Index: head/UPDATING =================================================================== --- head/UPDATING (revision 300538) +++ head/UPDATING (revision 300539) @@ -1,1598 +1,1604 @@ Updating Information for FreeBSD current users. This file is maintained and copyrighted by M. Warner Losh . See end of file for further details. For commonly done items, please see the COMMON ITEMS: section later in the file. These instructions assume that you basically know what you are doing. If not, then please consult the FreeBSD handbook: http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/makeworld.html Items affecting the ports and packages system can be found in /usr/ports/UPDATING. Please read that file before running portupgrade. NOTE: FreeBSD has switched from gcc to clang. If you have trouble bootstrapping from older versions of FreeBSD, try WITHOUT_CLANG and WITH_GCC to bootstrap to the tip of head, and then rebuild without this option. The bootstrap process from older version of current across the gcc/clang cutover is a bit fragile. NOTE TO PEOPLE WHO THINK THAT FreeBSD 11.x IS SLOW: FreeBSD 11.x has many debugging features turned on, in both the kernel and userland. These features attempt to detect incorrect use of system primitives, and encourage loud failure through extra sanity checking and fail stop semantics. They also substantially impact system performance. If you want to do performance measurement, benchmarking, and optimization, you'll want to turn them off. This includes various WITNESS- related kernel options, INVARIANTS, malloc debugging flags in userland, and various verbose features in the kernel. Many developers choose to disable these features on build machines to maximize performance. (To completely disable malloc debugging, define MALLOC_PRODUCTION in /etc/make.conf, or to merely disable the most expensive debugging functionality run "ln -s 'abort:false,junk:false' /etc/malloc.conf".) +20160523: + The bitstring(3) API has been updated with new functionality and + improved performance. But it is binary-incompatible with the old API. + Objects built with the new headers may not be linked against objects + built with the old headers. + 20160520: The brk and sbrk functions have been removed from libc on arm64. Binutils from ports has been updated to not link to these functions and should be updated to the latest version before installing a new libc. 20160517: The armv6 port now defaults to hard float ABI. Limited support for running both hardfloat and soft float on the same system is available using the libraries installed with -DWITH_LIBSOFT. This has only been tested as an upgrade path for installworld and packages may fail or need manual intervention to run. New packages will be needed. To update an existing self-hosted armv6hf system, you must add TARGET_ARCH=armv6 on the make command line for both the build and the install steps. 20160510: Kernel modules compiled outside of a kernel build now default to installing to /boot/modules instead of /boot/kernel. Many kernel modules built this way (such as those in ports) already overrode KMODDIR explicitly to install into /boot/modules. However, manually building and installing a module from /sys/modules will now install to /boot/modules instead of /boot/kernel. 20160414: The CAM I/O scheduler has been committed to the kernel. There should be no user visible impact. This does enable NCQ Trim on ada SSDs. While the list of known rogues that claim support for this but actually corrupt data is believed to be complete, be on the lookout for data corruption. The known rogue list is believed to be complete: o Crucial MX100, M550 drives with MU01 firmware. o Micron M510 and M550 drives with MU01 firmware. o Micron M500 prior to MU07 firmware o Samsung 830, 840, and 850 all firmwares o FCCT M500 all firmwares Crucial has firmware http://www.crucial.com/usa/en/support-ssd-firmware with working NCQ TRIM. For Micron branded drives, see your sales rep for updated firmware. Black listed drives will work correctly because these drives work correctly so long as no NCQ TRIMs are sent to them. Given this list is the same as found in Linux, it's believed there are no other rogues in the market place. All other models from the above vendors work. To be safe, if you are at all concerned, you can quirk each of your drives to prevent NCQ from being sent by setting: kern.cam.ada.X.quirks="0x2" in loader.conf. If the drive requires the 4k sector quirk, set the quirks entry to 0x3. 20160330: The FAST_DEPEND build option has been removed and its functionality is now the one true way. The old mkdep(1) style of 'make depend' has been removed. See 20160311 for further details. 20160317: Resource range types have grown from unsigned long to uintmax_t. All drivers, and anything using libdevinfo, need to be recompiled. 20160311: WITH_FAST_DEPEND is now enabled by default for in-tree and out-of-tree builds. It no longer runs mkdep(1) during 'make depend', and the 'make depend' stage can safely be skipped now as it is auto ran when building 'make all' and will generate all SRCS and DPSRCS before building anything else. Dependencies are gathered at compile time with -MF flags kept in separate .depend files per object file. Users should run 'make cleandepend' once if using -DNO_CLEAN to clean out older stale .depend files. 20160306: On amd64, clang 3.8.0 can now insert sections of type AMD64_UNWIND into kernel modules. Therefore, if you load any kernel modules at boot time, please install the boot loaders after you install the kernel, but before rebooting, e.g.: make buildworld make kernel KERNCONF=YOUR_KERNEL_HERE make -C sys/boot install Then follow the usual steps, described in the General Notes section, below. 20160305: Clang, llvm, lldb and compiler-rt have been upgraded to 3.8.0. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using clang 3.5.0 or higher. 20160301: The AIO subsystem is now a standard part of the kernel. The VFS_AIO kernel option and aio.ko kernel module have been removed. Due to stability concerns, asynchronous I/O requests are only permitted on sockets and raw disks by default. To enable asynchronous I/O requests on all file types, set the vfs.aio.enable_unsafe sysctl to a non-zero value. 20160226: The ELF object manipulation tool objcopy is now provided by the ELF Tool Chain project rather than by GNU binutils. It should be a drop-in replacement, with the addition of arm64 support. The (temporary) src.conf knob WITHOUT_ELFCOPY_AS_OBJCOPY knob may be set to obtain the GNU version if necessary. 20160129: Building ZFS pools on top of zvols is prohibited by default. That feature has never worked safely; it's always been prone to deadlocks. Using a zvol as the backing store for a VM guest's virtual disk will still work, even if the guest is using ZFS. Legacy behavior can be restored by setting vfs.zfs.vol.recursive=1. 20160119: The NONE and HPN patches has been removed from OpenSSH. They are still available in the security/openssh-portable port. 20160113: With the addition of ypldap(8), a new _ypldap user is now required during installworld. "mergemaster -p" can be used to add the user prior to installworld, as documented in the handbook. 20151216: The tftp loader (pxeboot) now uses the option root-path directive. As a consequence it no longer looks for a pxeboot.4th file on the tftp server. Instead it uses the regular /boot infrastructure as with the other loaders. 20151211: The code to start recording plug and play data into the modules has been committed. While the old tools will properly build a new kernel, a number of warnings about "unknown metadata record 4" will be produced for an older kldxref. To avoid such warnings, make sure to rebuild the kernel toolchain (or world). Make sure that you have r292078 or later when trying to build 292077 or later before rebuilding. 20151207: Debug data files are now built by default with 'make buildworld' and installed with 'make installworld'. This facilitates debugging but requires more disk space both during the build and for the installed world. Debug files may be disabled by setting WITHOUT_DEBUG_FILES=yes in src.conf(5). 20151130: r291527 changed the internal interface between the nfsd.ko and nfscommon.ko modules. As such, they must both be upgraded to-gether. __FreeBSD_version has been bumped because of this. 20151108: Add support for unicode collation strings leads to a change of order of files listed by ls(1) for example. To get back to the old behaviour, set LC_COLLATE environment variable to "C". Databases administrators will need to reindex their databases given collation results will be different. Due to a bug in install(1) it is recommended to remove the ancient locales before running make installworld. rm -rf /usr/share/locale/* 20151030: The OpenSSL has been upgraded to 1.0.2d. Any binaries requiring libcrypto.so.7 or libssl.so.7 must be recompiled. 20151020: Qlogic 24xx/25xx firmware images were updated from 5.5.0 to 7.3.0. Kernel modules isp_2400_multi and isp_2500_multi were removed and should be replaced with isp_2400 and isp_2500 modules respectively. 20151017: The build previously allowed using 'make -n' to not recurse into sub-directories while showing what commands would be executed, and 'make -n -n' to recursively show commands. Now 'make -n' will recurse and 'make -N' will not. 20151012: If you specify SENDMAIL_MC or SENDMAIL_CF in make.conf, mergemaster and etcupdate will now use this file. A custom sendmail.cf is now updated via this mechanism rather than via installworld. If you had excluded sendmail.cf in mergemaster.rc or etcupdate.conf, you may want to remove the exclusion or change it to "always install". /etc/mail/sendmail.cf is now managed the same way regardless of whether SENDMAIL_MC/SENDMAIL_CF is used. If you are not using SENDMAIL_MC/SENDMAIL_CF there should be no change in behavior. 20151011: Compatibility shims for legacy ATA device names have been removed. It includes ATA_STATIC_ID kernel option, kern.cam.ada.legacy_aliases and kern.geom.raid.legacy_aliases loader tunables, kern.devalias.* environment variables, /dev/ad* and /dev/ar* symbolic links. 20151006: Clang, llvm, lldb, compiler-rt and libc++ have been upgraded to 3.7.0. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using clang 3.5.0 or higher. 20150924: Kernel debug files have been moved to /usr/lib/debug/boot/kernel/, and renamed from .symbols to .debug. This reduces the size requirements on the boot partition or file system and provides consistency with userland debug files. When using the supported kernel installation method the /usr/lib/debug/boot/kernel directory will be renamed (to kernel.old) as is done with /boot/kernel. Developers wishing to maintain the historical behavior of installing debug files in /boot/kernel/ can set KERN_DEBUGDIR="" in src.conf(5). 20150827: The wireless drivers had undergone changes that remove the 'parent interface' from the ifconfig -l output. The rc.d network scripts used to check presence of a parent interface in the list, so old scripts would fail to start wireless networking. Thus, etcupdate(3) or mergemaster(8) run is required after kernel update, to update your rc.d scripts in /etc. 20150827: pf no longer supports 'scrub fragment crop' or 'scrub fragment drop-ovl' These configurations are now automatically interpreted as 'scrub fragment reassemble'. 20150817: Kernel-loadable modules for the random(4) device are back. To use them, the kernel must have device random options RANDOM_LOADABLE kldload(8) can then be used to load random_fortuna.ko or random_yarrow.ko. Please note that due to the indirect function calls that the loadable modules need to provide, the build-in variants will be slightly more efficient. The random(4) kernel option RANDOM_DUMMY has been retired due to unpopularity. It was not all that useful anyway. 20150813: The WITHOUT_ELFTOOLCHAIN_TOOLS src.conf(5) knob has been retired. Control over building the ELF Tool Chain tools is now provided by the WITHOUT_TOOLCHAIN knob. 20150810: The polarity of Pulse Per Second (PPS) capture events with the uart(4) driver has been corrected. Prior to this change the PPS "assert" event corresponded to the trailing edge of a positive PPS pulse and the "clear" event was the leading edge of the next pulse. As the width of a PPS pulse in a typical GPS receiver is on the order of 1 millisecond, most users will not notice any significant difference with this change. Anyone who has compensated for the historical polarity reversal by configuring a negative offset equal to the pulse width will need to remove that workaround. 20150809: The default group assigned to /dev/dri entries has been changed from 'wheel' to 'video' with the id of '44'. If you want to have access to the dri devices please add yourself to the video group with: # pw groupmod video -m $USER 20150806: The menu.rc and loader.rc files will now be replaced during upgrades. Please migrate local changes to menu.rc.local and loader.rc.local instead. 20150805: GNU Binutils versions of addr2line, c++filt, nm, readelf, size, strings and strip have been removed. The src.conf(5) knob WITHOUT_ELFTOOLCHAIN_TOOLS no longer provides the binutils tools. 20150728: As ZFS requires more kernel stack pages than is the default on some architectures e.g. i386, it now warns if KSTACK_PAGES is less than ZFS_MIN_KSTACK_PAGES (which is 4 at the time of writing). Please consider using 'options KSTACK_PAGES=X' where X is greater than or equal to ZFS_MIN_KSTACK_PAGES i.e. 4 in such configurations. 20150706: sendmail has been updated to 8.15.2. Starting with FreeBSD 11.0 and sendmail 8.15, sendmail uses uncompressed IPv6 addresses by default, i.e., they will not contain "::". For example, instead of ::1, it will be 0:0:0:0:0:0:0:1. This permits a zero subnet to have a more specific match, such as different map entries for IPv6:0:0 vs IPv6:0. This change requires that configuration data (including maps, files, classes, custom ruleset, etc.) must use the same format, so make certain such configuration data is upgrading. As a very simple check search for patterns like 'IPv6:[0-9a-fA-F:]*::' and 'IPv6::'. To return to the old behavior, set the m4 option confUSE_COMPRESSED_IPV6_ADDRESSES or the cf option UseCompressedIPv6Addresses. 