Index: head/sys/dev/bwi/if_bwi.c =================================================================== --- head/sys/dev/bwi/if_bwi.c (revision 298817) +++ head/sys/dev/bwi/if_bwi.c (revision 298818) @@ -1,3975 +1,3975 @@ /* * Copyright (c) 2007 The DragonFly Project. All rights reserved. * * This code is derived from software contributed to The DragonFly Project * by Sepherosa Ziehau * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name of The DragonFly Project nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific, prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_bwi.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif #include #include #include #include #include #include #include #include struct bwi_clock_freq { u_int clkfreq_min; u_int clkfreq_max; }; struct bwi_myaddr_bssid { uint8_t myaddr[IEEE80211_ADDR_LEN]; uint8_t bssid[IEEE80211_ADDR_LEN]; } __packed; static struct ieee80211vap *bwi_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void bwi_vap_delete(struct ieee80211vap *); static void bwi_init(struct bwi_softc *); static void bwi_parent(struct ieee80211com *); static int bwi_transmit(struct ieee80211com *, struct mbuf *); static void bwi_start_locked(struct bwi_softc *); static int bwi_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void bwi_watchdog(void *); static void bwi_scan_start(struct ieee80211com *); static void bwi_set_channel(struct ieee80211com *); static void bwi_scan_end(struct ieee80211com *); static int bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void bwi_updateslot(struct ieee80211com *); static int bwi_media_change(struct ifnet *); static void bwi_calibrate(void *); static int bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *); static int bwi_calc_noise(struct bwi_softc *); static __inline uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phytype); static void bwi_rx_radiotap(struct bwi_softc *, struct mbuf *, struct bwi_rxbuf_hdr *, const void *, int, int, int); static void bwi_restart(void *, int); static void bwi_init_statechg(struct bwi_softc *, int); static void bwi_stop(struct bwi_softc *, int); static void bwi_stop_locked(struct bwi_softc *, int); static int bwi_newbuf(struct bwi_softc *, int, int); static int bwi_encap(struct bwi_softc *, int, struct mbuf *, struct ieee80211_node *); static int bwi_encap_raw(struct bwi_softc *, int, struct mbuf *, struct ieee80211_node *, const struct ieee80211_bpf_params *); static void bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t, bus_addr_t, int, int); static void bwi_reset_rx_ring32(struct bwi_softc *, uint32_t); static int bwi_init_tx_ring32(struct bwi_softc *, int); static int bwi_init_rx_ring32(struct bwi_softc *); static int bwi_init_txstats32(struct bwi_softc *); static void bwi_free_tx_ring32(struct bwi_softc *, int); static void bwi_free_rx_ring32(struct bwi_softc *); static void bwi_free_txstats32(struct bwi_softc *); static void bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int); static void bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *, int, bus_addr_t, int); static int bwi_rxeof32(struct bwi_softc *); static void bwi_start_tx32(struct bwi_softc *, uint32_t, int); static void bwi_txeof_status32(struct bwi_softc *); static int bwi_init_tx_ring64(struct bwi_softc *, int); static int bwi_init_rx_ring64(struct bwi_softc *); static int bwi_init_txstats64(struct bwi_softc *); static void bwi_free_tx_ring64(struct bwi_softc *, int); static void bwi_free_rx_ring64(struct bwi_softc *); static void bwi_free_txstats64(struct bwi_softc *); static void bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int); static void bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *, int, bus_addr_t, int); static int bwi_rxeof64(struct bwi_softc *); static void bwi_start_tx64(struct bwi_softc *, uint32_t, int); static void bwi_txeof_status64(struct bwi_softc *); static int bwi_rxeof(struct bwi_softc *, int); static void _bwi_txeof(struct bwi_softc *, uint16_t, int, int); static void bwi_txeof(struct bwi_softc *); static void bwi_txeof_status(struct bwi_softc *, int); static void bwi_enable_intrs(struct bwi_softc *, uint32_t); static void bwi_disable_intrs(struct bwi_softc *, uint32_t); static int bwi_dma_alloc(struct bwi_softc *); static void bwi_dma_free(struct bwi_softc *); static int bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t, struct bwi_ring_data *, bus_size_t, uint32_t); static int bwi_dma_mbuf_create(struct bwi_softc *); static void bwi_dma_mbuf_destroy(struct bwi_softc *, int, int); static int bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t); static void bwi_dma_txstats_free(struct bwi_softc *); static void bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int); static void bwi_dma_buf_addr(void *, bus_dma_segment_t *, int, bus_size_t, int); static void bwi_power_on(struct bwi_softc *, int); static int bwi_power_off(struct bwi_softc *, int); static int bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode); static int bwi_set_clock_delay(struct bwi_softc *); static void bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *); static int bwi_get_pwron_delay(struct bwi_softc *sc); static void bwi_set_addr_filter(struct bwi_softc *, uint16_t, const uint8_t *); static void bwi_set_bssid(struct bwi_softc *, const uint8_t *); static void bwi_get_card_flags(struct bwi_softc *); static void bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *); static int bwi_bus_attach(struct bwi_softc *); static int bwi_bbp_attach(struct bwi_softc *); static int bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode); static void bwi_bbp_power_off(struct bwi_softc *); static const char *bwi_regwin_name(const struct bwi_regwin *); static uint32_t bwi_regwin_disable_bits(struct bwi_softc *); static void bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *); static int bwi_regwin_select(struct bwi_softc *, int); static void bwi_led_attach(struct bwi_softc *); static void bwi_led_newstate(struct bwi_softc *, enum ieee80211_state); static void bwi_led_event(struct bwi_softc *, int); static void bwi_led_blink_start(struct bwi_softc *, int, int); static void bwi_led_blink_next(void *); static void bwi_led_blink_end(void *); static const struct { uint16_t did_min; uint16_t did_max; uint16_t bbp_id; } bwi_bbpid_map[] = { { 0x4301, 0x4301, 0x4301 }, { 0x4305, 0x4307, 0x4307 }, { 0x4402, 0x4403, 0x4402 }, { 0x4610, 0x4615, 0x4610 }, { 0x4710, 0x4715, 0x4710 }, { 0x4720, 0x4725, 0x4309 } }; static const struct { uint16_t bbp_id; int nregwin; } bwi_regwin_count[] = { { 0x4301, 5 }, { 0x4306, 6 }, { 0x4307, 5 }, { 0x4310, 8 }, { 0x4401, 3 }, { 0x4402, 3 }, { 0x4610, 9 }, { 0x4704, 9 }, { 0x4710, 9 }, { 0x5365, 7 } }; #define CLKSRC(src) \ [BWI_CLKSRC_ ## src] = { \ .freq_min = BWI_CLKSRC_ ##src## _FMIN, \ .freq_max = BWI_CLKSRC_ ##src## _FMAX \ } static const struct { u_int freq_min; u_int freq_max; } bwi_clkfreq[BWI_CLKSRC_MAX] = { CLKSRC(LP_OSC), CLKSRC(CS_OSC), CLKSRC(PCI) }; #undef CLKSRC #define VENDOR_LED_ACT(vendor) \ { \ .vid = PCI_VENDOR_##vendor, \ .led_act = { BWI_VENDOR_LED_ACT_##vendor } \ } static const struct { #define PCI_VENDOR_COMPAQ 0x0e11 #define PCI_VENDOR_LINKSYS 0x1737 uint16_t vid; uint8_t led_act[BWI_LED_MAX]; } bwi_vendor_led_act[] = { VENDOR_LED_ACT(COMPAQ), VENDOR_LED_ACT(LINKSYS) #undef PCI_VENDOR_LINKSYS #undef PCI_VENDOR_COMPAQ }; static const uint8_t bwi_default_led_act[BWI_LED_MAX] = { BWI_VENDOR_LED_ACT_DEFAULT }; #undef VENDOR_LED_ACT static const struct { int on_dur; int off_dur; } bwi_led_duration[109] = { [0] = { 400, 100 }, [2] = { 150, 75 }, [4] = { 90, 45 }, [11] = { 66, 34 }, [12] = { 53, 26 }, [18] = { 42, 21 }, [22] = { 35, 17 }, [24] = { 32, 16 }, [36] = { 21, 10 }, [48] = { 16, 8 }, [72] = { 11, 5 }, [96] = { 9, 4 }, [108] = { 7, 3 } }; #ifdef BWI_DEBUG #ifdef BWI_DEBUG_VERBOSE static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER; #else static uint32_t bwi_debug; #endif TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug); #endif /* BWI_DEBUG */ static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN]; uint16_t bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs) { return CSR_READ_2(sc, ofs + BWI_SPROM_START); } static __inline void bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array, int ndesc, int desc_idx, bus_addr_t paddr, int buf_len, int tx) { struct bwi_desc32 *desc = &desc_array[desc_idx]; uint32_t ctrl, addr, addr_hi, addr_lo; addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK); addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK); addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) | __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK); ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) | __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK); if (desc_idx == ndesc - 1) ctrl |= BWI_DESC32_C_EOR; if (tx) { /* XXX */ ctrl |= BWI_DESC32_C_FRAME_START | BWI_DESC32_C_FRAME_END | BWI_DESC32_C_INTR; } desc->addr = htole32(addr); desc->ctrl = htole32(ctrl); } int bwi_attach(struct bwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; device_t dev = sc->sc_dev; struct bwi_mac *mac; struct bwi_phy *phy; - uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)]; + uint8_t bands[IEEE80211_MODE_BYTES]; int i, error; BWI_LOCK_INIT(sc); /* * Initialize taskq and various tasks */ sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO, taskqueue_thread_enqueue, &sc->sc_tq); taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", device_get_nameunit(dev)); TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc); callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0); mbufq_init(&sc->sc_snd, ifqmaxlen); /* * Initialize sysctl variables */ sc->sc_fw_version = BWI_FW_VERSION3; sc->sc_led_idle = (2350 * hz) / 1000; sc->sc_led_blink = 1; sc->sc_txpwr_calib = 1; #ifdef BWI_DEBUG sc->sc_debug = bwi_debug; #endif bwi_power_on(sc, 1); error = bwi_bbp_attach(sc); if (error) goto fail; error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST); if (error) goto fail; if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) { error = bwi_set_clock_delay(sc); if (error) goto fail; error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST); if (error) goto fail; error = bwi_get_pwron_delay(sc); if (error) goto fail; } error = bwi_bus_attach(sc); if (error) goto fail; bwi_get_card_flags(sc); bwi_led_attach(sc); for (i = 0; i < sc->sc_nmac; ++i) { struct bwi_regwin *old; mac = &sc->sc_mac[i]; error = bwi_regwin_switch(sc, &mac->mac_regwin, &old); if (error) goto fail; error = bwi_mac_lateattach(mac); if (error) goto fail; error = bwi_regwin_switch(sc, old, NULL); if (error) goto fail; } /* * XXX First MAC is known to exist * TODO2 */ mac = &sc->sc_mac[0]; phy = &mac->mac_phy; bwi_bbp_power_off(sc); error = bwi_dma_alloc(sc); if (error) goto fail; error = bwi_mac_fw_alloc(mac); if (error) goto fail; callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0); /* * Setup ratesets, phytype, channels and get MAC address */ memset(bands, 0, sizeof(bands)); if (phy->phy_mode == IEEE80211_MODE_11B || phy->phy_mode == IEEE80211_MODE_11G) { setbit(bands, IEEE80211_MODE_11B); if (phy->phy_mode == IEEE80211_MODE_11B) { ic->ic_phytype = IEEE80211_T_DS; } else { ic->ic_phytype = IEEE80211_T_OFDM; setbit(bands, IEEE80211_MODE_11G); } bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, ic->ic_macaddr); if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) { bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, ic->ic_macaddr); if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) { device_printf(dev, "invalid MAC address: %6D\n", ic->ic_macaddr, ":"); } } } else if (phy->phy_mode == IEEE80211_MODE_11A) { /* TODO:11A */ setbit(bands, IEEE80211_MODE_11A); error = ENXIO; goto fail; } else { panic("unknown phymode %d\n", phy->phy_mode); } /* Get locale */ sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO), BWI_SPROM_CARD_INFO_LOCALE); DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale); /* XXX use locale */ ieee80211_init_channels(ic, NULL, bands); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(dev); ic->ic_caps = IEEE80211_C_STA | IEEE80211_C_SHSLOT | IEEE80211_C_SHPREAMBLE | IEEE80211_C_WPA | IEEE80211_C_BGSCAN | IEEE80211_C_MONITOR; ic->ic_opmode = IEEE80211_M_STA; ieee80211_ifattach(ic); ic->ic_headroom = sizeof(struct bwi_txbuf_hdr); /* override default methods */ ic->ic_vap_create = bwi_vap_create; ic->ic_vap_delete = bwi_vap_delete; ic->ic_raw_xmit = bwi_raw_xmit; ic->ic_updateslot = bwi_updateslot; ic->ic_scan_start = bwi_scan_start; ic->ic_scan_end = bwi_scan_end; ic->ic_set_channel = bwi_set_channel; ic->ic_transmit = bwi_transmit; ic->ic_parent = bwi_parent; sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan); ieee80211_radiotap_attach(ic, &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), BWI_TX_RADIOTAP_PRESENT, &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), BWI_RX_RADIOTAP_PRESENT); /* * Add sysctl nodes */ SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0, "Firmware version"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0, "# ticks before LED enters idle state"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0, "Allow LED to blink"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0, "Enable software TX power calibration"); #ifdef BWI_DEBUG SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags"); #endif if (bootverbose) ieee80211_announce(ic); return (0); fail: BWI_LOCK_DESTROY(sc); return (error); } int bwi_detach(struct bwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; int i; bwi_stop(sc, 1); callout_drain(&sc->sc_led_blink_ch); callout_drain(&sc->sc_calib_ch); callout_drain(&sc->sc_watchdog_timer); ieee80211_ifdetach(ic); for (i = 0; i < sc->sc_nmac; ++i) bwi_mac_detach(&sc->sc_mac[i]); bwi_dma_free(sc); taskqueue_free(sc->sc_tq); mbufq_drain(&sc->sc_snd); BWI_LOCK_DESTROY(sc); return (0); } static struct ieee80211vap * bwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct bwi_vap *bvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return NULL; bvp = malloc(sizeof(struct bwi_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &bvp->bv_vap; /* enable s/w bmiss handling for sta mode */ ieee80211_vap_setup(ic, vap, name, unit, opmode, flags | IEEE80211_CLONE_NOBEACONS, bssid); /* override default methods */ bvp->bv_newstate = vap->iv_newstate; vap->iv_newstate = bwi_newstate; #if 0 vap->iv_update_beacon = bwi_beacon_update; #endif ieee80211_ratectl_init(vap); /* complete setup */ ieee80211_vap_attach(vap, bwi_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return vap; } static void bwi_vap_delete(struct ieee80211vap *vap) { struct bwi_vap *bvp = BWI_VAP(vap); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(bvp, M_80211_VAP); } void bwi_suspend(struct bwi_softc *sc) { bwi_stop(sc, 1); } void bwi_resume(struct bwi_softc *sc) { if (sc->sc_ic.ic_nrunning > 0) bwi_init(sc); } int bwi_shutdown(struct bwi_softc *sc) { bwi_stop(sc, 1); return 0; } static void bwi_power_on(struct bwi_softc *sc, int with_pll) { uint32_t gpio_in, gpio_out, gpio_en; uint16_t status; gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); if (gpio_in & BWI_PCIM_GPIO_PWR_ON) goto back; gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4); gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4); gpio_out |= BWI_PCIM_GPIO_PWR_ON; gpio_en |= BWI_PCIM_GPIO_PWR_ON; if (with_pll) { /* Turn off PLL first */ gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF; gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF; } pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4); pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4); DELAY(1000); if (with_pll) { /* Turn on PLL */ gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF; pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4); DELAY(5000); } back: /* Clear "Signaled Target Abort" */ status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2); status &= ~PCIM_STATUS_STABORT; pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2); } static int bwi_power_off(struct bwi_softc *sc, int with_pll) { uint32_t gpio_out, gpio_en; pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */ gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4); gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4); gpio_out &= ~BWI_PCIM_GPIO_PWR_ON; gpio_en |= BWI_PCIM_GPIO_PWR_ON; if (with_pll) { gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF; gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF; } pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4); pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4); return 0; } int bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw, struct bwi_regwin **old_rw) { int error; if (old_rw != NULL) *old_rw = NULL; if (!BWI_REGWIN_EXIST(rw)) return EINVAL; if (sc->sc_cur_regwin != rw) { error = bwi_regwin_select(sc, rw->rw_id); if (error) { device_printf(sc->sc_dev, "can't select regwin %d\n", rw->rw_id); return error; } } if (old_rw != NULL) *old_rw = sc->sc_cur_regwin; sc->sc_cur_regwin = rw; return 0; } static int bwi_regwin_select(struct bwi_softc *sc, int id) { uint32_t win = BWI_PCIM_REGWIN(id); int i; #define RETRY_MAX 50 for (i = 0; i < RETRY_MAX; ++i) { pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4); if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win) return 0; DELAY(10); } #undef RETRY_MAX return ENXIO; } static void bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev) { uint32_t val; val = CSR_READ_4(sc, BWI_ID_HI); *type = BWI_ID_HI_REGWIN_TYPE(val); *rev = BWI_ID_HI_REGWIN_REV(val); DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, " "vendor 0x%04x\n", *type, *rev, __SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK)); } static int bwi_bbp_attach(struct bwi_softc *sc) { uint16_t bbp_id, rw_type; uint8_t rw_rev; uint32_t info; int error, nregwin, i; /* * Get 0th regwin information * NOTE: 0th regwin should exist */ error = bwi_regwin_select(sc, 0); if (error) { device_printf(sc->sc_dev, "can't select regwin 0\n"); return error; } bwi_regwin_info(sc, &rw_type, &rw_rev); /* * Find out BBP id */ bbp_id = 0; info = 0; if (rw_type == BWI_REGWIN_T_COM) { info = CSR_READ_4(sc, BWI_INFO); bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK); BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev); sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY); } else { for (i = 0; i < nitems(bwi_bbpid_map); ++i) { if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min && sc->sc_pci_did <= bwi_bbpid_map[i].did_max) { bbp_id = bwi_bbpid_map[i].bbp_id; break; } } if (bbp_id == 0) { device_printf(sc->sc_dev, "no BBP id for device id " "0x%04x\n", sc->sc_pci_did); return ENXIO; } info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) | __SHIFTIN(0, BWI_INFO_BBPPKG_MASK); } /* * Find out number of regwins */ nregwin = 0; if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) { nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK); } else { for (i = 0; i < nitems(bwi_regwin_count); ++i) { if (bwi_regwin_count[i].bbp_id == bbp_id) { nregwin = bwi_regwin_count[i].nregwin; break; } } if (nregwin == 0) { device_printf(sc->sc_dev, "no number of win for " "BBP id 0x%04x\n", bbp_id); return ENXIO; } } /* Record BBP id/rev for later using */ sc->sc_bbp_id = bbp_id; sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK); sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK); device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n", sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg); DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n", nregwin, sc->sc_cap); /* * Create rest of the regwins */ /* Don't re-create common regwin, if it is already created */ i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0; for (; i < nregwin; ++i) { /* * Get regwin information */ error = bwi_regwin_select(sc, i); if (error) { device_printf(sc->sc_dev, "can't select regwin %d\n", i); return error; } bwi_regwin_info(sc, &rw_type, &rw_rev); /* * Try attach: * 1) Bus (PCI/PCIE) regwin * 2) MAC regwin * Ignore rest types of regwin */ if (rw_type == BWI_REGWIN_T_BUSPCI || rw_type == BWI_REGWIN_T_BUSPCIE) { if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) { device_printf(sc->sc_dev, "bus regwin already exists\n"); } else { BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i, rw_type, rw_rev); } } else if (rw_type == BWI_REGWIN_T_MAC) { /* XXX ignore return value */ bwi_mac_attach(sc, i, rw_rev); } } /* At least one MAC shold exist */ if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) { device_printf(sc->sc_dev, "no MAC was found\n"); return ENXIO; } KASSERT(sc->sc_nmac > 0, ("no mac's")); /* Bus regwin must exist */ if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) { device_printf(sc->sc_dev, "no bus regwin was found\n"); return ENXIO; } /* Start with first MAC */ error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL); if (error) return error; return 0; } int bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac) { struct bwi_regwin *old, *bus; uint32_t val; int error; bus = &sc->sc_bus_regwin; KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin")); /* * Tell bus to generate requested interrupts */ if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) { /* * NOTE: Read BWI_FLAGS from MAC regwin */ val = CSR_READ_4(sc, BWI_FLAGS); error = bwi_regwin_switch(sc, bus, &old); if (error) return error; CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK)); } else { uint32_t mac_mask; mac_mask = 1 << mac->mac_id; error = bwi_regwin_switch(sc, bus, &old); if (error) return error; val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4); val |= mac_mask << 8; pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4); } if (sc->sc_flags & BWI_F_BUS_INITED) goto back; if (bus->rw_type == BWI_REGWIN_T_BUSPCI) { /* * Enable prefetch and burst */ CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST); if (bus->rw_rev < 5) { struct bwi_regwin *com = &sc->sc_com_regwin; /* * Configure timeouts for bus operation */ /* * Set service timeout and request timeout */ CSR_SETBITS_4(sc, BWI_CONF_LO, __SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) | __SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK)); /* * If there is common regwin, we switch to that regwin * and switch back to bus regwin once we have done. */ if (BWI_REGWIN_EXIST(com)) { error = bwi_regwin_switch(sc, com, NULL); if (error) return error; } /* Let bus know what we have changed */ CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC); CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */ CSR_WRITE_4(sc, BWI_BUS_DATA, 0); CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */ if (BWI_REGWIN_EXIST(com)) { error = bwi_regwin_switch(sc, bus, NULL); if (error) return error; } } else if (bus->rw_rev >= 11) { /* * Enable memory read multiple */ CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM); } } else { /* TODO:PCIE */ } sc->sc_flags |= BWI_F_BUS_INITED; back: return bwi_regwin_switch(sc, old, NULL); } static void bwi_get_card_flags(struct bwi_softc *sc) { #define PCI_VENDOR_APPLE 0x106b #define PCI_VENDOR_DELL 0x1028 sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS); if (sc->sc_card_flags == 0xffff) sc->sc_card_flags = 0; if (sc->sc_pci_subvid == PCI_VENDOR_DELL && sc->sc_bbp_id == BWI_BBPID_BCM4301 && sc->sc_pci_revid == 0x74) sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST; if (sc->sc_pci_subvid == PCI_VENDOR_APPLE && sc->sc_pci_subdid == 0x4e && /* XXX */ sc->sc_pci_revid > 0x40) sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9; DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags); #undef PCI_VENDOR_DELL #undef PCI_VENDOR_APPLE } static void bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr) { int i; for (i = 0; i < 3; ++i) { *((uint16_t *)eaddr + i) = htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i)); } } static void bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq) { struct bwi_regwin *com; uint32_t val; u_int div; int src; bzero(freq, sizeof(*freq)); com = &sc->sc_com_regwin; KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist")); KASSERT(sc->sc_cur_regwin == com, ("wrong regwin")); KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode")); /* * Calculate clock frequency */ src = -1; div = 0; if (com->rw_rev < 6) { val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4); if (val & BWI_PCIM_GPIO_OUT_CLKSRC) { src = BWI_CLKSRC_PCI; div = 64; } else { src = BWI_CLKSRC_CS_OSC; div = 32; } } else if (com->rw_rev < 10) { val = CSR_READ_4(sc, BWI_CLOCK_CTRL); src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC); if (src == BWI_CLKSRC_LP_OSC) { div = 1; } else { div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2; /* Unknown source */ if (src >= BWI_CLKSRC_MAX) src = BWI_CLKSRC_CS_OSC; } } else { val = CSR_READ_4(sc, BWI_CLOCK_INFO); src = BWI_CLKSRC_CS_OSC; div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2; } KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src)); KASSERT(div != 0, ("div zero")); DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n", src == BWI_CLKSRC_PCI ? "PCI" : (src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC")); freq->clkfreq_min = bwi_clkfreq[src].freq_min / div; freq->clkfreq_max = bwi_clkfreq[src].freq_max / div; DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n", freq->clkfreq_min, freq->clkfreq_max); } static int bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode) { struct bwi_regwin *old, *com; uint32_t clk_ctrl, clk_src; int error, pwr_off = 0; com = &sc->sc_com_regwin; if (!BWI_REGWIN_EXIST(com)) return 0; if (com->rw_rev >= 10 || com->rw_rev < 6) return 0; /* * For common regwin whose rev is [6, 10), the chip * must be capable to change clock mode. */ if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0) return 0; error = bwi_regwin_switch(sc, com, &old); if (error) return error; if (clk_mode == BWI_CLOCK_MODE_FAST) bwi_power_on(sc, 0); /* Don't turn on PLL */ clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL); clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC); switch (clk_mode) { case BWI_CLOCK_MODE_FAST: clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW; clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL; break; case BWI_CLOCK_MODE_SLOW: clk_ctrl |= BWI_CLOCK_CTRL_SLOW; break; case BWI_CLOCK_MODE_DYN: clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW | BWI_CLOCK_CTRL_IGNPLL | BWI_CLOCK_CTRL_NODYN); if (clk_src != BWI_CLKSRC_CS_OSC) { clk_ctrl |= BWI_CLOCK_CTRL_NODYN; pwr_off = 1; } break; } CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl); if (pwr_off) bwi_power_off(sc, 0); /* Leave PLL as it is */ return bwi_regwin_switch(sc, old, NULL); } static int bwi_set_clock_delay(struct bwi_softc *sc) { struct bwi_regwin *old, *com; int error; com = &sc->sc_com_regwin; if (!BWI_REGWIN_EXIST(com)) return 0; error = bwi_regwin_switch(sc, com, &old); if (error) return error; if (sc->sc_bbp_id == BWI_BBPID_BCM4321) { if (sc->sc_bbp_rev == 0) CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0); else if (sc->sc_bbp_rev == 1) CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1); } if (sc->sc_cap & BWI_CAP_CLKMODE) { if (com->rw_rev >= 10) { CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000); } else { struct bwi_clock_freq freq; bwi_get_clock_freq(sc, &freq); CSR_WRITE_4(sc, BWI_PLL_ON_DELAY, howmany(freq.clkfreq_max * 150, 1000000)); CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY, howmany(freq.clkfreq_max * 15, 1000000)); } } return bwi_regwin_switch(sc, old, NULL); } static void bwi_init(struct bwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; BWI_LOCK(sc); bwi_init_statechg(sc, 1); BWI_UNLOCK(sc); if (sc->sc_flags & BWI_F_RUNNING) ieee80211_start_all(ic); /* start all vap's */ } static void bwi_init_statechg(struct bwi_softc *sc, int statechg) { struct bwi_mac *mac; int error; BWI_ASSERT_LOCKED(sc); bwi_stop_locked(sc, statechg); bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST); /* TODO: 2 MAC */ mac = &sc->sc_mac[0]; error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL); if (error) { device_printf(sc->sc_dev, "%s: error %d on regwin switch\n", __func__, error); goto bad; } error = bwi_mac_init(mac); if (error) { device_printf(sc->sc_dev, "%s: error %d on MAC init\n", __func__, error); goto bad; } bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN); bwi_set_bssid(sc, bwi_zero_addr); /* Clear BSSID */ bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, sc->sc_ic.ic_macaddr); bwi_mac_reset_hwkeys(mac); if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) { int i; #define NRETRY 1000 /* * Drain any possible pending TX status */ for (i = 0; i < NRETRY; ++i) { if ((CSR_READ_4(sc, BWI_TXSTATUS0) & BWI_TXSTATUS0_VALID) == 0) break; CSR_READ_4(sc, BWI_TXSTATUS1); } if (i == NRETRY) device_printf(sc->sc_dev, "%s: can't drain TX status\n", __func__); #undef NRETRY } if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G) bwi_mac_updateslot(mac, 1); /* Start MAC */ error = bwi_mac_start(mac); if (error) { device_printf(sc->sc_dev, "%s: error %d starting MAC\n", __func__, error); goto bad; } /* Clear stop flag before enabling interrupt */ sc->sc_flags &= ~BWI_F_STOP; sc->sc_flags |= BWI_F_RUNNING; callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc); /* Enable intrs */ bwi_enable_intrs(sc, BWI_INIT_INTRS); return; bad: bwi_stop_locked(sc, 1); } static void bwi_parent(struct ieee80211com *ic) { struct bwi_softc *sc = ic->ic_softc; int startall = 0; BWI_LOCK(sc); if (ic->ic_nrunning > 0) { struct bwi_mac *mac; int promisc = -1; KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; if (ic->ic_promisc > 0 && (sc->sc_flags & BWI_F_PROMISC) == 0) { promisc = 1; sc->sc_flags |= BWI_F_PROMISC; } else if (ic->ic_promisc == 0 && (sc->sc_flags & BWI_F_PROMISC) != 0) { promisc = 0; sc->sc_flags &= ~BWI_F_PROMISC; } if (promisc >= 0) bwi_mac_set_promisc(mac, promisc); } if (ic->ic_nrunning > 0) { if ((sc->sc_flags & BWI_F_RUNNING) == 0) { bwi_init_statechg(sc, 1); startall = 1; } } else if (sc->sc_flags & BWI_F_RUNNING) bwi_stop_locked(sc, 1); BWI_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } static int bwi_transmit(struct ieee80211com *ic, struct mbuf *m) { struct bwi_softc *sc = ic->ic_softc; int error; BWI_LOCK(sc); if ((sc->sc_flags & BWI_F_RUNNING) == 0) { BWI_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { BWI_UNLOCK(sc); return (error); } bwi_start_locked(sc); BWI_UNLOCK(sc); return (0); } static void bwi_start_locked(struct bwi_softc *sc) { struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING]; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *m; int trans, idx; BWI_ASSERT_LOCKED(sc); trans = 0; idx = tbd->tbd_idx; while (tbd->tbd_buf[idx].tb_mbuf == NULL && tbd->tbd_used + BWI_TX_NSPRDESC < BWI_TX_NDESC && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0 && ieee80211_crypto_encap(ni, m) == NULL) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); m_freem(m); continue; } if (bwi_encap(sc, idx, m, ni) != 0) { /* 'm' is freed in bwi_encap() if we reach here */ if (ni != NULL) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); } else counter_u64_add(sc->sc_ic.ic_oerrors, 1); continue; } trans = 1; tbd->tbd_used++; idx = (idx + 1) % BWI_TX_NDESC; } tbd->tbd_idx = idx; if (trans) sc->sc_tx_timer = 5; } static int bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct bwi_softc *sc = ic->ic_softc; /* XXX wme? */ struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING]; int idx, error; if ((sc->sc_flags & BWI_F_RUNNING) == 0) { m_freem(m); return ENETDOWN; } BWI_LOCK(sc); idx = tbd->tbd_idx; KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx)); if (params == NULL) { /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. */ error = bwi_encap(sc, idx, m, ni); } else { /* * Caller supplied explicit parameters to use in * sending the frame. */ error = bwi_encap_raw(sc, idx, m, ni, params); } if (error == 0) { tbd->tbd_used++; tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC; sc->sc_tx_timer = 5; } BWI_UNLOCK(sc); return error; } static void bwi_watchdog(void *arg) { struct bwi_softc *sc; sc = arg; BWI_ASSERT_LOCKED(sc); if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) { device_printf(sc->sc_dev, "watchdog timeout\n"); counter_u64_add(sc->sc_ic.ic_oerrors, 1); taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task); } callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc); } static void bwi_stop(struct bwi_softc *sc, int statechg) { BWI_LOCK(sc); bwi_stop_locked(sc, statechg); BWI_UNLOCK(sc); } static void bwi_stop_locked(struct bwi_softc *sc, int statechg) { struct bwi_mac *mac; int i, error, pwr_off = 0; BWI_ASSERT_LOCKED(sc); callout_stop(&sc->sc_calib_ch); callout_stop(&sc->sc_led_blink_ch); sc->sc_led_blinking = 0; sc->sc_flags |= BWI_F_STOP; if (sc->sc_flags & BWI_F_RUNNING) { KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; bwi_disable_intrs(sc, BWI_ALL_INTRS); CSR_READ_4(sc, BWI_MAC_INTR_MASK); bwi_mac_stop(mac); } for (i = 0; i < sc->sc_nmac; ++i) { struct bwi_regwin *old_rw; mac = &sc->sc_mac[i]; if ((mac->mac_flags & BWI_MAC_F_INITED) == 0) continue; error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw); if (error) continue; bwi_mac_shutdown(mac); pwr_off = 1; bwi_regwin_switch(sc, old_rw, NULL); } if (pwr_off) bwi_bbp_power_off(sc); sc->sc_tx_timer = 0; callout_stop(&sc->sc_watchdog_timer); sc->sc_flags &= ~BWI_F_RUNNING; } void bwi_intr(void *xsc) { struct bwi_softc *sc = xsc; struct bwi_mac *mac; uint32_t intr_status; uint32_t txrx_intr_status[BWI_TXRX_NRING]; int i, txrx_error, tx = 0, rx_data = -1; BWI_LOCK(sc); if ((sc->sc_flags & BWI_F_RUNNING) == 0 || (sc->sc_flags & BWI_F_STOP)) { BWI_UNLOCK(sc); return; } /* * Get interrupt status */ intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS); if (intr_status == 0xffffffff) { /* Not for us */ BWI_UNLOCK(sc); return; } DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status); intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK); if (intr_status == 0) { /* Nothing is interesting */ BWI_UNLOCK(sc); return; } KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; txrx_error = 0; DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr"); for (i = 0; i < BWI_TXRX_NRING; ++i) { uint32_t mask; if (BWI_TXRX_IS_RX(i)) mask = BWI_TXRX_RX_INTRS; else mask = BWI_TXRX_TX_INTRS; txrx_intr_status[i] = CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask; _DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x", i, txrx_intr_status[i]); if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) { device_printf(sc->sc_dev, "%s: intr fatal TX/RX (%d) error 0x%08x\n", __func__, i, txrx_intr_status[i]); txrx_error = 1; } } _DPRINTF(sc, BWI_DBG_INTR, "%s\n", ""); /* * Acknowledge interrupt */ CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status); for (i = 0; i < BWI_TXRX_NRING; ++i) CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]); /* Disable all interrupts */ bwi_disable_intrs(sc, BWI_ALL_INTRS); /* * http://bcm-specs.sipsolutions.net/Interrupts * Says for this bit (0x800): * "Fatal Error * * We got this one while testing things when by accident the * template ram wasn't set to big endian when it should have * been after writing the initial values. It keeps on being * triggered, the only way to stop it seems to shut down the * chip." * * Suggesting that we should never get it and if we do we're not * feeding TX packets into the MAC correctly if we do... Apparently, * it is valid only on mac version 5 and higher, but I couldn't * find a reference for that... Since I see them from time to time * on my card, this suggests an error in the tx path still... */ if (intr_status & BWI_INTR_PHY_TXERR) { if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) { device_printf(sc->sc_dev, "%s: intr PHY TX error\n", __func__); taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task); BWI_UNLOCK(sc); return; } } if (txrx_error) { /* TODO: reset device */ } if (intr_status & BWI_INTR_TBTT) bwi_mac_config_ps(mac); if (intr_status & BWI_INTR_EO_ATIM) device_printf(sc->sc_dev, "EO_ATIM\n"); if (intr_status & BWI_INTR_PMQ) { for (;;) { if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0) break; } CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2); } if (intr_status & BWI_INTR_NOISE) device_printf(sc->sc_dev, "intr noise\n"); if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) { rx_data = sc->sc_rxeof(sc); if (sc->sc_flags & BWI_F_STOP) { BWI_UNLOCK(sc); return; } } if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) { sc->sc_txeof_status(sc); tx = 1; } if (intr_status & BWI_INTR_TX_DONE) { bwi_txeof(sc); tx = 1; } /* Re-enable interrupts */ bwi_enable_intrs(sc, BWI_INIT_INTRS); if (sc->sc_blink_led != NULL && sc->sc_led_blink) { int evt = BWI_LED_EVENT_NONE; if (tx && rx_data > 0) { if (sc->sc_rx_rate > sc->sc_tx_rate) evt = BWI_LED_EVENT_RX; else evt = BWI_LED_EVENT_TX; } else if (tx) { evt = BWI_LED_EVENT_TX; } else if (rx_data > 0) { evt = BWI_LED_EVENT_RX; } else if (rx_data == 0) { evt = BWI_LED_EVENT_POLL; } if (evt != BWI_LED_EVENT_NONE) bwi_led_event(sc, evt); } BWI_UNLOCK(sc); } static void bwi_scan_start(struct ieee80211com *ic) { struct bwi_softc *sc = ic->ic_softc; BWI_LOCK(sc); /* Enable MAC beacon promiscuity */ CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN); BWI_UNLOCK(sc); } static void bwi_set_channel(struct ieee80211com *ic) { struct bwi_softc *sc = ic->ic_softc; struct ieee80211_channel *c = ic->ic_curchan; struct bwi_mac *mac; BWI_LOCK(sc); KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0); sc->sc_rates = ieee80211_get_ratetable(c); /* * Setup radio tap channel freq and flags */ sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = htole16(c->ic_freq); sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = htole16(c->ic_flags & 0xffff); BWI_UNLOCK(sc); } static void bwi_scan_end(struct ieee80211com *ic) { struct bwi_softc *sc = ic->ic_softc; BWI_LOCK(sc); CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN); BWI_UNLOCK(sc); } static int bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct bwi_vap *bvp = BWI_VAP(vap); struct ieee80211com *ic= vap->iv_ic; struct bwi_softc *sc = ic->ic_softc; enum ieee80211_state ostate = vap->iv_state; struct bwi_mac *mac; int error; BWI_LOCK(sc); callout_stop(&sc->sc_calib_ch); if (nstate == IEEE80211_S_INIT) sc->sc_txpwrcb_type = BWI_TXPWR_INIT; bwi_led_newstate(sc, nstate); error = bvp->bv_newstate(vap, nstate, arg); if (error != 0) goto back; /* * Clear the BSSID when we stop a STA */ if (vap->iv_opmode == IEEE80211_M_STA) { if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) { /* * Clear out the BSSID. If we reassociate to * the same AP, this will reinialize things * correctly... */ if (ic->ic_opmode == IEEE80211_M_STA && !(sc->sc_flags & BWI_F_STOP)) bwi_set_bssid(sc, bwi_zero_addr); } } if (vap->iv_opmode == IEEE80211_M_MONITOR) { /* Nothing to do */ } else if (nstate == IEEE80211_S_RUN) { bwi_set_bssid(sc, vap->iv_bss->ni_bssid); KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; /* Initial TX power calibration */ bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT); #ifdef notyet sc->sc_txpwrcb_type = BWI_TXPWR_FORCE; #else sc->sc_txpwrcb_type = BWI_TXPWR_CALIB; #endif callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc); } back: BWI_UNLOCK(sc); return error; } static int bwi_media_change(struct ifnet *ifp) { int error = ieee80211_media_change(ifp); /* NB: only the fixed rate can change and that doesn't need a reset */ return (error == ENETRESET ? 0 : error); } static int bwi_dma_alloc(struct bwi_softc *sc) { int error, i, has_txstats; bus_addr_t lowaddr = 0; bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0; uint32_t txrx_ctrl_step = 0; has_txstats = 0; for (i = 0; i < sc->sc_nmac; ++i) { if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) { has_txstats = 1; break; } } switch (sc->sc_bus_space) { case BWI_BUS_SPACE_30BIT: case BWI_BUS_SPACE_32BIT: if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT) lowaddr = BWI_BUS_SPACE_MAXADDR; else lowaddr = BUS_SPACE_MAXADDR_32BIT; desc_sz = sizeof(struct bwi_desc32); txrx_ctrl_step = 0x20; sc->sc_init_tx_ring = bwi_init_tx_ring32; sc->sc_free_tx_ring = bwi_free_tx_ring32; sc->sc_init_rx_ring = bwi_init_rx_ring32; sc->sc_free_rx_ring = bwi_free_rx_ring32; sc->sc_setup_rxdesc = bwi_setup_rx_desc32; sc->sc_setup_txdesc = bwi_setup_tx_desc32; sc->sc_rxeof = bwi_rxeof32; sc->sc_start_tx = bwi_start_tx32; if (has_txstats) { sc->sc_init_txstats = bwi_init_txstats32; sc->sc_free_txstats = bwi_free_txstats32; sc->sc_txeof_status = bwi_txeof_status32; } break; case BWI_BUS_SPACE_64BIT: lowaddr = BUS_SPACE_MAXADDR; /* XXX */ desc_sz = sizeof(struct bwi_desc64); txrx_ctrl_step = 0x40; sc->sc_init_tx_ring = bwi_init_tx_ring64; sc->sc_free_tx_ring = bwi_free_tx_ring64; sc->sc_init_rx_ring = bwi_init_rx_ring64; sc->sc_free_rx_ring = bwi_free_rx_ring64; sc->sc_setup_rxdesc = bwi_setup_rx_desc64; sc->sc_setup_txdesc = bwi_setup_tx_desc64; sc->sc_rxeof = bwi_rxeof64; sc->sc_start_tx = bwi_start_tx64; if (has_txstats) { sc->sc_init_txstats = bwi_init_txstats64; sc->sc_free_txstats = bwi_free_txstats64; sc->sc_txeof_status = bwi_txeof_status64; } break; } KASSERT(lowaddr != 0, ("lowaddr zero")); KASSERT(desc_sz != 0, ("desc_sz zero")); KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero")); tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN); rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN); /* * Create top level DMA tag */ error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ BWI_ALIGN, 0, /* alignment, bounds */ lowaddr, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE, /* maxsize */ BUS_SPACE_UNRESTRICTED, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->sc_parent_dtag); if (error) { device_printf(sc->sc_dev, "can't create parent DMA tag\n"); return error; } #define TXRX_CTRL(idx) (BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step) /* * Create TX ring DMA stuffs */ error = bus_dma_tag_create(sc->sc_parent_dtag, BWI_RING_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, tx_ring_sz, 1, tx_ring_sz, 0, NULL, NULL, &sc->sc_txring_dtag); if (error) { device_printf(sc->sc_dev, "can't create TX ring DMA tag\n"); return error; } for (i = 0; i < BWI_TX_NRING; ++i) { error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag, &sc->sc_tx_rdata[i], tx_ring_sz, TXRX_CTRL(i)); if (error) { device_printf(sc->sc_dev, "%dth TX ring " "DMA alloc failed\n", i); return error; } } /* * Create RX ring DMA stuffs */ error = bus_dma_tag_create(sc->sc_parent_dtag, BWI_RING_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rx_ring_sz, 1, rx_ring_sz, 0, NULL, NULL, &sc->sc_rxring_dtag); if (error) { device_printf(sc->sc_dev, "can't create RX ring DMA tag\n"); return error; } error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata, rx_ring_sz, TXRX_CTRL(0)); if (error) { device_printf(sc->sc_dev, "RX ring DMA alloc failed\n"); return error; } if (has_txstats) { error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz); if (error) { device_printf(sc->sc_dev, "TX stats DMA alloc failed\n"); return error; } } #undef TXRX_CTRL return bwi_dma_mbuf_create(sc); } static void bwi_dma_free(struct bwi_softc *sc) { if (sc->sc_txring_dtag != NULL) { int i; for (i = 0; i < BWI_TX_NRING; ++i) { struct bwi_ring_data *rd = &sc->sc_tx_rdata[i]; if (rd->rdata_desc != NULL) { bus_dmamap_unload(sc->sc_txring_dtag, rd->rdata_dmap); bus_dmamem_free(sc->sc_txring_dtag, rd->rdata_desc, rd->rdata_dmap); } } bus_dma_tag_destroy(sc->sc_txring_dtag); } if (sc->sc_rxring_dtag != NULL) { struct bwi_ring_data *rd = &sc->sc_rx_rdata; if (rd->rdata_desc != NULL) { bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap); bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc, rd->rdata_dmap); } bus_dma_tag_destroy(sc->sc_rxring_dtag); } bwi_dma_txstats_free(sc); bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1); if (sc->sc_parent_dtag != NULL) bus_dma_tag_destroy(sc->sc_parent_dtag); } static int bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag, struct bwi_ring_data *rd, bus_size_t size, uint32_t txrx_ctrl) { int error; error = bus_dmamem_alloc(dtag, &rd->rdata_desc, BUS_DMA_WAITOK | BUS_DMA_ZERO, &rd->rdata_dmap); if (error) { device_printf(sc->sc_dev, "can't allocate DMA mem\n"); return error; } error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size, bwi_dma_ring_addr, &rd->rdata_paddr, BUS_DMA_NOWAIT); if (error) { device_printf(sc->sc_dev, "can't load DMA mem\n"); bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap); rd->rdata_desc = NULL; return error; } rd->rdata_txrx_ctrl = txrx_ctrl; return 0; } static int bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base, bus_size_t desc_sz) { struct bwi_txstats_data *st; bus_size_t dma_size; int error; st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO); if (st == NULL) { device_printf(sc->sc_dev, "can't allocate txstats data\n"); return ENOMEM; } sc->sc_txstats = st; /* * Create TX stats descriptor DMA stuffs */ dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN); error = bus_dma_tag_create(sc->sc_parent_dtag, BWI_RING_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, dma_size, 1, dma_size, 0, NULL, NULL, &st->stats_ring_dtag); if (error) { device_printf(sc->sc_dev, "can't create txstats ring " "DMA tag\n"); return error; } error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring, BUS_DMA_WAITOK | BUS_DMA_ZERO, &st->stats_ring_dmap); if (error) { device_printf(sc->sc_dev, "can't allocate txstats ring " "DMA mem\n"); bus_dma_tag_destroy(st->stats_ring_dtag); st->stats_ring_dtag = NULL; return error; } error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap, st->stats_ring, dma_size, bwi_dma_ring_addr, &st->stats_ring_paddr, BUS_DMA_NOWAIT); if (error) { device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n"); bus_dmamem_free(st->stats_ring_dtag, st->stats_ring, st->stats_ring_dmap); bus_dma_tag_destroy(st->stats_ring_dtag); st->stats_ring_dtag = NULL; return error; } /* * Create TX stats DMA stuffs */ dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC, BWI_ALIGN); error = bus_dma_tag_create(sc->sc_parent_dtag, BWI_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, dma_size, 1, dma_size, 0, NULL, NULL, &st->stats_dtag); if (error) { device_printf(sc->sc_dev, "can't create txstats DMA tag\n"); return error; } error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats, BUS_DMA_WAITOK | BUS_DMA_ZERO, &st->stats_dmap); if (error) { device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n"); bus_dma_tag_destroy(st->stats_dtag); st->stats_dtag = NULL; return error; } error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats, dma_size, bwi_dma_ring_addr, &st->stats_paddr, BUS_DMA_NOWAIT); if (error) { device_printf(sc->sc_dev, "can't load txstats DMA mem\n"); bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap); bus_dma_tag_destroy(st->stats_dtag); st->stats_dtag = NULL; return error; } st->stats_ctrl_base = ctrl_base; return 0; } static void bwi_dma_txstats_free(struct bwi_softc *sc) { struct bwi_txstats_data *st; if (sc->sc_txstats == NULL) return; st = sc->sc_txstats; if (st->stats_ring_dtag != NULL) { bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap); bus_dmamem_free(st->stats_ring_dtag, st->stats_ring, st->stats_ring_dmap); bus_dma_tag_destroy(st->stats_ring_dtag); } if (st->stats_dtag != NULL) { bus_dmamap_unload(st->stats_dtag, st->stats_dmap); bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap); bus_dma_tag_destroy(st->stats_dtag); } free(st, M_DEVBUF); } static void bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error) { KASSERT(nseg == 1, ("too many segments\n")); *((bus_addr_t *)arg) = seg->ds_addr; } static int bwi_dma_mbuf_create(struct bwi_softc *sc) { struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; int i, j, k, ntx, error; /* * Create TX/RX mbuf DMA tag */ error = bus_dma_tag_create(sc->sc_parent_dtag, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_buf_dtag); if (error) { device_printf(sc->sc_dev, "can't create mbuf DMA tag\n"); return error; } ntx = 0; /* * Create TX mbuf DMA map */ for (i = 0; i < BWI_TX_NRING; ++i) { struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i]; for (j = 0; j < BWI_TX_NDESC; ++j) { error = bus_dmamap_create(sc->sc_buf_dtag, 0, &tbd->tbd_buf[j].tb_dmap); if (error) { device_printf(sc->sc_dev, "can't create " "%dth tbd, %dth DMA map\n", i, j); ntx = i; for (k = 0; k < j; ++k) { bus_dmamap_destroy(sc->sc_buf_dtag, tbd->tbd_buf[k].tb_dmap); } goto fail; } } } ntx = BWI_TX_NRING; /* * Create RX mbuf DMA map and a spare DMA map */ error = bus_dmamap_create(sc->sc_buf_dtag, 0, &rbd->rbd_tmp_dmap); if (error) { device_printf(sc->sc_dev, "can't create spare RX buf DMA map\n"); goto fail; } for (j = 0; j < BWI_RX_NDESC; ++j) { error = bus_dmamap_create(sc->sc_buf_dtag, 0, &rbd->rbd_buf[j].rb_dmap); if (error) { device_printf(sc->sc_dev, "can't create %dth " "RX buf DMA map\n", j); for (k = 0; k < j; ++k) { bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_buf[j].rb_dmap); } bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap); goto fail; } } return 0; fail: bwi_dma_mbuf_destroy(sc, ntx, 0); return error; } static void bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx) { int i, j; if (sc->sc_buf_dtag == NULL) return; for (i = 0; i < ntx; ++i) { struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i]; for (j = 0; j < BWI_TX_NDESC; ++j) { struct bwi_txbuf *tb = &tbd->tbd_buf[j]; if (tb->tb_mbuf != NULL) { bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap); m_freem(tb->tb_mbuf); } if (tb->tb_ni != NULL) ieee80211_free_node(tb->tb_ni); bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap); } } if (nrx) { struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap); for (j = 0; j < BWI_RX_NDESC; ++j) { struct bwi_rxbuf *rb = &rbd->rbd_buf[j]; if (rb->rb_mbuf != NULL) { bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap); m_freem(rb->rb_mbuf); } bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap); } } bus_dma_tag_destroy(sc->sc_buf_dtag); sc->sc_buf_dtag = NULL; } static void bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs) { CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs); } static void bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs) { CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs); } static int bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx) { struct bwi_ring_data *rd; struct bwi_txbuf_data *tbd; uint32_t val, addr_hi, addr_lo; KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx)); rd = &sc->sc_tx_rdata[ring_idx]; tbd = &sc->sc_tx_bdata[ring_idx]; tbd->tbd_idx = 0; tbd->tbd_used = 0; bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC); bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap, BUS_DMASYNC_PREWRITE); addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK); addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK); val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) | __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX, BWI_TXRX32_RINGINFO_FUNC_MASK); CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val); val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) | BWI_TXRX32_CTRL_ENABLE; CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val); return 0; } static void bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base, bus_addr_t paddr, int hdr_size, int ndesc) { uint32_t val, addr_hi, addr_lo; addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK); addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK); val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) | __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX, BWI_TXRX32_RINGINFO_FUNC_MASK); CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val); val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) | __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) | BWI_TXRX32_CTRL_ENABLE; CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val); CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX, (ndesc - 1) * sizeof(struct bwi_desc32)); } static int bwi_init_rx_ring32(struct bwi_softc *sc) { struct bwi_ring_data *rd = &sc->sc_rx_rdata; int i, error; sc->sc_rx_bdata.rbd_idx = 0; for (i = 0; i < BWI_RX_NDESC; ++i) { error = bwi_newbuf(sc, i, 1); if (error) { device_printf(sc->sc_dev, "can't allocate %dth RX buffer\n", i); return error; } } bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap, BUS_DMASYNC_PREWRITE); bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr, sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC); return 0; } static int bwi_init_txstats32(struct bwi_softc *sc) { struct bwi_txstats_data *st = sc->sc_txstats; bus_addr_t stats_paddr; int i; bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats)); bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE); st->stats_idx = 0; stats_paddr = st->stats_paddr; for (i = 0; i < BWI_TXSTATS_NDESC; ++i) { bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i, stats_paddr, sizeof(struct bwi_txstats), 0); stats_paddr += sizeof(struct bwi_txstats); } bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap, BUS_DMASYNC_PREWRITE); bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base, st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC); return 0; } static void bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr, int buf_len) { struct bwi_ring_data *rd = &sc->sc_rx_rdata; KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx)); bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx, paddr, buf_len, 0); } static void bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd, int buf_idx, bus_addr_t paddr, int buf_len) { KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx)); bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx, paddr, buf_len, 1); } static int bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx) { /* TODO:64 */ return EOPNOTSUPP; } static int bwi_init_rx_ring64(struct bwi_softc *sc) { /* TODO:64 */ return EOPNOTSUPP; } static int bwi_init_txstats64(struct bwi_softc *sc) { /* TODO:64 */ return EOPNOTSUPP; } static void bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr, int buf_len) { /* TODO:64 */ } static void bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd, int buf_idx, bus_addr_t paddr, int buf_len) { /* TODO:64 */ } static void bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsz __unused, int error) { if (!error) { KASSERT(nseg == 1, ("too many segments(%d)\n", nseg)); *((bus_addr_t *)arg) = seg->ds_addr; } } static int bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init) { struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx]; struct bwi_rxbuf_hdr *hdr; bus_dmamap_t map; bus_addr_t paddr; struct mbuf *m; int error; KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx)); m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { error = ENOBUFS; /* * If the NIC is up and running, we need to: * - Clear RX buffer's header. * - Restore RX descriptor settings. */ if (init) return error; else goto back; } m->m_len = m->m_pkthdr.len = MCLBYTES; /* * Try to load RX buf into temporary DMA map */ error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m, bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT); if (error) { m_freem(m); /* * See the comment above */ if (init) return error; else goto back; } if (!init) bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap); rxbuf->rb_mbuf = m; rxbuf->rb_paddr = paddr; /* * Swap RX buf's DMA map with the loaded temporary one */ map = rxbuf->rb_dmap; rxbuf->rb_dmap = rbd->rbd_tmp_dmap; rbd->rbd_tmp_dmap = map; back: /* * Clear RX buf header */ hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *); bzero(hdr, sizeof(*hdr)); bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE); /* * Setup RX buf descriptor */ sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr, rxbuf->rb_mbuf->m_len - sizeof(*hdr)); return error; } static void bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs, const uint8_t *addr) { int i; CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL, BWI_ADDR_FILTER_CTRL_SET | addr_ofs); for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) { uint16_t addr_val; addr_val = (uint16_t)addr[i * 2] | (((uint16_t)addr[(i * 2) + 1]) << 8); CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val); } } static int bwi_rxeof(struct bwi_softc *sc, int end_idx) { struct bwi_ring_data *rd = &sc->sc_rx_rdata; struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; struct ieee80211com *ic = &sc->sc_ic; int idx, rx_data = 0; idx = rbd->rbd_idx; while (idx != end_idx) { struct bwi_rxbuf *rb = &rbd->rbd_buf[idx]; struct bwi_rxbuf_hdr *hdr; struct ieee80211_frame_min *wh; struct ieee80211_node *ni; struct mbuf *m; uint32_t plcp; uint16_t flags2; int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate; m = rb->rb_mbuf; bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap, BUS_DMASYNC_POSTREAD); if (bwi_newbuf(sc, idx, 0)) { counter_u64_add(ic->ic_ierrors, 1); goto next; } hdr = mtod(m, struct bwi_rxbuf_hdr *); flags2 = le16toh(hdr->rxh_flags2); hdr_extra = 0; if (flags2 & BWI_RXH_F2_TYPE2FRAME) hdr_extra = 2; wh_ofs = hdr_extra + 6; /* XXX magic number */ buflen = le16toh(hdr->rxh_buflen); if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) { device_printf(sc->sc_dev, "%s: zero length data, hdr_extra %d\n", __func__, hdr_extra); counter_u64_add(ic->ic_ierrors, 1); m_freem(m); goto next; } bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp)); rssi = bwi_calc_rssi(sc, hdr); noise = bwi_calc_noise(sc); m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr); m_adj(m, sizeof(*hdr) + wh_ofs); if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM) rate = bwi_plcp2rate(plcp, IEEE80211_T_OFDM); else rate = bwi_plcp2rate(plcp, IEEE80211_T_CCK); /* RX radio tap */ if (ieee80211_radiotap_active(ic)) bwi_rx_radiotap(sc, m, hdr, &plcp, rate, rssi, noise); m_adj(m, -IEEE80211_CRC_LEN); BWI_UNLOCK(sc); wh = mtod(m, struct ieee80211_frame_min *); ni = ieee80211_find_rxnode(ic, wh); if (ni != NULL) { type = ieee80211_input(ni, m, rssi - noise, noise); ieee80211_free_node(ni); } else type = ieee80211_input_all(ic, m, rssi - noise, noise); if (type == IEEE80211_FC0_TYPE_DATA) { rx_data = 1; sc->sc_rx_rate = rate; } BWI_LOCK(sc); next: idx = (idx + 1) % BWI_RX_NDESC; if (sc->sc_flags & BWI_F_STOP) { /* * Take the fast lane, don't do * any damage to softc */ return -1; } } rbd->rbd_idx = idx; bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap, BUS_DMASYNC_PREWRITE); return rx_data; } static int bwi_rxeof32(struct bwi_softc *sc) { uint32_t val, rx_ctrl; int end_idx, rx_data; rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl; val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS); end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) / sizeof(struct bwi_desc32); rx_data = bwi_rxeof(sc, end_idx); if (rx_data >= 0) { CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX, end_idx * sizeof(struct bwi_desc32)); } return rx_data; } static int bwi_rxeof64(struct bwi_softc *sc) { /* TODO:64 */ return 0; } static void bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl) { int i; CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0); #define NRETRY 10 for (i = 0; i < NRETRY; ++i) { uint32_t status; status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS); if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) == BWI_RX32_STATUS_STATE_DISABLED) break; DELAY(1000); } if (i == NRETRY) device_printf(sc->sc_dev, "reset rx ring timedout\n"); #undef NRETRY CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0); } static void bwi_free_txstats32(struct bwi_softc *sc) { bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base); } static void bwi_free_rx_ring32(struct bwi_softc *sc) { struct bwi_ring_data *rd = &sc->sc_rx_rdata; struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata; int i; bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl); for (i = 0; i < BWI_RX_NDESC; ++i) { struct bwi_rxbuf *rb = &rbd->rbd_buf[i]; if (rb->rb_mbuf != NULL) { bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap); m_freem(rb->rb_mbuf); rb->rb_mbuf = NULL; } } } static void bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx) { struct bwi_ring_data *rd; struct bwi_txbuf_data *tbd; uint32_t state, val; int i; KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx)); rd = &sc->sc_tx_rdata[ring_idx]; tbd = &sc->sc_tx_bdata[ring_idx]; #define NRETRY 10 for (i = 0; i < NRETRY; ++i) { val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS); state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK); if (state == BWI_TX32_STATUS_STATE_DISABLED || state == BWI_TX32_STATUS_STATE_IDLE || state == BWI_TX32_STATUS_STATE_STOPPED) break; DELAY(1000); } if (i == NRETRY) { device_printf(sc->sc_dev, "%s: wait for TX ring(%d) stable timed out\n", __func__, ring_idx); } CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0); for (i = 0; i < NRETRY; ++i) { val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS); state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK); if (state == BWI_TX32_STATUS_STATE_DISABLED) break; DELAY(1000); } if (i == NRETRY) device_printf(sc->sc_dev, "%s: reset TX ring (%d) timed out\n", __func__, ring_idx); #undef NRETRY DELAY(1000); CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0); for (i = 0; i < BWI_TX_NDESC; ++i) { struct bwi_txbuf *tb = &tbd->tbd_buf[i]; if (tb->tb_mbuf != NULL) { bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap); m_freem(tb->tb_mbuf); tb->tb_mbuf = NULL; } if (tb->tb_ni != NULL) { ieee80211_free_node(tb->tb_ni); tb->tb_ni = NULL; } } } static void bwi_free_txstats64(struct bwi_softc *sc) { /* TODO:64 */ } static void bwi_free_rx_ring64(struct bwi_softc *sc) { /* TODO:64 */ } static void bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx) { /* TODO:64 */ } /* XXX does not belong here */ #define IEEE80211_OFDM_PLCP_RATE_MASK __BITS(3, 0) #define IEEE80211_OFDM_PLCP_LEN_MASK __BITS(16, 5) static __inline void bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate) { uint32_t plcp; plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM), IEEE80211_OFDM_PLCP_RATE_MASK) | __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK); *plcp0 = htole32(plcp); } static __inline void bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len, uint8_t rate) { int len, service, pkt_bitlen; pkt_bitlen = pkt_len * NBBY; len = howmany(pkt_bitlen * 2, rate); service = IEEE80211_PLCP_SERVICE_LOCKED; if (rate == (11 * 2)) { int pkt_bitlen1; /* * PLCP service field needs to be adjusted, * if TX rate is 11Mbytes/s */ pkt_bitlen1 = len * 11; if (pkt_bitlen1 - pkt_bitlen >= NBBY) service |= IEEE80211_PLCP_SERVICE_LENEXT7; } plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK); plcp->i_service = service; plcp->i_length = htole16(len); /* NOTE: do NOT touch i_crc */ } static __inline void bwi_plcp_header(const struct ieee80211_rate_table *rt, void *plcp, int pkt_len, uint8_t rate) { enum ieee80211_phytype modtype; /* * Assume caller has zeroed 'plcp' */ modtype = ieee80211_rate2phytype(rt, rate); if (modtype == IEEE80211_T_OFDM) bwi_ofdm_plcp_header(plcp, pkt_len, rate); else if (modtype == IEEE80211_T_DS) bwi_ds_plcp_header(plcp, pkt_len, rate); else panic("unsupport modulation type %u\n", modtype); } static int bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = &sc->sc_ic; struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING]; struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING]; struct bwi_txbuf *tb = &tbd->tbd_buf[idx]; struct bwi_mac *mac; struct bwi_txbuf_hdr *hdr; struct ieee80211_frame *wh; const struct ieee80211_txparam *tp; uint8_t rate, rate_fb; uint32_t mac_ctrl; uint16_t phy_ctrl; bus_addr_t paddr; int type, ismcast, pkt_len, error, rix; #if 0 const uint8_t *p; int i; #endif KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); /* Get 802.11 frame len before prepending TX header */ pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN; /* * Find TX rate */ tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) { rate = rate_fb = tp->mgmtrate; } else if (ismcast) { rate = rate_fb = tp->mcastrate; } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { rate = rate_fb = tp->ucastrate; } else { rix = ieee80211_ratectl_rate(ni, NULL, pkt_len); rate = ni->ni_txrate; if (rix > 0) { rate_fb = ni->ni_rates.rs_rates[rix-1] & IEEE80211_RATE_VAL; } else { rate_fb = rate; } } tb->tb_rate[0] = rate; tb->tb_rate[1] = rate_fb; sc->sc_tx_rate = rate; /* * TX radio tap */ if (ieee80211_radiotap_active_vap(vap)) { sc->sc_tx_th.wt_flags = 0; if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS && (ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (1 * 2)) { sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; } sc->sc_tx_th.wt_rate = rate; ieee80211_radiotap_tx(vap, m); } /* * Setup the embedded TX header */ M_PREPEND(m, sizeof(*hdr), M_NOWAIT); if (m == NULL) { device_printf(sc->sc_dev, "%s: prepend TX header failed\n", __func__); return ENOBUFS; } hdr = mtod(m, struct bwi_txbuf_hdr *); bzero(hdr, sizeof(*hdr)); bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc)); bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1)); if (!ismcast) { uint16_t dur; dur = ieee80211_ack_duration(sc->sc_rates, rate, ic->ic_flags & ~IEEE80211_F_SHPREAMBLE); hdr->txh_fb_duration = htole16(dur); } hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) | __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK); bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate); bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb); phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode, BWI_TXH_PHY_C_ANTMODE_MASK); if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) phy_ctrl |= BWI_TXH_PHY_C_OFDM; else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1)) phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE; mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG; if (!ismcast) mac_ctrl |= BWI_TXH_MAC_C_ACK; if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM) mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM; hdr->txh_mac_ctrl = htole32(mac_ctrl); hdr->txh_phy_ctrl = htole16(phy_ctrl); /* Catch any further usage */ hdr = NULL; wh = NULL; /* DMA load */ error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m, bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT); if (error && error != EFBIG) { device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n", __func__, error); goto back; } if (error) { /* error == EFBIG */ struct mbuf *m_new; m_new = m_defrag(m, M_NOWAIT); if (m_new == NULL) { device_printf(sc->sc_dev, "%s: can't defrag TX buffer\n", __func__); error = ENOBUFS; goto back; } else { m = m_new; } error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m, bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT); if (error) { device_printf(sc->sc_dev, "%s: can't load TX buffer (2) %d\n", __func__, error); goto back; } } error = 0; bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE); tb->tb_mbuf = m; tb->tb_ni = ni; #if 0 p = mtod(m, const uint8_t *); for (i = 0; i < m->m_pkthdr.len; ++i) { if (i != 0 && i % 8 == 0) printf("\n"); printf("%02x ", p[i]); } printf("\n"); #endif DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n", idx, pkt_len, m->m_pkthdr.len); /* Setup TX descriptor */ sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len); bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap, BUS_DMASYNC_PREWRITE); /* Kick start */ sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx); back: if (error) m_freem(m); return error; } static int bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m, struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING]; struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING]; struct bwi_txbuf *tb = &tbd->tbd_buf[idx]; struct bwi_mac *mac; struct bwi_txbuf_hdr *hdr; struct ieee80211_frame *wh; uint8_t rate, rate_fb; uint32_t mac_ctrl; uint16_t phy_ctrl; bus_addr_t paddr; int ismcast, pkt_len, error; KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; wh = mtod(m, struct ieee80211_frame *); ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); /* Get 802.11 frame len before prepending TX header */ pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN; /* * Find TX rate */ rate = params->ibp_rate0; if (!ieee80211_isratevalid(ic->ic_rt, rate)) { /* XXX fall back to mcast/mgmt rate? */ m_freem(m); return EINVAL; } if (params->ibp_try1 != 0) { rate_fb = params->ibp_rate1; if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) { /* XXX fall back to rate0? */ m_freem(m); return EINVAL; } } else rate_fb = rate; tb->tb_rate[0] = rate; tb->tb_rate[1] = rate_fb; sc->sc_tx_rate = rate; /* * TX radio tap */ if (ieee80211_radiotap_active_vap(vap)) { sc->sc_tx_th.wt_flags = 0; /* XXX IEEE80211_BPF_CRYPTO */ if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; sc->sc_tx_th.wt_rate = rate; ieee80211_radiotap_tx(vap, m); } /* * Setup the embedded TX header */ M_PREPEND(m, sizeof(*hdr), M_NOWAIT); if (m == NULL) { device_printf(sc->sc_dev, "%s: prepend TX header failed\n", __func__); return ENOBUFS; } hdr = mtod(m, struct bwi_txbuf_hdr *); bzero(hdr, sizeof(*hdr)); bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc)); bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1)); mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG; if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) { uint16_t dur; dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0); hdr->txh_fb_duration = htole16(dur); mac_ctrl |= BWI_TXH_MAC_C_ACK; } hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) | __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK); bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate); bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb); phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode, BWI_TXH_PHY_C_ANTMODE_MASK); if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) { phy_ctrl |= BWI_TXH_PHY_C_OFDM; mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM; } else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE; hdr->txh_mac_ctrl = htole32(mac_ctrl); hdr->txh_phy_ctrl = htole16(phy_ctrl); /* Catch any further usage */ hdr = NULL; wh = NULL; /* DMA load */ error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m, bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT); if (error != 0) { struct mbuf *m_new; if (error != EFBIG) { device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n", __func__, error); goto back; } m_new = m_defrag(m, M_NOWAIT); if (m_new == NULL) { device_printf(sc->sc_dev, "%s: can't defrag TX buffer\n", __func__); error = ENOBUFS; goto back; } m = m_new; error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m, bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT); if (error) { device_printf(sc->sc_dev, "%s: can't load TX buffer (2) %d\n", __func__, error); goto back; } } bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE); tb->tb_mbuf = m; tb->tb_ni = ni; DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n", idx, pkt_len, m->m_pkthdr.len); /* Setup TX descriptor */ sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len); bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap, BUS_DMASYNC_PREWRITE); /* Kick start */ sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx); back: if (error) m_freem(m); return error; } static void bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx) { idx = (idx + 1) % BWI_TX_NDESC; CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX, idx * sizeof(struct bwi_desc32)); } static void bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx) { /* TODO:64 */ } static void bwi_txeof_status32(struct bwi_softc *sc) { uint32_t val, ctrl_base; int end_idx; ctrl_base = sc->sc_txstats->stats_ctrl_base; val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS); end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) / sizeof(struct bwi_desc32); bwi_txeof_status(sc, end_idx); CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX, end_idx * sizeof(struct bwi_desc32)); bwi_start_locked(sc); } static void bwi_txeof_status64(struct bwi_softc *sc) { /* TODO:64 */ } static void _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt) { struct bwi_txbuf_data *tbd; struct bwi_txbuf *tb; int ring_idx, buf_idx; struct ieee80211_node *ni; struct ieee80211vap *vap; if (tx_id == 0) { device_printf(sc->sc_dev, "%s: zero tx id\n", __func__); return; } ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK); buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK); KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx)); KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx)); tbd = &sc->sc_tx_bdata[ring_idx]; KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used)); tbd->tbd_used--; tb = &tbd->tbd_buf[buf_idx]; DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, " "acked %d, data_txcnt %d, ni %p\n", buf_idx, acked, data_txcnt, tb->tb_ni); bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap); if ((ni = tb->tb_ni) != NULL) { const struct bwi_txbuf_hdr *hdr = mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *); vap = ni->ni_vap; /* NB: update rate control only for unicast frames */ if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) { /* * Feed back 'acked and data_txcnt'. Note that the * generic AMRR code only understands one tx rate * and the estimator doesn't handle real retry counts * well so to avoid over-aggressive downshifting we * treat any number of retries as "1". */ ieee80211_ratectl_tx_complete(vap, ni, (data_txcnt > 1) ? IEEE80211_RATECTL_TX_SUCCESS : IEEE80211_RATECTL_TX_FAILURE, &acked, NULL); } ieee80211_tx_complete(ni, tb->tb_mbuf, !acked); tb->tb_ni = NULL; } else m_freem(tb->tb_mbuf); tb->tb_mbuf = NULL; if (tbd->tbd_used == 0) sc->sc_tx_timer = 0; } static void bwi_txeof_status(struct bwi_softc *sc, int end_idx) { struct bwi_txstats_data *st = sc->sc_txstats; int idx; bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD); idx = st->stats_idx; while (idx != end_idx) { const struct bwi_txstats *stats = &st->stats[idx]; if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) { int data_txcnt; data_txcnt = __SHIFTOUT(stats->txs_txcnt, BWI_TXS_TXCNT_DATA); _bwi_txeof(sc, le16toh(stats->txs_id), stats->txs_flags & BWI_TXS_F_ACKED, data_txcnt); } idx = (idx + 1) % BWI_TXSTATS_NDESC; } st->stats_idx = idx; } static void bwi_txeof(struct bwi_softc *sc) { for (;;) { uint32_t tx_status0, tx_status1; uint16_t tx_id; int data_txcnt; tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0); if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0) break; tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1); tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK); data_txcnt = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_DATA_TXCNT_MASK); if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING)) continue; _bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED, data_txcnt); } bwi_start_locked(sc); } static int bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode) { bwi_power_on(sc, 1); return bwi_set_clock_mode(sc, clk_mode); } static void bwi_bbp_power_off(struct bwi_softc *sc) { bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW); bwi_power_off(sc, 1); } static int bwi_get_pwron_delay(struct bwi_softc *sc) { struct bwi_regwin *com, *old; struct bwi_clock_freq freq; uint32_t val; int error; com = &sc->sc_com_regwin; KASSERT(BWI_REGWIN_EXIST(com), ("no regwin")); if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0) return 0; error = bwi_regwin_switch(sc, com, &old); if (error) return error; bwi_get_clock_freq(sc, &freq); val = CSR_READ_4(sc, BWI_PLL_ON_DELAY); sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min); DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay); return bwi_regwin_switch(sc, old, NULL); } static int bwi_bus_attach(struct bwi_softc *sc) { struct bwi_regwin *bus, *old; int error; bus = &sc->sc_bus_regwin; error = bwi_regwin_switch(sc, bus, &old); if (error) return error; if (!bwi_regwin_is_enabled(sc, bus)) bwi_regwin_enable(sc, bus, 0); /* Disable interripts */ CSR_WRITE_4(sc, BWI_INTRVEC, 0); return bwi_regwin_switch(sc, old, NULL); } static const char * bwi_regwin_name(const struct bwi_regwin *rw) { switch (rw->rw_type) { case BWI_REGWIN_T_COM: return "COM"; case BWI_REGWIN_T_BUSPCI: return "PCI"; case BWI_REGWIN_T_MAC: return "MAC"; case BWI_REGWIN_T_BUSPCIE: return "PCIE"; } panic("unknown regwin type 0x%04x\n", rw->rw_type); return NULL; } static uint32_t bwi_regwin_disable_bits(struct bwi_softc *sc) { uint32_t busrev; /* XXX cache this */ busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK); DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC, "bus rev %u\n", busrev); if (busrev == BWI_BUSREV_0) return BWI_STATE_LO_DISABLE1; else if (busrev == BWI_BUSREV_1) return BWI_STATE_LO_DISABLE2; else return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2); } int bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw) { uint32_t val, disable_bits; disable_bits = bwi_regwin_disable_bits(sc); val = CSR_READ_4(sc, BWI_STATE_LO); if ((val & (BWI_STATE_LO_CLOCK | BWI_STATE_LO_RESET | disable_bits)) == BWI_STATE_LO_CLOCK) { DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n", bwi_regwin_name(rw)); return 1; } else { DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n", bwi_regwin_name(rw)); return 0; } } void bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags) { uint32_t state_lo, disable_bits; int i; state_lo = CSR_READ_4(sc, BWI_STATE_LO); /* * If current regwin is in 'reset' state, it was already disabled. */ if (state_lo & BWI_STATE_LO_RESET) { DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s was already disabled\n", bwi_regwin_name(rw)); return; } disable_bits = bwi_regwin_disable_bits(sc); /* * Disable normal clock */ state_lo = BWI_STATE_LO_CLOCK | disable_bits; CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); /* * Wait until normal clock is disabled */ #define NRETRY 1000 for (i = 0; i < NRETRY; ++i) { state_lo = CSR_READ_4(sc, BWI_STATE_LO); if (state_lo & disable_bits) break; DELAY(10); } if (i == NRETRY) { device_printf(sc->sc_dev, "%s disable clock timeout\n", bwi_regwin_name(rw)); } for (i = 0; i < NRETRY; ++i) { uint32_t state_hi; state_hi = CSR_READ_4(sc, BWI_STATE_HI); if ((state_hi & BWI_STATE_HI_BUSY) == 0) break; DELAY(10); } if (i == NRETRY) { device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n", bwi_regwin_name(rw)); } #undef NRETRY /* * Reset and disable regwin with gated clock */ state_lo = BWI_STATE_LO_RESET | disable_bits | BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK | __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); /* Flush pending bus write */ CSR_READ_4(sc, BWI_STATE_LO); DELAY(1); /* Reset and disable regwin */ state_lo = BWI_STATE_LO_RESET | disable_bits | __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); /* Flush pending bus write */ CSR_READ_4(sc, BWI_STATE_LO); DELAY(1); } void bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags) { uint32_t state_lo, state_hi, imstate; bwi_regwin_disable(sc, rw, flags); /* Reset regwin with gated clock */ state_lo = BWI_STATE_LO_RESET | BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK | __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); /* Flush pending bus write */ CSR_READ_4(sc, BWI_STATE_LO); DELAY(1); state_hi = CSR_READ_4(sc, BWI_STATE_HI); if (state_hi & BWI_STATE_HI_SERROR) CSR_WRITE_4(sc, BWI_STATE_HI, 0); imstate = CSR_READ_4(sc, BWI_IMSTATE); if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) { imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT); CSR_WRITE_4(sc, BWI_IMSTATE, imstate); } /* Enable regwin with gated clock */ state_lo = BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK | __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); /* Flush pending bus write */ CSR_READ_4(sc, BWI_STATE_LO); DELAY(1); /* Enable regwin with normal clock */ state_lo = BWI_STATE_LO_CLOCK | __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK); CSR_WRITE_4(sc, BWI_STATE_LO, state_lo); /* Flush pending bus write */ CSR_READ_4(sc, BWI_STATE_LO); DELAY(1); } static void bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid) { struct bwi_mac *mac; struct bwi_myaddr_bssid buf; const uint8_t *p; uint32_t val; int n, i; KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid); bcopy(sc->sc_ic.ic_macaddr, buf.myaddr, sizeof(buf.myaddr)); bcopy(bssid, buf.bssid, sizeof(buf.bssid)); n = sizeof(buf) / sizeof(val); p = (const uint8_t *)&buf; for (i = 0; i < n; ++i) { int j; val = 0; for (j = 0; j < sizeof(val); ++j) val |= ((uint32_t)(*p++)) << (j * 8); TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val); } } static void bwi_updateslot(struct ieee80211com *ic) { struct bwi_softc *sc = ic->ic_softc; struct bwi_mac *mac; BWI_LOCK(sc); if (sc->sc_flags & BWI_F_RUNNING) { DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__); KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT)); } BWI_UNLOCK(sc); } static void bwi_calibrate(void *xsc) { struct bwi_softc *sc = xsc; struct bwi_mac *mac; BWI_ASSERT_LOCKED(sc); KASSERT(sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR, ("opmode %d", sc->sc_ic.ic_opmode)); KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type); sc->sc_txpwrcb_type = BWI_TXPWR_CALIB; /* XXX 15 seconds */ callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc); } static int bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr) { struct bwi_mac *mac; KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; return bwi_rf_calc_rssi(mac, hdr); } static int bwi_calc_noise(struct bwi_softc *sc) { struct bwi_mac *mac; KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC, ("current regwin type %d", sc->sc_cur_regwin->rw_type)); mac = (struct bwi_mac *)sc->sc_cur_regwin; return bwi_rf_calc_noise(mac); } static __inline uint8_t bwi_plcp2rate(const uint32_t plcp0, enum ieee80211_phytype type) { uint32_t plcp = le32toh(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK; return (ieee80211_plcp2rate(plcp, type)); } static void bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m, struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise) { const struct ieee80211_frame_min *wh; sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS; if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE) sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; wh = mtod(m, const struct ieee80211_frame_min *); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP; sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian convertion */ sc->sc_rx_th.wr_rate = rate; sc->sc_rx_th.wr_antsignal = rssi; sc->sc_rx_th.wr_antnoise = noise; } static void bwi_led_attach(struct bwi_softc *sc) { const uint8_t *led_act = NULL; uint16_t gpio, val[BWI_LED_MAX]; int i; for (i = 0; i < nitems(bwi_vendor_led_act); ++i) { if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) { led_act = bwi_vendor_led_act[i].led_act; break; } } if (led_act == NULL) led_act = bwi_default_led_act; gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01); val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0); val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1); gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23); val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2); val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3); for (i = 0; i < BWI_LED_MAX; ++i) { struct bwi_led *led = &sc->sc_leds[i]; if (val[i] == 0xff) { led->l_act = led_act[i]; } else { if (val[i] & BWI_LED_ACT_LOW) led->l_flags |= BWI_LED_F_ACTLOW; led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK); } led->l_mask = (1 << i); if (led->l_act == BWI_LED_ACT_BLINK_SLOW || led->l_act == BWI_LED_ACT_BLINK_POLL || led->l_act == BWI_LED_ACT_BLINK) { led->l_flags |= BWI_LED_F_BLINK; if (led->l_act == BWI_LED_ACT_BLINK_POLL) led->l_flags |= BWI_LED_F_POLLABLE; else if (led->l_act == BWI_LED_ACT_BLINK_SLOW) led->l_flags |= BWI_LED_F_SLOW; if (sc->sc_blink_led == NULL) { sc->sc_blink_led = led; if (led->l_flags & BWI_LED_F_SLOW) BWI_LED_SLOWDOWN(sc->sc_led_idle); } } DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH, "%dth led, act %d, lowact %d\n", i, led->l_act, led->l_flags & BWI_LED_F_ACTLOW); } callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0); } static __inline uint16_t bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on) { if (led->l_flags & BWI_LED_F_ACTLOW) on = !on; if (on) val |= led->l_mask; else val &= ~led->l_mask; return val; } static void bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate) { struct ieee80211com *ic = &sc->sc_ic; uint16_t val; int i; if (nstate == IEEE80211_S_INIT) { callout_stop(&sc->sc_led_blink_ch); sc->sc_led_blinking = 0; } if ((sc->sc_flags & BWI_F_RUNNING) == 0) return; val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL); for (i = 0; i < BWI_LED_MAX; ++i) { struct bwi_led *led = &sc->sc_leds[i]; int on; if (led->l_act == BWI_LED_ACT_UNKN || led->l_act == BWI_LED_ACT_NULL) continue; if ((led->l_flags & BWI_LED_F_BLINK) && nstate != IEEE80211_S_INIT) continue; switch (led->l_act) { case BWI_LED_ACT_ON: /* Always on */ on = 1; break; case BWI_LED_ACT_OFF: /* Always off */ case BWI_LED_ACT_5GHZ: /* TODO: 11A */ on = 0; break; default: on = 1; switch (nstate) { case IEEE80211_S_INIT: on = 0; break; case IEEE80211_S_RUN: if (led->l_act == BWI_LED_ACT_11G && ic->ic_curmode != IEEE80211_MODE_11G) on = 0; break; default: if (led->l_act == BWI_LED_ACT_ASSOC) on = 0; break; } break; } val = bwi_led_onoff(led, val, on); } CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val); } static void bwi_led_event(struct bwi_softc *sc, int event) { struct bwi_led *led = sc->sc_blink_led; int rate; if (event == BWI_LED_EVENT_POLL) { if ((led->l_flags & BWI_LED_F_POLLABLE) == 0) return; if (ticks - sc->sc_led_ticks < sc->sc_led_idle) return; } sc->sc_led_ticks = ticks; if (sc->sc_led_blinking) return; switch (event) { case BWI_LED_EVENT_RX: rate = sc->sc_rx_rate; break; case BWI_LED_EVENT_TX: rate = sc->sc_tx_rate; break; case BWI_LED_EVENT_POLL: rate = 0; break; default: panic("unknown LED event %d\n", event); break; } bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur, bwi_led_duration[rate].off_dur); } static void bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur) { struct bwi_led *led = sc->sc_blink_led; uint16_t val; val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL); val = bwi_led_onoff(led, val, 1); CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val); if (led->l_flags & BWI_LED_F_SLOW) { BWI_LED_SLOWDOWN(on_dur); BWI_LED_SLOWDOWN(off_dur); } sc->sc_led_blinking = 1; sc->sc_led_blink_offdur = off_dur; callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc); } static void bwi_led_blink_next(void *xsc) { struct bwi_softc *sc = xsc; uint16_t val; val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL); val = bwi_led_onoff(sc->sc_blink_led, val, 0); CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val); callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur, bwi_led_blink_end, sc); } static void bwi_led_blink_end(void *xsc) { struct bwi_softc *sc = xsc; sc->sc_led_blinking = 0; } static void bwi_restart(void *xsc, int pending) { struct bwi_softc *sc = xsc; device_printf(sc->sc_dev, "%s begin, help!\n", __func__); BWI_LOCK(sc); bwi_init_statechg(sc, 0); #if 0 bwi_start_locked(sc); #endif BWI_UNLOCK(sc); } Index: head/sys/dev/if_ndis/if_ndis.c =================================================================== --- head/sys/dev/if_ndis/if_ndis.c (revision 298817) +++ head/sys/dev/if_ndis/if_ndis.c (revision 298818) @@ -1,3415 +1,3415 @@ /*- * Copyright (c) 2003 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * WPA support originally contributed by Arvind Srinivasan * then hacked upon mercilessly by my. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define NDIS_DEBUG #ifdef NDIS_DEBUG #define DPRINTF(x) do { if (ndis_debug > 0) printf x; } while (0) int ndis_debug = 0; SYSCTL_INT(_debug, OID_AUTO, ndis, CTLFLAG_RW, &ndis_debug, 0, "if_ndis debug level"); #else #define DPRINTF(x) #endif SYSCTL_DECL(_hw_ndisusb); int ndisusb_halt = 1; SYSCTL_INT(_hw_ndisusb, OID_AUTO, halt, CTLFLAG_RW, &ndisusb_halt, 0, "Halt NDIS USB driver when it's attached"); /* 0 - 30 dBm to mW conversion table */ static const uint16_t dBm2mW[] = { 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 6, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 25, 28, 32, 35, 40, 45, 50, 56, 63, 71, 79, 89, 100, 112, 126, 141, 158, 178, 200, 224, 251, 282, 316, 355, 398, 447, 501, 562, 631, 708, 794, 891, 1000 }; MODULE_DEPEND(ndis, ether, 1, 1, 1); MODULE_DEPEND(ndis, wlan, 1, 1, 1); MODULE_DEPEND(ndis, ndisapi, 1, 1, 1); MODULE_VERSION(ndis, 1); int ndis_attach (device_t); int ndis_detach (device_t); int ndis_suspend (device_t); int ndis_resume (device_t); void ndis_shutdown (device_t); int ndisdrv_modevent (module_t, int, void *); static void ndis_txeof (ndis_handle, ndis_packet *, ndis_status); static void ndis_rxeof (ndis_handle, ndis_packet **, uint32_t); static void ndis_rxeof_eth (ndis_handle, ndis_handle, char *, void *, uint32_t, void *, uint32_t, uint32_t); static void ndis_rxeof_done (ndis_handle); static void ndis_rxeof_xfr (kdpc *, ndis_handle, void *, void *); static void ndis_rxeof_xfr_done (ndis_handle, ndis_packet *, uint32_t, uint32_t); static void ndis_linksts (ndis_handle, ndis_status, void *, uint32_t); static void ndis_linksts_done (ndis_handle); /* We need to wrap these functions for amd64. */ static funcptr ndis_txeof_wrap; static funcptr ndis_rxeof_wrap; static funcptr ndis_rxeof_eth_wrap; static funcptr ndis_rxeof_done_wrap; static funcptr ndis_rxeof_xfr_wrap; static funcptr ndis_rxeof_xfr_done_wrap; static funcptr ndis_linksts_wrap; static funcptr ndis_linksts_done_wrap; static funcptr ndis_ticktask_wrap; static funcptr ndis_starttask_wrap; static funcptr ndis_resettask_wrap; static funcptr ndis_inputtask_wrap; static struct ieee80211vap *ndis_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void ndis_vap_delete (struct ieee80211vap *); static void ndis_tick (void *); static void ndis_ticktask (device_object *, void *); static int ndis_raw_xmit (struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void ndis_update_mcast (struct ieee80211com *); static void ndis_update_promisc (struct ieee80211com *); static void ndis_start (struct ifnet *); static void ndis_starttask (device_object *, void *); static void ndis_resettask (device_object *, void *); static void ndis_inputtask (device_object *, void *); static int ndis_ioctl (struct ifnet *, u_long, caddr_t); static int ndis_newstate (struct ieee80211vap *, enum ieee80211_state, int); static int ndis_nettype_chan (uint32_t); static int ndis_nettype_mode (uint32_t); static void ndis_scan (void *); static void ndis_scan_results (struct ndis_softc *); static void ndis_scan_start (struct ieee80211com *); static void ndis_scan_end (struct ieee80211com *); static void ndis_set_channel (struct ieee80211com *); static void ndis_scan_curchan (struct ieee80211_scan_state *, unsigned long); static void ndis_scan_mindwell (struct ieee80211_scan_state *); static void ndis_init (void *); static void ndis_stop (struct ndis_softc *); static int ndis_ifmedia_upd (struct ifnet *); static void ndis_ifmedia_sts (struct ifnet *, struct ifmediareq *); static int ndis_get_bssid_list (struct ndis_softc *, ndis_80211_bssid_list_ex **); static int ndis_get_assoc (struct ndis_softc *, ndis_wlan_bssid_ex **); static int ndis_probe_offload (struct ndis_softc *); static int ndis_set_offload (struct ndis_softc *); static void ndis_getstate_80211 (struct ndis_softc *); static void ndis_setstate_80211 (struct ndis_softc *); static void ndis_auth_and_assoc (struct ndis_softc *, struct ieee80211vap *); static void ndis_media_status (struct ifnet *, struct ifmediareq *); static int ndis_set_cipher (struct ndis_softc *, int); static int ndis_set_wpa (struct ndis_softc *, void *, int); static int ndis_add_key (struct ieee80211vap *, const struct ieee80211_key *); static int ndis_del_key (struct ieee80211vap *, const struct ieee80211_key *); static void ndis_setmulti (struct ndis_softc *); static void ndis_map_sclist (void *, bus_dma_segment_t *, int, bus_size_t, int); static int ndis_ifattach(struct ndis_softc *); static int ndis_80211attach(struct ndis_softc *); static int ndis_80211ioctl(struct ieee80211com *, u_long , void *); static int ndis_80211transmit(struct ieee80211com *, struct mbuf *); static void ndis_80211parent(struct ieee80211com *); static int ndisdrv_loaded = 0; /* * This routine should call windrv_load() once for each driver * image. This will do the relocation and dynalinking for the * image, and create a Windows driver object which will be * saved in our driver database. */ int ndisdrv_modevent(mod, cmd, arg) module_t mod; int cmd; void *arg; { int error = 0; switch (cmd) { case MOD_LOAD: ndisdrv_loaded++; if (ndisdrv_loaded > 1) break; windrv_wrap((funcptr)ndis_rxeof, &ndis_rxeof_wrap, 3, WINDRV_WRAP_STDCALL); windrv_wrap((funcptr)ndis_rxeof_eth, &ndis_rxeof_eth_wrap, 8, WINDRV_WRAP_STDCALL); windrv_wrap((funcptr)ndis_rxeof_done, &ndis_rxeof_done_wrap, 1, WINDRV_WRAP_STDCALL); windrv_wrap((funcptr)ndis_rxeof_xfr, &ndis_rxeof_xfr_wrap, 4, WINDRV_WRAP_STDCALL); windrv_wrap((funcptr)ndis_rxeof_xfr_done, &ndis_rxeof_xfr_done_wrap, 4, WINDRV_WRAP_STDCALL); windrv_wrap((funcptr)ndis_txeof, &ndis_txeof_wrap, 3, WINDRV_WRAP_STDCALL); windrv_wrap((funcptr)ndis_linksts, &ndis_linksts_wrap, 4, WINDRV_WRAP_STDCALL); windrv_wrap((funcptr)ndis_linksts_done, &ndis_linksts_done_wrap, 1, WINDRV_WRAP_STDCALL); windrv_wrap((funcptr)ndis_ticktask, &ndis_ticktask_wrap, 2, WINDRV_WRAP_STDCALL); windrv_wrap((funcptr)ndis_starttask, &ndis_starttask_wrap, 2, WINDRV_WRAP_STDCALL); windrv_wrap((funcptr)ndis_resettask, &ndis_resettask_wrap, 2, WINDRV_WRAP_STDCALL); windrv_wrap((funcptr)ndis_inputtask, &ndis_inputtask_wrap, 2, WINDRV_WRAP_STDCALL); break; case MOD_UNLOAD: ndisdrv_loaded--; if (ndisdrv_loaded > 0) break; /* fallthrough */ case MOD_SHUTDOWN: windrv_unwrap(ndis_rxeof_wrap); windrv_unwrap(ndis_rxeof_eth_wrap); windrv_unwrap(ndis_rxeof_done_wrap); windrv_unwrap(ndis_rxeof_xfr_wrap); windrv_unwrap(ndis_rxeof_xfr_done_wrap); windrv_unwrap(ndis_txeof_wrap); windrv_unwrap(ndis_linksts_wrap); windrv_unwrap(ndis_linksts_done_wrap); windrv_unwrap(ndis_ticktask_wrap); windrv_unwrap(ndis_starttask_wrap); windrv_unwrap(ndis_resettask_wrap); windrv_unwrap(ndis_inputtask_wrap); break; default: error = EINVAL; break; } return (error); } /* * Program the 64-bit multicast hash filter. */ static void ndis_setmulti(sc) struct ndis_softc *sc; { struct ifnet *ifp; struct ifmultiaddr *ifma; int len, mclistsz, error; uint8_t *mclist; ifp = sc->ifp; if (!NDIS_INITIALIZED(sc)) return; if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { sc->ndis_filter |= NDIS_PACKET_TYPE_ALL_MULTICAST; len = sizeof(sc->ndis_filter); error = ndis_set_info(sc, OID_GEN_CURRENT_PACKET_FILTER, &sc->ndis_filter, &len); if (error) device_printf(sc->ndis_dev, "set allmulti failed: %d\n", error); return; } if (TAILQ_EMPTY(&ifp->if_multiaddrs)) return; len = sizeof(mclistsz); ndis_get_info(sc, OID_802_3_MAXIMUM_LIST_SIZE, &mclistsz, &len); mclist = malloc(ETHER_ADDR_LEN * mclistsz, M_TEMP, M_NOWAIT|M_ZERO); if (mclist == NULL) { sc->ndis_filter |= NDIS_PACKET_TYPE_ALL_MULTICAST; goto out; } sc->ndis_filter |= NDIS_PACKET_TYPE_MULTICAST; len = 0; if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), mclist + (ETHER_ADDR_LEN * len), ETHER_ADDR_LEN); len++; if (len > mclistsz) { if_maddr_runlock(ifp); sc->ndis_filter |= NDIS_PACKET_TYPE_ALL_MULTICAST; sc->ndis_filter &= ~NDIS_PACKET_TYPE_MULTICAST; goto out; } } if_maddr_runlock(ifp); len = len * ETHER_ADDR_LEN; error = ndis_set_info(sc, OID_802_3_MULTICAST_LIST, mclist, &len); if (error) { device_printf(sc->ndis_dev, "set mclist failed: %d\n", error); sc->ndis_filter |= NDIS_PACKET_TYPE_ALL_MULTICAST; sc->ndis_filter &= ~NDIS_PACKET_TYPE_MULTICAST; } out: free(mclist, M_TEMP); len = sizeof(sc->ndis_filter); error = ndis_set_info(sc, OID_GEN_CURRENT_PACKET_FILTER, &sc->ndis_filter, &len); if (error) device_printf(sc->ndis_dev, "set multi failed: %d\n", error); } static int ndis_set_offload(sc) struct ndis_softc *sc; { ndis_task_offload *nto; ndis_task_offload_hdr *ntoh; ndis_task_tcpip_csum *nttc; struct ifnet *ifp; int len, error; ifp = sc->ifp; if (!NDIS_INITIALIZED(sc)) return (EINVAL); /* See if there's anything to set. */ error = ndis_probe_offload(sc); if (error) return (error); if (sc->ndis_hwassist == 0 && ifp->if_capabilities == 0) return (0); len = sizeof(ndis_task_offload_hdr) + sizeof(ndis_task_offload) + sizeof(ndis_task_tcpip_csum); ntoh = malloc(len, M_TEMP, M_NOWAIT|M_ZERO); if (ntoh == NULL) return (ENOMEM); ntoh->ntoh_vers = NDIS_TASK_OFFLOAD_VERSION; ntoh->ntoh_len = sizeof(ndis_task_offload_hdr); ntoh->ntoh_offset_firsttask = sizeof(ndis_task_offload_hdr); ntoh->ntoh_encapfmt.nef_encaphdrlen = sizeof(struct ether_header); ntoh->ntoh_encapfmt.nef_encap = NDIS_ENCAP_IEEE802_3; ntoh->ntoh_encapfmt.nef_flags = NDIS_ENCAPFLAG_FIXEDHDRLEN; nto = (ndis_task_offload *)((char *)ntoh + ntoh->ntoh_offset_firsttask); nto->nto_vers = NDIS_TASK_OFFLOAD_VERSION; nto->nto_len = sizeof(ndis_task_offload); nto->nto_task = NDIS_TASK_TCPIP_CSUM; nto->nto_offset_nexttask = 0; nto->nto_taskbuflen = sizeof(ndis_task_tcpip_csum); nttc = (ndis_task_tcpip_csum *)nto->nto_taskbuf; if (ifp->if_capenable & IFCAP_TXCSUM) nttc->nttc_v4tx = sc->ndis_v4tx; if (ifp->if_capenable & IFCAP_RXCSUM) nttc->nttc_v4rx = sc->ndis_v4rx; error = ndis_set_info(sc, OID_TCP_TASK_OFFLOAD, ntoh, &len); free(ntoh, M_TEMP); return (error); } static int ndis_probe_offload(sc) struct ndis_softc *sc; { ndis_task_offload *nto; ndis_task_offload_hdr *ntoh; ndis_task_tcpip_csum *nttc = NULL; struct ifnet *ifp; int len, error, dummy; ifp = sc->ifp; len = sizeof(dummy); error = ndis_get_info(sc, OID_TCP_TASK_OFFLOAD, &dummy, &len); if (error != ENOSPC) return (error); ntoh = malloc(len, M_TEMP, M_NOWAIT|M_ZERO); if (ntoh == NULL) return (ENOMEM); ntoh->ntoh_vers = NDIS_TASK_OFFLOAD_VERSION; ntoh->ntoh_len = sizeof(ndis_task_offload_hdr); ntoh->ntoh_encapfmt.nef_encaphdrlen = sizeof(struct ether_header); ntoh->ntoh_encapfmt.nef_encap = NDIS_ENCAP_IEEE802_3; ntoh->ntoh_encapfmt.nef_flags = NDIS_ENCAPFLAG_FIXEDHDRLEN; error = ndis_get_info(sc, OID_TCP_TASK_OFFLOAD, ntoh, &len); if (error) { free(ntoh, M_TEMP); return (error); } if (ntoh->ntoh_vers != NDIS_TASK_OFFLOAD_VERSION) { free(ntoh, M_TEMP); return (EINVAL); } nto = (ndis_task_offload *)((char *)ntoh + ntoh->ntoh_offset_firsttask); while (1) { switch (nto->nto_task) { case NDIS_TASK_TCPIP_CSUM: nttc = (ndis_task_tcpip_csum *)nto->nto_taskbuf; break; /* Don't handle these yet. */ case NDIS_TASK_IPSEC: case NDIS_TASK_TCP_LARGESEND: default: break; } if (nto->nto_offset_nexttask == 0) break; nto = (ndis_task_offload *)((char *)nto + nto->nto_offset_nexttask); } if (nttc == NULL) { free(ntoh, M_TEMP); return (ENOENT); } sc->ndis_v4tx = nttc->nttc_v4tx; sc->ndis_v4rx = nttc->nttc_v4rx; if (nttc->nttc_v4tx & NDIS_TCPSUM_FLAGS_IP_CSUM) sc->ndis_hwassist |= CSUM_IP; if (nttc->nttc_v4tx & NDIS_TCPSUM_FLAGS_TCP_CSUM) sc->ndis_hwassist |= CSUM_TCP; if (nttc->nttc_v4tx & NDIS_TCPSUM_FLAGS_UDP_CSUM) sc->ndis_hwassist |= CSUM_UDP; if (sc->ndis_hwassist) ifp->if_capabilities |= IFCAP_TXCSUM; if (nttc->nttc_v4rx & NDIS_TCPSUM_FLAGS_IP_CSUM) ifp->if_capabilities |= IFCAP_RXCSUM; if (nttc->nttc_v4rx & NDIS_TCPSUM_FLAGS_TCP_CSUM) ifp->if_capabilities |= IFCAP_RXCSUM; if (nttc->nttc_v4rx & NDIS_TCPSUM_FLAGS_UDP_CSUM) ifp->if_capabilities |= IFCAP_RXCSUM; free(ntoh, M_TEMP); return (0); } static int ndis_nettype_chan(uint32_t type) { switch (type) { case NDIS_80211_NETTYPE_11FH: return (IEEE80211_CHAN_FHSS); case NDIS_80211_NETTYPE_11DS: return (IEEE80211_CHAN_B); case NDIS_80211_NETTYPE_11OFDM5: return (IEEE80211_CHAN_A); case NDIS_80211_NETTYPE_11OFDM24: return (IEEE80211_CHAN_G); } DPRINTF(("unknown channel nettype %d\n", type)); return (IEEE80211_CHAN_B); /* Default to 11B chan */ } static int ndis_nettype_mode(uint32_t type) { switch (type) { case NDIS_80211_NETTYPE_11FH: return (IEEE80211_MODE_FH); case NDIS_80211_NETTYPE_11DS: return (IEEE80211_MODE_11B); case NDIS_80211_NETTYPE_11OFDM5: return (IEEE80211_MODE_11A); case NDIS_80211_NETTYPE_11OFDM24: return (IEEE80211_MODE_11G); } DPRINTF(("unknown mode nettype %d\n", type)); return (IEEE80211_MODE_AUTO); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ int ndis_attach(device_t dev) { struct ndis_softc *sc; driver_object *pdrv; device_object *pdo; int error = 0, len; int i; sc = device_get_softc(dev); mtx_init(&sc->ndis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); KeInitializeSpinLock(&sc->ndis_rxlock); KeInitializeSpinLock(&sc->ndisusb_tasklock); KeInitializeSpinLock(&sc->ndisusb_xferdonelock); InitializeListHead(&sc->ndis_shlist); InitializeListHead(&sc->ndisusb_tasklist); InitializeListHead(&sc->ndisusb_xferdonelist); callout_init(&sc->ndis_stat_callout, 1); mbufq_init(&sc->ndis_rxqueue, INT_MAX); /* XXXGL: sane maximum */ if (sc->ndis_iftype == PCMCIABus) { error = ndis_alloc_amem(sc); if (error) { device_printf(dev, "failed to allocate " "attribute memory\n"); goto fail; } } /* Create sysctl registry nodes */ ndis_create_sysctls(sc); /* Find the PDO for this device instance. */ if (sc->ndis_iftype == PCIBus) pdrv = windrv_lookup(0, "PCI Bus"); else if (sc->ndis_iftype == PCMCIABus) pdrv = windrv_lookup(0, "PCCARD Bus"); else pdrv = windrv_lookup(0, "USB Bus"); pdo = windrv_find_pdo(pdrv, dev); /* * Create a new functional device object for this * device. This is what creates the miniport block * for this device instance. */ if (NdisAddDevice(sc->ndis_dobj, pdo) != STATUS_SUCCESS) { device_printf(dev, "failed to create FDO!\n"); error = ENXIO; goto fail; } /* Tell the user what version of the API the driver is using. */ device_printf(dev, "NDIS API version: %d.%d\n", sc->ndis_chars->nmc_version_major, sc->ndis_chars->nmc_version_minor); /* Do resource conversion. */ if (sc->ndis_iftype == PCMCIABus || sc->ndis_iftype == PCIBus) ndis_convert_res(sc); else sc->ndis_block->nmb_rlist = NULL; /* Install our RX and TX interrupt handlers. */ sc->ndis_block->nmb_senddone_func = ndis_txeof_wrap; sc->ndis_block->nmb_pktind_func = ndis_rxeof_wrap; sc->ndis_block->nmb_ethrxindicate_func = ndis_rxeof_eth_wrap; sc->ndis_block->nmb_ethrxdone_func = ndis_rxeof_done_wrap; sc->ndis_block->nmb_tdcond_func = ndis_rxeof_xfr_done_wrap; /* Override the status handler so we can detect link changes. */ sc->ndis_block->nmb_status_func = ndis_linksts_wrap; sc->ndis_block->nmb_statusdone_func = ndis_linksts_done_wrap; /* Set up work item handlers. */ sc->ndis_tickitem = IoAllocateWorkItem(sc->ndis_block->nmb_deviceobj); sc->ndis_startitem = IoAllocateWorkItem(sc->ndis_block->nmb_deviceobj); sc->ndis_resetitem = IoAllocateWorkItem(sc->ndis_block->nmb_deviceobj); sc->ndis_inputitem = IoAllocateWorkItem(sc->ndis_block->nmb_deviceobj); sc->ndisusb_xferdoneitem = IoAllocateWorkItem(sc->ndis_block->nmb_deviceobj); sc->ndisusb_taskitem = IoAllocateWorkItem(sc->ndis_block->nmb_deviceobj); KeInitializeDpc(&sc->ndis_rxdpc, ndis_rxeof_xfr_wrap, sc->ndis_block); /* Call driver's init routine. */ if (ndis_init_nic(sc)) { device_printf(dev, "init handler failed\n"); error = ENXIO; goto fail; } /* * Figure out how big to make the TX buffer pool. */ len = sizeof(sc->ndis_maxpkts); if (ndis_get_info(sc, OID_GEN_MAXIMUM_SEND_PACKETS, &sc->ndis_maxpkts, &len)) { device_printf(dev, "failed to get max TX packets\n"); error = ENXIO; goto fail; } /* * If this is a deserialized miniport, we don't have * to honor the OID_GEN_MAXIMUM_SEND_PACKETS result. */ if (!NDIS_SERIALIZED(sc->ndis_block)) sc->ndis_maxpkts = NDIS_TXPKTS; /* Enforce some sanity, just in case. */ if (sc->ndis_maxpkts == 0) sc->ndis_maxpkts = 10; sc->ndis_txarray = malloc(sizeof(ndis_packet *) * sc->ndis_maxpkts, M_DEVBUF, M_NOWAIT|M_ZERO); /* Allocate a pool of ndis_packets for TX encapsulation. */ NdisAllocatePacketPool(&i, &sc->ndis_txpool, sc->ndis_maxpkts, PROTOCOL_RESERVED_SIZE_IN_PACKET); if (i != NDIS_STATUS_SUCCESS) { sc->ndis_txpool = NULL; device_printf(dev, "failed to allocate TX packet pool"); error = ENOMEM; goto fail; } sc->ndis_txpending = sc->ndis_maxpkts; sc->ndis_oidcnt = 0; /* Get supported oid list. */ ndis_get_supported_oids(sc, &sc->ndis_oids, &sc->ndis_oidcnt); /* If the NDIS module requested scatter/gather, init maps. */ if (sc->ndis_sc) ndis_init_dma(sc); /* * See if the OID_802_11_CONFIGURATION OID is * supported by this driver. If it is, then this an 802.11 * wireless driver, and we should set up media for wireless. */ for (i = 0; i < sc->ndis_oidcnt; i++) if (sc->ndis_oids[i] == OID_802_11_CONFIGURATION) { sc->ndis_80211 = 1; break; } if (sc->ndis_80211) error = ndis_80211attach(sc); else error = ndis_ifattach(sc); fail: if (error) { ndis_detach(dev); return (error); } if (sc->ndis_iftype == PNPBus && ndisusb_halt == 0) return (error); DPRINTF(("attach done.\n")); /* We're done talking to the NIC for now; halt it. */ ndis_halt_nic(sc); DPRINTF(("halting done.\n")); return (error); } static int ndis_80211attach(struct ndis_softc *sc) { struct ieee80211com *ic = &sc->ndis_ic; ndis_80211_rates_ex rates; struct ndis_80211_nettype_list *ntl; uint32_t arg; int mode, i, r, len, nonettypes = 1; - uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)] = { 0 }; + uint8_t bands[IEEE80211_MODE_BYTES] = { 0 }; callout_init(&sc->ndis_scan_callout, 1); ic->ic_softc = sc; ic->ic_ioctl = ndis_80211ioctl; ic->ic_name = device_get_nameunit(sc->ndis_dev); ic->ic_opmode = IEEE80211_M_STA; ic->ic_phytype = IEEE80211_T_DS; ic->ic_caps = IEEE80211_C_8023ENCAP | IEEE80211_C_STA | IEEE80211_C_IBSS; setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); len = 0; r = ndis_get_info(sc, OID_802_11_NETWORK_TYPES_SUPPORTED, NULL, &len); if (r != ENOSPC) goto nonettypes; ntl = malloc(len, M_DEVBUF, M_WAITOK | M_ZERO); r = ndis_get_info(sc, OID_802_11_NETWORK_TYPES_SUPPORTED, ntl, &len); if (r != 0) { free(ntl, M_DEVBUF); goto nonettypes; } for (i = 0; i < ntl->ntl_items; i++) { mode = ndis_nettype_mode(ntl->ntl_type[i]); if (mode) { nonettypes = 0; setbit(ic->ic_modecaps, mode); setbit(bands, mode); } else device_printf(sc->ndis_dev, "Unknown nettype %d\n", ntl->ntl_type[i]); } free(ntl, M_DEVBUF); nonettypes: /* Default to 11b channels if the card did not supply any */ if (nonettypes) { setbit(ic->ic_modecaps, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11B); } len = sizeof(rates); bzero((char *)&rates, len); r = ndis_get_info(sc, OID_802_11_SUPPORTED_RATES, (void *)rates, &len); if (r != 0) device_printf(sc->ndis_dev, "get rates failed: 0x%x\n", r); /* * Since the supported rates only up to 8 can be supported, * if this is not 802.11b we're just going to be faking it * all up to heck. */ #define TESTSETRATE(x, y) \ do { \ int i; \ for (i = 0; i < ic->ic_sup_rates[x].rs_nrates; i++) { \ if (ic->ic_sup_rates[x].rs_rates[i] == (y)) \ break; \ } \ if (i == ic->ic_sup_rates[x].rs_nrates) { \ ic->ic_sup_rates[x].rs_rates[i] = (y); \ ic->ic_sup_rates[x].rs_nrates++; \ } \ } while (0) #define SETRATE(x, y) \ ic->ic_sup_rates[x].rs_rates[ic->ic_sup_rates[x].rs_nrates] = (y) #define INCRATE(x) \ ic->ic_sup_rates[x].rs_nrates++ ic->ic_curmode = IEEE80211_MODE_AUTO; if (isset(ic->ic_modecaps, IEEE80211_MODE_11A)) ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates = 0; if (isset(ic->ic_modecaps, IEEE80211_MODE_11B)) ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = 0; if (isset(ic->ic_modecaps, IEEE80211_MODE_11G)) ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates = 0; for (i = 0; i < len; i++) { switch (rates[i] & IEEE80211_RATE_VAL) { case 2: case 4: case 11: case 10: case 22: if (isclr(ic->ic_modecaps, IEEE80211_MODE_11B)) { /* Lazy-init 802.11b. */ setbit(ic->ic_modecaps, IEEE80211_MODE_11B); ic->ic_sup_rates[IEEE80211_MODE_11B]. rs_nrates = 0; } SETRATE(IEEE80211_MODE_11B, rates[i]); INCRATE(IEEE80211_MODE_11B); break; default: if (isset(ic->ic_modecaps, IEEE80211_MODE_11A)) { SETRATE(IEEE80211_MODE_11A, rates[i]); INCRATE(IEEE80211_MODE_11A); } if (isset(ic->ic_modecaps, IEEE80211_MODE_11G)) { SETRATE(IEEE80211_MODE_11G, rates[i]); INCRATE(IEEE80211_MODE_11G); } break; } } /* * If the hardware supports 802.11g, it most * likely supports 802.11b and all of the * 802.11b and 802.11g speeds, so maybe we can * just cheat here. Just how in the heck do * we detect turbo modes, though? */ if (isset(ic->ic_modecaps, IEEE80211_MODE_11B)) { TESTSETRATE(IEEE80211_MODE_11B, IEEE80211_RATE_BASIC|2); TESTSETRATE(IEEE80211_MODE_11B, IEEE80211_RATE_BASIC|4); TESTSETRATE(IEEE80211_MODE_11B, IEEE80211_RATE_BASIC|11); TESTSETRATE(IEEE80211_MODE_11B, IEEE80211_RATE_BASIC|22); } if (isset(ic->ic_modecaps, IEEE80211_MODE_11G)) { TESTSETRATE(IEEE80211_MODE_11G, 48); TESTSETRATE(IEEE80211_MODE_11G, 72); TESTSETRATE(IEEE80211_MODE_11G, 96); TESTSETRATE(IEEE80211_MODE_11G, 108); } if (isset(ic->ic_modecaps, IEEE80211_MODE_11A)) { TESTSETRATE(IEEE80211_MODE_11A, 48); TESTSETRATE(IEEE80211_MODE_11A, 72); TESTSETRATE(IEEE80211_MODE_11A, 96); TESTSETRATE(IEEE80211_MODE_11A, 108); } #undef SETRATE #undef INCRATE #undef TESTSETRATE ieee80211_init_channels(ic, NULL, bands); /* * To test for WPA support, we need to see if we can * set AUTHENTICATION_MODE to WPA and read it back * successfully. */ i = sizeof(arg); arg = NDIS_80211_AUTHMODE_WPA; r = ndis_set_info(sc, OID_802_11_AUTHENTICATION_MODE, &arg, &i); if (r == 0) { r = ndis_get_info(sc, OID_802_11_AUTHENTICATION_MODE, &arg, &i); if (r == 0 && arg == NDIS_80211_AUTHMODE_WPA) ic->ic_caps |= IEEE80211_C_WPA; } /* * To test for supported ciphers, we set each * available encryption type in descending order. * If ENC3 works, then we have WEP, TKIP and AES. * If only ENC2 works, then we have WEP and TKIP. * If only ENC1 works, then we have just WEP. */ i = sizeof(arg); arg = NDIS_80211_WEPSTAT_ENC3ENABLED; r = ndis_set_info(sc, OID_802_11_ENCRYPTION_STATUS, &arg, &i); if (r == 0) { ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP | IEEE80211_CRYPTO_TKIP | IEEE80211_CRYPTO_AES_CCM; goto got_crypto; } arg = NDIS_80211_WEPSTAT_ENC2ENABLED; r = ndis_set_info(sc, OID_802_11_ENCRYPTION_STATUS, &arg, &i); if (r == 0) { ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP | IEEE80211_CRYPTO_TKIP; goto got_crypto; } arg = NDIS_80211_WEPSTAT_ENC1ENABLED; r = ndis_set_info(sc, OID_802_11_ENCRYPTION_STATUS, &arg, &i); if (r == 0) ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; got_crypto: i = sizeof(arg); r = ndis_get_info(sc, OID_802_11_POWER_MODE, &arg, &i); if (r == 0) ic->ic_caps |= IEEE80211_C_PMGT; r = ndis_get_info(sc, OID_802_11_TX_POWER_LEVEL, &arg, &i); if (r == 0) ic->ic_caps |= IEEE80211_C_TXPMGT; /* * Get station address from the driver. */ len = sizeof(ic->ic_macaddr); ndis_get_info(sc, OID_802_3_CURRENT_ADDRESS, &ic->ic_macaddr, &len); ieee80211_ifattach(ic); ic->ic_raw_xmit = ndis_raw_xmit; ic->ic_scan_start = ndis_scan_start; ic->ic_scan_end = ndis_scan_end; ic->ic_set_channel = ndis_set_channel; ic->ic_scan_curchan = ndis_scan_curchan; ic->ic_scan_mindwell = ndis_scan_mindwell; ic->ic_bsschan = IEEE80211_CHAN_ANYC; ic->ic_vap_create = ndis_vap_create; ic->ic_vap_delete = ndis_vap_delete; ic->ic_update_mcast = ndis_update_mcast; ic->ic_update_promisc = ndis_update_promisc; ic->ic_transmit = ndis_80211transmit; ic->ic_parent = ndis_80211parent; if (bootverbose) ieee80211_announce(ic); return (0); } static int ndis_ifattach(struct ndis_softc *sc) { struct ifnet *ifp; u_char eaddr[ETHER_ADDR_LEN]; int len; ifp = if_alloc(IFT_ETHER); if (ifp == NULL) return (ENOSPC); sc->ifp = ifp; ifp->if_softc = sc; /* Check for task offload support. */ ndis_probe_offload(sc); /* * Get station address from the driver. */ len = sizeof(eaddr); ndis_get_info(sc, OID_802_3_CURRENT_ADDRESS, eaddr, &len); if_initname(ifp, device_get_name(sc->ndis_dev), device_get_unit(sc->ndis_dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = ndis_ioctl; ifp->if_start = ndis_start; ifp->if_init = ndis_init; ifp->if_baudrate = 10000000; IFQ_SET_MAXLEN(&ifp->if_snd, 50); ifp->if_snd.ifq_drv_maxlen = 25; IFQ_SET_READY(&ifp->if_snd); ifp->if_capenable = ifp->if_capabilities; ifp->if_hwassist = sc->ndis_hwassist; ifmedia_init(&sc->ifmedia, IFM_IMASK, ndis_ifmedia_upd, ndis_ifmedia_sts); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO); ether_ifattach(ifp, eaddr); return (0); } static struct ieee80211vap * ndis_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct ndis_vap *nvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return NULL; nvp = malloc(sizeof(struct ndis_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &nvp->vap; ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); /* override with driver methods */ nvp->newstate = vap->iv_newstate; vap->iv_newstate = ndis_newstate; /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ndis_media_status, mac); ic->ic_opmode = opmode; /* install key handing routines */ vap->iv_key_set = ndis_add_key; vap->iv_key_delete = ndis_del_key; return vap; } static void ndis_vap_delete(struct ieee80211vap *vap) { struct ndis_vap *nvp = NDIS_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct ndis_softc *sc = ic->ic_softc; ndis_stop(sc); callout_drain(&sc->ndis_scan_callout); ieee80211_vap_detach(vap); free(nvp, M_80211_VAP); } /* * Shutdown hardware and free up resources. This can be called any * time after the mutex has been initialized. It is called in both * the error case in attach and the normal detach case so it needs * to be careful about only freeing resources that have actually been * allocated. */ int ndis_detach(device_t dev) { struct ifnet *ifp; struct ndis_softc *sc; driver_object *drv; sc = device_get_softc(dev); NDIS_LOCK(sc); if (!sc->ndis_80211) ifp = sc->ifp; else ifp = NULL; if (ifp != NULL) ifp->if_flags &= ~IFF_UP; if (device_is_attached(dev)) { NDIS_UNLOCK(sc); ndis_stop(sc); if (sc->ndis_80211) ieee80211_ifdetach(&sc->ndis_ic); else if (ifp != NULL) ether_ifdetach(ifp); } else NDIS_UNLOCK(sc); if (sc->ndis_tickitem != NULL) IoFreeWorkItem(sc->ndis_tickitem); if (sc->ndis_startitem != NULL) IoFreeWorkItem(sc->ndis_startitem); if (sc->ndis_resetitem != NULL) IoFreeWorkItem(sc->ndis_resetitem); if (sc->ndis_inputitem != NULL) IoFreeWorkItem(sc->ndis_inputitem); if (sc->ndisusb_xferdoneitem != NULL) IoFreeWorkItem(sc->ndisusb_xferdoneitem); if (sc->ndisusb_taskitem != NULL) IoFreeWorkItem(sc->ndisusb_taskitem); bus_generic_detach(dev); ndis_unload_driver(sc); if (sc->ndis_irq) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ndis_irq); if (sc->ndis_res_io) bus_release_resource(dev, SYS_RES_IOPORT, sc->ndis_io_rid, sc->ndis_res_io); if (sc->ndis_res_mem) bus_release_resource(dev, SYS_RES_MEMORY, sc->ndis_mem_rid, sc->ndis_res_mem); if (sc->ndis_res_altmem) bus_release_resource(dev, SYS_RES_MEMORY, sc->ndis_altmem_rid, sc->ndis_res_altmem); if (ifp != NULL) if_free(ifp); if (sc->ndis_iftype == PCMCIABus) ndis_free_amem(sc); if (sc->ndis_sc) ndis_destroy_dma(sc); if (sc->ndis_txarray) free(sc->ndis_txarray, M_DEVBUF); if (!sc->ndis_80211) ifmedia_removeall(&sc->ifmedia); if (sc->ndis_txpool != NULL) NdisFreePacketPool(sc->ndis_txpool); /* Destroy the PDO for this device. */ if (sc->ndis_iftype == PCIBus) drv = windrv_lookup(0, "PCI Bus"); else if (sc->ndis_iftype == PCMCIABus) drv = windrv_lookup(0, "PCCARD Bus"); else drv = windrv_lookup(0, "USB Bus"); if (drv == NULL) panic("couldn't find driver object"); windrv_destroy_pdo(drv, dev); if (sc->ndis_iftype == PCIBus) bus_dma_tag_destroy(sc->ndis_parent_tag); return (0); } int ndis_suspend(dev) device_t dev; { struct ndis_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); ifp = sc->ifp; #ifdef notdef if (NDIS_INITIALIZED(sc)) ndis_stop(sc); #endif return (0); } int ndis_resume(dev) device_t dev; { struct ndis_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); ifp = sc->ifp; if (NDIS_INITIALIZED(sc)) ndis_init(sc); return (0); } /* * The following bunch of routines are here to support drivers that * use the NdisMEthIndicateReceive()/MiniportTransferData() mechanism. * The NdisMEthIndicateReceive() handler runs at DISPATCH_LEVEL for * serialized miniports, or IRQL <= DISPATCH_LEVEL for deserialized * miniports. */ static void ndis_rxeof_eth(adapter, ctx, addr, hdr, hdrlen, lookahead, lookaheadlen, pktlen) ndis_handle adapter; ndis_handle ctx; char *addr; void *hdr; uint32_t hdrlen; void *lookahead; uint32_t lookaheadlen; uint32_t pktlen; { ndis_miniport_block *block; uint8_t irql = 0; uint32_t status; ndis_buffer *b; ndis_packet *p; struct mbuf *m; ndis_ethpriv *priv; block = adapter; m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return; /* Save the data provided to us so far. */ m->m_len = lookaheadlen + hdrlen; m->m_pkthdr.len = pktlen + hdrlen; m->m_next = NULL; m_copyback(m, 0, hdrlen, hdr); m_copyback(m, hdrlen, lookaheadlen, lookahead); /* Now create a fake NDIS_PACKET to hold the data */ NdisAllocatePacket(&status, &p, block->nmb_rxpool); if (status != NDIS_STATUS_SUCCESS) { m_freem(m); return; } p->np_m0 = m; b = IoAllocateMdl(m->m_data, m->m_pkthdr.len, FALSE, FALSE, NULL); if (b == NULL) { NdisFreePacket(p); m_freem(m); return; } p->np_private.npp_head = p->np_private.npp_tail = b; p->np_private.npp_totlen = m->m_pkthdr.len; /* Save the packet RX context somewhere. */ priv = (ndis_ethpriv *)&p->np_protocolreserved; priv->nep_ctx = ctx; if (!NDIS_SERIALIZED(block)) KeAcquireSpinLock(&block->nmb_lock, &irql); InsertTailList((&block->nmb_packetlist), (&p->np_list)); if (!NDIS_SERIALIZED(block)) KeReleaseSpinLock(&block->nmb_lock, irql); } /* * NdisMEthIndicateReceiveComplete() handler, runs at DISPATCH_LEVEL * for serialized miniports, or IRQL <= DISPATCH_LEVEL for deserialized * miniports. */ static void ndis_rxeof_done(adapter) ndis_handle adapter; { struct ndis_softc *sc; ndis_miniport_block *block; block = adapter; /* Schedule transfer/RX of queued packets. */ sc = device_get_softc(block->nmb_physdeviceobj->do_devext); KeInsertQueueDpc(&sc->ndis_rxdpc, NULL, NULL); } /* * MiniportTransferData() handler, runs at DISPATCH_LEVEL. */ static void ndis_rxeof_xfr(dpc, adapter, sysarg1, sysarg2) kdpc *dpc; ndis_handle adapter; void *sysarg1; void *sysarg2; { ndis_miniport_block *block; struct ndis_softc *sc; ndis_packet *p; list_entry *l; uint32_t status; ndis_ethpriv *priv; struct ifnet *ifp; struct mbuf *m; block = adapter; sc = device_get_softc(block->nmb_physdeviceobj->do_devext); ifp = sc->ifp; KeAcquireSpinLockAtDpcLevel(&block->nmb_lock); l = block->nmb_packetlist.nle_flink; while(!IsListEmpty(&block->nmb_packetlist)) { l = RemoveHeadList((&block->nmb_packetlist)); p = CONTAINING_RECORD(l, ndis_packet, np_list); InitializeListHead((&p->np_list)); priv = (ndis_ethpriv *)&p->np_protocolreserved; m = p->np_m0; p->np_softc = sc; p->np_m0 = NULL; KeReleaseSpinLockFromDpcLevel(&block->nmb_lock); status = MSCALL6(sc->ndis_chars->nmc_transferdata_func, p, &p->np_private.npp_totlen, block, priv->nep_ctx, m->m_len, m->m_pkthdr.len - m->m_len); KeAcquireSpinLockAtDpcLevel(&block->nmb_lock); /* * If status is NDIS_STATUS_PENDING, do nothing and * wait for a callback to the ndis_rxeof_xfr_done() * handler. */ m->m_len = m->m_pkthdr.len; m->m_pkthdr.rcvif = ifp; if (status == NDIS_STATUS_SUCCESS) { IoFreeMdl(p->np_private.npp_head); NdisFreePacket(p); KeAcquireSpinLockAtDpcLevel(&sc->ndis_rxlock); mbufq_enqueue(&sc->ndis_rxqueue, m); KeReleaseSpinLockFromDpcLevel(&sc->ndis_rxlock); IoQueueWorkItem(sc->ndis_inputitem, (io_workitem_func)ndis_inputtask_wrap, WORKQUEUE_CRITICAL, sc); } if (status == NDIS_STATUS_FAILURE) m_freem(m); /* Advance to next packet */ l = block->nmb_packetlist.nle_flink; } KeReleaseSpinLockFromDpcLevel(&block->nmb_lock); } /* * NdisMTransferDataComplete() handler, runs at DISPATCH_LEVEL. */ static void ndis_rxeof_xfr_done(adapter, packet, status, len) ndis_handle adapter; ndis_packet *packet; uint32_t status; uint32_t len; { ndis_miniport_block *block; struct ndis_softc *sc; struct ifnet *ifp; struct mbuf *m; block = adapter; sc = device_get_softc(block->nmb_physdeviceobj->do_devext); ifp = sc->ifp; m = packet->np_m0; IoFreeMdl(packet->np_private.npp_head); NdisFreePacket(packet); if (status != NDIS_STATUS_SUCCESS) { m_freem(m); return; } m->m_len = m->m_pkthdr.len; m->m_pkthdr.rcvif = ifp; KeAcquireSpinLockAtDpcLevel(&sc->ndis_rxlock); mbufq_enqueue(&sc->ndis_rxqueue, m); KeReleaseSpinLockFromDpcLevel(&sc->ndis_rxlock); IoQueueWorkItem(sc->ndis_inputitem, (io_workitem_func)ndis_inputtask_wrap, WORKQUEUE_CRITICAL, sc); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. * * When handling received NDIS packets, the 'status' field in the * out-of-band portion of the ndis_packet has special meaning. In the * most common case, the underlying NDIS driver will set this field * to NDIS_STATUS_SUCCESS, which indicates that it's ok for us to * take posession of it. We then change the status field to * NDIS_STATUS_PENDING to tell the driver that we now own the packet, * and that we will return it at some point in the future via the * return packet handler. * * If the driver hands us a packet with a status of NDIS_STATUS_RESOURCES, * this means the driver is running out of packet/buffer resources and * wants to maintain ownership of the packet. In this case, we have to * copy the packet data into local storage and let the driver keep the * packet. */ static void ndis_rxeof(adapter, packets, pktcnt) ndis_handle adapter; ndis_packet **packets; uint32_t pktcnt; { struct ndis_softc *sc; ndis_miniport_block *block; ndis_packet *p; uint32_t s; ndis_tcpip_csum *csum; struct ifnet *ifp; struct mbuf *m0, *m; int i; block = (ndis_miniport_block *)adapter; sc = device_get_softc(block->nmb_physdeviceobj->do_devext); ifp = sc->ifp; /* * There's a slim chance the driver may indicate some packets * before we're completely ready to handle them. If we detect this, * we need to return them to the miniport and ignore them. */ if (!sc->ndis_running) { for (i = 0; i < pktcnt; i++) { p = packets[i]; if (p->np_oob.npo_status == NDIS_STATUS_SUCCESS) { p->np_refcnt++; (void)ndis_return_packet(NULL ,p, block); } } return; } for (i = 0; i < pktcnt; i++) { p = packets[i]; /* Stash the softc here so ptom can use it. */ p->np_softc = sc; if (ndis_ptom(&m0, p)) { device_printf(sc->ndis_dev, "ptom failed\n"); if (p->np_oob.npo_status == NDIS_STATUS_SUCCESS) (void)ndis_return_packet(NULL, p, block); } else { #ifdef notdef if (p->np_oob.npo_status == NDIS_STATUS_RESOURCES) { m = m_dup(m0, M_NOWAIT); /* * NOTE: we want to destroy the mbuf here, but * we don't actually want to return it to the * driver via the return packet handler. By * bumping np_refcnt, we can prevent the * ndis_return_packet() routine from actually * doing anything. */ p->np_refcnt++; m_freem(m0); if (m == NULL) if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); else m0 = m; } else p->np_oob.npo_status = NDIS_STATUS_PENDING; #endif m = m_dup(m0, M_NOWAIT); if (p->np_oob.npo_status == NDIS_STATUS_RESOURCES) p->np_refcnt++; else p->np_oob.npo_status = NDIS_STATUS_PENDING; m_freem(m0); if (m == NULL) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); continue; } m0 = m; m0->m_pkthdr.rcvif = ifp; /* Deal with checksum offload. */ if (ifp->if_capenable & IFCAP_RXCSUM && p->np_ext.npe_info[ndis_tcpipcsum_info] != NULL) { s = (uintptr_t) p->np_ext.npe_info[ndis_tcpipcsum_info]; csum = (ndis_tcpip_csum *)&s; if (csum->u.ntc_rxflags & NDIS_RXCSUM_IP_PASSED) m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED|CSUM_IP_VALID; if (csum->u.ntc_rxflags & (NDIS_RXCSUM_TCP_PASSED | NDIS_RXCSUM_UDP_PASSED)) { m0->m_pkthdr.csum_flags |= CSUM_DATA_VALID|CSUM_PSEUDO_HDR; m0->m_pkthdr.csum_data = 0xFFFF; } } KeAcquireSpinLockAtDpcLevel(&sc->ndis_rxlock); mbufq_enqueue(&sc->ndis_rxqueue, m0); KeReleaseSpinLockFromDpcLevel(&sc->ndis_rxlock); IoQueueWorkItem(sc->ndis_inputitem, (io_workitem_func)ndis_inputtask_wrap, WORKQUEUE_CRITICAL, sc); } } } /* * This routine is run at PASSIVE_LEVEL. We use this routine to pass * packets into the stack in order to avoid calling (*ifp->if_input)() * with any locks held (at DISPATCH_LEVEL, we'll be holding the * 'dispatch level' per-cpu sleep lock). */ static void ndis_inputtask(device_object *dobj, void *arg) { ndis_miniport_block *block; struct ndis_softc *sc = arg; struct mbuf *m; uint8_t irql; block = dobj->do_devext; KeAcquireSpinLock(&sc->ndis_rxlock, &irql); while ((m = mbufq_dequeue(&sc->ndis_rxqueue)) != NULL) { KeReleaseSpinLock(&sc->ndis_rxlock, irql); if ((sc->ndis_80211 != 0)) { struct ieee80211com *ic = &sc->ndis_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); if (vap != NULL) vap->iv_deliver_data(vap, vap->iv_bss, m); } else { struct ifnet *ifp = sc->ifp; (*ifp->if_input)(ifp, m); } KeAcquireSpinLock(&sc->ndis_rxlock, &irql); } KeReleaseSpinLock(&sc->ndis_rxlock, irql); } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void ndis_txeof(adapter, packet, status) ndis_handle adapter; ndis_packet *packet; ndis_status status; { struct ndis_softc *sc; ndis_miniport_block *block; struct ifnet *ifp; int idx; struct mbuf *m; block = (ndis_miniport_block *)adapter; sc = device_get_softc(block->nmb_physdeviceobj->do_devext); ifp = sc->ifp; m = packet->np_m0; idx = packet->np_txidx; if (sc->ndis_sc) bus_dmamap_unload(sc->ndis_ttag, sc->ndis_tmaps[idx]); ndis_free_packet(packet); m_freem(m); NDIS_LOCK(sc); sc->ndis_txarray[idx] = NULL; sc->ndis_txpending++; if (status == NDIS_STATUS_SUCCESS) if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); else if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); sc->ndis_tx_timer = 0; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; NDIS_UNLOCK(sc); IoQueueWorkItem(sc->ndis_startitem, (io_workitem_func)ndis_starttask_wrap, WORKQUEUE_CRITICAL, ifp); } static void ndis_linksts(adapter, status, sbuf, slen) ndis_handle adapter; ndis_status status; void *sbuf; uint32_t slen; { ndis_miniport_block *block; struct ndis_softc *sc; block = adapter; sc = device_get_softc(block->nmb_physdeviceobj->do_devext); sc->ndis_sts = status; /* Event list is all full up, drop this one. */ NDIS_LOCK(sc); if (sc->ndis_evt[sc->ndis_evtpidx].ne_sts) { NDIS_UNLOCK(sc); return; } /* Cache the event. */ if (slen) { sc->ndis_evt[sc->ndis_evtpidx].ne_buf = malloc(slen, M_TEMP, M_NOWAIT); if (sc->ndis_evt[sc->ndis_evtpidx].ne_buf == NULL) { NDIS_UNLOCK(sc); return; } bcopy((char *)sbuf, sc->ndis_evt[sc->ndis_evtpidx].ne_buf, slen); } sc->ndis_evt[sc->ndis_evtpidx].ne_sts = status; sc->ndis_evt[sc->ndis_evtpidx].ne_len = slen; NDIS_EVTINC(sc->ndis_evtpidx); NDIS_UNLOCK(sc); } static void ndis_linksts_done(adapter) ndis_handle adapter; { ndis_miniport_block *block; struct ndis_softc *sc; struct ifnet *ifp; block = adapter; sc = device_get_softc(block->nmb_physdeviceobj->do_devext); ifp = sc->ifp; if (!NDIS_INITIALIZED(sc)) return; switch (sc->ndis_sts) { case NDIS_STATUS_MEDIA_CONNECT: IoQueueWorkItem(sc->ndis_tickitem, (io_workitem_func)ndis_ticktask_wrap, WORKQUEUE_CRITICAL, sc); IoQueueWorkItem(sc->ndis_startitem, (io_workitem_func)ndis_starttask_wrap, WORKQUEUE_CRITICAL, ifp); break; case NDIS_STATUS_MEDIA_DISCONNECT: if (sc->ndis_link) IoQueueWorkItem(sc->ndis_tickitem, (io_workitem_func)ndis_ticktask_wrap, WORKQUEUE_CRITICAL, sc); break; default: break; } } static void ndis_tick(xsc) void *xsc; { struct ndis_softc *sc; sc = xsc; if (sc->ndis_hang_timer && --sc->ndis_hang_timer == 0) { IoQueueWorkItem(sc->ndis_tickitem, (io_workitem_func)ndis_ticktask_wrap, WORKQUEUE_CRITICAL, sc); sc->ndis_hang_timer = sc->ndis_block->nmb_checkforhangsecs; } if (sc->ndis_tx_timer && --sc->ndis_tx_timer == 0) { if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, 1); device_printf(sc->ndis_dev, "watchdog timeout\n"); IoQueueWorkItem(sc->ndis_resetitem, (io_workitem_func)ndis_resettask_wrap, WORKQUEUE_CRITICAL, sc); IoQueueWorkItem(sc->ndis_startitem, (io_workitem_func)ndis_starttask_wrap, WORKQUEUE_CRITICAL, sc->ifp); } callout_reset(&sc->ndis_stat_callout, hz, ndis_tick, sc); } static void ndis_ticktask(device_object *d, void *xsc) { struct ndis_softc *sc = xsc; ndis_checkforhang_handler hangfunc; uint8_t rval; NDIS_LOCK(sc); if (!NDIS_INITIALIZED(sc)) { NDIS_UNLOCK(sc); return; } NDIS_UNLOCK(sc); hangfunc = sc->ndis_chars->nmc_checkhang_func; if (hangfunc != NULL) { rval = MSCALL1(hangfunc, sc->ndis_block->nmb_miniportadapterctx); if (rval == TRUE) { ndis_reset_nic(sc); return; } } NDIS_LOCK(sc); if (sc->ndis_link == 0 && sc->ndis_sts == NDIS_STATUS_MEDIA_CONNECT) { sc->ndis_link = 1; if (sc->ndis_80211 != 0) { struct ieee80211com *ic = &sc->ndis_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); if (vap != NULL) { NDIS_UNLOCK(sc); ndis_getstate_80211(sc); ieee80211_new_state(vap, IEEE80211_S_RUN, -1); NDIS_LOCK(sc); if_link_state_change(vap->iv_ifp, LINK_STATE_UP); } } else if_link_state_change(sc->ifp, LINK_STATE_UP); } if (sc->ndis_link == 1 && sc->ndis_sts == NDIS_STATUS_MEDIA_DISCONNECT) { sc->ndis_link = 0; if (sc->ndis_80211 != 0) { struct ieee80211com *ic = &sc->ndis_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); if (vap != NULL) { NDIS_UNLOCK(sc); ieee80211_new_state(vap, IEEE80211_S_SCAN, 0); NDIS_LOCK(sc); if_link_state_change(vap->iv_ifp, LINK_STATE_DOWN); } } else if_link_state_change(sc->ifp, LINK_STATE_DOWN); } NDIS_UNLOCK(sc); } static void ndis_map_sclist(arg, segs, nseg, mapsize, error) void *arg; bus_dma_segment_t *segs; int nseg; bus_size_t mapsize; int error; { struct ndis_sc_list *sclist; int i; if (error || arg == NULL) return; sclist = arg; sclist->nsl_frags = nseg; for (i = 0; i < nseg; i++) { sclist->nsl_elements[i].nse_addr.np_quad = segs[i].ds_addr; sclist->nsl_elements[i].nse_len = segs[i].ds_len; } } static int ndis_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { /* no support; just discard */ m_freem(m); ieee80211_free_node(ni); return (0); } static void ndis_update_mcast(struct ieee80211com *ic) { struct ndis_softc *sc = ic->ic_softc; ndis_setmulti(sc); } static void ndis_update_promisc(struct ieee80211com *ic) { /* not supported */ } static void ndis_starttask(d, arg) device_object *d; void *arg; { struct ifnet *ifp; ifp = arg; if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) ndis_start(ifp); } /* * Main transmit routine. To make NDIS drivers happy, we need to * transform mbuf chains into NDIS packets and feed them to the * send packet routines. Most drivers allow you to send several * packets at once (up to the maxpkts limit). Unfortunately, rather * that accepting them in the form of a linked list, they expect * a contiguous array of pointers to packets. * * For those drivers which use the NDIS scatter/gather DMA mechanism, * we need to perform busdma work here. Those that use map registers * will do the mapping themselves on a buffer by buffer basis. */ static void ndis_start(ifp) struct ifnet *ifp; { struct ndis_softc *sc; struct mbuf *m = NULL; ndis_packet **p0 = NULL, *p = NULL; ndis_tcpip_csum *csum; int pcnt = 0, status; sc = ifp->if_softc; NDIS_LOCK(sc); if (!sc->ndis_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) { NDIS_UNLOCK(sc); return; } p0 = &sc->ndis_txarray[sc->ndis_txidx]; while(sc->ndis_txpending) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; NdisAllocatePacket(&status, &sc->ndis_txarray[sc->ndis_txidx], sc->ndis_txpool); if (status != NDIS_STATUS_SUCCESS) break; if (ndis_mtop(m, &sc->ndis_txarray[sc->ndis_txidx])) { IFQ_DRV_PREPEND(&ifp->if_snd, m); NDIS_UNLOCK(sc); return; } /* * Save pointer to original mbuf * so we can free it later. */ p = sc->ndis_txarray[sc->ndis_txidx]; p->np_txidx = sc->ndis_txidx; p->np_m0 = m; p->np_oob.npo_status = NDIS_STATUS_PENDING; /* * Do scatter/gather processing, if driver requested it. */ if (sc->ndis_sc) { bus_dmamap_load_mbuf(sc->ndis_ttag, sc->ndis_tmaps[sc->ndis_txidx], m, ndis_map_sclist, &p->np_sclist, BUS_DMA_NOWAIT); bus_dmamap_sync(sc->ndis_ttag, sc->ndis_tmaps[sc->ndis_txidx], BUS_DMASYNC_PREREAD); p->np_ext.npe_info[ndis_sclist_info] = &p->np_sclist; } /* Handle checksum offload. */ if (ifp->if_capenable & IFCAP_TXCSUM && m->m_pkthdr.csum_flags) { csum = (ndis_tcpip_csum *) &p->np_ext.npe_info[ndis_tcpipcsum_info]; csum->u.ntc_txflags = NDIS_TXCSUM_DO_IPV4; if (m->m_pkthdr.csum_flags & CSUM_IP) csum->u.ntc_txflags |= NDIS_TXCSUM_DO_IP; if (m->m_pkthdr.csum_flags & CSUM_TCP) csum->u.ntc_txflags |= NDIS_TXCSUM_DO_TCP; if (m->m_pkthdr.csum_flags & CSUM_UDP) csum->u.ntc_txflags |= NDIS_TXCSUM_DO_UDP; p->np_private.npp_flags = NDIS_PROTOCOL_ID_TCP_IP; } NDIS_INC(sc); sc->ndis_txpending--; pcnt++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (!sc->ndis_80211) /* XXX handle 80211 */ BPF_MTAP(ifp, m); /* * The array that p0 points to must appear contiguous, * so we must not wrap past the end of sc->ndis_txarray[]. * If it looks like we're about to wrap, break out here * so the this batch of packets can be transmitted, then * wait for txeof to ask us to send the rest. */ if (sc->ndis_txidx == 0) break; } if (pcnt == 0) { NDIS_UNLOCK(sc); return; } if (sc->ndis_txpending == 0) ifp->if_drv_flags |= IFF_DRV_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ sc->ndis_tx_timer = 5; NDIS_UNLOCK(sc); /* * According to NDIS documentation, if a driver exports * a MiniportSendPackets() routine, we prefer that over * a MiniportSend() routine (which sends just a single * packet). */ if (sc->ndis_chars->nmc_sendmulti_func != NULL) ndis_send_packets(sc, p0, pcnt); else ndis_send_packet(sc, p); return; } static int ndis_80211transmit(struct ieee80211com *ic, struct mbuf *m) { struct ndis_softc *sc = ic->ic_softc; ndis_packet **p0 = NULL, *p = NULL; int status; NDIS_LOCK(sc); if (!sc->ndis_link || !sc->ndis_running) { NDIS_UNLOCK(sc); return (ENXIO); } if (sc->ndis_txpending == 0) { NDIS_UNLOCK(sc); return (ENOBUFS); } p0 = &sc->ndis_txarray[sc->ndis_txidx]; NdisAllocatePacket(&status, &sc->ndis_txarray[sc->ndis_txidx], sc->ndis_txpool); if (status != NDIS_STATUS_SUCCESS) { NDIS_UNLOCK(sc); return (ENOBUFS); } if (ndis_mtop(m, &sc->ndis_txarray[sc->ndis_txidx])) { NDIS_UNLOCK(sc); return (ENOBUFS); } /* * Save pointer to original mbuf * so we can free it later. */ p = sc->ndis_txarray[sc->ndis_txidx]; p->np_txidx = sc->ndis_txidx; p->np_m0 = m; p->np_oob.npo_status = NDIS_STATUS_PENDING; /* * Do scatter/gather processing, if driver requested it. */ if (sc->ndis_sc) { bus_dmamap_load_mbuf(sc->ndis_ttag, sc->ndis_tmaps[sc->ndis_txidx], m, ndis_map_sclist, &p->np_sclist, BUS_DMA_NOWAIT); bus_dmamap_sync(sc->ndis_ttag, sc->ndis_tmaps[sc->ndis_txidx], BUS_DMASYNC_PREREAD); p->np_ext.npe_info[ndis_sclist_info] = &p->np_sclist; } NDIS_INC(sc); sc->ndis_txpending--; /* * Set a timeout in case the chip goes out to lunch. */ sc->ndis_tx_timer = 5; NDIS_UNLOCK(sc); /* * According to NDIS documentation, if a driver exports * a MiniportSendPackets() routine, we prefer that over * a MiniportSend() routine (which sends just a single * packet). */ if (sc->ndis_chars->nmc_sendmulti_func != NULL) ndis_send_packets(sc, p0, 1); else ndis_send_packet(sc, p); return (0); } static void ndis_80211parent(struct ieee80211com *ic) { struct ndis_softc *sc = ic->ic_softc; /*NDIS_LOCK(sc);*/ if (ic->ic_nrunning > 0) { if (!sc->ndis_running) ndis_init(sc); } else if (sc->ndis_running) ndis_stop(sc); /*NDIS_UNLOCK(sc);*/ } static void ndis_init(void *xsc) { struct ndis_softc *sc = xsc; int i, len, error; /* * Avoid reintializing the link unnecessarily. * This should be dealt with in a better way by * fixing the upper layer modules so they don't * call ifp->if_init() quite as often. */ if (sc->ndis_link) return; /* * Cancel pending I/O and free all RX/TX buffers. */ ndis_stop(sc); if (!(sc->ndis_iftype == PNPBus && ndisusb_halt == 0)) { error = ndis_init_nic(sc); if (error != 0) { device_printf(sc->ndis_dev, "failed to initialize the device: %d\n", error); return; } } /* Program the packet filter */ sc->ndis_filter = NDIS_PACKET_TYPE_DIRECTED | NDIS_PACKET_TYPE_BROADCAST; if (sc->ndis_80211) { struct ieee80211com *ic = &sc->ndis_ic; if (ic->ic_promisc > 0) sc->ndis_filter |= NDIS_PACKET_TYPE_PROMISCUOUS; } else { struct ifnet *ifp = sc->ifp; if (ifp->if_flags & IFF_PROMISC) sc->ndis_filter |= NDIS_PACKET_TYPE_PROMISCUOUS; } len = sizeof(sc->ndis_filter); error = ndis_set_info(sc, OID_GEN_CURRENT_PACKET_FILTER, &sc->ndis_filter, &len); if (error) device_printf(sc->ndis_dev, "set filter failed: %d\n", error); /* * Set lookahead. */ if (sc->ndis_80211) i = ETHERMTU; else i = sc->ifp->if_mtu; len = sizeof(i); ndis_set_info(sc, OID_GEN_CURRENT_LOOKAHEAD, &i, &len); /* * Program the multicast filter, if necessary. */ ndis_setmulti(sc); /* Setup task offload. */ ndis_set_offload(sc); NDIS_LOCK(sc); sc->ndis_txidx = 0; sc->ndis_txpending = sc->ndis_maxpkts; sc->ndis_link = 0; if (!sc->ndis_80211) { if_link_state_change(sc->ifp, LINK_STATE_UNKNOWN); sc->ifp->if_drv_flags |= IFF_DRV_RUNNING; sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; } sc->ndis_tx_timer = 0; /* * Some drivers don't set this value. The NDIS spec says * the default checkforhang timeout is "approximately 2 * seconds." We use 3 seconds, because it seems for some * drivers, exactly 2 seconds is too fast. */ if (sc->ndis_block->nmb_checkforhangsecs == 0) sc->ndis_block->nmb_checkforhangsecs = 3; sc->ndis_hang_timer = sc->ndis_block->nmb_checkforhangsecs; callout_reset(&sc->ndis_stat_callout, hz, ndis_tick, sc); sc->ndis_running = 1; NDIS_UNLOCK(sc); /* XXX force handling */ if (sc->ndis_80211) ieee80211_start_all(&sc->ndis_ic); /* start all vap's */ } /* * Set media options. */ static int ndis_ifmedia_upd(ifp) struct ifnet *ifp; { struct ndis_softc *sc; sc = ifp->if_softc; if (NDIS_INITIALIZED(sc)) ndis_init(sc); return (0); } /* * Report current media status. */ static void ndis_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct ndis_softc *sc; uint32_t media_info; ndis_media_state linkstate; int len; ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; sc = ifp->if_softc; if (!NDIS_INITIALIZED(sc)) return; len = sizeof(linkstate); ndis_get_info(sc, OID_GEN_MEDIA_CONNECT_STATUS, (void *)&linkstate, &len); len = sizeof(media_info); ndis_get_info(sc, OID_GEN_LINK_SPEED, (void *)&media_info, &len); if (linkstate == nmc_connected) ifmr->ifm_status |= IFM_ACTIVE; switch (media_info) { case 100000: ifmr->ifm_active |= IFM_10_T; break; case 1000000: ifmr->ifm_active |= IFM_100_TX; break; case 10000000: ifmr->ifm_active |= IFM_1000_T; break; default: device_printf(sc->ndis_dev, "unknown speed: %d\n", media_info); break; } } static int ndis_set_cipher(struct ndis_softc *sc, int cipher) { struct ieee80211com *ic = &sc->ndis_ic; int rval = 0, len; uint32_t arg, save; len = sizeof(arg); if (cipher == WPA_CSE_WEP40 || cipher == WPA_CSE_WEP104) { if (!(ic->ic_cryptocaps & IEEE80211_CRYPTO_WEP)) return (ENOTSUP); arg = NDIS_80211_WEPSTAT_ENC1ENABLED; } if (cipher == WPA_CSE_TKIP) { if (!(ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP)) return (ENOTSUP); arg = NDIS_80211_WEPSTAT_ENC2ENABLED; } if (cipher == WPA_CSE_CCMP) { if (!(ic->ic_cryptocaps & IEEE80211_CRYPTO_AES_CCM)) return (ENOTSUP); arg = NDIS_80211_WEPSTAT_ENC3ENABLED; } DPRINTF(("Setting cipher to %d\n", arg)); save = arg; rval = ndis_set_info(sc, OID_802_11_ENCRYPTION_STATUS, &arg, &len); if (rval) return (rval); /* Check that the cipher was set correctly. */ len = sizeof(save); rval = ndis_get_info(sc, OID_802_11_ENCRYPTION_STATUS, &arg, &len); if (rval != 0 || arg != save) return (ENODEV); return (0); } /* * WPA is hairy to set up. Do the work in a separate routine * so we don't clutter the setstate function too much. * Important yet undocumented fact: first we have to set the * authentication mode, _then_ we enable the ciphers. If one * of the WPA authentication modes isn't enabled, the driver * might not permit the TKIP or AES ciphers to be selected. */ static int ndis_set_wpa(sc, ie, ielen) struct ndis_softc *sc; void *ie; int ielen; { struct ieee80211_ie_wpa *w; struct ndis_ie *n; char *pos; uint32_t arg; int i; /* * Apparently, the only way for us to know what ciphers * and key management/authentication mode to use is for * us to inspect the optional information element (IE) * stored in the 802.11 state machine. This IE should be * supplied by the WPA supplicant. */ w = (struct ieee80211_ie_wpa *)ie; /* Check for the right kind of IE. */ if (w->wpa_id != IEEE80211_ELEMID_VENDOR) { DPRINTF(("Incorrect IE type %d\n", w->wpa_id)); return (EINVAL); } /* Skip over the ucast cipher OIDs. */ pos = (char *)&w->wpa_uciphers[0]; pos += w->wpa_uciphercnt * sizeof(struct ndis_ie); /* Skip over the authmode count. */ pos += sizeof(u_int16_t); /* * Check for the authentication modes. I'm * pretty sure there's only supposed to be one. */ n = (struct ndis_ie *)pos; if (n->ni_val == WPA_ASE_NONE) arg = NDIS_80211_AUTHMODE_WPANONE; if (n->ni_val == WPA_ASE_8021X_UNSPEC) arg = NDIS_80211_AUTHMODE_WPA; if (n->ni_val == WPA_ASE_8021X_PSK) arg = NDIS_80211_AUTHMODE_WPAPSK; DPRINTF(("Setting WPA auth mode to %d\n", arg)); i = sizeof(arg); if (ndis_set_info(sc, OID_802_11_AUTHENTICATION_MODE, &arg, &i)) return (ENOTSUP); i = sizeof(arg); ndis_get_info(sc, OID_802_11_AUTHENTICATION_MODE, &arg, &i); /* Now configure the desired ciphers. */ /* First, set up the multicast group cipher. */ n = (struct ndis_ie *)&w->wpa_mcipher[0]; if (ndis_set_cipher(sc, n->ni_val)) return (ENOTSUP); /* Now start looking around for the unicast ciphers. */ pos = (char *)&w->wpa_uciphers[0]; n = (struct ndis_ie *)pos; for (i = 0; i < w->wpa_uciphercnt; i++) { if (ndis_set_cipher(sc, n->ni_val)) return (ENOTSUP); n++; } return (0); } static void ndis_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct ieee80211vap *vap = ifp->if_softc; struct ndis_softc *sc = vap->iv_ic->ic_softc; uint32_t txrate; int len; if (!NDIS_INITIALIZED(sc)) return; len = sizeof(txrate); if (ndis_get_info(sc, OID_GEN_LINK_SPEED, &txrate, &len) == 0) vap->iv_bss->ni_txrate = txrate / 5000; ieee80211_media_status(ifp, imr); } static void ndis_setstate_80211(struct ndis_softc *sc) { struct ieee80211com *ic = &sc->ndis_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); ndis_80211_macaddr bssid; ndis_80211_config config; int rval = 0, len; uint32_t arg; if (!NDIS_INITIALIZED(sc)) { DPRINTF(("%s: NDIS not initialized\n", __func__)); return; } /* Disassociate and turn off radio. */ len = sizeof(arg); arg = 1; ndis_set_info(sc, OID_802_11_DISASSOCIATE, &arg, &len); /* Set network infrastructure mode. */ len = sizeof(arg); if (ic->ic_opmode == IEEE80211_M_IBSS) arg = NDIS_80211_NET_INFRA_IBSS; else arg = NDIS_80211_NET_INFRA_BSS; rval = ndis_set_info(sc, OID_802_11_INFRASTRUCTURE_MODE, &arg, &len); if (rval) device_printf (sc->ndis_dev, "set infra failed: %d\n", rval); /* Set power management */ len = sizeof(arg); if (vap->iv_flags & IEEE80211_F_PMGTON) arg = NDIS_80211_POWERMODE_FAST_PSP; else arg = NDIS_80211_POWERMODE_CAM; ndis_set_info(sc, OID_802_11_POWER_MODE, &arg, &len); /* Set TX power */ if ((ic->ic_caps & IEEE80211_C_TXPMGT) && ic->ic_txpowlimit < nitems(dBm2mW)) { arg = dBm2mW[ic->ic_txpowlimit]; len = sizeof(arg); ndis_set_info(sc, OID_802_11_TX_POWER_LEVEL, &arg, &len); } /* * Default encryption mode to off, authentication * to open and privacy to 'accept everything.' */ len = sizeof(arg); arg = NDIS_80211_WEPSTAT_DISABLED; ndis_set_info(sc, OID_802_11_ENCRYPTION_STATUS, &arg, &len); len = sizeof(arg); arg = NDIS_80211_AUTHMODE_OPEN; ndis_set_info(sc, OID_802_11_AUTHENTICATION_MODE, &arg, &len); /* * Note that OID_802_11_PRIVACY_FILTER is optional: * not all drivers implement it. */ len = sizeof(arg); arg = NDIS_80211_PRIVFILT_8021XWEP; ndis_set_info(sc, OID_802_11_PRIVACY_FILTER, &arg, &len); len = sizeof(config); bzero((char *)&config, len); config.nc_length = len; config.nc_fhconfig.ncf_length = sizeof(ndis_80211_config_fh); rval = ndis_get_info(sc, OID_802_11_CONFIGURATION, &config, &len); /* * Some drivers expect us to initialize these values, so * provide some defaults. */ if (config.nc_beaconperiod == 0) config.nc_beaconperiod = 100; if (config.nc_atimwin == 0) config.nc_atimwin = 100; if (config.nc_fhconfig.ncf_dwelltime == 0) config.nc_fhconfig.ncf_dwelltime = 200; if (rval == 0 && ic->ic_bsschan != IEEE80211_CHAN_ANYC) { int chan, chanflag; chan = ieee80211_chan2ieee(ic, ic->ic_bsschan); chanflag = config.nc_dsconfig > 2500000 ? IEEE80211_CHAN_2GHZ : IEEE80211_CHAN_5GHZ; if (chan != ieee80211_mhz2ieee(config.nc_dsconfig / 1000, 0)) { config.nc_dsconfig = ic->ic_bsschan->ic_freq * 1000; len = sizeof(config); config.nc_length = len; config.nc_fhconfig.ncf_length = sizeof(ndis_80211_config_fh); DPRINTF(("Setting channel to %ukHz\n", config.nc_dsconfig)); rval = ndis_set_info(sc, OID_802_11_CONFIGURATION, &config, &len); if (rval) device_printf(sc->ndis_dev, "couldn't change " "DS config to %ukHz: %d\n", config.nc_dsconfig, rval); } } else if (rval) device_printf(sc->ndis_dev, "couldn't retrieve " "channel info: %d\n", rval); /* Set the BSSID to our value so the driver doesn't associate */ len = IEEE80211_ADDR_LEN; bcopy(vap->iv_myaddr, bssid, len); DPRINTF(("Setting BSSID to %6D\n", (uint8_t *)&bssid, ":")); rval = ndis_set_info(sc, OID_802_11_BSSID, &bssid, &len); if (rval) device_printf(sc->ndis_dev, "setting BSSID failed: %d\n", rval); } static void ndis_auth_and_assoc(struct ndis_softc *sc, struct ieee80211vap *vap) { struct ieee80211_node *ni = vap->iv_bss; ndis_80211_ssid ssid; ndis_80211_macaddr bssid; ndis_80211_wep wep; int i, rval = 0, len, error; uint32_t arg; if (!NDIS_INITIALIZED(sc)) { DPRINTF(("%s: NDIS not initialized\n", __func__)); return; } /* Initial setup */ ndis_setstate_80211(sc); /* Set network infrastructure mode. */ len = sizeof(arg); if (vap->iv_opmode == IEEE80211_M_IBSS) arg = NDIS_80211_NET_INFRA_IBSS; else arg = NDIS_80211_NET_INFRA_BSS; rval = ndis_set_info(sc, OID_802_11_INFRASTRUCTURE_MODE, &arg, &len); if (rval) device_printf (sc->ndis_dev, "set infra failed: %d\n", rval); /* Set RTS threshold */ len = sizeof(arg); arg = vap->iv_rtsthreshold; ndis_set_info(sc, OID_802_11_RTS_THRESHOLD, &arg, &len); /* Set fragmentation threshold */ len = sizeof(arg); arg = vap->iv_fragthreshold; ndis_set_info(sc, OID_802_11_FRAGMENTATION_THRESHOLD, &arg, &len); /* Set WEP */ if (vap->iv_flags & IEEE80211_F_PRIVACY && !(vap->iv_flags & IEEE80211_F_WPA)) { int keys_set = 0; if (ni->ni_authmode == IEEE80211_AUTH_SHARED) { len = sizeof(arg); arg = NDIS_80211_AUTHMODE_SHARED; DPRINTF(("Setting shared auth\n")); ndis_set_info(sc, OID_802_11_AUTHENTICATION_MODE, &arg, &len); } for (i = 0; i < IEEE80211_WEP_NKID; i++) { if (vap->iv_nw_keys[i].wk_keylen) { if (vap->iv_nw_keys[i].wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP) continue; bzero((char *)&wep, sizeof(wep)); wep.nw_keylen = vap->iv_nw_keys[i].wk_keylen; /* * 5, 13 and 16 are the only valid * key lengths. Anything in between * will be zero padded out to the * next highest boundary. */ if (vap->iv_nw_keys[i].wk_keylen < 5) wep.nw_keylen = 5; else if (vap->iv_nw_keys[i].wk_keylen > 5 && vap->iv_nw_keys[i].wk_keylen < 13) wep.nw_keylen = 13; else if (vap->iv_nw_keys[i].wk_keylen > 13 && vap->iv_nw_keys[i].wk_keylen < 16) wep.nw_keylen = 16; wep.nw_keyidx = i; wep.nw_length = (sizeof(uint32_t) * 3) + wep.nw_keylen; if (i == vap->iv_def_txkey) wep.nw_keyidx |= NDIS_80211_WEPKEY_TX; bcopy(vap->iv_nw_keys[i].wk_key, wep.nw_keydata, wep.nw_length); len = sizeof(wep); DPRINTF(("Setting WEP key %d\n", i)); rval = ndis_set_info(sc, OID_802_11_ADD_WEP, &wep, &len); if (rval) device_printf(sc->ndis_dev, "set wepkey failed: %d\n", rval); keys_set++; } } if (keys_set) { DPRINTF(("Setting WEP on\n")); arg = NDIS_80211_WEPSTAT_ENABLED; len = sizeof(arg); rval = ndis_set_info(sc, OID_802_11_WEP_STATUS, &arg, &len); if (rval) device_printf(sc->ndis_dev, "enable WEP failed: %d\n", rval); if (vap->iv_flags & IEEE80211_F_DROPUNENC) arg = NDIS_80211_PRIVFILT_8021XWEP; else arg = NDIS_80211_PRIVFILT_ACCEPTALL; len = sizeof(arg); ndis_set_info(sc, OID_802_11_PRIVACY_FILTER, &arg, &len); } } /* Set up WPA. */ if ((vap->iv_flags & IEEE80211_F_WPA) && vap->iv_appie_assocreq != NULL) { struct ieee80211_appie *ie = vap->iv_appie_assocreq; error = ndis_set_wpa(sc, ie->ie_data, ie->ie_len); if (error != 0) device_printf(sc->ndis_dev, "WPA setup failed\n"); } #ifdef notyet /* Set network type. */ arg = 0; switch (vap->iv_curmode) { case IEEE80211_MODE_11A: arg = NDIS_80211_NETTYPE_11OFDM5; break; case IEEE80211_MODE_11B: arg = NDIS_80211_NETTYPE_11DS; break; case IEEE80211_MODE_11G: arg = NDIS_80211_NETTYPE_11OFDM24; break; default: device_printf(sc->ndis_dev, "unknown mode: %d\n", vap->iv_curmode); } if (arg) { DPRINTF(("Setting network type to %d\n", arg)); len = sizeof(arg); rval = ndis_set_info(sc, OID_802_11_NETWORK_TYPE_IN_USE, &arg, &len); if (rval) device_printf(sc->ndis_dev, "set nettype failed: %d\n", rval); } #endif /* * If the user selected a specific BSSID, try * to use that one. This is useful in the case where * there are several APs in range with the same network * name. To delete the BSSID, we use the broadcast * address as the BSSID. * Note that some drivers seem to allow setting a BSSID * in ad-hoc mode, which has the effect of forcing the * NIC to create an ad-hoc cell with a specific BSSID, * instead of a randomly chosen one. However, the net80211 * code makes the assumtion that the BSSID setting is invalid * when you're in ad-hoc mode, so we don't allow that here. */ len = IEEE80211_ADDR_LEN; if (vap->iv_flags & IEEE80211_F_DESBSSID && vap->iv_opmode != IEEE80211_M_IBSS) bcopy(ni->ni_bssid, bssid, len); else bcopy(ieee80211broadcastaddr, bssid, len); DPRINTF(("Setting BSSID to %6D\n", (uint8_t *)&bssid, ":")); rval = ndis_set_info(sc, OID_802_11_BSSID, &bssid, &len); if (rval) device_printf(sc->ndis_dev, "setting BSSID failed: %d\n", rval); /* Set SSID -- always do this last. */ #ifdef NDIS_DEBUG if (ndis_debug > 0) { printf("Setting ESSID to "); ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); printf("\n"); } #endif len = sizeof(ssid); bzero((char *)&ssid, len); ssid.ns_ssidlen = ni->ni_esslen; if (ssid.ns_ssidlen == 0) { ssid.ns_ssidlen = 1; } else bcopy(ni->ni_essid, ssid.ns_ssid, ssid.ns_ssidlen); rval = ndis_set_info(sc, OID_802_11_SSID, &ssid, &len); if (rval) device_printf (sc->ndis_dev, "set ssid failed: %d\n", rval); return; } static int ndis_get_bssid_list(sc, bl) struct ndis_softc *sc; ndis_80211_bssid_list_ex **bl; { int len, error; len = sizeof(uint32_t) + (sizeof(ndis_wlan_bssid_ex) * 16); *bl = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); if (*bl == NULL) return (ENOMEM); error = ndis_get_info(sc, OID_802_11_BSSID_LIST, *bl, &len); if (error == ENOSPC) { free(*bl, M_DEVBUF); *bl = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); if (*bl == NULL) return (ENOMEM); error = ndis_get_info(sc, OID_802_11_BSSID_LIST, *bl, &len); } if (error) { DPRINTF(("%s: failed to read\n", __func__)); free(*bl, M_DEVBUF); return (error); } return (0); } static int ndis_get_assoc(struct ndis_softc *sc, ndis_wlan_bssid_ex **assoc) { struct ieee80211com *ic = &sc->ndis_ic; struct ieee80211vap *vap; struct ieee80211_node *ni; ndis_80211_bssid_list_ex *bl; ndis_wlan_bssid_ex *bs; ndis_80211_macaddr bssid; int i, len, error; if (!sc->ndis_link) return (ENOENT); len = sizeof(bssid); error = ndis_get_info(sc, OID_802_11_BSSID, &bssid, &len); if (error) { device_printf(sc->ndis_dev, "failed to get bssid\n"); return (ENOENT); } vap = TAILQ_FIRST(&ic->ic_vaps); ni = vap->iv_bss; error = ndis_get_bssid_list(sc, &bl); if (error) return (error); bs = (ndis_wlan_bssid_ex *)&bl->nblx_bssid[0]; for (i = 0; i < bl->nblx_items; i++) { if (bcmp(bs->nwbx_macaddr, bssid, sizeof(bssid)) == 0) { *assoc = malloc(bs->nwbx_len, M_TEMP, M_NOWAIT); if (*assoc == NULL) { free(bl, M_TEMP); return (ENOMEM); } bcopy((char *)bs, (char *)*assoc, bs->nwbx_len); free(bl, M_TEMP); if (ic->ic_opmode == IEEE80211_M_STA) ni->ni_associd = 1 | 0xc000; /* fake associd */ return (0); } bs = (ndis_wlan_bssid_ex *)((char *)bs + bs->nwbx_len); } free(bl, M_TEMP); return (ENOENT); } static void ndis_getstate_80211(struct ndis_softc *sc) { struct ieee80211com *ic = &sc->ndis_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_node *ni = vap->iv_bss; ndis_wlan_bssid_ex *bs; int rval, len, i = 0; int chanflag; uint32_t arg; if (!NDIS_INITIALIZED(sc)) return; if ((rval = ndis_get_assoc(sc, &bs)) != 0) return; /* We're associated, retrieve info on the current bssid. */ ic->ic_curmode = ndis_nettype_mode(bs->nwbx_nettype); chanflag = ndis_nettype_chan(bs->nwbx_nettype); IEEE80211_ADDR_COPY(ni->ni_bssid, bs->nwbx_macaddr); /* Get SSID from current association info. */ bcopy(bs->nwbx_ssid.ns_ssid, ni->ni_essid, bs->nwbx_ssid.ns_ssidlen); ni->ni_esslen = bs->nwbx_ssid.ns_ssidlen; if (ic->ic_caps & IEEE80211_C_PMGT) { len = sizeof(arg); rval = ndis_get_info(sc, OID_802_11_POWER_MODE, &arg, &len); if (rval) device_printf(sc->ndis_dev, "get power mode failed: %d\n", rval); if (arg == NDIS_80211_POWERMODE_CAM) vap->iv_flags &= ~IEEE80211_F_PMGTON; else vap->iv_flags |= IEEE80211_F_PMGTON; } /* Get TX power */ if (ic->ic_caps & IEEE80211_C_TXPMGT) { len = sizeof(arg); ndis_get_info(sc, OID_802_11_TX_POWER_LEVEL, &arg, &len); for (i = 0; i < nitems(dBm2mW); i++) if (dBm2mW[i] >= arg) break; ic->ic_txpowlimit = i; } /* * Use the current association information to reflect * what channel we're on. */ ic->ic_curchan = ieee80211_find_channel(ic, bs->nwbx_config.nc_dsconfig / 1000, chanflag); if (ic->ic_curchan == NULL) ic->ic_curchan = &ic->ic_channels[0]; ni->ni_chan = ic->ic_curchan; ic->ic_bsschan = ic->ic_curchan; free(bs, M_TEMP); /* * Determine current authentication mode. */ len = sizeof(arg); rval = ndis_get_info(sc, OID_802_11_AUTHENTICATION_MODE, &arg, &len); if (rval) device_printf(sc->ndis_dev, "get authmode status failed: %d\n", rval); else { vap->iv_flags &= ~IEEE80211_F_WPA; switch (arg) { case NDIS_80211_AUTHMODE_OPEN: ni->ni_authmode = IEEE80211_AUTH_OPEN; break; case NDIS_80211_AUTHMODE_SHARED: ni->ni_authmode = IEEE80211_AUTH_SHARED; break; case NDIS_80211_AUTHMODE_AUTO: ni->ni_authmode = IEEE80211_AUTH_AUTO; break; case NDIS_80211_AUTHMODE_WPA: case NDIS_80211_AUTHMODE_WPAPSK: case NDIS_80211_AUTHMODE_WPANONE: ni->ni_authmode = IEEE80211_AUTH_WPA; vap->iv_flags |= IEEE80211_F_WPA1; break; case NDIS_80211_AUTHMODE_WPA2: case NDIS_80211_AUTHMODE_WPA2PSK: ni->ni_authmode = IEEE80211_AUTH_WPA; vap->iv_flags |= IEEE80211_F_WPA2; break; default: ni->ni_authmode = IEEE80211_AUTH_NONE; break; } } len = sizeof(arg); rval = ndis_get_info(sc, OID_802_11_WEP_STATUS, &arg, &len); if (rval) device_printf(sc->ndis_dev, "get wep status failed: %d\n", rval); if (arg == NDIS_80211_WEPSTAT_ENABLED) vap->iv_flags |= IEEE80211_F_PRIVACY|IEEE80211_F_DROPUNENC; else vap->iv_flags &= ~(IEEE80211_F_PRIVACY|IEEE80211_F_DROPUNENC); } static int ndis_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct ndis_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; int i, error = 0; /*NDIS_LOCK(sc);*/ switch (command) { case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (sc->ndis_running && ifp->if_flags & IFF_PROMISC && !(sc->ndis_if_flags & IFF_PROMISC)) { sc->ndis_filter |= NDIS_PACKET_TYPE_PROMISCUOUS; i = sizeof(sc->ndis_filter); error = ndis_set_info(sc, OID_GEN_CURRENT_PACKET_FILTER, &sc->ndis_filter, &i); } else if (sc->ndis_running && !(ifp->if_flags & IFF_PROMISC) && sc->ndis_if_flags & IFF_PROMISC) { sc->ndis_filter &= ~NDIS_PACKET_TYPE_PROMISCUOUS; i = sizeof(sc->ndis_filter); error = ndis_set_info(sc, OID_GEN_CURRENT_PACKET_FILTER, &sc->ndis_filter, &i); } else ndis_init(sc); } else { if (sc->ndis_running) ndis_stop(sc); } sc->ndis_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: ndis_setmulti(sc); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); break; case SIOCSIFCAP: ifp->if_capenable = ifr->ifr_reqcap; if (ifp->if_capenable & IFCAP_TXCSUM) ifp->if_hwassist = sc->ndis_hwassist; else ifp->if_hwassist = 0; ndis_set_offload(sc); break; default: error = ether_ioctl(ifp, command, data); break; } /*NDIS_UNLOCK(sc);*/ return(error); } static int ndis_80211ioctl(struct ieee80211com *ic, u_long cmd, void *data) { struct ndis_softc *sc = ic->ic_softc; struct ifreq *ifr = data; struct ndis_oid_data oid; struct ndis_evt evt; void *oidbuf = NULL; int error = 0; if ((error = priv_check(curthread, PRIV_DRIVER)) != 0) return (error); switch (cmd) { case SIOCGDRVSPEC: case SIOCSDRVSPEC: error = copyin(ifr->ifr_data, &oid, sizeof(oid)); if (error) break; oidbuf = malloc(oid.len, M_TEMP, M_WAITOK | M_ZERO); error = copyin(ifr->ifr_data + sizeof(oid), oidbuf, oid.len); } if (error) { free(oidbuf, M_TEMP); return (error); } switch (cmd) { case SIOCGDRVSPEC: error = ndis_get_info(sc, oid.oid, oidbuf, &oid.len); break; case SIOCSDRVSPEC: error = ndis_set_info(sc, oid.oid, oidbuf, &oid.len); break; case SIOCGPRIVATE_0: NDIS_LOCK(sc); if (sc->ndis_evt[sc->ndis_evtcidx].ne_sts == 0) { error = ENOENT; NDIS_UNLOCK(sc); break; } error = copyin(ifr->ifr_data, &evt, sizeof(evt)); if (error) { NDIS_UNLOCK(sc); break; } if (evt.ne_len < sc->ndis_evt[sc->ndis_evtcidx].ne_len) { error = ENOSPC; NDIS_UNLOCK(sc); break; } error = copyout(&sc->ndis_evt[sc->ndis_evtcidx], ifr->ifr_data, sizeof(uint32_t) * 2); if (error) { NDIS_UNLOCK(sc); break; } if (sc->ndis_evt[sc->ndis_evtcidx].ne_len) { error = copyout(sc->ndis_evt[sc->ndis_evtcidx].ne_buf, ifr->ifr_data + (sizeof(uint32_t) * 2), sc->ndis_evt[sc->ndis_evtcidx].ne_len); if (error) { NDIS_UNLOCK(sc); break; } free(sc->ndis_evt[sc->ndis_evtcidx].ne_buf, M_TEMP); sc->ndis_evt[sc->ndis_evtcidx].ne_buf = NULL; } sc->ndis_evt[sc->ndis_evtcidx].ne_len = 0; sc->ndis_evt[sc->ndis_evtcidx].ne_sts = 0; NDIS_EVTINC(sc->ndis_evtcidx); NDIS_UNLOCK(sc); break; default: error = ENOTTY; break; } switch (cmd) { case SIOCGDRVSPEC: case SIOCSDRVSPEC: error = copyout(&oid, ifr->ifr_data, sizeof(oid)); if (error) break; error = copyout(oidbuf, ifr->ifr_data + sizeof(oid), oid.len); } free(oidbuf, M_TEMP); return (error); } int ndis_del_key(struct ieee80211vap *vap, const struct ieee80211_key *key) { struct ndis_softc *sc = vap->iv_ic->ic_softc; ndis_80211_key rkey; int len, error = 0; bzero((char *)&rkey, sizeof(rkey)); len = sizeof(rkey); rkey.nk_len = len; rkey.nk_keyidx = key->wk_keyix; bcopy(vap->iv_ifp->if_broadcastaddr, rkey.nk_bssid, IEEE80211_ADDR_LEN); error = ndis_set_info(sc, OID_802_11_REMOVE_KEY, &rkey, &len); if (error) return (0); return (1); } /* * In theory this could be called for any key, but we'll * only use it for WPA TKIP or AES keys. These need to be * set after initial authentication with the AP. */ static int ndis_add_key(struct ieee80211vap *vap, const struct ieee80211_key *key) { struct ndis_softc *sc = vap->iv_ic->ic_softc; ndis_80211_key rkey; int len, error = 0; switch (key->wk_cipher->ic_cipher) { case IEEE80211_CIPHER_TKIP: len = sizeof(ndis_80211_key); bzero((char *)&rkey, sizeof(rkey)); rkey.nk_len = len; rkey.nk_keylen = key->wk_keylen; if (key->wk_flags & IEEE80211_KEY_SWMIC) rkey.nk_keylen += 16; /* key index - gets weird in NDIS */ if (key->wk_keyix != IEEE80211_KEYIX_NONE) rkey.nk_keyidx = key->wk_keyix; else rkey.nk_keyidx = 0; if (key->wk_flags & IEEE80211_KEY_XMIT) rkey.nk_keyidx |= 1 << 31; if (key->wk_flags & IEEE80211_KEY_GROUP) { bcopy(ieee80211broadcastaddr, rkey.nk_bssid, IEEE80211_ADDR_LEN); } else { bcopy(vap->iv_bss->ni_bssid, rkey.nk_bssid, IEEE80211_ADDR_LEN); /* pairwise key */ rkey.nk_keyidx |= 1 << 30; } /* need to set bit 29 based on keyrsc */ rkey.nk_keyrsc = key->wk_keyrsc[0]; /* XXX need tid */ if (rkey.nk_keyrsc) rkey.nk_keyidx |= 1 << 29; if (key->wk_flags & IEEE80211_KEY_SWMIC) { bcopy(key->wk_key, rkey.nk_keydata, 16); bcopy(key->wk_key + 24, rkey.nk_keydata + 16, 8); bcopy(key->wk_key + 16, rkey.nk_keydata + 24, 8); } else bcopy(key->wk_key, rkey.nk_keydata, key->wk_keylen); error = ndis_set_info(sc, OID_802_11_ADD_KEY, &rkey, &len); break; case IEEE80211_CIPHER_WEP: error = 0; break; /* * I don't know how to set up keys for the AES * cipher yet. Is it the same as TKIP? */ case IEEE80211_CIPHER_AES_CCM: default: error = ENOTTY; break; } /* We need to return 1 for success, 0 for failure. */ if (error) return (0); return (1); } static void ndis_resettask(d, arg) device_object *d; void *arg; { struct ndis_softc *sc; sc = arg; ndis_reset_nic(sc); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void ndis_stop(struct ndis_softc *sc) { int i; callout_drain(&sc->ndis_stat_callout); NDIS_LOCK(sc); sc->ndis_tx_timer = 0; sc->ndis_link = 0; if (!sc->ndis_80211) sc->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->ndis_running = 0; NDIS_UNLOCK(sc); if (sc->ndis_iftype != PNPBus || (sc->ndis_iftype == PNPBus && !