Index: head/sys/netpfil/ipfw/dn_aqm_pie.c =================================================================== --- head/sys/netpfil/ipfw/dn_aqm_pie.c (revision 301161) +++ head/sys/netpfil/ipfw/dn_aqm_pie.c (revision 301162) @@ -1,793 +1,793 @@ /* * PIE - Proportional Integral controller Enhanced AQM algorithm. * * $FreeBSD$ * * Copyright (C) 2016 Centre for Advanced Internet Architectures, * Swinburne University of Technology, Melbourne, Australia. * Portions of this code were made possible in part by a gift from * The Comcast Innovation Fund. * Implemented by Rasool Al-Saadi * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */ #include #include #include #include /* ip_len, ip_off */ #include /* ip_output(), IP_FORWARDING */ #include #include #include /* various ether_* routines */ #include /* for ip6_input, ip6_output prototypes */ #include #include #ifdef NEW_AQM #include #include #include #include #include /* for debugging */ #include static struct dn_aqm pie_desc; /* PIE defaults * target=15ms, tupdate=15ms, max_burst=150ms, * max_ecnth=0.1, alpha=0.125, beta=1.25, */ struct dn_aqm_pie_parms pie_sysctl = { 15 * AQM_TIME_1MS, 15 * AQM_TIME_1MS, 150 * AQM_TIME_1MS, PIE_SCALE/10 , PIE_SCALE * 0.125, PIE_SCALE * 1.25 , PIE_CAPDROP_ENABLED | PIE_DEPRATEEST_ENABLED | PIE_DERAND_ENABLED }; static int pie_sysctl_alpha_beta_handler(SYSCTL_HANDLER_ARGS) { int error; long value; if (!strcmp(oidp->oid_name,"alpha")) value = pie_sysctl.alpha; else value = pie_sysctl.beta; value = value * 1000 / PIE_SCALE; error = sysctl_handle_long(oidp, &value, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (value < 1 || value > 7 * PIE_SCALE) return (EINVAL); value = (value * PIE_SCALE) / 1000; if (!strcmp(oidp->oid_name,"alpha")) pie_sysctl.alpha = value; else pie_sysctl.beta = value; return (0); } static int pie_sysctl_target_tupdate_maxb_handler(SYSCTL_HANDLER_ARGS) { int error; long value; if (!strcmp(oidp->oid_name,"target")) value = pie_sysctl.qdelay_ref; else if (!strcmp(oidp->oid_name,"tupdate")) value = pie_sysctl.tupdate; else value = pie_sysctl.max_burst; value = value / AQM_TIME_1US; error = sysctl_handle_long(oidp, &value, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (value < 1 || value > 10 * AQM_TIME_1S) return (EINVAL); value = value * AQM_TIME_1US; if (!strcmp(oidp->oid_name,"target")) pie_sysctl.qdelay_ref = value; else if (!strcmp(oidp->oid_name,"tupdate")) pie_sysctl.tupdate = value; else pie_sysctl.max_burst = value; return (0); } static int pie_sysctl_max_ecnth_handler(SYSCTL_HANDLER_ARGS) { int error; long value; value = pie_sysctl.max_ecnth; value = value * 1000 / PIE_SCALE; error = sysctl_handle_long(oidp, &value, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (value < 1 || value > PIE_SCALE) return (EINVAL); value = (value * PIE_SCALE) / 1000; pie_sysctl.max_ecnth = value; return (0); } /* define PIE sysctl variables */ SYSBEGIN(f4) SYSCTL_DECL(_net_inet); SYSCTL_DECL(_net_inet_ip); SYSCTL_DECL(_net_inet_ip_dummynet); static SYSCTL_NODE(_net_inet_ip_dummynet, OID_AUTO, pie, CTLFLAG_RW, 0, "PIE"); #ifdef SYSCTL_NODE SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, target, CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, pie_sysctl_target_tupdate_maxb_handler, "L", "queue target in microsecond"); SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, tupdate, CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, pie_sysctl_target_tupdate_maxb_handler, "L", "the frequency of drop probability calculation in microsecond"); SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, max_burst, CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, pie_sysctl_target_tupdate_maxb_handler, "L", "Burst allowance interval in microsecond"); SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, max_ecnth, CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, pie_sysctl_max_ecnth_handler, "L", "ECN safeguard threshold scaled by 1000"); SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, alpha, CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, pie_sysctl_alpha_beta_handler, "L", "PIE alpha scaled by 1000"); SYSCTL_PROC(_net_inet_ip_dummynet_pie, OID_AUTO, beta, CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, pie_sysctl_alpha_beta_handler, "L", "beta scaled by 1000"); #endif /* * Callout function for drop probability calculation * This function is called over tupdate ms and takes pointer of PIE * status variables as an argument */ static void calculate_drop_prob(void *x) { int64_t p, prob, oldprob; struct dn_aqm_pie_parms *pprms; struct pie_status *pst = (struct pie_status *) x; /* dealing with race condition */ if (callout_pending(&pst->aqm_pie_callout)) { /* callout was reset */ mtx_unlock(&pst->lock_mtx); return; } if (!callout_active(&pst->aqm_pie_callout)) { /* callout was stopped */ mtx_unlock(&pst->lock_mtx); mtx_destroy(&pst->lock_mtx); free(x, M_DUMMYNET); //pst->pq->aqm_status = NULL; pie_desc.ref_count--; return; } callout_deactivate(&pst->aqm_pie_callout); pprms = pst->parms; prob = pst->drop_prob; /* calculate current qdelay */ if (pprms->flags & PIE_DEPRATEEST_ENABLED) { pst->current_qdelay = ((uint64_t)pst->pq->ni.len_bytes * pst->avg_dq_time) >> PIE_DQ_THRESHOLD_BITS; } /* calculate drop probability */ p = (int64_t)pprms->alpha * ((int64_t)pst->current_qdelay - (int64_t)pprms->qdelay_ref); p +=(int64_t) pprms->beta * ((int64_t)pst->current_qdelay - (int64_t)pst->qdelay_old); /* We PIE_MAX_PROB shift by 12-bits to increase the division precision */ p *= (PIE_MAX_PROB << 12) / AQM_TIME_1S; /* auto-tune drop probability */ - if (prob < (int64_t)(PIE_MAX_PROB * 0.000001)) - p >>= 11 + PIE_FIX_POINT_BITS+12; - else if (prob < (int64_t)(PIE_MAX_PROB * 0.00001)) - p >>= 9 + PIE_FIX_POINT_BITS+12; - else if (prob < (int64_t)(PIE_MAX_PROB * 0.0001)) - p >>= 7 + PIE_FIX_POINT_BITS+12; - else if (prob < (int64_t)(PIE_MAX_PROB * 0.001)) - p >>= 5 + PIE_FIX_POINT_BITS+12; - else if (prob < (int64_t)(PIE_MAX_PROB * 0.01)) - p >>= 3 + PIE_FIX_POINT_BITS+12; - else if (prob < (int64_t)(PIE_MAX_PROB * 0.1)) - p >>= 1 + PIE_FIX_POINT_BITS+12; + if (prob < (PIE_MAX_PROB / 1000000)) /* 0.000001 */ + p >>= 11 + PIE_FIX_POINT_BITS + 12; + else if (prob < (PIE_MAX_PROB / 100000)) /* 0.00001 */ + p >>= 9 + PIE_FIX_POINT_BITS + 12; + else if (prob < (PIE_MAX_PROB / 10000)) /* 0.0001 */ + p >>= 7 + PIE_FIX_POINT_BITS + 12; + else if (prob < (PIE_MAX_PROB / 1000)) /* 0.001 */ + p >>= 5 + PIE_FIX_POINT_BITS + 12; + else if (prob < (PIE_MAX_PROB / 100)) /* 0.01 */ + p >>= 3 + PIE_FIX_POINT_BITS + 12; + else if (prob < (PIE_MAX_PROB / 10)) /* 0.1 */ + p >>= 1 + PIE_FIX_POINT_BITS + 12; else - p >>= PIE_FIX_POINT_BITS+12; + p >>= PIE_FIX_POINT_BITS + 12; oldprob = prob; /* Cap Drop adjustment */ if ((pprms->flags & PIE_CAPDROP_ENABLED) && prob >= PIE_MAX_PROB / 10 && p > PIE_MAX_PROB / 50 ) p = PIE_MAX_PROB / 50; prob = prob + p; /* decay the drop probability exponentially */ if (pst->current_qdelay == 0 && pst->qdelay_old == 0) /* 0.98 ~= 1- 1/64 */ prob = prob - (prob >> 6); /* check for multiplication overflow/underflow */ if (p>0) { if (proboldprob) { prob= 0; D("underflow"); } /* make drop probability between 0 and PIE_MAX_PROB*/ if (prob < 0) prob = 0; else if (prob > PIE_MAX_PROB) prob = PIE_MAX_PROB; pst->drop_prob = prob; /* store current queue delay value in old queue delay*/ pst->qdelay_old = pst->current_qdelay; /* update burst allowance */ if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance>0) { if (pst->burst_allowance > pprms->tupdate ) pst->burst_allowance -= pprms->tupdate; else pst->burst_allowance = 0; } /* reschedule calculate_drop_prob function */ if (pst->sflags & PIE_ACTIVE) callout_reset_sbt(&pst->aqm_pie_callout, (uint64_t)pprms->tupdate * SBT_1US, 0, calculate_drop_prob, pst, 0); mtx_unlock(&pst->lock_mtx); } /* * Extract a packet from the head of queue 'q' * Return a packet or NULL if the queue is empty. * If getts is set, also extract packet's timestamp from mtag. */ static struct mbuf * pie_extract_head(struct dn_queue *q, aqm_time_t *pkt_ts, int getts) { struct m_tag *mtag; struct mbuf *m = q->mq.head; if (m == NULL) return m; q->mq.head = m->m_nextpkt; /* Update stats */ update_stats(q, -m->m_pkthdr.len, 0); if (q->ni.length == 0) /* queue is now idle */ q->q_time = dn_cfg.curr_time; if (getts) { /* extract packet TS*/ mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); if (mtag == NULL) { D("PIE timestamp mtag not found!"); *pkt_ts = 0; } else { *pkt_ts = *(aqm_time_t *)(mtag + 1); m_tag_delete(m,mtag); } } return m; } /* * Initiate PIE variable and optionally activate it */ __inline static void init_activate_pie(struct pie_status *pst, int resettimer) { struct dn_aqm_pie_parms *pprms; mtx_lock(&pst->lock_mtx); pprms = pst->parms; pst->drop_prob = 0; pst->qdelay_old = 0; pst->burst_allowance = pprms->max_burst; pst->accu_prob = 0; pst->dq_count = 0; pst->avg_dq_time = 0; pst->sflags = PIE_INMEASUREMENT; pst->measurement_start = AQM_UNOW; if (resettimer) { pst->sflags |= PIE_ACTIVE; callout_reset_sbt(&pst->aqm_pie_callout, (uint64_t)pprms->tupdate * SBT_1US, 0, calculate_drop_prob, pst, 0); } //DX(2, "PIE Activated"); mtx_unlock(&pst->lock_mtx); } /* * Deactivate PIE and stop probe update callout */ __inline static void deactivate_pie(struct pie_status *pst) { mtx_lock(&pst->lock_mtx); pst->sflags &= ~(PIE_ACTIVE | PIE_INMEASUREMENT); callout_stop(&pst->aqm_pie_callout); //D("PIE Deactivated"); mtx_unlock(&pst->lock_mtx); } /* * Dequeue and return a pcaket from queue 'q' or NULL if 'q' is empty. * Also, caculate depature time or queue delay using timestamp */ static struct mbuf * aqm_pie_dequeue(struct dn_queue *q) { struct mbuf *m; struct dn_flow *ni; /* stats for scheduler instance */ struct dn_aqm_pie_parms *pprms; struct pie_status *pst; aqm_time_t now; aqm_time_t pkt_ts, dq_time; int32_t w; pst = q->aqm_status; pprms = pst->parms; ni = &q->_si->ni; /*we extarct packet ts only when Departure Rate Estimation dis not used*/ m = pie_extract_head(q, &pkt_ts, !(pprms->flags & PIE_DEPRATEEST_ENABLED)); if (!m || !(pst->sflags & PIE_ACTIVE)) return m; now = AQM_UNOW; if (pprms->flags & PIE_DEPRATEEST_ENABLED) { /* calculate average depature time */ if(pst->sflags & PIE_INMEASUREMENT) { pst->dq_count += m->m_pkthdr.len; if (pst->dq_count >= PIE_DQ_THRESHOLD) { dq_time = now - pst->measurement_start; /* * if we don't have old avg dq_time i.e PIE is (re)initialized, * don't use weight to calculate new avg_dq_time */ if(pst->avg_dq_time == 0) pst->avg_dq_time = dq_time; else { /* * weight = PIE_DQ_THRESHOLD/2^6, but we scaled * weight by 2^8. Thus, scaled * weight = PIE_DQ_THRESHOLD /2^8 * */ w = PIE_DQ_THRESHOLD >> 8; pst->avg_dq_time = (dq_time* w + (pst->avg_dq_time * ((1L << 8) - w))) >> 8; pst->sflags &= ~PIE_INMEASUREMENT; } } } /* * Start new measurment cycle when the queue has * PIE_DQ_THRESHOLD worth of bytes. */ if(!(pst->sflags & PIE_INMEASUREMENT) && q->ni.len_bytes >= PIE_DQ_THRESHOLD) { pst->sflags |= PIE_INMEASUREMENT; pst->measurement_start = now; pst->dq_count = 0; } } /* Optionally, use packet timestamp to estimate queue delay */ else pst->current_qdelay = now - pkt_ts; return m; } /* * Enqueue a packet in q, subject to space and PIE queue management policy * (whose parameters are in q->fs). * Update stats for the queue and the scheduler. * Return 0 on success, 1 on drop. The packet is consumed anyways. */ static int aqm_pie_enqueue(struct dn_queue *q, struct mbuf* m) { struct dn_fs *f; uint64_t len; uint32_t qlen; struct pie_status *pst; struct dn_aqm_pie_parms *pprms; int t; len = m->m_pkthdr.len; pst = q->aqm_status; if(!pst) { DX(2, "PIE queue is not initialized\n"); update_stats(q, 0, 1); FREE_PKT(m); return 1; } f = &(q->fs->fs); pprms = pst->parms; t = ENQUE; /* get current queue length in bytes or packets*/ qlen = (f->flags & DN_QSIZE_BYTES) ? q->ni.len_bytes : q->ni.length; /* check for queue size and drop the tail if exceed queue limit*/ if (qlen >= f->qsize) t = DROP; /* drop/mark the packet when PIE is active and burst time elapsed */ else if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance==0 && drop_early(pst, q->ni.len_bytes) == DROP) { /* * if drop_prob over ECN threshold, drop the packet * otherwise mark and enqueue it. */ if ((pprms->flags & PIE_ECN_ENABLED) && pst->drop_prob < (pprms->max_ecnth << (PIE_PROB_BITS - PIE_FIX_POINT_BITS)) && ecn_mark(m)) t = ENQUE; else t = DROP; } /* Turn PIE on when 1/3 of the queue is full */ if (!(pst->sflags & PIE_ACTIVE) && qlen >= pst->one_third_q_size) { init_activate_pie(pst, 1); } /* Reset burst tolerance and optinally turn PIE off*/ if ((pst->sflags & PIE_ACTIVE) && pst->drop_prob == 0 && pst->current_qdelay < (pprms->qdelay_ref >> 1) && pst->qdelay_old < (pprms->qdelay_ref >> 1)) { pst->burst_allowance = pprms->max_burst; if ((pprms->flags & PIE_ON_OFF_MODE_ENABLED) && qlen<=0) deactivate_pie(pst); } /* Timestamp the packet if Departure Rate Estimation is disabled */ if (t != DROP && !(pprms->flags & PIE_DEPRATEEST_ENABLED)) { /* Add TS to mbuf as a TAG */ struct m_tag *mtag; mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); if (mtag == NULL) mtag = m_tag_alloc(MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, sizeof(aqm_time_t), M_NOWAIT); if (mtag == NULL) { m_freem(m); t = DROP; } *(aqm_time_t *)(mtag + 1) = AQM_UNOW; m_tag_prepend(m, mtag); } if (t != DROP) { mq_append(&q->mq, m); update_stats(q, len, 0); return (0); } else { update_stats(q, 0, 1); /* reset accu_prob after packet drop */ pst->accu_prob = 0; FREE_PKT(m); return 1; } return 0; } /* * initialize PIE for queue 'q' * First allocate memory for PIE status. */ static int aqm_pie_init(struct dn_queue *q) { struct pie_status *pst; struct dn_aqm_pie_parms *pprms; int err = 0; pprms = q->fs->aqmcfg; do { /* exit with break when error occurs*/ if (!pprms){ D("AQM_PIE is not configured"); err = EINVAL; break; } q->aqm_status = malloc(sizeof(struct pie_status), M_DUMMYNET, M_NOWAIT | M_ZERO); if (q->aqm_status == NULL) { D("cannot allocate PIE private data"); err = ENOMEM ; break; } pst = q->aqm_status; /* increase reference count for PIE module */ pie_desc.ref_count++; pst->pq = q; pst->parms = pprms; /* For speed optimization, we caculate 1/3 queue size once here */ // we can use x/3 = (x >>2) + (x >>4) + (x >>7) pst->one_third_q_size = q->fs->fs.qsize/3; mtx_init(&pst->lock_mtx, "mtx_pie", NULL, MTX_DEF); callout_init_mtx(&pst->aqm_pie_callout, &pst->lock_mtx, CALLOUT_RETURNUNLOCKED); pst->current_qdelay = 0; init_activate_pie(pst, !(pprms->flags & PIE_ON_OFF_MODE_ENABLED)); //DX(2, "aqm_PIE_init"); } while(0); return err; } /* * Clean up PIE status for queue 'q' * Destroy memory allocated for PIE status. */ static int aqm_pie_cleanup(struct dn_queue *q) { if(!q) { D("q is null"); return 0; } struct pie_status *pst = q->aqm_status; if(!pst) { //D("queue is already cleaned up"); return 0; } if(!q->fs || !q->fs->aqmcfg) { D("fs is null or no cfg"); return 1; } if (q->fs->aqmfp && q->fs->aqmfp->type !=DN_AQM_PIE) { D("Not PIE fs (%d)", q->fs->fs.fs_nr); return 1; } mtx_lock(&pst->lock_mtx); /* stop callout timer */ if (callout_stop(&pst->aqm_pie_callout) || !(pst->sflags & PIE_ACTIVE)) { mtx_unlock(&pst->lock_mtx); mtx_destroy(&pst->lock_mtx); free(q->aqm_status, M_DUMMYNET); q->aqm_status = NULL; pie_desc.ref_count--; return 0; } else { q->aqm_status = NULL; mtx_unlock(&pst->lock_mtx); DX(2, "PIE callout has not been stoped from cleanup!"); return EBUSY; } return 0; } /* * Config PIE parameters * also allocate memory for PIE configurations */ static int aqm_pie_config(struct dn_fsk* fs, struct dn_extra_parms *ep, int len) { struct dn_aqm_pie_parms *pcfg; int l = sizeof(struct dn_extra_parms); if (len < l) { D("invalid sched parms length got %d need %d", len, l); return EINVAL; } /* we free the old cfg because maybe the orignal allocation * was used for diffirent AQM type. */ if (fs->aqmcfg) { free(fs->aqmcfg, M_DUMMYNET); fs->aqmcfg = NULL; } fs->aqmcfg = malloc(sizeof(struct dn_aqm_pie_parms), M_DUMMYNET, M_NOWAIT | M_ZERO); if (fs->aqmcfg== NULL) { D("cannot allocate PIE configuration parameters"); return ENOMEM; } /* par array contains pie configuration as follow * 0- qdelay_ref,1- tupdate, 2- max_burst * 3- max_ecnth, 4- alpha, 5- beta, 6- flags */ /* configure PIE parameters */ pcfg = fs->aqmcfg; if (ep->par[0] < 0) pcfg->qdelay_ref = pie_sysctl.qdelay_ref * AQM_TIME_1US; else pcfg->qdelay_ref = ep->par[0]; if (ep->par[1] < 0) pcfg->tupdate = pie_sysctl.tupdate * AQM_TIME_1US; else pcfg->tupdate = ep->par[1]; if (ep->par[2] < 0) pcfg->max_burst = pie_sysctl.max_burst * AQM_TIME_1US; else pcfg->max_burst = ep->par[2]; if (ep->par[3] < 0) pcfg->max_ecnth = pie_sysctl.max_ecnth; else pcfg->max_ecnth = ep->par[3]; if (ep->par[4] < 0) pcfg->alpha = pie_sysctl.alpha; else pcfg->alpha = ep->par[4]; if (ep->par[5] < 0) pcfg->beta = pie_sysctl.beta; else pcfg->beta = ep->par[5]; if (ep->par[6] < 0) pcfg->flags = pie_sysctl.flags; else pcfg->flags = ep->par[6]; /* bound PIE configurations */ pcfg->qdelay_ref = BOUND_VAR(pcfg->qdelay_ref, 1, 10 * AQM_TIME_1S); pcfg->tupdate = BOUND_VAR(pcfg->tupdate, 1, 10 * AQM_TIME_1S); pcfg->max_burst = BOUND_VAR(pcfg->max_burst, 0, 10 * AQM_TIME_1S); pcfg->max_ecnth = BOUND_VAR(pcfg->max_ecnth, 0, PIE_SCALE); pcfg->alpha = BOUND_VAR(pcfg->alpha, 0, 7 * PIE_SCALE); pcfg->beta = BOUND_VAR(pcfg->beta, 0 , 7 * PIE_SCALE); pie_desc.cfg_ref_count++; //D("pie cfg_ref_count=%d", pie_desc.cfg_ref_count); return 0; } /* * Deconfigure PIE and free memory allocation */ static int aqm_pie_deconfig(struct dn_fsk* fs) { if (fs && fs->aqmcfg) { free(fs->aqmcfg, M_DUMMYNET); fs->aqmcfg = NULL; pie_desc.cfg_ref_count--; } return 0; } /* * Retrieve PIE configuration parameters. */ static int aqm_pie_getconfig (struct dn_fsk *fs, struct dn_extra_parms * ep) { struct dn_aqm_pie_parms *pcfg; if (fs->aqmcfg) { strcpy(ep->name, pie_desc.name); pcfg = fs->aqmcfg; ep->par[0] = pcfg->qdelay_ref / AQM_TIME_1US; ep->par[1] = pcfg->tupdate / AQM_TIME_1US; ep->par[2] = pcfg->max_burst / AQM_TIME_1US; ep->par[3] = pcfg->max_ecnth; ep->par[4] = pcfg->alpha; ep->par[5] = pcfg->beta; ep->par[6] = pcfg->flags; return 0; } return 1; } static struct dn_aqm pie_desc = { _SI( .type = ) DN_AQM_PIE, _SI( .name = ) "PIE", _SI( .ref_count = ) 0, _SI( .cfg_ref_count = ) 0, _SI( .enqueue = ) aqm_pie_enqueue, _SI( .dequeue = ) aqm_pie_dequeue, _SI( .config = ) aqm_pie_config, _SI( .deconfig = ) aqm_pie_deconfig, _SI( .getconfig = ) aqm_pie_getconfig, _SI( .init = ) aqm_pie_init, _SI( .cleanup = ) aqm_pie_cleanup, }; DECLARE_DNAQM_MODULE(dn_aqm_pie, &pie_desc); #endif Index: head/sys/netpfil/ipfw/dn_aqm_pie.h =================================================================== --- head/sys/netpfil/ipfw/dn_aqm_pie.h (revision 301161) +++ head/sys/netpfil/ipfw/dn_aqm_pie.h (revision 301162) @@ -1,151 +1,153 @@ /* * PIE - Proportional Integral controller Enhanced AQM algorithm. * * $FreeBSD$ * * Copyright (C) 2016 Centre for Advanced Internet Architectures, * Swinburne University of Technology, Melbourne, Australia. * Portions of this code were made possible in part by a gift from * The Comcast Innovation Fund. * Implemented by Rasool Al-Saadi * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef _IP_DN_AQM_PIE_H #define _IP_DN_AQM_PIE_H #define DN_AQM_PIE 2 #define PIE_DQ_THRESHOLD_BITS 14 /* 2^14 =16KB */ #define PIE_DQ_THRESHOLD (1UL << PIE_DQ_THRESHOLD_BITS) #define MEAN_PKTSIZE 800 /* 31-bits because random() generates range from 0->(2**31)-1 */ #define PIE_PROB_BITS 31 #define PIE_MAX_PROB ((1ULL<parms; /* queue is not congested */ if ((pst->qdelay_old < (pprms->qdelay_ref >> 1) && pst->drop_prob < PIE_MAX_PROB / 5 ) || qlen <= 2 * MEAN_PKTSIZE) return ENQUE; if (pst->drop_prob == 0) pst->accu_prob = 0; /* increment accu_prob */ if (pprms->flags & PIE_DERAND_ENABLED) pst->accu_prob += pst->drop_prob; /* De-randomize option * if accu_prob < 0.85 -> enqueue * if accu_prob>8.5 ->drop * between 0.85 and 8.5 || !De-randomize --> drop on prob + * + * (0.85 = 17/20 ,8.5 = 17/2) */ if (pprms->flags & PIE_DERAND_ENABLED) { - if(pst->accu_prob < (uint64_t) (PIE_MAX_PROB * 0.85)) + if(pst->accu_prob < (uint64_t) (PIE_MAX_PROB * 17 / 20)) return ENQUE; - if( pst->accu_prob >= (uint64_t) (PIE_MAX_PROB * 8.5)) + if( pst->accu_prob >= (uint64_t) (PIE_MAX_PROB * 17 / 2)) return DROP; } if (random() < pst->drop_prob) { pst->accu_prob = 0; return DROP; } return ENQUE; } #endif Index: head/sys/netpfil/ipfw/dn_sched_fq_pie.c =================================================================== --- head/sys/netpfil/ipfw/dn_sched_fq_pie.c (revision 301161) +++ head/sys/netpfil/ipfw/dn_sched_fq_pie.c (revision 301162) @@ -1,1262 +1,1262 @@ /* * FQ_PIE - The FlowQueue-PIE scheduler/AQM * * $FreeBSD$ * * Copyright (C) 2016 Centre for Advanced Internet Architectures, * Swinburne University of Technology, Melbourne, Australia. * Portions of this code were made possible in part by a gift from * The Comcast Innovation Fund. * Implemented by Rasool Al-Saadi * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Important note: * As there is no an office document for FQ-PIE specification, we used * FQ-CoDel algorithm with some modifications to implement FQ-PIE. * This FQ-PIE implementation is a beta version and have not been tested * extensively. Our FQ-PIE uses stand-alone PIE AQM per sub-queue. By * default, timestamp is used to calculate queue delay instead of departure * rate estimation method. Although departure rate estimation is available * as testing option, the results could be incorrect. Moreover, turning PIE on * and off option is available but it does not work properly in this version. */ #ifdef _KERNEL #include #include #include #include #include #include #include #include /* IFNAMSIZ */ #include #include /* ipfw_rule_ref */ #include /* flow_id */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #else #include #endif #define DN_SCHED_FQ_PIE 7 /* list of queues */ STAILQ_HEAD(fq_pie_list, fq_pie_flow) ; /* FQ_PIE parameters including PIE */ struct dn_sch_fq_pie_parms { struct dn_aqm_pie_parms pcfg; /* PIE configuration Parameters */ /* FQ_PIE Parameters */ uint32_t flows_cnt; /* number of flows */ uint32_t limit; /* hard limit of FQ_PIE queue size*/ uint32_t quantum; }; /* flow (sub-queue) stats */ struct flow_stats { uint64_t tot_pkts; /* statistics counters */ uint64_t tot_bytes; uint32_t length; /* Queue length, in packets */ uint32_t len_bytes; /* Queue length, in bytes */ uint32_t drops; }; /* A flow of packets (sub-queue)*/ struct fq_pie_flow { struct mq mq; /* list of packets */ struct flow_stats stats; /* statistics */ int deficit; int active; /* 1: flow is active (in a list) */ struct pie_status pst; /* pie status variables */ struct fq_pie_si *psi; /* parent scheduler instance */ STAILQ_ENTRY(fq_pie_flow) flowchain; }; /* extra fq_pie scheduler configurations */ struct fq_pie_schk { struct dn_sch_fq_pie_parms cfg; }; /* fq_pie scheduler instance */ struct fq_pie_si { struct dn_sch_inst _si; /* standard scheduler instance */ struct dn_queue main_q; /* main queue is after si directly */ uint32_t nr_active_q; struct fq_pie_flow *flows; /* array of flows (queues) */ uint32_t perturbation; /* random value */ struct fq_pie_list newflows; /* list of new queues */ struct fq_pie_list oldflows; /* list of old queues */ }; struct mem_to_free { void *mem_flows; void *mem_callout; }; static struct mtx freemem_mtx; static struct dn_alg fq_pie_desc; /* Default FQ-PIE parameters including PIE */ /* PIE defaults * target=15ms, max_burst=150ms, max_ecnth=0.1, * alpha=0.125, beta=1.25, tupdate=15ms * FQ- * flows=1024, limit=10240, quantum =1514 */ struct dn_sch_fq_pie_parms fq_pie_sysctl = {{15000 * AQM_TIME_1US, 15000 * AQM_TIME_1US, 150000 * AQM_TIME_1US, PIE_SCALE * 0.1, PIE_SCALE * 0.125, PIE_SCALE * 1.25, PIE_CAPDROP_ENABLED | PIE_DERAND_ENABLED}, 1024, 10240, 1514}; static int fqpie_sysctl_alpha_beta_handler(SYSCTL_HANDLER_ARGS) { int error; long value; if (!strcmp(oidp->oid_name,"alpha")) value = fq_pie_sysctl.pcfg.alpha; else value = fq_pie_sysctl.pcfg.beta; value = value * 1000 / PIE_SCALE; error = sysctl_handle_long(oidp, &value, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (value < 1 || value > 7 * PIE_SCALE) return (EINVAL); value = (value * PIE_SCALE) / 1000; if (!strcmp(oidp->oid_name,"alpha")) fq_pie_sysctl.pcfg.alpha = value; else fq_pie_sysctl.pcfg.beta = value; return (0); } static int fqpie_sysctl_target_tupdate_maxb_handler(SYSCTL_HANDLER_ARGS) { int error; long value; if (!strcmp(oidp->oid_name,"target")) value = fq_pie_sysctl.pcfg.qdelay_ref; else if (!strcmp(oidp->oid_name,"tupdate")) value = fq_pie_sysctl.pcfg.tupdate; else value = fq_pie_sysctl.pcfg.max_burst; value = value / AQM_TIME_1US; error = sysctl_handle_long(oidp, &value, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (value < 1 || value > 10 * AQM_TIME_1S) return (EINVAL); value = value * AQM_TIME_1US; if (!strcmp(oidp->oid_name,"target")) fq_pie_sysctl.pcfg.qdelay_ref = value; else if (!strcmp(oidp->oid_name,"tupdate")) fq_pie_sysctl.pcfg.tupdate = value; else fq_pie_sysctl.pcfg.max_burst = value; return (0); } static int fqpie_sysctl_max_ecnth_handler(SYSCTL_HANDLER_ARGS) { int error; long value; value = fq_pie_sysctl.pcfg.max_ecnth; value = value * 1000 / PIE_SCALE; error = sysctl_handle_long(oidp, &value, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (value < 1 || value > PIE_SCALE) return (EINVAL); value = (value * PIE_SCALE) / 1000; fq_pie_sysctl.pcfg.max_ecnth = value; return (0); } /* define FQ- PIE sysctl variables */ SYSBEGIN(f4) SYSCTL_DECL(_net_inet); SYSCTL_DECL(_net_inet_ip); SYSCTL_DECL(_net_inet_ip_dummynet); static SYSCTL_NODE(_net_inet_ip_dummynet, OID_AUTO, fqpie, CTLFLAG_RW, 0, "FQ_PIE"); #ifdef SYSCTL_NODE SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, target, CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, fqpie_sysctl_target_tupdate_maxb_handler, "L", "queue target in microsecond"); SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, tupdate, CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, fqpie_sysctl_target_tupdate_maxb_handler, "L", "the frequency of drop probability calculation in microsecond"); SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_burst, CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, fqpie_sysctl_target_tupdate_maxb_handler, "L", "Burst allowance interval in microsecond"); SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_ecnth, CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, fqpie_sysctl_max_ecnth_handler, "L", "ECN safeguard threshold scaled by 1000"); SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, alpha, CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, fqpie_sysctl_alpha_beta_handler, "L", "PIE alpha scaled by 1000"); SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, beta, CTLTYPE_LONG | CTLFLAG_RW, NULL, 0, fqpie_sysctl_alpha_beta_handler, "L", "beta scaled by 1000"); SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, quantum, CTLFLAG_RW, &fq_pie_sysctl.quantum, 1514, "quantum for FQ_PIE"); SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, flows, CTLFLAG_RW, &fq_pie_sysctl.flows_cnt, 1024, "Number of queues for FQ_PIE"); SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, limit, CTLFLAG_RW, &fq_pie_sysctl.limit, 10240, "limit for FQ_PIE"); #endif /* Helper function to update queue&main-queue and scheduler statistics. * negative len & drop -> drop * negative len -> dequeue * positive len -> enqueue * positive len + drop -> drop during enqueue */ __inline static void fq_update_stats(struct fq_pie_flow *q, struct fq_pie_si *si, int len, int drop) { int inc = 0; if (len < 0) inc = -1; else if (len > 0) inc = 1; if (drop) { si->main_q.ni.drops ++; q->stats.drops ++; si->_si.ni.drops ++; io_pkt_drop ++; } if (!drop || (drop && len < 0)) { /* Update stats for the main queue */ si->main_q.ni.length += inc; si->main_q.ni.len_bytes += len; /*update sub-queue stats */ q->stats.length += inc; q->stats.len_bytes += len; /*update scheduler instance stats */ si->_si.ni.length += inc; si->_si.ni.len_bytes += len; } if (inc > 0) { si->main_q.ni.tot_bytes += len; si->main_q.ni.tot_pkts ++; q->stats.tot_bytes +=len; q->stats.tot_pkts++; si->_si.ni.tot_bytes +=len; si->_si.ni.tot_pkts ++; } } /* * Extract a packet from the head of sub-queue 'q' * Return a packet or NULL if the queue is empty. * If getts is set, also extract packet's timestamp from mtag. */ __inline static struct mbuf * fq_pie_extract_head(struct fq_pie_flow *q, aqm_time_t *pkt_ts, struct fq_pie_si *si, int getts) { struct mbuf *m = q->mq.head; if (m == NULL) return m; q->mq.head = m->m_nextpkt; fq_update_stats(q, si, -m->m_pkthdr.len, 0); if (si->main_q.ni.length == 0) /* queue is now idle */ si->main_q.q_time = dn_cfg.curr_time; if (getts) { /* extract packet timestamp*/ struct m_tag *mtag; mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); if (mtag == NULL){ D("PIE timestamp mtag not found!"); *pkt_ts = 0; } else { *pkt_ts = *(aqm_time_t *)(mtag + 1); m_tag_delete(m,mtag); } } return m; } /* * Callout function for drop probability calculation * This function is called over tupdate ms and takes pointer of FQ-PIE * flow as an argument */ static void fq_calculate_drop_prob(void *x) { struct fq_pie_flow *q = (struct fq_pie_flow *) x; struct pie_status *pst = &q->pst; struct dn_aqm_pie_parms *pprms; int64_t p, prob, oldprob; aqm_time_t now; /* dealing with race condition */ if (callout_pending(&pst->aqm_pie_callout)) { /* callout was reset */ mtx_unlock(&pst->lock_mtx); return; } if (!callout_active(&pst->aqm_pie_callout)) { /* callout was stopped */ mtx_unlock(&pst->lock_mtx); mtx_destroy(&pst->lock_mtx); q->psi->nr_active_q--; return; } callout_deactivate(&pst->aqm_pie_callout); now = AQM_UNOW; pprms = pst->parms; prob = pst->drop_prob; /* calculate current qdelay */ if (pprms->flags & PIE_DEPRATEEST_ENABLED) { pst->current_qdelay = ((uint64_t)q->stats.len_bytes * pst->avg_dq_time) >> PIE_DQ_THRESHOLD_BITS; } /* calculate drop probability */ p = (int64_t)pprms->alpha * ((int64_t)pst->current_qdelay - (int64_t)pprms->qdelay_ref); p +=(int64_t) pprms->beta * ((int64_t)pst->current_qdelay - (int64_t)pst->qdelay_old); /* We PIE_MAX_PROB shift by 12-bits to increase the division precision */ p *= (PIE_MAX_PROB << 12) / AQM_TIME_1S; /* auto-tune drop probability */ - if (prob < (int64_t)(PIE_MAX_PROB * 0.000001)) - p >>= 11 + PIE_FIX_POINT_BITS+12; - else if (prob < (int64_t)(PIE_MAX_PROB * 0.00001)) - p >>= 9 + PIE_FIX_POINT_BITS+12; - else if (prob < (int64_t)(PIE_MAX_PROB * 0.0001)) - p >>= 7 + PIE_FIX_POINT_BITS+12; - else if (prob < (int64_t)(PIE_MAX_PROB * 0.001)) - p >>= 5 + PIE_FIX_POINT_BITS+12; - else if (prob < (int64_t)(PIE_MAX_PROB * 0.01)) - p >>= 3 + PIE_FIX_POINT_BITS+12; - else if (prob < (int64_t)(PIE_MAX_PROB * 0.1)) - p >>= 1 + PIE_FIX_POINT_BITS+12; + if (prob < (PIE_MAX_PROB / 1000000)) /* 0.000001 */ + p >>= 11 + PIE_FIX_POINT_BITS + 12; + else if (prob < (PIE_MAX_PROB / 100000)) /* 0.00001 */ + p >>= 9 + PIE_FIX_POINT_BITS + 12; + else if (prob < (PIE_MAX_PROB / 10000)) /* 0.0001 */ + p >>= 7 + PIE_FIX_POINT_BITS + 12; + else if (prob < (PIE_MAX_PROB / 1000)) /* 0.001 */ + p >>= 5 + PIE_FIX_POINT_BITS + 12; + else if (prob < (PIE_MAX_PROB / 100)) /* 0.01 */ + p >>= 3 + PIE_FIX_POINT_BITS + 12; + else if (prob < (PIE_MAX_PROB / 10)) /* 0.1 */ + p >>= 1 + PIE_FIX_POINT_BITS + 12; else - p >>= PIE_FIX_POINT_BITS+12; + p >>= PIE_FIX_POINT_BITS + 12; oldprob = prob; /* Cap Drop adjustment */ if ((pprms->flags & PIE_CAPDROP_ENABLED) && prob >= PIE_MAX_PROB / 10 && p > PIE_MAX_PROB / 50 ) p = PIE_MAX_PROB / 50; prob = prob + p; /* decay the drop probability exponentially */ if (pst->current_qdelay == 0 && pst->qdelay_old == 0) /* 0.98 ~= 1- 1/64 */ prob = prob - (prob >> 6); /* check for multiplication over/under flow */ if (p>0) { if (proboldprob) { prob= 0; D("underflow"); } /* make drop probability between 0 and PIE_MAX_PROB*/ if (prob < 0) prob = 0; else if (prob > PIE_MAX_PROB) prob = PIE_MAX_PROB; pst->drop_prob = prob; /* store current delay value */ pst->qdelay_old = pst->current_qdelay; /* update burst allowance */ if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance) { if (pst->burst_allowance > pprms->tupdate) pst->burst_allowance -= pprms->tupdate; else pst->burst_allowance = 0; } if (pst->sflags & PIE_ACTIVE) callout_reset_sbt(&pst->aqm_pie_callout, (uint64_t)pprms->tupdate * SBT_1US, 0, fq_calculate_drop_prob, q, 0); mtx_unlock(&pst->lock_mtx); } /* * Reset PIE variables & activate the queue */ __inline static void fq_activate_pie(struct fq_pie_flow *q) { struct pie_status *pst = &q->pst; struct dn_aqm_pie_parms *pprms; mtx_lock(&pst->lock_mtx); pprms = pst->parms; pprms = pst->parms; pst->drop_prob = 0; pst->qdelay_old = 0; pst->burst_allowance = pprms->max_burst; pst->accu_prob = 0; pst->dq_count = 0; pst->avg_dq_time = 0; pst->sflags = PIE_INMEASUREMENT | PIE_ACTIVE; pst->measurement_start = AQM_UNOW; callout_reset_sbt(&pst->aqm_pie_callout, (uint64_t)pprms->tupdate * SBT_1US, 0, fq_calculate_drop_prob, q, 0); mtx_unlock(&pst->lock_mtx); } /* * Deactivate PIE and stop probe update callout */ __inline static void fq_deactivate_pie(struct pie_status *pst) { mtx_lock(&pst->lock_mtx); pst->sflags &= ~(PIE_ACTIVE | PIE_INMEASUREMENT); callout_stop(&pst->aqm_pie_callout); //D("PIE Deactivated"); mtx_unlock(&pst->lock_mtx); } /* * Initialize PIE for sub-queue 'q' */ static int pie_init(struct fq_pie_flow *q) { struct pie_status *pst=&q->pst; struct dn_aqm_pie_parms *pprms = pst->parms; struct fq_pie_schk *fqpie_schk; fqpie_schk = (struct fq_pie_schk *)(q->psi->_si.sched+1); int err = 0; if (!pprms){ D("AQM_PIE is not configured"); err = EINVAL; } else { q->psi->nr_active_q++; /* For speed optimization, we caculate 1/3 queue size once here */ // XXX limit divided by number of queues divided by 3 ??? pst->one_third_q_size = (fqpie_schk->cfg.limit / fqpie_schk->cfg.flows_cnt) / 3; mtx_init(&pst->lock_mtx, "mtx_pie", NULL, MTX_DEF); callout_init_mtx(&pst->aqm_pie_callout, &pst->lock_mtx, CALLOUT_RETURNUNLOCKED); } return err; } /* * Clean up PIE status for sub-queue 'q' * Stop callout timer and destroy mtx */ static int pie_cleanup(struct fq_pie_flow *q) { struct pie_status *pst = &q->pst; mtx_lock(&pst->lock_mtx); if (callout_stop(&pst->aqm_pie_callout) || !(pst->sflags & PIE_ACTIVE)) { mtx_unlock(&pst->lock_mtx); mtx_destroy(&pst->lock_mtx); q->psi->nr_active_q--; } else { mtx_unlock(&pst->lock_mtx); return EBUSY; } return 0; } /* * Dequeue and return a pcaket from sub-queue 'q' or NULL if 'q' is empty. * Also, caculate depature time or queue delay using timestamp */ static struct mbuf * pie_dequeue(struct fq_pie_flow *q, struct fq_pie_si *si) { struct mbuf *m; struct dn_aqm_pie_parms *pprms; struct pie_status *pst; aqm_time_t now; aqm_time_t pkt_ts, dq_time; int32_t w; pst = &q->pst; pprms = q->pst.parms; /*we extarct packet ts only when Departure Rate Estimation dis not used*/ m = fq_pie_extract_head(q, &pkt_ts, si, !(pprms->flags & PIE_DEPRATEEST_ENABLED)); if (!m || !(pst->sflags & PIE_ACTIVE)) return m; now = AQM_UNOW; if (pprms->flags & PIE_DEPRATEEST_ENABLED) { /* calculate average depature time */ if(pst->sflags & PIE_INMEASUREMENT) { pst->dq_count += m->m_pkthdr.len; if (pst->dq_count >= PIE_DQ_THRESHOLD) { dq_time = now - pst->measurement_start; /* * if we don't have old avg dq_time i.e PIE is (re)initialized, * don't use weight to calculate new avg_dq_time */ if(pst->avg_dq_time == 0) pst->avg_dq_time = dq_time; else { /* * weight = PIE_DQ_THRESHOLD/2^6, but we scaled * weight by 2^8. Thus, scaled * weight = PIE_DQ_THRESHOLD /2^8 * */ w = PIE_DQ_THRESHOLD >> 8; pst->avg_dq_time = (dq_time* w + (pst->avg_dq_time * ((1L << 8) - w))) >> 8; pst->sflags &= ~PIE_INMEASUREMENT; } } } /* * Start new measurment cycle when the queue has * PIE_DQ_THRESHOLD worth of bytes. */ if(!(pst->sflags & PIE_INMEASUREMENT) && q->stats.len_bytes >= PIE_DQ_THRESHOLD) { pst->sflags |= PIE_INMEASUREMENT; pst->measurement_start = now; pst->dq_count = 0; } } /* Optionally, use packet timestamp to estimate queue delay */ else pst->current_qdelay = now - pkt_ts; return m; } /* * Enqueue a packet in q, subject to space and FQ-PIE queue management policy * (whose parameters are in q->fs). * Update stats for the queue and the scheduler. * Return 0 on success, 1 on drop. The packet is consumed anyways. */ static int pie_enqueue(struct fq_pie_flow *q, struct mbuf* m, struct fq_pie_si *si) { uint64_t len; struct pie_status *pst; struct dn_aqm_pie_parms *pprms; int t; len = m->m_pkthdr.len; pst = &q->pst; pprms = pst->parms; t = ENQUE; /* drop/mark the packet when PIE is active and burst time elapsed */ if (pst->sflags & PIE_ACTIVE && pst->burst_allowance == 0 && drop_early(pst, q->stats.len_bytes) == DROP) { /* * if drop_prob over ECN threshold, drop the packet * otherwise mark and enqueue it. */ if (pprms->flags & PIE_ECN_ENABLED && pst->drop_prob < (pprms->max_ecnth << (PIE_PROB_BITS - PIE_FIX_POINT_BITS)) && ecn_mark(m)) t = ENQUE; else t = DROP; } /* Turn PIE on when 1/3 of the queue is full */ if (!(pst->sflags & PIE_ACTIVE) && q->stats.len_bytes >= pst->one_third_q_size) { fq_activate_pie(q); } /* reset burst tolerance and optinally turn PIE off*/ if (pst->drop_prob == 0 && pst->current_qdelay < (pprms->qdelay_ref >> 1) && pst->qdelay_old < (pprms->qdelay_ref >> 1)) { pst->burst_allowance = pprms->max_burst; if (pprms->flags & PIE_ON_OFF_MODE_ENABLED && q->stats.len_bytes<=0) fq_deactivate_pie(pst); } /* Use timestamp if Departure Rate Estimation mode is disabled */ if (t != DROP && !(pprms->flags & PIE_DEPRATEEST_ENABLED)) { /* Add TS to mbuf as a TAG */ struct m_tag *mtag; mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); if (mtag == NULL) mtag = m_tag_alloc(MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, sizeof(aqm_time_t), M_NOWAIT); if (mtag == NULL) { m_freem(m); t = DROP; } *(aqm_time_t *)(mtag + 1) = AQM_UNOW; m_tag_prepend(m, mtag); } if (t != DROP) { mq_append(&q->mq, m); fq_update_stats(q, si, len, 0); return 0; } else { fq_update_stats(q, si, len, 1); pst->accu_prob = 0; FREE_PKT(m); return 1; } return 0; } /* Drop a packet form the head of FQ-PIE sub-queue */ static void pie_drop_head(struct fq_pie_flow *q, struct fq_pie_si *si) { struct mbuf *m = q->mq.head; if (m == NULL) return; q->mq.head = m->m_nextpkt; fq_update_stats(q, si, -m->m_pkthdr.len, 1); if (si->main_q.ni.length == 0) /* queue is now idle */ si->main_q.q_time = dn_cfg.curr_time; /* reset accu_prob after packet drop */ q->pst.accu_prob = 0; FREE_PKT(m); } /* * Classify a packet to queue number using Jenkins hash function. * Return: queue number * the input of the hash are protocol no, perturbation, src IP, dst IP, * src port, dst port, */ static inline int fq_pie_classify_flow(struct mbuf *m, uint16_t fcount, struct fq_pie_si *si) { struct ip *ip; struct tcphdr *th; struct udphdr *uh; uint8_t tuple[41]; uint16_t hash=0; //#ifdef INET6 struct ip6_hdr *ip6; int isip6; isip6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0; if(isip6) { ip6 = mtod(m, struct ip6_hdr *); *((uint8_t *) &tuple[0]) = ip6->ip6_nxt; *((uint32_t *) &tuple[1]) = si->perturbation; memcpy(&tuple[5], ip6->ip6_src.s6_addr, 16); memcpy(&tuple[21], ip6->ip6_dst.s6_addr, 16); switch (ip6->ip6_nxt) { case IPPROTO_TCP: th = (struct tcphdr *)(ip6 + 1); *((uint16_t *) &tuple[37]) = th->th_dport; *((uint16_t *) &tuple[39]) = th->th_sport; break; case IPPROTO_UDP: uh = (struct udphdr *)(ip6 + 1); *((uint16_t *) &tuple[37]) = uh->uh_dport; *((uint16_t *) &tuple[39]) = uh->uh_sport; break; default: memset(&tuple[37], 0, 4); } hash = jenkins_hash(tuple, 41, HASHINIT) % fcount; return hash; } //#endif /* IPv4 */ ip = mtod(m, struct ip *); *((uint8_t *) &tuple[0]) = ip->ip_p; *((uint32_t *) &tuple[1]) = si->perturbation; *((uint32_t *) &tuple[5]) = ip->ip_src.s_addr; *((uint32_t *) &tuple[9]) = ip->ip_dst.s_addr; switch (ip->ip_p) { case IPPROTO_TCP: th = (struct tcphdr *)(ip + 1); *((uint16_t *) &tuple[13]) = th->th_dport; *((uint16_t *) &tuple[15]) = th->th_sport; break; case IPPROTO_UDP: uh = (struct udphdr *)(ip + 1); *((uint16_t *) &tuple[13]) = uh->uh_dport; *((uint16_t *) &tuple[15]) = uh->uh_sport; break; default: memset(&tuple[13], 0, 4); } hash = jenkins_hash(tuple, 17, HASHINIT) % fcount; return hash; } /* * Enqueue a packet into an appropriate queue according to * FQ-CoDe; algorithm. */ static int fq_pie_enqueue(struct dn_sch_inst *_si, struct dn_queue *_q, struct mbuf *m) { struct fq_pie_si *si; struct fq_pie_schk *schk; struct dn_sch_fq_pie_parms *param; struct dn_queue *mainq; int idx, drop, i, maxidx; mainq = (struct dn_queue *)(_si + 1); si = (struct fq_pie_si *)_si; schk = (struct fq_pie_schk *)(si->_si.sched+1); param = &schk->cfg; /* classify a packet to queue number*/ idx = fq_pie_classify_flow(m, param->flows_cnt, si); /* enqueue packet into appropriate queue using PIE AQM. * Note: 'pie_enqueue' function returns 1 only when it unable to * add timestamp to packet (no limit check)*/ drop = pie_enqueue(&si->flows[idx], m, si); /* pie unable to timestamp a packet */ if (drop) return 1; /* If the flow (sub-queue) is not active ,then add it to tail of * new flows list, initialize and activate it. */ if (!si->flows[idx].active) { STAILQ_INSERT_TAIL(&si->newflows, &si->flows[idx], flowchain); si->flows[idx].deficit = param->quantum; fq_activate_pie(&si->flows[idx]); si->flows[idx].active = 1; } /* check the limit for all queues and remove a packet from the * largest one */ if (mainq->ni.length > schk->cfg.limit) { /* find first active flow */ for (maxidx = 0; maxidx < schk->cfg.flows_cnt; maxidx++) if (si->flows[maxidx].active) break; if (maxidx < schk->cfg.flows_cnt) { /* find the largest sub- queue */ for (i = maxidx + 1; i < schk->cfg.flows_cnt; i++) if (si->flows[i].active && si->flows[i].stats.length > si->flows[maxidx].stats.length) maxidx = i; pie_drop_head(&si->flows[maxidx], si); drop = 1; } } return drop; } /* * Dequeue a packet from an appropriate queue according to * FQ-CoDel algorithm. */ static struct mbuf * fq_pie_dequeue(struct dn_sch_inst *_si) { struct fq_pie_si *si; struct fq_pie_schk *schk; struct dn_sch_fq_pie_parms *param; struct fq_pie_flow *f; struct mbuf *mbuf; struct fq_pie_list *fq_pie_flowlist; si = (struct fq_pie_si *)_si; schk = (struct fq_pie_schk *)(si->_si.sched+1); param = &schk->cfg; do { /* select a list to start with */ if (STAILQ_EMPTY(&si->newflows)) fq_pie_flowlist = &si->oldflows; else fq_pie_flowlist = &si->newflows; /* Both new and old queue lists are empty, return NULL */ if (STAILQ_EMPTY(fq_pie_flowlist)) return NULL; f = STAILQ_FIRST(fq_pie_flowlist); while (f != NULL) { /* if there is no flow(sub-queue) deficit, increase deficit * by quantum, move the flow to the tail of old flows list * and try another flow. * Otherwise, the flow will be used for dequeue. */ if (f->deficit < 0) { f->deficit += param->quantum; STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain); } else break; f = STAILQ_FIRST(fq_pie_flowlist); } /* the new flows list is empty, try old flows list */ if (STAILQ_EMPTY(fq_pie_flowlist)) continue; /* Dequeue a packet from the selected flow */ mbuf = pie_dequeue(f, si); /* pie did not return a packet */ if (!mbuf) { /* If the selected flow belongs to new flows list, then move * it to the tail of old flows list. Otherwise, deactivate it and * remove it from the old list and */ if (fq_pie_flowlist == &si->newflows) { STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain); } else { f->active = 0; fq_deactivate_pie(&f->pst); STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); } /* start again */ continue; } /* we have a packet to return, * update flow deficit and return the packet*/ f->deficit -= mbuf->m_pkthdr.len; return mbuf; } while (1); /* unreachable point */ return NULL; } /* * Initialize fq_pie scheduler instance. * also, allocate memory for flows array. */ static int fq_pie_new_sched(struct dn_sch_inst *_si) { struct fq_pie_si *si; struct dn_queue *q; struct fq_pie_schk *schk; int i; si = (struct fq_pie_si *)_si; schk = (struct fq_pie_schk *)(_si->sched+1); if(si->flows) { D("si already configured!"); return 0; } /* init the main queue */ q = &si->main_q; set_oid(&q->ni.oid, DN_QUEUE, sizeof(*q)); q->_si = _si; q->fs = _si->sched->fs; /* allocate memory for flows array */ si->flows = malloc(schk->cfg.flows_cnt * sizeof(struct fq_pie_flow), M_DUMMYNET, M_NOWAIT | M_ZERO); if (si->flows == NULL) { D("cannot allocate memory for fq_pie configuration parameters"); return ENOMEM ; } /* init perturbation for this si */ si->perturbation = random(); si->nr_active_q = 0; /* init the old and new flows lists */ STAILQ_INIT(&si->newflows); STAILQ_INIT(&si->oldflows); /* init