20150630: The default kernel entropy-processing algorithm is now Fortuna, replacing Yarrow. Assuming you have 'device random' in your kernel config file, the configurations allow a kernel option to override this default. You may choose *ONE* of: options RANDOM_YARROW # Legacy /dev/random algorithm. options RANDOM_DUMMY # Blocking-only driver. If you have neither, you get Fortuna. For most people, read no further, Fortuna will give a /dev/random that works like it always used to, and the difference will be irrelevant. If you remove 'device random', you get *NO* kernel-processed entropy at all. This may be acceptable to folks building embedded systems, but has complications. Carry on reading, and it is assumed you know what you need. *PLEASE* read random(4) and random(9) if you are in the habit of tweaking kernel configs, and/or if you are a member of the embedded community, wanting specific and not-usual behaviour from your security subsystems. NOTE!! If you use RANDOM_DUMMY and/or have no 'device random', you will NOT have a functioning /dev/random, and many cryptographic features will not work, including SSH. You may also find strange behaviour from the random(3) set of library functions, in particular sranddev(3), srandomdev(3) and arc4random(3). The reason for this is that the KERN_ARND sysctl only returns entropy if it thinks it has some to share, and with RANDOM_DUMMY or no 'device random' this will never happen. 20150623: An additional fix for the issue described in the 20150614 sendmail entry below has been been committed in revision 284717. 20150616: FreeBSD's old make (fmake) has been removed from the system. It is available as the devel/fmake port or via pkg install fmake. 20150615: The fix for the issue described in the 20150614 sendmail entry below has been been committed in revision 284436. The work around described in that entry is no longer needed unless the default setting is overridden by a confDH_PARAMETERS configuration setting of '5' or pointing to a 512 bit DH parameter file. 20150614: ALLOW_DEPRECATED_ATF_TOOLS/ATFFILE support has been removed from atf.test.mk (included from bsd.test.mk). Please upgrade devel/atf and devel/kyua to version 0.20+ and adjust any calling code to work with Kyuafile and kyua. 20150614: The import of openssl to address the FreeBSD-SA-15:10.openssl security advisory includes a change which rejects handshakes with DH parameters below 768 bits. sendmail releases prior to 8.15.2 (not yet released), defaulted to a 512 bit DH parameter setting for client connections. To work around this interoperability, sendmail can be configured to use a 2048 bit DH parameter by: 1. Edit /etc/mail/`hostname`.mc 2. If a setting for confDH_PARAMETERS does not exist or exists and is set to a string beginning with '5', replace it with '2'. 3. If a setting for confDH_PARAMETERS exists and is set to a file path, create a new file with: openssl dhparam -out /path/to/file 2048 4. Rebuild the .cf file: cd /etc/mail/; make; make install 5. Restart sendmail: cd /etc/mail/; make restart A sendmail patch is coming, at which time this file will be updated. 20150604: Generation of legacy formatted entries have been disabled by default in pwd_mkdb(8), as all base system consumers of the legacy formatted entries were converted to use the new format by default when the new, machine independent format have been added and supported since FreeBSD 5.x. Please see the pwd_mkdb(8) manual page for further details. 20150525: Clang and llvm have been upgraded to 3.6.1 release. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using 3.5.0 or higher. 20150521: TI platform code switched to using vendor DTS files and this update may break existing systems running on Beaglebone, Beaglebone Black, and Pandaboard: - dtb files should be regenerated/reinstalled. Filenames are the same but content is different now - GPIO addressing was changed, now each GPIO bank (32 pins per bank) has its own /dev/gpiocX device, e.g. pin 121 on /dev/gpioc0 in old addressing scheme is now pin 25 on /dev/gpioc3. - Pandaboard: /etc/ttys should be updated, serial console device is now /dev/ttyu2, not /dev/ttyu0 20150501: soelim(1) from gnu/usr.bin/groff has been replaced by usr.bin/soelim. If you need the GNU extension from groff soelim(1), install groff from package: pkg install groff, or via ports: textproc/groff. 20150423: chmod, chflags, chown and chgrp now affect symlinks in -R mode as defined in symlink(7); previously symlinks were silently ignored. 20150415: The const qualifier has been removed from iconv(3) to comply with POSIX. The ports tree is aware of this from r384038 onwards. 20150416: Libraries specified by LIBADD in Makefiles must have a corresponding DPADD_ variable to ensure correct dependencies. This is now enforced in src.libnames.mk. 20150324: From legacy ata(4) driver was removed support for SATA controllers supported by more functional drivers ahci(4), siis(4) and mvs(4). Kernel modules ataahci and ataadaptec were removed completely, replaced by ahci and mvs modules respectively. 20150315: Clang, llvm and lldb have been upgraded to 3.6.0 release. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using 3.5.0 or higher. 20150307: The 32-bit PowerPC kernel has been changed to a position-independent executable. This can only be booted with a version of loader(8) newer than January 31, 2015, so make sure to update both world and kernel before rebooting. 20150217: If you are running a -CURRENT kernel since r273872 (Oct 30th, 2014), but before r278950, the RNG was not seeded properly. Immediately upgrade the kernel to r278950 or later and regenerate any keys (e.g. ssh keys or openssl keys) that were generated w/ a kernel from that range. This does not affect programs that directly used /dev/random or /dev/urandom. All userland uses of arc4random(3) are affected. 20150210: The autofs(4) ABI was changed in order to restore binary compatibility with 10.1-RELEASE. The automountd(8) daemon needs to be rebuilt to work with the new kernel. 20150131: The powerpc64 kernel has been changed to a position-independent executable. This can only be booted with a new version of loader(8), so make sure to update both world and kernel before rebooting. 20150118: Clang and llvm have been upgraded to 3.5.1 release. This is a bugfix only release, no new features have been added. Please see the 20141231 entry below for information about prerequisites and upgrading, if you are not already using 3.5.0. 20150107: ELF tools addr2line, elfcopy (strip), nm, size, and strings are now taken from the ELF Tool Chain project rather than GNU binutils. They should be drop-in replacements, with the addition of arm64 support. The WITHOUT_ELFTOOLCHAIN_TOOLS= knob may be used to obtain the binutils tools, if necessary. See 20150805 for updated information. 20150105: The default Unbound configuration now enables remote control using a local socket. Users who have already enabled the local_unbound service should regenerate their configuration by running "service local_unbound setup" as root. 20150102: The GNU texinfo and GNU info pages have been removed. To be able to view GNU info pages please install texinfo from ports. 20141231: Clang, llvm and lldb have been upgraded to 3.5.0 release. As of this release, a prerequisite for building clang, llvm and lldb is a C++11 capable compiler and C++11 standard library. This means that to be able to successfully build the cross-tools stage of buildworld, with clang as the bootstrap compiler, your system compiler or cross compiler should either be clang 3.3 or later, or gcc 4.8 or later, and your system C++ library should be libc++, or libdstdc++ from gcc 4.8 or later. On any standard FreeBSD 10.x or 11.x installation, where clang and libc++ are on by default (that is, on x86 or arm), this should work out of the box. On 9.x installations where clang is enabled by default, e.g. on x86 and powerpc, libc++ will not be enabled by default, so libc++ should be built (with clang) and installed first. If both clang and libc++ are missing, build clang first, then use it to build libc++. On 8.x and earlier installations, upgrade to 9.x first, and then follow the instructions for 9.x above. Sparc64 and mips users are unaffected, as they still use gcc 4.2.1 by default, and do not build clang. Many embedded systems are resource constrained, and will not be able to build clang in a reasonable time, or in some cases at all. In those cases, cross building bootable systems on amd64 is a workaround. This new version of clang introduces a number of new warnings, of which the following are most likely to appear: -Wabsolute-value This warns in two cases, for both C and C++: * When the code is trying to take the absolute value of an unsigned quantity, which is effectively a no-op, and almost never what was intended. The code should be fixed, if at all possible. If you are sure that the unsigned quantity can be safely cast to signed, without loss of information or undefined behavior, you can add an explicit cast, or disable the warning. * When the code is trying to take an absolute value, but the called abs() variant is for the wrong type, which can lead to truncation. If you want to disable the warning instead of fixing the code, please make sure that truncation will not occur, or it might lead to unwanted side-effects. -Wtautological-undefined-compare and -Wundefined-bool-conversion These warn when C++ code is trying to compare 'this' against NULL, while 'this' should never be NULL in well-defined C++ code. However, there is some legacy (pre C++11) code out there, which actively abuses this feature, which was less strictly defined in previous C++ versions. Squid and openjdk do this, for example. The warning can be turned off for C++98 and earlier, but compiling the code in C++11 mode might result in unexpected behavior; for example, the parts of the program that are unreachable could be optimized away. 20141222: The old NFS client and server (kernel options NFSCLIENT, NFSSERVER) kernel sources have been removed. The .h files remain, since some utilities include them. This will need to be fixed later. If "mount -t oldnfs ..." is attempted, it will fail. If the "-o" option on mountd(8), nfsd(8) or nfsstat(1) is used, the utilities will report errors. 20141121: The handling of LOCAL_LIB_DIRS has been altered to skip addition of directories to top level SUBDIR variable when their parent directory is included in LOCAL_DIRS. Users with build systems with such hierarchies and without SUBDIR entries in the parent directory Makefiles should add them or add the directories to LOCAL_DIRS. 20141109: faith(4) and faithd(8) have been removed from the base system. Faith has been obsolete for a very long time. 20141104: vt(4), the new console driver, is enabled by default. It brings support for Unicode and double-width characters, as well as support for UEFI and integration with the KMS kernel video drivers. You may need to update your console settings in /etc/rc.conf, most probably the keymap. During boot, /etc/rc.d/syscons will indicate what you need to do. vt(4) still has issues and lacks some features compared to syscons(4). See the wiki for up-to-date information: https://wiki.freebsd.org/Newcons If you want to keep using syscons(4), you can do so by adding the following line to /boot/loader.conf: kern.vty=sc 20141102: pjdfstest has been integrated into kyua as an opt-in test suite. Please see share/doc/pjdfstest/README for more details on how to execute it. 20141009: gperf has been removed from the base system for architectures that use clang. Ports that require gperf will obtain it from the devel/gperf port. 20140923: pjdfstest has been moved from tools/regression/pjdfstest to contrib/pjdfstest . 20140922: At svn r271982, The default linux compat kernel ABI has been adjusted to 2.6.18 in support of the linux-c6 compat ports infrastructure update. If you wish to continue using the linux-f10 compat ports, add compat.linux.osrelease=2.6.16 to your local sysctl.conf. Users are encouraged to update their linux-compat packages to linux-c6 during their next update cycle. 20140729: The ofwfb driver, used to provide a graphics console on PowerPC when using vt(4), no longer allows mmap() of all physical memory. This will prevent Xorg on PowerPC with some ATI graphics cards from initializing properly unless x11-servers/xorg-server is updated to 1.12.4_8 or newer. 20140723: The xdev targets have been converted to using TARGET and TARGET_ARCH instead of XDEV and XDEV_ARCH. 20140719: The default unbound configuration has been modified to address issues with reverse lookups on networks that use private address ranges. If you use the local_unbound service, run "service local_unbound setup" as root to regenerate your configuration, then "service local_unbound reload" to load the new configuration. 20140709: The GNU texinfo and GNU info pages are not built and installed anymore, WITH_INFO knob has been added to allow to built and install them again. UPDATE: see 20150102 entry on texinfo's removal 20140708: The GNU readline library is now an INTERNALLIB - that is, it is statically linked into consumers (GDB and variants) in the base system, and the shared library is no longer installed. The devel/readline port is available for third party software that requires readline. 20140702: The Itanium architecture (ia64) has been removed from the list of known architectures. This is the first step in the removal of the architecture. 20140701: Commit r268115 has added NFSv4.1 server support, merged from projects/nfsv4.1-server. Since this includes changes to the internal interfaces between the NFS related modules, a full build of the kernel and modules will be necessary. __FreeBSD_version has been bumped. 20140629: The WITHOUT_VT_SUPPORT kernel config knob has been renamed WITHOUT_VT. (The other _SUPPORT knobs have a consistent meaning which differs from the behaviour controlled by this knob.) 20140619: Maximal length of the serial number in CTL was increased from 16 to 64 chars, that breaks ABI. All CTL-related tools, such as ctladm and ctld, need to be rebuilt to work with a new kernel. 