(sc->ndisusb_status & NDISUSB_STATUS_DETACH) && ndisusb_halt != 0)) ndis_halt_nic(sc); NDIS_LOCK(sc); for (i = 0; i < NDIS_EVENTS; i++) { if (sc->ndis_evt[i].ne_sts && sc->ndis_evt[i].ne_buf != NULL) { free(sc->ndis_evt[i].ne_buf, M_TEMP); sc->ndis_evt[i].ne_buf = NULL; } sc->ndis_evt[i].ne_sts = 0; sc->ndis_evt[i].ne_len = 0; } sc->ndis_evtcidx = 0; sc->ndis_evtpidx = 0; NDIS_UNLOCK(sc); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ void ndis_shutdown(dev) device_t dev; { struct ndis_softc *sc; sc = device_get_softc(dev); ndis_stop(sc); } static int ndis_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct ndis_vap *nvp = NDIS_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct ndis_softc *sc = ic->ic_softc; enum ieee80211_state ostate; DPRINTF(("%s: %s -> %s\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate])); ostate = vap->iv_state; vap->iv_state = nstate; switch (nstate) { /* pass on to net80211 */ case IEEE80211_S_INIT: case IEEE80211_S_SCAN: return nvp->newstate(vap, nstate, arg); case IEEE80211_S_ASSOC: if (ostate != IEEE80211_S_AUTH) { IEEE80211_UNLOCK(ic); ndis_auth_and_assoc(sc, vap); IEEE80211_LOCK(ic); } break; case IEEE80211_S_AUTH: IEEE80211_UNLOCK(ic); ndis_auth_and_assoc(sc, vap); if (vap->iv_state == IEEE80211_S_AUTH) /* XXX */ ieee80211_new_state(vap, IEEE80211_S_ASSOC, 0); IEEE80211_LOCK(ic); break; default: break; } return (0); } static void ndis_scan(void *arg) { struct ieee80211vap *vap = arg; ieee80211_scan_done(vap); } static void ndis_scan_results(struct ndis_softc *sc) { struct ieee80211com *ic = &sc->ndis_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); ndis_80211_bssid_list_ex *bl; ndis_wlan_bssid_ex *wb; struct ieee80211_scanparams sp; struct ieee80211_frame wh; struct ieee80211_channel *saved_chan; int i, j; int rssi, noise, freq, chanflag; uint8_t ssid[2+IEEE80211_NWID_LEN]; uint8_t rates[2+IEEE80211_RATE_MAXSIZE]; uint8_t *frm, *efrm; saved_chan = ic->ic_curchan; noise = -96; if (ndis_get_bssid_list(sc, &bl)) return; DPRINTF(("%s: %d results\n", __func__, bl->nblx_items)); wb = &bl->nblx_bssid[0]; for (i = 0; i < bl->nblx_items; i++) { memset(&sp, 0, sizeof(sp)); memcpy(wh.i_addr2, wb->nwbx_macaddr, sizeof(wh.i_addr2)); memcpy(wh.i_addr3, wb->nwbx_macaddr, sizeof(wh.i_addr3)); rssi = 100 * (wb->nwbx_rssi - noise) / (-32 - noise); rssi = max(0, min(rssi, 100)); /* limit 0 <= rssi <= 100 */ if (wb->nwbx_privacy) sp.capinfo |= IEEE80211_CAPINFO_PRIVACY; sp.bintval = wb->nwbx_config.nc_beaconperiod; switch (wb->nwbx_netinfra) { case NDIS_80211_NET_INFRA_IBSS: sp.capinfo |= IEEE80211_CAPINFO_IBSS; break; case NDIS_80211_NET_INFRA_BSS: sp.capinfo |= IEEE80211_CAPINFO_ESS; break; } sp.rates = &rates[0]; for (j = 0; j < IEEE80211_RATE_MAXSIZE; j++) { /* XXX - check units */ if (wb->nwbx_supportedrates[j] == 0) break; rates[2 + j] = wb->nwbx_supportedrates[j] & 0x7f; } rates[1] = j; sp.ssid = (uint8_t *)&ssid[0]; memcpy(sp.ssid + 2, &wb->nwbx_ssid.ns_ssid, wb->nwbx_ssid.ns_ssidlen); sp.ssid[1] = wb->nwbx_ssid.ns_ssidlen; chanflag = ndis_nettype_chan(wb->nwbx_nettype); freq = wb->nwbx_config.nc_dsconfig / 1000; sp.chan = sp.bchan = ieee80211_mhz2ieee(freq, chanflag); /* Hack ic->ic_curchan to be in sync with the scan result */ ic->ic_curchan = ieee80211_find_channel(ic, freq, chanflag); if (ic->ic_curchan == NULL) ic->ic_curchan = &ic->ic_channels[0]; /* Process extended info from AP */ if (wb->nwbx_len > sizeof(ndis_wlan_bssid)) { frm = (uint8_t *)&wb->nwbx_ies; efrm = frm + wb->nwbx_ielen; if (efrm - frm < 12) goto done; sp.tstamp = frm; frm += 8; sp.bintval = le16toh(*(uint16_t *)frm); frm += 2; sp.capinfo = le16toh(*(uint16_t *)frm); frm += 2; sp.ies = frm; sp.ies_len = efrm - frm; } done: DPRINTF(("scan: bssid %s chan %dMHz (%d/%d) rssi %d\n", ether_sprintf(wb->nwbx_macaddr), freq, sp.bchan, chanflag, rssi)); ieee80211_add_scan(vap, ic->ic_curchan, &sp, &wh, 0, rssi, noise); wb = (ndis_wlan_bssid_ex *)((char *)wb + wb->nwbx_len); } free(bl, M_DEVBUF); /* Restore the channel after messing with it */ ic->ic_curchan = saved_chan; } static void ndis_scan_start(struct ieee80211com *ic) { struct ndis_softc *sc = ic->ic_softc; struct ieee80211vap *vap; struct ieee80211_scan_state *ss; ndis_80211_ssid ssid; int error, len; ss = ic->ic_scan; vap = TAILQ_FIRST(&ic->ic_vaps); if (!NDIS_INITIALIZED(sc)) { DPRINTF(("%s: scan aborted\n", __func__)); ieee80211_cancel_scan(vap); return; } len = sizeof(ssid); bzero((char *)&ssid, len); if (ss->ss_nssid == 0) ssid.ns_ssidlen = 1; else { /* Perform a directed scan */ ssid.ns_ssidlen = ss->ss_ssid[0].len; bcopy(ss->ss_ssid[0].ssid, ssid.ns_ssid, ssid.ns_ssidlen); } error = ndis_set_info(sc, OID_802_11_SSID, &ssid, &len); if (error) DPRINTF(("%s: set ESSID failed\n", __func__)); len = 0; error = ndis_set_info(sc, OID_802_11_BSSID_LIST_SCAN, NULL, &len); if (error) { DPRINTF(("%s: scan command failed\n", __func__)); ieee80211_cancel_scan(vap); return; } /* Set a timer to collect the results */ callout_reset(&sc->ndis_scan_callout, hz * 3, ndis_scan, vap); } static void ndis_set_channel(struct ieee80211com *ic) { /* ignore */ } static void ndis_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) { /* ignore */ } static void ndis_scan_mindwell(struct ieee80211_scan_state *ss) { /* NB: don't try to abort scan; wait for firmware to finish */ } static void ndis_scan_end(struct ieee80211com *ic) { struct ndis_softc *sc = ic->ic_softc; ndis_scan_results(sc); } Index: head/sys/dev/iwi/if_iwi.c =================================================================== --- head/sys/dev/iwi/if_iwi.c (revision 298817) +++ head/sys/dev/iwi/if_iwi.c (revision 298818) @@ -1,3571 +1,3571 @@ /*- * Copyright (c) 2004, 2005 * Damien Bergamini . All rights reserved. * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting * Copyright (c) 2007 Andrew Thompson * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /*- * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define IWI_DEBUG #ifdef IWI_DEBUG #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) int iwi_debug = 0; SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); static const char *iwi_fw_states[] = { "IDLE", /* IWI_FW_IDLE */ "LOADING", /* IWI_FW_LOADING */ "ASSOCIATING", /* IWI_FW_ASSOCIATING */ "DISASSOCIATING", /* IWI_FW_DISASSOCIATING */ "SCANNING", /* IWI_FW_SCANNING */ }; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif MODULE_DEPEND(iwi, pci, 1, 1, 1); MODULE_DEPEND(iwi, wlan, 1, 1, 1); MODULE_DEPEND(iwi, firmware, 1, 1, 1); enum { IWI_LED_TX, IWI_LED_RX, IWI_LED_POLL, }; struct iwi_ident { uint16_t vendor; uint16_t device; const char *name; }; static const struct iwi_ident iwi_ident_table[] = { { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, { 0, 0, NULL } }; static struct ieee80211vap *iwi_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void iwi_vap_delete(struct ieee80211vap *); static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, int); static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, int, bus_addr_t, bus_addr_t); static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, int); static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *, const uint8_t [IEEE80211_ADDR_LEN]); static void iwi_node_free(struct ieee80211_node *); static void iwi_media_status(struct ifnet *, struct ifmediareq *); static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void iwi_wme_init(struct iwi_softc *); static int iwi_wme_setparams(struct iwi_softc *); static int iwi_wme_update(struct ieee80211com *); static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, struct iwi_frame *); static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); static void iwi_rx_intr(struct iwi_softc *); static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); static void iwi_intr(void *); static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int); static int iwi_tx_start(struct iwi_softc *, struct mbuf *, struct ieee80211_node *, int); static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void iwi_start(struct iwi_softc *); static int iwi_transmit(struct ieee80211com *, struct mbuf *); static void iwi_watchdog(void *); static int iwi_ioctl(struct ieee80211com *, u_long, void *); static void iwi_parent(struct ieee80211com *); static void iwi_stop_master(struct iwi_softc *); static int iwi_reset(struct iwi_softc *); static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); static void iwi_release_fw_dma(struct iwi_softc *sc); static int iwi_config(struct iwi_softc *); static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode); static void iwi_put_firmware(struct iwi_softc *); static void iwi_monitor_scan(void *, int); static int iwi_scanchan(struct iwi_softc *, unsigned long, int); static void iwi_scan_start(struct ieee80211com *); static void iwi_scan_end(struct ieee80211com *); static void iwi_set_channel(struct ieee80211com *); static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell); static void iwi_scan_mindwell(struct ieee80211_scan_state *); static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *); static void iwi_disassoc(void *, int); static int iwi_disassociate(struct iwi_softc *, int quiet); static void iwi_init_locked(struct iwi_softc *); static void iwi_init(void *); static int iwi_init_fw_dma(struct iwi_softc *, int); static void iwi_stop_locked(void *); static void iwi_stop(struct iwi_softc *); static void iwi_restart(void *, int); static int iwi_getrfkill(struct iwi_softc *); static void iwi_radio_on(void *, int); static void iwi_radio_off(void *, int); static void iwi_sysctlattach(struct iwi_softc *); static void iwi_led_event(struct iwi_softc *, int); static void iwi_ledattach(struct iwi_softc *); static int iwi_probe(device_t); static int iwi_attach(device_t); static int iwi_detach(device_t); static int iwi_shutdown(device_t); static int iwi_suspend(device_t); static int iwi_resume(device_t); static device_method_t iwi_methods[] = { /* Device interface */ DEVMETHOD(device_probe, iwi_probe), DEVMETHOD(device_attach, iwi_attach), DEVMETHOD(device_detach, iwi_detach), DEVMETHOD(device_shutdown, iwi_shutdown), DEVMETHOD(device_suspend, iwi_suspend), DEVMETHOD(device_resume, iwi_resume), DEVMETHOD_END }; static driver_t iwi_driver = { "iwi", iwi_methods, sizeof (struct iwi_softc) }; static devclass_t iwi_devclass; DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, NULL, NULL); MODULE_VERSION(iwi, 1); static __inline uint8_t MEM_READ_1(struct iwi_softc *sc, uint32_t addr) { CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); } static __inline uint32_t MEM_READ_4(struct iwi_softc *sc, uint32_t addr) { CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); } static int iwi_probe(device_t dev) { const struct iwi_ident *ident; for (ident = iwi_ident_table; ident->name != NULL; ident++) { if (pci_get_vendor(dev) == ident->vendor && pci_get_device(dev) == ident->device) { device_set_desc(dev, ident->name); return (BUS_PROBE_DEFAULT); } } return ENXIO; } static int iwi_attach(device_t dev) { struct iwi_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; uint16_t val; - uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)]; + uint8_t bands[IEEE80211_MODE_BYTES]; int i, error; sc->sc_dev = dev; IWI_LOCK_INIT(sc); mbufq_init(&sc->sc_snd, ifqmaxlen); sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx); TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc); TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc); callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0); pci_write_config(dev, 0x41, 0, 1); /* enable bus-mastering */ pci_enable_busmaster(dev); i = PCIR_BAR(0); sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE); if (sc->mem == NULL) { device_printf(dev, "could not allocate memory resource\n"); goto fail; } sc->sc_st = rman_get_bustag(sc->mem); sc->sc_sh = rman_get_bushandle(sc->mem); i = 0; sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, RF_ACTIVE | RF_SHAREABLE); if (sc->irq == NULL) { device_printf(dev, "could not allocate interrupt resource\n"); goto fail; } if (iwi_reset(sc) != 0) { device_printf(dev, "could not reset adapter\n"); goto fail; } /* * Allocate rings. */ if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { device_printf(dev, "could not allocate Cmd ring\n"); goto fail; } for (i = 0; i < 4; i++) { error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT, IWI_CSR_TX1_RIDX + i * 4, IWI_CSR_TX1_WIDX + i * 4); if (error != 0) { device_printf(dev, "could not allocate Tx ring %d\n", i+i); goto fail; } } if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { device_printf(dev, "could not allocate Rx ring\n"); goto fail; } iwi_wme_init(sc); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(dev); ic->ic_opmode = IEEE80211_M_STA; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode supported */ | IEEE80211_C_IBSS /* IBSS mode supported */ | IEEE80211_C_MONITOR /* monitor mode supported */ | IEEE80211_C_PMGT /* power save supported */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_WPA /* 802.11i */ | IEEE80211_C_WME /* 802.11e */ #if 0 | IEEE80211_C_BGSCAN /* capable of bg scanning */ #endif ; /* read MAC address from EEPROM */ val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); ic->ic_macaddr[0] = val & 0xff; ic->ic_macaddr[1] = val >> 8; val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); ic->ic_macaddr[2] = val & 0xff; ic->ic_macaddr[3] = val >> 8; val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); ic->ic_macaddr[4] = val & 0xff; ic->ic_macaddr[5] = val >> 8; memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); if (pci_get_device(dev) >= 0x4223) setbit(bands, IEEE80211_MODE_11A); ieee80211_init_channels(ic, NULL, bands); ieee80211_ifattach(ic); /* override default methods */ ic->ic_node_alloc = iwi_node_alloc; sc->sc_node_free = ic->ic_node_free; ic->ic_node_free = iwi_node_free; ic->ic_raw_xmit = iwi_raw_xmit; ic->ic_scan_start = iwi_scan_start; ic->ic_scan_end = iwi_scan_end; ic->ic_set_channel = iwi_set_channel; ic->ic_scan_curchan = iwi_scan_curchan; ic->ic_scan_mindwell = iwi_scan_mindwell; ic->ic_wme.wme_update = iwi_wme_update; ic->ic_vap_create = iwi_vap_create; ic->ic_vap_delete = iwi_vap_delete; ic->ic_ioctl = iwi_ioctl; ic->ic_transmit = iwi_transmit; ic->ic_parent = iwi_parent; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), IWI_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), IWI_RX_RADIOTAP_PRESENT); iwi_sysctlattach(sc); iwi_ledattach(sc); /* * Hook our interrupt after all initialization is complete. */ error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, iwi_intr, sc, &sc->sc_ih); if (error != 0) { device_printf(dev, "could not set up interrupt\n"); goto fail; } if (bootverbose) ieee80211_announce(ic); return 0; fail: /* XXX fix */ iwi_detach(dev); return ENXIO; } static int iwi_detach(device_t dev) { struct iwi_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; bus_teardown_intr(dev, sc->irq, sc->sc_ih); /* NB: do early to drain any pending tasks */ ieee80211_draintask(ic, &sc->sc_radiontask); ieee80211_draintask(ic, &sc->sc_radiofftask); ieee80211_draintask(ic, &sc->sc_restarttask); ieee80211_draintask(ic, &sc->sc_disassoctask); ieee80211_draintask(ic, &sc->sc_monitortask); iwi_stop(sc); ieee80211_ifdetach(ic); iwi_put_firmware(sc); iwi_release_fw_dma(sc); iwi_free_cmd_ring(sc, &sc->cmdq); iwi_free_tx_ring(sc, &sc->txq[0]); iwi_free_tx_ring(sc, &sc->txq[1]); iwi_free_tx_ring(sc, &sc->txq[2]); iwi_free_tx_ring(sc, &sc->txq[3]); iwi_free_rx_ring(sc, &sc->rxq); bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), sc->mem); delete_unrhdr(sc->sc_unr); mbufq_drain(&sc->sc_snd); IWI_LOCK_DESTROY(sc); return 0; } static struct ieee80211vap * iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct iwi_softc *sc = ic->ic_softc; struct iwi_vap *ivp; struct ieee80211vap *vap; int i; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return NULL; /* * Get firmware image (and possibly dma memory) on mode change. */ if (iwi_get_firmware(sc, opmode)) return NULL; /* allocate DMA memory for mapping firmware image */ i = sc->fw_fw.size; if (sc->fw_boot.size > i) i = sc->fw_boot.size; /* XXX do we dma the ucode as well ? */ if (sc->fw_uc.size > i) i = sc->fw_uc.size; if (iwi_init_fw_dma(sc, i)) return NULL; ivp = malloc(sizeof(struct iwi_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &ivp->iwi_vap; ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); /* override the default, the setting comes from the linux driver */ vap->iv_bmissthreshold = 24; /* override with driver methods */ ivp->iwi_newstate = vap->iv_newstate; vap->iv_newstate = iwi_newstate; /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status, mac); ic->ic_opmode = opmode; return vap; } static void iwi_vap_delete(struct ieee80211vap *vap) { struct iwi_vap *ivp = IWI_VAP(vap); ieee80211_vap_detach(vap); free(ivp, M_80211_VAP); } static void iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { if (error != 0) return; KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); *(bus_addr_t *)arg = segs[0].ds_addr; } static int iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) { int error; ring->count = count; ring->queued = 0; ring->cur = ring->next = 0; error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } return 0; fail: iwi_free_cmd_ring(sc, ring); return error; } static void iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) { ring->queued = 0; ring->cur = ring->next = 0; } static void iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) { if (ring->desc != NULL) { bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->desc_dmat, ring->desc_map); bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); } if (ring->desc_dmat != NULL) bus_dma_tag_destroy(ring->desc_dmat); } static int iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, bus_addr_t csr_ridx, bus_addr_t csr_widx) { int i, error; ring->count = count; ring->queued = 0; ring->cur = ring->next = 0; ring->csr_ridx = csr_ridx; ring->csr_widx = csr_widx; error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ring->data == NULL) { device_printf(sc->sc_dev, "could not allocate soft data\n"); error = ENOMEM; goto fail; } error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create data DMA tag\n"); goto fail; } for (i = 0; i < count; i++) { error = bus_dmamap_create(ring->data_dmat, 0, &ring->data[i].map); if (error != 0) { device_printf(sc->sc_dev, "could not create DMA map\n"); goto fail; } } return 0; fail: iwi_free_tx_ring(sc, ring); return error; } static void iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) { struct iwi_tx_data *data; int i; for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } } ring->queued = 0; ring->cur = ring->next = 0; } static void iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) { struct iwi_tx_data *data; int i; if (ring->desc != NULL) { bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->desc_dmat, ring->desc_map); bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); } if (ring->desc_dmat != NULL) bus_dma_tag_destroy(ring->desc_dmat); if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->ni != NULL) ieee80211_free_node(data->ni); if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } free(ring->data, M_DEVBUF); } if (ring->data_dmat != NULL) bus_dma_tag_destroy(ring->data_dmat); } static int iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) { struct iwi_rx_data *data; int i, error; ring->count = count; ring->cur = 0; ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ring->data == NULL) { device_printf(sc->sc_dev, "could not allocate soft data\n"); error = ENOMEM; goto fail; } error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create data DMA tag\n"); goto fail; } for (i = 0; i < count; i++) { data = &ring->data[i]; error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "could not create DMA map\n"); goto fail; } data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (data->m == NULL) { device_printf(sc->sc_dev, "could not allocate rx mbuf\n"); error = ENOMEM; goto fail; } error = bus_dmamap_load(ring->data_dmat, data->map, mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load rx buf DMA map"); goto fail; } data->reg = IWI_CSR_RX_BASE + i * 4; } return 0; fail: iwi_free_rx_ring(sc, ring); return error; } static void iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) { ring->cur = 0; } static void iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) { struct iwi_rx_data *data; int i; if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } free(ring->data, M_DEVBUF); } if (ring->data_dmat != NULL) bus_dma_tag_destroy(ring->data_dmat); } static int iwi_shutdown(device_t dev) { struct iwi_softc *sc = device_get_softc(dev); iwi_stop(sc); iwi_put_firmware(sc); /* ??? XXX */ return 0; } static int iwi_suspend(device_t dev) { struct iwi_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; ieee80211_suspend_all(ic); return 0; } static int iwi_resume(device_t dev) { struct iwi_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; pci_write_config(dev, 0x41, 0, 1); ieee80211_resume_all(ic); return 0; } static struct ieee80211_node * iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) { struct iwi_node *in; in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); if (in == NULL) return NULL; /* XXX assign sta table entry for adhoc */ in->in_station = -1; return &in->in_node; } static void iwi_node_free(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; struct iwi_softc *sc = ic->ic_softc; struct iwi_node *in = (struct iwi_node *)ni; if (in->in_station != -1) { DPRINTF(("%s mac %6D station %u\n", __func__, ni->ni_macaddr, ":", in->in_station)); free_unr(sc->sc_unr, in->in_station); } sc->sc_node_free(ni); } /* * Convert h/w rate code to IEEE rate code. */ static int iwi_cvtrate(int iwirate) { switch (iwirate) { case IWI_RATE_DS1: return 2; case IWI_RATE_DS2: return 4; case IWI_RATE_DS5: return 11; case IWI_RATE_DS11: return 22; case IWI_RATE_OFDM6: return 12; case IWI_RATE_OFDM9: return 18; case IWI_RATE_OFDM12: return 24; case IWI_RATE_OFDM18: return 36; case IWI_RATE_OFDM24: return 48; case IWI_RATE_OFDM36: return 72; case IWI_RATE_OFDM48: return 96; case IWI_RATE_OFDM54: return 108; } return 0; } /* * The firmware automatically adapts the transmit speed. We report its current * value here. */ static void iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct ieee80211vap *vap = ifp->if_softc; struct ieee80211com *ic = vap->iv_ic; struct iwi_softc *sc = ic->ic_softc; struct ieee80211_node *ni; /* read current transmission rate from adapter */ ni = ieee80211_ref_node(vap->iv_bss); ni->ni_txrate = iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE)); ieee80211_free_node(ni); ieee80211_media_status(ifp, imr); } static int iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct iwi_vap *ivp = IWI_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct iwi_softc *sc = ic->ic_softc; IWI_LOCK_DECL; DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate], sc->flags)); IEEE80211_UNLOCK(ic); IWI_LOCK(sc); switch (nstate) { case IEEE80211_S_INIT: /* * NB: don't try to do this if iwi_stop_master has * shutdown the firmware and disabled interrupts. */ if (vap->iv_state == IEEE80211_S_RUN && (sc->flags & IWI_FLAG_FW_INITED)) iwi_disassociate(sc, 0); break; case IEEE80211_S_AUTH: iwi_auth_and_assoc(sc, vap); break; case IEEE80211_S_RUN: if (vap->iv_opmode == IEEE80211_M_IBSS && vap->iv_state == IEEE80211_S_SCAN) { /* * XXX when joining an ibss network we are called * with a SCAN -> RUN transition on scan complete. * Use that to call iwi_auth_and_assoc. On completing * the join we are then called again with an * AUTH -> RUN transition and we want to do nothing. * This is all totally bogus and needs to be redone. */ iwi_auth_and_assoc(sc, vap); } else if (vap->iv_opmode == IEEE80211_M_MONITOR) ieee80211_runtask(ic, &sc->sc_monitortask); break; case IEEE80211_S_ASSOC: /* * If we are transitioning from AUTH then just wait * for the ASSOC status to come back from the firmware. * Otherwise we need to issue the association request. */ if (vap->iv_state == IEEE80211_S_AUTH) break; iwi_auth_and_assoc(sc, vap); break; default: break; } IWI_UNLOCK(sc); IEEE80211_LOCK(ic); return ivp->iwi_newstate(vap, nstate, arg); } /* * WME parameters coming from IEEE 802.11e specification. These values are * already declared in ieee80211_proto.c, but they are static so they can't * be reused here. */ static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ { 0, 2, 3, 4, 102 } /* WME_AC_VO */ }; static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ { 0, 2, 2, 3, 47 } /* WME_AC_VO */ }; #define IWI_EXP2(v) htole16((1 << (v)) - 1) #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) static void iwi_wme_init(struct iwi_softc *sc) { const struct wmeParams *wmep; int ac; memset(sc->wme, 0, sizeof sc->wme); for (ac = 0; ac < WME_NUM_AC; ac++) { /* set WME values for CCK modulation */ wmep = &iwi_wme_cck_params[ac]; sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); sc->wme[1].acm[ac] = wmep->wmep_acm; /* set WME values for OFDM modulation */ wmep = &iwi_wme_ofdm_params[ac]; sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); sc->wme[2].acm[ac] = wmep->wmep_acm; } } static int iwi_wme_setparams(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; const struct wmeParams *wmep; int ac; for (ac = 0; ac < WME_NUM_AC; ac++) { /* set WME values for current operating mode */ wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); sc->wme[0].acm[ac] = wmep->wmep_acm; } DPRINTF(("Setting WME parameters\n")); return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); } #undef IWI_USEC #undef IWI_EXP2 static int iwi_wme_update(struct ieee80211com *ic) { struct iwi_softc *sc = ic->ic_softc; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); IWI_LOCK_DECL; /* * We may be called to update the WME parameters in * the adapter at various places. If we're already * associated then initiate the request immediately; * otherwise we assume the params will get sent down * to the adapter as part of the work iwi_auth_and_assoc * does. */ if (vap->iv_state == IEEE80211_S_RUN) { IWI_LOCK(sc); iwi_wme_setparams(sc); IWI_UNLOCK(sc); } return (0); } static int iwi_wme_setie(struct iwi_softc *sc) { struct ieee80211_wme_info wme; memset(&wme, 0, sizeof wme); wme.wme_id = IEEE80211_ELEMID_VENDOR; wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; wme.wme_oui[0] = 0x00; wme.wme_oui[1] = 0x50; wme.wme_oui[2] = 0xf2; wme.wme_type = WME_OUI_TYPE; wme.wme_subtype = WME_INFO_OUI_SUBTYPE; wme.wme_version = WME_VERSION; wme.wme_info = 0; DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); } /* * Read 16 bits at address 'addr' from the serial EEPROM. */ static uint16_t iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) { uint32_t tmp; uint16_t val; int n; /* clock C once before the first command */ IWI_EEPROM_CTL(sc, 0); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); /* write start bit (1) */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); /* write READ opcode (10) */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); /* write address A7-A0 */ for (n = 7; n >= 0; n--) { IWI_EEPROM_CTL(sc, IWI_EEPROM_S | (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); } IWI_EEPROM_CTL(sc, IWI_EEPROM_S); /* read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; } IWI_EEPROM_CTL(sc, 0); /* clear Chip Select and clock C */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, 0); IWI_EEPROM_CTL(sc, IWI_EEPROM_C); return val; } static void iwi_setcurchan(struct iwi_softc *sc, int chan) { struct ieee80211com *ic = &sc->sc_ic; sc->curchan = chan; ieee80211_radiotap_chan_change(ic); } static void iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, struct iwi_frame *frame) { struct ieee80211com *ic = &sc->sc_ic; struct mbuf *mnew, *m; struct ieee80211_node *ni; int type, error, framelen; int8_t rssi, nf; IWI_LOCK_DECL; framelen = le16toh(frame->len); if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { /* * XXX >MCLBYTES is bogus as it means the h/w dma'd * out of bounds; need to figure out how to limit * frame size in the firmware */ /* XXX stat */ DPRINTFN(1, ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); return; } DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); if (frame->chan != sc->curchan) iwi_setcurchan(sc, frame->chan); /* * Try to allocate a new mbuf for this ring element and load it before * processing the current mbuf. If the ring element cannot be loaded, * drop the received packet and reuse the old mbuf. In the unlikely * case that the old mbuf can't be reloaded either, explicitly panic. */ mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (mnew == NULL) { counter_u64_add(ic->ic_ierrors, 1); return; } bus_dmamap_unload(sc->rxq.data_dmat, data->map); error = bus_dmamap_load(sc->rxq.data_dmat, data->map, mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 0); if (error != 0) { m_freem(mnew); /* try to reload the old mbuf */ error = bus_dmamap_load(sc->rxq.data_dmat, data->map, mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 0); if (error != 0) { /* very unlikely that it will fail... */ panic("%s: could not load old rx mbuf", device_get_name(sc->sc_dev)); } counter_u64_add(ic->ic_ierrors, 1); return; } /* * New mbuf successfully loaded, update Rx ring and continue * processing. */ m = data->m; data->m = mnew; CSR_WRITE_4(sc, data->reg, data->physaddr); /* finalize mbuf */ m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + sizeof (struct iwi_frame) + framelen; m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); rssi = frame->rssi_dbm; nf = -95; if (ieee80211_radiotap_active(ic)) { struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_antsignal = rssi; tap->wr_antnoise = nf; tap->wr_rate = iwi_cvtrate(frame->rate); tap->wr_antenna = frame->antenna; } IWI_UNLOCK(sc); ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); if (ni != NULL) { type = ieee80211_input(ni, m, rssi, nf); ieee80211_free_node(ni); } else type = ieee80211_input_all(ic, m, rssi, nf); IWI_LOCK(sc); if (sc->sc_softled) { /* * Blink for any data frame. Otherwise do a * heartbeat-style blink when idle. The latter * is mainly for station mode where we depend on * periodic beacon frames to trigger the poll event. */ if (type == IEEE80211_FC0_TYPE_DATA) { sc->sc_rxrate = frame->rate; iwi_led_event(sc, IWI_LED_RX); } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) iwi_led_event(sc, IWI_LED_POLL); } } /* * Check for an association response frame to see if QoS * has been negotiated. We parse just enough to figure * out if we're supposed to use QoS. The proper solution * is to pass the frame up so ieee80211_input can do the * work but that's made hard by how things currently are * done in the driver. */ static void iwi_checkforqos(struct ieee80211vap *vap, const struct ieee80211_frame *wh, int len) { #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) const uint8_t *frm, *efrm, *wme; struct ieee80211_node *ni; uint16_t capinfo, status, associd; /* NB: +8 for capinfo, status, associd, and first ie */ if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) return; /* * asresp frame format * [2] capability information * [2] status * [2] association ID * [tlv] supported rates * [tlv] extended supported rates * [tlv] WME */ frm = (const uint8_t *)&wh[1]; efrm = ((const uint8_t *) wh) + len; capinfo = le16toh(*(const uint16_t *)frm); frm += 2; status = le16toh(*(const uint16_t *)frm); frm += 2; associd = le16toh(*(const uint16_t *)frm); frm += 2; wme = NULL; while (efrm - frm > 1) { IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return); switch (*frm) { case IEEE80211_ELEMID_VENDOR: if (iswmeoui(frm)) wme = frm; break; } frm += frm[1] + 2; } ni = ieee80211_ref_node(vap->iv_bss); ni->ni_capinfo = capinfo; ni->ni_associd = associd & 0x3fff; if (wme != NULL) ni->ni_flags |= IEEE80211_NODE_QOS; else ni->ni_flags &= ~IEEE80211_NODE_QOS; ieee80211_free_node(ni); #undef SUBTYPE } static void iwi_notif_link_quality(struct iwi_softc *sc, struct iwi_notif *notif) { struct iwi_notif_link_quality *lq; int len; len = le16toh(notif->len); DPRINTFN(5, ("Notification (%u) - len=%d, sizeof=%zu\n", notif->type, len, sizeof(struct iwi_notif_link_quality) )); /* enforce length */ if (len != sizeof(struct iwi_notif_link_quality)) { DPRINTFN(5, ("Notification: (%u) too short (%d)\n", notif->type, len)); return; } lq = (struct iwi_notif_link_quality *)(notif + 1); memcpy(&sc->sc_linkqual, lq, sizeof(sc->sc_linkqual)); sc->sc_linkqual_valid = 1; } /* * Task queue callbacks for iwi_notification_intr used to avoid LOR's. */ static void iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct iwi_notif_scan_channel *chan; struct iwi_notif_scan_complete *scan; struct iwi_notif_authentication *auth; struct iwi_notif_association *assoc; struct iwi_notif_beacon_state *beacon; switch (notif->type) { case IWI_NOTIF_TYPE_SCAN_CHANNEL: chan = (struct iwi_notif_scan_channel *)(notif + 1); DPRINTFN(3, ("Scan of channel %u complete (%u)\n", ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan)); /* Reset the timer, the scan is still going */ sc->sc_state_timer = 3; break; case IWI_NOTIF_TYPE_SCAN_COMPLETE: scan = (struct iwi_notif_scan_complete *)(notif + 1); DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, scan->status)); IWI_STATE_END(sc, IWI_FW_SCANNING); /* * Monitor mode works by doing a passive scan to set * the channel and enable rx. Because we don't want * to abort a scan lest the firmware crash we scan * for a short period of time and automatically restart * the scan when notified the sweep has completed. */ if (vap->iv_opmode == IEEE80211_M_MONITOR) { ieee80211_runtask(ic, &sc->sc_monitortask); break; } if (scan->status == IWI_SCAN_COMPLETED) { /* NB: don't need to defer, net80211 does it for us */ ieee80211_scan_next(vap); } break; case IWI_NOTIF_TYPE_AUTHENTICATION: auth = (struct iwi_notif_authentication *)(notif + 1); switch (auth->state) { case IWI_AUTH_SUCCESS: DPRINTFN(2, ("Authentication succeeeded\n")); ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1); break; case IWI_AUTH_FAIL: /* * These are delivered as an unsolicited deauth * (e.g. due to inactivity) or in response to an * associate request. */ sc->flags &= ~IWI_FLAG_ASSOCIATED; if (vap->iv_state != IEEE80211_S_RUN) { DPRINTFN(2, ("Authentication failed\n")); vap->iv_stats.is_rx_auth_fail++; IWI_STATE_END(sc, IWI_FW_ASSOCIATING); } else { DPRINTFN(2, ("Deauthenticated\n")); vap->iv_stats.is_rx_deauth++; } ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); break; case IWI_AUTH_SENT_1: case IWI_AUTH_RECV_2: case IWI_AUTH_SEQ1_PASS: break; case IWI_AUTH_SEQ1_FAIL: DPRINTFN(2, ("Initial authentication handshake failed; " "you probably need shared key\n")); vap->iv_stats.is_rx_auth_fail++; IWI_STATE_END(sc, IWI_FW_ASSOCIATING); /* XXX retry shared key when in auto */ break; default: device_printf(sc->sc_dev, "unknown authentication state %u\n", auth->state); break; } break; case IWI_NOTIF_TYPE_ASSOCIATION: assoc = (struct iwi_notif_association *)(notif + 1); switch (assoc->state) { case IWI_AUTH_SUCCESS: /* re-association, do nothing */ break; case IWI_ASSOC_SUCCESS: DPRINTFN(2, ("Association succeeded\n")); sc->flags |= IWI_FLAG_ASSOCIATED; IWI_STATE_END(sc, IWI_FW_ASSOCIATING); iwi_checkforqos(vap, (const struct ieee80211_frame *)(assoc+1), le16toh(notif->len) - sizeof(*assoc) - 1); ieee80211_new_state(vap, IEEE80211_S_RUN, -1); break; case IWI_ASSOC_INIT: sc->flags &= ~IWI_FLAG_ASSOCIATED; switch (sc->fw_state) { case IWI_FW_ASSOCIATING: DPRINTFN(2, ("Association failed\n")); IWI_STATE_END(sc, IWI_FW_ASSOCIATING); ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); break; case IWI_FW_DISASSOCIATING: DPRINTFN(2, ("Dissassociated\n")); IWI_STATE_END(sc, IWI_FW_DISASSOCIATING); vap->iv_stats.is_rx_disassoc++; ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); break; } break; default: device_printf(sc->sc_dev, "unknown association state %u\n", assoc->state); break; } break; case IWI_NOTIF_TYPE_BEACON: /* XXX check struct length */ beacon = (struct iwi_notif_beacon_state *)(notif + 1); DPRINTFN(5, ("Beacon state (%u, %u)\n", beacon->state, le32toh(beacon->number))); if (beacon->state == IWI_BEACON_MISS) { /* * The firmware notifies us of every beacon miss * so we need to track the count against the * configured threshold before notifying the * 802.11 layer. * XXX try to roam, drop assoc only on much higher count */ if (le32toh(beacon->number) >= vap->iv_bmissthreshold) { DPRINTF(("Beacon miss: %u >= %u\n", le32toh(beacon->number), vap->iv_bmissthreshold)); vap->iv_stats.is_beacon_miss++; /* * It's pointless to notify the 802.11 layer * as it'll try to send a probe request (which * we'll discard) and then timeout and drop us * into scan state. Instead tell the firmware * to disassociate and then on completion we'll * kick the state machine to scan. */ ieee80211_runtask(ic, &sc->sc_disassoctask); } } break; case IWI_NOTIF_TYPE_CALIBRATION: case IWI_NOTIF_TYPE_NOISE: /* XXX handle? */ DPRINTFN(5, ("Notification (%u)\n", notif->type)); break; case IWI_NOTIF_TYPE_LINK_QUALITY: iwi_notif_link_quality(sc, notif); break; default: DPRINTF(("unknown notification type %u flags 0x%x len %u\n", notif->type, notif->flags, le16toh(notif->len))); break; } } static void iwi_rx_intr(struct iwi_softc *sc) { struct iwi_rx_data *data; struct iwi_hdr *hdr; uint32_t hw; hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); for (; sc->rxq.cur != hw;) { data = &sc->rxq.data[sc->rxq.cur]; bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); hdr = mtod(data->m, struct iwi_hdr *); switch (hdr->type) { case IWI_HDR_TYPE_FRAME: iwi_frame_intr(sc, data, sc->rxq.cur, (struct iwi_frame *)(hdr + 1)); break; case IWI_HDR_TYPE_NOTIF: iwi_notification_intr(sc, (struct iwi_notif *)(hdr + 1)); break; default: device_printf(sc->sc_dev, "unknown hdr type %u\n", hdr->type); } DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; } /* tell the firmware what we have processed */ hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); } static void iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) { struct iwi_tx_data *data; uint32_t hw; hw = CSR_READ_4(sc, txq->csr_ridx); while (txq->next != hw) { data = &txq->data[txq->next]; DPRINTFN(15, ("tx done idx=%u\n", txq->next)); bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txq->data_dmat, data->map); ieee80211_tx_complete(data->ni, data->m, 0); data->ni = NULL; data->m = NULL; txq->queued--; txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; } sc->sc_tx_timer = 0; if (sc->sc_softled) iwi_led_event(sc, IWI_LED_TX); iwi_start(sc); } static void iwi_fatal_error_intr(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); device_printf(sc->sc_dev, "firmware error\n"); if (vap != NULL) ieee80211_cancel_scan(vap); ieee80211_runtask(ic, &sc->sc_restarttask); sc->flags &= ~IWI_FLAG_BUSY; sc->sc_busy_timer = 0; wakeup(sc); } static void iwi_radio_off_intr(struct iwi_softc *sc) { ieee80211_runtask(&sc->sc_ic, &sc->sc_radiofftask); } static void iwi_intr(void *arg) { struct iwi_softc *sc = arg; uint32_t r; IWI_LOCK_DECL; IWI_LOCK(sc); if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { IWI_UNLOCK(sc); return; } /* acknowledge interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR, r); if (r & IWI_INTR_FATAL_ERROR) { iwi_fatal_error_intr(sc); goto done; } if (r & IWI_INTR_FW_INITED) { if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) wakeup(sc); } if (r & IWI_INTR_RADIO_OFF) iwi_radio_off_intr(sc); if (r & IWI_INTR_CMD_DONE) { sc->flags &= ~IWI_FLAG_BUSY; sc->sc_busy_timer = 0; wakeup(sc); } if (r & IWI_INTR_TX1_DONE) iwi_tx_intr(sc, &sc->txq[0]); if (r & IWI_INTR_TX2_DONE) iwi_tx_intr(sc, &sc->txq[1]); if (r & IWI_INTR_TX3_DONE) iwi_tx_intr(sc, &sc->txq[2]); if (r & IWI_INTR_TX4_DONE) iwi_tx_intr(sc, &sc->txq[3]); if (r & IWI_INTR_RX_DONE) iwi_rx_intr(sc); if (r & IWI_INTR_PARITY_ERROR) { /* XXX rate-limit */ device_printf(sc->sc_dev, "parity error\n"); } done: IWI_UNLOCK(sc); } static int iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) { struct iwi_cmd_desc *desc; IWI_LOCK_ASSERT(sc); if (sc->flags & IWI_FLAG_BUSY) { device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", __func__, type); return EAGAIN; } sc->flags |= IWI_FLAG_BUSY; sc->sc_busy_timer = 2; desc = &sc->cmdq.desc[sc->cmdq.cur]; desc->hdr.type = IWI_HDR_TYPE_COMMAND; desc->hdr.flags = IWI_HDR_FLAG_IRQ; desc->type = type; desc->len = len; memcpy(desc->data, data, len); bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, type, len)); sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); } static void iwi_write_ibssnode(struct iwi_softc *sc, const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) { struct iwi_ibssnode node; /* write node information into NIC memory */ memset(&node, 0, sizeof node); IEEE80211_ADDR_COPY(node.bssid, addr); DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); CSR_WRITE_REGION_1(sc, IWI_CSR_NODE_BASE + entry * sizeof node, (uint8_t *)&node, sizeof node); } static int iwi_tx_start(struct iwi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, int ac) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct iwi_node *in = (struct iwi_node *)ni; const struct ieee80211_frame *wh; struct ieee80211_key *k; const struct chanAccParams *cap; struct iwi_tx_ring *txq = &sc->txq[ac]; struct iwi_tx_data *data; struct iwi_tx_desc *desc; struct mbuf *mnew; bus_dma_segment_t segs[IWI_MAX_NSEG]; int error, nsegs, hdrlen, i; int ismcast, flags, xflags, staid; IWI_LOCK_ASSERT(sc); wh = mtod(m0, const struct ieee80211_frame *); /* NB: only data frames use this path */ hdrlen = ieee80211_hdrsize(wh); ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); flags = xflags = 0; if (!ismcast) flags |= IWI_DATA_FLAG_NEED_ACK; if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) flags |= IWI_DATA_FLAG_SHPREAMBLE; if (IEEE80211_QOS_HAS_SEQ(wh)) { xflags |= IWI_DATA_XFLAG_QOS; cap = &ic->ic_wme.wme_chanParams; if (!cap->cap_wmeParams[ac].wmep_noackPolicy) flags &= ~IWI_DATA_FLAG_NEED_ACK; } /* * This is only used in IBSS mode where the firmware expect an index * in a h/w table instead of a destination address. */ if (vap->iv_opmode == IEEE80211_M_IBSS) { if (!ismcast) { if (in->in_station == -1) { in->in_station = alloc_unr(sc->sc_unr); if (in->in_station == -1) { /* h/w table is full */ if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); m_freem(m0); ieee80211_free_node(ni); return 0; } iwi_write_ibssnode(sc, ni->ni_macaddr, in->in_station); } staid = in->in_station; } else { /* * Multicast addresses have no associated node * so there will be no station entry. We reserve * entry 0 for one mcast address and use that. * If there are many being used this will be * expensive and we'll need to do a better job * but for now this handles the broadcast case. */ if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); iwi_write_ibssnode(sc, sc->sc_mcast, 0); } staid = 0; } } else staid = 0; if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } if (ieee80211_radiotap_active_vap(vap)) { struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; ieee80211_radiotap_tx(vap, m0); } data = &txq->data[txq->cur]; desc = &txq->desc[txq->cur]; /* save and trim IEEE802.11 header */ m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); m_adj(m0, hdrlen); error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, &nsegs, 0); if (error != 0 && error != EFBIG) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (error != 0) { mnew = m_defrag(m0, M_NOWAIT); if (mnew == NULL) { device_printf(sc->sc_dev, "could not defragment mbuf\n"); m_freem(m0); return ENOBUFS; } m0 = mnew; error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, &nsegs, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } } data->m = m0; data->ni = ni; desc->hdr.type = IWI_HDR_TYPE_DATA; desc->hdr.flags = IWI_HDR_FLAG_IRQ; desc->station = staid; desc->cmd = IWI_DATA_CMD_TX; desc->len = htole16(m0->m_pkthdr.len); desc->flags = flags; desc->xflags = xflags; #if 0 if (vap->iv_flags & IEEE80211_F_PRIVACY) desc->wep_txkey = vap->iv_def_txkey; else #endif desc->flags |= IWI_DATA_FLAG_NO_WEP; desc->nseg = htole32(nsegs); for (i = 0; i < nsegs; i++) { desc->seg_addr[i] = htole32(segs[i].ds_addr); desc->seg_len[i] = htole16(segs[i].ds_len); } bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", ac, txq->cur, le16toh(desc->len), nsegs)); txq->queued++; txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; CSR_WRITE_4(sc, txq->csr_widx, txq->cur); return 0; } static int iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { /* no support; just discard */ m_freem(m); ieee80211_free_node(ni); return 0; } static int iwi_transmit(struct ieee80211com *ic, struct mbuf *m) { struct iwi_softc *sc = ic->ic_softc; int error; IWI_LOCK_DECL; IWI_LOCK(sc); if (!sc->sc_running) { IWI_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { IWI_UNLOCK(sc); return (error); } iwi_start(sc); IWI_UNLOCK(sc); return (0); } static void iwi_start(struct iwi_softc *sc) { struct mbuf *m; struct ieee80211_node *ni; int ac; IWI_LOCK_ASSERT(sc); while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ac = M_WME_GETAC(m); if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { /* there is no place left in this ring; tail drop */ /* XXX tail drop */ mbufq_prepend(&sc->sc_snd, m); break; } ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; if (iwi_tx_start(sc, m, ni, ac) != 0) { ieee80211_free_node(ni); if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); break; } sc->sc_tx_timer = 5; } } static void iwi_watchdog(void *arg) { struct iwi_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; IWI_LOCK_ASSERT(sc); if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { device_printf(sc->sc_dev, "device timeout\n"); counter_u64_add(ic->ic_oerrors, 1); ieee80211_runtask(ic, &sc->sc_restarttask); } } if (sc->sc_state_timer > 0) { if (--sc->sc_state_timer == 0) { device_printf(sc->sc_dev, "firmware stuck in state %d, resetting\n", sc->fw_state); if (sc->fw_state == IWI_FW_SCANNING) ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps)); ieee80211_runtask(ic, &sc->sc_restarttask); sc->sc_state_timer = 3; } } if (sc->sc_busy_timer > 0) { if (--sc->sc_busy_timer == 0) { device_printf(sc->sc_dev, "firmware command timeout, resetting\n"); ieee80211_runtask(ic, &sc->sc_restarttask); } } callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); } static void iwi_parent(struct ieee80211com *ic) { struct iwi_softc *sc = ic->ic_softc; int startall = 0; IWI_LOCK_DECL; IWI_LOCK(sc); if (ic->ic_nrunning > 0) { if (!sc->sc_running) { iwi_init_locked(sc); startall = 1; } } else if (sc->sc_running) iwi_stop_locked(sc); IWI_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } static int iwi_ioctl(struct ieee80211com *ic, u_long cmd, void *data) { struct ifreq *ifr = data; struct iwi_softc *sc = ic->ic_softc; int error; IWI_LOCK_DECL; IWI_LOCK(sc); switch (cmd) { case SIOCGIWISTATS: /* XXX validate permissions/memory/etc? */ error = copyout(&sc->sc_linkqual, ifr->ifr_data, sizeof(struct iwi_notif_link_quality)); break; case SIOCZIWISTATS: memset(&sc->sc_linkqual, 0, sizeof(struct iwi_notif_link_quality)); error = 0; break; default: error = ENOTTY; break; } IWI_UNLOCK(sc); return (error); } static void iwi_stop_master(struct iwi_softc *sc) { uint32_t tmp; int ntries; /* disable interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); for (ntries = 0; ntries < 5; ntries++) { if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) break; DELAY(10); } if (ntries == 5) device_printf(sc->sc_dev, "timeout waiting for master\n"); tmp = CSR_READ_4(sc, IWI_CSR_RST); CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); sc->flags &= ~IWI_FLAG_FW_INITED; } static int iwi_reset(struct iwi_softc *sc) { uint32_t tmp; int i, ntries; iwi_stop_master(sc); tmp = CSR_READ_4(sc, IWI_CSR_CTL); CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); /* wait for clock stabilization */ for (ntries = 0; ntries < 1000; ntries++) { if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) break; DELAY(200); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for clock stabilization\n"); return EIO; } tmp = CSR_READ_4(sc, IWI_CSR_RST); CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); DELAY(10); tmp = CSR_READ_4(sc, IWI_CSR_CTL); CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); /* clear NIC memory */ CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); for (i = 0; i < 0xc000; i++) CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); return 0; } static const struct iwi_firmware_ohdr * iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) { const struct firmware *fp = fw->fp; const struct iwi_firmware_ohdr *hdr; if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); return NULL; } hdr = (const struct iwi_firmware_ohdr *)fp->data; if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, IWI_FW_REQ_MINOR); return NULL; } fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); fw->name = fp->name; return hdr; } static const struct iwi_firmware_ohdr * iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) { const struct iwi_firmware_ohdr *hdr; hdr = iwi_setup_ofw(sc, fw); if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { device_printf(sc->sc_dev, "%s is not a ucode image\n", fw->name); hdr = NULL; } return hdr; } static void iwi_getfw(struct iwi_fw *fw, const char *fwname, struct iwi_fw *uc, const char *ucname) { if (fw->fp == NULL) fw->fp = firmware_get(fwname); /* NB: pre-3.0 ucode is packaged separately */ if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) uc->fp = firmware_get(ucname); } /* * Get the required firmware images if not already loaded. * Note that we hold firmware images so long as the device * is marked up in case we need to reload them on device init. * This is necessary because we re-init the device sometimes * from a context where we cannot read from the filesystem * (e.g. from the taskqueue thread when rfkill is re-enabled). * XXX return 0 on success, 1 on error. * * NB: the order of get'ing and put'ing images here is * intentional to support handling firmware images bundled * by operating mode and/or all together in one file with * the boot firmware as "master". */ static int iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode) { const struct iwi_firmware_hdr *hdr; const struct firmware *fp; /* invalidate cached firmware on mode change */ if (sc->fw_mode != opmode) iwi_put_firmware(sc); switch (opmode) { case IEEE80211_M_STA: iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); break; case IEEE80211_M_IBSS: iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); break; case IEEE80211_M_MONITOR: iwi_getfw(&sc->fw_fw, "iwi_monitor", &sc->fw_uc, "iwi_ucode_monitor"); break; default: device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); return EINVAL; } fp = sc->fw_fw.fp; if (fp == NULL) { device_printf(sc->sc_dev, "could not load firmware\n"); goto bad; } if (fp->version < 300) { /* * Firmware prior to 3.0 was packaged as separate * boot, firmware, and ucode images. Verify the * ucode image was read in, retrieve the boot image * if needed, and check version stamps for consistency. * The version stamps in the data are also checked * above; this is a bit paranoid but is a cheap * safeguard against mis-packaging. */ if (sc->fw_uc.fp == NULL) { device_printf(sc->sc_dev, "could not load ucode\n"); goto bad; } if (sc->fw_boot.fp == NULL) { sc->fw_boot.fp = firmware_get("iwi_boot"); if (sc->fw_boot.fp == NULL) { device_printf(sc->sc_dev, "could not load boot firmware\n"); goto bad; } } if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || sc->fw_boot.fp->version != sc->fw_uc.fp->version) { device_printf(sc->sc_dev, "firmware version mismatch: " "'%s' is %d, '%s' is %d, '%s' is %d\n", sc->fw_boot.fp->name, sc->fw_boot.fp->version, sc->fw_uc.fp->name, sc->fw_uc.fp->version, sc->fw_fw.fp->name, sc->fw_fw.fp->version ); goto bad; } /* * Check and setup each image. */ if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || iwi_setup_ofw(sc, &sc->fw_boot) == NULL || iwi_setup_ofw(sc, &sc->fw_fw) == NULL) goto bad; } else { /* * Check and setup combined image. */ if (fp->datasize < sizeof(struct iwi_firmware_hdr)) { device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); goto bad; } hdr = (const struct iwi_firmware_hdr *)fp->data; if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize) + le32toh(hdr->fsize)) { device_printf(sc->sc_dev, "image '%s' too small (2)\n", fp->name); goto bad; } sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); sc->fw_boot.size = le32toh(hdr->bsize); sc->fw_boot.name = fp->name; sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; sc->fw_uc.size = le32toh(hdr->usize); sc->fw_uc.name = fp->name; sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; sc->fw_fw.size = le32toh(hdr->fsize); sc->fw_fw.name = fp->name; } #if 0 device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n", sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size); #endif sc->fw_mode = opmode; return 0; bad: iwi_put_firmware(sc); return 1; } static void iwi_put_fw(struct iwi_fw *fw) { if (fw->fp != NULL) { firmware_put(fw->fp, FIRMWARE_UNLOAD); fw->fp = NULL; } fw->data = NULL; fw->size = 0; fw->name = NULL; } /* * Release any cached firmware images. */ static void iwi_put_firmware(struct iwi_softc *sc) { iwi_put_fw(&sc->fw_uc); iwi_put_fw(&sc->fw_fw); iwi_put_fw(&sc->fw_boot); } static int iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) { uint32_t tmp; const uint16_t *w; const char *uc = fw->data; size_t size = fw->size; int i, ntries, error; IWI_LOCK_ASSERT(sc); error = 0; CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | IWI_RST_STOP_MASTER); for (ntries = 0; ntries < 5; ntries++) { if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) break; DELAY(10); } if (ntries == 5) { device_printf(sc->sc_dev, "timeout waiting for master\n"); error = EIO; goto fail; } MEM_WRITE_4(sc, 0x3000e0, 0x80000000); DELAY(5000); tmp = CSR_READ_4(sc, IWI_CSR_RST); tmp &= ~IWI_RST_PRINCETON_RESET; CSR_WRITE_4(sc, IWI_CSR_RST, tmp); DELAY(5000); MEM_WRITE_4(sc, 0x3000e0, 0); DELAY(1000); MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); DELAY(1000); MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); DELAY(1000); MEM_WRITE_1(sc, 0x200000, 0x00); MEM_WRITE_1(sc, 0x200000, 0x40); DELAY(1000); /* write microcode into adapter memory */ for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) MEM_WRITE_2(sc, 0x200010, htole16(*w)); MEM_WRITE_1(sc, 0x200000, 0x00); MEM_WRITE_1(sc, 0x200000, 0x80); /* wait until we get an answer */ for (ntries = 0; ntries < 100; ntries++) { if (MEM_READ_1(sc, 0x200000) & 1) break; DELAY(100); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for ucode to initialize\n"); error = EIO; goto fail; } /* read the answer or the firmware will not initialize properly */ for (i = 0; i < 7; i++) MEM_READ_4(sc, 0x200004); MEM_WRITE_1(sc, 0x200000, 0x00); fail: return error; } /* macro to handle unaligned little endian data in firmware image */ #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) static int iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) { u_char *p, *end; uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; int ntries, error; IWI_LOCK_ASSERT(sc); /* copy firmware image to DMA memory */ memcpy(sc->fw_virtaddr, fw->data, fw->size); /* make sure the adapter will get up-to-date values */ bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); /* tell the adapter where the command blocks are stored */ MEM_WRITE_4(sc, 0x3000a0, 0x27000); /* * Store command blocks into adapter's internal memory using register * indirections. The adapter will read the firmware image through DMA * using information stored in command blocks. */ src = sc->fw_physaddr; p = sc->fw_virtaddr; end = p + fw->size; CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); while (p < end) { dst = GETLE32(p); p += 4; src += 4; len = GETLE32(p); p += 4; src += 4; p += len; while (len > 0) { mlen = min(len, IWI_CB_MAXDATALEN); ctl = IWI_CB_DEFAULT_CTL | mlen; sum = ctl ^ src ^ dst; /* write a command block */ CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); src += mlen; dst += mlen; len -= mlen; } } /* write a fictive final command block (sentinel) */ sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); tmp = CSR_READ_4(sc, IWI_CSR_RST); tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); CSR_WRITE_4(sc, IWI_CSR_RST, tmp); /* tell the adapter to start processing command blocks */ MEM_WRITE_4(sc, 0x3000a4, 0x540100); /* wait until the adapter reaches the sentinel */ for (ntries = 0; ntries < 400; ntries++) { if (MEM_READ_4(sc, 0x3000d0) >= sentinel) break; DELAY(100); } /* sync dma, just in case */ bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); if (ntries == 400) { device_printf(sc->sc_dev, "timeout processing command blocks for %s firmware\n", fw->name); return EIO; } /* we're done with command blocks processing */ MEM_WRITE_4(sc, 0x3000a4, 0x540c00); /* allow interrupts so we know when the firmware is ready */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); /* tell the adapter to initialize the firmware */ CSR_WRITE_4(sc, IWI_CSR_RST, 0); tmp = CSR_READ_4(sc, IWI_CSR_CTL); CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); /* wait at most one second for firmware initialization to complete */ if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { device_printf(sc->sc_dev, "timeout waiting for %s firmware " "initialization to complete\n", fw->name); } return error; } static int iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap) { uint32_t data; if (vap->iv_flags & IEEE80211_F_PMGTON) { /* XXX set more fine-grained operation */ data = htole32(IWI_POWER_MODE_MAX); } else data = htole32(IWI_POWER_MODE_CAM); DPRINTF(("Setting power mode to %u\n", le32toh(data))); return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); } static int iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap) { struct iwi_wep_key wepkey; struct ieee80211_key *wk; int error, i; for (i = 0; i < IEEE80211_WEP_NKID; i++) { wk = &vap->iv_nw_keys[i]; wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; wepkey.idx = i; wepkey.len = wk->wk_keylen; memset(wepkey.key, 0, sizeof wepkey.key); memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, wepkey.len)); error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, sizeof wepkey); if (error != 0) return error; } return 0; } static int iwi_config(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct iwi_configuration config; struct iwi_rateset rs; struct iwi_txpower power; uint32_t data; int error, i; IWI_LOCK_ASSERT(sc); DPRINTF(("Setting MAC address to %6D\n", ic->ic_macaddr, ":")); error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_macaddr, IEEE80211_ADDR_LEN); if (error != 0) return error; memset(&config, 0, sizeof config); config.bluetooth_coexistence = sc->bluetooth; config.silence_threshold = 0x1e; config.antenna = sc->antenna; config.multicast_enabled = 1; config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; config.disable_unicast_decryption = 1; config.disable_multicast_decryption = 1; if (ic->ic_opmode == IEEE80211_M_MONITOR) { config.allow_invalid_frames = 1; config.allow_beacon_and_probe_resp = 1; config.allow_mgt = 1; } DPRINTF(("Configuring adapter\n")); error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); if (error != 0) return error; if (ic->ic_opmode == IEEE80211_M_IBSS) { power.mode = IWI_MODE_11B; power.nchan = 11; for (i = 0; i < 11; i++) { power.chan[i].chan = i + 1; power.chan[i].power = IWI_TXPOWER_MAX; } DPRINTF(("Setting .11b channels tx power\n")); error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); if (error != 0) return error; power.mode = IWI_MODE_11G; DPRINTF(("Setting .11g channels tx power\n")); error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); if (error != 0) return error; } memset(&rs, 0, sizeof rs); rs.mode = IWI_MODE_11G; rs.type = IWI_RATESET_TYPE_SUPPORTED; rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates; memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates, rs.nrates); DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates)); error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); if (error != 0) return error; memset(&rs, 0, sizeof rs); rs.mode = IWI_MODE_11A; rs.type = IWI_RATESET_TYPE_SUPPORTED; rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates; memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates, rs.nrates); DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates)); error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); if (error != 0) return error; data = htole32(arc4random()); DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); if (error != 0) return error; /* enable adapter */ DPRINTF(("Enabling adapter\n")); return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); } static __inline void set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) { uint8_t *st = &scan->scan_type[ix / 2]; if (ix % 2) *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); else *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); } static int scan_type(const struct ieee80211_scan_state *ss, const struct ieee80211_channel *chan) { /* We can only set one essid for a directed scan */ if (ss->ss_nssid != 0) return IWI_SCAN_TYPE_BDIRECTED; if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) && (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) return IWI_SCAN_TYPE_BROADCAST; return IWI_SCAN_TYPE_PASSIVE; } static __inline int scan_band(const struct ieee80211_channel *c) { return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ; } static void iwi_monitor_scan(void *arg, int npending) { struct iwi_softc *sc = arg; IWI_LOCK_DECL; IWI_LOCK(sc); (void) iwi_scanchan(sc, 2000, 0); IWI_UNLOCK(sc); } /* * Start a scan on the current channel or all channels. */ static int iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_channel *chan; struct ieee80211_scan_state *ss; struct iwi_scan_ext scan; int error = 0; IWI_LOCK_ASSERT(sc); if (sc->fw_state == IWI_FW_SCANNING) { /* * This should not happen as we only trigger scan_next after * completion */ DPRINTF(("%s: called too early - still scanning\n", __func__)); return (EBUSY); } IWI_STATE_BEGIN(sc, IWI_FW_SCANNING); ss = ic->ic_scan; memset(&scan, 0, sizeof scan); scan.full_scan_index = htole32(++sc->sc_scangen); scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell); if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { /* * Use very short dwell times for when we send probe request * frames. Without this bg scans hang. Ideally this should * be handled with early-termination as done by net80211 but * that's not feasible (aborting a scan is problematic). */ scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30); scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30); } else { scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell); scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell); } /* We can only set one essid for a directed scan */ if (ss->ss_nssid != 0) { error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len); if (error) return (error); } if (allchan) { int i, next, band, b, bstart; /* * Convert scan list to run-length encoded channel list * the firmware requires (preserving the order setup by * net80211). The first entry in each run specifies the * band and the count of items in the run. */ next = 0; /* next open slot */ bstart = 0; /* NB: not needed, silence compiler */ band = -1; /* NB: impossible value */ KASSERT(ss->ss_last > 0, ("no channels")); for (i = 0; i < ss->ss_last; i++) { chan = ss->ss_chans[i]; b = scan_band(chan); if (b != band) { if (band != -1) scan.channels[bstart] = (next - bstart) | band; /* NB: this allocates a slot for the run-len */ band = b, bstart = next++; } if (next >= IWI_SCAN_CHANNELS) { DPRINTF(("truncating scan list\n")); break; } scan.channels[next] = ieee80211_chan2ieee(ic, chan); set_scan_type(&scan, next, scan_type(ss, chan)); next++; } scan.channels[bstart] = (next - bstart) | band; } else { /* Scan the current channel only */ chan = ic->ic_curchan; scan.channels[0] = 1 | scan_band(chan); scan.channels[1] = ieee80211_chan2ieee(ic, chan); set_scan_type(&scan, 1, scan_type(ss, chan)); } #ifdef IWI_DEBUG if (iwi_debug > 0) { static const char *scantype[8] = { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" }; int i; printf("Scan request: index %u dwell %d/%d/%d\n" , le32toh(scan.full_scan_index) , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE]) , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST]) , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED]) ); i = 0; do { int run = scan.channels[i]; if (run == 0) break; printf("Scan %d %s channels:", run & 0x3f, run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz"); for (run &= 0x3f, i++; run > 0; run--, i++) { uint8_t type = scan.scan_type[i/2]; printf(" %u/%s", scan.channels[i], scantype[(i & 1 ? type : type>>4) & 7]); } printf("\n"); } while (i < IWI_SCAN_CHANNELS); } #endif return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan)); } static int iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) { struct iwi_sensitivity sens; DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); memset(&sens, 0, sizeof sens); sens.rssi = htole16(rssi_dbm); return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); } static int iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct ifnet *ifp = vap->iv_ifp; struct ieee80211_node *ni; struct iwi_configuration config; struct iwi_associate *assoc = &sc->assoc; struct iwi_rateset rs; uint16_t capinfo; uint32_t data; int error, mode; IWI_LOCK_ASSERT(sc); ni = ieee80211_ref_node(vap->iv_bss); if (sc->flags & IWI_FLAG_ASSOCIATED) { DPRINTF(("Already associated\n")); return (-1); } IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING); error = 0; mode = 0; if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) mode = IWI_MODE_11A; else if (IEEE80211_IS_CHAN_G(ic->ic_curchan)) mode = IWI_MODE_11G; if (IEEE80211_IS_CHAN_B(ic->ic_curchan)) mode = IWI_MODE_11B; if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { memset(&config, 0, sizeof config); config.bluetooth_coexistence = sc->bluetooth; config.antenna = sc->antenna; config.multicast_enabled = 1; if (mode == IWI_MODE_11G) config.use_protection = 1; config.answer_pbreq = (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0; config.disable_unicast_decryption = 1; config.disable_multicast_decryption = 1; DPRINTF(("Configuring adapter\n")); error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); if (error != 0) goto done; } #ifdef IWI_DEBUG if (iwi_debug > 0) { printf("Setting ESSID to "); ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); printf("\n"); } #endif error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); if (error != 0) goto done; error = iwi_setpowermode(sc, vap); if (error != 0) goto done; data = htole32(vap->iv_rtsthreshold); DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); if (error != 0) goto done; data = htole32(vap->iv_fragthreshold); DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); if (error != 0) goto done; /* the rate set has already been "negotiated" */ memset(&rs, 0, sizeof rs); rs.mode = mode; rs.type = IWI_RATESET_TYPE_NEGOTIATED; rs.nrates = ni->ni_rates.rs_nrates; if (rs.nrates > IWI_RATESET_SIZE) { DPRINTF(("Truncating negotiated rate set from %u\n", rs.nrates)); rs.nrates = IWI_RATESET_SIZE; } memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates); DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates)); error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs); if (error != 0) goto done; memset(assoc, 0, sizeof *assoc); if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) { /* NB: don't treat WME setup as failure */ if (iwi_wme_setparams(sc) == 0 && iwi_wme_setie(sc) == 0) assoc->policy |= htole16(IWI_POLICY_WME); /* XXX complain on failure? */ } if (vap->iv_appie_wpa != NULL) { struct ieee80211_appie *ie = vap->iv_appie_wpa; DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len)); error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len); if (error != 0) goto done; } error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni)); if (error != 0) goto done; assoc->mode = mode; assoc->chan = ic->ic_curchan->ic_ieee; /* * NB: do not arrange for shared key auth w/o privacy * (i.e. a wep key); it causes a firmware error. */ if ((vap->iv_flags & IEEE80211_F_PRIVACY) && ni->ni_authmode == IEEE80211_AUTH_SHARED) { assoc->auth = IWI_AUTH_SHARED; /* * It's possible to have privacy marked but no default * key setup. This typically is due to a user app bug * but if we blindly grab the key the firmware will * barf so avoid it for now. */ if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) assoc->auth |= vap->iv_def_txkey << 4; error = iwi_setwepkeys(sc, vap); if (error != 0) goto done; } if (vap->iv_flags & IEEE80211_F_WPA) assoc->policy |= htole16(IWI_POLICY_WPA); if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) assoc->type = IWI_HC_IBSS_START; else assoc->type = IWI_HC_ASSOC; memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); if (vap->iv_opmode == IEEE80211_M_IBSS) capinfo = IEEE80211_CAPINFO_IBSS; else capinfo = IEEE80211_CAPINFO_ESS; if (vap->iv_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; assoc->capinfo = htole16(capinfo); assoc->lintval = htole16(ic->ic_lintval); assoc->intval = htole16(ni->ni_intval); IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); if (vap->iv_opmode == IEEE80211_M_IBSS) IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr); else IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " "auth %u capinfo 0x%x lintval %u bintval %u\n", assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", assoc->bssid, ":", assoc->dst, ":", assoc->chan, le16toh(assoc->policy), assoc->auth, le16toh(assoc->capinfo), le16toh(assoc->lintval), le16toh(assoc->intval))); error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); done: ieee80211_free_node(ni); if (error) IWI_STATE_END(sc, IWI_FW_ASSOCIATING); return (error); } static void iwi_disassoc(void *arg, int pending) { struct iwi_softc *sc = arg; IWI_LOCK_DECL; IWI_LOCK(sc); iwi_disassociate(sc, 0); IWI_UNLOCK(sc); } static int iwi_disassociate(struct iwi_softc *sc, int quiet) { struct iwi_associate *assoc = &sc->assoc; if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) { DPRINTF(("Not associated\n")); return (-1); } IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING); if (quiet) assoc->type = IWI_HC_DISASSOC_QUIET; else assoc->type = IWI_HC_DISASSOC; DPRINTF(("Trying to disassociate from %6D channel %u\n", assoc->bssid, ":", assoc->chan)); return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); } /* * release dma resources for the firmware */ static void iwi_release_fw_dma(struct iwi_softc *sc) { if (sc->fw_flags & IWI_FW_HAVE_PHY) bus_dmamap_unload(sc->fw_dmat, sc->fw_map); if (sc->fw_flags & IWI_FW_HAVE_MAP) bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); if (sc->fw_flags & IWI_FW_HAVE_DMAT) bus_dma_tag_destroy(sc->fw_dmat); sc->fw_flags = 0; sc->fw_dma_size = 0; sc->fw_dmat = NULL; sc->fw_map = NULL; sc->fw_physaddr = 0; sc->fw_virtaddr = NULL; } /* * allocate the dma descriptor for the firmware. * Return 0 on success, 1 on error. * Must be called unlocked, protected by IWI_FLAG_FW_LOADING. */ static int iwi_init_fw_dma(struct iwi_softc *sc, int size) { if (sc->fw_dma_size >= size) return 0; if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) { device_printf(sc->sc_dev, "could not create firmware DMA tag\n"); goto error; } sc->fw_flags |= IWI_FW_HAVE_DMAT; if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, &sc->fw_map) != 0) { device_printf(sc->sc_dev, "could not allocate firmware DMA memory\n"); goto error; } sc->fw_flags |= IWI_FW_HAVE_MAP; if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { device_printf(sc->sc_dev, "could not load firmware DMA map\n"); goto error; } sc->fw_flags |= IWI_FW_HAVE_PHY; sc->fw_dma_size = size; return 0; error: iwi_release_fw_dma(sc); return 1; } static void iwi_init_locked(struct iwi_softc *sc) { struct iwi_rx_data *data; int i; IWI_LOCK_ASSERT(sc); if (sc->fw_state == IWI_FW_LOADING) { device_printf(sc->sc_dev, "%s: already loading\n", __func__); return; /* XXX: condvar? */ } iwi_stop_locked(sc); IWI_STATE_BEGIN(sc, IWI_FW_LOADING); if (iwi_reset(sc) != 0) { device_printf(sc->sc_dev, "could not reset adapter\n"); goto fail; } if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { device_printf(sc->sc_dev, "could not load boot firmware %s\n", sc->fw_boot.name); goto fail; } if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { device_printf(sc->sc_dev, "could not load microcode %s\n", sc->fw_uc.name); goto fail; } iwi_stop_master(sc); CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); for (i = 0; i < sc->rxq.count; i++) { data = &sc->rxq.data[i]; CSR_WRITE_4(sc, data->reg, data->physaddr); } CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { device_printf(sc->sc_dev, "could not load main firmware %s\n", sc->fw_fw.name); goto fail; } sc->flags |= IWI_FLAG_FW_INITED; IWI_STATE_END(sc, IWI_FW_LOADING); if (iwi_config(sc) != 0) { device_printf(sc->sc_dev, "unable to enable adapter\n"); goto fail2; } callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); sc->sc_running = 1; return; fail: IWI_STATE_END(sc, IWI_FW_LOADING); fail2: iwi_stop_locked(sc); } static void iwi_init(void *priv) { struct iwi_softc *sc = priv; struct ieee80211com *ic = &sc->sc_ic; IWI_LOCK_DECL; IWI_LOCK(sc); iwi_init_locked(sc); IWI_UNLOCK(sc); if (sc->sc_running) ieee80211_start_all(ic); } static void iwi_stop_locked(void *priv) { struct iwi_softc *sc = priv; IWI_LOCK_ASSERT(sc); sc->sc_running = 0; if (sc->sc_softled) { callout_stop(&sc->sc_ledtimer); sc->sc_blinking = 0; } callout_stop(&sc->sc_wdtimer); callout_stop(&sc->sc_rftimer); iwi_stop_master(sc); CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); /* reset rings */ iwi_reset_cmd_ring(sc, &sc->cmdq); iwi_reset_tx_ring(sc, &sc->txq[0]); iwi_reset_tx_ring(sc, &sc->txq[1]); iwi_reset_tx_ring(sc, &sc->txq[2]); iwi_reset_tx_ring(sc, &sc->txq[3]); iwi_reset_rx_ring(sc, &sc->rxq); sc->sc_tx_timer = 0; sc->sc_state_timer = 0; sc->sc_busy_timer = 0; sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED); sc->fw_state = IWI_FW_IDLE; wakeup(sc); } static void iwi_stop(struct iwi_softc *sc) { IWI_LOCK_DECL; IWI_LOCK(sc); iwi_stop_locked(sc); IWI_UNLOCK(sc); } static void iwi_restart(void *arg, int npending) { struct iwi_softc *sc = arg; iwi_init(sc); } /* * Return whether or not the radio is enabled in hardware * (i.e. the rfkill switch is "off"). */ static int iwi_getrfkill(struct iwi_softc *sc) { return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; } static void iwi_radio_on(void *arg, int pending) { struct iwi_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; device_printf(sc->sc_dev, "radio turned on\n"); iwi_init(sc); ieee80211_notify_radio(ic, 1); } static void iwi_rfkill_poll(void *arg) { struct iwi_softc *sc = arg; IWI_LOCK_ASSERT(sc); /* * Check for a change in rfkill state. We get an * interrupt when a radio is disabled but not when * it is enabled so we must poll for the latter. */ if (!iwi_getrfkill(sc)) { ieee80211_runtask(&sc->sc_ic, &sc->sc_radiontask); return; } callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc); } static void iwi_radio_off(void *arg, int pending) { struct iwi_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; IWI_LOCK_DECL; device_printf(sc->sc_dev, "radio turned off\n"); ieee80211_notify_radio(ic, 0); IWI_LOCK(sc); iwi_stop_locked(sc); iwi_rfkill_poll(sc); IWI_UNLOCK(sc); } static int iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) { struct iwi_softc *sc = arg1; uint32_t size, buf[128]; memset(buf, 0, sizeof buf); if (!(sc->flags & IWI_FLAG_FW_INITED)) return SYSCTL_OUT(req, buf, sizeof buf); size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); return SYSCTL_OUT(req, buf, size); } static int iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) { struct iwi_softc *sc = arg1; int val = !iwi_getrfkill(sc); return SYSCTL_OUT(req, &val, sizeof val); } /* * Add sysctl knobs. */ static void iwi_sysctlattach(struct iwi_softc *sc) { struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I", "radio transmitter switch state (0=off, 1=on)"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S", "statistics"); sc->bluetooth = 0; SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); sc->antenna = IWI_ANTENNA_AUTO; SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); } /* * LED support. * * Different cards have different capabilities. Some have three * led's while others have only one. The linux ipw driver defines * led's for link state (associated or not), band (11a, 11g, 11b), * and for link activity. We use one led and vary the blink rate * according to the tx/rx traffic a la the ath driver. */ static __inline uint32_t iwi_toggle_event(uint32_t r) { return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); } static uint32_t iwi_read_event(struct iwi_softc *sc) { return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); } static void iwi_write_event(struct iwi_softc *sc, uint32_t v) { MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); } static void iwi_led_done(void *arg) { struct iwi_softc *sc = arg; sc->sc_blinking = 0; } /* * Turn the activity LED off: flip the pin and then set a timer so no * update will happen for the specified duration. */ static void iwi_led_off(void *arg) { struct iwi_softc *sc = arg; uint32_t v; v = iwi_read_event(sc); v &= ~sc->sc_ledpin; iwi_write_event(sc, iwi_toggle_event(v)); callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); } /* * Blink the LED according to the specified on/off times. */ static void iwi_led_blink(struct iwi_softc *sc, int on, int off) { uint32_t v; v = iwi_read_event(sc); v |= sc->sc_ledpin; iwi_write_event(sc, iwi_toggle_event(v)); sc->sc_blinking = 1; sc->sc_ledoff = off; callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); } static void iwi_led_event(struct iwi_softc *sc, int event) { /* NB: on/off times from the Atheros NDIS driver, w/ permission */ static const struct { u_int rate; /* tx/rx iwi rate */ u_int16_t timeOn; /* LED on time (ms) */ u_int16_t timeOff; /* LED off time (ms) */ } blinkrates[] = { { IWI_RATE_OFDM54, 40, 10 }, { IWI_RATE_OFDM48, 44, 11 }, { IWI_RATE_OFDM36, 50, 13 }, { IWI_RATE_OFDM24, 57, 14 }, { IWI_RATE_OFDM18, 67, 16 }, { IWI_RATE_OFDM12, 80, 20 }, { IWI_RATE_DS11, 100, 25 }, { IWI_RATE_OFDM9, 133, 34 }, { IWI_RATE_OFDM6, 160, 40 }, { IWI_RATE_DS5, 200, 50 }, { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ { IWI_RATE_DS2, 267, 66 }, { IWI_RATE_DS1, 400, 100 }, { 0, 500, 130 }, /* unknown rate/polling */ }; uint32_t txrate; int j = 0; /* XXX silence compiler */ sc->sc_ledevent = ticks; /* time of last event */ if (sc->sc_blinking) /* don't interrupt active blink */ return; switch (event) { case IWI_LED_POLL: j = nitems(blinkrates)-1; break; case IWI_LED_TX: /* read current transmission rate from adapter */ txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); if (blinkrates[sc->sc_txrix].rate != txrate) { for (j = 0; j < nitems(blinkrates)-1; j++) if (blinkrates[j].rate == txrate) break; sc->sc_txrix = j; } else j = sc->sc_txrix; break; case IWI_LED_RX: if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { for (j = 0; j < nitems(blinkrates)-1; j++) if (blinkrates[j].rate == sc->sc_rxrate) break; sc->sc_rxrix = j; } else j = sc->sc_rxrix; break; } /* XXX beware of overflow */ iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, (blinkrates[j].timeOff * hz) / 1000); } static int iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) { struct iwi_softc *sc = arg1; int softled = sc->sc_softled; int error; error = sysctl_handle_int(oidp, &softled, 0, req); if (error || !req->newptr) return error; softled = (softled != 0); if (softled != sc->sc_softled) { if (softled) { uint32_t v = iwi_read_event(sc); v &= ~sc->sc_ledpin; iwi_write_event(sc, iwi_toggle_event(v)); } sc->sc_softled = softled; } return 0; } static void iwi_ledattach(struct iwi_softc *sc) { struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); sc->sc_blinking = 0; sc->sc_ledstate = 1; sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0, iwi_sysctl_softled, "I", "enable/disable software LED support"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, "pin setting to turn activity LED on"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, "idle time for inactivity LED (ticks)"); /* XXX for debugging */ SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, "NIC type from EEPROM"); sc->sc_ledpin = IWI_RST_LED_ACTIVITY; sc->sc_softled = 1; sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; if (sc->sc_nictype == 1) { /* * NB: led's are reversed. */ sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; } } static void iwi_scan_start(struct ieee80211com *ic) { /* ignore */ } static void iwi_set_channel(struct ieee80211com *ic) { struct iwi_softc *sc = ic->ic_softc; if (sc->fw_state == IWI_FW_IDLE) iwi_setcurchan(sc, ic->ic_curchan->ic_ieee); } static void iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) { struct ieee80211vap *vap = ss->ss_vap; struct iwi_softc *sc = vap->iv_ic->ic_softc; IWI_LOCK_DECL; IWI_LOCK(sc); if (iwi_scanchan(sc, maxdwell, 0)) ieee80211_cancel_scan(vap); IWI_UNLOCK(sc); } static void iwi_scan_mindwell(struct ieee80211_scan_state *ss) { /* NB: don't try to abort scan; wait for firmware to finish */ } static void iwi_scan_end(struct ieee80211com *ic) { struct iwi_softc *sc = ic->ic_softc; IWI_LOCK_DECL; IWI_LOCK(sc); sc->flags &= ~IWI_FLAG_CHANNEL_SCAN; /* NB: make sure we're still scanning */ if (sc->fw_state == IWI_FW_SCANNING) iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); IWI_UNLOCK(sc); } Index: head/sys/dev/malo/if_malo.c =================================================================== --- head/sys/dev/malo/if_malo.c (revision 298817) +++ head/sys/dev/malo/if_malo.c (revision 298818) @@ -1,2174 +1,2174 @@ /*- * Copyright (c) 2008 Weongyo Jeong * Copyright (c) 2007 Marvell Semiconductor, Inc. * Copyright (c) 2007 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ #include #ifdef __FreeBSD__ __FBSDID("$FreeBSD$"); #endif #include "opt_malo.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include SYSCTL_NODE(_hw, OID_AUTO, malo, CTLFLAG_RD, 0, "Marvell 88w8335 driver parameters"); static int malo_txcoalesce = 8; /* # tx pkts to q before poking f/w*/ SYSCTL_INT(_hw_malo, OID_AUTO, txcoalesce, CTLFLAG_RWTUN, &malo_txcoalesce, 0, "tx buffers to send at once"); static int malo_rxbuf = MALO_RXBUF; /* # rx buffers to allocate */ SYSCTL_INT(_hw_malo, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &malo_rxbuf, 0, "rx buffers allocated"); static int malo_rxquota = MALO_RXBUF; /* # max buffers to process */ SYSCTL_INT(_hw_malo, OID_AUTO, rxquota, CTLFLAG_RWTUN, &malo_rxquota, 0, "max rx buffers to process per interrupt"); static int malo_txbuf = MALO_TXBUF; /* # tx buffers to allocate */ SYSCTL_INT(_hw_malo, OID_AUTO, txbuf, CTLFLAG_RWTUN, &malo_txbuf, 0, "tx buffers allocated"); #ifdef MALO_DEBUG static int malo_debug = 0; SYSCTL_INT(_hw_malo, OID_AUTO, debug, CTLFLAG_RWTUN, &malo_debug, 0, "control debugging printfs"); enum { MALO_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ MALO_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ MALO_DEBUG_RECV = 0x00000004, /* basic recv operation */ MALO_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ MALO_DEBUG_RESET = 0x00000010, /* reset processing */ MALO_DEBUG_INTR = 0x00000040, /* ISR */ MALO_DEBUG_TX_PROC = 0x00000080, /* tx ISR proc */ MALO_DEBUG_RX_PROC = 0x00000100, /* rx ISR proc */ MALO_DEBUG_STATE = 0x00000400, /* 802.11 state transitions */ MALO_DEBUG_NODE = 0x00000800, /* node management */ MALO_DEBUG_RECV_ALL = 0x00001000, /* trace all frames (beacons) */ MALO_DEBUG_FW = 0x00008000, /* firmware */ MALO_DEBUG_ANY = 0xffffffff }; #define IS_BEACON(wh) \ ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | \ IEEE80211_FC0_SUBTYPE_MASK)) == \ (IEEE80211_FC0_TYPE_MGT|IEEE80211_FC0_SUBTYPE_BEACON)) #define IFF_DUMPPKTS_RECV(sc, wh) \ (((sc->malo_debug & MALO_DEBUG_RECV) && \ ((sc->malo_debug & MALO_DEBUG_RECV_ALL) || !IS_BEACON(wh)))) #define IFF_DUMPPKTS_XMIT(sc) \ (sc->malo_debug & MALO_DEBUG_XMIT) #define DPRINTF(sc, m, fmt, ...) do { \ if (sc->malo_debug & (m)) \ printf(fmt, __VA_ARGS__); \ } while (0) #else #define DPRINTF(sc, m, fmt, ...) do { \ (void) sc; \ } while (0) #endif static MALLOC_DEFINE(M_MALODEV, "malodev", "malo driver dma buffers"); static struct ieee80211vap *malo_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void malo_vap_delete(struct ieee80211vap *); static int malo_dma_setup(struct malo_softc *); static int malo_setup_hwdma(struct malo_softc *); static void malo_txq_init(struct malo_softc *, struct malo_txq *, int); static void malo_tx_cleanupq(struct malo_softc *, struct malo_txq *); static void malo_parent(struct ieee80211com *); static int malo_transmit(struct ieee80211com *, struct mbuf *); static void malo_start(struct malo_softc *); static void malo_watchdog(void *); static void malo_updateslot(struct ieee80211com *); static int malo_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void malo_scan_start(struct ieee80211com *); static void malo_scan_end(struct ieee80211com *); static void malo_set_channel(struct ieee80211com *); static int malo_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void malo_sysctlattach(struct malo_softc *); static void malo_announce(struct malo_softc *); static void malo_dma_cleanup(struct malo_softc *); static void malo_stop(struct malo_softc *); static int malo_chan_set(struct malo_softc *, struct ieee80211_channel *); static int malo_mode_init(struct malo_softc *); static void malo_tx_proc(void *, int); static void malo_rx_proc(void *, int); static void malo_init(void *); /* * Read/Write shorthands for accesses to BAR 0. Note that all BAR 1 * operations are done in the "hal" except getting H/W MAC address at * malo_attach and there should be no reference to them here. */ static uint32_t malo_bar0_read4(struct malo_softc *sc, bus_size_t off) { return bus_space_read_4(sc->malo_io0t, sc->malo_io0h, off); } static void malo_bar0_write4(struct malo_softc *sc, bus_size_t off, uint32_t val) { DPRINTF(sc, MALO_DEBUG_FW, "%s: off 0x%jx val 0x%x\n", __func__, (uintmax_t)off, val); bus_space_write_4(sc->malo_io0t, sc->malo_io0h, off, val); } int malo_attach(uint16_t devid, struct malo_softc *sc) { struct ieee80211com *ic = &sc->malo_ic; struct malo_hal *mh; int error; - uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)]; + uint8_t bands[IEEE80211_MODE_BYTES]; MALO_LOCK_INIT(sc); callout_init_mtx(&sc->malo_watchdog_timer, &sc->malo_mtx, 0); mbufq_init(&sc->malo_snd, ifqmaxlen); mh = malo_hal_attach(sc->malo_dev, devid, sc->malo_io1h, sc->malo_io1t, sc->malo_dmat); if (mh == NULL) { device_printf(sc->malo_dev, "unable to attach HAL\n"); error = EIO; goto bad; } sc->malo_mh = mh; /* * Load firmware so we can get setup. We arbitrarily pick station * firmware; we'll re-load firmware as needed so setting up * the wrong mode isn't a big deal. */ error = malo_hal_fwload(mh, "malo8335-h", "malo8335-m"); if (error != 0) { device_printf(sc->malo_dev, "unable to setup firmware\n"); goto bad1; } /* XXX gethwspecs() extracts correct informations? not maybe! */ error = malo_hal_gethwspecs(mh, &sc->malo_hwspecs); if (error != 0) { device_printf(sc->malo_dev, "unable to fetch h/w specs\n"); goto bad1; } DPRINTF(sc, MALO_DEBUG_FW, "malo_hal_gethwspecs: hwversion 0x%x hostif 0x%x" "maxnum_wcb 0x%x maxnum_mcaddr 0x%x maxnum_tx_wcb 0x%x" "regioncode 0x%x num_antenna 0x%x fw_releasenum 0x%x" "wcbbase0 0x%x rxdesc_read 0x%x rxdesc_write 0x%x" "ul_fw_awakecookie 0x%x w[4] = %x %x %x %x", sc->malo_hwspecs.hwversion, sc->malo_hwspecs.hostinterface, sc->malo_hwspecs.maxnum_wcb, sc->malo_hwspecs.maxnum_mcaddr, sc->malo_hwspecs.maxnum_tx_wcb, sc->malo_hwspecs.regioncode, sc->malo_hwspecs.num_antenna, sc->malo_hwspecs.fw_releasenum, sc->malo_hwspecs.wcbbase0, sc->malo_hwspecs.rxdesc_read, sc->malo_hwspecs.rxdesc_write, sc->malo_hwspecs.ul_fw_awakecookie, sc->malo_hwspecs.wcbbase[0], sc->malo_hwspecs.wcbbase[1], sc->malo_hwspecs.wcbbase[2], sc->malo_hwspecs.wcbbase[3]); /* NB: firmware looks that it does not export regdomain info API. */ memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); ieee80211_init_channels(ic, NULL, bands); sc->malo_txantenna = 0x2; /* h/w default */ sc->malo_rxantenna = 0xffff; /* h/w default */ /* * Allocate tx + rx descriptors and populate the lists. * We immediately push the information to the firmware * as otherwise it gets upset. */ error = malo_dma_setup(sc); if (error != 0) { device_printf(sc->malo_dev, "failed to setup descriptors: %d\n", error); goto bad1; } error = malo_setup_hwdma(sc); /* push to firmware */ if (error != 0) /* NB: malo_setupdma prints msg */ goto bad2; sc->malo_tq = taskqueue_create_fast("malo_taskq", M_NOWAIT, taskqueue_thread_enqueue, &sc->malo_tq); taskqueue_start_threads(&sc->malo_tq, 1, PI_NET, "%s taskq", device_get_nameunit(sc->malo_dev)); TASK_INIT(&sc->malo_rxtask, 0, malo_rx_proc, sc); TASK_INIT(&sc->malo_txtask, 0, malo_tx_proc, sc); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(sc->malo_dev); /* XXX not right but it's not used anywhere important */ ic->ic_phytype = IEEE80211_T_OFDM; ic->ic_opmode = IEEE80211_M_STA; ic->ic_caps = IEEE80211_C_STA /* station mode supported */ | IEEE80211_C_BGSCAN /* capable of bg scanning */ | IEEE80211_C_MONITOR /* monitor mode */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_TXPMGT /* capable of txpow mgt */ | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ ; IEEE80211_ADDR_COPY(ic->ic_macaddr, sc->malo_hwspecs.macaddr); /* * Transmit requires space in the packet for a special format transmit * record and optional padding between this record and the payload. * Ask the net80211 layer to arrange this when encapsulating * packets so we can add it efficiently. */ ic->ic_headroom = sizeof(struct malo_txrec) - sizeof(struct ieee80211_frame); /* call MI attach routine. */ ieee80211_ifattach(ic); /* override default methods */ ic->ic_vap_create = malo_vap_create; ic->ic_vap_delete = malo_vap_delete; ic->ic_raw_xmit = malo_raw_xmit; ic->ic_updateslot = malo_updateslot; ic->ic_scan_start = malo_scan_start; ic->ic_scan_end = malo_scan_end; ic->ic_set_channel = malo_set_channel; ic->ic_parent = malo_parent; ic->ic_transmit = malo_transmit; sc->malo_invalid = 0; /* ready to go, enable int handling */ ieee80211_radiotap_attach(ic, &sc->malo_tx_th.wt_ihdr, sizeof(sc->malo_tx_th), MALO_TX_RADIOTAP_PRESENT, &sc->malo_rx_th.wr_ihdr, sizeof(sc->malo_rx_th), MALO_RX_RADIOTAP_PRESENT); /* * Setup dynamic sysctl's. */ malo_sysctlattach(sc); if (bootverbose) ieee80211_announce(ic); malo_announce(sc); return 0; bad2: malo_dma_cleanup(sc); bad1: malo_hal_detach(mh); bad: sc->malo_invalid = 1; return error; } static struct ieee80211vap * malo_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct malo_softc *sc = ic->ic_softc; struct malo_vap *mvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) { device_printf(sc->malo_dev, "multiple vaps not supported\n"); return NULL; } switch (opmode) { case IEEE80211_M_STA: if (opmode == IEEE80211_M_STA) flags |= IEEE80211_CLONE_NOBEACONS; /* fall thru... */ case IEEE80211_M_MONITOR: break; default: device_printf(sc->malo_dev, "%s mode not supported\n", ieee80211_opmode_name[opmode]); return NULL; /* unsupported */ } mvp = malloc(sizeof(struct malo_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &mvp->malo_vap; ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); /* override state transition machine */ mvp->malo_newstate = vap->iv_newstate; vap->iv_newstate = malo_newstate; /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return vap; } static void malo_vap_delete(struct ieee80211vap *vap) { struct malo_vap *mvp = MALO_VAP(vap); ieee80211_vap_detach(vap); free(mvp, M_80211_VAP); } int malo_intr(void *arg) { struct malo_softc *sc = arg; struct malo_hal *mh = sc->malo_mh; uint32_t status; if (sc->malo_invalid) { /* * The hardware is not ready/present, don't touch anything. * Note this can happen early on if the IRQ is shared. */ DPRINTF(sc, MALO_DEBUG_ANY, "%s: invalid; ignored\n", __func__); return (FILTER_STRAY); } /* * Figure out the reason(s) for the interrupt. */ malo_hal_getisr(mh, &status); /* NB: clears ISR too */ if (status == 0) /* must be a shared irq */ return (FILTER_STRAY); DPRINTF(sc, MALO_DEBUG_INTR, "%s: status 0x%x imask 0x%x\n", __func__, status, sc->malo_imask); if (status & MALO_A2HRIC_BIT_RX_RDY) taskqueue_enqueue(sc->malo_tq, &sc->malo_rxtask); if (status & MALO_A2HRIC_BIT_TX_DONE) taskqueue_enqueue(sc->malo_tq, &sc->malo_txtask); if (status & MALO_A2HRIC_BIT_OPC_DONE) malo_hal_cmddone(mh); if (status & MALO_A2HRIC_BIT_MAC_EVENT) ; if (status & MALO_A2HRIC_BIT_RX_PROBLEM) ; if (status & MALO_A2HRIC_BIT_ICV_ERROR) { /* TKIP ICV error */ sc->malo_stats.mst_rx_badtkipicv++; } #ifdef MALO_DEBUG if (((status | sc->malo_imask) ^ sc->malo_imask) != 0) DPRINTF(sc, MALO_DEBUG_INTR, "%s: can't handle interrupt status 0x%x\n", __func__, status); #endif return (FILTER_HANDLED); } static void malo_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { bus_addr_t *paddr = (bus_addr_t*) arg; KASSERT(error == 0, ("error %u on bus_dma callback", error)); *paddr = segs->ds_addr; } static int malo_desc_setup(struct malo_softc *sc, const char *name, struct malo_descdma *dd, int nbuf, size_t bufsize, int ndesc, size_t descsize) { int error; uint8_t *ds; DPRINTF(sc, MALO_DEBUG_RESET, "%s: %s DMA: %u bufs (%ju) %u desc/buf (%ju)\n", __func__, name, nbuf, (uintmax_t) bufsize, ndesc, (uintmax_t) descsize); dd->dd_name = name; dd->dd_desc_len = nbuf * ndesc * descsize; /* * Setup DMA descriptor area. */ error = bus_dma_tag_create(bus_get_dma_tag(sc->malo_dev),/* parent */ PAGE_SIZE, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ dd->dd_desc_len, /* maxsize */ 1, /* nsegments */ dd->dd_desc_len, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, /* lockfunc */ NULL, /* lockarg */ &dd->dd_dmat); if (error != 0) { device_printf(sc->malo_dev, "cannot allocate %s DMA tag\n", dd->dd_name); return error; } /* allocate descriptors */ error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &dd->dd_dmamap); if (error != 0) { device_printf(sc->malo_dev, "unable to alloc memory for %u %s descriptors, " "error %u\n", nbuf * ndesc, dd->dd_name, error); goto fail1; } error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc, dd->dd_desc_len, malo_load_cb, &dd->dd_desc_paddr, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->malo_dev, "unable to map %s descriptors, error %u\n", dd->dd_name, error); goto fail2; } ds = dd->dd_desc; memset(ds, 0, dd->dd_desc_len); DPRINTF(sc, MALO_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> 0x%jx (%lu)\n", __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, (uintmax_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); return 0; fail2: bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); fail1: bus_dma_tag_destroy(dd->dd_dmat); memset(dd, 0, sizeof(*dd)); return error; } #define DS2PHYS(_dd, _ds) \ ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) static int malo_rxdma_setup(struct malo_softc *sc) { int error, bsize, i; struct malo_rxbuf *bf; struct malo_rxdesc *ds; error = malo_desc_setup(sc, "rx", &sc->malo_rxdma, malo_rxbuf, sizeof(struct malo_rxbuf), 1, sizeof(struct malo_rxdesc)); if (error != 0) return error; /* * Allocate rx buffers and set them up. */ bsize = malo_rxbuf * sizeof(struct malo_rxbuf); bf = malloc(bsize, M_MALODEV, M_NOWAIT | M_ZERO); if (bf == NULL) { device_printf(sc->malo_dev, "malloc of %u rx buffers failed\n", bsize); return error; } sc->malo_rxdma.dd_bufptr = bf; STAILQ_INIT(&sc->malo_rxbuf); ds = sc->malo_rxdma.dd_desc; for (i = 0; i < malo_rxbuf; i++, bf++, ds++) { bf->bf_desc = ds; bf->bf_daddr = DS2PHYS(&sc->malo_rxdma, ds); error = bus_dmamap_create(sc->malo_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap); if (error != 0) { device_printf(sc->malo_dev, "%s: unable to dmamap for rx buffer, error %d\n", __func__, error); return error; } /* NB: tail is intentional to preserve descriptor order */ STAILQ_INSERT_TAIL(&sc->malo_rxbuf, bf, bf_list); } return 0; } static int malo_txdma_setup(struct malo_softc *sc, struct malo_txq *txq) { int error, bsize, i; struct malo_txbuf *bf; struct malo_txdesc *ds; error = malo_desc_setup(sc, "tx", &txq->dma, malo_txbuf, sizeof(struct malo_txbuf), MALO_TXDESC, sizeof(struct malo_txdesc)); if (error != 0) return error; /* allocate and setup tx buffers */ bsize = malo_txbuf * sizeof(struct malo_txbuf); bf = malloc(bsize, M_MALODEV, M_NOWAIT | M_ZERO); if (bf == NULL) { device_printf(sc->malo_dev, "malloc of %u tx buffers failed\n", malo_txbuf); return ENOMEM; } txq->dma.dd_bufptr = bf; STAILQ_INIT(&txq->free); txq->nfree = 0; ds = txq->dma.dd_desc; for (i = 0; i < malo_txbuf; i++, bf++, ds += MALO_TXDESC) { bf->bf_desc = ds; bf->bf_daddr = DS2PHYS(&txq->dma, ds); error = bus_dmamap_create(sc->malo_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap); if (error != 0) { device_printf(sc->malo_dev, "unable to create dmamap for tx " "buffer %u, error %u\n", i, error); return error; } STAILQ_INSERT_TAIL(&txq->free, bf, bf_list); txq->nfree++; } return 0; } static void malo_desc_cleanup(struct malo_softc *sc, struct malo_descdma *dd) { bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); bus_dma_tag_destroy(dd->dd_dmat); memset(dd, 0, sizeof(*dd)); } static void malo_rxdma_cleanup(struct malo_softc *sc) { struct malo_rxbuf *bf; STAILQ_FOREACH(bf, &sc->malo_rxbuf, bf_list) { if (bf->bf_m != NULL) { m_freem(bf->bf_m); bf->bf_m = NULL; } if (bf->bf_dmamap != NULL) { bus_dmamap_destroy(sc->malo_dmat, bf->bf_dmamap); bf->bf_dmamap = NULL; } } STAILQ_INIT(&sc->malo_rxbuf); if (sc->malo_rxdma.dd_bufptr != NULL) { free(sc->malo_rxdma.dd_bufptr, M_MALODEV); sc->malo_rxdma.dd_bufptr = NULL; } if (sc->malo_rxdma.dd_desc_len != 0) malo_desc_cleanup(sc, &sc->malo_rxdma); } static void malo_txdma_cleanup(struct malo_softc *sc, struct malo_txq *txq) { struct malo_txbuf *bf; struct ieee80211_node *ni; STAILQ_FOREACH(bf, &txq->free, bf_list) { if (bf->bf_m != NULL) { m_freem(bf->bf_m); bf->bf_m = NULL; } ni = bf->bf_node; bf->bf_node = NULL; if (ni != NULL) { /* * Reclaim node reference. */ ieee80211_free_node(ni); } if (bf->bf_dmamap != NULL) { bus_dmamap_destroy(sc->malo_dmat, bf->bf_dmamap); bf->bf_dmamap = NULL; } } STAILQ_INIT(&txq->free); txq->nfree = 0; if (txq->dma.dd_bufptr != NULL) { free(txq->dma.dd_bufptr, M_MALODEV); txq->dma.dd_bufptr = NULL; } if (txq->dma.dd_desc_len != 0) malo_desc_cleanup(sc, &txq->dma); } static void malo_dma_cleanup(struct malo_softc *sc) { int i; for (i = 0; i < MALO_NUM_TX_QUEUES; i++) malo_txdma_cleanup(sc, &sc->malo_txq[i]); malo_rxdma_cleanup(sc); } static int malo_dma_setup(struct malo_softc *sc) { int error, i; /* rxdma initializing. */ error = malo_rxdma_setup(sc); if (error != 0) return error; /* NB: we just have 1 tx queue now. */ for (i = 0; i < MALO_NUM_TX_QUEUES; i++) { error = malo_txdma_setup(sc, &sc->malo_txq[i]); if (error != 0) { malo_dma_cleanup(sc); return error; } malo_txq_init(sc, &sc->malo_txq[i], i); } return 0; } static void malo_hal_set_rxtxdma(struct malo_softc *sc) { int i; malo_bar0_write4(sc, sc->malo_hwspecs.rxdesc_read, sc->malo_hwdma.rxdesc_read); malo_bar0_write4(sc, sc->malo_hwspecs.rxdesc_write, sc->malo_hwdma.rxdesc_read); for (i = 0; i < MALO_NUM_TX_QUEUES; i++) { malo_bar0_write4(sc, sc->malo_hwspecs.wcbbase[i], sc->malo_hwdma.wcbbase[i]); } } /* * Inform firmware of our tx/rx dma setup. The BAR 0 writes below are * for compatibility with older firmware. For current firmware we send * this information with a cmd block via malo_hal_sethwdma. */ static int malo_setup_hwdma(struct malo_softc *sc) { int i; struct malo_txq *txq; sc->malo_hwdma.rxdesc_read = sc->malo_rxdma.dd_desc_paddr; for (i = 0; i < MALO_NUM_TX_QUEUES; i++) { txq = &sc->malo_txq[i]; sc->malo_hwdma.wcbbase[i] = txq->dma.dd_desc_paddr; } sc->malo_hwdma.maxnum_txwcb = malo_txbuf; sc->malo_hwdma.maxnum_wcb = MALO_NUM_TX_QUEUES; malo_hal_set_rxtxdma(sc); return 0; } static void malo_txq_init(struct malo_softc *sc, struct malo_txq *txq, int qnum) { struct malo_txbuf *bf, *bn; struct malo_txdesc *ds; MALO_TXQ_LOCK_INIT(sc, txq); txq->qnum = qnum; txq->txpri = 0; /* XXX */ STAILQ_FOREACH(bf, &txq->free, bf_list) { bf->bf_txq = txq; ds = bf->bf_desc; bn = STAILQ_NEXT(bf, bf_list); if (bn == NULL) bn = STAILQ_FIRST(&txq->free); ds->physnext = htole32(bn->bf_daddr); } STAILQ_INIT(&txq->active); } /* * Reclaim resources for a setup queue. */ static void malo_tx_cleanupq(struct malo_softc *sc, struct malo_txq *txq) { /* XXX hal work? */ MALO_TXQ_LOCK_DESTROY(txq); } /* * Allocate a tx buffer for sending a frame. */ static struct malo_txbuf * malo_getbuf(struct malo_softc *sc, struct malo_txq *txq) { struct malo_txbuf *bf; MALO_TXQ_LOCK(txq); bf = STAILQ_FIRST(&txq->free); if (bf != NULL) { STAILQ_REMOVE_HEAD(&txq->free, bf_list); txq->nfree--; } MALO_TXQ_UNLOCK(txq); if (bf == NULL) { DPRINTF(sc, MALO_DEBUG_XMIT, "%s: out of xmit buffers on q %d\n", __func__, txq->qnum); sc->malo_stats.mst_tx_qstop++; } return bf; } static int malo_tx_dmasetup(struct malo_softc *sc, struct malo_txbuf *bf, struct mbuf *m0) { struct mbuf *m; int error; /* * Load the DMA map so any coalescing is done. This also calculates * the number of descriptors we need. */ error = bus_dmamap_load_mbuf_sg(sc->malo_dmat, bf->bf_dmamap, m0, bf->bf_segs, &bf->bf_nseg, BUS_DMA_NOWAIT); if (error == EFBIG) { /* XXX packet requires too many descriptors */ bf->bf_nseg = MALO_TXDESC + 1; } else if (error != 0) { sc->malo_stats.mst_tx_busdma++; m_freem(m0); return error; } /* * Discard null packets and check for packets that require too many * TX descriptors. We try to convert the latter to a cluster. */ if (error == EFBIG) { /* too many desc's, linearize */ sc->malo_stats.mst_tx_linear++; m = m_defrag(m0, M_NOWAIT); if (m == NULL) { m_freem(m0); sc->malo_stats.mst_tx_nombuf++; return ENOMEM; } m0 = m; error = bus_dmamap_load_mbuf_sg(sc->malo_dmat, bf->bf_dmamap, m0, bf->bf_segs, &bf->bf_nseg, BUS_DMA_NOWAIT); if (error != 0) { sc->malo_stats.mst_tx_busdma++; m_freem(m0); return error; } KASSERT(bf->bf_nseg <= MALO_TXDESC, ("too many segments after defrag; nseg %u", bf->bf_nseg)); } else if (bf->bf_nseg == 0) { /* null packet, discard */ sc->malo_stats.mst_tx_nodata++; m_freem(m0); return EIO; } DPRINTF(sc, MALO_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, m0->m_pkthdr.len); bus_dmamap_sync(sc->malo_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); bf->bf_m = m0; return 0; } #ifdef MALO_DEBUG static void malo_printrxbuf(const struct malo_rxbuf *bf, u_int ix) { const struct malo_rxdesc *ds = bf->bf_desc; uint32_t status = le32toh(ds->status); printf("R[%2u] (DS.V:%p DS.P:0x%jx) NEXT:%08x DATA:%08x RC:%02x%s\n" " STAT:%02x LEN:%04x SNR:%02x NF:%02x CHAN:%02x" " RATE:%02x QOS:%04x\n", ix, ds, (uintmax_t)bf->bf_daddr, le32toh(ds->physnext), le32toh(ds->physbuffdata), ds->rxcontrol, ds->rxcontrol != MALO_RXD_CTRL_DRIVER_OWN ? "" : (status & MALO_RXD_STATUS_OK) ? " *" : " !", ds->status, le16toh(ds->pktlen), ds->snr, ds->nf, ds->channel, ds->rate, le16toh(ds->qosctrl)); } static void malo_printtxbuf(const struct malo_txbuf *bf, u_int qnum, u_int ix) { const struct malo_txdesc *ds = bf->bf_desc; uint32_t status = le32toh(ds->status); printf("Q%u[%3u]", qnum, ix); printf(" (DS.V:%p DS.P:0x%jx)\n", ds, (uintmax_t)bf->bf_daddr); printf(" NEXT:%08x DATA:%08x LEN:%04x STAT:%08x%s\n", le32toh(ds->physnext), le32toh(ds->pktptr), le16toh(ds->pktlen), status, status & MALO_TXD_STATUS_USED ? "" : (status & 3) != 0 ? " *" : " !"); printf(" RATE:%02x PRI:%x QOS:%04x SAP:%08x FORMAT:%04x\n", ds->datarate, ds->txpriority, le16toh(ds->qosctrl), le32toh(ds->sap_pktinfo), le16toh(ds->format)); #if 0 { const uint8_t *cp = (const uint8_t *) ds; int i; for (i = 0; i < sizeof(struct malo_txdesc); i++) { printf("%02x ", cp[i]); if (((i+1) % 16) == 0) printf("\n"); } printf("\n"); } #endif } #endif /* MALO_DEBUG */ static __inline void malo_updatetxrate(struct ieee80211_node *ni, int rix) { static const int ieeerates[] = { 2, 4, 11, 22, 44, 12, 18, 24, 36, 48, 96, 108 }; if (rix < nitems(ieeerates)) ni->ni_txrate = ieeerates[rix]; } static int malo_fix2rate(int fix_rate) { static const int rates[] = { 2, 4, 11, 22, 12, 18, 24, 36, 48, 96, 108 }; return (fix_rate < nitems(rates) ? rates[fix_rate] : 0); } /* idiomatic shorthands: MS = mask+shift, SM = shift+mask */ #define MS(v,x) (((v) & x) >> x##_S) #define SM(v,x) (((v) << x##_S) & x) /* * Process completed xmit descriptors from the specified queue. */ static int malo_tx_processq(struct malo_softc *sc, struct malo_txq *txq) { struct malo_txbuf *bf; struct malo_txdesc *ds; struct ieee80211_node *ni; int nreaped; uint32_t status; DPRINTF(sc, MALO_DEBUG_TX_PROC, "%s: tx queue %u\n", __func__, txq->qnum); for (nreaped = 0;; nreaped++) { MALO_TXQ_LOCK(txq); bf = STAILQ_FIRST(&txq->active); if (bf == NULL) { MALO_TXQ_UNLOCK(txq); break; } ds = bf->bf_desc; MALO_TXDESC_SYNC(txq, ds, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); if (ds->status & htole32(MALO_TXD_STATUS_FW_OWNED)) { MALO_TXQ_UNLOCK(txq); break; } STAILQ_REMOVE_HEAD(&txq->active, bf_list); MALO_TXQ_UNLOCK(txq); #ifdef MALO_DEBUG if (sc->malo_debug & MALO_DEBUG_XMIT_DESC) malo_printtxbuf(bf, txq->qnum, nreaped); #endif ni = bf->bf_node; if (ni != NULL) { status = le32toh(ds->status); if (status & MALO_TXD_STATUS_OK) { uint16_t format = le16toh(ds->format); uint8_t txant = MS(format, MALO_TXD_ANTENNA); sc->malo_stats.mst_ant_tx[txant]++; if (status & MALO_TXD_STATUS_OK_RETRY) sc->malo_stats.mst_tx_retries++; if (status & MALO_TXD_STATUS_OK_MORE_RETRY) sc->malo_stats.mst_tx_mretries++; malo_updatetxrate(ni, ds->datarate); sc->malo_stats.mst_tx_rate = ds->datarate; } else { if (status & MALO_TXD_STATUS_FAILED_LINK_ERROR) sc->malo_stats.mst_tx_linkerror++; if (status & MALO_TXD_STATUS_FAILED_XRETRY) sc->malo_stats.mst_tx_xretries++; if (status & MALO_TXD_STATUS_FAILED_AGING) sc->malo_stats.mst_tx_aging++; } /* XXX strip fw len in case header inspected */ m_adj(bf->bf_m, sizeof(uint16_t)); ieee80211_tx_complete(ni, bf->bf_m, (status & MALO_TXD_STATUS_OK) == 0); } else m_freem(bf->bf_m); ds->status = htole32(MALO_TXD_STATUS_IDLE); ds->pktlen = htole32(0); bus_dmamap_sync(sc->malo_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->malo_dmat, bf->bf_dmamap); bf->bf_m = NULL; bf->bf_node = NULL; MALO_TXQ_LOCK(txq); STAILQ_INSERT_TAIL(&txq->free, bf, bf_list); txq->nfree++; MALO_TXQ_UNLOCK(txq); } return nreaped; } /* * Deferred processing of transmit interrupt. */ static void malo_tx_proc(void *arg, int npending) { struct malo_softc *sc = arg; int i, nreaped; /* * Process each active queue. */ nreaped = 0; MALO_LOCK(sc); for (i = 0; i < MALO_NUM_TX_QUEUES; i++) { if (!STAILQ_EMPTY(&sc->malo_txq[i].active)) nreaped += malo_tx_processq(sc, &sc->malo_txq[i]); } if (nreaped != 0) { sc->malo_timer = 0; malo_start(sc); } MALO_UNLOCK(sc); } static int malo_tx_start(struct malo_softc *sc, struct ieee80211_node *ni, struct malo_txbuf *bf, struct mbuf *m0) { #define IS_DATA_FRAME(wh) \ ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK)) == IEEE80211_FC0_TYPE_DATA) int error, ismcast, iswep; int copyhdrlen, hdrlen, pktlen; struct ieee80211_frame *wh; struct ieee80211com *ic = &sc->malo_ic; struct ieee80211vap *vap = ni->ni_vap; struct malo_txdesc *ds; struct malo_txrec *tr; struct malo_txq *txq; uint16_t qos; wh = mtod(m0, struct ieee80211_frame *); iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED; ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); copyhdrlen = hdrlen = ieee80211_anyhdrsize(wh); pktlen = m0->m_pkthdr.len; if (IEEE80211_QOS_HAS_SEQ(wh)) { if (IEEE80211_IS_DSTODS(wh)) { qos = *(uint16_t *) (((struct ieee80211_qosframe_addr4 *) wh)->i_qos); copyhdrlen -= sizeof(qos); } else qos = *(uint16_t *) (((struct ieee80211_qosframe *) wh)->i_qos); } else qos = 0; if (iswep) { struct ieee80211_key *k; /* * Construct the 802.11 header+trailer for an encrypted * frame. The only reason this can fail is because of an * unknown or unsupported cipher/key type. * * NB: we do this even though the firmware will ignore * what we've done for WEP and TKIP as we need the * ExtIV filled in for CCMP and this also adjusts * the headers which simplifies our work below. */ k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { /* * This can happen when the key is yanked after the * frame was queued. Just discard the frame; the * 802.11 layer counts failures and provides * debugging/diagnostics. */ m_freem(m0); return EIO; } /* * Adjust the packet length for the crypto additions * done during encap and any other bits that the f/w * will add later on. */ pktlen = m0->m_pkthdr.len; /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } if (ieee80211_radiotap_active_vap(vap)) { sc->malo_tx_th.wt_flags = 0; /* XXX */ if (iswep) sc->malo_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; sc->malo_tx_th.wt_txpower = ni->ni_txpower; sc->malo_tx_th.wt_antenna = sc->malo_txantenna; ieee80211_radiotap_tx(vap, m0); } /* * Copy up/down the 802.11 header; the firmware requires * we present a 2-byte payload length followed by a * 4-address header (w/o QoS), followed (optionally) by * any WEP/ExtIV header (but only filled in for CCMP). * We are assured the mbuf has sufficient headroom to * prepend in-place by the setup of ic_headroom in * malo_attach. */ if (hdrlen < sizeof(struct malo_txrec)) { const int space = sizeof(struct malo_txrec) - hdrlen; if (M_LEADINGSPACE(m0) < space) { /* NB: should never happen */ device_printf(sc->malo_dev, "not enough headroom, need %d found %zd, " "m_flags 0x%x m_len %d\n", space, M_LEADINGSPACE(m0), m0->m_flags, m0->m_len); ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len, 0, -1); m_freem(m0); /* XXX stat */ return EIO; } M_PREPEND(m0, space, M_NOWAIT); } tr = mtod(m0, struct malo_txrec *); if (wh != (struct ieee80211_frame *) &tr->wh) ovbcopy(wh, &tr->wh, hdrlen); /* * Note: the "firmware length" is actually the length of the fully * formed "802.11 payload". That is, it's everything except for * the 802.11 header. In particular this includes all crypto * material including the MIC! */ tr->fwlen = htole16(pktlen - hdrlen); /* * Load the DMA map so any coalescing is done. This * also calculates the number of descriptors we need. */ error = malo_tx_dmasetup(sc, bf, m0); if (error != 0) return error; bf->bf_node = ni; /* NB: held reference */ m0 = bf->bf_m; /* NB: may have changed */ tr = mtod(m0, struct malo_txrec *); wh = (struct ieee80211_frame *)&tr->wh; /* * Formulate tx descriptor. */ ds = bf->bf_desc; txq = bf->bf_txq; ds->qosctrl = qos; /* NB: already little-endian */ ds->pktptr = htole32(bf->bf_segs[0].ds_addr); ds->pktlen = htole16(bf->bf_segs[0].ds_len); /* NB: pPhysNext setup once, don't touch */ ds->datarate = IS_DATA_FRAME(wh) ? 1 : 0; ds->sap_pktinfo = 0; ds->format = 0; /* * Select transmit rate. */ switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { case IEEE80211_FC0_TYPE_MGT: sc->malo_stats.mst_tx_mgmt++; /* fall thru... */ case IEEE80211_FC0_TYPE_CTL: ds->txpriority = 1; break; case IEEE80211_FC0_TYPE_DATA: ds->txpriority = txq->qnum; break; default: device_printf(sc->malo_dev, "bogus frame type 0x%x (%s)\n", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); /* XXX statistic */ m_freem(m0); return EIO; } #ifdef MALO_DEBUG if (IFF_DUMPPKTS_XMIT(sc)) ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *)+sizeof(uint16_t), m0->m_len - sizeof(uint16_t), ds->datarate, -1); #endif MALO_TXQ_LOCK(txq); if (!IS_DATA_FRAME(wh)) ds->status |= htole32(1); ds->status |= htole32(MALO_TXD_STATUS_FW_OWNED); STAILQ_INSERT_TAIL(&txq->active, bf, bf_list); MALO_TXDESC_SYNC(txq, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); sc->malo_timer = 5; MALO_TXQ_UNLOCK(txq); return 0; } static int malo_transmit(struct ieee80211com *ic, struct mbuf *m) { struct malo_softc *sc = ic->ic_softc; int error; MALO_LOCK(sc); if (!sc->malo_running) { MALO_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->malo_snd, m); if (error) { MALO_UNLOCK(sc); return (error); } malo_start(sc); MALO_UNLOCK(sc); return (0); } static void malo_start(struct malo_softc *sc) { struct ieee80211_node *ni; struct malo_txq *txq = &sc->malo_txq[0]; struct malo_txbuf *bf = NULL; struct mbuf *m; int nqueued = 0; MALO_LOCK_ASSERT(sc); if (!sc->malo_running || sc->malo_invalid) return; while ((m = mbufq_dequeue(&sc->malo_snd)) != NULL) { ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; bf = malo_getbuf(sc, txq); if (bf == NULL) { mbufq_prepend(&sc->malo_snd, m); sc->malo_stats.mst_tx_qstop++; break; } /* * Pass the frame to the h/w for transmission. */ if (malo_tx_start(sc, ni, bf, m)) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); if (bf != NULL) { bf->bf_m = NULL; bf->bf_node = NULL; MALO_TXQ_LOCK(txq); STAILQ_INSERT_HEAD(&txq->free, bf, bf_list); MALO_TXQ_UNLOCK(txq); } ieee80211_free_node(ni); continue; } nqueued++; if (nqueued >= malo_txcoalesce) { /* * Poke the firmware to process queued frames; * see below about (lack of) locking. */ nqueued = 0; malo_hal_txstart(sc->malo_mh, 0/*XXX*/); } } if (nqueued) { /* * NB: We don't need to lock against tx done because * this just prods the firmware to check the transmit * descriptors. The firmware will also start fetching * descriptors by itself if it notices new ones are * present when it goes to deliver a tx done interrupt * to the host. So if we race with tx done processing * it's ok. Delivering the kick here rather than in * malo_tx_start is an optimization to avoid poking the * firmware for each packet. * * NB: the queue id isn't used so 0 is ok. */ malo_hal_txstart(sc->malo_mh, 0/*XXX*/); } } static void malo_watchdog(void *arg) { struct malo_softc *sc = arg; callout_reset(&sc->malo_watchdog_timer, hz, malo_watchdog, sc); if (sc->malo_timer == 0 || --sc->malo_timer > 0) return; if (sc->malo_running && !sc->malo_invalid) { device_printf(sc->malo_dev, "watchdog timeout\n"); /* XXX no way to reset h/w. now */ counter_u64_add(sc->malo_ic.ic_oerrors, 1); sc->malo_stats.mst_watchdog++; } } static int malo_hal_reset(struct malo_softc *sc) { static int first = 0; struct ieee80211com *ic = &sc->malo_ic; struct malo_hal *mh = sc->malo_mh; if (first == 0) { /* * NB: when the device firstly is initialized, sometimes * firmware could override rx/tx dma registers so we re-set * these values once. */ malo_hal_set_rxtxdma(sc); first = 1; } malo_hal_setantenna(mh, MHA_ANTENNATYPE_RX, sc->malo_rxantenna); malo_hal_setantenna(mh, MHA_ANTENNATYPE_TX, sc->malo_txantenna); malo_hal_setradio(mh, 1, MHP_AUTO_PREAMBLE); malo_chan_set(sc, ic->ic_curchan); /* XXX needs other stuffs? */ return 1; } static __inline struct mbuf * malo_getrxmbuf(struct malo_softc *sc, struct malo_rxbuf *bf) { struct mbuf *m; bus_addr_t paddr; int error; /* XXX don't need mbuf, just dma buffer */ m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); if (m == NULL) { sc->malo_stats.mst_rx_nombuf++; /* XXX */ return NULL; } error = bus_dmamap_load(sc->malo_dmat, bf->bf_dmamap, mtod(m, caddr_t), MJUMPAGESIZE, malo_load_cb, &paddr, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->malo_dev, "%s: bus_dmamap_load failed, error %d\n", __func__, error); m_freem(m); return NULL; } bf->bf_data = paddr; bus_dmamap_sync(sc->malo_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE); return m; } static int malo_rxbuf_init(struct malo_softc *sc, struct malo_rxbuf *bf) { struct malo_rxdesc *ds; ds = bf->bf_desc; if (bf->bf_m == NULL) { bf->bf_m = malo_getrxmbuf(sc, bf); if (bf->bf_m == NULL) { /* mark descriptor to be skipped */ ds->rxcontrol = MALO_RXD_CTRL_OS_OWN; /* NB: don't need PREREAD */ MALO_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREWRITE); return ENOMEM; } } /* * Setup descriptor. */ ds->qosctrl = 0; ds->snr = 0; ds->status = MALO_RXD_STATUS_IDLE; ds->channel = 0; ds->pktlen = htole16(MALO_RXSIZE); ds->nf = 0; ds->physbuffdata = htole32(bf->bf_data); /* NB: don't touch pPhysNext, set once */ ds->rxcontrol = MALO_RXD_CTRL_DRIVER_OWN; MALO_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return 0; } /* * Setup the rx data structures. This should only be done once or we may get * out of sync with the firmware. */ static int malo_startrecv(struct malo_softc *sc) { struct malo_rxbuf *bf, *prev; struct malo_rxdesc *ds; if (sc->malo_recvsetup == 1) { malo_mode_init(sc); /* set filters, etc. */ return 0; } prev = NULL; STAILQ_FOREACH(bf, &sc->malo_rxbuf, bf_list) { int error = malo_rxbuf_init(sc, bf); if (error != 0) { DPRINTF(sc, MALO_DEBUG_RECV, "%s: malo_rxbuf_init failed %d\n", __func__, error); return error; } if (prev != NULL) { ds = prev->bf_desc; ds->physnext = htole32(bf->bf_daddr); } prev = bf; } if (prev != NULL) { ds = prev->bf_desc; ds->physnext = htole32(STAILQ_FIRST(&sc->malo_rxbuf)->bf_daddr); } sc->malo_recvsetup = 1; malo_mode_init(sc); /* set filters, etc. */ return 0; } static void malo_init_locked(struct malo_softc *sc) { struct malo_hal *mh = sc->malo_mh; int error; MALO_LOCK_ASSERT(sc); /* * Stop anything previously setup. This is safe whether this is * the first time through or not. */ malo_stop(sc); /* * Push state to the firmware. */ if (!malo_hal_reset(sc)) { device_printf(sc->malo_dev, "%s: unable to reset hardware\n", __func__); return; } /* * Setup recv (once); transmit is already good to go. */ error = malo_startrecv(sc); if (error != 0) { device_printf(sc->malo_dev, "%s: unable to start recv logic, error %d\n", __func__, error); return; } /* * Enable interrupts. */ sc->malo_imask = MALO_A2HRIC_BIT_RX_RDY | MALO_A2HRIC_BIT_TX_DONE | MALO_A2HRIC_BIT_OPC_DONE | MALO_A2HRIC_BIT_MAC_EVENT | MALO_A2HRIC_BIT_RX_PROBLEM | MALO_A2HRIC_BIT_ICV_ERROR | MALO_A2HRIC_BIT_RADAR_DETECT | MALO_A2HRIC_BIT_CHAN_SWITCH; sc->malo_running = 1; malo_hal_intrset(mh, sc->malo_imask); callout_reset(&sc->malo_watchdog_timer, hz, malo_watchdog, sc); } static void malo_init(void *arg) { struct malo_softc *sc = (struct malo_softc *) arg; struct ieee80211com *ic = &sc->malo_ic; MALO_LOCK(sc); malo_init_locked(sc); MALO_UNLOCK(sc); if (sc->malo_running) ieee80211_start_all(ic); /* start all vap's */ } /* * Set the multicast filter contents into the hardware. */ static void malo_setmcastfilter(struct malo_softc *sc) { struct ieee80211com *ic = &sc->malo_ic; struct ieee80211vap *vap; uint8_t macs[IEEE80211_ADDR_LEN * MALO_HAL_MCAST_MAX]; uint8_t *mp; int nmc; mp = macs; nmc = 0; if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_allmulti > 0 || ic->ic_promisc > 0) goto all; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { struct ifnet *ifp; struct ifmultiaddr *ifma; ifp = vap->iv_ifp; if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; if (nmc == MALO_HAL_MCAST_MAX) { ifp->if_flags |= IFF_ALLMULTI; if_maddr_runlock(ifp); goto all; } IEEE80211_ADDR_COPY(mp, LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); mp += IEEE80211_ADDR_LEN, nmc++; } if_maddr_runlock(ifp); } malo_hal_setmcast(sc->malo_mh, nmc, macs); all: /* * XXX we don't know how to set the f/w for supporting * IFF_ALLMULTI | IFF_PROMISC cases */ return; } static int malo_mode_init(struct malo_softc *sc) { struct ieee80211com *ic = &sc->malo_ic; struct malo_hal *mh = sc->malo_mh; malo_hal_setpromisc(mh, ic->ic_promisc > 0); malo_setmcastfilter(sc); return ENXIO; } static void malo_tx_draintxq(struct malo_softc *sc, struct malo_txq *txq) { struct ieee80211_node *ni; struct malo_txbuf *bf; u_int ix; /* * NB: this assumes output has been stopped and * we do not need to block malo_tx_tasklet */ for (ix = 0;; ix++) { MALO_TXQ_LOCK(txq); bf = STAILQ_FIRST(&txq->active); if (bf == NULL) { MALO_TXQ_UNLOCK(txq); break; } STAILQ_REMOVE_HEAD(&txq->active, bf_list); MALO_TXQ_UNLOCK(txq); #ifdef MALO_DEBUG if (sc->malo_debug & MALO_DEBUG_RESET) { struct ieee80211com *ic = &sc->malo_ic; const struct malo_txrec *tr = mtod(bf->bf_m, const struct malo_txrec *); malo_printtxbuf(bf, txq->qnum, ix); ieee80211_dump_pkt(ic, (const uint8_t *)&tr->wh, bf->bf_m->m_len - sizeof(tr->fwlen), 0, -1); } #endif /* MALO_DEBUG */ bus_dmamap_unload(sc->malo_dmat, bf->bf_dmamap); ni = bf->bf_node; bf->bf_node = NULL; if (ni != NULL) { /* * Reclaim node reference. */ ieee80211_free_node(ni); } m_freem(bf->bf_m); bf->bf_m = NULL; MALO_TXQ_LOCK(txq); STAILQ_INSERT_TAIL(&txq->free, bf, bf_list); txq->nfree++; MALO_TXQ_UNLOCK(txq); } } static void malo_stop(struct malo_softc *sc) { struct malo_hal *mh = sc->malo_mh; int i; DPRINTF(sc, MALO_DEBUG_ANY, "%s: invalid %u running %u\n", __func__, sc->malo_invalid, sc->malo_running); MALO_LOCK_ASSERT(sc); if (!sc->malo_running) return; /* * Shutdown the hardware and driver: * disable interrupts * turn off the radio * drain and release tx queues * * Note that some of this work is not possible if the hardware * is gone (invalid). */ sc->malo_running = 0; callout_stop(&sc->malo_watchdog_timer); sc->malo_timer = 0; /* disable interrupt. */ malo_hal_intrset(mh, 0); /* turn off the radio. */ malo_hal_setradio(mh, 0, MHP_AUTO_PREAMBLE); /* drain and release tx queues. */ for (i = 0; i < MALO_NUM_TX_QUEUES; i++) malo_tx_draintxq(sc, &sc->malo_txq[i]); } static void malo_parent(struct ieee80211com *ic) { struct malo_softc *sc = ic->ic_softc; int startall = 0; MALO_LOCK(sc); if (ic->ic_nrunning > 0) { /* * Beware of being called during attach/detach * to reset promiscuous mode. In that case we * will still be marked UP but not RUNNING. * However trying to re-init the interface * is the wrong thing to do as we've already * torn down much of our state. There's * probably a better way to deal with this. */ if (!sc->malo_running && !sc->malo_invalid) { malo_init(sc); startall = 1; } /* * To avoid rescanning another access point, * do not call malo_init() here. Instead, * only reflect promisc mode settings. */ malo_mode_init(sc); } else if (sc->malo_running) malo_stop(sc); MALO_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } /* * Callback from the 802.11 layer to update the slot time * based on the current setting. We use it to notify the * firmware of ERP changes and the f/w takes care of things * like slot time and preamble. */ static void malo_updateslot(struct ieee80211com *ic) { struct malo_softc *sc = ic->ic_softc; struct malo_hal *mh = sc->malo_mh; int error; /* NB: can be called early; suppress needless cmds */ if (!sc->malo_running) return; DPRINTF(sc, MALO_DEBUG_RESET, "%s: chan %u MHz/flags 0x%x %s slot, (ic_flags 0x%x)\n", __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", ic->ic_flags); if (ic->ic_flags & IEEE80211_F_SHSLOT) error = malo_hal_set_slot(mh, 1); else error = malo_hal_set_slot(mh, 0); if (error != 0) device_printf(sc->malo_dev, "setting %s slot failed\n", ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long"); } static int malo_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct ieee80211com *ic = vap->iv_ic; struct malo_softc *sc = ic->ic_softc; struct malo_hal *mh = sc->malo_mh; int error; DPRINTF(sc, MALO_DEBUG_STATE, "%s: %s -> %s\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); /* * Invoke the net80211 layer first so iv_bss is setup. */ error = MALO_VAP(vap)->malo_newstate(vap, nstate, arg); if (error != 0) return error; if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { struct ieee80211_node *ni = vap->iv_bss; enum ieee80211_phymode mode = ieee80211_chan2mode(ni->ni_chan); const struct ieee80211_txparam *tp = &vap->iv_txparms[mode]; DPRINTF(sc, MALO_DEBUG_STATE, "%s: %s(RUN): iv_flags 0x%08x bintvl %d bssid %s " "capinfo 0x%04x chan %d associd 0x%x mode %d rate %d\n", vap->iv_ifp->if_xname, __func__, vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan), ni->ni_associd, mode, tp->ucastrate); malo_hal_setradio(mh, 1, (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? MHP_SHORT_PREAMBLE : MHP_LONG_PREAMBLE); malo_hal_setassocid(sc->malo_mh, ni->ni_bssid, ni->ni_associd); malo_hal_set_rate(mh, mode, tp->ucastrate == IEEE80211_FIXED_RATE_NONE ? 0 : malo_fix2rate(tp->ucastrate)); } return 0; } static int malo_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct malo_softc *sc = ic->ic_softc; struct malo_txbuf *bf; struct malo_txq *txq; if (!sc->malo_running || sc->malo_invalid) { m_freem(m); return ENETDOWN; } /* * Grab a TX buffer and associated resources. Note that we depend * on the classification by the 802.11 layer to get to the right h/w * queue. Management frames must ALWAYS go on queue 1 but we * cannot just force that here because we may receive non-mgt frames. */ txq = &sc->malo_txq[0]; bf = malo_getbuf(sc, txq); if (bf == NULL) { m_freem(m); return ENOBUFS; } /* * Pass the frame to the h/w for transmission. */ if (malo_tx_start(sc, ni, bf, m) != 0) { bf->bf_m = NULL; bf->bf_node = NULL; MALO_TXQ_LOCK(txq); STAILQ_INSERT_HEAD(&txq->free, bf, bf_list); txq->nfree++; MALO_TXQ_UNLOCK(txq); return EIO; /* XXX */ } /* * NB: We don't need to lock against tx done because this just * prods the firmware to check the transmit descriptors. The firmware * will also start fetching descriptors by itself if it notices * new ones are present when it goes to deliver a tx done interrupt * to the host. So if we race with tx done processing it's ok. * Delivering the kick here rather than in malo_tx_start is * an optimization to avoid poking the firmware for each packet. * * NB: the queue id isn't used so 0 is ok. */ malo_hal_txstart(sc->malo_mh, 0/*XXX*/); return 0; } static void malo_sysctlattach(struct malo_softc *sc) { #ifdef MALO_DEBUG struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->malo_dev); struct sysctl_oid *tree = device_get_sysctl_tree(sc->malo_dev); sc->malo_debug = malo_debug; SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "debug", CTLFLAG_RW, &sc->malo_debug, 0, "control debugging printfs"); #endif } static void malo_announce(struct malo_softc *sc) { device_printf(sc->malo_dev, "versions [hw %d fw %d.%d.%d.%d] (regioncode %d)\n", sc->malo_hwspecs.hwversion, (sc->malo_hwspecs.fw_releasenum >> 24) & 0xff, (sc->malo_hwspecs.fw_releasenum >> 16) & 0xff, (sc->malo_hwspecs.fw_releasenum >> 8) & 0xff, (sc->malo_hwspecs.fw_releasenum >> 0) & 0xff, sc->malo_hwspecs.regioncode); if (bootverbose || malo_rxbuf != MALO_RXBUF) device_printf(sc->malo_dev, "using %u rx buffers\n", malo_rxbuf); if (bootverbose || malo_txbuf != MALO_TXBUF) device_printf(sc->malo_dev, "using %u tx buffers\n", malo_txbuf); } /* * Convert net80211 channel to a HAL channel. */ static void malo_mapchan(struct malo_hal_channel *hc, const struct ieee80211_channel *chan) { hc->channel = chan->ic_ieee; *(uint32_t *)&hc->flags = 0; if (IEEE80211_IS_CHAN_2GHZ(chan)) hc->flags.freqband = MALO_FREQ_BAND_2DOT4GHZ; } /* * Set/change channels. If the channel is really being changed, * it's done by reseting the chip. To accomplish this we must * first cleanup any pending DMA, then restart stuff after a la * malo_init. */ static int malo_chan_set(struct malo_softc *sc, struct ieee80211_channel *chan) { struct malo_hal *mh = sc->malo_mh; struct malo_hal_channel hchan; DPRINTF(sc, MALO_DEBUG_RESET, "%s: chan %u MHz/flags 0x%x\n", __func__, chan->ic_freq, chan->ic_flags); /* * Convert to a HAL channel description with the flags constrained * to reflect the current operating mode. */ malo_mapchan(&hchan, chan); malo_hal_intrset(mh, 0); /* disable interrupts */ malo_hal_setchannel(mh, &hchan); malo_hal_settxpower(mh, &hchan); /* * Update internal state. */ sc->malo_tx_th.wt_chan_freq = htole16(chan->ic_freq); sc->malo_rx_th.wr_chan_freq = htole16(chan->ic_freq); if (IEEE80211_IS_CHAN_ANYG(chan)) { sc->malo_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_G); sc->malo_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_G); } else { sc->malo_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_B); sc->malo_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_B); } sc->malo_curchan = hchan; malo_hal_intrset(mh, sc->malo_imask); return 0; } static void malo_scan_start(struct ieee80211com *ic) { struct malo_softc *sc = ic->ic_softc; DPRINTF(sc, MALO_DEBUG_STATE, "%s\n", __func__); } static void malo_scan_end(struct ieee80211com *ic) { struct malo_softc *sc = ic->ic_softc; DPRINTF(sc, MALO_DEBUG_STATE, "%s\n", __func__); } static void malo_set_channel(struct ieee80211com *ic) { struct malo_softc *sc = ic->ic_softc; (void) malo_chan_set(sc, ic->ic_curchan); } static void malo_rx_proc(void *arg, int npending) { struct malo_softc *sc = arg; struct ieee80211com *ic = &sc->malo_ic; struct malo_rxbuf *bf; struct malo_rxdesc *ds; struct mbuf *m, *mnew; struct ieee80211_qosframe *wh; struct ieee80211_qosframe_addr4 *wh4; struct ieee80211_node *ni; int off, len, hdrlen, pktlen, rssi, ntodo; uint8_t *data, status; uint32_t readptr, writeptr; DPRINTF(sc, MALO_DEBUG_RX_PROC, "%s: pending %u rdptr(0x%x) 0x%x wrptr(0x%x) 0x%x\n", __func__, npending, sc->malo_hwspecs.rxdesc_read, malo_bar0_read4(sc, sc->malo_hwspecs.rxdesc_read), sc->malo_hwspecs.rxdesc_write, malo_bar0_read4(sc, sc->malo_hwspecs.rxdesc_write)); readptr = malo_bar0_read4(sc, sc->malo_hwspecs.rxdesc_read); writeptr = malo_bar0_read4(sc, sc->malo_hwspecs.rxdesc_write); if (readptr == writeptr) return; bf = sc->malo_rxnext; for (ntodo = malo_rxquota; ntodo > 0 && readptr != writeptr; ntodo--) { if (bf == NULL) { bf = STAILQ_FIRST(&sc->malo_rxbuf); break; } ds = bf->bf_desc; if (bf->bf_m == NULL) { /* * If data allocation failed previously there * will be no buffer; try again to re-populate it. * Note the firmware will not advance to the next * descriptor with a dma buffer so we must mimic * this or we'll get out of sync. */ DPRINTF(sc, MALO_DEBUG_ANY, "%s: rx buf w/o dma memory\n", __func__); (void)malo_rxbuf_init(sc, bf); break; } MALO_RXDESC_SYNC(sc, ds, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); if (ds->rxcontrol != MALO_RXD_CTRL_DMA_OWN) break; readptr = le32toh(ds->physnext); #ifdef MALO_DEBUG if (sc->malo_debug & MALO_DEBUG_RECV_DESC) malo_printrxbuf(bf, 0); #endif status = ds->status; if (status & MALO_RXD_STATUS_DECRYPT_ERR_MASK) { counter_u64_add(ic->ic_ierrors, 1); goto rx_next; } /* * Sync the data buffer. */ len = le16toh(ds->pktlen); bus_dmamap_sync(sc->malo_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTREAD); /* * The 802.11 header is provided all or in part at the front; * use it to calculate the true size of the header that we'll * construct below. We use this to figure out where to copy * payload prior to constructing the header. */ m = bf->bf_m; data = mtod(m, uint8_t *); hdrlen = ieee80211_anyhdrsize(data + sizeof(uint16_t)); off = sizeof(uint16_t) + sizeof(struct ieee80211_frame_addr4); /* * Calculate RSSI. XXX wrong */ rssi = 2 * ((int) ds->snr - ds->nf); /* NB: .5 dBm */ if (rssi > 100) rssi = 100; pktlen = hdrlen + (len - off); /* * NB: we know our frame is at least as large as * IEEE80211_MIN_LEN because there is a 4-address frame at * the front. Hence there's no need to vet the packet length. * If the frame in fact is too small it should be discarded * at the net80211 layer. */ /* XXX don't need mbuf, just dma buffer */ mnew = malo_getrxmbuf(sc, bf); if (mnew == NULL) { counter_u64_add(ic->ic_ierrors, 1); goto rx_next; } /* * Attach the dma buffer to the mbuf; malo_rxbuf_init will * re-setup the rx descriptor using the replacement dma * buffer we just installed above. */ bf->bf_m = mnew; m->m_data += off - hdrlen; m->m_pkthdr.len = m->m_len = pktlen; /* * Piece 802.11 header together. */ wh = mtod(m, struct ieee80211_qosframe *); /* NB: don't need to do this sometimes but ... */ /* XXX special case so we can memcpy after m_devget? */ ovbcopy(data + sizeof(uint16_t), wh, hdrlen); if (IEEE80211_QOS_HAS_SEQ(wh)) { if (IEEE80211_IS_DSTODS(wh)) { wh4 = mtod(m, struct ieee80211_qosframe_addr4*); *(uint16_t *)wh4->i_qos = ds->qosctrl; } else { *(uint16_t *)wh->i_qos = ds->qosctrl; } } if (ieee80211_radiotap_active(ic)) { sc->malo_rx_th.wr_flags = 0; sc->malo_rx_th.wr_rate = ds->rate; sc->malo_rx_th.wr_antsignal = rssi; sc->malo_rx_th.wr_antnoise = ds->nf; } #ifdef MALO_DEBUG if (IFF_DUMPPKTS_RECV(sc, wh)) { ieee80211_dump_pkt(ic, mtod(m, caddr_t), len, ds->rate, rssi); } #endif /* dispatch */ ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); if (ni != NULL) { (void) ieee80211_input(ni, m, rssi, ds->nf); ieee80211_free_node(ni); } else (void) ieee80211_input_all(ic, m, rssi, ds->nf); rx_next: /* NB: ignore ENOMEM so we process more descriptors */ (void) malo_rxbuf_init(sc, bf); bf = STAILQ_NEXT(bf, bf_list); } malo_bar0_write4(sc, sc->malo_hwspecs.rxdesc_read, readptr); sc->malo_rxnext = bf; if (mbufq_first(&sc->malo_snd) != NULL) malo_start(sc); } /* * Reclaim all tx queue resources. */ static void malo_tx_cleanup(struct malo_softc *sc) { int i; for (i = 0; i < MALO_NUM_TX_QUEUES; i++) malo_tx_cleanupq(sc, &sc->malo_txq[i]); } int malo_detach(struct malo_softc *sc) { struct ieee80211com *ic = &sc->malo_ic; malo_stop(sc); if (sc->malo_tq != NULL) { taskqueue_drain(sc->malo_tq, &sc->malo_rxtask); taskqueue_drain(sc->malo_tq, &sc->malo_txtask); taskqueue_free(sc->malo_tq); sc->malo_tq = NULL; } /* * NB: the order of these is important: * o call the 802.11 layer before detaching the hal to * insure callbacks into the driver to delete global * key cache entries can be handled * o reclaim the tx queue data structures after calling * the 802.11 layer as we'll get called back to reclaim * node state and potentially want to use them * o to cleanup the tx queues the hal is called, so detach * it last * Other than that, it's straightforward... */ ieee80211_ifdetach(ic); callout_drain(&sc->malo_watchdog_timer); malo_dma_cleanup(sc); malo_tx_cleanup(sc); malo_hal_detach(sc->malo_mh); mbufq_drain(&sc->malo_snd); MALO_LOCK_DESTROY(sc); return 0; } void malo_shutdown(struct malo_softc *sc) { malo_stop(sc); } void malo_suspend(struct malo_softc *sc) { malo_stop(sc); } void malo_resume(struct malo_softc *sc) { if (sc->malo_ic.ic_nrunning > 0) malo_init(sc); } Index: head/sys/dev/otus/if_otus.c =================================================================== --- head/sys/dev/otus/if_otus.c (revision 298817) +++ head/sys/dev/otus/if_otus.c (revision 298818) @@ -1,3176 +1,3176 @@ /* $OpenBSD: if_otus.c,v 1.46 2015/03/14 03:38:49 jsg Exp $ */ /*- * Copyright (c) 2009 Damien Bergamini * Copyright (c) 2015 Adrian Chadd * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Driver for Atheros AR9001U chipset. */ #include __FBSDID("$FreeBSD$"); #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IEEE80211_SUPPORT_SUPERG #include #endif #include #include #include "usbdevs.h" #define USB_DEBUG_VAR otus_debug #include #include "if_otusreg.h" static int otus_debug = 0; static SYSCTL_NODE(_hw_usb, OID_AUTO, otus, CTLFLAG_RW, 0, "USB otus"); SYSCTL_INT(_hw_usb_otus, OID_AUTO, debug, CTLFLAG_RWTUN, &otus_debug, 0, "Debug level"); #define OTUS_DEBUG_XMIT 0x00000001 #define OTUS_DEBUG_RECV 0x00000002 #define OTUS_DEBUG_TXDONE 0x00000004 #define OTUS_DEBUG_RXDONE 0x00000008 #define OTUS_DEBUG_CMD 0x00000010 #define OTUS_DEBUG_CMDDONE 0x00000020 #define OTUS_DEBUG_RESET 0x00000040 #define OTUS_DEBUG_STATE 0x00000080 #define OTUS_DEBUG_CMDNOTIFY 0x00000100 #define OTUS_DEBUG_REGIO 0x00000200 #define OTUS_DEBUG_IRQ 0x00000400 #define OTUS_DEBUG_TXCOMP 0x00000800 #define OTUS_DEBUG_ANY 0xffffffff #define OTUS_DPRINTF(sc, dm, ...) \ do { \ if ((dm == OTUS_DEBUG_ANY) || (dm & otus_debug)) \ device_printf(sc->sc_dev, __VA_ARGS__); \ } while (0) #define OTUS_DEV(v, p) { USB_VPI(v, p, 0) } static const STRUCT_USB_HOST_ID otus_devs[] = { OTUS_DEV(USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_WN7512), OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_3CRUSBN275), OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_TG121N), OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_AR9170), OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_WN612), OTUS_DEV(USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_WN821NV2), OTUS_DEV(USB_VENDOR_AVM, USB_PRODUCT_AVM_FRITZWLAN), OTUS_DEV(USB_VENDOR_CACE, USB_PRODUCT_CACE_AIRPCAPNX), OTUS_DEV(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA130D1), OTUS_DEV(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA160A1), OTUS_DEV(USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA160A2), OTUS_DEV(USB_VENDOR_IODATA, USB_PRODUCT_IODATA_WNGDNUS2), OTUS_DEV(USB_VENDOR_NEC, USB_PRODUCT_NEC_WL300NUG), OTUS_DEV(USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WN111V2), OTUS_DEV(USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNA1000), OTUS_DEV(USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNDA3100), OTUS_DEV(USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GW_US300), OTUS_DEV(USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_O8494), OTUS_DEV(USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_WNC0600), OTUS_DEV(USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_UB81), OTUS_DEV(USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_UB82), OTUS_DEV(USB_VENDOR_ZYDAS, USB_PRODUCT_ZYDAS_ZD1221), OTUS_DEV(USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_NWD271N), }; static device_probe_t otus_match; static device_attach_t otus_attach; static device_detach_t otus_detach; static int otus_attachhook(struct otus_softc *); void otus_get_chanlist(struct otus_softc *); int otus_load_firmware(struct otus_softc *, const char *, uint32_t); int otus_open_pipes(struct otus_softc *); void otus_close_pipes(struct otus_softc *); static int otus_alloc_tx_cmd_list(struct otus_softc *); static void otus_free_tx_cmd_list(struct otus_softc *); static int otus_alloc_rx_list(struct otus_softc *); static void otus_free_rx_list(struct otus_softc *); static int otus_alloc_tx_list(struct otus_softc *); static void otus_free_tx_list(struct otus_softc *); static void otus_free_list(struct otus_softc *, struct otus_data [], int); static struct otus_data *_otus_getbuf(struct otus_softc *); static struct otus_data *otus_getbuf(struct otus_softc *); static void otus_freebuf(struct otus_softc *, struct otus_data *); static struct otus_tx_cmd *_otus_get_txcmd(struct otus_softc *); static struct otus_tx_cmd *otus_get_txcmd(struct otus_softc *); static void otus_free_txcmd(struct otus_softc *, struct otus_tx_cmd *); void otus_next_scan(void *, int); static void otus_tx_task(void *, int pending); void otus_do_async(struct otus_softc *, void (*)(struct otus_softc *, void *), void *, int); int otus_newstate(struct ieee80211vap *, enum ieee80211_state, int); int otus_cmd(struct otus_softc *, uint8_t, const void *, int, void *, int); void otus_write(struct otus_softc *, uint32_t, uint32_t); int otus_write_barrier(struct otus_softc *); static struct ieee80211_node *otus_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]); int otus_media_change(struct ifnet *); int otus_read_eeprom(struct otus_softc *); void otus_newassoc(struct ieee80211_node *, int); void otus_cmd_rxeof(struct otus_softc *, uint8_t *, int); void otus_sub_rxeof(struct otus_softc *, uint8_t *, int, struct mbufq *); static int otus_tx(struct otus_softc *, struct ieee80211_node *, struct mbuf *, struct otus_data *, const struct ieee80211_bpf_params *); int otus_ioctl(struct ifnet *, u_long, caddr_t); int otus_set_multi(struct otus_softc *); static int otus_updateedca(struct ieee80211com *); static void otus_updateedca_locked(struct otus_softc *); static void otus_updateslot(struct otus_softc *); int otus_init_mac(struct otus_softc *); uint32_t otus_phy_get_def(struct otus_softc *, uint32_t); int otus_set_board_values(struct otus_softc *, struct ieee80211_channel *); int otus_program_phy(struct otus_softc *, struct ieee80211_channel *); int otus_set_rf_bank4(struct otus_softc *, struct ieee80211_channel *); void otus_get_delta_slope(uint32_t, uint32_t *, uint32_t *); static int otus_set_chan(struct otus_softc *, struct ieee80211_channel *, int); int otus_set_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); void otus_set_key_cb(struct otus_softc *, void *); void otus_delete_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); void otus_delete_key_cb(struct otus_softc *, void *); void otus_calibrate_to(void *, int); int otus_set_bssid(struct otus_softc *, const uint8_t *); int otus_set_macaddr(struct otus_softc *, const uint8_t *); void otus_led_newstate_type1(struct otus_softc *); void otus_led_newstate_type2(struct otus_softc *); void otus_led_newstate_type3(struct otus_softc *); int otus_init(struct otus_softc *sc); void otus_stop(struct otus_softc *sc); static device_method_t otus_methods[] = { DEVMETHOD(device_probe, otus_match), DEVMETHOD(device_attach, otus_attach), DEVMETHOD(device_detach, otus_detach), DEVMETHOD_END }; static driver_t otus_driver = { .name = "otus", .methods = otus_methods, .size = sizeof(struct otus_softc) }; static devclass_t otus_devclass; DRIVER_MODULE(otus, uhub, otus_driver, otus_devclass, NULL, 0); MODULE_DEPEND(otus, wlan, 1, 1, 1); MODULE_DEPEND(otus, usb, 1, 1, 1); MODULE_DEPEND(otus, firmware, 1, 1, 1); MODULE_VERSION(otus, 1); static usb_callback_t otus_bulk_tx_callback; static usb_callback_t otus_bulk_rx_callback; static usb_callback_t otus_bulk_irq_callback; static usb_callback_t otus_bulk_cmd_callback; static const struct usb_config otus_config[OTUS_N_XFER] = { [OTUS_BULK_TX] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .bufsize = 0x200, .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = otus_bulk_tx_callback, .timeout = 5000, /* ms */ }, [OTUS_BULK_RX] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = OTUS_RXBUFSZ, .flags = { .ext_buffer = 1, .pipe_bof = 1,.short_xfer_ok = 1,}, .callback = otus_bulk_rx_callback, }, [OTUS_BULK_IRQ] = { .type = UE_INTERRUPT, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = OTUS_MAX_CTRLSZ, .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .callback = otus_bulk_irq_callback, }, [OTUS_BULK_CMD] = { .type = UE_INTERRUPT, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .bufsize = OTUS_MAX_CTRLSZ, .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = otus_bulk_cmd_callback, .timeout = 5000, /* ms */ }, }; static int otus_match(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); if (uaa->usb_mode != USB_MODE_HOST || uaa->info.bIfaceIndex != 0 || uaa->info.bConfigIndex != 0) return (ENXIO); return (usbd_lookup_id_by_uaa(otus_devs, sizeof(otus_devs), uaa)); } static int otus_attach(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); struct otus_softc *sc = device_get_softc(self); int error; uint8_t iface_index; device_set_usb_desc(self); sc->sc_udev = uaa->device; sc->sc_dev = self; mtx_init(&sc->sc_mtx, device_get_nameunit(self), MTX_NETWORK_LOCK, MTX_DEF); TIMEOUT_TASK_INIT(taskqueue_thread, &sc->scan_to, 0, otus_next_scan, sc); TIMEOUT_TASK_INIT(taskqueue_thread, &sc->calib_to, 0, otus_calibrate_to, sc); TASK_INIT(&sc->tx_task, 0, otus_tx_task, sc); mbufq_init(&sc->sc_snd, ifqmaxlen); iface_index = 0; error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, otus_config, OTUS_N_XFER, sc, &sc->sc_mtx); if (error) { device_printf(sc->sc_dev, "could not allocate USB transfers, err=%s\n", usbd_errstr(error)); goto fail_usb; } if ((error = otus_open_pipes(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not open pipes\n", __func__); goto fail; } /* XXX check return status; fail out if appropriate */ if (otus_attachhook(sc) != 0) goto fail; return (0); fail: otus_close_pipes(sc); fail_usb: mtx_destroy(&sc->sc_mtx); return (ENXIO); } static int otus_detach(device_t self) { struct otus_softc *sc = device_get_softc(self); struct ieee80211com *ic = &sc->sc_ic; otus_stop(sc); usbd_transfer_unsetup(sc->sc_xfer, OTUS_N_XFER); taskqueue_drain_timeout(taskqueue_thread, &sc->scan_to); taskqueue_drain_timeout(taskqueue_thread, &sc->calib_to); taskqueue_drain(taskqueue_thread, &sc->tx_task); otus_close_pipes(sc); #if 0 /* Wait for all queued asynchronous commands to complete. */ usb_rem_wait_task(sc->sc_udev, &sc->sc_task); usbd_ref_wait(sc->sc_udev); #endif ieee80211_ifdetach(ic); mtx_destroy(&sc->sc_mtx); return 0; } static void otus_delay_ms(struct otus_softc *sc, int ms) { DELAY(1000 * ms); } static struct ieee80211vap * otus_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct otus_vap *uvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return (NULL); uvp = malloc(sizeof(struct otus_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &uvp->vap; if (ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid) != 0) { /* out of memory */ free(uvp, M_80211_VAP); return (NULL); } /* override state transition machine */ uvp->newstate = vap->iv_newstate; vap->iv_newstate = otus_newstate; /* XXX TODO: double-check */ vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_16; vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_32K; ieee80211_ratectl_init(vap); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return (vap); } static void otus_vap_delete(struct ieee80211vap *vap) { struct otus_vap *uvp = OTUS_VAP(vap); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(uvp, M_80211_VAP); } static void otus_parent(struct ieee80211com *ic) { struct otus_softc *sc = ic->ic_softc; int startall = 0; if (ic->ic_nrunning > 0) { if (!sc->sc_running) { otus_init(sc); startall = 1; } else { (void) otus_set_multi(sc); } } else if (sc->sc_running) otus_stop(sc); if (startall) ieee80211_start_all(ic); } static void otus_drain_mbufq(struct otus_softc *sc) { struct mbuf *m; struct ieee80211_node *ni; OTUS_LOCK_ASSERT(sc); while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; ieee80211_free_node(ni); m_freem(m); } } static void otus_tx_start(struct otus_softc *sc) { taskqueue_enqueue(taskqueue_thread, &sc->tx_task); } static int otus_transmit(struct ieee80211com *ic, struct mbuf *m) { struct otus_softc *sc = ic->ic_softc; int error; OTUS_LOCK(sc); if (! sc->sc_running) { OTUS_UNLOCK(sc); return (ENXIO); } /* XXX TODO: handle fragments */ error = mbufq_enqueue(&sc->sc_snd, m); if (error) { OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, "%s: mbufq_enqueue failed: %d\n", __func__, error); OTUS_UNLOCK(sc); return (error); } OTUS_UNLOCK(sc); /* Kick TX */ otus_tx_start(sc); return (0); } static void _otus_start(struct otus_softc *sc) { struct ieee80211_node *ni; struct otus_data *bf; struct mbuf *m; OTUS_LOCK_ASSERT(sc); while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { bf = otus_getbuf(sc); if (bf == NULL) { OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, "%s: failed to get buffer\n", __func__); mbufq_prepend(&sc->sc_snd, m); break; } ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; if (otus_tx(sc, ni, m, bf, NULL) != 0) { OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, "%s: failed to transmit\n", __func__); if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); otus_freebuf(sc, bf); ieee80211_free_node(ni); m_freem(m); break; } } } static void otus_tx_task(void *arg, int pending) { struct otus_softc *sc = arg; OTUS_LOCK(sc); _otus_start(sc); OTUS_UNLOCK(sc); } static int otus_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic= ni->ni_ic; struct otus_softc *sc = ic->ic_softc; struct otus_data *bf = NULL; int error = 0; /* Don't transmit if we're not running */ OTUS_LOCK(sc); if (! sc->sc_running) { error = ENETDOWN; goto error; } bf = otus_getbuf(sc); if (bf == NULL) { error = ENOBUFS; goto error; } if (otus_tx(sc, ni, m, bf, params) != 0) { error = EIO; goto error; } OTUS_UNLOCK(sc); return (0); error: if (bf) otus_freebuf(sc, bf); OTUS_UNLOCK(sc); m_freem(m); return (ENXIO); } static void otus_update_chw(struct ieee80211com *ic) { printf("%s: TODO\n", __func__); } static void otus_set_channel(struct ieee80211com *ic) { struct otus_softc *sc = ic->ic_softc; OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "%s: set channel: %d\n", __func__, ic->ic_curchan->ic_freq); OTUS_LOCK(sc); (void) otus_set_chan(sc, ic->ic_curchan, 0); OTUS_UNLOCK(sc); } static int otus_ampdu_enable(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) { /* For now, no A-MPDU TX support in the driver */ return (0); } static void otus_scan_start(struct ieee80211com *ic) { // printf("%s: TODO\n", __func__); } static void otus_scan_end(struct ieee80211com *ic) { // printf("%s: TODO\n", __func__); } static void otus_update_mcast(struct ieee80211com *ic) { struct otus_softc *sc = ic->ic_softc; (void) otus_set_multi(sc); } static int otus_attachhook(struct otus_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; usb_device_request_t req; uint32_t in, out; - uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)]; + uint8_t bands[IEEE80211_MODE_BYTES]; int error; /* Not locked */ error = otus_load_firmware(sc, "otusfw_init", AR_FW_INIT_ADDR); if (error != 0) { device_printf(sc->sc_dev, "%s: could not load %s firmware\n", __func__, "init"); return (ENXIO); } /* XXX not locked? */ otus_delay_ms(sc, 1000); /* Not locked */ error = otus_load_firmware(sc, "otusfw_main", AR_FW_MAIN_ADDR); if (error != 0) { device_printf(sc->sc_dev, "%s: could not load %s firmware\n", __func__, "main"); return (ENXIO); } OTUS_LOCK(sc); /* Tell device that firmware transfer is complete. */ req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = AR_FW_DOWNLOAD_COMPLETE; USETW(req.wValue, 0); USETW(req.wIndex, 0); USETW(req.wLength, 0); if (usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, &req, NULL, 0, NULL, 250) != 0) { OTUS_UNLOCK(sc); device_printf(sc->sc_dev, "%s: firmware initialization failed\n", __func__); return (ENXIO); } /* Send an ECHO command to check that everything is settled. */ in = 0xbadc0ffe; if (otus_cmd(sc, AR_CMD_ECHO, &in, sizeof in, &out, sizeof(out)) != 0) { OTUS_UNLOCK(sc); device_printf(sc->sc_dev, "%s: echo command failed\n", __func__); return (ENXIO); } if (in != out) { OTUS_UNLOCK(sc); device_printf(sc->sc_dev, "%s: echo reply mismatch: 0x%08x!=0x%08x\n", __func__, in, out); return (ENXIO); } /* Read entire EEPROM. */ if (otus_read_eeprom(sc) != 0) { OTUS_UNLOCK(sc); device_printf(sc->sc_dev, "%s: could not read EEPROM\n", __func__); return (ENXIO); } OTUS_UNLOCK(sc); sc->txmask = sc->eeprom.baseEepHeader.txMask; sc->rxmask = sc->eeprom.baseEepHeader.rxMask; sc->capflags = sc->eeprom.baseEepHeader.opCapFlags; IEEE80211_ADDR_COPY(ic->ic_macaddr, sc->eeprom.baseEepHeader.macAddr); sc->sc_led_newstate = otus_led_newstate_type3; /* XXX */ device_printf(sc->sc_dev, "MAC/BBP AR9170, RF AR%X, MIMO %dT%dR, address %s\n", (sc->capflags & AR5416_OPFLAGS_11A) ? 0x9104 : ((sc->txmask == 0x5) ? 0x9102 : 0x9101), (sc->txmask == 0x5) ? 2 : 1, (sc->rxmask == 0x5) ? 2 : 1, ether_sprintf(ic->ic_macaddr)); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(sc->sc_dev); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ /* Set device capabilities. */ ic->ic_caps = IEEE80211_C_STA | /* station mode */ #if 0 IEEE80211_C_BGSCAN | /* Background scan. */ #endif IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */ IEEE80211_C_WME | /* WME/QoS */ IEEE80211_C_SHSLOT | /* Short slot time supported. */ IEEE80211_C_FF | /* Atheros fast-frames supported. */ IEEE80211_C_MONITOR | IEEE80211_C_WPA; /* WPA/RSN. */ /* XXX TODO: 11n */ #if 0 if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) { /* Set supported .11b and .11g rates. */ ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; } if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) { /* Set supported .11a rates. */ ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; } #endif #if 0 /* Build the list of supported channels. */ otus_get_chanlist(sc); #else /* Set supported .11b and .11g rates. */ memset(bands, 0, sizeof(bands)); if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) { setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); } if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) { setbit(bands, IEEE80211_MODE_11A); } #if 0 if (sc->sc_ht) setbit(bands, IEEE80211_MODE_11NG); #endif ieee80211_init_channels(ic, NULL, bands); #endif ieee80211_ifattach(ic); ic->ic_raw_xmit = otus_raw_xmit; ic->ic_scan_start = otus_scan_start; ic->ic_scan_end = otus_scan_end; ic->ic_set_channel = otus_set_channel; ic->ic_vap_create = otus_vap_create; ic->ic_vap_delete = otus_vap_delete; ic->ic_update_mcast = otus_update_mcast; ic->ic_update_promisc = otus_update_mcast; ic->ic_parent = otus_parent; ic->ic_transmit = otus_transmit; ic->ic_update_chw = otus_update_chw; ic->ic_ampdu_enable = otus_ampdu_enable; ic->ic_wme.wme_update = otus_updateedca; ic->ic_newassoc = otus_newassoc; ic->ic_node_alloc = otus_node_alloc; #ifdef notyet ic->ic_set_key = otus_set_key; ic->ic_delete_key = otus_delete_key; #endif ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), OTUS_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), OTUS_RX_RADIOTAP_PRESENT); return (0); } void otus_get_chanlist(struct otus_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint16_t domain; uint8_t chan; int i; /* XXX regulatory domain. */ domain = le16toh(sc->eeprom.baseEepHeader.regDmn[0]); OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "regdomain=0x%04x\n", domain); if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) { for (i = 0; i < 14; i++) { chan = ar_chans[i]; ic->ic_channels[chan].ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } } if (sc->eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) { for (i = 14; i < nitems(ar_chans); i++) { chan = ar_chans[i]; ic->ic_channels[chan].ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; } } } int otus_load_firmware(struct otus_softc *sc, const char *name, uint32_t addr) { usb_device_request_t req; char *ptr; const struct firmware *fw; int mlen, error, size; error = 0; /* Read firmware image from the filesystem. */ if ((fw = firmware_get(name)) == NULL) { device_printf(sc->sc_dev, "%s: failed loadfirmware of file %s\n", __func__, name); return (ENXIO); } req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = AR_FW_DOWNLOAD; USETW(req.wIndex, 0); OTUS_LOCK(sc); /* XXX const */ ptr = __DECONST(char *, fw->data); size = fw->datasize; addr >>= 8; while (size > 0) { mlen = MIN(size, 4096); USETW(req.wValue, addr); USETW(req.wLength, mlen); if (usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, &req, ptr, 0, NULL, 250) != 0) { error = EIO; break; } addr += mlen >> 8; ptr += mlen; size -= mlen; } OTUS_UNLOCK(sc); firmware_put(fw, FIRMWARE_UNLOAD); if (error != 0) device_printf(sc->sc_dev, "%s: %s: error=%d\n", __func__, name, error); return error; } int otus_open_pipes(struct otus_softc *sc) { #if 0 int isize, error; int i; #endif int error; OTUS_UNLOCK_ASSERT(sc); if ((error = otus_alloc_tx_cmd_list(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not allocate command xfer\n", __func__); goto fail; } if ((error = otus_alloc_tx_list(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not allocate Tx xfers\n", __func__); goto fail; } if ((error = otus_alloc_rx_list(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not allocate Rx xfers\n", __func__); goto fail; } /* Enable RX transfers; needed for initial firmware messages */ OTUS_LOCK(sc); usbd_transfer_start(sc->sc_xfer[OTUS_BULK_RX]); usbd_transfer_start(sc->sc_xfer[OTUS_BULK_IRQ]); OTUS_UNLOCK(sc); return 0; fail: otus_close_pipes(sc); return error; } void otus_close_pipes(struct otus_softc *sc) { OTUS_LOCK(sc); otus_free_tx_cmd_list(sc); otus_free_tx_list(sc); otus_free_rx_list(sc); OTUS_UNLOCK(sc); usbd_transfer_unsetup(sc->sc_xfer, OTUS_N_XFER); } static void otus_free_cmd_list(struct otus_softc *sc, struct otus_tx_cmd cmd[], int ndata) { int i; /* XXX TODO: someone has to have waken up waiters! */ for (i = 0; i < ndata; i++) { struct otus_tx_cmd *dp = &cmd[i]; if (dp->buf != NULL) { free(dp->buf, M_USBDEV); dp->buf = NULL; } } } static int otus_alloc_cmd_list(struct otus_softc *sc, struct otus_tx_cmd cmd[], int ndata, int maxsz) { int i, error; for (i = 0; i < ndata; i++) { struct otus_tx_cmd *dp = &cmd[i]; dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT); dp->odata = NULL; if (dp->buf == NULL) { device_printf(sc->sc_dev, "could not allocate buffer\n"); error = ENOMEM; goto fail; } } return (0); fail: otus_free_cmd_list(sc, cmd, ndata); return (error); } static int otus_alloc_tx_cmd_list(struct otus_softc *sc) { int error, i; error = otus_alloc_cmd_list(sc, sc->sc_cmd, OTUS_CMD_LIST_COUNT, OTUS_MAX_TXCMDSZ); if (error != 0) return (error); STAILQ_INIT(&sc->sc_cmd_active); STAILQ_INIT(&sc->sc_cmd_inactive); STAILQ_INIT(&sc->sc_cmd_pending); STAILQ_INIT(&sc->sc_cmd_waiting); for (i = 0; i < OTUS_CMD_LIST_COUNT; i++) STAILQ_INSERT_HEAD(&sc->sc_cmd_inactive, &sc->sc_cmd[i], next_cmd); return (0); } static void otus_free_tx_cmd_list(struct otus_softc *sc) { /* * XXX TODO: something needs to wake up any pending/sleeping * waiters! */ STAILQ_INIT(&sc->sc_cmd_active); STAILQ_INIT(&sc->sc_cmd_inactive); STAILQ_INIT(&sc->sc_cmd_pending); STAILQ_INIT(&sc->sc_cmd_waiting); otus_free_cmd_list(sc, sc->sc_cmd, OTUS_CMD_LIST_COUNT); } static int otus_alloc_list(struct otus_softc *sc, struct otus_data data[], int ndata, int maxsz) { int i, error; for (i = 0; i < ndata; i++) { struct otus_data *dp = &data[i]; dp->sc = sc; dp->m = NULL; dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT); if (dp->buf == NULL) { device_printf(sc->sc_dev, "could not allocate buffer\n"); error = ENOMEM; goto fail; } dp->ni = NULL; } return (0); fail: otus_free_list(sc, data, ndata); return (error); } static int otus_alloc_rx_list(struct otus_softc *sc) { int error, i; error = otus_alloc_list(sc, sc->sc_rx, OTUS_RX_LIST_COUNT, OTUS_RXBUFSZ); if (error != 0) return (error); STAILQ_INIT(&sc->sc_rx_active); STAILQ_INIT(&sc->sc_rx_inactive); for (i = 0; i < OTUS_RX_LIST_COUNT; i++) STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], next); return (0); } static int otus_alloc_tx_list(struct otus_softc *sc) { int error, i; error = otus_alloc_list(sc, sc->sc_tx, OTUS_TX_LIST_COUNT, OTUS_TXBUFSZ); if (error != 0) return (error); STAILQ_INIT(&sc->sc_tx_inactive); for (i = 0; i != OTUS_N_XFER; i++) { STAILQ_INIT(&sc->sc_tx_active[i]); STAILQ_INIT(&sc->sc_tx_pending[i]); } for (i = 0; i < OTUS_TX_LIST_COUNT; i++) { STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], next); } return (0); } static void otus_free_tx_list(struct otus_softc *sc) { int i; /* prevent further allocations from TX list(s) */ STAILQ_INIT(&sc->sc_tx_inactive); for (i = 0; i != OTUS_N_XFER; i++) { STAILQ_INIT(&sc->sc_tx_active[i]); STAILQ_INIT(&sc->sc_tx_pending[i]); } otus_free_list(sc, sc->sc_tx, OTUS_TX_LIST_COUNT); } static void otus_free_rx_list(struct otus_softc *sc) { /* prevent further allocations from RX list(s) */ STAILQ_INIT(&sc->sc_rx_inactive); STAILQ_INIT(&sc->sc_rx_active); otus_free_list(sc, sc->sc_rx, OTUS_RX_LIST_COUNT); } static void otus_free_list(struct otus_softc *sc, struct otus_data data[], int ndata) { int i; for (i = 0; i < ndata; i++) { struct otus_data *dp = &data[i]; if (dp->buf != NULL) { free(dp->buf, M_USBDEV); dp->buf = NULL; } if (dp->ni != NULL) { ieee80211_free_node(dp->ni); dp->ni = NULL; } } } static struct otus_data * _otus_getbuf(struct otus_softc *sc) { struct otus_data *bf; bf = STAILQ_FIRST(&sc->sc_tx_inactive); if (bf != NULL) STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); else bf = NULL; return (bf); } static struct otus_data * otus_getbuf(struct otus_softc *sc) { struct otus_data *bf; OTUS_LOCK_ASSERT(sc); bf = _otus_getbuf(sc); return (bf); } static void otus_freebuf(struct otus_softc *sc, struct otus_data *bf) { OTUS_LOCK_ASSERT(sc); STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, bf, next); } static struct otus_tx_cmd * _otus_get_txcmd(struct otus_softc *sc) { struct otus_tx_cmd *bf; bf = STAILQ_FIRST(&sc->sc_cmd_inactive); if (bf != NULL) STAILQ_REMOVE_HEAD(&sc->sc_cmd_inactive, next_cmd); else bf = NULL; return (bf); } static struct otus_tx_cmd * otus_get_txcmd(struct otus_softc *sc) { struct otus_tx_cmd *bf; OTUS_LOCK_ASSERT(sc); bf = _otus_get_txcmd(sc); if (bf == NULL) { device_printf(sc->sc_dev, "%s: no tx cmd buffers\n", __func__); } return (bf); } static void otus_free_txcmd(struct otus_softc *sc, struct otus_tx_cmd *bf) { OTUS_LOCK_ASSERT(sc); STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, bf, next_cmd); } void otus_next_scan(void *arg, int pending) { #if 0 struct otus_softc *sc = arg; if (usbd_is_dying(sc->sc_udev)) return; usbd_ref_incr(sc->sc_udev); if (sc->sc_ic.ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(&sc->sc_ic.ic_if); usbd_ref_decr(sc->sc_udev); #endif } int otus_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct otus_vap *uvp = OTUS_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct otus_softc *sc = ic->ic_softc; struct ieee80211_node *ni; enum ieee80211_state ostate; ostate = vap->iv_state; OTUS_DPRINTF(sc, OTUS_DEBUG_STATE, "%s: %s -> %s\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate]); IEEE80211_UNLOCK(ic); OTUS_LOCK(sc); /* XXX TODO: more fleshing out! */ switch (nstate) { case IEEE80211_S_RUN: ni = ieee80211_ref_node(vap->iv_bss); if (ic->ic_opmode == IEEE80211_M_STA) { otus_updateslot(sc); otus_set_bssid(sc, ni->ni_bssid); /* Start calibration timer. */ taskqueue_enqueue_timeout(taskqueue_thread, &sc->calib_to, hz); } ieee80211_free_node(ni); break; default: break; } /* XXX TODO: calibration? */ sc->sc_led_newstate(sc); OTUS_UNLOCK(sc); IEEE80211_LOCK(ic); return (uvp->newstate(vap, nstate, arg)); } int otus_cmd(struct otus_softc *sc, uint8_t code, const void *idata, int ilen, void *odata, int odatalen) { struct otus_tx_cmd *cmd; struct ar_cmd_hdr *hdr; int xferlen, error; OTUS_LOCK_ASSERT(sc); /* Always bulk-out a multiple of 4 bytes. */ xferlen = (sizeof (*hdr) + ilen + 3) & ~3; if (xferlen > OTUS_MAX_TXCMDSZ) { device_printf(sc->sc_dev, "%s: command (0x%02x) size (%d) > %d\n", __func__, code, xferlen, OTUS_MAX_TXCMDSZ); return (EIO); } cmd = otus_get_txcmd(sc); if (cmd == NULL) { device_printf(sc->sc_dev, "%s: failed to get buf\n", __func__); return (EIO); } hdr = (struct ar_cmd_hdr *)cmd->buf; hdr->code = code; hdr->len = ilen; hdr->token = ++sc->token; /* Don't care about endianness. */ cmd->token = hdr->token; /* XXX TODO: check max cmd length? */ memcpy((uint8_t *)&hdr[1], idata, ilen); OTUS_DPRINTF(sc, OTUS_DEBUG_CMD, "%s: sending command code=0x%02x len=%d token=%d\n", __func__, code, ilen, hdr->token); cmd->odata = odata; cmd->odatalen = odatalen; cmd->buflen = xferlen; /* Queue the command to the endpoint */ STAILQ_INSERT_TAIL(&sc->sc_cmd_pending, cmd, next_cmd); usbd_transfer_start(sc->sc_xfer[OTUS_BULK_CMD]); /* Sleep on the command; wait for it to complete */ error = msleep(cmd, &sc->sc_mtx, PCATCH, "otuscmd", hz); /* * At this point we don't own cmd any longer; it'll be * freed by the cmd bulk path or the RX notification * path. If the data is made available then it'll be copied * to the caller. All that is left to do is communicate * status back to the caller. */ if (error != 0) { device_printf(sc->sc_dev, "%s: timeout waiting for command 0x%02x reply\n", __func__, code); } return error; } void otus_write(struct otus_softc *sc, uint32_t reg, uint32_t val) { OTUS_LOCK_ASSERT(sc); sc->write_buf[sc->write_idx].reg = htole32(reg); sc->write_buf[sc->write_idx].val = htole32(val); if (++sc->write_idx > (AR_MAX_WRITE_IDX-1)) (void)otus_write_barrier(sc); } int otus_write_barrier(struct otus_softc *sc) { int error; OTUS_LOCK_ASSERT(sc); if (sc->write_idx == 0) return 0; /* Nothing to flush. */ OTUS_DPRINTF(sc, OTUS_DEBUG_REGIO, "%s: called; %d updates\n", __func__, sc->write_idx); error = otus_cmd(sc, AR_CMD_WREG, sc->write_buf, sizeof (sc->write_buf[0]) * sc->write_idx, NULL, 0); sc->write_idx = 0; return error; } static struct ieee80211_node * otus_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) { return malloc(sizeof (struct otus_node), M_80211_NODE, M_NOWAIT | M_ZERO); } #if 0 int otus_media_change(struct ifnet *ifp) { struct otus_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint8_t rate, ridx; int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if (ic->ic_fixed_rate != -1) { rate = ic->ic_sup_rates[ic->ic_curmode]. rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; for (ridx = 0; ridx <= OTUS_RIDX_MAX; ridx++) if (otus_rates[ridx].rate == rate) break; sc->fixed_ridx = ridx; } if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) error = otus_init(sc); return error; } #endif int otus_read_eeprom(struct otus_softc *sc) { uint32_t regs[8], reg; uint8_t *eep; int i, j, error; OTUS_LOCK_ASSERT(sc); /* Read EEPROM by blocks of 32 bytes. */ eep = (uint8_t *)&sc->eeprom; reg = AR_EEPROM_OFFSET; for (i = 0; i < sizeof (sc->eeprom) / 32; i++) { for (j = 0; j < 8; j++, reg += 4) regs[j] = htole32(reg); error = otus_cmd(sc, AR_CMD_RREG, regs, sizeof regs, eep, 32); if (error != 0) break; eep += 32; } return error; } void otus_newassoc(struct ieee80211_node *ni, int isnew) { struct ieee80211com *ic = ni->ni_ic; struct otus_softc *sc = ic->ic_softc; struct otus_node *on = OTUS_NODE(ni); OTUS_DPRINTF(sc, OTUS_DEBUG_STATE, "new assoc isnew=%d addr=%s\n", isnew, ether_sprintf(ni->ni_macaddr)); on->tx_done = 0; on->tx_err = 0; on->tx_retries = 0; } static void otus_cmd_handle_response(struct otus_softc *sc, struct ar_cmd_hdr *hdr) { struct otus_tx_cmd *cmd; OTUS_LOCK_ASSERT(sc); OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, "%s: received reply code=0x%02x len=%d token=%d\n", __func__, hdr->code, hdr->len, hdr->token); /* * Walk the list, freeing items that aren't ours, * stopping when we hit our token. */ while ((cmd = STAILQ_FIRST(&sc->sc_cmd_waiting)) != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_cmd_waiting, next_cmd); OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, "%s: cmd=%p; hdr.token=%d, cmd.token=%d\n", __func__, cmd, (int) hdr->token, (int) cmd->token); if (hdr->token == cmd->token) { /* Copy answer into caller's supplied buffer. */ if (cmd->odata != NULL) { if (hdr->len != cmd->odatalen) { device_printf(sc->sc_dev, "%s: code 0x%02x, len=%d, olen=%d\n", __func__, (int) hdr->code, (int) hdr->len, (int) cmd->odatalen); } memcpy(cmd->odata, &hdr[1], MIN(cmd->odatalen, hdr->len)); } wakeup(cmd); } STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next_cmd); } } void otus_cmd_rxeof(struct otus_softc *sc, uint8_t *buf, int len) { struct ieee80211com *ic = &sc->sc_ic; struct ar_cmd_hdr *hdr; OTUS_LOCK_ASSERT(sc); if (__predict_false(len < sizeof (*hdr))) { OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, "cmd too small %d\n", len); return; } hdr = (struct ar_cmd_hdr *)buf; if (__predict_false(sizeof (*hdr) + hdr->len > len || sizeof (*hdr) + hdr->len > 64)) { OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, "cmd too large %d\n", hdr->len); return; } OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "%s: code=%.02x\n", __func__, hdr->code); /* * This has to reach into the cmd queue "waiting for * an RX response" list, grab the head entry and check * if we need to wake anyone up. */ if ((hdr->code & 0xc0) != 0xc0) { otus_cmd_handle_response(sc, hdr); return; } /* Received unsolicited notification. */ switch (hdr->code & 0x3f) { case AR_EVT_BEACON: break; case AR_EVT_TX_COMP: { struct ar_evt_tx_comp *tx = (struct ar_evt_tx_comp *)&hdr[1]; struct ieee80211_node *ni; ni = ieee80211_find_node(&ic->ic_sta, tx->macaddr); if (ni == NULL) { device_printf(sc->sc_dev, "%s: txcomp on unknown node (%s)\n", __func__, ether_sprintf(tx->macaddr)); break; } OTUS_DPRINTF(sc, OTUS_DEBUG_TXCOMP, "tx completed %s status=%d phy=0x%x\n", ether_sprintf(tx->macaddr), le16toh(tx->status), le32toh(tx->phy)); switch (le16toh(tx->status)) { case AR_TX_STATUS_COMP: #if 0 ackfailcnt = 0; ieee80211_ratectl_tx_complete(ni->ni_vap, ni, IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL); #endif /* * We don't get the above; only error notifications. * Sigh. So, don't worry about this. */ break; case AR_TX_STATUS_RETRY_COMP: OTUS_NODE(ni)->tx_retries++; break; case AR_TX_STATUS_FAILED: OTUS_NODE(ni)->tx_err++; break; } ieee80211_free_node(ni); break; } case AR_EVT_TBTT: break; case AR_EVT_DO_BB_RESET: /* * This is "tell driver to reset baseband" from ar9170-fw. * * I'm not sure what we should do here, so I'm going to * fall through; it gets generated when RTSRetryCnt internally * reaches '5' - I guess the firmware authors thought that * meant that the BB may have gone deaf or something. */ default: device_printf(sc->sc_dev, "%s: received notification code=0x%02x len=%d\n", __func__, hdr->code, hdr->len); } } void otus_sub_rxeof(struct otus_softc *sc, uint8_t *buf, int len, struct mbufq *rxq) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_rx_stats rxs; #if 0 struct ieee80211_node *ni; #endif struct ar_rx_tail *tail; struct ieee80211_frame *wh; struct mbuf *m; uint8_t *plcp; // int s; int mlen; if (__predict_false(len < AR_PLCP_HDR_LEN)) { OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "sub-xfer too short %d\n", len); return; } plcp = buf; /* All bits in the PLCP header are set to 1 for non-MPDU. */ if (memcmp(plcp, AR_PLCP_HDR_INTR, AR_PLCP_HDR_LEN) == 0) { otus_cmd_rxeof(sc, plcp + AR_PLCP_HDR_LEN, len - AR_PLCP_HDR_LEN); return; } /* Received MPDU. */ if (__predict_false(len < AR_PLCP_HDR_LEN + sizeof (*tail))) { OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "MPDU too short %d\n", len); counter_u64_add(ic->ic_ierrors, 1); return; } tail = (struct ar_rx_tail *)(plcp + len - sizeof (*tail)); /* Discard error frames; don't discard BAD_RA (eg monitor mode); let net80211 do that */ if (__predict_false((tail->error & ~AR_RX_ERROR_BAD_RA) != 0)) { OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "error frame 0x%02x\n", tail->error); if (tail->error & AR_RX_ERROR_FCS) { OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "bad FCS\n"); } else if (tail->error & AR_RX_ERROR_MMIC) { /* Report Michael MIC failures to net80211. */ #if 0 ieee80211_notify_michael_failure(ni->ni_vap, wh, keyidx); #endif device_printf(sc->sc_dev, "%s: MIC failure\n", __func__); } counter_u64_add(ic->ic_ierrors, 1); return; } /* Compute MPDU's length. */ mlen = len - AR_PLCP_HDR_LEN - sizeof (*tail); /* Make sure there's room for an 802.11 header + FCS. */ if (__predict_false(mlen < IEEE80211_MIN_LEN)) { counter_u64_add(ic->ic_ierrors, 1); return; } mlen -= IEEE80211_CRC_LEN; /* strip 802.11 FCS */ wh = (struct ieee80211_frame *)(plcp + AR_PLCP_HDR_LEN); /* * TODO: I see > 2KiB buffers in this path; is it A-MSDU or something? */ m = m_get2(mlen, M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { device_printf(sc->sc_dev, "%s: failed m_get2() (mlen=%d)\n", __func__, mlen); counter_u64_add(ic->ic_ierrors, 1); return; } /* Finalize mbuf. */ memcpy(mtod(m, uint8_t *), wh, mlen); m->m_pkthdr.len = m->m_len = mlen; #if 0 if (__predict_false(sc->sc_drvbpf != NULL)) { struct otus_rx_radiotap_header *tap = &sc->sc_rxtap; struct mbuf mb; tap->wr_flags = 0; tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); tap->wr_antsignal = tail->rssi; tap->wr_rate = 2; /* In case it can't be found below. */ switch (tail->status & AR_RX_STATUS_MT_MASK) { case AR_RX_STATUS_MT_CCK: switch (plcp[0]) { case 10: tap->wr_rate = 2; break; case 20: tap->wr_rate = 4; break; case 55: tap->wr_rate = 11; break; case 110: tap->wr_rate = 22; break; } if (tail->status & AR_RX_STATUS_SHPREAMBLE) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; break; case AR_RX_STATUS_MT_OFDM: switch (plcp[0] & 0xf) { case 0xb: tap->wr_rate = 12; break; case 0xf: tap->wr_rate = 18; break; case 0xa: tap->wr_rate = 24; break; case 0xe: tap->wr_rate = 36; break; case 0x9: tap->wr_rate = 48; break; case 0xd: tap->wr_rate = 72; break; case 0x8: tap->wr_rate = 96; break; case 0xc: tap->wr_rate = 108; break; } break; } mb.m_data = (caddr_t)tap; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); } #endif /* Add RSSI/NF to this mbuf */ bzero(&rxs, sizeof(rxs)); rxs.r_flags = IEEE80211_R_NF | IEEE80211_R_RSSI; rxs.nf = sc->sc_nf[0]; /* XXX chain 0 != combined rssi/nf */ rxs.rssi = tail->rssi; /* XXX TODO: add MIMO RSSI/NF as well */ ieee80211_add_rx_params(m, &rxs); /* XXX make a method */ STAILQ_INSERT_TAIL(&rxq->mq_head, m, m_stailqpkt); #if 0 OTUS_UNLOCK(sc); ni = ieee80211_find_rxnode(ic, wh); rxi.rxi_flags = 0; rxi.rxi_rssi = tail->rssi; rxi.rxi_tstamp = 0; /* unused */ ieee80211_input(ifp, m, ni, &rxi); /* Node is no longer needed. */ ieee80211_release_node(ic, ni); OTUS_LOCK(sc); #endif } static void otus_rxeof(struct usb_xfer *xfer, struct otus_data *data, struct mbufq *rxq) { struct otus_softc *sc = usbd_xfer_softc(xfer); caddr_t buf = data->buf; struct ar_rx_head *head; uint16_t hlen; int len; usbd_xfer_status(xfer, &len, NULL, NULL, NULL); while (len >= sizeof (*head)) { head = (struct ar_rx_head *)buf; if (__predict_false(head->tag != htole16(AR_RX_HEAD_TAG))) { OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "tag not valid 0x%x\n", le16toh(head->tag)); break; } hlen = le16toh(head->len); if (__predict_false(sizeof (*head) + hlen > len)) { OTUS_DPRINTF(sc, OTUS_DEBUG_RXDONE, "xfer too short %d/%d\n", len, hlen); break; } /* Process sub-xfer. */ otus_sub_rxeof(sc, (uint8_t *)&head[1], hlen, rxq); /* Next sub-xfer is aligned on a 32-bit boundary. */ hlen = (sizeof (*head) + hlen + 3) & ~3; buf += hlen; len -= hlen; } } static void otus_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) { struct otus_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *m; struct mbufq scrx; struct otus_data *data; OTUS_LOCK_ASSERT(sc); mbufq_init(&scrx, 1024); #if 0 device_printf(sc->sc_dev, "%s: called; state=%d; error=%d\n", __func__, USB_GET_STATE(xfer), error); #endif switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_rx_active); if (data == NULL) goto tr_setup; STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); otus_rxeof(xfer, data, &scrx); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: /* * XXX TODO: what if sc_rx isn't empty, but data * is empty? Then we leak mbufs. */ data = STAILQ_FIRST(&sc->sc_rx_inactive); if (data == NULL) { //KASSERT(m == NULL, ("mbuf isn't NULL")); return; } STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); usbd_xfer_set_frame_data(xfer, 0, data->buf, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); /* * To avoid LOR we should unlock our private mutex here to call * ieee80211_input() because here is at the end of a USB * callback and safe to unlock. */ OTUS_UNLOCK(sc); while ((m = mbufq_dequeue(&scrx)) != NULL) { wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); if (ni != NULL) { if (ni->ni_flags & IEEE80211_NODE_HT) m->m_flags |= M_AMPDU; (void)ieee80211_input_mimo(ni, m, NULL); ieee80211_free_node(ni); } else (void)ieee80211_input_mimo_all(ic, m, NULL); } #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_ff_age_all(ic, 100); #endif OTUS_LOCK(sc); break; default: /* needs it to the inactive queue due to a error. */ data = STAILQ_FIRST(&sc->sc_rx_active); if (data != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); } if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); counter_u64_add(ic->ic_ierrors, 1); goto tr_setup; } break; } } static void otus_txeof(struct usb_xfer *xfer, struct otus_data *data) { struct otus_softc *sc = usbd_xfer_softc(xfer); OTUS_DPRINTF(sc, OTUS_DEBUG_TXDONE, "%s: called; data=%p\n", __func__, data); OTUS_LOCK_ASSERT(sc); if (sc->sc_tx_n_active == 0) { device_printf(sc->sc_dev, "%s: completed but tx_active=0\n", __func__); } else { sc->sc_tx_n_active--; } if (data->m) { /* XXX status? */ /* XXX we get TX status via the RX path.. */ ieee80211_tx_complete(data->ni, data->m, 0); data->m = NULL; data->ni = NULL; } } static void otus_txcmdeof(struct usb_xfer *xfer, struct otus_tx_cmd *cmd) { struct otus_softc *sc = usbd_xfer_softc(xfer); OTUS_LOCK_ASSERT(sc); OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, "%s: called; data=%p; odata=%p\n", __func__, cmd, cmd->odata); /* * Non-response commands still need wakeup so the caller * knows it was submitted and completed OK; response commands should * wait until they're ACKed by the firmware with a response. */ if (cmd->odata) { STAILQ_INSERT_TAIL(&sc->sc_cmd_waiting, cmd, next_cmd); } else { wakeup(cmd); otus_free_txcmd(sc, cmd); } } static void otus_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) { uint8_t which = OTUS_BULK_TX; struct otus_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct otus_data *data; OTUS_LOCK_ASSERT(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_tx_active[which]); if (data == NULL) goto tr_setup; OTUS_DPRINTF(sc, OTUS_DEBUG_TXDONE, "%s: transfer done %p\n", __func__, data); STAILQ_REMOVE_HEAD(&sc->sc_tx_active[which], next); otus_txeof(xfer, data); otus_freebuf(sc, data); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: data = STAILQ_FIRST(&sc->sc_tx_pending[which]); if (data == NULL) { OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, "%s: empty pending queue sc %p\n", __func__, sc); sc->sc_tx_n_active = 0; goto finish; } STAILQ_REMOVE_HEAD(&sc->sc_tx_pending[which], next); STAILQ_INSERT_TAIL(&sc->sc_tx_active[which], data, next); usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, "%s: submitting transfer %p\n", __func__, data); usbd_transfer_submit(xfer); sc->sc_tx_n_active++; break; default: data = STAILQ_FIRST(&sc->sc_tx_active[which]); if (data != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_tx_active[which], next); otus_txeof(xfer, data); otus_freebuf(sc, data); } counter_u64_add(ic->ic_oerrors, 1); if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); goto tr_setup; } break; } finish: #ifdef IEEE80211_SUPPORT_SUPERG /* * If the TX active queue drops below a certain * threshold, ensure we age fast-frames out so they're * transmitted. */ if (sc->sc_tx_n_active < 2) { /* XXX ew - net80211 should defer this for us! */ OTUS_UNLOCK(sc); ieee80211_ff_flush(ic, WME_AC_VO); ieee80211_ff_flush(ic, WME_AC_VI); ieee80211_ff_flush(ic, WME_AC_BE); ieee80211_ff_flush(ic, WME_AC_BK); OTUS_LOCK(sc); } #endif /* Kick TX */ otus_tx_start(sc); } static void otus_bulk_cmd_callback(struct usb_xfer *xfer, usb_error_t error) { struct otus_softc *sc = usbd_xfer_softc(xfer); #if 0 struct ieee80211com *ic = &sc->sc_ic; #endif struct otus_tx_cmd *cmd; OTUS_LOCK_ASSERT(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: cmd = STAILQ_FIRST(&sc->sc_cmd_active); if (cmd == NULL) goto tr_setup; OTUS_DPRINTF(sc, OTUS_DEBUG_CMDDONE, "%s: transfer done %p\n", __func__, cmd); STAILQ_REMOVE_HEAD(&sc->sc_cmd_active, next_cmd); otus_txcmdeof(xfer, cmd); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: cmd = STAILQ_FIRST(&sc->sc_cmd_pending); if (cmd == NULL) { OTUS_DPRINTF(sc, OTUS_DEBUG_CMD, "%s: empty pending queue sc %p\n", __func__, sc); return; } STAILQ_REMOVE_HEAD(&sc->sc_cmd_pending, next_cmd); STAILQ_INSERT_TAIL(&sc->sc_cmd_active, cmd, next_cmd); usbd_xfer_set_frame_data(xfer, 0, cmd->buf, cmd->buflen); OTUS_DPRINTF(sc, OTUS_DEBUG_CMD, "%s: submitting transfer %p; buf=%p, buflen=%d\n", __func__, cmd, cmd->buf, cmd->buflen); usbd_transfer_submit(xfer); break; default: cmd = STAILQ_FIRST(&sc->sc_cmd_active); if (cmd != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_cmd_active, next_cmd); otus_txcmdeof(xfer, cmd); } if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); goto tr_setup; } break; } } /* * This isn't used by carl9170; it however may be used by the * initial bootloader. */ static void otus_bulk_irq_callback(struct usb_xfer *xfer, usb_error_t error) { struct otus_softc *sc = usbd_xfer_softc(xfer); int actlen; int sumlen; usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ, "%s: called; state=%d\n", __func__, USB_GET_STATE(xfer)); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: /* * Read usb frame data, if any. * "actlen" has the total length for all frames * transferred. */ OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ, "%s: comp; %d bytes\n", __func__, actlen); #if 0 pc = usbd_xfer_get_frame(xfer, 0); otus_dump_usb_rx_page(sc, pc, actlen); #endif /* XXX fallthrough */ case USB_ST_SETUP: /* * Setup xfer frame lengths/count and data */ OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ, "%s: setup\n", __func__); usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); break; default: /* Error */ /* * Print error message and clear stall * for example. */ OTUS_DPRINTF(sc, OTUS_DEBUG_IRQ, "%s: ERROR?\n", __func__); break; } } /* * Map net80211 rate to hw rate for otus MAC/PHY. */ static uint8_t otus_rate_to_hw_rate(struct otus_softc *sc, uint8_t rate) { int is_2ghz; is_2ghz = !! (IEEE80211_IS_CHAN_2GHZ(sc->sc_ic.ic_curchan)); switch (rate) { /* CCK */ case 2: return (0x0); case 4: return (0x1); case 11: return (0x2); case 22: return (0x3); /* OFDM */ case 12: return (0xb); case 18: return (0xf); case 24: return (0xa); case 36: return (0xe); case 48: return (0x9); case 72: return (0xd); case 96: return (0x8); case 108: return (0xc); default: device_printf(sc->sc_dev, "%s: unknown rate '%d'\n", __func__, (int) rate); case 0: if (is_2ghz) return (0x0); /* 1MB CCK */ else return (0xb); /* 6MB OFDM */ /* XXX TODO: HT */ } } static int otus_hw_rate_is_ofdm(struct otus_softc *sc, uint8_t hw_rate) { switch (hw_rate) { case 0x0: case 0x1: case 0x2: case 0x3: return (0); default: return (1); } } static void otus_tx_update_ratectl(struct otus_softc *sc, struct ieee80211_node *ni) { int tx, tx_success, tx_retry; tx = OTUS_NODE(ni)->tx_done; tx_success = OTUS_NODE(ni)->tx_done - OTUS_NODE(ni)->tx_err; tx_retry = OTUS_NODE(ni)->tx_retries; ieee80211_ratectl_tx_update(ni->ni_vap, ni, &tx, &tx_success, &tx_retry); } /* * XXX TODO: support tx bpf parameters for configuration! * * Relevant pieces: * * ac = params->ibp_pri & 3; * rate = params->ibp_rate0; * params->ibp_flags & IEEE80211_BPF_NOACK * params->ibp_flags & IEEE80211_BPF_RTS * params->ibp_flags & IEEE80211_BPF_CTS * tx->rts_ntries = params->ibp_try1; * tx->data_ntries = params->ibp_try0; */ static int otus_tx(struct otus_softc *sc, struct ieee80211_node *ni, struct mbuf *m, struct otus_data *data, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_frame *wh; struct ieee80211_key *k; struct ar_tx_head *head; uint32_t phyctl; uint16_t macctl, qos; uint8_t qid, rate; int hasqos, xferlen; wh = mtod(m, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m); if (k == NULL) { device_printf(sc->sc_dev, "%s: m=%p: ieee80211_crypto_encap returns NULL\n", __func__, m); return (ENOBUFS); } wh = mtod(m, struct ieee80211_frame *); } /* Calculate transfer length; ensure data buffer is large enough */ xferlen = sizeof (*head) + m->m_pkthdr.len; if (xferlen > OTUS_TXBUFSZ) { device_printf(sc->sc_dev, "%s: 802.11 TX frame is %d bytes, max %d bytes\n", __func__, xferlen, OTUS_TXBUFSZ); return (ENOBUFS); } hasqos = !! IEEE80211_QOS_HAS_SEQ(wh); if (hasqos) { uint8_t tid; qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; tid = qos & IEEE80211_QOS_TID; qid = TID_TO_WME_AC(tid); } else { qos = 0; qid = WME_AC_BE; } /* Pickup a rate index. */ if (params != NULL) { rate = otus_rate_to_hw_rate(sc, params->ibp_rate0); } else if (IEEE80211_IS_MULTICAST(wh->i_addr1) || (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA) { /* Get lowest rate */ rate = otus_rate_to_hw_rate(sc, 0); } else if (m->m_flags & M_EAPOL) { /* Get lowest rate */ rate = otus_rate_to_hw_rate(sc, 0); } else { (void) ieee80211_ratectl_rate(ni, NULL, 0); rate = otus_rate_to_hw_rate(sc, ni->ni_txrate); } phyctl = 0; macctl = AR_TX_MAC_BACKOFF | AR_TX_MAC_HW_DUR | AR_TX_MAC_QID(qid); /* * XXX TODO: params for NOACK, ACK, RTS, CTS, etc */ if (IEEE80211_IS_MULTICAST(wh->i_addr1) || (hasqos && ((qos & IEEE80211_QOS_ACKPOLICY) == IEEE80211_QOS_ACKPOLICY_NOACK))) macctl |= AR_TX_MAC_NOACK; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { if (m->m_pkthdr.len + IEEE80211_CRC_LEN >= vap->iv_rtsthreshold) macctl |= AR_TX_MAC_RTS; else if (ic->ic_flags & IEEE80211_F_USEPROT) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) macctl |= AR_TX_MAC_CTS; else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) macctl |= AR_TX_MAC_RTS; } } phyctl |= AR_TX_PHY_MCS(rate); if (otus_hw_rate_is_ofdm(sc, rate)) { phyctl |= AR_TX_PHY_MT_OFDM; /* Always use all tx antennas for now, just to be safe */ phyctl |= AR_TX_PHY_ANTMSK(sc->txmask); } else { /* CCK */ phyctl |= AR_TX_PHY_MT_CCK; phyctl |= AR_TX_PHY_ANTMSK(sc->txmask); } /* Update net80211 with the current counters */ otus_tx_update_ratectl(sc, ni); /* Update rate control stats for frames that are ACK'ed. */ if (!(macctl & AR_TX_MAC_NOACK)) OTUS_NODE(ni)->tx_done++; /* Fill Tx descriptor. */ head = (struct ar_tx_head *)data->buf; head->len = htole16(m->m_pkthdr.len + IEEE80211_CRC_LEN); head->macctl = htole16(macctl); head->phyctl = htole32(phyctl); m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)&head[1]); data->buflen = xferlen; data->ni = ni; data->m = m; OTUS_DPRINTF(sc, OTUS_DEBUG_XMIT, "%s: tx: m=%p; data=%p; len=%d mac=0x%04x phy=0x%08x rate=0x%02x, ni_txrate=%d\n", __func__, m, data, le16toh(head->len), macctl, phyctl, (int) rate, (int) ni->ni_txrate); /* Submit transfer */ STAILQ_INSERT_TAIL(&sc->sc_tx_pending[OTUS_BULK_TX], data, next); usbd_transfer_start(sc->sc_xfer[OTUS_BULK_TX]); return 0; } int otus_set_multi(struct otus_softc *sc) { uint32_t lo, hi; struct ieee80211com *ic = &sc->sc_ic; int r; if (ic->ic_allmulti > 0 || ic->ic_promisc > 0 || ic->ic_opmode == IEEE80211_M_MONITOR) { lo = 0xffffffff; hi = 0xffffffff; } else { struct ieee80211vap *vap; struct ifnet *ifp; struct ifmultiaddr *ifma; lo = hi = 0; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { ifp = vap->iv_ifp; if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { caddr_t dl; uint32_t val; dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); val = le32dec(dl + 4); /* Get address byte 5 */ val = val & 0x0000ff00; val = val >> 8; /* As per below, shift it >> 2 to get only 6 bits */ val = val >> 2; if (val < 32) lo |= 1 << val; else hi |= 1 << (val - 32); } if_maddr_runlock(ifp); } } #if 0 /* XXX openbsd code */ while (enm != NULL) { bit = enm->enm_addrlo[5] >> 2; if (bit < 32) lo |= 1 << bit; else hi |= 1 << (bit - 32); ETHER_NEXT_MULTI(step, enm); } #endif hi |= 1U << 31; /* Make sure the broadcast bit is set. */ OTUS_LOCK(sc); otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_L, lo); otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_H, hi); r = otus_write_barrier(sc); OTUS_UNLOCK(sc); return (r); } static int otus_updateedca(struct ieee80211com *ic) { struct otus_softc *sc = ic->ic_softc; OTUS_LOCK(sc); /* * XXX TODO: take temporary copy of EDCA information * when scheduling this so we have a more time-correct view * of things. * XXX TODO: this can be done on the net80211 level */ otus_updateedca_locked(sc); OTUS_UNLOCK(sc); return (0); } static void otus_updateedca_locked(struct otus_softc *sc) { #define EXP2(val) ((1 << (val)) - 1) #define AIFS(val) ((val) * 9 + 10) struct ieee80211com *ic = &sc->sc_ic; const struct wmeParams *edca; OTUS_LOCK_ASSERT(sc); edca = ic->ic_wme.wme_chanParams.cap_wmeParams; /* Set CWmin/CWmax values. */ otus_write(sc, AR_MAC_REG_AC0_CW, EXP2(edca[WME_AC_BE].wmep_logcwmax) << 16 | EXP2(edca[WME_AC_BE].wmep_logcwmin)); otus_write(sc, AR_MAC_REG_AC1_CW, EXP2(edca[WME_AC_BK].wmep_logcwmax) << 16 | EXP2(edca[WME_AC_BK].wmep_logcwmin)); otus_write(sc, AR_MAC_REG_AC2_CW, EXP2(edca[WME_AC_VI].wmep_logcwmax) << 16 | EXP2(edca[WME_AC_VI].wmep_logcwmin)); otus_write(sc, AR_MAC_REG_AC3_CW, EXP2(edca[WME_AC_VO].wmep_logcwmax) << 16 | EXP2(edca[WME_AC_VO].wmep_logcwmin)); otus_write(sc, AR_MAC_REG_AC4_CW, /* Special TXQ. */ EXP2(edca[WME_AC_VO].wmep_logcwmax) << 16 | EXP2(edca[WME_AC_VO].wmep_logcwmin)); /* Set AIFSN values. */ otus_write(sc, AR_MAC_REG_AC1_AC0_AIFS, AIFS(edca[WME_AC_VI].wmep_aifsn) << 24 | AIFS(edca[WME_AC_BK].wmep_aifsn) << 12 | AIFS(edca[WME_AC_BE].wmep_aifsn)); otus_write(sc, AR_MAC_REG_AC3_AC2_AIFS, AIFS(edca[WME_AC_VO].wmep_aifsn) << 16 | /* Special TXQ. */ AIFS(edca[WME_AC_VO].wmep_aifsn) << 4 | AIFS(edca[WME_AC_VI].wmep_aifsn) >> 8); /* Set TXOP limit. */ otus_write(sc, AR_MAC_REG_AC1_AC0_TXOP, edca[WME_AC_BK].wmep_txopLimit << 16 | edca[WME_AC_BE].wmep_txopLimit); otus_write(sc, AR_MAC_REG_AC3_AC2_TXOP, edca[WME_AC_VO].wmep_txopLimit << 16 | edca[WME_AC_VI].wmep_txopLimit); /* XXX ACK policy? */ (void)otus_write_barrier(sc); #undef AIFS #undef EXP2 } static void otus_updateslot(struct otus_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t slottime; OTUS_LOCK_ASSERT(sc); slottime = IEEE80211_GET_SLOTTIME(ic); otus_write(sc, AR_MAC_REG_SLOT_TIME, slottime << 10); (void)otus_write_barrier(sc); } int otus_init_mac(struct otus_softc *sc) { int error; OTUS_LOCK_ASSERT(sc); otus_write(sc, AR_MAC_REG_ACK_EXTENSION, 0x40); otus_write(sc, AR_MAC_REG_RETRY_MAX, 0); otus_write(sc, AR_MAC_REG_SNIFFER, 0x2000000); otus_write(sc, AR_MAC_REG_RX_THRESHOLD, 0xc1f80); otus_write(sc, AR_MAC_REG_RX_PE_DELAY, 0x70); otus_write(sc, AR_MAC_REG_EIFS_AND_SIFS, 0xa144000); otus_write(sc, AR_MAC_REG_SLOT_TIME, 9 << 10); otus_write(sc, AR_MAC_REG_TID_CFACK_CFEND_RATE, 0x19000000); /* NAV protects ACK only (in TXOP). */ otus_write(sc, AR_MAC_REG_TXOP_DURATION, 0x201); /* Set beacon Tx power to 0x7. */ otus_write(sc, AR_MAC_REG_BCN_HT1, 0x8000170); otus_write(sc, AR_MAC_REG_BACKOFF_PROTECT, 0x105); otus_write(sc, AR_MAC_REG_AMPDU_FACTOR, 0x10000a); /* Filter any control frames, BAR is bit 24. */ // otus_write(sc, AR_MAC_REG_FRAMETYPE_FILTER, 0x0500ffff); // otus_write(sc, AR_MAC_REG_RX_CONTROL, 0x1); otus_write(sc, AR_MAC_REG_BASIC_RATE, 0x150f); otus_write(sc, AR_MAC_REG_MANDATORY_RATE, 0x150f); otus_write(sc, AR_MAC_REG_RTS_CTS_RATE, 0x10b01bb); otus_write(sc, AR_MAC_REG_ACK_TPC, 0x4003c1e); /* Enable LED0 and LED1. */ otus_write(sc, AR_GPIO_REG_PORT_TYPE, 0x3); otus_write(sc, AR_GPIO_REG_PORT_DATA, 0x3); /* Switch MAC to OTUS interface. */ otus_write(sc, 0x1c3600, 0x3); otus_write(sc, AR_MAC_REG_AMPDU_RX_THRESH, 0xffff); otus_write(sc, AR_MAC_REG_MISC_680, 0xf00008); /* Disable Rx timeout (workaround). */ otus_write(sc, AR_MAC_REG_RX_TIMEOUT, 0); /* Set USB Rx stream mode maximum frame number to 2. */ otus_write(sc, 0x1e1110, 0x4); /* Set USB Rx stream mode timeout to 10us. */ otus_write(sc, 0x1e1114, 0x80); /* Set clock frequency to 88/80MHz. */ otus_write(sc, AR_PWR_REG_CLOCK_SEL, 0x73); /* Set WLAN DMA interrupt mode: generate intr per packet. */ otus_write(sc, AR_MAC_REG_TXRX_MPI, 0x110011); otus_write(sc, AR_MAC_REG_FCS_SELECT, 0x4); otus_write(sc, AR_MAC_REG_TXOP_NOT_ENOUGH_INDICATION, 0x141e0f48); /* Disable HW decryption for now. */ otus_write(sc, AR_MAC_REG_ENCRYPTION, 0x78); if ((error = otus_write_barrier(sc)) != 0) return error; /* Set default EDCA parameters. */ otus_updateedca_locked(sc); return 0; } /* * Return default value for PHY register based on current operating mode. */ uint32_t otus_phy_get_def(struct otus_softc *sc, uint32_t reg) { int i; for (i = 0; i < nitems(ar5416_phy_regs); i++) if (AR_PHY(ar5416_phy_regs[i]) == reg) return sc->phy_vals[i]; return 0; /* Register not found. */ } /* * Update PHY's programming based on vendor-specific data stored in EEPROM. * This is for FEM-type devices only. */ int otus_set_board_values(struct otus_softc *sc, struct ieee80211_channel *c) { const struct ModalEepHeader *eep; uint32_t tmp, offset; if (IEEE80211_IS_CHAN_5GHZ(c)) eep = &sc->eeprom.modalHeader[0]; else eep = &sc->eeprom.modalHeader[1]; /* Offset of chain 2. */ offset = 2 * 0x1000; tmp = le32toh(eep->antCtrlCommon); otus_write(sc, AR_PHY_SWITCH_COM, tmp); tmp = le32toh(eep->antCtrlChain[0]); otus_write(sc, AR_PHY_SWITCH_CHAIN_0, tmp); tmp = le32toh(eep->antCtrlChain[1]); otus_write(sc, AR_PHY_SWITCH_CHAIN_0 + offset, tmp); if (1 /* sc->sc_sco == AR_SCO_SCN */) { tmp = otus_phy_get_def(sc, AR_PHY_SETTLING); tmp &= ~(0x7f << 7); tmp |= (eep->switchSettling & 0x7f) << 7; otus_write(sc, AR_PHY_SETTLING, tmp); } tmp = otus_phy_get_def(sc, AR_PHY_DESIRED_SZ); tmp &= ~0xffff; tmp |= eep->pgaDesiredSize << 8 | eep->adcDesiredSize; otus_write(sc, AR_PHY_DESIRED_SZ, tmp); tmp = eep->txEndToXpaOff << 24 | eep->txEndToXpaOff << 16 | eep->txFrameToXpaOn << 8 | eep->txFrameToXpaOn; otus_write(sc, AR_PHY_RF_CTL4, tmp); tmp = otus_phy_get_def(sc, AR_PHY_RF_CTL3); tmp &= ~(0xff << 16); tmp |= eep->txEndToRxOn << 16; otus_write(sc, AR_PHY_RF_CTL3, tmp); tmp = otus_phy_get_def(sc, AR_PHY_CCA); tmp &= ~(0x7f << 12); tmp |= (eep->thresh62 & 0x7f) << 12; otus_write(sc, AR_PHY_CCA, tmp); tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN); tmp &= ~(0x3f << 12); tmp |= (eep->txRxAttenCh[0] & 0x3f) << 12; otus_write(sc, AR_PHY_RXGAIN, tmp); tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN + offset); tmp &= ~(0x3f << 12); tmp |= (eep->txRxAttenCh[1] & 0x3f) << 12; otus_write(sc, AR_PHY_RXGAIN + offset, tmp); tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ); tmp &= ~(0x3f << 18); tmp |= (eep->rxTxMarginCh[0] & 0x3f) << 18; if (IEEE80211_IS_CHAN_5GHZ(c)) { tmp &= ~(0xf << 10); tmp |= (eep->bswMargin[0] & 0xf) << 10; } otus_write(sc, AR_PHY_GAIN_2GHZ, tmp); tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ + offset); tmp &= ~(0x3f << 18); tmp |= (eep->rxTxMarginCh[1] & 0x3f) << 18; otus_write(sc, AR_PHY_GAIN_2GHZ + offset, tmp); tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4); tmp &= ~(0x3f << 5 | 0x1f); tmp |= (eep->iqCalICh[0] & 0x3f) << 5 | (eep->iqCalQCh[0] & 0x1f); otus_write(sc, AR_PHY_TIMING_CTRL4, tmp); tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4 + offset); tmp &= ~(0x3f << 5 | 0x1f); tmp |= (eep->iqCalICh[1] & 0x3f) << 5 | (eep->iqCalQCh[1] & 0x1f); otus_write(sc, AR_PHY_TIMING_CTRL4 + offset, tmp); tmp = otus_phy_get_def(sc, AR_PHY_TPCRG1); tmp &= ~(0xf << 16); tmp |= (eep->xpd & 0xf) << 16; otus_write(sc, AR_PHY_TPCRG1, tmp); return otus_write_barrier(sc); } int otus_program_phy(struct otus_softc *sc, struct ieee80211_channel *c) { const uint32_t *vals; int error, i; /* Select PHY programming based on band and bandwidth. */ if (IEEE80211_IS_CHAN_2GHZ(c)) vals = ar5416_phy_vals_2ghz_20mhz; else vals = ar5416_phy_vals_5ghz_20mhz; for (i = 0; i < nitems(ar5416_phy_regs); i++) otus_write(sc, AR_PHY(ar5416_phy_regs[i]), vals[i]); sc->phy_vals = vals; if (sc->eeprom.baseEepHeader.deviceType == 0x80) /* FEM */ if ((error = otus_set_board_values(sc, c)) != 0) return error; /* Initial Tx power settings. */ otus_write(sc, AR_PHY_POWER_TX_RATE_MAX, 0x7f); otus_write(sc, AR_PHY_POWER_TX_RATE1, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE2, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE3, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE4, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE5, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE6, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE7, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE8, 0x3f3f3f3f); otus_write(sc, AR_PHY_POWER_TX_RATE9, 0x3f3f3f3f); if (IEEE80211_IS_CHAN_2GHZ(c)) otus_write(sc, AR_PWR_REG_PLL_ADDAC, 0x5163); else otus_write(sc, AR_PWR_REG_PLL_ADDAC, 0x5143); return otus_write_barrier(sc); } static __inline uint8_t otus_reverse_bits(uint8_t v) { v = ((v >> 1) & 0x55) | ((v & 0x55) << 1); v = ((v >> 2) & 0x33) | ((v & 0x33) << 2); v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4); return v; } int otus_set_rf_bank4(struct otus_softc *sc, struct ieee80211_channel *c) { uint8_t chansel, d0, d1; uint16_t data; int error; OTUS_LOCK_ASSERT(sc); d0 = 0; if (IEEE80211_IS_CHAN_5GHZ(c)) { chansel = (c->ic_freq - 4800) / 5; if (chansel & 1) d0 |= AR_BANK4_AMODE_REFSEL(2); else d0 |= AR_BANK4_AMODE_REFSEL(1); } else { d0 |= AR_BANK4_AMODE_REFSEL(2); if (c->ic_freq == 2484) { /* CH 14 */ d0 |= AR_BANK4_BMODE_LF_SYNTH_FREQ; chansel = 10 + (c->ic_freq - 2274) / 5; } else chansel = 16 + (c->ic_freq - 2272) / 5; chansel <<= 2; } d0 |= AR_BANK4_ADDR(1) | AR_BANK4_CHUP; d1 = otus_reverse_bits(chansel); /* Write bits 0-4 of d0 and d1. */ data = (d1 & 0x1f) << 5 | (d0 & 0x1f); otus_write(sc, AR_PHY(44), data); /* Write bits 5-7 of d0 and d1. */ data = (d1 >> 5) << 5 | (d0 >> 5); otus_write(sc, AR_PHY(58), data); if ((error = otus_write_barrier(sc)) == 0) otus_delay_ms(sc, 10); return error; } void otus_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa) { #define COEFF_SCALE_SHIFT 24 uint32_t exp, man; /* exponent = 14 - floor(log2(coeff)) */ for (exp = 31; exp > 0; exp--) if (coeff & (1 << exp)) break; KASSERT(exp != 0, ("exp")); exp = 14 - (exp - COEFF_SCALE_SHIFT); /* mantissa = floor(coeff * 2^exponent + 0.5) */ man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1)); *mantissa = man >> (COEFF_SCALE_SHIFT - exp); *exponent = exp - 16; #undef COEFF_SCALE_SHIFT } static int otus_set_chan(struct otus_softc *sc, struct ieee80211_channel *c, int assoc) { struct ieee80211com *ic = &sc->sc_ic; struct ar_cmd_frequency cmd; struct ar_rsp_frequency rsp; const uint32_t *vals; uint32_t coeff, exp, man, tmp; uint8_t code; int error, chan, i; error = 0; chan = ieee80211_chan2ieee(ic, c); OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "setting channel %d (%dMHz)\n", chan, c->ic_freq); tmp = IEEE80211_IS_CHAN_2GHZ(c) ? 0x105 : 0x104; otus_write(sc, AR_MAC_REG_DYNAMIC_SIFS_ACK, tmp); if ((error = otus_write_barrier(sc)) != 0) goto finish; /* Disable BB Heavy Clip. */ otus_write(sc, AR_PHY_HEAVY_CLIP_ENABLE, 0x200); if ((error = otus_write_barrier(sc)) != 0) goto finish; /* XXX Is that FREQ_START ? */ error = otus_cmd(sc, AR_CMD_FREQ_STRAT, NULL, 0, NULL, 0); if (error != 0) goto finish; /* Reprogram PHY and RF on channel band or bandwidth changes. */ if (sc->bb_reset || c->ic_flags != sc->sc_curchan->ic_flags) { OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "band switch\n"); /* Cold/Warm reset BB/ADDA. */ otus_write(sc, AR_PWR_REG_RESET, sc->bb_reset ? 0x800 : 0x400); if ((error = otus_write_barrier(sc)) != 0) goto finish; otus_write(sc, AR_PWR_REG_RESET, 0); if ((error = otus_write_barrier(sc)) != 0) goto finish; sc->bb_reset = 0; if ((error = otus_program_phy(sc, c)) != 0) { device_printf(sc->sc_dev, "%s: could not program PHY\n", __func__); goto finish; } /* Select RF programming based on band. */ if (IEEE80211_IS_CHAN_5GHZ(c)) vals = ar5416_banks_vals_5ghz; else vals = ar5416_banks_vals_2ghz; for (i = 0; i < nitems(ar5416_banks_regs); i++) otus_write(sc, AR_PHY(ar5416_banks_regs[i]), vals[i]); if ((error = otus_write_barrier(sc)) != 0) { device_printf(sc->sc_dev, "%s: could not program RF\n", __func__); goto finish; } code = AR_CMD_RF_INIT; } else { code = AR_CMD_FREQUENCY; } if ((error = otus_set_rf_bank4(sc, c)) != 0) goto finish; tmp = (sc->txmask == 0x5) ? 0x340 : 0x240; otus_write(sc, AR_PHY_TURBO, tmp); if ((error = otus_write_barrier(sc)) != 0) goto finish; /* Send firmware command to set channel. */ cmd.freq = htole32((uint32_t)c->ic_freq * 1000); cmd.dynht2040 = htole32(0); cmd.htena = htole32(1); /* Set Delta Slope (exponent and mantissa). */ coeff = (100 << 24) / c->ic_freq; otus_get_delta_slope(coeff, &exp, &man); cmd.dsc_exp = htole32(exp); cmd.dsc_man = htole32(man); OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "ds coeff=%u exp=%u man=%u\n", coeff, exp, man); /* For Short GI, coeff is 9/10 that of normal coeff. */ coeff = (9 * coeff) / 10; otus_get_delta_slope(coeff, &exp, &man); cmd.dsc_shgi_exp = htole32(exp); cmd.dsc_shgi_man = htole32(man); OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "ds shgi coeff=%u exp=%u man=%u\n", coeff, exp, man); /* Set wait time for AGC and noise calibration (100 or 200ms). */ cmd.check_loop_count = assoc ? htole32(2000) : htole32(1000); OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "%s\n", (code == AR_CMD_RF_INIT) ? "RF_INIT" : "FREQUENCY"); error = otus_cmd(sc, code, &cmd, sizeof cmd, &rsp, sizeof(rsp)); if (error != 0) goto finish; if ((rsp.status & htole32(AR_CAL_ERR_AGC | AR_CAL_ERR_NF_VAL)) != 0) { OTUS_DPRINTF(sc, OTUS_DEBUG_RESET, "status=0x%x\n", le32toh(rsp.status)); /* Force cold reset on next channel. */ sc->bb_reset = 1; } #ifdef USB_DEBUG if (otus_debug & OTUS_DEBUG_RESET) { device_printf(sc->sc_dev, "calibration status=0x%x\n", le32toh(rsp.status)); for (i = 0; i < 2; i++) { /* 2 Rx chains */ /* Sign-extend 9-bit NF values. */ device_printf(sc->sc_dev, "noisefloor chain %d=%d\n", i, (((int32_t)le32toh(rsp.nf[i])) << 4) >> 23); device_printf(sc->sc_dev, "noisefloor ext chain %d=%d\n", i, ((int32_t)le32toh(rsp.nf_ext[i])) >> 23); } } #endif for (i = 0; i < OTUS_NUM_CHAINS; i++) { sc->sc_nf[i] = ((((int32_t)le32toh(rsp.nf[i])) << 4) >> 23); } sc->sc_curchan = c; finish: return (error); } #ifdef notyet int otus_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct otus_softc *sc = ic->ic_softc; struct otus_cmd_key cmd; /* Defer setting of WEP keys until interface is brought up. */ if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) return 0; /* Do it in a process context. */ cmd.key = *k; cmd.associd = (ni != NULL) ? ni->ni_associd : 0; otus_do_async(sc, otus_set_key_cb, &cmd, sizeof cmd); return 0; } void otus_set_key_cb(struct otus_softc *sc, void *arg) { struct otus_cmd_key *cmd = arg; struct ieee80211_key *k = &cmd->key; struct ar_cmd_ekey key; uint16_t cipher; int error; memset(&key, 0, sizeof key); if (k->k_flags & IEEE80211_KEY_GROUP) { key.uid = htole16(k->k_id); IEEE80211_ADDR_COPY(key.macaddr, sc->sc_ic.ic_myaddr); key.macaddr[0] |= 0x80; } else { key.uid = htole16(OTUS_UID(cmd->associd)); IEEE80211_ADDR_COPY(key.macaddr, ni->ni_macaddr); } key.kix = htole16(0); /* Map net80211 cipher to hardware. */ switch (k->k_cipher) { case IEEE80211_CIPHER_WEP40: cipher = AR_CIPHER_WEP64; break; case IEEE80211_CIPHER_WEP104: cipher = AR_CIPHER_WEP128; break; case IEEE80211_CIPHER_TKIP: cipher = AR_CIPHER_TKIP; break; case IEEE80211_CIPHER_CCMP: cipher = AR_CIPHER_AES; break; default: return; } key.cipher = htole16(cipher); memcpy(key.key, k->k_key, MIN(k->k_len, 16)); error = otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL, 0); if (error != 0 || k->k_cipher != IEEE80211_CIPHER_TKIP) return; /* TKIP: set Tx/Rx MIC Key. */ key.kix = htole16(1); memcpy(key.key, k->k_key + 16, 16); (void)otus_cmd(sc, AR_CMD_EKEY, &key, sizeof key, NULL, 0); } void otus_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct otus_softc *sc = ic->ic_softc; struct otus_cmd_key cmd; if (!(ic->ic_if.if_flags & IFF_RUNNING) || ic->ic_state != IEEE80211_S_RUN) return; /* Nothing to do. */ /* Do it in a process context. */ cmd.key = *k; cmd.associd = (ni != NULL) ? ni->ni_associd : 0; otus_do_async(sc, otus_delete_key_cb, &cmd, sizeof cmd); } void otus_delete_key_cb(struct otus_softc *sc, void *arg) { struct otus_cmd_key *cmd = arg; struct ieee80211_key *k = &cmd->key; uint32_t uid; if (k->k_flags & IEEE80211_KEY_GROUP) uid = htole32(k->k_id); else uid = htole32(OTUS_UID(cmd->associd)); (void)otus_cmd(sc, AR_CMD_DKEY, &uid, sizeof uid, NULL, 0); } #endif /* * XXX TODO: check if we have to be doing any calibration in the host * or whether it's purely a firmware thing. */ void otus_calibrate_to(void *arg, int pending) { #if 0 struct otus_softc *sc = arg; device_printf(sc->sc_dev, "%s: called\n", __func__); struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; int s; if (usbd_is_dying(sc->sc_udev)) return; usbd_ref_incr(sc->sc_udev); s = splnet(); ni = ic->ic_bss; ieee80211_amrr_choose(&sc->amrr, ni, &((struct otus_node *)ni)->amn); splx(s); if (!usbd_is_dying(sc->sc_udev)) timeout_add_sec(&sc->calib_to, 1); usbd_ref_decr(sc->sc_udev); #endif } int otus_set_bssid(struct otus_softc *sc, const uint8_t *bssid) { OTUS_LOCK_ASSERT(sc); otus_write(sc, AR_MAC_REG_BSSID_L, bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); otus_write(sc, AR_MAC_REG_BSSID_H, bssid[4] | bssid[5] << 8); return otus_write_barrier(sc); } int otus_set_macaddr(struct otus_softc *sc, const uint8_t *addr) { OTUS_LOCK_ASSERT(sc); otus_write(sc, AR_MAC_REG_MAC_ADDR_L, addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); otus_write(sc, AR_MAC_REG_MAC_ADDR_H, addr[4] | addr[5] << 8); return otus_write_barrier(sc); } /* Default single-LED. */ void otus_led_newstate_type1(struct otus_softc *sc) { /* TBD */ device_printf(sc->sc_dev, "%s: TODO\n", __func__); } /* NETGEAR, dual-LED. */ void otus_led_newstate_type2(struct otus_softc *sc) { /* TBD */ device_printf(sc->sc_dev, "%s: TODO\n", __func__); } /* NETGEAR, single-LED/3 colors (blue, red, purple.) */ void otus_led_newstate_type3(struct otus_softc *sc) { #if 0 struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t state = sc->led_state; OTUS_LOCK_ASSERT(sc); if (!vap) { state = 0; /* led off */ } else if (vap->iv_state == IEEE80211_S_INIT) { state = 0; /* LED off. */ } else if (vap->iv_state == IEEE80211_S_RUN) { /* Associated, LED always on. */ if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) state = AR_LED0_ON; /* 2GHz=>Red. */ else state = AR_LED1_ON; /* 5GHz=>Blue. */ } else { /* Scanning, blink LED. */ state ^= AR_LED0_ON | AR_LED1_ON; if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) state &= ~AR_LED1_ON; else state &= ~AR_LED0_ON; } if (state != sc->led_state) { otus_write(sc, AR_GPIO_REG_PORT_DATA, state); if (otus_write_barrier(sc) == 0) sc->led_state = state; } #endif } /* * TODO: * * + If in monitor mode, set BSSID to all zeros, else the node BSSID. * + Handle STA + monitor (eg tcpdump/promisc/radiotap) as well as * pure monitor mode. */ static int otus_set_operating_mode(struct otus_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t rx_ctrl; uint32_t frm_filt; uint32_t cam_mode; uint32_t rx_sniffer; OTUS_LOCK_ASSERT(sc); /* XXX TODO: too many magic constants */ rx_ctrl = 0x1; /* Filter any control frames, BAR is bit 24. */ frm_filt = 0x0500ffff; cam_mode = 0x0f000002; /* XXX STA */ rx_sniffer = 0x20000000; switch (ic->ic_opmode) { case IEEE80211_M_STA: cam_mode = 0x0f000002; /* XXX STA */ rx_ctrl = 0x1; frm_filt = 0x0500ffff; rx_sniffer = 0x20000000; break; case IEEE80211_M_MONITOR: cam_mode = 0x0f000002; /* XXX STA */ rx_ctrl = 0x1; frm_filt = 0xffffffff; rx_sniffer = 0x20000001; break; default: break; } otus_write(sc, AR_MAC_REG_SNIFFER, rx_sniffer); otus_write(sc, AR_MAC_REG_CAM_MODE, cam_mode); otus_write(sc, AR_MAC_REG_FRAMETYPE_FILTER, frm_filt); otus_write(sc, AR_MAC_REG_RX_CONTROL, cam_mode); (void) otus_write_barrier(sc); return (0); } int otus_init(struct otus_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; int error; OTUS_UNLOCK_ASSERT(sc); OTUS_LOCK(sc); /* Drain any pending TX frames */ otus_drain_mbufq(sc); /* Init MAC */ if ((error = otus_init_mac(sc)) != 0) { OTUS_UNLOCK(sc); device_printf(sc->sc_dev, "%s: could not initialize MAC\n", __func__); return error; } (void) otus_set_macaddr(sc, ic->ic_macaddr); (void) otus_set_operating_mode(sc); sc->bb_reset = 1; /* Force cold reset. */ if ((error = otus_set_chan(sc, ic->ic_curchan, 0)) != 0) { OTUS_UNLOCK(sc); device_printf(sc->sc_dev, "%s: could not set channel\n", __func__); return error; } /* Start Rx. */ otus_write(sc, AR_MAC_REG_DMA_TRIGGER, 0x100); (void)otus_write_barrier(sc); sc->sc_running = 1; OTUS_UNLOCK(sc); return 0; } void otus_stop(struct otus_softc *sc) { #if 0 int s; #endif OTUS_UNLOCK_ASSERT(sc); OTUS_LOCK(sc); sc->sc_running = 0; sc->sc_tx_timer = 0; OTUS_UNLOCK(sc); taskqueue_drain_timeout(taskqueue_thread, &sc->scan_to); taskqueue_drain_timeout(taskqueue_thread, &sc->calib_to); taskqueue_drain(taskqueue_thread, &sc->tx_task); OTUS_LOCK(sc); sc->sc_running = 0; /* Stop Rx. */ otus_write(sc, AR_MAC_REG_DMA_TRIGGER, 0); (void)otus_write_barrier(sc); /* Drain any pending TX frames */ otus_drain_mbufq(sc); OTUS_UNLOCK(sc); } Index: head/sys/dev/ral/rt2560.c =================================================================== --- head/sys/dev/ral/rt2560.c (revision 298817) +++ head/sys/dev/ral/rt2560.c (revision 298818) @@ -1,2745 +1,2745 @@ /* $FreeBSD$ */ /*- * Copyright (c) 2005, 2006 * Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /*- * Ralink Technology RT2560 chipset driver * http://www.ralinktech.