = (struct ip6_hdr *) (m_head->m_data + ether_len); struct tcphdr *th = (struct tcphdr *)(ip6 + 1); tso_info->lso_v2_xmit.ip_version = RNDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; ip6->ip6_plen = 0; th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0); } #endif tso_info->lso_v2_xmit.tcp_header_offset = 0; tso_info->lso_v2_xmit.mss = m_head->m_pkthdr.tso_segsz; } else if (m_head->m_pkthdr.csum_flags & txr->hn_csum_assist) { rndis_tcp_ip_csum_info *csum_info; rndis_msg_size += RNDIS_CSUM_PPI_SIZE; rppi = hv_set_rppi_data(rndis_mesg, RNDIS_CSUM_PPI_SIZE, tcpip_chksum_info); csum_info = (rndis_tcp_ip_csum_info *)((uint8_t *)rppi + rppi->per_packet_info_offset); csum_info->xmit.is_ipv4 = 1; if (m_head->m_pkthdr.csum_flags & CSUM_IP) csum_info->xmit.ip_header_csum = 1; if (m_head->m_pkthdr.csum_flags & CSUM_TCP) { csum_info->xmit.tcp_csum = 1; csum_info->xmit.tcp_header_offset = 0; } else if (m_head->m_pkthdr.csum_flags & CSUM_UDP) { csum_info->xmit.udp_csum = 1; } } rndis_mesg->msg_len = packet->tot_data_buf_len + rndis_msg_size; packet->tot_data_buf_len = rndis_mesg->msg_len; /* * Chimney send, if the packet could fit into one chimney buffer. */ if (packet->tot_data_buf_len < txr->hn_tx_chimney_size) { netvsc_dev *net_dev = txr->hn_sc->net_dev; uint32_t send_buf_section_idx; txr->hn_tx_chimney_tried++; send_buf_section_idx = hv_nv_get_next_send_section(net_dev); if (send_buf_section_idx != NVSP_1_CHIMNEY_SEND_INVALID_SECTION_INDEX) { uint8_t *dest = ((uint8_t *)net_dev->send_buf + (send_buf_section_idx * net_dev->send_section_size)); memcpy(dest, rndis_mesg, rndis_msg_size); dest += rndis_msg_size; m_copydata(m_head, 0, m_head->m_pkthdr.len, dest); packet->send_buf_section_idx = send_buf_section_idx; packet->send_buf_section_size = packet->tot_data_buf_len; packet->page_buf_count = 0; txr->hn_tx_chimney++; goto done; } } error = hn_txdesc_dmamap_load(txr, txd, &m_head, segs, &nsegs); if (error) { int freed; /* * This mbuf is not linked w/ the txd yet, so free it now. */ m_freem(m_head); *m_head0 = NULL; freed = hn_txdesc_put(txr, txd); KASSERT(freed != 0, ("fail to free txd upon txdma error")); txr->hn_txdma_failed++; if_inc_counter(txr->hn_sc->hn_ifp, IFCOUNTER_OERRORS, 1); return error; } *m_head0 = m_head; packet->page_buf_count = nsegs + HV_RF_NUM_TX_RESERVED_PAGE_BUFS; /* send packet with page buffer */ packet->page_buffers[0].pfn = atop(txd->rndis_msg_paddr); packet->page_buffers[0].offset = txd->rndis_msg_paddr & PAGE_MASK; packet->page_buffers[0].length = rndis_msg_size; /* * Fill the page buffers with mbuf info starting at index * HV_RF_NUM_TX_RESERVED_PAGE_BUFS. */ for (i = 0; i < nsegs; ++i) { hv_vmbus_page_buffer *pb = &packet->page_buffers[ i + HV_RF_NUM_TX_RESERVED_PAGE_BUFS]; pb->pfn = atop(segs[i].ds_addr); pb->offset = segs[i].ds_addr & PAGE_MASK; pb->length = segs[i].ds_len; } packet->send_buf_section_idx = NVSP_1_CHIMNEY_SEND_INVALID_SECTION_INDEX; packet->send_buf_section_size = 0; done: txd->m = m_head; /* Set the completion routine */ packet->compl.send.on_send_completion = hn_tx_done; packet->compl.send.send_completion_context = packet; packet->compl.send.send_completion_tid = (uint64_t)(uintptr_t)txd; return 0; } /* * NOTE: * If this function fails, then txd will be freed, but the mbuf * associated w/ the txd will _not_ be freed. */ static int hn_send_pkt(struct ifnet *ifp, struct hn_tx_ring *txr, struct hn_txdesc *txd) { int error, send_failed = 0; again: /* * Make sure that txd is not freed before ETHER_BPF_MTAP. */ hn_txdesc_hold(txd); error = hv_nv_on_send(txr->hn_chan, &txd->netvsc_pkt); if (!error) { ETHER_BPF_MTAP(ifp, txd->m); if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); if (!hn_use_if_start) { if_inc_counter(ifp, IFCOUNTER_OBYTES, txd->m->m_pkthdr.len); if (txd->m->m_flags & M_MCAST) if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); } txr->hn_pkts++; } hn_txdesc_put(txr, txd); if (__predict_false(error)) { int freed; /* * This should "really rarely" happen. * * XXX Too many RX to be acked or too many sideband * commands to run? Ask netvsc_channel_rollup() * to kick start later. */ txr->hn_has_txeof = 1; if (!send_failed) { txr->hn_send_failed++; send_failed = 1; /* * Try sending again after set hn_has_txeof; * in case that we missed the last * netvsc_channel_rollup(). */ goto again; } if_printf(ifp, "send failed\n"); /* * Caller will perform further processing on the * associated mbuf, so don't free it in hn_txdesc_put(); * only unload it from the DMA map in hn_txdesc_put(), * if it was loaded. */ txd->m = NULL; freed = hn_txdesc_put(txr, txd); KASSERT(freed != 0, ("fail to free txd upon send error")); txr->hn_send_failed++; } return error; } /* * Start a transmit of one or more packets */ static int hn_start_locked(struct hn_tx_ring *txr, int len) { struct hn_softc *sc = txr->hn_sc; struct ifnet *ifp = sc->hn_ifp; KASSERT(hn_use_if_start, ("hn_start_locked is called, when if_start is disabled")); KASSERT(txr == &sc->hn_tx_ring[0], ("not the first TX ring")); mtx_assert(&txr->hn_tx_lock, MA_OWNED); if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return 0; while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { struct hn_txdesc *txd; struct mbuf *m_head; int error; IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; if (len > 0 && m_head->m_pkthdr.len > len) { /* * This sending could be time consuming; let callers * dispatch this packet sending (and sending of any * following up packets) to tx taskqueue. */ IFQ_DRV_PREPEND(&ifp->if_snd, m_head); return 1; } txd = hn_txdesc_get(txr); if (txd == NULL) { txr->hn_no_txdescs++; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); atomic_set_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); break; } error = hn_encap(txr, txd, &m_head); if (error) { /* Both txd and m_head are freed */ continue; } error = hn_send_pkt(ifp, txr, txd); if (__predict_false(error)) { /* txd is freed, but m_head is not */ IFQ_DRV_PREPEND(&ifp->if_snd, m_head); atomic_set_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); break; } } return 0; } /* * Link up/down notification */ void netvsc_linkstatus_callback(struct hv_device *device_obj, uint32_t status) { hn_softc_t *sc = device_get_softc(device_obj->device); if (status == 1) { sc->hn_carrier = 1; } else { sc->hn_carrier = 0; } } /* * Append the specified data to the indicated mbuf chain, * Extend the mbuf chain if the new data does not fit in * existing space. * * This is a minor rewrite of m_append() from sys/kern/uipc_mbuf.c. * There should be an equivalent in the kernel mbuf code, * but there does not appear to be one yet. * * Differs from m_append() in that additional mbufs are * allocated with cluster size MJUMPAGESIZE, and filled * accordingly. * * Return 1 if able to complete the job; otherwise 0. */ static int hv_m_append(struct mbuf *m0, int len, c_caddr_t cp) { struct mbuf *m, *n; int remainder, space; for (m = m0; m->m_next != NULL; m = m->m_next) ; remainder = len; space = M_TRAILINGSPACE(m); if (space > 0) { /* * Copy into available space. */ if (space > remainder) space = remainder; bcopy(cp, mtod(m, caddr_t) + m->m_len, space); m->m_len += space; cp += space; remainder -= space; } while (remainder > 0) { /* * Allocate a new mbuf; could check space * and allocate a cluster instead. */ n = m_getjcl(M_NOWAIT, m->m_type, 0, MJUMPAGESIZE); if (n == NULL) break; n->m_len = min(MJUMPAGESIZE, remainder); bcopy(cp, mtod(n, caddr_t), n->m_len); cp += n->m_len; remainder -= n->m_len; m->m_next = n; m = n; } if (m0->m_flags & M_PKTHDR) m0->m_pkthdr.len += len - remainder; return (remainder == 0); } #if defined(INET) || defined(INET6) static __inline int hn_lro_rx(struct lro_ctrl *lc, struct mbuf *m) { #if __FreeBSD_version >= 1100095 if (hn_lro_mbufq_depth) { tcp_lro_queue_mbuf(lc, m); return 0; } #endif return tcp_lro_rx(lc, m, 0); } #endif /* * Called when we receive a data packet from the "wire" on the * specified device * * Note: This is no longer used as a callback */ int netvsc_recv(struct hv_vmbus_channel *chan, netvsc_packet *packet, const rndis_tcp_ip_csum_info *csum_info, const struct rndis_hash_info *hash_info, const struct rndis_hash_value *hash_value) { struct hn_rx_ring *rxr = chan->hv_chan_rxr; struct ifnet *ifp = rxr->hn_ifp; struct mbuf *m_new; int size, do_lro = 0, do_csum = 1; int hash_type = M_HASHTYPE_OPAQUE_HASH; if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) return (0); /* * Bail out if packet contains more data than configured MTU. */ if (packet->tot_data_buf_len > (ifp->if_mtu + ETHER_HDR_LEN)) { return (0); } else if (packet->tot_data_buf_len <= MHLEN) { m_new = m_gethdr(M_NOWAIT, MT_DATA); if (m_new == NULL) { if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); return (0); } memcpy(mtod(m_new, void *), packet->data, packet->tot_data_buf_len); m_new->m_pkthdr.len = m_new->m_len = packet->tot_data_buf_len; rxr->hn_small_pkts++; } else { /* * Get an mbuf with a cluster. For packets 2K or less, * get a standard 2K cluster. For anything larger, get a * 4K cluster. Any buffers larger than 4K can cause problems * if looped around to the Hyper-V TX channel, so avoid them. */ size = MCLBYTES; if (packet->tot_data_buf_len > MCLBYTES) { /* 4096 */ size = MJUMPAGESIZE; } m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, size); if (m_new == NULL) { if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); return (0); } hv_m_append(m_new, packet->tot_data_buf_len, packet->data); } m_new->m_pkthdr.rcvif = ifp; if (__predict_false((ifp->if_capenable & IFCAP_RXCSUM) == 0)) do_csum = 0; /* receive side checksum offload */ if (csum_info != NULL) { /* IP csum offload */ if (csum_info->receive.ip_csum_succeeded && do_csum) { m_new->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID); rxr->hn_csum_ip++; } /* TCP/UDP csum offload */ if ((csum_info->receive.tcp_csum_succeeded || csum_info->receive.udp_csum_succeeded) && do_csum) { m_new->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); m_new->m_pkthdr.csum_data = 0xffff; if (csum_info->receive.tcp_csum_succeeded) rxr->hn_csum_tcp++; else rxr->hn_csum_udp++; } if (csum_info->receive.ip_csum_succeeded && csum_info->receive.tcp_csum_succeeded) do_lro = 1; } else { const struct ether_header *eh; uint16_t etype; int hoff; hoff = sizeof(*eh); if (m_new->m_len < hoff) goto skip; eh = mtod(m_new, struct ether_header *); etype = ntohs(eh->ether_type); if (etype == ETHERTYPE_VLAN) { const struct ether_vlan_header *evl; hoff = sizeof(*evl); if (m_new->m_len < hoff) goto skip; evl = mtod(m_new, struct ether_vlan_header *); etype = ntohs(evl->evl_proto); } if (etype == ETHERTYPE_IP) { int pr; pr = hn_check_iplen(m_new, hoff); if (pr == IPPROTO_TCP) { if (do_csum && (rxr->hn_trust_hcsum & HN_TRUST_HCSUM_TCP)) { rxr->hn_csum_trusted++; m_new->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); m_new->m_pkthdr.csum_data = 0xffff; } do_lro = 1; } else if (pr == IPPROTO_UDP) { if (do_csum && (rxr->hn_trust_hcsum & HN_TRUST_HCSUM_UDP)) { rxr->hn_csum_trusted++; m_new->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); m_new->m_pkthdr.csum_data = 0xffff; } } else if (pr != IPPROTO_DONE && do_csum && (rxr->hn_trust_hcsum & HN_TRUST_HCSUM_IP)) { rxr->hn_csum_trusted++; m_new->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID); } } } skip: if ((packet->vlan_tci != 0) && (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { m_new->m_pkthdr.ether_vtag = packet->vlan_tci; m_new->m_flags |= M_VLANTAG; } if (hash_info != NULL && hash_value != NULL) { rxr->hn_rss_pkts++; m_new->m_pkthdr.flowid = hash_value->hash_value; if ((hash_info->hash_info & NDIS_HASH_FUNCTION_MASK) == NDIS_HASH_FUNCTION_TOEPLITZ) { uint32_t type = (hash_info->hash_info & NDIS_HASH_TYPE_MASK); switch (type) { case NDIS_HASH_IPV4: hash_type = M_HASHTYPE_RSS_IPV4; break; case NDIS_HASH_TCP_IPV4: hash_type = M_HASHTYPE_RSS_TCP_IPV4; break; case NDIS_HASH_IPV6: hash_type = M_HASHTYPE_RSS_IPV6; break; case NDIS_HASH_IPV6_EX: hash_type = M_HASHTYPE_RSS_IPV6_EX; break; case NDIS_HASH_TCP_IPV6: hash_type = M_HASHTYPE_RSS_TCP_IPV6; break; case NDIS_HASH_TCP_IPV6_EX: hash_type = M_HASHTYPE_RSS_TCP_IPV6_EX; break; } } } else { if (hash_value != NULL) { m_new->m_pkthdr.flowid = hash_value->hash_value; } else { m_new->m_pkthdr.flowid = rxr->hn_rx_idx; hash_type = M_HASHTYPE_OPAQUE; } } M_HASHTYPE_SET(m_new, hash_type); /* * Note: Moved RX completion back to hv_nv_on_receive() so all * messages (not just data messages) will trigger a response. */ if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); rxr->hn_pkts++; if ((ifp->if_capenable & IFCAP_LRO) && do_lro) { #if defined(INET) || defined(INET6) struct lro_ctrl *lro = &rxr->hn_lro; if (lro->lro_cnt) { rxr->hn_lro_tried++; if (hn_lro_rx(lro, m_new) == 0) { /* DONE! */ return 0; } } #endif } /* We're not holding the lock here, so don't release it */ (*ifp->if_input)(ifp, m_new); return (0); } /* * Rules for using sc->temp_unusable: * 1. sc->temp_unusable can only be read or written while holding NV_LOCK() * 2. code reading sc->temp_unusable under NV_LOCK(), and finding * sc->temp_unusable set, must release NV_LOCK() and exit * 3. to retain exclusive control of the interface, * sc->temp_unusable must be set by code before releasing NV_LOCK() * 4. only code setting sc->temp_unusable can clear sc->temp_unusable * 5. code setting sc->temp_unusable must eventually clear sc->temp_unusable */ /* * Standard ioctl entry point. Called when the user wants to configure * the interface. */ static int hn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { hn_softc_t *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; #ifdef INET struct ifaddr *ifa = (struct ifaddr *)data; #endif netvsc_device_info device_info; struct hv_device *hn_dev; int mask, error = 0; int retry_cnt = 500; switch(cmd) { case SIOCSIFADDR: #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) { ifp->if_flags |= IFF_UP; if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) hn_ifinit(sc); arp_ifinit(ifp, ifa); } else #endif error = ether_ioctl(ifp, cmd, data); break; case SIOCSIFMTU: hn_dev = vmbus_get_devctx(sc->hn_dev); /* Check MTU value change */ if (ifp->if_mtu == ifr->ifr_mtu) break; if (ifr->ifr_mtu > NETVSC_MAX_CONFIGURABLE_MTU) { error = EINVAL; break; } /* Obtain and record requested MTU */ ifp->if_mtu = ifr->ifr_mtu; #if __FreeBSD_version >= 1100099 /* * Make sure that LRO aggregation length limit is still * valid, after the MTU change. */ NV_LOCK(sc); if (sc->hn_rx_ring[0].hn_lro.lro_length_lim < HN_LRO_LENLIM_MIN(ifp)) hn_set_lro_lenlim(sc, HN_LRO_LENLIM_MIN(ifp)); NV_UNLOCK(sc); #endif do { NV_LOCK(sc); if (!sc->temp_unusable) { sc->temp_unusable = TRUE; retry_cnt = -1; } NV_UNLOCK(sc); if (retry_cnt > 0) { retry_cnt--; DELAY(5 * 1000); } } while (retry_cnt > 0); if (retry_cnt == 0) { error = EINVAL; break; } /* We must remove and add back the device to cause the new * MTU to take effect. This includes tearing down, but not * deleting the channel, then bringing it back up. */ error = hv_rf_on_device_remove(hn_dev, HV_RF_NV_RETAIN_CHANNEL); if (error) { NV_LOCK(sc); sc->temp_unusable = FALSE; NV_UNLOCK(sc); break; } /* Wait for subchannels to be destroyed */ vmbus_drain_subchan(hn_dev->channel); error = hv_rf_on_device_add(hn_dev, &device_info, sc->hn_rx_ring_inuse); if (error) { NV_LOCK(sc); sc->temp_unusable = FALSE; NV_UNLOCK(sc); break; } KASSERT(sc->hn_rx_ring_cnt == sc->net_dev->num_channel, ("RX ring count %d and channel count %u mismatch", sc->hn_rx_ring_cnt, sc->net_dev->num_channel)); if (sc->net_dev->num_channel > 1) { int r; /* * Skip the rings on primary channel; they are * handled by the hv_rf_on_device_add() above. */ for (r = 1; r < sc->hn_rx_ring_cnt; ++r) { sc->hn_rx_ring[r].hn_rx_flags &= ~HN_RX_FLAG_ATTACHED; } for (r = 1; r < sc->hn_tx_ring_cnt; ++r) { sc->hn_tx_ring[r].hn_tx_flags &= ~HN_TX_FLAG_ATTACHED; } hn_subchan_setup(sc); } sc->hn_tx_chimney_max = sc->net_dev->send_section_size; if (sc->hn_tx_ring[0].hn_tx_chimney_size > sc->hn_tx_chimney_max) hn_set_tx_chimney_size(sc, sc->hn_tx_chimney_max); hn_ifinit_locked(sc); NV_LOCK(sc); sc->temp_unusable = FALSE; NV_UNLOCK(sc); break; case SIOCSIFFLAGS: do { NV_LOCK(sc); if (!sc->temp_unusable) { sc->temp_unusable = TRUE; retry_cnt = -1; } NV_UNLOCK(sc); if (retry_cnt > 0) { retry_cnt--; DELAY(5 * 1000); } } while (retry_cnt > 0); if (retry_cnt == 0) { error = EINVAL; break; } if (ifp->if_flags & IFF_UP) { /* * If only the state of the PROMISC flag changed, * then just use the 'set promisc mode' command * instead of reinitializing the entire NIC. Doing * a full re-init means reloading the firmware and * waiting for it to start up, which may take a * second or two. */ #ifdef notyet /* Fixme: Promiscuous mode? */ if (ifp->if_drv_flags & IFF_DRV_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->hn_if_flags & IFF_PROMISC)) { /* do something here for Hyper-V */ } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->hn_if_flags & IFF_PROMISC) { /* do something here for Hyper-V */ } else #endif hn_ifinit_locked(sc); } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { hn_stop(sc); } } NV_LOCK(sc); sc->temp_unusable = FALSE; NV_UNLOCK(sc); sc->hn_if_flags = ifp->if_flags; error = 0; break; case SIOCSIFCAP: NV_LOCK(sc); mask = ifr->ifr_reqcap ^ ifp->if_capenable; if (mask & IFCAP_TXCSUM) { ifp->if_capenable ^= IFCAP_TXCSUM; if (ifp->if_capenable & IFCAP_TXCSUM) { ifp->if_hwassist |= sc->hn_tx_ring[0].hn_csum_assist; } else { ifp->if_hwassist &= ~sc->hn_tx_ring[0].hn_csum_assist; } } if (mask & IFCAP_RXCSUM) ifp->if_capenable ^= IFCAP_RXCSUM; if (mask & IFCAP_LRO) ifp->if_capenable ^= IFCAP_LRO; if (mask & IFCAP_TSO4) { ifp->if_capenable ^= IFCAP_TSO4; if (ifp->if_capenable & IFCAP_TSO4) ifp->if_hwassist |= CSUM_IP_TSO; else ifp->if_hwassist &= ~CSUM_IP_TSO; } if (mask & IFCAP_TSO6) { ifp->if_capenable ^= IFCAP_TSO6; if (ifp->if_capenable & IFCAP_TSO6) ifp->if_hwassist |= CSUM_IP6_TSO; else ifp->if_hwassist &= ~CSUM_IP6_TSO; } NV_UNLOCK(sc); error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: #ifdef notyet /* Fixme: Multicast mode? */ if (ifp->if_drv_flags & IFF_DRV_RUNNING) { NV_LOCK(sc); netvsc_setmulti(sc); NV_UNLOCK(sc); error = 0; } #endif error = EINVAL; break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->hn_media, cmd); break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } /* * */ static void hn_stop(hn_softc_t *sc) { struct ifnet *ifp; int ret, i; struct hv_device *device_ctx = vmbus_get_devctx(sc->hn_dev); ifp = sc->hn_ifp; if (bootverbose) printf(" Closing Device ...\n"); atomic_clear_int(&ifp->if_drv_flags, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); for (i = 0; i < sc->hn_tx_ring_inuse; ++i) sc->hn_tx_ring[i].hn_oactive = 0; if_link_state_change(ifp, LINK_STATE_DOWN); sc->hn_initdone = 0; ret = hv_rf_on_close(device_ctx); } /* * FreeBSD transmit entry point */ static void hn_start(struct ifnet *ifp) { struct hn_softc *sc = ifp->if_softc; struct hn_tx_ring *txr = &sc->hn_tx_ring[0]; if (txr->hn_sched_tx) goto do_sched; if (mtx_trylock(&txr->hn_tx_lock)) { int sched; sched = hn_start_locked(txr, txr->hn_direct_tx_size); mtx_unlock(&txr->hn_tx_lock); if (!sched) return; } do_sched: taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_tx_task); } static void hn_start_txeof(struct hn_tx_ring *txr) { struct hn_softc *sc = txr->hn_sc; struct ifnet *ifp = sc->hn_ifp; KASSERT(txr == &sc->hn_tx_ring[0], ("not the first TX ring")); if (txr->hn_sched_tx) goto do_sched; if (mtx_trylock(&txr->hn_tx_lock)) { int sched; atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); sched = hn_start_locked(txr, txr->hn_direct_tx_size); mtx_unlock(&txr->hn_tx_lock); if (sched) { taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_tx_task); } } else { do_sched: /* * Release the OACTIVE earlier, with the hope, that * others could catch up. The task will clear the * flag again with the hn_tx_lock to avoid possible * races. */ atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_txeof_task); } } /* * */ static void hn_ifinit_locked(hn_softc_t *sc) { struct ifnet *ifp; struct hv_device *device_ctx = vmbus_get_devctx(sc->hn_dev); int ret, i; ifp = sc->hn_ifp; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { return; } hv_promisc_mode = 1; ret = hv_rf_on_open(device_ctx); if (ret != 0) { return; } else { sc->hn_initdone = 1; } atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); for (i = 0; i < sc->hn_tx_ring_inuse; ++i) sc->hn_tx_ring[i].hn_oactive = 0; atomic_set_int(&ifp->if_drv_flags, IFF_DRV_RUNNING); if_link_state_change(ifp, LINK_STATE_UP); } /* * */ static void hn_ifinit(void *xsc) { hn_softc_t *sc = xsc; NV_LOCK(sc); if (sc->temp_unusable) { NV_UNLOCK(sc); return; } sc->temp_unusable = TRUE; NV_UNLOCK(sc); hn_ifinit_locked(sc); NV_LOCK(sc); sc->temp_unusable = FALSE; NV_UNLOCK(sc); } #ifdef LATER /* * */ static void hn_watchdog(struct ifnet *ifp) { hn_softc_t *sc; sc = ifp->if_softc; printf("hn%d: watchdog timeout -- resetting\n", sc->hn_unit); hn_ifinit(sc); /*???