Index: head/sys/net/flowtable.c =================================================================== --- head/sys/net/flowtable.c (revision 301216) +++ head/sys/net/flowtable.c (revision 301217) @@ -1,1189 +1,1184 @@ /*- * Copyright (c) 2014 Gleb Smirnoff * Copyright (c) 2008-2010, BitGravity Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Neither the name of the BitGravity Corporation nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "opt_route.h" #include "opt_mpath.h" #include "opt_ddb.h" #include "opt_inet.h" #include "opt_inet6.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif #ifdef FLOWTABLE_HASH_ALL #include #include #include #endif #include #ifdef FLOWTABLE_HASH_ALL #define KEY_PORTS (sizeof(uint16_t) * 2) #define KEY_ADDRS 2 #else #define KEY_PORTS 0 #define KEY_ADDRS 1 #endif #ifdef INET6 #define KEY_ADDR_LEN sizeof(struct in6_addr) #else #define KEY_ADDR_LEN sizeof(struct in_addr) #endif #define KEYLEN ((KEY_ADDR_LEN * KEY_ADDRS + KEY_PORTS) / sizeof(uint32_t)) struct flentry { uint32_t f_hash; /* hash flowing forward */ uint32_t f_key[KEYLEN]; /* address(es and ports) */ uint32_t f_uptime; /* uptime at last access */ uint16_t f_fibnum; /* fib index */ #ifdef FLOWTABLE_HASH_ALL uint8_t f_proto; /* protocol */ uint8_t f_flags; /* stale? */ #define FL_STALE 1 #endif SLIST_ENTRY(flentry) f_next; /* pointer to collision entry */ struct rtentry *f_rt; /* rtentry for flow */ struct llentry *f_lle; /* llentry for flow */ }; #undef KEYLEN SLIST_HEAD(flist, flentry); /* Make sure we can use pcpu_zone_ptr for struct flist. */ CTASSERT(sizeof(struct flist) == sizeof(void *)); struct flowtable { counter_u64_t *ft_stat; int ft_size; /* * ft_table is a malloc(9)ed array of pointers. Pointers point to * memory from UMA_ZONE_PCPU zone. * ft_masks is per-cpu pointer itself. Each instance points * to a malloc(9)ed bitset, that is private to corresponding CPU. */ struct flist **ft_table; bitstr_t **ft_masks; bitstr_t *ft_tmpmask; }; #define FLOWSTAT_ADD(ft, name, v) \ counter_u64_add((ft)->ft_stat[offsetof(struct flowtable_stat, name) / sizeof(uint64_t)], (v)) #define FLOWSTAT_INC(ft, name) FLOWSTAT_ADD(ft, name, 1) static struct proc *flowcleanerproc; static uint32_t flow_hashjitter; static struct cv flowclean_f_cv; static struct cv flowclean_c_cv; static struct mtx flowclean_lock; static uint32_t flowclean_cycles; /* * TODO: * - add sysctls to resize && flush flow tables * - Add per flowtable sysctls for statistics and configuring timeouts * - add saturation counter to rtentry to support per-packet load-balancing * add flag to indicate round-robin flow, add list lookup from head for flows * - add sysctl / device node / syscall to support exporting and importing * of flows with flag to indicate that a flow was imported so should * not be considered for auto-cleaning * - support explicit connection state (currently only ad-hoc for DSR) * - idetach() cleanup for options VIMAGE builds. */ #ifdef INET static VNET_DEFINE(struct flowtable, ip4_ft); #define V_ip4_ft VNET(ip4_ft) #endif #ifdef INET6 static VNET_DEFINE(struct flowtable, ip6_ft); #define V_ip6_ft VNET(ip6_ft) #endif static uma_zone_t flow_zone; static VNET_DEFINE(int, flowtable_enable) = 1; #define V_flowtable_enable VNET(flowtable_enable) static SYSCTL_NODE(_net, OID_AUTO, flowtable, CTLFLAG_RD, NULL, "flowtable"); SYSCTL_INT(_net_flowtable, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(flowtable_enable), 0, "enable flowtable caching."); SYSCTL_UMA_MAX(_net_flowtable, OID_AUTO, maxflows, CTLFLAG_RW, &flow_zone, "Maximum number of flows allowed"); static MALLOC_DEFINE(M_FTABLE, "flowtable", "flowtable hashes and bitstrings"); static struct flentry * flowtable_lookup_common(struct flowtable *, uint32_t *, int, uint32_t); #ifdef INET static struct flentry * flowtable_lookup_ipv4(struct mbuf *m, struct route *ro) { struct flentry *fle; struct sockaddr_in *sin; struct ip *ip; uint32_t fibnum; #ifdef FLOWTABLE_HASH_ALL uint32_t key[3]; int iphlen; uint16_t sport, dport; uint8_t proto; #endif ip = mtod(m, struct ip *); if (ip->ip_src.s_addr == ip->ip_dst.s_addr || (ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) return (NULL); fibnum = M_GETFIB(m); #ifdef FLOWTABLE_HASH_ALL iphlen = ip->ip_hl << 2; proto = ip->ip_p; switch (proto) { case IPPROTO_TCP: { struct tcphdr *th; th = (struct tcphdr *)((char *)ip + iphlen); sport = th->th_sport; dport = th->th_dport; if (th->th_flags & (TH_RST|TH_FIN)) fibnum |= (FL_STALE << 24); break; } case IPPROTO_UDP: { struct udphdr *uh; uh = (struct udphdr *)((char *)ip + iphlen); sport = uh->uh_sport; dport = uh->uh_dport; break; } case IPPROTO_SCTP: { struct sctphdr *sh; sh = (struct sctphdr *)((char *)ip + iphlen); sport = sh->src_port; dport = sh->dest_port; /* XXXGL: handle stale? */ break; } default: sport = dport = 0; break; } key[0] = ip->ip_dst.s_addr; key[1] = ip->ip_src.s_addr; key[2] = (dport << 16) | sport; fibnum |= proto << 16; fle = flowtable_lookup_common(&V_ip4_ft, key, 3 * sizeof(uint32_t), fibnum); #else /* !FLOWTABLE_HASH_ALL */ fle = flowtable_lookup_common(&V_ip4_ft, (uint32_t *)&ip->ip_dst, sizeof(struct in_addr), fibnum); #endif /* FLOWTABLE_HASH_ALL */ if (fle == NULL) return (NULL); sin = (struct sockaddr_in *)&ro->ro_dst; sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = ip->ip_dst; return (fle); } #endif /* INET */ #ifdef INET6 /* * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous, * then it sets p to point at the offset "len" in the mbuf. WARNING: the * pointer might become stale after other pullups (but we never use it * this way). */ #define PULLUP_TO(_len, p, T) \ do { \ int x = (_len) + sizeof(T); \ if ((m)->m_len < x) \ return (NULL); \ p = (mtod(m, char *) + (_len)); \ } while (0) #define TCP(p) ((struct tcphdr *)(p)) #define SCTP(p) ((struct sctphdr *)(p)) #define UDP(p) ((struct udphdr *)(p)) static struct flentry * flowtable_lookup_ipv6(struct mbuf *m, struct route *ro) { struct flentry *fle; struct sockaddr_in6 *sin6; struct ip6_hdr *ip6; uint32_t fibnum; #ifdef FLOWTABLE_HASH_ALL uint32_t key[9]; void *ulp; int hlen; uint16_t sport, dport; u_short offset; uint8_t proto; #else uint32_t key[4]; #endif ip6 = mtod(m, struct ip6_hdr *); if (in6_localaddr(&ip6->ip6_dst)) return (NULL); fibnum = M_GETFIB(m); #ifdef FLOWTABLE_HASH_ALL hlen = sizeof(struct ip6_hdr); proto = ip6->ip6_nxt; offset = sport = dport = 0; ulp = NULL; while (ulp == NULL) { switch (proto) { case IPPROTO_ICMPV6: case IPPROTO_OSPFIGP: case IPPROTO_PIM: case IPPROTO_CARP: case IPPROTO_ESP: case IPPROTO_NONE: ulp = ip6; break; case IPPROTO_TCP: PULLUP_TO(hlen, ulp, struct tcphdr); dport = TCP(ulp)->th_dport; sport = TCP(ulp)->th_sport; if (TCP(ulp)->th_flags & (TH_RST|TH_FIN)) fibnum |= (FL_STALE << 24); break; case IPPROTO_SCTP: PULLUP_TO(hlen, ulp, struct sctphdr); dport = SCTP(ulp)->src_port; sport = SCTP(ulp)->dest_port; /* XXXGL: handle stale? */ break; case IPPROTO_UDP: PULLUP_TO(hlen, ulp, struct udphdr); dport = UDP(ulp)->uh_dport; sport = UDP(ulp)->uh_sport; break; case IPPROTO_HOPOPTS: /* RFC 2460 */ PULLUP_TO(hlen, ulp, struct ip6_hbh); hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3; proto = ((struct ip6_hbh *)ulp)->ip6h_nxt; ulp = NULL; break; case IPPROTO_ROUTING: /* RFC 2460 */ PULLUP_TO(hlen, ulp, struct ip6_rthdr); hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3; proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt; ulp = NULL; break; case IPPROTO_FRAGMENT: /* RFC 2460 */ PULLUP_TO(hlen, ulp, struct ip6_frag); hlen += sizeof (struct ip6_frag); proto = ((struct ip6_frag *)ulp)->ip6f_nxt; offset = ((struct ip6_frag *)ulp)->ip6f_offlg & IP6F_OFF_MASK; ulp = NULL; break; case IPPROTO_DSTOPTS: /* RFC 2460 */ PULLUP_TO(hlen, ulp, struct ip6_hbh); hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3; proto = ((struct ip6_hbh *)ulp)->ip6h_nxt; ulp = NULL; break; case IPPROTO_AH: /* RFC 2402 */ PULLUP_TO(hlen, ulp, struct ip6_ext); hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2; proto = ((struct ip6_ext *)ulp)->ip6e_nxt; ulp = NULL; break; default: PULLUP_TO(hlen, ulp, struct ip6_ext); break; } } bcopy(&ip6->ip6_dst, &key[0], sizeof(struct in6_addr)); bcopy(&ip6->ip6_src, &key[4], sizeof(struct in6_addr)); key[8] = (dport << 16) | sport; fibnum |= proto << 16; fle = flowtable_lookup_common(&V_ip6_ft, key, 9 * sizeof(uint32_t), fibnum); #else /* !FLOWTABLE_HASH_ALL */ bcopy(&ip6->ip6_dst, &key[0], sizeof(struct in6_addr)); fle = flowtable_lookup_common(&V_ip6_ft, key, sizeof(struct in6_addr), fibnum); #endif /* FLOWTABLE_HASH_ALL */ if (fle == NULL) return (NULL); sin6 = (struct sockaddr_in6 *)&ro->ro_dst; sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(*sin6); bcopy(&ip6->ip6_dst, &sin6->sin6_addr, sizeof(struct in6_addr)); return (fle); } #endif /* INET6 */ static bitstr_t * flowtable_mask(struct flowtable *ft) { /* * flowtable_free_stale() calls w/o critical section, but * with sched_bind(). Since pointer is stable throughout * ft lifetime, it is safe, otherwise... * * CRITICAL_ASSERT(curthread); */ return (*(bitstr_t **)zpcpu_get(ft->ft_masks)); } static struct flist * flowtable_list(struct flowtable *ft, uint32_t hash) { CRITICAL_ASSERT(curthread); return (zpcpu_get(ft->ft_table[hash % ft->ft_size])); } static int flow_stale(struct flowtable *ft, struct flentry *fle, int maxidle) { if (((fle->f_rt->rt_flags & RTF_UP) == 0) || (fle->f_rt->rt_ifp == NULL) || !RT_LINK_IS_UP(fle->f_rt->rt_ifp) || (fle->f_lle->la_flags & LLE_VALID) == 0) return (1); if (time_uptime - fle->f_uptime > maxidle) return (1); #ifdef FLOWTABLE_HASH_ALL if (fle->f_flags & FL_STALE) return (1); #endif return (0); } static int flow_full(void) { int count, max; count = uma_zone_get_cur(flow_zone); max = uma_zone_get_max(flow_zone); return (count > (max - (max >> 3))); } static int flow_matches(struct flentry *fle, uint32_t *key, int keylen, uint32_t fibnum) { #ifdef FLOWTABLE_HASH_ALL uint8_t proto; proto = (fibnum >> 16) & 0xff; fibnum &= 0xffff; #endif CRITICAL_ASSERT(curthread); /* Microoptimization for IPv4: don't use bcmp(). */ if (((keylen == sizeof(uint32_t) && (fle->f_key[0] == key[0])) || (bcmp(fle->f_key, key, keylen) == 0)) && fibnum == fle->f_fibnum && #ifdef FLOWTABLE_HASH_ALL proto == fle->f_proto && #endif (fle->f_rt->rt_flags & RTF_UP) && fle->f_rt->rt_ifp != NULL && (fle->f_lle->la_flags & LLE_VALID)) return (1); return (0); } static struct flentry * flowtable_insert(struct flowtable *ft, uint32_t hash, uint32_t *key, int keylen, uint32_t fibnum0) { #ifdef INET6 struct route_in6 sro6; #endif #ifdef INET struct route sro; #endif struct route *ro = NULL; struct rtentry *rt; struct lltable *lt = NULL; struct llentry *lle; struct sockaddr_storage *l3addr; struct ifnet *ifp; struct flist *flist; struct flentry *fle, *iter; bitstr_t *mask; uint16_t fibnum = fibnum0; #ifdef FLOWTABLE_HASH_ALL uint8_t proto; proto = (fibnum0 >> 16) & 0xff; fibnum = fibnum0 & 0xffff; #endif /* * This bit of code ends up locking the * same route 3 times (just like ip_output + ether_output) * - at lookup * - in rt_check when called by arpresolve * - dropping the refcount for the rtentry * * This could be consolidated to one if we wrote a variant * of arpresolve with an rt_check variant that expected to * receive the route locked */ #ifdef INET if (ft == &V_ip4_ft) { struct sockaddr_in *sin; ro = &sro; bzero(&sro.ro_dst, sizeof(sro.ro_dst)); sin = (struct sockaddr_in *)&sro.ro_dst; sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr.s_addr = key[0]; } #endif #ifdef INET6 if (ft == &V_ip6_ft) { struct sockaddr_in6 *sin6; ro = (struct route *)&sro6; sin6 = &sro6.ro_dst; bzero(sin6, sizeof(*sin6)); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(*sin6); bcopy(key, &sin6->sin6_addr, sizeof(struct in6_addr)); } #endif ro->ro_rt = NULL; #ifdef RADIX_MPATH rtalloc_mpath_fib(ro, hash, fibnum); #else rtalloc_ign_fib(ro, 0, fibnum); #endif if (ro->ro_rt == NULL) return (NULL); rt = ro->ro_rt; ifp = rt->rt_ifp; if (ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) { RTFREE(rt); return (NULL); } #ifdef INET if (ft == &V_ip4_ft) lt = LLTABLE(ifp); #endif #ifdef INET6 if (ft == &V_ip6_ft) lt = LLTABLE6(ifp); #endif if (rt->rt_flags & RTF_GATEWAY) l3addr = (struct sockaddr_storage *)rt->rt_gateway; else l3addr = (struct sockaddr_storage *)&ro->ro_dst; lle = llentry_alloc(ifp, lt, l3addr); if (lle == NULL) { RTFREE(rt); return (NULL); } /* Don't insert the entry if the ARP hasn't yet finished resolving. */ if ((lle->la_flags & LLE_VALID) == 0) { RTFREE(rt); LLE_FREE(lle); FLOWSTAT_INC(ft, ft_fail_lle_invalid); return (NULL); } fle = uma_zalloc(flow_zone, M_NOWAIT | M_ZERO); if (fle == NULL) { RTFREE(rt); LLE_FREE(lle); return (NULL); } fle->f_hash = hash; bcopy(key, &fle->f_key, keylen); fle->f_rt = rt; fle->f_lle = lle; fle->f_fibnum = fibnum; fle->f_uptime = time_uptime; #ifdef FLOWTABLE_HASH_ALL fle->f_proto = proto; fle->f_flags = fibnum0 >> 24; #endif critical_enter(); mask = flowtable_mask(ft); flist = flowtable_list(ft, hash); if (SLIST_EMPTY(flist)) { bit_set(mask, (hash % ft->ft_size)); SLIST_INSERT_HEAD(flist, fle, f_next); goto skip; } /* * find end of list and make sure that we were not * preempted by another thread handling this flow */ SLIST_FOREACH(iter, flist, f_next) { KASSERT(iter->f_hash % ft->ft_size == hash % ft->ft_size, ("%s: wrong hash", __func__)); if (flow_matches(iter, key, keylen, fibnum)) { /* * We probably migrated to an other CPU after * lookup in flowtable_lookup_common() failed. * It appeared that this CPU already has flow * entry. */ iter->f_uptime = time_uptime; #ifdef FLOWTABLE_HASH_ALL iter->f_flags |= fibnum >> 24; #endif critical_exit(); FLOWSTAT_INC(ft, ft_collisions); uma_zfree(flow_zone, fle); return (iter); } } SLIST_INSERT_HEAD(flist, fle, f_next); skip: critical_exit(); FLOWSTAT_INC(ft, ft_inserts); return (fle); } int flowtable_lookup(sa_family_t sa, struct mbuf *m, struct route *ro) { struct flentry *fle; struct llentry *lle; if (V_flowtable_enable == 0) return (ENXIO); switch (sa) { #ifdef INET case AF_INET: fle = flowtable_lookup_ipv4(m, ro); break; #endif #ifdef INET6 case AF_INET6: fle = flowtable_lookup_ipv6(m, ro); break; #endif default: panic("%s: sa %d", __func__, sa); } if (fle == NULL) return (EHOSTUNREACH); if (M_HASHTYPE_GET(m) == M_HASHTYPE_NONE) { M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); m->m_pkthdr.flowid = fle->f_hash; } ro->ro_rt = fle->f_rt; ro->ro_flags |= RT_NORTREF; lle = fle->f_lle; - if (lle != NULL && (lle->la_flags & LLE_VALID)) { - ro->ro_prepend = lle->r_linkdata; - ro->ro_plen = lle->r_hdrlen; - ro->ro_flags |= RT_MAY_LOOP; - if (lle->la_flags & LLE_IFADDR) - ro->ro_flags |= RT_L2_ME; - } + if (lle != NULL && (lle->la_flags & LLE_VALID)) + ro->ro_lle = lle; /* share ref with fle->f_lle */ return (0); } static struct flentry * flowtable_lookup_common(struct flowtable *ft, uint32_t *key, int keylen, uint32_t fibnum) { struct flist *flist; struct flentry *fle; uint32_t hash; FLOWSTAT_INC(ft, ft_lookups); hash = jenkins_hash32(key, keylen / sizeof(uint32_t), flow_hashjitter); critical_enter(); flist = flowtable_list(ft, hash); SLIST_FOREACH(fle, flist, f_next) { KASSERT(fle->f_hash % ft->ft_size == hash % ft->ft_size, ("%s: wrong hash", __func__)); if (flow_matches(fle, key, keylen, fibnum)) { fle->f_uptime = time_uptime; #ifdef FLOWTABLE_HASH_ALL fle->f_flags |= fibnum >> 24; #endif critical_exit(); FLOWSTAT_INC(ft, ft_hits); return (fle); } } critical_exit(); FLOWSTAT_INC(ft, ft_misses); return (flowtable_insert(ft, hash, key, keylen, fibnum)); } static void flowtable_alloc(struct flowtable *ft) { ft->ft_table = malloc(ft->ft_size * sizeof(struct flist), M_FTABLE, M_WAITOK); for (int i = 0; i < ft->ft_size; i++) ft->ft_table[i] = uma_zalloc(pcpu_zone_ptr, M_WAITOK | M_ZERO); ft->ft_masks = uma_zalloc(pcpu_zone_ptr, M_WAITOK); for (int i = 0; i < mp_ncpus; i++) { bitstr_t **b; b = zpcpu_get_cpu(ft->ft_masks, i); *b = bit_alloc(ft->ft_size, M_FTABLE, M_WAITOK); } ft->ft_tmpmask = bit_alloc(ft->ft_size, M_FTABLE, M_WAITOK); } static void flowtable_free_stale(struct flowtable *ft, struct rtentry *rt, int maxidle) { struct flist *flist, freelist; struct flentry *fle, *fle1, *fleprev; bitstr_t *mask, *tmpmask; int curbit, tmpsize; SLIST_INIT(&freelist); mask = flowtable_mask(ft); tmpmask = ft->ft_tmpmask; tmpsize = ft->ft_size; memcpy(tmpmask, mask, ft->ft_size/8); curbit = 0; fleprev = NULL; /* pacify gcc */ /* * XXX Note to self, bit_ffs operates at the byte level * and thus adds gratuitous overhead */ bit_ffs(tmpmask, ft->ft_size, &curbit); while (curbit != -1) { if (curbit >= ft->ft_size || curbit < -1) { log(LOG_ALERT, "warning: bad curbit value %d \n", curbit); break; } FLOWSTAT_INC(ft, ft_free_checks); critical_enter(); flist = flowtable_list(ft, curbit); #ifdef DIAGNOSTIC if (SLIST_EMPTY(flist) && curbit > 0) { log(LOG_ALERT, "warning bit=%d set, but no fle found\n", curbit); } #endif SLIST_FOREACH_SAFE(fle, flist, f_next, fle1) { if (rt != NULL && fle->f_rt != rt) { fleprev = fle; continue; } if (!flow_stale(ft, fle, maxidle)) { fleprev = fle; continue; } if (fle == SLIST_FIRST(flist)) SLIST_REMOVE_HEAD(flist, f_next); else SLIST_REMOVE_AFTER(fleprev, f_next); SLIST_INSERT_HEAD(&freelist, fle, f_next); } if (SLIST_EMPTY(flist)) bit_clear(mask, curbit); critical_exit(); bit_clear(tmpmask, curbit); bit_ffs(tmpmask, tmpsize, &curbit); } SLIST_FOREACH_SAFE(fle, &freelist, f_next, fle1) { FLOWSTAT_INC(ft, ft_frees); if (fle->f_rt != NULL) RTFREE(fle->f_rt); if (fle->f_lle != NULL) LLE_FREE(fle->f_lle); uma_zfree(flow_zone, fle); } } static void flowtable_clean_vnet(struct flowtable *ft, struct rtentry *rt, int maxidle) { int i; CPU_FOREACH(i) { if (smp_started == 1) { thread_lock(curthread); sched_bind(curthread, i); thread_unlock(curthread); } flowtable_free_stale(ft, rt, maxidle); if (smp_started == 1) { thread_lock(curthread); sched_unbind(curthread); thread_unlock(curthread); } } } void flowtable_route_flush(sa_family_t sa, struct rtentry *rt) { struct flowtable *ft; switch (sa) { #ifdef INET case AF_INET: ft = &V_ip4_ft; break; #endif #ifdef INET6 case AF_INET6: ft = &V_ip6_ft; break; #endif default: panic("%s: sa %d", __func__, sa); } flowtable_clean_vnet(ft, rt, 0); } static void flowtable_cleaner(void) { VNET_ITERATOR_DECL(vnet_iter); struct thread *td; if (bootverbose) log(LOG_INFO, "flowtable cleaner started\n"); td = curthread; while (1) { uint32_t flowclean_freq, maxidle; /* * The maximum idle time, as well as frequency are arbitrary. */ if (flow_full()) maxidle = 5; else maxidle = 30; VNET_LIST_RLOCK(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); #ifdef INET flowtable_clean_vnet(&V_ip4_ft, NULL, maxidle); #endif #ifdef INET6 flowtable_clean_vnet(&V_ip6_ft, NULL, maxidle); #endif CURVNET_RESTORE(); } VNET_LIST_RUNLOCK(); if (flow_full()) flowclean_freq = 4*hz; else flowclean_freq = 20*hz; mtx_lock(&flowclean_lock); thread_lock(td); sched_prio(td, PPAUSE); thread_unlock(td); flowclean_cycles++; cv_broadcast(&flowclean_f_cv); cv_timedwait(&flowclean_c_cv, &flowclean_lock, flowclean_freq); mtx_unlock(&flowclean_lock); } } static void flowtable_flush(void *unused __unused) { uint64_t start; mtx_lock(&flowclean_lock); start = flowclean_cycles; while (start == flowclean_cycles) { cv_broadcast(&flowclean_c_cv); cv_wait(&flowclean_f_cv, &flowclean_lock); } mtx_unlock(&flowclean_lock); } static struct kproc_desc flow_kp = { "flowcleaner", flowtable_cleaner, &flowcleanerproc }; SYSINIT(flowcleaner, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, kproc_start, &flow_kp); static int flowtable_get_size(char *name) { int size; if (TUNABLE_INT_FETCH(name, &size)) { if (size < 256) size = 256; if (!powerof2(size)) { printf("%s must be power of 2\n", name); size = 2048; } } else { /* * round up to the next power of 2 */ size = 1 << fls((1024 + maxusers * 64) - 1); } return (size); } static void flowtable_init(const void *unused __unused) { flow_hashjitter = arc4random(); flow_zone = uma_zcreate("flows", sizeof(struct flentry), NULL, NULL, NULL, NULL, (64-1), UMA_ZONE_MAXBUCKET); uma_zone_set_max(flow_zone, 1024 + maxusers * 64 * mp_ncpus); cv_init(&flowclean_c_cv, "c_flowcleanwait"); cv_init(&flowclean_f_cv, "f_flowcleanwait"); mtx_init(&flowclean_lock, "flowclean lock", NULL, MTX_DEF); EVENTHANDLER_REGISTER(ifnet_departure_event, flowtable_flush, NULL, EVENTHANDLER_PRI_ANY); } SYSINIT(flowtable_init, SI_SUB_PROTO_BEGIN, SI_ORDER_FIRST, flowtable_init, NULL); #ifdef INET static SYSCTL_NODE(_net_flowtable, OID_AUTO, ip4, CTLFLAG_RD, NULL, "Flowtable for IPv4"); static VNET_PCPUSTAT_DEFINE(struct flowtable_stat, ip4_ftstat); VNET_PCPUSTAT_SYSINIT(ip4_ftstat); VNET_PCPUSTAT_SYSUNINIT(ip4_ftstat); SYSCTL_VNET_PCPUSTAT(_net_flowtable_ip4, OID_AUTO, stat, struct flowtable_stat, ip4_ftstat, "Flowtable statistics for IPv4 " "(struct flowtable_stat, net/flowtable.h)"); static void flowtable_init_vnet_v4(const void *unused __unused) { V_ip4_ft.ft_size = flowtable_get_size("net.flowtable.ip4.size"); V_ip4_ft.ft_stat = VNET(ip4_ftstat); flowtable_alloc(&V_ip4_ft); } VNET_SYSINIT(ft_vnet_v4, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, flowtable_init_vnet_v4, NULL); #endif /* INET */ #ifdef INET6 static SYSCTL_NODE(_net_flowtable, OID_AUTO, ip6, CTLFLAG_RD, NULL, "Flowtable for IPv6"); static VNET_PCPUSTAT_DEFINE(struct flowtable_stat, ip6_ftstat); VNET_PCPUSTAT_SYSINIT(ip6_ftstat); VNET_PCPUSTAT_SYSUNINIT(ip6_ftstat); SYSCTL_VNET_PCPUSTAT(_net_flowtable_ip6, OID_AUTO, stat, struct flowtable_stat, ip6_ftstat, "Flowtable statistics for IPv6 " "(struct flowtable_stat, net/flowtable.h)"); static void flowtable_init_vnet_v6(const void *unused __unused) { V_ip6_ft.ft_size = flowtable_get_size("net.flowtable.ip6.size"); V_ip6_ft.ft_stat = VNET(ip6_ftstat); flowtable_alloc(&V_ip6_ft); } VNET_SYSINIT(flowtable_init_vnet_v6, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, flowtable_init_vnet_v6, NULL); #endif /* INET6 */ #ifdef DDB static bitstr_t * flowtable_mask_pcpu(struct flowtable *ft, int cpuid) { return (zpcpu_get_cpu(*ft->ft_masks, cpuid)); } static struct flist * flowtable_list_pcpu(struct flowtable *ft, uint32_t hash, int cpuid) { return (zpcpu_get_cpu(&ft->ft_table[hash % ft->ft_size], cpuid)); } static void flow_show(struct flowtable *ft, struct flentry *fle) { int idle_time; int rt_valid, ifp_valid; volatile struct rtentry *rt; struct ifnet *ifp = NULL; uint32_t *hashkey = fle->f_key; idle_time = (int)(time_uptime - fle->f_uptime); rt = fle->f_rt; rt_valid = rt != NULL; if (rt_valid) ifp = rt->rt_ifp; ifp_valid = ifp != NULL; #ifdef INET if (ft == &V_ip4_ft) { char daddr[4*sizeof "123"]; #ifdef FLOWTABLE_HASH_ALL char saddr[4*sizeof "123"]; uint16_t sport, dport; #endif inet_ntoa_r(*(struct in_addr *) &hashkey[0], daddr); #ifdef FLOWTABLE_HASH_ALL inet_ntoa_r(*(struct in_addr *) &hashkey[1], saddr); dport = ntohs((uint16_t)(hashkey[2] >> 16)); sport = ntohs((uint16_t)(hashkey[2] & 0xffff)); db_printf("%s:%d->%s:%d", saddr, sport, daddr, dport); #else db_printf("%s ", daddr); #endif } #endif /* INET */ #ifdef INET6 if (ft == &V_ip6_ft) { #ifdef FLOWTABLE_HASH_ALL db_printf("\n\tkey=%08x:%08x:%08x%08x:%08x:%08x%08x:%08x:%08x", hashkey[0], hashkey[1], hashkey[2], hashkey[3], hashkey[4], hashkey[5], hashkey[6], hashkey[7], hashkey[8]); #else db_printf("\n\tkey=%08x:%08x:%08x ", hashkey[0], hashkey[1], hashkey[2]); #endif } #endif /* INET6 */ db_printf("hash=%08x idle_time=%03d" "\n\tfibnum=%02d rt=%p", fle->f_hash, idle_time, fle->f_fibnum, fle->f_rt); #ifdef FLOWTABLE_HASH_ALL if (fle->f_flags & FL_STALE) db_printf(" FL_STALE "); #endif if (rt_valid) { if (rt->rt_flags & RTF_UP) db_printf(" RTF_UP "); } if (ifp_valid) { if (ifp->if_flags & IFF_LOOPBACK) db_printf(" IFF_LOOPBACK "); if (ifp->if_flags & IFF_UP) db_printf(" IFF_UP "); if (ifp->if_flags & IFF_POINTOPOINT) db_printf(" IFF_POINTOPOINT "); } db_printf("\n"); } static void flowtable_show(struct flowtable *ft, int cpuid) { int curbit = 0; bitstr_t *mask, *tmpmask; if (cpuid != -1) db_printf("cpu: %d\n", cpuid); mask = flowtable_mask_pcpu(ft, cpuid); tmpmask = ft->ft_tmpmask; memcpy(tmpmask, mask, ft->ft_size/8); /* * XXX Note to self, bit_ffs operates at the byte level * and thus adds gratuitous overhead */ bit_ffs(tmpmask, ft->ft_size, &curbit); while (curbit != -1) { struct flist *flist; struct flentry *fle; if (curbit >= ft->ft_size || curbit < -1) { db_printf("warning: bad curbit value %d \n", curbit); break; } flist = flowtable_list_pcpu(ft, curbit, cpuid); SLIST_FOREACH(fle, flist, f_next) flow_show(ft, fle); bit_clear(tmpmask, curbit); bit_ffs(tmpmask, ft->ft_size, &curbit); } } static void flowtable_show_vnet(struct flowtable *ft) { int i; CPU_FOREACH(i) flowtable_show(ft, i); } DB_SHOW_COMMAND(flowtables, db_show_flowtables) { VNET_ITERATOR_DECL(vnet_iter); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); #ifdef VIMAGE db_printf("vnet %p\n", vnet_iter); #endif #ifdef INET printf("IPv4:\n"); flowtable_show_vnet(&V_ip4_ft); #endif #ifdef INET6 printf("IPv6:\n"); flowtable_show_vnet(&V_ip6_ft); #endif CURVNET_RESTORE(); } } #endif Index: head/sys/net/if_arcsubr.c =================================================================== --- head/sys/net/if_arcsubr.c (revision 301216) +++ head/sys/net/if_arcsubr.c (revision 301217) @@ -1,832 +1,834 @@ /* $NetBSD: if_arcsubr.c,v 1.36 2001/06/14 05:44:23 itojun Exp $ */ /* $FreeBSD$ */ /*- * Copyright (c) 1994, 1995 Ignatios Souvatzis * Copyright (c) 1982, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: NetBSD: if_ethersubr.c,v 1.9 1994/06/29 06:36:11 cgd Exp * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 * */ #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #endif #ifdef INET6 #include #endif #define ARCNET_ALLOW_BROKEN_ARP static struct mbuf *arc_defrag(struct ifnet *, struct mbuf *); static int arc_resolvemulti(struct ifnet *, struct sockaddr **, struct sockaddr *); u_int8_t arcbroadcastaddr = 0; #define ARC_LLADDR(ifp) (*(u_int8_t *)IF_LLADDR(ifp)) #define senderr(e) { error = (e); goto bad;} #define SIN(s) ((const struct sockaddr_in *)(s)) /* * ARCnet output routine. * Encapsulate a packet of type family for the local net. * Assumes that ifp is actually pointer to arccom structure. */ int arc_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { struct arc_header *ah; int error; u_int8_t atype, adst; int loop_copy = 0; int isphds; #if defined(INET) || defined(INET6) int is_gw = 0; #endif if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))) return(ENETDOWN); /* m, m1 aren't initialized yet */ error = 0; #if defined(INET) || defined(INET6) if (ro != NULL) is_gw = (ro->ro_flags & RT_HAS_GW) != 0; #endif switch (dst->sa_family) { #ifdef INET case AF_INET: /* * For now, use the simple IP addr -> ARCnet addr mapping */ if (m->m_flags & (M_BCAST|M_MCAST)) adst = arcbroadcastaddr; /* ARCnet broadcast address */ else if (ifp->if_flags & IFF_NOARP) adst = ntohl(SIN(dst)->sin_addr.s_addr) & 0xFF; else { - error = arpresolve(ifp, is_gw, m, dst, &adst, NULL); + error = arpresolve(ifp, is_gw, m, dst, &adst, NULL, + NULL); if (error) return (error == EWOULDBLOCK ? 0 : error); } atype = (ifp->if_flags & IFF_LINK0) ? ARCTYPE_IP_OLD : ARCTYPE_IP; break; case AF_ARP: { struct arphdr *ah; ah = mtod(m, struct arphdr *); ah->ar_hrd = htons(ARPHRD_ARCNET); loop_copy = -1; /* if this is for us, don't do it */ switch(ntohs(ah->ar_op)) { case ARPOP_REVREQUEST: case ARPOP_REVREPLY: atype = ARCTYPE_REVARP; break; case ARPOP_REQUEST: case ARPOP_REPLY: default: atype = ARCTYPE_ARP; break; } if (m->m_flags & M_BCAST) bcopy(ifp->if_broadcastaddr, &adst, ARC_ADDR_LEN); else bcopy(ar_tha(ah), &adst, ARC_ADDR_LEN); } break; #endif #ifdef INET6 case AF_INET6: if ((m->m_flags & M_MCAST) != 0) adst = arcbroadcastaddr; /* ARCnet broadcast address */ else { - error = nd6_resolve(ifp, is_gw, m, dst, &adst, NULL); + error = nd6_resolve(ifp, is_gw, m, dst, &adst, NULL, + NULL); if (error != 0) return (error == EWOULDBLOCK ? 0 : error); } atype = ARCTYPE_INET6; break; #endif case AF_UNSPEC: { const struct arc_header *ah; loop_copy = -1; ah = (const struct arc_header *)dst->sa_data; adst = ah->arc_dhost; atype = ah->arc_type; if (atype == ARCTYPE_ARP) { atype = (ifp->if_flags & IFF_LINK0) ? ARCTYPE_ARP_OLD: ARCTYPE_ARP; #ifdef ARCNET_ALLOW_BROKEN_ARP /* * XXX It's not clear per RFC826 if this is needed, but * "assigned numbers" say this is wrong. * However, e.g., AmiTCP 3.0Beta used it... we make this * switchable for emergency cases. Not perfect, but... */ if (ifp->if_flags & IFF_LINK2) mtod(m, struct arphdr *)->ar_pro = atype - 1; #endif } break; } default: if_printf(ifp, "can't handle af%d\n", dst->sa_family); senderr(EAFNOSUPPORT); } isphds = arc_isphds(atype); M_PREPEND(m, isphds ? ARC_HDRNEWLEN : ARC_HDRLEN, M_NOWAIT); if (m == NULL) senderr(ENOBUFS); ah = mtod(m, struct arc_header *); ah->arc_type = atype; ah->arc_dhost = adst; ah->arc_shost = ARC_LLADDR(ifp); if (isphds) { ah->arc_flag = 0; ah->arc_seqid = 0; } if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) { if ((m->m_flags & M_BCAST) || (loop_copy > 0)) { struct mbuf *n = m_copy(m, 0, (int)M_COPYALL); (void) if_simloop(ifp, n, dst->sa_family, ARC_HDRLEN); } else if (ah->arc_dhost == ah->arc_shost) { (void) if_simloop(ifp, m, dst->sa_family, ARC_HDRLEN); return (0); /* XXX */ } } BPF_MTAP(ifp, m); error = ifp->if_transmit(ifp, m); return (error); bad: if (m) m_freem(m); return (error); } void arc_frag_init(struct ifnet *ifp) { struct arccom *ac; ac = (struct arccom *)ifp->if_l2com; ac->curr_frag = 0; } struct mbuf * arc_frag_next(struct ifnet *ifp) { struct arccom *ac; struct mbuf *m; struct arc_header *ah; ac = (struct arccom *)ifp->if_l2com; if ((m = ac->curr_frag) == NULL) { int tfrags; /* dequeue new packet */ IF_DEQUEUE(&ifp->if_snd, m); if (m == NULL) return 0; ah = mtod(m, struct arc_header *); if (!arc_isphds(ah->arc_type)) return m; ++ac->ac_seqid; /* make the seqid unique */ tfrags = howmany(m->m_pkthdr.len, ARC_MAX_DATA); ac->fsflag = 2 * tfrags - 3; ac->sflag = 0; ac->rsflag = ac->fsflag; ac->arc_dhost = ah->arc_dhost; ac->arc_shost = ah->arc_shost; ac->arc_type = ah->arc_type; m_adj(m, ARC_HDRNEWLEN); ac->curr_frag = m; } /* split out next fragment and return it */ if (ac->sflag < ac->fsflag) { /* we CAN'T have short packets here */ ac->curr_frag = m_split(m, ARC_MAX_DATA, M_NOWAIT); if (ac->curr_frag == 0) { m_freem(m); return 0; } M_PREPEND(m, ARC_HDRNEWLEN, M_NOWAIT); if (m == NULL) { m_freem(ac->curr_frag); ac->curr_frag = 0; return 0; } ah = mtod(m, struct arc_header *); ah->arc_flag = ac->rsflag; ah->arc_seqid = ac->ac_seqid; ac->sflag += 2; ac->rsflag = ac->sflag; } else if ((m->m_pkthdr.len >= ARC_MIN_FORBID_LEN - ARC_HDRNEWLEN + 2) && (m->m_pkthdr.len <= ARC_MAX_FORBID_LEN - ARC_HDRNEWLEN + 2)) { ac->curr_frag = 0; M_PREPEND(m, ARC_HDRNEWLEN_EXC, M_NOWAIT); if (m == NULL) return 0; ah = mtod(m, struct arc_header *); ah->arc_flag = 0xFF; ah->arc_seqid = 0xFFFF; ah->arc_type2 = ac->arc_type; ah->arc_flag2 = ac->sflag; ah->arc_seqid2 = ac->ac_seqid; } else { ac->curr_frag = 0; M_PREPEND(m, ARC_HDRNEWLEN, M_NOWAIT); if (m == NULL) return 0; ah = mtod(m, struct arc_header *); ah->arc_flag = ac->sflag; ah->arc_seqid = ac->ac_seqid; } ah->arc_dhost = ac->arc_dhost; ah->arc_shost = ac->arc_shost; ah->arc_type = ac->arc_type; return m; } /* * Defragmenter. Returns mbuf if last packet found, else * NULL. frees incoming mbuf as necessary. */ static __inline struct mbuf * arc_defrag(struct ifnet *ifp, struct mbuf *m) { struct arc_header *ah, *ah1; struct arccom *ac; struct ac_frag *af; struct mbuf *m1; char *s; int newflen; u_char src,dst,typ; ac = (struct arccom *)ifp->if_l2com; if (m->m_len < ARC_HDRNEWLEN) { m = m_pullup(m, ARC_HDRNEWLEN); if (m == NULL) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); return NULL; } } ah = mtod(m, struct arc_header *); typ = ah->arc_type; if (!arc_isphds(typ)) return m; src = ah->arc_shost; dst = ah->arc_dhost; if (ah->arc_flag == 0xff) { m_adj(m, 4); if (m->m_len < ARC_HDRNEWLEN) { m = m_pullup(m, ARC_HDRNEWLEN); if (m == NULL) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); return NULL; } } ah = mtod(m, struct arc_header *); } af = &ac->ac_fragtab[src]; m1 = af->af_packet; s = "debug code error"; if (ah->arc_flag & 1) { /* * first fragment. We always initialize, which is * about the right thing to do, as we only want to * accept one fragmented packet per src at a time. */ if (m1 != NULL) m_freem(m1); af->af_packet = m; m1 = m; af->af_maxflag = ah->arc_flag; af->af_lastseen = 0; af->af_seqid = ah->arc_seqid; return NULL; /* notreached */ } else { /* check for unfragmented packet */ if (ah->arc_flag == 0) return m; /* do we have a first packet from that src? */ if (m1 == NULL) { s = "no first frag"; goto outofseq; } ah1 = mtod(m1, struct arc_header *); if (ah->arc_seqid != ah1->arc_seqid) { s = "seqid differs"; goto outofseq; } if (typ != ah1->arc_type) { s = "type differs"; goto outofseq; } if (dst != ah1->arc_dhost) { s = "dest host differs"; goto outofseq; } /* typ, seqid and dst are ok here. */ if (ah->arc_flag == af->af_lastseen) { m_freem(m); return NULL; } if (ah->arc_flag == af->af_lastseen + 2) { /* ok, this is next fragment */ af->af_lastseen = ah->arc_flag; m_adj(m,ARC_HDRNEWLEN); /* * m_cat might free the first mbuf (with pkthdr) * in 2nd chain; therefore: */ newflen = m->m_pkthdr.len; m_cat(m1,m); m1->m_pkthdr.len += newflen; /* is it the last one? */ if (af->af_lastseen > af->af_maxflag) { af->af_packet = NULL; return(m1); } else return NULL; } s = "other reason"; /* if all else fails, it is out of sequence, too */ } outofseq: if (m1) { m_freem(m1); af->af_packet = NULL; } if (m) m_freem(m); log(LOG_INFO,"%s: got out of seq. packet: %s\n", ifp->if_xname, s); return NULL; } /* * return 1 if Packet Header Definition Standard, else 0. * For now: old IP, old ARP aren't obviously. Lacking correct information, * we guess that besides new IP and new ARP also IPX and APPLETALK are PHDS. * (Apple and Novell corporations were involved, among others, in PHDS work). * Easiest is to assume that everybody else uses that, too. */ int arc_isphds(u_int8_t type) { return (type != ARCTYPE_IP_OLD && type != ARCTYPE_ARP_OLD && type != ARCTYPE_DIAGNOSE); } /* * Process a received Arcnet packet; * the packet is in the mbuf chain m with * the ARCnet header. */ void arc_input(struct ifnet *ifp, struct mbuf *m) { struct arc_header *ah; int isr; u_int8_t atype; if ((ifp->if_flags & IFF_UP) == 0) { m_freem(m); return; } /* possibly defragment: */ m = arc_defrag(ifp, m); if (m == NULL) return; BPF_MTAP(ifp, m); ah = mtod(m, struct arc_header *); /* does this belong to us? */ if ((ifp->if_flags & IFF_PROMISC) == 0 && ah->arc_dhost != arcbroadcastaddr && ah->arc_dhost != ARC_LLADDR(ifp)) { m_freem(m); return; } if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); if (ah->arc_dhost == arcbroadcastaddr) { m->m_flags |= M_BCAST|M_MCAST; if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); } atype = ah->arc_type; switch (atype) { #ifdef INET case ARCTYPE_IP: m_adj(m, ARC_HDRNEWLEN); isr = NETISR_IP; break; case ARCTYPE_IP_OLD: m_adj(m, ARC_HDRLEN); isr = NETISR_IP; break; case ARCTYPE_ARP: if (ifp->if_flags & IFF_NOARP) { /* Discard packet if ARP is disabled on interface */ m_freem(m); return; } m_adj(m, ARC_HDRNEWLEN); isr = NETISR_ARP; #ifdef ARCNET_ALLOW_BROKEN_ARP mtod(m, struct arphdr *)->ar_pro = htons(ETHERTYPE_IP); #endif break; case ARCTYPE_ARP_OLD: if (ifp->if_flags & IFF_NOARP) { /* Discard packet if ARP is disabled on interface */ m_freem(m); return; } m_adj(m, ARC_HDRLEN); isr = NETISR_ARP; #ifdef ARCNET_ALLOW_BROKEN_ARP mtod(m, struct arphdr *)->ar_pro = htons(ETHERTYPE_IP); #endif break; #endif #ifdef INET6 case ARCTYPE_INET6: m_adj(m, ARC_HDRNEWLEN); isr = NETISR_IPV6; break; #endif default: m_freem(m); return; } M_SETFIB(m, ifp->if_fib); netisr_dispatch(isr, m); } /* * Register (new) link level address. */ void arc_storelladdr(struct ifnet *ifp, u_int8_t lla) { ARC_LLADDR(ifp) = lla; } /* * Perform common duties while attaching to interface list */ void arc_ifattach(struct ifnet *ifp, u_int8_t lla) { struct ifaddr *ifa; struct sockaddr_dl *sdl; struct arccom *ac; if_attach(ifp); ifp->if_addrlen = 1; ifp->if_hdrlen = ARC_HDRLEN; ifp->if_mtu = 1500; ifp->if_resolvemulti = arc_resolvemulti; if (ifp->if_baudrate == 0) ifp->if_baudrate = 2500000; ifa = ifp->if_addr; KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_type = IFT_ARCNET; sdl->sdl_alen = ifp->if_addrlen; if (ifp->if_flags & IFF_BROADCAST) ifp->if_flags |= IFF_MULTICAST|IFF_ALLMULTI; ac = (struct arccom *)ifp->if_l2com; ac->ac_seqid = (time_second) & 0xFFFF; /* try to make seqid unique */ if (lla == 0) { /* XXX this message isn't entirely clear, to me -- cgd */ log(LOG_ERR,"%s: link address 0 reserved for broadcasts. Please change it and ifconfig %s down up\n", ifp->if_xname, ifp->if_xname); } arc_storelladdr(ifp, lla); ifp->if_broadcastaddr = &arcbroadcastaddr; bpfattach(ifp, DLT_ARCNET, ARC_HDRLEN); } void arc_ifdetach(struct ifnet *ifp) { bpfdetach(ifp); if_detach(ifp); } int arc_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct ifaddr *ifa = (struct ifaddr *) data; struct ifreq *ifr = (struct ifreq *) data; int error = 0; switch (command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: ifp->if_init(ifp->if_softc); /* before arpwhohas */ arp_ifinit(ifp, ifa); break; #endif default: ifp->if_init(ifp->if_softc); break; } break; case SIOCGIFADDR: { struct sockaddr *sa; sa = (struct sockaddr *) &ifr->ifr_data; *(u_int8_t *)sa->sa_data = ARC_LLADDR(ifp); } break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifr == NULL) error = EAFNOSUPPORT; else { switch (ifr->ifr_addr.sa_family) { case AF_INET: case AF_INET6: error = 0; break; default: error = EAFNOSUPPORT; break; } } break; case SIOCSIFMTU: /* * Set the interface MTU. * mtu can't be larger than ARCMTU for RFC1051 * and can't be larger than ARC_PHDS_MTU */ if (((ifp->if_flags & IFF_LINK0) && ifr->ifr_mtu > ARCMTU) || ifr->ifr_mtu > ARC_PHDS_MAXMTU) error = EINVAL; else ifp->if_mtu = ifr->ifr_mtu; break; } return (error); } /* based on ether_resolvemulti() */ int arc_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, struct sockaddr *sa) { struct sockaddr_dl *sdl; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif switch(sa->sa_family) { case AF_LINK: /* * No mapping needed. Just check that it's a valid MC address. */ sdl = (struct sockaddr_dl *)sa; if (*LLADDR(sdl) != arcbroadcastaddr) return EADDRNOTAVAIL; *llsa = NULL; return 0; #ifdef INET case AF_INET: sin = (struct sockaddr_in *)sa; if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) return EADDRNOTAVAIL; sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); sdl->sdl_alen = ARC_ADDR_LEN; *LLADDR(sdl) = 0; *llsa = (struct sockaddr *)sdl; return 0; #endif #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* * An IP6 address of 0 means listen to all * of the Ethernet multicast address used for IP6. * (This is used for multicast routers.) */ ifp->if_flags |= IFF_ALLMULTI; *llsa = NULL; return 0; } if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) return EADDRNOTAVAIL; sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); sdl->sdl_alen = ARC_ADDR_LEN; *LLADDR(sdl) = 0; *llsa = (struct sockaddr *)sdl; return 0; #endif default: /* * Well, the text isn't quite right, but it's the name * that counts... */ return EAFNOSUPPORT; } } static MALLOC_DEFINE(M_ARCCOM, "arccom", "ARCNET interface internals"); static void* arc_alloc(u_char type, struct ifnet *ifp) { struct arccom *ac; ac = malloc(sizeof(struct arccom), M_ARCCOM, M_WAITOK | M_ZERO); ac->ac_ifp = ifp; return (ac); } static void arc_free(void *com, u_char type) { free(com, M_ARCCOM); } static int arc_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: if_register_com_alloc(IFT_ARCNET, arc_alloc, arc_free); break; case MOD_UNLOAD: if_deregister_com_alloc(IFT_ARCNET); break; default: return EOPNOTSUPP; } return (0); } static moduledata_t arc_mod = { "arcnet", arc_modevent, 0 }; DECLARE_MODULE(arcnet, arc_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); MODULE_VERSION(arcnet, 1); Index: head/sys/net/if_ethersubr.c =================================================================== --- head/sys/net/if_ethersubr.c (revision 301216) +++ head/sys/net/if_ethersubr.c (revision 301217) @@ -1,1195 +1,1228 @@ /*- * Copyright (c) 1982, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 * $FreeBSD$ */ #include "opt_inet.h" #include "opt_inet6.h" #include "opt_netgraph.h" #include "opt_mbuf_profiling.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #include #include #endif #ifdef INET6 #include #endif #include #ifdef CTASSERT CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2); CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN); #endif VNET_DEFINE(struct pfil_head, link_pfil_hook); /* Packet filter hooks */ /* netgraph node hooks for ng_ether(4) */ void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp); void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m); int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); void (*ng_ether_attach_p)(struct ifnet *ifp); void (*ng_ether_detach_p)(struct ifnet *ifp); void (*vlan_input_p)(struct ifnet *, struct mbuf *); /* if_bridge(4) support */ struct mbuf *(*bridge_input_p)(struct ifnet *, struct mbuf *); int (*bridge_output_p)(struct ifnet *, struct mbuf *, struct sockaddr *, struct rtentry *); void (*bridge_dn_p)(struct mbuf *, struct ifnet *); /* if_lagg(4) support */ struct mbuf *(*lagg_input_p)(struct ifnet *, struct mbuf *); static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; static int ether_resolvemulti(struct ifnet *, struct sockaddr **, struct sockaddr *); #ifdef VIMAGE static void ether_reassign(struct ifnet *, struct vnet *, char *); #endif static int ether_requestencap(struct ifnet *, struct if_encap_req *); #define ETHER_IS_BROADCAST(addr) \ (bcmp(etherbroadcastaddr, (addr), ETHER_ADDR_LEN) == 0) #define senderr(e) do { error = (e); goto bad;} while (0) static void update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst) { int csum_flags = 0; if (src->m_pkthdr.csum_flags & CSUM_IP) csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA) csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); if (src->m_pkthdr.csum_flags & CSUM_SCTP) csum_flags |= CSUM_SCTP_VALID; dst->m_pkthdr.csum_flags |= csum_flags; if (csum_flags & CSUM_DATA_VALID) dst->m_pkthdr.csum_data = 0xffff; } /* * Handle link-layer encapsulation requests. */ static int ether_requestencap(struct ifnet *ifp, struct if_encap_req *req) { struct ether_header *eh; struct arphdr *ah; uint16_t etype; const u_char *lladdr; if (req->rtype != IFENCAP_LL) return (EOPNOTSUPP); if (req->bufsize < ETHER_HDR_LEN) return (ENOMEM); eh = (struct ether_header *)req->buf; lladdr = req->lladdr; req->lladdr_off = 0; switch (req->family) { case AF_INET: etype = htons(ETHERTYPE_IP); break; case AF_INET6: etype = htons(ETHERTYPE_IPV6); break; case AF_ARP: ah = (struct arphdr *)req->hdata; ah->ar_hrd = htons(ARPHRD_ETHER); switch(ntohs(ah->ar_op)) { case ARPOP_REVREQUEST: case ARPOP_REVREPLY: etype = htons(ETHERTYPE_REVARP); break; case ARPOP_REQUEST: case ARPOP_REPLY: default: etype = htons(ETHERTYPE_ARP); break; } if (req->flags & IFENCAP_FLAG_BROADCAST) lladdr = ifp->if_broadcastaddr; break; default: return (EAFNOSUPPORT); } memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type)); memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN); memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); req->bufsize = sizeof(struct ether_header); return (0); } static int ether_resolve_addr(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro, u_char *phdr, - uint32_t *pflags) + uint32_t *pflags, struct llentry **plle) { struct ether_header *eh; uint32_t lleflags = 0; int error = 0; #if defined(INET) || defined(INET6) uint16_t etype; #endif + if (plle) + *plle = NULL; eh = (struct ether_header *)phdr; switch (dst->sa_family) { #ifdef INET case AF_INET: if ((m->m_flags & (M_BCAST | M_MCAST)) == 0) - error = arpresolve(ifp, 0, m, dst, phdr, &lleflags); + error = arpresolve(ifp, 0, m, dst, phdr, &lleflags, + plle); else { if (m->m_flags & M_BCAST) memcpy(eh->ether_dhost, ifp->if_broadcastaddr, ETHER_ADDR_LEN); else { const struct in_addr *a; a = &(((const struct sockaddr_in *)dst)->sin_addr); ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost); } etype = htons(ETHERTYPE_IP); memcpy(&eh->ether_type, &etype, sizeof(etype)); memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); } break; #endif #ifdef INET6 case AF_INET6: if ((m->m_flags & M_MCAST) == 0) - error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags); + error = nd6_resolve(ifp, 0, m, dst, phdr, &lleflags, + plle); else { const struct in6_addr *a6; a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr); ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost); etype = htons(ETHERTYPE_IPV6); memcpy(&eh->ether_type, &etype, sizeof(etype)); memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN); } break; #endif default: if_printf(ifp, "can't handle af%d\n", dst->sa_family); if (m != NULL) m_freem(m); return (EAFNOSUPPORT); } if (error == EHOSTDOWN) { if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0) error = EHOSTUNREACH; } if (error != 0) return (error); *pflags = RT_MAY_LOOP; if (lleflags & LLE_IFADDR) *pflags |= RT_L2_ME; return (0); } /* * Ethernet output routine. * Encapsulate a packet of type family for the local net. * Use trailer local net encapsulation if enough data in first * packet leaves a multiple of 512 bytes of data in remainder. */ int ether_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { int error = 0; char linkhdr[ETHER_HDR_LEN], *phdr; struct ether_header *eh; struct pf_mtag *t; int loop_copy = 1; int hlen; /* link layer header length */ uint32_t pflags; + struct llentry *lle = NULL; + struct rtentry *rt0 = NULL; + int addref = 0; phdr = NULL; pflags = 0; if (ro != NULL) { - phdr = ro->ro_prepend; - hlen = ro->ro_plen; - pflags = ro->ro_flags; + /* XXX BPF uses ro_prepend */ + if (ro->ro_prepend != NULL) { + phdr = ro->ro_prepend; + hlen = ro->ro_plen; + } else if (!(m->m_flags & (M_BCAST | M_MCAST))) { + if ((ro->ro_flags & RT_LLE_CACHE) != 0) { + lle = ro->ro_lle; + if (lle != NULL && + (lle->la_flags & LLE_VALID) == 0) { + LLE_FREE(lle); + lle = NULL; /* redundant */ + ro->ro_lle = NULL; + } + if (lle == NULL) { + /* if we lookup, keep cache */ + addref = 1; + } + } + if (lle != NULL) { + phdr = lle->r_linkdata; + hlen = lle->r_hdrlen; + pflags = lle->r_flags; + } + } + rt0 = ro->ro_rt; } + #ifdef MAC error = mac_ifnet_check_transmit(ifp, m); if (error) senderr(error); #endif M_PROFILE(m); if (ifp->if_flags & IFF_MONITOR) senderr(ENETDOWN); if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))) senderr(ENETDOWN); if (phdr == NULL) { /* No prepend data supplied. Try to calculate ourselves. */ phdr = linkhdr; hlen = ETHER_HDR_LEN; - error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags); + error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags, + addref ? &lle : NULL); + if (addref && lle != NULL) + ro->ro_lle = lle; if (error != 0) return (error == EWOULDBLOCK ? 0 : error); } if ((pflags & RT_L2_ME) != 0) { update_mbuf_csumflags(m, m); return (if_simloop(ifp, m, dst->sa_family, 0)); } loop_copy = pflags & RT_MAY_LOOP; /* * Add local net header. If no space in first mbuf, * allocate another. * * Note that we do prepend regardless of RT_HAS_HEADER flag. * This is done because BPF code shifts m_data pointer * to the end of ethernet header prior to calling if_output(). */ M_PREPEND(m, hlen, M_NOWAIT); if (m == NULL) senderr(ENOBUFS); if ((pflags & RT_HAS_HEADER) == 0) { eh = mtod(m, struct ether_header *); memcpy(eh, phdr, hlen); } /* * If a simplex interface, and the packet is being sent to our * Ethernet address or a broadcast address, loopback a copy. * XXX To make a simplex device behave exactly like a duplex * device, we should copy in the case of sending to our own * ethernet address (thus letting the original actually appear * on the wire). However, we don't do that here for security * reasons and compatibility with the original behavior. */ if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) && ((t = pf_find_mtag(m)) == NULL || !t->routed)) { struct mbuf *n; /* * Because if_simloop() modifies the packet, we need a * writable copy through m_dup() instead of a readonly * one as m_copy[m] would give us. The alternative would * be to modify if_simloop() to handle the readonly mbuf, * but performancewise it is mostly equivalent (trading * extra data copying vs. extra locking). * * XXX This is a local workaround. A number of less * often used kernel parts suffer from the same bug. * See PR kern/105943 for a proposed general solution. */ if ((n = m_dup(m, M_NOWAIT)) != NULL) { update_mbuf_csumflags(m, n); (void)if_simloop(ifp, n, dst->sa_family, hlen); } else if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); } /* * Bridges require special output handling. */ if (ifp->if_bridge) { BRIDGE_OUTPUT(ifp, m, error); return (error); } #if defined(INET) || defined(INET6) if (ifp->if_carp && (error = (*carp_output_p)(ifp, m, dst))) goto bad; #endif /* Handle ng_ether(4) processing, if any */ if (ifp->if_l2com != NULL) { KASSERT(ng_ether_output_p != NULL, ("ng_ether_output_p is NULL")); if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { bad: if (m != NULL) m_freem(m); return (error); } if (m == NULL) return (0); } /* Continue with link-layer output */ return ether_output_frame(ifp, m); } /* * Ethernet link layer output routine to send a raw frame to the device. * * This assumes that the 14 byte Ethernet header is present and contiguous * in the first mbuf (if BRIDGE'ing). */ int ether_output_frame(struct ifnet *ifp, struct mbuf *m) { int i; if (PFIL_HOOKED(&V_link_pfil_hook)) { i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_OUT, NULL); if (i != 0) return (EACCES); if (m == NULL) return (0); } /* * Queue message on interface, update output statistics if * successful, and start output if interface not yet active. */ return ((ifp->if_transmit)(ifp, m)); } /* * Process a received Ethernet packet; the packet is in the * mbuf chain m with the ethernet header at the front. */ static void ether_input_internal(struct ifnet *ifp, struct mbuf *m) { struct ether_header *eh; u_short etype; if ((ifp->if_flags & IFF_UP) == 0) { m_freem(m); return; } #ifdef DIAGNOSTIC if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n"); m_freem(m); return; } #endif if (m->m_len < ETHER_HDR_LEN) { /* XXX maybe should pullup? */ if_printf(ifp, "discard frame w/o leading ethernet " "header (len %u pkt len %u)\n", m->m_len, m->m_pkthdr.len); if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); m_freem(m); return; } eh = mtod(m, struct ether_header *); etype = ntohs(eh->ether_type); random_harvest_queue(m, sizeof(*m), 2, RANDOM_NET_ETHER); CURVNET_SET_QUIET(ifp->if_vnet); if (ETHER_IS_MULTICAST(eh->ether_dhost)) { if (ETHER_IS_BROADCAST(eh->ether_dhost)) m->m_flags |= M_BCAST; else m->m_flags |= M_MCAST; if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); } #ifdef MAC /* * Tag the mbuf with an appropriate MAC label before any other * consumers can get to it. */ mac_ifnet_create_mbuf(ifp, m); #endif /* * Give bpf a chance at the packet. */ ETHER_BPF_MTAP(ifp, m); /* * If the CRC is still on the packet, trim it off. We do this once * and once only in case we are re-entered. Nothing else on the * Ethernet receive path expects to see the FCS. */ if (m->m_flags & M_HASFCS) { m_adj(m, -ETHER_CRC_LEN); m->m_flags &= ~M_HASFCS; } if (!(ifp->if_capenable & IFCAP_HWSTATS)) if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); /* Allow monitor mode to claim this frame, after stats are updated. */ if (ifp->if_flags & IFF_MONITOR) { m_freem(m); CURVNET_RESTORE(); return; } /* Handle input from a lagg(4) port */ if (ifp->if_type == IFT_IEEE8023ADLAG) { KASSERT(lagg_input_p != NULL, ("%s: if_lagg not loaded!", __func__)); m = (*lagg_input_p)(ifp, m); if (m != NULL) ifp = m->m_pkthdr.rcvif; else { CURVNET_RESTORE(); return; } } /* * If the hardware did not process an 802.1Q tag, do this now, * to allow 802.1P priority frames to be passed to the main input * path correctly. * TODO: Deal with Q-in-Q frames, but not arbitrary nesting levels. */ if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_VLAN) { struct ether_vlan_header *evl; if (m->m_len < sizeof(*evl) && (m = m_pullup(m, sizeof(*evl))) == NULL) { #ifdef DIAGNOSTIC if_printf(ifp, "cannot pullup VLAN header\n"); #endif if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); CURVNET_RESTORE(); return; } evl = mtod(m, struct ether_vlan_header *); m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag); m->m_flags |= M_VLANTAG; bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN, ETHER_HDR_LEN - ETHER_TYPE_LEN); m_adj(m, ETHER_VLAN_ENCAP_LEN); eh = mtod(m, struct ether_header *); } M_SETFIB(m, ifp->if_fib); /* Allow ng_ether(4) to claim this frame. */ if (ifp->if_l2com != NULL) { KASSERT(ng_ether_input_p != NULL, ("%s: ng_ether_input_p is NULL", __func__)); m->m_flags &= ~M_PROMISC; (*ng_ether_input_p)(ifp, &m); if (m == NULL) { CURVNET_RESTORE(); return; } eh = mtod(m, struct ether_header *); } /* * Allow if_bridge(4) to claim this frame. * The BRIDGE_INPUT() macro will update ifp if the bridge changed it * and the frame should be delivered locally. */ if (ifp->if_bridge != NULL) { m->m_flags &= ~M_PROMISC; BRIDGE_INPUT(ifp, m); if (m == NULL) { CURVNET_RESTORE(); return; } eh = mtod(m, struct ether_header *); } #if defined(INET) || defined(INET6) /* * Clear M_PROMISC on frame so that carp(4) will see it when the * mbuf flows up to Layer 3. * FreeBSD's implementation of carp(4) uses the inprotosw * to dispatch IPPROTO_CARP. carp(4) also allocates its own * Ethernet addresses of the form 00:00:5e:00:01:xx, which * is outside the scope of the M_PROMISC test below. * TODO: Maintain a hash table of ethernet addresses other than * ether_dhost which may be active on this ifp. */ if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) { m->m_flags &= ~M_PROMISC; } else #endif { /* * If the frame received was not for our MAC address, set the * M_PROMISC flag on the mbuf chain. The frame may need to * be seen by the rest of the Ethernet input path in case of * re-entry (e.g. bridge, vlan, netgraph) but should not be * seen by upper protocol layers. */ if (!ETHER_IS_MULTICAST(eh->ether_dhost) && bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0) m->m_flags |= M_PROMISC; } ether_demux(ifp, m); CURVNET_RESTORE(); } /* * Ethernet input dispatch; by default, direct dispatch here regardless of * global configuration. However, if RSS is enabled, hook up RSS affinity * so that when deferred or hybrid dispatch is enabled, we can redistribute * load based on RSS. * * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or * not it had already done work distribution via multi-queue. Then we could * direct dispatch in the event load balancing was already complete and * handle the case of interfaces with different capabilities better. * * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions * at multiple layers? * * XXXRW: For now, enable all this only if RSS is compiled in, although it * works fine without RSS. Need to characterise the performance overhead * of the detour through the netisr code in the event the result is always * direct dispatch. */ static void ether_nh_input(struct mbuf *m) { M_ASSERTPKTHDR(m); KASSERT(m->m_pkthdr.rcvif != NULL, ("%s: NULL interface pointer", __func__)); ether_input_internal(m->m_pkthdr.rcvif, m); } static struct netisr_handler ether_nh = { .nh_name = "ether", .nh_handler = ether_nh_input, .nh_proto = NETISR_ETHER, #ifdef RSS .nh_policy = NETISR_POLICY_CPU, .nh_dispatch = NETISR_DISPATCH_DIRECT, .nh_m2cpuid = rss_m2cpuid, #else .nh_policy = NETISR_POLICY_SOURCE, .nh_dispatch = NETISR_DISPATCH_DIRECT, #endif }; static void ether_init(__unused void *arg) { netisr_register(ðer_nh); } SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL); static void vnet_ether_init(__unused void *arg) { int i; /* Initialize packet filter hooks. */ V_link_pfil_hook.ph_type = PFIL_TYPE_AF; V_link_pfil_hook.ph_af = AF_LINK; if ((i = pfil_head_register(&V_link_pfil_hook)) != 0) printf("%s: WARNING: unable to register pfil link hook, " "error %d\n", __func__, i); } VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY, vnet_ether_init, NULL); static void vnet_ether_destroy(__unused void *arg) { int i; if ((i = pfil_head_unregister(&V_link_pfil_hook)) != 0) printf("%s: WARNING: unable to unregister pfil link hook, " "error %d\n", __func__, i); } VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY, vnet_ether_destroy, NULL); static void ether_input(struct ifnet *ifp, struct mbuf *m) { struct mbuf *mn; /* * The drivers are allowed to pass in a chain of packets linked with * m_nextpkt. We split them up into separate packets here and pass * them up. This allows the drivers to amortize the receive lock. */ while (m) { mn = m->m_nextpkt; m->m_nextpkt = NULL; /* * We will rely on rcvif being set properly in the deferred context, * so assert it is correct here. */ KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch", __func__)); netisr_dispatch(NETISR_ETHER, m); m = mn; } } /* * Upper layer processing for a received Ethernet packet. */ void ether_demux(struct ifnet *ifp, struct mbuf *m) { struct ether_header *eh; int i, isr; u_short ether_type; KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__)); /* Do not grab PROMISC frames in case we are re-entered. */ if (PFIL_HOOKED(&V_link_pfil_hook) && !(m->m_flags & M_PROMISC)) { i = pfil_run_hooks(&V_link_pfil_hook, &m, ifp, PFIL_IN, NULL); if (i != 0 || m == NULL) return; } eh = mtod(m, struct ether_header *); ether_type = ntohs(eh->ether_type); /* * If this frame has a VLAN tag other than 0, call vlan_input() * if its module is loaded. Otherwise, drop. */ if ((m->m_flags & M_VLANTAG) && EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) { if (ifp->if_vlantrunk == NULL) { if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); m_freem(m); return; } KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!", __func__)); /* Clear before possibly re-entering ether_input(). */ m->m_flags &= ~M_PROMISC; (*vlan_input_p)(ifp, m); return; } /* * Pass promiscuously received frames to the upper layer if the user * requested this by setting IFF_PPROMISC. Otherwise, drop them. */ if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) { m_freem(m); return; } /* * Reset layer specific mbuf flags to avoid confusing upper layers. * Strip off Ethernet header. */ m->m_flags &= ~M_VLANTAG; m_clrprotoflags(m); m_adj(m, ETHER_HDR_LEN); /* * Dispatch frame to upper layer. */ switch (ether_type) { #ifdef INET case ETHERTYPE_IP: isr = NETISR_IP; break; case ETHERTYPE_ARP: if (ifp->if_flags & IFF_NOARP) { /* Discard packet if ARP is disabled on interface */ m_freem(m); return; } isr = NETISR_ARP; break; #endif #ifdef INET6 case ETHERTYPE_IPV6: isr = NETISR_IPV6; break; #endif default: goto discard; } netisr_dispatch(isr, m); return; discard: /* * Packet is to be discarded. If netgraph is present, * hand the packet to it for last chance processing; * otherwise dispose of it. */ if (ifp->if_l2com != NULL) { KASSERT(ng_ether_input_orphan_p != NULL, ("ng_ether_input_orphan_p is NULL")); /* * Put back the ethernet header so netgraph has a * consistent view of inbound packets. */ M_PREPEND(m, ETHER_HDR_LEN, M_NOWAIT); (*ng_ether_input_orphan_p)(ifp, m); return; } m_freem(m); } /* * Convert Ethernet address to printable (loggable) representation. * This routine is for compatibility; it's better to just use * * printf("%6D", , ":"); * * since there's no static buffer involved. */ char * ether_sprintf(const u_char *ap) { static char etherbuf[18]; snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":"); return (etherbuf); } /* * Perform common duties while attaching to interface list */ void ether_ifattach(struct ifnet *ifp, const u_int8_t *lla) { int i; struct ifaddr *ifa; struct sockaddr_dl *sdl; ifp->if_addrlen = ETHER_ADDR_LEN; ifp->if_hdrlen = ETHER_HDR_LEN; if_attach(ifp); ifp->if_mtu = ETHERMTU; ifp->if_output = ether_output; ifp->if_input = ether_input; ifp->if_resolvemulti = ether_resolvemulti; ifp->if_requestencap = ether_requestencap; #ifdef VIMAGE ifp->if_reassign = ether_reassign; #endif if (ifp->if_baudrate == 0) ifp->if_baudrate = IF_Mbps(10); /* just a default */ ifp->if_broadcastaddr = etherbroadcastaddr; ifa = ifp->if_addr; KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_type = IFT_ETHER; sdl->sdl_alen = ifp->if_addrlen; bcopy(lla, LLADDR(sdl), ifp->if_addrlen); bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN); if (ng_ether_attach_p != NULL) (*ng_ether_attach_p)(ifp); /* Announce Ethernet MAC address if non-zero. */ for (i = 0; i < ifp->if_addrlen; i++) if (lla[i] != 0) break; if (i != ifp->if_addrlen) if_printf(ifp, "Ethernet address: %6D\n", lla, ":"); uuid_ether_add(LLADDR(sdl)); } /* * Perform common duties while detaching an Ethernet interface */ void ether_ifdetach(struct ifnet *ifp) { struct sockaddr_dl *sdl; sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr); uuid_ether_del(LLADDR(sdl)); if (ifp->if_l2com != NULL) { KASSERT(ng_ether_detach_p != NULL, ("ng_ether_detach_p is NULL")); (*ng_ether_detach_p)(ifp); } bpfdetach(ifp); if_detach(ifp); } #ifdef VIMAGE void ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused) { if (ifp->if_l2com != NULL) { KASSERT(ng_ether_detach_p != NULL, ("ng_ether_detach_p is NULL")); (*ng_ether_detach_p)(ifp); } if (ng_ether_attach_p != NULL) { CURVNET_SET_QUIET(new_vnet); (*ng_ether_attach_p)(ifp); CURVNET_RESTORE(); } } #endif SYSCTL_DECL(_net_link); SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); #if 0 /* * This is for reference. We have a table-driven version * of the little-endian crc32 generator, which is faster * than the double-loop. */ uint32_t ether_crc32_le(const uint8_t *buf, size_t len) { size_t i; uint32_t crc; int bit; uint8_t data; crc = 0xffffffff; /* initial value */ for (i = 0; i < len; i++) { for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { carry = (crc ^ data) & 1; crc >>= 1; if (carry) crc = (crc ^ ETHER_CRC_POLY_LE); } } return (crc); } #else uint32_t ether_crc32_le(const uint8_t *buf, size_t len) { static const uint32_t crctab[] = { 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c }; size_t i; uint32_t crc; crc = 0xffffffff; /* initial value */ for (i = 0; i < len; i++) { crc ^= buf[i]; crc = (crc >> 4) ^ crctab[crc & 0xf]; crc = (crc >> 4) ^ crctab[crc & 0xf]; } return (crc); } #endif uint32_t ether_crc32_be(const uint8_t *buf, size_t len) { size_t i; uint32_t crc, carry; int bit; uint8_t data; crc = 0xffffffff; /* initial value */ for (i = 0; i < len; i++) { for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) { carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01); crc <<= 1; if (carry) crc = (crc ^ ETHER_CRC_POLY_BE) | carry; } } return (crc); } int ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct ifaddr *ifa = (struct ifaddr *) data; struct ifreq *ifr = (struct ifreq *) data; int error = 0; switch (command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: ifp->if_init(ifp->if_softc); /* before arpwhohas */ arp_ifinit(ifp, ifa); break; #endif default: ifp->if_init(ifp->if_softc); break; } break; case SIOCGIFADDR: { struct sockaddr *sa; sa = (struct sockaddr *) & ifr->ifr_data; bcopy(IF_LLADDR(ifp), (caddr_t) sa->sa_data, ETHER_ADDR_LEN); } break; case SIOCSIFMTU: /* * Set the interface MTU. */ if (ifr->ifr_mtu > ETHERMTU) { error = EINVAL; } else { ifp->if_mtu = ifr->ifr_mtu; } break; default: error = EINVAL; /* XXX netbsd has ENOTTY??? */ break; } return (error); } static int ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, struct sockaddr *sa) { struct sockaddr_dl *sdl; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif u_char *e_addr; switch(sa->sa_family) { case AF_LINK: /* * No mapping needed. Just check that it's a valid MC address. */ sdl = (struct sockaddr_dl *)sa; e_addr = LLADDR(sdl); if (!ETHER_IS_MULTICAST(e_addr)) return EADDRNOTAVAIL; *llsa = NULL; return 0; #ifdef INET case AF_INET: sin = (struct sockaddr_in *)sa; if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) return EADDRNOTAVAIL; sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); sdl->sdl_alen = ETHER_ADDR_LEN; e_addr = LLADDR(sdl); ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); *llsa = (struct sockaddr *)sdl; return 0; #endif #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* * An IP6 address of 0 means listen to all * of the Ethernet multicast address used for IP6. * (This is used for multicast routers.) */ ifp->if_flags |= IFF_ALLMULTI; *llsa = NULL; return 0; } if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) return EADDRNOTAVAIL; sdl = link_init_sdl(ifp, *llsa, IFT_ETHER); sdl->sdl_alen = ETHER_ADDR_LEN; e_addr = LLADDR(sdl); ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); *llsa = (struct sockaddr *)sdl; return 0; #endif default: /* * Well, the text isn't quite right, but it's the name * that counts... */ return EAFNOSUPPORT; } } static moduledata_t ether_mod = { .name = "ether", }; void ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen) { struct ether_vlan_header vlan; struct mbuf mv, mb; KASSERT((m->m_flags & M_VLANTAG) != 0, ("%s: vlan information not present", __func__)); KASSERT(m->m_len >= sizeof(struct ether_header), ("%s: mbuf not large enough for header", __func__)); bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header)); vlan.evl_proto = vlan.evl_encap_proto; vlan.evl_encap_proto = htons(ETHERTYPE_VLAN); vlan.evl_tag = htons(m->m_pkthdr.ether_vtag); m->m_len -= sizeof(struct ether_header); m->m_data += sizeof(struct ether_header); /* * If a data link has been supplied by the caller, then we will need to * re-create a stack allocated mbuf chain with the following structure: * * (1) mbuf #1 will contain the supplied data link * (2) mbuf #2 will contain the vlan header * (3) mbuf #3 will contain the original mbuf's packet data * * Otherwise, submit the packet and vlan header via bpf_mtap2(). */ if (data != NULL) { mv.m_next = m; mv.m_data = (caddr_t)&vlan; mv.m_len = sizeof(vlan); mb.m_next = &mv; mb.m_data = data; mb.m_len = dlen; bpf_mtap(bp, &mb); } else bpf_mtap2(bp, &vlan, sizeof(vlan), m); m->m_len += sizeof(struct ether_header); m->m_data -= sizeof(struct ether_header); } struct mbuf * ether_vlanencap(struct mbuf *m, uint16_t tag) { struct ether_vlan_header *evl; M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT); if (m == NULL) return (NULL); /* M_PREPEND takes care of m_len, m_pkthdr.len for us */ if (m->m_len < sizeof(*evl)) { m = m_pullup(m, sizeof(*evl)); if (m == NULL) return (NULL); } /* * Transform the Ethernet header into an Ethernet header * with 802.1Q encapsulation. */ evl = mtod(m, struct ether_vlan_header *); bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN, (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN); evl->evl_encap_proto = htons(ETHERTYPE_VLAN); evl->evl_tag = htons(tag); return (m); } DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); MODULE_VERSION(ether, 1); Index: head/sys/net/if_fddisubr.c =================================================================== --- head/sys/net/if_fddisubr.c (revision 301216) +++ head/sys/net/if_fddisubr.c (revision 301217) @@ -1,670 +1,670 @@ /*- * Copyright (c) 1995, 1996 * Matt Thomas . All rights reserved. * Copyright (c) 1982, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: if_ethersubr.c,v 1.5 1994/12/13 22:31:45 wollman Exp * $FreeBSD$ */ #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #endif #ifdef INET6 #include #endif #ifdef DECNET #include #endif #include static const u_char fddibroadcastaddr[FDDI_ADDR_LEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; static int fddi_resolvemulti(struct ifnet *, struct sockaddr **, struct sockaddr *); static int fddi_output(struct ifnet *, struct mbuf *, const struct sockaddr *, struct route *); static void fddi_input(struct ifnet *ifp, struct mbuf *m); #define senderr(e) do { error = (e); goto bad; } while (0) /* * FDDI output routine. * Encapsulate a packet of type family for the local net. * Use trailer local net encapsulation if enough data in first * packet leaves a multiple of 512 bytes of data in remainder. */ static int fddi_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { u_int16_t type; int loop_copy = 0, error = 0, hdrcmplt = 0; u_char esrc[FDDI_ADDR_LEN], edst[FDDI_ADDR_LEN]; struct fddi_header *fh; #if defined(INET) || defined(INET6) int is_gw = 0; #endif #ifdef MAC error = mac_ifnet_check_transmit(ifp, m); if (error) senderr(error); #endif if (ifp->if_flags & IFF_MONITOR) senderr(ENETDOWN); if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))) senderr(ENETDOWN); getmicrotime(&ifp->if_lastchange); #if defined(INET) || defined(INET6) if (ro != NULL) is_gw = (ro->ro_flags & RT_HAS_GW) != 0; #endif switch (dst->sa_family) { #ifdef INET case AF_INET: { - error = arpresolve(ifp, is_gw, m, dst, edst, NULL); + error = arpresolve(ifp, is_gw, m, dst, edst, NULL, NULL); if (error) return (error == EWOULDBLOCK ? 