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RT2560_RSSI(sc, rssi) \ ((rssi) > (RT2560_NOISE_FLOOR + (sc)->rssi_corr) ? \ ((rssi) - RT2560_NOISE_FLOOR - (sc)->rssi_corr) : 0) #define RAL_DEBUG #ifdef RAL_DEBUG #define DPRINTF(sc, fmt, ...) do { \ if (sc->sc_debug > 0) \ printf(fmt, __VA_ARGS__); \ } while (0) #define DPRINTFN(sc, n, fmt, ...) do { \ if (sc->sc_debug >= (n)) \ printf(fmt, __VA_ARGS__); \ } while (0) #else #define DPRINTF(sc, fmt, ...) #define DPRINTFN(sc, n, fmt, ...) #endif static struct ieee80211vap *rt2560_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void rt2560_vap_delete(struct ieee80211vap *); static void rt2560_dma_map_addr(void *, bus_dma_segment_t *, int, int); static int rt2560_alloc_tx_ring(struct rt2560_softc *, struct rt2560_tx_ring *, int); static void rt2560_reset_tx_ring(struct rt2560_softc *, struct rt2560_tx_ring *); static void rt2560_free_tx_ring(struct rt2560_softc *, struct rt2560_tx_ring *); static int rt2560_alloc_rx_ring(struct rt2560_softc *, struct rt2560_rx_ring *, int); static void rt2560_reset_rx_ring(struct rt2560_softc *, struct rt2560_rx_ring *); static void rt2560_free_rx_ring(struct rt2560_softc *, struct rt2560_rx_ring *); static int rt2560_newstate(struct ieee80211vap *, enum ieee80211_state, int); static uint16_t rt2560_eeprom_read(struct rt2560_softc *, uint8_t); static void rt2560_encryption_intr(struct rt2560_softc *); static void rt2560_tx_intr(struct rt2560_softc *); static void rt2560_prio_intr(struct rt2560_softc *); static void rt2560_decryption_intr(struct rt2560_softc *); static void rt2560_rx_intr(struct rt2560_softc *); static void rt2560_beacon_update(struct ieee80211vap *, int item); static void rt2560_beacon_expire(struct rt2560_softc *); static void rt2560_wakeup_expire(struct rt2560_softc *); static void rt2560_scan_start(struct ieee80211com *); static void rt2560_scan_end(struct ieee80211com *); static void rt2560_set_channel(struct ieee80211com *); static void rt2560_setup_tx_desc(struct rt2560_softc *, struct rt2560_tx_desc *, uint32_t, int, int, int, bus_addr_t); static int rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *, struct ieee80211_node *); static int rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *, struct ieee80211_node *); static int rt2560_tx_data(struct rt2560_softc *, struct mbuf *, struct ieee80211_node *); static int rt2560_transmit(struct ieee80211com *, struct mbuf *); static void rt2560_start(struct rt2560_softc *); static void rt2560_watchdog(void *); static void rt2560_parent(struct ieee80211com *); static void rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t); static uint8_t rt2560_bbp_read(struct rt2560_softc *, uint8_t); static void rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t); static void rt2560_set_chan(struct rt2560_softc *, struct ieee80211_channel *); #if 0 static void rt2560_disable_rf_tune(struct rt2560_softc *); #endif static void rt2560_enable_tsf_sync(struct rt2560_softc *); static void rt2560_enable_tsf(struct rt2560_softc *); static void rt2560_update_plcp(struct rt2560_softc *); static void rt2560_update_slot(struct ieee80211com *); static void rt2560_set_basicrates(struct rt2560_softc *, const struct ieee80211_rateset *); static void rt2560_update_led(struct rt2560_softc *, int, int); static void rt2560_set_bssid(struct rt2560_softc *, const uint8_t *); static void rt2560_set_macaddr(struct rt2560_softc *, const uint8_t *); static void rt2560_get_macaddr(struct rt2560_softc *, uint8_t *); static void rt2560_update_promisc(struct ieee80211com *); static const char *rt2560_get_rf(int); static void rt2560_read_config(struct rt2560_softc *); static int rt2560_bbp_init(struct rt2560_softc *); static void rt2560_set_txantenna(struct rt2560_softc *, int); static void rt2560_set_rxantenna(struct rt2560_softc *, int); static void rt2560_init_locked(struct rt2560_softc *); static void rt2560_init(void *); static void rt2560_stop_locked(struct rt2560_softc *); static int rt2560_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static const struct { uint32_t reg; uint32_t val; } rt2560_def_mac[] = { RT2560_DEF_MAC }; static const struct { uint8_t reg; uint8_t val; } rt2560_def_bbp[] = { RT2560_DEF_BBP }; static const uint32_t rt2560_rf2522_r2[] = RT2560_RF2522_R2; static const uint32_t rt2560_rf2523_r2[] = RT2560_RF2523_R2; static const uint32_t rt2560_rf2524_r2[] = RT2560_RF2524_R2; static const uint32_t rt2560_rf2525_r2[] = RT2560_RF2525_R2; static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2; static const uint32_t rt2560_rf2525e_r2[] = RT2560_RF2525E_R2; static const uint32_t rt2560_rf2526_r2[] = RT2560_RF2526_R2; static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2; static const struct { uint8_t chan; uint32_t r1, r2, r4; } rt2560_rf5222[] = { RT2560_RF5222 }; int rt2560_attach(device_t dev, int id) { struct rt2560_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; - uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)]; + uint8_t bands[IEEE80211_MODE_BYTES]; int error; sc->sc_dev = dev; mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0); mbufq_init(&sc->sc_snd, ifqmaxlen); /* retrieve RT2560 rev. no */ sc->asic_rev = RAL_READ(sc, RT2560_CSR0); /* retrieve RF rev. no and various other things from EEPROM */ rt2560_read_config(sc); device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n", sc->asic_rev, rt2560_get_rf(sc->rf_rev)); /* * Allocate Tx and Rx rings. */ error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Tx ring\n"); goto fail1; } error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT); if (error != 0) { device_printf(sc->sc_dev, "could not allocate ATIM ring\n"); goto fail2; } error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Prio ring\n"); goto fail3; } error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Beacon ring\n"); goto fail4; } error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Rx ring\n"); goto fail5; } /* retrieve MAC address */ rt2560_get_macaddr(sc, ic->ic_macaddr); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(dev); ic->ic_opmode = IEEE80211_M_STA; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode */ | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ | IEEE80211_C_HOSTAP /* hostap mode */ | IEEE80211_C_MONITOR /* monitor mode */ | IEEE80211_C_AHDEMO /* adhoc demo mode */ | IEEE80211_C_WDS /* 4-address traffic works */ | IEEE80211_C_MBSS /* mesh point link mode */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ | IEEE80211_C_BGSCAN /* capable of bg scanning */ #ifdef notyet | IEEE80211_C_TXFRAG /* handle tx frags */ #endif ; memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); if (sc->rf_rev == RT2560_RF_5222) setbit(bands, IEEE80211_MODE_11A); ieee80211_init_channels(ic, NULL, bands); ieee80211_ifattach(ic); ic->ic_raw_xmit = rt2560_raw_xmit; ic->ic_updateslot = rt2560_update_slot; ic->ic_update_promisc = rt2560_update_promisc; ic->ic_scan_start = rt2560_scan_start; ic->ic_scan_end = rt2560_scan_end; ic->ic_set_channel = rt2560_set_channel; ic->ic_vap_create = rt2560_vap_create; ic->ic_vap_delete = rt2560_vap_delete; ic->ic_parent = rt2560_parent; ic->ic_transmit = rt2560_transmit; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), RT2560_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), RT2560_RX_RADIOTAP_PRESENT); /* * Add a few sysctl knobs. */ #ifdef RAL_DEBUG SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug", CTLFLAG_RW, &sc->sc_debug, 0, "debug msgs"); #endif SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)"); SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)"); if (bootverbose) ieee80211_announce(ic); return 0; fail5: rt2560_free_tx_ring(sc, &sc->bcnq); fail4: rt2560_free_tx_ring(sc, &sc->prioq); fail3: rt2560_free_tx_ring(sc, &sc->atimq); fail2: rt2560_free_tx_ring(sc, &sc->txq); fail1: mtx_destroy(&sc->sc_mtx); return ENXIO; } int rt2560_detach(void *xsc) { struct rt2560_softc *sc = xsc; struct ieee80211com *ic = &sc->sc_ic; rt2560_stop(sc); ieee80211_ifdetach(ic); mbufq_drain(&sc->sc_snd); rt2560_free_tx_ring(sc, &sc->txq); rt2560_free_tx_ring(sc, &sc->atimq); rt2560_free_tx_ring(sc, &sc->prioq); rt2560_free_tx_ring(sc, &sc->bcnq); rt2560_free_rx_ring(sc, &sc->rxq); mtx_destroy(&sc->sc_mtx); return 0; } static struct ieee80211vap * rt2560_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct rt2560_softc *sc = ic->ic_softc; struct rt2560_vap *rvp; struct ieee80211vap *vap; switch (opmode) { case IEEE80211_M_STA: case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: case IEEE80211_M_MONITOR: case IEEE80211_M_HOSTAP: case IEEE80211_M_MBSS: /* XXXRP: TBD */ if (!TAILQ_EMPTY(&ic->ic_vaps)) { device_printf(sc->sc_dev, "only 1 vap supported\n"); return NULL; } if (opmode == IEEE80211_M_STA) flags |= IEEE80211_CLONE_NOBEACONS; break; case IEEE80211_M_WDS: if (TAILQ_EMPTY(&ic->ic_vaps) || ic->ic_opmode != IEEE80211_M_HOSTAP) { device_printf(sc->sc_dev, "wds only supported in ap mode\n"); return NULL; } /* * Silently remove any request for a unique * bssid; WDS vap's always share the local * mac address. */ flags &= ~IEEE80211_CLONE_BSSID; break; default: device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); return NULL; } rvp = malloc(sizeof(struct rt2560_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &rvp->ral_vap; ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); /* override state transition machine */ rvp->ral_newstate = vap->iv_newstate; vap->iv_newstate = rt2560_newstate; vap->iv_update_beacon = rt2560_beacon_update; ieee80211_ratectl_init(vap); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); if (TAILQ_FIRST(&ic->ic_vaps) == vap) ic->ic_opmode = opmode; return vap; } static void rt2560_vap_delete(struct ieee80211vap *vap) { struct rt2560_vap *rvp = RT2560_VAP(vap); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(rvp, M_80211_VAP); } void rt2560_resume(void *xsc) { struct rt2560_softc *sc = xsc; if (sc->sc_ic.ic_nrunning > 0) rt2560_init(sc); } static void rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { if (error != 0) return; KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); *(bus_addr_t *)arg = segs[0].ds_addr; } static int rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring, int count) { int i, error; ring->count = count; ring->queued = 0; ring->cur = ring->next = 0; ring->cur_encrypt = ring->next_encrypt = 0; error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_TX_DESC_SIZE, 1, count * RT2560_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, count * RT2560_TX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ring->data == NULL) { device_printf(sc->sc_dev, "could not allocate soft data\n"); error = ENOMEM; goto fail; } error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RT2560_MAX_SCATTER, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create data DMA tag\n"); goto fail; } for (i = 0; i < count; i++) { error = bus_dmamap_create(ring->data_dmat, 0, &ring->data[i].map); if (error != 0) { device_printf(sc->sc_dev, "could not create DMA map\n"); goto fail; } } return 0; fail: rt2560_free_tx_ring(sc, ring); return error; } static void rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring) { struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; int i; for (i = 0; i < ring->count; i++) { desc = &ring->desc[i]; data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } desc->flags = 0; } bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); ring->queued = 0; ring->cur = ring->next = 0; ring->cur_encrypt = ring->next_encrypt = 0; } static void rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring) { struct rt2560_tx_data *data; int i; if (ring->desc != NULL) { bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->desc_dmat, ring->desc_map); bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); } if (ring->desc_dmat != NULL) bus_dma_tag_destroy(ring->desc_dmat); if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->ni != NULL) ieee80211_free_node(data->ni); if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } free(ring->data, M_DEVBUF); } if (ring->data_dmat != NULL) bus_dma_tag_destroy(ring->data_dmat); } static int rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring, int count) { struct rt2560_rx_desc *desc; struct rt2560_rx_data *data; bus_addr_t physaddr; int i, error; ring->count = count; ring->cur = ring->next = 0; ring->cur_decrypt = 0; error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_RX_DESC_SIZE, 1, count * RT2560_RX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, count * RT2560_RX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ring->data == NULL) { device_printf(sc->sc_dev, "could not allocate soft data\n"); error = ENOMEM; goto fail; } /* * Pre-allocate Rx buffers and populate Rx ring. */ error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create data DMA tag\n"); goto fail; } for (i = 0; i < count; i++) { desc = &sc->rxq.desc[i]; data = &sc->rxq.data[i]; error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "could not create DMA map\n"); goto fail; } data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (data->m == NULL) { device_printf(sc->sc_dev, "could not allocate rx mbuf\n"); error = ENOMEM; goto fail; } error = bus_dmamap_load(ring->data_dmat, data->map, mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr, &physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load rx buf DMA map"); goto fail; } desc->flags = htole32(RT2560_RX_BUSY); desc->physaddr = htole32(physaddr); } bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); return 0; fail: rt2560_free_rx_ring(sc, ring); return error; } static void rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring) { int i; for (i = 0; i < ring->count; i++) { ring->desc[i].flags = htole32(RT2560_RX_BUSY); ring->data[i].drop = 0; } bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); ring->cur = ring->next = 0; ring->cur_decrypt = 0; } static void rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring) { struct rt2560_rx_data *data; int i; if (ring->desc != NULL) { bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->desc_dmat, ring->desc_map); bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); } if (ring->desc_dmat != NULL) bus_dma_tag_destroy(ring->desc_dmat); if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } free(ring->data, M_DEVBUF); } if (ring->data_dmat != NULL) bus_dma_tag_destroy(ring->data_dmat); } static int rt2560_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct rt2560_vap *rvp = RT2560_VAP(vap); struct rt2560_softc *sc = vap->iv_ic->ic_softc; int error; if (nstate == IEEE80211_S_INIT && vap->iv_state == IEEE80211_S_RUN) { /* abort TSF synchronization */ RAL_WRITE(sc, RT2560_CSR14, 0); /* turn association led off */ rt2560_update_led(sc, 0, 0); } error = rvp->ral_newstate(vap, nstate, arg); if (error == 0 && nstate == IEEE80211_S_RUN) { struct ieee80211_node *ni = vap->iv_bss; struct mbuf *m; if (vap->iv_opmode != IEEE80211_M_MONITOR) { rt2560_update_plcp(sc); rt2560_set_basicrates(sc, &ni->ni_rates); rt2560_set_bssid(sc, ni->ni_bssid); } if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_IBSS || vap->iv_opmode == IEEE80211_M_MBSS) { m = ieee80211_beacon_alloc(ni); if (m == NULL) { device_printf(sc->sc_dev, "could not allocate beacon\n"); return ENOBUFS; } ieee80211_ref_node(ni); error = rt2560_tx_bcn(sc, m, ni); if (error != 0) return error; } /* turn assocation led on */ rt2560_update_led(sc, 1, 0); if (vap->iv_opmode != IEEE80211_M_MONITOR) rt2560_enable_tsf_sync(sc); else rt2560_enable_tsf(sc); } return error; } /* * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or * 93C66). */ static uint16_t rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr) { uint32_t tmp; uint16_t val; int n; /* clock C once before the first command */ RT2560_EEPROM_CTL(sc, 0); RT2560_EEPROM_CTL(sc, RT2560_S); RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); RT2560_EEPROM_CTL(sc, RT2560_S); /* write start bit (1) */ RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D); RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C); /* write READ opcode (10) */ RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D); RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C); RT2560_EEPROM_CTL(sc, RT2560_S); RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); /* write address (A5-A0 or A7-A0) */ n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7; for (; n >= 0; n--) { RT2560_EEPROM_CTL(sc, RT2560_S | (((addr >> n) & 1) << RT2560_SHIFT_D)); RT2560_EEPROM_CTL(sc, RT2560_S | (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C); } RT2560_EEPROM_CTL(sc, RT2560_S); /* read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); tmp = RAL_READ(sc, RT2560_CSR21); val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n; RT2560_EEPROM_CTL(sc, RT2560_S); } RT2560_EEPROM_CTL(sc, 0); /* clear Chip Select and clock C */ RT2560_EEPROM_CTL(sc, RT2560_S); RT2560_EEPROM_CTL(sc, 0); RT2560_EEPROM_CTL(sc, RT2560_C); return val; } /* * Some frames were processed by the hardware cipher engine and are ready for * transmission. */ static void rt2560_encryption_intr(struct rt2560_softc *sc) { struct rt2560_tx_desc *desc; int hw; /* retrieve last descriptor index processed by cipher engine */ hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr; hw /= RT2560_TX_DESC_SIZE; bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, BUS_DMASYNC_POSTREAD); while (sc->txq.next_encrypt != hw) { if (sc->txq.next_encrypt == sc->txq.cur_encrypt) { printf("hw encrypt %d, cur_encrypt %d\n", hw, sc->txq.cur_encrypt); break; } desc = &sc->txq.desc[sc->txq.next_encrypt]; if ((le32toh(desc->flags) & RT2560_TX_BUSY) || (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY)) break; /* for TKIP, swap eiv field to fix a bug in ASIC */ if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) == RT2560_TX_CIPHER_TKIP) desc->eiv = bswap32(desc->eiv); /* mark the frame ready for transmission */ desc->flags |= htole32(RT2560_TX_VALID); desc->flags |= htole32(RT2560_TX_BUSY); DPRINTFN(sc, 15, "encryption done idx=%u\n", sc->txq.next_encrypt); sc->txq.next_encrypt = (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT; } bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, BUS_DMASYNC_PREWRITE); /* kick Tx */ RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX); } static void rt2560_tx_intr(struct rt2560_softc *sc) { struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; struct mbuf *m; struct ieee80211vap *vap; struct ieee80211_node *ni; uint32_t flags; int retrycnt, status; bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, BUS_DMASYNC_POSTREAD); for (;;) { desc = &sc->txq.desc[sc->txq.next]; data = &sc->txq.data[sc->txq.next]; flags = le32toh(desc->flags); if ((flags & RT2560_TX_BUSY) || (flags & RT2560_TX_CIPHER_BUSY) || !(flags & RT2560_TX_VALID)) break; m = data->m; ni = data->ni; vap = ni->ni_vap; switch (flags & RT2560_TX_RESULT_MASK) { case RT2560_TX_SUCCESS: retrycnt = 0; DPRINTFN(sc, 10, "%s\n", "data frame sent successfully"); if (data->rix != IEEE80211_FIXED_RATE_NONE) ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, &retrycnt, NULL); status = 0; break; case RT2560_TX_SUCCESS_RETRY: retrycnt = RT2560_TX_RETRYCNT(flags); DPRINTFN(sc, 9, "data frame sent after %u retries\n", retrycnt); if (data->rix != IEEE80211_FIXED_RATE_NONE) ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, &retrycnt, NULL); status = 0; break; case RT2560_TX_FAIL_RETRY: retrycnt = RT2560_TX_RETRYCNT(flags); DPRINTFN(sc, 9, "data frame failed after %d retries\n", retrycnt); if (data->rix != IEEE80211_FIXED_RATE_NONE) ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_FAILURE, &retrycnt, NULL); status = 1; break; case RT2560_TX_FAIL_INVALID: case RT2560_TX_FAIL_OTHER: default: device_printf(sc->sc_dev, "sending data frame failed " "0x%08x\n", flags); status = 1; } bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->txq.data_dmat, data->map); ieee80211_tx_complete(ni, m, status); data->ni = NULL; data->m = NULL; /* descriptor is no longer valid */ desc->flags &= ~htole32(RT2560_TX_VALID); DPRINTFN(sc, 15, "tx done idx=%u\n", sc->txq.next); sc->txq.queued--; sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT; } bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, BUS_DMASYNC_PREWRITE); if (sc->prioq.queued == 0 && sc->txq.queued == 0) sc->sc_tx_timer = 0; if (sc->txq.queued < RT2560_TX_RING_COUNT - 1) rt2560_start(sc); } static void rt2560_prio_intr(struct rt2560_softc *sc) { struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; struct ieee80211_node *ni; struct mbuf *m; int flags; bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, BUS_DMASYNC_POSTREAD); for (;;) { desc = &sc->prioq.desc[sc->prioq.next]; data = &sc->prioq.data[sc->prioq.next]; flags = le32toh(desc->flags); if ((flags & RT2560_TX_BUSY) || (flags & RT2560_TX_VALID) == 0) break; switch (flags & RT2560_TX_RESULT_MASK) { case RT2560_TX_SUCCESS: DPRINTFN(sc, 10, "%s\n", "mgt frame sent successfully"); break; case RT2560_TX_SUCCESS_RETRY: DPRINTFN(sc, 9, "mgt frame sent after %u retries\n", (flags >> 5) & 0x7); break; case RT2560_TX_FAIL_RETRY: DPRINTFN(sc, 9, "%s\n", "sending mgt frame failed (too much retries)"); break; case RT2560_TX_FAIL_INVALID: case RT2560_TX_FAIL_OTHER: default: device_printf(sc->sc_dev, "sending mgt frame failed " "0x%08x\n", flags); break; } bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->prioq.data_dmat, data->map); m = data->m; data->m = NULL; ni = data->ni; data->ni = NULL; /* descriptor is no longer valid */ desc->flags &= ~htole32(RT2560_TX_VALID); DPRINTFN(sc, 15, "prio done idx=%u\n", sc->prioq.next); sc->prioq.queued--; sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT; if (m->m_flags & M_TXCB) ieee80211_process_callback(ni, m, (flags & RT2560_TX_RESULT_MASK) &~ (RT2560_TX_SUCCESS | RT2560_TX_SUCCESS_RETRY)); m_freem(m); ieee80211_free_node(ni); } bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, BUS_DMASYNC_PREWRITE); if (sc->prioq.queued == 0 && sc->txq.queued == 0) sc->sc_tx_timer = 0; if (sc->prioq.queued < RT2560_PRIO_RING_COUNT) rt2560_start(sc); } /* * Some frames were processed by the hardware cipher engine and are ready for * handoff to the IEEE802.11 layer. */ static void rt2560_decryption_intr(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct rt2560_rx_desc *desc; struct rt2560_rx_data *data; bus_addr_t physaddr; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *mnew, *m; int hw, error; int8_t rssi, nf; /* retrieve last decriptor index processed by cipher engine */ hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr; hw /= RT2560_RX_DESC_SIZE; bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, BUS_DMASYNC_POSTREAD); for (; sc->rxq.cur_decrypt != hw;) { desc = &sc->rxq.desc[sc->rxq.cur_decrypt]; data = &sc->rxq.data[sc->rxq.cur_decrypt]; if ((le32toh(desc->flags) & RT2560_RX_BUSY) || (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY)) break; if (data->drop) { counter_u64_add(ic->ic_ierrors, 1); goto skip; } if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 && (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) { counter_u64_add(ic->ic_ierrors, 1); goto skip; } /* * Try to allocate a new mbuf for this ring element and load it * before processing the current mbuf. If the ring element * cannot be loaded, drop the received packet and reuse the old * mbuf. In the unlikely case that the old mbuf can't be * reloaded either, explicitly panic. */ mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (mnew == NULL) { counter_u64_add(ic->ic_ierrors, 1); goto skip; } bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->rxq.data_dmat, data->map); error = bus_dmamap_load(sc->rxq.data_dmat, data->map, mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr, &physaddr, 0); if (error != 0) { m_freem(mnew); /* try to reload the old mbuf */ error = bus_dmamap_load(sc->rxq.data_dmat, data->map, mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr, &physaddr, 0); if (error != 0) { /* very unlikely that it will fail... */ panic("%s: could not load old rx mbuf", device_get_name(sc->sc_dev)); } counter_u64_add(ic->ic_ierrors, 1); goto skip; } /* * New mbuf successfully loaded, update Rx ring and continue * processing. */ m = data->m; data->m = mnew; desc->physaddr = htole32(physaddr); /* finalize mbuf */ m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; rssi = RT2560_RSSI(sc, desc->rssi); nf = RT2560_NOISE_FLOOR; if (ieee80211_radiotap_active(ic)) { struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap; uint32_t tsf_lo, tsf_hi; /* get timestamp (low and high 32 bits) */ tsf_hi = RAL_READ(sc, RT2560_CSR17); tsf_lo = RAL_READ(sc, RT2560_CSR16); tap->wr_tsf = htole64(((uint64_t)tsf_hi << 32) | tsf_lo); tap->wr_flags = 0; tap->wr_rate = ieee80211_plcp2rate(desc->rate, (desc->flags & htole32(RT2560_RX_OFDM)) ? IEEE80211_T_OFDM : IEEE80211_T_CCK); tap->wr_antenna = sc->rx_ant; tap->wr_antsignal = nf + rssi; tap->wr_antnoise = nf; } sc->sc_flags |= RT2560_F_INPUT_RUNNING; RAL_UNLOCK(sc); wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); if (ni != NULL) { (void) ieee80211_input(ni, m, rssi, nf); ieee80211_free_node(ni); } else (void) ieee80211_input_all(ic, m, rssi, nf); RAL_LOCK(sc); sc->sc_flags &= ~RT2560_F_INPUT_RUNNING; skip: desc->flags = htole32(RT2560_RX_BUSY); DPRINTFN(sc, 15, "decryption done idx=%u\n", sc->rxq.cur_decrypt); sc->rxq.cur_decrypt = (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT; } bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, BUS_DMASYNC_PREWRITE); } /* * Some frames were received. Pass them to the hardware cipher engine before * sending them to the 802.11 layer. */ static void rt2560_rx_intr(struct rt2560_softc *sc) { struct rt2560_rx_desc *desc; struct rt2560_rx_data *data; bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, BUS_DMASYNC_POSTREAD); for (;;) { desc = &sc->rxq.desc[sc->rxq.cur]; data = &sc->rxq.data[sc->rxq.cur]; if ((le32toh(desc->flags) & RT2560_RX_BUSY) || (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY)) break; data->drop = 0; if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) || (le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) { /* * This should not happen since we did not request * to receive those frames when we filled RXCSR0. */ DPRINTFN(sc, 5, "PHY or CRC error flags 0x%08x\n", le32toh(desc->flags)); data->drop = 1; } if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) { DPRINTFN(sc, 5, "%s\n", "bad length"); data->drop = 1; } /* mark the frame for decryption */ desc->flags |= htole32(RT2560_RX_CIPHER_BUSY); DPRINTFN(sc, 15, "rx done idx=%u\n", sc->rxq.cur); sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT; } bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, BUS_DMASYNC_PREWRITE); /* kick decrypt */ RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT); } static void rt2560_beacon_update(struct ieee80211vap *vap, int item) { struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; setbit(bo->bo_flags, item); } /* * This function is called periodically in IBSS mode when a new beacon must be * sent out. */ static void rt2560_beacon_expire(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct rt2560_tx_data *data; if (ic->ic_opmode != IEEE80211_M_IBSS && ic->ic_opmode != IEEE80211_M_HOSTAP && ic->ic_opmode != IEEE80211_M_MBSS) return; data = &sc->bcnq.data[sc->bcnq.next]; /* * Don't send beacon if bsschan isn't set */ if (data->ni == NULL) return; bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->bcnq.data_dmat, data->map); /* XXX 1 =>'s mcast frames which means all PS sta's will wakeup! */ ieee80211_beacon_update(data->ni, data->m, 1); rt2560_tx_bcn(sc, data->m, data->ni); DPRINTFN(sc, 15, "%s", "beacon expired\n"); sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT; } /* ARGSUSED */ static void rt2560_wakeup_expire(struct rt2560_softc *sc) { DPRINTFN(sc, 2, "%s", "wakeup expired\n"); } void rt2560_intr(void *arg) { struct rt2560_softc *sc = arg; uint32_t r; RAL_LOCK(sc); /* disable interrupts */ RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); /* don't re-enable interrupts if we're shutting down */ if (!(sc->sc_flags & RT2560_F_RUNNING)) { RAL_UNLOCK(sc); return; } r = RAL_READ(sc, RT2560_CSR7); RAL_WRITE(sc, RT2560_CSR7, r); if (r & RT2560_BEACON_EXPIRE) rt2560_beacon_expire(sc); if (r & RT2560_WAKEUP_EXPIRE) rt2560_wakeup_expire(sc); if (r & RT2560_ENCRYPTION_DONE) rt2560_encryption_intr(sc); if (r & RT2560_TX_DONE) rt2560_tx_intr(sc); if (r & RT2560_PRIO_DONE) rt2560_prio_intr(sc); if (r & RT2560_DECRYPTION_DONE) rt2560_decryption_intr(sc); if (r & RT2560_RX_DONE) { rt2560_rx_intr(sc); rt2560_encryption_intr(sc); } /* re-enable interrupts */ RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK); RAL_UNLOCK(sc); } #define RAL_SIFS 10 /* us */ #define RT2560_TXRX_TURNAROUND 10 /* us */ static uint8_t rt2560_plcp_signal(int rate) { switch (rate) { /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return 0xb; case 18: return 0xf; case 24: return 0xa; case 36: return 0xe; case 48: return 0x9; case 72: return 0xd; case 96: return 0x8; case 108: return 0xc; /* CCK rates (NB: not IEEE std, device-specific) */ case 2: return 0x0; case 4: return 0x1; case 11: return 0x2; case 22: return 0x3; } return 0xff; /* XXX unsupported/unknown rate */ } static void rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc, uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr) { struct ieee80211com *ic = &sc->sc_ic; uint16_t plcp_length; int remainder; desc->flags = htole32(flags); desc->flags |= htole32(len << 16); desc->physaddr = htole32(physaddr); desc->wme = htole16( RT2560_AIFSN(2) | RT2560_LOGCWMIN(3) | RT2560_LOGCWMAX(8)); /* setup PLCP fields */ desc->plcp_signal = rt2560_plcp_signal(rate); desc->plcp_service = 4; len += IEEE80211_CRC_LEN; if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { desc->flags |= htole32(RT2560_TX_OFDM); plcp_length = len & 0xfff; desc->plcp_length_hi = plcp_length >> 6; desc->plcp_length_lo = plcp_length & 0x3f; } else { plcp_length = howmany(16 * len, rate); if (rate == 22) { remainder = (16 * len) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= RT2560_PLCP_LENGEXT; } desc->plcp_length_hi = plcp_length >> 8; desc->plcp_length_lo = plcp_length & 0xff; if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->plcp_signal |= 0x08; } if (!encrypt) desc->flags |= htole32(RT2560_TX_VALID); desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) : htole32(RT2560_TX_BUSY); } static int rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; bus_dma_segment_t segs[RT2560_MAX_SCATTER]; int nsegs, rate, error; desc = &sc->bcnq.desc[sc->bcnq.cur]; data = &sc->bcnq.data[sc->bcnq.cur]; /* XXX maybe a separate beacon rate? */ rate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].mgmtrate; error = bus_dmamap_load_mbuf_sg(sc->bcnq.data_dmat, data->map, m0, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (ieee80211_radiotap_active_vap(vap)) { struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_antenna = sc->tx_ant; ieee80211_radiotap_tx(vap, m0); } data->m = m0; data->ni = ni; rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF | RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, segs->ds_addr); DPRINTFN(sc, 10, "sending beacon frame len=%u idx=%u rate=%u\n", m0->m_pkthdr.len, sc->bcnq.cur, rate); bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map, BUS_DMASYNC_PREWRITE); sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT; return 0; } static int rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; struct ieee80211_frame *wh; struct ieee80211_key *k; bus_dma_segment_t segs[RT2560_MAX_SCATTER]; uint16_t dur; uint32_t flags = 0; int nsegs, rate, error; desc = &sc->prioq.desc[sc->prioq.cur]; data = &sc->prioq.data[sc->prioq.cur]; rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate; wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } } error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0, segs, &nsegs, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (ieee80211_radiotap_active_vap(vap)) { struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_antenna = sc->tx_ant; ieee80211_radiotap_tx(vap, m0); } data->m = m0; data->ni = ni; /* management frames are not taken into account for amrr */ data->rix = IEEE80211_FIXED_RATE_NONE; wh = mtod(m0, struct ieee80211_frame *); if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2560_TX_ACK; dur = ieee80211_ack_duration(ic->ic_rt, rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE); *(uint16_t *)wh->i_dur = htole16(dur); /* tell hardware to add timestamp for probe responses */ if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT && (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == IEEE80211_FC0_SUBTYPE_PROBE_RESP) flags |= RT2560_TX_TIMESTAMP; } rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0, segs->ds_addr); bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(sc, 10, "sending mgt frame len=%u idx=%u rate=%u\n", m0->m_pkthdr.len, sc->prioq.cur, rate); /* kick prio */ sc->prioq.queued++; sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT; RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO); return 0; } static int rt2560_sendprot(struct rt2560_softc *sc, const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) { struct ieee80211com *ic = ni->ni_ic; const struct ieee80211_frame *wh; struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; struct mbuf *mprot; int protrate, ackrate, pktlen, flags, isshort, error; uint16_t dur; bus_dma_segment_t segs[RT2560_MAX_SCATTER]; int nsegs; KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, ("protection %d", prot)); wh = mtod(m, const struct ieee80211_frame *); pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; protrate = ieee80211_ctl_rate(ic->ic_rt, rate); ackrate = ieee80211_ack_rate(ic->ic_rt, rate); isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) + ieee80211_ack_duration(ic->ic_rt, rate, isshort); flags = RT2560_TX_MORE_FRAG; if (prot == IEEE80211_PROT_RTSCTS) { /* NB: CTS is the same size as an ACK */ dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); flags |= RT2560_TX_ACK; mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); } else { mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); } if (mprot == NULL) { /* XXX stat + msg */ return ENOBUFS; } desc = &sc->txq.desc[sc->txq.cur_encrypt]; data = &sc->txq.data[sc->txq.cur_encrypt]; error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, mprot, segs, &nsegs, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(mprot); return error; } data->m = mprot; data->ni = ieee80211_ref_node(ni); /* ctl frames are not taken into account for amrr */ data->rix = IEEE80211_FIXED_RATE_NONE; rt2560_setup_tx_desc(sc, desc, flags, mprot->m_pkthdr.len, protrate, 1, segs->ds_addr); bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); sc->txq.queued++; sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT; return 0; } static int rt2560_tx_raw(struct rt2560_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; bus_dma_segment_t segs[RT2560_MAX_SCATTER]; uint32_t flags; int nsegs, rate, error; desc = &sc->prioq.desc[sc->prioq.cur]; data = &sc->prioq.data[sc->prioq.cur]; rate = params->ibp_rate0; if (!ieee80211_isratevalid(ic->ic_rt, rate)) { /* XXX fall back to mcast/mgmt rate? */ m_freem(m0); return EINVAL; } flags = 0; if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) flags |= RT2560_TX_ACK; if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { error = rt2560_sendprot(sc, m0, ni, params->ibp_flags & IEEE80211_BPF_RTS ? IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, rate); if (error) { m_freem(m0); return error; } flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS; } error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0, segs, &nsegs, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (ieee80211_radiotap_active_vap(vap)) { struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_antenna = sc->tx_ant; ieee80211_radiotap_tx(ni->ni_vap, m0); } data->m = m0; data->ni = ni; /* XXX need to setup descriptor ourself */ rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0, segs->ds_addr); bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(sc, 10, "sending raw frame len=%u idx=%u rate=%u\n", m0->m_pkthdr.len, sc->prioq.cur, rate); /* kick prio */ sc->prioq.queued++; sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT; RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO); return 0; } static int rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct rt2560_tx_desc *desc; struct rt2560_tx_data *data; struct ieee80211_frame *wh; const struct ieee80211_txparam *tp; struct ieee80211_key *k; struct mbuf *mnew; bus_dma_segment_t segs[RT2560_MAX_SCATTER]; uint16_t dur; uint32_t flags; int nsegs, rate, error; wh = mtod(m0, struct ieee80211_frame *); tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { rate = tp->mcastrate; } else if (m0->m_flags & M_EAPOL) { rate = tp->mgmtrate; } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { rate = tp->ucastrate; } else { (void) ieee80211_ratectl_rate(ni, NULL, 0); rate = ni->ni_txrate; } if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } flags = 0; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { int prot = IEEE80211_PROT_NONE; if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) prot = IEEE80211_PROT_RTSCTS; else if ((ic->ic_flags & IEEE80211_F_USEPROT) && ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) prot = ic->ic_protmode; if (prot != IEEE80211_PROT_NONE) { error = rt2560_sendprot(sc, m0, ni, prot, rate); if (error) { m_freem(m0); return error; } flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS; } } data = &sc->txq.data[sc->txq.cur_encrypt]; desc = &sc->txq.desc[sc->txq.cur_encrypt]; error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0, segs, &nsegs, 0); if (error != 0 && error != EFBIG) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (error != 0) { mnew = m_defrag(m0, M_NOWAIT); if (mnew == NULL) { device_printf(sc->sc_dev, "could not defragment mbuf\n"); m_freem(m0); return ENOBUFS; } m0 = mnew; error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0, segs, &nsegs, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } if (ieee80211_radiotap_active_vap(vap)) { struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; tap->wt_antenna = sc->tx_ant; ieee80211_radiotap_tx(vap, m0); } data->m = m0; data->ni = ni; /* remember link conditions for rate adaptation algorithm */ if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) { data->rix = ni->ni_txrate; /* XXX probably need last rssi value and not avg */ data->rssi = ic->ic_node_getrssi(ni); } else data->rix = IEEE80211_FIXED_RATE_NONE; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2560_TX_ACK; dur = ieee80211_ack_duration(ic->ic_rt, rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE); *(uint16_t *)wh->i_dur = htole16(dur); } rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1, segs->ds_addr); bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(sc, 10, "sending data frame len=%u idx=%u rate=%u\n", m0->m_pkthdr.len, sc->txq.cur_encrypt, rate); /* kick encrypt */ sc->txq.queued++; sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT; RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT); return 0; } static int rt2560_transmit(struct ieee80211com *ic, struct mbuf *m) { struct rt2560_softc *sc = ic->ic_softc; int error; RAL_LOCK(sc); if ((sc->sc_flags & RT2560_F_RUNNING) == 0) { RAL_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { RAL_UNLOCK(sc); return (error); } rt2560_start(sc); RAL_UNLOCK(sc); return (0); } static void rt2560_start(struct rt2560_softc *sc) { struct ieee80211_node *ni; struct mbuf *m; RAL_LOCK_ASSERT(sc); while (sc->txq.queued < RT2560_TX_RING_COUNT - 1 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; if (rt2560_tx_data(sc, m, ni) != 0) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); break; } sc->sc_tx_timer = 5; } } static void rt2560_watchdog(void *arg) { struct rt2560_softc *sc = arg; RAL_LOCK_ASSERT(sc); KASSERT(sc->sc_flags & RT2560_F_RUNNING, ("not running")); if (sc->sc_invalid) /* card ejected */ return; rt2560_encryption_intr(sc); rt2560_tx_intr(sc); if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) { device_printf(sc->sc_dev, "device timeout\n"); rt2560_init_locked(sc); counter_u64_add(sc->sc_ic.ic_oerrors, 1); /* NB: callout is reset in rt2560_init() */ return; } callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc); } static void rt2560_parent(struct ieee80211com *ic) { struct rt2560_softc *sc = ic->ic_softc; int startall = 0; RAL_LOCK(sc); if (ic->ic_nrunning > 0) { if ((sc->sc_flags & RT2560_F_RUNNING) == 0) { rt2560_init_locked(sc); startall = 1; } else rt2560_update_promisc(ic); } else if (sc->sc_flags & RT2560_F_RUNNING) rt2560_stop_locked(sc); RAL_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } static void rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY)) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "could not write to BBP\n"); return; } tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val; RAL_WRITE(sc, RT2560_BBPCSR, tmp); DPRINTFN(sc, 15, "BBP R%u <- 0x%02x\n", reg, val); } static uint8_t rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg) { uint32_t val; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY)) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "could not read from BBP\n"); return 0; } val = RT2560_BBP_BUSY | reg << 8; RAL_WRITE(sc, RT2560_BBPCSR, val); for (ntries = 0; ntries < 100; ntries++) { val = RAL_READ(sc, RT2560_BBPCSR); if (!(val & RT2560_BBP_BUSY)) return val & 0xff; DELAY(1); } device_printf(sc->sc_dev, "could not read from BBP\n"); return 0; } static void rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY)) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "could not write to RF\n"); return; } tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3); RAL_WRITE(sc, RT2560_RFCSR, tmp); /* remember last written value in sc */ sc->rf_regs[reg] = val; DPRINTFN(sc, 15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff); } static void rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; uint8_t power, tmp; u_int i, chan; chan = ieee80211_chan2ieee(ic, c); KASSERT(chan != 0 && chan != IEEE80211_CHAN_ANY, ("chan 0x%x", chan)); if (IEEE80211_IS_CHAN_2GHZ(c)) power = min(sc->txpow[chan - 1], 31); else power = 31; /* adjust txpower using ifconfig settings */ power -= (100 - ic->ic_txpowlimit) / 8; DPRINTFN(sc, 2, "setting channel to %u, txpower to %u\n", chan, power); switch (sc->rf_rev) { case RT2560_RF_2522: rt2560_rf_write(sc, RAL_RF1, 0x00814); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); break; case RT2560_RF_2523: rt2560_rf_write(sc, RAL_RF1, 0x08804); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044); rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RT2560_RF_2524: rt2560_rf_write(sc, RAL_RF1, 0x0c808); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RT2560_RF_2525: rt2560_rf_write(sc, RAL_RF1, 0x08808); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); rt2560_rf_write(sc, RAL_RF1, 0x08808); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RT2560_RF_2525E: rt2560_rf_write(sc, RAL_RF1, 0x08808); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); break; case RT2560_RF_2526: rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); rt2560_rf_write(sc, RAL_RF1, 0x08804); rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); break; /* dual-band RF */ case RT2560_RF_5222: for (i = 0; rt2560_rf5222[i].chan != chan; i++); rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1); rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2); rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4); break; default: printf("unknown ral rev=%d\n", sc->rf_rev); } /* XXX */ if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { /* set Japan filter bit for channel 14 */ tmp = rt2560_bbp_read(sc, 70); tmp &= ~RT2560_JAPAN_FILTER; if (chan == 14) tmp |= RT2560_JAPAN_FILTER; rt2560_bbp_write(sc, 70, tmp); /* clear CRC errors */ RAL_READ(sc, RT2560_CNT0); } } static void rt2560_set_channel(struct ieee80211com *ic) { struct rt2560_softc *sc = ic->ic_softc; RAL_LOCK(sc); rt2560_set_chan(sc, ic->ic_curchan); RAL_UNLOCK(sc); } #if 0 /* * Disable RF auto-tuning. */ static void rt2560_disable_rf_tune(struct rt2560_softc *sc) { uint32_t tmp; if (sc->rf_rev != RT2560_RF_2523) { tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; rt2560_rf_write(sc, RAL_RF1, tmp); } tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; rt2560_rf_write(sc, RAL_RF3, tmp); DPRINTFN(sc, 2, "%s", "disabling RF autotune\n"); } #endif /* * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF * synchronization. */ static void rt2560_enable_tsf_sync(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint16_t logcwmin, preload; uint32_t tmp; /* first, disable TSF synchronization */ RAL_WRITE(sc, RT2560_CSR14, 0); tmp = 16 * vap->iv_bss->ni_intval; RAL_WRITE(sc, RT2560_CSR12, tmp); RAL_WRITE(sc, RT2560_CSR13, 0); logcwmin = 5; preload = (vap->iv_opmode == IEEE80211_M_STA) ? 384 : 1024; tmp = logcwmin << 16 | preload; RAL_WRITE(sc, RT2560_BCNOCSR, tmp); /* finally, enable TSF synchronization */ tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN; if (ic->ic_opmode == IEEE80211_M_STA) tmp |= RT2560_ENABLE_TSF_SYNC(1); else tmp |= RT2560_ENABLE_TSF_SYNC(2) | RT2560_ENABLE_BEACON_GENERATOR; RAL_WRITE(sc, RT2560_CSR14, tmp); DPRINTF(sc, "%s", "enabling TSF synchronization\n"); } static void rt2560_enable_tsf(struct rt2560_softc *sc) { RAL_WRITE(sc, RT2560_CSR14, 0); RAL_WRITE(sc, RT2560_CSR14, RT2560_ENABLE_TSF_SYNC(2) | RT2560_ENABLE_TSF); } static void rt2560_update_plcp(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* no short preamble for 1Mbps */ RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400); if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) { /* values taken from the reference driver */ RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401); RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402); RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403); } else { /* same values as above or'ed 0x8 */ RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409); RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a); RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b); } DPRINTF(sc, "updating PLCP for %s preamble\n", (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"); } /* * This function can be called by ieee80211_set_shortslottime(). Refer to * IEEE Std 802.11-1999 pp. 85 to know how these values are computed. */ static void rt2560_update_slot(struct ieee80211com *ic) { struct rt2560_softc *sc = ic->ic_softc; uint8_t slottime; uint16_t tx_sifs, tx_pifs, tx_difs, eifs; uint32_t tmp; #ifndef FORCE_SLOTTIME slottime = IEEE80211_GET_SLOTTIME(ic); #else /* * Setting slot time according to "short slot time" capability * in beacon/probe_resp seems to cause problem to acknowledge * certain AP's data frames transimitted at CCK/DS rates: the * problematic AP keeps retransmitting data frames, probably * because MAC level acks are not received by hardware. * So we cheat a little bit here by claiming we are capable of * "short slot time" but setting hardware slot time to the normal * slot time. ral(4) does not seem to have trouble to receive * frames transmitted using short slot time even if hardware * slot time is set to normal slot time. If we didn't use this * trick, we would have to claim that short slot time is not * supported; this would give relative poor RX performance * (-1Mb~-2Mb lower) and the _whole_ BSS would stop using short * slot time. */ slottime = IEEE80211_DUR_SLOT; #endif /* update the MAC slot boundaries */ tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND; tx_pifs = tx_sifs + slottime; tx_difs = IEEE80211_DUR_DIFS(tx_sifs, slottime); eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60; tmp = RAL_READ(sc, RT2560_CSR11); tmp = (tmp & ~0x1f00) | slottime << 8; RAL_WRITE(sc, RT2560_CSR11, tmp); tmp = tx_pifs << 16 | tx_sifs; RAL_WRITE(sc, RT2560_CSR18, tmp); tmp = eifs << 16 | tx_difs; RAL_WRITE(sc, RT2560_CSR19, tmp); DPRINTF(sc, "setting slottime to %uus\n", slottime); } static void rt2560_set_basicrates(struct rt2560_softc *sc, const struct ieee80211_rateset *rs) { struct ieee80211com *ic = &sc->sc_ic; uint32_t mask = 0; uint8_t rate; int i; for (i = 0; i < rs->rs_nrates; i++) { rate = rs->rs_rates[i]; if (!(rate & IEEE80211_RATE_BASIC)) continue; mask |= 1 << ieee80211_legacy_rate_lookup(ic->ic_rt, IEEE80211_RV(rate)); } RAL_WRITE(sc, RT2560_ARSP_PLCP_1, mask); DPRINTF(sc, "Setting basic rate mask to 0x%x\n", mask); } static void rt2560_update_led(struct rt2560_softc *sc, int led1, int led2) { uint32_t tmp; /* set ON period to 70ms and OFF period to 30ms */ tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30; RAL_WRITE(sc, RT2560_LEDCSR, tmp); } static void rt2560_set_bssid(struct rt2560_softc *sc, const uint8_t *bssid) { uint32_t tmp; tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; RAL_WRITE(sc, RT2560_CSR5, tmp); tmp = bssid[4] | bssid[5] << 8; RAL_WRITE(sc, RT2560_CSR6, tmp); DPRINTF(sc, "setting BSSID to %6D\n", bssid, ":"); } static void rt2560_set_macaddr(struct rt2560_softc *sc, const uint8_t *addr) { uint32_t tmp; tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; RAL_WRITE(sc, RT2560_CSR3, tmp); tmp = addr[4] | addr[5] << 8; RAL_WRITE(sc, RT2560_CSR4, tmp); DPRINTF(sc, "setting MAC address to %6D\n", addr, ":"); } static void rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr) { uint32_t tmp; tmp = RAL_READ(sc, RT2560_CSR3); addr[0] = tmp & 0xff; addr[1] = (tmp >> 8) & 0xff; addr[2] = (tmp >> 16) & 0xff; addr[3] = (tmp >> 24); tmp = RAL_READ(sc, RT2560_CSR4); addr[4] = tmp & 0xff; addr[5] = (tmp >> 8) & 0xff; } static void rt2560_update_promisc(struct ieee80211com *ic) { struct rt2560_softc *sc = ic->ic_softc; uint32_t tmp; tmp = RAL_READ(sc, RT2560_RXCSR0); tmp &= ~RT2560_DROP_NOT_TO_ME; if (ic->ic_promisc == 0) tmp |= RT2560_DROP_NOT_TO_ME; RAL_WRITE(sc, RT2560_RXCSR0, tmp); DPRINTF(sc, "%s promiscuous mode\n", (ic->ic_promisc > 0) ? "entering" : "leaving"); } static const char * rt2560_get_rf(int rev) { switch (rev) { case RT2560_RF_2522: return "RT2522"; case RT2560_RF_2523: return "RT2523"; case RT2560_RF_2524: return "RT2524"; case RT2560_RF_2525: return "RT2525"; case RT2560_RF_2525E: return "RT2525e"; case RT2560_RF_2526: return "RT2526"; case RT2560_RF_5222: return "RT5222"; default: return "unknown"; } } static void rt2560_read_config(struct rt2560_softc *sc) { uint16_t val; int i; val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0); sc->rf_rev = (val >> 11) & 0x7; sc->hw_radio = (val >> 10) & 0x1; sc->led_mode = (val >> 6) & 0x7; sc->rx_ant = (val >> 4) & 0x3; sc->tx_ant = (val >> 2) & 0x3; sc->nb_ant = val & 0x3; /* read default values for BBP registers */ for (i = 0; i < 16; i++) { val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i); if (val == 0 || val == 0xffff) continue; sc->bbp_prom[i].reg = val >> 8; sc->bbp_prom[i].val = val & 0xff; } /* read Tx power for all b/g channels */ for (i = 0; i < 14 / 2; i++) { val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i); sc->txpow[i * 2] = val & 0xff; sc->txpow[i * 2 + 1] = val >> 8; } for (i = 0; i < 14; ++i) { if (sc->txpow[i] > 31) sc->txpow[i] = 24; } val = rt2560_eeprom_read(sc, RT2560_EEPROM_CALIBRATE); if ((val & 0xff) == 0xff) sc->rssi_corr = RT2560_DEFAULT_RSSI_CORR; else sc->rssi_corr = val & 0xff; DPRINTF(sc, "rssi correction %d, calibrate 0x%02x\n", sc->rssi_corr, val); } static void rt2560_scan_start(struct ieee80211com *ic) { struct rt2560_softc *sc = ic->ic_softc; /* abort TSF synchronization */ RAL_WRITE(sc, RT2560_CSR14, 0); rt2560_set_bssid(sc, ieee80211broadcastaddr); } static void rt2560_scan_end(struct ieee80211com *ic) { struct rt2560_softc *sc = ic->ic_softc; struct ieee80211vap *vap = ic->ic_scan->ss_vap; rt2560_enable_tsf_sync(sc); /* XXX keep local copy */ rt2560_set_bssid(sc, vap->iv_bss->ni_bssid); } static int rt2560_bbp_init(struct rt2560_softc *sc) { int i, ntries; /* wait for BBP to be ready */ for (ntries = 0; ntries < 100; ntries++) { if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for BBP\n"); return EIO; } /* initialize BBP registers to default values */ for (i = 0; i < nitems(rt2560_def_bbp); i++) { rt2560_bbp_write(sc, rt2560_def_bbp[i].reg, rt2560_def_bbp[i].val); } /* initialize BBP registers to values stored in EEPROM */ for (i = 0; i < 16; i++) { if (sc->bbp_prom[i].reg == 0 && sc->bbp_prom[i].val == 0) break; rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } rt2560_bbp_write(sc, 17, 0x48); /* XXX restore bbp17 */ return 0; } static void rt2560_set_txantenna(struct rt2560_softc *sc, int antenna) { uint32_t tmp; uint8_t tx; tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK; if (antenna == 1) tx |= RT2560_BBP_ANTA; else if (antenna == 2) tx |= RT2560_BBP_ANTB; else tx |= RT2560_BBP_DIVERSITY; /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 || sc->rf_rev == RT2560_RF_5222) tx |= RT2560_BBP_FLIPIQ; rt2560_bbp_write(sc, RT2560_BBP_TX, tx); /* update values for CCK and OFDM in BBPCSR1 */ tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007; tmp |= (tx & 0x7) << 16 | (tx & 0x7); RAL_WRITE(sc, RT2560_BBPCSR1, tmp); } static void rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna) { uint8_t rx; rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK; if (antenna == 1) rx |= RT2560_BBP_ANTA; else if (antenna == 2) rx |= RT2560_BBP_ANTB; else rx |= RT2560_BBP_DIVERSITY; /* need to force no I/Q flip for RF 2525e and 2526 */ if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526) rx &= ~RT2560_BBP_FLIPIQ; rt2560_bbp_write(sc, RT2560_BBP_RX, rx); } static void rt2560_init_locked(struct rt2560_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t tmp; int i; RAL_LOCK_ASSERT(sc); rt2560_stop_locked(sc); /* setup tx rings */ tmp = RT2560_PRIO_RING_COUNT << 24 | RT2560_ATIM_RING_COUNT << 16 | RT2560_TX_RING_COUNT << 8 | RT2560_TX_DESC_SIZE; /* rings must be initialized in this exact order */ RAL_WRITE(sc, RT2560_TXCSR2, tmp); RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr); RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr); RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr); RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr); /* setup rx ring */ tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE; RAL_WRITE(sc, RT2560_RXCSR1, tmp); RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr); /* initialize MAC registers to default values */ for (i = 0; i < nitems(rt2560_def_mac); i++) RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val); rt2560_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); /* set basic rate set (will be updated later) */ RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153); rt2560_update_slot(ic); rt2560_update_plcp(sc); rt2560_update_led(sc, 0, 0); RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY); if (rt2560_bbp_init(sc) != 0) { rt2560_stop_locked(sc); return; } rt2560_set_txantenna(sc, sc->tx_ant); rt2560_set_rxantenna(sc, sc->rx_ant); /* set default BSS channel */ rt2560_set_chan(sc, ic->ic_curchan); /* kick Rx */ tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR; if (ic->ic_opmode != IEEE80211_M_HOSTAP && ic->ic_opmode != IEEE80211_M_MBSS) tmp |= RT2560_DROP_TODS; if (ic->ic_promisc == 0) tmp |= RT2560_DROP_NOT_TO_ME; } RAL_WRITE(sc, RT2560_RXCSR0, tmp); /* clear old FCS and Rx FIFO errors */ RAL_READ(sc, RT2560_CNT0); RAL_READ(sc, RT2560_CNT4); /* clear any pending interrupts */ RAL_WRITE(sc, RT2560_CSR7, 0xffffffff); /* enable interrupts */ RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK); sc->sc_flags |= RT2560_F_RUNNING; callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc); } static void rt2560_init(void *priv) { struct rt2560_softc *sc = priv; struct ieee80211com *ic = &sc->sc_ic; RAL_LOCK(sc); rt2560_init_locked(sc); RAL_UNLOCK(sc); if (sc->sc_flags & RT2560_F_RUNNING) ieee80211_start_all(ic); /* start all vap's */ } static void rt2560_stop_locked(struct rt2560_softc *sc) { volatile int *flags = &sc->sc_flags; RAL_LOCK_ASSERT(sc); while (*flags & RT2560_F_INPUT_RUNNING) msleep(sc, &sc->sc_mtx, 0, "ralrunning", hz/10); callout_stop(&sc->watchdog_ch); sc->sc_tx_timer = 0; if (sc->sc_flags & RT2560_F_RUNNING) { sc->sc_flags &= ~RT2560_F_RUNNING; /* abort Tx */ RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX); /* disable Rx */ RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX); /* reset ASIC (imply reset BBP) */ RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); RAL_WRITE(sc, RT2560_CSR1, 0); /* disable interrupts */ RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); /* reset Tx and Rx rings */ rt2560_reset_tx_ring(sc, &sc->txq); rt2560_reset_tx_ring(sc, &sc->atimq); rt2560_reset_tx_ring(sc, &sc->prioq); rt2560_reset_tx_ring(sc, &sc->bcnq); rt2560_reset_rx_ring(sc, &sc->rxq); } } void rt2560_stop(void *arg) { struct rt2560_softc *sc = arg; RAL_LOCK(sc); rt2560_stop_locked(sc); RAL_UNLOCK(sc); } static int rt2560_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct rt2560_softc *sc = ic->ic_softc; RAL_LOCK(sc); /* prevent management frames from being sent if we're not ready */ if (!(sc->sc_flags & RT2560_F_RUNNING)) { RAL_UNLOCK(sc); m_freem(m); return ENETDOWN; } if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) { RAL_UNLOCK(sc); m_freem(m); return ENOBUFS; /* XXX */ } if (params == NULL) { /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. */ if (rt2560_tx_mgt(sc, m, ni) != 0) goto bad; } else { /* * Caller supplied explicit parameters to use in * sending the frame. */ if (rt2560_tx_raw(sc, m, ni, params)) goto bad; } sc->sc_tx_timer = 5; RAL_UNLOCK(sc); return 0; bad: RAL_UNLOCK(sc); return EIO; /* XXX */ } Index: head/sys/dev/ral/rt2661.c =================================================================== --- head/sys/dev/ral/rt2661.c (revision 298817) +++ head/sys/dev/ral/rt2661.c (revision 298818) @@ -1,2773 +1,2773 @@ /* $FreeBSD$ */ /*- * Copyright (c) 2006 * Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /*- * Ralink Technology RT2561, RT2561S and RT2661 chipset driver * http://www.ralinktech.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RAL_DEBUG #ifdef RAL_DEBUG #define DPRINTF(sc, fmt, ...) do { \ if (sc->sc_debug > 0) \ printf(fmt, __VA_ARGS__); \ } while (0) #define DPRINTFN(sc, n, fmt, ...) do { \ if (sc->sc_debug >= (n)) \ printf(fmt, __VA_ARGS__); \ } while (0) #else #define DPRINTF(sc, fmt, ...) #define DPRINTFN(sc, n, fmt, ...) #endif static struct ieee80211vap *rt2661_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void rt2661_vap_delete(struct ieee80211vap *); static void rt2661_dma_map_addr(void *, bus_dma_segment_t *, int, int); static int rt2661_alloc_tx_ring(struct rt2661_softc *, struct rt2661_tx_ring *, int); static void rt2661_reset_tx_ring(struct rt2661_softc *, struct rt2661_tx_ring *); static void rt2661_free_tx_ring(struct rt2661_softc *, struct rt2661_tx_ring *); static int rt2661_alloc_rx_ring(struct rt2661_softc *, struct rt2661_rx_ring *, int); static void rt2661_reset_rx_ring(struct rt2661_softc *, struct rt2661_rx_ring *); static void rt2661_free_rx_ring(struct rt2661_softc *, struct rt2661_rx_ring *); static int rt2661_newstate(struct ieee80211vap *, enum ieee80211_state, int); static uint16_t rt2661_eeprom_read(struct rt2661_softc *, uint8_t); static void rt2661_rx_intr(struct rt2661_softc *); static void rt2661_tx_intr(struct rt2661_softc *); static void rt2661_tx_dma_intr(struct rt2661_softc *, struct rt2661_tx_ring *); static void rt2661_mcu_beacon_expire(struct rt2661_softc *); static void rt2661_mcu_wakeup(struct rt2661_softc *); static void rt2661_mcu_cmd_intr(struct rt2661_softc *); static void rt2661_scan_start(struct ieee80211com *); static void rt2661_scan_end(struct ieee80211com *); static void rt2661_set_channel(struct ieee80211com *); static void rt2661_setup_tx_desc(struct rt2661_softc *, struct rt2661_tx_desc *, uint32_t, uint16_t, int, int, const bus_dma_segment_t *, int, int); static int rt2661_tx_data(struct rt2661_softc *, struct mbuf *, struct ieee80211_node *, int); static int rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *, struct ieee80211_node *); static int rt2661_transmit(struct ieee80211com *, struct mbuf *); static void rt2661_start(struct rt2661_softc *); static int rt2661_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void rt2661_watchdog(void *); static void rt2661_parent(struct ieee80211com *); static void rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t); static uint8_t rt2661_bbp_read(struct rt2661_softc *, uint8_t); static void rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t); static int rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t); static void rt2661_select_antenna(struct rt2661_softc *); static void rt2661_enable_mrr(struct rt2661_softc *); static void rt2661_set_txpreamble(struct rt2661_softc *); static void rt2661_set_basicrates(struct rt2661_softc *, const struct ieee80211_rateset *); static void rt2661_select_band(struct rt2661_softc *, struct ieee80211_channel *); static void rt2661_set_chan(struct rt2661_softc *, struct ieee80211_channel *); static void rt2661_set_bssid(struct rt2661_softc *, const uint8_t *); static void rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *); static void rt2661_update_promisc(struct ieee80211com *); static int rt2661_wme_update(struct ieee80211com *) __unused; static void rt2661_update_slot(struct ieee80211com *); static const char *rt2661_get_rf(int); static void rt2661_read_eeprom(struct rt2661_softc *, uint8_t macaddr[IEEE80211_ADDR_LEN]); static int rt2661_bbp_init(struct rt2661_softc *); static void rt2661_init_locked(struct rt2661_softc *); static void rt2661_init(void *); static void rt2661_stop_locked(struct rt2661_softc *); static void rt2661_stop(void *); static int rt2661_load_microcode(struct rt2661_softc *); #ifdef notyet static void rt2661_rx_tune(struct rt2661_softc *); static void rt2661_radar_start(struct rt2661_softc *); static int rt2661_radar_stop(struct rt2661_softc *); #endif static int rt2661_prepare_beacon(struct rt2661_softc *, struct ieee80211vap *); static void rt2661_enable_tsf_sync(struct rt2661_softc *); static void rt2661_enable_tsf(struct rt2661_softc *); static int rt2661_get_rssi(struct rt2661_softc *, uint8_t); static const struct { uint32_t reg; uint32_t val; } rt2661_def_mac[] = { RT2661_DEF_MAC }; static const struct { uint8_t reg; uint8_t val; } rt2661_def_bbp[] = { RT2661_DEF_BBP }; static const struct rfprog { uint8_t chan; uint32_t r1, r2, r3, r4; } rt2661_rf5225_1[] = { RT2661_RF5225_1 }, rt2661_rf5225_2[] = { RT2661_RF5225_2 }; int rt2661_attach(device_t dev, int id) { struct rt2661_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; uint32_t val; - uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)]; + uint8_t bands[IEEE80211_MODE_BYTES]; int error, ac, ntries; sc->sc_id = id; sc->sc_dev = dev; mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0); mbufq_init(&sc->sc_snd, ifqmaxlen); /* wait for NIC to initialize */ for (ntries = 0; ntries < 1000; ntries++) { if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0) break; DELAY(1000); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for NIC to initialize\n"); error = EIO; goto fail1; } /* retrieve RF rev. no and various other things from EEPROM */ rt2661_read_eeprom(sc, ic->ic_macaddr); device_printf(dev, "MAC/BBP RT%X, RF %s\n", val, rt2661_get_rf(sc->rf_rev)); /* * Allocate Tx and Rx rings. */ for (ac = 0; ac < 4; ac++) { error = rt2661_alloc_tx_ring(sc, &sc->txq[ac], RT2661_TX_RING_COUNT); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Tx ring %d\n", ac); goto fail2; } } error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Mgt ring\n"); goto fail2; } error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Rx ring\n"); goto fail3; } ic->ic_softc = sc; ic->ic_name = device_get_nameunit(dev); ic->ic_opmode = IEEE80211_M_STA; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode */ | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ | IEEE80211_C_HOSTAP /* hostap mode */ | IEEE80211_C_MONITOR /* monitor mode */ | IEEE80211_C_AHDEMO /* adhoc demo mode */ | IEEE80211_C_WDS /* 4-address traffic works */ | IEEE80211_C_MBSS /* mesh point link mode */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ | IEEE80211_C_BGSCAN /* capable of bg scanning */ #ifdef notyet | IEEE80211_C_TXFRAG /* handle tx frags */ | IEEE80211_C_WME /* 802.11e */ #endif ; memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) setbit(bands, IEEE80211_MODE_11A); ieee80211_init_channels(ic, NULL, bands); ieee80211_ifattach(ic); #if 0 ic->ic_wme.wme_update = rt2661_wme_update; #endif ic->ic_scan_start = rt2661_scan_start; ic->ic_scan_end = rt2661_scan_end; ic->ic_set_channel = rt2661_set_channel; ic->ic_updateslot = rt2661_update_slot; ic->ic_update_promisc = rt2661_update_promisc; ic->ic_raw_xmit = rt2661_raw_xmit; ic->ic_transmit = rt2661_transmit; ic->ic_parent = rt2661_parent; ic->ic_vap_create = rt2661_vap_create; ic->ic_vap_delete = rt2661_vap_delete; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), RT2661_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), RT2661_RX_RADIOTAP_PRESENT); #ifdef RAL_DEBUG SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug", CTLFLAG_RW, &sc->sc_debug, 0, "debug msgs"); #endif if (bootverbose) ieee80211_announce(ic); return 0; fail3: rt2661_free_tx_ring(sc, &sc->mgtq); fail2: while (--ac >= 0) rt2661_free_tx_ring(sc, &sc->txq[ac]); fail1: mtx_destroy(&sc->sc_mtx); return error; } int rt2661_detach(void *xsc) { struct rt2661_softc *sc = xsc; struct ieee80211com *ic = &sc->sc_ic; RAL_LOCK(sc); rt2661_stop_locked(sc); RAL_UNLOCK(sc); ieee80211_ifdetach(ic); mbufq_drain(&sc->sc_snd); rt2661_free_tx_ring(sc, &sc->txq[0]); rt2661_free_tx_ring(sc, &sc->txq[1]); rt2661_free_tx_ring(sc, &sc->txq[2]); rt2661_free_tx_ring(sc, &sc->txq[3]); rt2661_free_tx_ring(sc, &sc->mgtq); rt2661_free_rx_ring(sc, &sc->rxq); mtx_destroy(&sc->sc_mtx); return 0; } static struct ieee80211vap * rt2661_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct rt2661_softc *sc = ic->ic_softc; struct rt2661_vap *rvp; struct ieee80211vap *vap; switch (opmode) { case IEEE80211_M_STA: case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: case IEEE80211_M_MONITOR: case IEEE80211_M_HOSTAP: case IEEE80211_M_MBSS: /* XXXRP: TBD */ if (!TAILQ_EMPTY(&ic->ic_vaps)) { device_printf(sc->sc_dev, "only 1 vap supported\n"); return NULL; } if (opmode == IEEE80211_M_STA) flags |= IEEE80211_CLONE_NOBEACONS; break; case IEEE80211_M_WDS: if (TAILQ_EMPTY(&ic->ic_vaps) || ic->ic_opmode != IEEE80211_M_HOSTAP) { device_printf(sc->sc_dev, "wds only supported in ap mode\n"); return NULL; } /* * Silently remove any request for a unique * bssid; WDS vap's always share the local * mac address. */ flags &= ~IEEE80211_CLONE_BSSID; break; default: device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); return NULL; } rvp = malloc(sizeof(struct rt2661_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &rvp->ral_vap; ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); /* override state transition machine */ rvp->ral_newstate = vap->iv_newstate; vap->iv_newstate = rt2661_newstate; #if 0 vap->iv_update_beacon = rt2661_beacon_update; #endif ieee80211_ratectl_init(vap); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); if (TAILQ_FIRST(&ic->ic_vaps) == vap) ic->ic_opmode = opmode; return vap; } static void rt2661_vap_delete(struct ieee80211vap *vap) { struct rt2661_vap *rvp = RT2661_VAP(vap); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(rvp, M_80211_VAP); } void rt2661_shutdown(void *xsc) { struct rt2661_softc *sc = xsc; rt2661_stop(sc); } void rt2661_suspend(void *xsc) { struct rt2661_softc *sc = xsc; rt2661_stop(sc); } void rt2661_resume(void *xsc) { struct rt2661_softc *sc = xsc; if (sc->sc_ic.ic_nrunning > 0) rt2661_init(sc); } static void rt2661_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { if (error != 0) return; KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); *(bus_addr_t *)arg = segs[0].ds_addr; } static int rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring, int count) { int i, error; ring->count = count; ring->queued = 0; ring->cur = ring->next = ring->stat = 0; error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_TX_DESC_SIZE, 1, count * RT2661_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, count * RT2661_TX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ring->data == NULL) { device_printf(sc->sc_dev, "could not allocate soft data\n"); error = ENOMEM; goto fail; } error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RT2661_MAX_SCATTER, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create data DMA tag\n"); goto fail; } for (i = 0; i < count; i++) { error = bus_dmamap_create(ring->data_dmat, 0, &ring->data[i].map); if (error != 0) { device_printf(sc->sc_dev, "could not create DMA map\n"); goto fail; } } return 0; fail: rt2661_free_tx_ring(sc, ring); return error; } static void rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring) { struct rt2661_tx_desc *desc; struct rt2661_tx_data *data; int i; for (i = 0; i < ring->count; i++) { desc = &ring->desc[i]; data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } desc->flags = 0; } bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); ring->queued = 0; ring->cur = ring->next = ring->stat = 0; } static void rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring) { struct rt2661_tx_data *data; int i; if (ring->desc != NULL) { bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->desc_dmat, ring->desc_map); bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); } if (ring->desc_dmat != NULL) bus_dma_tag_destroy(ring->desc_dmat); if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->ni != NULL) ieee80211_free_node(data->ni); if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } free(ring->data, M_DEVBUF); } if (ring->data_dmat != NULL) bus_dma_tag_destroy(ring->data_dmat); } static int rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring, int count) { struct rt2661_rx_desc *desc; struct rt2661_rx_data *data; bus_addr_t physaddr; int i, error; ring->count = count; ring->cur = ring->next = 0; error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_RX_DESC_SIZE, 1, count * RT2661_RX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, count * RT2661_RX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ring->data == NULL) { device_printf(sc->sc_dev, "could not allocate soft data\n"); error = ENOMEM; goto fail; } /* * Pre-allocate Rx buffers and populate Rx ring. */ error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create data DMA tag\n"); goto fail; } for (i = 0; i < count; i++) { desc = &sc->rxq.desc[i]; data = &sc->rxq.data[i]; error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "could not create DMA map\n"); goto fail; } data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (data->m == NULL) { device_printf(sc->sc_dev, "could not allocate rx mbuf\n"); error = ENOMEM; goto fail; } error = bus_dmamap_load(ring->data_dmat, data->map, mtod(data->m, void *), MCLBYTES, rt2661_dma_map_addr, &physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load rx buf DMA map"); goto fail; } desc->flags = htole32(RT2661_RX_BUSY); desc->physaddr = htole32(physaddr); } bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); return 0; fail: rt2661_free_rx_ring(sc, ring); return error; } static void rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring) { int i; for (i = 0; i < ring->count; i++) ring->desc[i].flags = htole32(RT2661_RX_BUSY); bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); ring->cur = ring->next = 0; } static void rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring) { struct rt2661_rx_data *data; int i; if (ring->desc != NULL) { bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->desc_dmat, ring->desc_map); bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); } if (ring->desc_dmat != NULL) bus_dma_tag_destroy(ring->desc_dmat); if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } free(ring->data, M_DEVBUF); } if (ring->data_dmat != NULL) bus_dma_tag_destroy(ring->data_dmat); } static int rt2661_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct rt2661_vap *rvp = RT2661_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct rt2661_softc *sc = ic->ic_softc; int error; if (nstate == IEEE80211_S_INIT && vap->iv_state == IEEE80211_S_RUN) { uint32_t tmp; /* abort TSF synchronization */ tmp = RAL_READ(sc, RT2661_TXRX_CSR9); RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff); } error = rvp->ral_newstate(vap, nstate, arg); if (error == 0 && nstate == IEEE80211_S_RUN) { struct ieee80211_node *ni = vap->iv_bss; if (vap->iv_opmode != IEEE80211_M_MONITOR) { rt2661_enable_mrr(sc); rt2661_set_txpreamble(sc); rt2661_set_basicrates(sc, &ni->ni_rates); rt2661_set_bssid(sc, ni->ni_bssid); } if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_IBSS || vap->iv_opmode == IEEE80211_M_MBSS) { error = rt2661_prepare_beacon(sc, vap); if (error != 0) return error; } if (vap->iv_opmode != IEEE80211_M_MONITOR) rt2661_enable_tsf_sync(sc); else rt2661_enable_tsf(sc); } return error; } /* * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or * 93C66). */ static uint16_t rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr) { uint32_t tmp; uint16_t val; int n; /* clock C once before the first command */ RT2661_EEPROM_CTL(sc, 0); RT2661_EEPROM_CTL(sc, RT2661_S); RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); RT2661_EEPROM_CTL(sc, RT2661_S); /* write start bit (1) */ RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D); RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C); /* write READ opcode (10) */ RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D); RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C); RT2661_EEPROM_CTL(sc, RT2661_S); RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); /* write address (A5-A0 or A7-A0) */ n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7; for (; n >= 0; n--) { RT2661_EEPROM_CTL(sc, RT2661_S | (((addr >> n) & 1) << RT2661_SHIFT_D)); RT2661_EEPROM_CTL(sc, RT2661_S | (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C); } RT2661_EEPROM_CTL(sc, RT2661_S); /* read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); tmp = RAL_READ(sc, RT2661_E2PROM_CSR); val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n; RT2661_EEPROM_CTL(sc, RT2661_S); } RT2661_EEPROM_CTL(sc, 0); /* clear Chip Select and clock C */ RT2661_EEPROM_CTL(sc, RT2661_S); RT2661_EEPROM_CTL(sc, 0); RT2661_EEPROM_CTL(sc, RT2661_C); return val; } static void rt2661_tx_intr(struct rt2661_softc *sc) { struct rt2661_tx_ring *txq; struct rt2661_tx_data *data; uint32_t val; int error, qid, retrycnt; struct ieee80211vap *vap; for (;;) { struct ieee80211_node *ni; struct mbuf *m; val = RAL_READ(sc, RT2661_STA_CSR4); if (!(val & RT2661_TX_STAT_VALID)) break; /* retrieve the queue in which this frame was sent */ qid = RT2661_TX_QID(val); txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq; /* retrieve rate control algorithm context */ data = &txq->data[txq->stat]; m = data->m; data->m = NULL; ni = data->ni; data->ni = NULL; /* if no frame has been sent, ignore */ if (ni == NULL) continue; else vap = ni->ni_vap; switch (RT2661_TX_RESULT(val)) { case RT2661_TX_SUCCESS: retrycnt = RT2661_TX_RETRYCNT(val); DPRINTFN(sc, 10, "data frame sent successfully after " "%d retries\n", retrycnt); if (data->rix != IEEE80211_FIXED_RATE_NONE) ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, &retrycnt, NULL); error = 0; break; case RT2661_TX_RETRY_FAIL: retrycnt = RT2661_TX_RETRYCNT(val); DPRINTFN(sc, 9, "%s\n", "sending data frame failed (too much retries)"); if (data->rix != IEEE80211_FIXED_RATE_NONE) ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_FAILURE, &retrycnt, NULL); error = 1; break; default: /* other failure */ device_printf(sc->sc_dev, "sending data frame failed 0x%08x\n", val); error = 1; } DPRINTFN(sc, 15, "tx done q=%d idx=%u\n", qid, txq->stat); txq->queued--; if (++txq->stat >= txq->count) /* faster than % count */ txq->stat = 0; ieee80211_tx_complete(ni, m, error); } sc->sc_tx_timer = 0; rt2661_start(sc); } static void rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq) { struct rt2661_tx_desc *desc; struct rt2661_tx_data *data; bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_POSTREAD); for (;;) { desc = &txq->desc[txq->next]; data = &txq->data[txq->next]; if ((le32toh(desc->flags) & RT2661_TX_BUSY) || !(le32toh(desc->flags) & RT2661_TX_VALID)) break; bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txq->data_dmat, data->map); /* descriptor is no longer valid */ desc->flags &= ~htole32(RT2661_TX_VALID); DPRINTFN(sc, 15, "tx dma done q=%p idx=%u\n", txq, txq->next); if (++txq->next >= txq->count) /* faster than % count */ txq->next = 0; } bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); } static void rt2661_rx_intr(struct rt2661_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct rt2661_rx_desc *desc; struct rt2661_rx_data *data; bus_addr_t physaddr; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *mnew, *m; int error; bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, BUS_DMASYNC_POSTREAD); for (;;) { int8_t rssi, nf; desc = &sc->rxq.desc[sc->rxq.cur]; data = &sc->rxq.data[sc->rxq.cur]; if (le32toh(desc->flags) & RT2661_RX_BUSY) break; if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) || (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) { /* * This should not happen since we did not request * to receive those frames when we filled TXRX_CSR0. */ DPRINTFN(sc, 5, "PHY or CRC error flags 0x%08x\n", le32toh(desc->flags)); counter_u64_add(ic->ic_ierrors, 1); goto skip; } if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) { counter_u64_add(ic->ic_ierrors, 1); goto skip; } /* * Try to allocate a new mbuf for this ring element and load it * before processing the current mbuf. If the ring element * cannot be loaded, drop the received packet and reuse the old * mbuf. In the unlikely case that the old mbuf can't be * reloaded either, explicitly panic. */ mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (mnew == NULL) { counter_u64_add(ic->ic_ierrors, 1); goto skip; } bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->rxq.data_dmat, data->map); error = bus_dmamap_load(sc->rxq.data_dmat, data->map, mtod(mnew, void *), MCLBYTES, rt2661_dma_map_addr, &physaddr, 0); if (error != 0) { m_freem(mnew); /* try to reload the old mbuf */ error = bus_dmamap_load(sc->rxq.data_dmat, data->map, mtod(data->m, void *), MCLBYTES, rt2661_dma_map_addr, &physaddr, 0); if (error != 0) { /* very unlikely that it will fail... */ panic("%s: could not load old rx mbuf", device_get_name(sc->sc_dev)); } counter_u64_add(ic->ic_ierrors, 1); goto skip; } /* * New mbuf successfully loaded, update Rx ring and continue * processing. */ m = data->m; data->m = mnew; desc->physaddr = htole32(physaddr); /* finalize mbuf */ m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff; rssi = rt2661_get_rssi(sc, desc->rssi); /* Error happened during RSSI conversion. */ if (rssi < 0) rssi = -30; /* XXX ignored by net80211 */ nf = RT2661_NOISE_FLOOR; if (ieee80211_radiotap_active(ic)) { struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap; uint32_t tsf_lo, tsf_hi; /* get timestamp (low and high 32 bits) */ tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13); tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12); tap->wr_tsf = htole64(((uint64_t)tsf_hi << 32) | tsf_lo); tap->wr_flags = 0; tap->wr_rate = ieee80211_plcp2rate(desc->rate, (desc->flags & htole32(RT2661_RX_OFDM)) ? IEEE80211_T_OFDM : IEEE80211_T_CCK); tap->wr_antsignal = nf + rssi; tap->wr_antnoise = nf; } sc->sc_flags |= RAL_INPUT_RUNNING; RAL_UNLOCK(sc); wh = mtod(m, struct ieee80211_frame *); /* send the frame to the 802.11 layer */ ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); if (ni != NULL) { (void) ieee80211_input(ni, m, rssi, nf); ieee80211_free_node(ni); } else (void) ieee80211_input_all(ic, m, rssi, nf); RAL_LOCK(sc); sc->sc_flags &= ~RAL_INPUT_RUNNING; skip: desc->flags |= htole32(RT2661_RX_BUSY); DPRINTFN(sc, 15, "rx intr idx=%u\n", sc->rxq.cur); sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT; } bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, BUS_DMASYNC_PREWRITE); } /* ARGSUSED */ static void rt2661_mcu_beacon_expire(struct rt2661_softc *sc) { /* do nothing */ } static void rt2661_mcu_wakeup(struct rt2661_softc *sc) { RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16); RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7); RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18); RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20); /* send wakeup command to MCU */ rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0); } static void rt2661_mcu_cmd_intr(struct rt2661_softc *sc) { RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR); RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff); } void rt2661_intr(void *arg) { struct rt2661_softc *sc = arg; uint32_t r1, r2; RAL_LOCK(sc); /* disable MAC and MCU interrupts */ RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f); RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff); /* don't re-enable interrupts if we're shutting down */ if (!(sc->sc_flags & RAL_RUNNING)) { RAL_UNLOCK(sc); return; } r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR); RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1); r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR); RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2); if (r1 & RT2661_MGT_DONE) rt2661_tx_dma_intr(sc, &sc->mgtq); if (r1 & RT2661_RX_DONE) rt2661_rx_intr(sc); if (r1 & RT2661_TX0_DMA_DONE) rt2661_tx_dma_intr(sc, &sc->txq[0]); if (r1 & RT2661_TX1_DMA_DONE) rt2661_tx_dma_intr(sc, &sc->txq[1]); if (r1 & RT2661_TX2_DMA_DONE) rt2661_tx_dma_intr(sc, &sc->txq[2]); if (r1 & RT2661_TX3_DMA_DONE) rt2661_tx_dma_intr(sc, &sc->txq[3]); if (r1 & RT2661_TX_DONE) rt2661_tx_intr(sc); if (r2 & RT2661_MCU_CMD_DONE) rt2661_mcu_cmd_intr(sc); if (r2 & RT2661_MCU_BEACON_EXPIRE) rt2661_mcu_beacon_expire(sc); if (r2 & RT2661_MCU_WAKEUP) rt2661_mcu_wakeup(sc); /* re-enable MAC and MCU interrupts */ RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10); RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0); RAL_UNLOCK(sc); } static uint8_t rt2661_plcp_signal(int rate) { switch (rate) { /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return 0xb; case 18: return 0xf; case 24: return 0xa; case 36: return 0xe; case 48: return 0x9; case 72: return 0xd; case 96: return 0x8; case 108: return 0xc; /* CCK rates (NB: not IEEE std, device-specific) */ case 2: return 0x0; case 4: return 0x1; case 11: return 0x2; case 22: return 0x3; } return 0xff; /* XXX unsupported/unknown rate */ } static void rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc, uint32_t flags, uint16_t xflags, int len, int rate, const bus_dma_segment_t *segs, int nsegs, int ac) { struct ieee80211com *ic = &sc->sc_ic; uint16_t plcp_length; int i, remainder; desc->flags = htole32(flags); desc->flags |= htole32(len << 16); desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID); desc->xflags = htole16(xflags); desc->xflags |= htole16(nsegs << 13); desc->wme = htole16( RT2661_QID(ac) | RT2661_AIFSN(2) | RT2661_LOGCWMIN(4) | RT2661_LOGCWMAX(10)); /* * Remember in which queue this frame was sent. This field is driver * private data only. It will be made available by the NIC in STA_CSR4 * on Tx interrupts. */ desc->qid = ac; /* setup PLCP fields */ desc->plcp_signal = rt2661_plcp_signal(rate); desc->plcp_service = 4; len += IEEE80211_CRC_LEN; if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { desc->flags |= htole32(RT2661_TX_OFDM); plcp_length = len & 0xfff; desc->plcp_length_hi = plcp_length >> 6; desc->plcp_length_lo = plcp_length & 0x3f; } else { plcp_length = howmany(16 * len, rate); if (rate == 22) { remainder = (16 * len) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= RT2661_PLCP_LENGEXT; } desc->plcp_length_hi = plcp_length >> 8; desc->plcp_length_lo = plcp_length & 0xff; if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->plcp_signal |= 0x08; } /* RT2x61 supports scatter with up to 5 segments */ for (i = 0; i < nsegs; i++) { desc->addr[i] = htole32(segs[i].ds_addr); desc->len [i] = htole16(segs[i].ds_len); } } static int rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct rt2661_tx_desc *desc; struct rt2661_tx_data *data; struct ieee80211_frame *wh; struct ieee80211_key *k; bus_dma_segment_t segs[RT2661_MAX_SCATTER]; uint16_t dur; uint32_t flags = 0; /* XXX HWSEQ */ int nsegs, rate, error; desc = &sc->mgtq.desc[sc->mgtq.cur]; data = &sc->mgtq.data[sc->mgtq.cur]; rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate; wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } } error = bus_dmamap_load_mbuf_sg(sc->mgtq.data_dmat, data->map, m0, segs, &nsegs, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (ieee80211_radiotap_active_vap(vap)) { struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; ieee80211_radiotap_tx(vap, m0); } data->m = m0; data->ni = ni; /* management frames are not taken into account for amrr */ data->rix = IEEE80211_FIXED_RATE_NONE; wh = mtod(m0, struct ieee80211_frame *); if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2661_TX_NEED_ACK; dur = ieee80211_ack_duration(ic->ic_rt, rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE); *(uint16_t *)wh->i_dur = htole16(dur); /* tell hardware to add timestamp in probe responses */ if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) flags |= RT2661_TX_TIMESTAMP; } rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */, m0->m_pkthdr.len, rate, segs, nsegs, RT2661_QID_MGT); bus_dmamap_sync(sc->mgtq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->mgtq.desc_dmat, sc->mgtq.desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(sc, 10, "sending mgt frame len=%u idx=%u rate=%u\n", m0->m_pkthdr.len, sc->mgtq.cur, rate); /* kick mgt */ sc->mgtq.queued++; sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT; RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT); return 0; } static int rt2661_sendprot(struct rt2661_softc *sc, int ac, const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) { struct ieee80211com *ic = ni->ni_ic; struct rt2661_tx_ring *txq = &sc->txq[ac]; const struct ieee80211_frame *wh; struct rt2661_tx_desc *desc; struct rt2661_tx_data *data; struct mbuf *mprot; int protrate, ackrate, pktlen, flags, isshort, error; uint16_t dur; bus_dma_segment_t segs[RT2661_MAX_SCATTER]; int nsegs; KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, ("protection %d", prot)); wh = mtod(m, const struct ieee80211_frame *); pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; protrate = ieee80211_ctl_rate(ic->ic_rt, rate); ackrate = ieee80211_ack_rate(ic->ic_rt, rate); isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) + ieee80211_ack_duration(ic->ic_rt, rate, isshort); flags = RT2661_TX_MORE_FRAG; if (prot == IEEE80211_PROT_RTSCTS) { /* NB: CTS is the same size as an ACK */ dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); flags |= RT2661_TX_NEED_ACK; mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); } else { mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); } if (mprot == NULL) { /* XXX stat + msg */ return ENOBUFS; } data = &txq->data[txq->cur]; desc = &txq->desc[txq->cur]; error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, mprot, segs, &nsegs, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(mprot); return error; } data->m = mprot; data->ni = ieee80211_ref_node(ni); /* ctl frames are not taken into account for amrr */ data->rix = IEEE80211_FIXED_RATE_NONE; rt2661_setup_tx_desc(sc, desc, flags, 0, mprot->m_pkthdr.len, protrate, segs, 1, ac); bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); txq->queued++; txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT; return 0; } static int rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, int ac) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = &sc->sc_ic; struct rt2661_tx_ring *txq = &sc->txq[ac]; struct rt2661_tx_desc *desc; struct rt2661_tx_data *data; struct ieee80211_frame *wh; const struct ieee80211_txparam *tp; struct ieee80211_key *k; const struct chanAccParams *cap; struct mbuf *mnew; bus_dma_segment_t segs[RT2661_MAX_SCATTER]; uint16_t dur; uint32_t flags; int error, nsegs, rate, noack = 0; wh = mtod(m0, struct ieee80211_frame *); tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { rate = tp->mcastrate; } else if (m0->m_flags & M_EAPOL) { rate = tp->mgmtrate; } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { rate = tp->ucastrate; } else { (void) ieee80211_ratectl_rate(ni, NULL, 0); rate = ni->ni_txrate; } rate &= IEEE80211_RATE_VAL; if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) { cap = &ic->ic_wme.wme_chanParams; noack = cap->cap_wmeParams[ac].wmep_noackPolicy; } if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } flags = 0; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { int prot = IEEE80211_PROT_NONE; if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) prot = IEEE80211_PROT_RTSCTS; else if ((ic->ic_flags & IEEE80211_F_USEPROT) && ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) prot = ic->ic_protmode; if (prot != IEEE80211_PROT_NONE) { error = rt2661_sendprot(sc, ac, m0, ni, prot, rate); if (error) { m_freem(m0); return error; } flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS; } } data = &txq->data[txq->cur]; desc = &txq->desc[txq->cur]; error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, &nsegs, 0); if (error != 0 && error != EFBIG) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (error != 0) { mnew = m_defrag(m0, M_NOWAIT); if (mnew == NULL) { device_printf(sc->sc_dev, "could not defragment mbuf\n"); m_freem(m0); return ENOBUFS; } m0 = mnew; error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, &nsegs, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } /* packet header have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } if (ieee80211_radiotap_active_vap(vap)) { struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; ieee80211_radiotap_tx(vap, m0); } data->m = m0; data->ni = ni; /* remember link conditions for rate adaptation algorithm */ if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) { data->rix = ni->ni_txrate; /* XXX probably need last rssi value and not avg */ data->rssi = ic->ic_node_getrssi(ni); } else data->rix = IEEE80211_FIXED_RATE_NONE; if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2661_TX_NEED_ACK; dur = ieee80211_ack_duration(ic->ic_rt, rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE); *(uint16_t *)wh->i_dur = htole16(dur); } rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate, segs, nsegs, ac); bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(sc, 10, "sending data frame len=%u idx=%u rate=%u\n", m0->m_pkthdr.len, txq->cur, rate); /* kick Tx */ txq->queued++; txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT; RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1 << ac); return 0; } static int rt2661_transmit(struct ieee80211com *ic, struct mbuf *m) { struct rt2661_softc *sc = ic->ic_softc; int error; RAL_LOCK(sc); if ((sc->sc_flags & RAL_RUNNING) == 0) { RAL_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { RAL_UNLOCK(sc); return (error); } rt2661_start(sc); RAL_UNLOCK(sc); return (0); } static void rt2661_start(struct rt2661_softc *sc) { struct mbuf *m; struct ieee80211_node *ni; int ac; RAL_LOCK_ASSERT(sc); /* prevent management frames from being sent if we're not ready */ if (!(sc->sc_flags & RAL_RUNNING) || sc->sc_invalid) return; while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ac = M_WME_GETAC(m); if (sc->txq[ac].queued >= RT2661_TX_RING_COUNT - 1) { /* there is no place left in this ring */ mbufq_prepend(&sc->sc_snd, m); break; } ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; if (rt2661_tx_data(sc, m, ni, ac) != 0) { ieee80211_free_node(ni); if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); break; } sc->sc_tx_timer = 5; } } static int rt2661_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct rt2661_softc *sc = ic->ic_softc; RAL_LOCK(sc); /* prevent management frames from being sent if we're not ready */ if (!(sc->sc_flags & RAL_RUNNING)) { RAL_UNLOCK(sc); m_freem(m); return ENETDOWN; } if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) { RAL_UNLOCK(sc); m_freem(m); return ENOBUFS; /* XXX */ } /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. * XXX raw path */ if (rt2661_tx_mgt(sc, m, ni) != 0) goto bad; sc->sc_tx_timer = 5; RAL_UNLOCK(sc); return 0; bad: RAL_UNLOCK(sc); return EIO; /* XXX */ } static void rt2661_watchdog(void *arg) { struct rt2661_softc *sc = (struct rt2661_softc *)arg; RAL_LOCK_ASSERT(sc); KASSERT(sc->sc_flags & RAL_RUNNING, ("not running")); if (sc->sc_invalid) /* card ejected */ return; if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) { device_printf(sc->sc_dev, "device timeout\n"); rt2661_init_locked(sc); counter_u64_add(sc->sc_ic.ic_oerrors, 1); /* NB: callout is reset in rt2661_init() */ return; } callout_reset(&sc->watchdog_ch, hz, rt2661_watchdog, sc); } static void rt2661_parent(struct ieee80211com *ic) { struct rt2661_softc *sc = ic->ic_softc; int startall = 0; RAL_LOCK(sc); if (ic->ic_nrunning > 0) { if ((sc->sc_flags & RAL_RUNNING) == 0) { rt2661_init_locked(sc); startall = 1; } else rt2661_update_promisc(ic); } else if (sc->sc_flags & RAL_RUNNING) rt2661_stop_locked(sc); RAL_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } static void rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY)) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "could not write to BBP\n"); return; } tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val; RAL_WRITE(sc, RT2661_PHY_CSR3, tmp); DPRINTFN(sc, 15, "BBP R%u <- 0x%02x\n", reg, val); } static uint8_t rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg) { uint32_t val; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY)) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "could not read from BBP\n"); return 0; } val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8; RAL_WRITE(sc, RT2661_PHY_CSR3, val); for (ntries = 0; ntries < 100; ntries++) { val = RAL_READ(sc, RT2661_PHY_CSR3); if (!(val & RT2661_BBP_BUSY)) return val & 0xff; DELAY(1); } device_printf(sc->sc_dev, "could not read from BBP\n"); return 0; } static void rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY)) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "could not write to RF\n"); return; } tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 | (reg & 3); RAL_WRITE(sc, RT2661_PHY_CSR4, tmp); /* remember last written value in sc */ sc->rf_regs[reg] = val; DPRINTFN(sc, 15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff); } static int rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg) { if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY) return EIO; /* there is already a command pending */ RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg); RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd); return 0; } static void rt2661_select_antenna(struct rt2661_softc *sc) { uint8_t bbp4, bbp77; uint32_t tmp; bbp4 = rt2661_bbp_read(sc, 4); bbp77 = rt2661_bbp_read(sc, 77); /* TBD */ /* make sure Rx is disabled before switching antenna */ tmp = RAL_READ(sc, RT2661_TXRX_CSR0); RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); rt2661_bbp_write(sc, 4, bbp4); rt2661_bbp_write(sc, 77, bbp77); /* restore Rx filter */ RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); } /* * Enable multi-rate retries for frames sent at OFDM rates. * In 802.11b/g mode, allow fallback to CCK rates. */ static void rt2661_enable_mrr(struct rt2661_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; tmp = RAL_READ(sc, RT2661_TXRX_CSR4); tmp &= ~RT2661_MRR_CCK_FALLBACK; if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) tmp |= RT2661_MRR_CCK_FALLBACK; tmp |= RT2661_MRR_ENABLED; RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp); } static void rt2661_set_txpreamble(struct rt2661_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; tmp = RAL_READ(sc, RT2661_TXRX_CSR4); tmp &= ~RT2661_SHORT_PREAMBLE; if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) tmp |= RT2661_SHORT_PREAMBLE; RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp); } static void rt2661_set_basicrates(struct rt2661_softc *sc, const struct ieee80211_rateset *rs) { struct ieee80211com *ic = &sc->sc_ic; uint32_t mask = 0; uint8_t rate; int i; for (i = 0; i < rs->rs_nrates; i++) { rate = rs->rs_rates[i]; if (!(rate & IEEE80211_RATE_BASIC)) continue; mask |= 1 << ieee80211_legacy_rate_lookup(ic->ic_rt, IEEE80211_RV(rate)); } RAL_WRITE(sc, RT2661_TXRX_CSR5, mask); DPRINTF(sc, "Setting basic rate mask to 0x%x\n", mask); } /* * Reprogram MAC/BBP to switch to a new band. Values taken from the reference * driver. */ static void rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c) { uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; uint32_t tmp; /* update all BBP registers that depend on the band */ bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; if (IEEE80211_IS_CHAN_5GHZ(c)) { bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; } if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; } rt2661_bbp_write(sc, 17, bbp17); rt2661_bbp_write(sc, 96, bbp96); rt2661_bbp_write(sc, 104, bbp104); if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { rt2661_bbp_write(sc, 75, 0x80); rt2661_bbp_write(sc, 86, 0x80); rt2661_bbp_write(sc, 88, 0x80); } rt2661_bbp_write(sc, 35, bbp35); rt2661_bbp_write(sc, 97, bbp97); rt2661_bbp_write(sc, 98, bbp98); tmp = RAL_READ(sc, RT2661_PHY_CSR0); tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ); if (IEEE80211_IS_CHAN_2GHZ(c)) tmp |= RT2661_PA_PE_2GHZ; else tmp |= RT2661_PA_PE_5GHZ; RAL_WRITE(sc, RT2661_PHY_CSR0, tmp); } static void rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; const struct rfprog *rfprog; uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT; int8_t power; u_int i, chan; chan = ieee80211_chan2ieee(ic, c); KASSERT(chan != 0 && chan != IEEE80211_CHAN_ANY, ("chan 0x%x", chan)); /* select the appropriate RF settings based on what EEPROM says */ rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2; /* find the settings for this channel (we know it exists) */ for (i = 0; rfprog[i].chan != chan; i++); power = sc->txpow[i]; if (power < 0) { bbp94 += power; power = 0; } else if (power > 31) { bbp94 += power - 31; power = 31; } /* * If we are switching from the 2GHz band to the 5GHz band or * vice-versa, BBP registers need to be reprogrammed. */ if (c->ic_flags != sc->sc_curchan->ic_flags) { rt2661_select_band(sc, c); rt2661_select_antenna(sc); } sc->sc_curchan = c; rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7); rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); DELAY(200); rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1); rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); DELAY(200); rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7); rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); /* enable smart mode for MIMO-capable RFs */ bbp3 = rt2661_bbp_read(sc, 3); bbp3 &= ~RT2661_SMART_MODE; if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529) bbp3 |= RT2661_SMART_MODE; rt2661_bbp_write(sc, 3, bbp3); if (bbp94 != RT2661_BBPR94_DEFAULT) rt2661_bbp_write(sc, 94, bbp94); /* 5GHz radio needs a 1ms delay here */ if (IEEE80211_IS_CHAN_5GHZ(c)) DELAY(1000); } static void rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid) { uint32_t tmp; tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; RAL_WRITE(sc, RT2661_MAC_CSR4, tmp); tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16; RAL_WRITE(sc, RT2661_MAC_CSR5, tmp); } static void rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr) { uint32_t tmp; tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; RAL_WRITE(sc, RT2661_MAC_CSR2, tmp); tmp = addr[4] | addr[5] << 8; RAL_WRITE(sc, RT2661_MAC_CSR3, tmp); } static void rt2661_update_promisc(struct ieee80211com *ic) { struct rt2661_softc *sc = ic->ic_softc; uint32_t tmp; tmp = RAL_READ(sc, RT2661_TXRX_CSR0); tmp &= ~RT2661_DROP_NOT_TO_ME; if (ic->ic_promisc == 0) tmp |= RT2661_DROP_NOT_TO_ME; RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); DPRINTF(sc, "%s promiscuous mode\n", (ic->ic_promisc > 0) ? "entering" : "leaving"); } /* * Update QoS (802.11e) settings for each h/w Tx ring. */ static int rt2661_wme_update(struct ieee80211com *ic) { struct rt2661_softc *sc = ic->ic_softc; const struct wmeParams *wmep; wmep = ic->ic_wme.wme_chanParams.cap_wmeParams; /* XXX: not sure about shifts. */ /* XXX: the reference driver plays with AC_VI settings too. */ /* update TxOp */ RAL_WRITE(sc, RT2661_AC_TXOP_CSR0, wmep[WME_AC_BE].wmep_txopLimit << 16 | wmep[WME_AC_BK].wmep_txopLimit); RAL_WRITE(sc, RT2661_AC_TXOP_CSR1, wmep[WME_AC_VI].wmep_txopLimit << 16 | wmep[WME_AC_VO].wmep_txopLimit); /* update CWmin */ RAL_WRITE(sc, RT2661_CWMIN_CSR, wmep[WME_AC_BE].wmep_logcwmin << 12 | wmep[WME_AC_BK].wmep_logcwmin << 8 | wmep[WME_AC_VI].wmep_logcwmin << 4 | wmep[WME_AC_VO].wmep_logcwmin); /* update CWmax */ RAL_WRITE(sc, RT2661_CWMAX_CSR, wmep[WME_AC_BE].wmep_logcwmax << 12 | wmep[WME_AC_BK].wmep_logcwmax << 8 | wmep[WME_AC_VI].wmep_logcwmax << 4 | wmep[WME_AC_VO].wmep_logcwmax); /* update Aifsn */ RAL_WRITE(sc, RT2661_AIFSN_CSR, wmep[WME_AC_BE].wmep_aifsn << 12 | wmep[WME_AC_BK].wmep_aifsn << 8 | wmep[WME_AC_VI].wmep_aifsn << 4 | wmep[WME_AC_VO].wmep_aifsn); return 0; } static void rt2661_update_slot(struct ieee80211com *ic) { struct rt2661_softc *sc = ic->ic_softc; uint8_t slottime; uint32_t tmp; slottime = IEEE80211_GET_SLOTTIME(ic); tmp = RAL_READ(sc, RT2661_MAC_CSR9); tmp = (tmp & ~0xff) | slottime; RAL_WRITE(sc, RT2661_MAC_CSR9, tmp); } static const char * rt2661_get_rf(int rev) { switch (rev) { case RT2661_RF_5225: return "RT5225"; case RT2661_RF_5325: return "RT5325 (MIMO XR)"; case RT2661_RF_2527: return "RT2527"; case RT2661_RF_2529: return "RT2529 (MIMO XR)"; default: return "unknown"; } } static void rt2661_read_eeprom(struct rt2661_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) { uint16_t val; int i; /* read MAC address */ val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01); macaddr[0] = val & 0xff; macaddr[1] = val >> 8; val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23); macaddr[2] = val & 0xff; macaddr[3] = val >> 8; val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45); macaddr[4] = val & 0xff; macaddr[5] = val >> 8; val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA); /* XXX: test if different from 0xffff? */ sc->rf_rev = (val >> 11) & 0x1f; sc->hw_radio = (val >> 10) & 0x1; sc->rx_ant = (val >> 4) & 0x3; sc->tx_ant = (val >> 2) & 0x3; sc->nb_ant = val & 0x3; DPRINTF(sc, "RF revision=%d\n", sc->rf_rev); val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2); sc->ext_5ghz_lna = (val >> 6) & 0x1; sc->ext_2ghz_lna = (val >> 4) & 0x1; DPRINTF(sc, "External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", sc->ext_2ghz_lna, sc->ext_5ghz_lna); val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET); if ((val & 0xff) != 0xff) sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ /* Only [-10, 10] is valid */ if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) sc->rssi_2ghz_corr = 0; val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET); if ((val & 0xff) != 0xff) sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ /* Only [-10, 10] is valid */ if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) sc->rssi_5ghz_corr = 0; /* adjust RSSI correction for external low-noise amplifier */ if (sc->ext_2ghz_lna) sc->rssi_2ghz_corr -= 14; if (sc->ext_5ghz_lna) sc->rssi_5ghz_corr -= 14; DPRINTF(sc, "RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET); if ((val >> 8) != 0xff) sc->rfprog = (val >> 8) & 0x3; if ((val & 0xff) != 0xff) sc->rffreq = val & 0xff; DPRINTF(sc, "RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq); /* read Tx power for all a/b/g channels */ for (i = 0; i < 19; i++) { val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i); sc->txpow[i * 2] = (int8_t)(val >> 8); /* signed */ DPRINTF(sc, "Channel=%d Tx power=%d\n", rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]); sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff); /* signed */ DPRINTF(sc, "Channel=%d Tx power=%d\n", rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]); } /* read vendor-specific BBP values */ for (i = 0; i < 16; i++) { val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i); if (val == 0 || val == 0xffff) continue; /* skip invalid entries */ sc->bbp_prom[i].reg = val >> 8; sc->bbp_prom[i].val = val & 0xff; DPRINTF(sc, "BBP R%d=%02x\n", sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } } static int rt2661_bbp_init(struct rt2661_softc *sc) { int i, ntries; uint8_t val; /* wait for BBP to be ready */ for (ntries = 0; ntries < 100; ntries++) { val = rt2661_bbp_read(sc, 0); if (val != 0 && val != 0xff) break; DELAY(100); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for BBP\n"); return EIO; } /* initialize BBP registers to default values */ for (i = 0; i < nitems(rt2661_def_bbp); i++) { rt2661_bbp_write(sc, rt2661_def_bbp[i].reg, rt2661_def_bbp[i].val); } /* write vendor-specific BBP values (from EEPROM) */ for (i = 0; i < 16; i++) { if (sc->bbp_prom[i].reg == 0) continue; rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } return 0; } static void rt2661_init_locked(struct rt2661_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t tmp, sta[3]; int i, error, ntries; RAL_LOCK_ASSERT(sc); if ((sc->sc_flags & RAL_FW_LOADED) == 0) { error = rt2661_load_microcode(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: could not load 8051 microcode, error %d\n", __func__, error); return; } sc->sc_flags |= RAL_FW_LOADED; } rt2661_stop_locked(sc); /* initialize Tx rings */ RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr); RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr); RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr); RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr); /* initialize Mgt ring */ RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr); /* initialize Rx ring */ RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr); /* initialize Tx rings sizes */ RAL_WRITE(sc, RT2661_TX_RING_CSR0, RT2661_TX_RING_COUNT << 24 | RT2661_TX_RING_COUNT << 16 | RT2661_TX_RING_COUNT << 8 | RT2661_TX_RING_COUNT); RAL_WRITE(sc, RT2661_TX_RING_CSR1, RT2661_TX_DESC_WSIZE << 16 | RT2661_TX_RING_COUNT << 8 | /* XXX: HCCA ring unused */ RT2661_MGT_RING_COUNT); /* initialize Rx rings */ RAL_WRITE(sc, RT2661_RX_RING_CSR, RT2661_RX_DESC_BACK << 16 | RT2661_RX_DESC_WSIZE << 8 | RT2661_RX_RING_COUNT); /* XXX: some magic here */ RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa); /* load base addresses of all 5 Tx rings (4 data + 1 mgt) */ RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f); /* load base address of Rx ring */ RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2); /* initialize MAC registers to default values */ for (i = 0; i < nitems(rt2661_def_mac); i++) RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val); rt2661_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); /* set host ready */ RAL_WRITE(sc, RT2661_MAC_CSR1, 3); RAL_WRITE(sc, RT2661_MAC_CSR1, 0); /* wait for BBP/RF to wakeup */ for (ntries = 0; ntries < 1000; ntries++) { if (RAL_READ(sc, RT2661_MAC_CSR12) & 8) break; DELAY(1000); } if (ntries == 1000) { printf("timeout waiting for BBP/RF to wakeup\n"); rt2661_stop_locked(sc); return; } if (rt2661_bbp_init(sc) != 0) { rt2661_stop_locked(sc); return; } /* select default channel */ sc->sc_curchan = ic->ic_curchan; rt2661_select_band(sc, sc->sc_curchan); rt2661_select_antenna(sc); rt2661_set_chan(sc, sc->sc_curchan); /* update Rx filter */ tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff; tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR | RT2661_DROP_ACKCTS; if (ic->ic_opmode != IEEE80211_M_HOSTAP && ic->ic_opmode != IEEE80211_M_MBSS) tmp |= RT2661_DROP_TODS; if (ic->ic_promisc == 0) tmp |= RT2661_DROP_NOT_TO_ME; } RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); /* clear STA registers */ RAL_READ_REGION_4(sc, RT2661_STA_CSR0, sta, nitems(sta)); /* initialize ASIC */ RAL_WRITE(sc, RT2661_MAC_CSR1, 4); /* clear any pending interrupt */ RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff); /* enable interrupts */ RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10); RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0); /* kick Rx */ RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1); sc->sc_flags |= RAL_RUNNING; callout_reset(&sc->watchdog_ch, hz, rt2661_watchdog, sc); } static void rt2661_init(void *priv) { struct rt2661_softc *sc = priv; struct ieee80211com *ic = &sc->sc_ic; RAL_LOCK(sc); rt2661_init_locked(sc); RAL_UNLOCK(sc); if (sc->sc_flags & RAL_RUNNING) ieee80211_start_all(ic); /* start all vap's */ } void rt2661_stop_locked(struct rt2661_softc *sc) { volatile int *flags = &sc->sc_flags; uint32_t tmp; while (*flags & RAL_INPUT_RUNNING) msleep(sc, &sc->sc_mtx, 0, "ralrunning", hz/10); callout_stop(&sc->watchdog_ch); sc->sc_tx_timer = 0; if (sc->sc_flags & RAL_RUNNING) { sc->sc_flags &= ~RAL_RUNNING; /* abort Tx (for all 5 Tx rings) */ RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16); /* disable Rx (value remains after reset!) */ tmp = RAL_READ(sc, RT2661_TXRX_CSR0); RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); /* reset ASIC */ RAL_WRITE(sc, RT2661_MAC_CSR1, 3); RAL_WRITE(sc, RT2661_MAC_CSR1, 0); /* disable interrupts */ RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffffff); RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff); /* clear any pending interrupt */ RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff); RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff); /* reset Tx and Rx rings */ rt2661_reset_tx_ring(sc, &sc->txq[0]); rt2661_reset_tx_ring(sc, &sc->txq[1]); rt2661_reset_tx_ring(sc, &sc->txq[2]); rt2661_reset_tx_ring(sc, &sc->txq[3]); rt2661_reset_tx_ring(sc, &sc->mgtq); rt2661_reset_rx_ring(sc, &sc->rxq); } } void rt2661_stop(void *priv) { struct rt2661_softc *sc = priv; RAL_LOCK(sc); rt2661_stop_locked(sc); RAL_UNLOCK(sc); } static int rt2661_load_microcode(struct rt2661_softc *sc) { const struct firmware *fp; const char *imagename; int ntries, error; RAL_LOCK_ASSERT(sc); switch (sc->sc_id) { case 0x0301: imagename = "rt2561sfw"; break; case 0x0302: imagename = "rt2561fw"; break; case 0x0401: imagename = "rt2661fw"; break; default: device_printf(sc->sc_dev, "%s: unexpected pci device id 0x%x, " "don't know how to retrieve firmware\n", __func__, sc->sc_id); return EINVAL; } RAL_UNLOCK(sc); fp = firmware_get(imagename); RAL_LOCK(sc); if (fp == NULL) { device_printf(sc->sc_dev, "%s: unable to retrieve firmware image %s\n", __func__, imagename); return EINVAL; } /* * Load 8051 microcode into NIC. */ /* reset 8051 */ RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET); /* cancel any pending Host to MCU command */ RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0); RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff); RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0); /* write 8051's microcode */ RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL); RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, fp->data, fp->datasize); RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET); /* kick 8051's ass */ RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0); /* wait for 8051 to initialize */ for (ntries = 0; ntries < 500; ntries++) { if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY) break; DELAY(100); } if (ntries == 500) { device_printf(sc->sc_dev, "%s: timeout waiting for MCU to initialize\n", __func__); error = EIO; } else error = 0; firmware_put(fp, FIRMWARE_UNLOAD); return error; } #ifdef notyet /* * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and * false CCA count. This function is called periodically (every seconds) when * in the RUN state. Values taken from the reference driver. */ static void rt2661_rx_tune(struct rt2661_softc *sc) { uint8_t bbp17; uint16_t cca; int lo, hi, dbm; /* * Tuning range depends on operating band and on the presence of an * external low-noise amplifier. */ lo = 0x20; if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan)) lo += 0x08; if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna)) lo += 0x10; hi = lo + 0x20; /* retrieve false CCA count since last call (clear on read) */ cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff; if (dbm >= -35) { bbp17 = 0x60; } else if (dbm >= -58) { bbp17 = hi; } else if (dbm >= -66) { bbp17 = lo + 0x10; } else if (dbm >= -74) { bbp17 = lo + 0x08; } else { /* RSSI < -74dBm, tune using false CCA count */ bbp17 = sc->bbp17; /* current value */ hi -= 2 * (-74 - dbm); if (hi < lo) hi = lo; if (bbp17 > hi) { bbp17 = hi; } else if (cca > 512) { if (++bbp17 > hi) bbp17 = hi; } else if (cca < 100) { if (--bbp17 < lo) bbp17 = lo; } } if (bbp17 != sc->bbp17) { rt2661_bbp_write(sc, 17, bbp17); sc->bbp17 = bbp17; } } /* * Enter/Leave radar detection mode. * This is for 802.11h additional regulatory domains. */ static void rt2661_radar_start(struct rt2661_softc *sc) { uint32_t tmp; /* disable Rx */ tmp = RAL_READ(sc, RT2661_TXRX_CSR0); RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); rt2661_bbp_write(sc, 82, 0x20); rt2661_bbp_write(sc, 83, 0x00); rt2661_bbp_write(sc, 84, 0x40); /* save current BBP registers values */ sc->bbp18 = rt2661_bbp_read(sc, 18); sc->bbp21 = rt2661_bbp_read(sc, 21); sc->bbp22 = rt2661_bbp_read(sc, 22); sc->bbp16 = rt2661_bbp_read(sc, 16); sc->bbp17 = rt2661_bbp_read(sc, 17); sc->bbp64 = rt2661_bbp_read(sc, 64); rt2661_bbp_write(sc, 18, 0xff); rt2661_bbp_write(sc, 21, 0x3f); rt2661_bbp_write(sc, 22, 0x3f); rt2661_bbp_write(sc, 16, 0xbd); rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34); rt2661_bbp_write(sc, 64, 0x21); /* restore Rx filter */ RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); } static int rt2661_radar_stop(struct rt2661_softc *sc) { uint8_t bbp66; /* read radar detection result */ bbp66 = rt2661_bbp_read(sc, 66); /* restore BBP registers values */ rt2661_bbp_write(sc, 16, sc->bbp16); rt2661_bbp_write(sc, 17, sc->bbp17); rt2661_bbp_write(sc, 18, sc->bbp18); rt2661_bbp_write(sc, 21, sc->bbp21); rt2661_bbp_write(sc, 22, sc->bbp22); rt2661_bbp_write(sc, 64, sc->bbp64); return bbp66 == 1; } #endif static int rt2661_prepare_beacon(struct rt2661_softc *sc, struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct rt2661_tx_desc desc; struct mbuf *m0; int rate; if ((m0 = ieee80211_beacon_alloc(vap->iv_bss))== NULL) { device_printf(sc->sc_dev, "could not allocate beacon frame\n"); return ENOBUFS; } /* send beacons at the lowest available rate */ rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan) ? 12 : 2; rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ, m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT); /* copy the first 24 bytes of Tx descriptor into NIC memory */ RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24); /* copy beacon header and payload into NIC memory */ RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *), m0->m_pkthdr.len); m_freem(m0); return 0; } /* * Enable TSF synchronization and tell h/w to start sending beacons for IBSS * and HostAP operating modes. */ static void rt2661_enable_tsf_sync(struct rt2661_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t tmp; if (vap->iv_opmode != IEEE80211_M_STA) { /* * Change default 16ms TBTT adjustment to 8ms. * Must be done before enabling beacon generation. */ RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8); } tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000; /* set beacon interval (in 1/16ms unit) */ tmp |= vap->iv_bss->ni_intval * 16; tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT; if (vap->iv_opmode == IEEE80211_M_STA) tmp |= RT2661_TSF_MODE(1); else tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON; RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp); } static void rt2661_enable_tsf(struct rt2661_softc *sc) { RAL_WRITE(sc, RT2661_TXRX_CSR9, (RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000) | RT2661_TSF_TICKING | RT2661_TSF_MODE(2)); } /* * Retrieve the "Received Signal Strength Indicator" from the raw values * contained in Rx descriptors. The computation depends on which band the * frame was received. Correction values taken from the reference driver. */ static int rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw) { int lna, agc, rssi; lna = (raw >> 5) & 0x3; agc = raw & 0x1f; if (lna == 0) { /* * No mapping available. * * NB: Since RSSI is relative to noise floor, -1 is * adequate for caller to know error happened. */ return -1; } rssi = (2 * agc) - RT2661_NOISE_FLOOR; if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) { rssi += sc->rssi_2ghz_corr; if (lna == 1) rssi -= 64; else if (lna == 2) rssi -= 74; else if (lna == 3) rssi -= 90; } else { rssi += sc->rssi_5ghz_corr; if (lna == 1) rssi -= 64; else if (lna == 2) rssi -= 86; else if (lna == 3) rssi -= 100; } return rssi; } static void rt2661_scan_start(struct ieee80211com *ic) { struct rt2661_softc *sc = ic->ic_softc; uint32_t tmp; /* abort TSF synchronization */ tmp = RAL_READ(sc, RT2661_TXRX_CSR9); RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0xffffff); rt2661_set_bssid(sc, ieee80211broadcastaddr); } static void rt2661_scan_end(struct ieee80211com *ic) { struct rt2661_softc *sc = ic->ic_softc; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); rt2661_enable_tsf_sync(sc); /* XXX keep local copy */ rt2661_set_bssid(sc, vap->iv_bss->ni_bssid); } static void rt2661_set_channel(struct ieee80211com *ic) { struct rt2661_softc *sc = ic->ic_softc; RAL_LOCK(sc); rt2661_set_chan(sc, ic->ic_curchan); RAL_UNLOCK(sc); } Index: head/sys/dev/ral/rt2860.c =================================================================== --- head/sys/dev/ral/rt2860.c (revision 298817) +++ head/sys/dev/ral/rt2860.c (revision 298818) @@ -1,4330 +1,4330 @@ /*- * Copyright (c) 2007-2010 Damien Bergamini * Copyright (c) 2012 Bernhard Schmidt * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * $OpenBSD: rt2860.c,v 1.65 2010/10/23 14:24:54 damien Exp $ */ #include __FBSDID("$FreeBSD$"); /*- * Ralink Technology RT2860/RT3090/RT3390/RT3562/RT5390/RT5392 chipset driver * http://www.ralinktech.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RAL_DEBUG #ifdef RAL_DEBUG #define DPRINTF(x) do { if (sc->sc_debug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (sc->sc_debug >= (n)) printf x; } while (0) #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif static struct ieee80211vap *rt2860_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void rt2860_vap_delete(struct ieee80211vap *); static void rt2860_dma_map_addr(void *, bus_dma_segment_t *, int, int); static int rt2860_alloc_tx_ring(struct rt2860_softc *, struct rt2860_tx_ring *); static void rt2860_reset_tx_ring(struct rt2860_softc *, struct rt2860_tx_ring *); static void rt2860_free_tx_ring(struct rt2860_softc *, struct rt2860_tx_ring *); static int rt2860_alloc_tx_pool(struct rt2860_softc *); static void rt2860_free_tx_pool(struct rt2860_softc *); static int rt2860_alloc_rx_ring(struct rt2860_softc *, struct rt2860_rx_ring *); static void rt2860_reset_rx_ring(struct rt2860_softc *, struct rt2860_rx_ring *); static void rt2860_free_rx_ring(struct rt2860_softc *, struct rt2860_rx_ring *); static void rt2860_updatestats(struct rt2860_softc *); static void rt2860_newassoc(struct ieee80211_node *, int); static void rt2860_node_free(struct ieee80211_node *); #ifdef IEEE80211_HT static int rt2860_ampdu_rx_start(struct ieee80211com *, struct ieee80211_node *, uint8_t); static void rt2860_ampdu_rx_stop(struct ieee80211com *, struct ieee80211_node *, uint8_t); #endif static int rt2860_newstate(struct ieee80211vap *, enum ieee80211_state, int); static uint16_t rt3090_efuse_read_2(struct rt2860_softc *, uint16_t); static uint16_t rt2860_eeprom_read_2(struct rt2860_softc *, uint16_t); static void rt2860_intr_coherent(struct rt2860_softc *); static void rt2860_drain_stats_fifo(struct rt2860_softc *); static void rt2860_tx_intr(struct rt2860_softc *, int); static void rt2860_rx_intr(struct rt2860_softc *); static void rt2860_tbtt_intr(struct rt2860_softc *); static void rt2860_gp_intr(struct rt2860_softc *); static int rt2860_tx(struct rt2860_softc *, struct mbuf *, struct ieee80211_node *); static int rt2860_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static int rt2860_tx_raw(struct rt2860_softc *, struct mbuf *, struct ieee80211_node *, const struct ieee80211_bpf_params *params); static int rt2860_transmit(struct ieee80211com *, struct mbuf *); static void rt2860_start(struct rt2860_softc *); static void rt2860_watchdog(void *); static void rt2860_parent(struct ieee80211com *); static void rt2860_mcu_bbp_write(struct rt2860_softc *, uint8_t, uint8_t); static uint8_t rt2860_mcu_bbp_read(struct rt2860_softc *, uint8_t); static void rt2860_rf_write(struct rt2860_softc *, uint8_t, uint32_t); static uint8_t rt3090_rf_read(struct rt2860_softc *, uint8_t); static void rt3090_rf_write(struct rt2860_softc *, uint8_t, uint8_t); static int rt2860_mcu_cmd(struct rt2860_softc *, uint8_t, uint16_t, int); static void rt2860_enable_mrr(struct rt2860_softc *); static void rt2860_set_txpreamble(struct rt2860_softc *); static void rt2860_set_basicrates(struct rt2860_softc *, const struct ieee80211_rateset *); static void rt2860_scan_start(struct ieee80211com *); static void rt2860_scan_end(struct ieee80211com *); static void rt2860_set_channel(struct ieee80211com *); static void rt2860_select_chan_group(struct rt2860_softc *, int); static void rt2860_set_chan(struct rt2860_softc *, u_int); static void rt3090_set_chan(struct rt2860_softc *, u_int); static void rt5390_set_chan(struct rt2860_softc *, u_int); static int rt3090_rf_init(struct rt2860_softc *); static void rt5390_rf_init(struct rt2860_softc *); static void rt3090_rf_wakeup(struct rt2860_softc *); static void rt5390_rf_wakeup(struct rt2860_softc *); static int rt3090_filter_calib(struct rt2860_softc *, uint8_t, uint8_t, uint8_t *); static void rt3090_rf_setup(struct rt2860_softc *); static void rt2860_set_leds(struct rt2860_softc *, uint16_t); static void rt2860_set_gp_timer(struct rt2860_softc *, int); static void rt2860_set_bssid(struct rt2860_softc *, const uint8_t *); static void rt2860_set_macaddr(struct rt2860_softc *, const uint8_t *); static void rt2860_update_promisc(struct ieee80211com *); static void rt2860_updateslot(struct ieee80211com *); static void rt2860_updateprot(struct rt2860_softc *); static int rt2860_updateedca(struct ieee80211com *); #ifdef HW_CRYPTO static int rt2860_set_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); static void rt2860_delete_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); #endif static int8_t rt2860_rssi2dbm(struct rt2860_softc *, uint8_t, uint8_t); static const char *rt2860_get_rf(uint8_t); static int rt2860_read_eeprom(struct rt2860_softc *, uint8_t macaddr[IEEE80211_ADDR_LEN]); static int rt2860_bbp_init(struct rt2860_softc *); static void rt5390_bbp_init(struct rt2860_softc *); static int rt2860_txrx_enable(struct rt2860_softc *); static void rt2860_init(void *); static void rt2860_init_locked(struct rt2860_softc *); static void rt2860_stop(void *); static void rt2860_stop_locked(struct rt2860_softc *); static int rt2860_load_microcode(struct rt2860_softc *); #ifdef NOT_YET static void rt2860_calib(struct rt2860_softc *); #endif static void rt3090_set_rx_antenna(struct rt2860_softc *, int); static void rt2860_switch_chan(struct rt2860_softc *, struct ieee80211_channel *); static int rt2860_setup_beacon(struct rt2860_softc *, struct ieee80211vap *); static void rt2860_enable_tsf_sync(struct rt2860_softc *); static const struct { uint32_t reg; uint32_t val; } rt2860_def_mac[] = { RT2860_DEF_MAC }; static const struct { uint8_t reg; uint8_t val; } rt2860_def_bbp[] = { RT2860_DEF_BBP }, rt5390_def_bbp[] = { RT5390_DEF_BBP }; static const struct rfprog { uint8_t chan; uint32_t r1, r2, r3, r4; } rt2860_rf2850[] = { RT2860_RF2850 }; struct { uint8_t n, r, k; } rt3090_freqs[] = { RT3070_RF3052 }; static const struct { uint8_t reg; uint8_t val; } rt3090_def_rf[] = { RT3070_DEF_RF }, rt5390_def_rf[] = { RT5390_DEF_RF }, rt5392_def_rf[] = { RT5392_DEF_RF }; int rt2860_attach(device_t dev, int id) { struct rt2860_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; - uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)]; + uint8_t bands[IEEE80211_MODE_BYTES]; int error, ntries, qid; sc->sc_dev = dev; sc->sc_debug = 0; mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0); mbufq_init(&sc->sc_snd, ifqmaxlen); /* wait for NIC to initialize */ for (ntries = 0; ntries < 100; ntries++) { tmp = RAL_READ(sc, RT2860_ASIC_VER_ID); if (tmp != 0 && tmp != 0xffffffff) break; DELAY(10); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for NIC to initialize\n"); error = EIO; goto fail1; } sc->mac_ver = tmp >> 16; sc->mac_rev = tmp & 0xffff; if (sc->mac_ver != 0x2860 && (id == 0x0681 || id == 0x0781 || id == 0x1059)) sc->sc_flags |= RT2860_ADVANCED_PS; /* retrieve RF rev. no and various other things from EEPROM */ rt2860_read_eeprom(sc, ic->ic_macaddr); device_printf(sc->sc_dev, "MAC/BBP RT%X (rev 0x%04X), " "RF %s (MIMO %dT%dR), address %6D\n", sc->mac_ver, sc->mac_rev, rt2860_get_rf(sc->rf_rev), sc->ntxchains, sc->nrxchains, ic->ic_macaddr, ":"); /* * Allocate Tx (4 EDCAs + HCCA + Mgt) and Rx rings. */ for (qid = 0; qid < 6; qid++) { if ((error = rt2860_alloc_tx_ring(sc, &sc->txq[qid])) != 0) { device_printf(sc->sc_dev, "could not allocate Tx ring %d\n", qid); goto fail2; } } if ((error = rt2860_alloc_rx_ring(sc, &sc->rxq)) != 0) { device_printf(sc->sc_dev, "could not allocate Rx ring\n"); goto fail2; } if ((error = rt2860_alloc_tx_pool(sc)) != 0) { device_printf(sc->sc_dev, "could not allocate Tx pool\n"); goto fail3; } /* mgmt ring is broken on RT2860C, use EDCA AC VO ring instead */ sc->mgtqid = (sc->mac_ver == 0x2860 && sc->mac_rev == 0x0100) ? WME_AC_VO : 5; ic->ic_softc = sc; ic->ic_name = device_get_nameunit(dev); ic->ic_opmode = IEEE80211_M_STA; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode */ | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ | IEEE80211_C_HOSTAP /* hostap mode */ | IEEE80211_C_MONITOR /* monitor mode */ | IEEE80211_C_AHDEMO /* adhoc demo mode */ | IEEE80211_C_WDS /* 4-address traffic works */ | IEEE80211_C_MBSS /* mesh point link mode */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ #if 0 | IEEE80211_C_BGSCAN /* capable of bg scanning */ #endif | IEEE80211_C_WME /* 802.11e */ ; memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); if (sc->rf_rev == RT2860_RF_2750 || sc->rf_rev == RT2860_RF_2850) setbit(bands, IEEE80211_MODE_11A); ieee80211_init_channels(ic, NULL, bands); ieee80211_ifattach(ic); ic->ic_wme.wme_update = rt2860_updateedca; ic->ic_scan_start = rt2860_scan_start; ic->ic_scan_end = rt2860_scan_end; ic->ic_set_channel = rt2860_set_channel; ic->ic_updateslot = rt2860_updateslot; ic->ic_update_promisc = rt2860_update_promisc; ic->ic_raw_xmit = rt2860_raw_xmit; sc->sc_node_free = ic->ic_node_free; ic->ic_node_free = rt2860_node_free; ic->ic_newassoc = rt2860_newassoc; ic->ic_transmit = rt2860_transmit; ic->ic_parent = rt2860_parent; ic->ic_vap_create = rt2860_vap_create; ic->ic_vap_delete = rt2860_vap_delete; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), RT2860_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), RT2860_RX_RADIOTAP_PRESENT); #ifdef RAL_DEBUG SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug", CTLFLAG_RW, &sc->sc_debug, 0, "debug msgs"); #endif if (bootverbose) ieee80211_announce(ic); return 0; fail3: rt2860_free_rx_ring(sc, &sc->rxq); fail2: while (--qid >= 0) rt2860_free_tx_ring(sc, &sc->txq[qid]); fail1: mtx_destroy(&sc->sc_mtx); return error; } int rt2860_detach(void *xsc) { struct rt2860_softc *sc = xsc; struct ieee80211com *ic = &sc->sc_ic; int qid; RAL_LOCK(sc); rt2860_stop_locked(sc); RAL_UNLOCK(sc); ieee80211_ifdetach(ic); mbufq_drain(&sc->sc_snd); for (qid = 0; qid < 6; qid++) rt2860_free_tx_ring(sc, &sc->txq[qid]); rt2860_free_rx_ring(sc, &sc->rxq); rt2860_free_tx_pool(sc); mtx_destroy(&sc->sc_mtx); return 0; } void rt2860_shutdown(void *xsc) { struct rt2860_softc *sc = xsc; rt2860_stop(sc); } void rt2860_suspend(void *xsc) { struct rt2860_softc *sc = xsc; rt2860_stop(sc); } void rt2860_resume(void *xsc) { struct rt2860_softc *sc = xsc; if (sc->sc_ic.ic_nrunning > 0) rt2860_init(sc); } static struct ieee80211vap * rt2860_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct rt2860_softc *sc = ic->ic_softc; struct rt2860_vap *rvp; struct ieee80211vap *vap; switch (opmode) { case IEEE80211_M_STA: case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: case IEEE80211_M_MONITOR: case IEEE80211_M_HOSTAP: case IEEE80211_M_MBSS: /* XXXRP: TBD */ if (!TAILQ_EMPTY(&ic->ic_vaps)) { device_printf(sc->sc_dev, "only 1 vap supported\n"); return NULL; } if (opmode == IEEE80211_M_STA) flags |= IEEE80211_CLONE_NOBEACONS; break; case IEEE80211_M_WDS: if (TAILQ_EMPTY(&ic->ic_vaps) || ic->ic_opmode != IEEE80211_M_HOSTAP) { device_printf(sc->sc_dev, "wds only supported in ap mode\n"); return NULL; } /* * Silently remove any request for a unique * bssid; WDS vap's always share the local * mac address. */ flags &= ~IEEE80211_CLONE_BSSID; break; default: device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); return NULL; } rvp = malloc(sizeof(struct rt2860_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &rvp->ral_vap; ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); /* override state transition machine */ rvp->ral_newstate = vap->iv_newstate; vap->iv_newstate = rt2860_newstate; #if 0 vap->iv_update_beacon = rt2860_beacon_update; #endif /* HW supports up to 255 STAs (0-254) in HostAP and IBSS modes */ vap->iv_max_aid = min(IEEE80211_AID_MAX, RT2860_WCID_MAX); ieee80211_ratectl_init(vap); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); if (TAILQ_FIRST(&ic->ic_vaps) == vap) ic->ic_opmode = opmode; return vap; } static void rt2860_vap_delete(struct ieee80211vap *vap) { struct rt2860_vap *rvp = RT2860_VAP(vap); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(rvp, M_80211_VAP); } static void rt2860_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { if (error != 0) return; KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); *(bus_addr_t *)arg = segs[0].ds_addr; } static int rt2860_alloc_tx_ring(struct rt2860_softc *sc, struct rt2860_tx_ring *ring) { int size, error; size = RT2860_TX_RING_COUNT * sizeof (struct rt2860_txd); error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 16, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size, 0, NULL, NULL, &ring->desc_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->txd, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->txd, size, rt2860_dma_map_addr, &ring->paddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); return 0; fail: rt2860_free_tx_ring(sc, ring); return error; } void rt2860_reset_tx_ring(struct rt2860_softc *sc, struct rt2860_tx_ring *ring) { struct rt2860_tx_data *data; int i; for (i = 0; i < RT2860_TX_RING_COUNT; i++) { if ((data = ring->data[i]) == NULL) continue; /* nothing mapped in this slot */ if (data->m != NULL) { bus_dmamap_sync(sc->txwi_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->txwi_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } SLIST_INSERT_HEAD(&sc->data_pool, data, next); ring->data[i] = NULL; } ring->queued = 0; ring->cur = ring->next = 0; } void rt2860_free_tx_ring(struct rt2860_softc *sc, struct rt2860_tx_ring *ring) { struct rt2860_tx_data *data; int i; if (ring->txd != NULL) { bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->desc_dmat, ring->desc_map); bus_dmamem_free(ring->desc_dmat, ring->txd, ring->desc_map); } if (ring->desc_dmat != NULL) bus_dma_tag_destroy(ring->desc_dmat); for (i = 0; i < RT2860_TX_RING_COUNT; i++) { if ((data = ring->data[i]) == NULL) continue; /* nothing mapped in this slot */ if (data->m != NULL) { bus_dmamap_sync(sc->txwi_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->txwi_dmat, data->map); m_freem(data->m); } if (data->ni != NULL) ieee80211_free_node(data->ni); SLIST_INSERT_HEAD(&sc->data_pool, data, next); } } /* * Allocate a pool of TX Wireless Information blocks. */ int rt2860_alloc_tx_pool(struct rt2860_softc *sc) { caddr_t vaddr; bus_addr_t paddr; int i, size, error; size = RT2860_TX_POOL_COUNT * RT2860_TXWI_DMASZ; /* init data_pool early in case of failure.. */ SLIST_INIT(&sc->data_pool); error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size, 0, NULL, NULL, &sc->txwi_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create txwi DMA tag\n"); goto fail; } error = bus_dmamem_alloc(sc->txwi_dmat, (void **)&sc->txwi_vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->txwi_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(sc->txwi_dmat, sc->txwi_map, sc->txwi_vaddr, size, rt2860_dma_map_addr, &paddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load txwi DMA map\n"); goto fail; } bus_dmamap_sync(sc->txwi_dmat, sc->txwi_map, BUS_DMASYNC_PREWRITE); vaddr = sc->txwi_vaddr; for (i = 0; i < RT2860_TX_POOL_COUNT; i++) { struct rt2860_tx_data *data = &sc->data[i]; error = bus_dmamap_create(sc->txwi_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "could not create DMA map\n"); goto fail; } data->txwi = (struct rt2860_txwi *)vaddr; data->paddr = paddr; vaddr += RT2860_TXWI_DMASZ; paddr += RT2860_TXWI_DMASZ; SLIST_INSERT_HEAD(&sc->data_pool, data, next); } return 0; fail: rt2860_free_tx_pool(sc); return error; } void rt2860_free_tx_pool(struct rt2860_softc *sc) { if (sc->txwi_vaddr != NULL) { bus_dmamap_sync(sc->txwi_dmat, sc->txwi_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->txwi_dmat, sc->txwi_map); bus_dmamem_free(sc->txwi_dmat, sc->txwi_vaddr, sc->txwi_map); } if (sc->txwi_dmat != NULL) bus_dma_tag_destroy(sc->txwi_dmat); while (!SLIST_EMPTY(&sc->data_pool)) { struct rt2860_tx_data *data; data = SLIST_FIRST(&sc->data_pool); bus_dmamap_destroy(sc->txwi_dmat, data->map); SLIST_REMOVE_HEAD(&sc->data_pool, next); } } int rt2860_alloc_rx_ring(struct rt2860_softc *sc, struct rt2860_rx_ring *ring) { bus_addr_t physaddr; int i, size, error; size = RT2860_RX_RING_COUNT * sizeof (struct rt2860_rxd); error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 16, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size, 0, NULL, NULL, &ring->desc_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->rxd, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->rxd, size, rt2860_dma_map_addr, &ring->paddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create data DMA tag\n"); goto fail; } for (i = 0; i < RT2860_RX_RING_COUNT; i++) { struct rt2860_rx_data *data = &ring->data[i]; struct rt2860_rxd *rxd = &ring->rxd[i]; error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "could not create DMA map\n"); goto fail; } data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (data->m == NULL) { device_printf(sc->sc_dev, "could not allocate rx mbuf\n"); error = ENOMEM; goto fail; } error = bus_dmamap_load(ring->data_dmat, data->map, mtod(data->m, void *), MCLBYTES, rt2860_dma_map_addr, &physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load rx buf DMA map"); goto fail; } rxd->sdp0 = htole32(physaddr); rxd->sdl0 = htole16(MCLBYTES); } bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); return 0; fail: rt2860_free_rx_ring(sc, ring); return error; } void rt2860_reset_rx_ring(struct rt2860_softc *sc, struct rt2860_rx_ring *ring) { int i; for (i = 0; i < RT2860_RX_RING_COUNT; i++) ring->rxd[i].sdl0 &= ~htole16(RT2860_RX_DDONE); bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); ring->cur = 0; } void rt2860_free_rx_ring(struct rt2860_softc *sc, struct rt2860_rx_ring *ring) { int i; if (ring->rxd != NULL) { bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->desc_dmat, ring->desc_map); bus_dmamem_free(ring->desc_dmat, ring->rxd, ring->desc_map); } if (ring->desc_dmat != NULL) bus_dma_tag_destroy(ring->desc_dmat); for (i = 0; i < RT2860_RX_RING_COUNT; i++) { struct rt2860_rx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } if (ring->data_dmat != NULL) bus_dma_tag_destroy(ring->data_dmat); } static void rt2860_updatestats(struct rt2860_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* * In IBSS or HostAP modes (when the hardware sends beacons), the * MAC can run into a livelock and start sending CTS-to-self frames * like crazy if protection is enabled. Fortunately, we can detect * when such a situation occurs and reset the MAC. */ if (ic->ic_curmode != IEEE80211_M_STA) { /* check if we're in a livelock situation.. */ uint32_t tmp = RAL_READ(sc, RT2860_DEBUG); if ((tmp & (1 << 29)) && (tmp & (1 << 7 | 1 << 5))) { /* ..and reset MAC/BBP for a while.. */ DPRINTF(("CTS-to-self livelock detected\n")); RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_SRST); RAL_BARRIER_WRITE(sc); DELAY(1); RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_RX_EN | RT2860_MAC_TX_EN); } } } static void rt2860_newassoc(struct ieee80211_node *ni, int isnew) { struct ieee80211com *ic = ni->ni_ic; struct rt2860_softc *sc = ic->ic_softc; uint8_t wcid; wcid = IEEE80211_AID(ni->ni_associd); if (isnew && ni->ni_associd != 0) { sc->wcid2ni[wcid] = ni; /* init WCID table entry */ RAL_WRITE_REGION_1(sc, RT2860_WCID_ENTRY(wcid), ni->ni_macaddr, IEEE80211_ADDR_LEN); } DPRINTF(("new assoc isnew=%d addr=%s WCID=%d\n", isnew, ether_sprintf(ni->ni_macaddr), wcid)); } static void rt2860_node_free(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; struct rt2860_softc *sc = ic->ic_softc; uint8_t wcid; if (ni->ni_associd != 0) { wcid = IEEE80211_AID(ni->ni_associd); /* clear Rx WCID search table entry */ RAL_SET_REGION_4(sc, RT2860_WCID_ENTRY(wcid), 0, 2); } sc->sc_node_free(ni); } #ifdef IEEE80211_HT static int rt2860_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni, uint8_t tid) { struct rt2860_softc *sc = ic->ic_softc; uint8_t wcid = ((struct rt2860_node *)ni)->wcid; uint32_t tmp; /* update BA session mask */ tmp = RAL_READ(sc, RT2860_WCID_ENTRY(wcid) + 4); tmp |= (1 << tid) << 16; RAL_WRITE(sc, RT2860_WCID_ENTRY(wcid) + 4, tmp); return 0; } static void rt2860_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, uint8_t tid) { struct rt2860_softc *sc = ic->ic_softc; uint8_t wcid = ((struct rt2860_node *)ni)->wcid; uint32_t tmp; /* update BA session mask */ tmp = RAL_READ(sc, RT2860_WCID_ENTRY(wcid) + 4); tmp &= ~((1 << tid) << 16); RAL_WRITE(sc, RT2860_WCID_ENTRY(wcid) + 4, tmp); } #endif int rt2860_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct rt2860_vap *rvp = RT2860_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct rt2860_softc *sc = ic->ic_softc; uint32_t tmp; int error; if (vap->iv_state == IEEE80211_S_RUN) { /* turn link LED off */ rt2860_set_leds(sc, RT2860_LED_RADIO); } if (nstate == IEEE80211_S_INIT && vap->iv_state == IEEE80211_S_RUN) { /* abort TSF synchronization */ tmp = RAL_READ(sc, RT2860_BCN_TIME_CFG); RAL_WRITE(sc, RT2860_BCN_TIME_CFG, tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN)); } rt2860_set_gp_timer(sc, 0); error = rvp->ral_newstate(vap, nstate, arg); if (error != 0) return (error); if (nstate == IEEE80211_S_RUN) { struct ieee80211_node *ni = vap->iv_bss; if (ic->ic_opmode != IEEE80211_M_MONITOR) { rt2860_enable_mrr(sc); rt2860_set_txpreamble(sc); rt2860_set_basicrates(sc, &ni->ni_rates); rt2860_set_bssid(sc, ni->ni_bssid); } if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_IBSS || vap->iv_opmode == IEEE80211_M_MBSS) { error = rt2860_setup_beacon(sc, vap); if (error != 0) return error; } if (ic->ic_opmode != IEEE80211_M_MONITOR) { rt2860_enable_tsf_sync(sc); rt2860_set_gp_timer(sc, 500); } /* turn link LED on */ rt2860_set_leds(sc, RT2860_LED_RADIO | (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan) ? RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ)); } return error; } /* Read 16-bit from eFUSE ROM (>=RT3071 only.) */ static uint16_t rt3090_efuse_read_2(struct rt2860_softc *sc, uint16_t addr) { uint32_t tmp; uint16_t reg; int ntries; addr *= 2; /*- * Read one 16-byte block into registers EFUSE_DATA[0-3]: * DATA0: F E D C * DATA1: B A 9 8 * DATA2: 7 6 5 4 * DATA3: 3 2 1 0 */ tmp = RAL_READ(sc, RT3070_EFUSE_CTRL); tmp &= ~(RT3070_EFSROM_MODE_MASK | RT3070_EFSROM_AIN_MASK); tmp |= (addr & ~0xf) << RT3070_EFSROM_AIN_SHIFT | RT3070_EFSROM_KICK; RAL_WRITE(sc, RT3070_EFUSE_CTRL, tmp); for (ntries = 0; ntries < 500; ntries++) { tmp = RAL_READ(sc, RT3070_EFUSE_CTRL); if (!(tmp & RT3070_EFSROM_KICK)) break; DELAY(2); } if (ntries == 500) return 0xffff; if ((tmp & RT3070_EFUSE_AOUT_MASK) == RT3070_EFUSE_AOUT_MASK) return 0xffff; /* address not found */ /* determine to which 32-bit register our 16-bit word belongs */ reg = RT3070_EFUSE_DATA3 - (addr & 0xc); tmp = RAL_READ(sc, reg); return (addr & 2) ? tmp >> 16 : tmp & 0xffff; } /* * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46, * 93C66 or 93C86). */ static uint16_t rt2860_eeprom_read_2(struct rt2860_softc *sc, uint16_t addr) { uint32_t tmp; uint16_t val; int n; /* clock C once before the first command */ RT2860_EEPROM_CTL(sc, 0); RT2860_EEPROM_CTL(sc, RT2860_S); RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_C); RT2860_EEPROM_CTL(sc, RT2860_S); /* write start bit (1) */ RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_D); RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_D | RT2860_C); /* write READ opcode (10) */ RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_D); RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_D | RT2860_C); RT2860_EEPROM_CTL(sc, RT2860_S); RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_C); /* write address (A5-A0 or A7-A0) */ n = ((RAL_READ(sc, RT2860_PCI_EECTRL) & 0x30) == 0) ? 5 : 7; for (; n >= 0; n--) { RT2860_EEPROM_CTL(sc, RT2860_S | (((addr >> n) & 1) << RT2860_SHIFT_D)); RT2860_EEPROM_CTL(sc, RT2860_S | (((addr >> n) & 1) << RT2860_SHIFT_D) | RT2860_C); } RT2860_EEPROM_CTL(sc, RT2860_S); /* read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_C); tmp = RAL_READ(sc, RT2860_PCI_EECTRL); val |= ((tmp & RT2860_Q) >> RT2860_SHIFT_Q) << n; RT2860_EEPROM_CTL(sc, RT2860_S); } RT2860_EEPROM_CTL(sc, 0); /* clear Chip Select and clock C */ RT2860_EEPROM_CTL(sc, RT2860_S); RT2860_EEPROM_CTL(sc, 0); RT2860_EEPROM_CTL(sc, RT2860_C); return val; } static __inline uint16_t rt2860_srom_read(struct rt2860_softc *sc, uint8_t addr) { /* either eFUSE ROM or EEPROM */ return sc->sc_srom_read(sc, addr); } static void rt2860_intr_coherent(struct rt2860_softc *sc) { uint32_t tmp; /* DMA finds data coherent event when checking the DDONE bit */ DPRINTF(("Tx/Rx Coherent interrupt\n")); /* restart DMA engine */ tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG); tmp &= ~(RT2860_TX_WB_DDONE | RT2860_RX_DMA_EN | RT2860_TX_DMA_EN); RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp); (void)rt2860_txrx_enable(sc); } static void rt2860_drain_stats_fifo(struct rt2860_softc *sc) { struct ieee80211_node *ni; uint32_t stat; int retrycnt; uint8_t wcid, mcs, pid; /* drain Tx status FIFO (maxsize = 16) */ while ((stat = RAL_READ(sc, RT2860_TX_STAT_FIFO)) & RT2860_TXQ_VLD) { DPRINTFN(4, ("tx stat 0x%08x\n", stat)); wcid = (stat >> RT2860_TXQ_WCID_SHIFT) & 0xff; ni = sc->wcid2ni[wcid]; /* if no ACK was requested, no feedback is available */ if (!(stat & RT2860_TXQ_ACKREQ) || wcid == 0xff || ni == NULL) continue; /* update per-STA AMRR stats */ if (stat & RT2860_TXQ_OK) { /* * Check if there were retries, ie if the Tx success * rate is different from the requested rate. Note * that it works only because we do not allow rate * fallback from OFDM to CCK. */ mcs = (stat >> RT2860_TXQ_MCS_SHIFT) & 0x7f; pid = (stat >> RT2860_TXQ_PID_SHIFT) & 0xf; if (mcs + 1 != pid) retrycnt = 1; else retrycnt = 0; ieee80211_ratectl_tx_complete(ni->ni_vap, ni, IEEE80211_RATECTL_TX_SUCCESS, &retrycnt, NULL); } else { ieee80211_ratectl_tx_complete(ni->ni_vap, ni, IEEE80211_RATECTL_TX_FAILURE, &retrycnt, NULL); if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); } } } static void rt2860_tx_intr(struct rt2860_softc *sc, int qid) { struct rt2860_tx_ring *ring = &sc->txq[qid]; uint32_t hw; rt2860_drain_stats_fifo(sc); hw = RAL_READ(sc, RT2860_TX_DTX_IDX(qid)); while (ring->next != hw) { struct rt2860_tx_data *data = ring->data[ring->next]; if (data != NULL) { bus_dmamap_sync(sc->txwi_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->txwi_dmat, data->map); if (data->m->m_flags & M_TXCB) { ieee80211_process_callback(data->ni, data->m, 0); } ieee80211_tx_complete(data->ni, data->m, 0); data->ni = NULL; data->m = NULL; SLIST_INSERT_HEAD(&sc->data_pool, data, next); ring->data[ring->next] = NULL; } ring->queued--; ring->next = (ring->next + 1) % RT2860_TX_RING_COUNT; } sc->sc_tx_timer = 0; if (ring->queued < RT2860_TX_RING_COUNT) sc->qfullmsk &= ~(1 << qid); rt2860_start(sc); } /* * Return the Rx chain with the highest RSSI for a given frame. */ static __inline uint8_t rt2860_maxrssi_chain(struct rt2860_softc *sc, const struct rt2860_rxwi *rxwi) { uint8_t rxchain = 0; if (sc->nrxchains > 1) { if (rxwi->rssi[1] > rxwi->rssi[rxchain]) rxchain = 1; if (sc->nrxchains > 2) if (rxwi->rssi[2] > rxwi->rssi[rxchain]) rxchain = 2; } return rxchain; } static void rt2860_rx_intr(struct rt2860_softc *sc) { struct rt2860_rx_radiotap_header *tap; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *m, *m1; bus_addr_t physaddr; uint32_t hw; uint16_t phy; uint8_t ant; int8_t rssi, nf; int error; hw = RAL_READ(sc, RT2860_FS_DRX_IDX) & 0xfff; while (sc->rxq.cur != hw) { struct rt2860_rx_data *data = &sc->rxq.data[sc->rxq.cur]; struct rt2860_rxd *rxd = &sc->rxq.rxd[sc->rxq.cur]; struct rt2860_rxwi *rxwi; bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, BUS_DMASYNC_POSTREAD); if (__predict_false(!(rxd->sdl0 & htole16(RT2860_RX_DDONE)))) { DPRINTF(("RXD DDONE bit not set!\n")); break; /* should not happen */ } if (__predict_false(rxd->flags & htole32(RT2860_RX_CRCERR | RT2860_RX_ICVERR))) { counter_u64_add(ic->ic_ierrors, 1); goto skip; } #ifdef HW_CRYPTO if (__predict_false(rxd->flags & htole32(RT2860_RX_MICERR))) { /* report MIC failures to net80211 for TKIP */ ic->ic_stats.is_rx_locmicfail++; ieee80211_michael_mic_failure(ic, 0/* XXX */); counter_u64_add(ic->ic_ierrors, 1); goto skip; } #endif m1 = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (__predict_false(m1 == NULL)) { counter_u64_add(ic->ic_ierrors, 1); goto skip; } bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->rxq.data_dmat, data->map); error = bus_dmamap_load(sc->rxq.data_dmat, data->map, mtod(m1, void *), MCLBYTES, rt2860_dma_map_addr, &physaddr, 0); if (__predict_false(error != 0)) { m_freem(m1); /* try to reload the old mbuf */ error = bus_dmamap_load(sc->rxq.data_dmat, data->map, mtod(data->m, void *), MCLBYTES, rt2860_dma_map_addr, &physaddr, 0); if (__predict_false(error != 0)) { panic("%s: could not load old rx mbuf", device_get_name(sc->sc_dev)); } /* physical address may have changed */ rxd->sdp0 = htole32(physaddr); counter_u64_add(ic->ic_ierrors, 1); goto skip; } /* * New mbuf successfully loaded, update Rx ring and continue * processing. */ m = data->m; data->m = m1; rxd->sdp0 = htole32(physaddr); rxwi = mtod(m, struct rt2860_rxwi *); /* finalize mbuf */ m->m_data = (caddr_t)(rxwi + 1); m->m_pkthdr.len = m->m_len = le16toh(rxwi->len) & 0xfff; wh = mtod(m, struct ieee80211_frame *); #ifdef HW_CRYPTO if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { /* frame is decrypted by hardware */ wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; } #endif /* HW may insert 2 padding bytes after 802.11 header */ if (rxd->flags & htole32(RT2860_RX_L2PAD)) { u_int hdrlen = ieee80211_hdrsize(wh); ovbcopy(wh, (caddr_t)wh + 2, hdrlen); m->m_data += 2; wh = mtod(m, struct ieee80211_frame *); } ant = rt2860_maxrssi_chain(sc, rxwi); rssi = rt2860_rssi2dbm(sc, rxwi->rssi[ant], ant); nf = RT2860_NOISE_FLOOR; if (ieee80211_radiotap_active(ic)) { tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_antenna = ant; tap->wr_antsignal = nf + rssi; tap->wr_antnoise = nf; /* in case it can't be found below */ tap->wr_rate = 2; phy = le16toh(rxwi->phy); switch (phy & RT2860_PHY_MODE) { case RT2860_PHY_CCK: switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) { case 0: tap->wr_rate = 2; break; case 1: tap->wr_rate = 4; break; case 2: tap->wr_rate = 11; break; case 3: tap->wr_rate = 22; break; } if (phy & RT2860_PHY_SHPRE) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; break; case RT2860_PHY_OFDM: switch (phy & RT2860_PHY_MCS) { case 0: tap->wr_rate = 12; break; case 1: tap->wr_rate = 18; break; case 2: tap->wr_rate = 24; break; case 3: tap->wr_rate = 36; break; case 4: tap->wr_rate = 48; break; case 5: tap->wr_rate = 72; break; case 6: tap->wr_rate = 96; break; case 7: tap->wr_rate = 108; break; } break; } } RAL_UNLOCK(sc); wh = mtod(m, struct ieee80211_frame *); /* send the frame to the 802.11 layer */ ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); if (ni != NULL) { (void)ieee80211_input(ni, m, rssi - nf, nf); ieee80211_free_node(ni); } else (void)ieee80211_input_all(ic, m, rssi - nf, nf); RAL_LOCK(sc); skip: rxd->sdl0 &= ~htole16(RT2860_RX_DDONE); bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, BUS_DMASYNC_PREWRITE); sc->rxq.cur = (sc->rxq.cur + 1) % RT2860_RX_RING_COUNT; } /* tell HW what we have processed */ RAL_WRITE(sc, RT2860_RX_CALC_IDX, (sc->rxq.cur - 1) % RT2860_RX_RING_COUNT); } static void rt2860_tbtt_intr(struct rt2860_softc *sc) { #if 0 struct ieee80211com *ic = &sc->sc_ic; #ifndef IEEE80211_STA_ONLY if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* one less beacon until next DTIM */ if (ic->ic_dtim_count == 0) ic->ic_dtim_count = ic->ic_dtim_period - 1; else ic->ic_dtim_count--; /* update dynamic parts of beacon */ rt2860_setup_beacon(sc); /* flush buffered multicast frames */ if (ic->ic_dtim_count == 0) ieee80211_notify_dtim(ic); } #endif /* check if protection mode has changed */ if ((sc->sc_ic_flags ^ ic->ic_flags) & IEEE80211_F_USEPROT) { rt2860_updateprot(sc); sc->sc_ic_flags = ic->ic_flags; } #endif } static void rt2860_gp_intr(struct rt2860_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); DPRINTFN(2, ("GP timeout state=%d\n", vap->iv_state)); if (vap->iv_state == IEEE80211_S_RUN) rt2860_updatestats(sc); } void rt2860_intr(void *arg) { struct rt2860_softc *sc = arg; uint32_t r; RAL_LOCK(sc); r = RAL_READ(sc, RT2860_INT_STATUS); if (__predict_false(r == 0xffffffff)) { RAL_UNLOCK(sc); return; /* device likely went away */ } if (r == 0) { RAL_UNLOCK(sc); return; /* not for us */ } /* acknowledge interrupts */ RAL_WRITE(sc, RT2860_INT_STATUS, r); if (r & RT2860_TX_RX_COHERENT) rt2860_intr_coherent(sc); if (r & RT2860_MAC_INT_2) /* TX status */ rt2860_drain_stats_fifo(sc); if (r & RT2860_TX_DONE_INT5) rt2860_tx_intr(sc, 5); if (r & RT2860_RX_DONE_INT) rt2860_rx_intr(sc); if (r & RT2860_TX_DONE_INT4) rt2860_tx_intr(sc, 4); if (r & RT2860_TX_DONE_INT3) rt2860_tx_intr(sc, 3); if (r & RT2860_TX_DONE_INT2) rt2860_tx_intr(sc, 2); if (r & RT2860_TX_DONE_INT1) rt2860_tx_intr(sc, 1); if (r & RT2860_TX_DONE_INT0) rt2860_tx_intr(sc, 0); if (r & RT2860_MAC_INT_0) /* TBTT */ rt2860_tbtt_intr(sc); if (r & RT2860_MAC_INT_3) /* Auto wakeup */ /* TBD wakeup */; if (r & RT2860_MAC_INT_4) /* GP timer */ rt2860_gp_intr(sc); RAL_UNLOCK(sc); } static int rt2860_tx(struct rt2860_softc *sc, struct mbuf *m, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = ni->ni_vap; struct rt2860_tx_ring *ring; struct rt2860_tx_data *data; struct rt2860_txd *txd; struct rt2860_txwi *txwi; struct ieee80211_frame *wh; const struct ieee80211_txparam *tp; struct ieee80211_key *k; struct mbuf *m1; bus_dma_segment_t segs[RT2860_MAX_SCATTER]; bus_dma_segment_t *seg; u_int hdrlen; uint16_t qos, dur; uint8_t type, qsel, mcs, pid, tid, qid; int i, nsegs, ntxds, pad, rate, ridx, error; /* the data pool contains at least one element, pick the first */ data = SLIST_FIRST(&sc->data_pool); wh = mtod(m, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m); if (k == NULL) { m_freem(m); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m, struct ieee80211_frame *); } hdrlen = ieee80211_anyhdrsize(wh); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { rate = tp->mcastrate; } else if (m->m_flags & M_EAPOL) { rate = tp->mgmtrate; } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { rate = tp->ucastrate; } else { (void) ieee80211_ratectl_rate(ni, NULL, 0); rate = ni->ni_txrate; } rate &= IEEE80211_RATE_VAL; qid = M_WME_GETAC(m); if (IEEE80211_QOS_HAS_SEQ(wh)) { qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; tid = qos & IEEE80211_QOS_TID; } else { qos = 0; tid = 0; } ring = &sc->txq[qid]; ridx = ieee80211_legacy_rate_lookup(ic->ic_rt, rate); /* get MCS code from rate index */ mcs = rt2860_rates[ridx].mcs; /* setup TX Wireless Information */ txwi = data->txwi; txwi->flags = 0; /* let HW generate seq numbers for non-QoS frames */ txwi->xflags = qos ? 0 : RT2860_TX_NSEQ; if (type == IEEE80211_FC0_TYPE_DATA) txwi->wcid = IEEE80211_AID(ni->ni_associd); else txwi->wcid = 0xff; txwi->len = htole16(m->m_pkthdr.len); if (rt2860_rates[ridx].phy == IEEE80211_T_DS) { txwi->phy = htole16(RT2860_PHY_CCK); if (ridx != RT2860_RIDX_CCK1 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) mcs |= RT2860_PHY_SHPRE; } else txwi->phy = htole16(RT2860_PHY_OFDM); txwi->phy |= htole16(mcs); /* * We store the MCS code into the driver-private PacketID field. * The PacketID is latched into TX_STAT_FIFO when Tx completes so * that we know at which initial rate the frame was transmitted. * We add 1 to the MCS code because setting the PacketID field to * 0 means that we don't want feedback in TX_STAT_FIFO. */ pid = (mcs + 1) & 0xf; txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT); /* check if RTS/CTS or CTS-to-self protection is required */ if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && (m->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold || ((ic->ic_flags & IEEE80211_F_USEPROT) && rt2860_rates[ridx].phy == IEEE80211_T_OFDM))) txwi->txop = RT2860_TX_TXOP_HT; else txwi->txop = RT2860_TX_TXOP_BACKOFF; if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != IEEE80211_QOS_ACKPOLICY_NOACK)) { txwi->xflags |= RT2860_TX_ACK; if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) dur = rt2860_rates[ridx].sp_ack_dur; else dur = rt2860_rates[ridx].lp_ack_dur; *(uint16_t *)wh->i_dur = htole16(dur); } /* ask MAC to insert timestamp into probe responses */ if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) /* NOTE: beacons do not pass through tx_data() */ txwi->flags |= RT2860_TX_TS; if (ieee80211_radiotap_active_vap(vap)) { struct rt2860_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; if (mcs & RT2860_PHY_SHPRE) tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; ieee80211_radiotap_tx(vap, m); } pad = (hdrlen + 3) & ~3; /* copy and trim 802.11 header */ memcpy(txwi + 1, wh, hdrlen); m_adj(m, hdrlen); error = bus_dmamap_load_mbuf_sg(sc->txwi_dmat, data->map, m, segs, &nsegs, 0); if (__predict_false(error != 0 && error != EFBIG)) { device_printf(sc->sc_dev, "can't map mbuf (error %d)\n", error); m_freem(m); return error; } if (__predict_true(error == 0)) { /* determine how many TXDs are required */ ntxds = 1 + (nsegs / 2); if (ring->queued + ntxds >= RT2860_TX_RING_COUNT) { /* not enough free TXDs, force mbuf defrag */ bus_dmamap_unload(sc->txwi_dmat, data->map); error = EFBIG; } } if (__predict_false(error != 0)) { m1 = m_defrag(m, M_NOWAIT); if (m1 == NULL) { device_printf(sc->sc_dev, "could not defragment mbuf\n"); m_freem(m); return ENOBUFS; } m = m1; error = bus_dmamap_load_mbuf_sg(sc->txwi_dmat, data->map, m, segs, &nsegs, 0); if (__predict_false(error != 0)) { device_printf(sc->sc_dev, "can't map mbuf (error %d)\n", error); m_freem(m); return error; } /* determine how many TXDs are now required */ ntxds = 1 + (nsegs / 2); if (ring->queued + ntxds >= RT2860_TX_RING_COUNT) { /* this is a hopeless case, drop the mbuf! */ bus_dmamap_unload(sc->txwi_dmat, data->map); m_freem(m); return ENOBUFS; } } qsel = (qid < WME_NUM_AC) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_MGMT; /* first segment is TXWI + 802.11 header */ txd = &ring->txd[ring->cur]; txd->sdp0 = htole32(data->paddr); txd->sdl0 = htole16(sizeof (struct rt2860_txwi) + pad); txd->flags = qsel; /* setup payload segments */ seg = &segs[0]; for (i = nsegs; i >= 2; i -= 2) { txd->sdp1 = htole32(seg->ds_addr); txd->sdl1 = htole16(seg->ds_len); seg++; ring->cur = (ring->cur + 1) % RT2860_TX_RING_COUNT; /* grab a new Tx descriptor */ txd = &ring->txd[ring->cur]; txd->sdp0 = htole32(seg->ds_addr); txd->sdl0 = htole16(seg->ds_len); txd->flags = qsel; seg++; } /* finalize last segment */ if (i > 0) { txd->sdp1 = htole32(seg->ds_addr); txd->sdl1 = htole16(seg->ds_len | RT2860_TX_LS1); } else { txd->sdl0 |= htole16(RT2860_TX_LS0); txd->sdl1 = 0; } /* remove from the free pool and link it into the SW Tx slot */ SLIST_REMOVE_HEAD(&sc->data_pool, next); data->m = m; data->ni = ni; ring->data[ring->cur] = data; bus_dmamap_sync(sc->txwi_dmat, sc->txwi_map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->txwi_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(4, ("sending frame qid=%d wcid=%d nsegs=%d ridx=%d\n", qid, txwi->wcid, nsegs, ridx)); ring->cur = (ring->cur + 1) % RT2860_TX_RING_COUNT; ring->queued += ntxds; if (ring->queued >= RT2860_TX_RING_COUNT) sc->qfullmsk |= 1 << qid; /* kick Tx */ RAL_WRITE(sc, RT2860_TX_CTX_IDX(qid), ring->cur); return 0; } static int rt2860_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct rt2860_softc *sc = ic->ic_softc; int error; RAL_LOCK(sc); /* prevent management frames from being sent if we're not ready */ if (!(sc->sc_flags & RT2860_RUNNING)) { RAL_UNLOCK(sc); m_freem(m); return ENETDOWN; } if (params == NULL) { /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. */ error = rt2860_tx(sc, m, ni); } else { /* * Caller supplied explicit parameters to use in * sending the frame. */ error = rt2860_tx_raw(sc, m, ni, params); } sc->sc_tx_timer = 5; RAL_UNLOCK(sc); return error; } static int rt2860_tx_raw(struct rt2860_softc *sc, struct mbuf *m, struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = ni->ni_vap; struct rt2860_tx_ring *ring; struct rt2860_tx_data *data; struct rt2860_txd *txd; struct rt2860_txwi *txwi; struct ieee80211_frame *wh; struct mbuf *m1; bus_dma_segment_t segs[RT2860_MAX_SCATTER]; bus_dma_segment_t *seg; u_int hdrlen; uint16_t dur; uint8_t type, qsel, mcs, pid, tid, qid; int i, nsegs, ntxds, pad, rate, ridx, error; /* the data pool contains at least one element, pick the first */ data = SLIST_FIRST(&sc->data_pool); wh = mtod(m, struct ieee80211_frame *); hdrlen = ieee80211_hdrsize(wh); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; /* Choose a TX rate index. */ rate = params->ibp_rate0; ridx = ieee80211_legacy_rate_lookup(ic->ic_rt, rate & IEEE80211_RATE_VAL); if (ridx == (uint8_t)-1) { /* XXX fall back to mcast/mgmt rate? */ m_freem(m); return EINVAL; } qid = params->ibp_pri & 3; tid = 0; ring = &sc->txq[qid]; /* get MCS code from rate index */ mcs = rt2860_rates[ridx].mcs; /* setup TX Wireless Information */ txwi = data->txwi; txwi->flags = 0; /* let HW generate seq numbers for non-QoS frames */ txwi->xflags = params->ibp_pri & 3 ? 0 : RT2860_TX_NSEQ; txwi->wcid = 0xff; txwi->len = htole16(m->m_pkthdr.len); if (rt2860_rates[ridx].phy == IEEE80211_T_DS) { txwi->phy = htole16(RT2860_PHY_CCK); if (ridx != RT2860_RIDX_CCK1 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) mcs |= RT2860_PHY_SHPRE; } else txwi->phy = htole16(RT2860_PHY_OFDM); txwi->phy |= htole16(mcs); /* * We store the MCS code into the driver-private PacketID field. * The PacketID is latched into TX_STAT_FIFO when Tx completes so * that we know at which initial rate the frame was transmitted. * We add 1 to the MCS code because setting the PacketID field to * 0 means that we don't want feedback in TX_STAT_FIFO. */ pid = (mcs + 1) & 0xf; txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT); /* check if RTS/CTS or CTS-to-self protection is required */ if (params->ibp_flags & IEEE80211_BPF_RTS || params->ibp_flags & IEEE80211_BPF_CTS) txwi->txop = RT2860_TX_TXOP_HT; else txwi->txop = RT2860_TX_TXOP_BACKOFF; if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) { txwi->xflags |= RT2860_TX_ACK; if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) dur = rt2860_rates[ridx].sp_ack_dur; else dur = rt2860_rates[ridx].lp_ack_dur; *(uint16_t *)wh->i_dur = htole16(dur); } /* ask MAC to insert timestamp into probe responses */ if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) /* NOTE: beacons do not pass through tx_data() */ txwi->flags |= RT2860_TX_TS; if (ieee80211_radiotap_active_vap(vap)) { struct rt2860_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; if (mcs & RT2860_PHY_SHPRE) tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; ieee80211_radiotap_tx(vap, m); } pad = (hdrlen + 3) & ~3; /* copy and trim 802.11 header */ memcpy(txwi + 1, wh, hdrlen); m_adj(m, hdrlen); error = bus_dmamap_load_mbuf_sg(sc->txwi_dmat, data->map, m, segs, &nsegs, 0); if (__predict_false(error != 0 && error != EFBIG)) { device_printf(sc->sc_dev, "can't map mbuf (error %d)\n", error); m_freem(m); return error; } if (__predict_true(error == 0)) { /* determine how many TXDs are required */ ntxds = 1 + (nsegs / 2); if (ring->queued + ntxds >= RT2860_TX_RING_COUNT) { /* not enough free TXDs, force mbuf defrag */ bus_dmamap_unload(sc->txwi_dmat, data->map); error = EFBIG; } } if (__predict_false(error != 0)) { m1 = m_defrag(m, M_NOWAIT); if (m1 == NULL) { device_printf(sc->sc_dev, "could not defragment mbuf\n"); m_freem(m); return ENOBUFS; } m = m1; error = bus_dmamap_load_mbuf_sg(sc->txwi_dmat, data->map, m, segs, &nsegs, 0); if (__predict_false(error != 0)) { device_printf(sc->sc_dev, "can't map mbuf (error %d)\n", error); m_freem(m); return error; } /* determine how many TXDs are now required */ ntxds = 1 + (nsegs / 2); if (ring->queued + ntxds >= RT2860_TX_RING_COUNT) { /* this is a hopeless case, drop the mbuf! */ bus_dmamap_unload(sc->txwi_dmat, data->map); m_freem(m); return ENOBUFS; } } qsel = (qid < WME_NUM_AC) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_MGMT; /* first segment is TXWI + 802.11 header */ txd = &ring->txd[ring->cur]; txd->sdp0 = htole32(data->paddr); txd->sdl0 = htole16(sizeof (struct rt2860_txwi) + pad); txd->flags = qsel; /* setup payload segments */ seg = &segs[0]; for (i = nsegs; i >= 2; i -= 2) { txd->sdp1 = htole32(seg->ds_addr); txd->sdl1 = htole16(seg->ds_len); seg++; ring->cur = (ring->cur + 1) % RT2860_TX_RING_COUNT; /* grab a new Tx descriptor */ txd = &ring->txd[ring->cur]; txd->sdp0 = htole32(seg->ds_addr); txd->sdl0 = htole16(seg->ds_len); txd->flags = qsel; seg++; } /* finalize last segment */ if (i > 0) { txd->sdp1 = htole32(seg->ds_addr); txd->sdl1 = htole16(seg->ds_len | RT2860_TX_LS1); } else { txd->sdl0 |= htole16(RT2860_TX_LS0); txd->sdl1 = 0; } /* remove from the free pool and link it into the SW Tx slot */ SLIST_REMOVE_HEAD(&sc->data_pool, next); data->m = m; data->ni = ni; ring->data[ring->cur] = data; bus_dmamap_sync(sc->txwi_dmat, sc->txwi_map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->txwi_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(4, ("sending frame qid=%d wcid=%d nsegs=%d ridx=%d\n", qid, txwi->wcid, nsegs, ridx)); ring->cur = (ring->cur + 1) % RT2860_TX_RING_COUNT; ring->queued += ntxds; if (ring->queued >= RT2860_TX_RING_COUNT) sc->qfullmsk |= 1 << qid; /* kick Tx */ RAL_WRITE(sc, RT2860_TX_CTX_IDX(qid), ring->cur); return 0; } static int rt2860_transmit(struct ieee80211com *ic, struct mbuf *m) { struct rt2860_softc *sc = ic->ic_softc; int error; RAL_LOCK(sc); if ((sc->sc_flags & RT2860_RUNNING) == 0) { RAL_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { RAL_UNLOCK(sc); return (error); } rt2860_start(sc); RAL_UNLOCK(sc); return (0); } static void rt2860_start(struct rt2860_softc *sc) { struct ieee80211_node *ni; struct mbuf *m; RAL_LOCK_ASSERT(sc); if ((sc->sc_flags & RT2860_RUNNING) == 0) return; while (!SLIST_EMPTY(&sc->data_pool) && sc->qfullmsk == 0 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; if (rt2860_tx(sc, m, ni) != 0) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); continue; } sc->sc_tx_timer = 5; } } static void rt2860_watchdog(void *arg) { struct rt2860_softc *sc = arg; RAL_LOCK_ASSERT(sc); KASSERT(sc->sc_flags & RT2860_RUNNING, ("not running")); if (sc->sc_invalid) /* card ejected */ return; if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) { device_printf(sc->sc_dev, "device timeout\n"); rt2860_stop_locked(sc); rt2860_init_locked(sc); counter_u64_add(sc->sc_ic.ic_oerrors, 1); return; } callout_reset(&sc->watchdog_ch, hz, rt2860_watchdog, sc); } static void rt2860_parent(struct ieee80211com *ic) { struct rt2860_softc *sc = ic->ic_softc; int startall = 0; RAL_LOCK(sc); if (ic->ic_nrunning> 0) { if (!(sc->sc_flags & RT2860_RUNNING)) { rt2860_init_locked(sc); startall = 1; } else rt2860_update_promisc(ic); } else if (sc->sc_flags & RT2860_RUNNING) rt2860_stop_locked(sc); RAL_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } /* * Reading and writing from/to the BBP is different from RT2560 and RT2661. * We access the BBP through the 8051 microcontroller unit which means that * the microcode must be loaded first. */ void rt2860_mcu_bbp_write(struct rt2860_softc *sc, uint8_t reg, uint8_t val) { int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2860_H2M_BBPAGENT) & RT2860_BBP_CSR_KICK)) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "could not write to BBP through MCU\n"); return; } RAL_WRITE(sc, RT2860_H2M_BBPAGENT, RT2860_BBP_RW_PARALLEL | RT2860_BBP_CSR_KICK | reg << 8 | val); RAL_BARRIER_WRITE(sc); rt2860_mcu_cmd(sc, RT2860_MCU_CMD_BBP, 0, 0); DELAY(1000); } uint8_t rt2860_mcu_bbp_read(struct rt2860_softc *sc, uint8_t reg) { uint32_t val; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2860_H2M_BBPAGENT) & RT2860_BBP_CSR_KICK)) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "could not read from BBP through MCU\n"); return 0; } RAL_WRITE(sc, RT2860_H2M_BBPAGENT, RT2860_BBP_RW_PARALLEL | RT2860_BBP_CSR_KICK | RT2860_BBP_CSR_READ | reg << 8); RAL_BARRIER_WRITE(sc); rt2860_mcu_cmd(sc, RT2860_MCU_CMD_BBP, 0, 0); DELAY(1000); for (ntries = 0; ntries < 100; ntries++) { val = RAL_READ(sc, RT2860_H2M_BBPAGENT); if (!(val & RT2860_BBP_CSR_KICK)) return val & 0xff; DELAY(1); } device_printf(sc->sc_dev, "could not read from BBP through MCU\n"); return 0; } /* * Write to one of the 4 programmable 24-bit RF registers. */ static void rt2860_rf_write(struct rt2860_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2860_RF_CSR_CFG0) & RT2860_RF_REG_CTRL)) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "could not write to RF\n"); return; } /* RF registers are 24-bit on the RT2860 */ tmp = RT2860_RF_REG_CTRL | 24 << RT2860_RF_REG_WIDTH_SHIFT | (val & 0x3fffff) << 2 | (reg & 3); RAL_WRITE(sc, RT2860_RF_CSR_CFG0, tmp); } static uint8_t rt3090_rf_read(struct rt2860_softc *sc, uint8_t reg) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT3070_RF_CSR_CFG) & RT3070_RF_KICK)) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "could not read RF register\n"); return 0xff; } tmp = RT3070_RF_KICK | reg << 8; RAL_WRITE(sc, RT3070_RF_CSR_CFG, tmp); for (ntries = 0; ntries < 100; ntries++) { tmp = RAL_READ(sc, RT3070_RF_CSR_CFG); if (!(tmp & RT3070_RF_KICK)) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "could not read RF register\n"); return 0xff; } return tmp & 0xff; } void rt3090_rf_write(struct rt2860_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 10; ntries++) { if (!(RAL_READ(sc, RT3070_RF_CSR_CFG) & RT3070_RF_KICK)) break; DELAY(10); } if (ntries == 10) { device_printf(sc->sc_dev, "could not write to RF\n"); return; } tmp = RT3070_RF_WRITE | RT3070_RF_KICK | reg << 8 | val; RAL_WRITE(sc, RT3070_RF_CSR_CFG, tmp); } /* * Send a command to the 8051 microcontroller unit. */ int rt2860_mcu_cmd(struct rt2860_softc *sc, uint8_t cmd, uint16_t arg, int wait) { int slot, ntries; uint32_t tmp; uint8_t cid; for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2860_H2M_MAILBOX) & RT2860_H2M_BUSY)) break; DELAY(2); } if (ntries == 100) return EIO; cid = wait ? cmd : RT2860_TOKEN_NO_INTR; RAL_WRITE(sc, RT2860_H2M_MAILBOX, RT2860_H2M_BUSY | cid << 16 | arg); RAL_BARRIER_WRITE(sc); RAL_WRITE(sc, RT2860_HOST_CMD, cmd); if (!wait) return 0; /* wait for the command to complete */ for (ntries = 0; ntries < 200; ntries++) { tmp = RAL_READ(sc, RT2860_H2M_MAILBOX_CID); /* find the command slot */ for (slot = 0; slot < 4; slot++, tmp >>= 8) if ((tmp & 0xff) == cid) break; if (slot < 4) break; DELAY(100); } if (ntries == 200) { /* clear command and status */ RAL_WRITE(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff); RAL_WRITE(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff); return ETIMEDOUT; } /* get command status (1 means success) */ tmp = RAL_READ(sc, RT2860_H2M_MAILBOX_STATUS); tmp = (tmp >> (slot * 8)) & 0xff; DPRINTF(("MCU command=0x%02x slot=%d status=0x%02x\n", cmd, slot, tmp)); /* clear command and status */ RAL_WRITE(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff); RAL_WRITE(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff); return (tmp == 1) ? 0 : EIO; } static void rt2860_enable_mrr(struct rt2860_softc *sc) { #define CCK(mcs) (mcs) #define OFDM(mcs) (1 << 3 | (mcs)) RAL_WRITE(sc, RT2860_LG_FBK_CFG0, OFDM(6) << 28 | /* 54->48 */ OFDM(5) << 24 | /* 48->36 */ OFDM(4) << 20 | /* 36->24 */ OFDM(3) << 16 | /* 24->18 */ OFDM(2) << 12 | /* 18->12 */ OFDM(1) << 8 | /* 12-> 9 */ OFDM(0) << 4 | /* 9-> 6 */ OFDM(0)); /* 6-> 6 */ RAL_WRITE(sc, RT2860_LG_FBK_CFG1, CCK(2) << 12 | /* 11->5.5 */ CCK(1) << 8 | /* 5.5-> 2 */ CCK(0) << 4 | /* 2-> 1 */ CCK(0)); /* 1-> 1 */ #undef OFDM #undef CCK } static void rt2860_set_txpreamble(struct rt2860_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; tmp = RAL_READ(sc, RT2860_AUTO_RSP_CFG); tmp &= ~RT2860_CCK_SHORT_EN; if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) tmp |= RT2860_CCK_SHORT_EN; RAL_WRITE(sc, RT2860_AUTO_RSP_CFG, tmp); } void rt2860_set_basicrates(struct rt2860_softc *sc, const struct ieee80211_rateset *rs) { struct ieee80211com *ic = &sc->sc_ic; uint32_t mask = 0; uint8_t rate; int i; for (i = 0; i < rs->rs_nrates; i++) { rate = rs->rs_rates[i]; if (!(rate & IEEE80211_RATE_BASIC)) continue; mask |= 1 << ieee80211_legacy_rate_lookup(ic->ic_rt, IEEE80211_RV(rate)); } RAL_WRITE(sc, RT2860_LEGACY_BASIC_RATE, mask); } static void rt2860_scan_start(struct ieee80211com *ic) { struct rt2860_softc *sc = ic->ic_softc; uint32_t tmp; tmp = RAL_READ(sc, RT2860_BCN_TIME_CFG); RAL_WRITE(sc, RT2860_BCN_TIME_CFG, tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN)); rt2860_set_gp_timer(sc, 0); } static void rt2860_scan_end(struct ieee80211com *ic) { struct rt2860_softc *sc = ic->ic_softc; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); if (vap->iv_state == IEEE80211_S_RUN) { rt2860_enable_tsf_sync(sc); rt2860_set_gp_timer(sc, 500); } } static void rt2860_set_channel(struct ieee80211com *ic) { struct rt2860_softc *sc = ic->ic_softc; RAL_LOCK(sc); rt2860_switch_chan(sc, ic->ic_curchan); RAL_UNLOCK(sc); } static void rt2860_select_chan_group(struct rt2860_softc *sc, int group) { uint32_t tmp; uint8_t agc; rt2860_mcu_bbp_write(sc, 62, 0x37 - sc->lna[group]); rt2860_mcu_bbp_write(sc, 63, 0x37 - sc->lna[group]); rt2860_mcu_bbp_write(sc, 64, 0x37 - sc->lna[group]); rt2860_mcu_bbp_write(sc, 86, 0x00); if (group == 0) { if (sc->ext_2ghz_lna) { rt2860_mcu_bbp_write(sc, 82, 0x62); rt2860_mcu_bbp_write(sc, 75, 0x46); } else { rt2860_mcu_bbp_write(sc, 82, 0x84); rt2860_mcu_bbp_write(sc, 75, 0x50); } } else { if (sc->ext_5ghz_lna) { rt2860_mcu_bbp_write(sc, 82, 0xf2); rt2860_mcu_bbp_write(sc, 75, 0x46); } else { rt2860_mcu_bbp_write(sc, 82, 0xf2); rt2860_mcu_bbp_write(sc, 75, 0x50); } } tmp = RAL_READ(sc, RT2860_TX_BAND_CFG); tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P); tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P; RAL_WRITE(sc, RT2860_TX_BAND_CFG, tmp); /* enable appropriate Power Amplifiers and Low Noise Amplifiers */ tmp = RT2860_RFTR_EN | RT2860_TRSW_EN | RT2860_LNA_PE0_EN; if (sc->nrxchains > 1) tmp |= RT2860_LNA_PE1_EN; if (sc->mac_ver == 0x3593 && sc->nrxchains > 2) tmp |= RT3593_LNA_PE2_EN; if (group == 0) { /* 2GHz */ tmp |= RT2860_PA_PE_G0_EN; if (sc->ntxchains > 1) tmp |= RT2860_PA_PE_G1_EN; if (sc->mac_ver == 0x3593 && sc->ntxchains > 2) tmp |= RT3593_PA_PE_G2_EN; } else { /* 5GHz */ tmp |= RT2860_PA_PE_A0_EN; if (sc->ntxchains > 1) tmp |= RT2860_PA_PE_A1_EN; if (sc->mac_ver == 0x3593 && sc->ntxchains > 2) tmp |= RT3593_PA_PE_A2_EN; } RAL_WRITE(sc, RT2860_TX_PIN_CFG, tmp); if (sc->mac_ver == 0x3593) { tmp = RAL_READ(sc, RT2860_GPIO_CTRL); if (sc->sc_flags & RT2860_PCIE) { tmp &= ~0x01010000; if (group == 0) tmp |= 0x00010000; } else { tmp &= ~0x00008080; if (group == 0) tmp |= 0x00000080; } tmp = (tmp & ~0x00001000) | 0x00000010; RAL_WRITE(sc, RT2860_GPIO_CTRL, tmp); } /* set initial AGC value */ if (group == 0) { /* 2GHz band */ if (sc->mac_ver >= 0x3071) agc = 0x1c + sc->lna[0] * 2; else agc = 0x2e + sc->lna[0]; } else { /* 5GHz band */ agc = 0x32 + (sc->lna[group] * 5) / 3; } rt2860_mcu_bbp_write(sc, 66, agc); DELAY(1000); } static void rt2860_set_chan(struct rt2860_softc *sc, u_int chan) { const struct rfprog *rfprog = rt2860_rf2850; uint32_t r2, r3, r4; int8_t txpow1, txpow2; u_int i; /* find the settings for this channel (we know it exists) */ for (i = 0; rfprog[i].chan != chan; i++); r2 = rfprog[i].r2; if (sc->ntxchains == 1) r2 |= 1 << 12; /* 1T: disable Tx chain 2 */ if (sc->nrxchains == 1) r2 |= 1 << 15 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */ else if (sc->nrxchains == 2) r2 |= 1 << 4; /* 2R: disable Rx chain 3 */ /* use Tx power values from EEPROM */ txpow1 = sc->txpow1[i]; txpow2 = sc->txpow2[i]; if (chan > 14) { if (txpow1 >= 0) txpow1 = txpow1 << 1 | 1; else txpow1 = (7 + txpow1) << 1; if (txpow2 >= 0) txpow2 = txpow2 << 1 | 1; else txpow2 = (7 + txpow2) << 1; } r3 = rfprog[i].r3 | txpow1 << 7; r4 = rfprog[i].r4 | sc->freq << 13 | txpow2 << 4; rt2860_rf_write(sc, RT2860_RF1, rfprog[i].r1); rt2860_rf_write(sc, RT2860_RF2, r2); rt2860_rf_write(sc, RT2860_RF3, r3); rt2860_rf_write(sc, RT2860_RF4, r4); DELAY(200); rt2860_rf_write(sc, RT2860_RF1, rfprog[i].r1); rt2860_rf_write(sc, RT2860_RF2, r2); rt2860_rf_write(sc, RT2860_RF3, r3 | 1); rt2860_rf_write(sc, RT2860_RF4, r4); DELAY(200); rt2860_rf_write(sc, RT2860_RF1, rfprog[i].r1); rt2860_rf_write(sc, RT2860_RF2, r2); rt2860_rf_write(sc, RT2860_RF3, r3); rt2860_rf_write(sc, RT2860_RF4, r4); } static void rt3090_set_chan(struct rt2860_softc *sc, u_int chan) { int8_t txpow1, txpow2; uint8_t rf; int i; /* RT3090 is 2GHz only */ KASSERT(chan >= 1 && chan <= 14, ("chan %d not support", chan)); /* find the settings for this channel (we know it exists) */ for (i = 0; rt2860_rf2850[i].chan != chan; i++); /* use Tx power values from EEPROM */ txpow1 = sc->txpow1[i]; txpow2 = sc->txpow2[i]; rt3090_rf_write(sc, 2, rt3090_freqs[i].n); rf = rt3090_rf_read(sc, 3); rf = (rf & ~0x0f) | rt3090_freqs[i].k; rt3090_rf_write(sc, 3, rf); rf = rt3090_rf_read(sc, 6); rf = (rf & ~0x03) | rt3090_freqs[i].r; rt3090_rf_write(sc, 6, rf); /* set Tx0 power */ rf = rt3090_rf_read(sc, 12); rf = (rf & ~0x1f) | txpow1; rt3090_rf_write(sc, 12, rf); /* set Tx1 power */ rf = rt3090_rf_read(sc, 13); rf = (rf & ~0x1f) | txpow2; rt3090_rf_write(sc, 13, rf); rf = rt3090_rf_read(sc, 1); rf &= ~0xfc; if (sc->ntxchains == 1) rf |= RT3070_TX1_PD | RT3070_TX2_PD; else if (sc->ntxchains == 2) rf |= RT3070_TX2_PD; if (sc->nrxchains == 1) rf |= RT3070_RX1_PD | RT3070_RX2_PD; else if (sc->nrxchains == 2) rf |= RT3070_RX2_PD; rt3090_rf_write(sc, 1, rf); /* set RF offset */ rf = rt3090_rf_read(sc, 23); rf = (rf & ~0x7f) | sc->freq; rt3090_rf_write(sc, 23, rf); /* program RF filter */ rf = rt3090_rf_read(sc, 24); /* Tx */ rf = (rf & ~0x3f) | sc->rf24_20mhz; rt3090_rf_write(sc, 24, rf); rf = rt3090_rf_read(sc, 31); /* Rx */ rf = (rf & ~0x3f) | sc->rf24_20mhz; rt3090_rf_write(sc, 31, rf); /* enable RF tuning */ rf = rt3090_rf_read(sc, 7); rt3090_rf_write(sc, 7, rf | RT3070_TUNE); } static void rt5390_set_chan(struct rt2860_softc *sc, u_int chan) { uint8_t h20mhz, rf, tmp; int8_t txpow1, txpow2; int i; /* RT5390 is 2GHz only */ KASSERT(chan >= 1 && chan <= 14, ("chan %d not support", chan)); /* find the settings for this channel (we know it exists) */ for (i = 0; rt2860_rf2850[i].chan != chan; i++); /* use Tx power values from EEPROM */ txpow1 = sc->txpow1[i]; txpow2 = sc->txpow2[i]; rt3090_rf_write(sc, 8, rt3090_freqs[i].n); rt3090_rf_write(sc, 9, rt3090_freqs[i].k & 0x0f); rf = rt3090_rf_read(sc, 11); rf = (rf & ~0x03) | (rt3090_freqs[i].r & 0x03); rt3090_rf_write(sc, 11, rf); rf = rt3090_rf_read(sc, 49); rf = (rf & ~0x3f) | (txpow1 & 0x3f); /* the valid range of the RF R49 is 0x00~0x27 */ if ((rf & 0x3f) > 0x27) rf = (rf & ~0x3f) | 0x27; rt3090_rf_write(sc, 49, rf); if (sc->mac_ver == 0x5392) { rf = rt3090_rf_read(sc, 50); rf = (rf & ~0x3f) | (txpow2 & 0x3f); /* the valid range of the RF R50 is 0x00~0x27 */ if ((rf & 0x3f) > 0x27) rf = (rf & ~0x3f) | 0x27; rt3090_rf_write(sc, 50, rf); } rf = rt3090_rf_read(sc, 1); rf |= RT3070_RF_BLOCK | RT3070_PLL_PD | RT3070_RX0_PD | RT3070_TX0_PD; if (sc->mac_ver == 0x5392) rf |= RT3070_RX1_PD | RT3070_TX1_PD; rt3090_rf_write(sc, 1, rf); rf = rt3090_rf_read(sc, 2); rt3090_rf_write(sc, 2, rf | RT3593_RESCAL); DELAY(1000); rt3090_rf_write(sc, 2, rf & ~RT3593_RESCAL); rf = rt3090_rf_read(sc, 17); tmp = rf; rf = (rf & ~0x7f) | (sc->freq & 0x7f); rf = MIN(rf, 0x5f); if (tmp != rf) rt2860_mcu_cmd(sc, 0x74, (tmp << 8 ) | rf, 0); if (sc->mac_ver == 0x5390) { if (chan <= 4) rf = 0x73; else if (chan >= 5 && chan <= 6) rf = 0x63; else if (chan >= 7 && chan <= 10) rf = 0x53; else rf = 43; rt3090_rf_write(sc, 55, rf); if (chan == 1) rf = 0x0c; else if (chan == 2) rf = 0x0b; else if (chan == 3) rf = 0x0a; else if (chan >= 4 && chan <= 6) rf = 0x09; else if (chan >= 7 && chan <= 12) rf = 0x08; else if (chan == 13) rf = 0x07; else rf = 0x06; rt3090_rf_write(sc, 59, rf); } /* Tx/Rx h20M */ h20mhz = (sc->rf24_20mhz & 0x20) >> 5; rf = rt3090_rf_read(sc, 30); rf = (rf & ~0x06) | (h20mhz << 1) | (h20mhz << 2); rt3090_rf_write(sc, 30, rf); /* Rx BB filter VCM */ rf = rt3090_rf_read(sc, 30); rf = (rf & ~0x18) | 0x10; rt3090_rf_write(sc, 30, rf); /* Initiate VCO calibration. */ rf = rt3090_rf_read(sc, 3); rf |= RT3593_VCOCAL; rt3090_rf_write(sc, 3, rf); } static int rt3090_rf_init(struct rt2860_softc *sc) { uint32_t tmp; uint8_t rf, bbp; int i; rf = rt3090_rf_read(sc, 30); /* toggle RF R30 bit 7 */ rt3090_rf_write(sc, 30, rf | 0x80); DELAY(1000); rt3090_rf_write(sc, 30, rf & ~0x80); tmp = RAL_READ(sc, RT3070_LDO_CFG0); tmp &= ~0x1f000000; if (sc->patch_dac && sc->mac_rev < 0x0211) tmp |= 0x0d000000; /* 1.35V */ else tmp |= 0x01000000; /* 1.2V */ RAL_WRITE(sc, RT3070_LDO_CFG0, tmp); /* patch LNA_PE_G1 */ tmp = RAL_READ(sc, RT3070_GPIO_SWITCH); RAL_WRITE(sc, RT3070_GPIO_SWITCH, tmp & ~0x20); /* initialize RF registers to default value */ for (i = 0; i < nitems(rt3090_def_rf); i++) { rt3090_rf_write(sc, rt3090_def_rf[i].reg, rt3090_def_rf[i].val); } /* select 20MHz bandwidth */ rt3090_rf_write(sc, 31, 0x14); rf = rt3090_rf_read(sc, 6); rt3090_rf_write(sc, 6, rf | 0x40); if (sc->mac_ver != 0x3593) { /* calibrate filter for 20MHz bandwidth */ sc->rf24_20mhz = 0x1f; /* default value */ rt3090_filter_calib(sc, 0x07, 0x16, &sc->rf24_20mhz); /* select 40MHz bandwidth */ bbp = rt2860_mcu_bbp_read(sc, 4); rt2860_mcu_bbp_write(sc, 4, (bbp & ~0x08) | 0x10); rf = rt3090_rf_read(sc, 31); rt3090_rf_write(sc, 31, rf | 0x20); /* calibrate filter for 40MHz bandwidth */ sc->rf24_40mhz = 0x2f; /* default value */ rt3090_filter_calib(sc, 0x27, 0x19, &sc->rf24_40mhz); /* go back to 20MHz bandwidth */ bbp = rt2860_mcu_bbp_read(sc, 4); rt2860_mcu_bbp_write(sc, 4, bbp & ~0x18); } if (sc->mac_rev < 0x0211) rt3090_rf_write(sc, 27, 0x03); tmp = RAL_READ(sc, RT3070_OPT_14); RAL_WRITE(sc, RT3070_OPT_14, tmp | 1); if (sc->rf_rev == RT3070_RF_3020) rt3090_set_rx_antenna(sc, 0); bbp = rt2860_mcu_bbp_read(sc, 138); if (sc->mac_ver == 0x3593) { if (sc->ntxchains == 1) bbp |= 0x60; /* turn off DAC1 and DAC2 */ else if (sc->ntxchains == 2) bbp |= 0x40; /* turn off DAC2 */ if (sc->nrxchains == 1) bbp &= ~0x06; /* turn off ADC1 and ADC2 */ else if (sc->nrxchains == 2) bbp &= ~0x04; /* turn off ADC2 */ } else { if (sc->ntxchains == 1) bbp |= 0x20; /* turn off DAC1 */ if (sc->nrxchains == 1) bbp &= ~0x02; /* turn off ADC1 */ } rt2860_mcu_bbp_write(sc, 138, bbp); rf = rt3090_rf_read(sc, 1); rf &= ~(RT3070_RX0_PD | RT3070_TX0_PD); rf |= RT3070_RF_BLOCK | RT3070_RX1_PD | RT3070_TX1_PD; rt3090_rf_write(sc, 1, rf); rf = rt3090_rf_read(sc, 15); rt3090_rf_write(sc, 15, rf & ~RT3070_TX_LO2); rf = rt3090_rf_read(sc, 17); rf &= ~RT3070_TX_LO1; if (sc->mac_rev >= 0x0211 && !sc->ext_2ghz_lna) rf |= 0x20; /* fix for long range Rx issue */ if (sc->txmixgain_2ghz >= 2) rf = (rf & ~0x7) | sc->txmixgain_2ghz; rt3090_rf_write(sc, 17, rf); rf = rt3090_rf_read(sc, 20); rt3090_rf_write(sc, 20, rf & ~RT3070_RX_LO1); rf = rt3090_rf_read(sc, 21); rt3090_rf_write(sc, 21, rf & ~RT3070_RX_LO2); return (0); } static void rt5390_rf_init(struct rt2860_softc *sc) { uint8_t rf, bbp; int i; rf = rt3090_rf_read(sc, 2); /* Toggle RF R2 bit 7. */ rt3090_rf_write(sc, 2, rf | RT3593_RESCAL); DELAY(1000); rt3090_rf_write(sc, 2, rf & ~RT3593_RESCAL); /* Initialize RF registers to default value. */ if (sc->mac_ver == 0x5392) { for (i = 0; i < nitems(rt5392_def_rf); i++) { rt3090_rf_write(sc, rt5392_def_rf[i].reg, rt5392_def_rf[i].val); } } else { for (i = 0; i < nitems(rt5390_def_rf); i++) { rt3090_rf_write(sc, rt5390_def_rf[i].reg, rt5390_def_rf[i].val); } } sc->rf24_20mhz = 0x1f; sc->rf24_40mhz = 0x2f; if (sc->mac_rev < 0x0211) rt3090_rf_write(sc, 27, 0x03); /* Set led open drain enable. */ RAL_WRITE(sc, RT3070_OPT_14, RAL_READ(sc, RT3070_OPT_14) | 1); RAL_WRITE(sc, RT2860_TX_SW_CFG1, 0); RAL_WRITE(sc, RT2860_TX_SW_CFG2, 0); if (sc->mac_ver == 0x5390) rt3090_set_rx_antenna(sc, 0); /* Patch RSSI inaccurate issue. */ rt2860_mcu_bbp_write(sc, 79, 0x13); rt2860_mcu_bbp_write(sc, 80, 0x05); rt2860_mcu_bbp_write(sc, 81, 0x33); /* Enable DC filter. */ if (sc->mac_rev >= 0x0211) rt2860_mcu_bbp_write(sc, 103, 0xc0); bbp = rt2860_mcu_bbp_read(sc, 138); if (sc->ntxchains == 1) bbp |= 0x20; /* Turn off DAC1. */ if (sc->nrxchains == 1) bbp &= ~0x02; /* Turn off ADC1. */ rt2860_mcu_bbp_write(sc, 138, bbp); /* Enable RX LO1 and LO2. */ rt3090_rf_write(sc, 38, rt3090_rf_read(sc, 38) & ~RT5390_RX_LO1); rt3090_rf_write(sc, 39, rt3090_rf_read(sc, 39) & ~RT5390_RX_LO2); /* Avoid data lost and CRC error. */ rt2860_mcu_bbp_write(sc, 4, rt2860_mcu_bbp_read(sc, 4) | RT5390_MAC_IF_CTRL); rf = rt3090_rf_read(sc, 30); rf = (rf & ~0x18) | 0x10; rt3090_rf_write(sc, 30, rf); } static void rt3090_rf_wakeup(struct rt2860_softc *sc) { uint32_t tmp; uint8_t rf; if (sc->mac_ver == 0x3593) { /* enable VCO */ rf = rt3090_rf_read(sc, 1); rt3090_rf_write(sc, 1, rf | RT3593_VCO); /* initiate VCO calibration */ rf = rt3090_rf_read(sc, 3); rt3090_rf_write(sc, 3, rf | RT3593_VCOCAL); /* enable VCO bias current control */ rf = rt3090_rf_read(sc, 6); rt3090_rf_write(sc, 6, rf | RT3593_VCO_IC); /* initiate res calibration */ rf = rt3090_rf_read(sc, 2); rt3090_rf_write(sc, 2, rf | RT3593_RESCAL); /* set reference current control to 0.33 mA */ rf = rt3090_rf_read(sc, 22); rf &= ~RT3593_CP_IC_MASK; rf |= 1 << RT3593_CP_IC_SHIFT; rt3090_rf_write(sc, 22, rf); /* enable RX CTB */ rf = rt3090_rf_read(sc, 46); rt3090_rf_write(sc, 46, rf | RT3593_RX_CTB); rf = rt3090_rf_read(sc, 20); rf &= ~(RT3593_LDO_RF_VC_MASK | RT3593_LDO_PLL_VC_MASK); rt3090_rf_write(sc, 20, rf); } else { /* enable RF block */ rf = rt3090_rf_read(sc, 1); rt3090_rf_write(sc, 1, rf | RT3070_RF_BLOCK); /* enable VCO bias current control */ rf = rt3090_rf_read(sc, 7); rt3090_rf_write(sc, 7, rf | 0x30); rf = rt3090_rf_read(sc, 9); rt3090_rf_write(sc, 9, rf | 0x0e); /* enable RX CTB */ rf = rt3090_rf_read(sc, 21); rt3090_rf_write(sc, 21, rf | RT3070_RX_CTB); /* fix Tx to Rx IQ glitch by raising RF voltage */ rf = rt3090_rf_read(sc, 27); rf &= ~0x77; if (sc->mac_rev < 0x0211) rf |= 0x03; rt3090_rf_write(sc, 27, rf); } if (sc->patch_dac && sc->mac_rev < 0x0211) { tmp = RAL_READ(sc, RT3070_LDO_CFG0); tmp = (tmp & ~0x1f000000) | 0x0d000000; RAL_WRITE(sc, RT3070_LDO_CFG0, tmp); } } static void rt5390_rf_wakeup(struct rt2860_softc *sc) { uint32_t tmp; uint8_t rf; rf = rt3090_rf_read(sc, 1); rf |= RT3070_RF_BLOCK | RT3070_PLL_PD | RT3070_RX0_PD | RT3070_TX0_PD; if (sc->mac_ver == 0x5392) rf |= RT3070_RX1_PD | RT3070_TX1_PD; rt3090_rf_write(sc, 1, rf); rf = rt3090_rf_read(sc, 6); rf |= RT3593_VCO_IC | RT3593_VCOCAL; if (sc->mac_ver == 0x5390) rf &= ~RT3593_VCO_IC; rt3090_rf_write(sc, 6, rf); rt3090_rf_write(sc, 2, rt3090_rf_read(sc, 2) | RT3593_RESCAL); rf = rt3090_rf_read(sc, 22); rf = (rf & ~0xe0) | 0x20; rt3090_rf_write(sc, 22, rf); rt3090_rf_write(sc, 42, rt3090_rf_read(sc, 42) | RT5390_RX_CTB); rt3090_rf_write(sc, 20, rt3090_rf_read(sc, 20) & ~0x77); rt3090_rf_write(sc, 3, rt3090_rf_read(sc, 3) | RT3593_VCOCAL); if (sc->patch_dac && sc->mac_rev < 0x0211) { tmp = RAL_READ(sc, RT3070_LDO_CFG0); tmp = (tmp & ~0x1f000000) | 0x0d000000; RAL_WRITE(sc, RT3070_LDO_CFG0, tmp); } } static int rt3090_filter_calib(struct rt2860_softc *sc, uint8_t init, uint8_t target, uint8_t *val) { uint8_t rf22, rf24; uint8_t bbp55_pb, bbp55_sb, delta; int ntries; /* program filter */ rf24 = rt3090_rf_read(sc, 24); rf24 = (rf24 & 0xc0) | init; /* initial filter value */ rt3090_rf_write(sc, 24, rf24); /* enable baseband loopback mode */ rf22 = rt3090_rf_read(sc, 22); rt3090_rf_write(sc, 22, rf22 | RT3070_BB_LOOPBACK); /* set power and frequency of passband test tone */ rt2860_mcu_bbp_write(sc, 24, 0x00); for (ntries = 0; ntries < 100; ntries++) { /* transmit test tone */ rt2860_mcu_bbp_write(sc, 25, 0x90); DELAY(1000); /* read received power */ bbp55_pb = rt2860_mcu_bbp_read(sc, 55); if (bbp55_pb != 0) break; } if (ntries == 100) return (ETIMEDOUT); /* set power and frequency of stopband test tone */ rt2860_mcu_bbp_write(sc, 24, 0x06); for (ntries = 0; ntries < 100; ntries++) { /* transmit test tone */ rt2860_mcu_bbp_write(sc, 25, 0x90); DELAY(1000); /* read received power */ bbp55_sb = rt2860_mcu_bbp_read(sc, 55); delta = bbp55_pb - bbp55_sb; if (delta > target) break; /* reprogram filter */ rf24++; rt3090_rf_write(sc, 24, rf24); } if (ntries < 100) { if (rf24 != init) rf24--; /* backtrack */ *val = rf24; rt3090_rf_write(sc, 24, rf24); } /* restore initial state */ rt2860_mcu_bbp_write(sc, 24, 0x00); /* disable baseband loopback mode */ rf22 = rt3090_rf_read(sc, 22); rt3090_rf_write(sc, 22, rf22 & ~RT3070_BB_LOOPBACK); return (0); } static void rt3090_rf_setup(struct rt2860_softc *sc) { uint8_t bbp; int i; if (sc->mac_rev >= 0x0211) { /* enable DC filter */ rt2860_mcu_bbp_write(sc, 103, 0xc0); /* improve power consumption */ bbp = rt2860_mcu_bbp_read(sc, 31); rt2860_mcu_bbp_write(sc, 31, bbp & ~0x03); } RAL_WRITE(sc, RT2860_TX_SW_CFG1, 0); if (sc->mac_rev < 0x0211) { RAL_WRITE(sc, RT2860_TX_SW_CFG2, sc->patch_dac ? 