*/ if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); } #endif #if __FreeBSD_version >= 1100099 static int hn_lro_lenlim_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; unsigned int lenlim; int error; lenlim = sc->hn_rx_ring[0].hn_lro.lro_length_lim; error = sysctl_handle_int(oidp, &lenlim, 0, req); if (error || req->newptr == NULL) return error; if (lenlim < HN_LRO_LENLIM_MIN(sc->hn_ifp) || lenlim > TCP_LRO_LENGTH_MAX) return EINVAL; NV_LOCK(sc); hn_set_lro_lenlim(sc, lenlim); NV_UNLOCK(sc); return 0; } static int hn_lro_ackcnt_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int ackcnt, error, i; /* * lro_ackcnt_lim is append count limit, * +1 to turn it into aggregation limit. */ ackcnt = sc->hn_rx_ring[0].hn_lro.lro_ackcnt_lim + 1; error = sysctl_handle_int(oidp, &ackcnt, 0, req); if (error || req->newptr == NULL) return error; if (ackcnt < 2 || ackcnt > (TCP_LRO_ACKCNT_MAX + 1)) return EINVAL; /* * Convert aggregation limit back to append * count limit. */ --ackcnt; NV_LOCK(sc); for (i = 0; i < sc->hn_rx_ring_inuse; ++i) sc->hn_rx_ring[i].hn_lro.lro_ackcnt_lim = ackcnt; NV_UNLOCK(sc); return 0; } #endif static int hn_trust_hcsum_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int hcsum = arg2; int on, error, i; on = 0; if (sc->hn_rx_ring[0].hn_trust_hcsum & hcsum) on = 1; error = sysctl_handle_int(oidp, &on, 0, req); if (error || req->newptr == NULL) return error; NV_LOCK(sc); for (i = 0; i < sc->hn_rx_ring_inuse; ++i) { struct hn_rx_ring *rxr = &sc->hn_rx_ring[i]; if (on) rxr->hn_trust_hcsum |= hcsum; else rxr->hn_trust_hcsum &= ~hcsum; } NV_UNLOCK(sc); return 0; } static int hn_tx_chimney_size_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int chimney_size, error; chimney_size = sc->hn_tx_ring[0].hn_tx_chimney_size; error = sysctl_handle_int(oidp, &chimney_size, 0, req); if (error || req->newptr == NULL) return error; if (chimney_size > sc->hn_tx_chimney_max || chimney_size <= 0) return EINVAL; hn_set_tx_chimney_size(sc, chimney_size); return 0; } static int hn_rx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int ofs = arg2, i, error; struct hn_rx_ring *rxr; u_long stat; stat = 0; for (i = 0; i < sc->hn_rx_ring_inuse; ++i) { rxr = &sc->hn_rx_ring[i]; stat += *((u_long *)((uint8_t *)rxr + ofs)); } error = sysctl_handle_long(oidp, &stat, 0, req); if (error || req->newptr == NULL) return error; /* Zero out this stat. */ for (i = 0; i < sc->hn_rx_ring_inuse; ++i) { rxr = &sc->hn_rx_ring[i]; *((u_long *)((uint8_t *)rxr + ofs)) = 0; } return 0; } static int hn_rx_stat_u64_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int ofs = arg2, i, error; struct hn_rx_ring *rxr; uint64_t stat; stat = 0; for (i = 0; i < sc->hn_rx_ring_inuse; ++i) { rxr = &sc->hn_rx_ring[i]; stat += *((uint64_t *)((uint8_t *)rxr + ofs)); } error = sysctl_handle_64(oidp, &stat, 0, req); if (error || req->newptr == NULL) return error; /* Zero out this stat. */ for (i = 0; i < sc->hn_rx_ring_inuse; ++i) { rxr = &sc->hn_rx_ring[i]; *((uint64_t *)((uint8_t *)rxr + ofs)) = 0; } return 0; } static int hn_tx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int ofs = arg2, i, error; struct hn_tx_ring *txr; u_long stat; stat = 0; for (i = 0; i < sc->hn_tx_ring_inuse; ++i) { txr = &sc->hn_tx_ring[i]; stat += *((u_long *)((uint8_t *)txr + ofs)); } error = sysctl_handle_long(oidp, &stat, 0, req); if (error || req->newptr == NULL) return error; /* Zero out this stat. */ for (i = 0; i < sc->hn_tx_ring_inuse; ++i) { txr = &sc->hn_tx_ring[i]; *((u_long *)((uint8_t *)txr + ofs)) = 0; } return 0; } static int hn_tx_conf_int_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int ofs = arg2, i, error, conf; struct hn_tx_ring *txr; txr = &sc->hn_tx_ring[0]; conf = *((int *)((uint8_t *)txr + ofs)); error = sysctl_handle_int(oidp, &conf, 0, req); if (error || req->newptr == NULL) return error; NV_LOCK(sc); for (i = 0; i < sc->hn_tx_ring_inuse; ++i) { txr = &sc->hn_tx_ring[i]; *((int *)((uint8_t *)txr + ofs)) = conf; } NV_UNLOCK(sc); return 0; } static int hn_check_iplen(const struct mbuf *m, int hoff) { const struct ip *ip; int len, iphlen, iplen; const struct tcphdr *th; int thoff; /* TCP data offset */ len = hoff + sizeof(struct ip); /* The packet must be at least the size of an IP header. */ if (m->m_pkthdr.len < len) return IPPROTO_DONE; /* The fixed IP header must reside completely in the first mbuf. */ if (m->m_len < len) return IPPROTO_DONE; ip = mtodo(m, hoff); /* Bound check the packet's stated IP header length. */ iphlen = ip->ip_hl << 2; if (iphlen < sizeof(struct ip)) /* minimum header length */ return IPPROTO_DONE; /* The full IP header must reside completely in the one mbuf. */ if (m->m_len < hoff + iphlen) return IPPROTO_DONE; iplen = ntohs(ip->ip_len); /* * Check that the amount of data in the buffers is as * at least much as the IP header would have us expect. */ if (m->m_pkthdr.len < hoff + iplen) return IPPROTO_DONE; /* * Ignore IP fragments. */ if (ntohs(ip->ip_off) & (IP_OFFMASK | IP_MF)) return IPPROTO_DONE; /* * The TCP/IP or UDP/IP header must be entirely contained within * the first fragment of a packet. */ switch (ip->ip_p) { case IPPROTO_TCP: if (iplen < iphlen + sizeof(struct tcphdr)) return IPPROTO_DONE; if (m->m_len < hoff + iphlen + sizeof(struct tcphdr)) return IPPROTO_DONE; th = (const struct tcphdr *)((const uint8_t *)ip + iphlen); thoff = th->th_off << 2; if (thoff < sizeof(struct tcphdr) || thoff + iphlen > iplen) return IPPROTO_DONE; if (m->m_len < hoff + iphlen + thoff) return IPPROTO_DONE; break; case IPPROTO_UDP: if (iplen < iphlen + sizeof(struct udphdr)) return IPPROTO_DONE; if (m->m_len < hoff + iphlen + sizeof(struct udphdr)) return IPPROTO_DONE; break; default: if (iplen < iphlen) return IPPROTO_DONE; break; } return ip->ip_p; } static void hn_create_rx_data(struct hn_softc *sc, int ring_cnt) { struct sysctl_oid_list *child; struct sysctl_ctx_list *ctx; device_t dev = sc->hn_dev; #if defined(INET) || defined(INET6) #if __FreeBSD_version >= 1100095 int lroent_cnt; #endif #endif int i; sc->hn_rx_ring_cnt = ring_cnt; sc->hn_rx_ring_inuse = sc->hn_rx_ring_cnt; sc->hn_rx_ring = malloc(sizeof(struct hn_rx_ring) * sc->hn_rx_ring_cnt, M_NETVSC, M_WAITOK | M_ZERO); #if defined(INET) || defined(INET6) #if __FreeBSD_version >= 1100095 lroent_cnt = hn_lro_entry_count; if (lroent_cnt < TCP_LRO_ENTRIES) lroent_cnt = TCP_LRO_ENTRIES; device_printf(dev, "LRO: entry count %d\n", lroent_cnt); #endif #endif /* INET || INET6 */ ctx = device_get_sysctl_ctx(dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev)); /* Create dev.hn.UNIT.rx sysctl tree */ sc->hn_rx_sysctl_tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "rx", CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); for (i = 0; i < sc->hn_rx_ring_cnt; ++i) { struct hn_rx_ring *rxr = &sc->hn_rx_ring[i]; if (hn_trust_hosttcp) rxr->hn_trust_hcsum |= HN_TRUST_HCSUM_TCP; if (hn_trust_hostudp) rxr->hn_trust_hcsum |= HN_TRUST_HCSUM_UDP; if (hn_trust_hostip) rxr->hn_trust_hcsum |= HN_TRUST_HCSUM_IP; rxr->hn_ifp = sc->hn_ifp; rxr->hn_rx_idx = i; /* * Initialize LRO. */ #if defined(INET) || defined(INET6) #if __FreeBSD_version >= 1100095 tcp_lro_init_args(&rxr->hn_lro, sc->hn_ifp, lroent_cnt, hn_lro_mbufq_depth); #else tcp_lro_init(&rxr->hn_lro); rxr->hn_lro.ifp = sc->hn_ifp; #endif #if __FreeBSD_version >= 1100099 rxr->hn_lro.lro_length_lim = HN_LRO_LENLIM_DEF; rxr->hn_lro.lro_ackcnt_lim = HN_LRO_ACKCNT_DEF; #endif #endif /* INET || INET6 */ if (sc->hn_rx_sysctl_tree != NULL) { char name[16]; /* * Create per RX ring sysctl tree: * dev.hn.UNIT.rx.RINGID */ snprintf(name, sizeof(name), "%d", i); rxr->hn_rx_sysctl_tree = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(sc->hn_rx_sysctl_tree), OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); if (rxr->hn_rx_sysctl_tree != NULL) { SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(rxr->hn_rx_sysctl_tree), OID_AUTO, "packets", CTLFLAG_RW, &rxr->hn_pkts, "# of packets received"); SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(rxr->hn_rx_sysctl_tree), OID_AUTO, "rss_pkts", CTLFLAG_RW, &rxr->hn_rss_pkts, "# of packets w/ RSS info received"); } } } SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_queued", CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_rx_ring, hn_lro.lro_queued), hn_rx_stat_u64_sysctl, "LU", "LRO queued"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_flushed", CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_rx_ring, hn_lro.lro_flushed), hn_rx_stat_u64_sysctl, "LU", "LRO flushed"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_tried", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_rx_ring, hn_lro_tried), hn_rx_stat_ulong_sysctl, "LU", "# of LRO tries"); #if __FreeBSD_version >= 1100099 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_length_lim", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, hn_lro_lenlim_sysctl, "IU", "Max # of data bytes to be aggregated by LRO"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_ackcnt_lim", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, hn_lro_ackcnt_sysctl, "I", "Max # of ACKs to be aggregated by LRO"); #endif SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hosttcp", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, HN_TRUST_HCSUM_TCP, hn_trust_hcsum_sysctl, "I", "Trust tcp segement verification on host side, " "when csum info is missing"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hostudp", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, HN_TRUST_HCSUM_UDP, hn_trust_hcsum_sysctl, "I", "Trust udp datagram verification on host side, " "when csum info is missing"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hostip", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, HN_TRUST_HCSUM_IP, hn_trust_hcsum_sysctl, "I", "Trust ip packet verification on host side, " "when csum info is missing"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_ip", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_rx_ring, hn_csum_ip), hn_rx_stat_ulong_sysctl, "LU", "RXCSUM IP"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_tcp", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_rx_ring, hn_csum_tcp), hn_rx_stat_ulong_sysctl, "LU", "RXCSUM TCP"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_udp", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_rx_ring, hn_csum_udp), hn_rx_stat_ulong_sysctl, "LU", "RXCSUM UDP"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_trusted", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_rx_ring, hn_csum_trusted), hn_rx_stat_ulong_sysctl, "LU", "# of packets that we trust host's csum verification"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "small_pkts", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_rx_ring, hn_small_pkts), hn_rx_stat_ulong_sysctl, "LU", "# of small packets received"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_ring_cnt", CTLFLAG_RD, &sc->hn_rx_ring_cnt, 0, "# created RX rings"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_ring_inuse", CTLFLAG_RD, &sc->hn_rx_ring_inuse, 0, "# used RX rings"); } static void hn_destroy_rx_data(struct hn_softc *sc) { #if defined(INET) || defined(INET6) int i; #endif if (sc->hn_rx_ring_cnt == 0) return; #if defined(INET) || defined(INET6) for (i = 0; i < sc->hn_rx_ring_cnt; ++i) tcp_lro_free(&sc->hn_rx_ring[i].hn_lro); #endif free(sc->hn_rx_ring, M_NETVSC); sc->hn_rx_ring = NULL; sc->hn_rx_ring_cnt = 0; sc->hn_rx_ring_inuse = 0; } static int hn_create_tx_ring(struct hn_softc *sc, int id) { struct hn_tx_ring *txr = &sc->hn_tx_ring[id]; device_t dev = sc->hn_dev; bus_dma_tag_t parent_dtag; int error, i; uint32_t version; txr->hn_sc = sc; txr->hn_tx_idx = id; #ifndef HN_USE_TXDESC_BUFRING mtx_init(&txr->hn_txlist_spin, "hn txlist", NULL, MTX_SPIN); #endif mtx_init(&txr->hn_tx_lock, "hn tx", NULL, MTX_DEF); txr->hn_txdesc_cnt = HN_TX_DESC_CNT; txr->hn_txdesc = malloc(sizeof(struct hn_txdesc) * txr->hn_txdesc_cnt, M_NETVSC, M_WAITOK | M_ZERO); #ifndef HN_USE_TXDESC_BUFRING SLIST_INIT(&txr->hn_txlist); #else txr->hn_txdesc_br = buf_ring_alloc(txr->hn_txdesc_cnt, M_NETVSC, M_WAITOK, &txr->hn_tx_lock); #endif txr->hn_tx_taskq = sc->hn_tx_taskq; if (hn_use_if_start) { txr->hn_txeof = hn_start_txeof; TASK_INIT(&txr->hn_tx_task, 0, hn_start_taskfunc, txr); TASK_INIT(&txr->hn_txeof_task, 0, hn_start_txeof_taskfunc, txr); } else { int br_depth; txr->hn_txeof = hn_xmit_txeof; TASK_INIT(&txr->hn_tx_task, 0, hn_xmit_taskfunc, txr); TASK_INIT(&txr->hn_txeof_task, 0, hn_xmit_txeof_taskfunc, txr); br_depth = hn_get_txswq_depth(txr); txr->hn_mbuf_br = buf_ring_alloc(br_depth, M_NETVSC, M_WAITOK, &txr->hn_tx_lock); } txr->hn_direct_tx_size = hn_direct_tx_size; version = VMBUS_GET_VERSION(device_get_parent(dev), dev); if (version >= VMBUS_VERSION_WIN8_1) { txr->hn_csum_assist = HN_CSUM_ASSIST; } else { txr->hn_csum_assist = HN_CSUM_ASSIST_WIN8; if (id == 0) { device_printf(dev, "bus version %u.