Index: head/sys/dev/sfxge/common/ef10_ev.c =================================================================== --- head/sys/dev/sfxge/common/ef10_ev.c (revision 299924) +++ head/sys/dev/sfxge/common/ef10_ev.c (revision 299925) @@ -1,987 +1,987 @@ /*- * Copyright (c) 2012-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_MON_STATS #include "mcdi_mon.h" #endif #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD #if EFSYS_OPT_QSTATS #define EFX_EV_QSTAT_INCR(_eep, _stat) \ do { \ (_eep)->ee_stat[_stat]++; \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #else #define EFX_EV_QSTAT_INCR(_eep, _stat) #endif static __checkReturn boolean_t ef10_ev_rx( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static __checkReturn boolean_t ef10_ev_tx( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static __checkReturn boolean_t ef10_ev_driver( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static __checkReturn boolean_t ef10_ev_drv_gen( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static __checkReturn boolean_t ef10_ev_mcdi( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg); static __checkReturn efx_rc_t efx_mcdi_init_evq( __in efx_nic_t *enp, __in unsigned int instance, __in efsys_mem_t *esmp, __in size_t nevs, __in uint32_t irq) { efx_mcdi_req_t req; uint8_t payload[ MAX(MC_CMD_INIT_EVQ_IN_LEN(EFX_EVQ_NBUFS(EFX_EVQ_MAXNEVS)), MC_CMD_INIT_EVQ_OUT_LEN)]; efx_qword_t *dma_addr; uint64_t addr; int npages; int i; int supports_rx_batching; efx_rc_t rc; npages = EFX_EVQ_NBUFS(nevs); if (MC_CMD_INIT_EVQ_IN_LEN(npages) > MC_CMD_INIT_EVQ_IN_LENMAX) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_INIT_EVQ; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_INIT_EVQ_IN_LEN(npages); req.emr_out_buf = payload; req.emr_out_length = MC_CMD_INIT_EVQ_OUT_LEN; MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_SIZE, nevs); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_INSTANCE, instance); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_IRQ_NUM, irq); /* * On Huntington RX and TX event batching can only be requested * together (even if the datapath firmware doesn't actually support RX * batching). * Cut through is incompatible with RX batching and so enabling cut * through disables RX batching (but it does not affect TX batching). * * So always enable RX and TX event batching, and enable cut through * if RX event batching isn't supported (i.e. on low latency firmware). */ supports_rx_batching = enp->en_nic_cfg.enc_rx_batching_enabled ? 1 : 0; MCDI_IN_POPULATE_DWORD_6(req, INIT_EVQ_IN_FLAGS, INIT_EVQ_IN_FLAG_INTERRUPTING, 1, INIT_EVQ_IN_FLAG_RPTR_DOS, 0, INIT_EVQ_IN_FLAG_INT_ARMD, 0, INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_batching, INIT_EVQ_IN_FLAG_RX_MERGE, 1, INIT_EVQ_IN_FLAG_TX_MERGE, 1); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_MODE, MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_LOAD, 0); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_TMR_RELOAD, 0); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_COUNT_MODE, MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS); MCDI_IN_SET_DWORD(req, INIT_EVQ_IN_COUNT_THRSHLD, 0); dma_addr = MCDI_IN2(req, efx_qword_t, INIT_EVQ_IN_DMA_ADDR); addr = EFSYS_MEM_ADDR(esmp); for (i = 0; i < npages; i++) { EFX_POPULATE_QWORD_2(*dma_addr, EFX_DWORD_1, (uint32_t)(addr >> 32), EFX_DWORD_0, (uint32_t)(addr & 0xffffffff)); dma_addr++; addr += EFX_BUF_SIZE; } efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } if (req.emr_out_length_used < MC_CMD_INIT_EVQ_OUT_LEN) { rc = EMSGSIZE; goto fail3; } /* NOTE: ignore the returned IRQ param as firmware does not set it. */ return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_fini_evq( __in efx_nic_t *enp, __in uint32_t instance) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_FINI_EVQ_IN_LEN, MC_CMD_FINI_EVQ_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_FINI_EVQ; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_FINI_EVQ_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_FINI_EVQ_OUT_LEN; MCDI_IN_SET_DWORD(req, FINI_EVQ_IN_INSTANCE, instance); - efx_mcdi_execute(enp, &req); + efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_ev_init( __in efx_nic_t *enp) { _NOTE(ARGUNUSED(enp)) return (0); } void ef10_ev_fini( __in efx_nic_t *enp) { _NOTE(ARGUNUSED(enp)) } __checkReturn efx_rc_t ef10_ev_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in efx_evq_t *eep) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t irq; efx_rc_t rc; _NOTE(ARGUNUSED(id)) /* buftbl id managed by MC */ EFX_STATIC_ASSERT(ISP2(EFX_EVQ_MAXNEVS)); EFX_STATIC_ASSERT(ISP2(EFX_EVQ_MINNEVS)); if (!ISP2(n) || (n < EFX_EVQ_MINNEVS) || (n > EFX_EVQ_MAXNEVS)) { rc = EINVAL; goto fail1; } if (index >= encp->enc_evq_limit) { rc = EINVAL; goto fail2; } /* Set up the handler table */ eep->ee_rx = ef10_ev_rx; eep->ee_tx = ef10_ev_tx; eep->ee_driver = ef10_ev_driver; eep->ee_drv_gen = ef10_ev_drv_gen; eep->ee_mcdi = ef10_ev_mcdi; /* Set up the event queue */ irq = index; /* INIT_EVQ expects function-relative vector number */ if ((rc = efx_mcdi_init_evq(enp, index, esmp, n, irq)) != 0) goto fail3; return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_ev_qdestroy( __in efx_evq_t *eep) { efx_nic_t *enp = eep->ee_enp; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); (void) efx_mcdi_fini_evq(eep->ee_enp, eep->ee_index); } __checkReturn efx_rc_t ef10_ev_qprime( __in efx_evq_t *eep, __in unsigned int count) { efx_nic_t *enp = eep->ee_enp; uint32_t rptr; efx_dword_t dword; rptr = count & eep->ee_mask; if (enp->en_nic_cfg.enc_bug35388_workaround) { EFX_STATIC_ASSERT(EFX_EVQ_MINNEVS > (1 << ERF_DD_EVQ_IND_RPTR_WIDTH)); EFX_STATIC_ASSERT(EFX_EVQ_MAXNEVS < (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH)); EFX_POPULATE_DWORD_2(dword, ERF_DD_EVQ_IND_RPTR_FLAGS, EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH, ERF_DD_EVQ_IND_RPTR, (rptr >> ERF_DD_EVQ_IND_RPTR_WIDTH)); EFX_BAR_TBL_WRITED(enp, ER_DD_EVQ_INDIRECT, eep->ee_index, &dword, B_FALSE); EFX_POPULATE_DWORD_2(dword, ERF_DD_EVQ_IND_RPTR_FLAGS, EFE_DD_EVQ_IND_RPTR_FLAGS_LOW, ERF_DD_EVQ_IND_RPTR, rptr & ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1)); EFX_BAR_TBL_WRITED(enp, ER_DD_EVQ_INDIRECT, eep->ee_index, &dword, B_FALSE); } else { EFX_POPULATE_DWORD_1(dword, ERF_DZ_EVQ_RPTR, rptr); EFX_BAR_TBL_WRITED(enp, ER_DZ_EVQ_RPTR_REG, eep->ee_index, &dword, B_FALSE); } return (0); } static __checkReturn efx_rc_t efx_mcdi_driver_event( __in efx_nic_t *enp, __in uint32_t evq, __in efx_qword_t data) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_DRIVER_EVENT_IN_LEN, MC_CMD_DRIVER_EVENT_OUT_LEN)]; efx_rc_t rc; req.emr_cmd = MC_CMD_DRIVER_EVENT; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_DRIVER_EVENT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_DRIVER_EVENT_OUT_LEN; MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_EVQ, evq); MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_DATA_LO, EFX_QWORD_FIELD(data, EFX_DWORD_0)); MCDI_IN_SET_DWORD(req, DRIVER_EVENT_IN_DATA_HI, EFX_QWORD_FIELD(data, EFX_DWORD_1)); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_ev_qpost( __in efx_evq_t *eep, __in uint16_t data) { efx_nic_t *enp = eep->ee_enp; efx_qword_t event; EFX_POPULATE_QWORD_3(event, ESF_DZ_DRV_CODE, ESE_DZ_EV_CODE_DRV_GEN_EV, ESF_DZ_DRV_SUB_CODE, 0, ESF_DZ_DRV_SUB_DATA_DW0, (uint32_t)data); (void) efx_mcdi_driver_event(enp, eep->ee_index, event); } __checkReturn efx_rc_t ef10_ev_qmoderate( __in efx_evq_t *eep, __in unsigned int us) { efx_nic_t *enp = eep->ee_enp; efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_dword_t dword; uint32_t timer_val, mode; efx_rc_t rc; if (us > encp->enc_evq_timer_max_us) { rc = EINVAL; goto fail1; } /* If the value is zero then disable the timer */ if (us == 0) { timer_val = 0; mode = FFE_CZ_TIMER_MODE_DIS; } else { /* Calculate the timer value in quanta */ timer_val = us * 1000 / encp->enc_evq_timer_quantum_ns; /* Moderation value is base 0 so we need to deduct 1 */ if (timer_val > 0) timer_val--; mode = FFE_CZ_TIMER_MODE_INT_HLDOFF; } if (encp->enc_bug35388_workaround) { EFX_POPULATE_DWORD_3(dword, ERF_DD_EVQ_IND_TIMER_FLAGS, EFE_DD_EVQ_IND_TIMER_FLAGS, ERF_DD_EVQ_IND_TIMER_MODE, mode, ERF_DD_EVQ_IND_TIMER_VAL, timer_val); EFX_BAR_TBL_WRITED(enp, ER_DD_EVQ_INDIRECT, eep->ee_index, &dword, 0); } else { EFX_POPULATE_DWORD_2(dword, ERF_DZ_TC_TIMER_MODE, mode, ERF_DZ_TC_TIMER_VAL, timer_val); EFX_BAR_TBL_WRITED(enp, ER_DZ_EVQ_TMR_REG, eep->ee_index, &dword, 0); } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #if EFSYS_OPT_QSTATS void ef10_ev_qstats_update( __in efx_evq_t *eep, __inout_ecount(EV_NQSTATS) efsys_stat_t *stat) { unsigned int id; for (id = 0; id < EV_NQSTATS; id++) { efsys_stat_t *essp = &stat[id]; EFSYS_STAT_INCR(essp, eep->ee_stat[id]); eep->ee_stat[id] = 0; } } #endif /* EFSYS_OPT_QSTATS */ static __checkReturn boolean_t ef10_ev_rx( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { efx_nic_t *enp = eep->ee_enp; uint32_t size; uint32_t label; uint32_t mac_class; uint32_t eth_tag_class; uint32_t l3_class; uint32_t l4_class; uint32_t next_read_lbits; uint16_t flags; boolean_t cont; boolean_t should_abort; efx_evq_rxq_state_t *eersp; unsigned int desc_count; unsigned int last_used_id; EFX_EV_QSTAT_INCR(eep, EV_RX); /* Discard events after RXQ/TXQ errors */ if (enp->en_reset_flags & (EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR)) return (B_FALSE); /* Basic packet information */ size = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_BYTES); next_read_lbits = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_DSC_PTR_LBITS); label = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_QLABEL); eth_tag_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ETH_TAG_CLASS); mac_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_MAC_CLASS); l3_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_L3_CLASS); l4_class = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_L4_CLASS); cont = EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_CONT); if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_DROP_EVENT) != 0) { /* Drop this event */ return (B_FALSE); } flags = 0; if (cont != 0) { /* * This may be part of a scattered frame, or it may be a * truncated frame if scatter is disabled on this RXQ. * Overlength frames can be received if e.g. a VF is configured * for 1500 MTU but connected to a port set to 9000 MTU * (see bug56567). * FIXME: There is not yet any driver that supports scatter on * Huntington. Scatter support is required for OSX. */ flags |= EFX_PKT_CONT; } if (mac_class == ESE_DZ_MAC_CLASS_UCAST) flags |= EFX_PKT_UNICAST; /* Increment the count of descriptors read */ eersp = &eep->ee_rxq_state[label]; desc_count = (next_read_lbits - eersp->eers_rx_read_ptr) & EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS); eersp->eers_rx_read_ptr += desc_count; /* * FIXME: add error checking to make sure this a batched event. * This could also be an aborted scatter, see Bug36629. */ if (desc_count > 1) { EFX_EV_QSTAT_INCR(eep, EV_RX_BATCH); flags |= EFX_PKT_PREFIX_LEN; } /* Calculate the index of the the last descriptor consumed */ last_used_id = (eersp->eers_rx_read_ptr - 1) & eersp->eers_rx_mask; /* Check for errors that invalidate checksum and L3/L4 fields */ if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ECC_ERR) != 0) { /* RX frame truncated (error flag is misnamed) */ EFX_EV_QSTAT_INCR(eep, EV_RX_FRM_TRUNC); flags |= EFX_DISCARD; goto deliver; } if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_ECRC_ERR) != 0) { /* Bad Ethernet frame CRC */ EFX_EV_QSTAT_INCR(eep, EV_RX_ETH_CRC_ERR); flags |= EFX_DISCARD; goto deliver; } if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_PARSE_INCOMPLETE)) { /* * Hardware parse failed, due to malformed headers * or headers that are too long for the parser. * Headers and checksums must be validated by the host. */ // TODO: EFX_EV_QSTAT_INCR(eep, EV_RX_PARSE_INCOMPLETE); goto deliver; } if ((eth_tag_class == ESE_DZ_ETH_TAG_CLASS_VLAN1) || (eth_tag_class == ESE_DZ_ETH_TAG_CLASS_VLAN2)) { flags |= EFX_PKT_VLAN_TAGGED; } switch (l3_class) { case ESE_DZ_L3_CLASS_IP4: case ESE_DZ_L3_CLASS_IP4_FRAG: flags |= EFX_PKT_IPV4; if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_IPCKSUM_ERR)) { EFX_EV_QSTAT_INCR(eep, EV_RX_IPV4_HDR_CHKSUM_ERR); } else { flags |= EFX_CKSUM_IPV4; } if (l4_class == ESE_DZ_L4_CLASS_TCP) { EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_IPV4); flags |= EFX_PKT_TCP; } else if (l4_class == ESE_DZ_L4_CLASS_UDP) { EFX_EV_QSTAT_INCR(eep, EV_RX_UDP_IPV4); flags |= EFX_PKT_UDP; } else { EFX_EV_QSTAT_INCR(eep, EV_RX_OTHER_IPV4); } break; case ESE_DZ_L3_CLASS_IP6: case ESE_DZ_L3_CLASS_IP6_FRAG: flags |= EFX_PKT_IPV6; if (l4_class == ESE_DZ_L4_CLASS_TCP) { EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_IPV6); flags |= EFX_PKT_TCP; } else if (l4_class == ESE_DZ_L4_CLASS_UDP) { EFX_EV_QSTAT_INCR(eep, EV_RX_UDP_IPV6); flags |= EFX_PKT_UDP; } else { EFX_EV_QSTAT_INCR(eep, EV_RX_OTHER_IPV6); } break; default: EFX_EV_QSTAT_INCR(eep, EV_RX_NON_IP); break; } if (flags & (EFX_PKT_TCP | EFX_PKT_UDP)) { if (EFX_QWORD_FIELD(*eqp, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) { EFX_EV_QSTAT_INCR(eep, EV_RX_TCP_UDP_CHKSUM_ERR); } else { flags |= EFX_CKSUM_TCPUDP; } } deliver: /* If we're not discarding the packet then it is ok */ if (~flags & EFX_DISCARD) EFX_EV_QSTAT_INCR(eep, EV_RX_OK); EFSYS_ASSERT(eecp->eec_rx != NULL); should_abort = eecp->eec_rx(arg, label, last_used_id, size, flags); return (should_abort); } static __checkReturn boolean_t ef10_ev_tx( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { efx_nic_t *enp = eep->ee_enp; uint32_t id; uint32_t label; boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_TX); /* Discard events after RXQ/TXQ errors */ if (enp->en_reset_flags & (EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR)) return (B_FALSE); if (EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_DROP_EVENT) != 0) { /* Drop this event */ return (B_FALSE); } /* Per-packet TX completion (was per-descriptor for Falcon/Siena) */ id = EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_DESCR_INDX); label = EFX_QWORD_FIELD(*eqp, ESF_DZ_TX_QLABEL); EFSYS_PROBE2(tx_complete, uint32_t, label, uint32_t, id); EFSYS_ASSERT(eecp->eec_tx != NULL); should_abort = eecp->eec_tx(arg, label, id); return (should_abort); } static __checkReturn boolean_t ef10_ev_driver( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { unsigned int code; boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_DRIVER); should_abort = B_FALSE; code = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_SUB_CODE); switch (code) { case ESE_DZ_DRV_TIMER_EV: { uint32_t id; id = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_TMR_ID); EFSYS_ASSERT(eecp->eec_timer != NULL); should_abort = eecp->eec_timer(arg, id); break; } case ESE_DZ_DRV_WAKE_UP_EV: { uint32_t id; id = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_EVQ_ID); EFSYS_ASSERT(eecp->eec_wake_up != NULL); should_abort = eecp->eec_wake_up(arg, id); break; } case ESE_DZ_DRV_START_UP_EV: EFSYS_ASSERT(eecp->eec_initialized != NULL); should_abort = eecp->eec_initialized(arg); break; default: EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); break; } return (should_abort); } static __checkReturn boolean_t ef10_ev_drv_gen( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { uint32_t data; boolean_t should_abort; EFX_EV_QSTAT_INCR(eep, EV_DRV_GEN); should_abort = B_FALSE; data = EFX_QWORD_FIELD(*eqp, ESF_DZ_DRV_SUB_DATA_DW0); if (data >= ((uint32_t)1 << 16)) { EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); return (B_TRUE); } EFSYS_ASSERT(eecp->eec_software != NULL); should_abort = eecp->eec_software(arg, (uint16_t)data); return (should_abort); } static __checkReturn boolean_t ef10_ev_mcdi( __in efx_evq_t *eep, __in efx_qword_t *eqp, __in const efx_ev_callbacks_t *eecp, __in_opt void *arg) { efx_nic_t *enp = eep->ee_enp; unsigned code; boolean_t should_abort = B_FALSE; EFX_EV_QSTAT_INCR(eep, EV_MCDI_RESPONSE); code = EFX_QWORD_FIELD(*eqp, MCDI_EVENT_CODE); switch (code) { case MCDI_EVENT_CODE_BADSSERT: efx_mcdi_ev_death(enp, EINTR); break; case MCDI_EVENT_CODE_CMDDONE: efx_mcdi_ev_cpl(enp, MCDI_EV_FIELD(eqp, CMDDONE_SEQ), MCDI_EV_FIELD(eqp, CMDDONE_DATALEN), MCDI_EV_FIELD(eqp, CMDDONE_ERRNO)); break; #if EFSYS_OPT_MCDI_PROXY_AUTH case MCDI_EVENT_CODE_PROXY_RESPONSE: /* * This event notifies a function that an authorization request * has been processed. If the request was authorized then the * function can now re-send the original MCDI request. * See SF-113652-SW "SR-IOV Proxied Network Access Control". */ efx_mcdi_ev_proxy_response(enp, MCDI_EV_FIELD(eqp, PROXY_RESPONSE_HANDLE), MCDI_EV_FIELD(eqp, PROXY_RESPONSE_RC)); break; #endif /* EFSYS_OPT_MCDI_PROXY_AUTH */ case MCDI_EVENT_CODE_LINKCHANGE: { efx_link_mode_t link_mode; ef10_phy_link_ev(enp, eqp, &link_mode); should_abort = eecp->eec_link_change(arg, link_mode); break; } case MCDI_EVENT_CODE_SENSOREVT: { #if EFSYS_OPT_MON_STATS efx_mon_stat_t id; efx_mon_stat_value_t value; efx_rc_t rc; /* Decode monitor stat for MCDI sensor (if supported) */ if ((rc = mcdi_mon_ev(enp, eqp, &id, &value)) == 0) { /* Report monitor stat change */ should_abort = eecp->eec_monitor(arg, id, value); } else if (rc == ENOTSUP) { should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_UNKNOWN_SENSOREVT, MCDI_EV_FIELD(eqp, DATA)); } else { EFSYS_ASSERT(rc == ENODEV); /* Wrong port */ } #endif break; } case MCDI_EVENT_CODE_SCHEDERR: /* Informational only */ break; case MCDI_EVENT_CODE_REBOOT: /* Falcon/Siena only (should not been seen with Huntington). */ efx_mcdi_ev_death(enp, EIO); break; case MCDI_EVENT_CODE_MC_REBOOT: /* MC_REBOOT event is used for Huntington (EF10) and later. */ efx_mcdi_ev_death(enp, EIO); break; case MCDI_EVENT_CODE_MAC_STATS_DMA: #if EFSYS_OPT_MAC_STATS if (eecp->eec_mac_stats != NULL) { eecp->eec_mac_stats(arg, MCDI_EV_FIELD(eqp, MAC_STATS_DMA_GENERATION)); } #endif break; case MCDI_EVENT_CODE_FWALERT: { uint32_t reason = MCDI_EV_FIELD(eqp, FWALERT_REASON); if (reason == MCDI_EVENT_FWALERT_REASON_SRAM_ACCESS) should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_FWALERT_SRAM, MCDI_EV_FIELD(eqp, FWALERT_DATA)); else should_abort = eecp->eec_exception(arg, EFX_EXCEPTION_UNKNOWN_FWALERT, MCDI_EV_FIELD(eqp, DATA)); break; } case MCDI_EVENT_CODE_TX_ERR: { /* * After a TXQ error is detected, firmware sends a TX_ERR event. * This may be followed by TX completions (which we discard), * and then finally by a TX_FLUSH event. Firmware destroys the * TXQ automatically after sending the TX_FLUSH event. */ enp->en_reset_flags |= EFX_RESET_TXQ_ERR; EFSYS_PROBE2(tx_descq_err, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); /* Inform the driver that a reset is required. */ eecp->eec_exception(arg, EFX_EXCEPTION_TX_ERROR, MCDI_EV_FIELD(eqp, TX_ERR_DATA)); break; } case MCDI_EVENT_CODE_TX_FLUSH: { uint32_t txq_index = MCDI_EV_FIELD(eqp, TX_FLUSH_TXQ); /* * EF10 firmware sends two TX_FLUSH events: one to the txq's * event queue, and one to evq 0 (with TX_FLUSH_TO_DRIVER set). * We want to wait for all completions, so ignore the events * with TX_FLUSH_TO_DRIVER. */ if (MCDI_EV_FIELD(eqp, TX_FLUSH_TO_DRIVER) != 0) { should_abort = B_FALSE; break; } EFX_EV_QSTAT_INCR(eep, EV_DRIVER_TX_DESCQ_FLS_DONE); EFSYS_PROBE1(tx_descq_fls_done, uint32_t, txq_index); EFSYS_ASSERT(eecp->eec_txq_flush_done != NULL); should_abort = eecp->eec_txq_flush_done(arg, txq_index); break; } case MCDI_EVENT_CODE_RX_ERR: { /* * After an RXQ error is detected, firmware sends an RX_ERR * event. This may be followed by RX events (which we discard), * and then finally by an RX_FLUSH event. Firmware destroys the * RXQ automatically after sending the RX_FLUSH event. */ enp->en_reset_flags |= EFX_RESET_RXQ_ERR; EFSYS_PROBE2(rx_descq_err, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); /* Inform the driver that a reset is required. */ eecp->eec_exception(arg, EFX_EXCEPTION_RX_ERROR, MCDI_EV_FIELD(eqp, RX_ERR_DATA)); break; } case MCDI_EVENT_CODE_RX_FLUSH: { uint32_t rxq_index = MCDI_EV_FIELD(eqp, RX_FLUSH_RXQ); /* * EF10 firmware sends two RX_FLUSH events: one to the rxq's * event queue, and one to evq 0 (with RX_FLUSH_TO_DRIVER set). * We want to wait for all completions, so ignore the events * with RX_FLUSH_TO_DRIVER. */ if (MCDI_EV_FIELD(eqp, RX_FLUSH_TO_DRIVER) != 0) { should_abort = B_FALSE; break; } EFX_EV_QSTAT_INCR(eep, EV_DRIVER_RX_DESCQ_FLS_DONE); EFSYS_PROBE1(rx_descq_fls_done, uint32_t, rxq_index); EFSYS_ASSERT(eecp->eec_rxq_flush_done != NULL); should_abort = eecp->eec_rxq_flush_done(arg, rxq_index); break; } default: EFSYS_PROBE3(bad_event, unsigned int, eep->ee_index, uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_1), uint32_t, EFX_QWORD_FIELD(*eqp, EFX_DWORD_0)); break; } return (should_abort); } void ef10_ev_rxlabel_init( __in efx_evq_t *eep, __in efx_rxq_t *erp, __in unsigned int label) { efx_evq_rxq_state_t *eersp; EFSYS_ASSERT3U(label, <, EFX_ARRAY_SIZE(eep->ee_rxq_state)); eersp = &eep->ee_rxq_state[label]; EFSYS_ASSERT3U(eersp->eers_rx_mask, ==, 0); eersp->eers_rx_read_ptr = 0; eersp->eers_rx_mask = erp->er_mask; } void ef10_ev_rxlabel_fini( __in efx_evq_t *eep, __in unsigned int label) { efx_evq_rxq_state_t *eersp; EFSYS_ASSERT3U(label, <, EFX_ARRAY_SIZE(eep->ee_rxq_state)); eersp = &eep->ee_rxq_state[label]; EFSYS_ASSERT3U(eersp->eers_rx_mask, !=, 0); eersp->eers_rx_read_ptr = 0; eersp->eers_rx_mask = 0; } #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ Index: head/sys/dev/sfxge/common/ef10_filter.c =================================================================== --- head/sys/dev/sfxge/common/ef10_filter.c (revision 299924) +++ head/sys/dev/sfxge/common/ef10_filter.c (revision 299925) @@ -1,1482 +1,1482 @@ /*- * Copyright (c) 2007-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD #if EFSYS_OPT_FILTER #define EFE_SPEC(eftp, index) ((eftp)->eft_entry[(index)].efe_spec) static efx_filter_spec_t * ef10_filter_entry_spec( __in const ef10_filter_table_t *eftp, __in unsigned int index) { return ((efx_filter_spec_t *)(EFE_SPEC(eftp, index) & ~(uintptr_t)EFX_EF10_FILTER_FLAGS)); } static boolean_t ef10_filter_entry_is_busy( __in const ef10_filter_table_t *eftp, __in unsigned int index) { if (EFE_SPEC(eftp, index) & EFX_EF10_FILTER_FLAG_BUSY) return (B_TRUE); else return (B_FALSE); } static boolean_t ef10_filter_entry_is_auto_old( __in const ef10_filter_table_t *eftp, __in unsigned int index) { if (EFE_SPEC(eftp, index) & EFX_EF10_FILTER_FLAG_AUTO_OLD) return (B_TRUE); else return (B_FALSE); } static void ef10_filter_set_entry( __inout ef10_filter_table_t *eftp, __in unsigned int index, __in_opt const efx_filter_spec_t *efsp) { EFE_SPEC(eftp, index) = (uintptr_t)efsp; } static void ef10_filter_set_entry_busy( __inout ef10_filter_table_t *eftp, __in unsigned int index) { EFE_SPEC(eftp, index) |= (uintptr_t)EFX_EF10_FILTER_FLAG_BUSY; } static void ef10_filter_set_entry_not_busy( __inout ef10_filter_table_t *eftp, __in unsigned int index) { EFE_SPEC(eftp, index) &= ~(uintptr_t)EFX_EF10_FILTER_FLAG_BUSY; } static void ef10_filter_set_entry_auto_old( __inout ef10_filter_table_t *eftp, __in unsigned int index) { EFSYS_ASSERT(ef10_filter_entry_spec(eftp, index) != NULL); EFE_SPEC(eftp, index) |= (uintptr_t)EFX_EF10_FILTER_FLAG_AUTO_OLD; } static void ef10_filter_set_entry_not_auto_old( __inout ef10_filter_table_t *eftp, __in unsigned int index) { EFE_SPEC(eftp, index) &= ~(uintptr_t)EFX_EF10_FILTER_FLAG_AUTO_OLD; EFSYS_ASSERT(ef10_filter_entry_spec(eftp, index) != NULL); } __checkReturn efx_rc_t ef10_filter_init( __in efx_nic_t *enp) { efx_rc_t rc; ef10_filter_table_t *eftp; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); #define MATCH_MASK(match) (EFX_MASK32(match) << EFX_LOW_BIT(match)) EFX_STATIC_ASSERT(EFX_FILTER_MATCH_REM_HOST == MATCH_MASK(MC_CMD_FILTER_OP_IN_MATCH_SRC_IP)); EFX_STATIC_ASSERT(EFX_FILTER_MATCH_LOC_HOST == MATCH_MASK(MC_CMD_FILTER_OP_IN_MATCH_DST_IP)); EFX_STATIC_ASSERT(EFX_FILTER_MATCH_REM_MAC == MATCH_MASK(MC_CMD_FILTER_OP_IN_MATCH_SRC_MAC)); EFX_STATIC_ASSERT(EFX_FILTER_MATCH_REM_PORT == MATCH_MASK(MC_CMD_FILTER_OP_IN_MATCH_SRC_PORT)); EFX_STATIC_ASSERT(EFX_FILTER_MATCH_LOC_MAC == MATCH_MASK(MC_CMD_FILTER_OP_IN_MATCH_DST_MAC)); EFX_STATIC_ASSERT(EFX_FILTER_MATCH_LOC_PORT == MATCH_MASK(MC_CMD_FILTER_OP_IN_MATCH_DST_PORT)); EFX_STATIC_ASSERT(EFX_FILTER_MATCH_ETHER_TYPE == MATCH_MASK(MC_CMD_FILTER_OP_IN_MATCH_ETHER_TYPE)); EFX_STATIC_ASSERT(EFX_FILTER_MATCH_INNER_VID == MATCH_MASK(MC_CMD_FILTER_OP_IN_MATCH_INNER_VLAN)); EFX_STATIC_ASSERT(EFX_FILTER_MATCH_OUTER_VID == MATCH_MASK(MC_CMD_FILTER_OP_IN_MATCH_OUTER_VLAN)); EFX_STATIC_ASSERT(EFX_FILTER_MATCH_IP_PROTO == MATCH_MASK(MC_CMD_FILTER_OP_IN_MATCH_IP_PROTO)); #undef MATCH_MASK EFSYS_KMEM_ALLOC(enp->en_esip, sizeof (ef10_filter_table_t), eftp); if (!eftp) { rc = ENOMEM; goto fail1; } enp->en_filter.ef_ef10_filter_table = eftp; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_filter_fini( __in efx_nic_t *enp) { EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); if (enp->en_filter.ef_ef10_filter_table != NULL) { EFSYS_KMEM_FREE(enp->en_esip, sizeof (ef10_filter_table_t), enp->en_filter.ef_ef10_filter_table); } } static __checkReturn efx_rc_t efx_mcdi_filter_op_add( __in efx_nic_t *enp, __in efx_filter_spec_t *spec, __in unsigned int filter_op, __inout ef10_filter_handle_t *handle) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_FILTER_OP_IN_LEN, MC_CMD_FILTER_OP_OUT_LEN)]; uint32_t match_fields = 0; efx_rc_t rc; memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_FILTER_OP; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_FILTER_OP_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_FILTER_OP_OUT_LEN; switch (filter_op) { case MC_CMD_FILTER_OP_IN_OP_REPLACE: MCDI_IN_SET_DWORD(req, FILTER_OP_IN_HANDLE_LO, handle->efh_lo); MCDI_IN_SET_DWORD(req, FILTER_OP_IN_HANDLE_HI, handle->efh_hi); /* Fall through */ case MC_CMD_FILTER_OP_IN_OP_INSERT: case MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE: MCDI_IN_SET_DWORD(req, FILTER_OP_IN_OP, filter_op); break; default: EFSYS_ASSERT(0); rc = EINVAL; goto fail1; } if (spec->efs_match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) { /* * The LOC_MAC_IG match flag can represent unknown unicast * or multicast filters - use the MAC address to distinguish * them. */ if (EFX_MAC_ADDR_IS_MULTICAST(spec->efs_loc_mac)) match_fields |= 1U << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN; else match_fields |= 1U << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN; } match_fields |= spec->efs_match_flags & (~EFX_FILTER_MATCH_LOC_MAC_IG); MCDI_IN_SET_DWORD(req, FILTER_OP_IN_PORT_ID, EVB_PORT_ID_ASSIGNED); MCDI_IN_SET_DWORD(req, FILTER_OP_IN_MATCH_FIELDS, match_fields); MCDI_IN_SET_DWORD(req, FILTER_OP_IN_RX_DEST, MC_CMD_FILTER_OP_IN_RX_DEST_HOST); MCDI_IN_SET_DWORD(req, FILTER_OP_IN_RX_QUEUE, spec->efs_dmaq_id); if (spec->efs_flags & EFX_FILTER_FLAG_RX_RSS) { MCDI_IN_SET_DWORD(req, FILTER_OP_IN_RX_CONTEXT, spec->efs_rss_context); } MCDI_IN_SET_DWORD(req, FILTER_OP_IN_RX_MODE, spec->efs_flags & EFX_FILTER_FLAG_RX_RSS ? MC_CMD_FILTER_OP_IN_RX_MODE_RSS : MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE); MCDI_IN_SET_DWORD(req, FILTER_OP_IN_TX_DEST, MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT); if (filter_op != MC_CMD_FILTER_OP_IN_OP_REPLACE) { /* * NOTE: Unlike most MCDI requests, the filter fields * are presented in network (big endian) byte order. */ memcpy(MCDI_IN2(req, uint8_t, FILTER_OP_IN_SRC_MAC), spec->efs_rem_mac, EFX_MAC_ADDR_LEN); memcpy(MCDI_IN2(req, uint8_t, FILTER_OP_IN_DST_MAC), spec->efs_loc_mac, EFX_MAC_ADDR_LEN); MCDI_IN_SET_WORD(req, FILTER_OP_IN_SRC_PORT, __CPU_TO_BE_16(spec->efs_rem_port)); MCDI_IN_SET_WORD(req, FILTER_OP_IN_DST_PORT, __CPU_TO_BE_16(spec->efs_loc_port)); MCDI_IN_SET_WORD(req, FILTER_OP_IN_ETHER_TYPE, __CPU_TO_BE_16(spec->efs_ether_type)); MCDI_IN_SET_WORD(req, FILTER_OP_IN_INNER_VLAN, __CPU_TO_BE_16(spec->efs_inner_vid)); MCDI_IN_SET_WORD(req, FILTER_OP_IN_OUTER_VLAN, __CPU_TO_BE_16(spec->efs_outer_vid)); /* IP protocol (in low byte, high byte is zero) */ MCDI_IN_SET_BYTE(req, FILTER_OP_IN_IP_PROTO, spec->efs_ip_proto); EFX_STATIC_ASSERT(sizeof (spec->efs_rem_host) == MC_CMD_FILTER_OP_IN_SRC_IP_LEN); EFX_STATIC_ASSERT(sizeof (spec->efs_loc_host) == MC_CMD_FILTER_OP_IN_DST_IP_LEN); memcpy(MCDI_IN2(req, uint8_t, FILTER_OP_IN_SRC_IP), &spec->efs_rem_host.eo_byte[0], MC_CMD_FILTER_OP_IN_SRC_IP_LEN); memcpy(MCDI_IN2(req, uint8_t, FILTER_OP_IN_DST_IP), &spec->efs_loc_host.eo_byte[0], MC_CMD_FILTER_OP_IN_DST_IP_LEN); } efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } if (req.emr_out_length_used < MC_CMD_FILTER_OP_OUT_LEN) { rc = EMSGSIZE; goto fail3; } handle->efh_lo = MCDI_OUT_DWORD(req, FILTER_OP_OUT_HANDLE_LO); handle->efh_hi = MCDI_OUT_DWORD(req, FILTER_OP_OUT_HANDLE_HI); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_filter_op_delete( __in efx_nic_t *enp, __in unsigned int filter_op, __inout ef10_filter_handle_t *handle) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_FILTER_OP_IN_LEN, MC_CMD_FILTER_OP_OUT_LEN)]; efx_rc_t rc; memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_FILTER_OP; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_FILTER_OP_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_FILTER_OP_OUT_LEN; switch (filter_op) { case MC_CMD_FILTER_OP_IN_OP_REMOVE: MCDI_IN_SET_DWORD(req, FILTER_OP_IN_OP, MC_CMD_FILTER_OP_IN_OP_REMOVE); break; case MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE: MCDI_IN_SET_DWORD(req, FILTER_OP_IN_OP, MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE); break; default: EFSYS_ASSERT(0); rc = EINVAL; goto fail1; } MCDI_IN_SET_DWORD(req, FILTER_OP_IN_HANDLE_LO, handle->efh_lo); MCDI_IN_SET_DWORD(req, FILTER_OP_IN_HANDLE_HI, handle->efh_hi); - efx_mcdi_execute(enp, &req); + efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } if (req.emr_out_length_used < MC_CMD_FILTER_OP_OUT_LEN) { rc = EMSGSIZE; goto fail3; } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn boolean_t ef10_filter_equal( __in const efx_filter_spec_t *left, __in const efx_filter_spec_t *right) { /* FIXME: Consider rx vs tx filters (look at efs_flags) */ if (left->efs_match_flags != right->efs_match_flags) return (B_FALSE); if (!EFX_OWORD_IS_EQUAL(left->efs_rem_host, right->efs_rem_host)) return (B_FALSE); if (!EFX_OWORD_IS_EQUAL(left->efs_loc_host, right->efs_loc_host)) return (B_FALSE); if (memcmp(left->efs_rem_mac, right->efs_rem_mac, EFX_MAC_ADDR_LEN)) return (B_FALSE); if (memcmp(left->efs_loc_mac, right->efs_loc_mac, EFX_MAC_ADDR_LEN)) return (B_FALSE); if (left->efs_rem_port != right->efs_rem_port) return (B_FALSE); if (left->efs_loc_port != right->efs_loc_port) return (B_FALSE); if (left->efs_inner_vid != right->efs_inner_vid) return (B_FALSE); if (left->efs_outer_vid != right->efs_outer_vid) return (B_FALSE); if (left->efs_ether_type != right->efs_ether_type) return (B_FALSE); if (left->efs_ip_proto != right->efs_ip_proto) return (B_FALSE); return (B_TRUE); } static __checkReturn boolean_t ef10_filter_same_dest( __in const efx_filter_spec_t *left, __in const efx_filter_spec_t *right) { if ((left->efs_flags & EFX_FILTER_FLAG_RX_RSS) && (right->efs_flags & EFX_FILTER_FLAG_RX_RSS)) { if (left->efs_rss_context == right->efs_rss_context) return (B_TRUE); } else if ((~(left->efs_flags) & EFX_FILTER_FLAG_RX_RSS) && (~(right->efs_flags) & EFX_FILTER_FLAG_RX_RSS)) { if (left->efs_dmaq_id == right->efs_dmaq_id) return (B_TRUE); } return (B_FALSE); } static __checkReturn uint32_t ef10_filter_hash( __in efx_filter_spec_t *spec) { EFX_STATIC_ASSERT((sizeof (efx_filter_spec_t) % sizeof (uint32_t)) == 0); EFX_STATIC_ASSERT((EFX_FIELD_OFFSET(efx_filter_spec_t, efs_outer_vid) % sizeof (uint32_t)) == 0); /* * As the area of the efx_filter_spec_t we need to hash is DWORD * aligned and an exact number of DWORDs in size we can use the * optimised efx_hash_dwords() rather than efx_hash_bytes() */ return (efx_hash_dwords((const uint32_t *)&spec->efs_outer_vid, (sizeof (efx_filter_spec_t) - EFX_FIELD_OFFSET(efx_filter_spec_t, efs_outer_vid)) / sizeof (uint32_t), 0)); } /* * Decide whether a filter should be exclusive or else should allow * delivery to additional recipients. Currently we decide that * filters for specific local unicast MAC and IP addresses are * exclusive. */ static __checkReturn boolean_t ef10_filter_is_exclusive( __in efx_filter_spec_t *spec) { if ((spec->efs_match_flags & EFX_FILTER_MATCH_LOC_MAC) && !EFX_MAC_ADDR_IS_MULTICAST(spec->efs_loc_mac)) return (B_TRUE); if ((spec->efs_match_flags & (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { if ((spec->efs_ether_type == EFX_ETHER_TYPE_IPV4) && ((spec->efs_loc_host.eo_u8[0] & 0xf) != 0xe)) return (B_TRUE); if ((spec->efs_ether_type == EFX_ETHER_TYPE_IPV6) && (spec->efs_loc_host.eo_u8[0] != 0xff)) return (B_TRUE); } return (B_FALSE); } __checkReturn efx_rc_t ef10_filter_restore( __in efx_nic_t *enp) { int tbl_id; efx_filter_spec_t *spec; ef10_filter_table_t *eftp = enp->en_filter.ef_ef10_filter_table; boolean_t restoring; int state; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); for (tbl_id = 0; tbl_id < EFX_EF10_FILTER_TBL_ROWS; tbl_id++) { EFSYS_LOCK(enp->en_eslp, state); spec = ef10_filter_entry_spec(eftp, tbl_id); if (spec == NULL) { restoring = B_FALSE; } else if (ef10_filter_entry_is_busy(eftp, tbl_id)) { /* Ignore busy entries. */ restoring = B_FALSE; } else { ef10_filter_set_entry_busy(eftp, tbl_id); restoring = B_TRUE; } EFSYS_UNLOCK(enp->en_eslp, state); if (restoring == B_FALSE) continue; if (ef10_filter_is_exclusive(spec)) { rc = efx_mcdi_filter_op_add(enp, spec, MC_CMD_FILTER_OP_IN_OP_INSERT, &eftp->eft_entry[tbl_id].efe_handle); } else { rc = efx_mcdi_filter_op_add(enp, spec, MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE, &eftp->eft_entry[tbl_id].efe_handle); } if (rc != 0) goto fail1; EFSYS_LOCK(enp->en_eslp, state); ef10_filter_set_entry_not_busy(eftp, tbl_id); EFSYS_UNLOCK(enp->en_eslp, state); } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * An arbitrary search limit for the software hash table. As per the linux net * driver. */ #define EF10_FILTER_SEARCH_LIMIT 200 static __checkReturn efx_rc_t ef10_filter_add_internal( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec, __in boolean_t may_replace, __out_opt uint32_t *filter_id) { efx_rc_t rc; ef10_filter_table_t *eftp = enp->en_filter.ef_ef10_filter_table; efx_filter_spec_t *saved_spec; uint32_t hash; unsigned int depth; int ins_index; boolean_t replacing = B_FALSE; unsigned int i; int state; boolean_t locked = B_FALSE; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); #if EFSYS_OPT_RX_SCALE spec->efs_rss_context = enp->en_rss_context; #endif hash = ef10_filter_hash(spec); /* * FIXME: Add support for inserting filters of different priorities * and removing lower priority multicast filters (bug 42378) */ /* * Find any existing filters with the same match tuple or * else a free slot to insert at. If any of them are busy, * we have to wait and retry. */ for (;;) { ins_index = -1; depth = 1; EFSYS_LOCK(enp->en_eslp, state); locked = B_TRUE; for (;;) { i = (hash + depth) & (EFX_EF10_FILTER_TBL_ROWS - 1); saved_spec = ef10_filter_entry_spec(eftp, i); if (!saved_spec) { if (ins_index < 0) { ins_index = i; } } else if (ef10_filter_equal(spec, saved_spec)) { if (ef10_filter_entry_is_busy(eftp, i)) break; if (saved_spec->efs_priority == EFX_FILTER_PRI_AUTO) { ins_index = i; goto found; } else if (ef10_filter_is_exclusive(spec)) { if (may_replace) { ins_index = i; goto found; } else { rc = EEXIST; goto fail1; } } /* Leave existing */ } /* * Once we reach the maximum search depth, use * the first suitable slot or return EBUSY if * there was none. */ if (depth == EF10_FILTER_SEARCH_LIMIT) { if (ins_index < 0) { rc = EBUSY; goto fail2; } goto found; } depth++; } EFSYS_UNLOCK(enp->en_eslp, state); locked = B_FALSE; } found: /* * Create a software table entry if necessary, and mark it * busy. We might yet fail to insert, but any attempt to * insert a conflicting filter while we're waiting for the * firmware must find the busy entry. */ saved_spec = ef10_filter_entry_spec(eftp, ins_index); if (saved_spec) { if (saved_spec->efs_priority == EFX_FILTER_PRI_AUTO) { /* This is a filter we are refreshing */ ef10_filter_set_entry_not_auto_old(eftp, ins_index); goto out_unlock; } replacing = B_TRUE; } else { EFSYS_KMEM_ALLOC(enp->en_esip, sizeof (*spec), saved_spec); if (!saved_spec) { rc = ENOMEM; goto fail3; } *saved_spec = *spec; ef10_filter_set_entry(eftp, ins_index, saved_spec); } ef10_filter_set_entry_busy(eftp, ins_index); EFSYS_UNLOCK(enp->en_eslp, state); locked = B_FALSE; /* * On replacing the filter handle may change after after a successful * replace operation. */ if (replacing) { rc = efx_mcdi_filter_op_add(enp, spec, MC_CMD_FILTER_OP_IN_OP_REPLACE, &eftp->eft_entry[ins_index].efe_handle); } else if (ef10_filter_is_exclusive(spec)) { rc = efx_mcdi_filter_op_add(enp, spec, MC_CMD_FILTER_OP_IN_OP_INSERT, &eftp->eft_entry[ins_index].efe_handle); } else { rc = efx_mcdi_filter_op_add(enp, spec, MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE, &eftp->eft_entry[ins_index].efe_handle); } if (rc != 0) goto fail4; EFSYS_LOCK(enp->en_eslp, state); locked = B_TRUE; if (replacing) { /* Update the fields that may differ */ saved_spec->efs_priority = spec->efs_priority; saved_spec->efs_flags = spec->efs_flags; saved_spec->efs_rss_context = spec->efs_rss_context; saved_spec->efs_dmaq_id = spec->efs_dmaq_id; } ef10_filter_set_entry_not_busy(eftp, ins_index); out_unlock: EFSYS_UNLOCK(enp->en_eslp, state); locked = B_FALSE; if (filter_id) *filter_id = ins_index; return (0); fail4: EFSYS_PROBE(fail4); if (!replacing) { EFSYS_KMEM_FREE(enp->en_esip, sizeof (*spec), saved_spec); saved_spec = NULL; } ef10_filter_set_entry_not_busy(eftp, ins_index); ef10_filter_set_entry(eftp, ins_index, NULL); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); if (locked) EFSYS_UNLOCK(enp->en_eslp, state); return (rc); } __checkReturn efx_rc_t ef10_filter_add( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec, __in boolean_t may_replace) { efx_rc_t rc; rc = ef10_filter_add_internal(enp, spec, may_replace, NULL); if (rc != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t ef10_filter_delete_internal( __in efx_nic_t *enp, __in uint32_t filter_id) { efx_rc_t rc; ef10_filter_table_t *table = enp->en_filter.ef_ef10_filter_table; efx_filter_spec_t *spec; int state; uint32_t filter_idx = filter_id % EFX_EF10_FILTER_TBL_ROWS; /* * Find the software table entry and mark it busy. Don't * remove it yet; any attempt to update while we're waiting * for the firmware must find the busy entry. * * FIXME: What if the busy flag is never cleared? */ EFSYS_LOCK(enp->en_eslp, state); while (ef10_filter_entry_is_busy(table, filter_idx)) { EFSYS_UNLOCK(enp->en_eslp, state); EFSYS_SPIN(1); EFSYS_LOCK(enp->en_eslp, state); } if ((spec = ef10_filter_entry_spec(table, filter_idx)) != NULL) { ef10_filter_set_entry_busy(table, filter_idx); } EFSYS_UNLOCK(enp->en_eslp, state); if (spec == NULL) { rc = ENOENT; goto fail1; } /* * Try to remove the hardware filter. This may fail if the MC has * rebooted (which frees all hardware filter resources). */ if (ef10_filter_is_exclusive(spec)) { rc = efx_mcdi_filter_op_delete(enp, MC_CMD_FILTER_OP_IN_OP_REMOVE, &table->eft_entry[filter_idx].efe_handle); } else { rc = efx_mcdi_filter_op_delete(enp, MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE, &table->eft_entry[filter_idx].efe_handle); } /* Free the software table entry */ EFSYS_LOCK(enp->en_eslp, state); ef10_filter_set_entry_not_busy(table, filter_idx); ef10_filter_set_entry(table, filter_idx, NULL); EFSYS_UNLOCK(enp->en_eslp, state); EFSYS_KMEM_FREE(enp->en_esip, sizeof (*spec), spec); /* Check result of hardware filter removal */ if (rc != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_filter_delete( __in efx_nic_t *enp, __inout efx_filter_spec_t *spec) { efx_rc_t rc; ef10_filter_table_t *table = enp->en_filter.ef_ef10_filter_table; efx_filter_spec_t *saved_spec; unsigned int hash; unsigned int depth; unsigned int i; int state; boolean_t locked = B_FALSE; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); hash = ef10_filter_hash(spec); EFSYS_LOCK(enp->en_eslp, state); locked = B_TRUE; depth = 1; for (;;) { i = (hash + depth) & (EFX_EF10_FILTER_TBL_ROWS - 1); saved_spec = ef10_filter_entry_spec(table, i); if (saved_spec && ef10_filter_equal(spec, saved_spec) && ef10_filter_same_dest(spec, saved_spec)) { break; } if (depth == EF10_FILTER_SEARCH_LIMIT) { rc = ENOENT; goto fail1; } depth++; } EFSYS_UNLOCK(enp->en_eslp, state); locked = B_FALSE; rc = ef10_filter_delete_internal(enp, i); if (rc != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); if (locked) EFSYS_UNLOCK(enp->en_eslp, state); return (rc); } static __checkReturn efx_rc_t efx_mcdi_get_parser_disp_info( __in efx_nic_t *enp, __out uint32_t *list, __out size_t *length) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_PARSER_DISP_INFO_IN_LEN, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX)]; efx_rc_t rc; uint32_t i; boolean_t support_unknown_ucast = B_FALSE; boolean_t support_unknown_mcast = B_FALSE; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_PARSER_DISP_INFO; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_PARSER_DISP_INFO_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX; MCDI_IN_SET_DWORD(req, GET_PARSER_DISP_INFO_OUT_OP, MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } *length = MCDI_OUT_DWORD(req, GET_PARSER_DISP_INFO_OUT_NUM_SUPPORTED_MATCHES); if (req.emr_out_length_used < MC_CMD_GET_PARSER_DISP_INFO_OUT_LEN(*length)) { rc = EMSGSIZE; goto fail2; } memcpy(list, MCDI_OUT2(req, uint32_t, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES), (*length) * sizeof (uint32_t)); EFX_STATIC_ASSERT(sizeof (uint32_t) == MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_LEN); /* * Remove UNKNOWN UCAST and MCAST flags, and if both are present, change * the lower priority one to LOC_MAC_IG. */ for (i = 0; i < *length; i++) { if (list[i] & MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN) { list[i] &= (~MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN); support_unknown_ucast = B_TRUE; } if (list[i] & MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN) { list[i] &= (~MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN); support_unknown_mcast = B_TRUE; } if (support_unknown_ucast && support_unknown_mcast) { list[i] &= EFX_FILTER_MATCH_LOC_MAC_IG; break; } } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_filter_supported_filters( __in efx_nic_t *enp, __out uint32_t *list, __out size_t *length) { efx_rc_t rc; if ((rc = efx_mcdi_get_parser_disp_info(enp, list, length) != 0)) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t ef10_filter_insert_unicast( __in efx_nic_t *enp, __in_ecount(6) uint8_t const *addr, __in efx_filter_flag_t filter_flags) { ef10_filter_table_t *eftp = enp->en_filter.ef_ef10_filter_table; efx_filter_spec_t spec; efx_rc_t rc; /* Insert the filter for the local station address */ efx_filter_spec_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, eftp->eft_default_rxq); efx_filter_spec_set_eth_local(&spec, EFX_FILTER_SPEC_VID_UNSPEC, addr); rc = ef10_filter_add_internal(enp, &spec, B_TRUE, &eftp->eft_unicst_filter_indexes[eftp->eft_unicst_filter_count]); if (rc != 0) goto fail1; eftp->eft_unicst_filter_count++; EFSYS_ASSERT(eftp->eft_unicst_filter_count <= EFX_EF10_FILTER_UNICAST_FILTERS_MAX); return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t ef10_filter_insert_all_unicast( __in efx_nic_t *enp, __in efx_filter_flag_t filter_flags) { ef10_filter_table_t *eftp = enp->en_filter.ef_ef10_filter_table; efx_filter_spec_t spec; efx_rc_t rc; /* Insert the unknown unicast filter */ efx_filter_spec_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, eftp->eft_default_rxq); efx_filter_spec_set_uc_def(&spec); rc = ef10_filter_add_internal(enp, &spec, B_TRUE, &eftp->eft_unicst_filter_indexes[eftp->eft_unicst_filter_count]); if (rc != 0) goto fail1; eftp->eft_unicst_filter_count++; EFSYS_ASSERT(eftp->eft_unicst_filter_count <= EFX_EF10_FILTER_UNICAST_FILTERS_MAX); return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t ef10_filter_insert_multicast_list( __in efx_nic_t *enp, __in boolean_t mulcst, __in boolean_t brdcst, __in_ecount(6*count) uint8_t const *addrs, __in uint32_t count, __in efx_filter_flag_t filter_flags, __in boolean_t rollback) { ef10_filter_table_t *eftp = enp->en_filter.ef_ef10_filter_table; efx_filter_spec_t spec; uint8_t addr[6]; uint32_t i; uint32_t filter_index; uint32_t filter_count; efx_rc_t rc; if (mulcst == B_FALSE) count = 0; if (count + (brdcst ? 