0x2c : 0x0f); } else RAL_WRITE(sc, RT2860_TX_SW_CFG2, 0); /* initialize RF registers from ROM */ if (sc->mac_ver < 0x5390) { for (i = 0; i < 10; i++) { if (sc->rf[i].reg == 0 || sc->rf[i].reg == 0xff) continue; rt3090_rf_write(sc, sc->rf[i].reg, sc->rf[i].val); } } } static void rt2860_set_leds(struct rt2860_softc *sc, uint16_t which) { rt2860_mcu_cmd(sc, RT2860_MCU_CMD_LEDS, which | (sc->leds & 0x7f), 0); } /* * Hardware has a general-purpose programmable timer interrupt that can * periodically raise MAC_INT_4. */ static void rt2860_set_gp_timer(struct rt2860_softc *sc, int ms) { uint32_t tmp; /* disable GP timer before reprogramming it */ tmp = RAL_READ(sc, RT2860_INT_TIMER_EN); RAL_WRITE(sc, RT2860_INT_TIMER_EN, tmp & ~RT2860_GP_TIMER_EN); if (ms == 0) return; tmp = RAL_READ(sc, RT2860_INT_TIMER_CFG); ms *= 16; /* Unit: 64us */ tmp = (tmp & 0xffff) | ms << RT2860_GP_TIMER_SHIFT; RAL_WRITE(sc, RT2860_INT_TIMER_CFG, tmp); /* enable GP timer */ tmp = RAL_READ(sc, RT2860_INT_TIMER_EN); RAL_WRITE(sc, RT2860_INT_TIMER_EN, tmp | RT2860_GP_TIMER_EN); } static void rt2860_set_bssid(struct rt2860_softc *sc, const uint8_t *bssid) { RAL_WRITE(sc, RT2860_MAC_BSSID_DW0, bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); RAL_WRITE(sc, RT2860_MAC_BSSID_DW1, bssid[4] | bssid[5] << 8); } static void rt2860_set_macaddr(struct rt2860_softc *sc, const uint8_t *addr) { RAL_WRITE(sc, RT2860_MAC_ADDR_DW0, addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); RAL_WRITE(sc, RT2860_MAC_ADDR_DW1, addr[4] | addr[5] << 8 | 0xff << 16); } static void rt2860_updateslot(struct ieee80211com *ic) { struct rt2860_softc *sc = ic->ic_softc; uint32_t tmp; tmp = RAL_READ(sc, RT2860_BKOFF_SLOT_CFG); tmp &= ~0xff; tmp |= IEEE80211_GET_SLOTTIME(ic); RAL_WRITE(sc, RT2860_BKOFF_SLOT_CFG, tmp); } static void rt2860_updateprot(struct rt2860_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; tmp = RT2860_RTSTH_EN | RT2860_PROT_NAV_SHORT | RT2860_TXOP_ALLOW_ALL; /* setup protection frame rate (MCS code) */ tmp |= IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? rt2860_rates[RT2860_RIDX_OFDM6].mcs : rt2860_rates[RT2860_RIDX_CCK11].mcs; /* CCK frames don't require protection */ RAL_WRITE(sc, RT2860_CCK_PROT_CFG, tmp); if (ic->ic_flags & IEEE80211_F_USEPROT) { if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) tmp |= RT2860_PROT_CTRL_RTS_CTS; else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) tmp |= RT2860_PROT_CTRL_CTS; } RAL_WRITE(sc, RT2860_OFDM_PROT_CFG, tmp); } static void rt2860_update_promisc(struct ieee80211com *ic) { struct rt2860_softc *sc = ic->ic_softc; uint32_t tmp; tmp = RAL_READ(sc, RT2860_RX_FILTR_CFG); tmp &= ~RT2860_DROP_NOT_MYBSS; if (ic->ic_promisc == 0) tmp |= RT2860_DROP_NOT_MYBSS; RAL_WRITE(sc, RT2860_RX_FILTR_CFG, tmp); } static int rt2860_updateedca(struct ieee80211com *ic) { struct rt2860_softc *sc = ic->ic_softc; const struct wmeParams *wmep; int aci; wmep = ic->ic_wme.wme_chanParams.cap_wmeParams; /* update MAC TX configuration registers */ for (aci = 0; aci < WME_NUM_AC; aci++) { RAL_WRITE(sc, RT2860_EDCA_AC_CFG(aci), wmep[aci].wmep_logcwmax << 16 | wmep[aci].wmep_logcwmin << 12 | wmep[aci].wmep_aifsn << 8 | wmep[aci].wmep_txopLimit); } /* update SCH/DMA registers too */ RAL_WRITE(sc, RT2860_WMM_AIFSN_CFG, wmep[WME_AC_VO].wmep_aifsn << 12 | wmep[WME_AC_VI].wmep_aifsn << 8 | wmep[WME_AC_BK].wmep_aifsn << 4 | wmep[WME_AC_BE].wmep_aifsn); RAL_WRITE(sc, RT2860_WMM_CWMIN_CFG, wmep[WME_AC_VO].wmep_logcwmin << 12 | wmep[WME_AC_VI].wmep_logcwmin << 8 | wmep[WME_AC_BK].wmep_logcwmin << 4 | wmep[WME_AC_BE].wmep_logcwmin); RAL_WRITE(sc, RT2860_WMM_CWMAX_CFG, wmep[WME_AC_VO].wmep_logcwmax << 12 | wmep[WME_AC_VI].wmep_logcwmax << 8 | wmep[WME_AC_BK].wmep_logcwmax << 4 | wmep[WME_AC_BE].wmep_logcwmax); RAL_WRITE(sc, RT2860_WMM_TXOP0_CFG, wmep[WME_AC_BK].wmep_txopLimit << 16 | wmep[WME_AC_BE].wmep_txopLimit); RAL_WRITE(sc, RT2860_WMM_TXOP1_CFG, wmep[WME_AC_VO].wmep_txopLimit << 16 | wmep[WME_AC_VI].wmep_txopLimit); return 0; } #ifdef HW_CRYPTO static int rt2860_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct rt2860_softc *sc = ic->ic_softc; bus_size_t base; uint32_t attr; uint8_t mode, wcid, iv[8]; /* defer setting of WEP keys until interface is brought up */ if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) return 0; /* map net80211 cipher to RT2860 security mode */ switch (k->k_cipher) { case IEEE80211_CIPHER_WEP40: mode = RT2860_MODE_WEP40; break; case IEEE80211_CIPHER_WEP104: mode = RT2860_MODE_WEP104; break; case IEEE80211_CIPHER_TKIP: mode = RT2860_MODE_TKIP; break; case IEEE80211_CIPHER_CCMP: mode = RT2860_MODE_AES_CCMP; break; default: return EINVAL; } if (k->k_flags & IEEE80211_KEY_GROUP) { wcid = 0; /* NB: update WCID0 for group keys */ base = RT2860_SKEY(0, k->k_id); } else { wcid = ((struct rt2860_node *)ni)->wcid; base = RT2860_PKEY(wcid); } if (k->k_cipher == IEEE80211_CIPHER_TKIP) { RAL_WRITE_REGION_1(sc, base, k->k_key, 16); #ifndef IEEE80211_STA_ONLY if (ic->ic_opmode == IEEE80211_M_HOSTAP) { RAL_WRITE_REGION_1(sc, base + 16, &k->k_key[16], 8); RAL_WRITE_REGION_1(sc, base + 24, &k->k_key[24], 8); } else #endif { RAL_WRITE_REGION_1(sc, base + 16, &k->k_key[24], 8); RAL_WRITE_REGION_1(sc, base + 24, &k->k_key[16], 8); } } else RAL_WRITE_REGION_1(sc, base, k->k_key, k->k_len); if (!(k->k_flags & IEEE80211_KEY_GROUP) || (k->k_flags & IEEE80211_KEY_TX)) { /* set initial packet number in IV+EIV */ if (k->k_cipher == IEEE80211_CIPHER_WEP40 || k->k_cipher == IEEE80211_CIPHER_WEP104) { uint32_t val = arc4random(); /* skip weak IVs from Fluhrer/Mantin/Shamir */ if (val >= 0x03ff00 && (val & 0xf8ff00) == 0x00ff00) val += 0x000100; iv[0] = val; iv[1] = val >> 8; iv[2] = val >> 16; iv[3] = k->k_id << 6; iv[4] = iv[5] = iv[6] = iv[7] = 0; } else { if (k->k_cipher == IEEE80211_CIPHER_TKIP) { iv[0] = k->k_tsc >> 8; iv[1] = (iv[0] | 0x20) & 0x7f; iv[2] = k->k_tsc; } else /* CCMP */ { iv[0] = k->k_tsc; iv[1] = k->k_tsc >> 8; iv[2] = 0; } iv[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV; iv[4] = k->k_tsc >> 16; iv[5] = k->k_tsc >> 24; iv[6] = k->k_tsc >> 32; iv[7] = k->k_tsc >> 40; } RAL_WRITE_REGION_1(sc, RT2860_IVEIV(wcid), iv, 8); } if (k->k_flags & IEEE80211_KEY_GROUP) { /* install group key */ attr = RAL_READ(sc, RT2860_SKEY_MODE_0_7); attr &= ~(0xf << (k->k_id * 4)); attr |= mode << (k->k_id * 4); RAL_WRITE(sc, RT2860_SKEY_MODE_0_7, attr); } else { /* install pairwise key */ attr = RAL_READ(sc, RT2860_WCID_ATTR(wcid)); attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN; RAL_WRITE(sc, RT2860_WCID_ATTR(wcid), attr); } return 0; } static void rt2860_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct rt2860_softc *sc = ic->ic_softc; uint32_t attr; uint8_t wcid; if (k->k_flags & IEEE80211_KEY_GROUP) { /* remove group key */ attr = RAL_READ(sc, RT2860_SKEY_MODE_0_7); attr &= ~(0xf << (k->k_id * 4)); RAL_WRITE(sc, RT2860_SKEY_MODE_0_7, attr); } else { /* remove pairwise key */ wcid = ((struct rt2860_node *)ni)->wcid; attr = RAL_READ(sc, RT2860_WCID_ATTR(wcid)); attr &= ~0xf; RAL_WRITE(sc, RT2860_WCID_ATTR(wcid), attr); } } #endif static int8_t rt2860_rssi2dbm(struct rt2860_softc *sc, uint8_t rssi, uint8_t rxchain) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_channel *c = ic->ic_curchan; int delta; if (IEEE80211_IS_CHAN_5GHZ(c)) { u_int chan = ieee80211_chan2ieee(ic, c); delta = sc->rssi_5ghz[rxchain]; /* determine channel group */ if (chan <= 64) delta -= sc->lna[1]; else if (chan <= 128) delta -= sc->lna[2]; else delta -= sc->lna[3]; } else delta = sc->rssi_2ghz[rxchain] - sc->lna[0]; return -12 - delta - rssi; } /* * Add `delta' (signed) to each 4-bit sub-word of a 32-bit word. * Used to adjust per-rate Tx power registers. */ static __inline uint32_t b4inc(uint32_t b32, int8_t delta) { int8_t i, b4; for (i = 0; i < 8; i++) { b4 = b32 & 0xf; b4 += delta; if (b4 < 0) b4 = 0; else if (b4 > 0xf) b4 = 0xf; b32 = b32 >> 4 | b4 << 28; } return b32; } static const char * rt2860_get_rf(uint8_t rev) { switch (rev) { case RT2860_RF_2820: return "RT2820"; case RT2860_RF_2850: return "RT2850"; case RT2860_RF_2720: return "RT2720"; case RT2860_RF_2750: return "RT2750"; case RT3070_RF_3020: return "RT3020"; case RT3070_RF_2020: return "RT2020"; case RT3070_RF_3021: return "RT3021"; case RT3070_RF_3022: return "RT3022"; case RT3070_RF_3052: return "RT3052"; case RT3070_RF_3320: return "RT3320"; case RT3070_RF_3053: return "RT3053"; case RT5390_RF_5390: return "RT5390"; default: return "unknown"; } } static int rt2860_read_eeprom(struct rt2860_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) { int8_t delta_2ghz, delta_5ghz; uint32_t tmp; uint16_t val; int ridx, ant, i; /* check whether the ROM is eFUSE ROM or EEPROM */ sc->sc_srom_read = rt2860_eeprom_read_2; if (sc->mac_ver >= 0x3071) { tmp = RAL_READ(sc, RT3070_EFUSE_CTRL); DPRINTF(("EFUSE_CTRL=0x%08x\n", tmp)); if (tmp & RT3070_SEL_EFUSE) sc->sc_srom_read = rt3090_efuse_read_2; } /* read EEPROM version */ val = rt2860_srom_read(sc, RT2860_EEPROM_VERSION); DPRINTF(("EEPROM rev=%d, FAE=%d\n", val >> 8, val & 0xff)); /* read MAC address */ val = rt2860_srom_read(sc, RT2860_EEPROM_MAC01); macaddr[0] = val & 0xff; macaddr[1] = val >> 8; val = rt2860_srom_read(sc, RT2860_EEPROM_MAC23); macaddr[2] = val & 0xff; macaddr[3] = val >> 8; val = rt2860_srom_read(sc, RT2860_EEPROM_MAC45); macaddr[4] = val & 0xff; macaddr[5] = val >> 8; /* read country code */ val = rt2860_srom_read(sc, RT2860_EEPROM_COUNTRY); DPRINTF(("EEPROM region code=0x%04x\n", val)); /* read vendor BBP settings */ for (i = 0; i < 8; i++) { val = rt2860_srom_read(sc, RT2860_EEPROM_BBP_BASE + i); sc->bbp[i].val = val & 0xff; sc->bbp[i].reg = val >> 8; DPRINTF(("BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val)); } if (sc->mac_ver >= 0x3071) { /* read vendor RF settings */ for (i = 0; i < 10; i++) { val = rt2860_srom_read(sc, RT3071_EEPROM_RF_BASE + i); sc->rf[i].val = val & 0xff; sc->rf[i].reg = val >> 8; DPRINTF(("RF%d=0x%02x\n", sc->rf[i].reg, sc->rf[i].val)); } } /* read RF frequency offset from EEPROM */ val = rt2860_srom_read(sc, RT2860_EEPROM_FREQ_LEDS); sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0; DPRINTF(("EEPROM freq offset %d\n", sc->freq & 0xff)); if ((val >> 8) != 0xff) { /* read LEDs operating mode */ sc->leds = val >> 8; sc->led[0] = rt2860_srom_read(sc, RT2860_EEPROM_LED1); sc->led[1] = rt2860_srom_read(sc, RT2860_EEPROM_LED2); sc->led[2] = rt2860_srom_read(sc, RT2860_EEPROM_LED3); } else { /* broken EEPROM, use default settings */ sc->leds = 0x01; sc->led[0] = 0x5555; sc->led[1] = 0x2221; sc->led[2] = 0xa9f8; } DPRINTF(("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n", sc->leds, sc->led[0], sc->led[1], sc->led[2])); /* read RF information */ val = rt2860_srom_read(sc, RT2860_EEPROM_ANTENNA); if (val == 0xffff) { DPRINTF(("invalid EEPROM antenna info, using default\n")); if (sc->mac_ver >= 0x5390) { /* default to RF5390 */ sc->rf_rev = RT5390_RF_5390; sc->ntxchains = (sc->mac_ver == 0x5392) ? 2 : 1; sc->nrxchains = (sc->mac_ver == 0x5392) ? 2 : 1; } else if (sc->mac_ver == 0x3593) { /* default to RF3053 3T3R */ sc->rf_rev = RT3070_RF_3053; sc->ntxchains = 3; sc->nrxchains = 3; } else if (sc->mac_ver >= 0x3071) { /* default to RF3020 1T1R */ sc->rf_rev = RT3070_RF_3020; sc->ntxchains = 1; sc->nrxchains = 1; } else { /* default to RF2820 1T2R */ sc->rf_rev = RT2860_RF_2820; sc->ntxchains = 1; sc->nrxchains = 2; } } else { sc->rf_rev = (val >> 8) & 0xf; if (sc->mac_ver >= 0x5390) { sc->ntxchains = (sc->mac_ver == 0x5392) ? 2 : 1; sc->nrxchains = (sc->mac_ver == 0x5392) ? 2 : 1; } else { sc->ntxchains = (val >> 4) & 0xf; sc->nrxchains = val & 0xf; } } DPRINTF(("EEPROM RF rev=0x%02x chains=%dT%dR\n", sc->rf_rev, sc->ntxchains, sc->nrxchains)); /* check if RF supports automatic Tx access gain control */ val = rt2860_srom_read(sc, RT2860_EEPROM_CONFIG); DPRINTF(("EEPROM CFG 0x%04x\n", val)); /* check if driver should patch the DAC issue */ if ((val >> 8) != 0xff) sc->patch_dac = (val >> 15) & 1; if ((val & 0xff) != 0xff) { sc->ext_5ghz_lna = (val >> 3) & 1; sc->ext_2ghz_lna = (val >> 2) & 1; /* check if RF supports automatic Tx access gain control */ sc->calib_2ghz = sc->calib_5ghz = 0; /* XXX (val >> 1) & 1 */ /* check if we have a hardware radio switch */ sc->rfswitch = val & 1; } if (sc->sc_flags & RT2860_ADVANCED_PS) { /* read PCIe power save level */ val = rt2860_srom_read(sc, RT2860_EEPROM_PCIE_PSLEVEL); if ((val & 0xff) != 0xff) { sc->pslevel = val & 0x3; val = rt2860_srom_read(sc, RT2860_EEPROM_REV); if ((val & 0xff80) != 0x9280) sc->pslevel = MIN(sc->pslevel, 1); DPRINTF(("EEPROM PCIe PS Level=%d\n", sc->pslevel)); } } /* read power settings for 2GHz channels */ for (i = 0; i < 14; i += 2) { val = rt2860_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2); sc->txpow1[i + 0] = (int8_t)(val & 0xff); sc->txpow1[i + 1] = (int8_t)(val >> 8); if (sc->mac_ver != 0x5390) { val = rt2860_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2); sc->txpow2[i + 0] = (int8_t)(val & 0xff); sc->txpow2[i + 1] = (int8_t)(val >> 8); } } /* fix broken Tx power entries */ for (i = 0; i < 14; i++) { if (sc->txpow1[i] < 0 || sc->txpow1[i] > ((sc->mac_ver >= 0x5390) ? 39 : 31)) sc->txpow1[i] = 5; if (sc->mac_ver != 0x5390) { if (sc->txpow2[i] < 0 || sc->txpow2[i] > ((sc->mac_ver == 0x5392) ? 39 : 31)) sc->txpow2[i] = 5; } DPRINTF(("chan %d: power1=%d, power2=%d\n", rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i])); } /* read power settings for 5GHz channels */ for (i = 0; i < 40; i += 2) { val = rt2860_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2); sc->txpow1[i + 14] = (int8_t)(val & 0xff); sc->txpow1[i + 15] = (int8_t)(val >> 8); val = rt2860_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2); sc->txpow2[i + 14] = (int8_t)(val & 0xff); sc->txpow2[i + 15] = (int8_t)(val >> 8); } /* fix broken Tx power entries */ for (i = 0; i < 40; i++) { if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15) sc->txpow1[14 + i] = 5; if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15) sc->txpow2[14 + i] = 5; DPRINTF(("chan %d: power1=%d, power2=%d\n", rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i], sc->txpow2[14 + i])); } /* read Tx power compensation for each Tx rate */ val = rt2860_srom_read(sc, RT2860_EEPROM_DELTAPWR); delta_2ghz = delta_5ghz = 0; if ((val & 0xff) != 0xff && (val & 0x80)) { delta_2ghz = val & 0xf; if (!(val & 0x40)) /* negative number */ delta_2ghz = -delta_2ghz; } val >>= 8; if ((val & 0xff) != 0xff && (val & 0x80)) { delta_5ghz = val & 0xf; if (!(val & 0x40)) /* negative number */ delta_5ghz = -delta_5ghz; } DPRINTF(("power compensation=%d (2GHz), %d (5GHz)\n", delta_2ghz, delta_5ghz)); for (ridx = 0; ridx < 5; ridx++) { uint32_t reg; val = rt2860_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2); reg = val; val = rt2860_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2 + 1); reg |= (uint32_t)val << 16; sc->txpow20mhz[ridx] = reg; sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz); sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz); DPRINTF(("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, " "40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx], sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx])); } /* read factory-calibrated samples for temperature compensation */ val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI1_2GHZ); sc->tssi_2ghz[0] = val & 0xff; /* [-4] */ sc->tssi_2ghz[1] = val >> 8; /* [-3] */ val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI2_2GHZ); sc->tssi_2ghz[2] = val & 0xff; /* [-2] */ sc->tssi_2ghz[3] = val >> 8; /* [-1] */ val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI3_2GHZ); sc->tssi_2ghz[4] = val & 0xff; /* [+0] */ sc->tssi_2ghz[5] = val >> 8; /* [+1] */ val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI4_2GHZ); sc->tssi_2ghz[6] = val & 0xff; /* [+2] */ sc->tssi_2ghz[7] = val >> 8; /* [+3] */ val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI5_2GHZ); sc->tssi_2ghz[8] = val & 0xff; /* [+4] */ sc->step_2ghz = val >> 8; DPRINTF(("TSSI 2GHz: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x " "0x%02x 0x%02x step=%d\n", sc->tssi_2ghz[0], sc->tssi_2ghz[1], sc->tssi_2ghz[2], sc->tssi_2ghz[3], sc->tssi_2ghz[4], sc->tssi_2ghz[5], sc->tssi_2ghz[6], sc->tssi_2ghz[7], sc->tssi_2ghz[8], sc->step_2ghz)); /* check that ref value is correct, otherwise disable calibration */ if (sc->tssi_2ghz[4] == 0xff) sc->calib_2ghz = 0; val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI1_5GHZ); sc->tssi_5ghz[0] = val & 0xff; /* [-4] */ sc->tssi_5ghz[1] = val >> 8; /* [-3] */ val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI2_5GHZ); sc->tssi_5ghz[2] = val & 0xff; /* [-2] */ sc->tssi_5ghz[3] = val >> 8; /* [-1] */ val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI3_5GHZ); sc->tssi_5ghz[4] = val & 0xff; /* [+0] */ sc->tssi_5ghz[5] = val >> 8; /* [+1] */ val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI4_5GHZ); sc->tssi_5ghz[6] = val & 0xff; /* [+2] */ sc->tssi_5ghz[7] = val >> 8; /* [+3] */ val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI5_5GHZ); sc->tssi_5ghz[8] = val & 0xff; /* [+4] */ sc->step_5ghz = val >> 8; DPRINTF(("TSSI 5GHz: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x " "0x%02x 0x%02x step=%d\n", sc->tssi_5ghz[0], sc->tssi_5ghz[1], sc->tssi_5ghz[2], sc->tssi_5ghz[3], sc->tssi_5ghz[4], sc->tssi_5ghz[5], sc->tssi_5ghz[6], sc->tssi_5ghz[7], sc->tssi_5ghz[8], sc->step_5ghz)); /* check that ref value is correct, otherwise disable calibration */ if (sc->tssi_5ghz[4] == 0xff) sc->calib_5ghz = 0; /* read RSSI offsets and LNA gains from EEPROM */ val = rt2860_srom_read(sc, RT2860_EEPROM_RSSI1_2GHZ); sc->rssi_2ghz[0] = val & 0xff; /* Ant A */ sc->rssi_2ghz[1] = val >> 8; /* Ant B */ val = rt2860_srom_read(sc, RT2860_EEPROM_RSSI2_2GHZ); if (sc->mac_ver >= 0x3071) { /* * On RT3090 chips (limited to 2 Rx chains), this ROM * field contains the Tx mixer gain for the 2GHz band. */ if ((val & 0xff) != 0xff) sc->txmixgain_2ghz = val & 0x7; DPRINTF(("tx mixer gain=%u (2GHz)\n", sc->txmixgain_2ghz)); } else sc->rssi_2ghz[2] = val & 0xff; /* Ant C */ sc->lna[2] = val >> 8; /* channel group 2 */ val = rt2860_srom_read(sc, RT2860_EEPROM_RSSI1_5GHZ); sc->rssi_5ghz[0] = val & 0xff; /* Ant A */ sc->rssi_5ghz[1] = val >> 8; /* Ant B */ val = rt2860_srom_read(sc, RT2860_EEPROM_RSSI2_5GHZ); sc->rssi_5ghz[2] = val & 0xff; /* Ant C */ sc->lna[3] = val >> 8; /* channel group 3 */ val = rt2860_srom_read(sc, RT2860_EEPROM_LNA); if (sc->mac_ver >= 0x3071) sc->lna[0] = RT3090_DEF_LNA; else /* channel group 0 */ sc->lna[0] = val & 0xff; sc->lna[1] = val >> 8; /* channel group 1 */ /* fix broken 5GHz LNA entries */ if (sc->lna[2] == 0 || sc->lna[2] == 0xff) { DPRINTF(("invalid LNA for channel group %d\n", 2)); sc->lna[2] = sc->lna[1]; } if (sc->lna[3] == 0 || sc->lna[3] == 0xff) { DPRINTF(("invalid LNA for channel group %d\n", 3)); sc->lna[3] = sc->lna[1]; } /* fix broken RSSI offset entries */ for (ant = 0; ant < 3; ant++) { if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) { DPRINTF(("invalid RSSI%d offset: %d (2GHz)\n", ant + 1, sc->rssi_2ghz[ant])); sc->rssi_2ghz[ant] = 0; } if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) { DPRINTF(("invalid RSSI%d offset: %d (5GHz)\n", ant + 1, sc->rssi_5ghz[ant])); sc->rssi_5ghz[ant] = 0; } } return 0; } static int rt2860_bbp_init(struct rt2860_softc *sc) { int i, ntries; /* wait for BBP to wake up */ for (ntries = 0; ntries < 20; ntries++) { uint8_t bbp0 = rt2860_mcu_bbp_read(sc, 0); if (bbp0 != 0 && bbp0 != 0xff) break; } if (ntries == 20) { device_printf(sc->sc_dev, "timeout waiting for BBP to wake up\n"); return (ETIMEDOUT); } /* initialize BBP registers to default values */ if (sc->mac_ver >= 0x5390) rt5390_bbp_init(sc); else { for (i = 0; i < nitems(rt2860_def_bbp); i++) { rt2860_mcu_bbp_write(sc, rt2860_def_bbp[i].reg, rt2860_def_bbp[i].val); } } /* fix BBP84 for RT2860E */ if (sc->mac_ver == 0x2860 && sc->mac_rev != 0x0101) rt2860_mcu_bbp_write(sc, 84, 0x19); if (sc->mac_ver >= 0x3071) { rt2860_mcu_bbp_write(sc, 79, 0x13); rt2860_mcu_bbp_write(sc, 80, 0x05); rt2860_mcu_bbp_write(sc, 81, 0x33); } else if (sc->mac_ver == 0x2860 && sc->mac_rev == 0x0100) { rt2860_mcu_bbp_write(sc, 69, 0x16); rt2860_mcu_bbp_write(sc, 73, 0x12); } return 0; } static void rt5390_bbp_init(struct rt2860_softc *sc) { uint8_t bbp; int i; /* Apply maximum likelihood detection for 2 stream case. */ if (sc->nrxchains > 1) { bbp = rt2860_mcu_bbp_read(sc, 105); rt2860_mcu_bbp_write(sc, 105, bbp | RT5390_MLD); } /* Avoid data lost and CRC error. */ bbp = rt2860_mcu_bbp_read(sc, 4); rt2860_mcu_bbp_write(sc, 4, bbp | RT5390_MAC_IF_CTRL); for (i = 0; i < nitems(rt5390_def_bbp); i++) { rt2860_mcu_bbp_write(sc, rt5390_def_bbp[i].reg, rt5390_def_bbp[i].val); } if (sc->mac_ver == 0x5392) { rt2860_mcu_bbp_write(sc, 84, 0x9a); rt2860_mcu_bbp_write(sc, 95, 0x9a); rt2860_mcu_bbp_write(sc, 98, 0x12); rt2860_mcu_bbp_write(sc, 106, 0x05); rt2860_mcu_bbp_write(sc, 134, 0xd0); rt2860_mcu_bbp_write(sc, 135, 0xf6); } bbp = rt2860_mcu_bbp_read(sc, 152); rt2860_mcu_bbp_write(sc, 152, bbp | 0x80); /* Disable hardware antenna diversity. */ if (sc->mac_ver == 0x5390) rt2860_mcu_bbp_write(sc, 154, 0); } static int rt2860_txrx_enable(struct rt2860_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; int ntries; /* enable Tx/Rx DMA engine */ RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN); RAL_BARRIER_READ_WRITE(sc); for (ntries = 0; ntries < 200; ntries++) { tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG); if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0) break; DELAY(1000); } if (ntries == 200) { device_printf(sc->sc_dev, "timeout waiting for DMA engine\n"); return ETIMEDOUT; } DELAY(50); tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN | RT2860_WPDMA_BT_SIZE64 << RT2860_WPDMA_BT_SIZE_SHIFT; RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp); /* set Rx filter */ tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL | RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK | RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV | RT2860_DROP_CFACK | RT2860_DROP_CFEND; if (ic->ic_opmode == IEEE80211_M_STA) tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL; } RAL_WRITE(sc, RT2860_RX_FILTR_CFG, tmp); RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_RX_EN | RT2860_MAC_TX_EN); return 0; } static void rt2860_init(void *arg) { struct rt2860_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; RAL_LOCK(sc); rt2860_init_locked(sc); RAL_UNLOCK(sc); if (sc->sc_flags & RT2860_RUNNING) ieee80211_start_all(ic); } static void rt2860_init_locked(struct rt2860_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t tmp; uint8_t bbp1, bbp3; int i, qid, ridx, ntries, error; RAL_LOCK_ASSERT(sc); if (sc->rfswitch) { /* hardware has a radio switch on GPIO pin 2 */ if (!(RAL_READ(sc, RT2860_GPIO_CTRL) & (1 << 2))) { device_printf(sc->sc_dev, "radio is disabled by hardware switch\n"); #ifdef notyet rt2860_stop_locked(sc); return; #endif } } RAL_WRITE(sc, RT2860_PWR_PIN_CFG, RT2860_IO_RA_PE); /* disable DMA */ tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG); tmp &= 0xff0; RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp); /* PBF hardware reset */ RAL_WRITE(sc, RT2860_SYS_CTRL, 0xe1f); RAL_BARRIER_WRITE(sc); RAL_WRITE(sc, RT2860_SYS_CTRL, 0xe00); if ((error = rt2860_load_microcode(sc)) != 0) { device_printf(sc->sc_dev, "could not load 8051 microcode\n"); rt2860_stop_locked(sc); return; } rt2860_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); /* init Tx power for all Tx rates (from EEPROM) */ for (ridx = 0; ridx < 5; ridx++) { if (sc->txpow20mhz[ridx] == 0xffffffff) continue; RAL_WRITE(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]); } for (ntries = 0; ntries < 100; ntries++) { tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG); if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0) break; DELAY(1000); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for DMA engine\n"); rt2860_stop_locked(sc); return; } tmp &= 0xff0; RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp); /* reset Rx ring and all 6 Tx rings */ RAL_WRITE(sc, RT2860_WPDMA_RST_IDX, 0x1003f); /* PBF hardware reset */ RAL_WRITE(sc, RT2860_SYS_CTRL, 0xe1f); RAL_BARRIER_WRITE(sc); RAL_WRITE(sc, RT2860_SYS_CTRL, 0xe00); RAL_WRITE(sc, RT2860_PWR_PIN_CFG, RT2860_IO_RA_PE | RT2860_IO_RF_PE); RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST); RAL_BARRIER_WRITE(sc); RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, 0); for (i = 0; i < nitems(rt2860_def_mac); i++) RAL_WRITE(sc, rt2860_def_mac[i].reg, rt2860_def_mac[i].val); if (sc->mac_ver >= 0x5390) RAL_WRITE(sc, RT2860_TX_SW_CFG0, 0x00000404); else if (sc->mac_ver >= 0x3071) { /* set delay of PA_PE assertion to 1us (unit of 0.25us) */ RAL_WRITE(sc, RT2860_TX_SW_CFG0, 4 << RT2860_DLY_PAPE_EN_SHIFT); } if (!(RAL_READ(sc, RT2860_PCI_CFG) & RT2860_PCI_CFG_PCI)) { sc->sc_flags |= RT2860_PCIE; /* PCIe has different clock cycle count than PCI */ tmp = RAL_READ(sc, RT2860_US_CYC_CNT); tmp = (tmp & ~0xff) | 0x7d; RAL_WRITE(sc, RT2860_US_CYC_CNT, tmp); } /* wait while MAC is busy */ for (ntries = 0; ntries < 100; ntries++) { if (!(RAL_READ(sc, RT2860_MAC_STATUS_REG) & (RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY))) break; DELAY(1000); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for MAC\n"); rt2860_stop_locked(sc); return; } /* clear Host to MCU mailbox */ RAL_WRITE(sc, RT2860_H2M_BBPAGENT, 0); RAL_WRITE(sc, RT2860_H2M_MAILBOX, 0); rt2860_mcu_cmd(sc, RT2860_MCU_CMD_RFRESET, 0, 0); DELAY(1000); if ((error = rt2860_bbp_init(sc)) != 0) { rt2860_stop_locked(sc); return; } /* clear RX WCID search table */ RAL_SET_REGION_4(sc, RT2860_WCID_ENTRY(0), 0, 512); /* clear pairwise key table */ RAL_SET_REGION_4(sc, RT2860_PKEY(0), 0, 2048); /* clear IV/EIV table */ RAL_SET_REGION_4(sc, RT2860_IVEIV(0), 0, 512); /* clear WCID attribute table */ RAL_SET_REGION_4(sc, RT2860_WCID_ATTR(0), 0, 256); /* clear shared key table */ RAL_SET_REGION_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32); /* clear shared key mode */ RAL_SET_REGION_4(sc, RT2860_SKEY_MODE_0_7, 0, 4); /* init Tx rings (4 EDCAs + HCCA + Mgt) */ for (qid = 0; qid < 6; qid++) { RAL_WRITE(sc, RT2860_TX_BASE_PTR(qid), sc->txq[qid].paddr); RAL_WRITE(sc, RT2860_TX_MAX_CNT(qid), RT2860_TX_RING_COUNT); RAL_WRITE(sc, RT2860_TX_CTX_IDX(qid), 0); } /* init Rx ring */ RAL_WRITE(sc, RT2860_RX_BASE_PTR, sc->rxq.paddr); RAL_WRITE(sc, RT2860_RX_MAX_CNT, RT2860_RX_RING_COUNT); RAL_WRITE(sc, RT2860_RX_CALC_IDX, RT2860_RX_RING_COUNT - 1); /* setup maximum buffer sizes */ RAL_WRITE(sc, RT2860_MAX_LEN_CFG, 1 << 12 | (MCLBYTES - sizeof (struct rt2860_rxwi) - 2)); for (ntries = 0; ntries < 100; ntries++) { tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG); if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0) break; DELAY(1000); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for DMA engine\n"); rt2860_stop_locked(sc); return; } tmp &= 0xff0; RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp); /* disable interrupts mitigation */ RAL_WRITE(sc, RT2860_DELAY_INT_CFG, 0); /* write vendor-specific BBP values (from EEPROM) */ for (i = 0; i < 8; i++) { if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff) continue; rt2860_mcu_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val); } /* select Main antenna for 1T1R devices */ if (sc->rf_rev == RT3070_RF_2020 || sc->rf_rev == RT3070_RF_3020 || sc->rf_rev == RT3070_RF_3320 || sc->mac_ver == 0x5390) rt3090_set_rx_antenna(sc, 0); /* send LEDs operating mode to microcontroller */ rt2860_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0], 0); rt2860_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1], 0); rt2860_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2], 0); if (sc->mac_ver >= 0x5390) rt5390_rf_init(sc); else if (sc->mac_ver >= 0x3071) { if ((error = rt3090_rf_init(sc)) != 0) { rt2860_stop_locked(sc); return; } } rt2860_mcu_cmd(sc, RT2860_MCU_CMD_SLEEP, 0x02ff, 1); rt2860_mcu_cmd(sc, RT2860_MCU_CMD_WAKEUP, 0, 1); if (sc->mac_ver >= 0x5390) rt5390_rf_wakeup(sc); else if (sc->mac_ver >= 0x3071) rt3090_rf_wakeup(sc); /* disable non-existing Rx chains */ bbp3 = rt2860_mcu_bbp_read(sc, 3); bbp3 &= ~(1 << 3 | 1 << 4); if (sc->nrxchains == 2) bbp3 |= 1 << 3; else if (sc->nrxchains == 3) bbp3 |= 1 << 4; rt2860_mcu_bbp_write(sc, 3, bbp3); /* disable non-existing Tx chains */ bbp1 = rt2860_mcu_bbp_read(sc, 1); if (sc->ntxchains == 1) bbp1 = (bbp1 & ~(1 << 3 | 1 << 4)); else if (sc->mac_ver == 0x3593 && sc->ntxchains == 2) bbp1 = (bbp1 & ~(1 << 4)) | 1 << 3; else if (sc->mac_ver == 0x3593 && sc->ntxchains == 3) bbp1 = (bbp1 & ~(1 << 3)) | 1 << 4; rt2860_mcu_bbp_write(sc, 1, bbp1); if (sc->mac_ver >= 0x3071) rt3090_rf_setup(sc); /* select default channel */ rt2860_switch_chan(sc, ic->ic_curchan); /* reset RF from MCU */ rt2860_mcu_cmd(sc, RT2860_MCU_CMD_RFRESET, 0, 0); /* set RTS threshold */ tmp = RAL_READ(sc, RT2860_TX_RTS_CFG); tmp &= ~0xffff00; tmp |= IEEE80211_RTS_DEFAULT << 8; RAL_WRITE(sc, RT2860_TX_RTS_CFG, tmp); /* setup initial protection mode */ rt2860_updateprot(sc); /* turn radio LED on */ rt2860_set_leds(sc, RT2860_LED_RADIO); /* enable Tx/Rx DMA engine */ if ((error = rt2860_txrx_enable(sc)) != 0) { rt2860_stop_locked(sc); return; } /* clear pending interrupts */ RAL_WRITE(sc, RT2860_INT_STATUS, 0xffffffff); /* enable interrupts */ RAL_WRITE(sc, RT2860_INT_MASK, 0x3fffc); if (sc->sc_flags & RT2860_ADVANCED_PS) rt2860_mcu_cmd(sc, RT2860_MCU_CMD_PSLEVEL, sc->pslevel, 0); sc->sc_flags |= RT2860_RUNNING; callout_reset(&sc->watchdog_ch, hz, rt2860_watchdog, sc); } static void rt2860_stop(void *arg) { struct rt2860_softc *sc = arg; RAL_LOCK(sc); rt2860_stop_locked(sc); RAL_UNLOCK(sc); } static void rt2860_stop_locked(struct rt2860_softc *sc) { uint32_t tmp; int qid; if (sc->sc_flags & RT2860_RUNNING) rt2860_set_leds(sc, 0); /* turn all LEDs off */ callout_stop(&sc->watchdog_ch); sc->sc_tx_timer = 0; sc->sc_flags &= ~RT2860_RUNNING; /* disable interrupts */ RAL_WRITE(sc, RT2860_INT_MASK, 0); /* disable GP timer */ rt2860_set_gp_timer(sc, 0); /* disable Rx */ tmp = RAL_READ(sc, RT2860_MAC_SYS_CTRL); tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN); RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, tmp); /* reset adapter */ RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST); RAL_BARRIER_WRITE(sc); RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, 0); /* reset Tx and Rx rings (and reclaim TXWIs) */ sc->qfullmsk = 0; for (qid = 0; qid < 6; qid++) rt2860_reset_tx_ring(sc, &sc->txq[qid]); rt2860_reset_rx_ring(sc, &sc->rxq); } int rt2860_load_microcode(struct rt2860_softc *sc) { const struct firmware *fp; int ntries, error; RAL_LOCK_ASSERT(sc); RAL_UNLOCK(sc); fp = firmware_get("rt2860fw"); RAL_LOCK(sc); if (fp == NULL) { device_printf(sc->sc_dev, "unable to receive rt2860fw firmware image\n"); return EINVAL; } /* set "host program ram write selection" bit */ RAL_WRITE(sc, RT2860_SYS_CTRL, RT2860_HST_PM_SEL); /* write microcode image */ RAL_WRITE_REGION_1(sc, RT2860_FW_BASE, fp->data, fp->datasize); /* kick microcontroller unit */ RAL_WRITE(sc, RT2860_SYS_CTRL, 0); RAL_BARRIER_WRITE(sc); RAL_WRITE(sc, RT2860_SYS_CTRL, RT2860_MCU_RESET); RAL_WRITE(sc, RT2860_H2M_BBPAGENT, 0); RAL_WRITE(sc, RT2860_H2M_MAILBOX, 0); /* wait until microcontroller is ready */ RAL_BARRIER_READ_WRITE(sc); for (ntries = 0; ntries < 1000; ntries++) { if (RAL_READ(sc, RT2860_SYS_CTRL) & RT2860_MCU_READY) break; DELAY(1000); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for MCU to initialize\n"); error = ETIMEDOUT; } else error = 0; firmware_put(fp, FIRMWARE_UNLOAD); return error; } /* * This function is called periodically to adjust Tx power based on * temperature variation. */ #ifdef NOT_YET static void rt2860_calib(struct rt2860_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; const uint8_t *tssi; uint8_t step, bbp49; int8_t ridx, d; /* read current temperature */ bbp49 = rt2860_mcu_bbp_read(sc, 49); if (IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan)) { tssi = &sc->tssi_2ghz[4]; step = sc->step_2ghz; } else { tssi = &sc->tssi_5ghz[4]; step = sc->step_5ghz; } if (bbp49 < tssi[0]) { /* lower than reference */ /* use higher Tx power than default */ for (d = 0; d > -4 && bbp49 <= tssi[d - 1]; d--); } else if (bbp49 > tssi[0]) { /* greater than reference */ /* use lower Tx power than default */ for (d = 0; d < +4 && bbp49 >= tssi[d + 1]; d++); } else { /* use default Tx power */ d = 0; } d *= step; DPRINTF(("BBP49=0x%02x, adjusting Tx power by %d\n", bbp49, d)); /* write adjusted Tx power values for each Tx rate */ for (ridx = 0; ridx < 5; ridx++) { if (sc->txpow20mhz[ridx] == 0xffffffff) continue; RAL_WRITE(sc, RT2860_TX_PWR_CFG(ridx), b4inc(sc->txpow20mhz[ridx], d)); } } #endif static void rt3090_set_rx_antenna(struct rt2860_softc *sc, int aux) { uint32_t tmp; if (aux) { if (sc->mac_ver == 0x5390) { rt2860_mcu_bbp_write(sc, 152, rt2860_mcu_bbp_read(sc, 152) & ~0x80); } else { tmp = RAL_READ(sc, RT2860_PCI_EECTRL); RAL_WRITE(sc, RT2860_PCI_EECTRL, tmp & ~RT2860_C); tmp = RAL_READ(sc, RT2860_GPIO_CTRL); RAL_WRITE(sc, RT2860_GPIO_CTRL, (tmp & ~0x0808) | 0x08); } } else { if (sc->mac_ver == 0x5390) { rt2860_mcu_bbp_write(sc, 152, rt2860_mcu_bbp_read(sc, 152) | 0x80); } else { tmp = RAL_READ(sc, RT2860_PCI_EECTRL); RAL_WRITE(sc, RT2860_PCI_EECTRL, tmp | RT2860_C); tmp = RAL_READ(sc, RT2860_GPIO_CTRL); RAL_WRITE(sc, RT2860_GPIO_CTRL, tmp & ~0x0808); } } } static void rt2860_switch_chan(struct rt2860_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; u_int chan, group; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return; if (sc->mac_ver >= 0x5390) rt5390_set_chan(sc, chan); else if (sc->mac_ver >= 0x3071) rt3090_set_chan(sc, chan); else rt2860_set_chan(sc, chan); /* determine channel group */ if (chan <= 14) group = 0; else if (chan <= 64) group = 1; else if (chan <= 128) group = 2; else group = 3; /* XXX necessary only when group has changed! */ if (sc->mac_ver < 0x5390) rt2860_select_chan_group(sc, group); DELAY(1000); } static int rt2860_setup_beacon(struct rt2860_softc *sc, struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct rt2860_txwi txwi; struct mbuf *m; int ridx; if ((m = ieee80211_beacon_alloc(vap->iv_bss)) == NULL) return ENOBUFS; memset(&txwi, 0, sizeof txwi); txwi.wcid = 0xff; txwi.len = htole16(m->m_pkthdr.len); /* send beacons at the lowest available rate */ ridx = IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan) ? RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1; txwi.phy = htole16(rt2860_rates[ridx].mcs); if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM) txwi.phy |= htole16(RT2860_PHY_OFDM); txwi.txop = RT2860_TX_TXOP_HT; txwi.flags = RT2860_TX_TS; txwi.xflags = RT2860_TX_NSEQ; RAL_WRITE_REGION_1(sc, RT2860_BCN_BASE(0), (uint8_t *)&txwi, sizeof txwi); RAL_WRITE_REGION_1(sc, RT2860_BCN_BASE(0) + sizeof txwi, mtod(m, uint8_t *), m->m_pkthdr.len); m_freem(m); return 0; } static void rt2860_enable_tsf_sync(struct rt2860_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t tmp; tmp = RAL_READ(sc, RT2860_BCN_TIME_CFG); tmp &= ~0x1fffff; tmp |= vap->iv_bss->ni_intval * 16; tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN; if (vap->iv_opmode == IEEE80211_M_STA) { /* * Local TSF is always updated with remote TSF on beacon * reception. */ tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT; } else if (vap->iv_opmode == IEEE80211_M_IBSS || vap->iv_opmode == IEEE80211_M_MBSS) { tmp |= RT2860_BCN_TX_EN; /* * Local TSF is updated with remote TSF on beacon reception * only if the remote TSF is greater than local TSF. */ tmp |= 2 << RT2860_TSF_SYNC_MODE_SHIFT; } else if (vap->iv_opmode == IEEE80211_M_HOSTAP) { tmp |= RT2860_BCN_TX_EN; /* SYNC with nobody */ tmp |= 3 << RT2860_TSF_SYNC_MODE_SHIFT; } RAL_WRITE(sc, RT2860_BCN_TIME_CFG, tmp); } Index: head/sys/dev/rtwn/if_rtwn.c =================================================================== --- head/sys/dev/rtwn/if_rtwn.c (revision 298817) +++ head/sys/dev/rtwn/if_rtwn.c (revision 298818) @@ -1,3491 +1,3491 @@ /* $OpenBSD: if_rtwn.c,v 1.6 2015/08/28 00:03:53 deraadt Exp $ */ /*- * Copyright (c) 2010 Damien Bergamini * Copyright (c) 2015 Stefan Sperling * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /* * Driver for Realtek RTL8188CE */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RTWN_DEBUG #ifdef RTWN_DEBUG #define DPRINTF(x) do { if (sc->sc_debug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (sc->sc_debug >= (n)) printf x; } while (0) #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif /* * PCI configuration space registers. */ #define RTWN_PCI_IOBA 0x10 /* i/o mapped base */ #define RTWN_PCI_MMBA 0x18 /* memory mapped base */ #define RTWN_INT_ENABLE (R92C_IMR_ROK | R92C_IMR_VODOK | R92C_IMR_VIDOK | \ R92C_IMR_BEDOK | R92C_IMR_BKDOK | R92C_IMR_MGNTDOK | \ R92C_IMR_HIGHDOK | R92C_IMR_BDOK | R92C_IMR_RDU | \ R92C_IMR_RXFOVW) struct rtwn_ident { uint16_t vendor; uint16_t device; const char *name; }; static const struct rtwn_ident rtwn_ident_table[] = { { 0x10ec, 0x8176, "Realtek RTL8188CE" }, { 0, 0, NULL } }; static void rtwn_dma_map_addr(void *, bus_dma_segment_t *, int, int); static void rtwn_setup_rx_desc(struct rtwn_softc *, struct r92c_rx_desc *, bus_addr_t, size_t, int); static int rtwn_alloc_rx_list(struct rtwn_softc *); static void rtwn_reset_rx_list(struct rtwn_softc *); static void rtwn_free_rx_list(struct rtwn_softc *); static int rtwn_alloc_tx_list(struct rtwn_softc *, int); static void rtwn_reset_tx_list(struct rtwn_softc *, int); static void rtwn_free_tx_list(struct rtwn_softc *, int); static struct ieee80211vap *rtwn_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void rtwn_vap_delete(struct ieee80211vap *); static void rtwn_write_1(struct rtwn_softc *, uint16_t, uint8_t); static void rtwn_write_2(struct rtwn_softc *, uint16_t, uint16_t); static void rtwn_write_4(struct rtwn_softc *, uint16_t, uint32_t); static uint8_t rtwn_read_1(struct rtwn_softc *, uint16_t); static uint16_t rtwn_read_2(struct rtwn_softc *, uint16_t); static uint32_t rtwn_read_4(struct rtwn_softc *, uint16_t); static int rtwn_fw_cmd(struct rtwn_softc *, uint8_t, const void *, int); static void rtwn_rf_write(struct rtwn_softc *, int, uint8_t, uint32_t); static uint32_t rtwn_rf_read(struct rtwn_softc *, int, uint8_t); static int rtwn_llt_write(struct rtwn_softc *, uint32_t, uint32_t); static uint8_t rtwn_efuse_read_1(struct rtwn_softc *, uint16_t); static void rtwn_efuse_read(struct rtwn_softc *); static int rtwn_read_chipid(struct rtwn_softc *); static void rtwn_read_rom(struct rtwn_softc *); static int rtwn_ra_init(struct rtwn_softc *); static void rtwn_tsf_sync_enable(struct rtwn_softc *); static void rtwn_set_led(struct rtwn_softc *, int, int); static void rtwn_calib_to(void *); static int rtwn_newstate(struct ieee80211vap *, enum ieee80211_state, int); static int rtwn_updateedca(struct ieee80211com *); static void rtwn_update_avgrssi(struct rtwn_softc *, int, int8_t); static int8_t rtwn_get_rssi(struct rtwn_softc *, int, void *); static void rtwn_rx_frame(struct rtwn_softc *, struct r92c_rx_desc *, struct rtwn_rx_data *, int); static int rtwn_tx(struct rtwn_softc *, struct mbuf *, struct ieee80211_node *); static void rtwn_tx_done(struct rtwn_softc *, int); static int rtwn_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static int rtwn_transmit(struct ieee80211com *, struct mbuf *); static void rtwn_parent(struct ieee80211com *); static void rtwn_start(struct rtwn_softc *sc); static void rtwn_watchdog(void *); static int rtwn_power_on(struct rtwn_softc *); static int rtwn_llt_init(struct rtwn_softc *); static void rtwn_fw_reset(struct rtwn_softc *); static void rtwn_fw_loadpage(struct rtwn_softc *, int, const uint8_t *, int); static int rtwn_load_firmware(struct rtwn_softc *); static int rtwn_dma_init(struct rtwn_softc *); static void rtwn_mac_init(struct rtwn_softc *); static void rtwn_bb_init(struct rtwn_softc *); static void rtwn_rf_init(struct rtwn_softc *); static void rtwn_cam_init(struct rtwn_softc *); static void rtwn_pa_bias_init(struct rtwn_softc *); static void rtwn_rxfilter_init(struct rtwn_softc *); static void rtwn_edca_init(struct rtwn_softc *); static void rtwn_write_txpower(struct rtwn_softc *, int, uint16_t[]); static void rtwn_get_txpower(struct rtwn_softc *, int, struct ieee80211_channel *, struct ieee80211_channel *, uint16_t[]); static void rtwn_set_txpower(struct rtwn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); static void rtwn_set_rx_bssid_all(struct rtwn_softc *, int); static void rtwn_set_gain(struct rtwn_softc *, uint8_t); static void rtwn_scan_start(struct ieee80211com *); static void rtwn_scan_end(struct ieee80211com *); static void rtwn_set_channel(struct ieee80211com *); static void rtwn_update_mcast(struct ieee80211com *); static void rtwn_set_chan(struct rtwn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); static int rtwn_iq_calib_chain(struct rtwn_softc *, int, uint16_t[2], uint16_t[2]); static void rtwn_iq_calib_run(struct rtwn_softc *, int, uint16_t[2][2], uint16_t[2][2]); static int rtwn_iq_calib_compare_results(uint16_t[2][2], uint16_t[2][2], uint16_t[2][2], uint16_t[2][2], int); static void rtwn_iq_calib_write_results(struct rtwn_softc *, uint16_t[2], uint16_t[2], int); static void rtwn_iq_calib(struct rtwn_softc *); static void rtwn_lc_calib(struct rtwn_softc *); static void rtwn_temp_calib(struct rtwn_softc *); static int rtwn_init(struct rtwn_softc *); static void rtwn_stop_locked(struct rtwn_softc *); static void rtwn_stop(struct rtwn_softc *); static void rtwn_intr(void *); /* Aliases. */ #define rtwn_bb_write rtwn_write_4 #define rtwn_bb_read rtwn_read_4 static int rtwn_probe(device_t); static int rtwn_attach(device_t); static int rtwn_detach(device_t); static int rtwn_shutdown(device_t); static int rtwn_suspend(device_t); static int rtwn_resume(device_t); static device_method_t rtwn_methods[] = { /* Device interface */ DEVMETHOD(device_probe, rtwn_probe), DEVMETHOD(device_attach, rtwn_attach), DEVMETHOD(device_detach, rtwn_detach), DEVMETHOD(device_shutdown, rtwn_shutdown), DEVMETHOD(device_suspend, rtwn_suspend), DEVMETHOD(device_resume, rtwn_resume), DEVMETHOD_END }; static driver_t rtwn_driver = { "rtwn", rtwn_methods, sizeof (struct rtwn_softc) }; static devclass_t rtwn_devclass; DRIVER_MODULE(rtwn, pci, rtwn_driver, rtwn_devclass, NULL, NULL); MODULE_VERSION(rtwn, 1); MODULE_DEPEND(rtwn, pci, 1, 1, 1); MODULE_DEPEND(rtwn, wlan, 1, 1, 1); MODULE_DEPEND(rtwn, firmware, 1, 1, 1); static int rtwn_probe(device_t dev) { const struct rtwn_ident *ident; for (ident = rtwn_ident_table; ident->name != NULL; ident++) { if (pci_get_vendor(dev) == ident->vendor && pci_get_device(dev) == ident->device) { device_set_desc(dev, ident->name); return (BUS_PROBE_DEFAULT); } } return (ENXIO); } static int rtwn_attach(device_t dev) { struct rtwn_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; uint32_t lcsr; - uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)]; + uint8_t bands[IEEE80211_MODE_BYTES]; int i, count, error, rid; sc->sc_dev = dev; sc->sc_debug = 0; /* * Get the offset of the PCI Express Capability Structure in PCI * Configuration Space. */ error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off); if (error != 0) { device_printf(dev, "PCIe capability structure not found!\n"); return (error); } /* Enable bus-mastering. */ pci_enable_busmaster(dev); rid = PCIR_BAR(2); sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->mem == NULL) { device_printf(dev, "can't map mem space\n"); return (ENOMEM); } sc->sc_st = rman_get_bustag(sc->mem); sc->sc_sh = rman_get_bushandle(sc->mem); /* Install interrupt handler. */ count = 1; rid = 0; if (pci_alloc_msi(dev, &count) == 0) rid = 1; sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE)); if (sc->irq == NULL) { device_printf(dev, "can't map interrupt\n"); return (ENXIO); } RTWN_LOCK_INIT(sc); callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); mbufq_init(&sc->sc_snd, ifqmaxlen); error = rtwn_read_chipid(sc); if (error != 0) { device_printf(dev, "unsupported test chip\n"); goto fail; } /* Disable PCIe Active State Power Management (ASPM). */ lcsr = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4); lcsr &= ~PCIEM_LINK_CTL_ASPMC; pci_write_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, lcsr, 4); /* Allocate Tx/Rx buffers. */ error = rtwn_alloc_rx_list(sc); if (error != 0) { device_printf(dev, "could not allocate Rx buffers\n"); goto fail; } for (i = 0; i < RTWN_NTXQUEUES; i++) { error = rtwn_alloc_tx_list(sc, i); if (error != 0) { device_printf(dev, "could not allocate Tx buffers\n"); goto fail; } } /* Determine number of Tx/Rx chains. */ if (sc->chip & RTWN_CHIP_92C) { sc->ntxchains = (sc->chip & RTWN_CHIP_92C_1T2R) ? 1 : 2; sc->nrxchains = 2; } else { sc->ntxchains = 1; sc->nrxchains = 1; } rtwn_read_rom(sc); device_printf(sc->sc_dev, "MAC/BB RTL%s, RF 6052 %dT%dR\n", (sc->chip & RTWN_CHIP_92C) ? "8192CE" : "8188CE", sc->ntxchains, sc->nrxchains); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(dev); ic->ic_opmode = IEEE80211_M_STA; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode */ | IEEE80211_C_MONITOR /* monitor mode */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ | IEEE80211_C_BGSCAN /* capable of bg scanning */ | IEEE80211_C_WME /* 802.11e */ ; memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); ieee80211_init_channels(ic, NULL, bands); ieee80211_ifattach(ic); ic->ic_wme.wme_update = rtwn_updateedca; ic->ic_update_mcast = rtwn_update_mcast; ic->ic_scan_start =rtwn_scan_start; ic->ic_scan_end = rtwn_scan_end; ic->ic_set_channel = rtwn_set_channel; ic->ic_raw_xmit = rtwn_raw_xmit; ic->ic_transmit = rtwn_transmit; ic->ic_parent = rtwn_parent; ic->ic_vap_create = rtwn_vap_create; ic->ic_vap_delete = rtwn_vap_delete; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), RTWN_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), RTWN_RX_RADIOTAP_PRESENT); /* * Hook our interrupt after all initialization is complete. */ error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, rtwn_intr, sc, &sc->sc_ih); if (error != 0) { device_printf(dev, "can't establish interrupt, error %d\n", error); goto fail; } if (bootverbose) ieee80211_announce(ic); return (0); fail: rtwn_detach(dev); return (error); } static int rtwn_detach(device_t dev) { struct rtwn_softc *sc = device_get_softc(dev); int i; if (sc->sc_ic.ic_softc != NULL) { rtwn_stop(sc); callout_drain(&sc->calib_to); callout_drain(&sc->watchdog_to); ieee80211_ifdetach(&sc->sc_ic); mbufq_drain(&sc->sc_snd); } /* Uninstall interrupt handler. */ if (sc->irq != NULL) { bus_teardown_intr(dev, sc->irq, sc->sc_ih); bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); pci_release_msi(dev); } /* Free Tx/Rx buffers. */ for (i = 0; i < RTWN_NTXQUEUES; i++) rtwn_free_tx_list(sc, i); rtwn_free_rx_list(sc); if (sc->mem != NULL) bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), sc->mem); RTWN_LOCK_DESTROY(sc); return (0); } static int rtwn_shutdown(device_t dev) { return (0); } static int rtwn_suspend(device_t dev) { return (0); } static int rtwn_resume(device_t dev) { return (0); } static void rtwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { if (error != 0) return; KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); *(bus_addr_t *)arg = segs[0].ds_addr; } static void rtwn_setup_rx_desc(struct rtwn_softc *sc, struct r92c_rx_desc *desc, bus_addr_t addr, size_t len, int idx) { memset(desc, 0, sizeof(*desc)); desc->rxdw0 = htole32(SM(R92C_RXDW0_PKTLEN, len) | ((idx == RTWN_RX_LIST_COUNT - 1) ? R92C_RXDW0_EOR : 0)); desc->rxbufaddr = htole32(addr); bus_space_barrier(sc->sc_st, sc->sc_sh, 0, sc->sc_mapsize, BUS_SPACE_BARRIER_WRITE); desc->rxdw0 |= htole32(R92C_RXDW0_OWN); } static int rtwn_alloc_rx_list(struct rtwn_softc *sc) { struct rtwn_rx_ring *rx_ring = &sc->rx_ring; struct rtwn_rx_data *rx_data; bus_size_t size; int i, error; /* Allocate Rx descriptors. */ size = sizeof(struct r92c_rx_desc) * RTWN_RX_LIST_COUNT; error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size, 0, NULL, NULL, &rx_ring->desc_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create rx desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(rx_ring->desc_dmat, (void **)&rx_ring->desc, BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &rx_ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate rx desc\n"); goto fail; } error = bus_dmamap_load(rx_ring->desc_dmat, rx_ring->desc_map, rx_ring->desc, size, rtwn_dma_map_addr, &rx_ring->paddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load rx desc DMA map\n"); goto fail; } bus_dmamap_sync(rx_ring->desc_dmat, rx_ring->desc_map, BUS_DMASYNC_PREWRITE); /* Create RX buffer DMA tag. */ error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &rx_ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create rx buf DMA tag\n"); goto fail; } /* Allocate Rx buffers. */ for (i = 0; i < RTWN_RX_LIST_COUNT; i++) { rx_data = &rx_ring->rx_data[i]; error = bus_dmamap_create(rx_ring->data_dmat, 0, &rx_data->map); if (error != 0) { device_printf(sc->sc_dev, "could not create rx buf DMA map\n"); goto fail; } rx_data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (rx_data->m == NULL) { device_printf(sc->sc_dev, "could not allocate rx mbuf\n"); error = ENOMEM; goto fail; } error = bus_dmamap_load(rx_ring->data_dmat, rx_data->map, mtod(rx_data->m, void *), MCLBYTES, rtwn_dma_map_addr, &rx_data->paddr, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sc_dev, "could not load rx buf DMA map"); goto fail; } rtwn_setup_rx_desc(sc, &rx_ring->desc[i], rx_data->paddr, MCLBYTES, i); } return (0); fail: rtwn_free_rx_list(sc); return (error); } static void rtwn_reset_rx_list(struct rtwn_softc *sc) { struct rtwn_rx_ring *rx_ring = &sc->rx_ring; struct rtwn_rx_data *rx_data; int i; for (i = 0; i < RTWN_RX_LIST_COUNT; i++) { rx_data = &rx_ring->rx_data[i]; rtwn_setup_rx_desc(sc, &rx_ring->desc[i], rx_data->paddr, MCLBYTES, i); } } static void rtwn_free_rx_list(struct rtwn_softc *sc) { struct rtwn_rx_ring *rx_ring = &sc->rx_ring; struct rtwn_rx_data *rx_data; int i; if (rx_ring->desc_dmat != NULL) { if (rx_ring->desc != NULL) { bus_dmamap_unload(rx_ring->desc_dmat, rx_ring->desc_map); bus_dmamem_free(rx_ring->desc_dmat, rx_ring->desc, rx_ring->desc_map); rx_ring->desc = NULL; } bus_dma_tag_destroy(rx_ring->desc_dmat); rx_ring->desc_dmat = NULL; } for (i = 0; i < RTWN_RX_LIST_COUNT; i++) { rx_data = &rx_ring->rx_data[i]; if (rx_data->m != NULL) { bus_dmamap_unload(rx_ring->data_dmat, rx_data->map); m_freem(rx_data->m); rx_data->m = NULL; } bus_dmamap_destroy(rx_ring->data_dmat, rx_data->map); rx_data->map = NULL; } if (rx_ring->data_dmat != NULL) { bus_dma_tag_destroy(rx_ring->data_dmat); rx_ring->data_dmat = NULL; } } static int rtwn_alloc_tx_list(struct rtwn_softc *sc, int qid) { struct rtwn_tx_ring *tx_ring = &sc->tx_ring[qid]; struct rtwn_tx_data *tx_data; bus_size_t size; int i, error; size = sizeof(struct r92c_tx_desc) * RTWN_TX_LIST_COUNT; error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), PAGE_SIZE, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size, 0, NULL, NULL, &tx_ring->desc_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create tx ring DMA tag\n"); goto fail; } error = bus_dmamem_alloc(tx_ring->desc_dmat, (void **)&tx_ring->desc, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &tx_ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "can't map tx ring DMA memory\n"); goto fail; } error = bus_dmamap_load(tx_ring->desc_dmat, tx_ring->desc_map, tx_ring->desc, size, rtwn_dma_map_addr, &tx_ring->paddr, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &tx_ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create tx buf DMA tag\n"); goto fail; } for (i = 0; i < RTWN_TX_LIST_COUNT; i++) { struct r92c_tx_desc *desc = &tx_ring->desc[i]; /* setup tx desc */ desc->nextdescaddr = htole32(tx_ring->paddr + + sizeof(struct r92c_tx_desc) * ((i + 1) % RTWN_TX_LIST_COUNT)); tx_data = &tx_ring->tx_data[i]; error = bus_dmamap_create(tx_ring->data_dmat, 0, &tx_data->map); if (error != 0) { device_printf(sc->sc_dev, "could not create tx buf DMA map\n"); goto fail; } tx_data->m = NULL; tx_data->ni = NULL; } return (0); fail: rtwn_free_tx_list(sc, qid); return (error); } static void rtwn_reset_tx_list(struct rtwn_softc *sc, int qid) { struct rtwn_tx_ring *tx_ring = &sc->tx_ring[qid]; int i; for (i = 0; i < RTWN_TX_LIST_COUNT; i++) { struct r92c_tx_desc *desc = &tx_ring->desc[i]; struct rtwn_tx_data *tx_data = &tx_ring->tx_data[i]; memset(desc, 0, sizeof(*desc) - (sizeof(desc->reserved) + sizeof(desc->nextdescaddr64) + sizeof(desc->nextdescaddr))); if (tx_data->m != NULL) { bus_dmamap_unload(tx_ring->data_dmat, tx_data->map); m_freem(tx_data->m); tx_data->m = NULL; } if (tx_data->ni != NULL) { ieee80211_free_node(tx_data->ni); tx_data->ni = NULL; } } bus_dmamap_sync(tx_ring->desc_dmat, tx_ring->desc_map, BUS_DMASYNC_POSTWRITE); sc->qfullmsk &= ~(1 << qid); tx_ring->queued = 0; tx_ring->cur = 0; } static void rtwn_free_tx_list(struct rtwn_softc *sc, int qid) { struct rtwn_tx_ring *tx_ring = &sc->tx_ring[qid]; struct rtwn_tx_data *tx_data; int i; if (tx_ring->desc_dmat != NULL) { if (tx_ring->desc != NULL) { bus_dmamap_unload(tx_ring->desc_dmat, tx_ring->desc_map); bus_dmamem_free(tx_ring->desc_dmat, tx_ring->desc, tx_ring->desc_map); } bus_dma_tag_destroy(tx_ring->desc_dmat); } for (i = 0; i < RTWN_TX_LIST_COUNT; i++) { tx_data = &tx_ring->tx_data[i]; if (tx_data->m != NULL) { bus_dmamap_unload(tx_ring->data_dmat, tx_data->map); m_freem(tx_data->m); tx_data->m = NULL; } } if (tx_ring->data_dmat != NULL) { bus_dma_tag_destroy(tx_ring->data_dmat); tx_ring->data_dmat = NULL; } sc->qfullmsk &= ~(1 << qid); tx_ring->queued = 0; tx_ring->cur = 0; } static struct ieee80211vap * rtwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct rtwn_vap *rvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) return (NULL); rvp = malloc(sizeof(struct rtwn_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &rvp->vap; if (ieee80211_vap_setup(ic, vap, name, unit, opmode, flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { /* out of memory */ free(rvp, M_80211_VAP); return (NULL); } /* Override state transition machine. */ rvp->newstate = vap->iv_newstate; vap->iv_newstate = rtwn_newstate; /* Complete setup. */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return (vap); } static void rtwn_vap_delete(struct ieee80211vap *vap) { struct rtwn_vap *rvp = RTWN_VAP(vap); ieee80211_vap_detach(vap); free(rvp, M_80211_VAP); } static void rtwn_write_1(struct rtwn_softc *sc, uint16_t addr, uint8_t val) { bus_space_write_1(sc->sc_st, sc->sc_sh, addr, val); } static void rtwn_write_2(struct rtwn_softc *sc, uint16_t addr, uint16_t val) { val = htole16(val); bus_space_write_2(sc->sc_st, sc->sc_sh, addr, val); } static void rtwn_write_4(struct rtwn_softc *sc, uint16_t addr, uint32_t val) { val = htole32(val); bus_space_write_4(sc->sc_st, sc->sc_sh, addr, val); } static uint8_t rtwn_read_1(struct rtwn_softc *sc, uint16_t addr) { return (bus_space_read_1(sc->sc_st, sc->sc_sh, addr)); } static uint16_t rtwn_read_2(struct rtwn_softc *sc, uint16_t addr) { return (bus_space_read_2(sc->sc_st, sc->sc_sh, addr)); } static uint32_t rtwn_read_4(struct rtwn_softc *sc, uint16_t addr) { return (bus_space_read_4(sc->sc_st, sc->sc_sh, addr)); } static int rtwn_fw_cmd(struct rtwn_softc *sc, uint8_t id, const void *buf, int len) { struct r92c_fw_cmd cmd; int ntries; /* Wait for current FW box to be empty. */ for (ntries = 0; ntries < 100; ntries++) { if (!(rtwn_read_1(sc, R92C_HMETFR) & (1 << sc->fwcur))) break; DELAY(1); } if (ntries == 100) { device_printf(sc->sc_dev, "could not send firmware command %d\n", id); return (ETIMEDOUT); } memset(&cmd, 0, sizeof(cmd)); cmd.id = id; if (len > 3) cmd.id |= R92C_CMD_FLAG_EXT; KASSERT(len <= sizeof(cmd.msg), ("rtwn_fw_cmd\n")); memcpy(cmd.msg, buf, len); /* Write the first word last since that will trigger the FW. */ rtwn_write_2(sc, R92C_HMEBOX_EXT(sc->fwcur), *((uint8_t *)&cmd + 4)); rtwn_write_4(sc, R92C_HMEBOX(sc->fwcur), *((uint8_t *)&cmd + 0)); sc->fwcur = (sc->fwcur + 1) % R92C_H2C_NBOX; /* Give firmware some time for processing. */ DELAY(2000); return (0); } static void rtwn_rf_write(struct rtwn_softc *sc, int chain, uint8_t addr, uint32_t val) { rtwn_bb_write(sc, R92C_LSSI_PARAM(chain), SM(R92C_LSSI_PARAM_ADDR, addr) | SM(R92C_LSSI_PARAM_DATA, val)); } static uint32_t rtwn_rf_read(struct rtwn_softc *sc, int chain, uint8_t addr) { uint32_t reg[R92C_MAX_CHAINS], val; reg[0] = rtwn_bb_read(sc, R92C_HSSI_PARAM2(0)); if (chain != 0) reg[chain] = rtwn_bb_read(sc, R92C_HSSI_PARAM2(chain)); rtwn_bb_write(sc, R92C_HSSI_PARAM2(0), reg[0] & ~R92C_HSSI_PARAM2_READ_EDGE); DELAY(1000); rtwn_bb_write(sc, R92C_HSSI_PARAM2(chain), RW(reg[chain], R92C_HSSI_PARAM2_READ_ADDR, addr) | R92C_HSSI_PARAM2_READ_EDGE); DELAY(1000); rtwn_bb_write(sc, R92C_HSSI_PARAM2(0), reg[0] | R92C_HSSI_PARAM2_READ_EDGE); DELAY(1000); if (rtwn_bb_read(sc, R92C_HSSI_PARAM1(chain)) & R92C_HSSI_PARAM1_PI) val = rtwn_bb_read(sc, R92C_HSPI_READBACK(chain)); else val = rtwn_bb_read(sc, R92C_LSSI_READBACK(chain)); return (MS(val, R92C_LSSI_READBACK_DATA)); } static int rtwn_llt_write(struct rtwn_softc *sc, uint32_t addr, uint32_t data) { int ntries; rtwn_write_4(sc, R92C_LLT_INIT, SM(R92C_LLT_INIT_OP, R92C_LLT_INIT_OP_WRITE) | SM(R92C_LLT_INIT_ADDR, addr) | SM(R92C_LLT_INIT_DATA, data)); /* Wait for write operation to complete. */ for (ntries = 0; ntries < 20; ntries++) { if (MS(rtwn_read_4(sc, R92C_LLT_INIT), R92C_LLT_INIT_OP) == R92C_LLT_INIT_OP_NO_ACTIVE) return (0); DELAY(5); } return (ETIMEDOUT); } static uint8_t rtwn_efuse_read_1(struct rtwn_softc *sc, uint16_t addr) { uint32_t reg; int ntries; reg = rtwn_read_4(sc, R92C_EFUSE_CTRL); reg = RW(reg, R92C_EFUSE_CTRL_ADDR, addr); reg &= ~R92C_EFUSE_CTRL_VALID; rtwn_write_4(sc, R92C_EFUSE_CTRL, reg); /* Wait for read operation to complete. */ for (ntries = 0; ntries < 100; ntries++) { reg = rtwn_read_4(sc, R92C_EFUSE_CTRL); if (reg & R92C_EFUSE_CTRL_VALID) return (MS(reg, R92C_EFUSE_CTRL_DATA)); DELAY(5); } device_printf(sc->sc_dev, "could not read efuse byte at address 0x%x\n", addr); return (0xff); } static void rtwn_efuse_read(struct rtwn_softc *sc) { uint8_t *rom = (uint8_t *)&sc->rom; uint16_t addr = 0; uint32_t reg; uint8_t off, msk; int i; reg = rtwn_read_2(sc, R92C_SYS_ISO_CTRL); if (!(reg & R92C_SYS_ISO_CTRL_PWC_EV12V)) { rtwn_write_2(sc, R92C_SYS_ISO_CTRL, reg | R92C_SYS_ISO_CTRL_PWC_EV12V); } reg = rtwn_read_2(sc, R92C_SYS_FUNC_EN); if (!(reg & R92C_SYS_FUNC_EN_ELDR)) { rtwn_write_2(sc, R92C_SYS_FUNC_EN, reg | R92C_SYS_FUNC_EN_ELDR); } reg = rtwn_read_2(sc, R92C_SYS_CLKR); if ((reg & (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) != (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) { rtwn_write_2(sc, R92C_SYS_CLKR, reg | R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M); } memset(&sc->rom, 0xff, sizeof(sc->rom)); while (addr < 512) { reg = rtwn_efuse_read_1(sc, addr); if (reg == 0xff) break; addr++; off = reg >> 4; msk = reg & 0xf; for (i = 0; i < 4; i++) { if (msk & (1 << i)) continue; rom[off * 8 + i * 2 + 0] = rtwn_efuse_read_1(sc, addr); addr++; rom[off * 8 + i * 2 + 1] = rtwn_efuse_read_1(sc, addr); addr++; } } #ifdef RTWN_DEBUG if (sc->sc_debug >= 2) { /* Dump ROM content. */ printf("\n"); for (i = 0; i < sizeof(sc->rom); i++) printf("%02x:", rom[i]); printf("\n"); } #endif } static int rtwn_read_chipid(struct rtwn_softc *sc) { uint32_t reg; reg = rtwn_read_4(sc, R92C_SYS_CFG); if (reg & R92C_SYS_CFG_TRP_VAUX_EN) /* Unsupported test chip. */ return (EIO); if (reg & R92C_SYS_CFG_TYPE_92C) { sc->chip |= RTWN_CHIP_92C; /* Check if it is a castrated 8192C. */ if (MS(rtwn_read_4(sc, R92C_HPON_FSM), R92C_HPON_FSM_CHIP_BONDING_ID) == R92C_HPON_FSM_CHIP_BONDING_ID_92C_1T2R) sc->chip |= RTWN_CHIP_92C_1T2R; } if (reg & R92C_SYS_CFG_VENDOR_UMC) { sc->chip |= RTWN_CHIP_UMC; if (MS(reg, R92C_SYS_CFG_CHIP_VER_RTL) == 0) sc->chip |= RTWN_CHIP_UMC_A_CUT; } return (0); } static void rtwn_read_rom(struct rtwn_softc *sc) { struct r92c_rom *rom = &sc->rom; /* Read full ROM image. */ rtwn_efuse_read(sc); if (rom->id != 0x8129) device_printf(sc->sc_dev, "invalid EEPROM ID 0x%x\n", rom->id); /* XXX Weird but this is what the vendor driver does. */ sc->pa_setting = rtwn_efuse_read_1(sc, 0x1fa); DPRINTF(("PA setting=0x%x\n", sc->pa_setting)); sc->board_type = MS(rom->rf_opt1, R92C_ROM_RF1_BOARD_TYPE); sc->regulatory = MS(rom->rf_opt1, R92C_ROM_RF1_REGULATORY); DPRINTF(("regulatory type=%d\n", sc->regulatory)); IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, rom->macaddr); } /* * Initialize rate adaptation in firmware. */ static int rtwn_ra_init(struct rtwn_softc *sc) { static const uint8_t map[] = { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 }; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_node *ni = ieee80211_ref_node(vap->iv_bss); struct ieee80211_rateset *rs = &ni->ni_rates; struct r92c_fw_cmd_macid_cfg cmd; uint32_t rates, basicrates; uint8_t mode; int maxrate, maxbasicrate, error, i, j; /* Get normal and basic rates mask. */ rates = basicrates = 0; maxrate = maxbasicrate = 0; for (i = 0; i < rs->rs_nrates; i++) { /* Convert 802.11 rate to HW rate index. */ for (j = 0; j < nitems(map); j++) if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == map[j]) break; if (j == nitems(map)) /* Unknown rate, skip. */ continue; rates |= 1 << j; if (j > maxrate) maxrate = j; if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) { basicrates |= 1 << j; if (j > maxbasicrate) maxbasicrate = j; } } if (ic->ic_curmode == IEEE80211_MODE_11B) mode = R92C_RAID_11B; else mode = R92C_RAID_11BG; DPRINTF(("mode=0x%x rates=0x%08x, basicrates=0x%08x\n", mode, rates, basicrates)); /* Set rates mask for group addressed frames. */ cmd.macid = RTWN_MACID_BC | RTWN_MACID_VALID; cmd.mask = htole32(mode << 28 | basicrates); error = rtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd)); if (error != 0) { device_printf(sc->sc_dev, "could not add broadcast station\n"); return (error); } /* Set initial MRR rate. */ DPRINTF(("maxbasicrate=%d\n", maxbasicrate)); rtwn_write_1(sc, R92C_INIDATA_RATE_SEL(RTWN_MACID_BC), maxbasicrate); /* Set rates mask for unicast frames. */ cmd.macid = RTWN_MACID_BSS | RTWN_MACID_VALID; cmd.mask = htole32(mode << 28 | rates); error = rtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd)); if (error != 0) { device_printf(sc->sc_dev, "could not add BSS station\n"); return (error); } /* Set initial MRR rate. */ DPRINTF(("maxrate=%d\n", maxrate)); rtwn_write_1(sc, R92C_INIDATA_RATE_SEL(RTWN_MACID_BSS), maxrate); /* Configure Automatic Rate Fallback Register. */ if (ic->ic_curmode == IEEE80211_MODE_11B) { if (rates & 0x0c) rtwn_write_4(sc, R92C_ARFR(0), htole32(rates & 0x0d)); else rtwn_write_4(sc, R92C_ARFR(0), htole32(rates & 0x0f)); } else rtwn_write_4(sc, R92C_ARFR(0), htole32(rates & 0x0ff5)); /* Indicate highest supported rate. */ ni->ni_txrate = rs->rs_rates[rs->rs_nrates - 1]; return (0); } static void rtwn_tsf_sync_enable(struct rtwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_node *ni = vap->iv_bss; uint64_t tsf; /* Enable TSF synchronization. */ rtwn_write_1(sc, R92C_BCN_CTRL, rtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_DIS_TSF_UDT0); rtwn_write_1(sc, R92C_BCN_CTRL, rtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_EN_BCN); /* Set initial TSF. */ memcpy(&tsf, ni->ni_tstamp.data, 8); tsf = le64toh(tsf); tsf = tsf - (tsf % (vap->iv_bss->ni_intval * IEEE80211_DUR_TU)); tsf -= IEEE80211_DUR_TU; rtwn_write_4(sc, R92C_TSFTR + 0, tsf); rtwn_write_4(sc, R92C_TSFTR + 4, tsf >> 32); rtwn_write_1(sc, R92C_BCN_CTRL, rtwn_read_1(sc, R92C_BCN_CTRL) | R92C_BCN_CTRL_EN_BCN); } static void rtwn_set_led(struct rtwn_softc *sc, int led, int on) { uint8_t reg; if (led == RTWN_LED_LINK) { reg = rtwn_read_1(sc, R92C_LEDCFG2) & 0xf0; if (!on) reg |= R92C_LEDCFG2_DIS; else reg |= R92C_LEDCFG2_EN; rtwn_write_1(sc, R92C_LEDCFG2, reg); sc->ledlink = on; /* Save LED state. */ } } static void rtwn_calib_to(void *arg) { struct rtwn_softc *sc = arg; struct r92c_fw_cmd_rssi cmd; if (sc->avg_pwdb != -1) { /* Indicate Rx signal strength to FW for rate adaptation. */ memset(&cmd, 0, sizeof(cmd)); cmd.macid = 0; /* BSS. */ cmd.pwdb = sc->avg_pwdb; DPRINTFN(3, ("sending RSSI command avg=%d\n", sc->avg_pwdb)); rtwn_fw_cmd(sc, R92C_CMD_RSSI_SETTING, &cmd, sizeof(cmd)); } /* Do temperature compensation. */ rtwn_temp_calib(sc); callout_reset(&sc->calib_to, hz * 2, rtwn_calib_to, sc); } static int rtwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct rtwn_vap *rvp = RTWN_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct ieee80211_node *ni = vap->iv_bss; struct rtwn_softc *sc = ic->ic_softc; uint32_t reg; IEEE80211_UNLOCK(ic); RTWN_LOCK(sc); if (vap->iv_state == IEEE80211_S_RUN) { /* Stop calibration. */ callout_stop(&sc->calib_to); /* Turn link LED off. */ rtwn_set_led(sc, RTWN_LED_LINK, 0); /* Set media status to 'No Link'. */ reg = rtwn_read_4(sc, R92C_CR); reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_NOLINK); rtwn_write_4(sc, R92C_CR, reg); /* Stop Rx of data frames. */ rtwn_write_2(sc, R92C_RXFLTMAP2, 0); /* Rest TSF. */ rtwn_write_1(sc, R92C_DUAL_TSF_RST, 0x03); /* Disable TSF synchronization. */ rtwn_write_1(sc, R92C_BCN_CTRL, rtwn_read_1(sc, R92C_BCN_CTRL) | R92C_BCN_CTRL_DIS_TSF_UDT0); /* Reset EDCA parameters. */ rtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002f3217); rtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005e4317); rtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x00105320); rtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a444); } switch (nstate) { case IEEE80211_S_INIT: /* Turn link LED off. */ rtwn_set_led(sc, RTWN_LED_LINK, 0); break; case IEEE80211_S_SCAN: /* Make link LED blink during scan. */ rtwn_set_led(sc, RTWN_LED_LINK, !sc->ledlink); /* Pause AC Tx queues. */ rtwn_write_1(sc, R92C_TXPAUSE, rtwn_read_1(sc, R92C_TXPAUSE) | 0x0f); break; case IEEE80211_S_AUTH: rtwn_set_chan(sc, ic->ic_curchan, NULL); break; case IEEE80211_S_RUN: if (ic->ic_opmode == IEEE80211_M_MONITOR) { /* Enable Rx of data frames. */ rtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff); /* Turn link LED on. */ rtwn_set_led(sc, RTWN_LED_LINK, 1); break; } /* Set media status to 'Associated'. */ reg = rtwn_read_4(sc, R92C_CR); reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_INFRA); rtwn_write_4(sc, R92C_CR, reg); /* Set BSSID. */ rtwn_write_4(sc, R92C_BSSID + 0, le32dec(&ni->ni_bssid[0])); rtwn_write_4(sc, R92C_BSSID + 4, le16dec(&ni->ni_bssid[4])); if (ic->ic_curmode == IEEE80211_MODE_11B) rtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 0); else /* 802.11b/g */ rtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 3); /* Enable Rx of data frames. */ rtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff); /* Flush all AC queues. */ rtwn_write_1(sc, R92C_TXPAUSE, 0); /* Set beacon interval. */ rtwn_write_2(sc, R92C_BCN_INTERVAL, ni->ni_intval); /* Allow Rx from our BSSID only. */ rtwn_write_4(sc, R92C_RCR, rtwn_read_4(sc, R92C_RCR) | R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN); /* Enable TSF synchronization. */ rtwn_tsf_sync_enable(sc); rtwn_write_1(sc, R92C_SIFS_CCK + 1, 10); rtwn_write_1(sc, R92C_SIFS_OFDM + 1, 10); rtwn_write_1(sc, R92C_SPEC_SIFS + 1, 10); rtwn_write_1(sc, R92C_MAC_SPEC_SIFS + 1, 10); rtwn_write_1(sc, R92C_R2T_SIFS + 1, 10); rtwn_write_1(sc, R92C_T2T_SIFS + 1, 10); /* Intialize rate adaptation. */ rtwn_ra_init(sc); /* Turn link LED on. */ rtwn_set_led(sc, RTWN_LED_LINK, 1); sc->avg_pwdb = -1; /* Reset average RSSI. */ /* Reset temperature calibration state machine. */ sc->thcal_state = 0; sc->thcal_lctemp = 0; /* Start periodic calibration. */ callout_reset(&sc->calib_to, hz * 2, rtwn_calib_to, sc); break; default: break; } RTWN_UNLOCK(sc); IEEE80211_LOCK(ic); return (rvp->newstate(vap, nstate, arg)); } static int rtwn_updateedca(struct ieee80211com *ic) { struct rtwn_softc *sc = ic->ic_softc; const uint16_t aci2reg[WME_NUM_AC] = { R92C_EDCA_BE_PARAM, R92C_EDCA_BK_PARAM, R92C_EDCA_VI_PARAM, R92C_EDCA_VO_PARAM }; int aci, aifs, slottime; IEEE80211_LOCK(ic); slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; for (aci = 0; aci < WME_NUM_AC; aci++) { const struct wmeParams *ac = &ic->ic_wme.wme_chanParams.cap_wmeParams[aci]; /* AIFS[AC] = AIFSN[AC] * aSlotTime + aSIFSTime. */ aifs = ac->wmep_aifsn * slottime + 10; rtwn_write_4(sc, aci2reg[aci], SM(R92C_EDCA_PARAM_TXOP, ac->wmep_txopLimit) | SM(R92C_EDCA_PARAM_ECWMIN, ac->wmep_logcwmin) | SM(R92C_EDCA_PARAM_ECWMAX, ac->wmep_logcwmax) | SM(R92C_EDCA_PARAM_AIFS, aifs)); } IEEE80211_UNLOCK(ic); return (0); } static void rtwn_update_avgrssi(struct rtwn_softc *sc, int rate, int8_t rssi) { int pwdb; /* Convert antenna signal to percentage. */ if (rssi <= -100 || rssi >= 20) pwdb = 0; else if (rssi >= 0) pwdb = 100; else pwdb = 100 + rssi; if (rate <= 3) { /* CCK gain is smaller than OFDM/MCS gain. */ pwdb += 6; if (pwdb > 100) pwdb = 100; if (pwdb <= 14) pwdb -= 4; else if (pwdb <= 26) pwdb -= 8; else if (pwdb <= 34) pwdb -= 6; else if (pwdb <= 42) pwdb -= 2; } if (sc->avg_pwdb == -1) /* Init. */ sc->avg_pwdb = pwdb; else if (sc->avg_pwdb < pwdb) sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20) + 1; else sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20); DPRINTFN(4, ("PWDB=%d EMA=%d\n", pwdb, sc->avg_pwdb)); } static int8_t rtwn_get_rssi(struct rtwn_softc *sc, int rate, void *physt) { static const int8_t cckoff[] = { 16, -12, -26, -46 }; struct r92c_rx_phystat *phy; struct r92c_rx_cck *cck; uint8_t rpt; int8_t rssi; if (rate <= 3) { cck = (struct r92c_rx_cck *)physt; if (sc->sc_flags & RTWN_FLAG_CCK_HIPWR) { rpt = (cck->agc_rpt >> 5) & 0x3; rssi = (cck->agc_rpt & 0x1f) << 1; } else { rpt = (cck->agc_rpt >> 6) & 0x3; rssi = cck->agc_rpt & 0x3e; } rssi = cckoff[rpt] - rssi; } else { /* OFDM/HT. */ phy = (struct r92c_rx_phystat *)physt; rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110; } return (rssi); } static void rtwn_rx_frame(struct rtwn_softc *sc, struct r92c_rx_desc *rx_desc, struct rtwn_rx_data *rx_data, int desc_idx) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame_min *wh; struct ieee80211_node *ni; struct r92c_rx_phystat *phy = NULL; uint32_t rxdw0, rxdw3; struct mbuf *m, *m1; bus_dma_segment_t segs[1]; bus_addr_t physaddr; uint8_t rate; int8_t rssi = 0, nf; int infosz, nsegs, pktlen, shift, error; rxdw0 = le32toh(rx_desc->rxdw0); rxdw3 = le32toh(rx_desc->rxdw3); if (__predict_false(rxdw0 & (R92C_RXDW0_CRCERR | R92C_RXDW0_ICVERR))) { /* * This should not happen since we setup our Rx filter * to not receive these frames. */ counter_u64_add(ic->ic_ierrors, 1); return; } pktlen = MS(rxdw0, R92C_RXDW0_PKTLEN); if (__predict_false(pktlen < sizeof(struct ieee80211_frame_ack) || pktlen > MCLBYTES)) { counter_u64_add(ic->ic_ierrors, 1); return; } rate = MS(rxdw3, R92C_RXDW3_RATE); infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8; if (infosz > sizeof(struct r92c_rx_phystat)) infosz = sizeof(struct r92c_rx_phystat); shift = MS(rxdw0, R92C_RXDW0_SHIFT); /* Get RSSI from PHY status descriptor if present. */ if (infosz != 0 && (rxdw0 & R92C_RXDW0_PHYST)) { phy = mtod(rx_data->m, struct r92c_rx_phystat *); rssi = rtwn_get_rssi(sc, rate, phy); /* Update our average RSSI. */ rtwn_update_avgrssi(sc, rate, rssi); } DPRINTFN(5, ("Rx frame len=%d rate=%d infosz=%d shift=%d rssi=%d\n", pktlen, rate, infosz, shift, rssi)); m1 = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m1 == NULL) { counter_u64_add(ic->ic_ierrors, 1); return; } bus_dmamap_unload(sc->rx_ring.data_dmat, rx_data->map); error = bus_dmamap_load(sc->rx_ring.data_dmat, rx_data->map, mtod(m1, void *), MCLBYTES, rtwn_dma_map_addr, &physaddr, 0); if (error != 0) { m_freem(m1); if (bus_dmamap_load_mbuf_sg(sc->rx_ring.data_dmat, rx_data->map, rx_data->m, segs, &nsegs, 0)) panic("%s: could not load old RX mbuf", device_get_name(sc->sc_dev)); /* Physical address may have changed. */ rtwn_setup_rx_desc(sc, rx_desc, physaddr, MCLBYTES, desc_idx); counter_u64_add(ic->ic_ierrors, 1); return; } /* Finalize mbuf. */ m = rx_data->m; rx_data->m = m1; m->m_pkthdr.len = m->m_len = pktlen + infosz + shift; /* Update RX descriptor. */ rtwn_setup_rx_desc(sc, rx_desc, physaddr, MCLBYTES, desc_idx); /* Get ieee80211 frame header. */ if (rxdw0 & R92C_RXDW0_PHYST) m_adj(m, infosz + shift); else m_adj(m, shift); nf = -95; if (ieee80211_radiotap_active(ic)) { struct rtwn_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; if (!(rxdw3 & R92C_RXDW3_HT)) { switch (rate) { /* CCK. */ case 0: tap->wr_rate = 2; break; case 1: tap->wr_rate = 4; break; case 2: tap->wr_rate = 11; break; case 3: tap->wr_rate = 22; break; /* OFDM. */ case 4: tap->wr_rate = 12; break; case 5: tap->wr_rate = 18; break; case 6: tap->wr_rate = 24; break; case 7: tap->wr_rate = 36; break; case 8: tap->wr_rate = 48; break; case 9: tap->wr_rate = 72; break; case 10: tap->wr_rate = 96; break; case 11: tap->wr_rate = 108; break; } } else if (rate >= 12) { /* MCS0~15. */ /* Bit 7 set means HT MCS instead of rate. */ tap->wr_rate = 0x80 | (rate - 12); } tap->wr_dbm_antsignal = rssi; tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); } RTWN_UNLOCK(sc); wh = mtod(m, struct ieee80211_frame_min *); if (m->m_len >= sizeof(*wh)) ni = ieee80211_find_rxnode(ic, wh); else ni = NULL; /* Send the frame to the 802.11 layer. */ if (ni != NULL) { (void)ieee80211_input(ni, m, rssi - nf, nf); /* Node is no longer needed. */ ieee80211_free_node(ni); } else (void)ieee80211_input_all(ic, m, rssi - nf, nf); RTWN_LOCK(sc); } static int rtwn_tx(struct rtwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_frame *wh; struct ieee80211_key *k = NULL; struct rtwn_tx_ring *tx_ring; struct rtwn_tx_data *data; struct r92c_tx_desc *txd; bus_dma_segment_t segs[1]; uint16_t qos; uint8_t raid, type, tid, qid; int nsegs, error; wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; /* Encrypt the frame if need be. */ if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m); if (k == NULL) { m_freem(m); return (ENOBUFS); } /* 802.11 header may have moved. */ wh = mtod(m, struct ieee80211_frame *); } if (IEEE80211_QOS_HAS_SEQ(wh)) { qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; tid = qos & IEEE80211_QOS_TID; } else { qos = 0; tid = 0; } switch (type) { case IEEE80211_FC0_TYPE_CTL: case IEEE80211_FC0_TYPE_MGT: qid = RTWN_VO_QUEUE; break; default: qid = M_WME_GETAC(m); break; } /* Grab a Tx buffer from the ring. */ tx_ring = &sc->tx_ring[qid]; data = &tx_ring->tx_data[tx_ring->cur]; if (data->m != NULL) { m_freem(m); return (ENOBUFS); } /* Fill Tx descriptor. */ txd = &tx_ring->desc[tx_ring->cur]; if (htole32(txd->txdw0) & R92C_RXDW0_OWN) { m_freem(m); return (ENOBUFS); } txd->txdw0 = htole32( SM(R92C_TXDW0_PKTLEN, m->m_pkthdr.len) | SM(R92C_TXDW0_OFFSET, sizeof(*txd)) | R92C_TXDW0_FSG | R92C_TXDW0_LSG); if (IEEE80211_IS_MULTICAST(wh->i_addr1)) txd->txdw0 |= htole32(R92C_TXDW0_BMCAST); txd->txdw1 = 0; txd->txdw4 = 0; txd->txdw5 = 0; /* XXX TODO: rate control; implement low-rate for EAPOL */ if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && type == IEEE80211_FC0_TYPE_DATA) { if (ic->ic_curmode == IEEE80211_MODE_11B) raid = R92C_RAID_11B; else raid = R92C_RAID_11BG; txd->txdw1 |= htole32( SM(R92C_TXDW1_MACID, RTWN_MACID_BSS) | SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_BE) | SM(R92C_TXDW1_RAID, raid) | R92C_TXDW1_AGGBK); if (ic->ic_flags & IEEE80211_F_USEPROT) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) { txd->txdw4 |= htole32(R92C_TXDW4_CTS2SELF | R92C_TXDW4_HWRTSEN); } else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) { txd->txdw4 |= htole32(R92C_TXDW4_RTSEN | R92C_TXDW4_HWRTSEN); } } /* XXX TODO: implement rate control */ /* Send RTS at OFDM24. */ txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE, 8)); txd->txdw5 |= htole32(SM(R92C_TXDW5_RTSRATE_FBLIMIT, 0xf)); /* Send data at OFDM54. */ txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 11)); txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE_FBLIMIT, 0x1f)); } else { txd->txdw1 |= htole32( SM(R92C_TXDW1_MACID, 0) | SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_MGNT) | SM(R92C_TXDW1_RAID, R92C_RAID_11B)); /* Force CCK1. */ txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE); txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, 0)); } /* Set sequence number (already little endian). */ txd->txdseq = htole16(M_SEQNO_GET(m) % IEEE80211_SEQ_RANGE); if (!qos) { /* Use HW sequence numbering for non-QoS frames. */ txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ); txd->txdseq |= htole16(0x8000); } else txd->txdw4 |= htole32(R92C_TXDW4_QOS); error = bus_dmamap_load_mbuf_sg(tx_ring->data_dmat, data->map, m, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { device_printf(sc->sc_dev, "can't map mbuf (error %d)\n", error); m_freem(m); return (error); } if (error != 0) { struct mbuf *mnew; mnew = m_defrag(m, M_NOWAIT); if (mnew == NULL) { device_printf(sc->sc_dev, "can't defragment mbuf\n"); m_freem(m); return (ENOBUFS); } m = mnew; error = bus_dmamap_load_mbuf_sg(tx_ring->data_dmat, data->map, m, segs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->sc_dev, "can't map mbuf (error %d)\n", error); m_freem(m); return (error); } } txd->txbufaddr = htole32(segs[0].ds_addr); txd->txbufsize = htole16(m->m_pkthdr.len); bus_space_barrier(sc->sc_st, sc->sc_sh, 0, sc->sc_mapsize, BUS_SPACE_BARRIER_WRITE); txd->txdw0 |= htole32(R92C_TXDW0_OWN); bus_dmamap_sync(tx_ring->desc_dmat, tx_ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_sync(tx_ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); data->m = m; data->ni = ni; if (ieee80211_radiotap_active_vap(vap)) { struct rtwn_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); ieee80211_radiotap_tx(vap, m); } tx_ring->cur = (tx_ring->cur + 1) % RTWN_TX_LIST_COUNT; tx_ring->queued++; if (tx_ring->queued >= (RTWN_TX_LIST_COUNT - 1)) sc->qfullmsk |= (1 << qid); /* Kick TX. */ rtwn_write_2(sc, R92C_PCIE_CTRL_REG, (1 << qid)); return (0); } static void rtwn_tx_done(struct rtwn_softc *sc, int qid) { struct rtwn_tx_ring *tx_ring = &sc->tx_ring[qid]; struct rtwn_tx_data *tx_data; struct r92c_tx_desc *tx_desc; int i; bus_dmamap_sync(tx_ring->desc_dmat, tx_ring->desc_map, BUS_DMASYNC_POSTREAD); for (i = 0; i < RTWN_TX_LIST_COUNT; i++) { tx_data = &tx_ring->tx_data[i]; if (tx_data->m == NULL) continue; tx_desc = &tx_ring->desc[i]; if (le32toh(tx_desc->txdw0) & R92C_TXDW0_OWN) continue; bus_dmamap_unload(tx_ring->desc_dmat, tx_ring->desc_map); /* * XXX TODO: figure out whether the transmit succeeded or not. * .. and then notify rate control. */ ieee80211_tx_complete(tx_data->ni, tx_data->m, 0); tx_data->ni = NULL; tx_data->m = NULL; sc->sc_tx_timer = 0; tx_ring->queued--; } if (tx_ring->queued < (RTWN_TX_LIST_COUNT - 1)) sc->qfullmsk &= ~(1 << qid); rtwn_start(sc); } static int rtwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct rtwn_softc *sc = ic->ic_softc; RTWN_LOCK(sc); /* Prevent management frames from being sent if we're not ready. */ if (!(sc->sc_flags & RTWN_RUNNING)) { RTWN_UNLOCK(sc); m_freem(m); return (ENETDOWN); } if (rtwn_tx(sc, m, ni) != 0) { m_freem(m); RTWN_UNLOCK(sc); return (EIO); } sc->sc_tx_timer = 5; RTWN_UNLOCK(sc); return (0); } static int rtwn_transmit(struct ieee80211com *ic, struct mbuf *m) { struct rtwn_softc *sc = ic->ic_softc; int error; RTWN_LOCK(sc); if ((sc->sc_flags & RTWN_RUNNING) == 0) { RTWN_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { RTWN_UNLOCK(sc); return (error); } rtwn_start(sc); RTWN_UNLOCK(sc); return (0); } static void rtwn_parent(struct ieee80211com *ic) { struct rtwn_softc *sc = ic->ic_softc; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); if (ic->ic_nrunning > 0) { if (rtwn_init(sc) == 0) ieee80211_start_all(ic); else ieee80211_stop(vap); } else rtwn_stop(sc); } static void rtwn_start(struct rtwn_softc *sc) { struct ieee80211_node *ni; struct mbuf *m; RTWN_LOCK_ASSERT(sc); if ((sc->sc_flags & RTWN_RUNNING) == 0) return; while (sc->qfullmsk == 0 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; if (rtwn_tx(sc, m, ni) != 0) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); continue; } sc->sc_tx_timer = 5; } } static void rtwn_watchdog(void *arg) { struct rtwn_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; RTWN_LOCK_ASSERT(sc); KASSERT(sc->sc_flags & RTWN_RUNNING, ("not running")); if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) { ic_printf(ic, "device timeout\n"); ieee80211_restart_all(ic); return; } callout_reset(&sc->watchdog_to, hz, rtwn_watchdog, sc); } static int rtwn_power_on(struct rtwn_softc *sc) { uint32_t reg; int ntries; /* Wait for autoload done bit. */ for (ntries = 0; ntries < 1000; ntries++) { if (rtwn_read_1(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_PFM_ALDN) break; DELAY(5); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for chip autoload\n"); return (ETIMEDOUT); } /* Unlock ISO/CLK/Power control register. */ rtwn_write_1(sc, R92C_RSV_CTRL, 0); /* TODO: check if we need this for 8188CE */ if (sc->board_type != R92C_BOARD_TYPE_DONGLE) { /* bt coex */ reg = rtwn_read_4(sc, R92C_APS_FSMCO); reg |= (R92C_APS_FSMCO_SOP_ABG | R92C_APS_FSMCO_SOP_AMB | R92C_APS_FSMCO_XOP_BTCK); rtwn_write_4(sc, R92C_APS_FSMCO, reg); } /* Move SPS into PWM mode. */ rtwn_write_1(sc, R92C_SPS0_CTRL, 0x2b); /* Set low byte to 0x0f, leave others unchanged. */ rtwn_write_4(sc, R92C_AFE_XTAL_CTRL, (rtwn_read_4(sc, R92C_AFE_XTAL_CTRL) & 0xffffff00) | 0x0f); /* TODO: check if we need this for 8188CE */ if (sc->board_type != R92C_BOARD_TYPE_DONGLE) { /* bt coex */ reg = rtwn_read_4(sc, R92C_AFE_XTAL_CTRL); reg &= (~0x00024800); /* XXX magic from linux */ rtwn_write_4(sc, R92C_AFE_XTAL_CTRL, reg); } rtwn_write_2(sc, R92C_SYS_ISO_CTRL, (rtwn_read_2(sc, R92C_SYS_ISO_CTRL) & 0xff) | R92C_SYS_ISO_CTRL_PWC_EV12V | R92C_SYS_ISO_CTRL_DIOR); DELAY(200); /* TODO: linux does additional btcoex stuff here */ /* Auto enable WLAN. */ rtwn_write_2(sc, R92C_APS_FSMCO, rtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC); for (ntries = 0; ntries < 1000; ntries++) { if (!(rtwn_read_2(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_APFM_ONMAC)) break; DELAY(5); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for MAC auto ON\n"); return (ETIMEDOUT); } /* Enable radio, GPIO and LED functions. */ rtwn_write_2(sc, R92C_APS_FSMCO, R92C_APS_FSMCO_AFSM_PCIE | R92C_APS_FSMCO_PDN_EN | R92C_APS_FSMCO_PFM_ALDN); /* Release RF digital isolation. */ rtwn_write_2(sc, R92C_SYS_ISO_CTRL, rtwn_read_2(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_DIOR); if (sc->chip & RTWN_CHIP_92C) rtwn_write_1(sc, R92C_PCIE_CTRL_REG + 3, 0x77); else rtwn_write_1(sc, R92C_PCIE_CTRL_REG + 3, 0x22); rtwn_write_4(sc, R92C_INT_MIG, 0); if (sc->board_type != R92C_BOARD_TYPE_DONGLE) { /* bt coex */ reg = rtwn_read_4(sc, R92C_AFE_XTAL_CTRL + 2); reg &= 0xfd; /* XXX magic from linux */ rtwn_write_4(sc, R92C_AFE_XTAL_CTRL + 2, reg); } rtwn_write_1(sc, R92C_GPIO_MUXCFG, rtwn_read_1(sc, R92C_GPIO_MUXCFG) & ~R92C_GPIO_MUXCFG_RFKILL); reg = rtwn_read_1(sc, R92C_GPIO_IO_SEL); if (!(reg & R92C_GPIO_IO_SEL_RFKILL)) { device_printf(sc->sc_dev, "radio is disabled by hardware switch\n"); return (EPERM); } /* Initialize MAC. */ reg = rtwn_read_1(sc, R92C_APSD_CTRL); rtwn_write_1(sc, R92C_APSD_CTRL, rtwn_read_1(sc, R92C_APSD_CTRL) & ~R92C_APSD_CTRL_OFF); for (ntries = 0; ntries < 200; ntries++) { if (!(rtwn_read_1(sc, R92C_APSD_CTRL) & R92C_APSD_CTRL_OFF_STATUS)) break; DELAY(500); } if (ntries == 200) { device_printf(sc->sc_dev, "timeout waiting for MAC initialization\n"); return (ETIMEDOUT); } /* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */ reg = rtwn_read_2(sc, R92C_CR); reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN | R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN | R92C_CR_SCHEDULE_EN | R92C_CR_MACTXEN | R92C_CR_MACRXEN | R92C_CR_ENSEC; rtwn_write_2(sc, R92C_CR, reg); rtwn_write_1(sc, 0xfe10, 0x19); return (0); } static int rtwn_llt_init(struct rtwn_softc *sc) { int i, error; /* Reserve pages [0; R92C_TX_PAGE_COUNT]. */ for (i = 0; i < R92C_TX_PAGE_COUNT; i++) { if ((error = rtwn_llt_write(sc, i, i + 1)) != 0) return (error); } /* NB: 0xff indicates end-of-list. */ if ((error = rtwn_llt_write(sc, i, 0xff)) != 0) return (error); /* * Use pages [R92C_TX_PAGE_COUNT + 1; R92C_TXPKTBUF_COUNT - 1] * as ring buffer. */ for (++i; i < R92C_TXPKTBUF_COUNT - 1; i++) { if ((error = rtwn_llt_write(sc, i, i + 1)) != 0) return (error); } /* Make the last page point to the beginning of the ring buffer. */ error = rtwn_llt_write(sc, i, R92C_TX_PAGE_COUNT + 1); return (error); } static void rtwn_fw_reset(struct rtwn_softc *sc) { uint16_t reg; int ntries; /* Tell 8051 to reset itself. */ rtwn_write_1(sc, R92C_HMETFR + 3, 0x20); /* Wait until 8051 resets by itself. */ for (ntries = 0; ntries < 100; ntries++) { reg = rtwn_read_2(sc, R92C_SYS_FUNC_EN); if (!(reg & R92C_SYS_FUNC_EN_CPUEN)) goto sleep; DELAY(50); } /* Force 8051 reset. */ rtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN); sleep: /* * We must sleep for one second to let the firmware settle. * Accessing registers too early will hang the whole system. */ if (msleep(®, &sc->sc_mtx, 0, "rtwnrst", hz)) { device_printf(sc->sc_dev, "timeout waiting for firmware " "initialization to complete\n"); } } static void rtwn_fw_loadpage(struct rtwn_softc *sc, int page, const uint8_t *buf, int len) { uint32_t reg; int off, mlen, i; reg = rtwn_read_4(sc, R92C_MCUFWDL); reg = RW(reg, R92C_MCUFWDL_PAGE, page); rtwn_write_4(sc, R92C_MCUFWDL, reg); DELAY(5); off = R92C_FW_START_ADDR; while (len > 0) { if (len > 196) mlen = 196; else if (len > 4) mlen = 4; else mlen = 1; for (i = 0; i < mlen; i++) rtwn_write_1(sc, off++, buf[i]); buf += mlen; len -= mlen; } } static int rtwn_load_firmware(struct rtwn_softc *sc) { const struct firmware *fw; const struct r92c_fw_hdr *hdr; const char *name; const u_char *ptr; size_t len; uint32_t reg; int mlen, ntries, page, error = 0; /* Read firmware image from the filesystem. */ if ((sc->chip & (RTWN_CHIP_UMC_A_CUT | RTWN_CHIP_92C)) == RTWN_CHIP_UMC_A_CUT) name = "rtwn-rtl8192cfwU"; else name = "rtwn-rtl8192cfwU_B"; RTWN_UNLOCK(sc); fw = firmware_get(name); RTWN_LOCK(sc); if (fw == NULL) { device_printf(sc->sc_dev, "could not read firmware %s\n", name); return (ENOENT); } len = fw->datasize; if (len < sizeof(*hdr)) { device_printf(sc->sc_dev, "firmware too short\n"); error = EINVAL; goto fail; } ptr = fw->data; hdr = (const struct r92c_fw_hdr *)ptr; /* Check if there is a valid FW header and skip it. */ if ((le16toh(hdr->signature) >> 4) == 0x88c || (le16toh(hdr->signature) >> 4) == 0x92c) { DPRINTF(("FW V%d.%d %02d-%02d %02d:%02d\n", le16toh(hdr->version), le16toh(hdr->subversion), hdr->month, hdr->date, hdr->hour, hdr->minute)); ptr += sizeof(*hdr); len -= sizeof(*hdr); } if (rtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RAM_DL_SEL) rtwn_fw_reset(sc); /* Enable FW download. */ rtwn_write_2(sc, R92C_SYS_FUNC_EN, rtwn_read_2(sc, R92C_SYS_FUNC_EN) | R92C_SYS_FUNC_EN_CPUEN); rtwn_write_1(sc, R92C_MCUFWDL, rtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_EN); rtwn_write_1(sc, R92C_MCUFWDL + 2, rtwn_read_1(sc, R92C_MCUFWDL + 2) & ~0x08); /* Reset the FWDL checksum. */ rtwn_write_1(sc, R92C_MCUFWDL, rtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_CHKSUM_RPT); for (page = 0; len > 0; page++) { mlen = MIN(len, R92C_FW_PAGE_SIZE); rtwn_fw_loadpage(sc, page, ptr, mlen); ptr += mlen; len -= mlen; } /* Disable FW download. */ rtwn_write_1(sc, R92C_MCUFWDL, rtwn_read_1(sc, R92C_MCUFWDL) & ~R92C_MCUFWDL_EN); rtwn_write_1(sc, R92C_MCUFWDL + 1, 0); /* Wait for checksum report. */ for (ntries = 0; ntries < 1000; ntries++) { if (rtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_CHKSUM_RPT) break; DELAY(5); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for checksum report\n"); error = ETIMEDOUT; goto fail; } reg = rtwn_read_4(sc, R92C_MCUFWDL); reg = (reg & ~R92C_MCUFWDL_WINTINI_RDY) | R92C_MCUFWDL_RDY; rtwn_write_4(sc, R92C_MCUFWDL, reg); /* Wait for firmware readiness. */ for (ntries = 0; ntries < 2000; ntries++) { if (rtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_WINTINI_RDY) break; DELAY(50); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for firmware readiness\n"); error = ETIMEDOUT; goto fail; } fail: firmware_put(fw, FIRMWARE_UNLOAD); return (error); } static int rtwn_dma_init(struct rtwn_softc *sc) { uint32_t reg; int error; /* Initialize LLT table. */ error = rtwn_llt_init(sc); if (error != 0) return error; /* Set number of pages for normal priority queue. */ rtwn_write_2(sc, R92C_RQPN_NPQ, 0); rtwn_write_4(sc, R92C_RQPN, /* Set number of pages for public queue. */ SM(R92C_RQPN_PUBQ, R92C_PUBQ_NPAGES) | /* Set number of pages for high priority queue. */ SM(R92C_RQPN_HPQ, R92C_HPQ_NPAGES) | /* Set number of pages for low priority queue. */ SM(R92C_RQPN_LPQ, R92C_LPQ_NPAGES) | /* Load values. */ R92C_RQPN_LD); rtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, R92C_TX_PAGE_BOUNDARY); rtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, R92C_TX_PAGE_BOUNDARY); rtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, R92C_TX_PAGE_BOUNDARY); rtwn_write_1(sc, R92C_TRXFF_BNDY, R92C_TX_PAGE_BOUNDARY); rtwn_write_1(sc, R92C_TDECTRL + 1, R92C_TX_PAGE_BOUNDARY); reg = rtwn_read_2(sc, R92C_TRXDMA_CTRL); reg &= ~R92C_TRXDMA_CTRL_QMAP_M; reg |= 0xF771; rtwn_write_2(sc, R92C_TRXDMA_CTRL, reg); rtwn_write_4(sc, R92C_TCR, R92C_TCR_CFENDFORM | (1 << 12) | (1 << 13)); /* Configure Tx DMA. */ rtwn_write_4(sc, R92C_BKQ_DESA, sc->tx_ring[RTWN_BK_QUEUE].paddr); rtwn_write_4(sc, R92C_BEQ_DESA, sc->tx_ring[RTWN_BE_QUEUE].paddr); rtwn_write_4(sc, R92C_VIQ_DESA, sc->tx_ring[RTWN_VI_QUEUE].paddr); rtwn_write_4(sc, R92C_VOQ_DESA, sc->tx_ring[RTWN_VO_QUEUE].paddr); rtwn_write_4(sc, R92C_BCNQ_DESA, sc->tx_ring[RTWN_BEACON_QUEUE].paddr); rtwn_write_4(sc, R92C_MGQ_DESA, sc->tx_ring[RTWN_MGNT_QUEUE].paddr); rtwn_write_4(sc, R92C_HQ_DESA, sc->tx_ring[RTWN_HIGH_QUEUE].paddr); /* Configure Rx DMA. */ rtwn_write_4(sc, R92C_RX_DESA, sc->rx_ring.paddr); /* Set Tx/Rx transfer page boundary. */ rtwn_write_2(sc, R92C_TRXFF_BNDY + 2, 0x27ff); /* Set Tx/Rx transfer page size. */ rtwn_write_1(sc, R92C_PBP, SM(R92C_PBP_PSRX, R92C_PBP_128) | SM(R92C_PBP_PSTX, R92C_PBP_128)); return (0); } static void rtwn_mac_init(struct rtwn_softc *sc) { int i; /* Write MAC initialization values. */ for (i = 0; i < nitems(rtl8192ce_mac); i++) rtwn_write_1(sc, rtl8192ce_mac[i].reg, rtl8192ce_mac[i].val); } static void rtwn_bb_init(struct rtwn_softc *sc) { const struct rtwn_bb_prog *prog; uint32_t reg; int i; /* Enable BB and RF. */ rtwn_write_2(sc, R92C_SYS_FUNC_EN, rtwn_read_2(sc, R92C_SYS_FUNC_EN) | R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_DIO_RF); rtwn_write_2(sc, R92C_AFE_PLL_CTRL, 0xdb83); rtwn_write_1(sc, R92C_RF_CTRL, R92C_RF_CTRL_EN | R92C_RF_CTRL_RSTB | R92C_RF_CTRL_SDMRSTB); rtwn_write_1(sc, R92C_SYS_FUNC_EN, R92C_SYS_FUNC_EN_DIO_PCIE | R92C_SYS_FUNC_EN_PCIEA | R92C_SYS_FUNC_EN_PPLL | R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_BBRSTB); rtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 1, 0x80); rtwn_write_4(sc, R92C_LEDCFG0, rtwn_read_4(sc, R92C_LEDCFG0) | 0x00800000); /* Select BB programming. */ prog = (sc->chip & RTWN_CHIP_92C) ? &rtl8192ce_bb_prog_2t : &rtl8192ce_bb_prog_1t; /* Write BB initialization values. */ for (i = 0; i < prog->count; i++) { rtwn_bb_write(sc, prog->regs[i], prog->vals[i]); DELAY(1); } if (sc->chip & RTWN_CHIP_92C_1T2R) { /* 8192C 1T only configuration. */ reg = rtwn_bb_read(sc, R92C_FPGA0_TXINFO); reg = (reg & ~0x00000003) | 0x2; rtwn_bb_write(sc, R92C_FPGA0_TXINFO, reg); reg = rtwn_bb_read(sc, R92C_FPGA1_TXINFO); reg = (reg & ~0x00300033) | 0x00200022; rtwn_bb_write(sc, R92C_FPGA1_TXINFO, reg); reg = rtwn_bb_read(sc, R92C_CCK0_AFESETTING); reg = (reg & ~0xff000000) | 0x45 << 24; rtwn_bb_write(sc, R92C_CCK0_AFESETTING, reg); reg = rtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA); reg = (reg & ~0x000000ff) | 0x23; rtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, reg); reg = rtwn_bb_read(sc, R92C_OFDM0_AGCPARAM1); reg = (reg & ~0x00000030) | 1 << 4; rtwn_bb_write(sc, R92C_OFDM0_AGCPARAM1, reg); reg = rtwn_bb_read(sc, 0xe74); reg = (reg & ~0x0c000000) | 2 << 26; rtwn_bb_write(sc, 0xe74, reg); reg = rtwn_bb_read(sc, 0xe78); reg = (reg & ~0x0c000000) | 2 << 26; rtwn_bb_write(sc, 0xe78, reg); reg = rtwn_bb_read(sc, 0xe7c); reg = (reg & ~0x0c000000) | 2 << 26; rtwn_bb_write(sc, 0xe7c, reg); reg = rtwn_bb_read(sc, 0xe80); reg = (reg & ~0x0c000000) | 2 << 26; rtwn_bb_write(sc, 0xe80, reg); reg = rtwn_bb_read(sc, 0xe88); reg = (reg & ~0x0c000000) | 2 << 26; rtwn_bb_write(sc, 0xe88, reg); } /* Write AGC values. */ for (i = 0; i < prog->agccount; i++) { rtwn_bb_write(sc, R92C_OFDM0_AGCRSSITABLE, prog->agcvals[i]); DELAY(1); } if (rtwn_bb_read(sc, R92C_HSSI_PARAM2(0)) & R92C_HSSI_PARAM2_CCK_HIPWR) sc->sc_flags |= RTWN_FLAG_CCK_HIPWR; } static void rtwn_rf_init(struct rtwn_softc *sc) { const struct rtwn_rf_prog *prog; uint32_t reg, type; int i, j, idx, off; /* Select RF programming based on board type. */ if (!(sc->chip & RTWN_CHIP_92C)) { if (sc->board_type == R92C_BOARD_TYPE_MINICARD) prog = rtl8188ce_rf_prog; else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) prog = rtl8188ru_rf_prog; else prog = rtl8188cu_rf_prog; } else prog = rtl8192ce_rf_prog; for (i = 0; i < sc->nrxchains; i++) { /* Save RF_ENV control type. */ idx = i / 2; off = (i % 2) * 16; reg = rtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)); type = (reg >> off) & 0x10; /* Set RF_ENV enable. */ reg = rtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i)); reg |= 0x100000; rtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg); DELAY(1); /* Set RF_ENV output high. */ reg = rtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i)); reg |= 0x10; rtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg); DELAY(1); /* Set address and data lengths of RF registers. */ reg = rtwn_bb_read(sc, R92C_HSSI_PARAM2(i)); reg &= ~R92C_HSSI_PARAM2_ADDR_LENGTH; rtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg); DELAY(1); reg = rtwn_bb_read(sc, R92C_HSSI_PARAM2(i)); reg &= ~R92C_HSSI_PARAM2_DATA_LENGTH; rtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg); DELAY(1); /* Write RF initialization values for this chain. */ for (j = 0; j < prog[i].count; j++) { if (prog[i].regs[j] >= 0xf9 && prog[i].regs[j] <= 0xfe) { /* * These are fake RF registers offsets that * indicate a delay is required. */ DELAY(50); continue; } rtwn_rf_write(sc, i, prog[i].regs[j], prog[i].vals[j]); DELAY(1); } /* Restore RF_ENV control type. */ reg = rtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)); reg &= ~(0x10 << off) | (type << off); rtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(idx), reg); /* Cache RF register CHNLBW. */ sc->rf_chnlbw[i] = rtwn_rf_read(sc, i, R92C_RF_CHNLBW); } if ((sc->chip & (RTWN_CHIP_UMC_A_CUT | RTWN_CHIP_92C)) == RTWN_CHIP_UMC_A_CUT) { rtwn_rf_write(sc, 0, R92C_RF_RX_G1, 0x30255); rtwn_rf_write(sc, 0, R92C_RF_RX_G2, 0x50a00); } } static void rtwn_cam_init(struct rtwn_softc *sc) { /* Invalidate all CAM entries. */ rtwn_write_4(sc, R92C_CAMCMD, R92C_CAMCMD_POLLING | R92C_CAMCMD_CLR); } static void rtwn_pa_bias_init(struct rtwn_softc *sc) { uint8_t reg; int i; for (i = 0; i < sc->nrxchains; i++) { if (sc->pa_setting & (1 << i)) continue; rtwn_rf_write(sc, i, R92C_RF_IPA, 0x0f406); rtwn_rf_write(sc, i, R92C_RF_IPA, 0x4f406); rtwn_rf_write(sc, i, R92C_RF_IPA, 0x8f406); rtwn_rf_write(sc, i, R92C_RF_IPA, 0xcf406); } if (!(sc->pa_setting & 0x10)) { reg = rtwn_read_1(sc, 0x16); reg = (reg & ~0xf0) | 0x90; rtwn_write_1(sc, 0x16, reg); } } static void rtwn_rxfilter_init(struct rtwn_softc *sc) { /* Initialize Rx filter. */ /* TODO: use better filter for monitor mode. */ rtwn_write_4(sc, R92C_RCR, R92C_RCR_AAP | R92C_RCR_APM | R92C_RCR_AM | R92C_RCR_AB | R92C_RCR_APP_ICV | R92C_RCR_AMF | R92C_RCR_HTC_LOC_CTRL | R92C_RCR_APP_MIC | R92C_RCR_APP_PHYSTS); /* Accept all multicast frames. */ rtwn_write_4(sc, R92C_MAR + 0, 0xffffffff); rtwn_write_4(sc, R92C_MAR + 4, 0xffffffff); /* Accept all management frames. */ rtwn_write_2(sc, R92C_RXFLTMAP0, 0xffff); /* Reject all control frames. */ rtwn_write_2(sc, R92C_RXFLTMAP1, 0x0000); /* Accept all data frames. */ rtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff); } static void rtwn_edca_init(struct rtwn_softc *sc) { rtwn_write_2(sc, R92C_SPEC_SIFS, 0x1010); rtwn_write_2(sc, R92C_MAC_SPEC_SIFS, 0x1010); rtwn_write_2(sc, R92C_SIFS_CCK, 0x1010); rtwn_write_2(sc, R92C_SIFS_OFDM, 0x0e0e); rtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x005ea42b); rtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a44f); rtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005e4322); rtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002f3222); } static void rtwn_write_txpower(struct rtwn_softc *sc, int chain, uint16_t power[RTWN_RIDX_COUNT]) { uint32_t reg; /* Write per-CCK rate Tx power. */ if (chain == 0) { reg = rtwn_bb_read(sc, R92C_TXAGC_A_CCK1_MCS32); reg = RW(reg, R92C_TXAGC_A_CCK1, power[0]); rtwn_bb_write(sc, R92C_TXAGC_A_CCK1_MCS32, reg); reg = rtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11); reg = RW(reg, R92C_TXAGC_A_CCK2, power[1]); reg = RW(reg, R92C_TXAGC_A_CCK55, power[2]); reg = RW(reg, R92C_TXAGC_A_CCK11, power[3]); rtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg); } else { reg = rtwn_bb_read(sc, R92C_TXAGC_B_CCK1_55_MCS32); reg = RW(reg, R92C_TXAGC_B_CCK1, power[0]); reg = RW(reg, R92C_TXAGC_B_CCK2, power[1]); reg = RW(reg, R92C_TXAGC_B_CCK55, power[2]); rtwn_bb_write(sc, R92C_TXAGC_B_CCK1_55_MCS32, reg); reg = rtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11); reg = RW(reg, R92C_TXAGC_B_CCK11, power[3]); rtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg); } /* Write per-OFDM rate Tx power. */ rtwn_bb_write(sc, R92C_TXAGC_RATE18_06(chain), SM(R92C_TXAGC_RATE06, power[ 4]) | SM(R92C_TXAGC_RATE09, power[ 5]) | SM(R92C_TXAGC_RATE12, power[ 6]) | SM(R92C_TXAGC_RATE18, power[ 7])); rtwn_bb_write(sc, R92C_TXAGC_RATE54_24(chain), SM(R92C_TXAGC_RATE24, power[ 8]) | SM(R92C_TXAGC_RATE36, power[ 9]) | SM(R92C_TXAGC_RATE48, power[10]) | SM(R92C_TXAGC_RATE54, power[11])); /* Write per-MCS Tx power. */ rtwn_bb_write(sc, R92C_TXAGC_MCS03_MCS00(chain), SM(R92C_TXAGC_MCS00, power[12]) | SM(R92C_TXAGC_MCS01, power[13]) | SM(R92C_TXAGC_MCS02, power[14]) | SM(R92C_TXAGC_MCS03, power[15])); rtwn_bb_write(sc, R92C_TXAGC_MCS07_MCS04(chain), SM(R92C_TXAGC_MCS04, power[16]) | SM(R92C_TXAGC_MCS05, power[17]) | SM(R92C_TXAGC_MCS06, power[18]) | SM(R92C_TXAGC_MCS07, power[19])); rtwn_bb_write(sc, R92C_TXAGC_MCS11_MCS08(chain), SM(R92C_TXAGC_MCS08, power[20]) | SM(R92C_TXAGC_MCS09, power[21]) | SM(R92C_TXAGC_MCS10, power[22]) | SM(R92C_TXAGC_MCS11, power[23])); rtwn_bb_write(sc, R92C_TXAGC_MCS15_MCS12(chain), SM(R92C_TXAGC_MCS12, power[24]) | SM(R92C_TXAGC_MCS13, power[25]) | SM(R92C_TXAGC_MCS14, power[26]) | SM(R92C_TXAGC_MCS15, power[27])); } static void rtwn_get_txpower(struct rtwn_softc *sc, int chain, struct ieee80211_channel *c, struct ieee80211_channel *extc, uint16_t power[RTWN_RIDX_COUNT]) { struct ieee80211com *ic = &sc->sc_ic; struct r92c_rom *rom = &sc->rom; uint16_t cckpow, ofdmpow, htpow, diff, max; const struct rtwn_txpwr *base; int ridx, chan, group; /* Determine channel group. */ chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */ if (chan <= 3) group = 0; else if (chan <= 9) group = 1; else group = 2; /* Get original Tx power based on board type and RF chain. */ if (!(sc->chip & RTWN_CHIP_92C)) { if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) base = &rtl8188ru_txagc[chain]; else base = &rtl8192cu_txagc[chain]; } else base = &rtl8192cu_txagc[chain]; memset(power, 0, RTWN_RIDX_COUNT * sizeof(power[0])); if (sc->regulatory == 0) { for (ridx = 0; ridx <= 3; ridx++) power[ridx] = base->pwr[0][ridx]; } for (ridx = 4; ridx < RTWN_RIDX_COUNT; ridx++) { if (sc->regulatory == 3) { power[ridx] = base->pwr[0][ridx]; /* Apply vendor limits. */ if (extc != NULL) max = rom->ht40_max_pwr[group]; else max = rom->ht20_max_pwr[group]; max = (max >> (chain * 4)) & 0xf; if (power[ridx] > max) power[ridx] = max; } else if (sc->regulatory == 1) { if (extc == NULL) power[ridx] = base->pwr[group][ridx]; } else if (sc->regulatory != 2) power[ridx] = base->pwr[0][ridx]; } /* Compute per-CCK rate Tx power. */ cckpow = rom->cck_tx_pwr[chain][group]; for (ridx = 0; ridx <= 3; ridx++) { power[ridx] += cckpow; if (power[ridx] > R92C_MAX_TX_PWR) power[ridx] = R92C_MAX_TX_PWR; } htpow = rom->ht40_1s_tx_pwr[chain][group]; if (sc->ntxchains > 1) { /* Apply reduction for 2 spatial streams. */ diff = rom->ht40_2s_tx_pwr_diff[group]; diff = (diff >> (chain * 4)) & 0xf; htpow = (htpow > diff) ? htpow - diff : 0; } /* Compute per-OFDM rate Tx power. */ diff = rom->ofdm_tx_pwr_diff[group]; diff = (diff >> (chain * 4)) & 0xf; ofdmpow = htpow + diff; /* HT->OFDM correction. */ for (ridx = 4; ridx <= 11; ridx++) { power[ridx] += ofdmpow; if (power[ridx] > R92C_MAX_TX_PWR) power[ridx] = R92C_MAX_TX_PWR; } /* Compute per-MCS Tx power. */ if (extc == NULL) { diff = rom->ht20_tx_pwr_diff[group]; diff = (diff >> (chain * 4)) & 0xf; htpow += diff; /* HT40->HT20 correction. */ } for (ridx = 12; ridx <= 27; ridx++) { power[ridx] += htpow; if (power[ridx] > R92C_MAX_TX_PWR) power[ridx] = R92C_MAX_TX_PWR; } #ifdef RTWN_DEBUG if (sc->sc_debug >= 4) { /* Dump per-rate Tx power values. */ printf("Tx power for chain %d:\n", chain); for (ridx = 0; ridx < RTWN_RIDX_COUNT; ridx++) printf("Rate %d = %u\n", ridx, power[ridx]); } #endif } static void rtwn_set_txpower(struct rtwn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { uint16_t power[RTWN_RIDX_COUNT]; int i; for (i = 0; i < sc->ntxchains; i++) { /* Compute per-rate Tx power values. */ rtwn_get_txpower(sc, i, c, extc, power); /* Write per-rate Tx power values to hardware. */ rtwn_write_txpower(sc, i, power); } } static void rtwn_set_rx_bssid_all(struct rtwn_softc *sc, int enable) { uint32_t reg; reg = rtwn_read_4(sc, R92C_RCR); if (enable) reg &= ~R92C_RCR_CBSSID_BCN; else reg |= R92C_RCR_CBSSID_BCN; rtwn_write_4(sc, R92C_RCR, reg); } static void rtwn_set_gain(struct rtwn_softc *sc, uint8_t gain) { uint32_t reg; reg = rtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0)); reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, gain); rtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg); reg = rtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1)); reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, gain); rtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg); } static void rtwn_scan_start(struct ieee80211com *ic) { struct rtwn_softc *sc = ic->ic_softc; RTWN_LOCK(sc); /* Receive beacons / probe responses from any BSSID. */ rtwn_set_rx_bssid_all(sc, 1); /* Set gain for scanning. */ rtwn_set_gain(sc, 0x20); RTWN_UNLOCK(sc); } static void rtwn_scan_end(struct ieee80211com *ic) { struct rtwn_softc *sc = ic->ic_softc; RTWN_LOCK(sc); /* Restore limitations. */ rtwn_set_rx_bssid_all(sc, 0); /* Set gain under link. */ rtwn_set_gain(sc, 0x32); RTWN_UNLOCK(sc); } static void rtwn_set_channel(struct ieee80211com *ic) { struct rtwn_softc *sc = ic->ic_softc; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); RTWN_LOCK(sc); if (vap->iv_state == IEEE80211_S_SCAN) { /* Make link LED blink during scan. */ rtwn_set_led(sc, RTWN_LED_LINK, !sc->ledlink); } rtwn_set_chan(sc, ic->ic_curchan, NULL); RTWN_UNLOCK(sc); } static void rtwn_update_mcast(struct ieee80211com *ic) { /* XXX do nothing? */ } static void rtwn_set_chan(struct rtwn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { struct ieee80211com *ic = &sc->sc_ic; u_int chan; int i; chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */ if (chan == 0 || chan == IEEE80211_CHAN_ANY) { device_printf(sc->sc_dev, "%s: invalid channel %x\n", __func__, chan); return; } /* Set Tx power for this new channel. */ rtwn_set_txpower(sc, c, extc); for (i = 0; i < sc->nrxchains; i++) { rtwn_rf_write(sc, i, R92C_RF_CHNLBW, RW(sc->rf_chnlbw[i], R92C_RF_CHNLBW_CHNL, chan)); } #ifndef IEEE80211_NO_HT if (extc != NULL) { uint32_t reg; /* Is secondary channel below or above primary? */ int prichlo = c->ic_freq < extc->ic_freq; rtwn_write_1(sc, R92C_BWOPMODE, rtwn_read_1(sc, R92C_BWOPMODE) & ~R92C_BWOPMODE_20MHZ); reg = rtwn_read_1(sc, R92C_RRSR + 2); reg = (reg & ~0x6f) | (prichlo ? 1 : 2) << 5; rtwn_write_1(sc, R92C_RRSR + 2, reg); rtwn_bb_write(sc, R92C_FPGA0_RFMOD, rtwn_bb_read(sc, R92C_FPGA0_RFMOD) | R92C_RFMOD_40MHZ); rtwn_bb_write(sc, R92C_FPGA1_RFMOD, rtwn_bb_read(sc, R92C_FPGA1_RFMOD) | R92C_RFMOD_40MHZ); /* Set CCK side band. */ reg = rtwn_bb_read(sc, R92C_CCK0_SYSTEM); reg = (reg & ~0x00000010) | (prichlo ? 0 : 1) << 4; rtwn_bb_write(sc, R92C_CCK0_SYSTEM, reg); reg = rtwn_bb_read(sc, R92C_OFDM1_LSTF); reg = (reg & ~0x00000c00) | (prichlo ? 1 : 2) << 10; rtwn_bb_write(sc, R92C_OFDM1_LSTF, reg); rtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2, rtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) & ~R92C_FPGA0_ANAPARAM2_CBW20); reg = rtwn_bb_read(sc, 0x818); reg = (reg & ~0x0c000000) | (prichlo ? 2 : 1) << 26; rtwn_bb_write(sc, 0x818, reg); /* Select 40MHz bandwidth. */ rtwn_rf_write(sc, 0, R92C_RF_CHNLBW, (sc->rf_chnlbw[0] & ~0xfff) | chan); } else #endif { rtwn_write_1(sc, R92C_BWOPMODE, rtwn_read_1(sc, R92C_BWOPMODE) | R92C_BWOPMODE_20MHZ); rtwn_bb_write(sc, R92C_FPGA0_RFMOD, rtwn_bb_read(sc, R92C_FPGA0_RFMOD) & ~R92C_RFMOD_40MHZ); rtwn_bb_write(sc, R92C_FPGA1_RFMOD, rtwn_bb_read(sc, R92C_FPGA1_RFMOD) & ~R92C_RFMOD_40MHZ); rtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2, rtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) | R92C_FPGA0_ANAPARAM2_CBW20); /* Select 20MHz bandwidth. */ rtwn_rf_write(sc, 0, R92C_RF_CHNLBW, (sc->rf_chnlbw[0] & ~0xfff) | R92C_RF_CHNLBW_BW20 | chan); } } static int rtwn_iq_calib_chain(struct rtwn_softc *sc, int chain, uint16_t tx[2], uint16_t rx[2]) { uint32_t status; int offset = chain * 0x20; if (chain == 0) { /* IQ calibration for chain 0. */ /* IQ calibration settings for chain 0. */ rtwn_bb_write(sc, 0xe30, 0x10008c1f); rtwn_bb_write(sc, 0xe34, 0x10008c1f); rtwn_bb_write(sc, 0xe38, 0x82140102); if (sc->ntxchains > 1) { rtwn_bb_write(sc, 0xe3c, 0x28160202); /* 2T */ /* IQ calibration settings for chain 1. */ rtwn_bb_write(sc, 0xe50, 0x10008c22); rtwn_bb_write(sc, 0xe54, 0x10008c22); rtwn_bb_write(sc, 0xe58, 0x82140102); rtwn_bb_write(sc, 0xe5c, 0x28160202); } else rtwn_bb_write(sc, 0xe3c, 0x28160502); /* 1T */ /* LO calibration settings. */ rtwn_bb_write(sc, 0xe4c, 0x001028d1); /* We're doing LO and IQ calibration in one shot. */ rtwn_bb_write(sc, 0xe48, 0xf9000000); rtwn_bb_write(sc, 0xe48, 0xf8000000); } else { /* IQ calibration for chain 1. */ /* We're doing LO and IQ calibration in one shot. */ rtwn_bb_write(sc, 0xe60, 0x00000002); rtwn_bb_write(sc, 0xe60, 0x00000000); } /* Give LO and IQ calibrations the time to complete. */ DELAY(1000); /* Read IQ calibration status. */ status = rtwn_bb_read(sc, 0xeac); if (status & (1 << (28 + chain * 3))) return (0); /* Tx failed. */ /* Read Tx IQ calibration results. */ tx[0] = (rtwn_bb_read(sc, 0xe94 + offset) >> 16) & 0x3ff; tx[1] = (rtwn_bb_read(sc, 0xe9c + offset) >> 16) & 0x3ff; if (tx[0] == 0x142 || tx[1] == 0x042) return (0); /* Tx failed. */ if (status & (1 << (27 + chain * 3))) return (1); /* Rx failed. */ /* Read Rx IQ calibration results. */ rx[0] = (rtwn_bb_read(sc, 0xea4 + offset) >> 16) & 0x3ff; rx[1] = (rtwn_bb_read(sc, 0xeac + offset) >> 16) & 0x3ff; if (rx[0] == 0x132 || rx[1] == 0x036) return (1); /* Rx failed. */ return (3); /* Both Tx and Rx succeeded. */ } static void rtwn_iq_calib_run(struct rtwn_softc *sc, int n, uint16_t tx[2][2], uint16_t rx[2][2]) { /* Registers to save and restore during IQ calibration. */ struct iq_cal_regs { uint32_t adda[16]; uint8_t txpause; uint8_t bcn_ctrl; uint8_t ustime_tsf; uint32_t gpio_muxcfg; uint32_t ofdm0_trxpathena; uint32_t ofdm0_trmuxpar; uint32_t fpga0_rfifacesw1; } iq_cal_regs; static const uint16_t reg_adda[16] = { 0x85c, 0xe6c, 0xe70, 0xe74, 0xe78, 0xe7c, 0xe80, 0xe84, 0xe88, 0xe8c, 0xed0, 0xed4, 0xed8, 0xedc, 0xee0, 0xeec }; int i, chain; uint32_t hssi_param1; if (n == 0) { for (i = 0; i < nitems(reg_adda); i++) iq_cal_regs.adda[i] = rtwn_bb_read(sc, reg_adda[i]); iq_cal_regs.txpause = rtwn_read_1(sc, R92C_TXPAUSE); iq_cal_regs.bcn_ctrl = rtwn_read_1(sc, R92C_BCN_CTRL); iq_cal_regs.ustime_tsf = rtwn_read_1(sc, R92C_USTIME_TSF); iq_cal_regs.gpio_muxcfg = rtwn_read_4(sc, R92C_GPIO_MUXCFG); } if (sc->ntxchains == 1) { rtwn_bb_write(sc, reg_adda[0], 0x0b1b25a0); for (i = 1; i < nitems(reg_adda); i++) rtwn_bb_write(sc, reg_adda[i], 0x0bdb25a0); } else { for (i = 0; i < nitems(reg_adda); i++) rtwn_bb_write(sc, reg_adda[i], 0x04db25a4); } hssi_param1 = rtwn_bb_read(sc, R92C_HSSI_PARAM1(0)); if (!(hssi_param1 & R92C_HSSI_PARAM1_PI)) { rtwn_bb_write(sc, R92C_HSSI_PARAM1(0), hssi_param1 | R92C_HSSI_PARAM1_PI); rtwn_bb_write(sc, R92C_HSSI_PARAM1(1), hssi_param1 | R92C_HSSI_PARAM1_PI); } if (n == 0) { iq_cal_regs.ofdm0_trxpathena = rtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA); iq_cal_regs.ofdm0_trmuxpar = rtwn_bb_read(sc, R92C_OFDM0_TRMUXPAR); iq_cal_regs.fpga0_rfifacesw1 = rtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(1)); } rtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, 0x03a05600); rtwn_bb_write(sc, R92C_OFDM0_TRMUXPAR, 0x000800e4); rtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(1), 0x22204000); if (sc->ntxchains > 1) { rtwn_bb_write(sc, R92C_LSSI_PARAM(0), 0x00010000); rtwn_bb_write(sc, R92C_LSSI_PARAM(1), 0x00010000); } rtwn_write_1(sc, R92C_TXPAUSE, 0x3f); rtwn_write_1(sc, R92C_BCN_CTRL, iq_cal_regs.bcn_ctrl & ~(0x08)); rtwn_write_1(sc, R92C_USTIME_TSF, iq_cal_regs.ustime_tsf & ~(0x08)); rtwn_write_1(sc, R92C_GPIO_MUXCFG, iq_cal_regs.gpio_muxcfg & ~(0x20)); rtwn_bb_write(sc, 0x0b68, 0x00080000); if (sc->ntxchains > 1) rtwn_bb_write(sc, 0x0b6c, 0x00080000); rtwn_bb_write(sc, 0x0e28, 0x80800000); rtwn_bb_write(sc, 0x0e40, 0x01007c00); rtwn_bb_write(sc, 0x0e44, 0x01004800); rtwn_bb_write(sc, 0x0b68, 0x00080000); for (chain = 0; chain < sc->ntxchains; chain++) { if (chain > 0) { /* Put chain 0 on standby. */ rtwn_bb_write(sc, 0x0e28, 0x00); rtwn_bb_write(sc, R92C_LSSI_PARAM(0), 0x00010000); rtwn_bb_write(sc, 0x0e28, 0x80800000); /* Enable chain 1. */ for (i = 0; i < nitems(reg_adda); i++) rtwn_bb_write(sc, reg_adda[i], 0x0b1b25a4); } /* Run IQ calibration twice. */ for (i = 0; i < 2; i++) { int ret; ret = rtwn_iq_calib_chain(sc, chain, tx[chain], rx[chain]); if (ret == 0) { DPRINTF(("%s: chain %d: Tx failed.\n", __func__, chain)); tx[chain][0] = 0xff; tx[chain][1] = 0xff; rx[chain][0] = 0xff; rx[chain][1] = 0xff; } else if (ret == 1) { DPRINTF(("%s: chain %d: Rx failed.\n", __func__, chain)); rx[chain][0] = 0xff; rx[chain][1] = 0xff; } else if (ret == 3) { DPRINTF(("%s: chain %d: Both Tx and Rx " "succeeded.\n", __func__, chain)); } } DPRINTF(("%s: results for run %d chain %d: tx[0]=0x%x, " "tx[1]=0x%x rx[0]=0x%x rx[1]=0x%x\n", __func__, n, chain, tx[chain][0], tx[chain][1], rx[chain][0], rx[chain][1])); } rtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, iq_cal_regs.ofdm0_trxpathena); rtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(1), iq_cal_regs.fpga0_rfifacesw1); rtwn_bb_write(sc, R92C_OFDM0_TRMUXPAR, iq_cal_regs.ofdm0_trmuxpar); rtwn_bb_write(sc, 0x0e28, 0x00); rtwn_bb_write(sc, R92C_LSSI_PARAM(0), 0x00032ed3); if (sc->ntxchains > 1) rtwn_bb_write(sc, R92C_LSSI_PARAM(1), 0x00032ed3); if (n != 0) { if (!(hssi_param1 & R92C_HSSI_PARAM1_PI)) { rtwn_bb_write(sc, R92C_HSSI_PARAM1(0), hssi_param1); rtwn_bb_write(sc, R92C_HSSI_PARAM1(1), hssi_param1); } for (i = 0; i < nitems(reg_adda); i++) rtwn_bb_write(sc, reg_adda[i], iq_cal_regs.adda[i]); rtwn_write_1(sc, R92C_TXPAUSE, iq_cal_regs.txpause); rtwn_write_1(sc, R92C_BCN_CTRL, iq_cal_regs.bcn_ctrl); rtwn_write_1(sc, R92C_USTIME_TSF, iq_cal_regs.ustime_tsf); rtwn_write_4(sc, R92C_GPIO_MUXCFG, iq_cal_regs.gpio_muxcfg); } } #define RTWN_IQ_CAL_MAX_TOLERANCE 5 static int rtwn_iq_calib_compare_results(uint16_t tx1[2][2], uint16_t rx1[2][2], uint16_t tx2[2][2], uint16_t rx2[2][2], int ntxchains) { int chain, i, tx_ok[2], rx_ok[2]; tx_ok[0] = tx_ok[1] = rx_ok[0] = rx_ok[1] = 0; for (chain = 0; chain < ntxchains; chain++) { for (i = 0; i < 2; i++) { if (tx1[chain][i] == 0xff || tx2[chain][i] == 0xff || rx1[chain][i] == 0xff || rx2[chain][i] == 0xff) continue; tx_ok[chain] = (abs(tx1[chain][i] - tx2[chain][i]) <= RTWN_IQ_CAL_MAX_TOLERANCE); rx_ok[chain] = (abs(rx1[chain][i] - rx2[chain][i]) <= RTWN_IQ_CAL_MAX_TOLERANCE); } } if (ntxchains > 1) return (tx_ok[0] && tx_ok[1] && rx_ok[0] && rx_ok[1]); else return (tx_ok[0] && rx_ok[0]); } #undef RTWN_IQ_CAL_MAX_TOLERANCE static void rtwn_iq_calib_write_results(struct rtwn_softc *sc, uint16_t tx[2], uint16_t rx[2], int chain) { uint32_t reg, val, x; long y, tx_c; if (tx[0] == 0xff || tx[1] == 0xff) return; reg = rtwn_bb_read(sc, R92C_OFDM0_TXIQIMBALANCE(chain)); val = ((reg >> 22) & 0x3ff); x = tx[0]; if (x & 0x0200) x |= 0xfc00; reg = (((x * val) >> 8) & 0x3ff); rtwn_bb_write(sc, R92C_OFDM0_TXIQIMBALANCE(chain), reg); reg = rtwn_bb_read(sc, R92C_OFDM0_ECCATHRESHOLD); if (((x * val) >> 7) & 0x01) reg |= 0x80000000; else reg &= ~0x80000000; rtwn_bb_write(sc, R92C_OFDM0_ECCATHRESHOLD, reg); y = tx[1]; if (y & 0x00000200) y |= 0xfffffc00; tx_c = (y * val) >> 8; reg = rtwn_bb_read(sc, R92C_OFDM0_TXAFE(chain)); reg |= ((((tx_c & 0x3c0) >> 6) << 24) & 0xf0000000); rtwn_bb_write(sc, R92C_OFDM0_TXAFE(chain), reg); reg = rtwn_bb_read(sc, R92C_OFDM0_TXIQIMBALANCE(chain)); reg |= (((tx_c & 0x3f) << 16) & 0x003F0000); rtwn_bb_write(sc, R92C_OFDM0_TXIQIMBALANCE(chain), reg); reg = rtwn_bb_read(sc, R92C_OFDM0_ECCATHRESHOLD); if (((y * val) >> 7) & 0x01) reg |= 0x20000000; else reg &= ~0x20000000; rtwn_bb_write(sc, R92C_OFDM0_ECCATHRESHOLD, reg); if (rx[0] == 0xff || rx[1] == 0xff) return; reg = rtwn_bb_read(sc, R92C_OFDM0_RXIQIMBALANCE(chain)); reg |= (rx[0] & 0x3ff); rtwn_bb_write(sc, R92C_OFDM0_RXIQIMBALANCE(chain), reg); reg |= (((rx[1] & 0x03f) << 8) & 0xFC00); rtwn_bb_write(sc, R92C_OFDM0_RXIQIMBALANCE(chain), reg); if (chain == 0) { reg = rtwn_bb_read(sc, R92C_OFDM0_RXIQEXTANTA); reg |= (((rx[1] & 0xf) >> 6) & 0x000f); rtwn_bb_write(sc, R92C_OFDM0_RXIQEXTANTA, reg); } else { reg = rtwn_bb_read(sc, R92C_OFDM0_AGCRSSITABLE); reg |= ((((rx[1] & 0xf) >> 6) << 12) & 0xf000); rtwn_bb_write(sc, R92C_OFDM0_AGCRSSITABLE, reg); } } #define RTWN_IQ_CAL_NRUN 3 static void rtwn_iq_calib(struct rtwn_softc *sc) { uint16_t tx[RTWN_IQ_CAL_NRUN][2][2], rx[RTWN_IQ_CAL_NRUN][2][2]; int n, valid; valid = 0; for (n = 0; n < RTWN_IQ_CAL_NRUN; n++) { rtwn_iq_calib_run(sc, n, tx[n], rx[n]); if (n == 0) continue; /* Valid results remain stable after consecutive runs. */ valid = rtwn_iq_calib_compare_results(tx[n - 1], rx[n - 1], tx[n], rx[n], sc->ntxchains); if (valid) break; } if (valid) { rtwn_iq_calib_write_results(sc, tx[n][0], rx[n][0], 0); if (sc->ntxchains > 1) rtwn_iq_calib_write_results(sc, tx[n][1], rx[n][1], 1); } } #undef RTWN_IQ_CAL_NRUN static void rtwn_lc_calib(struct rtwn_softc *sc) { uint32_t rf_ac[2]; uint8_t txmode; int i; txmode = rtwn_read_1(sc, R92C_OFDM1_LSTF + 3); if ((txmode & 0x70) != 0) { /* Disable all continuous Tx. */ rtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode & ~0x70); /* Set RF mode to standby mode. */ for (i = 0; i < sc->nrxchains; i++) { rf_ac[i] = rtwn_rf_read(sc, i, R92C_RF_AC); rtwn_rf_write(sc, i, R92C_RF_AC, RW(rf_ac[i], R92C_RF_AC_MODE, R92C_RF_AC_MODE_STANDBY)); } } else { /* Block all Tx queues. */ rtwn_write_1(sc, R92C_TXPAUSE, 0xff); } /* Start calibration. */ rtwn_rf_write(sc, 0, R92C_RF_CHNLBW, rtwn_rf_read(sc, 0, R92C_RF_CHNLBW) | R92C_RF_CHNLBW_LCSTART); /* Give calibration the time to complete. */ DELAY(100); /* Restore configuration. */ if ((txmode & 0x70) != 0) { /* Restore Tx mode. */ rtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode); /* Restore RF mode. */ for (i = 0; i < sc->nrxchains; i++) rtwn_rf_write(sc, i, R92C_RF_AC, rf_ac[i]); } else { /* Unblock all Tx queues. */ rtwn_write_1(sc, R92C_TXPAUSE, 0x00); } } static void rtwn_temp_calib(struct rtwn_softc *sc) { int temp; if (sc->thcal_state == 0) { /* Start measuring temperature. */ rtwn_rf_write(sc, 0, R92C_RF_T_METER, 0x60); sc->thcal_state = 1; return; } sc->thcal_state = 0; /* Read measured temperature. */ temp = rtwn_rf_read(sc, 0, R92C_RF_T_METER) & 0x1f; if (temp == 0) /* Read failed, skip. */ return; DPRINTFN(2, ("temperature=%d\n", temp)); /* * Redo IQ and LC calibration if temperature changed significantly * since last calibration. */ if (sc->thcal_lctemp == 0) { /* First calibration is performed in rtwn_init(). */ sc->thcal_lctemp = temp; } else if (abs(temp - sc->thcal_lctemp) > 1) { DPRINTF(("IQ/LC calib triggered by temp: %d -> %d\n", sc->thcal_lctemp, temp)); rtwn_iq_calib(sc); rtwn_lc_calib(sc); /* Record temperature of last calibration. */ sc->thcal_lctemp = temp; } } static int rtwn_init(struct rtwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t reg; uint8_t macaddr[IEEE80211_ADDR_LEN]; int i, error; RTWN_LOCK(sc); if (sc->sc_flags & RTWN_RUNNING) { RTWN_UNLOCK(sc); return 0; } sc->sc_flags |= RTWN_RUNNING; /* Init firmware commands ring. */ sc->fwcur = 0; /* Power on adapter. */ error = rtwn_power_on(sc); if (error != 0) { device_printf(sc->sc_dev, "could not power on adapter\n"); goto fail; } /* Initialize DMA. */ error = rtwn_dma_init(sc); if (error != 0) { device_printf(sc->sc_dev, "could not initialize DMA\n"); goto fail; } /* Set info size in Rx descriptors (in 64-bit words). */ rtwn_write_1(sc, R92C_RX_DRVINFO_SZ, 4); /* Disable interrupts. */ rtwn_write_4(sc, R92C_HISR, 0x00000000); rtwn_write_4(sc, R92C_HIMR, 0x00000000); /* Set MAC address. */ IEEE80211_ADDR_COPY(macaddr, vap ? vap->iv_myaddr : ic->ic_macaddr); for (i = 0; i < IEEE80211_ADDR_LEN; i++) rtwn_write_1(sc, R92C_MACID + i, macaddr[i]); /* Set initial network type. */ reg = rtwn_read_4(sc, R92C_CR); reg = RW(reg, R92C_CR_NETTYPE, R92C_CR_NETTYPE_INFRA); rtwn_write_4(sc, R92C_CR, reg); rtwn_rxfilter_init(sc); reg = rtwn_read_4(sc, R92C_RRSR); reg = RW(reg, R92C_RRSR_RATE_BITMAP, R92C_RRSR_RATE_ALL); rtwn_write_4(sc, R92C_RRSR, reg); /* Set short/long retry limits. */ rtwn_write_2(sc, R92C_RL, SM(R92C_RL_SRL, 0x07) | SM(R92C_RL_LRL, 0x07)); /* Initialize EDCA parameters. */ rtwn_edca_init(sc); /* Set data and response automatic rate fallback retry counts. */ rtwn_write_4(sc, R92C_DARFRC + 0, 0x01000000); rtwn_write_4(sc, R92C_DARFRC + 4, 0x07060504); rtwn_write_4(sc, R92C_RARFRC + 0, 0x01000000); rtwn_write_4(sc, R92C_RARFRC + 4, 0x07060504); rtwn_write_2(sc, R92C_FWHW_TXQ_CTRL, 0x1f80); /* Set ACK timeout. */ rtwn_write_1(sc, R92C_ACKTO, 0x40); /* Initialize beacon parameters. */ rtwn_write_2(sc, R92C_TBTT_PROHIBIT, 0x6404); rtwn_write_1(sc, R92C_DRVERLYINT, 0x05); rtwn_write_1(sc, R92C_BCNDMATIM, 0x02); rtwn_write_2(sc, R92C_BCNTCFG, 0x660f); /* Setup AMPDU aggregation. */ rtwn_write_4(sc, R92C_AGGLEN_LMT, 0x99997631); /* MCS7~0 */ rtwn_write_1(sc, R92C_AGGR_BREAK_TIME, 0x16); rtwn_write_1(sc, R92C_BCN_MAX_ERR, 0xff); rtwn_write_1(sc, R92C_BCN_CTRL, R92C_BCN_CTRL_DIS_TSF_UDT0); rtwn_write_4(sc, R92C_PIFS, 0x1c); rtwn_write_4(sc, R92C_MCUTST_1, 0x0); /* Load 8051 microcode. */ error = rtwn_load_firmware(sc); if (error != 0) goto fail; /* Initialize MAC/BB/RF blocks. */ rtwn_mac_init(sc); rtwn_bb_init(sc); rtwn_rf_init(sc); /* Turn CCK and OFDM blocks on. */ reg = rtwn_bb_read(sc, R92C_FPGA0_RFMOD); reg |= R92C_RFMOD_CCK_EN; rtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg); reg = rtwn_bb_read(sc, R92C_FPGA0_RFMOD); reg |= R92C_RFMOD_OFDM_EN; rtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg); /* Clear per-station keys table. */ rtwn_cam_init(sc); /* Enable hardware sequence numbering. */ rtwn_write_1(sc, R92C_HWSEQ_CTRL, 0xff); /* Perform LO and IQ calibrations. */ rtwn_iq_calib(sc); /* Perform LC calibration. */ rtwn_lc_calib(sc); rtwn_pa_bias_init(sc); /* Initialize GPIO setting. */ rtwn_write_1(sc, R92C_GPIO_MUXCFG, rtwn_read_1(sc, R92C_GPIO_MUXCFG) & ~R92C_GPIO_MUXCFG_ENBT); /* Fix for lower temperature. */ rtwn_write_1(sc, 0x15, 0xe9); /* CLear pending interrupts. */ rtwn_write_4(sc, R92C_HISR, 0xffffffff); /* Enable interrupts. */ rtwn_write_4(sc, R92C_HIMR, RTWN_INT_ENABLE); callout_reset(&sc->watchdog_to, hz, rtwn_watchdog, sc); fail: if (error != 0) rtwn_stop_locked(sc); RTWN_UNLOCK(sc); return error; } static void rtwn_stop_locked(struct rtwn_softc *sc) { uint16_t reg; int i; RTWN_LOCK_ASSERT(sc); if (!(sc->sc_flags & RTWN_RUNNING)) return; sc->sc_tx_timer = 0; callout_stop(&sc->watchdog_to); callout_stop(&sc->calib_to); sc->sc_flags &= ~RTWN_RUNNING; /* Disable interrupts. */ rtwn_write_4(sc, R92C_HISR, 0x00000000); rtwn_write_4(sc, R92C_HIMR, 0x00000000); /* Stop hardware. */ rtwn_write_1(sc, R92C_TXPAUSE, 0xff); rtwn_write_1(sc, R92C_RF_CTRL, 0x00); reg = rtwn_read_1(sc, R92C_SYS_FUNC_EN); reg |= R92C_SYS_FUNC_EN_BB_GLB_RST; rtwn_write_1(sc, R92C_SYS_FUNC_EN, reg); reg &= ~R92C_SYS_FUNC_EN_BB_GLB_RST; rtwn_write_1(sc, R92C_SYS_FUNC_EN, reg); reg = rtwn_read_2(sc, R92C_CR); reg &= ~(R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN | R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN | R92C_CR_SCHEDULE_EN | R92C_CR_MACTXEN | R92C_CR_MACRXEN | R92C_CR_ENSEC); rtwn_write_2(sc, R92C_CR, reg); if (rtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RAM_DL_SEL) rtwn_fw_reset(sc); /* TODO: linux does additional btcoex stuff here */ rtwn_write_2(sc, R92C_AFE_PLL_CTRL, 0x80); /* linux magic number */ rtwn_write_1(sc, R92C_SPS0_CTRL, 0x23); /* ditto */ rtwn_write_1(sc, R92C_AFE_XTAL_CTRL, 0x0e); /* different with btcoex */ rtwn_write_1(sc, R92C_RSV_CTRL, 0x0e); rtwn_write_1(sc, R92C_APS_FSMCO, R92C_APS_FSMCO_PDN_EN); for (i = 0; i < RTWN_NTXQUEUES; i++) rtwn_reset_tx_list(sc, i); rtwn_reset_rx_list(sc); } static void rtwn_stop(struct rtwn_softc *sc) { RTWN_LOCK(sc); rtwn_stop_locked(sc); RTWN_UNLOCK(sc); } static void rtwn_intr(void *arg) { struct rtwn_softc *sc = arg; uint32_t status; int i; RTWN_LOCK(sc); status = rtwn_read_4(sc, R92C_HISR); if (status == 0 || status == 0xffffffff) { RTWN_UNLOCK(sc); return; } /* Disable interrupts. */ rtwn_write_4(sc, R92C_HIMR, 0x00000000); /* Ack interrupts. */ rtwn_write_4(sc, R92C_HISR, status); /* Vendor driver treats RX errors like ROK... */ if (status & (R92C_IMR_ROK | R92C_IMR_RXFOVW | R92C_IMR_RDU)) { bus_dmamap_sync(sc->rx_ring.desc_dmat, sc->rx_ring.desc_map, BUS_DMASYNC_POSTREAD); for (i = 0; i < RTWN_RX_LIST_COUNT; i++) { struct r92c_rx_desc *rx_desc = &sc->rx_ring.desc[i]; struct rtwn_rx_data *rx_data = &sc->rx_ring.rx_data[i]; if (le32toh(rx_desc->rxdw0) & R92C_RXDW0_OWN) continue; rtwn_rx_frame(sc, rx_desc, rx_data, i); } } if (status & R92C_IMR_BDOK) rtwn_tx_done(sc, RTWN_BEACON_QUEUE); if (status & R92C_IMR_HIGHDOK) rtwn_tx_done(sc, RTWN_HIGH_QUEUE); if (status & R92C_IMR_MGNTDOK) rtwn_tx_done(sc, RTWN_MGNT_QUEUE); if (status & R92C_IMR_BKDOK) rtwn_tx_done(sc, RTWN_BK_QUEUE); if (status & R92C_IMR_BEDOK) rtwn_tx_done(sc, RTWN_BE_QUEUE); if (status & R92C_IMR_VIDOK) rtwn_tx_done(sc, RTWN_VI_QUEUE); if (status & R92C_IMR_VODOK) rtwn_tx_done(sc, RTWN_VO_QUEUE); /* Enable interrupts. */ rtwn_write_4(sc, R92C_HIMR, RTWN_INT_ENABLE); RTWN_UNLOCK(sc); } Index: head/sys/dev/urtwn/if_urtwn.c =================================================================== --- head/sys/dev/urtwn/if_urtwn.c (revision 298817) +++ head/sys/dev/urtwn/if_urtwn.c (revision 298818) @@ -1,5494 +1,5494 @@ /* $OpenBSD: if_urtwn.c,v 1.16 2011/02/10 17:26:40 jakemsr Exp $ */ /*- * Copyright (c) 2010 Damien Bergamini * Copyright (c) 2014 Kevin Lo * Copyright (c) 2015 Andriy Voskoboinyk * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /* * Driver for Realtek RTL8188CE-VAU/RTL8188CUS/RTL8188EU/RTL8188RU/RTL8192CU. */ #include "opt_wlan.h" #include "opt_urtwn.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IEEE80211_SUPPORT_SUPERG #include #endif #include #include #include #include "usbdevs.h" #include #include #include #ifdef USB_DEBUG enum { URTWN_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ URTWN_DEBUG_RECV = 0x00000002, /* basic recv operation */ URTWN_DEBUG_STATE = 0x00000004, /* 802.11 state transitions */ URTWN_DEBUG_RA = 0x00000008, /* f/w rate adaptation setup */ URTWN_DEBUG_USB = 0x00000010, /* usb requests */ URTWN_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ URTWN_DEBUG_BEACON = 0x00000040, /* beacon handling */ URTWN_DEBUG_INTR = 0x00000080, /* ISR */ URTWN_DEBUG_TEMP = 0x00000100, /* temperature calibration */ URTWN_DEBUG_ROM = 0x00000200, /* various ROM info */ URTWN_DEBUG_KEY = 0x00000400, /* crypto keys management */ URTWN_DEBUG_TXPWR = 0x00000800, /* dump Tx power values */ URTWN_DEBUG_RSSI = 0x00001000, /* dump RSSI lookups */ URTWN_DEBUG_ANY = 0xffffffff }; #define URTWN_DPRINTF(_sc, _m, ...) do { \ if ((_sc)->sc_debug & (_m)) \ device_printf((_sc)->sc_dev, __VA_ARGS__); \ } while(0) #else #define URTWN_DPRINTF(_sc, _m, ...) do { (void) sc; } while (0) #endif #define IEEE80211_HAS_ADDR4(wh) IEEE80211_IS_DSTODS(wh) static int urtwn_enable_11n = 1; TUNABLE_INT("hw.usb.urtwn.enable_11n", &urtwn_enable_11n); /* various supported device vendors/products */ static const STRUCT_USB_HOST_ID urtwn_devs[] = { #define URTWN_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } #define URTWN_RTL8188E_DEV(v,p) \ { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, URTWN_RTL8188E) } #define URTWN_RTL8188E 1 URTWN_DEV(ABOCOM, RTL8188CU_1), URTWN_DEV(ABOCOM, RTL8188CU_2), URTWN_DEV(ABOCOM, RTL8192CU), URTWN_DEV(ASUS, RTL8192CU), URTWN_DEV(ASUS, USBN10NANO), URTWN_DEV(AZUREWAVE, RTL8188CE_1), URTWN_DEV(AZUREWAVE, RTL8188CE_2), URTWN_DEV(AZUREWAVE, RTL8188CU), URTWN_DEV(BELKIN, F7D2102), URTWN_DEV(BELKIN, RTL8188CU), URTWN_DEV(BELKIN, RTL8192CU), URTWN_DEV(CHICONY, RTL8188CUS_1), URTWN_DEV(CHICONY, RTL8188CUS_2), URTWN_DEV(CHICONY, RTL8188CUS_3), URTWN_DEV(CHICONY, RTL8188CUS_4), URTWN_DEV(CHICONY, RTL8188CUS_5), URTWN_DEV(COREGA, RTL8192CU), URTWN_DEV(DLINK, RTL8188CU), URTWN_DEV(DLINK, RTL8192CU_1), URTWN_DEV(DLINK, RTL8192CU_2), URTWN_DEV(DLINK, RTL8192CU_3), URTWN_DEV(DLINK, DWA131B), URTWN_DEV(EDIMAX, EW7811UN), URTWN_DEV(EDIMAX, RTL8192CU), URTWN_DEV(FEIXUN, RTL8188CU), URTWN_DEV(FEIXUN, RTL8192CU), URTWN_DEV(GUILLEMOT, HWNUP150), URTWN_DEV(HAWKING, RTL8192CU), URTWN_DEV(HP3, RTL8188CU), URTWN_DEV(NETGEAR, WNA1000M), URTWN_DEV(NETGEAR, RTL8192CU), URTWN_DEV(NETGEAR4, RTL8188CU), URTWN_DEV(NOVATECH, RTL8188CU), URTWN_DEV(PLANEX2, RTL8188CU_1), URTWN_DEV(PLANEX2, RTL8188CU_2), URTWN_DEV(PLANEX2, RTL8188CU_3), URTWN_DEV(PLANEX2, RTL8188CU_4), URTWN_DEV(PLANEX2, RTL8188CUS), URTWN_DEV(PLANEX2, RTL8192CU), URTWN_DEV(REALTEK, RTL8188CE_0), URTWN_DEV(REALTEK, RTL8188CE_1), URTWN_DEV(REALTEK, RTL8188CTV), URTWN_DEV(REALTEK, RTL8188CU_0), URTWN_DEV(REALTEK, RTL8188CU_1), URTWN_DEV(REALTEK, RTL8188CU_2), URTWN_DEV(REALTEK, RTL8188CU_3), URTWN_DEV(REALTEK, RTL8188CU_COMBO), URTWN_DEV(REALTEK, RTL8188CUS), URTWN_DEV(REALTEK, RTL8188RU_1), URTWN_DEV(REALTEK, RTL8188RU_2), URTWN_DEV(REALTEK, RTL8188RU_3), URTWN_DEV(REALTEK, RTL8191CU), URTWN_DEV(REALTEK, RTL8192CE), URTWN_DEV(REALTEK, RTL8192CU), URTWN_DEV(SITECOMEU, RTL8188CU_1), URTWN_DEV(SITECOMEU, RTL8188CU_2), URTWN_DEV(SITECOMEU, RTL8192CU), URTWN_DEV(TRENDNET, RTL8188CU), URTWN_DEV(TRENDNET, RTL8192CU), URTWN_DEV(ZYXEL, RTL8192CU), /* URTWN_RTL8188E */ URTWN_RTL8188E_DEV(ABOCOM, RTL8188EU), URTWN_RTL8188E_DEV(DLINK, DWA123D1), URTWN_RTL8188E_DEV(DLINK, DWA125D1), URTWN_RTL8188E_DEV(ELECOM, WDC150SU2M), URTWN_RTL8188E_DEV(REALTEK, RTL8188ETV), URTWN_RTL8188E_DEV(REALTEK, RTL8188EU), #undef URTWN_RTL8188E_DEV #undef URTWN_DEV }; static device_probe_t urtwn_match; static device_attach_t urtwn_attach; static device_detach_t urtwn_detach; static usb_callback_t urtwn_bulk_tx_callback; static usb_callback_t urtwn_bulk_rx_callback; static void urtwn_sysctlattach(struct urtwn_softc *); static void urtwn_drain_mbufq(struct urtwn_softc *); static usb_error_t urtwn_do_request(struct urtwn_softc *, struct usb_device_request *, void *); static struct ieee80211vap *urtwn_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void urtwn_vap_delete(struct ieee80211vap *); static struct mbuf * urtwn_rx_copy_to_mbuf(struct urtwn_softc *, struct r92c_rx_stat *, int); static struct mbuf * urtwn_report_intr(struct usb_xfer *, struct urtwn_data *); static struct mbuf * urtwn_rxeof(struct urtwn_softc *, uint8_t *, int); static void urtwn_r88e_ratectl_tx_complete(struct urtwn_softc *, void *); static struct ieee80211_node *urtwn_rx_frame(struct urtwn_softc *, struct mbuf *, int8_t *); static void urtwn_txeof(struct urtwn_softc *, struct urtwn_data *, int); static int urtwn_alloc_list(struct urtwn_softc *, struct urtwn_data[], int, int); static int urtwn_alloc_rx_list(struct urtwn_softc *); static int urtwn_alloc_tx_list(struct urtwn_softc *); static void urtwn_free_list(struct urtwn_softc *, struct urtwn_data data[], int); static void urtwn_free_rx_list(struct urtwn_softc *); static void urtwn_free_tx_list(struct urtwn_softc *); static struct urtwn_data * _urtwn_getbuf(struct urtwn_softc *); static struct urtwn_data * urtwn_getbuf(struct urtwn_softc *); static usb_error_t urtwn_write_region_1(struct urtwn_softc *, uint16_t, uint8_t *, int); static usb_error_t urtwn_write_1(struct urtwn_softc *, uint16_t, uint8_t); static usb_error_t urtwn_write_2(struct urtwn_softc *, uint16_t, uint16_t); static usb_error_t urtwn_write_4(struct urtwn_softc *, uint16_t, uint32_t); static usb_error_t urtwn_read_region_1(struct urtwn_softc *, uint16_t, uint8_t *, int); static uint8_t urtwn_read_1(struct urtwn_softc *, uint16_t); static uint16_t urtwn_read_2(struct urtwn_softc *, uint16_t); static uint32_t urtwn_read_4(struct urtwn_softc *, uint16_t); static int urtwn_fw_cmd(struct urtwn_softc *, uint8_t, const void *, int); static void urtwn_cmdq_cb(void *, int); static int urtwn_cmd_sleepable(struct urtwn_softc *, const void *, size_t, CMD_FUNC_PROTO); static void urtwn_r92c_rf_write(struct urtwn_softc *, int, uint8_t, uint32_t); static void urtwn_r88e_rf_write(struct urtwn_softc *, int, uint8_t, uint32_t); static uint32_t urtwn_rf_read(struct urtwn_softc *, int, uint8_t); static int urtwn_llt_write(struct urtwn_softc *, uint32_t, uint32_t); static int urtwn_efuse_read_next(struct urtwn_softc *, uint8_t *); static int urtwn_efuse_read_data(struct urtwn_softc *, uint8_t *, uint8_t, uint8_t); #ifdef USB_DEBUG static void urtwn_dump_rom_contents(struct urtwn_softc *, uint8_t *, uint16_t); #endif static int urtwn_efuse_read(struct urtwn_softc *, uint8_t *, uint16_t); static int urtwn_efuse_switch_power(struct urtwn_softc *); static int urtwn_read_chipid(struct urtwn_softc *); static int urtwn_read_rom(struct urtwn_softc *); static int urtwn_r88e_read_rom(struct urtwn_softc *); static int urtwn_ra_init(struct urtwn_softc *); static void urtwn_init_beacon(struct urtwn_softc *, struct urtwn_vap *); static int urtwn_setup_beacon(struct urtwn_softc *, struct ieee80211_node *); static void urtwn_update_beacon(struct ieee80211vap *, int); static int urtwn_tx_beacon(struct urtwn_softc *sc, struct urtwn_vap *); static int urtwn_key_alloc(struct ieee80211vap *, struct ieee80211_key *, ieee80211_keyix *, ieee80211_keyix *); static void urtwn_key_set_cb(struct urtwn_softc *, union sec_param *); static void urtwn_key_del_cb(struct urtwn_softc *, union sec_param *); static int urtwn_key_set(struct ieee80211vap *, const struct ieee80211_key *); static int urtwn_key_delete(struct ieee80211vap *, const struct ieee80211_key *); static void urtwn_tsf_task_adhoc(void *, int); static void urtwn_tsf_sync_enable(struct urtwn_softc *, struct ieee80211vap *); static void urtwn_get_tsf(struct urtwn_softc *, uint64_t *); static void urtwn_set_led(struct urtwn_softc *, int, int); static void urtwn_set_mode(struct urtwn_softc *, uint8_t); static void urtwn_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int, const struct ieee80211_rx_stats *, int, int); static int urtwn_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void urtwn_calib_to(void *); static void urtwn_calib_cb(struct urtwn_softc *, union sec_param *); static void urtwn_watchdog(void *); static void urtwn_update_avgrssi(struct urtwn_softc *, int, int8_t); static int8_t urtwn_get_rssi(struct urtwn_softc *, int, void *); static int8_t urtwn_r88e_get_rssi(struct urtwn_softc *, int, void *); static int urtwn_tx_data(struct urtwn_softc *, struct ieee80211_node *, struct mbuf *, struct urtwn_data *); static int urtwn_tx_raw(struct urtwn_softc *, struct ieee80211_node *, struct mbuf *, struct urtwn_data *, const struct ieee80211_bpf_params *); static void urtwn_tx_start(struct urtwn_softc *, struct mbuf *, uint8_t, struct urtwn_data *); static int urtwn_transmit(struct ieee80211com *, struct mbuf *); static void urtwn_start(struct urtwn_softc *); static void urtwn_parent(struct ieee80211com *); static int urtwn_r92c_power_on(struct urtwn_softc *); static int urtwn_r88e_power_on(struct urtwn_softc *); static void urtwn_r92c_power_off(struct urtwn_softc *); static void urtwn_r88e_power_off(struct urtwn_softc *); static int urtwn_llt_init(struct urtwn_softc *); #ifndef URTWN_WITHOUT_UCODE static void urtwn_fw_reset(struct urtwn_softc *); static void urtwn_r88e_fw_reset(struct urtwn_softc *); static int urtwn_fw_loadpage(struct urtwn_softc *, int, const uint8_t *, int); static int urtwn_load_firmware(struct urtwn_softc *); #endif static int urtwn_dma_init(struct urtwn_softc *); static int urtwn_mac_init(struct urtwn_softc *); static void urtwn_bb_init(struct urtwn_softc *); static void urtwn_rf_init(struct urtwn_softc *); static void urtwn_cam_init(struct urtwn_softc *); static int urtwn_cam_write(struct urtwn_softc *, uint32_t, uint32_t); static void urtwn_pa_bias_init(struct urtwn_softc *); static void urtwn_rxfilter_init(struct urtwn_softc *); static void urtwn_edca_init(struct urtwn_softc *); static void urtwn_write_txpower(struct urtwn_softc *, int, uint16_t[]); static void urtwn_get_txpower(struct urtwn_softc *, int, struct ieee80211_channel *, struct ieee80211_channel *, uint16_t[]); static void urtwn_r88e_get_txpower(struct urtwn_softc *, int, struct ieee80211_channel *, struct ieee80211_channel *, uint16_t[]); static void urtwn_set_txpower(struct urtwn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); static void urtwn_set_rx_bssid_all(struct urtwn_softc *, int); static void urtwn_set_gain(struct urtwn_softc *, uint8_t); static void urtwn_scan_start(struct ieee80211com *); static void urtwn_scan_end(struct ieee80211com *); static void urtwn_set_channel(struct ieee80211com *); static int urtwn_wme_update(struct ieee80211com *); static void urtwn_update_slot(struct ieee80211com *); static void urtwn_update_slot_cb(struct urtwn_softc *, union sec_param *); static void urtwn_update_aifs(struct urtwn_softc *, uint8_t); static void urtwn_set_promisc(struct urtwn_softc *); static void urtwn_update_promisc(struct ieee80211com *); static void urtwn_update_mcast(struct ieee80211com *); static struct ieee80211_node *urtwn_node_alloc(struct ieee80211vap *, const uint8_t mac[IEEE80211_ADDR_LEN]); static void urtwn_newassoc(struct ieee80211_node *, int); static void urtwn_node_free(struct ieee80211_node *); static void urtwn_set_chan(struct urtwn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); static void urtwn_iq_calib(struct urtwn_softc *); static void urtwn_lc_calib(struct urtwn_softc *); static void urtwn_temp_calib(struct urtwn_softc *); static int urtwn_init(struct urtwn_softc *); static void urtwn_stop(struct urtwn_softc *); static void urtwn_abort_xfers(struct urtwn_softc *); static int urtwn_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void urtwn_ms_delay(struct urtwn_softc *); /* Aliases. */ #define urtwn_bb_write urtwn_write_4 #define urtwn_bb_read urtwn_read_4 static const struct usb_config urtwn_config[URTWN_N_TRANSFER] = { [URTWN_BULK_RX] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = URTWN_RXBUFSZ, .flags = { .pipe_bof = 1, .short_xfer_ok = 1 }, .callback = urtwn_bulk_rx_callback, }, [URTWN_BULK_TX_BE] = { .type = UE_BULK, .endpoint = 0x03, .direction = UE_DIR_OUT, .bufsize = URTWN_TXBUFSZ, .flags = { .ext_buffer = 1, .pipe_bof = 1, .force_short_xfer = 1 }, .callback = urtwn_bulk_tx_callback, .timeout = URTWN_TX_TIMEOUT, /* ms */ }, [URTWN_BULK_TX_BK] = { .type = UE_BULK, .endpoint = 0x03, .direction = UE_DIR_OUT, .bufsize = URTWN_TXBUFSZ, .flags = { .ext_buffer = 1, .pipe_bof = 1, .force_short_xfer = 1, }, .callback = urtwn_bulk_tx_callback, .timeout = URTWN_TX_TIMEOUT, /* ms */ }, [URTWN_BULK_TX_VI] = { .type = UE_BULK, .endpoint = 0x02, .direction = UE_DIR_OUT, .bufsize = URTWN_TXBUFSZ, .flags = { .ext_buffer = 1, .pipe_bof = 1, .force_short_xfer = 1 }, .callback = urtwn_bulk_tx_callback, .timeout = URTWN_TX_TIMEOUT, /* ms */ }, [URTWN_BULK_TX_VO] = { .type = UE_BULK, .endpoint = 0x02, .direction = UE_DIR_OUT, .bufsize = URTWN_TXBUFSZ, .flags = { .ext_buffer = 1, .pipe_bof = 1, .force_short_xfer = 1 }, .callback = urtwn_bulk_tx_callback, .timeout = URTWN_TX_TIMEOUT, /* ms */ }, }; static const struct wme_to_queue { uint16_t reg; uint8_t qid; } wme2queue[WME_NUM_AC] = { { R92C_EDCA_BE_PARAM, URTWN_BULK_TX_BE}, { R92C_EDCA_BK_PARAM, URTWN_BULK_TX_BK}, { R92C_EDCA_VI_PARAM, URTWN_BULK_TX_VI}, { R92C_EDCA_VO_PARAM, URTWN_BULK_TX_VO} }; static int urtwn_match(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != URTWN_CONFIG_INDEX) return (ENXIO); if (uaa->info.bIfaceIndex != URTWN_IFACE_INDEX) return (ENXIO); return (usbd_lookup_id_by_uaa(urtwn_devs, sizeof(urtwn_devs), uaa)); } static void urtwn_update_chw(struct ieee80211com *ic) { } static int urtwn_ampdu_enable(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) { /* We're driving this ourselves (eventually); don't involve net80211 */ return (0); } static int urtwn_attach(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); struct urtwn_softc *sc = device_get_softc(self); struct ieee80211com *ic = &sc->sc_ic; - uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)]; + uint8_t bands[IEEE80211_MODE_BYTES]; int error; device_set_usb_desc(self); sc->sc_udev = uaa->device; sc->sc_dev = self; if (USB_GET_DRIVER_INFO(uaa) == URTWN_RTL8188E) sc->chip |= URTWN_CHIP_88E; #ifdef USB_DEBUG int debug; if (resource_int_value(device_get_name(sc->sc_dev), device_get_unit(sc->sc_dev), "debug", &debug) == 0) sc->sc_debug = debug; #endif mtx_init(&sc->sc_mtx, device_get_nameunit(self), MTX_NETWORK_LOCK, MTX_DEF); URTWN_CMDQ_LOCK_INIT(sc); URTWN_NT_LOCK_INIT(sc); callout_init(&sc->sc_calib_to, 0); callout_init(&sc->sc_watchdog_ch, 0); mbufq_init(&sc->sc_snd, ifqmaxlen); sc->sc_iface_index = URTWN_IFACE_INDEX; error = usbd_transfer_setup(uaa->device, &sc->sc_iface_index, sc->sc_xfer, urtwn_config, URTWN_N_TRANSFER, sc, &sc->sc_mtx); if (error) { device_printf(self, "could not allocate USB transfers, " "err=%s\n", usbd_errstr(error)); goto detach; } URTWN_LOCK(sc); error = urtwn_read_chipid(sc); if (error) { device_printf(sc->sc_dev, "unsupported test chip\n"); URTWN_UNLOCK(sc); goto detach; } /* Determine number of Tx/Rx chains. */ if (sc->chip & URTWN_CHIP_92C) { sc->ntxchains = (sc->chip & URTWN_CHIP_92C_1T2R) ? 1 : 2; sc->nrxchains = 2; } else { sc->ntxchains = 1; sc->nrxchains = 1; } if (sc->chip & URTWN_CHIP_88E) error = urtwn_r88e_read_rom(sc); else error = urtwn_read_rom(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: cannot read rom, error %d\n", __func__, error); URTWN_UNLOCK(sc); goto detach; } device_printf(sc->sc_dev, "MAC/BB RTL%s, RF 6052 %dT%dR\n", (sc->chip & URTWN_CHIP_92C) ? "8192CU" : (sc->chip & URTWN_CHIP_88E) ? "8188EU" : (sc->board_type == R92C_BOARD_TYPE_HIGHPA) ? "8188RU" : (sc->board_type == R92C_BOARD_TYPE_MINICARD) ? "8188CE-VAU" : "8188CUS", sc->ntxchains, sc->nrxchains); URTWN_UNLOCK(sc); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(self); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode */ | IEEE80211_C_MONITOR /* monitor mode */ | IEEE80211_C_IBSS /* adhoc mode */ | IEEE80211_C_HOSTAP /* hostap mode */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ #if 0 | IEEE80211_C_BGSCAN /* capable of bg scanning */ #endif | IEEE80211_C_WPA /* 802.11i */ | IEEE80211_C_WME /* 802.11e */ | IEEE80211_C_SWAMSDUTX /* Do software A-MSDU TX */ | IEEE80211_C_FF /* Atheros fast-frames */ ; ic->ic_cryptocaps = IEEE80211_CRYPTO_WEP | IEEE80211_CRYPTO_TKIP | IEEE80211_CRYPTO_AES_CCM; /* Assume they're all 11n capable for now */ if (urtwn_enable_11n) { device_printf(self, "enabling 11n\n"); ic->ic_htcaps = IEEE80211_HTC_HT | #if 0 IEEE80211_HTC_AMPDU | #endif IEEE80211_HTC_AMSDU | IEEE80211_HTCAP_MAXAMSDU_3839 | IEEE80211_HTCAP_SMPS_OFF; /* no HT40 just yet */ // ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40; /* XXX TODO: verify chains versus streams for urtwn */ ic->ic_txstream = sc->ntxchains; ic->ic_rxstream = sc->nrxchains; } memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); if (urtwn_enable_11n) setbit(bands, IEEE80211_MODE_11NG); ieee80211_init_channels(ic, NULL, bands); ieee80211_ifattach(ic); ic->ic_raw_xmit = urtwn_raw_xmit; ic->ic_scan_start = urtwn_scan_start; ic->ic_scan_end = urtwn_scan_end; ic->ic_set_channel = urtwn_set_channel; ic->ic_transmit = urtwn_transmit; ic->ic_parent = urtwn_parent; ic->ic_vap_create = urtwn_vap_create; ic->ic_vap_delete = urtwn_vap_delete; ic->ic_wme.wme_update = urtwn_wme_update; ic->ic_updateslot = urtwn_update_slot; ic->ic_update_promisc = urtwn_update_promisc; ic->ic_update_mcast = urtwn_update_mcast; if (sc->chip & URTWN_CHIP_88E) { ic->ic_node_alloc = urtwn_node_alloc; ic->ic_newassoc = urtwn_newassoc; sc->sc_node_free = ic->ic_node_free; ic->ic_node_free = urtwn_node_free; } ic->ic_update_chw = urtwn_update_chw; ic->ic_ampdu_enable = urtwn_ampdu_enable; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), URTWN_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), URTWN_RX_RADIOTAP_PRESENT); TASK_INIT(&sc->cmdq_task, 0, urtwn_cmdq_cb, sc); urtwn_sysctlattach(sc); if (bootverbose) ieee80211_announce(ic); return (0); detach: urtwn_detach(self); return (ENXIO); /* failure */ } static void urtwn_sysctlattach(struct urtwn_softc *sc) { #ifdef USB_DEBUG struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); SYSCTL_ADD_U32(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug, "control debugging printfs"); #endif } static int urtwn_detach(device_t self) { struct urtwn_softc *sc = device_get_softc(self); struct ieee80211com *ic = &sc->sc_ic; unsigned int x; /* Prevent further ioctls. */ URTWN_LOCK(sc); sc->sc_flags |= URTWN_DETACHED; URTWN_UNLOCK(sc); urtwn_stop(sc); callout_drain(&sc->sc_watchdog_ch); callout_drain(&sc->sc_calib_to); /* stop all USB transfers */ usbd_transfer_unsetup(sc->sc_xfer, URTWN_N_TRANSFER); /* Prevent further allocations from RX/TX data lists. */ URTWN_LOCK(sc); STAILQ_INIT(&sc->sc_tx_active); STAILQ_INIT(&sc->sc_tx_inactive); STAILQ_INIT(&sc->sc_tx_pending); STAILQ_INIT(&sc->sc_rx_active); STAILQ_INIT(&sc->sc_rx_inactive); URTWN_UNLOCK(sc); /* drain USB transfers */ for (x = 0; x != URTWN_N_TRANSFER; x++) usbd_transfer_drain(sc->sc_xfer[x]); /* Free data buffers. */ URTWN_LOCK(sc); urtwn_free_tx_list(sc); urtwn_free_rx_list(sc); URTWN_UNLOCK(sc); if (ic->ic_softc == sc) { ieee80211_draintask(ic, &sc->cmdq_task); ieee80211_ifdetach(ic); } URTWN_NT_LOCK_DESTROY(sc); URTWN_CMDQ_LOCK_DESTROY(sc); mtx_destroy(&sc->sc_mtx); return (0); } static void urtwn_drain_mbufq(struct urtwn_softc *sc) { struct mbuf *m; struct ieee80211_node *ni; URTWN_ASSERT_LOCKED(sc); while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; ieee80211_free_node(ni); m_freem(m); } } static usb_error_t urtwn_do_request(struct urtwn_softc *sc, struct usb_device_request *req, void *data) { usb_error_t err; int ntries = 10; URTWN_ASSERT_LOCKED(sc); while (ntries--) { err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, req, data, 0, NULL, 250 /* ms */); if (err == 0) break; URTWN_DPRINTF(sc, URTWN_DEBUG_USB, "%s: control request failed, %s (retries left: %d)\n", __func__, usbd_errstr(err), ntries); usb_pause_mtx(&sc->sc_mtx, hz / 100); } return (err); } static struct ieee80211vap * urtwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct urtwn_softc *sc = ic->ic_softc; struct urtwn_vap *uvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return (NULL); uvp = malloc(sizeof(struct urtwn_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &uvp->vap; /* enable s/w bmiss handling for sta mode */ if (ieee80211_vap_setup(ic, vap, name, unit, opmode, flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { /* out of memory */ free(uvp, M_80211_VAP); return (NULL); } if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_IBSS) urtwn_init_beacon(sc, uvp); /* override state transition machine */ uvp->newstate = vap->iv_newstate; vap->iv_newstate = urtwn_newstate; vap->iv_update_beacon = urtwn_update_beacon; vap->iv_key_alloc = urtwn_key_alloc; vap->iv_key_set = urtwn_key_set; vap->iv_key_delete = urtwn_key_delete; /* 802.11n parameters */ vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_16; vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; if (opmode == IEEE80211_M_IBSS) { uvp->recv_mgmt = vap->iv_recv_mgmt; vap->iv_recv_mgmt = urtwn_ibss_recv_mgmt; TASK_INIT(&uvp->tsf_task_adhoc, 0, urtwn_tsf_task_adhoc, vap); } if (URTWN_CHIP_HAS_RATECTL(sc)) ieee80211_ratectl_init(vap); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return (vap); } static void urtwn_vap_delete(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct urtwn_softc *sc = ic->ic_softc; struct urtwn_vap *uvp = URTWN_VAP(vap); if (uvp->bcn_mbuf != NULL) m_freem(uvp->bcn_mbuf); if (vap->iv_opmode == IEEE80211_M_IBSS) ieee80211_draintask(ic, &uvp->tsf_task_adhoc); if (URTWN_CHIP_HAS_RATECTL(sc)) ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(uvp, M_80211_VAP); } static struct mbuf * urtwn_rx_copy_to_mbuf(struct urtwn_softc *sc, struct r92c_rx_stat *stat, int totlen) { struct ieee80211com *ic = &sc->sc_ic; struct mbuf *m; uint32_t rxdw0; int pktlen; /* * don't pass packets to the ieee80211 framework if the driver isn't * RUNNING. */ if (!(sc->sc_flags & URTWN_RUNNING)) return (NULL); rxdw0 = le32toh(stat->rxdw0); if (rxdw0 & (R92C_RXDW0_CRCERR | R92C_RXDW0_ICVERR)) { /* * This should not happen since we setup our Rx filter * to not receive these frames. */ URTWN_DPRINTF(sc, URTWN_DEBUG_RECV, "%s: RX flags error (%s)\n", __func__, rxdw0 & R92C_RXDW0_CRCERR ? "CRC" : "ICV"); goto fail; } pktlen = MS(rxdw0, R92C_RXDW0_PKTLEN); if (pktlen < sizeof(struct ieee80211_frame_ack)) { URTWN_DPRINTF(sc, URTWN_DEBUG_RECV, "%s: frame is too short: %d\n", __func__, pktlen); goto fail; } if (__predict_false(totlen > MCLBYTES)) { /* convert to m_getjcl if this happens */ device_printf(sc->sc_dev, "%s: frame too long: %d (%d)\n", __func__, pktlen, totlen); goto fail; } m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (__predict_false(m == NULL)) { device_printf(sc->sc_dev, "%s: could not allocate RX mbuf\n", __func__); goto fail; } /* Finalize mbuf. */ memcpy(mtod(m, uint8_t *), (uint8_t *)stat, totlen); m->m_pkthdr.len = m->m_len = totlen; return (m); fail: counter_u64_add(ic->ic_ierrors, 1); return (NULL); } static struct mbuf * urtwn_report_intr(struct usb_xfer *xfer, struct urtwn_data *data) { struct urtwn_softc *sc = data->sc; struct ieee80211com *ic = &sc->sc_ic; struct r92c_rx_stat *stat; uint8_t *buf; int len; usbd_xfer_status(xfer, &len, NULL, NULL, NULL); if (len < sizeof(*stat)) { counter_u64_add(ic->ic_ierrors, 1); return (NULL); } buf = data->buf; stat = (struct r92c_rx_stat *)buf; /* * For 88E chips we can tie the FF flushing here; * this is where we do know exactly how deep the * transmit queue is. * * But it won't work for R92 chips, so we can't * take the easy way out. */ if (sc->chip & URTWN_CHIP_88E) { int report_sel = MS(le32toh(stat->rxdw3), R88E_RXDW3_RPT); switch (report_sel) { case R88E_RXDW3_RPT_RX: return (urtwn_rxeof(sc, buf, len)); case R88E_RXDW3_RPT_TX1: urtwn_r88e_ratectl_tx_complete(sc, &stat[1]); break; default: URTWN_DPRINTF(sc, URTWN_DEBUG_INTR, "%s: case %d was not handled\n", __func__, report_sel); break; } } else return (urtwn_rxeof(sc, buf, len)); return (NULL); } static struct mbuf * urtwn_rxeof(struct urtwn_softc *sc, uint8_t *buf, int len) { struct r92c_rx_stat *stat; struct mbuf *m, *m0 = NULL, *prevm = NULL; uint32_t rxdw0; int totlen, pktlen, infosz, npkts; /* Get the number of encapsulated frames. */ stat = (struct r92c_rx_stat *)buf; npkts = MS(le32toh(stat->rxdw2), R92C_RXDW2_PKTCNT); URTWN_DPRINTF(sc, URTWN_DEBUG_RECV, "%s: Rx %d frames in one chunk\n", __func__, npkts); /* Process all of them. */ while (npkts-- > 0) { if (len < sizeof(*stat)) break; stat = (struct r92c_rx_stat *)buf; rxdw0 = le32toh(stat->rxdw0); pktlen = MS(rxdw0, R92C_RXDW0_PKTLEN); if (pktlen == 0) break; infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8; /* Make sure everything fits in xfer. */ totlen = sizeof(*stat) + infosz + pktlen; if (totlen > len) break; m = urtwn_rx_copy_to_mbuf(sc, stat, totlen); if (m0 == NULL) m0 = m; if (prevm == NULL) prevm = m; else { prevm->m_next = m; prevm = m; } /* Next chunk is 128-byte aligned. */ totlen = (totlen + 127) & ~127; buf += totlen; len -= totlen; } return (m0); } static void urtwn_r88e_ratectl_tx_complete(struct urtwn_softc *sc, void *arg) { struct r88e_tx_rpt_ccx *rpt = arg; struct ieee80211vap *vap; struct ieee80211_node *ni; uint8_t macid; int ntries; macid = MS(rpt->rptb1, R88E_RPTB1_MACID); ntries = MS(rpt->rptb2, R88E_RPTB2_RETRY_CNT); URTWN_NT_LOCK(sc); ni = sc->node_list[macid]; if (ni != NULL) { vap = ni->ni_vap; URTWN_DPRINTF(sc, URTWN_DEBUG_INTR, "%s: frame for macid %d was" "%s sent (%d retries)\n", __func__, macid, (rpt->rptb1 & R88E_RPTB1_PKT_OK) ? "" : " not", ntries); if (rpt->rptb1 & R88E_RPTB1_PKT_OK) { ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, &ntries, NULL); } else { ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_FAILURE, &ntries, NULL); } } else { URTWN_DPRINTF(sc, URTWN_DEBUG_INTR, "%s: macid %d, ni is NULL\n", __func__, macid); } URTWN_NT_UNLOCK(sc); } static struct ieee80211_node * urtwn_rx_frame(struct urtwn_softc *sc, struct mbuf *m, int8_t *rssi_p) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame_min *wh; struct r92c_rx_stat *stat; uint32_t rxdw0, rxdw3; uint8_t rate, cipher; int8_t rssi = -127; int infosz; stat = mtod(m, struct r92c_rx_stat *); rxdw0 = le32toh(stat->rxdw0); rxdw3 = le32toh(stat->rxdw3); rate = MS(rxdw3, R92C_RXDW3_RATE); cipher = MS(rxdw0, R92C_RXDW0_CIPHER); infosz = MS(rxdw0, R92C_RXDW0_INFOSZ) * 8; /* Get RSSI from PHY status descriptor if present. */ if (infosz != 0 && (rxdw0 & R92C_RXDW0_PHYST)) { if (sc->chip & URTWN_CHIP_88E) rssi = urtwn_r88e_get_rssi(sc, rate, &stat[1]); else rssi = urtwn_get_rssi(sc, rate, &stat[1]); URTWN_DPRINTF(sc, URTWN_DEBUG_RSSI, "%s: rssi=%d\n", __func__, rssi); /* Update our average RSSI. */ urtwn_update_avgrssi(sc, rate, rssi); } if (ieee80211_radiotap_active(ic)) { struct urtwn_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; urtwn_get_tsf(sc, &tap->wr_tsft); if (__predict_false(le32toh((uint32_t)tap->wr_tsft) < le32toh(stat->rxdw5))) { tap->wr_tsft = le32toh(tap->wr_tsft >> 32) - 1; tap->wr_tsft = (uint64_t)htole32(tap->wr_tsft) << 32; } else tap->wr_tsft &= 0xffffffff00000000; tap->wr_tsft += stat->rxdw5; /* XXX 20/40? */ /* XXX shortgi? */ /* Map HW rate index to 802.11 rate. */ if (!(rxdw3 & R92C_RXDW3_HT)) { tap->wr_rate = ridx2rate[rate]; } else if (rate >= 12) { /* MCS0~15. */ /* Bit 7 set means HT MCS instead of rate. */ tap->wr_rate = 0x80 | (rate - 12); } /* XXX TODO: this isn't right; should use the last good RSSI */ tap->wr_dbm_antsignal = rssi; tap->wr_dbm_antnoise = URTWN_NOISE_FLOOR; } *rssi_p = rssi; /* Drop descriptor. */ m_adj(m, sizeof(*stat) + infosz); wh = mtod(m, struct ieee80211_frame_min *); if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && cipher != R92C_CAM_ALGO_NONE) { m->m_flags |= M_WEP; } if (m->m_len >= sizeof(*wh)) return (ieee80211_find_rxnode(ic, wh)); return (NULL); } static void urtwn_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) { struct urtwn_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct mbuf *m = NULL, *next; struct urtwn_data *data; int8_t nf, rssi; URTWN_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_rx_active); if (data == NULL) goto tr_setup; STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); m = urtwn_report_intr(xfer, data); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: data = STAILQ_FIRST(&sc->sc_rx_inactive); if (data == NULL) { KASSERT(m == NULL, ("mbuf isn't NULL")); goto finish; } STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); usbd_xfer_set_frame_data(xfer, 0, data->buf, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); /* * To avoid LOR we should unlock our private mutex here to call * ieee80211_input() because here is at the end of a USB * callback and safe to unlock. */ while (m != NULL) { next = m->m_next; m->m_next = NULL; ni = urtwn_rx_frame(sc, m, &rssi); /* Store a global last-good RSSI */ if (rssi != -127) sc->last_rssi = rssi; URTWN_UNLOCK(sc); nf = URTWN_NOISE_FLOOR; if (ni != NULL) { if (rssi != -127) URTWN_NODE(ni)->last_rssi = rssi; if (ni->ni_flags & IEEE80211_NODE_HT) m->m_flags |= M_AMPDU; (void)ieee80211_input(ni, m, URTWN_NODE(ni)->last_rssi - nf, nf); ieee80211_free_node(ni); } else { /* Use last good global RSSI */ (void)ieee80211_input_all(ic, m, sc->last_rssi - nf, nf); } URTWN_LOCK(sc); m = next; } break; default: /* needs it to the inactive queue due to a error. */ data = STAILQ_FIRST(&sc->sc_rx_active); if (data != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); } if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); counter_u64_add(ic->ic_ierrors, 1); goto tr_setup; } break; } finish: /* Finished receive; age anything left on the FF queue by a little bump */ /* * XXX TODO: just make this a callout timer schedule so we can * flush the FF staging queue if we're approaching idle. */ #ifdef IEEE80211_SUPPORT_SUPERG URTWN_UNLOCK(sc); ieee80211_ff_age_all(ic, 1); URTWN_LOCK(sc); #endif /* Kick-start more transmit in case we stalled */ urtwn_start(sc); } static void urtwn_txeof(struct urtwn_softc *sc, struct urtwn_data *data, int status) { URTWN_ASSERT_LOCKED(sc); if (data->ni != NULL) /* not a beacon frame */ ieee80211_tx_complete(data->ni, data->m, status); if (sc->sc_tx_n_active > 0) sc->sc_tx_n_active--; data->ni = NULL; data->m = NULL; sc->sc_txtimer = 0; STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); } static int urtwn_alloc_list(struct urtwn_softc *sc, struct urtwn_data data[], int ndata, int maxsz) { int i, error; for (i = 0; i < ndata; i++) { struct urtwn_data *dp = &data[i]; dp->sc = sc; dp->m = NULL; dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT); if (dp->buf == NULL) { device_printf(sc->sc_dev, "could not allocate buffer\n"); error = ENOMEM; goto fail; } dp->ni = NULL; } return (0); fail: urtwn_free_list(sc, data, ndata); return (error); } static int urtwn_alloc_rx_list(struct urtwn_softc *sc) { int error, i; error = urtwn_alloc_list(sc, sc->sc_rx, URTWN_RX_LIST_COUNT, URTWN_RXBUFSZ); if (error != 0) return (error); STAILQ_INIT(&sc->sc_rx_active); STAILQ_INIT(&sc->sc_rx_inactive); for (i = 0; i < URTWN_RX_LIST_COUNT; i++) STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], next); return (0); } static int urtwn_alloc_tx_list(struct urtwn_softc *sc) { int error, i; error = urtwn_alloc_list(sc, sc->sc_tx, URTWN_TX_LIST_COUNT, URTWN_TXBUFSZ); if (error != 0) return (error); STAILQ_INIT(&sc->sc_tx_active); STAILQ_INIT(&sc->sc_tx_inactive); STAILQ_INIT(&sc->sc_tx_pending); for (i = 0; i < URTWN_TX_LIST_COUNT; i++) STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], next); return (0); } static void urtwn_free_list(struct urtwn_softc *sc, struct urtwn_data data[], int ndata) { int i; for (i = 0; i < ndata; i++) { struct urtwn_data *dp = &data[i]; if (dp->buf != NULL) { free(dp->buf, M_USBDEV); dp->buf = NULL; } if (dp->ni != NULL) { ieee80211_free_node(dp->ni); dp->ni = NULL; } } } static void urtwn_free_rx_list(struct urtwn_softc *sc) { urtwn_free_list(sc, sc->sc_rx, URTWN_RX_LIST_COUNT); } static void urtwn_free_tx_list(struct urtwn_softc *sc) { urtwn_free_list(sc, sc->sc_tx, URTWN_TX_LIST_COUNT); } static void urtwn_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) { struct urtwn_softc *sc = usbd_xfer_softc(xfer); #ifdef IEEE80211_SUPPORT_SUPERG struct ieee80211com *ic = &sc->sc_ic; #endif struct urtwn_data *data; URTWN_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)){ case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_tx_active); if (data == NULL) goto tr_setup; STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next); urtwn_txeof(sc, data, 0); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: data = STAILQ_FIRST(&sc->sc_tx_pending); if (data == NULL) { URTWN_DPRINTF(sc, URTWN_DEBUG_XMIT, "%s: empty pending queue\n", __func__); sc->sc_tx_n_active = 0; goto finish; } STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next); STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next); usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); usbd_transfer_submit(xfer); sc->sc_tx_n_active++; break; default: data = STAILQ_FIRST(&sc->sc_tx_active); if (data == NULL) goto tr_setup; STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next); urtwn_txeof(sc, data, 1); if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); goto tr_setup; } break; } finish: #ifdef IEEE80211_SUPPORT_SUPERG /* * If the TX active queue drops below a certain * threshold, ensure we age fast-frames out so they're * transmitted. */ if (sc->sc_tx_n_active <= 1) { /* XXX ew - net80211 should defer this for us! */ /* * Note: this sc_tx_n_active currently tracks * the number of pending transmit submissions * and not the actual depth of the TX frames * pending to the hardware. That means that * we're going to end up with some sub-optimal * aggregation behaviour. */ /* * XXX TODO: just make this a callout timer schedule so we can * flush the FF staging queue if we're approaching idle. */ URTWN_UNLOCK(sc); ieee80211_ff_flush(ic, WME_AC_VO); ieee80211_ff_flush(ic, WME_AC_VI); ieee80211_ff_flush(ic, WME_AC_BE); ieee80211_ff_flush(ic, WME_AC_BK); URTWN_LOCK(sc); } #endif /* Kick-start more transmit */ urtwn_start(sc); } static struct urtwn_data * _urtwn_getbuf(struct urtwn_softc *sc) { struct urtwn_data *bf; bf = STAILQ_FIRST(&sc->sc_tx_inactive); if (bf != NULL) STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); else { URTWN_DPRINTF(sc, URTWN_DEBUG_XMIT, "%s: out of xmit buffers\n", __func__); } return (bf); } static struct urtwn_data * urtwn_getbuf(struct urtwn_softc *sc) { struct urtwn_data *bf; URTWN_ASSERT_LOCKED(sc); bf = _urtwn_getbuf(sc); if (bf == NULL) { URTWN_DPRINTF(sc, URTWN_DEBUG_XMIT, "%s: stop queue\n", __func__); } return (bf); } static usb_error_t urtwn_write_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf, int len) { usb_device_request_t req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = R92C_REQ_REGS; USETW(req.wValue, addr); USETW(req.wIndex, 0); USETW(req.wLength, len); return (urtwn_do_request(sc, &req, buf)); } static usb_error_t urtwn_write_1(struct urtwn_softc *sc, uint16_t addr, uint8_t val) { return (urtwn_write_region_1(sc, addr, &val, sizeof(val))); } static usb_error_t urtwn_write_2(struct urtwn_softc *sc, uint16_t addr, uint16_t val) { val = htole16(val); return (urtwn_write_region_1(sc, addr, (uint8_t *)&val, sizeof(val))); } static usb_error_t urtwn_write_4(struct urtwn_softc *sc, uint16_t addr, uint32_t val) { val = htole32(val); return (urtwn_write_region_1(sc, addr, (uint8_t *)&val, sizeof(val))); } static usb_error_t urtwn_read_region_1(struct urtwn_softc *sc, uint16_t addr, uint8_t *buf, int len) { usb_device_request_t req; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = R92C_REQ_REGS; USETW(req.wValue, addr); USETW(req.wIndex, 0); USETW(req.wLength, len); return (urtwn_do_request(sc, &req, buf)); } static uint8_t urtwn_read_1(struct urtwn_softc *sc, uint16_t addr) { uint8_t val; if (urtwn_read_region_1(sc, addr, &val, 1) != 0) return (0xff); return (val); } static uint16_t urtwn_read_2(struct urtwn_softc *sc, uint16_t addr) { uint16_t val; if (urtwn_read_region_1(sc, addr, (uint8_t *)&val, 2) != 0) return (0xffff); return (le16toh(val)); } static uint32_t urtwn_read_4(struct urtwn_softc *sc, uint16_t addr) { uint32_t val; if (urtwn_read_region_1(sc, addr, (uint8_t *)&val, 4) != 0) return (0xffffffff); return (le32toh(val)); } static int urtwn_fw_cmd(struct urtwn_softc *sc, uint8_t id, const void *buf, int len) { struct r92c_fw_cmd cmd; usb_error_t error; int ntries; if (!(sc->sc_flags & URTWN_FW_LOADED)) { URTWN_DPRINTF(sc, URTWN_DEBUG_FIRMWARE, "%s: firmware " "was not loaded; command (id %d) will be discarded\n", __func__, id); return (0); } /* Wait for current FW box to be empty. */ for (ntries = 0; ntries < 100; ntries++) { if (!(urtwn_read_1(sc, R92C_HMETFR) & (1 << sc->fwcur))) break; urtwn_ms_delay(sc); } if (ntries == 100) { device_printf(sc->sc_dev, "could not send firmware command\n"); return (ETIMEDOUT); } memset(&cmd, 0, sizeof(cmd)); cmd.id = id; if (len > 3) cmd.id |= R92C_CMD_FLAG_EXT; KASSERT(len <= sizeof(cmd.msg), ("urtwn_fw_cmd\n")); memcpy(cmd.msg, buf, len); /* Write the first word last since that will trigger the FW. */ error = urtwn_write_region_1(sc, R92C_HMEBOX_EXT(sc->fwcur), (uint8_t *)&cmd + 4, 2); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); error = urtwn_write_region_1(sc, R92C_HMEBOX(sc->fwcur), (uint8_t *)&cmd + 0, 4); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); sc->fwcur = (sc->fwcur + 1) % R92C_H2C_NBOX; return (0); } static void urtwn_cmdq_cb(void *arg, int pending) { struct urtwn_softc *sc = arg; struct urtwn_cmdq *item; /* * Device must be powered on (via urtwn_power_on()) * before any command may be sent. */ URTWN_LOCK(sc); if (!(sc->sc_flags & URTWN_RUNNING)) { URTWN_UNLOCK(sc); return; } URTWN_CMDQ_LOCK(sc); while (sc->cmdq[sc->cmdq_first].func != NULL) { item = &sc->cmdq[sc->cmdq_first]; sc->cmdq_first = (sc->cmdq_first + 1) % URTWN_CMDQ_SIZE; URTWN_CMDQ_UNLOCK(sc); item->func(sc, &item->data); URTWN_CMDQ_LOCK(sc); memset(item, 0, sizeof (*item)); } URTWN_CMDQ_UNLOCK(sc); URTWN_UNLOCK(sc); } static int urtwn_cmd_sleepable(struct urtwn_softc *sc, const void *ptr, size_t len, CMD_FUNC_PROTO) { struct ieee80211com *ic = &sc->sc_ic; KASSERT(len <= sizeof(union sec_param), ("buffer overflow")); URTWN_CMDQ_LOCK(sc); if (sc->cmdq[sc->cmdq_last].func != NULL) { device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__); URTWN_CMDQ_UNLOCK(sc); return (EAGAIN); } if (ptr != NULL) memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len); sc->cmdq[sc->cmdq_last].func = func; sc->cmdq_last = (sc->cmdq_last + 1) % URTWN_CMDQ_SIZE; URTWN_CMDQ_UNLOCK(sc); ieee80211_runtask(ic, &sc->cmdq_task); return (0); } static __inline void urtwn_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val) { sc->sc_rf_write(sc, chain, addr, val); } static void urtwn_r92c_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val) { urtwn_bb_write(sc, R92C_LSSI_PARAM(chain), SM(R92C_LSSI_PARAM_ADDR, addr) | SM(R92C_LSSI_PARAM_DATA, val)); } static void urtwn_r88e_rf_write(struct urtwn_softc *sc, int chain, uint8_t addr, uint32_t val) { urtwn_bb_write(sc, R92C_LSSI_PARAM(chain), SM(R88E_LSSI_PARAM_ADDR, addr) | SM(R92C_LSSI_PARAM_DATA, val)); } static uint32_t urtwn_rf_read(struct urtwn_softc *sc, int chain, uint8_t addr) { uint32_t reg[R92C_MAX_CHAINS], val; reg[0] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(0)); if (chain != 0) reg[chain] = urtwn_bb_read(sc, R92C_HSSI_PARAM2(chain)); urtwn_bb_write(sc, R92C_HSSI_PARAM2(0), reg[0] & ~R92C_HSSI_PARAM2_READ_EDGE); urtwn_ms_delay(sc); urtwn_bb_write(sc, R92C_HSSI_PARAM2(chain), RW(reg[chain], R92C_HSSI_PARAM2_READ_ADDR, addr) | R92C_HSSI_PARAM2_READ_EDGE); urtwn_ms_delay(sc); urtwn_bb_write(sc, R92C_HSSI_PARAM2(0), reg[0] | R92C_HSSI_PARAM2_READ_EDGE); urtwn_ms_delay(sc); if (urtwn_bb_read(sc, R92C_HSSI_PARAM1(chain)) & R92C_HSSI_PARAM1_PI) val = urtwn_bb_read(sc, R92C_HSPI_READBACK(chain)); else val = urtwn_bb_read(sc, R92C_LSSI_READBACK(chain)); return (MS(val, R92C_LSSI_READBACK_DATA)); } static int urtwn_llt_write(struct urtwn_softc *sc, uint32_t addr, uint32_t data) { usb_error_t error; int ntries; error = urtwn_write_4(sc, R92C_LLT_INIT, SM(R92C_LLT_INIT_OP, R92C_LLT_INIT_OP_WRITE) | SM(R92C_LLT_INIT_ADDR, addr) | SM(R92C_LLT_INIT_DATA, data)); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Wait for write operation to complete. */ for (ntries = 0; ntries < 20; ntries++) { if (MS(urtwn_read_4(sc, R92C_LLT_INIT), R92C_LLT_INIT_OP) == R92C_LLT_INIT_OP_NO_ACTIVE) return (0); urtwn_ms_delay(sc); } return (ETIMEDOUT); } static int urtwn_efuse_read_next(struct urtwn_softc *sc, uint8_t *val) { uint32_t reg; usb_error_t error; int ntries; if (sc->last_rom_addr >= URTWN_EFUSE_MAX_LEN) return (EFAULT); reg = urtwn_read_4(sc, R92C_EFUSE_CTRL); reg = RW(reg, R92C_EFUSE_CTRL_ADDR, sc->last_rom_addr); reg &= ~R92C_EFUSE_CTRL_VALID; error = urtwn_write_4(sc, R92C_EFUSE_CTRL, reg); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Wait for read operation to complete. */ for (ntries = 0; ntries < 100; ntries++) { reg = urtwn_read_4(sc, R92C_EFUSE_CTRL); if (reg & R92C_EFUSE_CTRL_VALID) break; urtwn_ms_delay(sc); } if (ntries == 100) { device_printf(sc->sc_dev, "could not read efuse byte at address 0x%x\n", sc->last_rom_addr); return (ETIMEDOUT); } *val = MS(reg, R92C_EFUSE_CTRL_DATA); sc->last_rom_addr++; return (0); } static int urtwn_efuse_read_data(struct urtwn_softc *sc, uint8_t *rom, uint8_t off, uint8_t msk) { uint8_t reg; int i, error; for (i = 0; i < 4; i++) { if (msk & (1 << i)) continue; error = urtwn_efuse_read_next(sc, ®); if (error != 0) return (error); URTWN_DPRINTF(sc, URTWN_DEBUG_ROM, "rom[0x%03X] == 0x%02X\n", off * 8 + i * 2, reg); rom[off * 8 + i * 2 + 0] = reg; error = urtwn_efuse_read_next(sc, ®); if (error != 0) return (error); URTWN_DPRINTF(sc, URTWN_DEBUG_ROM, "rom[0x%03X] == 0x%02X\n", off * 8 + i * 2 + 1, reg); rom[off * 8 + i * 2 + 1] = reg; } return (0); } #ifdef USB_DEBUG static void urtwn_dump_rom_contents(struct urtwn_softc *sc, uint8_t *rom, uint16_t size) { int i; /* Dump ROM contents. */ device_printf(sc->sc_dev, "%s:", __func__); for (i = 0; i < size; i++) { if (i % 32 == 0) printf("\n%03X: ", i); else if (i % 4 == 0) printf(" "); printf("%02X", rom[i]); } printf("\n"); } #endif static int urtwn_efuse_read(struct urtwn_softc *sc, uint8_t *rom, uint16_t size) { #define URTWN_CHK(res) do { \ if ((error = res) != 0) \ goto end; \ } while(0) uint8_t msk, off, reg; int error; URTWN_CHK(urtwn_efuse_switch_power(sc)); /* Read full ROM image. */ sc->last_rom_addr = 0; memset(rom, 0xff, size); URTWN_CHK(urtwn_efuse_read_next(sc, ®)); while (reg != 0xff) { /* check for extended header */ if ((sc->chip & URTWN_CHIP_88E) && (reg & 0x1f) == 0x0f) { off = reg >> 5; URTWN_CHK(urtwn_efuse_read_next(sc, ®)); if ((reg & 0x0f) != 0x0f) off = ((reg & 0xf0) >> 1) | off; else continue; } else off = reg >> 4; msk = reg & 0xf; URTWN_CHK(urtwn_efuse_read_data(sc, rom, off, msk)); URTWN_CHK(urtwn_efuse_read_next(sc, ®)); } end: #ifdef USB_DEBUG if (sc->sc_debug & URTWN_DEBUG_ROM) urtwn_dump_rom_contents(sc, rom, size); #endif urtwn_write_1(sc, R92C_EFUSE_ACCESS, R92C_EFUSE_ACCESS_OFF); if (error != 0) { device_printf(sc->sc_dev, "%s: error while reading ROM\n", __func__); } return (error); #undef URTWN_CHK } static int urtwn_efuse_switch_power(struct urtwn_softc *sc) { usb_error_t error; uint32_t reg; error = urtwn_write_1(sc, R92C_EFUSE_ACCESS, R92C_EFUSE_ACCESS_ON); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); reg = urtwn_read_2(sc, R92C_SYS_ISO_CTRL); if (!(reg & R92C_SYS_ISO_CTRL_PWC_EV12V)) { error = urtwn_write_2(sc, R92C_SYS_ISO_CTRL, reg | R92C_SYS_ISO_CTRL_PWC_EV12V); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); } reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN); if (!(reg & R92C_SYS_FUNC_EN_ELDR)) { error = urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg | R92C_SYS_FUNC_EN_ELDR); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); } reg = urtwn_read_2(sc, R92C_SYS_CLKR); if ((reg & (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) != (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) { error = urtwn_write_2(sc, R92C_SYS_CLKR, reg | R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); } return (0); } static int urtwn_read_chipid(struct urtwn_softc *sc) { uint32_t reg; if (sc->chip & URTWN_CHIP_88E) return (0); reg = urtwn_read_4(sc, R92C_SYS_CFG); if (reg & R92C_SYS_CFG_TRP_VAUX_EN) return (EIO); if (reg & R92C_SYS_CFG_TYPE_92C) { sc->chip |= URTWN_CHIP_92C; /* Check if it is a castrated 8192C. */ if (MS(urtwn_read_4(sc, R92C_HPON_FSM), R92C_HPON_FSM_CHIP_BONDING_ID) == R92C_HPON_FSM_CHIP_BONDING_ID_92C_1T2R) sc->chip |= URTWN_CHIP_92C_1T2R; } if (reg & R92C_SYS_CFG_VENDOR_UMC) { sc->chip |= URTWN_CHIP_UMC; if (MS(reg, R92C_SYS_CFG_CHIP_VER_RTL) == 0) sc->chip |= URTWN_CHIP_UMC_A_CUT; } return (0); } static int urtwn_read_rom(struct urtwn_softc *sc) { struct r92c_rom *rom = &sc->rom.r92c_rom; int error; /* Read full ROM image. */ error = urtwn_efuse_read(sc, (uint8_t *)rom, sizeof(*rom)); if (error != 0) return (error); /* XXX Weird but this is what the vendor driver does. */ sc->last_rom_addr = 0x1fa; error = urtwn_efuse_read_next(sc, &sc->pa_setting); if (error != 0) return (error); URTWN_DPRINTF(sc, URTWN_DEBUG_ROM, "%s: PA setting=0x%x\n", __func__, sc->pa_setting); sc->board_type = MS(rom->rf_opt1, R92C_ROM_RF1_BOARD_TYPE); sc->regulatory = MS(rom->rf_opt1, R92C_ROM_RF1_REGULATORY); URTWN_DPRINTF(sc, URTWN_DEBUG_ROM, "%s: regulatory type=%d\n", __func__, sc->regulatory); IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, rom->macaddr); sc->sc_rf_write = urtwn_r92c_rf_write; sc->sc_power_on = urtwn_r92c_power_on; sc->sc_power_off = urtwn_r92c_power_off; return (0); } static int urtwn_r88e_read_rom(struct urtwn_softc *sc) { struct r88e_rom *rom = &sc->rom.r88e_rom; int error; error = urtwn_efuse_read(sc, (uint8_t *)rom, sizeof(sc->rom.r88e_rom)); if (error != 0) return (error); sc->bw20_tx_pwr_diff = (rom->tx_pwr_diff >> 4); if (sc->bw20_tx_pwr_diff & 0x08) sc->bw20_tx_pwr_diff |= 0xf0; sc->ofdm_tx_pwr_diff = (rom->tx_pwr_diff & 0xf); if (sc->ofdm_tx_pwr_diff & 0x08) sc->ofdm_tx_pwr_diff |= 0xf0; sc->regulatory = MS(rom->rf_board_opt, R92C_ROM_RF1_REGULATORY); URTWN_DPRINTF(sc, URTWN_DEBUG_ROM, "%s: regulatory type %d\n", __func__,sc->regulatory); IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, rom->macaddr); sc->sc_rf_write = urtwn_r88e_rf_write; sc->sc_power_on = urtwn_r88e_power_on; sc->sc_power_off = urtwn_r88e_power_off; return (0); } static __inline uint8_t rate2ridx(uint8_t rate) { if (rate & IEEE80211_RATE_MCS) { /* 11n rates start at idx 12 */ return ((rate & 0xf) + 12); } switch (rate) { /* 11g */ case 12: return 4; case 18: return 5; case 24: return 6; case 36: return 7; case 48: return 8; case 72: return 9; case 96: return 10; case 108: return 11; /* 11b */ case 2: return 0; case 4: return 1; case 11: return 2; case 22: return 3; default: return URTWN_RIDX_UNKNOWN; } } /* * Initialize rate adaptation in firmware. */ static int urtwn_ra_init(struct urtwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_node *ni; struct ieee80211_rateset *rs, *rs_ht; struct r92c_fw_cmd_macid_cfg cmd; uint32_t rates, basicrates; uint8_t mode, ridx; int maxrate, maxbasicrate, error, i; ni = ieee80211_ref_node(vap->iv_bss); rs = &ni->ni_rates; rs_ht = (struct ieee80211_rateset *) &ni->ni_htrates; /* Get normal and basic rates mask. */ rates = basicrates = 0; maxrate = maxbasicrate = 0; /* This is for 11bg */ for (i = 0; i < rs->rs_nrates; i++) { /* Convert 802.11 rate to HW rate index. */ ridx = rate2ridx(IEEE80211_RV(rs->rs_rates[i])); if (ridx == URTWN_RIDX_UNKNOWN) /* Unknown rate, skip. */ continue; rates |= 1 << ridx; if (ridx > maxrate) maxrate = ridx; if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) { basicrates |= 1 << ridx; if (ridx > maxbasicrate) maxbasicrate = ridx; } } /* If we're doing 11n, enable 11n rates */ if (ni->ni_flags & IEEE80211_NODE_HT) { for (i = 0; i < rs_ht->rs_nrates; i++) { if ((rs_ht->rs_rates[i] & 0x7f) > 0xf) continue; /* 11n rates start at index 12 */ ridx = ((rs_ht->rs_rates[i]) & 0xf) + 12; rates |= (1 << ridx); /* Guard against the rate table being oddly ordered */ if (ridx > maxrate) maxrate = ridx; } } #if 0 if (ic->ic_curmode == IEEE80211_MODE_11NG) raid = R92C_RAID_11GN; #endif /* NB: group addressed frames are done at 11bg rates for now */ if (ic->ic_curmode == IEEE80211_MODE_11B) mode = R92C_RAID_11B; else mode = R92C_RAID_11BG; /* XXX misleading 'mode' value here for unicast frames */ URTWN_DPRINTF(sc, URTWN_DEBUG_RA, "%s: mode 0x%x, rates 0x%08x, basicrates 0x%08x\n", __func__, mode, rates, basicrates); /* Set rates mask for group addressed frames. */ cmd.macid = URTWN_MACID_BC | URTWN_MACID_VALID; cmd.mask = htole32(mode << 28 | basicrates); error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd)); if (error != 0) { ieee80211_free_node(ni); device_printf(sc->sc_dev, "could not add broadcast station\n"); return (error); } /* Set initial MRR rate. */ URTWN_DPRINTF(sc, URTWN_DEBUG_RA, "%s: maxbasicrate %d\n", __func__, maxbasicrate); urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BC), maxbasicrate); /* Set rates mask for unicast frames. */ if (ni->ni_flags & IEEE80211_NODE_HT) mode = R92C_RAID_11GN; else if (ic->ic_curmode == IEEE80211_MODE_11B) mode = R92C_RAID_11B; else mode = R92C_RAID_11BG; cmd.macid = URTWN_MACID_BSS | URTWN_MACID_VALID; cmd.mask = htole32(mode << 28 | rates); error = urtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd)); if (error != 0) { ieee80211_free_node(ni); device_printf(sc->sc_dev, "could not add BSS station\n"); return (error); } /* Set initial MRR rate. */ URTWN_DPRINTF(sc, URTWN_DEBUG_RA, "%s: maxrate %d\n", __func__, maxrate); urtwn_write_1(sc, R92C_INIDATA_RATE_SEL(URTWN_MACID_BSS), maxrate); /* Indicate highest supported rate. */ if (ni->ni_flags & IEEE80211_NODE_HT) ni->ni_txrate = rs_ht->rs_rates[rs_ht->rs_nrates - 1] | IEEE80211_RATE_MCS; else ni->ni_txrate = rs->rs_rates[rs->rs_nrates - 1]; ieee80211_free_node(ni); return (0); } static void urtwn_init_beacon(struct urtwn_softc *sc, struct urtwn_vap *uvp) { struct r92c_tx_desc *txd = &uvp->bcn_desc; txd->txdw0 = htole32( SM(R92C_TXDW0_OFFSET, sizeof(*txd)) | R92C_TXDW0_BMCAST | R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG); txd->txdw1 = htole32( SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_BEACON) | SM(R92C_TXDW1_RAID, R92C_RAID_11B)); if (sc->chip & URTWN_CHIP_88E) { txd->txdw1 |= htole32(SM(R88E_TXDW1_MACID, URTWN_MACID_BC)); txd->txdseq |= htole16(R88E_TXDSEQ_HWSEQ_EN); } else { txd->txdw1 |= htole32(SM(R92C_TXDW1_MACID, URTWN_MACID_BC)); txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ_EN); } txd->txdw4 = htole32(R92C_TXDW4_DRVRATE); txd->txdw5 = htole32(SM(R92C_TXDW5_DATARATE, URTWN_RIDX_CCK1)); } static int urtwn_setup_beacon(struct urtwn_softc *sc, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct urtwn_vap *uvp = URTWN_VAP(vap); struct mbuf *m; int error; URTWN_ASSERT_LOCKED(sc); if (ni->ni_chan == IEEE80211_CHAN_ANYC) return (EINVAL); m = ieee80211_beacon_alloc(ni); if (m == NULL) { device_printf(sc->sc_dev, "%s: could not allocate beacon frame\n", __func__); return (ENOMEM); } if (uvp->bcn_mbuf != NULL) m_freem(uvp->bcn_mbuf); uvp->bcn_mbuf = m; if ((error = urtwn_tx_beacon(sc, uvp)) != 0) return (error); /* XXX bcnq stuck workaround */ if ((error = urtwn_tx_beacon(sc, uvp)) != 0) return (error); URTWN_DPRINTF(sc, URTWN_DEBUG_BEACON, "%s: beacon was %srecognized\n", __func__, urtwn_read_1(sc, R92C_TDECTRL + 2) & (R92C_TDECTRL_BCN_VALID >> 16) ? "" : "not "); return (0); } static void urtwn_update_beacon(struct ieee80211vap *vap, int item) { struct urtwn_softc *sc = vap->iv_ic->ic_softc; struct urtwn_vap *uvp = URTWN_VAP(vap); struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; struct ieee80211_node *ni = vap->iv_bss; int mcast = 0; URTWN_LOCK(sc); if (uvp->bcn_mbuf == NULL) { uvp->bcn_mbuf = ieee80211_beacon_alloc(ni); if (uvp->bcn_mbuf == NULL) { device_printf(sc->sc_dev, "%s: could not allocate beacon frame\n", __func__); URTWN_UNLOCK(sc); return; } } URTWN_UNLOCK(sc); if (item == IEEE80211_BEACON_TIM) mcast = 1; /* XXX */ setbit(bo->bo_flags, item); ieee80211_beacon_update(ni, uvp->bcn_mbuf, mcast); URTWN_LOCK(sc); urtwn_tx_beacon(sc, uvp); URTWN_UNLOCK(sc); } /* * Push a beacon frame into the chip. Beacon will * be repeated by the chip every R92C_BCN_INTERVAL. */ static int urtwn_tx_beacon(struct urtwn_softc *sc, struct urtwn_vap *uvp) { struct r92c_tx_desc *desc = &uvp->bcn_desc; struct urtwn_data *bf; URTWN_ASSERT_LOCKED(sc); bf = urtwn_getbuf(sc); if (bf == NULL) return (ENOMEM); memcpy(bf->buf, desc, sizeof(*desc)); urtwn_tx_start(sc, uvp->bcn_mbuf, IEEE80211_FC0_TYPE_MGT, bf); sc->sc_txtimer = 5; callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc); return (0); } static int urtwn_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) { struct urtwn_softc *sc = vap->iv_ic->ic_softc; uint8_t i; if (!