%u, " "no UDP checksum offloading\n", VMBUS_VERSION_MAJOR(version), VMBUS_VERSION_MINOR(version)); } } /* * Always schedule transmission instead of trying to do direct * transmission. This one gives the best performance so far. */ txr->hn_sched_tx = 1; parent_dtag = bus_get_dma_tag(dev); /* DMA tag for RNDIS messages. */ error = bus_dma_tag_create(parent_dtag, /* parent */ HN_RNDIS_MSG_ALIGN, /* alignment */ HN_RNDIS_MSG_BOUNDARY, /* boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ HN_RNDIS_MSG_LEN, /* maxsize */ 1, /* nsegments */ HN_RNDIS_MSG_LEN, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &txr->hn_tx_rndis_dtag); if (error) { device_printf(dev, "failed to create rndis dmatag\n"); return error; } /* DMA tag for data. */ error = bus_dma_tag_create(parent_dtag, /* parent */ 1, /* alignment */ HN_TX_DATA_BOUNDARY, /* boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ HN_TX_DATA_MAXSIZE, /* maxsize */ HN_TX_DATA_SEGCNT_MAX, /* nsegments */ HN_TX_DATA_SEGSIZE, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &txr->hn_tx_data_dtag); if (error) { device_printf(dev, "failed to create data dmatag\n"); return error; } for (i = 0; i < txr->hn_txdesc_cnt; ++i) { struct hn_txdesc *txd = &txr->hn_txdesc[i]; txd->txr = txr; /* * Allocate and load RNDIS messages. */ error = bus_dmamem_alloc(txr->hn_tx_rndis_dtag, (void **)&txd->rndis_msg, BUS_DMA_WAITOK | BUS_DMA_COHERENT, &txd->rndis_msg_dmap); if (error) { device_printf(dev, "failed to allocate rndis_msg, %d\n", i); return error; } error = bus_dmamap_load(txr->hn_tx_rndis_dtag, txd->rndis_msg_dmap, txd->rndis_msg, HN_RNDIS_MSG_LEN, hyperv_dma_map_paddr, &txd->rndis_msg_paddr, BUS_DMA_NOWAIT); if (error) { device_printf(dev, "failed to load rndis_msg, %d\n", i); bus_dmamem_free(txr->hn_tx_rndis_dtag, txd->rndis_msg, txd->rndis_msg_dmap); return error; } /* DMA map for TX data. */ error = bus_dmamap_create(txr->hn_tx_data_dtag, 0, &txd->data_dmap); if (error) { device_printf(dev, "failed to allocate tx data dmamap\n"); bus_dmamap_unload(txr->hn_tx_rndis_dtag, txd->rndis_msg_dmap); bus_dmamem_free(txr->hn_tx_rndis_dtag, txd->rndis_msg, txd->rndis_msg_dmap); return error; } /* All set, put it to list */ txd->flags |= HN_TXD_FLAG_ONLIST; #ifndef HN_USE_TXDESC_BUFRING SLIST_INSERT_HEAD(&txr->hn_txlist, txd, link); #else buf_ring_enqueue(txr->hn_txdesc_br, txd); #endif } txr->hn_txdesc_avail = txr->hn_txdesc_cnt; if (sc->hn_tx_sysctl_tree != NULL) { struct sysctl_oid_list *child; struct sysctl_ctx_list *ctx; char name[16]; /* * Create per TX ring sysctl tree: * dev.hn.UNIT.tx.RINGID */ ctx = device_get_sysctl_ctx(dev); child = SYSCTL_CHILDREN(sc->hn_tx_sysctl_tree); snprintf(name, sizeof(name), "%d", id); txr->hn_tx_sysctl_tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); if (txr->hn_tx_sysctl_tree != NULL) { child = SYSCTL_CHILDREN(txr->hn_tx_sysctl_tree); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "txdesc_avail", CTLFLAG_RD, &txr->hn_txdesc_avail, 0, "# of available TX descs"); if (!hn_use_if_start) { SYSCTL_ADD_INT(ctx, child, OID_AUTO, "oactive", CTLFLAG_RD, &txr->hn_oactive, 0, "over active"); } SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "packets", CTLFLAG_RW, &txr->hn_pkts, "# of packets transmitted"); } } return 0; } static void hn_txdesc_dmamap_destroy(struct hn_txdesc *txd) { struct hn_tx_ring *txr = txd->txr; KASSERT(txd->m == NULL, ("still has mbuf installed")); KASSERT((txd->flags & HN_TXD_FLAG_DMAMAP) == 0, ("still dma mapped")); bus_dmamap_unload(txr->hn_tx_rndis_dtag, txd->rndis_msg_dmap); bus_dmamem_free(txr->hn_tx_rndis_dtag, txd->rndis_msg, txd->rndis_msg_dmap); bus_dmamap_destroy(txr->hn_tx_data_dtag, txd->data_dmap); } static void hn_destroy_tx_ring(struct hn_tx_ring *txr) { struct hn_txdesc *txd; if (txr->hn_txdesc == NULL) return; #ifndef HN_USE_TXDESC_BUFRING while ((txd = SLIST_FIRST(&txr->hn_txlist)) != NULL) { SLIST_REMOVE_HEAD(&txr->hn_txlist, link); hn_txdesc_dmamap_destroy(txd); } #else mtx_lock(&txr->hn_tx_lock); while ((txd = buf_ring_dequeue_sc(txr->hn_txdesc_br)) != NULL) hn_txdesc_dmamap_destroy(txd); mtx_unlock(&txr->hn_tx_lock); #endif if (txr->hn_tx_data_dtag != NULL) bus_dma_tag_destroy(txr->hn_tx_data_dtag); if (txr->hn_tx_rndis_dtag != NULL) bus_dma_tag_destroy(txr->hn_tx_rndis_dtag); #ifdef HN_USE_TXDESC_BUFRING buf_ring_free(txr->hn_txdesc_br, M_NETVSC); #endif free(txr->hn_txdesc, M_NETVSC); txr->hn_txdesc = NULL; if (txr->hn_mbuf_br != NULL) buf_ring_free(txr->hn_mbuf_br, M_NETVSC); #ifndef HN_USE_TXDESC_BUFRING mtx_destroy(&txr->hn_txlist_spin); #endif mtx_destroy(&txr->hn_tx_lock); } static int hn_create_tx_data(struct hn_softc *sc, int ring_cnt) { struct sysctl_oid_list *child; struct sysctl_ctx_list *ctx; int i; sc->hn_tx_ring_cnt = ring_cnt; sc->hn_tx_ring_inuse = sc->hn_tx_ring_cnt; sc->hn_tx_ring = malloc(sizeof(struct hn_tx_ring) * sc->hn_tx_ring_cnt, M_NETVSC, M_WAITOK | M_ZERO); ctx = device_get_sysctl_ctx(sc->hn_dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->hn_dev)); /* Create dev.hn.UNIT.tx sysctl tree */ sc->hn_tx_sysctl_tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "tx", CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); for (i = 0; i < sc->hn_tx_ring_cnt; ++i) { int error; error = hn_create_tx_ring(sc, i); if (error) return error; } SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "no_txdescs", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_tx_ring, hn_no_txdescs), hn_tx_stat_ulong_sysctl, "LU", "# of times short of TX descs"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "send_failed", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_tx_ring, hn_send_failed), hn_tx_stat_ulong_sysctl, "LU", "# of hyper-v sending failure"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "txdma_failed", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_tx_ring, hn_txdma_failed), hn_tx_stat_ulong_sysctl, "LU", "# of TX DMA failure"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_collapsed", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_tx_ring, hn_tx_collapsed), hn_tx_stat_ulong_sysctl, "LU", "# of TX mbuf collapsed"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_chimney", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_tx_ring, hn_tx_chimney), hn_tx_stat_ulong_sysctl, "LU", "# of chimney send"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_chimney_tried", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_tx_ring, hn_tx_chimney_tried), hn_tx_stat_ulong_sysctl, "LU", "# of chimney send tries"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "txdesc_cnt", CTLFLAG_RD, &sc->hn_tx_ring[0].hn_txdesc_cnt, 0, "# of total TX descs"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_chimney_max", CTLFLAG_RD, &sc->hn_tx_chimney_max, 0, "Chimney send packet size upper boundary"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_chimney_size", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, hn_tx_chimney_size_sysctl, "I", "Chimney send packet size limit"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "direct_tx_size", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_tx_ring, hn_direct_tx_size), hn_tx_conf_int_sysctl, "I", "Size of the packet for direct transmission"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "sched_tx", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_tx_ring, hn_sched_tx), hn_tx_conf_int_sysctl, "I", "Always schedule transmission " "instead of doing direct transmission"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_ring_cnt", CTLFLAG_RD, &sc->hn_tx_ring_cnt, 0, "# created TX rings"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_ring_inuse", CTLFLAG_RD, &sc->hn_tx_ring_inuse, 0, "# used TX rings"); return 0; } static void hn_set_tx_chimney_size(struct hn_softc *sc, int chimney_size) { int i; NV_LOCK(sc); for (i = 0; i < sc->hn_tx_ring_inuse; ++i) sc->hn_tx_ring[i].hn_tx_chimney_size = chimney_size; NV_UNLOCK(sc); } static void hn_destroy_tx_data(struct hn_softc *sc) { int i; if (sc->hn_tx_ring_cnt == 0) return; for (i = 0; i < sc->hn_tx_ring_cnt; ++i) hn_destroy_tx_ring(&sc->hn_tx_ring[i]); free(sc->hn_tx_ring, M_NETVSC); sc->hn_tx_ring = NULL; sc->hn_tx_ring_cnt = 0; sc->hn_tx_ring_inuse = 0; } static void hn_start_taskfunc(void *xtxr, int pending __unused) { struct hn_tx_ring *txr = xtxr; mtx_lock(&txr->hn_tx_lock); hn_start_locked(txr, 0); mtx_unlock(&txr->hn_tx_lock); } static void hn_start_txeof_taskfunc(void *xtxr, int pending __unused) { struct hn_tx_ring *txr = xtxr; mtx_lock(&txr->hn_tx_lock); atomic_clear_int(&txr->hn_sc->hn_ifp->if_drv_flags, IFF_DRV_OACTIVE); hn_start_locked(txr, 0); mtx_unlock(&txr->hn_tx_lock); } static void hn_stop_tx_tasks(struct hn_softc *sc) { int i; for (i = 0; i < sc->hn_tx_ring_inuse; ++i) { struct hn_tx_ring *txr = &sc->hn_tx_ring[i]; taskqueue_drain(txr->hn_tx_taskq, &txr->hn_tx_task); taskqueue_drain(txr->hn_tx_taskq, &txr->hn_txeof_task); } } static int hn_xmit(struct hn_tx_ring *txr, int len) { struct hn_softc *sc = txr->hn_sc; struct ifnet *ifp = sc->hn_ifp; struct mbuf *m_head; mtx_assert(&txr->hn_tx_lock, MA_OWNED); KASSERT(hn_use_if_start == 0, ("hn_xmit is called, when if_start is enabled")); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || txr->hn_oactive) return 0; while ((m_head = drbr_peek(ifp, txr->hn_mbuf_br)) != NULL) { struct hn_txdesc *txd; int error; if (len > 0 && m_head->m_pkthdr.len > len) { /* * This sending could be time consuming; let