1 : 0) > EFX_ARRAY_SIZE(eftp->eft_mulcst_filter_indexes)) { /* Too many MAC addresses */ rc = EINVAL; goto fail1; } /* Insert/renew multicast address list filters */ filter_count = 0; for (i = 0; i < count; i++) { efx_filter_spec_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, eftp->eft_default_rxq); efx_filter_spec_set_eth_local(&spec, EFX_FILTER_SPEC_VID_UNSPEC, &addrs[i * EFX_MAC_ADDR_LEN]); rc = ef10_filter_add_internal(enp, &spec, B_TRUE, &filter_index); if (rc == 0) { eftp->eft_mulcst_filter_indexes[filter_count] = filter_index; filter_count++; } else if (rollback == B_TRUE) { /* Only stop upon failure if told to rollback */ goto rollback; } } if (brdcst == B_TRUE) { /* Insert/renew broadcast address filter */ efx_filter_spec_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, eftp->eft_default_rxq); EFX_MAC_BROADCAST_ADDR_SET(addr); efx_filter_spec_set_eth_local(&spec, EFX_FILTER_SPEC_VID_UNSPEC, addr); rc = ef10_filter_add_internal(enp, &spec, B_TRUE, &filter_index); if (rc == 0) { eftp->eft_mulcst_filter_indexes[filter_count] = filter_index; filter_count++; } else if (rollback == B_TRUE) { /* Only stop upon failure if told to rollback */ goto rollback; } } eftp->eft_mulcst_filter_count = filter_count; eftp->eft_using_all_mulcst = B_FALSE; return (0); rollback: /* Remove any filters we have inserted */ i = filter_count; while (i--) { (void) ef10_filter_delete_internal(enp, eftp->eft_mulcst_filter_indexes[i]); } eftp->eft_mulcst_filter_count = 0; fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t ef10_filter_insert_all_multicast( __in efx_nic_t *enp, __in efx_filter_flag_t filter_flags) { ef10_filter_table_t *eftp = enp->en_filter.ef_ef10_filter_table; efx_filter_spec_t spec; efx_rc_t rc; /* Insert the unknown multicast filter */ efx_filter_spec_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, eftp->eft_default_rxq); efx_filter_spec_set_mc_def(&spec); rc = ef10_filter_add_internal(enp, &spec, B_TRUE, &eftp->eft_mulcst_filter_indexes[0]); if (rc != 0) goto fail1; eftp->eft_mulcst_filter_count = 1; eftp->eft_using_all_mulcst = B_TRUE; /* * FIXME: If brdcst == B_FALSE, add a filter to drop broadcast traffic. */ return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static void ef10_filter_remove_old( __in efx_nic_t *enp) { ef10_filter_table_t *table = enp->en_filter.ef_ef10_filter_table; uint32_t i; for (i = 0; i < EFX_ARRAY_SIZE(table->eft_entry); i++) { if (ef10_filter_entry_is_auto_old(table, i)) { (void) ef10_filter_delete_internal(enp, i); } } } static __checkReturn efx_rc_t ef10_filter_get_workarounds( __in efx_nic_t *enp) { efx_nic_cfg_t *encp = &enp->en_nic_cfg; uint32_t implemented = 0; uint32_t enabled = 0; efx_rc_t rc; rc = efx_mcdi_get_workarounds(enp, &implemented, &enabled); if (rc == 0) { /* Check if chained multicast filter support is enabled */ if (implemented & enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807) encp->enc_bug26807_workaround = B_TRUE; else encp->enc_bug26807_workaround = B_FALSE; } else if (rc == ENOTSUP) { /* * Firmware is too old to support GET_WORKAROUNDS, and support * for this workaround was implemented later. */ encp->enc_bug26807_workaround = B_FALSE; } else { goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * Reconfigure all filters. * If all_unicst and/or all mulcst filters cannot be applied then * return ENOTSUP (Note the filters for the specified addresses are * still applied in this case). */ __checkReturn efx_rc_t ef10_filter_reconfigure( __in efx_nic_t *enp, __in_ecount(6) uint8_t const *mac_addr, __in boolean_t all_unicst, __in boolean_t mulcst, __in boolean_t all_mulcst, __in boolean_t brdcst, __in_ecount(6*count) uint8_t const *addrs, __in uint32_t count) { efx_nic_cfg_t *encp = &enp->en_nic_cfg; ef10_filter_table_t *table = enp->en_filter.ef_ef10_filter_table; efx_filter_flag_t filter_flags; unsigned i; efx_rc_t all_unicst_rc = 0; efx_rc_t all_mulcst_rc = 0; efx_rc_t rc; if (table->eft_default_rxq == NULL) { /* * Filters direct traffic to the default RXQ, and so cannot be * inserted until it is available. Any currently configured * filters must be removed (ignore errors in case the MC * has rebooted, which removes hardware filters). */ for (i = 0; i < table->eft_unicst_filter_count; i++) { (void) ef10_filter_delete_internal(enp, table->eft_unicst_filter_indexes[i]); } table->eft_unicst_filter_count = 0; for (i = 0; i < table->eft_mulcst_filter_count; i++) { (void) ef10_filter_delete_internal(enp, table->eft_mulcst_filter_indexes[i]); } table->eft_mulcst_filter_count = 0; return (0); } if (table->eft_using_rss) filter_flags = EFX_FILTER_FLAG_RX_RSS; else filter_flags = 0; /* Mark old filters which may need to be removed */ for (i = 0; i < table->eft_unicst_filter_count; i++) { ef10_filter_set_entry_auto_old(table, table->eft_unicst_filter_indexes[i]); } for (i = 0; i < table->eft_mulcst_filter_count; i++) { ef10_filter_set_entry_auto_old(table, table->eft_mulcst_filter_indexes[i]); } /* * Insert or renew unicast filters. * * Frimware does not perform chaining on unicast filters. As traffic is * therefore only delivered to the first matching filter, we should * always insert the specific filter for our MAC address, to try and * ensure we get that traffic. * * (If the filter for our MAC address has already been inserted by * another function, we won't receive traffic sent to us, even if we * insert a unicast mismatch filter. To prevent traffic stealing, this * therefore relies on the privilege model only allowing functions to * insert filters for their own MAC address unless explicitly given * additional privileges by the user. This also means that, even on a * priviliged function, inserting a unicast mismatch filter may not * catch all traffic in multi PCI function scenarios.) */ table->eft_unicst_filter_count = 0; rc = ef10_filter_insert_unicast(enp, mac_addr, filter_flags); if (all_unicst || (rc != 0)) { all_unicst_rc = ef10_filter_insert_all_unicast(enp, filter_flags); if ((rc != 0) && (all_unicst_rc != 0)) goto fail1; } /* * WORKAROUND_BUG26807 controls firmware support for chained multicast * filters, and can only be enabled or disabled when the hardware filter * table is empty. * * Chained multicast filters require support from the datapath firmware, * and may not be available (e.g. low-latency variants or old Huntington * firmware). * * Firmware will reset (FLR) functions which have inserted filters in * the hardware filter table when the workaround is enabled/disabled. * Functions without any hardware filters are not reset. * * Re-check if the workaround is enabled after adding unicast hardware * filters. This ensures that encp->enc_bug26807_workaround matches the * firmware state, and that later changes to enable/disable the * workaround will result in this function seeing a reset (FLR). * * In common-code drivers, we only support multiple PCI function * scenarios with firmware that supports multicast chaining, so we can * assume it is enabled for such cases and hence simplify the filter * insertion logic. Firmware that does not support multicast chaining * does not support multiple PCI function configurations either, so * filter insertion is much simpler and the same strategies can still be * used. */ if ((rc = ef10_filter_get_workarounds(enp)) != 0) goto fail2; if ((table->eft_using_all_mulcst != all_mulcst) && (encp->enc_bug26807_workaround == B_TRUE)) { /* * Multicast filter chaining is enabled, so traffic that matches * more than one multicast filter will be replicated and * delivered to multiple recipients. To avoid this duplicate * delivery, remove old multicast filters before inserting new * multicast filters. */ ef10_filter_remove_old(enp); } /* Insert or renew multicast filters */ if (all_mulcst == B_TRUE) { /* * Insert the all multicast filter. If that fails, try to insert * all of our multicast filters (but without rollback on * failure). */ all_mulcst_rc = ef10_filter_insert_all_multicast(enp, filter_flags); if (all_mulcst_rc != 0) { rc = ef10_filter_insert_multicast_list(enp, B_TRUE, brdcst, addrs, count, filter_flags, B_FALSE); if (rc != 0) goto fail3; } } else { /* * Insert filters for multicast addresses. * If any insertion fails, then rollback and try to insert the * all multicast filter instead. * If that also fails, try to insert all of the multicast * filters (but without rollback on failure). */ rc = ef10_filter_insert_multicast_list(enp, mulcst, brdcst, addrs, count, filter_flags, B_TRUE); if (rc != 0) { if ((table->eft_using_all_mulcst == B_FALSE) && (encp->enc_bug26807_workaround == B_TRUE)) { /* * Multicast filter chaining is on, so remove * old filters before inserting the multicast * all filter to avoid duplicate delivery caused * by packets matching multiple filters. */ ef10_filter_remove_old(enp); } rc = ef10_filter_insert_all_multicast(enp, filter_flags); if (rc != 0) { rc = ef10_filter_insert_multicast_list(enp, mulcst, brdcst, addrs, count, filter_flags, B_FALSE); if (rc != 0) goto fail4; } } } /* Remove old filters which were not renewed */ ef10_filter_remove_old(enp); /* report if any optional flags were rejected */ if (((all_unicst != B_FALSE) && (all_unicst_rc != 0)) || ((all_mulcst != B_FALSE) && (all_mulcst_rc != 0))) { rc = ENOTSUP; } return (rc); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); /* Clear auto old flags */ for (i = 0; i < EFX_ARRAY_SIZE(table->eft_entry); i++) { if (ef10_filter_entry_is_auto_old(table, i)) { ef10_filter_set_entry_not_auto_old(table, i); } } return (rc); } void ef10_filter_get_default_rxq( __in efx_nic_t *enp, __out efx_rxq_t **erpp, __out boolean_t *using_rss) { ef10_filter_table_t *table = enp->en_filter.ef_ef10_filter_table; *erpp = table->eft_default_rxq; *using_rss = table->eft_using_rss; } void ef10_filter_default_rxq_set( __in efx_nic_t *enp, __in efx_rxq_t *erp, __in boolean_t using_rss) { ef10_filter_table_t *table = enp->en_filter.ef_ef10_filter_table; #if EFSYS_OPT_RX_SCALE EFSYS_ASSERT((using_rss == B_FALSE) || (enp->en_rss_context != EF10_RSS_CONTEXT_INVALID)); table->eft_using_rss = using_rss; #else EFSYS_ASSERT(using_rss == B_FALSE); table->eft_using_rss = B_FALSE; #endif table->eft_default_rxq = erp; } void ef10_filter_default_rxq_clear( __in efx_nic_t *enp) { ef10_filter_table_t *table = enp->en_filter.ef_ef10_filter_table; table->eft_default_rxq = NULL; table->eft_using_rss = B_FALSE; } #endif /* EFSYS_OPT_FILTER */ #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ Index: head/sys/dev/sfxge/common/ef10_nic.c =================================================================== --- head/sys/dev/sfxge/common/ef10_nic.c (revision 299924) +++ head/sys/dev/sfxge/common/ef10_nic.c (revision 299925) @@ -1,1689 +1,1689 @@ /*- * Copyright (c) 2012-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_MON_MCDI #include "mcdi_mon.h" #endif #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD #include "ef10_tlv_layout.h" __checkReturn efx_rc_t efx_mcdi_get_port_assignment( __in efx_nic_t *enp, __out uint32_t *portp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN, MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN)]; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_PORT_ASSIGNMENT; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *portp = MCDI_OUT_DWORD(req, GET_PORT_ASSIGNMENT_OUT_PORT); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_port_modes( __in efx_nic_t *enp, __out uint32_t *modesp, __out_opt uint32_t *current_modep) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_PORT_MODES_IN_LEN, MC_CMD_GET_PORT_MODES_OUT_LEN)]; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_PORT_MODES; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_PORT_MODES_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_PORT_MODES_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } /* * Require only Modes and DefaultMode fields, unless the current mode * was requested (CurrentMode field was added for Medford). */ if (req.emr_out_length_used < MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST) { rc = EMSGSIZE; goto fail2; } if ((current_modep != NULL) && (req.emr_out_length_used < MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST + 4)) { rc = EMSGSIZE; goto fail3; } *modesp = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_MODES); if (current_modep != NULL) { *current_modep = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_CURRENT_MODE); } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nic_get_port_mode_bandwidth( __in uint32_t port_mode, __out uint32_t *bandwidth_mbpsp) { uint32_t bandwidth; efx_rc_t rc; switch (port_mode) { case TLV_PORT_MODE_10G: bandwidth = 10000; break; case TLV_PORT_MODE_10G_10G: bandwidth = 10000 * 2; break; case TLV_PORT_MODE_10G_10G_10G_10G: case TLV_PORT_MODE_10G_10G_10G_10G_Q: case TLV_PORT_MODE_10G_10G_10G_10G_Q2: bandwidth = 10000 * 4; break; case TLV_PORT_MODE_40G: bandwidth = 40000; break; case TLV_PORT_MODE_40G_40G: bandwidth = 40000 * 2; break; case TLV_PORT_MODE_40G_10G_10G: case TLV_PORT_MODE_10G_10G_40G: bandwidth = 40000 + (10000 * 2); break; default: rc = EINVAL; goto fail1; } *bandwidth_mbpsp = bandwidth; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_vadaptor_alloc( __in efx_nic_t *enp, __in uint32_t port_id) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_VADAPTOR_ALLOC_IN_LEN, MC_CMD_VADAPTOR_ALLOC_OUT_LEN)]; efx_rc_t rc; EFSYS_ASSERT3U(enp->en_vport_id, ==, EVB_PORT_ID_NULL); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_VADAPTOR_ALLOC; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_VADAPTOR_ALLOC_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_VADAPTOR_ALLOC_OUT_LEN; MCDI_IN_SET_DWORD(req, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id); MCDI_IN_POPULATE_DWORD_1(req, VADAPTOR_ALLOC_IN_FLAGS, VADAPTOR_ALLOC_IN_FLAG_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED, enp->en_nic_cfg.enc_allow_set_mac_with_installed_filters ? 