(&vap->iv_nw_keys[0] <= k && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) { if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { URTWN_LOCK(sc); /* * First 4 slots for group keys, * what is left - for pairwise. * XXX incompatible with IBSS RSN. */ for (i = IEEE80211_WEP_NKID; i < R92C_CAM_ENTRY_COUNT; i++) { if ((sc->keys_bmap & (1 << i)) == 0) { sc->keys_bmap |= 1 << i; *keyix = i; break; } } URTWN_UNLOCK(sc); if (i == R92C_CAM_ENTRY_COUNT) { device_printf(sc->sc_dev, "%s: no free space in the key table\n", __func__); return 0; } } else *keyix = 0; } else { *keyix = k - vap->iv_nw_keys; } *rxkeyix = *keyix; return 1; } static void urtwn_key_set_cb(struct urtwn_softc *sc, union sec_param *data) { struct ieee80211_key *k = &data->key; uint8_t algo, keyid; int i, error; if (k->wk_keyix < IEEE80211_WEP_NKID) keyid = k->wk_keyix; else keyid = 0; /* Map net80211 cipher to HW crypto algorithm. */ switch (k->wk_cipher->ic_cipher) { case IEEE80211_CIPHER_WEP: if (k->wk_keylen < 8) algo = R92C_CAM_ALGO_WEP40; else algo = R92C_CAM_ALGO_WEP104; break; case IEEE80211_CIPHER_TKIP: algo = R92C_CAM_ALGO_TKIP; break; case IEEE80211_CIPHER_AES_CCM: algo = R92C_CAM_ALGO_AES; break; default: device_printf(sc->sc_dev, "%s: undefined cipher %d\n", __func__, k->wk_cipher->ic_cipher); return; } URTWN_DPRINTF(sc, URTWN_DEBUG_KEY, "%s: keyix %d, keyid %d, algo %d/%d, flags %04X, len %d, " "macaddr %s\n", __func__, k->wk_keyix, keyid, k->wk_cipher->ic_cipher, algo, k->wk_flags, k->wk_keylen, ether_sprintf(k->wk_macaddr)); /* Write key. */ for (i = 0; i < 4; i++) { error = urtwn_cam_write(sc, R92C_CAM_KEY(k->wk_keyix, i), le32dec(&k->wk_key[i * 4])); if (error != 0) goto fail; } /* Write CTL0 last since that will validate the CAM entry. */ error = urtwn_cam_write(sc, R92C_CAM_CTL1(k->wk_keyix), le32dec(&k->wk_macaddr[2])); if (error != 0) goto fail; error = urtwn_cam_write(sc, R92C_CAM_CTL0(k->wk_keyix), SM(R92C_CAM_ALGO, algo) | SM(R92C_CAM_KEYID, keyid) | SM(R92C_CAM_MACLO, le16dec(&k->wk_macaddr[0])) | R92C_CAM_VALID); if (error != 0) goto fail; return; fail: device_printf(sc->sc_dev, "%s fails, error %d\n", __func__, error); } static void urtwn_key_del_cb(struct urtwn_softc *sc, union sec_param *data) { struct ieee80211_key *k = &data->key; int i; URTWN_DPRINTF(sc, URTWN_DEBUG_KEY, "%s: keyix %d, flags %04X, macaddr %s\n", __func__, k->wk_keyix, k->wk_flags, ether_sprintf(k->wk_macaddr)); urtwn_cam_write(sc, R92C_CAM_CTL0(k->wk_keyix), 0); urtwn_cam_write(sc, R92C_CAM_CTL1(k->wk_keyix), 0); /* Clear key. */ for (i = 0; i < 4; i++) urtwn_cam_write(sc, R92C_CAM_KEY(k->wk_keyix, i), 0); sc->keys_bmap &= ~(1 << k->wk_keyix); } static int urtwn_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) { struct urtwn_softc *sc = vap->iv_ic->ic_softc; if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { /* Not for us. */ return (1); } return (!urtwn_cmd_sleepable(sc, k, sizeof(*k), urtwn_key_set_cb)); } static int urtwn_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) { struct urtwn_softc *sc = vap->iv_ic->ic_softc; if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { /* Not for us. */ return (1); } return (!urtwn_cmd_sleepable(sc, k, sizeof(*k), urtwn_key_del_cb)); } static void urtwn_tsf_task_adhoc(void *arg, int pending) { struct ieee80211vap *vap = arg; struct urtwn_softc *sc = vap->iv_ic->ic_softc; struct ieee80211_node *ni; uint32_t reg; URTWN_LOCK(sc); ni = ieee80211_ref_node(vap->iv_bss); reg = urtwn_read_1(sc, R92C_BCN_CTRL); /* Accept beacons with the same BSSID. */ urtwn_set_rx_bssid_all(sc, 0); /* Enable synchronization. */ reg &= ~R92C_BCN_CTRL_DIS_TSF_UDT0; urtwn_write_1(sc, R92C_BCN_CTRL, reg); /* Synchronize. */ usb_pause_mtx(&sc->sc_mtx, hz * ni->ni_intval * 5 / 1000); /* Disable synchronization. */ reg |= R92C_BCN_CTRL_DIS_TSF_UDT0; urtwn_write_1(sc, R92C_BCN_CTRL, reg); /* Remove beacon filter. */ urtwn_set_rx_bssid_all(sc, 1); /* Enable beaconing. */ urtwn_write_1(sc, R92C_MBID_NUM, urtwn_read_1(sc, R92C_MBID_NUM) | R92C_MBID_TXBCN_RPT0); reg |= R92C_BCN_CTRL_EN_BCN; urtwn_write_1(sc, R92C_BCN_CTRL, reg); ieee80211_free_node(ni); URTWN_UNLOCK(sc); } static void urtwn_tsf_sync_enable(struct urtwn_softc *sc, struct ieee80211vap *vap) { struct ieee80211com *ic = &sc->sc_ic; struct urtwn_vap *uvp = URTWN_VAP(vap); /* Reset TSF. */ urtwn_write_1(sc, R92C_DUAL_TSF_RST, R92C_DUAL_TSF_RST0); switch (vap->iv_opmode) { case IEEE80211_M_STA: /* Enable TSF synchronization. */ urtwn_write_1(sc, R92C_BCN_CTRL, urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_DIS_TSF_UDT0); break; case IEEE80211_M_IBSS: ieee80211_runtask(ic, &uvp->tsf_task_adhoc); break; case IEEE80211_M_HOSTAP: /* Enable beaconing. */ urtwn_write_1(sc, R92C_MBID_NUM, urtwn_read_1(sc, R92C_MBID_NUM) | R92C_MBID_TXBCN_RPT0); urtwn_write_1(sc, R92C_BCN_CTRL, urtwn_read_1(sc, R92C_BCN_CTRL) | R92C_BCN_CTRL_EN_BCN); break; default: device_printf(sc->sc_dev, "undefined opmode %d\n", vap->iv_opmode); return; } } static void urtwn_get_tsf(struct urtwn_softc *sc, uint64_t *buf) { urtwn_read_region_1(sc, R92C_TSFTR, (uint8_t *)buf, sizeof(*buf)); } static void urtwn_set_led(struct urtwn_softc *sc, int led, int on) { uint8_t reg; if (led == URTWN_LED_LINK) { if (sc->chip & URTWN_CHIP_88E) { reg = urtwn_read_1(sc, R92C_LEDCFG2) & 0xf0; urtwn_write_1(sc, R92C_LEDCFG2, reg | 0x60); if (!on) { reg = urtwn_read_1(sc, R92C_LEDCFG2) & 0x90; urtwn_write_1(sc, R92C_LEDCFG2, reg | R92C_LEDCFG0_DIS); urtwn_write_1(sc, R92C_MAC_PINMUX_CFG, urtwn_read_1(sc, R92C_MAC_PINMUX_CFG) & 0xfe); } } else { reg = urtwn_read_1(sc, R92C_LEDCFG0) & 0x70; if (!on) reg |= R92C_LEDCFG0_DIS; urtwn_write_1(sc, R92C_LEDCFG0, reg); } sc->ledlink = on; /* Save LED state. */ } } static void urtwn_set_mode(struct urtwn_softc *sc, uint8_t mode) { uint8_t reg; reg = urtwn_read_1(sc, R92C_MSR); reg = (reg & ~R92C_MSR_MASK) | mode; urtwn_write_1(sc, R92C_MSR, reg); } static void urtwn_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf) { struct ieee80211vap *vap = ni->ni_vap; struct urtwn_softc *sc = vap->iv_ic->ic_softc; struct urtwn_vap *uvp = URTWN_VAP(vap); uint64_t ni_tstamp, curr_tstamp; uvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf); if (vap->iv_state == IEEE80211_S_RUN && (subtype == IEEE80211_FC0_SUBTYPE_BEACON || subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) { ni_tstamp = le64toh(ni->ni_tstamp.tsf); URTWN_LOCK(sc); urtwn_get_tsf(sc, &curr_tstamp); URTWN_UNLOCK(sc); curr_tstamp = le64toh(curr_tstamp); if (ni_tstamp >= curr_tstamp) (void) ieee80211_ibss_merge(ni); } } static int urtwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct urtwn_vap *uvp = URTWN_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct urtwn_softc *sc = ic->ic_softc; struct ieee80211_node *ni; enum ieee80211_state ostate; uint32_t reg; uint8_t mode; int error = 0; ostate = vap->iv_state; URTWN_DPRINTF(sc, URTWN_DEBUG_STATE, "%s -> %s\n", ieee80211_state_name[ostate], ieee80211_state_name[nstate]); IEEE80211_UNLOCK(ic); URTWN_LOCK(sc); callout_stop(&sc->sc_watchdog_ch); if (ostate == IEEE80211_S_RUN) { /* Stop calibration. */ callout_stop(&sc->sc_calib_to); /* Turn link LED off. */ urtwn_set_led(sc, URTWN_LED_LINK, 0); /* Set media status to 'No Link'. */ urtwn_set_mode(sc, R92C_MSR_NOLINK); /* Stop Rx of data frames. */ urtwn_write_2(sc, R92C_RXFLTMAP2, 0); /* Disable TSF synchronization. */ urtwn_write_1(sc, R92C_BCN_CTRL, (urtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_EN_BCN) | R92C_BCN_CTRL_DIS_TSF_UDT0); /* Disable beaconing. */ urtwn_write_1(sc, R92C_MBID_NUM, urtwn_read_1(sc, R92C_MBID_NUM) & ~R92C_MBID_TXBCN_RPT0); /* Reset TSF. */ urtwn_write_1(sc, R92C_DUAL_TSF_RST, R92C_DUAL_TSF_RST0); /* Reset EDCA parameters. */ urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002f3217); urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005e4317); urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x00105320); urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a444); } switch (nstate) { case IEEE80211_S_INIT: /* Turn link LED off. */ urtwn_set_led(sc, URTWN_LED_LINK, 0); break; case IEEE80211_S_SCAN: /* Pause AC Tx queues. */ urtwn_write_1(sc, R92C_TXPAUSE, urtwn_read_1(sc, R92C_TXPAUSE) | R92C_TX_QUEUE_AC); break; case IEEE80211_S_AUTH: urtwn_set_chan(sc, ic->ic_curchan, NULL); break; case IEEE80211_S_RUN: if (vap->iv_opmode == IEEE80211_M_MONITOR) { /* Turn link LED on. */ urtwn_set_led(sc, URTWN_LED_LINK, 1); break; } ni = ieee80211_ref_node(vap->iv_bss); if (ic->ic_bsschan == IEEE80211_CHAN_ANYC || ni->ni_chan == IEEE80211_CHAN_ANYC) { device_printf(sc->sc_dev, "%s: could not move to RUN state\n", __func__); error = EINVAL; goto end_run; } switch (vap->iv_opmode) { case IEEE80211_M_STA: mode = R92C_MSR_INFRA; break; case IEEE80211_M_IBSS: mode = R92C_MSR_ADHOC; break; case IEEE80211_M_HOSTAP: mode = R92C_MSR_AP; break; default: device_printf(sc->sc_dev, "undefined opmode %d\n", vap->iv_opmode); error = EINVAL; goto end_run; } /* Set media status to 'Associated'. */ urtwn_set_mode(sc, mode); /* Set BSSID. */ urtwn_write_4(sc, R92C_BSSID + 0, le32dec(&ni->ni_bssid[0])); urtwn_write_4(sc, R92C_BSSID + 4, le16dec(&ni->ni_bssid[4])); if (ic->ic_curmode == IEEE80211_MODE_11B) urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 0); else /* 802.11b/g */ urtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 3); /* Enable Rx of data frames. */ urtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff); /* Flush all AC queues. */ urtwn_write_1(sc, R92C_TXPAUSE, 0); /* Set beacon interval. */ urtwn_write_2(sc, R92C_BCN_INTERVAL, ni->ni_intval); /* Allow Rx from our BSSID only. */ if (ic->ic_promisc == 0) { reg = urtwn_read_4(sc, R92C_RCR); if (vap->iv_opmode != IEEE80211_M_HOSTAP) reg |= R92C_RCR_CBSSID_DATA; if (vap->iv_opmode != IEEE80211_M_IBSS) reg |= R92C_RCR_CBSSID_BCN; urtwn_write_4(sc, R92C_RCR, reg); } if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_IBSS) { error = urtwn_setup_beacon(sc, ni); if (error != 0) { device_printf(sc->sc_dev, "unable to push beacon into the chip, " "error %d\n", error); goto end_run; } } /* Enable TSF synchronization. */ urtwn_tsf_sync_enable(sc, vap); urtwn_write_1(sc, R92C_SIFS_CCK + 1, 10); urtwn_write_1(sc, R92C_SIFS_OFDM + 1, 10); urtwn_write_1(sc, R92C_SPEC_SIFS + 1, 10); urtwn_write_1(sc, R92C_MAC_SPEC_SIFS + 1, 10); urtwn_write_1(sc, R92C_R2T_SIFS + 1, 10); urtwn_write_1(sc, R92C_T2T_SIFS + 1, 10); /* Intialize rate adaptation. */ if (!(sc->chip & URTWN_CHIP_88E)) urtwn_ra_init(sc); /* Turn link LED on. */ urtwn_set_led(sc, URTWN_LED_LINK, 1); sc->avg_pwdb = -1; /* Reset average RSSI. */ /* Reset temperature calibration state machine. */ sc->sc_flags &= ~URTWN_TEMP_MEASURED; sc->thcal_lctemp = 0; /* Start periodic calibration. */ callout_reset(&sc->sc_calib_to, 2*hz, urtwn_calib_to, sc); end_run: ieee80211_free_node(ni); break; default: break; } URTWN_UNLOCK(sc); IEEE80211_LOCK(ic); return (error != 0 ? error : uvp->newstate(vap, nstate, arg)); } static void urtwn_calib_to(void *arg) { struct urtwn_softc *sc = arg; /* Do it in a process context. */ urtwn_cmd_sleepable(sc, NULL, 0, urtwn_calib_cb); } static void urtwn_calib_cb(struct urtwn_softc *sc, union sec_param *data) { /* Do temperature compensation. */ urtwn_temp_calib(sc); if ((urtwn_read_1(sc, R92C_MSR) & R92C_MSR_MASK) != R92C_MSR_NOLINK) callout_reset(&sc->sc_calib_to, 2*hz, urtwn_calib_to, sc); } static void urtwn_watchdog(void *arg) { struct urtwn_softc *sc = arg; if (sc->sc_txtimer > 0) { if (--sc->sc_txtimer == 0) { device_printf(sc->sc_dev, "device timeout\n"); counter_u64_add(sc->sc_ic.ic_oerrors, 1); return; } callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc); } } static void urtwn_update_avgrssi(struct urtwn_softc *sc, int rate, int8_t rssi) { int pwdb; /* Convert antenna signal to percentage. */ if (rssi <= -100 || rssi >= 20) pwdb = 0; else if (rssi >= 0) pwdb = 100; else pwdb = 100 + rssi; if (!(sc->chip & URTWN_CHIP_88E)) { if (rate <= URTWN_RIDX_CCK11) { /* CCK gain is smaller than OFDM/MCS gain. */ pwdb += 6; if (pwdb > 100) pwdb = 100; if (pwdb <= 14) pwdb -= 4; else if (pwdb <= 26) pwdb -= 8; else if (pwdb <= 34) pwdb -= 6; else if (pwdb <= 42) pwdb -= 2; } } if (sc->avg_pwdb == -1) /* Init. */ sc->avg_pwdb = pwdb; else if (sc->avg_pwdb < pwdb) sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20) + 1; else sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20); URTWN_DPRINTF(sc, URTWN_DEBUG_RSSI, "%s: PWDB %d, EMA %d\n", __func__, pwdb, sc->avg_pwdb); } static int8_t urtwn_get_rssi(struct urtwn_softc *sc, int rate, void *physt) { static const int8_t cckoff[] = { 16, -12, -26, -46 }; struct r92c_rx_phystat *phy; struct r92c_rx_cck *cck; uint8_t rpt; int8_t rssi; if (rate <= URTWN_RIDX_CCK11) { cck = (struct r92c_rx_cck *)physt; if (sc->sc_flags & URTWN_FLAG_CCK_HIPWR) { rpt = (cck->agc_rpt >> 5) & 0x3; rssi = (cck->agc_rpt & 0x1f) << 1; } else { rpt = (cck->agc_rpt >> 6) & 0x3; rssi = cck->agc_rpt & 0x3e; } rssi = cckoff[rpt] - rssi; } else { /* OFDM/HT. */ phy = (struct r92c_rx_phystat *)physt; rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110; } return (rssi); } static int8_t urtwn_r88e_get_rssi(struct urtwn_softc *sc, int rate, void *physt) { struct r92c_rx_phystat *phy; struct r88e_rx_cck *cck; uint8_t cck_agc_rpt, lna_idx, vga_idx; int8_t rssi; rssi = 0; if (rate <= URTWN_RIDX_CCK11) { cck = (struct r88e_rx_cck *)physt; cck_agc_rpt = cck->agc_rpt; lna_idx = (cck_agc_rpt & 0xe0) >> 5; vga_idx = cck_agc_rpt & 0x1f; switch (lna_idx) { case 7: if (vga_idx <= 27) rssi = -100 + 2* (27 - vga_idx); else rssi = -100; break; case 6: rssi = -48 + 2 * (2 - vga_idx); break; case 5: rssi = -42 + 2 * (7 - vga_idx); break; case 4: rssi = -36 + 2 * (7 - vga_idx); break; case 3: rssi = -24 + 2 * (7 - vga_idx); break; case 2: rssi = -12 + 2 * (5 - vga_idx); break; case 1: rssi = 8 - (2 * vga_idx); break; case 0: rssi = 14 - (2 * vga_idx); break; } rssi += 6; } else { /* OFDM/HT. */ phy = (struct r92c_rx_phystat *)physt; rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 110; } return (rssi); } static int urtwn_tx_data(struct urtwn_softc *sc, struct ieee80211_node *ni, struct mbuf *m, struct urtwn_data *data) { const struct ieee80211_txparam *tp; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_key *k = NULL; struct ieee80211_channel *chan; struct ieee80211_frame *wh; struct r92c_tx_desc *txd; uint8_t macid, raid, rate, ridx, subtype, type, tid, qsel; int hasqos, ismcast; URTWN_ASSERT_LOCKED(sc); /* * Software crypto. */ wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; hasqos = IEEE80211_QOS_HAS_SEQ(wh); ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); /* Select TX ring for this frame. */ if (hasqos) { tid = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; tid &= IEEE80211_QOS_TID; } else tid = 0; chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ? ni->ni_chan : ic->ic_curchan; tp = &vap->iv_txparms[ieee80211_chan2mode(chan)]; /* Choose a TX rate index. */ if (type == IEEE80211_FC0_TYPE_MGT) rate = tp->mgmtrate; else if (ismcast) rate = tp->mcastrate; else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) rate = tp->ucastrate; else if (m->m_flags & M_EAPOL) rate = tp->mgmtrate; else { if (URTWN_CHIP_HAS_RATECTL(sc)) { /* XXX pass pktlen */ (void) ieee80211_ratectl_rate(ni, NULL, 0); rate = ni->ni_txrate; } else { /* XXX TODO: drop the default rate for 11b/11g? */ if (ni->ni_flags & IEEE80211_NODE_HT) rate = IEEE80211_RATE_MCS | 0x4; /* MCS4 */ else if (ic->ic_curmode != IEEE80211_MODE_11B) rate = 108; else rate = 22; } } /* * XXX TODO: this should be per-node, for 11b versus 11bg * nodes in hostap mode */ ridx = rate2ridx(rate); if (ni->ni_flags & IEEE80211_NODE_HT) raid = R92C_RAID_11GN; else if (ic->ic_curmode != IEEE80211_MODE_11B) raid = R92C_RAID_11BG; else raid = R92C_RAID_11B; if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m); if (k == NULL) { device_printf(sc->sc_dev, "ieee80211_crypto_encap returns NULL.\n"); return (ENOBUFS); } /* in case packet header moved, reset pointer */ wh = mtod(m, struct ieee80211_frame *); } /* Fill Tx descriptor. */ txd = (struct r92c_tx_desc *)data->buf; memset(txd, 0, sizeof(*txd)); txd->txdw0 |= htole32( SM(R92C_TXDW0_OFFSET, sizeof(*txd)) | R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG); if (ismcast) txd->txdw0 |= htole32(R92C_TXDW0_BMCAST); if (!ismcast) { if (sc->chip & URTWN_CHIP_88E) { struct urtwn_node *un = URTWN_NODE(ni); macid = un->id; } else macid = URTWN_MACID_BSS; if (type == IEEE80211_FC0_TYPE_DATA) { qsel = tid % URTWN_MAX_TID; if (sc->chip & URTWN_CHIP_88E) { txd->txdw2 |= htole32( R88E_TXDW2_AGGBK | R88E_TXDW2_CCX_RPT); } else txd->txdw1 |= htole32(R92C_TXDW1_AGGBK); /* protmode, non-HT */ /* XXX TODO: noack frames? */ if ((rate & 0x80) == 0 && (ic->ic_flags & IEEE80211_F_USEPROT)) { switch (ic->ic_protmode) { case IEEE80211_PROT_CTSONLY: txd->txdw4 |= htole32( R92C_TXDW4_CTS2SELF | R92C_TXDW4_HWRTSEN); break; case IEEE80211_PROT_RTSCTS: txd->txdw4 |= htole32( R92C_TXDW4_RTSEN | R92C_TXDW4_HWRTSEN); break; default: break; } } /* protmode, HT */ /* XXX TODO: noack frames? */ if ((rate & 0x80) && (ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) { txd->txdw4 |= htole32( R92C_TXDW4_RTSEN | R92C_TXDW4_HWRTSEN); } /* XXX TODO: rtsrate is configurable? 24mbit may * be a bit high for RTS rate? */ txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE, URTWN_RIDX_OFDM24)); txd->txdw5 |= htole32(0x0001ff00); } else /* IEEE80211_FC0_TYPE_MGT */ qsel = R92C_TXDW1_QSEL_MGNT; } else { macid = URTWN_MACID_BC; qsel = R92C_TXDW1_QSEL_MGNT; } txd->txdw1 |= htole32( SM(R92C_TXDW1_QSEL, qsel) | SM(R92C_TXDW1_RAID, raid)); /* XXX TODO: 40MHZ flag? */ /* XXX TODO: AMPDU flag? (AGG_ENABLE or AGG_BREAK?) Density shift? */ /* XXX Short preamble? */ /* XXX Short-GI? */ if (sc->chip & URTWN_CHIP_88E) txd->txdw1 |= htole32(SM(R88E_TXDW1_MACID, macid)); else txd->txdw1 |= htole32(SM(R92C_TXDW1_MACID, macid)); txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, ridx)); /* Force this rate if needed. */ if (URTWN_CHIP_HAS_RATECTL(sc) || ismcast || (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) || (m->m_flags & M_EAPOL) || type != IEEE80211_FC0_TYPE_DATA) txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE); if (!hasqos) { /* Use HW sequence numbering for non-QoS frames. */ if (sc->chip & URTWN_CHIP_88E) txd->txdseq = htole16(R88E_TXDSEQ_HWSEQ_EN); else txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ_EN); } else { /* Set sequence number. */ txd->txdseq = htole16(M_SEQNO_GET(m) % IEEE80211_SEQ_RANGE); } if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { uint8_t cipher; switch (k->wk_cipher->ic_cipher) { case IEEE80211_CIPHER_WEP: case IEEE80211_CIPHER_TKIP: cipher = R92C_TXDW1_CIPHER_RC4; break; case IEEE80211_CIPHER_AES_CCM: cipher = R92C_TXDW1_CIPHER_AES; break; default: device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__, k->wk_cipher->ic_cipher); return (EINVAL); } txd->txdw1 |= htole32(SM(R92C_TXDW1_CIPHER, cipher)); } if (ieee80211_radiotap_active_vap(vap)) { struct urtwn_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; if (k != NULL) tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; ieee80211_radiotap_tx(vap, m); } data->ni = ni; urtwn_tx_start(sc, m, type, data); return (0); } static int urtwn_tx_raw(struct urtwn_softc *sc, struct ieee80211_node *ni, struct mbuf *m, struct urtwn_data *data, const struct ieee80211_bpf_params *params) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_key *k = NULL; struct ieee80211_frame *wh; struct r92c_tx_desc *txd; uint8_t cipher, ridx, type; /* Encrypt the frame if need be. */ cipher = R92C_TXDW1_CIPHER_NONE; if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { /* Retrieve key for TX. */ k = ieee80211_crypto_encap(ni, m); if (k == NULL) return (ENOBUFS); if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { switch (k->wk_cipher->ic_cipher) { case IEEE80211_CIPHER_WEP: case IEEE80211_CIPHER_TKIP: cipher = R92C_TXDW1_CIPHER_RC4; break; case IEEE80211_CIPHER_AES_CCM: cipher = R92C_TXDW1_CIPHER_AES; break; default: device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__, k->wk_cipher->ic_cipher); return (EINVAL); } } } /* XXX TODO: 11n checks, matching urtwn_tx_data() */ wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; /* Fill Tx descriptor. */ txd = (struct r92c_tx_desc *)data->buf; memset(txd, 0, sizeof(*txd)); txd->txdw0 |= htole32( SM(R92C_TXDW0_OFFSET, sizeof(*txd)) | R92C_TXDW0_OWN | R92C_TXDW0_FSG | R92C_TXDW0_LSG); if (IEEE80211_IS_MULTICAST(wh->i_addr1)) txd->txdw0 |= htole32(R92C_TXDW0_BMCAST); if (params->ibp_flags & IEEE80211_BPF_RTS) txd->txdw4 |= htole32(R92C_TXDW4_RTSEN); if (params->ibp_flags & IEEE80211_BPF_CTS) txd->txdw4 |= htole32(R92C_TXDW4_CTS2SELF); if (txd->txdw4 & htole32(R92C_TXDW4_RTSEN | R92C_TXDW4_CTS2SELF)) { txd->txdw4 |= htole32(R92C_TXDW4_HWRTSEN); txd->txdw4 |= htole32(SM(R92C_TXDW4_RTSRATE, URTWN_RIDX_OFDM24)); } if (sc->chip & URTWN_CHIP_88E) txd->txdw1 |= htole32(SM(R88E_TXDW1_MACID, URTWN_MACID_BC)); else txd->txdw1 |= htole32(SM(R92C_TXDW1_MACID, URTWN_MACID_BC)); /* XXX TODO: rate index/config (RAID) for 11n? */ txd->txdw1 |= htole32(SM(R92C_TXDW1_QSEL, R92C_TXDW1_QSEL_MGNT)); txd->txdw1 |= htole32(SM(R92C_TXDW1_CIPHER, cipher)); /* Choose a TX rate index. */ ridx = rate2ridx(params->ibp_rate0); txd->txdw5 |= htole32(SM(R92C_TXDW5_DATARATE, ridx)); txd->txdw5 |= htole32(0x0001ff00); txd->txdw4 |= htole32(R92C_TXDW4_DRVRATE); if (!IEEE80211_QOS_HAS_SEQ(wh)) { /* Use HW sequence numbering for non-QoS frames. */ if (sc->chip & URTWN_CHIP_88E) txd->txdseq = htole16(R88E_TXDSEQ_HWSEQ_EN); else txd->txdw4 |= htole32(R92C_TXDW4_HWSEQ_EN); } else { /* Set sequence number. */ txd->txdseq = htole16(M_SEQNO_GET(m) % IEEE80211_SEQ_RANGE); } if (ieee80211_radiotap_active_vap(vap)) { struct urtwn_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; if (k != NULL) tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; ieee80211_radiotap_tx(vap, m); } data->ni = ni; urtwn_tx_start(sc, m, type, data); return (0); } static void urtwn_tx_start(struct urtwn_softc *sc, struct mbuf *m, uint8_t type, struct urtwn_data *data) { struct usb_xfer *xfer; struct r92c_tx_desc *txd; uint16_t ac, sum; int i, xferlen; URTWN_ASSERT_LOCKED(sc); ac = M_WME_GETAC(m); switch (type) { case IEEE80211_FC0_TYPE_CTL: case IEEE80211_FC0_TYPE_MGT: xfer = sc->sc_xfer[URTWN_BULK_TX_VO]; break; default: xfer = sc->sc_xfer[wme2queue[ac].qid]; break; } txd = (struct r92c_tx_desc *)data->buf; txd->txdw0 |= htole32(SM(R92C_TXDW0_PKTLEN, m->m_pkthdr.len)); /* Compute Tx descriptor checksum. */ sum = 0; for (i = 0; i < sizeof(*txd) / 2; i++) sum ^= ((uint16_t *)txd)[i]; txd->txdsum = sum; /* NB: already little endian. */ xferlen = sizeof(*txd) + m->m_pkthdr.len; m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)&txd[1]); data->buflen = xferlen; data->m = m; STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); usbd_transfer_start(xfer); } static int urtwn_transmit(struct ieee80211com *ic, struct mbuf *m) { struct urtwn_softc *sc = ic->ic_softc; int error; URTWN_LOCK(sc); if ((sc->sc_flags & URTWN_RUNNING) == 0) { URTWN_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { URTWN_UNLOCK(sc); return (error); } urtwn_start(sc); URTWN_UNLOCK(sc); return (0); } static void urtwn_start(struct urtwn_softc *sc) { struct ieee80211_node *ni; struct mbuf *m; struct urtwn_data *bf; URTWN_ASSERT_LOCKED(sc); while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { bf = urtwn_getbuf(sc); if (bf == NULL) { mbufq_prepend(&sc->sc_snd, m); break; } ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; URTWN_DPRINTF(sc, URTWN_DEBUG_XMIT, "%s: called; m=%p\n", __func__, m); if (urtwn_tx_data(sc, ni, m, bf) != 0) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); m_freem(m); ieee80211_free_node(ni); break; } sc->sc_txtimer = 5; callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc); } } static void urtwn_parent(struct ieee80211com *ic) { struct urtwn_softc *sc = ic->ic_softc; URTWN_LOCK(sc); if (sc->sc_flags & URTWN_DETACHED) { URTWN_UNLOCK(sc); return; } URTWN_UNLOCK(sc); if (ic->ic_nrunning > 0) { if (urtwn_init(sc) != 0) { struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); if (vap != NULL) ieee80211_stop(vap); } else ieee80211_start_all(ic); } else urtwn_stop(sc); } static __inline int urtwn_power_on(struct urtwn_softc *sc) { return sc->sc_power_on(sc); } static int urtwn_r92c_power_on(struct urtwn_softc *sc) { uint32_t reg; usb_error_t error; int ntries; /* Wait for autoload done bit. */ for (ntries = 0; ntries < 1000; ntries++) { if (urtwn_read_1(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_PFM_ALDN) break; urtwn_ms_delay(sc); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for chip autoload\n"); return (ETIMEDOUT); } /* Unlock ISO/CLK/Power control register. */ error = urtwn_write_1(sc, R92C_RSV_CTRL, 0); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Move SPS into PWM mode. */ error = urtwn_write_1(sc, R92C_SPS0_CTRL, 0x2b); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); urtwn_ms_delay(sc); reg = urtwn_read_1(sc, R92C_LDOV12D_CTRL); if (!(reg & R92C_LDOV12D_CTRL_LDV12_EN)) { error = urtwn_write_1(sc, R92C_LDOV12D_CTRL, reg | R92C_LDOV12D_CTRL_LDV12_EN); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); urtwn_ms_delay(sc); error = urtwn_write_1(sc, R92C_SYS_ISO_CTRL, urtwn_read_1(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_MD2PP); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); } /* Auto enable WLAN. */ error = urtwn_write_2(sc, R92C_APS_FSMCO, urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); for (ntries = 0; ntries < 1000; ntries++) { if (!(urtwn_read_2(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_APFM_ONMAC)) break; urtwn_ms_delay(sc); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for MAC auto ON\n"); return (ETIMEDOUT); } /* Enable radio, GPIO and LED functions. */ error = urtwn_write_2(sc, R92C_APS_FSMCO, R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_PDN_EN | R92C_APS_FSMCO_PFM_ALDN); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Release RF digital isolation. */ error = urtwn_write_2(sc, R92C_SYS_ISO_CTRL, urtwn_read_2(sc, R92C_SYS_ISO_CTRL) & ~R92C_SYS_ISO_CTRL_DIOR); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Initialize MAC. */ error = urtwn_write_1(sc, R92C_APSD_CTRL, urtwn_read_1(sc, R92C_APSD_CTRL) & ~R92C_APSD_CTRL_OFF); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); for (ntries = 0; ntries < 200; ntries++) { if (!(urtwn_read_1(sc, R92C_APSD_CTRL) & R92C_APSD_CTRL_OFF_STATUS)) break; urtwn_ms_delay(sc); } if (ntries == 200) { device_printf(sc->sc_dev, "timeout waiting for MAC initialization\n"); return (ETIMEDOUT); } /* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */ reg = urtwn_read_2(sc, R92C_CR); reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN | R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN | R92C_CR_SCHEDULE_EN | R92C_CR_MACTXEN | R92C_CR_MACRXEN | R92C_CR_ENSEC; error = urtwn_write_2(sc, R92C_CR, reg); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); error = urtwn_write_1(sc, 0xfe10, 0x19); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); return (0); } static int urtwn_r88e_power_on(struct urtwn_softc *sc) { uint32_t reg; usb_error_t error; int ntries; /* Wait for power ready bit. */ for (ntries = 0; ntries < 5000; ntries++) { if (urtwn_read_4(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_SUS_HOST) break; urtwn_ms_delay(sc); } if (ntries == 5000) { device_printf(sc->sc_dev, "timeout waiting for chip power up\n"); return (ETIMEDOUT); } /* Reset BB. */ error = urtwn_write_1(sc, R92C_SYS_FUNC_EN, urtwn_read_1(sc, R92C_SYS_FUNC_EN) & ~(R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST)); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); error = urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 2, urtwn_read_1(sc, R92C_AFE_XTAL_CTRL + 2) | 0x80); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Disable HWPDN. */ error = urtwn_write_2(sc, R92C_APS_FSMCO, urtwn_read_2(sc, R92C_APS_FSMCO) & ~R92C_APS_FSMCO_APDM_HPDN); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Disable WL suspend. */ error = urtwn_write_2(sc, R92C_APS_FSMCO, urtwn_read_2(sc, R92C_APS_FSMCO) & ~(R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_AFSM_PCIE)); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); error = urtwn_write_2(sc, R92C_APS_FSMCO, urtwn_read_2(sc, R92C_APS_FSMCO) | R92C_APS_FSMCO_APFM_ONMAC); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); for (ntries = 0; ntries < 5000; ntries++) { if (!(urtwn_read_2(sc, R92C_APS_FSMCO) & R92C_APS_FSMCO_APFM_ONMAC)) break; urtwn_ms_delay(sc); } if (ntries == 5000) return (ETIMEDOUT); /* Enable LDO normal mode. */ error = urtwn_write_1(sc, R92C_LPLDO_CTRL, urtwn_read_1(sc, R92C_LPLDO_CTRL) & ~R92C_LPLDO_CTRL_SLEEP); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Enable MAC DMA/WMAC/SCHEDULE/SEC blocks. */ error = urtwn_write_2(sc, R92C_CR, 0); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); reg = urtwn_read_2(sc, R92C_CR); reg |= R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN | R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN | R92C_CR_SCHEDULE_EN | R92C_CR_ENSEC | R92C_CR_CALTMR_EN; error = urtwn_write_2(sc, R92C_CR, reg); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); return (0); } static __inline void urtwn_power_off(struct urtwn_softc *sc) { return sc->sc_power_off(sc); } static void urtwn_r92c_power_off(struct urtwn_softc *sc) { uint32_t reg; /* Block all Tx queues. */ urtwn_write_1(sc, R92C_TXPAUSE, R92C_TX_QUEUE_ALL); /* Disable RF */ urtwn_rf_write(sc, 0, 0, 0); urtwn_write_1(sc, R92C_APSD_CTRL, R92C_APSD_CTRL_OFF); /* Reset BB state machine */ urtwn_write_1(sc, R92C_SYS_FUNC_EN, R92C_SYS_FUNC_EN_USBD | R92C_SYS_FUNC_EN_USBA | R92C_SYS_FUNC_EN_BB_GLB_RST); urtwn_write_1(sc, R92C_SYS_FUNC_EN, R92C_SYS_FUNC_EN_USBD | R92C_SYS_FUNC_EN_USBA); /* * Reset digital sequence */ #ifndef URTWN_WITHOUT_UCODE if (urtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RDY) { /* Reset MCU ready status */ urtwn_write_1(sc, R92C_MCUFWDL, 0); /* If firmware in ram code, do reset */ urtwn_fw_reset(sc); } #endif /* Reset MAC and Enable 8051 */ urtwn_write_1(sc, R92C_SYS_FUNC_EN + 1, (R92C_SYS_FUNC_EN_CPUEN | R92C_SYS_FUNC_EN_ELDR | R92C_SYS_FUNC_EN_HWPDN) >> 8); /* Reset MCU ready status */ urtwn_write_1(sc, R92C_MCUFWDL, 0); /* Disable MAC clock */ urtwn_write_2(sc, R92C_SYS_CLKR, R92C_SYS_CLKR_ANAD16V_EN | R92C_SYS_CLKR_ANA8M | R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_80M_SSC_DIS | R92C_SYS_CLKR_SYS_EN | R92C_SYS_CLKR_RING_EN | 0x4000); /* Disable AFE PLL */ urtwn_write_1(sc, R92C_AFE_PLL_CTRL, 0x80); /* Gated AFE DIG_CLOCK */ urtwn_write_2(sc, R92C_AFE_XTAL_CTRL, 0x880F); /* Isolated digital to PON */ urtwn_write_1(sc, R92C_SYS_ISO_CTRL, R92C_SYS_ISO_CTRL_MD2PP | R92C_SYS_ISO_CTRL_PA2PCIE | R92C_SYS_ISO_CTRL_PD2CORE | R92C_SYS_ISO_CTRL_IP2MAC | R92C_SYS_ISO_CTRL_DIOP | R92C_SYS_ISO_CTRL_DIOE); /* * Pull GPIO PIN to balance level and LED control */ /* 1. Disable GPIO[7:0] */ urtwn_write_2(sc, R92C_GPIO_IOSEL, 0x0000); reg = urtwn_read_4(sc, R92C_GPIO_PIN_CTRL) & ~0x0000ff00; reg |= ((reg << 8) & 0x0000ff00) | 0x00ff0000; urtwn_write_4(sc, R92C_GPIO_PIN_CTRL, reg); /* Disable GPIO[10:8] */ urtwn_write_1(sc, R92C_MAC_PINMUX_CFG, 0x00); reg = urtwn_read_2(sc, R92C_GPIO_IO_SEL) & ~0x00f0; reg |= (((reg & 0x000f) << 4) | 0x0780); urtwn_write_2(sc, R92C_GPIO_IO_SEL, reg); /* Disable LED0 & 1 */ urtwn_write_2(sc, R92C_LEDCFG0, 0x8080); /* * Reset digital sequence */ /* Disable ELDR clock */ urtwn_write_2(sc, R92C_SYS_CLKR, R92C_SYS_CLKR_ANAD16V_EN | R92C_SYS_CLKR_ANA8M | R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_80M_SSC_DIS | R92C_SYS_CLKR_SYS_EN | R92C_SYS_CLKR_RING_EN | 0x4000); /* Isolated ELDR to PON */ urtwn_write_1(sc, R92C_SYS_ISO_CTRL + 1, (R92C_SYS_ISO_CTRL_DIOR | R92C_SYS_ISO_CTRL_PWC_EV12V) >> 8); /* * Disable analog sequence */ /* Disable A15 power */ urtwn_write_1(sc, R92C_LDOA15_CTRL, R92C_LDOA15_CTRL_OBUF); /* Disable digital core power */ urtwn_write_1(sc, R92C_LDOV12D_CTRL, urtwn_read_1(sc, R92C_LDOV12D_CTRL) & ~R92C_LDOV12D_CTRL_LDV12_EN); /* Enter PFM mode */ urtwn_write_1(sc, R92C_SPS0_CTRL, 0x23); /* Set USB suspend */ urtwn_write_2(sc, R92C_APS_FSMCO, R92C_APS_FSMCO_APDM_HOST | R92C_APS_FSMCO_AFSM_HSUS | R92C_APS_FSMCO_PFM_ALDN); /* Lock ISO/CLK/Power control register. */ urtwn_write_1(sc, R92C_RSV_CTRL, 0x0E); } static void urtwn_r88e_power_off(struct urtwn_softc *sc) { uint8_t reg; int ntries; /* Disable any kind of TX reports. */ urtwn_write_1(sc, R88E_TX_RPT_CTRL, urtwn_read_1(sc, R88E_TX_RPT_CTRL) & ~(R88E_TX_RPT1_ENA | R88E_TX_RPT2_ENA)); /* Stop Rx. */ urtwn_write_1(sc, R92C_CR, 0); /* Move card to Low Power State. */ /* Block all Tx queues. */ urtwn_write_1(sc, R92C_TXPAUSE, R92C_TX_QUEUE_ALL); for (ntries = 0; ntries < 20; ntries++) { /* Should be zero if no packet is transmitting. */ if (urtwn_read_4(sc, R88E_SCH_TXCMD) == 0) break; urtwn_ms_delay(sc); } if (ntries == 20) { device_printf(sc->sc_dev, "%s: failed to block Tx queues\n", __func__); return; } /* CCK and OFDM are disabled, and clock are gated. */ urtwn_write_1(sc, R92C_SYS_FUNC_EN, urtwn_read_1(sc, R92C_SYS_FUNC_EN) & ~R92C_SYS_FUNC_EN_BBRSTB); urtwn_ms_delay(sc); /* Reset MAC TRX */ urtwn_write_1(sc, R92C_CR, R92C_CR_HCI_TXDMA_EN | R92C_CR_HCI_RXDMA_EN | R92C_CR_TXDMA_EN | R92C_CR_RXDMA_EN | R92C_CR_PROTOCOL_EN | R92C_CR_SCHEDULE_EN); /* check if removed later */ urtwn_write_1(sc, R92C_CR + 1, urtwn_read_1(sc, R92C_CR + 1) & ~(R92C_CR_ENSEC >> 8)); /* Respond TxOK to scheduler */ urtwn_write_1(sc, R92C_DUAL_TSF_RST, urtwn_read_1(sc, R92C_DUAL_TSF_RST) | 0x20); /* If firmware in ram code, do reset. */ #ifndef URTWN_WITHOUT_UCODE if (urtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RDY) urtwn_r88e_fw_reset(sc); #endif /* Reset MCU ready status. */ urtwn_write_1(sc, R92C_MCUFWDL, 0x00); /* Disable 32k. */ urtwn_write_1(sc, R88E_32K_CTRL, urtwn_read_1(sc, R88E_32K_CTRL) & ~0x01); /* Move card to Disabled state. */ /* Turn off RF. */ urtwn_write_1(sc, R92C_RF_CTRL, 0); /* LDO Sleep mode. */ urtwn_write_1(sc, R92C_LPLDO_CTRL, urtwn_read_1(sc, R92C_LPLDO_CTRL) | R92C_LPLDO_CTRL_SLEEP); /* Turn off MAC by HW state machine */ urtwn_write_1(sc, R92C_APS_FSMCO + 1, urtwn_read_1(sc, R92C_APS_FSMCO + 1) | (R92C_APS_FSMCO_APFM_OFF >> 8)); for (ntries = 0; ntries < 20; ntries++) { /* Wait until it will be disabled. */ if ((urtwn_read_1(sc, R92C_APS_FSMCO + 1) & (R92C_APS_FSMCO_APFM_OFF >> 8)) == 0) break; urtwn_ms_delay(sc); } if (ntries == 20) { device_printf(sc->sc_dev, "%s: could not turn off MAC\n", __func__); return; } /* schmit trigger */ urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 2, urtwn_read_1(sc, R92C_AFE_XTAL_CTRL + 2) | 0x80); /* Enable WL suspend. */ urtwn_write_1(sc, R92C_APS_FSMCO + 1, (urtwn_read_1(sc, R92C_APS_FSMCO + 1) & ~0x10) | 0x08); /* Enable bandgap mbias in suspend. */ urtwn_write_1(sc, R92C_APS_FSMCO + 3, 0); /* Clear SIC_EN register. */ urtwn_write_1(sc, R92C_GPIO_MUXCFG + 1, urtwn_read_1(sc, R92C_GPIO_MUXCFG + 1) & ~0x10); /* Set USB suspend enable local register */ urtwn_write_1(sc, R92C_USB_SUSPEND, urtwn_read_1(sc, R92C_USB_SUSPEND) | 0x10); /* Reset MCU IO Wrapper. */ reg = urtwn_read_1(sc, R92C_RSV_CTRL + 1); urtwn_write_1(sc, R92C_RSV_CTRL + 1, reg & ~0x08); urtwn_write_1(sc, R92C_RSV_CTRL + 1, reg | 0x08); /* marked as 'For Power Consumption' code. */ urtwn_write_1(sc, R92C_GPIO_OUT, urtwn_read_1(sc, R92C_GPIO_IN)); urtwn_write_1(sc, R92C_GPIO_IOSEL, 0xff); urtwn_write_1(sc, R92C_GPIO_IO_SEL, urtwn_read_1(sc, R92C_GPIO_IO_SEL) << 4); urtwn_write_1(sc, R92C_GPIO_MOD, urtwn_read_1(sc, R92C_GPIO_MOD) | 0x0f); /* Set LNA, TRSW, EX_PA Pin to output mode. */ urtwn_write_4(sc, R88E_BB_PAD_CTRL, 0x00080808); } static int urtwn_llt_init(struct urtwn_softc *sc) { int i, error, page_count, pktbuf_count; page_count = (sc->chip & URTWN_CHIP_88E) ? R88E_TX_PAGE_COUNT : R92C_TX_PAGE_COUNT; pktbuf_count = (sc->chip & URTWN_CHIP_88E) ? R88E_TXPKTBUF_COUNT : R92C_TXPKTBUF_COUNT; /* Reserve pages [0; page_count]. */ for (i = 0; i < page_count; i++) { if ((error = urtwn_llt_write(sc, i, i + 1)) != 0) return (error); } /* NB: 0xff indicates end-of-list. */ if ((error = urtwn_llt_write(sc, i, 0xff)) != 0) return (error); /* * Use pages [page_count + 1; pktbuf_count - 1] * as ring buffer. */ for (++i; i < pktbuf_count - 1; i++) { if ((error = urtwn_llt_write(sc, i, i + 1)) != 0) return (error); } /* Make the last page point to the beginning of the ring buffer. */ error = urtwn_llt_write(sc, i, page_count + 1); return (error); } #ifndef URTWN_WITHOUT_UCODE static void urtwn_fw_reset(struct urtwn_softc *sc) { uint16_t reg; int ntries; /* Tell 8051 to reset itself. */ urtwn_write_1(sc, R92C_HMETFR + 3, 0x20); /* Wait until 8051 resets by itself. */ for (ntries = 0; ntries < 100; ntries++) { reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN); if (!(reg & R92C_SYS_FUNC_EN_CPUEN)) return; urtwn_ms_delay(sc); } /* Force 8051 reset. */ urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN); } static void urtwn_r88e_fw_reset(struct urtwn_softc *sc) { uint16_t reg; reg = urtwn_read_2(sc, R92C_SYS_FUNC_EN); urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN); urtwn_write_2(sc, R92C_SYS_FUNC_EN, reg | R92C_SYS_FUNC_EN_CPUEN); } static int urtwn_fw_loadpage(struct urtwn_softc *sc, int page, const uint8_t *buf, int len) { uint32_t reg; usb_error_t error = USB_ERR_NORMAL_COMPLETION; int off, mlen; reg = urtwn_read_4(sc, R92C_MCUFWDL); reg = RW(reg, R92C_MCUFWDL_PAGE, page); urtwn_write_4(sc, R92C_MCUFWDL, reg); off = R92C_FW_START_ADDR; while (len > 0) { if (len > 196) mlen = 196; else if (len > 4) mlen = 4; else mlen = 1; /* XXX fix this deconst */ error = urtwn_write_region_1(sc, off, __DECONST(uint8_t *, buf), mlen); if (error != USB_ERR_NORMAL_COMPLETION) break; off += mlen; buf += mlen; len -= mlen; } return (error); } static int urtwn_load_firmware(struct urtwn_softc *sc) { const struct firmware *fw; const struct r92c_fw_hdr *hdr; const char *imagename; const u_char *ptr; size_t len; uint32_t reg; int mlen, ntries, page, error; URTWN_UNLOCK(sc); /* Read firmware image from the filesystem. */ if (sc->chip & URTWN_CHIP_88E) imagename = "urtwn-rtl8188eufw"; else if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) == URTWN_CHIP_UMC_A_CUT) imagename = "urtwn-rtl8192cfwU"; else imagename = "urtwn-rtl8192cfwT"; fw = firmware_get(imagename); URTWN_LOCK(sc); if (fw == NULL) { device_printf(sc->sc_dev, "failed loadfirmware of file %s\n", imagename); return (ENOENT); } len = fw->datasize; if (len < sizeof(*hdr)) { device_printf(sc->sc_dev, "firmware too short\n"); error = EINVAL; goto fail; } ptr = fw->data; hdr = (const struct r92c_fw_hdr *)ptr; /* Check if there is a valid FW header and skip it. */ if ((le16toh(hdr->signature) >> 4) == 0x88c || (le16toh(hdr->signature) >> 4) == 0x88e || (le16toh(hdr->signature) >> 4) == 0x92c) { URTWN_DPRINTF(sc, URTWN_DEBUG_FIRMWARE, "FW V%d.%d %02d-%02d %02d:%02d\n", le16toh(hdr->version), le16toh(hdr->subversion), hdr->month, hdr->date, hdr->hour, hdr->minute); ptr += sizeof(*hdr); len -= sizeof(*hdr); } if (urtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RAM_DL_SEL) { if (sc->chip & URTWN_CHIP_88E) urtwn_r88e_fw_reset(sc); else urtwn_fw_reset(sc); urtwn_write_1(sc, R92C_MCUFWDL, 0); } if (!(sc->chip & URTWN_CHIP_88E)) { urtwn_write_2(sc, R92C_SYS_FUNC_EN, urtwn_read_2(sc, R92C_SYS_FUNC_EN) | R92C_SYS_FUNC_EN_CPUEN); } urtwn_write_1(sc, R92C_MCUFWDL, urtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_EN); urtwn_write_1(sc, R92C_MCUFWDL + 2, urtwn_read_1(sc, R92C_MCUFWDL + 2) & ~0x08); /* Reset the FWDL checksum. */ urtwn_write_1(sc, R92C_MCUFWDL, urtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_CHKSUM_RPT); for (page = 0; len > 0; page++) { mlen = min(len, R92C_FW_PAGE_SIZE); error = urtwn_fw_loadpage(sc, page, ptr, mlen); if (error != 0) { device_printf(sc->sc_dev, "could not load firmware page\n"); goto fail; } ptr += mlen; len -= mlen; } urtwn_write_1(sc, R92C_MCUFWDL, urtwn_read_1(sc, R92C_MCUFWDL) & ~R92C_MCUFWDL_EN); urtwn_write_1(sc, R92C_MCUFWDL + 1, 0); /* Wait for checksum report. */ for (ntries = 0; ntries < 1000; ntries++) { if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_CHKSUM_RPT) break; urtwn_ms_delay(sc); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for checksum report\n"); error = ETIMEDOUT; goto fail; } reg = urtwn_read_4(sc, R92C_MCUFWDL); reg = (reg & ~R92C_MCUFWDL_WINTINI_RDY) | R92C_MCUFWDL_RDY; urtwn_write_4(sc, R92C_MCUFWDL, reg); if (sc->chip & URTWN_CHIP_88E) urtwn_r88e_fw_reset(sc); /* Wait for firmware readiness. */ for (ntries = 0; ntries < 1000; ntries++) { if (urtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_WINTINI_RDY) break; urtwn_ms_delay(sc); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for firmware readiness\n"); error = ETIMEDOUT; goto fail; } fail: firmware_put(fw, FIRMWARE_UNLOAD); return (error); } #endif static int urtwn_dma_init(struct urtwn_softc *sc) { struct usb_endpoint *ep, *ep_end; usb_error_t usb_err; uint32_t reg; int hashq, hasnq, haslq, nqueues, ntx; int error, pagecount, npubqpages, nqpages, nrempages, tx_boundary; /* Initialize LLT table. */ error = urtwn_llt_init(sc); if (error != 0) return (error); /* Determine the number of bulk-out pipes. */ ntx = 0; ep = sc->sc_udev->endpoints; ep_end = sc->sc_udev->endpoints + sc->sc_udev->endpoints_max; for (; ep != ep_end; ep++) { if ((ep->edesc == NULL) || (ep->iface_index != sc->sc_iface_index)) continue; if (UE_GET_DIR(ep->edesc->bEndpointAddress) == UE_DIR_OUT) ntx++; } if (ntx == 0) { device_printf(sc->sc_dev, "%d: invalid number of Tx bulk pipes\n", ntx); return (EIO); } /* Get Tx queues to USB endpoints mapping. */ hashq = hasnq = haslq = nqueues = 0; switch (ntx) { case 1: hashq = 1; break; case 2: hashq = hasnq = 1; break; case 3: case 4: hashq = hasnq = haslq = 1; break; } nqueues = hashq + hasnq + haslq; if (nqueues == 0) return (EIO); npubqpages = nqpages = nrempages = pagecount = 0; if (sc->chip & URTWN_CHIP_88E) tx_boundary = R88E_TX_PAGE_BOUNDARY; else { pagecount = R92C_TX_PAGE_COUNT; npubqpages = R92C_PUBQ_NPAGES; tx_boundary = R92C_TX_PAGE_BOUNDARY; } /* Set number of pages for normal priority queue. */ if (sc->chip & URTWN_CHIP_88E) { usb_err = urtwn_write_2(sc, R92C_RQPN_NPQ, 0xd); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); usb_err = urtwn_write_4(sc, R92C_RQPN, 0x808e000d); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); } else { /* Get the number of pages for each queue. */ nqpages = (pagecount - npubqpages) / nqueues; /* * The remaining pages are assigned to the high priority * queue. */ nrempages = (pagecount - npubqpages) % nqueues; usb_err = urtwn_write_1(sc, R92C_RQPN_NPQ, hasnq ? nqpages : 0); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); usb_err = urtwn_write_4(sc, R92C_RQPN, /* Set number of pages for public queue. */ SM(R92C_RQPN_PUBQ, npubqpages) | /* Set number of pages for high priority queue. */ SM(R92C_RQPN_HPQ, hashq ? nqpages + nrempages : 0) | /* Set number of pages for low priority queue. */ SM(R92C_RQPN_LPQ, haslq ? nqpages : 0) | /* Load values. */ R92C_RQPN_LD); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); } usb_err = urtwn_write_1(sc, R92C_TXPKTBUF_BCNQ_BDNY, tx_boundary); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); usb_err = urtwn_write_1(sc, R92C_TXPKTBUF_MGQ_BDNY, tx_boundary); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); usb_err = urtwn_write_1(sc, R92C_TXPKTBUF_WMAC_LBK_BF_HD, tx_boundary); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); usb_err = urtwn_write_1(sc, R92C_TRXFF_BNDY, tx_boundary); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); usb_err = urtwn_write_1(sc, R92C_TDECTRL + 1, tx_boundary); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Set queue to USB pipe mapping. */ reg = urtwn_read_2(sc, R92C_TRXDMA_CTRL); reg &= ~R92C_TRXDMA_CTRL_QMAP_M; if (nqueues == 1) { if (hashq) reg |= R92C_TRXDMA_CTRL_QMAP_HQ; else if (hasnq) reg |= R92C_TRXDMA_CTRL_QMAP_NQ; else reg |= R92C_TRXDMA_CTRL_QMAP_LQ; } else if (nqueues == 2) { /* * All 2-endpoints configs have high and normal * priority queues. */ reg |= R92C_TRXDMA_CTRL_QMAP_HQ_NQ; } else reg |= R92C_TRXDMA_CTRL_QMAP_3EP; usb_err = urtwn_write_2(sc, R92C_TRXDMA_CTRL, reg); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Set Tx/Rx transfer page boundary. */ usb_err = urtwn_write_2(sc, R92C_TRXFF_BNDY + 2, (sc->chip & URTWN_CHIP_88E) ? 0x23ff : 0x27ff); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); /* Set Tx/Rx transfer page size. */ usb_err = urtwn_write_1(sc, R92C_PBP, SM(R92C_PBP_PSRX, R92C_PBP_128) | SM(R92C_PBP_PSTX, R92C_PBP_128)); if (usb_err != USB_ERR_NORMAL_COMPLETION) return (EIO); return (0); } static int urtwn_mac_init(struct urtwn_softc *sc) { usb_error_t error; int i; /* Write MAC initialization values. */ if (sc->chip & URTWN_CHIP_88E) { for (i = 0; i < nitems(rtl8188eu_mac); i++) { error = urtwn_write_1(sc, rtl8188eu_mac[i].reg, rtl8188eu_mac[i].val); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); } urtwn_write_1(sc, R92C_MAX_AGGR_NUM, 0x07); } else { for (i = 0; i < nitems(rtl8192cu_mac); i++) error = urtwn_write_1(sc, rtl8192cu_mac[i].reg, rtl8192cu_mac[i].val); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); } return (0); } static void urtwn_bb_init(struct urtwn_softc *sc) { const struct urtwn_bb_prog *prog; uint32_t reg; uint8_t crystalcap; int i; /* Enable BB and RF. */ urtwn_write_2(sc, R92C_SYS_FUNC_EN, urtwn_read_2(sc, R92C_SYS_FUNC_EN) | R92C_SYS_FUNC_EN_BBRSTB | R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_DIO_RF); if (!(sc->chip & URTWN_CHIP_88E)) urtwn_write_2(sc, R92C_AFE_PLL_CTRL, 0xdb83); urtwn_write_1(sc, R92C_RF_CTRL, R92C_RF_CTRL_EN | R92C_RF_CTRL_RSTB | R92C_RF_CTRL_SDMRSTB); urtwn_write_1(sc, R92C_SYS_FUNC_EN, R92C_SYS_FUNC_EN_USBA | R92C_SYS_FUNC_EN_USBD | R92C_SYS_FUNC_EN_BB_GLB_RST | R92C_SYS_FUNC_EN_BBRSTB); if (!(sc->chip & URTWN_CHIP_88E)) { urtwn_write_1(sc, R92C_LDOHCI12_CTRL, 0x0f); urtwn_write_1(sc, 0x15, 0xe9); urtwn_write_1(sc, R92C_AFE_XTAL_CTRL + 1, 0x80); } /* Select BB programming based on board type. */ if (sc->chip & URTWN_CHIP_88E) prog = &rtl8188eu_bb_prog; else if (!(sc->chip & URTWN_CHIP_92C)) { if (sc->board_type == R92C_BOARD_TYPE_MINICARD) prog = &rtl8188ce_bb_prog; else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) prog = &rtl8188ru_bb_prog; else prog = &rtl8188cu_bb_prog; } else { if (sc->board_type == R92C_BOARD_TYPE_MINICARD) prog = &rtl8192ce_bb_prog; else prog = &rtl8192cu_bb_prog; } /* Write BB initialization values. */ for (i = 0; i < prog->count; i++) { urtwn_bb_write(sc, prog->regs[i], prog->vals[i]); urtwn_ms_delay(sc); } if (sc->chip & URTWN_CHIP_92C_1T2R) { /* 8192C 1T only configuration. */ reg = urtwn_bb_read(sc, R92C_FPGA0_TXINFO); reg = (reg & ~0x00000003) | 0x2; urtwn_bb_write(sc, R92C_FPGA0_TXINFO, reg); reg = urtwn_bb_read(sc, R92C_FPGA1_TXINFO); reg = (reg & ~0x00300033) | 0x00200022; urtwn_bb_write(sc, R92C_FPGA1_TXINFO, reg); reg = urtwn_bb_read(sc, R92C_CCK0_AFESETTING); reg = (reg & ~0xff000000) | 0x45 << 24; urtwn_bb_write(sc, R92C_CCK0_AFESETTING, reg); reg = urtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA); reg = (reg & ~0x000000ff) | 0x23; urtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, reg); reg = urtwn_bb_read(sc, R92C_OFDM0_AGCPARAM1); reg = (reg & ~0x00000030) | 1 << 4; urtwn_bb_write(sc, R92C_OFDM0_AGCPARAM1, reg); reg = urtwn_bb_read(sc, 0xe74); reg = (reg & ~0x0c000000) | 2 << 26; urtwn_bb_write(sc, 0xe74, reg); reg = urtwn_bb_read(sc, 0xe78); reg = (reg & ~0x0c000000) | 2 << 26; urtwn_bb_write(sc, 0xe78, reg); reg = urtwn_bb_read(sc, 0xe7c); reg = (reg & ~0x0c000000) | 2 << 26; urtwn_bb_write(sc, 0xe7c, reg); reg = urtwn_bb_read(sc, 0xe80); reg = (reg & ~0x0c000000) | 2 << 26; urtwn_bb_write(sc, 0xe80, reg); reg = urtwn_bb_read(sc, 0xe88); reg = (reg & ~0x0c000000) | 2 << 26; urtwn_bb_write(sc, 0xe88, reg); } /* Write AGC values. */ for (i = 0; i < prog->agccount; i++) { urtwn_bb_write(sc, R92C_OFDM0_AGCRSSITABLE, prog->agcvals[i]); urtwn_ms_delay(sc); } if (sc->chip & URTWN_CHIP_88E) { urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), 0x69553422); urtwn_ms_delay(sc); urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), 0x69553420); urtwn_ms_delay(sc); crystalcap = sc->rom.r88e_rom.crystalcap; if (crystalcap == 0xff) crystalcap = 0x20; crystalcap &= 0x3f; reg = urtwn_bb_read(sc, R92C_AFE_XTAL_CTRL); urtwn_bb_write(sc, R92C_AFE_XTAL_CTRL, RW(reg, R92C_AFE_XTAL_CTRL_ADDR, crystalcap | crystalcap << 6)); } else { if (urtwn_bb_read(sc, R92C_HSSI_PARAM2(0)) & R92C_HSSI_PARAM2_CCK_HIPWR) sc->sc_flags |= URTWN_FLAG_CCK_HIPWR; } } static void urtwn_rf_init(struct urtwn_softc *sc) { const struct urtwn_rf_prog *prog; uint32_t reg, type; int i, j, idx, off; /* Select RF programming based on board type. */ if (sc->chip & URTWN_CHIP_88E) prog = rtl8188eu_rf_prog; else if (!(sc->chip & URTWN_CHIP_92C)) { if (sc->board_type == R92C_BOARD_TYPE_MINICARD) prog = rtl8188ce_rf_prog; else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) prog = rtl8188ru_rf_prog; else prog = rtl8188cu_rf_prog; } else prog = rtl8192ce_rf_prog; for (i = 0; i < sc->nrxchains; i++) { /* Save RF_ENV control type. */ idx = i / 2; off = (i % 2) * 16; reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)); type = (reg >> off) & 0x10; /* Set RF_ENV enable. */ reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i)); reg |= 0x100000; urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg); urtwn_ms_delay(sc); /* Set RF_ENV output high. */ reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i)); reg |= 0x10; urtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg); urtwn_ms_delay(sc); /* Set address and data lengths of RF registers. */ reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i)); reg &= ~R92C_HSSI_PARAM2_ADDR_LENGTH; urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg); urtwn_ms_delay(sc); reg = urtwn_bb_read(sc, R92C_HSSI_PARAM2(i)); reg &= ~R92C_HSSI_PARAM2_DATA_LENGTH; urtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg); urtwn_ms_delay(sc); /* Write RF initialization values for this chain. */ for (j = 0; j < prog[i].count; j++) { if (prog[i].regs[j] >= 0xf9 && prog[i].regs[j] <= 0xfe) { /* * These are fake RF registers offsets that * indicate a delay is required. */ usb_pause_mtx(&sc->sc_mtx, hz / 20); /* 50ms */ continue; } urtwn_rf_write(sc, i, prog[i].regs[j], prog[i].vals[j]); urtwn_ms_delay(sc); } /* Restore RF_ENV control type. */ reg = urtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx)); reg &= ~(0x10 << off) | (type << off); urtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(idx), reg); /* Cache RF register CHNLBW. */ sc->rf_chnlbw[i] = urtwn_rf_read(sc, i, R92C_RF_CHNLBW); } if ((sc->chip & (URTWN_CHIP_UMC_A_CUT | URTWN_CHIP_92C)) == URTWN_CHIP_UMC_A_CUT) { urtwn_rf_write(sc, 0, R92C_RF_RX_G1, 0x30255); urtwn_rf_write(sc, 0, R92C_RF_RX_G2, 0x50a00); } } static void urtwn_cam_init(struct urtwn_softc *sc) { /* Invalidate all CAM entries. */ urtwn_write_4(sc, R92C_CAMCMD, R92C_CAMCMD_POLLING | R92C_CAMCMD_CLR); } static int urtwn_cam_write(struct urtwn_softc *sc, uint32_t addr, uint32_t data) { usb_error_t error; error = urtwn_write_4(sc, R92C_CAMWRITE, data); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); error = urtwn_write_4(sc, R92C_CAMCMD, R92C_CAMCMD_POLLING | R92C_CAMCMD_WRITE | SM(R92C_CAMCMD_ADDR, addr)); if (error != USB_ERR_NORMAL_COMPLETION) return (EIO); return (0); } static void urtwn_pa_bias_init(struct urtwn_softc *sc) { uint8_t reg; int i; for (i = 0; i < sc->nrxchains; i++) { if (sc->pa_setting & (1 << i)) continue; urtwn_rf_write(sc, i, R92C_RF_IPA, 0x0f406); urtwn_rf_write(sc, i, R92C_RF_IPA, 0x4f406); urtwn_rf_write(sc, i, R92C_RF_IPA, 0x8f406); urtwn_rf_write(sc, i, R92C_RF_IPA, 0xcf406); } if (!(sc->pa_setting & 0x10)) { reg = urtwn_read_1(sc, 0x16); reg = (reg & ~0xf0) | 0x90; urtwn_write_1(sc, 0x16, reg); } } static void urtwn_rxfilter_init(struct urtwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t rcr; uint16_t filter; URTWN_ASSERT_LOCKED(sc); /* Accept all multicast frames. */ urtwn_write_4(sc, R92C_MAR + 0, 0xffffffff); urtwn_write_4(sc, R92C_MAR + 4, 0xffffffff); /* Filter for management frames. */ filter = 0x7f3f; switch (vap->iv_opmode) { case IEEE80211_M_STA: filter &= ~( R92C_RXFLTMAP_SUBTYPE(IEEE80211_FC0_SUBTYPE_ASSOC_REQ) | R92C_RXFLTMAP_SUBTYPE(IEEE80211_FC0_SUBTYPE_REASSOC_REQ) | R92C_RXFLTMAP_SUBTYPE(IEEE80211_FC0_SUBTYPE_PROBE_REQ)); break; case IEEE80211_M_HOSTAP: filter &= ~( R92C_RXFLTMAP_SUBTYPE(IEEE80211_FC0_SUBTYPE_ASSOC_RESP) | R92C_RXFLTMAP_SUBTYPE(IEEE80211_FC0_SUBTYPE_REASSOC_RESP)); break; case IEEE80211_M_MONITOR: case IEEE80211_M_IBSS: break; default: device_printf(sc->sc_dev, "%s: undefined opmode %d\n", __func__, vap->iv_opmode); break; } urtwn_write_2(sc, R92C_RXFLTMAP0, filter); /* Reject all control frames. */ urtwn_write_2(sc, R92C_RXFLTMAP1, 0x0000); /* Reject all data frames. */ urtwn_write_2(sc, R92C_RXFLTMAP2, 0x0000); rcr = R92C_RCR_AM | R92C_RCR_AB | R92C_RCR_APM | R92C_RCR_HTC_LOC_CTRL | R92C_RCR_APP_PHYSTS | R92C_RCR_APP_ICV | R92C_RCR_APP_MIC; if (vap->iv_opmode == IEEE80211_M_MONITOR) { /* Accept all frames. */ rcr |= R92C_RCR_ACF | R92C_RCR_ADF | R92C_RCR_AMF | R92C_RCR_AAP; } /* Set Rx filter. */ urtwn_write_4(sc, R92C_RCR, rcr); if (ic->ic_promisc != 0) { /* Update Rx filter. */ urtwn_set_promisc(sc); } } static void urtwn_edca_init(struct urtwn_softc *sc) { urtwn_write_2(sc, R92C_SPEC_SIFS, 0x100a); urtwn_write_2(sc, R92C_MAC_SPEC_SIFS, 0x100a); urtwn_write_2(sc, R92C_SIFS_CCK, 0x100a); urtwn_write_2(sc, R92C_SIFS_OFDM, 0x100a); urtwn_write_4(sc, R92C_EDCA_BE_PARAM, 0x005ea42b); urtwn_write_4(sc, R92C_EDCA_BK_PARAM, 0x0000a44f); urtwn_write_4(sc, R92C_EDCA_VI_PARAM, 0x005ea324); urtwn_write_4(sc, R92C_EDCA_VO_PARAM, 0x002fa226); } static void urtwn_write_txpower(struct urtwn_softc *sc, int chain, uint16_t power[URTWN_RIDX_COUNT]) { uint32_t reg; /* Write per-CCK rate Tx power. */ if (chain == 0) { reg = urtwn_bb_read(sc, R92C_TXAGC_A_CCK1_MCS32); reg = RW(reg, R92C_TXAGC_A_CCK1, power[0]); urtwn_bb_write(sc, R92C_TXAGC_A_CCK1_MCS32, reg); reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11); reg = RW(reg, R92C_TXAGC_A_CCK2, power[1]); reg = RW(reg, R92C_TXAGC_A_CCK55, power[2]); reg = RW(reg, R92C_TXAGC_A_CCK11, power[3]); urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg); } else { reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK1_55_MCS32); reg = RW(reg, R92C_TXAGC_B_CCK1, power[0]); reg = RW(reg, R92C_TXAGC_B_CCK2, power[1]); reg = RW(reg, R92C_TXAGC_B_CCK55, power[2]); urtwn_bb_write(sc, R92C_TXAGC_B_CCK1_55_MCS32, reg); reg = urtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11); reg = RW(reg, R92C_TXAGC_B_CCK11, power[3]); urtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg); } /* Write per-OFDM rate Tx power. */ urtwn_bb_write(sc, R92C_TXAGC_RATE18_06(chain), SM(R92C_TXAGC_RATE06, power[ 4]) | SM(R92C_TXAGC_RATE09, power[ 5]) | SM(R92C_TXAGC_RATE12, power[ 6]) | SM(R92C_TXAGC_RATE18, power[ 7])); urtwn_bb_write(sc, R92C_TXAGC_RATE54_24(chain), SM(R92C_TXAGC_RATE24, power[ 8]) | SM(R92C_TXAGC_RATE36, power[ 9]) | SM(R92C_TXAGC_RATE48, power[10]) | SM(R92C_TXAGC_RATE54, power[11])); /* Write per-MCS Tx power. */ urtwn_bb_write(sc, R92C_TXAGC_MCS03_MCS00(chain), SM(R92C_TXAGC_MCS00, power[12]) | SM(R92C_TXAGC_MCS01, power[13]) | SM(R92C_TXAGC_MCS02, power[14]) | SM(R92C_TXAGC_MCS03, power[15])); urtwn_bb_write(sc, R92C_TXAGC_MCS07_MCS04(chain), SM(R92C_TXAGC_MCS04, power[16]) | SM(R92C_TXAGC_MCS05, power[17]) | SM(R92C_TXAGC_MCS06, power[18]) | SM(R92C_TXAGC_MCS07, power[19])); urtwn_bb_write(sc, R92C_TXAGC_MCS11_MCS08(chain), SM(R92C_TXAGC_MCS08, power[20]) | SM(R92C_TXAGC_MCS09, power[21]) | SM(R92C_TXAGC_MCS10, power[22]) | SM(R92C_TXAGC_MCS11, power[23])); urtwn_bb_write(sc, R92C_TXAGC_MCS15_MCS12(chain), SM(R92C_TXAGC_MCS12, power[24]) | SM(R92C_TXAGC_MCS13, power[25]) | SM(R92C_TXAGC_MCS14, power[26]) | SM(R92C_TXAGC_MCS15, power[27])); } static void urtwn_get_txpower(struct urtwn_softc *sc, int chain, struct ieee80211_channel *c, struct ieee80211_channel *extc, uint16_t power[URTWN_RIDX_COUNT]) { struct ieee80211com *ic = &sc->sc_ic; struct r92c_rom *rom = &sc->rom.r92c_rom; uint16_t cckpow, ofdmpow, htpow, diff, max; const struct urtwn_txpwr *base; int ridx, chan, group; /* Determine channel group. */ chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */ if (chan <= 3) group = 0; else if (chan <= 9) group = 1; else group = 2; /* Get original Tx power based on board type and RF chain. */ if (!(sc->chip & URTWN_CHIP_92C)) { if (sc->board_type == R92C_BOARD_TYPE_HIGHPA) base = &rtl8188ru_txagc[chain]; else base = &rtl8192cu_txagc[chain]; } else base = &rtl8192cu_txagc[chain]; memset(power, 0, URTWN_RIDX_COUNT * sizeof(power[0])); if (sc->regulatory == 0) { for (ridx = URTWN_RIDX_CCK1; ridx <= URTWN_RIDX_CCK11; ridx++) power[ridx] = base->pwr[0][ridx]; } for (ridx = URTWN_RIDX_OFDM6; ridx < URTWN_RIDX_COUNT; ridx++) { if (sc->regulatory == 3) { power[ridx] = base->pwr[0][ridx]; /* Apply vendor limits. */ if (extc != NULL) max = rom->ht40_max_pwr[group]; else max = rom->ht20_max_pwr[group]; max = (max >> (chain * 4)) & 0xf; if (power[ridx] > max) power[ridx] = max; } else if (sc->regulatory == 1) { if (extc == NULL) power[ridx] = base->pwr[group][ridx]; } else if (sc->regulatory != 2) power[ridx] = base->pwr[0][ridx]; } /* Compute per-CCK rate Tx power. */ cckpow = rom->cck_tx_pwr[chain][group]; for (ridx = URTWN_RIDX_CCK1; ridx <= URTWN_RIDX_CCK11; ridx++) { power[ridx] += cckpow; if (power[ridx] > R92C_MAX_TX_PWR) power[ridx] = R92C_MAX_TX_PWR; } htpow = rom->ht40_1s_tx_pwr[chain][group]; if (sc->ntxchains > 1) { /* Apply reduction for 2 spatial streams. */ diff = rom->ht40_2s_tx_pwr_diff[group]; diff = (diff >> (chain * 4)) & 0xf; htpow = (htpow > diff) ? htpow - diff : 0; } /* Compute per-OFDM rate Tx power. */ diff = rom->ofdm_tx_pwr_diff[group]; diff = (diff >> (chain * 4)) & 0xf; ofdmpow = htpow + diff; /* HT->OFDM correction. */ for (ridx = URTWN_RIDX_OFDM6; ridx <= URTWN_RIDX_OFDM54; ridx++) { power[ridx] += ofdmpow; if (power[ridx] > R92C_MAX_TX_PWR) power[ridx] = R92C_MAX_TX_PWR; } /* Compute per-MCS Tx power. */ if (extc == NULL) { diff = rom->ht20_tx_pwr_diff[group]; diff = (diff >> (chain * 4)) & 0xf; htpow += diff; /* HT40->HT20 correction. */ } for (ridx = 12; ridx <= 27; ridx++) { power[ridx] += htpow; if (power[ridx] > R92C_MAX_TX_PWR) power[ridx] = R92C_MAX_TX_PWR; } #ifdef USB_DEBUG if (sc->sc_debug & URTWN_DEBUG_TXPWR) { /* Dump per-rate Tx power values. */ printf("Tx power for chain %d:\n", chain); for (ridx = URTWN_RIDX_CCK1; ridx < URTWN_RIDX_COUNT; ridx++) printf("Rate %d = %u\n", ridx, power[ridx]); } #endif } static void urtwn_r88e_get_txpower(struct urtwn_softc *sc, int chain, struct ieee80211_channel *c, struct ieee80211_channel *extc, uint16_t power[URTWN_RIDX_COUNT]) { struct ieee80211com *ic = &sc->sc_ic; struct r88e_rom *rom = &sc->rom.r88e_rom; uint16_t cckpow, ofdmpow, bw20pow, htpow; const struct urtwn_r88e_txpwr *base; int ridx, chan, group; /* Determine channel group. */ chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */ if (chan <= 2) group = 0; else if (chan <= 5) group = 1; else if (chan <= 8) group = 2; else if (chan <= 11) group = 3; else if (chan <= 13) group = 4; else group = 5; /* Get original Tx power based on board type and RF chain. */ base = &rtl8188eu_txagc[chain]; memset(power, 0, URTWN_RIDX_COUNT * sizeof(power[0])); if (sc->regulatory == 0) { for (ridx = URTWN_RIDX_CCK1; ridx <= URTWN_RIDX_CCK11; ridx++) power[ridx] = base->pwr[0][ridx]; } for (ridx = URTWN_RIDX_OFDM6; ridx < URTWN_RIDX_COUNT; ridx++) { if (sc->regulatory == 3) power[ridx] = base->pwr[0][ridx]; else if (sc->regulatory == 1) { if (extc == NULL) power[ridx] = base->pwr[group][ridx]; } else if (sc->regulatory != 2) power[ridx] = base->pwr[0][ridx]; } /* Compute per-CCK rate Tx power. */ cckpow = rom->cck_tx_pwr[group]; for (ridx = URTWN_RIDX_CCK1; ridx <= URTWN_RIDX_CCK11; ridx++) { power[ridx] += cckpow; if (power[ridx] > R92C_MAX_TX_PWR) power[ridx] = R92C_MAX_TX_PWR; } htpow = rom->ht40_tx_pwr[group]; /* Compute per-OFDM rate Tx power. */ ofdmpow = htpow + sc->ofdm_tx_pwr_diff; for (ridx = URTWN_RIDX_OFDM6; ridx <= URTWN_RIDX_OFDM54; ridx++) { power[ridx] += ofdmpow; if (power[ridx] > R92C_MAX_TX_PWR) power[ridx] = R92C_MAX_TX_PWR; } bw20pow = htpow + sc->bw20_tx_pwr_diff; for (ridx = 12; ridx <= 27; ridx++) { power[ridx] += bw20pow; if (power[ridx] > R92C_MAX_TX_PWR) power[ridx] = R92C_MAX_TX_PWR; } } static void urtwn_set_txpower(struct urtwn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { uint16_t power[URTWN_RIDX_COUNT]; int i; for (i = 0; i < sc->ntxchains; i++) { /* Compute per-rate Tx power values. */ if (sc->chip & URTWN_CHIP_88E) urtwn_r88e_get_txpower(sc, i, c, extc, power); else urtwn_get_txpower(sc, i, c, extc, power); /* Write per-rate Tx power values to hardware. */ urtwn_write_txpower(sc, i, power); } } static void urtwn_set_rx_bssid_all(struct urtwn_softc *sc, int enable) { uint32_t reg; reg = urtwn_read_4(sc, R92C_RCR); if (enable) reg &= ~R92C_RCR_CBSSID_BCN; else reg |= R92C_RCR_CBSSID_BCN; urtwn_write_4(sc, R92C_RCR, reg); } static void urtwn_set_gain(struct urtwn_softc *sc, uint8_t gain) { uint32_t reg; reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0)); reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, gain); urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg); if (!(sc->chip & URTWN_CHIP_88E)) { reg = urtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1)); reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, gain); urtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg); } } static void urtwn_scan_start(struct ieee80211com *ic) { struct urtwn_softc *sc = ic->ic_softc; URTWN_LOCK(sc); /* Receive beacons / probe responses from any BSSID. */ if (ic->ic_opmode != IEEE80211_M_IBSS) urtwn_set_rx_bssid_all(sc, 1); /* Set gain for scanning. */ urtwn_set_gain(sc, 0x20); URTWN_UNLOCK(sc); } static void urtwn_scan_end(struct ieee80211com *ic) { struct urtwn_softc *sc = ic->ic_softc; URTWN_LOCK(sc); /* Restore limitations. */ if (ic->ic_promisc == 0 && ic->ic_opmode != IEEE80211_M_IBSS) urtwn_set_rx_bssid_all(sc, 0); /* Set gain under link. */ urtwn_set_gain(sc, 0x32); URTWN_UNLOCK(sc); } static void urtwn_set_channel(struct ieee80211com *ic) { struct urtwn_softc *sc = ic->ic_softc; struct ieee80211_channel *c = ic->ic_curchan; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); URTWN_LOCK(sc); if (vap->iv_state == IEEE80211_S_SCAN) { /* Make link LED blink during scan. */ urtwn_set_led(sc, URTWN_LED_LINK, !sc->ledlink); } urtwn_set_chan(sc, c, NULL); sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq); sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags); sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq); sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags); URTWN_UNLOCK(sc); } static int urtwn_wme_update(struct ieee80211com *ic) { const struct wmeParams *wmep = ic->ic_wme.wme_chanParams.cap_wmeParams; struct urtwn_softc *sc = ic->ic_softc; uint8_t aifs, acm, slottime; int ac; acm = 0; slottime = IEEE80211_GET_SLOTTIME(ic); URTWN_LOCK(sc); for (ac = WME_AC_BE; ac < WME_NUM_AC; ac++) { /* AIFS[AC] = AIFSN[AC] * aSlotTime + aSIFSTime. */ aifs = wmep[ac].wmep_aifsn * slottime + IEEE80211_DUR_SIFS; urtwn_write_4(sc, wme2queue[ac].reg, SM(R92C_EDCA_PARAM_TXOP, wmep[ac].wmep_txopLimit) | SM(R92C_EDCA_PARAM_ECWMIN, wmep[ac].wmep_logcwmin) | SM(R92C_EDCA_PARAM_ECWMAX, wmep[ac].wmep_logcwmax) | SM(R92C_EDCA_PARAM_AIFS, aifs)); if (ac != WME_AC_BE) acm |= wmep[ac].wmep_acm << ac; } if (acm != 0) acm |= R92C_ACMHWCTRL_EN; urtwn_write_1(sc, R92C_ACMHWCTRL, (urtwn_read_1(sc, R92C_ACMHWCTRL) & ~R92C_ACMHWCTRL_ACM_MASK) | acm); URTWN_UNLOCK(sc); return 0; } static void urtwn_update_slot(struct ieee80211com *ic) { urtwn_cmd_sleepable(ic->ic_softc, NULL, 0, urtwn_update_slot_cb); } static void urtwn_update_slot_cb(struct urtwn_softc *sc, union sec_param *data) { struct ieee80211com *ic = &sc->sc_ic; uint8_t slottime; slottime = IEEE80211_GET_SLOTTIME(ic); URTWN_DPRINTF(sc, URTWN_DEBUG_ANY, "%s: setting slot time to %uus\n", __func__, slottime); urtwn_write_1(sc, R92C_SLOT, slottime); urtwn_update_aifs(sc, slottime); } static void urtwn_update_aifs(struct urtwn_softc *sc, uint8_t slottime) { const struct wmeParams *wmep = sc->sc_ic.ic_wme.wme_chanParams.cap_wmeParams; uint8_t aifs, ac; for (ac = WME_AC_BE; ac < WME_NUM_AC; ac++) { /* AIFS[AC] = AIFSN[AC] * aSlotTime + aSIFSTime. */ aifs = wmep[ac].wmep_aifsn * slottime + IEEE80211_DUR_SIFS; urtwn_write_1(sc, wme2queue[ac].reg, aifs); } } static void urtwn_set_promisc(struct urtwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t rcr, mask1, mask2; URTWN_ASSERT_LOCKED(sc); if (vap->iv_opmode == IEEE80211_M_MONITOR) return; mask1 = R92C_RCR_ACF | R92C_RCR_ADF | R92C_RCR_AMF | R92C_RCR_AAP; mask2 = R92C_RCR_APM; if (vap->iv_state == IEEE80211_S_RUN) { switch (vap->iv_opmode) { case IEEE80211_M_STA: mask2 |= R92C_RCR_CBSSID_DATA; /* FALLTHROUGH */ case IEEE80211_M_HOSTAP: mask2 |= R92C_RCR_CBSSID_BCN; break; case IEEE80211_M_IBSS: mask2 |= R92C_RCR_CBSSID_DATA; break; default: device_printf(sc->sc_dev, "%s: undefined opmode %d\n", __func__, vap->iv_opmode); return; } } rcr = urtwn_read_4(sc, R92C_RCR); if (ic->ic_promisc == 0) rcr = (rcr & ~mask1) | mask2; else rcr = (rcr & ~mask2) | mask1; urtwn_write_4(sc, R92C_RCR, rcr); } static void urtwn_update_promisc(struct ieee80211com *ic) { struct urtwn_softc *sc = ic->ic_softc; URTWN_LOCK(sc); if (sc->sc_flags & URTWN_RUNNING) urtwn_set_promisc(sc); URTWN_UNLOCK(sc); } static void urtwn_update_mcast(struct ieee80211com *ic) { /* XXX do nothing? */ } static struct ieee80211_node * urtwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) { struct urtwn_node *un; un = malloc(sizeof (struct urtwn_node), M_80211_NODE, M_NOWAIT | M_ZERO); if (un == NULL) return NULL; un->id = URTWN_MACID_UNDEFINED; return &un->ni; } static void urtwn_newassoc(struct ieee80211_node *ni, int isnew) { struct urtwn_softc *sc = ni->ni_ic->ic_softc; struct urtwn_node *un = URTWN_NODE(ni); uint8_t id; /* Only do this bit for R88E chips */ if (! (sc->chip & URTWN_CHIP_88E)) return; if (!isnew) return; URTWN_NT_LOCK(sc); for (id = 0; id <= URTWN_MACID_MAX(sc); id++) { if (id != URTWN_MACID_BC && sc->node_list[id] == NULL) { un->id = id; sc->node_list[id] = ni; break; } } URTWN_NT_UNLOCK(sc); if (id > URTWN_MACID_MAX(sc)) { device_printf(sc->sc_dev, "%s: node table is full\n", __func__); } } static void urtwn_node_free(struct ieee80211_node *ni) { struct urtwn_softc *sc = ni->ni_ic->ic_softc; struct urtwn_node *un = URTWN_NODE(ni); URTWN_NT_LOCK(sc); if (un->id != URTWN_MACID_UNDEFINED) sc->node_list[un->id] = NULL; URTWN_NT_UNLOCK(sc); sc->sc_node_free(ni); } static void urtwn_set_chan(struct urtwn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t reg; u_int chan; int i; chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */ if (chan == 0 || chan == IEEE80211_CHAN_ANY) { device_printf(sc->sc_dev, "%s: invalid channel %x\n", __func__, chan); return; } /* Set Tx power for this new channel. */ urtwn_set_txpower(sc, c, extc); for (i = 0; i < sc->nrxchains; i++) { urtwn_rf_write(sc, i, R92C_RF_CHNLBW, RW(sc->rf_chnlbw[i], R92C_RF_CHNLBW_CHNL, chan)); } #ifndef IEEE80211_NO_HT if (extc != NULL) { /* Is secondary channel below or above primary? */ int prichlo = c->ic_freq < extc->ic_freq; urtwn_write_1(sc, R92C_BWOPMODE, urtwn_read_1(sc, R92C_BWOPMODE) & ~R92C_BWOPMODE_20MHZ); reg = urtwn_read_1(sc, R92C_RRSR + 2); reg = (reg & ~0x6f) | (prichlo ? 1 : 2) << 5; urtwn_write_1(sc, R92C_RRSR + 2, reg); urtwn_bb_write(sc, R92C_FPGA0_RFMOD, urtwn_bb_read(sc, R92C_FPGA0_RFMOD) | R92C_RFMOD_40MHZ); urtwn_bb_write(sc, R92C_FPGA1_RFMOD, urtwn_bb_read(sc, R92C_FPGA1_RFMOD) | R92C_RFMOD_40MHZ); /* Set CCK side band. */ reg = urtwn_bb_read(sc, R92C_CCK0_SYSTEM); reg = (reg & ~0x00000010) | (prichlo ? 0 : 1) << 4; urtwn_bb_write(sc, R92C_CCK0_SYSTEM, reg); reg = urtwn_bb_read(sc, R92C_OFDM1_LSTF); reg = (reg & ~0x00000c00) | (prichlo ? 1 : 2) << 10; urtwn_bb_write(sc, R92C_OFDM1_LSTF, reg); urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2, urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) & ~R92C_FPGA0_ANAPARAM2_CBW20); reg = urtwn_bb_read(sc, 0x818); reg = (reg & ~0x0c000000) | (prichlo ? 2 : 1) << 26; urtwn_bb_write(sc, 0x818, reg); /* Select 40MHz bandwidth. */ urtwn_rf_write(sc, 0, R92C_RF_CHNLBW, (sc->rf_chnlbw[0] & ~0xfff) | chan); } else #endif { urtwn_write_1(sc, R92C_BWOPMODE, urtwn_read_1(sc, R92C_BWOPMODE) | R92C_BWOPMODE_20MHZ); urtwn_bb_write(sc, R92C_FPGA0_RFMOD, urtwn_bb_read(sc, R92C_FPGA0_RFMOD) & ~R92C_RFMOD_40MHZ); urtwn_bb_write(sc, R92C_FPGA1_RFMOD, urtwn_bb_read(sc, R92C_FPGA1_RFMOD) & ~R92C_RFMOD_40MHZ); if (!(sc->chip & URTWN_CHIP_88E)) { urtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2, urtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) | R92C_FPGA0_ANAPARAM2_CBW20); } /* Select 20MHz bandwidth. */ urtwn_rf_write(sc, 0, R92C_RF_CHNLBW, (sc->rf_chnlbw[0] & ~0xfff) | chan | ((sc->chip & URTWN_CHIP_88E) ? R88E_RF_CHNLBW_BW20 : R92C_RF_CHNLBW_BW20)); } } static void urtwn_iq_calib(struct urtwn_softc *sc) { /* TODO */ } static void urtwn_lc_calib(struct urtwn_softc *sc) { uint32_t rf_ac[2]; uint8_t txmode; int i; txmode = urtwn_read_1(sc, R92C_OFDM1_LSTF + 3); if ((txmode & 0x70) != 0) { /* Disable all continuous Tx. */ urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode & ~0x70); /* Set RF mode to standby mode. */ for (i = 0; i < sc->nrxchains; i++) { rf_ac[i] = urtwn_rf_read(sc, i, R92C_RF_AC); urtwn_rf_write(sc, i, R92C_RF_AC, RW(rf_ac[i], R92C_RF_AC_MODE, R92C_RF_AC_MODE_STANDBY)); } } else { /* Block all Tx queues. */ urtwn_write_1(sc, R92C_TXPAUSE, R92C_TX_QUEUE_ALL); } /* Start calibration. */ urtwn_rf_write(sc, 0, R92C_RF_CHNLBW, urtwn_rf_read(sc, 0, R92C_RF_CHNLBW) | R92C_RF_CHNLBW_LCSTART); /* Give calibration the time to complete. */ usb_pause_mtx(&sc->sc_mtx, hz / 10); /* 100ms */ /* Restore configuration. */ if ((txmode & 0x70) != 0) { /* Restore Tx mode. */ urtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode); /* Restore RF mode. */ for (i = 0; i < sc->nrxchains; i++) urtwn_rf_write(sc, i, R92C_RF_AC, rf_ac[i]); } else { /* Unblock all Tx queues. */ urtwn_write_1(sc, R92C_TXPAUSE, 0x00); } } static void urtwn_temp_calib(struct urtwn_softc *sc) { uint8_t temp; URTWN_ASSERT_LOCKED(sc); if (!(sc->sc_flags & URTWN_TEMP_MEASURED)) { /* Start measuring temperature. */ URTWN_DPRINTF(sc, URTWN_DEBUG_TEMP, "%s: start measuring temperature\n", __func__); if (sc->chip & URTWN_CHIP_88E) { urtwn_rf_write(sc, 0, R88E_RF_T_METER, R88E_RF_T_METER_START); } else { urtwn_rf_write(sc, 0, R92C_RF_T_METER, R92C_RF_T_METER_START); } sc->sc_flags |= URTWN_TEMP_MEASURED; return; } sc->sc_flags &= ~URTWN_TEMP_MEASURED; /* Read measured temperature. */ if (sc->chip & URTWN_CHIP_88E) { temp = MS(urtwn_rf_read(sc, 0, R88E_RF_T_METER), R88E_RF_T_METER_VAL); } else { temp = MS(urtwn_rf_read(sc, 0, R92C_RF_T_METER), R92C_RF_T_METER_VAL); } if (temp == 0) { /* Read failed, skip. */ URTWN_DPRINTF(sc, URTWN_DEBUG_TEMP, "%s: temperature read failed, skipping\n", __func__); return; } URTWN_DPRINTF(sc, URTWN_DEBUG_TEMP, "%s: temperature: previous %u, current %u\n", __func__, sc->thcal_lctemp, temp); /* * Redo LC calibration if temperature changed significantly since * last calibration. */ if (sc->thcal_lctemp == 0) { /* First LC calibration is performed in urtwn_init(). */ sc->thcal_lctemp = temp; } else if (abs(temp - sc->thcal_lctemp) > 1) { URTWN_DPRINTF(sc, URTWN_DEBUG_TEMP, "%s: LC calib triggered by temp: %u -> %u\n", __func__, sc->thcal_lctemp, temp); urtwn_lc_calib(sc); /* Record temperature of last LC calibration. */ sc->thcal_lctemp = temp; } } static int urtwn_init(struct urtwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint8_t macaddr[IEEE80211_ADDR_LEN]; uint32_t reg; usb_error_t usb_err = USB_ERR_NORMAL_COMPLETION; int error; URTWN_LOCK(sc); if (sc->sc_flags & URTWN_RUNNING) { URTWN_UNLOCK(sc); return (0); } /* Init firmware commands ring. */ sc->fwcur = 0; /* Allocate Tx/Rx buffers. */ error = urtwn_alloc_rx_list(sc); if (error != 0) goto fail; error = urtwn_alloc_tx_list(sc); if (error != 0) goto fail; /* Power on adapter. */ error = urtwn_power_on(sc); if (error != 0) goto fail; /* Initialize DMA. */ error = urtwn_dma_init(sc); if (error != 0) goto fail; /* Set info size in Rx descriptors (in 64-bit words). */ urtwn_write_1(sc, R92C_RX_DRVINFO_SZ, 4); /* Init interrupts. */ if (sc->chip & URTWN_CHIP_88E) { usb_err = urtwn_write_4(sc, R88E_HISR, 0xffffffff); if (usb_err != USB_ERR_NORMAL_COMPLETION) goto fail; usb_err = urtwn_write_4(sc, R88E_HIMR, R88E_HIMR_CPWM | R88E_HIMR_CPWM2 | R88E_HIMR_TBDER | R88E_HIMR_PSTIMEOUT); if (usb_err != USB_ERR_NORMAL_COMPLETION) goto fail; usb_err = urtwn_write_4(sc, R88E_HIMRE, R88E_HIMRE_RXFOVW | R88E_HIMRE_TXFOVW | R88E_HIMRE_RXERR | R88E_HIMRE_TXERR); if (usb_err != USB_ERR_NORMAL_COMPLETION) goto fail; usb_err = urtwn_write_1(sc, R92C_USB_SPECIAL_OPTION, urtwn_read_1(sc, R92C_USB_SPECIAL_OPTION) | R92C_USB_SPECIAL_OPTION_INT_BULK_SEL); if (usb_err != USB_ERR_NORMAL_COMPLETION) goto fail; } else { usb_err = urtwn_write_4(sc, R92C_HISR, 0xffffffff); if (usb_err != USB_ERR_NORMAL_COMPLETION) goto fail; usb_err = urtwn_write_4(sc, R92C_HIMR, 0xffffffff); if (usb_err != USB_ERR_NORMAL_COMPLETION) goto fail; } /* Set MAC address. */ IEEE80211_ADDR_COPY(macaddr, vap ? vap->iv_myaddr : ic->ic_macaddr); usb_err = urtwn_write_region_1(sc, R92C_MACID, macaddr, IEEE80211_ADDR_LEN); if (usb_err != USB_ERR_NORMAL_COMPLETION) goto fail; /* Set initial network type. */ urtwn_set_mode(sc, R92C_MSR_INFRA); /* Initialize Rx filter. */ urtwn_rxfilter_init(sc); /* Set response rate. */ reg = urtwn_read_4(sc, R92C_RRSR); reg = RW(reg, R92C_RRSR_RATE_BITMAP, R92C_RRSR_RATE_CCK_ONLY_1M); urtwn_write_4(sc, R92C_RRSR, reg); /* Set short/long retry limits. */ urtwn_write_2(sc, R92C_RL, SM(R92C_RL_SRL, 0x30) | SM(R92C_RL_LRL, 0x30)); /* Initialize EDCA parameters. */ urtwn_edca_init(sc); /* Setup rate fallback. */ if (!(sc->chip & URTWN_CHIP_88E)) { urtwn_write_4(sc, R92C_DARFRC + 0, 0x00000000); urtwn_write_4(sc, R92C_DARFRC + 4, 0x10080404); urtwn_write_4(sc, R92C_RARFRC + 0, 0x04030201); urtwn_write_4(sc, R92C_RARFRC + 4, 0x08070605); } urtwn_write_1(sc, R92C_FWHW_TXQ_CTRL, urtwn_read_1(sc, R92C_FWHW_TXQ_CTRL) | R92C_FWHW_TXQ_CTRL_AMPDU_RTY_NEW); /* Set ACK timeout. */ urtwn_write_1(sc, R92C_ACKTO, 0x40); /* Setup USB aggregation. */ reg = urtwn_read_4(sc, R92C_TDECTRL); reg = RW(reg, R92C_TDECTRL_BLK_DESC_NUM, 6); urtwn_write_4(sc, R92C_TDECTRL, reg); urtwn_write_1(sc, R92C_TRXDMA_CTRL, urtwn_read_1(sc, R92C_TRXDMA_CTRL) | R92C_TRXDMA_CTRL_RXDMA_AGG_EN); urtwn_write_1(sc, R92C_RXDMA_AGG_PG_TH, 48); if (sc->chip & URTWN_CHIP_88E) urtwn_write_1(sc, R92C_RXDMA_AGG_PG_TH + 1, 4); else { urtwn_write_1(sc, R92C_USB_DMA_AGG_TO, 4); urtwn_write_1(sc, R92C_USB_SPECIAL_OPTION, urtwn_read_1(sc, R92C_USB_SPECIAL_OPTION) | R92C_USB_SPECIAL_OPTION_AGG_EN); urtwn_write_1(sc, R92C_USB_AGG_TH, 8); urtwn_write_1(sc, R92C_USB_AGG_TO, 6); } /* Initialize beacon parameters. */ urtwn_write_2(sc, R92C_BCN_CTRL, 0x1010); urtwn_write_2(sc, R92C_TBTT_PROHIBIT, 0x6404); urtwn_write_1(sc, R92C_DRVERLYINT, 0x05); urtwn_write_1(sc, R92C_BCNDMATIM, 0x02); urtwn_write_2(sc, R92C_BCNTCFG, 0x660f); if (!(sc->chip & URTWN_CHIP_88E)) { /* Setup AMPDU aggregation. */ urtwn_write_4(sc, R92C_AGGLEN_LMT, 0x99997631); /* MCS7~0 */ urtwn_write_1(sc, R92C_AGGR_BREAK_TIME, 0x16); urtwn_write_2(sc, R92C_MAX_AGGR_NUM, 0x0708); urtwn_write_1(sc, R92C_BCN_MAX_ERR, 0xff); } #ifndef URTWN_WITHOUT_UCODE /* Load 8051 microcode. */ error = urtwn_load_firmware(sc); if (error == 0) sc->sc_flags |= URTWN_FW_LOADED; #endif /* Initialize MAC/BB/RF blocks. */ error = urtwn_mac_init(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: error while initializing MAC block\n", __func__); goto fail; } urtwn_bb_init(sc); urtwn_rf_init(sc); /* Reinitialize Rx filter (D3845 is not committed yet). */ urtwn_rxfilter_init(sc); if (sc->chip & URTWN_CHIP_88E) { urtwn_write_2(sc, R92C_CR, urtwn_read_2(sc, R92C_CR) | R92C_CR_MACTXEN | R92C_CR_MACRXEN); } /* Turn CCK and OFDM blocks on. */ reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD); reg |= R92C_RFMOD_CCK_EN; usb_err = urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg); if (usb_err != USB_ERR_NORMAL_COMPLETION) goto fail; reg = urtwn_bb_read(sc, R92C_FPGA0_RFMOD); reg |= R92C_RFMOD_OFDM_EN; usb_err = urtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg); if (usb_err != USB_ERR_NORMAL_COMPLETION) goto fail; /* Clear per-station keys table. */ urtwn_cam_init(sc); /* Enable decryption / encryption. */ urtwn_write_2(sc, R92C_SECCFG, R92C_SECCFG_TXUCKEY_DEF | R92C_SECCFG_RXUCKEY_DEF | R92C_SECCFG_TXENC_ENA | R92C_SECCFG_RXDEC_ENA | R92C_SECCFG_TXBCKEY_DEF | R92C_SECCFG_RXBCKEY_DEF); /* * Install static keys (if any). * Must be called after urtwn_cam_init(). */ ieee80211_runtask(ic, &sc->cmdq_task); /* Enable hardware sequence numbering. */ urtwn_write_1(sc, R92C_HWSEQ_CTRL, R92C_TX_QUEUE_ALL); /* Enable per-packet TX report. */ if (sc->chip & URTWN_CHIP_88E) { urtwn_write_1(sc, R88E_TX_RPT_CTRL, urtwn_read_1(sc, R88E_TX_RPT_CTRL) | R88E_TX_RPT1_ENA); } /* Perform LO and IQ calibrations. */ urtwn_iq_calib(sc); /* Perform LC calibration. */ urtwn_lc_calib(sc); /* Fix USB interference issue. */ if (!(sc->chip & URTWN_CHIP_88E)) { urtwn_write_1(sc, 0xfe40, 0xe0); urtwn_write_1(sc, 0xfe41, 0x8d); urtwn_write_1(sc, 0xfe42, 0x80); urtwn_pa_bias_init(sc); } /* Initialize GPIO setting. */ urtwn_write_1(sc, R92C_GPIO_MUXCFG, urtwn_read_1(sc, R92C_GPIO_MUXCFG) & ~R92C_GPIO_MUXCFG_ENBT); /* Fix for lower temperature. */ if (!(sc->chip & URTWN_CHIP_88E)) urtwn_write_1(sc, 0x15, 0xe9); usbd_transfer_start(sc->sc_xfer[URTWN_BULK_RX]); sc->sc_flags |= URTWN_RUNNING; callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc); fail: if (usb_err != USB_ERR_NORMAL_COMPLETION) error = EIO; URTWN_UNLOCK(sc); return (error); } static void urtwn_stop(struct urtwn_softc *sc) { URTWN_LOCK(sc); if (!(sc->sc_flags & URTWN_RUNNING)) { URTWN_UNLOCK(sc); return; } sc->sc_flags &= ~(URTWN_RUNNING | URTWN_FW_LOADED | URTWN_TEMP_MEASURED); sc->thcal_lctemp = 0; callout_stop(&sc->sc_watchdog_ch); urtwn_abort_xfers(sc); urtwn_drain_mbufq(sc); urtwn_power_off(sc); URTWN_UNLOCK(sc); } static void urtwn_abort_xfers(struct urtwn_softc *sc) { int i; URTWN_ASSERT_LOCKED(sc); /* abort any pending transfers */ for (i = 0; i < URTWN_N_TRANSFER; i++) usbd_transfer_stop(sc->sc_xfer[i]); } static int urtwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct urtwn_softc *sc = ic->ic_softc; struct urtwn_data *bf; int error; URTWN_DPRINTF(sc, URTWN_DEBUG_XMIT, "%s: called; m=%p\n", __func__, m); /* prevent management frames from being sent if we're not ready */ URTWN_LOCK(sc); if (!(sc->sc_flags & URTWN_RUNNING)) { error = ENETDOWN; goto end; } bf = urtwn_getbuf(sc); if (bf == NULL) { error = ENOBUFS; goto end; } if (params == NULL) { /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. */ error = urtwn_tx_data(sc, ni, m, bf); } else { /* * Caller supplied explicit parameters to use in * sending the frame. */ error = urtwn_tx_raw(sc, ni, m, bf, params); } if (error != 0) { STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); goto end; } sc->sc_txtimer = 5; callout_reset(&sc->sc_watchdog_ch, hz, urtwn_watchdog, sc); end: if (error != 0) m_freem(m); URTWN_UNLOCK(sc); return (error); } static void urtwn_ms_delay(struct urtwn_softc *sc) { usb_pause_mtx(&sc->sc_mtx, hz / 1000); } static device_method_t urtwn_methods[] = { /* Device interface */ DEVMETHOD(device_probe, urtwn_match), DEVMETHOD(device_attach, urtwn_attach), DEVMETHOD(device_detach, urtwn_detach), DEVMETHOD_END }; static driver_t urtwn_driver = { "urtwn", urtwn_methods, sizeof(struct urtwn_softc) }; static devclass_t urtwn_devclass; DRIVER_MODULE(urtwn, uhub, urtwn_driver, urtwn_devclass, NULL, NULL); MODULE_DEPEND(urtwn, usb, 1, 1, 1); MODULE_DEPEND(urtwn, wlan, 1, 1, 1); #ifndef URTWN_WITHOUT_UCODE MODULE_DEPEND(urtwn, firmware, 1, 1, 1); #endif MODULE_VERSION(urtwn, 1); USB_PNP_HOST_INFO(urtwn_devs); Index: head/sys/dev/usb/wlan/if_rsu.c =================================================================== --- head/sys/dev/usb/wlan/if_rsu.c (revision 298817) +++ head/sys/dev/usb/wlan/if_rsu.c (revision 298818) @@ -1,2946 +1,2946 @@ /* $OpenBSD: if_rsu.c,v 1.17 2013/04/15 09:23:01 mglocker Exp $ */ /*- * Copyright (c) 2010 Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /* * Driver for Realtek RTL8188SU/RTL8191SU/RTL8192SU. * * TODO: * o h/w crypto * o hostap / ibss / mesh * o sensible RSSI levels * o power-save operation */ #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "usbdevs.h" #define USB_DEBUG_VAR rsu_debug #include #include #ifdef USB_DEBUG static int rsu_debug = 0; SYSCTL_NODE(_hw_usb, OID_AUTO, rsu, CTLFLAG_RW, 0, "USB rsu"); SYSCTL_INT(_hw_usb_rsu, OID_AUTO, debug, CTLFLAG_RWTUN, &rsu_debug, 0, "Debug level"); #define RSU_DPRINTF(_sc, _flg, ...) \ do \ if (((_flg) == (RSU_DEBUG_ANY)) || (rsu_debug & (_flg))) \ device_printf((_sc)->sc_dev, __VA_ARGS__); \ while (0) #else #define RSU_DPRINTF(_sc, _flg, ...) #endif static int rsu_enable_11n = 1; TUNABLE_INT("hw.usb.rsu.enable_11n", &rsu_enable_11n); #define RSU_DEBUG_ANY 0xffffffff #define RSU_DEBUG_TX 0x00000001 #define RSU_DEBUG_RX 0x00000002 #define RSU_DEBUG_RESET 0x00000004 #define RSU_DEBUG_CALIB 0x00000008 #define RSU_DEBUG_STATE 0x00000010 #define RSU_DEBUG_SCAN 0x00000020 #define RSU_DEBUG_FWCMD 0x00000040 #define RSU_DEBUG_TXDONE 0x00000080 #define RSU_DEBUG_FW 0x00000100 #define RSU_DEBUG_FWDBG 0x00000200 #define RSU_DEBUG_AMPDU 0x00000400 static const STRUCT_USB_HOST_ID rsu_devs[] = { #define RSU_HT_NOT_SUPPORTED 0 #define RSU_HT_SUPPORTED 1 #define RSU_DEV_HT(v,p) { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, \ RSU_HT_SUPPORTED) } #define RSU_DEV(v,p) { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, \ RSU_HT_NOT_SUPPORTED) } RSU_DEV(ASUS, RTL8192SU), RSU_DEV(AZUREWAVE, RTL8192SU_4), RSU_DEV_HT(ACCTON, RTL8192SU), RSU_DEV_HT(ASUS, USBN10), RSU_DEV_HT(AZUREWAVE, RTL8192SU_1), RSU_DEV_HT(AZUREWAVE, RTL8192SU_2), RSU_DEV_HT(AZUREWAVE, RTL8192SU_3), RSU_DEV_HT(AZUREWAVE, RTL8192SU_5), RSU_DEV_HT(BELKIN, RTL8192SU_1), RSU_DEV_HT(BELKIN, RTL8192SU_2), RSU_DEV_HT(BELKIN, RTL8192SU_3), RSU_DEV_HT(CONCEPTRONIC2, RTL8192SU_1), RSU_DEV_HT(CONCEPTRONIC2, RTL8192SU_2), RSU_DEV_HT(CONCEPTRONIC2, RTL8192SU_3), RSU_DEV_HT(COREGA, RTL8192SU), RSU_DEV_HT(DLINK2, DWA131A1), RSU_DEV_HT(DLINK2, RTL8192SU_1), RSU_DEV_HT(DLINK2, RTL8192SU_2), RSU_DEV_HT(EDIMAX, RTL8192SU_1), RSU_DEV_HT(EDIMAX, RTL8192SU_2), RSU_DEV_HT(EDIMAX, EW7622UMN), RSU_DEV_HT(GUILLEMOT, HWGUN54), RSU_DEV_HT(GUILLEMOT, HWNUM300), RSU_DEV_HT(HAWKING, RTL8192SU_1), RSU_DEV_HT(HAWKING, RTL8192SU_2), RSU_DEV_HT(PLANEX2, GWUSNANO), RSU_DEV_HT(REALTEK, RTL8171), RSU_DEV_HT(REALTEK, RTL8172), RSU_DEV_HT(REALTEK, RTL8173), RSU_DEV_HT(REALTEK, RTL8174), RSU_DEV_HT(REALTEK, RTL8192SU), RSU_DEV_HT(REALTEK, RTL8712), RSU_DEV_HT(REALTEK, RTL8713), RSU_DEV_HT(SENAO, RTL8192SU_1), RSU_DEV_HT(SENAO, RTL8192SU_2), RSU_DEV_HT(SITECOMEU, WL349V1), RSU_DEV_HT(SITECOMEU, WL353), RSU_DEV_HT(SWEEX2, LW154), RSU_DEV_HT(TRENDNET, TEW646UBH), #undef RSU_DEV_HT #undef RSU_DEV }; static device_probe_t rsu_match; static device_attach_t rsu_attach; static device_detach_t rsu_detach; static usb_callback_t rsu_bulk_tx_callback_be_bk; static usb_callback_t rsu_bulk_tx_callback_vi_vo; static usb_callback_t rsu_bulk_tx_callback_h2c; static usb_callback_t rsu_bulk_rx_callback; static usb_error_t rsu_do_request(struct rsu_softc *, struct usb_device_request *, void *); static struct ieee80211vap * rsu_vap_create(struct ieee80211com *, const char name[], int, enum ieee80211_opmode, int, const uint8_t bssid[], const uint8_t mac[]); static void rsu_vap_delete(struct ieee80211vap *); static void rsu_scan_start(struct ieee80211com *); static void rsu_scan_end(struct ieee80211com *); static void rsu_set_channel(struct ieee80211com *); static void rsu_update_mcast(struct ieee80211com *); static int rsu_alloc_rx_list(struct rsu_softc *); static void rsu_free_rx_list(struct rsu_softc *); static int rsu_alloc_tx_list(struct rsu_softc *); static void rsu_free_tx_list(struct rsu_softc *); static void rsu_free_list(struct rsu_softc *, struct rsu_data [], int); static struct rsu_data *_rsu_getbuf(struct rsu_softc *); static struct rsu_data *rsu_getbuf(struct rsu_softc *); static void rsu_freebuf(struct rsu_softc *, struct rsu_data *); static int rsu_write_region_1(struct rsu_softc *, uint16_t, uint8_t *, int); static void rsu_write_1(struct rsu_softc *, uint16_t, uint8_t); static void rsu_write_2(struct rsu_softc *, uint16_t, uint16_t); static void rsu_write_4(struct rsu_softc *, uint16_t, uint32_t); static int rsu_read_region_1(struct rsu_softc *, uint16_t, uint8_t *, int); static uint8_t rsu_read_1(struct rsu_softc *, uint16_t); static uint16_t rsu_read_2(struct rsu_softc *, uint16_t); static uint32_t rsu_read_4(struct rsu_softc *, uint16_t); static int rsu_fw_iocmd(struct rsu_softc *, uint32_t); static uint8_t rsu_efuse_read_1(struct rsu_softc *, uint16_t); static int rsu_read_rom(struct rsu_softc *); static int rsu_fw_cmd(struct rsu_softc *, uint8_t, void *, int); static void rsu_calib_task(void *, int); static void rsu_tx_task(void *, int); static int rsu_newstate(struct ieee80211vap *, enum ieee80211_state, int); #ifdef notyet static void rsu_set_key(struct rsu_softc *, const struct ieee80211_key *); static void rsu_delete_key(struct rsu_softc *, const struct ieee80211_key *); #endif static int rsu_site_survey(struct rsu_softc *, struct ieee80211vap *); static int rsu_join_bss(struct rsu_softc *, struct ieee80211_node *); static int rsu_disconnect(struct rsu_softc *); static int rsu_hwrssi_to_rssi(struct rsu_softc *, int hw_rssi); static void rsu_event_survey(struct rsu_softc *, uint8_t *, int); static void rsu_event_join_bss(struct rsu_softc *, uint8_t *, int); static void rsu_rx_event(struct rsu_softc *, uint8_t, uint8_t *, int); static void rsu_rx_multi_event(struct rsu_softc *, uint8_t *, int); #if 0 static int8_t rsu_get_rssi(struct rsu_softc *, int, void *); #endif static struct mbuf * rsu_rx_frame(struct rsu_softc *, uint8_t *, int); static struct mbuf * rsu_rx_multi_frame(struct rsu_softc *, uint8_t *, int); static struct mbuf * rsu_rxeof(struct usb_xfer *, struct rsu_data *); static void rsu_txeof(struct usb_xfer *, struct rsu_data *); static int rsu_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void rsu_init(struct rsu_softc *); static int rsu_tx_start(struct rsu_softc *, struct ieee80211_node *, struct mbuf *, struct rsu_data *); static int rsu_transmit(struct ieee80211com *, struct mbuf *); static void rsu_start(struct rsu_softc *); static void _rsu_start(struct rsu_softc *); static void rsu_parent(struct ieee80211com *); static void rsu_stop(struct rsu_softc *); static void rsu_ms_delay(struct rsu_softc *, int); static device_method_t rsu_methods[] = { DEVMETHOD(device_probe, rsu_match), DEVMETHOD(device_attach, rsu_attach), DEVMETHOD(device_detach, rsu_detach), DEVMETHOD_END }; static driver_t rsu_driver = { .name = "rsu", .methods = rsu_methods, .size = sizeof(struct rsu_softc) }; static devclass_t rsu_devclass; DRIVER_MODULE(rsu, uhub, rsu_driver, rsu_devclass, NULL, 0); MODULE_DEPEND(rsu, wlan, 1, 1, 1); MODULE_DEPEND(rsu, usb, 1, 1, 1); MODULE_DEPEND(rsu, firmware, 1, 1, 1); MODULE_VERSION(rsu, 1); USB_PNP_HOST_INFO(rsu_devs); static uint8_t rsu_wme_ac_xfer_map[4] = { [WME_AC_BE] = RSU_BULK_TX_BE_BK, [WME_AC_BK] = RSU_BULK_TX_BE_BK, [WME_AC_VI] = RSU_BULK_TX_VI_VO, [WME_AC_VO] = RSU_BULK_TX_VI_VO, }; /* XXX hard-coded */ #define RSU_H2C_ENDPOINT 3 static const struct usb_config rsu_config[RSU_N_TRANSFER] = { [RSU_BULK_RX] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = RSU_RXBUFSZ, .flags = { .pipe_bof = 1, .short_xfer_ok = 1 }, .callback = rsu_bulk_rx_callback }, [RSU_BULK_TX_BE_BK] = { .type = UE_BULK, .endpoint = 0x06, .direction = UE_DIR_OUT, .bufsize = RSU_TXBUFSZ, .flags = { .ext_buffer = 1, .pipe_bof = 1, .force_short_xfer = 1 }, .callback = rsu_bulk_tx_callback_be_bk, .timeout = RSU_TX_TIMEOUT }, [RSU_BULK_TX_VI_VO] = { .type = UE_BULK, .endpoint = 0x04, .direction = UE_DIR_OUT, .bufsize = RSU_TXBUFSZ, .flags = { .ext_buffer = 1, .pipe_bof = 1, .force_short_xfer = 1 }, .callback = rsu_bulk_tx_callback_vi_vo, .timeout = RSU_TX_TIMEOUT }, [RSU_BULK_TX_H2C] = { .type = UE_BULK, .endpoint = 0x0d, .direction = UE_DIR_OUT, .bufsize = RSU_TXBUFSZ, .flags = { .ext_buffer = 1, .pipe_bof = 1, .short_xfer_ok = 1 }, .callback = rsu_bulk_tx_callback_h2c, .timeout = RSU_TX_TIMEOUT }, }; static int rsu_match(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); if (uaa->usb_mode != USB_MODE_HOST || uaa->info.bIfaceIndex != 0 || uaa->info.bConfigIndex != 0) return (ENXIO); return (usbd_lookup_id_by_uaa(rsu_devs, sizeof(rsu_devs), uaa)); } static int rsu_send_mgmt(struct ieee80211_node *ni, int type, int arg) { return (ENOTSUP); } static void rsu_update_chw(struct ieee80211com *ic) { } /* * notification from net80211 that it'd like to do A-MPDU on the given TID. * * Note: this actually hangs traffic at the present moment, so don't use it. * The firmware debug does indiciate it's sending and establishing a TX AMPDU * session, but then no traffic flows. */ static int rsu_ampdu_enable(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) { #if 0 struct rsu_softc *sc = ni->ni_ic->ic_softc; struct r92s_add_ba_req req; /* Don't enable if it's requested or running */ if (IEEE80211_AMPDU_REQUESTED(tap)) return (0); if (IEEE80211_AMPDU_RUNNING(tap)) return (0); /* We've decided to send addba; so send it */ req.tid = htole32(tap->txa_tid); /* Attempt net80211 state */ if (ieee80211_ampdu_tx_request_ext(ni, tap->txa_tid) != 1) return (0); /* Send the firmware command */ RSU_DPRINTF(sc, RSU_DEBUG_AMPDU, "%s: establishing AMPDU TX for TID %d\n", __func__, tap->txa_tid); RSU_LOCK(sc); if (rsu_fw_cmd(sc, R92S_CMD_ADDBA_REQ, &req, sizeof(req)) != 1) { RSU_UNLOCK(sc); /* Mark failure */ (void) ieee80211_ampdu_tx_request_active_ext(ni, tap->txa_tid, 0); return (0); } RSU_UNLOCK(sc); /* Mark success; we don't get any further notifications */ (void) ieee80211_ampdu_tx_request_active_ext(ni, tap->txa_tid, 1); #endif /* Return 0, we're driving this ourselves */ return (0); } static int rsu_wme_update(struct ieee80211com *ic) { /* Firmware handles this; not our problem */ return (0); } static int rsu_attach(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); struct rsu_softc *sc = device_get_softc(self); struct ieee80211com *ic = &sc->sc_ic; int error; - uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)]; + uint8_t bands[IEEE80211_MODE_BYTES]; uint8_t iface_index; struct usb_interface *iface; const char *rft; device_set_usb_desc(self); sc->sc_udev = uaa->device; sc->sc_dev = self; if (rsu_enable_11n) sc->sc_ht = !! (USB_GET_DRIVER_INFO(uaa) & RSU_HT_SUPPORTED); /* Get number of endpoints */ iface = usbd_get_iface(sc->sc_udev, 0); sc->sc_nendpoints = iface->idesc->bNumEndpoints; /* Endpoints are hard-coded for now, so enforce 4-endpoint only */ if (sc->sc_nendpoints != 4) { device_printf(sc->sc_dev, "the driver currently only supports 4-endpoint devices\n"); return (ENXIO); } mtx_init(&sc->sc_mtx, device_get_nameunit(self), MTX_NETWORK_LOCK, MTX_DEF); TIMEOUT_TASK_INIT(taskqueue_thread, &sc->calib_task, 0, rsu_calib_task, sc); TASK_INIT(&sc->tx_task, 0, rsu_tx_task, sc); mbufq_init(&sc->sc_snd, ifqmaxlen); /* Allocate Tx/Rx buffers. */ error = rsu_alloc_rx_list(sc); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Rx buffers\n"); goto fail_usb; } error = rsu_alloc_tx_list(sc); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Tx buffers\n"); rsu_free_rx_list(sc); goto fail_usb; } iface_index = 0; error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, rsu_config, RSU_N_TRANSFER, sc, &sc->sc_mtx); if (error) { device_printf(sc->sc_dev, "could not allocate USB transfers, err=%s\n", usbd_errstr(error)); goto fail_usb; } RSU_LOCK(sc); /* Read chip revision. */ sc->cut = MS(rsu_read_4(sc, R92S_PMC_FSM), R92S_PMC_FSM_CUT); if (sc->cut != 3) sc->cut = (sc->cut >> 1) + 1; error = rsu_read_rom(sc); RSU_UNLOCK(sc); if (error != 0) { device_printf(self, "could not read ROM\n"); goto fail_rom; } /* Figure out TX/RX streams */ switch (sc->rom[84]) { case 0x0: sc->sc_rftype = RTL8712_RFCONFIG_1T1R; sc->sc_nrxstream = 1; sc->sc_ntxstream = 1; rft = "1T1R"; break; case 0x1: sc->sc_rftype = RTL8712_RFCONFIG_1T2R; sc->sc_nrxstream = 2; sc->sc_ntxstream = 1; rft = "1T2R"; break; case 0x2: sc->sc_rftype = RTL8712_RFCONFIG_2T2R; sc->sc_nrxstream = 2; sc->sc_ntxstream = 2; rft = "2T2R"; break; default: device_printf(sc->sc_dev, "%s: unknown board type (rfconfig=0x%02x)\n", __func__, sc->rom[84]); goto fail_rom; } IEEE80211_ADDR_COPY(ic->ic_macaddr, &sc->rom[0x12]); device_printf(self, "MAC/BB RTL8712 cut %d %s\n", sc->cut, rft); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(self); ic->ic_phytype = IEEE80211_T_OFDM; /* Not only, but not used. */ ic->ic_opmode = IEEE80211_M_STA; /* Default to BSS mode. */ /* Set device capabilities. */ ic->ic_caps = IEEE80211_C_STA | /* station mode */ #if 0 IEEE80211_C_BGSCAN | /* Background scan. */ #endif IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */ IEEE80211_C_WME | /* WME/QoS */ IEEE80211_C_SHSLOT | /* Short slot time supported. */ IEEE80211_C_WPA; /* WPA/RSN. */ /* Check if HT support is present. */ if (sc->sc_ht) { device_printf(sc->sc_dev, "%s: enabling 11n\n", __func__); /* Enable basic HT */ ic->ic_htcaps = IEEE80211_HTC_HT | #if 0 IEEE80211_HTC_AMPDU | #endif IEEE80211_HTC_AMSDU | IEEE80211_HTCAP_MAXAMSDU_3839 | IEEE80211_HTCAP_SMPS_OFF; ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40; /* set number of spatial streams */ ic->ic_txstream = sc->sc_ntxstream; ic->ic_rxstream = sc->sc_nrxstream; } /* Set supported .11b and .11g rates. */ memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); if (sc->sc_ht) setbit(bands, IEEE80211_MODE_11NG); ieee80211_init_channels(ic, NULL, bands); ieee80211_ifattach(ic); ic->ic_raw_xmit = rsu_raw_xmit; ic->ic_scan_start = rsu_scan_start; ic->ic_scan_end = rsu_scan_end; ic->ic_set_channel = rsu_set_channel; ic->ic_vap_create = rsu_vap_create; ic->ic_vap_delete = rsu_vap_delete; ic->ic_update_mcast = rsu_update_mcast; ic->ic_parent = rsu_parent; ic->ic_transmit = rsu_transmit; ic->ic_send_mgmt = rsu_send_mgmt; ic->ic_update_chw = rsu_update_chw; ic->ic_ampdu_enable = rsu_ampdu_enable; ic->ic_wme.wme_update = rsu_wme_update; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), RSU_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), RSU_RX_RADIOTAP_PRESENT); if (bootverbose) ieee80211_announce(ic); return (0); fail_rom: usbd_transfer_unsetup(sc->sc_xfer, RSU_N_TRANSFER); fail_usb: mtx_destroy(&sc->sc_mtx); return (ENXIO); } static int rsu_detach(device_t self) { struct rsu_softc *sc = device_get_softc(self); struct ieee80211com *ic = &sc->sc_ic; RSU_LOCK(sc); rsu_stop(sc); RSU_UNLOCK(sc); usbd_transfer_unsetup(sc->sc_xfer, RSU_N_TRANSFER); /* * Free buffers /before/ we detach from net80211, else node * references to destroyed vaps will lead to a panic. */ /* Free Tx/Rx buffers. */ RSU_LOCK(sc); rsu_free_tx_list(sc); rsu_free_rx_list(sc); RSU_UNLOCK(sc); /* Frames are freed; detach from net80211 */ ieee80211_ifdetach(ic); taskqueue_drain_timeout(taskqueue_thread, &sc->calib_task); taskqueue_drain(taskqueue_thread, &sc->tx_task); mtx_destroy(&sc->sc_mtx); return (0); } static usb_error_t rsu_do_request(struct rsu_softc *sc, struct usb_device_request *req, void *data) { usb_error_t err; int ntries = 10; RSU_ASSERT_LOCKED(sc); while (ntries--) { err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, req, data, 0, NULL, 250 /* ms */); if (err == 0 || err == USB_ERR_NOT_CONFIGURED) break; DPRINTFN(1, "Control request failed, %s (retrying)\n", usbd_errstr(err)); rsu_ms_delay(sc, 10); } return (err); } static struct ieee80211vap * rsu_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct rsu_vap *uvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return (NULL); uvp = malloc(sizeof(struct rsu_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &uvp->vap; if (ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid) != 0) { /* out of memory */ free(uvp, M_80211_VAP); return (NULL); } /* override state transition machine */ uvp->newstate = vap->iv_newstate; vap->iv_newstate = rsu_newstate; /* Limits from the r92su driver */ vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_16; vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_32K; /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return (vap); } static void rsu_vap_delete(struct ieee80211vap *vap) { struct rsu_vap *uvp = RSU_VAP(vap); ieee80211_vap_detach(vap); free(uvp, M_80211_VAP); } static void rsu_scan_start(struct ieee80211com *ic) { struct rsu_softc *sc = ic->ic_softc; int error; /* Scanning is done by the firmware. */ RSU_LOCK(sc); /* XXX TODO: force awake if in in network-sleep? */ error = rsu_site_survey(sc, TAILQ_FIRST(&ic->ic_vaps)); RSU_UNLOCK(sc); if (error != 0) device_printf(sc->sc_dev, "could not send site survey command\n"); } static void rsu_scan_end(struct ieee80211com *ic) { /* Nothing to do here. */ } static void rsu_set_channel(struct ieee80211com *ic __unused) { /* We are unable to switch channels, yet. */ } static void rsu_update_mcast(struct ieee80211com *ic) { /* XXX do nothing? */ } static int rsu_alloc_list(struct rsu_softc *sc, struct rsu_data data[], int ndata, int maxsz) { int i, error; for (i = 0; i < ndata; i++) { struct rsu_data *dp = &data[i]; dp->sc = sc; dp->m = NULL; dp->buf = malloc(maxsz, M_USBDEV, M_NOWAIT); if (dp->buf == NULL) { device_printf(sc->sc_dev, "could not allocate buffer\n"); error = ENOMEM; goto fail; } dp->ni = NULL; } return (0); fail: rsu_free_list(sc, data, ndata); return (error); } static int rsu_alloc_rx_list(struct rsu_softc *sc) { int error, i; error = rsu_alloc_list(sc, sc->sc_rx, RSU_RX_LIST_COUNT, RSU_RXBUFSZ); if (error != 0) return (error); STAILQ_INIT(&sc->sc_rx_active); STAILQ_INIT(&sc->sc_rx_inactive); for (i = 0; i < RSU_RX_LIST_COUNT; i++) STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], next); return (0); } static int rsu_alloc_tx_list(struct rsu_softc *sc) { int error, i; error = rsu_alloc_list(sc, sc->sc_tx, RSU_TX_LIST_COUNT, RSU_TXBUFSZ); if (error != 0) return (error); STAILQ_INIT(&sc->sc_tx_inactive); for (i = 0; i != RSU_N_TRANSFER; i++) { STAILQ_INIT(&sc->sc_tx_active[i]); STAILQ_INIT(&sc->sc_tx_pending[i]); } for (i = 0; i < RSU_TX_LIST_COUNT; i++) { STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], next); } return (0); } static void rsu_free_tx_list(struct rsu_softc *sc) { int i; /* prevent further allocations from TX list(s) */ STAILQ_INIT(&sc->sc_tx_inactive); for (i = 0; i != RSU_N_TRANSFER; i++) { STAILQ_INIT(&sc->sc_tx_active[i]); STAILQ_INIT(&sc->sc_tx_pending[i]); } rsu_free_list(sc, sc->sc_tx, RSU_TX_LIST_COUNT); } static void rsu_free_rx_list(struct rsu_softc *sc) { /* prevent further allocations from RX list(s) */ STAILQ_INIT(&sc->sc_rx_inactive); STAILQ_INIT(&sc->sc_rx_active); rsu_free_list(sc, sc->sc_rx, RSU_RX_LIST_COUNT); } static void rsu_free_list(struct rsu_softc *sc, struct rsu_data data[], int ndata) { int i; for (i = 0; i < ndata; i++) { struct rsu_data *dp = &data[i]; if (dp->buf != NULL) { free(dp->buf, M_USBDEV); dp->buf = NULL; } if (dp->ni != NULL) { ieee80211_free_node(dp->ni); dp->ni = NULL; } } } static struct rsu_data * _rsu_getbuf(struct rsu_softc *sc) { struct rsu_data *bf; bf = STAILQ_FIRST(&sc->sc_tx_inactive); if (bf != NULL) STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); else bf = NULL; return (bf); } static struct rsu_data * rsu_getbuf(struct rsu_softc *sc) { struct rsu_data *bf; RSU_ASSERT_LOCKED(sc); bf = _rsu_getbuf(sc); if (bf == NULL) { RSU_DPRINTF(sc, RSU_DEBUG_TX, "%s: no buffers\n", __func__); } return (bf); } static void rsu_freebuf(struct rsu_softc *sc, struct rsu_data *bf) { RSU_ASSERT_LOCKED(sc); STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, bf, next); } static int rsu_write_region_1(struct rsu_softc *sc, uint16_t addr, uint8_t *buf, int len) { usb_device_request_t req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = R92S_REQ_REGS; USETW(req.wValue, addr); USETW(req.wIndex, 0); USETW(req.wLength, len); return (rsu_do_request(sc, &req, buf)); } static void rsu_write_1(struct rsu_softc *sc, uint16_t addr, uint8_t val) { rsu_write_region_1(sc, addr, &val, 1); } static void rsu_write_2(struct rsu_softc *sc, uint16_t addr, uint16_t val) { val = htole16(val); rsu_write_region_1(sc, addr, (uint8_t *)&val, 2); } static void rsu_write_4(struct rsu_softc *sc, uint16_t addr, uint32_t val) { val = htole32(val); rsu_write_region_1(sc, addr, (uint8_t *)&val, 4); } static int rsu_read_region_1(struct rsu_softc *sc, uint16_t addr, uint8_t *buf, int len) { usb_device_request_t req; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = R92S_REQ_REGS; USETW(req.wValue, addr); USETW(req.wIndex, 0); USETW(req.wLength, len); return (rsu_do_request(sc, &req, buf)); } static uint8_t rsu_read_1(struct rsu_softc *sc, uint16_t addr) { uint8_t val; if (rsu_read_region_1(sc, addr, &val, 1) != 0) return (0xff); return (val); } static uint16_t rsu_read_2(struct rsu_softc *sc, uint16_t addr) { uint16_t val; if (rsu_read_region_1(sc, addr, (uint8_t *)&val, 2) != 0) return (0xffff); return (le16toh(val)); } static uint32_t rsu_read_4(struct rsu_softc *sc, uint16_t addr) { uint32_t val; if (rsu_read_region_1(sc, addr, (uint8_t *)&val, 4) != 0) return (0xffffffff); return (le32toh(val)); } static int rsu_fw_iocmd(struct rsu_softc *sc, uint32_t iocmd) { int ntries; rsu_write_4(sc, R92S_IOCMD_CTRL, iocmd); rsu_ms_delay(sc, 1); for (ntries = 0; ntries < 50; ntries++) { if (rsu_read_4(sc, R92S_IOCMD_CTRL) == 0) return (0); rsu_ms_delay(sc, 1); } return (ETIMEDOUT); } static uint8_t rsu_efuse_read_1(struct rsu_softc *sc, uint16_t addr) { uint32_t reg; int ntries; reg = rsu_read_4(sc, R92S_EFUSE_CTRL); reg = RW(reg, R92S_EFUSE_CTRL_ADDR, addr); reg &= ~R92S_EFUSE_CTRL_VALID; rsu_write_4(sc, R92S_EFUSE_CTRL, reg); /* Wait for read operation to complete. */ for (ntries = 0; ntries < 100; ntries++) { reg = rsu_read_4(sc, R92S_EFUSE_CTRL); if (reg & R92S_EFUSE_CTRL_VALID) return (MS(reg, R92S_EFUSE_CTRL_DATA)); rsu_ms_delay(sc, 1); } device_printf(sc->sc_dev, "could not read efuse byte at address 0x%x\n", addr); return (0xff); } static int rsu_read_rom(struct rsu_softc *sc) { uint8_t *rom = sc->rom; uint16_t addr = 0; uint32_t reg; uint8_t off, msk; int i; /* Make sure that ROM type is eFuse and that autoload succeeded. */ reg = rsu_read_1(sc, R92S_EE_9346CR); if ((reg & (R92S_9356SEL | R92S_EEPROM_EN)) != R92S_EEPROM_EN) return (EIO); /* Turn on 2.5V to prevent eFuse leakage. */ reg = rsu_read_1(sc, R92S_EFUSE_TEST + 3); rsu_write_1(sc, R92S_EFUSE_TEST + 3, reg | 0x80); rsu_ms_delay(sc, 1); rsu_write_1(sc, R92S_EFUSE_TEST + 3, reg & ~0x80); /* Read full ROM image. */ memset(&sc->rom, 0xff, sizeof(sc->rom)); while (addr < 512) { reg = rsu_efuse_read_1(sc, addr); if (reg == 0xff) break; addr++; off = reg >> 4; msk = reg & 0xf; for (i = 0; i < 4; i++) { if (msk & (1 << i)) continue; rom[off * 8 + i * 2 + 0] = rsu_efuse_read_1(sc, addr); addr++; rom[off * 8 + i * 2 + 1] = rsu_efuse_read_1(sc, addr); addr++; } } #ifdef USB_DEBUG if (rsu_debug >= 5) { /* Dump ROM content. */ printf("\n"); for (i = 0; i < sizeof(sc->rom); i++) printf("%02x:", rom[i]); printf("\n"); } #endif return (0); } static int rsu_fw_cmd(struct rsu_softc *sc, uint8_t code, void *buf, int len) { const uint8_t which = RSU_H2C_ENDPOINT; struct rsu_data *data; struct r92s_tx_desc *txd; struct r92s_fw_cmd_hdr *cmd; int cmdsz; int xferlen; RSU_ASSERT_LOCKED(sc); data = rsu_getbuf(sc); if (data == NULL) return (ENOMEM); /* Blank the entire payload, just to be safe */ memset(data->buf, '\0', RSU_TXBUFSZ); /* Round-up command length to a multiple of 8 bytes. */ /* XXX TODO: is this required? */ cmdsz = (len + 7) & ~7; xferlen = sizeof(*txd) + sizeof(*cmd) + cmdsz; KASSERT(xferlen <= RSU_TXBUFSZ, ("%s: invalid length", __func__)); memset(data->buf, 0, xferlen); /* Setup Tx descriptor. */ txd = (struct r92s_tx_desc *)data->buf; txd->txdw0 = htole32( SM(R92S_TXDW0_OFFSET, sizeof(*txd)) | SM(R92S_TXDW0_PKTLEN, sizeof(*cmd) + cmdsz) | R92S_TXDW0_OWN | R92S_TXDW0_FSG | R92S_TXDW0_LSG); txd->txdw1 = htole32(SM(R92S_TXDW1_QSEL, R92S_TXDW1_QSEL_H2C)); /* Setup command header. */ cmd = (struct r92s_fw_cmd_hdr *)&txd[1]; cmd->len = htole16(cmdsz); cmd->code = code; cmd->seq = sc->cmd_seq; sc->cmd_seq = (sc->cmd_seq + 1) & 0x7f; /* Copy command payload. */ memcpy(&cmd[1], buf, len); RSU_DPRINTF(sc, RSU_DEBUG_TX | RSU_DEBUG_FWCMD, "%s: Tx cmd code=0x%x len=0x%x\n", __func__, code, cmdsz); data->buflen = xferlen; STAILQ_INSERT_TAIL(&sc->sc_tx_pending[which], data, next); usbd_transfer_start(sc->sc_xfer[which]); return (0); } /* ARGSUSED */ static void rsu_calib_task(void *arg, int pending __unused) { struct rsu_softc *sc = arg; #ifdef notyet uint32_t reg; #endif RSU_DPRINTF(sc, RSU_DEBUG_CALIB, "%s: running calibration task\n", __func__); RSU_LOCK(sc); #ifdef notyet /* Read WPS PBC status. */ rsu_write_1(sc, R92S_MAC_PINMUX_CTRL, R92S_GPIOMUX_EN | SM(R92S_GPIOSEL_GPIO, R92S_GPIOSEL_GPIO_JTAG)); rsu_write_1(sc, R92S_GPIO_IO_SEL, rsu_read_1(sc, R92S_GPIO_IO_SEL) & ~R92S_GPIO_WPS); reg = rsu_read_1(sc, R92S_GPIO_CTRL); if (reg != 0xff && (reg & R92S_GPIO_WPS)) DPRINTF(("WPS PBC is pushed\n")); #endif /* Read current signal level. */ if (rsu_fw_iocmd(sc, 0xf4000001) == 0) { sc->sc_currssi = rsu_read_4(sc, R92S_IOCMD_DATA); RSU_DPRINTF(sc, RSU_DEBUG_CALIB, "%s: RSSI=%d (%d)\n", __func__, sc->sc_currssi, rsu_hwrssi_to_rssi(sc, sc->sc_currssi)); } if (sc->sc_calibrating) taskqueue_enqueue_timeout(taskqueue_thread, &sc->calib_task, hz); RSU_UNLOCK(sc); } static void rsu_tx_task(void *arg, int pending __unused) { struct rsu_softc *sc = arg; RSU_LOCK(sc); _rsu_start(sc); RSU_UNLOCK(sc); } #define RSU_PWR_UNKNOWN 0x0 #define RSU_PWR_ACTIVE 0x1 #define RSU_PWR_OFF 0x2 #define RSU_PWR_SLEEP 0x3 /* * Set the current power state. * * The rtlwifi code doesn't do this so aggressively; it * waits for an idle period after association with * no traffic before doing this. * * For now - it's on in all states except RUN, and * in RUN it'll transition to allow sleep. */ struct r92s_pwr_cmd { uint8_t mode; uint8_t smart_ps; uint8_t bcn_pass_time; }; static int rsu_set_fw_power_state(struct rsu_softc *sc, int state) { struct r92s_set_pwr_mode cmd; //struct r92s_pwr_cmd cmd; int error; RSU_ASSERT_LOCKED(sc); /* only change state if required */ if (sc->sc_curpwrstate == state) return (0); memset(&cmd, 0, sizeof(cmd)); switch (state) { case RSU_PWR_ACTIVE: /* Force the hardware awake */ rsu_write_1(sc, R92S_USB_HRPWM, R92S_USB_HRPWM_PS_ST_ACTIVE | R92S_USB_HRPWM_PS_ALL_ON); cmd.mode = R92S_PS_MODE_ACTIVE; break; case RSU_PWR_SLEEP: cmd.mode = R92S_PS_MODE_DTIM; /* XXX configurable? */ cmd.smart_ps = 1; /* XXX 2 if doing p2p */ cmd.bcn_pass_time = 5; /* in 100mS usb.c, linux/rtlwifi */ break; case RSU_PWR_OFF: cmd.mode = R92S_PS_MODE_RADIOOFF; break; default: device_printf(sc->sc_dev, "%s: unknown ps mode (%d)\n", __func__, state); return (ENXIO); } RSU_DPRINTF(sc, RSU_DEBUG_RESET, "%s: setting ps mode to %d (mode %d)\n", __func__, state, cmd.mode); error = rsu_fw_cmd(sc, R92S_CMD_SET_PWR_MODE, &cmd, sizeof(cmd)); if (error == 0) sc->sc_curpwrstate = state; return (error); } static int rsu_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct rsu_vap *uvp = RSU_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct rsu_softc *sc = ic->ic_softc; struct ieee80211_node *ni; struct ieee80211_rateset *rs; enum ieee80211_state ostate; int error, startcal = 0; ostate = vap->iv_state; RSU_DPRINTF(sc, RSU_DEBUG_STATE, "%s: %s -> %s\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate]); IEEE80211_UNLOCK(ic); if (ostate == IEEE80211_S_RUN) { RSU_LOCK(sc); /* Stop calibration. */ sc->sc_calibrating = 0; RSU_UNLOCK(sc); taskqueue_drain_timeout(taskqueue_thread, &sc->calib_task); taskqueue_drain(taskqueue_thread, &sc->tx_task); /* Disassociate from our current BSS. */ RSU_LOCK(sc); rsu_disconnect(sc); } else RSU_LOCK(sc); switch (nstate) { case IEEE80211_S_INIT: (void) rsu_set_fw_power_state(sc, RSU_PWR_ACTIVE); break; case IEEE80211_S_AUTH: ni = ieee80211_ref_node(vap->iv_bss); (void) rsu_set_fw_power_state(sc, RSU_PWR_ACTIVE); error = rsu_join_bss(sc, ni); ieee80211_free_node(ni); if (error != 0) { device_printf(sc->sc_dev, "could not send join command\n"); } break; case IEEE80211_S_RUN: ni = ieee80211_ref_node(vap->iv_bss); rs = &ni->ni_rates; /* Indicate highest supported rate. */ ni->ni_txrate = rs->rs_rates[rs->rs_nrates - 1]; (void) rsu_set_fw_power_state(sc, RSU_PWR_SLEEP); ieee80211_free_node(ni); startcal = 1; break; default: break; } sc->sc_calibrating = 1; /* Start periodic calibration. */ taskqueue_enqueue_timeout(taskqueue_thread, &sc->calib_task, hz); RSU_UNLOCK(sc); IEEE80211_LOCK(ic); return (uvp->newstate(vap, nstate, arg)); } #ifdef notyet static void rsu_set_key(struct rsu_softc *sc, const struct ieee80211_key *k) { struct r92s_fw_cmd_set_key key; memset(&key, 0, sizeof(key)); /* Map net80211 cipher to HW crypto algorithm. */ switch (k->wk_cipher->ic_cipher) { case IEEE80211_CIPHER_WEP: if (k->wk_keylen < 8) key.algo = R92S_KEY_ALGO_WEP40; else key.algo = R92S_KEY_ALGO_WEP104; break; case IEEE80211_CIPHER_TKIP: key.algo = R92S_KEY_ALGO_TKIP; break; case IEEE80211_CIPHER_AES_CCM: key.algo = R92S_KEY_ALGO_AES; break; default: return; } key.id = k->wk_keyix; key.grpkey = (k->wk_flags & IEEE80211_KEY_GROUP) != 0; memcpy(key.key, k->wk_key, MIN(k->wk_keylen, sizeof(key.key))); (void)rsu_fw_cmd(sc, R92S_CMD_SET_KEY, &key, sizeof(key)); } static void rsu_delete_key(struct rsu_softc *sc, const struct ieee80211_key *k) { struct r92s_fw_cmd_set_key key; memset(&key, 0, sizeof(key)); key.id = k->wk_keyix; (void)rsu_fw_cmd(sc, R92S_CMD_SET_KEY, &key, sizeof(key)); } #endif static int rsu_site_survey(struct rsu_softc *sc, struct ieee80211vap *vap) { struct r92s_fw_cmd_sitesurvey cmd; struct ieee80211com *ic = &sc->sc_ic; int r; RSU_ASSERT_LOCKED(sc); memset(&cmd, 0, sizeof(cmd)); if ((ic->ic_flags & IEEE80211_F_ASCAN) || sc->sc_scan_pass == 1) cmd.active = htole32(1); cmd.limit = htole32(48); if (sc->sc_scan_pass == 1 && vap->iv_des_nssid > 0) { /* Do a directed scan for second pass. */ cmd.ssidlen = htole32(vap->iv_des_ssid[0].len); memcpy(cmd.ssid, vap->iv_des_ssid[0].ssid, vap->iv_des_ssid[0].len); } DPRINTF("sending site survey command, pass=%d\n", sc->sc_scan_pass); r = rsu_fw_cmd(sc, R92S_CMD_SITE_SURVEY, &cmd, sizeof(cmd)); if (r == 0) { sc->sc_scanning = 1; } return (r); } static int rsu_join_bss(struct rsu_softc *sc, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = ni->ni_vap; struct ndis_wlan_bssid_ex *bss; struct ndis_802_11_fixed_ies *fixed; struct r92s_fw_cmd_auth auth; uint8_t buf[sizeof(*bss) + 128] __aligned(4); uint8_t *frm; uint8_t opmode; int error; int cnt; char *msg = "rsujoin"; RSU_ASSERT_LOCKED(sc); /* * Until net80211 scanning doesn't automatically finish * before we tell it to, let's just wait until any pending * scan is done. * * XXX TODO: yes, this releases and re-acquires the lock. * We should re-verify the state whenever we re-attempt this! */ cnt = 0; while (sc->sc_scanning && cnt < 10) { device_printf(sc->sc_dev, "%s: still scanning! (attempt %d)\n", __func__, cnt); msleep(msg, &sc->sc_mtx, 0, msg, hz / 2); cnt++; } /* Let the FW decide the opmode based on the capinfo field. */ opmode = NDIS802_11AUTOUNKNOWN; RSU_DPRINTF(sc, RSU_DEBUG_RESET, "%s: setting operating mode to %d\n", __func__, opmode); error = rsu_fw_cmd(sc, R92S_CMD_SET_OPMODE, &opmode, sizeof(opmode)); if (error != 0) return (error); memset(&auth, 0, sizeof(auth)); if (vap->iv_flags & IEEE80211_F_WPA) { auth.mode = R92S_AUTHMODE_WPA; auth.dot1x = (ni->ni_authmode == IEEE80211_AUTH_8021X); } else auth.mode = R92S_AUTHMODE_OPEN; RSU_DPRINTF(sc, RSU_DEBUG_RESET, "%s: setting auth mode to %d\n", __func__, auth.mode); error = rsu_fw_cmd(sc, R92S_CMD_SET_AUTH, &auth, sizeof(auth)); if (error != 0) return (error); memset(buf, 0, sizeof(buf)); bss = (struct ndis_wlan_bssid_ex *)buf; IEEE80211_ADDR_COPY(bss->macaddr, ni->ni_bssid); bss->ssid.ssidlen = htole32(ni->ni_esslen); memcpy(bss->ssid.ssid, ni->ni_essid, ni->ni_esslen); if (vap->iv_flags & (IEEE80211_F_PRIVACY | IEEE80211_F_WPA)) bss->privacy = htole32(1); bss->rssi = htole32(ni->ni_avgrssi); if (ic->ic_curmode == IEEE80211_MODE_11B) bss->networktype = htole32(NDIS802_11DS); else bss->networktype = htole32(NDIS802_11OFDM24); bss->config.len = htole32(sizeof(bss->config)); bss->config.bintval = htole32(ni->ni_intval); bss->config.dsconfig = htole32(ieee80211_chan2ieee(ic, ni->ni_chan)); bss->inframode = htole32(NDIS802_11INFRASTRUCTURE); /* XXX verify how this is supposed to look! */ memcpy(bss->supprates, ni->ni_rates.rs_rates, ni->ni_rates.rs_nrates); /* Write the fixed fields of the beacon frame. */ fixed = (struct ndis_802_11_fixed_ies *)&bss[1]; memcpy(&fixed->tstamp, ni->ni_tstamp.data, 8); fixed->bintval = htole16(ni->ni_intval); fixed->capabilities = htole16(ni->ni_capinfo); /* Write IEs to be included in the association request. */ frm = (uint8_t *)&fixed[1]; frm = ieee80211_add_rsn(frm, vap); frm = ieee80211_add_wpa(frm, vap); frm = ieee80211_add_qos(frm, ni); if ((ic->ic_flags & IEEE80211_F_WME) && (ni->ni_ies.wme_ie != NULL)) frm = ieee80211_add_wme_info(frm, &ic->ic_wme); if (ni->ni_flags & IEEE80211_NODE_HT) { frm = ieee80211_add_htcap(frm, ni); frm = ieee80211_add_htinfo(frm, ni); } bss->ieslen = htole32(frm - (uint8_t *)fixed); bss->len = htole32(((frm - buf) + 3) & ~3); RSU_DPRINTF(sc, RSU_DEBUG_RESET | RSU_DEBUG_FWCMD, "%s: sending join bss command to %s chan %d\n", __func__, ether_sprintf(bss->macaddr), le32toh(bss->config.dsconfig)); return (rsu_fw_cmd(sc, R92S_CMD_JOIN_BSS, buf, sizeof(buf))); } static int rsu_disconnect(struct rsu_softc *sc) { uint32_t zero = 0; /* :-) */ /* Disassociate from our current BSS. */ RSU_DPRINTF(sc, RSU_DEBUG_STATE | RSU_DEBUG_FWCMD, "%s: sending disconnect command\n", __func__); return (rsu_fw_cmd(sc, R92S_CMD_DISCONNECT, &zero, sizeof(zero))); } /* * Map the hardware provided RSSI value to a signal level. * For the most part it's just something we divide by and cap * so it doesn't overflow the representation by net80211. */ static int rsu_hwrssi_to_rssi(struct rsu_softc *sc, int hw_rssi) { int v; if (hw_rssi == 0) return (0); v = hw_rssi >> 4; if (v > 80) v = 80; return (v); } static void rsu_event_survey(struct rsu_softc *sc, uint8_t *buf, int len) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ndis_wlan_bssid_ex *bss; struct ieee80211_rx_stats rxs; struct mbuf *m; int pktlen; if (__predict_false(len < sizeof(*bss))) return; bss = (struct ndis_wlan_bssid_ex *)buf; if (__predict_false(len < sizeof(*bss) + le32toh(bss->ieslen))) return; RSU_DPRINTF(sc, RSU_DEBUG_SCAN, "%s: found BSS %s: len=%d chan=%d inframode=%d " "networktype=%d privacy=%d, RSSI=%d\n", __func__, ether_sprintf(bss->macaddr), le32toh(bss->len), le32toh(bss->config.dsconfig), le32toh(bss->inframode), le32toh(bss->networktype), le32toh(bss->privacy), le32toh(bss->rssi)); /* Build a fake beacon frame to let net80211 do all the parsing. */ /* XXX TODO: just call the new scan API methods! */ pktlen = sizeof(*wh) + le32toh(bss->ieslen); if (__predict_false(pktlen > MCLBYTES)) return; m = m_get2(pktlen, M_NOWAIT, MT_DATA, M_PKTHDR); if (__predict_false(m == NULL)) return; wh = mtod(m, struct ieee80211_frame *); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON; wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; USETW(wh->i_dur, 0); IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr); IEEE80211_ADDR_COPY(wh->i_addr2, bss->macaddr); IEEE80211_ADDR_COPY(wh->i_addr3, bss->macaddr); *(uint16_t *)wh->i_seq = 0; memcpy(&wh[1], (uint8_t *)&bss[1], le32toh(bss->ieslen)); /* Finalize mbuf. */ m->m_pkthdr.len = m->m_len = pktlen; /* Set channel flags for input path */ bzero(&rxs, sizeof(rxs)); rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ; rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI; rxs.c_ieee = le32toh(bss->config.dsconfig); rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ); /* This is a number from 0..100; so let's just divide it down a bit */ rxs.rssi = le32toh(bss->rssi) / 2; rxs.nf = -96; /* XXX avoid a LOR */ RSU_UNLOCK(sc); ieee80211_input_mimo_all(ic, m, &rxs); RSU_LOCK(sc); } static void rsu_event_join_bss(struct rsu_softc *sc, uint8_t *buf, int len) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_node *ni = vap->iv_bss; struct r92s_event_join_bss *rsp; uint32_t tmp; int res; if (__predict_false(len < sizeof(*rsp))) return; rsp = (struct r92s_event_join_bss *)buf; res = (int)le32toh(rsp->join_res); RSU_DPRINTF(sc, RSU_DEBUG_STATE | RSU_DEBUG_FWCMD, "%s: Rx join BSS event len=%d res=%d\n", __func__, len, res); /* * XXX Don't do this; there's likely a better way to tell * the caller we failed. */ if (res <= 0) { RSU_UNLOCK(sc); ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); RSU_LOCK(sc); return; } tmp = le32toh(rsp->associd); if (tmp >= vap->iv_max_aid) { DPRINTF("Assoc ID overflow\n"); tmp = 1; } RSU_DPRINTF(sc, RSU_DEBUG_STATE | RSU_DEBUG_FWCMD, "%s: associated with %s associd=%d\n", __func__, ether_sprintf(rsp->bss.macaddr), tmp); /* XXX is this required? What's the top two bits for again? */ ni->ni_associd = tmp | 0xc000; RSU_UNLOCK(sc); ieee80211_new_state(vap, IEEE80211_S_RUN, IEEE80211_FC0_SUBTYPE_ASSOC_RESP); RSU_LOCK(sc); } static void rsu_event_addba_req_report(struct rsu_softc *sc, uint8_t *buf, int len) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct r92s_add_ba_event *ba = (void *) buf; struct ieee80211_node *ni; if (len < sizeof(*ba)) { device_printf(sc->sc_dev, "%s: short read (%d)\n", __func__, len); return; } if (vap == NULL) return; RSU_DPRINTF(sc, RSU_DEBUG_AMPDU, "%s: mac=%s, tid=%d, ssn=%d\n", __func__, ether_sprintf(ba->mac_addr), (int) ba->tid, (int) le16toh(ba->ssn)); /* XXX do node lookup; this is STA specific */ ni = ieee80211_ref_node(vap->iv_bss); ieee80211_ampdu_rx_start_ext(ni, ba->tid, le16toh(ba->ssn) >> 4, 32); ieee80211_free_node(ni); } static void rsu_rx_event(struct rsu_softc *sc, uint8_t code, uint8_t *buf, int len) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); RSU_DPRINTF(sc, RSU_DEBUG_RX | RSU_DEBUG_FWCMD, "%s: Rx event code=%d len=%d\n", __func__, code, len); switch (code) { case R92S_EVT_SURVEY: rsu_event_survey(sc, buf, len); break; case R92S_EVT_SURVEY_DONE: RSU_DPRINTF(sc, RSU_DEBUG_SCAN, "%s: site survey pass %d done, found %d BSS\n", __func__, sc->sc_scan_pass, le32toh(*(uint32_t *)buf)); sc->sc_scanning = 0; if (vap->iv_state != IEEE80211_S_SCAN) break; /* Ignore if not scanning. */ /* * XXX TODO: This needs to be done without a transition to * the SCAN state again. Grr. */ if (sc->sc_scan_pass == 0 && vap->iv_des_nssid != 0) { /* Schedule a directed scan for hidden APs. */ /* XXX bad! */ sc->sc_scan_pass = 1; RSU_UNLOCK(sc); ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); RSU_LOCK(sc); break; } sc->sc_scan_pass = 0; break; case R92S_EVT_JOIN_BSS: if (vap->iv_state == IEEE80211_S_AUTH) rsu_event_join_bss(sc, buf, len); break; case R92S_EVT_DEL_STA: RSU_DPRINTF(sc, RSU_DEBUG_FWCMD | RSU_DEBUG_STATE, "%s: disassociated from %s\n", __func__, ether_sprintf(buf)); if (vap->iv_state == IEEE80211_S_RUN && IEEE80211_ADDR_EQ(vap->iv_bss->ni_bssid, buf)) { RSU_UNLOCK(sc); ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); RSU_LOCK(sc); } break; case R92S_EVT_WPS_PBC: RSU_DPRINTF(sc, RSU_DEBUG_RX | RSU_DEBUG_FWCMD, "%s: WPS PBC pushed.\n", __func__); break; case R92S_EVT_FWDBG: buf[60] = '\0'; RSU_DPRINTF(sc, RSU_DEBUG_FWDBG, "FWDBG: %s\n", (char *)buf); break; case R92S_EVT_ADDBA_REQ_REPORT: rsu_event_addba_req_report(sc, buf, len); break; default: device_printf(sc->sc_dev, "%s: unhandled code (%d)\n", __func__, code); break; } } static void rsu_rx_multi_event(struct rsu_softc *sc, uint8_t *buf, int len) { struct r92s_fw_cmd_hdr *cmd; int cmdsz; RSU_DPRINTF(sc, RSU_DEBUG_RX, "%s: Rx events len=%d\n", __func__, len); /* Skip Rx status. */ buf += sizeof(struct r92s_rx_stat); len -= sizeof(struct r92s_rx_stat); /* Process all events. */ for (;;) { /* Check that command header fits. */ if (__predict_false(len < sizeof(*cmd))) break; cmd = (struct r92s_fw_cmd_hdr *)buf; /* Check that command payload fits. */ cmdsz = le16toh(cmd->len); if (__predict_false(len < sizeof(*cmd) + cmdsz)) break; /* Process firmware event. */ rsu_rx_event(sc, cmd->code, (uint8_t *)&cmd[1], cmdsz); if (!(cmd->seq & R92S_FW_CMD_MORE)) break; buf += sizeof(*cmd) + cmdsz; len -= sizeof(*cmd) + cmdsz; } } #if 0 static int8_t rsu_get_rssi(struct rsu_softc *sc, int rate, void *physt) { static const int8_t cckoff[] = { 14, -2, -20, -40 }; struct r92s_rx_phystat *phy; struct r92s_rx_cck *cck; uint8_t rpt; int8_t rssi; if (rate <= 3) { cck = (struct r92s_rx_cck *)physt; rpt = (cck->agc_rpt >> 6) & 0x3; rssi = cck->agc_rpt & 0x3e; rssi = cckoff[rpt] - rssi; } else { /* OFDM/HT. */ phy = (struct r92s_rx_phystat *)physt; rssi = ((le32toh(phy->phydw1) >> 1) & 0x7f) - 106; } return (rssi); } #endif static struct mbuf * rsu_rx_frame(struct rsu_softc *sc, uint8_t *buf, int pktlen) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct r92s_rx_stat *stat; uint32_t rxdw0, rxdw3; struct mbuf *m; uint8_t rate; int infosz; stat = (struct r92s_rx_stat *)buf; rxdw0 = le32toh(stat->rxdw0); rxdw3 = le32toh(stat->rxdw3); if (__predict_false(rxdw0 & R92S_RXDW0_CRCERR)) { counter_u64_add(ic->ic_ierrors, 1); return NULL; } if (__predict_false(pktlen < sizeof(*wh) || pktlen > MCLBYTES)) { counter_u64_add(ic->ic_ierrors, 1); return NULL; } rate = MS(rxdw3, R92S_RXDW3_RATE); infosz = MS(rxdw0, R92S_RXDW0_INFOSZ) * 8; #if 0 /* Get RSSI from PHY status descriptor if present. */ if (infosz != 0) *rssi = rsu_get_rssi(sc, rate, &stat[1]); else *rssi = 0; #endif RSU_DPRINTF(sc, RSU_DEBUG_RX, "%s: Rx frame len=%d rate=%d infosz=%d\n", __func__, pktlen, rate, infosz); m = m_get2(pktlen, M_NOWAIT, MT_DATA, M_PKTHDR); if (__predict_false(m == NULL)) { counter_u64_add(ic->ic_ierrors, 1); return NULL; } /* Hardware does Rx TCP checksum offload. */ if (rxdw3 & R92S_RXDW3_TCPCHKVALID) { if (__predict_true(rxdw3 & R92S_RXDW3_TCPCHKRPT)) m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; } wh = (struct ieee80211_frame *)((uint8_t *)&stat[1] + infosz); memcpy(mtod(m, uint8_t *), wh, pktlen); m->m_pkthdr.len = m->m_len = pktlen; if (ieee80211_radiotap_active(ic)) { struct rsu_rx_radiotap_header *tap = &sc->sc_rxtap; /* Map HW rate index to 802.11 rate. */ tap->wr_flags = 2; if (!(rxdw3 & R92S_RXDW3_HTC)) { switch (rate) { /* CCK. */ case 0: tap->wr_rate = 2; break; case 1: tap->wr_rate = 4; break; case 2: tap->wr_rate = 11; break; case 3: tap->wr_rate = 22; break; /* OFDM. */ case 4: tap->wr_rate = 12; break; case 5: tap->wr_rate = 18; break; case 6: tap->wr_rate = 24; break; case 7: tap->wr_rate = 36; break; case 8: tap->wr_rate = 48; break; case 9: tap->wr_rate = 72; break; case 10: tap->wr_rate = 96; break; case 11: tap->wr_rate = 108; break; } } else if (rate >= 12) { /* MCS0~15. */ /* Bit 7 set means HT MCS instead of rate. */ tap->wr_rate = 0x80 | (rate - 12); } #if 0 tap->wr_dbm_antsignal = *rssi; #endif /* XXX not nice */ tap->wr_dbm_antsignal = rsu_hwrssi_to_rssi(sc, sc->sc_currssi); tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); } return (m); } static struct mbuf * rsu_rx_multi_frame(struct rsu_softc *sc, uint8_t *buf, int len) { struct r92s_rx_stat *stat; uint32_t rxdw0; int totlen, pktlen, infosz, npkts; struct mbuf *m, *m0 = NULL, *prevm = NULL; /* Get the number of encapsulated frames. */ stat = (struct r92s_rx_stat *)buf; npkts = MS(le32toh(stat->rxdw2), R92S_RXDW2_PKTCNT); RSU_DPRINTF(sc, RSU_DEBUG_RX, "%s: Rx %d frames in one chunk\n", __func__, npkts); /* Process all of them. */ while (npkts-- > 0) { if (__predict_false(len < sizeof(*stat))) break; stat = (struct r92s_rx_stat *)buf; rxdw0 = le32toh(stat->rxdw0); pktlen = MS(rxdw0, R92S_RXDW0_PKTLEN); if (__predict_false(pktlen == 0)) break; infosz = MS(rxdw0, R92S_RXDW0_INFOSZ) * 8; /* Make sure everything fits in xfer. */ totlen = sizeof(*stat) + infosz + pktlen; if (__predict_false(totlen > len)) break; /* Process 802.11 frame. */ m = rsu_rx_frame(sc, buf, pktlen); if (m0 == NULL) m0 = m; if (prevm == NULL) prevm = m; else { prevm->m_next = m; prevm = m; } /* Next chunk is 128-byte aligned. */ totlen = (totlen + 127) & ~127; buf += totlen; len -= totlen; } return (m0); } static struct mbuf * rsu_rxeof(struct usb_xfer *xfer, struct rsu_data *data) { struct rsu_softc *sc = data->sc; struct ieee80211com *ic = &sc->sc_ic; struct r92s_rx_stat *stat; int len; usbd_xfer_status(xfer, &len, NULL, NULL, NULL); if (__predict_false(len < sizeof(*stat))) { DPRINTF("xfer too short %d\n", len); counter_u64_add(ic->ic_ierrors, 1); return (NULL); } /* Determine if it is a firmware C2H event or an 802.11 frame. */ stat = (struct r92s_rx_stat *)data->buf; if ((le32toh(stat->rxdw1) & 0x1ff) == 0x1ff) { rsu_rx_multi_event(sc, data->buf, len); /* No packets to process. */ return (NULL); } else return (rsu_rx_multi_frame(sc, data->buf, len)); } static void rsu_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) { struct rsu_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *m = NULL, *next; struct rsu_data *data; RSU_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_rx_active); if (data == NULL) goto tr_setup; STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); m = rsu_rxeof(xfer, data); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: /* * XXX TODO: if we have an mbuf list, but then * we hit data == NULL, what now? */ data = STAILQ_FIRST(&sc->sc_rx_inactive); if (data == NULL) { KASSERT(m == NULL, ("mbuf isn't NULL")); return; } STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); usbd_xfer_set_frame_data(xfer, 0, data->buf, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); /* * To avoid LOR we should unlock our private mutex here to call * ieee80211_input() because here is at the end of a USB * callback and safe to unlock. */ RSU_UNLOCK(sc); while (m != NULL) { int rssi; /* Cheat and get the last calibrated RSSI */ rssi = rsu_hwrssi_to_rssi(sc, sc->sc_currssi); next = m->m_next; m->m_next = NULL; wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); if (ni != NULL) { if (ni->ni_flags & IEEE80211_NODE_HT) m->m_flags |= M_AMPDU; (void)ieee80211_input(ni, m, rssi, -96); ieee80211_free_node(ni); } else (void)ieee80211_input_all(ic, m, rssi, -96); m = next; } RSU_LOCK(sc); break; default: /* needs it to the inactive queue due to a error. */ data = STAILQ_FIRST(&sc->sc_rx_active); if (data != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); } if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); counter_u64_add(ic->ic_ierrors, 1); goto tr_setup; } break; } } static void rsu_txeof(struct usb_xfer *xfer, struct rsu_data *data) { #ifdef USB_DEBUG struct rsu_softc *sc = usbd_xfer_softc(xfer); #endif RSU_DPRINTF(sc, RSU_DEBUG_TXDONE, "%s: called; data=%p\n", __func__, data); if (data->m) { /* XXX status? */ ieee80211_tx_complete(data->ni, data->m, 0); data->m = NULL; data->ni = NULL; } } static void rsu_bulk_tx_callback_sub(struct usb_xfer *xfer, usb_error_t error, uint8_t which) { struct rsu_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct rsu_data *data; RSU_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_tx_active[which]); if (data == NULL) goto tr_setup; RSU_DPRINTF(sc, RSU_DEBUG_TXDONE, "%s: transfer done %p\n", __func__, data); STAILQ_REMOVE_HEAD(&sc->sc_tx_active[which], next); rsu_txeof(xfer, data); rsu_freebuf(sc, data); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: data = STAILQ_FIRST(&sc->sc_tx_pending[which]); if (data == NULL) { RSU_DPRINTF(sc, RSU_DEBUG_TXDONE, "%s: empty pending queue sc %p\n", __func__, sc); return; } STAILQ_REMOVE_HEAD(&sc->sc_tx_pending[which], next); STAILQ_INSERT_TAIL(&sc->sc_tx_active[which], data, next); usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); RSU_DPRINTF(sc, RSU_DEBUG_TXDONE, "%s: submitting transfer %p\n", __func__, data); usbd_transfer_submit(xfer); break; default: data = STAILQ_FIRST(&sc->sc_tx_active[which]); if (data != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_tx_active[which], next); rsu_txeof(xfer, data); rsu_freebuf(sc, data); } counter_u64_add(ic->ic_oerrors, 1); if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); goto tr_setup; } break; } /* * XXX TODO: if the queue is low, flush out FF TX frames. * Remember to unlock the driver for now; net80211 doesn't * defer it for us. */ } static void rsu_bulk_tx_callback_be_bk(struct usb_xfer *xfer, usb_error_t error) { struct rsu_softc *sc = usbd_xfer_softc(xfer); rsu_bulk_tx_callback_sub(xfer, error, RSU_BULK_TX_BE_BK); /* This kicks the TX taskqueue */ rsu_start(sc); } static void rsu_bulk_tx_callback_vi_vo(struct usb_xfer *xfer, usb_error_t error) { struct rsu_softc *sc = usbd_xfer_softc(xfer); rsu_bulk_tx_callback_sub(xfer, error, RSU_BULK_TX_VI_VO); /* This kicks the TX taskqueue */ rsu_start(sc); } static void rsu_bulk_tx_callback_h2c(struct usb_xfer *xfer, usb_error_t error) { struct rsu_softc *sc = usbd_xfer_softc(xfer); rsu_bulk_tx_callback_sub(xfer, error, RSU_BULK_TX_H2C); /* This kicks the TX taskqueue */ rsu_start(sc); } /* * Transmit the given frame. * * This doesn't free the node or mbuf upon failure. */ static int rsu_tx_start(struct rsu_softc *sc, struct ieee80211_node *ni, struct mbuf *m0, struct rsu_data *data) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_frame *wh; struct ieee80211_key *k = NULL; struct r92s_tx_desc *txd; uint8_t type; int prio = 0; uint8_t which; int hasqos; int xferlen; int qid; RSU_ASSERT_LOCKED(sc); wh = mtod(m0, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; RSU_DPRINTF(sc, RSU_DEBUG_TX, "%s: data=%p, m=%p\n", __func__, data, m0); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { device_printf(sc->sc_dev, "ieee80211_crypto_encap returns NULL.\n"); /* XXX we don't expect the fragmented frames */ return (ENOBUFS); } wh = mtod(m0, struct ieee80211_frame *); } /* If we have QoS then use it */ /* XXX TODO: mbuf WME/PRI versus TID? */ if (IEEE80211_QOS_HAS_SEQ(wh)) { /* Has QoS */ prio = M_WME_GETAC(m0); which = rsu_wme_ac_xfer_map[prio]; hasqos = 1; } else { /* Non-QoS TID */ /* XXX TODO: tid=0 for non-qos TID? */ which = rsu_wme_ac_xfer_map[WME_AC_BE]; hasqos = 0; prio = 0; } qid = rsu_ac2qid[prio]; #if 0 switch (type) { case IEEE80211_FC0_TYPE_CTL: case IEEE80211_FC0_TYPE_MGT: which = rsu_wme_ac_xfer_map[WME_AC_VO]; break; default: which = rsu_wme_ac_xfer_map[M_WME_GETAC(m0)]; break; } hasqos = 0; #endif RSU_DPRINTF(sc, RSU_DEBUG_TX, "%s: pri=%d, which=%d, hasqos=%d\n", __func__, prio, which, hasqos); /* Fill Tx descriptor. */ txd = (struct r92s_tx_desc *)data->buf; memset(txd, 0, sizeof(*txd)); txd->txdw0 |= htole32( SM(R92S_TXDW0_PKTLEN, m0->m_pkthdr.len) | SM(R92S_TXDW0_OFFSET, sizeof(*txd)) | R92S_TXDW0_OWN | R92S_TXDW0_FSG | R92S_TXDW0_LSG); txd->txdw1 |= htole32( SM(R92S_TXDW1_MACID, R92S_MACID_BSS) | SM(R92S_TXDW1_QSEL, qid)); if (!hasqos) txd->txdw1 |= htole32(R92S_TXDW1_NONQOS); #ifdef notyet if (k != NULL) { switch (k->wk_cipher->ic_cipher) { case IEEE80211_CIPHER_WEP: cipher = R92S_TXDW1_CIPHER_WEP; break; case IEEE80211_CIPHER_TKIP: cipher = R92S_TXDW1_CIPHER_TKIP; break; case IEEE80211_CIPHER_AES_CCM: cipher = R92S_TXDW1_CIPHER_AES; break; default: cipher = R92S_TXDW1_CIPHER_NONE; } txd->txdw1 |= htole32( SM(R92S_TXDW1_CIPHER, cipher) | SM(R92S_TXDW1_KEYIDX, k->k_id)); } #endif /* XXX todo: set AGGEN bit if appropriate? */ txd->txdw2 |= htole32(R92S_TXDW2_BK); if (IEEE80211_IS_MULTICAST(wh->i_addr1)) txd->txdw2 |= htole32(R92S_TXDW2_BMCAST); /* * Firmware will use and increment the sequence number for the * specified priority. */ txd->txdw3 |= htole32(SM(R92S_TXDW3_SEQ, prio)); if (ieee80211_radiotap_active_vap(vap)) { struct rsu_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); ieee80211_radiotap_tx(vap, m0); } xferlen = sizeof(*txd) + m0->m_pkthdr.len; m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&txd[1]); data->buflen = xferlen; data->ni = ni; data->m = m0; STAILQ_INSERT_TAIL(&sc->sc_tx_pending[which], data, next); /* start transfer, if any */ usbd_transfer_start(sc->sc_xfer[which]); return (0); } static int rsu_transmit(struct ieee80211com *ic, struct mbuf *m) { struct rsu_softc *sc = ic->ic_softc; int error; RSU_LOCK(sc); if (!sc->sc_running) { RSU_UNLOCK(sc); return (ENXIO); } /* * XXX TODO: ensure that we treat 'm' as a list of frames * to transmit! */ error = mbufq_enqueue(&sc->sc_snd, m); if (error) { RSU_DPRINTF(sc, RSU_DEBUG_TX, "%s: mbufq_enable: failed (%d)\n", __func__, error); RSU_UNLOCK(sc); return (error); } RSU_UNLOCK(sc); /* This kicks the TX taskqueue */ rsu_start(sc); return (0); } static void rsu_drain_mbufq(struct rsu_softc *sc) { struct mbuf *m; struct ieee80211_node *ni; RSU_ASSERT_LOCKED(sc); while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; ieee80211_free_node(ni); m_freem(m); } } static void _rsu_start(struct rsu_softc *sc) { struct ieee80211_node *ni; struct rsu_data *bf; struct mbuf *m; RSU_ASSERT_LOCKED(sc); while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { bf = rsu_getbuf(sc); if (bf == NULL) { RSU_DPRINTF(sc, RSU_DEBUG_TX, "%s: failed to get buffer\n", __func__); mbufq_prepend(&sc->sc_snd, m); break; } ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; if (rsu_tx_start(sc, ni, m, bf) != 0) { RSU_DPRINTF(sc, RSU_DEBUG_TX, "%s: failed to transmit\n", __func__); if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); rsu_freebuf(sc, bf); ieee80211_free_node(ni); m_freem(m); break; } } } static void rsu_start(struct rsu_softc *sc) { taskqueue_enqueue(taskqueue_thread, &sc->tx_task); } static void rsu_parent(struct ieee80211com *ic) { struct rsu_softc *sc = ic->ic_softc; int startall = 0; RSU_LOCK(sc); if (ic->ic_nrunning > 0) { if (!sc->sc_running) { rsu_init(sc); startall = 1; } } else if (sc->sc_running) rsu_stop(sc); RSU_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } /* * Power on sequence for A-cut adapters. */ static void rsu_power_on_acut(struct rsu_softc *sc) { uint32_t reg; rsu_write_1(sc, R92S_SPS0_CTRL + 1, 0x53); rsu_write_1(sc, R92S_SPS0_CTRL + 0, 0x57); /* Enable AFE macro block's bandgap and Mbias. */ rsu_write_1(sc, R92S_AFE_MISC, rsu_read_1(sc, R92S_AFE_MISC) | R92S_AFE_MISC_BGEN | R92S_AFE_MISC_MBEN); /* Enable LDOA15 block. */ rsu_write_1(sc, R92S_LDOA15_CTRL, rsu_read_1(sc, R92S_LDOA15_CTRL) | R92S_LDA15_EN); rsu_write_1(sc, R92S_SPS1_CTRL, rsu_read_1(sc, R92S_SPS1_CTRL) | R92S_SPS1_LDEN); rsu_ms_delay(sc, 2000); /* Enable switch regulator block. */ rsu_write_1(sc, R92S_SPS1_CTRL, rsu_read_1(sc, R92S_SPS1_CTRL) | R92S_SPS1_SWEN); rsu_write_4(sc, R92S_SPS1_CTRL, 0x00a7b267); rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1, rsu_read_1(sc, R92S_SYS_ISO_CTRL + 1) | 0x08); rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x20); rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1, rsu_read_1(sc, R92S_SYS_ISO_CTRL + 1) & ~0x90); /* Enable AFE clock. */ rsu_write_1(sc, R92S_AFE_XTAL_CTRL + 1, rsu_read_1(sc, R92S_AFE_XTAL_CTRL + 1) & ~0x04); /* Enable AFE PLL macro block. */ rsu_write_1(sc, R92S_AFE_PLL_CTRL, rsu_read_1(sc, R92S_AFE_PLL_CTRL) | 0x11); /* Attach AFE PLL to MACTOP/BB. */ rsu_write_1(sc, R92S_SYS_ISO_CTRL, rsu_read_1(sc, R92S_SYS_ISO_CTRL) & ~0x11); /* Switch to 40MHz clock instead of 80MHz. */ rsu_write_2(sc, R92S_SYS_CLKR, rsu_read_2(sc, R92S_SYS_CLKR) & ~R92S_SYS_CLKSEL); /* Enable MAC clock. */ rsu_write_2(sc, R92S_SYS_CLKR, rsu_read_2(sc, R92S_SYS_CLKR) | R92S_MAC_CLK_EN | R92S_SYS_CLK_EN); rsu_write_1(sc, R92S_PMC_FSM, 0x02); /* Enable digital core and IOREG R/W. */ rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x08); rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x80); /* Switch the control path to firmware. */ reg = rsu_read_2(sc, R92S_SYS_CLKR); reg = (reg & ~R92S_SWHW_SEL) | R92S_FWHW_SEL; rsu_write_2(sc, R92S_SYS_CLKR, reg); rsu_write_2(sc, R92S_CR, 0x37fc); /* Fix USB RX FIFO issue. */ rsu_write_1(sc, 0xfe5c, rsu_read_1(sc, 0xfe5c) | 0x80); rsu_write_1(sc, 0x00ab, rsu_read_1(sc, 0x00ab) | 0xc0); rsu_write_1(sc, R92S_SYS_CLKR, rsu_read_1(sc, R92S_SYS_CLKR) & ~R92S_SYS_CPU_CLKSEL); } /* * Power on sequence for B-cut and C-cut adapters. */ static void rsu_power_on_bcut(struct rsu_softc *sc) { uint32_t reg; int ntries; /* Prevent eFuse leakage. */ rsu_write_1(sc, 0x37, 0xb0); rsu_ms_delay(sc, 10); rsu_write_1(sc, 0x37, 0x30); /* Switch the control path to hardware. */ reg = rsu_read_2(sc, R92S_SYS_CLKR); if (reg & R92S_FWHW_SEL) { rsu_write_2(sc, R92S_SYS_CLKR, reg & ~(R92S_SWHW_SEL | R92S_FWHW_SEL)); } rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) & ~0x8c); rsu_ms_delay(sc, 1); rsu_write_1(sc, R92S_SPS0_CTRL + 1, 0x53); rsu_write_1(sc, R92S_SPS0_CTRL + 0, 0x57); reg = rsu_read_1(sc, R92S_AFE_MISC); rsu_write_1(sc, R92S_AFE_MISC, reg | R92S_AFE_MISC_BGEN); rsu_write_1(sc, R92S_AFE_MISC, reg | R92S_AFE_MISC_BGEN | R92S_AFE_MISC_MBEN | R92S_AFE_MISC_I32_EN); /* Enable PLL. */ rsu_write_1(sc, R92S_LDOA15_CTRL, rsu_read_1(sc, R92S_LDOA15_CTRL) | R92S_LDA15_EN); rsu_write_1(sc, R92S_LDOV12D_CTRL, rsu_read_1(sc, R92S_LDOV12D_CTRL) | R92S_LDV12_EN); rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1, rsu_read_1(sc, R92S_SYS_ISO_CTRL + 1) | 0x08); rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x20); /* Support 64KB IMEM. */ rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1, rsu_read_1(sc, R92S_SYS_ISO_CTRL + 1) & ~0x97); /* Enable AFE clock. */ rsu_write_1(sc, R92S_AFE_XTAL_CTRL + 1, rsu_read_1(sc, R92S_AFE_XTAL_CTRL + 1) & ~0x04); /* Enable AFE PLL macro block. */ reg = rsu_read_1(sc, R92S_AFE_PLL_CTRL); rsu_write_1(sc, R92S_AFE_PLL_CTRL, reg | 0x11); rsu_ms_delay(sc, 1); rsu_write_1(sc, R92S_AFE_PLL_CTRL, reg | 0x51); rsu_ms_delay(sc, 1); rsu_write_1(sc, R92S_AFE_PLL_CTRL, reg | 0x11); rsu_ms_delay(sc, 1); /* Attach AFE PLL to MACTOP/BB. */ rsu_write_1(sc, R92S_SYS_ISO_CTRL, rsu_read_1(sc, R92S_SYS_ISO_CTRL) & ~0x11); /* Switch to 40MHz clock. */ rsu_write_1(sc, R92S_SYS_CLKR, 0x00); /* Disable CPU clock and 80MHz SSC. */ rsu_write_1(sc, R92S_SYS_CLKR, rsu_read_1(sc, R92S_SYS_CLKR) | 0xa0); /* Enable MAC clock. */ rsu_write_2(sc, R92S_SYS_CLKR, rsu_read_2(sc, R92S_SYS_CLKR) | R92S_MAC_CLK_EN | R92S_SYS_CLK_EN); rsu_write_1(sc, R92S_PMC_FSM, 0x02); /* Enable digital core and IOREG R/W. */ rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x08); rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x80); /* Switch the control path to firmware. */ reg = rsu_read_2(sc, R92S_SYS_CLKR); reg = (reg & ~R92S_SWHW_SEL) | R92S_FWHW_SEL; rsu_write_2(sc, R92S_SYS_CLKR, reg); rsu_write_2(sc, R92S_CR, 0x37fc); /* Fix USB RX FIFO issue. */ rsu_write_1(sc, 0xfe5c, rsu_read_1(sc, 0xfe5c) | 0x80); rsu_write_1(sc, R92S_SYS_CLKR, rsu_read_1(sc, R92S_SYS_CLKR) & ~R92S_SYS_CPU_CLKSEL); rsu_write_1(sc, 0xfe1c, 0x80); /* Make sure TxDMA is ready to download firmware. */ for (ntries = 0; ntries < 20; ntries++) { reg = rsu_read_1(sc, R92S_TCR); if ((reg & (R92S_TCR_IMEM_CHK_RPT | R92S_TCR_EMEM_CHK_RPT)) == (R92S_TCR_IMEM_CHK_RPT | R92S_TCR_EMEM_CHK_RPT)) break; rsu_ms_delay(sc, 1); } if (ntries == 20) { RSU_DPRINTF(sc, RSU_DEBUG_RESET | RSU_DEBUG_TX, "%s: TxDMA is not ready\n", __func__); /* Reset TxDMA. */ reg = rsu_read_1(sc, R92S_CR); rsu_write_1(sc, R92S_CR, reg & ~R92S_CR_TXDMA_EN); rsu_ms_delay(sc, 1); rsu_write_1(sc, R92S_CR, reg | R92S_CR_TXDMA_EN); } } static void rsu_power_off(struct rsu_softc *sc) { /* Turn RF off. */ rsu_write_1(sc, R92S_RF_CTRL, 0x00); rsu_ms_delay(sc, 5); /* Turn MAC off. */ /* Switch control path. */ rsu_write_1(sc, R92S_SYS_CLKR + 1, 0x38); /* Reset MACTOP. */ rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, 0x70); rsu_write_1(sc, R92S_PMC_FSM, 0x06); rsu_write_1(sc, R92S_SYS_ISO_CTRL + 0, 0xf9); rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1, 0xe8); /* Disable AFE PLL. */ rsu_write_1(sc, R92S_AFE_PLL_CTRL, 0x00); /* Disable A15V. */ rsu_write_1(sc, R92S_LDOA15_CTRL, 0x54); /* Disable eFuse 1.2V. */ rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, 0x50); rsu_write_1(sc, R92S_LDOV12D_CTRL, 0x24); /* Enable AFE macro block's bandgap and Mbias. */ rsu_write_1(sc, R92S_AFE_MISC, 0x30); /* Disable 1.6V LDO. */ rsu_write_1(sc, R92S_SPS0_CTRL + 0, 0x56); rsu_write_1(sc, R92S_SPS0_CTRL + 1, 0x43); /* Firmware - tell it to switch things off */ (void) rsu_set_fw_power_state(sc, RSU_PWR_OFF); } static int rsu_fw_loadsection(struct rsu_softc *sc, const uint8_t *buf, int len) { const uint8_t which = rsu_wme_ac_xfer_map[WME_AC_VO]; struct rsu_data *data; struct r92s_tx_desc *txd; int mlen; while (len > 0) { data = rsu_getbuf(sc); if (data == NULL) return (ENOMEM); txd = (struct r92s_tx_desc *)data->buf; memset(txd, 0, sizeof(*txd)); if (len <= RSU_TXBUFSZ - sizeof(*txd)) { /* Last chunk. */ txd->txdw0 |= htole32(R92S_TXDW0_LINIP); mlen = len; } else mlen = RSU_TXBUFSZ - sizeof(*txd); txd->txdw0 |= htole32(SM(R92S_TXDW0_PKTLEN, mlen)); memcpy(&txd[1], buf, mlen); data->buflen = sizeof(*txd) + mlen; RSU_DPRINTF(sc, RSU_DEBUG_TX | RSU_DEBUG_FW | RSU_DEBUG_RESET, "%s: starting transfer %p\n", __func__, data); STAILQ_INSERT_TAIL(&sc->sc_tx_pending[which], data, next); buf += mlen; len -= mlen; } usbd_transfer_start(sc->sc_xfer[which]); return (0); } static int rsu_load_firmware(struct rsu_softc *sc) { const struct r92s_fw_hdr *hdr; struct r92s_fw_priv *dmem; struct ieee80211com *ic = &sc->sc_ic; const uint8_t *imem, *emem; int imemsz, ememsz; const struct firmware *fw; size_t size; uint32_t reg; int ntries, error; if (rsu_read_1(sc, R92S_TCR) & R92S_TCR_FWRDY) { RSU_DPRINTF(sc, RSU_DEBUG_ANY, "%s: Firmware already loaded\n", __func__); return (0); } RSU_UNLOCK(sc); /* Read firmware image from the filesystem. */ if ((fw = firmware_get("rsu-rtl8712fw")) == NULL) { device_printf(sc->sc_dev, "%s: failed load firmware of file rsu-rtl8712fw\n", __func__); RSU_LOCK(sc); return (ENXIO); } RSU_LOCK(sc); size = fw->datasize; if (size < sizeof(*hdr)) { device_printf(sc->sc_dev, "firmware too short\n"); error = EINVAL; goto fail; } hdr = (const struct r92s_fw_hdr *)fw->data; if (hdr->signature != htole16(0x8712) && hdr->signature != htole16(0x8192)) { device_printf(sc->sc_dev, "invalid firmware signature 0x%x\n", le16toh(hdr->signature)); error = EINVAL; goto fail; } DPRINTF("FW V%d %02x-%02x %02x:%02x\n", le16toh(hdr->version), hdr->month, hdr->day, hdr->hour, hdr->minute); /* Make sure that driver and firmware are in sync. */ if (hdr->privsz != htole32(sizeof(*dmem))) { device_printf(sc->sc_dev, "unsupported firmware image\n"); error = EINVAL; goto fail; } /* Get FW sections sizes. */ imemsz = le32toh(hdr->imemsz); ememsz = le32toh(hdr->sramsz); /* Check that all FW sections fit in image. */ if (size < sizeof(*hdr) + imemsz + ememsz) { device_printf(sc->sc_dev, "firmware too short\n"); error = EINVAL; goto fail; } imem = (const uint8_t *)&hdr[1]; emem = imem + imemsz; /* Load IMEM section. */ error = rsu_fw_loadsection(sc, imem, imemsz); if (error != 0) { device_printf(sc->sc_dev, "could not load firmware section %s\n", "IMEM"); goto fail; } /* Wait for load to complete. */ for (ntries = 0; ntries != 50; ntries++) { rsu_ms_delay(sc, 10); reg = rsu_read_1(sc, R92S_TCR); if (reg & R92S_TCR_IMEM_CODE_DONE) break; } if (ntries == 50) { device_printf(sc->sc_dev, "timeout waiting for IMEM transfer\n"); error = ETIMEDOUT; goto fail; } /* Load EMEM section. */ error = rsu_fw_loadsection(sc, emem, ememsz); if (error != 0) { device_printf(sc->sc_dev, "could not load firmware section %s\n", "EMEM"); goto fail; } /* Wait for load to complete. */ for (ntries = 0; ntries != 50; ntries++) { rsu_ms_delay(sc, 10); reg = rsu_read_2(sc, R92S_TCR); if (reg & R92S_TCR_EMEM_CODE_DONE) break; } if (ntries == 50) { device_printf(sc->sc_dev, "timeout waiting for EMEM transfer\n"); error = ETIMEDOUT; goto fail; } /* Enable CPU. */ rsu_write_1(sc, R92S_SYS_CLKR, rsu_read_1(sc, R92S_SYS_CLKR) | R92S_SYS_CPU_CLKSEL); if (!(rsu_read_1(sc, R92S_SYS_CLKR) & R92S_SYS_CPU_CLKSEL)) { device_printf(sc->sc_dev, "could not enable system clock\n"); error = EIO; goto fail; } rsu_write_2(sc, R92S_SYS_FUNC_EN, rsu_read_2(sc, R92S_SYS_FUNC_EN) | R92S_FEN_CPUEN); if (!(rsu_read_2(sc, R92S_SYS_FUNC_EN) & R92S_FEN_CPUEN)) { device_printf(sc->sc_dev, "could not enable microcontroller\n"); error = EIO; goto fail; } /* Wait for CPU to initialize. */ for (ntries = 0; ntries < 100; ntries++) { if (rsu_read_1(sc, R92S_TCR) & R92S_TCR_IMEM_RDY) break; rsu_ms_delay(sc, 1); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for microcontroller\n"); error = ETIMEDOUT; goto fail; } /* Update DMEM section before loading. */ dmem = __DECONST(struct r92s_fw_priv *, &hdr->priv); memset(dmem, 0, sizeof(*dmem)); dmem->hci_sel = R92S_HCI_SEL_USB | R92S_HCI_SEL_8172; dmem->nendpoints = sc->sc_nendpoints; dmem->chip_version = sc->cut; dmem->rf_config = sc->sc_rftype; dmem->vcs_type = R92S_VCS_TYPE_AUTO; dmem->vcs_mode = R92S_VCS_MODE_RTS_CTS; dmem->turbo_mode = 0; dmem->bw40_en = !! (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40); dmem->amsdu2ampdu_en = !! (sc->sc_ht); dmem->ampdu_en = !! (sc->sc_ht); dmem->agg_offload = !! (sc->sc_ht); dmem->qos_en = 1; dmem->ps_offload = 1; dmem->lowpower_mode = 1; /* XXX TODO: configurable? */ /* Load DMEM section. */ error = rsu_fw_loadsection(sc, (uint8_t *)dmem, sizeof(*dmem)); if (error != 0) { device_printf(sc->sc_dev, "could not load firmware section %s\n", "DMEM"); goto fail; } /* Wait for load to complete. */ for (ntries = 0; ntries < 100; ntries++) { if (rsu_read_1(sc, R92S_TCR) & R92S_TCR_DMEM_CODE_DONE) break; rsu_ms_delay(sc, 1); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for %s transfer\n", "DMEM"); error = ETIMEDOUT; goto fail; } /* Wait for firmware readiness. */ for (ntries = 0; ntries < 60; ntries++) { if (!(rsu_read_1(sc, R92S_TCR) & R92S_TCR_FWRDY)) break; rsu_ms_delay(sc, 1); } if (ntries == 60) { device_printf(sc->sc_dev, "timeout waiting for firmware readiness\n"); error = ETIMEDOUT; goto fail; } fail: firmware_put(fw, FIRMWARE_UNLOAD); return (error); } static int rsu_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct rsu_softc *sc = ic->ic_softc; struct rsu_data *bf; /* prevent management frames from being sent if we're not ready */ if (!sc->sc_running) { m_freem(m); return (ENETDOWN); } RSU_LOCK(sc); bf = rsu_getbuf(sc); if (bf == NULL) { m_freem(m); RSU_UNLOCK(sc); return (ENOBUFS); } if (rsu_tx_start(sc, ni, m, bf) != 0) { m_freem(m); rsu_freebuf(sc, bf); RSU_UNLOCK(sc); return (EIO); } RSU_UNLOCK(sc); return (0); } static void rsu_init(struct rsu_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint8_t macaddr[IEEE80211_ADDR_LEN]; int error; int i; RSU_ASSERT_LOCKED(sc); /* Ensure the mbuf queue is drained */ rsu_drain_mbufq(sc); /* Init host async commands ring. */ sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0; /* Reset power management state. */ rsu_write_1(sc, R92S_USB_HRPWM, 0); /* Power on adapter. */ if (sc->cut == 1) rsu_power_on_acut(sc); else rsu_power_on_bcut(sc); /* Load firmware. */ error = rsu_load_firmware(sc); if (error != 0) goto fail; /* Enable Rx TCP checksum offload. */ rsu_write_4(sc, R92S_RCR, rsu_read_4(sc, R92S_RCR) | 0x04000000); /* Append PHY status. */ rsu_write_4(sc, R92S_RCR, rsu_read_4(sc, R92S_RCR) | 0x02000000); rsu_write_4(sc, R92S_CR, rsu_read_4(sc, R92S_CR) & ~0xff000000); /* Use 128 bytes pages. */ rsu_write_1(sc, 0x00b5, rsu_read_1(sc, 0x00b5) | 0x01); /* Enable USB Rx aggregation. */ rsu_write_1(sc, 0x00bd, rsu_read_1(sc, 0x00bd) | 0x80); /* Set USB Rx aggregation threshold. */ rsu_write_1(sc, 0x00d9, 0x01); /* Set USB Rx aggregation timeout (1.7ms/4). */ rsu_write_1(sc, 0xfe5b, 0x04); /* Fix USB Rx FIFO issue. */ rsu_write_1(sc, 0xfe5c, rsu_read_1(sc, 0xfe5c) | 0x80); /* Set MAC address. */ IEEE80211_ADDR_COPY(macaddr, vap ? vap->iv_myaddr : ic->ic_macaddr); rsu_write_region_1(sc, R92S_MACID, macaddr, IEEE80211_ADDR_LEN); /* It really takes 1.5 seconds for the firmware to boot: */ rsu_ms_delay(sc, 2000); RSU_DPRINTF(sc, RSU_DEBUG_RESET, "%s: setting MAC address to %s\n", __func__, ether_sprintf(macaddr)); error = rsu_fw_cmd(sc, R92S_CMD_SET_MAC_ADDRESS, macaddr, IEEE80211_ADDR_LEN); if (error != 0) { device_printf(sc->sc_dev, "could not set MAC address\n"); goto fail; } /* Set PS mode fully active */ error = rsu_set_fw_power_state(sc, RSU_PWR_ACTIVE); if (error != 0) { device_printf(sc->sc_dev, "could not set PS mode\n"); goto fail; } sc->sc_scan_pass = 0; usbd_transfer_start(sc->sc_xfer[RSU_BULK_RX]); /* We're ready to go. */ sc->sc_running = 1; sc->sc_scanning = 0; return; fail: /* Need to stop all failed transfers, if any */ for (i = 0; i != RSU_N_TRANSFER; i++) usbd_transfer_stop(sc->sc_xfer[i]); } static void rsu_stop(struct rsu_softc *sc) { int i; RSU_ASSERT_LOCKED(sc); sc->sc_running = 0; sc->sc_calibrating = 0; taskqueue_cancel_timeout(taskqueue_thread, &sc->calib_task, NULL); taskqueue_cancel(taskqueue_thread, &sc->tx_task, NULL); /* Power off adapter. */ rsu_power_off(sc); for (i = 0; i < RSU_N_TRANSFER; i++) usbd_transfer_stop(sc->sc_xfer[i]); /* Ensure the mbuf queue is drained */ rsu_drain_mbufq(sc); } /* * Note: usb_pause_mtx() actually releases the mutex before calling pause(), * which breaks any kind of driver serialisation. */ static void rsu_ms_delay(struct rsu_softc *sc, int ms) { //usb_pause_mtx(&sc->sc_mtx, hz / 1000); DELAY(ms * 1000); } Index: head/sys/dev/usb/wlan/if_rum.c =================================================================== --- head/sys/dev/usb/wlan/if_rum.c (revision 298817) +++ head/sys/dev/usb/wlan/if_rum.c (revision 298818) @@ -1,3242 +1,3242 @@ /* $FreeBSD$ */ /*- * Copyright (c) 2005-2007 Damien Bergamini * Copyright (c) 2006 Niall O'Higgins * Copyright (c) 2007-2008 Hans Petter Selasky * Copyright (c) 2015 Andriy Voskoboinyk * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /*- * Ralink Technology RT2501USB/RT2601USB chipset driver * http://www.ralinktech.com.tw/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #include #include #include #include #include #include "usbdevs.h" #define USB_DEBUG_VAR rum_debug #include #include #include #include #ifdef USB_DEBUG static int rum_debug = 0; static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum"); SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RWTUN, &rum_debug, 0, "Debug level"); #endif static const STRUCT_USB_HOST_ID rum_devs[] = { #define RUM_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } RUM_DEV(ABOCOM, HWU54DM), RUM_DEV(ABOCOM, RT2573_2), RUM_DEV(ABOCOM, RT2573_3), RUM_DEV(ABOCOM, RT2573_4), RUM_DEV(ABOCOM, WUG2700), RUM_DEV(AMIT, CGWLUSB2GO), RUM_DEV(ASUS, RT2573_1), RUM_DEV(ASUS, RT2573_2), RUM_DEV(BELKIN, F5D7050A), RUM_DEV(BELKIN, F5D9050V3), RUM_DEV(CISCOLINKSYS, WUSB54GC), RUM_DEV(CISCOLINKSYS, WUSB54GR), RUM_DEV(CONCEPTRONIC2, C54RU2), RUM_DEV(COREGA, CGWLUSB2GL), RUM_DEV(COREGA, CGWLUSB2GPX), RUM_DEV(DICKSMITH, CWD854F), RUM_DEV(DICKSMITH, RT2573), RUM_DEV(EDIMAX, EW7318USG), RUM_DEV(DLINK2, DWLG122C1), RUM_DEV(DLINK2, WUA1340), RUM_DEV(DLINK2, DWA111), RUM_DEV(DLINK2, DWA110), RUM_DEV(GIGABYTE, GNWB01GS), RUM_DEV(GIGABYTE, GNWI05GS), RUM_DEV(GIGASET, RT2573), RUM_DEV(GOODWAY, RT2573), RUM_DEV(GUILLEMOT, HWGUSB254LB), RUM_DEV(GUILLEMOT, HWGUSB254V2AP), RUM_DEV(HUAWEI3COM, WUB320G), RUM_DEV(MELCO, G54HP), RUM_DEV(MELCO, SG54HP), RUM_DEV(MELCO, SG54HG), RUM_DEV(MELCO, WLIUCG), RUM_DEV(MELCO, WLRUCG), RUM_DEV(MELCO, WLRUCGAOSS), RUM_DEV(MSI, RT2573_1), RUM_DEV(MSI, RT2573_2), RUM_DEV(MSI, RT2573_3), RUM_DEV(MSI, RT2573_4), RUM_DEV(NOVATECH, RT2573), RUM_DEV(PLANEX2, GWUS54HP), RUM_DEV(PLANEX2, GWUS54MINI2), RUM_DEV(PLANEX2, GWUSMM), RUM_DEV(QCOM, RT2573), RUM_DEV(QCOM, RT2573_2), RUM_DEV(QCOM, RT2573_3), RUM_DEV(RALINK, RT2573), RUM_DEV(RALINK, RT2573_2), RUM_DEV(RALINK, RT2671), RUM_DEV(SITECOMEU, WL113R2), RUM_DEV(SITECOMEU, WL172), RUM_DEV(SPARKLAN, RT2573), RUM_DEV(SURECOM, RT2573), #undef RUM_DEV }; static device_probe_t rum_match; static device_attach_t rum_attach; static device_detach_t rum_detach; static usb_callback_t rum_bulk_read_callback; static usb_callback_t rum_bulk_write_callback; static usb_error_t rum_do_request(struct rum_softc *sc, struct usb_device_request *req, void *data); static usb_error_t rum_do_mcu_request(struct rum_softc *sc, int); static struct ieee80211vap *rum_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void rum_vap_delete(struct ieee80211vap *); static void rum_cmdq_cb(void *, int); static int rum_cmd_sleepable(struct rum_softc *, const void *, size_t, uint8_t, CMD_FUNC_PROTO); static void rum_tx_free(struct rum_tx_data *, int); static void rum_setup_tx_list(struct rum_softc *); static void rum_unsetup_tx_list(struct rum_softc *); static void rum_beacon_miss(struct ieee80211vap *); static void rum_sta_recv_mgmt(struct ieee80211_node *, struct mbuf *, int, const struct ieee80211_rx_stats *, int, int); static int rum_set_power_state(struct rum_softc *, int); static int rum_newstate(struct ieee80211vap *, enum ieee80211_state, int); static uint8_t rum_crypto_mode(struct rum_softc *, u_int, int); static void rum_setup_tx_desc(struct rum_softc *, struct rum_tx_desc *, struct ieee80211_key *, uint32_t, uint8_t, uint8_t, int, int, int); static uint32_t rum_tx_crypto_flags(struct rum_softc *, struct ieee80211_node *, const struct ieee80211_key *); static int rum_tx_mgt(struct rum_softc *, struct mbuf *, struct ieee80211_node *); static int rum_tx_raw(struct rum_softc *, struct mbuf *, struct ieee80211_node *, const struct ieee80211_bpf_params *); static int rum_tx_data(struct rum_softc *, struct mbuf *, struct ieee80211_node *); static int rum_transmit(struct ieee80211com *, struct mbuf *); static void rum_start(struct rum_softc *); static void rum_parent(struct ieee80211com *); static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, int); static uint32_t rum_read(struct rum_softc *, uint16_t); static void rum_read_multi(struct rum_softc *, uint16_t, void *, int); static usb_error_t rum_write(struct rum_softc *, uint16_t, uint32_t); static usb_error_t rum_write_multi(struct rum_softc *, uint16_t, void *, size_t); static usb_error_t rum_setbits(struct rum_softc *, uint16_t, uint32_t); static usb_error_t rum_clrbits(struct rum_softc *, uint16_t, uint32_t); static usb_error_t rum_modbits(struct rum_softc *, uint16_t, uint32_t, uint32_t); static int rum_bbp_busy(struct rum_softc *); static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); static void rum_select_antenna(struct rum_softc *); static void rum_enable_mrr(struct rum_softc *); static void rum_set_txpreamble(struct rum_softc *); static void rum_set_basicrates(struct rum_softc *); static void rum_select_band(struct rum_softc *, struct ieee80211_channel *); static void rum_set_chan(struct rum_softc *, struct ieee80211_channel *); static void rum_set_maxretry(struct rum_softc *, struct ieee80211vap *); static int rum_enable_tsf_sync(struct rum_softc *); static void rum_enable_tsf(struct rum_softc *); static void rum_abort_tsf_sync(struct rum_softc *); static void rum_get_tsf(struct rum_softc *, uint64_t *); static void rum_update_slot_cb(struct rum_softc *, union sec_param *, uint8_t); static void rum_update_slot(struct ieee80211com *); static int rum_wme_update(struct ieee80211com *); static void rum_set_bssid(struct rum_softc *, const uint8_t *); static void rum_set_macaddr(struct rum_softc *, const uint8_t *); static void rum_update_mcast(struct ieee80211com *); static void rum_update_promisc(struct ieee80211com *); static void rum_setpromisc(struct rum_softc *); static const char *rum_get_rf(int); static void rum_read_eeprom(struct rum_softc *); static int rum_bbp_wakeup(struct rum_softc *); static int rum_bbp_init(struct rum_softc *); static void rum_clr_shkey_regs(struct rum_softc *); static int rum_init(struct rum_softc *); static void rum_stop(struct rum_softc *); static void rum_load_microcode(struct rum_softc *, const uint8_t *, size_t); static int rum_set_sleep_time(struct rum_softc *, uint16_t); static int rum_reset(struct ieee80211vap *, u_long); static int rum_set_beacon(struct rum_softc *, struct ieee80211vap *); static int rum_alloc_beacon(struct rum_softc *, struct ieee80211vap *); static void rum_update_beacon_cb(struct rum_softc *, union sec_param *, uint8_t); static void rum_update_beacon(struct ieee80211vap *, int); static int rum_common_key_set(struct rum_softc *, struct ieee80211_key *, uint16_t); static void rum_group_key_set_cb(struct rum_softc *, union sec_param *, uint8_t); static void rum_group_key_del_cb(struct rum_softc *, union sec_param *, uint8_t); static void rum_pair_key_set_cb(struct rum_softc *, union sec_param *, uint8_t); static void rum_pair_key_del_cb(struct rum_softc *, union sec_param *, uint8_t); static int rum_key_alloc(struct ieee80211vap *, struct ieee80211_key *, ieee80211_keyix *, ieee80211_keyix *); static int rum_key_set(struct ieee80211vap *, const struct ieee80211_key *); static int rum_key_delete(struct ieee80211vap *, const struct ieee80211_key *); static int rum_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void rum_scan_start(struct ieee80211com *); static void rum_scan_end(struct ieee80211com *); static void rum_set_channel(struct ieee80211com *); static int rum_get_rssi(struct rum_softc *, uint8_t); static void rum_ratectl_start(struct rum_softc *, struct ieee80211_node *); static void rum_ratectl_timeout(void *); static void rum_ratectl_task(void *, int); static int rum_pause(struct rum_softc *, int); static const struct { uint32_t reg; uint32_t val; } rum_def_mac[] = { { RT2573_TXRX_CSR0, 0x025fb032 }, { RT2573_TXRX_CSR1, 0x9eaa9eaf }, { RT2573_TXRX_CSR2, 0x8a8b8c8d }, { RT2573_TXRX_CSR3, 0x00858687 }, { RT2573_TXRX_CSR7, 0x2e31353b }, { RT2573_TXRX_CSR8, 0x2a2a2a2c }, { RT2573_TXRX_CSR15, 0x0000000f }, { RT2573_MAC_CSR6, 0x00000fff }, { RT2573_MAC_CSR8, 0x016c030a }, { RT2573_MAC_CSR10, 0x00000718 }, { RT2573_MAC_CSR12, 0x00000004 }, { RT2573_MAC_CSR13, 0x00007f00 }, { RT2573_SEC_CSR2, 0x00000000 }, { RT2573_SEC_CSR3, 0x00000000 }, { RT2573_SEC_CSR4, 0x00000000 }, { RT2573_PHY_CSR1, 0x000023b0 }, { RT2573_PHY_CSR5, 0x00040a06 }, { RT2573_PHY_CSR6, 0x00080606 }, { RT2573_PHY_CSR7, 0x00000408 }, { RT2573_AIFSN_CSR, 0x00002273 }, { RT2573_CWMIN_CSR, 0x00002344 }, { RT2573_CWMAX_CSR, 0x000034aa } }; static const struct { uint8_t reg; uint8_t val; } rum_def_bbp[] = { { 3, 0x80 }, { 15, 0x30 }, { 17, 0x20 }, { 21, 0xc8 }, { 22, 0x38 }, { 23, 0x06 }, { 24, 0xfe }, { 25, 0x0a }, { 26, 0x0d }, { 32, 0x0b }, { 34, 0x12 }, { 37, 0x07 }, { 39, 0xf8 }, { 41, 0x60 }, { 53, 0x10 }, { 54, 0x18 }, { 60, 0x10 }, { 61, 0x04 }, { 62, 0x04 }, { 75, 0xfe }, { 86, 0xfe }, { 88, 0xfe }, { 90, 0x0f }, { 99, 0x00 }, { 102, 0x16 }, { 107, 0x04 } }; static const struct rfprog { uint8_t chan; uint32_t r1, r2, r3, r4; } rum_rf5226[] = { { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 }, { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 }, { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 }, { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 }, { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 }, { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 }, { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 }, { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 }, { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 }, { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 }, { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 }, { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 }, { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 }, { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 }, { 34, 0x00b03, 0x20266, 0x36014, 0x30282 }, { 38, 0x00b03, 0x20267, 0x36014, 0x30284 }, { 42, 0x00b03, 0x20268, 0x36014, 0x30286 }, { 46, 0x00b03, 0x20269, 0x36014, 0x30288 }, { 36, 0x00b03, 0x00266, 0x26014, 0x30288 }, { 40, 0x00b03, 0x00268, 0x26014, 0x30280 }, { 44, 0x00b03, 0x00269, 0x26014, 0x30282 }, { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 }, { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 }, { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 }, { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 }, { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 }, { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 }, { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 }, { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 }, { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 }, { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 }, { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 }, { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 }, { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 }, { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 }, { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 }, { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 }, { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 }, { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 }, { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 }, { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 }, { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 } }, rum_rf5225[] = { { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, { 34, 0x00b33, 0x01266, 0x26014, 0x30282 }, { 38, 0x00b33, 0x01267, 0x26014, 0x30284 }, { 42, 0x00b33, 0x01268, 0x26014, 0x30286 }, { 46, 0x00b33, 0x01269, 0x26014, 0x30288 }, { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } }; static const struct usb_config rum_config[RUM_N_TRANSFER] = { [RUM_BULK_WR] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8), .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = rum_bulk_write_callback, .timeout = 5000, /* ms */ }, [RUM_BULK_RD] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE), .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .callback = rum_bulk_read_callback, }, }; static int rum_match(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != 0) return (ENXIO); if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX) return (ENXIO); return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa)); } static int rum_attach(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); struct rum_softc *sc = device_get_softc(self); struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; - uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)]; + uint8_t bands[IEEE80211_MODE_BYTES]; uint8_t iface_index; int error, ntries; device_set_usb_desc(self); sc->sc_udev = uaa->device; sc->sc_dev = self; RUM_LOCK_INIT(sc); RUM_CMDQ_LOCK_INIT(sc); mbufq_init(&sc->sc_snd, ifqmaxlen); iface_index = RT2573_IFACE_INDEX; error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx); if (error) { device_printf(self, "could not allocate USB transfers, " "err=%s\n", usbd_errstr(error)); goto detach; } RUM_LOCK(sc); /* retrieve RT2573 rev. no */ for (ntries = 0; ntries < 100; ntries++) { if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) break; if (rum_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for chip to settle\n"); RUM_UNLOCK(sc); goto detach; } /* retrieve MAC address and various other things from EEPROM */ rum_read_eeprom(sc); device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n", tmp, rum_get_rf(sc->rf_rev)); rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode)); RUM_UNLOCK(sc); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(self); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode supported */ | IEEE80211_C_IBSS /* IBSS mode supported */ | IEEE80211_C_MONITOR /* monitor mode supported */ | IEEE80211_C_HOSTAP /* HostAp mode supported */ | IEEE80211_C_AHDEMO /* adhoc demo mode */ | IEEE80211_C_TXPMGT /* tx power management */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_BGSCAN /* bg scanning supported */ | IEEE80211_C_WPA /* 802.11i */ | IEEE80211_C_WME /* 802.11e */ | IEEE80211_C_PMGT /* Station-side power mgmt */ | IEEE80211_C_SWSLEEP /* net80211 managed power mgmt */ ; ic->ic_cryptocaps = IEEE80211_CRYPTO_WEP | IEEE80211_CRYPTO_AES_CCM | IEEE80211_CRYPTO_TKIPMIC | IEEE80211_CRYPTO_TKIP; memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) setbit(bands, IEEE80211_MODE_11A); ieee80211_init_channels(ic, NULL, bands); ieee80211_ifattach(ic); ic->ic_update_promisc = rum_update_promisc; ic->ic_raw_xmit = rum_raw_xmit; ic->ic_scan_start = rum_scan_start; ic->ic_scan_end = rum_scan_end; ic->ic_set_channel = rum_set_channel; ic->ic_transmit = rum_transmit; ic->ic_parent = rum_parent; ic->ic_vap_create = rum_vap_create; ic->ic_vap_delete = rum_vap_delete; ic->ic_updateslot = rum_update_slot; ic->ic_wme.wme_update = rum_wme_update; ic->ic_update_mcast = rum_update_mcast; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), RT2573_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), RT2573_RX_RADIOTAP_PRESENT); TASK_INIT(&sc->cmdq_task, 0, rum_cmdq_cb, sc); if (bootverbose) ieee80211_announce(ic); return (0); detach: rum_detach(self); return (ENXIO); /* failure */ } static int rum_detach(device_t self) { struct rum_softc *sc = device_get_softc(self); struct ieee80211com *ic = &sc->sc_ic; /* Prevent further ioctls */ RUM_LOCK(sc); sc->sc_detached = 1; RUM_UNLOCK(sc); /* stop all USB transfers */ usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER); /* free TX list, if any */ RUM_LOCK(sc); rum_unsetup_tx_list(sc); RUM_UNLOCK(sc); if (ic->ic_softc == sc) { ieee80211_draintask(ic, &sc->cmdq_task); ieee80211_ifdetach(ic); } mbufq_drain(&sc->sc_snd); RUM_CMDQ_LOCK_DESTROY(sc); RUM_LOCK_DESTROY(sc); return (0); } static usb_error_t rum_do_request(struct rum_softc *sc, struct usb_device_request *req, void *data) { usb_error_t err; int ntries = 10; while (ntries--) { err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, req, data, 0, NULL, 250 /* ms */); if (err == 0) break; DPRINTFN(1, "Control request failed, %s (retrying)\n", usbd_errstr(err)); if (rum_pause(sc, hz / 100)) break; } return (err); } static usb_error_t rum_do_mcu_request(struct rum_softc *sc, int request) { struct usb_device_request req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2573_MCU_CNTL; USETW(req.wValue, request); USETW(req.wIndex, 0); USETW(req.wLength, 0); return (rum_do_request(sc, &req, NULL)); } static struct ieee80211vap * rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct rum_softc *sc = ic->ic_softc; struct rum_vap *rvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return NULL; rvp = malloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &rvp->vap; /* enable s/w bmiss handling for sta mode */ if (ieee80211_vap_setup(ic, vap, name, unit, opmode, flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { /* out of memory */ free(rvp, M_80211_VAP); return (NULL); } /* override state transition machine */ rvp->newstate = vap->iv_newstate; vap->iv_newstate = rum_newstate; vap->iv_key_alloc = rum_key_alloc; vap->iv_key_set = rum_key_set; vap->iv_key_delete = rum_key_delete; vap->iv_update_beacon = rum_update_beacon; vap->iv_reset = rum_reset; vap->iv_max_aid = RT2573_ADDR_MAX; if (opmode == IEEE80211_M_STA) { /* * Move device to the sleep state when * beacon is received and there is no data for us. * * Used only for IEEE80211_S_SLEEP state. */ rvp->recv_mgmt = vap->iv_recv_mgmt; vap->iv_recv_mgmt = rum_sta_recv_mgmt; /* Ignored while sleeping. */ rvp->bmiss = vap->iv_bmiss; vap->iv_bmiss = rum_beacon_miss; } usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0); TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp); ieee80211_ratectl_init(vap); ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return vap; } static void rum_vap_delete(struct ieee80211vap *vap) { struct rum_vap *rvp = RUM_VAP(vap); struct ieee80211com *ic = vap->iv_ic; m_freem(rvp->bcn_mbuf); usb_callout_drain(&rvp->ratectl_ch); ieee80211_draintask(ic, &rvp->ratectl_task); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(rvp, M_80211_VAP); } static void rum_cmdq_cb(void *arg, int pending) { struct rum_softc *sc = arg; struct rum_cmdq *rc; RUM_CMDQ_LOCK(sc); while (sc->cmdq[sc->cmdq_first].func != NULL) { rc = &sc->cmdq[sc->cmdq_first]; RUM_CMDQ_UNLOCK(sc); RUM_LOCK(sc); rc->func(sc, &rc->data, rc->rvp_id); RUM_UNLOCK(sc); RUM_CMDQ_LOCK(sc); memset(rc, 0, sizeof (*rc)); sc->cmdq_first = (sc->cmdq_first + 1) % RUM_CMDQ_SIZE; } RUM_CMDQ_UNLOCK(sc); } static int rum_cmd_sleepable(struct rum_softc *sc, const void *ptr, size_t len, uint8_t rvp_id, CMD_FUNC_PROTO) { struct ieee80211com *ic = &sc->sc_ic; KASSERT(len <= sizeof(union sec_param), ("buffer overflow")); RUM_CMDQ_LOCK(sc); if (sc->cmdq[sc->cmdq_last].func != NULL) { device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__); RUM_CMDQ_UNLOCK(sc); return EAGAIN; } if (ptr != NULL) memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len); sc->cmdq[sc->cmdq_last].rvp_id = rvp_id; sc->cmdq[sc->cmdq_last].func = func; sc->cmdq_last = (sc->cmdq_last + 1) % RUM_CMDQ_SIZE; RUM_CMDQ_UNLOCK(sc); ieee80211_runtask(ic, &sc->cmdq_task); return 0; } static void rum_tx_free(struct rum_tx_data *data, int txerr) { struct rum_softc *sc = data->sc; if (data->m != NULL) { ieee80211_tx_complete(data->ni, data->m, txerr); data->m = NULL; data->ni = NULL; } STAILQ_INSERT_TAIL(&sc->tx_free, data, next); sc->tx_nfree++; } static void rum_setup_tx_list(struct rum_softc *sc) { struct rum_tx_data *data; int i; sc->tx_nfree = 0; STAILQ_INIT(&sc->tx_q); STAILQ_INIT(&sc->tx_free); for (i = 0; i < RUM_TX_LIST_COUNT; i++) { data = &sc->tx_data[i]; data->sc = sc; STAILQ_INSERT_TAIL(&sc->tx_free, data, next); sc->tx_nfree++; } } static void rum_unsetup_tx_list(struct rum_softc *sc) { struct rum_tx_data *data; int i; /* make sure any subsequent use of the queues will fail */ sc->tx_nfree = 0; STAILQ_INIT(&sc->tx_q); STAILQ_INIT(&sc->tx_free); /* free up all node references and mbufs */ for (i = 0; i < RUM_TX_LIST_COUNT; i++) { data = &sc->tx_data[i]; if (data->m != NULL) { m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } } } static void rum_beacon_miss(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct rum_softc *sc = ic->ic_softc; struct rum_vap *rvp = RUM_VAP(vap); int sleep; RUM_LOCK(sc); if (sc->sc_sleeping && sc->sc_sleep_end < ticks) { DPRINTFN(12, "dropping 'sleeping' bit, " "device must be awake now\n"); sc->sc_sleeping = 0; } sleep = sc->sc_sleeping; RUM_UNLOCK(sc); if (!sleep) rvp->bmiss(vap); #ifdef USB_DEBUG else DPRINTFN(13, "bmiss event is ignored whilst sleeping\n"); #endif } static void rum_sta_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf) { struct ieee80211vap *vap = ni->ni_vap; struct rum_softc *sc = vap->iv_ic->ic_softc; struct rum_vap *rvp = RUM_VAP(vap); if (vap->iv_state == IEEE80211_S_SLEEP && subtype == IEEE80211_FC0_SUBTYPE_BEACON) { RUM_LOCK(sc); DPRINTFN(12, "beacon, mybss %d (flags %02X)\n", !!(sc->last_rx_flags & RT2573_RX_MYBSS), sc->last_rx_flags); if ((sc->last_rx_flags & (RT2573_RX_MYBSS | RT2573_RX_BC)) == (RT2573_RX_MYBSS | RT2573_RX_BC)) { /* * Put it to sleep here; in case if there is a data * for us, iv_recv_mgmt() will wakeup the device via * SLEEP -> RUN state transition. */ rum_set_power_state(sc, 1); } RUM_UNLOCK(sc); } rvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf); } static int rum_set_power_state(struct rum_softc *sc, int sleep) { usb_error_t uerror; RUM_LOCK_ASSERT(sc); DPRINTFN(12, "moving to %s state (sleep time %u)\n", sleep ? "sleep" : "awake", sc->sc_sleep_time); uerror = rum_do_mcu_request(sc, sleep ? RT2573_MCU_SLEEP : RT2573_MCU_WAKEUP); if (uerror != USB_ERR_NORMAL_COMPLETION) { device_printf(sc->sc_dev, "%s: could not change power state: %s\n", __func__, usbd_errstr(uerror)); return (EIO); } sc->sc_sleeping = !!sleep; sc->sc_sleep_end = sleep ? ticks + sc->sc_sleep_time : 0; return (0); } static int rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct rum_vap *rvp = RUM_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct rum_softc *sc = ic->ic_softc; const struct ieee80211_txparam *tp; enum ieee80211_state ostate; struct ieee80211_node *ni; usb_error_t uerror; int ret = 0; ostate = vap->iv_state; DPRINTF("%s -> %s\n", ieee80211_state_name[ostate], ieee80211_state_name[nstate]); IEEE80211_UNLOCK(ic); RUM_LOCK(sc); usb_callout_stop(&rvp->ratectl_ch); if (ostate == IEEE80211_S_SLEEP && vap->iv_opmode == IEEE80211_M_STA) { rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT); rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); /* * Ignore any errors; * any subsequent TX will wakeup it anyway */ (void) rum_set_power_state(sc, 0); } switch (nstate) { case IEEE80211_S_INIT: if (ostate == IEEE80211_S_RUN) rum_abort_tsf_sync(sc); break; case IEEE80211_S_RUN: if (ostate == IEEE80211_S_SLEEP) break; /* already handled */ ni = ieee80211_ref_node(vap->iv_bss); if (vap->iv_opmode != IEEE80211_M_MONITOR) { if (ic->ic_bsschan == IEEE80211_CHAN_ANYC || ni->ni_chan == IEEE80211_CHAN_ANYC) { ret = EINVAL; goto run_fail; } rum_update_slot_cb(sc, NULL, 0); rum_enable_mrr(sc); rum_set_txpreamble(sc); rum_set_basicrates(sc); rum_set_maxretry(sc, vap); IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); rum_set_bssid(sc, sc->sc_bssid); } if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_IBSS) { if ((ret = rum_alloc_beacon(sc, vap)) != 0) goto run_fail; } if (vap->iv_opmode != IEEE80211_M_MONITOR && vap->iv_opmode != IEEE80211_M_AHDEMO) { if ((ret = rum_enable_tsf_sync(sc)) != 0) goto run_fail; } else rum_enable_tsf(sc); /* enable automatic rate adaptation */ tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) rum_ratectl_start(sc, ni); run_fail: ieee80211_free_node(ni); break; case IEEE80211_S_SLEEP: /* Implemented for STA mode only. */ if (vap->iv_opmode != IEEE80211_M_STA) break; uerror = rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); if (uerror != USB_ERR_NORMAL_COMPLETION) { ret = EIO; break; } uerror = rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT); if (uerror != USB_ERR_NORMAL_COMPLETION) { ret = EIO; break; } ret = rum_set_power_state(sc, 1); if (ret != 0) { device_printf(sc->sc_dev, "%s: could not move to the SLEEP state: %s\n", __func__, usbd_errstr(uerror)); } break; default: break; } RUM_UNLOCK(sc); IEEE80211_LOCK(ic); return (ret == 0 ? rvp->newstate(vap, nstate, arg) : ret); } static void rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) { struct rum_softc *sc = usbd_xfer_softc(xfer); struct ieee80211vap *vap; struct rum_tx_data *data; struct mbuf *m; struct usb_page_cache *pc; unsigned int len; int actlen, sumlen; usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(11, "transfer complete, %d bytes\n", actlen); /* free resources */ data = usbd_xfer_get_priv(xfer); rum_tx_free(data, 0); usbd_xfer_set_priv(xfer, NULL); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: data = STAILQ_FIRST(&sc->tx_q); if (data) { STAILQ_REMOVE_HEAD(&sc->tx_q, next); m = data->m; if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) { DPRINTFN(0, "data overflow, %u bytes\n", m->m_pkthdr.len); m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE); } pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE); usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0, m->m_pkthdr.len); vap = data->ni->ni_vap; if (ieee80211_radiotap_active_vap(vap)) { struct rum_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = data->rate; rum_get_tsf(sc, &tap->wt_tsf); tap->wt_antenna = sc->tx_ant; ieee80211_radiotap_tx(vap, m); } /* align end on a 4-bytes boundary */ len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3; if ((len % 64) == 0) len += 4; DPRINTFN(11, "sending frame len=%u xferlen=%u\n", m->m_pkthdr.len, len); usbd_xfer_set_frame_len(xfer, 0, len); usbd_xfer_set_priv(xfer, data); usbd_transfer_submit(xfer); } rum_start(sc); break; default: /* Error */ DPRINTFN(11, "transfer error, %s\n", usbd_errstr(error)); counter_u64_add(sc->sc_ic.ic_oerrors, 1); data = usbd_xfer_get_priv(xfer); if (data != NULL) { rum_tx_free(data, error); usbd_xfer_set_priv(xfer, NULL); } if (error != USB_ERR_CANCELLED) { if (error == USB_ERR_TIMEOUT) device_printf(sc->sc_dev, "device timeout\n"); /* * Try to clear stall first, also if other * errors occur, hence clearing stall * introduces a 50 ms delay: */ usbd_xfer_set_stall(xfer); goto tr_setup; } break; } } static void rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) { struct rum_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame_min *wh; struct ieee80211_node *ni; struct mbuf *m = NULL; struct usb_page_cache *pc; uint32_t flags; uint8_t rssi = 0; int len; usbd_xfer_status(xfer, &len, NULL, NULL, NULL); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(15, "rx done, actlen=%d\n", len); if (len < (int)(RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN)) { DPRINTF("%s: xfer too short %d\n", device_get_nameunit(sc->sc_dev), len); counter_u64_add(ic->ic_ierrors, 1); goto tr_setup; } len -= RT2573_RX_DESC_SIZE; pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE); rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi); flags = le32toh(sc->sc_rx_desc.flags); sc->last_rx_flags = flags; if (flags & RT2573_RX_CRC_ERROR) { /* * This should not happen since we did not * request to receive those frames when we * filled RUM_TXRX_CSR2: */ DPRINTFN(5, "PHY or CRC error\n"); counter_u64_add(ic->ic_ierrors, 1); goto tr_setup; } if ((flags & RT2573_RX_DEC_MASK) != RT2573_RX_DEC_OK) { switch (flags & RT2573_RX_DEC_MASK) { case RT2573_RX_IV_ERROR: DPRINTFN(5, "IV/EIV error\n"); break; case RT2573_RX_MIC_ERROR: DPRINTFN(5, "MIC error\n"); break; case RT2573_RX_KEY_ERROR: DPRINTFN(5, "Key error\n"); break; } counter_u64_add(ic->ic_ierrors, 1); goto tr_setup; } m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { DPRINTF("could not allocate mbuf\n"); counter_u64_add(ic->ic_ierrors, 1); goto tr_setup; } usbd_copy_out(pc, RT2573_RX_DESC_SIZE, mtod(m, uint8_t *), len); wh = mtod(m, struct ieee80211_frame_min *); if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && (flags & RT2573_RX_CIP_MASK) != RT2573_RX_CIP_MODE(RT2573_MODE_NOSEC)) { wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; m->m_flags |= M_WEP; } /* finalize mbuf */ m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff; if (ieee80211_radiotap_active(ic)) { struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, (flags & RT2573_RX_OFDM) ? IEEE80211_T_OFDM : IEEE80211_T_CCK); rum_get_tsf(sc, &tap->wr_tsf); tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi; tap->wr_antnoise = RT2573_NOISE_FLOOR; tap->wr_antenna = sc->rx_ant; } /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); /* * At the end of a USB callback it is always safe to unlock * the private mutex of a device! That is why we do the * "ieee80211_input" here, and not some lines up! */ RUM_UNLOCK(sc); if (m) { if (m->m_len >= sizeof(struct ieee80211_frame_min)) ni = ieee80211_find_rxnode(ic, wh); else ni = NULL; if (ni != NULL) { (void) ieee80211_input(ni, m, rssi, RT2573_NOISE_FLOOR); ieee80211_free_node(ni); } else (void) ieee80211_input_all(ic, m, rssi, RT2573_NOISE_FLOOR); } RUM_LOCK(sc); rum_start(sc); return; default: /* Error */ if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } return; } } static uint8_t rum_plcp_signal(int rate) { switch (rate) { /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return 0xb; case 18: return 0xf; case 24: return 0xa; case 36: return 0xe; case 48: return 0x9; case 72: return 0xd; case 96: return 0x8; case 108: return 0xc; /* CCK rates (NB: not IEEE std, device-specific) */ case 2: return 0x0; case 4: return 0x1; case 11: return 0x2; case 22: return 0x3; } return 0xff; /* XXX unsupported/unknown rate */ } /* * Map net80211 cipher to RT2573 security mode. */ static uint8_t rum_crypto_mode(struct rum_softc *sc, u_int cipher, int keylen) { switch (cipher) { case IEEE80211_CIPHER_WEP: return (keylen < 8 ? RT2573_MODE_WEP40 : RT2573_MODE_WEP104); case IEEE80211_CIPHER_TKIP: return RT2573_MODE_TKIP; case IEEE80211_CIPHER_AES_CCM: return RT2573_MODE_AES_CCMP; default: device_printf(sc->sc_dev, "unknown cipher %d\n", cipher); return 0; } } static void rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, struct ieee80211_key *k, uint32_t flags, uint8_t xflags, uint8_t qid, int hdrlen, int len, int rate) { struct ieee80211com *ic = &sc->sc_ic; struct wmeParams *wmep = &sc->wme_params[qid]; uint16_t plcp_length; int remainder; flags |= RT2573_TX_VALID; flags |= len << 16; if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { const struct ieee80211_cipher *cip = k->wk_cipher; len += cip->ic_header + cip->ic_trailer + cip->ic_miclen; desc->eiv = 0; /* for WEP */ cip->ic_setiv(k, (uint8_t *)&desc->iv); } /* setup PLCP fields */ desc->plcp_signal = rum_plcp_signal(rate); desc->plcp_service = 4; len += IEEE80211_CRC_LEN; if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { flags |= RT2573_TX_OFDM; plcp_length = len & 0xfff; desc->plcp_length_hi = plcp_length >> 6; desc->plcp_length_lo = plcp_length & 0x3f; } else { if (rate == 0) rate = 2; /* avoid division by zero */ plcp_length = howmany(16 * len, rate); if (rate == 22) { remainder = (16 * len) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= RT2573_PLCP_LENGEXT; } desc->plcp_length_hi = plcp_length >> 8; desc->plcp_length_lo = plcp_length & 0xff; if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->plcp_signal |= 0x08; } desc->flags = htole32(flags); desc->hdrlen = hdrlen; desc->xflags = xflags; desc->wme = htole16(RT2573_QID(qid) | RT2573_AIFSN(wmep->wmep_aifsn) | RT2573_LOGCWMIN(wmep->wmep_logcwmin) | RT2573_LOGCWMAX(wmep->wmep_logcwmax)); } static int rum_sendprot(struct rum_softc *sc, const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) { struct ieee80211com *ic = ni->ni_ic; const struct ieee80211_frame *wh; struct rum_tx_data *data; struct mbuf *mprot; int protrate, pktlen, flags, isshort; uint16_t dur; RUM_LOCK_ASSERT(sc); KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, ("protection %d", prot)); wh = mtod(m, const struct ieee80211_frame *); pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; protrate = ieee80211_ctl_rate(ic->ic_rt, rate); isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) + ieee80211_ack_duration(ic->ic_rt, rate, isshort); flags = 0; if (prot == IEEE80211_PROT_RTSCTS) { /* NB: CTS is the same size as an ACK */ dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); flags |= RT2573_TX_NEED_ACK; mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); } else { mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); } if (mprot == NULL) { /* XXX stat + msg */ return (ENOBUFS); } data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; data->m = mprot; data->ni = ieee80211_ref_node(ni); data->rate = protrate; rum_setup_tx_desc(sc, &data->desc, NULL, flags, 0, 0, 0, mprot->m_pkthdr.len, protrate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); return 0; } static uint32_t rum_tx_crypto_flags(struct rum_softc *sc, struct ieee80211_node *ni, const struct ieee80211_key *k) { struct ieee80211vap *vap = ni->ni_vap; u_int cipher; uint32_t flags = 0; uint8_t mode, pos; if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { cipher = k->wk_cipher->ic_cipher; pos = k->wk_keyix; mode = rum_crypto_mode(sc, cipher, k->wk_keylen); if (mode == 0) return 0; flags |= RT2573_TX_CIP_MODE(mode); /* Do not trust GROUP flag */ if (!