callers * dispatch this packet sending (and sending of any * following up packets) to tx taskqueue. */ drbr_putback(ifp, txr->hn_mbuf_br, m_head); return 1; } txd = hn_txdesc_get(txr); if (txd == NULL) { txr->hn_no_txdescs++; drbr_putback(ifp, txr->hn_mbuf_br, m_head); txr->hn_oactive = 1; break; } error = hn_encap(txr, txd, &m_head); if (error) { /* Both txd and m_head are freed; discard */ drbr_advance(ifp, txr->hn_mbuf_br); continue; } error = hn_send_pkt(ifp, txr, txd); if (__predict_false(error)) { /* txd is freed, but m_head is not */ drbr_putback(ifp, txr->hn_mbuf_br, m_head); txr->hn_oactive = 1; break; } /* Sent */ drbr_advance(ifp, txr->hn_mbuf_br); } return 0; } static int hn_transmit(struct ifnet *ifp, struct mbuf *m) { struct hn_softc *sc = ifp->if_softc; struct hn_tx_ring *txr; int error, idx = 0; /* * Select the TX ring based on flowid */ if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) idx = m->m_pkthdr.flowid % sc->hn_tx_ring_inuse; txr = &sc->hn_tx_ring[idx]; error = drbr_enqueue(ifp, txr->hn_mbuf_br, m); if (error) { if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); return error; } if (txr->hn_oactive) return 0; if (txr->hn_sched_tx) goto do_sched; if (mtx_trylock(&txr->hn_tx_lock)) { int sched; sched = hn_xmit(txr, txr->hn_direct_tx_size); mtx_unlock(&txr->hn_tx_lock); if (!sched) return 0; } do_sched: taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_tx_task); return 0; } static void hn_xmit_qflush(struct ifnet *ifp) { struct hn_softc *sc = ifp->if_softc; int i; for (i = 0; i < sc->hn_tx_ring_inuse; ++i) { struct hn_tx_ring *txr = &sc->hn_tx_ring[i]; struct mbuf *m; mtx_lock(&txr->hn_tx_lock); while ((m = buf_ring_dequeue_sc(txr->hn_mbuf_br)) != NULL) m_freem(m); mtx_unlock(&txr->hn_tx_lock); } if_qflush(ifp); } static void hn_xmit_txeof(struct hn_tx_ring *txr) { if (txr->hn_sched_tx) goto do_sched; if (mtx_trylock(&txr->hn_tx_lock)) { int sched; txr->hn_oactive = 0; sched = hn_xmit(txr, txr->hn_direct_tx_size); mtx_unlock(&txr->hn_tx_lock); if (sched) { taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_tx_task); } } else { do_sched: /* * Release the oactive earlier, with the hope, that * others could catch up. The task will clear the * oactive again with the hn_tx_lock to avoid possible * races. */ txr->hn_oactive = 0; taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_txeof_task); } } static void hn_xmit_taskfunc(void *xtxr, int pending __unused) { struct hn_tx_ring *txr = xtxr; mtx_lock(&txr->hn_tx_lock); hn_xmit(txr, 0); mtx_unlock(&txr->hn_tx_lock); } static void hn_xmit_txeof_taskfunc(void *xtxr, int pending __unused) { struct hn_tx_ring *txr = xtxr; mtx_lock(&txr->hn_tx_lock); txr->hn_oactive = 0; hn_xmit(txr, 0); mtx_unlock(&txr->hn_tx_lock); } static void hn_channel_attach(struct hn_softc *sc, struct hv_vmbus_channel *chan) { struct hn_rx_ring *rxr; int idx; - idx = chan->offer_msg.offer.sub_channel_index; + idx = chan->ch_subidx; KASSERT(idx >= 0 && idx < sc->hn_rx_ring_inuse, ("invalid channel index %d, should > 0 && < %d", idx, sc->hn_rx_ring_inuse)); rxr = &sc->hn_rx_ring[idx]; KASSERT((rxr->hn_rx_flags & HN_RX_FLAG_ATTACHED) == 0, ("RX ring %d already attached", idx)); rxr->hn_rx_flags |= HN_RX_FLAG_ATTACHED; chan->hv_chan_rxr = rxr; if (bootverbose) { if_printf(sc->hn_ifp, "link RX ring %d to channel%u\n", idx, chan->ch_id); } if (idx < sc->hn_tx_ring_inuse) { struct hn_tx_ring *txr = &sc->hn_tx_ring[idx]; KASSERT((txr->hn_tx_flags & HN_TX_FLAG_ATTACHED) == 0, ("TX ring %d already attached", idx)); txr->hn_tx_flags |= HN_TX_FLAG_ATTACHED; chan->hv_chan_txr = txr; txr->hn_chan = chan; if (bootverbose) { if_printf(sc->hn_ifp, "link TX ring %d to channel%u\n", idx, chan->ch_id); } } /* Bind channel to a proper CPU */ vmbus_channel_cpu_set(chan, (sc->hn_cpu + idx) % mp_ncpus); } static void hn_subchan_attach(struct hn_softc *sc, struct hv_vmbus_channel *chan) { KASSERT(!HV_VMBUS_CHAN_ISPRIMARY(chan), ("subchannel callback on primary channel")); - KASSERT(chan->offer_msg.offer.sub_channel_index > 0, + KASSERT(chan->ch_subidx > 0, ("invalid channel subidx %u", - chan->offer_msg.offer.sub_channel_index)); + chan->ch_subidx)); hn_channel_attach(sc, chan); } static void hn_subchan_setup(struct hn_softc *sc) { struct hv_device *device_ctx = vmbus_get_devctx(sc->hn_dev); struct hv_vmbus_channel **subchan; int subchan_cnt = sc->net_dev->num_channel - 1; int i; /* Wait for sub-channels setup to complete. */ subchan = vmbus_get_subchan(device_ctx->channel, subchan_cnt); /* Attach the sub-channels. */ for (i = 0; i < subchan_cnt; ++i) { /* NOTE: Calling order is critical. */ hn_subchan_attach(sc, subchan[i]); hv_nv_subchan_attach(subchan[i]); } /* Release the sub-channels */ vmbus_rel_subchan(subchan, subchan_cnt); if_printf(sc->hn_ifp, "%d sub-channels setup done\n", subchan_cnt); } static void hn_tx_taskq_create(void *arg __unused) { if (!hn_share_tx_taskq) return; hn_tx_taskq = taskqueue_create("hn_tx", M_WAITOK, taskqueue_thread_enqueue, &hn_tx_taskq); if (hn_bind_tx_taskq >= 0) { int cpu = hn_bind_tx_taskq; cpuset_t cpu_set; if (cpu > mp_ncpus - 1) cpu = mp_ncpus - 1; CPU_SETOF(cpu, &cpu_set); taskqueue_start_threads_cpuset(&hn_tx_taskq, 1, PI_NET, &cpu_set, "hn tx"); } else { taskqueue_start_threads(&hn_tx_taskq, 1, PI_NET, "hn tx"); } } SYSINIT(hn_txtq_create, SI_SUB_DRIVERS, SI_ORDER_FIRST, hn_tx_taskq_create, NULL); static void hn_tx_taskq_destroy(void *arg __unused) { if (hn_tx_taskq != NULL) taskqueue_free(hn_tx_taskq); } SYSUNINIT(hn_txtq_destroy, SI_SUB_DRIVERS, SI_ORDER_FIRST, hn_tx_taskq_destroy, NULL); static device_method_t netvsc_methods[] = { /* Device interface */ DEVMETHOD(device_probe, netvsc_probe), DEVMETHOD(device_attach, netvsc_attach), DEVMETHOD(device_detach, netvsc_detach), DEVMETHOD(device_shutdown, netvsc_shutdown), { 0, 0 } }; static driver_t netvsc_driver = { NETVSC_DEVNAME, netvsc_methods, sizeof(hn_softc_t) }; static devclass_t netvsc_devclass; DRIVER_MODULE(hn, vmbus, netvsc_driver, netvsc_devclass, 0, 0); MODULE_VERSION(hn, 1); MODULE_DEPEND(hn, vmbus, 1, 1, 1); Index: head/sys/dev/hyperv/vmbus/hv_channel.c =================================================================== --- head/sys/dev/hyperv/vmbus/hv_channel.c (revision 302693) +++ head/sys/dev/hyperv/vmbus/hv_channel.c (revision 302694) @@ -1,979 +1,979 @@ /*- * Copyright (c) 2009-2012,2016 Microsoft Corp. * Copyright (c) 2012 NetApp Inc. * Copyright (c) 2012 Citrix Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void vmbus_channel_set_event(hv_vmbus_channel* channel); static void VmbusProcessChannelEvent(void* channel, int pending); static void vmbus_chan_update_evtflagcnt(struct vmbus_softc *, const struct hv_vmbus_channel *); /** * @brief Trigger an event notification on the specified channel */ static void vmbus_channel_set_event(hv_vmbus_channel *channel) { struct vmbus_softc *sc = channel->vmbus_sc; uint32_t chanid = channel->ch_id; atomic_set_long(&sc->vmbus_tx_evtflags[chanid >> VMBUS_EVTFLAG_SHIFT], 1UL << (chanid & VMBUS_EVTFLAG_MASK)); if (channel->offer_msg.monitor_allocated) { hv_vmbus_monitor_page *monitor_page; monitor_page = sc->vmbus_mnf2; synch_set_bit(channel->monitor_bit, (uint32_t *)&monitor_page-> trigger_group[channel->monitor_group].u.pending); } else { hypercall_signal_event(channel->ch_sigevt_dma.hv_paddr); } } static int vmbus_channel_sysctl_monalloc(SYSCTL_HANDLER_ARGS) { struct hv_vmbus_channel *chan = arg1; int alloc = 0; if (chan->offer_msg.monitor_allocated) alloc = 1; return sysctl_handle_int(oidp, &alloc, 0, req); } static void vmbus_channel_sysctl_create(hv_vmbus_channel* channel) { device_t dev; struct sysctl_oid *devch_sysctl; struct sysctl_oid *devch_id_sysctl, *devch_sub_sysctl; struct sysctl_oid *devch_id_in_sysctl, *devch_id_out_sysctl; struct sysctl_ctx_list *ctx; uint32_t ch_id; uint16_t sub_ch_id; char name[16]; hv_vmbus_channel* primary_ch = channel->primary_channel; if (primary_ch == NULL) { dev = channel->device->device; ch_id = channel->ch_id; } else { dev = primary_ch->device->device; ch_id = primary_ch->ch_id; - sub_ch_id = channel->offer_msg.offer.sub_channel_index; + sub_ch_id = channel->ch_subidx; } ctx = &channel->ch_sysctl_ctx; sysctl_ctx_init(ctx); /* This creates dev.DEVNAME.DEVUNIT.channel tree */ devch_sysctl = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "channel", CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); /* This creates dev.DEVNAME.DEVUNIT.channel.CHANID tree */ snprintf(name, sizeof(name), "%d", ch_id); devch_id_sysctl = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(devch_sysctl), OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); if (primary_ch != NULL) { devch_sub_sysctl = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(devch_id_sysctl), OID_AUTO, "sub", CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); snprintf(name, sizeof(name), "%d", sub_ch_id); devch_id_sysctl = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(devch_sub_sysctl), OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(devch_id_sysctl), OID_AUTO, "chanid", CTLFLAG_RD, &channel->ch_id, 0, "channel id"); } SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(devch_id_sysctl), OID_AUTO, "cpu", CTLFLAG_RD, &channel->target_cpu, 0, "owner CPU id"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(devch_id_sysctl), OID_AUTO, "monitor_allocated", CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, channel, 0, vmbus_channel_sysctl_monalloc, "I", "is monitor allocated to this channel"); devch_id_in_sysctl = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(devch_id_sysctl), OID_AUTO, "in", CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); devch_id_out_sysctl = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(devch_id_sysctl), OID_AUTO, "out", CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); hv_ring_buffer_stat(ctx, SYSCTL_CHILDREN(devch_id_in_sysctl), &(channel->inbound), "inbound ring buffer stats"); hv_ring_buffer_stat(ctx, SYSCTL_CHILDREN(devch_id_out_sysctl), &(channel->outbound), "outbound ring buffer stats"); } /** * @brief Open the specified channel */ int hv_vmbus_channel_open( hv_vmbus_channel* new_channel, uint32_t send_ring_buffer_size, uint32_t recv_ring_buffer_size, void* user_data, uint32_t user_data_len, hv_vmbus_pfn_channel_callback pfn_on_channel_callback, void* context) { struct vmbus_softc *sc = new_channel->vmbus_sc; const struct vmbus_chanmsg_chopen_resp *resp; const struct vmbus_message *msg; struct vmbus_chanmsg_chopen *req; struct vmbus_msghc *mh; uint32_t status; int ret = 0; void *in, *out; if (user_data_len > VMBUS_CHANMSG_CHOPEN_UDATA_SIZE) { device_printf(sc->vmbus_dev, "invalid udata len %u for chan%u\n", user_data_len, new_channel->ch_id); return EINVAL; } mtx_lock(&new_channel->sc_lock); if (new_channel->state == HV_CHANNEL_OPEN_STATE) { new_channel->state = HV_CHANNEL_OPENING_STATE; } else { mtx_unlock(&new_channel->sc_lock); if(bootverbose) printf("VMBUS: Trying to open channel <%p> which in " "%d state.