Index: projects/vnet/sys/net/bpf.c =================================================================== --- projects/vnet/sys/net/bpf.c (revision 297511) +++ projects/vnet/sys/net/bpf.c (revision 297512) @@ -1,2979 +1,3041 @@ /*- * Copyright (c) 1990, 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from the Stanford/CMU enet packet filter, * (net/enet.c) distributed as part of 4.3BSD, and code contributed * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence * Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)bpf.c 8.4 (Berkeley) 1/9/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_bpf.h" #include "opt_compat.h" +#include "opt_ddb.h" #include "opt_netgraph.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#ifdef DDB +#include +#endif + #include #include #include #include #include #ifdef BPF_JITTER #include #endif #include #include #include #include #include #include #include #include #include #include MALLOC_DEFINE(M_BPF, "BPF", "BPF data"); struct bpf_if { #define bif_next bif_ext.bif_next #define bif_dlist bif_ext.bif_dlist struct bpf_if_ext bif_ext; /* public members */ u_int bif_dlt; /* link layer type */ u_int bif_hdrlen; /* length of link header */ struct ifnet *bif_ifp; /* corresponding interface */ struct rwlock bif_lock; /* interface lock */ LIST_HEAD(, bpf_d) bif_wlist; /* writer-only list */ int bif_flags; /* Interface flags */ }; CTASSERT(offsetof(struct bpf_if, bif_ext) == 0); #if defined(DEV_BPF) || defined(NETGRAPH_BPF) #define PRINET 26 /* interruptible */ #define SIZEOF_BPF_HDR(type) \ (offsetof(type, bh_hdrlen) + sizeof(((type *)0)->bh_hdrlen)) #ifdef COMPAT_FREEBSD32 #include #include #define BPF_ALIGNMENT32 sizeof(int32_t) #define BPF_WORDALIGN32(x) (((x)+(BPF_ALIGNMENT32-1))&~(BPF_ALIGNMENT32-1)) #ifndef BURN_BRIDGES /* * 32-bit version of structure prepended to each packet. We use this header * instead of the standard one for 32-bit streams. We mark the a stream as * 32-bit the first time we see a 32-bit compat ioctl request. */ struct bpf_hdr32 { struct timeval32 bh_tstamp; /* time stamp */ uint32_t bh_caplen; /* length of captured portion */ uint32_t bh_datalen; /* original length of packet */ uint16_t bh_hdrlen; /* length of bpf header (this struct plus alignment padding) */ }; #endif struct bpf_program32 { u_int bf_len; uint32_t bf_insns; }; struct bpf_dltlist32 { u_int bfl_len; u_int bfl_list; }; #define BIOCSETF32 _IOW('B', 103, struct bpf_program32) #define BIOCSRTIMEOUT32 _IOW('B', 109, struct timeval32) #define BIOCGRTIMEOUT32 _IOR('B', 110, struct timeval32) #define BIOCGDLTLIST32 _IOWR('B', 121, struct bpf_dltlist32) #define BIOCSETWF32 _IOW('B', 123, struct bpf_program32) #define BIOCSETFNR32 _IOW('B', 130, struct bpf_program32) #endif /* * bpf_iflist is a list of BPF interface structures, each corresponding to a * specific DLT. The same network interface might have several BPF interface * structures registered by different layers in the stack (i.e., 802.11 * frames, ethernet frames, etc). */ static LIST_HEAD(, bpf_if) bpf_iflist, bpf_freelist; static struct mtx bpf_mtx; /* bpf global lock */ static int bpf_bpfd_cnt; static void bpf_attachd(struct bpf_d *, struct bpf_if *); static void bpf_detachd(struct bpf_d *); static void bpf_detachd_locked(struct bpf_d *); static void bpf_freed(struct bpf_d *); static int bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **, struct sockaddr *, int *, struct bpf_d *); static int bpf_setif(struct bpf_d *, struct ifreq *); static void bpf_timed_out(void *); static __inline void bpf_wakeup(struct bpf_d *); static void catchpacket(struct bpf_d *, u_char *, u_int, u_int, void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int), struct bintime *); static void reset_d(struct bpf_d *); static int bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd); static int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *); static int bpf_setdlt(struct bpf_d *, u_int); static void filt_bpfdetach(struct knote *); static int filt_bpfread(struct knote *, long); static void bpf_drvinit(void *); static int bpf_stats_sysctl(SYSCTL_HANDLER_ARGS); SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW, 0, "bpf sysctl"); int bpf_maxinsns = BPF_MAXINSNS; SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW, &bpf_maxinsns, 0, "Maximum bpf program instructions"); static int bpf_zerocopy_enable = 0; SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW, &bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions"); static SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_MPSAFE | CTLFLAG_RW, bpf_stats_sysctl, "bpf statistics portal"); static VNET_DEFINE(int, bpf_optimize_writers) = 0; #define V_bpf_optimize_writers VNET(bpf_optimize_writers) SYSCTL_INT(_net_bpf, OID_AUTO, optimize_writers, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(bpf_optimize_writers), 0, "Do not send packets until BPF program is set"); static d_open_t bpfopen; static d_read_t bpfread; static d_write_t bpfwrite; static d_ioctl_t bpfioctl; static d_poll_t bpfpoll; static d_kqfilter_t bpfkqfilter; static struct cdevsw bpf_cdevsw = { .d_version = D_VERSION, .d_open = bpfopen, .d_read = bpfread, .d_write = bpfwrite, .d_ioctl = bpfioctl, .d_poll = bpfpoll, .d_name = "bpf", .d_kqfilter = bpfkqfilter, }; static struct filterops bpfread_filtops = { .f_isfd = 1, .f_detach = filt_bpfdetach, .f_event = filt_bpfread, }; eventhandler_tag bpf_ifdetach_cookie = NULL; /* * LOCKING MODEL USED BY BPF: * Locks: * 1) global lock (BPF_LOCK). Mutex, used to protect interface addition/removal, * some global counters and every bpf_if reference. * 2) Interface lock. Rwlock, used to protect list of BPF descriptors and their filters. * 3) Descriptor lock. Mutex, used to protect BPF buffers and various structure fields * used by bpf_mtap code. * * Lock order: * * Global lock, interface lock, descriptor lock * * We have to acquire interface lock before descriptor main lock due to BPF_MTAP[2] * working model. In many places (like bpf_detachd) we start with BPF descriptor * (and we need to at least rlock it to get reliable interface pointer). This * gives us potential LOR. As a result, we use global lock to protect from bpf_if * change in every such place. * * Changing d->bd_bif is protected by 1) global lock, 2) interface lock and * 3) descriptor main wlock. * Reading bd_bif can be protected by any of these locks, typically global lock. * * Changing read/write BPF filter is protected by the same three locks, * the same applies for reading. * * Sleeping in global lock is not allowed due to bpfdetach() using it. */ /* * Wrapper functions for various buffering methods. If the set of buffer * modes expands, we will probably want to introduce a switch data structure * similar to protosw, et. */ static void bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src, u_int len) { BPFD_LOCK_ASSERT(d); switch (d->bd_bufmode) { case BPF_BUFMODE_BUFFER: return (bpf_buffer_append_bytes(d, buf, offset, src, len)); case BPF_BUFMODE_ZBUF: d->bd_zcopy++; return (bpf_zerocopy_append_bytes(d, buf, offset, src, len)); default: panic("bpf_buf_append_bytes"); } } static void bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src, u_int len) { BPFD_LOCK_ASSERT(d); switch (d->bd_bufmode) { case BPF_BUFMODE_BUFFER: return (bpf_buffer_append_mbuf(d, buf, offset, src, len)); case BPF_BUFMODE_ZBUF: d->bd_zcopy++; return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len)); default: panic("bpf_buf_append_mbuf"); } } /* * This function gets called when the free buffer is re-assigned. */ static void bpf_buf_reclaimed(struct bpf_d *d) { BPFD_LOCK_ASSERT(d); switch (d->bd_bufmode) { case BPF_BUFMODE_BUFFER: return; case BPF_BUFMODE_ZBUF: bpf_zerocopy_buf_reclaimed(d); return; default: panic("bpf_buf_reclaimed"); } } /* * If the buffer mechanism has a way to decide that a held buffer can be made * free, then it is exposed via the bpf_canfreebuf() interface. (1) is * returned if the buffer can be discarded, (0) is returned if it cannot. */ static int bpf_canfreebuf(struct bpf_d *d) { BPFD_LOCK_ASSERT(d); switch (d->bd_bufmode) { case BPF_BUFMODE_ZBUF: return (bpf_zerocopy_canfreebuf(d)); } return (0); } /* * Allow the buffer model to indicate that the current store buffer is * immutable, regardless of the appearance of space. Return (1) if the * buffer is writable, and (0) if not. */ static int bpf_canwritebuf(struct bpf_d *d) { BPFD_LOCK_ASSERT(d); switch (d->bd_bufmode) { case BPF_BUFMODE_ZBUF: return (bpf_zerocopy_canwritebuf(d)); } return (1); } /* * Notify buffer model that an attempt to write to the store buffer has * resulted in a dropped packet, in which case the buffer may be considered * full. */ static void bpf_buffull(struct bpf_d *d) { BPFD_LOCK_ASSERT(d); switch (d->bd_bufmode) { case BPF_BUFMODE_ZBUF: bpf_zerocopy_buffull(d); break; } } /* * Notify the buffer model that a buffer has moved into the hold position. */ void bpf_bufheld(struct bpf_d *d) { BPFD_LOCK_ASSERT(d); switch (d->bd_bufmode) { case BPF_BUFMODE_ZBUF: bpf_zerocopy_bufheld(d); break; } } static void bpf_free(struct bpf_d *d) { switch (d->bd_bufmode) { case BPF_BUFMODE_BUFFER: return (bpf_buffer_free(d)); case BPF_BUFMODE_ZBUF: return (bpf_zerocopy_free(d)); default: panic("bpf_buf_free"); } } static int bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio) { if (d->bd_bufmode != BPF_BUFMODE_BUFFER) return (EOPNOTSUPP); return (bpf_buffer_uiomove(d, buf, len, uio)); } static int bpf_ioctl_sblen(struct bpf_d *d, u_int *i) { if (d->bd_bufmode != BPF_BUFMODE_BUFFER) return (EOPNOTSUPP); return (bpf_buffer_ioctl_sblen(d, i)); } static int bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i) { if (d->bd_bufmode != BPF_BUFMODE_ZBUF) return (EOPNOTSUPP); return (bpf_zerocopy_ioctl_getzmax(td, d, i)); } static int bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz) { if (d->bd_bufmode != BPF_BUFMODE_ZBUF) return (EOPNOTSUPP); return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz)); } static int bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz) { if (d->bd_bufmode != BPF_BUFMODE_ZBUF) return (EOPNOTSUPP); return (bpf_zerocopy_ioctl_setzbuf(td, d, bz)); } /* * General BPF functions. */ static int bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp, struct sockaddr *sockp, int *hdrlen, struct bpf_d *d) { const struct ieee80211_bpf_params *p; struct ether_header *eh; struct mbuf *m; int error; int len; int hlen; int slen; /* * Build a sockaddr based on the data link layer type. * We do this at this level because the ethernet header * is copied directly into the data field of the sockaddr. * In the case of SLIP, there is no header and the packet * is forwarded as is. * Also, we are careful to leave room at the front of the mbuf * for the link level header. */ switch (linktype) { case DLT_SLIP: sockp->sa_family = AF_INET; hlen = 0; break; case DLT_EN10MB: sockp->sa_family = AF_UNSPEC; /* XXX Would MAXLINKHDR be better? */ hlen = ETHER_HDR_LEN; break; case DLT_FDDI: sockp->sa_family = AF_IMPLINK; hlen = 0; break; case DLT_RAW: sockp->sa_family = AF_UNSPEC; hlen = 0; break; case DLT_NULL: /* * null interface types require a 4 byte pseudo header which * corresponds to the address family of the packet. */ sockp->sa_family = AF_UNSPEC; hlen = 4; break; case DLT_ATM_RFC1483: /* * en atm driver requires 4-byte atm pseudo header. * though it isn't standard, vpi:vci needs to be * specified anyway. */ sockp->sa_family = AF_UNSPEC; hlen = 12; /* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */ break; case DLT_PPP: sockp->sa_family = AF_UNSPEC; hlen = 4; /* This should match PPP_HDRLEN */ break; case DLT_IEEE802_11: /* IEEE 802.11 wireless */ sockp->sa_family = AF_IEEE80211; hlen = 0; break; case DLT_IEEE802_11_RADIO: /* IEEE 802.11 wireless w/ phy params */ sockp->sa_family = AF_IEEE80211; sockp->sa_len = 12; /* XXX != 0 */ hlen = sizeof(struct ieee80211_bpf_params); break; default: return (EIO); } len = uio->uio_resid; if (len < hlen || len - hlen > ifp->if_mtu) return (EMSGSIZE); m = m_get2(len, M_WAITOK, MT_DATA, M_PKTHDR); if (m == NULL) return (EIO); m->m_pkthdr.len = m->m_len = len; *mp = m; error = uiomove(mtod(m, u_char *), len, uio); if (error) goto bad; slen = bpf_filter(d->bd_wfilter, mtod(m, u_char *), len, len); if (slen == 0) { error = EPERM; goto bad; } /* Check for multicast destination */ switch (linktype) { case DLT_EN10MB: eh = mtod(m, struct ether_header *); if (ETHER_IS_MULTICAST(eh->ether_dhost)) { if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost, ETHER_ADDR_LEN) == 0) m->m_flags |= M_BCAST; else m->m_flags |= M_MCAST; } if (d->bd_hdrcmplt == 0) { memcpy(eh->ether_shost, IF_LLADDR(ifp), sizeof(eh->ether_shost)); } break; } /* * Make room for link header, and copy it to sockaddr */ if (hlen != 0) { if (sockp->sa_family == AF_IEEE80211) { /* * Collect true length from the parameter header * NB: sockp is known to be zero'd so if we do a * short copy unspecified parameters will be * zero. * NB: packet may not be aligned after stripping * bpf params * XXX check ibp_vers */ p = mtod(m, const struct ieee80211_bpf_params *); hlen = p->ibp_len; if (hlen > sizeof(sockp->sa_data)) { error = EINVAL; goto bad; } } bcopy(mtod(m, const void *), sockp->sa_data, hlen); } *hdrlen = hlen; return (0); bad: m_freem(m); return (error); } /* * Attach file to the bpf interface, i.e. make d listen on bp. */ static void bpf_attachd(struct bpf_d *d, struct bpf_if *bp) { int op_w; BPF_LOCK_ASSERT(); /* * Save sysctl value to protect from sysctl change * between reads */ op_w = V_bpf_optimize_writers || d->bd_writer; if (d->bd_bif != NULL) bpf_detachd_locked(d); /* * Point d at bp, and add d to the interface's list. * Since there are many applications using BPF for * sending raw packets only (dhcpd, cdpd are good examples) * we can delay adding d to the list of active listeners until * some filter is configured. */ BPFIF_WLOCK(bp); BPFD_LOCK(d); d->bd_bif = bp; if (op_w != 0) { /* Add to writers-only list */ LIST_INSERT_HEAD(&bp->bif_wlist, d, bd_next); /* * We decrement bd_writer on every filter set operation. * First BIOCSETF is done by pcap_open_live() to set up * snap length. After that appliation usually sets its own filter */ d->bd_writer = 2; } else LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next); BPFD_UNLOCK(d); BPFIF_WUNLOCK(bp); bpf_bpfd_cnt++; CTR3(KTR_NET, "%s: bpf_attach called by pid %d, adding to %s list", __func__, d->bd_pid, d->bd_writer ? "writer" : "active"); if (op_w == 0) EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1); } /* * Check if we need to upgrade our descriptor @d from write-only mode. */ static int bpf_check_upgrade(u_long cmd, struct bpf_d *d, struct bpf_insn *fcode, int flen) { int is_snap, need_upgrade; /* * Check if we've already upgraded or new filter is empty. */ if (d->bd_writer == 0 || fcode == NULL) return (0); need_upgrade = 0; /* * Check if cmd looks like snaplen setting from * pcap_bpf.c:pcap_open_live(). * Note we're not checking .k value here: * while pcap_open_live() definitely sets to to non-zero value, * we'd prefer to treat k=0 (deny ALL) case the same way: e.g. * do not consider upgrading immediately */ if (cmd == BIOCSETF && flen == 1 && fcode[0].code == (BPF_RET | BPF_K)) is_snap = 1; else is_snap = 0; if (is_snap == 0) { /* * We're setting first filter and it doesn't look like * setting snaplen. We're probably using bpf directly. * Upgrade immediately. */ need_upgrade = 1; } else { /* * Do not require upgrade by first BIOCSETF * (used to set snaplen) by pcap_open_live(). */ if (--d->bd_writer == 0) { /* * First snaplen filter has already * been set. This is probably catch-all * filter */ need_upgrade = 1; } } CTR5(KTR_NET, "%s: filter function set by pid %d, " "bd_writer counter %d, snap %d upgrade %d", __func__, d->bd_pid, d->bd_writer, is_snap, need_upgrade); return (need_upgrade); } /* * Add d to the list of active bp filters. * Requires bpf_attachd() to be called before. */ static void bpf_upgraded(struct bpf_d *d) { struct bpf_if *bp; BPF_LOCK_ASSERT(); bp = d->bd_bif; /* * Filter can be set several times without specifying interface. * Mark d as reader and exit. */ if (bp == NULL) { BPFD_LOCK(d); d->bd_writer = 0; BPFD_UNLOCK(d); return; } BPFIF_WLOCK(bp); BPFD_LOCK(d); /* Remove from writers-only list */ LIST_REMOVE(d, bd_next); LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next); /* Mark d as reader */ d->bd_writer = 0; BPFD_UNLOCK(d); BPFIF_WUNLOCK(bp); CTR2(KTR_NET, "%s: upgrade required by pid %d", __func__, d->bd_pid); EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1); } /* * Detach a file from its interface. */ static void bpf_detachd(struct bpf_d *d) { BPF_LOCK(); bpf_detachd_locked(d); BPF_UNLOCK(); } static void bpf_detachd_locked(struct bpf_d *d) { int error; struct bpf_if *bp; struct ifnet *ifp; CTR2(KTR_NET, "%s: detach required by pid %d", __func__, d->bd_pid); BPF_LOCK_ASSERT(); /* Check if descriptor is attached */ if ((bp = d->bd_bif) == NULL) return; BPFIF_WLOCK(bp); BPFD_LOCK(d); /* Save bd_writer value */ error = d->bd_writer; /* * Remove d from the interface's descriptor list. */ LIST_REMOVE(d, bd_next); ifp = bp->bif_ifp; d->bd_bif = NULL; BPFD_UNLOCK(d); BPFIF_WUNLOCK(bp); bpf_bpfd_cnt--; /* Call event handler iff d is attached */ if (error == 0) EVENTHANDLER_INVOKE(bpf_track, ifp, bp->bif_dlt, 0); /* * Check if this descriptor had requested promiscuous mode. * If so, turn it off. */ if (d->bd_promisc) { d->bd_promisc = 0; CURVNET_SET(ifp->if_vnet); error = ifpromisc(ifp, 0); CURVNET_RESTORE(); if (error != 0 && error != ENXIO) { /* * ENXIO can happen if a pccard is unplugged * Something is really wrong if we were able to put * the driver into promiscuous mode, but can't * take it out. */ if_printf(bp->bif_ifp, "bpf_detach: ifpromisc failed (%d)\n", error); } } } /* * Close the descriptor by detaching it from its interface, * deallocating its buffers, and marking it free. */ static void bpf_dtor(void *data) { struct bpf_d *d = data; BPFD_LOCK(d); if (d->bd_state == BPF_WAITING) callout_stop(&d->bd_callout); d->bd_state = BPF_IDLE; BPFD_UNLOCK(d); funsetown(&d->bd_sigio); bpf_detachd(d); #ifdef MAC mac_bpfdesc_destroy(d); #endif /* MAC */ seldrain(&d->bd_sel); knlist_destroy(&d->bd_sel.si_note); callout_drain(&d->bd_callout); bpf_freed(d); free(d, M_BPF); } /* * Open ethernet device. Returns ENXIO for illegal minor device number, * EBUSY if file is open by another process. */ /* ARGSUSED */ static int bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td) { struct bpf_d *d; int error; d = malloc(sizeof(*d), M_BPF, M_WAITOK | M_ZERO); error = devfs_set_cdevpriv(d, bpf_dtor); if (error != 0) { free(d, M_BPF); return (error); } /* * For historical reasons, perform a one-time initialization call to * the buffer routines, even though we're not yet committed to a * particular buffer method. */ bpf_buffer_init(d); if ((flags & FREAD) == 0) d->bd_writer = 2; d->bd_hbuf_in_use = 0; d->bd_bufmode = BPF_BUFMODE_BUFFER; d->bd_sig = SIGIO; d->bd_direction = BPF_D_INOUT; BPF_PID_REFRESH(d, td); #ifdef MAC mac_bpfdesc_init(d); mac_bpfdesc_create(td->td_ucred, d); #endif mtx_init(&d->bd_lock, devtoname(dev), "bpf cdev lock", MTX_DEF); callout_init_mtx(&d->bd_callout, &d->bd_lock, 0); knlist_init_mtx(&d->bd_sel.si_note, &d->bd_lock); return (0); } /* * bpfread - read next chunk of packets from buffers */ static int bpfread(struct cdev *dev, struct uio *uio, int ioflag) { struct bpf_d *d; int error; int non_block; int timed_out; error = devfs_get_cdevpriv((void **)&d); if (error != 0) return (error); /* * Restrict application to use a buffer the same size as * as kernel buffers. */ if (uio->uio_resid != d->bd_bufsize) return (EINVAL); non_block = ((ioflag & O_NONBLOCK) != 0); BPFD_LOCK(d); BPF_PID_REFRESH_CUR(d); if (d->bd_bufmode != BPF_BUFMODE_BUFFER) { BPFD_UNLOCK(d); return (EOPNOTSUPP); } if (d->bd_state == BPF_WAITING) callout_stop(&d->bd_callout); timed_out = (d->bd_state == BPF_TIMED_OUT); d->bd_state = BPF_IDLE; while (d->bd_hbuf_in_use) { error = mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock, PRINET|PCATCH, "bd_hbuf", 0); if (error != 0) { BPFD_UNLOCK(d); return (error); } } /* * If the hold buffer is empty, then do a timed sleep, which * ends when the timeout expires or when enough packets * have arrived to fill the store buffer. */ while (d->bd_hbuf == NULL) { if (d->bd_slen != 0) { /* * A packet(s) either arrived since the previous * read or arrived while we were asleep. */ if (d->bd_immediate || non_block || timed_out) { /* * Rotate the buffers and return what's here * if we are in immediate mode, non-blocking * flag is set, or this descriptor timed out. */ ROTATE_BUFFERS(d); break; } } /* * No data is available, check to see if the bpf device * is still pointed at a real interface. If not, return * ENXIO so that the userland process knows to rebind * it before using it again. */ if (d->bd_bif == NULL) { BPFD_UNLOCK(d); return (ENXIO); } if (non_block) { BPFD_UNLOCK(d); return (EWOULDBLOCK); } error = msleep(d, &d->bd_lock, PRINET|PCATCH, "bpf", d->bd_rtout); if (error == EINTR || error == ERESTART) { BPFD_UNLOCK(d); return (error); } if (error == EWOULDBLOCK) { /* * On a timeout, return what's in the buffer, * which may be nothing. If there is something * in the store buffer, we can rotate the buffers. */ if (d->bd_hbuf) /* * We filled up the buffer in between * getting the timeout and arriving * here, so we don't need to rotate. */ break; if (d->bd_slen == 0) { BPFD_UNLOCK(d); return (0); } ROTATE_BUFFERS(d); break; } } /* * At this point, we know we have something in the hold slot. */ d->bd_hbuf_in_use = 1; BPFD_UNLOCK(d); /* * Move data from hold buffer into user space. * We know the entire buffer is transferred since * we checked above that the read buffer is bpf_bufsize bytes. * * We do not have to worry about simultaneous reads because * we waited for sole access to the hold buffer above. */ error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio); BPFD_LOCK(d); KASSERT(d->bd_hbuf != NULL, ("bpfread: lost bd_hbuf")); d->bd_fbuf = d->bd_hbuf; d->bd_hbuf = NULL; d->bd_hlen = 0; bpf_buf_reclaimed(d); d->bd_hbuf_in_use = 0; wakeup(&d->bd_hbuf_in_use); BPFD_UNLOCK(d); return (error); } /* * If there are processes sleeping on this descriptor, wake them up. */ static __inline void bpf_wakeup(struct bpf_d *d) { BPFD_LOCK_ASSERT(d); if (d->bd_state == BPF_WAITING) { callout_stop(&d->bd_callout); d->bd_state = BPF_IDLE; } wakeup(d); if (d->bd_async && d->bd_sig && d->bd_sigio) pgsigio(&d->bd_sigio, d->bd_sig, 0); selwakeuppri(&d->bd_sel, PRINET); KNOTE_LOCKED(&d->bd_sel.si_note, 0); } static void bpf_timed_out(void *arg) { struct bpf_d *d = (struct bpf_d *)arg; BPFD_LOCK_ASSERT(d); if (callout_pending(&d->bd_callout) || !callout_active(&d->bd_callout)) return; if (d->bd_state == BPF_WAITING) { d->bd_state = BPF_TIMED_OUT; if (d->bd_slen != 0) bpf_wakeup(d); } } static int bpf_ready(struct bpf_d *d) { BPFD_LOCK_ASSERT(d); if (!bpf_canfreebuf(d) && d->bd_hlen != 0) return (1); if ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) && d->bd_slen != 0) return (1); return (0); } static int bpfwrite(struct cdev *dev, struct uio *uio, int ioflag) { struct bpf_d *d; struct ifnet *ifp; struct mbuf *m, *mc; struct sockaddr dst; struct route ro; int error, hlen; error = devfs_get_cdevpriv((void **)&d); if (error != 0) return (error); BPF_PID_REFRESH_CUR(d); d->bd_wcount++; /* XXX: locking required */ if (d->bd_bif == NULL) { d->bd_wdcount++; return (ENXIO); } ifp = d->bd_bif->bif_ifp; if ((ifp->if_flags & IFF_UP) == 0) { d->bd_wdcount++; return (ENETDOWN); } if (uio->uio_resid == 0) { d->bd_wdcount++; return (0); } bzero(&dst, sizeof(dst)); m = NULL; hlen = 0; /* XXX: bpf_movein() can sleep */ error = bpf_movein(uio, (int)d->bd_bif->bif_dlt, ifp, &m, &dst, &hlen, d); if (error) { d->bd_wdcount++; return (error); } d->bd_wfcount++; if (d->bd_hdrcmplt) dst.sa_family = pseudo_AF_HDRCMPLT; if (d->bd_feedback) { mc = m_dup(m, M_NOWAIT); if (mc != NULL) mc->m_pkthdr.rcvif = ifp; /* Set M_PROMISC for outgoing packets to be discarded. */ if (d->bd_direction == BPF_D_INOUT) m->m_flags |= M_PROMISC; } else mc = NULL; m->m_pkthdr.len -= hlen; m->m_len -= hlen; m->m_data += hlen; /* XXX */ CURVNET_SET(ifp->if_vnet); #ifdef MAC BPFD_LOCK(d); mac_bpfdesc_create_mbuf(d, m); if (mc != NULL) mac_bpfdesc_create_mbuf(d, mc); BPFD_UNLOCK(d); #endif bzero(&ro, sizeof(ro)); if (hlen != 0) { ro.ro_prepend = (u_char *)&dst.sa_data; ro.ro_plen = hlen; ro.ro_flags = RT_HAS_HEADER; } error = (*ifp->if_output)(ifp, m, &dst, &ro); if (error) d->bd_wdcount++; if (mc != NULL) { if (error == 0) (*ifp->if_input)(ifp, mc); else m_freem(mc); } CURVNET_RESTORE(); return (error); } /* * Reset a descriptor by flushing its packet buffer and clearing the receive * and drop counts. This is doable for kernel-only buffers, but with * zero-copy buffers, we can't write to (or rotate) buffers that are * currently owned by userspace. It would be nice if we could encapsulate * this logic in the buffer code rather than here. */ static void reset_d(struct bpf_d *d) { BPFD_LOCK_ASSERT(d); while (d->bd_hbuf_in_use) mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock, PRINET, "bd_hbuf", 0); if ((d->bd_hbuf != NULL) && (d->bd_bufmode != BPF_BUFMODE_ZBUF || bpf_canfreebuf(d))) { /* Free the hold buffer. */ d->bd_fbuf = d->bd_hbuf; d->bd_hbuf = NULL; d->bd_hlen = 0; bpf_buf_reclaimed(d); } if (bpf_canwritebuf(d)) d->bd_slen = 0; d->bd_rcount = 0; d->bd_dcount = 0; d->bd_fcount = 0; d->bd_wcount = 0; d->bd_wfcount = 0; d->bd_wdcount = 0; d->bd_zcopy = 0; } /* * FIONREAD Check for read packet available. * BIOCGBLEN Get buffer len [for read()]. * BIOCSETF Set read filter. * BIOCSETFNR Set read filter without resetting descriptor. * BIOCSETWF Set write filter. * BIOCFLUSH Flush read packet buffer. * BIOCPROMISC Put interface into promiscuous mode. * BIOCGDLT Get link layer type. * BIOCGETIF Get interface name. * BIOCSETIF Set interface. * BIOCSRTIMEOUT Set read timeout. * BIOCGRTIMEOUT Get read timeout. * BIOCGSTATS Get packet stats. * BIOCIMMEDIATE Set immediate mode. * BIOCVERSION Get filter language version. * BIOCGHDRCMPLT Get "header already complete" flag * BIOCSHDRCMPLT Set "header already complete" flag * BIOCGDIRECTION Get packet direction flag * BIOCSDIRECTION Set packet direction flag * BIOCGTSTAMP Get time stamp format and resolution. * BIOCSTSTAMP Set time stamp format and resolution. * BIOCLOCK Set "locked" flag * BIOCFEEDBACK Set packet feedback mode. * BIOCSETZBUF Set current zero-copy buffer locations. * BIOCGETZMAX Get maximum zero-copy buffer size. * BIOCROTZBUF Force rotation of zero-copy buffer * BIOCSETBUFMODE Set buffer mode. * BIOCGETBUFMODE Get current buffer mode. */ /* ARGSUSED */ static int bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags, struct thread *td) { struct bpf_d *d; int error; error = devfs_get_cdevpriv((void **)&d); if (error != 0) return (error); /* * Refresh PID associated with this descriptor. */ BPFD_LOCK(d); BPF_PID_REFRESH(d, td); if (d->bd_state == BPF_WAITING) callout_stop(&d->bd_callout); d->bd_state = BPF_IDLE; BPFD_UNLOCK(d); if (d->bd_locked == 1) { switch (cmd) { case BIOCGBLEN: case BIOCFLUSH: case BIOCGDLT: case BIOCGDLTLIST: #ifdef COMPAT_FREEBSD32 case BIOCGDLTLIST32: #endif case BIOCGETIF: case BIOCGRTIMEOUT: #if defined(COMPAT_FREEBSD32) && !defined(__mips__) case BIOCGRTIMEOUT32: #endif case BIOCGSTATS: case BIOCVERSION: case BIOCGRSIG: case BIOCGHDRCMPLT: case BIOCSTSTAMP: case BIOCFEEDBACK: case FIONREAD: case BIOCLOCK: case BIOCSRTIMEOUT: #if defined(COMPAT_FREEBSD32) && !defined(__mips__) case BIOCSRTIMEOUT32: #endif case BIOCIMMEDIATE: case TIOCGPGRP: case BIOCROTZBUF: break; default: return (EPERM); } } #ifdef COMPAT_FREEBSD32 /* * If we see a 32-bit compat ioctl, mark the stream as 32-bit so * that it will get 32-bit packet headers. */ switch (cmd) { case BIOCSETF32: case BIOCSETFNR32: case BIOCSETWF32: case BIOCGDLTLIST32: case BIOCGRTIMEOUT32: case BIOCSRTIMEOUT32: BPFD_LOCK(d); d->bd_compat32 = 1; BPFD_UNLOCK(d); } #endif CURVNET_SET(TD_TO_VNET(td)); switch (cmd) { default: error = EINVAL; break; /* * Check for read packet available. */ case FIONREAD: { int n; BPFD_LOCK(d); n = d->bd_slen; while (d->bd_hbuf_in_use) mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock, PRINET, "bd_hbuf", 0); if (d->bd_hbuf) n += d->bd_hlen; BPFD_UNLOCK(d); *(int *)addr = n; break; } /* * Get buffer len [for read()]. */ case BIOCGBLEN: BPFD_LOCK(d); *(u_int *)addr = d->bd_bufsize; BPFD_UNLOCK(d); break; /* * Set buffer length. */ case BIOCSBLEN: error = bpf_ioctl_sblen(d, (u_int *)addr); break; /* * Set link layer read filter. */ case BIOCSETF: case BIOCSETFNR: case BIOCSETWF: #ifdef COMPAT_FREEBSD32 case BIOCSETF32: case BIOCSETFNR32: case BIOCSETWF32: #endif error = bpf_setf(d, (struct bpf_program *)addr, cmd); break; /* * Flush read packet buffer. */ case BIOCFLUSH: BPFD_LOCK(d); reset_d(d); BPFD_UNLOCK(d); break; /* * Put interface into promiscuous mode. */ case BIOCPROMISC: if (d->bd_bif == NULL) { /* * No interface attached yet. */ error = EINVAL; break; } if (d->bd_promisc == 0) { error = ifpromisc(d->bd_bif->bif_ifp, 1); if (error == 0) d->bd_promisc = 1; } break; /* * Get current data link type. */ case BIOCGDLT: BPF_LOCK(); if (d->bd_bif == NULL) error = EINVAL; else *(u_int *)addr = d->bd_bif->bif_dlt; BPF_UNLOCK(); break; /* * Get a list of supported data link types. */ #ifdef COMPAT_FREEBSD32 case