Index: projects/vnet/sys/net/if.c
===================================================================
--- projects/vnet/sys/net/if.c	(revision 301533)
+++ projects/vnet/sys/net/if.c	(revision 301534)
@@ -1,4141 +1,4141 @@
 /*-
  * Copyright (c) 1980, 1986, 1993
  *	The Regents of the University of California.  All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 4. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	@(#)if.c	8.5 (Berkeley) 1/9/95
  * $FreeBSD$
  */
 
 #include "opt_compat.h"
 #include "opt_inet6.h"
 #include "opt_inet.h"
 
 #include <sys/param.h>
 #include <sys/types.h>
 #include <sys/conf.h>
 #include <sys/malloc.h>
 #include <sys/sbuf.h>
 #include <sys/bus.h>
 #include <sys/mbuf.h>
 #include <sys/systm.h>
 #include <sys/priv.h>
 #include <sys/proc.h>
 #include <sys/socket.h>
 #include <sys/socketvar.h>
 #include <sys/protosw.h>
 #include <sys/kernel.h>
 #include <sys/lock.h>
 #include <sys/refcount.h>
 #include <sys/module.h>
 #include <sys/rwlock.h>
 #include <sys/sockio.h>
 #include <sys/syslog.h>
 #include <sys/sysctl.h>
 #include <sys/taskqueue.h>
 #include <sys/domain.h>
 #include <sys/jail.h>
 #include <sys/priv.h>
 
 #include <machine/stdarg.h>
 #include <vm/uma.h>
 
 #include <net/bpf.h>
 #include <net/ethernet.h>
 #include <net/if.h>
 #include <net/if_arp.h>
 #include <net/if_clone.h>
 #include <net/if_dl.h>
 #include <net/if_types.h>
 #include <net/if_var.h>
 #include <net/if_media.h>
 #include <net/if_vlan_var.h>
 #include <net/radix.h>
 #include <net/route.h>
 #include <net/vnet.h>
 
 #if defined(INET) || defined(INET6)
 #include <net/ethernet.h>
 #include <netinet/in.h>
 #include <netinet/in_var.h>
 #include <netinet/ip.h>
 #include <netinet/ip_carp.h>
 #ifdef INET
 #include <netinet/if_ether.h>
 #endif /* INET */
 #ifdef INET6
 #include <netinet6/in6_var.h>
 #include <netinet6/in6_ifattach.h>
 #endif /* INET6 */
 #endif /* INET || INET6 */
 
 #include <security/mac/mac_framework.h>
 
 #ifdef COMPAT_FREEBSD32
 #include <sys/mount.h>
 #include <compat/freebsd32/freebsd32.h>
 #endif
 
 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
 
 SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN,
     &ifqmaxlen, 0, "max send queue size");
 
 /* Log link state change events */
 static int log_link_state_change = 1;
 
 SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW,
 	&log_link_state_change, 0,
 	"log interface link state change events");
 
 /* Log promiscuous mode change events */
 static int log_promisc_mode_change = 1;
 
 SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN,
 	&log_promisc_mode_change, 1,
 	"log promiscuous mode change events");
 
 /* Interface description */
 static unsigned int ifdescr_maxlen = 1024;
 SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW,
 	&ifdescr_maxlen, 0,
 	"administrative maximum length for interface description");
 
 static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions");
 
 /* global sx for non-critical path ifdescr */
 static struct sx ifdescr_sx;
 SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr");
 
 void	(*bridge_linkstate_p)(struct ifnet *ifp);
 void	(*ng_ether_link_state_p)(struct ifnet *ifp, int state);
 void	(*lagg_linkstate_p)(struct ifnet *ifp, int state);
 /* These are external hooks for CARP. */
 void	(*carp_linkstate_p)(struct ifnet *ifp);
 void	(*carp_demote_adj_p)(int, char *);
 int	(*carp_master_p)(struct ifaddr *);
 #if defined(INET) || defined(INET6)
 int	(*carp_forus_p)(struct ifnet *ifp, u_char *dhost);
 int	(*carp_output_p)(struct ifnet *ifp, struct mbuf *m,
     const struct sockaddr *sa);
 int	(*carp_ioctl_p)(struct ifreq *, u_long, struct thread *);   
 int	(*carp_attach_p)(struct ifaddr *, int);
 void	(*carp_detach_p)(struct ifaddr *);
 #endif
 #ifdef INET
 int	(*carp_iamatch_p)(struct ifaddr *, uint8_t **);
 #endif
 #ifdef INET6
 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6);
 caddr_t	(*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m,
     const struct in6_addr *taddr);
 #endif
 
 struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL;
 
 /*
  * XXX: Style; these should be sorted alphabetically, and unprototyped
  * static functions should be prototyped. Currently they are sorted by
  * declaration order.
  */
 static void	if_attachdomain(void *);
 static void	if_attachdomain1(struct ifnet *);
 static int	ifconf(u_long, caddr_t);
 static void	if_freemulti(struct ifmultiaddr *);
 static void	if_grow(void);
 static void	if_input_default(struct ifnet *, struct mbuf *);
 static int	if_requestencap_default(struct ifnet *, struct if_encap_req *);
 static void	if_route(struct ifnet *, int flag, int fam);
 static int	if_setflag(struct ifnet *, int, int, int *, int);
 static int	if_transmit(struct ifnet *ifp, struct mbuf *m);
 static void	if_unroute(struct ifnet *, int flag, int fam);
 static void	link_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
 static int	ifhwioctl(u_long, struct ifnet *, caddr_t, struct thread *);
 static int	if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int);
 static void	do_link_state_change(void *, int);
 static int	if_getgroup(struct ifgroupreq *, struct ifnet *);
 static int	if_getgroupmembers(struct ifgroupreq *);
 static void	if_delgroups(struct ifnet *);
 static void	if_attach_internal(struct ifnet *, int, struct if_clone *);
 static int	if_detach_internal(struct ifnet *, int, struct if_clone **);
 #ifdef VIMAGE
 static void	if_vmove(struct ifnet *, struct vnet *);
 #endif
 
 #ifdef INET6
 /*
  * XXX: declare here to avoid to include many inet6 related files..
  * should be more generalized?
  */
 extern void	nd6_setmtu(struct ifnet *);
 #endif
 
 /* ipsec helper hooks */
 VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]);
 VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]);
 
 VNET_DEFINE(int, if_index);
 int	ifqmaxlen = IFQ_MAXLEN;
 VNET_DEFINE(struct ifnethead, ifnet);	/* depend on static init XXX */
 VNET_DEFINE(struct ifgrouphead, ifg_head);
 
 static VNET_DEFINE(int, if_indexlim) = 8;
 
 /* Table of ifnet by index. */
 VNET_DEFINE(struct ifnet **, ifindex_table);
 
 #define	V_if_indexlim		VNET(if_indexlim)
 #define	V_ifindex_table		VNET(ifindex_table)
 
 /*
  * The global network interface list (V_ifnet) and related state (such as
  * if_index, if_indexlim, and ifindex_table) are protected by an sxlock and
  * an rwlock.  Either may be acquired shared to stablize the list, but both
  * must be acquired writable to modify the list.  This model allows us to
  * both stablize the interface list during interrupt thread processing, but
  * also to stablize it over long-running ioctls, without introducing priority
  * inversions and deadlocks.
  */
 struct rwlock ifnet_rwlock;
 RW_SYSINIT_FLAGS(ifnet_rw, &ifnet_rwlock, "ifnet_rw", RW_RECURSE);
 struct sx ifnet_sxlock;
 SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE);
 
 /*
  * The allocation of network interfaces is a rather non-atomic affair; we
  * need to select an index before we are ready to expose the interface for
  * use, so will use this pointer value to indicate reservation.
  */
 #define	IFNET_HOLD	(void *)(uintptr_t)(-1)
 
 static	if_com_alloc_t *if_com_alloc[256];
 static	if_com_free_t *if_com_free[256];
 
 static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals");
 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
 
 struct ifnet *
 ifnet_byindex_locked(u_short idx)
 {
 
 	if (idx > V_if_index)
 		return (NULL);
 	if (V_ifindex_table[idx] == IFNET_HOLD)
 		return (NULL);
 	return (V_ifindex_table[idx]);
 }
 
 struct ifnet *
 ifnet_byindex(u_short idx)
 {
 	struct ifnet *ifp;
 
 	IFNET_RLOCK_NOSLEEP();
 	ifp = ifnet_byindex_locked(idx);
 	IFNET_RUNLOCK_NOSLEEP();
 	return (ifp);
 }
 
 struct ifnet *
 ifnet_byindex_ref(u_short idx)
 {
 	struct ifnet *ifp;
 
 	IFNET_RLOCK_NOSLEEP();
 	ifp = ifnet_byindex_locked(idx);
 	if (ifp == NULL || (ifp->if_flags & IFF_DYING)) {
 		IFNET_RUNLOCK_NOSLEEP();
 		return (NULL);
 	}
 	if_ref(ifp);
 	IFNET_RUNLOCK_NOSLEEP();
 	return (ifp);
 }
 
 /*
  * Allocate an ifindex array entry; return 0 on success or an error on
  * failure.
  */
 static u_short
 ifindex_alloc(void)
 {
 	u_short idx;
 
 	IFNET_WLOCK_ASSERT();
 retry:
 	/*
 	 * Try to find an empty slot below V_if_index.  If we fail, take the
 	 * next slot.
 	 */
 	for (idx = 1; idx <= V_if_index; idx++) {
 		if (V_ifindex_table[idx] == NULL)
 			break;
 	}
 
 	/* Catch if_index overflow. */
 	if (idx >= V_if_indexlim) {
 		if_grow();
 		goto retry;
 	}
 	if (idx > V_if_index)
 		V_if_index = idx;
 	return (idx);
 }
 
 static void
 ifindex_free_locked(u_short idx)
 {
 
 	IFNET_WLOCK_ASSERT();
 
 	V_ifindex_table[idx] = NULL;
 	while (V_if_index > 0 &&
 	    V_ifindex_table[V_if_index] == NULL)
 		V_if_index--;
 }
 
 static void
 ifindex_free(u_short idx)
 {
 
 	IFNET_WLOCK();
 	ifindex_free_locked(idx);
 	IFNET_WUNLOCK();
 }
 
 static void
 ifnet_setbyindex_locked(u_short idx, struct ifnet *ifp)
 {
 
 	IFNET_WLOCK_ASSERT();
 
 	V_ifindex_table[idx] = ifp;
 }
 
 static void
 ifnet_setbyindex(u_short idx, struct ifnet *ifp)
 {
 
 	IFNET_WLOCK();
 	ifnet_setbyindex_locked(idx, ifp);
 	IFNET_WUNLOCK();
 }
 
 struct ifaddr *
 ifaddr_byindex(u_short idx)
 {
 	struct ifnet *ifp;
 	struct ifaddr *ifa = NULL;
 
 	IFNET_RLOCK_NOSLEEP();
 	ifp = ifnet_byindex_locked(idx);
 	if (ifp != NULL && (ifa = ifp->if_addr) != NULL)
 		ifa_ref(ifa);
 	IFNET_RUNLOCK_NOSLEEP();
 	return (ifa);
 }
 
 /*
  * Network interface utility routines.
  *
  * Routines with ifa_ifwith* names take sockaddr *'s as
  * parameters.
  */
 
 static void
 vnet_if_init(const void *unused __unused)
 {
 
 	TAILQ_INIT(&V_ifnet);
 	TAILQ_INIT(&V_ifg_head);
 	IFNET_WLOCK();
 	if_grow();				/* create initial table */
 	IFNET_WUNLOCK();
 	vnet_if_clone_init();
 }
 VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init,
     NULL);
 
 #ifdef VIMAGE
 static void
 vnet_if_uninit(const void *unused __unused)
 {
 
 	VNET_ASSERT(TAILQ_EMPTY(&V_ifnet), ("%s:%d tailq &V_ifnet=%p "
 	    "not empty", __func__, __LINE__, &V_ifnet));
 	VNET_ASSERT(TAILQ_EMPTY(&V_ifg_head), ("%s:%d tailq &V_ifg_head=%p "
 	    "not empty", __func__, __LINE__, &V_ifg_head));
 
 	free((caddr_t)V_ifindex_table, M_IFNET);
 }
 VNET_SYSUNINIT(vnet_if_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST,
     vnet_if_uninit, NULL);
 
 static void
 vnet_if_return(const void *unused __unused)
 {
 	struct ifnet *ifp, *nifp;
 
 	/* Return all inherited interfaces to their parent vnets. */
 	TAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) {
 		if (ifp->if_home_vnet != ifp->if_vnet)
 			if_vmove(ifp, ifp->if_home_vnet);
 	}
 }
 VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY,
     vnet_if_return, NULL);
 #endif
 
 static void
 if_grow(void)
 {
 	int oldlim;
 	u_int n;
 	struct ifnet **e;
 
 	IFNET_WLOCK_ASSERT();
 	oldlim = V_if_indexlim;
 	IFNET_WUNLOCK();
 	n = (oldlim << 1) * sizeof(*e);
 	e = malloc(n, M_IFNET, M_WAITOK | M_ZERO);
 	IFNET_WLOCK();
 	if (V_if_indexlim != oldlim) {
 		free(e, M_IFNET);
 		return;
 	}
 	if (V_ifindex_table != NULL) {
 		memcpy((caddr_t)e, (caddr_t)V_ifindex_table, n/2);
 		free((caddr_t)V_ifindex_table, M_IFNET);
 	}
 	V_if_indexlim <<= 1;
 	V_ifindex_table = e;
 }
 
 /*
  * Allocate a struct ifnet and an index for an interface.  A layer 2
  * common structure will also be allocated if an allocation routine is
  * registered for the passed type.
  */
 struct ifnet *
 if_alloc(u_char type)
 {
 	struct ifnet *ifp;
 	u_short idx;
 
 	ifp = malloc(sizeof(struct ifnet), M_IFNET, M_WAITOK|M_ZERO);
 	IFNET_WLOCK();
 	idx = ifindex_alloc();
 	ifnet_setbyindex_locked(idx, IFNET_HOLD);
 	IFNET_WUNLOCK();
 	ifp->if_index = idx;
 	ifp->if_type = type;
 	ifp->if_alloctype = type;
 	if (if_com_alloc[type] != NULL) {
 		ifp->if_l2com = if_com_alloc[type](type, ifp);
 		if (ifp->if_l2com == NULL) {
 			free(ifp, M_IFNET);
 			ifindex_free(idx);
 			return (NULL);
 		}
 	}
 
 	IF_ADDR_LOCK_INIT(ifp);
 	TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp);
 	ifp->if_afdata_initialized = 0;
 	IF_AFDATA_LOCK_INIT(ifp);
 	TAILQ_INIT(&ifp->if_addrhead);
 	TAILQ_INIT(&ifp->if_multiaddrs);
 	TAILQ_INIT(&ifp->if_groups);
 #ifdef MAC
 	mac_ifnet_init(ifp);
 #endif
 	ifq_init(&ifp->if_snd, ifp);
 
 	refcount_init(&ifp->if_refcount, 1);	/* Index reference. */
 	for (int i = 0; i < IFCOUNTERS; i++)
 		ifp->if_counters[i] = counter_u64_alloc(M_WAITOK);
 	ifp->if_get_counter = if_get_counter_default;
 	ifnet_setbyindex(ifp->if_index, ifp);
 	return (ifp);
 }
 
 /*
  * Do the actual work of freeing a struct ifnet, and layer 2 common
  * structure.  This call is made when the last reference to an
  * interface is released.
  */
 static void
 if_free_internal(struct ifnet *ifp)
 {
 