(k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) flags |= RT2573_TX_KEY_PAIR; else pos += 0 * RT2573_SKEY_MAX; /* vap id */ flags |= RT2573_TX_KEY_ID(pos); if (cipher == IEEE80211_CIPHER_TKIP) flags |= RT2573_TX_TKIPMIC; } return flags; } static int rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = &sc->sc_ic; struct rum_tx_data *data; struct ieee80211_frame *wh; const struct ieee80211_txparam *tp; struct ieee80211_key *k = NULL; uint32_t flags = 0; uint16_t dur; uint8_t ac, type, xflags = 0; int hdrlen; RUM_LOCK_ASSERT(sc); data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; wh = mtod(m0, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; hdrlen = ieee80211_anyhdrsize(wh); ac = M_WME_GETAC(m0); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_get_txkey(ni, m0); if (k == NULL) return (ENOENT); if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) && !k->wk_cipher->ic_encap(k, m0)) return (ENOBUFS); wh = mtod(m0, struct ieee80211_frame *); } tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RT2573_TX_NEED_ACK; dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, ic->ic_flags & IEEE80211_F_SHPREAMBLE); USETW(wh->i_dur, dur); /* tell hardware to add timestamp for probe responses */ if (type == IEEE80211_FC0_TYPE_MGT && (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == IEEE80211_FC0_SUBTYPE_PROBE_RESP) flags |= RT2573_TX_TIMESTAMP; } if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) xflags |= RT2573_TX_HWSEQ; if (k != NULL) flags |= rum_tx_crypto_flags(sc, ni, k); data->m = m0; data->ni = ni; data->rate = tp->mgmtrate; rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen, m0->m_pkthdr.len, tp->mgmtrate); DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); return (0); } static int rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211_frame *wh; struct rum_tx_data *data; uint32_t flags; uint8_t ac, type, xflags = 0; int rate, error; RUM_LOCK_ASSERT(sc); wh = mtod(m0, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; ac = params->ibp_pri & 3; rate = params->ibp_rate0; if (!ieee80211_isratevalid(ic->ic_rt, rate)) return (EINVAL); flags = 0; if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) flags |= RT2573_TX_NEED_ACK; if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { error = rum_sendprot(sc, m0, ni, params->ibp_flags & IEEE80211_BPF_RTS ? IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, rate); if (error || sc->tx_nfree == 0) return (ENOBUFS); flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; } if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) xflags |= RT2573_TX_HWSEQ; data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; data->m = m0; data->ni = ni; data->rate = rate; /* XXX need to setup descriptor ourself */ rum_setup_tx_desc(sc, &data->desc, NULL, flags, xflags, ac, 0, m0->m_pkthdr.len, rate); DPRINTFN(10, "sending raw frame len=%u rate=%u\n", m0->m_pkthdr.len, rate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); return 0; } static int rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = &sc->sc_ic; struct rum_tx_data *data; struct ieee80211_frame *wh; const struct ieee80211_txparam *tp; struct ieee80211_key *k = NULL; uint32_t flags = 0; uint16_t dur; uint8_t ac, type, qos, xflags = 0; int error, hdrlen, rate; RUM_LOCK_ASSERT(sc); wh = mtod(m0, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; hdrlen = ieee80211_anyhdrsize(wh); if (IEEE80211_QOS_HAS_SEQ(wh)) qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; else qos = 0; ac = M_WME_GETAC(m0); tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; if (IEEE80211_IS_MULTICAST(wh->i_addr1)) rate = tp->mcastrate; else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) rate = tp->ucastrate; else rate = ni->ni_txrate; if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_get_txkey(ni, m0); if (k == NULL) { m_freem(m0); return (ENOENT); } if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) && !k->wk_cipher->ic_encap(k, m0)) { m_freem(m0); return (ENOBUFS); } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) xflags |= RT2573_TX_HWSEQ; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { int prot = IEEE80211_PROT_NONE; if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) prot = IEEE80211_PROT_RTSCTS; else if ((ic->ic_flags & IEEE80211_F_USEPROT) && ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) prot = ic->ic_protmode; if (prot != IEEE80211_PROT_NONE) { error = rum_sendprot(sc, m0, ni, prot, rate); if (error || sc->tx_nfree == 0) { m_freem(m0); return ENOBUFS; } flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; } } if (k != NULL) flags |= rum_tx_crypto_flags(sc, ni, k); data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; data->m = m0; data->ni = ni; data->rate = rate; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* Unicast frame, check if an ACK is expected. */ if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != IEEE80211_QOS_ACKPOLICY_NOACK) flags |= RT2573_TX_NEED_ACK; dur = ieee80211_ack_duration(ic->ic_rt, rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE); USETW(wh->i_dur, dur); } rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen, m0->m_pkthdr.len, rate); DPRINTFN(10, "sending frame len=%d rate=%d\n", m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); return 0; } static int rum_transmit(struct ieee80211com *ic, struct mbuf *m) { struct rum_softc *sc = ic->ic_softc; int error; RUM_LOCK(sc); if (!sc->sc_running) { RUM_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { RUM_UNLOCK(sc); return (error); } rum_start(sc); RUM_UNLOCK(sc); return (0); } static void rum_start(struct rum_softc *sc) { struct ieee80211_node *ni; struct mbuf *m; RUM_LOCK_ASSERT(sc); if (!sc->sc_running) return; while (sc->tx_nfree >= RUM_TX_MINFREE && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; if (rum_tx_data(sc, m, ni) != 0) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); break; } } } static void rum_parent(struct ieee80211com *ic) { struct rum_softc *sc = ic->ic_softc; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); RUM_LOCK(sc); if (sc->sc_detached) { RUM_UNLOCK(sc); return; } RUM_UNLOCK(sc); if (ic->ic_nrunning > 0) { if (rum_init(sc) == 0) ieee80211_start_all(ic); else ieee80211_stop(vap); } else rum_stop(sc); } static void rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) { struct usb_device_request req; usb_error_t error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RT2573_READ_EEPROM; USETW(req.wValue, 0); USETW(req.wIndex, addr); USETW(req.wLength, len); error = rum_do_request(sc, &req, buf); if (error != 0) { device_printf(sc->sc_dev, "could not read EEPROM: %s\n", usbd_errstr(error)); } } static uint32_t rum_read(struct rum_softc *sc, uint16_t reg) { uint32_t val; rum_read_multi(sc, reg, &val, sizeof val); return le32toh(val); } static void rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) { struct usb_device_request req; usb_error_t error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RT2573_READ_MULTI_MAC; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); error = rum_do_request(sc, &req, buf); if (error != 0) { device_printf(sc->sc_dev, "could not multi read MAC register: %s\n", usbd_errstr(error)); } } static usb_error_t rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) { uint32_t tmp = htole32(val); return (rum_write_multi(sc, reg, &tmp, sizeof tmp)); } static usb_error_t rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) { struct usb_device_request req; usb_error_t error; size_t offset; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2573_WRITE_MULTI_MAC; USETW(req.wValue, 0); /* write at most 64 bytes at a time */ for (offset = 0; offset < len; offset += 64) { USETW(req.wIndex, reg + offset); USETW(req.wLength, MIN(len - offset, 64)); error = rum_do_request(sc, &req, (char *)buf + offset); if (error != 0) { device_printf(sc->sc_dev, "could not multi write MAC register: %s\n", usbd_errstr(error)); return (error); } } return (USB_ERR_NORMAL_COMPLETION); } static usb_error_t rum_setbits(struct rum_softc *sc, uint16_t reg, uint32_t mask) { return (rum_write(sc, reg, rum_read(sc, reg) | mask)); } static usb_error_t rum_clrbits(struct rum_softc *sc, uint16_t reg, uint32_t mask) { return (rum_write(sc, reg, rum_read(sc, reg) & ~mask)); } static usb_error_t rum_modbits(struct rum_softc *sc, uint16_t reg, uint32_t set, uint32_t unset) { return (rum_write(sc, reg, (rum_read(sc, reg) & ~unset) | set)); } static int rum_bbp_busy(struct rum_softc *sc) { int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) break; if (rum_pause(sc, hz / 100)) break; } if (ntries == 100) return (ETIMEDOUT); return (0); } static void rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; DPRINTFN(2, "reg=0x%08x\n", reg); if (rum_bbp_busy(sc) != 0) { device_printf(sc->sc_dev, "could not write to BBP\n"); return; } tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; rum_write(sc, RT2573_PHY_CSR3, tmp); } static uint8_t rum_bbp_read(struct rum_softc *sc, uint8_t reg) { uint32_t val; int ntries; DPRINTFN(2, "reg=0x%08x\n", reg); if (rum_bbp_busy(sc) != 0) { device_printf(sc->sc_dev, "could not read BBP\n"); return 0; } val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; rum_write(sc, RT2573_PHY_CSR3, val); for (ntries = 0; ntries < 100; ntries++) { val = rum_read(sc, RT2573_PHY_CSR3); if (!(val & RT2573_BBP_BUSY)) return val & 0xff; if (rum_pause(sc, hz / 100)) break; } device_printf(sc->sc_dev, "could not read BBP\n"); return 0; } static void rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) break; if (rum_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "could not write to RF\n"); return; } tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | (reg & 3); rum_write(sc, RT2573_PHY_CSR4, tmp); /* remember last written value in sc */ sc->rf_regs[reg] = val; DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff); } static void rum_select_antenna(struct rum_softc *sc) { uint8_t bbp4, bbp77; uint32_t tmp; bbp4 = rum_bbp_read(sc, 4); bbp77 = rum_bbp_read(sc, 77); /* TBD */ /* make sure Rx is disabled before switching antenna */ tmp = rum_read(sc, RT2573_TXRX_CSR0); rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); rum_bbp_write(sc, 4, bbp4); rum_bbp_write(sc, 77, bbp77); rum_write(sc, RT2573_TXRX_CSR0, tmp); } /* * Enable multi-rate retries for frames sent at OFDM rates. * In 802.11b/g mode, allow fallback to CCK rates. */ static void rum_enable_mrr(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_MRR_ENABLED | RT2573_MRR_CCK_FALLBACK); } else { rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_MRR_ENABLED, RT2573_MRR_CCK_FALLBACK); } } static void rum_set_txpreamble(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE); else rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE); } static void rum_set_basicrates(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* update basic rate set */ if (ic->ic_curmode == IEEE80211_MODE_11B) { /* 11b basic rates: 1, 2Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0x3); } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { /* 11a basic rates: 6, 12, 24Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0x150); } else { /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ rum_write(sc, RT2573_TXRX_CSR5, 0xf); } } /* * Reprogram MAC/BBP to switch to a new band. Values taken from the reference * driver. */ static void rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) { uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; /* update all BBP registers that depend on the band */ bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; if (IEEE80211_IS_CHAN_5GHZ(c)) { bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; } if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; } sc->bbp17 = bbp17; rum_bbp_write(sc, 17, bbp17); rum_bbp_write(sc, 96, bbp96); rum_bbp_write(sc, 104, bbp104); if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { rum_bbp_write(sc, 75, 0x80); rum_bbp_write(sc, 86, 0x80); rum_bbp_write(sc, 88, 0x80); } rum_bbp_write(sc, 35, bbp35); rum_bbp_write(sc, 97, bbp97); rum_bbp_write(sc, 98, bbp98); if (IEEE80211_IS_CHAN_2GHZ(c)) { rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_2GHZ, RT2573_PA_PE_5GHZ); } else { rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_5GHZ, RT2573_PA_PE_2GHZ); } } static void rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; const struct rfprog *rfprog; uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; int8_t power; int i, chan; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return; /* select the appropriate RF settings based on what EEPROM says */ rfprog = (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; /* find the settings for this channel (we know it exists) */ for (i = 0; rfprog[i].chan != chan; i++); power = sc->txpow[i]; if (power < 0) { bbp94 += power; power = 0; } else if (power > 31) { bbp94 += power - 31; power = 31; } /* * If we are switching from the 2GHz band to the 5GHz band or * vice-versa, BBP registers need to be reprogrammed. */ if (c->ic_flags != ic->ic_curchan->ic_flags) { rum_select_band(sc, c); rum_select_antenna(sc); } ic->ic_curchan = c; rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); rum_pause(sc, hz / 100); /* enable smart mode for MIMO-capable RFs */ bbp3 = rum_bbp_read(sc, 3); bbp3 &= ~RT2573_SMART_MODE; if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) bbp3 |= RT2573_SMART_MODE; rum_bbp_write(sc, 3, bbp3); if (bbp94 != RT2573_BBPR94_DEFAULT) rum_bbp_write(sc, 94, bbp94); /* give the chip some extra time to do the switchover */ rum_pause(sc, hz / 100); } static void rum_set_maxretry(struct rum_softc *sc, struct ieee80211vap *vap) { const struct ieee80211_txparam *tp; struct ieee80211_node *ni = vap->iv_bss; struct rum_vap *rvp = RUM_VAP(vap); tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; rvp->maxretry = tp->maxretry < 0xf ? tp->maxretry : 0xf; rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_RETRY(rvp->maxretry) | RT2573_LONG_RETRY(rvp->maxretry), RT2573_SHORT_RETRY_MASK | RT2573_LONG_RETRY_MASK); } /* * Enable TSF synchronization and tell h/w to start sending beacons for IBSS * and HostAP operating modes. */ static int rum_enable_tsf_sync(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t tmp; uint16_t bintval; if (vap->iv_opmode != IEEE80211_M_STA) { /* * Change default 16ms TBTT adjustment to 8ms. * Must be done before enabling beacon generation. */ if (rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8) != 0) return EIO; } tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; /* set beacon interval (in 1/16ms unit) */ bintval = vap->iv_bss->ni_intval; tmp |= bintval * 16; tmp |= RT2573_TSF_TIMER_EN | RT2573_TBTT_TIMER_EN; switch (vap->iv_opmode) { case IEEE80211_M_STA: /* * Local TSF is always updated with remote TSF on beacon * reception. */ tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_STA); break; case IEEE80211_M_IBSS: /* * Local TSF is updated with remote TSF on beacon reception * only if the remote TSF is greater than local TSF. */ tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_IBSS); tmp |= RT2573_BCN_TX_EN; break; case IEEE80211_M_HOSTAP: /* SYNC with nobody */ tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_HOSTAP); tmp |= RT2573_BCN_TX_EN; break; default: device_printf(sc->sc_dev, "Enabling TSF failed. undefined opmode %d\n", vap->iv_opmode); return EINVAL; } if (rum_write(sc, RT2573_TXRX_CSR9, tmp) != 0) return EIO; /* refresh current sleep time */ return (rum_set_sleep_time(sc, bintval)); } static void rum_enable_tsf(struct rum_softc *sc) { rum_modbits(sc, RT2573_TXRX_CSR9, RT2573_TSF_TIMER_EN | RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_DIS), 0x00ffffff); } static void rum_abort_tsf_sync(struct rum_softc *sc) { rum_clrbits(sc, RT2573_TXRX_CSR9, 0x00ffffff); } static void rum_get_tsf(struct rum_softc *sc, uint64_t *buf) { rum_read_multi(sc, RT2573_TXRX_CSR12, buf, sizeof (*buf)); } static void rum_update_slot_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id) { struct ieee80211com *ic = &sc->sc_ic; uint8_t slottime; slottime = IEEE80211_GET_SLOTTIME(ic); rum_modbits(sc, RT2573_MAC_CSR9, slottime, 0xff); DPRINTF("setting slot time to %uus\n", slottime); } static void rum_update_slot(struct ieee80211com *ic) { rum_cmd_sleepable(ic->ic_softc, NULL, 0, 0, rum_update_slot_cb); } static int rum_wme_update(struct ieee80211com *ic) { const struct wmeParams *chanp = ic->ic_wme.wme_chanParams.cap_wmeParams; struct rum_softc *sc = ic->ic_softc; int error = 0; RUM_LOCK(sc); error = rum_write(sc, RT2573_AIFSN_CSR, chanp[WME_AC_VO].wmep_aifsn << 12 | chanp[WME_AC_VI].wmep_aifsn << 8 | chanp[WME_AC_BK].wmep_aifsn << 4 | chanp[WME_AC_BE].wmep_aifsn); if (error) goto print_err; error = rum_write(sc, RT2573_CWMIN_CSR, chanp[WME_AC_VO].wmep_logcwmin << 12 | chanp[WME_AC_VI].wmep_logcwmin << 8 | chanp[WME_AC_BK].wmep_logcwmin << 4 | chanp[WME_AC_BE].wmep_logcwmin); if (error) goto print_err; error = rum_write(sc, RT2573_CWMAX_CSR, chanp[WME_AC_VO].wmep_logcwmax << 12 | chanp[WME_AC_VI].wmep_logcwmax << 8 | chanp[WME_AC_BK].wmep_logcwmax << 4 | chanp[WME_AC_BE].wmep_logcwmax); if (error) goto print_err; error = rum_write(sc, RT2573_TXOP01_CSR, chanp[WME_AC_BK].wmep_txopLimit << 16 | chanp[WME_AC_BE].wmep_txopLimit); if (error) goto print_err; error = rum_write(sc, RT2573_TXOP23_CSR, chanp[WME_AC_VO].wmep_txopLimit << 16 | chanp[WME_AC_VI].wmep_txopLimit); if (error) goto print_err; memcpy(sc->wme_params, chanp, sizeof(*chanp) * WME_NUM_AC); print_err: RUM_UNLOCK(sc); if (error != 0) { device_printf(sc->sc_dev, "%s: WME update failed, error %d\n", __func__, error); } return (error); } static void rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) { rum_write(sc, RT2573_MAC_CSR4, bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); rum_write(sc, RT2573_MAC_CSR5, bssid[4] | bssid[5] << 8 | RT2573_NUM_BSSID_MSK(1)); } static void rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) { rum_write(sc, RT2573_MAC_CSR2, addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); rum_write(sc, RT2573_MAC_CSR3, addr[4] | addr[5] << 8 | 0xff << 16); } static void rum_setpromisc(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; if (ic->ic_promisc == 0) rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME); else rum_clrbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME); DPRINTF("%s promiscuous mode\n", ic->ic_promisc > 0 ? "entering" : "leaving"); } static void rum_update_promisc(struct ieee80211com *ic) { struct rum_softc *sc = ic->ic_softc; RUM_LOCK(sc); if (sc->sc_running) rum_setpromisc(sc); RUM_UNLOCK(sc); } static void rum_update_mcast(struct ieee80211com *ic) { /* Ignore. */ } static const char * rum_get_rf(int rev) { switch (rev) { case RT2573_RF_2527: return "RT2527 (MIMO XR)"; case RT2573_RF_2528: return "RT2528"; case RT2573_RF_5225: return "RT5225 (MIMO XR)"; case RT2573_RF_5226: return "RT5226"; default: return "unknown"; } } static void rum_read_eeprom(struct rum_softc *sc) { uint16_t val; #ifdef RUM_DEBUG int i; #endif /* read MAC address */ rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6); rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); val = le16toh(val); sc->rf_rev = (val >> 11) & 0x1f; sc->hw_radio = (val >> 10) & 0x1; sc->rx_ant = (val >> 4) & 0x3; sc->tx_ant = (val >> 2) & 0x3; sc->nb_ant = val & 0x3; DPRINTF("RF revision=%d\n", sc->rf_rev); rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); val = le16toh(val); sc->ext_5ghz_lna = (val >> 6) & 0x1; sc->ext_2ghz_lna = (val >> 4) & 0x1; DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", sc->ext_2ghz_lna, sc->ext_5ghz_lna); rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); val = le16toh(val); if ((val & 0xff) != 0xff) sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ /* Only [-10, 10] is valid */ if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) sc->rssi_2ghz_corr = 0; rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); val = le16toh(val); if ((val & 0xff) != 0xff) sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ /* Only [-10, 10] is valid */ if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) sc->rssi_5ghz_corr = 0; if (sc->ext_2ghz_lna) sc->rssi_2ghz_corr -= 14; if (sc->ext_5ghz_lna) sc->rssi_5ghz_corr -= 14; DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); val = le16toh(val); if ((val & 0xff) != 0xff) sc->rffreq = val & 0xff; DPRINTF("RF freq=%d\n", sc->rffreq); /* read Tx power for all a/b/g channels */ rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); /* XXX default Tx power for 802.11a channels */ memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); #ifdef RUM_DEBUG for (i = 0; i < 14; i++) DPRINTF("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]); #endif /* read default values for BBP registers */ rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); #ifdef RUM_DEBUG for (i = 0; i < 14; i++) { if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) continue; DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } #endif } static int rum_bbp_wakeup(struct rum_softc *sc) { unsigned int ntries; for (ntries = 0; ntries < 100; ntries++) { if (rum_read(sc, RT2573_MAC_CSR12) & 8) break; rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ if (rum_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for BBP/RF to wakeup\n"); return (ETIMEDOUT); } return (0); } static int rum_bbp_init(struct rum_softc *sc) { int i, ntries; /* wait for BBP to be ready */ for (ntries = 0; ntries < 100; ntries++) { const uint8_t val = rum_bbp_read(sc, 0); if (val != 0 && val != 0xff) break; if (rum_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for BBP\n"); return EIO; } /* initialize BBP registers to default values */ for (i = 0; i < nitems(rum_def_bbp); i++) rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); /* write vendor-specific BBP values (from EEPROM) */ for (i = 0; i < 16; i++) { if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) continue; rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } return 0; } static void rum_clr_shkey_regs(struct rum_softc *sc) { rum_write(sc, RT2573_SEC_CSR0, 0); rum_write(sc, RT2573_SEC_CSR1, 0); rum_write(sc, RT2573_SEC_CSR5, 0); } static int rum_init(struct rum_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t tmp; int i, ret; RUM_LOCK(sc); if (sc->sc_running) { ret = 0; goto end; } /* initialize MAC registers to default values */ for (i = 0; i < nitems(rum_def_mac); i++) rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); /* reset some WME parameters to default values */ sc->wme_params[0].wmep_aifsn = 2; sc->wme_params[0].wmep_logcwmin = 4; sc->wme_params[0].wmep_logcwmax = 10; /* set host ready */ rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); rum_write(sc, RT2573_MAC_CSR1, 0); /* wait for BBP/RF to wakeup */ if ((ret = rum_bbp_wakeup(sc)) != 0) goto end; if ((ret = rum_bbp_init(sc)) != 0) goto end; /* select default channel */ rum_select_band(sc, ic->ic_curchan); rum_select_antenna(sc); rum_set_chan(sc, ic->ic_curchan); /* clear STA registers */ rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); /* clear security registers (if required) */ if (sc->sc_clr_shkeys == 0) { rum_clr_shkey_regs(sc); sc->sc_clr_shkeys = 1; } rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); /* initialize ASIC */ rum_write(sc, RT2573_MAC_CSR1, RT2573_HOST_READY); /* * Allocate Tx and Rx xfer queues. */ rum_setup_tx_list(sc); /* update Rx filter */ tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | RT2573_DROP_ACKCTS; if (ic->ic_opmode != IEEE80211_M_HOSTAP) tmp |= RT2573_DROP_TODS; if (ic->ic_promisc == 0) tmp |= RT2573_DROP_NOT_TO_ME; } rum_write(sc, RT2573_TXRX_CSR0, tmp); sc->sc_running = 1; usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]); usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]); end: RUM_UNLOCK(sc); if (ret != 0) rum_stop(sc); return ret; } static void rum_stop(struct rum_softc *sc) { RUM_LOCK(sc); if (!sc->sc_running) { RUM_UNLOCK(sc); return; } sc->sc_running = 0; RUM_UNLOCK(sc); /* * Drain the USB transfers, if not already drained: */ usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]); usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]); RUM_LOCK(sc); rum_unsetup_tx_list(sc); /* disable Rx */ rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX); /* reset ASIC */ rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); rum_write(sc, RT2573_MAC_CSR1, 0); RUM_UNLOCK(sc); } static void rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size) { uint16_t reg = RT2573_MCU_CODE_BASE; usb_error_t err; /* copy firmware image into NIC */ for (; size >= 4; reg += 4, ucode += 4, size -= 4) { err = rum_write(sc, reg, UGETDW(ucode)); if (err) { /* firmware already loaded ? */ device_printf(sc->sc_dev, "Firmware load " "failure! (ignored)\n"); break; } } err = rum_do_mcu_request(sc, RT2573_MCU_RUN); if (err != USB_ERR_NORMAL_COMPLETION) { device_printf(sc->sc_dev, "could not run firmware: %s\n", usbd_errstr(err)); } /* give the chip some time to boot */ rum_pause(sc, hz / 8); } static int rum_set_sleep_time(struct rum_softc *sc, uint16_t bintval) { struct ieee80211com *ic = &sc->sc_ic; usb_error_t uerror; int exp, delay; RUM_LOCK_ASSERT(sc); exp = ic->ic_lintval / bintval; delay = ic->ic_lintval % bintval; if (exp > RT2573_TBCN_EXP_MAX) exp = RT2573_TBCN_EXP_MAX; if (delay > RT2573_TBCN_DELAY_MAX) delay = RT2573_TBCN_DELAY_MAX; uerror = rum_modbits(sc, RT2573_MAC_CSR11, RT2573_TBCN_EXP(exp) | RT2573_TBCN_DELAY(delay), RT2573_TBCN_EXP(RT2573_TBCN_EXP_MAX) | RT2573_TBCN_DELAY(RT2573_TBCN_DELAY_MAX)); if (uerror != USB_ERR_NORMAL_COMPLETION) return (EIO); sc->sc_sleep_time = IEEE80211_TU_TO_TICKS(exp * bintval + delay); return (0); } static int rum_reset(struct ieee80211vap *vap, u_long cmd) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_node *ni; struct rum_softc *sc = ic->ic_softc; int error; switch (cmd) { case IEEE80211_IOC_POWERSAVE: error = 0; break; case IEEE80211_IOC_POWERSAVESLEEP: ni = ieee80211_ref_node(vap->iv_bss); RUM_LOCK(sc); error = rum_set_sleep_time(sc, ni->ni_intval); if (vap->iv_state == IEEE80211_S_SLEEP) { /* Use new values for wakeup timer. */ rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); } /* XXX send reassoc */ RUM_UNLOCK(sc); ieee80211_free_node(ni); break; default: error = ENETRESET; break; } return (error); } static int rum_set_beacon(struct rum_softc *sc, struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct rum_vap *rvp = RUM_VAP(vap); struct mbuf *m = rvp->bcn_mbuf; const struct ieee80211_txparam *tp; struct rum_tx_desc desc; RUM_LOCK_ASSERT(sc); if (m == NULL) return EINVAL; if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) return EINVAL; tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; rum_setup_tx_desc(sc, &desc, NULL, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ, 0, 0, m->m_pkthdr.len, tp->mgmtrate); /* copy the Tx descriptor into NIC memory */ if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0), (uint8_t *)&desc, RT2573_TX_DESC_SIZE) != 0) return EIO; /* copy beacon header and payload into NIC memory */ if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0) + RT2573_TX_DESC_SIZE, mtod(m, uint8_t *), m->m_pkthdr.len) != 0) return EIO; return 0; } static int rum_alloc_beacon(struct rum_softc *sc, struct ieee80211vap *vap) { struct rum_vap *rvp = RUM_VAP(vap); struct ieee80211_node *ni = vap->iv_bss; struct mbuf *m; if (ni->ni_chan == IEEE80211_CHAN_ANYC) return EINVAL; m = ieee80211_beacon_alloc(ni); if (m == NULL) return ENOMEM; if (rvp->bcn_mbuf != NULL) m_freem(rvp->bcn_mbuf); rvp->bcn_mbuf = m; return (rum_set_beacon(sc, vap)); } static void rum_update_beacon_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id) { struct ieee80211vap *vap = data->vap; rum_set_beacon(sc, vap); } static void rum_update_beacon(struct ieee80211vap *vap, int item) { struct ieee80211com *ic = vap->iv_ic; struct rum_softc *sc = ic->ic_softc; struct rum_vap *rvp = RUM_VAP(vap); struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; struct ieee80211_node *ni = vap->iv_bss; struct mbuf *m = rvp->bcn_mbuf; int mcast = 0; RUM_LOCK(sc); if (m == NULL) { m = ieee80211_beacon_alloc(ni); if (m == NULL) { device_printf(sc->sc_dev, "%s: could not allocate beacon frame\n", __func__); RUM_UNLOCK(sc); return; } rvp->bcn_mbuf = m; } switch (item) { case IEEE80211_BEACON_ERP: rum_update_slot(ic); break; case IEEE80211_BEACON_TIM: mcast = 1; /*TODO*/ break; default: break; } RUM_UNLOCK(sc); setbit(bo->bo_flags, item); ieee80211_beacon_update(ni, m, mcast); rum_cmd_sleepable(sc, &vap, sizeof(vap), 0, rum_update_beacon_cb); } static int rum_common_key_set(struct rum_softc *sc, struct ieee80211_key *k, uint16_t base) { if (rum_write_multi(sc, base, k->wk_key, k->wk_keylen)) return EIO; if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) { if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE, k->wk_txmic, 8)) return EIO; if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE + 8, k->wk_rxmic, 8)) return EIO; } return 0; } static void rum_group_key_set_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id) { struct ieee80211_key *k = &data->key; uint8_t mode; if (sc->sc_clr_shkeys == 0) { rum_clr_shkey_regs(sc); sc->sc_clr_shkeys = 1; } mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); if (mode == 0) goto print_err; DPRINTFN(1, "setting group key %d for vap %d, mode %d " "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode, (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); /* Install the key. */ if (rum_common_key_set(sc, k, RT2573_SKEY(rvp_id, k->wk_keyix)) != 0) goto print_err; /* Set cipher mode. */ if (rum_modbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5, mode << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX, RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX) != 0) goto print_err; /* Mark this key as valid. */ if (rum_setbits(sc, RT2573_SEC_CSR0, 1 << (rvp_id * RT2573_SKEY_MAX + k->wk_keyix)) != 0) goto print_err; return; print_err: device_printf(sc->sc_dev, "%s: cannot set group key %d for vap %d\n", __func__, k->wk_keyix, rvp_id); } static void rum_group_key_del_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id) { struct ieee80211_key *k = &data->key; DPRINTF("%s: removing group key %d for vap %d\n", __func__, k->wk_keyix, rvp_id); rum_clrbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5, RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX); rum_clrbits(sc, RT2573_SEC_CSR0, rvp_id * RT2573_SKEY_MAX + k->wk_keyix); } static void rum_pair_key_set_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id) { struct ieee80211_key *k = &data->key; uint8_t buf[IEEE80211_ADDR_LEN + 1]; uint8_t mode; mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); if (mode == 0) goto print_err; DPRINTFN(1, "setting pairwise key %d for vap %d, mode %d " "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode, (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); /* Install the key. */ if (rum_common_key_set(sc, k, RT2573_PKEY(k->wk_keyix)) != 0) goto print_err; IEEE80211_ADDR_COPY(buf, k->wk_macaddr); buf[IEEE80211_ADDR_LEN] = mode; /* Set transmitter address and cipher mode. */ if (rum_write_multi(sc, RT2573_ADDR_ENTRY(k->wk_keyix), buf, sizeof buf) != 0) goto print_err; /* Enable key table lookup for this vap. */ if (sc->vap_key_count[rvp_id]++ == 0) if (rum_setbits(sc, RT2573_SEC_CSR4, 1 << rvp_id) != 0) goto print_err; /* Mark this key as valid. */ if (rum_setbits(sc, k->wk_keyix < 32 ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3, 1 << (k->wk_keyix % 32)) != 0) goto print_err; return; print_err: device_printf(sc->sc_dev, "%s: cannot set pairwise key %d, vap %d\n", __func__, k->wk_keyix, rvp_id); } static void rum_pair_key_del_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id) { struct ieee80211_key *k = &data->key; DPRINTF("%s: removing key %d\n", __func__, k->wk_keyix); rum_clrbits(sc, (k->wk_keyix < 32) ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3, 1 << (k->wk_keyix % 32)); sc->keys_bmap &= ~(1ULL << k->wk_keyix); if (--sc->vap_key_count[rvp_id] == 0) rum_clrbits(sc, RT2573_SEC_CSR4, 1 << rvp_id); } static int rum_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) { struct rum_softc *sc = vap->iv_ic->ic_softc; uint8_t i; if (!(&vap->iv_nw_keys[0] <= k && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) { if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { RUM_LOCK(sc); for (i = 0; i < RT2573_ADDR_MAX; i++) { if ((sc->keys_bmap & (1ULL << i)) == 0) { sc->keys_bmap |= (1ULL << i); *keyix = i; break; } } RUM_UNLOCK(sc); if (i == RT2573_ADDR_MAX) { device_printf(sc->sc_dev, "%s: no free space in the key table\n", __func__); return 0; } } else *keyix = 0; } else { *keyix = k - vap->iv_nw_keys; } *rxkeyix = *keyix; return 1; } static int rum_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) { struct rum_softc *sc = vap->iv_ic->ic_softc; int group; if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { /* Not for us. */ return 1; } group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; return !rum_cmd_sleepable(sc, k, sizeof(*k), 0, group ? rum_group_key_set_cb : rum_pair_key_set_cb); } static int rum_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) { struct rum_softc *sc = vap->iv_ic->ic_softc; int group; if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { /* Not for us. */ return 1; } group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; return !rum_cmd_sleepable(sc, k, sizeof(*k), 0, group ? rum_group_key_del_cb : rum_pair_key_del_cb); } static int rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct rum_softc *sc = ni->ni_ic->ic_softc; int ret; RUM_LOCK(sc); /* prevent management frames from being sent if we're not ready */ if (!sc->sc_running) { ret = ENETDOWN; goto bad; } if (sc->tx_nfree < RUM_TX_MINFREE) { ret = EIO; goto bad; } if (params == NULL) { /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. */ if ((ret = rum_tx_mgt(sc, m, ni)) != 0) goto bad; } else { /* * Caller supplied explicit parameters to use in * sending the frame. */ if ((ret = rum_tx_raw(sc, m, ni, params)) != 0) goto bad; } RUM_UNLOCK(sc); return 0; bad: RUM_UNLOCK(sc); m_freem(m); return ret; } static void rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct rum_vap *rvp = RUM_VAP(vap); /* clear statistic registers (STA_CSR0 to STA_CSR5) */ rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); } static void rum_ratectl_timeout(void *arg) { struct rum_vap *rvp = arg; struct ieee80211vap *vap = &rvp->vap; struct ieee80211com *ic = vap->iv_ic; ieee80211_runtask(ic, &rvp->ratectl_task); } static void rum_ratectl_task(void *arg, int pending) { struct rum_vap *rvp = arg; struct ieee80211vap *vap = &rvp->vap; struct rum_softc *sc = vap->iv_ic->ic_softc; struct ieee80211_node *ni; int ok[3], fail; int sum, success, retrycnt; RUM_LOCK(sc); /* read and clear statistic registers (STA_CSR0 to STA_CSR5) */ rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); ok[0] = (le32toh(sc->sta[4]) & 0xffff); /* TX ok w/o retry */ ok[1] = (le32toh(sc->sta[4]) >> 16); /* TX ok w/ one retry */ ok[2] = (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ multiple retries */ fail = (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ success = ok[0] + ok[1] + ok[2]; sum = success + fail; /* XXX at least */ retrycnt = ok[1] + ok[2] * 2 + fail * (rvp->maxretry + 1); if (sum != 0) { ni = ieee80211_ref_node(vap->iv_bss); ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt); (void) ieee80211_ratectl_rate(ni, NULL, 0); ieee80211_free_node(ni); } /* count TX retry-fail as Tx errors */ if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail); usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); RUM_UNLOCK(sc); } static void rum_scan_start(struct ieee80211com *ic) { struct rum_softc *sc = ic->ic_softc; RUM_LOCK(sc); rum_abort_tsf_sync(sc); rum_set_bssid(sc, ieee80211broadcastaddr); RUM_UNLOCK(sc); } static void rum_scan_end(struct ieee80211com *ic) { struct rum_softc *sc = ic->ic_softc; if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { RUM_LOCK(sc); if (ic->ic_opmode != IEEE80211_M_AHDEMO) rum_enable_tsf_sync(sc); else rum_enable_tsf(sc); rum_set_bssid(sc, sc->sc_bssid); RUM_UNLOCK(sc); } } static void rum_set_channel(struct ieee80211com *ic) { struct rum_softc *sc = ic->ic_softc; RUM_LOCK(sc); rum_set_chan(sc, ic->ic_curchan); RUM_UNLOCK(sc); } static int rum_get_rssi(struct rum_softc *sc, uint8_t raw) { struct ieee80211com *ic = &sc->sc_ic; int lna, agc, rssi; lna = (raw >> 5) & 0x3; agc = raw & 0x1f; if (lna == 0) { /* * No RSSI mapping * * NB: Since RSSI is relative to noise floor, -1 is * adequate for caller to know error happened. */ return -1; } rssi = (2 * agc) - RT2573_NOISE_FLOOR; if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { rssi += sc->rssi_2ghz_corr; if (lna == 1) rssi -= 64; else if (lna == 2) rssi -= 74; else if (lna == 3) rssi -= 90; } else { rssi += sc->rssi_5ghz_corr; if (!sc->ext_5ghz_lna && lna != 1) rssi += 4; if (lna == 1) rssi -= 64; else if (lna == 2) rssi -= 86; else if (lna == 3) rssi -= 100; } return rssi; } static int rum_pause(struct rum_softc *sc, int timeout) { usb_pause_mtx(&sc->sc_mtx, timeout); return (0); } static device_method_t rum_methods[] = { /* Device interface */ DEVMETHOD(device_probe, rum_match), DEVMETHOD(device_attach, rum_attach), DEVMETHOD(device_detach, rum_detach), DEVMETHOD_END }; static driver_t rum_driver = { .name = "rum", .methods = rum_methods, .size = sizeof(struct rum_softc), }; static devclass_t rum_devclass; DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0); MODULE_DEPEND(rum, wlan, 1, 1, 1); MODULE_DEPEND(rum, usb, 1, 1, 1); MODULE_VERSION(rum, 1); USB_PNP_HOST_INFO(rum_devs); Index: head/sys/dev/usb/wlan/if_run.c =================================================================== --- head/sys/dev/usb/wlan/if_run.c (revision 298817) +++ head/sys/dev/usb/wlan/if_run.c (revision 298818) @@ -1,6239 +1,6239 @@ /*- * Copyright (c) 2008,2010 Damien Bergamini * ported to FreeBSD by Akinori Furukoshi * USB Consulting, Hans Petter Selasky * Copyright (c) 2013-2014 Kevin Lo * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /*- * Ralink Technology RT2700U/RT2800U/RT3000U/RT3900E chipset driver. * http://www.ralinktech.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "usbdevs.h" #define USB_DEBUG_VAR run_debug #include #include #include #include #ifdef USB_DEBUG #define RUN_DEBUG #endif #ifdef RUN_DEBUG int run_debug = 0; static SYSCTL_NODE(_hw_usb, OID_AUTO, run, CTLFLAG_RW, 0, "USB run"); SYSCTL_INT(_hw_usb_run, OID_AUTO, debug, CTLFLAG_RWTUN, &run_debug, 0, "run debug level"); #endif #define IEEE80211_HAS_ADDR4(wh) IEEE80211_IS_DSTODS(wh) /* * Because of LOR in run_key_delete(), use atomic instead. * '& RUN_CMDQ_MASQ' is to loop cmdq[]. */ #define RUN_CMDQ_GET(c) (atomic_fetchadd_32((c), 1) & RUN_CMDQ_MASQ) static const STRUCT_USB_HOST_ID run_devs[] = { #define RUN_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } #define RUN_DEV_EJECT(v,p) \ { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, RUN_EJECT) } #define RUN_EJECT 1 RUN_DEV(ABOCOM, RT2770), RUN_DEV(ABOCOM, RT2870), RUN_DEV(ABOCOM, RT3070), RUN_DEV(ABOCOM, RT3071), RUN_DEV(ABOCOM, RT3072), RUN_DEV(ABOCOM2, RT2870_1), RUN_DEV(ACCTON, RT2770), RUN_DEV(ACCTON, RT2870_1), RUN_DEV(ACCTON, RT2870_2), RUN_DEV(ACCTON, RT2870_3), RUN_DEV(ACCTON, RT2870_4), RUN_DEV(ACCTON, RT2870_5), RUN_DEV(ACCTON, RT3070), RUN_DEV(ACCTON, RT3070_1), RUN_DEV(ACCTON, RT3070_2), RUN_DEV(ACCTON, RT3070_3), RUN_DEV(ACCTON, RT3070_4), RUN_DEV(ACCTON, RT3070_5), RUN_DEV(AIRTIES, RT3070), RUN_DEV(ALLWIN, RT2070), RUN_DEV(ALLWIN, RT2770), RUN_DEV(ALLWIN, RT2870), RUN_DEV(ALLWIN, RT3070), RUN_DEV(ALLWIN, RT3071), RUN_DEV(ALLWIN, RT3072), RUN_DEV(ALLWIN, RT3572), RUN_DEV(AMIGO, RT2870_1), RUN_DEV(AMIGO, RT2870_2), RUN_DEV(AMIT, CGWLUSB2GNR), RUN_DEV(AMIT, RT2870_1), RUN_DEV(AMIT2, RT2870), RUN_DEV(ASUS, RT2870_1), RUN_DEV(ASUS, RT2870_2), RUN_DEV(ASUS, RT2870_3), RUN_DEV(ASUS, RT2870_4), RUN_DEV(ASUS, RT2870_5), RUN_DEV(ASUS, USBN13), RUN_DEV(ASUS, RT3070_1), RUN_DEV(ASUS, USBN66), RUN_DEV(ASUS, USB_N53), RUN_DEV(ASUS2, USBN11), RUN_DEV(AZUREWAVE, RT2870_1), RUN_DEV(AZUREWAVE, RT2870_2), RUN_DEV(AZUREWAVE, RT3070_1), RUN_DEV(AZUREWAVE, RT3070_2), RUN_DEV(AZUREWAVE, RT3070_3), RUN_DEV(BELKIN, F9L1103), RUN_DEV(BELKIN, F5D8053V3), RUN_DEV(BELKIN, F5D8055), RUN_DEV(BELKIN, F5D8055V2), RUN_DEV(BELKIN, F6D4050V1), RUN_DEV(BELKIN, F6D4050V2), RUN_DEV(BELKIN, RT2870_1), RUN_DEV(BELKIN, RT2870_2), RUN_DEV(CISCOLINKSYS, AE1000), RUN_DEV(CISCOLINKSYS2, RT3070), RUN_DEV(CISCOLINKSYS3, RT3070), RUN_DEV(CONCEPTRONIC2, RT2870_1), RUN_DEV(CONCEPTRONIC2, RT2870_2), RUN_DEV(CONCEPTRONIC2, RT2870_3), RUN_DEV(CONCEPTRONIC2, RT2870_4), RUN_DEV(CONCEPTRONIC2, RT2870_5), RUN_DEV(CONCEPTRONIC2, RT2870_6), RUN_DEV(CONCEPTRONIC2, RT2870_7), RUN_DEV(CONCEPTRONIC2, RT2870_8), RUN_DEV(CONCEPTRONIC2, RT3070_1), RUN_DEV(CONCEPTRONIC2, RT3070_2), RUN_DEV(CONCEPTRONIC2, VIGORN61), RUN_DEV(COREGA, CGWLUSB300GNM), RUN_DEV(COREGA, RT2870_1), RUN_DEV(COREGA, RT2870_2), RUN_DEV(COREGA, RT2870_3), RUN_DEV(COREGA, RT3070), RUN_DEV(CYBERTAN, RT2870), RUN_DEV(DLINK, RT2870), RUN_DEV(DLINK, RT3072), RUN_DEV(DLINK, DWA127), RUN_DEV(DLINK, DWA140B3), RUN_DEV(DLINK, DWA160B2), RUN_DEV(DLINK, DWA140D1), RUN_DEV(DLINK, DWA162), RUN_DEV(DLINK2, DWA130), RUN_DEV(DLINK2, RT2870_1), RUN_DEV(DLINK2, RT2870_2), RUN_DEV(DLINK2, RT3070_1), RUN_DEV(DLINK2, RT3070_2), RUN_DEV(DLINK2, RT3070_3), RUN_DEV(DLINK2, RT3070_4), RUN_DEV(DLINK2, RT3070_5), RUN_DEV(DLINK2, RT3072), RUN_DEV(DLINK2, RT3072_1), RUN_DEV(EDIMAX, EW7717), RUN_DEV(EDIMAX, EW7718), RUN_DEV(EDIMAX, EW7733UND), RUN_DEV(EDIMAX, RT2870_1), RUN_DEV(ENCORE, RT3070_1), RUN_DEV(ENCORE, RT3070_2), RUN_DEV(ENCORE, RT3070_3), RUN_DEV(GIGABYTE, GNWB31N), RUN_DEV(GIGABYTE, GNWB32L), RUN_DEV(GIGABYTE, RT2870_1), RUN_DEV(GIGASET, RT3070_1), RUN_DEV(GIGASET, RT3070_2), RUN_DEV(GUILLEMOT, HWNU300), RUN_DEV(HAWKING, HWUN2), RUN_DEV(HAWKING, RT2870_1), RUN_DEV(HAWKING, RT2870_2), RUN_DEV(HAWKING, RT3070), RUN_DEV(IODATA, RT3072_1), RUN_DEV(IODATA, RT3072_2), RUN_DEV(IODATA, RT3072_3), RUN_DEV(IODATA, RT3072_4), RUN_DEV(LINKSYS4, RT3070), RUN_DEV(LINKSYS4, WUSB100), RUN_DEV(LINKSYS4, WUSB54GCV3), RUN_DEV(LINKSYS4, WUSB600N), RUN_DEV(LINKSYS4, WUSB600NV2), RUN_DEV(LOGITEC, RT2870_1), RUN_DEV(LOGITEC, RT2870_2), RUN_DEV(LOGITEC, RT2870_3), RUN_DEV(LOGITEC, LANW300NU2), RUN_DEV(LOGITEC, LANW150NU2), RUN_DEV(LOGITEC, LANW300NU2S), RUN_DEV(MELCO, WLIUCG300HP), RUN_DEV(MELCO, RT2870_2), RUN_DEV(MELCO, WLIUCAG300N), RUN_DEV(MELCO, WLIUCG300N), RUN_DEV(MELCO, WLIUCG301N), RUN_DEV(MELCO, WLIUCGN), RUN_DEV(MELCO, WLIUCGNM), RUN_DEV(MELCO, WLIUCG300HPV1), RUN_DEV(MELCO, WLIUCGNM2), RUN_DEV(MOTOROLA4, RT2770), RUN_DEV(MOTOROLA4, RT3070), RUN_DEV(MSI, RT3070_1), RUN_DEV(MSI, RT3070_2), RUN_DEV(MSI, RT3070_3), RUN_DEV(MSI, RT3070_4), RUN_DEV(MSI, RT3070_5), RUN_DEV(MSI, RT3070_6), RUN_DEV(MSI, RT3070_7), RUN_DEV(MSI, RT3070_8), RUN_DEV(MSI, RT3070_9), RUN_DEV(MSI, RT3070_10), RUN_DEV(MSI, RT3070_11), RUN_DEV(NETGEAR, WNDA4100), RUN_DEV(OVISLINK, RT3072), RUN_DEV(PARA, RT3070), RUN_DEV(PEGATRON, RT2870), RUN_DEV(PEGATRON, RT3070), RUN_DEV(PEGATRON, RT3070_2), RUN_DEV(PEGATRON, RT3070_3), RUN_DEV(PHILIPS, RT2870), RUN_DEV(PLANEX2, GWUS300MINIS), RUN_DEV(PLANEX2, GWUSMICRON), RUN_DEV(PLANEX2, RT2870), RUN_DEV(PLANEX2, RT3070), RUN_DEV(QCOM, RT2870), RUN_DEV(QUANTA, RT3070), RUN_DEV(RALINK, RT2070), RUN_DEV(RALINK, RT2770), RUN_DEV(RALINK, RT2870), RUN_DEV(RALINK, RT3070), RUN_DEV(RALINK, RT3071), RUN_DEV(RALINK, RT3072), RUN_DEV(RALINK, RT3370), RUN_DEV(RALINK, RT3572), RUN_DEV(RALINK, RT3573), RUN_DEV(RALINK, RT5370), RUN_DEV(RALINK, RT5572), RUN_DEV(RALINK, RT8070), RUN_DEV(SAMSUNG, WIS09ABGN), RUN_DEV(SAMSUNG2, RT2870_1), RUN_DEV(SENAO, RT2870_1), RUN_DEV(SENAO, RT2870_2), RUN_DEV(SENAO, RT2870_3), RUN_DEV(SENAO, RT2870_4), RUN_DEV(SENAO, RT3070), RUN_DEV(SENAO, RT3071), RUN_DEV(SENAO, RT3072_1), RUN_DEV(SENAO, RT3072_2), RUN_DEV(SENAO, RT3072_3), RUN_DEV(SENAO, RT3072_4), RUN_DEV(SENAO, RT3072_5), RUN_DEV(SITECOMEU, RT2770), RUN_DEV(SITECOMEU, RT2870_1), RUN_DEV(SITECOMEU, RT2870_2), RUN_DEV(SITECOMEU, RT2870_3), RUN_DEV(SITECOMEU, RT2870_4), RUN_DEV(SITECOMEU, RT3070), RUN_DEV(SITECOMEU, RT3070_2), RUN_DEV(SITECOMEU, RT3070_3), RUN_DEV(SITECOMEU, RT3070_4), RUN_DEV(SITECOMEU, RT3071), RUN_DEV(SITECOMEU, RT3072_1), RUN_DEV(SITECOMEU, RT3072_2), RUN_DEV(SITECOMEU, RT3072_3), RUN_DEV(SITECOMEU, RT3072_4), RUN_DEV(SITECOMEU, RT3072_5), RUN_DEV(SITECOMEU, RT3072_6), RUN_DEV(SITECOMEU, WL608), RUN_DEV(SPARKLAN, RT2870_1), RUN_DEV(SPARKLAN, RT3070), RUN_DEV(SWEEX2, LW153), RUN_DEV(SWEEX2, LW303), RUN_DEV(SWEEX2, LW313), RUN_DEV(TOSHIBA, RT3070), RUN_DEV(UMEDIA, RT2870_1), RUN_DEV(ZCOM, RT2870_1), RUN_DEV(ZCOM, RT2870_2), RUN_DEV(ZINWELL, RT2870_1), RUN_DEV(ZINWELL, RT2870_2), RUN_DEV(ZINWELL, RT3070), RUN_DEV(ZINWELL, RT3072_1), RUN_DEV(ZINWELL, RT3072_2), RUN_DEV(ZYXEL, RT2870_1), RUN_DEV(ZYXEL, RT2870_2), RUN_DEV(ZYXEL, RT3070), RUN_DEV_EJECT(ZYXEL, NWD2705), RUN_DEV_EJECT(RALINK, RT_STOR), #undef RUN_DEV_EJECT #undef RUN_DEV }; static device_probe_t run_match; static device_attach_t run_attach; static device_detach_t run_detach; static usb_callback_t run_bulk_rx_callback; static usb_callback_t run_bulk_tx_callback0; static usb_callback_t run_bulk_tx_callback1; static usb_callback_t run_bulk_tx_callback2; static usb_callback_t run_bulk_tx_callback3; static usb_callback_t run_bulk_tx_callback4; static usb_callback_t run_bulk_tx_callback5; static void run_autoinst(void *, struct usb_device *, struct usb_attach_arg *); static int run_driver_loaded(struct module *, int, void *); static void run_bulk_tx_callbackN(struct usb_xfer *xfer, usb_error_t error, u_int index); static struct ieee80211vap *run_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void run_vap_delete(struct ieee80211vap *); static void run_cmdq_cb(void *, int); static void run_setup_tx_list(struct run_softc *, struct run_endpoint_queue *); static void run_unsetup_tx_list(struct run_softc *, struct run_endpoint_queue *); static int run_load_microcode(struct run_softc *); static int run_reset(struct run_softc *); static usb_error_t run_do_request(struct run_softc *, struct usb_device_request *, void *); static int run_read(struct run_softc *, uint16_t, uint32_t *); static int run_read_region_1(struct run_softc *, uint16_t, uint8_t *, int); static int run_write_2(struct run_softc *, uint16_t, uint16_t); static int run_write(struct run_softc *, uint16_t, uint32_t); static int run_write_region_1(struct run_softc *, uint16_t, const uint8_t *, int); static int run_set_region_4(struct run_softc *, uint16_t, uint32_t, int); static int run_efuse_read(struct run_softc *, uint16_t, uint16_t *, int); static int run_efuse_read_2(struct run_softc *, uint16_t, uint16_t *); static int run_eeprom_read_2(struct run_softc *, uint16_t, uint16_t *); static int run_rt2870_rf_write(struct run_softc *, uint32_t); static int run_rt3070_rf_read(struct run_softc *, uint8_t, uint8_t *); static int run_rt3070_rf_write(struct run_softc *, uint8_t, uint8_t); static int run_bbp_read(struct run_softc *, uint8_t, uint8_t *); static int run_bbp_write(struct run_softc *, uint8_t, uint8_t); static int run_mcu_cmd(struct run_softc *, uint8_t, uint16_t); static const char *run_get_rf(uint16_t); static void run_rt3593_get_txpower(struct run_softc *); static void run_get_txpower(struct run_softc *); static int run_read_eeprom(struct run_softc *); static struct ieee80211_node *run_node_alloc(struct ieee80211vap *, const uint8_t mac[IEEE80211_ADDR_LEN]); static int run_media_change(struct ifnet *); static int run_newstate(struct ieee80211vap *, enum ieee80211_state, int); static int run_wme_update(struct ieee80211com *); static void run_key_set_cb(void *); static int run_key_set(struct ieee80211vap *, struct ieee80211_key *); static void run_key_delete_cb(void *); static int run_key_delete(struct ieee80211vap *, struct ieee80211_key *); static void run_ratectl_to(void *); static void run_ratectl_cb(void *, int); static void run_drain_fifo(void *); static void run_iter_func(void *, struct ieee80211_node *); static void run_newassoc_cb(void *); static void run_newassoc(struct ieee80211_node *, int); static void run_recv_mgmt(struct ieee80211_node *, struct mbuf *, int, const struct ieee80211_rx_stats *, int, int); static void run_rx_frame(struct run_softc *, struct mbuf *, uint32_t); static void run_tx_free(struct run_endpoint_queue *pq, struct run_tx_data *, int); static void run_set_tx_desc(struct run_softc *, struct run_tx_data *); static int run_tx(struct run_softc *, struct mbuf *, struct ieee80211_node *); static int run_tx_mgt(struct run_softc *, struct mbuf *, struct ieee80211_node *); static int run_sendprot(struct run_softc *, const struct mbuf *, struct ieee80211_node *, int, int); static int run_tx_param(struct run_softc *, struct mbuf *, struct ieee80211_node *, const struct ieee80211_bpf_params *); static int run_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static int run_transmit(struct ieee80211com *, struct mbuf *); static void run_start(struct run_softc *); static void run_parent(struct ieee80211com *); static void run_iq_calib(struct run_softc *, u_int); static void run_set_agc(struct run_softc *, uint8_t); static void run_select_chan_group(struct run_softc *, int); static void run_set_rx_antenna(struct run_softc *, int); static void run_rt2870_set_chan(struct run_softc *, u_int); static void run_rt3070_set_chan(struct run_softc *, u_int); static void run_rt3572_set_chan(struct run_softc *, u_int); static void run_rt3593_set_chan(struct run_softc *, u_int); static void run_rt5390_set_chan(struct run_softc *, u_int); static void run_rt5592_set_chan(struct run_softc *, u_int); static int run_set_chan(struct run_softc *, struct ieee80211_channel *); static void run_set_channel(struct ieee80211com *); static void run_scan_start(struct ieee80211com *); static void run_scan_end(struct ieee80211com *); static void run_update_beacon(struct ieee80211vap *, int); static void run_update_beacon_cb(void *); static void run_updateprot(struct ieee80211com *); static void run_updateprot_cb(void *); static void run_usb_timeout_cb(void *); static void run_reset_livelock(struct run_softc *); static void run_enable_tsf_sync(struct run_softc *); static void run_enable_tsf(struct run_softc *); static void run_get_tsf(struct run_softc *, uint64_t *); static void run_enable_mrr(struct run_softc *); static void run_set_txpreamble(struct run_softc *); static void run_set_basicrates(struct run_softc *); static void run_set_leds(struct run_softc *, uint16_t); static void run_set_bssid(struct run_softc *, const uint8_t *); static void run_set_macaddr(struct run_softc *, const uint8_t *); static void run_updateslot(struct ieee80211com *); static void run_updateslot_cb(void *); static void run_update_mcast(struct ieee80211com *); static int8_t run_rssi2dbm(struct run_softc *, uint8_t, uint8_t); static void run_update_promisc_locked(struct run_softc *); static void run_update_promisc(struct ieee80211com *); static void run_rt5390_bbp_init(struct run_softc *); static int run_bbp_init(struct run_softc *); static int run_rt3070_rf_init(struct run_softc *); static void run_rt3593_rf_init(struct run_softc *); static void run_rt5390_rf_init(struct run_softc *); static int run_rt3070_filter_calib(struct run_softc *, uint8_t, uint8_t, uint8_t *); static void run_rt3070_rf_setup(struct run_softc *); static void run_rt3593_rf_setup(struct run_softc *); static void run_rt5390_rf_setup(struct run_softc *); static int run_txrx_enable(struct run_softc *); static void run_adjust_freq_offset(struct run_softc *); static void run_init_locked(struct run_softc *); static void run_stop(void *); static void run_delay(struct run_softc *, u_int); static eventhandler_tag run_etag; static const struct rt2860_rate { uint8_t rate; uint8_t mcs; enum ieee80211_phytype phy; uint8_t ctl_ridx; uint16_t sp_ack_dur; uint16_t lp_ack_dur; } rt2860_rates[] = { { 2, 0, IEEE80211_T_DS, 0, 314, 314 }, { 4, 1, IEEE80211_T_DS, 1, 258, 162 }, { 11, 2, IEEE80211_T_DS, 2, 223, 127 }, { 22, 3, IEEE80211_T_DS, 3, 213, 117 }, { 12, 0, IEEE80211_T_OFDM, 4, 60, 60 }, { 18, 1, IEEE80211_T_OFDM, 4, 52, 52 }, { 24, 2, IEEE80211_T_OFDM, 6, 48, 48 }, { 36, 3, IEEE80211_T_OFDM, 6, 44, 44 }, { 48, 4, IEEE80211_T_OFDM, 8, 44, 44 }, { 72, 5, IEEE80211_T_OFDM, 8, 40, 40 }, { 96, 6, IEEE80211_T_OFDM, 8, 40, 40 }, { 108, 7, IEEE80211_T_OFDM, 8, 40, 40 } }; static const struct { uint16_t reg; uint32_t val; } rt2870_def_mac[] = { RT2870_DEF_MAC }; static const struct { uint8_t reg; uint8_t val; } rt2860_def_bbp[] = { RT2860_DEF_BBP },rt5390_def_bbp[] = { RT5390_DEF_BBP },rt5592_def_bbp[] = { RT5592_DEF_BBP }; /* * Default values for BBP register R196 for RT5592. */ static const uint8_t rt5592_bbp_r196[] = { 0xe0, 0x1f, 0x38, 0x32, 0x08, 0x28, 0x19, 0x0a, 0xff, 0x00, 0x16, 0x10, 0x10, 0x0b, 0x36, 0x2c, 0x26, 0x24, 0x42, 0x36, 0x30, 0x2d, 0x4c, 0x46, 0x3d, 0x40, 0x3e, 0x42, 0x3d, 0x40, 0x3c, 0x34, 0x2c, 0x2f, 0x3c, 0x35, 0x2e, 0x2a, 0x49, 0x41, 0x36, 0x31, 0x30, 0x30, 0x0e, 0x0d, 0x28, 0x21, 0x1c, 0x16, 0x50, 0x4a, 0x43, 0x40, 0x10, 0x10, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7d, 0x14, 0x32, 0x2c, 0x36, 0x4c, 0x43, 0x2c, 0x2e, 0x36, 0x30, 0x6e }; static const struct rfprog { uint8_t chan; uint32_t r1, r2, r3, r4; } rt2860_rf2850[] = { RT2860_RF2850 }; struct { uint8_t n, r, k; } rt3070_freqs[] = { RT3070_RF3052 }; static const struct rt5592_freqs { uint16_t n; uint8_t k, m, r; } rt5592_freqs_20mhz[] = { RT5592_RF5592_20MHZ },rt5592_freqs_40mhz[] = { RT5592_RF5592_40MHZ }; static const struct { uint8_t reg; uint8_t val; } rt3070_def_rf[] = { RT3070_DEF_RF },rt3572_def_rf[] = { RT3572_DEF_RF },rt3593_def_rf[] = { RT3593_DEF_RF },rt5390_def_rf[] = { RT5390_DEF_RF },rt5392_def_rf[] = { RT5392_DEF_RF },rt5592_def_rf[] = { RT5592_DEF_RF },rt5592_2ghz_def_rf[] = { RT5592_2GHZ_DEF_RF },rt5592_5ghz_def_rf[] = { RT5592_5GHZ_DEF_RF }; static const struct { u_int firstchan; u_int lastchan; uint8_t reg; uint8_t val; } rt5592_chan_5ghz[] = { RT5592_CHAN_5GHZ }; static const struct usb_config run_config[RUN_N_XFER] = { [RUN_BULK_TX_BE] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .ep_index = 0, .direction = UE_DIR_OUT, .bufsize = RUN_MAX_TXSZ, .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = run_bulk_tx_callback0, .timeout = 5000, /* ms */ }, [RUN_BULK_TX_BK] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .ep_index = 1, .bufsize = RUN_MAX_TXSZ, .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = run_bulk_tx_callback1, .timeout = 5000, /* ms */ }, [RUN_BULK_TX_VI] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .ep_index = 2, .bufsize = RUN_MAX_TXSZ, .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = run_bulk_tx_callback2, .timeout = 5000, /* ms */ }, [RUN_BULK_TX_VO] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .ep_index = 3, .bufsize = RUN_MAX_TXSZ, .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = run_bulk_tx_callback3, .timeout = 5000, /* ms */ }, [RUN_BULK_TX_HCCA] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .ep_index = 4, .bufsize = RUN_MAX_TXSZ, .flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,}, .callback = run_bulk_tx_callback4, .timeout = 5000, /* ms */ }, [RUN_BULK_TX_PRIO] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .ep_index = 5, .bufsize = RUN_MAX_TXSZ, .flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,}, .callback = run_bulk_tx_callback5, .timeout = 5000, /* ms */ }, [RUN_BULK_RX] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = RUN_MAX_RXSZ, .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .callback = run_bulk_rx_callback, } }; static void run_autoinst(void *arg, struct usb_device *udev, struct usb_attach_arg *uaa) { struct usb_interface *iface; struct usb_interface_descriptor *id; if (uaa->dev_state != UAA_DEV_READY) return; iface = usbd_get_iface(udev, 0); if (iface == NULL) return; id = iface->idesc; if (id == NULL || id->bInterfaceClass != UICLASS_MASS) return; if (usbd_lookup_id_by_uaa(run_devs, sizeof(run_devs), uaa)) return; if (usb_msc_eject(udev, 0, MSC_EJECT_STOPUNIT) == 0) uaa->dev_state = UAA_DEV_EJECTING; } static int run_driver_loaded(struct module *mod, int what, void *arg) { switch (what) { case MOD_LOAD: run_etag = EVENTHANDLER_REGISTER(usb_dev_configured, run_autoinst, NULL, EVENTHANDLER_PRI_ANY); break; case MOD_UNLOAD: EVENTHANDLER_DEREGISTER(usb_dev_configured, run_etag); break; default: return (EOPNOTSUPP); } return (0); } static int run_match(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != 0) return (ENXIO); if (uaa->info.bIfaceIndex != RT2860_IFACE_INDEX) return (ENXIO); return (usbd_lookup_id_by_uaa(run_devs, sizeof(run_devs), uaa)); } static int run_attach(device_t self) { struct run_softc *sc = device_get_softc(self); struct usb_attach_arg *uaa = device_get_ivars(self); struct ieee80211com *ic = &sc->sc_ic; uint32_t ver; - uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)]; + uint8_t bands[IEEE80211_MODE_BYTES]; uint8_t iface_index; int ntries, error; device_set_usb_desc(self); sc->sc_udev = uaa->device; sc->sc_dev = self; if (USB_GET_DRIVER_INFO(uaa) != RUN_EJECT) sc->sc_flags |= RUN_FLAG_FWLOAD_NEEDED; mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, MTX_DEF); mbufq_init(&sc->sc_snd, ifqmaxlen); iface_index = RT2860_IFACE_INDEX; error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, run_config, RUN_N_XFER, sc, &sc->sc_mtx); if (error) { device_printf(self, "could not allocate USB transfers, " "err=%s\n", usbd_errstr(error)); goto detach; } RUN_LOCK(sc); /* wait for the chip to settle */ for (ntries = 0; ntries < 100; ntries++) { if (run_read(sc, RT2860_ASIC_VER_ID, &ver) != 0) { RUN_UNLOCK(sc); goto detach; } if (ver != 0 && ver != 0xffffffff) break; run_delay(sc, 10); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for NIC to initialize\n"); RUN_UNLOCK(sc); goto detach; } sc->mac_ver = ver >> 16; sc->mac_rev = ver & 0xffff; /* retrieve RF rev. no and various other things from EEPROM */ run_read_eeprom(sc); device_printf(sc->sc_dev, "MAC/BBP RT%04X (rev 0x%04X), RF %s (MIMO %dT%dR), address %s\n", sc->mac_ver, sc->mac_rev, run_get_rf(sc->rf_rev), sc->ntxchains, sc->nrxchains, ether_sprintf(ic->ic_macaddr)); RUN_UNLOCK(sc); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(self); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA | /* station mode supported */ IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_IBSS | IEEE80211_C_HOSTAP | IEEE80211_C_WDS | /* 4-address traffic works */ IEEE80211_C_MBSS | IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_WME | /* WME */ IEEE80211_C_WPA; /* WPA1|WPA2(RSN) */ ic->ic_cryptocaps = IEEE80211_CRYPTO_WEP | IEEE80211_CRYPTO_AES_CCM | IEEE80211_CRYPTO_TKIPMIC | IEEE80211_CRYPTO_TKIP; ic->ic_flags |= IEEE80211_F_DATAPAD; ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS; memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); if (sc->rf_rev == RT2860_RF_2750 || sc->rf_rev == RT2860_RF_2850 || sc->rf_rev == RT3070_RF_3052 || sc->rf_rev == RT3593_RF_3053 || sc->rf_rev == RT5592_RF_5592) setbit(bands, IEEE80211_MODE_11A); ieee80211_init_channels(ic, NULL, bands); ieee80211_ifattach(ic); ic->ic_scan_start = run_scan_start; ic->ic_scan_end = run_scan_end; ic->ic_set_channel = run_set_channel; ic->ic_node_alloc = run_node_alloc; ic->ic_newassoc = run_newassoc; ic->ic_updateslot = run_updateslot; ic->ic_update_mcast = run_update_mcast; ic->ic_wme.wme_update = run_wme_update; ic->ic_raw_xmit = run_raw_xmit; ic->ic_update_promisc = run_update_promisc; ic->ic_vap_create = run_vap_create; ic->ic_vap_delete = run_vap_delete; ic->ic_transmit = run_transmit; ic->ic_parent = run_parent; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), RUN_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), RUN_RX_RADIOTAP_PRESENT); TASK_INIT(&sc->cmdq_task, 0, run_cmdq_cb, sc); TASK_INIT(&sc->ratectl_task, 0, run_ratectl_cb, sc); usb_callout_init_mtx(&sc->ratectl_ch, &sc->sc_mtx, 0); if (bootverbose) ieee80211_announce(ic); return (0); detach: run_detach(self); return (ENXIO); } static void run_drain_mbufq(struct run_softc *sc) { struct mbuf *m; struct ieee80211_node *ni; RUN_LOCK_ASSERT(sc, MA_OWNED); while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; ieee80211_free_node(ni); m_freem(m); } } static int run_detach(device_t self) { struct run_softc *sc = device_get_softc(self); struct ieee80211com *ic = &sc->sc_ic; int i; RUN_LOCK(sc); sc->sc_detached = 1; RUN_UNLOCK(sc); /* stop all USB transfers */ usbd_transfer_unsetup(sc->sc_xfer, RUN_N_XFER); RUN_LOCK(sc); sc->ratectl_run = RUN_RATECTL_OFF; sc->cmdq_run = sc->cmdq_key_set = RUN_CMDQ_ABORT; /* free TX list, if any */ for (i = 0; i != RUN_EP_QUEUES; i++) run_unsetup_tx_list(sc, &sc->sc_epq[i]); /* Free TX queue */ run_drain_mbufq(sc); RUN_UNLOCK(sc); if (sc->sc_ic.ic_softc == sc) { /* drain tasks */ usb_callout_drain(&sc->ratectl_ch); ieee80211_draintask(ic, &sc->cmdq_task); ieee80211_draintask(ic, &sc->ratectl_task); ieee80211_ifdetach(ic); } mtx_destroy(&sc->sc_mtx); return (0); } static struct ieee80211vap * run_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct run_softc *sc = ic->ic_softc; struct run_vap *rvp; struct ieee80211vap *vap; int i; if (sc->rvp_cnt >= RUN_VAP_MAX) { device_printf(sc->sc_dev, "number of VAPs maxed out\n"); return (NULL); } switch (opmode) { case IEEE80211_M_STA: /* enable s/w bmiss handling for sta mode */ flags |= IEEE80211_CLONE_NOBEACONS; /* fall though */ case IEEE80211_M_IBSS: case IEEE80211_M_MONITOR: case IEEE80211_M_HOSTAP: case IEEE80211_M_MBSS: /* other than WDS vaps, only one at a time */ if (!TAILQ_EMPTY(&ic->ic_vaps)) return (NULL); break; case IEEE80211_M_WDS: TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next){ if(vap->iv_opmode != IEEE80211_M_HOSTAP) continue; /* WDS vap's always share the local mac address. */ flags &= ~IEEE80211_CLONE_BSSID; break; } if (vap == NULL) { device_printf(sc->sc_dev, "wds only supported in ap mode\n"); return (NULL); } break; default: device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); return (NULL); } rvp = malloc(sizeof(struct run_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &rvp->vap; if (ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid) != 0) { /* out of memory */ free(rvp, M_80211_VAP); return (NULL); } vap->iv_update_beacon = run_update_beacon; vap->iv_max_aid = RT2870_WCID_MAX; /* * To delete the right key from h/w, we need wcid. * Luckily, there is unused space in ieee80211_key{}, wk_pad, * and matching wcid will be written into there. So, cast * some spells to remove 'const' from ieee80211_key{} */ vap->iv_key_delete = (void *)run_key_delete; vap->iv_key_set = (void *)run_key_set; /* override state transition machine */ rvp->newstate = vap->iv_newstate; vap->iv_newstate = run_newstate; if (opmode == IEEE80211_M_IBSS) { rvp->recv_mgmt = vap->iv_recv_mgmt; vap->iv_recv_mgmt = run_recv_mgmt; } ieee80211_ratectl_init(vap); ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); /* complete setup */ ieee80211_vap_attach(vap, run_media_change, ieee80211_media_status, mac); /* make sure id is always unique */ for (i = 0; i < RUN_VAP_MAX; i++) { if((sc->rvp_bmap & 1 << i) == 0){ sc->rvp_bmap |= 1 << i; rvp->rvp_id = i; break; } } if (sc->rvp_cnt++ == 0) ic->ic_opmode = opmode; if (opmode == IEEE80211_M_HOSTAP) sc->cmdq_run = RUN_CMDQ_GO; DPRINTF("rvp_id=%d bmap=%x rvp_cnt=%d\n", rvp->rvp_id, sc->rvp_bmap, sc->rvp_cnt); return (vap); } static void run_vap_delete(struct ieee80211vap *vap) { struct run_vap *rvp = RUN_VAP(vap); struct ieee80211com *ic; struct run_softc *sc; uint8_t rvp_id; if (vap == NULL) return; ic = vap->iv_ic; sc = ic->ic_softc; RUN_LOCK(sc); m_freem(rvp->beacon_mbuf); rvp->beacon_mbuf = NULL; rvp_id = rvp->rvp_id; sc->ratectl_run &= ~(1 << rvp_id); sc->rvp_bmap &= ~(1 << rvp_id); run_set_region_4(sc, RT2860_SKEY(rvp_id, 0), 0, 128); run_set_region_4(sc, RT2860_BCN_BASE(rvp_id), 0, 512); --sc->rvp_cnt; DPRINTF("vap=%p rvp_id=%d bmap=%x rvp_cnt=%d\n", vap, rvp_id, sc->rvp_bmap, sc->rvp_cnt); RUN_UNLOCK(sc); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(rvp, M_80211_VAP); } /* * There are numbers of functions need to be called in context thread. * Rather than creating taskqueue event for each of those functions, * here is all-for-one taskqueue callback function. This function * gurantees deferred functions are executed in the same order they * were enqueued. * '& RUN_CMDQ_MASQ' is to loop cmdq[]. */ static void run_cmdq_cb(void *arg, int pending) { struct run_softc *sc = arg; uint8_t i; /* call cmdq[].func locked */ RUN_LOCK(sc); for (i = sc->cmdq_exec; sc->cmdq[i].func && pending; i = sc->cmdq_exec, pending--) { DPRINTFN(6, "cmdq_exec=%d pending=%d\n", i, pending); if (sc->cmdq_run == RUN_CMDQ_GO) { /* * If arg0 is NULL, callback func needs more * than one arg. So, pass ptr to cmdq struct. */ if (sc->cmdq[i].arg0) sc->cmdq[i].func(sc->cmdq[i].arg0); else sc->cmdq[i].func(&sc->cmdq[i]); } sc->cmdq[i].arg0 = NULL; sc->cmdq[i].func = NULL; sc->cmdq_exec++; sc->cmdq_exec &= RUN_CMDQ_MASQ; } RUN_UNLOCK(sc); } static void run_setup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq) { struct run_tx_data *data; memset(pq, 0, sizeof(*pq)); STAILQ_INIT(&pq->tx_qh); STAILQ_INIT(&pq->tx_fh); for (data = &pq->tx_data[0]; data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) { data->sc = sc; STAILQ_INSERT_TAIL(&pq->tx_fh, data, next); } pq->tx_nfree = RUN_TX_RING_COUNT; } static void run_unsetup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq) { struct run_tx_data *data; /* make sure any subsequent use of the queues will fail */ pq->tx_nfree = 0; STAILQ_INIT(&pq->tx_fh); STAILQ_INIT(&pq->tx_qh); /* free up all node references and mbufs */ for (data = &pq->tx_data[0]; data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) { if (data->m != NULL) { m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } } } static int run_load_microcode(struct run_softc *sc) { usb_device_request_t req; const struct firmware *fw; const u_char *base; uint32_t tmp; int ntries, error; const uint64_t *temp; uint64_t bytes; RUN_UNLOCK(sc); fw = firmware_get("runfw"); RUN_LOCK(sc); if (fw == NULL) { device_printf(sc->sc_dev, "failed loadfirmware of file %s\n", "runfw"); return ENOENT; } if (fw->datasize != 8192) { device_printf(sc->sc_dev, "invalid firmware size (should be 8KB)\n"); error = EINVAL; goto fail; } /* * RT3071/RT3072 use a different firmware * run-rt2870 (8KB) contains both, * first half (4KB) is for rt2870, * last half is for rt3071. */ base = fw->data; if ((sc->mac_ver) != 0x2860 && (sc->mac_ver) != 0x2872 && (sc->mac_ver) != 0x3070) { base += 4096; } /* cheap sanity check */ temp = fw->data; bytes = *temp; if (bytes != be64toh(0xffffff0210280210ULL)) { device_printf(sc->sc_dev, "firmware checksum failed\n"); error = EINVAL; goto fail; } /* write microcode image */ if (sc->sc_flags & RUN_FLAG_FWLOAD_NEEDED) { run_write_region_1(sc, RT2870_FW_BASE, base, 4096); run_write(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff); run_write(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff); } req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2870_RESET; USETW(req.wValue, 8); USETW(req.wIndex, 0); USETW(req.wLength, 0); if ((error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL)) != 0) { device_printf(sc->sc_dev, "firmware reset failed\n"); goto fail; } run_delay(sc, 10); run_write(sc, RT2860_H2M_BBPAGENT, 0); run_write(sc, RT2860_H2M_MAILBOX, 0); run_write(sc, RT2860_H2M_INTSRC, 0); if ((error = run_mcu_cmd(sc, RT2860_MCU_CMD_RFRESET, 0)) != 0) goto fail; /* wait until microcontroller is ready */ for (ntries = 0; ntries < 1000; ntries++) { if ((error = run_read(sc, RT2860_SYS_CTRL, &tmp)) != 0) goto fail; if (tmp & RT2860_MCU_READY) break; run_delay(sc, 10); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for MCU to initialize\n"); error = ETIMEDOUT; goto fail; } device_printf(sc->sc_dev, "firmware %s ver. %u.%u loaded\n", (base == fw->data) ? "RT2870" : "RT3071", *(base + 4092), *(base + 4093)); fail: firmware_put(fw, FIRMWARE_UNLOAD); return (error); } static int run_reset(struct run_softc *sc) { usb_device_request_t req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2870_RESET; USETW(req.wValue, 1); USETW(req.wIndex, 0); USETW(req.wLength, 0); return (usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL)); } static usb_error_t run_do_request(struct run_softc *sc, struct usb_device_request *req, void *data) { usb_error_t err; int ntries = 10; RUN_LOCK_ASSERT(sc, MA_OWNED); while (ntries--) { err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, req, data, 0, NULL, 250 /* ms */); if (err == 0) break; DPRINTFN(1, "Control request failed, %s (retrying)\n", usbd_errstr(err)); run_delay(sc, 10); } return (err); } static int run_read(struct run_softc *sc, uint16_t reg, uint32_t *val) { uint32_t tmp; int error; error = run_read_region_1(sc, reg, (uint8_t *)&tmp, sizeof tmp); if (error == 0) *val = le32toh(tmp); else *val = 0xffffffff; return (error); } static int run_read_region_1(struct run_softc *sc, uint16_t reg, uint8_t *buf, int len) { usb_device_request_t req; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RT2870_READ_REGION_1; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); return (run_do_request(sc, &req, buf)); } static int run_write_2(struct run_softc *sc, uint16_t reg, uint16_t val) { usb_device_request_t req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2870_WRITE_2; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 0); return (run_do_request(sc, &req, NULL)); } static int run_write(struct run_softc *sc, uint16_t reg, uint32_t val) { int error; if ((error = run_write_2(sc, reg, val & 0xffff)) == 0) error = run_write_2(sc, reg + 2, val >> 16); return (error); } static int run_write_region_1(struct run_softc *sc, uint16_t reg, const uint8_t *buf, int len) { #if 1 int i, error = 0; /* * NB: the WRITE_REGION_1 command is not stable on RT2860. * We thus issue multiple WRITE_2 commands instead. */ KASSERT((len & 1) == 0, ("run_write_region_1: Data too long.\n")); for (i = 0; i < len && error == 0; i += 2) error = run_write_2(sc, reg + i, buf[i] | buf[i + 1] << 8); return (error); #else usb_device_request_t req; int error = 0; /* * NOTE: It appears the WRITE_REGION_1 command cannot be * passed a huge amount of data, which will crash the * firmware. Limit amount of data passed to 64-bytes at a * time. */ while (len > 0) { int delta = 64; if (delta > len) delta = len; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RT2870_WRITE_REGION_1; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, delta); error = run_do_request(sc, &req, __DECONST(uint8_t *, buf)); if (error != 0) break; reg += delta; buf += delta; len -= delta; } return (error); #endif } static int run_set_region_4(struct run_softc *sc, uint16_t reg, uint32_t val, int len) { int i, error = 0; KASSERT((len & 3) == 0, ("run_set_region_4: Invalid data length.\n")); for (i = 0; i < len && error == 0; i += 4) error = run_write(sc, reg + i, val); return (error); } static int run_efuse_read(struct run_softc *sc, uint16_t addr, uint16_t *val, int count) { uint32_t tmp; uint16_t reg; int error, ntries; if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0) return (error); if (count == 2) addr *= 2; /*- * Read one 16-byte block into registers EFUSE_DATA[0-3]: * DATA0: F E D C * DATA1: B A 9 8 * DATA2: 7 6 5 4 * DATA3: 3 2 1 0 */ tmp &= ~(RT3070_EFSROM_MODE_MASK | RT3070_EFSROM_AIN_MASK); tmp |= (addr & ~0xf) << RT3070_EFSROM_AIN_SHIFT | RT3070_EFSROM_KICK; run_write(sc, RT3070_EFUSE_CTRL, tmp); for (ntries = 0; ntries < 100; ntries++) { if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0) return (error); if (!(tmp & RT3070_EFSROM_KICK)) break; run_delay(sc, 2); } if (ntries == 100) return (ETIMEDOUT); if ((tmp & RT3070_EFUSE_AOUT_MASK) == RT3070_EFUSE_AOUT_MASK) { *val = 0xffff; /* address not found */ return (0); } /* determine to which 32-bit register our 16-bit word belongs */ reg = RT3070_EFUSE_DATA3 - (addr & 0xc); if ((error = run_read(sc, reg, &tmp)) != 0) return (error); tmp >>= (8 * (addr & 0x3)); *val = (addr & 1) ? tmp >> 16 : tmp & 0xffff; return (0); } /* Read 16-bit from eFUSE ROM for RT3xxx. */ static int run_efuse_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val) { return (run_efuse_read(sc, addr, val, 2)); } static int run_eeprom_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val) { usb_device_request_t req; uint16_t tmp; int error; addr *= 2; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RT2870_EEPROM_READ; USETW(req.wValue, 0); USETW(req.wIndex, addr); USETW(req.wLength, sizeof(tmp)); error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, &tmp); if (error == 0) *val = le16toh(tmp); else *val = 0xffff; return (error); } static __inline int run_srom_read(struct run_softc *sc, uint16_t addr, uint16_t *val) { /* either eFUSE ROM or EEPROM */ return sc->sc_srom_read(sc, addr, val); } static int run_rt2870_rf_write(struct run_softc *sc, uint32_t val) { uint32_t tmp; int error, ntries; for (ntries = 0; ntries < 10; ntries++) { if ((error = run_read(sc, RT2860_RF_CSR_CFG0, &tmp)) != 0) return (error); if (!(tmp & RT2860_RF_REG_CTRL)) break; } if (ntries == 10) return (ETIMEDOUT); return (run_write(sc, RT2860_RF_CSR_CFG0, val)); } static int run_rt3070_rf_read(struct run_softc *sc, uint8_t reg, uint8_t *val) { uint32_t tmp; int error, ntries; for (ntries = 0; ntries < 100; ntries++) { if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0) return (error); if (!(tmp & RT3070_RF_KICK)) break; } if (ntries == 100) return (ETIMEDOUT); tmp = RT3070_RF_KICK | reg << 8; if ((error = run_write(sc, RT3070_RF_CSR_CFG, tmp)) != 0) return (error); for (ntries = 0; ntries < 100; ntries++) { if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0) return (error); if (!(tmp & RT3070_RF_KICK)) break; } if (ntries == 100) return (ETIMEDOUT); *val = tmp & 0xff; return (0); } static int run_rt3070_rf_write(struct run_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; int error, ntries; for (ntries = 0; ntries < 10; ntries++) { if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0) return (error); if (!(tmp & RT3070_RF_KICK)) break; } if (ntries == 10) return (ETIMEDOUT); tmp = RT3070_RF_WRITE | RT3070_RF_KICK | reg << 8 | val; return (run_write(sc, RT3070_RF_CSR_CFG, tmp)); } static int run_bbp_read(struct run_softc *sc, uint8_t reg, uint8_t *val) { uint32_t tmp; int ntries, error; for (ntries = 0; ntries < 10; ntries++) { if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0) return (error); if (!(tmp & RT2860_BBP_CSR_KICK)) break; } if (ntries == 10) return (ETIMEDOUT); tmp = RT2860_BBP_CSR_READ | RT2860_BBP_CSR_KICK | reg << 8; if ((error = run_write(sc, RT2860_BBP_CSR_CFG, tmp)) != 0) return (error); for (ntries = 0; ntries < 10; ntries++) { if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0) return (error); if (!(tmp & RT2860_BBP_CSR_KICK)) break; } if (ntries == 10) return (ETIMEDOUT); *val = tmp & 0xff; return (0); } static int run_bbp_write(struct run_softc *sc, uint8_t reg, uint8_t val) { uint32_t tmp; int ntries, error; for (ntries = 0; ntries < 10; ntries++) { if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0) return (error); if (!(tmp & RT2860_BBP_CSR_KICK)) break; } if (ntries == 10) return (ETIMEDOUT); tmp = RT2860_BBP_CSR_KICK | reg << 8 | val; return (run_write(sc, RT2860_BBP_CSR_CFG, tmp)); } /* * Send a command to the 8051 microcontroller unit. */ static int run_mcu_cmd(struct run_softc *sc, uint8_t cmd, uint16_t arg) { uint32_t tmp; int error, ntries; for (ntries = 0; ntries < 100; ntries++) { if ((error = run_read(sc, RT2860_H2M_MAILBOX, &tmp)) != 0) return error; if (!(tmp & RT2860_H2M_BUSY)) break; } if (ntries == 100) return ETIMEDOUT; tmp = RT2860_H2M_BUSY | RT2860_TOKEN_NO_INTR << 16 | arg; if ((error = run_write(sc, RT2860_H2M_MAILBOX, tmp)) == 0) error = run_write(sc, RT2860_HOST_CMD, cmd); return (error); } /* * Add `delta' (signed) to each 4-bit sub-word of a 32-bit word. * Used to adjust per-rate Tx power registers. */ static __inline uint32_t b4inc(uint32_t b32, int8_t delta) { int8_t i, b4; for (i = 0; i < 8; i++) { b4 = b32 & 0xf; b4 += delta; if (b4 < 0) b4 = 0; else if (b4 > 0xf) b4 = 0xf; b32 = b32 >> 4 | b4 << 28; } return (b32); } static const char * run_get_rf(uint16_t rev) { switch (rev) { case RT2860_RF_2820: return "RT2820"; case RT2860_RF_2850: return "RT2850"; case RT2860_RF_2720: return "RT2720"; case RT2860_RF_2750: return "RT2750"; case RT3070_RF_3020: return "RT3020"; case RT3070_RF_2020: return "RT2020"; case RT3070_RF_3021: return "RT3021"; case RT3070_RF_3022: return "RT3022"; case RT3070_RF_3052: return "RT3052"; case RT3593_RF_3053: return "RT3053"; case RT5592_RF_5592: return "RT5592"; case RT5390_RF_5370: return "RT5370"; case RT5390_RF_5372: return "RT5372"; } return ("unknown"); } static void run_rt3593_get_txpower(struct run_softc *sc) { uint16_t addr, val; int i; /* Read power settings for 2GHz channels. */ for (i = 0; i < 14; i += 2) { addr = (sc->ntxchains == 3) ? RT3593_EEPROM_PWR2GHZ_BASE1 : RT2860_EEPROM_PWR2GHZ_BASE1; run_srom_read(sc, addr + i / 2, &val); sc->txpow1[i + 0] = (int8_t)(val & 0xff); sc->txpow1[i + 1] = (int8_t)(val >> 8); addr = (sc->ntxchains == 3) ? RT3593_EEPROM_PWR2GHZ_BASE2 : RT2860_EEPROM_PWR2GHZ_BASE2; run_srom_read(sc, addr + i / 2, &val); sc->txpow2[i + 0] = (int8_t)(val & 0xff); sc->txpow2[i + 1] = (int8_t)(val >> 8); if (sc->ntxchains == 3) { run_srom_read(sc, RT3593_EEPROM_PWR2GHZ_BASE3 + i / 2, &val); sc->txpow3[i + 0] = (int8_t)(val & 0xff); sc->txpow3[i + 1] = (int8_t)(val >> 8); } } /* Fix broken Tx power entries. */ for (i = 0; i < 14; i++) { if (sc->txpow1[i] > 31) sc->txpow1[i] = 5; if (sc->txpow2[i] > 31) sc->txpow2[i] = 5; if (sc->ntxchains == 3) { if (sc->txpow3[i] > 31) sc->txpow3[i] = 5; } } /* Read power settings for 5GHz channels. */ for (i = 0; i < 40; i += 2) { run_srom_read(sc, RT3593_EEPROM_PWR5GHZ_BASE1 + i / 2, &val); sc->txpow1[i + 14] = (int8_t)(val & 0xff); sc->txpow1[i + 15] = (int8_t)(val >> 8); run_srom_read(sc, RT3593_EEPROM_PWR5GHZ_BASE2 + i / 2, &val); sc->txpow2[i + 14] = (int8_t)(val & 0xff); sc->txpow2[i + 15] = (int8_t)(val >> 8); if (sc->ntxchains == 3) { run_srom_read(sc, RT3593_EEPROM_PWR5GHZ_BASE3 + i / 2, &val); sc->txpow3[i + 14] = (int8_t)(val & 0xff); sc->txpow3[i + 15] = (int8_t)(val >> 8); } } } static void run_get_txpower(struct run_softc *sc) { uint16_t val; int i; /* Read power settings for 2GHz channels. */ for (i = 0; i < 14; i += 2) { run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2, &val); sc->txpow1[i + 0] = (int8_t)(val & 0xff); sc->txpow1[i + 1] = (int8_t)(val >> 8); if (sc->mac_ver != 0x5390) { run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2, &val); sc->txpow2[i + 0] = (int8_t)(val & 0xff); sc->txpow2[i + 1] = (int8_t)(val >> 8); } } /* Fix broken Tx power entries. */ for (i = 0; i < 14; i++) { if (sc->mac_ver >= 0x5390) { if (sc->txpow1[i] < 0 || sc->txpow1[i] > 39) sc->txpow1[i] = 5; } else { if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31) sc->txpow1[i] = 5; } if (sc->mac_ver > 0x5390) { if (sc->txpow2[i] < 0 || sc->txpow2[i] > 39) sc->txpow2[i] = 5; } else if (sc->mac_ver < 0x5390) { if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31) sc->txpow2[i] = 5; } DPRINTF("chan %d: power1=%d, power2=%d\n", rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i]); } /* Read power settings for 5GHz channels. */ for (i = 0; i < 40; i += 2) { run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2, &val); sc->txpow1[i + 14] = (int8_t)(val & 0xff); sc->txpow1[i + 15] = (int8_t)(val >> 8); run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2, &val); sc->txpow2[i + 14] = (int8_t)(val & 0xff); sc->txpow2[i + 15] = (int8_t)(val >> 8); } /* Fix broken Tx power entries. */ for (i = 0; i < 40; i++ ) { if (sc->mac_ver != 0x5592) { if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15) sc->txpow1[14 + i] = 5; if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15) sc->txpow2[14 + i] = 5; } DPRINTF("chan %d: power1=%d, power2=%d\n", rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i], sc->txpow2[14 + i]); } } static int run_read_eeprom(struct run_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; int8_t delta_2ghz, delta_5ghz; uint32_t tmp; uint16_t val; int ridx, ant, i; /* check whether the ROM is eFUSE ROM or EEPROM */ sc->sc_srom_read = run_eeprom_read_2; if (sc->mac_ver >= 0x3070) { run_read(sc, RT3070_EFUSE_CTRL, &tmp); DPRINTF("EFUSE_CTRL=0x%08x\n", tmp); if ((tmp & RT3070_SEL_EFUSE) || sc->mac_ver == 0x3593) sc->sc_srom_read = run_efuse_read_2; } /* read ROM version */ run_srom_read(sc, RT2860_EEPROM_VERSION, &val); DPRINTF("EEPROM rev=%d, FAE=%d\n", val >> 8, val & 0xff); /* read MAC address */ run_srom_read(sc, RT2860_EEPROM_MAC01, &val); ic->ic_macaddr[0] = val & 0xff; ic->ic_macaddr[1] = val >> 8; run_srom_read(sc, RT2860_EEPROM_MAC23, &val); ic->ic_macaddr[2] = val & 0xff; ic->ic_macaddr[3] = val >> 8; run_srom_read(sc, RT2860_EEPROM_MAC45, &val); ic->ic_macaddr[4] = val & 0xff; ic->ic_macaddr[5] = val >> 8; if (sc->mac_ver < 0x3593) { /* read vender BBP settings */ for (i = 0; i < 10; i++) { run_srom_read(sc, RT2860_EEPROM_BBP_BASE + i, &val); sc->bbp[i].val = val & 0xff; sc->bbp[i].reg = val >> 8; DPRINTF("BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val); } if (sc->mac_ver >= 0x3071) { /* read vendor RF settings */ for (i = 0; i < 10; i++) { run_srom_read(sc, RT3071_EEPROM_RF_BASE + i, &val); sc->rf[i].val = val & 0xff; sc->rf[i].reg = val >> 8; DPRINTF("RF%d=0x%02x\n", sc->rf[i].reg, sc->rf[i].val); } } } /* read RF frequency offset from EEPROM */ run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_FREQ_LEDS : RT3593_EEPROM_FREQ, &val); sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0; DPRINTF("EEPROM freq offset %d\n", sc->freq & 0xff); run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_FREQ_LEDS : RT3593_EEPROM_FREQ_LEDS, &val); if (val >> 8 != 0xff) { /* read LEDs operating mode */ sc->leds = val >> 8; run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_LED1 : RT3593_EEPROM_LED1, &sc->led[0]); run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_LED2 : RT3593_EEPROM_LED2, &sc->led[1]); run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_LED3 : RT3593_EEPROM_LED3, &sc->led[2]); } else { /* broken EEPROM, use default settings */ sc->leds = 0x01; sc->led[0] = 0x5555; sc->led[1] = 0x2221; sc->led[2] = 0x5627; /* differs from RT2860 */ } DPRINTF("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n", sc->leds, sc->led[0], sc->led[1], sc->led[2]); /* read RF information */ if (sc->mac_ver == 0x5390 || sc->mac_ver ==0x5392) run_srom_read(sc, 0x00, &val); else run_srom_read(sc, RT2860_EEPROM_ANTENNA, &val); if (val == 0xffff) { device_printf(sc->sc_dev, "invalid EEPROM antenna info, using default\n"); DPRINTF("invalid EEPROM antenna info, using default\n"); if (sc->mac_ver == 0x3572) { /* default to RF3052 2T2R */ sc->rf_rev = RT3070_RF_3052; sc->ntxchains = 2; sc->nrxchains = 2; } else if (sc->mac_ver >= 0x3070) { /* default to RF3020 1T1R */ sc->rf_rev = RT3070_RF_3020; sc->ntxchains = 1; sc->nrxchains = 1; } else { /* default to RF2820 1T2R */ sc->rf_rev = RT2860_RF_2820; sc->ntxchains = 1; sc->nrxchains = 2; } } else { if (sc->mac_ver == 0x5390 || sc->mac_ver ==0x5392) { sc->rf_rev = val; run_srom_read(sc, RT2860_EEPROM_ANTENNA, &val); } else sc->rf_rev = (val >> 8) & 0xf; sc->ntxchains = (val >> 4) & 0xf; sc->nrxchains = val & 0xf; } DPRINTF("EEPROM RF rev=0x%04x chains=%dT%dR\n", sc->rf_rev, sc->ntxchains, sc->nrxchains); /* check if RF supports automatic Tx access gain control */ run_srom_read(sc, RT2860_EEPROM_CONFIG, &val); DPRINTF("EEPROM CFG 0x%04x\n", val); /* check if driver should patch the DAC issue */ if ((val >> 8) != 0xff) sc->patch_dac = (val >> 15) & 1; if ((val & 0xff) != 0xff) { sc->ext_5ghz_lna = (val >> 3) & 1; sc->ext_2ghz_lna = (val >> 2) & 1; /* check if RF supports automatic Tx access gain control */ sc->calib_2ghz = sc->calib_5ghz = (val >> 1) & 1; /* check if we have a hardware radio switch */ sc->rfswitch = val & 1; } /* Read Tx power settings. */ if (sc->mac_ver == 0x3593) run_rt3593_get_txpower(sc); else run_get_txpower(sc); /* read Tx power compensation for each Tx rate */ run_srom_read(sc, RT2860_EEPROM_DELTAPWR, &val); delta_2ghz = delta_5ghz = 0; if ((val & 0xff) != 0xff && (val & 0x80)) { delta_2ghz = val & 0xf; if (!(val & 0x40)) /* negative number */ delta_2ghz = -delta_2ghz; } val >>= 8; if ((val & 0xff) != 0xff && (val & 0x80)) { delta_5ghz = val & 0xf; if (!(val & 0x40)) /* negative number */ delta_5ghz = -delta_5ghz; } DPRINTF("power compensation=%d (2GHz), %d (5GHz)\n", delta_2ghz, delta_5ghz); for (ridx = 0; ridx < 5; ridx++) { uint32_t reg; run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2, &val); reg = val; run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2 + 1, &val); reg |= (uint32_t)val << 16; sc->txpow20mhz[ridx] = reg; sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz); sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz); DPRINTF("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, " "40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx], sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]); } /* Read RSSI offsets and LNA gains from EEPROM. */ run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_RSSI1_2GHZ : RT3593_EEPROM_RSSI1_2GHZ, &val); sc->rssi_2ghz[0] = val & 0xff; /* Ant A */ sc->rssi_2ghz[1] = val >> 8; /* Ant B */ run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_RSSI2_2GHZ : RT3593_EEPROM_RSSI2_2GHZ, &val); if (sc->mac_ver >= 0x3070) { if (sc->mac_ver == 0x3593) { sc->txmixgain_2ghz = 0; sc->rssi_2ghz[2] = val & 0xff; /* Ant C */ } else { /* * On RT3070 chips (limited to 2 Rx chains), this ROM * field contains the Tx mixer gain for the 2GHz band. */ if ((val & 0xff) != 0xff) sc->txmixgain_2ghz = val & 0x7; } DPRINTF("tx mixer gain=%u (2GHz)\n", sc->txmixgain_2ghz); } else sc->rssi_2ghz[2] = val & 0xff; /* Ant C */ if (sc->mac_ver == 0x3593) run_srom_read(sc, RT3593_EEPROM_LNA_5GHZ, &val); sc->lna[2] = val >> 8; /* channel group 2 */ run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_RSSI1_5GHZ : RT3593_EEPROM_RSSI1_5GHZ, &val); sc->rssi_5ghz[0] = val & 0xff; /* Ant A */ sc->rssi_5ghz[1] = val >> 8; /* Ant B */ run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_RSSI2_5GHZ : RT3593_EEPROM_RSSI2_5GHZ, &val); if (sc->mac_ver == 0x3572) { /* * On RT3572 chips (limited to 2 Rx chains), this ROM * field contains the Tx mixer gain for the 5GHz band. */ if ((val & 0xff) != 0xff) sc->txmixgain_5ghz = val & 0x7; DPRINTF("tx mixer gain=%u (5GHz)\n", sc->txmixgain_5ghz); } else sc->rssi_5ghz[2] = val & 0xff; /* Ant C */ if (sc->mac_ver == 0x3593) { sc->txmixgain_5ghz = 0; run_srom_read(sc, RT3593_EEPROM_LNA_5GHZ, &val); } sc->lna[3] = val >> 8; /* channel group 3 */ run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_LNA : RT3593_EEPROM_LNA, &val); sc->lna[0] = val & 0xff; /* channel group 0 */ sc->lna[1] = val >> 8; /* channel group 1 */ /* fix broken 5GHz LNA entries */ if (sc->lna[2] == 0 || sc->lna[2] == 0xff) { DPRINTF("invalid LNA for channel group %d\n", 2); sc->lna[2] = sc->lna[1]; } if (sc->lna[3] == 0 || sc->lna[3] == 0xff) { DPRINTF("invalid LNA for channel group %d\n", 3); sc->lna[3] = sc->lna[1]; } /* fix broken RSSI offset entries */ for (ant = 0; ant < 3; ant++) { if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) { DPRINTF("invalid RSSI%d offset: %d (2GHz)\n", ant + 1, sc->rssi_2ghz[ant]); sc->rssi_2ghz[ant] = 0; } if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) { DPRINTF("invalid RSSI%d offset: %d (5GHz)\n", ant + 1, sc->rssi_5ghz[ant]); sc->rssi_5ghz[ant] = 0; } } return (0); } static struct ieee80211_node * run_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) { return malloc(sizeof (struct run_node), M_DEVBUF, M_NOWAIT | M_ZERO); } static int run_media_change(struct ifnet *ifp) { struct ieee80211vap *vap = ifp->if_softc; struct ieee80211com *ic = vap->iv_ic; const struct ieee80211_txparam *tp; struct run_softc *sc = ic->ic_softc; uint8_t rate, ridx; int error; RUN_LOCK(sc); error = ieee80211_media_change(ifp); if (error != ENETRESET) { RUN_UNLOCK(sc); return (error); } tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { struct ieee80211_node *ni; struct run_node *rn; rate = ic->ic_sup_rates[ic->ic_curmode]. rs_rates[tp->ucastrate] & IEEE80211_RATE_VAL; for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) if (rt2860_rates[ridx].rate == rate) break; ni = ieee80211_ref_node(vap->iv_bss); rn = RUN_NODE(ni); rn->fix_ridx = ridx; DPRINTF("rate=%d, fix_ridx=%d\n", rate, rn->fix_ridx); ieee80211_free_node(ni); } #if 0 if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & RUN_RUNNING)){ run_init_locked(sc); } #endif RUN_UNLOCK(sc); return (0); } static int run_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { const struct ieee80211_txparam *tp; struct ieee80211com *ic = vap->iv_ic; struct run_softc *sc = ic->ic_softc; struct run_vap *rvp = RUN_VAP(vap); enum ieee80211_state ostate; uint32_t sta[3]; uint32_t tmp; uint8_t ratectl; uint8_t restart_ratectl = 0; uint8_t bid = 1 << rvp->rvp_id; ostate = vap->iv_state; DPRINTF("%s -> %s\n", ieee80211_state_name[ostate], ieee80211_state_name[nstate]); IEEE80211_UNLOCK(ic); RUN_LOCK(sc); ratectl = sc->ratectl_run; /* remember current state */ sc->ratectl_run = RUN_RATECTL_OFF; usb_callout_stop(&sc->ratectl_ch); if (ostate == IEEE80211_S_RUN) { /* turn link LED off */ run_set_leds(sc, RT2860_LED_RADIO); } switch (nstate) { case IEEE80211_S_INIT: restart_ratectl = 1; if (ostate != IEEE80211_S_RUN) break; ratectl &= ~bid; sc->runbmap &= ~bid; /* abort TSF synchronization if there is no vap running */ if (--sc->running == 0) { run_read(sc, RT2860_BCN_TIME_CFG, &tmp); run_write(sc, RT2860_BCN_TIME_CFG, tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN)); } break; case IEEE80211_S_RUN: if (!(sc->runbmap & bid)) { if(sc->running++) restart_ratectl = 1; sc->runbmap |= bid; } m_freem(rvp->beacon_mbuf); rvp->beacon_mbuf = NULL; switch (vap->iv_opmode) { case IEEE80211_M_HOSTAP: case IEEE80211_M_MBSS: sc->ap_running |= bid; ic->ic_opmode = vap->iv_opmode; run_update_beacon_cb(vap); break; case IEEE80211_M_IBSS: sc->adhoc_running |= bid; if (!sc->ap_running) ic->ic_opmode = vap->iv_opmode; run_update_beacon_cb(vap); break; case IEEE80211_M_STA: sc->sta_running |= bid; if (!sc->ap_running && !sc->adhoc_running) ic->ic_opmode = vap->iv_opmode; /* read statistic counters (clear on read) */ run_read_region_1(sc, RT2860_TX_STA_CNT0, (uint8_t *)sta, sizeof sta); break; default: ic->ic_opmode = vap->iv_opmode; break; } if (vap->iv_opmode != IEEE80211_M_MONITOR) { struct ieee80211_node *ni; if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) { RUN_UNLOCK(sc); IEEE80211_LOCK(ic); return (-1); } run_updateslot(ic); run_enable_mrr(sc); run_set_txpreamble(sc); run_set_basicrates(sc); ni = ieee80211_ref_node(vap->iv_bss); IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); run_set_bssid(sc, sc->sc_bssid); ieee80211_free_node(ni); run_enable_tsf_sync(sc); /* enable automatic rate adaptation */ tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) ratectl |= bid; } else run_enable_tsf(sc); /* turn link LED on */ run_set_leds(sc, RT2860_LED_RADIO | (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan) ? RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ)); break; default: DPRINTFN(6, "undefined case\n"); break; } /* restart amrr for running VAPs */ if ((sc->ratectl_run = ratectl) && restart_ratectl) usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc); RUN_UNLOCK(sc); IEEE80211_LOCK(ic); return(rvp->newstate(vap, nstate, arg)); } static int run_wme_update(struct ieee80211com *ic) { struct run_softc *sc = ic->ic_softc; const struct wmeParams *ac = ic->ic_wme.wme_chanParams.cap_wmeParams; int aci, error = 0; /* update MAC TX configuration registers */ RUN_LOCK(sc); for (aci = 0; aci < WME_NUM_AC; aci++) { error = run_write(sc, RT2860_EDCA_AC_CFG(aci), ac[aci].wmep_logcwmax << 16 | ac[aci].wmep_logcwmin << 12 | ac[aci].wmep_aifsn << 8 | ac[aci].wmep_txopLimit); if (error) goto err; } /* update SCH/DMA registers too */ error = run_write(sc, RT2860_WMM_AIFSN_CFG, ac[WME_AC_VO].wmep_aifsn << 12 | ac[WME_AC_VI].wmep_aifsn << 8 | ac[WME_AC_BK].wmep_aifsn << 4 | ac[WME_AC_BE].wmep_aifsn); if (error) goto err; error = run_write(sc, RT2860_WMM_CWMIN_CFG, ac[WME_AC_VO].wmep_logcwmin << 12 | ac[WME_AC_VI].wmep_logcwmin << 8 | ac[WME_AC_BK].wmep_logcwmin << 4 | ac[WME_AC_BE].wmep_logcwmin); if (error) goto err; error = run_write(sc, RT2860_WMM_CWMAX_CFG, ac[WME_AC_VO].wmep_logcwmax << 12 | ac[WME_AC_VI].wmep_logcwmax << 8 | ac[WME_AC_BK].wmep_logcwmax << 4 | ac[WME_AC_BE].wmep_logcwmax); if (error) goto err; error = run_write(sc, RT2860_WMM_TXOP0_CFG, ac[WME_AC_BK].wmep_txopLimit << 16 | ac[WME_AC_BE].wmep_txopLimit); if (error) goto err; error = run_write(sc, RT2860_WMM_TXOP1_CFG, ac[WME_AC_VO].wmep_txopLimit << 16 | ac[WME_AC_VI].wmep_txopLimit); err: RUN_UNLOCK(sc); if (error) DPRINTF("WME update failed\n"); return (error); } static void run_key_set_cb(void *arg) { struct run_cmdq *cmdq = arg; struct ieee80211vap *vap = cmdq->arg1; struct ieee80211_key *k = cmdq->k; struct ieee80211com *ic = vap->iv_ic; struct run_softc *sc = ic->ic_softc; struct ieee80211_node *ni; u_int cipher = k->wk_cipher->ic_cipher; uint32_t attr; uint16_t base, associd; uint8_t mode, wcid, iv[8]; RUN_LOCK_ASSERT(sc, MA_OWNED); if (vap->iv_opmode == IEEE80211_M_HOSTAP) ni = ieee80211_find_vap_node(&ic->ic_sta, vap, cmdq->mac); else ni = vap->iv_bss; associd = (ni != NULL) ? ni->ni_associd : 0; /* map net80211 cipher to RT2860 security mode */ switch (cipher) { case IEEE80211_CIPHER_WEP: if(k->wk_keylen < 8) mode = RT2860_MODE_WEP40; else mode = RT2860_MODE_WEP104; break; case IEEE80211_CIPHER_TKIP: mode = RT2860_MODE_TKIP; break; case IEEE80211_CIPHER_AES_CCM: mode = RT2860_MODE_AES_CCMP; break; default: DPRINTF("undefined case\n"); return; } DPRINTFN(1, "associd=%x, keyix=%d, mode=%x, type=%s, tx=%s, rx=%s\n", associd, k->wk_keyix, mode, (k->wk_flags & IEEE80211_KEY_GROUP) ? "group" : "pairwise", (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); if (k->wk_flags & IEEE80211_KEY_GROUP) { wcid = 0; /* NB: update WCID0 for group keys */ base = RT2860_SKEY(RUN_VAP(vap)->rvp_id, k->wk_keyix); } else { wcid = (vap->iv_opmode == IEEE80211_M_STA) ? 1 : RUN_AID2WCID(associd); base = RT2860_PKEY(wcid); } if (cipher == IEEE80211_CIPHER_TKIP) { if(run_write_region_1(sc, base, k->wk_key, 16)) return; if(run_write_region_1(sc, base + 16, &k->wk_key[16], 8)) /* wk_txmic */ return; if(run_write_region_1(sc, base + 24, &k->wk_key[24], 8)) /* wk_rxmic */ return; } else { /* roundup len to 16-bit: XXX fix write_region_1() instead */ if(run_write_region_1(sc, base, k->wk_key, (k->wk_keylen + 1) & ~1)) return; } if (!(k->wk_flags & IEEE80211_KEY_GROUP) || (k->wk_flags & (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV))) { /* set initial packet number in IV+EIV */ if (cipher == IEEE80211_CIPHER_WEP) { memset(iv, 0, sizeof iv); iv[3] = vap->iv_def_txkey << 6; } else { if (cipher == IEEE80211_CIPHER_TKIP) { iv[0] = k->wk_keytsc >> 8; iv[1] = (iv[0] | 0x20) & 0x7f; iv[2] = k->wk_keytsc; } else /* CCMP */ { iv[0] = k->wk_keytsc; iv[1] = k->wk_keytsc >> 8; iv[2] = 0; } iv[3] = k->wk_keyix << 6 | IEEE80211_WEP_EXTIV; iv[4] = k->wk_keytsc >> 16; iv[5] = k->wk_keytsc >> 24; iv[6] = k->wk_keytsc >> 32; iv[7] = k->wk_keytsc >> 40; } if (run_write_region_1(sc, RT2860_IVEIV(wcid), iv, 8)) return; } if (k->wk_flags & IEEE80211_KEY_GROUP) { /* install group key */ if (run_read(sc, RT2860_SKEY_MODE_0_7, &attr)) return; attr &= ~(0xf << (k->wk_keyix * 4)); attr |= mode << (k->wk_keyix * 4); if (run_write(sc, RT2860_SKEY_MODE_0_7, attr)) return; } else { /* install pairwise key */ if (run_read(sc, RT2860_WCID_ATTR(wcid), &attr)) return; attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN; if (run_write(sc, RT2860_WCID_ATTR(wcid), attr)) return; } /* TODO create a pass-thru key entry? */ /* need wcid to delete the right key later */ k->wk_pad = wcid; } /* * Don't have to be deferred, but in order to keep order of * execution, i.e. with run_key_delete(), defer this and let * run_cmdq_cb() maintain the order. * * return 0 on error */ static int run_key_set(struct ieee80211vap *vap, struct ieee80211_key *k) { struct ieee80211com *ic = vap->iv_ic; struct run_softc *sc = ic->ic_softc; uint32_t i; i = RUN_CMDQ_GET(&sc->cmdq_store); DPRINTF("cmdq_store=%d\n", i); sc->cmdq[i].func = run_key_set_cb; sc->cmdq[i].arg0 = NULL; sc->cmdq[i].arg1 = vap; sc->cmdq[i].k = k; IEEE80211_ADDR_COPY(sc->cmdq[i].mac, k->wk_macaddr); ieee80211_runtask(ic, &sc->cmdq_task); /* * To make sure key will be set when hostapd * calls iv_key_set() before if_init(). */ if (vap->iv_opmode == IEEE80211_M_HOSTAP) { RUN_LOCK(sc); sc->cmdq_key_set = RUN_CMDQ_GO; RUN_UNLOCK(sc); } return (1); } /* * If wlan is destroyed without being brought down i.e. without * wlan down or wpa_cli terminate, this function is called after * vap is gone. Don't refer it. */ static void run_key_delete_cb(void *arg) { struct run_cmdq *cmdq = arg; struct run_softc *sc = cmdq->arg1; struct ieee80211_key *k = &cmdq->key; uint32_t attr; uint8_t wcid; RUN_LOCK_ASSERT(sc, MA_OWNED); if (k->wk_flags & IEEE80211_KEY_GROUP) { /* remove group key */ DPRINTF("removing group key\n"); run_read(sc, RT2860_SKEY_MODE_0_7, &attr); attr &= ~(0xf << (k->wk_keyix * 4)); run_write(sc, RT2860_SKEY_MODE_0_7, attr); } else { /* remove pairwise key */ DPRINTF("removing key for wcid %x\n", k->wk_pad); /* matching wcid was written to wk_pad in run_key_set() */ wcid = k->wk_pad; run_read(sc, RT2860_WCID_ATTR(wcid), &attr); attr &= ~0xf; run_write(sc, RT2860_WCID_ATTR(wcid), attr); run_set_region_4(sc, RT2860_WCID_ENTRY(wcid), 0, 8); } k->wk_pad = 0; } /* * return 0 on error */ static int run_key_delete(struct ieee80211vap *vap, struct ieee80211_key *k) { struct ieee80211com *ic = vap->iv_ic; struct run_softc *sc = ic->ic_softc; struct ieee80211_key *k0; uint32_t i; /* * When called back, key might be gone. So, make a copy * of some values need to delete keys before deferring. * But, because of LOR with node lock, cannot use lock here. * So, use atomic instead. */ i = RUN_CMDQ_GET(&sc->cmdq_store); DPRINTF("cmdq_store=%d\n", i); sc->cmdq[i].func = run_key_delete_cb; sc->cmdq[i].arg0 = NULL; sc->cmdq[i].arg1 = sc; k0 = &sc->cmdq[i].key; k0->wk_flags = k->wk_flags; k0->wk_keyix = k->wk_keyix; /* matching wcid was written to wk_pad in run_key_set() */ k0->wk_pad = k->wk_pad; ieee80211_runtask(ic, &sc->cmdq_task); return (1); /* return fake success */ } static void run_ratectl_to(void *arg) { struct run_softc *sc = arg; /* do it in a process context, so it can go sleep */ ieee80211_runtask(&sc->sc_ic, &sc->ratectl_task); /* next timeout will be rescheduled in the callback task */ } /* ARGSUSED */ static void run_ratectl_cb(void *arg, int pending) { struct run_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); if (vap == NULL) return; if (sc->rvp_cnt > 1 || vap->iv_opmode != IEEE80211_M_STA) { /* * run_reset_livelock() doesn't do anything with AMRR, * but Ralink wants us to call it every 1 sec. So, we * piggyback here rather than creating another callout. * Livelock may occur only in HOSTAP or IBSS mode * (when h/w is sending beacons). */ RUN_LOCK(sc); run_reset_livelock(sc); /* just in case, there are some stats to drain */ run_drain_fifo(sc); RUN_UNLOCK(sc); } ieee80211_iterate_nodes(&ic->ic_sta, run_iter_func, sc); RUN_LOCK(sc); if(sc->ratectl_run != RUN_RATECTL_OFF) usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc); RUN_UNLOCK(sc); } static void run_drain_fifo(void *arg) { struct run_softc *sc = arg; uint32_t stat; uint16_t (*wstat)[3]; uint8_t wcid, mcs, pid; int8_t retry; RUN_LOCK_ASSERT(sc, MA_OWNED); for (;;) { /* drain Tx status FIFO (maxsize = 16) */ run_read(sc, RT2860_TX_STAT_FIFO, &stat); DPRINTFN(4, "tx stat 0x%08x\n", stat); if (!(stat & RT2860_TXQ_VLD)) break; wcid = (stat >> RT2860_TXQ_WCID_SHIFT) & 0xff; /* if no ACK was requested, no feedback is available */ if (!(stat & RT2860_TXQ_ACKREQ) || wcid > RT2870_WCID_MAX || wcid == 0) continue; /* * Even though each stat is Tx-complete-status like format, * the device can poll stats. Because there is no guarantee * that the referring node is still around when read the stats. * So that, if we use ieee80211_ratectl_tx_update(), we will * have hard time not to refer already freed node. * * To eliminate such page faults, we poll stats in softc. * Then, update the rates later with ieee80211_ratectl_tx_update(). */ wstat = &(sc->wcid_stats[wcid]); (*wstat)[RUN_TXCNT]++; if (stat & RT2860_TXQ_OK) (*wstat)[RUN_SUCCESS]++; else counter_u64_add(sc->sc_ic.ic_oerrors, 1); /* * Check if there were retries, ie if the Tx success rate is * different from the requested rate. Note that it works only * because we do not allow rate fallback from OFDM to CCK. */ mcs = (stat >> RT2860_TXQ_MCS_SHIFT) & 0x7f; pid = (stat >> RT2860_TXQ_PID_SHIFT) & 0xf; if ((retry = pid -1 - mcs) > 0) { (*wstat)[RUN_TXCNT] += retry; (*wstat)[RUN_RETRY] += retry; } } DPRINTFN(3, "count=%d\n", sc->fifo_cnt); sc->fifo_cnt = 0; } static void run_iter_func(void *arg, struct ieee80211_node *ni) { struct run_softc *sc = arg; struct ieee80211vap *vap = ni->ni_vap; struct run_node *rn = RUN_NODE(ni); union run_stats sta[2]; uint16_t (*wstat)[3]; int txcnt, success, retrycnt, error; RUN_LOCK(sc); /* Check for special case */ if (sc->rvp_cnt <= 1 && vap->iv_opmode == IEEE80211_M_STA && ni != vap->iv_bss) goto fail; if (sc->rvp_cnt <= 1 && (vap->iv_opmode == IEEE80211_M_IBSS || vap->iv_opmode == IEEE80211_M_STA)) { /* read statistic counters (clear on read) and update AMRR state */ error = run_read_region_1(sc, RT2860_TX_STA_CNT0, (uint8_t *)sta, sizeof sta); if (error != 0) goto fail; /* count failed TX as errors */ if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, le16toh(sta[0].error.fail)); retrycnt = le16toh(sta[1].tx.retry); success = le16toh(sta[1].tx.success); txcnt = retrycnt + success + le16toh(sta[0].error.fail); DPRINTFN(3, "retrycnt=%d success=%d failcnt=%d\n", retrycnt, success, le16toh(sta[0].error.fail)); } else { wstat = &(sc->wcid_stats[RUN_AID2WCID(ni->ni_associd)]); if (wstat == &(sc->wcid_stats[0]) || wstat > &(sc->wcid_stats[RT2870_WCID_MAX])) goto fail; txcnt = (*wstat)[RUN_TXCNT]; success = (*wstat)[RUN_SUCCESS]; retrycnt = (*wstat)[RUN_RETRY]; DPRINTFN(3, "retrycnt=%d txcnt=%d success=%d\n", retrycnt, txcnt, success); memset(wstat, 0, sizeof(*wstat)); } ieee80211_ratectl_tx_update(vap, ni, &txcnt, &success, &retrycnt); rn->amrr_ridx = ieee80211_ratectl_rate(ni, NULL, 0); fail: RUN_UNLOCK(sc); DPRINTFN(3, "ridx=%d\n", rn->amrr_ridx); } static void run_newassoc_cb(void *arg) { struct run_cmdq *cmdq = arg; struct ieee80211_node *ni = cmdq->arg1; struct run_softc *sc = ni->ni_vap->iv_ic->ic_softc; uint8_t wcid = cmdq->wcid; RUN_LOCK_ASSERT(sc, MA_OWNED); run_write_region_1(sc, RT2860_WCID_ENTRY(wcid), ni->ni_macaddr, IEEE80211_ADDR_LEN); memset(&(sc->wcid_stats[wcid]), 0, sizeof(sc->wcid_stats[wcid])); } static void run_newassoc(struct ieee80211_node *ni, int isnew) { struct run_node *rn = RUN_NODE(ni); struct ieee80211_rateset *rs = &ni->ni_rates; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = vap->iv_ic; struct run_softc *sc = ic->ic_softc; uint8_t rate; uint8_t ridx; uint8_t wcid; int i, j; wcid = (vap->iv_opmode == IEEE80211_M_STA) ? 1 : RUN_AID2WCID(ni->ni_associd); if (wcid > RT2870_WCID_MAX) { device_printf(sc->sc_dev, "wcid=%d out of range\n", wcid); return; } /* only interested in true associations */ if (isnew && ni->ni_associd != 0) { /* * This function could is called though timeout function. * Need to defer. */ uint32_t cnt = RUN_CMDQ_GET(&sc->cmdq_store); DPRINTF("cmdq_store=%d\n", cnt); sc->cmdq[cnt].func = run_newassoc_cb; sc->cmdq[cnt].arg0 = NULL; sc->cmdq[cnt].arg1 = ni; sc->cmdq[cnt].wcid = wcid; ieee80211_runtask(ic, &sc->cmdq_task); } DPRINTF("new assoc isnew=%d associd=%x addr=%s\n", isnew, ni->ni_associd, ether_sprintf(ni->ni_macaddr)); for (i = 0; i < rs->rs_nrates; i++) { rate = rs->rs_rates[i] & IEEE80211_RATE_VAL; /* convert 802.11 rate to hardware rate index */ for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) if (rt2860_rates[ridx].rate == rate) break; rn->ridx[i] = ridx; /* determine rate of control response frames */ for (j = i; j >= 0; j--) { if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) && rt2860_rates[rn->ridx[i]].phy == rt2860_rates[rn->ridx[j]].phy) break; } if (j >= 0) { rn->ctl_ridx[i] = rn->ridx[j]; } else { /* no basic rate found, use mandatory one */ rn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx; } DPRINTF("rate=0x%02x ridx=%d ctl_ridx=%d\n", rs->rs_rates[i], rn->ridx[i], rn->ctl_ridx[i]); } rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate; for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) if (rt2860_rates[ridx].rate == rate) break; rn->mgt_ridx = ridx; DPRINTF("rate=%d, mgmt_ridx=%d\n", rate, rn->mgt_ridx); RUN_LOCK(sc); if(sc->ratectl_run != RUN_RATECTL_OFF) usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc); RUN_UNLOCK(sc); } /* * Return the Rx chain with the highest RSSI for a given frame. */ static __inline uint8_t run_maxrssi_chain(struct run_softc *sc, const struct rt2860_rxwi *rxwi) { uint8_t rxchain = 0; if (sc->nrxchains > 1) { if (rxwi->rssi[1] > rxwi->rssi[rxchain]) rxchain = 1; if (sc->nrxchains > 2) if (rxwi->rssi[2] > rxwi->rssi[rxchain]) rxchain = 2; } return (rxchain); } static void run_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf) { struct ieee80211vap *vap = ni->ni_vap; struct run_softc *sc = vap->iv_ic->ic_softc; struct run_vap *rvp = RUN_VAP(vap); uint64_t ni_tstamp, rx_tstamp; rvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf); if (vap->iv_state == IEEE80211_S_RUN && (subtype == IEEE80211_FC0_SUBTYPE_BEACON || subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) { ni_tstamp = le64toh(ni->ni_tstamp.tsf); RUN_LOCK(sc); run_get_tsf(sc, &rx_tstamp); RUN_UNLOCK(sc); rx_tstamp = le64toh(rx_tstamp); if (ni_tstamp >= rx_tstamp) { DPRINTF("ibss merge, tsf %ju tstamp %ju\n", (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp); (void) ieee80211_ibss_merge(ni); } } } static void run_rx_frame(struct run_softc *sc, struct mbuf *m, uint32_t dmalen) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct rt2870_rxd *rxd; struct rt2860_rxwi *rxwi; uint32_t flags; uint16_t len, rxwisize; uint8_t ant, rssi; int8_t nf; rxwi = mtod(m, struct rt2860_rxwi *); len = le16toh(rxwi->len) & 0xfff; rxwisize = sizeof(struct rt2860_rxwi); if (sc->mac_ver == 0x5592) rxwisize += sizeof(uint64_t); else if (sc->mac_ver == 0x3593) rxwisize += sizeof(uint32_t); if (__predict_false(len > dmalen)) { m_freem(m); counter_u64_add(ic->ic_ierrors, 1); DPRINTF("bad RXWI length %u > %u\n", len, dmalen); return; } /* Rx descriptor is located at the end */ rxd = (struct rt2870_rxd *)(mtod(m, caddr_t) + dmalen); flags = le32toh(rxd->flags); if (__predict_false(flags & (RT2860_RX_CRCERR | RT2860_RX_ICVERR))) { m_freem(m); counter_u64_add(ic->ic_ierrors, 1); DPRINTF("%s error.\n", (flags & RT2860_RX_CRCERR)?"CRC":"ICV"); return; } m->m_data += rxwisize; m->m_pkthdr.len = m->m_len -= rxwisize; wh = mtod(m, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; m->m_flags |= M_WEP; } if (flags & RT2860_RX_L2PAD) { DPRINTFN(8, "received RT2860_RX_L2PAD frame\n"); len += 2; } ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); if (__predict_false(flags & RT2860_RX_MICERR)) { /* report MIC failures to net80211 for TKIP */ if (ni != NULL) ieee80211_notify_michael_failure(ni->ni_vap, wh, rxwi->keyidx); m_freem(m); counter_u64_add(ic->ic_ierrors, 1); DPRINTF("MIC error. Someone is lying.\n"); return; } ant = run_maxrssi_chain(sc, rxwi); rssi = rxwi->rssi[ant]; nf = run_rssi2dbm(sc, rssi, ant); m->m_pkthdr.len = m->m_len = len; if (__predict_false(ieee80211_radiotap_active(ic))) { struct run_rx_radiotap_header *tap = &sc->sc_rxtap; uint16_t phy; tap->wr_flags = 0; tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); tap->wr_antsignal = rssi; tap->wr_antenna = ant; tap->wr_dbm_antsignal = run_rssi2dbm(sc, rssi, ant); tap->wr_rate = 2; /* in case it can't be found below */ run_get_tsf(sc, &tap->wr_tsf); phy = le16toh(rxwi->phy); switch (phy & RT2860_PHY_MODE) { case RT2860_PHY_CCK: switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) { case 0: tap->wr_rate = 2; break; case 1: tap->wr_rate = 4; break; case 2: tap->wr_rate = 11; break; case 3: tap->wr_rate = 22; break; } if (phy & RT2860_PHY_SHPRE) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; break; case RT2860_PHY_OFDM: switch (phy & RT2860_PHY_MCS) { case 0: tap->wr_rate = 12; break; case 1: tap->wr_rate = 18; break; case 2: tap->wr_rate = 24; break; case 3: tap->wr_rate = 36; break; case 4: tap->wr_rate = 48; break; case 5: tap->wr_rate = 72; break; case 6: tap->wr_rate = 96; break; case 7: tap->wr_rate = 108; break; } break; } } if (ni != NULL) { (void)ieee80211_input(ni, m, rssi, nf); ieee80211_free_node(ni); } else { (void)ieee80211_input_all(ic, m, rssi, nf); } } static void run_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) { struct run_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct mbuf *m = NULL; struct mbuf *m0; uint32_t dmalen; uint16_t rxwisize; int xferlen; rxwisize = sizeof(struct rt2860_rxwi); if (sc->mac_ver == 0x5592) rxwisize += sizeof(uint64_t); else if (sc->mac_ver == 0x3593) rxwisize += sizeof(uint32_t); usbd_xfer_status(xfer, &xferlen, NULL, NULL, NULL); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(15, "rx done, actlen=%d\n", xferlen); if (xferlen < (int)(sizeof(uint32_t) + rxwisize + sizeof(struct rt2870_rxd))) { DPRINTF("xfer too short %d\n", xferlen); goto tr_setup; } m = sc->rx_m; sc->rx_m = NULL; /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: if (sc->rx_m == NULL) { sc->rx_m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE /* xfer can be bigger than MCLBYTES */); } if (sc->rx_m == NULL) { DPRINTF("could not allocate mbuf - idle with stall\n"); counter_u64_add(ic->ic_ierrors, 1); usbd_xfer_set_stall(xfer); usbd_xfer_set_frames(xfer, 0); } else { /* * Directly loading a mbuf cluster into DMA to * save some data copying. This works because * there is only one cluster. */ usbd_xfer_set_frame_data(xfer, 0, mtod(sc->rx_m, caddr_t), RUN_MAX_RXSZ); usbd_xfer_set_frames(xfer, 1); } usbd_transfer_submit(xfer); break; default: /* Error */ if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); if (error == USB_ERR_TIMEOUT) device_printf(sc->sc_dev, "device timeout\n"); counter_u64_add(ic->ic_ierrors, 1); goto tr_setup; } if (sc->rx_m != NULL) { m_freem(sc->rx_m); sc->rx_m = NULL; } break; } if (m == NULL) return; /* inputting all the frames must be last */ RUN_UNLOCK(sc); m->m_pkthdr.len = m->m_len = xferlen; /* HW can aggregate multiple 802.11 frames in a single USB xfer */ for(;;) { dmalen = le32toh(*mtod(m, uint32_t *)) & 0xffff; if ((dmalen >= (uint32_t)-8) || (dmalen == 0) || ((dmalen & 3) != 0)) { DPRINTF("bad DMA length %u\n", dmalen); break; } if ((dmalen + 8) > (uint32_t)xferlen) { DPRINTF("bad DMA length %u > %d\n", dmalen + 8, xferlen); break; } /* If it is the last one or a single frame, we won't copy. */ if ((xferlen -= dmalen + 8) <= 8) { /* trim 32-bit DMA-len header */ m->m_data += 4; m->m_pkthdr.len = m->m_len -= 4; run_rx_frame(sc, m, dmalen); m = NULL; /* don't free source buffer */ break; } /* copy aggregated frames to another mbuf */ m0 = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (__predict_false(m0 == NULL)) { DPRINTF("could not allocate mbuf\n"); counter_u64_add(ic->ic_ierrors, 1); break; } m_copydata(m, 4 /* skip 32-bit DMA-len header */, dmalen + sizeof(struct rt2870_rxd), mtod(m0, caddr_t)); m0->m_pkthdr.len = m0->m_len = dmalen + sizeof(struct rt2870_rxd); run_rx_frame(sc, m0, dmalen); /* update data ptr */ m->m_data += dmalen + 8; m->m_pkthdr.len = m->m_len -= dmalen + 8; } /* make sure we free the source buffer, if any */ m_freem(m); RUN_LOCK(sc); } static void run_tx_free(struct run_endpoint_queue *pq, struct run_tx_data *data, int txerr) { ieee80211_tx_complete(data->ni, data->m, txerr); data->m = NULL; data->ni = NULL; STAILQ_INSERT_TAIL(&pq->tx_fh, data, next); pq->tx_nfree++; } static void run_bulk_tx_callbackN(struct usb_xfer *xfer, usb_error_t error, u_int index) { struct run_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct run_tx_data *data; struct ieee80211vap *vap = NULL; struct usb_page_cache *pc; struct run_endpoint_queue *pq = &sc->sc_epq[index]; struct mbuf *m; usb_frlength_t size; int actlen; int sumlen; usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(11, "transfer complete: %d " "bytes @ index %d\n", actlen, index); data = usbd_xfer_get_priv(xfer); run_tx_free(pq, data, 0); usbd_xfer_set_priv(xfer, NULL); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: data = STAILQ_FIRST(&pq->tx_qh); if (data == NULL) break; STAILQ_REMOVE_HEAD(&pq->tx_qh, next); m = data->m; size = (sc->mac_ver == 0x5592) ? sizeof(data->desc) + sizeof(uint32_t) : sizeof(data->desc); if ((m->m_pkthdr.len + size + 3 + 8) > RUN_MAX_TXSZ) { DPRINTF("data overflow, %u bytes\n", m->m_pkthdr.len); run_tx_free(pq, data, 1); goto tr_setup; } pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_in(pc, 0, &data->desc, size); usbd_m_copy_in(pc, size, m, 0, m->m_pkthdr.len); size += m->m_pkthdr.len; /* * Align end on a 4-byte boundary, pad 8 bytes (CRC + * 4-byte padding), and be sure to zero those trailing * bytes: */ usbd_frame_zero(pc, size, ((-size) & 3) + 8); size += ((-size) & 3) + 8; vap = data->ni->ni_vap; if (ieee80211_radiotap_active_vap(vap)) { struct run_tx_radiotap_header *tap = &sc->sc_txtap; struct rt2860_txwi *txwi = (struct rt2860_txwi *)(&data->desc + sizeof(struct rt2870_txd)); tap->wt_flags = 0; tap->wt_rate = rt2860_rates[data->ridx].rate; run_get_tsf(sc, &tap->wt_tsf); tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); tap->wt_hwqueue = index; if (le16toh(txwi->phy) & RT2860_PHY_SHPRE) tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; ieee80211_radiotap_tx(vap, m); } DPRINTFN(11, "sending frame len=%u/%u @ index %d\n", m->m_pkthdr.len, size, index); usbd_xfer_set_frame_len(xfer, 0, size); usbd_xfer_set_priv(xfer, data); usbd_transfer_submit(xfer); run_start(sc); break; default: DPRINTF("USB transfer error, %s\n", usbd_errstr(error)); data = usbd_xfer_get_priv(xfer); if (data != NULL) { if(data->ni != NULL) vap = data->ni->ni_vap; run_tx_free(pq, data, error); usbd_xfer_set_priv(xfer, NULL); } if (vap == NULL) vap = TAILQ_FIRST(&ic->ic_vaps); if (error != USB_ERR_CANCELLED) { if (error == USB_ERR_TIMEOUT) { device_printf(sc->sc_dev, "device timeout\n"); uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store); DPRINTF("cmdq_store=%d\n", i); sc->cmdq[i].func = run_usb_timeout_cb; sc->cmdq[i].arg0 = vap; ieee80211_runtask(ic, &sc->cmdq_task); } /* * Try to clear stall first, also if other * errors occur, hence clearing stall * introduces a 50 ms delay: */ usbd_xfer_set_stall(xfer); goto tr_setup; } break; } } static void run_bulk_tx_callback0(struct usb_xfer *xfer, usb_error_t error) { run_bulk_tx_callbackN(xfer, error, 0); } static void run_bulk_tx_callback1(struct usb_xfer *xfer, usb_error_t error) { run_bulk_tx_callbackN(xfer, error, 1); } static void run_bulk_tx_callback2(struct usb_xfer *xfer, usb_error_t error) { run_bulk_tx_callbackN(xfer, error, 2); } static void run_bulk_tx_callback3(struct usb_xfer *xfer, usb_error_t error) { run_bulk_tx_callbackN(xfer, error, 3); } static void run_bulk_tx_callback4(struct usb_xfer *xfer, usb_error_t error) { run_bulk_tx_callbackN(xfer, error, 4); } static void run_bulk_tx_callback5(struct usb_xfer *xfer, usb_error_t error) { run_bulk_tx_callbackN(xfer, error, 5); } static void run_set_tx_desc(struct run_softc *sc, struct run_tx_data *data) { struct mbuf *m = data->m; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = data->ni->ni_vap; struct ieee80211_frame *wh; struct rt2870_txd *txd; struct rt2860_txwi *txwi; uint16_t xferlen, txwisize; uint16_t mcs; uint8_t ridx = data->ridx; uint8_t pad; /* get MCS code from rate index */ mcs = rt2860_rates[ridx].mcs; txwisize = (sc->mac_ver == 0x5592) ? sizeof(*txwi) + sizeof(uint32_t) : sizeof(*txwi); xferlen = txwisize + m->m_pkthdr.len; /* roundup to 32-bit alignment */ xferlen = (xferlen + 3) & ~3; txd = (struct rt2870_txd *)&data->desc; txd->len = htole16(xferlen); wh = mtod(m, struct ieee80211_frame *); /* * Ether both are true or both are false, the header * are nicely aligned to 32-bit. So, no L2 padding. */ if(IEEE80211_HAS_ADDR4(wh) == IEEE80211_QOS_HAS_SEQ(wh)) pad = 0; else pad = 2; /* setup TX Wireless Information */ txwi = (struct rt2860_txwi *)(txd + 1); txwi->len = htole16(m->m_pkthdr.len - pad); if (rt2860_rates[ridx].phy == IEEE80211_T_DS) { mcs |= RT2860_PHY_CCK; if (ridx != RT2860_RIDX_CCK1 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) mcs |= RT2860_PHY_SHPRE; } else mcs |= RT2860_PHY_OFDM; txwi->phy = htole16(mcs); /* check if RTS/CTS or CTS-to-self protection is required */ if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && (m->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold || ((ic->ic_flags & IEEE80211_F_USEPROT) && rt2860_rates[ridx].phy == IEEE80211_T_OFDM))) txwi->txop |= RT2860_TX_TXOP_HT; else txwi->txop |= RT2860_TX_TXOP_BACKOFF; if (vap->iv_opmode != IEEE80211_M_STA && !IEEE80211_QOS_HAS_SEQ(wh)) txwi->xflags |= RT2860_TX_NSEQ; } /* This function must be called locked */ static int run_tx(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_frame *wh; struct ieee80211_channel *chan; const struct ieee80211_txparam *tp; struct run_node *rn = RUN_NODE(ni); struct run_tx_data *data; struct rt2870_txd *txd; struct rt2860_txwi *txwi; uint16_t qos; uint16_t dur; uint16_t qid; uint8_t type; uint8_t tid; uint8_t ridx; uint8_t ctl_ridx; uint8_t qflags; uint8_t xflags = 0; int hasqos; RUN_LOCK_ASSERT(sc, MA_OWNED); wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; /* * There are 7 bulk endpoints: 1 for RX * and 6 for TX (4 EDCAs + HCCA + Prio). * Update 03-14-2009: some devices like the Planex GW-US300MiniS * seem to have only 4 TX bulk endpoints (Fukaumi Naoki). */ if ((hasqos = IEEE80211_QOS_HAS_SEQ(wh))) { uint8_t *frm; if(IEEE80211_HAS_ADDR4(wh)) frm = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos; else frm =((struct ieee80211_qosframe *)wh)->i_qos; qos = le16toh(*(const uint16_t *)frm); tid = qos & IEEE80211_QOS_TID; qid = TID_TO_WME_AC(tid); } else { qos = 0; tid = 0; qid = WME_AC_BE; } qflags = (qid < 4) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_HCCA; DPRINTFN(8, "qos %d\tqid %d\ttid %d\tqflags %x\n", qos, qid, tid, qflags); chan = (ni->ni_chan != IEEE80211_CHAN_ANYC)?ni->ni_chan:ic->ic_curchan; tp = &vap->iv_txparms[ieee80211_chan2mode(chan)]; /* pickup a rate index */ if (IEEE80211_IS_MULTICAST(wh->i_addr1) || type != IEEE80211_FC0_TYPE_DATA || m->m_flags & M_EAPOL) { ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1; ctl_ridx = rt2860_rates[ridx].ctl_ridx; } else { if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) ridx = rn->fix_ridx; else ridx = rn->amrr_ridx; ctl_ridx = rt2860_rates[ridx].ctl_ridx; } if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && (!hasqos || (qos & IEEE80211_QOS_ACKPOLICY) != IEEE80211_QOS_ACKPOLICY_NOACK)) { xflags |= RT2860_TX_ACK; if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) dur = rt2860_rates[ctl_ridx].sp_ack_dur; else dur = rt2860_rates[ctl_ridx].lp_ack_dur; USETW(wh->i_dur, dur); } /* reserve slots for mgmt packets, just in case */ if (sc->sc_epq[qid].tx_nfree < 3) { DPRINTFN(10, "tx ring %d is full\n", qid); return (-1); } data = STAILQ_FIRST(&sc->sc_epq[qid].tx_fh); STAILQ_REMOVE_HEAD(&sc->sc_epq[qid].tx_fh, next); sc->sc_epq[qid].tx_nfree--; txd = (struct rt2870_txd *)&data->desc; txd->flags = qflags; txwi = (struct rt2860_txwi *)(txd + 1); txwi->xflags = xflags; if (IEEE80211_IS_MULTICAST(wh->i_addr1)) txwi->wcid = 0; else txwi->wcid = (vap->iv_opmode == IEEE80211_M_STA) ? 1 : RUN_AID2WCID(ni->ni_associd); /* clear leftover garbage bits */ txwi->flags = 0; txwi->txop = 0; data->m = m; data->ni = ni; data->ridx = ridx; run_set_tx_desc(sc, data); /* * The chip keeps track of 2 kind of Tx stats, * * TX_STAT_FIFO, for per WCID stats, and * * TX_STA_CNT0 for all-TX-in-one stats. * * To use FIFO stats, we need to store MCS into the driver-private * PacketID field. So that, we can tell whose stats when we read them. * We add 1 to the MCS because setting the PacketID field to 0 means * that we don't want feedback in TX_STAT_FIFO. * And, that's what we want for STA mode, since TX_STA_CNT0 does the job. * * FIFO stats doesn't count Tx with WCID 0xff, so we do this in run_tx(). */ if (sc->rvp_cnt > 1 || vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_MBSS) { uint16_t pid = (rt2860_rates[ridx].mcs + 1) & 0xf; txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT); /* * Unlike PCI based devices, we don't get any interrupt from * USB devices, so we simulate FIFO-is-full interrupt here. * Ralink recomends to drain FIFO stats every 100 ms, but 16 slots * quickly get fulled. To prevent overflow, increment a counter on * every FIFO stat request, so we know how many slots are left. * We do this only in HOSTAP or multiple vap mode since FIFO stats * are used only in those modes. * We just drain stats. AMRR gets updated every 1 sec by * run_ratectl_cb() via callout. * Call it early. Otherwise overflow. */ if (sc->fifo_cnt++ == 10) { /* * With multiple vaps or if_bridge, if_start() is called * with a non-sleepable lock, tcpinp. So, need to defer. */ uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store); DPRINTFN(6, "cmdq_store=%d\n", i); sc->cmdq[i].func = run_drain_fifo; sc->cmdq[i].arg0 = sc; ieee80211_runtask(ic, &sc->cmdq_task); } } STAILQ_INSERT_TAIL(&sc->sc_epq[qid].tx_qh, data, next); usbd_transfer_start(sc->sc_xfer[qid]); DPRINTFN(8, "sending data frame len=%d rate=%d qid=%d\n", m->m_pkthdr.len + (int)(sizeof(struct rt2870_txd) + sizeof(struct rt2860_txwi)), rt2860_rates[ridx].rate, qid); return (0); } static int run_tx_mgt(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct run_node *rn = RUN_NODE(ni); struct run_tx_data *data; struct ieee80211_frame *wh; struct rt2870_txd *txd; struct rt2860_txwi *txwi; uint16_t dur; uint8_t ridx = rn->mgt_ridx; uint8_t type; uint8_t xflags = 0; uint8_t wflags = 0; RUN_LOCK_ASSERT(sc, MA_OWNED); wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; /* tell hardware to add timestamp for probe responses */ if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) wflags |= RT2860_TX_TS; else if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { xflags |= RT2860_TX_ACK; dur = ieee80211_ack_duration(ic->ic_rt, rt2860_rates[ridx].rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE); USETW(wh->i_dur, dur); } if (sc->sc_epq[0].tx_nfree == 0) /* let caller free mbuf */ return (EIO); data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh); STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next); sc->sc_epq[0].tx_nfree--; txd = (struct rt2870_txd *)&data->desc; txd->flags = RT2860_TX_QSEL_EDCA; txwi = (struct rt2860_txwi *)(txd + 1); txwi->wcid = 0xff; txwi->flags = wflags; txwi->xflags = xflags; txwi->txop = 0; /* clear leftover garbage bits */ data->m = m; data->ni = ni; data->ridx = ridx; run_set_tx_desc(sc, data); DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", m->m_pkthdr.len + (int)(sizeof(struct rt2870_txd) + sizeof(struct rt2860_txwi)), rt2860_rates[ridx].rate); STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next); usbd_transfer_start(sc->sc_xfer[0]); return (0); } static int run_sendprot(struct run_softc *sc, const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211_frame *wh; struct run_tx_data *data; struct rt2870_txd *txd; struct rt2860_txwi *txwi; struct mbuf *mprot; int ridx; int protrate; int ackrate; int pktlen; int isshort; uint16_t dur; uint8_t type; uint8_t wflags = 0; uint8_t xflags = 0; RUN_LOCK_ASSERT(sc, MA_OWNED); KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, ("protection %d", prot)); wh = mtod(m, struct ieee80211_frame *); pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; protrate = ieee80211_ctl_rate(ic->ic_rt, rate); ackrate = ieee80211_ack_rate(ic->ic_rt, rate); isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) + ieee80211_ack_duration(ic->ic_rt, rate, isshort); wflags = RT2860_TX_FRAG; /* check that there are free slots before allocating the mbuf */ if (sc->sc_epq[0].tx_nfree == 0) /* let caller free mbuf */ return (ENOBUFS); if (prot == IEEE80211_PROT_RTSCTS) { /* NB: CTS is the same size as an ACK */ dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); xflags |= RT2860_TX_ACK; mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); } else { mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); } if (mprot == NULL) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); DPRINTF("could not allocate mbuf\n"); return (ENOBUFS); } data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh); STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next); sc->sc_epq[0].tx_nfree--; txd = (struct rt2870_txd *)&data->desc; txd->flags = RT2860_TX_QSEL_EDCA; txwi = (struct rt2860_txwi *)(txd + 1); txwi->wcid = 0xff; txwi->flags = wflags; txwi->xflags = xflags; txwi->txop = 0; /* clear leftover garbage bits */ data->m = mprot; data->ni = ieee80211_ref_node(ni); for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) if (rt2860_rates[ridx].rate == protrate) break; data->ridx = ridx; run_set_tx_desc(sc, data); DPRINTFN(1, "sending prot len=%u rate=%u\n", m->m_pkthdr.len, rate); STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next); usbd_transfer_start(sc->sc_xfer[0]); return (0); } static int run_tx_param(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211_frame *wh; struct run_tx_data *data; struct rt2870_txd *txd; struct rt2860_txwi *txwi; uint8_t type; uint8_t ridx; uint8_t rate; uint8_t opflags = 0; uint8_t xflags = 0; int error; RUN_LOCK_ASSERT(sc, MA_OWNED); KASSERT(params != NULL, ("no raw xmit params")); wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; rate = params->ibp_rate0; if (!ieee80211_isratevalid(ic->ic_rt, rate)) { /* let caller free mbuf */ return (EINVAL); } if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) xflags |= RT2860_TX_ACK; if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { error = run_sendprot(sc, m, ni, params->ibp_flags & IEEE80211_BPF_RTS ? IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, rate); if (error) { /* let caller free mbuf */ return error; } opflags |= /*XXX RT2573_TX_LONG_RETRY |*/ RT2860_TX_TXOP_SIFS; } if (sc->sc_epq[0].tx_nfree == 0) { /* let caller free mbuf */ DPRINTF("sending raw frame, but tx ring is full\n"); return (EIO); } data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh); STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next); sc->sc_epq[0].tx_nfree--; txd = (struct rt2870_txd *)&data->desc; txd->flags = RT2860_TX_QSEL_EDCA; txwi = (struct rt2860_txwi *)(txd + 1); txwi->wcid = 0xff; txwi->xflags = xflags; txwi->txop = opflags; txwi->flags = 0; /* clear leftover garbage bits */ data->m = m; data->ni = ni; for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) if (rt2860_rates[ridx].rate == rate) break; data->ridx = ridx; run_set_tx_desc(sc, data); DPRINTFN(10, "sending raw frame len=%u rate=%u\n", m->m_pkthdr.len, rate); STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next); usbd_transfer_start(sc->sc_xfer[0]); return (0); } static int run_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct run_softc *sc = ni->ni_ic->ic_softc; int error = 0; RUN_LOCK(sc); /* prevent management frames from being sent if we're not ready */ if (!(sc->sc_flags & RUN_RUNNING)) { error = ENETDOWN; goto done; } if (params == NULL) { /* tx mgt packet */ if ((error = run_tx_mgt(sc, m, ni)) != 0) { DPRINTF("mgt tx failed\n"); goto done; } } else { /* tx raw packet with param */ if ((error = run_tx_param(sc, m, ni, params)) != 0) { DPRINTF("tx with param failed\n"); goto done; } } done: RUN_UNLOCK(sc); if (error != 0) { if(m != NULL) m_freem(m); } return (error); } static int run_transmit(struct ieee80211com *ic, struct mbuf *m) { struct run_softc *sc = ic->ic_softc; int error; RUN_LOCK(sc); if ((sc->sc_flags & RUN_RUNNING) == 0) { RUN_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { RUN_UNLOCK(sc); return (error); } run_start(sc); RUN_UNLOCK(sc); return (0); } static void run_start(struct run_softc *sc) { struct ieee80211_node *ni; struct mbuf *m; RUN_LOCK_ASSERT(sc, MA_OWNED); if ((sc->sc_flags & RUN_RUNNING) == 0) return; while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; if (run_tx(sc, m, ni) != 0) { mbufq_prepend(&sc->sc_snd, m); break; } } } static void run_parent(struct ieee80211com *ic) { struct run_softc *sc = ic->ic_softc; int startall = 0; RUN_LOCK(sc); if (sc->sc_detached) { RUN_UNLOCK(sc); return; } if (ic->ic_nrunning > 0) { if (!(sc->sc_flags & RUN_RUNNING)) { startall = 1; run_init_locked(sc); } else run_update_promisc_locked(sc); } else if ((sc->sc_flags & RUN_RUNNING) && sc->rvp_cnt <= 1) run_stop(sc); RUN_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } static void run_iq_calib(struct run_softc *sc, u_int chan) { uint16_t val; /* Tx0 IQ gain. */ run_bbp_write(sc, 158, 0x2c); if (chan <= 14) run_efuse_read(sc, RT5390_EEPROM_IQ_GAIN_CAL_TX0_2GHZ, &val, 1); else if (chan <= 64) { run_efuse_read(sc, RT5390_EEPROM_IQ_GAIN_CAL_TX0_CH36_TO_CH64_5GHZ, &val, 1); } else if (chan <= 138) { run_efuse_read(sc, RT5390_EEPROM_IQ_GAIN_CAL_TX0_CH100_TO_CH138_5GHZ, &val, 1); } else if (chan <= 165) { run_efuse_read(sc, RT5390_EEPROM_IQ_GAIN_CAL_TX0_CH140_TO_CH165_5GHZ, &val, 1); } else val = 0; run_bbp_write(sc, 159, val); /* Tx0 IQ phase. */ run_bbp_write(sc, 158, 0x2d); if (chan <= 14) { run_efuse_read(sc, RT5390_EEPROM_IQ_PHASE_CAL_TX0_2GHZ, &val, 1); } else if (chan <= 64) { run_efuse_read(sc, RT5390_EEPROM_IQ_PHASE_CAL_TX0_CH36_TO_CH64_5GHZ, &val, 1); } else if (chan <= 138) { run_efuse_read(sc, RT5390_EEPROM_IQ_PHASE_CAL_TX0_CH100_TO_CH138_5GHZ, &val, 1); } else if (chan <= 165) { run_efuse_read(sc, RT5390_EEPROM_IQ_PHASE_CAL_TX0_CH140_TO_CH165_5GHZ, &val, 1); } else val = 0; run_bbp_write(sc, 159, val); /* Tx1 IQ gain. */ run_bbp_write(sc, 158, 0x4a); if (chan <= 14) { run_efuse_read(sc, RT5390_EEPROM_IQ_GAIN_CAL_TX1_2GHZ, &val, 1); } else if (chan <= 64) { run_efuse_read(sc, RT5390_EEPROM_IQ_GAIN_CAL_TX1_CH36_TO_CH64_5GHZ, &val, 1); } else if (chan <= 138) { run_efuse_read(sc, RT5390_EEPROM_IQ_GAIN_CAL_TX1_CH100_TO_CH138_5GHZ, &val, 1); } else if (chan <= 165) { run_efuse_read(sc, RT5390_EEPROM_IQ_GAIN_CAL_TX1_CH140_TO_CH165_5GHZ, &val, 1); } else val = 0; run_bbp_write(sc, 159, val); /* Tx1 IQ phase. */ run_bbp_write(sc, 158, 0x4b); if (chan <= 14) { run_efuse_read(sc, RT5390_EEPROM_IQ_PHASE_CAL_TX1_2GHZ, &val, 1); } else if (chan <= 64) { run_efuse_read(sc, RT5390_EEPROM_IQ_PHASE_CAL_TX1_CH36_TO_CH64_5GHZ, &val, 1); } else if (chan <= 138) { run_efuse_read(sc, RT5390_EEPROM_IQ_PHASE_CAL_TX1_CH100_TO_CH138_5GHZ, &val, 1); } else if (chan <= 165) { run_efuse_read(sc, RT5390_EEPROM_IQ_PHASE_CAL_TX1_CH140_TO_CH165_5GHZ, &val, 1); } else val = 0; run_bbp_write(sc, 159, val); /* RF IQ compensation control. */ run_bbp_write(sc, 158, 0x04); run_efuse_read(sc, RT5390_EEPROM_RF_IQ_COMPENSATION_CTL, &val, 1); run_bbp_write(sc, 159, val); /* RF IQ imbalance compensation control. */ run_bbp_write(sc, 158, 0x03); run_efuse_read(sc, RT5390_EEPROM_RF_IQ_IMBALANCE_COMPENSATION_CTL, &val, 1); run_bbp_write(sc, 159, val); } static void run_set_agc(struct run_softc *sc, uint8_t agc) { uint8_t bbp; if (sc->mac_ver == 0x3572) { run_bbp_read(sc, 27, &bbp); bbp &= ~(0x3 << 5); run_bbp_write(sc, 27, bbp | 0 << 5); /* select Rx0 */ run_bbp_write(sc, 66, agc); run_bbp_write(sc, 27, bbp | 1 << 5); /* select Rx1 */ run_bbp_write(sc, 66, agc); } else run_bbp_write(sc, 66, agc); } static void run_select_chan_group(struct run_softc *sc, int group) { uint32_t tmp; uint8_t agc; run_bbp_write(sc, 62, 0x37 - sc->lna[group]); run_bbp_write(sc, 63, 0x37 - sc->lna[group]); run_bbp_write(sc, 64, 0x37 - sc->lna[group]); if (sc->mac_ver < 0x3572) run_bbp_write(sc, 86, 0x00); if (sc->mac_ver == 0x3593) { run_bbp_write(sc, 77, 0x98); run_bbp_write(sc, 83, (group == 0) ? 0x8a : 0x9a); } if (group == 0) { if (sc->ext_2ghz_lna) { if (sc->mac_ver >= 0x5390) run_bbp_write(sc, 75, 0x52); else { run_bbp_write(sc, 82, 0x62); run_bbp_write(sc, 75, 0x46); } } else { if (sc->mac_ver == 0x5592) { run_bbp_write(sc, 79, 0x1c); run_bbp_write(sc, 80, 0x0e); run_bbp_write(sc, 81, 0x3a); run_bbp_write(sc, 82, 0x62); run_bbp_write(sc, 195, 0x80); run_bbp_write(sc, 196, 0xe0); run_bbp_write(sc, 195, 0x81); run_bbp_write(sc, 196, 0x1f); run_bbp_write(sc, 195, 0x82); run_bbp_write(sc, 196, 0x38); run_bbp_write(sc, 195, 0x83); run_bbp_write(sc, 196, 0x32); run_bbp_write(sc, 195, 0x85); run_bbp_write(sc, 196, 0x28); run_bbp_write(sc, 195, 0x86); run_bbp_write(sc, 196, 0x19); } else if (sc->mac_ver >= 0x5390) run_bbp_write(sc, 75, 0x50); else { run_bbp_write(sc, 82, (sc->mac_ver == 0x3593) ? 0x62 : 0x84); run_bbp_write(sc, 75, 0x50); } } } else { if (sc->mac_ver == 0x5592) { run_bbp_write(sc, 79, 0x18); run_bbp_write(sc, 80, 0x08); run_bbp_write(sc, 81, 0x38); run_bbp_write(sc, 82, 0x92); run_bbp_write(sc, 195, 0x80); run_bbp_write(sc, 196, 0xf0); run_bbp_write(sc, 195, 0x81); run_bbp_write(sc, 196, 0x1e); run_bbp_write(sc, 195, 0x82); run_bbp_write(sc, 196, 0x28); run_bbp_write(sc, 195, 0x83); run_bbp_write(sc, 196, 0x20); run_bbp_write(sc, 195, 0x85); run_bbp_write(sc, 196, 0x7f); run_bbp_write(sc, 195, 0x86); run_bbp_write(sc, 196, 0x7f); } else if (sc->mac_ver == 0x3572) run_bbp_write(sc, 82, 0x94); else run_bbp_write(sc, 82, (sc->mac_ver == 0x3593) ? 0x82 : 0xf2); if (sc->ext_5ghz_lna) run_bbp_write(sc, 75, 0x46); else run_bbp_write(sc, 75, 0x50); } run_read(sc, RT2860_TX_BAND_CFG, &tmp); tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P); tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P; run_write(sc, RT2860_TX_BAND_CFG, tmp); /* enable appropriate Power Amplifiers and Low Noise Amplifiers */ tmp = RT2860_RFTR_EN | RT2860_TRSW_EN | RT2860_LNA_PE0_EN; if (sc->mac_ver == 0x3593) tmp |= 1 << 29 | 1 << 28; if (sc->nrxchains > 1) tmp |= RT2860_LNA_PE1_EN; if (group == 0) { /* 2GHz */ tmp |= RT2860_PA_PE_G0_EN; if (sc->ntxchains > 1) tmp |= RT2860_PA_PE_G1_EN; if (sc->mac_ver == 0x3593) { if (sc->ntxchains > 2) tmp |= 1 << 25; } } else { /* 5GHz */ tmp |= RT2860_PA_PE_A0_EN; if (sc->ntxchains > 1) tmp |= RT2860_PA_PE_A1_EN; } if (sc->mac_ver == 0x3572) { run_rt3070_rf_write(sc, 8, 0x00); run_write(sc, RT2860_TX_PIN_CFG, tmp); run_rt3070_rf_write(sc, 8, 0x80); } else run_write(sc, RT2860_TX_PIN_CFG, tmp); if (sc->mac_ver == 0x5592) { run_bbp_write(sc, 195, 0x8d); run_bbp_write(sc, 196, 0x1a); } if (sc->mac_ver == 0x3593) { run_read(sc, RT2860_GPIO_CTRL, &tmp); tmp &= ~0x01010000; if (group == 0) tmp |= 0x00010000; tmp = (tmp & ~0x00009090) | 0x00000090; run_write(sc, RT2860_GPIO_CTRL, tmp); } /* set initial AGC value */ if (group == 0) { /* 2GHz band */ if (sc->mac_ver >= 0x3070) agc = 0x1c + sc->lna[0] * 2; else agc = 0x2e + sc->lna[0]; } else { /* 5GHz band */ if (sc->mac_ver == 0x5592) agc = 0x24 + sc->lna[group] * 2; else if (sc->mac_ver == 0x3572 || sc->mac_ver == 0x3593) agc = 0x22 + (sc->lna[group] * 5) / 3; else agc = 0x32 + (sc->lna[group] * 5) / 3; } run_set_agc(sc, agc); } static void run_rt2870_set_chan(struct run_softc *sc, u_int chan) { const struct rfprog *rfprog = rt2860_rf2850; uint32_t r2, r3, r4; int8_t txpow1, txpow2; int i; /* find the settings for this channel (we know it exists) */ for (i = 0; rfprog[i].chan != chan; i++); r2 = rfprog[i].r2; if (sc->ntxchains == 1) r2 |= 1 << 14; /* 1T: disable Tx chain 2 */ if (sc->nrxchains == 1) r2 |= 1 << 17 | 1 << 6; /* 1R: disable Rx chains 2 & 3 */ else if (sc->nrxchains == 2) r2 |= 1 << 6; /* 2R: disable Rx chain 3 */ /* use Tx power values from EEPROM */ txpow1 = sc->txpow1[i]; txpow2 = sc->txpow2[i]; /* Initialize RF R3 and R4. */ r3 = rfprog[i].r3 & 0xffffc1ff; r4 = (rfprog[i].r4 & ~(0x001f87c0)) | (sc->freq << 15); if (chan > 14) { if (txpow1 >= 0) { txpow1 = (txpow1 > 0xf) ? (0xf) : (txpow1); r3 |= (txpow1 << 10) | (1 << 9); } else { txpow1 += 7; /* txpow1 is not possible larger than 15. */ r3 |= (txpow1 << 10); } if (txpow2 >= 0) { txpow2 = (txpow2 > 0xf) ? (0xf) : (txpow2); r4 |= (txpow2 << 7) | (1 << 6); } else { txpow2 += 7; r4 |= (txpow2 << 7); } } else { /* Set Tx0 power. */ r3 |= (txpow1 << 9); /* Set frequency offset and Tx1 power. */ r4 |= (txpow2 << 6); } run_rt2870_rf_write(sc, rfprog[i].r1); run_rt2870_rf_write(sc, r2); run_rt2870_rf_write(sc, r3 & ~(1 << 2)); run_rt2870_rf_write(sc, r4); run_delay(sc, 10); run_rt2870_rf_write(sc, rfprog[i].r1); run_rt2870_rf_write(sc, r2); run_rt2870_rf_write(sc, r3 | (1 << 2)); run_rt2870_rf_write(sc, r4); run_delay(sc, 10); run_rt2870_rf_write(sc, rfprog[i].r1); run_rt2870_rf_write(sc, r2); run_rt2870_rf_write(sc, r3 & ~(1 << 2)); run_rt2870_rf_write(sc, r4); } static void run_rt3070_set_chan(struct run_softc *sc, u_int chan) { int8_t txpow1, txpow2; uint8_t rf; int i; /* find the settings for this channel (we know it exists) */ for (i = 0; rt2860_rf2850[i].chan != chan; i++); /* use Tx power values from EEPROM */ txpow1 = sc->txpow1[i]; txpow2 = sc->txpow2[i]; run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n); /* RT3370/RT3390: RF R3 [7:4] is not reserved bits. */ run_rt3070_rf_read(sc, 3, &rf); rf = (rf & ~0x0f) | rt3070_freqs[i].k; run_rt3070_rf_write(sc, 3, rf); run_rt3070_rf_read(sc, 6, &rf); rf = (rf & ~0x03) | rt3070_freqs[i].r; run_rt3070_rf_write(sc, 6, rf); /* set Tx0 power */ run_rt3070_rf_read(sc, 12, &rf); rf = (rf & ~0x1f) | txpow1; run_rt3070_rf_write(sc, 12, rf); /* set Tx1 power */ run_rt3070_rf_read(sc, 13, &rf); rf = (rf & ~0x1f) | txpow2; run_rt3070_rf_write(sc, 13, rf); run_rt3070_rf_read(sc, 1, &rf); rf &= ~0xfc; if (sc->ntxchains == 1) rf |= 1 << 7 | 1 << 5; /* 1T: disable Tx chains 2 & 3 */ else if (sc->ntxchains == 2) rf |= 1 << 7; /* 2T: disable Tx chain 3 */ if (sc->nrxchains == 1) rf |= 1 << 6 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */ else if (sc->nrxchains == 2) rf |= 1 << 6; /* 2R: disable Rx chain 3 */ run_rt3070_rf_write(sc, 1, rf); /* set RF offset */ run_rt3070_rf_read(sc, 23, &rf); rf = (rf & ~0x7f) | sc->freq; run_rt3070_rf_write(sc, 23, rf); /* program RF filter */ run_rt3070_rf_read(sc, 24, &rf); /* Tx */ rf = (rf & ~0x3f) | sc->rf24_20mhz; run_rt3070_rf_write(sc, 24, rf); run_rt3070_rf_read(sc, 31, &rf); /* Rx */ rf = (rf & ~0x3f) | sc->rf24_20mhz; run_rt3070_rf_write(sc, 31, rf); /* enable RF tuning */ run_rt3070_rf_read(sc, 7, &rf); run_rt3070_rf_write(sc, 7, rf | 0x01); } static void run_rt3572_set_chan(struct run_softc *sc, u_int chan) { int8_t txpow1, txpow2; uint32_t tmp; uint8_t rf; int i; /* find the settings for this channel (we know it exists) */ for (i = 0; rt2860_rf2850[i].chan != chan; i++); /* use Tx power values from EEPROM */ txpow1 = sc->txpow1[i]; txpow2 = sc->txpow2[i]; if (chan <= 14) { run_bbp_write(sc, 25, sc->bbp25); run_bbp_write(sc, 26, sc->bbp26); } else { /* enable IQ phase correction */ run_bbp_write(sc, 25, 0x09); run_bbp_write(sc, 26, 0xff); } run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n); run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k); run_rt3070_rf_read(sc, 6, &rf); rf = (rf & ~0x0f) | rt3070_freqs[i].r; rf |= (chan <= 14) ? 0x08 : 0x04; run_rt3070_rf_write(sc, 6, rf); /* set PLL mode */ run_rt3070_rf_read(sc, 5, &rf); rf &= ~(0x08 | 0x04); rf |= (chan <= 14) ? 0x04 : 0x08; run_rt3070_rf_write(sc, 5, rf); /* set Tx power for chain 0 */ if (chan <= 14) rf = 0x60 | txpow1; else rf = 0xe0 | (txpow1 & 0xc) << 1 | (txpow1 & 0x3); run_rt3070_rf_write(sc, 12, rf); /* set Tx power for chain 1 */ if (chan <= 14) rf = 0x60 | txpow2; else rf = 0xe0 | (txpow2 & 0xc) << 1 | (txpow2 & 0x3); run_rt3070_rf_write(sc, 13, rf); /* set Tx/Rx streams */ run_rt3070_rf_read(sc, 1, &rf); rf &= ~0xfc; if (sc->ntxchains == 1) rf |= 1 << 7 | 1 << 5; /* 1T: disable Tx chains 2 & 3 */ else if (sc->ntxchains == 2) rf |= 1 << 7; /* 2T: disable Tx chain 3 */ if (sc->nrxchains == 1) rf |= 1 << 6 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */ else if (sc->nrxchains == 2) rf |= 1 << 6; /* 2R: disable Rx chain 3 */ run_rt3070_rf_write(sc, 1, rf); /* set RF offset */ run_rt3070_rf_read(sc, 23, &rf); rf = (rf & ~0x7f) | sc->freq; run_rt3070_rf_write(sc, 23, rf); /* program RF filter */ rf = sc->rf24_20mhz; run_rt3070_rf_write(sc, 24, rf); /* Tx */ run_rt3070_rf_write(sc, 31, rf); /* Rx */ /* enable RF tuning */ run_rt3070_rf_read(sc, 7, &rf); rf = (chan <= 14) ? 0xd8 : ((rf & ~0xc8) | 0x14); run_rt3070_rf_write(sc, 7, rf); /* TSSI */ rf = (chan <= 14) ? 0xc3 : 0xc0; run_rt3070_rf_write(sc, 9, rf); /* set loop filter 1 */ run_rt3070_rf_write(sc, 10, 0xf1); /* set loop filter 2 */ run_rt3070_rf_write(sc, 11, (chan <= 14) ? 0xb9 : 0x00); /* set tx_mx2_ic */ run_rt3070_rf_write(sc, 15, (chan <= 14) ? 0x53 : 0x43); /* set tx_mx1_ic */ if (chan <= 14) rf = 0x48 | sc->txmixgain_2ghz; else rf = 0x78 | sc->txmixgain_5ghz; run_rt3070_rf_write(sc, 16, rf); /* set tx_lo1 */ run_rt3070_rf_write(sc, 17, 0x23); /* set tx_lo2 */ if (chan <= 14) rf = 0x93; else if (chan <= 64) rf = 0xb7; else if (chan <= 128) rf = 0x74; else rf = 0x72; run_rt3070_rf_write(sc, 19, rf); /* set rx_lo1 */ if (chan <= 14) rf = 0xb3; else if (chan <= 64) rf = 0xf6; else if (chan <= 128) rf = 0xf4; else rf = 0xf3; run_rt3070_rf_write(sc, 20, rf); /* set pfd_delay */ if (chan <= 14) rf = 0x15; else if (chan <= 64) rf = 0x3d; else rf = 0x01; run_rt3070_rf_write(sc, 25, rf); /* set rx_lo2 */ run_rt3070_rf_write(sc, 26, (chan <= 14) ? 0x85 : 0x87); /* set ldo_rf_vc */ run_rt3070_rf_write(sc, 27, (chan <= 14) ? 0x00 : 0x01); /* set drv_cc */ run_rt3070_rf_write(sc, 29, (chan <= 14) ? 0x9b : 0x9f); run_read(sc, RT2860_GPIO_CTRL, &tmp); tmp &= ~0x8080; if (chan <= 14) tmp |= 0x80; run_write(sc, RT2860_GPIO_CTRL, tmp); /* enable RF tuning */ run_rt3070_rf_read(sc, 7, &rf); run_rt3070_rf_write(sc, 7, rf | 0x01); run_delay(sc, 2); } static void run_rt3593_set_chan(struct run_softc *sc, u_int chan) { int8_t txpow1, txpow2, txpow3; uint8_t h20mhz, rf; int i; /* find the settings for this channel (we know it exists) */ for (i = 0; rt2860_rf2850[i].chan != chan; i++); /* use Tx power values from EEPROM */ txpow1 = sc->txpow1[i]; txpow2 = sc->txpow2[i]; txpow3 = (sc->ntxchains == 3) ? sc->txpow3[i] : 0; if (chan <= 14) { run_bbp_write(sc, 25, sc->bbp25); run_bbp_write(sc, 26, sc->bbp26); } else { /* Enable IQ phase correction. */ run_bbp_write(sc, 25, 0x09); run_bbp_write(sc, 26, 0xff); } run_rt3070_rf_write(sc, 8, rt3070_freqs[i].n); run_rt3070_rf_write(sc, 9, rt3070_freqs[i].k & 0x0f); run_rt3070_rf_read(sc, 11, &rf); rf = (rf & ~0x03) | (rt3070_freqs[i].r & 0x03); run_rt3070_rf_write(sc, 11, rf); /* Set pll_idoh. */ run_rt3070_rf_read(sc, 11, &rf); rf &= ~0x4c; rf |= (chan <= 14) ? 0x44 : 0x48; run_rt3070_rf_write(sc, 11, rf); if (chan <= 14) rf = txpow1 & 0x1f; else rf = 0x40 | ((txpow1 & 0x18) << 1) | (txpow1 & 0x07); run_rt3070_rf_write(sc, 53, rf); if (chan <= 14) rf = txpow2 & 0x1f; else rf = 0x40 | ((txpow2 & 0x18) << 1) | (txpow2 & 0x07); run_rt3070_rf_write(sc, 55, rf); if (chan <= 14) rf = txpow3 & 0x1f; else rf = 0x40 | ((txpow3 & 0x18) << 1) | (txpow3 & 0x07); run_rt3070_rf_write(sc, 54, rf); rf = RT3070_RF_BLOCK | RT3070_PLL_PD; if (sc->ntxchains == 3) rf |= RT3070_TX0_PD | RT3070_TX1_PD | RT3070_TX2_PD; else rf |= RT3070_TX0_PD | RT3070_TX1_PD; rf |= RT3070_RX0_PD | RT3070_RX1_PD | RT3070_RX2_PD; run_rt3070_rf_write(sc, 1, rf); run_adjust_freq_offset(sc); run_rt3070_rf_write(sc, 31, (chan <= 14) ? 0xa0 : 0x80); h20mhz = (sc->rf24_20mhz & 0x20) >> 5; run_rt3070_rf_read(sc, 30, &rf); rf = (rf & ~0x06) | (h20mhz << 1) | (h20mhz << 2); run_rt3070_rf_write(sc, 30, rf); run_rt3070_rf_read(sc, 36, &rf); if (chan <= 14) rf |= 0x80; else rf &= ~0x80; run_rt3070_rf_write(sc, 36, rf); /* Set vcolo_bs. */ run_rt3070_rf_write(sc, 34, (chan <= 14) ? 0x3c : 0x20); /* Set pfd_delay. */ run_rt3070_rf_write(sc, 12, (chan <= 14) ? 0x1a : 0x12); /* Set vco bias current control. */ run_rt3070_rf_read(sc, 6, &rf); rf &= ~0xc0; if (chan <= 14) rf |= 0x40; else if (chan <= 128) rf |= 0x80; else rf |= 0x40; run_rt3070_rf_write(sc, 6, rf); run_rt3070_rf_read(sc, 30, &rf); rf = (rf & ~0x18) | 0x10; run_rt3070_rf_write(sc, 30, rf); run_rt3070_rf_write(sc, 10, (chan <= 14) ? 0xd3 : 0xd8); run_rt3070_rf_write(sc, 13, (chan <= 14) ? 0x12 : 0x23); run_rt3070_rf_read(sc, 51, &rf); rf = (rf & ~0x03) | 0x01; run_rt3070_rf_write(sc, 51, rf); /* Set tx_mx1_cc. */ run_rt3070_rf_read(sc, 51, &rf); rf &= ~0x1c; rf |= (chan <= 14) ? 0x14 : 0x10; run_rt3070_rf_write(sc, 51, rf); /* Set tx_mx1_ic. */ run_rt3070_rf_read(sc, 51, &rf); rf &= ~0xe0; rf |= (chan <= 14) ? 0x60 : 0x40; run_rt3070_rf_write(sc, 51, rf); /* Set tx_lo1_ic. */ run_rt3070_rf_read(sc, 49, &rf); rf &= ~0x1c; rf |= (chan <= 14) ? 0x0c : 0x08; run_rt3070_rf_write(sc, 49, rf); /* Set tx_lo1_en. */ run_rt3070_rf_read(sc, 50, &rf); run_rt3070_rf_write(sc, 50, rf & ~0x20); /* Set drv_cc. */ run_rt3070_rf_read(sc, 57, &rf); rf &= ~0xfc; rf |= (chan <= 14) ? 0x6c : 0x3c; run_rt3070_rf_write(sc, 57, rf); /* Set rx_mix1_ic, rxa_lnactr, lna_vc, lna_inbias_en and lna_en. */ run_rt3070_rf_write(sc, 44, (chan <= 14) ? 0x93 : 0x9b); /* Set drv_gnd_a, tx_vga_cc_a and tx_mx2_gain. */ run_rt3070_rf_write(sc, 52, (chan <= 14) ? 0x45 : 0x05); /* Enable VCO calibration. */ run_rt3070_rf_read(sc, 3, &rf); rf &= ~RT5390_VCOCAL; rf |= (chan <= 14) ? RT5390_VCOCAL : 0xbe; run_rt3070_rf_write(sc, 3, rf); if (chan <= 14) rf = 0x23; else if (chan <= 64) rf = 0x36; else if (chan <= 128) rf = 0x32; else rf = 0x30; run_rt3070_rf_write(sc, 39, rf); if (chan <= 14) rf = 0xbb; else if (chan <= 64) rf = 0xeb; else if (chan <= 128) rf = 0xb3; else rf = 0x9b; run_rt3070_rf_write(sc, 45, rf); /* Set FEQ/AEQ control. */ run_bbp_write(sc, 105, 0x34); } static void run_rt5390_set_chan(struct run_softc *sc, u_int chan) { int8_t txpow1, txpow2; uint8_t rf; int i; /* find the settings for this channel (we know it exists) */ for (i = 0; rt2860_rf2850[i].chan != chan; i++); /* use Tx power values from EEPROM */ txpow1 = sc->txpow1[i]; txpow2 = sc->txpow2[i]; run_rt3070_rf_write(sc, 8, rt3070_freqs[i].n); run_rt3070_rf_write(sc, 9, rt3070_freqs[i].k & 0x0f); run_rt3070_rf_read(sc, 11, &rf); rf = (rf & ~0x03) | (rt3070_freqs[i].r & 0x03); run_rt3070_rf_write(sc, 11, rf); run_rt3070_rf_read(sc, 49, &rf); rf = (rf & ~0x3f) | (txpow1 & 0x3f); /* The valid range of the RF R49 is 0x00 to 0x27. */ if ((rf & 0x3f) > 0x27) rf = (rf & ~0x3f) | 0x27; run_rt3070_rf_write(sc, 49, rf); if (sc->mac_ver == 0x5392) { run_rt3070_rf_read(sc, 50, &rf); rf = (rf & ~0x3f) | (txpow2 & 0x3f); /* The valid range of the RF R50 is 0x00 to 0x27. */ if ((rf & 0x3f) > 0x27) rf = (rf & ~0x3f) | 0x27; run_rt3070_rf_write(sc, 50, rf); } run_rt3070_rf_read(sc, 1, &rf); rf |= RT3070_RF_BLOCK | RT3070_PLL_PD | RT3070_RX0_PD | RT3070_TX0_PD; if (sc->mac_ver == 0x5392) rf |= RT3070_RX1_PD | RT3070_TX1_PD; run_rt3070_rf_write(sc, 1, rf); if (sc->mac_ver != 0x5392) { run_rt3070_rf_read(sc, 2, &rf); rf |= 0x80; run_rt3070_rf_write(sc, 2, rf); run_delay(sc, 10); rf &= 0x7f; run_rt3070_rf_write(sc, 2, rf); } run_adjust_freq_offset(sc); if (sc->mac_ver == 0x5392) { /* Fix for RT5392C. */ if (sc->mac_rev >= 0x0223) { if (chan <= 4) rf = 0x0f; else if (chan >= 5 && chan <= 7) rf = 0x0e; else rf = 0x0d; run_rt3070_rf_write(sc, 23, rf); if (chan <= 4) rf = 0x0c; else if (chan == 5) rf = 0x0b; else if (chan >= 6 && chan <= 7) rf = 0x0a; else if (chan >= 8 && chan <= 10) rf = 0x09; else rf = 0x08; run_rt3070_rf_write(sc, 59, rf); } else { if (chan <= 11) rf = 0x0f; else rf = 0x0b; run_rt3070_rf_write(sc, 59, rf); } } else { /* Fix for RT5390F. */ if (sc->mac_rev >= 0x0502) { if (chan <= 11) rf = 0x43; else rf = 0x23; run_rt3070_rf_write(sc, 55, rf); if (chan <= 11) rf = 0x0f; else if (chan == 12) rf = 0x0d; else rf = 0x0b; run_rt3070_rf_write(sc, 59, rf); } else { run_rt3070_rf_write(sc, 55, 0x44); run_rt3070_rf_write(sc, 59, 0x8f); } } /* Enable VCO calibration. */ run_rt3070_rf_read(sc, 3, &rf); rf |= RT5390_VCOCAL; run_rt3070_rf_write(sc, 3, rf); } static void run_rt5592_set_chan(struct run_softc *sc, u_int chan) { const struct rt5592_freqs *freqs; uint32_t tmp; uint8_t reg, rf, txpow_bound; int8_t txpow1, txpow2; int i; run_read(sc, RT5592_DEBUG_INDEX, &tmp); freqs = (tmp & RT5592_SEL_XTAL) ? rt5592_freqs_40mhz : rt5592_freqs_20mhz; /* find the settings for this channel (we know it exists) */ for (i = 0; rt2860_rf2850[i].chan != chan; i++, freqs++); /* use Tx power values from EEPROM */ txpow1 = sc->txpow1[i]; txpow2 = sc->txpow2[i]; run_read(sc, RT3070_LDO_CFG0, &tmp); tmp &= ~0x1c000000; if (chan > 14) tmp |= 0x14000000; run_write(sc, RT3070_LDO_CFG0, tmp); /* N setting. */ run_rt3070_rf_write(sc, 8, freqs->n & 0xff); run_rt3070_rf_read(sc, 9, &rf); rf &= ~(1 << 4); rf |= ((freqs->n & 0x0100) >> 8) << 4; run_rt3070_rf_write(sc, 9, rf); /* K setting. */ run_rt3070_rf_read(sc, 9, &rf); rf &= ~0x0f; rf |= (freqs->k & 0x0f); run_rt3070_rf_write(sc, 9, rf); /* Mode setting. */ run_rt3070_rf_read(sc, 11, &rf); rf &= ~0x0c; rf |= ((freqs->m - 0x8) & 0x3) << 2; run_rt3070_rf_write(sc, 11, rf); run_rt3070_rf_read(sc, 9, &rf); rf &= ~(1 << 7); rf |= (((freqs->m - 0x8) & 0x4) >> 2) << 7; run_rt3070_rf_write(sc, 9, rf); /* R setting. */ run_rt3070_rf_read(sc, 11, &rf); rf &= ~0x03; rf |= (freqs->r - 0x1); run_rt3070_rf_write(sc, 11, rf); if (chan <= 14) { /* Initialize RF registers for 2GHZ. */ for (i = 0; i < nitems(rt5592_2ghz_def_rf); i++) { run_rt3070_rf_write(sc, rt5592_2ghz_def_rf[i].reg, rt5592_2ghz_def_rf[i].val); } rf = (chan <= 10) ? 0x07 : 0x06; run_rt3070_rf_write(sc, 23, rf); run_rt3070_rf_write(sc, 59, rf); run_rt3070_rf_write(sc, 55, 0x43); /* * RF R49/R50 Tx power ALC code. * G-band bit<7:6>=1:0, bit<5:0> range from 0x0 ~ 0x27. */ reg = 2; txpow_bound = 0x27; } else { /* Initialize RF registers for 5GHZ. */ for (i = 0; i < nitems(rt5592_5ghz_def_rf); i++) { run_rt3070_rf_write(sc, rt5592_5ghz_def_rf[i].reg, rt5592_5ghz_def_rf[i].val); } for (i = 0; i < nitems(rt5592_chan_5ghz); i++) { if (chan >= rt5592_chan_5ghz[i].firstchan && chan <= rt5592_chan_5ghz[i].lastchan) { run_rt3070_rf_write(sc, rt5592_chan_5ghz[i].reg, rt5592_chan_5ghz[i].val); } } /* * RF R49/R50 Tx power ALC code. * A-band bit<7:6>=1:1, bit<5:0> range from 0x0 ~ 0x2b. */ reg = 3; txpow_bound = 0x2b; } /* RF R49 ch0 Tx power ALC code. */ run_rt3070_rf_read(sc, 49, &rf); rf &= ~0xc0; rf |= (reg << 6); rf = (rf & ~0x3f) | (txpow1 & 0x3f); if ((rf & 0x3f) > txpow_bound) rf = (rf & ~0x3f) | txpow_bound; run_rt3070_rf_write(sc, 49, rf); /* RF R50 ch1 Tx power ALC code. */ run_rt3070_rf_read(sc, 50, &rf); rf &= ~(1 << 7 | 1 << 6); rf |= (reg << 6); rf = (rf & ~0x3f) | (txpow2 & 0x3f); if ((rf & 0x3f) > txpow_bound) rf = (rf & ~0x3f) | txpow_bound; run_rt3070_rf_write(sc, 50, rf); /* Enable RF_BLOCK, PLL_PD, RX0_PD, and TX0_PD. */ run_rt3070_rf_read(sc, 1, &rf); rf |= (RT3070_RF_BLOCK | RT3070_PLL_PD | RT3070_RX0_PD | RT3070_TX0_PD); if (sc->ntxchains > 1) rf |= RT3070_TX1_PD; if (sc->nrxchains > 1) rf |= RT3070_RX1_PD; run_rt3070_rf_write(sc, 1, rf); run_rt3070_rf_write(sc, 6, 0xe4); run_rt3070_rf_write(sc, 30, 0x10); run_rt3070_rf_write(sc, 31, 0x80); run_rt3070_rf_write(sc, 32, 0x80); run_adjust_freq_offset(sc); /* Enable VCO calibration. */ run_rt3070_rf_read(sc, 3, &rf); rf |= RT5390_VCOCAL; run_rt3070_rf_write(sc, 3, rf); } static void run_set_rx_antenna(struct run_softc *sc, int aux) { uint32_t tmp; uint8_t bbp152; if (aux) { if (sc->rf_rev == RT5390_RF_5370) { run_bbp_read(sc, 152, &bbp152); run_bbp_write(sc, 152, bbp152 & ~0x80); } else { run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 0); run_read(sc, RT2860_GPIO_CTRL, &tmp); run_write(sc, RT2860_GPIO_CTRL, (tmp & ~0x0808) | 0x08); } } else { if (sc->rf_rev == RT5390_RF_5370) { run_bbp_read(sc, 152, &bbp152); run_bbp_write(sc, 152, bbp152 | 0x80); } else { run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 1); run_read(sc, RT2860_GPIO_CTRL, &tmp); run_write(sc, RT2860_GPIO_CTRL, tmp & ~0x0808); } } } static int run_set_chan(struct run_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; u_int chan, group; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return (EINVAL); if (sc->mac_ver == 0x5592) run_rt5592_set_chan(sc, chan); else if (sc->mac_ver >= 0x5390) run_rt5390_set_chan(sc, chan); else if (sc->mac_ver == 0x3593) run_rt3593_set_chan(sc, chan); else if (sc->mac_ver == 0x3572) run_rt3572_set_chan(sc, chan); else if (sc->mac_ver >= 0x3070) run_rt3070_set_chan(sc, chan); else run_rt2870_set_chan(sc, chan); /* determine channel group */ if (chan <= 14) group = 0; else if (chan <= 64) group = 1; else if (chan <= 128) group = 2; else group = 3; /* XXX necessary only when group has changed! */ run_select_chan_group(sc, group); run_delay(sc, 10); /* Perform IQ calibration. */ if (sc->mac_ver >= 0x5392) run_iq_calib(sc, chan); return (0); } static void run_set_channel(struct ieee80211com *ic) { struct run_softc *sc = ic->ic_softc; RUN_LOCK(sc); run_set_chan(sc, ic->ic_curchan); RUN_UNLOCK(sc); return; } static void run_scan_start(struct ieee80211com *ic) { struct run_softc *sc = ic->ic_softc; uint32_t tmp; RUN_LOCK(sc); /* abort TSF synchronization */ run_read(sc, RT2860_BCN_TIME_CFG, &tmp); run_write(sc, RT2860_BCN_TIME_CFG, tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN)); run_set_bssid(sc, ieee80211broadcastaddr); RUN_UNLOCK(sc); return; } static void run_scan_end(struct ieee80211com *ic) { struct run_softc *sc = ic->ic_softc; RUN_LOCK(sc); run_enable_tsf_sync(sc); run_set_bssid(sc, sc->sc_bssid); RUN_UNLOCK(sc); return; } /* * Could be called from ieee80211_node_timeout() * (non-sleepable thread) */ static void run_update_beacon(struct ieee80211vap *vap, int item) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; struct ieee80211_node *ni = vap->iv_bss; struct run_softc *sc = ic->ic_softc; struct run_vap *rvp = RUN_VAP(vap); int mcast = 0; uint32_t i; switch (item) { case IEEE80211_BEACON_ERP: run_updateslot(ic); break; case IEEE80211_BEACON_HTINFO: run_updateprot(ic); break; case IEEE80211_BEACON_TIM: mcast = 1; /*TODO*/ break; default: break; } setbit(bo->bo_flags, item); if (rvp->beacon_mbuf == NULL) { rvp->beacon_mbuf = ieee80211_beacon_alloc(ni); if (rvp->beacon_mbuf == NULL) return; } ieee80211_beacon_update(ni, rvp->beacon_mbuf, mcast); i = RUN_CMDQ_GET(&sc->cmdq_store); DPRINTF("cmdq_store=%d\n", i); sc->cmdq[i].func = run_update_beacon_cb; sc->cmdq[i].arg0 = vap; ieee80211_runtask(ic, &sc->cmdq_task); return; } static void run_update_beacon_cb(void *arg) { struct ieee80211vap *vap = arg; struct ieee80211_node *ni = vap->iv_bss; struct run_vap *rvp = RUN_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct run_softc *sc = ic->ic_softc; struct rt2860_txwi txwi; struct mbuf *m; uint16_t txwisize; uint8_t ridx; if (ni->ni_chan == IEEE80211_CHAN_ANYC) return; if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) return; /* * No need to call ieee80211_beacon_update(), run_update_beacon() * is taking care of apropriate calls. */ if (rvp->beacon_mbuf == NULL) { rvp->beacon_mbuf = ieee80211_beacon_alloc(ni); if (rvp->beacon_mbuf == NULL) return; } m = rvp->beacon_mbuf; memset(&txwi, 0, sizeof(txwi)); txwi.wcid = 0xff; txwi.len = htole16(m->m_pkthdr.len); /* send beacons at the lowest available rate */ ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1; txwi.phy = htole16(rt2860_rates[ridx].mcs); if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM) txwi.phy |= htole16(RT2860_PHY_OFDM); txwi.txop = RT2860_TX_TXOP_HT; txwi.flags = RT2860_TX_TS; txwi.xflags = RT2860_TX_NSEQ; txwisize = (sc->mac_ver == 0x5592) ? sizeof(txwi) + sizeof(uint32_t) : sizeof(txwi); run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id), (uint8_t *)&txwi, txwisize); run_write_region_1(sc, RT2860_BCN_BASE(rvp->rvp_id) + txwisize, mtod(m, uint8_t *), (m->m_pkthdr.len + 1) & ~1); } static void run_updateprot(struct ieee80211com *ic) { struct run_softc *sc = ic->ic_softc; uint32_t i; i = RUN_CMDQ_GET(&sc->cmdq_store); DPRINTF("cmdq_store=%d\n", i); sc->cmdq[i].func = run_updateprot_cb; sc->cmdq[i].arg0 = ic; ieee80211_runtask(ic, &sc->cmdq_task); } static void run_updateprot_cb(void *arg) { struct ieee80211com *ic = arg; struct run_softc *sc = ic->ic_softc; uint32_t tmp; tmp = RT2860_RTSTH_EN | RT2860_PROT_NAV_SHORT | RT2860_TXOP_ALLOW_ALL; /* setup protection frame rate (MCS code) */ tmp |= (ic->ic_curmode == IEEE80211_MODE_11A) ? rt2860_rates[RT2860_RIDX_OFDM6].mcs | RT2860_PHY_OFDM : rt2860_rates[RT2860_RIDX_CCK11].mcs; /* CCK frames don't require protection */ run_write(sc, RT2860_CCK_PROT_CFG, tmp); if (ic->ic_flags & IEEE80211_F_USEPROT) { if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) tmp |= RT2860_PROT_CTRL_RTS_CTS; else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) tmp |= RT2860_PROT_CTRL_CTS; } run_write(sc, RT2860_OFDM_PROT_CFG, tmp); } static void run_usb_timeout_cb(void *arg) { struct ieee80211vap *vap = arg; struct run_softc *sc = vap->iv_ic->ic_softc; RUN_LOCK_ASSERT(sc, MA_OWNED); if(vap->iv_state == IEEE80211_S_RUN && vap->iv_opmode != IEEE80211_M_STA) run_reset_livelock(sc); else if (vap->iv_state == IEEE80211_S_SCAN) { DPRINTF("timeout caused by scan\n"); /* cancel bgscan */ ieee80211_cancel_scan(vap); } else DPRINTF("timeout by unknown cause\n"); } static void run_reset_livelock(struct run_softc *sc) { uint32_t tmp; RUN_LOCK_ASSERT(sc, MA_OWNED); /* * In IBSS or HostAP modes (when the hardware sends beacons), the MAC * can run into a livelock and start sending CTS-to-self frames like * crazy if protection is enabled. Reset MAC/BBP for a while */ run_read(sc, RT2860_DEBUG, &tmp); DPRINTFN(3, "debug reg %08x\n", tmp); if ((tmp & (1 << 29)) && (tmp & (1 << 7 | 1 << 5))) { DPRINTF("CTS-to-self livelock detected\n"); run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_SRST); run_delay(sc, 1); run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_RX_EN | RT2860_MAC_TX_EN); } } static void run_update_promisc_locked(struct run_softc *sc) { uint32_t tmp; run_read(sc, RT2860_RX_FILTR_CFG, &tmp); tmp |= RT2860_DROP_UC_NOME; if (sc->sc_ic.ic_promisc > 0) tmp &= ~RT2860_DROP_UC_NOME; run_write(sc, RT2860_RX_FILTR_CFG, tmp); DPRINTF("%s promiscuous mode\n", (sc->sc_ic.ic_promisc > 0) ? "entering" : "leaving"); } static void run_update_promisc(struct ieee80211com *ic) { struct run_softc *sc = ic->ic_softc; if ((sc->sc_flags & RUN_RUNNING) == 0) return; RUN_LOCK(sc); run_update_promisc_locked(sc); RUN_UNLOCK(sc); } static void run_enable_tsf_sync(struct run_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t tmp; DPRINTF("rvp_id=%d ic_opmode=%d\n", RUN_VAP(vap)->rvp_id, ic->ic_opmode); run_read(sc, RT2860_BCN_TIME_CFG, &tmp); tmp &= ~0x1fffff; tmp |= vap->iv_bss->ni_intval * 16; tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN; if (ic->ic_opmode == IEEE80211_M_STA) { /* * Local TSF is always updated with remote TSF on beacon * reception. */ tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT; } else if (ic->ic_opmode == IEEE80211_M_IBSS) { tmp |= RT2860_BCN_TX_EN; /* * Local TSF is updated with remote TSF on beacon reception * only if the remote TSF is greater than local TSF. */ tmp |= 2 << RT2860_TSF_SYNC_MODE_SHIFT; } else if (ic->ic_opmode == IEEE80211_M_HOSTAP || ic->ic_opmode == IEEE80211_M_MBSS) { tmp |= RT2860_BCN_TX_EN; /* SYNC with nobody */ tmp |= 3 << RT2860_TSF_SYNC_MODE_SHIFT; } else { DPRINTF("Enabling TSF failed. undefined opmode\n"); return; } run_write(sc, RT2860_BCN_TIME_CFG, tmp); } static void run_enable_tsf(struct run_softc *sc) { uint32_t tmp; if (run_read(sc, RT2860_BCN_TIME_CFG, &tmp) == 0) { tmp &= ~(RT2860_BCN_TX_EN | RT2860_TBTT_TIMER_EN); tmp |= RT2860_TSF_TIMER_EN; run_write(sc, RT2860_BCN_TIME_CFG, tmp); } } static void run_get_tsf(struct run_softc *sc, uint64_t *buf) { run_read_region_1(sc, RT2860_TSF_TIMER_DW0, (uint8_t *)buf, sizeof(*buf)); } static void run_enable_mrr(struct run_softc *sc) { #define CCK(mcs) (mcs) #define OFDM(mcs) (1 << 3 | (mcs)) run_write(sc, RT2860_LG_FBK_CFG0, OFDM(6) << 28 | /* 54->48 */ OFDM(5) << 24 | /* 48->36 */ OFDM(4) << 20 | /* 36->24 */ OFDM(3) << 16 | /* 24->18 */ OFDM(2) << 12 | /* 18->12 */ OFDM(1) << 8 | /* 12-> 9 */ OFDM(0) << 4 | /* 9-> 6 */ OFDM(0)); /* 6-> 6 */ run_write(sc, RT2860_LG_FBK_CFG1, CCK(2) << 12 | /* 11->5.5 */ CCK(1) << 8 | /* 5.5-> 2 */ CCK(0) << 4 | /* 2-> 1 */ CCK(0)); /* 1-> 1 */ #undef OFDM #undef CCK } static void run_set_txpreamble(struct run_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; run_read(sc, RT2860_AUTO_RSP_CFG, &tmp); if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) tmp |= RT2860_CCK_SHORT_EN; else tmp &= ~RT2860_CCK_SHORT_EN; run_write(sc, RT2860_AUTO_RSP_CFG, tmp); } static void run_set_basicrates(struct run_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* set basic rates mask */ if (ic->ic_curmode == IEEE80211_MODE_11B) run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x003); else if (ic->ic_curmode == IEEE80211_MODE_11A) run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x150); else /* 11g */ run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x15f); } static void run_set_leds(struct run_softc *sc, uint16_t which) { (void)run_mcu_cmd(sc, RT2860_MCU_CMD_LEDS, which | (sc->leds & 0x7f)); } static void run_set_bssid(struct run_softc *sc, const uint8_t *bssid) { run_write(sc, RT2860_MAC_BSSID_DW0, bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); run_write(sc, RT2860_MAC_BSSID_DW1, bssid[4] | bssid[5] << 8); } static void run_set_macaddr(struct run_softc *sc, const uint8_t *addr) { run_write(sc, RT2860_MAC_ADDR_DW0, addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); run_write(sc, RT2860_MAC_ADDR_DW1, addr[4] | addr[5] << 8 | 0xff << 16); } static void run_updateslot(struct ieee80211com *ic) { struct run_softc *sc = ic->ic_softc; uint32_t i; i = RUN_CMDQ_GET(&sc->cmdq_store); DPRINTF("cmdq_store=%d\n", i); sc->cmdq[i].func = run_updateslot_cb; sc->cmdq[i].arg0 = ic; ieee80211_runtask(ic, &sc->cmdq_task); return; } /* ARGSUSED */ static void run_updateslot_cb(void *arg) { struct ieee80211com *ic = arg; struct run_softc *sc = ic->ic_softc; uint32_t tmp; run_read(sc, RT2860_BKOFF_SLOT_CFG, &tmp); tmp &= ~0xff; tmp |= IEEE80211_GET_SLOTTIME(ic); run_write(sc, RT2860_BKOFF_SLOT_CFG, tmp); } static void run_update_mcast(struct ieee80211com *ic) { } static int8_t run_rssi2dbm(struct run_softc *sc, uint8_t rssi, uint8_t rxchain) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_channel *c = ic->ic_curchan; int delta; if (IEEE80211_IS_CHAN_5GHZ(c)) { u_int chan = ieee80211_chan2ieee(ic, c); delta = sc->rssi_5ghz[rxchain]; /* determine channel group */ if (chan <= 64) delta -= sc->lna[1]; else if (chan <= 128) delta -= sc->lna[2]; else delta -= sc->lna[3]; } else delta = sc->rssi_2ghz[rxchain] - sc->lna[0]; return (-12 - delta - rssi); } static void run_rt5390_bbp_init(struct run_softc *sc) { int i; uint8_t bbp; /* Apply maximum likelihood detection for 2 stream case. */ run_bbp_read(sc, 105, &bbp); if (sc->nrxchains > 1) run_bbp_write(sc, 105, bbp | RT5390_MLD); /* Avoid data lost and CRC error. */ run_bbp_read(sc, 4, &bbp); run_bbp_write(sc, 4, bbp | RT5390_MAC_IF_CTRL); if (sc->mac_ver == 0x5592) { for (i = 0; i < nitems(rt5592_def_bbp); i++) { run_bbp_write(sc, rt5592_def_bbp[i].reg, rt5592_def_bbp[i].val); } for (i = 0; i < nitems(rt5592_bbp_r196); i++) { run_bbp_write(sc, 195, i + 0x80); run_bbp_write(sc, 196, rt5592_bbp_r196[i]); } } else { for (i = 0; i < nitems(rt5390_def_bbp); i++) { run_bbp_write(sc, rt5390_def_bbp[i].reg, rt5390_def_bbp[i].val); } } if (sc->mac_ver == 0x5392) { run_bbp_write(sc, 88, 0x90); run_bbp_write(sc, 95, 0x9a); run_bbp_write(sc, 98, 0x12); run_bbp_write(sc, 106, 0x12); run_bbp_write(sc, 134, 0xd0); run_bbp_write(sc, 135, 0xf6); run_bbp_write(sc, 148, 0x84); } run_bbp_read(sc, 152, &bbp); run_bbp_write(sc, 152, bbp | 0x80); /* Fix BBP254 for RT5592C. */ if (sc->mac_ver == 0x5592 && sc->mac_rev >= 0x0221) { run_bbp_read(sc, 254, &bbp); run_bbp_write(sc, 254, bbp | 0x80); } /* Disable hardware antenna diversity. */ if (sc->mac_ver == 0x5390) run_bbp_write(sc, 154, 0); /* Initialize Rx CCK/OFDM frequency offset report. */ run_bbp_write(sc, 142, 1); run_bbp_write(sc, 143, 57); } static int run_bbp_init(struct run_softc *sc) { int i, error, ntries; uint8_t bbp0; /* wait for BBP to wake up */ for (ntries = 0; ntries < 20; ntries++) { if ((error = run_bbp_read(sc, 0, &bbp0)) != 0) return error; if (bbp0 != 0 && bbp0 != 0xff) break; } if (ntries == 20) return (ETIMEDOUT); /* initialize BBP registers to default values */ if (sc->mac_ver >= 0x5390) run_rt5390_bbp_init(sc); else { for (i = 0; i < nitems(rt2860_def_bbp); i++) { run_bbp_write(sc, rt2860_def_bbp[i].reg, rt2860_def_bbp[i].val); } } if (sc->mac_ver == 0x3593) { run_bbp_write(sc, 79, 0x13); run_bbp_write(sc, 80, 0x05); run_bbp_write(sc, 81, 0x33); run_bbp_write(sc, 86, 0x46); run_bbp_write(sc, 137, 0x0f); } /* fix BBP84 for RT2860E */ if (sc->mac_ver == 0x2860 && sc->mac_rev != 0x0101) run_bbp_write(sc, 84, 0x19); if (sc->mac_ver >= 0x3070 && (sc->mac_ver != 0x3593 && sc->mac_ver != 0x5592)) { run_bbp_write(sc, 79, 0x13); run_bbp_write(sc, 80, 0x05); run_bbp_write(sc, 81, 0x33); } else if (sc->mac_ver == 0x2860 && sc->mac_rev == 0x0100) { run_bbp_write(sc, 69, 0x16); run_bbp_write(sc, 73, 0x12); } return (0); } static int run_rt3070_rf_init(struct run_softc *sc) { uint32_t tmp; uint8_t bbp4, mingain, rf, target; int i; run_rt3070_rf_read(sc, 30, &rf); /* toggle RF R30 bit 7 */ run_rt3070_rf_write(sc, 30, rf | 0x80); run_delay(sc, 10); run_rt3070_rf_write(sc, 30, rf & ~0x80); /* initialize RF registers to default value */ if (sc->mac_ver == 0x3572) { for (i = 0; i < nitems(rt3572_def_rf); i++) { run_rt3070_rf_write(sc, rt3572_def_rf[i].reg, rt3572_def_rf[i].val); } } else { for (i = 0; i < nitems(rt3070_def_rf); i++) { run_rt3070_rf_write(sc, rt3070_def_rf[i].reg, rt3070_def_rf[i].val); } } if (sc->mac_ver == 0x3070 && sc->mac_rev < 0x0201) { /* * Change voltage from 1.2V to 1.35V for RT3070. * The DAC issue (RT3070_LDO_CFG0) has been fixed * in RT3070(F). */ run_read(sc, RT3070_LDO_CFG0, &tmp); tmp = (tmp & ~0x0f000000) | 0x0d000000; run_write(sc, RT3070_LDO_CFG0, tmp); } else if (sc->mac_ver == 0x3071) { run_rt3070_rf_read(sc, 6, &rf); run_rt3070_rf_write(sc, 6, rf | 0x40); run_rt3070_rf_write(sc, 31, 0x14); run_read(sc, RT3070_LDO_CFG0, &tmp); tmp &= ~0x1f000000; if (sc->mac_rev < 0x0211) tmp |= 0x0d000000; /* 1.3V */ else tmp |= 0x01000000; /* 1.2V */ run_write(sc, RT3070_LDO_CFG0, tmp); /* patch LNA_PE_G1 */ run_read(sc, RT3070_GPIO_SWITCH, &tmp); run_write(sc, RT3070_GPIO_SWITCH, tmp & ~0x20); } else if (sc->mac_ver == 0x3572) { run_rt3070_rf_read(sc, 6, &rf); run_rt3070_rf_write(sc, 6, rf | 0x40); /* increase voltage from 1.2V to 1.35V */ run_read(sc, RT3070_LDO_CFG0, &tmp); tmp = (tmp & ~0x1f000000) | 0x0d000000; run_write(sc, RT3070_LDO_CFG0, tmp); if (sc->mac_rev < 0x0211 || !sc->patch_dac) { run_delay(sc, 1); /* wait for 1msec */ /* decrease voltage back to 1.2V */ tmp = (tmp & ~0x1f000000) | 0x01000000; run_write(sc, RT3070_LDO_CFG0, tmp); } } /* select 20MHz bandwidth */ run_rt3070_rf_read(sc, 31, &rf); run_rt3070_rf_write(sc, 31, rf & ~0x20); /* calibrate filter for 20MHz bandwidth */ sc->rf24_20mhz = 0x1f; /* default value */ target = (sc->mac_ver < 0x3071) ? 0x16 : 0x13; run_rt3070_filter_calib(sc, 0x07, target, &sc->rf24_20mhz); /* select 40MHz bandwidth */ run_bbp_read(sc, 4, &bbp4); run_bbp_write(sc, 4, (bbp4 & ~0x18) | 0x10); run_rt3070_rf_read(sc, 31, &rf); run_rt3070_rf_write(sc, 31, rf | 0x20); /* calibrate filter for 40MHz bandwidth */ sc->rf24_40mhz = 0x2f; /* default value */ target = (sc->mac_ver < 0x3071) ? 0x19 : 0x15; run_rt3070_filter_calib(sc, 0x27, target, &sc->rf24_40mhz); /* go back to 20MHz bandwidth */ run_bbp_read(sc, 4, &bbp4); run_bbp_write(sc, 4, bbp4 & ~0x18); if (sc->mac_ver == 0x3572) { /* save default BBP registers 25 and 26 values */ run_bbp_read(sc, 25, &sc->bbp25); run_bbp_read(sc, 26, &sc->bbp26); } else if (sc->mac_rev < 0x0201 || sc->mac_rev < 0x0211) run_rt3070_rf_write(sc, 27, 0x03); run_read(sc, RT3070_OPT_14, &tmp); run_write(sc, RT3070_OPT_14, tmp | 1); if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) { run_rt3070_rf_read(sc, 17, &rf); rf &= ~RT3070_TX_LO1; if ((sc->mac_ver == 0x3070 || (sc->mac_ver == 0x3071 && sc->mac_rev >= 0x0211)) && !sc->ext_2ghz_lna) rf |= 0x20; /* fix for long range Rx issue */ mingain = (sc->mac_ver == 0x3070) ? 1 : 2; if (sc->txmixgain_2ghz >= mingain) rf = (rf & ~0x7) | sc->txmixgain_2ghz; run_rt3070_rf_write(sc, 17, rf); } if (sc->mac_ver == 0x3071) { run_rt3070_rf_read(sc, 1, &rf); rf &= ~(RT3070_RX0_PD | RT3070_TX0_PD); rf |= RT3070_RF_BLOCK | RT3070_RX1_PD | RT3070_TX1_PD; run_rt3070_rf_write(sc, 1, rf); run_rt3070_rf_read(sc, 15, &rf); run_rt3070_rf_write(sc, 15, rf & ~RT3070_TX_LO2); run_rt3070_rf_read(sc, 20, &rf); run_rt3070_rf_write(sc, 20, rf & ~RT3070_RX_LO1); run_rt3070_rf_read(sc, 21, &rf); run_rt3070_rf_write(sc, 21, rf & ~RT3070_RX_LO2); } if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) { /* fix Tx to Rx IQ glitch by raising RF voltage */ run_rt3070_rf_read(sc, 27, &rf); rf &= ~0x77; if (sc->mac_rev < 0x0211) rf |= 0x03; run_rt3070_rf_write(sc, 27, rf); } return (0); } static void run_rt3593_rf_init(struct run_softc *sc) { uint32_t tmp; uint8_t rf; int i; /* Disable the GPIO bits 4 and 7 for LNA PE control. */ run_read(sc, RT3070_GPIO_SWITCH, &tmp); tmp &= ~(1 << 4 | 1 << 7); run_write(sc, RT3070_GPIO_SWITCH, tmp); /* Initialize RF registers to default value. */ for (i = 0; i < nitems(rt3593_def_rf); i++) { run_rt3070_rf_write(sc, rt3593_def_rf[i].reg, rt3593_def_rf[i].val); } /* Toggle RF R2 to initiate calibration. */ run_rt3070_rf_write(sc, 2, RT5390_RESCAL); /* Initialize RF frequency offset. */ run_adjust_freq_offset(sc); run_rt3070_rf_read(sc, 18, &rf); run_rt3070_rf_write(sc, 18, rf | RT3593_AUTOTUNE_BYPASS); /* * Increase voltage from 1.2V to 1.35V, wait for 1 msec to * decrease voltage back to 1.2V. */ run_read(sc, RT3070_LDO_CFG0, &tmp); tmp = (tmp & ~0x1f000000) | 0x0d000000; run_write(sc, RT3070_LDO_CFG0, tmp); run_delay(sc, 1); tmp = (tmp & ~0x1f000000) | 0x01000000; run_write(sc, RT3070_LDO_CFG0, tmp); sc->rf24_20mhz = 0x1f; sc->rf24_40mhz = 0x2f; /* Save default BBP registers 25 and 26 values. */ run_bbp_read(sc, 25, &sc->bbp25); run_bbp_read(sc, 26, &sc->bbp26); run_read(sc, RT3070_OPT_14, &tmp); run_write(sc, RT3070_OPT_14, tmp | 1); } static void run_rt5390_rf_init(struct run_softc *sc) { uint32_t tmp; uint8_t rf; int i; /* Toggle RF R2 to initiate calibration. */ if (sc->mac_ver == 0x5390) { run_rt3070_rf_read(sc, 2, &rf); run_rt3070_rf_write(sc, 2, rf | RT5390_RESCAL); run_delay(sc, 10); run_rt3070_rf_write(sc, 2, rf & ~RT5390_RESCAL); } else { run_rt3070_rf_write(sc, 2, RT5390_RESCAL); run_delay(sc, 10); } /* Initialize RF registers to default value. */ if (sc->mac_ver == 0x5592) { for (i = 0; i < nitems(rt5592_def_rf); i++) { run_rt3070_rf_write(sc, rt5592_def_rf[i].reg, rt5592_def_rf[i].val); } /* Initialize RF frequency offset. */ run_adjust_freq_offset(sc); } else if (sc->mac_ver == 0x5392) { for (i = 0; i < nitems(rt5392_def_rf); i++) { run_rt3070_rf_write(sc, rt5392_def_rf[i].reg, rt5392_def_rf[i].val); } if (sc->mac_rev >= 0x0223) { run_rt3070_rf_write(sc, 23, 0x0f); run_rt3070_rf_write(sc, 24, 0x3e); run_rt3070_rf_write(sc, 51, 0x32); run_rt3070_rf_write(sc, 53, 0x22); run_rt3070_rf_write(sc, 56, 0xc1); run_rt3070_rf_write(sc, 59, 0x0f); } } else { for (i = 0; i < nitems(rt5390_def_rf); i++) { run_rt3070_rf_write(sc, rt5390_def_rf[i].reg, rt5390_def_rf[i].val); } if (sc->mac_rev >= 0x0502) { run_rt3070_rf_write(sc, 6, 0xe0); run_rt3070_rf_write(sc, 25, 0x80); run_rt3070_rf_write(sc, 46, 0x73); run_rt3070_rf_write(sc, 53, 0x00); run_rt3070_rf_write(sc, 56, 0x42); run_rt3070_rf_write(sc, 61, 0xd1); } } sc->rf24_20mhz = 0x1f; /* default value */ sc->rf24_40mhz = (sc->mac_ver == 0x5592) ? 0 : 0x2f; if (sc->mac_rev < 0x0211) run_rt3070_rf_write(sc, 27, 0x3); run_read(sc, RT3070_OPT_14, &tmp); run_write(sc, RT3070_OPT_14, tmp | 1); } static int run_rt3070_filter_calib(struct run_softc *sc, uint8_t init, uint8_t target, uint8_t *val) { uint8_t rf22, rf24; uint8_t bbp55_pb, bbp55_sb, delta; int ntries; /* program filter */ run_rt3070_rf_read(sc, 24, &rf24); rf24 = (rf24 & 0xc0) | init; /* initial filter value */ run_rt3070_rf_write(sc, 24, rf24); /* enable baseband loopback mode */ run_rt3070_rf_read(sc, 22, &rf22); run_rt3070_rf_write(sc, 22, rf22 | 0x01); /* set power and frequency of passband test tone */ run_bbp_write(sc, 24, 0x00); for (ntries = 0; ntries < 100; ntries++) { /* transmit test tone */ run_bbp_write(sc, 25, 0x90); run_delay(sc, 10); /* read received power */ run_bbp_read(sc, 55, &bbp55_pb); if (bbp55_pb != 0) break; } if (ntries == 100) return (ETIMEDOUT); /* set power and frequency of stopband test tone */ run_bbp_write(sc, 24, 0x06); for (ntries = 0; ntries < 100; ntries++) { /* transmit test tone */ run_bbp_write(sc, 25, 0x90); run_delay(sc, 10); /* read received power */ run_bbp_read(sc, 55, &bbp55_sb); delta = bbp55_pb - bbp55_sb; if (delta > target) break; /* reprogram filter */ rf24++; run_rt3070_rf_write(sc, 24, rf24); } if (ntries < 100) { if (rf24 != init) rf24--; /* backtrack */ *val = rf24; run_rt3070_rf_write(sc, 24, rf24); } /* restore initial state */ run_bbp_write(sc, 24, 0x00); /* disable baseband loopback mode */ run_rt3070_rf_read(sc, 22, &rf22); run_rt3070_rf_write(sc, 22, rf22 & ~0x01); return (0); } static void run_rt3070_rf_setup(struct run_softc *sc) { uint8_t bbp, rf; int i; if (sc->mac_ver == 0x3572) { /* enable DC filter */ if (sc->mac_rev >= 0x0201) run_bbp_write(sc, 103, 0xc0); run_bbp_read(sc, 138, &bbp); if (sc->ntxchains == 1) bbp |= 0x20; /* turn off DAC1 */ if (sc->nrxchains == 1) bbp &= ~0x02; /* turn off ADC1 */ run_bbp_write(sc, 138, bbp); if (sc->mac_rev >= 0x0211) { /* improve power consumption */ run_bbp_read(sc, 31, &bbp); run_bbp_write(sc, 31, bbp & ~0x03); } run_rt3070_rf_read(sc, 16, &rf); rf = (rf & ~0x07) | sc->txmixgain_2ghz; run_rt3070_rf_write(sc, 16, rf); } else if (sc->mac_ver == 0x3071) { if (sc->mac_rev >= 0x0211) { /* enable DC filter */ run_bbp_write(sc, 103, 0xc0); /* improve power consumption */ run_bbp_read(sc, 31, &bbp); run_bbp_write(sc, 31, bbp & ~0x03); } run_bbp_read(sc, 138, &bbp); if (sc->ntxchains == 1) bbp |= 0x20; /* turn off DAC1 */ if (sc->nrxchains == 1) bbp &= ~0x02; /* turn off ADC1 */ run_bbp_write(sc, 138, bbp); run_write(sc, RT2860_TX_SW_CFG1, 0); if (sc->mac_rev < 0x0211) { run_write(sc, RT2860_TX_SW_CFG2, sc->patch_dac ? 0x2c : 0x0f); } else run_write(sc, RT2860_TX_SW_CFG2, 0); } else if (sc->mac_ver == 0x3070) { if (sc->mac_rev >= 0x0201) { /* enable DC filter */ run_bbp_write(sc, 103, 0xc0); /* improve power consumption */ run_bbp_read(sc, 31, &bbp); run_bbp_write(sc, 31, bbp & ~0x03); } if (sc->mac_rev < 0x0201) { run_write(sc, RT2860_TX_SW_CFG1, 0); run_write(sc, RT2860_TX_SW_CFG2, 0x2c); } else run_write(sc, RT2860_TX_SW_CFG2, 0); } /* initialize RF registers from ROM for >=RT3071*/ if (sc->mac_ver >= 0x3071) { for (i = 0; i < 10; i++) { if (sc->rf[i].reg == 0 || sc->rf[i].reg == 0xff) continue; run_rt3070_rf_write(sc, sc->rf[i].reg, sc->rf[i].val); } } } static void run_rt3593_rf_setup(struct run_softc *sc) { uint8_t bbp, rf; if (sc->mac_rev >= 0x0211) { /* Enable DC filter. */ run_bbp_write(sc, 103, 0xc0); } run_write(sc, RT2860_TX_SW_CFG1, 0); if (sc->mac_rev < 0x0211) { run_write(sc, RT2860_TX_SW_CFG2, sc->patch_dac ? 0x2c : 0x0f); } else run_write(sc, RT2860_TX_SW_CFG2, 0); run_rt3070_rf_read(sc, 50, &rf); run_rt3070_rf_write(sc, 50, rf & ~RT3593_TX_LO2); run_rt3070_rf_read(sc, 51, &rf); rf = (rf & ~(RT3593_TX_LO1 | 0x0c)) | ((sc->txmixgain_2ghz & 0x07) << 2); run_rt3070_rf_write(sc, 51, rf); run_rt3070_rf_read(sc, 38, &rf); run_rt3070_rf_write(sc, 38, rf & ~RT5390_RX_LO1); run_rt3070_rf_read(sc, 39, &rf); run_rt3070_rf_write(sc, 39, rf & ~RT5390_RX_LO2); run_rt3070_rf_read(sc, 1, &rf); run_rt3070_rf_write(sc, 1, rf & ~(RT3070_RF_BLOCK | RT3070_PLL_PD)); run_rt3070_rf_read(sc, 30, &rf); rf = (rf & ~0x18) | 0x10; run_rt3070_rf_write(sc, 30, rf); /* Apply maximum likelihood detection for 2 stream case. */ run_bbp_read(sc, 105, &bbp); if (sc->nrxchains > 1) run_bbp_write(sc, 105, bbp | RT5390_MLD); /* Avoid data lost and CRC error. */ run_bbp_read(sc, 4, &bbp); run_bbp_write(sc, 4, bbp | RT5390_MAC_IF_CTRL); run_bbp_write(sc, 92, 0x02); run_bbp_write(sc, 82, 0x82); run_bbp_write(sc, 106, 0x05); run_bbp_write(sc, 104, 0x92); run_bbp_write(sc, 88, 0x90); run_bbp_write(sc, 148, 0xc8); run_bbp_write(sc, 47, 0x48); run_bbp_write(sc, 120, 0x50); run_bbp_write(sc, 163, 0x9d); /* SNR mapping. */ run_bbp_write(sc, 142, 0x06); run_bbp_write(sc, 143, 0xa0); run_bbp_write(sc, 142, 0x07); run_bbp_write(sc, 143, 0xa1); run_bbp_write(sc, 142, 0x08); run_bbp_write(sc, 143, 0xa2); run_bbp_write(sc, 31, 0x08); run_bbp_write(sc, 68, 0x0b); run_bbp_write(sc, 105, 0x04); } static void run_rt5390_rf_setup(struct run_softc *sc) { uint8_t bbp, rf; if (sc->mac_rev >= 0x0211) { /* Enable DC filter. */ run_bbp_write(sc, 103, 0xc0); if (sc->mac_ver != 0x5592) { /* Improve power consumption. */ run_bbp_read(sc, 31, &bbp); run_bbp_write(sc, 31, bbp & ~0x03); } } run_bbp_read(sc, 138, &bbp); if (sc->ntxchains == 1) bbp |= 0x20; /* turn off DAC1 */ if (sc->nrxchains == 1) bbp &= ~0x02; /* turn off ADC1 */ run_bbp_write(sc, 138, bbp); run_rt3070_rf_read(sc, 38, &rf); run_rt3070_rf_write(sc, 38, rf & ~RT5390_RX_LO1); run_rt3070_rf_read(sc, 39, &rf); run_rt3070_rf_write(sc, 39, rf & ~RT5390_RX_LO2); /* Avoid data lost and CRC error. */ run_bbp_read(sc, 4, &bbp); run_bbp_write(sc, 4, bbp | RT5390_MAC_IF_CTRL); run_rt3070_rf_read(sc, 30, &rf); rf = (rf & ~0x18) | 0x10; run_rt3070_rf_write(sc, 30, rf); if (sc->mac_ver != 0x5592) { run_write(sc, RT2860_TX_SW_CFG1, 0); if (sc->mac_rev < 0x0211) { run_write(sc, RT2860_TX_SW_CFG2, sc->patch_dac ? 0x2c : 0x0f); } else run_write(sc, RT2860_TX_SW_CFG2, 0); } } static int run_txrx_enable(struct run_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; int error, ntries; run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN); for (ntries = 0; ntries < 200; ntries++) { if ((error = run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp)) != 0) return (error); if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0) break; run_delay(sc, 50); } if (ntries == 200) return (ETIMEDOUT); run_delay(sc, 50); tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN | RT2860_TX_WB_DDONE; run_write(sc, RT2860_WPDMA_GLO_CFG, tmp); /* enable Rx bulk aggregation (set timeout and limit) */ tmp = RT2860_USB_TX_EN | RT2860_USB_RX_EN | RT2860_USB_RX_AGG_EN | RT2860_USB_RX_AGG_TO(128) | RT2860_USB_RX_AGG_LMT(2); run_write(sc, RT2860_USB_DMA_CFG, tmp); /* set Rx filter */ tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL | RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK | RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV | RT2860_DROP_CFACK | RT2860_DROP_CFEND; if (ic->ic_opmode == IEEE80211_M_STA) tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL; } run_write(sc, RT2860_RX_FILTR_CFG, tmp); run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_RX_EN | RT2860_MAC_TX_EN); return (0); } static void run_adjust_freq_offset(struct run_softc *sc) { uint8_t rf, tmp; run_rt3070_rf_read(sc, 17, &rf); tmp = rf; rf = (rf & ~0x7f) | (sc->freq & 0x7f); rf = MIN(rf, 0x5f); if (tmp != rf) run_mcu_cmd(sc, 0x74, (tmp << 8 ) | rf); } static void run_init_locked(struct run_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t tmp; uint8_t bbp1, bbp3; int i; int ridx; int ntries; if (ic->ic_nrunning > 1) return; run_stop(sc); if (run_load_microcode(sc) != 0) { device_printf(sc->sc_dev, "could not load 8051 microcode\n"); goto fail; } for (ntries = 0; ntries < 100; ntries++) { if (run_read(sc, RT2860_ASIC_VER_ID, &tmp) != 0) goto fail; if (tmp != 0 && tmp != 0xffffffff) break; run_delay(sc, 10); } if (ntries == 100) goto fail; for (i = 0; i != RUN_EP_QUEUES; i++) run_setup_tx_list(sc, &sc->sc_epq[i]); run_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); for (ntries = 0; ntries < 100; ntries++) { if (run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp) != 0) goto fail; if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0) break; run_delay(sc, 10); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for DMA engine\n"); goto fail; } tmp &= 0xff0; tmp |= RT2860_TX_WB_DDONE; run_write(sc, RT2860_WPDMA_GLO_CFG, tmp); /* turn off PME_OEN to solve high-current issue */ run_read(sc, RT2860_SYS_CTRL, &tmp); run_write(sc, RT2860_SYS_CTRL, tmp & ~RT2860_PME_OEN); run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST); run_write(sc, RT2860_USB_DMA_CFG, 0); if (run_reset(sc) != 0) { device_printf(sc->sc_dev, "could not reset chipset\n"); goto fail; } run_write(sc, RT2860_MAC_SYS_CTRL, 0); /* init Tx power for all Tx rates (from EEPROM) */ for (ridx = 0; ridx < 5; ridx++) { if (sc->txpow20mhz[ridx] == 0xffffffff) continue; run_write(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]); } for (i = 0; i < nitems(rt2870_def_mac); i++) run_write(sc, rt2870_def_mac[i].reg, rt2870_def_mac[i].val); run_write(sc, RT2860_WMM_AIFSN_CFG, 0x00002273); run_write(sc, RT2860_WMM_CWMIN_CFG, 0x00002344); run_write(sc, RT2860_WMM_CWMAX_CFG, 0x000034aa); if (sc->mac_ver >= 0x5390) { run_write(sc, RT2860_TX_SW_CFG0, 4 << RT2860_DLY_PAPE_EN_SHIFT | 4); if (sc->mac_ver >= 0x5392) { run_write(sc, RT2860_MAX_LEN_CFG, 0x00002fff); if (sc->mac_ver == 0x5592) { run_write(sc, RT2860_HT_FBK_CFG1, 0xedcba980); run_write(sc, RT2860_TXOP_HLDR_ET, 0x00000082); } else { run_write(sc, RT2860_HT_FBK_CFG1, 0xedcb4980); run_write(sc, RT2860_LG_FBK_CFG0, 0xedcba322); } } } else if (sc->mac_ver == 0x3593) { run_write(sc, RT2860_TX_SW_CFG0, 4 << RT2860_DLY_PAPE_EN_SHIFT | 2); } else if (sc->mac_ver >= 0x3070) { /* set delay of PA_PE assertion to 1us (unit of 0.25us) */ run_write(sc, RT2860_TX_SW_CFG0, 4 << RT2860_DLY_PAPE_EN_SHIFT); } /* wait while MAC is busy */ for (ntries = 0; ntries < 100; ntries++) { if (run_read(sc, RT2860_MAC_STATUS_REG, &tmp) != 0) goto fail; if (!