0 : error); type = htons(ETHERTYPE_IP); break; } case AF_ARP: { struct arphdr *ah; ah = mtod(m, struct arphdr *); ah->ar_hrd = htons(ARPHRD_ETHER); loop_copy = -1; /* if this is for us, don't do it */ switch (ntohs(ah->ar_op)) { case ARPOP_REVREQUEST: case ARPOP_REVREPLY: type = htons(ETHERTYPE_REVARP); break; case ARPOP_REQUEST: case ARPOP_REPLY: default: type = htons(ETHERTYPE_ARP); break; } if (m->m_flags & M_BCAST) bcopy(ifp->if_broadcastaddr, edst, FDDI_ADDR_LEN); else bcopy(ar_tha(ah), edst, FDDI_ADDR_LEN); } break; #endif /* INET */ #ifdef INET6 case AF_INET6: - error = nd6_resolve(ifp, is_gw, m, dst, edst, NULL); + error = nd6_resolve(ifp, is_gw, m, dst, edst, NULL, NULL); if (error) return (error == EWOULDBLOCK ? 0 : error); type = htons(ETHERTYPE_IPV6); break; #endif /* INET6 */ case pseudo_AF_HDRCMPLT: { const struct ether_header *eh; hdrcmplt = 1; eh = (const struct ether_header *)dst->sa_data; bcopy(eh->ether_shost, esrc, FDDI_ADDR_LEN); /* FALLTHROUGH */ } case AF_UNSPEC: { const struct ether_header *eh; loop_copy = -1; eh = (const struct ether_header *)dst->sa_data; bcopy(eh->ether_dhost, edst, FDDI_ADDR_LEN); if (*edst & 1) m->m_flags |= (M_BCAST|M_MCAST); type = eh->ether_type; break; } case AF_IMPLINK: { fh = mtod(m, struct fddi_header *); error = EPROTONOSUPPORT; switch (fh->fddi_fc & (FDDIFC_C|FDDIFC_L|FDDIFC_F)) { case FDDIFC_LLC_ASYNC: { /* legal priorities are 0 through 7 */ if ((fh->fddi_fc & FDDIFC_Z) > 7) goto bad; break; } case FDDIFC_LLC_SYNC: { /* FDDIFC_Z bits reserved, must be zero */ if (fh->fddi_fc & FDDIFC_Z) goto bad; break; } case FDDIFC_SMT: { /* FDDIFC_Z bits must be non zero */ if ((fh->fddi_fc & FDDIFC_Z) == 0) goto bad; break; } default: { /* anything else is too dangerous */ goto bad; } } error = 0; if (fh->fddi_dhost[0] & 1) m->m_flags |= (M_BCAST|M_MCAST); goto queue_it; } default: if_printf(ifp, "can't handle af%d\n", dst->sa_family); senderr(EAFNOSUPPORT); } /* * Add LLC header. */ if (type != 0) { struct llc *l; M_PREPEND(m, LLC_SNAPFRAMELEN, M_NOWAIT); if (m == NULL) senderr(ENOBUFS); l = mtod(m, struct llc *); l->llc_control = LLC_UI; l->llc_dsap = l->llc_ssap = LLC_SNAP_LSAP; l->llc_snap.org_code[0] = l->llc_snap.org_code[1] = l->llc_snap.org_code[2] = 0; l->llc_snap.ether_type = htons(type); } /* * Add local net header. If no space in first mbuf, * allocate another. */ M_PREPEND(m, FDDI_HDR_LEN, M_NOWAIT); if (m == NULL) senderr(ENOBUFS); fh = mtod(m, struct fddi_header *); fh->fddi_fc = FDDIFC_LLC_ASYNC|FDDIFC_LLC_PRIO4; bcopy((caddr_t)edst, (caddr_t)fh->fddi_dhost, FDDI_ADDR_LEN); queue_it: if (hdrcmplt) bcopy((caddr_t)esrc, (caddr_t)fh->fddi_shost, FDDI_ADDR_LEN); else bcopy(IF_LLADDR(ifp), (caddr_t)fh->fddi_shost, FDDI_ADDR_LEN); /* * If a simplex interface, and the packet is being sent to our * Ethernet address or a broadcast address, loopback a copy. * XXX To make a simplex device behave exactly like a duplex * device, we should copy in the case of sending to our own * ethernet address (thus letting the original actually appear * on the wire). However, we don't do that here for security * reasons and compatibility with the original behavior. */ if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) { if ((m->m_flags & M_BCAST) || (loop_copy > 0)) { struct mbuf *n; n = m_copy(m, 0, (int)M_COPYALL); (void) if_simloop(ifp, n, dst->sa_family, FDDI_HDR_LEN); } else if (bcmp(fh->fddi_dhost, fh->fddi_shost, FDDI_ADDR_LEN) == 0) { (void) if_simloop(ifp, m, dst->sa_family, FDDI_HDR_LEN); return (0); /* XXX */ } } error = (ifp->if_transmit)(ifp, m); if (error) if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (error); bad: if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); if (m) m_freem(m); return (error); } /* * Process a received FDDI packet. */ static void fddi_input(ifp, m) struct ifnet *ifp; struct mbuf *m; { int isr; struct llc *l; struct fddi_header *fh; /* * Do consistency checks to verify assumptions * made by code past this point. */ if ((m->m_flags & M_PKTHDR) == 0) { if_printf(ifp, "discard frame w/o packet header\n"); if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); m_freem(m); return; } if (m->m_pkthdr.rcvif == NULL) { if_printf(ifp, "discard frame w/o interface pointer\n"); if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); m_freem(m); return; } m = m_pullup(m, FDDI_HDR_LEN); if (m == NULL) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); goto dropanyway; } fh = mtod(m, struct fddi_header *); /* * Discard packet if interface is not up. */ if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))) goto dropanyway; /* * Give bpf a chance at the packet. */ BPF_MTAP(ifp, m); /* * Interface marked for monitoring; discard packet. */ if (ifp->if_flags & IFF_MONITOR) { m_freem(m); return; } #ifdef MAC mac_ifnet_create_mbuf(ifp, m); #endif /* * Update interface statistics. */ if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); getmicrotime(&ifp->if_lastchange); /* * Discard non local unicast packets when interface * is in promiscuous mode. */ if ((ifp->if_flags & IFF_PROMISC) && ((fh->fddi_dhost[0] & 1) == 0) && (bcmp(IF_LLADDR(ifp), (caddr_t)fh->fddi_dhost, FDDI_ADDR_LEN) != 0)) goto dropanyway; /* * Set mbuf flags for bcast/mcast. */ if (fh->fddi_dhost[0] & 1) { if (bcmp(ifp->if_broadcastaddr, fh->fddi_dhost, FDDI_ADDR_LEN) == 0) m->m_flags |= M_BCAST; else m->m_flags |= M_MCAST; if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); } #ifdef M_LINK0 /* * If this has a LLC priority of 0, then mark it so upper * layers have a hint that it really came via a FDDI/Ethernet * bridge. */ if ((fh->fddi_fc & FDDIFC_LLC_PRIO7) == FDDIFC_LLC_PRIO0) m->m_flags |= M_LINK0; #endif /* Strip off FDDI header. */ m_adj(m, FDDI_HDR_LEN); m = m_pullup(m, LLC_SNAPFRAMELEN); if (m == 0) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); goto dropanyway; } l = mtod(m, struct llc *); switch (l->llc_dsap) { case LLC_SNAP_LSAP: { u_int16_t type; if ((l->llc_control != LLC_UI) || (l->llc_ssap != LLC_SNAP_LSAP)) { if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); goto dropanyway; } if (l->llc_snap.org_code[0] != 0 || l->llc_snap.org_code[1] != 0 || l->llc_snap.org_code[2] != 0) { if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); goto dropanyway; } type = ntohs(l->llc_snap.ether_type); m_adj(m, LLC_SNAPFRAMELEN); switch (type) { #ifdef INET case ETHERTYPE_IP: isr = NETISR_IP; break; case ETHERTYPE_ARP: if (ifp->if_flags & IFF_NOARP) goto dropanyway; isr = NETISR_ARP; break; #endif #ifdef INET6 case ETHERTYPE_IPV6: isr = NETISR_IPV6; break; #endif #ifdef DECNET case ETHERTYPE_DECNET: isr = NETISR_DECNET; break; #endif default: /* printf("fddi_input: unknown protocol 0x%x\n", type); */ if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); goto dropanyway; } break; } default: /* printf("fddi_input: unknown dsap 0x%x\n", l->llc_dsap); */ if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); goto dropanyway; } M_SETFIB(m, ifp->if_fib); netisr_dispatch(isr, m); return; dropanyway: if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); if (m) m_freem(m); return; } /* * Perform common duties while attaching to interface list */ void fddi_ifattach(ifp, lla, bpf) struct ifnet *ifp; const u_int8_t *lla; int bpf; { struct ifaddr *ifa; struct sockaddr_dl *sdl; ifp->if_type = IFT_FDDI; ifp->if_addrlen = FDDI_ADDR_LEN; ifp->if_hdrlen = 21; if_attach(ifp); /* Must be called before additional assignments */ ifp->if_mtu = FDDIMTU; ifp->if_output = fddi_output; ifp->if_input = fddi_input; ifp->if_resolvemulti = fddi_resolvemulti; ifp->if_broadcastaddr = fddibroadcastaddr; ifp->if_baudrate = 100000000; #ifdef IFF_NOTRAILERS ifp->if_flags |= IFF_NOTRAILERS; #endif ifa = ifp->if_addr; KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_type = IFT_FDDI; sdl->sdl_alen = ifp->if_addrlen; bcopy(lla, LLADDR(sdl), ifp->if_addrlen); if (bpf) bpfattach(ifp, DLT_FDDI, FDDI_HDR_LEN); return; } void fddi_ifdetach(ifp, bpf) struct ifnet *ifp; int bpf; { if (bpf) bpfdetach(ifp); if_detach(ifp); return; } int fddi_ioctl (ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct ifaddr *ifa; struct ifreq *ifr; int error; ifa = (struct ifaddr *) data; ifr = (struct ifreq *) data; error = 0; switch (command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: /* before arpwhohas */ ifp->if_init(ifp->if_softc); arp_ifinit(ifp, ifa); break; #endif default: ifp->if_init(ifp->if_softc); break; } break; case SIOCGIFADDR: { struct sockaddr *sa; sa = (struct sockaddr *) & ifr->ifr_data; bcopy(IF_LLADDR(ifp), (caddr_t) sa->sa_data, FDDI_ADDR_LEN); } break; case SIOCSIFMTU: /* * Set the interface MTU. */ if (ifr->ifr_mtu > FDDIMTU) { error = EINVAL; } else { ifp->if_mtu = ifr->ifr_mtu; } break; default: error = EINVAL; break; } return (error); } static int fddi_resolvemulti(ifp, llsa, sa) struct ifnet *ifp; struct sockaddr **llsa; struct sockaddr *sa; { struct sockaddr_dl *sdl; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif u_char *e_addr; switch(sa->sa_family) { case AF_LINK: /* * No mapping needed. Just check that it's a valid MC address. */ sdl = (struct sockaddr_dl *)sa; e_addr = LLADDR(sdl); if ((e_addr[0] & 1) != 1) return (EADDRNOTAVAIL); *llsa = NULL; return (0); #ifdef INET case AF_INET: sin = (struct sockaddr_in *)sa; if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) return (EADDRNOTAVAIL); sdl = link_init_sdl(ifp, *llsa, IFT_FDDI); sdl->sdl_nlen = 0; sdl->sdl_alen = FDDI_ADDR_LEN; sdl->sdl_slen = 0; e_addr = LLADDR(sdl); ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); *llsa = (struct sockaddr *)sdl; return (0); #endif #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* * An IP6 address of 0 means listen to all * of the Ethernet multicast address used for IP6. * (This is used for multicast routers.) */ ifp->if_flags |= IFF_ALLMULTI; *llsa = NULL; return (0); } if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) return (EADDRNOTAVAIL); sdl = link_init_sdl(ifp, *llsa, IFT_FDDI); sdl->sdl_nlen = 0; sdl->sdl_alen = FDDI_ADDR_LEN; sdl->sdl_slen = 0; e_addr = LLADDR(sdl); ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); *llsa = (struct sockaddr *)sdl; return (0); #endif default: /* * Well, the text isn't quite right, but it's the name * that counts... */ return (EAFNOSUPPORT); } return (0); } static moduledata_t fddi_mod = { "fddi", /* module name */ NULL, /* event handler */ 0 /* extra data */ }; DECLARE_MODULE(fddi, fddi_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); MODULE_VERSION(fddi, 1); Index: head/sys/net/if_fwsubr.c =================================================================== --- head/sys/net/if_fwsubr.c (revision 301216) +++ head/sys/net/if_fwsubr.c (revision 301217) @@ -1,855 +1,856 @@ /*- * Copyright (c) 2004 Doug Rabson * Copyright (c) 1982, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #endif #ifdef INET6 #include #endif #include static MALLOC_DEFINE(M_FWCOM, "fw_com", "firewire interface internals"); struct fw_hwaddr firewire_broadcastaddr = { 0xffffffff, 0xffffffff, 0xff, 0xff, 0xffff, 0xffffffff }; static int firewire_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { struct fw_com *fc = IFP2FWC(ifp); int error, type; struct m_tag *mtag; union fw_encap *enc; struct fw_hwaddr *destfw; uint8_t speed; uint16_t psize, fsize, dsize; struct mbuf *mtail; int unicast, dgl, foff; static int next_dgl; #if defined(INET) || defined(INET6) int is_gw = 0; #endif #ifdef MAC error = mac_ifnet_check_transmit(ifp, m); if (error) goto bad; #endif if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))) { error = ENETDOWN; goto bad; } #if defined(INET) || defined(INET6) if (ro != NULL) is_gw = (ro->ro_flags & RT_HAS_GW) != 0; #endif /* * For unicast, we make a tag to store the lladdr of the * destination. This might not be the first time we have seen * the packet (for instance, the arp code might be trying to * re-send it after receiving an arp reply) so we only * allocate a tag if there isn't one there already. For * multicast, we will eventually use a different tag to store * the channel number. */ unicast = !(m->m_flags & (M_BCAST | M_MCAST)); if (unicast) { mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, NULL); if (!mtag) { mtag = m_tag_alloc(MTAG_FIREWIRE, MTAG_FIREWIRE_HWADDR, sizeof (struct fw_hwaddr), M_NOWAIT); if (!mtag) { error = ENOMEM; goto bad; } m_tag_prepend(m, mtag); } destfw = (struct fw_hwaddr *)(mtag + 1); } else { destfw = NULL; } switch (dst->sa_family) { #ifdef INET case AF_INET: /* * Only bother with arp for unicast. Allocation of * channels etc. for firewire is quite different and * doesn't fit into the arp model. */ if (unicast) { - error = arpresolve(ifp, is_gw, m, dst, (u_char *) destfw, NULL); + error = arpresolve(ifp, is_gw, m, dst, + (u_char *) destfw, NULL, NULL); if (error) return (error == EWOULDBLOCK ? 0 : error); } type = ETHERTYPE_IP; break; case AF_ARP: { struct arphdr *ah; ah = mtod(m, struct arphdr *); ah->ar_hrd = htons(ARPHRD_IEEE1394); type = ETHERTYPE_ARP; if (unicast) *destfw = *(struct fw_hwaddr *) ar_tha(ah); /* * The standard arp code leaves a hole for the target * hardware address which we need to close up. */ bcopy(ar_tpa(ah), ar_tha(ah), ah->ar_pln); m_adj(m, -ah->ar_hln); break; } #endif #ifdef INET6 case AF_INET6: if (unicast) { error = nd6_resolve(fc->fc_ifp, is_gw, m, dst, - (u_char *) destfw, NULL); + (u_char *) destfw, NULL, NULL); if (error) return (error == EWOULDBLOCK ? 0 : error); } type = ETHERTYPE_IPV6; break; #endif default: if_printf(ifp, "can't handle af%d\n", dst->sa_family); error = EAFNOSUPPORT; goto bad; } /* * Let BPF tap off a copy before we encapsulate. */ if (bpf_peers_present(ifp->if_bpf)) { struct fw_bpfhdr h; if (unicast) bcopy(destfw, h.firewire_dhost, 8); else bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8); bcopy(&fc->fc_hwaddr, h.firewire_shost, 8); h.firewire_type = htons(type); bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m); } /* * Punt on MCAP for now and send all multicast packets on the * broadcast channel. */ if (m->m_flags & M_MCAST) m->m_flags |= M_BCAST; /* * Figure out what speed to use and what the largest supported * packet size is. For unicast, this is the minimum of what we * can speak and what they can hear. For broadcast, lets be * conservative and use S100. We could possibly improve that * by examining the bus manager's speed map or similar. We * also reduce the packet size for broadcast to account for * the GASP header. */ if (unicast) { speed = min(fc->fc_speed, destfw->sspd); psize = min(512 << speed, 2 << destfw->sender_max_rec); } else { speed = 0; psize = 512 - 2*sizeof(uint32_t); } /* * Next, we encapsulate, possibly fragmenting the original * datagram if it won't fit into a single packet. */ if (m->m_pkthdr.len <= psize - sizeof(uint32_t)) { /* * No fragmentation is necessary. */ M_PREPEND(m, sizeof(uint32_t), M_NOWAIT); if (!m) { error = ENOBUFS; goto bad; } enc = mtod(m, union fw_encap *); enc->unfrag.ether_type = type; enc->unfrag.lf = FW_ENCAP_UNFRAG; enc->unfrag.reserved = 0; /* * Byte swap the encapsulation header manually. */ enc->ul[0] = htonl(enc->ul[0]); error = (ifp->if_transmit)(ifp, m); return (error); } else { /* * Fragment the datagram, making sure to leave enough * space for the encapsulation header in each packet. */ fsize = psize - 2*sizeof(uint32_t); dgl = next_dgl++; dsize = m->m_pkthdr.len; foff = 0; while (m) { if (m->m_pkthdr.len > fsize) { /* * Split off the tail segment from the * datagram, copying our tags over. */ mtail = m_split(m, fsize, M_NOWAIT); m_tag_copy_chain(mtail, m, M_NOWAIT); } else { mtail = NULL; } /* * Add our encapsulation header to this * fragment and hand it off to the link. */ M_PREPEND(m, 2*sizeof(uint32_t), M_NOWAIT); if (!m) { error = ENOBUFS; goto bad; } enc = mtod(m, union fw_encap *); if (foff == 0) { enc->firstfrag.lf = FW_ENCAP_FIRST; enc->firstfrag.reserved1 = 0; enc->firstfrag.reserved2 = 0; enc->firstfrag.datagram_size = dsize - 1; enc->firstfrag.ether_type = type; enc->firstfrag.dgl = dgl; } else { if (mtail) enc->nextfrag.lf = FW_ENCAP_NEXT; else enc->nextfrag.lf = FW_ENCAP_LAST; enc->nextfrag.reserved1 = 0; enc->nextfrag.reserved2 = 0; enc->nextfrag.reserved3 = 0; enc->nextfrag.datagram_size = dsize - 1; enc->nextfrag.fragment_offset = foff; enc->nextfrag.dgl = dgl; } foff += m->m_pkthdr.len - 2*sizeof(uint32_t); /* * Byte swap the encapsulation header manually. */ enc->ul[0] = htonl(enc->ul[0]); enc->ul[1] = htonl(enc->ul[1]); error = (ifp->if_transmit)(ifp, m); if (error) { if (mtail) m_freem(mtail); return (ENOBUFS); } m = mtail; } return (0); } bad: if (m) m_freem(m); return (error); } static struct mbuf * firewire_input_fragment(struct fw_com *fc, struct mbuf *m, int src) { union fw_encap *enc; struct fw_reass *r; struct mbuf *mf, *mprev; int dsize; int fstart, fend, start, end, islast; uint32_t id; /* * Find an existing reassembly buffer or create a new one. */ enc = mtod(m, union fw_encap *); id = enc->firstfrag.dgl | (src << 16); STAILQ_FOREACH(r, &fc->fc_frags, fr_link) if (r->fr_id == id) break; if (!r) { r = malloc(sizeof(struct fw_reass), M_TEMP, M_NOWAIT); if (!r) { m_freem(m); return 0; } r->fr_id = id; r->fr_frags = 0; STAILQ_INSERT_HEAD(&fc->fc_frags, r, fr_link); } /* * If this fragment overlaps any other fragment, we must discard * the partial reassembly and start again. */ if (enc->firstfrag.lf == FW_ENCAP_FIRST) fstart = 0; else fstart = enc->nextfrag.fragment_offset; fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t); dsize = enc->nextfrag.datagram_size; islast = (enc->nextfrag.lf == FW_ENCAP_LAST); for (mf = r->fr_frags; mf; mf = mf->m_nextpkt) { enc = mtod(mf, union fw_encap *); if (enc->nextfrag.datagram_size != dsize) { /* * This fragment must be from a different * packet. */ goto bad; } if (enc->firstfrag.lf == FW_ENCAP_FIRST) start = 0; else start = enc->nextfrag.fragment_offset; end = start + mf->m_pkthdr.len - 2*sizeof(uint32_t); if ((fstart < end && fend > start) || (islast && enc->nextfrag.lf == FW_ENCAP_LAST)) { /* * Overlap - discard reassembly buffer and start * again with this fragment. */ goto bad; } } /* * Find where to put this fragment in the list. */ for (mf = r->fr_frags, mprev = NULL; mf; mprev = mf, mf = mf->m_nextpkt) { enc = mtod(mf, union fw_encap *); if (enc->firstfrag.lf == FW_ENCAP_FIRST) start = 0; else start = enc->nextfrag.fragment_offset; if (start >= fend) break; } /* * If this is a last fragment and we are not adding at the end * of the list, discard the buffer. */ if (islast && mprev && mprev->m_nextpkt) goto bad; if (mprev) { m->m_nextpkt = mprev->m_nextpkt; mprev->m_nextpkt = m; /* * Coalesce forwards and see if we can make a whole * datagram. */ enc = mtod(mprev, union fw_encap *); if (enc->firstfrag.lf == FW_ENCAP_FIRST) start = 0; else start = enc->nextfrag.fragment_offset; end = start + mprev->m_pkthdr.len - 2*sizeof(uint32_t); while (end == fstart) { /* * Strip off the encap header from m and * append it to mprev, freeing m. */ m_adj(m, 2*sizeof(uint32_t)); mprev->m_nextpkt = m->m_nextpkt; mprev->m_pkthdr.len += m->m_pkthdr.len; m_cat(mprev, m); if (mprev->m_pkthdr.len == dsize + 1 + 2*sizeof(uint32_t)) { /* * We have assembled a complete packet * we must be finished. Make sure we have * merged the whole chain. */ STAILQ_REMOVE(&fc->fc_frags, r, fw_reass, fr_link); free(r, M_TEMP); m = mprev->m_nextpkt; while (m) { mf = m->m_nextpkt; m_freem(m); m = mf; } mprev->m_nextpkt = NULL; return (mprev); } /* * See if we can continue merging forwards. */ end = fend; m = mprev->m_nextpkt; if (m) { enc = mtod(m, union fw_encap *); if (enc->firstfrag.lf == FW_ENCAP_FIRST) fstart = 0; else fstart = enc->nextfrag.fragment_offset; fend = fstart + m->m_pkthdr.len - 2*sizeof(uint32_t); } else { break; } } } else { m->m_nextpkt = 0; r->fr_frags = m; } return (0); bad: while (r->fr_frags) { mf = r->fr_frags; r->fr_frags = mf->m_nextpkt; m_freem(mf); } m->m_nextpkt = 0; r->fr_frags = m; return (0); } void firewire_input(struct ifnet *ifp, struct mbuf *m, uint16_t src) { struct fw_com *fc = IFP2FWC(ifp); union fw_encap *enc; int type, isr; /* * The caller has already stripped off the packet header * (stream or wreqb) and marked the mbuf's M_BCAST flag * appropriately. We de-encapsulate the IP packet and pass it * up the line after handling link-level fragmentation. */ if (m->m_pkthdr.len < sizeof(uint32_t)) { if_printf(ifp, "discarding frame without " "encapsulation header (len %u pkt len %u)\n", m->m_len, m->m_pkthdr.len); } m = m_pullup(m, sizeof(uint32_t)); if (m == NULL) return; enc = mtod(m, union fw_encap *); /* * Byte swap the encapsulation header manually. */ enc->ul[0] = ntohl(enc->ul[0]); if (enc->unfrag.lf != 0) { m = m_pullup(m, 2*sizeof(uint32_t)); if (!m) return; enc = mtod(m, union fw_encap *); enc->ul[1] = ntohl(enc->ul[1]); m = firewire_input_fragment(fc, m, src); if (!m) return; enc = mtod(m, union fw_encap *); type = enc->firstfrag.ether_type; m_adj(m, 2*sizeof(uint32_t)); } else { type = enc->unfrag.ether_type; m_adj(m, sizeof(uint32_t)); } if (m->m_pkthdr.rcvif == NULL) { if_printf(ifp, "discard frame w/o interface pointer\n"); if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); m_freem(m); return; } #ifdef DIAGNOSTIC if (m->m_pkthdr.rcvif != ifp) { if_printf(ifp, "Warning, frame marked as received on %s\n", m->m_pkthdr.rcvif->if_xname); } #endif #ifdef MAC /* * Tag the mbuf with an appropriate MAC label before any other * consumers can get to it. */ mac_ifnet_create_mbuf(ifp, m); #endif /* * Give bpf a chance at the packet. The link-level driver * should have left us a tag with the EUID of the sender. */ if (bpf_peers_present(ifp->if_bpf)) { struct fw_bpfhdr h; struct m_tag *mtag; mtag = m_tag_locate(m, MTAG_FIREWIRE, MTAG_FIREWIRE_SENDER_EUID, 0); if (mtag) bcopy(mtag + 1, h.firewire_shost, 8); else bcopy(&firewire_broadcastaddr, h.firewire_dhost, 8); bcopy(&fc->fc_hwaddr, h.firewire_dhost, 8); h.firewire_type = htons(type); bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m); } if (ifp->if_flags & IFF_MONITOR) { /* * Interface marked for monitoring; discard packet. */ m_freem(m); return; } if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); /* Discard packet if interface is not up */ if ((ifp->if_flags & IFF_UP) == 0) { m_freem(m); return; } if (m->m_flags & (M_BCAST|M_MCAST)) if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); switch (type) { #ifdef INET case ETHERTYPE_IP: isr = NETISR_IP; break; case ETHERTYPE_ARP: { struct arphdr *ah; ah = mtod(m, struct arphdr *); /* * Adjust the arp packet to insert an empty tha slot. */ m->m_len += ah->ar_hln; m->m_pkthdr.len += ah->ar_hln; bcopy(ar_tha(ah), ar_tpa(ah), ah->ar_pln); isr = NETISR_ARP; break; } #endif #ifdef INET6 case ETHERTYPE_IPV6: isr = NETISR_IPV6; break; #endif default: m_freem(m); return; } M_SETFIB(m, ifp->if_fib); netisr_dispatch(isr, m); } int firewire_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct ifaddr *ifa = (struct ifaddr *) data; struct ifreq *ifr = (struct ifreq *) data; int error = 0; switch (command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: ifp->if_init(ifp->if_softc); /* before arpwhohas */ arp_ifinit(ifp, ifa); break; #endif default: ifp->if_init(ifp->if_softc); break; } break; case SIOCGIFADDR: { struct sockaddr *sa; sa = (struct sockaddr *) & ifr->ifr_data; bcopy(&IFP2FWC(ifp)->fc_hwaddr, (caddr_t) sa->sa_data, sizeof(struct fw_hwaddr)); } break; case SIOCSIFMTU: /* * Set the interface MTU. */ if (ifr->ifr_mtu > 1500) { error = EINVAL; } else { ifp->if_mtu = ifr->ifr_mtu; } break; default: error = EINVAL; /* XXX netbsd has ENOTTY??? */ break; } return (error); } static int firewire_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa, struct sockaddr *sa) { #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif switch(sa->sa_family) { case AF_LINK: /* * No mapping needed. */ *llsa = NULL; return 0; #ifdef INET case AF_INET: sin = (struct sockaddr_in *)sa; if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) return EADDRNOTAVAIL; *llsa = NULL; return 0; #endif #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* * An IP6 address of 0 means listen to all * of the Ethernet multicast address used for IP6. * (This is used for multicast routers.) */ ifp->if_flags |= IFF_ALLMULTI; *llsa = NULL; return 0; } if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) return EADDRNOTAVAIL; *llsa = NULL; return 0; #endif default: /* * Well, the text isn't quite right, but it's the name * that counts... */ return EAFNOSUPPORT; } } void firewire_ifattach(struct ifnet *ifp, struct fw_hwaddr *llc) { struct fw_com *fc = IFP2FWC(ifp); struct ifaddr *ifa; struct sockaddr_dl *sdl; static const char* speeds[] = { "S100", "S200", "S400", "S800", "S1600", "S3200" }; fc->fc_speed = llc->sspd; STAILQ_INIT(&fc->fc_frags); ifp->if_addrlen = sizeof(struct fw_hwaddr); ifp->if_hdrlen = 0; if_attach(ifp); ifp->if_mtu = 1500; /* XXX */ ifp->if_output = firewire_output; ifp->if_resolvemulti = firewire_resolvemulti; ifp->if_broadcastaddr = (u_char *) &firewire_broadcastaddr; ifa = ifp->if_addr; KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_type = IFT_IEEE1394; sdl->sdl_alen = ifp->if_addrlen; bcopy(llc, LLADDR(sdl), ifp->if_addrlen); bpfattach(ifp, DLT_APPLE_IP_OVER_IEEE1394, sizeof(struct fw_hwaddr)); if_printf(ifp, "Firewire address: %8D @ 0x%04x%08x, %s, maxrec %d\n", (uint8_t *) &llc->sender_unique_ID_hi, ":", ntohs(llc->sender_unicast_FIFO_hi), ntohl(llc->sender_unicast_FIFO_lo), speeds[llc->sspd], (2 << llc->sender_max_rec)); } void firewire_ifdetach(struct ifnet *ifp) { bpfdetach(ifp); if_detach(ifp); } void firewire_busreset(struct ifnet *ifp) { struct fw_com *fc = IFP2FWC(ifp); struct fw_reass *r; struct mbuf *m; /* * Discard any partial datagrams since the host ids may have changed. */ while ((r = STAILQ_FIRST(&fc->fc_frags))) { STAILQ_REMOVE_HEAD(&fc->fc_frags, fr_link); while (r->fr_frags) { m = r->fr_frags; r->fr_frags = m->m_nextpkt; m_freem(m); } free(r, M_TEMP); } } static void * firewire_alloc(u_char type, struct ifnet *ifp) { struct fw_com *fc; fc = malloc(sizeof(struct fw_com), M_FWCOM, M_WAITOK | M_ZERO); fc->fc_ifp = ifp; return (fc); } static void firewire_free(void *com, u_char type) { free(com, M_FWCOM); } static int firewire_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: if_register_com_alloc(IFT_IEEE1394, firewire_alloc, firewire_free); break; case MOD_UNLOAD: if_deregister_com_alloc(IFT_IEEE1394); break; default: return (EOPNOTSUPP); } return (0); } static moduledata_t firewire_mod = { "if_firewire", firewire_modevent, 0 }; DECLARE_MODULE(if_firewire, firewire_mod, SI_SUB_INIT_IF, SI_ORDER_ANY); MODULE_VERSION(if_firewire, 1); Index: head/sys/net/if_iso88025subr.c =================================================================== --- head/sys/net/if_iso88025subr.c (revision 301216) +++ head/sys/net/if_iso88025subr.c (revision 301217) @@ -1,697 +1,697 @@ /*- * Copyright (c) 1998, Larry Lile * All rights reserved. * * For latest sources and information on this driver, please * go to http://anarchy.stdio.com. * * Questions, comments or suggestions should be directed to * Larry Lile . * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ * */ /* * * General ISO 802.5 (Token Ring) support routines * */ #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #endif #ifdef INET6 #include #endif #include static const u_char iso88025_broadcastaddr[ISO88025_ADDR_LEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; static int iso88025_resolvemulti (struct ifnet *, struct sockaddr **, struct sockaddr *); #define senderr(e) do { error = (e); goto bad; } while (0) /* * Perform common duties while attaching to interface list */ void iso88025_ifattach(struct ifnet *ifp, const u_int8_t *lla, int bpf) { struct ifaddr *ifa; struct sockaddr_dl *sdl; ifa = NULL; ifp->if_type = IFT_ISO88025; ifp->if_addrlen = ISO88025_ADDR_LEN; ifp->if_hdrlen = ISO88025_HDR_LEN; if_attach(ifp); /* Must be called before additional assignments */ ifp->if_output = iso88025_output; ifp->if_input = iso88025_input; ifp->if_resolvemulti = iso88025_resolvemulti; ifp->if_broadcastaddr = iso88025_broadcastaddr; if (ifp->if_baudrate == 0) ifp->if_baudrate = TR_16MBPS; /* 16Mbit should be a safe default */ if (ifp->if_mtu == 0) ifp->if_mtu = ISO88025_DEFAULT_MTU; ifa = ifp->if_addr; KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_type = IFT_ISO88025; sdl->sdl_alen = ifp->if_addrlen; bcopy(lla, LLADDR(sdl), ifp->if_addrlen); if (bpf) bpfattach(ifp, DLT_IEEE802, ISO88025_HDR_LEN); return; } /* * Perform common duties while detaching a Token Ring interface */ void iso88025_ifdetach(ifp, bpf) struct ifnet *ifp; int bpf; { if (bpf) bpfdetach(ifp); if_detach(ifp); return; } int iso88025_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct ifaddr *ifa; struct ifreq *ifr; int error; ifa = (struct ifaddr *) data; ifr = (struct ifreq *) data; error = 0; switch (command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: ifp->if_init(ifp->if_softc); /* before arpwhohas */ arp_ifinit(ifp, ifa); break; #endif /* INET */ default: ifp->if_init(ifp->if_softc); break; } break; case SIOCGIFADDR: { struct sockaddr *sa; sa = (struct sockaddr *) & ifr->ifr_data; bcopy(IF_LLADDR(ifp), (caddr_t) sa->sa_data, ISO88025_ADDR_LEN); } break; case SIOCSIFMTU: /* * Set the interface MTU. */ if (ifr->ifr_mtu > ISO88025_MAX_MTU) { error = EINVAL; } else { ifp->if_mtu = ifr->ifr_mtu; } break; default: error = EINVAL; /* XXX netbsd has ENOTTY??? */ break; } return (error); } /* * ISO88025 encapsulation */ int iso88025_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { u_int16_t snap_type = 0; int loop_copy = 0, error = 0, rif_len = 0; u_char edst[ISO88025_ADDR_LEN]; struct iso88025_header *th; struct iso88025_header gen_th; struct sockaddr_dl *sdl = NULL; struct rtentry *rt0 = NULL; int is_gw = 0; if (ro != NULL) is_gw = (ro->ro_flags & RT_HAS_GW) != 0; #ifdef MAC error = mac_ifnet_check_transmit(ifp, m); if (error) senderr(error); #endif if (ifp->if_flags & IFF_MONITOR) senderr(ENETDOWN); if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))) senderr(ENETDOWN); getmicrotime(&ifp->if_lastchange); /* Calculate routing info length based on arp table entry */ /* XXX any better way to do this ? */ if (rt0 && (sdl = (struct sockaddr_dl *)rt0->rt_gateway)) if (SDL_ISO88025(sdl)->trld_rcf != 0) rif_len = TR_RCF_RIFLEN(SDL_ISO88025(sdl)->trld_rcf); /* Generate a generic 802.5 header for the packet */ gen_th.ac = TR_AC; gen_th.fc = TR_LLC_FRAME; (void)memcpy((caddr_t)gen_th.iso88025_shost, IF_LLADDR(ifp), ISO88025_ADDR_LEN); if (rif_len) { gen_th.iso88025_shost[0] |= TR_RII; if (rif_len > 2) { gen_th.rcf = SDL_ISO88025(sdl)->trld_rcf; (void)memcpy((caddr_t)gen_th.rd, (caddr_t)SDL_ISO88025(sdl)->trld_route, rif_len - 2); } } switch (dst->sa_family) { #ifdef INET case AF_INET: - error = arpresolve(ifp, is_gw, m, dst, edst, NULL); + error = arpresolve(ifp, is_gw, m, dst, edst, NULL, NULL); if (error) return (error == EWOULDBLOCK ? 0 : error); snap_type = ETHERTYPE_IP; break; case AF_ARP: { struct arphdr *ah; ah = mtod(m, struct arphdr *); ah->ar_hrd = htons(ARPHRD_IEEE802); loop_copy = -1; /* if this is for us, don't do it */ switch(ntohs(ah->ar_op)) { case ARPOP_REVREQUEST: case ARPOP_REVREPLY: snap_type = ETHERTYPE_REVARP; break; case ARPOP_REQUEST: case ARPOP_REPLY: default: snap_type = ETHERTYPE_ARP; break; } if (m->m_flags & M_BCAST) bcopy(ifp->if_broadcastaddr, edst, ISO88025_ADDR_LEN); else bcopy(ar_tha(ah), edst, ISO88025_ADDR_LEN); } break; #endif /* INET */ #ifdef INET6 case AF_INET6: - error = nd6_resolve(ifp, is_gw, m, dst, edst, NULL); + error = nd6_resolve(ifp, is_gw, m, dst, edst, NULL, NULL); if (error) return (error == EWOULDBLOCK ? 0 : error); snap_type = ETHERTYPE_IPV6; break; #endif /* INET6 */ case AF_UNSPEC: { const struct iso88025_sockaddr_data *sd; /* * For AF_UNSPEC sockaddr.sa_data must contain all of the * mac information needed to send the packet. This allows * full mac, llc, and source routing function to be controlled. * llc and source routing information must already be in the * mbuf provided, ac/fc are set in sa_data. sockaddr.sa_data * should be an iso88025_sockaddr_data structure see iso88025.h */ loop_copy = -1; sd = (const struct iso88025_sockaddr_data *)dst->sa_data; gen_th.ac = sd->ac; gen_th.fc = sd->fc; (void)memcpy(edst, sd->ether_dhost, ISO88025_ADDR_LEN); (void)memcpy(gen_th.iso88025_shost, sd->ether_shost, ISO88025_ADDR_LEN); rif_len = 0; break; } default: if_printf(ifp, "can't handle af%d\n", dst->sa_family); senderr(EAFNOSUPPORT); break; } /* * Add LLC header. */ if (snap_type != 0) { struct llc *l; M_PREPEND(m, LLC_SNAPFRAMELEN, M_NOWAIT); if (m == NULL) senderr(ENOBUFS); l = mtod(m, struct llc *); l->llc_control = LLC_UI; l->llc_dsap = l->llc_ssap = LLC_SNAP_LSAP; l->llc_snap.org_code[0] = l->llc_snap.org_code[1] = l->llc_snap.org_code[2] = 0; l->llc_snap.ether_type = htons(snap_type); } /* * Add local net header. If no space in first mbuf, * allocate another. */ M_PREPEND(m, ISO88025_HDR_LEN + rif_len, M_NOWAIT); if (m == NULL) senderr(ENOBUFS); th = mtod(m, struct iso88025_header *); bcopy((caddr_t)edst, (caddr_t)&gen_th.iso88025_dhost, ISO88025_ADDR_LEN); /* Copy as much of the generic header as is needed into the mbuf */ memcpy(th, &gen_th, ISO88025_HDR_LEN + rif_len); /* * If a simplex interface, and the packet is being sent to our * Ethernet address or a broadcast address, loopback a copy. * XXX To make a simplex device behave exactly like a duplex * device, we should copy in the case of sending to our own * ethernet address (thus letting the original actually appear * on the wire). However, we don't do that here for security * reasons and compatibility with the original behavior. */ if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) { if ((m->m_flags & M_BCAST) || (loop_copy > 0)) { struct mbuf *n; n = m_copy(m, 0, (int)M_COPYALL); (void) if_simloop(ifp, n, dst->sa_family, ISO88025_HDR_LEN); } else if (bcmp(th->iso88025_dhost, th->iso88025_shost, ETHER_ADDR_LEN) == 0) { (void) if_simloop(ifp, m, dst->sa_family, ISO88025_HDR_LEN); return(0); /* XXX */ } } IFQ_HANDOFF_ADJ(ifp, m, ISO88025_HDR_LEN + LLC_SNAPFRAMELEN, error); if (error) { printf("iso88025_output: packet dropped QFULL.\n"); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); } return (error); bad: if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); if (m) m_freem(m); return (error); } /* * ISO 88025 de-encapsulation */ void iso88025_input(ifp, m) struct ifnet *ifp; struct mbuf *m; { struct iso88025_header *th; struct llc *l; int isr; int mac_hdr_len; /* * Do consistency checks to verify assumptions * made by code past this point. */ if ((m->m_flags & M_PKTHDR) == 0) { if_printf(ifp, "discard frame w/o packet header\n"); if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); m_freem(m); return; } if (m->m_pkthdr.rcvif == NULL) { if_printf(ifp, "discard frame w/o interface pointer\n"); if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); m_freem(m); return; } m = m_pullup(m, ISO88025_HDR_LEN); if (m == NULL) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); goto dropanyway; } th = mtod(m, struct iso88025_header *); /* * Discard packet if interface is not up. */ if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))) goto dropanyway; /* * Give bpf a chance at the packet. */ BPF_MTAP(ifp, m); /* * Interface marked for monitoring; discard packet. */ if (ifp->if_flags & IFF_MONITOR) { m_freem(m); return; } #ifdef MAC mac_ifnet_create_mbuf(ifp, m); #endif /* * Update interface statistics. */ if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); getmicrotime(&ifp->if_lastchange); /* * Discard non local unicast packets when interface * is in promiscuous mode. */ if ((ifp->if_flags & IFF_PROMISC) && ((th->iso88025_dhost[0] & 1) == 0) && (bcmp(IF_LLADDR(ifp), (caddr_t) th->iso88025_dhost, ISO88025_ADDR_LEN) != 0)) goto dropanyway; /* * Set mbuf flags for bcast/mcast. */ if (th->iso88025_dhost[0] & 1) { if (bcmp(iso88025_broadcastaddr, th->iso88025_dhost, ISO88025_ADDR_LEN) == 0) m->m_flags |= M_BCAST; else m->m_flags |= M_MCAST; if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); } mac_hdr_len = ISO88025_HDR_LEN; /* Check for source routing info */ if (th->iso88025_shost[0] & TR_RII) mac_hdr_len += TR_RCF_RIFLEN(th->rcf); /* Strip off ISO88025 header. */ m_adj(m, mac_hdr_len); m = m_pullup(m, LLC_SNAPFRAMELEN); if (m == 0) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); goto dropanyway; } l = mtod(m, struct llc *); switch (l->llc_dsap) { case LLC_SNAP_LSAP: { u_int16_t type; if ((l->llc_control != LLC_UI) || (l->llc_ssap != LLC_SNAP_LSAP)) { if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); goto dropanyway; } if (l->llc_snap.org_code[0] != 0 || l->llc_snap.org_code[1] != 0 || l->llc_snap.org_code[2] != 0) { if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); goto dropanyway; } type = ntohs(l->llc_snap.ether_type); m_adj(m, LLC_SNAPFRAMELEN); switch (type) { #ifdef INET case ETHERTYPE_IP: th->iso88025_shost[0] &= ~(TR_RII); isr = NETISR_IP; break; case ETHERTYPE_ARP: if (ifp->if_flags & IFF_NOARP) goto dropanyway; isr = NETISR_ARP; break; #endif /* INET */ #ifdef INET6 case ETHERTYPE_IPV6: th->iso88025_shost[0] &= ~(TR_RII); isr = NETISR_IPV6; break; #endif /* INET6 */ default: printf("iso88025_input: unexpected llc_snap ether_type 0x%02x\n", type); if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); goto dropanyway; } break; } #ifdef ISO case LLC_ISO_LSAP: switch (l->llc_control) { case LLC_UI: if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); goto dropanyway; break; case LLC_XID: case LLC_XID_P: if(m->m_len < ISO88025_ADDR_LEN) goto dropanyway; l->llc_window = 0; l->llc_fid = 9; l->llc_class = 1; l->llc_dsap = l->llc_ssap = 0; /* Fall through to */ case LLC_TEST: case LLC_TEST_P: { struct sockaddr sa; struct iso88025_sockaddr_data *th2; int i; u_char c; c = l->llc_dsap; if (th->iso88025_shost[0] & TR_RII) { /* XXX */ printf("iso88025_input: dropping source routed LLC_TEST\n"); goto dropanyway; } l->llc_dsap = l->llc_ssap; l->llc_ssap = c; if (m->m_flags & (M_BCAST | M_MCAST)) bcopy((caddr_t)IF_LLADDR(ifp), (caddr_t)th->iso88025_dhost, ISO88025_ADDR_LEN); sa.sa_family = AF_UNSPEC; sa.sa_len = sizeof(sa); th2 = (struct iso88025_sockaddr_data *)sa.sa_data; for (i = 0; i < ISO88025_ADDR_LEN; i++) { th2->ether_shost[i] = c = th->iso88025_dhost[i]; th2->ether_dhost[i] = th->iso88025_dhost[i] = th->iso88025_shost[i]; th->iso88025_shost[i] = c; } th2->ac = TR_AC; th2->fc = TR_LLC_FRAME; ifp->if_output(ifp, m, &sa, NULL); return; } default: printf("iso88025_input: unexpected llc control 0x%02x\n", l->llc_control); if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); goto dropanyway; break; } break; #endif /* ISO */ default: printf("iso88025_input: unknown dsap 0x%x\n", l->llc_dsap); if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1); goto dropanyway; break; } M_SETFIB(m, ifp->if_fib); netisr_dispatch(isr, m); return; dropanyway: if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); if (m) m_freem(m); return; } static int iso88025_resolvemulti (ifp, llsa, sa) struct ifnet *ifp; struct sockaddr **llsa; struct sockaddr *sa; { struct sockaddr_dl *sdl; #ifdef INET struct sockaddr_in *sin; #endif #ifdef INET6 struct sockaddr_in6 *sin6; #endif u_char *e_addr; switch(sa->sa_family) { case AF_LINK: /* * No mapping needed. Just check that it's a valid MC address. */ sdl = (struct sockaddr_dl *)sa; e_addr = LLADDR(sdl); if ((e_addr[0] & 1) != 1) { return (EADDRNOTAVAIL); } *llsa = NULL; return (0); #ifdef INET case AF_INET: sin = (struct sockaddr_in *)sa; if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { return (EADDRNOTAVAIL); } sdl = link_init_sdl(ifp, *llsa, IFT_ISO88025); sdl->sdl_alen = ISO88025_ADDR_LEN; e_addr = LLADDR(sdl); ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); *llsa = (struct sockaddr *)sdl; return (0); #endif #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* * An IP6 address of 0 means listen to all * of the Ethernet multicast address used for IP6. * (This is used for multicast routers.) */ ifp->if_flags |= IFF_ALLMULTI; *llsa = NULL; return (0); } if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { return (EADDRNOTAVAIL); } sdl = link_init_sdl(ifp, *llsa, IFT_ISO88025); sdl->sdl_alen = ISO88025_ADDR_LEN; e_addr = LLADDR(sdl); ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); *llsa = (struct sockaddr *)sdl; return (0); #endif default: /* * Well, the text isn't quite right, but it's the name * that counts... */ return (EAFNOSUPPORT); } return (0); } static moduledata_t iso88025_mod = { .name = "iso88025", }; DECLARE_MODULE(iso88025, iso88025_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); MODULE_VERSION(iso88025, 1); Index: head/sys/net/if_llatbl.h =================================================================== --- head/sys/net/if_llatbl.h (revision 301216) +++ head/sys/net/if_llatbl.h (revision 301217) @@ -1,268 +1,267 @@ /* * Copyright (c) 2004 Luigi Rizzo, Alessandro Cerri. All rights reserved. * Copyright (c) 2004-2008 Qing Li. All rights reserved. * Copyright (c) 2008 Kip Macy. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #ifndef _NET_IF_LLATBL_H_ #define _NET_IF_LLATBL_H_ #include #include struct ifnet; struct sysctl_req; struct rt_msghdr; struct rt_addrinfo; struct llentry; LIST_HEAD(llentries, llentry); extern struct rwlock lltable_rwlock; #define LLTABLE_RLOCK() rw_rlock(&lltable_rwlock) #define LLTABLE_RUNLOCK() rw_runlock(&lltable_rwlock) #define LLTABLE_WLOCK() rw_wlock(&lltable_rwlock) #define LLTABLE_WUNLOCK() rw_wunlock(&lltable_rwlock) #define LLTABLE_LOCK_ASSERT() rw_assert(&lltable_rwlock, RA_LOCKED) #define LLE_MAX_LINKHDR 24 /* Full IB header */ /* * Code referencing llentry must at least hold * a shared lock */ struct llentry { LIST_ENTRY(llentry) lle_next; union { struct in_addr addr4; struct in6_addr addr6; } r_l3addr; char r_linkdata[LLE_MAX_LINKHDR]; /* L2 data */ uint8_t r_hdrlen; /* length for LL header */ uint8_t spare0[3]; uint16_t r_flags; /* LLE runtime flags */ uint16_t r_skip_req; /* feedback from fast path */ struct lltable *lle_tbl; struct llentries *lle_head; void (*lle_free)(struct llentry *); struct mbuf *la_hold; int la_numheld; /* # of packets currently held */ time_t la_expire; uint16_t la_flags; uint16_t la_asked; uint16_t la_preempt; int16_t ln_state; /* IPv6 has ND6_LLINFO_NOSTATE == -2 */ uint16_t ln_router; time_t ln_ntick; time_t lle_remtime; /* Real time remaining */ time_t lle_hittime; /* Time when r_skip_req was unset */ int lle_refcnt; char *ll_addr; /* link-layer address */ LIST_ENTRY(llentry) lle_chain; /* chain of deleted items */ struct callout lle_timer; struct rwlock lle_lock; struct mtx req_mtx; }; #define LLE_WLOCK(lle) rw_wlock(&(lle)->lle_lock) #define LLE_RLOCK(lle) rw_rlock(&(lle)->lle_lock) #define LLE_WUNLOCK(lle) rw_wunlock(&(lle)->lle_lock) #define LLE_RUNLOCK(lle) rw_runlock(&(lle)->lle_lock) #define LLE_DOWNGRADE(lle) rw_downgrade(&(lle)->lle_lock) #define LLE_TRY_UPGRADE(lle) rw_try_upgrade(&(lle)->lle_lock) #define LLE_LOCK_INIT(lle) rw_init_flags(&(lle)->lle_lock, "lle", RW_DUPOK) #define LLE_LOCK_DESTROY(lle) rw_destroy(&(lle)->lle_lock) #define LLE_WLOCK_ASSERT(lle) rw_assert(&(lle)->lle_lock, RA_WLOCKED) #define LLE_REQ_INIT(lle) mtx_init(&(lle)->req_mtx, "lle req", \ NULL, MTX_DEF) #define LLE_REQ_DESTROY(lle) mtx_destroy(&(lle)->req_mtx) #define LLE_REQ_LOCK(lle) mtx_lock(&(lle)->req_mtx) #define LLE_REQ_UNLOCK(lle) mtx_unlock(&(lle)->req_mtx) #define LLE_IS_VALID(lle) (((lle) != NULL) && ((lle) != (void *)-1)) #define LLE_ADDREF(lle) do { \ LLE_WLOCK_ASSERT(lle); \ KASSERT((lle)->lle_refcnt >= 0, \ ("negative refcnt %d on lle %p", \ (lle)->lle_refcnt, (lle))); \ (lle)->lle_refcnt++; \ } while (0) #define LLE_REMREF(lle) do { \ LLE_WLOCK_ASSERT(lle); \ KASSERT((lle)->lle_refcnt > 0, \ ("bogus refcnt %d on lle %p", \ (lle)->lle_refcnt, (lle))); \ (lle)->lle_refcnt--; \ } while (0) #define LLE_FREE_LOCKED(lle) do { \ if ((lle)->lle_refcnt == 1) \ (lle)->lle_free(lle); \ else { \ LLE_REMREF(lle); \ LLE_WUNLOCK(lle); \ } \ /* guard against invalid refs */ \ (lle) = NULL; \ } while (0) #define LLE_FREE(lle) do { \ LLE_WLOCK(lle); \ LLE_FREE_LOCKED(lle); \ } while (0) - typedef struct llentry *(llt_lookup_t)(struct lltable *, u_int flags, const struct sockaddr *l3addr); typedef struct llentry *(llt_alloc_t)(struct lltable *, u_int flags, const struct sockaddr *l3addr); typedef void (llt_delete_t)(struct lltable *, struct llentry *); typedef void (llt_prefix_free_t)(struct lltable *, const struct sockaddr *addr, const struct sockaddr *mask, u_int flags); typedef int (llt_dump_entry_t)(struct lltable *, struct llentry *, struct sysctl_req *); typedef uint32_t (llt_hash_t)(const struct llentry *, uint32_t); typedef int (llt_match_prefix_t)(const struct sockaddr *, const struct sockaddr *, u_int, struct llentry *); typedef void (llt_free_entry_t)(struct lltable *, struct llentry *); typedef void (llt_fill_sa_entry_t)(const struct llentry *, struct sockaddr *); typedef void (llt_free_tbl_t)(struct lltable *); typedef void (llt_link_entry_t)(struct lltable *, struct llentry *); typedef void (llt_unlink_entry_t)(struct llentry *); typedef int (llt_foreach_cb_t)(struct lltable *, struct llentry *, void *); typedef int (llt_foreach_entry_t)(struct lltable *, llt_foreach_cb_t *, void *); struct lltable { SLIST_ENTRY(lltable) llt_link; int llt_af; int llt_hsize; struct llentries *lle_head; struct ifnet *llt_ifp; llt_lookup_t *llt_lookup; llt_alloc_t *llt_alloc_entry; llt_delete_t *llt_delete_entry; llt_prefix_free_t *llt_prefix_free; llt_dump_entry_t *llt_dump_entry; llt_hash_t *llt_hash; llt_match_prefix_t *llt_match_prefix; llt_free_entry_t *llt_free_entry; llt_foreach_entry_t *llt_foreach_entry; llt_link_entry_t *llt_link_entry; llt_unlink_entry_t *llt_unlink_entry; llt_fill_sa_entry_t *llt_fill_sa_entry; llt_free_tbl_t *llt_free_tbl; }; MALLOC_DECLARE(M_LLTABLE); /* * LLentry flags */ #define LLE_DELETED 0x0001 /* entry must be deleted */ #define LLE_STATIC 0x0002 /* entry is static */ #define LLE_IFADDR 0x0004 /* entry is interface addr */ #define LLE_VALID 0x0008 /* ll_addr is valid */ #define LLE_REDIRECT 0x0010 /* installed by redirect; has host rtentry */ #define LLE_PUB 0x0020 /* publish entry ??? */ #define LLE_LINKED 0x0040 /* linked to lookup structure */ /* LLE request flags */ #define LLE_EXCLUSIVE 0x2000 /* return lle xlocked */ #define LLE_UNLOCKED 0x4000 /* return lle unlocked */ #define LLE_ADDRONLY 0x4000 /* return lladdr instead of full header */ #define LLE_CREATE 0x8000 /* hint to avoid lle lookup */ /* LLE flags used by fastpath code */ #define RLLE_VALID 0x0001 /* entry is valid */ #define RLLE_IFADDR LLE_IFADDR /* entry is ifaddr */ #define LLATBL_HASH(key, mask) \ (((((((key >> 8) ^ key) >> 8) ^ key) >> 8) ^ key) & mask) struct lltable *lltable_allocate_htbl(uint32_t hsize); void lltable_free(struct lltable *); void lltable_link(struct lltable *llt); void lltable_prefix_free(int, struct sockaddr *, struct sockaddr *, u_int); #if 0 void lltable_drain(int); #endif int lltable_sysctl_dumparp(int, struct sysctl_req *); size_t llentry_free(struct llentry *); struct llentry *llentry_alloc(struct ifnet *, struct lltable *, struct sockaddr_storage *); /* helper functions */ size_t lltable_drop_entry_queue(struct llentry *); void lltable_set_entry_addr(struct ifnet *ifp, struct llentry *lle, const char *linkhdr, size_t linkhdrsize, int lladdr_off); int lltable_try_set_entry_addr(struct ifnet *ifp, struct llentry *lle, const char *linkhdr, size_t linkhdrsize, int lladdr_off); int lltable_calc_llheader(struct ifnet *ifp, int family, char *lladdr, char *buf, size_t *bufsize, int *lladdr_off); void lltable_update_ifaddr(struct lltable *llt); struct llentry *lltable_alloc_entry(struct lltable *llt, u_int flags, const struct sockaddr *l4addr); void lltable_free_entry(struct lltable *llt, struct llentry *lle); int lltable_delete_addr(struct lltable *llt, u_int flags, const struct sockaddr *l3addr); void lltable_link_entry(struct lltable *llt, struct llentry *lle); void lltable_unlink_entry(struct lltable *llt, struct llentry *lle); void lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa); struct ifnet *lltable_get_ifp(const struct lltable *llt); int lltable_get_af(const struct lltable *llt); int lltable_foreach_lle(struct lltable *llt, llt_foreach_cb_t *f, void *farg); /* * Generic link layer address lookup function. */ static __inline struct llentry * lla_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) { return (llt->llt_lookup(llt, flags, l3addr)); } int lla_rt_output(struct rt_msghdr *, struct rt_addrinfo *); #include enum { LLENTRY_RESOLVED, LLENTRY_TIMEDOUT, LLENTRY_DELETED, LLENTRY_EXPIRED, }; typedef void (*lle_event_fn)(void *, struct llentry *, int); EVENTHANDLER_DECLARE(lle_event, lle_event_fn); #endif /* _NET_IF_LLATBL_H_ */ Index: head/sys/net/route.c =================================================================== --- head/sys/net/route.c (revision 301216) +++ head/sys/net/route.c (revision 301217) @@ -1,2304 +1,2306 @@ /*- * Copyright (c) 1980, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)route.c 8.3.1.1 (Berkeley) 2/23/95 * $FreeBSD$ */ /************************************************************************ * Note: In this file a 'fib' is a "forwarding information base" * * Which is the new name for an in kernel routing (next hop) table. * ***********************************************************************/ #include "opt_inet.h" #include "opt_inet6.h" #include "opt_route.h" #include "opt_sctp.h" #include "opt_mrouting.h" #include "opt_mpath.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RADIX_MPATH #include #endif #include #include #include #define RT_MAXFIBS UINT16_MAX /* Kernel config default option. */ #ifdef ROUTETABLES #if ROUTETABLES <= 0 #error "ROUTETABLES defined too low" #endif #if ROUTETABLES > RT_MAXFIBS #error "ROUTETABLES defined too big" #endif #define RT_NUMFIBS ROUTETABLES #endif /* ROUTETABLES */ /* Initialize to default if not otherwise set. */ #ifndef RT_NUMFIBS #define RT_NUMFIBS 1 #endif #if defined(INET) || defined(INET6) #ifdef SCTP extern void sctp_addr_change(struct ifaddr *ifa, int cmd); #endif /* SCTP */ #endif /* This is read-only.. */ u_int rt_numfibs = RT_NUMFIBS; SYSCTL_UINT(_net, OID_AUTO, fibs, CTLFLAG_RDTUN, &rt_numfibs, 0, ""); /* * By default add routes to all fibs for new interfaces. * Once this is set to 0 then only allocate routes on interface * changes for the FIB of the caller when adding a new set of addresses * to an interface. XXX this is a shotgun aproach to a problem that needs * a more fine grained solution.. that will come. * XXX also has the problems getting the FIB from curthread which will not * always work given the fib can be overridden and prefixes can be added * from the network stack context. */ VNET_DEFINE(u_int, rt_add_addr_allfibs) = 1; SYSCTL_UINT(_net, OID_AUTO, add_addr_allfibs, CTLFLAG_RWTUN | CTLFLAG_VNET, &VNET_NAME(rt_add_addr_allfibs), 0, ""); VNET_DEFINE(struct rtstat, rtstat); #define V_rtstat VNET(rtstat) VNET_DEFINE(struct rib_head *, rt_tables); #define V_rt_tables VNET(rt_tables) VNET_DEFINE(int, rttrash); /* routes not in table but not freed */ #define V_rttrash VNET(rttrash) /* * Convert a 'struct radix_node *' to a 'struct rtentry *'. * The operation can be done safely (in this code) because a * 'struct rtentry' starts with two 'struct radix_node''s, the first * one representing leaf nodes in the routing tree, which is * what the code in radix.c passes us as a 'struct radix_node'. * * But because there are a lot of assumptions in this conversion, * do not cast explicitly, but always use the macro below. */ #define RNTORT(p) ((struct rtentry *)(p)) static VNET_DEFINE(uma_zone_t, rtzone); /* Routing table UMA zone. */ #define V_rtzone VNET(rtzone) static int rtrequest1_fib_change(struct rib_head *, struct rt_addrinfo *, struct rtentry **, u_int); static void rt_setmetrics(const struct rt_addrinfo *, struct rtentry *); static int rt_ifdelroute(const struct rtentry *rt, void *arg); static struct rtentry *rt_unlinkrte(struct rib_head *rnh, struct rt_addrinfo *info, int *perror); static void rt_notifydelete(struct rtentry *rt, struct rt_addrinfo *info); #ifdef RADIX_MPATH static struct radix_node *rt_mpath_unlink(struct rib_head *rnh, struct rt_addrinfo *info, struct rtentry *rto, int *perror); #endif static int rt_exportinfo(struct rtentry *rt, struct rt_addrinfo *info, int flags); struct if_mtuinfo { struct ifnet *ifp; int mtu; }; static int if_updatemtu_cb(struct radix_node *, void *); /* * handler for net.my_fibnum */ static int sysctl_my_fibnum(SYSCTL_HANDLER_ARGS) { int fibnum; int error; fibnum = curthread->td_proc->p_fibnum; error = sysctl_handle_int(oidp, &fibnum, 0, req); return (error); } SYSCTL_PROC(_net, OID_AUTO, my_fibnum, CTLTYPE_INT|CTLFLAG_RD, NULL, 0, &sysctl_my_fibnum, "I", "default FIB of caller"); static __inline struct rib_head ** rt_tables_get_rnh_ptr(int table, int fam) { struct rib_head **rnh; KASSERT(table >= 0 && table < rt_numfibs, ("%s: table out of bounds.", __func__)); KASSERT(fam >= 0 && fam < (AF_MAX+1), ("%s: fam out of bounds.", __func__)); /* rnh is [fib=0][af=0]. */ rnh = (struct rib_head **)V_rt_tables; /* Get the offset to the requested table and fam. */ rnh += table * (AF_MAX+1) + fam; return (rnh); } struct rib_head * rt_tables_get_rnh(int table, int fam) { return (*rt_tables_get_rnh_ptr(table, fam)); } u_int rt_tables_get_gen(int table, int fam) { struct rib_head *rnh; rnh = *rt_tables_get_rnh_ptr(table, fam); + KASSERT(rnh != NULL, ("%s: NULL rib_head pointer table %d fam %d", + __func__, table, fam)); return (rnh->rnh_gen); } /* * route initialization must occur before ip6_init2(), which happenas at * SI_ORDER_MIDDLE. */ static void route_init(void) { /* whack the tunable ints into line. */ if (rt_numfibs > RT_MAXFIBS) rt_numfibs = RT_MAXFIBS; if (rt_numfibs == 0) rt_numfibs = 1; } SYSINIT(route_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, route_init, 0); static int rtentry_zinit(void *mem, int size, int how) { struct rtentry *rt = mem; rt->rt_pksent = counter_u64_alloc(how); if (rt->rt_pksent == NULL) return (ENOMEM); RT_LOCK_INIT(rt); return (0); } static void rtentry_zfini(void *mem, int size) { struct rtentry *rt = mem; RT_LOCK_DESTROY(rt); counter_u64_free(rt->rt_pksent); } static int rtentry_ctor(void *mem, int size, void *arg, int how) { struct rtentry *rt = mem; bzero(rt, offsetof(struct rtentry, rt_endzero)); counter_u64_zero(rt->rt_pksent); rt->rt_chain = NULL; return (0); } static void rtentry_dtor(void *mem, int size, void *arg) { struct rtentry *rt = mem; RT_UNLOCK_COND(rt); } static void vnet_route_init(const void *unused __unused) { struct domain *dom; struct rib_head **rnh; int table; int fam; V_rt_tables = malloc(rt_numfibs * (AF_MAX+1) * sizeof(struct rib_head *), M_RTABLE, M_WAITOK|M_ZERO); V_rtzone = uma_zcreate("rtentry", sizeof(struct rtentry), rtentry_ctor, rtentry_dtor, rtentry_zinit, rtentry_zfini, UMA_ALIGN_PTR, 0); for (dom = domains; dom; dom = dom->dom_next) { if (dom->dom_rtattach == NULL) continue; for (table = 0; table < rt_numfibs; table++) { fam = dom->dom_family; if (table != 0 && fam != AF_INET6 && fam != AF_INET) break; rnh = rt_tables_get_rnh_ptr(table, fam); if (rnh == NULL) panic("%s: rnh NULL", __func__); dom->dom_rtattach((void **)rnh, 0); } } } VNET_SYSINIT(vnet_route_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, vnet_route_init, 0); #ifdef VIMAGE static void vnet_route_uninit(const void *unused __unused) { int table; int fam; struct domain *dom; struct rib_head **rnh; for (dom = domains; dom; dom = dom->dom_next) { if (dom->dom_rtdetach == NULL) continue; for (table = 0; table < rt_numfibs; table++) { fam = dom->dom_family; if (table != 0 && fam != AF_INET6 && fam != AF_INET) break; rnh = rt_tables_get_rnh_ptr(table, fam); if (rnh == NULL) panic("%s: rnh NULL", __func__); dom->dom_rtdetach((void **)rnh, 0); } } free(V_rt_tables, M_RTABLE); uma_zdestroy(V_rtzone); } VNET_SYSUNINIT(vnet_route_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, vnet_route_uninit, 0); #endif struct rib_head * rt_table_init(int offset) { struct rib_head *rh; rh = malloc(sizeof(struct rib_head), M_RTABLE, M_WAITOK | M_ZERO); /* TODO: These details should be hidded inside radix.c */ /* Init masks tree */ rn_inithead_internal(&rh->head, rh->rnh_nodes, offset); rn_inithead_internal(&rh->rmhead.head, rh->rmhead.mask_nodes, 0); rh->head.rnh_masks = &rh->rmhead; /* Init locks */ rw_init(&rh->rib_lock, "rib head lock"); /* Finally, set base callbacks */ rh->rnh_addaddr = rn_addroute; rh->rnh_deladdr = rn_delete; rh->rnh_matchaddr = rn_match; rh->rnh_lookup = rn_lookup; rh->rnh_walktree = rn_walktree; rh->rnh_walktree_from = rn_walktree_from; return (rh); } static int rt_freeentry(struct radix_node *rn, void *arg) { struct radix_head * const rnh = arg; struct radix_node *x; x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh); if (x != NULL) R_Free(x); return (0); } void rt_table_destroy(struct rib_head *rh) { rn_walktree(&rh->rmhead.head, rt_freeentry, &rh->rmhead.head); /* Assume table is already empty */ rw_destroy(&rh->rib_lock); free(rh, M_RTABLE); } #ifndef _SYS_SYSPROTO_H_ struct setfib_args { int fibnum; }; #endif int sys_setfib(struct thread *td, struct setfib_args *uap) { if (uap->fibnum < 0 || uap->fibnum >= rt_numfibs) return EINVAL; td->td_proc->p_fibnum = uap->fibnum; return (0); } /* * Packet routing routines. */ void rtalloc_ign_fib(struct route *ro, u_long ignore, u_int fibnum) { struct rtentry *rt; if ((rt = ro->ro_rt) != NULL) { if (rt->rt_ifp != NULL && rt->rt_flags & RTF_UP) return; RTFREE(rt); ro->ro_rt = NULL; } ro->ro_rt = rtalloc1_fib(&ro->ro_dst, 1, ignore, fibnum); if (ro->ro_rt) RT_UNLOCK(ro->ro_rt); } /* * Look up the route that matches the address given * Or, at least try.. Create a cloned route if needed. * * The returned route, if any, is locked. */ struct rtentry * rtalloc1(struct sockaddr *dst, int report, u_long ignflags) { return (rtalloc1_fib(dst, report, ignflags, RT_DEFAULT_FIB)); } struct rtentry * rtalloc1_fib(struct sockaddr *dst, int report, u_long ignflags, u_int fibnum) { struct rib_head *rh; struct radix_node *rn; struct rtentry *newrt; struct rt_addrinfo info; int err = 0, msgtype = RTM_MISS; KASSERT((fibnum < rt_numfibs), ("rtalloc1_fib: bad fibnum")); rh = rt_tables_get_rnh(fibnum, dst->sa_family); newrt = NULL; if (rh == NULL) goto miss; /* * Look up the address in the table for that Address Family */ RIB_RLOCK(rh); rn = rh->rnh_matchaddr(dst, &rh->head); if (rn && ((rn->rn_flags & RNF_ROOT) == 0)) { newrt = RNTORT(rn); RT_LOCK(newrt); RT_ADDREF(newrt); RIB_RUNLOCK(rh); return (newrt); } else RIB_RUNLOCK(rh); /* * Either we hit the root or couldn't find any match, * Which basically means * "caint get there frm here" */ miss: V_rtstat.rts_unreach++; if (report) { /* * If required, report the failure to the supervising * Authorities. * For a delete, this is not an error. (report == 0) */ bzero(&info, sizeof(info)); info.rti_info[RTAX_DST] = dst; rt_missmsg_fib(msgtype, &info, 0, err, fibnum); } return (newrt); } /* * Remove a reference count from an rtentry. * If the count gets low enough, take it out of the routing table */ void rtfree(struct rtentry *rt) { struct rib_head *rnh; KASSERT(rt != NULL,("%s: NULL rt", __func__)); rnh = rt_tables_get_rnh(rt->rt_fibnum, rt_key(rt)->sa_family); KASSERT(rnh != NULL,("%s: NULL rnh", __func__)); RT_LOCK_ASSERT(rt); /* * The callers should use RTFREE_LOCKED() or RTFREE(), so * we should come here exactly with the last reference. */ RT_REMREF(rt); if (rt->rt_refcnt > 0) { log(LOG_DEBUG, "%s: %p has %d refs\n", __func__, rt, rt->rt_refcnt); goto done; } /* * On last reference give the "close method" a chance * to cleanup private state. This also permits (for * IPv4 and IPv6) a chance to decide if the routing table * entry should be purged immediately or at a later time. * When an immediate purge is to happen the close routine * typically calls rtexpunge which clears the RTF_UP flag * on the entry so that the code below reclaims the storage. */ if (rt->rt_refcnt == 0 && rnh->rnh_close) rnh->rnh_close((struct radix_node *)rt, &rnh->head); /* * If we are no longer "up" (and ref == 0) * then we can free the resources associated * with the route. */ if ((rt->rt_flags & RTF_UP) == 0) { if (rt->rt_nodes->rn_flags & (RNF_ACTIVE | RNF_ROOT)) panic("rtfree 2"); /* * the rtentry must have been removed from the routing table * so it is represented in rttrash.. remove that now. */ V_rttrash--; #ifdef DIAGNOSTIC if (rt->rt_refcnt < 0) { printf("rtfree: %p not freed (neg refs)\n", rt); goto done; } #endif /* * release references on items we hold them on.. * e.g other routes and ifaddrs. */ if (rt->rt_ifa) ifa_free(rt->rt_ifa); /* * The key is separatly alloc'd so free it (see rt_setgate()). * This also frees the gateway, as they are always malloc'd * together. */ R_Free(rt_key(rt)); /* * and the rtentry itself of course */ uma_zfree(V_rtzone, rt); return; } done: RT_UNLOCK(rt); } /* * Force a routing table entry to the specified * destination to go through the given gateway. * Normally called as a result of a routing redirect * message from the network layer. */ void rtredirect_fib(struct sockaddr *dst, struct sockaddr *gateway, struct sockaddr *netmask, int flags, struct sockaddr *src, u_int fibnum) { struct rtentry *rt; int error = 0; short *stat = NULL; struct rt_addrinfo info; struct ifaddr *ifa; struct rib_head *rnh; ifa = NULL; rnh = rt_tables_get_rnh(fibnum, dst->sa_family); if (rnh == NULL) { error = EAFNOSUPPORT; goto out; } /* verify the gateway is directly reachable */ if ((ifa = ifa_ifwithnet(gateway, 0, fibnum)) == NULL) { error = ENETUNREACH; goto out; } rt = rtalloc1_fib(dst, 0, 0UL, fibnum); /* NB: rt is locked */ /* * If the redirect isn't from our current router for this dst, * it's either old or wrong. If it redirects us to ourselves, * we have a routing loop, perhaps as a result of an interface * going down recently. */ if (!