 	KASSERT((ifp->if_flags & IFF_DYING),
 	    ("if_free_internal: interface not dying"));
 
 	if (if_com_free[ifp->if_alloctype] != NULL)
 		if_com_free[ifp->if_alloctype](ifp->if_l2com,
 		    ifp->if_alloctype);
 
 #ifdef MAC
 	mac_ifnet_destroy(ifp);
 #endif /* MAC */
 	if (ifp->if_description != NULL)
 		free(ifp->if_description, M_IFDESCR);
 	IF_AFDATA_DESTROY(ifp);
 	IF_ADDR_LOCK_DESTROY(ifp);
 	ifq_delete(&ifp->if_snd);
 
 	for (int i = 0; i < IFCOUNTERS; i++)
 		counter_u64_free(ifp->if_counters[i]);
 
 	free(ifp, M_IFNET);
 }
 
 /*
  * Deregister an interface and free the associated storage.
  */
 void
 if_free(struct ifnet *ifp)
 {
 
 	ifp->if_flags |= IFF_DYING;			/* XXX: Locking */
 
 	CURVNET_SET_QUIET(ifp->if_vnet);
 	IFNET_WLOCK();
 	KASSERT(ifp == ifnet_byindex_locked(ifp->if_index),
 	    ("%s: freeing unallocated ifnet", ifp->if_xname));
 
 	ifindex_free_locked(ifp->if_index);
 	IFNET_WUNLOCK();
 
 	if (refcount_release(&ifp->if_refcount))
 		if_free_internal(ifp);
 	CURVNET_RESTORE();
 }
 
 /*
  * Interfaces to keep an ifnet type-stable despite the possibility of the
  * driver calling if_free().  If there are additional references, we defer
  * freeing the underlying data structure.
  */
 void
 if_ref(struct ifnet *ifp)
 {
 
 	/* We don't assert the ifnet list lock here, but arguably should. */
 	refcount_acquire(&ifp->if_refcount);
 }
 
 void
 if_rele(struct ifnet *ifp)
 {
 
 	if (!refcount_release(&ifp->if_refcount))
 		return;
 	if_free_internal(ifp);
 }
 
 void
 ifq_init(struct ifaltq *ifq, struct ifnet *ifp)
 {
 	
 	mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF);
 
 	if (ifq->ifq_maxlen == 0) 
 		ifq->ifq_maxlen = ifqmaxlen;
 
 	ifq->altq_type = 0;
 	ifq->altq_disc = NULL;
 	ifq->altq_flags &= ALTQF_CANTCHANGE;
 	ifq->altq_tbr  = NULL;
 	ifq->altq_ifp  = ifp;
 }
 
 void
 ifq_delete(struct ifaltq *ifq)
 {
 	mtx_destroy(&ifq->ifq_mtx);
 }
 
 /*
  * Perform generic interface initialization tasks and attach the interface
  * to the list of "active" interfaces.  If vmove flag is set on entry
  * to if_attach_internal(), perform only a limited subset of initialization
  * tasks, given that we are moving from one vnet to another an ifnet which
  * has already been fully initialized.
  *
  * Note that if_detach_internal() removes group membership unconditionally
  * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL.
  * Thus, when if_vmove() is applied to a cloned interface, group membership
  * is lost while a cloned one always joins a group whose name is
  * ifc->ifc_name.  To recover this after if_detach_internal() and
  * if_attach_internal(), the cloner should be specified to
  * if_attach_internal() via ifc.  If it is non-NULL, if_attach_internal()
  * attempts to join a group whose name is ifc->ifc_name.
  *
  * XXX:
  *  - The decision to return void and thus require this function to
  *    succeed is questionable.
  *  - We should probably do more sanity checking.  For instance we don't
  *    do anything to insure if_xname is unique or non-empty.
  */
 void
 if_attach(struct ifnet *ifp)
 {
 
 	if_attach_internal(ifp, 0, NULL);
 }
 
 /*
  * Compute the least common TSO limit.
  */
 void
 if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax)
 {
 	/*
 	 * 1) If there is no limit currently, take the limit from
 	 * the network adapter.
 	 *
 	 * 2) If the network adapter has a limit below the current
 	 * limit, apply it.
 	 */
 	if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 &&
 	    ifp->if_hw_tsomax < pmax->tsomaxbytes)) {
 		pmax->tsomaxbytes = ifp->if_hw_tsomax;
 	}
 	if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 &&
 	    ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) {
 		pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
 	}
 	if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 &&
 	    ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) {
 		pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
 	}
 }
 
 /*
  * Update TSO limit of a network adapter.
  *
  * Returns zero if no change. Else non-zero.
  */
 int
 if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax)
 {
 	int retval = 0;
 	if (ifp->if_hw_tsomax != pmax->tsomaxbytes) {
 		ifp->if_hw_tsomax = pmax->tsomaxbytes;
 		retval++;
 	}
 	if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) {
 		ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize;
 		retval++;
 	}
 	if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) {
 		ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount;
 		retval++;
 	}
 	return (retval);
 }
 
 static void
 if_attach_internal(struct ifnet *ifp, int vmove, struct if_clone *ifc)
 {
 	unsigned socksize, ifasize;
 	int namelen, masklen;
 	struct sockaddr_dl *sdl;
 	struct ifaddr *ifa;
 
 	if (ifp->if_index == 0 || ifp != ifnet_byindex(ifp->if_index))
 		panic ("%s: BUG: if_attach called without if_alloc'd input()\n",
 		    ifp->if_xname);
 
 #ifdef VIMAGE
 	ifp->if_vnet = curvnet;
 	if (ifp->if_home_vnet == NULL)
 		ifp->if_home_vnet = curvnet;
 #endif
 
 	if_addgroup(ifp, IFG_ALL);
 
 	/* Restore group membership for cloned interfaces. */
 	if (vmove && ifc != NULL)
 		if_clone_addgroup(ifp, ifc);
 
 	getmicrotime(&ifp->if_lastchange);
 	ifp->if_epoch = time_uptime;
 
 	KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) ||
 	    (ifp->if_transmit != NULL && ifp->if_qflush != NULL),
 	    ("transmit and qflush must both either be set or both be NULL"));
 	if (ifp->if_transmit == NULL) {
 		ifp->if_transmit = if_transmit;
 		ifp->if_qflush = if_qflush;
 	}
 	if (ifp->if_input == NULL)
 		ifp->if_input = if_input_default;
 
 	if (ifp->if_requestencap == NULL)
 		ifp->if_requestencap = if_requestencap_default;
 
 	if (!vmove) {
 #ifdef MAC
 		mac_ifnet_create(ifp);
 #endif
 
 		/*
 		 * Create a Link Level name for this device.
 		 */
 		namelen = strlen(ifp->if_xname);
 		/*
 		 * Always save enough space for any possiable name so we
 		 * can do a rename in place later.
 		 */
 		masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ;
 		socksize = masklen + ifp->if_addrlen;
 		if (socksize < sizeof(*sdl))
 			socksize = sizeof(*sdl);
 		socksize = roundup2(socksize, sizeof(long));
 		ifasize = sizeof(*ifa) + 2 * socksize;
 		ifa = ifa_alloc(ifasize, M_WAITOK);
 		sdl = (struct sockaddr_dl *)(ifa + 1);
 		sdl->sdl_len = socksize;
 		sdl->sdl_family = AF_LINK;
 		bcopy(ifp->if_xname, sdl->sdl_data, namelen);
 		sdl->sdl_nlen = namelen;
 		sdl->sdl_index = ifp->if_index;
 		sdl->sdl_type = ifp->if_type;
 		ifp->if_addr = ifa;
 		ifa->ifa_ifp = ifp;
 		ifa->ifa_rtrequest = link_rtrequest;
 		ifa->ifa_addr = (struct sockaddr *)sdl;
 		sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
 		ifa->ifa_netmask = (struct sockaddr *)sdl;
 		sdl->sdl_len = masklen;
 		while (namelen != 0)
 			sdl->sdl_data[--namelen] = 0xff;
 		TAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link);
 		/* Reliably crash if used uninitialized. */
 		ifp->if_broadcastaddr = NULL;
 
 #if defined(INET) || defined(INET6)
 		/* Use defaults for TSO, if nothing is set */
 		if (ifp->if_hw_tsomax == 0 &&
 		    ifp->if_hw_tsomaxsegcount == 0 &&
 		    ifp->if_hw_tsomaxsegsize == 0) {
 			/*
 			 * The TSO defaults needs to be such that an
 			 * NFS mbuf list of 35 mbufs totalling just
 			 * below 64K works and that a chain of mbufs
 			 * can be defragged into at most 32 segments:
 			 */
 			ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) -
 			    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN));
 			ifp->if_hw_tsomaxsegcount = 35;
 			ifp->if_hw_tsomaxsegsize = 2048;	/* 2K */
 
 			/* XXX some drivers set IFCAP_TSO after ethernet attach */
 			if (ifp->if_capabilities & IFCAP_TSO) {
 				if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n",
 				    ifp->if_hw_tsomax,
 				    ifp->if_hw_tsomaxsegcount,
 				    ifp->if_hw_tsomaxsegsize);
 			}
 		}
 #endif
 	}
 #ifdef VIMAGE
 	else {
 		/*
 		 * Update the interface index in the link layer address
 		 * of the interface.
 		 */
 		for (ifa = ifp->if_addr; ifa != NULL;
 		    ifa = TAILQ_NEXT(ifa, ifa_link)) {
 			if (ifa->ifa_addr->sa_family == AF_LINK) {
 				sdl = (struct sockaddr_dl *)ifa->ifa_addr;
 				sdl->sdl_index = ifp->if_index;
 			}
 		}
 	}
 #endif
 
 	IFNET_WLOCK();
 	TAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link);
 #ifdef VIMAGE
 	curvnet->vnet_ifcnt++;
 #endif
 	IFNET_WUNLOCK();
 
 	if (domain_init_status >= 2)
 		if_attachdomain1(ifp);
 
 	EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
 	if (IS_DEFAULT_VNET(curvnet))
 		devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
 
 	/* Announce the interface. */
 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
 }
 
 static void
 if_attachdomain(void *dummy)
 {
 	struct ifnet *ifp;
 
 	TAILQ_FOREACH(ifp, &V_ifnet, if_link)
 		if_attachdomain1(ifp);
 }
 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND,
     if_attachdomain, NULL);
 
 static void
 if_attachdomain1(struct ifnet *ifp)
 {
 	struct domain *dp;
 
 	/*
 	 * Since dp->dom_ifattach calls malloc() with M_WAITOK, we
 	 * cannot lock ifp->if_afdata initialization, entirely.
 	 */
 	IF_AFDATA_LOCK(ifp);
 	if (ifp->if_afdata_initialized >= domain_init_status) {
 		IF_AFDATA_UNLOCK(ifp);
 		log(LOG_WARNING, "%s called more than once on %s\n",
 		    __func__, ifp->if_xname);
 		return;
 	}
 	ifp->if_afdata_initialized = domain_init_status;
 	IF_AFDATA_UNLOCK(ifp);
 
 	/* address family dependent data region */
 	bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
 	for (dp = domains; dp; dp = dp->dom_next) {
 		if (dp->dom_ifattach)
 			ifp->if_afdata[dp->dom_family] =
 			    (*dp->dom_ifattach)(ifp);
 	}
 }
 
 /*
  * Remove any unicast or broadcast network addresses from an interface.
  */
 void
 if_purgeaddrs(struct ifnet *ifp)
 {
 	struct ifaddr *ifa, *next;
 
 	/* XXX cannot hold IF_ADDR_WLOCK over called functions. */
 	TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) {
 		if (ifa->ifa_addr->sa_family == AF_LINK)
 			continue;
 #ifdef INET
 		/* XXX: Ugly!! ad hoc just for INET */
 		if (ifa->ifa_addr->sa_family == AF_INET) {
 			struct ifaliasreq ifr;
 
 			bzero(&ifr, sizeof(ifr));
 			ifr.ifra_addr = *ifa->ifa_addr;
 			if (ifa->ifa_dstaddr)
 				ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
 			if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
 			    NULL) == 0)
 				continue;
 		}
 #endif /* INET */
 #ifdef INET6
 		if (ifa->ifa_addr->sa_family == AF_INET6) {
 			in6_purgeaddr(ifa);
 			/* ifp_addrhead is already updated */
 			continue;
 		}
 #endif /* INET6 */
 		IF_ADDR_WLOCK(ifp);
 		TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link);
 		IF_ADDR_WUNLOCK(ifp);
 		ifa_free(ifa);
 	}
 }
 
 /*
  * Remove any multicast network addresses from an interface when an ifnet
  * is going away.
  */
 static void
 if_purgemaddrs(struct ifnet *ifp)
 {
 	struct ifmultiaddr *ifma;
 	struct ifmultiaddr *next;
 
 	IF_ADDR_WLOCK(ifp);
 	TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next)
 		if_delmulti_locked(ifp, ifma, 1);
 	IF_ADDR_WUNLOCK(ifp);
 }
 
 /*
  * Detach an interface, removing it from the list of "active" interfaces.
  * If vmove flag is set on entry to if_detach_internal(), perform only a
  * limited subset of cleanup tasks, given that we are moving an ifnet from
  * one vnet to another, where it must be fully operational.
  *
  * XXXRW: There are some significant questions about event ordering, and
  * how to prevent things from starting to use the interface during detach.
  */
 void
 if_detach(struct ifnet *ifp)
 {
 
 	CURVNET_SET_QUIET(ifp->if_vnet);
 	if_detach_internal(ifp, 0, NULL);
 	CURVNET_RESTORE();
 }
 
 /*
  * The vmove, if set, flag indicates that we are called from a callpath
  * that is moving an interface to a different vnet instance.
  *
  * The shutdown flag, if set, indicates that we are called in the
  * progress of shutting down a vnet instance.  Currently only the
  * vnet_if_return SYSUNINIT function sets it.  Note: we can be called
  * on a vnet instance shutdown without this flag being set, e.g., when
  * the cloned interfaces are destoyed as first thing of teardown.
  */
 static int
 if_detach_internal(struct ifnet *ifp, int vmove, struct if_clone **ifcp)
 {
 	struct ifaddr *ifa;
 	int i;
 	struct domain *dp;
  	struct ifnet *iter;
  	int found = 0, shutdown;
 
 	shutdown = (ifp->if_vnet->vnet_state > SI_SUB_VNET &&
 		 ifp->if_vnet->vnet_state < SI_SUB_VNET_DONE) ? 1 : 0;
 	IFNET_WLOCK();
 	TAILQ_FOREACH(iter, &V_ifnet, if_link)
 		if (iter == ifp) {
 			TAILQ_REMOVE(&V_ifnet, ifp, if_link);
 			found = 1;
 			break;
 		}
 	IFNET_WUNLOCK();
 	if (!found) {
 		/*
 		 * While we would want to panic here, we cannot
 		 * guarantee that the interface is indeed still on
 		 * the list given we don't hold locks all the way.
 		 */
 		return (ENOENT);
 #if 0
 		if (vmove)
 			panic("%s: ifp=%p not on the ifnet tailq %p",
 			    __func__, ifp, &V_ifnet);
 		else
 			return; /* XXX this should panic as well? */
 #endif
 	}
 
 	/*
 	 * At this point we know the interface still was on the ifnet list
 	 * and we removed it so we are in a stable state.
 	 */
 #ifdef VIMAGE
 	curvnet->vnet_ifcnt--;
 #endif
 
 	/*
 	 * In any case (destroy or vmove) detach us from the groups
 	 * and remove/wait for pending events on the taskq.
 	 * XXX-BZ in theory an interface could still enqueue a taskq change?
 	 */
 	if_delgroups(ifp);
 
 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
 
 	/*
 	 * Check if this is a cloned interface or not. Must do even if
 	 * shutting down as a if_vmove_reclaim() would move the ifp and
 	 * the if_clone_addgroup() will have a corrupted string overwise
 	 * from a gibberish pointer.
 	 */
 	if (vmove && ifcp != NULL)
 		*ifcp = if_clone_findifc(ifp);
 
 	if_down(ifp);
 
 	/*
 	 * On VNET shutdown abort here as the stack teardown will do all
 	 * the work top-down for us.
 	 */
 	if (shutdown) {
 		/*
 		 * In case of a vmove we are done here without error.
 		 * If we would signal an error it would lead to the same
 		 * abort as if we did not find the ifnet anymore.
 		 * if_detach() calls us in void context and does not care
 		 * about an early abort notification, so life is splendid :)
 		 */
 		goto finish_vnet_shutdown;
 	}
 
 	/*
 	 * At this point we are not tearing down a VNET and are either
 	 * going to destroy or vmove the interface and have to cleanup
 	 * accordingly.
 	 */
 
 	/*
 	 * Remove routes and flush queues.
 	 */
 #ifdef ALTQ
 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
 		altq_disable(&ifp->if_snd);
 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
 		altq_detach(&ifp->if_snd);
 #endif
 
 	if_purgeaddrs(ifp);
 
 #ifdef INET
 	in_ifdetach(ifp, 1);
 #endif
 
 #ifdef INET6
 	/*
 	 * Remove all IPv6 kernel structs related to ifp.  This should be done
 	 * before removing routing entries below, since IPv6 interface direct
 	 * routes are expected to be removed by the IPv6-specific kernel API.
 	 * Otherwise, the kernel will detect some inconsistency and bark it.
 	 */
 	in6_ifdetach(ifp, 1);
 #endif
 	if_purgemaddrs(ifp);
 
 	/* Announce that the interface is gone. */
 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
 	EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
 	if (IS_DEFAULT_VNET(curvnet))
 		devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
 
 	if (!vmove) {
 		/*
 		 * Prevent further calls into the device driver via ifnet.
 		 */
 		if_dead(ifp);
 
 		/*
 		 * Remove link ifaddr pointer and maybe decrement if_index.
 		 * Clean up all addresses.
 		 */
 		ifp->if_addr = NULL;
 
 		/* We can now free link ifaddr. */
 		IF_ADDR_WLOCK(ifp);
 		if (!TAILQ_EMPTY(&ifp->if_addrhead)) {
 			ifa = TAILQ_FIRST(&ifp->if_addrhead);
 			TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link);
 			IF_ADDR_WUNLOCK(ifp);
 			ifa_free(ifa);
 		} else
 			IF_ADDR_WUNLOCK(ifp);
 	}
 
 	rt_flushifroutes(ifp);
 
 finish_vnet_shutdown:
 	/*
 	 * We cannot hold the lock over dom_ifdetach calls as they might
 	 * sleep, for example trying to drain a callout, thus open up the
 	 * theoretical race with re-attaching.
 	 */
 	IF_AFDATA_LOCK(ifp);
 	i = ifp->if_afdata_initialized;
 	ifp->if_afdata_initialized = 0;
 	IF_AFDATA_UNLOCK(ifp);
 	for (dp = domains; i > 0 && dp; dp = dp->dom_next) {
 		if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) {
 			(*dp->dom_ifdetach)(ifp,
 			    ifp->if_afdata[dp->dom_family]);
 			ifp->if_afdata[dp->dom_family] = NULL;
 		}
 	}
 
 	return (0);
 }
 
 #ifdef VIMAGE
 /*
  * if_vmove() performs a limited version of if_detach() in current
  * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg.
  * An attempt is made to shrink if_index in current vnet, find an
  * unused if_index in target vnet and calls if_grow() if necessary,
  * and finally find an unused if_xname for the target vnet.
  */
 static void
 if_vmove(struct ifnet *ifp, struct vnet *new_vnet)
 {
 	struct if_clone *ifc;
-	int rc;
 	u_int bif_dlt, bif_hdrlen;
+	int rc;
 
  	/*
 	 * if_detach_internal() will call the eventhandler to notify
 	 * interface departure.  That will detach if_bpf.  We need to
 	 * safe the dlt and hdrlen so we can re-attach it later.
 	 */
 	bpf_get_bp_params(ifp->if_bpf, &bif_dlt, &bif_hdrlen);
 
 	/*
 	 * Detach from current vnet, but preserve LLADDR info, do not
 	 * mark as dead etc. so that the ifnet can be reattached later.
 	 * If we cannot find it, we lost the race to someone else.
 	 */
 	rc = if_detach_internal(ifp, 1, &ifc);
 	if (rc != 0)
 		return;
 
 	/*
 	 * Unlink the ifnet from ifindex_table[] in current vnet, and shrink
 	 * the if_index for that vnet if possible.
 	 *
 	 * NOTE: IFNET_WLOCK/IFNET_WUNLOCK() are assumed to be unvirtualized,
 	 * or we'd lock on one vnet and unlock on another.
 	 */
 	IFNET_WLOCK();
 	ifindex_free_locked(ifp->if_index);
 	IFNET_WUNLOCK();
 
 	/*
 	 * Perform interface-specific reassignment tasks, if provided by
 	 * the driver.
 	 */
 	if (ifp->if_reassign != NULL)
 		ifp->if_reassign(ifp, new_vnet, NULL);
 
 	/*
 	 * Switch to the context of the target vnet.
 	 */
 	CURVNET_SET_QUIET(new_vnet);
 
 	IFNET_WLOCK();
 	ifp->if_index = ifindex_alloc();
 	ifnet_setbyindex_locked(ifp->if_index, ifp);
 	IFNET_WUNLOCK();
 
 	if_attach_internal(ifp, 1, ifc);
 
 	if (ifp->if_bpf == NULL)
 		bpfattach(ifp, bif_dlt, bif_hdrlen);
 
 	CURVNET_RESTORE();
 }
 
 /*
  * Move an ifnet to or from another child prison/vnet, specified by the jail id.
  */
 static int
 if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid)
 {
 	struct prison *pr;
 	struct ifnet *difp;
 	int shutdown;
 
 	/* Try to find the prison within our visibility. */
 	sx_slock(&allprison_lock);
 	pr = prison_find_child(td->td_ucred->cr_prison, jid);
 	sx_sunlock(&allprison_lock);
 	if (pr == NULL)
 		return (ENXIO);
 	prison_hold_locked(pr);
 	mtx_unlock(&pr->pr_mtx);
 
 	/* Do not try to move the iface from and to the same prison. */
 	if (pr->pr_vnet == ifp->if_vnet) {
 		prison_free(pr);
 		return (EEXIST);
 	}
 
 	/* Make sure the named iface does not exists in the dst. prison/vnet. */
 	/* XXX Lock interfaces to avoid races. */
 	CURVNET_SET_QUIET(pr->pr_vnet);
 	difp = ifunit(ifname);
 	if (difp != NULL) {
 		CURVNET_RESTORE();
 		prison_free(pr);
 		return (EEXIST);
 	}
 
 	/* Make sure the VNET is stable. */
 	shutdown = (ifp->if_vnet->vnet_state > SI_SUB_VNET &&
 		 ifp->if_vnet->vnet_state < SI_SUB_VNET_DONE) ? 1 : 0;
 	if (shutdown) {
 		CURVNET_RESTORE();
 		prison_free(pr);
 		return (EBUSY);
 	}
 	CURVNET_RESTORE();
 
 	/* Move the interface into the child jail/vnet. */
 	if_vmove(ifp, pr->pr_vnet);
 
 	/* Report the new if_xname back to the userland. */
 	sprintf(ifname, "%s", ifp->if_xname);
 
 	prison_free(pr);
 	return (0);
 }
 
 static int
 if_vmove_reclaim(struct thread *td, char *ifname, int jid)
 {
 	struct prison *pr;
 	struct vnet *vnet_dst;
 	struct ifnet *ifp;
  	int shutdown;
 
 	/* Try to find the prison within our visibility. */
 	sx_slock(&allprison_lock);
 	pr = prison_find_child(td->td_ucred->cr_prison, jid);
 	sx_sunlock(&allprison_lock);
 	if (pr == NULL)
 		return (ENXIO);
 	prison_hold_locked(pr);
 	mtx_unlock(&pr->pr_mtx);
 
 	/* Make sure the named iface exists in the source prison/vnet. */
 	CURVNET_SET(pr->pr_vnet);
 	ifp = ifunit(ifname);		/* XXX Lock to avoid races. */
 	if (ifp == NULL) {
 		CURVNET_RESTORE();
 		prison_free(pr);
 		return (ENXIO);
 	}
 
 	/* Do not try to move the iface from and to the same prison. */
 	vnet_dst = TD_TO_VNET(td);
 	if (vnet_dst == ifp->if_vnet) {
 		CURVNET_RESTORE();
 		prison_free(pr);
 		return (EEXIST);
 	}
 
 	/* Make sure the VNET is stable. */
 	shutdown = (ifp->if_vnet->vnet_state > SI_SUB_VNET &&
 		 ifp->if_vnet->vnet_state < SI_SUB_VNET_DONE) ? 1 : 0;
 	if (shutdown) {
 		CURVNET_RESTORE();
 		prison_free(pr);
 		return (EBUSY);
 	}
 
 	/* Get interface back from child jail/vnet. */
 	if_vmove(ifp, vnet_dst);
 	CURVNET_RESTORE();
 
 	/* Report the new if_xname back to the userland. */
 	sprintf(ifname, "%s", ifp->if_xname);
 
 	prison_free(pr);
 	return (0);
 }
 #endif /* VIMAGE */
 
 /*
  * Add a group to an interface
  */
 int
 if_addgroup(struct ifnet *ifp, const char *groupname)
 {
 	struct ifg_list		*ifgl;
 	struct ifg_group	*ifg = NULL;
 	struct ifg_member	*ifgm;
 	int 			 new = 0;
 
 	if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
 	    groupname[strlen(groupname) - 1] <= '9')
 		return (EINVAL);
 
 	IFNET_WLOCK();
 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) {
 			IFNET_WUNLOCK();
 			return (EEXIST);
 		}
 
 	if ((ifgl = (struct ifg_list *)malloc(sizeof(struct ifg_list), M_TEMP,
 	    M_NOWAIT)) == NULL) {
 	    	IFNET_WUNLOCK();
 		return (ENOMEM);
 	}
 
 	if ((ifgm = (struct ifg_member *)malloc(sizeof(struct ifg_member),
 	    M_TEMP, M_NOWAIT)) == NULL) {
 		free(ifgl, M_TEMP);
 		IFNET_WUNLOCK();
 		return (ENOMEM);
 	}
 
 	TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
 		if (!strcmp(ifg->ifg_group, groupname))
 			break;
 
 	if (ifg == NULL) {
 		if ((ifg = (struct ifg_group *)malloc(sizeof(struct ifg_group),
 		    M_TEMP, M_NOWAIT)) == NULL) {
 			free(ifgl, M_TEMP);
 			free(ifgm, M_TEMP);
 			IFNET_WUNLOCK();
 			return (ENOMEM);
 		}
 		strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
 		ifg->ifg_refcnt = 0;
 		TAILQ_INIT(&ifg->ifg_members);
 		TAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next);
 		new = 1;
 	}
 
 	ifg->ifg_refcnt++;
 	ifgl->ifgl_group = ifg;
 	ifgm->ifgm_ifp = ifp;
 
 	IF_ADDR_WLOCK(ifp);
 	TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
 	TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
 	IF_ADDR_WUNLOCK(ifp);
 
 	IFNET_WUNLOCK();
 
 	if (new)
 		EVENTHANDLER_INVOKE(group_attach_event, ifg);
 	EVENTHANDLER_INVOKE(group_change_event, groupname);
 
 	return (0);
 }
 
 /*
  * Remove a group from an interface
  */
 int
 if_delgroup(struct ifnet *ifp, const char *groupname)
 {
 	struct ifg_list		*ifgl;
 	struct ifg_member	*ifgm;
 
 	IFNET_WLOCK();
 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
 		if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
 			break;
 	if (ifgl == NULL) {
 		IFNET_WUNLOCK();
 		return (ENOENT);
 	}
 
 	IF_ADDR_WLOCK(ifp);
 	TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
 	IF_ADDR_WUNLOCK(ifp);
 
 	TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
 		if (ifgm->ifgm_ifp == ifp)
 			break;
 
 	if (ifgm != NULL) {
 		TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
 		free(ifgm, M_TEMP);
 	}
 
 	if (--ifgl->ifgl_group->ifg_refcnt == 0) {
 		TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next);
 		IFNET_WUNLOCK();
 		EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group);
 		free(ifgl->ifgl_group, M_TEMP);
 	} else
 		IFNET_WUNLOCK();
 
 	free(ifgl, M_TEMP);
 
 	EVENTHANDLER_INVOKE(group_change_event, groupname);
 
 	return (0);
 }
 
 /*
  * Remove an interface from all groups
  */
 static void
 if_delgroups(struct ifnet *ifp)
 {
 	struct ifg_list		*ifgl;
 	struct ifg_member	*ifgm;
 	char groupname[IFNAMSIZ];
 
 	IFNET_WLOCK();
 	while (!TAILQ_EMPTY(&ifp->if_groups)) {
 		ifgl = TAILQ_FIRST(&ifp->if_groups);
 
 		strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ);
 
 		IF_ADDR_WLOCK(ifp);
 		TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
 		IF_ADDR_WUNLOCK(ifp);
 
 		TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
 			if (ifgm->ifgm_ifp == ifp)
 				break;
 
 		if (ifgm != NULL) {
 			TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm,
 			    ifgm_next);
 			free(ifgm, M_TEMP);
 		}
 
 		if (--ifgl->ifgl_group->ifg_refcnt == 0) {
 			TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next);
 			IFNET_WUNLOCK();
 			EVENTHANDLER_INVOKE(group_detach_event,
 			    ifgl->ifgl_group);
 			free(ifgl->ifgl_group, M_TEMP);
 		} else
 			IFNET_WUNLOCK();
 
 		free(ifgl, M_TEMP);
 
 		EVENTHANDLER_INVOKE(group_change_event, groupname);
 
 		IFNET_WLOCK();
 	}
 	IFNET_WUNLOCK();
 }
 
 /*
  * Stores all groups from an interface in memory pointed
  * to by data
  */
 static int
 if_getgroup(struct ifgroupreq *data, struct ifnet *ifp)
 {
 	int			 len, error;
 	struct ifg_list		*ifgl;
 	struct ifg_req		 ifgrq, *ifgp;
 	struct ifgroupreq	*ifgr = data;
 
 	if (ifgr->ifgr_len == 0) {
 		IF_ADDR_RLOCK(ifp);
 		TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
 			ifgr->ifgr_len += sizeof(struct ifg_req);
 		IF_ADDR_RUNLOCK(ifp);
 		return (0);
 	}
 
 	len = ifgr->ifgr_len;
 	ifgp = ifgr->ifgr_groups;
 	/* XXX: wire */
 	IF_ADDR_RLOCK(ifp);
 	TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
 		if (len < sizeof(ifgrq)) {
 			IF_ADDR_RUNLOCK(ifp);
 			return (EINVAL);
 		}
 		bzero(&ifgrq, sizeof ifgrq);
 		strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
 		    sizeof(ifgrq.ifgrq_group));
 		if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) {
 		    	IF_ADDR_RUNLOCK(ifp);
 			return (error);
 		}
 		len -= sizeof(ifgrq);
 		ifgp++;
 	}
 	IF_ADDR_RUNLOCK(ifp);
 
 	return (0);
 }
 
 /*
  * Stores all members of a group in memory pointed to by data
  */
 static int
 if_getgroupmembers(struct ifgroupreq *data)
 {
 	struct ifgroupreq	*ifgr = data;
 	struct ifg_group	*ifg;
 	struct ifg_member	*ifgm;
 	struct ifg_req		 ifgrq, *ifgp;
 	int			 len, error;
 