\n", new_channel, new_channel->state); return (EINVAL); } mtx_unlock(&new_channel->sc_lock); new_channel->on_channel_callback = pfn_on_channel_callback; new_channel->channel_callback_context = context; vmbus_chan_update_evtflagcnt(sc, new_channel); new_channel->rxq = VMBUS_PCPU_GET(new_channel->vmbus_sc, event_tq, new_channel->target_cpu); TASK_INIT(&new_channel->channel_task, 0, VmbusProcessChannelEvent, new_channel); /* Allocate the ring buffer */ out = contigmalloc((send_ring_buffer_size + recv_ring_buffer_size), M_DEVBUF, M_ZERO, 0UL, BUS_SPACE_MAXADDR, PAGE_SIZE, 0); KASSERT(out != NULL, ("Error VMBUS: contigmalloc failed to allocate Ring Buffer!")); if (out == NULL) return (ENOMEM); in = ((uint8_t *) out + send_ring_buffer_size); new_channel->ring_buffer_pages = out; new_channel->ring_buffer_page_count = (send_ring_buffer_size + recv_ring_buffer_size) >> PAGE_SHIFT; new_channel->ring_buffer_size = send_ring_buffer_size + recv_ring_buffer_size; hv_vmbus_ring_buffer_init( &new_channel->outbound, out, send_ring_buffer_size); hv_vmbus_ring_buffer_init( &new_channel->inbound, in, recv_ring_buffer_size); /* Create sysctl tree for this channel */ vmbus_channel_sysctl_create(new_channel); /** * Establish the gpadl for the ring buffer */ new_channel->ring_buffer_gpadl_handle = 0; ret = hv_vmbus_channel_establish_gpadl(new_channel, new_channel->outbound.ring_buffer, send_ring_buffer_size + recv_ring_buffer_size, &new_channel->ring_buffer_gpadl_handle); /* * Open channel w/ the bufring GPADL on the target CPU. */ mh = vmbus_msghc_get(sc, sizeof(*req)); if (mh == NULL) { device_printf(sc->vmbus_dev, "can not get msg hypercall for chopen(chan%u)\n", new_channel->ch_id); return ENXIO; } req = vmbus_msghc_dataptr(mh); req->chm_hdr.chm_type = VMBUS_CHANMSG_TYPE_CHOPEN; req->chm_chanid = new_channel->ch_id; req->chm_openid = new_channel->ch_id; req->chm_gpadl = new_channel->ring_buffer_gpadl_handle; req->chm_vcpuid = new_channel->target_vcpu; req->chm_rxbr_pgofs = send_ring_buffer_size >> PAGE_SHIFT; if (user_data_len) memcpy(req->chm_udata, user_data, user_data_len); ret = vmbus_msghc_exec(sc, mh); if (ret != 0) { device_printf(sc->vmbus_dev, "chopen(chan%u) msg hypercall exec failed: %d\n", new_channel->ch_id, ret); vmbus_msghc_put(sc, mh); return ret; } msg = vmbus_msghc_wait_result(sc, mh); resp = (const struct vmbus_chanmsg_chopen_resp *)msg->msg_data; status = resp->chm_status; vmbus_msghc_put(sc, mh); if (status == 0) { new_channel->state = HV_CHANNEL_OPENED_STATE; if (bootverbose) { device_printf(sc->vmbus_dev, "chan%u opened\n", new_channel->ch_id); } } else { device_printf(sc->vmbus_dev, "failed to open chan%u\n", new_channel->ch_id); ret = ENXIO; } return (ret); } /** * @brief Establish a GPADL for the specified buffer */ int hv_vmbus_channel_establish_gpadl(struct hv_vmbus_channel *channel, void *contig_buffer, uint32_t size, uint32_t *gpadl0) { struct vmbus_softc *sc = channel->vmbus_sc; struct vmbus_msghc *mh; struct vmbus_chanmsg_gpadl_conn *req; const struct vmbus_message *msg; size_t reqsz; uint32_t gpadl, status; int page_count, range_len, i, cnt, error; uint64_t page_id, paddr; /* * Preliminary checks. */ KASSERT((size & PAGE_MASK) == 0, ("invalid GPA size %u, not multiple page size", size)); page_count = size >> PAGE_SHIFT; paddr = hv_get_phys_addr(contig_buffer); KASSERT((paddr & PAGE_MASK) == 0, ("GPA is not page aligned %jx", (uintmax_t)paddr)); page_id = paddr >> PAGE_SHIFT; range_len = __offsetof(struct vmbus_gpa_range, gpa_page[page_count]); /* * We don't support multiple GPA ranges. */ if (range_len > UINT16_MAX) { device_printf(sc->vmbus_dev, "GPA too large, %d pages\n", page_count); return EOPNOTSUPP; } /* * Allocate GPADL id. */ gpadl = vmbus_gpadl_alloc(sc); *gpadl0 = gpadl; /* * Connect this GPADL to the target channel. * * NOTE: * Since each message can only hold small set of page * addresses, several messages may be required to * complete the connection. */ if (page_count > VMBUS_CHANMSG_GPADL_CONN_PGMAX) cnt = VMBUS_CHANMSG_GPADL_CONN_PGMAX; else cnt = page_count; page_count -= cnt; reqsz = __offsetof(struct vmbus_chanmsg_gpadl_conn, chm_range.gpa_page[cnt]); mh = vmbus_msghc_get(sc, reqsz); if (mh == NULL) { device_printf(sc->vmbus_dev, "can not get msg hypercall for gpadl->chan%u\n", channel->ch_id); return EIO; } req = vmbus_msghc_dataptr(mh); req->chm_hdr.chm_type = VMBUS_CHANMSG_TYPE_GPADL_CONN; req->chm_chanid = channel->ch_id; req->chm_gpadl = gpadl; req->chm_range_len = range_len; req->chm_range_cnt = 1; req->chm_range.gpa_len = size; req->chm_range.gpa_ofs = 0; for (i = 0; i < cnt; ++i) req->chm_range.gpa_page[i] = page_id++; error = vmbus_msghc_exec(sc, mh); if (error) { device_printf(sc->vmbus_dev, "gpadl->chan%u msg hypercall exec failed: %d\n", channel->ch_id, error); vmbus_msghc_put(sc, mh); return error; } while (page_count > 0) { struct vmbus_chanmsg_gpadl_subconn *subreq; if (page_count > VMBUS_CHANMSG_GPADL_SUBCONN_PGMAX) cnt = VMBUS_CHANMSG_GPADL_SUBCONN_PGMAX; else cnt = page_count; page_count -= cnt; reqsz = __offsetof(struct vmbus_chanmsg_gpadl_subconn, chm_gpa_page[cnt]); vmbus_msghc_reset(mh, reqsz); subreq = vmbus_msghc_dataptr(mh); subreq->chm_hdr.chm_type = VMBUS_CHANMSG_TYPE_GPADL_SUBCONN; subreq->chm_gpadl = gpadl; for (i = 0; i < cnt; ++i) subreq->chm_gpa_page[i] = page_id++; vmbus_msghc_exec_noresult(mh); } KASSERT(page_count == 0, ("invalid page count %d", page_count)); msg = vmbus_msghc_wait_result(sc, mh); status = ((const struct vmbus_chanmsg_gpadl_connresp *) msg->msg_data)->chm_status; vmbus_msghc_put(sc, mh); if (status != 0) { device_printf(sc->vmbus_dev, "gpadl->chan%u failed: " "status %u\n", channel->ch_id, status); return EIO; } else { if (bootverbose) { device_printf(sc->vmbus_dev, "gpadl->chan%u " "succeeded\n", channel->ch_id); } } return 0; } /* * Disconnect the GPA from the target channel */ int hv_vmbus_channel_teardown_gpdal(struct hv_vmbus_channel *chan, uint32_t gpadl) { struct vmbus_softc *sc = chan->vmbus_sc; struct vmbus_msghc *mh; struct vmbus_chanmsg_gpadl_disconn *req; int error; mh = vmbus_msghc_get(sc, sizeof(*req)); if (mh == NULL) { device_printf(sc->vmbus_dev, "can not get msg hypercall for gpa x->chan%u\n", chan->ch_id); return EBUSY; } req = vmbus_msghc_dataptr(mh); req->chm_hdr.chm_type = VMBUS_CHANMSG_TYPE_GPADL_DISCONN; req->chm_chanid = chan->ch_id; req->chm_gpadl = gpadl; error = vmbus_msghc_exec(sc, mh); if (error) { device_printf(sc->vmbus_dev, "gpa x->chan%u msg hypercall exec failed: %d\n", chan->ch_id, error); vmbus_msghc_put(sc, mh); return error; } vmbus_msghc_wait_result(sc, mh); /* Discard result; no useful information */ vmbus_msghc_put(sc, mh); return 0; } static void hv_vmbus_channel_close_internal(hv_vmbus_channel *channel) { struct vmbus_softc *sc = channel->vmbus_sc; struct vmbus_msghc *mh; struct vmbus_chanmsg_chclose *req; struct taskqueue *rxq = channel->rxq; int error; channel->state = HV_CHANNEL_OPEN_STATE; sysctl_ctx_free(&channel->ch_sysctl_ctx); /* * set rxq to NULL to avoid more requests be scheduled */ channel->rxq = NULL; taskqueue_drain(rxq, &channel->channel_task); channel->on_channel_callback = NULL; /** * Send a closing message */ mh = vmbus_msghc_get(sc, sizeof(*req)); if (mh == NULL) { device_printf(sc->vmbus_dev, "can not get msg hypercall for chclose(chan%u)\n", channel->ch_id); return; } req = vmbus_msghc_dataptr(mh); req->chm_hdr.chm_type = VMBUS_CHANMSG_TYPE_CHCLOSE; req->chm_chanid = channel->ch_id; error = vmbus_msghc_exec_noresult(mh); vmbus_msghc_put(sc, mh); if (error) { device_printf(sc->vmbus_dev, "chclose(chan%u) msg hypercall exec failed: %d\n", channel->ch_id, error); return; } else if (bootverbose) { device_printf(sc->vmbus_dev, "close chan%u\n", channel->ch_id); } /* Tear down the gpadl for the channel's ring buffer */ if (channel->ring_buffer_gpadl_handle) { hv_vmbus_channel_teardown_gpdal(channel, channel->ring_buffer_gpadl_handle); } /* TODO: Send a msg to release the childRelId */ /* cleanup the ring buffers for this channel */ hv_ring_buffer_cleanup(&channel->outbound); hv_ring_buffer_cleanup(&channel->inbound); contigfree(channel->ring_buffer_pages, channel->ring_buffer_size, M_DEVBUF); } /** * @brief Close the specified channel */ void hv_vmbus_channel_close(hv_vmbus_channel *channel) { hv_vmbus_channel* sub_channel; if (channel->primary_channel != NULL) { /* * We only close multi-channels when the primary is * closed. */ return; } /* * Close all multi-channels first. */ TAILQ_FOREACH(sub_channel, &channel->sc_list_anchor, sc_list_entry) { if (sub_channel->state != HV_CHANNEL_OPENED_STATE) continue; hv_vmbus_channel_close_internal(sub_channel); } /* * Then close the primary channel. */ hv_vmbus_channel_close_internal(channel); } /** * @brief Send the specified buffer on the given channel */ int hv_vmbus_channel_send_packet( hv_vmbus_channel* channel, void* buffer, uint32_t buffer_len, uint64_t request_id, hv_vmbus_packet_type type, uint32_t flags) { int ret = 0; hv_vm_packet_descriptor desc; uint32_t packet_len; uint64_t aligned_data; uint32_t packet_len_aligned; boolean_t need_sig; hv_vmbus_sg_buffer_list buffer_list[3]; packet_len = sizeof(hv_vm_packet_descriptor) + buffer_len; packet_len_aligned = HV_ALIGN_UP(packet_len, sizeof(uint64_t)); aligned_data = 0; /* Setup the descriptor */ desc.type = type; /* HV_VMBUS_PACKET_TYPE_DATA_IN_BAND; */ desc.flags = flags; /* HV_VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED */ /* in 8-bytes granularity */ desc.data_offset8 = sizeof(hv_vm_packet_descriptor) >> 3; desc.length8 = (uint16_t) (packet_len_aligned >> 3); desc.transaction_id = request_id; buffer_list[0].data = &desc; buffer_list[0].length = sizeof(hv_vm_packet_descriptor); buffer_list[1].data = buffer; buffer_list[1].length = buffer_len; buffer_list[2].data = &aligned_data; buffer_list[2].length = packet_len_aligned - packet_len; ret = hv_ring_buffer_write(&channel->outbound, buffer_list, 3, &need_sig); /* TODO: We should determine if this is optional */ if (ret == 0 && need_sig) { vmbus_channel_set_event(channel); } return (ret); } /** * @brief Send a range of single-page buffer packets using * a GPADL Direct packet type */ int hv_vmbus_channel_send_packet_pagebuffer( hv_vmbus_channel* channel, hv_vmbus_page_buffer page_buffers[], uint32_t page_count, void* buffer, uint32_t buffer_len, uint64_t request_id) { int ret = 0; boolean_t need_sig; uint32_t packet_len; uint32_t page_buflen; uint32_t packetLen_aligned; hv_vmbus_sg_buffer_list buffer_list[4]; hv_vmbus_channel_packet_page_buffer desc; uint32_t descSize; uint64_t alignedData = 0; if (page_count > HV_MAX_PAGE_BUFFER_COUNT) return (EINVAL); /* * Adjust the size