(flags & RTF_DONE) && rt) { if (!sa_equal(src, rt->rt_gateway)) { error = EINVAL; goto done; } if (rt->rt_ifa != ifa && ifa->ifa_addr->sa_family != AF_LINK) { error = EINVAL; goto done; } } if ((flags & RTF_GATEWAY) && ifa_ifwithaddr_check(gateway)) { error = EHOSTUNREACH; goto done; } /* * Create a new entry if we just got back a wildcard entry * or the lookup failed. This is necessary for hosts * which use routing redirects generated by smart gateways * to dynamically build the routing tables. */ if (rt == NULL || (rt_mask(rt) && rt_mask(rt)->sa_len < 2)) goto create; /* * Don't listen to the redirect if it's * for a route to an interface. */ if (rt->rt_flags & RTF_GATEWAY) { if (((rt->rt_flags & RTF_HOST) == 0) && (flags & RTF_HOST)) { /* * Changing from route to net => route to host. * Create new route, rather than smashing route to net. */ create: if (rt != NULL) RTFREE_LOCKED(rt); flags |= RTF_DYNAMIC; bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_DST] = dst; info.rti_info[RTAX_GATEWAY] = gateway; info.rti_info[RTAX_NETMASK] = netmask; info.rti_ifa = ifa; info.rti_flags = flags; error = rtrequest1_fib(RTM_ADD, &info, &rt, fibnum); if (rt != NULL) { RT_LOCK(rt); flags = rt->rt_flags; } stat = &V_rtstat.rts_dynamic; } else { /* * Smash the current notion of the gateway to * this destination. Should check about netmask!!! */ if ((flags & RTF_GATEWAY) == 0) rt->rt_flags &= ~RTF_GATEWAY; rt->rt_flags |= RTF_MODIFIED; flags |= RTF_MODIFIED; stat = &V_rtstat.rts_newgateway; /* * add the key and gateway (in one malloc'd chunk). */ RT_UNLOCK(rt); RIB_WLOCK(rnh); RT_LOCK(rt); rt_setgate(rt, rt_key(rt), gateway); RIB_WUNLOCK(rnh); } } else error = EHOSTUNREACH; done: if (rt) RTFREE_LOCKED(rt); out: if (error) V_rtstat.rts_badredirect++; else if (stat != NULL) (*stat)++; bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_DST] = dst; info.rti_info[RTAX_GATEWAY] = gateway; info.rti_info[RTAX_NETMASK] = netmask; info.rti_info[RTAX_AUTHOR] = src; rt_missmsg_fib(RTM_REDIRECT, &info, flags, error, fibnum); if (ifa != NULL) ifa_free(ifa); } /* * Routing table ioctl interface. */ int rtioctl_fib(u_long req, caddr_t data, u_int fibnum) { /* * If more ioctl commands are added here, make sure the proper * super-user checks are being performed because it is possible for * prison-root to make it this far if raw sockets have been enabled * in jails. */ #ifdef INET /* Multicast goop, grrr... */ return mrt_ioctl ? mrt_ioctl(req, data, fibnum) : EOPNOTSUPP; #else /* INET */ return ENXIO; #endif /* INET */ } struct ifaddr * ifa_ifwithroute(int flags, const struct sockaddr *dst, struct sockaddr *gateway, u_int fibnum) { struct ifaddr *ifa; int not_found = 0; if ((flags & RTF_GATEWAY) == 0) { /* * If we are adding a route to an interface, * and the interface is a pt to pt link * we should search for the destination * as our clue to the interface. Otherwise * we can use the local address. */ ifa = NULL; if (flags & RTF_HOST) ifa = ifa_ifwithdstaddr(dst, fibnum); if (ifa == NULL) ifa = ifa_ifwithaddr(gateway); } else { /* * If we are adding a route to a remote net * or host, the gateway may still be on the * other end of a pt to pt link. */ ifa = ifa_ifwithdstaddr(gateway, fibnum); } if (ifa == NULL) ifa = ifa_ifwithnet(gateway, 0, fibnum); if (ifa == NULL) { struct rtentry *rt = rtalloc1_fib(gateway, 0, 0, fibnum); if (rt == NULL) return (NULL); /* * dismiss a gateway that is reachable only * through the default router */ switch (gateway->sa_family) { case AF_INET: if (satosin(rt_key(rt))->sin_addr.s_addr == INADDR_ANY) not_found = 1; break; case AF_INET6: if (IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(rt))->sin6_addr)) not_found = 1; break; default: break; } if (!not_found && rt->rt_ifa != NULL) { ifa = rt->rt_ifa; ifa_ref(ifa); } RT_REMREF(rt); RT_UNLOCK(rt); if (not_found || ifa == NULL) return (NULL); } if (ifa->ifa_addr->sa_family != dst->sa_family) { struct ifaddr *oifa = ifa; ifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp); if (ifa == NULL) ifa = oifa; else ifa_free(oifa); } return (ifa); } /* * Do appropriate manipulations of a routing tree given * all the bits of info needed */ int rtrequest_fib(int req, struct sockaddr *dst, struct sockaddr *gateway, struct sockaddr *netmask, int flags, struct rtentry **ret_nrt, u_int fibnum) { struct rt_addrinfo info; if (dst->sa_len == 0) return(EINVAL); bzero((caddr_t)&info, sizeof(info)); info.rti_flags = flags; info.rti_info[RTAX_DST] = dst; info.rti_info[RTAX_GATEWAY] = gateway; info.rti_info[RTAX_NETMASK] = netmask; return rtrequest1_fib(req, &info, ret_nrt, fibnum); } /* * Copy most of @rt data into @info. * * If @flags contains NHR_COPY, copies dst,netmask and gw to the * pointers specified by @info structure. Assume such pointers * are zeroed sockaddr-like structures with sa_len field initialized * to reflect size of the provided buffer. if no NHR_COPY is specified, * point dst,netmask and gw @info fields to appropriate @rt values. * * if @flags contains NHR_REF, do refcouting on rt_ifp. * * Returns 0 on success. */ int rt_exportinfo(struct rtentry *rt, struct rt_addrinfo *info, int flags) { struct rt_metrics *rmx; struct sockaddr *src, *dst; int sa_len; if (flags & NHR_COPY) { /* Copy destination if dst is non-zero */ src = rt_key(rt); dst = info->rti_info[RTAX_DST]; sa_len = src->sa_len; if (dst != NULL) { if (src->sa_len > dst->sa_len) return (ENOMEM); memcpy(dst, src, src->sa_len); info->rti_addrs |= RTA_DST; } /* Copy mask if set && dst is non-zero */ src = rt_mask(rt); dst = info->rti_info[RTAX_NETMASK]; if (src != NULL && dst != NULL) { /* * Radix stores different value in sa_len, * assume rt_mask() to have the same length * as rt_key() */ if (sa_len > dst->sa_len) return (ENOMEM); memcpy(dst, src, src->sa_len); info->rti_addrs |= RTA_NETMASK; } /* Copy gateway is set && dst is non-zero */ src = rt->rt_gateway; dst = info->rti_info[RTAX_GATEWAY]; if ((rt->rt_flags & RTF_GATEWAY) && src != NULL && dst != NULL){ if (src->sa_len > dst->sa_len) return (ENOMEM); memcpy(dst, src, src->sa_len); info->rti_addrs |= RTA_GATEWAY; } } else { info->rti_info[RTAX_DST] = rt_key(rt); info->rti_addrs |= RTA_DST; if (rt_mask(rt) != NULL) { info->rti_info[RTAX_NETMASK] = rt_mask(rt); info->rti_addrs |= RTA_NETMASK; } if (rt->rt_flags & RTF_GATEWAY) { info->rti_info[RTAX_GATEWAY] = rt->rt_gateway; info->rti_addrs |= RTA_GATEWAY; } } rmx = info->rti_rmx; if (rmx != NULL) { info->rti_mflags |= RTV_MTU; rmx->rmx_mtu = rt->rt_mtu; } info->rti_flags = rt->rt_flags; info->rti_ifp = rt->rt_ifp; info->rti_ifa = rt->rt_ifa; if (flags & NHR_REF) { /* Do 'traditional' refcouting */ if_ref(info->rti_ifp); } return (0); } /* * Lookups up route entry for @dst in RIB database for fib @fibnum. * Exports entry data to @info using rt_exportinfo(). * * if @flags contains NHR_REF, refcouting is performed on rt_ifp. * All references can be released later by calling rib_free_info() * * Returns 0 on success. * Returns ENOENT for lookup failure, ENOMEM for export failure. */ int rib_lookup_info(uint32_t fibnum, const struct sockaddr *dst, uint32_t flags, uint32_t flowid, struct rt_addrinfo *info) { struct rib_head *rh; struct radix_node *rn; struct rtentry *rt; int error; KASSERT((fibnum < rt_numfibs), ("rib_lookup_rte: bad fibnum")); rh = rt_tables_get_rnh(fibnum, dst->sa_family); if (rh == NULL) return (ENOENT); RIB_RLOCK(rh); rn = rh->rnh_matchaddr(__DECONST(void *, dst), &rh->head); if (rn != NULL && ((rn->rn_flags & RNF_ROOT) == 0)) { rt = RNTORT(rn); /* Ensure route & ifp is UP */ if (RT_LINK_IS_UP(rt->rt_ifp)) { flags = (flags & NHR_REF) | NHR_COPY; error = rt_exportinfo(rt, info, flags); RIB_RUNLOCK(rh); return (error); } } RIB_RUNLOCK(rh); return (ENOENT); } /* * Releases all references acquired by rib_lookup_info() when * called with NHR_REF flags. */ void rib_free_info(struct rt_addrinfo *info) { if_rele(info->rti_ifp); } /* * Iterates over all existing fibs in system calling * @setwa_f function prior to traversing each fib. * Calls @wa_f function for each element in current fib. * If af is not AF_UNSPEC, iterates over fibs in particular * address family. */ void rt_foreach_fib_walk(int af, rt_setwarg_t *setwa_f, rt_walktree_f_t *wa_f, void *arg) { struct rib_head *rnh; uint32_t fibnum; int i; for (fibnum = 0; fibnum < rt_numfibs; fibnum++) { /* Do we want some specific family? */ if (af != AF_UNSPEC) { rnh = rt_tables_get_rnh(fibnum, af); if (rnh == NULL) continue; if (setwa_f != NULL) setwa_f(rnh, fibnum, af, arg); RIB_WLOCK(rnh); rnh->rnh_walktree(&rnh->head, (walktree_f_t *)wa_f,arg); RIB_WUNLOCK(rnh); continue; } for (i = 1; i <= AF_MAX; i++) { rnh = rt_tables_get_rnh(fibnum, i); if (rnh == NULL) continue; if (setwa_f != NULL) setwa_f(rnh, fibnum, i, arg); RIB_WLOCK(rnh); rnh->rnh_walktree(&rnh->head, (walktree_f_t *)wa_f,arg); RIB_WUNLOCK(rnh); } } } struct rt_delinfo { struct rt_addrinfo info; struct rib_head *rnh; struct rtentry *head; }; /* * Conditionally unlinks @rn from radix tree based * on info data passed in @arg. */ static int rt_checkdelroute(struct radix_node *rn, void *arg) { struct rt_delinfo *di; struct rt_addrinfo *info; struct rtentry *rt; int error; di = (struct rt_delinfo *)arg; rt = (struct rtentry *)rn; info = &di->info; error = 0; info->rti_info[RTAX_DST] = rt_key(rt); info->rti_info[RTAX_NETMASK] = rt_mask(rt); info->rti_info[RTAX_GATEWAY] = rt->rt_gateway; rt = rt_unlinkrte(di->rnh, info, &error); if (rt == NULL) { /* Either not allowed or not matched. Skip entry */ return (0); } /* Entry was unlinked. Add to the list and return */ rt->rt_chain = di->head; di->head = rt; return (0); } /* * Iterates over all existing fibs in system. * Deletes each element for which @filter_f function returned * non-zero value. * If @af is not AF_UNSPEC, iterates over fibs in particular * address family. */ void rt_foreach_fib_walk_del(int af, rt_filter_f_t *filter_f, void *arg) { struct rib_head *rnh; struct rt_delinfo di; struct rtentry *rt; uint32_t fibnum; int i, start, end; bzero(&di, sizeof(di)); di.info.rti_filter = filter_f; di.info.rti_filterdata = arg; for (fibnum = 0; fibnum < rt_numfibs; fibnum++) { /* Do we want some specific family? */ if (af != AF_UNSPEC) { start = af; end = af; } else { start = 1; end = AF_MAX; } for (i = start; i <= end; i++) { rnh = rt_tables_get_rnh(fibnum, i); if (rnh == NULL) continue; di.rnh = rnh; RIB_WLOCK(rnh); rnh->rnh_walktree(&rnh->head, rt_checkdelroute, &di); RIB_WUNLOCK(rnh); if (di.head == NULL) continue; /* We might have something to reclaim */ while (di.head != NULL) { rt = di.head; di.head = rt->rt_chain; rt->rt_chain = NULL; /* TODO std rt -> rt_addrinfo export */ di.info.rti_info[RTAX_DST] = rt_key(rt); di.info.rti_info[RTAX_NETMASK] = rt_mask(rt); rt_notifydelete(rt, &di.info); RTFREE_LOCKED(rt); } } } } /* * Delete Routes for a Network Interface * * Called for each routing entry via the rnh->rnh_walktree() call above * to delete all route entries referencing a detaching network interface. * * Arguments: * rt pointer to rtentry * arg argument passed to rnh->rnh_walktree() - detaching interface * * Returns: * 0 successful * errno failed - reason indicated */ static int rt_ifdelroute(const struct rtentry *rt, void *arg) { struct ifnet *ifp = arg; if (rt->rt_ifp != ifp) return (0); /* * Protect (sorta) against walktree recursion problems * with cloned routes */ if ((rt->rt_flags & RTF_UP) == 0) return (0); return (1); } /* * Delete all remaining routes using this interface * Unfortuneatly the only way to do this is to slog through * the entire routing table looking for routes which point * to this interface...oh well... */ void rt_flushifroutes(struct ifnet *ifp) { rt_foreach_fib_walk_del(AF_UNSPEC, rt_ifdelroute, ifp); } /* * Conditionally unlinks rtentry matching data inside @info from @rnh. * Returns unlinked, locked and referenced @rtentry on success, * Returns NULL and sets @perror to: * ESRCH - if prefix was not found, * EADDRINUSE - if trying to delete PINNED route without appropriate flag. * ENOENT - if supplied filter function returned 0 (not matched). */ static struct rtentry * rt_unlinkrte(struct rib_head *rnh, struct rt_addrinfo *info, int *perror) { struct sockaddr *dst, *netmask; struct rtentry *rt; struct radix_node *rn; dst = info->rti_info[RTAX_DST]; netmask = info->rti_info[RTAX_NETMASK]; rt = (struct rtentry *)rnh->rnh_lookup(dst, netmask, &rnh->head); if (rt == NULL) { *perror = ESRCH; return (NULL); } if ((info->rti_flags & RTF_PINNED) == 0) { /* Check if target route can be deleted */ if (rt->rt_flags & RTF_PINNED) { *perror = EADDRINUSE; return (NULL); } } if (info->rti_filter != NULL) { if (info->rti_filter(rt, info->rti_filterdata) == 0) { /* Not matched */ *perror = ENOENT; return (NULL); } /* * Filter function requested rte deletion. * Ease the caller work by filling in remaining info * from that particular entry. */ info->rti_info[RTAX_GATEWAY] = rt->rt_gateway; } /* * Remove the item from the tree and return it. * Complain if it is not there and do no more processing. */ *perror = ESRCH; #ifdef RADIX_MPATH if (rt_mpath_capable(rnh)) rn = rt_mpath_unlink(rnh, info, rt, perror); else #endif rn = rnh->rnh_deladdr(dst, netmask, &rnh->head); if (rn == NULL) return (NULL); if (rn->rn_flags & (RNF_ACTIVE | RNF_ROOT)) panic ("rtrequest delete"); rt = RNTORT(rn); RT_LOCK(rt); RT_ADDREF(rt); rt->rt_flags &= ~RTF_UP; *perror = 0; return (rt); } static void rt_notifydelete(struct rtentry *rt, struct rt_addrinfo *info) { struct ifaddr *ifa; /* * give the protocol a chance to keep things in sync. */ ifa = rt->rt_ifa; if (ifa != NULL && ifa->ifa_rtrequest != NULL) ifa->ifa_rtrequest(RTM_DELETE, rt, info); /* * One more rtentry floating around that is not * linked to the routing table. rttrash will be decremented * when RTFREE(rt) is eventually called. */ V_rttrash++; } /* * These (questionable) definitions of apparent local variables apply * to the next two functions. XXXXXX!!! */ #define dst info->rti_info[RTAX_DST] #define gateway info->rti_info[RTAX_GATEWAY] #define netmask info->rti_info[RTAX_NETMASK] #define ifaaddr info->rti_info[RTAX_IFA] #define ifpaddr info->rti_info[RTAX_IFP] #define flags info->rti_flags /* * Look up rt_addrinfo for a specific fib. Note that if rti_ifa is defined, * it will be referenced so the caller must free it. */ int rt_getifa_fib(struct rt_addrinfo *info, u_int fibnum) { struct ifaddr *ifa; int error = 0; /* * ifp may be specified by sockaddr_dl * when protocol address is ambiguous. */ if (info->rti_ifp == NULL && ifpaddr != NULL && ifpaddr->sa_family == AF_LINK && (ifa = ifa_ifwithnet(ifpaddr, 0, fibnum)) != NULL) { info->rti_ifp = ifa->ifa_ifp; ifa_free(ifa); } if (info->rti_ifa == NULL && ifaaddr != NULL) info->rti_ifa = ifa_ifwithaddr(ifaaddr); if (info->rti_ifa == NULL) { struct sockaddr *sa; sa = ifaaddr != NULL ? ifaaddr : (gateway != NULL ? gateway : dst); if (sa != NULL && info->rti_ifp != NULL) info->rti_ifa = ifaof_ifpforaddr(sa, info->rti_ifp); else if (dst != NULL && gateway != NULL) info->rti_ifa = ifa_ifwithroute(flags, dst, gateway, fibnum); else if (sa != NULL) info->rti_ifa = ifa_ifwithroute(flags, sa, sa, fibnum); } if ((ifa = info->rti_ifa) != NULL) { if (info->rti_ifp == NULL) info->rti_ifp = ifa->ifa_ifp; } else error = ENETUNREACH; return (error); } static int if_updatemtu_cb(struct radix_node *rn, void *arg) { struct rtentry *rt; struct if_mtuinfo *ifmtu; rt = (struct rtentry *)rn; ifmtu = (struct if_mtuinfo *)arg; if (rt->rt_ifp != ifmtu->ifp) return (0); if (rt->rt_mtu >= ifmtu->mtu) { /* We have to decrease mtu regardless of flags */ rt->rt_mtu = ifmtu->mtu; return (0); } /* * New MTU is bigger. Check if are allowed to alter it */ if ((rt->rt_flags & (RTF_FIXEDMTU | RTF_GATEWAY | RTF_HOST)) != 0) { /* * Skip routes with user-supplied MTU and * non-interface routes */ return (0); } /* We are safe to update route MTU */ rt->rt_mtu = ifmtu->mtu; return (0); } void rt_updatemtu(struct ifnet *ifp) { struct if_mtuinfo ifmtu; struct rib_head *rnh; int i, j; ifmtu.ifp = ifp; /* * Try to update rt_mtu for all routes using this interface * Unfortunately the only way to do this is to traverse all * routing tables in all fibs/domains. */ for (i = 1; i <= AF_MAX; i++) { ifmtu.mtu = if_getmtu_family(ifp, i); for (j = 0; j < rt_numfibs; j++) { rnh = rt_tables_get_rnh(j, i); if (rnh == NULL) continue; RIB_WLOCK(rnh); rnh->rnh_walktree(&rnh->head, if_updatemtu_cb, &ifmtu); RIB_WUNLOCK(rnh); } } } #if 0 int p_sockaddr(char *buf, int buflen, struct sockaddr *s); int rt_print(char *buf, int buflen, struct rtentry *rt); int p_sockaddr(char *buf, int buflen, struct sockaddr *s) { void *paddr = NULL; switch (s->sa_family) { case AF_INET: paddr = &((struct sockaddr_in *)s)->sin_addr; break; case AF_INET6: paddr = &((struct sockaddr_in6 *)s)->sin6_addr; break; } if (paddr == NULL) return (0); if (inet_ntop(s->sa_family, paddr, buf, buflen) == NULL) return (0); return (strlen(buf)); } int rt_print(char *buf, int buflen, struct rtentry *rt) { struct sockaddr *addr, *mask; int i = 0; addr = rt_key(rt); mask = rt_mask(rt); i = p_sockaddr(buf, buflen, addr); if (!(rt->rt_flags & RTF_HOST)) { buf[i++] = '/'; i += p_sockaddr(buf + i, buflen - i, mask); } if (rt->rt_flags & RTF_GATEWAY) { buf[i++] = '>'; i += p_sockaddr(buf + i, buflen - i, rt->rt_gateway); } return (i); } #endif #ifdef RADIX_MPATH /* * Deletes key for single-path routes, unlinks rtentry with * gateway specified in @info from multi-path routes. * * Returnes unlinked entry. In case of failure, returns NULL * and sets @perror to ESRCH. */ static struct radix_node * rt_mpath_unlink(struct rib_head *rnh, struct rt_addrinfo *info, struct rtentry *rto, int *perror) { /* * if we got multipath routes, we require users to specify * a matching RTAX_GATEWAY. */ struct rtentry *rt; // *rto = NULL; struct radix_node *rn; struct sockaddr *gw; gw = info->rti_info[RTAX_GATEWAY]; rt = rt_mpath_matchgate(rto, gw); if (rt == NULL) { *perror = ESRCH; return (NULL); } /* * this is the first entry in the chain */ if (rto == rt) { rn = rn_mpath_next((struct radix_node *)rt); /* * there is another entry, now it's active */ if (rn) { rto = RNTORT(rn); RT_LOCK(rto); rto->rt_flags |= RTF_UP; RT_UNLOCK(rto); } else if (rt->rt_flags & RTF_GATEWAY) { /* * For gateway routes, we need to * make sure that we we are deleting * the correct gateway. * rt_mpath_matchgate() does not * check the case when there is only * one route in the chain. */ if (gw && (rt->rt_gateway->sa_len != gw->sa_len || memcmp(rt->rt_gateway, gw, gw->sa_len))) { *perror = ESRCH; return (NULL); } } /* * use the normal delete code to remove * the first entry */ rn = rnh->rnh_deladdr(dst, netmask, &rnh->head); *perror = 0; return (rn); } /* * if the entry is 2nd and on up */ if (rt_mpath_deldup(rto, rt) == 0) panic ("rtrequest1: rt_mpath_deldup"); *perror = 0; rn = (struct radix_node *)rt; return (rn); } #endif #ifdef FLOWTABLE static struct rtentry * rt_flowtable_check_route(struct rib_head *rnh, struct rt_addrinfo *info) { #if defined(INET6) || defined(INET) struct radix_node *rn; #endif struct rtentry *rt0; rt0 = NULL; /* "flow-table" only supports IPv6 and IPv4 at the moment. */ switch (dst->sa_family) { #ifdef INET6 case AF_INET6: #endif #ifdef INET case AF_INET: #endif #if defined(INET6) || defined(INET) rn = rnh->rnh_matchaddr(dst, &rnh->head); if (rn && ((rn->rn_flags & RNF_ROOT) == 0)) { struct sockaddr *mask; u_char *m, *n; int len; /* * compare mask to see if the new route is * more specific than the existing one */ rt0 = RNTORT(rn); RT_LOCK(rt0); RT_ADDREF(rt0); RT_UNLOCK(rt0); /* * A host route is already present, so * leave the flow-table entries as is. */ if (rt0->rt_flags & RTF_HOST) { RTFREE(rt0); rt0 = NULL; } else if (!(flags & RTF_HOST) && netmask) { mask = rt_mask(rt0); len = mask->sa_len; m = (u_char *)mask; n = (u_char *)netmask; while (len-- > 0) { if (*n != *m) break; n++; m++; } if (len == 0 || (*n < *m)) { RTFREE(rt0); rt0 = NULL; } } } #endif/* INET6 || INET */ } return (rt0); } #endif int rtrequest1_fib(int req, struct rt_addrinfo *info, struct rtentry **ret_nrt, u_int fibnum) { int error = 0; struct rtentry *rt, *rt_old; #ifdef FLOWTABLE struct rtentry *rt0; #endif struct radix_node *rn; struct rib_head *rnh; struct ifaddr *ifa; struct sockaddr *ndst; struct sockaddr_storage mdst; KASSERT((fibnum < rt_numfibs), ("rtrequest1_fib: bad fibnum")); KASSERT((flags & RTF_RNH_LOCKED) == 0, ("rtrequest1_fib: locked")); switch (dst->sa_family) { case AF_INET6: case AF_INET: /* We support multiple FIBs. */ break; default: fibnum = RT_DEFAULT_FIB; break; } /* * Find the correct routing tree to use for this Address Family */ rnh = rt_tables_get_rnh(fibnum, dst->sa_family); if (rnh == NULL) return (EAFNOSUPPORT); /* * If we are adding a host route then we don't want to put * a netmask in the tree, nor do we want to clone it. */ if (flags & RTF_HOST) netmask = NULL; switch (req) { case RTM_DELETE: if (netmask) { rt_maskedcopy(dst, (struct sockaddr *)&mdst, netmask); dst = (struct sockaddr *)&mdst; } RIB_WLOCK(rnh); rt = rt_unlinkrte(rnh, info, &error); RIB_WUNLOCK(rnh); if (error != 0) return (error); rt_notifydelete(rt, info); /* * If the caller wants it, then it can have it, * but it's up to it to free the rtentry as we won't be * doing it. */ if (ret_nrt) { *ret_nrt = rt; RT_UNLOCK(rt); } else RTFREE_LOCKED(rt); break; case RTM_RESOLVE: /* * resolve was only used for route cloning * here for compat */ break; case RTM_ADD: if ((flags & RTF_GATEWAY) && !gateway) return (EINVAL); if (dst && gateway && (dst->sa_family != gateway->sa_family) && (gateway->sa_family != AF_UNSPEC) && (gateway->sa_family != AF_LINK)) return (EINVAL); if (info->rti_ifa == NULL) { error = rt_getifa_fib(info, fibnum); if (error) return (error); } else ifa_ref(info->rti_ifa); ifa = info->rti_ifa; rt = uma_zalloc(V_rtzone, M_NOWAIT); if (rt == NULL) { ifa_free(ifa); return (ENOBUFS); } rt->rt_flags = RTF_UP | flags; rt->rt_fibnum = fibnum; /* * Add the gateway. Possibly re-malloc-ing the storage for it. */ if ((error = rt_setgate(rt, dst, gateway)) != 0) { ifa_free(ifa); uma_zfree(V_rtzone, rt); return (error); } /* * point to the (possibly newly malloc'd) dest address. */ ndst = (struct sockaddr *)rt_key(rt); /* * make sure it contains the value we want (masked if needed). */ if (netmask) { rt_maskedcopy(dst, ndst, netmask); } else bcopy(dst, ndst, dst->sa_len); /* * We use the ifa reference returned by rt_getifa_fib(). * This moved from below so that rnh->rnh_addaddr() can * examine the ifa and ifa->ifa_ifp if it so desires. */ rt->rt_ifa = ifa; rt->rt_ifp = ifa->ifa_ifp; rt->rt_weight = 1; rt_setmetrics(info, rt); RIB_WLOCK(rnh); RT_LOCK(rt); #ifdef RADIX_MPATH /* do not permit exactly the same dst/mask/gw pair */ if (rt_mpath_capable(rnh) && rt_mpath_conflict(rnh, rt, netmask)) { RIB_WUNLOCK(rnh); ifa_free(rt->rt_ifa); R_Free(rt_key(rt)); uma_zfree(V_rtzone, rt); return (EEXIST); } #endif #ifdef FLOWTABLE rt0 = rt_flowtable_check_route(rnh, info); #endif /* FLOWTABLE */ /* XXX mtu manipulation will be done in rnh_addaddr -- itojun */ rn = rnh->rnh_addaddr(ndst, netmask, &rnh->head, rt->rt_nodes); rt_old = NULL; if (rn == NULL && (info->rti_flags & RTF_PINNED) != 0) { /* * Force removal and re-try addition * TODO: better multipath&pinned support */ struct sockaddr *info_dst = info->rti_info[RTAX_DST]; info->rti_info[RTAX_DST] = ndst; /* Do not delete existing PINNED(interface) routes */ info->rti_flags &= ~RTF_PINNED; rt_old = rt_unlinkrte(rnh, info, &error); info->rti_flags |= RTF_PINNED; info->rti_info[RTAX_DST] = info_dst; if (rt_old != NULL) rn = rnh->rnh_addaddr(ndst, netmask, &rnh->head, rt->rt_nodes); } RIB_WUNLOCK(rnh); if (rt_old != NULL) RT_UNLOCK(rt_old); /* * If it still failed to go into the tree, * then un-make it (this should be a function) */ if (rn == NULL) { ifa_free(rt->rt_ifa); R_Free(rt_key(rt)); uma_zfree(V_rtzone, rt); #ifdef FLOWTABLE if (rt0 != NULL) RTFREE(rt0); #endif return (EEXIST); } #ifdef FLOWTABLE else if (rt0 != NULL) { flowtable_route_flush(dst->sa_family, rt0); RTFREE(rt0); } #endif if (rt_old != NULL) { rt_notifydelete(rt_old, info); RTFREE(rt_old); } /* * If this protocol has something to add to this then * allow it to do that as well. */ if (ifa->ifa_rtrequest) ifa->ifa_rtrequest(req, rt, info); /* * actually return a resultant rtentry and * give the caller a single reference. */ if (ret_nrt) { *ret_nrt = rt; RT_ADDREF(rt); } rnh->rnh_gen++; /* Routing table updated */ RT_UNLOCK(rt); break; case RTM_CHANGE: RIB_WLOCK(rnh); error = rtrequest1_fib_change(rnh, info, ret_nrt, fibnum); RIB_WUNLOCK(rnh); break; default: error = EOPNOTSUPP; } return (error); } #undef dst #undef gateway #undef netmask #undef ifaaddr #undef ifpaddr #undef flags static int rtrequest1_fib_change(struct rib_head *rnh, struct rt_addrinfo *info, struct rtentry **ret_nrt, u_int fibnum) { struct rtentry *rt = NULL; int error = 0; int free_ifa = 0; int family, mtu; struct if_mtuinfo ifmtu; rt = (struct rtentry *)rnh->rnh_lookup(info->rti_info[RTAX_DST], info->rti_info[RTAX_NETMASK], &rnh->head); if (rt == NULL) return (ESRCH); #ifdef RADIX_MPATH /* * If we got multipath routes, * we require users to specify a matching RTAX_GATEWAY. */ if (rt_mpath_capable(rnh)) { rt = rt_mpath_matchgate(rt, info->rti_info[RTAX_GATEWAY]); if (rt == NULL) return (ESRCH); } #endif RT_LOCK(rt); rt_setmetrics(info, rt); /* * New gateway could require new ifaddr, ifp; * flags may also be different; ifp may be specified * by ll sockaddr when protocol address is ambiguous */ if (((rt->rt_flags & RTF_GATEWAY) && info->rti_info[RTAX_GATEWAY] != NULL) || info->rti_info[RTAX_IFP] != NULL || (info->rti_info[RTAX_IFA] != NULL && !sa_equal(info->rti_info[RTAX_IFA], rt->rt_ifa->ifa_addr))) { error = rt_getifa_fib(info, fibnum); if (info->rti_ifa != NULL) free_ifa = 1; if (error != 0) goto bad; } /* Check if outgoing interface has changed */ if (info->rti_ifa != NULL && info->rti_ifa != rt->rt_ifa && rt->rt_ifa != NULL && rt->rt_ifa->ifa_rtrequest != NULL) { rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, info); ifa_free(rt->rt_ifa); } /* Update gateway address */ if (info->rti_info[RTAX_GATEWAY] != NULL) { error = rt_setgate(rt, rt_key(rt), info->rti_info[RTAX_GATEWAY]); if (error != 0) goto bad; rt->rt_flags &= ~RTF_GATEWAY; rt->rt_flags |= (RTF_GATEWAY & info->rti_flags); } if (info->rti_ifa != NULL && info->rti_ifa != rt->rt_ifa) { ifa_ref(info->rti_ifa); rt->rt_ifa = info->rti_ifa; rt->rt_ifp = info->rti_ifp; } /* Allow some flags to be toggled on change. */ rt->rt_flags &= ~RTF_FMASK; rt->rt_flags |= info->rti_flags & RTF_FMASK; if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest != NULL) rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, info); /* Alter route MTU if necessary */ if (rt->rt_ifp != NULL) { family = info->rti_info[RTAX_DST]->sa_family; mtu = if_getmtu_family(rt->rt_ifp, family); /* Set default MTU */ if (rt->rt_mtu == 0) rt->rt_mtu = mtu; if (rt->rt_mtu != mtu) { /* Check if we really need to update */ ifmtu.ifp = rt->rt_ifp; ifmtu.mtu = mtu; if_updatemtu_cb(rt->rt_nodes, &ifmtu); } } if (ret_nrt) { *ret_nrt = rt; RT_ADDREF(rt); } bad: RT_UNLOCK(rt); if (free_ifa != 0) ifa_free(info->rti_ifa); return (error); } static void rt_setmetrics(const struct rt_addrinfo *info, struct rtentry *rt) { if (info->rti_mflags & RTV_MTU) { if (info->rti_rmx->rmx_mtu != 0) { /* * MTU was explicitly provided by user. * Keep it. */ rt->rt_flags |= RTF_FIXEDMTU; } else { /* * User explicitly sets MTU to 0. * Assume rollback to default. */ rt->rt_flags &= ~RTF_FIXEDMTU; } rt->rt_mtu = info->rti_rmx->rmx_mtu; } if (info->rti_mflags & RTV_WEIGHT) rt->rt_weight = info->rti_rmx->rmx_weight; /* Kernel -> userland timebase conversion. */ if (info->rti_mflags & RTV_EXPIRE) rt->rt_expire = info->rti_rmx->rmx_expire ? info->rti_rmx->rmx_expire - time_second + time_uptime : 0; } int rt_setgate(struct rtentry *rt, struct sockaddr *dst, struct sockaddr *gate) { /* XXX dst may be overwritten, can we move this to below */ int dlen = SA_SIZE(dst), glen = SA_SIZE(gate); /* * Prepare to store the gateway in rt->rt_gateway. * Both dst and gateway are stored one after the other in the same * malloc'd chunk. If we have room, we can reuse the old buffer, * rt_gateway already points to the right place. * Otherwise, malloc a new block and update the 'dst' address. */ if (rt->rt_gateway == NULL || glen > SA_SIZE(rt->rt_gateway)) { caddr_t new; R_Malloc(new, caddr_t, dlen + glen); if (new == NULL) return ENOBUFS; /* * XXX note, we copy from *dst and not *rt_key(rt) because * rt_setgate() can be called to initialize a newly * allocated route entry, in which case rt_key(rt) == NULL * (and also rt->rt_gateway == NULL). * Free()/free() handle a NULL argument just fine. */ bcopy(dst, new, dlen); R_Free(rt_key(rt)); /* free old block, if any */ rt_key(rt) = (struct sockaddr *)new; rt->rt_gateway = (struct sockaddr *)(new + dlen); } /* * Copy the new gateway value into the memory chunk. */ bcopy(gate, rt->rt_gateway, glen); return (0); } void rt_maskedcopy(struct sockaddr *src, struct sockaddr *dst, struct sockaddr *netmask) { u_char *cp1 = (u_char *)src; u_char *cp2 = (u_char *)dst; u_char *cp3 = (u_char *)netmask; u_char *cplim = cp2 + *cp3; u_char *cplim2 = cp2 + *cp1; *cp2++ = *cp1++; *cp2++ = *cp1++; /* copies sa_len & sa_family */ cp3 += 2; if (cplim > cplim2) cplim = cplim2; while (cp2 < cplim) *cp2++ = *cp1++ & *cp3++; if (cp2 < cplim2) bzero((caddr_t)cp2, (unsigned)(cplim2 - cp2)); } /* * Set up a routing table entry, normally * for an interface. */ #define _SOCKADDR_TMPSIZE 128 /* Not too big.. kernel stack size is limited */ static inline int rtinit1(struct ifaddr *ifa, int cmd, int flags, int fibnum) { struct sockaddr *dst; struct sockaddr *netmask; struct rtentry *rt = NULL; struct rt_addrinfo info; int error = 0; int startfib, endfib; char tempbuf[_SOCKADDR_TMPSIZE]; int didwork = 0; int a_failure = 0; static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; struct rib_head *rnh; if (flags & RTF_HOST) { dst = ifa->ifa_dstaddr; netmask = NULL; } else { dst = ifa->ifa_addr; netmask = ifa->ifa_netmask; } if (dst->sa_len == 0) return(EINVAL); switch (dst->sa_family) { case AF_INET6: case AF_INET: /* We support multiple FIBs. */ break; default: fibnum = RT_DEFAULT_FIB; break; } if (fibnum == RT_ALL_FIBS) { if (V_rt_add_addr_allfibs == 0 && cmd == (int)RTM_ADD) startfib = endfib = ifa->ifa_ifp->if_fib; else { startfib = 0; endfib = rt_numfibs - 1; } } else { KASSERT((fibnum < rt_numfibs), ("rtinit1: bad fibnum")); startfib = fibnum; endfib = fibnum; } /* * If it's a delete, check that if it exists, * it's on the correct interface or we might scrub * a route to another ifa which would * be confusing at best and possibly worse. */ if (cmd == RTM_DELETE) { /* * It's a delete, so it should already exist.. * If it's a net, mask off the host bits * (Assuming we have a mask) * XXX this is kinda inet specific.. */ if (netmask != NULL) { rt_maskedcopy(dst, (struct sockaddr *)tempbuf, netmask); dst = (struct sockaddr *)tempbuf; } } /* * Now go through all the requested tables (fibs) and do the * requested action. Realistically, this will either be fib 0 * for protocols that don't do multiple tables or all the * tables for those that do. */ for ( fibnum = startfib; fibnum <= endfib; fibnum++) { if (cmd == RTM_DELETE) { struct radix_node *rn; /* * Look up an rtentry that is in the routing tree and * contains the correct info. */ rnh = rt_tables_get_rnh(fibnum, dst->sa_family); if (rnh == NULL) /* this table doesn't exist but others might */ continue; RIB_RLOCK(rnh); rn = rnh->rnh_lookup(dst, netmask, &rnh->head); #ifdef RADIX_MPATH if (rt_mpath_capable(rnh)) { if (rn == NULL) error = ESRCH; else { rt = RNTORT(rn); /* * for interface route the * rt->rt_gateway is sockaddr_intf * for cloning ARP entries, so * rt_mpath_matchgate must use the * interface address */ rt = rt_mpath_matchgate(rt, ifa->ifa_addr); if (rt == NULL) error = ESRCH; } } #endif error = (rn == NULL || (rn->rn_flags & RNF_ROOT) || RNTORT(rn)->rt_ifa != ifa); RIB_RUNLOCK(rnh); if (error) { /* this is only an error if bad on ALL tables */ continue; } } /* * Do the actual request */ bzero((caddr_t)&info, sizeof(info)); info.rti_ifa = ifa; info.rti_flags = flags | (ifa->ifa_flags & ~IFA_RTSELF) | RTF_PINNED; info.rti_info[RTAX_DST] = dst; /* * doing this for compatibility reasons */ if (cmd == RTM_ADD) info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; else info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr; info.rti_info[RTAX_NETMASK] = netmask; error = rtrequest1_fib(cmd, &info, &rt, fibnum); if (error == 0 && rt != NULL) { /* * notify any listening routing agents of the change */ RT_LOCK(rt); #ifdef RADIX_MPATH /* * in case address alias finds the first address * e.g. ifconfig bge0 192.0.2.246/24 * e.g. ifconfig bge0 192.0.2.247/24 * the address set in the route is 192.0.2.246 * so we need to replace it with 192.0.2.247 */ if (memcmp(rt->rt_ifa->ifa_addr, ifa->ifa_addr, ifa->ifa_addr->sa_len)) { ifa_free(rt->rt_ifa); ifa_ref(ifa); rt->rt_ifp = ifa->ifa_ifp; rt->rt_ifa = ifa; } #endif /* * doing this for compatibility reasons */ if (cmd == RTM_ADD) { ((struct sockaddr_dl *)rt->rt_gateway)->sdl_type = rt->rt_ifp->if_type; ((struct sockaddr_dl *)rt->rt_gateway)->sdl_index = rt->rt_ifp->if_index; } RT_ADDREF(rt); RT_UNLOCK(rt); rt_newaddrmsg_fib(cmd, ifa, error, rt, fibnum); RT_LOCK(rt); RT_REMREF(rt); if (cmd == RTM_DELETE) { /* * If we are deleting, and we found an entry, * then it's been removed from the tree.. * now throw it away. */ RTFREE_LOCKED(rt); } else { if (cmd == RTM_ADD) { /* * We just wanted to add it.. * we don't actually need a reference. */ RT_REMREF(rt); } RT_UNLOCK(rt); } didwork = 1; } if (error) a_failure = error; } if (cmd == RTM_DELETE) { if (didwork) { error = 0; } else { /* we only give an error if it wasn't in any table */ error = ((flags & RTF_HOST) ? EHOSTUNREACH : ENETUNREACH); } } else { if (a_failure) { /* return an error if any of them failed */ error = a_failure; } } return (error); } /* * Set up a routing table entry, normally * for an interface. */ int rtinit(struct ifaddr *ifa, int cmd, int flags) { struct sockaddr *dst; int fib = RT_DEFAULT_FIB; if (flags & RTF_HOST) { dst = ifa->ifa_dstaddr; } else { dst = ifa->ifa_addr; } switch (dst->sa_family) { case AF_INET6: case AF_INET: /* We do support multiple FIBs. */ fib = RT_ALL_FIBS; break; } return (rtinit1(ifa, cmd, flags, fib)); } /* * Announce interface address arrival/withdraw * Returns 0 on success. */ int rt_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) { KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, ("unexpected cmd %d", cmd)); KASSERT(fibnum == RT_ALL_FIBS || (fibnum >= 0 && fibnum < rt_numfibs), ("%s: fib out of range 0 <=%d<%d", __func__, fibnum, rt_numfibs)); #if defined(INET) || defined(INET6) #ifdef SCTP /* * notify the SCTP stack * this will only get called when an address is added/deleted * XXX pass the ifaddr struct instead if ifa->ifa_addr... */ sctp_addr_change(ifa, cmd); #endif /* SCTP */ #endif return (rtsock_addrmsg(cmd, ifa, fibnum)); } /* * Announce route addition/removal. * Users of this function MUST validate input data BEFORE calling. * However we have to be able to handle invalid data: * if some userland app sends us "invalid" route message (invalid mask, * no dst, wrong address families, etc...) we need to pass it back * to app (and any other rtsock consumers) with rtm_errno field set to * non-zero value. * Returns 0 on success. */ int rt_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, int fibnum) { KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, ("unexpected cmd %d", cmd)); KASSERT(fibnum == RT_ALL_FIBS || (fibnum >= 0 && fibnum < rt_numfibs), ("%s: fib out of range 0 <=%d<%d", __func__, fibnum, rt_numfibs)); KASSERT(rt_key(rt) != NULL, (":%s: rt_key must be supplied", __func__)); return (rtsock_routemsg(cmd, ifp, error, rt, fibnum)); } void rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) { rt_newaddrmsg_fib(cmd, ifa, error, rt, RT_ALL_FIBS); } /* * This is called to generate messages from the routing socket * indicating a network interface has had addresses associated with it. */ void rt_newaddrmsg_fib(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt, int fibnum) { KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, ("unexpected cmd %u", cmd)); KASSERT(fibnum == RT_ALL_FIBS || (fibnum >= 0 && fibnum < rt_numfibs), ("%s: fib out of range 0 <=%d<%d", __func__, fibnum, rt_numfibs)); if (cmd == RTM_ADD) { rt_addrmsg(cmd, ifa, fibnum); if (rt != NULL) rt_routemsg(cmd, ifa->ifa_ifp, error, rt, fibnum); } else { if (rt != NULL) rt_routemsg(cmd, ifa->ifa_ifp, error, rt, fibnum); rt_addrmsg(cmd, ifa, fibnum); } } Index: head/sys/net/route.h =================================================================== --- head/sys/net/route.h (revision 301216) +++ head/sys/net/route.h (revision 301217) @@ -1,488 +1,497 @@ /*- * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)route.h 8.4 (Berkeley) 1/9/95 * $FreeBSD$ */ #ifndef _NET_ROUTE_H_ #define _NET_ROUTE_H_ #include #include /* * Kernel resident routing tables. * * The routing tables are initialized when interface addresses * are set by making entries for all directly connected interfaces. */ /* * Struct route consiste of a destination address, * a route entry pointer, link-layer prepend data pointer along * with its length. */ struct route { struct rtentry *ro_rt; + struct llentry *ro_lle; + /* + * ro_prepend and ro_plen are only used for bpf to pass in a + * preformed header. They are not cacheable. + */ char *ro_prepend; uint16_t ro_plen; uint16_t ro_flags; uint16_t ro_mtu; /* saved ro_rt mtu */ uint16_t spare; struct sockaddr ro_dst; }; #define RT_L2_ME_BIT 2 /* dst L2 addr is our address */ #define RT_MAY_LOOP_BIT 3 /* dst may require loop copy */ #define RT_HAS_HEADER_BIT 4 /* mbuf already have its header prepended */ #define RT_CACHING_CONTEXT 0x1 /* XXX: not used anywhere */ #define RT_NORTREF 0x2 /* doesn't hold reference on ro_rt */ #define RT_L2_ME (1 << RT_L2_ME_BIT) /* 0x0004 */ #define RT_MAY_LOOP (1 << RT_MAY_LOOP_BIT) /* 0x0008 */ #define RT_HAS_HEADER (1 << RT_HAS_HEADER_BIT) /* 0x0010 */ #define RT_REJECT 0x0020 /* Destination is reject */ #define RT_BLACKHOLE 0x0040 /* Destination is blackhole */ #define RT_HAS_GW 0x0080 /* Destination has GW */ +#define RT_LLE_CACHE 0x0100 /* Cache link layer */ struct rt_metrics { u_long rmx_locks; /* Kernel must leave these values alone */ u_long rmx_mtu; /* MTU for this path */ u_long rmx_hopcount; /* max hops expected */ u_long rmx_expire; /* lifetime for route, e.g. redirect */ u_long rmx_recvpipe; /* inbound delay-bandwidth product */ u_long rmx_sendpipe; /* outbound delay-bandwidth product */ u_long rmx_ssthresh; /* outbound gateway buffer limit */ u_long rmx_rtt; /* estimated round trip time */ u_long rmx_rttvar; /* estimated rtt variance */ u_long rmx_pksent; /* packets sent using this route */ u_long rmx_weight; /* route weight */ u_long rmx_filler[3]; /* will be used for T/TCP later */ }; /* * rmx_rtt and rmx_rttvar are stored as microseconds; * RTTTOPRHZ(rtt) converts to a value suitable for use * by a protocol slowtimo counter. */ #define RTM_RTTUNIT 1000000 /* units for rtt, rttvar, as units per sec */ #define RTTTOPRHZ(r) ((r) / (RTM_RTTUNIT / PR_SLOWHZ)) /* lle state is exported in rmx_state rt_metrics field */ #define rmx_state rmx_weight /* * Keep a generation count of routing table, incremented on route addition, * so we can invalidate caches. This is accessed without a lock, as precision * is not required. */ typedef volatile u_int rt_gen_t; /* tree generation (for adds) */ #define RT_GEN(fibnum, af) rt_tables_get_gen(fibnum, af) #define RT_DEFAULT_FIB 0 /* Explicitly mark fib=0 restricted cases */ #define RT_ALL_FIBS -1 /* Announce event for every fib */ #ifdef _KERNEL extern u_int rt_numfibs; /* number of usable routing tables */ VNET_DECLARE(u_int, rt_add_addr_allfibs); /* Announce interfaces to all fibs */ #define V_rt_add_addr_allfibs VNET(rt_add_addr_allfibs) #endif /* * We distinguish between routes to hosts and routes to networks, * preferring the former if available. For each route we infer * the interface to use from the gateway address supplied when * the route was entered. Routes that forward packets through * gateways are marked so that the output routines know to address the * gateway rather than the ultimate destination. */ #ifndef RNF_NORMAL #include #ifdef RADIX_MPATH #include #endif #endif #if defined(_KERNEL) || defined(_WANT_RTENTRY) struct rtentry { struct radix_node rt_nodes[2]; /* tree glue, and other values */ /* * XXX struct rtentry must begin with a struct radix_node (or two!) * because the code does some casts of a 'struct radix_node *' * to a 'struct rtentry *' */ #define rt_key(r) (*((struct sockaddr **)(&(r)->rt_nodes->rn_key))) #define rt_mask(r) (*((struct sockaddr **)(&(r)->rt_nodes->rn_mask))) struct sockaddr *rt_gateway; /* value */ struct ifnet *rt_ifp; /* the answer: interface to use */ struct ifaddr *rt_ifa; /* the answer: interface address to use */ int rt_flags; /* up/down?, host/net */ int rt_refcnt; /* # held references */ u_int rt_fibnum; /* which FIB */ u_long rt_mtu; /* MTU for this path */ u_long rt_weight; /* absolute weight */ u_long rt_expire; /* lifetime for route, e.g. redirect */ #define rt_endzero rt_pksent counter_u64_t rt_pksent; /* packets sent using this route */ struct mtx rt_mtx; /* mutex for routing entry */ struct rtentry *rt_chain; /* pointer to next rtentry to delete */ }; #endif /* _KERNEL || _WANT_RTENTRY */ #define RTF_UP 0x1 /* route usable */ #define RTF_GATEWAY 0x2 /* destination is a gateway */ #define RTF_HOST 0x4 /* host entry (net otherwise) */ #define RTF_REJECT 0x8 /* host or net unreachable */ #define RTF_DYNAMIC 0x10 /* created dynamically (by redirect) */ #define RTF_MODIFIED 0x20 /* modified dynamically (by redirect) */ #define RTF_DONE 0x40 /* message confirmed */ /* 0x80 unused, was RTF_DELCLONE */ /* 0x100 unused, was RTF_CLONING */ #define RTF_XRESOLVE 0x200 /* external daemon resolves name */ #define RTF_LLINFO 0x400 /* DEPRECATED - exists ONLY for backward compatibility */ #define RTF_LLDATA 0x400 /* used by apps to add/del L2 entries */ #define RTF_STATIC 0x800 /* manually added */ #define RTF_BLACKHOLE 0x1000 /* just discard pkts (during updates) */ #define RTF_PROTO2 0x4000 /* protocol specific routing flag */ #define RTF_PROTO1 0x8000 /* protocol specific routing flag */ /* 0x10000 unused, was RTF_PRCLONING */ /* 0x20000 unused, was RTF_WASCLONED */ #define RTF_PROTO3 0x40000 /* protocol specific routing flag */ #define RTF_FIXEDMTU 0x80000 /* MTU was explicitly specified */ #define RTF_PINNED 0x100000 /* route is immutable */ #define RTF_LOCAL 0x200000 /* route represents a local address */ #define RTF_BROADCAST 0x400000 /* route represents a bcast address */ #define RTF_MULTICAST 0x800000 /* route represents a mcast address */ /* 0x8000000 and up unassigned */ #define RTF_STICKY 0x10000000 /* always route dst->src */ #define RTF_RNH_LOCKED 0x40000000 /* unused */ #define RTF_GWFLAG_COMPAT 0x80000000 /* a compatibility bit for interacting with existing routing apps */ /* Mask of RTF flags that are allowed to be modified by RTM_CHANGE. */ #define RTF_FMASK \ (RTF_PROTO1 | RTF_PROTO2 | RTF_PROTO3 | RTF_BLACKHOLE | \ RTF_REJECT | RTF_STATIC | RTF_STICKY) /* * fib_ nexthop API flags. */ /* Consumer-visible nexthop info flags */ #define NHF_REJECT 0x0010 /* RTF_REJECT */ #define NHF_BLACKHOLE 0x0020 /* RTF_BLACKHOLE */ #define NHF_REDIRECT 0x0040 /* RTF_DYNAMIC|RTF_MODIFIED */ #define NHF_DEFAULT 0x0080 /* Default route */ #define NHF_BROADCAST 0x0100 /* RTF_BROADCAST */ #define NHF_GATEWAY 0x0200 /* RTF_GATEWAY */ /* Nexthop request flags */ #define NHR_IFAIF 0x01 /* Return ifa_ifp interface */ #define NHR_REF 0x02 /* For future use */ /* Control plane route request flags */ #define NHR_COPY 0x100 /* Copy rte data */ #ifdef _KERNEL /* rte<>ro_flags translation */ static inline void rt_update_ro_flags(struct route *ro) { int rt_flags = ro->ro_rt->rt_flags; ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); ro->ro_flags |= (rt_flags & RTF_REJECT) ? RT_REJECT : 0; ro->ro_flags |= (rt_flags & RTF_BLACKHOLE) ? RT_BLACKHOLE : 0; ro->ro_flags |= (rt_flags & RTF_GATEWAY) ? RT_HAS_GW : 0; } #endif /* * Routing statistics. */ struct rtstat { short rts_badredirect; /* bogus redirect calls */ short rts_dynamic; /* routes created by redirects */ short rts_newgateway; /* routes modified by redirects */ short rts_unreach; /* lookups which failed */ short rts_wildcard; /* lookups satisfied by a wildcard */ }; /* * Structures for routing messages. */ struct rt_msghdr { u_short rtm_msglen; /* to skip over non-understood messages */ u_char rtm_version; /* future binary compatibility */ u_char rtm_type; /* message type */ u_short rtm_index; /* index for associated ifp */ int rtm_flags; /* flags, incl. kern & message, e.g. DONE */ int rtm_addrs; /* bitmask identifying sockaddrs in msg */ pid_t rtm_pid; /* identify sender */ int rtm_seq; /* for sender to identify action */ int rtm_errno; /* why failed */ int rtm_fmask; /* bitmask used in RTM_CHANGE message */ u_long rtm_inits; /* which metrics we are initializing */ struct rt_metrics rtm_rmx; /* metrics themselves */ }; #define RTM_VERSION 5 /* Up the ante and ignore older versions */ /* * Message types. */ #define RTM_ADD 0x1 /* Add Route */ #define RTM_DELETE 0x2 /* Delete Route */ #define RTM_CHANGE 0x3 /* Change Metrics or flags */ #define RTM_GET 0x4 /* Report Metrics */ #define RTM_LOSING 0x5 /* Kernel Suspects Partitioning */ #define RTM_REDIRECT 0x6 /* Told to use different route */ #define RTM_MISS 0x7 /* Lookup failed on this address */ #define RTM_LOCK 0x8 /* fix specified metrics */ /* 0x9 */ /* 0xa */ #define RTM_RESOLVE 0xb /* req to resolve dst to LL addr */ #define RTM_NEWADDR 0xc /* address being added to iface */ #define RTM_DELADDR 0xd /* address being removed from iface */ #define RTM_IFINFO 0xe /* iface going up/down etc. */ #define RTM_NEWMADDR 0xf /* mcast group membership being added to if */ #define RTM_DELMADDR 0x10 /* mcast group membership being deleted */ #define RTM_IFANNOUNCE 0x11 /* iface arrival/departure */ #define RTM_IEEE80211 0x12 /* IEEE80211 wireless event */ /* * Bitmask values for rtm_inits and rmx_locks. */ #define RTV_MTU 0x1 /* init or lock _mtu */ #define RTV_HOPCOUNT 0x2 /* init or lock _hopcount */ #define RTV_EXPIRE 0x4 /* init or lock _expire */ #define RTV_RPIPE 0x8 /* init or lock _recvpipe */ #define RTV_SPIPE 0x10 /* init or lock _sendpipe */ #define RTV_SSTHRESH 0x20 /* init or lock _ssthresh */ #define RTV_RTT 0x40 /* init or lock _rtt */ #define RTV_RTTVAR 0x80 /* init or lock _rttvar */ #define RTV_WEIGHT 0x100 /* init or lock _weight */ /* * Bitmask values for rtm_addrs. */ #define RTA_DST 0x1 /* destination sockaddr present */ #define RTA_GATEWAY 0x2 /* gateway sockaddr present */ #define RTA_NETMASK 0x4 /* netmask sockaddr present */ #define RTA_GENMASK 0x8 /* cloning mask sockaddr present */ #define RTA_IFP 0x10 /* interface name sockaddr present */ #define RTA_IFA 0x20 /* interface addr sockaddr present */ #define RTA_AUTHOR 0x40 /* sockaddr for author of redirect */ #define RTA_BRD 0x80 /* for NEWADDR, broadcast or p-p dest addr */ /* * Index offsets for sockaddr array for alternate internal encoding. */ #define RTAX_DST 0 /* destination sockaddr present */ #define RTAX_GATEWAY 1 /* gateway sockaddr present */ #define RTAX_NETMASK 2 /* netmask sockaddr present */ #define RTAX_GENMASK 3 /* cloning mask sockaddr present */ #define RTAX_IFP 4 /* interface name sockaddr present */ #define RTAX_IFA 5 /* interface addr sockaddr present */ #define RTAX_AUTHOR 6 /* sockaddr for author of redirect */ #define RTAX_BRD 7 /* for NEWADDR, broadcast or p-p dest addr */ #define RTAX_MAX 8 /* size of array to allocate */ typedef int rt_filter_f_t(const struct rtentry *, void *); struct rt_addrinfo { int rti_addrs; /* Route RTF_ flags */ int rti_flags; /* Route RTF_ flags */ struct sockaddr *rti_info[RTAX_MAX]; /* Sockaddr data */ struct ifaddr *rti_ifa; /* value of rt_ifa addr */ struct ifnet *rti_ifp; /* route interface */ rt_filter_f_t *rti_filter; /* filter function */ void *rti_filterdata; /* filter paramenters */ u_long rti_mflags; /* metrics RTV_ flags */ u_long rti_spare; /* Will be used for fib */ struct rt_metrics *rti_rmx; /* Pointer to route metrics */ }; /* * This macro returns the size of a struct sockaddr when passed * through a routing socket. Basically we round up sa_len to * a multiple of sizeof(long), with a minimum of sizeof(long). * The check for a NULL pointer is just a convenience, probably never used. * The case sa_len == 0 should only apply to empty structures. */ #define SA_SIZE(sa) \ ( (!(sa) || ((struct sockaddr *)(sa))->sa_len == 0) ? \ sizeof(long) : \ 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(long) - 1) ) ) #define sa_equal(a, b) ( \ (((const struct sockaddr *)(a))->sa_len == ((const struct sockaddr *)(b))->sa_len) && \ (bcmp((a), (b), ((const struct sockaddr *)(b))->sa_len) == 0)) #ifdef _KERNEL #define RT_LINK_IS_UP(ifp) (!((ifp)->if_capabilities & IFCAP_LINKSTATE) \ || (ifp)->if_link_state == LINK_STATE_UP) #define RT_LOCK_INIT(_rt) \ mtx_init(&(_rt)->rt_mtx, "rtentry", NULL, MTX_DEF | MTX_DUPOK) #define RT_LOCK(_rt) mtx_lock(&(_rt)->rt_mtx) #define RT_UNLOCK(_rt) mtx_unlock(&(_rt)->rt_mtx) #define RT_LOCK_DESTROY(_rt) mtx_destroy(&(_rt)->rt_mtx) #define RT_LOCK_ASSERT(_rt) mtx_assert(&(_rt)->rt_mtx, MA_OWNED) #define RT_UNLOCK_COND(_rt) do { \ if (mtx_owned(&(_rt)->rt_mtx)) \ mtx_unlock(&(_rt)->rt_mtx); \ } while (0) #define RT_ADDREF(_rt) do { \ RT_LOCK_ASSERT(_rt); \ KASSERT((_rt)->rt_refcnt >= 0, \ ("negative refcnt %d", (_rt)->rt_refcnt)); \ (_rt)->rt_refcnt++; \ } while (0) #define RT_REMREF(_rt) do { \ RT_LOCK_ASSERT(_rt); \ KASSERT((_rt)->rt_refcnt > 0, \ ("bogus refcnt %d", (_rt)->rt_refcnt)); \ (_rt)->rt_refcnt--; \ } while (0) #define RTFREE_LOCKED(_rt) do { \ if ((_rt)->rt_refcnt <= 1) \ rtfree(_rt); \ else { \ RT_REMREF(_rt); \ RT_UNLOCK(_rt); \ } \ /* guard against invalid refs */ \ _rt = 0; \ } while (0) #define RTFREE(_rt) do { \ RT_LOCK(_rt); \ RTFREE_LOCKED(_rt); \ } while (0) #define RO_RTFREE(_ro) do { \ if ((_ro)->ro_rt) { \ if ((_ro)->ro_flags & RT_NORTREF) { \ (_ro)->ro_flags &= ~RT_NORTREF; \ (_ro)->ro_rt = NULL; \ + (_ro)->ro_lle = NULL; \ } else { \ RT_LOCK((_ro)->ro_rt); \ RTFREE_LOCKED((_ro)->ro_rt); \ } \ } \ } while (0) /* * Validate a cached route based on a supplied cookie. If there is an * out-of-date cache, simply free it. Update the generation number * for the new allocation */ #define RT_VALIDATE(ro, cookiep, fibnum) do { \ rt_gen_t cookie = RT_GEN(fibnum, (ro)->ro_dst.sa_family); \ - if (*(cookiep) != cookie && (ro)->ro_rt != NULL) { \ - RTFREE((ro)->ro_rt); \ - (ro)->ro_rt = NULL; \ + if (*(cookiep) != cookie) { \ + if ((ro)->ro_rt != NULL) { \ + RTFREE((ro)->ro_rt); \ + (ro)->ro_rt = NULL; \ + } \ *(cookiep) = cookie; \ } \ } while (0) struct ifmultiaddr; struct rib_head; void rt_ieee80211msg(struct ifnet *, int, void *, size_t); void rt_ifannouncemsg(struct ifnet *, int); void rt_ifmsg(struct ifnet *); void rt_missmsg(int, struct rt_addrinfo *, int, int); void rt_missmsg_fib(int, struct rt_addrinfo *, int, int, int); void rt_newaddrmsg(int, struct ifaddr *, int, struct rtentry *); void rt_newaddrmsg_fib(int, struct ifaddr *, int, struct rtentry *, int); int rt_addrmsg(int, struct ifaddr *, int); int rt_routemsg(int, struct ifnet *ifp, int, struct rtentry *, int); void rt_newmaddrmsg(int, struct ifmultiaddr *); int rt_setgate(struct rtentry *, struct sockaddr *, struct sockaddr *); void rt_maskedcopy(struct sockaddr *, struct sockaddr *, struct sockaddr *); struct rib_head *rt_table_init(int); void rt_table_destroy(struct rib_head *); u_int rt_tables_get_gen(int table, int fam); int rtsock_addrmsg(int, struct ifaddr *, int); int rtsock_routemsg(int, struct ifnet *ifp, int, struct rtentry *, int); /* * Note the following locking behavior: * * rtalloc1() returns a locked rtentry * * rtfree() and RTFREE_LOCKED() require a locked rtentry * * RTFREE() uses an unlocked entry. */ void rtfree(struct rtentry *); void rt_updatemtu(struct ifnet *); typedef int rt_walktree_f_t(struct rtentry *, void *); typedef void rt_setwarg_t(struct rib_head *, uint32_t, int, void *); void rt_foreach_fib_walk(int af, rt_setwarg_t *, rt_walktree_f_t *, void *); void rt_foreach_fib_walk_del(int af, rt_filter_f_t *filter_f, void *arg); void rt_flushifroutes(struct ifnet *ifp); /* XXX MRT COMPAT VERSIONS THAT SET UNIVERSE to 0 */ /* Thes are used by old code not yet converted to use multiple FIBS */ struct rtentry *rtalloc1(struct sockaddr *, int, u_long); int rtinit(struct ifaddr *, int, int); /* XXX MRT NEW VERSIONS THAT USE FIBs * For now the protocol indepedent versions are the same as the AF_INET ones * but this will change.. */ int rt_getifa_fib(struct rt_addrinfo *, u_int fibnum); void rtalloc_ign_fib(struct route *ro, u_long ignflags, u_int fibnum); struct rtentry *rtalloc1_fib(struct sockaddr *, int, u_long, u_int); int rtioctl_fib(u_long, caddr_t, u_int); void rtredirect_fib(struct sockaddr *, struct sockaddr *, struct sockaddr *, int, struct sockaddr *, u_int); int rtrequest_fib(int, struct sockaddr *, struct sockaddr *, struct sockaddr *, int, struct rtentry **, u_int); int rtrequest1_fib(int, struct rt_addrinfo *, struct rtentry **, u_int); int rib_lookup_info(uint32_t, const struct sockaddr *, uint32_t, uint32_t, struct rt_addrinfo *); void rib_free_info(struct rt_addrinfo *info); #endif #endif Index: head/sys/netinet/if_ether.c =================================================================== --- head/sys/netinet/if_ether.c (revision 301216) +++ head/sys/netinet/if_ether.c (revision 301217) @@ -1,1338 +1,1348 @@ /*- * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if_ether.c 8.1 (Berkeley) 6/10/93 */ /* * Ethernet address resolution protocol. * TODO: * add "inuse/lock" bit (or ref. count) along with valid bit */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #endif #include #define SIN(s) ((const struct sockaddr_in *)(s)) static struct timeval arp_lastlog; static int arp_curpps; static int arp_maxpps = 1; /* Simple ARP state machine */ enum arp_llinfo_state { ARP_LLINFO_INCOMPLETE = 0, /* No LLE data */ ARP_LLINFO_REACHABLE, /* LLE is valid */ ARP_LLINFO_VERIFY, /* LLE is valid, need refresh */ ARP_LLINFO_DELETED, /* LLE is deleted */ }; SYSCTL_DECL(_net_link_ether); static SYSCTL_NODE(_net_link_ether, PF_INET, inet, CTLFLAG_RW, 0, ""); static SYSCTL_NODE(_net_link_ether, PF_ARP, arp, CTLFLAG_RW, 0, ""); /* timer values */ static VNET_DEFINE(int, arpt_keep) = (20*60); /* once resolved, good for 20 * minutes */ static VNET_DEFINE(int, arp_maxtries) = 5; static VNET_DEFINE(int, arp_proxyall) = 0; static VNET_DEFINE(int, arpt_down) = 20; /* keep incomplete entries for * 20 seconds */ static VNET_DEFINE(int, arpt_rexmit) = 1; /* retransmit arp entries, sec*/ VNET_PCPUSTAT_DEFINE(struct arpstat, arpstat); /* ARP statistics, see if_arp.h */ VNET_PCPUSTAT_SYSINIT(arpstat); #ifdef VIMAGE VNET_PCPUSTAT_SYSUNINIT(arpstat); #endif /* VIMAGE */ static VNET_DEFINE(int, arp_maxhold) = 1; #define V_arpt_keep VNET(arpt_keep) #define V_arpt_down VNET(arpt_down) #define V_arpt_rexmit VNET(arpt_rexmit) #define V_arp_maxtries VNET(arp_maxtries) #define V_arp_proxyall VNET(arp_proxyall) #define V_arp_maxhold VNET(arp_maxhold) SYSCTL_INT(_net_link_ether_inet, OID_AUTO, max_age, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(arpt_keep), 0, "ARP entry lifetime in seconds"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, maxtries, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(arp_maxtries), 0, "ARP resolution attempts before returning error"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, proxyall, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(arp_proxyall), 0, "Enable proxy ARP for all suitable requests"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, wait, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(arpt_down), 0, "Incomplete ARP entry lifetime in seconds"); SYSCTL_VNET_PCPUSTAT(_net_link_ether_arp, OID_AUTO, stats, struct arpstat, arpstat, "ARP statistics (struct arpstat, net/if_arp.h)"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, maxhold, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(arp_maxhold), 0, "Number of packets to hold per ARP entry"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, max_log_per_second, CTLFLAG_RW, &arp_maxpps, 0, "Maximum number of remotely triggered ARP messages that can be " "logged per second"); #define ARP_LOG(pri, ...) do { \ if (ppsratecheck(&arp_lastlog, &arp_curpps, arp_maxpps)) \ log((pri), "arp: " __VA_ARGS__); \ } while (0) static void arp_init(void); static void arpintr(struct mbuf *); static void arptimer(void *); #ifdef INET static void in_arpinput(struct mbuf *); #endif static void arp_check_update_lle(struct arphdr *ah, struct in_addr isaddr, struct ifnet *ifp, int bridged, struct llentry *la); static void arp_mark_lle_reachable(struct llentry *la); static void arp_iflladdr(void *arg __unused, struct ifnet *ifp); static eventhandler_tag iflladdr_tag; static const struct netisr_handler arp_nh = { .nh_name = "arp", .nh_handler = arpintr, .nh_proto = NETISR_ARP, .nh_policy = NETISR_POLICY_SOURCE, }; /* * Timeout routine. Age arp_tab entries periodically. */ static void arptimer(void *arg) { struct llentry *lle = (struct llentry *)arg; struct ifnet *ifp; int r_skip_req; if (lle->la_flags & LLE_STATIC) { return; } LLE_WLOCK(lle); if (callout_pending(&lle->lle_timer)) { /* * Here we are a bit odd here in the treatment of * active/pending. If the pending bit is set, it got * rescheduled before I ran. The active * bit we ignore, since if it was stopped * in ll_tablefree() and was currently running * it would have return 0 so the code would * not have deleted it since the callout could * not be stopped so we want to go through * with the delete here now. If the callout * was restarted, the pending bit will be back on and * we just want to bail since the callout_reset would * return 1 and our reference would have been removed * by arpresolve() below. */ LLE_WUNLOCK(lle); return; } ifp = lle->lle_tbl->llt_ifp; CURVNET_SET(ifp->if_vnet); switch (lle->ln_state) { case ARP_LLINFO_REACHABLE: /* * Expiration time is approaching. * Let's try to refresh entry if it is still * in use. * * Set r_skip_req to get feedback from * fast path. Change state and re-schedule * ourselves. */ LLE_REQ_LOCK(lle); lle->r_skip_req = 1; LLE_REQ_UNLOCK(lle); lle->ln_state = ARP_LLINFO_VERIFY; callout_schedule(&lle->lle_timer, hz * V_arpt_rexmit); LLE_WUNLOCK(lle); CURVNET_RESTORE(); return; case ARP_LLINFO_VERIFY: LLE_REQ_LOCK(lle); r_skip_req = lle->r_skip_req; LLE_REQ_UNLOCK(lle); if (r_skip_req == 0 && lle->la_preempt > 0) { /* Entry was used, issue refresh request */ struct in_addr dst; dst = lle->r_l3addr.addr4; lle->la_preempt--; callout_schedule(&lle->lle_timer, hz * V_arpt_rexmit); LLE_WUNLOCK(lle); arprequest(ifp, NULL, &dst, NULL); CURVNET_RESTORE(); return; } /* Nothing happened. Reschedule if not too late */ if (lle->la_expire > time_uptime) { callout_schedule(&lle->lle_timer, hz * V_arpt_rexmit); LLE_WUNLOCK(lle); CURVNET_RESTORE(); return; } break; case ARP_LLINFO_INCOMPLETE: case ARP_LLINFO_DELETED: break; } if ((lle->la_flags & LLE_DELETED) == 0) { int evt; if (lle->la_flags & LLE_VALID) evt = LLENTRY_EXPIRED; else evt = LLENTRY_TIMEDOUT; EVENTHANDLER_INVOKE(lle_event, lle, evt); } callout_stop(&lle->lle_timer); /* XXX: LOR avoidance. We still have ref on lle. */ LLE_WUNLOCK(lle); IF_AFDATA_LOCK(ifp); LLE_WLOCK(lle); /* Guard against race with other llentry_free(). */ if (lle->la_flags & LLE_LINKED) { LLE_REMREF(lle); lltable_unlink_entry(lle->lle_tbl, lle); } IF_AFDATA_UNLOCK(ifp); size_t pkts_dropped = llentry_free(lle); ARPSTAT_ADD(dropped, pkts_dropped); ARPSTAT_INC(timeouts); CURVNET_RESTORE(); } /* * Stores link-layer header for @ifp in format suitable for if_output() * into buffer @buf. Resulting header length is stored in @bufsize. * * Returns 0 on success. */ static int arp_fillheader(struct ifnet *ifp, struct arphdr *ah, int bcast, u_char *buf, size_t *bufsize) { struct if_encap_req ereq; int error; bzero(buf, *bufsize); bzero(&ereq, sizeof(ereq)); ereq.buf = buf; ereq.bufsize = *bufsize; ereq.rtype = IFENCAP_LL; ereq.family = AF_ARP; ereq.lladdr = ar_tha(ah); ereq.hdata = (u_char *)ah; if (bcast) ereq.flags = IFENCAP_FLAG_BROADCAST; error = ifp->if_requestencap(ifp, &ereq); if (error == 0) *bufsize = ereq.bufsize; return (error); } /* * Broadcast an ARP request. Caller specifies: * - arp header source ip address * - arp header target ip address * - arp header source ethernet address */ void arprequest(struct ifnet *ifp, const struct in_addr *sip, const struct in_addr *tip, u_char *enaddr) { struct mbuf *m; struct arphdr *ah; struct sockaddr sa; u_char *carpaddr = NULL; uint8_t linkhdr[LLE_MAX_LINKHDR]; size_t linkhdrsize; struct route ro; int error; if (sip == NULL) { /* * The caller did not supply a source address, try to find * a compatible one among those assigned to this interface. */ struct ifaddr *ifa; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; if (ifa->ifa_carp) { if ((*carp_iamatch_p)(ifa, &carpaddr) == 0) continue; sip = &IA_SIN(ifa)->sin_addr; } else { carpaddr = NULL; sip = &IA_SIN(ifa)->sin_addr; } if (0 == ((sip->s_addr ^ tip->s_addr) & IA_MASKSIN(ifa)->sin_addr.s_addr)) break; /* found it. */ } IF_ADDR_RUNLOCK(ifp); if (sip == NULL) { printf("%s: cannot find matching address\n", __func__); return; } } if (enaddr == NULL) enaddr = carpaddr ? carpaddr : (u_char *)IF_LLADDR(ifp); if ((m = m_gethdr(M_NOWAIT, MT_DATA)) == NULL) return; m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) + 2 * ifp->if_addrlen; m->m_pkthdr.len = m->m_len; M_ALIGN(m, m->m_len); ah = mtod(m, struct arphdr *); bzero((caddr_t)ah, m->m_len); #ifdef MAC mac_netinet_arp_send(ifp, m); #endif ah->ar_pro = htons(ETHERTYPE_IP); ah->ar_hln = ifp->if_addrlen; /* hardware address length */ ah->ar_pln = sizeof(struct in_addr); /* protocol address length */ ah->ar_op = htons(ARPOP_REQUEST); bcopy(enaddr, ar_sha(ah), ah->ar_hln); bcopy(sip, ar_spa(ah), ah->ar_pln); bcopy(tip, ar_tpa(ah), ah->ar_pln); sa.sa_family = AF_ARP; sa.sa_len = 2; /* Calculate link header for sending frame */ bzero(&ro, sizeof(ro)); linkhdrsize = sizeof(linkhdr); error = arp_fillheader(ifp, ah, 1, linkhdr, &linkhdrsize); if (error != 0 && error != EAFNOSUPPORT) { ARP_LOG(LOG_ERR, "Failed to calculate ARP header on %s: %d\n", if_name(ifp), error); return; } ro.ro_prepend = linkhdr; ro.ro_plen = linkhdrsize; ro.ro_flags = 0; m->m_flags |= M_BCAST; m_clrprotoflags(m); /* Avoid confusing lower layers. */ (*ifp->if_output)(ifp, m, &sa, &ro); ARPSTAT_INC(txrequests); } /* * Resolve an IP address into an ethernet address - heavy version. * Used internally by arpresolve(). * We have already checked than we can't use existing lle without * modification so we have to acquire LLE_EXCLUSIVE lle lock. * * On success, desten and flags are filled in and the function returns 0; * If the packet must be held pending resolution, we return EWOULDBLOCK * On other errors, we return the corresponding error code. * Note that m_freem() handles NULL. */ static int arpresolve_full(struct ifnet *ifp, int is_gw, int flags, struct mbuf *m, - const struct sockaddr *dst, u_char *desten, uint32_t *pflags) + const struct sockaddr *dst, u_char *desten, uint32_t *pflags, + struct llentry **plle) { struct llentry *la = NULL, *la_tmp; struct mbuf *curr = NULL; struct mbuf *next = NULL; int error, renew; char *lladdr; int ll_len; if (pflags != NULL) *pflags = 0; + if (plle != NULL) + *plle = NULL; if ((flags & LLE_CREATE) == 0) { IF_AFDATA_RLOCK(ifp); la = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst); IF_AFDATA_RUNLOCK(ifp); } if (la == NULL && (ifp->if_flags & (IFF_NOARP | IFF_STATICARP)) == 0) { la = lltable_alloc_entry(LLTABLE(ifp), 0, dst); if (la == NULL) { log(LOG_DEBUG, "arpresolve: can't allocate llinfo for %s on %s\n", inet_ntoa(SIN(dst)->sin_addr), if_name(ifp)); m_freem(m); return (EINVAL); } IF_AFDATA_WLOCK(ifp); LLE_WLOCK(la); la_tmp = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst); /* Prefer ANY existing lle over newly-created one */ if (la_tmp == NULL) lltable_link_entry(LLTABLE(ifp), la); IF_AFDATA_WUNLOCK(ifp); if (la_tmp != NULL) { lltable_free_entry(LLTABLE(ifp), la); la = la_tmp; } } if (la == NULL) { m_freem(m); return (EINVAL); } if ((la->la_flags & LLE_VALID) && ((la->la_flags & LLE_STATIC) || la->la_expire > time_uptime)) { if (flags & LLE_ADDRONLY) { lladdr = la->ll_addr; ll_len = ifp->if_addrlen; } else { lladdr = la->r_linkdata; ll_len = la->r_hdrlen; } bcopy(lladdr, desten, ll_len); /* Check if we have feedback request from arptimer() */ if (la->r_skip_req != 0) { LLE_REQ_LOCK(la); la->r_skip_req = 0; /* Notify that entry was used */ LLE_REQ_UNLOCK(la); } if (pflags != NULL) *pflags = la->la_flags & (LLE_VALID|LLE_IFADDR); + if (plle) { + LLE_ADDREF(la); + *plle = la; + } LLE_WUNLOCK(la); return (0); } renew = (la->la_asked == 0 || la->la_expire != time_uptime); /* * There is an arptab entry, but no ethernet address * response yet. Add the mbuf to the list, dropping * the oldest packet if we have exceeded the system * setting. */ if (m != NULL) { if (la->la_numheld >= V_arp_maxhold) { if (la->la_hold != NULL) { next = la->la_hold->m_nextpkt; m_freem(la->la_hold); la->la_hold = next; la->la_numheld--; ARPSTAT_INC(dropped); } } if (la->la_hold != NULL) { curr = la->la_hold; while (curr->m_nextpkt != NULL) curr = curr->m_nextpkt; curr->m_nextpkt = m; } else la->la_hold = m; la->la_numheld++; } /* * Return EWOULDBLOCK if we have tried less than arp_maxtries. It * will be masked by ether_output(). Return EHOSTDOWN/EHOSTUNREACH * if we have already sent arp_maxtries ARP requests. Retransmit the * ARP request, but not faster than one request per second. */ if (la->la_asked < V_arp_maxtries) error = EWOULDBLOCK; /* First request. */ else error = is_gw != 0 ? EHOSTUNREACH : EHOSTDOWN; if (renew) { int canceled; LLE_ADDREF(la); la->la_expire = time_uptime; canceled = callout_reset(&la->lle_timer, hz * V_arpt_down, arptimer, la); if (canceled) LLE_REMREF(la); la->la_asked++; LLE_WUNLOCK(la); arprequest(ifp, NULL, &SIN(dst)->sin_addr, NULL); return (error); } LLE_WUNLOCK(la); return (error); } /* * Resolve an IP address into an ethernet address. */ int arpresolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, - char *desten, uint32_t *pflags) + char *desten, uint32_t *pflags, struct llentry **plle) { int error; flags |= LLE_ADDRONLY; - error = arpresolve_full(ifp, 0, flags, NULL, dst, desten, pflags); + error = arpresolve_full(ifp, 0, flags, NULL, dst, desten, pflags, plle); return (error); } /* * Lookups link header based on an IP address. * On input: * ifp is the interface we use * is_gw != 0 if @dst represents gateway to some destination * m is the mbuf. May be NULL if we don't have a packet. * dst is the next hop, * desten is the storage to put LL header. * flags returns subset of lle flags: LLE_VALID | LLE_IFADDR * * On success, full/partial link header and flags are filled in and * the function returns 0. * If the packet must be held pending resolution, we return EWOULDBLOCK * On other errors, we return the corresponding error code. * Note that m_freem() handles NULL. */ int arpresolve(struct ifnet *ifp, int is_gw, struct mbuf *m, - const struct sockaddr *dst, u_char *desten, uint32_t *pflags) + const struct sockaddr *dst, u_char *desten, uint32_t *pflags, + struct llentry **plle) { struct llentry *la = NULL; if (pflags != NULL) *pflags = 0; + if (plle != NULL) + *plle = NULL; if (m != NULL) { if (m->m_flags & M_BCAST) { /* broadcast */ (void)memcpy(desten, ifp->if_broadcastaddr, ifp->if_addrlen); return (0); } if (m->m_flags & M_MCAST) { /* multicast */ ETHER_MAP_IP_MULTICAST(&SIN(dst)->sin_addr, desten); return (0); } } IF_AFDATA_RLOCK(ifp); la = lla_lookup(LLTABLE(ifp), LLE_UNLOCKED, dst); if (la != NULL && (la->r_flags & RLLE_VALID) != 0) { /* Entry found, let's copy lle info */ bcopy(la->r_linkdata, desten, la->r_hdrlen); if (pflags != NULL) *pflags = LLE_VALID | (la->r_flags & RLLE_IFADDR); /* Check if we have feedback request from arptimer() */ if (la->r_skip_req != 0) { LLE_REQ_LOCK(la); la->r_skip_req = 0; /* Notify that entry was used */ LLE_REQ_UNLOCK(la); } IF_AFDATA_RUNLOCK(ifp); return (0); } IF_AFDATA_RUNLOCK(ifp); return (arpresolve_full(ifp, is_gw, la == NULL ? LLE_CREATE : 0, m, dst, - desten, pflags)); + desten, pflags, plle)); } /* * Common length and type checks are done here, * then the protocol-specific routine is called. */ static void arpintr(struct mbuf *m) { struct arphdr *ar; struct ifnet *ifp; char *layer; int hlen; ifp = m->m_pkthdr.rcvif; if (m->m_len < sizeof(struct arphdr) && ((m = m_pullup(m, sizeof(struct arphdr))) == NULL)) { ARP_LOG(LOG_NOTICE, "packet with short header received on %s\n", if_name(ifp)); return; } ar = mtod(m, struct arphdr *); /* Check if length is sufficient */ if (m->m_len < arphdr_len(ar)) { m = m_pullup(m, arphdr_len(ar)); if (m == NULL) { ARP_LOG(LOG_NOTICE, "short packet received on %s\n", if_name(ifp)); return; } ar = mtod(m, struct arphdr *); } hlen = 0; layer = ""; switch (ntohs(ar->ar_hrd)) { case ARPHRD_ETHER: hlen = ETHER_ADDR_LEN; /* RFC 826 */ layer = "ethernet"; break; case ARPHRD_IEEE802: hlen = 6; /* RFC 1390, FDDI_ADDR_LEN */ layer = "fddi"; break; case ARPHRD_ARCNET: hlen = 1; /* RFC 1201, ARC_ADDR_LEN */ layer = "arcnet"; break; case ARPHRD_INFINIBAND: hlen = 20; /* RFC 4391, INFINIBAND_ALEN */ layer = "infiniband"; break; case ARPHRD_IEEE1394: hlen = 0; /* SHALL be 16 */ /* RFC 2734 */ layer = "firewire"; /* * Restrict too long hardware addresses. * Currently we are capable of handling 20-byte * addresses ( sizeof(lle->ll_addr) ) */ if (ar->ar_hln >= 20) hlen = 16; break; default: ARP_LOG(LOG_NOTICE, "packet with unknown hardware format 0x%02d received on " "%s\n", ntohs(ar->ar_hrd), if_name(ifp)); m_freem(m); return; } if (hlen != 0 && hlen != ar->ar_hln) { ARP_LOG(LOG_NOTICE, "packet with invalid %s address length %d received on %s\n", layer, ar->ar_hln, if_name(ifp)); m_freem(m); return; } ARPSTAT_INC(received); switch (ntohs(ar->ar_pro)) { #ifdef INET case ETHERTYPE_IP: in_arpinput(m); return; #endif } m_freem(m); } #ifdef INET /* * ARP for Internet protocols on 10 Mb/s Ethernet. * Algorithm is that given in RFC 826. * In addition, a sanity check is performed on the sender * protocol address, to catch impersonators. * We no longer handle negotiations for use of trailer protocol: * Formerly, ARP replied for protocol type ETHERTYPE_TRAIL sent * along with IP replies if we wanted trailers sent to us, * and also sent them in response to IP replies. * This allowed either end to announce the desire to receive * trailer packets. * We no longer reply to requests for ETHERTYPE_TRAIL protocol either, * but formerly didn't normally send requests. */ static int log_arp_wrong_iface = 1; static int log_arp_movements = 1; static int log_arp_permanent_modify = 1; static int allow_multicast = 0; SYSCTL_INT(_net_link_ether_inet, OID_AUTO, log_arp_wrong_iface, CTLFLAG_RW, &log_arp_wrong_iface, 0, "log arp packets arriving on the wrong interface"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, log_arp_movements, CTLFLAG_RW, &log_arp_movements, 0, "log arp replies from MACs different than the one in the cache"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, log_arp_permanent_modify, CTLFLAG_RW, &log_arp_permanent_modify, 0, "log arp replies from MACs different than the one in the permanent arp entry"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, allow_multicast, CTLFLAG_RW, &allow_multicast, 0, "accept multicast addresses"); static void in_arpinput(struct mbuf *m) { struct rm_priotracker in_ifa_tracker; struct arphdr *ah; struct ifnet *ifp = m->m_pkthdr.rcvif; struct llentry *la = NULL, *la_tmp; struct ifaddr *ifa; struct in_ifaddr *ia; struct sockaddr sa; struct in_addr isaddr, itaddr, myaddr; u_int8_t *enaddr = NULL; int op; int bridged = 0, is_bridge = 0; int carped; struct sockaddr_in sin; struct sockaddr *dst; struct nhop4_basic nh4; uint8_t linkhdr[LLE_MAX_LINKHDR]; struct route ro; size_t linkhdrsize; int lladdr_off; int error; sin.sin_len = sizeof(struct sockaddr_in); sin.sin_family = AF_INET; sin.sin_addr.s_addr = 0; if (ifp->if_bridge) bridged = 1; if (ifp->if_type == IFT_BRIDGE) is_bridge = 1; /* * We already have checked that mbuf contains enough contiguous data * to hold entire arp message according to the arp header. */ ah = mtod(m, struct arphdr *); /* * ARP is only for IPv4 so we can reject packets with * a protocol length not equal to an IPv4 address. */ if (ah->ar_pln != sizeof(struct in_addr)) { ARP_LOG(LOG_NOTICE, "requested protocol length != %zu\n", sizeof(struct in_addr)); goto drop; } if (allow_multicast == 0 && ETHER_IS_MULTICAST(ar_sha(ah))) { ARP_LOG(LOG_NOTICE, "%*D is multicast\n", ifp->if_addrlen, (u_char *)ar_sha(ah), ":"); goto drop; } op = ntohs(ah->ar_op); (void)memcpy(&isaddr, ar_spa(ah), sizeof (isaddr)); (void)memcpy(&itaddr, ar_tpa(ah), sizeof (itaddr)); if (op == ARPOP_REPLY) ARPSTAT_INC(rxreplies); /* * For a bridge, we want to check the address irrespective * of the receive interface. (This will change slightly * when we have clusters of interfaces). */ IN_IFADDR_RLOCK(&in_ifa_tracker); LIST_FOREACH(ia, INADDR_HASH(itaddr.s_addr), ia_hash) { if (((bridged && ia->ia_ifp->if_bridge == ifp->if_bridge) || ia->ia_ifp == ifp) && itaddr.s_addr == ia->ia_addr.sin_addr.s_addr && (ia->ia_ifa.ifa_carp == NULL || (*carp_iamatch_p)(&ia->ia_ifa, &enaddr))) { ifa_ref(&ia->ia_ifa); IN_IFADDR_RUNLOCK(&in_ifa_tracker); goto match; } } LIST_FOREACH(ia, INADDR_HASH(isaddr.s_addr), ia_hash) if (((bridged && ia->ia_ifp->if_bridge == ifp->if_bridge) || ia->ia_ifp == ifp) && isaddr.s_addr == ia->ia_addr.sin_addr.s_addr) { ifa_ref(&ia->ia_ifa); IN_IFADDR_RUNLOCK(&in_ifa_tracker); goto match; } #define BDG_MEMBER_MATCHES_ARP(addr, ifp, ia) \ (ia->ia_ifp->if_bridge == ifp->if_softc && \ !bcmp(IF_LLADDR(ia->ia_ifp), IF_LLADDR(ifp), ifp->if_addrlen) && \ addr == ia->ia_addr.sin_addr.s_addr) /* * Check the case when bridge shares its MAC address with * some of its children, so packets are claimed by bridge * itself (bridge_input() does it first), but they are really * meant to be destined to the bridge member. */ if (is_bridge) { LIST_FOREACH(ia, INADDR_HASH(itaddr.s_addr), ia_hash) { if (BDG_MEMBER_MATCHES_ARP(itaddr.s_addr, ifp, ia)) { ifa_ref(&ia->ia_ifa); ifp = ia->ia_ifp; IN_IFADDR_RUNLOCK(&in_ifa_tracker); goto match; } } } #undef BDG_MEMBER_MATCHES_ARP IN_IFADDR_RUNLOCK(&in_ifa_tracker); /* * No match, use the first inet address on the receive interface * as a dummy address for the rest of the function. */ IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (ifa->ifa_addr->sa_family == AF_INET && (ifa->ifa_carp == NULL || (*carp_iamatch_p)(ifa, &enaddr))) { ia = ifatoia(ifa); ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); goto match; } IF_ADDR_RUNLOCK(ifp); /* * If bridging, fall back to using any inet address. */ IN_IFADDR_RLOCK(&in_ifa_tracker); if (!bridged || (ia = TAILQ_FIRST(&V_in_ifaddrhead)) == NULL) { IN_IFADDR_RUNLOCK(&in_ifa_tracker); goto drop; } ifa_ref(&ia->ia_ifa); IN_IFADDR_RUNLOCK(&in_ifa_tracker); match: if (!enaddr) enaddr = (u_int8_t *)IF_LLADDR(ifp); carped = (ia->ia_ifa.ifa_carp != NULL); myaddr = ia->ia_addr.sin_addr; ifa_free(&ia->ia_ifa); if (!bcmp(ar_sha(ah), enaddr, ifp->if_addrlen)) goto drop; /* it's from me, ignore it. */ if (!bcmp(ar_sha(ah), ifp->if_broadcastaddr, ifp->if_addrlen)) { ARP_LOG(LOG_NOTICE, "link address is broadcast for IP address " "%s!\n", inet_ntoa(isaddr)); goto drop; } if (ifp->if_addrlen != ah->ar_hln) { ARP_LOG(LOG_WARNING, "from %*D: addr len: new %d, " "i/f %d (ignored)\n", ifp->if_addrlen, (u_char *) ar_sha(ah), ":", ah->ar_hln, ifp->if_addrlen); goto drop; } /* * Warn if another host is using the same IP address, but only if the * IP address isn't 0.0.0.0, which is used for DHCP only, in which * case we suppress the warning to avoid false positive complaints of * potential misconfiguration. */ if (!bridged && !carped && isaddr.s_addr == myaddr.s_addr && myaddr.s_addr != 0) { ARP_LOG(LOG_ERR, "%*D is using my IP address %s on %s!\n", ifp->if_addrlen, (u_char *)ar_sha(ah), ":", inet_ntoa(isaddr), ifp->if_xname); itaddr = myaddr; ARPSTAT_INC(dupips); goto reply; } if (ifp->if_flags & IFF_STATICARP) goto reply; bzero(&sin, sizeof(sin)); sin.sin_len = sizeof(struct sockaddr_in); sin.sin_family = AF_INET; sin.sin_addr = isaddr; dst = (struct sockaddr *)&sin; IF_AFDATA_RLOCK(ifp); la = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst); IF_AFDATA_RUNLOCK(ifp); if (la != NULL) arp_check_update_lle(ah, isaddr, ifp, bridged, la); else if (itaddr.s_addr == myaddr.s_addr) { /* * Request/reply to our address, but no lle exists yet. * Calculate full link prepend to use in lle. */ linkhdrsize = sizeof(linkhdr); if (lltable_calc_llheader(ifp, AF_INET, ar_sha(ah), linkhdr, &linkhdrsize, &lladdr_off) != 0) goto reply; /* Allocate new entry */ la = lltable_alloc_entry(LLTABLE(ifp), 0, dst); if (la == NULL) { /* * lle creation may fail if source address belongs * to non-directly connected subnet. However, we * will try to answer the request instead of dropping * frame. */ goto reply; } lltable_set_entry_addr(ifp, la, linkhdr, linkhdrsize, lladdr_off); IF_AFDATA_WLOCK(ifp); LLE_WLOCK(la); la_tmp = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst); /* * Check if lle still does not exists. * If it does, that means that we either * 1) have configured it explicitly, via * 1a) 'arp -s' static entry or * 1b) interface address static record * or * 2) it was the result of sending first packet to-host * or * 3) it was another arp reply packet we handled in * different thread. * * In all cases except 3) we definitely need to prefer * existing lle. For the sake of simplicity, prefer any * existing lle over newly-create one. */ if (la_tmp == NULL) lltable_link_entry(LLTABLE(ifp), la); IF_AFDATA_WUNLOCK(ifp); if (la_tmp == NULL) { arp_mark_lle_reachable(la); LLE_WUNLOCK(la); } else { /* Free newly-create entry and handle packet */ lltable_free_entry(LLTABLE(ifp), la); la = la_tmp; la_tmp = NULL; arp_check_update_lle(ah, isaddr, ifp, bridged, la); /* arp_check_update_lle() returns @la unlocked */ } la = NULL; } reply: if (op != ARPOP_REQUEST) goto drop; ARPSTAT_INC(rxrequests); if (itaddr.s_addr == myaddr.s_addr) { /* Shortcut.. the receiving interface is the target. */ (void)memcpy(ar_tha(ah), ar_sha(ah), ah->ar_hln); (void)memcpy(ar_sha(ah), enaddr, ah->ar_hln); } else { struct llentry *lle = NULL; sin.sin_addr = itaddr; IF_AFDATA_RLOCK(ifp); lle = lla_lookup(LLTABLE(ifp), 0, (struct sockaddr *)&sin); IF_AFDATA_RUNLOCK(ifp); if ((lle != NULL) && (lle->la_flags & LLE_PUB)) { (void)memcpy(ar_tha(ah), ar_sha(ah), ah->ar_hln); (void)memcpy(ar_sha(ah), lle->ll_addr, ah->ar_hln); LLE_RUNLOCK(lle); } else { if (lle != NULL) LLE_RUNLOCK(lle); if (!V_arp_proxyall) goto drop; /* XXX MRT use table 0 for arp reply */ if (fib4_lookup_nh_basic(0, itaddr, 0, 0, &nh4) != 0) goto drop; /* * Don't send proxies for nodes on the same interface * as this one came out of, or we'll get into a fight * over who claims what Ether address. */ if (nh4.nh_ifp == ifp) goto drop; (void)memcpy(ar_tha(ah), ar_sha(ah), ah->ar_hln); (void)memcpy(ar_sha(ah), enaddr, ah->ar_hln); /* * Also check that the node which sent the ARP packet * is on the interface we expect it to be on. This * avoids ARP chaos if an interface is connected to the * wrong network. */ /* XXX MRT use table 0 for arp checks */ if (fib4_lookup_nh_basic(0, isaddr, 0, 0, &nh4) != 0) goto drop; if (nh4.nh_ifp != ifp) { ARP_LOG(LOG_INFO, "proxy: ignoring request" " from %s via %s\n", inet_ntoa(isaddr), ifp->if_xname); goto drop; } #ifdef DEBUG_PROXY printf("arp: proxying for %s\n", inet_ntoa(itaddr)); #endif } } if (itaddr.s_addr == myaddr.s_addr && IN_LINKLOCAL(ntohl(itaddr.s_addr))) { /* RFC 3927 link-local IPv4; always reply by broadcast. */ #ifdef DEBUG_LINKLOCAL printf("arp: sending reply for link-local addr %s\n", inet_ntoa(itaddr)); #endif m->m_flags |= M_BCAST; m->m_flags &= ~M_MCAST; } else { /* default behaviour; never reply by broadcast. */ m->m_flags &= ~(M_BCAST|M_MCAST); } (void)memcpy(ar_tpa(ah), ar_spa(ah), ah->ar_pln); (void)memcpy(ar_spa(ah), &itaddr, ah->ar_pln); ah->ar_op = htons(ARPOP_REPLY); ah->ar_pro = htons(ETHERTYPE_IP); /* let's be sure! */ m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + (2 * ah->ar_hln); m->m_pkthdr.len = m->m_len; m->m_pkthdr.rcvif = NULL; sa.sa_family = AF_ARP; sa.sa_len = 2; /* Calculate link header for sending frame */ bzero(&ro, sizeof(ro)); linkhdrsize = sizeof(linkhdr); error = arp_fillheader(ifp, ah, 0, linkhdr, &linkhdrsize); /* * arp_fillheader() may fail due to lack of support inside encap request * routing. This is not necessary an error, AF_ARP can/should be handled * by if_output(). */ if (error != 0 && error != EAFNOSUPPORT) { ARP_LOG(LOG_ERR, "Failed to calculate ARP header on %s: %d\n", if_name(ifp), error); return; } ro.ro_prepend = linkhdr; ro.ro_plen = linkhdrsize; ro.ro_flags = 0; m_clrprotoflags(m); /* Avoid confusing lower layers. */ (*ifp->if_output)(ifp, m, &sa, &ro); ARPSTAT_INC(txreplies); return; drop: m_freem(m); } #endif /* * Checks received arp data against existing @la. * Updates lle state/performs notification if necessary. */ static void arp_check_update_lle(struct arphdr *ah, struct in_addr isaddr, struct ifnet *ifp, int bridged, struct llentry *la) { struct sockaddr sa; struct mbuf *m_hold, *m_hold_next; uint8_t linkhdr[LLE_MAX_LINKHDR]; size_t linkhdrsize; int lladdr_off; LLE_WLOCK_ASSERT(la); /* the following is not an error when doing bridging */ if (!bridged && la->lle_tbl->llt_ifp != ifp) { if (log_arp_wrong_iface) ARP_LOG(LOG_WARNING, "%s is on %s " "but got reply from %*D on %s\n", inet_ntoa(isaddr), la->lle_tbl->llt_ifp->if_xname, ifp->if_addrlen, (u_char *)ar_sha(ah), ":", ifp->if_xname); LLE_WUNLOCK(la); return; } if ((la->la_flags & LLE_VALID) && bcmp(ar_sha(ah), la->ll_addr, ifp->if_addrlen)) { if (la->la_flags & LLE_STATIC) { LLE_WUNLOCK(la); if (log_arp_permanent_modify) ARP_LOG(LOG_ERR, "%*D attempts to modify " "permanent entry for %s on %s\n", ifp->if_addrlen, (u_char *)ar_sha(ah), ":", inet_ntoa(isaddr), ifp->if_xname); return; } if (log_arp_movements) { ARP_LOG(LOG_INFO, "%s moved from %*D " "to %*D on %s\n", inet_ntoa(isaddr), ifp->if_addrlen, (u_char *)&la->ll_addr, ":", ifp->if_addrlen, (u_char *)ar_sha(ah), ":", ifp->if_xname); } } /* Calculate full link prepend to use in lle */ linkhdrsize = sizeof(linkhdr); if (lltable_calc_llheader(ifp, AF_INET, ar_sha(ah), linkhdr, &linkhdrsize, &lladdr_off) != 0) return; /* Check if something has changed */ if (memcmp(la->r_linkdata, linkhdr, linkhdrsize) != 0 || (la->la_flags & LLE_VALID) == 0) { /* Try to perform LLE update */ if (lltable_try_set_entry_addr(ifp, la, linkhdr, linkhdrsize, lladdr_off) == 0) return; /* Clear fast path feedback request if set */ la->r_skip_req = 0; } arp_mark_lle_reachable(la); /* * The packets are all freed within the call to the output * routine. * * NB: The lock MUST be released before the call to the * output routine. */ if (la->la_hold != NULL) { m_hold = la->la_hold; la->la_hold = NULL; la->la_numheld = 0; lltable_fill_sa_entry(la, &sa); LLE_WUNLOCK(la); for (; m_hold != NULL; m_hold = m_hold_next) { m_hold_next = m_hold->m_nextpkt; m_hold->m_nextpkt = NULL; /* Avoid confusing lower layers. */ m_clrprotoflags(m_hold); (*ifp->if_output)(ifp, m_hold, &sa, NULL); } } else LLE_WUNLOCK(la); } static void arp_mark_lle_reachable(struct llentry *la) { int canceled, wtime; LLE_WLOCK_ASSERT(la); la->ln_state = ARP_LLINFO_REACHABLE; EVENTHANDLER_INVOKE(lle_event, la, LLENTRY_RESOLVED); if (!(la->la_flags & LLE_STATIC)) { LLE_ADDREF(la); la->la_expire = time_uptime + V_arpt_keep; wtime = V_arpt_keep - V_arp_maxtries * V_arpt_rexmit; if (wtime < 0) wtime = V_arpt_keep; canceled = callout_reset(&la->lle_timer, hz * wtime, arptimer, la); if (canceled) LLE_REMREF(la); } la->la_asked = 0; la->la_preempt = V_arp_maxtries; } /* * Add pernament link-layer record for given interface address. */ static __noinline void arp_add_ifa_lle(struct ifnet *ifp, const struct sockaddr *dst) { struct llentry *lle, *lle_tmp; /* * Interface address LLE record is considered static * because kernel code relies on LLE_STATIC flag to check * if these entries can be rewriten by arp updates. */ lle = lltable_alloc_entry(LLTABLE(ifp), LLE_IFADDR | LLE_STATIC, dst); if (lle == NULL) { log(LOG_INFO, "arp_ifinit: cannot create arp " "entry for interface address\n"); return; } IF_AFDATA_WLOCK(ifp); LLE_WLOCK(lle); /* Unlink any entry if exists */ lle_tmp = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst); if (lle_tmp != NULL) lltable_unlink_entry(LLTABLE(ifp), lle_tmp); lltable_link_entry(LLTABLE(ifp), lle); IF_AFDATA_WUNLOCK(ifp); if (lle_tmp != NULL) EVENTHANDLER_INVOKE(lle_event, lle_tmp, LLENTRY_EXPIRED); EVENTHANDLER_INVOKE(lle_event, lle, LLENTRY_RESOLVED); LLE_WUNLOCK(lle); if (lle_tmp != NULL) lltable_free_entry(LLTABLE(ifp), lle_tmp); } void arp_ifinit(struct ifnet *ifp, struct ifaddr *ifa) { const struct sockaddr_in *dst_in; const struct sockaddr *dst; if (ifa->ifa_carp != NULL) return; dst = ifa->ifa_addr; dst_in = (const struct sockaddr_in *)dst; if (ntohl(dst_in->sin_addr.s_addr) == INADDR_ANY) return; arp_announce_ifaddr(ifp, dst_in->sin_addr, IF_LLADDR(ifp)); arp_add_ifa_lle(ifp, dst); } void arp_announce_ifaddr(struct ifnet *ifp, struct in_addr addr, u_char *enaddr) { if (ntohl(addr.s_addr) != INADDR_ANY) arprequest(ifp, &addr, &addr, enaddr); } /* * Sends gratuitous ARPs for each ifaddr to notify other * nodes about the address change. */ static __noinline void arp_handle_ifllchange(struct ifnet *ifp) { struct ifaddr *ifa; TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(ifp, ifa); } } /* * A handler for interface link layer address change event. */ static void arp_iflladdr(void *arg __unused, struct ifnet *ifp) { lltable_update_ifaddr(LLTABLE(ifp)); if ((ifp->if_flags & IFF_UP) != 0) arp_handle_ifllchange(ifp); } static void arp_init(void) { netisr_register(&arp_nh); if (IS_DEFAULT_VNET(curvnet)) iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event, arp_iflladdr, NULL, EVENTHANDLER_PRI_ANY); } SYSINIT(arp, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY, arp_init, 0); Index: head/sys/netinet/if_ether.h =================================================================== --- head/sys/netinet/if_ether.h (revision 301216) +++ head/sys/netinet/if_ether.h (revision 301217) @@ -1,127 +1,130 @@ /*- * Copyright (c) 1982, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if_ether.h 8.3 (Berkeley) 5/2/95 * $FreeBSD$ */ #ifndef _NETINET_IF_ETHER_H_ #define _NETINET_IF_ETHER_H_ #include #include /* * Macro to map an IP multicast address to an Ethernet multicast address. * The high-order 25 bits of the Ethernet address are statically assigned, * and the low-order 23 bits are taken from the low end of the IP address. */ #define ETHER_MAP_IP_MULTICAST(ipaddr, enaddr) \ /* struct in_addr *ipaddr; */ \ /* u_char enaddr[ETHER_ADDR_LEN]; */ \ { \ (enaddr)[0] = 0x01; \ (enaddr)[1] = 0x00; \ (enaddr)[2] = 0x5e; \ (enaddr)[3] = ((const u_char *)ipaddr)[1] & 0x7f; \ (enaddr)[4] = ((const u_char *)ipaddr)[2]; \ (enaddr)[5] = ((const u_char *)ipaddr)[3]; \ } /* * Macro to map an IP6 multicast address to an Ethernet multicast address. * The high-order 16 bits of the Ethernet address are statically assigned, * and the low-order 32 bits are taken from the low end of the IP6 address. */ #define ETHER_MAP_IPV6_MULTICAST(ip6addr, enaddr) \ /* struct in6_addr *ip6addr; */ \ /* u_char enaddr[ETHER_ADDR_LEN]; */ \ { \ (enaddr)[0] = 0x33; \ (enaddr)[1] = 0x33; \ (enaddr)[2] = ((const u_char *)ip6addr)[12]; \ (enaddr)[3] = ((const u_char *)ip6addr)[13]; \ (enaddr)[4] = ((const u_char *)ip6addr)[14]; \ (enaddr)[5] = ((const u_char *)ip6addr)[15]; \ } /* * Ethernet Address Resolution Protocol. * * See RFC 826 for protocol description. Structure below is adapted * to resolving internet addresses. Field names used correspond to * RFC 826. */ struct ether_arp { struct arphdr ea_hdr; /* fixed-size header */ u_char arp_sha[ETHER_ADDR_LEN]; /* sender hardware address */ u_char arp_spa[4]; /* sender protocol address */ u_char arp_tha[ETHER_ADDR_LEN]; /* target hardware address */ u_char arp_tpa[4]; /* target protocol address */ }; #define arp_hrd ea_hdr.ar_hrd #define arp_pro ea_hdr.ar_pro #define arp_hln ea_hdr.ar_hln #define arp_pln ea_hdr.ar_pln #define arp_op ea_hdr.ar_op #ifndef BURN_BRIDGES /* Can be used by third party software. */ struct sockaddr_inarp { u_char sin_len; u_char sin_family; u_short sin_port; struct in_addr sin_addr; struct in_addr sin_srcaddr; u_short sin_tos; u_short sin_other; #define SIN_PROXY 1 }; #endif /* !BURN_BRIDGES */ /* * IP and ethernet specific routing flags */ #define RTF_USETRAILERS RTF_PROTO1 /* use trailers */ #define RTF_ANNOUNCE RTF_PROTO2 /* announce new arp entry */ #ifdef _KERNEL extern u_char ether_ipmulticast_min[ETHER_ADDR_LEN]; extern u_char ether_ipmulticast_max[ETHER_ADDR_LEN]; struct ifaddr; +struct llentry; int arpresolve_addr(struct ifnet *ifp, int flags, - const struct sockaddr *dst, char *desten, uint32_t *pflags); + const struct sockaddr *dst, char *desten, uint32_t *pflags, + struct llentry **plle); int arpresolve(struct ifnet *ifp, int is_gw, struct mbuf *m, - const struct sockaddr *dst, u_char *desten, uint32_t *pflags); + const struct sockaddr *dst, u_char *desten, uint32_t *pflags, + struct llentry **plle); void arprequest(struct ifnet *, const struct in_addr *, const struct in_addr *, u_char *); void arp_ifinit(struct ifnet *, struct ifaddr *); void arp_announce_ifaddr(struct ifnet *, struct in_addr addr, u_char *); #endif #endif Index: head/sys/netinet/in_pcb.c =================================================================== --- head/sys/netinet/in_pcb.c (revision 301216) +++ head/sys/netinet/in_pcb.c (revision 301217) @@ -1,2680 +1,2685 @@ /*- * Copyright (c) 1982, 1986, 1991, 1993, 1995 * The Regents of the University of California. * Copyright (c) 2007-2009 Robert N. M. Watson * Copyright (c) 2010-2011 Juniper Networks, Inc. * All rights reserved. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_ipsec.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_pcbgroup.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #include #include #include #include +#include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #include #include #include #endif #ifdef INET #include #endif #ifdef INET6 #include #include #include #include #endif /* INET6 */ #ifdef IPSEC #include #include #endif /* IPSEC */ #include static struct callout ipport_tick_callout; /* * These configure the range of local port addresses assigned to * "unspecified" outgoing connections/packets/whatever. */ VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ /* * Reserved ports accessible only to root. There are significant * security considerations that must be accounted for when changing these, * but the security benefits can be great. Please be careful. */ VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ VNET_DEFINE(int, ipport_reservedlow); /* Variables dealing with random ephemeral port allocation. */ VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ VNET_DEFINE(int, ipport_tcpallocs); static VNET_DEFINE(int, ipport_tcplastcount); #define V_ipport_tcplastcount VNET(ipport_tcplastcount) static void in_pcbremlists(struct inpcb *inp); #ifdef INET static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, struct ifnet *ifp); #define RANGECHK(var, min, max) \ if ((var) < (min)) { (var) = (min); } \ else if ((var) > (max)) { (var) = (max); } static int sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) { int error; error = sysctl_handle_int(oidp, arg1, arg2, req); if (error == 0) { RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); } return (error); } #undef RANGECHK static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports"); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " "allocations before switching to a sequental one"); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipport_randomtime), 0, "Minimum time to keep sequental port " "allocation before switching to a random one"); #endif /* INET */ /* * in_pcb.c: manage the Protocol Control Blocks. * * NOTE: It is assumed that most of these functions will be called with * the pcbinfo lock held, and often, the inpcb lock held, as these utility * functions often modify hash chains or addresses in pcbs. */ /* * Initialize an inpcbinfo -- we should be able to reduce the number of * arguments in time. */ void in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini, uint32_t inpcbzone_flags, u_int hashfields) { INP_INFO_LOCK_INIT(pcbinfo, name); INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); #ifdef VIMAGE pcbinfo->ipi_vnet = curvnet; #endif pcbinfo->ipi_listhead = listhead; LIST_INIT(pcbinfo->ipi_listhead); pcbinfo->ipi_count = 0; pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, &pcbinfo->ipi_hashmask); pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, &pcbinfo->ipi_porthashmask); #ifdef PCBGROUP in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); #endif pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR, inpcbzone_flags); uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); uma_zone_set_warning(pcbinfo->ipi_zone, "kern.ipc.maxsockets limit reached"); } /* * Destroy an inpcbinfo. */ void in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) { KASSERT(pcbinfo->ipi_count == 0, ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, pcbinfo->ipi_porthashmask); #ifdef PCBGROUP in_pcbgroup_destroy(pcbinfo); #endif uma_zdestroy(pcbinfo->ipi_zone); INP_LIST_LOCK_DESTROY(pcbinfo); INP_HASH_LOCK_DESTROY(pcbinfo); INP_INFO_LOCK_DESTROY(pcbinfo); } /* * Allocate a PCB and associate it with the socket. * On success return with the PCB locked. */ int in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) { struct inpcb *inp; int error; #ifdef INVARIANTS if (pcbinfo == &V_tcbinfo) { INP_INFO_RLOCK_ASSERT(pcbinfo); } else { INP_INFO_WLOCK_ASSERT(pcbinfo); } #endif error = 0; inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); if (inp == NULL) return (ENOBUFS); bzero(inp, inp_zero_size); inp->inp_pcbinfo = pcbinfo; inp->inp_socket = so; inp->inp_cred = crhold(so->so_cred); inp->inp_inc.inc_fibnum = so->so_fibnum; #ifdef MAC error = mac_inpcb_init(inp, M_NOWAIT); if (error != 0) goto out; mac_inpcb_create(so, inp); #endif #ifdef IPSEC error = ipsec_init_policy(so, &inp->inp_sp); if (error != 0) { #ifdef MAC mac_inpcb_destroy(inp); #endif goto out; } #endif /*IPSEC*/ #ifdef INET6 if (INP_SOCKAF(so) == AF_INET6) { inp->inp_vflag |= INP_IPV6PROTO; if (V_ip6_v6only) inp->inp_flags |= IN6P_IPV6_V6ONLY; } #endif INP_WLOCK(inp); INP_LIST_WLOCK(pcbinfo); LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); pcbinfo->ipi_count++; so->so_pcb = (caddr_t)inp; #ifdef INET6 if (V_ip6_auto_flowlabel) inp->inp_flags |= IN6P_AUTOFLOWLABEL; #endif inp->inp_gencnt = ++pcbinfo->ipi_gencnt; refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ INP_LIST_WUNLOCK(pcbinfo); #if defined(IPSEC) || defined(MAC) out: if (error != 0) { crfree(inp->inp_cred); uma_zfree(pcbinfo->ipi_zone, inp); } #endif return (error); } #ifdef INET int in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) { int anonport, error; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) return (EINVAL); anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, &inp->inp_lport, cred); if (error) return (error); if (in_pcbinshash(inp) != 0) { inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_lport = 0; return (EAGAIN); } if (anonport) inp->inp_flags |= INP_ANONPORT; return (0); } #endif /* * Select a local port (number) to use. */ #if defined(INET) || defined(INET6) int in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, struct ucred *cred, int lookupflags) { struct inpcbinfo *pcbinfo; struct inpcb *tmpinp; unsigned short *lastport; int count, dorandom, error; u_short aux, first, last, lport; #ifdef INET struct in_addr laddr; #endif pcbinfo = inp->inp_pcbinfo; /* * Because no actual state changes occur here, a global write lock on * the pcbinfo isn't required. */ INP_LOCK_ASSERT(inp); INP_HASH_LOCK_ASSERT(pcbinfo); if (inp->inp_flags & INP_HIGHPORT) { first = V_ipport_hifirstauto; /* sysctl */ last = V_ipport_hilastauto; lastport = &pcbinfo->ipi_lasthi; } else if (inp->inp_flags & INP_LOWPORT) { error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); if (error) return (error); first = V_ipport_lowfirstauto; /* 1023 */ last = V_ipport_lowlastauto; /* 600 */ lastport = &pcbinfo->ipi_lastlow; } else { first = V_ipport_firstauto; /* sysctl */ last = V_ipport_lastauto; lastport = &pcbinfo->ipi_lastport; } /* * For UDP(-Lite), use random port allocation as long as the user * allows it. For TCP (and as of yet unknown) connections, * use random port allocation only if the user allows it AND * ipport_tick() allows it. */ if (V_ipport_randomized && (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || pcbinfo == &V_ulitecbinfo)) dorandom = 1; else dorandom = 0; /* * It makes no sense to do random port allocation if * we have the only port available. */ if (first == last) dorandom = 0; /* Make sure to not include UDP(-Lite) packets in the count. */ if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) V_ipport_tcpallocs++; /* * Instead of having two loops further down counting up or down * make sure that first is always <= last and go with only one * code path implementing all logic. */ if (first > last) { aux = first; first = last; last = aux; } #ifdef INET /* Make the compiler happy. */ laddr.s_addr = 0; if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", __func__, inp)); laddr = *laddrp; } #endif tmpinp = NULL; /* Make compiler happy. */ lport = *lportp; if (dorandom) *lastport = first + (arc4random() % (last - first)); count = last - first; do { if (count-- < 0) /* completely used? */ return (EADDRNOTAVAIL); ++*lastport; if (*lastport < first || *lastport > last) *lastport = first; lport = htons(*lastport); #ifdef INET6 if ((inp->inp_vflag & INP_IPV6) != 0) tmpinp = in6_pcblookup_local(pcbinfo, &inp->in6p_laddr, lport, lookupflags, cred); #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET tmpinp = in_pcblookup_local(pcbinfo, laddr, lport, lookupflags, cred); #endif } while (tmpinp != NULL); #ifdef INET if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) laddrp->s_addr = laddr.s_addr; #endif *lportp = lport; return (0); } /* * Return cached socket options. */ short inp_so_options(const struct inpcb *inp) { short so_options; so_options = 0; if ((inp->inp_flags2 & INP_REUSEPORT) != 0) so_options |= SO_REUSEPORT; if ((inp->inp_flags2 & INP_REUSEADDR) != 0) so_options |= SO_REUSEADDR; return (so_options); } #endif /* INET || INET6 */ /* * Check if a new BINDMULTI socket is allowed to be created. * * ni points to the new inp. * oi points to the exisitng inp. * * This checks whether the existing inp also has BINDMULTI and * whether the credentials match. */ int in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) { /* Check permissions match */ if ((ni->inp_flags2 & INP_BINDMULTI) && (ni->inp_cred->cr_uid != oi->inp_cred->cr_uid)) return (0); /* Check the existing inp has BINDMULTI set */ if ((ni->inp_flags2 & INP_BINDMULTI) && ((oi->inp_flags2 & INP_BINDMULTI) == 0)) return (0); /* * We're okay - either INP_BINDMULTI isn't set on ni, or * it is and it matches the checks. */ return (1); } #ifdef INET /* * Set up a bind operation on a PCB, performing port allocation * as required, but do not actually modify the PCB. Callers can * either complete the bind by setting inp_laddr/inp_lport and * calling in_pcbinshash(), or they can just use the resulting * port and address to authorise the sending of a once-off packet. * * On error, the values of *laddrp and *lportp are not changed. */ int in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, u_short *lportp, struct ucred *cred) { struct socket *so = inp->inp_socket; struct sockaddr_in *sin; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct in_addr laddr; u_short lport = 0; int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); int error; /* * No state changes, so read locks are sufficient here. */ INP_LOCK_ASSERT(inp); INP_HASH_LOCK_ASSERT(pcbinfo); if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ return (EADDRNOTAVAIL); laddr.s_addr = *laddrp; if (nam != NULL && laddr.s_addr != INADDR_ANY) return (EINVAL); if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) lookupflags = INPLOOKUP_WILDCARD; if (nam == NULL) { if ((error = prison_local_ip4(cred, &laddr)) != 0) return (error); } else { sin = (struct sockaddr_in *)nam; if (nam->sa_len != sizeof (*sin)) return (EINVAL); #ifdef notdef /* * We should check the family, but old programs * incorrectly fail to initialize it. */ if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); #endif error = prison_local_ip4(cred, &sin->sin_addr); if (error) return (error); if (sin->sin_port != *lportp) { /* Don't allow the port to change. */ if (*lportp != 0) return (EINVAL); lport = sin->sin_port; } /* NB: lport is left as 0 if the port isn't being changed. */ if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { /* * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; * allow complete duplication of binding if * SO_REUSEPORT is set, or if SO_REUSEADDR is set * and a multicast address is bound on both * new and duplicated sockets. */ if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) reuseport = SO_REUSEADDR|SO_REUSEPORT; } else if (sin->sin_addr.s_addr != INADDR_ANY) { sin->sin_port = 0; /* yech... */ bzero(&sin->sin_zero, sizeof(sin->sin_zero)); /* * Is the address a local IP address? * If INP_BINDANY is set, then the socket may be bound * to any endpoint address, local or not. */ if ((inp->inp_flags & INP_BINDANY) == 0 && ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) return (EADDRNOTAVAIL); } laddr = sin->sin_addr; if (lport) { struct inpcb *t; struct tcptw *tw; /* GROSS */ if (ntohs(lport) <= V_ipport_reservedhigh && ntohs(lport) >= V_ipport_reservedlow && priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0)) return (EACCES); if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT, 0) != 0) { t = in_pcblookup_local(pcbinfo, sin->sin_addr, lport, INPLOOKUP_WILDCARD, cred); /* * XXX * This entire block sorely needs a rewrite. */ if (t && ((inp->inp_flags2 & INP_BINDMULTI) == 0) && ((t->inp_flags & INP_TIMEWAIT) == 0) && (so->so_type != SOCK_STREAM || ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || ntohl(t->inp_laddr.s_addr) != INADDR_ANY || (t->inp_flags2 & INP_REUSEPORT) == 0) && (inp->inp_cred->cr_uid != t->inp_cred->cr_uid)) return (EADDRINUSE); /* * If the socket is a BINDMULTI socket, then * the credentials need to match and the * original socket also has to have been bound * with BINDMULTI. */ if (t && (! in_pcbbind_check_bindmulti(inp, t))) return (EADDRINUSE); } t = in_pcblookup_local(pcbinfo, sin->sin_addr, lport, lookupflags, cred); if (t && (t->inp_flags & INP_TIMEWAIT)) { /* * XXXRW: If an incpb has had its timewait * state recycled, we treat the address as * being in use (for now). This is better * than a panic, but not desirable. */ tw = intotw(t); if (tw == NULL || (reuseport & tw->tw_so_options) == 0) return (EADDRINUSE); } else if (t && ((inp->inp_flags2 & INP_BINDMULTI) == 0) && (reuseport & inp_so_options(t)) == 0) { #ifdef INET6 if (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || ntohl(t->inp_laddr.s_addr) != INADDR_ANY || (inp->inp_vflag & INP_IPV6PROTO) == 0 || (t->inp_vflag & INP_IPV6PROTO) == 0) #endif return (EADDRINUSE); if (t && (! in_pcbbind_check_bindmulti(inp, t))) return (EADDRINUSE); } } } if (*lportp != 0) lport = *lportp; if (lport == 0) { error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); if (error != 0) return (error); } *laddrp = laddr.s_addr; *lportp = lport; return (0); } /* * Connect from a socket to a specified address. * Both address and port must be specified in argument sin. * If don't have a local address for this socket yet, * then pick one. */ int in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred, struct mbuf *m) { u_short lport, fport; in_addr_t laddr, faddr; int anonport, error; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); lport = inp->inp_lport; laddr = inp->inp_laddr.s_addr; anonport = (lport == 0); error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, NULL, cred); if (error) return (error); /* Do the initial binding of the local address if required. */ if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { inp->inp_lport = lport; inp->inp_laddr.s_addr = laddr; if (in_pcbinshash(inp) != 0) { inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_lport = 0; return (EAGAIN); } } /* Commit the remaining changes. */ inp->inp_lport = lport; inp->inp_laddr.s_addr = laddr; inp->inp_faddr.s_addr = faddr; inp->inp_fport = fport; in_pcbrehash_mbuf(inp, m); if (anonport) inp->inp_flags |= INP_ANONPORT; return (0); } int in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) { return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); } /* * Do proper source address selection on an unbound socket in case * of connect. Take jails into account as well. */ int in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, struct ucred *cred) { struct ifaddr *ifa; struct sockaddr *sa; struct sockaddr_in *sin; struct route sro; int error; KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); /* * Bypass source address selection and use the primary jail IP * if requested. */ if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) return (0); error = 0; bzero(&sro, sizeof(sro)); sin = (struct sockaddr_in *)&sro.ro_dst; sin->sin_family = AF_INET; sin->sin_len = sizeof(struct sockaddr_in); sin->sin_addr.s_addr = faddr->s_addr; /* * If route is known our src addr is taken from the i/f, * else punt. * * Find out route to destination. */ if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); /* * If we found a route, use the address corresponding to * the outgoing interface. * * Otherwise assume faddr is reachable on a directly connected * network and try to find a corresponding interface to take * the source address from. */ if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { struct in_ifaddr *ia; struct ifnet *ifp; ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, inp->inp_socket->so_fibnum)); if (ia == NULL) ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, inp->inp_socket->so_fibnum)); if (ia == NULL) { error = ENETUNREACH; goto done; } if (cred == NULL || !prison_flag(cred, PR_IP4)) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; ifa_free(&ia->ia_ifa); goto done; } ifp = ia->ia_ifp; ifa_free(&ia->ia_ifa); ia = NULL; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { sa = ifa->ifa_addr; if (sa->sa_family != AF_INET) continue; sin = (struct sockaddr_in *)sa; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)ifa; break; } } if (ia != NULL) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; IF_ADDR_RUNLOCK(ifp); goto done; } IF_ADDR_RUNLOCK(ifp); /* 3. As a last resort return the 'default' jail address. */ error = prison_get_ip4(cred, laddr); goto done; } /* * If the outgoing interface on the route found is not * a loopback interface, use the address from that interface. * In case of jails do those three steps: * 1. check if the interface address belongs to the jail. If so use it. * 2. check if we have any address on the outgoing interface * belonging to this jail. If so use it. * 3. as a last resort return the 'default' jail address. */ if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { struct in_ifaddr *ia; struct ifnet *ifp; /* If not jailed, use the default returned. */ if (cred == NULL || !prison_flag(cred, PR_IP4)) { ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* Jailed. */ /* 1. Check if the iface address belongs to the jail. */ sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* * 2. Check if we have any address on the outgoing interface * belonging to this jail. */ ia = NULL; ifp = sro.ro_rt->rt_ifp; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { sa = ifa->ifa_addr; if (sa->sa_family != AF_INET) continue; sin = (struct sockaddr_in *)sa; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)ifa; break; } } if (ia != NULL) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; IF_ADDR_RUNLOCK(ifp); goto done; } IF_ADDR_RUNLOCK(ifp); /* 3. As a last resort return the 'default' jail address. */ error = prison_get_ip4(cred, laddr); goto done; } /* * The outgoing interface is marked with 'loopback net', so a route * to ourselves is here. * Try to find the interface of the destination address and then * take the address from there. That interface is not necessarily * a loopback interface. * In case of jails, check that it is an address of the jail * and if we cannot find, fall back to the 'default' jail address. */ if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { struct sockaddr_in sain; struct in_ifaddr *ia; bzero(&sain, sizeof(struct sockaddr_in)); sain.sin_family = AF_INET; sain.sin_len = sizeof(struct sockaddr_in); sain.sin_addr.s_addr = faddr->s_addr; ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), inp->inp_socket->so_fibnum)); if (ia == NULL) ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, inp->inp_socket->so_fibnum)); if (ia == NULL) ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); if (cred == NULL || !prison_flag(cred, PR_IP4)) { if (ia == NULL) { error = ENETUNREACH; goto done; } laddr->s_addr = ia->ia_addr.sin_addr.s_addr; ifa_free(&ia->ia_ifa); goto done; } /* Jailed. */ if (ia != NULL) { struct ifnet *ifp; ifp = ia->ia_ifp; ifa_free(&ia->ia_ifa); ia = NULL; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { sa = ifa->ifa_addr; if (sa->sa_family != AF_INET) continue; sin = (struct sockaddr_in *)sa; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)ifa; break; } } if (ia != NULL) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; IF_ADDR_RUNLOCK(ifp); goto done; } IF_ADDR_RUNLOCK(ifp); } /* 3. As a last resort return the 'default' jail address. */ error = prison_get_ip4(cred, laddr); goto done; } done: if (sro.ro_rt != NULL) RTFREE(sro.ro_rt); return (error); } /* * Set up for a connect from a socket to the specified address. * On entry, *laddrp and *lportp should contain the current local * address and port for the PCB; these are updated to the values * that should be placed in inp_laddr and inp_lport to complete * the connect. * * On success, *faddrp and *fportp will be set to the remote address * and port. These are not updated in the error case. * * If the operation fails because the connection already exists, * *oinpp will be set to the PCB of that connection so that the * caller can decide to override it. In all other cases, *oinpp * is set to NULL. */ int in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, struct inpcb **oinpp, struct ucred *cred) { struct rm_priotracker in_ifa_tracker; struct sockaddr_in *sin = (struct sockaddr_in *)nam; struct in_ifaddr *ia; struct inpcb *oinp; struct in_addr laddr, faddr; u_short lport, fport; int error; /* * Because a global state change doesn't actually occur here, a read * lock is sufficient. */ INP_LOCK_ASSERT(inp); INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); if (oinpp != NULL) *oinpp = NULL; if (nam->sa_len != sizeof (*sin)) return (EINVAL); if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); if (sin->sin_port == 0) return (EADDRNOTAVAIL); laddr.s_addr = *laddrp; lport = *lportp; faddr = sin->sin_addr; fport = sin->sin_port; if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { /* * If the destination address is INADDR_ANY, * use the primary local address. * If the supplied address is INADDR_BROADCAST, * and the primary interface supports broadcast, * choose the broadcast address for that interface. */ if (faddr.s_addr == INADDR_ANY) { IN_IFADDR_RLOCK(&in_ifa_tracker); faddr = IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; IN_IFADDR_RUNLOCK(&in_ifa_tracker); if (cred != NULL && (error = prison_get_ip4(cred, &faddr)) != 0) return (error); } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { IN_IFADDR_RLOCK(&in_ifa_tracker); if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & IFF_BROADCAST) faddr = satosin(&TAILQ_FIRST( &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; IN_IFADDR_RUNLOCK(&in_ifa_tracker); } } if (laddr.s_addr == INADDR_ANY) { error = in_pcbladdr(inp, &faddr, &laddr, cred); /* * If the destination address is multicast and an outgoing * interface has been set as a multicast option, prefer the * address of that interface as our source address. */ if (IN_MULTICAST(ntohl(faddr.s_addr)) && inp->inp_moptions != NULL) { struct ip_moptions *imo; struct ifnet *ifp; imo = inp->inp_moptions; if (imo->imo_multicast_ifp != NULL) { ifp = imo->imo_multicast_ifp; IN_IFADDR_RLOCK(&in_ifa_tracker); TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if ((ia->ia_ifp == ifp) && (cred == NULL || prison_check_ip4(cred, &ia->ia_addr.sin_addr) == 0)) break; } if (ia == NULL) error = EADDRNOTAVAIL; else { laddr = ia->ia_addr.sin_addr; error = 0; } IN_IFADDR_RUNLOCK(&in_ifa_tracker); } } if (error) return (error); } oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, laddr, lport, 0, NULL); if (oinp != NULL) { if (oinpp != NULL) *oinpp = oinp; return (EADDRINUSE); } if (lport == 0) { error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, cred); if (error) return (error); } *laddrp = laddr.s_addr; *lportp = lport; *faddrp = faddr.s_addr; *fportp = fport; return (0); } void in_pcbdisconnect(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); inp->inp_faddr.s_addr = INADDR_ANY; inp->inp_fport = 0; in_pcbrehash(inp); } #endif /* INET */ /* * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. * For most protocols, this will be invoked immediately prior to calling * in_pcbfree(). However, with TCP the inpcb may significantly outlive the * socket, in which case in_pcbfree() is deferred. */ void in_pcbdetach(struct inpcb *inp) { KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); inp->inp_socket->so_pcb = NULL; inp->inp_socket = NULL; } /* * in_pcbref() bumps the reference count on an inpcb in order to maintain * stability of an inpcb pointer despite the inpcb lock being released. This * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, * but where the inpcb lock may already held, or when acquiring a reference * via a pcbgroup. * * in_pcbref() should be used only to provide brief memory stability, and * must always be followed by a call to INP_WLOCK() and in_pcbrele() to * garbage collect the inpcb if it has been in_pcbfree()'d from another * context. Until in_pcbrele() has returned that the inpcb is still valid, * lock and rele are the *only* safe operations that may be performed on the * inpcb. * * While the inpcb will not be freed, releasing the inpcb lock means that the * connection's state may change, so the caller should be careful to * revalidate any cached state on reacquiring the lock. Drop the reference * using in_pcbrele(). */ void in_pcbref(struct inpcb *inp) { KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); refcount_acquire(&inp->inp_refcount); } /* * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we * return a flag indicating whether or not the inpcb remains valid. If it is * valid, we return with the inpcb lock held. * * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a * reference on an inpcb. Historically more work was done here (actually, in * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely * about memory stability (and continued use of the write lock). */ int in_pcbrele_rlocked(struct inpcb *inp) { struct inpcbinfo *pcbinfo; KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); INP_RLOCK_ASSERT(inp); if (refcount_release(&inp->inp_refcount) == 0) { /* * If the inpcb has been freed, let the caller know, even if * this isn't the last reference. */ if (inp->inp_flags2 & INP_FREED) { INP_RUNLOCK(inp); return (1); } return (0); } KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); INP_RUNLOCK(inp); pcbinfo = inp->inp_pcbinfo; uma_zfree(pcbinfo->ipi_zone, inp); return (1); } int in_pcbrele_wlocked(struct inpcb *inp) { struct inpcbinfo *pcbinfo; KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); INP_WLOCK_ASSERT(inp); if (refcount_release(&inp->inp_refcount) == 0) { /* * If the inpcb has been freed, let the caller know, even if * this isn't the last reference. */ if (inp->inp_flags2 & INP_FREED) { INP_WUNLOCK(inp); return (1); } return (0); } KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); INP_WUNLOCK(inp); pcbinfo = inp->inp_pcbinfo; uma_zfree(pcbinfo->ipi_zone, inp); return (1); } /* * Temporary wrapper. */ int in_pcbrele(struct inpcb *inp) { return (in_pcbrele_wlocked(inp)); } /* * Unconditionally schedule an inpcb to be freed by decrementing its * reference count, which should occur only after the inpcb has been detached * from its socket. If another thread holds a temporary reference (acquired * using in_pcbref()) then the free is deferred until that reference is * released using in_pcbrele(), but the inpcb is still unlocked. Almost all * work, including removal from global lists, is done in this context, where * the pcbinfo lock is held. */ void in_pcbfree(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); #ifdef INVARIANTS if (pcbinfo == &V_tcbinfo) { INP_INFO_LOCK_ASSERT(pcbinfo); } else { INP_INFO_WLOCK_ASSERT(pcbinfo); } #endif INP_WLOCK_ASSERT(inp); /* XXXRW: Do as much as possible here. */ #ifdef IPSEC if (inp->inp_sp != NULL) ipsec_delete_pcbpolicy(inp); #endif INP_LIST_WLOCK(pcbinfo); inp->inp_gencnt = ++pcbinfo->ipi_gencnt; in_pcbremlists(inp); INP_LIST_WUNLOCK(pcbinfo); #ifdef INET6 if (inp->inp_vflag & INP_IPV6PROTO) { ip6_freepcbopts(inp->in6p_outputopts); if (inp->in6p_moptions != NULL) ip6_freemoptions(inp->in6p_moptions); } #endif if (inp->inp_options) (void)m_free(inp->inp_options); #ifdef INET if (inp->inp_moptions != NULL) inp_freemoptions(inp->inp_moptions); #endif if (inp->inp_route.ro_rt) { RTFREE(inp->inp_route.ro_rt); inp->inp_route.ro_rt = (struct rtentry *)NULL; } + if (inp->inp_route.ro_lle) + LLE_FREE(inp->inp_route.ro_lle); /* zeros ro_lle */ inp->inp_vflag = 0; inp->inp_flags2 |= INP_FREED; crfree(inp->inp_cred); #ifdef MAC mac_inpcb_destroy(inp); #endif if (!in_pcbrele_wlocked(inp)) INP_WUNLOCK(inp); } /* * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and * port reservation, and preventing it from being returned by inpcb lookups. * * It is used by TCP to mark an inpcb as unused and avoid future packet * delivery or event notification when a socket remains open but TCP has * closed. This might occur as a result of a shutdown()-initiated TCP close * or a RST on the wire, and allows the port binding to be reused while still * maintaining the invariant that so_pcb always points to a valid inpcb until * in_pcbdetach(). * * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by * in_pcbnotifyall() and in_pcbpurgeif0()? */ void in_pcbdrop(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); /* * XXXRW: Possibly we should protect the setting of INP_DROPPED with * the hash lock...? */ inp->inp_flags |= INP_DROPPED; if (inp->inp_flags & INP_INHASHLIST) { struct inpcbport *phd = inp->inp_phd; INP_HASH_WLOCK(inp->inp_pcbinfo); LIST_REMOVE(inp, inp_hash); LIST_REMOVE(inp, inp_portlist); if (LIST_FIRST(&phd->phd_pcblist) == NULL) { LIST_REMOVE(phd, phd_hash); free(phd, M_PCB); } INP_HASH_WUNLOCK(inp->inp_pcbinfo); inp->inp_flags &= ~INP_INHASHLIST; #ifdef PCBGROUP in_pcbgroup_remove(inp); #endif } } #ifdef INET /* * Common routines to return the socket addresses associated with inpcbs. */ struct sockaddr * in_sockaddr(in_port_t port, struct in_addr *addr_p) { struct sockaddr_in *sin; sin = malloc(sizeof *sin, M_SONAME, M_WAITOK | M_ZERO); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = *addr_p; sin->sin_port = port; return (struct sockaddr *)sin; } int in_getsockaddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct in_addr addr; in_port_t port; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); INP_RLOCK(inp); port = inp->inp_lport; addr = inp->inp_laddr; INP_RUNLOCK(inp); *nam = in_sockaddr(port, &addr); return 0; } int in_getpeeraddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct in_addr addr; in_port_t port; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); INP_RLOCK(inp); port = inp->inp_fport; addr = inp->inp_faddr; INP_RUNLOCK(inp); *nam = in_sockaddr(port, &addr); return 0; } void in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, struct inpcb *(*notify)(struct inpcb *, int)) { struct inpcb *inp, *inp_temp; INP_INFO_WLOCK(pcbinfo); LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { INP_WLOCK(inp); #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) { INP_WUNLOCK(inp); continue; } #endif if (inp->inp_faddr.s_addr != faddr.s_addr || inp->inp_socket == NULL) { INP_WUNLOCK(inp); continue; } if ((*notify)(inp, errno)) INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(pcbinfo); } void in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) { struct inpcb *inp; struct ip_moptions *imo; int i, gap; INP_INFO_WLOCK(pcbinfo); LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { INP_WLOCK(inp); imo = inp->inp_moptions; if ((inp->inp_vflag & INP_IPV4) && imo != NULL) { /* * Unselect the outgoing interface if it is being * detached. */ if (imo->imo_multicast_ifp == ifp) imo->imo_multicast_ifp = NULL; /* * Drop multicast group membership if we joined * through the interface being detached. */ for (i = 0, gap = 0; i < imo->imo_num_memberships; i++) { if (imo->imo_membership[i]->inm_ifp == ifp) { in_delmulti(imo->imo_membership[i]); gap++; } else if (gap != 0) imo->imo_membership[i - gap] = imo->imo_membership[i]; } imo->imo_num_memberships -= gap; } INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(pcbinfo); } /* * Lookup a PCB based on the local address and port. Caller must hold the * hash lock. No inpcb locks or references are acquired. */ #define INP_LOOKUP_MAPPED_PCB_COST 3 struct inpcb * in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, u_short lport, int lookupflags, struct ucred *cred) { struct inpcb *inp; #ifdef INET6 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; #else int matchwild = 3; #endif int wildcard; KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); INP_HASH_LOCK_ASSERT(pcbinfo); if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { struct inpcbhead *head; /* * Look for an unconnected (wildcard foreign addr) PCB that * matches the local address and port we're looking for. */ head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == INADDR_ANY && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_lport == lport) { /* * Found? */ if (cred == NULL || prison_equal_ip4(cred->cr_prison, inp->inp_cred->cr_prison)) return (inp); } } /* * Not found. */ return (NULL); } else { struct inpcbporthead *porthash; struct inpcbport *phd; struct inpcb *match = NULL; /* * Best fit PCB lookup. * * First see if this local port is in use by looking on the * port hash list. */ porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, pcbinfo->ipi_porthashmask)]; LIST_FOREACH(phd, porthash, phd_hash) { if (phd->phd_port == lport) break; } if (phd != NULL) { /* * Port is in use by one or more PCBs. Look for best * fit. */ LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { wildcard = 0; if (cred != NULL && !prison_equal_ip4(inp->inp_cred->cr_prison, cred->cr_prison)) continue; #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; /* * We never select the PCB that has * INP_IPV6 flag and is bound to :: if * we have another PCB which is bound * to 0.0.0.0. If a PCB has the * INP_IPV6 flag, then we set its cost * higher than IPv4 only PCBs. * * Note that the case only happens * when a socket is bound to ::, under * the condition that the use of the * mapped address is allowed. */ if ((inp->inp_vflag & INP_IPV6) != 0) wildcard += INP_LOOKUP_MAPPED_PCB_COST; #endif if (inp->inp_faddr.s_addr != INADDR_ANY) wildcard++; if (inp->inp_laddr.s_addr != INADDR_ANY) { if (laddr.s_addr == INADDR_ANY) wildcard++; else if (inp->inp_laddr.s_addr != laddr.s_addr) continue; } else { if (laddr.s_addr != INADDR_ANY) wildcard++; } if (wildcard < matchwild) { match = inp; matchwild = wildcard; if (matchwild == 0) break; } } } return (match); } } #undef INP_LOOKUP_MAPPED_PCB_COST #ifdef PCBGROUP /* * Lookup PCB in hash list, using pcbgroup tables. */ static struct inpcb * in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, struct ifnet *ifp) { struct inpcbhead *head; struct inpcb *inp, *tmpinp; u_short fport = fport_arg, lport = lport_arg; /* * First look for an exact match. */ tmpinp = NULL; INP_GROUP_LOCK(pcbgroup); head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbgroup->ipg_hashmask)]; LIST_FOREACH(inp, head, inp_pcbgrouphash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == faddr.s_addr && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_fport == fport && inp->inp_lport == lport) { /* * XXX We should be able to directly return * the inp here, without any checks. * Well unless both bound with SO_REUSEPORT? */ if (prison_flag(inp->inp_cred, PR_IP4)) goto found; if (tmpinp == NULL) tmpinp = inp; } } if (tmpinp != NULL) { inp = tmpinp; goto found; } #ifdef RSS /* * For incoming connections, we may wish to do a wildcard * match for an RSS-local socket. */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { struct inpcb *local_wild = NULL, *local_exact = NULL; #ifdef INET6 struct inpcb *local_wild_mapped = NULL; #endif struct inpcb *jail_wild = NULL; struct inpcbhead *head; int injail; /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbgroup->ipg_hashmask)]; LIST_FOREACH(inp, head, inp_pcbgrouphash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport) continue; injail = prison_flag(inp->inp_cred, PR_IP4); if (injail) { if (prison_check_ip4(inp->inp_cred, &laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (inp->inp_laddr.s_addr == laddr.s_addr) { if (injail) goto found; else local_exact = inp; } else if (inp->inp_laddr.s_addr == INADDR_ANY) { #ifdef INET6 /* XXX inp locking, NULL check */ if (inp->inp_vflag & INP_IPV6PROTO) local_wild_mapped = inp; else #endif if (injail) jail_wild = inp; else local_wild = inp; } } /* LIST_FOREACH */ inp = jail_wild; if (inp == NULL) inp = local_exact; if (inp == NULL) inp = local_wild; #ifdef INET6 if (inp == NULL) inp = local_wild_mapped; #endif if (inp != NULL) goto found; } #endif /* * Then look for a wildcard match, if requested. */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { struct inpcb *local_wild = NULL, *local_exact = NULL; #ifdef INET6 struct inpcb *local_wild_mapped = NULL; #endif struct inpcb *jail_wild = NULL; struct inpcbhead *head; int injail; /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->ipi_wildmask)]; LIST_FOREACH(inp, head, inp_pcbgroup_wild) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport) continue; injail = prison_flag(inp->inp_cred, PR_IP4); if (injail) { if (prison_check_ip4(inp->inp_cred, &laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (inp->inp_laddr.s_addr == laddr.s_addr) { if (injail) goto found; else local_exact = inp; } else if (inp->inp_laddr.s_addr == INADDR_ANY) { #ifdef INET6 /* XXX inp locking, NULL check */ if (inp->inp_vflag & INP_IPV6PROTO) local_wild_mapped = inp; else #endif if (injail) jail_wild = inp; else local_wild = inp; } } /* LIST_FOREACH */ inp = jail_wild; if (inp == NULL) inp = local_exact; if (inp == NULL) inp = local_wild; #ifdef INET6 if (inp == NULL) inp = local_wild_mapped; #endif if (inp != NULL) goto found; } /* if (lookupflags & INPLOOKUP_WILDCARD) */ INP_GROUP_UNLOCK(pcbgroup); return (NULL); found: in_pcbref(inp); INP_GROUP_UNLOCK(pcbgroup); if (lookupflags & INPLOOKUP_WLOCKPCB) { INP_WLOCK(inp); if (in_pcbrele_wlocked(inp)) return (NULL); } else if (lookupflags & INPLOOKUP_RLOCKPCB) { INP_RLOCK(inp); if (in_pcbrele_rlocked(inp)) return (NULL); } else panic("%s: locking bug", __func__); return (inp); } #endif /* PCBGROUP */ /* * Lookup PCB in hash list, using pcbinfo tables. This variation assumes * that the caller has locked the hash list, and will not perform any further * locking or reference operations on either the hash list or the connection. */ static struct inpcb * in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, struct ifnet *ifp) { struct inpcbhead *head; struct inpcb *inp, *tmpinp; u_short fport = fport_arg, lport = lport_arg; KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); INP_HASH_LOCK_ASSERT(pcbinfo); /* * First look for an exact match. */ tmpinp = NULL; head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == faddr.s_addr && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_fport == fport && inp->inp_lport == lport) { /* * XXX We should be able to directly return * the inp here, without any checks. * Well unless both bound with SO_REUSEPORT? */ if (prison_flag(inp->inp_cred, PR_IP4)) return (inp); if (tmpinp == NULL) tmpinp = inp; } } if (tmpinp != NULL) return (tmpinp); /* * Then look for a wildcard match, if requested. */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { struct inpcb *local_wild = NULL, *local_exact = NULL; #ifdef INET6 struct inpcb *local_wild_mapped = NULL; #endif struct inpcb *jail_wild = NULL; int injail; /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport) continue; injail = prison_flag(inp->inp_cred, PR_IP4); if (injail) { if (prison_check_ip4(inp->inp_cred, &laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (inp->inp_laddr.s_addr == laddr.s_addr) { if (injail) return (inp); else local_exact = inp; } else if (inp->inp_laddr.s_addr == INADDR_ANY) { #ifdef INET6 /* XXX inp locking, NULL check */ if (inp->inp_vflag & INP_IPV6PROTO) local_wild_mapped = inp; else #endif if (injail) jail_wild = inp; else local_wild = inp; } } /* LIST_FOREACH */ if (jail_wild != NULL) return (jail_wild); if (local_exact != NULL) return (local_exact); if (local_wild != NULL) return (local_wild); #ifdef INET6 if (local_wild_mapped != NULL) return (local_wild_mapped); #endif } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ return (NULL); } /* * Lookup PCB in hash list, using pcbinfo tables. This variation locks the * hash list lock, and will return the inpcb locked (i.e., requires * INPLOOKUP_LOCKPCB). */ static struct inpcb * in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) { struct inpcb *inp; INP_HASH_RLOCK(pcbinfo); inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); if (inp != NULL) { in_pcbref(inp); INP_HASH_RUNLOCK(pcbinfo); if (lookupflags & INPLOOKUP_WLOCKPCB) { INP_WLOCK(inp); if (in_pcbrele_wlocked(inp)) return (NULL); } else if (lookupflags & INPLOOKUP_RLOCKPCB) { INP_RLOCK(inp); if (in_pcbrele_rlocked(inp)) return (NULL); } else panic("%s: locking bug", __func__); } else INP_HASH_RUNLOCK(pcbinfo); return (inp); } /* * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf * from which a pre-calculated hash value may be extracted. * * Possibly more of this logic should be in in_pcbgroup.c. */ struct inpcb * in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) { #if defined(PCBGROUP) && !defined(RSS) struct inpcbgroup *pcbgroup; #endif KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, ("%s: LOCKPCB not set", __func__)); /* * When not using RSS, use connection groups in preference to the * reservation table when looking up 4-tuples. When using RSS, just * use the reservation table, due to the cost of the Toeplitz hash * in software. * * XXXRW: This policy belongs in the pcbgroup code, as in principle * we could be doing RSS with a non-Toeplitz hash that is affordable * in software. */ #if defined(PCBGROUP) && !defined(RSS) if (in_pcbgroup_enabled(pcbinfo)) { pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, fport); return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, laddr, lport, lookupflags, ifp)); } #endif return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, lookupflags, ifp)); } struct inpcb * in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp, struct mbuf *m) { #ifdef PCBGROUP struct inpcbgroup *pcbgroup; #endif KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, ("%s: LOCKPCB not set", __func__)); #ifdef PCBGROUP /* * If we can use a hardware-generated hash to look up the connection * group, use that connection group to find the inpcb. Otherwise * fall back on a software hash -- or the reservation table if we're * using RSS. * * XXXRW: As above, that policy belongs in the pcbgroup code. */ if (in_pcbgroup_enabled(pcbinfo) && !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), m->m_pkthdr.flowid); if (pcbgroup != NULL) return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, laddr, lport, lookupflags, ifp)); #ifndef RSS pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, fport); return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, laddr, lport, lookupflags, ifp)); #endif } #endif return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, lookupflags, ifp)); } #endif /* INET */ /* * Insert PCB onto various hash lists. */ static int in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) { struct inpcbhead *pcbhash; struct inpcbporthead *pcbporthash; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbport *phd; u_int32_t hashkey_faddr; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, ("in_pcbinshash: INP_INHASHLIST")); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); else #endif hashkey_faddr = inp->inp_faddr.s_addr; pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; pcbporthash = &pcbinfo->ipi_porthashbase[ INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; /* * Go through port list and look for a head for this lport. */ LIST_FOREACH(phd, pcbporthash, phd_hash) { if (phd->phd_port == inp->inp_lport) break; } /* * If none exists, malloc one and tack it on. */ if (phd == NULL) { phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); if (phd == NULL) { return (ENOBUFS); /* XXX */ } phd->phd_port = inp->inp_lport; LIST_INIT(&phd->phd_pcblist); LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); } inp->inp_phd = phd; LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); LIST_INSERT_HEAD(pcbhash, inp, inp_hash); inp->inp_flags |= INP_INHASHLIST; #ifdef PCBGROUP if (do_pcbgroup_update) in_pcbgroup_update(inp); #endif return (0); } /* * For now, there are two public interfaces to insert an inpcb into the hash * lists -- one that does update pcbgroups, and one that doesn't. The latter * is used only in the TCP syncache, where in_pcbinshash is called before the * full 4-tuple is set for the inpcb, and we don't want to install in the * pcbgroup until later. * * XXXRW: This seems like a misfeature. in_pcbinshash should always update * connection groups, and partially initialised inpcbs should not be exposed * to either reservation hash tables or pcbgroups. */ int in_pcbinshash(struct inpcb *inp) { return (in_pcbinshash_internal(inp, 1)); } int in_pcbinshash_nopcbgroup(struct inpcb *inp) { return (in_pcbinshash_internal(inp, 0)); } /* * Move PCB to the proper hash bucket when { faddr, fport } have been * changed. NOTE: This does not handle the case of the lport changing (the * hashed port list would have to be updated as well), so the lport must * not change after in_pcbinshash() has been called. */ void in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbhead *head; u_int32_t hashkey_faddr; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); KASSERT(inp->inp_flags & INP_INHASHLIST, ("in_pcbrehash: !INP_INHASHLIST")); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); else #endif hashkey_faddr = inp->inp_faddr.s_addr; head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; LIST_REMOVE(inp, inp_hash); LIST_INSERT_HEAD(head, inp, inp_hash); #ifdef PCBGROUP if (m != NULL) in_pcbgroup_update_mbuf(inp, m); else in_pcbgroup_update(inp); #endif } void in_pcbrehash(struct inpcb *inp) { in_pcbrehash_mbuf(inp, NULL); } /* * Remove PCB from various lists. */ static void in_pcbremlists(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; #ifdef INVARIANTS if (pcbinfo == &V_tcbinfo) { INP_INFO_RLOCK_ASSERT(pcbinfo); } else { INP_INFO_WLOCK_ASSERT(pcbinfo); } #endif INP_WLOCK_ASSERT(inp); INP_LIST_WLOCK_ASSERT(pcbinfo); inp->inp_gencnt = ++pcbinfo->ipi_gencnt; if (inp->inp_flags & INP_INHASHLIST) { struct inpcbport *phd = inp->inp_phd; INP_HASH_WLOCK(pcbinfo); LIST_REMOVE(inp, inp_hash); LIST_REMOVE(inp, inp_portlist); if (LIST_FIRST(&phd->phd_pcblist) == NULL) { LIST_REMOVE(phd, phd_hash); free(phd, M_PCB); } INP_HASH_WUNLOCK(pcbinfo); inp->inp_flags &= ~INP_INHASHLIST; } LIST_REMOVE(inp, inp_list); pcbinfo->ipi_count--; #ifdef PCBGROUP in_pcbgroup_remove(inp); #endif } /* * Check for alternatives when higher level complains * about service problems. For now, invalidate cached * routing information. If the route was created dynamically * (by a redirect), time to try a default gateway again. */ void in_losing(struct inpcb *inp) { if (inp->inp_route.ro_rt) { RTFREE(inp->inp_route.ro_rt); inp->inp_route.ro_rt = (struct rtentry *)NULL; } + if (inp->inp_route.ro_lle) + LLE_FREE(inp->inp_route.ro_lle); /* zeros ro_lle */ return; } /* * A set label operation has occurred at the socket layer, propagate the * label change into the in_pcb for the socket. */ void in_pcbsosetlabel(struct socket *so) { #ifdef MAC struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); INP_WLOCK(inp); SOCK_LOCK(so); mac_inpcb_sosetlabel(so, inp); SOCK_UNLOCK(so); INP_WUNLOCK(inp); #endif } /* * ipport_tick runs once per second, determining if random port allocation * should be continued. If more than ipport_randomcps ports have been * allocated in the last second, then we return to sequential port * allocation. We return to random allocation only once we drop below * ipport_randomcps for at least ipport_randomtime seconds. */ static void ipport_tick(void *xtp) { VNET_ITERATOR_DECL(vnet_iter); VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ if (V_ipport_tcpallocs <= V_ipport_tcplastcount + V_ipport_randomcps) { if (V_ipport_stoprandom > 0) V_ipport_stoprandom--; } else V_ipport_stoprandom = V_ipport_randomtime; V_ipport_tcplastcount = V_ipport_tcpallocs; CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); } static void ip_fini(void *xtp) { callout_stop(&ipport_tick_callout); } /* * The ipport_callout should start running at about the time we attach the * inet or inet6 domains. */ static void ipport_tick_init(const void *unused __unused) { /* Start ipport_tick. */ callout_init(&ipport_tick_callout, 1); callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, SHUTDOWN_PRI_DEFAULT); } SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, ipport_tick_init, NULL); void inp_wlock(struct inpcb *inp) { INP_WLOCK(inp); } void inp_wunlock(struct inpcb *inp) { INP_WUNLOCK(inp); } void inp_rlock(struct inpcb *inp) { INP_RLOCK(inp); } void inp_runlock(struct inpcb *inp) { INP_RUNLOCK(inp); } #ifdef INVARIANTS void inp_lock_assert(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); } void inp_unlock_assert(struct inpcb *inp) { INP_UNLOCK_ASSERT(inp); } #endif void inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) { struct inpcb *inp; INP_INFO_WLOCK(&V_tcbinfo); LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { INP_WLOCK(inp); func(inp, arg); INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(&V_tcbinfo); } struct socket * inp_inpcbtosocket(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); return (inp->inp_socket); } struct tcpcb * inp_inpcbtotcpcb(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); return ((struct tcpcb *)inp->inp_ppcb); } int inp_ip_tos_get(const struct inpcb *inp) { return (inp->inp_ip_tos); } void inp_ip_tos_set(struct inpcb *inp, int val) { inp->inp_ip_tos = val; } void inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, uint32_t *faddr, uint16_t *fp) { INP_LOCK_ASSERT(inp); *laddr = inp->inp_laddr.s_addr; *faddr = inp->inp_faddr.s_addr; *lp = inp->inp_lport; *fp = inp->inp_fport; } struct inpcb * so_sotoinpcb(struct socket *so) { return (sotoinpcb(so)); } struct tcpcb * so_sototcpcb(struct socket *so) { return (sototcpcb(so)); } #ifdef DDB static void db_print_indent(int indent) { int i; for (i = 0; i < indent; i++) db_printf(" "); } static void db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) { char faddr_str[48], laddr_str[48]; db_print_indent(indent); db_printf("%s at %p\n", name, inc); indent += 2; #ifdef INET6 if (inc->inc_flags & INC_ISIPV6) { /* IPv6. */ ip6_sprintf(laddr_str, &inc->inc6_laddr); ip6_sprintf(faddr_str, &inc->inc6_faddr); } else #endif { /* IPv4. */ inet_ntoa_r(inc->inc_laddr, laddr_str); inet_ntoa_r(inc->inc_faddr, faddr_str); } db_print_indent(indent); db_printf("inc_laddr %s inc_lport %u\n", laddr_str, ntohs(inc->inc_lport)); db_print_indent(indent); db_printf("inc_faddr %s inc_fport %u\n", faddr_str, ntohs(inc->inc_fport)); } static void db_print_inpflags(int inp_flags) { int comma; comma = 0; if (inp_flags & INP_RECVOPTS) { db_printf("%sINP_RECVOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVRETOPTS) { db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVDSTADDR) { db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_HDRINCL) { db_printf("%sINP_HDRINCL", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_HIGHPORT) { db_printf("%sINP_HIGHPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_LOWPORT) { db_printf("%sINP_LOWPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_ANONPORT) { db_printf("%sINP_ANONPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVIF) { db_printf("%sINP_RECVIF", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_MTUDISC) { db_printf("%sINP_MTUDISC", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVTTL) { db_printf("%sINP_RECVTTL", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_DONTFRAG) { db_printf("%sINP_DONTFRAG", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVTOS) { db_printf("%sINP_RECVTOS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_IPV6_V6ONLY) { db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_PKTINFO) { db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_HOPLIMIT) { db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_HOPOPTS) { db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_DSTOPTS) { db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RTHDR) { db_printf("%sIN6P_RTHDR", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RTHDRDSTOPTS) { db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_TCLASS) { db_printf("%sIN6P_TCLASS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_AUTOFLOWLABEL) { db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_TIMEWAIT) { db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_ONESBCAST) { db_printf("%sINP_ONESBCAST", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_DROPPED) { db_printf("%sINP_DROPPED", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_SOCKREF) { db_printf("%sINP_SOCKREF", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RFC2292) { db_printf("%sIN6P_RFC2292", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_MTU) { db_printf("IN6P_MTU%s", comma ? ", " : ""); comma = 1; } } static void db_print_inpvflag(u_char inp_vflag) { int comma; comma = 0; if (inp_vflag & INP_IPV4) { db_printf("%sINP_IPV4", comma ? ", " : ""); comma = 1; } if (inp_vflag & INP_IPV6) { db_printf("%sINP_IPV6", comma ? ", " : ""); comma = 1; } if (inp_vflag & INP_IPV6PROTO) { db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); comma = 1; } } static void db_print_inpcb(struct inpcb *inp, const char *name, int indent) { db_print_indent(indent); db_printf("%s at %p\n", name, inp); indent += 2; db_print_indent(indent); db_printf("inp_flow: 0x%x\n", inp->inp_flow); db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); db_print_indent(indent); db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); db_print_indent(indent); db_printf("inp_label: %p inp_flags: 0x%x (", inp->inp_label, inp->inp_flags); db_print_inpflags(inp->inp_flags); db_printf(")\n"); db_print_indent(indent); db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, inp->inp_vflag); db_print_inpvflag(inp->inp_vflag); db_printf(")\n"); db_print_indent(indent); db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); db_print_indent(indent); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) { db_printf("in6p_options: %p in6p_outputopts: %p " "in6p_moptions: %p\n", inp->in6p_options, inp->in6p_outputopts, inp->in6p_moptions); db_printf("in6p_icmp6filt: %p in6p_cksum %d " "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, inp->in6p_hops); } else #endif { db_printf("inp_ip_tos: %d inp_ip_options: %p " "inp_ip_moptions: %p\n", inp->inp_ip_tos, inp->inp_options, inp->inp_moptions); } db_print_indent(indent); db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, (uintmax_t)inp->inp_gencnt); } DB_SHOW_COMMAND(inpcb, db_show_inpcb) { struct inpcb *inp; if (!have_addr) { db_printf("usage: show inpcb \n"); return; } inp = (struct inpcb *)addr; db_print_inpcb(inp, "inpcb", 0); } #endif /* DDB */ Index: head/sys/netinet/ip_output.c =================================================================== --- head/sys/netinet/ip_output.c (revision 301216) +++ head/sys/netinet/ip_output.c (revision 301217) @@ -1,1415 +1,1419 @@ /*- * Copyright (c) 1982, 1986, 1988, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_ipfw.h" #include "opt_ipsec.h" #include "opt_mbuf_stress_test.h" #include "opt_mpath.h" #include "opt_route.h" #include "opt_sctp.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RADIX_MPATH #include #endif #include #include #include #include #include #include #include #include #include #include #include #ifdef SCTP #include #include #endif #ifdef IPSEC #include #include #endif /* IPSEC*/ #include #include #ifdef MBUF_STRESS_TEST static int mbuf_frag_size = 0; SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); #endif static void ip_mloopback(struct ifnet *, const struct mbuf *, int); extern int in_mcast_loop; extern struct protosw inetsw[]; static inline int ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) { struct m_tag *fwd_tag = NULL; struct mbuf *m; struct in_addr odst; struct ip *ip; m = *mp; ip = mtod(m, struct ip *); /* Run through list of hooks for output packets. */ odst.s_addr = ip->ip_dst.s_addr; *error = pfil_run_hooks(&V_inet_pfil_hook, mp, ifp, PFIL_OUT, inp); m = *mp; if ((*error) != 0 || m == NULL) return 1; /* Finished */ ip = mtod(m, struct ip *); /* See if destination IP address was changed by packet filter. */ if (odst.s_addr != ip->ip_dst.s_addr) { m->m_flags |= M_SKIP_FIREWALL; /* If destination is now ourself drop to ip_input(). */ if (in_localip(ip->ip_dst)) { m->m_flags |= M_FASTFWD_OURS; if (m->m_pkthdr.rcvif == NULL) m->m_pkthdr.rcvif = V_loif; if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID; #ifdef SCTP if (m->m_pkthdr.csum_flags & CSUM_SCTP) m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; #endif *error = netisr_queue(NETISR_IP, m); return 1; /* Finished */ } bzero(dst, sizeof(*dst)); dst->sin_family = AF_INET; dst->sin_len = sizeof(*dst); dst->sin_addr = ip->ip_dst; return -1; /* Reloop */ } /* See if fib was changed by packet filter. */ if ((*fibnum) != M_GETFIB(m)) { m->m_flags |= M_SKIP_FIREWALL; *fibnum = M_GETFIB(m); return -1; /* Reloop for FIB change */ } /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ if (m->m_flags & M_FASTFWD_OURS) { if (m->m_pkthdr.rcvif == NULL) m->m_pkthdr.rcvif = V_loif; if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } #ifdef SCTP if (m->m_pkthdr.csum_flags & CSUM_SCTP) m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; #endif m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID; *error = netisr_queue(NETISR_IP, m); return 1; /* Finished */ } /* Or forward to some other address? */ if ((m->m_flags & M_IP_NEXTHOP) && ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); m->m_flags |= M_SKIP_FIREWALL; m->m_flags &= ~M_IP_NEXTHOP; m_tag_delete(m, fwd_tag); return -1; /* Reloop for CHANGE of dst */ } return 0; } /* * IP output. The packet in mbuf chain m contains a skeletal IP * header (with len, off, ttl, proto, tos, src, dst). * The mbuf chain containing the packet will be freed. * The mbuf opt, if present, will not be freed. * If route ro is present and has ro_rt initialized, route lookup would be * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, * then result of route lookup is stored in ro->ro_rt. * * In the IP forwarding case, the packet will arrive with options already * inserted, so must have a NULL opt pointer. */ int ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, struct ip_moptions *imo, struct inpcb *inp) { struct rm_priotracker in_ifa_tracker; struct ip *ip; struct ifnet *ifp = NULL; /* keep compiler happy */ struct mbuf *m0; int hlen = sizeof (struct ip); int mtu; int error = 0; struct sockaddr_in *dst; const struct sockaddr_in *gw; struct in_ifaddr *ia; int isbroadcast; uint16_t ip_len, ip_off; struct route iproute; struct rtentry *rte; /* cache for ro->ro_rt */ uint32_t fibnum; int have_ia_ref; #ifdef IPSEC int no_route_but_check_spd = 0; #endif M_ASSERTPKTHDR(m); if (inp != NULL) { INP_LOCK_ASSERT(inp); M_SETFIB(m, inp->inp_inc.inc_fibnum); if ((flags & IP_NODEFAULTFLOWID) == 0) { m->m_pkthdr.flowid = inp->inp_flowid; M_HASHTYPE_SET(m, inp->inp_flowtype); } } if (ro == NULL) { ro = &iproute; bzero(ro, sizeof (*ro)); - } + } else + ro->ro_flags |= RT_LLE_CACHE; #ifdef FLOWTABLE if (ro->ro_rt == NULL) (void )flowtable_lookup(AF_INET, m, ro); #endif if (opt) { int len = 0; m = ip_insertoptions(m, opt, &len); if (len != 0) hlen = len; /* ip->ip_hl is updated above */ } ip = mtod(m, struct ip *); ip_len = ntohs(ip->ip_len); ip_off = ntohs(ip->ip_off); if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { ip->ip_v = IPVERSION; ip->ip_hl = hlen >> 2; ip_fillid(ip); IPSTAT_INC(ips_localout); } else { /* Header already set, fetch hlen from there */ hlen = ip->ip_hl << 2; } /* * dst/gw handling: * * dst can be rewritten but always points to &ro->ro_dst. * gw is readonly but can point either to dst OR rt_gateway, * therefore we need restore gw if we're redoing lookup. */ gw = dst = (struct sockaddr_in *)&ro->ro_dst; fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); rte = ro->ro_rt; if (rte == NULL) { bzero(dst, sizeof(*dst)); dst->sin_family = AF_INET; dst->sin_len = sizeof(*dst); dst->sin_addr = ip->ip_dst; } again: /* * Validate route against routing table additions; * a better/more specific route might have been added. */ if (inp) RT_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); /* * If there is a cached route, * check that it is to the same destination * and is still up. If not, free it and try again. * The address family should also be checked in case of sharing the * cache with IPv6. * Also check whether routing cache needs invalidation. */ rte = ro->ro_rt; if (rte && ((rte->rt_flags & RTF_UP) == 0 || rte->rt_ifp == NULL || !RT_LINK_IS_UP(rte->rt_ifp) || dst->sin_family != AF_INET || dst->sin_addr.s_addr != ip->ip_dst.s_addr)) { RTFREE(rte); rte = ro->ro_rt = (struct rtentry *)NULL; + if (ro->ro_lle) + LLE_FREE(ro->ro_lle); /* zeros ro_lle */ + ro->ro_lle = (struct llentry *)NULL; } ia = NULL; have_ia_ref = 0; /* * If routing to interface only, short circuit routing lookup. * The use of an all-ones broadcast address implies this; an * interface is specified by the broadcast address of an interface, * or the destination address of a ptp interface. */ if (flags & IP_SENDONES) { if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), M_GETFIB(m)))) == NULL && (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), M_GETFIB(m)))) == NULL) { IPSTAT_INC(ips_noroute); error = ENETUNREACH; goto bad; } have_ia_ref = 1; ip->ip_dst.s_addr = INADDR_BROADCAST; dst->sin_addr = ip->ip_dst; ifp = ia->ia_ifp; ip->ip_ttl = 1; isbroadcast = 1; } else if (flags & IP_ROUTETOIF) { if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), M_GETFIB(m)))) == NULL && (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, M_GETFIB(m)))) == NULL) { IPSTAT_INC(ips_noroute); error = ENETUNREACH; goto bad; } have_ia_ref = 1; ifp = ia->ia_ifp; ip->ip_ttl = 1; isbroadcast = in_broadcast(dst->sin_addr, ifp); } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && imo != NULL && imo->imo_multicast_ifp != NULL) { /* * Bypass the normal routing lookup for multicast * packets if the interface is specified. */ ifp = imo->imo_multicast_ifp; IFP_TO_IA(ifp, ia, &in_ifa_tracker); if (ia) have_ia_ref = 1; isbroadcast = 0; /* fool gcc */ } else { /* * We want to do any cloning requested by the link layer, * as this is probably required in all cases for correct * operation (as it is for ARP). */ if (rte == NULL) { #ifdef RADIX_MPATH rtalloc_mpath_fib(ro, ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), fibnum); #else in_rtalloc_ign(ro, 0, fibnum); #endif rte = ro->ro_rt; } if (rte == NULL || (rte->rt_flags & RTF_UP) == 0 || rte->rt_ifp == NULL || !RT_LINK_IS_UP(rte->rt_ifp)) { #ifdef IPSEC /* * There is no route for this packet, but it is * possible that a matching SPD entry exists. */ no_route_but_check_spd = 1; mtu = 0; /* Silence GCC warning. */ goto sendit; #endif IPSTAT_INC(ips_noroute); error = EHOSTUNREACH; goto bad; } ia = ifatoia(rte->rt_ifa); ifp = rte->rt_ifp; counter_u64_add(rte->rt_pksent, 1); rt_update_ro_flags(ro); if (rte->rt_flags & RTF_GATEWAY) gw = (struct sockaddr_in *)rte->rt_gateway; if (rte->rt_flags & RTF_HOST) isbroadcast = (rte->rt_flags & RTF_BROADCAST); else isbroadcast = in_broadcast(gw->sin_addr, ifp); } /* * Calculate MTU. If we have a route that is up, use that, * otherwise use the interface's MTU. */ if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) mtu = rte->rt_mtu; else mtu = ifp->if_mtu; /* Catch a possible divide by zero later. */ KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p", __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp)); if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { m->m_flags |= M_MCAST; /* * IP destination address is multicast. Make sure "gw" * still points to the address in "ro". (It may have been * changed to point to a gateway address, above.) */ gw = dst; /* * See if the caller provided any multicast options */ if (imo != NULL) { ip->ip_ttl = imo->imo_multicast_ttl; if (imo->imo_multicast_vif != -1) ip->ip_src.s_addr = ip_mcast_src ? ip_mcast_src(imo->imo_multicast_vif) : INADDR_ANY; } else ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; /* * Confirm that the outgoing interface supports multicast. */ if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { if ((ifp->if_flags & IFF_MULTICAST) == 0) { IPSTAT_INC(ips_noroute); error = ENETUNREACH; goto bad; } } /* * If source address not specified yet, use address * of outgoing interface. */ if (ip->ip_src.s_addr == INADDR_ANY) { /* Interface may have no addresses. */ if (ia != NULL) ip->ip_src = IA_SIN(ia)->sin_addr; } if ((imo == NULL && in_mcast_loop) || (imo && imo->imo_multicast_loop)) { /* * Loop back multicast datagram if not expressly * forbidden to do so, even if we are not a member * of the group; ip_input() will filter it later, * thus deferring a hash lookup and mutex acquisition * at the expense of a cheap copy using m_copym(). */ ip_mloopback(ifp, m, hlen); } else { /* * If we are acting as a multicast router, perform * multicast forwarding as if the packet had just * arrived on the interface to which we are about * to send. The multicast forwarding function * recursively calls this function, using the * IP_FORWARDING flag to prevent infinite recursion. * * Multicasts that are looped back by ip_mloopback(), * above, will be forwarded by the ip_input() routine, * if necessary. */ if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { /* * If rsvp daemon is not running, do not * set ip_moptions. This ensures that the packet * is multicast and not just sent down one link * as prescribed by rsvpd. */ if (!V_rsvp_on) imo = NULL; if (ip_mforward && ip_mforward(ip, ifp, m, imo) != 0) { m_freem(m); goto done; } } } /* * Multicasts with a time-to-live of zero may be looped- * back, above, but must not be transmitted on a network. * Also, multicasts addressed to the loopback interface * are not sent -- the above call to ip_mloopback() will * loop back a copy. ip_input() will drop the copy if * this host does not belong to the destination group on * the loopback interface. */ if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { m_freem(m); goto done; } goto sendit; } /* * If the source address is not specified yet, use the address * of the outoing interface. */ if (ip->ip_src.s_addr == INADDR_ANY) { /* Interface may have no addresses. */ if (ia != NULL) { ip->ip_src = IA_SIN(ia)->sin_addr; } } /* * Look for broadcast address and * verify user is allowed to send * such a packet. */ if (isbroadcast) { if ((ifp->if_flags & IFF_BROADCAST) == 0) { error = EADDRNOTAVAIL; goto bad; } if ((flags & IP_ALLOWBROADCAST) == 0) { error = EACCES; goto bad; } /* don't allow broadcast messages to be fragmented */ if (ip_len > mtu) { error = EMSGSIZE; goto bad; } m->m_flags |= M_BCAST; } else { m->m_flags &= ~M_BCAST; } sendit: #ifdef IPSEC switch(ip_ipsec_output(&m, inp, &error)) { case 1: goto bad; case -1: goto done; case 0: default: break; /* Continue with packet processing. */ } /* * Check if there was a route for this packet; return error if not. */ if (no_route_but_check_spd) { IPSTAT_INC(ips_noroute); error = EHOSTUNREACH; goto bad; } /* Update variables that are affected by ipsec4_output(). */ ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; #endif /* IPSEC */ /* Jump over all PFIL processing if hooks are not active. */ if (PFIL_HOOKED(&V_inet_pfil_hook)) { switch (ip_output_pfil(&m, ifp, inp, dst, &fibnum, &error)) { case 1: /* Finished */ goto done; case 0: /* Continue normally */ ip = mtod(m, struct ip *); break; case -1: /* Need to try again */ /* Reset everything for a new round */ RO_RTFREE(ro); if (have_ia_ref) ifa_free(&ia->ia_ifa); ro->ro_prepend = NULL; rte = NULL; gw = dst; ip = mtod(m, struct ip *); goto again; } } /* 127/8 must not appear on wire - RFC1122. */ if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { if ((ifp->if_flags & IFF_LOOPBACK) == 0) { IPSTAT_INC(ips_badaddr); error = EADDRNOTAVAIL; goto bad; } } m->m_pkthdr.csum_flags |= CSUM_IP; if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { in_delayed_cksum(m); m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; } #ifdef SCTP if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); m->m_pkthdr.csum_flags &= ~CSUM_SCTP; } #endif /* * If small enough for interface, or the interface will take * care of the fragmentation for us, we can just send directly. */ if (ip_len <= mtu || (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { ip->ip_sum = 0; if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { ip->ip_sum = in_cksum(m, hlen); m->m_pkthdr.csum_flags &= ~CSUM_IP; } /* * Record statistics for this interface address. * With CSUM_TSO the byte/packet count will be slightly * incorrect because we count the IP+TCP headers only * once instead of for every generated packet. */ if (!(flags & IP_FORWARDING) && ia) { if (m->m_pkthdr.csum_flags & CSUM_TSO) counter_u64_add(ia->ia_ifa.ifa_opackets, m->m_pkthdr.len / m->m_pkthdr.tso_segsz); else counter_u64_add(ia->ia_ifa.ifa_opackets, 1); counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); } #ifdef MBUF_STRESS_TEST if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) m = m_fragment(m, M_NOWAIT, mbuf_frag_size); #endif /* * Reset layer specific mbuf flags * to avoid confusing lower layers. */ m_clrprotoflags(m); IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); error = (*ifp->if_output)(ifp, m, (const struct sockaddr *)gw, ro); goto done; } /* Balk when DF bit is set or the interface didn't support TSO. */ if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) { error = EMSGSIZE; IPSTAT_INC(ips_cantfrag); goto bad; } /* * Too large for interface; fragment if possible. If successful, * on return, m will point to a list of packets to be sent. */ error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); if (error) goto bad; for (; m; m = m0) { m0 = m->m_nextpkt; m->m_nextpkt = 0; if (error == 0) { /* Record statistics for this interface address. */ if (ia != NULL) { counter_u64_add(ia->ia_ifa.ifa_opackets, 1); counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); } /* * Reset layer specific mbuf flags * to avoid confusing upper layers. */ m_clrprotoflags(m); IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); error = (*ifp->if_output)(ifp, m, (const struct sockaddr *)gw, ro); } else m_freem(m); } if (error == 0) IPSTAT_INC(ips_fragmented); done: /* * Release the route if using our private route, or if * (with flowtable) we don't have our own reference. */ if (ro == &iproute || ro->ro_flags & RT_NORTREF) RO_RTFREE(ro); else if (rte == NULL) /* * If the caller supplied a route but somehow the reference * to it has been released need to prevent the caller * calling RTFREE on it again. */ ro->ro_rt = NULL; if (have_ia_ref) ifa_free(&ia->ia_ifa); return (error); bad: m_freem(m); goto done; } /* * Create a chain of fragments which fit the given mtu. m_frag points to the * mbuf to be fragmented; on return it points to the chain with the fragments. * Return 0 if no error. If error, m_frag may contain a partially built * chain of fragments that should be freed by the caller. * * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) */ int ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, u_long if_hwassist_flags) { int error = 0; int hlen = ip->ip_hl << 2; int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ int off; struct mbuf *m0 = *m_frag; /* the original packet */ int firstlen; struct mbuf **mnext; int nfrags; uint16_t ip_len, ip_off; ip_len = ntohs(ip->ip_len); ip_off = ntohs(ip->ip_off); if (ip_off & IP_DF) { /* Fragmentation not allowed */ IPSTAT_INC(ips_cantfrag); return EMSGSIZE; } /* * Must be able to put at least 8 bytes per fragment. */ if (len < 8) return EMSGSIZE; /* * If the interface will not calculate checksums on * fragmented packets, then do it here. */ if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { in_delayed_cksum(m0); m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; } #ifdef SCTP if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { sctp_delayed_cksum(m0, hlen); m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; } #endif if (len > PAGE_SIZE) { /* * Fragment large datagrams such that each segment * contains a multiple of PAGE_SIZE amount of data, * plus headers. This enables a receiver to perform * page-flipping zero-copy optimizations. * * XXX When does this help given that sender and receiver * could have different page sizes, and also mtu could * be less than the receiver's page size ? */ int newlen; off = MIN(mtu, m0->m_pkthdr.len); /* * firstlen (off - hlen) must be aligned on an * 8-byte boundary */ if (off < hlen) goto smart_frag_failure; off = ((off - hlen) & ~7) + hlen; newlen = (~PAGE_MASK) & mtu; if ((newlen + sizeof (struct ip)) > mtu) { /* we failed, go back the default */ smart_frag_failure: newlen = len; off = hlen + len; } len = newlen; } else { off = hlen + len; } firstlen = off - hlen; mnext = &m0->m_nextpkt; /* pointer to next packet */ /* * Loop through length of segment after first fragment, * make new header and copy data of each part and link onto chain. * Here, m0 is the original packet, m is the fragment being created. * The fragments are linked off the m_nextpkt of the original * packet, which after processing serves as the first fragment. */ for (nfrags = 1; off < ip_len; off += len, nfrags++) { struct ip *mhip; /* ip header on the fragment */ struct mbuf *m; int mhlen = sizeof (struct ip); m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) { error = ENOBUFS; IPSTAT_INC(ips_odropped); goto done; } /* * Make sure the complete packet header gets copied * from the originating mbuf to the newly created * mbuf. This also ensures that existing firewall * classification(s), VLAN tags and so on get copied * to the resulting fragmented packet(s): */ if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { m_free(m); error = ENOBUFS; IPSTAT_INC(ips_odropped); goto done; } /* * In the first mbuf, leave room for the link header, then * copy the original IP header including options. The payload * goes into an additional mbuf chain returned by m_copym(). */ m->m_data += max_linkhdr; mhip = mtod(m, struct ip *); *mhip = *ip; if (hlen > sizeof (struct ip)) { mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); mhip->ip_v = IPVERSION; mhip->ip_hl = mhlen >> 2; } m->m_len = mhlen; /* XXX do we need to add ip_off below ? */ mhip->ip_off = ((off - hlen) >> 3) + ip_off; if (off + len >= ip_len) len = ip_len - off; else mhip->ip_off |= IP_MF; mhip->ip_len = htons((u_short)(len + mhlen)); m->m_next = m_copym(m0, off, len, M_NOWAIT); if (m->m_next == NULL) { /* copy failed */ m_free(m); error = ENOBUFS; /* ??? */ IPSTAT_INC(ips_odropped); goto done; } m->m_pkthdr.len = mhlen + len; #ifdef MAC mac_netinet_fragment(m0, m); #endif mhip->ip_off = htons(mhip->ip_off); mhip->ip_sum = 0; if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { mhip->ip_sum = in_cksum(m, mhlen); m->m_pkthdr.csum_flags &= ~CSUM_IP; } *mnext = m; mnext = &m->m_nextpkt; } IPSTAT_ADD(ips_ofragments, nfrags); /* * Update first fragment by trimming what's been copied out * and updating header. */ m_adj(m0, hlen + firstlen - ip_len); m0->m_pkthdr.len = hlen + firstlen; ip->ip_len = htons((u_short)m0->m_pkthdr.len); ip->ip_off = htons(ip_off | IP_MF); ip->ip_sum = 0; if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { ip->ip_sum = in_cksum(m0, hlen); m0->m_pkthdr.csum_flags &= ~CSUM_IP; } done: *m_frag = m0; return error; } void in_delayed_cksum(struct mbuf *m) { struct ip *ip; uint16_t csum, offset, ip_len; ip = mtod(m, struct ip *); offset = ip->ip_hl << 2 ; ip_len = ntohs(ip->ip_len); csum = in_cksum_skip(m, ip_len, offset); if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0) csum = 0xffff; offset += m->m_pkthdr.csum_data; /* checksum offset */ /* find the mbuf in the chain where the checksum starts*/ while ((m != NULL) && (offset >= m->m_len)) { offset -= m->m_len; m = m->m_next; } KASSERT(m != NULL, ("in_delayed_cksum: checksum outside mbuf chain.")); KASSERT(offset + sizeof(u_short) <= m->m_len, ("in_delayed_cksum: checksum split between mbufs.")); *(u_short *)(m->m_data + offset) = csum; } /* * IP socket option processing. */ int ip_ctloutput(struct socket *so, struct sockopt *sopt) { struct inpcb *inp = sotoinpcb(so); int error, optval; #ifdef RSS uint32_t rss_bucket; int retval; #endif error = optval = 0; if (sopt->sopt_level != IPPROTO_IP) { error = EINVAL; if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_dir == SOPT_SET) { switch (sopt->sopt_name) { case SO_REUSEADDR: INP_WLOCK(inp); if ((so->so_options & SO_REUSEADDR) != 0) inp->inp_flags2 |= INP_REUSEADDR; else inp->inp_flags2 &= ~INP_REUSEADDR; INP_WUNLOCK(inp); error = 0; break; case SO_REUSEPORT: INP_WLOCK(inp); if ((so->so_options & SO_REUSEPORT) != 0) inp->inp_flags2 |= INP_REUSEPORT; else inp->inp_flags2 &= ~INP_REUSEPORT; INP_WUNLOCK(inp); error = 0; break; case SO_SETFIB: INP_WLOCK(inp); inp->inp_inc.inc_fibnum = so->so_fibnum; INP_WUNLOCK(inp); error = 0; break; default: break; } } return (error); } switch (sopt->sopt_dir) { case SOPT_SET: switch (sopt->sopt_name) { case IP_OPTIONS: #ifdef notyet case IP_RETOPTS: #endif { struct mbuf *m; if (sopt->sopt_valsize > MLEN) { error = EMSGSIZE; break; } m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); if (m == NULL) { error = ENOBUFS; break; } m->m_len = sopt->sopt_valsize; error = sooptcopyin(sopt, mtod(m, char *), m->m_len, m->m_len); if (error) { m_free(m); break; } INP_WLOCK(inp); error = ip_pcbopts(inp, sopt->sopt_name, m); INP_WUNLOCK(inp); return (error); } case IP_BINDANY: if (sopt->sopt_td != NULL) { error = priv_check(sopt->sopt_td, PRIV_NETINET_BINDANY); if (error) break; } /* FALLTHROUGH */ case IP_BINDMULTI: #ifdef RSS case IP_RSS_LISTEN_BUCKET: #endif case IP_TOS: case IP_TTL: case IP_MINTTL: case IP_RECVOPTS: case IP_RECVRETOPTS: case IP_RECVDSTADDR: case IP_RECVTTL: case IP_RECVIF: case IP_ONESBCAST: case IP_DONTFRAG: case IP_RECVTOS: case IP_RECVFLOWID: #ifdef RSS case IP_RECVRSSBUCKETID: #endif error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; switch (sopt->sopt_name) { case IP_TOS: inp->inp_ip_tos = optval; break; case IP_TTL: inp->inp_ip_ttl = optval; break; case IP_MINTTL: if (optval >= 0 && optval <= MAXTTL) inp->inp_ip_minttl = optval; else error = EINVAL; break; #define OPTSET(bit) do { \ INP_WLOCK(inp); \ if (optval) \ inp->inp_flags |= bit; \ else \ inp->inp_flags &= ~bit; \ INP_WUNLOCK(inp); \ } while (0) #define OPTSET2(bit, val) do { \ INP_WLOCK(inp); \ if (val) \ inp->inp_flags2 |= bit; \ else \ inp->inp_flags2 &= ~bit; \ INP_WUNLOCK(inp); \ } while (0) case IP_RECVOPTS: OPTSET(INP_RECVOPTS); break; case IP_RECVRETOPTS: OPTSET(INP_RECVRETOPTS); break; case IP_RECVDSTADDR: OPTSET(INP_RECVDSTADDR); break; case IP_RECVTTL: OPTSET(INP_RECVTTL); break; case IP_RECVIF: OPTSET(INP_RECVIF); break; case IP_ONESBCAST: OPTSET(INP_ONESBCAST); break; case IP_DONTFRAG: OPTSET(INP_DONTFRAG); break; case IP_BINDANY: OPTSET(INP_BINDANY); break; case IP_RECVTOS: OPTSET(INP_RECVTOS); break; case IP_BINDMULTI: OPTSET2(INP_BINDMULTI, optval); break; case IP_RECVFLOWID: OPTSET2(INP_RECVFLOWID, optval); break; #ifdef RSS case IP_RSS_LISTEN_BUCKET: if ((optval >= 0) && (optval < rss_getnumbuckets())) { inp->inp_rss_listen_bucket = optval; OPTSET2(INP_RSS_BUCKET_SET, 1); } else { error = EINVAL; } break; case IP_RECVRSSBUCKETID: OPTSET2(INP_RECVRSSBUCKETID, optval); break; #endif } break; #undef OPTSET #undef OPTSET2 /* * Multicast socket options are processed by the in_mcast * module. */ case IP_MULTICAST_IF: case IP_MULTICAST_VIF: case IP_MULTICAST_TTL: case IP_MULTICAST_LOOP: case IP_ADD_MEMBERSHIP: case IP_DROP_MEMBERSHIP: case IP_ADD_SOURCE_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: case IP_BLOCK_SOURCE: case IP_UNBLOCK_SOURCE: case IP_MSFILTER: case MCAST_JOIN_GROUP: case MCAST_LEAVE_GROUP: case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: error = inp_setmoptions(inp, sopt); break; case IP_PORTRANGE: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; INP_WLOCK(inp); switch (optval) { case IP_PORTRANGE_DEFAULT: inp->inp_flags &= ~(INP_LOWPORT); inp->inp_flags &= ~(INP_HIGHPORT); break; case IP_PORTRANGE_HIGH: inp->inp_flags &= ~(INP_LOWPORT); inp->inp_flags |= INP_HIGHPORT; break; case IP_PORTRANGE_LOW: inp->inp_flags &= ~(INP_HIGHPORT); inp->inp_flags |= INP_LOWPORT; break; default: error = EINVAL; break; } INP_WUNLOCK(inp); break; #ifdef IPSEC case IP_IPSEC_POLICY: { caddr_t req; struct mbuf *m; if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ break; if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ break; req = mtod(m, caddr_t); error = ipsec_set_policy(inp, sopt->sopt_name, req, m->m_len, (sopt->sopt_td != NULL) ? sopt->sopt_td->td_ucred : NULL); m_freem(m); break; } #endif /* IPSEC */ default: error = ENOPROTOOPT; break; } break; case SOPT_GET: switch (sopt->sopt_name) { case IP_OPTIONS: case IP_RETOPTS: if (inp->inp_options) error = sooptcopyout(sopt, mtod(inp->inp_options, char *), inp->inp_options->m_len); else sopt->sopt_valsize = 0; break; case IP_TOS: case IP_TTL: case IP_MINTTL: case IP_RECVOPTS: case IP_RECVRETOPTS: case IP_RECVDSTADDR: case IP_RECVTTL: case IP_RECVIF: case IP_PORTRANGE: case IP_ONESBCAST: case IP_DONTFRAG: case IP_BINDANY: case IP_RECVTOS: case IP_BINDMULTI: case IP_FLOWID: case IP_FLOWTYPE: case IP_RECVFLOWID: #ifdef RSS case IP_RSSBUCKETID: case IP_RECVRSSBUCKETID: #endif switch (sopt->sopt_name) { case IP_TOS: optval = inp->inp_ip_tos; break; case IP_TTL: optval = inp->inp_ip_ttl; break; case IP_MINTTL: optval = inp->inp_ip_minttl; break; #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) case IP_RECVOPTS: optval = OPTBIT(INP_RECVOPTS); break; case IP_RECVRETOPTS: optval = OPTBIT(INP_RECVRETOPTS); break; case IP_RECVDSTADDR: optval = OPTBIT(INP_RECVDSTADDR); break; case IP_RECVTTL: optval = OPTBIT(INP_RECVTTL); break; case IP_RECVIF: optval = OPTBIT(INP_RECVIF); break; case IP_PORTRANGE: if (inp->inp_flags & INP_HIGHPORT) optval = IP_PORTRANGE_HIGH; else if (inp->inp_flags & INP_LOWPORT) optval = IP_PORTRANGE_LOW; else optval = 0; break; case IP_ONESBCAST: optval = OPTBIT(INP_ONESBCAST); break; case IP_DONTFRAG: optval = OPTBIT(INP_DONTFRAG); break; case IP_BINDANY: optval = OPTBIT(INP_BINDANY); break; case IP_RECVTOS: optval = OPTBIT(INP_RECVTOS); break; case IP_FLOWID: optval = inp->inp_flowid; break; case IP_FLOWTYPE: optval = inp->inp_flowtype; break; case IP_RECVFLOWID: optval = OPTBIT2(INP_RECVFLOWID); break; #ifdef RSS case IP_RSSBUCKETID: retval = rss_hash2bucket(inp->inp_flowid, inp->inp_flowtype, &rss_bucket); if (retval == 0) optval = rss_bucket; else error = EINVAL; break; case IP_RECVRSSBUCKETID: optval = OPTBIT2(INP_RECVRSSBUCKETID); break; #endif case IP_BINDMULTI: optval = OPTBIT2(INP_BINDMULTI); break; } error = sooptcopyout(sopt, &optval, sizeof optval); break; /* * Multicast socket options are processed by the in_mcast * module. */ case IP_MULTICAST_IF: case IP_MULTICAST_VIF: case IP_MULTICAST_TTL: case IP_MULTICAST_LOOP: case IP_MSFILTER: error = inp_getmoptions(inp, sopt); break; #ifdef IPSEC case IP_IPSEC_POLICY: { struct mbuf *m = NULL; caddr_t req = NULL; size_t len = 0; if (m != NULL) { req = mtod(m, caddr_t); len = m->m_len; } error = ipsec_get_policy(sotoinpcb(so), req, len, &m); if (error == 0) error = soopt_mcopyout(sopt, m); /* XXX */ if (error == 0) m_freem(m); break; } #endif /* IPSEC */ default: error = ENOPROTOOPT; break; } break; } return (error); } /* * Routine called from ip_output() to loop back a copy of an IP multicast * packet to the input queue of a specified interface. Note that this * calls the output routine of the loopback "driver", but with an interface * pointer that might NOT be a loopback interface -- evil, but easier than * replicating that code here. */ static void ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) { struct ip *ip; struct mbuf *copym; /* * Make a deep copy of the packet because we're going to * modify the pack in order to generate checksums. */ copym = m_dup(m, M_NOWAIT); if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) copym = m_pullup(copym, hlen); if (copym != NULL) { /* If needed, compute the checksum and mark it as valid. */ if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { in_delayed_cksum(copym); copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; copym->m_pkthdr.csum_data = 0xffff; } /* * We don't bother to fragment if the IP length is greater * than the interface's MTU. Can this possibly matter? */ ip = mtod(copym, struct ip *); ip->ip_sum = 0; ip->ip_sum = in_cksum(copym, hlen); if_simloop(ifp, copym, AF_INET, 0); } } Index: head/sys/netinet/toecore.c =================================================================== --- head/sys/netinet/toecore.c (revision 301216) +++ head/sys/netinet/toecore.c (revision 301217) @@ -1,570 +1,570 @@ /*- * Copyright (c) 2012 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TCPSTATES #include #include #include #include #include #include #include static struct mtx toedev_lock; static TAILQ_HEAD(, toedev) toedev_list; static eventhandler_tag listen_start_eh; static eventhandler_tag listen_stop_eh; static eventhandler_tag lle_event_eh; static int toedev_connect(struct toedev *tod __unused, struct socket *so __unused, struct rtentry *rt __unused, struct sockaddr *nam __unused) { return (ENOTSUP); } static int toedev_listen_start(struct toedev *tod __unused, struct tcpcb *tp __unused) { return (ENOTSUP); } static int toedev_listen_stop(struct toedev *tod __unused, struct tcpcb *tp __unused) { return (ENOTSUP); } static void toedev_input(struct toedev *tod __unused, struct tcpcb *tp __unused, struct mbuf *m) { m_freem(m); return; } static void toedev_rcvd(struct toedev *tod __unused, struct tcpcb *tp __unused) { return; } static int toedev_output(struct toedev *tod __unused, struct tcpcb *tp __unused) { return (ENOTSUP); } static void toedev_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp __unused) { return; } static void toedev_l2_update(struct toedev *tod __unused, struct ifnet *ifp __unused, struct sockaddr *sa __unused, uint8_t *lladdr __unused, uint16_t vtag __unused) { return; } static void toedev_route_redirect(struct toedev *tod __unused, struct ifnet *ifp __unused, struct rtentry *rt0 __unused, struct rtentry *rt1 __unused) { return; } static void toedev_syncache_added(struct toedev *tod __unused, void *ctx __unused) { return; } static void toedev_syncache_removed(struct toedev *tod __unused, void *ctx __unused) { return; } static int toedev_syncache_respond(struct toedev *tod __unused, void *ctx __unused, struct mbuf *m) { m_freem(m); return (0); } static void toedev_offload_socket(struct toedev *tod __unused, void *ctx __unused, struct socket *so __unused) { return; } static void toedev_ctloutput(struct toedev *tod __unused, struct tcpcb *tp __unused, int sopt_dir __unused, int sopt_name __unused) { return; } /* * Inform one or more TOE devices about a listening socket. */ static void toe_listen_start(struct inpcb *inp, void *arg) { struct toedev *t, *tod; struct tcpcb *tp; INP_WLOCK_ASSERT(inp); KASSERT(inp->inp_pcbinfo == &V_tcbinfo, ("%s: inp is not a TCP inp", __func__)); if (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) return; tp = intotcpcb(inp); if (tp->t_state != TCPS_LISTEN) return; t = arg; mtx_lock(&toedev_lock); TAILQ_FOREACH(tod, &toedev_list, link) { if (t == NULL || t == tod) tod->tod_listen_start(tod, tp); } mtx_unlock(&toedev_lock); } static void toe_listen_start_event(void *arg __unused, struct tcpcb *tp) { struct inpcb *inp = tp->t_inpcb; INP_WLOCK_ASSERT(inp); KASSERT(tp->t_state == TCPS_LISTEN, ("%s: t_state %s", __func__, tcpstates[tp->t_state])); toe_listen_start(inp, NULL); } static void toe_listen_stop_event(void *arg __unused, struct tcpcb *tp) { struct toedev *tod; #ifdef INVARIANTS struct inpcb *inp = tp->t_inpcb; #endif INP_WLOCK_ASSERT(inp); KASSERT(tp->t_state == TCPS_LISTEN, ("%s: t_state %s", __func__, tcpstates[tp->t_state])); mtx_lock(&toedev_lock); TAILQ_FOREACH(tod, &toedev_list, link) tod->tod_listen_stop(tod, tp); mtx_unlock(&toedev_lock); } /* * Fill up a freshly allocated toedev struct with reasonable defaults. */ void init_toedev(struct toedev *tod) { tod->tod_softc = NULL; /* * Provide no-op defaults so that the kernel can call any toedev * function without having to check whether the TOE driver supplied one * or not. */ tod->tod_connect = toedev_connect; tod->tod_listen_start = toedev_listen_start; tod->tod_listen_stop = toedev_listen_stop; tod->tod_input = toedev_input; tod->tod_rcvd = toedev_rcvd; tod->tod_output = toedev_output; tod->tod_send_rst = toedev_output; tod->tod_send_fin = toedev_output; tod->tod_pcb_detach = toedev_pcb_detach; tod->tod_l2_update = toedev_l2_update; tod->tod_route_redirect = toedev_route_redirect; tod->tod_syncache_added = toedev_syncache_added; tod->tod_syncache_removed = toedev_syncache_removed; tod->tod_syncache_respond = toedev_syncache_respond; tod->tod_offload_socket = toedev_offload_socket; tod->tod_ctloutput = toedev_ctloutput; } /* * Register an active TOE device with the system. This allows it to receive * notifications from the kernel. */ int register_toedev(struct toedev *tod) { struct toedev *t; mtx_lock(&toedev_lock); TAILQ_FOREACH(t, &toedev_list, link) { if (t == tod) { mtx_unlock(&toedev_lock); return (EEXIST); } } TAILQ_INSERT_TAIL(&toedev_list, tod, link); registered_toedevs++; mtx_unlock(&toedev_lock); inp_apply_all(toe_listen_start, tod); return (0); } /* * Remove the TOE device from the global list of active TOE devices. It is the * caller's responsibility to ensure that the TOE device is quiesced prior to * this call. */ int unregister_toedev(struct toedev *tod) { struct toedev *t, *t2; int rc = ENODEV; mtx_lock(&toedev_lock); TAILQ_FOREACH_SAFE(t, &toedev_list, link, t2) { if (t == tod) { TAILQ_REMOVE(&toedev_list, tod, link); registered_toedevs--; rc = 0; break; } } KASSERT(registered_toedevs >= 0, ("%s: registered_toedevs (%d) < 0", __func__, registered_toedevs)); mtx_unlock(&toedev_lock); return (rc); } void toe_syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th, struct inpcb *inp, void *tod, void *todctx) { struct socket *lso = inp->inp_socket; INP_WLOCK_ASSERT(inp); syncache_add(inc, to, th, inp, &lso, NULL, tod, todctx); } int toe_syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th, struct socket **lsop) { INP_INFO_RLOCK_ASSERT(&V_tcbinfo); return (syncache_expand(inc, to, th, lsop, NULL)); } /* * General purpose check to see if a 4-tuple is in use by the kernel. If a TCP * header (presumably for an incoming SYN) is also provided, an existing 4-tuple * in TIME_WAIT may be assassinated freeing it up for re-use. * * Note that the TCP header must have been run through tcp_fields_to_host() or * equivalent. */ int toe_4tuple_check(struct in_conninfo *inc, struct tcphdr *th, struct ifnet *ifp) { struct inpcb *inp; if (inc->inc_flags & INC_ISIPV6) { inp = in6_pcblookup(&V_tcbinfo, &inc->inc6_faddr, inc->inc_fport, &inc->inc6_laddr, inc->inc_lport, INPLOOKUP_WLOCKPCB, ifp); } else { inp = in_pcblookup(&V_tcbinfo, inc->inc_faddr, inc->inc_fport, inc->inc_laddr, inc->inc_lport, INPLOOKUP_WLOCKPCB, ifp); } if (inp != NULL) { INP_WLOCK_ASSERT(inp); if ((inp->inp_flags & INP_TIMEWAIT) && th != NULL) { INP_INFO_RLOCK_ASSERT(&V_tcbinfo); /* for twcheck */ if (!tcp_twcheck(inp, NULL, th, NULL, 0)) return (EADDRINUSE); } else { INP_WUNLOCK(inp); return (EADDRINUSE); } } return (0); } static void toe_lle_event(void *arg __unused, struct llentry *lle, int evt) { struct toedev *tod; struct ifnet *ifp; struct sockaddr *sa; uint8_t *lladdr; uint16_t vtag; int family; struct sockaddr_in6 sin6; LLE_WLOCK_ASSERT(lle); ifp = lltable_get_ifp(lle->lle_tbl); family = lltable_get_af(lle->lle_tbl); if (family != AF_INET && family != AF_INET6) return; /* * Not interested if the interface's TOE capability is not enabled. */ if ((family == AF_INET && !(ifp->if_capenable & IFCAP_TOE4)) || (family == AF_INET6 && !(ifp->if_capenable & IFCAP_TOE6))) return; tod = TOEDEV(ifp); if (tod == NULL) return; sa = (struct sockaddr *)&sin6; lltable_fill_sa_entry(lle, sa); vtag = 0xfff; if (evt != LLENTRY_RESOLVED) { /* * LLENTRY_TIMEDOUT, LLENTRY_DELETED, LLENTRY_EXPIRED all mean * this entry is going to be deleted. */ lladdr = NULL; } else { KASSERT(lle->la_flags & LLE_VALID, ("%s: %p resolved but not valid?", __func__, lle)); lladdr = (uint8_t *)lle->ll_addr; #ifdef VLAN_TAG VLAN_TAG(ifp, &vtag); #endif } tod->tod_l2_update(tod, ifp, sa, lladdr, vtag); } /* * Returns 0 or EWOULDBLOCK on success (any other value is an error). 0 means * lladdr and vtag are valid on return, EWOULDBLOCK means the TOE driver's * tod_l2_update will be called later, when the entry is resolved or times out. */ int toe_l2_resolve(struct toedev *tod, struct ifnet *ifp, struct sockaddr *sa, uint8_t *lladdr, uint16_t *vtag) { int rc; switch (sa->sa_family) { #ifdef INET case AF_INET: - rc = arpresolve(ifp, 0, NULL, sa, lladdr, NULL); + rc = arpresolve(ifp, 0, NULL, sa, lladdr, NULL, NULL); break; #endif #ifdef INET6 case AF_INET6: - rc = nd6_resolve(ifp, 0, NULL, sa, lladdr, NULL); + rc = nd6_resolve(ifp, 0, NULL, sa, lladdr, NULL, NULL); break; #endif default: return (EPROTONOSUPPORT); } if (rc == 0) { #ifdef VLAN_TAG if (VLAN_TAG(ifp, vtag) != 0) #endif *vtag = 0xfff; } return (rc); } void toe_connect_failed(struct toedev *tod, struct inpcb *inp, int err) { INP_WLOCK_ASSERT(inp); if (!(inp->inp_flags & INP_DROPPED)) { struct tcpcb *tp = intotcpcb(inp); KASSERT(tp->t_flags & TF_TOE, ("%s: tp %p not offloaded.", __func__, tp)); if (err == EAGAIN) { /* * Temporary failure during offload, take this PCB back. * Detach from the TOE driver and do the rest of what * TCP's pru_connect would have done if the connection * wasn't offloaded. */ tod->tod_pcb_detach(tod, tp); KASSERT(!(tp->t_flags & TF_TOE), ("%s: tp %p still offloaded.", __func__, tp)); tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp)); (void) tp->t_fb->tfb_tcp_output(tp); } else { INP_INFO_RLOCK_ASSERT(&V_tcbinfo); tp = tcp_drop(tp, err); if (tp == NULL) INP_WLOCK(inp); /* re-acquire */ } } INP_WLOCK_ASSERT(inp); } static int toecore_load(void) { mtx_init(&toedev_lock, "toedev lock", NULL, MTX_DEF); TAILQ_INIT(&toedev_list); listen_start_eh = EVENTHANDLER_REGISTER(tcp_offload_listen_start, toe_listen_start_event, NULL, EVENTHANDLER_PRI_ANY); listen_stop_eh = EVENTHANDLER_REGISTER(tcp_offload_listen_stop, toe_listen_stop_event, NULL, EVENTHANDLER_PRI_ANY); lle_event_eh = EVENTHANDLER_REGISTER(lle_event, toe_lle_event, NULL, EVENTHANDLER_PRI_ANY); return (0); } static int toecore_unload(void) { mtx_lock(&toedev_lock); if (!TAILQ_EMPTY(&toedev_list)) { mtx_unlock(&toedev_lock); return (EBUSY); } EVENTHANDLER_DEREGISTER(tcp_offload_listen_start, listen_start_eh); EVENTHANDLER_DEREGISTER(tcp_offload_listen_stop, listen_stop_eh); EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); mtx_unlock(&toedev_lock); mtx_destroy(&toedev_lock); return (0); } static int toecore_mod_handler(module_t mod, int cmd, void *arg) { if (cmd == MOD_LOAD) return (toecore_load()); if (cmd == MOD_UNLOAD) return (toecore_unload()); return (EOPNOTSUPP); } static moduledata_t mod_data= { "toecore", toecore_mod_handler, 0 }; MODULE_VERSION(toecore, 1); DECLARE_MODULE(toecore, mod_data, SI_SUB_EXEC, SI_ORDER_ANY); Index: head/sys/netinet6/in6.h =================================================================== --- head/sys/netinet6/in6.h (revision 301216) +++ head/sys/netinet6/in6.h (revision 301217) @@ -1,740 +1,745 @@ /*- * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: in6.h,v 1.89 2001/05/27 13:28:35 itojun Exp $ */ /*- * Copyright (c) 1982, 1986, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in.h 8.3 (Berkeley) 1/3/94 * $FreeBSD$ */ #ifndef __KAME_NETINET_IN_H_INCLUDED_ #error "do not include netinet6/in6.h directly, include netinet/in.h. see RFC2553" #endif #ifndef _NETINET6_IN6_H_ #define _NETINET6_IN6_H_ /* * Identification of the network protocol stack * for *BSD-current/release: http://www.kame.net/dev/cvsweb.cgi/kame/COVERAGE * has the table of implementation/integration differences. */ #define __KAME__ #define __KAME_VERSION "FreeBSD" /* * IPv6 port allocation rules should mirror the IPv4 rules and are controlled * by the net.inet.ip.portrange sysctl tree. The following defines exist * for compatibility with userland applications that need them. */ #if __BSD_VISIBLE #define IPV6PORT_RESERVED 1024 #define IPV6PORT_ANONMIN 49152 #define IPV6PORT_ANONMAX 65535 #define IPV6PORT_RESERVEDMIN 600 #define IPV6PORT_RESERVEDMAX (IPV6PORT_RESERVED-1) #endif /* * IPv6 address */ struct in6_addr { union { uint8_t __u6_addr8[16]; uint16_t __u6_addr16[8]; uint32_t __u6_addr32[4]; } __u6_addr; /* 128-bit IP6 address */ }; #define s6_addr __u6_addr.