 	IFNET_RLOCK();
 	TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
 		if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
 			break;
 	if (ifg == NULL) {
 		IFNET_RUNLOCK();
 		return (ENOENT);
 	}
 
 	if (ifgr->ifgr_len == 0) {
 		TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
 			ifgr->ifgr_len += sizeof(ifgrq);
 		IFNET_RUNLOCK();
 		return (0);
 	}
 
 	len = ifgr->ifgr_len;
 	ifgp = ifgr->ifgr_groups;
 	TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
 		if (len < sizeof(ifgrq)) {
 			IFNET_RUNLOCK();
 			return (EINVAL);
 		}
 		bzero(&ifgrq, sizeof ifgrq);
 		strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
 		    sizeof(ifgrq.ifgrq_member));
 		if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) {
 			IFNET_RUNLOCK();
 			return (error);
 		}
 		len -= sizeof(ifgrq);
 		ifgp++;
 	}
 	IFNET_RUNLOCK();
 
 	return (0);
 }
 
 /*
  * Return counter values from counter(9)s stored in ifnet.
  */
 uint64_t
 if_get_counter_default(struct ifnet *ifp, ift_counter cnt)
 {
 
 	KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt));
 
 	return (counter_u64_fetch(ifp->if_counters[cnt]));
 }
 
 /*
  * Increase an ifnet counter. Usually used for counters shared
  * between the stack and a driver, but function supports them all.
  */
 void
 if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc)
 {
 
 	KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt));
 
 	counter_u64_add(ifp->if_counters[cnt], inc);
 }
 
 /*
  * Copy data from ifnet to userland API structure if_data.
  */
 void
 if_data_copy(struct ifnet *ifp, struct if_data *ifd)
 {
 
 	ifd->ifi_type = ifp->if_type;
 	ifd->ifi_physical = 0;
 	ifd->ifi_addrlen = ifp->if_addrlen;
 	ifd->ifi_hdrlen = ifp->if_hdrlen;
 	ifd->ifi_link_state = ifp->if_link_state;
 	ifd->ifi_vhid = 0;
 	ifd->ifi_datalen = sizeof(struct if_data);
 	ifd->ifi_mtu = ifp->if_mtu;
 	ifd->ifi_metric = ifp->if_metric;
 	ifd->ifi_baudrate = ifp->if_baudrate;
 	ifd->ifi_hwassist = ifp->if_hwassist;
 	ifd->ifi_epoch = ifp->if_epoch;
 	ifd->ifi_lastchange = ifp->if_lastchange;
 
 	ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS);
 	ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS);
 	ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS);
 	ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS);
 	ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS);
 	ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES);
 	ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES);
 	ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS);
 	ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS);
 	ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS);
 	ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS);
 	ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO);
 }
 
 /*
  * Wrapper functions for struct ifnet address list locking macros.  These are
  * used by kernel modules to avoid encoding programming interface or binary
  * interface assumptions that may be violated when kernel-internal locking
  * approaches change.
  */
 void
 if_addr_rlock(struct ifnet *ifp)
 {
 
 	IF_ADDR_RLOCK(ifp);
 }
 
 void
 if_addr_runlock(struct ifnet *ifp)
 {
 
 	IF_ADDR_RUNLOCK(ifp);
 }
 
 void
 if_maddr_rlock(if_t ifp)
 {
 
 	IF_ADDR_RLOCK((struct ifnet *)ifp);
 }
 
 void
 if_maddr_runlock(if_t ifp)
 {
 
 	IF_ADDR_RUNLOCK((struct ifnet *)ifp);
 }
 
 /*
  * Initialization, destruction and refcounting functions for ifaddrs.
  */
 struct ifaddr *
 ifa_alloc(size_t size, int flags)
 {
 	struct ifaddr *ifa;
 
 	KASSERT(size >= sizeof(struct ifaddr),
 	    ("%s: invalid size %zu", __func__, size));
 
 	ifa = malloc(size, M_IFADDR, M_ZERO | flags);
 	if (ifa == NULL)
 		return (NULL);
 
 	if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL)
 		goto fail;
 	if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL)
 		goto fail;
 	if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL)
 		goto fail;
 	if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL)
 		goto fail;
 
 	refcount_init(&ifa->ifa_refcnt, 1);
 
 	return (ifa);
 
 fail:
 	/* free(NULL) is okay */
 	counter_u64_free(ifa->ifa_opackets);
 	counter_u64_free(ifa->ifa_ipackets);
 	counter_u64_free(ifa->ifa_obytes);
 	counter_u64_free(ifa->ifa_ibytes);
 	free(ifa, M_IFADDR);
 
 	return (NULL);
 }
 
 void
 ifa_ref(struct ifaddr *ifa)
 {
 
 	refcount_acquire(&ifa->ifa_refcnt);
 }
 
 void
 ifa_free(struct ifaddr *ifa)
 {
 
 	if (refcount_release(&ifa->ifa_refcnt)) {
 		counter_u64_free(ifa->ifa_opackets);
 		counter_u64_free(ifa->ifa_ipackets);
 		counter_u64_free(ifa->ifa_obytes);
 		counter_u64_free(ifa->ifa_ibytes);
 		free(ifa, M_IFADDR);
 	}
 }
 
 static int
 ifa_maintain_loopback_route(int cmd, const char *otype, struct ifaddr *ifa,
     struct sockaddr *ia)
 {
 	int error;
 	struct rt_addrinfo info;
 	struct sockaddr_dl null_sdl;
 	struct ifnet *ifp;
 
 	ifp = ifa->ifa_ifp;
 
 	bzero(&info, sizeof(info));
 	if (cmd != RTM_DELETE)
 		info.rti_ifp = V_loif;
 	info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC;
 	info.rti_info[RTAX_DST] = ia;
 	info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl;
 	link_init_sdl(ifp, (struct sockaddr *)&null_sdl, ifp->if_type);
 
 	error = rtrequest1_fib(cmd, &info, NULL, ifp->if_fib);
 
 	if (error != 0)
 		log(LOG_DEBUG, "%s: %s failed for interface %s: %u\n",
 		    __func__, otype, if_name(ifp), error);
 
 	return (error);
 }
 
 int
 ifa_add_loopback_route(struct ifaddr *ifa, struct sockaddr *ia)
 {
 
 	return (ifa_maintain_loopback_route(RTM_ADD, "insertion", ifa, ia));
 }
 
 int
 ifa_del_loopback_route(struct ifaddr *ifa, struct sockaddr *ia)
 {
 
 	return (ifa_maintain_loopback_route(RTM_DELETE, "deletion", ifa, ia));
 }
 
 int
 ifa_switch_loopback_route(struct ifaddr *ifa, struct sockaddr *ia)
 {
 
 	return (ifa_maintain_loopback_route(RTM_CHANGE, "switch", ifa, ia));
 }
 
 /*
  * XXX: Because sockaddr_dl has deeper structure than the sockaddr
  * structs used to represent other address families, it is necessary
  * to perform a different comparison.
  */
 
 #define	sa_dl_equal(a1, a2)	\
 	((((const struct sockaddr_dl *)(a1))->sdl_len ==		\
 	 ((const struct sockaddr_dl *)(a2))->sdl_len) &&		\
 	 (bcmp(CLLADDR((const struct sockaddr_dl *)(a1)),		\
 	       CLLADDR((const struct sockaddr_dl *)(a2)),		\
 	       ((const struct sockaddr_dl *)(a1))->sdl_alen) == 0))
 
 /*
  * Locate an interface based on a complete address.
  */
 /*ARGSUSED*/
 static struct ifaddr *
 ifa_ifwithaddr_internal(const struct sockaddr *addr, int getref)
 {
 	struct ifnet *ifp;
 	struct ifaddr *ifa;
 
 	IFNET_RLOCK_NOSLEEP();
 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
 		IF_ADDR_RLOCK(ifp);
 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
 			if (ifa->ifa_addr->sa_family != addr->sa_family)
 				continue;
 			if (sa_equal(addr, ifa->ifa_addr)) {
 				if (getref)
 					ifa_ref(ifa);
 				IF_ADDR_RUNLOCK(ifp);
 				goto done;
 			}
 			/* IP6 doesn't have broadcast */
 			if ((ifp->if_flags & IFF_BROADCAST) &&
 			    ifa->ifa_broadaddr &&
 			    ifa->ifa_broadaddr->sa_len != 0 &&
 			    sa_equal(ifa->ifa_broadaddr, addr)) {
 				if (getref)
 					ifa_ref(ifa);
 				IF_ADDR_RUNLOCK(ifp);
 				goto done;
 			}
 		}
 		IF_ADDR_RUNLOCK(ifp);
 	}
 	ifa = NULL;
 done:
 	IFNET_RUNLOCK_NOSLEEP();
 	return (ifa);
 }
 
 struct ifaddr *
 ifa_ifwithaddr(const struct sockaddr *addr)
 {
 
 	return (ifa_ifwithaddr_internal(addr, 1));
 }
 
 int
 ifa_ifwithaddr_check(const struct sockaddr *addr)
 {
 
 	return (ifa_ifwithaddr_internal(addr, 0) != NULL);
 }
 
 /*
  * Locate an interface based on the broadcast address.
  */
 /* ARGSUSED */
 struct ifaddr *
 ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum)
 {
 	struct ifnet *ifp;
 	struct ifaddr *ifa;
 
 	IFNET_RLOCK_NOSLEEP();
 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
 			continue;
 		IF_ADDR_RLOCK(ifp);
 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
 			if (ifa->ifa_addr->sa_family != addr->sa_family)
 				continue;
 			if ((ifp->if_flags & IFF_BROADCAST) &&
 			    ifa->ifa_broadaddr &&
 			    ifa->ifa_broadaddr->sa_len != 0 &&
 			    sa_equal(ifa->ifa_broadaddr, addr)) {
 				ifa_ref(ifa);
 				IF_ADDR_RUNLOCK(ifp);
 				goto done;
 			}
 		}
 		IF_ADDR_RUNLOCK(ifp);
 	}
 	ifa = NULL;
 done:
 	IFNET_RUNLOCK_NOSLEEP();
 	return (ifa);
 }
 
 /*
  * Locate the point to point interface with a given destination address.
  */
 /*ARGSUSED*/
 struct ifaddr *
 ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum)
 {
 	struct ifnet *ifp;
 	struct ifaddr *ifa;
 
 	IFNET_RLOCK_NOSLEEP();
 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
 			continue;
 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
 			continue;
 		IF_ADDR_RLOCK(ifp);
 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
 			if (ifa->ifa_addr->sa_family != addr->sa_family)
 				continue;
 			if (ifa->ifa_dstaddr != NULL &&
 			    sa_equal(addr, ifa->ifa_dstaddr)) {
 				ifa_ref(ifa);
 				IF_ADDR_RUNLOCK(ifp);
 				goto done;
 			}
 		}
 		IF_ADDR_RUNLOCK(ifp);
 	}
 	ifa = NULL;
 done:
 	IFNET_RUNLOCK_NOSLEEP();
 	return (ifa);
 }
 
 /*
  * Find an interface on a specific network.  If many, choice
  * is most specific found.
  */
 struct ifaddr *
 ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum)
 {
 	struct ifnet *ifp;
 	struct ifaddr *ifa;
 	struct ifaddr *ifa_maybe = NULL;
 	u_int af = addr->sa_family;
 	const char *addr_data = addr->sa_data, *cplim;
 
 	/*
 	 * AF_LINK addresses can be looked up directly by their index number,
 	 * so do that if we can.
 	 */
 	if (af == AF_LINK) {
 	    const struct sockaddr_dl *sdl = (const struct sockaddr_dl *)addr;
 	    if (sdl->sdl_index && sdl->sdl_index <= V_if_index)
 		return (ifaddr_byindex(sdl->sdl_index));
 	}
 
 	/*
 	 * Scan though each interface, looking for ones that have addresses
 	 * in this address family and the requested fib.  Maintain a reference
 	 * on ifa_maybe once we find one, as we release the IF_ADDR_RLOCK() that
 	 * kept it stable when we move onto the next interface.
 	 */
 	IFNET_RLOCK_NOSLEEP();
 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
 		if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
 			continue;
 		IF_ADDR_RLOCK(ifp);
 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
 			const char *cp, *cp2, *cp3;
 
 			if (ifa->ifa_addr->sa_family != af)
 next:				continue;
 			if (af == AF_INET && 
 			    ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) {
 				/*
 				 * This is a bit broken as it doesn't
 				 * take into account that the remote end may
 				 * be a single node in the network we are
 				 * looking for.
 				 * The trouble is that we don't know the
 				 * netmask for the remote end.
 				 */
 				if (ifa->ifa_dstaddr != NULL &&
 				    sa_equal(addr, ifa->ifa_dstaddr)) {
 					ifa_ref(ifa);
 					IF_ADDR_RUNLOCK(ifp);
 					goto done;
 				}
 			} else {
 				/*
 				 * Scan all the bits in the ifa's address.
 				 * If a bit dissagrees with what we are
 				 * looking for, mask it with the netmask
 				 * to see if it really matters.
 				 * (A byte at a time)
 				 */
 				if (ifa->ifa_netmask == 0)
 					continue;
 				cp = addr_data;
 				cp2 = ifa->ifa_addr->sa_data;
 				cp3 = ifa->ifa_netmask->sa_data;
 				cplim = ifa->ifa_netmask->sa_len
 					+ (char *)ifa->ifa_netmask;
 				while (cp3 < cplim)
 					if ((*cp++ ^ *cp2++) & *cp3++)
 						goto next; /* next address! */
 				/*
 				 * If the netmask of what we just found
 				 * is more specific than what we had before
 				 * (if we had one), or if the virtual status
 				 * of new prefix is better than of the old one,
 				 * then remember the new one before continuing
 				 * to search for an even better one.
 				 */
 				if (ifa_maybe == NULL ||
 				    ifa_preferred(ifa_maybe, ifa) ||
 				    rn_refines((caddr_t)ifa->ifa_netmask,
 				    (caddr_t)ifa_maybe->ifa_netmask)) {
 					if (ifa_maybe != NULL)
 						ifa_free(ifa_maybe);
 					ifa_maybe = ifa;
 					ifa_ref(ifa_maybe);
 				}
 			}
 		}
 		IF_ADDR_RUNLOCK(ifp);
 	}
 	ifa = ifa_maybe;
 	ifa_maybe = NULL;
 done:
 	IFNET_RUNLOCK_NOSLEEP();
 	if (ifa_maybe != NULL)
 		ifa_free(ifa_maybe);
 	return (ifa);
 }
 
 /*
  * Find an interface address specific to an interface best matching
  * a given address.
  */
 struct ifaddr *
 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
 {
 	struct ifaddr *ifa;
 	const char *cp, *cp2, *cp3;
 	char *cplim;
 	struct ifaddr *ifa_maybe = NULL;
 	u_int af = addr->sa_family;
 
 	if (af >= AF_MAX)
 		return (NULL);
 	IF_ADDR_RLOCK(ifp);
 	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
 		if (ifa->ifa_addr->sa_family != af)
 			continue;
 		if (ifa_maybe == NULL)
 			ifa_maybe = ifa;
 		if (ifa->ifa_netmask == 0) {
 			if (sa_equal(addr, ifa->ifa_addr) ||
 			    (ifa->ifa_dstaddr &&
 			    sa_equal(addr, ifa->ifa_dstaddr)))
 				goto done;
 			continue;
 		}
 		if (ifp->if_flags & IFF_POINTOPOINT) {
 			if (sa_equal(addr, ifa->ifa_dstaddr))
 				goto done;
 		} else {
 			cp = addr->sa_data;
 			cp2 = ifa->ifa_addr->sa_data;
 			cp3 = ifa->ifa_netmask->sa_data;
 			cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
 			for (; cp3 < cplim; cp3++)
 				if ((*cp++ ^ *cp2++) & *cp3)
 					break;
 			if (cp3 == cplim)
 				goto done;
 		}
 	}
 	ifa = ifa_maybe;
 done:
 	if (ifa != NULL)
 		ifa_ref(ifa);
 	IF_ADDR_RUNLOCK(ifp);
 	return (ifa);
 }
 