20140606: The libatf-c and libatf-c++ major versions were downgraded to 0 and 1 respectively to match the upstream numbers. They were out of sync because, when they were originally added to FreeBSD, the upstream versions were not respected. These libraries are private and not yet built by default, so renumbering them should be a non-issue. However, unclean source trees will yield broken test programs once the operator executes "make delete-old-libs" after a "make installworld". Additionally, the atf-sh binary was made private by moving it into /usr/libexec/. Already-built shell test programs will keep the path to the old binary so they will break after "make delete-old" is run. If you are using WITH_TESTS=yes (not the default), wipe the object tree and rebuild from scratch to prevent spurious test failures. This is only needed once: the misnumbered libraries and misplaced binaries have been added to OptionalObsoleteFiles.inc so they will be removed during a clean upgrade. 20140512: Clang and llvm have been upgraded to 3.4.1 release. 20140508: We bogusly installed src.opts.mk in /usr/share/mk. This file should be removed to avoid issues in the future (and has been added to ObsoleteFiles.inc). 20140505: /etc/src.conf now affects only builds of the FreeBSD src tree. In the past, it affected all builds that used the bsd.*.mk files. The old behavior was a bug, but people may have relied upon it. To get this behavior back, you can .include /etc/src.conf from /etc/make.conf (which is still global and isn't changed). This also changes the behavior of incremental builds inside the tree of individual directories. Set MAKESYSPATH to ".../share/mk" to do that. Although this has survived make universe and some upgrade scenarios, other upgrade scenarios may have broken. At least one form of temporary breakage was fixed with MAKESYSPATH settings for buildworld as well... In cases where MAKESYSPATH isn't working with this setting, you'll need to set it to the full path to your tree. One side effect of all this cleaning up is that bsd.compiler.mk is no longer implicitly included by bsd.own.mk. If you wish to use COMPILER_TYPE, you must now explicitly include bsd.compiler.mk as well. 20140430: The lindev device has been removed since /dev/full has been made a standard device. __FreeBSD_version has been bumped. 20140424: The knob WITHOUT_VI was added to the base system, which controls building ex(1), vi(1), etc. Older releases of FreeBSD required ex(1) in order to reorder files share/termcap and didn't build ex(1) as a build tool, so building/installing with WITH_VI is highly advised for build hosts for older releases. This issue has been fixed in stable/9 and stable/10 in r277022 and r276991, respectively. 20140418: The YES_HESIOD knob has been removed. It has been obsolete for a decade. Please move to using WITH_HESIOD instead or your builds will silently lack HESIOD. 20140405: The uart(4) driver has been changed with respect to its handling of the low-level console. Previously the uart(4) driver prevented any process from changing the baudrate or the CLOCAL and HUPCL control flags. By removing the restrictions, operators can make changes to the serial console port without having to reboot. However, when getty(8) is started on the serial device that is associated with the low-level console, a misconfigured terminal line in /etc/ttys will now have a real impact. Before upgrading the kernel, make sure that /etc/ttys has the serial console device configured as 3wire without baudrate to preserve the previous behaviour. E.g: ttyu0 "/usr/libexec/getty 3wire" vt100 on secure 20140306: Support for libwrap (TCP wrappers) in rpcbind was disabled by default to improve performance. To re-enable it, if needed, run rpcbind with command line option -W. 20140226: Switched back to the GPL dtc compiler due to updates in the upstream dts files not being supported by the BSDL dtc compiler. You will need to rebuild your kernel toolchain to pick up the new compiler. Core dumps may result while building dtb files during a kernel build if you fail to do so. Set WITHOUT_GPL_DTC if you require the BSDL compiler. 20140216: Clang and llvm have been upgraded to 3.4 release. 20140216: The nve(4) driver has been removed. Please use the nfe(4) driver for NVIDIA nForce MCP Ethernet adapters instead. 20140212: An ABI incompatibility crept into the libc++ 3.4 import in r261283. This could cause certain C++ applications using shared libraries built against the previous version of libc++ to crash. The incompatibility has now been fixed, but any C++ applications or shared libraries built between r261283 and r261801 should be recompiled. 20140204: OpenSSH will now ignore errors caused by kernel lacking of Capsicum capability mode support. Please note that enabling the feature in kernel is still highly recommended. 20140131: OpenSSH is now built with sandbox support, and will use sandbox as the default privilege separation method. This requires Capsicum capability mode support in kernel. 20140128: The libelf and libdwarf libraries have been updated to newer versions from upstream. Shared library version numbers for these two libraries were bumped. Any ports or binaries requiring these two libraries should be recompiled. __FreeBSD_version is bumped to 1100006. 20140110: If a Makefile in a tests/ directory was auto-generating a Kyuafile instead of providing an explicit one, this would prevent such Makefile from providing its own Kyuafile in the future during NO_CLEAN builds. This has been fixed in the Makefiles but manual intervention is needed to clean an objdir if you use NO_CLEAN: # find /usr/obj -name Kyuafile | xargs rm -f 20131213: The behavior of gss_pseudo_random() for the krb5 mechanism has changed, for applications requesting a longer random string than produced by the underlying enctype's pseudo-random() function. In particular, the random string produced from a session key of enctype aes256-cts-hmac-sha1-96 or aes256-cts-hmac-sha1-96 will be different at the 17th octet and later, after this change. The counter used in the PRF+ construction is now encoded as a big-endian integer in accordance with RFC 4402. __FreeBSD_version is bumped to 1100004. 20131108: The WITHOUT_ATF build knob has been removed and its functionality has been subsumed into the more generic WITHOUT_TESTS. If you were using the former to disable the build of the ATF libraries, you should change your settings to use the latter. 20131025: The default version of mtree is nmtree which is obtained from NetBSD. The output is generally the same, but may vary slightly. If you found you need identical output adding "-F freebsd9" to the command line should do the trick. For the time being, the old mtree is available as fmtree. 20131014: libbsdyml has been renamed to libyaml and moved to /usr/lib/private. This will break ports-mgmt/pkg. Rebuild the port, or upgrade to pkg 1.1.4_8 and verify bsdyml not linked in, before running "make delete-old-libs": # make -C /usr/ports/ports-mgmt/pkg build deinstall install clean or # pkg install pkg; ldd /usr/local/sbin/pkg | grep bsdyml 20131010: The stable/10 branch has been created in subversion from head revision r256279. 20131010: The rc.d/jail script has been updated to support jail(8) configuration file. The "jail__*" rc.conf(5) variables for per-jail configuration are automatically converted to /var/run/jail..conf before the jail(8) utility is invoked. This is transparently backward compatible. See below about some incompatibilities and rc.conf(5) manual page for more details. These variables are now deprecated in favor of jail(8) configuration file. One can use "rc.d/jail config " command to generate a jail(8) configuration file in /var/run/jail..conf without running the jail(8) utility. The default pathname of the configuration file is /etc/jail.conf and can be specified by using $jail_conf or $jail__conf variables. Please note that jail_devfs_ruleset accepts an integer at this moment. Please consider to rewrite the ruleset name with an integer. 20130930: BIND has been removed from the base system. If all you need is a local resolver, simply enable and start the local_unbound service instead. Otherwise, several versions of BIND are available in the ports tree. The dns/bind99 port is one example. With this change, nslookup(1) and dig(1) are no longer in the base system. Users should instead use host(1) and drill(1) which are in the base system. Alternatively, nslookup and dig can be obtained by installing the dns/bind-tools port. 20130916: With the addition of unbound(8), a new unbound user is now required during installworld. "mergemaster -p" can be used to add the user prior to installworld, as documented in the handbook. 20130911: OpenSSH is now built with DNSSEC support, and will by default silently trust signed SSHFP records. This can be controlled with the VerifyHostKeyDNS client configuration setting. DNSSEC support can be disabled entirely with the WITHOUT_LDNS option in src.conf. 20130906: The GNU Compiler Collection and C++ standard library (libstdc++) are no longer built by default on platforms where clang is the system compiler. You can enable them with the WITH_GCC and WITH_GNUCXX options in src.conf. 20130905: The PROCDESC kernel option is now part of the GENERIC kernel configuration and is required for the rwhod(8) to work. If you are using custom kernel configuration, you should include 'options PROCDESC'. 20130905: The API and ABI related to the Capsicum framework was modified in backward incompatible way. The userland libraries and programs have to be recompiled to work with the new kernel. This includes the following libraries and programs, but the whole buildworld is advised: libc, libprocstat, dhclient, tcpdump, hastd, hastctl, kdump, procstat, rwho, rwhod, uniq. 20130903: AES-NI intrinsic support has been added to gcc. The AES-NI module has been updated to use this support. A new gcc is required to build the aesni module on both i386 and amd64. 20130821: The PADLOCK_RNG and RDRAND_RNG kernel options are now devices. Thus "device padlock_rng" and "device rdrand_rng" should be used instead of "options PADLOCK_RNG" & "options RDRAND_RNG". 20130813: WITH_ICONV has been split into two feature sets. WITH_ICONV now enables just the iconv* functionality and is now on by default. WITH_LIBICONV_COMPAT enables the libiconv api and link time compatibility. Set WITHOUT_ICONV to build the old way. If you have been using WITH_ICONV before, you will very likely need to turn on WITH_LIBICONV_COMPAT. 20130806: INVARIANTS option now enables DEBUG for code with OpenSolaris and Illumos origin, including ZFS. If you have INVARIANTS in your kernel configuration, then there is no need to set DEBUG or ZFS_DEBUG explicitly. DEBUG used to enable witness(9) tracking of OpenSolaris (mostly ZFS) locks if WITNESS option was set. Because that generated a lot of witness(9) reports and all of them were believed to be false positives, this is no longer done. New option OPENSOLARIS_WITNESS can be used to achieve the previous behavior. 20130806: Timer values in IPv6 data structures now use time_uptime instead of time_second. Although this is not a user-visible functional change, userland utilities which directly use them---ndp(8), rtadvd(8), and rtsold(8) in the base system---need to be updated to r253970 or later. 20130802: find -delete can now delete the pathnames given as arguments, instead of only files found below them or if the pathname did not contain any slashes. Formerly, the following error message would result: find: -delete: : relative path potentially not safe Deleting the pathnames given as arguments can be prevented without error messages using -mindepth 1 or by changing directory and passing "." as argument to find. This works in the old as well as the new version of find. 20130726: Behavior of devfs rules path matching has been changed. Pattern is now always matched against fully qualified devfs path and slash characters must be explicitly matched by slashes in pattern (FNM_PATHNAME). Rulesets involving devfs subdirectories must be reviewed. 20130716: The default ARM ABI has changed to the ARM EABI. The old ABI is incompatible with the ARM EABI and all programs and modules will need to be rebuilt to work with a new kernel. To keep using the old ABI ensure the WITHOUT_ARM_EABI knob is set. NOTE: Support for the old ABI will be removed in the future and users are advised to upgrade. 20130709: pkg_install has been disconnected from the build if you really need it you should add WITH_PKGTOOLS in your src.conf(5). 20130709: Most of network statistics structures were changed to be able keep 64-bits counters. Thus all tools, that work with networking statistics, must be rebuilt (netstat(1), bsnmpd(1), etc.) 20130618: Fix a bug that allowed a tracing process (e.g. gdb) to write to a memory-mapped file in the traced process's address space even if neither the traced process nor the tracing process had write access to that file. 20130615: CVS has been removed from the base system. An exact copy of the code is available from the devel/cvs port. 20130613: Some people report the following error after the switch to bmake: make: illegal option -- J usage: make [-BPSXeiknpqrstv] [-C directory] [-D variable] ... *** [buildworld] Error code 2 this likely due to an old instance of make in ${MAKEPATH} (${MAKEOBJDIRPREFIX}${.CURDIR}/make.${MACHINE}) which src/Makefile will use that blindly, if it exists, so if you see the above error: rm -rf `make -V MAKEPATH` should resolve it. 20130516: Use bmake by default. Whereas before one could choose to build with bmake via -DWITH_BMAKE one must now use -DWITHOUT_BMAKE to use the old make. The goal is to remove these knobs for 10-RELEASE. It is worth noting that bmake (like gmake) treats the command line as the unit of failure, rather than statements within the command line. Thus '(cd some/where && dosomething)' is safer than 'cd some/where; dosomething'. The '()' allows consistent behavior in parallel build. 20130429: Fix a bug that allows NFS clients to issue READDIR on files. 20130426: The WITHOUT_IDEA option has been removed because the IDEA patent expired. 20130426: The sysctl which controls TRIM support under ZFS has been renamed from vfs.zfs.trim_disable -> vfs.zfs.trim.enabled and has been enabled by default. 20130425: The mergemaster command now uses the default MAKEOBJDIRPREFIX rather than creating it's own in the temporary directory in order allow access to bootstrapped versions of tools such as install and mtree. When upgrading from version of FreeBSD where the install command does not support -l, you will need to install a new mergemaster command if mergemaster -p is required. This can be accomplished with the command (cd src/usr.sbin/mergemaster && make install). 20130404: Legacy ATA stack, disabled and replaced by new CAM-based one since FreeBSD 9.0, completely removed from the sources. Kernel modules atadisk and atapi*, user-level tools atacontrol and burncd are removed. Kernel option `options ATA_CAM` is now permanently enabled and removed. 20130319: SOCK_CLOEXEC and SOCK_NONBLOCK flags have been added to socket(2) and socketpair(2). Software, in particular Kerberos, may automatically detect and use these during building. The resulting binaries will not work on older kernels. 20130308: CTL_DISABLE has also been added to the sparc64 GENERIC (for further information, see the respective 20130304 entry). 20130304: Recent commits to callout(9) changed the size of struct callout, so the KBI is probably heavily disturbed. Also, some functions in callout(9)/sleep(9)/sleepqueue(9)/condvar(9) KPIs were replaced by macros. Every kernel module using it won't load, so rebuild is requested. The ctl device has been re-enabled in GENERIC for i386 and amd64, but does not initialize by default (because of the new CTL_DISABLE option) to save memory. To re-enable it, remove the CTL_DISABLE option from the kernel config file or set kern.cam.ctl.disable=0 in /boot/loader.conf. 20130301: The ctl device has been disabled in GENERIC for i386 and amd64. This was done due to the extra memory being allocated at system initialisation time by the ctl driver which was only used if a CAM target device was created. This makes a FreeBSD system unusable on 128MB or less of RAM. 20130208: A new compression method (lz4) has been merged to -HEAD. Please refer to zpool-features(7) for more information. Please refer to the "ZFS notes" section of this file for information on upgrading boot ZFS pools. 20130129: A BSD-licensed patch(1) variant has been added and is installed as bsdpatch, being the GNU version the default patch. To inverse the logic and use the BSD-licensed one as default, while having the GNU version installed as gnupatch, rebuild and install world with the WITH_BSD_PATCH knob set. 20130121: Due to the use of the new -l option to install(1) during build and install, you must take care not to directly set the INSTALL make variable in your /etc/make.conf, /etc/src.conf, or on the command line. If you wish to use the -C flag for all installs you may be able to add INSTALL+=-C to /etc/make.conf or /etc/src.conf. 20130118: The install(1) option -M has changed meaning and now takes an argument that is a file or path to append logs to. In the unlikely event that -M was the last option on the command line and the command line contained at least two files and a target directory the first file will have logs appended to it. The -M option served little practical purpose in the last decade so its use is expected to be extremely rare. 20121223: After switching to Clang as the default compiler some users of ZFS on i386 systems started to experience stack overflow kernel panics. Please consider using 'options KSTACK_PAGES=4' in such configurations. 20121222: GEOM_LABEL now mangles label names read from file system metadata. Mangling affect labels containing spaces, non-printable characters, '%' or '"'. Device names in /etc/fstab and other places may need to be updated. 20121217: By default, only the 10 most recent kernel dumps will be saved. To restore the previous behaviour (no limit on the number of kernel dumps stored in the dump directory) add the following line to /etc/rc.conf: savecore_flags="" 20121201: With the addition of auditdistd(8), a new auditdistd user is now required during installworld. "mergemaster -p" can be used to add the user prior to installworld, as documented in the handbook. 20121117: The sin6_scope_id member variable in struct sockaddr_in6 is now filled by the kernel before passing the structure to the userland via sysctl or routing socket. This means the KAME-specific embedded scope id in sin6_addr.s6_addr[2] is always cleared in userland application. This behavior can be controlled by net.inet6.ip6.deembed_scopeid. __FreeBSD_version is bumped to 1000025. 20121105: On i386 and amd64 systems WITH_CLANG_IS_CC is now the default. This means that the world and kernel will be compiled with clang and that clang will be installed as /usr/bin/cc, /usr/bin/c++, and /usr/bin/cpp. To disable this behavior and revert to building with gcc, compile with WITHOUT_CLANG_IS_CC. Really old versions of current may need to bootstrap WITHOUT_CLANG first if the clang build fails (its compatibility window doesn't extend to the 9 stable branch point). 20121102: The IPFIREWALL_FORWARD kernel option has been removed. Its functionality now turned on by default. 20121023: The ZERO_COPY_SOCKET kernel option has been removed and split into SOCKET_SEND_COW and SOCKET_RECV_PFLIP. NB: SOCKET_SEND_COW uses the VM page based copy-on-write mechanism which is not safe and may result in kernel crashes. NB: The SOCKET_RECV_PFLIP mechanism is useless as no current driver supports disposeable external page sized mbuf storage. Proper replacements for both zero-copy mechanisms are under consideration and will eventually lead to complete removal of the two kernel options. 20121023: The IPv4 network stack has been converted to network byte order. The following modules need to be recompiled together with kernel: carp(4), divert(4), gif(4), siftr(4), gre(4), pf(4), ipfw(4), ng_ipfw(4), stf(4). 20121022: Support for non-MPSAFE filesystems was removed from VFS. The VFS_VERSION was bumped, all filesystem modules shall be recompiled. 20121018: All the non-MPSAFE filesystems have been disconnected from the build. The full list includes: codafs, hpfs, ntfs, nwfs, portalfs, smbfs, xfs. 20121016: The interface cloning API and ABI has changed. The following modules need to be recompiled together with kernel: ipfw(4), pfsync(4), pflog(4), usb(4), wlan(4), stf(4), vlan(4), disc(4), edsc(4), if_bridge(4), gif(4), tap(4), faith(4), epair(4), enc(4), tun(4), if_lagg(4), gre(4). 20121015: The sdhci driver was split in two parts: sdhci (generic SD Host Controller logic) and sdhci_pci (actual hardware driver). No kernel config modifications are required, but if you load sdhc as a module you must switch to sdhci_pci instead. 20121014: Import the FUSE kernel and userland support into base system. 20121013: The GNU sort(1) program has been removed since the BSD-licensed sort(1) has been the default for quite some time and no serious problems have been reported. The corresponding WITH_GNU_SORT knob has also gone. 20121006: The pfil(9) API/ABI for AF_INET family has been changed. Packet filtering modules: pf(4), ipfw(4), ipfilter(4) need to be recompiled with new kernel. 20121001: The net80211(4) ABI has been changed to allow for improved driver PS-POLL and power-save support. All wireless drivers need to be recompiled to work with the new kernel. 20120913: The random(4) support for the VIA hardware random number generator (`PADLOCK') is no longer enabled unconditionally. Add the padlock_rng device in the custom kernel config if needed. The GENERIC kernels on i386 and amd64 do include the device, so the change only affects the custom kernel configurations. 20120908: The pf(4) packet filter ABI has been changed. pfctl(8) and snmp_pf module need to be recompiled to work with new kernel. 20120828: A new ZFS feature flag "com.delphix:empty_bpobj" has been merged to -HEAD. Pools that have empty_bpobj in active state can not be imported read-write with ZFS implementations that do not support this feature. For more information read the zpool-features(5) manual page. 20120727: The sparc64 ZFS loader has been changed to no longer try to auto- detect ZFS providers based on diskN aliases but now requires these to be explicitly listed in the OFW boot-device environment variable. 20120712: The OpenSSL has been upgraded to 1.0.1c. Any binaries requiring libcrypto.so.6 or libssl.so.6 must be recompiled. Also, there are configuration changes. Make sure to merge /etc/ssl/openssl.cnf. 20120712: The following sysctls and tunables have been renamed for consistency with other variables: kern.cam.da.da_send_ordered -> kern.cam.da.send_ordered kern.cam.ada.ada_send_ordered -> kern.cam.ada.send_ordered 20120628: The sort utility has been replaced with BSD sort. For now, GNU sort is also available as "gnusort" or the default can be set back to GNU sort by setting WITH_GNU_SORT. In this case, BSD sort will be installed as "bsdsort". 20120611: A new version of ZFS (pool version 5000) has been merged to -HEAD. Starting with this version the old system of ZFS pool versioning is superseded by "feature flags". This concept enables forward compatibility against certain future changes in functionality of ZFS pools. The first read-only compatible "feature flag" for ZFS pools is named "com.delphix:async_destroy". For more information read the new zpool-features(5) manual page. Please refer to the "ZFS notes" section of this file for information on upgrading boot ZFS pools. 20120417: The malloc(3) implementation embedded in libc now uses sources imported as contrib/jemalloc. The most disruptive API change is to /etc/malloc.conf. If your system has an old-style /etc/malloc.conf, delete it prior to installworld, and optionally re-create it using the new format after rebooting. See malloc.conf(5) for details (specifically the TUNING section and the "opt.*" entries in the MALLCTL NAMESPACE section). 20120328: Big-endian MIPS TARGET_ARCH values no longer end in "eb". mips64eb is now spelled mips64. mipsn32eb is now spelled mipsn32. mipseb is now spelled mips. This is to aid compatibility with third-party software that expects this naming scheme in uname(3). Little-endian settings are unchanged. If you are updating a big-endian mips64 machine from before this change, you may need to set MACHINE_ARCH=mips64 in your environment before the new build system will recognize your machine. 20120306: Disable by default the option VFS_ALLOW_NONMPSAFE for all supported platforms. 20120229: Now unix domain sockets behave "as expected" on nullfs(5). Previously nullfs(5) did not pass through all behaviours to the underlying layer, as a result if we bound to a socket on the lower layer we could connect only to the lower path; if we bound to the upper layer we could connect only to the upper path. The new behavior is one can connect to both the lower and the upper paths regardless what layer path one binds to. 20120211: The getifaddrs upgrade path broken with 20111215 has been restored. If you have upgraded in between 20111215 and 20120209 you need to recompile libc again with your kernel. You still need to recompile world to be able to configure CARP but this restriction already comes from 20111215. 20120114: The set_rcvar() function has been removed from /etc/rc.subr. All base and ports rc.d scripts have been updated, so if you have a port installed with a script in /usr/local/etc/rc.d you can either hand-edit the rcvar= line, or reinstall the port. An easy way to handle the mass-update of /etc/rc.d: rm /etc/rc.d/* && mergemaster -i 20120109: panic(9) now stops other CPUs in the SMP systems, disables interrupts on the current CPU and prevents other threads from running. This behavior can be reverted using the kern.stop_scheduler_on_panic tunable/sysctl. The new behavior can be incompatible with kern.sync_on_panic. 20111215: The carp(4) facility has been changed significantly. Configuration of the CARP protocol via ifconfig(8) has changed, as well as format of CARP events submitted to devd(8) has changed. See manual pages for more information. The arpbalance feature of carp(4) is currently not supported anymore. Size of struct in_aliasreq, struct in6_aliasreq has changed. User utilities using SIOCAIFADDR, SIOCAIFADDR_IN6, e.g. ifconfig(8), need to be recompiled. 20111122: The acpi_wmi(4) status device /dev/wmistat has been renamed to /dev/wmistat0. 20111108: The option VFS_ALLOW_NONMPSAFE option has been added in order to explicitely support non-MPSAFE filesystems. It is on by default for all supported platform at this present time. 20111101: The broken amd(4) driver has been replaced with esp(4) in the amd64, i386 and pc98 GENERIC kernel configuration files. 20110930: sysinstall has been removed 20110923: The stable/9 branch created in subversion. This corresponds to the RELENG_9 branch in CVS. COMMON ITEMS: General Notes ------------- Avoid using make -j when upgrading. While generally safe, there are sometimes problems using -j to upgrade. If your upgrade fails with -j, please try again without -j. From time to time in the past there have been problems using -j with buildworld and/or installworld. This is especially true when upgrading between "distant" versions (eg one that cross a major release boundary or several minor releases, or when several months have passed on the -current branch). Sometimes, obscure build problems are the result of environment poisoning. This can happen because the make utility reads its environment when searching for values for global variables. To run your build attempts in an "environmental clean room", prefix all make commands with 'env -i '. See the env(1) manual page for more details. When upgrading from one major version to another it is generally best to upgrade to the latest code in the currently installed branch first, then do an upgrade to the new branch. This is the best-tested upgrade path, and has the highest probability of being successful. Please try this approach before reporting problems with a major version upgrade. When upgrading a live system, having a root shell around before installing anything can help undo problems. Not having a root shell around can lead to problems if pam has changed too much from your starting point to allow continued authentication after the upgrade. This file should be read as a log of events. When a later event changes information of a prior event, the prior event should not be deleted. Instead, a pointer to the entry with the new information should be placed in the old entry. Readers of this file should also sanity check older entries before relying on them blindly. Authors of new entries should write them with this in mind. ZFS notes --------- When upgrading the boot ZFS pool to a new version, always follow these two steps: 1.) recompile and reinstall the ZFS boot loader and boot block (this is part of "make buildworld" and "make installworld") 2.) update the