(tmp & (RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY))) break; run_delay(sc, 10); } if (ntries == 100) goto fail; /* clear Host to MCU mailbox */ run_write(sc, RT2860_H2M_BBPAGENT, 0); run_write(sc, RT2860_H2M_MAILBOX, 0); run_delay(sc, 10); if (run_bbp_init(sc) != 0) { device_printf(sc->sc_dev, "could not initialize BBP\n"); goto fail; } /* abort TSF synchronization */ run_read(sc, RT2860_BCN_TIME_CFG, &tmp); tmp &= ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN); run_write(sc, RT2860_BCN_TIME_CFG, tmp); /* clear RX WCID search table */ run_set_region_4(sc, RT2860_WCID_ENTRY(0), 0, 512); /* clear WCID attribute table */ run_set_region_4(sc, RT2860_WCID_ATTR(0), 0, 8 * 32); /* hostapd sets a key before init. So, don't clear it. */ if (sc->cmdq_key_set != RUN_CMDQ_GO) { /* clear shared key table */ run_set_region_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32); /* clear shared key mode */ run_set_region_4(sc, RT2860_SKEY_MODE_0_7, 0, 4); } run_read(sc, RT2860_US_CYC_CNT, &tmp); tmp = (tmp & ~0xff) | 0x1e; run_write(sc, RT2860_US_CYC_CNT, tmp); if (sc->mac_rev != 0x0101) run_write(sc, RT2860_TXOP_CTRL_CFG, 0x0000583f); run_write(sc, RT2860_WMM_TXOP0_CFG, 0); run_write(sc, RT2860_WMM_TXOP1_CFG, 48 << 16 | 96); /* write vendor-specific BBP values (from EEPROM) */ if (sc->mac_ver < 0x3593) { for (i = 0; i < 10; i++) { if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff) continue; run_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val); } } /* select Main antenna for 1T1R devices */ if (sc->rf_rev == RT3070_RF_3020 || sc->rf_rev == RT5390_RF_5370) run_set_rx_antenna(sc, 0); /* send LEDs operating mode to microcontroller */ (void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0]); (void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1]); (void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2]); if (sc->mac_ver >= 0x5390) run_rt5390_rf_init(sc); else if (sc->mac_ver == 0x3593) run_rt3593_rf_init(sc); else if (sc->mac_ver >= 0x3070) run_rt3070_rf_init(sc); /* disable non-existing Rx chains */ run_bbp_read(sc, 3, &bbp3); bbp3 &= ~(1 << 3 | 1 << 4); if (sc->nrxchains == 2) bbp3 |= 1 << 3; else if (sc->nrxchains == 3) bbp3 |= 1 << 4; run_bbp_write(sc, 3, bbp3); /* disable non-existing Tx chains */ run_bbp_read(sc, 1, &bbp1); if (sc->ntxchains == 1) bbp1 &= ~(1 << 3 | 1 << 4); run_bbp_write(sc, 1, bbp1); if (sc->mac_ver >= 0x5390) run_rt5390_rf_setup(sc); else if (sc->mac_ver == 0x3593) run_rt3593_rf_setup(sc); else if (sc->mac_ver >= 0x3070) run_rt3070_rf_setup(sc); /* select default channel */ run_set_chan(sc, ic->ic_curchan); /* setup initial protection mode */ run_updateprot_cb(ic); /* turn radio LED on */ run_set_leds(sc, RT2860_LED_RADIO); sc->sc_flags |= RUN_RUNNING; sc->cmdq_run = RUN_CMDQ_GO; for (i = 0; i != RUN_N_XFER; i++) usbd_xfer_set_stall(sc->sc_xfer[i]); usbd_transfer_start(sc->sc_xfer[RUN_BULK_RX]); if (run_txrx_enable(sc) != 0) goto fail; return; fail: run_stop(sc); } static void run_stop(void *arg) { struct run_softc *sc = (struct run_softc *)arg; uint32_t tmp; int i; int ntries; RUN_LOCK_ASSERT(sc, MA_OWNED); if (sc->sc_flags & RUN_RUNNING) run_set_leds(sc, 0); /* turn all LEDs off */ sc->sc_flags &= ~RUN_RUNNING; sc->ratectl_run = RUN_RATECTL_OFF; sc->cmdq_run = sc->cmdq_key_set; RUN_UNLOCK(sc); for(i = 0; i < RUN_N_XFER; i++) usbd_transfer_drain(sc->sc_xfer[i]); RUN_LOCK(sc); run_drain_mbufq(sc); if (sc->rx_m != NULL) { m_free(sc->rx_m); sc->rx_m = NULL; } /* Disable Tx/Rx DMA. */ if (run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp) != 0) return; tmp &= ~(RT2860_RX_DMA_EN | RT2860_TX_DMA_EN); run_write(sc, RT2860_WPDMA_GLO_CFG, tmp); for (ntries = 0; ntries < 100; ntries++) { if (run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp) != 0) return; if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0) break; run_delay(sc, 10); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for DMA engine\n"); return; } /* disable Tx/Rx */ run_read(sc, RT2860_MAC_SYS_CTRL, &tmp); tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN); run_write(sc, RT2860_MAC_SYS_CTRL, tmp); /* wait for pending Tx to complete */ for (ntries = 0; ntries < 100; ntries++) { if (run_read(sc, RT2860_TXRXQ_PCNT, &tmp) != 0) { DPRINTF("Cannot read Tx queue count\n"); break; } if ((tmp & RT2860_TX2Q_PCNT_MASK) == 0) { DPRINTF("All Tx cleared\n"); break; } run_delay(sc, 10); } if (ntries >= 100) DPRINTF("There are still pending Tx\n"); run_delay(sc, 10); run_write(sc, RT2860_USB_DMA_CFG, 0); run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST); run_write(sc, RT2860_MAC_SYS_CTRL, 0); for (i = 0; i != RUN_EP_QUEUES; i++) run_unsetup_tx_list(sc, &sc->sc_epq[i]); } static void run_delay(struct run_softc *sc, u_int ms) { usb_pause_mtx(mtx_owned(&sc->sc_mtx) ? &sc->sc_mtx : NULL, USB_MS_TO_TICKS(ms)); } static device_method_t run_methods[] = { /* Device interface */ DEVMETHOD(device_probe, run_match), DEVMETHOD(device_attach, run_attach), DEVMETHOD(device_detach, run_detach), DEVMETHOD_END }; static driver_t run_driver = { .name = "run", .methods = run_methods, .size = sizeof(struct run_softc) }; static devclass_t run_devclass; DRIVER_MODULE(run, uhub, run_driver, run_devclass, run_driver_loaded, NULL); MODULE_DEPEND(run, wlan, 1, 1, 1); MODULE_DEPEND(run, usb, 1, 1, 1); MODULE_DEPEND(run, firmware, 1, 1, 1); MODULE_VERSION(run, 1); USB_PNP_HOST_INFO(run_devs); Index: head/sys/dev/usb/wlan/if_uath.c =================================================================== --- head/sys/dev/usb/wlan/if_uath.c (revision 298817) +++ head/sys/dev/usb/wlan/if_uath.c (revision 298818) @@ -1,2798 +1,2798 @@ /*- * Copyright (c) 2006 Sam Leffler, Errno Consulting * Copyright (c) 2008-2009 Weongyo Jeong * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ /* * This driver is distantly derived from a driver of the same name * by Damien Bergamini. The original copyright is included below: * * Copyright (c) 2006 * Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /*- * Driver for Atheros AR5523 USB parts. * * The driver requires firmware to be loaded into the device. This * is done on device discovery from a user application (uathload) * that is launched by devd when a device with suitable product ID * is recognized. Once firmware has been loaded the device will * reset the USB port and re-attach with the original product ID+1 * and this driver will be attached. The firmware is licensed for * general use (royalty free) and may be incorporated in products. * Note that the firmware normally packaged with the NDIS drivers * for these devices does not work in this way and so does not work * with this driver. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #include #include #include #include #include #include "usbdevs.h" #include #include static SYSCTL_NODE(_hw_usb, OID_AUTO, uath, CTLFLAG_RW, 0, "USB Atheros"); static int uath_countrycode = CTRY_DEFAULT; /* country code */ SYSCTL_INT(_hw_usb_uath, OID_AUTO, countrycode, CTLFLAG_RWTUN, &uath_countrycode, 0, "country code"); static int uath_regdomain = 0; /* regulatory domain */ SYSCTL_INT(_hw_usb_uath, OID_AUTO, regdomain, CTLFLAG_RD, &uath_regdomain, 0, "regulatory domain"); #ifdef UATH_DEBUG int uath_debug = 0; SYSCTL_INT(_hw_usb_uath, OID_AUTO, debug, CTLFLAG_RWTUN, &uath_debug, 0, "uath debug level"); enum { UATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ UATH_DEBUG_XMIT_DUMP = 0x00000002, /* xmit dump */ UATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ UATH_DEBUG_TX_PROC = 0x00000008, /* tx ISR proc */ UATH_DEBUG_RX_PROC = 0x00000010, /* rx ISR proc */ UATH_DEBUG_RECV_ALL = 0x00000020, /* trace all frames (beacons) */ UATH_DEBUG_INIT = 0x00000040, /* initialization of dev */ UATH_DEBUG_DEVCAP = 0x00000080, /* dev caps */ UATH_DEBUG_CMDS = 0x00000100, /* commands */ UATH_DEBUG_CMDS_DUMP = 0x00000200, /* command buffer dump */ UATH_DEBUG_RESET = 0x00000400, /* reset processing */ UATH_DEBUG_STATE = 0x00000800, /* 802.11 state transitions */ UATH_DEBUG_MULTICAST = 0x00001000, /* multicast */ UATH_DEBUG_WME = 0x00002000, /* WME */ UATH_DEBUG_CHANNEL = 0x00004000, /* channel */ UATH_DEBUG_RATES = 0x00008000, /* rates */ UATH_DEBUG_CRYPTO = 0x00010000, /* crypto */ UATH_DEBUG_LED = 0x00020000, /* LED */ UATH_DEBUG_ANY = 0xffffffff }; #define DPRINTF(sc, m, fmt, ...) do { \ if (sc->sc_debug & (m)) \ printf(fmt, __VA_ARGS__); \ } while (0) #else #define DPRINTF(sc, m, fmt, ...) do { \ (void) sc; \ } while (0) #endif /* recognized device vendors/products */ static const STRUCT_USB_HOST_ID uath_devs[] = { #define UATH_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } UATH_DEV(ACCTON, SMCWUSBTG2), UATH_DEV(ATHEROS, AR5523), UATH_DEV(ATHEROS2, AR5523_1), UATH_DEV(ATHEROS2, AR5523_2), UATH_DEV(ATHEROS2, AR5523_3), UATH_DEV(CONCEPTRONIC, AR5523_1), UATH_DEV(CONCEPTRONIC, AR5523_2), UATH_DEV(DLINK, DWLAG122), UATH_DEV(DLINK, DWLAG132), UATH_DEV(DLINK, DWLG132), UATH_DEV(DLINK2, DWA120), UATH_DEV(GIGASET, AR5523), UATH_DEV(GIGASET, SMCWUSBTG), UATH_DEV(GLOBALSUN, AR5523_1), UATH_DEV(GLOBALSUN, AR5523_2), UATH_DEV(NETGEAR, WG111U), UATH_DEV(NETGEAR3, WG111T), UATH_DEV(NETGEAR3, WPN111), UATH_DEV(NETGEAR3, WPN111_2), UATH_DEV(UMEDIA, TEW444UBEU), UATH_DEV(UMEDIA, AR5523_2), UATH_DEV(WISTRONNEWEB, AR5523_1), UATH_DEV(WISTRONNEWEB, AR5523_2), UATH_DEV(ZCOM, AR5523) #undef UATH_DEV }; static usb_callback_t uath_intr_rx_callback; static usb_callback_t uath_intr_tx_callback; static usb_callback_t uath_bulk_rx_callback; static usb_callback_t uath_bulk_tx_callback; static const struct usb_config uath_usbconfig[UATH_N_XFERS] = { [UATH_INTR_RX] = { .type = UE_BULK, .endpoint = 0x1, .direction = UE_DIR_IN, .bufsize = UATH_MAX_CMDSZ, .flags = { .pipe_bof = 1, .short_xfer_ok = 1 }, .callback = uath_intr_rx_callback }, [UATH_INTR_TX] = { .type = UE_BULK, .endpoint = 0x1, .direction = UE_DIR_OUT, .bufsize = UATH_MAX_CMDSZ * UATH_CMD_LIST_COUNT, .flags = { .force_short_xfer = 1, .pipe_bof = 1, }, .callback = uath_intr_tx_callback, .timeout = UATH_CMD_TIMEOUT }, [UATH_BULK_RX] = { .type = UE_BULK, .endpoint = 0x2, .direction = UE_DIR_IN, .bufsize = MCLBYTES, .flags = { .ext_buffer = 1, .pipe_bof = 1, .short_xfer_ok = 1 }, .callback = uath_bulk_rx_callback }, [UATH_BULK_TX] = { .type = UE_BULK, .endpoint = 0x2, .direction = UE_DIR_OUT, .bufsize = UATH_MAX_TXBUFSZ * UATH_TX_DATA_LIST_COUNT, .flags = { .force_short_xfer = 1, .pipe_bof = 1 }, .callback = uath_bulk_tx_callback, .timeout = UATH_DATA_TIMEOUT } }; static struct ieee80211vap *uath_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void uath_vap_delete(struct ieee80211vap *); static int uath_alloc_cmd_list(struct uath_softc *, struct uath_cmd []); static void uath_free_cmd_list(struct uath_softc *, struct uath_cmd []); static int uath_host_available(struct uath_softc *); static int uath_get_capability(struct uath_softc *, uint32_t, uint32_t *); static int uath_get_devcap(struct uath_softc *); static struct uath_cmd * uath_get_cmdbuf(struct uath_softc *); static int uath_cmd_read(struct uath_softc *, uint32_t, const void *, int, void *, int, int); static int uath_cmd_write(struct uath_softc *, uint32_t, const void *, int, int); static void uath_stat(void *); #ifdef UATH_DEBUG static void uath_dump_cmd(const uint8_t *, int, char); static const char * uath_codename(int); #endif static int uath_get_devstatus(struct uath_softc *, uint8_t macaddr[IEEE80211_ADDR_LEN]); static int uath_get_status(struct uath_softc *, uint32_t, void *, int); static int uath_alloc_rx_data_list(struct uath_softc *); static int uath_alloc_tx_data_list(struct uath_softc *); static void uath_free_rx_data_list(struct uath_softc *); static void uath_free_tx_data_list(struct uath_softc *); static int uath_init(struct uath_softc *); static void uath_stop(struct uath_softc *); static void uath_parent(struct ieee80211com *); static int uath_transmit(struct ieee80211com *, struct mbuf *); static void uath_start(struct uath_softc *); static int uath_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void uath_scan_start(struct ieee80211com *); static void uath_scan_end(struct ieee80211com *); static void uath_set_channel(struct ieee80211com *); static void uath_update_mcast(struct ieee80211com *); static void uath_update_promisc(struct ieee80211com *); static int uath_config(struct uath_softc *, uint32_t, uint32_t); static int uath_config_multi(struct uath_softc *, uint32_t, const void *, int); static int uath_switch_channel(struct uath_softc *, struct ieee80211_channel *); static int uath_set_rxfilter(struct uath_softc *, uint32_t, uint32_t); static void uath_watchdog(void *); static void uath_abort_xfers(struct uath_softc *); static int uath_dataflush(struct uath_softc *); static int uath_cmdflush(struct uath_softc *); static int uath_flush(struct uath_softc *); static int uath_set_ledstate(struct uath_softc *, int); static int uath_set_chan(struct uath_softc *, struct ieee80211_channel *); static int uath_reset_tx_queues(struct uath_softc *); static int uath_wme_init(struct uath_softc *); static struct uath_data * uath_getbuf(struct uath_softc *); static int uath_newstate(struct ieee80211vap *, enum ieee80211_state, int); static int uath_set_key(struct uath_softc *, const struct ieee80211_key *, int); static int uath_set_keys(struct uath_softc *, struct ieee80211vap *); static void uath_sysctl_node(struct uath_softc *); static int uath_match(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != UATH_CONFIG_INDEX) return (ENXIO); if (uaa->info.bIfaceIndex != UATH_IFACE_INDEX) return (ENXIO); return (usbd_lookup_id_by_uaa(uath_devs, sizeof(uath_devs), uaa)); } static int uath_attach(device_t dev) { struct uath_softc *sc = device_get_softc(dev); struct usb_attach_arg *uaa = device_get_ivars(dev); struct ieee80211com *ic = &sc->sc_ic; - uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)]; + uint8_t bands[IEEE80211_MODE_BYTES]; uint8_t iface_index = UATH_IFACE_INDEX; /* XXX */ usb_error_t error; sc->sc_dev = dev; sc->sc_udev = uaa->device; #ifdef UATH_DEBUG sc->sc_debug = uath_debug; #endif device_set_usb_desc(dev); /* * Only post-firmware devices here. */ mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init(&sc->stat_ch, 0); callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0); mbufq_init(&sc->sc_snd, ifqmaxlen); error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, uath_usbconfig, UATH_N_XFERS, sc, &sc->sc_mtx); if (error) { device_printf(dev, "could not allocate USB transfers, " "err=%s\n", usbd_errstr(error)); goto fail; } sc->sc_cmd_dma_buf = usbd_xfer_get_frame_buffer(sc->sc_xfer[UATH_INTR_TX], 0); sc->sc_tx_dma_buf = usbd_xfer_get_frame_buffer(sc->sc_xfer[UATH_BULK_TX], 0); /* * Setup buffers for firmware commands. */ error = uath_alloc_cmd_list(sc, sc->sc_cmd); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Tx command list\n"); goto fail1; } /* * We're now ready to send+receive firmware commands. */ UATH_LOCK(sc); error = uath_host_available(sc); if (error != 0) { device_printf(sc->sc_dev, "could not initialize adapter\n"); goto fail2; } error = uath_get_devcap(sc); if (error != 0) { device_printf(sc->sc_dev, "could not get device capabilities\n"); goto fail2; } UATH_UNLOCK(sc); /* Create device sysctl node. */ uath_sysctl_node(sc); UATH_LOCK(sc); error = uath_get_devstatus(sc, ic->ic_macaddr); if (error != 0) { device_printf(sc->sc_dev, "could not get device status\n"); goto fail2; } /* * Allocate xfers for Rx/Tx data pipes. */ error = uath_alloc_rx_data_list(sc); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Rx data list\n"); goto fail2; } error = uath_alloc_tx_data_list(sc); if (error != 0) { device_printf(sc->sc_dev, "could not allocate Tx data list\n"); goto fail2; } UATH_UNLOCK(sc); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(dev); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA | /* station mode */ IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_TXPMGT | /* tx power management */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_WPA | /* 802.11i */ IEEE80211_C_BGSCAN | /* capable of bg scanning */ IEEE80211_C_TXFRAG; /* handle tx frags */ /* put a regulatory domain to reveal informations. */ uath_regdomain = sc->sc_devcap.regDomain; memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); if ((sc->sc_devcap.analog5GhzRevision & 0xf0) == 0x30) setbit(bands, IEEE80211_MODE_11A); /* XXX turbo */ ieee80211_init_channels(ic, NULL, bands); ieee80211_ifattach(ic); ic->ic_raw_xmit = uath_raw_xmit; ic->ic_scan_start = uath_scan_start; ic->ic_scan_end = uath_scan_end; ic->ic_set_channel = uath_set_channel; ic->ic_vap_create = uath_vap_create; ic->ic_vap_delete = uath_vap_delete; ic->ic_update_mcast = uath_update_mcast; ic->ic_update_promisc = uath_update_promisc; ic->ic_transmit = uath_transmit; ic->ic_parent = uath_parent; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), UATH_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), UATH_RX_RADIOTAP_PRESENT); if (bootverbose) ieee80211_announce(ic); return (0); fail2: UATH_UNLOCK(sc); uath_free_cmd_list(sc, sc->sc_cmd); fail1: usbd_transfer_unsetup(sc->sc_xfer, UATH_N_XFERS); fail: return (error); } static int uath_detach(device_t dev) { struct uath_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; unsigned int x; /* * Prevent further allocations from RX/TX/CMD * data lists and ioctls */ UATH_LOCK(sc); sc->sc_flags |= UATH_FLAG_INVALID; STAILQ_INIT(&sc->sc_rx_active); STAILQ_INIT(&sc->sc_rx_inactive); STAILQ_INIT(&sc->sc_tx_active); STAILQ_INIT(&sc->sc_tx_inactive); STAILQ_INIT(&sc->sc_tx_pending); STAILQ_INIT(&sc->sc_cmd_active); STAILQ_INIT(&sc->sc_cmd_pending); STAILQ_INIT(&sc->sc_cmd_waiting); STAILQ_INIT(&sc->sc_cmd_inactive); uath_stop(sc); UATH_UNLOCK(sc); callout_drain(&sc->stat_ch); callout_drain(&sc->watchdog_ch); /* drain USB transfers */ for (x = 0; x != UATH_N_XFERS; x++) usbd_transfer_drain(sc->sc_xfer[x]); /* free data buffers */ UATH_LOCK(sc); uath_free_rx_data_list(sc); uath_free_tx_data_list(sc); uath_free_cmd_list(sc, sc->sc_cmd); UATH_UNLOCK(sc); /* free USB transfers and some data buffers */ usbd_transfer_unsetup(sc->sc_xfer, UATH_N_XFERS); ieee80211_ifdetach(ic); mbufq_drain(&sc->sc_snd); mtx_destroy(&sc->sc_mtx); return (0); } static void uath_free_cmd_list(struct uath_softc *sc, struct uath_cmd cmds[]) { int i; for (i = 0; i != UATH_CMD_LIST_COUNT; i++) cmds[i].buf = NULL; } static int uath_alloc_cmd_list(struct uath_softc *sc, struct uath_cmd cmds[]) { int i; STAILQ_INIT(&sc->sc_cmd_active); STAILQ_INIT(&sc->sc_cmd_pending); STAILQ_INIT(&sc->sc_cmd_waiting); STAILQ_INIT(&sc->sc_cmd_inactive); for (i = 0; i != UATH_CMD_LIST_COUNT; i++) { struct uath_cmd *cmd = &cmds[i]; cmd->sc = sc; /* backpointer for callbacks */ cmd->msgid = i; cmd->buf = ((uint8_t *)sc->sc_cmd_dma_buf) + (i * UATH_MAX_CMDSZ); STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next); UATH_STAT_INC(sc, st_cmd_inactive); } return (0); } static int uath_host_available(struct uath_softc *sc) { struct uath_cmd_host_available setup; UATH_ASSERT_LOCKED(sc); /* inform target the host is available */ setup.sw_ver_major = htobe32(ATH_SW_VER_MAJOR); setup.sw_ver_minor = htobe32(ATH_SW_VER_MINOR); setup.sw_ver_patch = htobe32(ATH_SW_VER_PATCH); setup.sw_ver_build = htobe32(ATH_SW_VER_BUILD); return uath_cmd_read(sc, WDCMSG_HOST_AVAILABLE, &setup, sizeof setup, NULL, 0, 0); } #ifdef UATH_DEBUG static void uath_dump_cmd(const uint8_t *buf, int len, char prefix) { const char *sep = ""; int i; for (i = 0; i < len; i++) { if ((i % 16) == 0) { printf("%s%c ", sep, prefix); sep = "\n"; } else if ((i % 4) == 0) printf(" "); printf("%02x", buf[i]); } printf("\n"); } static const char * uath_codename(int code) { static const char *names[] = { "0x00", "HOST_AVAILABLE", "BIND", "TARGET_RESET", "TARGET_GET_CAPABILITY", "TARGET_SET_CONFIG", "TARGET_GET_STATUS", "TARGET_GET_STATS", "TARGET_START", "TARGET_STOP", "TARGET_ENABLE", "TARGET_DISABLE", "CREATE_CONNECTION", "UPDATE_CONNECT_ATTR", "DELETE_CONNECT", "SEND", "FLUSH", "STATS_UPDATE", "BMISS", "DEVICE_AVAIL", "SEND_COMPLETE", "DATA_AVAIL", "SET_PWR_MODE", "BMISS_ACK", "SET_LED_STEADY", "SET_LED_BLINK", "SETUP_BEACON_DESC", "BEACON_INIT", "RESET_KEY_CACHE", "RESET_KEY_CACHE_ENTRY", "SET_KEY_CACHE_ENTRY", "SET_DECOMP_MASK", "SET_REGULATORY_DOMAIN", "SET_LED_STATE", "WRITE_ASSOCID", "SET_STA_BEACON_TIMERS", "GET_TSF", "RESET_TSF", "SET_ADHOC_MODE", "SET_BASIC_RATE", "MIB_CONTROL", "GET_CHANNEL_DATA", "GET_CUR_RSSI", "SET_ANTENNA_SWITCH", "0x2c", "0x2d", "0x2e", "USE_SHORT_SLOT_TIME", "SET_POWER_MODE", "SETUP_PSPOLL_DESC", "SET_RX_MULTICAST_FILTER", "RX_FILTER", "PER_CALIBRATION", "RESET", "DISABLE", "PHY_DISABLE", "SET_TX_POWER_LIMIT", "SET_TX_QUEUE_PARAMS", "SETUP_TX_QUEUE", "RELEASE_TX_QUEUE", }; static char buf[8]; if (code < nitems(names)) return names[code]; if (code == WDCMSG_SET_DEFAULT_KEY) return "SET_DEFAULT_KEY"; snprintf(buf, sizeof(buf), "0x%02x", code); return buf; } #endif /* * Low-level function to send read or write commands to the firmware. */ static int uath_cmdsend(struct uath_softc *sc, uint32_t code, const void *idata, int ilen, void *odata, int olen, int flags) { struct uath_cmd_hdr *hdr; struct uath_cmd *cmd; int error; UATH_ASSERT_LOCKED(sc); /* grab a xfer */ cmd = uath_get_cmdbuf(sc); if (cmd == NULL) { device_printf(sc->sc_dev, "%s: empty inactive queue\n", __func__); return (ENOBUFS); } cmd->flags = flags; /* always bulk-out a multiple of 4 bytes */ cmd->buflen = roundup2(sizeof(struct uath_cmd_hdr) + ilen, 4); hdr = (struct uath_cmd_hdr *)cmd->buf; memset(hdr, 0, sizeof(struct uath_cmd_hdr)); hdr->len = htobe32(cmd->buflen); hdr->code = htobe32(code); hdr->msgid = cmd->msgid; /* don't care about endianness */ hdr->magic = htobe32((cmd->flags & UATH_CMD_FLAG_MAGIC) ? 1 << 24 : 0); memcpy((uint8_t *)(hdr + 1), idata, ilen); #ifdef UATH_DEBUG if (sc->sc_debug & UATH_DEBUG_CMDS) { printf("%s: send %s [flags 0x%x] olen %d\n", __func__, uath_codename(code), cmd->flags, olen); if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) uath_dump_cmd(cmd->buf, cmd->buflen, '+'); } #endif cmd->odata = odata; KASSERT(odata == NULL || olen < UATH_MAX_CMDSZ - sizeof(*hdr) + sizeof(uint32_t), ("odata %p olen %u", odata, olen)); cmd->olen = olen; STAILQ_INSERT_TAIL(&sc->sc_cmd_pending, cmd, next); UATH_STAT_INC(sc, st_cmd_pending); usbd_transfer_start(sc->sc_xfer[UATH_INTR_TX]); if (cmd->flags & UATH_CMD_FLAG_READ) { usbd_transfer_start(sc->sc_xfer[UATH_INTR_RX]); /* wait at most two seconds for command reply */ error = mtx_sleep(cmd, &sc->sc_mtx, 0, "uathcmd", 2 * hz); cmd->odata = NULL; /* in case reply comes too late */ if (error != 0) { device_printf(sc->sc_dev, "timeout waiting for reply " "to cmd 0x%x (%u)\n", code, code); } else if (cmd->olen != olen) { device_printf(sc->sc_dev, "unexpected reply data count " "to cmd 0x%x (%u), got %u, expected %u\n", code, code, cmd->olen, olen); error = EINVAL; } return (error); } return (0); } static int uath_cmd_read(struct uath_softc *sc, uint32_t code, const void *idata, int ilen, void *odata, int olen, int flags) { flags |= UATH_CMD_FLAG_READ; return uath_cmdsend(sc, code, idata, ilen, odata, olen, flags); } static int uath_cmd_write(struct uath_softc *sc, uint32_t code, const void *data, int len, int flags) { flags &= ~UATH_CMD_FLAG_READ; return uath_cmdsend(sc, code, data, len, NULL, 0, flags); } static struct uath_cmd * uath_get_cmdbuf(struct uath_softc *sc) { struct uath_cmd *uc; UATH_ASSERT_LOCKED(sc); uc = STAILQ_FIRST(&sc->sc_cmd_inactive); if (uc != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_cmd_inactive, next); UATH_STAT_DEC(sc, st_cmd_inactive); } else uc = NULL; if (uc == NULL) DPRINTF(sc, UATH_DEBUG_XMIT, "%s: %s\n", __func__, "out of command xmit buffers"); return (uc); } /* * This function is called periodically (every second) when associated to * query device statistics. */ static void uath_stat(void *arg) { struct uath_softc *sc = arg; int error; UATH_LOCK(sc); /* * Send request for statistics asynchronously. The timer will be * restarted when we'll get the stats notification. */ error = uath_cmd_write(sc, WDCMSG_TARGET_GET_STATS, NULL, 0, UATH_CMD_FLAG_ASYNC); if (error != 0) { device_printf(sc->sc_dev, "could not query stats, error %d\n", error); } UATH_UNLOCK(sc); } static int uath_get_capability(struct uath_softc *sc, uint32_t cap, uint32_t *val) { int error; cap = htobe32(cap); error = uath_cmd_read(sc, WDCMSG_TARGET_GET_CAPABILITY, &cap, sizeof cap, val, sizeof(uint32_t), UATH_CMD_FLAG_MAGIC); if (error != 0) { device_printf(sc->sc_dev, "could not read capability %u\n", be32toh(cap)); return (error); } *val = be32toh(*val); return (error); } static int uath_get_devcap(struct uath_softc *sc) { #define GETCAP(x, v) do { \ error = uath_get_capability(sc, x, &v); \ if (error != 0) \ return (error); \ DPRINTF(sc, UATH_DEBUG_DEVCAP, \ "%s: %s=0x%08x\n", __func__, #x, v); \ } while (0) struct uath_devcap *cap = &sc->sc_devcap; int error; /* collect device capabilities */ GETCAP(CAP_TARGET_VERSION, cap->targetVersion); GETCAP(CAP_TARGET_REVISION, cap->targetRevision); GETCAP(CAP_MAC_VERSION, cap->macVersion); GETCAP(CAP_MAC_REVISION, cap->macRevision); GETCAP(CAP_PHY_REVISION, cap->phyRevision); GETCAP(CAP_ANALOG_5GHz_REVISION, cap->analog5GhzRevision); GETCAP(CAP_ANALOG_2GHz_REVISION, cap->analog2GhzRevision); GETCAP(CAP_REG_DOMAIN, cap->regDomain); GETCAP(CAP_REG_CAP_BITS, cap->regCapBits); #if 0 /* NB: not supported in rev 1.5 */ GETCAP(CAP_COUNTRY_CODE, cap->countryCode); #endif GETCAP(CAP_WIRELESS_MODES, cap->wirelessModes); GETCAP(CAP_CHAN_SPREAD_SUPPORT, cap->chanSpreadSupport); GETCAP(CAP_COMPRESS_SUPPORT, cap->compressSupport); GETCAP(CAP_BURST_SUPPORT, cap->burstSupport); GETCAP(CAP_FAST_FRAMES_SUPPORT, cap->fastFramesSupport); GETCAP(CAP_CHAP_TUNING_SUPPORT, cap->chapTuningSupport); GETCAP(CAP_TURBOG_SUPPORT, cap->turboGSupport); GETCAP(CAP_TURBO_PRIME_SUPPORT, cap->turboPrimeSupport); GETCAP(CAP_DEVICE_TYPE, cap->deviceType); GETCAP(CAP_WME_SUPPORT, cap->wmeSupport); GETCAP(CAP_TOTAL_QUEUES, cap->numTxQueues); GETCAP(CAP_CONNECTION_ID_MAX, cap->connectionIdMax); GETCAP(CAP_LOW_5GHZ_CHAN, cap->low5GhzChan); GETCAP(CAP_HIGH_5GHZ_CHAN, cap->high5GhzChan); GETCAP(CAP_LOW_2GHZ_CHAN, cap->low2GhzChan); GETCAP(CAP_HIGH_2GHZ_CHAN, cap->high2GhzChan); GETCAP(CAP_TWICE_ANTENNAGAIN_5G, cap->twiceAntennaGain5G); GETCAP(CAP_TWICE_ANTENNAGAIN_2G, cap->twiceAntennaGain2G); GETCAP(CAP_CIPHER_AES_CCM, cap->supportCipherAES_CCM); GETCAP(CAP_CIPHER_TKIP, cap->supportCipherTKIP); GETCAP(CAP_MIC_TKIP, cap->supportMicTKIP); cap->supportCipherWEP = 1; /* NB: always available */ return (0); } static int uath_get_devstatus(struct uath_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) { int error; /* retrieve MAC address */ error = uath_get_status(sc, ST_MAC_ADDR, macaddr, IEEE80211_ADDR_LEN); if (error != 0) { device_printf(sc->sc_dev, "could not read MAC address\n"); return (error); } error = uath_get_status(sc, ST_SERIAL_NUMBER, &sc->sc_serial[0], sizeof(sc->sc_serial)); if (error != 0) { device_printf(sc->sc_dev, "could not read device serial number\n"); return (error); } return (0); } static int uath_get_status(struct uath_softc *sc, uint32_t which, void *odata, int olen) { int error; which = htobe32(which); error = uath_cmd_read(sc, WDCMSG_TARGET_GET_STATUS, &which, sizeof(which), odata, olen, UATH_CMD_FLAG_MAGIC); if (error != 0) device_printf(sc->sc_dev, "could not read EEPROM offset 0x%02x\n", be32toh(which)); return (error); } static void uath_free_data_list(struct uath_softc *sc, struct uath_data data[], int ndata, int fillmbuf) { int i; for (i = 0; i < ndata; i++) { struct uath_data *dp = &data[i]; if (fillmbuf == 1) { if (dp->m != NULL) { m_freem(dp->m); dp->m = NULL; dp->buf = NULL; } } else { dp->buf = NULL; } if (dp->ni != NULL) { ieee80211_free_node(dp->ni); dp->ni = NULL; } } } static int uath_alloc_data_list(struct uath_softc *sc, struct uath_data data[], int ndata, int maxsz, void *dma_buf) { int i, error; for (i = 0; i < ndata; i++) { struct uath_data *dp = &data[i]; dp->sc = sc; if (dma_buf == NULL) { /* XXX check maxsz */ dp->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (dp->m == NULL) { device_printf(sc->sc_dev, "could not allocate rx mbuf\n"); error = ENOMEM; goto fail; } dp->buf = mtod(dp->m, uint8_t *); } else { dp->m = NULL; dp->buf = ((uint8_t *)dma_buf) + (i * maxsz); } dp->ni = NULL; } return (0); fail: uath_free_data_list(sc, data, ndata, 1 /* free mbufs */); return (error); } static int uath_alloc_rx_data_list(struct uath_softc *sc) { int error, i; /* XXX is it enough to store the RX packet with MCLBYTES bytes? */ error = uath_alloc_data_list(sc, sc->sc_rx, UATH_RX_DATA_LIST_COUNT, MCLBYTES, NULL /* setup mbufs */); if (error != 0) return (error); STAILQ_INIT(&sc->sc_rx_active); STAILQ_INIT(&sc->sc_rx_inactive); for (i = 0; i < UATH_RX_DATA_LIST_COUNT; i++) { STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], next); UATH_STAT_INC(sc, st_rx_inactive); } return (0); } static int uath_alloc_tx_data_list(struct uath_softc *sc) { int error, i; error = uath_alloc_data_list(sc, sc->sc_tx, UATH_TX_DATA_LIST_COUNT, UATH_MAX_TXBUFSZ, sc->sc_tx_dma_buf); if (error != 0) return (error); STAILQ_INIT(&sc->sc_tx_active); STAILQ_INIT(&sc->sc_tx_inactive); STAILQ_INIT(&sc->sc_tx_pending); for (i = 0; i < UATH_TX_DATA_LIST_COUNT; i++) { STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], next); UATH_STAT_INC(sc, st_tx_inactive); } return (0); } static void uath_free_rx_data_list(struct uath_softc *sc) { uath_free_data_list(sc, sc->sc_rx, UATH_RX_DATA_LIST_COUNT, 1 /* free mbufs */); } static void uath_free_tx_data_list(struct uath_softc *sc) { uath_free_data_list(sc, sc->sc_tx, UATH_TX_DATA_LIST_COUNT, 0 /* no mbufs */); } static struct ieee80211vap * uath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct uath_vap *uvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return (NULL); uvp = malloc(sizeof(struct uath_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &uvp->vap; /* enable s/w bmiss handling for sta mode */ if (ieee80211_vap_setup(ic, vap, name, unit, opmode, flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { /* out of memory */ free(uvp, M_80211_VAP); return (NULL); } /* override state transition machine */ uvp->newstate = vap->iv_newstate; vap->iv_newstate = uath_newstate; /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return (vap); } static void uath_vap_delete(struct ieee80211vap *vap) { struct uath_vap *uvp = UATH_VAP(vap); ieee80211_vap_detach(vap); free(uvp, M_80211_VAP); } static int uath_init(struct uath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint32_t val; int error; UATH_ASSERT_LOCKED(sc); if (sc->sc_flags & UATH_FLAG_INITDONE) uath_stop(sc); /* reset variables */ sc->sc_intrx_nextnum = sc->sc_msgid = 0; val = htobe32(0); uath_cmd_write(sc, WDCMSG_BIND, &val, sizeof val, 0); /* set MAC address */ uath_config_multi(sc, CFG_MAC_ADDR, vap ? vap->iv_myaddr : ic->ic_macaddr, IEEE80211_ADDR_LEN); /* XXX honor net80211 state */ uath_config(sc, CFG_RATE_CONTROL_ENABLE, 0x00000001); uath_config(sc, CFG_DIVERSITY_CTL, 0x00000001); uath_config(sc, CFG_ABOLT, 0x0000003f); uath_config(sc, CFG_WME_ENABLED, 0x00000001); uath_config(sc, CFG_SERVICE_TYPE, 1); uath_config(sc, CFG_TP_SCALE, 0x00000000); uath_config(sc, CFG_TPC_HALF_DBM5, 0x0000003c); uath_config(sc, CFG_TPC_HALF_DBM2, 0x0000003c); uath_config(sc, CFG_OVERRD_TX_POWER, 0x00000000); uath_config(sc, CFG_GMODE_PROTECTION, 0x00000000); uath_config(sc, CFG_GMODE_PROTECT_RATE_INDEX, 0x00000003); uath_config(sc, CFG_PROTECTION_TYPE, 0x00000000); uath_config(sc, CFG_MODE_CTS, 0x00000002); error = uath_cmd_read(sc, WDCMSG_TARGET_START, NULL, 0, &val, sizeof(val), UATH_CMD_FLAG_MAGIC); if (error) { device_printf(sc->sc_dev, "could not start target, error %d\n", error); goto fail; } DPRINTF(sc, UATH_DEBUG_INIT, "%s returns handle: 0x%x\n", uath_codename(WDCMSG_TARGET_START), be32toh(val)); /* set default channel */ error = uath_switch_channel(sc, ic->ic_curchan); if (error) { device_printf(sc->sc_dev, "could not switch channel, error %d\n", error); goto fail; } val = htobe32(TARGET_DEVICE_AWAKE); uath_cmd_write(sc, WDCMSG_SET_PWR_MODE, &val, sizeof val, 0); /* XXX? check */ uath_cmd_write(sc, WDCMSG_RESET_KEY_CACHE, NULL, 0, 0); usbd_transfer_start(sc->sc_xfer[UATH_BULK_RX]); /* enable Rx */ uath_set_rxfilter(sc, 0x0, UATH_FILTER_OP_INIT); uath_set_rxfilter(sc, UATH_FILTER_RX_UCAST | UATH_FILTER_RX_MCAST | UATH_FILTER_RX_BCAST | UATH_FILTER_RX_BEACON, UATH_FILTER_OP_SET); sc->sc_flags |= UATH_FLAG_INITDONE; callout_reset(&sc->watchdog_ch, hz, uath_watchdog, sc); return (0); fail: uath_stop(sc); return (error); } static void uath_stop(struct uath_softc *sc) { UATH_ASSERT_LOCKED(sc); sc->sc_flags &= ~UATH_FLAG_INITDONE; callout_stop(&sc->stat_ch); callout_stop(&sc->watchdog_ch); sc->sc_tx_timer = 0; /* abort pending transmits */ uath_abort_xfers(sc); /* flush data & control requests into the target */ (void)uath_flush(sc); /* set a LED status to the disconnected. */ uath_set_ledstate(sc, 0); /* stop the target */ uath_cmd_write(sc, WDCMSG_TARGET_STOP, NULL, 0, 0); } static int uath_config(struct uath_softc *sc, uint32_t reg, uint32_t val) { struct uath_write_mac write; int error; write.reg = htobe32(reg); write.len = htobe32(0); /* 0 = single write */ *(uint32_t *)write.data = htobe32(val); error = uath_cmd_write(sc, WDCMSG_TARGET_SET_CONFIG, &write, 3 * sizeof (uint32_t), 0); if (error != 0) { device_printf(sc->sc_dev, "could not write register 0x%02x\n", reg); } return (error); } static int uath_config_multi(struct uath_softc *sc, uint32_t reg, const void *data, int len) { struct uath_write_mac write; int error; write.reg = htobe32(reg); write.len = htobe32(len); bcopy(data, write.data, len); /* properly handle the case where len is zero (reset) */ error = uath_cmd_write(sc, WDCMSG_TARGET_SET_CONFIG, &write, (len == 0) ? sizeof (uint32_t) : 2 * sizeof (uint32_t) + len, 0); if (error != 0) { device_printf(sc->sc_dev, "could not write %d bytes to register 0x%02x\n", len, reg); } return (error); } static int uath_switch_channel(struct uath_softc *sc, struct ieee80211_channel *c) { int error; UATH_ASSERT_LOCKED(sc); /* set radio frequency */ error = uath_set_chan(sc, c); if (error) { device_printf(sc->sc_dev, "could not set channel, error %d\n", error); goto failed; } /* reset Tx rings */ error = uath_reset_tx_queues(sc); if (error) { device_printf(sc->sc_dev, "could not reset Tx queues, error %d\n", error); goto failed; } /* set Tx rings WME properties */ error = uath_wme_init(sc); if (error) { device_printf(sc->sc_dev, "could not init Tx queues, error %d\n", error); goto failed; } error = uath_set_ledstate(sc, 0); if (error) { device_printf(sc->sc_dev, "could not set led state, error %d\n", error); goto failed; } error = uath_flush(sc); if (error) { device_printf(sc->sc_dev, "could not flush pipes, error %d\n", error); goto failed; } failed: return (error); } static int uath_set_rxfilter(struct uath_softc *sc, uint32_t bits, uint32_t op) { struct uath_cmd_rx_filter rxfilter; rxfilter.bits = htobe32(bits); rxfilter.op = htobe32(op); DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, "setting Rx filter=0x%x flags=0x%x\n", bits, op); return uath_cmd_write(sc, WDCMSG_RX_FILTER, &rxfilter, sizeof rxfilter, 0); } static void uath_watchdog(void *arg) { struct uath_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { device_printf(sc->sc_dev, "device timeout\n"); /*uath_init(sc); XXX needs a process context! */ counter_u64_add(ic->ic_oerrors, 1); return; } callout_reset(&sc->watchdog_ch, hz, uath_watchdog, sc); } } static void uath_abort_xfers(struct uath_softc *sc) { int i; UATH_ASSERT_LOCKED(sc); /* abort any pending transfers */ for (i = 0; i < UATH_N_XFERS; i++) usbd_transfer_stop(sc->sc_xfer[i]); } static int uath_flush(struct uath_softc *sc) { int error; error = uath_dataflush(sc); if (error != 0) goto failed; error = uath_cmdflush(sc); if (error != 0) goto failed; failed: return (error); } static int uath_cmdflush(struct uath_softc *sc) { return uath_cmd_write(sc, WDCMSG_FLUSH, NULL, 0, 0); } static int uath_dataflush(struct uath_softc *sc) { struct uath_data *data; struct uath_chunk *chunk; struct uath_tx_desc *desc; UATH_ASSERT_LOCKED(sc); data = uath_getbuf(sc); if (data == NULL) return (ENOBUFS); data->buflen = sizeof(struct uath_chunk) + sizeof(struct uath_tx_desc); data->m = NULL; data->ni = NULL; chunk = (struct uath_chunk *)data->buf; desc = (struct uath_tx_desc *)(chunk + 1); /* one chunk only */ chunk->seqnum = 0; chunk->flags = UATH_CFLAGS_FINAL; chunk->length = htobe16(sizeof (struct uath_tx_desc)); memset(desc, 0, sizeof(struct uath_tx_desc)); desc->msglen = htobe32(sizeof(struct uath_tx_desc)); desc->msgid = (sc->sc_msgid++) + 1; /* don't care about endianness */ desc->type = htobe32(WDCMSG_FLUSH); desc->txqid = htobe32(0); desc->connid = htobe32(0); desc->flags = htobe32(0); #ifdef UATH_DEBUG if (sc->sc_debug & UATH_DEBUG_CMDS) { DPRINTF(sc, UATH_DEBUG_RESET, "send flush ix %d\n", desc->msgid); if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) uath_dump_cmd(data->buf, data->buflen, '+'); } #endif STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); UATH_STAT_INC(sc, st_tx_pending); sc->sc_tx_timer = 5; usbd_transfer_start(sc->sc_xfer[UATH_BULK_TX]); return (0); } static struct uath_data * _uath_getbuf(struct uath_softc *sc) { struct uath_data *bf; bf = STAILQ_FIRST(&sc->sc_tx_inactive); if (bf != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); UATH_STAT_DEC(sc, st_tx_inactive); } else bf = NULL; if (bf == NULL) DPRINTF(sc, UATH_DEBUG_XMIT, "%s: %s\n", __func__, "out of xmit buffers"); return (bf); } static struct uath_data * uath_getbuf(struct uath_softc *sc) { struct uath_data *bf; UATH_ASSERT_LOCKED(sc); bf = _uath_getbuf(sc); if (bf == NULL) DPRINTF(sc, UATH_DEBUG_XMIT, "%s: stop queue\n", __func__); return (bf); } static int uath_set_ledstate(struct uath_softc *sc, int connected) { DPRINTF(sc, UATH_DEBUG_LED, "set led state %sconnected\n", connected ? "" : "!"); connected = htobe32(connected); return uath_cmd_write(sc, WDCMSG_SET_LED_STATE, &connected, sizeof connected, 0); } static int uath_set_chan(struct uath_softc *sc, struct ieee80211_channel *c) { #ifdef UATH_DEBUG struct ieee80211com *ic = &sc->sc_ic; #endif struct uath_cmd_reset reset; memset(&reset, 0, sizeof(reset)); if (IEEE80211_IS_CHAN_2GHZ(c)) reset.flags |= htobe32(UATH_CHAN_2GHZ); if (IEEE80211_IS_CHAN_5GHZ(c)) reset.flags |= htobe32(UATH_CHAN_5GHZ); /* NB: 11g =>'s 11b so don't specify both OFDM and CCK */ if (IEEE80211_IS_CHAN_OFDM(c)) reset.flags |= htobe32(UATH_CHAN_OFDM); else if (IEEE80211_IS_CHAN_CCK(c)) reset.flags |= htobe32(UATH_CHAN_CCK); /* turbo can be used in either 2GHz or 5GHz */ if (c->ic_flags & IEEE80211_CHAN_TURBO) reset.flags |= htobe32(UATH_CHAN_TURBO); reset.freq = htobe32(c->ic_freq); reset.maxrdpower = htobe32(50); /* XXX */ reset.channelchange = htobe32(1); reset.keeprccontent = htobe32(0); DPRINTF(sc, UATH_DEBUG_CHANNEL, "set channel %d, flags 0x%x freq %u\n", ieee80211_chan2ieee(ic, c), be32toh(reset.flags), be32toh(reset.freq)); return uath_cmd_write(sc, WDCMSG_RESET, &reset, sizeof reset, 0); } static int uath_reset_tx_queues(struct uath_softc *sc) { int ac, error; DPRINTF(sc, UATH_DEBUG_RESET, "%s: reset Tx queues\n", __func__); for (ac = 0; ac < 4; ac++) { const uint32_t qid = htobe32(ac); error = uath_cmd_write(sc, WDCMSG_RELEASE_TX_QUEUE, &qid, sizeof qid, 0); if (error != 0) break; } return (error); } static int uath_wme_init(struct uath_softc *sc) { /* XXX get from net80211 */ static const struct uath_wme_settings uath_wme_11g[4] = { { 7, 4, 10, 0, 0 }, /* Background */ { 3, 4, 10, 0, 0 }, /* Best-Effort */ { 3, 3, 4, 26, 0 }, /* Video */ { 2, 2, 3, 47, 0 } /* Voice */ }; struct uath_cmd_txq_setup qinfo; int ac, error; DPRINTF(sc, UATH_DEBUG_WME, "%s: setup Tx queues\n", __func__); for (ac = 0; ac < 4; ac++) { qinfo.qid = htobe32(ac); qinfo.len = htobe32(sizeof(qinfo.attr)); qinfo.attr.priority = htobe32(ac); /* XXX */ qinfo.attr.aifs = htobe32(uath_wme_11g[ac].aifsn); qinfo.attr.logcwmin = htobe32(uath_wme_11g[ac].logcwmin); qinfo.attr.logcwmax = htobe32(uath_wme_11g[ac].logcwmax); qinfo.attr.bursttime = htobe32(IEEE80211_TXOP_TO_US( uath_wme_11g[ac].txop)); qinfo.attr.mode = htobe32(uath_wme_11g[ac].acm);/*XXX? */ qinfo.attr.qflags = htobe32(1); /* XXX? */ error = uath_cmd_write(sc, WDCMSG_SETUP_TX_QUEUE, &qinfo, sizeof qinfo, 0); if (error != 0) break; } return (error); } static void uath_parent(struct ieee80211com *ic) { struct uath_softc *sc = ic->ic_softc; int startall = 0; UATH_LOCK(sc); if (sc->sc_flags & UATH_FLAG_INVALID) { UATH_UNLOCK(sc); return; } if (ic->ic_nrunning > 0) { if (!(sc->sc_flags & UATH_FLAG_INITDONE)) { uath_init(sc); startall = 1; } } else if (sc->sc_flags & UATH_FLAG_INITDONE) uath_stop(sc); UATH_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } static int uath_tx_start(struct uath_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, struct uath_data *data) { struct ieee80211vap *vap = ni->ni_vap; struct uath_chunk *chunk; struct uath_tx_desc *desc; const struct ieee80211_frame *wh; struct ieee80211_key *k; int framelen, msglen; UATH_ASSERT_LOCKED(sc); data->ni = ni; data->m = m0; chunk = (struct uath_chunk *)data->buf; desc = (struct uath_tx_desc *)(chunk + 1); if (ieee80211_radiotap_active_vap(vap)) { struct uath_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; if (m0->m_flags & M_FRAG) tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG; ieee80211_radiotap_tx(vap, m0); } wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return (ENOBUFS); } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } m_copydata(m0, 0, m0->m_pkthdr.len, (uint8_t *)(desc + 1)); framelen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; msglen = framelen + sizeof (struct uath_tx_desc); data->buflen = msglen + sizeof (struct uath_chunk); /* one chunk only for now */ chunk->seqnum = sc->sc_seqnum++; chunk->flags = (m0->m_flags & M_FRAG) ? 0 : UATH_CFLAGS_FINAL; if (m0->m_flags & M_LASTFRAG) chunk->flags |= UATH_CFLAGS_FINAL; chunk->flags = UATH_CFLAGS_FINAL; chunk->length = htobe16(msglen); /* fill Tx descriptor */ desc->msglen = htobe32(msglen); /* NB: to get UATH_TX_NOTIFY reply, `msgid' must be larger than 0 */ desc->msgid = (sc->sc_msgid++) + 1; /* don't care about endianness */ desc->type = htobe32(WDCMSG_SEND); switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { case IEEE80211_FC0_TYPE_CTL: case IEEE80211_FC0_TYPE_MGT: /* NB: force all management frames to highest queue */ if (ni->ni_flags & IEEE80211_NODE_QOS) { /* NB: force all management frames to highest queue */ desc->txqid = htobe32(WME_AC_VO | UATH_TXQID_MINRATE); } else desc->txqid = htobe32(WME_AC_BE | UATH_TXQID_MINRATE); break; case IEEE80211_FC0_TYPE_DATA: /* XXX multicast frames should honor mcastrate */ desc->txqid = htobe32(M_WME_GETAC(m0)); break; default: device_printf(sc->sc_dev, "bogus frame type 0x%x (%s)\n", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); m_freem(m0); return (EIO); } if (vap->iv_state == IEEE80211_S_AUTH || vap->iv_state == IEEE80211_S_ASSOC || vap->iv_state == IEEE80211_S_RUN) desc->connid = htobe32(UATH_ID_BSS); else desc->connid = htobe32(UATH_ID_INVALID); desc->flags = htobe32(0 /* no UATH_TX_NOTIFY */); desc->buflen = htobe32(m0->m_pkthdr.len); #ifdef UATH_DEBUG DPRINTF(sc, UATH_DEBUG_XMIT, "send frame ix %u framelen %d msglen %d connid 0x%x txqid 0x%x\n", desc->msgid, framelen, msglen, be32toh(desc->connid), be32toh(desc->txqid)); if (sc->sc_debug & UATH_DEBUG_XMIT_DUMP) uath_dump_cmd(data->buf, data->buflen, '+'); #endif STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); UATH_STAT_INC(sc, st_tx_pending); usbd_transfer_start(sc->sc_xfer[UATH_BULK_TX]); return (0); } /* * Cleanup driver resources when we run out of buffers while processing * fragments; return the tx buffers allocated and drop node references. */ static void uath_txfrag_cleanup(struct uath_softc *sc, uath_datahead *frags, struct ieee80211_node *ni) { struct uath_data *bf, *next; UATH_ASSERT_LOCKED(sc); STAILQ_FOREACH_SAFE(bf, frags, next, next) { /* NB: bf assumed clean */ STAILQ_REMOVE_HEAD(frags, next); STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); UATH_STAT_INC(sc, st_tx_inactive); ieee80211_node_decref(ni); } } /* * Setup xmit of a fragmented frame. Allocate a buffer for each frag and bump * the node reference count to reflect the held reference to be setup by * uath_tx_start. */ static int uath_txfrag_setup(struct uath_softc *sc, uath_datahead *frags, struct mbuf *m0, struct ieee80211_node *ni) { struct mbuf *m; struct uath_data *bf; UATH_ASSERT_LOCKED(sc); for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { bf = uath_getbuf(sc); if (bf == NULL) { /* out of buffers, cleanup */ uath_txfrag_cleanup(sc, frags, ni); break; } ieee80211_node_incref(ni); STAILQ_INSERT_TAIL(frags, bf, next); } return !STAILQ_EMPTY(frags); } static int uath_transmit(struct ieee80211com *ic, struct mbuf *m) { struct uath_softc *sc = ic->ic_softc; int error; UATH_LOCK(sc); if ((sc->sc_flags & UATH_FLAG_INITDONE) == 0) { UATH_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { UATH_UNLOCK(sc); return (error); } uath_start(sc); UATH_UNLOCK(sc); return (0); } static void uath_start(struct uath_softc *sc) { struct uath_data *bf; struct ieee80211_node *ni; struct mbuf *m, *next; uath_datahead frags; UATH_ASSERT_LOCKED(sc); if ((sc->sc_flags & UATH_FLAG_INITDONE) == 0 || (sc->sc_flags & UATH_FLAG_INVALID)) return; while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { bf = uath_getbuf(sc); if (bf == NULL) { mbufq_prepend(&sc->sc_snd, m); break; } ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; /* * Check for fragmentation. If this frame has been broken up * verify we have enough buffers to send all the fragments * so all go out or none... */ STAILQ_INIT(&frags); if ((m->m_flags & M_FRAG) && !uath_txfrag_setup(sc, &frags, m, ni)) { DPRINTF(sc, UATH_DEBUG_XMIT, "%s: out of txfrag buffers\n", __func__); ieee80211_free_mbuf(m); goto bad; } sc->sc_seqnum = 0; nextfrag: /* * Pass the frame to the h/w for transmission. * Fragmented frames have each frag chained together * with m_nextpkt. We know there are sufficient uath_data's * to send all the frags because of work done by * uath_txfrag_setup. */ next = m->m_nextpkt; if (uath_tx_start(sc, m, ni, bf) != 0) { bad: if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); reclaim: STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); UATH_STAT_INC(sc, st_tx_inactive); uath_txfrag_cleanup(sc, &frags, ni); ieee80211_free_node(ni); continue; } if (next != NULL) { /* * Beware of state changing between frags. XXX check sta power-save state? */ if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { DPRINTF(sc, UATH_DEBUG_XMIT, "%s: flush fragmented packet, state %s\n", __func__, ieee80211_state_name[ni->ni_vap->iv_state]); ieee80211_free_mbuf(next); goto reclaim; } m = next; bf = STAILQ_FIRST(&frags); KASSERT(bf != NULL, ("no buf for txfrag")); STAILQ_REMOVE_HEAD(&frags, next); goto nextfrag; } sc->sc_tx_timer = 5; } } static int uath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct uath_data *bf; struct uath_softc *sc = ic->ic_softc; UATH_LOCK(sc); /* prevent management frames from being sent if we're not ready */ if ((sc->sc_flags & UATH_FLAG_INVALID) || !(sc->sc_flags & UATH_FLAG_INITDONE)) { m_freem(m); UATH_UNLOCK(sc); return (ENETDOWN); } /* grab a TX buffer */ bf = uath_getbuf(sc); if (bf == NULL) { m_freem(m); UATH_UNLOCK(sc); return (ENOBUFS); } sc->sc_seqnum = 0; if (uath_tx_start(sc, m, ni, bf) != 0) { STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); UATH_STAT_INC(sc, st_tx_inactive); UATH_UNLOCK(sc); return (EIO); } UATH_UNLOCK(sc); sc->sc_tx_timer = 5; return (0); } static void uath_scan_start(struct ieee80211com *ic) { /* do nothing */ } static void uath_scan_end(struct ieee80211com *ic) { /* do nothing */ } static void uath_set_channel(struct ieee80211com *ic) { struct uath_softc *sc = ic->ic_softc; UATH_LOCK(sc); if ((sc->sc_flags & UATH_FLAG_INVALID) || (sc->sc_flags & UATH_FLAG_INITDONE) == 0) { UATH_UNLOCK(sc); return; } (void)uath_switch_channel(sc, ic->ic_curchan); UATH_UNLOCK(sc); } static int uath_set_rxmulti_filter(struct uath_softc *sc) { /* XXX broken */ return (0); } static void uath_update_mcast(struct ieee80211com *ic) { struct uath_softc *sc = ic->ic_softc; UATH_LOCK(sc); if ((sc->sc_flags & UATH_FLAG_INVALID) || (sc->sc_flags & UATH_FLAG_INITDONE) == 0) { UATH_UNLOCK(sc); return; } /* * this is for avoiding the race condition when we're try to * connect to the AP with WPA. */ if (sc->sc_flags & UATH_FLAG_INITDONE) (void)uath_set_rxmulti_filter(sc); UATH_UNLOCK(sc); } static void uath_update_promisc(struct ieee80211com *ic) { struct uath_softc *sc = ic->ic_softc; UATH_LOCK(sc); if ((sc->sc_flags & UATH_FLAG_INVALID) || (sc->sc_flags & UATH_FLAG_INITDONE) == 0) { UATH_UNLOCK(sc); return; } if (sc->sc_flags & UATH_FLAG_INITDONE) { uath_set_rxfilter(sc, UATH_FILTER_RX_UCAST | UATH_FILTER_RX_MCAST | UATH_FILTER_RX_BCAST | UATH_FILTER_RX_BEACON | UATH_FILTER_RX_PROM, UATH_FILTER_OP_SET); } UATH_UNLOCK(sc); } static int uath_create_connection(struct uath_softc *sc, uint32_t connid) { const struct ieee80211_rateset *rs; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_node *ni; struct uath_cmd_create_connection create; ni = ieee80211_ref_node(vap->iv_bss); memset(&create, 0, sizeof(create)); create.connid = htobe32(connid); create.bssid = htobe32(0); /* XXX packed or not? */ create.size = htobe32(sizeof(struct uath_cmd_rateset)); rs = &ni->ni_rates; create.connattr.rateset.length = rs->rs_nrates; bcopy(rs->rs_rates, &create.connattr.rateset.set[0], rs->rs_nrates); /* XXX turbo */ if (IEEE80211_IS_CHAN_A(ni->ni_chan)) create.connattr.wlanmode = htobe32(WLAN_MODE_11a); else if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) create.connattr.wlanmode = htobe32(WLAN_MODE_11g); else create.connattr.wlanmode = htobe32(WLAN_MODE_11b); ieee80211_free_node(ni); return uath_cmd_write(sc, WDCMSG_CREATE_CONNECTION, &create, sizeof create, 0); } static int uath_set_rates(struct uath_softc *sc, const struct ieee80211_rateset *rs) { struct uath_cmd_rates rates; memset(&rates, 0, sizeof(rates)); rates.connid = htobe32(UATH_ID_BSS); /* XXX */ rates.size = htobe32(sizeof(struct uath_cmd_rateset)); /* XXX bounds check rs->rs_nrates */ rates.rateset.length = rs->rs_nrates; bcopy(rs->rs_rates, &rates.rateset.set[0], rs->rs_nrates); DPRINTF(sc, UATH_DEBUG_RATES, "setting supported rates nrates=%d\n", rs->rs_nrates); return uath_cmd_write(sc, WDCMSG_SET_BASIC_RATE, &rates, sizeof rates, 0); } static int uath_write_associd(struct uath_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_node *ni; struct uath_cmd_set_associd associd; ni = ieee80211_ref_node(vap->iv_bss); memset(&associd, 0, sizeof(associd)); associd.defaultrateix = htobe32(1); /* XXX */ associd.associd = htobe32(ni->ni_associd); associd.timoffset = htobe32(0x3b); /* XXX */ IEEE80211_ADDR_COPY(associd.bssid, ni->ni_bssid); ieee80211_free_node(ni); return uath_cmd_write(sc, WDCMSG_WRITE_ASSOCID, &associd, sizeof associd, 0); } static int uath_set_ledsteady(struct uath_softc *sc, int lednum, int ledmode) { struct uath_cmd_ledsteady led; led.lednum = htobe32(lednum); led.ledmode = htobe32(ledmode); DPRINTF(sc, UATH_DEBUG_LED, "set %s led %s (steady)\n", (lednum == UATH_LED_LINK) ? "link" : "activity", ledmode ? "on" : "off"); return uath_cmd_write(sc, WDCMSG_SET_LED_STEADY, &led, sizeof led, 0); } static int uath_set_ledblink(struct uath_softc *sc, int lednum, int ledmode, int blinkrate, int slowmode) { struct uath_cmd_ledblink led; led.lednum = htobe32(lednum); led.ledmode = htobe32(ledmode); led.blinkrate = htobe32(blinkrate); led.slowmode = htobe32(slowmode); DPRINTF(sc, UATH_DEBUG_LED, "set %s led %s (blink)\n", (lednum == UATH_LED_LINK) ? "link" : "activity", ledmode ? "on" : "off"); return uath_cmd_write(sc, WDCMSG_SET_LED_BLINK, &led, sizeof led, 0); } static int uath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { enum ieee80211_state ostate = vap->iv_state; int error; struct ieee80211_node *ni; struct ieee80211com *ic = vap->iv_ic; struct uath_softc *sc = ic->ic_softc; struct uath_vap *uvp = UATH_VAP(vap); DPRINTF(sc, UATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); IEEE80211_UNLOCK(ic); UATH_LOCK(sc); callout_stop(&sc->stat_ch); callout_stop(&sc->watchdog_ch); ni = ieee80211_ref_node(vap->iv_bss); switch (nstate) { case IEEE80211_S_INIT: if (ostate == IEEE80211_S_RUN) { /* turn link and activity LEDs off */ uath_set_ledstate(sc, 0); } break; case IEEE80211_S_SCAN: break; case IEEE80211_S_AUTH: /* XXX good place? set RTS threshold */ uath_config(sc, CFG_USER_RTS_THRESHOLD, vap->iv_rtsthreshold); /* XXX bad place */ error = uath_set_keys(sc, vap); if (error != 0) { device_printf(sc->sc_dev, "could not set crypto keys, error %d\n", error); break; } if (uath_switch_channel(sc, ni->ni_chan) != 0) { device_printf(sc->sc_dev, "could not switch channel\n"); break; } if (uath_create_connection(sc, UATH_ID_BSS) != 0) { device_printf(sc->sc_dev, "could not create connection\n"); break; } break; case IEEE80211_S_ASSOC: if (uath_set_rates(sc, &ni->ni_rates) != 0) { device_printf(sc->sc_dev, "could not set negotiated rate set\n"); break; } break; case IEEE80211_S_RUN: /* XXX monitor mode doesn't be tested */ if (ic->ic_opmode == IEEE80211_M_MONITOR) { uath_set_ledstate(sc, 1); break; } /* * Tx rate is controlled by firmware, report the maximum * negotiated rate in ifconfig output. */ ni->ni_txrate = ni->ni_rates.rs_rates[ni->ni_rates.rs_nrates-1]; if (uath_write_associd(sc) != 0) { device_printf(sc->sc_dev, "could not write association id\n"); break; } /* turn link LED on */ uath_set_ledsteady(sc, UATH_LED_LINK, UATH_LED_ON); /* make activity LED blink */ uath_set_ledblink(sc, UATH_LED_ACTIVITY, UATH_LED_ON, 1, 2); /* set state to associated */ uath_set_ledstate(sc, 1); /* start statistics timer */ callout_reset(&sc->stat_ch, hz, uath_stat, sc); break; default: break; } ieee80211_free_node(ni); UATH_UNLOCK(sc); IEEE80211_LOCK(ic); return (uvp->newstate(vap, nstate, arg)); } static int uath_set_key(struct uath_softc *sc, const struct ieee80211_key *wk, int index) { #if 0 struct uath_cmd_crypto crypto; int i; memset(&crypto, 0, sizeof(crypto)); crypto.keyidx = htobe32(index); crypto.magic1 = htobe32(1); crypto.size = htobe32(368); crypto.mask = htobe32(0xffff); crypto.flags = htobe32(0x80000068); if (index != UATH_DEFAULT_KEY) crypto.flags |= htobe32(index << 16); memset(crypto.magic2, 0xff, sizeof(crypto.magic2)); /* * Each byte of the key must be XOR'ed with 10101010 before being * transmitted to the firmware. */ for (i = 0; i < wk->wk_keylen; i++) crypto.key[i] = wk->wk_key[i] ^ 0xaa; DPRINTF(sc, UATH_DEBUG_CRYPTO, "setting crypto key index=%d len=%d\n", index, wk->wk_keylen); return uath_cmd_write(sc, WDCMSG_SET_KEY_CACHE_ENTRY, &crypto, sizeof crypto, 0); #else /* XXX support H/W cryto */ return (0); #endif } static int uath_set_keys(struct uath_softc *sc, struct ieee80211vap *vap) { int i, error; error = 0; for (i = 0; i < IEEE80211_WEP_NKID; i++) { const struct ieee80211_key *wk = &vap->iv_nw_keys[i]; if (wk->wk_flags & (IEEE80211_KEY_XMIT|IEEE80211_KEY_RECV)) { error = uath_set_key(sc, wk, i); if (error) return (error); } } if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) { error = uath_set_key(sc, &vap->iv_nw_keys[vap->iv_def_txkey], UATH_DEFAULT_KEY); } return (error); } #define UATH_SYSCTL_STAT_ADD32(c, h, n, p, d) \ SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) static void uath_sysctl_node(struct uath_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *child; struct sysctl_oid *tree; struct uath_stat *stats; stats = &sc->sc_stat; ctx = device_get_sysctl_ctx(sc->sc_dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev)); tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, NULL, "UATH statistics"); child = SYSCTL_CHILDREN(tree); UATH_SYSCTL_STAT_ADD32(ctx, child, "badchunkseqnum", &stats->st_badchunkseqnum, "Bad chunk sequence numbers"); UATH_SYSCTL_STAT_ADD32(ctx, child, "invalidlen", &stats->st_invalidlen, "Invalid length"); UATH_SYSCTL_STAT_ADD32(ctx, child, "multichunk", &stats->st_multichunk, "Multi chunks"); UATH_SYSCTL_STAT_ADD32(ctx, child, "toobigrxpkt", &stats->st_toobigrxpkt, "Too big rx packets"); UATH_SYSCTL_STAT_ADD32(ctx, child, "stopinprogress", &stats->st_stopinprogress, "Stop in progress"); UATH_SYSCTL_STAT_ADD32(ctx, child, "crcerrs", &stats->st_crcerr, "CRC errors"); UATH_SYSCTL_STAT_ADD32(ctx, child, "phyerr", &stats->st_phyerr, "PHY errors"); UATH_SYSCTL_STAT_ADD32(ctx, child, "decrypt_crcerr", &stats->st_decrypt_crcerr, "Decryption CRC errors"); UATH_SYSCTL_STAT_ADD32(ctx, child, "decrypt_micerr", &stats->st_decrypt_micerr, "Decryption Misc errors"); UATH_SYSCTL_STAT_ADD32(ctx, child, "decomperr", &stats->st_decomperr, "Decomp errors"); UATH_SYSCTL_STAT_ADD32(ctx, child, "keyerr", &stats->st_keyerr, "Key errors"); UATH_SYSCTL_STAT_ADD32(ctx, child, "err", &stats->st_err, "Unknown errors"); UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_active", &stats->st_cmd_active, "Active numbers in Command queue"); UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_inactive", &stats->st_cmd_inactive, "Inactive numbers in Command queue"); UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_pending", &stats->st_cmd_pending, "Pending numbers in Command queue"); UATH_SYSCTL_STAT_ADD32(ctx, child, "cmd_waiting", &stats->st_cmd_waiting, "Waiting numbers in Command queue"); UATH_SYSCTL_STAT_ADD32(ctx, child, "rx_active", &stats->st_rx_active, "Active numbers in RX queue"); UATH_SYSCTL_STAT_ADD32(ctx, child, "rx_inactive", &stats->st_rx_inactive, "Inactive numbers in RX queue"); UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_active", &stats->st_tx_active, "Active numbers in TX queue"); UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive", &stats->st_tx_inactive, "Inactive numbers in TX queue"); UATH_SYSCTL_STAT_ADD32(ctx, child, "tx_pending", &stats->st_tx_pending, "Pending numbers in TX queue"); } #undef UATH_SYSCTL_STAT_ADD32 static void uath_cmdeof(struct uath_softc *sc, struct uath_cmd *cmd) { struct uath_cmd_hdr *hdr; int dlen; hdr = (struct uath_cmd_hdr *)cmd->buf; /* NB: msgid is passed thru w/o byte swapping */ #ifdef UATH_DEBUG if (sc->sc_debug & UATH_DEBUG_CMDS) { int len = be32toh(hdr->len); printf("%s: %s [ix %u] len %u status %u\n", __func__, uath_codename(be32toh(hdr->code)), hdr->msgid, len, be32toh(hdr->magic)); if (sc->sc_debug & UATH_DEBUG_CMDS_DUMP) uath_dump_cmd(cmd->buf, len > UATH_MAX_CMDSZ ? sizeof(*hdr) : len, '-'); } #endif hdr->code = be32toh(hdr->code); hdr->len = be32toh(hdr->len); hdr->magic = be32toh(hdr->magic); /* target status on return */ switch (hdr->code & 0xff) { /* reply to a read command */ default: dlen = hdr->len - sizeof(*hdr); if (dlen < 0) { device_printf(sc->sc_dev, "Invalid header length %d\n", dlen); return; } DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, "%s: code %d data len %u\n", __func__, hdr->code & 0xff, dlen); /* * The first response from the target after the * HOST_AVAILABLE has an invalid msgid so we must * treat it specially. */ if (hdr->msgid < UATH_CMD_LIST_COUNT) { uint32_t *rp = (uint32_t *)(hdr+1); u_int olen; if (!(sizeof(*hdr) <= hdr->len && hdr->len < UATH_MAX_CMDSZ)) { device_printf(sc->sc_dev, "%s: invalid WDC msg length %u; " "msg ignored\n", __func__, hdr->len); return; } /* * Calculate return/receive payload size; the * first word, if present, always gives the * number of bytes--unless it's 0 in which * case a single 32-bit word should be present. */ if (dlen >= (int)sizeof(uint32_t)) { olen = be32toh(rp[0]); dlen -= sizeof(uint32_t); if (olen == 0) { /* convention is 0 =>'s one word */ olen = sizeof(uint32_t); /* XXX KASSERT(olen == dlen ) */ } } else olen = 0; if (cmd->odata != NULL) { /* NB: cmd->olen validated in uath_cmd */ if (olen > (u_int)cmd->olen) { /* XXX complain? */ device_printf(sc->sc_dev, "%s: cmd 0x%x olen %u cmd olen %u\n", __func__, hdr->code, olen, cmd->olen); olen = cmd->olen; } if (olen > (u_int)dlen) { /* XXX complain, shouldn't happen */ device_printf(sc->sc_dev, "%s: cmd 0x%x olen %u dlen %u\n", __func__, hdr->code, olen, dlen); olen = dlen; } /* XXX have submitter do this */ /* copy answer into caller's supplied buffer */ bcopy(&rp[1], cmd->odata, olen); cmd->olen = olen; } } wakeup_one(cmd); /* wake up caller */ break; case WDCMSG_TARGET_START: if (hdr->msgid >= UATH_CMD_LIST_COUNT) { /* XXX */ return; } dlen = hdr->len - sizeof(*hdr); if (dlen != (int)sizeof(uint32_t)) { /* XXX something wrong */ return; } /* XXX have submitter do this */ /* copy answer into caller's supplied buffer */ bcopy(hdr+1, cmd->odata, sizeof(uint32_t)); cmd->olen = sizeof(uint32_t); wakeup_one(cmd); /* wake up caller */ break; case WDCMSG_SEND_COMPLETE: /* this notification is sent when UATH_TX_NOTIFY is set */ DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, "%s: received Tx notification\n", __func__); break; case WDCMSG_TARGET_GET_STATS: DPRINTF(sc, UATH_DEBUG_RX_PROC | UATH_DEBUG_RECV_ALL, "%s: received device statistics\n", __func__); callout_reset(&sc->stat_ch, hz, uath_stat, sc); break; } } static void uath_intr_rx_callback(struct usb_xfer *xfer, usb_error_t error) { struct uath_softc *sc = usbd_xfer_softc(xfer); struct uath_cmd *cmd; struct usb_page_cache *pc; int actlen; usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); UATH_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: cmd = STAILQ_FIRST(&sc->sc_cmd_waiting); if (cmd == NULL) goto setup; STAILQ_REMOVE_HEAD(&sc->sc_cmd_waiting, next); UATH_STAT_DEC(sc, st_cmd_waiting); STAILQ_INSERT_TAIL(&sc->sc_cmd_inactive, cmd, next); UATH_STAT_INC(sc, st_cmd_inactive); KASSERT(actlen >= (int)sizeof(struct uath_cmd_hdr), ("short xfer error")); pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_out(pc, 0, cmd->buf, actlen); uath_cmdeof(sc, cmd); case USB_ST_SETUP: setup: usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); break; default: if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); goto setup; } break; } } static void uath_intr_tx_callback(struct usb_xfer *xfer, usb_error_t error) { struct uath_softc *sc = usbd_xfer_softc(xfer); struct uath_cmd *cmd; UATH_ASSERT_LOCKED(sc); cmd = STAILQ_FIRST(&sc->sc_cmd_active); if (cmd != NULL && USB_GET_STATE(xfer) != USB_ST_SETUP) { STAILQ_REMOVE_HEAD(&sc->sc_cmd_active, next); UATH_STAT_DEC(sc, st_cmd_active); STAILQ_INSERT_TAIL((cmd->flags & UATH_CMD_FLAG_READ) ? &sc->sc_cmd_waiting : &sc->sc_cmd_inactive, cmd, next); if (cmd->flags & UATH_CMD_FLAG_READ) UATH_STAT_INC(sc, st_cmd_waiting); else UATH_STAT_INC(sc, st_cmd_inactive); } switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: case USB_ST_SETUP: setup: cmd = STAILQ_FIRST(&sc->sc_cmd_pending); if (cmd == NULL) { DPRINTF(sc, UATH_DEBUG_XMIT, "%s: empty pending queue\n", __func__); return; } STAILQ_REMOVE_HEAD(&sc->sc_cmd_pending, next); UATH_STAT_DEC(sc, st_cmd_pending); STAILQ_INSERT_TAIL((cmd->flags & UATH_CMD_FLAG_ASYNC) ? &sc->sc_cmd_inactive : &sc->sc_cmd_active, cmd, next); if (cmd->flags & UATH_CMD_FLAG_ASYNC) UATH_STAT_INC(sc, st_cmd_inactive); else UATH_STAT_INC(sc, st_cmd_active); usbd_xfer_set_frame_data(xfer, 0, cmd->buf, cmd->buflen); usbd_transfer_submit(xfer); break; default: if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); goto setup; } break; } } static void uath_update_rxstat(struct uath_softc *sc, uint32_t status) { switch (status) { case UATH_STATUS_STOP_IN_PROGRESS: UATH_STAT_INC(sc, st_stopinprogress); break; case UATH_STATUS_CRC_ERR: UATH_STAT_INC(sc, st_crcerr); break; case UATH_STATUS_PHY_ERR: UATH_STAT_INC(sc, st_phyerr); break; case UATH_STATUS_DECRYPT_CRC_ERR: UATH_STAT_INC(sc, st_decrypt_crcerr); break; case UATH_STATUS_DECRYPT_MIC_ERR: UATH_STAT_INC(sc, st_decrypt_micerr); break; case UATH_STATUS_DECOMP_ERR: UATH_STAT_INC(sc, st_decomperr); break; case UATH_STATUS_KEY_ERR: UATH_STAT_INC(sc, st_keyerr); break; case UATH_STATUS_ERR: UATH_STAT_INC(sc, st_err); break; default: break; } } static struct mbuf * uath_data_rxeof(struct usb_xfer *xfer, struct uath_data *data, struct uath_rx_desc **pdesc) { struct uath_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct uath_chunk *chunk; struct uath_rx_desc *desc; struct mbuf *m = data->m, *mnew, *mp; uint16_t chunklen; int actlen; usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); if (actlen < (int)UATH_MIN_RXBUFSZ) { DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, "%s: wrong xfer size (len=%d)\n", __func__, actlen); counter_u64_add(ic->ic_ierrors, 1); return (NULL); } chunk = (struct uath_chunk *)data->buf; if (chunk->seqnum == 0 && chunk->flags == 0 && chunk->length == 0) { device_printf(sc->sc_dev, "%s: strange response\n", __func__); counter_u64_add(ic->ic_ierrors, 1); UATH_RESET_INTRX(sc); return (NULL); } if (chunk->seqnum != sc->sc_intrx_nextnum) { DPRINTF(sc, UATH_DEBUG_XMIT, "invalid seqnum %d, expected %d\n", chunk->seqnum, sc->sc_intrx_nextnum); UATH_STAT_INC(sc, st_badchunkseqnum); if (sc->sc_intrx_head != NULL) m_freem(sc->sc_intrx_head); UATH_RESET_INTRX(sc); return (NULL); } /* check multi-chunk frames */ if ((chunk->seqnum == 0 && !(chunk->flags & UATH_CFLAGS_FINAL)) || (chunk->seqnum != 0 && (chunk->flags & UATH_CFLAGS_FINAL)) || chunk->flags & UATH_CFLAGS_RXMSG) UATH_STAT_INC(sc, st_multichunk); chunklen = be16toh(chunk->length); if (chunk->flags & UATH_CFLAGS_FINAL) chunklen -= sizeof(struct uath_rx_desc); if (chunklen > 0 && (!(chunk->flags & UATH_CFLAGS_FINAL) || !(chunk->seqnum == 0))) { /* we should use intermediate RX buffer */ if (chunk->seqnum == 0) UATH_RESET_INTRX(sc); if ((sc->sc_intrx_len + sizeof(struct uath_rx_desc) + chunklen) > UATH_MAX_INTRX_SIZE) { UATH_STAT_INC(sc, st_invalidlen); counter_u64_add(ic->ic_ierrors, 1); if (sc->sc_intrx_head != NULL) m_freem(sc->sc_intrx_head); UATH_RESET_INTRX(sc); return (NULL); } m->m_len = chunklen; m->m_data += sizeof(struct uath_chunk); if (sc->sc_intrx_head == NULL) { sc->sc_intrx_head = m; sc->sc_intrx_tail = m; } else { m->m_flags &= ~M_PKTHDR; sc->sc_intrx_tail->m_next = m; sc->sc_intrx_tail = m; } } sc->sc_intrx_len += chunklen; mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (mnew == NULL) { DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, "%s: can't get new mbuf, drop frame\n", __func__); counter_u64_add(ic->ic_ierrors, 1); if (sc->sc_intrx_head != NULL) m_freem(sc->sc_intrx_head); UATH_RESET_INTRX(sc); return (NULL); } data->m = mnew; data->buf = mtod(mnew, uint8_t *); /* if the frame is not final continue the transfer */ if (!(chunk->flags & UATH_CFLAGS_FINAL)) { sc->sc_intrx_nextnum++; UATH_RESET_INTRX(sc); return (NULL); } /* * if the frame is not set UATH_CFLAGS_RXMSG, then rx descriptor is * located at the end, 32-bit aligned */ desc = (chunk->flags & UATH_CFLAGS_RXMSG) ? (struct uath_rx_desc *)(chunk + 1) : (struct uath_rx_desc *)(((uint8_t *)chunk) + sizeof(struct uath_chunk) + be16toh(chunk->length) - sizeof(struct uath_rx_desc)); *pdesc = desc; DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, "%s: frame len %u code %u status %u rate %u antenna %u " "rssi %d channel %u phyerror %u connix %u decrypterror %u " "keycachemiss %u\n", __func__, be32toh(desc->framelen) , be32toh(desc->code), be32toh(desc->status), be32toh(desc->rate) , be32toh(desc->antenna), be32toh(desc->rssi), be32toh(desc->channel) , be32toh(desc->phyerror), be32toh(desc->connix) , be32toh(desc->decrypterror), be32toh(desc->keycachemiss)); if (be32toh(desc->len) > MCLBYTES) { DPRINTF(sc, UATH_DEBUG_RECV | UATH_DEBUG_RECV_ALL, "%s: bad descriptor (len=%d)\n", __func__, be32toh(desc->len)); counter_u64_add(ic->ic_ierrors, 1); UATH_STAT_INC(sc, st_toobigrxpkt); if (sc->sc_intrx_head != NULL) m_freem(sc->sc_intrx_head); UATH_RESET_INTRX(sc); return (NULL); } uath_update_rxstat(sc, be32toh(desc->status)); /* finalize mbuf */ if (sc->sc_intrx_head == NULL) { m->m_pkthdr.len = m->m_len = be32toh(desc->framelen) - UATH_RX_DUMMYSIZE; m->m_data += sizeof(struct uath_chunk); } else { mp = sc->sc_intrx_head; mp->m_flags |= M_PKTHDR; mp->m_pkthdr.len = sc->sc_intrx_len; m = mp; } /* there are a lot more fields in the RX descriptor */ if ((sc->sc_flags & UATH_FLAG_INVALID) == 0 && ieee80211_radiotap_active(ic)) { struct uath_rx_radiotap_header *tap = &sc->sc_rxtap; uint32_t tsf_hi = be32toh(desc->tstamp_high); uint32_t tsf_lo = be32toh(desc->tstamp_low); /* XXX only get low order 24bits of tsf from h/w */ tap->wr_tsf = htole64(((uint64_t)tsf_hi << 32) | tsf_lo); tap->wr_flags = 0; if (be32toh(desc->status) == UATH_STATUS_CRC_ERR) tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; /* XXX map other status to BADFCS? */ /* XXX ath h/w rate code, need to map */ tap->wr_rate = be32toh(desc->rate); tap->wr_antenna = be32toh(desc->antenna); tap->wr_antsignal = -95 + be32toh(desc->rssi); tap->wr_antnoise = -95; } UATH_RESET_INTRX(sc); return (m); } static void uath_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) { struct uath_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *m = NULL; struct uath_data *data; struct uath_rx_desc *desc = NULL; int8_t nf; UATH_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_rx_active); if (data == NULL) goto setup; STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); UATH_STAT_DEC(sc, st_rx_active); m = uath_data_rxeof(xfer, data, &desc); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); UATH_STAT_INC(sc, st_rx_inactive); /* FALLTHROUGH */ case USB_ST_SETUP: setup: data = STAILQ_FIRST(&sc->sc_rx_inactive); if (data == NULL) return; STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); UATH_STAT_DEC(sc, st_rx_inactive); STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); UATH_STAT_INC(sc, st_rx_active); usbd_xfer_set_frame_data(xfer, 0, data->buf, MCLBYTES); usbd_transfer_submit(xfer); /* * To avoid LOR we should unlock our private mutex here to call * ieee80211_input() because here is at the end of a USB * callback and safe to unlock. */ if (sc->sc_flags & UATH_FLAG_INVALID) { if (m != NULL) m_freem(m); return; } UATH_UNLOCK(sc); if (m != NULL && desc != NULL) { wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); nf = -95; /* XXX */ if (ni != NULL) { (void) ieee80211_input(ni, m, (int)be32toh(desc->rssi), nf); /* node is no longer needed */ ieee80211_free_node(ni); } else (void) ieee80211_input_all(ic, m, (int)be32toh(desc->rssi), nf); m = NULL; desc = NULL; } UATH_LOCK(sc); uath_start(sc); break; default: /* needs it to the inactive queue due to a error. */ data = STAILQ_FIRST(&sc->sc_rx_active); if (data != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); UATH_STAT_DEC(sc, st_rx_active); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); UATH_STAT_INC(sc, st_rx_inactive); } if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); counter_u64_add(ic->ic_ierrors, 1); goto setup; } break; } } static void uath_data_txeof(struct usb_xfer *xfer, struct uath_data *data) { struct uath_softc *sc = usbd_xfer_softc(xfer); UATH_ASSERT_LOCKED(sc); if (data->m) { /* XXX status? */ ieee80211_tx_complete(data->ni, data->m, 0); data->m = NULL; data->ni = NULL; } sc->sc_tx_timer = 0; } static void uath_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) { struct uath_softc *sc = usbd_xfer_softc(xfer); struct uath_data *data; UATH_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_tx_active); if (data == NULL) goto setup; STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next); UATH_STAT_DEC(sc, st_tx_active); uath_data_txeof(xfer, data); STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); UATH_STAT_INC(sc, st_tx_inactive); /* FALLTHROUGH */ case USB_ST_SETUP: setup: data = STAILQ_FIRST(&sc->sc_tx_pending); if (data == NULL) { DPRINTF(sc, UATH_DEBUG_XMIT, "%s: empty pending queue\n", __func__); return; } STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next); UATH_STAT_DEC(sc, st_tx_pending); STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next); UATH_STAT_INC(sc, st_tx_active); usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); usbd_transfer_submit(xfer); uath_start(sc); break; default: data = STAILQ_FIRST(&sc->sc_tx_active); if (data == NULL) goto setup; if (data->ni != NULL) { if_inc_counter(data->ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); if ((sc->sc_flags & UATH_FLAG_INVALID) == 0) ieee80211_free_node(data->ni); data->ni = NULL; } if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); goto setup; } break; } } static device_method_t uath_methods[] = { DEVMETHOD(device_probe, uath_match), DEVMETHOD(device_attach, uath_attach), DEVMETHOD(device_detach, uath_detach), DEVMETHOD_END }; static driver_t uath_driver = { .name = "uath", .methods = uath_methods, .size = sizeof(struct uath_softc) }; static devclass_t uath_devclass; DRIVER_MODULE(uath, uhub, uath_driver, uath_devclass, NULL, 0); MODULE_DEPEND(uath, wlan, 1, 1, 1); MODULE_DEPEND(uath, usb, 1, 1, 1); MODULE_VERSION(uath, 1); USB_PNP_HOST_INFO(uath_devs); Index: head/sys/dev/usb/wlan/if_upgt.c =================================================================== --- head/sys/dev/usb/wlan/if_upgt.c (revision 298817) +++ head/sys/dev/usb/wlan/if_upgt.c (revision 298818) @@ -1,2351 +1,2351 @@ /* $OpenBSD: if_upgt.c,v 1.35 2008/04/16 18:32:15 damien Exp $ */ /* $FreeBSD$ */ /* * Copyright (c) 2007 Marcus Glocker * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "usbdevs.h" #include /* * Driver for the USB PrismGT devices. * * For now just USB 2.0 devices with the GW3887 chipset are supported. * The driver has been written based on the firmware version 2.13.1.0_LM87. * * TODO's: * - MONITOR mode test. * - Add HOSTAP mode. * - Add IBSS mode. * - Support the USB 1.0 devices (NET2280, ISL3880, ISL3886 chipsets). * * Parts of this driver has been influenced by reading the p54u driver * written by Jean-Baptiste Note and * Sebastien Bourdeauducq . */ static SYSCTL_NODE(_hw, OID_AUTO, upgt, CTLFLAG_RD, 0, "USB PrismGT GW3887 driver parameters"); #ifdef UPGT_DEBUG int upgt_debug = 0; SYSCTL_INT(_hw_upgt, OID_AUTO, debug, CTLFLAG_RWTUN, &upgt_debug, 0, "control debugging printfs"); enum { UPGT_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ UPGT_DEBUG_RECV = 0x00000002, /* basic recv operation */ UPGT_DEBUG_RESET = 0x00000004, /* reset processing */ UPGT_DEBUG_INTR = 0x00000008, /* INTR */ UPGT_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ UPGT_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ UPGT_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ UPGT_DEBUG_STAT = 0x00000080, /* statistic */ UPGT_DEBUG_FW = 0x00000100, /* firmware */ UPGT_DEBUG_ANY = 0xffffffff }; #define DPRINTF(sc, m, fmt, ...) do { \ if (sc->sc_debug & (m)) \ printf(fmt, __VA_ARGS__); \ } while (0) #else #define DPRINTF(sc, m, fmt, ...) do { \ (void) sc; \ } while (0) #endif /* * Prototypes. */ static device_probe_t upgt_match; static device_attach_t upgt_attach; static device_detach_t upgt_detach; static int upgt_alloc_tx(struct upgt_softc *); static int upgt_alloc_rx(struct upgt_softc *); static int upgt_device_reset(struct upgt_softc *); static void upgt_bulk_tx(struct upgt_softc *, struct upgt_data *); static int upgt_fw_verify(struct upgt_softc *); static int upgt_mem_init(struct upgt_softc *); static int upgt_fw_load(struct upgt_softc *); static int upgt_fw_copy(const uint8_t *, char *, int); static uint32_t upgt_crc32_le(const void *, size_t); static struct mbuf * upgt_rxeof(struct usb_xfer *, struct upgt_data *, int *); static struct mbuf * upgt_rx(struct upgt_softc *, uint8_t *, int, int *); static void upgt_txeof(struct usb_xfer *, struct upgt_data *); static int upgt_eeprom_read(struct upgt_softc *); static int upgt_eeprom_parse(struct upgt_softc *); static void upgt_eeprom_parse_hwrx(struct upgt_softc *, uint8_t *); static void upgt_eeprom_parse_freq3(struct upgt_softc *, uint8_t *, int); static void upgt_eeprom_parse_freq4(struct upgt_softc *, uint8_t *, int); static void upgt_eeprom_parse_freq6(struct upgt_softc *, uint8_t *, int); static uint32_t upgt_chksum_le(const uint32_t *, size_t); static void upgt_tx_done(struct upgt_softc *, uint8_t *); static void upgt_init(struct upgt_softc *); static void upgt_parent(struct ieee80211com *); static int upgt_transmit(struct ieee80211com *, struct mbuf *); static void upgt_start(struct upgt_softc *); static int upgt_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void upgt_scan_start(struct ieee80211com *); static void upgt_scan_end(struct ieee80211com *); static void upgt_set_channel(struct ieee80211com *); static struct ieee80211vap *upgt_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void upgt_vap_delete(struct ieee80211vap *); static void upgt_update_mcast(struct ieee80211com *); static uint8_t upgt_rx_rate(struct upgt_softc *, const int); static void upgt_set_multi(void *); static void upgt_stop(struct upgt_softc *); static void upgt_setup_rates(struct ieee80211vap *, struct ieee80211com *); static int upgt_set_macfilter(struct upgt_softc *, uint8_t); static int upgt_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void upgt_set_chan(struct upgt_softc *, struct ieee80211_channel *); static void upgt_set_led(struct upgt_softc *, int); static void upgt_set_led_blink(void *); static void upgt_get_stats(struct upgt_softc *); static void upgt_mem_free(struct upgt_softc *, uint32_t); static uint32_t upgt_mem_alloc(struct upgt_softc *); static void upgt_free_tx(struct upgt_softc *); static void upgt_free_rx(struct upgt_softc *); static void upgt_watchdog(void *); static void upgt_abort_xfers(struct upgt_softc *); static void upgt_abort_xfers_locked(struct upgt_softc *); static void upgt_sysctl_node(struct upgt_softc *); static struct upgt_data * upgt_getbuf(struct upgt_softc *); static struct upgt_data * upgt_gettxbuf(struct upgt_softc *); static int upgt_tx_start(struct upgt_softc *, struct mbuf *, struct ieee80211_node *, struct upgt_data *); static const char *upgt_fwname = "upgt-gw3887"; static const STRUCT_USB_HOST_ID upgt_devs[] = { #define UPGT_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } /* version 2 devices */ UPGT_DEV(ACCTON, PRISM_GT), UPGT_DEV(BELKIN, F5D7050), UPGT_DEV(CISCOLINKSYS, WUSB54AG), UPGT_DEV(CONCEPTRONIC, PRISM_GT), UPGT_DEV(DELL, PRISM_GT_1), UPGT_DEV(DELL, PRISM_GT_2), UPGT_DEV(FSC, E5400), UPGT_DEV(GLOBESPAN, PRISM_GT_1), UPGT_DEV(GLOBESPAN, PRISM_GT_2), UPGT_DEV(NETGEAR, WG111V1_2), UPGT_DEV(INTERSIL, PRISM_GT), UPGT_DEV(SMC, 2862WG), UPGT_DEV(USR, USR5422), UPGT_DEV(WISTRONNEWEB, UR045G), UPGT_DEV(XYRATEX, PRISM_GT_1), UPGT_DEV(XYRATEX, PRISM_GT_2), UPGT_DEV(ZCOM, XG703A), UPGT_DEV(ZCOM, XM142) }; static usb_callback_t upgt_bulk_rx_callback; static usb_callback_t upgt_bulk_tx_callback; static const struct usb_config upgt_config[UPGT_N_XFERS] = { [UPGT_BULK_TX] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .bufsize = MCLBYTES * UPGT_TX_MAXCOUNT, .flags = { .force_short_xfer = 1, .pipe_bof = 1 }, .callback = upgt_bulk_tx_callback, .timeout = UPGT_USB_TIMEOUT, /* ms */ }, [UPGT_BULK_RX] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = MCLBYTES * UPGT_RX_MAXCOUNT, .flags = { .pipe_bof = 1, .short_xfer_ok = 1 }, .callback = upgt_bulk_rx_callback, }, }; static int upgt_match(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != UPGT_CONFIG_INDEX) return (ENXIO); if (uaa->info.bIfaceIndex != UPGT_IFACE_INDEX) return (ENXIO); return (usbd_lookup_id_by_uaa(upgt_devs, sizeof(upgt_devs), uaa)); } static int upgt_attach(device_t dev) { struct upgt_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; struct usb_attach_arg *uaa = device_get_ivars(dev); - uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)]; + uint8_t bands[IEEE80211_MODE_BYTES]; uint8_t iface_index = UPGT_IFACE_INDEX; int error; sc->sc_dev = dev; sc->sc_udev = uaa->device; #ifdef UPGT_DEBUG sc->sc_debug = upgt_debug; #endif device_set_usb_desc(dev); mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init(&sc->sc_led_ch, 0); callout_init(&sc->sc_watchdog_ch, 0); mbufq_init(&sc->sc_snd, ifqmaxlen); error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, upgt_config, UPGT_N_XFERS, sc, &sc->sc_mtx); if (error) { device_printf(dev, "could not allocate USB transfers, " "err=%s\n", usbd_errstr(error)); goto fail1; } sc->sc_rx_dma_buf = usbd_xfer_get_frame_buffer( sc->sc_xfer[UPGT_BULK_RX], 0); sc->sc_tx_dma_buf = usbd_xfer_get_frame_buffer( sc->sc_xfer[UPGT_BULK_TX], 0); /* Setup TX and RX buffers */ error = upgt_alloc_tx(sc); if (error) goto fail2; error = upgt_alloc_rx(sc); if (error) goto fail3; /* Initialize the device. */ error = upgt_device_reset(sc); if (error) goto fail4; /* Verify the firmware. */ error = upgt_fw_verify(sc); if (error) goto fail4; /* Calculate device memory space. */ if (sc->sc_memaddr_frame_start == 0 || sc->sc_memaddr_frame_end == 0) { device_printf(dev, "could not find memory space addresses on FW\n"); error = EIO; goto fail4; } sc->sc_memaddr_frame_end -= UPGT_MEMSIZE_RX + 1; sc->sc_memaddr_rx_start = sc->sc_memaddr_frame_end + 1; DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame start=0x%08x\n", sc->sc_memaddr_frame_start); DPRINTF(sc, UPGT_DEBUG_FW, "memory address frame end=0x%08x\n", sc->sc_memaddr_frame_end); DPRINTF(sc, UPGT_DEBUG_FW, "memory address rx start=0x%08x\n", sc->sc_memaddr_rx_start); upgt_mem_init(sc); /* Load the firmware. */ error = upgt_fw_load(sc); if (error) goto fail4; /* Read the whole EEPROM content and parse it. */ error = upgt_eeprom_read(sc); if (error) goto fail4; error = upgt_eeprom_parse(sc); if (error) goto fail4; /* all works related with the device have done here. */ upgt_abort_xfers(sc); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(dev); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode */ | IEEE80211_C_MONITOR /* monitor mode */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_BGSCAN /* capable of bg scanning */ | IEEE80211_C_WPA /* 802.11i */ ; memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); ieee80211_init_channels(ic, NULL, bands); ieee80211_ifattach(ic); ic->ic_raw_xmit = upgt_raw_xmit; ic->ic_scan_start = upgt_scan_start; ic->ic_scan_end = upgt_scan_end; ic->ic_set_channel = upgt_set_channel; ic->ic_vap_create = upgt_vap_create; ic->ic_vap_delete = upgt_vap_delete; ic->ic_update_mcast = upgt_update_mcast; ic->ic_transmit = upgt_transmit; ic->ic_parent = upgt_parent; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), UPGT_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), UPGT_RX_RADIOTAP_PRESENT); upgt_sysctl_node(sc); if (bootverbose) ieee80211_announce(ic); return (0); fail4: upgt_free_rx(sc); fail3: upgt_free_tx(sc); fail2: usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS); fail1: mtx_destroy(&sc->sc_mtx); return (error); } static void upgt_txeof(struct usb_xfer *xfer, struct upgt_data *data) { if (data->m) { /* XXX status? */ ieee80211_tx_complete(data->ni, data->m, 0); data->m = NULL; data->ni = NULL; } } static void upgt_get_stats(struct upgt_softc *sc) { struct upgt_data *data_cmd; struct upgt_lmac_mem *mem; struct upgt_lmac_stats *stats; data_cmd = upgt_getbuf(sc); if (data_cmd == NULL) { device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__); return; } /* * Transmit the URB containing the CMD data. */ memset(data_cmd->buf, 0, MCLBYTES); mem = (struct upgt_lmac_mem *)data_cmd->buf; mem->addr = htole32(sc->sc_memaddr_frame_start + UPGT_MEMSIZE_FRAME_HEAD); stats = (struct upgt_lmac_stats *)(mem + 1); stats->header1.flags = 0; stats->header1.type = UPGT_H1_TYPE_CTRL; stats->header1.len = htole16( sizeof(struct upgt_lmac_stats) - sizeof(struct upgt_lmac_header)); stats->header2.reqid = htole32(sc->sc_memaddr_frame_start); stats->header2.type = htole16(UPGT_H2_TYPE_STATS); stats->header2.flags = 0; data_cmd->buflen = sizeof(*mem) + sizeof(*stats); mem->chksum = upgt_chksum_le((uint32_t *)stats, data_cmd->buflen - sizeof(*mem)); upgt_bulk_tx(sc, data_cmd); } static void upgt_parent(struct ieee80211com *ic) { struct upgt_softc *sc = ic->ic_softc; int startall = 0; UPGT_LOCK(sc); if (sc->sc_flags & UPGT_FLAG_DETACHED) { UPGT_UNLOCK(sc); return; } if (ic->ic_nrunning > 0) { if (sc->sc_flags & UPGT_FLAG_INITDONE) { if (ic->ic_allmulti > 0 || ic->ic_promisc > 0) upgt_set_multi(sc); } else { upgt_init(sc); startall = 1; } } else if (sc->sc_flags & UPGT_FLAG_INITDONE) upgt_stop(sc); UPGT_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } static void upgt_stop(struct upgt_softc *sc) { UPGT_ASSERT_LOCKED(sc); if (sc->sc_flags & UPGT_FLAG_INITDONE) upgt_set_macfilter(sc, IEEE80211_S_INIT); upgt_abort_xfers_locked(sc); /* device down */ sc->sc_tx_timer = 0; sc->sc_flags &= ~UPGT_FLAG_INITDONE; } static void upgt_set_led(struct upgt_softc *sc, int action) { struct upgt_data *data_cmd; struct upgt_lmac_mem *mem; struct upgt_lmac_led *led; data_cmd = upgt_getbuf(sc); if (data_cmd == NULL) { device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__); return; } /* * Transmit the URB containing the CMD data. */ memset(data_cmd->buf, 0, MCLBYTES); mem = (struct upgt_lmac_mem *)data_cmd->buf; mem->addr = htole32(sc->sc_memaddr_frame_start + UPGT_MEMSIZE_FRAME_HEAD); led = (struct upgt_lmac_led *)(mem + 1); led->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; led->header1.type = UPGT_H1_TYPE_CTRL; led->header1.len = htole16( sizeof(struct upgt_lmac_led) - sizeof(struct upgt_lmac_header)); led->header2.reqid = htole32(sc->sc_memaddr_frame_start); led->header2.type = htole16(UPGT_H2_TYPE_LED); led->header2.flags = 0; switch (action) { case UPGT_LED_OFF: led->mode = htole16(UPGT_LED_MODE_SET); led->action_fix = 0; led->action_tmp = htole16(UPGT_LED_ACTION_OFF); led->action_tmp_dur = 0; break; case UPGT_LED_ON: led->mode = htole16(UPGT_LED_MODE_SET); led->action_fix = 0; led->action_tmp = htole16(UPGT_LED_ACTION_ON); led->action_tmp_dur = 0; break; case UPGT_LED_BLINK: if (sc->sc_state != IEEE80211_S_RUN) { STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); return; } if (sc->sc_led_blink) { /* previous blink was not finished */ STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); return; } led->mode = htole16(UPGT_LED_MODE_SET); led->action_fix = htole16(UPGT_LED_ACTION_OFF); led->action_tmp = htole16(UPGT_LED_ACTION_ON); led->action_tmp_dur = htole16(UPGT_LED_ACTION_TMP_DUR); /* lock blink */ sc->sc_led_blink = 1; callout_reset(&sc->sc_led_ch, hz, upgt_set_led_blink, sc); break; default: STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data_cmd, next); return; } data_cmd->buflen = sizeof(*mem) + sizeof(*led); mem->chksum = upgt_chksum_le((uint32_t *)led, data_cmd->buflen - sizeof(*mem)); upgt_bulk_tx(sc, data_cmd); } static void upgt_set_led_blink(void *arg) { struct upgt_softc *sc = arg; /* blink finished, we are ready for a next one */ sc->sc_led_blink = 0; } static void upgt_init(struct upgt_softc *sc) { UPGT_ASSERT_LOCKED(sc); if (sc->sc_flags & UPGT_FLAG_INITDONE) upgt_stop(sc); usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]); (void)upgt_set_macfilter(sc, IEEE80211_S_SCAN); sc->sc_flags |= UPGT_FLAG_INITDONE; callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc); } static int upgt_set_macfilter(struct upgt_softc *sc, uint8_t state) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_node *ni; struct upgt_data *data_cmd; struct upgt_lmac_mem *mem; struct upgt_lmac_filter *filter; UPGT_ASSERT_LOCKED(sc); data_cmd = upgt_getbuf(sc); if (data_cmd == NULL) { device_printf(sc->sc_dev, "out of TX buffers.\n"); return (ENOBUFS); } /* * Transmit the URB containing the CMD data. */ memset(data_cmd->buf, 0, MCLBYTES); mem = (struct upgt_lmac_mem *)data_cmd->buf; mem->addr = htole32(sc->sc_memaddr_frame_start + UPGT_MEMSIZE_FRAME_HEAD); filter = (struct upgt_lmac_filter *)(mem + 1); filter->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; filter->header1.type = UPGT_H1_TYPE_CTRL; filter->header1.len = htole16( sizeof(struct upgt_lmac_filter) - sizeof(struct upgt_lmac_header)); filter->header2.reqid = htole32(sc->sc_memaddr_frame_start); filter->header2.type = htole16(UPGT_H2_TYPE_MACFILTER); filter->header2.flags = 0; switch (state) { case IEEE80211_S_INIT: DPRINTF(sc, UPGT_DEBUG_STATE, "%s: set MAC filter to INIT\n", __func__); filter->type = htole16(UPGT_FILTER_TYPE_RESET); break; case IEEE80211_S_SCAN: DPRINTF(sc, UPGT_DEBUG_STATE, "set MAC filter to SCAN (bssid %s)\n", ether_sprintf(ieee80211broadcastaddr)); filter->type = htole16(UPGT_FILTER_TYPE_NONE); IEEE80211_ADDR_COPY(filter->dst, vap ? vap->iv_myaddr : ic->ic_macaddr); IEEE80211_ADDR_COPY(filter->src, ieee80211broadcastaddr); filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); filter->rxaddr = htole32(sc->sc_memaddr_rx_start); filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); filter->rxhw = htole32(sc->sc_eeprom_hwrx); filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); break; case IEEE80211_S_RUN: ni = ieee80211_ref_node(vap->iv_bss); /* XXX monitor mode isn't tested yet. */ if (vap->iv_opmode == IEEE80211_M_MONITOR) { filter->type = htole16(UPGT_FILTER_TYPE_MONITOR); IEEE80211_ADDR_COPY(filter->dst, vap ? vap->iv_myaddr : ic->ic_macaddr); IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); filter->unknown1 = htole16(UPGT_FILTER_MONITOR_UNKNOWN1); filter->rxaddr = htole32(sc->sc_memaddr_rx_start); filter->unknown2 = htole16(UPGT_FILTER_MONITOR_UNKNOWN2); filter->rxhw = htole32(sc->sc_eeprom_hwrx); filter->unknown3 = htole16(UPGT_FILTER_MONITOR_UNKNOWN3); } else { DPRINTF(sc, UPGT_DEBUG_STATE, "set MAC filter to RUN (bssid %s)\n", ether_sprintf(ni->ni_bssid)); filter->type = htole16(UPGT_FILTER_TYPE_STA); IEEE80211_ADDR_COPY(filter->dst, vap ? vap->iv_myaddr : ic->ic_macaddr); IEEE80211_ADDR_COPY(filter->src, ni->ni_bssid); filter->unknown1 = htole16(UPGT_FILTER_UNKNOWN1); filter->rxaddr = htole32(sc->sc_memaddr_rx_start); filter->unknown2 = htole16(UPGT_FILTER_UNKNOWN2); filter->rxhw = htole32(sc->sc_eeprom_hwrx); filter->unknown3 = htole16(UPGT_FILTER_UNKNOWN3); } ieee80211_free_node(ni); break; default: device_printf(sc->sc_dev, "MAC filter does not know that state\n"); break; } data_cmd->buflen = sizeof(*mem) + sizeof(*filter); mem->chksum = upgt_chksum_le((uint32_t *)filter, data_cmd->buflen - sizeof(*mem)); upgt_bulk_tx(sc, data_cmd); return (0); } static void upgt_setup_rates(struct ieee80211vap *vap, struct ieee80211com *ic) { struct upgt_softc *sc = ic->ic_softc; const struct ieee80211_txparam *tp; /* * 0x01 = OFMD6 0x10 = DS1 * 0x04 = OFDM9 0x11 = DS2 * 0x06 = OFDM12 0x12 = DS5 * 0x07 = OFDM18 0x13 = DS11 * 0x08 = OFDM24 * 0x09 = OFDM36 * 0x0a = OFDM48 * 0x0b = OFDM54 */ const uint8_t rateset_auto_11b[] = { 0x13, 0x13, 0x12, 0x11, 0x11, 0x10, 0x10, 0x10 }; const uint8_t rateset_auto_11g[] = { 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x04, 0x01 }; const uint8_t rateset_fix_11bg[] = { 0x10, 0x11, 0x12, 0x13, 0x01, 0x04, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b }; tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; /* XXX */ if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) { /* * Automatic rate control is done by the device. * We just pass the rateset from which the device * will pickup a rate. */ if (ic->ic_curmode == IEEE80211_MODE_11B) memcpy(sc->sc_cur_rateset, rateset_auto_11b, sizeof(sc->sc_cur_rateset)); if (ic->ic_curmode == IEEE80211_MODE_11G || ic->ic_curmode == IEEE80211_MODE_AUTO) memcpy(sc->sc_cur_rateset, rateset_auto_11g, sizeof(sc->sc_cur_rateset)); } else { /* set a fixed rate */ memset(sc->sc_cur_rateset, rateset_fix_11bg[tp->ucastrate], sizeof(sc->sc_cur_rateset)); } } static void upgt_set_multi(void *arg) { /* XXX don't know how to set a device. Lack of docs. */ } static int upgt_transmit(struct ieee80211com *ic, struct mbuf *m) { struct upgt_softc *sc = ic->ic_softc; int error; UPGT_LOCK(sc); if ((sc->sc_flags & UPGT_FLAG_INITDONE) == 0) { UPGT_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { UPGT_UNLOCK(sc); return (error); } upgt_start(sc); UPGT_UNLOCK(sc); return (0); } static void upgt_start(struct upgt_softc *sc) { struct upgt_data *data_tx; struct ieee80211_node *ni; struct mbuf *m; UPGT_ASSERT_LOCKED(sc); if ((sc->sc_flags & UPGT_FLAG_INITDONE) == 0) return; while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { data_tx = upgt_gettxbuf(sc); if (data_tx == NULL) { mbufq_prepend(&sc->sc_snd, m); break; } ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; if (upgt_tx_start(sc, m, ni, data_tx) != 0) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next); UPGT_STAT_INC(sc, st_tx_inactive); ieee80211_free_node(ni); continue; } sc->sc_tx_timer = 5; } } static int upgt_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct upgt_softc *sc = ic->ic_softc; struct upgt_data *data_tx = NULL; UPGT_LOCK(sc); /* prevent management frames from being sent if we're not ready */ if (!(sc->sc_flags & UPGT_FLAG_INITDONE)) { m_freem(m); UPGT_UNLOCK(sc); return ENETDOWN; } data_tx = upgt_gettxbuf(sc); if (data_tx == NULL) { m_freem(m); UPGT_UNLOCK(sc); return (ENOBUFS); } if (upgt_tx_start(sc, m, ni, data_tx) != 0) { STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, data_tx, next); UPGT_STAT_INC(sc, st_tx_inactive); UPGT_UNLOCK(sc); return (EIO); } UPGT_UNLOCK(sc); sc->sc_tx_timer = 5; return (0); } static void upgt_watchdog(void *arg) { struct upgt_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { device_printf(sc->sc_dev, "watchdog timeout\n"); /* upgt_init(sc); XXX needs a process context ? */ counter_u64_add(ic->ic_oerrors, 1); return; } callout_reset(&sc->sc_watchdog_ch, hz, upgt_watchdog, sc); } } static uint32_t upgt_mem_alloc(struct upgt_softc *sc) { int i; for (i = 0; i < sc->sc_memory.pages; i++) { if (sc->sc_memory.page[i].used == 0) { sc->sc_memory.page[i].used = 1; return (sc->sc_memory.page[i].addr); } } return (0); } static void upgt_scan_start(struct ieee80211com *ic) { /* do nothing. */ } static void upgt_scan_end(struct ieee80211com *ic) { /* do nothing. */ } static void upgt_set_channel(struct ieee80211com *ic) { struct upgt_softc *sc = ic->ic_softc; UPGT_LOCK(sc); upgt_set_chan(sc, ic->ic_curchan); UPGT_UNLOCK(sc); } static void upgt_set_chan(struct upgt_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; struct upgt_data *data_cmd; struct upgt_lmac_mem *mem; struct upgt_lmac_channel *chan; int channel; UPGT_ASSERT_LOCKED(sc); channel = ieee80211_chan2ieee(ic, c); if (channel == 0 || channel == IEEE80211_CHAN_ANY) { /* XXX should NEVER happen */ device_printf(sc->sc_dev, "%s: invalid channel %x\n", __func__, channel); return; } DPRINTF(sc, UPGT_DEBUG_STATE, "%s: channel %d\n", __func__, channel); data_cmd = upgt_getbuf(sc); if (data_cmd == NULL) { device_printf(sc->sc_dev, "%s: out of buffers.\n", __func__); return; } /* * Transmit the URB containing the CMD data. */ memset(data_cmd->buf, 0, MCLBYTES); mem = (struct upgt_lmac_mem *)data_cmd->buf; mem->addr = htole32(sc->sc_memaddr_frame_start + UPGT_MEMSIZE_FRAME_HEAD); chan = (struct upgt_lmac_channel *)(mem + 1); chan->header1.flags = UPGT_H1_FLAGS_TX_NO_CALLBACK; chan->header1.type = UPGT_H1_TYPE_CTRL; chan->header1.len = htole16( sizeof(struct upgt_lmac_channel) - sizeof(struct upgt_lmac_header)); chan->header2.reqid = htole32(sc->sc_memaddr_frame_start); chan->header2.type = htole16(UPGT_H2_TYPE_CHANNEL); chan->header2.flags = 0; chan->unknown1 = htole16(UPGT_CHANNEL_UNKNOWN1); chan->unknown2 = htole16(UPGT_CHANNEL_UNKNOWN2); chan->freq6 = sc->sc_eeprom_freq6[channel]; chan->settings = sc->sc_eeprom_freq6_settings; chan->unknown3 = UPGT_CHANNEL_UNKNOWN3; memcpy(chan->freq3_1, &sc->sc_eeprom_freq3[channel].data, sizeof(chan->freq3_1)); memcpy(chan->freq4, &sc->sc_eeprom_freq4[channel], sizeof(sc->sc_eeprom_freq4[channel])); memcpy(chan->freq3_2, &sc->sc_eeprom_freq3[channel].data, sizeof(chan->freq3_2)); data_cmd->buflen = sizeof(*mem) + sizeof(*chan); mem->chksum = upgt_chksum_le((uint32_t *)chan, data_cmd->buflen - sizeof(*mem)); upgt_bulk_tx(sc, data_cmd); } static struct ieee80211vap * upgt_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct upgt_vap *uvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return NULL; uvp = malloc(sizeof(struct upgt_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &uvp->vap; /* enable s/w bmiss handling for sta mode */ if (ieee80211_vap_setup(ic, vap, name, unit, opmode, flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { /* out of memory */ free(uvp, M_80211_VAP); return (NULL); } /* override state transition machine */ uvp->newstate = vap->iv_newstate; vap->iv_newstate = upgt_newstate; /* setup device rates */ upgt_setup_rates(vap, ic); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return vap; } static int upgt_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct upgt_vap *uvp = UPGT_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct upgt_softc *sc = ic->ic_softc; /* do it in a process context */ sc->sc_state = nstate; IEEE80211_UNLOCK(ic); UPGT_LOCK(sc); callout_stop(&sc->sc_led_ch); callout_stop(&sc->sc_watchdog_ch); switch (nstate) { case IEEE80211_S_INIT: /* do not accept any frames if the device is down */ (void)upgt_set_macfilter(sc, sc->sc_state); upgt_set_led(sc, UPGT_LED_OFF); break; case IEEE80211_S_SCAN: upgt_set_chan(sc, ic->ic_curchan); break; case IEEE80211_S_AUTH: upgt_set_chan(sc, ic->ic_curchan); break; case IEEE80211_S_ASSOC: break; case IEEE80211_S_RUN: upgt_set_macfilter(sc, sc->sc_state); upgt_set_led(sc, UPGT_LED_ON); break; default: break; } UPGT_UNLOCK(sc); IEEE80211_LOCK(ic); return (uvp->newstate(vap, nstate, arg)); } static void upgt_vap_delete(struct ieee80211vap *vap) { struct upgt_vap *uvp = UPGT_VAP(vap); ieee80211_vap_detach(vap); free(uvp, M_80211_VAP); } static void upgt_update_mcast(struct ieee80211com *ic) { struct upgt_softc *sc = ic->ic_softc; upgt_set_multi(sc); } static int upgt_eeprom_parse(struct upgt_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct upgt_eeprom_header *eeprom_header; struct upgt_eeprom_option *eeprom_option; uint16_t option_len; uint16_t option_type; uint16_t preamble_len; int option_end = 0; /* calculate eeprom options start offset */ eeprom_header = (struct upgt_eeprom_header *)sc->sc_eeprom; preamble_len = le16toh(eeprom_header->preamble_len); eeprom_option = (struct upgt_eeprom_option *)(sc->sc_eeprom + (sizeof(struct upgt_eeprom_header) + preamble_len)); while (!option_end) { /* sanity check */ if (eeprom_option >= (struct upgt_eeprom_option *) (sc->sc_eeprom + UPGT_EEPROM_SIZE)) { return (EINVAL); } /* the eeprom option length is stored in words */ option_len = (le16toh(eeprom_option->len) - 1) * sizeof(uint16_t); option_type = le16toh(eeprom_option->type); /* sanity check */ if (option_len == 0 || option_len >= UPGT_EEPROM_SIZE) return (EINVAL); switch (option_type) { case UPGT_EEPROM_TYPE_NAME: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM name len=%d\n", option_len); break; case UPGT_EEPROM_TYPE_SERIAL: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM serial len=%d\n", option_len); break; case UPGT_EEPROM_TYPE_MAC: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM mac len=%d\n", option_len); IEEE80211_ADDR_COPY(ic->ic_macaddr, eeprom_option->data); break; case UPGT_EEPROM_TYPE_HWRX: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM hwrx len=%d\n", option_len); upgt_eeprom_parse_hwrx(sc, eeprom_option->data); break; case UPGT_EEPROM_TYPE_CHIP: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM chip len=%d\n", option_len); break; case UPGT_EEPROM_TYPE_FREQ3: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM freq3 len=%d\n", option_len); upgt_eeprom_parse_freq3(sc, eeprom_option->data, option_len); break; case UPGT_EEPROM_TYPE_FREQ4: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM freq4 len=%d\n", option_len); upgt_eeprom_parse_freq4(sc, eeprom_option->data, option_len); break; case UPGT_EEPROM_TYPE_FREQ5: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM freq5 len=%d\n", option_len); break; case UPGT_EEPROM_TYPE_FREQ6: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM freq6 len=%d\n", option_len); upgt_eeprom_parse_freq6(sc, eeprom_option->data, option_len); break; case UPGT_EEPROM_TYPE_END: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM end len=%d\n", option_len); option_end = 1; break; case UPGT_EEPROM_TYPE_OFF: DPRINTF(sc, UPGT_DEBUG_FW, "%s: EEPROM off without end option\n", __func__); return (EIO); default: DPRINTF(sc, UPGT_DEBUG_FW, "EEPROM unknown type 0x%04x len=%d\n", option_type, option_len); break; } /* jump to next EEPROM option */ eeprom_option = (struct upgt_eeprom_option *) (eeprom_option->data + option_len); } return (0); } static void upgt_eeprom_parse_freq3(struct upgt_softc *sc, uint8_t *data, int len) { struct upgt_eeprom_freq3_header *freq3_header; struct upgt_lmac_freq3 *freq3; int i; int elements; int flags; unsigned channel; freq3_header = (struct upgt_eeprom_freq3_header *)data; freq3 = (struct upgt_lmac_freq3 *)(freq3_header + 1); flags = freq3_header->flags; elements = freq3_header->elements; DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d\n", flags, elements); if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq3[0]))) return; for (i = 0; i < elements; i++) { channel = ieee80211_mhz2ieee(le16toh(freq3[i].freq), 0); if (channel >= IEEE80211_CHAN_MAX) continue; sc->sc_eeprom_freq3[channel] = freq3[i]; DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", le16toh(sc->sc_eeprom_freq3[channel].freq), channel); } } void upgt_eeprom_parse_freq4(struct upgt_softc *sc, uint8_t *data, int len) { struct upgt_eeprom_freq4_header *freq4_header; struct upgt_eeprom_freq4_1 *freq4_1; struct upgt_eeprom_freq4_2 *freq4_2; int i; int j; int elements; int settings; int flags; unsigned channel; freq4_header = (struct upgt_eeprom_freq4_header *)data; freq4_1 = (struct upgt_eeprom_freq4_1 *)(freq4_header + 1); flags = freq4_header->flags; elements = freq4_header->elements; settings = freq4_header->settings; /* we need this value later */ sc->sc_eeprom_freq6_settings = freq4_header->settings; DPRINTF(sc, UPGT_DEBUG_FW, "flags=0x%02x elements=%d settings=%d\n", flags, elements, settings); if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq4_1[0]))) return; for (i = 0; i < elements; i++) { channel = ieee80211_mhz2ieee(le16toh(freq4_1[i].freq), 0); if (channel >= IEEE80211_CHAN_MAX) continue; freq4_2 = (struct upgt_eeprom_freq4_2 *)freq4_1[i].data; for (j = 0; j < settings; j++) { sc->sc_eeprom_freq4[channel][j].cmd = freq4_2[j]; sc->sc_eeprom_freq4[channel][j].pad = 0; } DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", le16toh(freq4_1[i].freq), channel); } } void upgt_eeprom_parse_freq6(struct upgt_softc *sc, uint8_t *data, int len) { struct upgt_lmac_freq6 *freq6; int i; int elements; unsigned channel; freq6 = (struct upgt_lmac_freq6 *)data; elements = len / sizeof(struct upgt_lmac_freq6); DPRINTF(sc, UPGT_DEBUG_FW, "elements=%d\n", elements); if (elements >= (int)(UPGT_EEPROM_SIZE / sizeof(freq6[0]))) return; for (i = 0; i < elements; i++) { channel = ieee80211_mhz2ieee(le16toh(freq6[i].freq), 0); if (channel >= IEEE80211_CHAN_MAX) continue; sc->sc_eeprom_freq6[channel] = freq6[i]; DPRINTF(sc, UPGT_DEBUG_FW, "frequence=%d, channel=%d\n", le16toh(sc->sc_eeprom_freq6[channel].freq), channel); } } static void upgt_eeprom_parse_hwrx(struct upgt_softc *sc, uint8_t *data) { struct upgt_eeprom_option_hwrx *option_hwrx; option_hwrx = (struct upgt_eeprom_option_hwrx *)data; sc->sc_eeprom_hwrx = option_hwrx->rxfilter - UPGT_EEPROM_RX_CONST; DPRINTF(sc, UPGT_DEBUG_FW, "hwrx option value=0x%04x\n", sc->sc_eeprom_hwrx); } static int upgt_eeprom_read(struct upgt_softc *sc) { struct upgt_data *data_cmd; struct upgt_lmac_mem *mem; struct upgt_lmac_eeprom *eeprom; int block, error, offset; UPGT_LOCK(sc); usb_pause_mtx(&sc->sc_mtx, 100); offset = 0; block = UPGT_EEPROM_BLOCK_SIZE; while (offset < UPGT_EEPROM_SIZE) { DPRINTF(sc, UPGT_DEBUG_FW, "request EEPROM block (offset=%d, len=%d)\n", offset, block); data_cmd = upgt_getbuf(sc); if (data_cmd == NULL) { UPGT_UNLOCK(sc); return (ENOBUFS); } /* * Transmit the URB containing the CMD data. */ memset(data_cmd->buf, 0, MCLBYTES); mem = (struct upgt_lmac_mem *)data_cmd->buf; mem->addr = htole32(sc->sc_memaddr_frame_start + UPGT_MEMSIZE_FRAME_HEAD); eeprom = (struct upgt_lmac_eeprom *)(mem + 1); eeprom->header1.flags = 0; eeprom->header1.type = UPGT_H1_TYPE_CTRL; eeprom->header1.len = htole16(( sizeof(struct upgt_lmac_eeprom) - sizeof(struct upgt_lmac_header)) + block); eeprom->header2.reqid = htole32(sc->sc_memaddr_frame_start); eeprom->header2.type = htole16(UPGT_H2_TYPE_EEPROM); eeprom->header2.flags = 0; eeprom->offset = htole16(offset); eeprom->len = htole16(block); data_cmd->buflen = sizeof(*mem) + sizeof(*eeprom) + block; mem->chksum = upgt_chksum_le((uint32_t *)eeprom, data_cmd->buflen - sizeof(*mem)); upgt_bulk_tx(sc, data_cmd); error = mtx_sleep(sc, &sc->sc_mtx, 0, "eeprom_request", hz); if (error != 0) { device_printf(sc->sc_dev, "timeout while waiting for EEPROM data\n"); UPGT_UNLOCK(sc); return (EIO); } offset += block; if (UPGT_EEPROM_SIZE - offset < block) block = UPGT_EEPROM_SIZE - offset; } UPGT_UNLOCK(sc); return (0); } /* * When a rx data came in the function returns a mbuf and a rssi values. */ static struct mbuf * upgt_rxeof(struct usb_xfer *xfer, struct upgt_data *data, int *rssi) { struct mbuf *m = NULL; struct upgt_softc *sc = usbd_xfer_softc(xfer); struct upgt_lmac_header *header; struct upgt_lmac_eeprom *eeprom; uint8_t h1_type; uint16_t h2_type; int actlen, sumlen; usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); UPGT_ASSERT_LOCKED(sc); if (actlen < 1) return (NULL); /* Check only at the very beginning. */ if (!(sc->sc_flags & UPGT_FLAG_FWLOADED) && (memcmp(data->buf, "OK", 2) == 0)) { sc->sc_flags |= UPGT_FLAG_FWLOADED; wakeup_one(sc); return (NULL); } if (actlen < (int)UPGT_RX_MINSZ) return (NULL); /* * Check what type of frame came in. */ header = (struct upgt_lmac_header *)(data->buf + 4); h1_type = header->header1.type; h2_type = le16toh(header->header2.type); if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_EEPROM) { eeprom = (struct upgt_lmac_eeprom *)(data->buf + 4); uint16_t eeprom_offset = le16toh(eeprom->offset); uint16_t eeprom_len = le16toh(eeprom->len); DPRINTF(sc, UPGT_DEBUG_FW, "received EEPROM block (offset=%d, len=%d)\n", eeprom_offset, eeprom_len); memcpy(sc->sc_eeprom + eeprom_offset, data->buf + sizeof(struct upgt_lmac_eeprom) + 4, eeprom_len); /* EEPROM data has arrived in time, wakeup. */ wakeup(sc); } else if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_TX_DONE) { DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: received 802.11 TX done\n", __func__); upgt_tx_done(sc, data->buf + 4); } else if (h1_type == UPGT_H1_TYPE_RX_DATA || h1_type == UPGT_H1_TYPE_RX_DATA_MGMT) { DPRINTF(sc, UPGT_DEBUG_RECV, "%s: received 802.11 RX data\n", __func__); m = upgt_rx(sc, data->buf + 4, le16toh(header->header1.len), rssi); } else if (h1_type == UPGT_H1_TYPE_CTRL && h2_type == UPGT_H2_TYPE_STATS) { DPRINTF(sc, UPGT_DEBUG_STAT, "%s: received statistic data\n", __func__); /* TODO: what could we do with the statistic data? */ } else { /* ignore unknown frame types */ DPRINTF(sc, UPGT_DEBUG_INTR, "received unknown frame type 0x%02x\n", header->header1.type); } return (m); } /* * The firmware awaits a checksum for each frame we send to it. * The algorithm used therefor is uncommon but somehow similar to CRC32. */ static uint32_t upgt_chksum_le(const uint32_t *buf, size_t size) { size_t i; uint32_t crc = 0; for (i = 0; i < size; i += sizeof(uint32_t)) { crc = htole32(crc ^ *buf++); crc = htole32((crc >> 5) ^ (crc << 3)); } return (crc); } static struct mbuf * upgt_rx(struct upgt_softc *sc, uint8_t *data, int pkglen, int *rssi) { struct ieee80211com *ic = &sc->sc_ic; struct upgt_lmac_rx_desc *rxdesc; struct mbuf *m; /* * don't pass packets to the ieee80211 framework if the driver isn't * RUNNING. */ if (!(sc->sc_flags & UPGT_FLAG_INITDONE)) return (NULL); /* access RX packet descriptor */ rxdesc = (struct upgt_lmac_rx_desc *)data; /* create mbuf which is suitable for strict alignment archs */ KASSERT((pkglen + ETHER_ALIGN) < MCLBYTES, ("A current mbuf storage is small (%d)", pkglen + ETHER_ALIGN)); m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { device_printf(sc->sc_dev, "could not create RX mbuf\n"); return (NULL); } m_adj(m, ETHER_ALIGN); memcpy(mtod(m, char *), rxdesc->data, pkglen); /* trim FCS */ m->m_len = m->m_pkthdr.len = pkglen - IEEE80211_CRC_LEN; if (ieee80211_radiotap_active(ic)) { struct upgt_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_rate = upgt_rx_rate(sc, rxdesc->rate); tap->wr_antsignal = rxdesc->rssi; } DPRINTF(sc, UPGT_DEBUG_RX_PROC, "%s: RX done\n", __func__); *rssi = rxdesc->rssi; return (m); } static uint8_t upgt_rx_rate(struct upgt_softc *sc, const int rate) { struct ieee80211com *ic = &sc->sc_ic; static const uint8_t cck_upgt2rate[4] = { 2, 4, 11, 22 }; static const uint8_t ofdm_upgt2rate[12] = { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 }; if (ic->ic_curmode == IEEE80211_MODE_11B && !(rate < 0 || rate > 3)) return cck_upgt2rate[rate & 0xf]; if (ic->ic_curmode == IEEE80211_MODE_11G && !(rate < 0 || rate > 11)) return ofdm_upgt2rate[rate & 0xf]; return (0); } static void upgt_tx_done(struct upgt_softc *sc, uint8_t *data) { struct upgt_lmac_tx_done_desc *desc; int i, freed = 0; UPGT_ASSERT_LOCKED(sc); desc = (struct upgt_lmac_tx_done_desc *)data; for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { struct upgt_data *data_tx = &sc->sc_tx_data[i]; if (data_tx->addr == le32toh(desc->header2.reqid)) { upgt_mem_free(sc, data_tx->addr); data_tx->ni = NULL; data_tx->addr = 0; data_tx->m = NULL; DPRINTF(sc, UPGT_DEBUG_TX_PROC, "TX done: memaddr=0x%08x, status=0x%04x, rssi=%d, ", le32toh(desc->header2.reqid), le16toh(desc->status), le16toh(desc->rssi)); DPRINTF(sc, UPGT_DEBUG_TX_PROC, "seq=%d\n", le16toh(desc->seq)); freed++; } } if (freed != 0) { UPGT_UNLOCK(sc); sc->sc_tx_timer = 0; upgt_start(sc); UPGT_LOCK(sc); } } static void upgt_mem_free(struct upgt_softc *sc, uint32_t addr) { int i; for (i = 0; i < sc->sc_memory.pages; i++) { if (sc->sc_memory.page[i].addr == addr) { sc->sc_memory.page[i].used = 0; return; } } device_printf(sc->sc_dev, "could not free memory address 0x%08x\n", addr); } static int upgt_fw_load(struct upgt_softc *sc) { const struct firmware *fw; struct upgt_data *data_cmd; struct upgt_fw_x2_header *x2; char start_fwload_cmd[] = { 0x3c, 0x0d }; int error = 0; size_t offset; int bsize; int n; uint32_t crc32; fw = firmware_get(upgt_fwname); if (fw == NULL) { device_printf(sc->sc_dev, "could not read microcode %s\n", upgt_fwname); return (EIO); } UPGT_LOCK(sc); /* send firmware start load command */ data_cmd = upgt_getbuf(sc); if (data_cmd == NULL) { error = ENOBUFS; goto fail; } data_cmd->buflen = sizeof(start_fwload_cmd); memcpy(data_cmd->buf, start_fwload_cmd, data_cmd->buflen); upgt_bulk_tx(sc, data_cmd); /* send X2 header */ data_cmd = upgt_getbuf(sc); if (data_cmd == NULL) { error = ENOBUFS; goto fail; } data_cmd->buflen = sizeof(struct upgt_fw_x2_header); x2 = (struct upgt_fw_x2_header *)data_cmd->buf; memcpy(x2->signature, UPGT_X2_SIGNATURE, UPGT_X2_SIGNATURE_SIZE); x2->startaddr = htole32(UPGT_MEMADDR_FIRMWARE_START); x2->len = htole32(fw->datasize); x2->crc = upgt_crc32_le((uint8_t *)data_cmd->buf + UPGT_X2_SIGNATURE_SIZE, sizeof(struct upgt_fw_x2_header) - UPGT_X2_SIGNATURE_SIZE - sizeof(uint32_t)); upgt_bulk_tx(sc, data_cmd); /* download firmware */ for (offset = 0; offset < fw->datasize; offset += bsize) { if (fw->datasize - offset > UPGT_FW_BLOCK_SIZE) bsize = UPGT_FW_BLOCK_SIZE; else bsize = fw->datasize - offset; data_cmd = upgt_getbuf(sc); if (data_cmd == NULL) { error = ENOBUFS; goto fail; } n = upgt_fw_copy((const uint8_t *)fw->data + offset, data_cmd->buf, bsize); data_cmd->buflen = bsize; upgt_bulk_tx(sc, data_cmd); DPRINTF(sc, UPGT_DEBUG_FW, "FW offset=%d, read=%d, sent=%d\n", offset, n, bsize); bsize = n; } DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware downloaded\n", __func__); /* load firmware */ data_cmd = upgt_getbuf(sc); if (data_cmd == NULL) { error = ENOBUFS; goto fail; } crc32 = upgt_crc32_le(fw->data, fw->datasize); *((uint32_t *)(data_cmd->buf) ) = crc32; *((uint8_t *)(data_cmd->buf) + 4) = 'g'; *((uint8_t *)(data_cmd->buf) + 5) = '\r'; data_cmd->buflen = 6; upgt_bulk_tx(sc, data_cmd); /* waiting 'OK' response. */ usbd_transfer_start(sc->sc_xfer[UPGT_BULK_RX]); error = mtx_sleep(sc, &sc->sc_mtx, 0, "upgtfw", 2 * hz); if (error != 0) { device_printf(sc->sc_dev, "firmware load failed\n"); error = EIO; } DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware loaded\n", __func__); fail: UPGT_UNLOCK(sc); firmware_put(fw, FIRMWARE_UNLOAD); return (error); } static uint32_t upgt_crc32_le(const void *buf, size_t size) { uint32_t crc; crc = ether_crc32_le(buf, size); /* apply final XOR value as common for CRC-32 */ crc = htole32(crc ^ 0xffffffffU); return (crc); } /* * While copying the version 2 firmware, we need to replace two characters: * * 0x7e -> 0x7d 0x5e * 0x7d -> 0x7d 0x5d */ static int upgt_fw_copy(const uint8_t *src, char *dst, int size) { int i, j; for (i = 0, j = 0; i < size && j < size; i++) { switch (src[i]) { case 0x7e: dst[j] = 0x7d; j++; dst[j] = 0x5e; j++; break; case 0x7d: dst[j] = 0x7d; j++; dst[j] = 0x5d; j++; break; default: dst[j] = src[i]; j++; break; } } return (i); } static int upgt_mem_init(struct upgt_softc *sc) { int i; for (i = 0; i < UPGT_MEMORY_MAX_PAGES; i++) { sc->sc_memory.page[i].used = 0; if (i == 0) { /* * The first memory page is always reserved for * command data. */ sc->sc_memory.page[i].addr = sc->sc_memaddr_frame_start + MCLBYTES; } else { sc->sc_memory.page[i].addr = sc->sc_memory.page[i - 1].addr + MCLBYTES; } if (sc->sc_memory.page[i].addr + MCLBYTES >= sc->sc_memaddr_frame_end) break; DPRINTF(sc, UPGT_DEBUG_FW, "memory address page %d=0x%08x\n", i, sc->sc_memory.page[i].addr); } sc->sc_memory.pages = i; DPRINTF(sc, UPGT_DEBUG_FW, "memory pages=%d\n", sc->sc_memory.pages); return (0); } static int upgt_fw_verify(struct upgt_softc *sc) { const struct firmware *fw; const struct upgt_fw_bra_option *bra_opt; const struct upgt_fw_bra_descr *descr; const uint8_t *p; const uint32_t *uc; uint32_t bra_option_type, bra_option_len; size_t offset; int bra_end = 0; int error = 0; fw = firmware_get(upgt_fwname); if (fw == NULL) { device_printf(sc->sc_dev, "could not read microcode %s\n", upgt_fwname); return EIO; } /* * Seek to beginning of Boot Record Area (BRA). */ for (offset = 0; offset < fw->datasize; offset += sizeof(*uc)) { uc = (const uint32_t *)((const uint8_t *)fw->data + offset); if (*uc == 0) break; } for (; offset < fw->datasize; offset += sizeof(*uc)) { uc = (const uint32_t *)((const uint8_t *)fw->data + offset); if (*uc != 0) break; } if (offset == fw->datasize) { device_printf(sc->sc_dev, "firmware Boot Record Area not found\n"); error = EIO; goto fail; } DPRINTF(sc, UPGT_DEBUG_FW, "firmware Boot Record Area found at offset %d\n", offset); /* * Parse Boot Record Area (BRA) options. */ while (offset < fw->datasize && bra_end == 0) { /* get current BRA option */ p = (const uint8_t *)fw->data + offset; bra_opt = (const struct upgt_fw_bra_option *)p; bra_option_type = le32toh(bra_opt->type); bra_option_len = le32toh(bra_opt->len) * sizeof(*uc); switch (bra_option_type) { case UPGT_BRA_TYPE_FW: DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_FW len=%d\n", bra_option_len); if (bra_option_len != UPGT_BRA_FWTYPE_SIZE) { device_printf(sc->sc_dev, "wrong UPGT_BRA_TYPE_FW len\n"); error = EIO; goto fail; } if (memcmp(UPGT_BRA_FWTYPE_LM86, bra_opt->data, bra_option_len) == 0) { sc->sc_fw_type = UPGT_FWTYPE_LM86; break; } if (memcmp(UPGT_BRA_FWTYPE_LM87, bra_opt->data, bra_option_len) == 0) { sc->sc_fw_type = UPGT_FWTYPE_LM87; break; } device_printf(sc->sc_dev, "unsupported firmware type\n"); error = EIO; goto fail; case UPGT_BRA_TYPE_VERSION: DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_VERSION len=%d\n", bra_option_len); break; case UPGT_BRA_TYPE_DEPIF: DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_DEPIF len=%d\n", bra_option_len); break; case UPGT_BRA_TYPE_EXPIF: DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_EXPIF len=%d\n", bra_option_len); break; case UPGT_BRA_TYPE_DESCR: DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_DESCR len=%d\n", bra_option_len); descr = (const struct upgt_fw_bra_descr *)bra_opt->data; sc->sc_memaddr_frame_start = le32toh(descr->memaddr_space_start); sc->sc_memaddr_frame_end = le32toh(descr->memaddr_space_end); DPRINTF(sc, UPGT_DEBUG_FW, "memory address space start=0x%08x\n", sc->sc_memaddr_frame_start); DPRINTF(sc, UPGT_DEBUG_FW, "memory address space end=0x%08x\n", sc->sc_memaddr_frame_end); break; case UPGT_BRA_TYPE_END: DPRINTF(sc, UPGT_DEBUG_FW, "UPGT_BRA_TYPE_END len=%d\n", bra_option_len); bra_end = 1; break; default: DPRINTF(sc, UPGT_DEBUG_FW, "unknown BRA option len=%d\n", bra_option_len); error = EIO; goto fail; } /* jump to next BRA option */ offset += sizeof(struct upgt_fw_bra_option) + bra_option_len; } DPRINTF(sc, UPGT_DEBUG_FW, "%s: firmware verified", __func__); fail: firmware_put(fw, FIRMWARE_UNLOAD); return (error); } static void upgt_bulk_tx(struct upgt_softc *sc, struct upgt_data *data) { UPGT_ASSERT_LOCKED(sc); STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); UPGT_STAT_INC(sc, st_tx_pending); usbd_transfer_start(sc->sc_xfer[UPGT_BULK_TX]); } static int upgt_device_reset(struct upgt_softc *sc) { struct upgt_data *data; char init_cmd[] = { 0x7e, 0x7e, 0x7e, 0x7e }; UPGT_LOCK(sc); data = upgt_getbuf(sc); if (data == NULL) { UPGT_UNLOCK(sc); return (ENOBUFS); } memcpy(data->buf, init_cmd, sizeof(init_cmd)); data->buflen = sizeof(init_cmd); upgt_bulk_tx(sc, data); usb_pause_mtx(&sc->sc_mtx, 100); UPGT_UNLOCK(sc); DPRINTF(sc, UPGT_DEBUG_FW, "%s: device initialized\n", __func__); return (0); } static int upgt_alloc_tx(struct upgt_softc *sc) { int i; STAILQ_INIT(&sc->sc_tx_active); STAILQ_INIT(&sc->sc_tx_inactive); STAILQ_INIT(&sc->sc_tx_pending); for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { struct upgt_data *data = &sc->sc_tx_data[i]; data->buf = ((uint8_t *)sc->sc_tx_dma_buf) + (i * MCLBYTES); STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); UPGT_STAT_INC(sc, st_tx_inactive); } return (0); } static int upgt_alloc_rx(struct upgt_softc *sc) { int i; STAILQ_INIT(&sc->sc_rx_active); STAILQ_INIT(&sc->sc_rx_inactive); for (i = 0; i < UPGT_RX_MAXCOUNT; i++) { struct upgt_data *data = &sc->sc_rx_data[i]; data->buf = ((uint8_t *)sc->sc_rx_dma_buf) + (i * MCLBYTES); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); } return (0); } static int upgt_detach(device_t dev) { struct upgt_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; unsigned int x; /* * Prevent further allocations from RX/TX/CMD * data lists and ioctls */ UPGT_LOCK(sc); sc->sc_flags |= UPGT_FLAG_DETACHED; STAILQ_INIT(&sc->sc_tx_active); STAILQ_INIT(&sc->sc_tx_inactive); STAILQ_INIT(&sc->sc_tx_pending); STAILQ_INIT(&sc->sc_rx_active); STAILQ_INIT(&sc->sc_rx_inactive); upgt_stop(sc); UPGT_UNLOCK(sc); callout_drain(&sc->sc_led_ch); callout_drain(&sc->sc_watchdog_ch); /* drain USB transfers */ for (x = 0; x != UPGT_N_XFERS; x++) usbd_transfer_drain(sc->sc_xfer[x]); /* free data buffers */ UPGT_LOCK(sc); upgt_free_rx(sc); upgt_free_tx(sc); UPGT_UNLOCK(sc); /* free USB transfers and some data buffers */ usbd_transfer_unsetup(sc->sc_xfer, UPGT_N_XFERS); ieee80211_ifdetach(ic); mbufq_drain(&sc->sc_snd); mtx_destroy(&sc->sc_mtx); return (0); } static void upgt_free_rx(struct upgt_softc *sc) { int i; for (i = 0; i < UPGT_RX_MAXCOUNT; i++) { struct upgt_data *data = &sc->sc_rx_data[i]; data->buf = NULL; data->ni = NULL; } } static void upgt_free_tx(struct upgt_softc *sc) { int i; for (i = 0; i < UPGT_TX_MAXCOUNT; i++) { struct upgt_data *data = &sc->sc_tx_data[i]; if (data->ni != NULL) ieee80211_free_node(data->ni); data->buf = NULL; data->ni = NULL; } } static void upgt_abort_xfers_locked(struct upgt_softc *sc) { int i; UPGT_ASSERT_LOCKED(sc); /* abort any pending transfers */ for (i = 0; i < UPGT_N_XFERS; i++) usbd_transfer_stop(sc->sc_xfer[i]); } static void upgt_abort_xfers(struct upgt_softc *sc) { UPGT_LOCK(sc); upgt_abort_xfers_locked(sc); UPGT_UNLOCK(sc); } #define UPGT_SYSCTL_STAT_ADD32(c, h, n, p, d) \ SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) static void upgt_sysctl_node(struct upgt_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *child; struct sysctl_oid *tree; struct upgt_stat *stats; stats = &sc->sc_stat; ctx = device_get_sysctl_ctx(sc->sc_dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev)); tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, NULL, "UPGT statistics"); child = SYSCTL_CHILDREN(tree); UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_active", &stats->st_tx_active, "Active numbers in TX queue"); UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_inactive", &stats->st_tx_inactive, "Inactive numbers in TX queue"); UPGT_SYSCTL_STAT_ADD32(ctx, child, "tx_pending", &stats->st_tx_pending, "Pending numbers in TX queue"); } #undef UPGT_SYSCTL_STAT_ADD32 static struct upgt_data * _upgt_getbuf(struct upgt_softc *sc) { struct upgt_data *bf; bf = STAILQ_FIRST(&sc->sc_tx_inactive); if (bf != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); UPGT_STAT_DEC(sc, st_tx_inactive); } else bf = NULL; if (bf == NULL) DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: %s\n", __func__, "out of xmit buffers"); return (bf); } static struct upgt_data * upgt_getbuf(struct upgt_softc *sc) { struct upgt_data *bf; UPGT_ASSERT_LOCKED(sc); bf = _upgt_getbuf(sc); if (bf == NULL) DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: stop queue\n", __func__); return (bf); } static struct upgt_data * upgt_gettxbuf(struct upgt_softc *sc) { struct upgt_data *bf; UPGT_ASSERT_LOCKED(sc); bf = upgt_getbuf(sc); if (bf == NULL) return (NULL); bf->addr = upgt_mem_alloc(sc); if (bf->addr == 0) { DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: no free prism memory!\n", __func__); STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); UPGT_STAT_INC(sc, st_tx_inactive); return (NULL); } return (bf); } static int upgt_tx_start(struct upgt_softc *sc, struct mbuf *m, struct ieee80211_node *ni, struct upgt_data *data) { struct ieee80211vap *vap = ni->ni_vap; int error = 0, len; struct ieee80211_frame *wh; struct ieee80211_key *k; struct upgt_lmac_mem *mem; struct upgt_lmac_tx_desc *txdesc; UPGT_ASSERT_LOCKED(sc); upgt_set_led(sc, UPGT_LED_BLINK); /* * Software crypto. */ wh = mtod(m, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m); if (k == NULL) { device_printf(sc->sc_dev, "ieee80211_crypto_encap returns NULL.\n"); error = EIO; goto done; } /* in case packet header moved, reset pointer */ wh = mtod(m, struct ieee80211_frame *); } /* Transmit the URB containing the TX data. */ memset(data->buf, 0, MCLBYTES); mem = (struct upgt_lmac_mem *)data->buf; mem->addr = htole32(data->addr); txdesc = (struct upgt_lmac_tx_desc *)(mem + 1); if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { /* mgmt frames */ txdesc->header1.flags = UPGT_H1_FLAGS_TX_MGMT; /* always send mgmt frames at lowest rate (DS1) */ memset(txdesc->rates, 0x10, sizeof(txdesc->rates)); } else { /* data frames */ txdesc->header1.flags = UPGT_H1_FLAGS_TX_DATA; memcpy(txdesc->rates, sc->sc_cur_rateset, sizeof(txdesc->rates)); } txdesc->header1.type = UPGT_H1_TYPE_TX_DATA; txdesc->header1.len = htole16(m->m_pkthdr.len); txdesc->header2.reqid = htole32(data->addr); txdesc->header2.type = htole16(UPGT_H2_TYPE_TX_ACK_YES); txdesc->header2.flags = htole16(UPGT_H2_FLAGS_TX_ACK_YES); txdesc->type = htole32(UPGT_TX_DESC_TYPE_DATA); txdesc->pad3[0] = UPGT_TX_DESC_PAD3_SIZE; if (ieee80211_radiotap_active_vap(vap)) { struct upgt_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = 0; /* XXX where to get from? */ ieee80211_radiotap_tx(vap, m); } /* copy frame below our TX descriptor header */ m_copydata(m, 0, m->m_pkthdr.len, data->buf + (sizeof(*mem) + sizeof(*txdesc))); /* calculate frame size */ len = sizeof(*mem) + sizeof(*txdesc) + m->m_pkthdr.len; /* we need to align the frame to a 4 byte boundary */ len = (len + 3) & ~3; /* calculate frame checksum */ mem->chksum = upgt_chksum_le((uint32_t *)txdesc, len - sizeof(*mem)); data->ni = ni; data->m = m; data->buflen = len; DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: TX start data sending (%d bytes)\n", __func__, len); KASSERT(len <= MCLBYTES, ("mbuf is small for saving data")); upgt_bulk_tx(sc, data); done: /* * If we don't regulary read the device statistics, the RX queue * will stall. It's strange, but it works, so we keep reading * the statistics here. *shrug* */ if (!(vap->iv_ifp->if_get_counter(vap->iv_ifp, IFCOUNTER_OPACKETS) % UPGT_TX_STAT_INTERVAL)) upgt_get_stats(sc); return (error); } static void upgt_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) { struct upgt_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *m = NULL; struct upgt_data *data; int8_t nf; int rssi = -1; UPGT_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_rx_active); if (data == NULL) goto setup; STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); m = upgt_rxeof(xfer, data, &rssi); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); /* FALLTHROUGH */ case USB_ST_SETUP: setup: data = STAILQ_FIRST(&sc->sc_rx_inactive); if (data == NULL) return; STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); usbd_xfer_set_frame_data(xfer, 0, data->buf, MCLBYTES); usbd_transfer_submit(xfer); /* * To avoid LOR we should unlock our private mutex here to call * ieee80211_input() because here is at the end of a USB * callback and safe to unlock. */ UPGT_UNLOCK(sc); if (m != NULL) { wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); nf = -95; /* XXX */ if (ni != NULL) { (void) ieee80211_input(ni, m, rssi, nf); /* node is no longer needed */ ieee80211_free_node(ni); } else (void) ieee80211_input_all(ic, m, rssi, nf); m = NULL; } UPGT_LOCK(sc); upgt_start(sc); break; default: /* needs it to the inactive queue due to a error. */ data = STAILQ_FIRST(&sc->sc_rx_active); if (data != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); } if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); counter_u64_add(ic->ic_ierrors, 1); goto setup; } break; } } static void upgt_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) { struct upgt_softc *sc = usbd_xfer_softc(xfer); struct upgt_data *data; UPGT_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_tx_active); if (data == NULL) goto setup; STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next); UPGT_STAT_DEC(sc, st_tx_active); upgt_txeof(xfer, data); STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); UPGT_STAT_INC(sc, st_tx_inactive); /* FALLTHROUGH */ case USB_ST_SETUP: setup: data = STAILQ_FIRST(&sc->sc_tx_pending); if (data == NULL) { DPRINTF(sc, UPGT_DEBUG_XMIT, "%s: empty pending queue\n", __func__); return; } STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next); UPGT_STAT_DEC(sc, st_tx_pending); STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next); UPGT_STAT_INC(sc, st_tx_active); usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); usbd_transfer_submit(xfer); upgt_start(sc); break; default: data = STAILQ_FIRST(&sc->sc_tx_active); if (data == NULL) goto setup; if (data->ni != NULL) { if_inc_counter(data->ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(data->ni); data->ni = NULL; } if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); goto setup; } break; } } static device_method_t upgt_methods[] = { /* Device interface */ DEVMETHOD(device_probe, upgt_match), DEVMETHOD(device_attach, upgt_attach), DEVMETHOD(device_detach, upgt_detach), DEVMETHOD_END }; static driver_t upgt_driver = { .name = "upgt", .methods = upgt_methods, .size = sizeof(struct upgt_softc) }; static devclass_t upgt_devclass; DRIVER_MODULE(if_upgt, uhub, upgt_driver, upgt_devclass, NULL, 0); MODULE_VERSION(if_upgt, 1); MODULE_DEPEND(if_upgt, usb, 1, 1, 1); MODULE_DEPEND(if_upgt, wlan, 1, 1, 1); MODULE_DEPEND(if_upgt, upgtfw_fw, 1, 1, 1); USB_PNP_HOST_INFO(upgt_devs); Index: head/sys/dev/usb/wlan/if_ural.c =================================================================== --- head/sys/dev/usb/wlan/if_ural.c (revision 298817) +++ head/sys/dev/usb/wlan/if_ural.c (revision 298818) @@ -1,2219 +1,2219 @@ /* $FreeBSD$ */ /*- * Copyright (c) 2005, 2006 * Damien Bergamini * * Copyright (c) 2006, 2008 * Hans Petter Selasky * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /*- * Ralink Technology RT2500USB chipset driver * http://www.ralinktech.com/ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #include #include #include #include #include #include "usbdevs.h" #define USB_DEBUG_VAR ural_debug #include #include #include #ifdef USB_DEBUG static int ural_debug = 0; static SYSCTL_NODE(_hw_usb, OID_AUTO, ural, CTLFLAG_RW, 0, "USB ural"); SYSCTL_INT(_hw_usb_ural, OID_AUTO, debug, CTLFLAG_RWTUN, &ural_debug, 0, "Debug level"); #endif #define URAL_RSSI(rssi) \ ((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ? \ ((rssi) - (RAL_NOISE_FLOOR + RAL_RSSI_CORR)) : 0) /* various supported device vendors/products */ static const STRUCT_USB_HOST_ID ural_devs[] = { #define URAL_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } URAL_DEV(ASUS, WL167G), URAL_DEV(ASUS, RT2570), URAL_DEV(BELKIN, F5D7050), URAL_DEV(BELKIN, F5D7051), URAL_DEV(CISCOLINKSYS, HU200TS), URAL_DEV(CISCOLINKSYS, WUSB54G), URAL_DEV(CISCOLINKSYS, WUSB54GP), URAL_DEV(CONCEPTRONIC2, C54RU), URAL_DEV(DLINK, DWLG122), URAL_DEV(GIGABYTE, GN54G), URAL_DEV(GIGABYTE, GNWBKG), URAL_DEV(GUILLEMOT, HWGUSB254), URAL_DEV(MELCO, KG54), URAL_DEV(MELCO, KG54AI), URAL_DEV(MELCO, KG54YB), URAL_DEV(MELCO, NINWIFI), URAL_DEV(MSI, RT2570), URAL_DEV(MSI, RT2570_2), URAL_DEV(MSI, RT2570_3), URAL_DEV(NOVATECH, NV902), URAL_DEV(RALINK, RT2570), URAL_DEV(RALINK, RT2570_2), URAL_DEV(RALINK, RT2570_3), URAL_DEV(SIEMENS2, WL54G), URAL_DEV(SMC, 2862WG), URAL_DEV(SPHAIRON, UB801R), URAL_DEV(SURECOM, RT2570), URAL_DEV(VTECH, RT2570), URAL_DEV(ZINWELL, RT2570), #undef URAL_DEV }; static usb_callback_t ural_bulk_read_callback; static usb_callback_t ural_bulk_write_callback; static usb_error_t ural_do_request(struct ural_softc *sc, struct usb_device_request *req, void *data); static struct ieee80211vap *ural_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void ural_vap_delete(struct ieee80211vap *); static void ural_tx_free(struct ural_tx_data *, int); static void ural_setup_tx_list(struct ural_softc *); static void ural_unsetup_tx_list(struct ural_softc *); static int ural_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void ural_setup_tx_desc(struct ural_softc *, struct ural_tx_desc *, uint32_t, int, int); static int ural_tx_bcn(struct ural_softc *, struct mbuf *, struct ieee80211_node *); static int ural_tx_mgt(struct ural_softc *, struct mbuf *, struct ieee80211_node *); static int ural_tx_data(struct ural_softc *, struct mbuf *, struct ieee80211_node *); static int ural_transmit(struct ieee80211com *, struct mbuf *); static void ural_start(struct ural_softc *); static void ural_parent(struct ieee80211com *); static void ural_set_testmode(struct ural_softc *); static void ural_eeprom_read(struct ural_softc *, uint16_t, void *, int); static uint16_t ural_read(struct ural_softc *, uint16_t); static void ural_read_multi(struct ural_softc *, uint16_t, void *, int); static void ural_write(struct ural_softc *, uint16_t, uint16_t); static void ural_write_multi(struct ural_softc *, uint16_t, void *, int) __unused; static void ural_bbp_write(struct ural_softc *, uint8_t, uint8_t); static uint8_t ural_bbp_read(struct ural_softc *, uint8_t); static void ural_rf_write(struct ural_softc *, uint8_t, uint32_t); static void ural_scan_start(struct ieee80211com *); static void ural_scan_end(struct ieee80211com *); static void ural_set_channel(struct ieee80211com *); static void ural_set_chan(struct ural_softc *, struct ieee80211_channel *); static void ural_disable_rf_tune(struct ural_softc *); static void ural_enable_tsf_sync(struct ural_softc *); static void ural_enable_tsf(struct ural_softc *); static void ural_update_slot(struct ural_softc *); static void ural_set_txpreamble(struct ural_softc *); static void ural_set_basicrates(struct ural_softc *, const struct ieee80211_channel *); static void ural_set_bssid(struct ural_softc *, const uint8_t *); static void ural_set_macaddr(struct ural_softc *, const uint8_t *); static void ural_update_promisc(struct ieee80211com *); static void ural_setpromisc(struct ural_softc *); static const char *ural_get_rf(int); static void ural_read_eeprom(struct ural_softc *); static int ural_bbp_init(struct ural_softc *); static void ural_set_txantenna(struct ural_softc *, int); static void ural_set_rxantenna(struct ural_softc *, int); static void ural_init(struct ural_softc *); static void ural_stop(struct ural_softc *); static int ural_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void ural_ratectl_start(struct ural_softc *, struct ieee80211_node *); static void ural_ratectl_timeout(void *); static void ural_ratectl_task(void *, int); static int ural_pause(struct ural_softc *sc, int timeout); /* * Default values for MAC registers; values taken from the reference driver. */ static const struct { uint16_t reg; uint16_t val; } ural_def_mac[] = { { RAL_TXRX_CSR5, 0x8c8d }, { RAL_TXRX_CSR6, 0x8b8a }, { RAL_TXRX_CSR7, 0x8687 }, { RAL_TXRX_CSR8, 0x0085 }, { RAL_MAC_CSR13, 0x1111 }, { RAL_MAC_CSR14, 0x1e11 }, { RAL_TXRX_CSR21, 0xe78f }, { RAL_MAC_CSR9, 0xff1d }, { RAL_MAC_CSR11, 0x0002 }, { RAL_MAC_CSR22, 0x0053 }, { RAL_MAC_CSR15, 0x0000 }, { RAL_MAC_CSR8, RAL_FRAME_SIZE }, { RAL_TXRX_CSR19, 0x0000 }, { RAL_TXRX_CSR18, 0x005a }, { RAL_PHY_CSR2, 0x0000 }, { RAL_TXRX_CSR0, 0x1ec0 }, { RAL_PHY_CSR4, 0x000f } }; /* * Default values for BBP registers; values taken from the reference driver. */ static const struct { uint8_t reg; uint8_t val; } ural_def_bbp[] = { { 3, 0x02 }, { 4, 0x19 }, { 14, 0x1c }, { 15, 0x30 }, { 16, 0xac }, { 17, 0x48 }, { 18, 0x18 }, { 19, 0xff }, { 20, 0x1e }, { 21, 0x08 }, { 22, 0x08 }, { 23, 0x08 }, { 24, 0x80 }, { 25, 0x50 }, { 26, 0x08 }, { 27, 0x23 }, { 30, 0x10 }, { 31, 0x2b }, { 32, 0xb9 }, { 34, 0x12 }, { 35, 0x50 }, { 39, 0xc4 }, { 40, 0x02 }, { 41, 0x60 }, { 53, 0x10 }, { 54, 0x18 }, { 56, 0x08 }, { 57, 0x10 }, { 58, 0x08 }, { 61, 0x60 }, { 62, 0x10 }, { 75, 0xff } }; /* * Default values for RF register R2 indexed by channel numbers. */ static const uint32_t ural_rf2522_r2[] = { 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814, 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e }; static const uint32_t ural_rf2523_r2[] = { 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 }; static const uint32_t ural_rf2524_r2[] = { 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d, 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346 }; static const uint32_t ural_rf2525_r2[] = { 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d, 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346 }; static const uint32_t ural_rf2525_hi_r2[] = { 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345, 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e }; static const uint32_t ural_rf2525e_r2[] = { 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463, 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b }; static const uint32_t ural_rf2526_hi_r2[] = { 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d, 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241 }; static const uint32_t ural_rf2526_r2[] = { 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229, 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d }; /* * For dual-band RF, RF registers R1 and R4 also depend on channel number; * values taken from the reference driver. */ static const struct { uint8_t chan; uint32_t r1; uint32_t r2; uint32_t r4; } ural_rf5222[] = { { 1, 0x08808, 0x0044d, 0x00282 }, { 2, 0x08808, 0x0044e, 0x00282 }, { 3, 0x08808, 0x0044f, 0x00282 }, { 4, 0x08808, 0x00460, 0x00282 }, { 5, 0x08808, 0x00461, 0x00282 }, { 6, 0x08808, 0x00462, 0x00282 }, { 7, 0x08808, 0x00463, 0x00282 }, { 8, 0x08808, 0x00464, 0x00282 }, { 9, 0x08808, 0x00465, 0x00282 }, { 10, 0x08808, 0x00466, 0x00282 }, { 11, 0x08808, 0x00467, 0x00282 }, { 12, 0x08808, 0x00468, 0x00282 }, { 13, 0x08808, 0x00469, 0x00282 }, { 14, 0x08808, 0x0046b, 0x00286 }, { 36, 0x08804, 0x06225, 0x00287 }, { 40, 0x08804, 0x06226, 0x00287 }, { 44, 0x08804, 0x06227, 0x00287 }, { 48, 0x08804, 0x06228, 0x00287 }, { 52, 0x08804, 0x06229, 0x00287 }, { 56, 0x08804, 0x0622a, 0x00287 }, { 60, 0x08804, 0x0622b, 0x00287 }, { 64, 0x08804, 0x0622c, 0x00287 }, { 100, 0x08804, 0x02200, 0x00283 }, { 104, 0x08804, 0x02201, 0x00283 }, { 108, 0x08804, 0x02202, 0x00283 }, { 112, 0x08804, 0x02203, 0x00283 }, { 116, 0x08804, 0x02204, 0x00283 }, { 120, 0x08804, 0x02205, 0x00283 }, { 124, 0x08804, 0x02206, 0x00283 }, { 128, 0x08804, 0x02207, 0x00283 }, { 132, 0x08804, 0x02208, 0x00283 }, { 136, 0x08804, 0x02209, 0x00283 }, { 140, 0x08804, 0x0220a, 0x00283 }, { 149, 0x08808, 0x02429, 0x00281 }, { 153, 0x08808, 0x0242b, 0x00281 }, { 157, 0x08808, 0x0242d, 0x00281 }, { 161, 0x08808, 0x0242f, 0x00281 } }; static const struct usb_config ural_config[URAL_N_TRANSFER] = { [URAL_BULK_WR] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .bufsize = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE + 4), .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = ural_bulk_write_callback, .timeout = 5000, /* ms */ }, [URAL_BULK_RD] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = (RAL_FRAME_SIZE + RAL_RX_DESC_SIZE), .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .callback = ural_bulk_read_callback, }, }; static device_probe_t ural_match; static device_attach_t ural_attach; static device_detach_t ural_detach; static device_method_t ural_methods[] = { /* Device interface */ DEVMETHOD(device_probe, ural_match), DEVMETHOD(device_attach, ural_attach), DEVMETHOD(device_detach, ural_detach), DEVMETHOD_END }; static driver_t ural_driver = { .name = "ural", .methods = ural_methods, .size = sizeof(struct ural_softc), }; static devclass_t ural_devclass; DRIVER_MODULE(ural, uhub, ural_driver, ural_devclass, NULL, 0); MODULE_DEPEND(ural, usb, 1, 1, 1); MODULE_DEPEND(ural, wlan, 1, 1, 1); MODULE_VERSION(ural, 1); USB_PNP_HOST_INFO(ural_devs); static int ural_match(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != 0) return (ENXIO); if (uaa->info.bIfaceIndex != RAL_IFACE_INDEX) return (ENXIO); return (usbd_lookup_id_by_uaa(ural_devs, sizeof(ural_devs), uaa)); } static int ural_attach(device_t self) { struct usb_attach_arg *uaa = device_get_ivars(self); struct ural_softc *sc = device_get_softc(self); struct ieee80211com *ic = &sc->sc_ic; - uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)]; + uint8_t bands[IEEE80211_MODE_BYTES]; uint8_t iface_index; int error; device_set_usb_desc(self); sc->sc_udev = uaa->device; sc->sc_dev = self; mtx_init(&sc->sc_mtx, device_get_nameunit(self), MTX_NETWORK_LOCK, MTX_DEF); mbufq_init(&sc->sc_snd, ifqmaxlen); iface_index = RAL_IFACE_INDEX; error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, ural_config, URAL_N_TRANSFER, sc, &sc->sc_mtx); if (error) { device_printf(self, "could not allocate USB transfers, " "err=%s\n", usbd_errstr(error)); goto detach; } RAL_LOCK(sc); /* retrieve RT2570 rev. no */ sc->asic_rev = ural_read(sc, RAL_MAC_CSR0); /* retrieve MAC address and various other things from EEPROM */ ural_read_eeprom(sc); RAL_UNLOCK(sc); device_printf(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n", sc->asic_rev, ural_get_rf(sc->rf_rev)); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(self); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode supported */ | IEEE80211_C_IBSS /* IBSS mode supported */ | IEEE80211_C_MONITOR /* monitor mode supported */ | IEEE80211_C_HOSTAP /* HostAp mode supported */ | IEEE80211_C_TXPMGT /* tx power management */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_BGSCAN /* bg scanning supported */ | IEEE80211_C_WPA /* 802.11i */ ; memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); if (sc->rf_rev == RAL_RF_5222) setbit(bands, IEEE80211_MODE_11A); ieee80211_init_channels(ic, NULL, bands); ieee80211_ifattach(ic); ic->ic_update_promisc = ural_update_promisc; ic->ic_raw_xmit = ural_raw_xmit; ic->ic_scan_start = ural_scan_start; ic->ic_scan_end = ural_scan_end; ic->ic_set_channel = ural_set_channel; ic->ic_parent = ural_parent; ic->ic_transmit = ural_transmit; ic->ic_vap_create = ural_vap_create; ic->ic_vap_delete = ural_vap_delete; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), RAL_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), RAL_RX_RADIOTAP_PRESENT); if (bootverbose) ieee80211_announce(ic); return (0); detach: ural_detach(self); return (ENXIO); /* failure */ } static int ural_detach(device_t self) { struct ural_softc *sc = device_get_softc(self); struct ieee80211com *ic = &sc->sc_ic; /* prevent further ioctls */ RAL_LOCK(sc); sc->sc_detached = 1; RAL_UNLOCK(sc); /* stop all USB transfers */ usbd_transfer_unsetup(sc->sc_xfer, URAL_N_TRANSFER); /* free TX list, if any */ RAL_LOCK(sc); ural_unsetup_tx_list(sc); RAL_UNLOCK(sc); if (ic->ic_softc == sc) ieee80211_ifdetach(ic); mbufq_drain(&sc->sc_snd); mtx_destroy(&sc->sc_mtx); return (0); } static usb_error_t ural_do_request(struct ural_softc *sc, struct usb_device_request *req, void *data) { usb_error_t err; int ntries = 10; while (ntries--) { err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, req, data, 0, NULL, 250 /* ms */); if (err == 0) break; DPRINTFN(1, "Control request failed, %s (retrying)\n", usbd_errstr(err)); if (ural_pause(sc, hz / 100)) break; } return (err); } static struct ieee80211vap * ural_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct ural_softc *sc = ic->ic_softc; struct ural_vap *uvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return NULL; uvp = malloc(sizeof(struct ural_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &uvp->vap; /* enable s/w bmiss handling for sta mode */ if (ieee80211_vap_setup(ic, vap, name, unit, opmode, flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { /* out of memory */ free(uvp, M_80211_VAP); return (NULL); } /* override state transition machine */ uvp->newstate = vap->iv_newstate; vap->iv_newstate = ural_newstate; usb_callout_init_mtx(&uvp->ratectl_ch, &sc->sc_mtx, 0); TASK_INIT(&uvp->ratectl_task, 0, ural_ratectl_task, uvp); ieee80211_ratectl_init(vap); ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return vap; } static void ural_vap_delete(struct ieee80211vap *vap) { struct ural_vap *uvp = URAL_VAP(vap); struct ieee80211com *ic = vap->iv_ic; usb_callout_drain(&uvp->ratectl_ch); ieee80211_draintask(ic, &uvp->ratectl_task); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(uvp, M_80211_VAP); } static void ural_tx_free(struct ural_tx_data *data, int txerr) { struct ural_softc *sc = data->sc; if (data->m != NULL) { ieee80211_tx_complete(data->ni, data->m, txerr); data->m = NULL; data->ni = NULL; } STAILQ_INSERT_TAIL(&sc->tx_free, data, next); sc->tx_nfree++; } static void ural_setup_tx_list(struct ural_softc *sc) { struct ural_tx_data *data; int i; sc->tx_nfree = 0; STAILQ_INIT(&sc->tx_q); STAILQ_INIT(&sc->tx_free); for (i = 0; i < RAL_TX_LIST_COUNT; i++) { data = &sc->tx_data[i]; data->sc = sc; STAILQ_INSERT_TAIL(&sc->tx_free, data, next); sc->tx_nfree++; } } static void ural_unsetup_tx_list(struct ural_softc *sc) { struct ural_tx_data *data; int i; /* make sure any subsequent use of the queues will fail */ sc->tx_nfree = 0; STAILQ_INIT(&sc->tx_q); STAILQ_INIT(&sc->tx_free); /* free up all node references and mbufs */ for (i = 0; i < RAL_TX_LIST_COUNT; i++) { data = &sc->tx_data[i]; if (data->m != NULL) { m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } } } static int ural_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct ural_vap *uvp = URAL_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct ural_softc *sc = ic->ic_softc; const struct ieee80211_txparam *tp; struct ieee80211_node *ni; struct mbuf *m; DPRINTF("%s -> %s\n", ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); IEEE80211_UNLOCK(ic); RAL_LOCK(sc); usb_callout_stop(&uvp->ratectl_ch); switch (nstate) { case IEEE80211_S_INIT: if (vap->iv_state == IEEE80211_S_RUN) { /* abort TSF synchronization */ ural_write(sc, RAL_TXRX_CSR19, 0); /* force tx led to stop blinking */ ural_write(sc, RAL_MAC_CSR20, 0); } break; case IEEE80211_S_RUN: ni = ieee80211_ref_node(vap->iv_bss); if (vap->iv_opmode != IEEE80211_M_MONITOR) { if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) goto fail; ural_update_slot(sc); ural_set_txpreamble(sc); ural_set_basicrates(sc, ic->ic_bsschan); IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); ural_set_bssid(sc, sc->sc_bssid); } if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_IBSS) { m = ieee80211_beacon_alloc(ni); if (m == NULL) { device_printf(sc->sc_dev, "could not allocate beacon\n"); goto fail; } ieee80211_ref_node(ni); if (ural_tx_bcn(sc, m, ni) != 0) { device_printf(sc->sc_dev, "could not send beacon\n"); goto fail; } } /* make tx led blink on tx (controlled by ASIC) */ ural_write(sc, RAL_MAC_CSR20, 1); if (vap->iv_opmode != IEEE80211_M_MONITOR) ural_enable_tsf_sync(sc); else ural_enable_tsf(sc); /* enable automatic rate adaptation */ /* XXX should use ic_bsschan but not valid until after newstate call below */ tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) ural_ratectl_start(sc, ni); ieee80211_free_node(ni); break; default: break; } RAL_UNLOCK(sc); IEEE80211_LOCK(ic); return (uvp->newstate(vap, nstate, arg)); fail: RAL_UNLOCK(sc); IEEE80211_LOCK(ic); ieee80211_free_node(ni); return (-1); } static void ural_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) { struct ural_softc *sc = usbd_xfer_softc(xfer); struct ieee80211vap *vap; struct ural_tx_data *data; struct mbuf *m; struct usb_page_cache *pc; int len; usbd_xfer_status(xfer, &len, NULL, NULL, NULL); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(11, "transfer complete, %d bytes\n", len); /* free resources */ data = usbd_xfer_get_priv(xfer); ural_tx_free(data, 0); usbd_xfer_set_priv(xfer, NULL); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: data = STAILQ_FIRST(&sc->tx_q); if (data) { STAILQ_REMOVE_HEAD(&sc->tx_q, next); m = data->m; if (m->m_pkthdr.len > (int)(RAL_FRAME_SIZE + RAL_TX_DESC_SIZE)) { DPRINTFN(0, "data overflow, %u bytes\n", m->m_pkthdr.len); m->m_pkthdr.len = (RAL_FRAME_SIZE + RAL_TX_DESC_SIZE); } pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_in(pc, 0, &data->desc, RAL_TX_DESC_SIZE); usbd_m_copy_in(pc, RAL_TX_DESC_SIZE, m, 0, m->m_pkthdr.len); vap = data->ni->ni_vap; if (ieee80211_radiotap_active_vap(vap)) { struct ural_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = data->rate; tap->wt_antenna = sc->tx_ant; ieee80211_radiotap_tx(vap, m); } /* xfer length needs to be a multiple of two! */ len = (RAL_TX_DESC_SIZE + m->m_pkthdr.len + 1) & ~1; if ((len % 64) == 0) len += 2; DPRINTFN(11, "sending frame len=%u xferlen=%u\n", m->m_pkthdr.len, len); usbd_xfer_set_frame_len(xfer, 0, len); usbd_xfer_set_priv(xfer, data); usbd_transfer_submit(xfer); } ural_start(sc); break; default: /* Error */ DPRINTFN(11, "transfer error, %s\n", usbd_errstr(error)); data = usbd_xfer_get_priv(xfer); if (data != NULL) { ural_tx_free(data, error); usbd_xfer_set_priv(xfer, NULL); } if (error == USB_ERR_STALLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } if (error == USB_ERR_TIMEOUT) device_printf(sc->sc_dev, "device timeout\n"); break; } } static void ural_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) { struct ural_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct mbuf *m = NULL; struct usb_page_cache *pc; uint32_t flags; int8_t rssi = 0, nf = 0; int len; usbd_xfer_status(xfer, &len, NULL, NULL, NULL); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTFN(15, "rx done, actlen=%d\n", len); if (len < (int)(RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN)) { DPRINTF("%s: xfer too short %d\n", device_get_nameunit(sc->sc_dev), len); counter_u64_add(ic->ic_ierrors, 1); goto tr_setup; } len -= RAL_RX_DESC_SIZE; /* rx descriptor is located at the end */ pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_out(pc, len, &sc->sc_rx_desc, RAL_RX_DESC_SIZE); rssi = URAL_RSSI(sc->sc_rx_desc.rssi); nf = RAL_NOISE_FLOOR; flags = le32toh(sc->sc_rx_desc.flags); if (flags & (RAL_RX_PHY_ERROR | RAL_RX_CRC_ERROR)) { /* * This should not happen since we did not * request to receive those frames when we * filled RAL_TXRX_CSR2: */ DPRINTFN(5, "PHY or CRC error\n"); counter_u64_add(ic->ic_ierrors, 1); goto tr_setup; } m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { DPRINTF("could not allocate mbuf\n"); counter_u64_add(ic->ic_ierrors, 1); goto tr_setup; } usbd_copy_out(pc, 0, mtod(m, uint8_t *), len); /* finalize mbuf */ m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff; if (ieee80211_radiotap_active(ic)) { struct ural_rx_radiotap_header *tap = &sc->sc_rxtap; /* XXX set once */ tap->wr_flags = 0; tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, (flags & RAL_RX_OFDM) ? IEEE80211_T_OFDM : IEEE80211_T_CCK); tap->wr_antenna = sc->rx_ant; tap->wr_antsignal = nf + rssi; tap->wr_antnoise = nf; } /* Strip trailing 802.11 MAC FCS. */ m_adj(m, -IEEE80211_CRC_LEN); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); /* * At the end of a USB callback it is always safe to unlock * the private mutex of a device! That is why we do the * "ieee80211_input" here, and not some lines up! */ RAL_UNLOCK(sc); if (m) { ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); if (ni != NULL) { (void) ieee80211_input(ni, m, rssi, nf); ieee80211_free_node(ni); } else (void) ieee80211_input_all(ic, m, rssi, nf); } RAL_LOCK(sc); ural_start(sc); return; default: /* Error */ if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } return; } } static uint8_t ural_plcp_signal(int rate) { switch (rate) { /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return 0xb; case 18: return 0xf; case 24: return 0xa; case 36: return 0xe; case 48: return 0x9; case 72: return 0xd; case 96: return 0x8; case 108: return 0xc; /* CCK rates (NB: not IEEE std, device-specific) */ case 2: return 0x0; case 4: return 0x1; case 11: return 0x2; case 22: return 0x3; } return 0xff; /* XXX unsupported/unknown rate */ } static void ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc, uint32_t flags, int len, int rate) { struct ieee80211com *ic = &sc->sc_ic; uint16_t plcp_length; int remainder; desc->flags = htole32(flags); desc->flags |= htole32(RAL_TX_NEWSEQ); desc->flags |= htole32(len << 16); desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5)); desc->wme |= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame))); /* setup PLCP fields */ desc->plcp_signal = ural_plcp_signal(rate); desc->plcp_service = 4; len += IEEE80211_CRC_LEN; if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { desc->flags |= htole32(RAL_TX_OFDM); plcp_length = len & 0xfff; desc->plcp_length_hi = plcp_length >> 6; desc->plcp_length_lo = plcp_length & 0x3f; } else { if (rate == 0) rate = 2; /* avoid division by zero */ plcp_length = howmany(16 * len, rate); if (rate == 22) { remainder = (16 * len) % 22; if (remainder != 0 && remainder < 7) desc->plcp_service |= RAL_PLCP_LENGEXT; } desc->plcp_length_hi = plcp_length >> 8; desc->plcp_length_lo = plcp_length & 0xff; if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->plcp_signal |= 0x08; } desc->iv = 0; desc->eiv = 0; } #define RAL_TX_TIMEOUT 5000 static int ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; const struct ieee80211_txparam *tp; struct ural_tx_data *data; if (sc->tx_nfree == 0) { m_freem(m0); ieee80211_free_node(ni); return (EIO); } if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) { m_freem(m0); ieee80211_free_node(ni); return (ENXIO); } data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; data->m = m0; data->ni = ni; data->rate = tp->mgmtrate; ural_setup_tx_desc(sc, &data->desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP, m0->m_pkthdr.len, tp->mgmtrate); DPRINTFN(10, "sending beacon frame len=%u rate=%u\n", m0->m_pkthdr.len, tp->mgmtrate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); return (0); } static int ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; const struct ieee80211_txparam *tp; struct ural_tx_data *data; struct ieee80211_frame *wh; struct ieee80211_key *k; uint32_t flags; uint16_t dur; RAL_LOCK_ASSERT(sc, MA_OWNED); data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } wh = mtod(m0, struct ieee80211_frame *); } data->m = m0; data->ni = ni; data->rate = tp->mgmtrate; flags = 0; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RAL_TX_ACK; dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, ic->ic_flags & IEEE80211_F_SHPREAMBLE); USETW(wh->i_dur, dur); /* tell hardware to add timestamp for probe responses */ if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT && (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == IEEE80211_FC0_SUBTYPE_PROBE_RESP) flags |= RAL_TX_TIMESTAMP; } ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, tp->mgmtrate); DPRINTFN(10, "sending mgt frame len=%u rate=%u\n", m0->m_pkthdr.len, tp->mgmtrate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); return 0; } static int ural_sendprot(struct ural_softc *sc, const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) { struct ieee80211com *ic = ni->ni_ic; const struct ieee80211_frame *wh; struct ural_tx_data *data; struct mbuf *mprot; int protrate, ackrate, pktlen, flags, isshort; uint16_t dur; KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, ("protection %d", prot)); wh = mtod(m, const struct ieee80211_frame *); pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; protrate = ieee80211_ctl_rate(ic->ic_rt, rate); ackrate = ieee80211_ack_rate(ic->ic_rt, rate); isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) + ieee80211_ack_duration(ic->ic_rt, rate, isshort); flags = RAL_TX_RETRY(7); if (prot == IEEE80211_PROT_RTSCTS) { /* NB: CTS is the same size as an ACK */ dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); flags |= RAL_TX_ACK; mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); } else { mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); } if (mprot == NULL) { /* XXX stat + msg */ return ENOBUFS; } data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; data->m = mprot; data->ni = ieee80211_ref_node(ni); data->rate = protrate; ural_setup_tx_desc(sc, &data->desc, flags, mprot->m_pkthdr.len, protrate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); return 0; } static int ural_tx_raw(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct ural_tx_data *data; uint32_t flags; int error; int rate; RAL_LOCK_ASSERT(sc, MA_OWNED); KASSERT(params != NULL, ("no raw xmit params")); rate = params->ibp_rate0; if (!ieee80211_isratevalid(ic->ic_rt, rate)) { m_freem(m0); return EINVAL; } flags = 0; if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) flags |= RAL_TX_ACK; if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { error = ural_sendprot(sc, m0, ni, params->ibp_flags & IEEE80211_BPF_RTS ? IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, rate); if (error || sc->tx_nfree == 0) { m_freem(m0); return ENOBUFS; } flags |= RAL_TX_IFS_SIFS; } data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; data->m = m0; data->ni = ni; data->rate = rate; /* XXX need to setup descriptor ourself */ ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate); DPRINTFN(10, "sending raw frame len=%u rate=%u\n", m0->m_pkthdr.len, rate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); return 0; } static int ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ural_tx_data *data; struct ieee80211_frame *wh; const struct ieee80211_txparam *tp; struct ieee80211_key *k; uint32_t flags = 0; uint16_t dur; int error, rate; RAL_LOCK_ASSERT(sc, MA_OWNED); wh = mtod(m0, struct ieee80211_frame *); tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; if (IEEE80211_IS_MULTICAST(wh->i_addr1)) rate = tp->mcastrate; else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) rate = tp->ucastrate; else rate = ni->ni_txrate; if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { int prot = IEEE80211_PROT_NONE; if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) prot = IEEE80211_PROT_RTSCTS; else if ((ic->ic_flags & IEEE80211_F_USEPROT) && ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) prot = ic->ic_protmode; if (prot != IEEE80211_PROT_NONE) { error = ural_sendprot(sc, m0, ni, prot, rate); if (error || sc->tx_nfree == 0) { m_freem(m0); return ENOBUFS; } flags |= RAL_TX_IFS_SIFS; } } data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; data->m = m0; data->ni = ni; data->rate = rate; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= RAL_TX_ACK; flags |= RAL_TX_RETRY(7); dur = ieee80211_ack_duration(ic->ic_rt, rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE); USETW(wh->i_dur, dur); } ural_setup_tx_desc(sc, &data->desc, flags, m0->m_pkthdr.len, rate); DPRINTFN(10, "sending data frame len=%u rate=%u\n", m0->m_pkthdr.len, rate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[URAL_BULK_WR]); return 0; } static int ural_transmit(struct ieee80211com *ic, struct mbuf *m) { struct ural_softc *sc = ic->ic_softc; int error; RAL_LOCK(sc); if (!sc->sc_running) { RAL_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { RAL_UNLOCK(sc); return (error); } ural_start(sc); RAL_UNLOCK(sc); return (0); } static void ural_start(struct ural_softc *sc) { struct ieee80211_node *ni; struct mbuf *m; RAL_LOCK_ASSERT(sc, MA_OWNED); if (sc->sc_running == 0) return; while (sc->tx_nfree >= RAL_TX_MINFREE && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; if (ural_tx_data(sc, m, ni) != 0) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); break; } } } static void ural_parent(struct ieee80211com *ic) { struct ural_softc *sc = ic->ic_softc; int startall = 0; RAL_LOCK(sc); if (sc->sc_detached) { RAL_UNLOCK(sc); return; } if (ic->ic_nrunning > 0) { if (sc->sc_running == 0) { ural_init(sc); startall = 1; } else ural_setpromisc(sc); } else if (sc->sc_running) ural_stop(sc); RAL_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } static void ural_set_testmode(struct ural_softc *sc) { struct usb_device_request req; usb_error_t error; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RAL_VENDOR_REQUEST; USETW(req.wValue, 4); USETW(req.wIndex, 1); USETW(req.wLength, 0); error = ural_do_request(sc, &req, NULL); if (error != 0) { device_printf(sc->sc_dev, "could not set test mode: %s\n", usbd_errstr(error)); } } static void ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len) { struct usb_device_request req; usb_error_t error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RAL_READ_EEPROM; USETW(req.wValue, 0); USETW(req.wIndex, addr); USETW(req.wLength, len); error = ural_do_request(sc, &req, buf); if (error != 0) { device_printf(sc->sc_dev, "could not read EEPROM: %s\n", usbd_errstr(error)); } } static uint16_t ural_read(struct ural_softc *sc, uint16_t reg) { struct usb_device_request req; usb_error_t error; uint16_t val; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RAL_READ_MAC; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, sizeof (uint16_t)); error = ural_do_request(sc, &req, &val); if (error != 0) { device_printf(sc->sc_dev, "could not read MAC register: %s\n", usbd_errstr(error)); return 0; } return le16toh(val); } static void ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) { struct usb_device_request req; usb_error_t error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = RAL_READ_MULTI_MAC; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); error = ural_do_request(sc, &req, buf); if (error != 0) { device_printf(sc->sc_dev, "could not read MAC register: %s\n", usbd_errstr(error)); } } static void ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val) { struct usb_device_request req; usb_error_t error; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RAL_WRITE_MAC; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 0); error = ural_do_request(sc, &req, NULL); if (error != 0) { device_printf(sc->sc_dev, "could not write MAC register: %s\n", usbd_errstr(error)); } } static void ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len) { struct usb_device_request req; usb_error_t error; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = RAL_WRITE_MULTI_MAC; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, len); error = ural_do_request(sc, &req, buf); if (error != 0) { device_printf(sc->sc_dev, "could not write MAC register: %s\n", usbd_errstr(error)); } } static void ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val) { uint16_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) break; if (ural_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "could not write to BBP\n"); return; } tmp = reg << 8 | val; ural_write(sc, RAL_PHY_CSR7, tmp); } static uint8_t ural_bbp_read(struct ural_softc *sc, uint8_t reg) { uint16_t val; int ntries; val = RAL_BBP_WRITE | reg << 8; ural_write(sc, RAL_PHY_CSR7, val); for (ntries = 0; ntries < 100; ntries++) { if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY)) break; if (ural_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "could not read BBP\n"); return 0; } return ural_read(sc, RAL_PHY_CSR7) & 0xff; } static void ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val) { uint32_t tmp; int ntries; for (ntries = 0; ntries < 100; ntries++) { if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY)) break; if (ural_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "could not write to RF\n"); return; } tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3); ural_write(sc, RAL_PHY_CSR9, tmp & 0xffff); ural_write(sc, RAL_PHY_CSR10, tmp >> 16); /* remember last written value in sc */ sc->rf_regs[reg] = val; DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff); } static void ural_scan_start(struct ieee80211com *ic) { struct ural_softc *sc = ic->ic_softc; RAL_LOCK(sc); ural_write(sc, RAL_TXRX_CSR19, 0); ural_set_bssid(sc, ieee80211broadcastaddr); RAL_UNLOCK(sc); } static void ural_scan_end(struct ieee80211com *ic) { struct ural_softc *sc = ic->ic_softc; RAL_LOCK(sc); ural_enable_tsf_sync(sc); ural_set_bssid(sc, sc->sc_bssid); RAL_UNLOCK(sc); } static void ural_set_channel(struct ieee80211com *ic) { struct ural_softc *sc = ic->ic_softc; RAL_LOCK(sc); ural_set_chan(sc, ic->ic_curchan); RAL_UNLOCK(sc); } static void ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c) { struct ieee80211com *ic = &sc->sc_ic; uint8_t power, tmp; int i, chan; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) return; if (IEEE80211_IS_CHAN_2GHZ(c)) power = min(sc->txpow[chan - 1], 31); else power = 31; /* adjust txpower using ifconfig settings */ power -= (100 - ic->ic_txpowlimit) / 8; DPRINTFN(2, "setting channel to %u, txpower to %u\n", chan, power); switch (sc->rf_rev) { case RAL_RF_2522: ural_rf_write(sc, RAL_RF1, 0x00814); ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); break; case RAL_RF_2523: ural_rf_write(sc, RAL_RF1, 0x08804); ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044); ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RAL_RF_2524: ural_rf_write(sc, RAL_RF1, 0x0c808); ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RAL_RF_2525: ural_rf_write(sc, RAL_RF1, 0x08808); ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); ural_rf_write(sc, RAL_RF1, 0x08808); ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); break; case RAL_RF_2525E: ural_rf_write(sc, RAL_RF1, 0x08808); ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); break; case RAL_RF_2526: ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]); ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); ural_rf_write(sc, RAL_RF1, 0x08804); ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]); ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044); ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); break; /* dual-band RF */ case RAL_RF_5222: for (i = 0; ural_rf5222[i].chan != chan; i++); ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1); ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2); ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040); ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4); break; } if (ic->ic_opmode != IEEE80211_M_MONITOR && (ic->ic_flags & IEEE80211_F_SCAN) == 0) { /* set Japan filter bit for channel 14 */ tmp = ural_bbp_read(sc, 70); tmp &= ~RAL_JAPAN_FILTER; if (chan == 14) tmp |= RAL_JAPAN_FILTER; ural_bbp_write(sc, 70, tmp); /* clear CRC errors */ ural_read(sc, RAL_STA_CSR0); ural_pause(sc, hz / 100); ural_disable_rf_tune(sc); } /* XXX doesn't belong here */ /* update basic rate set */ ural_set_basicrates(sc, c); /* give the hardware some time to do the switchover */ ural_pause(sc, hz / 100); } /* * Disable RF auto-tuning. */ static void ural_disable_rf_tune(struct ural_softc *sc) { uint32_t tmp; if (sc->rf_rev != RAL_RF_2523) { tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; ural_rf_write(sc, RAL_RF1, tmp); } tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; ural_rf_write(sc, RAL_RF3, tmp); DPRINTFN(2, "disabling RF autotune\n"); } /* * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF * synchronization. */ static void ural_enable_tsf_sync(struct ural_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint16_t logcwmin, preload, tmp; /* first, disable TSF synchronization */ ural_write(sc, RAL_TXRX_CSR19, 0); tmp = (16 * vap->iv_bss->ni_intval) << 4; ural_write(sc, RAL_TXRX_CSR18, tmp); logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0; preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6; tmp = logcwmin << 12 | preload; ural_write(sc, RAL_TXRX_CSR20, tmp); /* finally, enable TSF synchronization */ tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN; if (ic->ic_opmode == IEEE80211_M_STA) tmp |= RAL_ENABLE_TSF_SYNC(1); else tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR; ural_write(sc, RAL_TXRX_CSR19, tmp); DPRINTF("enabling TSF synchronization\n"); } static void ural_enable_tsf(struct ural_softc *sc) { /* first, disable TSF synchronization */ ural_write(sc, RAL_TXRX_CSR19, 0); ural_write(sc, RAL_TXRX_CSR19, RAL_ENABLE_TSF | RAL_ENABLE_TSF_SYNC(2)); } #define RAL_RXTX_TURNAROUND 5 /* us */ static void ural_update_slot(struct ural_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint16_t slottime, sifs, eifs; slottime = IEEE80211_GET_SLOTTIME(ic); /* * These settings may sound a bit inconsistent but this is what the * reference driver does. */ if (ic->ic_curmode == IEEE80211_MODE_11B) { sifs = 16 - RAL_RXTX_TURNAROUND; eifs = 364; } else { sifs = 10 - RAL_RXTX_TURNAROUND; eifs = 64; } ural_write(sc, RAL_MAC_CSR10, slottime); ural_write(sc, RAL_MAC_CSR11, sifs); ural_write(sc, RAL_MAC_CSR12, eifs); } static void ural_set_txpreamble(struct ural_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint16_t tmp; tmp = ural_read(sc, RAL_TXRX_CSR10); tmp &= ~RAL_SHORT_PREAMBLE; if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) tmp |= RAL_SHORT_PREAMBLE; ural_write(sc, RAL_TXRX_CSR10, tmp); } static void ural_set_basicrates(struct ural_softc *sc, const struct ieee80211_channel *c) { /* XXX wrong, take from rate set */ /* update basic rate set */ if (IEEE80211_IS_CHAN_5GHZ(c)) { /* 11a basic rates: 6, 12, 24Mbps */ ural_write(sc, RAL_TXRX_CSR11, 0x150); } else if (IEEE80211_IS_CHAN_ANYG(c)) { /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */ ural_write(sc, RAL_TXRX_CSR11, 0x15f); } else { /* 11b basic rates: 1, 2Mbps */ ural_write(sc, RAL_TXRX_CSR11, 0x3); } } static void ural_set_bssid(struct ural_softc *sc, const uint8_t *bssid) { uint16_t tmp; tmp = bssid[0] | bssid[1] << 8; ural_write(sc, RAL_MAC_CSR5, tmp); tmp = bssid[2] | bssid[3] << 8; ural_write(sc, RAL_MAC_CSR6, tmp); tmp = bssid[4] | bssid[5] << 8; ural_write(sc, RAL_MAC_CSR7, tmp); DPRINTF("setting BSSID to %6D\n", bssid, ":"); } static void ural_set_macaddr(struct ural_softc *sc, const uint8_t *addr) { uint16_t tmp; tmp = addr[0] | addr[1] << 8; ural_write(sc, RAL_MAC_CSR2, tmp); tmp = addr[2] | addr[3] << 8; ural_write(sc, RAL_MAC_CSR3, tmp); tmp = addr[4] | addr[5] << 8; ural_write(sc, RAL_MAC_CSR4, tmp); DPRINTF("setting MAC address to %6D\n", addr, ":"); } static void ural_setpromisc(struct ural_softc *sc) { uint32_t tmp; tmp = ural_read(sc, RAL_TXRX_CSR2); tmp &= ~RAL_DROP_NOT_TO_ME; if (sc->sc_ic.ic_promisc == 0) tmp |= RAL_DROP_NOT_TO_ME; ural_write(sc, RAL_TXRX_CSR2, tmp); DPRINTF("%s promiscuous mode\n", sc->sc_ic.ic_promisc ? "entering" : "leaving"); } static void ural_update_promisc(struct ieee80211com *ic) { struct ural_softc *sc = ic->ic_softc; RAL_LOCK(sc); if (sc->sc_running) ural_setpromisc(sc); RAL_UNLOCK(sc); } static const char * ural_get_rf(int rev) { switch (rev) { case RAL_RF_2522: return "RT2522"; case RAL_RF_2523: return "RT2523"; case RAL_RF_2524: return "RT2524"; case RAL_RF_2525: return "RT2525"; case RAL_RF_2525E: return "RT2525e"; case RAL_RF_2526: return "RT2526"; case RAL_RF_5222: return "RT5222"; default: return "unknown"; } } static void ural_read_eeprom(struct ural_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint16_t val; ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2); val = le16toh(val); sc->rf_rev = (val >> 11) & 0x7; sc->hw_radio = (val >> 10) & 0x1; sc->led_mode = (val >> 6) & 0x7; sc->rx_ant = (val >> 4) & 0x3; sc->tx_ant = (val >> 2) & 0x3; sc->nb_ant = val & 0x3; /* read MAC address */ ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_macaddr, 6); /* read default values for BBP registers */ ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); /* read Tx power for all b/g channels */ ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14); } static int ural_bbp_init(struct ural_softc *sc) { int i, ntries; /* wait for BBP to be ready */ for (ntries = 0; ntries < 100; ntries++) { if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0) break; if (ural_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for BBP\n"); return EIO; } /* initialize BBP registers to default values */ for (i = 0; i < nitems(ural_def_bbp); i++) ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val); #if 0 /* initialize BBP registers to values stored in EEPROM */ for (i = 0; i < 16; i++) { if (sc->bbp_prom[i].reg == 0xff) continue; ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); } #endif return 0; } static void ural_set_txantenna(struct ural_softc *sc, int antenna) { uint16_t tmp; uint8_t tx; tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK; if (antenna == 1) tx |= RAL_BBP_ANTA; else if (antenna == 2) tx |= RAL_BBP_ANTB; else tx |= RAL_BBP_DIVERSITY; /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 || sc->rf_rev == RAL_RF_5222) tx |= RAL_BBP_FLIPIQ; ural_bbp_write(sc, RAL_BBP_TX, tx); /* update values in PHY_CSR5 and PHY_CSR6 */ tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7; ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7)); tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7; ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7)); } static void ural_set_rxantenna(struct ural_softc *sc, int antenna) { uint8_t rx; rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK; if (antenna == 1) rx |= RAL_BBP_ANTA; else if (antenna == 2) rx |= RAL_BBP_ANTB; else rx |= RAL_BBP_DIVERSITY; /* need to force no I/Q flip for RF 2525e and 2526 */ if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526) rx &= ~RAL_BBP_FLIPIQ; ural_bbp_write(sc, RAL_BBP_RX, rx); } static void ural_init(struct ural_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); uint16_t tmp; int i, ntries; RAL_LOCK_ASSERT(sc, MA_OWNED); ural_set_testmode(sc); ural_write(sc, 0x308, 0x00f0); /* XXX magic */ ural_stop(sc); /* initialize MAC registers to default values */ for (i = 0; i < nitems(ural_def_mac); i++) ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val); /* wait for BBP and RF to wake up (this can take a long time!) */ for (ntries = 0; ntries < 100; ntries++) { tmp = ural_read(sc, RAL_MAC_CSR17); if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) == (RAL_BBP_AWAKE | RAL_RF_AWAKE)) break; if (ural_pause(sc, hz / 100)) break; } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for BBP/RF to wakeup\n"); goto fail; } /* we're ready! */ ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY); /* set basic rate set (will be updated later) */ ural_write(sc, RAL_TXRX_CSR11, 0x15f); if (ural_bbp_init(sc) != 0) goto fail; ural_set_chan(sc, ic->ic_curchan); /* clear statistic registers (STA_CSR0 to STA_CSR10) */ ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); ural_set_txantenna(sc, sc->tx_ant); ural_set_rxantenna(sc, sc->rx_ant); ural_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); /* * Allocate Tx and Rx xfer queues. */ ural_setup_tx_list(sc); /* kick Rx */ tmp = RAL_DROP_PHY | RAL_DROP_CRC; if (ic->ic_opmode != IEEE80211_M_MONITOR) { tmp |= RAL_DROP_CTL | RAL_DROP_BAD_VERSION; if (ic->ic_opmode != IEEE80211_M_HOSTAP) tmp |= RAL_DROP_TODS; if (ic->ic_promisc == 0) tmp |= RAL_DROP_NOT_TO_ME; } ural_write(sc, RAL_TXRX_CSR2, tmp); sc->sc_running = 1; usbd_xfer_set_stall(sc->sc_xfer[URAL_BULK_WR]); usbd_transfer_start(sc->sc_xfer[URAL_BULK_RD]); return; fail: ural_stop(sc); } static void ural_stop(struct ural_softc *sc) { RAL_LOCK_ASSERT(sc, MA_OWNED); sc->sc_running = 0; /* * Drain all the transfers, if not already drained: */ RAL_UNLOCK(sc); usbd_transfer_drain(sc->sc_xfer[URAL_BULK_WR]); usbd_transfer_drain(sc->sc_xfer[URAL_BULK_RD]); RAL_LOCK(sc); ural_unsetup_tx_list(sc); /* disable Rx */ ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX); /* reset ASIC and BBP (but won't reset MAC registers!) */ ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP); /* wait a little */ ural_pause(sc, hz / 10); ural_write(sc, RAL_MAC_CSR1, 0); /* wait a little */ ural_pause(sc, hz / 10); } static int ural_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct ural_softc *sc = ic->ic_softc; RAL_LOCK(sc); /* prevent management frames from being sent if we're not ready */ if (!sc->sc_running) { RAL_UNLOCK(sc); m_freem(m); return ENETDOWN; } if (sc->tx_nfree < RAL_TX_MINFREE) { RAL_UNLOCK(sc); m_freem(m); return EIO; } if (params == NULL) { /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. */ if (ural_tx_mgt(sc, m, ni) != 0) goto bad; } else { /* * Caller supplied explicit parameters to use in * sending the frame. */ if (ural_tx_raw(sc, m, ni, params) != 0) goto bad; } RAL_UNLOCK(sc); return 0; bad: RAL_UNLOCK(sc); return EIO; /* XXX */ } static void ural_ratectl_start(struct ural_softc *sc, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ural_vap *uvp = URAL_VAP(vap); /* clear statistic registers (STA_CSR0 to STA_CSR10) */ ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof sc->sta); usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp); } static void ural_ratectl_timeout(void *arg) { struct ural_vap *uvp = arg; struct ieee80211vap *vap = &uvp->vap; struct ieee80211com *ic = vap->iv_ic; ieee80211_runtask(ic, &uvp->ratectl_task); } static void ural_ratectl_task(void *arg, int pending) { struct ural_vap *uvp = arg; struct ieee80211vap *vap = &uvp->vap; struct ieee80211com *ic = vap->iv_ic; struct ural_softc *sc = ic->ic_softc; struct ieee80211_node *ni; int ok, fail; int sum, retrycnt; ni = ieee80211_ref_node(vap->iv_bss); RAL_LOCK(sc); /* read and clear statistic registers (STA_CSR0 to STA_CSR10) */ ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta)); ok = sc->sta[7] + /* TX ok w/o retry */ sc->sta[8]; /* TX ok w/ retry */ fail = sc->sta[9]; /* TX retry-fail count */ sum = ok+fail; retrycnt = sc->sta[8] + fail; ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt); (void) ieee80211_ratectl_rate(ni, NULL, 0); /* count TX retry-fail as Tx errors */ if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, fail); usb_callout_reset(&uvp->ratectl_ch, hz, ural_ratectl_timeout, uvp); RAL_UNLOCK(sc); ieee80211_free_node(ni); } static int ural_pause(struct ural_softc *sc, int timeout) { usb_pause_mtx(&sc->sc_mtx, timeout); return (0); } Index: head/sys/dev/usb/wlan/if_urtw.c =================================================================== --- head/sys/dev/usb/wlan/if_urtw.c (revision 298817) +++ head/sys/dev/usb/wlan/if_urtw.c (revision 298818) @@ -1,4386 +1,4386 @@ /*- * Copyright (c) 2008 Weongyo Jeong * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #include #include #include #include #include "usbdevs.h" #include #include static SYSCTL_NODE(_hw_usb, OID_AUTO, urtw, CTLFLAG_RW, 0, "USB Realtek 8187L"); #ifdef URTW_DEBUG int urtw_debug = 0; SYSCTL_INT(_hw_usb_urtw, OID_AUTO, debug, CTLFLAG_RWTUN, &urtw_debug, 0, "control debugging printfs"); enum { URTW_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ URTW_DEBUG_RECV = 0x00000002, /* basic recv operation */ URTW_DEBUG_RESET = 0x00000004, /* reset processing */ URTW_DEBUG_TX_PROC = 0x00000008, /* tx ISR proc */ URTW_DEBUG_RX_PROC = 0x00000010, /* rx ISR proc */ URTW_DEBUG_STATE = 0x00000020, /* 802.11 state transitions */ URTW_DEBUG_STAT = 0x00000040, /* statistic */ URTW_DEBUG_INIT = 0x00000080, /* initialization of dev */ URTW_DEBUG_TXSTATUS = 0x00000100, /* tx status */ URTW_DEBUG_ANY = 0xffffffff }; #define DPRINTF(sc, m, fmt, ...) do { \ if (sc->sc_debug & (m)) \ printf(fmt, __VA_ARGS__); \ } while (0) #else #define DPRINTF(sc, m, fmt, ...) do { \ (void) sc; \ } while (0) #endif static int urtw_preamble_mode = URTW_PREAMBLE_MODE_LONG; SYSCTL_INT(_hw_usb_urtw, OID_AUTO, preamble_mode, CTLFLAG_RWTUN, &urtw_preamble_mode, 0, "set the preable mode (long or short)"); /* recognized device vendors/products */ #define urtw_lookup(v, p) \ ((const struct urtw_type *)usb_lookup(urtw_devs, v, p)) #define URTW_DEV_B(v,p) \ { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, URTW_REV_RTL8187B) } #define URTW_DEV_L(v,p) \ { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, URTW_REV_RTL8187L) } #define URTW_REV_RTL8187B 0 #define URTW_REV_RTL8187L 1 static const STRUCT_USB_HOST_ID urtw_devs[] = { URTW_DEV_B(NETGEAR, WG111V3), URTW_DEV_B(REALTEK, RTL8187B_0), URTW_DEV_B(REALTEK, RTL8187B_1), URTW_DEV_B(REALTEK, RTL8187B_2), URTW_DEV_B(SITECOMEU, WL168V4), URTW_DEV_L(ASUS, P5B_WIFI), URTW_DEV_L(BELKIN, F5D7050E), URTW_DEV_L(LINKSYS4, WUSB54GCV2), URTW_DEV_L(NETGEAR, WG111V2), URTW_DEV_L(REALTEK, RTL8187), URTW_DEV_L(SITECOMEU, WL168V1), URTW_DEV_L(SURECOM, EP9001G2A), { USB_VPI(USB_VENDOR_OVISLINK, 0x8187, URTW_REV_RTL8187L) }, { USB_VPI(USB_VENDOR_DICKSMITH, 0x9401, URTW_REV_RTL8187L) }, { USB_VPI(USB_VENDOR_HP, 0xca02, URTW_REV_RTL8187L) }, { USB_VPI(USB_VENDOR_LOGITEC, 0x010c, URTW_REV_RTL8187L) }, { USB_VPI(USB_VENDOR_NETGEAR, 0x6100, URTW_REV_RTL8187L) }, { USB_VPI(USB_VENDOR_SPHAIRON, 0x0150, URTW_REV_RTL8187L) }, { USB_VPI(USB_VENDOR_QCOM, 0x6232, URTW_REV_RTL8187L) }, #undef URTW_DEV_L #undef URTW_DEV_B }; #define urtw_read8_m(sc, val, data) do { \ error = urtw_read8_c(sc, val, data); \ if (error != 0) \ goto fail; \ } while (0) #define urtw_write8_m(sc, val, data) do { \ error = urtw_write8_c(sc, val, data); \ if (error != 0) \ goto fail; \ } while (0) #define urtw_read16_m(sc, val, data) do { \ error = urtw_read16_c(sc, val, data); \ if (error != 0) \ goto fail; \ } while (0) #define urtw_write16_m(sc, val, data) do { \ error = urtw_write16_c(sc, val, data); \ if (error != 0) \ goto fail; \ } while (0) #define urtw_read32_m(sc, val, data) do { \ error = urtw_read32_c(sc, val, data); \ if (error != 0) \ goto fail; \ } while (0) #define urtw_write32_m(sc, val, data) do { \ error = urtw_write32_c(sc, val, data); \ if (error != 0) \ goto fail; \ } while (0) #define urtw_8187_write_phy_ofdm(sc, val, data) do { \ error = urtw_8187_write_phy_ofdm_c(sc, val, data); \ if (error != 0) \ goto fail; \ } while (0) #define urtw_8187_write_phy_cck(sc, val, data) do { \ error = urtw_8187_write_phy_cck_c(sc, val, data); \ if (error != 0) \ goto fail; \ } while (0) #define urtw_8225_write(sc, val, data) do { \ error = urtw_8225_write_c(sc, val, data); \ if (error != 0) \ goto fail; \ } while (0) struct urtw_pair { uint32_t reg; uint32_t val; }; static uint8_t urtw_8225_agc[] = { 0x9e, 0x9e, 0x9e, 0x9e, 0x9e, 0x9e, 0x9e, 0x9e, 0x9d, 0x9c, 0x9b, 0x9a, 0x99, 0x98, 0x97, 0x96, 0x95, 0x94, 0x93, 0x92, 0x91, 0x90, 0x8f, 0x8e, 0x8d, 0x8c, 0x8b, 0x8a, 0x89, 0x88, 0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81, 0x80, 0x3f, 0x3e, 0x3d, 0x3c, 0x3b, 0x3a, 0x39, 0x38, 0x37, 0x36, 0x35, 0x34, 0x33, 0x32, 0x31, 0x30, 0x2f, 0x2e, 0x2d, 0x2c, 0x2b, 0x2a, 0x29, 0x28, 0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0x21, 0x20, 0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01 }; static uint8_t urtw_8225z2_agc[] = { 0x5e, 0x5e, 0x5e, 0x5e, 0x5d, 0x5b, 0x59, 0x57, 0x55, 0x53, 0x51, 0x4f, 0x4d, 0x4b, 0x49, 0x47, 0x45, 0x43, 0x41, 0x3f, 0x3d, 0x3b, 0x39, 0x37, 0x35, 0x33, 0x31, 0x2f, 0x2d, 0x2b, 0x29, 0x27, 0x25, 0x23, 0x21, 0x1f, 0x1d, 0x1b, 0x19, 0x17, 0x15, 0x13, 0x11, 0x0f, 0x0d, 0x0b, 0x09, 0x07, 0x05, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x26, 0x27, 0x27, 0x28, 0x28, 0x29, 0x2a, 0x2a, 0x2a, 0x2b, 0x2b, 0x2b, 0x2c, 0x2c, 0x2c, 0x2d, 0x2d, 0x2d, 0x2d, 0x2e, 0x2e, 0x2e, 0x2e, 0x2f, 0x2f, 0x2f, 0x30, 0x30, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31 }; static uint32_t urtw_8225_channel[] = { 0x0000, /* dummy channel 0 */ 0x085c, /* 1 */ 0x08dc, /* 2 */ 0x095c, /* 3 */ 0x09dc, /* 4 */ 0x0a5c, /* 5 */ 0x0adc, /* 6 */ 0x0b5c, /* 7 */ 0x0bdc, /* 8 */ 0x0c5c, /* 9 */ 0x0cdc, /* 10 */ 0x0d5c, /* 11 */ 0x0ddc, /* 12 */ 0x0e5c, /* 13 */ 0x0f72, /* 14 */ }; static uint8_t urtw_8225_gain[] = { 0x23, 0x88, 0x7c, 0xa5, /* -82dbm */ 0x23, 0x88, 0x7c, 0xb5, /* -82dbm */ 0x23, 0x88, 0x7c, 0xc5, /* -82dbm */ 0x33, 0x80, 0x79, 0xc5, /* -78dbm */ 0x43, 0x78, 0x76, 0xc5, /* -74dbm */ 0x53, 0x60, 0x73, 0xc5, /* -70dbm */ 0x63, 0x58, 0x70, 0xc5, /* -66dbm */ }; static struct urtw_pair urtw_8225_rf_part1[] = { { 0x00, 0x0067 }, { 0x01, 0x0fe0 }, { 0x02, 0x044d }, { 0x03, 0x0441 }, { 0x04, 0x0486 }, { 0x05, 0x0bc0 }, { 0x06, 0x0ae6 }, { 0x07, 0x082a }, { 0x08, 0x001f }, { 0x09, 0x0334 }, { 0x0a, 0x0fd4 }, { 0x0b, 0x0391 }, { 0x0c, 0x0050 }, { 0x0d, 0x06db }, { 0x0e, 0x0029 }, { 0x0f, 0x0914 }, }; static struct urtw_pair urtw_8225_rf_part2[] = { { 0x00, 0x01 }, { 0x01, 0x02 }, { 0x02, 0x42 }, { 0x03, 0x00 }, { 0x04, 0x00 }, { 0x05, 0x00 }, { 0x06, 0x40 }, { 0x07, 0x00 }, { 0x08, 0x40 }, { 0x09, 0xfe }, { 0x0a, 0x09 }, { 0x0b, 0x80 }, { 0x0c, 0x01 }, { 0x0e, 0xd3 }, { 0x0f, 0x38 }, { 0x10, 0x84 }, { 0x11, 0x06 }, { 0x12, 0x20 }, { 0x13, 0x20 }, { 0x14, 0x00 }, { 0x15, 0x40 }, { 0x16, 0x00 }, { 0x17, 0x40 }, { 0x18, 0xef }, { 0x19, 0x19 }, { 0x1a, 0x20 }, { 0x1b, 0x76 }, { 0x1c, 0x04 }, { 0x1e, 0x95 }, { 0x1f, 0x75 }, { 0x20, 0x1f }, { 0x21, 0x27 }, { 0x22, 0x16 }, { 0x24, 0x46 }, { 0x25, 0x20 }, { 0x26, 0x90 }, { 0x27, 0x88 } }; static struct urtw_pair urtw_8225_rf_part3[] = { { 0x00, 0x98 }, { 0x03, 0x20 }, { 0x04, 0x7e }, { 0x05, 0x12 }, { 0x06, 0xfc }, { 0x07, 0x78 }, { 0x08, 0x2e }, { 0x10, 0x9b }, { 0x11, 0x88 }, { 0x12, 0x47 }, { 0x13, 0xd0 }, { 0x19, 0x00 }, { 0x1a, 0xa0 }, { 0x1b, 0x08 }, { 0x40, 0x86 }, { 0x41, 0x8d }, { 0x42, 0x15 }, { 0x43, 0x18 }, { 0x44, 0x1f }, { 0x45, 0x1e }, { 0x46, 0x1a }, { 0x47, 0x15 }, { 0x48, 0x10 }, { 0x49, 0x0a }, { 0x4a, 0x05 }, { 0x4b, 0x02 }, { 0x4c, 0x05 } }; static uint16_t urtw_8225_rxgain[] = { 0x0400, 0x0401, 0x0402, 0x0403, 0x0404, 0x0405, 0x0408, 0x0409, 0x040a, 0x040b, 0x0502, 0x0503, 0x0504, 0x0505, 0x0540, 0x0541, 0x0542, 0x0543, 0x0544, 0x0545, 0x0580, 0x0581, 0x0582, 0x0583, 0x0584, 0x0585, 0x0588, 0x0589, 0x058a, 0x058b, 0x0643, 0x0644, 0x0645, 0x0680, 0x0681, 0x0682, 0x0683, 0x0684, 0x0685, 0x0688, 0x0689, 0x068a, 0x068b, 0x068c, 0x0742, 0x0743, 0x0744, 0x0745, 0x0780, 0x0781, 0x0782, 0x0783, 0x0784, 0x0785, 0x0788, 0x0789, 0x078a, 0x078b, 0x078c, 0x078d, 0x0790, 0x0791, 0x0792, 0x0793, 0x0794, 0x0795, 0x0798, 0x0799, 0x079a, 0x079b, 0x079c, 0x079d, 0x07a0, 0x07a1, 0x07a2, 0x07a3, 0x07a4, 0x07a5, 0x07a8, 0x07a9, 0x07aa, 0x07ab, 0x07ac, 0x07ad, 0x07b0, 0x07b1, 0x07b2, 0x07b3, 0x07b4, 0x07b5, 0x07b8, 0x07b9, 0x07ba, 0x07bb, 0x07bb }; static uint8_t urtw_8225_threshold[] = { 0x8d, 0x8d, 0x8d, 0x8d, 0x9d, 0xad, 0xbd, }; static uint8_t urtw_8225_tx_gain_cck_ofdm[] = { 0x02, 0x06, 0x0e, 0x1e, 0x3e, 0x7e }; static uint8_t urtw_8225_txpwr_cck[] = { 0x18, 0x17, 0x15, 0x11, 0x0c, 0x08, 0x04, 0x02, 0x1b, 0x1a, 0x17, 0x13, 0x0e, 0x09, 0x04, 0x02, 0x1f, 0x1e, 0x1a, 0x15, 0x10, 0x0a, 0x05, 0x02, 0x22, 0x21, 0x1d, 0x18, 0x11, 0x0b, 0x06, 0x02, 0x26, 0x25, 0x21, 0x1b, 0x14, 0x0d, 0x06, 0x03, 0x2b, 0x2a, 0x25, 0x1e, 0x16, 0x0e, 0x07, 0x03 }; static uint8_t urtw_8225_txpwr_cck_ch14[] = { 0x18, 0x17, 0x15, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x1b, 0x1a, 0x17, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x1f, 0x1e, 0x1a, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x22, 0x21, 0x1d, 0x11, 0x00, 0x00, 0x00, 0x00, 0x26, 0x25, 0x21, 0x13, 0x00, 0x00, 0x00, 0x00, 0x2b, 0x2a, 0x25, 0x15, 0x00, 0x00, 0x00, 0x00 }; static uint8_t urtw_8225_txpwr_ofdm[]={ 0x80, 0x90, 0xa2, 0xb5, 0xcb, 0xe4 }; static uint8_t urtw_8225v2_gain_bg[]={ 0x23, 0x15, 0xa5, /* -82-1dbm */ 0x23, 0x15, 0xb5, /* -82-2dbm */ 0x23, 0x15, 0xc5, /* -82-3dbm */ 0x33, 0x15, 0xc5, /* -78dbm */ 0x43, 0x15, 0xc5, /* -74dbm */ 0x53, 0x15, 0xc5, /* -70dbm */ 0x63, 0x15, 0xc5, /* -66dbm */ }; static struct urtw_pair urtw_8225v2_rf_part1[] = { { 0x00, 0x02bf }, { 0x01, 0x0ee0 }, { 0x02, 0x044d }, { 0x03, 0x0441 }, { 0x04, 0x08c3 }, { 0x05, 0x0c72 }, { 0x06, 0x00e6 }, { 0x07, 0x082a }, { 0x08, 0x003f }, { 0x09, 0x0335 }, { 0x0a, 0x09d4 }, { 0x0b, 0x07bb }, { 0x0c, 0x0850 }, { 0x0d, 0x0cdf }, { 0x0e, 0x002b }, { 0x0f, 0x0114 } }; static struct urtw_pair urtw_8225v2b_rf_part0[] = { { 0x00, 0x00b7 }, { 0x01, 0x0ee0 }, { 0x02, 0x044d }, { 0x03, 0x0441 }, { 0x04, 0x08c3 }, { 0x05, 0x0c72 }, { 0x06, 0x00e6 }, { 0x07, 0x082a }, { 0x08, 0x003f }, { 0x09, 0x0335 }, { 0x0a, 0x09d4 }, { 0x0b, 0x07bb }, { 0x0c, 0x0850 }, { 0x0d, 0x0cdf }, { 0x0e, 0x002b }, { 0x0f, 0x0114 } }; static struct urtw_pair urtw_8225v2b_rf_part1[] = { {0x0f0, 0x32}, {0x0f1, 0x32}, {0x0f2, 0x00}, {0x0f3, 0x00}, {0x0f4, 0x32}, {0x0f5, 0x43}, {0x0f6, 0x00}, {0x0f7, 0x00}, {0x0f8, 0x46}, {0x0f9, 0xa4}, {0x0fa, 0x00}, {0x0fb, 0x00}, {0x0fc, 0x96}, {0x0fd, 0xa4}, {0x0fe, 0x00}, {0x0ff, 0x00}, {0x158, 0x4b}, {0x159, 0x00}, {0x15a, 0x4b}, {0x15b, 0x00}, {0x160, 0x4b}, {0x161, 0x09}, {0x162, 0x4b}, {0x163, 0x09}, {0x1ce, 0x0f}, {0x1cf, 0x00}, {0x1e0, 0xff}, {0x1e1, 0x0f}, {0x1e2, 0x00}, {0x1f0, 0x4e}, {0x1f1, 0x01}, {0x1f2, 0x02}, {0x1f3, 0x03}, {0x1f4, 0x04}, {0x1f5, 0x05}, {0x1f6, 0x06}, {0x1f7, 0x07}, {0x1f8, 0x08}, {0x24e, 0x00}, {0x20c, 0x04}, {0x221, 0x61}, {0x222, 0x68}, {0x223, 0x6f}, {0x224, 0x76}, {0x225, 0x7d}, {0x226, 0x84}, {0x227, 0x8d}, {0x24d, 0x08}, {0x250, 0x05}, {0x251, 0xf5}, {0x252, 0x04}, {0x253, 0xa0}, {0x254, 0x1f}, {0x255, 0x23}, {0x256, 0x45}, {0x257, 0x67}, {0x258, 0x08}, {0x259, 0x08}, {0x25a, 0x08}, {0x25b, 0x08}, {0x260, 0x08}, {0x261, 0x08}, {0x262, 0x08}, {0x263, 0x08}, {0x264, 0xcf}, {0x272, 0x56}, {0x273, 0x9a}, {0x034, 0xf0}, {0x035, 0x0f}, {0x05b, 0x40}, {0x084, 0x88}, {0x085, 0x24}, {0x088, 0x54}, {0x08b, 0xb8}, {0x08c, 0x07}, {0x08d, 0x00}, {0x094, 0x1b}, {0x095, 0x12}, {0x096, 0x00}, {0x097, 0x06}, {0x09d, 0x1a}, {0x09f, 0x10}, {0x0b4, 0x22}, {0x0be, 0x80}, {0x0db, 0x00}, {0x0ee, 0x00}, {0x091, 0x03}, {0x24c, 0x00}, {0x39f, 0x00}, {0x08c, 0x01}, {0x08d, 0x10}, {0x08e, 0x08}, {0x08f, 0x00} }; static struct urtw_pair urtw_8225v2_rf_part2[] = { { 0x00, 0x01 }, { 0x01, 0x02 }, { 0x02, 0x42 }, { 0x03, 0x00 }, { 0x04, 0x00 }, { 0x05, 0x00 }, { 0x06, 0x40 }, { 0x07, 0x00 }, { 0x08, 0x40 }, { 0x09, 0xfe }, { 0x0a, 0x08 }, { 0x0b, 0x80 }, { 0x0c, 0x01 }, { 0x0d, 0x43 }, { 0x0e, 0xd3 }, { 0x0f, 0x38 }, { 0x10, 0x84 }, { 0x11, 0x07 }, { 0x12, 0x20 }, { 0x13, 0x20 }, { 0x14, 0x00 }, { 0x15, 0x40 }, { 0x16, 0x00 }, { 0x17, 0x40 }, { 0x18, 0xef }, { 0x19, 0x19 }, { 0x1a, 0x20 }, { 0x1b, 0x15 }, { 0x1c, 0x04 }, { 0x1d, 0xc5 }, { 0x1e, 0x95 }, { 0x1f, 0x75 }, { 0x20, 0x1f }, { 0x21, 0x17 }, { 0x22, 0x16 }, { 0x23, 0x80 }, { 0x24, 0x46 }, { 0x25, 0x00 }, { 0x26, 0x90 }, { 0x27, 0x88 } }; static struct urtw_pair urtw_8225v2b_rf_part2[] = { { 0x00, 0x10 }, { 0x01, 0x0d }, { 0x02, 0x01 }, { 0x03, 0x00 }, { 0x04, 0x14 }, { 0x05, 0xfb }, { 0x06, 0xfb }, { 0x07, 0x60 }, { 0x08, 0x00 }, { 0x09, 0x60 }, { 0x0a, 0x00 }, { 0x0b, 0x00 }, { 0x0c, 0x00 }, { 0x0d, 0x5c }, { 0x0e, 0x00 }, { 0x0f, 0x00 }, { 0x10, 0x40 }, { 0x11, 0x00 }, { 0x12, 0x40 }, { 0x13, 0x00 }, { 0x14, 0x00 }, { 0x15, 0x00 }, { 0x16, 0xa8 }, { 0x17, 0x26 }, { 0x18, 0x32 }, { 0x19, 0x33 }, { 0x1a, 0x07 }, { 0x1b, 0xa5 }, { 0x1c, 0x6f }, { 0x1d, 0x55 }, { 0x1e, 0xc8 }, { 0x1f, 0xb3 }, { 0x20, 0x0a }, { 0x21, 0xe1 }, { 0x22, 0x2C }, { 0x23, 0x8a }, { 0x24, 0x86 }, { 0x25, 0x83 }, { 0x26, 0x34 }, { 0x27, 0x0f }, { 0x28, 0x4f }, { 0x29, 0x24 }, { 0x2a, 0x6f }, { 0x2b, 0xc2 }, { 0x2c, 0x6b }, { 0x2d, 0x40 }, { 0x2e, 0x80 }, { 0x2f, 0x00 }, { 0x30, 0xc0 }, { 0x31, 0xc1 }, { 0x32, 0x58 }, { 0x33, 0xf1 }, { 0x34, 0x00 }, { 0x35, 0xe4 }, { 0x36, 0x90 }, { 0x37, 0x3e }, { 0x38, 0x6d }, { 0x39, 0x3c }, { 0x3a, 0xfb }, { 0x3b, 0x07 } }; static struct urtw_pair urtw_8225v2_rf_part3[] = { { 0x00, 0x98 }, { 0x03, 0x20 }, { 0x04, 0x7e }, { 0x05, 0x12 }, { 0x06, 0xfc }, { 0x07, 0x78 }, { 0x08, 0x2e }, { 0x09, 0x11 }, { 0x0a, 0x17 }, { 0x0b, 0x11 }, { 0x10, 0x9b }, { 0x11, 0x88 }, { 0x12, 0x47 }, { 0x13, 0xd0 }, { 0x19, 0x00 }, { 0x1a, 0xa0 }, { 0x1b, 0x08 }, { 0x1d, 0x00 }, { 0x40, 0x86 }, { 0x41, 0x9d }, { 0x42, 0x15 }, { 0x43, 0x18 }, { 0x44, 0x36 }, { 0x45, 0x35 }, { 0x46, 0x2e }, { 0x47, 0x25 }, { 0x48, 0x1c }, { 0x49, 0x12 }, { 0x4a, 0x09 }, { 0x4b, 0x04 }, { 0x4c, 0x05 } }; static uint16_t urtw_8225v2_rxgain[] = { 0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0008, 0x0009, 0x000a, 0x000b, 0x0102, 0x0103, 0x0104, 0x0105, 0x0140, 0x0141, 0x0142, 0x0143, 0x0144, 0x0145, 0x0180, 0x0181, 0x0182, 0x0183, 0x0184, 0x0185, 0x0188, 0x0189, 0x018a, 0x018b, 0x0243, 0x0244, 0x0245, 0x0280, 0x0281, 0x0282, 0x0283, 0x0284, 0x0285, 0x0288, 0x0289, 0x028a, 0x028b, 0x028c, 0x0342, 0x0343, 0x0344, 0x0345, 0x0380, 0x0381, 0x0382, 0x0383, 0x0384, 0x0385, 0x0388, 0x0389, 0x038a, 0x038b, 0x038c, 0x038d, 0x0390, 0x0391, 0x0392, 0x0393, 0x0394, 0x0395, 0x0398, 0x0399, 0x039a, 0x039b, 0x039c, 0x039d, 0x03a0, 0x03a1, 0x03a2, 0x03a3, 0x03a4, 0x03a5, 0x03a8, 0x03a9, 0x03aa, 0x03ab, 0x03ac, 0x03ad, 0x03b0, 0x03b1, 0x03b2, 0x03b3, 0x03b4, 0x03b5, 0x03b8, 0x03b9, 0x03ba, 0x03bb, 0x03bb }; static uint16_t urtw_8225v2b_rxgain[] = { 0x0400, 0x0401, 0x0402, 0x0403, 0x0404, 0x0405, 0x0408, 0x0409, 0x040a, 0x040b, 0x0502, 0x0503, 0x0504, 0x0505, 0x0540, 0x0541, 0x0542, 0x0543, 0x0544, 0x0545, 0x0580, 0x0581, 0x0582, 0x0583, 0x0584, 0x0585, 0x0588, 0x0589, 0x058a, 0x058b, 0x0643, 0x0644, 0x0645, 0x0680, 0x0681, 0x0682, 0x0683, 0x0684, 0x0685, 0x0688, 0x0689, 0x068a, 0x068b, 0x068c, 0x0742, 0x0743, 0x0744, 0x0745, 0x0780, 0x0781, 0x0782, 0x0783, 0x0784, 0x0785, 0x0788, 0x0789, 0x078a, 0x078b, 0x078c, 0x078d, 0x0790, 0x0791, 0x0792, 0x0793, 0x0794, 0x0795, 0x0798, 0x0799, 0x079a, 0x079b, 0x079c, 0x079d, 0x07a0, 0x07a1, 0x07a2, 0x07a3, 0x07a4, 0x07a5, 0x07a8, 0x07a9, 0x03aa, 0x03ab, 0x03ac, 0x03ad, 0x03b0, 0x03b1, 0x03b2, 0x03b3, 0x03b4, 0x03b5, 0x03b8, 0x03b9, 0x03ba, 0x03bb, 0x03bb }; static uint8_t urtw_8225v2_tx_gain_cck_ofdm[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, }; static uint8_t urtw_8225v2_txpwr_cck[] = { 0x36, 0x35, 0x2e, 0x25, 0x1c, 0x12, 0x09, 0x04 }; static uint8_t urtw_8225v2_txpwr_cck_ch14[] = { 0x36, 0x35, 0x2e, 0x1b, 0x00, 0x00, 0x00, 0x00 }; static uint8_t urtw_8225v2b_txpwr_cck[] = { 0x36, 0x35, 0x2e, 0x25, 0x1c, 0x12, 0x09, 0x04, 0x30, 0x2f, 0x29, 0x21, 0x19, 0x10, 0x08, 0x03, 0x2b, 0x2a, 0x25, 0x1e, 0x16, 0x0e, 0x07, 0x03, 0x26, 0x25, 0x21, 0x1b, 0x14, 0x0d, 0x06, 0x03 }; static uint8_t urtw_8225v2b_txpwr_cck_ch14[] = { 0x36, 0x35, 0x2e, 0x1b, 0x00, 0x00, 0x00, 0x00, 0x30, 0x2f, 0x29, 0x15, 0x00, 0x00, 0x00, 0x00, 0x30, 0x2f, 0x29, 0x15, 0x00, 0x00, 0x00, 0x00, 0x30, 0x2f, 0x29, 0x15, 0x00, 0x00, 0x00, 0x00 }; static struct urtw_pair urtw_ratetable[] = { { 2, 0 }, { 4, 1 }, { 11, 2 }, { 12, 4 }, { 18, 5 }, { 22, 3 }, { 24, 6 }, { 36, 7 }, { 48, 8 }, { 72, 9 }, { 96, 10 }, { 108, 11 } }; #if 0 static const uint8_t urtw_8187b_reg_table[][3] = { { 0xf0, 0x32, 0 }, { 0xf1, 0x32, 0 }, { 0xf2, 0x00, 0 }, { 0xf3, 0x00, 0 }, { 0xf4, 0x32, 0 }, { 0xf5, 0x43, 0 }, { 0xf6, 0x00, 0 }, { 0xf7, 0x00, 0 }, { 0xf8, 0x46, 0 }, { 0xf9, 0xa4, 0 }, { 0xfa, 0x00, 0 }, { 0xfb, 0x00, 0 }, { 0xfc, 0x96, 0 }, { 0xfd, 0xa4, 0 }, { 0xfe, 0x00, 0 }, { 0xff, 0x00, 0 }, { 0x58, 0x4b, 1 }, { 0x59, 0x00, 1 }, { 0x5a, 0x4b, 1 }, { 0x5b, 0x00, 1 }, { 0x60, 0x4b, 1 }, { 0x61, 0x09, 1 }, { 0x62, 0x4b, 1 }, { 0x63, 0x09, 1 }, { 0xce, 0x0f, 1 }, { 0xcf, 0x00, 1 }, { 0xe0, 0xff, 1 }, { 0xe1, 0x0f, 1 }, { 0xe2, 0x00, 1 }, { 0xf0, 0x4e, 1 }, { 0xf1, 0x01, 1 }, { 0xf2, 0x02, 1 }, { 0xf3, 0x03, 1 }, { 0xf4, 0x04, 1 }, { 0xf5, 0x05, 1 }, { 0xf6, 0x06, 1 }, { 0xf7, 0x07, 1 }, { 0xf8, 0x08, 1 }, { 0x4e, 0x00, 2 }, { 0x0c, 0x04, 2 }, { 0x21, 0x61, 2 }, { 0x22, 0x68, 2 }, { 0x23, 0x6f, 2 }, { 0x24, 0x76, 2 }, { 0x25, 0x7d, 2 }, { 0x26, 0x84, 2 }, { 0x27, 0x8d, 2 }, { 0x4d, 0x08, 2 }, { 0x50, 0x05, 2 }, { 0x51, 0xf5, 2 }, { 0x52, 0x04, 2 }, { 0x53, 0xa0, 2 }, { 0x54, 0x1f, 2 }, { 0x55, 0x23, 2 }, { 0x56, 0x45, 2 }, { 0x57, 0x67, 2 }, { 0x58, 0x08, 2 }, { 0x59, 0x08, 2 }, { 0x5a, 0x08, 2 }, { 0x5b, 0x08, 2 }, { 0x60, 0x08, 2 }, { 0x61, 0x08, 2 }, { 0x62, 0x08, 2 }, { 0x63, 0x08, 2 }, { 0x64, 0xcf, 2 }, { 0x72, 0x56, 2 }, { 0x73, 0x9a, 2 }, { 0x34, 0xf0, 0 }, { 0x35, 0x0f, 0 }, { 0x5b, 0x40, 0 }, { 0x84, 0x88, 0 }, { 0x85, 0x24, 0 }, { 0x88, 0x54, 0 }, { 0x8b, 0xb8, 0 }, { 0x8c, 0x07, 0 }, { 0x8d, 0x00, 0 }, { 0x94, 0x1b, 0 }, { 0x95, 0x12, 0 }, { 0x96, 0x00, 0 }, { 0x97, 0x06, 0 }, { 0x9d, 0x1a, 0 }, { 0x9f, 0x10, 0 }, { 0xb4, 0x22, 0 }, { 0xbe, 0x80, 0 }, { 0xdb, 0x00, 0 }, { 0xee, 0x00, 0 }, { 0x91, 0x03, 0 }, { 0x4c, 0x00, 2 }, { 0x9f, 0x00, 3 }, { 0x8c, 0x01, 0 }, { 0x8d, 0x10, 0 }, { 0x8e, 0x08, 0 }, { 0x8f, 0x00, 0 } }; #endif static usb_callback_t urtw_bulk_rx_callback; static usb_callback_t urtw_bulk_tx_callback; static usb_callback_t urtw_bulk_tx_status_callback; static const struct usb_config urtw_8187b_usbconfig[URTW_8187B_N_XFERS] = { [URTW_8187B_BULK_RX] = { .type = UE_BULK, .endpoint = 0x83, .direction = UE_DIR_IN, .bufsize = MCLBYTES, .flags = { .ext_buffer = 1, .pipe_bof = 1, .short_xfer_ok = 1 }, .callback = urtw_bulk_rx_callback }, [URTW_8187B_BULK_TX_STATUS] = { .type = UE_BULK, .endpoint = 0x89, .direction = UE_DIR_IN, .bufsize = sizeof(uint64_t), .flags = { .pipe_bof = 1, .short_xfer_ok = 1 }, .callback = urtw_bulk_tx_status_callback }, [URTW_8187B_BULK_TX_BE] = { .type = UE_BULK, .endpoint = URTW_8187B_TXPIPE_BE, .direction = UE_DIR_OUT, .bufsize = URTW_TX_MAXSIZE * URTW_TX_DATA_LIST_COUNT, .flags = { .force_short_xfer = 1, .pipe_bof = 1, }, .callback = urtw_bulk_tx_callback, .timeout = URTW_DATA_TIMEOUT }, [URTW_8187B_BULK_TX_BK] = { .type = UE_BULK, .endpoint = URTW_8187B_TXPIPE_BK, .direction = UE_DIR_OUT, .bufsize = URTW_TX_MAXSIZE, .flags = { .ext_buffer = 1, .force_short_xfer = 1, .pipe_bof = 1, }, .callback = urtw_bulk_tx_callback, .timeout = URTW_DATA_TIMEOUT }, [URTW_8187B_BULK_TX_VI] = { .type = UE_BULK, .endpoint = URTW_8187B_TXPIPE_VI, .direction = UE_DIR_OUT, .bufsize = URTW_TX_MAXSIZE, .flags = { .ext_buffer = 1, .force_short_xfer = 1, .pipe_bof = 1, }, .callback = urtw_bulk_tx_callback, .timeout = URTW_DATA_TIMEOUT }, [URTW_8187B_BULK_TX_VO] = { .type = UE_BULK, .endpoint = URTW_8187B_TXPIPE_VO, .direction = UE_DIR_OUT, .bufsize = URTW_TX_MAXSIZE, .flags = { .ext_buffer = 1, .force_short_xfer = 1, .pipe_bof = 1, }, .callback = urtw_bulk_tx_callback, .timeout = URTW_DATA_TIMEOUT }, [URTW_8187B_BULK_TX_EP12] = { .type = UE_BULK, .endpoint = 0xc, .direction = UE_DIR_OUT, .bufsize = URTW_TX_MAXSIZE, .flags = { .ext_buffer = 1, .force_short_xfer = 1, .pipe_bof = 1, }, .callback = urtw_bulk_tx_callback, .timeout = URTW_DATA_TIMEOUT } }; static const struct usb_config urtw_8187l_usbconfig[URTW_8187L_N_XFERS] = { [URTW_8187L_BULK_RX] = { .type = UE_BULK, .endpoint = 0x81, .direction = UE_DIR_IN, .bufsize = MCLBYTES, .flags = { .ext_buffer = 1, .pipe_bof = 1, .short_xfer_ok = 1 }, .callback = urtw_bulk_rx_callback }, [URTW_8187L_BULK_TX_LOW] = { .type = UE_BULK, .endpoint = 0x2, .direction = UE_DIR_OUT, .bufsize = URTW_TX_MAXSIZE * URTW_TX_DATA_LIST_COUNT, .flags = { .force_short_xfer = 1, .pipe_bof = 1, }, .callback = urtw_bulk_tx_callback, .timeout = URTW_DATA_TIMEOUT }, [URTW_8187L_BULK_TX_NORMAL] = { .type = UE_BULK, .endpoint = 0x3, .direction = UE_DIR_OUT, .bufsize = URTW_TX_MAXSIZE, .flags = { .ext_buffer = 1, .force_short_xfer = 1, .pipe_bof = 1, }, .callback = urtw_bulk_tx_callback, .timeout = URTW_DATA_TIMEOUT }, }; static struct ieee80211vap *urtw_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void urtw_vap_delete(struct ieee80211vap *); static void urtw_init(struct urtw_softc *); static void urtw_stop(struct urtw_softc *); static void urtw_parent(struct ieee80211com *); static int urtw_transmit(struct ieee80211com *, struct mbuf *); static void urtw_start(struct urtw_softc *); static int urtw_alloc_rx_data_list(struct urtw_softc *); static int urtw_alloc_tx_data_list(struct urtw_softc *); static int urtw_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void urtw_scan_start(struct ieee80211com *); static void urtw_scan_end(struct ieee80211com *); static void urtw_set_channel(struct ieee80211com *); static void urtw_update_mcast(struct ieee80211com *); static int urtw_tx_start(struct urtw_softc *, struct ieee80211_node *, struct mbuf *, struct urtw_data *, int); static int urtw_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void urtw_led_ch(void *); static void urtw_ledtask(void *, int); static void urtw_watchdog(void *); static void urtw_set_multi(void *); static int urtw_isbmode(uint16_t); static uint16_t urtw_rate2rtl(uint32_t); static uint16_t urtw_rtl2rate(uint32_t); static usb_error_t urtw_set_rate(struct urtw_softc *); static usb_error_t urtw_update_msr(struct urtw_softc *); static usb_error_t urtw_read8_c(struct urtw_softc *, int, uint8_t *); static usb_error_t urtw_read16_c(struct urtw_softc *, int, uint16_t *); static usb_error_t urtw_read32_c(struct urtw_softc *, int, uint32_t *); static usb_error_t urtw_write8_c(struct urtw_softc *, int, uint8_t); static usb_error_t urtw_write16_c(struct urtw_softc *, int, uint16_t); static usb_error_t urtw_write32_c(struct urtw_softc *, int, uint32_t); static usb_error_t urtw_eprom_cs(struct urtw_softc *, int); static usb_error_t urtw_eprom_ck(struct urtw_softc *); static usb_error_t urtw_eprom_sendbits(struct urtw_softc *, int16_t *, int); static usb_error_t urtw_eprom_read32(struct urtw_softc *, uint32_t, uint32_t *); static usb_error_t urtw_eprom_readbit(struct urtw_softc *, int16_t *); static usb_error_t urtw_eprom_writebit(struct urtw_softc *, int16_t); static usb_error_t urtw_get_macaddr(struct urtw_softc *); static usb_error_t urtw_get_txpwr(struct urtw_softc *); static usb_error_t urtw_get_rfchip(struct urtw_softc *); static usb_error_t urtw_led_init(struct urtw_softc *); static usb_error_t urtw_8185_rf_pins_enable(struct urtw_softc *); static usb_error_t urtw_8185_tx_antenna(struct urtw_softc *, uint8_t); static usb_error_t urtw_8187_write_phy(struct urtw_softc *, uint8_t, uint32_t); static usb_error_t urtw_8187_write_phy_ofdm_c(struct urtw_softc *, uint8_t, uint32_t); static usb_error_t urtw_8187_write_phy_cck_c(struct urtw_softc *, uint8_t, uint32_t); static usb_error_t urtw_8225_setgain(struct urtw_softc *, int16_t); static usb_error_t urtw_8225_usb_init(struct urtw_softc *); static usb_error_t urtw_8225_write_c(struct urtw_softc *, uint8_t, uint16_t); static usb_error_t urtw_8225_write_s16(struct urtw_softc *, uint8_t, int, uint16_t *); static usb_error_t urtw_8225_read(struct urtw_softc *, uint8_t, uint32_t *); static usb_error_t urtw_8225_rf_init(struct urtw_softc *); static usb_error_t urtw_8225_rf_set_chan(struct urtw_softc *, int); static usb_error_t urtw_8225_rf_set_sens(struct urtw_softc *, int); static usb_error_t urtw_8225_set_txpwrlvl(struct urtw_softc *, int); static usb_error_t urtw_8225_rf_stop(struct urtw_softc *); static usb_error_t urtw_8225v2_rf_init(struct urtw_softc *); static usb_error_t urtw_8225v2_rf_set_chan(struct urtw_softc *, int); static usb_error_t urtw_8225v2_set_txpwrlvl(struct urtw_softc *, int); static usb_error_t urtw_8225v2_setgain(struct urtw_softc *, int16_t); static usb_error_t urtw_8225_isv2(struct urtw_softc *, int *); static usb_error_t urtw_8225v2b_rf_init(struct urtw_softc *); static usb_error_t urtw_8225v2b_rf_set_chan(struct urtw_softc *, int); static usb_error_t urtw_read8e(struct urtw_softc *, int, uint8_t *); static usb_error_t urtw_write8e(struct urtw_softc *, int, uint8_t); static usb_error_t urtw_8180_set_anaparam(struct urtw_softc *, uint32_t); static usb_error_t urtw_8185_set_anaparam2(struct urtw_softc *, uint32_t); static usb_error_t urtw_intr_enable(struct urtw_softc *); static usb_error_t urtw_intr_disable(struct urtw_softc *); static usb_error_t urtw_reset(struct urtw_softc *); static usb_error_t urtw_led_on(struct urtw_softc *, int); static usb_error_t urtw_led_ctl(struct urtw_softc *, int); static usb_error_t urtw_led_blink(struct urtw_softc *); static usb_error_t urtw_led_mode0(struct urtw_softc *, int); static usb_error_t urtw_led_mode1(struct urtw_softc *, int); static usb_error_t urtw_led_mode2(struct urtw_softc *, int); static usb_error_t urtw_led_mode3(struct urtw_softc *, int); static usb_error_t urtw_rx_setconf(struct urtw_softc *); static usb_error_t urtw_rx_enable(struct urtw_softc *); static usb_error_t urtw_tx_enable(struct urtw_softc *sc); static void urtw_free_tx_data_list(struct urtw_softc *); static void urtw_free_rx_data_list(struct urtw_softc *); static void urtw_free_data_list(struct urtw_softc *, struct urtw_data data[], int, int); static usb_error_t urtw_adapter_start(struct urtw_softc *); static usb_error_t urtw_adapter_start_b(struct urtw_softc *); static usb_error_t urtw_set_mode(struct urtw_softc *, uint32_t); static usb_error_t urtw_8187b_cmd_reset(struct urtw_softc *); static usb_error_t urtw_do_request(struct urtw_softc *, struct usb_device_request *, void *); static usb_error_t urtw_8225v2b_set_txpwrlvl(struct urtw_softc *, int); static usb_error_t urtw_led_off(struct urtw_softc *, int); static void urtw_abort_xfers(struct urtw_softc *); static struct urtw_data * urtw_getbuf(struct urtw_softc *sc); static int urtw_compute_txtime(uint16_t, uint16_t, uint8_t, uint8_t); static void urtw_updateslot(struct ieee80211com *); static void urtw_updateslottask(void *, int); static void urtw_sysctl_node(struct urtw_softc *); static int urtw_match(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != URTW_CONFIG_INDEX) return (ENXIO); if (uaa->info.bIfaceIndex != URTW_IFACE_INDEX) return (ENXIO); return (usbd_lookup_id_by_uaa(urtw_devs, sizeof(urtw_devs), uaa)); } static int urtw_attach(device_t dev) { const struct usb_config *setup_start; int ret = ENXIO; struct urtw_softc *sc = device_get_softc(dev); struct usb_attach_arg *uaa = device_get_ivars(dev); struct ieee80211com *ic = &sc->sc_ic; - uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)]; + uint8_t bands[IEEE80211_MODE_BYTES]; uint8_t iface_index = URTW_IFACE_INDEX; /* XXX */ uint16_t n_setup; uint32_t data; usb_error_t error; device_set_usb_desc(dev); sc->sc_dev = dev; sc->sc_udev = uaa->device; if (USB_GET_DRIVER_INFO(uaa) == URTW_REV_RTL8187B) sc->sc_flags |= URTW_RTL8187B; #ifdef URTW_DEBUG sc->sc_debug = urtw_debug; #endif mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, MTX_DEF); usb_callout_init_mtx(&sc->sc_led_ch, &sc->sc_mtx, 0); TASK_INIT(&sc->sc_led_task, 0, urtw_ledtask, sc); TASK_INIT(&sc->sc_updateslot_task, 0, urtw_updateslottask, sc); callout_init(&sc->sc_watchdog_ch, 0); mbufq_init(&sc->sc_snd, ifqmaxlen); if (sc->sc_flags & URTW_RTL8187B) { setup_start = urtw_8187b_usbconfig; n_setup = URTW_8187B_N_XFERS; } else { setup_start = urtw_8187l_usbconfig; n_setup = URTW_8187L_N_XFERS; } error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, setup_start, n_setup, sc, &sc->sc_mtx); if (error) { device_printf(dev, "could not allocate USB transfers, " "err=%s\n", usbd_errstr(error)); ret = ENXIO; goto fail0; } if (sc->sc_flags & URTW_RTL8187B) { sc->sc_tx_dma_buf = usbd_xfer_get_frame_buffer(sc->sc_xfer[ URTW_8187B_BULK_TX_BE], 0); } else { sc->sc_tx_dma_buf = usbd_xfer_get_frame_buffer(sc->sc_xfer[ URTW_8187L_BULK_TX_LOW], 0); } URTW_LOCK(sc); urtw_read32_m(sc, URTW_RX, &data); sc->sc_epromtype = (data & URTW_RX_9356SEL) ? URTW_EEPROM_93C56 : URTW_EEPROM_93C46; error = urtw_get_rfchip(sc); if (error != 0) goto fail; error = urtw_get_macaddr(sc); if (error != 0) goto fail; error = urtw_get_txpwr(sc); if (error != 0) goto fail; error = urtw_led_init(sc); if (error != 0) goto fail; URTW_UNLOCK(sc); sc->sc_rts_retry = URTW_DEFAULT_RTS_RETRY; sc->sc_tx_retry = URTW_DEFAULT_TX_RETRY; sc->sc_currate = 3; sc->sc_preamble_mode = urtw_preamble_mode; ic->ic_softc = sc; ic->ic_name = device_get_nameunit(dev); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA | /* station mode */ IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_TXPMGT | /* tx power management */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_BGSCAN | /* capable of bg scanning */ IEEE80211_C_WPA; /* 802.11i */ memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); ieee80211_init_channels(ic, NULL, bands); ieee80211_ifattach(ic); ic->ic_raw_xmit = urtw_raw_xmit; ic->ic_scan_start = urtw_scan_start; ic->ic_scan_end = urtw_scan_end; ic->ic_set_channel = urtw_set_channel; ic->ic_updateslot = urtw_updateslot; ic->ic_vap_create = urtw_vap_create; ic->ic_vap_delete = urtw_vap_delete; ic->ic_update_mcast = urtw_update_mcast; ic->ic_parent = urtw_parent; ic->ic_transmit = urtw_transmit; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), URTW_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), URTW_RX_RADIOTAP_PRESENT); urtw_sysctl_node(sc); if (bootverbose) ieee80211_announce(ic); return (0); fail: URTW_UNLOCK(sc); usbd_transfer_unsetup(sc->sc_xfer, (sc->sc_flags & URTW_RTL8187B) ? URTW_8187B_N_XFERS : URTW_8187L_N_XFERS); fail0: return (ret); } static int urtw_detach(device_t dev) { struct urtw_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; unsigned int x; unsigned int n_xfers; /* Prevent further ioctls */ URTW_LOCK(sc); sc->sc_flags |= URTW_DETACHED; urtw_stop(sc); URTW_UNLOCK(sc); ieee80211_draintask(ic, &sc->sc_updateslot_task); ieee80211_draintask(ic, &sc->sc_led_task); usb_callout_drain(&sc->sc_led_ch); callout_drain(&sc->sc_watchdog_ch); n_xfers = (sc->sc_flags & URTW_RTL8187B) ? URTW_8187B_N_XFERS : URTW_8187L_N_XFERS; /* prevent further allocations from RX/TX data lists */ URTW_LOCK(sc); STAILQ_INIT(&sc->sc_tx_active); STAILQ_INIT(&sc->sc_tx_inactive); STAILQ_INIT(&sc->sc_tx_pending); STAILQ_INIT(&sc->sc_rx_active); STAILQ_INIT(&sc->sc_rx_inactive); URTW_UNLOCK(sc); /* drain USB transfers */ for (x = 0; x != n_xfers; x++) usbd_transfer_drain(sc->sc_xfer[x]); /* free data buffers */ URTW_LOCK(sc); urtw_free_tx_data_list(sc); urtw_free_rx_data_list(sc); URTW_UNLOCK(sc); /* free USB transfers and some data buffers */ usbd_transfer_unsetup(sc->sc_xfer, n_xfers); ieee80211_ifdetach(ic); mbufq_drain(&sc->sc_snd); mtx_destroy(&sc->sc_mtx); return (0); } static void urtw_free_tx_data_list(struct urtw_softc *sc) { urtw_free_data_list(sc, sc->sc_tx, URTW_TX_DATA_LIST_COUNT, 0); } static void urtw_free_rx_data_list(struct urtw_softc *sc) { urtw_free_data_list(sc, sc->sc_rx, URTW_RX_DATA_LIST_COUNT, 1); } static void urtw_free_data_list(struct urtw_softc *sc, struct urtw_data data[], int ndata, int fillmbuf) { int i; for (i = 0; i < ndata; i++) { struct urtw_data *dp = &data[i]; if (fillmbuf == 1) { if (dp->m != NULL) { m_freem(dp->m); dp->m = NULL; dp->buf = NULL; } } else { dp->buf = NULL; } if (dp->ni != NULL) { ieee80211_free_node(dp->ni); dp->ni = NULL; } } } static struct ieee80211vap * urtw_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct urtw_vap *uvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return (NULL); uvp = malloc(sizeof(struct urtw_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &uvp->vap; /* enable s/w bmiss handling for sta mode */ if (ieee80211_vap_setup(ic, vap, name, unit, opmode, flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { /* out of memory */ free(uvp, M_80211_VAP); return (NULL); } /* override state transition machine */ uvp->newstate = vap->iv_newstate; vap->iv_newstate = urtw_newstate; /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return (vap); } static void urtw_vap_delete(struct ieee80211vap *vap) { struct urtw_vap *uvp = URTW_VAP(vap); ieee80211_vap_detach(vap); free(uvp, M_80211_VAP); } static void urtw_init(struct urtw_softc *sc) { usb_error_t error; int ret; URTW_ASSERT_LOCKED(sc); if (sc->sc_flags & URTW_RUNNING) urtw_stop(sc); error = (sc->sc_flags & URTW_RTL8187B) ? urtw_adapter_start_b(sc) : urtw_adapter_start(sc); if (error != 0) goto fail; /* reset softc variables */ sc->sc_txtimer = 0; if (!(sc->sc_flags & URTW_INIT_ONCE)) { ret = urtw_alloc_rx_data_list(sc); if (ret != 0) goto fail; ret = urtw_alloc_tx_data_list(sc); if (ret != 0) goto fail; sc->sc_flags |= URTW_INIT_ONCE; } error = urtw_rx_enable(sc); if (error != 0) goto fail; error = urtw_tx_enable(sc); if (error != 0) goto fail; if (sc->sc_flags & URTW_RTL8187B) usbd_transfer_start(sc->sc_xfer[URTW_8187B_BULK_TX_STATUS]); sc->sc_flags |= URTW_RUNNING; callout_reset(&sc->sc_watchdog_ch, hz, urtw_watchdog, sc); fail: return; } static usb_error_t urtw_adapter_start_b(struct urtw_softc *sc) { uint8_t data8; usb_error_t error; error = urtw_set_mode(sc, URTW_EPROM_CMD_CONFIG); if (error) goto fail; urtw_read8_m(sc, URTW_CONFIG3, &data8); urtw_write8_m(sc, URTW_CONFIG3, data8 | URTW_CONFIG3_ANAPARAM_WRITE | URTW_CONFIG3_GNT_SELECT); urtw_write32_m(sc, URTW_ANAPARAM2, URTW_8187B_8225_ANAPARAM2_ON); urtw_write32_m(sc, URTW_ANAPARAM, URTW_8187B_8225_ANAPARAM_ON); urtw_write8_m(sc, URTW_ANAPARAM3, URTW_8187B_8225_ANAPARAM3_ON); urtw_write8_m(sc, 0x61, 0x10); urtw_read8_m(sc, 0x62, &data8); urtw_write8_m(sc, 0x62, data8 & ~(1 << 5)); urtw_write8_m(sc, 0x62, data8 | (1 << 5)); urtw_read8_m(sc, URTW_CONFIG3, &data8); data8 &= ~URTW_CONFIG3_ANAPARAM_WRITE; urtw_write8_m(sc, URTW_CONFIG3, data8); error = urtw_set_mode(sc, URTW_EPROM_CMD_NORMAL); if (error) goto fail; error = urtw_8187b_cmd_reset(sc); if (error) goto fail; error = sc->sc_rf_init(sc); if (error != 0) goto fail; urtw_write8_m(sc, URTW_CMD, URTW_CMD_RX_ENABLE | URTW_CMD_TX_ENABLE); /* fix RTL8187B RX stall */ error = urtw_intr_enable(sc); if (error) goto fail; error = urtw_write8e(sc, 0x41, 0xf4); if (error) goto fail; error = urtw_write8e(sc, 0x40, 0x00); if (error) goto fail; error = urtw_write8e(sc, 0x42, 0x00); if (error) goto fail; error = urtw_write8e(sc, 0x42, 0x01); if (error) goto fail; error = urtw_write8e(sc, 0x40, 0x0f); if (error) goto fail; error = urtw_write8e(sc, 0x42, 0x00); if (error) goto fail; error = urtw_write8e(sc, 0x42, 0x01); if (error) goto fail; urtw_read8_m(sc, 0xdb, &data8); urtw_write8_m(sc, 0xdb, data8 | (1 << 2)); urtw_write16_m(sc, 0x372, 0x59fa); urtw_write16_m(sc, 0x374, 0x59d2); urtw_write16_m(sc, 0x376, 0x59d2); urtw_write16_m(sc, 0x378, 0x19fa); urtw_write16_m(sc, 0x37a, 0x19fa); urtw_write16_m(sc, 0x37c, 0x00d0); urtw_write8_m(sc, 0x61, 0); urtw_write8_m(sc, 0x180, 0x0f); urtw_write8_m(sc, 0x183, 0x03); urtw_write8_m(sc, 0xda, 0x10); urtw_write8_m(sc, 0x24d, 0x08); urtw_write32_m(sc, URTW_HSSI_PARA, 0x0600321b); urtw_write16_m(sc, 0x1ec, 0x800); /* RX MAX SIZE */ fail: return (error); } static usb_error_t urtw_adapter_start(struct urtw_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; usb_error_t error; error = urtw_reset(sc); if (error) goto fail; urtw_write8_m(sc, URTW_ADDR_MAGIC1, 0); urtw_write8_m(sc, URTW_GPIO, 0); /* for led */ urtw_write8_m(sc, URTW_ADDR_MAGIC1, 4); error = urtw_led_ctl(sc, URTW_LED_CTL_POWER_ON); if (error != 0) goto fail; error = urtw_set_mode(sc, URTW_EPROM_CMD_CONFIG); if (error) goto fail; /* applying MAC address again. */ urtw_write32_m(sc, URTW_MAC0, ((uint32_t *)ic->ic_macaddr)[0]); urtw_write16_m(sc, URTW_MAC4, ((uint32_t *)ic->ic_macaddr)[1] & 0xffff); error = urtw_set_mode(sc, URTW_EPROM_CMD_NORMAL); if (error) goto fail; error = urtw_update_msr(sc); if (error) goto fail; urtw_write32_m(sc, URTW_INT_TIMEOUT, 0); urtw_write8_m(sc, URTW_WPA_CONFIG, 0); urtw_write8_m(sc, URTW_RATE_FALLBACK, URTW_RATE_FALLBACK_ENABLE | 0x1); error = urtw_set_rate(sc); if (error != 0) goto fail; error = sc->sc_rf_init(sc); if (error != 0) goto fail; if (sc->sc_rf_set_sens != NULL) sc->sc_rf_set_sens(sc, sc->sc_sens); /* XXX correct? to call write16 */ urtw_write16_m(sc, URTW_PSR, 1); urtw_write16_m(sc, URTW_ADDR_MAGIC2, 0x10); urtw_write8_m(sc, URTW_TALLY_SEL, 0x80); urtw_write8_m(sc, URTW_ADDR_MAGIC3, 0x60); /* XXX correct? to call write16 */ urtw_write16_m(sc, URTW_PSR, 0); urtw_write8_m(sc, URTW_ADDR_MAGIC1, 4); error = urtw_intr_enable(sc); if (error != 0) goto fail; fail: return (error); } static usb_error_t urtw_set_mode(struct urtw_softc *sc, uint32_t mode) { uint8_t data; usb_error_t error; urtw_read8_m(sc, URTW_EPROM_CMD, &data); data = (data & ~URTW_EPROM_CMD_MASK) | (mode << URTW_EPROM_CMD_SHIFT); data = data & ~(URTW_EPROM_CS | URTW_EPROM_CK); urtw_write8_m(sc, URTW_EPROM_CMD, data); fail: return (error); } static usb_error_t urtw_8187b_cmd_reset(struct urtw_softc *sc) { int i; uint8_t data8; usb_error_t error; /* XXX the code can be duplicate with urtw_reset(). */ urtw_read8_m(sc, URTW_CMD, &data8); data8 = (data8 & 0x2) | URTW_CMD_RST; urtw_write8_m(sc, URTW_CMD, data8); for (i = 0; i < 20; i++) { usb_pause_mtx(&sc->sc_mtx, 2); urtw_read8_m(sc, URTW_CMD, &data8); if (!(data8 & URTW_CMD_RST)) break; } if (i >= 20) { device_printf(sc->sc_dev, "reset timeout\n"); goto fail; } fail: return (error); } static usb_error_t urtw_do_request(struct urtw_softc *sc, struct usb_device_request *req, void *data) { usb_error_t err; int ntries = 10; URTW_ASSERT_LOCKED(sc); while (ntries--) { err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, req, data, 0, NULL, 250 /* ms */); if (err == 0) break; DPRINTF(sc, URTW_DEBUG_INIT, "Control request failed, %s (retrying)\n", usbd_errstr(err)); usb_pause_mtx(&sc->sc_mtx, hz / 100); } return (err); } static void urtw_stop(struct urtw_softc *sc) { uint8_t data8; usb_error_t error; URTW_ASSERT_LOCKED(sc); sc->sc_flags &= ~URTW_RUNNING; error = urtw_intr_disable(sc); if (error) goto fail; urtw_read8_m(sc, URTW_CMD, &data8); data8 &= ~(URTW_CMD_RX_ENABLE | URTW_CMD_TX_ENABLE); urtw_write8_m(sc, URTW_CMD, data8); error = sc->sc_rf_stop(sc); if (error != 0) goto fail; error = urtw_set_mode(sc, URTW_EPROM_CMD_CONFIG); if (error) goto fail; urtw_read8_m(sc, URTW_CONFIG4, &data8); urtw_write8_m(sc, URTW_CONFIG4, data8 | URTW_CONFIG4_VCOOFF); error = urtw_set_mode(sc, URTW_EPROM_CMD_NORMAL); if (error) goto fail; fail: if (error) device_printf(sc->sc_dev, "failed to stop (%s)\n", usbd_errstr(error)); usb_callout_stop(&sc->sc_led_ch); callout_stop(&sc->sc_watchdog_ch); urtw_abort_xfers(sc); } static void urtw_abort_xfers(struct urtw_softc *sc) { int i, max; URTW_ASSERT_LOCKED(sc); max = (sc->sc_flags & URTW_RTL8187B) ? URTW_8187B_N_XFERS : URTW_8187L_N_XFERS; /* abort any pending transfers */ for (i = 0; i < max; i++) usbd_transfer_stop(sc->sc_xfer[i]); } static void urtw_parent(struct ieee80211com *ic) { struct urtw_softc *sc = ic->ic_softc; int startall = 0; URTW_LOCK(sc); if (sc->sc_flags & URTW_DETACHED) { URTW_UNLOCK(sc); return; } if (ic->ic_nrunning > 0) { if (sc->sc_flags & URTW_RUNNING) { if (ic->ic_promisc > 0 || ic->ic_allmulti > 0) urtw_set_multi(sc); } else { urtw_init(sc); startall = 1; } } else if (sc->sc_flags & URTW_RUNNING) urtw_stop(sc); URTW_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } static int urtw_transmit(struct ieee80211com *ic, struct mbuf *m) { struct urtw_softc *sc = ic->ic_softc; int error; URTW_LOCK(sc); if ((sc->sc_flags & URTW_RUNNING) == 0) { URTW_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { URTW_UNLOCK(sc); return (error); } urtw_start(sc); URTW_UNLOCK(sc); return (0); } static void urtw_start(struct urtw_softc *sc) { struct urtw_data *bf; struct ieee80211_node *ni; struct mbuf *m; URTW_ASSERT_LOCKED(sc); if ((sc->sc_flags & URTW_RUNNING) == 0) return; while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { bf = urtw_getbuf(sc); if (bf == NULL) { mbufq_prepend(&sc->sc_snd, m); break; } ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; if (urtw_tx_start(sc, ni, m, bf, URTW_PRIORITY_NORMAL) != 0) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); ieee80211_free_node(ni); break; } sc->sc_txtimer = 5; callout_reset(&sc->sc_watchdog_ch, hz, urtw_watchdog, sc); } } static int urtw_alloc_data_list(struct urtw_softc *sc, struct urtw_data data[], int ndata, int maxsz, void *dma_buf) { int i, error; for (i = 0; i < ndata; i++) { struct urtw_data *dp = &data[i]; dp->sc = sc; if (dma_buf == NULL) { dp->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (dp->m == NULL) { device_printf(sc->sc_dev, "could not allocate rx mbuf\n"); error = ENOMEM; goto fail; } dp->buf = mtod(dp->m, uint8_t *); } else { dp->m = NULL; dp->buf = ((uint8_t *)dma_buf) + (i * maxsz); } dp->ni = NULL; } return (0); fail: urtw_free_data_list(sc, data, ndata, 1); return (error); } static int urtw_alloc_rx_data_list(struct urtw_softc *sc) { int error, i; error = urtw_alloc_data_list(sc, sc->sc_rx, URTW_RX_DATA_LIST_COUNT, MCLBYTES, NULL /* mbufs */); if (error != 0) return (error); STAILQ_INIT(&sc->sc_rx_active); STAILQ_INIT(&sc->sc_rx_inactive); for (i = 0; i < URTW_RX_DATA_LIST_COUNT; i++) STAILQ_INSERT_HEAD(&sc->sc_rx_inactive, &sc->sc_rx[i], next); return (0); } static int urtw_alloc_tx_data_list(struct urtw_softc *sc) { int error, i; error = urtw_alloc_data_list(sc, sc->sc_tx, URTW_TX_DATA_LIST_COUNT, URTW_TX_MAXSIZE, sc->sc_tx_dma_buf /* no mbufs */); if (error != 0) return (error); STAILQ_INIT(&sc->sc_tx_active); STAILQ_INIT(&sc->sc_tx_inactive); STAILQ_INIT(&sc->sc_tx_pending); for (i = 0; i < URTW_TX_DATA_LIST_COUNT; i++) STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, &sc->sc_tx[i], next); return (0); } static int urtw_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct urtw_softc *sc = ic->ic_softc; struct urtw_data *bf; /* prevent management frames from being sent if we're not ready */ if (!(sc->sc_flags & URTW_RUNNING)) { m_freem(m); return ENETDOWN; } URTW_LOCK(sc); bf = urtw_getbuf(sc); if (bf == NULL) { m_freem(m); URTW_UNLOCK(sc); return (ENOBUFS); /* XXX */ } if (urtw_tx_start(sc, ni, m, bf, URTW_PRIORITY_LOW) != 0) { STAILQ_INSERT_HEAD(&sc->sc_tx_inactive, bf, next); URTW_UNLOCK(sc); return (EIO); } URTW_UNLOCK(sc); sc->sc_txtimer = 5; return (0); } static void urtw_scan_start(struct ieee80211com *ic) { /* XXX do nothing? */ } static void urtw_scan_end(struct ieee80211com *ic) { /* XXX do nothing? */ } static void urtw_set_channel(struct ieee80211com *ic) { struct urtw_softc *sc = ic->ic_softc; uint32_t data, orig; usb_error_t error; /* * if the user set a channel explicitly using ifconfig(8) this function * can be called earlier than we're expected that in some cases the * initialization would be failed if setting a channel is called before * the init have done. */ if (!(sc->sc_flags & URTW_RUNNING)) return; if (sc->sc_curchan != NULL && sc->sc_curchan == ic->ic_curchan) return; URTW_LOCK(sc); /* * during changing th channel we need to temporarily be disable * TX. */ urtw_read32_m(sc, URTW_TX_CONF, &orig); data = orig & ~URTW_TX_LOOPBACK_MASK; urtw_write32_m(sc, URTW_TX_CONF, data | URTW_TX_LOOPBACK_MAC); error = sc->sc_rf_set_chan(sc, ieee80211_chan2ieee(ic, ic->ic_curchan)); if (error != 0) goto fail; usb_pause_mtx(&sc->sc_mtx, 10); urtw_write32_m(sc, URTW_TX_CONF, orig); urtw_write16_m(sc, URTW_ATIM_WND, 2); urtw_write16_m(sc, URTW_ATIM_TR_ITV, 100); urtw_write16_m(sc, URTW_BEACON_INTERVAL, 100); urtw_write16_m(sc, URTW_BEACON_INTERVAL_TIME, 100); fail: URTW_UNLOCK(sc); sc->sc_curchan = ic->ic_curchan; if (error != 0) device_printf(sc->sc_dev, "could not change the channel\n"); } static void urtw_update_mcast(struct ieee80211com *ic) { /* XXX do nothing? */ } static int urtw_tx_start(struct urtw_softc *sc, struct ieee80211_node *ni, struct mbuf *m0, struct urtw_data *data, int prior) { struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *); struct ieee80211_key *k; const struct ieee80211_txparam *tp; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = ni->ni_vap; struct usb_xfer *rtl8187b_pipes[URTW_8187B_TXPIPE_MAX] = { sc->sc_xfer[URTW_8187B_BULK_TX_BE], sc->sc_xfer[URTW_8187B_BULK_TX_BK], sc->sc_xfer[URTW_8187B_BULK_TX_VI], sc->sc_xfer[URTW_8187B_BULK_TX_VO] }; struct usb_xfer *xfer; int dur = 0, rtsdur = 0, rtsenable = 0, ctsenable = 0, rate, pkttime = 0, txdur = 0, isshort = 0, xferlen; uint16_t acktime, rtstime, ctstime; uint32_t flags; usb_error_t error; URTW_ASSERT_LOCKED(sc); /* * Software crypto. */ if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { device_printf(sc->sc_dev, "ieee80211_crypto_encap returns NULL.\n"); /* XXX we don't expect the fragmented frames */ m_freem(m0); return (ENOBUFS); } /* in case packet header moved, reset pointer */ wh = mtod(m0, struct ieee80211_frame *); } if (ieee80211_radiotap_active_vap(vap)) { struct urtw_tx_radiotap_header *tap = &sc->sc_txtap; /* XXX Are variables correct? */ tap->wt_flags = 0; tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); ieee80211_radiotap_tx(vap, m0); } if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT || (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) { tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; rate = tp->mgmtrate; } else { tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; /* for data frames */ if (IEEE80211_IS_MULTICAST(wh->i_addr1)) rate = tp->mcastrate; else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) rate = tp->ucastrate; else rate = urtw_rtl2rate(sc->sc_currate); } sc->sc_stats.txrates[sc->sc_currate]++; if (IEEE80211_IS_MULTICAST(wh->i_addr1)) txdur = pkttime = urtw_compute_txtime(m0->m_pkthdr.len + IEEE80211_CRC_LEN, rate, 0, 0); else { acktime = urtw_compute_txtime(14, 2,0, 0); if ((m0->m_pkthdr.len + 4) > vap->iv_rtsthreshold) { rtsenable = 1; ctsenable = 0; rtstime = urtw_compute_txtime(URTW_ACKCTS_LEN, 2, 0, 0); ctstime = urtw_compute_txtime(14, 2, 0, 0); pkttime = urtw_compute_txtime(m0->m_pkthdr.len + IEEE80211_CRC_LEN, rate, 0, isshort); rtsdur = ctstime + pkttime + acktime + 3 * URTW_ASIFS_TIME; txdur = rtstime + rtsdur; } else { rtsenable = ctsenable = rtsdur = 0; pkttime = urtw_compute_txtime(m0->m_pkthdr.len + IEEE80211_CRC_LEN, rate, 0, isshort); txdur = pkttime + URTW_ASIFS_TIME + acktime; } if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) dur = urtw_compute_txtime(m0->m_pkthdr.len + IEEE80211_CRC_LEN, rate, 0, isshort) + 3 * URTW_ASIFS_TIME + 2 * acktime; else dur = URTW_ASIFS_TIME + acktime; } USETW(wh->i_dur, dur); xferlen = m0->m_pkthdr.len; xferlen += (sc->sc_flags & URTW_RTL8187B) ? (4 * 8) : (4 * 3); if ((0 == xferlen % 64) || (0 == xferlen % 512)) xferlen += 1; memset(data->buf, 0, URTW_TX_MAXSIZE); flags = m0->m_pkthdr.len & 0xfff; flags |= URTW_TX_FLAG_NO_ENC; if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && (sc->sc_preamble_mode == URTW_PREAMBLE_MODE_SHORT) && (sc->sc_currate != 0)) flags |= URTW_TX_FLAG_SPLCP; if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) flags |= URTW_TX_FLAG_MOREFRAG; flags |= (sc->sc_currate & 0xf) << URTW_TX_FLAG_TXRATE_SHIFT; if (sc->sc_flags & URTW_RTL8187B) { struct urtw_8187b_txhdr *tx; tx = (struct urtw_8187b_txhdr *)data->buf; if (ctsenable) flags |= URTW_TX_FLAG_CTS; if (rtsenable) { flags |= URTW_TX_FLAG_RTS; flags |= (urtw_rate2rtl(11) & 0xf) << URTW_TX_FLAG_RTSRATE_SHIFT; tx->rtsdur = rtsdur; } tx->flag = htole32(flags); tx->txdur = txdur; if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT && (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == IEEE80211_FC0_SUBTYPE_PROBE_RESP) tx->retry = 1; else tx->retry = URTW_TX_MAXRETRY; m_copydata(m0, 0, m0->m_pkthdr.len, (uint8_t *)(tx + 1)); } else { struct urtw_8187l_txhdr *tx; tx = (struct urtw_8187l_txhdr *)data->buf; if (rtsenable) { flags |= URTW_TX_FLAG_RTS; tx->rtsdur = rtsdur; } flags |= (urtw_rate2rtl(11) & 0xf) << URTW_TX_FLAG_RTSRATE_SHIFT; tx->flag = htole32(flags); tx->retry = 3; /* CW minimum */ tx->retry = 7 << 4; /* CW maximum */ tx->retry = URTW_TX_MAXRETRY << 8; /* retry limitation */ m_copydata(m0, 0, m0->m_pkthdr.len, (uint8_t *)(tx + 1)); } data->buflen = xferlen; data->ni = ni; data->m = m0; if (sc->sc_flags & URTW_RTL8187B) { switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { case IEEE80211_FC0_TYPE_CTL: case IEEE80211_FC0_TYPE_MGT: xfer = sc->sc_xfer[URTW_8187B_BULK_TX_EP12]; break; default: KASSERT(M_WME_GETAC(m0) < URTW_8187B_TXPIPE_MAX, ("unsupported WME pipe %d", M_WME_GETAC(m0))); xfer = rtl8187b_pipes[M_WME_GETAC(m0)]; break; } } else xfer = (prior == URTW_PRIORITY_LOW) ? sc->sc_xfer[URTW_8187L_BULK_TX_LOW] : sc->sc_xfer[URTW_8187L_BULK_TX_NORMAL]; STAILQ_INSERT_TAIL(&sc->sc_tx_pending, data, next); usbd_transfer_start(xfer); error = urtw_led_ctl(sc, URTW_LED_CTL_TX); if (error != 0) device_printf(sc->sc_dev, "could not control LED (%d)\n", error); return (0); } static int urtw_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct ieee80211com *ic = vap->iv_ic; struct urtw_softc *sc = ic->ic_softc; struct urtw_vap *uvp = URTW_VAP(vap); struct ieee80211_node *ni; usb_error_t error = 0; DPRINTF(sc, URTW_DEBUG_STATE, "%s: %s -> %s\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); sc->sc_state = nstate; IEEE80211_UNLOCK(ic); URTW_LOCK(sc); usb_callout_stop(&sc->sc_led_ch); callout_stop(&sc->sc_watchdog_ch); switch (nstate) { case IEEE80211_S_INIT: case IEEE80211_S_SCAN: case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: break; case IEEE80211_S_RUN: ni = ieee80211_ref_node(vap->iv_bss); /* setting bssid. */ urtw_write32_m(sc, URTW_BSSID, ((uint32_t *)ni->ni_bssid)[0]); urtw_write16_m(sc, URTW_BSSID + 4, ((uint16_t *)ni->ni_bssid)[2]); urtw_update_msr(sc); /* XXX maybe the below would be incorrect. */ urtw_write16_m(sc, URTW_ATIM_WND, 2); urtw_write16_m(sc, URTW_ATIM_TR_ITV, 100); urtw_write16_m(sc, URTW_BEACON_INTERVAL, 0x64); urtw_write16_m(sc, URTW_BEACON_INTERVAL_TIME, 100); error = urtw_led_ctl(sc, URTW_LED_CTL_LINK); if (error != 0) device_printf(sc->sc_dev, "could not control LED (%d)\n", error); ieee80211_free_node(ni); break; default: break; } fail: URTW_UNLOCK(sc); IEEE80211_LOCK(ic); return (uvp->newstate(vap, nstate, arg)); } static void urtw_watchdog(void *arg) { struct urtw_softc *sc = arg; if (sc->sc_txtimer > 0) { if (--sc->sc_txtimer == 0) { device_printf(sc->sc_dev, "device timeout\n"); counter_u64_add(sc->sc_ic.ic_oerrors, 1); return; } callout_reset(&sc->sc_watchdog_ch, hz, urtw_watchdog, sc); } } static void urtw_set_multi(void *arg) { /* XXX don't know how to set a device. Lack of docs. */ } static usb_error_t urtw_set_rate(struct urtw_softc *sc) { int i, basic_rate, min_rr_rate, max_rr_rate; uint16_t data; usb_error_t error; basic_rate = urtw_rate2rtl(48); min_rr_rate = urtw_rate2rtl(12); max_rr_rate = urtw_rate2rtl(48); urtw_write8_m(sc, URTW_RESP_RATE, max_rr_rate << URTW_RESP_MAX_RATE_SHIFT | min_rr_rate << URTW_RESP_MIN_RATE_SHIFT); urtw_read16_m(sc, URTW_BRSR, &data); data &= ~URTW_BRSR_MBR_8185; for (i = 0; i <= basic_rate; i++) data |= (1 << i); urtw_write16_m(sc, URTW_BRSR, data); fail: return (error); } static uint16_t urtw_rate2rtl(uint32_t rate) { int i; for (i = 0; i < nitems(urtw_ratetable); i++) { if (rate == urtw_ratetable[i].reg) return urtw_ratetable[i].val; } return (3); } static uint16_t urtw_rtl2rate(uint32_t rate) { int i; for (i = 0; i < nitems(urtw_ratetable); i++) { if (rate == urtw_ratetable[i].val) return urtw_ratetable[i].reg; } return (0); } static usb_error_t urtw_update_msr(struct urtw_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint8_t data; usb_error_t error; urtw_read8_m(sc, URTW_MSR, &data); data &= ~URTW_MSR_LINK_MASK; if (sc->sc_state == IEEE80211_S_RUN) { switch (ic->ic_opmode) { case IEEE80211_M_STA: case IEEE80211_M_MONITOR: data |= URTW_MSR_LINK_STA; if (sc->sc_flags & URTW_RTL8187B) data |= URTW_MSR_LINK_ENEDCA; break; case IEEE80211_M_IBSS: data |= URTW_MSR_LINK_ADHOC; break; case IEEE80211_M_HOSTAP: data |= URTW_MSR_LINK_HOSTAP; break; default: DPRINTF(sc, URTW_DEBUG_STATE, "unsupported operation mode 0x%x\n", ic->ic_opmode); error = USB_ERR_INVAL; goto fail; } } else data |= URTW_MSR_LINK_NONE; urtw_write8_m(sc, URTW_MSR, data); fail: return (error); } static usb_error_t urtw_read8_c(struct urtw_softc *sc, int val, uint8_t *data) { struct usb_device_request req; usb_error_t error; URTW_ASSERT_LOCKED(sc); req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = URTW_8187_GETREGS_REQ; USETW(req.wValue, (val & 0xff) | 0xff00); USETW(req.wIndex, (val >> 8) & 0x3); USETW(req.wLength, sizeof(uint8_t)); error = urtw_do_request(sc, &req, data); return (error); } static usb_error_t urtw_read16_c(struct urtw_softc *sc, int val, uint16_t *data) { struct usb_device_request req; usb_error_t error; URTW_ASSERT_LOCKED(sc); req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = URTW_8187_GETREGS_REQ; USETW(req.wValue, (val & 0xff) | 0xff00); USETW(req.wIndex, (val >> 8) & 0x3); USETW(req.wLength, sizeof(uint16_t)); error = urtw_do_request(sc, &req, data); return (error); } static usb_error_t urtw_read32_c(struct urtw_softc *sc, int val, uint32_t *data) { struct usb_device_request req; usb_error_t error; URTW_ASSERT_LOCKED(sc); req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = URTW_8187_GETREGS_REQ; USETW(req.wValue, (val & 0xff) | 0xff00); USETW(req.wIndex, (val >> 8) & 0x3); USETW(req.wLength, sizeof(uint32_t)); error = urtw_do_request(sc, &req, data); return (error); } static usb_error_t urtw_write8_c(struct urtw_softc *sc, int val, uint8_t data) { struct usb_device_request req; URTW_ASSERT_LOCKED(sc); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = URTW_8187_SETREGS_REQ; USETW(req.wValue, (val & 0xff) | 0xff00); USETW(req.wIndex, (val >> 8) & 0x3); USETW(req.wLength, sizeof(uint8_t)); return (urtw_do_request(sc, &req, &data)); } static usb_error_t urtw_write16_c(struct urtw_softc *sc, int val, uint16_t data) { struct usb_device_request req; URTW_ASSERT_LOCKED(sc); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = URTW_8187_SETREGS_REQ; USETW(req.wValue, (val & 0xff) | 0xff00); USETW(req.wIndex, (val >> 8) & 0x3); USETW(req.wLength, sizeof(uint16_t)); return (urtw_do_request(sc, &req, &data)); } static usb_error_t urtw_write32_c(struct urtw_softc *sc, int val, uint32_t data) { struct usb_device_request req; URTW_ASSERT_LOCKED(sc); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = URTW_8187_SETREGS_REQ; USETW(req.wValue, (val & 0xff) | 0xff00); USETW(req.wIndex, (val >> 8) & 0x3); USETW(req.wLength, sizeof(uint32_t)); return (urtw_do_request(sc, &req, &data)); } static usb_error_t urtw_get_macaddr(struct urtw_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t data; usb_error_t error; error = urtw_eprom_read32(sc, URTW_EPROM_MACADDR, &data); if (error != 0) goto fail; ic->ic_macaddr[0] = data & 0xff; ic->ic_macaddr[1] = (data & 0xff00) >> 8; error = urtw_eprom_read32(sc, URTW_EPROM_MACADDR + 1, &data); if (error != 0) goto fail; ic->ic_macaddr[2] = data & 0xff; ic->ic_macaddr[3] = (data & 0xff00) >> 8; error = urtw_eprom_read32(sc, URTW_EPROM_MACADDR + 2, &data); if (error != 0) goto fail; ic->ic_macaddr[4] = data & 0xff; ic->ic_macaddr[5] = (data & 0xff00) >> 8; fail: return (error); } static usb_error_t urtw_eprom_read32(struct urtw_softc *sc, uint32_t addr, uint32_t *data) { #define URTW_READCMD_LEN 3 int addrlen, i; int16_t addrstr[8], data16, readcmd[] = { 1, 1, 0 }; usb_error_t error; /* NB: make sure the buffer is initialized */ *data = 0; /* enable EPROM programming */ urtw_write8_m(sc, URTW_EPROM_CMD, URTW_EPROM_CMD_PROGRAM_MODE); DELAY(URTW_EPROM_DELAY); error = urtw_eprom_cs(sc, URTW_EPROM_ENABLE); if (error != 0) goto fail; error = urtw_eprom_ck(sc); if (error != 0) goto fail; error = urtw_eprom_sendbits(sc, readcmd, URTW_READCMD_LEN); if (error != 0) goto fail; if (sc->sc_epromtype == URTW_EEPROM_93C56) { addrlen = 8; addrstr[0] = addr & (1 << 7); addrstr[1] = addr & (1 << 6); addrstr[2] = addr & (1 << 5); addrstr[3] = addr & (1 << 4); addrstr[4] = addr & (1 << 3); addrstr[5] = addr & (1 << 2); addrstr[6] = addr & (1 << 1); addrstr[7] = addr & (1 << 0); } else { addrlen=6; addrstr[0] = addr & (1 << 5); addrstr[1] = addr & (1 << 4); addrstr[2] = addr & (1 << 3); addrstr[3] = addr & (1 << 2); addrstr[4] = addr & (1 << 1); addrstr[5] = addr & (1 << 0); } error = urtw_eprom_sendbits(sc, addrstr, addrlen); if (error != 0) goto fail; error = urtw_eprom_writebit(sc, 0); if (error != 0) goto fail; for (i = 0; i < 16; i++) { error = urtw_eprom_ck(sc); if (error != 0) goto fail; error = urtw_eprom_readbit(sc, &data16); if (error != 0) goto fail; (*data) |= (data16 << (15 - i)); } error = urtw_eprom_cs(sc, URTW_EPROM_DISABLE); if (error != 0) goto fail; error = urtw_eprom_ck(sc); if (error != 0) goto fail; /* now disable EPROM programming */ urtw_write8_m(sc, URTW_EPROM_CMD, URTW_EPROM_CMD_NORMAL_MODE); fail: return (error); #undef URTW_READCMD_LEN } static usb_error_t urtw_eprom_cs(struct urtw_softc *sc, int able) { uint8_t data; usb_error_t error; urtw_read8_m(sc, URTW_EPROM_CMD, &data); if (able == URTW_EPROM_ENABLE) urtw_write8_m(sc, URTW_EPROM_CMD, data | URTW_EPROM_CS); else urtw_write8_m(sc, URTW_EPROM_CMD, data & ~URTW_EPROM_CS); DELAY(URTW_EPROM_DELAY); fail: return (error); } static usb_error_t urtw_eprom_ck(struct urtw_softc *sc) { uint8_t data; usb_error_t error; /* masking */ urtw_read8_m(sc, URTW_EPROM_CMD, &data); urtw_write8_m(sc, URTW_EPROM_CMD, data | URTW_EPROM_CK); DELAY(URTW_EPROM_DELAY); /* unmasking */ urtw_read8_m(sc, URTW_EPROM_CMD, &data); urtw_write8_m(sc, URTW_EPROM_CMD, data & ~URTW_EPROM_CK); DELAY(URTW_EPROM_DELAY); fail: return (error); } static usb_error_t urtw_eprom_readbit(struct urtw_softc *sc, int16_t *data) { uint8_t data8; usb_error_t error; urtw_read8_m(sc, URTW_EPROM_CMD, &data8); *data = (data8 & URTW_EPROM_READBIT) ? 1 : 0; DELAY(URTW_EPROM_DELAY); fail: return (error); } static usb_error_t urtw_eprom_writebit(struct urtw_softc *sc, int16_t bit) { uint8_t data; usb_error_t error; urtw_read8_m(sc, URTW_EPROM_CMD, &data); if (bit != 0) urtw_write8_m(sc, URTW_EPROM_CMD, data | URTW_EPROM_WRITEBIT); else urtw_write8_m(sc, URTW_EPROM_CMD, data & ~URTW_EPROM_WRITEBIT); DELAY(URTW_EPROM_DELAY); fail: return (error); } static usb_error_t urtw_eprom_sendbits(struct urtw_softc *sc, int16_t *buf, int buflen) { int i = 0; usb_error_t error = 0; for (i = 0; i < buflen; i++) { error = urtw_eprom_writebit(sc, buf[i]); if (error != 0) goto fail; error = urtw_eprom_ck(sc); if (error != 0) goto fail; } fail: return (error); } static usb_error_t urtw_get_txpwr(struct urtw_softc *sc) { int i, j; uint32_t data; usb_error_t error; error = urtw_eprom_read32(sc, URTW_EPROM_TXPW_BASE, &data); if (error != 0) goto fail; sc->sc_txpwr_cck_base = data & 0xf; sc->sc_txpwr_ofdm_base = (data >> 4) & 0xf; for (i = 1, j = 0; i < 6; i += 2, j++) { error = urtw_eprom_read32(sc, URTW_EPROM_TXPW0 + j, &data); if (error != 0) goto fail; sc->sc_txpwr_cck[i] = data & 0xf; sc->sc_txpwr_cck[i + 1] = (data & 0xf00) >> 8; sc->sc_txpwr_ofdm[i] = (data & 0xf0) >> 4; sc->sc_txpwr_ofdm[i + 1] = (data & 0xf000) >> 12; } for (i = 1, j = 0; i < 4; i += 2, j++) { error = urtw_eprom_read32(sc, URTW_EPROM_TXPW1 + j, &data); if (error != 0) goto fail; sc->sc_txpwr_cck[i + 6] = data & 0xf; sc->sc_txpwr_cck[i + 6 + 1] = (data & 0xf00) >> 8; sc->sc_txpwr_ofdm[i + 6] = (data & 0xf0) >> 4; sc->sc_txpwr_ofdm[i + 6 + 1] = (data & 0xf000) >> 12; } if (sc->sc_flags & URTW_RTL8187B) { error = urtw_eprom_read32(sc, URTW_EPROM_TXPW2, &data); if (error != 0) goto fail; sc->sc_txpwr_cck[1 + 6 + 4] = data & 0xf; sc->sc_txpwr_ofdm[1 + 6 + 4] = (data & 0xf0) >> 4; error = urtw_eprom_read32(sc, 0x0a, &data); if (error != 0) goto fail; sc->sc_txpwr_cck[2 + 6 + 4] = data & 0xf; sc->sc_txpwr_ofdm[2 + 6 + 4] = (data & 0xf0) >> 4; error = urtw_eprom_read32(sc, 0x1c, &data); if (error != 0) goto fail; sc->sc_txpwr_cck[3 + 6 + 4] = data & 0xf; sc->sc_txpwr_cck[3 + 6 + 4 + 1] = (data & 0xf00) >> 8; sc->sc_txpwr_ofdm[3 + 6 + 4] = (data & 0xf0) >> 4; sc->sc_txpwr_ofdm[3 + 6 + 4 + 1] = (data & 0xf000) >> 12; } else { for (i = 1, j = 0; i < 4; i += 2, j++) { error = urtw_eprom_read32(sc, URTW_EPROM_TXPW2 + j, &data); if (error != 0) goto fail; sc->sc_txpwr_cck[i + 6 + 4] = data & 0xf; sc->sc_txpwr_cck[i + 6 + 4 + 1] = (data & 0xf00) >> 8; sc->sc_txpwr_ofdm[i + 6 + 4] = (data & 0xf0) >> 4; sc->sc_txpwr_ofdm[i + 6 + 4 + 1] = (data & 0xf000) >> 12; } } fail: return (error); } static usb_error_t urtw_get_rfchip(struct urtw_softc *sc) { int ret; uint8_t data8; uint32_t data; usb_error_t error; if (sc->sc_flags & URTW_RTL8187B) { urtw_read8_m(sc, 0xe1, &data8); switch (data8) { case 0: sc->sc_flags |= URTW_RTL8187B_REV_B; break; case 1: sc->sc_flags |= URTW_RTL8187B_REV_D; break; case 2: sc->sc_flags |= URTW_RTL8187B_REV_E; break; default: device_printf(sc->sc_dev, "unknown type: %#x\n", data8); sc->sc_flags |= URTW_RTL8187B_REV_B; break; } } else { urtw_read32_m(sc, URTW_TX_CONF, &data); switch (data & URTW_TX_HWMASK) { case URTW_TX_R8187vD_B: sc->sc_flags |= URTW_RTL8187B; break; case URTW_TX_R8187vD: break; default: device_printf(sc->sc_dev, "unknown RTL8187L type: %#x\n", data & URTW_TX_HWMASK); break; } } error = urtw_eprom_read32(sc, URTW_EPROM_RFCHIPID, &data); if (error != 0) goto fail; switch (data & 0xff) { case URTW_EPROM_RFCHIPID_RTL8225U: error = urtw_8225_isv2(sc, &ret); if (error != 0) goto fail; if (ret == 0) { sc->sc_rf_init = urtw_8225_rf_init; sc->sc_rf_set_sens = urtw_8225_rf_set_sens; sc->sc_rf_set_chan = urtw_8225_rf_set_chan; sc->sc_rf_stop = urtw_8225_rf_stop; } else { sc->sc_rf_init = urtw_8225v2_rf_init; sc->sc_rf_set_chan = urtw_8225v2_rf_set_chan; sc->sc_rf_stop = urtw_8225_rf_stop; } sc->sc_max_sens = URTW_8225_RF_MAX_SENS; sc->sc_sens = URTW_8225_RF_DEF_SENS; break; case URTW_EPROM_RFCHIPID_RTL8225Z2: sc->sc_rf_init = urtw_8225v2b_rf_init; sc->sc_rf_set_chan = urtw_8225v2b_rf_set_chan; sc->sc_max_sens = URTW_8225_RF_MAX_SENS; sc->sc_sens = URTW_8225_RF_DEF_SENS; sc->sc_rf_stop = urtw_8225_rf_stop; break; default: DPRINTF(sc, URTW_DEBUG_STATE, "unsupported RF chip %d\n", data & 0xff); error = USB_ERR_INVAL; goto fail; } device_printf(sc->sc_dev, "%s rf %s hwrev %s\n", (sc->sc_flags & URTW_RTL8187B) ? "rtl8187b" : "rtl8187l", ((data & 0xff) == URTW_EPROM_RFCHIPID_RTL8225U) ? "rtl8225u" : "rtl8225z2", (sc->sc_flags & URTW_RTL8187B) ? ((data8 == 0) ? "b" : (data8 == 1) ? "d" : "e") : "none"); fail: return (error); } static usb_error_t urtw_led_init(struct urtw_softc *sc) { uint32_t rev; usb_error_t error; urtw_read8_m(sc, URTW_PSR, &sc->sc_psr); error = urtw_eprom_read32(sc, URTW_EPROM_SWREV, &rev); if (error != 0) goto fail; switch (rev & URTW_EPROM_CID_MASK) { case URTW_EPROM_CID_ALPHA0: sc->sc_strategy = URTW_SW_LED_MODE1; break; case URTW_EPROM_CID_SERCOMM_PS: sc->sc_strategy = URTW_SW_LED_MODE3; break; case URTW_EPROM_CID_HW_LED: sc->sc_strategy = URTW_HW_LED; break; case URTW_EPROM_CID_RSVD0: case URTW_EPROM_CID_RSVD1: default: sc->sc_strategy = URTW_SW_LED_MODE0; break; } sc->sc_gpio_ledpin = URTW_LED_PIN_GPIO0; fail: return (error); } static usb_error_t urtw_8225_rf_init(struct urtw_softc *sc) { int i; uint16_t data; usb_error_t error; error = urtw_8180_set_anaparam(sc, URTW_8225_ANAPARAM_ON); if (error) goto fail; error = urtw_8225_usb_init(sc); if (error) goto fail; urtw_write32_m(sc, URTW_RF_TIMING, 0x000a8008); urtw_read16_m(sc, URTW_BRSR, &data); /* XXX ??? */ urtw_write16_m(sc, URTW_BRSR, 0xffff); urtw_write32_m(sc, URTW_RF_PARA, 0x100044); error = urtw_set_mode(sc, URTW_EPROM_CMD_CONFIG); if (error) goto fail; urtw_write8_m(sc, URTW_CONFIG3, 0x44); error = urtw_set_mode(sc, URTW_EPROM_CMD_NORMAL); if (error) goto fail; error = urtw_8185_rf_pins_enable(sc); if (error) goto fail; usb_pause_mtx(&sc->sc_mtx, 1000); for (i = 0; i < nitems(urtw_8225_rf_part1); i++) { urtw_8225_write(sc, urtw_8225_rf_part1[i].reg, urtw_8225_rf_part1[i].val); usb_pause_mtx(&sc->sc_mtx, 1); } usb_pause_mtx(&sc->sc_mtx, 100); urtw_8225_write(sc, URTW_8225_ADDR_2_MAGIC, URTW_8225_ADDR_2_DATA_MAGIC1); usb_pause_mtx(&sc->sc_mtx, 200); urtw_8225_write(sc, URTW_8225_ADDR_2_MAGIC, URTW_8225_ADDR_2_DATA_MAGIC2); usb_pause_mtx(&sc->sc_mtx, 200); urtw_8225_write(sc, URTW_8225_ADDR_0_MAGIC, URTW_8225_ADDR_0_DATA_MAGIC3); for (i = 0; i < 95; i++) { urtw_8225_write(sc, URTW_8225_ADDR_1_MAGIC, (uint8_t)(i + 1)); urtw_8225_write(sc, URTW_8225_ADDR_2_MAGIC, urtw_8225_rxgain[i]); } urtw_8225_write(sc, URTW_8225_ADDR_0_MAGIC, URTW_8225_ADDR_0_DATA_MAGIC4); urtw_8225_write(sc, URTW_8225_ADDR_0_MAGIC, URTW_8225_ADDR_0_DATA_MAGIC5); for (i = 0; i < 128; i++) { urtw_8187_write_phy_ofdm(sc, 0xb, urtw_8225_agc[i]); usb_pause_mtx(&sc->sc_mtx, 1); urtw_8187_write_phy_ofdm(sc, 0xa, (uint8_t)i + 0x80); usb_pause_mtx(&sc->sc_mtx, 1); } for (i = 0; i < nitems(urtw_8225_rf_part2); i++) { urtw_8187_write_phy_ofdm(sc, urtw_8225_rf_part2[i].reg, urtw_8225_rf_part2[i].val); usb_pause_mtx(&sc->sc_mtx, 1); } error = urtw_8225_setgain(sc, 4); if (error) goto fail; for (i = 0; i < nitems(urtw_8225_rf_part3); i++) { urtw_8187_write_phy_cck(sc, urtw_8225_rf_part3[i].reg, urtw_8225_rf_part3[i].val); usb_pause_mtx(&sc->sc_mtx, 1); } urtw_write8_m(sc, URTW_TESTR, 0x0d); error = urtw_8225_set_txpwrlvl(sc, 1); if (error) goto fail; urtw_8187_write_phy_cck(sc, 0x10, 0x9b); usb_pause_mtx(&sc->sc_mtx, 1); urtw_8187_write_phy_ofdm(sc, 0x26, 0x90); usb_pause_mtx(&sc->sc_mtx, 1); /* TX ant A, 0x0 for B */ error = urtw_8185_tx_antenna(sc, 0x3); if (error) goto fail; urtw_write32_m(sc, URTW_HSSI_PARA, 0x3dc00002); error = urtw_8225_rf_set_chan(sc, 1); fail: return (error); } static usb_error_t urtw_8185_rf_pins_enable(struct urtw_softc *sc) { usb_error_t error = 0; urtw_write16_m(sc, URTW_RF_PINS_ENABLE, 0x1ff7); fail: return (error); } static usb_error_t urtw_8185_tx_antenna(struct urtw_softc *sc, uint8_t ant) { usb_error_t error; urtw_write8_m(sc, URTW_TX_ANTENNA, ant); usb_pause_mtx(&sc->sc_mtx, 1); fail: return (error); } static usb_error_t urtw_8187_write_phy_ofdm_c(struct urtw_softc *sc, uint8_t addr, uint32_t data) { data = data & 0xff; return urtw_8187_write_phy(sc, addr, data); } static usb_error_t urtw_8187_write_phy_cck_c(struct urtw_softc *sc, uint8_t addr, uint32_t data) { data = data & 0xff; return urtw_8187_write_phy(sc, addr, data | 0x10000); } static usb_error_t urtw_8187_write_phy(struct urtw_softc *sc, uint8_t addr, uint32_t data) { uint32_t phyw; usb_error_t error; phyw = ((data << 8) | (addr | 0x80)); urtw_write8_m(sc, URTW_PHY_MAGIC4, ((phyw & 0xff000000) >> 24)); urtw_write8_m(sc, URTW_PHY_MAGIC3, ((phyw & 0x00ff0000) >> 16)); urtw_write8_m(sc, URTW_PHY_MAGIC2, ((phyw & 0x0000ff00) >> 8)); urtw_write8_m(sc, URTW_PHY_MAGIC1, ((phyw & 0x000000ff))); usb_pause_mtx(&sc->sc_mtx, 1); fail: return (error); } static usb_error_t urtw_8225_setgain(struct urtw_softc *sc, int16_t gain) { usb_error_t error; urtw_8187_write_phy_ofdm(sc, 0x0d, urtw_8225_gain[gain * 4]); urtw_8187_write_phy_ofdm(sc, 0x1b, urtw_8225_gain[gain * 4 + 2]); urtw_8187_write_phy_ofdm(sc, 0x1d, urtw_8225_gain[gain * 4 + 3]); urtw_8187_write_phy_ofdm(sc, 0x23, urtw_8225_gain[gain * 4 + 1]); fail: return (error); } static usb_error_t urtw_8225_usb_init(struct urtw_softc *sc) { uint8_t data; usb_error_t error; urtw_write8_m(sc, URTW_RF_PINS_SELECT + 1, 0); urtw_write8_m(sc, URTW_GPIO, 0); error = urtw_read8e(sc, 0x53, &data); if (error) goto fail; error = urtw_write8e(sc, 0x53, data | (1 << 7)); if (error) goto fail; urtw_write8_m(sc, URTW_RF_PINS_SELECT + 1, 4); urtw_write8_m(sc, URTW_GPIO, 0x20); urtw_write8_m(sc, URTW_GP_ENABLE, 0); urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, 0x80); urtw_write16_m(sc, URTW_RF_PINS_SELECT, 0x80); urtw_write16_m(sc, URTW_RF_PINS_ENABLE, 0x80); usb_pause_mtx(&sc->sc_mtx, 500); fail: return (error); } static usb_error_t urtw_8225_write_c(struct urtw_softc *sc, uint8_t addr, uint16_t data) { uint16_t d80, d82, d84; usb_error_t error; urtw_read16_m(sc, URTW_RF_PINS_OUTPUT, &d80); d80 &= URTW_RF_PINS_MAGIC1; urtw_read16_m(sc, URTW_RF_PINS_ENABLE, &d82); urtw_read16_m(sc, URTW_RF_PINS_SELECT, &d84); d84 &= URTW_RF_PINS_MAGIC2; urtw_write16_m(sc, URTW_RF_PINS_ENABLE, d82 | URTW_RF_PINS_MAGIC3); urtw_write16_m(sc, URTW_RF_PINS_SELECT, d84 | URTW_RF_PINS_MAGIC3); DELAY(10); urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, d80 | URTW_BB_HOST_BANG_EN); DELAY(2); urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, d80); DELAY(10); error = urtw_8225_write_s16(sc, addr, 0x8225, &data); if (error != 0) goto fail; urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, d80 | URTW_BB_HOST_BANG_EN); DELAY(10); urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, d80 | URTW_BB_HOST_BANG_EN); urtw_write16_m(sc, URTW_RF_PINS_SELECT, d84); usb_pause_mtx(&sc->sc_mtx, 2); fail: return (error); } static usb_error_t urtw_8225_write_s16(struct urtw_softc *sc, uint8_t addr, int index, uint16_t *data) { uint8_t buf[2]; uint16_t data16; struct usb_device_request req; usb_error_t error = 0; data16 = *data; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = URTW_8187_SETREGS_REQ; USETW(req.wValue, addr); USETW(req.wIndex, index); USETW(req.wLength, sizeof(uint16_t)); buf[0] = (data16 & 0x00ff); buf[1] = (data16 & 0xff00) >> 8; error = urtw_do_request(sc, &req, buf); return (error); } static usb_error_t urtw_8225_rf_set_chan(struct urtw_softc *sc, int chan) { usb_error_t error; error = urtw_8225_set_txpwrlvl(sc, chan); if (error) goto fail; urtw_8225_write(sc, URTW_8225_ADDR_7_MAGIC, urtw_8225_channel[chan]); usb_pause_mtx(&sc->sc_mtx, 10); fail: return (error); } static usb_error_t urtw_8225_rf_set_sens(struct urtw_softc *sc, int sens) { usb_error_t error; if (sens < 0 || sens > 6) return -1; if (sens > 4) urtw_8225_write(sc, URTW_8225_ADDR_C_MAGIC, URTW_8225_ADDR_C_DATA_MAGIC1); else urtw_8225_write(sc, URTW_8225_ADDR_C_MAGIC, URTW_8225_ADDR_C_DATA_MAGIC2); sens = 6 - sens; error = urtw_8225_setgain(sc, sens); if (error) goto fail; urtw_8187_write_phy_cck(sc, 0x41, urtw_8225_threshold[sens]); fail: return (error); } static usb_error_t urtw_8225_set_txpwrlvl(struct urtw_softc *sc, int chan) { int i, idx, set; uint8_t *cck_pwltable; uint8_t cck_pwrlvl_max, ofdm_pwrlvl_min, ofdm_pwrlvl_max; uint8_t cck_pwrlvl = sc->sc_txpwr_cck[chan] & 0xff; uint8_t ofdm_pwrlvl = sc->sc_txpwr_ofdm[chan] & 0xff; usb_error_t error; cck_pwrlvl_max = 11; ofdm_pwrlvl_max = 25; /* 12 -> 25 */ ofdm_pwrlvl_min = 10; /* CCK power setting */ cck_pwrlvl = (cck_pwrlvl > cck_pwrlvl_max) ? cck_pwrlvl_max : cck_pwrlvl; idx = cck_pwrlvl % 6; set = cck_pwrlvl / 6; cck_pwltable = (chan == 14) ? urtw_8225_txpwr_cck_ch14 : urtw_8225_txpwr_cck; urtw_write8_m(sc, URTW_TX_GAIN_CCK, urtw_8225_tx_gain_cck_ofdm[set] >> 1); for (i = 0; i < 8; i++) { urtw_8187_write_phy_cck(sc, 0x44 + i, cck_pwltable[idx * 8 + i]); } usb_pause_mtx(&sc->sc_mtx, 1); /* OFDM power setting */ ofdm_pwrlvl = (ofdm_pwrlvl > (ofdm_pwrlvl_max - ofdm_pwrlvl_min)) ? ofdm_pwrlvl_max : ofdm_pwrlvl + ofdm_pwrlvl_min; ofdm_pwrlvl = (ofdm_pwrlvl > 35) ? 35 : ofdm_pwrlvl; idx = ofdm_pwrlvl % 6; set = ofdm_pwrlvl / 6; error = urtw_8185_set_anaparam2(sc, URTW_8225_ANAPARAM2_ON); if (error) goto fail; urtw_8187_write_phy_ofdm(sc, 2, 0x42); urtw_8187_write_phy_ofdm(sc, 6, 0); urtw_8187_write_phy_ofdm(sc, 8, 0); urtw_write8_m(sc, URTW_TX_GAIN_OFDM, urtw_8225_tx_gain_cck_ofdm[set] >> 1); urtw_8187_write_phy_ofdm(sc, 0x5, urtw_8225_txpwr_ofdm[idx]); urtw_8187_write_phy_ofdm(sc, 0x7, urtw_8225_txpwr_ofdm[idx]); usb_pause_mtx(&sc->sc_mtx, 1); fail: return (error); } static usb_error_t urtw_8225_rf_stop(struct urtw_softc *sc) { uint8_t data; usb_error_t error; urtw_8225_write(sc, 0x4, 0x1f); error = urtw_set_mode(sc, URTW_EPROM_CMD_CONFIG); if (error) goto fail; urtw_read8_m(sc, URTW_CONFIG3, &data); urtw_write8_m(sc, URTW_CONFIG3, data | URTW_CONFIG3_ANAPARAM_WRITE); if (sc->sc_flags & URTW_RTL8187B) { urtw_write32_m(sc, URTW_ANAPARAM2, URTW_8187B_8225_ANAPARAM2_OFF); urtw_write32_m(sc, URTW_ANAPARAM, URTW_8187B_8225_ANAPARAM_OFF); urtw_write32_m(sc, URTW_ANAPARAM3, URTW_8187B_8225_ANAPARAM3_OFF); } else { urtw_write32_m(sc, URTW_ANAPARAM2, URTW_8225_ANAPARAM2_OFF); urtw_write32_m(sc, URTW_ANAPARAM, URTW_8225_ANAPARAM_OFF); } urtw_write8_m(sc, URTW_CONFIG3, data & ~URTW_CONFIG3_ANAPARAM_WRITE); error = urtw_set_mode(sc, URTW_EPROM_CMD_NORMAL); if (error) goto fail; fail: return (error); } static usb_error_t urtw_8225v2_rf_init(struct urtw_softc *sc) { int i; uint16_t data; uint32_t data32; usb_error_t error; error = urtw_8180_set_anaparam(sc, URTW_8225_ANAPARAM_ON); if (error) goto fail; error = urtw_8225_usb_init(sc); if (error) goto fail; urtw_write32_m(sc, URTW_RF_TIMING, 0x000a8008); urtw_read16_m(sc, URTW_BRSR, &data); /* XXX ??? */ urtw_write16_m(sc, URTW_BRSR, 0xffff); urtw_write32_m(sc, URTW_RF_PARA, 0x100044); error = urtw_set_mode(sc, URTW_EPROM_CMD_CONFIG); if (error) goto fail; urtw_write8_m(sc, URTW_CONFIG3, 0x44); error = urtw_set_mode(sc, URTW_EPROM_CMD_NORMAL); if (error) goto fail; error = urtw_8185_rf_pins_enable(sc); if (error) goto fail; usb_pause_mtx(&sc->sc_mtx, 500); for (i = 0; i < nitems(urtw_8225v2_rf_part1); i++) { urtw_8225_write(sc, urtw_8225v2_rf_part1[i].reg, urtw_8225v2_rf_part1[i].val); } usb_pause_mtx(&sc->sc_mtx, 50); urtw_8225_write(sc, URTW_8225_ADDR_0_MAGIC, URTW_8225_ADDR_0_DATA_MAGIC1); for (i = 0; i < 95; i++) { urtw_8225_write(sc, URTW_8225_ADDR_1_MAGIC, (uint8_t)(i + 1)); urtw_8225_write(sc, URTW_8225_ADDR_2_MAGIC, urtw_8225v2_rxgain[i]); } urtw_8225_write(sc, URTW_8225_ADDR_3_MAGIC, URTW_8225_ADDR_3_DATA_MAGIC1); urtw_8225_write(sc, URTW_8225_ADDR_5_MAGIC, URTW_8225_ADDR_5_DATA_MAGIC1); urtw_8225_write(sc, URTW_8225_ADDR_0_MAGIC, URTW_8225_ADDR_0_DATA_MAGIC2); urtw_8225_write(sc, URTW_8225_ADDR_2_MAGIC, URTW_8225_ADDR_2_DATA_MAGIC1); usb_pause_mtx(&sc->sc_mtx, 100); urtw_8225_write(sc, URTW_8225_ADDR_2_MAGIC, URTW_8225_ADDR_2_DATA_MAGIC2); usb_pause_mtx(&sc->sc_mtx, 100); error = urtw_8225_read(sc, URTW_8225_ADDR_6_MAGIC, &data32); if (error != 0) goto fail; if (data32 != URTW_8225_ADDR_6_DATA_MAGIC1) device_printf(sc->sc_dev, "expect 0xe6!! (0x%x)\n", data32); if (!(data32 & URTW_8225_ADDR_6_DATA_MAGIC2)) { urtw_8225_write(sc, URTW_8225_ADDR_2_MAGIC, URTW_8225_ADDR_2_DATA_MAGIC1); usb_pause_mtx(&sc->sc_mtx, 100); urtw_8225_write(sc, URTW_8225_ADDR_2_MAGIC, URTW_8225_ADDR_2_DATA_MAGIC2); usb_pause_mtx(&sc->sc_mtx, 50); error = urtw_8225_read(sc, URTW_8225_ADDR_6_MAGIC, &data32); if (error != 0) goto fail; if (!(data32 & URTW_8225_ADDR_6_DATA_MAGIC2)) device_printf(sc->sc_dev, "RF calibration failed\n"); } usb_pause_mtx(&sc->sc_mtx, 100); urtw_8225_write(sc, URTW_8225_ADDR_0_MAGIC, URTW_8225_ADDR_0_DATA_MAGIC6); for (i = 0; i < 128; i++) { urtw_8187_write_phy_ofdm(sc, 0xb, urtw_8225_agc[i]); urtw_8187_write_phy_ofdm(sc, 0xa, (uint8_t)i + 0x80); } for (i = 0; i < nitems(urtw_8225v2_rf_part2); i++) { urtw_8187_write_phy_ofdm(sc, urtw_8225v2_rf_part2[i].reg, urtw_8225v2_rf_part2[i].val); } error = urtw_8225v2_setgain(sc, 4); if (error) goto fail; for (i = 0; i < nitems(urtw_8225v2_rf_part3); i++) { urtw_8187_write_phy_cck(sc, urtw_8225v2_rf_part3[i].reg, urtw_8225v2_rf_part3[i].val); } urtw_write8_m(sc, URTW_TESTR, 0x0d); error = urtw_8225v2_set_txpwrlvl(sc, 1); if (error) goto fail; urtw_8187_write_phy_cck(sc, 0x10, 0x9b); urtw_8187_write_phy_ofdm(sc, 0x26, 0x90); /* TX ant A, 0x0 for B */ error = urtw_8185_tx_antenna(sc, 0x3); if (error) goto fail; urtw_write32_m(sc, URTW_HSSI_PARA, 0x3dc00002); error = urtw_8225_rf_set_chan(sc, 1); fail: return (error); } static usb_error_t urtw_8225v2_rf_set_chan(struct urtw_softc *sc, int chan) { usb_error_t error; error = urtw_8225v2_set_txpwrlvl(sc, chan); if (error) goto fail; urtw_8225_write(sc, URTW_8225_ADDR_7_MAGIC, urtw_8225_channel[chan]); usb_pause_mtx(&sc->sc_mtx, 10); fail: return (error); } static usb_error_t urtw_8225_read(struct urtw_softc *sc, uint8_t addr, uint32_t *data) { int i; int16_t bit; uint8_t rlen = 12, wlen = 6; uint16_t o1, o2, o3, tmp; uint32_t d2w = ((uint32_t)(addr & 0x1f)) << 27; uint32_t mask = 0x80000000, value = 0; usb_error_t error; urtw_read16_m(sc, URTW_RF_PINS_OUTPUT, &o1); urtw_read16_m(sc, URTW_RF_PINS_ENABLE, &o2); urtw_read16_m(sc, URTW_RF_PINS_SELECT, &o3); urtw_write16_m(sc, URTW_RF_PINS_ENABLE, o2 | URTW_RF_PINS_MAGIC4); urtw_write16_m(sc, URTW_RF_PINS_SELECT, o3 | URTW_RF_PINS_MAGIC4); o1 &= ~URTW_RF_PINS_MAGIC4; urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, o1 | URTW_BB_HOST_BANG_EN); DELAY(5); urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, o1); DELAY(5); for (i = 0; i < (wlen / 2); i++, mask = mask >> 1) { bit = ((d2w & mask) != 0) ? 1 : 0; urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, bit | o1); DELAY(2); urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, bit | o1 | URTW_BB_HOST_BANG_CLK); DELAY(2); urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, bit | o1 | URTW_BB_HOST_BANG_CLK); DELAY(2); mask = mask >> 1; if (i == 2) break; bit = ((d2w & mask) != 0) ? 1 : 0; urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, bit | o1 | URTW_BB_HOST_BANG_CLK); DELAY(2); urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, bit | o1 | URTW_BB_HOST_BANG_CLK); DELAY(2); urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, bit | o1); DELAY(1); } urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, bit | o1 | URTW_BB_HOST_BANG_RW | URTW_BB_HOST_BANG_CLK); DELAY(2); urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, bit | o1 | URTW_BB_HOST_BANG_RW); DELAY(2); urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, o1 | URTW_BB_HOST_BANG_RW); DELAY(2); mask = 0x800; for (i = 0; i < rlen; i++, mask = mask >> 1) { urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, o1 | URTW_BB_HOST_BANG_RW); DELAY(2); urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, o1 | URTW_BB_HOST_BANG_RW | URTW_BB_HOST_BANG_CLK); DELAY(2); urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, o1 | URTW_BB_HOST_BANG_RW | URTW_BB_HOST_BANG_CLK); DELAY(2); urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, o1 | URTW_BB_HOST_BANG_RW | URTW_BB_HOST_BANG_CLK); DELAY(2); urtw_read16_m(sc, URTW_RF_PINS_INPUT, &tmp); value |= ((tmp & URTW_BB_HOST_BANG_CLK) ? mask : 0); urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, o1 | URTW_BB_HOST_BANG_RW); DELAY(2); } urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, o1 | URTW_BB_HOST_BANG_EN | URTW_BB_HOST_BANG_RW); DELAY(2); urtw_write16_m(sc, URTW_RF_PINS_ENABLE, o2); urtw_write16_m(sc, URTW_RF_PINS_SELECT, o3); urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, URTW_RF_PINS_OUTPUT_MAGIC1); if (data != NULL) *data = value; fail: return (error); } static usb_error_t urtw_8225v2_set_txpwrlvl(struct urtw_softc *sc, int chan) { int i; uint8_t *cck_pwrtable; uint8_t cck_pwrlvl_max = 15, ofdm_pwrlvl_max = 25, ofdm_pwrlvl_min = 10; uint8_t cck_pwrlvl = sc->sc_txpwr_cck[chan] & 0xff; uint8_t ofdm_pwrlvl = sc->sc_txpwr_ofdm[chan] & 0xff; usb_error_t error; /* CCK power setting */ cck_pwrlvl = (cck_pwrlvl > cck_pwrlvl_max) ? cck_pwrlvl_max : cck_pwrlvl; cck_pwrlvl += sc->sc_txpwr_cck_base; cck_pwrlvl = (cck_pwrlvl > 35) ? 35 : cck_pwrlvl; cck_pwrtable = (chan == 14) ? urtw_8225v2_txpwr_cck_ch14 : urtw_8225v2_txpwr_cck; for (i = 0; i < 8; i++) urtw_8187_write_phy_cck(sc, 0x44 + i, cck_pwrtable[i]); urtw_write8_m(sc, URTW_TX_GAIN_CCK, urtw_8225v2_tx_gain_cck_ofdm[cck_pwrlvl]); usb_pause_mtx(&sc->sc_mtx, 1); /* OFDM power setting */ ofdm_pwrlvl = (ofdm_pwrlvl > (ofdm_pwrlvl_max - ofdm_pwrlvl_min)) ? ofdm_pwrlvl_max : ofdm_pwrlvl + ofdm_pwrlvl_min; ofdm_pwrlvl += sc->sc_txpwr_ofdm_base; ofdm_pwrlvl = (ofdm_pwrlvl > 35) ? 35 : ofdm_pwrlvl; error = urtw_8185_set_anaparam2(sc, URTW_8225_ANAPARAM2_ON); if (error) goto fail; urtw_8187_write_phy_ofdm(sc, 2, 0x42); urtw_8187_write_phy_ofdm(sc, 5, 0x0); urtw_8187_write_phy_ofdm(sc, 6, 0x40); urtw_8187_write_phy_ofdm(sc, 7, 0x0); urtw_8187_write_phy_ofdm(sc, 8, 0x40); urtw_write8_m(sc, URTW_TX_GAIN_OFDM, urtw_8225v2_tx_gain_cck_ofdm[ofdm_pwrlvl]); usb_pause_mtx(&sc->sc_mtx, 1); fail: return (error); } static usb_error_t urtw_8225v2_setgain(struct urtw_softc *sc, int16_t gain) { uint8_t *gainp; usb_error_t error; /* XXX for A? */ gainp = urtw_8225v2_gain_bg; urtw_8187_write_phy_ofdm(sc, 0x0d, gainp[gain * 3]); usb_pause_mtx(&sc->sc_mtx, 1); urtw_8187_write_phy_ofdm(sc, 0x1b, gainp[gain * 3 + 1]); usb_pause_mtx(&sc->sc_mtx, 1); urtw_8187_write_phy_ofdm(sc, 0x1d, gainp[gain * 3 + 2]); usb_pause_mtx(&sc->sc_mtx, 1); urtw_8187_write_phy_ofdm(sc, 0x21, 0x17); usb_pause_mtx(&sc->sc_mtx, 1); fail: return (error); } static usb_error_t urtw_8225_isv2(struct urtw_softc *sc, int *ret) { uint32_t data; usb_error_t error; *ret = 1; urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, URTW_RF_PINS_MAGIC5); urtw_write16_m(sc, URTW_RF_PINS_SELECT, URTW_RF_PINS_MAGIC5); urtw_write16_m(sc, URTW_RF_PINS_ENABLE, URTW_RF_PINS_MAGIC5); usb_pause_mtx(&sc->sc_mtx, 500); urtw_8225_write(sc, URTW_8225_ADDR_0_MAGIC, URTW_8225_ADDR_0_DATA_MAGIC1); error = urtw_8225_read(sc, URTW_8225_ADDR_8_MAGIC, &data); if (error != 0) goto fail; if (data != URTW_8225_ADDR_8_DATA_MAGIC1) *ret = 0; else { error = urtw_8225_read(sc, URTW_8225_ADDR_9_MAGIC, &data); if (error != 0) goto fail; if (data != URTW_8225_ADDR_9_DATA_MAGIC1) *ret = 0; } urtw_8225_write(sc, URTW_8225_ADDR_0_MAGIC, URTW_8225_ADDR_0_DATA_MAGIC2); fail: return (error); } static usb_error_t urtw_8225v2b_rf_init(struct urtw_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; int i; uint8_t data8; usb_error_t error; error = urtw_set_mode(sc, URTW_EPROM_CMD_CONFIG); if (error) goto fail; /* * initialize extra registers on 8187 */ urtw_write16_m(sc, URTW_BRSR_8187B, 0xfff); /* retry limit */ urtw_read8_m(sc, URTW_CW_CONF, &data8); data8 |= URTW_CW_CONF_PERPACKET_RETRY; urtw_write8_m(sc, URTW_CW_CONF, data8); /* TX AGC */ urtw_read8_m(sc, URTW_TX_AGC_CTL, &data8); data8 |= URTW_TX_AGC_CTL_PERPACKET_GAIN; urtw_write8_m(sc, URTW_TX_AGC_CTL, data8); /* Auto Rate Fallback Control */ #define URTW_ARFR 0x1e0 urtw_write16_m(sc, URTW_ARFR, 0xfff); urtw_read8_m(sc, URTW_RATE_FALLBACK, &data8); urtw_write8_m(sc, URTW_RATE_FALLBACK, data8 | URTW_RATE_FALLBACK_ENABLE); urtw_read8_m(sc, URTW_MSR, &data8); urtw_write8_m(sc, URTW_MSR, data8 & 0xf3); urtw_read8_m(sc, URTW_MSR, &data8); urtw_write8_m(sc, URTW_MSR, data8 | URTW_MSR_LINK_ENEDCA); urtw_write8_m(sc, URTW_ACM_CONTROL, sc->sc_acmctl); urtw_write16_m(sc, URTW_ATIM_WND, 2); urtw_write16_m(sc, URTW_BEACON_INTERVAL, 100); #define URTW_FEMR_FOR_8187B 0x1d4 urtw_write16_m(sc, URTW_FEMR_FOR_8187B, 0xffff); /* led type */ urtw_read8_m(sc, URTW_CONFIG1, &data8); data8 = (data8 & 0x3f) | 0x80; urtw_write8_m(sc, URTW_CONFIG1, data8); /* applying MAC address again. */ urtw_write32_m(sc, URTW_MAC0, ((uint32_t *)ic->ic_macaddr)[0]); urtw_write16_m(sc, URTW_MAC4, ((uint32_t *)ic->ic_macaddr)[1] & 0xffff); error = urtw_set_mode(sc, URTW_EPROM_CMD_NORMAL); if (error) goto fail; urtw_write8_m(sc, URTW_WPA_CONFIG, 0); /* * MAC configuration */ for (i = 0; i < nitems(urtw_8225v2b_rf_part1); i++) urtw_write8_m(sc, urtw_8225v2b_rf_part1[i].reg, urtw_8225v2b_rf_part1[i].val); urtw_write16_m(sc, URTW_TID_AC_MAP, 0xfa50); urtw_write16_m(sc, URTW_INT_MIG, 0x0000); urtw_write32_m(sc, 0x1f0, 0); urtw_write32_m(sc, 0x1f4, 0); urtw_write8_m(sc, 0x1f8, 0); urtw_write32_m(sc, URTW_RF_TIMING, 0x4001); #define URTW_RFSW_CTRL 0x272 urtw_write16_m(sc, URTW_RFSW_CTRL, 0x569a); /* * initialize PHY */ error = urtw_set_mode(sc, URTW_EPROM_CMD_CONFIG); if (error) goto fail; urtw_read8_m(sc, URTW_CONFIG3, &data8); urtw_write8_m(sc, URTW_CONFIG3, data8 | URTW_CONFIG3_ANAPARAM_WRITE); error = urtw_set_mode(sc, URTW_EPROM_CMD_NORMAL); if (error) goto fail; /* setup RFE initial timing */ urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, 0x0480); urtw_write16_m(sc, URTW_RF_PINS_SELECT, 0x2488); urtw_write16_m(sc, URTW_RF_PINS_ENABLE, 0x1fff); usb_pause_mtx(&sc->sc_mtx, 1100); for (i = 0; i < nitems(urtw_8225v2b_rf_part0); i++) { urtw_8225_write(sc, urtw_8225v2b_rf_part0[i].reg, urtw_8225v2b_rf_part0[i].val); usb_pause_mtx(&sc->sc_mtx, 1); } urtw_8225_write(sc, 0x00, 0x01b7); for (i = 0; i < 95; i++) { urtw_8225_write(sc, URTW_8225_ADDR_1_MAGIC, (uint8_t)(i + 1)); usb_pause_mtx(&sc->sc_mtx, 1); urtw_8225_write(sc, URTW_8225_ADDR_2_MAGIC, urtw_8225v2b_rxgain[i]); usb_pause_mtx(&sc->sc_mtx, 1); } urtw_8225_write(sc, URTW_8225_ADDR_3_MAGIC, 0x080); usb_pause_mtx(&sc->sc_mtx, 1); urtw_8225_write(sc, URTW_8225_ADDR_5_MAGIC, 0x004); usb_pause_mtx(&sc->sc_mtx, 1); urtw_8225_write(sc, URTW_8225_ADDR_0_MAGIC, 0x0b7); usb_pause_mtx(&sc->sc_mtx, 1); usb_pause_mtx(&sc->sc_mtx, 3000); urtw_8225_write(sc, URTW_8225_ADDR_2_MAGIC, 0xc4d); usb_pause_mtx(&sc->sc_mtx, 2000); urtw_8225_write(sc, URTW_8225_ADDR_2_MAGIC, 0x44d); usb_pause_mtx(&sc->sc_mtx, 1); urtw_8225_write(sc, URTW_8225_ADDR_0_MAGIC, 0x2bf); usb_pause_mtx(&sc->sc_mtx, 1); urtw_write8_m(sc, URTW_TX_GAIN_CCK, 0x03); urtw_write8_m(sc, URTW_TX_GAIN_OFDM, 0x07); urtw_write8_m(sc, URTW_TX_ANTENNA, 0x03); urtw_8187_write_phy_ofdm(sc, 0x80, 0x12); for (i = 0; i < 128; i++) { uint32_t addr, data; data = (urtw_8225z2_agc[i] << 8) | 0x0000008f; addr = ((i + 0x80) << 8) | 0x0000008e; urtw_8187_write_phy_ofdm(sc, data & 0x7f, (data >> 8) & 0xff); urtw_8187_write_phy_ofdm(sc, addr & 0x7f, (addr >> 8) & 0xff); urtw_8187_write_phy_ofdm(sc, 0x0e, 0x00); } urtw_8187_write_phy_ofdm(sc, 0x80, 0x10); for (i = 0; i < nitems(urtw_8225v2b_rf_part2); i++) urtw_8187_write_phy_ofdm(sc, i, urtw_8225v2b_rf_part2[i].val); urtw_write32_m(sc, URTW_8187B_AC_VO, (7 << 12) | (3 << 8) | 0x1c); urtw_write32_m(sc, URTW_8187B_AC_VI, (7 << 12) | (3 << 8) | 0x1c); urtw_write32_m(sc, URTW_8187B_AC_BE, (7 << 12) | (3 << 8) | 0x1c); urtw_write32_m(sc, URTW_8187B_AC_BK, (7 << 12) | (3 << 8) | 0x1c); urtw_8187_write_phy_ofdm(sc, 0x97, 0x46); urtw_8187_write_phy_ofdm(sc, 0xa4, 0xb6); urtw_8187_write_phy_ofdm(sc, 0x85, 0xfc); urtw_8187_write_phy_cck(sc, 0xc1, 0x88); fail: return (error); } static usb_error_t urtw_8225v2b_rf_set_chan(struct urtw_softc *sc, int chan) { usb_error_t error; error = urtw_8225v2b_set_txpwrlvl(sc, chan); if (error) goto fail; urtw_8225_write(sc, URTW_8225_ADDR_7_MAGIC, urtw_8225_channel[chan]); usb_pause_mtx(&sc->sc_mtx, 10); fail: return (error); } static usb_error_t urtw_8225v2b_set_txpwrlvl(struct urtw_softc *sc, int chan) { int i; uint8_t *cck_pwrtable; uint8_t cck_pwrlvl_max = 15; uint8_t cck_pwrlvl = sc->sc_txpwr_cck[chan] & 0xff; uint8_t ofdm_pwrlvl = sc->sc_txpwr_ofdm[chan] & 0xff; usb_error_t error; /* CCK power setting */ cck_pwrlvl = (cck_pwrlvl > cck_pwrlvl_max) ? ((sc->sc_flags & URTW_RTL8187B_REV_B) ? cck_pwrlvl_max : 22) : (cck_pwrlvl + ((sc->sc_flags & URTW_RTL8187B_REV_B) ? 0 : 7)); cck_pwrlvl += sc->sc_txpwr_cck_base; cck_pwrlvl = (cck_pwrlvl > 35) ? 35 : cck_pwrlvl; cck_pwrtable = (chan == 14) ? urtw_8225v2b_txpwr_cck_ch14 : urtw_8225v2b_txpwr_cck; if (sc->sc_flags & URTW_RTL8187B_REV_B) cck_pwrtable += (cck_pwrlvl <= 6) ? 0 : ((cck_pwrlvl <= 11) ? 8 : 16); else cck_pwrtable += (cck_pwrlvl <= 5) ? 0 : ((cck_pwrlvl <= 11) ? 8 : ((cck_pwrlvl <= 17) ? 16 : 24)); for (i = 0; i < 8; i++) urtw_8187_write_phy_cck(sc, 0x44 + i, cck_pwrtable[i]); urtw_write8_m(sc, URTW_TX_GAIN_CCK, urtw_8225v2_tx_gain_cck_ofdm[cck_pwrlvl] << 1); usb_pause_mtx(&sc->sc_mtx, 1); /* OFDM power setting */ ofdm_pwrlvl = (ofdm_pwrlvl > 15) ? ((sc->sc_flags & URTW_RTL8187B_REV_B) ? 17 : 25) : (ofdm_pwrlvl + ((sc->sc_flags & URTW_RTL8187B_REV_B) ? 2 : 10)); ofdm_pwrlvl += sc->sc_txpwr_ofdm_base; ofdm_pwrlvl = (ofdm_pwrlvl > 35) ? 35 : ofdm_pwrlvl; urtw_write8_m(sc, URTW_TX_GAIN_OFDM, urtw_8225v2_tx_gain_cck_ofdm[ofdm_pwrlvl] << 1); if (sc->sc_flags & URTW_RTL8187B_REV_B) { if (ofdm_pwrlvl <= 11) { urtw_8187_write_phy_ofdm(sc, 0x87, 0x60); urtw_8187_write_phy_ofdm(sc, 0x89, 0x60); } else { urtw_8187_write_phy_ofdm(sc, 0x87, 0x5c); urtw_8187_write_phy_ofdm(sc, 0x89, 0x5c); } } else { if (ofdm_pwrlvl <= 11) { urtw_8187_write_phy_ofdm(sc, 0x87, 0x5c); urtw_8187_write_phy_ofdm(sc, 0x89, 0x5c); } else if (ofdm_pwrlvl <= 17) { urtw_8187_write_phy_ofdm(sc, 0x87, 0x54); urtw_8187_write_phy_ofdm(sc, 0x89, 0x54); } else { urtw_8187_write_phy_ofdm(sc, 0x87, 0x50); urtw_8187_write_phy_ofdm(sc, 0x89, 0x50); } } usb_pause_mtx(&sc->sc_mtx, 1); fail: return (error); } static usb_error_t urtw_read8e(struct urtw_softc *sc, int val, uint8_t *data) { struct usb_device_request req; usb_error_t error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = URTW_8187_GETREGS_REQ; USETW(req.wValue, val | 0xfe00); USETW(req.wIndex, 0); USETW(req.wLength, sizeof(uint8_t)); error = urtw_do_request(sc, &req, data); return (error); } static usb_error_t urtw_write8e(struct urtw_softc *sc, int val, uint8_t data) { struct usb_device_request req; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = URTW_8187_SETREGS_REQ; USETW(req.wValue, val | 0xfe00); USETW(req.wIndex, 0); USETW(req.wLength, sizeof(uint8_t)); return (urtw_do_request(sc, &req, &data)); } static usb_error_t urtw_8180_set_anaparam(struct urtw_softc *sc, uint32_t val) { uint8_t data; usb_error_t error; error = urtw_set_mode(sc, URTW_EPROM_CMD_CONFIG); if (error) goto fail; urtw_read8_m(sc, URTW_CONFIG3, &data); urtw_write8_m(sc, URTW_CONFIG3, data | URTW_CONFIG3_ANAPARAM_WRITE); urtw_write32_m(sc, URTW_ANAPARAM, val); urtw_read8_m(sc, URTW_CONFIG3, &data); urtw_write8_m(sc, URTW_CONFIG3, data & ~URTW_CONFIG3_ANAPARAM_WRITE); error = urtw_set_mode(sc, URTW_EPROM_CMD_NORMAL); if (error) goto fail; fail: return (error); } static usb_error_t urtw_8185_set_anaparam2(struct urtw_softc *sc, uint32_t val) { uint8_t data; usb_error_t error; error = urtw_set_mode(sc, URTW_EPROM_CMD_CONFIG); if (error) goto fail; urtw_read8_m(sc, URTW_CONFIG3, &data); urtw_write8_m(sc, URTW_CONFIG3, data | URTW_CONFIG3_ANAPARAM_WRITE); urtw_write32_m(sc, URTW_ANAPARAM2, val); urtw_read8_m(sc, URTW_CONFIG3, &data); urtw_write8_m(sc, URTW_CONFIG3, data & ~URTW_CONFIG3_ANAPARAM_WRITE); error = urtw_set_mode(sc, URTW_EPROM_CMD_NORMAL); if (error) goto fail; fail: return (error); } static usb_error_t urtw_intr_enable(struct urtw_softc *sc) { usb_error_t error; urtw_write16_m(sc, URTW_INTR_MASK, 0xffff); fail: return (error); } static usb_error_t urtw_intr_disable(struct urtw_softc *sc) { usb_error_t error; urtw_write16_m(sc, URTW_INTR_MASK, 0); fail: return (error); } static usb_error_t urtw_reset(struct urtw_softc *sc) { uint8_t data; usb_error_t error; error = urtw_8180_set_anaparam(sc, URTW_8225_ANAPARAM_ON); if (error) goto fail; error = urtw_8185_set_anaparam2(sc, URTW_8225_ANAPARAM2_ON); if (error) goto fail; error = urtw_intr_disable(sc); if (error) goto fail; usb_pause_mtx(&sc->sc_mtx, 100); error = urtw_write8e(sc, 0x18, 0x10); if (error != 0) goto fail; error = urtw_write8e(sc, 0x18, 0x11); if (error != 0) goto fail; error = urtw_write8e(sc, 0x18, 0x00); if (error != 0) goto fail; usb_pause_mtx(&sc->sc_mtx, 100); urtw_read8_m(sc, URTW_CMD, &data); data = (data & 0x2) | URTW_CMD_RST; urtw_write8_m(sc, URTW_CMD, data); usb_pause_mtx(&sc->sc_mtx, 100); urtw_read8_m(sc, URTW_CMD, &data); if (data & URTW_CMD_RST) { device_printf(sc->sc_dev, "reset timeout\n"); goto fail; } error = urtw_set_mode(sc, URTW_EPROM_CMD_LOAD); if (error) goto fail; usb_pause_mtx(&sc->sc_mtx, 100); error = urtw_8180_set_anaparam(sc, URTW_8225_ANAPARAM_ON); if (error) goto fail; error = urtw_8185_set_anaparam2(sc, URTW_8225_ANAPARAM2_ON); if (error) goto fail; fail: return (error); } static usb_error_t urtw_led_ctl(struct urtw_softc *sc, int mode) { usb_error_t error = 0; switch (sc->sc_strategy) { case URTW_SW_LED_MODE0: error = urtw_led_mode0(sc, mode); break; case URTW_SW_LED_MODE1: error = urtw_led_mode1(sc, mode); break; case URTW_SW_LED_MODE2: error = urtw_led_mode2(sc, mode); break; case URTW_SW_LED_MODE3: error = urtw_led_mode3(sc, mode); break; default: DPRINTF(sc, URTW_DEBUG_STATE, "unsupported LED mode %d\n", sc->sc_strategy); error = USB_ERR_INVAL; break; } return (error); } static usb_error_t urtw_led_mode0(struct urtw_softc *sc, int mode) { switch (mode) { case URTW_LED_CTL_POWER_ON: sc->sc_gpio_ledstate = URTW_LED_POWER_ON_BLINK; break; case URTW_LED_CTL_TX: if (sc->sc_gpio_ledinprogress == 1) return (0); sc->sc_gpio_ledstate = URTW_LED_BLINK_NORMAL; sc->sc_gpio_blinktime = 2; break; case URTW_LED_CTL_LINK: sc->sc_gpio_ledstate = URTW_LED_ON; break; default: DPRINTF(sc, URTW_DEBUG_STATE, "unsupported LED mode 0x%x", mode); return (USB_ERR_INVAL); } switch (sc->sc_gpio_ledstate) { case URTW_LED_ON: if (sc->sc_gpio_ledinprogress != 0) break; urtw_led_on(sc, URTW_LED_GPIO); break; case URTW_LED_BLINK_NORMAL: if (sc->sc_gpio_ledinprogress != 0) break; sc->sc_gpio_ledinprogress = 1; sc->sc_gpio_blinkstate = (sc->sc_gpio_ledon != 0) ? URTW_LED_OFF : URTW_LED_ON; usb_callout_reset(&sc->sc_led_ch, hz, urtw_led_ch, sc); break; case URTW_LED_POWER_ON_BLINK: urtw_led_on(sc, URTW_LED_GPIO); usb_pause_mtx(&sc->sc_mtx, 100); urtw_led_off(sc, URTW_LED_GPIO); break; default: DPRINTF(sc, URTW_DEBUG_STATE, "unknown LED status 0x%x", sc->sc_gpio_ledstate); return (USB_ERR_INVAL); } return (0); } static usb_error_t urtw_led_mode1(struct urtw_softc *sc, int mode) { return (USB_ERR_INVAL); } static usb_error_t urtw_led_mode2(struct urtw_softc *sc, int mode) { return (USB_ERR_INVAL); } static usb_error_t urtw_led_mode3(struct urtw_softc *sc, int mode) { return (USB_ERR_INVAL); } static usb_error_t urtw_led_on(struct urtw_softc *sc, int type) { usb_error_t error; if (type == URTW_LED_GPIO) { switch (sc->sc_gpio_ledpin) { case URTW_LED_PIN_GPIO0: urtw_write8_m(sc, URTW_GPIO, 0x01); urtw_write8_m(sc, URTW_GP_ENABLE, 0x00); break; default: DPRINTF(sc, URTW_DEBUG_STATE, "unsupported LED PIN type 0x%x", sc->sc_gpio_ledpin); error = USB_ERR_INVAL; goto fail; } } else { DPRINTF(sc, URTW_DEBUG_STATE, "unsupported LED type 0x%x", type); error = USB_ERR_INVAL; goto fail; } sc->sc_gpio_ledon = 1; fail: return (error); } static usb_error_t urtw_led_off(struct urtw_softc *sc, int type) { usb_error_t error; if (type == URTW_LED_GPIO) { switch (sc->sc_gpio_ledpin) { case URTW_LED_PIN_GPIO0: urtw_write8_m(sc, URTW_GPIO, URTW_GPIO_DATA_MAGIC1); urtw_write8_m(sc, URTW_GP_ENABLE, URTW_GP_ENABLE_DATA_MAGIC1); break; default: DPRINTF(sc, URTW_DEBUG_STATE, "unsupported LED PIN type 0x%x", sc->sc_gpio_ledpin); error = USB_ERR_INVAL; goto fail; } } else { DPRINTF(sc, URTW_DEBUG_STATE, "unsupported LED type 0x%x", type); error = USB_ERR_INVAL; goto fail; } sc->sc_gpio_ledon = 0; fail: return (error); } static void urtw_led_ch(void *arg) { struct urtw_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; ieee80211_runtask(ic, &sc->sc_led_task); } static void urtw_ledtask(void *arg, int pending) { struct urtw_softc *sc = arg; if (sc->sc_strategy != URTW_SW_LED_MODE0) { DPRINTF(sc, URTW_DEBUG_STATE, "could not process a LED strategy 0x%x", sc->sc_strategy); return; } URTW_LOCK(sc); urtw_led_blink(sc); URTW_UNLOCK(sc); } static usb_error_t urtw_led_blink(struct urtw_softc *sc) { uint8_t ing = 0; usb_error_t error; if (sc->sc_gpio_blinkstate == URTW_LED_ON) error = urtw_led_on(sc, URTW_LED_GPIO); else error = urtw_led_off(sc, URTW_LED_GPIO); sc->sc_gpio_blinktime--; if (sc->sc_gpio_blinktime == 0) ing = 1; else { if (sc->sc_gpio_ledstate != URTW_LED_BLINK_NORMAL && sc->sc_gpio_ledstate != URTW_LED_BLINK_SLOWLY && sc->sc_gpio_ledstate != URTW_LED_BLINK_CM3) ing = 1; } if (ing == 1) { if (sc->sc_gpio_ledstate == URTW_LED_ON && sc->sc_gpio_ledon == 0) error = urtw_led_on(sc, URTW_LED_GPIO); else if (sc->sc_gpio_ledstate == URTW_LED_OFF && sc->sc_gpio_ledon == 1) error = urtw_led_off(sc, URTW_LED_GPIO); sc->sc_gpio_blinktime = 0; sc->sc_gpio_ledinprogress = 0; return (0); } sc->sc_gpio_blinkstate = (sc->sc_gpio_blinkstate != URTW_LED_ON) ? URTW_LED_ON : URTW_LED_OFF; switch (sc->sc_gpio_ledstate) { case URTW_LED_BLINK_NORMAL: usb_callout_reset(&sc->sc_led_ch, hz, urtw_led_ch, sc); break; default: DPRINTF(sc, URTW_DEBUG_STATE, "unknown LED status 0x%x", sc->sc_gpio_ledstate); return (USB_ERR_INVAL); } return (0); } static usb_error_t urtw_rx_enable(struct urtw_softc *sc) { uint8_t data; usb_error_t error; usbd_transfer_start((sc->sc_flags & URTW_RTL8187B) ? sc->sc_xfer[URTW_8187B_BULK_RX] : sc->sc_xfer[URTW_8187L_BULK_RX]); error = urtw_rx_setconf(sc); if (error != 0) goto fail; if ((sc->sc_flags & URTW_RTL8187B) == 0) { urtw_read8_m(sc, URTW_CMD, &data); urtw_write8_m(sc, URTW_CMD, data | URTW_CMD_RX_ENABLE); } fail: return (error); } static usb_error_t urtw_tx_enable(struct urtw_softc *sc) { uint8_t data8; uint32_t data; usb_error_t error; if (sc->sc_flags & URTW_RTL8187B) { urtw_read32_m(sc, URTW_TX_CONF, &data); data &= ~URTW_TX_LOOPBACK_MASK; data &= ~(URTW_TX_DPRETRY_MASK | URTW_TX_RTSRETRY_MASK); data &= ~(URTW_TX_NOCRC | URTW_TX_MXDMA_MASK); data &= ~URTW_TX_SWPLCPLEN; data |= URTW_TX_HW_SEQNUM | URTW_TX_DISREQQSIZE | (7 << 8) | /* short retry limit */ (7 << 0) | /* long retry limit */ (7 << 21); /* MAX TX DMA */ urtw_write32_m(sc, URTW_TX_CONF, data); urtw_read8_m(sc, URTW_MSR, &data8); data8 |= URTW_MSR_LINK_ENEDCA; urtw_write8_m(sc, URTW_MSR, data8); return (error); } urtw_read8_m(sc, URTW_CW_CONF, &data8); data8 &= ~(URTW_CW_CONF_PERPACKET_CW | URTW_CW_CONF_PERPACKET_RETRY); urtw_write8_m(sc, URTW_CW_CONF, data8); urtw_read8_m(sc, URTW_TX_AGC_CTL, &data8); data8 &= ~URTW_TX_AGC_CTL_PERPACKET_GAIN; data8 &= ~URTW_TX_AGC_CTL_PERPACKET_ANTSEL; data8 &= ~URTW_TX_AGC_CTL_FEEDBACK_ANT; urtw_write8_m(sc, URTW_TX_AGC_CTL, data8); urtw_read32_m(sc, URTW_TX_CONF, &data); data &= ~URTW_TX_LOOPBACK_MASK; data |= URTW_TX_LOOPBACK_NONE; data &= ~(URTW_TX_DPRETRY_MASK | URTW_TX_RTSRETRY_MASK); data |= sc->sc_tx_retry << URTW_TX_DPRETRY_SHIFT; data |= sc->sc_rts_retry << URTW_TX_RTSRETRY_SHIFT; data &= ~(URTW_TX_NOCRC | URTW_TX_MXDMA_MASK); data |= URTW_TX_MXDMA_2048 | URTW_TX_CWMIN | URTW_TX_DISCW; data &= ~URTW_TX_SWPLCPLEN; data |= URTW_TX_NOICV; urtw_write32_m(sc, URTW_TX_CONF, data); urtw_read8_m(sc, URTW_CMD, &data8); urtw_write8_m(sc, URTW_CMD, data8 | URTW_CMD_TX_ENABLE); fail: return (error); } static usb_error_t urtw_rx_setconf(struct urtw_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t data; usb_error_t error; urtw_read32_m(sc, URTW_RX, &data); data = data &~ URTW_RX_FILTER_MASK; if (sc->sc_flags & URTW_RTL8187B) { data = data | URTW_RX_FILTER_MNG | URTW_RX_FILTER_DATA | URTW_RX_FILTER_MCAST | URTW_RX_FILTER_BCAST | URTW_RX_FILTER_NICMAC | URTW_RX_CHECK_BSSID | URTW_RX_FIFO_THRESHOLD_NONE | URTW_MAX_RX_DMA_2048 | URTW_RX_AUTORESETPHY | URTW_RCR_ONLYERLPKT; } else { data = data | URTW_RX_FILTER_MNG | URTW_RX_FILTER_DATA; data = data | URTW_RX_FILTER_BCAST | URTW_RX_FILTER_MCAST; if (ic->ic_opmode == IEEE80211_M_MONITOR) { data = data | URTW_RX_FILTER_ICVERR; data = data | URTW_RX_FILTER_PWR; } if (sc->sc_crcmon == 1 && ic->ic_opmode == IEEE80211_M_MONITOR) data = data | URTW_RX_FILTER_CRCERR; if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_promisc > 0 || ic->ic_allmulti > 0) { data = data | URTW_RX_FILTER_ALLMAC; } else { data = data | URTW_RX_FILTER_NICMAC; data = data | URTW_RX_CHECK_BSSID; } data = data &~ URTW_RX_FIFO_THRESHOLD_MASK; data = data | URTW_RX_FIFO_THRESHOLD_NONE | URTW_RX_AUTORESETPHY; data = data &~ URTW_MAX_RX_DMA_MASK; data = data | URTW_MAX_RX_DMA_2048 | URTW_RCR_ONLYERLPKT; } urtw_write32_m(sc, URTW_RX, data); fail: return (error); } static struct mbuf * urtw_rxeof(struct usb_xfer *xfer, struct urtw_data *data, int *rssi_p, int8_t *nf_p) { int actlen, flen, rssi; struct ieee80211_frame *wh; struct mbuf *m, *mnew; struct urtw_softc *sc = data->sc; struct ieee80211com *ic = &sc->sc_ic; uint8_t noise = 0, rate; usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); if (actlen < (int)URTW_MIN_RXBUFSZ) { counter_u64_add(ic->ic_ierrors, 1); return (NULL); } if (sc->sc_flags & URTW_RTL8187B) { struct urtw_8187b_rxhdr *rx; rx = (struct urtw_8187b_rxhdr *)(data->buf + (actlen - (sizeof(struct urtw_8187b_rxhdr)))); flen = le32toh(rx->flag) & 0xfff; if (flen > actlen) { counter_u64_add(ic->ic_ierrors, 1); return (NULL); } rate = (le32toh(rx->flag) >> URTW_RX_FLAG_RXRATE_SHIFT) & 0xf; /* XXX correct? */ rssi = rx->rssi & URTW_RX_RSSI_MASK; noise = rx->noise; } else { struct urtw_8187l_rxhdr *rx; rx = (struct urtw_8187l_rxhdr *)(data->buf + (actlen - (sizeof(struct urtw_8187l_rxhdr)))); flen = le32toh(rx->flag) & 0xfff; if (flen > actlen) { counter_u64_add(ic->ic_ierrors, 1); return (NULL); } rate = (le32toh(rx->flag) >> URTW_RX_FLAG_RXRATE_SHIFT) & 0xf; /* XXX correct? */ rssi = rx->rssi & URTW_RX_8187L_RSSI_MASK; noise = rx->noise; } mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (mnew == NULL) { counter_u64_add(ic->ic_ierrors, 1); return (NULL); } m = data->m; data->m = mnew; data->buf = mtod(mnew, uint8_t *); /* finalize mbuf */ m->m_pkthdr.len = m->m_len = flen - IEEE80211_CRC_LEN; if (ieee80211_radiotap_active(ic)) { struct urtw_rx_radiotap_header *tap = &sc->sc_rxtap; /* XXX Are variables correct? */ tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); tap->wr_dbm_antsignal = (int8_t)rssi; } wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) sc->sc_currate = (rate > 0) ? rate : sc->sc_currate; *rssi_p = rssi; *nf_p = noise; /* XXX correct? */ return (m); } static void urtw_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) { struct urtw_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *m = NULL; struct urtw_data *data; int8_t nf = -95; int rssi = 1; URTW_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_rx_active); if (data == NULL) goto setup; STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); m = urtw_rxeof(xfer, data, &rssi, &nf); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); /* FALLTHROUGH */ case USB_ST_SETUP: setup: data = STAILQ_FIRST(&sc->sc_rx_inactive); if (data == NULL) { KASSERT(m == NULL, ("mbuf isn't NULL")); return; } STAILQ_REMOVE_HEAD(&sc->sc_rx_inactive, next); STAILQ_INSERT_TAIL(&sc->sc_rx_active, data, next); usbd_xfer_set_frame_data(xfer, 0, data->buf, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); /* * To avoid LOR we should unlock our private mutex here to call * ieee80211_input() because here is at the end of a USB * callback and safe to unlock. */ URTW_UNLOCK(sc); if (m != NULL) { wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); if (ni != NULL) { (void) ieee80211_input(ni, m, rssi, nf); /* node is no longer needed */ ieee80211_free_node(ni); } else (void) ieee80211_input_all(ic, m, rssi, nf); m = NULL; } URTW_LOCK(sc); break; default: /* needs it to the inactive queue due to a error. */ data = STAILQ_FIRST(&sc->sc_rx_active); if (data != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_rx_active, next); STAILQ_INSERT_TAIL(&sc->sc_rx_inactive, data, next); } if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); counter_u64_add(ic->ic_ierrors, 1); goto setup; } break; } } #define URTW_STATUS_TYPE_TXCLOSE 1 #define URTW_STATUS_TYPE_BEACON_INTR 0 static void urtw_txstatus_eof(struct usb_xfer *xfer) { struct urtw_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; int actlen, type, pktretry, seq; uint64_t val; usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); if (actlen != sizeof(uint64_t)) return; val = le64toh(sc->sc_txstatus); type = (val >> 30) & 0x3; if (type == URTW_STATUS_TYPE_TXCLOSE) { pktretry = val & 0xff; seq = (val >> 16) & 0xff; if (pktretry == URTW_TX_MAXRETRY) counter_u64_add(ic->ic_oerrors, 1); DPRINTF(sc, URTW_DEBUG_TXSTATUS, "pktretry %d seq %#x\n", pktretry, seq); } } static void urtw_bulk_tx_status_callback(struct usb_xfer *xfer, usb_error_t error) { struct urtw_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; void *dma_buf = usbd_xfer_get_frame_buffer(xfer, 0); URTW_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: urtw_txstatus_eof(xfer); /* FALLTHROUGH */ case USB_ST_SETUP: setup: memcpy(dma_buf, &sc->sc_txstatus, sizeof(uint64_t)); usbd_xfer_set_frame_len(xfer, 0, sizeof(uint64_t)); usbd_transfer_submit(xfer); break; default: if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); counter_u64_add(ic->ic_ierrors, 1); goto setup; } break; } } static void urtw_txeof(struct usb_xfer *xfer, struct urtw_data *data) { struct urtw_softc *sc = usbd_xfer_softc(xfer); URTW_ASSERT_LOCKED(sc); if (data->m) { /* XXX status? */ ieee80211_tx_complete(data->ni, data->m, 0); data->m = NULL; data->ni = NULL; } sc->sc_txtimer = 0; } static void urtw_bulk_tx_callback(struct usb_xfer *xfer, usb_error_t error) { struct urtw_softc *sc = usbd_xfer_softc(xfer); struct urtw_data *data; URTW_ASSERT_LOCKED(sc); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: data = STAILQ_FIRST(&sc->sc_tx_active); if (data == NULL) goto setup; STAILQ_REMOVE_HEAD(&sc->sc_tx_active, next); urtw_txeof(xfer, data); STAILQ_INSERT_TAIL(&sc->sc_tx_inactive, data, next); /* FALLTHROUGH */ case USB_ST_SETUP: setup: data = STAILQ_FIRST(&sc->sc_tx_pending); if (data == NULL) { DPRINTF(sc, URTW_DEBUG_XMIT, "%s: empty pending queue\n", __func__); return; } STAILQ_REMOVE_HEAD(&sc->sc_tx_pending, next); STAILQ_INSERT_TAIL(&sc->sc_tx_active, data, next); usbd_xfer_set_frame_data(xfer, 0, data->buf, data->buflen); usbd_transfer_submit(xfer); urtw_start(sc); break; default: data = STAILQ_FIRST(&sc->sc_tx_active); if (data == NULL) goto setup; if (data->ni != NULL) { if_inc_counter(data->ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(data->ni); data->ni = NULL; } if (error != USB_ERR_CANCELLED) { usbd_xfer_set_stall(xfer); goto setup; } break; } } static struct urtw_data * _urtw_getbuf(struct urtw_softc *sc) { struct urtw_data *bf; bf = STAILQ_FIRST(&sc->sc_tx_inactive); if (bf != NULL) STAILQ_REMOVE_HEAD(&sc->sc_tx_inactive, next); else bf = NULL; if (bf == NULL) DPRINTF(sc, URTW_DEBUG_XMIT, "%s: %s\n", __func__, "out of xmit buffers"); return (bf); } static struct urtw_data * urtw_getbuf(struct urtw_softc *sc) { struct urtw_data *bf; URTW_ASSERT_LOCKED(sc); bf = _urtw_getbuf(sc); if (bf == NULL) DPRINTF(sc, URTW_DEBUG_XMIT, "%s: stop queue\n", __func__); return (bf); } static int urtw_isbmode(uint16_t rate) { return ((rate <= 22 && rate != 12 && rate != 18) || rate == 44) ? (1) : (0); } static uint16_t urtw_rate2dbps(uint16_t rate) { switch(rate) { case 12: case 18: case 24: case 36: case 48: case 72: case 96: case 108: return (rate * 2); default: break; } return (24); } static int urtw_compute_txtime(uint16_t framelen, uint16_t rate, uint8_t ismgt, uint8_t isshort) { uint16_t ceiling, frametime, n_dbps; if (urtw_isbmode(rate)) { if (ismgt || !isshort || rate == 2) frametime = (uint16_t)(144 + 48 + (framelen * 8 / (rate / 2))); else frametime = (uint16_t)(72 + 24 + (framelen * 8 / (rate / 2))); if ((framelen * 8 % (rate / 2)) != 0) frametime++; } else { n_dbps = urtw_rate2dbps(rate); ceiling = (16 + 8 * framelen + 6) / n_dbps + (((16 + 8 * framelen + 6) % n_dbps) ? 1 : 0); frametime = (uint16_t)(16 + 4 + 4 * ceiling + 6); } return (frametime); } /* * Callback from the 802.11 layer to update the * slot time based on the current setting. */ static void urtw_updateslot(struct ieee80211com *ic) { struct urtw_softc *sc = ic->ic_softc; ieee80211_runtask(ic, &sc->sc_updateslot_task); } static void urtw_updateslottask(void *arg, int pending) { struct urtw_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; int error; URTW_LOCK(sc); if ((sc->sc_flags & URTW_RUNNING) == 0) { URTW_UNLOCK(sc); return; } if (sc->sc_flags & URTW_RTL8187B) { urtw_write8_m(sc, URTW_SIFS, 0x22); if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) urtw_write8_m(sc, URTW_SLOT, IEEE80211_DUR_SHSLOT); else urtw_write8_m(sc, URTW_SLOT, IEEE80211_DUR_SLOT); urtw_write8_m(sc, URTW_8187B_EIFS, 0x5b); urtw_write8_m(sc, URTW_CARRIER_SCOUNT, 0x5b); } else { urtw_write8_m(sc, URTW_SIFS, 0x22); if (sc->sc_state == IEEE80211_S_ASSOC && ic->ic_flags & IEEE80211_F_SHSLOT) urtw_write8_m(sc, URTW_SLOT, IEEE80211_DUR_SHSLOT); else urtw_write8_m(sc, URTW_SLOT, IEEE80211_DUR_SLOT); if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { urtw_write8_m(sc, URTW_DIFS, 0x14); urtw_write8_m(sc, URTW_EIFS, 0x5b - 0x14); urtw_write8_m(sc, URTW_CW_VAL, 0x73); } else { urtw_write8_m(sc, URTW_DIFS, 0x24); urtw_write8_m(sc, URTW_EIFS, 0x5b - 0x24); urtw_write8_m(sc, URTW_CW_VAL, 0xa5); } } fail: URTW_UNLOCK(sc); } static void urtw_sysctl_node(struct urtw_softc *sc) { #define URTW_SYSCTL_STAT_ADD32(c, h, n, p, d) \ SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) struct sysctl_ctx_list *ctx; struct sysctl_oid_list *child, *parent; struct sysctl_oid *tree; struct urtw_stats *stats = &sc->sc_stats; ctx = device_get_sysctl_ctx(sc->sc_dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->sc_dev)); tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, NULL, "URTW statistics"); parent = SYSCTL_CHILDREN(tree); /* Tx statistics. */ tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, NULL, "Tx MAC statistics"); child = SYSCTL_CHILDREN(tree); URTW_SYSCTL_STAT_ADD32(ctx, child, "1m", &stats->txrates[0], "1 Mbit/s"); URTW_SYSCTL_STAT_ADD32(ctx, child, "2m", &stats->txrates[1], "2 Mbit/s"); URTW_SYSCTL_STAT_ADD32(ctx, child, "5.5m", &stats->txrates[2], "5.5 Mbit/s"); URTW_SYSCTL_STAT_ADD32(ctx, child, "6m", &stats->txrates[4], "6 Mbit/s"); URTW_SYSCTL_STAT_ADD32(ctx, child, "9m", &stats->txrates[5], "9 Mbit/s"); URTW_SYSCTL_STAT_ADD32(ctx, child, "11m", &stats->txrates[3], "11 Mbit/s"); URTW_SYSCTL_STAT_ADD32(ctx, child, "12m", &stats->txrates[6], "12 Mbit/s"); URTW_SYSCTL_STAT_ADD32(ctx, child, "18m", &stats->txrates[7], "18 Mbit/s"); URTW_SYSCTL_STAT_ADD32(ctx, child, "24m", &stats->txrates[8], "24 Mbit/s"); URTW_SYSCTL_STAT_ADD32(ctx, child, "36m", &stats->txrates[9], "36 Mbit/s"); URTW_SYSCTL_STAT_ADD32(ctx, child, "48m", &stats->txrates[10], "48 Mbit/s"); URTW_SYSCTL_STAT_ADD32(ctx, child, "54m", &stats->txrates[11], "54 Mbit/s"); #undef URTW_SYSCTL_STAT_ADD32 } static device_method_t urtw_methods[] = { DEVMETHOD(device_probe, urtw_match), DEVMETHOD(device_attach, urtw_attach), DEVMETHOD(device_detach, urtw_detach), DEVMETHOD_END }; static driver_t urtw_driver = { .name = "urtw", .methods = urtw_methods, .size = sizeof(struct urtw_softc) }; static devclass_t urtw_devclass; DRIVER_MODULE(urtw, uhub, urtw_driver, urtw_devclass, NULL, 0); MODULE_DEPEND(urtw, wlan, 1, 1, 1); MODULE_DEPEND(urtw, usb, 1, 1, 1); MODULE_VERSION(urtw, 1); USB_PNP_HOST_INFO(urtw_devs); Index: head/sys/dev/usb/wlan/if_zyd.c =================================================================== --- head/sys/dev/usb/wlan/if_zyd.c (revision 298817) +++ head/sys/dev/usb/wlan/if_zyd.c (revision 298818) @@ -1,2897 +1,2897 @@ /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */ /* $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $ */ /* $FreeBSD$ */ /*- * Copyright (c) 2006 by Damien Bergamini * Copyright (c) 2006 by Florian Stoehr * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /* * ZyDAS ZD1211/ZD1211B USB WLAN driver. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #include #include #include #include #include #include #include "usbdevs.h" #include #include #ifdef USB_DEBUG static int zyd_debug = 0; static SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW, 0, "USB zyd"); SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RWTUN, &zyd_debug, 0, "zyd debug level"); enum { ZYD_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ ZYD_DEBUG_RECV = 0x00000002, /* basic recv operation */ ZYD_DEBUG_RESET = 0x00000004, /* reset processing */ ZYD_DEBUG_INIT = 0x00000008, /* device init */ ZYD_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */ ZYD_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */ ZYD_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */ ZYD_DEBUG_STAT = 0x00000080, /* statistic */ ZYD_DEBUG_FW = 0x00000100, /* firmware */ ZYD_DEBUG_CMD = 0x00000200, /* fw commands */ ZYD_DEBUG_ANY = 0xffffffff }; #define DPRINTF(sc, m, fmt, ...) do { \ if (zyd_debug & (m)) \ printf("%s: " fmt, __func__, ## __VA_ARGS__); \ } while (0) #else #define DPRINTF(sc, m, fmt, ...) do { \ (void) sc; \ } while (0) #endif #define zyd_do_request(sc,req,data) \ usbd_do_request_flags((sc)->sc_udev, &(sc)->sc_mtx, req, data, 0, NULL, 5000) static device_probe_t zyd_match; static device_attach_t zyd_attach; static device_detach_t zyd_detach; static usb_callback_t zyd_intr_read_callback; static usb_callback_t zyd_intr_write_callback; static usb_callback_t zyd_bulk_read_callback; static usb_callback_t zyd_bulk_write_callback; static struct ieee80211vap *zyd_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void zyd_vap_delete(struct ieee80211vap *); static void zyd_tx_free(struct zyd_tx_data *, int); static void zyd_setup_tx_list(struct zyd_softc *); static void zyd_unsetup_tx_list(struct zyd_softc *); static int zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int); static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int, void *, int, int); static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); static int zyd_rfwrite(struct zyd_softc *, uint32_t); static int zyd_lock_phy(struct zyd_softc *); static int zyd_unlock_phy(struct zyd_softc *); static int zyd_rf_attach(struct zyd_softc *, uint8_t); static const char *zyd_rf_name(uint8_t); static int zyd_hw_init(struct zyd_softc *); static int zyd_read_pod(struct zyd_softc *); static int zyd_read_eeprom(struct zyd_softc *); static int zyd_get_macaddr(struct zyd_softc *); static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *); static int zyd_set_bssid(struct zyd_softc *, const uint8_t *); static int zyd_switch_radio(struct zyd_softc *, int); static int zyd_set_led(struct zyd_softc *, int, int); static void zyd_set_multi(struct zyd_softc *); static void zyd_update_mcast(struct ieee80211com *); static int zyd_set_rxfilter(struct zyd_softc *); static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); static int zyd_set_beacon_interval(struct zyd_softc *, int); static void zyd_rx_data(struct usb_xfer *, int, uint16_t); static int zyd_tx_start(struct zyd_softc *, struct mbuf *, struct ieee80211_node *); static int zyd_transmit(struct ieee80211com *, struct mbuf *); static void zyd_start(struct zyd_softc *); static int zyd_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void zyd_parent(struct ieee80211com *); static void zyd_init_locked(struct zyd_softc *); static void zyd_stop(struct zyd_softc *); static int zyd_loadfirmware(struct zyd_softc *); static void zyd_scan_start(struct ieee80211com *); static void zyd_scan_end(struct ieee80211com *); static void zyd_set_channel(struct ieee80211com *); static int zyd_rfmd_init(struct zyd_rf *); static int zyd_rfmd_switch_radio(struct zyd_rf *, int); static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); static int zyd_al2230_init(struct zyd_rf *); static int zyd_al2230_switch_radio(struct zyd_rf *, int); static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); static int zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t); static int zyd_al2230_init_b(struct zyd_rf *); static int zyd_al7230B_init(struct zyd_rf *); static int zyd_al7230B_switch_radio(struct zyd_rf *, int); static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); static int zyd_al2210_init(struct zyd_rf *); static int zyd_al2210_switch_radio(struct zyd_rf *, int); static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); static int zyd_gct_init(struct zyd_rf *); static int zyd_gct_switch_radio(struct zyd_rf *, int); static int zyd_gct_set_channel(struct zyd_rf *, uint8_t); static int zyd_gct_mode(struct zyd_rf *); static int zyd_gct_set_channel_synth(struct zyd_rf *, int, int); static int zyd_gct_write(struct zyd_rf *, uint16_t); static int zyd_gct_txgain(struct zyd_rf *, uint8_t); static int zyd_maxim2_init(struct zyd_rf *); static int zyd_maxim2_switch_radio(struct zyd_rf *, int); static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; /* various supported device vendors/products */ #define ZYD_ZD1211 0 #define ZYD_ZD1211B 1 #define ZYD_ZD1211_DEV(v,p) \ { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211) } #define ZYD_ZD1211B_DEV(v,p) \ { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, ZYD_ZD1211B) } static const STRUCT_USB_HOST_ID zyd_devs[] = { /* ZYD_ZD1211 */ ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), ZYD_ZD1211_DEV(ABOCOM, WL54), ZYD_ZD1211_DEV(ASUS, WL159G), ZYD_ZD1211_DEV(CYBERTAN, TG54USB), ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), ZYD_ZD1211_DEV(SAGEM, XG760A), ZYD_ZD1211_DEV(SENAO, NUB8301), ZYD_ZD1211_DEV(SITECOMEU, WL113), ZYD_ZD1211_DEV(SWEEX, ZD1211), ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), ZYD_ZD1211_DEV(TWINMOS, G240), ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), ZYD_ZD1211_DEV(UMEDIA, TEW429UB), ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), ZYD_ZD1211_DEV(ZCOM, ZD1211), ZYD_ZD1211_DEV(ZYDAS, ZD1211), ZYD_ZD1211_DEV(ZYXEL, AG225H), ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220), ZYD_ZD1211_DEV(ZYXEL, G200V2), /* ZYD_ZD1211B */ ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG_NF), ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), ZYD_ZD1211B_DEV(ACCTON, ZD1211B), ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000), ZYD_ZD1211B_DEV(BELKIN, ZD1211B), ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), ZYD_ZD1211B_DEV(FIBERLINE, WL430U), ZYD_ZD1211B_DEV(MELCO, KG54L), ZYD_ZD1211B_DEV(PHILIPS, SNU5600), ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS), ZYD_ZD1211B_DEV(SAGEM, XG76NA), ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), ZYD_ZD1211B_DEV(USR, USR5423), ZYD_ZD1211B_DEV(VTECH, ZD1211B), ZYD_ZD1211B_DEV(ZCOM, ZD1211B), ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), ZYD_ZD1211B_DEV(ZYXEL, M202), ZYD_ZD1211B_DEV(ZYXEL, G202), ZYD_ZD1211B_DEV(ZYXEL, G220V2) }; static const struct usb_config zyd_config[ZYD_N_TRANSFER] = { [ZYD_BULK_WR] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .bufsize = ZYD_MAX_TXBUFSZ, .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = zyd_bulk_write_callback, .ep_index = 0, .timeout = 10000, /* 10 seconds */ }, [ZYD_BULK_RD] = { .type = UE_BULK, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = ZYX_MAX_RXBUFSZ, .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .callback = zyd_bulk_read_callback, .ep_index = 0, }, [ZYD_INTR_WR] = { .type = UE_BULK_INTR, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_OUT, .bufsize = sizeof(struct zyd_cmd), .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, .callback = zyd_intr_write_callback, .timeout = 1000, /* 1 second */ .ep_index = 1, }, [ZYD_INTR_RD] = { .type = UE_INTERRUPT, .endpoint = UE_ADDR_ANY, .direction = UE_DIR_IN, .bufsize = sizeof(struct zyd_cmd), .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, .callback = zyd_intr_read_callback, }, }; #define zyd_read16_m(sc, val, data) do { \ error = zyd_read16(sc, val, data); \ if (error != 0) \ goto fail; \ } while (0) #define zyd_write16_m(sc, val, data) do { \ error = zyd_write16(sc, val, data); \ if (error != 0) \ goto fail; \ } while (0) #define zyd_read32_m(sc, val, data) do { \ error = zyd_read32(sc, val, data); \ if (error != 0) \ goto fail; \ } while (0) #define zyd_write32_m(sc, val, data) do { \ error = zyd_write32(sc, val, data); \ if (error != 0) \ goto fail; \ } while (0) static int zyd_match(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); if (uaa->usb_mode != USB_MODE_HOST) return (ENXIO); if (uaa->info.bConfigIndex != ZYD_CONFIG_INDEX) return (ENXIO); if (uaa->info.bIfaceIndex != ZYD_IFACE_INDEX) return (ENXIO); return (usbd_lookup_id_by_uaa(zyd_devs, sizeof(zyd_devs), uaa)); } static int zyd_attach(device_t dev) { struct usb_attach_arg *uaa = device_get_ivars(dev); struct zyd_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; - uint8_t bands[howmany(IEEE80211_MODE_MAX, 8)]; + uint8_t bands[IEEE80211_MODE_BYTES]; uint8_t iface_index; int error; if (uaa->info.bcdDevice < 0x4330) { device_printf(dev, "device version mismatch: 0x%X " "(only >= 43.30 supported)\n", uaa->info.bcdDevice); return (EINVAL); } device_set_usb_desc(dev); sc->sc_dev = dev; sc->sc_udev = uaa->device; sc->sc_macrev = USB_GET_DRIVER_INFO(uaa); mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), MTX_NETWORK_LOCK, MTX_DEF); STAILQ_INIT(&sc->sc_rqh); mbufq_init(&sc->sc_snd, ifqmaxlen); iface_index = ZYD_IFACE_INDEX; error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer, zyd_config, ZYD_N_TRANSFER, sc, &sc->sc_mtx); if (error) { device_printf(dev, "could not allocate USB transfers, " "err=%s\n", usbd_errstr(error)); goto detach; } ZYD_LOCK(sc); if ((error = zyd_get_macaddr(sc)) != 0) { device_printf(sc->sc_dev, "could not read EEPROM\n"); ZYD_UNLOCK(sc); goto detach; } ZYD_UNLOCK(sc); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(dev); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode */ | IEEE80211_C_MONITOR /* monitor mode */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_SHSLOT /* short slot time supported */ | IEEE80211_C_BGSCAN /* capable of bg scanning */ | IEEE80211_C_WPA /* 802.11i */ ; memset(bands, 0, sizeof(bands)); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); ieee80211_init_channels(ic, NULL, bands); ieee80211_ifattach(ic); ic->ic_raw_xmit = zyd_raw_xmit; ic->ic_scan_start = zyd_scan_start; ic->ic_scan_end = zyd_scan_end; ic->ic_set_channel = zyd_set_channel; ic->ic_vap_create = zyd_vap_create; ic->ic_vap_delete = zyd_vap_delete; ic->ic_update_mcast = zyd_update_mcast; ic->ic_update_promisc = zyd_update_mcast; ic->ic_parent = zyd_parent; ic->ic_transmit = zyd_transmit; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), ZYD_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), ZYD_RX_RADIOTAP_PRESENT); if (bootverbose) ieee80211_announce(ic); return (0); detach: zyd_detach(dev); return (ENXIO); /* failure */ } static void zyd_drain_mbufq(struct zyd_softc *sc) { struct mbuf *m; struct ieee80211_node *ni; ZYD_LOCK_ASSERT(sc, MA_OWNED); while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; ieee80211_free_node(ni); m_freem(m); } } static int zyd_detach(device_t dev) { struct zyd_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; unsigned int x; /* * Prevent further allocations from RX/TX data * lists and ioctls: */ ZYD_LOCK(sc); sc->sc_flags |= ZYD_FLAG_DETACHED; zyd_drain_mbufq(sc); STAILQ_INIT(&sc->tx_q); STAILQ_INIT(&sc->tx_free); ZYD_UNLOCK(sc); /* drain USB transfers */ for (x = 0; x != ZYD_N_TRANSFER; x++) usbd_transfer_drain(sc->sc_xfer[x]); /* free TX list, if any */ ZYD_LOCK(sc); zyd_unsetup_tx_list(sc); ZYD_UNLOCK(sc); /* free USB transfers and some data buffers */ usbd_transfer_unsetup(sc->sc_xfer, ZYD_N_TRANSFER); if (ic->ic_softc == sc) ieee80211_ifdetach(ic); mtx_destroy(&sc->sc_mtx); return (0); } static struct ieee80211vap * zyd_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct zyd_vap *zvp; struct ieee80211vap *vap; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return (NULL); zvp = malloc(sizeof(struct zyd_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &zvp->vap; /* enable s/w bmiss handling for sta mode */ if (ieee80211_vap_setup(ic, vap, name, unit, opmode, flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { /* out of memory */ free(zvp, M_80211_VAP); return (NULL); } /* override state transition machine */ zvp->newstate = vap->iv_newstate; vap->iv_newstate = zyd_newstate; ieee80211_ratectl_init(vap); ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status, mac); ic->ic_opmode = opmode; return (vap); } static void zyd_vap_delete(struct ieee80211vap *vap) { struct zyd_vap *zvp = ZYD_VAP(vap); ieee80211_ratectl_deinit(vap); ieee80211_vap_detach(vap); free(zvp, M_80211_VAP); } static void zyd_tx_free(struct zyd_tx_data *data, int txerr) { struct zyd_softc *sc = data->sc; if (data->m != NULL) { ieee80211_tx_complete(data->ni, data->m, txerr); data->m = NULL; data->ni = NULL; } STAILQ_INSERT_TAIL(&sc->tx_free, data, next); sc->tx_nfree++; } static void zyd_setup_tx_list(struct zyd_softc *sc) { struct zyd_tx_data *data; int i; sc->tx_nfree = 0; STAILQ_INIT(&sc->tx_q); STAILQ_INIT(&sc->tx_free); for (i = 0; i < ZYD_TX_LIST_CNT; i++) { data = &sc->tx_data[i]; data->sc = sc; STAILQ_INSERT_TAIL(&sc->tx_free, data, next); sc->tx_nfree++; } } static void zyd_unsetup_tx_list(struct zyd_softc *sc) { struct zyd_tx_data *data; int i; /* make sure any subsequent use of the queues will fail */ sc->tx_nfree = 0; STAILQ_INIT(&sc->tx_q); STAILQ_INIT(&sc->tx_free); /* free up all node references and mbufs */ for (i = 0; i < ZYD_TX_LIST_CNT; i++) { data = &sc->tx_data[i]; if (data->m != NULL) { m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } } } static int zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct zyd_vap *zvp = ZYD_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct zyd_softc *sc = ic->ic_softc; int error; DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); IEEE80211_UNLOCK(ic); ZYD_LOCK(sc); switch (nstate) { case IEEE80211_S_AUTH: zyd_set_chan(sc, ic->ic_curchan); break; case IEEE80211_S_RUN: if (vap->iv_opmode == IEEE80211_M_MONITOR) break; /* turn link LED on */ error = zyd_set_led(sc, ZYD_LED1, 1); if (error != 0) break; /* make data LED blink upon Tx */ zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1); IEEE80211_ADDR_COPY(sc->sc_bssid, vap->iv_bss->ni_bssid); zyd_set_bssid(sc, sc->sc_bssid); break; default: break; } fail: ZYD_UNLOCK(sc); IEEE80211_LOCK(ic); return (zvp->newstate(vap, nstate, arg)); } /* * Callback handler for interrupt transfer */ static void zyd_intr_read_callback(struct usb_xfer *xfer, usb_error_t error) { struct zyd_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct ieee80211_node *ni; struct zyd_cmd *cmd = &sc->sc_ibuf; struct usb_page_cache *pc; int datalen; int actlen; usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_out(pc, 0, cmd, sizeof(*cmd)); switch (le16toh(cmd->code)) { case ZYD_NOTIF_RETRYSTATUS: { struct zyd_notif_retry *retry = (struct zyd_notif_retry *)cmd->data; DPRINTF(sc, ZYD_DEBUG_TX_PROC, "retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", le16toh(retry->rate), ether_sprintf(retry->macaddr), le16toh(retry->count)&0xff, le16toh(retry->count)); /* * Find the node to which the packet was sent and * update its retry statistics. In BSS mode, this node * is the AP we're associated to so no lookup is * actually needed. */ ni = ieee80211_find_txnode(vap, retry->macaddr); if (ni != NULL) { int retrycnt = (int)(le16toh(retry->count) & 0xff); ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_FAILURE, &retrycnt, NULL); ieee80211_free_node(ni); } if (le16toh(retry->count) & 0x100) /* too many retries */ if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); break; } case ZYD_NOTIF_IORD: { struct zyd_rq *rqp; if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) break; /* HMAC interrupt */ datalen = actlen - sizeof(cmd->code); datalen -= 2; /* XXX: padding? */ STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { int i; int count; if (rqp->olen != datalen) continue; count = rqp->olen / sizeof(struct zyd_pair); for (i = 0; i < count; i++) { if (*(((const uint16_t *)rqp->idata) + i) != (((struct zyd_pair *)cmd->data) + i)->reg) break; } if (i != count) continue; /* copy answer into caller-supplied buffer */ memcpy(rqp->odata, cmd->data, rqp->olen); DPRINTF(sc, ZYD_DEBUG_CMD, "command %p complete, data = %*D \n", rqp, rqp->olen, (char *)rqp->odata, ":"); wakeup(rqp); /* wakeup caller */ break; } if (rqp == NULL) { device_printf(sc->sc_dev, "unexpected IORD notification %*D\n", datalen, cmd->data, ":"); } break; } default: device_printf(sc->sc_dev, "unknown notification %x\n", le16toh(cmd->code)); } /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); break; default: /* Error */ DPRINTF(sc, ZYD_DEBUG_CMD, "error = %s\n", usbd_errstr(error)); if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } break; } } static void zyd_intr_write_callback(struct usb_xfer *xfer, usb_error_t error) { struct zyd_softc *sc = usbd_xfer_softc(xfer); struct zyd_rq *rqp, *cmd; struct usb_page_cache *pc; switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: cmd = usbd_xfer_get_priv(xfer); DPRINTF(sc, ZYD_DEBUG_CMD, "command %p transferred\n", cmd); STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { /* Ensure the cached rq pointer is still valid */ if (rqp == cmd && (rqp->flags & ZYD_CMD_FLAG_READ) == 0) wakeup(rqp); /* wakeup caller */ } /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) { if (rqp->flags & ZYD_CMD_FLAG_SENT) continue; pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_in(pc, 0, rqp->cmd, rqp->ilen); usbd_xfer_set_frame_len(xfer, 0, rqp->ilen); usbd_xfer_set_priv(xfer, rqp); rqp->flags |= ZYD_CMD_FLAG_SENT; usbd_transfer_submit(xfer); break; } break; default: /* Error */ DPRINTF(sc, ZYD_DEBUG_ANY, "error = %s\n", usbd_errstr(error)); if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } break; } } static int zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen, void *odata, int olen, int flags) { struct zyd_cmd cmd; struct zyd_rq rq; int error; if (ilen > (int)sizeof(cmd.data)) return (EINVAL); cmd.code = htole16(code); memcpy(cmd.data, idata, ilen); DPRINTF(sc, ZYD_DEBUG_CMD, "sending cmd %p = %*D\n", &rq, ilen, idata, ":"); rq.cmd = &cmd; rq.idata = idata; rq.odata = odata; rq.ilen = sizeof(uint16_t) + ilen; rq.olen = olen; rq.flags = flags; STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq); usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); usbd_transfer_start(sc->sc_xfer[ZYD_INTR_WR]); /* wait at most one second for command reply */ error = mtx_sleep(&rq, &sc->sc_mtx, 0 , "zydcmd", hz); if (error) device_printf(sc->sc_dev, "command timeout\n"); STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq); DPRINTF(sc, ZYD_DEBUG_CMD, "finsihed cmd %p, error = %d \n", &rq, error); return (error); } static int zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) { struct zyd_pair tmp; int error; reg = htole16(reg); error = zyd_cmd(sc, ZYD_CMD_IORD, ®, sizeof(reg), &tmp, sizeof(tmp), ZYD_CMD_FLAG_READ); if (error == 0) *val = le16toh(tmp.val); return (error); } static int zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) { struct zyd_pair tmp[2]; uint16_t regs[2]; int error; regs[0] = htole16(ZYD_REG32_HI(reg)); regs[1] = htole16(ZYD_REG32_LO(reg)); error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp), ZYD_CMD_FLAG_READ); if (error == 0) *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val); return (error); } static int zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) { struct zyd_pair pair; pair.reg = htole16(reg); pair.val = htole16(val); return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0); } static int zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) { struct zyd_pair pair[2]; pair[0].reg = htole16(ZYD_REG32_HI(reg)); pair[0].val = htole16(val >> 16); pair[1].reg = htole16(ZYD_REG32_LO(reg)); pair[1].val = htole16(val & 0xffff); return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0); } static int zyd_rfwrite(struct zyd_softc *sc, uint32_t val) { struct zyd_rf *rf = &sc->sc_rf; struct zyd_rfwrite_cmd req; uint16_t cr203; int error, i; zyd_read16_m(sc, ZYD_CR203, &cr203); cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); req.code = htole16(2); req.width = htole16(rf->width); for (i = 0; i < rf->width; i++) { req.bit[i] = htole16(cr203); if (val & (1 << (rf->width - 1 - i))) req.bit[i] |= htole16(ZYD_RF_DATA); } error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0); fail: return (error); } static int zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val) { int error; zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff); zyd_write16_m(sc, ZYD_CR243, (val >> 8) & 0xff); zyd_write16_m(sc, ZYD_CR242, (val >> 0) & 0xff); fail: return (error); } static int zyd_lock_phy(struct zyd_softc *sc) { int error; uint32_t tmp; zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); tmp &= ~ZYD_UNLOCK_PHY_REGS; zyd_write32_m(sc, ZYD_MAC_MISC, tmp); fail: return (error); } static int zyd_unlock_phy(struct zyd_softc *sc) { int error; uint32_t tmp; zyd_read32_m(sc, ZYD_MAC_MISC, &tmp); tmp |= ZYD_UNLOCK_PHY_REGS; zyd_write32_m(sc, ZYD_MAC_MISC, tmp); fail: return (error); } /* * RFMD RF methods. */ static int zyd_rfmd_init(struct zyd_rf *rf) { struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; static const uint32_t rfini[] = ZYD_RFMD_RF; int i, error; /* init RF-dependent PHY registers */ for (i = 0; i < nitems(phyini); i++) { zyd_write16_m(sc, phyini[i].reg, phyini[i].val); } /* init RFMD radio */ for (i = 0; i < nitems(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return (error); } fail: return (error); } static int zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) { int error; struct zyd_softc *sc = rf->rf_sc; zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15); zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81); fail: return (error); } static int zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) { int error; struct zyd_softc *sc = rf->rf_sc; static const struct { uint32_t r1, r2; } rfprog[] = ZYD_RFMD_CHANTABLE; error = zyd_rfwrite(sc, rfprog[chan - 1].r1); if (error != 0) goto fail; error = zyd_rfwrite(sc, rfprog[chan - 1].r2); if (error != 0) goto fail; fail: return (error); } /* * AL2230 RF methods. */ static int zyd_al2230_init(struct zyd_rf *rf) { struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; static const struct zyd_phy_pair phypll[] = { { ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f }, { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 } }; static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1; static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2; static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3; int i, error; /* init RF-dependent PHY registers */ for (i = 0; i < nitems(phyini); i++) zyd_write16_m(sc, phyini[i].reg, phyini[i].val); if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { for (i = 0; i < nitems(phy2230s); i++) zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); } /* init AL2230 radio */ for (i = 0; i < nitems(rfini1); i++) { error = zyd_rfwrite(sc, rfini1[i]); if (error != 0) goto fail; } if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) error = zyd_rfwrite(sc, 0x000824); else error = zyd_rfwrite(sc, 0x0005a4); if (error != 0) goto fail; for (i = 0; i < nitems(rfini2); i++) { error = zyd_rfwrite(sc, rfini2[i]); if (error != 0) goto fail; } for (i = 0; i < nitems(phypll); i++) zyd_write16_m(sc, phypll[i].reg, phypll[i].val); for (i = 0; i < nitems(rfini3); i++) { error = zyd_rfwrite(sc, rfini3[i]); if (error != 0) goto fail; } fail: return (error); } static int zyd_al2230_fini(struct zyd_rf *rf) { int error, i; struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1; for (i = 0; i < nitems(phy); i++) zyd_write16_m(sc, phy[i].reg, phy[i].val); if (sc->sc_newphy != 0) zyd_write16_m(sc, ZYD_CR9, 0xe1); zyd_write16_m(sc, ZYD_CR203, 0x6); fail: return (error); } static int zyd_al2230_init_b(struct zyd_rf *rf) { struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2; static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3; static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1; static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2; static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3; static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE; int i, error; for (i = 0; i < nitems(phy1); i++) zyd_write16_m(sc, phy1[i].reg, phy1[i].val); /* init RF-dependent PHY registers */ for (i = 0; i < nitems(phyini); i++) zyd_write16_m(sc, phyini[i].reg, phyini[i].val); if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) { for (i = 0; i < nitems(phy2230s); i++) zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val); } for (i = 0; i < 3; i++) { error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]); if (error != 0) return (error); } for (i = 0; i < nitems(rfini_part1); i++) { error = zyd_rfwrite_cr(sc, rfini_part1[i]); if (error != 0) return (error); } if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) error = zyd_rfwrite(sc, 0x241000); else error = zyd_rfwrite(sc, 0x25a000); if (error != 0) goto fail; for (i = 0; i < nitems(rfini_part2); i++) { error = zyd_rfwrite_cr(sc, rfini_part2[i]); if (error != 0) return (error); } for (i = 0; i < nitems(phy2); i++) zyd_write16_m(sc, phy2[i].reg, phy2[i].val); for (i = 0; i < nitems(rfini_part3); i++) { error = zyd_rfwrite_cr(sc, rfini_part3[i]); if (error != 0) return (error); } for (i = 0; i < nitems(phy3); i++) zyd_write16_m(sc, phy3[i].reg, phy3[i].val); error = zyd_al2230_fini(rf); fail: return (error); } static int zyd_al2230_switch_radio(struct zyd_rf *rf, int on) { struct zyd_softc *sc = rf->rf_sc; int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f; zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f); fail: return (error); } static int zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) { int error, i; struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phy1[] = { { ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }, }; static const struct { uint32_t r1, r2, r3; } rfprog[] = ZYD_AL2230_CHANTABLE; error = zyd_rfwrite(sc, rfprog[chan - 1].r1); if (error != 0) goto fail; error = zyd_rfwrite(sc, rfprog[chan - 1].r2); if (error != 0) goto fail; error = zyd_rfwrite(sc, rfprog[chan - 1].r3); if (error != 0) goto fail; for (i = 0; i < nitems(phy1); i++) zyd_write16_m(sc, phy1[i].reg, phy1[i].val); fail: return (error); } static int zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan) { int error, i; struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1; static const struct { uint32_t r1, r2, r3; } rfprog[] = ZYD_AL2230_CHANTABLE_B; for (i = 0; i < nitems(phy1); i++) zyd_write16_m(sc, phy1[i].reg, phy1[i].val); error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1); if (error != 0) goto fail; error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2); if (error != 0) goto fail; error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3); if (error != 0) goto fail; error = zyd_al2230_fini(rf); fail: return (error); } #define ZYD_AL2230_PHY_BANDEDGE6 \ { \ { ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 }, \ { ZYD_CR47, 0x1e } \ } static int zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c) { int error = 0, i; struct zyd_softc *sc = rf->rf_sc; struct ieee80211com *ic = &sc->sc_ic; struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6; int chan = ieee80211_chan2ieee(ic, c); if (chan == 1 || chan == 11) r[0].val = 0x12; for (i = 0; i < nitems(r); i++) zyd_write16_m(sc, r[i].reg, r[i].val); fail: return (error); } /* * AL7230B RF methods. */ static int zyd_al7230B_init(struct zyd_rf *rf) { struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; int i, error; /* for AL7230B, PHY and RF need to be initialized in "phases" */ /* init RF-dependent PHY registers, part one */ for (i = 0; i < nitems(phyini_1); i++) zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val); /* init AL7230B radio, part one */ for (i = 0; i < nitems(rfini_1); i++) { if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) return (error); } /* init RF-dependent PHY registers, part two */ for (i = 0; i < nitems(phyini_2); i++) zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val); /* init AL7230B radio, part two */ for (i = 0; i < nitems(rfini_2); i++) { if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) return (error); } /* init RF-dependent PHY registers, part three */ for (i = 0; i < nitems(phyini_3); i++) zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val); fail: return (error); } static int zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) { int error; struct zyd_softc *sc = rf->rf_sc; zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f); fail: return (error); } static int zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) { struct zyd_softc *sc = rf->rf_sc; static const struct { uint32_t r1, r2; } rfprog[] = ZYD_AL7230B_CHANTABLE; static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; int i, error; zyd_write16_m(sc, ZYD_CR240, 0x57); zyd_write16_m(sc, ZYD_CR251, 0x2f); for (i = 0; i < nitems(rfsc); i++) { if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) return (error); } zyd_write16_m(sc, ZYD_CR128, 0x14); zyd_write16_m(sc, ZYD_CR129, 0x12); zyd_write16_m(sc, ZYD_CR130, 0x10); zyd_write16_m(sc, ZYD_CR38, 0x38); zyd_write16_m(sc, ZYD_CR136, 0xdf); error = zyd_rfwrite(sc, rfprog[chan - 1].r1); if (error != 0) goto fail; error = zyd_rfwrite(sc, rfprog[chan - 1].r2); if (error != 0) goto fail; error = zyd_rfwrite(sc, 0x3c9000); if (error != 0) goto fail; zyd_write16_m(sc, ZYD_CR251, 0x3f); zyd_write16_m(sc, ZYD_CR203, 0x06); zyd_write16_m(sc, ZYD_CR240, 0x08); fail: return (error); } /* * AL2210 RF methods. */ static int zyd_al2210_init(struct zyd_rf *rf) { struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; static const uint32_t rfini[] = ZYD_AL2210_RF; uint32_t tmp; int i, error; zyd_write32_m(sc, ZYD_CR18, 2); /* init RF-dependent PHY registers */ for (i = 0; i < nitems(phyini); i++) zyd_write16_m(sc, phyini[i].reg, phyini[i].val); /* init AL2210 radio */ for (i = 0; i < nitems(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return (error); } zyd_write16_m(sc, ZYD_CR47, 0x1e); zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); zyd_write16_m(sc, ZYD_CR47, 0x1e); zyd_write32_m(sc, ZYD_CR18, 3); fail: return (error); } static int zyd_al2210_switch_radio(struct zyd_rf *rf, int on) { /* vendor driver does nothing for this RF chip */ return (0); } static int zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) { int error; struct zyd_softc *sc = rf->rf_sc; static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; uint32_t tmp; zyd_write32_m(sc, ZYD_CR18, 2); zyd_write16_m(sc, ZYD_CR47, 0x1e); zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp); zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1); zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1); zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05); zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00); zyd_write16_m(sc, ZYD_CR47, 0x1e); /* actually set the channel */ error = zyd_rfwrite(sc, rfprog[chan - 1]); if (error != 0) goto fail; zyd_write32_m(sc, ZYD_CR18, 3); fail: return (error); } /* * GCT RF methods. */ static int zyd_gct_init(struct zyd_rf *rf) { #define ZYD_GCT_INTR_REG 0x85c1 struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; static const uint32_t rfini[] = ZYD_GCT_RF; static const uint16_t vco[11][7] = ZYD_GCT_VCO; int i, idx = -1, error; uint16_t data; /* init RF-dependent PHY registers */ for (i = 0; i < nitems(phyini); i++) zyd_write16_m(sc, phyini[i].reg, phyini[i].val); /* init cgt radio */ for (i = 0; i < nitems(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return (error); } error = zyd_gct_mode(rf); if (error != 0) return (error); for (i = 0; i < (int)(nitems(vco) - 1); i++) { error = zyd_gct_set_channel_synth(rf, 1, 0); if (error != 0) goto fail; error = zyd_gct_write(rf, vco[i][0]); if (error != 0) goto fail; zyd_write16_m(sc, ZYD_GCT_INTR_REG, 0xf); zyd_read16_m(sc, ZYD_GCT_INTR_REG, &data); if ((data & 0xf) == 0) { idx = i; break; } } if (idx == -1) { error = zyd_gct_set_channel_synth(rf, 1, 1); if (error != 0) goto fail; error = zyd_gct_write(rf, 0x6662); if (error != 0) goto fail; } rf->idx = idx; zyd_write16_m(sc, ZYD_CR203, 0x6); fail: return (error); #undef ZYD_GCT_INTR_REG } static int zyd_gct_mode(struct zyd_rf *rf) { struct zyd_softc *sc = rf->rf_sc; static const uint32_t mode[] = { 0x25f98, 0x25f9a, 0x25f94, 0x27fd4 }; int i, error; for (i = 0; i < nitems(mode); i++) { if ((error = zyd_rfwrite(sc, mode[i])) != 0) break; } return (error); } static int zyd_gct_set_channel_synth(struct zyd_rf *rf, int chan, int acal) { int error, idx = chan - 1; struct zyd_softc *sc = rf->rf_sc; static uint32_t acal_synth[] = ZYD_GCT_CHANNEL_ACAL; static uint32_t std_synth[] = ZYD_GCT_CHANNEL_STD; static uint32_t div_synth[] = ZYD_GCT_CHANNEL_DIV; error = zyd_rfwrite(sc, (acal == 1) ? acal_synth[idx] : std_synth[idx]); if (error != 0) return (error); return zyd_rfwrite(sc, div_synth[idx]); } static int zyd_gct_write(struct zyd_rf *rf, uint16_t value) { struct zyd_softc *sc = rf->rf_sc; return zyd_rfwrite(sc, 0x300000 | 0x40000 | value); } static int zyd_gct_switch_radio(struct zyd_rf *rf, int on) { int error; struct zyd_softc *sc = rf->rf_sc; error = zyd_rfwrite(sc, on ? 0x25f94 : 0x25f90); if (error != 0) return (error); zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04); zyd_write16_m(sc, ZYD_CR251, on ? ((sc->sc_macrev == ZYD_ZD1211B) ? 0x7f : 0x3f) : 0x2f); fail: return (error); } static int zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) { int error, i; struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair cmd[] = { { ZYD_CR80, 0x30 }, { ZYD_CR81, 0x30 }, { ZYD_CR79, 0x58 }, { ZYD_CR12, 0xf0 }, { ZYD_CR77, 0x1b }, { ZYD_CR78, 0x58 }, }; static const uint16_t vco[11][7] = ZYD_GCT_VCO; error = zyd_gct_set_channel_synth(rf, chan, 0); if (error != 0) goto fail; error = zyd_gct_write(rf, (rf->idx == -1) ? 0x6662 : vco[rf->idx][((chan - 1) / 2)]); if (error != 0) goto fail; error = zyd_gct_mode(rf); if (error != 0) return (error); for (i = 0; i < nitems(cmd); i++) zyd_write16_m(sc, cmd[i].reg, cmd[i].val); error = zyd_gct_txgain(rf, chan); if (error != 0) return (error); zyd_write16_m(sc, ZYD_CR203, 0x6); fail: return (error); } static int zyd_gct_txgain(struct zyd_rf *rf, uint8_t chan) { struct zyd_softc *sc = rf->rf_sc; static uint32_t txgain[] = ZYD_GCT_TXGAIN; uint8_t idx = sc->sc_pwrint[chan - 1]; if (idx >= nitems(txgain)) { device_printf(sc->sc_dev, "could not set TX gain (%d %#x)\n", chan, idx); return 0; } return zyd_rfwrite(sc, 0x700000 | txgain[idx]); } /* * Maxim2 RF methods. */ static int zyd_maxim2_init(struct zyd_rf *rf) { struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; static const uint32_t rfini[] = ZYD_MAXIM2_RF; uint16_t tmp; int i, error; /* init RF-dependent PHY registers */ for (i = 0; i < nitems(phyini); i++) zyd_write16_m(sc, phyini[i].reg, phyini[i].val); zyd_read16_m(sc, ZYD_CR203, &tmp); zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); /* init maxim2 radio */ for (i = 0; i < nitems(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return (error); } zyd_read16_m(sc, ZYD_CR203, &tmp); zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); fail: return (error); } static int zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) { /* vendor driver does nothing for this RF chip */ return (0); } static int zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) { struct zyd_softc *sc = rf->rf_sc; static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; static const uint32_t rfini[] = ZYD_MAXIM2_RF; static const struct { uint32_t r1, r2; } rfprog[] = ZYD_MAXIM2_CHANTABLE; uint16_t tmp; int i, error; /* * Do the same as we do when initializing it, except for the channel * values coming from the two channel tables. */ /* init RF-dependent PHY registers */ for (i = 0; i < nitems(phyini); i++) zyd_write16_m(sc, phyini[i].reg, phyini[i].val); zyd_read16_m(sc, ZYD_CR203, &tmp); zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4)); /* first two values taken from the chantables */ error = zyd_rfwrite(sc, rfprog[chan - 1].r1); if (error != 0) goto fail; error = zyd_rfwrite(sc, rfprog[chan - 1].r2); if (error != 0) goto fail; /* init maxim2 radio - skipping the two first values */ for (i = 2; i < nitems(rfini); i++) { if ((error = zyd_rfwrite(sc, rfini[i])) != 0) return (error); } zyd_read16_m(sc, ZYD_CR203, &tmp); zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4)); fail: return (error); } static int zyd_rf_attach(struct zyd_softc *sc, uint8_t type) { struct zyd_rf *rf = &sc->sc_rf; rf->rf_sc = sc; rf->update_pwr = 1; switch (type) { case ZYD_RF_RFMD: rf->init = zyd_rfmd_init; rf->switch_radio = zyd_rfmd_switch_radio; rf->set_channel = zyd_rfmd_set_channel; rf->width = 24; /* 24-bit RF values */ break; case ZYD_RF_AL2230: case ZYD_RF_AL2230S: if (sc->sc_macrev == ZYD_ZD1211B) { rf->init = zyd_al2230_init_b; rf->set_channel = zyd_al2230_set_channel_b; } else { rf->init = zyd_al2230_init; rf->set_channel = zyd_al2230_set_channel; } rf->switch_radio = zyd_al2230_switch_radio; rf->bandedge6 = zyd_al2230_bandedge6; rf->width = 24; /* 24-bit RF values */ break; case ZYD_RF_AL7230B: rf->init = zyd_al7230B_init; rf->switch_radio = zyd_al7230B_switch_radio; rf->set_channel = zyd_al7230B_set_channel; rf->width = 24; /* 24-bit RF values */ break; case ZYD_RF_AL2210: rf->init = zyd_al2210_init; rf->switch_radio = zyd_al2210_switch_radio; rf->set_channel = zyd_al2210_set_channel; rf->width = 24; /* 24-bit RF values */ break; case ZYD_RF_MAXIM_NEW: case ZYD_RF_GCT: rf->init = zyd_gct_init; rf->switch_radio = zyd_gct_switch_radio; rf->set_channel = zyd_gct_set_channel; rf->width = 24; /* 24-bit RF values */ rf->update_pwr = 0; break; case ZYD_RF_MAXIM_NEW2: rf->init = zyd_maxim2_init; rf->switch_radio = zyd_maxim2_switch_radio; rf->set_channel = zyd_maxim2_set_channel; rf->width = 18; /* 18-bit RF values */ break; default: device_printf(sc->sc_dev, "sorry, radio \"%s\" is not supported yet\n", zyd_rf_name(type)); return (EINVAL); } return (0); } static const char * zyd_rf_name(uint8_t type) { static const char * const zyd_rfs[] = { "unknown", "unknown", "UW2451", "UCHIP", "AL2230", "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", "PHILIPS" }; return zyd_rfs[(type > 15) ? 0 : type]; } static int zyd_hw_init(struct zyd_softc *sc) { int error; const struct zyd_phy_pair *phyp; struct zyd_rf *rf = &sc->sc_rf; uint16_t val; /* specify that the plug and play is finished */ zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase); DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n", sc->sc_fwbase); /* retrieve firmware revision number */ zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev); zyd_write32_m(sc, ZYD_CR_GPI_EN, 0); zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); /* set mandatory rates - XXX assumes 802.11b/g */ zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f); /* disable interrupts */ zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); if ((error = zyd_read_pod(sc)) != 0) { device_printf(sc->sc_dev, "could not read EEPROM\n"); goto fail; } /* PHY init (resetting) */ error = zyd_lock_phy(sc); if (error != 0) goto fail; phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; for (; phyp->reg != 0; phyp++) zyd_write16_m(sc, phyp->reg, phyp->val); if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) { zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val); zyd_write32_m(sc, ZYD_CR157, val >> 8); } error = zyd_unlock_phy(sc); if (error != 0) goto fail; /* HMAC init */ zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020); zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000); zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000); zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000); zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000); zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4); zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401); zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080); zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000); zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1); zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032); zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3); if (sc->sc_macrev == ZYD_ZD1211) { zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002); zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); } else { zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202); zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C); zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824); zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff); } /* init beacon interval to 100ms */ if ((error = zyd_set_beacon_interval(sc, 100)) != 0) goto fail; if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) { device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n", sc->sc_rfrev); goto fail; } /* RF chip init */ error = zyd_lock_phy(sc); if (error != 0) goto fail; error = (*rf->init)(rf); if (error != 0) { device_printf(sc->sc_dev, "radio initialization failed, error %d\n", error); goto fail; } error = zyd_unlock_phy(sc); if (error != 0) goto fail; if ((error = zyd_read_eeprom(sc)) != 0) { device_printf(sc->sc_dev, "could not read EEPROM\n"); goto fail; } fail: return (error); } static int zyd_read_pod(struct zyd_softc *sc) { int error; uint32_t tmp; zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp); sc->sc_rfrev = tmp & 0x0f; sc->sc_ledtype = (tmp >> 4) & 0x01; sc->sc_al2230s = (tmp >> 7) & 0x01; sc->sc_cckgain = (tmp >> 8) & 0x01; sc->sc_fix_cr157 = (tmp >> 13) & 0x01; sc->sc_parev = (tmp >> 16) & 0x0f; sc->sc_bandedge6 = (tmp >> 21) & 0x01; sc->sc_newphy = (tmp >> 31) & 0x01; sc->sc_txled = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1; fail: return (error); } static int zyd_read_eeprom(struct zyd_softc *sc) { uint16_t val; int error, i; /* read Tx power calibration tables */ for (i = 0; i < 7; i++) { zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val); sc->sc_pwrcal[i * 2] = val >> 8; sc->sc_pwrcal[i * 2 + 1] = val & 0xff; zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val); sc->sc_pwrint[i * 2] = val >> 8; sc->sc_pwrint[i * 2 + 1] = val & 0xff; zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val); sc->sc_ofdm36_cal[i * 2] = val >> 8; sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff; zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val); sc->sc_ofdm48_cal[i * 2] = val >> 8; sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff; zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val); sc->sc_ofdm54_cal[i * 2] = val >> 8; sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff; } fail: return (error); } static int zyd_get_macaddr(struct zyd_softc *sc) { struct usb_device_request req; usb_error_t error; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = ZYD_READFWDATAREQ; USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1); USETW(req.wIndex, 0); USETW(req.wLength, IEEE80211_ADDR_LEN); error = zyd_do_request(sc, &req, sc->sc_ic.ic_macaddr); if (error != 0) { device_printf(sc->sc_dev, "could not read EEPROM: %s\n", usbd_errstr(error)); } return (error); } static int zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) { int error; uint32_t tmp; tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp); tmp = addr[5] << 8 | addr[4]; zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp); fail: return (error); } static int zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) { int error; uint32_t tmp; tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp); tmp = addr[5] << 8 | addr[4]; zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp); fail: return (error); } static int zyd_switch_radio(struct zyd_softc *sc, int on) { struct zyd_rf *rf = &sc->sc_rf; int error; error = zyd_lock_phy(sc); if (error != 0) goto fail; error = (*rf->switch_radio)(rf, on); if (error != 0) goto fail; error = zyd_unlock_phy(sc); fail: return (error); } static int zyd_set_led(struct zyd_softc *sc, int which, int on) { int error; uint32_t tmp; zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); tmp &= ~which; if (on) tmp |= which; zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp); fail: return (error); } static void zyd_set_multi(struct zyd_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t low, high; int error; if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) return; low = 0x00000000; high = 0x80000000; if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_allmulti > 0 || ic->ic_promisc > 0) { low = 0xffffffff; high = 0xffffffff; } else { struct ieee80211vap *vap; struct ifnet *ifp; struct ifmultiaddr *ifma; uint8_t v; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { ifp = vap->iv_ifp; if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; v = ((uint8_t *)LLADDR((struct sockaddr_dl *) ifma->ifma_addr))[5] >> 2; if (v < 32) low |= 1 << v; else high |= 1 << (v - 32); } if_maddr_runlock(ifp); } } /* reprogram multicast global hash table */ zyd_write32_m(sc, ZYD_MAC_GHTBL, low); zyd_write32_m(sc, ZYD_MAC_GHTBH, high); fail: if (error != 0) device_printf(sc->sc_dev, "could not set multicast hash table\n"); } static void zyd_update_mcast(struct ieee80211com *ic) { struct zyd_softc *sc = ic->ic_softc; ZYD_LOCK(sc); zyd_set_multi(sc); ZYD_UNLOCK(sc); } static int zyd_set_rxfilter(struct zyd_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint32_t rxfilter; switch (ic->ic_opmode) { case IEEE80211_M_STA: rxfilter = ZYD_FILTER_BSS; break; case IEEE80211_M_IBSS: case IEEE80211_M_HOSTAP: rxfilter = ZYD_FILTER_HOSTAP; break; case IEEE80211_M_MONITOR: rxfilter = ZYD_FILTER_MONITOR; break; default: /* should not get there */ return (EINVAL); } return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); } static void zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) { int error; struct ieee80211com *ic = &sc->sc_ic; struct zyd_rf *rf = &sc->sc_rf; uint32_t tmp; int chan; chan = ieee80211_chan2ieee(ic, c); if (chan == 0 || chan == IEEE80211_CHAN_ANY) { /* XXX should NEVER happen */ device_printf(sc->sc_dev, "%s: invalid channel %x\n", __func__, chan); return; } error = zyd_lock_phy(sc); if (error != 0) goto fail; error = (*rf->set_channel)(rf, chan); if (error != 0) goto fail; if (rf->update_pwr) { /* update Tx power */ zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]); if (sc->sc_macrev == ZYD_ZD1211B) { zyd_write16_m(sc, ZYD_CR67, sc->sc_ofdm36_cal[chan - 1]); zyd_write16_m(sc, ZYD_CR66, sc->sc_ofdm48_cal[chan - 1]); zyd_write16_m(sc, ZYD_CR65, sc->sc_ofdm54_cal[chan - 1]); zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]); zyd_write16_m(sc, ZYD_CR69, 0x28); zyd_write16_m(sc, ZYD_CR69, 0x2a); } } if (sc->sc_cckgain) { /* set CCK baseband gain from EEPROM */ if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) zyd_write16_m(sc, ZYD_CR47, tmp & 0xff); } if (sc->sc_bandedge6 && rf->bandedge6 != NULL) { error = (*rf->bandedge6)(rf, c); if (error != 0) goto fail; } zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0); error = zyd_unlock_phy(sc); if (error != 0) goto fail; sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq); sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags); fail: return; } static int zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) { int error; uint32_t val; zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val); sc->sc_atim_wnd = val; zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val); sc->sc_pre_tbtt = val; sc->sc_bcn_int = bintval; if (sc->sc_bcn_int <= 5) sc->sc_bcn_int = 5; if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int) sc->sc_pre_tbtt = sc->sc_bcn_int - 1; if (sc->sc_atim_wnd >= sc->sc_pre_tbtt) sc->sc_atim_wnd = sc->sc_pre_tbtt - 1; zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd); zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt); zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int); fail: return (error); } static void zyd_rx_data(struct usb_xfer *xfer, int offset, uint16_t len) { struct zyd_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct zyd_plcphdr plcp; struct zyd_rx_stat stat; struct usb_page_cache *pc; struct mbuf *m; int rlen, rssi; if (len < ZYD_MIN_FRAGSZ) { DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n", device_get_nameunit(sc->sc_dev), len); counter_u64_add(ic->ic_ierrors, 1); return; } pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_out(pc, offset, &plcp, sizeof(plcp)); usbd_copy_out(pc, offset + len - sizeof(stat), &stat, sizeof(stat)); if (stat.flags & ZYD_RX_ERROR) { DPRINTF(sc, ZYD_DEBUG_RECV, "%s: RX status indicated error (%x)\n", device_get_nameunit(sc->sc_dev), stat.flags); counter_u64_add(ic->ic_ierrors, 1); return; } /* compute actual frame length */ rlen = len - sizeof(struct zyd_plcphdr) - sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN; /* allocate a mbuf to store the frame */ if (rlen > (int)MCLBYTES) { DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too long (length=%d)\n", device_get_nameunit(sc->sc_dev), rlen); counter_u64_add(ic->ic_ierrors, 1); return; } else if (rlen > (int)MHLEN) m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); else m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) { DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n", device_get_nameunit(sc->sc_dev)); counter_u64_add(ic->ic_ierrors, 1); return; } m->m_pkthdr.len = m->m_len = rlen; usbd_copy_out(pc, offset + sizeof(plcp), mtod(m, uint8_t *), rlen); if (ieee80211_radiotap_active(ic)) { struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; if (stat.flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32)) tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; /* XXX toss, no way to express errors */ if (stat.flags & ZYD_RX_DECRYPTERR) tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS; tap->wr_rate = ieee80211_plcp2rate(plcp.signal, (stat.flags & ZYD_RX_OFDM) ? IEEE80211_T_OFDM : IEEE80211_T_CCK); tap->wr_antsignal = stat.rssi + -95; tap->wr_antnoise = -95; /* XXX */ } rssi = (stat.rssi > 63) ? 127 : 2 * stat.rssi; sc->sc_rx_data[sc->sc_rx_count].rssi = rssi; sc->sc_rx_data[sc->sc_rx_count].m = m; sc->sc_rx_count++; } static void zyd_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) { struct zyd_softc *sc = usbd_xfer_softc(xfer); struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct zyd_rx_desc desc; struct mbuf *m; struct usb_page_cache *pc; uint32_t offset; uint8_t rssi; int8_t nf; int i; int actlen; usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); sc->sc_rx_count = 0; switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_out(pc, actlen - sizeof(desc), &desc, sizeof(desc)); offset = 0; if (UGETW(desc.tag) == ZYD_TAG_MULTIFRAME) { DPRINTF(sc, ZYD_DEBUG_RECV, "%s: received multi-frame transfer\n", __func__); for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { uint16_t len16 = UGETW(desc.len[i]); if (len16 == 0 || len16 > actlen) break; zyd_rx_data(xfer, offset, len16); /* next frame is aligned on a 32-bit boundary */ len16 = (len16 + 3) & ~3; offset += len16; if (len16 > actlen) break; actlen -= len16; } } else { DPRINTF(sc, ZYD_DEBUG_RECV, "%s: received single-frame transfer\n", __func__); zyd_rx_data(xfer, 0, actlen); } /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); usbd_transfer_submit(xfer); /* * At the end of a USB callback it is always safe to unlock * the private mutex of a device! That is why we do the * "ieee80211_input" here, and not some lines up! */ ZYD_UNLOCK(sc); for (i = 0; i < sc->sc_rx_count; i++) { rssi = sc->sc_rx_data[i].rssi; m = sc->sc_rx_data[i].m; sc->sc_rx_data[i].m = NULL; nf = -95; /* XXX */ ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); if (ni != NULL) { (void)ieee80211_input(ni, m, rssi, nf); ieee80211_free_node(ni); } else (void)ieee80211_input_all(ic, m, rssi, nf); } ZYD_LOCK(sc); zyd_start(sc); break; default: /* Error */ DPRINTF(sc, ZYD_DEBUG_ANY, "frame error: %s\n", usbd_errstr(error)); if (error != USB_ERR_CANCELLED) { /* try to clear stall first */ usbd_xfer_set_stall(xfer); goto tr_setup; } break; } } static uint8_t zyd_plcp_signal(struct zyd_softc *sc, int rate) { switch (rate) { /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 12: return (0xb); case 18: return (0xf); case 24: return (0xa); case 36: return (0xe); case 48: return (0x9); case 72: return (0xd); case 96: return (0x8); case 108: return (0xc); /* CCK rates (NB: not IEEE std, device-specific) */ case 2: return (0x0); case 4: return (0x1); case 11: return (0x2); case 22: return (0x3); } device_printf(sc->sc_dev, "unsupported rate %d\n", rate); return (0x0); } static void zyd_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) { struct zyd_softc *sc = usbd_xfer_softc(xfer); struct ieee80211vap *vap; struct zyd_tx_data *data; struct mbuf *m; struct usb_page_cache *pc; int actlen; usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL); switch (USB_GET_STATE(xfer)) { case USB_ST_TRANSFERRED: DPRINTF(sc, ZYD_DEBUG_ANY, "transfer complete, %u bytes\n", actlen); /* free resources */ data = usbd_xfer_get_priv(xfer); zyd_tx_free(data, 0); usbd_xfer_set_priv(xfer, NULL); /* FALLTHROUGH */ case USB_ST_SETUP: tr_setup: data = STAILQ_FIRST(&sc->tx_q); if (data) { STAILQ_REMOVE_HEAD(&sc->tx_q, next); m = data->m; if (m->m_pkthdr.len > (int)ZYD_MAX_TXBUFSZ) { DPRINTF(sc, ZYD_DEBUG_ANY, "data overflow, %u bytes\n", m->m_pkthdr.len); m->m_pkthdr.len = ZYD_MAX_TXBUFSZ; } pc = usbd_xfer_get_frame(xfer, 0); usbd_copy_in(pc, 0, &data->desc, ZYD_TX_DESC_SIZE); usbd_m_copy_in(pc, ZYD_TX_DESC_SIZE, m, 0, m->m_pkthdr.len); vap = data->ni->ni_vap; if (ieee80211_radiotap_active_vap(vap)) { struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = data->rate; ieee80211_radiotap_tx(vap, m); } usbd_xfer_set_frame_len(xfer, 0, ZYD_TX_DESC_SIZE + m->m_pkthdr.len); usbd_xfer_set_priv(xfer, data); usbd_transfer_submit(xfer); } zyd_start(sc); break; default: /* Error */ DPRINTF(sc, ZYD_DEBUG_ANY, "transfer error, %s\n", usbd_errstr(error)); counter_u64_add(sc->sc_ic.ic_oerrors, 1); data = usbd_xfer_get_priv(xfer); usbd_xfer_set_priv(xfer, NULL); if (data != NULL) zyd_tx_free(data, error); if (error != USB_ERR_CANCELLED) { if (error == USB_ERR_TIMEOUT) device_printf(sc->sc_dev, "device timeout\n"); /* * Try to clear stall first, also if other * errors occur, hence clearing stall * introduces a 50 ms delay: */ usbd_xfer_set_stall(xfer); goto tr_setup; } break; } } static int zyd_tx_start(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct zyd_tx_desc *desc; struct zyd_tx_data *data; struct ieee80211_frame *wh; const struct ieee80211_txparam *tp; struct ieee80211_key *k; int rate, totlen; static const uint8_t ratediv[] = ZYD_TX_RATEDIV; uint8_t phy; uint16_t pktlen; uint32_t bits; wh = mtod(m0, struct ieee80211_frame *); data = STAILQ_FIRST(&sc->tx_free); STAILQ_REMOVE_HEAD(&sc->tx_free, next); sc->tx_nfree--; if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT || (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) { tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; rate = tp->mgmtrate; } else { tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; /* for data frames */ if (IEEE80211_IS_MULTICAST(wh->i_addr1)) rate = tp->mcastrate; else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) rate = tp->ucastrate; else { (void) ieee80211_ratectl_rate(ni, NULL, 0); rate = ni->ni_txrate; } } if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { return (ENOBUFS); } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } data->ni = ni; data->m = m0; data->rate = rate; /* fill Tx descriptor */ desc = &data->desc; phy = zyd_plcp_signal(sc, rate); desc->phy = phy; if (ZYD_RATE_IS_OFDM(rate)) { desc->phy |= ZYD_TX_PHY_OFDM; if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) desc->phy |= ZYD_TX_PHY_5GHZ; } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) desc->phy |= ZYD_TX_PHY_SHPREAMBLE; totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN; desc->len = htole16(totlen); desc->flags = ZYD_TX_FLAG_BACKOFF; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* multicast frames are not sent at OFDM rates in 802.11b/g */ if (totlen > vap->iv_rtsthreshold) { desc->flags |= ZYD_TX_FLAG_RTS; } else if (ZYD_RATE_IS_OFDM(rate) && (ic->ic_flags & IEEE80211_F_USEPROT)) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) desc->flags |= ZYD_TX_FLAG_RTS; } } else desc->flags |= ZYD_TX_FLAG_MULTICAST; if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); /* actual transmit length (XXX why +10?) */ pktlen = ZYD_TX_DESC_SIZE + 10; if (sc->sc_macrev == ZYD_ZD1211) pktlen += totlen; desc->pktlen = htole16(pktlen); bits = (rate == 11) ? (totlen * 16) + 10 : ((rate == 22) ? (totlen * 8) + 10 : (totlen * 8)); desc->plcp_length = htole16(bits / ratediv[phy]); desc->plcp_service = 0; if (rate == 22 && (bits % 11) > 0 && (bits % 11) <= 3) desc->plcp_service |= ZYD_PLCP_LENGEXT; desc->nextlen = 0; if (ieee80211_radiotap_active_vap(vap)) { struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_rate = rate; ieee80211_radiotap_tx(vap, m0); } DPRINTF(sc, ZYD_DEBUG_XMIT, "%s: sending data frame len=%zu rate=%u\n", device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate); STAILQ_INSERT_TAIL(&sc->tx_q, data, next); usbd_transfer_start(sc->sc_xfer[ZYD_BULK_WR]); return (0); } static int zyd_transmit(struct ieee80211com *ic, struct mbuf *m) { struct zyd_softc *sc = ic->ic_softc; int error; ZYD_LOCK(sc); if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { ZYD_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { ZYD_UNLOCK(sc); return (error); } zyd_start(sc); ZYD_UNLOCK(sc); return (0); } static void zyd_start(struct zyd_softc *sc) { struct ieee80211_node *ni; struct mbuf *m; ZYD_LOCK_ASSERT(sc, MA_OWNED); while (sc->tx_nfree > 0 && (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; if (zyd_tx_start(sc, m, ni) != 0) { ieee80211_free_node(ni); m_freem(m); if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); break; } } } static int zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = ni->ni_ic; struct zyd_softc *sc = ic->ic_softc; ZYD_LOCK(sc); /* prevent management frames from being sent if we're not ready */ if (!(sc->sc_flags & ZYD_FLAG_RUNNING)) { ZYD_UNLOCK(sc); m_freem(m); return (ENETDOWN); } if (sc->tx_nfree == 0) { ZYD_UNLOCK(sc); m_freem(m); return (ENOBUFS); /* XXX */ } /* * Legacy path; interpret frame contents to decide * precisely how to send the frame. * XXX raw path */ if (zyd_tx_start(sc, m, ni) != 0) { ZYD_UNLOCK(sc); m_freem(m); return (EIO); } ZYD_UNLOCK(sc); return (0); } static void zyd_parent(struct ieee80211com *ic) { struct zyd_softc *sc = ic->ic_softc; int startall = 0; ZYD_LOCK(sc); if (sc->sc_flags & ZYD_FLAG_DETACHED) { ZYD_UNLOCK(sc); return; } if (ic->ic_nrunning > 0) { if ((sc->sc_flags & ZYD_FLAG_RUNNING) == 0) { zyd_init_locked(sc); startall = 1; } else zyd_set_multi(sc); } else if (sc->sc_flags & ZYD_FLAG_RUNNING) zyd_stop(sc); ZYD_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } static void zyd_init_locked(struct zyd_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct usb_config_descriptor *cd; int error; uint32_t val; ZYD_LOCK_ASSERT(sc, MA_OWNED); if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) { error = zyd_loadfirmware(sc); if (error != 0) { device_printf(sc->sc_dev, "could not load firmware (error=%d)\n", error); goto fail; } /* reset device */ cd = usbd_get_config_descriptor(sc->sc_udev); error = usbd_req_set_config(sc->sc_udev, &sc->sc_mtx, cd->bConfigurationValue); if (error) device_printf(sc->sc_dev, "reset failed, continuing\n"); error = zyd_hw_init(sc); if (error) { device_printf(sc->sc_dev, "hardware initialization failed\n"); goto fail; } device_printf(sc->sc_dev, "HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x " "BE%x NP%x Gain%x F%x\n", (sc->sc_macrev == ZYD_ZD1211) ? "": "B", sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff, zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev, sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy, sc->sc_cckgain, sc->sc_fix_cr157); /* read regulatory domain (currently unused) */ zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val); sc->sc_regdomain = val >> 16; DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n", sc->sc_regdomain); /* we'll do software WEP decryption for now */ DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n", __func__); zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); sc->sc_flags |= ZYD_FLAG_INITONCE; } if (sc->sc_flags & ZYD_FLAG_RUNNING) zyd_stop(sc); DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %6D\n", vap ? vap->iv_myaddr : ic->ic_macaddr, ":"); error = zyd_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); if (error != 0) return; /* set basic rates */ if (ic->ic_curmode == IEEE80211_MODE_11B) zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003); else if (ic->ic_curmode == IEEE80211_MODE_11A) zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500); else /* assumes 802.11b/g */ zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f); /* promiscuous mode */ zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0); /* multicast setup */ zyd_set_multi(sc); /* set RX filter */ error = zyd_set_rxfilter(sc); if (error != 0) goto fail; /* switch radio transmitter ON */ error = zyd_switch_radio(sc, 1); if (error != 0) goto fail; /* set default BSS channel */ zyd_set_chan(sc, ic->ic_curchan); /* * Allocate Tx and Rx xfer queues. */ zyd_setup_tx_list(sc); /* enable interrupts */ zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); sc->sc_flags |= ZYD_FLAG_RUNNING; usbd_xfer_set_stall(sc->sc_xfer[ZYD_BULK_WR]); usbd_transfer_start(sc->sc_xfer[ZYD_BULK_RD]); usbd_transfer_start(sc->sc_xfer[ZYD_INTR_RD]); return; fail: zyd_stop(sc); return; } static void zyd_stop(struct zyd_softc *sc) { int error; ZYD_LOCK_ASSERT(sc, MA_OWNED); sc->sc_flags &= ~ZYD_FLAG_RUNNING; zyd_drain_mbufq(sc); /* * Drain all the transfers, if not already drained: */ ZYD_UNLOCK(sc); usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_WR]); usbd_transfer_drain(sc->sc_xfer[ZYD_BULK_RD]); ZYD_LOCK(sc); zyd_unsetup_tx_list(sc); /* Stop now if the device was never set up */ if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) return; /* switch radio transmitter OFF */ error = zyd_switch_radio(sc, 0); if (error != 0) goto fail; /* disable Rx */ zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0); /* disable interrupts */ zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0); fail: return; } static int zyd_loadfirmware(struct zyd_softc *sc) { struct usb_device_request req; size_t size; u_char *fw; uint8_t stat; uint16_t addr; if (sc->sc_flags & ZYD_FLAG_FWLOADED) return (0); if (sc->sc_macrev == ZYD_ZD1211) { fw = (u_char *)zd1211_firmware; size = sizeof(zd1211_firmware); } else { fw = (u_char *)zd1211b_firmware; size = sizeof(zd1211b_firmware); } req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = ZYD_DOWNLOADREQ; USETW(req.wIndex, 0); addr = ZYD_FIRMWARE_START_ADDR; while (size > 0) { /* * When the transfer size is 4096 bytes, it is not * likely to be able to transfer it. * The cause is port or machine or chip? */ const int mlen = min(size, 64); DPRINTF(sc, ZYD_DEBUG_FW, "loading firmware block: len=%d, addr=0x%x\n", mlen, addr); USETW(req.wValue, addr); USETW(req.wLength, mlen); if (zyd_do_request(sc, &req, fw) != 0) return (EIO); addr += mlen / 2; fw += mlen; size -= mlen; } /* check whether the upload succeeded */ req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = ZYD_DOWNLOADSTS; USETW(req.wValue, 0); USETW(req.wIndex, 0); USETW(req.wLength, sizeof(stat)); if (zyd_do_request(sc, &req, &stat) != 0) return (EIO); sc->sc_flags |= ZYD_FLAG_FWLOADED; return (stat & 0x80) ? (EIO) : (0); } static void zyd_scan_start(struct ieee80211com *ic) { struct zyd_softc *sc = ic->ic_softc; ZYD_LOCK(sc); /* want broadcast address while scanning */ zyd_set_bssid(sc, ieee80211broadcastaddr); ZYD_UNLOCK(sc); } static void zyd_scan_end(struct ieee80211com *ic) { struct zyd_softc *sc = ic->ic_softc; ZYD_LOCK(sc); /* restore previous bssid */ zyd_set_bssid(sc, sc->sc_bssid); ZYD_UNLOCK(sc); } static void zyd_set_channel(struct ieee80211com *ic) { struct zyd_softc *sc = ic->ic_softc; ZYD_LOCK(sc); zyd_set_chan(sc, ic->ic_curchan); ZYD_UNLOCK(sc); } static device_method_t zyd_methods[] = { /* Device interface */ DEVMETHOD(device_probe, zyd_match), DEVMETHOD(device_attach, zyd_attach), DEVMETHOD(device_detach, zyd_detach), DEVMETHOD_END }; static driver_t zyd_driver = { .name = "zyd", .methods = zyd_methods, .size = sizeof(struct zyd_softc) }; static devclass_t zyd_devclass; DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, NULL, 0); MODULE_DEPEND(zyd, usb, 1, 1, 1); MODULE_DEPEND(zyd, wlan, 1, 1, 1); MODULE_VERSION(zyd, 1); USB_PNP_HOST_INFO(zyd_devs); Index: head/sys/net80211/_ieee80211.h =================================================================== --- head/sys/net80211/_ieee80211.h (revision 298817) +++ head/sys/net80211/_ieee80211.h (revision 298818) @@ -1,404 +1,405 @@ /*- * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _NET80211__IEEE80211_H_ #define _NET80211__IEEE80211_H_ /* * 802.11 implementation definitions. * * NB: this file is used by applications. */ /* * PHY type; mostly used to identify FH phys. */ enum ieee80211_phytype { IEEE80211_T_DS, /* direct sequence spread spectrum */ IEEE80211_T_FH, /* frequency hopping */ IEEE80211_T_OFDM, /* frequency division multiplexing */ IEEE80211_T_TURBO, /* high rate OFDM, aka turbo mode */ IEEE80211_T_HT, /* high throughput */ IEEE80211_T_OFDM_HALF, /* 1/2 rate OFDM */ IEEE80211_T_OFDM_QUARTER, /* 1/4 rate OFDM */ }; #define IEEE80211_T_CCK IEEE80211_T_DS /* more common nomenclature */ /* * PHY mode; this is not really a mode as multi-mode devices * have multiple PHY's. Mode is mostly used as a shorthand * for constraining which channels to consider in setting up * operation. Modes used to be used more extensively when * channels were identified as IEEE channel numbers. */ enum ieee80211_phymode { IEEE80211_MODE_AUTO = 0, /* autoselect */ IEEE80211_MODE_11A = 1, /* 5GHz, OFDM */ IEEE80211_MODE_11B = 2, /* 2GHz, CCK */ IEEE80211_MODE_11G = 3, /* 2GHz, OFDM */ IEEE80211_MODE_FH = 4, /* 2GHz, GFSK */ IEEE80211_MODE_TURBO_A = 5, /* 5GHz, OFDM, 2x clock */ IEEE80211_MODE_TURBO_G = 6, /* 2GHz, OFDM, 2x clock */ IEEE80211_MODE_STURBO_A = 7, /* 5GHz, OFDM, 2x clock, static */ IEEE80211_MODE_11NA = 8, /* 5GHz, w/ HT */ IEEE80211_MODE_11NG = 9, /* 2GHz, w/ HT */ IEEE80211_MODE_HALF = 10, /* OFDM, 1/2x clock */ IEEE80211_MODE_QUARTER = 11, /* OFDM, 1/4x clock */ }; #define IEEE80211_MODE_MAX (IEEE80211_MODE_QUARTER+1) +#define IEEE80211_MODE_BYTES 2 /* howmany(IEEE80211_MODE_MAX, NBBY) */ /* * Operating mode. Devices do not necessarily support * all modes; they indicate which are supported in their * capabilities. */ enum ieee80211_opmode { IEEE80211_M_IBSS = 0, /* IBSS (adhoc) station */ IEEE80211_M_STA = 1, /* infrastructure station */ IEEE80211_M_WDS = 2, /* WDS link */ IEEE80211_M_AHDEMO = 3, /* Old lucent compatible adhoc demo */ IEEE80211_M_HOSTAP = 4, /* Software Access Point */ IEEE80211_M_MONITOR = 5, /* Monitor mode */ IEEE80211_M_MBSS = 6, /* MBSS (Mesh Point) link */ }; #define IEEE80211_OPMODE_MAX (IEEE80211_M_MBSS+1) /* * 802.11g/802.11n protection mode. */ enum ieee80211_protmode { IEEE80211_PROT_NONE = 0, /* no protection */ IEEE80211_PROT_CTSONLY = 1, /* CTS to self */ IEEE80211_PROT_RTSCTS = 2, /* RTS-CTS */ }; /* * Authentication mode. The open and shared key authentication * modes are implemented within the 802.11 layer. 802.1x and * WPA/802.11i are implemented in user mode by setting the * 802.11 layer into IEEE80211_AUTH_8021X and deferring * authentication to user space programs. */ enum ieee80211_authmode { IEEE80211_AUTH_NONE = 0, IEEE80211_AUTH_OPEN = 1, /* open */ IEEE80211_AUTH_SHARED = 2, /* shared-key */ IEEE80211_AUTH_8021X = 3, /* 802.1x */ IEEE80211_AUTH_AUTO = 4, /* auto-select/accept */ /* NB: these are used only for ioctls */ IEEE80211_AUTH_WPA = 5, /* WPA/RSN w/ 802.1x/PSK */ }; /* * Roaming mode is effectively who controls the operation * of the 802.11 state machine when operating as a station. * State transitions are controlled either by the driver * (typically when management frames are processed by the * hardware/firmware), the host (auto/normal operation of * the 802.11 layer), or explicitly through ioctl requests * when applications like wpa_supplicant want control. */ enum ieee80211_roamingmode { IEEE80211_ROAMING_DEVICE= 0, /* driver/hardware control */ IEEE80211_ROAMING_AUTO = 1, /* 802.11 layer control */ IEEE80211_ROAMING_MANUAL= 2, /* application control */ }; /* * Channels are specified by frequency and attributes. */ struct ieee80211_channel { uint32_t ic_flags; /* see below */ uint16_t ic_freq; /* setting in MHz */ uint8_t ic_ieee; /* IEEE channel number */ int8_t ic_maxregpower; /* maximum regulatory tx power in dBm */ int8_t ic_maxpower; /* maximum tx power in .5 dBm */ int8_t ic_minpower; /* minimum tx power in .5 dBm */ uint8_t ic_state; /* dynamic state */ uint8_t ic_extieee; /* HT40 extension channel number */ int8_t ic_maxantgain; /* maximum antenna gain in .5 dBm */ uint8_t ic_pad; uint16_t ic_devdata; /* opaque device/driver data */ }; #define IEEE80211_CHAN_MAX 256 #define IEEE80211_CHAN_BYTES 32 /* howmany(IEEE80211_CHAN_MAX, NBBY) */ #define IEEE80211_CHAN_ANY 0xffff /* token for ``any channel'' */ #define IEEE80211_CHAN_ANYC \ ((struct ieee80211_channel *) IEEE80211_CHAN_ANY) /* channel attributes */ #define IEEE80211_CHAN_PRIV0 0x00000001 /* driver private bit 0 */ #define IEEE80211_CHAN_PRIV1 0x00000002 /* driver private bit 1 */ #define IEEE80211_CHAN_PRIV2 0x00000004 /* driver private bit 2 */ #define IEEE80211_CHAN_PRIV3 0x00000008 /* driver private bit 3 */ #define IEEE80211_CHAN_TURBO 0x00000010 /* Turbo channel */ #define IEEE80211_CHAN_CCK 0x00000020 /* CCK channel */ #define IEEE80211_CHAN_OFDM 0x00000040 /* OFDM channel */ #define IEEE80211_CHAN_2GHZ 0x00000080 /* 2 GHz spectrum channel. */ #define IEEE80211_CHAN_5GHZ 0x00000100 /* 5 GHz spectrum channel */ #define IEEE80211_CHAN_PASSIVE 0x00000200 /* Only passive scan allowed */ #define IEEE80211_CHAN_DYN 0x00000400 /* Dynamic CCK-OFDM channel */ #define IEEE80211_CHAN_GFSK 0x00000800 /* GFSK channel (FHSS PHY) */ #define IEEE80211_CHAN_GSM 0x00001000 /* 900 MHz spectrum channel */ #define IEEE80211_CHAN_STURBO 0x00002000 /* 11a static turbo channel only */ #define IEEE80211_CHAN_HALF 0x00004000 /* Half rate channel */ #define IEEE80211_CHAN_QUARTER 0x00008000 /* Quarter rate channel */ #define IEEE80211_CHAN_HT20 0x00010000 /* HT 20 channel */ #define IEEE80211_CHAN_HT40U 0x00020000 /* HT 40 channel w/ ext above */ #define IEEE80211_CHAN_HT40D 0x00040000 /* HT 40 channel w/ ext below */ #define IEEE80211_CHAN_DFS 0x00080000 /* DFS required */ #define IEEE80211_CHAN_4MSXMIT 0x00100000 /* 4ms limit on frame length */ #define IEEE80211_CHAN_NOADHOC 0x00200000 /* adhoc mode not allowed */ #define IEEE80211_CHAN_NOHOSTAP 0x00400000 /* hostap mode not allowed */ #define IEEE80211_CHAN_11D 0x00800000 /* 802.11d required */ #define IEEE80211_CHAN_HT40 (IEEE80211_CHAN_HT40U | IEEE80211_CHAN_HT40D) #define IEEE80211_CHAN_HT (IEEE80211_CHAN_HT20 | IEEE80211_CHAN_HT40) #define IEEE80211_CHAN_BITS \ "\20\1PRIV0\2PRIV2\3PRIV3\4PRIV4\5TURBO\6CCK\7OFDM\0102GHZ\0115GHZ" \ "\12PASSIVE\13DYN\14GFSK\15GSM\16STURBO\17HALF\20QUARTER\21HT20" \ "\22HT40U\23HT40D\24DFS\0254MSXMIT\26NOADHOC\27NOHOSTAP\03011D" /* * Useful combinations of channel characteristics. */ #define IEEE80211_CHAN_FHSS \ (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_GFSK) #define IEEE80211_CHAN_A \ (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM) #define IEEE80211_CHAN_B \ (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_CCK) #define IEEE80211_CHAN_PUREG \ (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_OFDM) #define IEEE80211_CHAN_G \ (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN) #define IEEE80211_CHAN_108A \ (IEEE80211_CHAN_A | IEEE80211_CHAN_TURBO) #define IEEE80211_CHAN_108G \ (IEEE80211_CHAN_PUREG | IEEE80211_CHAN_TURBO) #define IEEE80211_CHAN_ST \ (IEEE80211_CHAN_108A | IEEE80211_CHAN_STURBO) #define IEEE80211_CHAN_ALL \ (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_GFSK | \ IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | \ IEEE80211_CHAN_HALF | IEEE80211_CHAN_QUARTER | \ IEEE80211_CHAN_HT) #define IEEE80211_CHAN_ALLTURBO \ (IEEE80211_CHAN_ALL | IEEE80211_CHAN_TURBO | IEEE80211_CHAN_STURBO) #define IEEE80211_IS_CHAN_FHSS(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_FHSS) == IEEE80211_CHAN_FHSS) #define IEEE80211_IS_CHAN_A(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_A) == IEEE80211_CHAN_A) #define IEEE80211_IS_CHAN_B(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_B) == IEEE80211_CHAN_B) #define IEEE80211_IS_CHAN_PUREG(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_PUREG) == IEEE80211_CHAN_PUREG) #define IEEE80211_IS_CHAN_G(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_G) == IEEE80211_CHAN_G) #define IEEE80211_IS_CHAN_ANYG(_c) \ (IEEE80211_IS_CHAN_PUREG(_c) || IEEE80211_IS_CHAN_G(_c)) #define IEEE80211_IS_CHAN_ST(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_ST) == IEEE80211_CHAN_ST) #define IEEE80211_IS_CHAN_108A(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_108A) == IEEE80211_CHAN_108A) #define IEEE80211_IS_CHAN_108G(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_108G) == IEEE80211_CHAN_108G) #define IEEE80211_IS_CHAN_2GHZ(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_2GHZ) != 0) #define IEEE80211_IS_CHAN_5GHZ(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_5GHZ) != 0) #define IEEE80211_IS_CHAN_PASSIVE(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_PASSIVE) != 0) #define IEEE80211_IS_CHAN_OFDM(_c) \ (((_c)->ic_flags & (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN)) != 0) #define IEEE80211_IS_CHAN_CCK(_c) \ (((_c)->ic_flags & (IEEE80211_CHAN_CCK | IEEE80211_CHAN_DYN)) != 0) #define IEEE80211_IS_CHAN_DYN(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_DYN) == IEEE80211_CHAN_DYN) #define IEEE80211_IS_CHAN_GFSK(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_GFSK) != 0) #define IEEE80211_IS_CHAN_TURBO(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_TURBO) != 0) #define IEEE80211_IS_CHAN_STURBO(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_STURBO) != 0) #define IEEE80211_IS_CHAN_DTURBO(_c) \ (((_c)->ic_flags & \ (IEEE80211_CHAN_TURBO | IEEE80211_CHAN_STURBO)) == IEEE80211_CHAN_TURBO) #define IEEE80211_IS_CHAN_HALF(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_HALF) != 0) #define IEEE80211_IS_CHAN_QUARTER(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_QUARTER) != 0) #define IEEE80211_IS_CHAN_FULL(_c) \ (((_c)->ic_flags & (IEEE80211_CHAN_QUARTER | IEEE80211_CHAN_HALF)) == 0) #define IEEE80211_IS_CHAN_GSM(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_GSM) != 0) #define IEEE80211_IS_CHAN_HT(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_HT) != 0) #define IEEE80211_IS_CHAN_HT20(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_HT20) != 0) #define IEEE80211_IS_CHAN_HT40(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_HT40) != 0) #define IEEE80211_IS_CHAN_HT40U(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_HT40U) != 0) #define IEEE80211_IS_CHAN_HT40D(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_HT40D) != 0) #define IEEE80211_IS_CHAN_HTA(_c) \ (IEEE80211_IS_CHAN_5GHZ(_c) && \ ((_c)->ic_flags & IEEE80211_CHAN_HT) != 0) #define IEEE80211_IS_CHAN_HTG(_c) \ (IEEE80211_IS_CHAN_2GHZ(_c) && \ ((_c)->ic_flags & IEEE80211_CHAN_HT) != 0) #define IEEE80211_IS_CHAN_DFS(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_DFS) != 0) #define IEEE80211_IS_CHAN_NOADHOC(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_NOADHOC) != 0) #define IEEE80211_IS_CHAN_NOHOSTAP(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_NOHOSTAP) != 0) #define IEEE80211_IS_CHAN_11D(_c) \ (((_c)->ic_flags & IEEE80211_CHAN_11D) != 0) #define IEEE80211_CHAN2IEEE(_c) (_c)->ic_ieee /* dynamic state */ #define IEEE80211_CHANSTATE_RADAR 0x01 /* radar detected */ #define IEEE80211_CHANSTATE_CACDONE 0x02 /* CAC completed */ #define IEEE80211_CHANSTATE_CWINT 0x04 /* interference detected */ #define IEEE80211_CHANSTATE_NORADAR 0x10 /* post notify on radar clear */ #define IEEE80211_IS_CHAN_RADAR(_c) \ (((_c)->ic_state & IEEE80211_CHANSTATE_RADAR) != 0) #define IEEE80211_IS_CHAN_CACDONE(_c) \ (((_c)->ic_state & IEEE80211_CHANSTATE_CACDONE) != 0) #define IEEE80211_IS_CHAN_CWINT(_c) \ (((_c)->ic_state & IEEE80211_CHANSTATE_CWINT) != 0) /* ni_chan encoding for FH phy */ #define IEEE80211_FH_CHANMOD 80 #define IEEE80211_FH_CHAN(set,pat) (((set)-1)*IEEE80211_FH_CHANMOD+(pat)) #define IEEE80211_FH_CHANSET(chan) ((chan)/IEEE80211_FH_CHANMOD+1) #define IEEE80211_FH_CHANPAT(chan) ((chan)%IEEE80211_FH_CHANMOD) #define IEEE80211_TID_SIZE (WME_NUM_TID+1) /* WME TID's +1 for non-QoS */ #define IEEE80211_NONQOS_TID WME_NUM_TID /* index for non-QoS sta */ /* * The 802.11 spec says at most 2007 stations may be * associated at once. For most AP's this is way more * than is feasible so we use a default of 128. This * number may be overridden by the driver and/or by * user configuration but may not be less than IEEE80211_AID_MIN. */ #define IEEE80211_AID_DEF 128 #define IEEE80211_AID_MIN 16 /* * 802.11 rate set. */ #define IEEE80211_RATE_SIZE 8 /* 802.11 standard */ #define IEEE80211_RATE_MAXSIZE 15 /* max rates we'll handle */ struct ieee80211_rateset { uint8_t rs_nrates; uint8_t rs_rates[IEEE80211_RATE_MAXSIZE]; }; /* * 802.11n variant of ieee80211_rateset. Instead of * legacy rates the entries are MCS rates. We define * the structure such that it can be used interchangeably * with an ieee80211_rateset (modulo structure size). */ #define IEEE80211_HTRATE_MAXSIZE 77 struct ieee80211_htrateset { uint8_t rs_nrates; uint8_t rs_rates[IEEE80211_HTRATE_MAXSIZE]; }; #define IEEE80211_RATE_MCS 0x80 /* * Per-mode transmit parameters/controls visible to user space. * These can be used to set fixed transmit rate for all operating * modes or on a per-client basis according to the capabilities * of the client (e.g. an 11b client associated to an 11g ap). * * MCS are distinguished from legacy rates by or'ing in 0x80. */ struct ieee80211_txparam { uint8_t ucastrate; /* ucast data rate (legacy/MCS|0x80) */ uint8_t mgmtrate; /* mgmt frame rate (legacy/MCS|0x80) */ uint8_t mcastrate; /* multicast rate (legacy/MCS|0x80) */ uint8_t maxretry; /* max unicast data retry count */ }; /* * Per-mode roaming state visible to user space. There are two * thresholds that control whether roaming is considered; when * either is exceeded the 802.11 layer will check the scan cache * for another AP. If the cache is stale then a scan may be * triggered. */ struct ieee80211_roamparam { int8_t rssi; /* rssi thresh (.5 dBm) */ uint8_t rate; /* tx rate thresh (.5 Mb/s or MCS) */ uint16_t pad; /* reserve */ }; /* * Regulatory Information. */ struct ieee80211_regdomain { uint16_t regdomain; /* SKU */ uint16_t country; /* ISO country code */ uint8_t location; /* I (indoor), O (outdoor), other */ uint8_t ecm; /* Extended Channel Mode */ char isocc[2]; /* country code string */ short pad[2]; }; /* * MIMO antenna/radio state. */ /* * XXX This doesn't yet export both ctl/ext chain details * XXX TODO: IEEE80211_MAX_CHAINS is defined in _freebsd.h, not here; * figure out how to pull it in! */ struct ieee80211_mimo_info { int8_t rssi[3]; /* per-antenna rssi */ int8_t noise[3]; /* per-antenna noise floor */ uint8_t pad[2]; uint32_t evm[3]; /* EVM data */ }; #endif /* _NET80211__IEEE80211_H_ */