 /*
  * See whether new ifa is better than current one:
  * 1) A non-virtual one is preferred over virtual.
  * 2) A virtual in master state preferred over any other state.
  *
  * Used in several address selecting functions.
  */
 int
 ifa_preferred(struct ifaddr *cur, struct ifaddr *next)
 {
 
 	return (cur->ifa_carp && (!next->ifa_carp ||
 	    ((*carp_master_p)(next) && !(*carp_master_p)(cur))));
 }
 
 #include <net/if_llatbl.h>
 
 /*
  * Default action when installing a route with a Link Level gateway.
  * Lookup an appropriate real ifa to point to.
  * This should be moved to /sys/net/link.c eventually.
  */
 static void
 link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info)
 {
 	struct ifaddr *ifa, *oifa;
 	struct sockaddr *dst;
 	struct ifnet *ifp;
 
 	if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == NULL) ||
 	    ((ifp = ifa->ifa_ifp) == NULL) || ((dst = rt_key(rt)) == NULL))
 		return;
 	ifa = ifaof_ifpforaddr(dst, ifp);
 	if (ifa) {
 		oifa = rt->rt_ifa;
 		rt->rt_ifa = ifa;
 		ifa_free(oifa);
 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
 			ifa->ifa_rtrequest(cmd, rt, info);
 	}
 }
 
 struct sockaddr_dl *
 link_alloc_sdl(size_t size, int flags)
 {
 
 	return (malloc(size, M_TEMP, flags));
 }
 
 void
 link_free_sdl(struct sockaddr *sa)
 {
 	free(sa, M_TEMP);
 }
 
 /*
  * Fills in given sdl with interface basic info.
  * Returns pointer to filled sdl.
  */
 struct sockaddr_dl *
 link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype)
 {
 	struct sockaddr_dl *sdl;
 
 	sdl = (struct sockaddr_dl *)paddr;
 	memset(sdl, 0, sizeof(struct sockaddr_dl));
 	sdl->sdl_len = sizeof(struct sockaddr_dl);
 	sdl->sdl_family = AF_LINK;
 	sdl->sdl_index = ifp->if_index;
 	sdl->sdl_type = iftype;
 
 	return (sdl);
 }
 
 /*
  * Mark an interface down and notify protocols of
  * the transition.
  */
 static void
 if_unroute(struct ifnet *ifp, int flag, int fam)
 {
 	struct ifaddr *ifa;
 
 	KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP"));
 
 	ifp->if_flags &= ~flag;
 	getmicrotime(&ifp->if_lastchange);
 	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
 			pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
 	ifp->if_qflush(ifp);
 
 	if (ifp->if_carp)
 		(*carp_linkstate_p)(ifp);
 	rt_ifmsg(ifp);
 }
 
 /*
  * Mark an interface up and notify protocols of
  * the transition.
  */
 static void
 if_route(struct ifnet *ifp, int flag, int fam)
 {
 	struct ifaddr *ifa;
 
 	KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP"));
 
 	ifp->if_flags |= flag;
 	getmicrotime(&ifp->if_lastchange);
 	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
 		if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
 			pfctlinput(PRC_IFUP, ifa->ifa_addr);
 	if (ifp->if_carp)
 		(*carp_linkstate_p)(ifp);
 	rt_ifmsg(ifp);
 #ifdef INET6
 	in6_if_up(ifp);
 #endif
 }
 
 void	(*vlan_link_state_p)(struct ifnet *);	/* XXX: private from if_vlan */
 void	(*vlan_trunk_cap_p)(struct ifnet *);		/* XXX: private from if_vlan */
 struct ifnet *(*vlan_trunkdev_p)(struct ifnet *);
 struct	ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t);
 int	(*vlan_tag_p)(struct ifnet *, uint16_t *);
 int	(*vlan_setcookie_p)(struct ifnet *, void *);
 void	*(*vlan_cookie_p)(struct ifnet *);
 
 /*
  * Handle a change in the interface link state. To avoid LORs
  * between driver lock and upper layer locks, as well as possible
  * recursions, we post event to taskqueue, and all job
  * is done in static do_link_state_change().
  */
 void
 if_link_state_change(struct ifnet *ifp, int link_state)
 {
 	/* Return if state hasn't changed. */
 	if (ifp->if_link_state == link_state)
 		return;
 
 	ifp->if_link_state = link_state;
 
 	taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask);
 }
 
 static void
 do_link_state_change(void *arg, int pending)
 {
 	struct ifnet *ifp = (struct ifnet *)arg;
 	int link_state = ifp->if_link_state;
 	CURVNET_SET(ifp->if_vnet);
 
 	/* Notify that the link state has changed. */
 	rt_ifmsg(ifp);
 	if (ifp->if_vlantrunk != NULL)
 		(*vlan_link_state_p)(ifp);
 
 	if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) &&
 	    ifp->if_l2com != NULL)
 		(*ng_ether_link_state_p)(ifp, link_state);
 	if (ifp->if_carp)
 		(*carp_linkstate_p)(ifp);
 	if (ifp->if_bridge)
 		(*bridge_linkstate_p)(ifp);
 	if (ifp->if_lagg)
 		(*lagg_linkstate_p)(ifp, link_state);
 
 	if (IS_DEFAULT_VNET(curvnet))
 		devctl_notify("IFNET", ifp->if_xname,
 		    (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN",
 		    NULL);
 	if (pending > 1)
 		if_printf(ifp, "%d link states coalesced\n", pending);
 	if (log_link_state_change)
 		log(LOG_NOTICE, "%s: link state changed to %s\n", ifp->if_xname,
 		    (link_state == LINK_STATE_UP) ? "UP" : "DOWN" );
 	EVENTHANDLER_INVOKE(ifnet_link_event, ifp, ifp->if_link_state);
 	CURVNET_RESTORE();
 }
 
 /*
  * Mark an interface down and notify protocols of
  * the transition.
  */
 void
 if_down(struct ifnet *ifp)
 {
 
 	if_unroute(ifp, IFF_UP, AF_UNSPEC);
 }
 
 /*
  * Mark an interface up and notify protocols of
  * the transition.
  */
 void
 if_up(struct ifnet *ifp)
 {
 
 	if_route(ifp, IFF_UP, AF_UNSPEC);
 }
 
 /*
  * Flush an interface queue.
  */
 void
 if_qflush(struct ifnet *ifp)
 {
 	struct mbuf *m, *n;
 	struct ifaltq *ifq;
 	
 	ifq = &ifp->if_snd;
 	IFQ_LOCK(ifq);
 #ifdef ALTQ
 	if (ALTQ_IS_ENABLED(ifq))
 		ALTQ_PURGE(ifq);
 #endif
 	n = ifq->ifq_head;
 	while ((m = n) != NULL) {
 		n = m->m_nextpkt;
 		m_freem(m);
 	}
 	ifq->ifq_head = 0;
 	ifq->ifq_tail = 0;
 	ifq->ifq_len = 0;
 	IFQ_UNLOCK(ifq);
 }
 
 /*
  * Map interface name to interface structure pointer, with or without
  * returning a reference.
  */
 struct ifnet *
 ifunit_ref(const char *name)
 {
 	struct ifnet *ifp;
 
 	IFNET_RLOCK_NOSLEEP();
 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
 		if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 &&
 		    !(ifp->if_flags & IFF_DYING))
 			break;
 	}
 	if (ifp != NULL)
 		if_ref(ifp);
 	IFNET_RUNLOCK_NOSLEEP();
 	return (ifp);
 }
 
 struct ifnet *
 ifunit(const char *name)
 {
 	struct ifnet *ifp;
 
 	IFNET_RLOCK_NOSLEEP();
 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
 		if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0)
 			break;
 	}
 	IFNET_RUNLOCK_NOSLEEP();
 	return (ifp);
 }
 
 /*
  * Hardware specific interface ioctls.
  */
 static int
 ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td)
 {
 	struct ifreq *ifr;
 	int error = 0;
 	int new_flags, temp_flags;
 	size_t namelen, onamelen;
 	size_t descrlen;
 	char *descrbuf, *odescrbuf;
 	char new_name[IFNAMSIZ];
 	struct ifaddr *ifa;
 	struct sockaddr_dl *sdl;
 
 	ifr = (struct ifreq *)data;
 	switch (cmd) {
 	case SIOCGIFINDEX:
 		ifr->ifr_index = ifp->if_index;
 		break;
 
 	case SIOCGIFFLAGS:
 		temp_flags = ifp->if_flags | ifp->if_drv_flags;
 		ifr->ifr_flags = temp_flags & 0xffff;
 		ifr->ifr_flagshigh = temp_flags >> 16;
 		break;
 
 	case SIOCGIFCAP:
 		ifr->ifr_reqcap = ifp->if_capabilities;
 		ifr->ifr_curcap = ifp->if_capenable;
 		break;
 
 #ifdef MAC
 	case SIOCGIFMAC:
 		error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp);
 		break;
 #endif
 
 	case SIOCGIFMETRIC:
 		ifr->ifr_metric = ifp->if_metric;
 		break;
 
 	case SIOCGIFMTU:
 		ifr->ifr_mtu = ifp->if_mtu;
 		break;
 
 	case SIOCGIFPHYS:
 		/* XXXGL: did this ever worked? */
 		ifr->ifr_phys = 0;
 		break;
 
 	case SIOCGIFDESCR:
 		error = 0;
 		sx_slock(&ifdescr_sx);
 		if (ifp->if_description == NULL)
 			error = ENOMSG;
 		else {
 			/* space for terminating nul */
 			descrlen = strlen(ifp->if_description) + 1;
 			if (ifr->ifr_buffer.length < descrlen)
 				ifr->ifr_buffer.buffer = NULL;
 			else
 				error = copyout(ifp->if_description,
 				    ifr->ifr_buffer.buffer, descrlen);
 			ifr->ifr_buffer.length = descrlen;
 		}
 		sx_sunlock(&ifdescr_sx);
 		break;
 
 	case SIOCSIFDESCR:
 		error = priv_check(td, PRIV_NET_SETIFDESCR);
 		if (error)
 			return (error);
 
 		/*
 		 * Copy only (length-1) bytes to make sure that
 		 * if_description is always nul terminated.  The
 		 * length parameter is supposed to count the
 		 * terminating nul in.
 		 */
 		if (ifr->ifr_buffer.length > ifdescr_maxlen)
 			return (ENAMETOOLONG);
 		else if (ifr->ifr_buffer.length == 0)
 			descrbuf = NULL;
 		else {
 			descrbuf = malloc(ifr->ifr_buffer.length, M_IFDESCR,
 			    M_WAITOK | M_ZERO);
 			error = copyin(ifr->ifr_buffer.buffer, descrbuf,
 			    ifr->ifr_buffer.length - 1);
 			if (error) {
 				free(descrbuf, M_IFDESCR);
 				break;
 			}
 		}
 
 		sx_xlock(&ifdescr_sx);
 		odescrbuf = ifp->if_description;
 		ifp->if_description = descrbuf;
 		sx_xunlock(&ifdescr_sx);
 
 		getmicrotime(&ifp->if_lastchange);
 		free(odescrbuf, M_IFDESCR);
 		break;
 
 	case SIOCGIFFIB:
 		ifr->ifr_fib = ifp->if_fib;
 		break;
 
 	case SIOCSIFFIB:
 		error = priv_check(td, PRIV_NET_SETIFFIB);
 		if (error)
 			return (error);
 		if (ifr->ifr_fib >= rt_numfibs)
 			return (EINVAL);
 
 		ifp->if_fib = ifr->ifr_fib;
 		break;
 
 	case SIOCSIFFLAGS:
 		error = priv_check(td, PRIV_NET_SETIFFLAGS);
 		if (error)
 			return (error);
 		/*
 		 * Currently, no driver owned flags pass the IFF_CANTCHANGE
 		 * check, so we don't need special handling here yet.
 		 */
 		new_flags = (ifr->ifr_flags & 0xffff) |
 		    (ifr->ifr_flagshigh << 16);
 		if (ifp->if_flags & IFF_UP &&
 		    (new_flags & IFF_UP) == 0) {
 			if_down(ifp);
 		} else if (new_flags & IFF_UP &&
 		    (ifp->if_flags & IFF_UP) == 0) {
 			if_up(ifp);
 		}
 		/* See if permanently promiscuous mode bit is about to flip */
 		if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) {
 			if (new_flags & IFF_PPROMISC)
 				ifp->if_flags |= IFF_PROMISC;
 			else if (ifp->if_pcount == 0)
 				ifp->if_flags &= ~IFF_PROMISC;
 			if (log_promisc_mode_change)
                                 log(LOG_INFO, "%s: permanently promiscuous mode %s\n",
                                     ifp->if_xname,
                                     ((new_flags & IFF_PPROMISC) ?
                                      "enabled" : "disabled"));
 		}
 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
 			(new_flags &~ IFF_CANTCHANGE);
 		if (ifp->if_ioctl) {
 			(void) (*ifp->if_ioctl)(ifp, cmd, data);
 		}
 		getmicrotime(&ifp->if_lastchange);
 		break;
 
 	case SIOCSIFCAP:
 		error = priv_check(td, PRIV_NET_SETIFCAP);
 		if (error)
 			return (error);
 		if (ifp->if_ioctl == NULL)
 			return (EOPNOTSUPP);
 		if (ifr->ifr_reqcap & ~ifp->if_capabilities)
 			return (EINVAL);
 		error = (*ifp->if_ioctl)(ifp, cmd, data);
 		if (error == 0)
 			getmicrotime(&ifp->if_lastchange);
 		break;
 
 #ifdef MAC
 	case SIOCSIFMAC:
 		error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp);
 		break;
 #endif
 
 	case SIOCSIFNAME:
 		error = priv_check(td, PRIV_NET_SETIFNAME);
 		if (error)
 			return (error);
 		error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
 		if (error != 0)
 			return (error);
 		if (new_name[0] == '\0')
 			return (EINVAL);
 		if (new_name[IFNAMSIZ-1] != '\0') {
 			new_name[IFNAMSIZ-1] = '\0';
 			if (strlen(new_name) == IFNAMSIZ-1)
 				return (EINVAL);
 		}
 		if (ifunit(new_name) != NULL)
 			return (EEXIST);
 
 		/*
 		 * XXX: Locking.  Nothing else seems to lock if_flags,
 		 * and there are numerous other races with the
 		 * ifunit() checks not being atomic with namespace
 		 * changes (renames, vmoves, if_attach, etc).
 		 */
 		ifp->if_flags |= IFF_RENAMING;
 		
 		/* Announce the departure of the interface. */
 		rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
 		EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
 
 		log(LOG_INFO, "%s: changing name to '%s'\n",
 		    ifp->if_xname, new_name);
 
 		IF_ADDR_WLOCK(ifp);
 		strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
 		ifa = ifp->if_addr;
 		sdl = (struct sockaddr_dl *)ifa->ifa_addr;
 		namelen = strlen(new_name);
 		onamelen = sdl->sdl_nlen;
 		/*
 		 * Move the address if needed.  This is safe because we
 		 * allocate space for a name of length IFNAMSIZ when we
 		 * create this in if_attach().
 		 */
 		if (namelen != onamelen) {
 			bcopy(sdl->sdl_data + onamelen,
 			    sdl->sdl_data + namelen, sdl->sdl_alen);
 		}
 		bcopy(new_name, sdl->sdl_data, namelen);
 		sdl->sdl_nlen = namelen;
 		sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
 		bzero(sdl->sdl_data, onamelen);
 		while (namelen != 0)
 			sdl->sdl_data[--namelen] = 0xff;
 		IF_ADDR_WUNLOCK(ifp);
 