ZFS boot block on your boot drive The following example updates the ZFS boot block on the first partition (freebsd-boot) of a GPT partitioned drive ada0: "gpart bootcode -p /boot/gptzfsboot -i 1 ada0" Non-boot pools do not need these updates. To build a kernel ----------------- If you are updating from a prior version of FreeBSD (even one just a few days old), you should follow this procedure. It is the most failsafe as it uses a /usr/obj tree with a fresh mini-buildworld, make kernel-toolchain make -DALWAYS_CHECK_MAKE buildkernel KERNCONF=YOUR_KERNEL_HERE make -DALWAYS_CHECK_MAKE installkernel KERNCONF=YOUR_KERNEL_HERE To test a kernel once --------------------- If you just want to boot a kernel once (because you are not sure if it works, or if you want to boot a known bad kernel to provide debugging information) run make installkernel KERNCONF=YOUR_KERNEL_HERE KODIR=/boot/testkernel nextboot -k testkernel To just build a kernel when you know that it won't mess you up -------------------------------------------------------------- This assumes you are already running a CURRENT system. Replace ${arch} with the architecture of your machine (e.g. "i386", "arm", "amd64", "ia64", "pc98", "sparc64", "powerpc", "mips", etc). cd src/sys/${arch}/conf config KERNEL_NAME_HERE cd ../compile/KERNEL_NAME_HERE make depend make make install If this fails, go to the "To build a kernel" section. To rebuild everything and install it on the current system. ----------------------------------------------------------- # Note: sometimes if you are running current you gotta do more than # is listed here if you are upgrading from a really old current. make buildworld make kernel KERNCONF=YOUR_KERNEL_HERE [1] [3] mergemaster -Fp [5] make installworld mergemaster -Fi [4] make delete-old [6] To cross-install current onto a separate partition -------------------------------------------------- # In this approach we use a separate partition to hold # current's root, 'usr', and 'var' directories. A partition # holding "/", "/usr" and "/var" should be about 2GB in # size. make buildworld make buildkernel KERNCONF=YOUR_KERNEL_HERE make installworld DESTDIR=${CURRENT_ROOT} -DDB_FROM_SRC make distribution DESTDIR=${CURRENT_ROOT} # if newfs'd make installkernel KERNCONF=YOUR_KERNEL_HERE DESTDIR=${CURRENT_ROOT} cp /etc/fstab ${CURRENT_ROOT}/etc/fstab # if newfs'd To upgrade in-place from stable to current ---------------------------------------------- make buildworld [9] make kernel KERNCONF=YOUR_KERNEL_HERE [8] [1] [3] mergemaster -Fp [5] make installworld mergemaster -Fi [4] make delete-old [6] Make sure that you've read the UPDATING file to understand the tweaks to various things you need. At this point in the life cycle of current, things change often and you are on your own to cope. The defaults can also change, so please read ALL of the UPDATING entries. Also, if you are tracking -current, you must be subscribed to freebsd-current@freebsd.org. Make sure that before you update your sources that you have read and understood all the recent messages there. If in doubt, please track -stable which has much fewer pitfalls. [1] If you have third party modules, such as vmware, you should disable them at this point so they don't crash your system on reboot. [3] From the bootblocks, boot -s, and then do fsck -p mount -u / mount -a cd src adjkerntz -i # if CMOS is wall time Also, when doing a major release upgrade, it is required that you boot into single user mode to do the installworld. [4] Note: This step is non-optional. Failure to do this step can result in a significant reduction in the functionality of the system. Attempting to do it by hand is not recommended and those that pursue this avenue should read this file carefully, as well as the archives of freebsd-current and freebsd-hackers mailing lists for potential gotchas. The -U option is also useful to consider. See mergemaster(8) for more information. [5] Usually this step is a noop. However, from time to time you may need to do this if you get unknown user in the following step. It never hurts to do it all the time. You may need to install a new mergemaster (cd src/usr.sbin/mergemaster && make install) after the buildworld before this step if you last updated from current before 20130425 or from -stable before 20130430. [6] This only deletes old files and directories. Old libraries can be deleted by "make delete-old-libs", but you have to make sure that no program is using those libraries anymore. [8] In order to have a kernel that can run the 4.x binaries needed to do an installworld, you must include the COMPAT_FREEBSD4 option in your kernel. Failure to do so may leave you with a system that is hard to boot to recover. A similar kernel option COMPAT_FREEBSD5 is required to run the 5.x binaries on more recent kernels. And so on for COMPAT_FREEBSD6 and COMPAT_FREEBSD7. Make sure that you merge any new devices from GENERIC since the last time you updated your kernel config file. [9] When checking out sources, you must include the -P flag to have cvs prune empty directories. If CPUTYPE is defined in your /etc/make.conf, make sure to use the "?=" instead of the "=" assignment operator, so that buildworld can override the CPUTYPE if it needs to. MAKEOBJDIRPREFIX must be defined in an environment variable, and not on the command line, or in /etc/make.conf. buildworld will warn if it is improperly defined. FORMAT: This file contains a list, in reverse chronological order, of major breakages in tracking -current. It is not guaranteed to be a complete list of such breakages, and only contains entries since September 23, 2011. If you need to see UPDATING entries from before that date, you will need to fetch an UPDATING file from an older FreeBSD release. Copyright information: Copyright 1998-2009 M. Warner Losh. All Rights Reserved. Redistribution, publication, translation and use, with or without modification, in full or in part, in any form or format of this document are permitted without further permission from the author. THIS DOCUMENT IS PROVIDED BY WARNER LOSH ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WARNER LOSH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Contact Warner Losh if you have any questions about your use of this document. $FreeBSD$ Index: head/share/man/man3/bitstring.3 =================================================================== --- head/share/man/man3/bitstring.3 (revision 300538) +++ head/share/man/man3/bitstring.3 (revision 300539) @@ -1,263 +1,277 @@ .\" Copyright (c) 1989, 1991, 1993 .\" The Regents of the University of California. All rights reserved. .\" .\" This code is derived from software contributed to Berkeley by .\" Paul Vixie. .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. Neither the name of the University nor the names of its contributors .\" may be used to endorse or promote products derived from this software .\" without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" -.\" Copyright (c) 2014 Spectra Logic Corporation +.\" Copyright (c) 2014,2016 Spectra Logic Corporation .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions, and the following disclaimer, .\" without modification. .\" 2. Redistributions in binary form must reproduce at minimum a disclaimer .\" substantially similar to the "NO WARRANTY" disclaimer below .\" ("Disclaimer") and any redistribution must be conditioned upon .\" including a substantially similar Disclaimer requirement for further .\" binary redistribution. .\" .\" NO WARRANTY .\" THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS .\" "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT .\" LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR .\" A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT .\" HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, .\" STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING .\" IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE .\" POSSIBILITY OF SUCH DAMAGES. .\" .\" @(#)bitstring.3 8.1 (Berkeley) 7/19/93 .\" $FreeBSD$ .\" -.Dd May 4, 2016 +.Dd May 23, 2016 .Dt BITSTRING 3 .Os .Sh NAME .Nm bit_alloc , .Nm bit_clear , +.Nm bit_count , .Nm bit_decl , .Nm bit_ffc , .Nm bit_ffs , .Nm bit_ffc_at , .Nm bit_ffs_at , .Nm bit_nclear , .Nm bit_nset , .Nm bit_set , .Nm bit_test , .Nm bitstr_size .Nd bit-string manipulation functions and macros .Sh SYNOPSIS .In bitstring.h .Ft bitstr_t * .Fn bit_alloc "int nbits" .Ft void .Fn bit_decl "bitstr_t *name" "int nbits" .Ft void .Fn bit_clear "bitstr_t *name" "int bit" .Ft void +.Fn bit_count "bitstr_t *name" "int count" "int nbits" "int *value" +.Ft void .Fn bit_ffc "bitstr_t *name" "int nbits" "int *value" .Ft void .Fn bit_ffs "bitstr_t *name" "int nbits" "int *value" .Ft void .Fn bit_ffc_at "bitstr_t *name" "int start" "int nbits" "int *value" .Ft void .Fn bit_ffs_at "bitstr_t *name" "int start" "int nbits" "int *value" .Ft void .Fn bit_nclear "bitstr_t *name" "int start" "int stop" .Ft void .Fn bit_nset "bitstr_t *name" "int start" "int stop" .Ft void .Fn bit_set "bitstr_t *name" "int bit" .Ft int .Fn bitstr_size "int nbits" .Ft int .Fn bit_test "bitstr_t *name" "int bit" .Sh DESCRIPTION These macros operate on strings of bits. .Pp The function .Fn bit_alloc returns a pointer of type .Dq Fa "bitstr_t *" to sufficient space to store .Fa nbits bits, or .Dv NULL if no space is available. If successful, the returned bit string is initialized with all bits cleared. .Pp The macro .Fn bit_decl declares a bit string with sufficient space to store .Fa nbits bits. .Fn bit_decl may be used to include statically sized bit strings in structure definitions or to create bit strings on the stack. Users of this macro are responsible for initialization of the bit string, typically via a global initialization of the containing struct or use of the .Fn bit_nset or .Fn bin_nclear functions. .Pp The macro .Fn bitstr_size returns the number of bytes necessary to store .Fa nbits bits. This is useful for copying bit strings. .Pp The functions .Fn bit_clear and .Fn bit_set clear or set the zero-based numbered bit .Fa bit , in the bit string .Ar name . .Pp The .Fn bit_nset and .Fn bit_nclear functions set or clear the zero-based numbered bits from .Fa start through .Fa stop in the bit string .Ar name . .Pp The .Fn bit_test function evaluates to non-zero if the zero-based numbered bit .Fa bit of bit string .Fa name is set, and zero otherwise. .Pp The function .Fn bit_ffc stores in the location referenced by .Fa value the zero-based number of the first bit not set in the array of .Fa nbits bits referenced by .Fa name . If all bits are set, the location referenced by .Fa value is set to \-1. .Pp The .Fn bit_ffs function stores in the location referenced by .Fa value the zero-based number of the first bit set in the array of .Fa nbits bits referenced by .Fa name . If no bits are set, the location referenced by .Fa value is set to \-1. .Pp The function .Fn bit_ffc_at stores in the location referenced by .Fa value the zero-based number of the first bit not set in the array of .Fa nbits bits referenced by .Fa name , at or after the zero-based bit index .Fa start . If all bits at or after .Fa start are set, the location referenced by .Fa value is set to \-1. .Pp The .Fn bit_ffs_at function stores in the location referenced by .Fa value the zero-based number of the first bit set in the array of .Fa nbits bits referenced by .Fa name , at or after the zero-based bit index .Fa start . If no bits are set after .Fa start , the location referenced by .Fa value is set to \-1. +.Pp +The +.Fn bit_count +function stores in the location referenced by +.Fa value +the number of bits set in the array of +.Fa nbits +bits referenced by +.Fa name , +at or after the zero-based bit index +.Fa start . .Pp The arguments in bit string macros are evaluated only once and may safely have side effects. .Sh EXAMPLES .Bd -literal -offset indent #include #include \&... #define LPR_BUSY_BIT 0 #define LPR_FORMAT_BIT 1 #define LPR_DOWNLOAD_BIT 2 \&... #define LPR_AVAILABLE_BIT 9 #define LPR_MAX_BITS 10 make_lpr_available() { bitstr_t bit_decl(bitlist, LPR_MAX_BITS); ... bit_nclear(bitlist, 0, LPR_MAX_BITS - 1); ... if (!bit_test(bitlist, LPR_BUSY_BIT)) { bit_clear(bitlist, LPR_FORMAT_BIT); bit_clear(bitlist, LPR_DOWNLOAD_BIT); bit_set(bitlist, LPR_AVAILABLE_BIT); } } .Ed .Sh SEE ALSO .Xr malloc 3 , .Xr bitset 9 .Sh HISTORY The .Nm bitstring functions first appeared in .Bx 4.4 . Index: head/sys/kern/subr_unit.c =================================================================== --- head/sys/kern/subr_unit.c (revision 300538) +++ head/sys/kern/subr_unit.c (revision 300539) @@ -1,1061 +1,1060 @@ /*- * Copyright (c) 2004 Poul-Henning Kamp * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ * * * Unit number allocation functions. * * These functions implement a mixed run-length/bitmap management of unit * number spaces in a very memory efficient manner. * * Allocation policy is always lowest free number first. * * A return value of -1 signals that no more unit numbers are available. * * There is no cost associated with the range of unitnumbers, so unless * the resource really is finite, specify INT_MAX to new_unrhdr() and * forget about checking the return value. * * If a mutex is not provided when the unit number space is created, a * default global mutex is used. The advantage to passing a mutex in, is * that the alloc_unrl() function can be called with the mutex already * held (it will not be released by alloc_unrl()). * * The allocation function alloc_unr{l}() never sleeps (but it may block on * the mutex of course). * * Freeing a unit number may require allocating memory, and can therefore * sleep so the free_unr() function does not come in a pre-locked variant. * * A userland test program is included. * * Memory usage is a very complex function of the exact allocation * pattern, but always very compact: * * For the very typical case where a single unbroken run of unit * numbers are allocated 44 bytes are used on i386. * * For a unit number space of 1000 units and the random pattern * in the usermode test program included, the worst case usage * was 252 bytes on i386 for 500 allocated and 500 free units. * * For a unit number space of 10000 units and the random pattern * in the usermode test program included, the worst case usage * was 798 bytes on i386 for 5000 allocated and 5000 free units. * * The worst case is where every other unit number is allocated and * the rest are free. In that case 44 + N/4 bytes are used where * N is the number of the highest unit allocated. */ #include #include #include #ifdef _KERNEL #include #include #include #include #include #include #include /* * In theory it would be smarter to allocate the individual blocks * with the zone allocator, but at this time the expectation is that * there will typically not even be enough allocations to fill a single * page, so we stick with malloc for now. */ static MALLOC_DEFINE(M_UNIT, "Unitno", "Unit number allocation"); #define Malloc(foo) malloc(foo, M_UNIT, M_WAITOK | M_ZERO) #define Free(foo) free(foo, M_UNIT) static struct mtx unitmtx; MTX_SYSINIT(unit, &unitmtx, "unit# allocation", MTX_DEF); #else /* ...USERLAND */ #include #include #include #include #include #include #include #include #define KASSERT(cond, arg) \ do { \ if (!