the flows (sub-queues) */ for (i = 0; i < schk->cfg.flows_cnt; i++) { si->flows[i].pst.parms = &schk->cfg.pcfg; si->flows[i].psi = si; pie_init(&si->flows[i]); } /* init mtx lock and callout function for free memory */ if (!fq_pie_desc.ref_count) { mtx_init(&freemem_mtx, "mtx_pie", NULL, MTX_DEF); } mtx_lock(&freemem_mtx); fq_pie_desc.ref_count++; mtx_unlock(&freemem_mtx); return 0; } /* * Free FQ-PIE flows memory callout function. * This function is scheduled when a flow or more still active and * the scheduer is about to be destroyed, to prevent memory leak. */ static void free_flows(void *_mem) { struct mem_to_free *mem = _mem; free(mem->mem_flows, M_DUMMYNET); free(mem->mem_callout, M_DUMMYNET); free(_mem, M_DUMMYNET); fq_pie_desc.ref_count--; if (!fq_pie_desc.ref_count) { mtx_unlock(&freemem_mtx); mtx_destroy(&freemem_mtx); } else mtx_unlock(&freemem_mtx); //D("mem freed ok!"); } /* * Free fq_pie scheduler instance. */ static int fq_pie_free_sched(struct dn_sch_inst *_si) { struct fq_pie_si *si; struct fq_pie_schk *schk; int i; si = (struct fq_pie_si *)_si; schk = (struct fq_pie_schk *)(_si->sched+1); for (i = 0; i < schk->cfg.flows_cnt; i++) { pie_cleanup(&si->flows[i]); } /* if there are still some queues have a callout going to start, * we cannot free flows memory. If we do so, a panic can happen * as prob calculate callout function uses flows memory. */ if (!si->nr_active_q) { /* free the flows array */ free(si->flows , M_DUMMYNET); si->flows = NULL; mtx_lock(&freemem_mtx); fq_pie_desc.ref_count--; if (!fq_pie_desc.ref_count) { mtx_unlock(&freemem_mtx); mtx_destroy(&freemem_mtx); } else mtx_unlock(&freemem_mtx); //D("ok!"); return 0; } else { /* memory leak happens here. So, we register a callout function to free * flows memory later. */ D("unable to stop all fq_pie sub-queues!"); mtx_lock(&freemem_mtx); struct callout *mem_callout; struct mem_to_free *mem; mem = malloc(sizeof(*mem), M_DUMMYNET, M_NOWAIT | M_ZERO); mem_callout = malloc(sizeof(*mem_callout), M_DUMMYNET, M_NOWAIT | M_ZERO); callout_init_mtx(mem_callout, &freemem_mtx, CALLOUT_RETURNUNLOCKED); mem->mem_flows = si->flows; mem->mem_callout = mem_callout; callout_reset_sbt(mem_callout, (uint64_t)(si->flows[0].pst.parms->tupdate + 1000) * SBT_1US, 0, free_flows, mem, 0); si->flows = NULL; mtx_unlock(&freemem_mtx); return EBUSY; } } /* * Configure FQ-PIE scheduler. * the configurations for the scheduler is passed fromipfw userland. */ static int fq_pie_config(struct dn_schk *_schk) { struct fq_pie_schk *schk; struct dn_extra_parms *ep; struct dn_sch_fq_pie_parms *fqp_cfg; schk = (struct fq_pie_schk *)(_schk+1); ep = (struct dn_extra_parms *) _schk->cfg; /* par array contains fq_pie configuration as follow * PIE: 0- qdelay_ref,1- tupdate, 2- max_burst * 3- max_ecnth, 4- alpha, 5- beta, 6- flags * FQ_PIE: 7- quantum, 8- limit, 9- flows */ if (ep && ep->oid.len ==sizeof(*ep) && ep->oid.subtype == DN_SCH_PARAMS) { fqp_cfg = &schk->cfg; if (ep->par[0] < 0) fqp_cfg->pcfg.qdelay_ref = fq_pie_sysctl.pcfg.qdelay_ref; else fqp_cfg->pcfg.qdelay_ref = ep->par[0]; if (ep->par[1] < 0) fqp_cfg->pcfg.tupdate = fq_pie_sysctl.pcfg.tupdate; else fqp_cfg->pcfg.tupdate = ep->par[1]; if (ep->par[2] < 0) fqp_cfg->pcfg.max_burst = fq_pie_sysctl.pcfg.max_burst; else fqp_cfg->pcfg.max_burst = ep->par[2]; if (ep->par[3] < 0) fqp_cfg->pcfg.max_ecnth = fq_pie_sysctl.pcfg.max_ecnth; else fqp_cfg->pcfg.max_ecnth = ep->par[3]; if (ep->par[4] < 0) fqp_cfg->pcfg.alpha = fq_pie_sysctl.pcfg.alpha; else fqp_cfg->pcfg.alpha = ep->par[4]; if (ep->par[5] < 0) fqp_cfg->pcfg.beta = fq_pie_sysctl.pcfg.beta; else fqp_cfg->pcfg.beta = ep->par[5]; if (ep->par[6] < 0) fqp_cfg->pcfg.flags = 0; else fqp_cfg->pcfg.flags = ep->par[6]; /* FQ configurations */ if (ep->par[7] < 0) fqp_cfg->quantum = fq_pie_sysctl.quantum; else fqp_cfg->quantum = ep->par[7]; if (ep->par[8] < 0) fqp_cfg->limit = fq_pie_sysctl.limit; else fqp_cfg->limit = ep->par[8]; if (ep->par[9] < 0) fqp_cfg->flows_cnt = fq_pie_sysctl.flows_cnt; else fqp_cfg->flows_cnt = ep->par[9]; /* Bound the configurations */ fqp_cfg->pcfg.qdelay_ref = BOUND_VAR(fqp_cfg->pcfg.qdelay_ref, 1, 5 * AQM_TIME_1S); fqp_cfg->pcfg.tupdate = BOUND_VAR(fqp_cfg->pcfg.tupdate, 1, 5 * AQM_TIME_1S); fqp_cfg->pcfg.max_burst = BOUND_VAR(fqp_cfg->pcfg.max_burst, 0, 5 * AQM_TIME_1S); fqp_cfg->pcfg.max_ecnth = BOUND_VAR(fqp_cfg->pcfg.max_ecnth, 0, PIE_SCALE); fqp_cfg->pcfg.alpha = BOUND_VAR(fqp_cfg->pcfg.alpha, 0, 7 * PIE_SCALE); fqp_cfg->pcfg.beta = BOUND_VAR(fqp_cfg->pcfg.beta, 0, 7 * PIE_SCALE); fqp_cfg->quantum = BOUND_VAR(fqp_cfg->quantum,1,9000); fqp_cfg->limit= BOUND_VAR(fqp_cfg->limit,1,20480); fqp_cfg->flows_cnt= BOUND_VAR(fqp_cfg->flows_cnt,1,65536); } else { D("Wrong parameters for fq_pie scheduler"); return 1; } return 0; } /* * Return FQ-PIE scheduler configurations * the configurations for the scheduler is passed to userland. */ static int fq_pie_getconfig (struct dn_schk *_schk, struct dn_extra_parms *ep) { struct fq_pie_schk *schk = (struct fq_pie_schk *)(_schk+1); struct dn_sch_fq_pie_parms *fqp_cfg; fqp_cfg = &schk->cfg; strcpy(ep->name, fq_pie_desc.name); ep->par[0] = fqp_cfg->pcfg.qdelay_ref; ep->par[1] = fqp_cfg->pcfg.tupdate; ep->par[2] = fqp_cfg->pcfg.max_burst; ep->par[3] = fqp_cfg->pcfg.max_ecnth; ep->par[4] = fqp_cfg->pcfg.alpha; ep->par[5] = fqp_cfg->pcfg.beta; ep->par[6] = fqp_cfg->pcfg.flags; ep->par[7] = fqp_cfg->quantum; ep->par[8] = fqp_cfg->limit; ep->par[9] = fqp_cfg->flows_cnt; return 0; } /* * FQ-PIE scheduler descriptor * contains the type of the scheduler, the name, the size of extra * data structures, and function pointers. */ static struct dn_alg fq_pie_desc = { _SI( .type = ) DN_SCHED_FQ_PIE, _SI( .name = ) "FQ_PIE", _SI( .flags = ) 0, _SI( .schk_datalen = ) sizeof(struct fq_pie_schk), _SI( .si_datalen = ) sizeof(struct fq_pie_si) - sizeof(struct dn_sch_inst), _SI( .q_datalen = ) 0, _SI( .enqueue = ) fq_pie_enqueue, _SI( .dequeue = ) fq_pie_dequeue, _SI( .config = ) fq_pie_config, /* new sched i.e. sched X config ...*/ _SI( .destroy = ) NULL, /*sched x delete */ _SI( .new_sched = ) fq_pie_new_sched, /* new schd instance */ _SI( .free_sched = ) fq_pie_free_sched, /* delete schd instance */ _SI( .new_fsk = ) NULL, _SI( .free_fsk = ) NULL, _SI( .new_queue = ) NULL, _SI( .free_queue = ) NULL, _SI( .getconfig = ) fq_pie_getconfig, _SI( .ref_count = ) 0 }; DECLARE_DNSCHED_MODULE(dn_fq_pie, &fq_pie_desc);