BIOCGDLTLIST32: { struct bpf_dltlist32 *list32; struct bpf_dltlist dltlist; list32 = (struct bpf_dltlist32 *)addr; dltlist.bfl_len = list32->bfl_len; dltlist.bfl_list = PTRIN(list32->bfl_list); BPF_LOCK(); if (d->bd_bif == NULL) error = EINVAL; else { error = bpf_getdltlist(d, &dltlist); if (error == 0) list32->bfl_len = dltlist.bfl_len; } BPF_UNLOCK(); break; } #endif case BIOCGDLTLIST: BPF_LOCK(); if (d->bd_bif == NULL) error = EINVAL; else error = bpf_getdltlist(d, (struct bpf_dltlist *)addr); BPF_UNLOCK(); break; /* * Set data link type. */ case BIOCSDLT: BPF_LOCK(); if (d->bd_bif == NULL) error = EINVAL; else error = bpf_setdlt(d, *(u_int *)addr); BPF_UNLOCK(); break; /* * Get interface name. */ case BIOCGETIF: BPF_LOCK(); if (d->bd_bif == NULL) error = EINVAL; else { struct ifnet *const ifp = d->bd_bif->bif_ifp; struct ifreq *const ifr = (struct ifreq *)addr; strlcpy(ifr->ifr_name, ifp->if_xname, sizeof(ifr->ifr_name)); } BPF_UNLOCK(); break; /* * Set interface. */ case BIOCSETIF: { int alloc_buf, size; /* * Behavior here depends on the buffering model. If * we're using kernel memory buffers, then we can * allocate them here. If we're using zero-copy, * then the user process must have registered buffers * by the time we get here. */ alloc_buf = 0; BPFD_LOCK(d); if (d->bd_bufmode == BPF_BUFMODE_BUFFER && d->bd_sbuf == NULL) alloc_buf = 1; BPFD_UNLOCK(d); if (alloc_buf) { size = d->bd_bufsize; error = bpf_buffer_ioctl_sblen(d, &size); if (error != 0) break; } BPF_LOCK(); error = bpf_setif(d, (struct ifreq *)addr); BPF_UNLOCK(); break; } /* * Set read timeout. */ case BIOCSRTIMEOUT: #if defined(COMPAT_FREEBSD32) && !defined(__mips__) case BIOCSRTIMEOUT32: #endif { struct timeval *tv = (struct timeval *)addr; #if defined(COMPAT_FREEBSD32) && !defined(__mips__) struct timeval32 *tv32; struct timeval tv64; if (cmd == BIOCSRTIMEOUT32) { tv32 = (struct timeval32 *)addr; tv = &tv64; tv->tv_sec = tv32->tv_sec; tv->tv_usec = tv32->tv_usec; } else #endif tv = (struct timeval *)addr; /* * Subtract 1 tick from tvtohz() since this isn't * a one-shot timer. */ if ((error = itimerfix(tv)) == 0) d->bd_rtout = tvtohz(tv) - 1; break; } /* * Get read timeout. */ case BIOCGRTIMEOUT: #if defined(COMPAT_FREEBSD32) && !defined(__mips__) case BIOCGRTIMEOUT32: #endif { struct timeval *tv; #if defined(COMPAT_FREEBSD32) && !defined(__mips__) struct timeval32 *tv32; struct timeval tv64; if (cmd == BIOCGRTIMEOUT32) tv = &tv64; else #endif tv = (struct timeval *)addr; tv->tv_sec = d->bd_rtout / hz; tv->tv_usec = (d->bd_rtout % hz) * tick; #if defined(COMPAT_FREEBSD32) && !defined(__mips__) if (cmd == BIOCGRTIMEOUT32) { tv32 = (struct timeval32 *)addr; tv32->tv_sec = tv->tv_sec; tv32->tv_usec = tv->tv_usec; } #endif break; } /* * Get packet stats. */ case BIOCGSTATS: { struct bpf_stat *bs = (struct bpf_stat *)addr; /* XXXCSJP overflow */ bs->bs_recv = d->bd_rcount; bs->bs_drop = d->bd_dcount; break; } /* * Set immediate mode. */ case BIOCIMMEDIATE: BPFD_LOCK(d); d->bd_immediate = *(u_int *)addr; BPFD_UNLOCK(d); break; case BIOCVERSION: { struct bpf_version *bv = (struct bpf_version *)addr; bv->bv_major = BPF_MAJOR_VERSION; bv->bv_minor = BPF_MINOR_VERSION; break; } /* * Get "header already complete" flag */ case BIOCGHDRCMPLT: BPFD_LOCK(d); *(u_int *)addr = d->bd_hdrcmplt; BPFD_UNLOCK(d); break; /* * Set "header already complete" flag */ case BIOCSHDRCMPLT: BPFD_LOCK(d); d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0; BPFD_UNLOCK(d); break; /* * Get packet direction flag */ case BIOCGDIRECTION: BPFD_LOCK(d); *(u_int *)addr = d->bd_direction; BPFD_UNLOCK(d); break; /* * Set packet direction flag */ case BIOCSDIRECTION: { u_int direction; direction = *(u_int *)addr; switch (direction) { case BPF_D_IN: case BPF_D_INOUT: case BPF_D_OUT: BPFD_LOCK(d); d->bd_direction = direction; BPFD_UNLOCK(d); break; default: error = EINVAL; } } break; /* * Get packet timestamp format and resolution. */ case BIOCGTSTAMP: BPFD_LOCK(d); *(u_int *)addr = d->bd_tstamp; BPFD_UNLOCK(d); break; /* * Set packet timestamp format and resolution. */ case BIOCSTSTAMP: { u_int func; func = *(u_int *)addr; if (BPF_T_VALID(func)) d->bd_tstamp = func; else error = EINVAL; } break; case BIOCFEEDBACK: BPFD_LOCK(d); d->bd_feedback = *(u_int *)addr; BPFD_UNLOCK(d); break; case BIOCLOCK: BPFD_LOCK(d); d->bd_locked = 1; BPFD_UNLOCK(d); break; case FIONBIO: /* Non-blocking I/O */ break; case FIOASYNC: /* Send signal on receive packets */ BPFD_LOCK(d); d->bd_async = *(int *)addr; BPFD_UNLOCK(d); break; case FIOSETOWN: /* * XXX: Add some sort of locking here? * fsetown() can sleep. */ error = fsetown(*(int *)addr, &d->bd_sigio); break; case FIOGETOWN: BPFD_LOCK(d); *(int *)addr = fgetown(&d->bd_sigio); BPFD_UNLOCK(d); break; /* This is deprecated, FIOSETOWN should be used instead. */ case TIOCSPGRP: error = fsetown(-(*(int *)addr), &d->bd_sigio); break; /* This is deprecated, FIOGETOWN should be used instead. */ case TIOCGPGRP: *(int *)addr = -fgetown(&d->bd_sigio); break; case BIOCSRSIG: /* Set receive signal */ { u_int sig; sig = *(u_int *)addr; if (sig >= NSIG) error = EINVAL; else { BPFD_LOCK(d); d->bd_sig = sig; BPFD_UNLOCK(d); } break; } case BIOCGRSIG: BPFD_LOCK(d); *(u_int *)addr = d->bd_sig; BPFD_UNLOCK(d); break; case BIOCGETBUFMODE: BPFD_LOCK(d); *(u_int *)addr = d->bd_bufmode; BPFD_UNLOCK(d); break; case BIOCSETBUFMODE: /* * Allow the buffering mode to be changed as long as we * haven't yet committed to a particular mode. Our * definition of commitment, for now, is whether or not a * buffer has been allocated or an interface attached, since * that's the point where things get tricky. */ switch (*(u_int *)addr) { case BPF_BUFMODE_BUFFER: break; case BPF_BUFMODE_ZBUF: if (bpf_zerocopy_enable) break; /* FALLSTHROUGH */ default: CURVNET_RESTORE(); return (EINVAL); } BPFD_LOCK(d); if (d->bd_sbuf != NULL || d->bd_hbuf != NULL || d->bd_fbuf != NULL || d->bd_bif != NULL) { BPFD_UNLOCK(d); CURVNET_RESTORE(); return (EBUSY); } d->bd_bufmode = *(u_int *)addr; BPFD_UNLOCK(d); break; case BIOCGETZMAX: error = bpf_ioctl_getzmax(td, d, (size_t *)addr); break; case BIOCSETZBUF: error = bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr); break; case BIOCROTZBUF: error = bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr); break; } CURVNET_RESTORE(); return (error); } /* * Set d's packet filter program to fp. If this file already has a filter, * free it and replace it. Returns EINVAL for bogus requests. * * Note we need global lock here to serialize bpf_setf() and bpf_setif() calls * since reading d->bd_bif can't be protected by d or interface lock due to * lock order. * * Additionally, we have to acquire interface write lock due to bpf_mtap() uses * interface read lock to read all filers. * */ static int bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd) { #ifdef COMPAT_FREEBSD32 struct bpf_program fp_swab; struct bpf_program32 *fp32; #endif struct bpf_insn *fcode, *old; #ifdef BPF_JITTER bpf_jit_filter *jfunc, *ofunc; #endif size_t size; u_int flen; int need_upgrade; #ifdef COMPAT_FREEBSD32 switch (cmd) { case BIOCSETF32: case BIOCSETWF32: case BIOCSETFNR32: fp32 = (struct bpf_program32 *)fp; fp_swab.bf_len = fp32->bf_len; fp_swab.bf_insns = (struct bpf_insn *)(uintptr_t)fp32->bf_insns; fp = &fp_swab; switch (cmd) { case BIOCSETF32: cmd = BIOCSETF; break; case BIOCSETWF32: cmd = BIOCSETWF; break; } break; } #endif fcode = NULL; #ifdef BPF_JITTER jfunc = ofunc = NULL; #endif need_upgrade = 0; /* * Check new filter validness before acquiring any locks. * Allocate memory for new filter, if needed. */ flen = fp->bf_len; if (flen > bpf_maxinsns || (fp->bf_insns == NULL && flen != 0)) return (EINVAL); size = flen * sizeof(*fp->bf_insns); if (size > 0) { /* We're setting up new filter. Copy and check actual data. */ fcode = malloc(size, M_BPF, M_WAITOK); if (copyin(fp->bf_insns, fcode, size) != 0 || !bpf_validate(fcode, flen)) { free(fcode, M_BPF); return (EINVAL); } #ifdef BPF_JITTER /* Filter is copied inside fcode and is perfectly valid. */ jfunc = bpf_jitter(fcode, flen); #endif } BPF_LOCK(); /* * Set up new filter. * Protect filter change by interface lock. * Additionally, we are protected by global lock here. */ if (d->bd_bif != NULL) BPFIF_WLOCK(d->bd_bif); BPFD_LOCK(d); if (cmd == BIOCSETWF) { old = d->bd_wfilter; d->bd_wfilter = fcode; } else { old = d->bd_rfilter; d->bd_rfilter = fcode; #ifdef BPF_JITTER ofunc = d->bd_bfilter; d->bd_bfilter = jfunc; #endif if (cmd == BIOCSETF) reset_d(d); need_upgrade = bpf_check_upgrade(cmd, d, fcode, flen); } BPFD_UNLOCK(d); if (d->bd_bif != NULL) BPFIF_WUNLOCK(d->bd_bif); if (old != NULL) free(old, M_BPF); #ifdef BPF_JITTER if (ofunc != NULL) bpf_destroy_jit_filter(ofunc); #endif /* Move d to active readers list. */ if (need_upgrade != 0) bpf_upgraded(d); BPF_UNLOCK(); return (0); } /* * Detach a file from its current interface (if attached at all) and attach * to the interface indicated by the name stored in ifr. * Return an errno or 0. */ static int bpf_setif(struct bpf_d *d, struct ifreq *ifr) { struct bpf_if *bp; struct ifnet *theywant; BPF_LOCK_ASSERT(); theywant = ifunit(ifr->ifr_name); if (theywant == NULL || theywant->if_bpf == NULL) return (ENXIO); bp = theywant->if_bpf; /* Check if interface is not being detached from BPF */ BPFIF_RLOCK(bp); if (bp->bif_flags & BPFIF_FLAG_DYING) { BPFIF_RUNLOCK(bp); return (ENXIO); } BPFIF_RUNLOCK(bp); /* * At this point, we expect the buffer is already allocated. If not, * return an error. */ switch (d->bd_bufmode) { case BPF_BUFMODE_BUFFER: case BPF_BUFMODE_ZBUF: if (d->bd_sbuf == NULL) return (EINVAL); break; default: panic("bpf_setif: bufmode %d", d->bd_bufmode); } if (bp != d->bd_bif) bpf_attachd(d, bp); BPFD_LOCK(d); reset_d(d); BPFD_UNLOCK(d); return (0); } /* * Support for select() and poll() system calls * * Return