(cond)) { \ printf arg; \ abort(); \ } \ } while (0) static int no_alloc; #define Malloc(foo) _Malloc(foo, __LINE__) static void * _Malloc(size_t foo, int line) { KASSERT(no_alloc == 0, ("malloc in wrong place() line %d", line)); return (calloc(foo, 1)); } #define Free(foo) free(foo) struct unrhdr; struct mtx { int state; } unitmtx; static void mtx_lock(struct mtx *mp) { KASSERT(mp->state == 0, ("mutex already locked")); mp->state = 1; } static void mtx_unlock(struct mtx *mp) { KASSERT(mp->state == 1, ("mutex not locked")); mp->state = 0; } #define MA_OWNED 9 static void mtx_assert(struct mtx *mp, int flag) { if (flag == MA_OWNED) { KASSERT(mp->state == 1, ("mtx_assert(MA_OWNED) not true")); } } #define CTASSERT(foo) #define WITNESS_WARN(flags, lock, fmt, ...) (void)0 #endif /* USERLAND */ /* * This is our basic building block. * * It can be used in three different ways depending on the value of the ptr * element: * If ptr is NULL, it represents a run of free items. * If ptr points to the unrhdr it represents a run of allocated items. * Otherwise it points to a bitstring of allocated items. * * For runs the len field is the length of the run. * For bitmaps the len field represents the number of allocated items. * * The bitmap is the same size as struct unr to optimize memory management. */ struct unr { TAILQ_ENTRY(unr) list; u_int len; void *ptr; }; struct unrb { bitstr_t map[sizeof(struct unr) / sizeof(bitstr_t)]; }; CTASSERT((sizeof(struct unr) % sizeof(bitstr_t)) == 0); /* Number of bits we can store in the bitmap */ #define NBITS (8 * sizeof(((struct unrb*)NULL)->map)) /* Is the unrb empty in at least the first len bits? */ static inline bool ub_empty(struct unrb *ub, int len) { int first_set; bit_ffs(ub->map, len, &first_set); return (first_set == -1); } /* Is the unrb full? That is, is the number of set elements equal to len? */ static inline bool ub_full(struct unrb *ub, int len) { int first_clear; bit_ffc(ub->map, len, &first_clear); return (first_clear == -1); } #if defined(DIAGNOSTIC) || !defined(_KERNEL) /* * Consistency check function. * * Checks the internal consistency as well as we can. * * Called at all boundaries of this API. */ static void check_unrhdr(struct unrhdr *uh, int line) { struct unr *up; struct unrb *ub; - u_int x, y, z, w; + int w; + u_int y, z; y = uh->first; z = 0; TAILQ_FOREACH(up, &uh->head, list) { z++; if (up->ptr != uh && up->ptr != NULL) { ub = up->ptr; KASSERT (up->len <= NBITS, ("UNR inconsistency: len %u max %zd (line %d)\n", up->len, NBITS, line)); z++; w = 0; - for (x = 0; x < up->len; x++) - if (bit_test(ub->map, x)) - w++; + bit_count(ub->map, 0, up->len, &w); y += w; } else if (up->ptr != NULL) y += up->len; } KASSERT (y == uh->busy, ("UNR inconsistency: items %u found %u (line %d)\n", uh->busy, y, line)); KASSERT (z == uh->alloc, ("UNR inconsistency: chunks %u found %u (line %d)\n", uh->alloc, z, line)); } #else static __inline void check_unrhdr(struct unrhdr *uh __unused, int line __unused) { } #endif /* * Userland memory management. Just use calloc and keep track of how * many elements we have allocated for check_unrhdr(). */ static __inline void * new_unr(struct unrhdr *uh, void **p1, void **p2) { void *p; uh->alloc++; KASSERT(*p1 != NULL || *p2 != NULL, ("Out of cached memory")); if (*p1 != NULL) { p = *p1; *p1 = NULL; return (p); } else { p = *p2; *p2 = NULL; return (p); } } static __inline void delete_unr(struct unrhdr *uh, void *ptr) { struct unr *up; uh->alloc--; up = ptr; TAILQ_INSERT_TAIL(&uh->ppfree, up, list); } void clean_unrhdrl(struct unrhdr *uh) { struct unr *up; mtx_assert(uh->mtx, MA_OWNED); while ((up = TAILQ_FIRST(&uh->ppfree)) != NULL) { TAILQ_REMOVE(&uh->ppfree, up, list); mtx_unlock(uh->mtx); Free(up); mtx_lock(uh->mtx); } } void clean_unrhdr(struct unrhdr *uh) { mtx_lock(uh->mtx); clean_unrhdrl(uh); mtx_unlock(uh->mtx); } void init_unrhdr(struct unrhdr *uh, int low, int high, struct mtx *mutex) { KASSERT(low >= 0 && low <= high, ("UNR: use error: new_unrhdr(%d, %d)", low, high)); if (mutex != NULL) uh->mtx = mutex; else uh->mtx = &unitmtx; TAILQ_INIT(&uh->head); TAILQ_INIT(&uh->ppfree); uh->low = low; uh->high = high; uh->first = 0; uh->last = 1 + (high - low); check_unrhdr(uh, __LINE__); } /* * Allocate a new unrheader set. * * Highest and lowest valid values given as parameters. */ struct unrhdr * new_unrhdr(int low, int high, struct mtx *mutex) { struct unrhdr *uh; uh = Malloc(sizeof *uh); init_unrhdr(uh, low, high, mutex); return (uh); } void delete_unrhdr(struct unrhdr *uh) { check_unrhdr(uh, __LINE__); KASSERT(uh->busy == 0, ("unrhdr has %u allocations", uh->busy)); KASSERT(uh->alloc == 0, ("UNR memory leak in delete_unrhdr")); KASSERT(TAILQ_FIRST(&uh->ppfree) == NULL, ("unrhdr has postponed item for free")); Free(uh); } static __inline int is_bitmap(struct unrhdr *uh, struct unr *up) { return (up->ptr != uh && up->ptr != NULL); } /* * Look for sequence of items which can be combined into a bitmap, if * multiple are present, take the one which saves most memory. * * Return (1) if a sequence was found to indicate that another call * might be able to do more. Return (0) if we found no suitable sequence. * * NB: called from alloc_unr(), no new memory allocation allowed. */ static int optimize_unr(struct unrhdr *uh) { struct unr *up, *uf, *us; struct unrb *ub, *ubf; u_int a, l, ba; /* * Look for the run of items (if any) which when collapsed into * a bitmap would save most memory. */ us = NULL; ba = 0; TAILQ_FOREACH(uf, &uh->head, list) { if (uf->len >= NBITS) continue; a = 1; if (is_bitmap(uh, uf)) a++; l = uf->len; up = uf; while (1) { up = TAILQ_NEXT(up, list); if (up == NULL) break; if ((up->len + l) > NBITS) break; a++; if (is_bitmap(uh, up)) a++; l += up->len; } if (a > ba) { ba = a; us = uf; } } if (ba < 3) return (0); /* * If the first element is not a bitmap, make it one. * Trying to do so without allocating more memory complicates things * a bit */ if (!is_bitmap(uh, us)) { uf = TAILQ_NEXT(us, list); TAILQ_REMOVE(&uh->head, us, list); a = us->len; l = us->ptr == uh ? 1 : 0; ub = (void *)us; bit_nclear(ub->map, 0, NBITS - 1); if (l) bit_nset(ub->map, 0, a); if (!is_bitmap(uh, uf)) { if (uf->ptr == NULL) bit_nclear(ub->map, a, a + uf->len - 1); else bit_nset(ub->map, a, a + uf->len - 1); uf->ptr = ub; uf->len += a; us = uf; } else { ubf = uf->ptr; for (l = 0; l < uf->len; l++, a++) { if (bit_test(ubf->map, l)) bit_set(ub->map, a); else bit_clear(ub->map, a); } uf->len = a; delete_unr(uh, uf->ptr); uf->ptr = ub; us = uf; } } ub = us->ptr; while (1) { uf = TAILQ_NEXT(us, list); if (uf == NULL) return (1); if (uf->len + us->len > NBITS) return (1); if (uf->ptr == NULL) { bit_nclear(ub->map, us->len, us->len + uf->len - 1); us->len += uf->len; TAILQ_REMOVE(&uh->head, uf, list); delete_unr(uh, uf); } else if (uf->ptr == uh) { bit_nset(ub->map, us->len, us->len + uf->len - 1); us->len += uf->len; TAILQ_REMOVE(&uh->head, uf, list); delete_unr(uh, uf); } else { ubf = uf->ptr; for (l = 0; l < uf->len; l++, us->len++) { if (bit_test(ubf->map, l)) bit_set(ub->map, us->len); else bit_clear(ub->map, us->len); } TAILQ_REMOVE(&uh->head, uf, list); delete_unr(uh, ubf); delete_unr(uh, uf); } } } /* * See if a given unr should be collapsed with a neighbor. * * NB: called from alloc_unr(), no new memory allocation allowed. */ static void collapse_unr(struct unrhdr *uh, struct unr *up) { struct unr *upp; struct unrb *ub; /* If bitmap is all set or clear, change it to runlength */ if (is_bitmap(uh, up)) { ub = up->ptr; if (ub_full(ub, up->len)) { delete_unr(uh, up->ptr); up->ptr = uh; } else if (ub_empty(ub, up->len)) { delete_unr(uh, up->ptr); up->ptr = NULL; } } /* If nothing left in runlength, delete it */ if (up->len == 0) { upp = TAILQ_PREV(up, unrhd, list); if (upp == NULL) upp = TAILQ_NEXT(up, list); TAILQ_REMOVE(&uh->head, up, list); delete_unr(uh, up); up = upp; } /* If we have "hot-spot" still, merge with neighbor if possible */ if (up != NULL) { upp = TAILQ_PREV(up, unrhd, list); if (upp != NULL && up->ptr == upp->ptr) { up->len += upp->len; TAILQ_REMOVE(&uh->head, upp, list); delete_unr(uh, upp); } upp = TAILQ_NEXT(up, list); if (upp != NULL && up->ptr == upp->ptr) { up->len += upp->len; TAILQ_REMOVE(&uh->head, upp, list); delete_unr(uh, upp); } } /* Merge into ->first if possible */ upp = TAILQ_FIRST(&uh->head); if (upp != NULL && upp->ptr == uh) { uh->first += upp->len; TAILQ_REMOVE(&uh->head, upp, list); delete_unr(uh, upp); if (up == upp) up = NULL; } /* Merge into ->last if possible */ upp = TAILQ_LAST(&uh->head, unrhd); if (upp != NULL && upp->ptr == NULL) { uh->last += upp->len; TAILQ_REMOVE(&uh->head, upp, list); delete_unr(uh, upp); if (up == upp) up = NULL; } /* Try to make bitmaps */ while (optimize_unr(uh)) continue; } /* * Allocate a free unr. */ int alloc_unrl(struct unrhdr *uh) { struct unr *up; struct unrb *ub; u_int x; int y; mtx_assert(uh->mtx, MA_OWNED); check_unrhdr(uh, __LINE__); x = uh->low + uh->first; up = TAILQ_FIRST(&uh->head); /* * If we have an ideal split, just adjust the first+last */ if (up == NULL && uh->last > 0) { uh->first++; uh->last--; uh->busy++; return (x); } /* * We can always allocate from the first list element, so if we have * nothing on the list, we must have run out of unit numbers. */ if (up == NULL) return (-1); KASSERT(up->ptr != uh, ("UNR first element is allocated")); if (up->ptr == NULL) { /* free run */ uh->first++; up->len--; } else { /* bitmap */ ub = up->ptr; bit_ffc(ub->map, up->len, &y); KASSERT(y != -1, ("UNR corruption: No clear bit in bitmap.")); bit_set(ub->map, y); x += y; } uh->busy++; collapse_unr(uh, up); return (x); } int alloc_unr(struct unrhdr *uh) { int i; mtx_lock(uh->mtx); i = alloc_unrl(uh); clean_unrhdrl(uh); mtx_unlock(uh->mtx); return (i); } static int alloc_unr_specificl(struct unrhdr *uh, u_int item, void **p1, void **p2) { struct unr *up, *upn; struct unrb *ub; u_int i, last, tl; mtx_assert(uh->mtx, MA_OWNED); if (item < uh->low + uh->first || item > uh->high) return (-1); up = TAILQ_FIRST(&uh->head); /* Ideal split. */ if (up == NULL && item - uh->low == uh->first) { uh->first++; uh->last--; uh->busy++; check_unrhdr(uh, __LINE__); return (item); } i = item - uh->low - uh->first; if (up == NULL) { up = new_unr(uh, p1, p2); up->ptr = NULL; up->len = i; TAILQ_INSERT_TAIL(&uh->head, up, list); up = new_unr(uh, p1, p2); up->ptr = uh; up->len = 1; TAILQ_INSERT_TAIL(&uh->head, up, list); uh->last = uh->high - uh->low - i; uh->busy++; check_unrhdr(uh, __LINE__); return (item); } else { /* Find the item which contains the unit we want to allocate. */ TAILQ_FOREACH(up, &uh->head, list) { if (up->len > i) break; i -= up->len; } } if (up == NULL) { if (i > 0) { up = new_unr(uh, p1, p2); up->ptr = NULL; up->len = i; TAILQ_INSERT_TAIL(&uh->head, up, list); } up = new_unr(uh, p1, p2); up->ptr = uh; up->len = 1; TAILQ_INSERT_TAIL(&uh->head, up, list); goto done; } if (is_bitmap(uh, up)) { ub = up->ptr; if (bit_test(ub->map, i) == 0) { bit_set(ub->map, i); goto done; } else return (-1); } else if (up->ptr == uh) return (-1); KASSERT(up->ptr == NULL, ("alloc_unr_specificl: up->ptr != NULL (up=%p)", up)); /* Split off the tail end, if any. */ tl = up->len - (1 + i); if (tl > 0) { upn = new_unr(uh, p1, p2); upn->ptr = NULL; upn->len = tl; TAILQ_INSERT_AFTER(&uh->head, up, upn, list); } /* Split off head end, if any */ if (i > 0) { upn = new_unr(uh, p1, p2); upn->len = i; upn->ptr = NULL; TAILQ_INSERT_BEFORE(up, upn, list); } up->len = 1; up->ptr = uh; done: last = uh->high - uh->low - (item - uh->low); if (uh->last > last) uh->last = last; uh->busy++; collapse_unr(uh, up); check_unrhdr(uh, __LINE__); return (item); } int alloc_unr_specific(struct unrhdr *uh, u_int item) { void *p1, *p2; int i; WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "alloc_unr_specific"); p1 = Malloc(sizeof(struct unr)); p2 = Malloc(sizeof(struct unr)); mtx_lock(uh->mtx); i = alloc_unr_specificl(uh, item, &p1, &p2); mtx_unlock(uh->mtx); if (p1 != NULL) Free(p1); if (p2 != NULL) Free(p2); return (i); } /* * Free a unr. * * If we can save unrs by using a bitmap, do so. */ static void free_unrl(struct unrhdr *uh, u_int item, void **p1, void **p2) { struct unr *up, *upp, *upn; struct unrb *ub; u_int pl; KASSERT(item >= uh->low && item <= uh->high, ("UNR: free_unr(%u) out of range [%u...