__u6_addr8 #ifdef _KERNEL /* XXX nonstandard */ #define s6_addr8 __u6_addr.__u6_addr8 #define s6_addr16 __u6_addr.__u6_addr16 #define s6_addr32 __u6_addr.__u6_addr32 #endif #define INET6_ADDRSTRLEN 46 /* * XXX missing POSIX.1-2001 macro IPPROTO_IPV6. */ /* * Socket address for IPv6 */ #if __BSD_VISIBLE #define SIN6_LEN #endif struct sockaddr_in6 { uint8_t sin6_len; /* length of this struct */ sa_family_t sin6_family; /* AF_INET6 */ in_port_t sin6_port; /* Transport layer port # */ uint32_t sin6_flowinfo; /* IP6 flow information */ struct in6_addr sin6_addr; /* IP6 address */ uint32_t sin6_scope_id; /* scope zone index */ }; /* * Local definition for masks */ #ifdef _KERNEL /* XXX nonstandard */ #define IN6MASK0 {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}} #define IN6MASK32 {{{ 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, \ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }}} #define IN6MASK64 {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }}} #define IN6MASK96 {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \ 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00 }}} #define IN6MASK128 {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}} #endif #ifdef _KERNEL extern const struct sockaddr_in6 sa6_any; extern const struct in6_addr in6mask0; extern const struct in6_addr in6mask32; extern const struct in6_addr in6mask64; extern const struct in6_addr in6mask96; extern const struct in6_addr in6mask128; #endif /* _KERNEL */ /* * Macros started with IPV6_ADDR is KAME local */ #ifdef _KERNEL /* XXX nonstandard */ #if _BYTE_ORDER == _BIG_ENDIAN #define IPV6_ADDR_INT32_ONE 1 #define IPV6_ADDR_INT32_TWO 2 #define IPV6_ADDR_INT32_MNL 0xff010000 #define IPV6_ADDR_INT32_MLL 0xff020000 #define IPV6_ADDR_INT32_SMP 0x0000ffff #define IPV6_ADDR_INT16_ULL 0xfe80 #define IPV6_ADDR_INT16_USL 0xfec0 #define IPV6_ADDR_INT16_MLL 0xff02 #elif _BYTE_ORDER == _LITTLE_ENDIAN #define IPV6_ADDR_INT32_ONE 0x01000000 #define IPV6_ADDR_INT32_TWO 0x02000000 #define IPV6_ADDR_INT32_MNL 0x000001ff #define IPV6_ADDR_INT32_MLL 0x000002ff #define IPV6_ADDR_INT32_SMP 0xffff0000 #define IPV6_ADDR_INT16_ULL 0x80fe #define IPV6_ADDR_INT16_USL 0xc0fe #define IPV6_ADDR_INT16_MLL 0x02ff #endif #endif /* * Definition of some useful macros to handle IP6 addresses */ #if __BSD_VISIBLE #define IN6ADDR_ANY_INIT \ {{{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }}} #define IN6ADDR_LOOPBACK_INIT \ {{{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 }}} #define IN6ADDR_NODELOCAL_ALLNODES_INIT \ {{{ 0xff, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 }}} #define IN6ADDR_INTFACELOCAL_ALLNODES_INIT \ {{{ 0xff, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 }}} #define IN6ADDR_LINKLOCAL_ALLNODES_INIT \ {{{ 0xff, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 }}} #define IN6ADDR_LINKLOCAL_ALLROUTERS_INIT \ {{{ 0xff, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02 }}} #define IN6ADDR_LINKLOCAL_ALLV2ROUTERS_INIT \ {{{ 0xff, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x16 }}} #endif extern const struct in6_addr in6addr_any; extern const struct in6_addr in6addr_loopback; #if __BSD_VISIBLE extern const struct in6_addr in6addr_nodelocal_allnodes; extern const struct in6_addr in6addr_linklocal_allnodes; extern const struct in6_addr in6addr_linklocal_allrouters; extern const struct in6_addr in6addr_linklocal_allv2routers; #endif /* * Equality * NOTE: Some of kernel programming environment (for example, openbsd/sparc) * does not supply memcmp(). For userland memcmp() is preferred as it is * in ANSI standard. */ #ifdef _KERNEL #define IN6_ARE_ADDR_EQUAL(a, b) \ (bcmp(&(a)->s6_addr[0], &(b)->s6_addr[0], sizeof(struct in6_addr)) == 0) #else #if __BSD_VISIBLE #define IN6_ARE_ADDR_EQUAL(a, b) \ (memcmp(&(a)->s6_addr[0], &(b)->s6_addr[0], sizeof(struct in6_addr)) == 0) #endif #endif /* * Unspecified */ #define IN6_IS_ADDR_UNSPECIFIED(a) \ ((a)->__u6_addr.__u6_addr32[0] == 0 && \ (a)->__u6_addr.__u6_addr32[1] == 0 && \ (a)->__u6_addr.__u6_addr32[2] == 0 && \ (a)->__u6_addr.__u6_addr32[3] == 0) /* * Loopback */ #define IN6_IS_ADDR_LOOPBACK(a) \ ((a)->__u6_addr.__u6_addr32[0] == 0 && \ (a)->__u6_addr.__u6_addr32[1] == 0 && \ (a)->__u6_addr.__u6_addr32[2] == 0 && \ (a)->__u6_addr.__u6_addr32[3] == ntohl(1)) /* * IPv4 compatible */ #define IN6_IS_ADDR_V4COMPAT(a) \ ((a)->__u6_addr.__u6_addr32[0] == 0 && \ (a)->__u6_addr.__u6_addr32[1] == 0 && \ (a)->__u6_addr.__u6_addr32[2] == 0 && \ (a)->__u6_addr.__u6_addr32[3] != 0 && \ (a)->__u6_addr.__u6_addr32[3] != ntohl(1)) /* * Mapped */ #define IN6_IS_ADDR_V4MAPPED(a) \ ((a)->__u6_addr.__u6_addr32[0] == 0 && \ (a)->__u6_addr.__u6_addr32[1] == 0 && \ (a)->__u6_addr.__u6_addr32[2] == ntohl(0x0000ffff)) /* * KAME Scope Values */ #ifdef _KERNEL /* XXX nonstandard */ #define IPV6_ADDR_SCOPE_NODELOCAL 0x01 #define IPV6_ADDR_SCOPE_INTFACELOCAL 0x01 #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02 #define IPV6_ADDR_SCOPE_SITELOCAL 0x05 #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08 /* just used in this file */ #define IPV6_ADDR_SCOPE_GLOBAL 0x0e #else #define __IPV6_ADDR_SCOPE_NODELOCAL 0x01 #define __IPV6_ADDR_SCOPE_INTFACELOCAL 0x01 #define __IPV6_ADDR_SCOPE_LINKLOCAL 0x02 #define __IPV6_ADDR_SCOPE_SITELOCAL 0x05 #define __IPV6_ADDR_SCOPE_ORGLOCAL 0x08 /* just used in this file */ #define __IPV6_ADDR_SCOPE_GLOBAL 0x0e #endif /* * Unicast Scope * Note that we must check topmost 10 bits only, not 16 bits (see RFC2373). */ #define IN6_IS_ADDR_LINKLOCAL(a) \ (((a)->s6_addr[0] == 0xfe) && (((a)->s6_addr[1] & 0xc0) == 0x80)) #define IN6_IS_ADDR_SITELOCAL(a) \ (((a)->s6_addr[0] == 0xfe) && (((a)->s6_addr[1] & 0xc0) == 0xc0)) /* * Multicast */ #define IN6_IS_ADDR_MULTICAST(a) ((a)->s6_addr[0] == 0xff) #ifdef _KERNEL /* XXX nonstandard */ #define IPV6_ADDR_MC_SCOPE(a) ((a)->s6_addr[1] & 0x0f) #else #define __IPV6_ADDR_MC_SCOPE(a) ((a)->s6_addr[1] & 0x0f) #endif /* * Multicast Scope */ #ifdef _KERNEL /* refers nonstandard items */ #define IN6_IS_ADDR_MC_NODELOCAL(a) \ (IN6_IS_ADDR_MULTICAST(a) && \ (IPV6_ADDR_MC_SCOPE(a) == IPV6_ADDR_SCOPE_NODELOCAL)) #define IN6_IS_ADDR_MC_INTFACELOCAL(a) \ (IN6_IS_ADDR_MULTICAST(a) && \ (IPV6_ADDR_MC_SCOPE(a) == IPV6_ADDR_SCOPE_INTFACELOCAL)) #define IN6_IS_ADDR_MC_LINKLOCAL(a) \ (IN6_IS_ADDR_MULTICAST(a) && \ (IPV6_ADDR_MC_SCOPE(a) == IPV6_ADDR_SCOPE_LINKLOCAL)) #define IN6_IS_ADDR_MC_SITELOCAL(a) \ (IN6_IS_ADDR_MULTICAST(a) && \ (IPV6_ADDR_MC_SCOPE(a) == IPV6_ADDR_SCOPE_SITELOCAL)) #define IN6_IS_ADDR_MC_ORGLOCAL(a) \ (IN6_IS_ADDR_MULTICAST(a) && \ (IPV6_ADDR_MC_SCOPE(a) == IPV6_ADDR_SCOPE_ORGLOCAL)) #define IN6_IS_ADDR_MC_GLOBAL(a) \ (IN6_IS_ADDR_MULTICAST(a) && \ (IPV6_ADDR_MC_SCOPE(a) == IPV6_ADDR_SCOPE_GLOBAL)) #else #define IN6_IS_ADDR_MC_NODELOCAL(a) \ (IN6_IS_ADDR_MULTICAST(a) && \ (__IPV6_ADDR_MC_SCOPE(a) == __IPV6_ADDR_SCOPE_NODELOCAL)) #define IN6_IS_ADDR_MC_LINKLOCAL(a) \ (IN6_IS_ADDR_MULTICAST(a) && \ (__IPV6_ADDR_MC_SCOPE(a) == __IPV6_ADDR_SCOPE_LINKLOCAL)) #define IN6_IS_ADDR_MC_SITELOCAL(a) \ (IN6_IS_ADDR_MULTICAST(a) && \ (__IPV6_ADDR_MC_SCOPE(a) == __IPV6_ADDR_SCOPE_SITELOCAL)) #define IN6_IS_ADDR_MC_ORGLOCAL(a) \ (IN6_IS_ADDR_MULTICAST(a) && \ (__IPV6_ADDR_MC_SCOPE(a) == __IPV6_ADDR_SCOPE_ORGLOCAL)) #define IN6_IS_ADDR_MC_GLOBAL(a) \ (IN6_IS_ADDR_MULTICAST(a) && \ (__IPV6_ADDR_MC_SCOPE(a) == __IPV6_ADDR_SCOPE_GLOBAL)) #endif #ifdef _KERNEL /* nonstandard */ /* * KAME Scope */ #define IN6_IS_SCOPE_LINKLOCAL(a) \ ((IN6_IS_ADDR_LINKLOCAL(a)) || \ (IN6_IS_ADDR_MC_LINKLOCAL(a))) #define IN6_IS_SCOPE_EMBED(a) \ ((IN6_IS_ADDR_LINKLOCAL(a)) || \ (IN6_IS_ADDR_MC_LINKLOCAL(a)) || \ (IN6_IS_ADDR_MC_INTFACELOCAL(a))) #define IFA6_IS_DEPRECATED(a) \ ((a)->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME && \ (u_int32_t)((time_uptime - (a)->ia6_updatetime)) > \ (a)->ia6_lifetime.ia6t_pltime) #define IFA6_IS_INVALID(a) \ ((a)->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME && \ (u_int32_t)((time_uptime - (a)->ia6_updatetime)) > \ (a)->ia6_lifetime.ia6t_vltime) #endif /* _KERNEL */ /* * IP6 route structure */ #if __BSD_VISIBLE struct route_in6 { struct rtentry *ro_rt; + struct llentry *ro_lle; + /* + * ro_prepend and ro_plen are only used for bpf to pass in a + * preformed header. They are not cacheable. + */ char *ro_prepend; uint16_t ro_plen; uint16_t ro_flags; uint16_t ro_mtu; /* saved ro_rt mtu */ uint16_t spare; struct sockaddr_in6 ro_dst; }; #endif #ifdef _KERNEL #define MTAG_ABI_IPV6 1444287380 /* IPv6 ABI */ #define IPV6_TAG_DIRECT 0 /* direct-dispatch IPv6 */ #endif /* _KERNEL */ /* * Options for use with [gs]etsockopt at the IPV6 level. * First word of comment is data type; bool is stored in int. */ /* no hdrincl */ #if 0 /* the followings are relic in IPv4 and hence are disabled */ #define IPV6_OPTIONS 1 /* buf/ip6_opts; set/get IP6 options */ #define IPV6_RECVOPTS 5 /* bool; receive all IP6 opts w/dgram */ #define IPV6_RECVRETOPTS 6 /* bool; receive IP6 opts for response */ #define IPV6_RECVDSTADDR 7 /* bool; receive IP6 dst addr w/dgram */ #define IPV6_RETOPTS 8 /* ip6_opts; set/get IP6 options */ #endif #define IPV6_SOCKOPT_RESERVED1 3 /* reserved for future use */ #define IPV6_UNICAST_HOPS 4 /* int; IP6 hops */ #define IPV6_MULTICAST_IF 9 /* u_int; set/get IP6 multicast i/f */ #define IPV6_MULTICAST_HOPS 10 /* int; set/get IP6 multicast hops */ #define IPV6_MULTICAST_LOOP 11 /* u_int; set/get IP6 multicast loopback */ #define IPV6_JOIN_GROUP 12 /* ipv6_mreq; join a group membership */ #define IPV6_LEAVE_GROUP 13 /* ipv6_mreq; leave a group membership */ #define IPV6_PORTRANGE 14 /* int; range to choose for unspec port */ #define ICMP6_FILTER 18 /* icmp6_filter; icmp6 filter */ /* RFC2292 options */ #ifdef _KERNEL #define IPV6_2292PKTINFO 19 /* bool; send/recv if, src/dst addr */ #define IPV6_2292HOPLIMIT 20 /* bool; hop limit */ #define IPV6_2292NEXTHOP 21 /* bool; next hop addr */ #define IPV6_2292HOPOPTS 22 /* bool; hop-by-hop option */ #define IPV6_2292DSTOPTS 23 /* bool; destinaion option */ #define IPV6_2292RTHDR 24 /* bool; routing header */ #define IPV6_2292PKTOPTIONS 25 /* buf/cmsghdr; set/get IPv6 options */ #endif #define IPV6_CHECKSUM 26 /* int; checksum offset for raw socket */ #define IPV6_V6ONLY 27 /* bool; make AF_INET6 sockets v6 only */ #ifndef _KERNEL #define IPV6_BINDV6ONLY IPV6_V6ONLY #endif #if 1 /* IPSEC */ #define IPV6_IPSEC_POLICY 28 /* struct; get/set security policy */ #endif /* IPSEC */ /* 29; unused; was IPV6_FAITH */ #if 1 /* IPV6FIREWALL */ #define IPV6_FW_ADD 30 /* add a firewall rule to chain */ #define IPV6_FW_DEL 31 /* delete a firewall rule from chain */ #define IPV6_FW_FLUSH 32 /* flush firewall rule chain */ #define IPV6_FW_ZERO 33 /* clear single/all firewall counter(s) */ #define IPV6_FW_GET 34 /* get entire firewall rule chain */ #endif /* new socket options introduced in RFC3542 */ #define IPV6_RTHDRDSTOPTS 35 /* ip6_dest; send dst option before rthdr */ #define IPV6_RECVPKTINFO 36 /* bool; recv if, dst addr */ #define IPV6_RECVHOPLIMIT 37 /* bool; recv hop limit */ #define IPV6_RECVRTHDR 38 /* bool; recv routing header */ #define IPV6_RECVHOPOPTS 39 /* bool; recv hop-by-hop option */ #define IPV6_RECVDSTOPTS 40 /* bool; recv dst option after rthdr */ #ifdef _KERNEL #define IPV6_RECVRTHDRDSTOPTS 41 /* bool; recv dst option before rthdr */ #endif #define IPV6_USE_MIN_MTU 42 /* bool; send packets at the minimum MTU */ #define IPV6_RECVPATHMTU 43 /* bool; notify an according MTU */ #define IPV6_PATHMTU 44 /* mtuinfo; get the current path MTU (sopt), 4 bytes int; MTU notification (cmsg) */ #if 0 /*obsoleted during 2292bis -> 3542*/ #define IPV6_REACHCONF 45 /* no data; ND reachability confirm (cmsg only/not in of RFC3542) */ #endif /* more new socket options introduced in RFC3542 */ #define IPV6_PKTINFO 46 /* in6_pktinfo; send if, src addr */ #define IPV6_HOPLIMIT 47 /* int; send hop limit */ #define IPV6_NEXTHOP 48 /* sockaddr; next hop addr */ #define IPV6_HOPOPTS 49 /* ip6_hbh; send hop-by-hop option */ #define IPV6_DSTOPTS 50 /* ip6_dest; send dst option befor rthdr */ #define IPV6_RTHDR 51 /* ip6_rthdr; send routing header */ #if 0 #define IPV6_PKTOPTIONS 52 /* buf/cmsghdr; set/get IPv6 options */ /* obsoleted by RFC3542 */ #endif #define IPV6_RECVTCLASS 57 /* bool; recv traffic class values */ #define IPV6_AUTOFLOWLABEL 59 /* bool; attach flowlabel automagically */ #define IPV6_TCLASS 61 /* int; send traffic class value */ #define IPV6_DONTFRAG 62 /* bool; disable IPv6 fragmentation */ #define IPV6_PREFER_TEMPADDR 63 /* int; prefer temporary addresses as * the source address. */ #define IPV6_BINDANY 64 /* bool: allow bind to any address */ #define IPV6_BINDMULTI 65 /* bool; allow multibind to same addr/port */ #define IPV6_RSS_LISTEN_BUCKET 66 /* int; set RSS listen bucket */ #define IPV6_FLOWID 67 /* int; flowid of given socket */ #define IPV6_FLOWTYPE 68 /* int; flowtype of given socket */ #define IPV6_RSSBUCKETID 69 /* int; RSS bucket ID of given socket */ #define IPV6_RECVFLOWID 70 /* bool; receive IP6 flowid/flowtype w/ datagram */ #define IPV6_RECVRSSBUCKETID 71 /* bool; receive IP6 RSS bucket id w/ datagram */ /* * The following option is private; do not use it from user applications. * It is deliberately defined to the same value as IP_MSFILTER. */ #define IPV6_MSFILTER 74 /* struct __msfilterreq; * set/get multicast source filter list. */ /* to define items, should talk with KAME guys first, for *BSD compatibility */ #define IPV6_RTHDR_LOOSE 0 /* this hop need not be a neighbor. XXX old spec */ #define IPV6_RTHDR_STRICT 1 /* this hop must be a neighbor. XXX old spec */ #define IPV6_RTHDR_TYPE_0 0 /* IPv6 routing header type 0 */ /* * Defaults and limits for options */ #define IPV6_DEFAULT_MULTICAST_HOPS 1 /* normally limit m'casts to 1 hop */ #define IPV6_DEFAULT_MULTICAST_LOOP 1 /* normally hear sends if a member */ /* * The im6o_membership vector for each socket is now dynamically allocated at * run-time, bounded by USHRT_MAX, and is reallocated when needed, sized * according to a power-of-two increment. */ #define IPV6_MIN_MEMBERSHIPS 31 #define IPV6_MAX_MEMBERSHIPS 4095 /* * Default resource limits for IPv6 multicast source filtering. * These may be modified by sysctl. */ #define IPV6_MAX_GROUP_SRC_FILTER 512 /* sources per group */ #define IPV6_MAX_SOCK_SRC_FILTER 128 /* sources per socket/group */ /* * Argument structure for IPV6_JOIN_GROUP and IPV6_LEAVE_GROUP. */ struct ipv6_mreq { struct in6_addr ipv6mr_multiaddr; unsigned int ipv6mr_interface; }; /* * IPV6_PKTINFO: Packet information(RFC2292 sec 5) */ struct in6_pktinfo { struct in6_addr ipi6_addr; /* src/dst IPv6 address */ unsigned int ipi6_ifindex; /* send/recv interface index */ }; /* * Control structure for IPV6_RECVPATHMTU socket option. */ struct ip6_mtuinfo { struct sockaddr_in6 ip6m_addr; /* or sockaddr_storage? */ uint32_t ip6m_mtu; }; /* * Argument for IPV6_PORTRANGE: * - which range to search when port is unspecified at bind() or connect() */ #define IPV6_PORTRANGE_DEFAULT 0 /* default range */ #define IPV6_PORTRANGE_HIGH 1 /* "high" - request firewall bypass */ #define IPV6_PORTRANGE_LOW 2 /* "low" - vouchsafe security */ #if __BSD_VISIBLE /* * Definitions for inet6 sysctl operations. * * Third level is protocol number. * Fourth level is desired variable within that protocol. */ #define IPV6PROTO_MAXID (IPPROTO_PIM + 1) /* don't list to IPV6PROTO_MAX */ /* * Names for IP sysctl objects */ #define IPV6CTL_FORWARDING 1 /* act as router */ #define IPV6CTL_SENDREDIRECTS 2 /* may send redirects when forwarding*/ #define IPV6CTL_DEFHLIM 3 /* default Hop-Limit */ #ifdef notyet #define IPV6CTL_DEFMTU 4 /* default MTU */ #endif #define IPV6CTL_FORWSRCRT 5 /* forward source-routed dgrams */ #define IPV6CTL_STATS 6 /* stats */ #define IPV6CTL_MRTSTATS 7 /* multicast forwarding stats */ #define IPV6CTL_MRTPROTO 8 /* multicast routing protocol */ #define IPV6CTL_MAXFRAGPACKETS 9 /* max packets reassembly queue */ #define IPV6CTL_SOURCECHECK 10 /* verify source route and intf */ #define IPV6CTL_SOURCECHECK_LOGINT 11 /* minimume logging interval */ #define IPV6CTL_ACCEPT_RTADV 12 /* 13; unused; was: IPV6CTL_KEEPFAITH */ #define IPV6CTL_LOG_INTERVAL 14 #define IPV6CTL_HDRNESTLIMIT 15 #define IPV6CTL_DAD_COUNT 16 #define IPV6CTL_AUTO_FLOWLABEL 17 #define IPV6CTL_DEFMCASTHLIM 18 #define IPV6CTL_GIF_HLIM 19 /* default HLIM for gif encap packet */ #define IPV6CTL_KAME_VERSION 20 #define IPV6CTL_USE_DEPRECATED 21 /* use deprecated addr (RFC2462 5.5.4) */ #define IPV6CTL_RR_PRUNE 22 /* walk timer for router renumbering */ #if 0 /* obsolete */ #define IPV6CTL_MAPPED_ADDR 23 #endif #define IPV6CTL_V6ONLY 24 /* IPV6CTL_RTEXPIRE 25 deprecated */ /* IPV6CTL_RTMINEXPIRE 26 deprecated */ /* IPV6CTL_RTMAXCACHE 27 deprecated */ #define IPV6CTL_USETEMPADDR 32 /* use temporary addresses (RFC3041) */ #define IPV6CTL_TEMPPLTIME 33 /* preferred lifetime for tmpaddrs */ #define IPV6CTL_TEMPVLTIME 34 /* valid lifetime for tmpaddrs */ #define IPV6CTL_AUTO_LINKLOCAL 35 /* automatic link-local addr assign */ #define IPV6CTL_RIP6STATS 36 /* raw_ip6 stats */ #define IPV6CTL_PREFER_TEMPADDR 37 /* prefer temporary addr as src */ #define IPV6CTL_ADDRCTLPOLICY 38 /* get/set address selection policy */ #define IPV6CTL_USE_DEFAULTZONE 39 /* use default scope zone */ #define IPV6CTL_MAXFRAGS 41 /* max fragments */ #if 0 #define IPV6CTL_IFQ 42 /* ip6intrq node */ #define IPV6CTL_ISATAPRTR 43 /* isatap router */ #endif #define IPV6CTL_MCAST_PMTU 44 /* enable pMTU discovery for multicast? */ /* New entries should be added here from current IPV6CTL_MAXID value. */ /* to define items, should talk with KAME guys first, for *BSD compatibility */ #define IPV6CTL_STEALTH 45 #define ICMPV6CTL_ND6_ONLINKNSRFC4861 47 #define IPV6CTL_NO_RADR 48 /* No defroute from RA */ #define IPV6CTL_NORBIT_RAIF 49 /* Disable R-bit in NA on RA * receiving IF. */ #define IPV6CTL_RFC6204W3 50 /* Accept defroute even when forwarding enabled */ #define IPV6CTL_MAXID 51 #endif /* __BSD_VISIBLE */ /* * Since both netinet/ and netinet6/ call into netipsec/ and netpfil/, * the protocol specific mbuf flags are shared between them. */ #define M_FASTFWD_OURS M_PROTO1 /* changed dst to local */ #define M_IP6_NEXTHOP M_PROTO2 /* explicit ip nexthop */ #define M_IP_NEXTHOP M_PROTO2 /* explicit ip nexthop */ #define M_SKIP_FIREWALL M_PROTO3 /* skip firewall processing */ #define M_AUTHIPHDR M_PROTO4 #define M_DECRYPTED M_PROTO5 #define M_LOOP M_PROTO6 #define M_AUTHIPDGM M_PROTO7 #define M_RTALERT_MLD M_PROTO8 #ifdef _KERNEL struct cmsghdr; struct ip6_hdr; int in6_cksum_pseudo(struct ip6_hdr *, uint32_t, uint8_t, uint16_t); int in6_cksum(struct mbuf *, u_int8_t, u_int32_t, u_int32_t); int in6_cksum_partial(struct mbuf *, u_int8_t, u_int32_t, u_int32_t, u_int32_t); int in6_localaddr(struct in6_addr *); int in6_localip(struct in6_addr *); int in6_ifhasaddr(struct ifnet *, struct in6_addr *); int in6_addrscope(const struct in6_addr *); char *ip6_sprintf(char *, const struct in6_addr *); struct in6_ifaddr *in6_ifawithifp(struct ifnet *, struct in6_addr *); extern void in6_if_up(struct ifnet *); struct sockaddr; extern u_char ip6_protox[]; void in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6); void in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6); void in6_sin6_2_sin_in_sock(struct sockaddr *nam); void in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam); extern void addrsel_policy_init(void); #define satosin6(sa) ((struct sockaddr_in6 *)(sa)) #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) #endif /* _KERNEL */ #ifndef _SIZE_T_DECLARED typedef __size_t size_t; #define _SIZE_T_DECLARED #endif #ifndef _SOCKLEN_T_DECLARED typedef __socklen_t socklen_t; #define _SOCKLEN_T_DECLARED #endif #if __BSD_VISIBLE __BEGIN_DECLS struct cmsghdr; extern int inet6_option_space(int); extern int inet6_option_init(void *, struct cmsghdr **, int); extern int inet6_option_append(struct cmsghdr *, const uint8_t *, int, int); extern uint8_t *inet6_option_alloc(struct cmsghdr *, int, int, int); extern int inet6_option_next(const struct cmsghdr *, uint8_t **); extern int inet6_option_find(const struct cmsghdr *, uint8_t **, int); extern size_t inet6_rthdr_space(int, int); extern struct cmsghdr *inet6_rthdr_init(void *, int); extern int inet6_rthdr_add(struct cmsghdr *, const struct in6_addr *, unsigned int); extern int inet6_rthdr_lasthop(struct cmsghdr *, unsigned int); #if 0 /* not implemented yet */ extern int inet6_rthdr_reverse(const struct cmsghdr *, struct cmsghdr *); #endif extern int inet6_rthdr_segments(const struct cmsghdr *); extern struct in6_addr *inet6_rthdr_getaddr(struct cmsghdr *, int); extern int inet6_rthdr_getflags(const struct cmsghdr *, int); extern int inet6_opt_init(void *, socklen_t); extern int inet6_opt_append(void *, socklen_t, int, uint8_t, socklen_t, uint8_t, void **); extern int inet6_opt_finish(void *, socklen_t, int); extern int inet6_opt_set_val(void *, int, void *, socklen_t); extern int inet6_opt_next(void *, socklen_t, int, uint8_t *, socklen_t *, void **); extern int inet6_opt_find(void *, socklen_t, int, uint8_t, socklen_t *, void **); extern int inet6_opt_get_val(void *, int, void *, socklen_t); extern socklen_t inet6_rth_space(int, int); extern void *inet6_rth_init(void *, socklen_t, int, int); extern int inet6_rth_add(void *, const struct in6_addr *); extern int inet6_rth_reverse(const void *, void *); extern int inet6_rth_segments(const void *); extern struct in6_addr *inet6_rth_getaddr(const void *, int); __END_DECLS #endif /* __BSD_VISIBLE */ #endif /* !_NETINET6_IN6_H_ */ Index: head/sys/netinet6/in6_pcb.c =================================================================== --- head/sys/netinet6/in6_pcb.c (revision 301216) +++ head/sys/netinet6/in6_pcb.c (revision 301217) @@ -1,1278 +1,1283 @@ /*- * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * Copyright (c) 2010-2011 Juniper Networks, Inc. * All rights reserved. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: in6_pcb.c,v 1.31 2001/05/21 05:45:10 jinmei Exp $ */ /*- * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.c 8.2 (Berkeley) 1/4/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_pcbgroup.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct inpcb *in6_pcblookup_hash_locked(struct inpcbinfo *, struct in6_addr *, u_int, struct in6_addr *, u_int, int, struct ifnet *); int in6_pcbbind(register struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) { struct socket *so = inp->inp_socket; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)NULL; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; u_short lport = 0; int error, lookupflags = 0; int reuseport = (so->so_options & SO_REUSEPORT); INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); if (TAILQ_EMPTY(&V_in6_ifaddrhead)) /* XXX broken! */ return (EADDRNOTAVAIL); if (inp->inp_lport || !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) return (EINVAL); if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) lookupflags = INPLOOKUP_WILDCARD; if (nam == NULL) { if ((error = prison_local_ip6(cred, &inp->in6p_laddr, ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0))) != 0) return (error); } else { sin6 = (struct sockaddr_in6 *)nam; if (nam->sa_len != sizeof(*sin6)) return (EINVAL); /* * family check. */ if (nam->sa_family != AF_INET6) return (EAFNOSUPPORT); if ((error = sa6_embedscope(sin6, V_ip6_use_defzone)) != 0) return(error); if ((error = prison_local_ip6(cred, &sin6->sin6_addr, ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0))) != 0) return (error); lport = sin6->sin6_port; if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { /* * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; * allow compepte duplication of binding if * SO_REUSEPORT is set, or if SO_REUSEADDR is set * and a multicast address is bound on both * new and duplicated sockets. */ if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) reuseport = SO_REUSEADDR|SO_REUSEPORT; } else if (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { struct ifaddr *ifa; sin6->sin6_port = 0; /* yech... */ if ((ifa = ifa_ifwithaddr((struct sockaddr *)sin6)) == NULL && (inp->inp_flags & INP_BINDANY) == 0) { return (EADDRNOTAVAIL); } /* * XXX: bind to an anycast address might accidentally * cause sending a packet with anycast source address. * We should allow to bind to a deprecated address, since * the application dares to use it. */ if (ifa != NULL && ((struct in6_ifaddr *)ifa)->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY|IN6_IFF_DETACHED)) { ifa_free(ifa); return (EADDRNOTAVAIL); } if (ifa != NULL) ifa_free(ifa); } if (lport) { struct inpcb *t; struct tcptw *tw; /* GROSS */ if (ntohs(lport) <= V_ipport_reservedhigh && ntohs(lport) >= V_ipport_reservedlow && priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0)) return (EACCES); if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr) && priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT, 0) != 0) { t = in6_pcblookup_local(pcbinfo, &sin6->sin6_addr, lport, INPLOOKUP_WILDCARD, cred); if (t && ((inp->inp_flags2 & INP_BINDMULTI) == 0) && ((t->inp_flags & INP_TIMEWAIT) == 0) && (so->so_type != SOCK_STREAM || IN6_IS_ADDR_UNSPECIFIED(&t->in6p_faddr)) && (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr) || !IN6_IS_ADDR_UNSPECIFIED(&t->in6p_laddr) || (t->inp_flags2 & INP_REUSEPORT) == 0) && (inp->inp_cred->cr_uid != t->inp_cred->cr_uid)) return (EADDRINUSE); /* * If the socket is a BINDMULTI socket, then * the credentials need to match and the * original socket also has to have been bound * with BINDMULTI. */ if (t && (! in_pcbbind_check_bindmulti(inp, t))) return (EADDRINUSE); #ifdef INET if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0 && IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { struct sockaddr_in sin; in6_sin6_2_sin(&sin, sin6); t = in_pcblookup_local(pcbinfo, sin.sin_addr, lport, INPLOOKUP_WILDCARD, cred); if (t && ((inp->inp_flags2 & INP_BINDMULTI) == 0) && ((t->inp_flags & INP_TIMEWAIT) == 0) && (so->so_type != SOCK_STREAM || ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && (inp->inp_cred->cr_uid != t->inp_cred->cr_uid)) return (EADDRINUSE); if (t && (! in_pcbbind_check_bindmulti(inp, t))) return (EADDRINUSE); } #endif } t = in6_pcblookup_local(pcbinfo, &sin6->sin6_addr, lport, lookupflags, cred); if (t && (t->inp_flags & INP_TIMEWAIT)) { /* * XXXRW: If an incpb has had its timewait * state recycled, we treat the address as * being in use (for now). This is better * than a panic, but not desirable. */ tw = intotw(t); if (tw == NULL || (reuseport & tw->tw_so_options) == 0) return (EADDRINUSE); } else if (t && (reuseport & inp_so_options(t)) == 0) { return (EADDRINUSE); } #ifdef INET if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0 && IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { struct sockaddr_in sin; in6_sin6_2_sin(&sin, sin6); t = in_pcblookup_local(pcbinfo, sin.sin_addr, lport, lookupflags, cred); if (t && t->inp_flags & INP_TIMEWAIT) { tw = intotw(t); if (tw == NULL) return (EADDRINUSE); if ((reuseport & tw->tw_so_options) == 0 && (ntohl(t->inp_laddr.s_addr) != INADDR_ANY || ((inp->inp_vflag & INP_IPV6PROTO) == (t->inp_vflag & INP_IPV6PROTO)))) return (EADDRINUSE); } else if (t && (reuseport & inp_so_options(t)) == 0 && (ntohl(t->inp_laddr.s_addr) != INADDR_ANY || (t->inp_vflag & INP_IPV6PROTO) != 0)) return (EADDRINUSE); } #endif } inp->in6p_laddr = sin6->sin6_addr; } if (lport == 0) { if ((error = in6_pcbsetport(&inp->in6p_laddr, inp, cred)) != 0) { /* Undo an address bind that may have occurred. */ inp->in6p_laddr = in6addr_any; return (error); } } else { inp->inp_lport = lport; if (in_pcbinshash(inp) != 0) { inp->in6p_laddr = in6addr_any; inp->inp_lport = 0; return (EAGAIN); } } return (0); } /* * Transform old in6_pcbconnect() into an inner subroutine for new * in6_pcbconnect(): Do some validity-checking on the remote * address (in mbuf 'nam') and then determine local host address * (i.e., which interface) to use to access that remote host. * * This preserves definition of in6_pcbconnect(), while supporting a * slightly different version for T/TCP. (This is more than * a bit of a kludge, but cleaning up the internal interfaces would * have forced minor changes in every protocol). */ static int in6_pcbladdr(register struct inpcb *inp, struct sockaddr *nam, struct in6_addr *plocal_addr6) { register struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nam; int error = 0; int scope_ambiguous = 0; struct in6_addr in6a; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); /* XXXRW: why? */ if (nam->sa_len != sizeof (*sin6)) return (EINVAL); if (sin6->sin6_family != AF_INET6) return (EAFNOSUPPORT); if (sin6->sin6_port == 0) return (EADDRNOTAVAIL); if (sin6->sin6_scope_id == 0 && !V_ip6_use_defzone) scope_ambiguous = 1; if ((error = sa6_embedscope(sin6, V_ip6_use_defzone)) != 0) return(error); if (!TAILQ_EMPTY(&V_in6_ifaddrhead)) { /* * If the destination address is UNSPECIFIED addr, * use the loopback addr, e.g ::1. */ if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) sin6->sin6_addr = in6addr_loopback; } if ((error = prison_remote_ip6(inp->inp_cred, &sin6->sin6_addr)) != 0) return (error); error = in6_selectsrc_socket(sin6, inp->in6p_outputopts, inp, inp->inp_cred, scope_ambiguous, &in6a, NULL); if (error) return (error); /* * Do not update this earlier, in case we return with an error. * * XXX: this in6_selectsrc_socket result might replace the bound local * address with the address specified by setsockopt(IPV6_PKTINFO). * Is it the intended behavior? */ *plocal_addr6 = in6a; /* * Don't do pcblookup call here; return interface in * plocal_addr6 * and exit to caller, that will do the lookup. */ return (0); } /* * Outer subroutine: * Connect from a socket to a specified address. * Both address and port must be specified in argument sin. * If don't have a local address for this socket yet, * then pick one. */ int in6_pcbconnect_mbuf(register struct inpcb *inp, struct sockaddr *nam, struct ucred *cred, struct mbuf *m) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; register struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nam; struct in6_addr addr6; int error; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); /* * Call inner routine, to assign local interface address. * in6_pcbladdr() may automatically fill in sin6_scope_id. */ if ((error = in6_pcbladdr(inp, nam, &addr6)) != 0) return (error); if (in6_pcblookup_hash_locked(pcbinfo, &sin6->sin6_addr, sin6->sin6_port, IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) ? &addr6 : &inp->in6p_laddr, inp->inp_lport, 0, NULL) != NULL) { return (EADDRINUSE); } if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { if (inp->inp_lport == 0) { error = in6_pcbbind(inp, (struct sockaddr *)0, cred); if (error) return (error); } inp->in6p_laddr = addr6; } inp->in6p_faddr = sin6->sin6_addr; inp->inp_fport = sin6->sin6_port; /* update flowinfo - draft-itojun-ipv6-flowlabel-api-00 */ inp->inp_flow &= ~IPV6_FLOWLABEL_MASK; if (inp->inp_flags & IN6P_AUTOFLOWLABEL) inp->inp_flow |= (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK); in_pcbrehash_mbuf(inp, m); return (0); } int in6_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) { return (in6_pcbconnect_mbuf(inp, nam, cred, NULL)); } void in6_pcbdisconnect(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); bzero((caddr_t)&inp->in6p_faddr, sizeof(inp->in6p_faddr)); inp->inp_fport = 0; /* clear flowinfo - draft-itojun-ipv6-flowlabel-api-00 */ inp->inp_flow &= ~IPV6_FLOWLABEL_MASK; in_pcbrehash(inp); } struct sockaddr * in6_sockaddr(in_port_t port, struct in6_addr *addr_p) { struct sockaddr_in6 *sin6; sin6 = malloc(sizeof *sin6, M_SONAME, M_WAITOK); bzero(sin6, sizeof *sin6); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(*sin6); sin6->sin6_port = port; sin6->sin6_addr = *addr_p; (void)sa6_recoverscope(sin6); /* XXX: should catch errors */ return (struct sockaddr *)sin6; } struct sockaddr * in6_v4mapsin6_sockaddr(in_port_t port, struct in_addr *addr_p) { struct sockaddr_in sin; struct sockaddr_in6 *sin6_p; bzero(&sin, sizeof sin); sin.sin_family = AF_INET; sin.sin_len = sizeof(sin); sin.sin_port = port; sin.sin_addr = *addr_p; sin6_p = malloc(sizeof *sin6_p, M_SONAME, M_WAITOK); in6_sin_2_v4mapsin6(&sin, sin6_p); return (struct sockaddr *)sin6_p; } int in6_getsockaddr(struct socket *so, struct sockaddr **nam) { register struct inpcb *inp; struct in6_addr addr; in_port_t port; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in6_getsockaddr: inp == NULL")); INP_RLOCK(inp); port = inp->inp_lport; addr = inp->in6p_laddr; INP_RUNLOCK(inp); *nam = in6_sockaddr(port, &addr); return 0; } int in6_getpeeraddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct in6_addr addr; in_port_t port; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in6_getpeeraddr: inp == NULL")); INP_RLOCK(inp); port = inp->inp_fport; addr = inp->in6p_faddr; INP_RUNLOCK(inp); *nam = in6_sockaddr(port, &addr); return 0; } int in6_mapped_sockaddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; int error; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in6_mapped_sockaddr: inp == NULL")); #ifdef INET if ((inp->inp_vflag & (INP_IPV4 | INP_IPV6)) == INP_IPV4) { error = in_getsockaddr(so, nam); if (error == 0) in6_sin_2_v4mapsin6_in_sock(nam); } else #endif { /* scope issues will be handled in in6_getsockaddr(). */ error = in6_getsockaddr(so, nam); } return error; } int in6_mapped_peeraddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; int error; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in6_mapped_peeraddr: inp == NULL")); #ifdef INET if ((inp->inp_vflag & (INP_IPV4 | INP_IPV6)) == INP_IPV4) { error = in_getpeeraddr(so, nam); if (error == 0) in6_sin_2_v4mapsin6_in_sock(nam); } else #endif /* scope issues will be handled in in6_getpeeraddr(). */ error = in6_getpeeraddr(so, nam); return error; } /* * Pass some notification to all connections of a protocol * associated with address dst. The local address and/or port numbers * may be specified to limit the search. The "usual action" will be * taken, depending on the ctlinput cmd. The caller must filter any * cmds that are uninteresting (e.g., no error in the map). * Call the protocol specific routine (if any) to report * any errors for each matching socket. */ void in6_pcbnotify(struct inpcbinfo *pcbinfo, struct sockaddr *dst, u_int fport_arg, const struct sockaddr *src, u_int lport_arg, int cmd, void *cmdarg, struct inpcb *(*notify)(struct inpcb *, int)) { struct inpcb *inp, *inp_temp; struct sockaddr_in6 sa6_src, *sa6_dst; u_short fport = fport_arg, lport = lport_arg; u_int32_t flowinfo; int errno; if ((unsigned)cmd >= PRC_NCMDS || dst->sa_family != AF_INET6) return; sa6_dst = (struct sockaddr_in6 *)dst; if (IN6_IS_ADDR_UNSPECIFIED(&sa6_dst->sin6_addr)) return; /* * note that src can be NULL when we get notify by local fragmentation. */ sa6_src = (src == NULL) ? sa6_any : *(const struct sockaddr_in6 *)src; flowinfo = sa6_src.sin6_flowinfo; /* * Redirects go to all references to the destination, * and use in6_rtchange to invalidate the route cache. * Dead host indications: also use in6_rtchange to invalidate * the cache, and deliver the error to all the sockets. * Otherwise, if we have knowledge of the local port and address, * deliver only to that socket. */ if (PRC_IS_REDIRECT(cmd) || cmd == PRC_HOSTDEAD) { fport = 0; lport = 0; bzero((caddr_t)&sa6_src.sin6_addr, sizeof(sa6_src.sin6_addr)); if (cmd != PRC_HOSTDEAD) notify = in6_rtchange; } errno = inet6ctlerrmap[cmd]; INP_INFO_WLOCK(pcbinfo); LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { INP_WLOCK(inp); if ((inp->inp_vflag & INP_IPV6) == 0) { INP_WUNLOCK(inp); continue; } /* * If the error designates a new path MTU for a destination * and the application (associated with this socket) wanted to * know the value, notify. * XXX: should we avoid to notify the value to TCP sockets? */ if (cmd == PRC_MSGSIZE && cmdarg != NULL) ip6_notify_pmtu(inp, (struct sockaddr_in6 *)dst, *(u_int32_t *)cmdarg); /* * Detect if we should notify the error. If no source and * destination ports are specifed, but non-zero flowinfo and * local address match, notify the error. This is the case * when the error is delivered with an encrypted buffer * by ESP. Otherwise, just compare addresses and ports * as usual. */ if (lport == 0 && fport == 0 && flowinfo && inp->inp_socket != NULL && flowinfo == (inp->inp_flow & IPV6_FLOWLABEL_MASK) && IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, &sa6_src.sin6_addr)) goto do_notify; else if (!IN6_ARE_ADDR_EQUAL(&inp->in6p_faddr, &sa6_dst->sin6_addr) || inp->inp_socket == 0 || (lport && inp->inp_lport != lport) || (!IN6_IS_ADDR_UNSPECIFIED(&sa6_src.sin6_addr) && !IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, &sa6_src.sin6_addr)) || (fport && inp->inp_fport != fport)) { INP_WUNLOCK(inp); continue; } do_notify: if (notify) { if ((*notify)(inp, errno)) INP_WUNLOCK(inp); } else INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(pcbinfo); } /* * Lookup a PCB based on the local address and port. Caller must hold the * hash lock. No inpcb locks or references are acquired. */ struct inpcb * in6_pcblookup_local(struct inpcbinfo *pcbinfo, struct in6_addr *laddr, u_short lport, int lookupflags, struct ucred *cred) { register struct inpcb *inp; int matchwild = 3, wildcard; KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); INP_HASH_WLOCK_ASSERT(pcbinfo); if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { struct inpcbhead *head; /* * Look for an unconnected (wildcard foreign addr) PCB that * matches the local address and port we're looking for. */ head = &pcbinfo->ipi_hashbase[INP_PCBHASH( INP6_PCBHASHKEY(&in6addr_any), lport, 0, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV6) == 0) continue; if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) && IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr) && inp->inp_lport == lport) { /* Found. */ if (cred == NULL || prison_equal_ip6(cred->cr_prison, inp->inp_cred->cr_prison)) return (inp); } } /* * Not found. */ return (NULL); } else { struct inpcbporthead *porthash; struct inpcbport *phd; struct inpcb *match = NULL; /* * Best fit PCB lookup. * * First see if this local port is in use by looking on the * port hash list. */ porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, pcbinfo->ipi_porthashmask)]; LIST_FOREACH(phd, porthash, phd_hash) { if (phd->phd_port == lport) break; } if (phd != NULL) { /* * Port is in use by one or more PCBs. Look for best * fit. */ LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { wildcard = 0; if (cred != NULL && !prison_equal_ip6(cred->cr_prison, inp->inp_cred->cr_prison)) continue; /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV6) == 0) continue; if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) wildcard++; if (!IN6_IS_ADDR_UNSPECIFIED( &inp->in6p_laddr)) { if (IN6_IS_ADDR_UNSPECIFIED(laddr)) wildcard++; else if (!IN6_ARE_ADDR_EQUAL( &inp->in6p_laddr, laddr)) continue; } else { if (!IN6_IS_ADDR_UNSPECIFIED(laddr)) wildcard++; } if (wildcard < matchwild) { match = inp; matchwild = wildcard; if (matchwild == 0) break; } } } return (match); } } void in6_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) { struct inpcb *in6p; struct ip6_moptions *im6o; int i, gap; INP_INFO_WLOCK(pcbinfo); LIST_FOREACH(in6p, pcbinfo->ipi_listhead, inp_list) { INP_WLOCK(in6p); im6o = in6p->in6p_moptions; if ((in6p->inp_vflag & INP_IPV6) && im6o != NULL) { /* * Unselect the outgoing ifp for multicast if it * is being detached. */ if (im6o->im6o_multicast_ifp == ifp) im6o->im6o_multicast_ifp = NULL; /* * Drop multicast group membership if we joined * through the interface being detached. */ gap = 0; for (i = 0; i < im6o->im6o_num_memberships; i++) { if (im6o->im6o_membership[i]->in6m_ifp == ifp) { in6_mc_leave(im6o->im6o_membership[i], NULL); gap++; } else if (gap != 0) { im6o->im6o_membership[i - gap] = im6o->im6o_membership[i]; } } im6o->im6o_num_memberships -= gap; } INP_WUNLOCK(in6p); } INP_INFO_WUNLOCK(pcbinfo); } /* * Check for alternatives when higher level complains * about service problems. For now, invalidate cached * routing information. If the route was created dynamically * (by a redirect), time to try a default gateway again. */ void in6_losing(struct inpcb *in6p) { if (in6p->inp_route6.ro_rt) { RTFREE(in6p->inp_route6.ro_rt); in6p->inp_route6.ro_rt = (struct rtentry *)NULL; } + if (in6p->inp_route.ro_lle) + LLE_FREE(in6p->inp_route.ro_lle); /* zeros ro_lle */ return; } /* * After a routing change, flush old routing * and allocate a (hopefully) better one. */ struct inpcb * in6_rtchange(struct inpcb *inp, int errno) { if (inp->inp_route6.ro_rt) { RTFREE(inp->inp_route6.ro_rt); inp->inp_route6.ro_rt = (struct rtentry *)NULL; } + if (inp->inp_route.ro_lle) + LLE_FREE(inp->inp_route.ro_lle); /* zeros ro_lle */ return inp; } #ifdef PCBGROUP /* * Lookup PCB in hash list, using pcbgroup tables. */ static struct inpcb * in6_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, struct in6_addr *faddr, u_int fport_arg, struct in6_addr *laddr, u_int lport_arg, int lookupflags, struct ifnet *ifp) { struct inpcbhead *head; struct inpcb *inp, *tmpinp; u_short fport = fport_arg, lport = lport_arg; /* * First look for an exact match. */ tmpinp = NULL; INP_GROUP_LOCK(pcbgroup); head = &pcbgroup->ipg_hashbase[INP_PCBHASH( INP6_PCBHASHKEY(faddr), lport, fport, pcbgroup->ipg_hashmask)]; LIST_FOREACH(inp, head, inp_pcbgrouphash) { /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV6) == 0) continue; if (IN6_ARE_ADDR_EQUAL(&inp->in6p_faddr, faddr) && IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr) && inp->inp_fport == fport && inp->inp_lport == lport) { /* * XXX We should be able to directly return * the inp here, without any checks. * Well unless both bound with SO_REUSEPORT? */ if (prison_flag(inp->inp_cred, PR_IP6)) goto found; if (tmpinp == NULL) tmpinp = inp; } } if (tmpinp != NULL) { inp = tmpinp; goto found; } /* * Then look for a wildcard match in the pcbgroup. */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { struct inpcb *local_wild = NULL, *local_exact = NULL; struct inpcb *jail_wild = NULL; int injail; /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ head = &pcbgroup->ipg_hashbase[ INP_PCBHASH(INADDR_ANY, lport, 0, pcbgroup->ipg_hashmask)]; LIST_FOREACH(inp, head, inp_pcbgrouphash) { /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV6) == 0) continue; if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) || inp->inp_lport != lport) { continue; } injail = prison_flag(inp->inp_cred, PR_IP6); if (injail) { if (prison_check_ip6(inp->inp_cred, laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr)) { if (injail) goto found; else local_exact = inp; } else if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { if (injail) jail_wild = inp; else local_wild = inp; } } /* LIST_FOREACH */ inp = jail_wild; if (inp == NULL) inp = jail_wild; if (inp == NULL) inp = local_exact; if (inp == NULL) inp = local_wild; if (inp != NULL) goto found; } /* * Then look for a wildcard match, if requested. */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { struct inpcb *local_wild = NULL, *local_exact = NULL; struct inpcb *jail_wild = NULL; int injail; /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ head = &pcbinfo->ipi_wildbase[INP_PCBHASH( INP6_PCBHASHKEY(&in6addr_any), lport, 0, pcbinfo->ipi_wildmask)]; LIST_FOREACH(inp, head, inp_pcbgroup_wild) { /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV6) == 0) continue; if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) || inp->inp_lport != lport) { continue; } injail = prison_flag(inp->inp_cred, PR_IP6); if (injail) { if (prison_check_ip6(inp->inp_cred, laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr)) { if (injail) goto found; else local_exact = inp; } else if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { if (injail) jail_wild = inp; else local_wild = inp; } } /* LIST_FOREACH */ inp = jail_wild; if (inp == NULL) inp = jail_wild; if (inp == NULL) inp = local_exact; if (inp == NULL) inp = local_wild; if (inp != NULL) goto found; } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ INP_GROUP_UNLOCK(pcbgroup); return (NULL); found: in_pcbref(inp); INP_GROUP_UNLOCK(pcbgroup); if (lookupflags & INPLOOKUP_WLOCKPCB) { INP_WLOCK(inp); if (in_pcbrele_wlocked(inp)) return (NULL); } else if (lookupflags & INPLOOKUP_RLOCKPCB) { INP_RLOCK(inp); if (in_pcbrele_rlocked(inp)) return (NULL); } else panic("%s: locking buf", __func__); return (inp); } #endif /* PCBGROUP */ /* * Lookup PCB in hash list. */ static struct inpcb * in6_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in6_addr *faddr, u_int fport_arg, struct in6_addr *laddr, u_int lport_arg, int lookupflags, struct ifnet *ifp) { struct inpcbhead *head; struct inpcb *inp, *tmpinp; u_short fport = fport_arg, lport = lport_arg; KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); INP_HASH_LOCK_ASSERT(pcbinfo); /* * First look for an exact match. */ tmpinp = NULL; head = &pcbinfo->ipi_hashbase[INP_PCBHASH( INP6_PCBHASHKEY(faddr), lport, fport, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV6) == 0) continue; if (IN6_ARE_ADDR_EQUAL(&inp->in6p_faddr, faddr) && IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr) && inp->inp_fport == fport && inp->inp_lport == lport) { /* * XXX We should be able to directly return * the inp here, without any checks. * Well unless both bound with SO_REUSEPORT? */ if (prison_flag(inp->inp_cred, PR_IP6)) return (inp); if (tmpinp == NULL) tmpinp = inp; } } if (tmpinp != NULL) return (tmpinp); /* * Then look for a wildcard match, if requested. */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { struct inpcb *local_wild = NULL, *local_exact = NULL; struct inpcb *jail_wild = NULL; int injail; /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ head = &pcbinfo->ipi_hashbase[INP_PCBHASH( INP6_PCBHASHKEY(&in6addr_any), lport, 0, pcbinfo->ipi_hashmask)]; LIST_FOREACH(inp, head, inp_hash) { /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV6) == 0) continue; if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) || inp->inp_lport != lport) { continue; } injail = prison_flag(inp->inp_cred, PR_IP6); if (injail) { if (prison_check_ip6(inp->inp_cred, laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (IN6_ARE_ADDR_EQUAL(&inp->in6p_laddr, laddr)) { if (injail) return (inp); else local_exact = inp; } else if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { if (injail) jail_wild = inp; else local_wild = inp; } } /* LIST_FOREACH */ if (jail_wild != NULL) return (jail_wild); if (local_exact != NULL) return (local_exact); if (local_wild != NULL) return (local_wild); } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ /* * Not found. */ return (NULL); } /* * Lookup PCB in hash list, using pcbinfo tables. This variation locks the * hash list lock, and will return the inpcb locked (i.e., requires * INPLOOKUP_LOCKPCB). */ static struct inpcb * in6_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in6_addr *faddr, u_int fport, struct in6_addr *laddr, u_int lport, int lookupflags, struct ifnet *ifp) { struct inpcb *inp; INP_HASH_RLOCK(pcbinfo); inp = in6_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); if (inp != NULL) { in_pcbref(inp); INP_HASH_RUNLOCK(pcbinfo); if (lookupflags & INPLOOKUP_WLOCKPCB) { INP_WLOCK(inp); if (in_pcbrele_wlocked(inp)) return (NULL); } else if (lookupflags & INPLOOKUP_RLOCKPCB) { INP_RLOCK(inp); if (in_pcbrele_rlocked(inp)) return (NULL); } else panic("%s: locking bug", __func__); } else INP_HASH_RUNLOCK(pcbinfo); return (inp); } /* * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf * from which a pre-calculated hash value may be extracted. * * Possibly more of this logic should be in in6_pcbgroup.c. */ struct inpcb * in6_pcblookup(struct inpcbinfo *pcbinfo, struct in6_addr *faddr, u_int fport, struct in6_addr *laddr, u_int lport, int lookupflags, struct ifnet *ifp) { #if defined(PCBGROUP) && !defined(RSS) struct inpcbgroup *pcbgroup; #endif KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, ("%s: LOCKPCB not set", __func__)); /* * When not using RSS, use connection groups in preference to the * reservation table when looking up 4-tuples. When using RSS, just * use the reservation table, due to the cost of the Toeplitz hash * in software. * * XXXRW: This policy belongs in the pcbgroup code, as in principle * we could be doing RSS with a non-Toeplitz hash that is affordable * in software. */ #if defined(PCBGROUP) && !defined(RSS) if (in_pcbgroup_enabled(pcbinfo)) { pcbgroup = in6_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, fport); return (in6_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, laddr, lport, lookupflags, ifp)); } #endif return (in6_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, lookupflags, ifp)); } struct inpcb * in6_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in6_addr *faddr, u_int fport, struct in6_addr *laddr, u_int lport, int lookupflags, struct ifnet *ifp, struct mbuf *m) { #ifdef PCBGROUP struct inpcbgroup *pcbgroup; #endif KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, ("%s: LOCKPCB not set", __func__)); #ifdef PCBGROUP /* * If we can use a hardware-generated hash to look up the connection * group, use that connection group to find the inpcb. Otherwise * fall back on a software hash -- or the reservation table if we're * using RSS. * * XXXRW: As above, that policy belongs in the pcbgroup code. */ if (in_pcbgroup_enabled(pcbinfo) && M_HASHTYPE_TEST(m, M_HASHTYPE_NONE) == 0) { pcbgroup = in6_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), m->m_pkthdr.flowid); if (pcbgroup != NULL) return (in6_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, laddr, lport, lookupflags, ifp)); #ifndef RSS pcbgroup = in6_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, fport); return (in6_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, laddr, lport, lookupflags, ifp)); #endif } #endif return (in6_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, lookupflags, ifp)); } void init_sin6(struct sockaddr_in6 *sin6, struct mbuf *m) { struct ip6_hdr *ip; ip = mtod(m, struct ip6_hdr *); bzero(sin6, sizeof(*sin6)); sin6->sin6_len = sizeof(*sin6); sin6->sin6_family = AF_INET6; sin6->sin6_addr = ip->ip6_src; (void)sa6_recoverscope(sin6); /* XXX: should catch errors... */ return; } Index: head/sys/netinet6/ip6_output.c =================================================================== --- head/sys/netinet6/ip6_output.c (revision 301216) +++ head/sys/netinet6/ip6_output.c (revision 301217) @@ -1,3072 +1,3073 @@ /*- * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ */ /*- * Copyright (c) 1982, 1986, 1988, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipfw.h" #include "opt_ipsec.h" #include "opt_sctp.h" #include "opt_route.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IPSEC #include #include #include #include #endif /* IPSEC */ #ifdef SCTP #include #include #endif #include #include #ifdef FLOWTABLE #include #endif extern int in6_mcast_loop; struct ip6_exthdrs { struct mbuf *ip6e_ip6; struct mbuf *ip6e_hbh; struct mbuf *ip6e_dest1; struct mbuf *ip6e_rthdr; struct mbuf *ip6e_dest2; }; static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, struct ucred *, int); static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, struct socket *, struct sockopt *); static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, struct ucred *, int, int, int); static int ip6_copyexthdr(struct mbuf **, caddr_t, int); static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, struct ip6_frag **); static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); static int ip6_getpmtu(struct route_in6 *, int, struct ifnet *, const struct in6_addr *, u_long *, int *, u_int); static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, u_long *, int *); static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); /* * Make an extension header from option data. hp is the source, and * mp is the destination. */ #define MAKE_EXTHDR(hp, mp) \ do { \ if (hp) { \ struct ip6_ext *eh = (struct ip6_ext *)(hp); \ error = ip6_copyexthdr((mp), (caddr_t)(hp), \ ((eh)->ip6e_len + 1) << 3); \ if (error) \ goto freehdrs; \ } \ } while (/*CONSTCOND*/ 0) /* * Form a chain of extension headers. * m is the extension header mbuf * mp is the previous mbuf in the chain * p is the next header * i is the type of option. */ #define MAKE_CHAIN(m, mp, p, i)\ do {\ if (m) {\ if (!hdrsplit) \ panic("assumption failed: hdr not split"); \ *mtod((m), u_char *) = *(p);\ *(p) = (i);\ p = mtod((m), u_char *);\ (m)->m_next = (mp)->m_next;\ (mp)->m_next = (m);\ (mp) = (m);\ }\ } while (/*CONSTCOND*/ 0) void in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) { u_short csum; csum = in_cksum_skip(m, offset + plen, offset); if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) csum = 0xffff; offset += m->m_pkthdr.csum_data; /* checksum offset */ if (offset + sizeof(u_short) > m->m_len) { printf("%s: delayed m_pullup, m->len: %d plen %u off %u " "csum_flags=%b\n", __func__, m->m_len, plen, offset, (int)m->m_pkthdr.csum_flags, CSUM_BITS); /* * XXX this should not happen, but if it does, the correct * behavior may be to insert the checksum in the appropriate * next mbuf in the chain. */ return; } *(u_short *)(m->m_data + offset) = csum; } int ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, int mtu, uint32_t id) { struct mbuf *m, **mnext, *m_frgpart; struct ip6_hdr *ip6, *mhip6; struct ip6_frag *ip6f; int off; int error; int tlen = m0->m_pkthdr.len; m = m0; ip6 = mtod(m, struct ip6_hdr *); mnext = &m->m_nextpkt; for (off = hlen; off < tlen; off += mtu) { m = m_gethdr(M_NOWAIT, MT_DATA); if (!m) { IP6STAT_INC(ip6s_odropped); return (ENOBUFS); } m->m_flags = m0->m_flags & M_COPYFLAGS; *mnext = m; mnext = &m->m_nextpkt; m->m_data += max_linkhdr; mhip6 = mtod(m, struct ip6_hdr *); *mhip6 = *ip6; m->m_len = sizeof(*mhip6); error = ip6_insertfraghdr(m0, m, hlen, &ip6f); if (error) { IP6STAT_INC(ip6s_odropped); return (error); } ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); if (off + mtu >= tlen) mtu = tlen - off; else ip6f->ip6f_offlg |= IP6F_MORE_FRAG; mhip6->ip6_plen = htons((u_short)(mtu + hlen + sizeof(*ip6f) - sizeof(struct ip6_hdr))); if ((m_frgpart = m_copy(m0, off, mtu)) == NULL) { IP6STAT_INC(ip6s_odropped); return (ENOBUFS); } m_cat(m, m_frgpart); m->m_pkthdr.len = mtu + hlen + sizeof(*ip6f); m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum; m->m_pkthdr.rcvif = NULL; ip6f->ip6f_reserved = 0; ip6f->ip6f_ident = id; ip6f->ip6f_nxt = nextproto; IP6STAT_INC(ip6s_ofragments); in6_ifstat_inc(ifp, ifs6_out_fragcreat); } return (0); } /* * IP6 output. The packet in mbuf chain m contains a skeletal IP6 * header (with pri, len, nxt, hlim, src, dst). * This function may modify ver and hlim only. * The mbuf chain containing the packet will be freed. * The mbuf opt, if present, will not be freed. * If route_in6 ro is present and has ro_rt initialized, route lookup would be * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, * then result of route lookup is stored in ro->ro_rt. * * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, * which is rt_mtu. * * ifpp - XXX: just for statistics */ /* * XXX TODO: no flowid is assigned for outbound flows? */ int ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro, int flags, struct ip6_moptions *im6o, struct ifnet **ifpp, struct inpcb *inp) { struct ip6_hdr *ip6; struct ifnet *ifp, *origifp; struct mbuf *m = m0; struct mbuf *mprev = NULL; int hlen, tlen, len; struct route_in6 ip6route; struct rtentry *rt = NULL; struct sockaddr_in6 *dst, src_sa, dst_sa; struct in6_addr odst; int error = 0; struct in6_ifaddr *ia = NULL; u_long mtu; int alwaysfrag, dontfrag; u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; struct ip6_exthdrs exthdrs; struct in6_addr src0, dst0; u_int32_t zone; struct route_in6 *ro_pmtu = NULL; int hdrsplit = 0; int sw_csum, tso; int needfiblookup; uint32_t fibnum; struct m_tag *fwd_tag = NULL; uint32_t id; if (inp != NULL) { M_SETFIB(m, inp->inp_inc.inc_fibnum); if ((flags & IP_NODEFAULTFLOWID) == 0) { /* unconditionally set flowid */ m->m_pkthdr.flowid = inp->inp_flowid; M_HASHTYPE_SET(m, inp->inp_flowtype); } } bzero(&exthdrs, sizeof(exthdrs)); if (opt) { /* Hop-by-Hop options header */ MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); /* Destination options header(1st part) */ if (opt->ip6po_rthdr) { /* * Destination options header(1st part) * This only makes sense with a routing header. * See Section 9.2 of RFC 3542. * Disabling this part just for MIP6 convenience is * a bad idea. We need to think carefully about a * way to make the advanced API coexist with MIP6 * options, which might automatically be inserted in * the kernel. */ MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); } /* Routing header */ MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); /* Destination options header(2nd part) */ MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); } #ifdef IPSEC /* * IPSec checking which handles several cases. * FAST IPSEC: We re-injected the packet. * XXX: need scope argument. */ switch(ip6_ipsec_output(&m, inp, &error)) { case 1: /* Bad packet */ goto freehdrs; case -1: /* IPSec done */ goto done; case 0: /* No IPSec */ default: break; } #endif /* IPSEC */ /* * Calculate the total length of the extension header chain. * Keep the length of the unfragmentable part for fragmentation. */ optlen = 0; if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; unfragpartlen = optlen + sizeof(struct ip6_hdr); /* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */ if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; /* * If there is at least one extension header, * separate IP6 header from the payload. */ if (optlen && !hdrsplit) { if ((error = ip6_splithdr(m, &exthdrs)) != 0) { m = NULL; goto freehdrs; } m = exthdrs.ip6e_ip6; hdrsplit++; } ip6 = mtod(m, struct ip6_hdr *); /* adjust mbuf packet header length */ m->m_pkthdr.len += optlen; plen = m->m_pkthdr.len - sizeof(*ip6); /* If this is a jumbo payload, insert a jumbo payload option. */ if (plen > IPV6_MAXPACKET) { if (!hdrsplit) { if ((error = ip6_splithdr(m, &exthdrs)) != 0) { m = NULL; goto freehdrs; } m = exthdrs.ip6e_ip6; hdrsplit++; } /* adjust pointer */ ip6 = mtod(m, struct ip6_hdr *); if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) goto freehdrs; ip6->ip6_plen = 0; } else ip6->ip6_plen = htons(plen); /* * Concatenate headers and fill in next header fields. * Here we have, on "m" * IPv6 payload * and we insert headers accordingly. Finally, we should be getting: * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] * * during the header composing process, "m" points to IPv6 header. * "mprev" points to an extension header prior to esp. */ u_char *nexthdrp = &ip6->ip6_nxt; mprev = m; /* * we treat dest2 specially. this makes IPsec processing * much easier. the goal here is to make mprev point the * mbuf prior to dest2. * * result: IPv6 dest2 payload * m and mprev will point to IPv6 header. */ if (exthdrs.ip6e_dest2) { if (!hdrsplit) panic("assumption failed: hdr not split"); exthdrs.ip6e_dest2->m_next = m->m_next; m->m_next = exthdrs.ip6e_dest2; *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; ip6->ip6_nxt = IPPROTO_DSTOPTS; } /* * result: IPv6 hbh dest1 rthdr dest2 payload * m will point to IPv6 header. mprev will point to the * extension header prior to dest2 (rthdr in the above case). */ MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, IPPROTO_DSTOPTS); MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, IPPROTO_ROUTING); /* * If there is a routing header, discard the packet. */ if (exthdrs.ip6e_rthdr) { error = EINVAL; goto bad; } /* Source address validation */ if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && (flags & IPV6_UNSPECSRC) == 0) { error = EOPNOTSUPP; IP6STAT_INC(ip6s_badscope); goto bad; } if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { error = EOPNOTSUPP; IP6STAT_INC(ip6s_badscope); goto bad; } IP6STAT_INC(ip6s_localout); /* * Route packet. */ if (ro == NULL) { ro = &ip6route; bzero((caddr_t)ro, sizeof(*ro)); - } + } else + ro->ro_flags |= RT_LLE_CACHE; ro_pmtu = ro; if (opt && opt->ip6po_rthdr) ro = &opt->ip6po_route; dst = (struct sockaddr_in6 *)&ro->ro_dst; #ifdef FLOWTABLE if (ro->ro_rt == NULL) (void )flowtable_lookup(AF_INET6, m, (struct route *)ro); #endif fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); again: /* * if specified, try to fill in the traffic class field. * do not override if a non-zero value is already set. * we check the diffserv field and the ecn field separately. */ if (opt && opt->ip6po_tclass >= 0) { int mask = 0; if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) mask |= 0xfc; if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) mask |= 0x03; if (mask != 0) ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); } /* fill in or override the hop limit field, if necessary. */ if (opt && opt->ip6po_hlim != -1) ip6->ip6_hlim = opt->ip6po_hlim & 0xff; else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { if (im6o != NULL) ip6->ip6_hlim = im6o->im6o_multicast_hlim; else ip6->ip6_hlim = V_ip6_defmcasthlim; } /* * Validate route against routing table additions; * a better/more specific route might have been added. * Make sure address family is set in route. */ if (inp) { ro->ro_dst.sin6_family = AF_INET6; RT_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); } if (ro->ro_rt && fwd_tag == NULL && (ro->ro_rt->rt_flags & RTF_UP) && ro->ro_dst.sin6_family == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { rt = ro->ro_rt; ifp = ro->ro_rt->rt_ifp; } else { if (fwd_tag == NULL) { bzero(&dst_sa, sizeof(dst_sa)); dst_sa.sin6_family = AF_INET6; dst_sa.sin6_len = sizeof(dst_sa); dst_sa.sin6_addr = ip6->ip6_dst; } error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp, &rt, fibnum); if (error != 0) { if (ifp != NULL) in6_ifstat_inc(ifp, ifs6_out_discard); goto bad; } } if (rt == NULL) { /* * If in6_selectroute() does not return a route entry, * dst may not have been updated. */ *dst = dst_sa; /* XXX */ } /* * then rt (for unicast) and ifp must be non-NULL valid values. */ if ((flags & IPV6_FORWARDING) == 0) { /* XXX: the FORWARDING flag can be set for mrouting. */ in6_ifstat_inc(ifp, ifs6_out_request); } if (rt != NULL) { ia = (struct in6_ifaddr *)(rt->rt_ifa); counter_u64_add(rt->rt_pksent, 1); } /* * The outgoing interface must be in the zone of source and * destination addresses. */ origifp = ifp; src0 = ip6->ip6_src; if (in6_setscope(&src0, origifp, &zone)) goto badscope; bzero(&src_sa, sizeof(src_sa)); src_sa.sin6_family = AF_INET6; src_sa.sin6_len = sizeof(src_sa); src_sa.sin6_addr = ip6->ip6_src; if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) goto badscope; dst0 = ip6->ip6_dst; if (in6_setscope(&dst0, origifp, &zone)) goto badscope; /* re-initialize to be sure */ bzero(&dst_sa, sizeof(dst_sa)); dst_sa.sin6_family = AF_INET6; dst_sa.sin6_len = sizeof(dst_sa); dst_sa.sin6_addr = ip6->ip6_dst; if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) { goto badscope; } /* We should use ia_ifp to support the case of * sending packets to an address of our own. */ if (ia != NULL && ia->ia_ifp) ifp = ia->ia_ifp; /* scope check is done. */ goto routefound; badscope: IP6STAT_INC(ip6s_badscope); in6_ifstat_inc(origifp, ifs6_out_discard); if (error == 0) error = EHOSTUNREACH; /* XXX */ goto bad; routefound: if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { if (opt && opt->ip6po_nextroute.ro_rt) { /* * The nexthop is explicitly specified by the * application. We assume the next hop is an IPv6 * address. */ dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; } else if ((rt->rt_flags & RTF_GATEWAY)) dst = (struct sockaddr_in6 *)rt->rt_gateway; } if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ } else { m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; in6_ifstat_inc(ifp, ifs6_out_mcast); /* * Confirm that the outgoing interface supports multicast. */ if (!(ifp->if_flags & IFF_MULTICAST)) { IP6STAT_INC(ip6s_noroute); in6_ifstat_inc(ifp, ifs6_out_discard); error = ENETUNREACH; goto bad; } if ((im6o == NULL && in6_mcast_loop) || (im6o && im6o->im6o_multicast_loop)) { /* * Loop back multicast datagram if not expressly * forbidden to do so, even if we have not joined * the address; protocols will filter it later, * thus deferring a hash lookup and lock acquisition * at the expense of an m_copym(). */ ip6_mloopback(ifp, m); } else { /* * If we are acting as a multicast router, perform * multicast forwarding as if the packet had just * arrived on the interface to which we are about * to send. The multicast forwarding function * recursively calls this function, using the * IPV6_FORWARDING flag to prevent infinite recursion. * * Multicasts that are looped back by ip6_mloopback(), * above, will be forwarded by the ip6_input() routine, * if necessary. */ if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { /* * XXX: ip6_mforward expects that rcvif is NULL * when it is called from the originating path. * However, it may not always be the case. */ m->m_pkthdr.rcvif = NULL; if (ip6_mforward(ip6, ifp, m) != 0) { m_freem(m); goto done; } } } /* * Multicasts with a hoplimit of zero may be looped back, * above, but must not be transmitted on a network. * Also, multicasts addressed to the loopback interface * are not sent -- the above call to ip6_mloopback() will * loop back a copy if this host actually belongs to the * destination group on the loopback interface. */ if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { m_freem(m); goto done; } } /* * Fill the outgoing inteface to tell the upper layer * to increment per-interface statistics. */ if (ifpp) *ifpp = ifp; /* Determine path MTU. */ if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, &mtu, &alwaysfrag, fibnum)) != 0) goto bad; /* * The caller of this function may specify to use the minimum MTU * in some cases. * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU * setting. The logic is a bit complicated; by default, unicast * packets will follow path MTU while multicast packets will be sent at * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets * including unicast ones will be sent at the minimum MTU. Multicast * packets will always be sent at the minimum MTU unless * IP6PO_MINMTU_DISABLE is explicitly specified. * See RFC 3542 for more details. */ if (mtu > IPV6_MMTU) { if ((flags & IPV6_MINMTU)) mtu = IPV6_MMTU; else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) mtu = IPV6_MMTU; else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && (opt == NULL || opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { mtu = IPV6_MMTU; } } /* * clear embedded scope identifiers if necessary. * in6_clearscope will touch the addresses only when necessary. */ in6_clearscope(&ip6->ip6_src); in6_clearscope(&ip6->ip6_dst); /* * If the outgoing packet contains a hop-by-hop options header, * it must be examined and processed even by the source node. * (RFC 2460, section 4.) */ if (exthdrs.ip6e_hbh) { struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); u_int32_t dummy; /* XXX unused */ u_int32_t plen = 0; /* XXX: ip6_process will check the value */ #ifdef DIAGNOSTIC if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) panic("ip6e_hbh is not contiguous"); #endif /* * XXX: if we have to send an ICMPv6 error to the sender, * we need the M_LOOP flag since icmp6_error() expects * the IPv6 and the hop-by-hop options header are * contiguous unless the flag is set. */ m->m_flags |= M_LOOP; m->m_pkthdr.rcvif = ifp; if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), &dummy, &plen) < 0) { /* m was already freed at this point */ error = EINVAL;/* better error? */ goto done; } m->m_flags &= ~M_LOOP; /* XXX */ m->m_pkthdr.rcvif = NULL; } /* Jump over all PFIL processing if hooks are not active. */ if (!PFIL_HOOKED(&V_inet6_pfil_hook)) goto passout; odst = ip6->ip6_dst; /* Run through list of hooks for output packets. */ error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp); if (error != 0 || m == NULL) goto done; /* adjust pointer */ ip6 = mtod(m, struct ip6_hdr *); needfiblookup = 0; /* See if destination IP address was changed by packet filter. */ if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { m->m_flags |= M_SKIP_FIREWALL; /* If destination is now ourself drop to ip6_input(). */ if (in6_localip(&ip6->ip6_dst)) { m->m_flags |= M_FASTFWD_OURS; if (m->m_pkthdr.rcvif == NULL) m->m_pkthdr.rcvif = V_loif; if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } #ifdef SCTP if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; #endif error = netisr_queue(NETISR_IPV6, m); goto done; } else { RO_RTFREE(ro); needfiblookup = 1; /* Redo the routing table lookup. */ } } /* See if fib was changed by packet filter. */ if (fibnum != M_GETFIB(m)) { m->m_flags |= M_SKIP_FIREWALL; fibnum = M_GETFIB(m); RO_RTFREE(ro); needfiblookup = 1; } if (needfiblookup) goto again; /* See if local, if yes, send it to netisr. */ if (m->m_flags & M_FASTFWD_OURS) { if (m->m_pkthdr.rcvif == NULL) m->m_pkthdr.rcvif = V_loif; if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } #ifdef SCTP if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; #endif error = netisr_queue(NETISR_IPV6, m); goto done; } /* Or forward to some other address? */ if ((m->m_flags & M_IP6_NEXTHOP) && (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { dst = (struct sockaddr_in6 *)&ro->ro_dst; bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); m->m_flags |= M_SKIP_FIREWALL; m->m_flags &= ~M_IP6_NEXTHOP; m_tag_delete(m, fwd_tag); goto again; } passout: /* * Send the packet to the outgoing interface. * If necessary, do IPv6 fragmentation before sending. * * the logic here is rather complex: * 1: normal case (dontfrag == 0, alwaysfrag == 0) * 1-a: send as is if tlen <= path mtu * 1-b: fragment if tlen > path mtu * * 2: if user asks us not to fragment (dontfrag == 1) * 2-a: send as is if tlen <= interface mtu * 2-b: error if tlen > interface mtu * * 3: if we always need to attach fragment header (alwaysfrag == 1) * always fragment * * 4: if dontfrag == 1 && alwaysfrag == 1 * error, as we cannot handle this conflicting request */ sw_csum = m->m_pkthdr.csum_flags; if (!hdrsplit) { tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; sw_csum &= ~ifp->if_hwassist; } else tso = 0; /* * If we added extension headers, we will not do TSO and calculate the * checksums ourselves for now. * XXX-BZ Need a framework to know when the NIC can handle it, even * with ext. hdrs. */ if (sw_csum & CSUM_DELAY_DATA_IPV6) { sw_csum &= ~CSUM_DELAY_DATA_IPV6; in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr)); } #ifdef SCTP if (sw_csum & CSUM_SCTP_IPV6) { sw_csum &= ~CSUM_SCTP_IPV6; sctp_delayed_cksum(m, sizeof(struct ip6_hdr)); } #endif m->m_pkthdr.csum_flags &= ifp->if_hwassist; tlen = m->m_pkthdr.len; if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) dontfrag = 1; else dontfrag = 0; if (dontfrag && alwaysfrag) { /* case 4 */ /* conflicting request - can't transmit */ error = EMSGSIZE; goto bad; } if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* case 2-b */ /* * Even if the DONTFRAG option is specified, we cannot send the * packet when the data length is larger than the MTU of the * outgoing interface. * Notify the error by sending IPV6_PATHMTU ancillary data if * application wanted to know the MTU value. Also return an * error code (this is not described in the API spec). */ if (inp != NULL) ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); error = EMSGSIZE; goto bad; } /* * transmit packet without fragmentation */ if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ struct in6_ifaddr *ia6; ip6 = mtod(m, struct ip6_hdr *); ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); if (ia6) { /* Record statistics for this interface address. */ counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); counter_u64_add(ia6->ia_ifa.ifa_obytes, m->m_pkthdr.len); ifa_free(&ia6->ia_ifa); } error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); goto done; } /* * try to fragment the packet. case 1-b and 3 */ if (mtu < IPV6_MMTU) { /* path MTU cannot be less than IPV6_MMTU */ error = EMSGSIZE; in6_ifstat_inc(ifp, ifs6_out_fragfail); goto bad; } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ error = EMSGSIZE; in6_ifstat_inc(ifp, ifs6_out_fragfail); goto bad; } else { u_char nextproto; /* * Too large for the destination or interface; * fragment if possible. * Must be able to put at least 8 bytes per fragment. */ hlen = unfragpartlen; if (mtu > IPV6_MAXPACKET) mtu = IPV6_MAXPACKET; len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; if (len < 8) { error = EMSGSIZE; in6_ifstat_inc(ifp, ifs6_out_fragfail); goto bad; } /* * If the interface will not calculate checksums on * fragmented packets, then do it here. * XXX-BZ handle the hw offloading case. Need flags. */ if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { in6_delayed_cksum(m, plen, hlen); m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; } #ifdef SCTP if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) { sctp_delayed_cksum(m, hlen); m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; } #endif /* * Change the next header field of the last header in the * unfragmentable part. */ if (exthdrs.ip6e_rthdr) { nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; } else if (exthdrs.ip6e_dest1) { nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; } else if (exthdrs.ip6e_hbh) { nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; } else { nextproto = ip6->ip6_nxt; ip6->ip6_nxt = IPPROTO_FRAGMENT; } /* * Loop through length of segment after first fragment, * make new header and copy data of each part and link onto * chain. */ m0 = m; id = htonl(ip6_randomid()); if ((error = ip6_fragment(ifp, m, hlen, nextproto, len, id))) goto sendorfree; in6_ifstat_inc(ifp, ifs6_out_fragok); } /* * Remove leading garbages. */ sendorfree: m = m0->m_nextpkt; m0->m_nextpkt = 0; m_freem(m0); for (m0 = m; m; m = m0) { m0 = m->m_nextpkt; m->m_nextpkt = 0; if (error == 0) { /* Record statistics for this interface address. */ if (ia) { counter_u64_add(ia->ia_ifa.ifa_opackets, 1); counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); } error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); } else m_freem(m); } if (error == 0) IP6STAT_INC(ip6s_fragmented); done: /* * Release the route if using our private route, or if * (with flowtable) we don't have our own reference. */ if (ro == &ip6route || ro->ro_flags & RT_NORTREF) RO_RTFREE(ro); return (error); freehdrs: m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ m_freem(exthdrs.ip6e_dest1); m_freem(exthdrs.ip6e_rthdr); m_freem(exthdrs.ip6e_dest2); /* FALLTHROUGH */ bad: if (m) m_freem(m); goto done; } static int ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) { struct mbuf *m; if (hlen > MCLBYTES) return (ENOBUFS); /* XXX */ if (hlen > MLEN) m = m_getcl(M_NOWAIT, MT_DATA, 0); else m = m_get(M_NOWAIT, MT_DATA); if (m == NULL) return (ENOBUFS); m->m_len = hlen; if (hdr) bcopy(hdr, mtod(m, caddr_t), hlen); *mp = m; return (0); } /* * Insert jumbo payload option. */ static int ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) { struct mbuf *mopt; u_char *optbuf; u_int32_t v; #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ /* * If there is no hop-by-hop options header, allocate new one. * If there is one but it doesn't have enough space to store the * jumbo payload option, allocate a cluster to store the whole options. * Otherwise, use it to store the options. */ if (exthdrs->ip6e_hbh == NULL) { mopt = m_get(M_NOWAIT, MT_DATA); if (mopt == NULL) return (ENOBUFS); mopt->m_len = JUMBOOPTLEN; optbuf = mtod(mopt, u_char *); optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ exthdrs->ip6e_hbh = mopt; } else { struct ip6_hbh *hbh; mopt = exthdrs->ip6e_hbh; if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { /* * XXX assumption: * - exthdrs->ip6e_hbh is not referenced from places * other than exthdrs. * - exthdrs->ip6e_hbh is not an mbuf chain. */ int oldoptlen = mopt->m_len; struct mbuf *n; /* * XXX: give up if the whole (new) hbh header does * not fit even in an mbuf cluster. */ if (oldoptlen + JUMBOOPTLEN > MCLBYTES) return (ENOBUFS); /* * As a consequence, we must always prepare a cluster * at this point. */ n = m_getcl(M_NOWAIT, MT_DATA, 0); if (n == NULL) return (ENOBUFS); n->m_len = oldoptlen + JUMBOOPTLEN; bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), oldoptlen); optbuf = mtod(n, caddr_t) + oldoptlen; m_freem(mopt); mopt = exthdrs->ip6e_hbh = n; } else { optbuf = mtod(mopt, u_char *) + mopt->m_len; mopt->m_len += JUMBOOPTLEN; } optbuf[0] = IP6OPT_PADN; optbuf[1] = 1; /* * Adjust the header length according to the pad and * the jumbo payload option. */ hbh = mtod(mopt, struct ip6_hbh *); hbh->ip6h_len += (JUMBOOPTLEN >> 3); } /* fill in the option. */ optbuf[2] = IP6OPT_JUMBO; optbuf[3] = 4; v = (u_int32_t)htonl(plen + JUMBOOPTLEN); bcopy(&v, &optbuf[4], sizeof(u_int32_t)); /* finally, adjust the packet header length */ exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; return (0); #undef JUMBOOPTLEN } /* * Insert fragment header and copy unfragmentable header portions. */ static int ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, struct ip6_frag **frghdrp) { struct mbuf *n, *mlast; if (hlen > sizeof(struct ip6_hdr)) { n = m_copym(m0, sizeof(struct ip6_hdr), hlen - sizeof(struct ip6_hdr), M_NOWAIT); if (n == NULL) return (ENOBUFS); m->m_next = n; } else n = m; /* Search for the last mbuf of unfragmentable part. */ for (mlast = n; mlast->m_next; mlast = mlast->m_next) ; if (M_WRITABLE(mlast) && M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { /* use the trailing space of the last mbuf for the fragment hdr */ *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); mlast->m_len += sizeof(struct ip6_frag); m->m_pkthdr.len += sizeof(struct ip6_frag); } else { /* allocate a new mbuf for the fragment header */ struct mbuf *mfrg; mfrg = m_get(M_NOWAIT, MT_DATA); if (mfrg == NULL) return (ENOBUFS); mfrg->m_len = sizeof(struct ip6_frag); *frghdrp = mtod(mfrg, struct ip6_frag *); mlast->m_next = mfrg; } return (0); } /* * Calculates IPv6 path mtu for destination @dst. * Resulting MTU is stored in @mtup. * * Returns 0 on success. */ static int ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) { struct nhop6_extended nh6; struct in6_addr kdst; uint32_t scopeid; struct ifnet *ifp; u_long mtu; int error; in6_splitscope(dst, &kdst, &scopeid); if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) return (EHOSTUNREACH); ifp = nh6.nh_ifp; mtu = nh6.nh_mtu; error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL); fib6_free_nh_ext(fibnum, &nh6); return (error); } /* * Calculates IPv6 path MTU for @dst based on transmit @ifp, * and cached data in @ro_pmtu. * MTU from (successful) route lookup is saved (along with dst) * inside @ro_pmtu to avoid subsequent route lookups after packet * filter processing. * * Stores mtu and always-frag value into @mtup and @alwaysfragp. * Returns 0 on success. */ static int ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, int *alwaysfragp, u_int fibnum) { struct nhop6_basic nh6; struct in6_addr kdst; uint32_t scopeid; struct sockaddr_in6 *sa6_dst; u_long mtu; mtu = 0; if (do_lookup) { /* * Here ro_pmtu has final destination address, while * ro might represent immediate destination. * Use ro_pmtu destination since mtu might differ. */ sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) ro_pmtu->ro_mtu = 0; if (ro_pmtu->ro_mtu == 0) { bzero(sa6_dst, sizeof(*sa6_dst)); sa6_dst->sin6_family = AF_INET6; sa6_dst->sin6_len = sizeof(struct sockaddr_in6); sa6_dst->sin6_addr = *dst; in6_splitscope(dst, &kdst, &scopeid); if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, &nh6) == 0) ro_pmtu->ro_mtu = nh6.nh_mtu; } mtu = ro_pmtu->ro_mtu; } if (ro_pmtu->ro_rt) mtu = ro_pmtu->ro_rt->rt_mtu; return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp)); } /* * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and * hostcache data for @dst. * Stores mtu and always-frag value into @mtup and @alwaysfragp. * * Returns 0 on success. */ static int ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, u_long *mtup, int *alwaysfragp) { u_long mtu = 0; int alwaysfrag = 0; int error = 0; if (rt_mtu > 0) { u_int32_t ifmtu; struct in_conninfo inc; bzero(&inc, sizeof(inc)); inc.inc_flags |= INC_ISIPV6; inc.inc6_faddr = *dst; ifmtu = IN6_LINKMTU(ifp); mtu = tcp_hc_getmtu(&inc); if (mtu) mtu = min(mtu, rt_mtu); else mtu = rt_mtu; if (mtu == 0) mtu = ifmtu; else if (mtu < IPV6_MMTU) { /* * RFC2460 section 5, last paragraph: * if we record ICMPv6 too big message with * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU * or smaller, with framgent header attached. * (fragment header is needed regardless from the * packet size, for translators to identify packets) */ alwaysfrag = 1; mtu = IPV6_MMTU; } } else if (ifp) { mtu = IN6_LINKMTU(ifp); } else error = EHOSTUNREACH; /* XXX */ *mtup = mtu; if (alwaysfragp) *alwaysfragp = alwaysfrag; return (error); } /* * IP6 socket option processing. */ int ip6_ctloutput(struct socket *so, struct sockopt *sopt) { int optdatalen, uproto; void *optdata; struct inpcb *in6p = sotoinpcb(so); int error, optval; int level, op, optname; int optlen; struct thread *td; #ifdef RSS uint32_t rss_bucket; int retval; #endif level = sopt->sopt_level; op = sopt->sopt_dir; optname = sopt->sopt_name; optlen = sopt->sopt_valsize; td = sopt->sopt_td; error = 0; optval = 0; uproto = (int)so->so_proto->pr_protocol; if (level != IPPROTO_IPV6) { error = EINVAL; if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_dir == SOPT_SET) { switch (sopt->sopt_name) { case SO_REUSEADDR: INP_WLOCK(in6p); if ((so->so_options & SO_REUSEADDR) != 0) in6p->inp_flags2 |= INP_REUSEADDR; else in6p->inp_flags2 &= ~INP_REUSEADDR; INP_WUNLOCK(in6p); error = 0; break; case SO_REUSEPORT: INP_WLOCK(in6p); if ((so->so_options & SO_REUSEPORT) != 0) in6p->inp_flags2 |= INP_REUSEPORT; else in6p->inp_flags2 &= ~INP_REUSEPORT; INP_WUNLOCK(in6p); error = 0; break; case SO_SETFIB: INP_WLOCK(in6p); in6p->inp_inc.inc_fibnum = so->so_fibnum; INP_WUNLOCK(in6p); error = 0; break; default: break; } } } else { /* level == IPPROTO_IPV6 */ switch (op) { case SOPT_SET: switch (optname) { case IPV6_2292PKTOPTIONS: #ifdef IPV6_PKTOPTIONS case IPV6_PKTOPTIONS: #endif { struct mbuf *m; error = soopt_getm(sopt, &m); /* XXX */ if (error != 0) break; error = soopt_mcopyin(sopt, m); /* XXX */ if (error != 0) break; error = ip6_pcbopts(&in6p->in6p_outputopts, m, so, sopt); m_freem(m); /* XXX */ break; } /* * Use of some Hop-by-Hop options or some * Destination options, might require special * privilege. That is, normal applications * (without special privilege) might be forbidden * from setting certain options in outgoing packets, * and might never see certain options in received * packets. [RFC 2292 Section 6] * KAME specific note: * KAME prevents non-privileged users from sending or * receiving ANY hbh/dst options in order to avoid * overhead of parsing options in the kernel. */ case IPV6_RECVHOPOPTS: case IPV6_RECVDSTOPTS: case IPV6_RECVRTHDRDSTOPTS: if (td != NULL) { error = priv_check(td, PRIV_NETINET_SETHDROPTS); if (error) break; } /* FALLTHROUGH */ case IPV6_UNICAST_HOPS: case IPV6_HOPLIMIT: case IPV6_RECVPKTINFO: case IPV6_RECVHOPLIMIT: case IPV6_RECVRTHDR: case IPV6_RECVPATHMTU: case IPV6_RECVTCLASS: case IPV6_RECVFLOWID: #ifdef RSS case IPV6_RECVRSSBUCKETID: #endif case IPV6_V6ONLY: case IPV6_AUTOFLOWLABEL: case IPV6_BINDANY: case IPV6_BINDMULTI: #ifdef RSS case IPV6_RSS_LISTEN_BUCKET: #endif if (optname == IPV6_BINDANY && td != NULL) { error = priv_check(td, PRIV_NETINET_BINDANY); if (error) break; } if (optlen != sizeof(int)) { error = EINVAL; break; } error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; switch (optname) { case IPV6_UNICAST_HOPS: if (optval < -1 || optval >= 256) error = EINVAL; else { /* -1 = kernel default */ in6p->in6p_hops = optval; if ((in6p->inp_vflag & INP_IPV4) != 0) in6p->inp_ip_ttl = optval; } break; #define OPTSET(bit) \ do { \ INP_WLOCK(in6p); \ if (optval) \ in6p->inp_flags |= (bit); \ else \ in6p->inp_flags &= ~(bit); \ INP_WUNLOCK(in6p); \ } while (/*CONSTCOND*/ 0) #define OPTSET2292(bit) \ do { \ INP_WLOCK(in6p); \ in6p->inp_flags |= IN6P_RFC2292; \ if (optval) \ in6p->inp_flags |= (bit); \ else \ in6p->inp_flags &= ~(bit); \ INP_WUNLOCK(in6p); \ } while (/*CONSTCOND*/ 0) #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0) #define OPTSET2(bit, val) do { \ INP_WLOCK(in6p); \ if (val) \ in6p->inp_flags2 |= bit; \ else \ in6p->inp_flags2 &= ~bit; \ INP_WUNLOCK(in6p); \ } while (0) #define OPTBIT2(bit) (in6p->inp_flags2 & (bit) ? 1 : 0) case IPV6_RECVPKTINFO: /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } OPTSET(IN6P_PKTINFO); break; case IPV6_HOPLIMIT: { struct ip6_pktopts **optp; /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } optp = &in6p->in6p_outputopts; error = ip6_pcbopt(IPV6_HOPLIMIT, (u_char *)&optval, sizeof(optval), optp, (td != NULL) ? td->td_ucred : NULL, uproto); break; } case IPV6_RECVHOPLIMIT: /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } OPTSET(IN6P_HOPLIMIT); break; case IPV6_RECVHOPOPTS: /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } OPTSET(IN6P_HOPOPTS); break; case IPV6_RECVDSTOPTS: /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } OPTSET(IN6P_DSTOPTS); break; case IPV6_RECVRTHDRDSTOPTS: /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } OPTSET(IN6P_RTHDRDSTOPTS); break; case IPV6_RECVRTHDR: /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } OPTSET(IN6P_RTHDR); break; case IPV6_RECVPATHMTU: /* * We ignore this option for TCP * sockets. * (RFC3542 leaves this case * unspecified.) */ if (uproto != IPPROTO_TCP) OPTSET(IN6P_MTU); break; case IPV6_RECVFLOWID: OPTSET2(INP_RECVFLOWID, optval); break; #ifdef RSS case IPV6_RECVRSSBUCKETID: OPTSET2(INP_RECVRSSBUCKETID, optval); break; #endif case IPV6_V6ONLY: /* * make setsockopt(IPV6_V6ONLY) * available only prior to bind(2). * see ipng mailing list, Jun 22 2001. */ if (in6p->inp_lport || !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { error = EINVAL; break; } OPTSET(IN6P_IPV6_V6ONLY); if (optval) in6p->inp_vflag &= ~INP_IPV4; else in6p->inp_vflag |= INP_IPV4; break; case IPV6_RECVTCLASS: /* cannot mix with RFC2292 XXX */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } OPTSET(IN6P_TCLASS); break; case IPV6_AUTOFLOWLABEL: OPTSET(IN6P_AUTOFLOWLABEL); break; case IPV6_BINDANY: OPTSET(INP_BINDANY); break; case IPV6_BINDMULTI: OPTSET2(INP_BINDMULTI, optval); break; #ifdef RSS case IPV6_RSS_LISTEN_BUCKET: if ((optval >= 0) && (optval < rss_getnumbuckets())) { in6p->inp_rss_listen_bucket = optval; OPTSET2(INP_RSS_BUCKET_SET, 1); } else { error = EINVAL; } break; #endif } break; case IPV6_TCLASS: case IPV6_DONTFRAG: case IPV6_USE_MIN_MTU: case IPV6_PREFER_TEMPADDR: if (optlen != sizeof(optval)) { error = EINVAL; break; } error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; { struct ip6_pktopts **optp; optp = &in6p->in6p_outputopts; error = ip6_pcbopt(optname, (u_char *)&optval, sizeof(optval), optp, (td != NULL) ? td->td_ucred : NULL, uproto); break; } case IPV6_2292PKTINFO: case IPV6_2292HOPLIMIT: case IPV6_2292HOPOPTS: case IPV6_2292DSTOPTS: case IPV6_2292RTHDR: /* RFC 2292 */ if (optlen != sizeof(int)) { error = EINVAL; break; } error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; switch (optname) { case IPV6_2292PKTINFO: OPTSET2292(IN6P_PKTINFO); break; case IPV6_2292HOPLIMIT: OPTSET2292(IN6P_HOPLIMIT); break; case IPV6_2292HOPOPTS: /* * Check super-user privilege. * See comments for IPV6_RECVHOPOPTS. */ if (td != NULL) { error = priv_check(td, PRIV_NETINET_SETHDROPTS); if (error) return (error); } OPTSET2292(IN6P_HOPOPTS); break; case IPV6_2292DSTOPTS: if (td != NULL) { error = priv_check(td, PRIV_NETINET_SETHDROPTS); if (error) return (error); } OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ break; case IPV6_2292RTHDR: OPTSET2292(IN6P_RTHDR); break; } break; case IPV6_PKTINFO: case IPV6_HOPOPTS: case IPV6_RTHDR: case IPV6_DSTOPTS: case IPV6_RTHDRDSTOPTS: case IPV6_NEXTHOP: { /* new advanced API (RFC3542) */ u_char *optbuf; u_char optbuf_storage[MCLBYTES]; int optlen; struct ip6_pktopts **optp; /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } /* * We only ensure valsize is not too large * here. Further validation will be done * later. */ error = sooptcopyin(sopt, optbuf_storage, sizeof(optbuf_storage), 0); if (error) break; optlen = sopt->sopt_valsize; optbuf = optbuf_storage; optp = &in6p->in6p_outputopts; error = ip6_pcbopt(optname, optbuf, optlen, optp, (td != NULL) ? td->td_ucred : NULL, uproto); break; } #undef OPTSET case IPV6_MULTICAST_IF: case IPV6_MULTICAST_HOPS: case IPV6_MULTICAST_LOOP: case IPV6_JOIN_GROUP: case IPV6_LEAVE_GROUP: case IPV6_MSFILTER: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: case MCAST_JOIN_GROUP: case MCAST_LEAVE_GROUP: case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: error = ip6_setmoptions(in6p, sopt); break; case IPV6_PORTRANGE: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; INP_WLOCK(in6p); switch (optval) { case IPV6_PORTRANGE_DEFAULT: in6p->inp_flags &= ~(INP_LOWPORT); in6p->inp_flags &= ~(INP_HIGHPORT); break; case IPV6_PORTRANGE_HIGH: in6p->inp_flags &= ~(INP_LOWPORT); in6p->inp_flags |= INP_HIGHPORT; break; case IPV6_PORTRANGE_LOW: in6p->inp_flags &= ~(INP_HIGHPORT); in6p->inp_flags |= INP_LOWPORT; break; default: error = EINVAL; break; } INP_WUNLOCK(in6p); break; #ifdef IPSEC case IPV6_IPSEC_POLICY: { caddr_t req; struct mbuf *m; if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */ break; if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */ break; req = mtod(m, caddr_t); error = ipsec_set_policy(in6p, optname, req, m->m_len, (sopt->sopt_td != NULL) ? sopt->sopt_td->td_ucred : NULL); m_freem(m); break; } #endif /* IPSEC */ default: error = ENOPROTOOPT; break; } break; case SOPT_GET: switch (optname) { case IPV6_2292PKTOPTIONS: #ifdef IPV6_PKTOPTIONS case IPV6_PKTOPTIONS: #endif /* * RFC3542 (effectively) deprecated the * semantics of the 2292-style pktoptions. * Since it was not reliable in nature (i.e., * applications had to expect the lack of some * information after all), it would make sense * to simplify this part by always returning * empty data. */ sopt->sopt_valsize = 0; break; case IPV6_RECVHOPOPTS: case IPV6_RECVDSTOPTS: case IPV6_RECVRTHDRDSTOPTS: case IPV6_UNICAST_HOPS: case IPV6_RECVPKTINFO: case IPV6_RECVHOPLIMIT: case IPV6_RECVRTHDR: case IPV6_RECVPATHMTU: case IPV6_V6ONLY: case IPV6_PORTRANGE: case IPV6_RECVTCLASS: case IPV6_AUTOFLOWLABEL: case IPV6_BINDANY: case IPV6_FLOWID: case IPV6_FLOWTYPE: case IPV6_RECVFLOWID: #ifdef RSS case IPV6_RSSBUCKETID: case IPV6_RECVRSSBUCKETID: #endif case IPV6_BINDMULTI: switch (optname) { case IPV6_RECVHOPOPTS: optval = OPTBIT(IN6P_HOPOPTS); break; case IPV6_RECVDSTOPTS: optval = OPTBIT(IN6P_DSTOPTS); break; case IPV6_RECVRTHDRDSTOPTS: optval = OPTBIT(IN6P_RTHDRDSTOPTS); break; case IPV6_UNICAST_HOPS: optval = in6p->in6p_hops; break; case IPV6_RECVPKTINFO: optval = OPTBIT(IN6P_PKTINFO); break; case IPV6_RECVHOPLIMIT: optval = OPTBIT(IN6P_HOPLIMIT); break; case IPV6_RECVRTHDR: optval = OPTBIT(IN6P_RTHDR); break; case IPV6_RECVPATHMTU: optval = OPTBIT(IN6P_MTU); break; case IPV6_V6ONLY: optval = OPTBIT(IN6P_IPV6_V6ONLY); break; case IPV6_PORTRANGE: { int flags; flags = in6p->inp_flags; if (flags & INP_HIGHPORT) optval = IPV6_PORTRANGE_HIGH; else if (flags & INP_LOWPORT) optval = IPV6_PORTRANGE_LOW; else optval = 0; break; } case IPV6_RECVTCLASS: optval = OPTBIT(IN6P_TCLASS); break; case IPV6_AUTOFLOWLABEL: optval = OPTBIT(IN6P_AUTOFLOWLABEL); break; case IPV6_BINDANY: optval = OPTBIT(INP_BINDANY); break; case IPV6_FLOWID: optval = in6p->inp_flowid; break; case IPV6_FLOWTYPE: optval = in6p->inp_flowtype; break; case IPV6_RECVFLOWID: optval = OPTBIT2(INP_RECVFLOWID); break; #ifdef RSS case IPV6_RSSBUCKETID: retval = rss_hash2bucket(in6p->inp_flowid, in6p->inp_flowtype, &rss_bucket); if (retval == 0) optval = rss_bucket; else error = EINVAL; break; case IPV6_RECVRSSBUCKETID: optval = OPTBIT2(INP_RECVRSSBUCKETID); break; #endif case IPV6_BINDMULTI: optval = OPTBIT2(INP_BINDMULTI); break; } if (error) break; error = sooptcopyout(sopt, &optval, sizeof optval); break; case IPV6_PATHMTU: { u_long pmtu = 0; struct ip6_mtuinfo mtuinfo; if (!(so->so_state & SS_ISCONNECTED)) return (ENOTCONN); /* * XXX: we dot not consider the case of source * routing, or optional information to specify * the outgoing interface. */ error = ip6_getpmtu_ctl(so->so_fibnum, &in6p->in6p_faddr, &pmtu); if (error) break; if (pmtu > IPV6_MAXPACKET) pmtu = IPV6_MAXPACKET; bzero(&mtuinfo, sizeof(mtuinfo)); mtuinfo.ip6m_mtu = (u_int32_t)pmtu; optdata = (void *)&mtuinfo; optdatalen = sizeof(mtuinfo); error = sooptcopyout(sopt, optdata, optdatalen); break; } case IPV6_2292PKTINFO: case IPV6_2292HOPLIMIT: case IPV6_2292HOPOPTS: case IPV6_2292RTHDR: case IPV6_2292DSTOPTS: switch (optname) { case IPV6_2292PKTINFO: optval = OPTBIT(IN6P_PKTINFO); break; case IPV6_2292HOPLIMIT: optval = OPTBIT(IN6P_HOPLIMIT); break; case IPV6_2292HOPOPTS: optval = OPTBIT(IN6P_HOPOPTS); break; case IPV6_2292RTHDR: optval = OPTBIT(IN6P_RTHDR); break; case IPV6_2292DSTOPTS: optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); break; } error = sooptcopyout(sopt, &optval, sizeof optval); break; case IPV6_PKTINFO: case IPV6_HOPOPTS: case IPV6_RTHDR: case IPV6_DSTOPTS: case IPV6_RTHDRDSTOPTS: case IPV6_NEXTHOP: case IPV6_TCLASS: case IPV6_DONTFRAG: case IPV6_USE_MIN_MTU: case IPV6_PREFER_TEMPADDR: error = ip6_getpcbopt(in6p->in6p_outputopts, optname, sopt); break; case IPV6_MULTICAST_IF: case IPV6_MULTICAST_HOPS: case IPV6_MULTICAST_LOOP: case IPV6_MSFILTER: error = ip6_getmoptions(in6p, sopt); break; #ifdef IPSEC case IPV6_IPSEC_POLICY: { caddr_t req = NULL; size_t len = 0; struct mbuf *m = NULL; struct mbuf **mp = &m; size_t ovalsize = sopt->sopt_valsize; caddr_t oval = (caddr_t)sopt->sopt_val; error = soopt_getm(sopt, &m); /* XXX */ if (error != 0) break; error = soopt_mcopyin(sopt, m); /* XXX */ if (error != 0) break; sopt->sopt_valsize = ovalsize; sopt->sopt_val = oval; if (m) { req = mtod(m, caddr_t); len = m->m_len; } error = ipsec_get_policy(in6p, req, len, mp); if (error == 0) error = soopt_mcopyout(sopt, m); /* XXX */ if (error == 0 && m) m_freem(m); break; } #endif /* IPSEC */ default: error = ENOPROTOOPT; break; } break; } } return (error); } int ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) { int error = 0, optval, optlen; const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); struct inpcb *in6p = sotoinpcb(so); int level, op, optname; level = sopt->sopt_level; op = sopt->sopt_dir; optname = sopt->sopt_name; optlen = sopt->sopt_valsize; if (level != IPPROTO_IPV6) { return (EINVAL); } switch (optname) { case IPV6_CHECKSUM: /* * For ICMPv6 sockets, no modification allowed for checksum * offset, permit "no change" values to help existing apps. * * RFC3542 says: "An attempt to set IPV6_CHECKSUM * for an ICMPv6 socket will fail." * The current behavior does not meet RFC3542. */ switch (op) { case SOPT_SET: if (optlen != sizeof(int)) { error = EINVAL; break; } error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) break; if ((optval % 2) != 0) { /* the API assumes even offset values */ error = EINVAL; } else if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) { if (optval != icmp6off) error = EINVAL; } else in6p->in6p_cksum = optval; break; case SOPT_GET: if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) optval = icmp6off; else optval = in6p->in6p_cksum; error = sooptcopyout(sopt, &optval, sizeof(optval)); break; default: error = EINVAL; break; } break; default: error = ENOPROTOOPT; break; } return (error); } /* * Set up IP6 options in pcb for insertion in output packets or * specifying behavior of outgoing packets. */ static int ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, struct socket *so, struct sockopt *sopt) { struct ip6_pktopts *opt = *pktopt; int error = 0; struct thread *td = sopt->sopt_td; /* turn off any old options. */ if (opt) { #ifdef DIAGNOSTIC if (opt->ip6po_pktinfo || opt->ip6po_nexthop || opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || opt->ip6po_rhinfo.ip6po_rhi_rthdr) printf("ip6_pcbopts: all specified options are cleared.\n"); #endif ip6_clearpktopts(opt, -1); } else opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); *pktopt = NULL; if (!m || m->m_len == 0) { /* * Only turning off any previous options, regardless of * whether the opt is just created or given. */ free(opt, M_IP6OPT); return (0); } /* set options specified by user. */ if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { ip6_clearpktopts(opt, -1); /* XXX: discard all options */ free(opt, M_IP6OPT); return (error); } *pktopt = opt; return (0); } /* * initialize ip6_pktopts. beware that there are non-zero default values in * the struct. */ void ip6_initpktopts(struct ip6_pktopts *opt) { bzero(opt, sizeof(*opt)); opt->ip6po_hlim = -1; /* -1 means default hop limit */ opt->ip6po_tclass = -1; /* -1 means default traffic class */ opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; } static int ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, struct ucred *cred, int uproto) { struct ip6_pktopts *opt; if (*pktopt == NULL) { *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, M_WAITOK); ip6_initpktopts(*pktopt); } opt = *pktopt; return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); } static int ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) { void *optdata = NULL; int optdatalen = 0; struct ip6_ext *ip6e; int error = 0; struct in6_pktinfo null_pktinfo; int deftclass = 0, on; int defminmtu = IP6PO_MINMTU_MCASTONLY; int defpreftemp = IP6PO_TEMPADDR_SYSTEM; switch (optname) { case IPV6_PKTINFO: optdata = (void *)&null_pktinfo; if (pktopt && pktopt->ip6po_pktinfo) { bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, sizeof(null_pktinfo)); in6_clearscope(&null_pktinfo.ipi6_addr); } else { /* XXX: we don't have to do this every time... */ bzero(&null_pktinfo, sizeof(null_pktinfo)); } optdatalen = sizeof(struct in6_pktinfo); break; case IPV6_TCLASS: if (pktopt && pktopt->ip6po_tclass >= 0) optdata = (void *)&pktopt->ip6po_tclass; else optdata = (void *)&deftclass; optdatalen = sizeof(int); break; case IPV6_HOPOPTS: if (pktopt && pktopt->ip6po_hbh) { optdata = (void *)pktopt->ip6po_hbh; ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; optdatalen = (ip6e->ip6e_len + 1) << 3; } break; case IPV6_RTHDR: if (pktopt && pktopt->ip6po_rthdr) { optdata = (void *)pktopt->ip6po_rthdr; ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; optdatalen = (ip6e->ip6e_len + 1) << 3; } break; case IPV6_RTHDRDSTOPTS: if (pktopt && pktopt->ip6po_dest1) { optdata = (void *)pktopt->ip6po_dest1; ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; optdatalen = (ip6e->ip6e_len + 1) << 3; } break; case IPV6_DSTOPTS: if (pktopt && pktopt->ip6po_dest2) { optdata = (void *)pktopt->ip6po_dest2; ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; optdatalen = (ip6e->ip6e_len + 1) << 3; } break; case IPV6_NEXTHOP: if (pktopt && pktopt->ip6po_nexthop) { optdata = (void *)pktopt->ip6po_nexthop; optdatalen = pktopt->ip6po_nexthop->sa_len; } break; case IPV6_USE_MIN_MTU: if (pktopt) optdata = (void *)&pktopt->ip6po_minmtu; else optdata = (void *)&defminmtu; optdatalen = sizeof(int); break; case IPV6_DONTFRAG: if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) on = 1; else on = 0; optdata = (void *)&on; optdatalen = sizeof(on); break; case IPV6_PREFER_TEMPADDR: if (pktopt) optdata = (void *)&pktopt->ip6po_prefer_tempaddr; else optdata = (void *)&defpreftemp; optdatalen = sizeof(int); break; default: /* should not happen */ #ifdef DIAGNOSTIC panic("ip6_getpcbopt: unexpected option\n"); #endif return (ENOPROTOOPT); } error = sooptcopyout(sopt, optdata, optdatalen); return (error); } void ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) { if (pktopt == NULL) return; if (optname == -1 || optname == IPV6_PKTINFO) { if (pktopt->ip6po_pktinfo) free(pktopt->ip6po_pktinfo, M_IP6OPT); pktopt->ip6po_pktinfo = NULL; } if (optname == -1 || optname == IPV6_HOPLIMIT) pktopt->ip6po_hlim = -1; if (optname == -1 || optname == IPV6_TCLASS) pktopt->ip6po_tclass = -1; if (optname == -1 || optname == IPV6_NEXTHOP) { if (pktopt->ip6po_nextroute.ro_rt) { RTFREE(pktopt->ip6po_nextroute.ro_rt); pktopt->ip6po_nextroute.ro_rt = NULL; } if (pktopt->ip6po_nexthop) free(pktopt->ip6po_nexthop, M_IP6OPT); pktopt->ip6po_nexthop = NULL; } if (optname == -1 || optname == IPV6_HOPOPTS) { if (pktopt->ip6po_hbh) free(pktopt->ip6po_hbh, M_IP6OPT); pktopt->ip6po_hbh = NULL; } if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { if (pktopt->ip6po_dest1) free(pktopt->ip6po_dest1, M_IP6OPT); pktopt->ip6po_dest1 = NULL; } if (optname == -1 || optname == IPV6_RTHDR) { if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; if (pktopt->ip6po_route.ro_rt) { RTFREE(pktopt->ip6po_route.ro_rt); pktopt->ip6po_route.ro_rt = NULL; } } if (optname == -1 || optname == IPV6_DSTOPTS) { if (pktopt->ip6po_dest2) free(pktopt->ip6po_dest2, M_IP6OPT); pktopt->ip6po_dest2 = NULL; } } #define PKTOPT_EXTHDRCPY(type) \ do {\ if (src->type) {\ int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ dst->type = malloc(hlen, M_IP6OPT, canwait);\ if (dst->type == NULL && canwait == M_NOWAIT)\ goto bad;\ bcopy(src->type, dst->type, hlen);\ }\ } while (/*CONSTCOND*/ 0) static int copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) { if (dst == NULL || src == NULL) { printf("ip6_clearpktopts: invalid argument\n"); return (EINVAL); } dst->ip6po_hlim = src->ip6po_hlim; dst->ip6po_tclass = src->ip6po_tclass; dst->ip6po_flags = src->ip6po_flags; dst->ip6po_minmtu = src->ip6po_minmtu; dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; if (src->ip6po_pktinfo) { dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), M_IP6OPT, canwait); if (dst->ip6po_pktinfo == NULL) goto bad; *dst->ip6po_pktinfo = *src->ip6po_pktinfo; } if (src->ip6po_nexthop) { dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, M_IP6OPT, canwait); if (dst->ip6po_nexthop == NULL) goto bad; bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, src->ip6po_nexthop->sa_len); } PKTOPT_EXTHDRCPY(ip6po_hbh); PKTOPT_EXTHDRCPY(ip6po_dest1); PKTOPT_EXTHDRCPY(ip6po_dest2); PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ return (0); bad: ip6_clearpktopts(dst, -1); return (ENOBUFS); } #undef PKTOPT_EXTHDRCPY struct ip6_pktopts * ip6_copypktopts(struct ip6_pktopts *src, int canwait) { int error; struct ip6_pktopts *dst; dst = malloc(sizeof(*dst), M_IP6OPT, canwait); if (dst == NULL) return (NULL); ip6_initpktopts(dst); if ((error = copypktopts(dst, src, canwait)) != 0) { free(dst, M_IP6OPT); return (NULL); } return (dst); } void ip6_freepcbopts(struct ip6_pktopts *pktopt) { if (pktopt == NULL) return; ip6_clearpktopts(pktopt, -1); free(pktopt, M_IP6OPT); } /* * Set IPv6 outgoing packet options based on advanced API. */ int ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) { struct cmsghdr *cm = NULL; if (control == NULL || opt == NULL) return (EINVAL); ip6_initpktopts(opt); if (stickyopt) { int error; /* * If stickyopt is provided, make a local copy of the options * for this particular packet, then override them by ancillary * objects. * XXX: copypktopts() does not copy the cached route to a next * hop (if any). This is not very good in terms of efficiency, * but we can allow this since this option should be rarely * used. */ if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) return (error); } /* * XXX: Currently, we assume all the optional information is stored * in a single mbuf. */ if (control->m_next) return (EINVAL); for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { int error; if (control->m_len < CMSG_LEN(0)) return (EINVAL); cm = mtod(control, struct cmsghdr *); if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) return (EINVAL); if (cm->cmsg_level != IPPROTO_IPV6) continue; error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); if (error) return (error); } return (0); } /* * Set a particular packet option, as a sticky option or an ancillary data * item. "len" can be 0 only when it's a sticky option. * We have 4 cases of combination of "sticky" and "cmsg": * "sticky=0, cmsg=0": impossible * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data * "sticky=1, cmsg=0": RFC3542 socket option * "sticky=1, cmsg=1": RFC2292 socket option */ static int ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, struct ucred *cred, int sticky, int cmsg, int uproto) { int minmtupolicy, preftemp; int error; if (!sticky && !cmsg) { #ifdef DIAGNOSTIC printf("ip6_setpktopt: impossible case\n"); #endif return (EINVAL); } /* * IPV6_2292xxx is for backward compatibility to RFC2292, and should * not be specified in the context of RFC3542. Conversely, * RFC3542 types should not be specified in the context of RFC2292. */ if (!cmsg) { switch (optname) { case IPV6_2292PKTINFO: case IPV6_2292HOPLIMIT: case IPV6_2292NEXTHOP: case IPV6_2292HOPOPTS: case IPV6_2292DSTOPTS: case IPV6_2292RTHDR: case IPV6_2292PKTOPTIONS: return (ENOPROTOOPT); } } if (sticky && cmsg) { switch (optname) { case IPV6_PKTINFO: case IPV6_HOPLIMIT: case IPV6_NEXTHOP: case IPV6_HOPOPTS: case IPV6_DSTOPTS: case IPV6_RTHDRDSTOPTS: case IPV6_RTHDR: case IPV6_USE_MIN_MTU: case IPV6_DONTFRAG: case IPV6_TCLASS: case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ return (ENOPROTOOPT); } } switch (optname) { case IPV6_2292PKTINFO: case IPV6_PKTINFO: { struct ifnet *ifp = NULL; struct in6_pktinfo *pktinfo; if (len != sizeof(struct in6_pktinfo)) return (EINVAL); pktinfo = (struct in6_pktinfo *)buf; /* * An application can clear any sticky IPV6_PKTINFO option by * doing a "regular" setsockopt with ipi6_addr being * in6addr_any and ipi6_ifindex being zero. * [RFC 3542, Section 6] */ if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && pktinfo->ipi6_ifindex == 0 && IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { ip6_clearpktopts(opt, optname); break; } if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { return (EINVAL); } if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) return (EINVAL); /* validate the interface index if specified. */ if (pktinfo->ipi6_ifindex > V_if_index) return (ENXIO); if (pktinfo->ipi6_ifindex) { ifp = ifnet_byindex(pktinfo->ipi6_ifindex); if (ifp == NULL) return (ENXIO); } if (ifp != NULL && ( ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) return (ENETDOWN); if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { struct in6_ifaddr *ia; in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); if (ia == NULL) return (EADDRNOTAVAIL); ifa_free(&ia->ia_ifa); } /* * We store the address anyway, and let in6_selectsrc() * validate the specified address. This is because ipi6_addr * may not have enough information about its scope zone, and * we may need additional information (such as outgoing * interface or the scope zone of a destination address) to * disambiguate the scope. * XXX: the delay of the validation may confuse the * application when it is used as a sticky option. */ if (opt->ip6po_pktinfo == NULL) { opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), M_IP6OPT, M_NOWAIT); if (opt->ip6po_pktinfo == NULL) return (ENOBUFS); } bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); break; } case IPV6_2292HOPLIMIT: case IPV6_HOPLIMIT: { int *hlimp; /* * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT * to simplify the ordering among hoplimit options. */ if (optname == IPV6_HOPLIMIT && sticky) return (ENOPROTOOPT); if (len != sizeof(int)) return (EINVAL); hlimp = (int *)buf; if (*hlimp < -1 || *hlimp > 255) return (EINVAL); opt->ip6po_hlim = *hlimp; break; } case IPV6_TCLASS: { int tclass; if (len != sizeof(int)) return (EINVAL); tclass = *(int *)buf; if (tclass < -1 || tclass > 255) return (EINVAL); opt->ip6po_tclass = tclass; break; } case IPV6_2292NEXTHOP: case IPV6_NEXTHOP: if (cred != NULL) { error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS, 0); if (error) return (error); } if (len == 0) { /* just remove the option */ ip6_clearpktopts(opt, IPV6_NEXTHOP); break; } /* check if cmsg_len is large enough for sa_len */ if (len < sizeof(struct sockaddr) || len < *buf) return (EINVAL); switch (((struct sockaddr *)buf)->sa_family) { case AF_INET6: { struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; int error; if (sa6->sin6_len != sizeof(struct sockaddr_in6)) return (EINVAL); if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { return (EINVAL); } if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) != 0) { return (error); } break; } case AF_LINK: /* should eventually be supported */ default: return (EAFNOSUPPORT); } /* turn off the previous option, then set the new option. */ ip6_clearpktopts(opt, IPV6_NEXTHOP); opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); if (opt->ip6po_nexthop == NULL) return (ENOBUFS); bcopy(buf, opt->ip6po_nexthop, *buf); break; case IPV6_2292HOPOPTS: case IPV6_HOPOPTS: { struct ip6_hbh *hbh; int hbhlen; /* * XXX: We don't allow a non-privileged user to set ANY HbH * options, since per-option restriction has too much * overhead. */ if (cred != NULL) { error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS, 0); if (error) return (error); } if (len == 0) { ip6_clearpktopts(opt, IPV6_HOPOPTS); break; /* just remove the option */ } /* message length validation */ if (len < sizeof(struct ip6_hbh)) return (EINVAL); hbh = (struct ip6_hbh *)buf; hbhlen = (hbh->ip6h_len + 1) << 3; if (len != hbhlen) return (EINVAL); /* turn off the previous option, then set the new option. */ ip6_clearpktopts(opt, IPV6_HOPOPTS); opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); if (opt->ip6po_hbh == NULL) return (ENOBUFS); bcopy(hbh, opt->ip6po_hbh, hbhlen); break; } case IPV6_2292DSTOPTS: case IPV6_DSTOPTS: case IPV6_RTHDRDSTOPTS: { struct ip6_dest *dest, **newdest = NULL; int destlen; if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS, 0); if (error) return (error); } if (len == 0) { ip6_clearpktopts(opt, optname); break; /* just remove the option */ } /* message length validation */ if (len < sizeof(struct ip6_dest)) return (EINVAL); dest = (struct ip6_dest *)buf; destlen = (dest->ip6d_len + 1) << 3; if (len != destlen) return (EINVAL); /* * Determine the position that the destination options header * should be inserted; before or after the routing header. */ switch (optname) { case IPV6_2292DSTOPTS: /* * The old advacned API is ambiguous on this point. * Our approach is to determine the position based * according to the existence of a routing header. * Note, however, that this depends on the order of the * extension headers in the ancillary data; the 1st * part of the destination options header must appear * before the routing header in the ancillary data, * too. * RFC3542 solved the ambiguity by introducing * separate ancillary data or option types. */ if (opt->ip6po_rthdr == NULL) newdest = &opt->ip6po_dest1; else newdest = &opt->ip6po_dest2; break; case IPV6_RTHDRDSTOPTS: newdest = &opt->ip6po_dest1; break; case IPV6_DSTOPTS: newdest = &opt->ip6po_dest2; break; } /* turn off the previous option, then set the new option. */ ip6_clearpktopts(opt, optname); *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); if (*newdest == NULL) return (ENOBUFS); bcopy(dest, *newdest, destlen); break; } case IPV6_2292RTHDR: case IPV6_RTHDR: { struct ip6_rthdr *rth; int rthlen; if (len == 0) { ip6_clearpktopts(opt, IPV6_RTHDR); break; /* just remove the option */ } /* message length validation */ if (len < sizeof(struct ip6_rthdr)) return (EINVAL); rth = (struct ip6_rthdr *)buf; rthlen = (rth->ip6r_len + 1) << 3; if (len != rthlen) return (EINVAL); switch (rth->ip6r_type) { case IPV6_RTHDR_TYPE_0: if (rth->ip6r_len == 0) /* must contain one addr */ return (EINVAL); if (rth->ip6r_len % 2) /* length must be even */ return (EINVAL); if (rth->ip6r_len / 2 != rth->ip6r_segleft) return (EINVAL); break; default: return (EINVAL); /* not supported */ } /* turn off the previous option */ ip6_clearpktopts(opt, IPV6_RTHDR); opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); if (opt->ip6po_rthdr == NULL) return (ENOBUFS); bcopy(rth, opt->ip6po_rthdr, rthlen); break; } case IPV6_USE_MIN_MTU: if (len != sizeof(int)) return (EINVAL); minmtupolicy = *(int *)buf; if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && minmtupolicy != IP6PO_MINMTU_DISABLE && minmtupolicy != IP6PO_MINMTU_ALL) { return (EINVAL); } opt->ip6po_minmtu = minmtupolicy; break; case IPV6_DONTFRAG: if (len != sizeof(int)) return (EINVAL); if (uproto == IPPROTO_TCP || *(int *)buf == 0) { /* * we ignore this option for TCP sockets. * (RFC3542 leaves this case unspecified.) */ opt->ip6po_flags &= ~IP6PO_DONTFRAG; } else opt->ip6po_flags |= IP6PO_DONTFRAG; break; case IPV6_PREFER_TEMPADDR: if (len != sizeof(int)) return (EINVAL); preftemp = *(int *)buf; if (preftemp != IP6PO_TEMPADDR_SYSTEM && preftemp != IP6PO_TEMPADDR_NOTPREFER && preftemp != IP6PO_TEMPADDR_PREFER) { return (EINVAL); } opt->ip6po_prefer_tempaddr = preftemp; break; default: return (ENOPROTOOPT); } /* end of switch */ return (0); } /* * Routine called from ip6_output() to loop back a copy of an IP6 multicast * packet to the input queue of a specified interface. Note that this * calls the output routine of the loopback "driver", but with an interface * pointer that might NOT be &loif -- easier than replicating that code here. */ void ip6_mloopback(struct ifnet *ifp, struct mbuf *m) { struct mbuf *copym; struct ip6_hdr *ip6; copym = m_copy(m, 0, M_COPYALL); if (copym == NULL) return; /* * Make sure to deep-copy IPv6 header portion in case the data * is in an mbuf cluster, so that we can safely override the IPv6 * header portion later. */ if (!M_WRITABLE(copym) || copym->m_len < sizeof(struct ip6_hdr)) { copym = m_pullup(copym, sizeof(struct ip6_hdr)); if (copym == NULL) return; } ip6 = mtod(copym, struct ip6_hdr *); /* * clear embedded scope identifiers if necessary. * in6_clearscope will touch the addresses only when necessary. */ in6_clearscope(&ip6->ip6_src); in6_clearscope(&ip6->ip6_dst); if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; copym->m_pkthdr.csum_data = 0xffff; } if_simloop(ifp, copym, AF_INET6, 0); } /* * Chop IPv6 header off from the payload. */ static int ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) { struct mbuf *mh; struct ip6_hdr *ip6; ip6 = mtod(m, struct ip6_hdr *); if (m->m_len > sizeof(*ip6)) { mh = m_gethdr(M_NOWAIT, MT_DATA); if (mh == NULL) { m_freem(m); return ENOBUFS; } m_move_pkthdr(mh, m); M_ALIGN(mh, sizeof(*ip6)); m->m_len -= sizeof(*ip6); m->m_data += sizeof(*ip6); mh->m_next = m; m = mh; m->m_len = sizeof(*ip6); bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); } exthdrs->ip6e_ip6 = m; return 0; } /* * Compute IPv6 extension header length. */ int ip6_optlen(struct inpcb *in6p) { int len; if (!in6p->in6p_outputopts) return 0; len = 0; #define elen(x) \ (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) len += elen(in6p->in6p_outputopts->ip6po_hbh); if (in6p->in6p_outputopts->ip6po_rthdr) /* dest1 is valid with rthdr only */ len += elen(in6p->in6p_outputopts->ip6po_dest1); len += elen(in6p->in6p_outputopts->ip6po_rthdr); len += elen(in6p->in6p_outputopts->ip6po_dest2); return len; #undef elen } Index: head/sys/netinet6/nd6.c =================================================================== --- head/sys/netinet6/nd6.c (revision 301216) +++ head/sys/netinet6/nd6.c (revision 301217) @@ -1,2673 +1,2679 @@ /*- * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ #define SIN6(s) ((const struct sockaddr_in6 *)(s)) MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); /* timer values */ VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for * local traffic */ VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage * collection timer */ /* preventing too many loops in ND option parsing */ static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper * layer hints */ static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved * ND entries */ #define V_nd6_maxndopt VNET(nd6_maxndopt) #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) #ifdef ND6_DEBUG VNET_DEFINE(int, nd6_debug) = 1; #else VNET_DEFINE(int, nd6_debug) = 0; #endif static eventhandler_tag lle_event_eh, iflladdr_event_eh; VNET_DEFINE(struct nd_drhead, nd_defrouter); VNET_DEFINE(struct nd_prhead, nd_prefix); VNET_DEFINE(struct rwlock, nd6_lock); VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, struct ifnet *); static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); static void nd6_slowtimo(void *); static int regen_tmpaddr(struct in6_ifaddr *); static void nd6_free(struct llentry **, int); static void nd6_free_redirect(const struct llentry *); static void nd6_llinfo_timer(void *); static void nd6_llinfo_settimer_locked(struct llentry *, long); static void clear_llinfo_pqueue(struct llentry *); static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *); static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, - const struct sockaddr_in6 *, u_char *, uint32_t *); + const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); static int nd6_need_cache(struct ifnet *); static VNET_DEFINE(struct callout, nd6_slowtimo_ch); #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) VNET_DEFINE(struct callout, nd6_timer_ch); #define V_nd6_timer_ch VNET(nd6_timer_ch) static void nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) { struct rt_addrinfo rtinfo; struct sockaddr_in6 dst; struct sockaddr_dl gw; struct ifnet *ifp; int type; LLE_WLOCK_ASSERT(lle); if (lltable_get_af(lle->lle_tbl) != AF_INET6) return; switch (evt) { case LLENTRY_RESOLVED: type = RTM_ADD; KASSERT(lle->la_flags & LLE_VALID, ("%s: %p resolved but not valid?", __func__, lle)); break; case LLENTRY_EXPIRED: type = RTM_DELETE; break; default: return; } ifp = lltable_get_ifp(lle->lle_tbl); bzero(&dst, sizeof(dst)); bzero(&gw, sizeof(gw)); bzero(&rtinfo, sizeof(rtinfo)); lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); dst.sin6_scope_id = in6_getscopezone(ifp, in6_addrscope(&dst.sin6_addr)); gw.sdl_len = sizeof(struct sockaddr_dl); gw.sdl_family = AF_LINK; gw.sdl_alen = ifp->if_addrlen; gw.sdl_index = ifp->if_index; gw.sdl_type = ifp->if_type; if (evt == LLENTRY_RESOLVED) bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( type == RTM_ADD ? RTF_UP: 0), 0, RT_DEFAULT_FIB); } /* * A handler for interface link layer address change event. */ static void nd6_iflladdr(void *arg __unused, struct ifnet *ifp) { lltable_update_ifaddr(LLTABLE6(ifp)); } void nd6_init(void) { rw_init(&V_nd6_lock, "nd6"); LIST_INIT(&V_nd_prefix); /* initialization of the default router list */ TAILQ_INIT(&V_nd_defrouter); /* Start timers. */ callout_init(&V_nd6_slowtimo_ch, 0); callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, nd6_slowtimo, curvnet); callout_init(&V_nd6_timer_ch, 0); callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); nd6_dad_init(); if (IS_DEFAULT_VNET(curvnet)) { lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, NULL, EVENTHANDLER_PRI_ANY); iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); } } #ifdef VIMAGE void nd6_destroy() { callout_drain(&V_nd6_slowtimo_ch); callout_drain(&V_nd6_timer_ch); if (IS_DEFAULT_VNET(curvnet)) { EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); } rw_destroy(&V_nd6_lock); } #endif struct nd_ifinfo * nd6_ifattach(struct ifnet *ifp) { struct nd_ifinfo *nd; nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); nd->initialized = 1; nd->chlim = IPV6_DEFHLIM; nd->basereachable = REACHABLE_TIME; nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); nd->retrans = RETRANS_TIMER; nd->flags = ND6_IFF_PERFORMNUD; /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by * default regardless of the V_ip6_auto_linklocal configuration to * give a reasonable default behavior. */ if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || (ifp->if_flags & IFF_LOOPBACK)) nd->flags |= ND6_IFF_AUTO_LINKLOCAL; /* * A loopback interface does not need to accept RTADV. * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by * default regardless of the V_ip6_accept_rtadv configuration to * prevent the interface from accepting RA messages arrived * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. */ if (V_ip6_accept_rtadv && !(ifp->if_flags & IFF_LOOPBACK) && (ifp->if_type != IFT_BRIDGE)) nd->flags |= ND6_IFF_ACCEPT_RTADV; if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) nd->flags |= ND6_IFF_NO_RADR; /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ nd6_setmtu0(ifp, nd); return nd; } void nd6_ifdetach(struct nd_ifinfo *nd) { free(nd, M_IP6NDP); } /* * Reset ND level link MTU. This function is called when the physical MTU * changes, which means we might have to adjust the ND level MTU. */ void nd6_setmtu(struct ifnet *ifp) { if (ifp->if_afdata[AF_INET6] == NULL) return; nd6_setmtu0(ifp, ND_IFINFO(ifp)); } /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ void nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) { u_int32_t omaxmtu; omaxmtu = ndi->maxmtu; switch (ifp->if_type) { case IFT_ARCNET: ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ break; case IFT_FDDI: ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */ break; case IFT_ISO88025: ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu); break; default: ndi->maxmtu = ifp->if_mtu; break; } /* * Decreasing the interface MTU under IPV6 minimum MTU may cause * undesirable situation. We thus notify the operator of the change * explicitly. The check for omaxmtu is necessary to restrict the * log to the case of changing the MTU, not initializing it. */ if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { log(LOG_NOTICE, "nd6_setmtu0: " "new link MTU on %s (%lu) is too small for IPv6\n", if_name(ifp), (unsigned long)ndi->maxmtu); } if (ndi->maxmtu > V_in6_maxmtu) in6_setmaxmtu(); /* check all interfaces just in case */ } void nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) { bzero(ndopts, sizeof(*ndopts)); ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; ndopts->nd_opts_last = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); if (icmp6len == 0) { ndopts->nd_opts_done = 1; ndopts->nd_opts_search = NULL; } } /* * Take one ND option. */ struct nd_opt_hdr * nd6_option(union nd_opts *ndopts) { struct nd_opt_hdr *nd_opt; int olen; KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", __func__)); if (ndopts->nd_opts_search == NULL) return NULL; if (ndopts->nd_opts_done) return NULL; nd_opt = ndopts->nd_opts_search; /* make sure nd_opt_len is inside the buffer */ if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { bzero(ndopts, sizeof(*ndopts)); return NULL; } olen = nd_opt->nd_opt_len << 3; if (olen == 0) { /* * Message validation requires that all included * options have a length that is greater than zero. */ bzero(ndopts, sizeof(*ndopts)); return NULL; } ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); if (ndopts->nd_opts_search > ndopts->nd_opts_last) { /* option overruns the end of buffer, invalid */ bzero(ndopts, sizeof(*ndopts)); return NULL; } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { /* reached the end of options chain */ ndopts->nd_opts_done = 1; ndopts->nd_opts_search = NULL; } return nd_opt; } /* * Parse multiple ND options. * This function is much easier to use, for ND routines that do not need * multiple options of the same type. */ int nd6_options(union nd_opts *ndopts) { struct nd_opt_hdr *nd_opt; int i = 0; KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", __func__)); if (ndopts->nd_opts_search == NULL) return 0; while (1) { nd_opt = nd6_option(ndopts); if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { /* * Message validation requires that all included * options have a length that is greater than zero. */ ICMP6STAT_INC(icp6s_nd_badopt); bzero(ndopts, sizeof(*ndopts)); return -1; } if (nd_opt == NULL) goto skip1; switch (nd_opt->nd_opt_type) { case ND_OPT_SOURCE_LINKADDR: case ND_OPT_TARGET_LINKADDR: case ND_OPT_MTU: case ND_OPT_REDIRECTED_HEADER: case ND_OPT_NONCE: if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { nd6log((LOG_INFO, "duplicated ND6 option found (type=%d)\n", nd_opt->nd_opt_type)); /* XXX bark? */ } else { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } break; case ND_OPT_PREFIX_INFORMATION: if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } ndopts->nd_opts_pi_end = (struct nd_opt_prefix_info *)nd_opt; break; /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ case ND_OPT_RDNSS: /* RFC 6106 */ case ND_OPT_DNSSL: /* RFC 6106 */ /* * Silently ignore options we know and do not care about * in the kernel. */ break; default: /* * Unknown options must be silently ignored, * to accommodate future extension to the protocol. */ nd6log((LOG_DEBUG, "nd6_options: unsupported option %d - " "option ignored\n", nd_opt->nd_opt_type)); } skip1: i++; if (i > V_nd6_maxndopt) { ICMP6STAT_INC(icp6s_nd_toomanyopt); nd6log((LOG_INFO, "too many loop in nd opt\n")); break; } if (ndopts->nd_opts_done) break; } return 0; } /* * ND6 timer routine to handle ND6 entries */ static void nd6_llinfo_settimer_locked(struct llentry *ln, long tick) { int canceled; LLE_WLOCK_ASSERT(ln); if (tick < 0) { ln->la_expire = 0; ln->ln_ntick = 0; canceled = callout_stop(&ln->lle_timer); } else { ln->la_expire = time_uptime + tick / hz; LLE_ADDREF(ln); if (tick > INT_MAX) { ln->ln_ntick = tick - INT_MAX; canceled = callout_reset(&ln->lle_timer, INT_MAX, nd6_llinfo_timer, ln); } else { ln->ln_ntick = 0; canceled = callout_reset(&ln->lle_timer, tick, nd6_llinfo_timer, ln); } } if (canceled > 0) LLE_REMREF(ln); } /* * Gets source address of the first packet in hold queue * and stores it in @src. * Returns pointer to @src (if hold queue is not empty) or NULL. * * Set noinline to be dtrace-friendly */ static __noinline struct in6_addr * nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) { struct ip6_hdr hdr; struct mbuf *m; if (ln->la_hold == NULL) return (NULL); /* * assume every packet in la_hold has the same IP header */ m = ln->la_hold; if (sizeof(hdr) > m->m_len) return (NULL); m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); *src = hdr.ip6_src; return (src); } /* * Checks if we need to switch from STALE state. * * RFC 4861 requires switching from STALE to DELAY state * on first packet matching entry, waiting V_nd6_delay and * transition to PROBE state (if upper layer confirmation was * not received). * * This code performs a bit differently: * On packet hit we don't change state (but desired state * can be guessed by control plane). However, after V_nd6_delay * seconds code will transition to PROBE state (so DELAY state * is kinda skipped in most situations). * * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so * we perform the following upon entering STALE state: * * 1) Arm timer to run each V_nd6_delay seconds to make sure that * if packet was transmitted at the start of given interval, we * would be able to switch to PROBE state in V_nd6_delay seconds * as user expects. * * 2) Reschedule timer until original V_nd6_gctimer expires keeping * lle in STALE state (remaining timer value stored in lle_remtime). * * 3) Reschedule timer if packet was transmitted less that V_nd6_delay * seconds ago. * * Returns non-zero value if the entry is still STALE (storing * the next timer interval in @pdelay). * * Returns zero value if original timer expired or we need to switch to * PROBE (store that in @do_switch variable). */ static int nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) { int nd_delay, nd_gctimer, r_skip_req; time_t lle_hittime; long delay; *do_switch = 0; nd_gctimer = V_nd6_gctimer; nd_delay = V_nd6_delay; LLE_REQ_LOCK(lle); r_skip_req = lle->r_skip_req; lle_hittime = lle->lle_hittime; LLE_REQ_UNLOCK(lle); if (r_skip_req > 0) { /* * Nonzero r_skip_req value was set upon entering * STALE state. Since value was not changed, no * packets were passed using this lle. Ask for * timer reschedule and keep STALE state. */ delay = (long)(MIN(nd_gctimer, nd_delay)); delay *= hz; if (lle->lle_remtime > delay) lle->lle_remtime -= delay; else { delay = lle->lle_remtime; lle->lle_remtime = 0; } if (delay == 0) { /* * The original ng6_gctime timeout ended, * no more rescheduling. */ return (0); } *pdelay = delay; return (1); } /* * Packet received. Verify timestamp */ delay = (long)(time_uptime - lle_hittime); if (delay < nd_delay) { /* * V_nd6_delay still not passed since the first * hit in STALE state. * Reshedule timer and return. */ *pdelay = (long)(nd_delay - delay) * hz; return (1); } /* Request switching to probe */ *do_switch = 1; return (0); } /* * Switch @lle state to new state optionally arming timers. * * Set noinline to be dtrace-friendly */ __noinline void nd6_llinfo_setstate(struct llentry *lle, int newstate) { struct ifnet *ifp; int nd_gctimer, nd_delay; long delay, remtime; delay = 0; remtime = 0; switch (newstate) { case ND6_LLINFO_INCOMPLETE: ifp = lle->lle_tbl->llt_ifp; delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; break; case ND6_LLINFO_REACHABLE: if (!ND6_LLINFO_PERMANENT(lle)) { ifp = lle->lle_tbl->llt_ifp; delay = (long)ND_IFINFO(ifp)->reachable * hz; } break; case ND6_LLINFO_STALE: /* * Notify fast path that we want to know if any packet * is transmitted by setting r_skip_req. */ LLE_REQ_LOCK(lle); lle->r_skip_req = 1; LLE_REQ_UNLOCK(lle); nd_delay = V_nd6_delay; nd_gctimer = V_nd6_gctimer; delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; remtime = (long)nd_gctimer * hz - delay; break; case ND6_LLINFO_DELAY: lle->la_asked = 0; delay = (long)V_nd6_delay * hz; break; } if (delay > 0) nd6_llinfo_settimer_locked(lle, delay); lle->lle_remtime = remtime; lle->ln_state = newstate; } /* * Timer-dependent part of nd state machine. * * Set noinline to be dtrace-friendly */ static __noinline void nd6_llinfo_timer(void *arg) { struct llentry *ln; struct in6_addr *dst, *pdst, *psrc, src; struct ifnet *ifp; struct nd_ifinfo *ndi; int do_switch, send_ns; long delay; KASSERT(arg != NULL, ("%s: arg NULL", __func__)); ln = (struct llentry *)arg; ifp = lltable_get_ifp(ln->lle_tbl); CURVNET_SET(ifp->if_vnet); ND6_RLOCK(); LLE_WLOCK(ln); if (callout_pending(&ln->lle_timer)) { /* * Here we are a bit odd here in the treatment of * active/pending. If the pending bit is set, it got * rescheduled before I ran. The active * bit we ignore, since if it was stopped * in ll_tablefree() and was currently running * it would have return 0 so the code would * not have deleted it since the callout could * not be stopped so we want to go through * with the delete here now. If the callout * was restarted, the pending bit will be back on and * we just want to bail since the callout_reset would * return 1 and our reference would have been removed * by nd6_llinfo_settimer_locked above since canceled * would have been 1. */ LLE_WUNLOCK(ln); ND6_RUNLOCK(); CURVNET_RESTORE(); return; } ndi = ND_IFINFO(ifp); send_ns = 0; dst = &ln->r_l3addr.addr6; pdst = dst; if (ln->ln_ntick > 0) { if (ln->ln_ntick > INT_MAX) { ln->ln_ntick -= INT_MAX; nd6_llinfo_settimer_locked(ln, INT_MAX); } else { ln->ln_ntick = 0; nd6_llinfo_settimer_locked(ln, ln->ln_ntick); } goto done; } if (ln->la_flags & LLE_STATIC) { goto done; } if (ln->la_flags & LLE_DELETED) { nd6_free(&ln, 0); goto done; } switch (ln->ln_state) { case ND6_LLINFO_INCOMPLETE: if (ln->la_asked < V_nd6_mmaxtries) { ln->la_asked++; send_ns = 1; /* Send NS to multicast address */ pdst = NULL; } else { struct mbuf *m = ln->la_hold; if (m) { struct mbuf *m0; /* * assuming every packet in la_hold has the * same IP header. Send error after unlock. */ m0 = m->m_nextpkt; m->m_nextpkt = NULL; ln->la_hold = m0; clear_llinfo_pqueue(ln); } nd6_free(&ln, 0); if (m != NULL) icmp6_error2(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR, 0, ifp); } break; case ND6_LLINFO_REACHABLE: if (!ND6_LLINFO_PERMANENT(ln)) nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); break; case ND6_LLINFO_STALE: if (nd6_is_stale(ln, &delay, &do_switch) != 0) { /* * No packet has used this entry and GC timeout * has not been passed. Reshedule timer and * return. */ nd6_llinfo_settimer_locked(ln, delay); break; } if (do_switch == 0) { /* * GC timer has ended and entry hasn't been used. * Run Garbage collector (RFC 4861, 5.3) */ if (!ND6_LLINFO_PERMANENT(ln)) nd6_free(&ln, 1); break; } /* Entry has been used AND delay timer has ended. */ /* FALLTHROUGH */ case ND6_LLINFO_DELAY: if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { /* We need NUD */ ln->la_asked = 1; nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); send_ns = 1; } else nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ break; case ND6_LLINFO_PROBE: if (ln->la_asked < V_nd6_umaxtries) { ln->la_asked++; send_ns = 1; } else { nd6_free(&ln, 0); } break; default: panic("%s: paths in a dark night can be confusing: %d", __func__, ln->ln_state); } done: if (ln != NULL) ND6_RUNLOCK(); if (send_ns != 0) { nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); psrc = nd6_llinfo_get_holdsrc(ln, &src); LLE_FREE_LOCKED(ln); ln = NULL; nd6_ns_output(ifp, psrc, pdst, dst, NULL); } if (ln != NULL) LLE_FREE_LOCKED(ln); CURVNET_RESTORE(); } /* * ND6 timer routine to expire default route list and prefix list */ void nd6_timer(void *arg) { CURVNET_SET((struct vnet *) arg); struct nd_drhead drq; struct nd_defrouter *dr, *ndr; struct nd_prefix *pr, *npr; struct in6_ifaddr *ia6, *nia6; callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, nd6_timer, curvnet); TAILQ_INIT(&drq); /* expire default router list */ ND6_WLOCK(); TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) if (dr->expire && dr->expire < time_uptime) defrouter_unlink(dr, &drq); ND6_WUNLOCK(); while ((dr = TAILQ_FIRST(&drq)) != NULL) { TAILQ_REMOVE(&drq, dr, dr_entry); defrouter_del(dr); } /* * expire interface addresses. * in the past the loop was inside prefix expiry processing. * However, from a stricter speci-confrmance standpoint, we should * rather separate address lifetimes and prefix lifetimes. * * XXXRW: in6_ifaddrhead locking. */ addrloop: TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { /* check address lifetime */ if (IFA6_IS_INVALID(ia6)) { int regen = 0; /* * If the expiring address is temporary, try * regenerating a new one. This would be useful when * we suspended a laptop PC, then turned it on after a * period that could invalidate all temporary * addresses. Although we may have to restart the * loop (see below), it must be after purging the * address. Otherwise, we'd see an infinite loop of * regeneration. */ if (V_ip6_use_tempaddr && (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { if (regen_tmpaddr(ia6) == 0) regen = 1; } in6_purgeaddr(&ia6->ia_ifa); if (regen) goto addrloop; /* XXX: see below */ } else if (IFA6_IS_DEPRECATED(ia6)) { int oldflags = ia6->ia6_flags; ia6->ia6_flags |= IN6_IFF_DEPRECATED; /* * If a temporary address has just become deprecated, * regenerate a new one if possible. */ if (V_ip6_use_tempaddr && (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && (oldflags & IN6_IFF_DEPRECATED) == 0) { if (regen_tmpaddr(ia6) == 0) { /* * A new temporary address is * generated. * XXX: this means the address chain * has changed while we are still in * the loop. Although the change * would not cause disaster (because * it's not a deletion, but an * addition,) we'd rather restart the * loop just for safety. Or does this * significantly reduce performance?? */ goto addrloop; } } } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { /* * Schedule DAD for a tentative address. This happens * if the interface was down or not running * when the address was configured. */ int delay; delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); nd6_dad_start((struct ifaddr *)ia6, delay); } else { /* * Check status of the interface. If it is down, * mark the address as tentative for future DAD. */ if ((ia6->ia_ifp->if_flags & IFF_UP) == 0 || (ia6->ia_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || (ND_IFINFO(ia6->ia_ifp)->flags & ND6_IFF_IFDISABLED) != 0) { ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; ia6->ia6_flags |= IN6_IFF_TENTATIVE; } /* * A new RA might have made a deprecated address * preferred. */ ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; } } /* expire prefix list */ LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { /* * check prefix lifetime. * since pltime is just for autoconf, pltime processing for * prefix is not necessary. */ if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) { /* * address expiration and prefix expiration are * separate. NEVER perform in6_purgeaddr here. */ prelist_remove(pr); } } CURVNET_RESTORE(); } /* * ia6 - deprecated/invalidated temporary address */ static int regen_tmpaddr(struct in6_ifaddr *ia6) { struct ifaddr *ifa; struct ifnet *ifp; struct in6_ifaddr *public_ifa6 = NULL; ifp = ia6->ia_ifa.ifa_ifp; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct in6_ifaddr *it6; if (ifa->ifa_addr->sa_family != AF_INET6) continue; it6 = (struct in6_ifaddr *)ifa; /* ignore no autoconf addresses. */ if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) continue; /* ignore autoconf addresses with different prefixes. */ if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) continue; /* * Now we are looking at an autoconf address with the same * prefix as ours. If the address is temporary and is still * preferred, do not create another one. It would be rare, but * could happen, for example, when we resume a laptop PC after * a long period. */ if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && !IFA6_IS_DEPRECATED(it6)) { public_ifa6 = NULL; break; } /* * This is a public autoconf address that has the same prefix * as ours. If it is preferred, keep it. We can't break the * loop here, because there may be a still-preferred temporary * address with the prefix. */ if (!IFA6_IS_DEPRECATED(it6)) public_ifa6 = it6; } if (public_ifa6 != NULL) ifa_ref(&public_ifa6->ia_ifa); IF_ADDR_RUNLOCK(ifp); if (public_ifa6 != NULL) { int e; if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { ifa_free(&public_ifa6->ia_ifa); log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" " tmp addr,errno=%d\n", e); return (-1); } ifa_free(&public_ifa6->ia_ifa); return (0); } return (-1); } /* * Remove prefix and default router list entries corresponding to ifp. Neighbor * cache entries are freed in in6_domifdetach(). */ void nd6_purge(struct ifnet *ifp) { struct nd_drhead drq; struct nd_defrouter *dr, *ndr; struct nd_prefix *pr, *npr; TAILQ_INIT(&drq); /* * Nuke default router list entries toward ifp. * We defer removal of default router list entries that is installed * in the routing table, in order to keep additional side effects as * small as possible. */ ND6_WLOCK(); TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { if (dr->installed) continue; if (dr->ifp == ifp) defrouter_unlink(dr, &drq); } TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) { if (!dr->installed) continue; if (dr->ifp == ifp) defrouter_unlink(dr, &drq); } ND6_WUNLOCK(); while ((dr = TAILQ_FIRST(&drq)) != NULL) { TAILQ_REMOVE(&drq, dr, dr_entry); defrouter_del(dr); } /* Nuke prefix list entries toward ifp */ LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { if (pr->ndpr_ifp == ifp) { /* * Because if_detach() does *not* release prefixes * while purging addresses the reference count will * still be above zero. We therefore reset it to * make sure that the prefix really gets purged. */ pr->ndpr_refcnt = 0; prelist_remove(pr); } } /* cancel default outgoing interface setting */ if (V_nd6_defifindex == ifp->if_index) nd6_setdefaultiface(0); if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { /* Refresh default router list. */ defrouter_select(); } } /* * the caller acquires and releases the lock on the lltbls * Returns the llentry locked */ struct llentry * nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) { struct sockaddr_in6 sin6; struct llentry *ln; bzero(&sin6, sizeof(sin6)); sin6.sin6_len = sizeof(struct sockaddr_in6); sin6.sin6_family = AF_INET6; sin6.sin6_addr = *addr6; IF_AFDATA_LOCK_ASSERT(ifp); ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); return (ln); } struct llentry * nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) { struct sockaddr_in6 sin6; struct llentry *ln; bzero(&sin6, sizeof(sin6)); sin6.sin6_len = sizeof(struct sockaddr_in6); sin6.sin6_family = AF_INET6; sin6.sin6_addr = *addr6; ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); if (ln != NULL) ln->ln_state = ND6_LLINFO_NOSTATE; return (ln); } /* * Test whether a given IPv6 address is a neighbor or not, ignoring * the actual neighbor cache. The neighbor cache is ignored in order * to not reenter the routing code from within itself. */ static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) { struct nd_prefix *pr; struct ifaddr *dstaddr; struct rt_addrinfo info; struct sockaddr_in6 rt_key; struct sockaddr *dst6; int fibnum; /* * A link-local address is always a neighbor. * XXX: a link does not necessarily specify a single interface. */ if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { struct sockaddr_in6 sin6_copy; u_int32_t zone; /* * We need sin6_copy since sa6_recoverscope() may modify the * content (XXX). */ sin6_copy = *addr; if (sa6_recoverscope(&sin6_copy)) return (0); /* XXX: should be impossible */ if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) return (0); if (sin6_copy.sin6_scope_id == zone) return (1); else return (0); } bzero(&rt_key, sizeof(rt_key)); bzero(&info, sizeof(info)); info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; /* Always use the default FIB here. XXME - why? */ fibnum = RT_DEFAULT_FIB; /* * If the address matches one of our addresses, * it should be a neighbor. * If the address matches one of our on-link prefixes, it should be a * neighbor. */ LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { if (pr->ndpr_ifp != ifp) continue; if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { /* Always use the default FIB here. */ dst6 = (struct sockaddr *)&pr->ndpr_prefix; /* Restore length field before retrying lookup */ rt_key.sin6_len = sizeof(rt_key); if (rib_lookup_info(fibnum, dst6, 0, 0, &info) != 0) continue; /* * This is the case where multiple interfaces * have the same prefix, but only one is installed * into the routing table and that prefix entry * is not the one being examined here. In the case * where RADIX_MPATH is enabled, multiple route * entries (of the same rt_key value) will be * installed because the interface addresses all * differ. */ if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, &rt_key.sin6_addr)) continue; } if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, &addr->sin6_addr, &pr->ndpr_mask)) return (1); } /* * If the address is assigned on the node of the other side of * a p2p interface, the address should be a neighbor. */ dstaddr = ifa_ifwithdstaddr((const struct sockaddr *)addr, RT_ALL_FIBS); if (dstaddr != NULL) { if (dstaddr->ifa_ifp == ifp) { ifa_free(dstaddr); return (1); } ifa_free(dstaddr); } /* * If the default router list is empty, all addresses are regarded * as on-link, and thus, as a neighbor. */ if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && TAILQ_EMPTY(&V_nd_defrouter) && V_nd6_defifindex == ifp->if_index) { return (1); } return (0); } /* * Detect if a given IPv6 address identifies a neighbor on a given link. * XXX: should take care of the destination of a p2p link? */ int nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) { struct llentry *lle; int rc = 0; IF_AFDATA_UNLOCK_ASSERT(ifp); if (nd6_is_new_addr_neighbor(addr, ifp)) return (1); /* * Even if the address matches none of our addresses, it might be * in the neighbor cache. */ IF_AFDATA_RLOCK(ifp); if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { LLE_RUNLOCK(lle); rc = 1; } IF_AFDATA_RUNLOCK(ifp); return (rc); } /* * Free an nd6 llinfo entry. * Since the function would cause significant changes in the kernel, DO NOT * make it global, unless you have a strong reason for the change, and are sure * that the change is safe. * * Set noinline to be dtrace-friendly */ static __noinline void nd6_free(struct llentry **lnp, int gc) { struct ifnet *ifp; struct llentry *ln; struct nd_defrouter *dr; ln = *lnp; *lnp = NULL; LLE_WLOCK_ASSERT(ln); ND6_RLOCK_ASSERT(); ifp = lltable_get_ifp(ln->lle_tbl); if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); else dr = NULL; ND6_RUNLOCK(); if ((ln->la_flags & LLE_DELETED) == 0) EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); /* * we used to have pfctlinput(PRC_HOSTDEAD) here. * even though it is not harmful, it was not really necessary. */ /* cancel timer */ nd6_llinfo_settimer_locked(ln, -1); if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { if (dr != NULL && dr->expire && ln->ln_state == ND6_LLINFO_STALE && gc) { /* * If the reason for the deletion is just garbage * collection, and the neighbor is an active default * router, do not delete it. Instead, reset the GC * timer using the router's lifetime. * Simply deleting the entry would affect default * router selection, which is not necessarily a good * thing, especially when we're using router preference * values. * XXX: the check for ln_state would be redundant, * but we intentionally keep it just in case. */ if (dr->expire > time_uptime) nd6_llinfo_settimer_locked(ln, (dr->expire - time_uptime) * hz); else nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz); LLE_REMREF(ln); LLE_WUNLOCK(ln); defrouter_rele(dr); return; } if (dr) { /* * Unreachablity of a router might affect the default * router selection and on-link detection of advertised * prefixes. */ /* * Temporarily fake the state to choose a new default * router and to perform on-link determination of * prefixes correctly. * Below the state will be set correctly, * or the entry itself will be deleted. */ ln->ln_state = ND6_LLINFO_INCOMPLETE; } if (ln->ln_router || dr) { /* * We need to unlock to avoid a LOR with rt6_flush() with the * rnh and for the calls to pfxlist_onlink_check() and * defrouter_select() in the block further down for calls * into nd6_lookup(). We still hold a ref. */ LLE_WUNLOCK(ln); /* * rt6_flush must be called whether or not the neighbor * is in the Default Router List. * See a corresponding comment in nd6_na_input(). */ rt6_flush(&ln->r_l3addr.addr6, ifp); } if (dr) { /* * Since defrouter_select() does not affect the * on-link determination and MIP6 needs the check * before the default router selection, we perform * the check now. */ pfxlist_onlink_check(); /* * Refresh default router list. */ defrouter_select(); } /* * If this entry was added by an on-link redirect, remove the * corresponding host route. */ if (ln->la_flags & LLE_REDIRECT) nd6_free_redirect(ln); if (ln->ln_router || dr) LLE_WLOCK(ln); } /* * Save to unlock. We still hold an extra reference and will not * free(9) in llentry_free() if someone else holds one as well. */ LLE_WUNLOCK(ln); IF_AFDATA_LOCK(ifp); LLE_WLOCK(ln); /* Guard against race with other llentry_free(). */ if (ln->la_flags & LLE_LINKED) { /* Remove callout reference */ LLE_REMREF(ln); lltable_unlink_entry(ln->lle_tbl, ln); } IF_AFDATA_UNLOCK(ifp); llentry_free(ln); if (dr != NULL) defrouter_rele(dr); } static int nd6_isdynrte(const struct rtentry *rt, void *xap) { if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC)) return (1); return (0); } /* * Remove the rtentry for the given llentry, * both of which were installed by a redirect. */ static void nd6_free_redirect(const struct llentry *ln) { int fibnum; struct sockaddr_in6 sin6; struct rt_addrinfo info; lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); memset(&info, 0, sizeof(info)); info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; info.rti_filter = nd6_isdynrte; for (fibnum = 0; fibnum < rt_numfibs; fibnum++) rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum); } /* * Rejuvenate this function for routing operations related * processing. */ void nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) { struct sockaddr_in6 *gateway; struct nd_defrouter *dr; struct ifnet *ifp; gateway = (struct sockaddr_in6 *)rt->rt_gateway; ifp = rt->rt_ifp; switch (req) { case RTM_ADD: break; case RTM_DELETE: if (!ifp) return; /* * Only indirect routes are interesting. */ if ((rt->rt_flags & RTF_GATEWAY) == 0) return; /* * check for default route */ if (IN6_ARE_ADDR_EQUAL(&in6addr_any, &SIN6(rt_key(rt))->sin6_addr)) { dr = defrouter_lookup(&gateway->sin6_addr, ifp); if (dr != NULL) { dr->installed = 0; defrouter_rele(dr); } } break; } } int nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) { struct in6_ndireq *ndi = (struct in6_ndireq *)data; struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; int error = 0; if (ifp->if_afdata[AF_INET6] == NULL) return (EPFNOSUPPORT); switch (cmd) { case OSIOCGIFINFO_IN6: #define ND ndi->ndi /* XXX: old ndp(8) assumes a positive value for linkmtu. */ bzero(&ND, sizeof(ND)); ND.linkmtu = IN6_LINKMTU(ifp); ND.maxmtu = ND_IFINFO(ifp)->maxmtu; ND.basereachable = ND_IFINFO(ifp)->basereachable; ND.reachable = ND_IFINFO(ifp)->reachable; ND.retrans = ND_IFINFO(ifp)->retrans; ND.flags = ND_IFINFO(ifp)->flags; ND.recalctm = ND_IFINFO(ifp)->recalctm; ND.chlim = ND_IFINFO(ifp)->chlim; break; case SIOCGIFINFO_IN6: ND = *ND_IFINFO(ifp); break; case SIOCSIFINFO_IN6: /* * used to change host variables from userland. * intended for a use on router to reflect RA configurations. */ /* 0 means 'unspecified' */ if (ND.linkmtu != 0) { if (ND.linkmtu < IPV6_MMTU || ND.linkmtu > IN6_LINKMTU(ifp)) { error = EINVAL; break; } ND_IFINFO(ifp)->linkmtu = ND.linkmtu; } if (ND.basereachable != 0) { int obasereachable = ND_IFINFO(ifp)->basereachable; ND_IFINFO(ifp)->basereachable = ND.basereachable; if (ND.basereachable != obasereachable) ND_IFINFO(ifp)->reachable = ND_COMPUTE_RTIME(ND.basereachable); } if (ND.retrans != 0) ND_IFINFO(ifp)->retrans = ND.retrans; if (ND.chlim != 0) ND_IFINFO(ifp)->chlim = ND.chlim; /* FALLTHROUGH */ case SIOCSIFINFO_FLAGS: { struct ifaddr *ifa; struct in6_ifaddr *ia; if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && !(ND.flags & ND6_IFF_IFDISABLED)) { /* ifdisabled 1->0 transision */ /* * If the interface is marked as ND6_IFF_IFDISABLED and * has an link-local address with IN6_IFF_DUPLICATED, * do not clear ND6_IFF_IFDISABLED. * See RFC 4862, Section 5.4.5. */ IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ia = (struct in6_ifaddr *)ifa; if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) break; } IF_ADDR_RUNLOCK(ifp); if (ifa != NULL) { /* LLA is duplicated. */ ND.flags |= ND6_IFF_IFDISABLED; log(LOG_ERR, "Cannot enable an interface" " with a link-local address marked" " duplicate.\n"); } else { ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; if (ifp->if_flags & IFF_UP) in6_if_up(ifp); } } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && (ND.flags & ND6_IFF_IFDISABLED)) { /* ifdisabled 0->1 transision */ /* Mark all IPv6 address as tentative. */ ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; if (V_ip6_dad_count > 0 && (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ia = (struct in6_ifaddr *)ifa; ia->ia6_flags |= IN6_IFF_TENTATIVE; } IF_ADDR_RUNLOCK(ifp); } } if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { /* auto_linklocal 0->1 transision */ /* If no link-local address on ifp, configure */ ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; in6_ifattach(ifp, NULL); } else if (!(ND.flags & ND6_IFF_IFDISABLED) && ifp->if_flags & IFF_UP) { /* * When the IF already has * ND6_IFF_AUTO_LINKLOCAL, no link-local * address is assigned, and IFF_UP, try to * assign one. */ IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ia = (struct in6_ifaddr *)ifa; if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) break; } IF_ADDR_RUNLOCK(ifp); if (ifa != NULL) /* No LLA is configured. */ in6_ifattach(ifp, NULL); } } } ND_IFINFO(ifp)->flags = ND.flags; break; #undef ND case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ /* sync kernel routing table with the default router list */ defrouter_reset(); defrouter_select(); break; case SIOCSPFXFLUSH_IN6: { /* flush all the prefix advertised by routers */ struct nd_prefix *pr, *next; LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { struct in6_ifaddr *ia, *ia_next; if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) continue; /* XXX */ /* do we really have to remove addresses as well? */ /* XXXRW: in6_ifaddrhead locking. */ TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, ia_next) { if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) continue; if (ia->ia6_ndpr == pr) in6_purgeaddr(&ia->ia_ifa); } prelist_remove(pr); } break; } case SIOCSRTRFLUSH_IN6: { /* flush all the default routers */ struct nd_drhead drq; struct nd_defrouter *dr; TAILQ_INIT(&drq); defrouter_reset(); ND6_WLOCK(); while ((dr = TAILQ_FIRST(&V_nd_defrouter)) != NULL) defrouter_unlink(dr, &drq); ND6_WUNLOCK(); while ((dr = TAILQ_FIRST(&drq)) != NULL) { TAILQ_REMOVE(&drq, dr, dr_entry); defrouter_del(dr); } defrouter_select(); break; } case SIOCGNBRINFO_IN6: { struct llentry *ln; struct in6_addr nb_addr = nbi->addr; /* make local for safety */ if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) return (error); IF_AFDATA_RLOCK(ifp); ln = nd6_lookup(&nb_addr, 0, ifp); IF_AFDATA_RUNLOCK(ifp); if (ln == NULL) { error = EINVAL; break; } nbi->state = ln->ln_state; nbi->asked = ln->la_asked; nbi->isrouter = ln->ln_router; if (ln->la_expire == 0) nbi->expire = 0; else nbi->expire = ln->la_expire + ln->lle_remtime / hz + (time_second - time_uptime); LLE_RUNLOCK(ln); break; } case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ ndif->ifindex = V_nd6_defifindex; break; case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ return (nd6_setdefaultiface(ndif->ifindex)); } return (error); } /* * Calculates new isRouter value based on provided parameters and * returns it. */ static int nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, int ln_router) { /* * ICMP6 type dependent behavior. * * NS: clear IsRouter if new entry * RS: clear IsRouter * RA: set IsRouter if there's lladdr * redir: clear IsRouter if new entry * * RA case, (1): * The spec says that we must set IsRouter in the following cases: * - If lladdr exist, set IsRouter. This means (1-5). * - If it is old entry (!newentry), set IsRouter. This means (7). * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. * A quetion arises for (1) case. (1) case has no lladdr in the * neighbor cache, this is similar to (6). * This case is rare but we figured that we MUST NOT set IsRouter. * * is_new old_addr new_addr NS RS RA redir * D R * 0 n n (1) c ? s * 0 y n (2) c s s * 0 n y (3) c s s * 0 y y (4) c s s * 0 y y (5) c s s * 1 -- n (6) c c c s * 1 -- y (7) c c s c s * * (c=clear s=set) */ switch (type & 0xff) { case ND_NEIGHBOR_SOLICIT: /* * New entry must have is_router flag cleared. */ if (is_new) /* (6-7) */ ln_router = 0; break; case ND_REDIRECT: /* * If the icmp is a redirect to a better router, always set the * is_router flag. Otherwise, if the entry is newly created, * clear the flag. [RFC 2461, sec 8.3] */ if (code == ND_REDIRECT_ROUTER) ln_router = 1; else { if (is_new) /* (6-7) */ ln_router = 0; } break; case ND_ROUTER_SOLICIT: /* * is_router flag must always be cleared. */ ln_router = 0; break; case ND_ROUTER_ADVERT: /* * Mark an entry with lladdr as a router. */ if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ (is_new && new_addr)) { /* (7) */ ln_router = 1; } break; } return (ln_router); } /* * Create neighbor cache entry and cache link-layer address, * on reception of inbound ND6 packets. (RS/RA/NS/redirect) * * type - ICMP6 type * code - type dependent information * */ void nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, int lladdrlen, int type, int code) { struct llentry *ln = NULL, *ln_tmp; int is_newentry; int do_update; int olladdr; int llchange; int flags; uint16_t router = 0; struct sockaddr_in6 sin6; struct mbuf *chain = NULL; u_char linkhdr[LLE_MAX_LINKHDR]; size_t linkhdrsize; int lladdr_off; IF_AFDATA_UNLOCK_ASSERT(ifp); KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); KASSERT(from != NULL, ("%s: from == NULL", __func__)); /* nothing must be updated for unspecified address */ if (IN6_IS_ADDR_UNSPECIFIED(from)) return; /* * Validation about ifp->if_addrlen and lladdrlen must be done in * the caller. * * XXX If the link does not have link-layer adderss, what should * we do? (ifp->if_addrlen == 0) * Spec says nothing in sections for RA, RS and NA. There's small * description on it in NS section (RFC 2461 7.2.3). */ flags = lladdr ? LLE_EXCLUSIVE : 0; IF_AFDATA_RLOCK(ifp); ln = nd6_lookup(from, flags, ifp); IF_AFDATA_RUNLOCK(ifp); is_newentry = 0; if (ln == NULL) { flags |= LLE_EXCLUSIVE; ln = nd6_alloc(from, 0, ifp); if (ln == NULL) return; /* * Since we already know all the data for the new entry, * fill it before insertion. */ if (lladdr != NULL) { linkhdrsize = sizeof(linkhdr); if (lltable_calc_llheader(ifp, AF_INET6, lladdr, linkhdr, &linkhdrsize, &lladdr_off) != 0) return; lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, lladdr_off); } IF_AFDATA_WLOCK(ifp); LLE_WLOCK(ln); /* Prefer any existing lle over newly-created one */ ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); if (ln_tmp == NULL) lltable_link_entry(LLTABLE6(ifp), ln); IF_AFDATA_WUNLOCK(ifp); if (ln_tmp == NULL) { /* No existing lle, mark as new entry (6,7) */ is_newentry = 1; nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); if (lladdr != NULL) /* (7) */ EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); } else { lltable_free_entry(LLTABLE6(ifp), ln); ln = ln_tmp; ln_tmp = NULL; } } /* do nothing if static ndp is set */ if ((ln->la_flags & LLE_STATIC)) { if (flags & LLE_EXCLUSIVE) LLE_WUNLOCK(ln); else LLE_RUNLOCK(ln); return; } olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; if (olladdr && lladdr) { llchange = bcmp(lladdr, ln->ll_addr, ifp->if_addrlen); } else if (!olladdr && lladdr) llchange = 1; else llchange = 0; /* * newentry olladdr lladdr llchange (*=record) * 0 n n -- (1) * 0 y n -- (2) * 0 n y y (3) * STALE * 0 y y n (4) * * 0 y y y (5) * STALE * 1 -- n -- (6) NOSTATE(= PASSIVE) * 1 -- y -- (7) * STALE */ do_update = 0; if (is_newentry == 0 && llchange != 0) { do_update = 1; /* (3,5) */ /* * Record source link-layer address * XXX is it dependent to ifp->if_type? */ linkhdrsize = sizeof(linkhdr); if (lltable_calc_llheader(ifp, AF_INET6, lladdr, linkhdr, &linkhdrsize, &lladdr_off) != 0) return; if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, lladdr_off) == 0) { /* Entry was deleted */ return; } nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); if (ln->la_hold != NULL) nd6_grab_holdchain(ln, &chain, &sin6); } /* Calculates new router status */ router = nd6_is_router(type, code, is_newentry, olladdr, lladdr != NULL ? 1 : 0, ln->ln_router); ln->ln_router = router; /* Mark non-router redirects with special flag */ if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) ln->la_flags |= LLE_REDIRECT; if (flags & LLE_EXCLUSIVE) LLE_WUNLOCK(ln); else LLE_RUNLOCK(ln); if (chain != NULL) nd6_flush_holdchain(ifp, ifp, chain, &sin6); /* * When the link-layer address of a router changes, select the * best router again. In particular, when the neighbor entry is newly * created, it might affect the selection policy. * Question: can we restrict the first condition to the "is_newentry" * case? * XXX: when we hear an RA from a new router with the link-layer * address option, defrouter_select() is called twice, since * defrtrlist_update called the function as well. However, I believe * we can compromise the overhead, since it only happens the first * time. * XXX: although defrouter_select() should not have a bad effect * for those are not autoconfigured hosts, we explicitly avoid such * cases for safety. */ if ((do_update || is_newentry) && router && ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { /* * guaranteed recursion */ defrouter_select(); } } static void nd6_slowtimo(void *arg) { CURVNET_SET((struct vnet *) arg); struct nd_ifinfo *nd6if; struct ifnet *ifp; callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, nd6_slowtimo, curvnet); IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (ifp->if_afdata[AF_INET6] == NULL) continue; nd6if = ND_IFINFO(ifp); if (nd6if->basereachable && /* already initialized */ (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { /* * Since reachable time rarely changes by router * advertisements, we SHOULD insure that a new random * value gets recomputed at least once every few hours. * (RFC 2461, 6.3.4) */ nd6if->recalctm = V_nd6_recalc_reachtm_interval; nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); } } IFNET_RUNLOCK_NOSLEEP(); CURVNET_RESTORE(); } void nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, struct sockaddr_in6 *sin6) { LLE_WLOCK_ASSERT(ln); *chain = ln->la_hold; ln->la_hold = NULL; lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); if (ln->ln_state == ND6_LLINFO_STALE) { /* * The first time we send a packet to a * neighbor whose entry is STALE, we have * to change the state to DELAY and a sets * a timer to expire in DELAY_FIRST_PROBE_TIME * seconds to ensure do neighbor unreachability * detection on expiration. * (RFC 2461 7.3.3) */ nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); } } int nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, struct sockaddr_in6 *dst, struct route *ro) { int error; int ip6len; struct ip6_hdr *ip6; struct m_tag *mtag; #ifdef MAC mac_netinet6_nd6_send(ifp, m); #endif /* * If called from nd6_ns_output() (NS), nd6_na_output() (NA), * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA * as handled by rtsol and rtadvd), mbufs will be tagged for SeND * to be diverted to user space. When re-injected into the kernel, * send_output() will directly dispatch them to the outgoing interface. */ if (send_sendso_input_hook != NULL) { mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); if (mtag != NULL) { ip6 = mtod(m, struct ip6_hdr *); ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); /* Use the SEND socket */ error = send_sendso_input_hook(m, ifp, SND_OUT, ip6len); /* -1 == no app on SEND socket */ if (error == 0 || error != -1) return (error); } } m_clrprotoflags(m); /* Avoid confusing lower layers. */ IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, mtod(m, struct ip6_hdr *)); if ((ifp->if_flags & IFF_LOOPBACK) == 0) origifp = ifp; error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); return (error); } /* * Lookup link headerfor @sa_dst address. Stores found * data in @desten buffer. Copy of lle ln_flags can be also * saved in @pflags if @pflags is non-NULL. * * If destination LLE does not exists or lle state modification * is required, call "slow" version. * * Return values: * - 0 on success (address copied to buffer). * - EWOULDBLOCK (no local error, but address is still unresolved) * - other errors (alloc failure, etc) */ int nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, - const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags) + const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, + struct llentry **plle) { struct llentry *ln = NULL; const struct sockaddr_in6 *dst6; if (pflags != NULL) *pflags = 0; dst6 = (const struct sockaddr_in6 *)sa_dst; /* discard the packet if IPv6 operation is disabled on the interface */ if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { m_freem(m); return (ENETDOWN); /* better error? */ } if (m != NULL && m->m_flags & M_MCAST) { switch (ifp->if_type) { case IFT_ETHER: case IFT_FDDI: case IFT_L2VLAN: case IFT_IEEE80211: case IFT_BRIDGE: case IFT_ISO88025: ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, desten); return (0); default: m_freem(m); return (EAFNOSUPPORT); } } IF_AFDATA_RLOCK(ifp); ln = nd6_lookup(&dst6->sin6_addr, LLE_UNLOCKED, ifp); if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { /* Entry found, let's copy lle info */ bcopy(ln->r_linkdata, desten, ln->r_hdrlen); if (pflags != NULL) *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); /* Check if we have feedback request from nd6 timer */ if (ln->r_skip_req != 0) { LLE_REQ_LOCK(ln); ln->r_skip_req = 0; /* Notify that entry was used */ ln->lle_hittime = time_uptime; LLE_REQ_UNLOCK(ln); } IF_AFDATA_RUNLOCK(ifp); return (0); } IF_AFDATA_RUNLOCK(ifp); - return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags)); + return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle)); } /* * Do L2 address resolution for @sa_dst address. Stores found * address in @desten buffer. Copy of lle ln_flags can be also * saved in @pflags if @pflags is non-NULL. * * Heavy version. * Function assume that destination LLE does not exist, * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. * * Set noinline to be dtrace-friendly */ static __noinline int nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, - const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags) + const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, + struct llentry **plle) { struct llentry *lle = NULL, *lle_tmp; struct in6_addr *psrc, src; int send_ns, ll_len; char *lladdr; /* * Address resolution or Neighbor Unreachability Detection * for the next hop. * At this point, the destination of the packet must be a unicast * or an anycast address(i.e. not a multicast). */ if (lle == NULL) { IF_AFDATA_RLOCK(ifp); lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); IF_AFDATA_RUNLOCK(ifp); if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { /* * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), * the condition below is not very efficient. But we believe * it is tolerable, because this should be a rare case. */ lle = nd6_alloc(&dst->sin6_addr, 0, ifp); if (lle == NULL) { char ip6buf[INET6_ADDRSTRLEN]; log(LOG_DEBUG, "nd6_output: can't allocate llinfo for %s " "(ln=%p)\n", ip6_sprintf(ip6buf, &dst->sin6_addr), lle); m_freem(m); return (ENOBUFS); } IF_AFDATA_WLOCK(ifp); LLE_WLOCK(lle); /* Prefer any existing entry over newly-created one */ lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); if (lle_tmp == NULL) lltable_link_entry(LLTABLE6(ifp), lle); IF_AFDATA_WUNLOCK(ifp); if (lle_tmp != NULL) { lltable_free_entry(LLTABLE6(ifp), lle); lle = lle_tmp; lle_tmp = NULL; } } } if (lle == NULL) { if (!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { m_freem(m); return (ENOBUFS); } if (m != NULL) m_freem(m); return (ENOBUFS); } LLE_WLOCK_ASSERT(lle); /* * The first time we send a packet to a neighbor whose entry is * STALE, we have to change the state to DELAY and a sets a timer to * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do * neighbor unreachability detection on expiration. * (RFC 2461 7.3.3) */ if (lle->ln_state == ND6_LLINFO_STALE) nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); /* * If the neighbor cache entry has a state other than INCOMPLETE * (i.e. its link-layer address is already resolved), just * send the packet. */ if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { if (flags & LLE_ADDRONLY) { lladdr = lle->ll_addr; ll_len = ifp->if_addrlen; } else { lladdr = lle->r_linkdata; ll_len = lle->r_hdrlen; } bcopy(lladdr, desten, ll_len); if (pflags != NULL) *pflags = lle->la_flags; + if (plle) { + LLE_ADDREF(lle); + *plle = lle; + } LLE_WUNLOCK(lle); return (0); } /* * There is a neighbor cache entry, but no ethernet address * response yet. Append this latest packet to the end of the * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, * the oldest packet in the queue will be removed. */ if (lle->la_hold != NULL) { struct mbuf *m_hold; int i; i = 0; for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ i++; if (m_hold->m_nextpkt == NULL) { m_hold->m_nextpkt = m; break; } } while (i >= V_nd6_maxqueuelen) { m_hold = lle->la_hold; lle->la_hold = lle->la_hold->m_nextpkt; m_freem(m_hold); i--; } } else { lle->la_hold = m; } /* * If there has been no NS for the neighbor after entering the * INCOMPLETE state, send the first solicitation. * Note that for newly-created lle la_asked will be 0, * so we will transition from ND6_LLINFO_NOSTATE to * ND6_LLINFO_INCOMPLETE state here. */ psrc = NULL; send_ns = 0; if (lle->la_asked == 0) { lle->la_asked++; send_ns = 1; psrc = nd6_llinfo_get_holdsrc(lle, &src); nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); } LLE_WUNLOCK(lle); if (send_ns != 0) nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); return (EWOULDBLOCK); } /* * Do L2 address resolution for @sa_dst address. Stores found * address in @desten buffer. Copy of lle ln_flags can be also * saved in @pflags if @pflags is non-NULL. * * Return values: * - 0 on success (address copied to buffer). * - EWOULDBLOCK (no local error, but address is still unresolved) * - other errors (alloc failure, etc) */ int nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, char *desten, uint32_t *pflags) { int error; flags |= LLE_ADDRONLY; error = nd6_resolve_slow(ifp, flags, NULL, - (const struct sockaddr_in6 *)dst, desten, pflags); + (const struct sockaddr_in6 *)dst, desten, pflags, NULL); return (error); } int nd6_flush_holdchain(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain, struct sockaddr_in6 *dst) { struct mbuf *m, *m_head; struct ifnet *outifp; int error = 0; m_head = chain; if ((ifp->if_flags & IFF_LOOPBACK) != 0) outifp = origifp; else outifp = ifp; while (m_head) { m = m_head; m_head = m_head->m_nextpkt; error = nd6_output_ifp(ifp, origifp, m, dst, NULL); } /* * XXX * note that intermediate errors are blindly ignored */ return (error); } static int nd6_need_cache(struct ifnet *ifp) { /* * XXX: we currently do not make neighbor cache on any interface * other than ARCnet, Ethernet, FDDI and GIF. * * RFC2893 says: * - unidirectional tunnels needs no ND */ switch (ifp->if_type) { case IFT_ARCNET: case IFT_ETHER: case IFT_FDDI: case IFT_IEEE1394: case IFT_L2VLAN: case IFT_IEEE80211: case IFT_INFINIBAND: case IFT_BRIDGE: case IFT_PROPVIRTUAL: return (1); default: return (0); } } /* * Add pernament ND6 link-layer record for given * interface address. * * Very similar to IPv4 arp_ifinit(), but: * 1) IPv6 DAD is performed in different place * 2) It is called by IPv6 protocol stack in contrast to * arp_ifinit() which is typically called in SIOCSIFADDR * driver ioctl handler. * */ int nd6_add_ifa_lle(struct in6_ifaddr *ia) { struct ifnet *ifp; struct llentry *ln, *ln_tmp; struct sockaddr *dst; ifp = ia->ia_ifa.ifa_ifp; if (nd6_need_cache(ifp) == 0) return (0); ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; dst = (struct sockaddr *)&ia->ia_addr; ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); if (ln == NULL) return (ENOBUFS); IF_AFDATA_WLOCK(ifp); LLE_WLOCK(ln); /* Unlink any entry if exists */ ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); if (ln_tmp != NULL) lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); lltable_link_entry(LLTABLE6(ifp), ln); IF_AFDATA_WUNLOCK(ifp); if (ln_tmp != NULL) EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); LLE_WUNLOCK(ln); if (ln_tmp != NULL) llentry_free(ln_tmp); return (0); } /* * Removes either all lle entries for given @ia, or lle * corresponding to @ia address. */ void nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) { struct sockaddr_in6 mask, addr; struct sockaddr *saddr, *smask; struct ifnet *ifp; ifp = ia->ia_ifa.ifa_ifp; memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); saddr = (struct sockaddr *)&addr; smask = (struct sockaddr *)&mask; if (all != 0) lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); else lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); } static void clear_llinfo_pqueue(struct llentry *ln) { struct mbuf *m_hold, *m_hold_next; for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { m_hold_next = m_hold->m_nextpkt; m_freem(m_hold); } ln->la_hold = NULL; } static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS); static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS); SYSCTL_DECL(_net_inet6_icmp6); SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist, CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, nd6_sysctl_drlist, "S,in6_defrouter", "NDP default router list"); SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", "NDP prefix list"); SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS) { struct in6_defrouter d; struct nd_defrouter *dr; int error; if (req->newptr != NULL) return (EPERM); error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); bzero(&d, sizeof(d)); d.rtaddr.sin6_family = AF_INET6; d.rtaddr.sin6_len = sizeof(d.rtaddr); ND6_RLOCK(); TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) { d.rtaddr.sin6_addr = dr->rtaddr; error = sa6_recoverscope(&d.rtaddr); if (error != 0) break; d.flags = dr->raflags; d.rtlifetime = dr->rtlifetime; d.expire = dr->expire + (time_second - time_uptime); d.if_index = dr->ifp->if_index; error = SYSCTL_OUT(req, &d, sizeof(d)); if (error != 0) break; } ND6_RUNLOCK(); return (error); } static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) { struct in6_prefix p; struct sockaddr_in6 s6; struct nd_prefix *pr; struct nd_pfxrouter *pfr; time_t maxexpire; int error; char ip6buf[INET6_ADDRSTRLEN]; if (req->newptr) return (EPERM); error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); bzero(&p, sizeof(p)); p.origin = PR_ORIG_RA; bzero(&s6, sizeof(s6)); s6.sin6_family = AF_INET6; s6.sin6_len = sizeof(s6); ND6_RLOCK(); LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { p.prefix = pr->ndpr_prefix; if (sa6_recoverscope(&p.prefix)) { log(LOG_ERR, "scope error in prefix list (%s)\n", ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); /* XXX: press on... */ } p.raflags = pr->ndpr_raf; p.prefixlen = pr->ndpr_plen; p.vltime = pr->ndpr_vltime; p.pltime = pr->ndpr_pltime; p.if_index = pr->ndpr_ifp->if_index; if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) p.expire = 0; else { /* XXX: we assume time_t is signed. */ maxexpire = (-1) & ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) p.expire = pr->ndpr_lastupdate + pr->ndpr_vltime + (time_second - time_uptime); else p.expire = maxexpire; } p.refcnt = pr->ndpr_refcnt; p.flags = pr->ndpr_stateflags; p.advrtrs = 0; LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) p.advrtrs++; error = SYSCTL_OUT(req, &p, sizeof(p)); if (error != 0) break; LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { s6.sin6_addr = pfr->router->rtaddr; if (sa6_recoverscope(&s6)) log(LOG_ERR, "scope error in prefix list (%s)\n", ip6_sprintf(ip6buf, &pfr->router->rtaddr)); error = SYSCTL_OUT(req, &s6, sizeof(s6)); if (error != 0) break; } } ND6_RUNLOCK(); return (error); } Index: head/sys/netinet6/nd6.h =================================================================== --- head/sys/netinet6/nd6.h (revision 301216) +++ head/sys/netinet6/nd6.h (revision 301217) @@ -1,479 +1,479 @@ /*- * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: nd6.h,v 1.76 2001/12/18 02:10:31 itojun Exp $ * $FreeBSD$ */ #ifndef _NETINET6_ND6_H_ #define _NETINET6_ND6_H_ /* see net/route.h, or net/if_inarp.h */ #ifndef RTF_ANNOUNCE #define RTF_ANNOUNCE RTF_PROTO2 #endif #include #include struct llentry; #define ND6_LLINFO_NOSTATE -2 /* * We don't need the WAITDELETE state any more, but we keep the definition * in a comment line instead of removing it. This is necessary to avoid * unintentionally reusing the value for another purpose, which might * affect backward compatibility with old applications. * (20000711 jinmei@kame.net) */ /* #define ND6_LLINFO_WAITDELETE -1 */ #define ND6_LLINFO_INCOMPLETE 0 #define ND6_LLINFO_REACHABLE 1 #define ND6_LLINFO_STALE 2 #define ND6_LLINFO_DELAY 3 #define ND6_LLINFO_PROBE 4 #define ND6_IS_LLINFO_PROBREACH(n) ((n)->ln_state > ND6_LLINFO_INCOMPLETE) #define ND6_LLINFO_PERMANENT(n) (((n)->la_expire == 0) && ((n)->ln_state > ND6_LLINFO_INCOMPLETE)) struct nd_ifinfo { u_int32_t linkmtu; /* LinkMTU */ u_int32_t maxmtu; /* Upper bound of LinkMTU */ u_int32_t basereachable; /* BaseReachableTime */ u_int32_t reachable; /* Reachable Time */ u_int32_t retrans; /* Retrans Timer */ u_int32_t flags; /* Flags */ int recalctm; /* BaseReacable re-calculation timer */ u_int8_t chlim; /* CurHopLimit */ u_int8_t initialized; /* Flag to see the entry is initialized */ /* the following 3 members are for privacy extension for addrconf */ u_int8_t randomseed0[8]; /* upper 64 bits of MD5 digest */ u_int8_t randomseed1[8]; /* lower 64 bits (usually the EUI64 IFID) */ u_int8_t randomid[8]; /* current random ID */ }; #define ND6_IFF_PERFORMNUD 0x1 #define ND6_IFF_ACCEPT_RTADV 0x2 #define ND6_IFF_PREFER_SOURCE 0x4 /* Not used in FreeBSD. */ #define ND6_IFF_IFDISABLED 0x8 /* IPv6 operation is disabled due to * DAD failure. (XXX: not ND-specific) */ #define ND6_IFF_DONT_SET_IFROUTE 0x10 #define ND6_IFF_AUTO_LINKLOCAL 0x20 #define ND6_IFF_NO_RADR 0x40 #define ND6_IFF_NO_PREFER_IFACE 0x80 /* XXX: not related to ND. */ #define ND6_IFF_NO_DAD 0x100 #ifdef _KERNEL #define ND_IFINFO(ifp) \ (((struct in6_ifextra *)(ifp)->if_afdata[AF_INET6])->nd_ifinfo) #define IN6_LINKMTU(ifp) \ ((ND_IFINFO(ifp)->linkmtu && ND_IFINFO(ifp)->linkmtu < (ifp)->if_mtu) \ ? ND_IFINFO(ifp)->linkmtu \ : ((ND_IFINFO(ifp)->maxmtu && ND_IFINFO(ifp)->maxmtu < (ifp)->if_mtu) \ ? ND_IFINFO(ifp)->maxmtu : (ifp)->if_mtu)) #endif struct in6_nbrinfo { char ifname[IFNAMSIZ]; /* if name, e.g. "en0" */ struct in6_addr addr; /* IPv6 address of the neighbor */ long asked; /* number of queries already sent for this addr */ int isrouter; /* if it acts as a router */ int state; /* reachability state */ int expire; /* lifetime for NDP state transition */ }; #define DRLSTSIZ 10 #define PRLSTSIZ 10 struct in6_drlist { char ifname[IFNAMSIZ]; struct { struct in6_addr rtaddr; u_char flags; u_short rtlifetime; u_long expire; u_short if_index; } defrouter[DRLSTSIZ]; }; struct in6_defrouter { struct sockaddr_in6 rtaddr; u_char flags; u_short rtlifetime; u_long expire; u_short if_index; }; #ifdef _KERNEL struct in6_oprlist { char ifname[IFNAMSIZ]; struct { struct in6_addr prefix; struct prf_ra raflags; u_char prefixlen; u_char origin; u_long vltime; u_long pltime; u_long expire; u_short if_index; u_short advrtrs; /* number of advertisement routers */ struct in6_addr advrtr[DRLSTSIZ]; /* XXX: explicit limit */ } prefix[PRLSTSIZ]; }; #endif struct in6_prlist { char ifname[IFNAMSIZ]; struct { struct in6_addr prefix; struct prf_ra raflags; u_char prefixlen; u_char origin; u_int32_t vltime; u_int32_t pltime; time_t expire; u_short if_index; u_short advrtrs; /* number of advertisement routers */ struct in6_addr advrtr[DRLSTSIZ]; /* XXX: explicit limit */ } prefix[PRLSTSIZ]; }; struct in6_prefix { struct sockaddr_in6 prefix; struct prf_ra raflags; u_char prefixlen; u_char origin; u_int32_t vltime; u_int32_t pltime; time_t expire; u_int32_t flags; int refcnt; u_short if_index; u_short advrtrs; /* number of advertisement routers */ /* struct sockaddr_in6 advrtr[] */ }; #ifdef _KERNEL struct in6_ondireq { char ifname[IFNAMSIZ]; struct { u_int32_t linkmtu; /* LinkMTU */ u_int32_t maxmtu; /* Upper bound of LinkMTU */ u_int32_t basereachable; /* BaseReachableTime */ u_int32_t reachable; /* Reachable Time */ u_int32_t retrans; /* Retrans Timer */ u_int32_t flags; /* Flags */ int recalctm; /* BaseReacable re-calculation timer */ u_int8_t chlim; /* CurHopLimit */ u_int8_t receivedra; } ndi; }; #endif struct in6_ndireq { char ifname[IFNAMSIZ]; struct nd_ifinfo ndi; }; struct in6_ndifreq { char ifname[IFNAMSIZ]; u_long ifindex; }; /* Prefix status */ #define NDPRF_ONLINK 0x1 #define NDPRF_DETACHED 0x2 /* protocol constants */ #define MAX_RTR_SOLICITATION_DELAY 1 /* 1sec */ #define RTR_SOLICITATION_INTERVAL 4 /* 4sec */ #define MAX_RTR_SOLICITATIONS 3 #define ND6_INFINITE_LIFETIME 0xffffffff #ifdef _KERNEL /* node constants */ #define MAX_REACHABLE_TIME 3600000 /* msec */ #define REACHABLE_TIME 30000 /* msec */ #define RETRANS_TIMER 1000 /* msec */ #define MIN_RANDOM_FACTOR 512 /* 1024 * 0.5 */ #define MAX_RANDOM_FACTOR 1536 /* 1024 * 1.5 */ #define DEF_TEMP_VALID_LIFETIME 604800 /* 1 week */ #define DEF_TEMP_PREFERRED_LIFETIME 86400 /* 1 day */ #define TEMPADDR_REGEN_ADVANCE 5 /* sec */ #define MAX_TEMP_DESYNC_FACTOR 600 /* 10 min */ #define ND_COMPUTE_RTIME(x) \ (((MIN_RANDOM_FACTOR * (x >> 10)) + (arc4random() & \ ((MAX_RANDOM_FACTOR - MIN_RANDOM_FACTOR) * (x >> 10)))) /1000) TAILQ_HEAD(nd_drhead, nd_defrouter); struct nd_defrouter { TAILQ_ENTRY(nd_defrouter) dr_entry; struct in6_addr rtaddr; u_char raflags; /* flags on RA message */ u_short rtlifetime; u_long expire; struct ifnet *ifp; int installed; /* is installed into kernel routing table */ u_int refcnt; }; struct nd_prefixctl { struct ifnet *ndpr_ifp; /* prefix */ struct sockaddr_in6 ndpr_prefix; u_char ndpr_plen; u_int32_t ndpr_vltime; /* advertised valid lifetime */ u_int32_t ndpr_pltime; /* advertised preferred lifetime */ struct prf_ra ndpr_flags; }; struct nd_prefix { struct ifnet *ndpr_ifp; LIST_ENTRY(nd_prefix) ndpr_entry; struct sockaddr_in6 ndpr_prefix; /* prefix */ struct in6_addr ndpr_mask; /* netmask derived from the prefix */ u_int32_t ndpr_vltime; /* advertised valid lifetime */ u_int32_t ndpr_pltime; /* advertised preferred lifetime */ time_t ndpr_expire; /* expiration time of the prefix */ time_t ndpr_preferred; /* preferred time of the prefix */ time_t ndpr_lastupdate; /* reception time of last advertisement */ struct prf_ra ndpr_flags; u_int32_t ndpr_stateflags; /* actual state flags */ /* list of routers that advertise the prefix: */ LIST_HEAD(pr_rtrhead, nd_pfxrouter) ndpr_advrtrs; u_char ndpr_plen; int ndpr_refcnt; /* reference couter from addresses */ }; #define ndpr_raf ndpr_flags #define ndpr_raf_onlink ndpr_flags.onlink #define ndpr_raf_auto ndpr_flags.autonomous #define ndpr_raf_router ndpr_flags.router /* * Message format for use in obtaining information about prefixes * from inet6 sysctl function */ struct inet6_ndpr_msghdr { u_short inpm_msglen; /* to skip over non-understood messages */ u_char inpm_version; /* future binary compatibility */ u_char inpm_type; /* message type */ struct in6_addr inpm_prefix; u_long prm_vltim; u_long prm_pltime; u_long prm_expire; u_long prm_preferred; struct in6_prflags prm_flags; u_short prm_index; /* index for associated ifp */ u_char prm_plen; /* length of prefix in bits */ }; #define prm_raf_onlink prm_flags.prf_ra.onlink #define prm_raf_auto prm_flags.prf_ra.autonomous #define prm_statef_onlink prm_flags.prf_state.onlink #define prm_rrf_decrvalid prm_flags.prf_rr.decrvalid #define prm_rrf_decrprefd prm_flags.prf_rr.decrprefd struct nd_pfxrouter { LIST_ENTRY(nd_pfxrouter) pfr_entry; struct nd_defrouter *router; }; LIST_HEAD(nd_prhead, nd_prefix); #ifdef MALLOC_DECLARE MALLOC_DECLARE(M_IP6NDP); #endif /* nd6.c */ VNET_DECLARE(int, nd6_prune); VNET_DECLARE(int, nd6_delay); VNET_DECLARE(int, nd6_umaxtries); VNET_DECLARE(int, nd6_mmaxtries); VNET_DECLARE(int, nd6_useloopback); VNET_DECLARE(int, nd6_maxnudhint); VNET_DECLARE(int, nd6_gctimer); VNET_DECLARE(struct nd_drhead, nd_defrouter); VNET_DECLARE(struct nd_prhead, nd_prefix); VNET_DECLARE(int, nd6_debug); VNET_DECLARE(int, nd6_onlink_ns_rfc4861); #define V_nd6_prune VNET(nd6_prune) #define V_nd6_delay VNET(nd6_delay) #define V_nd6_umaxtries VNET(nd6_umaxtries) #define V_nd6_mmaxtries VNET(nd6_mmaxtries) #define V_nd6_useloopback VNET(nd6_useloopback) #define V_nd6_maxnudhint VNET(nd6_maxnudhint) #define V_nd6_gctimer VNET(nd6_gctimer) #define V_nd_defrouter VNET(nd_defrouter) #define V_nd_prefix VNET(nd_prefix) #define V_nd6_debug VNET(nd6_debug) #define V_nd6_onlink_ns_rfc4861 VNET(nd6_onlink_ns_rfc4861) /* Lock for the prefix and default router lists. */ VNET_DECLARE(struct rwlock, nd6_lock); #define V_nd6_lock VNET(nd6_lock) #define ND6_RLOCK() rw_rlock(&V_nd6_lock) #define ND6_RUNLOCK() rw_runlock(&V_nd6_lock) #define ND6_WLOCK() rw_wlock(&V_nd6_lock) #define ND6_WUNLOCK() rw_wunlock(&V_nd6_lock) #define ND6_WLOCK_ASSERT() rw_assert(&V_nd6_lock, RA_WLOCKED) #define ND6_RLOCK_ASSERT() rw_assert(&V_nd6_lock, RA_RLOCKED) #define ND6_LOCK_ASSERT() rw_assert(&V_nd6_lock, RA_LOCKED) #define ND6_UNLOCK_ASSERT() rw_assert(&V_nd6_lock, RA_UNLOCKED) #define nd6log(x) do { if (V_nd6_debug) log x; } while (/*CONSTCOND*/ 0) /* nd6_rtr.c */ VNET_DECLARE(int, nd6_defifindex); VNET_DECLARE(int, ip6_desync_factor); /* seconds */ VNET_DECLARE(u_int32_t, ip6_temp_preferred_lifetime); /* seconds */ VNET_DECLARE(u_int32_t, ip6_temp_valid_lifetime); /* seconds */ VNET_DECLARE(int, ip6_temp_regen_advance); /* seconds */ #define V_nd6_defifindex VNET(nd6_defifindex) #define V_ip6_desync_factor VNET(ip6_desync_factor) #define V_ip6_temp_preferred_lifetime VNET(ip6_temp_preferred_lifetime) #define V_ip6_temp_valid_lifetime VNET(ip6_temp_valid_lifetime) #define V_ip6_temp_regen_advance VNET(ip6_temp_regen_advance) union nd_opts { struct nd_opt_hdr *nd_opt_array[16]; /* max = ND_OPT_NONCE */ struct { struct nd_opt_hdr *zero; struct nd_opt_hdr *src_lladdr; struct nd_opt_hdr *tgt_lladdr; struct nd_opt_prefix_info *pi_beg; /* multiple opts, start */ struct nd_opt_rd_hdr *rh; struct nd_opt_mtu *mtu; struct nd_opt_hdr *__res6; struct nd_opt_hdr *__res7; struct nd_opt_hdr *__res8; struct nd_opt_hdr *__res9; struct nd_opt_hdr *__res10; struct nd_opt_hdr *__res11; struct nd_opt_hdr *__res12; struct nd_opt_hdr *__res13; struct nd_opt_nonce *nonce; struct nd_opt_hdr *__res15; struct nd_opt_hdr *search; /* multiple opts */ struct nd_opt_hdr *last; /* multiple opts */ int done; struct nd_opt_prefix_info *pi_end;/* multiple opts, end */ } nd_opt_each; }; #define nd_opts_src_lladdr nd_opt_each.src_lladdr #define nd_opts_tgt_lladdr nd_opt_each.tgt_lladdr #define nd_opts_pi nd_opt_each.pi_beg #define nd_opts_pi_end nd_opt_each.pi_end #define nd_opts_rh nd_opt_each.rh #define nd_opts_mtu nd_opt_each.mtu #define nd_opts_nonce nd_opt_each.nonce #define nd_opts_search nd_opt_each.search #define nd_opts_last nd_opt_each.last #define nd_opts_done nd_opt_each.done /* XXX: need nd6_var.h?? */ /* nd6.c */ void nd6_init(void); #ifdef VIMAGE void nd6_destroy(void); #endif struct nd_ifinfo *nd6_ifattach(struct ifnet *); void nd6_ifdetach(struct nd_ifinfo *); int nd6_is_addr_neighbor(const struct sockaddr_in6 *, struct ifnet *); void nd6_option_init(void *, int, union nd_opts *); struct nd_opt_hdr *nd6_option(union nd_opts *); int nd6_options(union nd_opts *); struct llentry *nd6_lookup(const struct in6_addr *, int, struct ifnet *); struct llentry *nd6_alloc(const struct in6_addr *, int, struct ifnet *); void nd6_setmtu(struct ifnet *); void nd6_llinfo_setstate(struct llentry *lle, int newstate); void nd6_timer(void *); void nd6_purge(struct ifnet *); int nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, char *desten, uint32_t *pflags); int nd6_resolve(struct ifnet *, int, struct mbuf *, - const struct sockaddr *, u_char *, uint32_t *); + const struct sockaddr *, u_char *, uint32_t *, struct llentry **); int nd6_ioctl(u_long, caddr_t, struct ifnet *); void nd6_cache_lladdr(struct ifnet *, struct in6_addr *, char *, int, int, int); void nd6_grab_holdchain(struct llentry *, struct mbuf **, struct sockaddr_in6 *); int nd6_flush_holdchain(struct ifnet *, struct ifnet *, struct mbuf *, struct sockaddr_in6 *); int nd6_add_ifa_lle(struct in6_ifaddr *); void nd6_rem_ifa_lle(struct in6_ifaddr *, int); int nd6_output_ifp(struct ifnet *, struct ifnet *, struct mbuf *, struct sockaddr_in6 *, struct route *); /* nd6_nbr.c */ void nd6_na_input(struct mbuf *, int, int); void nd6_na_output(struct ifnet *, const struct in6_addr *, const struct in6_addr *, u_long, int, struct sockaddr *); void nd6_ns_input(struct mbuf *, int, int); void nd6_ns_output(struct ifnet *, const struct in6_addr *, const struct in6_addr *, const struct in6_addr *, uint8_t *); caddr_t nd6_ifptomac(struct ifnet *); void nd6_dad_init(void); void nd6_dad_start(struct ifaddr *, int); void nd6_dad_stop(struct ifaddr *); /* nd6_rtr.c */ void nd6_rs_input(struct mbuf *, int, int); void nd6_ra_input(struct mbuf *, int, int); void defrouter_reset(void); void defrouter_select(void); void defrouter_ref(struct nd_defrouter *); void defrouter_rele(struct nd_defrouter *); bool defrouter_remove(struct in6_addr *, struct ifnet *); void defrouter_unlink(struct nd_defrouter *, struct nd_drhead *); void defrouter_del(struct nd_defrouter *); void prelist_remove(struct nd_prefix *); int nd6_prelist_add(struct nd_prefixctl *, struct nd_defrouter *, struct nd_prefix **); void pfxlist_onlink_check(void); struct nd_defrouter *defrouter_lookup(struct in6_addr *, struct ifnet *); struct nd_defrouter *defrouter_lookup_locked(struct in6_addr *, struct ifnet *); struct nd_prefix *nd6_prefix_lookup(struct nd_prefixctl *); void rt6_flush(struct in6_addr *, struct ifnet *); int nd6_setdefaultiface(int); int in6_tmpifadd(const struct in6_ifaddr *, int, int); #endif /* _KERNEL */ #endif /* _NETINET6_ND6_H_ */