 		EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
 		/* Announce the return of the interface. */
 		rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
 
 		ifp->if_flags &= ~IFF_RENAMING;
 		break;
 
 #ifdef VIMAGE
 	case SIOCSIFVNET:
 		error = priv_check(td, PRIV_NET_SETIFVNET);
 		if (error)
 			return (error);
 		error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid);
 		break;
 #endif
 
 	case SIOCSIFMETRIC:
 		error = priv_check(td, PRIV_NET_SETIFMETRIC);
 		if (error)
 			return (error);
 		ifp->if_metric = ifr->ifr_metric;
 		getmicrotime(&ifp->if_lastchange);
 		break;
 
 	case SIOCSIFPHYS:
 		error = priv_check(td, PRIV_NET_SETIFPHYS);
 		if (error)
 			return (error);
 		if (ifp->if_ioctl == NULL)
 			return (EOPNOTSUPP);
 		error = (*ifp->if_ioctl)(ifp, cmd, data);
 		if (error == 0)
 			getmicrotime(&ifp->if_lastchange);
 		break;
 
 	case SIOCSIFMTU:
 	{
 		u_long oldmtu = ifp->if_mtu;
 
 		error = priv_check(td, PRIV_NET_SETIFMTU);
 		if (error)
 			return (error);
 		if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
 			return (EINVAL);
 		if (ifp->if_ioctl == NULL)
 			return (EOPNOTSUPP);
 		error = (*ifp->if_ioctl)(ifp, cmd, data);
 		if (error == 0) {
 			getmicrotime(&ifp->if_lastchange);
 			rt_ifmsg(ifp);
 		}
 		/*
 		 * If the link MTU changed, do network layer specific procedure.
 		 */
 		if (ifp->if_mtu != oldmtu) {
 #ifdef INET6
 			nd6_setmtu(ifp);
 #endif
 			rt_updatemtu(ifp);
 		}
 		break;
 	}
 
 	case SIOCADDMULTI:
 	case SIOCDELMULTI:
 		if (cmd == SIOCADDMULTI)
 			error = priv_check(td, PRIV_NET_ADDMULTI);
 		else
 			error = priv_check(td, PRIV_NET_DELMULTI);
 		if (error)
 			return (error);
 
 		/* Don't allow group membership on non-multicast interfaces. */
 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
 			return (EOPNOTSUPP);
 
 		/* Don't let users screw up protocols' entries. */
 		if (ifr->ifr_addr.sa_family != AF_LINK)
 			return (EINVAL);
 
 		if (cmd == SIOCADDMULTI) {
 			struct ifmultiaddr *ifma;
 
 			/*
 			 * Userland is only permitted to join groups once
 			 * via the if_addmulti() KPI, because it cannot hold
 			 * struct ifmultiaddr * between calls. It may also
 			 * lose a race while we check if the membership
 			 * already exists.
 			 */
 			IF_ADDR_RLOCK(ifp);
 			ifma = if_findmulti(ifp, &ifr->ifr_addr);
 			IF_ADDR_RUNLOCK(ifp);
 			if (ifma != NULL)
 				error = EADDRINUSE;
 			else
 				error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
 		} else {
 			error = if_delmulti(ifp, &ifr->ifr_addr);
 		}
 		if (error == 0)
 			getmicrotime(&ifp->if_lastchange);
 		break;
 
 	case SIOCSIFPHYADDR:
 	case SIOCDIFPHYADDR:
 #ifdef INET6
 	case SIOCSIFPHYADDR_IN6:
 #endif
 	case SIOCSIFMEDIA:
 	case SIOCSIFGENERIC:
 		error = priv_check(td, PRIV_NET_HWIOCTL);
 		if (error)
 			return (error);
 		if (ifp->if_ioctl == NULL)
 			return (EOPNOTSUPP);
 		error = (*ifp->if_ioctl)(ifp, cmd, data);
 		if (error == 0)
 			getmicrotime(&ifp->if_lastchange);
 		break;
 
 	case SIOCGIFSTATUS:
 	case SIOCGIFPSRCADDR:
 	case SIOCGIFPDSTADDR:
 	case SIOCGIFMEDIA:
 	case SIOCGIFXMEDIA:
 	case SIOCGIFGENERIC:
 		if (ifp->if_ioctl == NULL)
 			return (EOPNOTSUPP);
 		error = (*ifp->if_ioctl)(ifp, cmd, data);
 		break;
 
 	case SIOCSIFLLADDR:
 		error = priv_check(td, PRIV_NET_SETLLADDR);
 		if (error)
 			return (error);
 		error = if_setlladdr(ifp,
 		    ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
 		break;
 
 	case SIOCAIFGROUP:
 	{
 		struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr;
 
 		error = priv_check(td, PRIV_NET_ADDIFGROUP);
 		if (error)
 			return (error);
 		if ((error = if_addgroup(ifp, ifgr->ifgr_group)))
 			return (error);
 		break;
 	}
 
 	case SIOCGIFGROUP:
 		if ((error = if_getgroup((struct ifgroupreq *)ifr, ifp)))
 			return (error);
 		break;
 
 	case SIOCDIFGROUP:
 	{
 		struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr;
 
 		error = priv_check(td, PRIV_NET_DELIFGROUP);
 		if (error)
 			return (error);
 		if ((error = if_delgroup(ifp, ifgr->ifgr_group)))
 			return (error);
 		break;
 	}
 
 	default:
 		error = ENOIOCTL;
 		break;
 	}
 	return (error);
 }
 
 #ifdef COMPAT_FREEBSD32
 struct ifconf32 {
 	int32_t	ifc_len;
 	union {
 		uint32_t	ifcu_buf;
 		uint32_t	ifcu_req;
 	} ifc_ifcu;
 };
 #define	SIOCGIFCONF32	_IOWR('i', 36, struct ifconf32)
 #endif
 
 /*
  * Interface ioctls.
  */
 int
 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td)
 {
 	struct ifnet *ifp;
 	struct ifreq *ifr;
 	int error;
 	int oif_flags;
 #ifdef VIMAGE
 	int shutdown;
 #endif
 
 	CURVNET_SET(so->so_vnet);
 #ifdef VIMAGE
 	/* Make sure the VNET is stable. */
 	shutdown = (so->so_vnet->vnet_state > SI_SUB_VNET &&
 		 so->so_vnet->vnet_state < SI_SUB_VNET_DONE) ? 1 : 0;
 	if (shutdown) {
 		CURVNET_RESTORE();
 		return (EBUSY);
 	}
 #endif
 
 
 	switch (cmd) {
 	case SIOCGIFCONF:
 		error = ifconf(cmd, data);
 		CURVNET_RESTORE();
 		return (error);
 
 #ifdef COMPAT_FREEBSD32
 	case SIOCGIFCONF32:
 		{
 			struct ifconf32 *ifc32;
 			struct ifconf ifc;
 
 			ifc32 = (struct ifconf32 *)data;
 			ifc.ifc_len = ifc32->ifc_len;
 			ifc.ifc_buf = PTRIN(ifc32->ifc_buf);
 
 			error = ifconf(SIOCGIFCONF, (void *)&ifc);
 			CURVNET_RESTORE();
 			if (error == 0)
 				ifc32->ifc_len = ifc.ifc_len;
 			return (error);
 		}
 #endif
 	}
 	ifr = (struct ifreq *)data;
 
 	switch (cmd) {
 #ifdef VIMAGE
 	case SIOCSIFRVNET:
 		error = priv_check(td, PRIV_NET_SETIFVNET);
 		if (error == 0)
 			error = if_vmove_reclaim(td, ifr->ifr_name,
 			    ifr->ifr_jid);
 		CURVNET_RESTORE();
 		return (error);
 #endif
 	case SIOCIFCREATE:
 	case SIOCIFCREATE2:
 		error = priv_check(td, PRIV_NET_IFCREATE);
 		if (error == 0)
 			error = if_clone_create(ifr->ifr_name,
 			    sizeof(ifr->ifr_name),
 			    cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL);
 		CURVNET_RESTORE();
 		return (error);
 	case SIOCIFDESTROY:
 		error = priv_check(td, PRIV_NET_IFDESTROY);
 		if (error == 0)
 			error = if_clone_destroy(ifr->ifr_name);
 		CURVNET_RESTORE();
 		return (error);
 
 	case SIOCIFGCLONERS:
 		error = if_clone_list((struct if_clonereq *)data);
 		CURVNET_RESTORE();
 		return (error);
 	case SIOCGIFGMEMB:
 		error = if_getgroupmembers((struct ifgroupreq *)data);
 		CURVNET_RESTORE();
 		return (error);
 #if defined(INET) || defined(INET6)
 	case SIOCSVH:
 	case SIOCGVH:
 		if (carp_ioctl_p == NULL)
 			error = EPROTONOSUPPORT;
 		else
 			error = (*carp_ioctl_p)(ifr, cmd, td);
 		CURVNET_RESTORE();
 		return (error);
 #endif
 	}
 
 	ifp = ifunit_ref(ifr->ifr_name);
 	if (ifp == NULL) {
 		CURVNET_RESTORE();
 		return (ENXIO);
 	}
 
 	error = ifhwioctl(cmd, ifp, data, td);
 	if (error != ENOIOCTL) {
 		if_rele(ifp);
 		CURVNET_RESTORE();
 		return (error);
 	}
 
 	oif_flags = ifp->if_flags;
 	if (so->so_proto == NULL) {
 		if_rele(ifp);
 		CURVNET_RESTORE();
 		return (EOPNOTSUPP);
 	}
 
 	/*
 	 * Pass the request on to the socket control method, and if the
 	 * latter returns EOPNOTSUPP, directly to the interface.
 	 *
 	 * Make an exception for the legacy SIOCSIF* requests.  Drivers
 	 * trust SIOCSIFADDR et al to come from an already privileged
 	 * layer, and do not perform any credentials checks or input
 	 * validation.
 	 */
 	error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data,
 	    ifp, td));
 	if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL &&
 	    cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR &&
 	    cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK)
 		error = (*ifp->if_ioctl)(ifp, cmd, data);
 
 	if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
 #ifdef INET6
 		if (ifp->if_flags & IFF_UP)
 			in6_if_up(ifp);
 #endif
 	}
 	if_rele(ifp);
 	CURVNET_RESTORE();
 	return (error);
 }
 
 /*
  * The code common to handling reference counted flags,
  * e.g., in ifpromisc() and if_allmulti().
  * The "pflag" argument can specify a permanent mode flag to check,
  * such as IFF_PPROMISC for promiscuous mode; should be 0 if none.
  *
  * Only to be used on stack-owned flags, not driver-owned flags.
  */
 static int
 if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch)
 {
 	struct ifreq ifr;
 	int error;
 	int oldflags, oldcount;
 
 	/* Sanity checks to catch programming errors */
 	KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0,
 	    ("%s: setting driver-owned flag %d", __func__, flag));
 
 	if (onswitch)
 		KASSERT(*refcount >= 0,
 		    ("%s: increment negative refcount %d for flag %d",
 		    __func__, *refcount, flag));
 	else
 		KASSERT(*refcount > 0,
 		    ("%s: decrement non-positive refcount %d for flag %d",
 		    __func__, *refcount, flag));
 
 	/* In case this mode is permanent, just touch refcount */
 	if (ifp->if_flags & pflag) {
 		*refcount += onswitch ? 1 : -1;
 		return (0);
 	}
 
 	/* Save ifnet parameters for if_ioctl() may fail */
 	oldcount = *refcount;
 	oldflags = ifp->if_flags;
 	
 	/*
 	 * See if we aren't the only and touching refcount is enough.
 	 * Actually toggle interface flag if we are the first or last.
 	 */
 	if (onswitch) {
 		if ((*refcount)++)
 			return (0);
 		ifp->if_flags |= flag;
 	} else {
 		if (--(*refcount))
 			return (0);
 		ifp->if_flags &= ~flag;
 	}
 
 	/* Call down the driver since we've changed interface flags */
 	if (ifp->if_ioctl == NULL) {
 		error = EOPNOTSUPP;
 		goto recover;
 	}
 	ifr.ifr_flags = ifp->if_flags & 0xffff;
 	ifr.ifr_flagshigh = ifp->if_flags >> 16;
 	error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
 	if (error)
 		goto recover;
 	/* Notify userland that interface flags have changed */
 	rt_ifmsg(ifp);
 	return (0);
 
 recover:
 	/* Recover after driver error */
 	*refcount = oldcount;
 	ifp->if_flags = oldflags;
 	return (error);
 }
 
 /*
  * Set/clear promiscuous mode on interface ifp based on the truth value
  * of pswitch.  The calls are reference counted so that only the first
  * "on" request actually has an effect, as does the final "off" request.
  * Results are undefined if the "off" and "on" requests are not matched.
  */
 int
 ifpromisc(struct ifnet *ifp, int pswitch)
 {
 	int error;
 	int oldflags = ifp->if_flags;
 
 	error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC,
 			   &ifp->if_pcount, pswitch);
 	/* If promiscuous mode status has changed, log a message */
 	if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) &&
             log_promisc_mode_change)
 		log(LOG_INFO, "%s: promiscuous mode %s\n",
 		    ifp->if_xname,
 		    (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled");
 	return (error);
 }
 
 /*
  * Return interface configuration
  * of system.  List may be used
  * in later ioctl's (above) to get
  * other information.
  */
 /*ARGSUSED*/
 static int
 ifconf(u_long cmd, caddr_t data)
 {
 	struct ifconf *ifc = (struct ifconf *)data;
 	struct ifnet *ifp;
 	struct ifaddr *ifa;
 	struct ifreq ifr;
 	struct sbuf *sb;
 	int error, full = 0, valid_len, max_len;
 
 	/* Limit initial buffer size to MAXPHYS to avoid DoS from userspace. */
 	max_len = MAXPHYS - 1;
 
 	/* Prevent hostile input from being able to crash the system */
 	if (ifc->ifc_len <= 0)
 		return (EINVAL);
 
 again:
 	if (ifc->ifc_len <= max_len) {
 		max_len = ifc->ifc_len;
 		full = 1;
 	}
 	sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN);
 	max_len = 0;
 	valid_len = 0;
 
 	IFNET_RLOCK();
 	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
 		int addrs;
 
 		/*
 		 * Zero the ifr_name buffer to make sure we don't
 		 * disclose the contents of the stack.
 		 */
 		memset(ifr.ifr_name, 0, sizeof(ifr.ifr_name));
 
 		if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
 		    >= sizeof(ifr.ifr_name)) {
 			sbuf_delete(sb);
 			IFNET_RUNLOCK();
 			return (ENAMETOOLONG);
 		}
 
 		addrs = 0;
 		IF_ADDR_RLOCK(ifp);
 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
 			struct sockaddr *sa = ifa->ifa_addr;
 
 			if (prison_if(curthread->td_ucred, sa) != 0)
 				continue;
 			addrs++;
 			if (sa->sa_len <= sizeof(*sa)) {
 				ifr.ifr_addr = *sa;
 				sbuf_bcat(sb, &ifr, sizeof(ifr));
 				max_len += sizeof(ifr);
 			} else {
 				sbuf_bcat(sb, &ifr,
 				    offsetof(struct ifreq, ifr_addr));
 				max_len += offsetof(struct ifreq, ifr_addr);
 				sbuf_bcat(sb, sa, sa->sa_len);
 				max_len += sa->sa_len;
 			}
 
 			if (sbuf_error(sb) == 0)
 				valid_len = sbuf_len(sb);
 		}
 		IF_ADDR_RUNLOCK(ifp);
 		if (addrs == 0) {
 			bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr));
 			sbuf_bcat(sb, &ifr, sizeof(ifr));
 			max_len += sizeof(ifr);
 
 			if (sbuf_error(sb) == 0)
 				valid_len = sbuf_len(sb);
 		}
 	}
 	IFNET_RUNLOCK();
 