%u]", item, uh->low, uh->high)); check_unrhdr(uh, __LINE__); item -= uh->low; upp = TAILQ_FIRST(&uh->head); /* * Freeing in the ideal split case */ if (item + 1 == uh->first && upp == NULL) { uh->last++; uh->first--; uh->busy--; check_unrhdr(uh, __LINE__); return; } /* * Freeing in the ->first section. Create a run starting at the * freed item. The code below will subdivide it. */ if (item < uh->first) { up = new_unr(uh, p1, p2); up->ptr = uh; up->len = uh->first - item; TAILQ_INSERT_HEAD(&uh->head, up, list); uh->first -= up->len; } item -= uh->first; /* Find the item which contains the unit we want to free */ TAILQ_FOREACH(up, &uh->head, list) { if (up->len > item) break; item -= up->len; } /* Handle bitmap items */ if (is_bitmap(uh, up)) { ub = up->ptr; KASSERT(bit_test(ub->map, item) != 0, ("UNR: Freeing free item %d (bitmap)\n", item)); bit_clear(ub->map, item); uh->busy--; collapse_unr(uh, up); return; } KASSERT(up->ptr == uh, ("UNR Freeing free item %d (run))\n", item)); /* Just this one left, reap it */ if (up->len == 1) { up->ptr = NULL; uh->busy--; collapse_unr(uh, up); return; } /* Check if we can shift the item into the previous 'free' run */ upp = TAILQ_PREV(up, unrhd, list); if (item == 0 && upp != NULL && upp->ptr == NULL) { upp->len++; up->len--; uh->busy--; collapse_unr(uh, up); return; } /* Check if we can shift the item to the next 'free' run */ upn = TAILQ_NEXT(up, list); if (item == up->len - 1 && upn != NULL && upn->ptr == NULL) { upn->len++; up->len--; uh->busy--; collapse_unr(uh, up); return; } /* Split off the tail end, if any. */ pl = up->len - (1 + item); if (pl > 0) { upp = new_unr(uh, p1, p2); upp->ptr = uh; upp->len = pl; TAILQ_INSERT_AFTER(&uh->head, up, upp, list); } /* Split off head end, if any */ if (item > 0) { upp = new_unr(uh, p1, p2); upp->len = item; upp->ptr = uh; TAILQ_INSERT_BEFORE(up, upp, list); } up->len = 1; up->ptr = NULL; uh->busy--; collapse_unr(uh, up); } void free_unr(struct unrhdr *uh, u_int item) { void *p1, *p2; WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "free_unr"); p1 = Malloc(sizeof(struct unr)); p2 = Malloc(sizeof(struct unr)); mtx_lock(uh->mtx); free_unrl(uh, item, &p1, &p2); clean_unrhdrl(uh); mtx_unlock(uh->mtx); if (p1 != NULL) Free(p1); if (p2 != NULL) Free(p2); } #ifndef _KERNEL /* USERLAND test driver */ /* * Simple stochastic test driver for the above functions. The code resides * here so that it can access static functions and structures. */ static bool verbose; #define VPRINTF(...) {if (verbose) printf(__VA_ARGS__);} static void print_unr(struct unrhdr *uh, struct unr *up) { u_int x; struct unrb *ub; printf(" %p len = %5u ", up, up->len); if (up->ptr == NULL) printf("free\n"); else if (up->ptr == uh) printf("alloc\n"); else { ub = up->ptr; printf("bitmap ["); for (x = 0; x < up->len; x++) { if (bit_test(ub->map, x)) printf("#"); else printf(" "); } printf("]\n"); } } static void print_unrhdr(struct unrhdr *uh) { struct unr *up; u_int x; printf( "%p low = %u high = %u first = %u last = %u busy %u chunks = %u\n", uh, uh->low, uh->high, uh->first, uh->last, uh->busy, uh->alloc); x = uh->low + uh->first; TAILQ_FOREACH(up, &uh->head, list) { printf(" from = %5u", x); print_unr(uh, up); if (up->ptr == NULL || up->ptr == uh) x += up->len; else x += NBITS; } } static void test_alloc_unr(struct unrhdr *uh, u_int i, char a[]) { int j; if (a[i]) { VPRINTF("F %u\n", i); free_unr(uh, i); a[i] = 0; } else { no_alloc = 1; j = alloc_unr(uh); if (j != -1) { a[j] = 1; VPRINTF("A %d\n", j); } no_alloc = 0; } } static void test_alloc_unr_specific(struct unrhdr *uh, u_int i, char a[]) { int j; j = alloc_unr_specific(uh, i); if (j == -1) { VPRINTF("F %u\n", i); a[i] = 0; free_unr(uh, i); } else { a[i] = 1; VPRINTF("A %d\n", j); } } static void usage(char** argv) { printf("%s [-h] [-r REPETITIONS] [-v]\n", argv[0]); } int main(int argc, char **argv) { struct unrhdr *uh; char *a; long count = 10000; /* Number of unrs to test */ long reps = 1; int ch; u_int i, x, m, j; verbose = false; while ((ch = getopt(argc, argv, "hr:v")) != -1) { switch (ch) { case 'r': errno = 0; reps = strtol(optarg, NULL, 0); if (errno == ERANGE || errno == EINVAL) { usage(argv); exit(2); } break; case 'v': verbose = true; break; case 'h': default: usage(argv); exit(2); } } setbuf(stdout, NULL); uh = new_unrhdr(0, count - 1, NULL); print_unrhdr(uh); a = calloc(count, sizeof(char)); if (a == NULL) err(1, "calloc failed"); srandomdev(); printf("sizeof(struct unr) %zu\n", sizeof(struct unr)); printf("sizeof(struct unrb) %zu\n", sizeof(struct unrb)); printf("sizeof(struct unrhdr) %zu\n", sizeof(struct unrhdr)); printf("NBITS %lu\n", (unsigned long)NBITS); x = 1; for (m = 0; m < count * reps; m++) { j = random(); i = (j >> 1) % count; #if 0 if (a[i] && (j & 1)) continue; #endif if ((random() & 1) != 0) test_alloc_unr(uh, i, a); else test_alloc_unr_specific(uh, i, a); if (verbose) print_unrhdr(uh); check_unrhdr(uh, __LINE__); } for (i = 0; i < count; i++) { if (a[i]) { if (verbose) { printf("C %u\n", i); print_unrhdr(uh); } free_unr(uh, i); } } print_unrhdr(uh); delete_unrhdr(uh); free(a); return (0); } #endif Index: head/sys/sys/bitstring.h =================================================================== --- head/sys/sys/bitstring.h (revision 300538) +++ head/sys/sys/bitstring.h (revision 300539) @@ -1,259 +1,296 @@ /*- * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Paul Vixie. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Copyright (c) 2014 Spectra Logic Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. * * $FreeBSD$ */ #ifndef _SYS_BITSTRING_H_ #define _SYS_BITSTRING_H_ #ifdef _KERNEL #include #include +#include #endif typedef unsigned long bitstr_t; /*---------------------- Private Implementation Details ----------------------*/ #define _BITSTR_MASK (~0UL) #define _BITSTR_BITS (sizeof(bitstr_t) * 8) /* bitstr_t in bit string containing the bit. */ static inline int _bit_idx(int _bit) { return (_bit / _BITSTR_BITS); } /* bit number within bitstr_t at _bit_idx(_bit). */ static inline int _bit_offset(int _bit) { return (_bit % _BITSTR_BITS); } /* Mask for the bit within its long. */ static inline bitstr_t _bit_mask(int _bit) { return (1UL << _bit_offset(_bit)); } static inline bitstr_t _bit_make_mask(int _start, int _stop) { return ((_BITSTR_MASK << _bit_offset(_start)) & (_BITSTR_MASK >> (_BITSTR_BITS - _bit_offset(_stop) - 1))); } /*----------------------------- Public Interface -----------------------------*/ /* Number of bytes consumed by a bit string of nbits bits */ #define bitstr_size(_nbits) \ (((_nbits) + _BITSTR_BITS - 1) / 8) /* Allocate a bit string initialized with no bits set. */ #ifdef _KERNEL static inline bitstr_t * bit_alloc(int _nbits, struct malloc_type *type, int flags) { return ((bitstr_t *)malloc(bitstr_size(_nbits), type, flags | M_ZERO)); } #else static inline bitstr_t * bit_alloc(int _nbits) { return ((bitstr_t *)calloc(bitstr_size(_nbits), 1)); } #endif /* Allocate a bit string on the stack with no bits set. */ #define bit_decl(name, nbits) \ ((name)[bitstr_size(nbits) / sizeof(bitstr_t)]) /* Is bit N of bit string set? */ static inline int bit_test(const bitstr_t *_bitstr, int _bit) { return ((_bitstr[_bit_idx(_bit)] & _bit_mask(_bit)) != 0); } /* Set bit N of bit string. */ static inline void bit_set(bitstr_t *_bitstr, int _bit) { _bitstr[_bit_idx(_bit)] |= _bit_mask(_bit); } /* clear bit N of bit string name */ static inline void bit_clear(bitstr_t *_bitstr, int _bit) { _bitstr[_bit_idx(_bit)] &= ~_bit_mask(_bit); } /* Set bits start ... stop inclusive in bit string. */ static inline void bit_nset(bitstr_t *_bitstr, int _start, int _stop) { bitstr_t *_stopbitstr; _stopbitstr = _bitstr + _bit_idx(_stop); _bitstr += _bit_idx(_start); if (_bitstr == _stopbitstr) { *_bitstr |= _bit_make_mask(_start, _stop); } else { *_bitstr |= _bit_make_mask(_start, _BITSTR_BITS - 1); while (++_bitstr < _stopbitstr) *_bitstr = _BITSTR_MASK; *_stopbitstr |= _bit_make_mask(0, _stop); } } /* Clear bits start ... stop inclusive in bit string. */ static inline void bit_nclear(bitstr_t *_bitstr, int _start, int _stop) { bitstr_t *_stopbitstr; _stopbitstr = _bitstr + _bit_idx(_stop); _bitstr += _bit_idx(_start); if (_bitstr == _stopbitstr) { *_bitstr &= ~_bit_make_mask(_start, _stop); } else { *_bitstr &= ~_bit_make_mask(_start, _BITSTR_BITS - 1); while (++_bitstr < _stopbitstr) *_bitstr = 0; *_stopbitstr &= ~_bit_make_mask(0, _stop); } } /* Find the first bit set in bit string at or after bit start. */ static inline void bit_ffs_at(bitstr_t *_bitstr, int _start, int _nbits, int *_result) { bitstr_t *_curbitstr; bitstr_t *_stopbitstr; bitstr_t _test; int _value, _offset; if (_nbits > 0) { _curbitstr = _bitstr + _bit_idx(_start); _stopbitstr = _bitstr + _bit_idx(_nbits - 1); _test = *_curbitstr; if (_bit_offset(_start) != 0) _test &= _bit_make_mask(_start, _BITSTR_BITS - 1); while (_test == 0 && _curbitstr < _stopbitstr) _test = *(++_curbitstr); - + _offset = ffsl(_test); _value = ((_curbitstr - _bitstr) * _BITSTR_BITS) + _offset - 1; if (_offset == 0 || _value >= _nbits) _value = -1; } else { _value = -1; } *_result = _value; } /* Find the first bit clear in bit string at or after bit start. */ static inline void bit_ffc_at(bitstr_t *_bitstr, int _start, int _nbits, int *_result) { bitstr_t *_curbitstr; bitstr_t *_stopbitstr; bitstr_t _test; int _value, _offset; if (_nbits > 0) { _curbitstr = _bitstr + _bit_idx(_start); _stopbitstr = _bitstr + _bit_idx(_nbits - 1); _test = *_curbitstr; if (_bit_offset(_start) != 0) _test |= _bit_make_mask(0, _start - 1); while (_test == _BITSTR_MASK && _curbitstr < _stopbitstr) _test = *(++_curbitstr); - + _offset = ffsl(~_test); _value = ((_curbitstr - _bitstr) * _BITSTR_BITS) + _offset - 1; if (_offset == 0 || _value >= _nbits) _value = -1; } else { _value = -1; } *_result = _value; } /* Find the first bit set in bit string. */ static inline void bit_ffs(bitstr_t *_bitstr, int _nbits, int *_result) { bit_ffs_at(_bitstr, /*start*/0, _nbits, _result); } /* Find the first bit clear in bit string. */ static inline void bit_ffc(bitstr_t *_bitstr, int _nbits, int *_result) { bit_ffc_at(_bitstr, /*start*/0, _nbits, _result); +} + +/* Count the number of bits set in a bitstr of size _nbits at or after _start */ +static inline void +bit_count(bitstr_t *_bitstr, int _start, int _nbits, int *_result) +{ + bitstr_t *_curbitstr, mask; + int _value = 0, curbitstr_len; + + if (_start >= _nbits) + goto out; + + _curbitstr = _bitstr + _bit_idx(_start); + _nbits -= _BITSTR_BITS * _bit_idx(_start); + _start -= _BITSTR_BITS * _bit_idx(_start); + + if (_start > 0) { + curbitstr_len = (int)_BITSTR_BITS < _nbits ? + (int)_BITSTR_BITS : _nbits; + mask = _bit_make_mask(_start, _bit_offset(curbitstr_len - 1)); + _value += __bitcountl(*_curbitstr & mask); + _curbitstr++; + _nbits -= _BITSTR_BITS; + } + while (_nbits >= (int)_BITSTR_BITS) { + _value += __bitcountl(*_curbitstr); + _curbitstr++; + _nbits -= _BITSTR_BITS; + } + if (_nbits > 0) { + mask = _bit_make_mask(0, _bit_offset(_nbits - 1)); + _value += __bitcountl(*_curbitstr & mask); + } + +out: + *_result = _value; } #endif /* _SYS_BITSTRING_H_ */ Index: head/sys/sys/param.h =================================================================== --- head/sys/sys/param.h (revision 300538) +++ head/sys/sys/param.h (revision 300539) @@ -1,363 +1,363 @@ /*- * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)param.h 8.3 (Berkeley) 4/4/95 * $FreeBSD$ */ #ifndef _SYS_PARAM_H_ #define _SYS_PARAM_H_ #include #define BSD 199506 /* System version (year & month). */ #define BSD4_3 1 #define BSD4_4 1 /* * __FreeBSD_version numbers are documented in the Porter's Handbook. * If you bump the version for any reason, you should update the documentation * there. * Currently this lives here in the doc/ repository: * * head/en_US.ISO8859-1/books/porters-handbook/versions/chapter.xml * * scheme is: Rxx * 'R' is in the range 0 to 4 if this is a release branch or * x.0-CURRENT before RELENG_*_0 is created, otherwise 'R' is * in the range 5 to 9. */ #undef __FreeBSD_version -#define __FreeBSD_version 1100111 /* Master, propagated to newvers */ +#define __FreeBSD_version 1100112 /* Master, propagated to newvers */ /* * __FreeBSD_kernel__ indicates that this system uses the kernel of FreeBSD, * which by definition is always true on FreeBSD. This macro is also defined * on other systems that use the kernel of FreeBSD, such as GNU/kFreeBSD. * * It is tempting to use this macro in userland code when we want to enable * kernel-specific routines, and in fact it's fine to do this in code that * is part of FreeBSD itself. However, be aware that as presence of this * macro is still not widespread (e.g. older FreeBSD versions, 3rd party * compilers, etc), it is STRONGLY DISCOURAGED to check for this macro in * external applications without also checking for __FreeBSD__ as an * alternative. */ #undef __FreeBSD_kernel__ #define __FreeBSD_kernel__ #ifdef _KERNEL #define P_OSREL_SIGWAIT 700000 #define P_OSREL_SIGSEGV 700004 #define P_OSREL_MAP_ANON 800104 #define P_OSREL_MAP_FSTRICT 1100036 #define P_OSREL_SHUTDOWN_ENOTCONN 1100077 #define P_OSREL_MAJOR(x) ((x) / 100000) #endif #ifndef LOCORE #include #endif /* * Machine-independent constants (some used in following include files). * Redefined constants are from POSIX 1003.1 limits file. * * MAXCOMLEN should be >= sizeof(ac_comm) (see ) */ #include #define MAXCOMLEN 19 /* max command name remembered */ #define MAXINTERP PATH_MAX /* max interpreter file name length */ #define MAXLOGNAME 33 /* max login name length (incl. NUL) */ #define MAXUPRC CHILD_MAX /* max simultaneous processes */ #define NCARGS ARG_MAX /* max bytes for an exec function */ #define NGROUPS (NGROUPS_MAX+1) /* max number groups */ #define NOFILE OPEN_MAX /* max open files per process */ #define NOGROUP 65535 /* marker for empty group set member */ #define MAXHOSTNAMELEN 256 /* max hostname size */ #define SPECNAMELEN 63 /* max length of devicename */ /* More types and definitions used throughout the kernel. */ #ifdef _KERNEL #include #include #ifndef LOCORE #include #include #endif #ifndef FALSE #define FALSE 0 #endif #ifndef TRUE #define TRUE 1 #endif #endif #ifndef _KERNEL /* Signals. */ #include #endif /* Machine type dependent parameters. */ #include #ifndef _KERNEL #include #endif #ifndef DEV_BSHIFT #define DEV_BSHIFT 9 /* log2(DEV_BSIZE) */ #endif #define DEV_BSIZE (1<>PAGE_SHIFT) #endif /* * btodb() is messy and perhaps slow because `bytes' may be an off_t. We * want to shift an unsigned type to avoid sign extension and we don't * want to widen `bytes' unnecessarily. Assume that the result fits in * a daddr_t. */ #ifndef btodb #define btodb(bytes) /* calculates (bytes / DEV_BSIZE) */ \ (sizeof (bytes) > sizeof(long) \ ? (daddr_t)((unsigned long long)(bytes) >> DEV_BSHIFT) \ : (daddr_t)((unsigned long)(bytes) >> DEV_BSHIFT)) #endif #ifndef dbtob #define dbtob(db) /* calculates (db * DEV_BSIZE) */ \ ((off_t)(db) << DEV_BSHIFT) #endif #define PRIMASK 0x0ff #define PCATCH 0x100 /* OR'd with pri for tsleep to check signals */ #define PDROP 0x200 /* OR'd with pri to stop re-entry of interlock mutex */ #define NZERO 0 /* default "nice" */ #define NBBY 8 /* number of bits in a byte */ #define NBPW sizeof(int) /* number of bytes per word (integer) */ #define CMASK 022 /* default file mask: S_IWGRP|S_IWOTH */ #define NODEV (dev_t)(-1) /* non-existent device */ /* * File system parameters and macros. * * MAXBSIZE - Filesystems are made out of blocks of at most MAXBSIZE bytes * per block. MAXBSIZE may be made larger without effecting * any existing filesystems as long as it