1 : 0); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_vadaptor_free( __in efx_nic_t *enp, __in uint32_t port_id) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_VADAPTOR_FREE_IN_LEN, MC_CMD_VADAPTOR_FREE_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_VADAPTOR_FREE; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_VADAPTOR_FREE_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_VADAPTOR_FREE_OUT_LEN; MCDI_IN_SET_DWORD(req, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_mac_address_pf( __in efx_nic_t *enp, __out_ecount_opt(6) uint8_t mac_addrp[6]) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_MAC_ADDRESSES_IN_LEN, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)]; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_MAC_ADDRESSES; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_MAC_ADDRESSES_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_MAC_ADDRESSES_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) { rc = EMSGSIZE; goto fail2; } if (MCDI_OUT_DWORD(req, GET_MAC_ADDRESSES_OUT_MAC_COUNT) < 1) { rc = ENOENT; goto fail3; } if (mac_addrp != NULL) { uint8_t *addrp; addrp = MCDI_OUT2(req, uint8_t, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE); EFX_MAC_ADDR_COPY(mac_addrp, addrp); } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_mac_address_vf( __in efx_nic_t *enp, __out_ecount_opt(6) uint8_t mac_addrp[6]) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX)]; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_VPORT_GET_MAC_ADDRESSES; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX; MCDI_IN_SET_DWORD(req, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID, EVB_PORT_ID_ASSIGNED); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) { rc = EMSGSIZE; goto fail2; } if (MCDI_OUT_DWORD(req, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT) < 1) { rc = ENOENT; goto fail3; } if (mac_addrp != NULL) { uint8_t *addrp; addrp = MCDI_OUT2(req, uint8_t, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR); EFX_MAC_ADDR_COPY(mac_addrp, addrp); } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_clock( __in efx_nic_t *enp, __out uint32_t *sys_freqp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_CLOCK_IN_LEN, MC_CMD_GET_CLOCK_OUT_LEN)]; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_CLOCK; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_CLOCK_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_CLOCK_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_CLOCK_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *sys_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_SYS_FREQ); if (*sys_freqp == 0) { rc = EINVAL; goto fail3; } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t efx_mcdi_get_vector_cfg( __in efx_nic_t *enp, __out_opt uint32_t *vec_basep, __out_opt uint32_t *pf_nvecp, __out_opt uint32_t *vf_nvecp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_VECTOR_CFG_IN_LEN, MC_CMD_GET_VECTOR_CFG_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_VECTOR_CFG; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_VECTOR_CFG_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_VECTOR_CFG_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_VECTOR_CFG_OUT_LEN) { rc = EMSGSIZE; goto fail2; } if (vec_basep != NULL) *vec_basep = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VEC_BASE); if (pf_nvecp != NULL) *pf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_PF); if (vf_nvecp != NULL) *vf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_VF); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_get_capabilities( __in efx_nic_t *enp, __out uint32_t *flagsp, __out uint32_t *flags2p) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_GET_CAPABILITIES_IN_LEN, MC_CMD_GET_CAPABILITIES_V2_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_GET_CAPABILITIES; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_GET_CAPABILITIES_V2_OUT_LEN; efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) { rc = EMSGSIZE; goto fail2; } *flagsp = MCDI_OUT_DWORD(req, GET_CAPABILITIES_OUT_FLAGS1); if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) *flags2p = 0; else *flags2p = MCDI_OUT_DWORD(req, GET_CAPABILITIES_V2_OUT_FLAGS2); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_alloc_vis( __in efx_nic_t *enp, __in uint32_t min_vi_count, __in uint32_t max_vi_count, __out uint32_t *vi_basep, __out uint32_t *vi_countp, __out uint32_t *vi_shiftp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_ALLOC_VIS_IN_LEN, MC_CMD_ALLOC_VIS_OUT_LEN)]; efx_rc_t rc; if (vi_countp == NULL) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_ALLOC_VIS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_ALLOC_VIS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_ALLOC_VIS_OUT_LEN; MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MIN_VI_COUNT, min_vi_count); MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MAX_VI_COUNT, max_vi_count); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_OUT_LEN) { rc = EMSGSIZE; goto fail3; } *vi_basep = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_BASE); *vi_countp = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_COUNT); /* Report VI_SHIFT if available (always zero for Huntington) */ if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_EXT_OUT_LEN) *vi_shiftp = 0; else *vi_shiftp = MCDI_OUT_DWORD(req, ALLOC_VIS_EXT_OUT_VI_SHIFT); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_free_vis( __in efx_nic_t *enp) { efx_mcdi_req_t req; efx_rc_t rc; EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_IN_LEN == 0); EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_OUT_LEN == 0); req.emr_cmd = MC_CMD_FREE_VIS; req.emr_in_buf = NULL; req.emr_in_length = 0; req.emr_out_buf = NULL; req.emr_out_length = 0; efx_mcdi_execute_quiet(enp, &req); /* Ignore ELREADY (no allocated VIs, so nothing to free) */ if ((req.emr_rc != 0) && (req.emr_rc != EALREADY)) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_alloc_piobuf( __in efx_nic_t *enp, __out efx_piobuf_handle_t *handlep) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_ALLOC_PIOBUF_IN_LEN, MC_CMD_ALLOC_PIOBUF_OUT_LEN)]; efx_rc_t rc; if (handlep == NULL) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_ALLOC_PIOBUF; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_ALLOC_PIOBUF_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_ALLOC_PIOBUF_OUT_LEN; efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } if (req.emr_out_length_used < MC_CMD_ALLOC_PIOBUF_OUT_LEN) { rc = EMSGSIZE; goto fail3; } *handlep = MCDI_OUT_DWORD(req, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_free_piobuf( __in efx_nic_t *enp, __in efx_piobuf_handle_t handle) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_FREE_PIOBUF_IN_LEN, MC_CMD_FREE_PIOBUF_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_FREE_PIOBUF; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_FREE_PIOBUF_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_FREE_PIOBUF_OUT_LEN; MCDI_IN_SET_DWORD(req, FREE_PIOBUF_IN_PIOBUF_HANDLE, handle); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_link_piobuf( __in efx_nic_t *enp, __in uint32_t vi_index, __in efx_piobuf_handle_t handle) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_LINK_PIOBUF_IN_LEN, MC_CMD_LINK_PIOBUF_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_LINK_PIOBUF; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_LINK_PIOBUF_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_LINK_PIOBUF_OUT_LEN; MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_PIOBUF_HANDLE, handle); MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_TXQ_INSTANCE, vi_index); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_unlink_piobuf( __in efx_nic_t *enp, __in uint32_t vi_index) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_UNLINK_PIOBUF_IN_LEN, MC_CMD_UNLINK_PIOBUF_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_UNLINK_PIOBUF; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_UNLINK_PIOBUF_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_UNLINK_PIOBUF_OUT_LEN; MCDI_IN_SET_DWORD(req, UNLINK_PIOBUF_IN_TXQ_INSTANCE, vi_index); - efx_mcdi_execute(enp, &req); + efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static void ef10_nic_alloc_piobufs( __in efx_nic_t *enp, __in uint32_t max_piobuf_count) { efx_piobuf_handle_t *handlep; unsigned int i; efx_rc_t rc; EFSYS_ASSERT3U(max_piobuf_count, <=, EFX_ARRAY_SIZE(enp->en_arch.ef10.ena_piobuf_handle)); enp->en_arch.ef10.ena_piobuf_count = 0; for (i = 0; i < max_piobuf_count; i++) { handlep = &enp->en_arch.ef10.ena_piobuf_handle[i]; if ((rc = efx_mcdi_alloc_piobuf(enp, handlep)) != 0) goto fail1; enp->en_arch.ef10.ena_pio_alloc_map[i] = 0; enp->en_arch.ef10.ena_piobuf_count++; } return; fail1: for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) { handlep = &enp->en_arch.ef10.ena_piobuf_handle[i]; efx_mcdi_free_piobuf(enp, *handlep); *handlep = EFX_PIOBUF_HANDLE_INVALID; } enp->en_arch.ef10.ena_piobuf_count = 0; } static void ef10_nic_free_piobufs( __in efx_nic_t *enp) { efx_piobuf_handle_t *handlep; unsigned int i; for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) { handlep = &enp->en_arch.ef10.ena_piobuf_handle[i]; efx_mcdi_free_piobuf(enp, *handlep); *handlep = EFX_PIOBUF_HANDLE_INVALID; } enp->en_arch.ef10.ena_piobuf_count = 0; } /* Sub-allocate a block from a piobuf */ __checkReturn efx_rc_t ef10_nic_pio_alloc( __inout efx_nic_t *enp, __out uint32_t *bufnump, __out efx_piobuf_handle_t *handlep, __out uint32_t *blknump, __out uint32_t *offsetp, __out size_t *sizep) { efx_nic_cfg_t *encp = &enp->en_nic_cfg; efx_drv_cfg_t *edcp = &enp->en_drv_cfg; uint32_t blk_per_buf; uint32_t buf, blk; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); EFSYS_ASSERT(bufnump); EFSYS_ASSERT(handlep); EFSYS_ASSERT(blknump); EFSYS_ASSERT(offsetp); EFSYS_ASSERT(sizep); if ((edcp->edc_pio_alloc_size == 0) || (enp->en_arch.ef10.ena_piobuf_count == 0)) { rc = ENOMEM; goto fail1; } blk_per_buf = encp->enc_piobuf_size / edcp->edc_pio_alloc_size; for (buf = 0; buf < enp->en_arch.ef10.ena_piobuf_count; buf++) { uint32_t *map = &enp->en_arch.ef10.ena_pio_alloc_map[buf]; if (~(*map) == 0) continue; EFSYS_ASSERT3U(blk_per_buf, <=, (8 * sizeof (*map))); for (blk = 0; blk < blk_per_buf; blk++) { if ((*map & (1u << blk)) == 0) { *map |= (1u << blk); goto done; } } } rc = ENOMEM; goto fail2; done: *handlep = enp->en_arch.ef10.ena_piobuf_handle[buf]; *bufnump = buf; *blknump = blk; *sizep = edcp->edc_pio_alloc_size; *offsetp = blk * (*sizep); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* Free a piobuf sub-allocated block */ __checkReturn efx_rc_t ef10_nic_pio_free( __inout efx_nic_t *enp, __in uint32_t bufnum, __in uint32_t blknum) { uint32_t *map; efx_rc_t rc; if ((bufnum >= enp->en_arch.ef10.ena_piobuf_count) || (blknum >= (8 * sizeof (*map)))) { rc = EINVAL; goto fail1; } map = &enp->en_arch.ef10.ena_pio_alloc_map[bufnum]; if ((*map & (1u << blknum)) == 0) { rc = ENOENT; goto fail2; } *map &= ~(1u << blknum); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nic_pio_link( __inout efx_nic_t *enp, __in uint32_t vi_index, __in efx_piobuf_handle_t handle) { return (efx_mcdi_link_piobuf(enp, vi_index, handle)); } __checkReturn efx_rc_t ef10_nic_pio_unlink( __inout efx_nic_t *enp, __in uint32_t vi_index) { return (efx_mcdi_unlink_piobuf(enp, vi_index)); } __checkReturn efx_rc_t ef10_get_datapath_caps( __in efx_nic_t *enp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t flags; uint32_t flags2; efx_rc_t rc; if ((rc = efx_mcdi_get_capabilities(enp, &flags, &flags2)) != 0) goto fail1; #define CAP_FLAG(flags1, field) \ ((flags1) & (1 << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## field ## _LBN))) #define CAP_FLAG2(flags2, field) \ ((flags2) & (1 << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## field ## _LBN))) /* * Huntington RXDP firmware inserts a 0 or 14 byte prefix. * We only support the 14 byte prefix here. */ if (CAP_FLAG(flags, RX_PREFIX_LEN_14) == 0) { rc = ENOTSUP; goto fail2; } encp->enc_rx_prefix_size = 14; /* Check if the firmware supports TSO */ encp->enc_fw_assisted_tso_enabled = CAP_FLAG(flags, TX_TSO) ? B_TRUE : B_FALSE; /* Check if the firmware supports FATSOv2 */ encp->enc_fw_assisted_tso_v2_enabled = CAP_FLAG2(flags2, TX_TSO_V2) ? B_TRUE : B_FALSE; /* Check if the firmware has vadapter/vport/vswitch support */ encp->enc_datapath_cap_evb = CAP_FLAG(flags, EVB) ? B_TRUE : B_FALSE; /* Check if the firmware supports VLAN insertion */ encp->enc_hw_tx_insert_vlan_enabled = CAP_FLAG(flags, TX_VLAN_INSERTION) ? B_TRUE : B_FALSE; /* Check if the firmware supports RX event batching */ encp->enc_rx_batching_enabled = CAP_FLAG(flags, RX_BATCHING) ? B_TRUE : B_FALSE; if (encp->enc_rx_batching_enabled) encp->enc_rx_batch_max = 16; /* Check if the firmware supports disabling scatter on RXQs */ encp->enc_rx_disable_scatter_supported = CAP_FLAG(flags, RX_DISABLE_SCATTER) ? B_TRUE : B_FALSE; /* Check if the firmware supports set mac with running filters */ encp->enc_allow_set_mac_with_installed_filters = CAP_FLAG(flags, VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED) ? B_TRUE : B_FALSE; /* * Check if firmware supports the extended MC_CMD_SET_MAC, which allows * specifying which parameters to configure. */ encp->enc_enhanced_set_mac_supported = CAP_FLAG(flags, SET_MAC_ENHANCED) ? B_TRUE : B_FALSE; #undef CAP_FLAG #undef CAP_FLAG2 return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #define EF10_LEGACY_PF_PRIVILEGE_MASK \ (MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_ONLOAD | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_PTP | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_INSECURE_FILTERS | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_UNICAST | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_MULTICAST | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_BROADCAST | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_ALL_MULTICAST | \ MC_CMD_PRIVILEGE_MASK_IN_GRP_PROMISCUOUS) #define EF10_LEGACY_VF_PRIVILEGE_MASK 0 __checkReturn efx_rc_t ef10_get_privilege_mask( __in efx_nic_t *enp, __out uint32_t *maskp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); uint32_t mask; efx_rc_t rc; if ((rc = efx_mcdi_privilege_mask(enp, encp->enc_pf, encp->enc_vf, &mask)) != 0) { if (rc != ENOTSUP) goto fail1; /* Fallback for old firmware without privilege mask support */ if (EFX_PCI_FUNCTION_IS_PF(encp)) { /* Assume PF has admin privilege */ mask = EF10_LEGACY_PF_PRIVILEGE_MASK; } else { /* VF is always unprivileged by default */ mask = EF10_LEGACY_VF_PRIVILEGE_MASK; } } *maskp = mask; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * The external port mapping is a one-based numbering of the external * connectors on the board. It does not distinguish off-board separated * outputs such as multi-headed cables. * The number of ports that map to each external port connector * on the board is determined by the chip family and the port modes to * which the NIC can be configured. The mapping table lists modes with * port numbering requirements in increasing order. */ static struct { efx_family_t family; uint32_t modes_mask; uint32_t stride; } __ef10_external_port_mappings[] = { /* Supported modes requiring 1 output per port */ { EFX_FAMILY_HUNTINGTON, (1 << TLV_PORT_MODE_10G) | (1 << TLV_PORT_MODE_10G_10G) | (1 << TLV_PORT_MODE_10G_10G_10G_10G), 1 }, { EFX_FAMILY_MEDFORD, (1 << TLV_PORT_MODE_10G) | (1 << TLV_PORT_MODE_10G_10G) | (1 << TLV_PORT_MODE_10G_10G_10G_10G), 1 }, /* Supported modes requiring 2 outputs per port */ { EFX_FAMILY_HUNTINGTON, (1 << TLV_PORT_MODE_40G) | (1 << TLV_PORT_MODE_40G_40G) | (1 << TLV_PORT_MODE_40G_10G_10G) | (1 << TLV_PORT_MODE_10G_10G_40G), 2 }, { EFX_FAMILY_MEDFORD, (1 << TLV_PORT_MODE_40G) | (1 << TLV_PORT_MODE_40G_40G) | (1 << TLV_PORT_MODE_40G_10G_10G) | (1 << TLV_PORT_MODE_10G_10G_40G), 2 }, /* Supported modes requiring 4 outputs per port */ { EFX_FAMILY_MEDFORD, (1 << TLV_PORT_MODE_10G_10G_10G_10G_Q) | (1 << TLV_PORT_MODE_10G_10G_10G_10G_Q2), 4 }, }; __checkReturn efx_rc_t ef10_external_port_mapping( __in efx_nic_t *enp, __in uint32_t port, __out uint8_t *external_portp) { efx_rc_t rc; int i; uint32_t port_modes; uint32_t matches; uint32_t stride = 1; /* default 1-1 mapping */ if ((rc = efx_mcdi_get_port_modes(enp, &port_modes, NULL)) != 0) { /* No port mode information available - use default mapping */ goto out; } /* * Infer the internal port -> external port mapping from * the possible port modes for this NIC. */ for (i = 0; i < EFX_ARRAY_SIZE(__ef10_external_port_mappings); ++i) { if (__ef10_external_port_mappings[i].family != enp->en_family) continue; matches = (__ef10_external_port_mappings[i].modes_mask & port_modes); if (matches != 0) { stride = __ef10_external_port_mappings[i].stride; port_modes &= ~matches; } } if (port_modes != 0) { /* Some advertised modes are not supported */ rc = ENOTSUP; goto fail1; } out: /* * Scale as required by last matched mode and then convert to * one-based numbering */ *external_portp = (uint8_t)(port / stride) + 1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nic_probe( __in efx_nic_t *enp) { const efx_nic_ops_t *enop = enp->en_enop; efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_drv_cfg_t *edcp = &(enp->en_drv_cfg); efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); /* Read and clear any assertion state */ if ((rc = efx_mcdi_read_assertion(enp)) != 0) goto fail1; /* Exit the assertion handler */ if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0) if (rc != EACCES) goto fail2; if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0) goto fail3; if ((rc = enop->eno_board_cfg(enp)) != 0) if (rc != EACCES) goto fail4; /* * Set default driver config limits (based on board config). * * FIXME: For now allocate a fixed number of VIs which is likely to be * sufficient and small enough to allow multiple functions on the same * port. */ edcp->edc_min_vi_count = edcp->edc_max_vi_count = MIN(128, MAX(encp->enc_rxq_limit, encp->enc_txq_limit)); /* The client driver must configure and enable PIO buffer support */ edcp->edc_max_piobuf_count = 0; edcp->edc_pio_alloc_size = 0; #if EFSYS_OPT_MAC_STATS /* Wipe the MAC statistics */ if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0) goto fail5; #endif #if EFSYS_OPT_LOOPBACK if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0) goto fail6; #endif #if EFSYS_OPT_MON_STATS if ((rc = mcdi_mon_cfg_build(enp)) != 0) { /* Unprivileged functions do not have access to sensors */ if (rc != EACCES) goto fail7; } #endif encp->enc_features = enp->en_features; return (0); #if EFSYS_OPT_MON_STATS fail7: EFSYS_PROBE(fail7); #endif #if EFSYS_OPT_LOOPBACK fail6: EFSYS_PROBE(fail6); #endif #if EFSYS_OPT_MAC_STATS fail5: EFSYS_PROBE(fail5); #endif fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nic_set_drv_limits( __inout efx_nic_t *enp, __in efx_drv_limits_t *edlp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_drv_cfg_t *edcp = &(enp->en_drv_cfg); uint32_t min_evq_count, max_evq_count; uint32_t min_rxq_count, max_rxq_count; uint32_t min_txq_count, max_txq_count; efx_rc_t rc; if (edlp == NULL) { rc = EINVAL; goto fail1; } /* Get minimum required and maximum usable VI limits */ min_evq_count = MIN(edlp->edl_min_evq_count, encp->enc_evq_limit); min_rxq_count = MIN(edlp->edl_min_rxq_count, encp->enc_rxq_limit); min_txq_count = MIN(edlp->edl_min_txq_count, encp->enc_txq_limit); edcp->edc_min_vi_count = MAX(min_evq_count, MAX(min_rxq_count, min_txq_count)); max_evq_count = MIN(edlp->edl_max_evq_count, encp->enc_evq_limit); max_rxq_count = MIN(edlp->edl_max_rxq_count, encp->enc_rxq_limit); max_txq_count = MIN(edlp->edl_max_txq_count, encp->enc_txq_limit); edcp->edc_max_vi_count = MAX(max_evq_count, MAX(max_rxq_count, max_txq_count)); /* * Check limits for sub-allocated piobuf blocks. * PIO is optional, so don't fail if the limits are incorrect. */ if ((encp->enc_piobuf_size == 0) || (encp->enc_piobuf_limit == 0) || (edlp->edl_min_pio_alloc_size == 0) || (edlp->edl_min_pio_alloc_size > encp->enc_piobuf_size)) { /* Disable PIO */ edcp->edc_max_piobuf_count = 0; edcp->edc_pio_alloc_size = 0; } else { uint32_t blk_size, blk_count, blks_per_piobuf; blk_size = MAX(edlp->edl_min_pio_alloc_size, encp->enc_piobuf_min_alloc_size); blks_per_piobuf = encp->enc_piobuf_size / blk_size; EFSYS_ASSERT3U(blks_per_piobuf, <=, 32); blk_count = (encp->enc_piobuf_limit * blks_per_piobuf); /* A zero max pio alloc count means unlimited */ if ((edlp->edl_max_pio_alloc_count > 0) && (edlp->edl_max_pio_alloc_count < blk_count)) { blk_count = edlp->edl_max_pio_alloc_count; } edcp->edc_pio_alloc_size = blk_size; edcp->edc_max_piobuf_count = (blk_count + (blks_per_piobuf - 1)) / blks_per_piobuf; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nic_reset( __in efx_nic_t *enp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_ENTITY_RESET_IN_LEN, MC_CMD_ENTITY_RESET_OUT_LEN)]; efx_rc_t rc; /* ef10_nic_reset() is called to recover from BADASSERT failures. */ if ((rc = efx_mcdi_read_assertion(enp)) != 0) goto fail1; if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0) goto fail2; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_ENTITY_RESET; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_ENTITY_RESET_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_ENTITY_RESET_OUT_LEN; MCDI_IN_POPULATE_DWORD_1(req, ENTITY_RESET_IN_FLAG, ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail3; } /* Clear RX/TX DMA queue errors */ enp->en_reset_flags &= ~(EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nic_init( __in efx_nic_t *enp) { efx_drv_cfg_t *edcp = &(enp->en_drv_cfg); uint32_t min_vi_count, max_vi_count; uint32_t vi_count, vi_base, vi_shift; uint32_t i; uint32_t retry; uint32_t delay_us; efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); /* Enable reporting of some events (e.g. link change) */ if ((rc = efx_mcdi_log_ctrl(enp)) != 0) goto fail1; /* Allocate (optional) on-chip PIO buffers */ ef10_nic_alloc_piobufs(enp, edcp->edc_max_piobuf_count); /* * For best performance, PIO writes should use a write-combined * (WC) memory mapping. Using a separate WC mapping for the PIO * aperture of each VI would be a burden to drivers (and not * possible if the host page size is >4Kbyte). * * To avoid this we use a single uncached (UC) mapping for VI * register access, and a single WC mapping for extra VIs used * for PIO writes. * * Each piobuf must be linked to a VI in the WC mapping, and to * each VI that is using a sub-allocated block from the piobuf. */ min_vi_count = edcp->edc_min_vi_count; max_vi_count = edcp->edc_max_vi_count + enp->en_arch.ef10.ena_piobuf_count; /* Ensure that the previously attached driver's VIs are freed */ if ((rc = efx_mcdi_free_vis(enp)) != 0) goto fail2; /* * Reserve VI resources (EVQ+RXQ+TXQ) for this PCIe function. If this * fails then retrying the request for fewer VI resources may succeed. */ vi_count = 0; if ((rc = efx_mcdi_alloc_vis(enp, min_vi_count, max_vi_count, &vi_base, &vi_count, &vi_shift)) != 0) goto fail3; EFSYS_PROBE2(vi_alloc, uint32_t, vi_base, uint32_t, vi_count); if (vi_count < min_vi_count) { rc = ENOMEM; goto fail4; } enp->en_arch.ef10.ena_vi_base = vi_base; enp->en_arch.ef10.ena_vi_count = vi_count; enp->en_arch.ef10.ena_vi_shift = vi_shift; if (vi_count < min_vi_count + enp->en_arch.ef10.ena_piobuf_count) { /* Not enough extra VIs to map piobufs */ ef10_nic_free_piobufs(enp); } enp->en_arch.ef10.ena_pio_write_vi_base = vi_count - enp->en_arch.ef10.ena_piobuf_count; /* Save UC memory mapping details */ enp->en_arch.ef10.ena_uc_mem_map_offset = 0; if (enp->en_arch.ef10.ena_piobuf_count > 0) { enp->en_arch.ef10.ena_uc_mem_map_size = (ER_DZ_TX_PIOBUF_STEP * enp->en_arch.ef10.ena_pio_write_vi_base); } else { enp->en_arch.ef10.ena_uc_mem_map_size = (ER_DZ_TX_PIOBUF_STEP * enp->en_arch.ef10.ena_vi_count); } /* Save WC memory mapping details */ enp->en_arch.ef10.ena_wc_mem_map_offset = enp->en_arch.ef10.ena_uc_mem_map_offset + enp->en_arch.ef10.ena_uc_mem_map_size; enp->en_arch.ef10.ena_wc_mem_map_size = (ER_DZ_TX_PIOBUF_STEP * enp->en_arch.ef10.ena_piobuf_count); /* Link piobufs to extra VIs in WC mapping */ if (enp->en_arch.ef10.ena_piobuf_count > 0) { for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) { rc = efx_mcdi_link_piobuf(enp, enp->en_arch.ef10.ena_pio_write_vi_base + i, enp->en_arch.ef10.ena_piobuf_handle[i]); if (rc != 0) break; } } /* * Allocate a vAdaptor attached to our upstream vPort/pPort. * * On a VF, this may fail with MC_CMD_ERR_NO_EVB_PORT (ENOENT) if the PF * driver has yet to bring up the EVB port. See bug 56147. In this case, * retry the request several times after waiting a while. The wait time * between retries starts small (10ms) and exponentially increases. * Total wait time is a little over two seconds. Retry logic in the * client driver may mean this whole loop is repeated if it continues to * fail. */ retry = 0; delay_us = 10000; while ((rc = efx_mcdi_vadaptor_alloc(enp, EVB_PORT_ID_ASSIGNED)) != 0) { if (EFX_PCI_FUNCTION_IS_PF(&enp->en_nic_cfg) || (rc != ENOENT)) { /* * Do not retry alloc for PF, or for other errors on * a VF. */ goto fail5; } /* VF startup before PF is ready. Retry allocation. */ if (retry > 5) { /* Too many attempts */ rc = EINVAL; goto fail6; } EFSYS_PROBE1(mcdi_no_evb_port_retry, int, retry); EFSYS_SLEEP(delay_us); retry++; if (delay_us < 500000) delay_us <<= 2; } enp->en_vport_id = EVB_PORT_ID_ASSIGNED; enp->en_nic_cfg.enc_mcdi_max_payload_length = MCDI_CTL_SDU_LEN_MAX_V2; return (0); fail6: EFSYS_PROBE(fail6); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); ef10_nic_free_piobufs(enp); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_nic_get_vi_pool( __in efx_nic_t *enp, __out uint32_t *vi_countp) { EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); /* * Report VIs that the client driver can use. * Do not include VIs used for PIO buffer writes. */ *vi_countp = enp->en_arch.ef10.ena_pio_write_vi_base; return (0); } __checkReturn efx_rc_t ef10_nic_get_bar_region( __in efx_nic_t *enp, __in efx_nic_region_t region, __out uint32_t *offsetp, __out size_t *sizep) { efx_rc_t rc; EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON || enp->en_family == EFX_FAMILY_MEDFORD); /* * TODO: Specify host memory mapping alignment and granularity * in efx_drv_limits_t so that they can be taken into account * when allocating extra VIs for PIO writes. */ switch (region) { case EFX_REGION_VI: /* UC mapped memory BAR region for VI registers */ *offsetp = enp->en_arch.ef10.ena_uc_mem_map_offset; *sizep = enp->en_arch.ef10.ena_uc_mem_map_size; break; case EFX_REGION_PIO_WRITE_VI: /* WC mapped memory BAR region for piobuf writes */ *offsetp = enp->en_arch.ef10.ena_wc_mem_map_offset; *sizep = enp->en_arch.ef10.ena_wc_mem_map_size; break; default: rc = EINVAL; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_nic_fini( __in efx_nic_t *enp) { uint32_t i; efx_rc_t rc; (void) efx_mcdi_vadaptor_free(enp, enp->en_vport_id); enp->en_vport_id = 0; /* Unlink piobufs from extra VIs in WC mapping */ if (enp->en_arch.ef10.ena_piobuf_count > 0) { for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) { rc = efx_mcdi_unlink_piobuf(enp, enp->en_arch.ef10.ena_pio_write_vi_base + i); if (rc != 0) break; } } ef10_nic_free_piobufs(enp); (void) efx_mcdi_free_vis(enp); enp->en_arch.ef10.ena_vi_count = 0; } void ef10_nic_unprobe( __in efx_nic_t *enp) { #if EFSYS_OPT_MON_STATS mcdi_mon_cfg_free(enp); #endif /* EFSYS_OPT_MON_STATS */ (void) efx_mcdi_drv_attach(enp, B_FALSE); } #if EFSYS_OPT_DIAG __checkReturn efx_rc_t ef10_nic_register_test( __in efx_nic_t *enp) { efx_rc_t rc; /* FIXME */ _NOTE(ARGUNUSED(enp)) if (B_FALSE) { rc = ENOTSUP; goto fail1; } /* FIXME */ return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_DIAG */ #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ Index: head/sys/dev/sfxge/common/ef10_rx.c =================================================================== --- head/sys/dev/sfxge/common/ef10_rx.c (revision 299924) +++ head/sys/dev/sfxge/common/ef10_rx.c (revision 299925) @@ -1,826 +1,826 @@ /*- * Copyright (c) 2012-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD static __checkReturn efx_rc_t efx_mcdi_init_rxq( __in efx_nic_t *enp, __in uint32_t size, __in uint32_t target_evq, __in uint32_t label, __in uint32_t instance, __in efsys_mem_t *esmp, __in boolean_t disable_scatter) { efx_mcdi_req_t req; uint8_t payload[ MAX(MC_CMD_INIT_RXQ_IN_LEN(EFX_RXQ_NBUFS(EFX_RXQ_MAXNDESCS)), MC_CMD_INIT_RXQ_OUT_LEN)]; int npages = EFX_RXQ_NBUFS(size); int i; efx_qword_t *dma_addr; uint64_t addr; efx_rc_t rc; EFSYS_ASSERT3U(size, <=, EFX_RXQ_MAXNDESCS); (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_INIT_RXQ; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_INIT_RXQ_IN_LEN(npages); req.emr_out_buf = payload; req.emr_out_length = MC_CMD_INIT_RXQ_OUT_LEN; MCDI_IN_SET_DWORD(req, INIT_RXQ_IN_SIZE, size); MCDI_IN_SET_DWORD(req, INIT_RXQ_IN_TARGET_EVQ, target_evq); MCDI_IN_SET_DWORD(req, INIT_RXQ_IN_LABEL, label); MCDI_IN_SET_DWORD(req, INIT_RXQ_IN_INSTANCE, instance); MCDI_IN_POPULATE_DWORD_6(req, INIT_RXQ_IN_FLAGS, INIT_RXQ_IN_FLAG_BUFF_MODE, 0, INIT_RXQ_IN_FLAG_HDR_SPLIT, 0, INIT_RXQ_IN_FLAG_TIMESTAMP, 0, INIT_RXQ_IN_CRC_MODE, 0, INIT_RXQ_IN_FLAG_PREFIX, 1, INIT_RXQ_IN_FLAG_DISABLE_SCATTER, disable_scatter); MCDI_IN_SET_DWORD(req, INIT_RXQ_IN_OWNER_ID, 0); MCDI_IN_SET_DWORD(req, INIT_RXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED); dma_addr = MCDI_IN2(req, efx_qword_t, INIT_RXQ_IN_DMA_ADDR); addr = EFSYS_MEM_ADDR(esmp); for (i = 0; i < npages; i++) { EFX_POPULATE_QWORD_2(*dma_addr, EFX_DWORD_1, (uint32_t)(addr >> 32), EFX_DWORD_0, (uint32_t)(addr & 0xffffffff)); dma_addr++; addr += EFX_BUF_SIZE; } efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_fini_rxq( __in efx_nic_t *enp, __in uint32_t instance) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_FINI_RXQ_IN_LEN, MC_CMD_FINI_RXQ_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_FINI_RXQ; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_FINI_RXQ_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_FINI_RXQ_OUT_LEN; MCDI_IN_SET_DWORD(req, FINI_RXQ_IN_INSTANCE, instance); - efx_mcdi_execute(enp, &req); + efx_mcdi_execute_quiet(enp, &req); if ((req.emr_rc != 0) && (req.emr_rc != MC_CMD_ERR_EALREADY)) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #if EFSYS_OPT_RX_SCALE static __checkReturn efx_rc_t efx_mcdi_rss_context_alloc( __in efx_nic_t *enp, __in efx_rx_scale_support_t scale_support, __in uint32_t num_queues, __out uint32_t *rss_contextp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)]; uint32_t rss_context; uint32_t context_type; efx_rc_t rc; if (num_queues > EFX_MAXRSS) { rc = EINVAL; goto fail1; } switch (scale_support) { case EFX_RX_SCALE_EXCLUSIVE: context_type = MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE; break; case EFX_RX_SCALE_SHARED: context_type = MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED; break; default: rc = EINVAL; goto fail2; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_RSS_CONTEXT_ALLOC; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN; MCDI_IN_SET_DWORD(req, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID, EVB_PORT_ID_ASSIGNED); MCDI_IN_SET_DWORD(req, RSS_CONTEXT_ALLOC_IN_TYPE, context_type); /* NUM_QUEUES is only used to validate indirection table offsets */ MCDI_IN_SET_DWORD(req, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, num_queues); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail3; } if (req.emr_out_length_used < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN) { rc = EMSGSIZE; goto fail4; } rss_context = MCDI_OUT_DWORD(req, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID); if (rss_context == EF10_RSS_CONTEXT_INVALID) { rc = ENOENT; goto fail5; } *rss_contextp = rss_context; return (0); fail5: EFSYS_PROBE(fail5); fail4: EFSYS_PROBE(fail4); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCALE */ #if EFSYS_OPT_RX_SCALE static efx_rc_t efx_mcdi_rss_context_free( __in efx_nic_t *enp, __in uint32_t rss_context) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_RSS_CONTEXT_FREE_IN_LEN, MC_CMD_RSS_CONTEXT_FREE_OUT_LEN)]; efx_rc_t rc; if (rss_context == EF10_RSS_CONTEXT_INVALID) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_RSS_CONTEXT_FREE; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_RSS_CONTEXT_FREE_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_RSS_CONTEXT_FREE_OUT_LEN; MCDI_IN_SET_DWORD(req, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID, rss_context); - efx_mcdi_execute(enp, &req); + efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCALE */ #if EFSYS_OPT_RX_SCALE static efx_rc_t efx_mcdi_rss_context_set_flags( __in efx_nic_t *enp, __in uint32_t rss_context, __in efx_rx_hash_type_t type) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN, MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN)]; efx_rc_t rc; if (rss_context == EF10_RSS_CONTEXT_INVALID) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_RSS_CONTEXT_SET_FLAGS; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN; MCDI_IN_SET_DWORD(req, RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID, rss_context); MCDI_IN_POPULATE_DWORD_4(req, RSS_CONTEXT_SET_FLAGS_IN_FLAGS, RSS_CONTEXT_SET_FLAGS_IN_TOEPLITZ_IPV4_EN, (type & (1U << EFX_RX_HASH_IPV4)) ? 1 : 0, RSS_CONTEXT_SET_FLAGS_IN_TOEPLITZ_TCPV4_EN, (type & (1U << EFX_RX_HASH_TCPIPV4)) ? 1 : 0, RSS_CONTEXT_SET_FLAGS_IN_TOEPLITZ_IPV6_EN, (type & (1U << EFX_RX_HASH_IPV6)) ? 1 : 0, RSS_CONTEXT_SET_FLAGS_IN_TOEPLITZ_TCPV6_EN, (type & (1U << EFX_RX_HASH_TCPIPV6)) ? 1 : 0); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCALE */ #if EFSYS_OPT_RX_SCALE static efx_rc_t efx_mcdi_rss_context_set_key( __in efx_nic_t *enp, __in uint32_t rss_context, __in_ecount(n) uint8_t *key, __in size_t n) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN, MC_CMD_RSS_CONTEXT_SET_KEY_OUT_LEN)]; efx_rc_t rc; if (rss_context == EF10_RSS_CONTEXT_INVALID) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_RSS_CONTEXT_SET_KEY; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_RSS_CONTEXT_SET_KEY_OUT_LEN; MCDI_IN_SET_DWORD(req, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID, rss_context); EFSYS_ASSERT3U(n, ==, MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN); if (n != MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN) { rc = EINVAL; goto fail2; } memcpy(MCDI_IN2(req, uint8_t, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY), key, n); efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail3; } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCALE */ #if EFSYS_OPT_RX_SCALE static efx_rc_t efx_mcdi_rss_context_set_table( __in efx_nic_t *enp, __in uint32_t rss_context, __in_ecount(n) unsigned int *table, __in size_t n) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN, MC_CMD_RSS_CONTEXT_SET_TABLE_OUT_LEN)]; uint8_t *req_table; int i, rc; if (rss_context == EF10_RSS_CONTEXT_INVALID) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_RSS_CONTEXT_SET_TABLE; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_RSS_CONTEXT_SET_TABLE_OUT_LEN; MCDI_IN_SET_DWORD(req, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID, rss_context); req_table = MCDI_IN2(req, uint8_t, RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE); for (i = 0; i < MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN; i++) { req_table[i] = (n > 0) ? (uint8_t)table[i % n] : 0; } efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCALE */ __checkReturn efx_rc_t ef10_rx_init( __in efx_nic_t *enp) { #if EFSYS_OPT_RX_SCALE if (efx_mcdi_rss_context_alloc(enp, EFX_RX_SCALE_EXCLUSIVE, EFX_MAXRSS, &enp->en_rss_context) == 0) { /* * Allocated an exclusive RSS context, which allows both the * indirection table and key to be modified. */ enp->en_rss_support = EFX_RX_SCALE_EXCLUSIVE; enp->en_hash_support = EFX_RX_HASH_AVAILABLE; } else { /* * Failed to allocate an exclusive RSS context. Continue * operation without support for RSS. The pseudo-header in * received packets will not contain a Toeplitz hash value. */ enp->en_rss_support = EFX_RX_SCALE_UNAVAILABLE; enp->en_hash_support = EFX_RX_HASH_UNAVAILABLE; } #endif /* EFSYS_OPT_RX_SCALE */ return (0); } #if EFSYS_OPT_RX_SCATTER __checkReturn efx_rc_t ef10_rx_scatter_enable( __in efx_nic_t *enp, __in unsigned int buf_size) { _NOTE(ARGUNUSED(enp, buf_size)) return (0); } #endif /* EFSYS_OPT_RX_SCATTER */ #if EFSYS_OPT_RX_SCALE __checkReturn efx_rc_t ef10_rx_scale_mode_set( __in efx_nic_t *enp, __in efx_rx_hash_alg_t alg, __in efx_rx_hash_type_t type, __in boolean_t insert) { efx_rc_t rc; EFSYS_ASSERT3U(alg, ==, EFX_RX_HASHALG_TOEPLITZ); EFSYS_ASSERT3U(insert, ==, B_TRUE); if ((alg != EFX_RX_HASHALG_TOEPLITZ) || (insert == B_FALSE)) { rc = EINVAL; goto fail1; } if (enp->en_rss_support == EFX_RX_SCALE_UNAVAILABLE) { rc = ENOTSUP; goto fail2; } if ((rc = efx_mcdi_rss_context_set_flags(enp, enp->en_rss_context, type)) != 0) goto fail3; return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCALE */ #if EFSYS_OPT_RX_SCALE __checkReturn efx_rc_t ef10_rx_scale_key_set( __in efx_nic_t *enp, __in_ecount(n) uint8_t *key, __in size_t n) { efx_rc_t rc; if (enp->en_rss_support == EFX_RX_SCALE_UNAVAILABLE) { rc = ENOTSUP; goto fail1; } if ((rc = efx_mcdi_rss_context_set_key(enp, enp->en_rss_context, key, n)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCALE */ #if EFSYS_OPT_RX_SCALE __checkReturn efx_rc_t ef10_rx_scale_tbl_set( __in efx_nic_t *enp, __in_ecount(n) unsigned int *table, __in size_t n) { efx_rc_t rc; if (enp->en_rss_support == EFX_RX_SCALE_UNAVAILABLE) { rc = ENOTSUP; goto fail1; } if ((rc = efx_mcdi_rss_context_set_table(enp, enp->en_rss_context, table, n)) != 0) goto fail2; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } #endif /* EFSYS_OPT_RX_SCALE */ /* * EF10 RX pseudo-header * --------------------- * * Receive packets are prefixed by an (optional) 14 byte pseudo-header: * * +00: Toeplitz hash value. * (32bit little-endian) * +04: Outer VLAN tag. Zero if the packet did not have an outer VLAN tag. * (16bit big-endian) * +06: Inner VLAN tag. Zero if the packet did not have an inner VLAN tag. * (16bit big-endian) * +08: Packet Length. Zero if the RX datapath was in cut-through mode. * (16bit little-endian) * +10: MAC timestamp. Zero if timestamping is not enabled. * (32bit little-endian) * * See "The RX Pseudo-header" in SF-109306-TC. */ __checkReturn efx_rc_t ef10_rx_prefix_pktlen( __in efx_nic_t *enp, __in uint8_t *buffer, __out uint16_t *lengthp) { /* * The RX pseudo-header contains the packet length, excluding the * pseudo-header. If the hardware receive datapath was operating in * cut-through mode then the length in the RX pseudo-header will be * zero, and the packet length must be obtained from the DMA length * reported in the RX event. */ *lengthp = buffer[8] | (buffer[9] << 8); return (0); } #if EFSYS_OPT_RX_SCALE __checkReturn uint32_t ef10_rx_prefix_hash( __in efx_nic_t *enp, __in efx_rx_hash_alg_t func, __in uint8_t *buffer) { switch (func) { case EFX_RX_HASHALG_TOEPLITZ: return (buffer[0] | (buffer[1] << 8) | (buffer[2] << 16) | (buffer[3] << 24)); default: EFSYS_ASSERT(0); return (0); } } #endif /* EFSYS_OPT_RX_SCALE */ void ef10_rx_qpost( __in efx_rxq_t *erp, __in_ecount(n) efsys_dma_addr_t *addrp, __in size_t size, __in unsigned int n, __in unsigned int completed, __in unsigned int added) { efx_qword_t qword; unsigned int i; unsigned int offset; unsigned int id; /* The client driver must not overfill the queue */ EFSYS_ASSERT3U(added - completed + n, <=, EFX_RXQ_LIMIT(erp->er_mask + 1)); id = added & (erp->er_mask); for (i = 0; i < n; i++) { EFSYS_PROBE4(rx_post, unsigned int, erp->er_index, unsigned int, id, efsys_dma_addr_t, addrp[i], size_t, size); EFX_POPULATE_QWORD_3(qword, ESF_DZ_RX_KER_BYTE_CNT, (uint32_t)(size), ESF_DZ_RX_KER_BUF_ADDR_DW0, (uint32_t)(addrp[i] & 0xffffffff), ESF_DZ_RX_KER_BUF_ADDR_DW1, (uint32_t)(addrp[i] >> 32)); offset = id * sizeof (efx_qword_t); EFSYS_MEM_WRITEQ(erp->er_esmp, offset, &qword); id = (id + 1) & (erp->er_mask); } } void ef10_rx_qpush( __in efx_rxq_t *erp, __in unsigned int added, __inout unsigned int *pushedp) { efx_nic_t *enp = erp->er_enp; unsigned int pushed = *pushedp; uint32_t wptr; efx_dword_t dword; /* Hardware has alignment restriction for WPTR */ wptr = P2ALIGN(added, EF10_RX_WPTR_ALIGN); if (pushed == wptr) return; *pushedp = wptr; /* Push the populated descriptors out */ wptr &= erp->er_mask; EFX_POPULATE_DWORD_1(dword, ERF_DZ_RX_DESC_WPTR, wptr); /* Guarantee ordering of memory (descriptors) and PIO (doorbell) */ EFX_DMA_SYNC_QUEUE_FOR_DEVICE(erp->er_esmp, erp->er_mask + 1, wptr, pushed & erp->er_mask); EFSYS_PIO_WRITE_BARRIER(); EFX_BAR_TBL_WRITED(enp, ER_DZ_RX_DESC_UPD_REG, erp->er_index, &dword, B_FALSE); } __checkReturn efx_rc_t ef10_rx_qflush( __in efx_rxq_t *erp) { efx_nic_t *enp = erp->er_enp; efx_rc_t rc; if ((rc = efx_mcdi_fini_rxq(enp, erp->er_index)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_rx_qenable( __in efx_rxq_t *erp) { /* FIXME */ _NOTE(ARGUNUSED(erp)) /* FIXME */ } __checkReturn efx_rc_t ef10_rx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efx_rxq_type_t type, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in efx_evq_t *eep, __in efx_rxq_t *erp) { efx_nic_cfg_t *encp = &(enp->en_nic_cfg); efx_rc_t rc; boolean_t disable_scatter; _NOTE(ARGUNUSED(erp)) EFX_STATIC_ASSERT(EFX_EV_RX_NLABELS == (1 << ESF_DZ_RX_QLABEL_WIDTH)); EFSYS_ASSERT3U(label, <, EFX_EV_RX_NLABELS); EFSYS_ASSERT3U(enp->en_rx_qcount + 1, <, encp->enc_rxq_limit); EFX_STATIC_ASSERT(ISP2(EFX_RXQ_MAXNDESCS)); EFX_STATIC_ASSERT(ISP2(EFX_RXQ_MINNDESCS)); if (!ISP2(n) || (n < EFX_RXQ_MINNDESCS) || (n > EFX_RXQ_MAXNDESCS)) { rc = EINVAL; goto fail1; } if (index >= encp->enc_rxq_limit) { rc = EINVAL; goto fail2; } /* Scatter can only be disabled if the firmware supports doing so */ if ((type != EFX_RXQ_TYPE_SCATTER) && enp->en_nic_cfg.enc_rx_disable_scatter_supported) { disable_scatter = B_TRUE; } else { disable_scatter = B_FALSE; } if ((rc = efx_mcdi_init_rxq(enp, n, eep->ee_index, label, index, esmp, disable_scatter)) != 0) goto fail3; erp->er_eep = eep; erp->er_label = label; ef10_ev_rxlabel_init(eep, erp, label); return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_rx_qdestroy( __in efx_rxq_t *erp) { efx_nic_t *enp = erp->er_enp; efx_evq_t *eep = erp->er_eep; unsigned int label = erp->er_label; ef10_ev_rxlabel_fini(eep, label); EFSYS_ASSERT(enp->en_rx_qcount != 0); --enp->en_rx_qcount; EFSYS_KMEM_FREE(enp->en_esip, sizeof (efx_rxq_t), erp); } void ef10_rx_fini( __in efx_nic_t *enp) { #if EFSYS_OPT_RX_SCALE if (enp->en_rss_support != EFX_RX_SCALE_UNAVAILABLE) { (void) efx_mcdi_rss_context_free(enp, enp->en_rss_context); } enp->en_rss_context = 0; enp->en_rss_support = EFX_RX_SCALE_UNAVAILABLE; #else _NOTE(ARGUNUSED(enp)) #endif /* EFSYS_OPT_RX_SCALE */ } #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */ Index: head/sys/dev/sfxge/common/ef10_tx.c =================================================================== --- head/sys/dev/sfxge/common/ef10_tx.c (revision 299924) +++ head/sys/dev/sfxge/common/ef10_tx.c (revision 299925) @@ -1,710 +1,710 @@ /*- * Copyright (c) 2012-2015 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include __FBSDID("$FreeBSD$"); #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD #if EFSYS_OPT_QSTATS #define EFX_TX_QSTAT_INCR(_etp, _stat) \ do { \ (_etp)->et_stat[_stat]++; \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #else #define EFX_TX_QSTAT_INCR(_etp, _stat) #endif static __checkReturn efx_rc_t efx_mcdi_init_txq( __in efx_nic_t *enp, __in uint32_t size, __in uint32_t target_evq, __in uint32_t label, __in uint32_t instance, __in uint16_t flags, __in efsys_mem_t *esmp) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_INIT_TXQ_IN_LEN(EFX_TXQ_MAX_BUFS), MC_CMD_INIT_TXQ_OUT_LEN)]; efx_qword_t *dma_addr; uint64_t addr; int npages; int i; efx_rc_t rc; EFSYS_ASSERT(EFX_TXQ_MAX_BUFS >= EFX_TXQ_NBUFS(EFX_TXQ_MAXNDESCS(&enp->en_nic_cfg))); npages = EFX_TXQ_NBUFS(size); if (npages > MC_CMD_INIT_TXQ_IN_DMA_ADDR_MAXNUM) { rc = EINVAL; goto fail1; } (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_INIT_TXQ; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_INIT_TXQ_IN_LEN(npages); req.emr_out_buf = payload; req.emr_out_length = MC_CMD_INIT_TXQ_OUT_LEN; MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_SIZE, size); MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_TARGET_EVQ, target_evq); MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_LABEL, label); MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_INSTANCE, instance); MCDI_IN_POPULATE_DWORD_7(req, INIT_TXQ_IN_FLAGS, INIT_TXQ_IN_FLAG_BUFF_MODE, 0, INIT_TXQ_IN_FLAG_IP_CSUM_DIS, (flags & EFX_TXQ_CKSUM_IPV4) ? 0 : 1, INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, (flags & EFX_TXQ_CKSUM_TCPUDP) ? 0 : 1, INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, (flags & EFX_TXQ_FATSOV2) ? 1 : 0, INIT_TXQ_IN_FLAG_TCP_UDP_ONLY, 0, INIT_TXQ_IN_CRC_MODE, 0, INIT_TXQ_IN_FLAG_TIMESTAMP, 0); MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_OWNER_ID, 0); MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED); dma_addr = MCDI_IN2(req, efx_qword_t, INIT_TXQ_IN_DMA_ADDR); addr = EFSYS_MEM_ADDR(esmp); for (i = 0; i < npages; i++) { EFX_POPULATE_QWORD_2(*dma_addr, EFX_DWORD_1, (uint32_t)(addr >> 32), EFX_DWORD_0, (uint32_t)(addr & 0xffffffff)); dma_addr++; addr += EFX_BUF_SIZE; } efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail2; } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_fini_txq( __in efx_nic_t *enp, __in uint32_t instance) { efx_mcdi_req_t req; uint8_t payload[MAX(MC_CMD_FINI_TXQ_IN_LEN, MC_CMD_FINI_TXQ_OUT_LEN)]; efx_rc_t rc; (void) memset(payload, 0, sizeof (payload)); req.emr_cmd = MC_CMD_FINI_TXQ; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_FINI_TXQ_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_FINI_TXQ_OUT_LEN; MCDI_IN_SET_DWORD(req, FINI_TXQ_IN_INSTANCE, instance); - efx_mcdi_execute(enp, &req); + efx_mcdi_execute_quiet(enp, &req); if ((req.emr_rc != 0) && (req.emr_rc != MC_CMD_ERR_EALREADY)) { rc = req.emr_rc; goto fail1; } return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_tx_init( __in efx_nic_t *enp) { _NOTE(ARGUNUSED(enp)) return (0); } void ef10_tx_fini( __in efx_nic_t *enp) { _NOTE(ARGUNUSED(enp)) } __checkReturn efx_rc_t ef10_tx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efsys_mem_t *esmp, __in size_t n, __in uint32_t id, __in uint16_t flags, __in efx_evq_t *eep, __in efx_txq_t *etp, __out unsigned int *addedp) { efx_qword_t desc; efx_rc_t rc; if ((rc = efx_mcdi_init_txq(enp, n, eep->ee_index, label, index, flags, esmp)) != 0) goto fail1; /* * A previous user of this TX queue may have written a descriptor to the * TX push collector, but not pushed the doorbell (e.g. after a crash). * The next doorbell write would then push the stale descriptor. * * Ensure the (per network port) TX push collector is cleared by writing * a no-op TX option descriptor. See bug29981 for details. */ *addedp = 1; EFX_POPULATE_QWORD_4(desc, ESF_DZ_TX_DESC_IS_OPT, 1, ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_CRC_CSUM, ESF_DZ_TX_OPTION_UDP_TCP_CSUM, (flags & EFX_TXQ_CKSUM_TCPUDP) ? 1 : 0, ESF_DZ_TX_OPTION_IP_CSUM, (flags & EFX_TXQ_CKSUM_IPV4) ? 1 : 0); EFSYS_MEM_WRITEQ(etp->et_esmp, 0, &desc); ef10_tx_qpush(etp, *addedp, 0); return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_tx_qdestroy( __in efx_txq_t *etp) { /* FIXME */ _NOTE(ARGUNUSED(etp)) /* FIXME */ } __checkReturn efx_rc_t ef10_tx_qpio_enable( __in efx_txq_t *etp) { efx_nic_t *enp = etp->et_enp; efx_piobuf_handle_t handle; efx_rc_t rc; if (etp->et_pio_size != 0) { rc = EALREADY; goto fail1; } /* Sub-allocate a PIO block from a piobuf */ if ((rc = ef10_nic_pio_alloc(enp, &etp->et_pio_bufnum, &handle, &etp->et_pio_blknum, &etp->et_pio_offset, &etp->et_pio_size)) != 0) { goto fail2; } EFSYS_ASSERT3U(etp->et_pio_size, !=, 0); /* Link the piobuf to this TXQ */ if ((rc = ef10_nic_pio_link(enp, etp->et_index, handle)) != 0) { goto fail3; } /* * et_pio_offset is the offset of the sub-allocated block within the * hardware PIO buffer. It is used as the buffer address in the PIO * option descriptor. * * et_pio_write_offset is the offset of the sub-allocated block from the * start of the write-combined memory mapping, and is used for writing * data into the PIO buffer. */ etp->et_pio_write_offset = (etp->et_pio_bufnum * ER_DZ_TX_PIOBUF_STEP) + ER_DZ_TX_PIOBUF_OFST + etp->et_pio_offset; return (0); fail3: EFSYS_PROBE(fail3); ef10_nic_pio_free(enp, etp->et_pio_bufnum, etp->et_pio_blknum); etp->et_pio_size = 0; fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_tx_qpio_disable( __in efx_txq_t *etp) { efx_nic_t *enp = etp->et_enp; if (etp->et_pio_size != 0) { /* Unlink the piobuf from this TXQ */ ef10_nic_pio_unlink(enp, etp->et_index); /* Free the sub-allocated PIO block */ ef10_nic_pio_free(enp, etp->et_pio_bufnum, etp->et_pio_blknum); etp->et_pio_size = 0; etp->et_pio_write_offset = 0; } } __checkReturn efx_rc_t ef10_tx_qpio_write( __in efx_txq_t *etp, __in_ecount(length) uint8_t *buffer, __in size_t length, __in size_t offset) { efx_nic_t *enp = etp->et_enp; efsys_bar_t *esbp = enp->en_esbp; uint32_t write_offset; uint32_t write_offset_limit; efx_qword_t *eqp; efx_rc_t rc; EFSYS_ASSERT(length % sizeof (efx_qword_t) == 0); if (etp->et_pio_size == 0) { rc = ENOENT; goto fail1; } if (offset + length > etp->et_pio_size) { rc = ENOSPC; goto fail2; } /* * Writes to PIO buffers must be 64 bit aligned, and multiples of * 64 bits. */ write_offset = etp->et_pio_write_offset + offset; write_offset_limit = write_offset + length; eqp = (efx_qword_t *)buffer; while (write_offset < write_offset_limit) { EFSYS_BAR_WC_WRITEQ(esbp, write_offset, eqp); eqp++; write_offset += sizeof (efx_qword_t); } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_tx_qpio_post( __in efx_txq_t *etp, __in size_t pkt_length, __in unsigned int completed, __inout unsigned int *addedp) { efx_qword_t pio_desc; unsigned int id; size_t offset; unsigned int added = *addedp; efx_rc_t rc; if (added - completed + 1 > EFX_TXQ_LIMIT(etp->et_mask + 1)) { rc = ENOSPC; goto fail1; } if (etp->et_pio_size == 0) { rc = ENOENT; goto fail2; } id = added++ & etp->et_mask; offset = id * sizeof (efx_qword_t); EFSYS_PROBE4(tx_pio_post, unsigned int, etp->et_index, unsigned int, id, uint32_t, etp->et_pio_offset, size_t, pkt_length); EFX_POPULATE_QWORD_5(pio_desc, ESF_DZ_TX_DESC_IS_OPT, 1, ESF_DZ_TX_OPTION_TYPE, 1, ESF_DZ_TX_PIO_CONT, 0, ESF_DZ_TX_PIO_BYTE_CNT, pkt_length, ESF_DZ_TX_PIO_BUF_ADDR, etp->et_pio_offset); EFSYS_MEM_WRITEQ(etp->et_esmp, offset, &pio_desc); EFX_TX_QSTAT_INCR(etp, TX_POST_PIO); *addedp = added; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_tx_qpost( __in efx_txq_t *etp, __in_ecount(n) efx_buffer_t *eb, __in unsigned int n, __in unsigned int completed, __inout unsigned int *addedp) { unsigned int added = *addedp; unsigned int i; efx_rc_t rc; if (added - completed + n > EFX_TXQ_LIMIT(etp->et_mask + 1)) { rc = ENOSPC; goto fail1; } for (i = 0; i < n; i++) { efx_buffer_t *ebp = &eb[i]; efsys_dma_addr_t addr = ebp->eb_addr; size_t size = ebp->eb_size; boolean_t eop = ebp->eb_eop; unsigned int id; size_t offset; efx_qword_t qword; /* Fragments must not span 4k boundaries. */ EFSYS_ASSERT(P2ROUNDUP(addr + 1, 4096) >= (addr + size)); id = added++ & etp->et_mask; offset = id * sizeof (efx_qword_t); EFSYS_PROBE5(tx_post, unsigned int, etp->et_index, unsigned int, id, efsys_dma_addr_t, addr, size_t, size, boolean_t, eop); EFX_POPULATE_QWORD_5(qword, ESF_DZ_TX_KER_TYPE, 0, ESF_DZ_TX_KER_CONT, (eop) ? 0 : 1, ESF_DZ_TX_KER_BYTE_CNT, (uint32_t)(size), ESF_DZ_TX_KER_BUF_ADDR_DW0, (uint32_t)(addr & 0xffffffff), ESF_DZ_TX_KER_BUF_ADDR_DW1, (uint32_t)(addr >> 32)); EFSYS_MEM_WRITEQ(etp->et_esmp, offset, &qword); } EFX_TX_QSTAT_INCR(etp, TX_POST); *addedp = added; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * This improves performance by pushing a TX descriptor at the same time as the * doorbell. The descriptor must be added to the TXQ, so that can be used if the * hardware decides not to use the pushed descriptor. */ void ef10_tx_qpush( __in efx_txq_t *etp, __in unsigned int added, __in unsigned int pushed) { efx_nic_t *enp = etp->et_enp; unsigned int wptr; unsigned int id; size_t offset; efx_qword_t desc; efx_oword_t oword; wptr = added & etp->et_mask; id = pushed & etp->et_mask; offset = id * sizeof (efx_qword_t); EFSYS_MEM_READQ(etp->et_esmp, offset, &desc); EFX_POPULATE_OWORD_3(oword, ERF_DZ_TX_DESC_WPTR, wptr, ERF_DZ_TX_DESC_HWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_1), ERF_DZ_TX_DESC_LWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_0)); /* Guarantee ordering of memory (descriptors) and PIO (doorbell) */ EFX_DMA_SYNC_QUEUE_FOR_DEVICE(etp->et_esmp, etp->et_mask + 1, wptr, id); EFSYS_PIO_WRITE_BARRIER(); EFX_BAR_TBL_DOORBELL_WRITEO(enp, ER_DZ_TX_DESC_UPD_REG, etp->et_index, &oword); } __checkReturn efx_rc_t ef10_tx_qdesc_post( __in efx_txq_t *etp, __in_ecount(n) efx_desc_t *ed, __in unsigned int n, __in unsigned int completed, __inout unsigned int *addedp) { unsigned int added = *addedp; unsigned int i; efx_rc_t rc; if (added - completed + n > EFX_TXQ_LIMIT(etp->et_mask + 1)) { rc = ENOSPC; goto fail1; } for (i = 0; i < n; i++) { efx_desc_t *edp = &ed[i]; unsigned int id; size_t offset; id = added++ & etp->et_mask; offset = id * sizeof (efx_desc_t); EFSYS_MEM_WRITEQ(etp->et_esmp, offset, &edp->ed_eq); } EFSYS_PROBE3(tx_desc_post, unsigned int, etp->et_index, unsigned int, added, unsigned int, n); EFX_TX_QSTAT_INCR(etp, TX_POST); *addedp = added; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_tx_qdesc_dma_create( __in efx_txq_t *etp, __in efsys_dma_addr_t addr, __in size_t size, __in boolean_t eop, __out efx_desc_t *edp) { /* Fragments must not span 4k boundaries. */ EFSYS_ASSERT(P2ROUNDUP(addr + 1, 4096) >= addr + size); EFSYS_PROBE4(tx_desc_dma_create, unsigned int, etp->et_index, efsys_dma_addr_t, addr, size_t, size, boolean_t, eop); EFX_POPULATE_QWORD_5(edp->ed_eq, ESF_DZ_TX_KER_TYPE, 0, ESF_DZ_TX_KER_CONT, (eop) ? 0 : 1, ESF_DZ_TX_KER_BYTE_CNT, (uint32_t)(size), ESF_DZ_TX_KER_BUF_ADDR_DW0, (uint32_t)(addr & 0xffffffff), ESF_DZ_TX_KER_BUF_ADDR_DW1, (uint32_t)(addr >> 32)); } void ef10_tx_qdesc_tso_create( __in efx_txq_t *etp, __in uint16_t ipv4_id, __in uint32_t tcp_seq, __in uint8_t tcp_flags, __out efx_desc_t *edp) { EFSYS_PROBE4(tx_desc_tso_create, unsigned int, etp->et_index, uint16_t, ipv4_id, uint32_t, tcp_seq, uint8_t, tcp_flags); EFX_POPULATE_QWORD_5(edp->ed_eq, ESF_DZ_TX_DESC_IS_OPT, 1, ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO, ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags, ESF_DZ_TX_TSO_IP_ID, ipv4_id, ESF_DZ_TX_TSO_TCP_SEQNO, tcp_seq); } void ef10_tx_qdesc_tso2_create( __in efx_txq_t *etp, __in uint16_t ipv4_id, __in uint32_t tcp_seq, __in uint16_t tcp_mss, __out_ecount(count) efx_desc_t *edp, __in int count) { EFSYS_PROBE4(tx_desc_tso2_create, unsigned int, etp->et_index, uint16_t, ipv4_id, uint32_t, tcp_seq, uint16_t, tcp_mss); EFSYS_ASSERT(count >= EFX_TX_FATSOV2_OPT_NDESCS); EFX_POPULATE_QWORD_5(edp[0].ed_eq, ESF_DZ_TX_DESC_IS_OPT, 1, ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO, ESF_DZ_TX_TSO_OPTION_TYPE, ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A, ESF_DZ_TX_TSO_IP_ID, ipv4_id, ESF_DZ_TX_TSO_TCP_SEQNO, tcp_seq); EFX_POPULATE_QWORD_4(edp[1].ed_eq, ESF_DZ_TX_DESC_IS_OPT, 1, ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO, ESF_DZ_TX_TSO_OPTION_TYPE, ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B, ESF_DZ_TX_TSO_TCP_MSS, tcp_mss); } void ef10_tx_qdesc_vlantci_create( __in efx_txq_t *etp, __in uint16_t tci, __out efx_desc_t *edp) { EFSYS_PROBE2(tx_desc_vlantci_create, unsigned int, etp->et_index, uint16_t, tci); EFX_POPULATE_QWORD_4(edp->ed_eq, ESF_DZ_TX_DESC_IS_OPT, 1, ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_VLAN, ESF_DZ_TX_VLAN_OP, tci ? 1 : 0, ESF_DZ_TX_VLAN_TAG1, tci); } __checkReturn efx_rc_t ef10_tx_qpace( __in efx_txq_t *etp, __in unsigned int ns) { efx_rc_t rc; /* FIXME */ _NOTE(ARGUNUSED(etp, ns)) if (B_FALSE) { rc = ENOTSUP; goto fail1; } /* FIXME */ return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_tx_qflush( __in efx_txq_t *etp) { efx_nic_t *enp = etp->et_enp; efx_rc_t rc; if ((rc = efx_mcdi_fini_txq(enp, etp->et_index)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_tx_qenable( __in efx_txq_t *etp) { /* FIXME */ _NOTE(ARGUNUSED(etp)) /* FIXME */ } #if EFSYS_OPT_QSTATS void ef10_tx_qstats_update( __in efx_txq_t *etp, __inout_ecount(TX_NQSTATS) efsys_stat_t *stat) { unsigned int id; for (id = 0; id < TX_NQSTATS; id++) { efsys_stat_t *essp = &stat[id]; EFSYS_STAT_INCR(essp, etp->et_stat[id]); etp->et_stat[id] = 0; } } #endif /* EFSYS_OPT_QSTATS */ #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */