Index: head/sys/dev/vnic/nic_main.c =================================================================== --- head/sys/dev/vnic/nic_main.c (revision 300294) +++ head/sys/dev/vnic/nic_main.c (revision 300295) @@ -1,1222 +1,1232 @@ /* * Copyright (C) 2015 Cavium Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ * */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef PCI_IOV #include #include #endif #include "thunder_bgx.h" #include "nic_reg.h" #include "nic.h" #include "q_struct.h" #define VNIC_PF_DEVSTR "Cavium Thunder NIC Physical Function Driver" #define VNIC_PF_REG_RID PCIR_BAR(PCI_CFG_REG_BAR_NUM) #define NIC_SET_VF_LMAC_MAP(bgx, lmac) ((((bgx) & 0xF) << 4) | ((lmac) & 0xF)) #define NIC_GET_BGX_FROM_VF_LMAC_MAP(map) (((map) >> 4) & 0xF) #define NIC_GET_LMAC_FROM_VF_LMAC_MAP(map) ((map) & 0xF) /* Structure to be used by the SR-IOV for VF configuration schemas */ struct nicvf_info { boolean_t vf_enabled; int vf_flags; }; struct nicpf { device_t dev; uint8_t node; u_int flags; uint8_t num_vf_en; /* No of VF enabled */ struct nicvf_info vf_info[MAX_NUM_VFS_SUPPORTED]; struct resource * reg_base; /* Register start address */ struct pkind_cfg pkind; uint8_t vf_lmac_map[MAX_LMAC]; boolean_t mbx_lock[MAX_NUM_VFS_SUPPORTED]; struct callout check_link; struct mtx check_link_mtx; uint8_t link[MAX_LMAC]; uint8_t duplex[MAX_LMAC]; uint32_t speed[MAX_LMAC]; uint16_t cpi_base[MAX_NUM_VFS_SUPPORTED]; uint16_t rssi_base[MAX_NUM_VFS_SUPPORTED]; uint16_t rss_ind_tbl_size; /* MSI-X */ boolean_t msix_enabled; uint8_t num_vec; struct msix_entry msix_entries[NIC_PF_MSIX_VECTORS]; struct resource * msix_table_res; }; static int nicpf_probe(device_t); static int nicpf_attach(device_t); static int nicpf_detach(device_t); #ifdef PCI_IOV static int nicpf_iov_init(device_t, uint16_t, const nvlist_t *); static void nicpf_iov_uninit(device_t); static int nicpf_iov_add_vf(device_t, uint16_t, const nvlist_t *); #endif static device_method_t nicpf_methods[] = { /* Device interface */ DEVMETHOD(device_probe, nicpf_probe), DEVMETHOD(device_attach, nicpf_attach), DEVMETHOD(device_detach, nicpf_detach), /* PCI SR-IOV interface */ #ifdef PCI_IOV DEVMETHOD(pci_iov_init, nicpf_iov_init), DEVMETHOD(pci_iov_uninit, nicpf_iov_uninit), DEVMETHOD(pci_iov_add_vf, nicpf_iov_add_vf), #endif DEVMETHOD_END, }; static driver_t vnicpf_driver = { "vnicpf", nicpf_methods, sizeof(struct nicpf), }; static devclass_t vnicpf_devclass; DRIVER_MODULE(vnicpf, pci, vnicpf_driver, vnicpf_devclass, 0, 0); MODULE_VERSION(vnicpf, 1); MODULE_DEPEND(vnicpf, pci, 1, 1, 1); MODULE_DEPEND(vnicpf, ether, 1, 1, 1); MODULE_DEPEND(vnicpf, thunder_bgx, 1, 1, 1); static int nicpf_alloc_res(struct nicpf *); static void nicpf_free_res(struct nicpf *); static void nic_set_lmac_vf_mapping(struct nicpf *); static void nic_init_hw(struct nicpf *); static int nic_sriov_init(device_t, struct nicpf *); static void nic_poll_for_link(void *); static int nic_register_interrupts(struct nicpf *); static void nic_unregister_interrupts(struct nicpf *); /* * Device interface */ static int nicpf_probe(device_t dev) { uint16_t vendor_id; uint16_t device_id; vendor_id = pci_get_vendor(dev); device_id = pci_get_device(dev); if (vendor_id == PCI_VENDOR_ID_CAVIUM && device_id == PCI_DEVICE_ID_THUNDER_NIC_PF) { device_set_desc(dev, VNIC_PF_DEVSTR); return (BUS_PROBE_DEFAULT); } return (ENXIO); } static int nicpf_attach(device_t dev) { struct nicpf *nic; int err; nic = device_get_softc(dev); nic->dev = dev; /* Enable bus mastering */ pci_enable_busmaster(dev); /* Allocate PCI resources */ err = nicpf_alloc_res(nic); if (err != 0) { device_printf(dev, "Could not allocate PCI resources\n"); return (err); } nic->node = nic_get_node_id(nic->reg_base); /* Enable Traffic Network Switch (TNS) bypass mode by default */ nic->flags &= ~NIC_TNS_ENABLED; nic_set_lmac_vf_mapping(nic); /* Initialize hardware */ nic_init_hw(nic); /* Set RSS TBL size for each VF */ nic->rss_ind_tbl_size = NIC_MAX_RSS_IDR_TBL_SIZE; /* Setup interrupts */ err = nic_register_interrupts(nic); if (err != 0) goto err_free_res; /* Configure SRIOV */ err = nic_sriov_init(dev, nic); if (err != 0) goto err_free_intr; if (nic->flags & NIC_TNS_ENABLED) return (0); mtx_init(&nic->check_link_mtx, "VNIC PF link poll", NULL, MTX_DEF); /* Register physical link status poll callout */ callout_init_mtx(&nic->check_link, &nic->check_link_mtx, 0); mtx_lock(&nic->check_link_mtx); nic_poll_for_link(nic); mtx_unlock(&nic->check_link_mtx); return (0); err_free_intr: nic_unregister_interrupts(nic); err_free_res: nicpf_free_res(nic); pci_disable_busmaster(dev); return (err); } static int nicpf_detach(device_t dev) { struct nicpf *nic; + int err; + err = 0; nic = device_get_softc(dev); callout_drain(&nic->check_link); mtx_destroy(&nic->check_link_mtx); nic_unregister_interrupts(nic); nicpf_free_res(nic); pci_disable_busmaster(dev); - return (0); +#ifdef PCI_IOV + err = pci_iov_detach(dev); + if (err != 0) + device_printf(dev, "SR-IOV in use. Detach first.\n"); +#endif + return (err); } /* * SR-IOV interface */ #ifdef PCI_IOV static int nicpf_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *params) { struct nicpf *nic; nic = device_get_softc(dev); if (num_vfs == 0) return (ENXIO); nic->flags |= NIC_SRIOV_ENABLED; return (0); } static void nicpf_iov_uninit(device_t dev) { /* ARM64TODO: Implement this function */ } static int nicpf_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *params) { const void *mac; struct nicpf *nic; size_t size; int bgx, lmac; nic = device_get_softc(dev); if ((nic->flags & NIC_SRIOV_ENABLED) == 0) return (ENXIO); if (vfnum > (nic->num_vf_en - 1)) return (EINVAL); if (nvlist_exists_binary(params, "mac-addr") != 0) { mac = nvlist_get_binary(params, "mac-addr", &size); bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vfnum]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vfnum]); bgx_set_lmac_mac(nic->node, bgx, lmac, mac); } return (0); } #endif /* * Helper routines */ static int nicpf_alloc_res(struct nicpf *nic) { device_t dev; int rid; dev = nic->dev; rid = VNIC_PF_REG_RID; nic->reg_base = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (nic->reg_base == NULL) { /* For verbose output print some more details */ if (bootverbose) { device_printf(dev, "Could not allocate registers memory\n"); } return (ENXIO); } return (0); } static void nicpf_free_res(struct nicpf *nic) { device_t dev; dev = nic->dev; if (nic->reg_base != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(nic->reg_base), nic->reg_base); } } /* Register read/write APIs */ static __inline void nic_reg_write(struct nicpf *nic, bus_space_handle_t offset, uint64_t val) { bus_write_8(nic->reg_base, offset, val); } static __inline uint64_t nic_reg_read(struct nicpf *nic, uint64_t offset) { uint64_t val; val = bus_read_8(nic->reg_base, offset); return (val); } /* PF -> VF mailbox communication APIs */ static void nic_enable_mbx_intr(struct nicpf *nic) { /* Enable mailbox interrupt for all 128 VFs */ nic_reg_write(nic, NIC_PF_MAILBOX_ENA_W1S, ~0UL); nic_reg_write(nic, NIC_PF_MAILBOX_ENA_W1S + sizeof(uint64_t), ~0UL); } static void nic_clear_mbx_intr(struct nicpf *nic, int vf, int mbx_reg) { nic_reg_write(nic, NIC_PF_MAILBOX_INT + (mbx_reg << 3), (1UL << vf)); } static uint64_t nic_get_mbx_addr(int vf) { return (NIC_PF_VF_0_127_MAILBOX_0_1 + (vf << NIC_VF_NUM_SHIFT)); } /* * Send a mailbox message to VF * @vf: vf to which this message to be sent * @mbx: Message to be sent */ static void nic_send_msg_to_vf(struct nicpf *nic, int vf, union nic_mbx *mbx) { bus_space_handle_t mbx_addr = nic_get_mbx_addr(vf); uint64_t *msg = (uint64_t *)mbx; /* * In first revision HW, mbox interrupt is triggerred * when PF writes to MBOX(1), in next revisions when * PF writes to MBOX(0) */ if (pass1_silicon(nic->dev)) { nic_reg_write(nic, mbx_addr + 0, msg[0]); nic_reg_write(nic, mbx_addr + 8, msg[1]); } else { nic_reg_write(nic, mbx_addr + 8, msg[1]); nic_reg_write(nic, mbx_addr + 0, msg[0]); } } /* * Responds to VF's READY message with VF's * ID, node, MAC address e.t.c * @vf: VF which sent READY message */ static void nic_mbx_send_ready(struct nicpf *nic, int vf) { union nic_mbx mbx = {}; int bgx_idx, lmac; const char *mac; mbx.nic_cfg.msg = NIC_MBOX_MSG_READY; mbx.nic_cfg.vf_id = vf; if (nic->flags & NIC_TNS_ENABLED) mbx.nic_cfg.tns_mode = NIC_TNS_MODE; else mbx.nic_cfg.tns_mode = NIC_TNS_BYPASS_MODE; if (vf < MAX_LMAC) { bgx_idx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); mac = bgx_get_lmac_mac(nic->node, bgx_idx, lmac); if (mac) { memcpy((uint8_t *)&mbx.nic_cfg.mac_addr, mac, ETHER_ADDR_LEN); } } mbx.nic_cfg.node_id = nic->node; mbx.nic_cfg.loopback_supported = vf < MAX_LMAC; nic_send_msg_to_vf(nic, vf, &mbx); } /* * ACKs VF's mailbox message * @vf: VF to which ACK to be sent */ static void nic_mbx_send_ack(struct nicpf *nic, int vf) { union nic_mbx mbx = {}; mbx.msg.msg = NIC_MBOX_MSG_ACK; nic_send_msg_to_vf(nic, vf, &mbx); } /* * NACKs VF's mailbox message that PF is not able to * complete the action * @vf: VF to which ACK to be sent */ static void nic_mbx_send_nack(struct nicpf *nic, int vf) { union nic_mbx mbx = {}; mbx.msg.msg = NIC_MBOX_MSG_NACK; nic_send_msg_to_vf(nic, vf, &mbx); } /* * Flush all in flight receive packets to memory and * bring down an active RQ */ static int nic_rcv_queue_sw_sync(struct nicpf *nic) { uint16_t timeout = ~0x00; nic_reg_write(nic, NIC_PF_SW_SYNC_RX, 0x01); /* Wait till sync cycle is finished */ while (timeout) { if (nic_reg_read(nic, NIC_PF_SW_SYNC_RX_DONE) & 0x1) break; timeout--; } nic_reg_write(nic, NIC_PF_SW_SYNC_RX, 0x00); if (!timeout) { device_printf(nic->dev, "Receive queue software sync failed\n"); return (ETIMEDOUT); } return (0); } /* Get BGX Rx/Tx stats and respond to VF's request */ static void nic_get_bgx_stats(struct nicpf *nic, struct bgx_stats_msg *bgx) { int bgx_idx, lmac; union nic_mbx mbx = {}; bgx_idx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[bgx->vf_id]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[bgx->vf_id]); mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS; mbx.bgx_stats.vf_id = bgx->vf_id; mbx.bgx_stats.rx = bgx->rx; mbx.bgx_stats.idx = bgx->idx; if (bgx->rx != 0) { mbx.bgx_stats.stats = bgx_get_rx_stats(nic->node, bgx_idx, lmac, bgx->idx); } else { mbx.bgx_stats.stats = bgx_get_tx_stats(nic->node, bgx_idx, lmac, bgx->idx); } nic_send_msg_to_vf(nic, bgx->vf_id, &mbx); } /* Update hardware min/max frame size */ static int nic_update_hw_frs(struct nicpf *nic, int new_frs, int vf) { if ((new_frs > NIC_HW_MAX_FRS) || (new_frs < NIC_HW_MIN_FRS)) { device_printf(nic->dev, "Invalid MTU setting from VF%d rejected, " "should be between %d and %d\n", vf, NIC_HW_MIN_FRS, NIC_HW_MAX_FRS); return (EINVAL); } new_frs += ETHER_HDR_LEN; if (new_frs <= nic->pkind.maxlen) return (0); nic->pkind.maxlen = new_frs; nic_reg_write(nic, NIC_PF_PKIND_0_15_CFG, *(uint64_t *)&nic->pkind); return (0); } /* Set minimum transmit packet size */ static void nic_set_tx_pkt_pad(struct nicpf *nic, int size) { int lmac; uint64_t lmac_cfg; /* Max value that can be set is 60 */ if (size > 60) size = 60; for (lmac = 0; lmac < (MAX_BGX_PER_CN88XX * MAX_LMAC_PER_BGX); lmac++) { lmac_cfg = nic_reg_read(nic, NIC_PF_LMAC_0_7_CFG | (lmac << 3)); lmac_cfg &= ~(0xF << 2); lmac_cfg |= ((size / 4) << 2); nic_reg_write(nic, NIC_PF_LMAC_0_7_CFG | (lmac << 3), lmac_cfg); } } /* * Function to check number of LMACs present and set VF::LMAC mapping. * Mapping will be used while initializing channels. */ static void nic_set_lmac_vf_mapping(struct nicpf *nic) { unsigned bgx_map = bgx_get_map(nic->node); int bgx, next_bgx_lmac = 0; int lmac, lmac_cnt = 0; uint64_t lmac_credit; nic->num_vf_en = 0; if (nic->flags & NIC_TNS_ENABLED) { nic->num_vf_en = DEFAULT_NUM_VF_ENABLED; return; } for (bgx = 0; bgx < NIC_MAX_BGX; bgx++) { if ((bgx_map & (1 << bgx)) == 0) continue; lmac_cnt = bgx_get_lmac_count(nic->node, bgx); for (lmac = 0; lmac < lmac_cnt; lmac++) nic->vf_lmac_map[next_bgx_lmac++] = NIC_SET_VF_LMAC_MAP(bgx, lmac); nic->num_vf_en += lmac_cnt; /* Program LMAC credits */ lmac_credit = (1UL << 1); /* channel credit enable */ lmac_credit |= (0x1ff << 2); /* Max outstanding pkt count */ /* 48KB BGX Tx buffer size, each unit is of size 16bytes */ lmac_credit |= (((((48 * 1024) / lmac_cnt) - NIC_HW_MAX_FRS) / 16) << 12); lmac = bgx * MAX_LMAC_PER_BGX; for (; lmac < lmac_cnt + (bgx * MAX_LMAC_PER_BGX); lmac++) { nic_reg_write(nic, NIC_PF_LMAC_0_7_CREDIT + (lmac * 8), lmac_credit); } } } #define TNS_PORT0_BLOCK 6 #define TNS_PORT1_BLOCK 7 #define BGX0_BLOCK 8 #define BGX1_BLOCK 9 static void nic_init_hw(struct nicpf *nic) { int i; /* Enable NIC HW block */ nic_reg_write(nic, NIC_PF_CFG, 0x3); /* Enable backpressure */ nic_reg_write(nic, NIC_PF_BP_CFG, (1UL << 6) | 0x03); if (nic->flags & NIC_TNS_ENABLED) { nic_reg_write(nic, NIC_PF_INTF_0_1_SEND_CFG, (NIC_TNS_MODE << 7) | TNS_PORT0_BLOCK); nic_reg_write(nic, NIC_PF_INTF_0_1_SEND_CFG | (1 << 8), (NIC_TNS_MODE << 7) | TNS_PORT1_BLOCK); nic_reg_write(nic, NIC_PF_INTF_0_1_BP_CFG, (1UL << 63) | TNS_PORT0_BLOCK); nic_reg_write(nic, NIC_PF_INTF_0_1_BP_CFG + (1 << 8), (1UL << 63) | TNS_PORT1_BLOCK); } else { /* Disable TNS mode on both interfaces */ nic_reg_write(nic, NIC_PF_INTF_0_1_SEND_CFG, (NIC_TNS_BYPASS_MODE << 7) | BGX0_BLOCK); nic_reg_write(nic, NIC_PF_INTF_0_1_SEND_CFG | (1 << 8), (NIC_TNS_BYPASS_MODE << 7) | BGX1_BLOCK); nic_reg_write(nic, NIC_PF_INTF_0_1_BP_CFG, (1UL << 63) | BGX0_BLOCK); nic_reg_write(nic, NIC_PF_INTF_0_1_BP_CFG + (1 << 8), (1UL << 63) | BGX1_BLOCK); } /* PKIND configuration */ nic->pkind.minlen = 0; nic->pkind.maxlen = NIC_HW_MAX_FRS + ETHER_HDR_LEN; nic->pkind.lenerr_en = 1; nic->pkind.rx_hdr = 0; nic->pkind.hdr_sl = 0; for (i = 0; i < NIC_MAX_PKIND; i++) { nic_reg_write(nic, NIC_PF_PKIND_0_15_CFG | (i << 3), *(uint64_t *)&nic->pkind); } nic_set_tx_pkt_pad(nic, NIC_HW_MIN_FRS); /* Timer config */ nic_reg_write(nic, NIC_PF_INTR_TIMER_CFG, NICPF_CLK_PER_INT_TICK); /* Enable VLAN ethertype matching and stripping */ nic_reg_write(nic, NIC_PF_RX_ETYPE_0_7, (2 << 19) | (ETYPE_ALG_VLAN_STRIP << 16) | ETHERTYPE_VLAN); } /* Channel parse index configuration */ static void nic_config_cpi(struct nicpf *nic, struct cpi_cfg_msg *cfg) { uint32_t vnic, bgx, lmac, chan; uint32_t padd, cpi_count = 0; uint64_t cpi_base, cpi, rssi_base, rssi; uint8_t qset, rq_idx = 0; vnic = cfg->vf_id; bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vnic]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vnic]); chan = (lmac * MAX_BGX_CHANS_PER_LMAC) + (bgx * NIC_CHANS_PER_INF); cpi_base = (lmac * NIC_MAX_CPI_PER_LMAC) + (bgx * NIC_CPI_PER_BGX); rssi_base = (lmac * nic->rss_ind_tbl_size) + (bgx * NIC_RSSI_PER_BGX); /* Rx channel configuration */ nic_reg_write(nic, NIC_PF_CHAN_0_255_RX_BP_CFG | (chan << 3), (1UL << 63) | (vnic << 0)); nic_reg_write(nic, NIC_PF_CHAN_0_255_RX_CFG | (chan << 3), ((uint64_t)cfg->cpi_alg << 62) | (cpi_base << 48)); if (cfg->cpi_alg == CPI_ALG_NONE) cpi_count = 1; else if (cfg->cpi_alg == CPI_ALG_VLAN) /* 3 bits of PCP */ cpi_count = 8; else if (cfg->cpi_alg == CPI_ALG_VLAN16) /* 3 bits PCP + DEI */ cpi_count = 16; else if (cfg->cpi_alg == CPI_ALG_DIFF) /* 6bits DSCP */ cpi_count = NIC_MAX_CPI_PER_LMAC; /* RSS Qset, Qidx mapping */ qset = cfg->vf_id; rssi = rssi_base; for (; rssi < (rssi_base + cfg->rq_cnt); rssi++) { nic_reg_write(nic, NIC_PF_RSSI_0_4097_RQ | (rssi << 3), (qset << 3) | rq_idx); rq_idx++; } rssi = 0; cpi = cpi_base; for (; cpi < (cpi_base + cpi_count); cpi++) { /* Determine port to channel adder */ if (cfg->cpi_alg != CPI_ALG_DIFF) padd = cpi % cpi_count; else padd = cpi % 8; /* 3 bits CS out of 6bits DSCP */ /* Leave RSS_SIZE as '0' to disable RSS */ if (pass1_silicon(nic->dev)) { nic_reg_write(nic, NIC_PF_CPI_0_2047_CFG | (cpi << 3), (vnic << 24) | (padd << 16) | (rssi_base + rssi)); } else { /* Set MPI_ALG to '0' to disable MCAM parsing */ nic_reg_write(nic, NIC_PF_CPI_0_2047_CFG | (cpi << 3), (padd << 16)); /* MPI index is same as CPI if MPI_ALG is not enabled */ nic_reg_write(nic, NIC_PF_MPI_0_2047_CFG | (cpi << 3), (vnic << 24) | (rssi_base + rssi)); } if ((rssi + 1) >= cfg->rq_cnt) continue; if (cfg->cpi_alg == CPI_ALG_VLAN) rssi++; else if (cfg->cpi_alg == CPI_ALG_VLAN16) rssi = ((cpi - cpi_base) & 0xe) >> 1; else if (cfg->cpi_alg == CPI_ALG_DIFF) rssi = ((cpi - cpi_base) & 0x38) >> 3; } nic->cpi_base[cfg->vf_id] = cpi_base; nic->rssi_base[cfg->vf_id] = rssi_base; } /* Responsds to VF with its RSS indirection table size */ static void nic_send_rss_size(struct nicpf *nic, int vf) { union nic_mbx mbx = {}; uint64_t *msg; msg = (uint64_t *)&mbx; mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE; mbx.rss_size.ind_tbl_size = nic->rss_ind_tbl_size; nic_send_msg_to_vf(nic, vf, &mbx); } /* * Receive side scaling configuration * configure: * - RSS index * - indir table i.e hash::RQ mapping * - no of hash bits to consider */ static void nic_config_rss(struct nicpf *nic, struct rss_cfg_msg *cfg) { uint8_t qset, idx; uint64_t cpi_cfg, cpi_base, rssi_base, rssi; uint64_t idx_addr; idx = 0; rssi_base = nic->rssi_base[cfg->vf_id] + cfg->tbl_offset; rssi = rssi_base; qset = cfg->vf_id; for (; rssi < (rssi_base + cfg->tbl_len); rssi++) { nic_reg_write(nic, NIC_PF_RSSI_0_4097_RQ | (rssi << 3), (qset << 3) | (cfg->ind_tbl[idx] & 0x7)); idx++; } cpi_base = nic->cpi_base[cfg->vf_id]; if (pass1_silicon(nic->dev)) idx_addr = NIC_PF_CPI_0_2047_CFG; else idx_addr = NIC_PF_MPI_0_2047_CFG; cpi_cfg = nic_reg_read(nic, idx_addr | (cpi_base << 3)); cpi_cfg &= ~(0xFUL << 20); cpi_cfg |= (cfg->hash_bits << 20); nic_reg_write(nic, idx_addr | (cpi_base << 3), cpi_cfg); } /* * 4 level transmit side scheduler configutation * for TNS bypass mode * * Sample configuration for SQ0 * VNIC0-SQ0 -> TL4(0) -> TL3[0] -> TL2[0] -> TL1[0] -> BGX0 * VNIC1-SQ0 -> TL4(8) -> TL3[2] -> TL2[0] -> TL1[0] -> BGX0 * VNIC2-SQ0 -> TL4(16) -> TL3[4] -> TL2[1] -> TL1[0] -> BGX0 * VNIC3-SQ0 -> TL4(24) -> TL3[6] -> TL2[1] -> TL1[0] -> BGX0 * VNIC4-SQ0 -> TL4(512) -> TL3[128] -> TL2[32] -> TL1[1] -> BGX1 * VNIC5-SQ0 -> TL4(520) -> TL3[130] -> TL2[32] -> TL1[1] -> BGX1 * VNIC6-SQ0 -> TL4(528) -> TL3[132] -> TL2[33] -> TL1[1] -> BGX1 * VNIC7-SQ0 -> TL4(536) -> TL3[134] -> TL2[33] -> TL1[1] -> BGX1 */ static void nic_tx_channel_cfg(struct nicpf *nic, uint8_t vnic, struct sq_cfg_msg *sq) { uint32_t bgx, lmac, chan; uint32_t tl2, tl3, tl4; uint32_t rr_quantum; uint8_t sq_idx = sq->sq_num; uint8_t pqs_vnic; pqs_vnic = vnic; bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[pqs_vnic]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[pqs_vnic]); /* 24 bytes for FCS, IPG and preamble */ rr_quantum = ((NIC_HW_MAX_FRS + 24) / 4); tl4 = (lmac * NIC_TL4_PER_LMAC) + (bgx * NIC_TL4_PER_BGX); tl4 += sq_idx; tl3 = tl4 / (NIC_MAX_TL4 / NIC_MAX_TL3); nic_reg_write(nic, NIC_PF_QSET_0_127_SQ_0_7_CFG2 | ((uint64_t)vnic << NIC_QS_ID_SHIFT) | ((uint32_t)sq_idx << NIC_Q_NUM_SHIFT), tl4); nic_reg_write(nic, NIC_PF_TL4_0_1023_CFG | (tl4 << 3), ((uint64_t)vnic << 27) | ((uint32_t)sq_idx << 24) | rr_quantum); nic_reg_write(nic, NIC_PF_TL3_0_255_CFG | (tl3 << 3), rr_quantum); chan = (lmac * MAX_BGX_CHANS_PER_LMAC) + (bgx * NIC_CHANS_PER_INF); nic_reg_write(nic, NIC_PF_TL3_0_255_CHAN | (tl3 << 3), chan); /* Enable backpressure on the channel */ nic_reg_write(nic, NIC_PF_CHAN_0_255_TX_CFG | (chan << 3), 1); tl2 = tl3 >> 2; nic_reg_write(nic, NIC_PF_TL3A_0_63_CFG | (tl2 << 3), tl2); nic_reg_write(nic, NIC_PF_TL2_0_63_CFG | (tl2 << 3), rr_quantum); /* No priorities as of now */ nic_reg_write(nic, NIC_PF_TL2_0_63_PRI | (tl2 << 3), 0x00); } static int nic_config_loopback(struct nicpf *nic, struct set_loopback *lbk) { int bgx_idx, lmac_idx; if (lbk->vf_id > MAX_LMAC) return (ENXIO); bgx_idx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[lbk->vf_id]); lmac_idx = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[lbk->vf_id]); bgx_lmac_internal_loopback(nic->node, bgx_idx, lmac_idx, lbk->enable); return (0); } /* Interrupt handler to handle mailbox messages from VFs */ static void nic_handle_mbx_intr(struct nicpf *nic, int vf) { union nic_mbx mbx = {}; uint64_t *mbx_data; uint64_t mbx_addr; uint64_t reg_addr; uint64_t cfg; int bgx, lmac; int i; int ret = 0; nic->mbx_lock[vf] = TRUE; mbx_addr = nic_get_mbx_addr(vf); mbx_data = (uint64_t *)&mbx; for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) { *mbx_data = nic_reg_read(nic, mbx_addr); mbx_data++; mbx_addr += sizeof(uint64_t); } switch (mbx.msg.msg) { case NIC_MBOX_MSG_READY: nic_mbx_send_ready(nic, vf); if (vf < MAX_LMAC) { nic->link[vf] = 0; nic->duplex[vf] = 0; nic->speed[vf] = 0; } ret = 1; break; case NIC_MBOX_MSG_QS_CFG: reg_addr = NIC_PF_QSET_0_127_CFG | (mbx.qs.num << NIC_QS_ID_SHIFT); cfg = mbx.qs.cfg; nic_reg_write(nic, reg_addr, cfg); break; case NIC_MBOX_MSG_RQ_CFG: reg_addr = NIC_PF_QSET_0_127_RQ_0_7_CFG | (mbx.rq.qs_num << NIC_QS_ID_SHIFT) | (mbx.rq.rq_num << NIC_Q_NUM_SHIFT); nic_reg_write(nic, reg_addr, mbx.rq.cfg); break; case NIC_MBOX_MSG_RQ_BP_CFG: reg_addr = NIC_PF_QSET_0_127_RQ_0_7_BP_CFG | (mbx.rq.qs_num << NIC_QS_ID_SHIFT) | (mbx.rq.rq_num << NIC_Q_NUM_SHIFT); nic_reg_write(nic, reg_addr, mbx.rq.cfg); break; case NIC_MBOX_MSG_RQ_SW_SYNC: ret = nic_rcv_queue_sw_sync(nic); break; case NIC_MBOX_MSG_RQ_DROP_CFG: reg_addr = NIC_PF_QSET_0_127_RQ_0_7_DROP_CFG | (mbx.rq.qs_num << NIC_QS_ID_SHIFT) | (mbx.rq.rq_num << NIC_Q_NUM_SHIFT); nic_reg_write(nic, reg_addr, mbx.rq.cfg); break; case NIC_MBOX_MSG_SQ_CFG: reg_addr = NIC_PF_QSET_0_127_SQ_0_7_CFG | (mbx.sq.qs_num << NIC_QS_ID_SHIFT) | (mbx.sq.sq_num << NIC_Q_NUM_SHIFT); nic_reg_write(nic, reg_addr, mbx.sq.cfg); nic_tx_channel_cfg(nic, mbx.qs.num, &mbx.sq); break; case NIC_MBOX_MSG_SET_MAC: lmac = mbx.mac.vf_id; bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[lmac]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[lmac]); bgx_set_lmac_mac(nic->node, bgx, lmac, mbx.mac.mac_addr); break; case NIC_MBOX_MSG_SET_MAX_FRS: ret = nic_update_hw_frs(nic, mbx.frs.max_frs, mbx.frs.vf_id); break; case NIC_MBOX_MSG_CPI_CFG: nic_config_cpi(nic, &mbx.cpi_cfg); break; case NIC_MBOX_MSG_RSS_SIZE: nic_send_rss_size(nic, vf); goto unlock; case NIC_MBOX_MSG_RSS_CFG: case NIC_MBOX_MSG_RSS_CFG_CONT: /* fall through */ nic_config_rss(nic, &mbx.rss_cfg); break; case NIC_MBOX_MSG_CFG_DONE: /* Last message of VF config msg sequence */ nic->vf_info[vf].vf_enabled = TRUE; goto unlock; case NIC_MBOX_MSG_SHUTDOWN: /* First msg in VF teardown sequence */ nic->vf_info[vf].vf_enabled = FALSE; break; case NIC_MBOX_MSG_BGX_STATS: nic_get_bgx_stats(nic, &mbx.bgx_stats); goto unlock; case NIC_MBOX_MSG_LOOPBACK: ret = nic_config_loopback(nic, &mbx.lbk); break; default: device_printf(nic->dev, "Invalid msg from VF%d, msg 0x%x\n", vf, mbx.msg.msg); break; } if (ret == 0) nic_mbx_send_ack(nic, vf); else if (mbx.msg.msg != NIC_MBOX_MSG_READY) nic_mbx_send_nack(nic, vf); unlock: nic->mbx_lock[vf] = FALSE; } static void nic_mbx_intr_handler(struct nicpf *nic, int mbx) { uint64_t intr; uint8_t vf, vf_per_mbx_reg = 64; intr = nic_reg_read(nic, NIC_PF_MAILBOX_INT + (mbx << 3)); for (vf = 0; vf < vf_per_mbx_reg; vf++) { if (intr & (1UL << vf)) { nic_handle_mbx_intr(nic, vf + (mbx * vf_per_mbx_reg)); nic_clear_mbx_intr(nic, vf, mbx); } } } static void nic_mbx0_intr_handler (void *arg) { struct nicpf *nic = (struct nicpf *)arg; nic_mbx_intr_handler(nic, 0); } static void nic_mbx1_intr_handler (void *arg) { struct nicpf *nic = (struct nicpf *)arg; nic_mbx_intr_handler(nic, 1); } static int nic_enable_msix(struct nicpf *nic) { struct pci_devinfo *dinfo; int rid, count; int ret; dinfo = device_get_ivars(nic->dev); rid = dinfo->cfg.msix.msix_table_bar; nic->msix_table_res = bus_alloc_resource_any(nic->dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (nic->msix_table_res == NULL) { device_printf(nic->dev, "Could not allocate memory for MSI-X table\n"); return (ENXIO); } count = nic->num_vec = NIC_PF_MSIX_VECTORS; ret = pci_alloc_msix(nic->dev, &count); if ((ret != 0) || (count != nic->num_vec)) { device_printf(nic->dev, "Request for #%d msix vectors failed, error: %d\n", nic->num_vec, ret); return (ret); } nic->msix_enabled = 1; return (0); } static void nic_disable_msix(struct nicpf *nic) { if (nic->msix_enabled) { pci_release_msi(nic->dev); nic->msix_enabled = 0; nic->num_vec = 0; } + + bus_release_resource(nic->dev, SYS_RES_MEMORY, + rman_get_rid(nic->msix_table_res), nic->msix_table_res); } static void nic_free_all_interrupts(struct nicpf *nic) { int irq; for (irq = 0; irq < nic->num_vec; irq++) { if (nic->msix_entries[irq].irq_res == NULL) continue; if (nic->msix_entries[irq].handle != NULL) { bus_teardown_intr(nic->dev, nic->msix_entries[irq].irq_res, nic->msix_entries[irq].handle); } - bus_release_resource(nic->dev, SYS_RES_IRQ, irq, + bus_release_resource(nic->dev, SYS_RES_IRQ, irq + 1, nic->msix_entries[irq].irq_res); } } static int nic_register_interrupts(struct nicpf *nic) { int irq, rid; int ret; /* Enable MSI-X */ ret = nic_enable_msix(nic); if (ret != 0) return (ret); /* Register mailbox interrupt handlers */ irq = NIC_PF_INTR_ID_MBOX0; rid = irq + 1; nic->msix_entries[irq].irq_res = bus_alloc_resource_any(nic->dev, SYS_RES_IRQ, &rid, (RF_SHAREABLE | RF_ACTIVE)); if (nic->msix_entries[irq].irq_res == NULL) { ret = ENXIO; goto fail; } ret = bus_setup_intr(nic->dev, nic->msix_entries[irq].irq_res, (INTR_MPSAFE | INTR_TYPE_MISC), NULL, nic_mbx0_intr_handler, nic, &nic->msix_entries[irq].handle); if (ret != 0) goto fail; irq = NIC_PF_INTR_ID_MBOX1; rid = irq + 1; nic->msix_entries[irq].irq_res = bus_alloc_resource_any(nic->dev, SYS_RES_IRQ, &rid, (RF_SHAREABLE | RF_ACTIVE)); if (nic->msix_entries[irq].irq_res == NULL) { ret = ENXIO; goto fail; } ret = bus_setup_intr(nic->dev, nic->msix_entries[irq].irq_res, (INTR_MPSAFE | INTR_TYPE_MISC), NULL, nic_mbx1_intr_handler, nic, &nic->msix_entries[irq].handle); if (ret != 0) goto fail; /* Enable mailbox interrupt */ nic_enable_mbx_intr(nic); return (0); fail: nic_free_all_interrupts(nic); return (ret); } static void nic_unregister_interrupts(struct nicpf *nic) { nic_free_all_interrupts(nic); nic_disable_msix(nic); } static int nic_sriov_init(device_t dev, struct nicpf *nic) { #ifdef PCI_IOV nvlist_t *pf_schema, *vf_schema; int iov_pos; int err; uint16_t total_vf_cnt; err = pci_find_extcap(dev, PCIZ_SRIOV, &iov_pos); if (err != 0) { device_printf(dev, "SR-IOV capability is not found in PCIe config space\n"); return (err); } /* Fix-up the number of enabled VFs */ total_vf_cnt = pci_read_config(dev, iov_pos + PCIR_SRIOV_TOTAL_VFS, 2); if (total_vf_cnt == 0) return (ENXIO); /* Attach SR-IOV */ pf_schema = pci_iov_schema_alloc_node(); vf_schema = pci_iov_schema_alloc_node(); pci_iov_schema_add_unicast_mac(vf_schema, "mac-addr", 0, NULL); /* * All VFs can change their MACs. * This flag will be ignored but we set it just for the record. */ pci_iov_schema_add_bool(vf_schema, "allow-set-mac", IOV_SCHEMA_HASDEFAULT, TRUE); err = pci_iov_attach(dev, pf_schema, vf_schema); if (err != 0) { device_printf(dev, "Failed to initialize SR-IOV (error=%d)\n", err); return (err); } #endif return (0); } /* * Poll for BGX LMAC link status and update corresponding VF * if there is a change, valid only if internal L2 switch * is not present otherwise VF link is always treated as up */ static void nic_poll_for_link(void *arg) { union nic_mbx mbx = {}; struct nicpf *nic; struct bgx_link_status link; uint8_t vf, bgx, lmac; nic = (struct nicpf *)arg; mbx.link_status.msg = NIC_MBOX_MSG_BGX_LINK_CHANGE; for (vf = 0; vf < nic->num_vf_en; vf++) { /* Poll only if VF is UP */ if (!nic->vf_info[vf].vf_enabled) continue; /* Get BGX, LMAC indices for the VF */ bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); /* Get interface link status */ bgx_get_lmac_link_state(nic->node, bgx, lmac, &link); /* Inform VF only if link status changed */ if (nic->link[vf] == link.link_up) continue; if (!nic->mbx_lock[vf]) { nic->link[vf] = link.link_up; nic->duplex[vf] = link.duplex; nic->speed[vf] = link.speed; /* Send a mbox message to VF with current link status */ mbx.link_status.link_up = link.link_up; mbx.link_status.duplex = link.duplex; mbx.link_status.speed = link.speed; nic_send_msg_to_vf(nic, vf, &mbx); } } callout_reset(&nic->check_link, hz * 2, nic_poll_for_link, nic); } Index: head/sys/dev/vnic/thunder_bgx.c =================================================================== --- head/sys/dev/vnic/thunder_bgx.c (revision 300294) +++ head/sys/dev/vnic/thunder_bgx.c (revision 300295) @@ -1,1136 +1,1146 @@ /* * Copyright (C) 2015 Cavium Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ * */ #include "opt_platform.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "thunder_bgx.h" #include "thunder_bgx_var.h" #include "nic_reg.h" #include "nic.h" #include "lmac_if.h" #define THUNDER_BGX_DEVSTR "ThunderX BGX Ethernet I/O Interface" MALLOC_DEFINE(M_BGX, "thunder_bgx", "ThunderX BGX dynamic memory"); #define BGX_NODE_ID_MASK 0x1 #define BGX_NODE_ID_SHIFT 24 #define DRV_NAME "thunder-BGX" #define DRV_VERSION "1.0" static int bgx_init_phy(struct bgx *); static struct bgx *bgx_vnic[MAX_BGX_THUNDER]; static int lmac_count __unused; /* Total no of LMACs in system */ static int bgx_xaui_check_link(struct lmac *lmac); static void bgx_get_qlm_mode(struct bgx *); static void bgx_init_hw(struct bgx *); static int bgx_lmac_enable(struct bgx *, uint8_t); static void bgx_lmac_disable(struct bgx *, uint8_t); static int thunder_bgx_probe(device_t); static int thunder_bgx_attach(device_t); static int thunder_bgx_detach(device_t); static device_method_t thunder_bgx_methods[] = { /* Device interface */ DEVMETHOD(device_probe, thunder_bgx_probe), DEVMETHOD(device_attach, thunder_bgx_attach), DEVMETHOD(device_detach, thunder_bgx_detach), DEVMETHOD_END, }; static driver_t thunder_bgx_driver = { "bgx", thunder_bgx_methods, sizeof(struct lmac), }; static devclass_t thunder_bgx_devclass; DRIVER_MODULE(thunder_bgx, pci, thunder_bgx_driver, thunder_bgx_devclass, 0, 0); MODULE_VERSION(thunder_bgx, 1); MODULE_DEPEND(thunder_bgx, pci, 1, 1, 1); MODULE_DEPEND(thunder_bgx, ether, 1, 1, 1); MODULE_DEPEND(thunder_bgx, thunder_mdio, 1, 1, 1); static int thunder_bgx_probe(device_t dev) { uint16_t vendor_id; uint16_t device_id; vendor_id = pci_get_vendor(dev); device_id = pci_get_device(dev); if (vendor_id == PCI_VENDOR_ID_CAVIUM && device_id == PCI_DEVICE_ID_THUNDER_BGX) { device_set_desc(dev, THUNDER_BGX_DEVSTR); return (BUS_PROBE_DEFAULT); } return (ENXIO); } static int thunder_bgx_attach(device_t dev) { struct bgx *bgx; - uint8_t lmac; + uint8_t lmacid; int err; int rid; + struct lmac *lmac; bgx = malloc(sizeof(*bgx), M_BGX, (M_WAITOK | M_ZERO)); bgx->dev = dev; + + lmac = device_get_softc(dev); + lmac->bgx = bgx; /* Enable bus mastering */ pci_enable_busmaster(dev); /* Allocate resources - configuration registers */ rid = PCIR_BAR(PCI_CFG_REG_BAR_NUM); bgx->reg_base = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (bgx->reg_base == NULL) { device_printf(dev, "Could not allocate CSR memory space\n"); err = ENXIO; goto err_disable_device; } bgx->bgx_id = (rman_get_start(bgx->reg_base) >> BGX_NODE_ID_SHIFT) & BGX_NODE_ID_MASK; bgx->bgx_id += nic_get_node_id(bgx->reg_base) * MAX_BGX_PER_CN88XX; bgx_vnic[bgx->bgx_id] = bgx; bgx_get_qlm_mode(bgx); err = bgx_init_phy(bgx); if (err != 0) goto err_free_res; bgx_init_hw(bgx); /* Enable all LMACs */ - for (lmac = 0; lmac < bgx->lmac_count; lmac++) { - err = bgx_lmac_enable(bgx, lmac); + for (lmacid = 0; lmacid < bgx->lmac_count; lmacid++) { + err = bgx_lmac_enable(bgx, lmacid); if (err) { device_printf(dev, "BGX%d failed to enable lmac%d\n", - bgx->bgx_id, lmac); + bgx->bgx_id, lmacid); goto err_free_res; } } return (0); err_free_res: bgx_vnic[bgx->bgx_id] = NULL; bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(bgx->reg_base), bgx->reg_base); err_disable_device: free(bgx, M_BGX); pci_disable_busmaster(dev); return (err); } static int thunder_bgx_detach(device_t dev) { struct lmac *lmac; struct bgx *bgx; uint8_t lmacid; lmac = device_get_softc(dev); bgx = lmac->bgx; /* Disable all LMACs */ for (lmacid = 0; lmacid < bgx->lmac_count; lmacid++) bgx_lmac_disable(bgx, lmacid); + + bgx_vnic[bgx->bgx_id] = NULL; + bus_release_resource(dev, SYS_RES_MEMORY, + rman_get_rid(bgx->reg_base), bgx->reg_base); + free(bgx, M_BGX); + pci_disable_busmaster(dev); return (0); } /* Register read/write APIs */ static uint64_t bgx_reg_read(struct bgx *bgx, uint8_t lmac, uint64_t offset) { bus_space_handle_t addr; addr = ((uint32_t)lmac << 20) + offset; return (bus_read_8(bgx->reg_base, addr)); } static void bgx_reg_write(struct bgx *bgx, uint8_t lmac, uint64_t offset, uint64_t val) { bus_space_handle_t addr; addr = ((uint32_t)lmac << 20) + offset; bus_write_8(bgx->reg_base, addr, val); } static void bgx_reg_modify(struct bgx *bgx, uint8_t lmac, uint64_t offset, uint64_t val) { bus_space_handle_t addr; addr = ((uint32_t)lmac << 20) + offset; bus_write_8(bgx->reg_base, addr, val | bus_read_8(bgx->reg_base, addr)); } static int bgx_poll_reg(struct bgx *bgx, uint8_t lmac, uint64_t reg, uint64_t mask, boolean_t zero) { int timeout = 10; uint64_t reg_val; while (timeout) { reg_val = bgx_reg_read(bgx, lmac, reg); if (zero && !(reg_val & mask)) return (0); if (!zero && (reg_val & mask)) return (0); DELAY(100); timeout--; } return (ETIMEDOUT); } /* Return number of BGX present in HW */ u_int bgx_get_map(int node) { int i; u_int map = 0; for (i = 0; i < MAX_BGX_PER_CN88XX; i++) { if (bgx_vnic[(node * MAX_BGX_PER_CN88XX) + i]) map |= (1 << i); } return (map); } /* Return number of LMAC configured for this BGX */ int bgx_get_lmac_count(int node, int bgx_idx) { struct bgx *bgx; bgx = bgx_vnic[(node * MAX_BGX_PER_CN88XX) + bgx_idx]; if (bgx != NULL) return (bgx->lmac_count); return (0); } /* Returns the current link status of LMAC */ void bgx_get_lmac_link_state(int node, int bgx_idx, int lmacid, void *status) { struct bgx_link_status *link = (struct bgx_link_status *)status; struct bgx *bgx; struct lmac *lmac; bgx = bgx_vnic[(node * MAX_BGX_PER_CN88XX) + bgx_idx]; if (bgx == NULL) return; lmac = &bgx->lmac[lmacid]; link->link_up = lmac->link_up; link->duplex = lmac->last_duplex; link->speed = lmac->last_speed; } const uint8_t *bgx_get_lmac_mac(int node, int bgx_idx, int lmacid) { struct bgx *bgx = bgx_vnic[(node * MAX_BGX_PER_CN88XX) + bgx_idx]; if (bgx != NULL) return (bgx->lmac[lmacid].mac); return (NULL); } void bgx_set_lmac_mac(int node, int bgx_idx, int lmacid, const uint8_t *mac) { struct bgx *bgx = bgx_vnic[(node * MAX_BGX_PER_CN88XX) + bgx_idx]; if (bgx == NULL) return; memcpy(bgx->lmac[lmacid].mac, mac, ETHER_ADDR_LEN); } static void bgx_sgmii_change_link_state(struct lmac *lmac) { struct bgx *bgx = lmac->bgx; uint64_t cmr_cfg; uint64_t port_cfg = 0; uint64_t misc_ctl = 0; cmr_cfg = bgx_reg_read(bgx, lmac->lmacid, BGX_CMRX_CFG); cmr_cfg &= ~CMR_EN; bgx_reg_write(bgx, lmac->lmacid, BGX_CMRX_CFG, cmr_cfg); port_cfg = bgx_reg_read(bgx, lmac->lmacid, BGX_GMP_GMI_PRTX_CFG); misc_ctl = bgx_reg_read(bgx, lmac->lmacid, BGX_GMP_PCS_MISCX_CTL); if (lmac->link_up) { misc_ctl &= ~PCS_MISC_CTL_GMX_ENO; port_cfg &= ~GMI_PORT_CFG_DUPLEX; port_cfg |= (lmac->last_duplex << 2); } else { misc_ctl |= PCS_MISC_CTL_GMX_ENO; } switch (lmac->last_speed) { case 10: port_cfg &= ~GMI_PORT_CFG_SPEED; /* speed 0 */ port_cfg |= GMI_PORT_CFG_SPEED_MSB; /* speed_msb 1 */ port_cfg &= ~GMI_PORT_CFG_SLOT_TIME; /* slottime 0 */ misc_ctl &= ~PCS_MISC_CTL_SAMP_PT_MASK; misc_ctl |= 50; /* samp_pt */ bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_SLOT, 64); bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_BURST, 0); break; case 100: port_cfg &= ~GMI_PORT_CFG_SPEED; /* speed 0 */ port_cfg &= ~GMI_PORT_CFG_SPEED_MSB; /* speed_msb 0 */ port_cfg &= ~GMI_PORT_CFG_SLOT_TIME; /* slottime 0 */ misc_ctl &= ~PCS_MISC_CTL_SAMP_PT_MASK; misc_ctl |= 5; /* samp_pt */ bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_SLOT, 64); bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_BURST, 0); break; case 1000: port_cfg |= GMI_PORT_CFG_SPEED; /* speed 1 */ port_cfg &= ~GMI_PORT_CFG_SPEED_MSB; /* speed_msb 0 */ port_cfg |= GMI_PORT_CFG_SLOT_TIME; /* slottime 1 */ misc_ctl &= ~PCS_MISC_CTL_SAMP_PT_MASK; misc_ctl |= 1; /* samp_pt */ bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_SLOT, 512); if (lmac->last_duplex) bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_BURST, 0); else bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_BURST, 8192); break; default: break; } bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_PCS_MISCX_CTL, misc_ctl); bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_PRTX_CFG, port_cfg); port_cfg = bgx_reg_read(bgx, lmac->lmacid, BGX_GMP_GMI_PRTX_CFG); /* renable lmac */ cmr_cfg |= CMR_EN; bgx_reg_write(bgx, lmac->lmacid, BGX_CMRX_CFG, cmr_cfg); } static void bgx_lmac_handler(void *arg) { struct lmac *lmac; int link, duplex, speed; int link_changed = 0; int err; lmac = (struct lmac *)arg; err = LMAC_MEDIA_STATUS(lmac->phy_if_dev, lmac->lmacid, &link, &duplex, &speed); if (err != 0) goto out; if (!link && lmac->last_link) link_changed = -1; if (link && (lmac->last_duplex != duplex || lmac->last_link != link || lmac->last_speed != speed)) { link_changed = 1; } lmac->last_link = link; lmac->last_speed = speed; lmac->last_duplex = duplex; if (!link_changed) goto out; if (link_changed > 0) lmac->link_up = true; else lmac->link_up = false; if (lmac->is_sgmii) bgx_sgmii_change_link_state(lmac); else bgx_xaui_check_link(lmac); out: callout_reset(&lmac->check_link, hz * 2, bgx_lmac_handler, lmac); } uint64_t bgx_get_rx_stats(int node, int bgx_idx, int lmac, int idx) { struct bgx *bgx; bgx = bgx_vnic[(node * MAX_BGX_PER_CN88XX) + bgx_idx]; if (bgx == NULL) return (0); if (idx > 8) lmac = (0); return (bgx_reg_read(bgx, lmac, BGX_CMRX_RX_STAT0 + (idx * 8))); } uint64_t bgx_get_tx_stats(int node, int bgx_idx, int lmac, int idx) { struct bgx *bgx; bgx = bgx_vnic[(node * MAX_BGX_PER_CN88XX) + bgx_idx]; if (bgx == NULL) return (0); return (bgx_reg_read(bgx, lmac, BGX_CMRX_TX_STAT0 + (idx * 8))); } static void bgx_flush_dmac_addrs(struct bgx *bgx, int lmac) { uint64_t offset; while (bgx->lmac[lmac].dmac > 0) { offset = ((bgx->lmac[lmac].dmac - 1) * sizeof(uint64_t)) + (lmac * MAX_DMAC_PER_LMAC * sizeof(uint64_t)); bgx_reg_write(bgx, 0, BGX_CMR_RX_DMACX_CAM + offset, 0); bgx->lmac[lmac].dmac--; } } void bgx_add_dmac_addr(uint64_t dmac, int node, int bgx_idx, int lmac) { uint64_t offset; struct bgx *bgx; #ifdef BGX_IN_PROMISCUOUS_MODE return; #endif bgx_idx += node * MAX_BGX_PER_CN88XX; bgx = bgx_vnic[bgx_idx]; if (!bgx) { device_printf(bgx->dev, "BGX%d not yet initialized, ignoring DMAC addition\n", bgx_idx); return; } dmac = dmac | (1UL << 48) | ((uint64_t)lmac << 49); /* Enable DMAC */ if (bgx->lmac[lmac].dmac == MAX_DMAC_PER_LMAC) { device_printf(bgx->dev, "Max DMAC filters for LMAC%d reached, ignoring\n", lmac); return; } if (bgx->lmac[lmac].dmac == MAX_DMAC_PER_LMAC_TNS_BYPASS_MODE) bgx->lmac[lmac].dmac = 1; offset = (bgx->lmac[lmac].dmac * sizeof(uint64_t)) + (lmac * MAX_DMAC_PER_LMAC * sizeof(uint64_t)); bgx_reg_write(bgx, 0, BGX_CMR_RX_DMACX_CAM + offset, dmac); bgx->lmac[lmac].dmac++; bgx_reg_write(bgx, lmac, BGX_CMRX_RX_DMAC_CTL, (CAM_ACCEPT << 3) | (MCAST_MODE_CAM_FILTER << 1) | (BCAST_ACCEPT << 0)); } /* Configure BGX LMAC in internal loopback mode */ void bgx_lmac_internal_loopback(int node, int bgx_idx, int lmac_idx, boolean_t enable) { struct bgx *bgx; struct lmac *lmac; uint64_t cfg; bgx = bgx_vnic[(node * MAX_BGX_PER_CN88XX) + bgx_idx]; if (bgx == NULL) return; lmac = &bgx->lmac[lmac_idx]; if (lmac->is_sgmii) { cfg = bgx_reg_read(bgx, lmac_idx, BGX_GMP_PCS_MRX_CTL); if (enable) cfg |= PCS_MRX_CTL_LOOPBACK1; else cfg &= ~PCS_MRX_CTL_LOOPBACK1; bgx_reg_write(bgx, lmac_idx, BGX_GMP_PCS_MRX_CTL, cfg); } else { cfg = bgx_reg_read(bgx, lmac_idx, BGX_SPUX_CONTROL1); if (enable) cfg |= SPU_CTL_LOOPBACK; else cfg &= ~SPU_CTL_LOOPBACK; bgx_reg_write(bgx, lmac_idx, BGX_SPUX_CONTROL1, cfg); } } static int bgx_lmac_sgmii_init(struct bgx *bgx, int lmacid) { uint64_t cfg; bgx_reg_modify(bgx, lmacid, BGX_GMP_GMI_TXX_THRESH, 0x30); /* max packet size */ bgx_reg_modify(bgx, lmacid, BGX_GMP_GMI_RXX_JABBER, MAX_FRAME_SIZE); /* Disable frame alignment if using preamble */ cfg = bgx_reg_read(bgx, lmacid, BGX_GMP_GMI_TXX_APPEND); if (cfg & 1) bgx_reg_write(bgx, lmacid, BGX_GMP_GMI_TXX_SGMII_CTL, 0); /* Enable lmac */ bgx_reg_modify(bgx, lmacid, BGX_CMRX_CFG, CMR_EN); /* PCS reset */ bgx_reg_modify(bgx, lmacid, BGX_GMP_PCS_MRX_CTL, PCS_MRX_CTL_RESET); if (bgx_poll_reg(bgx, lmacid, BGX_GMP_PCS_MRX_CTL, PCS_MRX_CTL_RESET, TRUE) != 0) { device_printf(bgx->dev, "BGX PCS reset not completed\n"); return (ENXIO); } /* power down, reset autoneg, autoneg enable */ cfg = bgx_reg_read(bgx, lmacid, BGX_GMP_PCS_MRX_CTL); cfg &= ~PCS_MRX_CTL_PWR_DN; cfg |= (PCS_MRX_CTL_RST_AN | PCS_MRX_CTL_AN_EN); bgx_reg_write(bgx, lmacid, BGX_GMP_PCS_MRX_CTL, cfg); if (bgx_poll_reg(bgx, lmacid, BGX_GMP_PCS_MRX_STATUS, PCS_MRX_STATUS_AN_CPT, FALSE) != 0) { device_printf(bgx->dev, "BGX AN_CPT not completed\n"); return (ENXIO); } return (0); } static int bgx_lmac_xaui_init(struct bgx *bgx, int lmacid, int lmac_type) { uint64_t cfg; /* Reset SPU */ bgx_reg_modify(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_RESET); if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_RESET, TRUE) != 0) { device_printf(bgx->dev, "BGX SPU reset not completed\n"); return (ENXIO); } /* Disable LMAC */ cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG); cfg &= ~CMR_EN; bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cfg); bgx_reg_modify(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_LOW_POWER); /* Set interleaved running disparity for RXAUI */ if (bgx->lmac_type != BGX_MODE_RXAUI) { bgx_reg_modify(bgx, lmacid, BGX_SPUX_MISC_CONTROL, SPU_MISC_CTL_RX_DIS); } else { bgx_reg_modify(bgx, lmacid, BGX_SPUX_MISC_CONTROL, SPU_MISC_CTL_RX_DIS | SPU_MISC_CTL_INTLV_RDISP); } /* clear all interrupts */ cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_RX_INT); bgx_reg_write(bgx, lmacid, BGX_SMUX_RX_INT, cfg); cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_TX_INT); bgx_reg_write(bgx, lmacid, BGX_SMUX_TX_INT, cfg); cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_INT); bgx_reg_write(bgx, lmacid, BGX_SPUX_INT, cfg); if (bgx->use_training) { bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_LP_CUP, 0x00); bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_LD_CUP, 0x00); bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_LD_REP, 0x00); /* training enable */ bgx_reg_modify(bgx, lmacid, BGX_SPUX_BR_PMD_CRTL, SPU_PMD_CRTL_TRAIN_EN); } /* Append FCS to each packet */ bgx_reg_modify(bgx, lmacid, BGX_SMUX_TX_APPEND, SMU_TX_APPEND_FCS_D); /* Disable forward error correction */ cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_FEC_CONTROL); cfg &= ~SPU_FEC_CTL_FEC_EN; bgx_reg_write(bgx, lmacid, BGX_SPUX_FEC_CONTROL, cfg); /* Disable autoneg */ cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_AN_CONTROL); cfg = cfg & ~(SPU_AN_CTL_AN_EN | SPU_AN_CTL_XNP_EN); bgx_reg_write(bgx, lmacid, BGX_SPUX_AN_CONTROL, cfg); cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_AN_ADV); if (bgx->lmac_type == BGX_MODE_10G_KR) cfg |= (1 << 23); else if (bgx->lmac_type == BGX_MODE_40G_KR) cfg |= (1 << 24); else cfg &= ~((1 << 23) | (1 << 24)); cfg = cfg & (~((1UL << 25) | (1UL << 22) | (1UL << 12))); bgx_reg_write(bgx, lmacid, BGX_SPUX_AN_ADV, cfg); cfg = bgx_reg_read(bgx, 0, BGX_SPU_DBG_CONTROL); cfg &= ~SPU_DBG_CTL_AN_ARB_LINK_CHK_EN; bgx_reg_write(bgx, 0, BGX_SPU_DBG_CONTROL, cfg); /* Enable lmac */ bgx_reg_modify(bgx, lmacid, BGX_CMRX_CFG, CMR_EN); cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_CONTROL1); cfg &= ~SPU_CTL_LOW_POWER; bgx_reg_write(bgx, lmacid, BGX_SPUX_CONTROL1, cfg); cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_TX_CTL); cfg &= ~SMU_TX_CTL_UNI_EN; cfg |= SMU_TX_CTL_DIC_EN; bgx_reg_write(bgx, lmacid, BGX_SMUX_TX_CTL, cfg); /* take lmac_count into account */ bgx_reg_modify(bgx, lmacid, BGX_SMUX_TX_THRESH, (0x100 - 1)); /* max packet size */ bgx_reg_modify(bgx, lmacid, BGX_SMUX_RX_JABBER, MAX_FRAME_SIZE); return (0); } static int bgx_xaui_check_link(struct lmac *lmac) { struct bgx *bgx = lmac->bgx; int lmacid = lmac->lmacid; int lmac_type = bgx->lmac_type; uint64_t cfg; bgx_reg_modify(bgx, lmacid, BGX_SPUX_MISC_CONTROL, SPU_MISC_CTL_RX_DIS); if (bgx->use_training) { cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_INT); if ((cfg & (1UL << 13)) == 0) { cfg = (1UL << 13) | (1UL << 14); bgx_reg_write(bgx, lmacid, BGX_SPUX_INT, cfg); cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_BR_PMD_CRTL); cfg |= (1UL << 0); bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_CRTL, cfg); return (ENXIO); } } /* wait for PCS to come out of reset */ if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_RESET, TRUE) != 0) { device_printf(bgx->dev, "BGX SPU reset not completed\n"); return (ENXIO); } if ((lmac_type == BGX_MODE_10G_KR) || (lmac_type == BGX_MODE_XFI) || (lmac_type == BGX_MODE_40G_KR) || (lmac_type == BGX_MODE_XLAUI)) { if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_BR_STATUS1, SPU_BR_STATUS_BLK_LOCK, FALSE)) { device_printf(bgx->dev, "SPU_BR_STATUS_BLK_LOCK not completed\n"); return (ENXIO); } } else { if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_BX_STATUS, SPU_BX_STATUS_RX_ALIGN, FALSE) != 0) { device_printf(bgx->dev, "SPU_BX_STATUS_RX_ALIGN not completed\n"); return (ENXIO); } } /* Clear rcvflt bit (latching high) and read it back */ bgx_reg_modify(bgx, lmacid, BGX_SPUX_STATUS2, SPU_STATUS2_RCVFLT); if (bgx_reg_read(bgx, lmacid, BGX_SPUX_STATUS2) & SPU_STATUS2_RCVFLT) { device_printf(bgx->dev, "Receive fault, retry training\n"); if (bgx->use_training) { cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_INT); if ((cfg & (1UL << 13)) == 0) { cfg = (1UL << 13) | (1UL << 14); bgx_reg_write(bgx, lmacid, BGX_SPUX_INT, cfg); cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_BR_PMD_CRTL); cfg |= (1UL << 0); bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_CRTL, cfg); return (ENXIO); } } return (ENXIO); } /* Wait for MAC RX to be ready */ if (bgx_poll_reg(bgx, lmacid, BGX_SMUX_RX_CTL, SMU_RX_CTL_STATUS, TRUE) != 0) { device_printf(bgx->dev, "SMU RX link not okay\n"); return (ENXIO); } /* Wait for BGX RX to be idle */ if (bgx_poll_reg(bgx, lmacid, BGX_SMUX_CTL, SMU_CTL_RX_IDLE, FALSE) != 0) { device_printf(bgx->dev, "SMU RX not idle\n"); return (ENXIO); } /* Wait for BGX TX to be idle */ if (bgx_poll_reg(bgx, lmacid, BGX_SMUX_CTL, SMU_CTL_TX_IDLE, FALSE) != 0) { device_printf(bgx->dev, "SMU TX not idle\n"); return (ENXIO); } if ((bgx_reg_read(bgx, lmacid, BGX_SPUX_STATUS2) & SPU_STATUS2_RCVFLT) != 0) { device_printf(bgx->dev, "Receive fault\n"); return (ENXIO); } /* Receive link is latching low. Force it high and verify it */ bgx_reg_modify(bgx, lmacid, BGX_SPUX_STATUS1, SPU_STATUS1_RCV_LNK); if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_STATUS1, SPU_STATUS1_RCV_LNK, FALSE) != 0) { device_printf(bgx->dev, "SPU receive link down\n"); return (ENXIO); } cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_MISC_CONTROL); cfg &= ~SPU_MISC_CTL_RX_DIS; bgx_reg_write(bgx, lmacid, BGX_SPUX_MISC_CONTROL, cfg); return (0); } static void bgx_poll_for_link(void *arg) { struct lmac *lmac; uint64_t link; lmac = (struct lmac *)arg; /* Receive link is latching low. Force it high and verify it */ bgx_reg_modify(lmac->bgx, lmac->lmacid, BGX_SPUX_STATUS1, SPU_STATUS1_RCV_LNK); bgx_poll_reg(lmac->bgx, lmac->lmacid, BGX_SPUX_STATUS1, SPU_STATUS1_RCV_LNK, false); link = bgx_reg_read(lmac->bgx, lmac->lmacid, BGX_SPUX_STATUS1); if (link & SPU_STATUS1_RCV_LNK) { lmac->link_up = 1; if (lmac->bgx->lmac_type == BGX_MODE_XLAUI) lmac->last_speed = 40000; else lmac->last_speed = 10000; lmac->last_duplex = 1; } else { lmac->link_up = 0; } if (lmac->last_link != lmac->link_up) { lmac->last_link = lmac->link_up; if (lmac->link_up) bgx_xaui_check_link(lmac); } callout_reset(&lmac->check_link, hz * 2, bgx_poll_for_link, lmac); } static int bgx_lmac_enable(struct bgx *bgx, uint8_t lmacid) { uint64_t __unused dmac_bcast = (1UL << 48) - 1; struct lmac *lmac; uint64_t cfg; lmac = &bgx->lmac[lmacid]; lmac->bgx = bgx; if (bgx->lmac_type == BGX_MODE_SGMII) { lmac->is_sgmii = 1; if (bgx_lmac_sgmii_init(bgx, lmacid) != 0) return -1; } else { lmac->is_sgmii = 0; if (bgx_lmac_xaui_init(bgx, lmacid, bgx->lmac_type)) return -1; } if (lmac->is_sgmii) { cfg = bgx_reg_read(bgx, lmacid, BGX_GMP_GMI_TXX_APPEND); cfg |= ((1UL << 2) | (1UL << 1)); /* FCS and PAD */ bgx_reg_modify(bgx, lmacid, BGX_GMP_GMI_TXX_APPEND, cfg); bgx_reg_write(bgx, lmacid, BGX_GMP_GMI_TXX_MIN_PKT, 60 - 1); } else { cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_TX_APPEND); cfg |= ((1UL << 2) | (1UL << 1)); /* FCS and PAD */ bgx_reg_modify(bgx, lmacid, BGX_SMUX_TX_APPEND, cfg); bgx_reg_write(bgx, lmacid, BGX_SMUX_TX_MIN_PKT, 60 + 4); } /* Enable lmac */ bgx_reg_modify(bgx, lmacid, BGX_CMRX_CFG, CMR_EN | CMR_PKT_RX_EN | CMR_PKT_TX_EN); /* Restore default cfg, incase low level firmware changed it */ bgx_reg_write(bgx, lmacid, BGX_CMRX_RX_DMAC_CTL, 0x03); /* Add broadcast MAC into all LMAC's DMAC filters */ bgx_add_dmac_addr(dmac_bcast, 0, bgx->bgx_id, lmacid); if ((bgx->lmac_type != BGX_MODE_XFI) && (bgx->lmac_type != BGX_MODE_XAUI) && (bgx->lmac_type != BGX_MODE_XLAUI) && (bgx->lmac_type != BGX_MODE_40G_KR) && (bgx->lmac_type != BGX_MODE_10G_KR)) { if (lmac->phy_if_dev == NULL) { device_printf(bgx->dev, "LMAC%d missing interface to PHY\n", lmacid); return (ENXIO); } if (LMAC_PHY_CONNECT(lmac->phy_if_dev, lmac->phyaddr, lmacid) != 0) { device_printf(bgx->dev, "LMAC%d could not connect to PHY\n", lmacid); return (ENXIO); } mtx_init(&lmac->check_link_mtx, "BGX link poll", NULL, MTX_DEF); callout_init_mtx(&lmac->check_link, &lmac->check_link_mtx, 0); mtx_lock(&lmac->check_link_mtx); bgx_lmac_handler(lmac); mtx_unlock(&lmac->check_link_mtx); } else { mtx_init(&lmac->check_link_mtx, "BGX link poll", NULL, MTX_DEF); callout_init_mtx(&lmac->check_link, &lmac->check_link_mtx, 0); mtx_lock(&lmac->check_link_mtx); bgx_poll_for_link(lmac); mtx_unlock(&lmac->check_link_mtx); } return (0); } static void bgx_lmac_disable(struct bgx *bgx, uint8_t lmacid) { struct lmac *lmac; uint64_t cmrx_cfg; lmac = &bgx->lmac[lmacid]; /* Stop callout */ callout_drain(&lmac->check_link); mtx_destroy(&lmac->check_link_mtx); cmrx_cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG); cmrx_cfg &= ~(1 << 15); bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cmrx_cfg); bgx_flush_dmac_addrs(bgx, lmacid); if ((bgx->lmac_type != BGX_MODE_XFI) && (bgx->lmac_type != BGX_MODE_XLAUI) && (bgx->lmac_type != BGX_MODE_40G_KR) && (bgx->lmac_type != BGX_MODE_10G_KR)) { if (lmac->phy_if_dev == NULL) { device_printf(bgx->dev, "LMAC%d missing interface to PHY\n", lmacid); return; } if (LMAC_PHY_DISCONNECT(lmac->phy_if_dev, lmac->phyaddr, lmacid) != 0) { device_printf(bgx->dev, "LMAC%d could not disconnect PHY\n", lmacid); return; } lmac->phy_if_dev = NULL; } } static void bgx_set_num_ports(struct bgx *bgx) { uint64_t lmac_count; switch (bgx->qlm_mode) { case QLM_MODE_SGMII: bgx->lmac_count = 4; bgx->lmac_type = BGX_MODE_SGMII; bgx->lane_to_sds = 0; break; case QLM_MODE_XAUI_1X4: bgx->lmac_count = 1; bgx->lmac_type = BGX_MODE_XAUI; bgx->lane_to_sds = 0xE4; break; case QLM_MODE_RXAUI_2X2: bgx->lmac_count = 2; bgx->lmac_type = BGX_MODE_RXAUI; bgx->lane_to_sds = 0xE4; break; case QLM_MODE_XFI_4X1: bgx->lmac_count = 4; bgx->lmac_type = BGX_MODE_XFI; bgx->lane_to_sds = 0; break; case QLM_MODE_XLAUI_1X4: bgx->lmac_count = 1; bgx->lmac_type = BGX_MODE_XLAUI; bgx->lane_to_sds = 0xE4; break; case QLM_MODE_10G_KR_4X1: bgx->lmac_count = 4; bgx->lmac_type = BGX_MODE_10G_KR; bgx->lane_to_sds = 0; bgx->use_training = 1; break; case QLM_MODE_40G_KR4_1X4: bgx->lmac_count = 1; bgx->lmac_type = BGX_MODE_40G_KR; bgx->lane_to_sds = 0xE4; bgx->use_training = 1; break; default: bgx->lmac_count = 0; break; } /* * Check if low level firmware has programmed LMAC count * based on board type, if yes consider that otherwise * the default static values */ lmac_count = bgx_reg_read(bgx, 0, BGX_CMR_RX_LMACS) & 0x7; if (lmac_count != 4) bgx->lmac_count = lmac_count; } static void bgx_init_hw(struct bgx *bgx) { int i; bgx_set_num_ports(bgx); bgx_reg_modify(bgx, 0, BGX_CMR_GLOBAL_CFG, CMR_GLOBAL_CFG_FCS_STRIP); if (bgx_reg_read(bgx, 0, BGX_CMR_BIST_STATUS)) device_printf(bgx->dev, "BGX%d BIST failed\n", bgx->bgx_id); /* Set lmac type and lane2serdes mapping */ for (i = 0; i < bgx->lmac_count; i++) { if (bgx->lmac_type == BGX_MODE_RXAUI) { if (i) bgx->lane_to_sds = 0x0e; else bgx->lane_to_sds = 0x04; bgx_reg_write(bgx, i, BGX_CMRX_CFG, (bgx->lmac_type << 8) | bgx->lane_to_sds); continue; } bgx_reg_write(bgx, i, BGX_CMRX_CFG, (bgx->lmac_type << 8) | (bgx->lane_to_sds + i)); bgx->lmac[i].lmacid_bd = lmac_count; lmac_count++; } bgx_reg_write(bgx, 0, BGX_CMR_TX_LMACS, bgx->lmac_count); bgx_reg_write(bgx, 0, BGX_CMR_RX_LMACS, bgx->lmac_count); /* Set the backpressure AND mask */ for (i = 0; i < bgx->lmac_count; i++) { bgx_reg_modify(bgx, 0, BGX_CMR_CHAN_MSK_AND, ((1UL << MAX_BGX_CHANS_PER_LMAC) - 1) << (i * MAX_BGX_CHANS_PER_LMAC)); } /* Disable all MAC filtering */ for (i = 0; i < RX_DMAC_COUNT; i++) bgx_reg_write(bgx, 0, BGX_CMR_RX_DMACX_CAM + (i * 8), 0x00); /* Disable MAC steering (NCSI traffic) */ for (i = 0; i < RX_TRAFFIC_STEER_RULE_COUNT; i++) bgx_reg_write(bgx, 0, BGX_CMR_RX_STREERING + (i * 8), 0x00); } static void bgx_get_qlm_mode(struct bgx *bgx) { device_t dev = bgx->dev;; int lmac_type; int train_en; /* Read LMAC0 type to figure out QLM mode * This is configured by low level firmware */ lmac_type = bgx_reg_read(bgx, 0, BGX_CMRX_CFG); lmac_type = (lmac_type >> 8) & 0x07; train_en = bgx_reg_read(bgx, 0, BGX_SPUX_BR_PMD_CRTL) & SPU_PMD_CRTL_TRAIN_EN; switch (lmac_type) { case BGX_MODE_SGMII: bgx->qlm_mode = QLM_MODE_SGMII; if (bootverbose) { device_printf(dev, "BGX%d QLM mode: SGMII\n", bgx->bgx_id); } break; case BGX_MODE_XAUI: bgx->qlm_mode = QLM_MODE_XAUI_1X4; if (bootverbose) { device_printf(dev, "BGX%d QLM mode: XAUI\n", bgx->bgx_id); } break; case BGX_MODE_RXAUI: bgx->qlm_mode = QLM_MODE_RXAUI_2X2; if (bootverbose) { device_printf(dev, "BGX%d QLM mode: RXAUI\n", bgx->bgx_id); } break; case BGX_MODE_XFI: if (!train_en) { bgx->qlm_mode = QLM_MODE_XFI_4X1; if (bootverbose) { device_printf(dev, "BGX%d QLM mode: XFI\n", bgx->bgx_id); } } else { bgx->qlm_mode = QLM_MODE_10G_KR_4X1; if (bootverbose) { device_printf(dev, "BGX%d QLM mode: 10G_KR\n", bgx->bgx_id); } } break; case BGX_MODE_XLAUI: if (!train_en) { bgx->qlm_mode = QLM_MODE_XLAUI_1X4; if (bootverbose) { device_printf(dev, "BGX%d QLM mode: XLAUI\n", bgx->bgx_id); } } else { bgx->qlm_mode = QLM_MODE_40G_KR4_1X4; if (bootverbose) { device_printf(dev, "BGX%d QLM mode: 40G_KR4\n", bgx->bgx_id); } } break; default: bgx->qlm_mode = QLM_MODE_SGMII; if (bootverbose) { device_printf(dev, "BGX%d QLM default mode: SGMII\n", bgx->bgx_id); } } } static int bgx_init_phy(struct bgx *bgx) { int err; /* By default we fail */ err = ENXIO; #ifdef FDT err = bgx_fdt_init_phy(bgx); #endif #ifdef ACPI if (err != 0) { /* ARM64TODO: Add ACPI function here */ } #endif return (err); }