 	/*
 	 * If we didn't allocate enough space (uncommon), try again.  If
 	 * we have already allocated as much space as we are allowed,
 	 * return what we've got.
 	 */
 	if (valid_len != max_len && !full) {
 		sbuf_delete(sb);
 		goto again;
 	}
 
 	ifc->ifc_len = valid_len;
 	sbuf_finish(sb);
 	error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len);
 	sbuf_delete(sb);
 	return (error);
 }
 
 /*
  * Just like ifpromisc(), but for all-multicast-reception mode.
  */
 int
 if_allmulti(struct ifnet *ifp, int onswitch)
 {
 
 	return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch));
 }
 
 struct ifmultiaddr *
 if_findmulti(struct ifnet *ifp, const struct sockaddr *sa)
 {
 	struct ifmultiaddr *ifma;
 
 	IF_ADDR_LOCK_ASSERT(ifp);
 
 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 		if (sa->sa_family == AF_LINK) {
 			if (sa_dl_equal(ifma->ifma_addr, sa))
 				break;
 		} else {
 			if (sa_equal(ifma->ifma_addr, sa))
 				break;
 		}
 	}
 
 	return ifma;
 }
 
 /*
  * Allocate a new ifmultiaddr and initialize based on passed arguments.  We
  * make copies of passed sockaddrs.  The ifmultiaddr will not be added to
  * the ifnet multicast address list here, so the caller must do that and
  * other setup work (such as notifying the device driver).  The reference
  * count is initialized to 1.
  */
 static struct ifmultiaddr *
 if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa,
     int mflags)
 {
 	struct ifmultiaddr *ifma;
 	struct sockaddr *dupsa;
 
 	ifma = malloc(sizeof *ifma, M_IFMADDR, mflags |
 	    M_ZERO);
 	if (ifma == NULL)
 		return (NULL);
 
 	dupsa = malloc(sa->sa_len, M_IFMADDR, mflags);
 	if (dupsa == NULL) {
 		free(ifma, M_IFMADDR);
 		return (NULL);
 	}
 	bcopy(sa, dupsa, sa->sa_len);
 	ifma->ifma_addr = dupsa;
 
 	ifma->ifma_ifp = ifp;
 	ifma->ifma_refcount = 1;
 	ifma->ifma_protospec = NULL;
 
 	if (llsa == NULL) {
 		ifma->ifma_lladdr = NULL;
 		return (ifma);
 	}
 
 	dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags);
 	if (dupsa == NULL) {
 		free(ifma->ifma_addr, M_IFMADDR);
 		free(ifma, M_IFMADDR);
 		return (NULL);
 	}
 	bcopy(llsa, dupsa, llsa->sa_len);
 	ifma->ifma_lladdr = dupsa;
 
 	return (ifma);
 }
 
 /*
  * if_freemulti: free ifmultiaddr structure and possibly attached related
  * addresses.  The caller is responsible for implementing reference
  * counting, notifying the driver, handling routing messages, and releasing
  * any dependent link layer state.
  */
 static void
 if_freemulti(struct ifmultiaddr *ifma)
 {
 
 	KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d",
 	    ifma->ifma_refcount));
 
 	if (ifma->ifma_lladdr != NULL)
 		free(ifma->ifma_lladdr, M_IFMADDR);
 	free(ifma->ifma_addr, M_IFMADDR);
 	free(ifma, M_IFMADDR);
 }
 
 /*
  * Register an additional multicast address with a network interface.
  *
  * - If the address is already present, bump the reference count on the
  *   address and return.
  * - If the address is not link-layer, look up a link layer address.
  * - Allocate address structures for one or both addresses, and attach to the
  *   multicast address list on the interface.  If automatically adding a link
  *   layer address, the protocol address will own a reference to the link
  *   layer address, to be freed when it is freed.
  * - Notify the network device driver of an addition to the multicast address
  *   list.
  *
  * 'sa' points to caller-owned memory with the desired multicast address.
  *
  * 'retifma' will be used to return a pointer to the resulting multicast
  * address reference, if desired.
  */
 int
 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
     struct ifmultiaddr **retifma)
 {
 	struct ifmultiaddr *ifma, *ll_ifma;
 	struct sockaddr *llsa;
 	struct sockaddr_dl sdl;
 	int error;
 
 	/*
 	 * If the address is already present, return a new reference to it;
 	 * otherwise, allocate storage and set up a new address.
 	 */
 	IF_ADDR_WLOCK(ifp);
 	ifma = if_findmulti(ifp, sa);
 	if (ifma != NULL) {
 		ifma->ifma_refcount++;
 		if (retifma != NULL)
 			*retifma = ifma;
 		IF_ADDR_WUNLOCK(ifp);
 		return (0);
 	}
 
 	/*
 	 * The address isn't already present; resolve the protocol address
 	 * into a link layer address, and then look that up, bump its
 	 * refcount or allocate an ifma for that also.
 	 * Most link layer resolving functions returns address data which
 	 * fits inside default sockaddr_dl structure. However callback
 	 * can allocate another sockaddr structure, in that case we need to
 	 * free it later.
 	 */
 	llsa = NULL;
 	ll_ifma = NULL;
 	if (ifp->if_resolvemulti != NULL) {
 		/* Provide called function with buffer size information */
 		sdl.sdl_len = sizeof(sdl);
 		llsa = (struct sockaddr *)&sdl;
 		error = ifp->if_resolvemulti(ifp, &llsa, sa);
 		if (error)
 			goto unlock_out;
 	}
 
 	/*
 	 * Allocate the new address.  Don't hook it up yet, as we may also
 	 * need to allocate a link layer multicast address.
 	 */
 	ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT);
 	if (ifma == NULL) {
 		error = ENOMEM;
 		goto free_llsa_out;
 	}
 
 	/*
 	 * If a link layer address is found, we'll need to see if it's
 	 * already present in the address list, or allocate is as well.
 	 * When this block finishes, the link layer address will be on the
 	 * list.
 	 */
 	if (llsa != NULL) {
 		ll_ifma = if_findmulti(ifp, llsa);
 		if (ll_ifma == NULL) {
 			ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT);
 			if (ll_ifma == NULL) {
 				--ifma->ifma_refcount;
 				if_freemulti(ifma);
 				error = ENOMEM;
 				goto free_llsa_out;
 			}
 			TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma,
 			    ifma_link);
 		} else
 			ll_ifma->ifma_refcount++;
 		ifma->ifma_llifma = ll_ifma;
 	}
 
 	/*
 	 * We now have a new multicast address, ifma, and possibly a new or
 	 * referenced link layer address.  Add the primary address to the
 	 * ifnet address list.
 	 */
 	TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
 
 	if (retifma != NULL)
 		*retifma = ifma;
 
 	/*
 	 * Must generate the message while holding the lock so that 'ifma'
 	 * pointer is still valid.
 	 */
 	rt_newmaddrmsg(RTM_NEWMADDR, ifma);
 	IF_ADDR_WUNLOCK(ifp);
 
 	/*
 	 * We are certain we have added something, so call down to the
 	 * interface to let them know about it.
 	 */
 	if (ifp->if_ioctl != NULL) {
 		(void) (*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0);
 	}
 
 	if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl))
 		link_free_sdl(llsa);
 
 	return (0);
 
 free_llsa_out:
 	if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl))
 		link_free_sdl(llsa);
 
 unlock_out:
 	IF_ADDR_WUNLOCK(ifp);
 	return (error);
 }
 
 /*
  * Delete a multicast group membership by network-layer group address.
  *
  * Returns ENOENT if the entry could not be found. If ifp no longer
  * exists, results are undefined. This entry point should only be used
  * from subsystems which do appropriate locking to hold ifp for the
  * duration of the call.
  * Network-layer protocol domains must use if_delmulti_ifma().
  */
 int
 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
 {
 	struct ifmultiaddr *ifma;
 	int lastref;
 #ifdef INVARIANTS
 	struct ifnet *oifp;
 
 	IFNET_RLOCK_NOSLEEP();
 	TAILQ_FOREACH(oifp, &V_ifnet, if_link)
 		if (ifp == oifp)
 			break;
 	if (ifp != oifp)
 		ifp = NULL;
 	IFNET_RUNLOCK_NOSLEEP();
 
 	KASSERT(ifp != NULL, ("%s: ifnet went away", __func__));
 #endif
 	if (ifp == NULL)
 		return (ENOENT);
 
 	IF_ADDR_WLOCK(ifp);
 	lastref = 0;
 	ifma = if_findmulti(ifp, sa);
 	if (ifma != NULL)
 		lastref = if_delmulti_locked(ifp, ifma, 0);
 	IF_ADDR_WUNLOCK(ifp);
 
 	if (ifma == NULL)
 		return (ENOENT);
 
 	if (lastref && ifp->if_ioctl != NULL) {
 		(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
 	}
 
 	return (0);
 }
 
 /*
  * Delete all multicast group membership for an interface.
  * Should be used to quickly flush all multicast filters.
  */
 void
 if_delallmulti(struct ifnet *ifp)
 {
 	struct ifmultiaddr *ifma;
 	struct ifmultiaddr *next;
 
 	IF_ADDR_WLOCK(ifp);
 	TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next)
 		if_delmulti_locked(ifp, ifma, 0);
 	IF_ADDR_WUNLOCK(ifp);
 }
 
 /*
  * Delete a multicast group membership by group membership pointer.
  * Network-layer protocol domains must use this routine.
  *
  * It is safe to call this routine if the ifp disappeared.
  */
 void
 if_delmulti_ifma(struct ifmultiaddr *ifma)
 {
 	struct ifnet *ifp;
 	int lastref;
 
 	ifp = ifma->ifma_ifp;
 #ifdef DIAGNOSTIC
 	if (ifp == NULL) {
 		printf("%s: ifma_ifp seems to be detached\n", __func__);
 	} else {
 		struct ifnet *oifp;
 
 		IFNET_RLOCK_NOSLEEP();
 		TAILQ_FOREACH(oifp, &V_ifnet, if_link)
 			if (ifp == oifp)
 				break;
 		if (ifp != oifp) {
 			printf("%s: ifnet %p disappeared\n", __func__, ifp);
 			ifp = NULL;
 		}
 		IFNET_RUNLOCK_NOSLEEP();
 	}
 #endif
 	/*
 	 * If and only if the ifnet instance exists: Acquire the address lock.
 	 */
 	if (ifp != NULL)
 		IF_ADDR_WLOCK(ifp);
 
 	lastref = if_delmulti_locked(ifp, ifma, 0);
 
 	if (ifp != NULL) {
 		/*
 		 * If and only if the ifnet instance exists:
 		 *  Release the address lock.
 		 *  If the group was left: update the hardware hash filter.
 		 */
 		IF_ADDR_WUNLOCK(ifp);
 		if (lastref && ifp->if_ioctl != NULL) {
 			(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
 		}
 	}
 }
 
 /*
  * Perform deletion of network-layer and/or link-layer multicast address.
  *
  * Return 0 if the reference count was decremented.
  * Return 1 if the final reference was released, indicating that the
  * hardware hash filter should be reprogrammed.
  */
 static int
 if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching)
 {
 	struct ifmultiaddr *ll_ifma;
 
 	if (ifp != NULL && ifma->ifma_ifp != NULL) {
 		KASSERT(ifma->ifma_ifp == ifp,
 		    ("%s: inconsistent ifp %p", __func__, ifp));
 		IF_ADDR_WLOCK_ASSERT(ifp);
 	}
 
 	ifp = ifma->ifma_ifp;
 
 	/*
 	 * If the ifnet is detaching, null out references to ifnet,
 	 * so that upper protocol layers will notice, and not attempt
 	 * to obtain locks for an ifnet which no longer exists. The
 	 * routing socket announcement must happen before the ifnet
 	 * instance is detached from the system.
 	 */
 	if (detaching) {
 #ifdef DIAGNOSTIC
 		printf("%s: detaching ifnet instance %p\n", __func__, ifp);
 #endif
 		/*
 		 * ifp may already be nulled out if we are being reentered
 		 * to delete the ll_ifma.
 		 */
 		if (ifp != NULL) {
 			rt_newmaddrmsg(RTM_DELMADDR, ifma);
 			ifma->ifma_ifp = NULL;
 		}
 	}
 
 	if (--ifma->ifma_refcount > 0)
 		return 0;
 
 	/*
 	 * If this ifma is a network-layer ifma, a link-layer ifma may
 	 * have been associated with it. Release it first if so.
 	 */
 	ll_ifma = ifma->ifma_llifma;
 	if (ll_ifma != NULL) {
 		KASSERT(ifma->ifma_lladdr != NULL,
 		    ("%s: llifma w/o lladdr", __func__));
 		if (detaching)
 			ll_ifma->ifma_ifp = NULL;	/* XXX */
 		if (--ll_ifma->ifma_refcount == 0) {
 			if (ifp != NULL) {
 				TAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma,
 				    ifma_link);
 			}
 			if_freemulti(ll_ifma);
 		}
 	}
 
 	if (ifp != NULL)
 		TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
 
 	if_freemulti(ifma);
 
 	/*
 	 * The last reference to this instance of struct ifmultiaddr
 	 * was released; the hardware should be notified of this change.
 	 */
 	return 1;
 }
 
 /*
  * Set the link layer address on an interface.
  *
  * At this time we only support certain types of interfaces,
  * and we don't allow the length of the address to change.
  *
  * Set noinline to be dtrace-friendly
  */
 __noinline int
 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
 {
 	struct sockaddr_dl *sdl;
 	struct ifaddr *ifa;
 	struct ifreq ifr;
 
 	IF_ADDR_RLOCK(ifp);
 	ifa = ifp->if_addr;
 	if (ifa == NULL) {
 		IF_ADDR_RUNLOCK(ifp);
 		return (EINVAL);
 	}
 	ifa_ref(ifa);
 	IF_ADDR_RUNLOCK(ifp);
 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
 	if (sdl == NULL) {
 		ifa_free(ifa);
 		return (EINVAL);
 	}
 	if (len != sdl->sdl_alen) {	/* don't allow length to change */
 		ifa_free(ifa);
 		return (EINVAL);
 	}
 	switch (ifp->if_type) {
 	case IFT_ETHER:
 	case IFT_FDDI:
 	case IFT_XETHER:
 	case IFT_ISO88025:
 	case IFT_L2VLAN:
 	case IFT_BRIDGE:
 	case IFT_ARCNET:
 	case IFT_IEEE8023ADLAG:
 	case IFT_IEEE80211:
 		bcopy(lladdr, LLADDR(sdl), len);
 		ifa_free(ifa);
 		break;
 	default:
 		ifa_free(ifa);
 		return (ENODEV);
 	}
 
 	/*
 	 * If the interface is already up, we need
 	 * to re-init it in order to reprogram its
 	 * address filter.
 	 */
 	if ((ifp->if_flags & IFF_UP) != 0) {
 		if (ifp->if_ioctl) {
 			ifp->if_flags &= ~IFF_UP;
 			ifr.ifr_flags = ifp->if_flags & 0xffff;
 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
 			(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
 			ifp->if_flags |= IFF_UP;
 			ifr.ifr_flags = ifp->if_flags & 0xffff;
 			ifr.ifr_flagshigh = ifp->if_flags >> 16;
 			(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
 		}
 	}
 	EVENTHANDLER_INVOKE(iflladdr_event, ifp);
 	return (0);
 }
 
 /*
  * Compat function for handling basic encapsulation requests.
  * Not converted stacks (FDDI, IB, ..) supports traditional
  * output model: ARP (and other similar L2 protocols) are handled
  * inside output routine, arpresolve/nd6_resolve() returns MAC
  * address instead of full prepend.
  *
  * This function creates calculated header==MAC for IPv4/IPv6 and
  * returns EAFNOSUPPORT (which is then handled in ARP code) for other
  * address families.
  */
 static int
 if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req)
 {
 
 	if (req->rtype != IFENCAP_LL)
 		return (EOPNOTSUPP);
 
 	if (req->bufsize < req->lladdr_len)
 		return (ENOMEM);
 
 	switch (req->family) {
 	case AF_INET:
 	case AF_INET6:
 		break;
 	default:
 		return (EAFNOSUPPORT);
 	}
 
 	/* Copy lladdr to storage as is */
 	memmove(req->buf, req->lladdr, req->lladdr_len);
 	req->bufsize = req->lladdr_len;
 	req->lladdr_off = 0;
 
 	return (0);
 }
 
 /*
  * The name argument must be a pointer to storage which will last as
  * long as the interface does.  For physical devices, the result of
  * device_get_name(dev) is a good choice and for pseudo-devices a
  * static string works well.
  */
 void
 if_initname(struct ifnet *ifp, const char *name, int unit)
 {
 	ifp->if_dname = name;
 	ifp->if_dunit = unit;
 	if (unit != IF_DUNIT_NONE)
 		snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
 	else
 		strlcpy(ifp->if_xname, name, IFNAMSIZ);
 }
 
 int
 if_printf(struct ifnet *ifp, const char * fmt, ...)
 {
 	va_list ap;
 	int retval;
 
 	retval = printf("%s: ", ifp->if_xname);
 	va_start(ap, fmt);
 	retval += vprintf(fmt, ap);
 	va_end(ap);
 	return (retval);
 }
 
 void
 if_start(struct ifnet *ifp)
 {
 
 	(*(ifp)->if_start)(ifp);
 }
 
 /*
  * Backwards compatibility interface for drivers 
  * that have not implemented it
  */
 static int
 if_transmit(struct ifnet *ifp, struct mbuf *m)
 {
 	int error;
 
 	IFQ_HANDOFF(ifp, m, error);
 	return (error);
 }
 
 static void
 if_input_default(struct ifnet *ifp __unused, struct mbuf *m)
 {
 
 	m_freem(m);
 }
 
 int
 if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust)
 {
 	int active = 0;
 
 	IF_LOCK(ifq);
 	if (_IF_QFULL(ifq)) {
 		IF_UNLOCK(ifq);
 		if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
 		m_freem(m);
 		return (0);
 	}
 	if (ifp != NULL) {
 		if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust);
 		if (m->m_flags & (M_BCAST|M_MCAST))
 			if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
 		active = ifp->if_drv_flags & IFF_DRV_OACTIVE;
 	}
 	_IF_ENQUEUE(ifq, m);
 	IF_UNLOCK(ifq);
 	if (ifp != NULL && !active)
 		(*(ifp)->if_start)(ifp);
 	return (1);
 }
 
 void
 if_register_com_alloc(u_char type,
     if_com_alloc_t *a, if_com_free_t *f)
 {
 	
 	KASSERT(if_com_alloc[type] == NULL,
 	    ("if_register_com_alloc: %d already registered", type));
 	KASSERT(if_com_free[type] == NULL,
 	    ("if_register_com_alloc: %d free already registered", type));
 
 	if_com_alloc[type] = a;
 	if_com_free[type] = f;
 }
 
 void
 if_deregister_com_alloc(u_char type)
 {
 	
 	KASSERT(if_com_alloc[type] != NULL,
 	    ("if_deregister_com_alloc: %d not registered", type));
 	KASSERT(if_com_free[type] != NULL,
 	    ("if_deregister_com_alloc: %d free not registered", type));
 	if_com_alloc[type] = NULL;
 	if_com_free[type] = NULL;
 }
 
 /* API for driver access to network stack owned ifnet.*/
 uint64_t
 if_setbaudrate(struct ifnet *ifp, uint64_t baudrate)
 {
 	uint64_t oldbrate;
 
 	oldbrate = ifp->if_baudrate;
 	ifp->if_baudrate = baudrate;
 	return (oldbrate);
 }
 
 uint64_t
 if_getbaudrate(if_t ifp)
 {
 
 	return (((struct ifnet *)ifp)->if_baudrate);
 }
 
 int
 if_setcapabilities(if_t ifp, int capabilities)
 {
 	((struct ifnet *)ifp)->if_capabilities = capabilities;
 	return (0);
 }
 
 int
 if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit)
 {
 	((struct ifnet *)ifp)->if_capabilities |= setbit;
 	((struct ifnet *)ifp)->if_capabilities &= ~clearbit;
 
 	return (0);
 }
 
 int
 if_getcapabilities(if_t ifp)
 {
 	return ((struct ifnet *)ifp)->if_capabilities;
 }
 
 int 
 if_setcapenable(if_t ifp, int capabilities)
 {
 	((struct ifnet *)ifp)->if_capenable = capabilities;
 	return (0);
 }
 
 int 
 if_setcapenablebit(if_t ifp, int setcap, int clearcap)
 {
 	if(setcap) 
 		((struct ifnet *)ifp)->if_capenable |= setcap;
 	if(clearcap)
 		((struct ifnet *)ifp)->if_capenable &= ~clearcap;
 
 	return (0);
 }
 
 const char *
 if_getdname(if_t ifp)
 {
 	return ((struct ifnet *)ifp)->if_dname;
 }
 
 int 
 if_togglecapenable(if_t ifp, int togglecap)
 {
 	((struct ifnet *)ifp)->if_capenable ^= togglecap;
 	return (0);
 }
 
 int
 if_getcapenable(if_t ifp)
 {
 	return ((struct ifnet *)ifp)->if_capenable;
 }
 
 /*
  * This is largely undesirable because it ties ifnet to a device, but does
  * provide flexiblity for an embedded product vendor. Should be used with
  * the understanding that it violates the interface boundaries, and should be
  * a last resort only.
  */
 int
 if_setdev(if_t ifp, void *dev)
 {
 	return (0);
 }
 
 int
 if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags)
 {
 	((struct ifnet *)ifp)->if_drv_flags |= set_flags;
 	((struct ifnet *)ifp)->if_drv_flags &= ~clear_flags;
 
 	return (0);
 }
 
 int
 if_getdrvflags(if_t ifp)
 {
 	return ((struct ifnet *)ifp)->if_drv_flags;
 }
  
 int
 if_setdrvflags(if_t ifp, int flags)
 {
 	((struct ifnet *)ifp)->if_drv_flags = flags;
 	return (0);
 }
 
 
 int
 if_setflags(if_t ifp, int flags)
 {
 	((struct ifnet *)ifp)->if_flags = flags;
 	return (0);
 }
 
 int
 if_setflagbits(if_t ifp, int set, int clear)
 {
 	((struct ifnet *)ifp)->if_flags |= set;
 	((struct ifnet *)ifp)->if_flags &= ~clear;
 
 	return (0);
 }
 
 int
 if_getflags(if_t ifp)
 {
 	return ((struct ifnet *)ifp)->if_flags;
 }
 
 int
 if_clearhwassist(if_t ifp)
 {
 	((struct ifnet *)ifp)->if_hwassist = 0;
 	return (0);
 }
 
 int
 if_sethwassistbits(if_t ifp, int toset, int toclear)
 {
 	((struct ifnet *)ifp)->if_hwassist |= toset;
 	((struct ifnet *)ifp)->if_hwassist &= ~toclear;
 
 	return (0);
 }
 
 int
 if_sethwassist(if_t ifp, int hwassist_bit)
 {
 	((struct ifnet *)ifp)->if_hwassist = hwassist_bit;
 	return (0);
 }
 
 int
 if_gethwassist(if_t ifp)
 {
 	return ((struct ifnet *)ifp)->if_hwassist;
 }
 
 int
 if_setmtu(if_t ifp, int mtu)
 {
 	((struct ifnet *)ifp)->if_mtu = mtu;
 	return (0);
 }
 
 int
 if_getmtu(if_t ifp)
 {
 	return ((struct ifnet *)ifp)->if_mtu;
 }
 
 int
 if_getmtu_family(if_t ifp, int family)
 {
 	struct domain *dp;
 
 	for (dp = domains; dp; dp = dp->dom_next) {
 		if (dp->dom_family == family && dp->dom_ifmtu != NULL)
 			return (dp->dom_ifmtu((struct ifnet *)ifp));
 	}
 
 	return (((struct ifnet *)ifp)->if_mtu);
 }
 
 int
 if_setsoftc(if_t ifp, void *softc)
 {
 	((struct ifnet *)ifp)->if_softc = softc;
 	return (0);
 }
 
 void *
 if_getsoftc(if_t ifp)
 {
 	return ((struct ifnet *)ifp)->if_softc;
 }
 
 void 
 if_setrcvif(struct mbuf *m, if_t ifp)
 {
 	m->m_pkthdr.rcvif = (struct ifnet *)ifp;
 }
 
 void 
 if_setvtag(struct mbuf *m, uint16_t tag)
 {
 	m->m_pkthdr.ether_vtag = tag;	
 }
 
 uint16_t
 if_getvtag(struct mbuf *m)
 {
 
 	return (m->m_pkthdr.ether_vtag);
 }
 
 int
 if_sendq_empty(if_t ifp)
 {
 	return IFQ_DRV_IS_EMPTY(&((struct ifnet *)ifp)->if_snd);
 }
 
 struct ifaddr *
 if_getifaddr(if_t ifp)
 {
 	return ((struct ifnet *)ifp)->if_addr;
 }
 
 int
 if_getamcount(if_t ifp)
 {
 	return ((struct ifnet *)ifp)->if_amcount;
 }
 
 
 int
 if_setsendqready(if_t ifp)
 {
 	IFQ_SET_READY(&((struct ifnet *)ifp)->if_snd);
 	return (0);
 }
 
 int
 if_setsendqlen(if_t ifp, int tx_desc_count)
 {
 	IFQ_SET_MAXLEN(&((struct ifnet *)ifp)->if_snd, tx_desc_count);
 	((struct ifnet *)ifp)->if_snd.ifq_drv_maxlen = tx_desc_count;
 
 	return (0);
 }
 
 int
 if_vlantrunkinuse(if_t ifp)
 {
 	return ((struct ifnet *)ifp)->if_vlantrunk != NULL?1:0;
 }
 
 int
 if_input(if_t ifp, struct mbuf* sendmp)
 {
 	(*((struct ifnet *)ifp)->if_input)((struct ifnet *)ifp, sendmp);
 	return (0);
 
 }
 
 /* XXX */
 #ifndef ETH_ADDR_LEN
 #define ETH_ADDR_LEN 6
 #endif
 
 int 
 if_setupmultiaddr(if_t ifp, void *mta, int *cnt, int max)
 {
 	struct ifmultiaddr *ifma;
 	uint8_t *lmta = (uint8_t *)mta;
 	int mcnt = 0;
 
 	TAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) {
 		if (ifma->ifma_addr->sa_family != AF_LINK)
 			continue;
 
 		if (mcnt == max)
 			break;
 
 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
 		    &lmta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
 		mcnt++;
 	}
 	*cnt = mcnt;
 
 	return (0);
 }
 
 int
 if_multiaddr_array(if_t ifp, void *mta, int *cnt, int max)
 {
 	int error;
 
 	if_maddr_rlock(ifp);
 	error = if_setupmultiaddr(ifp, mta, cnt, max);
 	if_maddr_runlock(ifp);
 	return (error);
 }
 
 int
 if_multiaddr_count(if_t ifp, int max)
 {
 	struct ifmultiaddr *ifma;
 	int count;
 
 	count = 0;
 	if_maddr_rlock(ifp);
 	TAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) {
 		if (ifma->ifma_addr->sa_family != AF_LINK)
 			continue;
 		count++;
 		if (count == max)
 			break;
 	}
 	if_maddr_runlock(ifp);
 	return (count);
 }
 
 int
 if_multi_apply(struct ifnet *ifp, int (*filter)(void *, struct ifmultiaddr *, int), void *arg)
 {
 	struct ifmultiaddr *ifma;
 	int cnt = 0;
 
 	if_maddr_rlock(ifp);
 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
 		cnt += filter(arg, ifma, cnt);
 	if_maddr_runlock(ifp);
 	return (cnt);
 }
 
 struct mbuf *
 if_dequeue(if_t ifp)
 {
 	struct mbuf *m;
 	IFQ_DRV_DEQUEUE(&((struct ifnet *)ifp)->if_snd, m);
 
 	return (m);
 }
 
 int
 if_sendq_prepend(if_t ifp, struct mbuf *m)
 {
 	IFQ_DRV_PREPEND(&((struct ifnet *)ifp)->if_snd, m);
 	return (0);
 }
 
 int
 if_setifheaderlen(if_t ifp, int len)
 {
 	((struct ifnet *)ifp)->if_hdrlen = len;
 	return (0);
 }
 
 caddr_t
 if_getlladdr(if_t ifp)
 {
 	return (IF_LLADDR((struct ifnet *)ifp));
 }
 
 void *
 if_gethandle(u_char type)
 {
 	return (if_alloc(type));
 }
 
 void
 if_bpfmtap(if_t ifh, struct mbuf *m)
 {
 	struct ifnet *ifp = (struct ifnet *)ifh;
 
 	BPF_MTAP(ifp, m);
 }
 
 void
 if_etherbpfmtap(if_t ifh, struct mbuf *m)
 {
 	struct ifnet *ifp = (struct ifnet *)ifh;
 
 	ETHER_BPF_MTAP(ifp, m);
 }
 
 void
 if_vlancap(if_t ifh)
 {
 	struct ifnet *ifp = (struct ifnet *)ifh;
 	VLAN_CAPABILITIES(ifp);
 }
 
 void
 if_setinitfn(if_t ifp, void (*init_fn)(void *))
 {
 	((struct ifnet *)ifp)->if_init = init_fn;
 }
 
 void
 if_setioctlfn(if_t ifp, int (*ioctl_fn)(if_t, u_long, caddr_t))
 {
 	((struct ifnet *)ifp)->if_ioctl = (void *)ioctl_fn;
 }
 
 void
 if_setstartfn(if_t ifp, void (*start_fn)(if_t))
 {
 	((struct ifnet *)ifp)->if_start = (void *)start_fn;
 }
 
 void
 if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn)
 {
 	((struct ifnet *)ifp)->if_transmit = start_fn;
 }
 
 void if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn)
 {
 	((struct ifnet *)ifp)->if_qflush = flush_fn;
 	
 }
 
 void
 if_setgetcounterfn(if_t ifp, if_get_counter_t fn)
 {
 
 	ifp->if_get_counter = fn;
 }
 
 /* Revisit these - These are inline functions originally. */
 int
 drbr_inuse_drv(if_t ifh, struct buf_ring *br)
 {
 	return drbr_inuse(ifh, br);
 }
 
 struct mbuf*
 drbr_dequeue_drv(if_t ifh, struct buf_ring *br)
 {
 	return drbr_dequeue(ifh, br);
 }
 
 int
 drbr_needs_enqueue_drv(if_t ifh, struct buf_ring *br)
 {
 	return drbr_needs_enqueue(ifh, br);
 }
 
 int
 drbr_enqueue_drv(if_t ifh, struct buf_ring *br, struct mbuf *m)
 {
 	return drbr_enqueue(ifh, br, m);
 
 }