does not exceed MAXPHYS, * and may be made smaller at the risk of not being able to use * filesystems which require a block size exceeding MAXBSIZE. * * MAXBCACHEBUF - Maximum size of a buffer in the buffer cache. This must * be >= MAXBSIZE and can be set differently for different * architectures by defining it in . * Making this larger allows NFS to do larger reads/writes. * * BKVASIZE - Nominal buffer space per buffer, in bytes. BKVASIZE is the * minimum KVM memory reservation the kernel is willing to make. * Filesystems can of course request smaller chunks. Actual * backing memory uses a chunk size of a page (PAGE_SIZE). * The default value here can be overridden on a per-architecture * basis by defining it in . This should * probably be done to increase its value, when MAXBCACHEBUF is * defined as a larger value in . * * If you make BKVASIZE too small you risk seriously fragmenting * the buffer KVM map which may slow things down a bit. If you * make it too big the kernel will not be able to optimally use * the KVM memory reserved for the buffer cache and will wind * up with too-few buffers. * * The default is 16384, roughly 2x the block size used by a * normal UFS filesystem. */ #define MAXBSIZE 65536 /* must be power of 2 */ #ifndef MAXBCACHEBUF #define MAXBCACHEBUF MAXBSIZE /* must be a power of 2 >= MAXBSIZE */ #endif #ifndef BKVASIZE #define BKVASIZE 16384 /* must be power of 2 */ #endif #define BKVAMASK (BKVASIZE-1) /* * MAXPATHLEN defines the longest permissible path length after expanding * symbolic links. It is used to allocate a temporary buffer from the buffer * pool in which to do the name expansion, hence should be a power of two, * and must be less than or equal to MAXBSIZE. MAXSYMLINKS defines the * maximum number of symbolic links that may be expanded in a path name. * It should be set high enough to allow all legitimate uses, but halt * infinite loops reasonably quickly. */ #define MAXPATHLEN PATH_MAX #define MAXSYMLINKS 32 /* Bit map related macros. */ #define setbit(a,i) (((unsigned char *)(a))[(i)/NBBY] |= 1<<((i)%NBBY)) #define clrbit(a,i) (((unsigned char *)(a))[(i)/NBBY] &= ~(1<<((i)%NBBY))) #define isset(a,i) \ (((const unsigned char *)(a))[(i)/NBBY] & (1<<((i)%NBBY))) #define isclr(a,i) \ ((((const unsigned char *)(a))[(i)/NBBY] & (1<<((i)%NBBY))) == 0) /* Macros for counting and rounding. */ #ifndef howmany #define howmany(x, y) (((x)+((y)-1))/(y)) #endif #define nitems(x) (sizeof((x)) / sizeof((x)[0])) #define rounddown(x, y) (((x)/(y))*(y)) #define rounddown2(x, y) ((x)&(~((y)-1))) /* if y is power of two */ #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) /* to any y */ #define roundup2(x, y) (((x)+((y)-1))&(~((y)-1))) /* if y is powers of two */ #define powerof2(x) ((((x)-1)&(x))==0) /* Macros for min/max. */ #define MIN(a,b) (((a)<(b))?(a):(b)) #define MAX(a,b) (((a)>(b))?(a):(b)) #ifdef _KERNEL /* * Basic byte order function prototypes for non-inline functions. */ #ifndef LOCORE #ifndef _BYTEORDER_PROTOTYPED #define _BYTEORDER_PROTOTYPED __BEGIN_DECLS __uint32_t htonl(__uint32_t); __uint16_t htons(__uint16_t); __uint32_t ntohl(__uint32_t); __uint16_t ntohs(__uint16_t); __END_DECLS #endif #endif #ifndef lint #ifndef _BYTEORDER_FUNC_DEFINED #define _BYTEORDER_FUNC_DEFINED #define htonl(x) __htonl(x) #define htons(x) __htons(x) #define ntohl(x) __ntohl(x) #define ntohs(x) __ntohs(x) #endif /* !_BYTEORDER_FUNC_DEFINED */ #endif /* lint */ #endif /* _KERNEL */ /* * Scale factor for scaled integers used to count %cpu time and load avgs. * * The number of CPU `tick's that map to a unique `%age' can be expressed * by the formula (1 / (2 ^ (FSHIFT - 11))). The maximum load average that * can be calculated (assuming 32 bits) can be closely approximated using * the formula (2 ^ (2 * (16 - FSHIFT))) for (FSHIFT < 15). * * For the scheduler to maintain a 1:1 mapping of CPU `tick' to `%age', * FSHIFT must be at least 11; this gives us a maximum load avg of ~1024. */ #define FSHIFT 11 /* bits to right of fixed binary point */ #define FSCALE (1<> (PAGE_SHIFT - DEV_BSHIFT)) #define ctodb(db) /* calculates pages to devblks */ \ ((db) << (PAGE_SHIFT - DEV_BSHIFT)) /* * Old spelling of __containerof(). */ #define member2struct(s, m, x) \ ((struct s *)(void *)((char *)(x) - offsetof(struct s, m))) /* * Access a variable length array that has been declared as a fixed * length array. */ #define __PAST_END(array, offset) (((__typeof__(*(array)) *)(array))[offset]) #endif /* _SYS_PARAM_H_ */ Index: head/tests/sys/sys/bitstring_test.c =================================================================== --- head/tests/sys/sys/bitstring_test.c (revision 300538) +++ head/tests/sys/sys/bitstring_test.c (revision 300539) @@ -1,359 +1,421 @@ /*- * Copyright (c) 2014 Spectra Logic Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. * * $FreeBSD$ */ #include #include #include #include typedef void (testfunc_t)(bitstr_t *bstr, int nbits, const char *memloc); static void bitstring_run_stack_test(testfunc_t *test, int nbits) { bitstr_t bit_decl(bitstr, nbits); test(bitstr, nbits, "stack"); } static void bitstring_run_heap_test(testfunc_t *test, int nbits) { bitstr_t *bitstr = bit_alloc(nbits); test(bitstr, nbits, "heap"); } static void bitstring_test_runner(testfunc_t *test) { const int bitstr_sizes[] = { 0, 1, _BITSTR_BITS - 1, _BITSTR_BITS, _BITSTR_BITS + 1, 2 * _BITSTR_BITS - 1, 2 * _BITSTR_BITS, 1023, 1024 }; for (unsigned long i = 0; i < nitems(bitstr_sizes); i++) { bitstring_run_stack_test(test, bitstr_sizes[i]); bitstring_run_heap_test(test, bitstr_sizes[i]); } } #define BITSTRING_TC_DEFINE(name) \ ATF_TC_WITHOUT_HEAD(name); \ static testfunc_t name ## _test; \ \ ATF_TC_BODY(name, tc) \ { \ bitstring_test_runner(name ## _test); \ } \ \ static void \ name ## _test(bitstr_t *bitstr, int nbits, const char *memloc) #define BITSTRING_TC_ADD(tp, name) \ do { \ ATF_TP_ADD_TC(tp, name); \ } while (0) ATF_TC_WITHOUT_HEAD(bitstr_in_struct); ATF_TC_BODY(bitstr_in_struct, tc) { struct bitstr_containing_struct { bitstr_t bit_decl(bitstr, 8); } test_struct; bit_nclear(test_struct.bitstr, 0, 8); } BITSTRING_TC_DEFINE(bit_set) /* bitstr_t *bitstr, int nbits, const char *memloc */ { memset(bitstr, 0, bitstr_size(nbits)); for (int i = 0; i < nbits; i++) { bit_set(bitstr, i); for (int j = 0; j < nbits; j++) { ATF_REQUIRE_MSG(bit_test(bitstr, j) == (j == i) ? 1 : 0, "bit_set_%d_%s: Failed on bit %d", nbits, memloc, i); } bit_clear(bitstr, i); } } BITSTRING_TC_DEFINE(bit_clear) /* bitstr_t *bitstr, int nbits, const char *memloc */ { int i, j; memset(bitstr, 0xFF, bitstr_size(nbits)); for (i = 0; i < nbits; i++) { bit_clear(bitstr, i); for (j = 0; j < nbits; j++) { ATF_REQUIRE_MSG(bit_test(bitstr, j) == (j == i) ? 0 : 1, "bit_clear_%d_%s: Failed on bit %d", nbits, memloc, i); } bit_set(bitstr, i); } } BITSTRING_TC_DEFINE(bit_ffs) /* bitstr_t *bitstr, int nbits, const char *memloc */ { int i; int found_set_bit; memset(bitstr, 0, bitstr_size(nbits)); bit_ffs(bitstr, nbits, &found_set_bit); ATF_REQUIRE_MSG(found_set_bit == -1, "bit_ffs_%d_%s: Failed all clear bits.", nbits, memloc); for (i = 0; i < nbits; i++) { memset(bitstr, 0xFF, bitstr_size(nbits)); if (i > 0) bit_nclear(bitstr, 0, i - 1); bit_ffs(bitstr, nbits, &found_set_bit); ATF_REQUIRE_MSG(found_set_bit == i, "bit_ffs_%d_%s: Failed on bit %d, Result %d", nbits, memloc, i, found_set_bit); } } BITSTRING_TC_DEFINE(bit_ffc) /* bitstr_t *bitstr, int nbits, const char *memloc */ { int i; int found_clear_bit; memset(bitstr, 0xFF, bitstr_size(nbits)); bit_ffc(bitstr, nbits, &found_clear_bit); ATF_REQUIRE_MSG(found_clear_bit == -1, "bit_ffc_%d_%s: Failed all set bits.", nbits, memloc); for (i = 0; i < nbits; i++) { memset(bitstr, 0, bitstr_size(nbits)); if (i > 0) bit_nset(bitstr, 0, i - 1); bit_ffc(bitstr, nbits, &found_clear_bit); ATF_REQUIRE_MSG(found_clear_bit == i, "bit_ffc_%d_%s: Failed on bit %d, Result %d", nbits, memloc, i, found_clear_bit); } } BITSTRING_TC_DEFINE(bit_ffs_at) /* bitstr_t *bitstr, int nbits, const char *memloc */ { int i; int found_set_bit; memset(bitstr, 0xFF, bitstr_size(nbits)); for (i = 0; i < nbits; i++) { bit_ffs_at(bitstr, i, nbits, &found_set_bit); ATF_REQUIRE_MSG(found_set_bit == i, "bit_ffs_at_%d_%s: Failed on bit %d, Result %d", nbits, memloc, i, found_set_bit); } memset(bitstr, 0, bitstr_size(nbits)); for (i = 0; i < nbits; i++) { bit_ffs_at(bitstr, i, nbits, &found_set_bit); ATF_REQUIRE_MSG(found_set_bit == -1, "bit_ffs_at_%d_%s: Failed on bit %d, Result %d", nbits, memloc, i, found_set_bit); } memset(bitstr, 0x55, bitstr_size(nbits)); for (i = 0; i < nbits; i++) { bit_ffs_at(bitstr, i, nbits, &found_set_bit); if (i == nbits - 1 && (nbits & 1) == 0) { ATF_REQUIRE_MSG(found_set_bit == -1, "bit_ffs_at_%d_%s: Failed on bit %d, Result %d", nbits, memloc, i, found_set_bit); } else { ATF_REQUIRE_MSG(found_set_bit == i + (i & 1), "bit_ffs_at_%d_%s: Failed on bit %d, Result %d", nbits, memloc, i, found_set_bit); } } memset(bitstr, 0xAA, bitstr_size(nbits)); for (i = 0; i < nbits; i++) { bit_ffs_at(bitstr, i, nbits, &found_set_bit); if (i == nbits - 1 && (nbits & 1) != 0) { ATF_REQUIRE_MSG(found_set_bit == -1, "bit_ffs_at_%d_%s: Failed on bit %d, Result %d", nbits, memloc, i, found_set_bit); } else { ATF_REQUIRE_MSG( found_set_bit == i + ((i & 1) ? 0 : 1), "bit_ffs_at_%d_%s: Failed on bit %d, Result %d", nbits, memloc, i, found_set_bit); } } } BITSTRING_TC_DEFINE(bit_ffc_at) /* bitstr_t *bitstr, int nbits, const char *memloc */ { int i, found_clear_bit; memset(bitstr, 0, bitstr_size(nbits)); for (i = 0; i < nbits; i++) { bit_ffc_at(bitstr, i, nbits, &found_clear_bit); ATF_REQUIRE_MSG(found_clear_bit == i, "bit_ffc_at_%d_%s: Failed on bit %d, Result %d", nbits, memloc, i, found_clear_bit); } memset(bitstr, 0xFF, bitstr_size(nbits)); for (i = 0; i < nbits; i++) { bit_ffc_at(bitstr, i, nbits, &found_clear_bit); ATF_REQUIRE_MSG(found_clear_bit == -1, "bit_ffc_at_%d_%s: Failed on bit %d, Result %d", nbits, memloc, i, found_clear_bit); } memset(bitstr, 0x55, bitstr_size(nbits)); for (i = 0; i < nbits; i++) { bit_ffc_at(bitstr, i, nbits, &found_clear_bit); if (i == nbits - 1 && (nbits & 1) != 0) { ATF_REQUIRE_MSG(found_clear_bit == -1, "bit_ffc_at_%d_%s: Failed on bit %d, Result %d", nbits, memloc, i, found_clear_bit); } else { ATF_REQUIRE_MSG( found_clear_bit == i + ((i & 1) ? 0 : 1), "bit_ffc_at_%d_%s: Failed on bit %d, Result %d", nbits, memloc, i, found_clear_bit); } } memset(bitstr, 0xAA, bitstr_size(nbits)); for (i = 0; i < nbits; i++) { bit_ffc_at(bitstr, i, nbits, &found_clear_bit); if (i == nbits - 1 && (nbits & 1) == 0) { ATF_REQUIRE_MSG(found_clear_bit == -1, "bit_ffc_at_%d_%s: Failed on bit %d, Result %d", nbits, memloc, i, found_clear_bit); } else { ATF_REQUIRE_MSG(found_clear_bit == i + (i & 1), "bit_ffc_at_%d_%s: Failed on bit %d, Result %d", nbits, memloc, i, found_clear_bit); } } } BITSTRING_TC_DEFINE(bit_nclear) /* bitstr_t *bitstr, int nbits, const char *memloc */ { int i, j; int found_set_bit; int found_clear_bit; for (i = 0; i < nbits; i++) { for (j = i; j < nbits; j++) { memset(bitstr, 0xFF, bitstr_size(nbits)); bit_nclear(bitstr, i, j); bit_ffc(bitstr, nbits, &found_clear_bit); ATF_REQUIRE_MSG( found_clear_bit == i, "bit_nclear_%d_%d_%d%s: Failed with result %d", nbits, i, j, memloc, found_clear_bit); bit_ffs_at(bitstr, i, nbits, &found_set_bit); ATF_REQUIRE_MSG( (j + 1 < nbits) ? found_set_bit == j + 1 : -1, "bit_nset_%d_%d_%d%s: Failed with result %d", nbits, i, j, memloc, found_set_bit); } } } BITSTRING_TC_DEFINE(bit_nset) /* bitstr_t *bitstr, int nbits, const char *memloc */ { int i, j; int found_set_bit; int found_clear_bit; for (i = 0; i < nbits; i++) { for (j = i; j < nbits; j++) { memset(bitstr, 0, bitstr_size(nbits)); bit_nset(bitstr, i, j); bit_ffs(bitstr, nbits, &found_set_bit); ATF_REQUIRE_MSG( found_set_bit == i, "bit_nset_%d_%d_%d%s: Failed with result %d", nbits, i, j, memloc, found_set_bit); bit_ffc_at(bitstr, i, nbits, &found_clear_bit); ATF_REQUIRE_MSG( (j + 1 < nbits) ? found_clear_bit == j + 1 : -1, "bit_nset_%d_%d_%d%s: Failed with result %d", nbits, i, j, memloc, found_clear_bit); } } } +BITSTRING_TC_DEFINE(bit_count) +/* bitstr_t *bitstr, int nbits, const char *memloc */ +{ + int result, s, e, expected; + + /* Empty bitstr */ + memset(bitstr, 0, bitstr_size(nbits)); + bit_count(bitstr, 0, nbits, &result); + ATF_CHECK_MSG(0 == result, + "bit_count_%d_%s_%s: Failed with result %d", + nbits, "clear", memloc, result); + + /* Full bitstr */ + memset(bitstr, 0xFF, bitstr_size(nbits)); + bit_count(bitstr, 0, nbits, &result); + ATF_CHECK_MSG(nbits == result, + "bit_count_%d_%s_%s: Failed with result %d", + nbits, "set", memloc, result); + + /* Invalid _start value */ + memset(bitstr, 0xFF, bitstr_size(nbits)); + bit_count(bitstr, nbits, nbits, &result); + ATF_CHECK_MSG(0 == result, + "bit_count_%d_%s_%s: Failed with result %d", + nbits, "invalid_start", memloc, result); + + /* Alternating bitstr, starts with 0 */ + memset(bitstr, 0xAA, bitstr_size(nbits)); + bit_count(bitstr, 0, nbits, &result); + ATF_CHECK_MSG(nbits / 2 == result, + "bit_count_%d_%s_%d_%s: Failed with result %d", + nbits, "alternating", 0, memloc, result); + + /* Alternating bitstr, starts with 1 */ + memset(bitstr, 0x55, bitstr_size(nbits)); + bit_count(bitstr, 0, nbits, &result); + ATF_CHECK_MSG((nbits + 1) / 2 == result, + "bit_count_%d_%s_%d_%s: Failed with result %d", + nbits, "alternating", 1, memloc, result); + + /* Varying start location */ + memset(bitstr, 0xAA, bitstr_size(nbits)); + for (s = 0; s < nbits; s++) { + expected = s % 2 == 0 ? (nbits - s) / 2 : (nbits - s + 1) / 2; + bit_count(bitstr, s, nbits, &result); + ATF_CHECK_MSG(expected == result, + "bit_count_%d_%s_%d_%s: Failed with result %d", + nbits, "vary_start", s, memloc, result); + } + + /* Varying end location */ + memset(bitstr, 0xAA, bitstr_size(nbits)); + for (e = 0; e < nbits; e++) { + bit_count(bitstr, 0, e, &result); + ATF_CHECK_MSG(e / 2 == result, + "bit_count_%d_%s_%d_%s: Failed with result %d", + nbits, "vary_end", e, memloc, result); + } + +} + ATF_TP_ADD_TCS(tp) { ATF_TP_ADD_TC(tp, bitstr_in_struct); BITSTRING_TC_ADD(tp, bit_set); BITSTRING_TC_ADD(tp, bit_clear); BITSTRING_TC_ADD(tp, bit_ffs); BITSTRING_TC_ADD(tp, bit_ffc); BITSTRING_TC_ADD(tp, bit_ffs_at); BITSTRING_TC_ADD(tp, bit_ffc_at); BITSTRING_TC_ADD(tp, bit_nclear); BITSTRING_TC_ADD(tp, bit_nset); + BITSTRING_TC_ADD(tp, bit_count); return (atf_no_error()); }