down since hv_vmbus_channel_packet_page_buffer * is the largest size we support */ descSize = __offsetof(hv_vmbus_channel_packet_page_buffer, range); page_buflen = sizeof(hv_vmbus_page_buffer) * page_count; packet_len = descSize + page_buflen + buffer_len; packetLen_aligned = HV_ALIGN_UP(packet_len, sizeof(uint64_t)); /* Setup the descriptor */ desc.type = HV_VMBUS_PACKET_TYPE_DATA_USING_GPA_DIRECT; desc.flags = HV_VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED; /* in 8-bytes granularity */ desc.data_offset8 = (descSize + page_buflen) >> 3; desc.length8 = (uint16_t) (packetLen_aligned >> 3); desc.transaction_id = request_id; desc.range_count = page_count; buffer_list[0].data = &desc; buffer_list[0].length = descSize; buffer_list[1].data = page_buffers; buffer_list[1].length = page_buflen; buffer_list[2].data = buffer; buffer_list[2].length = buffer_len; buffer_list[3].data = &alignedData; buffer_list[3].length = packetLen_aligned - packet_len; ret = hv_ring_buffer_write(&channel->outbound, buffer_list, 4, &need_sig); /* TODO: We should determine if this is optional */ if (ret == 0 && need_sig) { vmbus_channel_set_event(channel); } return (ret); } /** * @brief Send a multi-page buffer packet using a GPADL Direct packet type */ int hv_vmbus_channel_send_packet_multipagebuffer( hv_vmbus_channel* channel, hv_vmbus_multipage_buffer* multi_page_buffer, void* buffer, uint32_t buffer_len, uint64_t request_id) { int ret = 0; uint32_t desc_size; boolean_t need_sig; uint32_t packet_len; uint32_t packet_len_aligned; uint32_t pfn_count; uint64_t aligned_data = 0; hv_vmbus_sg_buffer_list buffer_list[3]; hv_vmbus_channel_packet_multipage_buffer desc; pfn_count = HV_NUM_PAGES_SPANNED( multi_page_buffer->offset, multi_page_buffer->length); if ((pfn_count == 0) || (pfn_count > HV_MAX_MULTIPAGE_BUFFER_COUNT)) return (EINVAL); /* * Adjust the size down since hv_vmbus_channel_packet_multipage_buffer * is the largest size we support */ desc_size = sizeof(hv_vmbus_channel_packet_multipage_buffer) - ((HV_MAX_MULTIPAGE_BUFFER_COUNT - pfn_count) * sizeof(uint64_t)); packet_len = desc_size + buffer_len; packet_len_aligned = HV_ALIGN_UP(packet_len, sizeof(uint64_t)); /* * Setup the descriptor */ desc.type = HV_VMBUS_PACKET_TYPE_DATA_USING_GPA_DIRECT; desc.flags = HV_VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED; desc.data_offset8 = desc_size >> 3; /* in 8-bytes granularity */ desc.length8 = (uint16_t) (packet_len_aligned >> 3); desc.transaction_id = request_id; desc.range_count = 1; desc.range.length = multi_page_buffer->length; desc.range.offset = multi_page_buffer->offset; memcpy(desc.range.pfn_array, multi_page_buffer->pfn_array, pfn_count * sizeof(uint64_t)); buffer_list[0].data = &desc; buffer_list[0].length = desc_size; buffer_list[1].data = buffer; buffer_list[1].length = buffer_len; buffer_list[2].data = &aligned_data; buffer_list[2].length = packet_len_aligned - packet_len; ret = hv_ring_buffer_write(&channel->outbound, buffer_list, 3, &need_sig); /* TODO: We should determine if this is optional */ if (ret == 0 && need_sig) { vmbus_channel_set_event(channel); } return (ret); } /** * @brief Retrieve the user packet on the specified channel */ int hv_vmbus_channel_recv_packet( hv_vmbus_channel* channel, void* Buffer, uint32_t buffer_len, uint32_t* buffer_actual_len, uint64_t* request_id) { int ret; uint32_t user_len; uint32_t packet_len; hv_vm_packet_descriptor desc; *buffer_actual_len = 0; *request_id = 0; ret = hv_ring_buffer_peek(&channel->inbound, &desc, sizeof(hv_vm_packet_descriptor)); if (ret != 0) return (0); packet_len = desc.length8 << 3; user_len = packet_len - (desc.data_offset8 << 3); *buffer_actual_len = user_len; if (user_len > buffer_len) return (EINVAL); *request_id = desc.transaction_id; /* Copy over the packet to the user buffer */ ret = hv_ring_buffer_read(&channel->inbound, Buffer, user_len, (desc.data_offset8 << 3)); return (0); } /** * @brief Retrieve the raw packet on the specified channel */ int hv_vmbus_channel_recv_packet_raw( hv_vmbus_channel* channel, void* buffer, uint32_t buffer_len, uint32_t* buffer_actual_len, uint64_t* request_id) { int ret; uint32_t packetLen; hv_vm_packet_descriptor desc; *buffer_actual_len = 0; *request_id = 0; ret = hv_ring_buffer_peek( &channel->inbound, &desc, sizeof(hv_vm_packet_descriptor)); if (ret != 0) return (0); packetLen = desc.length8 << 3; *buffer_actual_len = packetLen; if (packetLen > buffer_len) return (ENOBUFS); *request_id = desc.transaction_id; /* Copy over the entire packet to the user buffer */ ret = hv_ring_buffer_read(&channel->inbound, buffer, packetLen, 0); return (0); } /** * Process a channel event notification */ static void VmbusProcessChannelEvent(void* context, int pending) { void* arg; uint32_t bytes_to_read; hv_vmbus_channel* channel = (hv_vmbus_channel*)context; boolean_t is_batched_reading; if (channel->on_channel_callback != NULL) { arg = channel->channel_callback_context; is_batched_reading = channel->batched_reading; /* * Optimize host to guest signaling by ensuring: * 1. While reading the channel, we disable interrupts from * host. * 2. Ensure that we process all posted messages from the host * before returning from this callback. * 3. Once we return, enable signaling from the host. Once this * state is set we check to see if additional packets are * available to read. In this case we repeat the process. */ do { if (is_batched_reading) hv_ring_buffer_read_begin(&channel->inbound); channel->on_channel_callback(arg); if (is_batched_reading) bytes_to_read = hv_ring_buffer_read_end(&channel->inbound); else bytes_to_read = 0; } while (is_batched_reading && (bytes_to_read != 0)); } } static __inline void vmbus_event_flags_proc(struct vmbus_softc *sc, volatile u_long *event_flags, int flag_cnt) { int f; for (f = 0; f < flag_cnt; ++f) { uint32_t rel_id_base; u_long flags; int bit; if (event_flags[f] == 0) continue; flags = atomic_swap_long(&event_flags[f], 0); rel_id_base = f << VMBUS_EVTFLAG_SHIFT; while ((bit = ffsl(flags)) != 0) { struct hv_vmbus_channel *channel; uint32_t rel_id; --bit; /* NOTE: ffsl is 1-based */ flags &= ~(1UL << bit); rel_id = rel_id_base + bit; channel = sc->vmbus_chmap[rel_id]; /* if channel is closed or closing */ if (channel == NULL || channel->rxq == NULL) continue; if (channel->batched_reading) hv_ring_buffer_read_begin(&channel->inbound); taskqueue_enqueue(channel->rxq, &channel->channel_task); } } } void vmbus_event_proc(struct vmbus_softc *sc, int cpu) { struct vmbus_evtflags *eventf; /* * On Host with Win8 or above, the event page can be checked directly * to get the id of the channel that has the pending interrupt. */ eventf = VMBUS_PCPU_GET(sc, event_flags, cpu) + VMBUS_SINT_MESSAGE; vmbus_event_flags_proc(sc, eventf->evt_flags, VMBUS_PCPU_GET(sc, event_flags_cnt, cpu)); } void vmbus_event_proc_compat(struct vmbus_softc *sc, int cpu) { struct vmbus_evtflags *eventf; eventf = VMBUS_PCPU_GET(sc, event_flags, cpu) + VMBUS_SINT_MESSAGE; if (atomic_testandclear_long(&eventf->evt_flags[0], 0)) { vmbus_event_flags_proc(sc, sc->vmbus_rx_evtflags, VMBUS_CHAN_MAX_COMPAT >> VMBUS_EVTFLAG_SHIFT); } } static void vmbus_chan_update_evtflagcnt(struct vmbus_softc *sc, const struct hv_vmbus_channel *chan) { volatile int *flag_cnt_ptr; int flag_cnt; flag_cnt = (chan->ch_id / VMBUS_EVTFLAG_LEN) + 1; flag_cnt_ptr = VMBUS_PCPU_PTR(sc, event_flags_cnt, chan->target_cpu); for (;;) { int old_flag_cnt; old_flag_cnt = *flag_cnt_ptr; if (old_flag_cnt >= flag_cnt) break; if (atomic_cmpset_int(flag_cnt_ptr, old_flag_cnt, flag_cnt)) { if (bootverbose) { device_printf(sc->vmbus_dev, "channel%u update cpu%d flag_cnt to %d\n", chan->ch_id, chan->target_cpu, flag_cnt); } break; } } } Index: head/sys/dev/hyperv/vmbus/hv_channel_mgmt.c =================================================================== --- head/sys/dev/hyperv/vmbus/hv_channel_mgmt.c (revision 302693) +++ head/sys/dev/hyperv/vmbus/hv_channel_mgmt.c (revision 302694) @@ -1,580 +1,581 @@ /*- * Copyright (c) 2009-2012,2016 Microsoft Corp. * Copyright (c) 2012 NetApp Inc. * Copyright (c) 2012 Citrix Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include typedef void (*vmbus_chanmsg_proc_t) (struct vmbus_softc *, const struct vmbus_message *); static struct hv_vmbus_channel *hv_vmbus_allocate_channel(struct vmbus_softc *); static void vmbus_channel_on_offer_internal(struct vmbus_softc *, const hv_vmbus_channel_offer_channel *offer); static void vmbus_chan_detach_task(void *, int); static void vmbus_channel_on_offer(struct vmbus_softc *, const struct vmbus_message *); static void vmbus_channel_on_offer_rescind(struct vmbus_softc *, const struct vmbus_message *); static void vmbus_channel_on_offers_delivered(struct vmbus_softc *, const struct vmbus_message *); /** * Channel message dispatch table */ static const vmbus_chanmsg_proc_t vmbus_chanmsg_process[HV_CHANNEL_MESSAGE_COUNT] = { [HV_CHANNEL_MESSAGE_OFFER_CHANNEL] = vmbus_channel_on_offer, [HV_CHANNEL_MESSAGE_RESCIND_CHANNEL_OFFER] = vmbus_channel_on_offer_rescind, [HV_CHANNEL_MESSAGE_ALL_OFFERS_DELIVERED] = vmbus_channel_on_offers_delivered, [HV_CHANNEL_MESSAGE_OPEN_CHANNEL_RESULT] = vmbus_msghc_wakeup, [HV_CHANNEL_MESSAGE_GPADL_CREATED] = vmbus_msghc_wakeup, [HV_CHANNEL_MESSAGE_GPADL_TORNDOWN] = vmbus_msghc_wakeup, [HV_CHANNEL_MESSAGE_VERSION_RESPONSE] = vmbus_msghc_wakeup }; /** * @brief Allocate and initialize a vmbus channel object */ static struct hv_vmbus_channel * hv_vmbus_allocate_channel(struct vmbus_softc *sc) { struct hv_vmbus_channel *channel; channel = malloc(sizeof(*channel), M_DEVBUF, M_WAITOK | M_ZERO); channel->vmbus_sc = sc; mtx_init(&channel->sc_lock, "vmbus multi channel", NULL, MTX_DEF); TAILQ_INIT(&channel->sc_list_anchor); TASK_INIT(&channel->ch_detach_task, 0, vmbus_chan_detach_task, channel); return (channel); } /** * @brief Release the resources used by the vmbus channel object */ void hv_vmbus_free_vmbus_channel(hv_vmbus_channel* channel) { mtx_destroy(&channel->sc_lock); free(channel, M_DEVBUF); } /** * @brief Process the offer by creating a channel/device * associated with this offer */ static void vmbus_channel_process_offer(hv_vmbus_channel *new_channel) { struct vmbus_softc *sc = new_channel->vmbus_sc; hv_vmbus_channel* channel; uint32_t relid; relid = new_channel->ch_id; /* * Make sure this is a new offer */ mtx_lock(&sc->vmbus_chlist_lock); if (relid == 0) { /* * XXX channel0 will not be processed; skip it. */ printf("VMBUS: got channel0 offer\n"); } else { sc->vmbus_chmap[relid] = new_channel; } TAILQ_FOREACH(channel, &sc->vmbus_chlist, ch_link) { if (memcmp(&channel->offer_msg.offer.interface_type, &new_channel->offer_msg.offer.interface_type, sizeof(hv_guid)) == 0 && memcmp(&channel->offer_msg.offer.interface_instance, &new_channel->offer_msg.offer.interface_instance, sizeof(hv_guid)) == 0) break; } if (channel == NULL) { /* Install the new primary channel */ TAILQ_INSERT_TAIL(&sc->vmbus_chlist, new_channel, ch_link); } mtx_unlock(&sc->vmbus_chlist_lock); if (bootverbose) { char logstr[64]; logstr[0] = '\0'; if (channel != NULL) { snprintf(logstr, sizeof(logstr), ", primary chan%u", channel->ch_id); } device_printf(sc->vmbus_dev, "chan%u subchanid%u offer%s\n", new_channel->ch_id, - new_channel->offer_msg.offer.sub_channel_index, logstr); + new_channel->ch_subidx, logstr); } if (channel != NULL) { /* * Check if this is a sub channel. */ - if (new_channel->offer_msg.offer.sub_channel_index != 0) { + if (new_channel->ch_subidx != 0) { /* * It is a sub channel offer, process it. */ new_channel->primary_channel = channel; new_channel->device = channel->device; mtx_lock(&channel->sc_lock); TAILQ_INSERT_TAIL(&channel->sc_list_anchor, new_channel, sc_list_entry); mtx_unlock(&channel->sc_lock); /* * Insert the new channel to the end of the global * channel list. * * NOTE: * The new sub-channel MUST be inserted AFTER it's * primary channel, so that the primary channel will * be found in the above loop for its baby siblings. */ mtx_lock(&sc->vmbus_chlist_lock); TAILQ_INSERT_TAIL(&sc->vmbus_chlist, new_channel, ch_link); mtx_unlock(&sc->vmbus_chlist_lock); new_channel->state = HV_CHANNEL_OPEN_STATE; /* * Bump up sub-channel count and notify anyone that is * interested in this sub-channel, after this sub-channel * is setup. */ mtx_lock(&channel->sc_lock); channel->subchan_cnt++; mtx_unlock(&channel->sc_lock); wakeup(channel); return; } printf("VMBUS: duplicated primary channel%u\n", new_channel->ch_id); hv_vmbus_free_vmbus_channel(new_channel); return; } new_channel->state = HV_CHANNEL_OPEN_STATE; /* * Start the process of binding this offer to the driver * (We need to set the device field before calling * hv_vmbus_child_device_add()) */ new_channel->device = hv_vmbus_child_device_create( new_channel->offer_msg.offer.interface_type, new_channel->offer_msg.offer.interface_instance, new_channel); /* * Add the new device to the bus. This will kick off device-driver * binding which eventually invokes the device driver's AddDevice() * method. */ hv_vmbus_child_device_register(new_channel->vmbus_sc, new_channel->device); } void vmbus_channel_cpu_set(struct hv_vmbus_channel *chan, int cpu) { KASSERT(cpu >= 0 && cpu < mp_ncpus, ("invalid cpu %d", cpu)); if (chan->vmbus_sc->vmbus_version == VMBUS_VERSION_WS2008 || chan->vmbus_sc->vmbus_version == VMBUS_VERSION_WIN7) { /* Only cpu0 is supported */ cpu = 0; } chan->target_cpu = cpu; chan->target_vcpu = VMBUS_PCPU_GET(chan->vmbus_sc, vcpuid, cpu); if (bootverbose) { printf("vmbus_chan%u: assigned to cpu%u [vcpu%u]\n", chan->ch_id, chan->target_cpu, chan->target_vcpu); } } void vmbus_channel_cpu_rr(struct hv_vmbus_channel *chan) { static uint32_t vmbus_chan_nextcpu; int cpu; cpu = atomic_fetchadd_int(&vmbus_chan_nextcpu, 1) % mp_ncpus; vmbus_channel_cpu_set(chan, cpu); } static void vmbus_channel_select_defcpu(struct hv_vmbus_channel *chan) { /* * By default, pin the channel to cpu0. Devices having * special channel-cpu mapping requirement should call * vmbus_channel_cpu_{set,rr}(). */ vmbus_channel_cpu_set(chan, 0); } /** * @brief Handler for channel offers from Hyper-V/Azure * * Handler for channel offers from vmbus in parent partition. */ static void vmbus_channel_on_offer(struct vmbus_softc *sc, const struct vmbus_message *msg) { const hv_vmbus_channel_offer_channel *offer; /* New channel is offered by vmbus */ vmbus_scan_newchan(sc); offer = (const hv_vmbus_channel_offer_channel *)msg->msg_data; vmbus_channel_on_offer_internal(sc, offer); } static void vmbus_channel_on_offer_internal(struct vmbus_softc *sc, const hv_vmbus_channel_offer_channel *offer) { hv_vmbus_channel* new_channel; /* Allocate the channel object and save this offer */ new_channel = hv_vmbus_allocate_channel(sc); new_channel->ch_id = offer->child_rel_id; + new_channel->ch_subidx = offer->offer.sub_channel_index; /* * By default we setup state to enable batched * reading. A specific service can choose to * disable this prior to opening the channel. */ new_channel->batched_reading = TRUE; new_channel->ch_sigevt = hyperv_dmamem_alloc( bus_get_dma_tag(sc->vmbus_dev), HYPERCALL_SIGEVTIN_ALIGN, 0, sizeof(struct hypercall_sigevt_in), &new_channel->ch_sigevt_dma, BUS_DMA_WAITOK | BUS_DMA_ZERO); if (new_channel->ch_sigevt == NULL) { device_printf(sc->vmbus_dev, "sigevt alloc failed\n"); /* XXX */ mtx_destroy(&new_channel->sc_lock); free(new_channel, M_DEVBUF); return; } new_channel->ch_sigevt->hc_connid = VMBUS_CONNID_EVENT; if (sc->vmbus_version != VMBUS_VERSION_WS2008) { new_channel->is_dedicated_interrupt = (offer->is_dedicated_interrupt != 0); new_channel->ch_sigevt->hc_connid = offer->connection_id; } memcpy(&new_channel->offer_msg, offer, sizeof(hv_vmbus_channel_offer_channel)); new_channel->monitor_group = (uint8_t) offer->monitor_id / 32; new_channel->monitor_bit = (uint8_t) offer->monitor_id % 32; /* Select default cpu for this channel. */ vmbus_channel_select_defcpu(new_channel); vmbus_channel_process_offer(new_channel); } /** * @brief Rescind offer handler. * * We queue a work item to process this offer * synchronously. * * XXX pretty broken; need rework. */ static void vmbus_channel_on_offer_rescind(struct vmbus_softc *sc, const struct vmbus_message *msg) { const hv_vmbus_channel_rescind_offer *rescind; hv_vmbus_channel* channel; rescind = (const hv_vmbus_channel_rescind_offer *)msg->msg_data; if (bootverbose) { device_printf(sc->vmbus_dev, "chan%u rescind\n", rescind->child_rel_id); } channel = sc->vmbus_chmap[rescind->child_rel_id]; if (channel == NULL) return; sc->vmbus_chmap[rescind->child_rel_id] = NULL; taskqueue_enqueue(taskqueue_thread, &channel->ch_detach_task); } static void vmbus_chan_detach_task(void *xchan, int pending __unused) { struct hv_vmbus_channel *chan = xchan; if (HV_VMBUS_CHAN_ISPRIMARY(chan)) { /* Only primary channel owns the hv_device */ hv_vmbus_child_device_unregister(chan->device); /* NOTE: DO NOT free primary channel for now */ } else { struct vmbus_softc *sc = chan->vmbus_sc; struct hv_vmbus_channel *pri_chan = chan->primary_channel; struct vmbus_chanmsg_chfree *req; struct vmbus_msghc *mh; int error; mh = vmbus_msghc_get(sc, sizeof(*req)); if (mh == NULL) { device_printf(sc->vmbus_dev, "can not get msg hypercall for chfree(chan%u)\n", chan->ch_id); goto remove; } req = vmbus_msghc_dataptr(mh); req->chm_hdr.chm_type = VMBUS_CHANMSG_TYPE_CHFREE; req->chm_chanid = chan->ch_id; error = vmbus_msghc_exec_noresult(mh); vmbus_msghc_put(sc, mh); if (error) { device_printf(sc->vmbus_dev, "chfree(chan%u) failed: %d", chan->ch_id, error); /* NOTE: Move on! */ } else { if (bootverbose) { device_printf(sc->vmbus_dev, "chan%u freed\n", chan->ch_id); } } remove: mtx_lock(&sc->vmbus_chlist_lock); TAILQ_REMOVE(&sc->vmbus_chlist, chan, ch_link); mtx_unlock(&sc->vmbus_chlist_lock); mtx_lock(&pri_chan->sc_lock); TAILQ_REMOVE(&pri_chan->sc_list_anchor, chan, sc_list_entry); KASSERT(pri_chan->subchan_cnt > 0, ("invalid subchan_cnt %d", pri_chan->subchan_cnt)); pri_chan->subchan_cnt--; mtx_unlock(&pri_chan->sc_lock); wakeup(pri_chan); hv_vmbus_free_vmbus_channel(chan); } } /** * * @brief Invoked when all offers have been delivered. */ static void vmbus_channel_on_offers_delivered(struct vmbus_softc *sc, const struct vmbus_message *msg __unused) { /* No more new channels for the channel request. */ vmbus_scan_done(sc); } /** * @brief Release channels that are unattached/unconnected (i.e., no drivers associated) */ void hv_vmbus_release_unattached_channels(struct vmbus_softc *sc) { hv_vmbus_channel *channel; mtx_lock(&sc->vmbus_chlist_lock); while (!TAILQ_EMPTY(&sc->vmbus_chlist)) { channel = TAILQ_FIRST(&sc->vmbus_chlist); TAILQ_REMOVE(&sc->vmbus_chlist, channel, ch_link); if (HV_VMBUS_CHAN_ISPRIMARY(channel)) { /* Only primary channel owns the hv_device */ hv_vmbus_child_device_unregister(channel->device); } hv_vmbus_free_vmbus_channel(channel); } bzero(sc->vmbus_chmap, sizeof(struct hv_vmbus_channel *) * VMBUS_CHAN_MAX); mtx_unlock(&sc->vmbus_chlist_lock); } /** * @brief Select the best outgoing channel * * The channel whose vcpu binding is closest to the currect vcpu will * be selected. * If no multi-channel, always select primary channel * * @param primary - primary channel */ struct hv_vmbus_channel * vmbus_select_outgoing_channel(struct hv_vmbus_channel *primary) { hv_vmbus_channel *new_channel = NULL; hv_vmbus_channel *outgoing_channel = primary; int old_cpu_distance = 0; int new_cpu_distance = 0; int cur_vcpu = 0; int smp_pro_id = PCPU_GET(cpuid); if (TAILQ_EMPTY(&primary->sc_list_anchor)) { return outgoing_channel; } if (smp_pro_id >= MAXCPU) { return outgoing_channel; } cur_vcpu = VMBUS_PCPU_GET(primary->vmbus_sc, vcpuid, smp_pro_id); TAILQ_FOREACH(new_channel, &primary->sc_list_anchor, sc_list_entry) { if (new_channel->state != HV_CHANNEL_OPENED_STATE){ continue; } if (new_channel->target_vcpu == cur_vcpu){ return new_channel; } old_cpu_distance = ((outgoing_channel->target_vcpu > cur_vcpu) ? (outgoing_channel->target_vcpu - cur_vcpu) : (cur_vcpu - outgoing_channel->target_vcpu)); new_cpu_distance = ((new_channel->target_vcpu > cur_vcpu) ? (new_channel->target_vcpu - cur_vcpu) : (cur_vcpu - new_channel->target_vcpu)); if (old_cpu_distance < new_cpu_distance) { continue; } outgoing_channel = new_channel; } return(outgoing_channel); } struct hv_vmbus_channel ** vmbus_get_subchan(struct hv_vmbus_channel *pri_chan, int subchan_cnt) { struct hv_vmbus_channel **ret, *chan; int i; ret = malloc(subchan_cnt * sizeof(struct hv_vmbus_channel *), M_TEMP, M_WAITOK); mtx_lock(&pri_chan->sc_lock); while (pri_chan->subchan_cnt < subchan_cnt) mtx_sleep(pri_chan, &pri_chan->sc_lock, 0, "subch", 0); i = 0; TAILQ_FOREACH(chan, &pri_chan->sc_list_anchor, sc_list_entry) { /* TODO: refcnt chan */ ret[i] = chan; ++i; if (i == subchan_cnt) break; } KASSERT(i == subchan_cnt, ("invalid subchan count %d, should be %d", pri_chan->subchan_cnt, subchan_cnt)); mtx_unlock(&pri_chan->sc_lock); return ret; } void vmbus_rel_subchan(struct hv_vmbus_channel **subchan, int subchan_cnt __unused) { free(subchan, M_TEMP); } void vmbus_drain_subchan(struct hv_vmbus_channel *pri_chan) { mtx_lock(&pri_chan->sc_lock); while (pri_chan->subchan_cnt > 0) mtx_sleep(pri_chan, &pri_chan->sc_lock, 0, "dsubch", 0); mtx_unlock(&pri_chan->sc_lock); } void vmbus_chan_msgproc(struct vmbus_softc *sc, const struct vmbus_message *msg) { vmbus_chanmsg_proc_t msg_proc; uint32_t msg_type; msg_type = ((const struct vmbus_chanmsg_hdr *)msg->msg_data)->chm_type; if (msg_type >= HV_CHANNEL_MESSAGE_COUNT) { device_printf(sc->vmbus_dev, "unknown message type 0x%x\n", msg_type); return; } msg_proc = vmbus_chanmsg_process[msg_type]; if (msg_proc != NULL) msg_proc(sc, msg); }