true iff the specific operation will not block indefinitely. * Otherwise, return false but make a note that a selwakeup() must be done. */ static int bpfpoll(struct cdev *dev, int events, struct thread *td) { struct bpf_d *d; int revents; if (devfs_get_cdevpriv((void **)&d) != 0 || d->bd_bif == NULL) return (events & (POLLHUP|POLLIN|POLLRDNORM|POLLOUT|POLLWRNORM)); /* * Refresh PID associated with this descriptor. */ revents = events & (POLLOUT | POLLWRNORM); BPFD_LOCK(d); BPF_PID_REFRESH(d, td); if (events & (POLLIN | POLLRDNORM)) { if (bpf_ready(d)) revents |= events & (POLLIN | POLLRDNORM); else { selrecord(td, &d->bd_sel); /* Start the read timeout if necessary. */ if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) { callout_reset(&d->bd_callout, d->bd_rtout, bpf_timed_out, d); d->bd_state = BPF_WAITING; } } } BPFD_UNLOCK(d); return (revents); } /* * Support for kevent() system call. Register EVFILT_READ filters and * reject all others. */ int bpfkqfilter(struct cdev *dev, struct knote *kn) { struct bpf_d *d; if (devfs_get_cdevpriv((void **)&d) != 0 || kn->kn_filter != EVFILT_READ) return (1); /* * Refresh PID associated with this descriptor. */ BPFD_LOCK(d); BPF_PID_REFRESH_CUR(d); kn->kn_fop = &bpfread_filtops; kn->kn_hook = d; knlist_add(&d->bd_sel.si_note, kn, 1); BPFD_UNLOCK(d); return (0); } static void filt_bpfdetach(struct knote *kn) { struct bpf_d *d = (struct bpf_d *)kn->kn_hook; knlist_remove(&d->bd_sel.si_note, kn, 0); } static int filt_bpfread(struct knote *kn, long hint) { struct bpf_d *d = (struct bpf_d *)kn->kn_hook; int ready; BPFD_LOCK_ASSERT(d); ready = bpf_ready(d); if (ready) { kn->kn_data = d->bd_slen; /* * Ignore the hold buffer if it is being copied to user space. */ if (!d->bd_hbuf_in_use && d->bd_hbuf) kn->kn_data += d->bd_hlen; } else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) { callout_reset(&d->bd_callout, d->bd_rtout, bpf_timed_out, d); d->bd_state = BPF_WAITING; } return (ready); } #define BPF_TSTAMP_NONE 0 #define BPF_TSTAMP_FAST 1 #define BPF_TSTAMP_NORMAL 2 #define BPF_TSTAMP_EXTERN 3 static int bpf_ts_quality(int tstype) { if (tstype == BPF_T_NONE) return (BPF_TSTAMP_NONE); if ((tstype & BPF_T_FAST) != 0) return (BPF_TSTAMP_FAST); return (BPF_TSTAMP_NORMAL); } static int bpf_gettime(struct bintime *bt, int tstype, struct mbuf *m) { struct m_tag *tag; int quality; quality = bpf_ts_quality(tstype); if (quality == BPF_TSTAMP_NONE) return (quality); if (m != NULL) { tag = m_tag_locate(m, MTAG_BPF, MTAG_BPF_TIMESTAMP, NULL); if (tag != NULL) { *bt = *(struct bintime *)(tag + 1); return (BPF_TSTAMP_EXTERN); } } if (quality == BPF_TSTAMP_NORMAL) binuptime(bt); else getbinuptime(bt); return (quality); } /* * Incoming linkage from device drivers. Process the packet pkt, of length * pktlen, which is stored in a contiguous buffer. The packet is parsed * by each process' filter, and if accepted, stashed into the corresponding * buffer. */ void bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen) { struct bintime bt; struct bpf_d *d; #ifdef BPF_JITTER bpf_jit_filter *bf; #endif u_int slen; int gottime; gottime = BPF_TSTAMP_NONE; BPFIF_RLOCK(bp); LIST_FOREACH(d, &bp->bif_dlist, bd_next) { /* * We are not using any locks for d here because: * 1) any filter change is protected by interface * write lock * 2) destroying/detaching d is protected by interface * write lock, too */ /* XXX: Do not protect counter for the sake of performance. */ ++d->bd_rcount; /* * NB: We dont call BPF_CHECK_DIRECTION() here since there is no * way for the caller to indiciate to us whether this packet * is inbound or outbound. In the bpf_mtap() routines, we use * the interface pointers on the mbuf to figure it out. */ #ifdef BPF_JITTER bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL; if (bf != NULL) slen = (*(bf->func))(pkt, pktlen, pktlen); else #endif slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen); if (slen != 0) { /* * Filter matches. Let's to acquire write lock. */ BPFD_LOCK(d); d->bd_fcount++; if (gottime < bpf_ts_quality(d->bd_tstamp)) gottime = bpf_gettime(&bt, d->bd_tstamp, NULL); #ifdef MAC if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0) #endif catchpacket(d, pkt, pktlen, slen, bpf_append_bytes, &bt); BPFD_UNLOCK(d); } } BPFIF_RUNLOCK(bp); } #define BPF_CHECK_DIRECTION(d, r, i) \ (((d)->bd_direction == BPF_D_IN && (r) != (i)) || \ ((d)->bd_direction == BPF_D_OUT && (r) == (i))) /* * Incoming linkage from device drivers, when packet is in an mbuf chain. * Locking model is explained in bpf_tap(). */ void bpf_mtap(struct bpf_if *bp, struct mbuf *m) { struct bintime bt; struct bpf_d *d; #ifdef BPF_JITTER bpf_jit_filter *bf; #endif u_int pktlen, slen; int gottime; /* Skip outgoing duplicate packets. */ if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) { m->m_flags &= ~M_PROMISC; return; } pktlen = m_length(m, NULL); gottime = BPF_TSTAMP_NONE; BPFIF_RLOCK(bp); LIST_FOREACH(d, &bp->bif_dlist, bd_next) { if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp)) continue; ++d->bd_rcount; #ifdef BPF_JITTER bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL; /* XXX We cannot handle multiple mbufs. */ if (bf != NULL && m->m_next == NULL) slen = (*(bf->func))(mtod(m, u_char *), pktlen, pktlen); else #endif slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0); if (slen != 0) { BPFD_LOCK(d); d->bd_fcount++; if (gottime < bpf_ts_quality(d->bd_tstamp)) gottime = bpf_gettime(&bt, d->bd_tstamp, m); #ifdef MAC if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0) #endif catchpacket(d, (u_char *)m, pktlen, slen, bpf_append_mbuf, &bt); BPFD_UNLOCK(d); } } BPFIF_RUNLOCK(bp); } /* * Incoming linkage from device drivers, when packet is in * an mbuf chain and to be prepended by a contiguous header. */ void bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m) { struct bintime bt; struct mbuf mb; struct bpf_d *d; u_int pktlen, slen; int gottime; /* Skip outgoing duplicate packets. */ if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) { m->m_flags &= ~M_PROMISC; return; } pktlen = m_length(m, NULL); /* * Craft on-stack mbuf suitable for passing to bpf_filter. * Note that we cut corners here; we only setup what's * absolutely needed--this mbuf should never go anywhere else. */ mb.m_next = m; mb.m_data = data; mb.m_len = dlen; pktlen += dlen; gottime = BPF_TSTAMP_NONE; BPFIF_RLOCK(bp); LIST_FOREACH(d, &bp->bif_dlist, bd_next) { if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp)) continue; ++d->bd_rcount; slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0); if (slen != 0) { BPFD_LOCK(d); d->bd_fcount++; if (gottime < bpf_ts_quality(d->bd_tstamp)) gottime = bpf_gettime(&bt, d->bd_tstamp, m); #ifdef MAC if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0) #endif catchpacket(d, (u_char *)&mb, pktlen, slen, bpf_append_mbuf, &bt); BPFD_UNLOCK(d); } } BPFIF_RUNLOCK(bp); } #undef BPF_CHECK_DIRECTION #undef BPF_TSTAMP_NONE #undef BPF_TSTAMP_FAST #undef BPF_TSTAMP_NORMAL #undef BPF_TSTAMP_EXTERN static int bpf_hdrlen(struct bpf_d *d) { int hdrlen; hdrlen = d->bd_bif->bif_hdrlen; #ifndef BURN_BRIDGES if (d->bd_tstamp == BPF_T_NONE || BPF_T_FORMAT(d->bd_tstamp) == BPF_T_MICROTIME) #ifdef COMPAT_FREEBSD32 if (d->bd_compat32) hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr32); else #endif hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr); else #endif hdrlen += SIZEOF_BPF_HDR(struct bpf_xhdr); #ifdef COMPAT_FREEBSD32 if (d->bd_compat32) hdrlen = BPF_WORDALIGN32(hdrlen); else #endif hdrlen = BPF_WORDALIGN(hdrlen); return (hdrlen - d->bd_bif->bif_hdrlen); } static void bpf_bintime2ts(struct bintime *bt, struct bpf_ts *ts, int tstype) { struct bintime bt2; struct timeval tsm; struct timespec tsn; if ((tstype & BPF_T_MONOTONIC) == 0) { bt2 = *bt; bintime_add(&bt2, &boottimebin); bt = &bt2; } switch (BPF_T_FORMAT(tstype)) { case BPF_T_MICROTIME: bintime2timeval(bt, &tsm); ts->bt_sec = tsm.tv_sec; ts->bt_frac = tsm.tv_usec; break; case BPF_T_NANOTIME: bintime2timespec(bt, &tsn); ts->bt_sec = tsn.tv_sec; ts->bt_frac = tsn.tv_nsec; break; case BPF_T_BINTIME: ts->bt_sec = bt->sec; ts->bt_frac = bt->frac; break; } } /* * Move the packet data from interface memory (pkt) into the * store buffer. "cpfn" is the routine called to do the actual data * transfer. bcopy is passed in to copy contiguous chunks, while * bpf_append_mbuf is passed in to copy mbuf chains. In the latter case, * pkt is really an mbuf. */ static void catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen, void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int), struct bintime *bt) { struct bpf_xhdr hdr; #ifndef BURN_BRIDGES struct bpf_hdr hdr_old; #ifdef COMPAT_FREEBSD32 struct bpf_hdr32 hdr32_old; #endif #endif int caplen, curlen, hdrlen, totlen; int do_wakeup = 0; int do_timestamp; int tstype; BPFD_LOCK_ASSERT(d); /* * Detect whether user space has released a buffer back to us, and if * so, move it from being a hold buffer to a free buffer. This may * not be the best place to do it (for example, we might only want to * run this check if we need the space), but for now it's a reliable * spot to do it. */ if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) { d->bd_fbuf = d->bd_hbuf; d->bd_hbuf = NULL; d->bd_hlen = 0; bpf_buf_reclaimed(d); } /* * Figure out how many bytes to move. If the packet is * greater or equal to the snapshot length, transfer that * much. Otherwise, transfer the whole packet (unless * we hit the buffer size limit). */ hdrlen = bpf_hdrlen(d); totlen = hdrlen + min(snaplen, pktlen); if (totlen > d->bd_bufsize) totlen = d->bd_bufsize; /* * Round up the end of the previous packet to the next longword. * * Drop the packet if there's no room and no hope of room * If the packet would overflow the storage buffer or the storage * buffer is considered immutable by the buffer model, try to rotate * the buffer and wakeup pending processes. */ #ifdef COMPAT_FREEBSD32 if (d->bd_compat32) curlen = BPF_WORDALIGN32(d->bd_slen); else #endif curlen = BPF_WORDALIGN(d->bd_slen); if (curlen + totlen > d->bd_bufsize || !bpf_canwritebuf(d)) { if (d->bd_fbuf == NULL) { /* * There's no room in the store buffer, and no * prospect of room, so drop the packet. Notify the * buffer model. */ bpf_buffull(d); ++d->bd_dcount; return; } KASSERT(!d->bd_hbuf_in_use, ("hold buffer is in use")); ROTATE_BUFFERS(d); do_wakeup = 1; curlen = 0; } else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) /* * Immediate mode is set, or the read timeout has already * expired during a select call. A packet arrived, so the * reader should be woken up. */ do_wakeup = 1; caplen = totlen - hdrlen; tstype = d->bd_tstamp; do_timestamp = tstype != BPF_T_NONE; #ifndef BURN_BRIDGES if (tstype == BPF_T_NONE || BPF_T_FORMAT(tstype) == BPF_T_MICROTIME) { struct bpf_ts ts; if (do_timestamp) bpf_bintime2ts(bt, &ts, tstype); #ifdef COMPAT_FREEBSD32 if (d->bd_compat32) { bzero(&hdr32_old, sizeof(hdr32_old)); if (do_timestamp) { hdr32_old.bh_tstamp.tv_sec = ts.bt_sec; hdr32_old.bh_tstamp.tv_usec = ts.bt_frac; } hdr32_old.bh_datalen = pktlen; hdr32_old.bh_hdrlen = hdrlen; hdr32_old.bh_caplen = caplen; bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr32_old, sizeof(hdr32_old)); goto copy; } #endif bzero(&hdr_old, sizeof(hdr_old)); if (do_timestamp) { hdr_old.bh_tstamp.tv_sec = ts.bt_sec; hdr_old.bh_tstamp.tv_usec = ts.bt_frac; } hdr_old.bh_datalen = pktlen; hdr_old.bh_hdrlen = hdrlen; hdr_old.bh_caplen = caplen; bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr_old, sizeof(hdr_old)); goto copy; } #endif /* * Append the bpf header. Note we append the actual header size, but * move forward the length of the header plus padding. */ bzero(&hdr, sizeof(hdr)); if (do_timestamp) bpf_bintime2ts(bt, &hdr.bh_tstamp, tstype); hdr.bh_datalen = pktlen; hdr.bh_hdrlen = hdrlen; hdr.bh_caplen = caplen; bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr)); /* * Copy the packet data into the store buffer and update its length. */ #ifndef BURN_BRIDGES copy: #endif (*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, caplen); d->bd_slen = curlen + totlen; if (do_wakeup) bpf_wakeup(d); } /* * Free buffers currently in use by a descriptor. * Called on close. */ static void bpf_freed(struct bpf_d *d) { /* * We don't need to lock out interrupts since this descriptor has * been detached from its interface and it yet hasn't been marked * free. */ bpf_free(d); if (d->bd_rfilter != NULL) { free((caddr_t)d->bd_rfilter, M_BPF); #ifdef BPF_JITTER if (d->bd_bfilter != NULL) bpf_destroy_jit_filter(d->bd_bfilter); #endif } if (d->bd_wfilter != NULL) free((caddr_t)d->bd_wfilter, M_BPF); mtx_destroy(&d->bd_lock); } /* * Attach an interface to bpf. dlt is the link layer type; hdrlen is the * fixed size of the link header (variable length headers not yet supported). */ void bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen) { bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf); } /* * Attach an interface to bpf. ifp is a pointer to the structure * defining the interface to be attached, dlt is the link layer type, * and hdrlen is the fixed size of the link header (variable length * headers are not yet supporrted). */ void bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp) { struct bpf_if *bp; bp = malloc(sizeof(*bp), M_BPF, M_NOWAIT | M_ZERO); if (bp == NULL) panic("bpfattach"); LIST_INIT(&bp->bif_dlist); LIST_INIT(&bp->bif_wlist); bp->bif_ifp = ifp; bp->bif_dlt = dlt; rw_init(&bp->bif_lock, "bpf interface lock"); KASSERT(*driverp == NULL, ("bpfattach2: driverp already initialized")); *driverp = bp; BPF_LOCK(); LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next); BPF_UNLOCK(); bp->bif_hdrlen = hdrlen; if (bootverbose && IS_DEFAULT_VNET(curvnet)) if_printf(ifp, "bpf attached\n"); } +#ifdef VIMAGE /* + * When moving interfaces between vnet instances we need a way to + * query the dlt and hdrlen before detach so we can re-attch the if_bpf + * after the vmove. We unfortunately have no device driver infrastructure + * to query the interface for these values after creation/attach, thus + * add this as a workaround. + */ +int +bpf_get_bp_params(struct bpf_if *bp, u_int *bif_dlt, u_int *bif_hdrlen) +{ + + if (bp == NULL) + return (ENXIO); + if (bif_dlt == NULL && bif_hdrlen == NULL) + return (0); + + if (bif_dlt != NULL) + *bif_dlt = bp->bif_dlt; + if (bif_hdrlen != NULL) + *bif_hdrlen = bp->bif_hdrlen; + + return (0); +} +#endif + +/* * Detach bpf from an interface. This involves detaching each descriptor * associated with the interface. Notify each descriptor as it's detached * so that any sleepers wake up and get ENXIO. */ void bpfdetach(struct ifnet *ifp) { struct bpf_if *bp, *bp_temp; struct bpf_d *d; int ndetached; ndetached = 0; BPF_LOCK(); /* Find all bpf_if struct's which reference ifp and detach them. */ LIST_FOREACH_SAFE(bp, &bpf_iflist, bif_next, bp_temp) { if (ifp != bp->bif_ifp) continue; LIST_REMOVE(bp, bif_next); /* Add to to-be-freed list */ LIST_INSERT_HEAD(&bpf_freelist, bp, bif_next); ndetached++; /* * Delay freeing bp till interface is detached * and all routes through this interface are removed. * Mark bp as detached to restrict new consumers. */ BPFIF_WLOCK(bp); bp->bif_flags |= BPFIF_FLAG_DYING; BPFIF_WUNLOCK(bp); CTR4(KTR_NET, "%s: sheduling free for encap %d (%p) for if %p", __func__, bp->bif_dlt, bp, ifp); /* Free common descriptors */ while ((d = LIST_FIRST(&bp->bif_dlist)) != NULL) { bpf_detachd_locked(d); BPFD_LOCK(d); bpf_wakeup(d); BPFD_UNLOCK(d); } /* Free writer-only descriptors */ while ((d = LIST_FIRST(&bp->bif_wlist)) != NULL) { bpf_detachd_locked(d); BPFD_LOCK(d); bpf_wakeup(d); BPFD_UNLOCK(d); } } BPF_UNLOCK(); #ifdef INVARIANTS if (ndetached == 0) printf("bpfdetach: %s was not attached\n", ifp->if_xname); #endif } /* * Interface departure handler. * Note departure event does not guarantee interface is going down. * Interface renaming is currently done via departure/arrival event set. * * Departure handled is called after all routes pointing to * given interface are removed and interface is in down state * restricting any packets to be sent/received. We assume it is now safe * to free data allocated by BPF. */ static void bpf_ifdetach(void *arg __unused, struct ifnet *ifp) { struct bpf_if *bp, *bp_temp; int nmatched = 0; BPF_LOCK(); /* * Find matching entries in free list. * Nothing should be found if bpfdetach() was not called. */ LIST_FOREACH_SAFE(bp, &bpf_freelist, bif_next, bp_temp) { if (ifp != bp->bif_ifp) continue; CTR3(KTR_NET, "%s: freeing BPF instance %p for interface %p", __func__, bp, ifp); LIST_REMOVE(bp, bif_next); rw_destroy(&bp->bif_lock); free(bp, M_BPF); nmatched++; } BPF_UNLOCK(); /* * Note that we cannot zero other pointers to * custom DLTs possibly used by given interface. */ if (nmatched != 0) ifp->if_bpf = NULL; } /* * Get a list of available data link type of the interface. */ static int bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl) { struct ifnet *ifp; struct bpf_if *bp; u_int *lst; int error, n, n1; BPF_LOCK_ASSERT(); ifp = d->bd_bif->bif_ifp; again: n1 = 0; LIST_FOREACH(bp, &bpf_iflist, bif_next) { if (bp->bif_ifp == ifp) n1++; } if (bfl->bfl_list == NULL) { bfl->bfl_len = n1; return (0); } if (n1 > bfl->bfl_len) return (ENOMEM); BPF_UNLOCK(); lst = malloc(n1 * sizeof(u_int), M_TEMP, M_WAITOK); n = 0; BPF_LOCK(); LIST_FOREACH(bp, &bpf_iflist, bif_next) { if (bp->bif_ifp != ifp) continue; if (n > n1) { free(lst, M_TEMP); goto again; } lst[n] = bp->bif_dlt; n++; } BPF_UNLOCK(); error = copyout(lst, bfl->bfl_list, sizeof(u_int) * n); free(lst, M_TEMP); BPF_LOCK(); bfl->bfl_len = n; return (error); } /* * Set the data link type of a BPF instance. */ static int bpf_setdlt(struct bpf_d *d, u_int dlt) { int error, opromisc; struct ifnet *ifp; struct bpf_if *bp; BPF_LOCK_ASSERT(); if (d->bd_bif->bif_dlt == dlt) return (0); ifp = d->bd_bif->bif_ifp; LIST_FOREACH(bp, &bpf_iflist, bif_next) { if (bp->bif_ifp == ifp && bp->bif_dlt == dlt) break; } if (bp != NULL) { opromisc = d->bd_promisc; bpf_attachd(d, bp); BPFD_LOCK(d); reset_d(d); BPFD_UNLOCK(d); if (opromisc) { error = ifpromisc(bp->bif_ifp, 1); if (error) if_printf(bp->bif_ifp, "bpf_setdlt: ifpromisc failed (%d)\n", error); else d->bd_promisc = 1; } } return (bp == NULL ? EINVAL : 0); } static void bpf_drvinit(void *unused) { struct cdev *dev; mtx_init(&bpf_mtx, "bpf global lock", NULL, MTX_DEF); LIST_INIT(&bpf_iflist); LIST_INIT(&bpf_freelist); dev = make_dev(&bpf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "bpf"); /* For compatibility */ make_dev_alias(dev, "bpf0"); /* Register interface departure handler */ bpf_ifdetach_cookie = EVENTHANDLER_REGISTER( ifnet_departure_event, bpf_ifdetach, NULL, EVENTHANDLER_PRI_ANY); } /* * Zero out the various packet counters associated with all of the bpf * descriptors. At some point, we will probably want to get a bit more * granular and allow the user to specify descriptors to be zeroed. */ static void bpf_zero_counters(void) { struct bpf_if *bp; struct bpf_d *bd; BPF_LOCK(); LIST_FOREACH(bp, &bpf_iflist, bif_next) { BPFIF_RLOCK(bp); LIST_FOREACH(bd, &bp->bif_dlist, bd_next) { BPFD_LOCK(bd); bd->bd_rcount = 0; bd->bd_dcount = 0; bd->bd_fcount = 0; bd->bd_wcount = 0; bd->bd_wfcount = 0; bd->bd_zcopy = 0; BPFD_UNLOCK(bd); } BPFIF_RUNLOCK(bp); } BPF_UNLOCK(); } /* * Fill filter statistics */ static void bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd) { bzero(d, sizeof(*d)); BPFD_LOCK_ASSERT(bd); d->bd_structsize = sizeof(*d); /* XXX: reading should be protected by global lock */ d->bd_immediate = bd->bd_immediate; d->bd_promisc = bd->bd_promisc; d->bd_hdrcmplt = bd->bd_hdrcmplt; d->bd_direction = bd->bd_direction; d->bd_feedback = bd->bd_feedback; d->bd_async = bd->bd_async; d->bd_rcount = bd->bd_rcount; d->bd_dcount = bd->bd_dcount; d->bd_fcount = bd->bd_fcount; d->bd_sig = bd->bd_sig; d->bd_slen = bd->bd_slen; d->bd_hlen = bd->bd_hlen; d->bd_bufsize = bd->bd_bufsize; d->bd_pid = bd->bd_pid; strlcpy(d->bd_ifname, bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ); d->bd_locked = bd->bd_locked; d->bd_wcount = bd->bd_wcount; d->bd_wdcount = bd->bd_wdcount; d->bd_wfcount = bd->bd_wfcount; d->bd_zcopy = bd->bd_zcopy; d->bd_bufmode = bd->bd_bufmode; } /* * Handle `netstat -B' stats request */ static int bpf_stats_sysctl(SYSCTL_HANDLER_ARGS) { static const struct xbpf_d zerostats; struct xbpf_d *xbdbuf, *xbd, tempstats; int index, error; struct bpf_if *bp; struct bpf_d *bd; /* * XXX This is not technically correct. It is possible for non * privileged users to open bpf devices. It would make sense * if the users who opened the devices were able to retrieve * the statistics for them, too. */ error = priv_check(req->td, PRIV_NET_BPF); if (error) return (error); /* * Check to see if the user is requesting that the counters be * zeroed out. Explicitly check that the supplied data is zeroed, * as we aren't allowing the user to set the counters currently. */ if (req->newptr != NULL) { if (req->newlen != sizeof(tempstats)) return (EINVAL); memset(&tempstats, 0, sizeof(tempstats)); error = SYSCTL_IN(req, &tempstats, sizeof(tempstats)); if (error) return (error); if (bcmp(&tempstats, &zerostats, sizeof(tempstats)) != 0) return (EINVAL); bpf_zero_counters(); return (0); } if (req->oldptr == NULL) return (SYSCTL_OUT(req, 0, bpf_bpfd_cnt * sizeof(*xbd))); if (bpf_bpfd_cnt == 0) return (SYSCTL_OUT(req, 0, 0)); xbdbuf = malloc(req->oldlen, M_BPF, M_WAITOK); BPF_LOCK(); if (req->oldlen < (bpf_bpfd_cnt * sizeof(*xbd))) { BPF_UNLOCK(); free(xbdbuf, M_BPF); return (ENOMEM); } index = 0; LIST_FOREACH(bp, &bpf_iflist, bif_next) { BPFIF_RLOCK(bp); /* Send writers-only first */ LIST_FOREACH(bd, &bp->bif_wlist, bd_next) { xbd = &xbdbuf[index++]; BPFD_LOCK(bd); bpfstats_fill_xbpf(xbd, bd); BPFD_UNLOCK(bd); } LIST_FOREACH(bd, &bp->bif_dlist, bd_next) { xbd = &xbdbuf[index++]; BPFD_LOCK(bd); bpfstats_fill_xbpf(xbd, bd); BPFD_UNLOCK(bd); } BPFIF_RUNLOCK(bp); } BPF_UNLOCK(); error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd)); free(xbdbuf, M_BPF); return (error); } SYSINIT(bpfdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE,bpf_drvinit,NULL); #else /* !DEV_BPF && !NETGRAPH_BPF */ /* * NOP stubs to allow bpf-using drivers to load and function. * * A 'better' implementation would allow the core bpf functionality * to be loaded at runtime. */ static struct bpf_if bp_null; void bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen) { } void bpf_mtap(struct bpf_if *bp, struct mbuf *m) { } void bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m) { } void bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen) { bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf); } void bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp) { *driverp = &bp_null; } void bpfdetach(struct ifnet *ifp) { } u_int bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen) { return -1; /* "no filter" behaviour */ } int bpf_validate(const struct bpf_insn *f, int len) { return 0; /* false */ } #endif /* !DEV_BPF && !NETGRAPH_BPF */ + +#ifdef DDB +static void +bpf_show_bpf_if(struct bpf_if *bpf_if) +{ + + if (bpf_if == NULL) + return; + db_printf("%p:\n", bpf_if); +#define BPF_DB_PRINTF(f, e) db_printf(" %s = " f "\n", #e, bpf_if->e); + /* bif_ext.bif_next */ + /* bif_ext.bif_dlist */ + BPF_DB_PRINTF("%#x", bif_dlt); + BPF_DB_PRINTF("%u", bif_hdrlen); + BPF_DB_PRINTF("%p", bif_ifp); + /* bif_lock */ + /* bif_wlist */ + BPF_DB_PRINTF("%#x", bif_flags); +} + +DB_SHOW_COMMAND(bpf_if, db_show_bpf_if) +{ + + if (!have_addr) { + db_printf("usage: show bpf_if \n"); + return; + } + + bpf_show_bpf_if((struct bpf_if *)addr); +} +#endif Index: projects/vnet/sys/net/bpf.h =================================================================== --- projects/vnet/sys/net/bpf.h (revision 297511) +++ projects/vnet/sys/net/bpf.h (revision 297512) @@ -1,1518 +1,1521 @@ /*- * Copyright (c) 1990, 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from the Stanford/CMU enet packet filter, * (net/enet.c) distributed as part of 4.3BSD, and code contributed * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence * Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)bpf.h 8.1 (Berkeley) 6/10/93 * @(#)bpf.h 1.34 (LBL) 6/16/96 * * $FreeBSD$ */ #ifndef _NET_BPF_H_ #define _NET_BPF_H_ /* BSD style release date */ #define BPF_RELEASE 199606 typedef int32_t bpf_int32; typedef u_int32_t bpf_u_int32; typedef int64_t bpf_int64; typedef u_int64_t bpf_u_int64; /* * Alignment macros. BPF_WORDALIGN rounds up to the next * even multiple of BPF_ALIGNMENT. */ #define BPF_ALIGNMENT sizeof(long) #define BPF_WORDALIGN(x) (((x)+(BPF_ALIGNMENT-1))&~(BPF_ALIGNMENT-1)) #define BPF_MAXINSNS 512 #define BPF_MAXBUFSIZE 0x80000 #define BPF_MINBUFSIZE 32 /* * Structure for BIOCSETF. */ struct bpf_program { u_int bf_len; struct bpf_insn *bf_insns; }; /* * Struct returned by BIOCGSTATS. */ struct bpf_stat { u_int bs_recv; /* number of packets received */ u_int bs_drop; /* number of packets dropped */ }; /* * Struct return by BIOCVERSION. This represents the version number of * the filter language described by the instruction encodings below. * bpf understands a program iff kernel_major == filter_major && * kernel_minor >= filter_minor, that is, if the value returned by the * running kernel has the same major number and a minor number equal * equal to or less than the filter being downloaded. Otherwise, the * results are undefined, meaning an error may be returned or packets * may be accepted haphazardly. * It has nothing to do with the source code version. */ struct bpf_version { u_short bv_major; u_short bv_minor; }; /* Current version number of filter architecture. */ #define BPF_MAJOR_VERSION 1 #define BPF_MINOR_VERSION 1 /* * Historically, BPF has supported a single buffering model, first using mbuf * clusters in kernel, and later using malloc(9) buffers in kernel. We now * support multiple buffering modes, which may be queried and set using * BIOCGETBUFMODE and BIOCSETBUFMODE. So as to avoid handling the complexity * of changing modes while sniffing packets, the mode becomes fixed once an * interface has been attached to the BPF descriptor. */ #define BPF_BUFMODE_BUFFER 1 /* Kernel buffers with read(). */ #define BPF_BUFMODE_ZBUF 2 /* Zero-copy buffers. */ /*- * Struct used by BIOCSETZBUF, BIOCROTZBUF: describes up to two zero-copy * buffer as used by BPF. */ struct bpf_zbuf { void *bz_bufa; /* Location of 'a' zero-copy buffer. */ void *bz_bufb; /* Location of 'b' zero-copy buffer. */ size_t bz_buflen; /* Size of zero-copy buffers. */ }; #define BIOCGBLEN _IOR('B', 102, u_int) #define BIOCSBLEN _IOWR('B', 102, u_int) #define BIOCSETF _IOW('B', 103, struct bpf_program) #define BIOCFLUSH _IO('B', 104) #define BIOCPROMISC _IO('B', 105) #define BIOCGDLT _IOR('B', 106, u_int) #define BIOCGETIF _IOR('B', 107, struct ifreq) #define BIOCSETIF _IOW('B', 108, struct ifreq) #define BIOCSRTIMEOUT _IOW('B', 109, struct timeval) #define BIOCGRTIMEOUT _IOR('B', 110, struct timeval) #define BIOCGSTATS _IOR('B', 111, struct bpf_stat) #define BIOCIMMEDIATE _IOW('B', 112, u_int) #define BIOCVERSION _IOR('B', 113, struct bpf_version) #define BIOCGRSIG _IOR('B', 114, u_int) #define BIOCSRSIG _IOW('B', 115, u_int) #define BIOCGHDRCMPLT _IOR('B', 116, u_int) #define BIOCSHDRCMPLT _IOW('B', 117, u_int) #define BIOCGDIRECTION _IOR('B', 118, u_int) #define BIOCSDIRECTION _IOW('B', 119, u_int) #define BIOCSDLT _IOW('B', 120, u_int) #define BIOCGDLTLIST _IOWR('B', 121, struct bpf_dltlist) #define BIOCLOCK _IO('B', 122) #define BIOCSETWF _IOW('B', 123, struct bpf_program) #define BIOCFEEDBACK _IOW('B', 124, u_int) #define BIOCGETBUFMODE _IOR('B', 125, u_int) #define BIOCSETBUFMODE _IOW('B', 126, u_int) #define BIOCGETZMAX _IOR('B', 127, size_t) #define BIOCROTZBUF _IOR('B', 128, struct bpf_zbuf) #define BIOCSETZBUF _IOW('B', 129, struct bpf_zbuf) #define BIOCSETFNR _IOW('B', 130, struct bpf_program) #define BIOCGTSTAMP _IOR('B', 131, u_int) #define BIOCSTSTAMP _IOW('B', 132, u_int) /* Obsolete */ #define BIOCGSEESENT BIOCGDIRECTION #define BIOCSSEESENT BIOCSDIRECTION /* Packet directions */ enum bpf_direction { BPF_D_IN, /* See incoming packets */ BPF_D_INOUT, /* See incoming and outgoing packets */ BPF_D_OUT /* See outgoing packets */ }; /* Time stamping functions */ #define BPF_T_MICROTIME 0x0000 #define BPF_T_NANOTIME 0x0001 #define BPF_T_BINTIME 0x0002 #define BPF_T_NONE 0x0003 #define BPF_T_FORMAT_MASK 0x0003 #define BPF_T_NORMAL 0x0000 #define BPF_T_FAST 0x0100 #define BPF_T_MONOTONIC 0x0200 #define BPF_T_MONOTONIC_FAST (BPF_T_FAST | BPF_T_MONOTONIC) #define BPF_T_FLAG_MASK 0x0300 #define BPF_T_FORMAT(t) ((t) & BPF_T_FORMAT_MASK) #define BPF_T_FLAG(t) ((t) & BPF_T_FLAG_MASK) #define BPF_T_VALID(t) \ ((t) == BPF_T_NONE || (BPF_T_FORMAT(t) != BPF_T_NONE && \ ((t) & ~(BPF_T_FORMAT_MASK | BPF_T_FLAG_MASK)) == 0)) #define BPF_T_MICROTIME_FAST (BPF_T_MICROTIME | BPF_T_FAST) #define BPF_T_NANOTIME_FAST (BPF_T_NANOTIME | BPF_T_FAST) #define BPF_T_BINTIME_FAST (BPF_T_BINTIME | BPF_T_FAST) #define BPF_T_MICROTIME_MONOTONIC (BPF_T_MICROTIME | BPF_T_MONOTONIC) #define BPF_T_NANOTIME_MONOTONIC (BPF_T_NANOTIME | BPF_T_MONOTONIC) #define BPF_T_BINTIME_MONOTONIC (BPF_T_BINTIME | BPF_T_MONOTONIC) #define BPF_T_MICROTIME_MONOTONIC_FAST (BPF_T_MICROTIME | BPF_T_MONOTONIC_FAST) #define BPF_T_NANOTIME_MONOTONIC_FAST (BPF_T_NANOTIME | BPF_T_MONOTONIC_FAST) #define BPF_T_BINTIME_MONOTONIC_FAST (BPF_T_BINTIME | BPF_T_MONOTONIC_FAST) /* * Structure prepended to each packet. */ struct bpf_ts { bpf_int64 bt_sec; /* seconds */ bpf_u_int64 bt_frac; /* fraction */ }; struct bpf_xhdr { struct bpf_ts bh_tstamp; /* time stamp */ bpf_u_int32 bh_caplen; /* length of captured portion */ bpf_u_int32 bh_datalen; /* original length of packet */ u_short bh_hdrlen; /* length of bpf header (this struct plus alignment padding) */ }; /* Obsolete */ struct bpf_hdr { struct timeval bh_tstamp; /* time stamp */ bpf_u_int32 bh_caplen; /* length of captured portion */ bpf_u_int32 bh_datalen; /* original length of packet */ u_short bh_hdrlen; /* length of bpf header (this struct plus alignment padding) */ }; #ifdef _KERNEL #define MTAG_BPF 0x627066 #define MTAG_BPF_TIMESTAMP 0 #endif /* * When using zero-copy BPF buffers, a shared memory header is present * allowing the kernel BPF implementation and user process to synchronize * without using system calls. This structure defines that header. When * accessing these fields, appropriate atomic operation and memory barriers * are required in order not to see stale or out-of-order data; see bpf(4) * for reference code to access these fields from userspace. * * The layout of this structure is critical, and must not be changed; if must * fit in a single page on all architectures. */ struct bpf_zbuf_header { volatile u_int bzh_kernel_gen; /* Kernel generation number. */ volatile u_int bzh_kernel_len; /* Length of data in the buffer. */ volatile u_int bzh_user_gen; /* User generation number. */ u_int _bzh_pad[5]; }; /* * Data-link level type codes. */ #define DLT_NULL 0 /* BSD loopback encapsulation */ #define DLT_EN10MB 1 /* Ethernet (10Mb) */ #define DLT_EN3MB 2 /* Experimental Ethernet (3Mb) */ #define DLT_AX25 3 /* Amateur Radio AX.25 */ #define DLT_PRONET 4 /* Proteon ProNET Token Ring */ #define DLT_CHAOS 5 /* Chaos */ #define DLT_IEEE802 6 /* IEEE 802 Networks */ #define DLT_ARCNET 7 /* ARCNET */ #define DLT_SLIP 8 /* Serial Line IP */ #define DLT_PPP 9 /* Point-to-point Protocol */ #define DLT_FDDI 10 /* FDDI */ #define DLT_ATM_RFC1483 11 /* LLC/SNAP encapsulated atm */ #define DLT_RAW 12 /* raw IP */ /* * These are values from BSD/OS's "bpf.h". * These are not the same as the values from the traditional libpcap * "bpf.h"; however, these values shouldn't be generated by any * OS other than BSD/OS, so the correct values to use here are the * BSD/OS values. * * Platforms that have already assigned these values to other * DLT_ codes, however, should give these codes the values * from that platform, so that programs that use these codes will * continue to compile - even though they won't correctly read * files of these types. */ #define DLT_SLIP_BSDOS 15 /* BSD/OS Serial Line IP */ #define DLT_PPP_BSDOS 16 /* BSD/OS Point-to-point Protocol */ #define DLT_ATM_CLIP 19 /* Linux Classical-IP over ATM */ /* * These values are defined by NetBSD; other platforms should refrain from * using them for other purposes, so that NetBSD savefiles with link * types of 50 or 51 can be read as this type on all platforms. */ #define DLT_PPP_SERIAL 50 /* PPP over serial with HDLC encapsulation */ #define DLT_PPP_ETHER 51 /* PPP over Ethernet */ /* * Reserved for the Symantec Enterprise Firewall. */ #define DLT_SYMANTEC_FIREWALL 99 /* * Values between 100 and 103 are used in capture file headers as * link-layer header type LINKTYPE_ values corresponding to DLT_ types * that differ between platforms; don't use those values for new DLT_ * new types. */ /* * Values starting with 104 are used for newly-assigned link-layer * header type values; for those link-layer header types, the DLT_ * value returned by pcap_datalink() and passed to pcap_open_dead(), * and the LINKTYPE_ value that appears in capture files, are the * same. * * DLT_MATCHING_MIN is the lowest such value; DLT_MATCHING_MAX is * the highest such value. */ #define DLT_MATCHING_MIN 104 /* * This value was defined by libpcap 0.5; platforms that have defined * it with a different value should define it here with that value - * a link type of 104 in a save file will be mapped to DLT_C_HDLC, * whatever value that happens to be, so programs will correctly * handle files with that link type regardless of the value of * DLT_C_HDLC. * * The name DLT_C_HDLC was used by BSD/OS; we use that name for source * compatibility with programs written for BSD/OS. * * libpcap 0.5 defined it as DLT_CHDLC; we define DLT_CHDLC as well, * for source compatibility with programs written for libpcap 0.5. */ #define DLT_C_HDLC 104 /* Cisco HDLC */ #define DLT_CHDLC DLT_C_HDLC #define DLT_IEEE802_11 105 /* IEEE 802.11 wireless */ /* * Values between 106 and 107 are used in capture file headers as * link-layer types corresponding to DLT_ types that might differ * between platforms; don't use those values for new DLT_ new types. */ /* * Frame Relay; BSD/OS has a DLT_FR with a value of 11, but that collides * with other values. * DLT_FR and DLT_FRELAY packets start with the Q.922 Frame Relay header * (DLCI, etc.). */ #define DLT_FRELAY 107 /* * OpenBSD DLT_LOOP, for loopback devices; it's like DLT_NULL, except * that the AF_ type in the link-layer header is in network byte order. * * OpenBSD defines it as 12, but that collides with DLT_RAW, so we * define it as 108 here. If OpenBSD picks up this file, it should * define DLT_LOOP as 12 in its version, as per the comment above - * and should not use 108 as a DLT_ value. */ #define DLT_LOOP 108 /* * Values between 109 and 112 are used in capture file headers as * link-layer types corresponding to DLT_ types that might differ * between platforms; don't use those values for new DLT_ new types. */ /* * Encapsulated packets for IPsec; DLT_ENC is 13 in OpenBSD, but that's * DLT_SLIP_BSDOS in NetBSD, so we don't use 13 for it in OSes other * than OpenBSD. */ #define DLT_ENC 109 /* * This is for Linux cooked sockets. */ #define DLT_LINUX_SLL 113 /* * Apple LocalTalk hardware. */ #define DLT_LTALK 114 /* * Acorn Econet. */ #define DLT_ECONET 115 /* * Reserved for use with OpenBSD ipfilter. */ #define DLT_IPFILTER 116 /* * Reserved for use in capture-file headers as a link-layer type * corresponding to OpenBSD DLT_PFLOG; DLT_PFLOG is 17 in OpenBSD, * but that's DLT_LANE8023 in SuSE 6.3, so we can't use 17 for it * in capture-file headers. */ #define DLT_PFLOG 117 /* * Registered for Cisco-internal use. */ #define DLT_CISCO_IOS 118 /* * Reserved for 802.11 cards using the Prism II chips, with a link-layer * header including Prism monitor mode information plus an 802.11 * header. */ #define DLT_PRISM_HEADER 119 /* * Reserved for Aironet 802.11 cards, with an Aironet link-layer header * (see Doug Ambrisko's FreeBSD patches). */ #define DLT_AIRONET_HEADER 120 /* * Reserved for use by OpenBSD's pfsync device. */ #define DLT_PFSYNC 121 /* * Reserved for Siemens HiPath HDLC. XXX */ #define DLT_HHDLC 121 /* * Reserved for RFC 2625 IP-over-Fibre Channel. */ #define DLT_IP_OVER_FC 122 /* * Reserved for Full Frontal ATM on Solaris. */ #define DLT_SUNATM 123 /* * Reserved as per request from Kent Dahlgren * for private use. */ #define DLT_RIO 124 /* RapidIO */ #define DLT_PCI_EXP 125 /* PCI Express */ #define DLT_AURORA 126 /* Xilinx Aurora link layer */ /* * BSD header for 802.11 plus a number of bits of link-layer information * including radio information. */ #ifndef DLT_IEEE802_11_RADIO #define DLT_IEEE802_11_RADIO 127 #endif /* * Reserved for TZSP encapsulation. */ #define DLT_TZSP 128 /* Tazmen Sniffer Protocol */ /* * Reserved for Linux ARCNET. */ #define DLT_ARCNET_LINUX 129 /* * Juniper-private data link types. */ #define DLT_JUNIPER_MLPPP 130 #define DLT_JUNIPER_MLFR 131 #define DLT_JUNIPER_ES 132 #define DLT_JUNIPER_GGSN 133 #define DLT_JUNIPER_MFR 134 #define DLT_JUNIPER_ATM2 135 #define DLT_JUNIPER_SERVICES 136 #define DLT_JUNIPER_ATM1 137 /* * Apple IP-over-IEEE 1394, as per a request from Dieter Siegmund * . The header that's presented is an Ethernet-like * header: * * #define FIREWIRE_EUI64_LEN 8 * struct firewire_header { * u_char firewire_dhost[FIREWIRE_EUI64_LEN]; * u_char firewire_shost[FIREWIRE_EUI64_LEN]; * u_short firewire_type; * }; * * with "firewire_type" being an Ethernet type value, rather than, * for example, raw GASP frames being handed up. */ #define DLT_APPLE_IP_OVER_IEEE1394 138 /* * Various SS7 encapsulations, as per a request from Jeff Morriss * and subsequent discussions. */ #define DLT_MTP2_WITH_PHDR 139 /* pseudo-header with various info, followed by MTP2 */ #define DLT_MTP2 140 /* MTP2, without pseudo-header */ #define DLT_MTP3 141 /* MTP3, without pseudo-header or MTP2 */ #define DLT_SCCP 142 /* SCCP, without pseudo-header or MTP2 or MTP3 */ /* * Reserved for DOCSIS. */ #define DLT_DOCSIS 143 /* * Reserved for Linux IrDA. */ #define DLT_LINUX_IRDA 144 /* * Reserved for IBM SP switch and IBM Next Federation switch. */ #define DLT_IBM_SP 145 #define DLT_IBM_SN 146 /* * Reserved for private use. If you have some link-layer header type * that you want to use within your organization, with the capture files * using that link-layer header type not ever be sent outside your * organization, you can use these values. * * No libpcap release will use these for any purpose, nor will any * tcpdump release use them, either. * * Do *NOT* use these in capture files that you expect anybody not using * your private versions of capture-file-reading tools to read; in * particular, do *NOT* use them in products, otherwise you may find that * people won't be able to use tcpdump, or snort, or Ethereal, or... to * read capture files from your firewall/intrusion detection/traffic * monitoring/etc. appliance, or whatever product uses that DLT_ value, * and you may also find that the developers of those applications will * not accept patches to let them read those files. * * Also, do not use them if somebody might send you a capture using them * for *their* private type and tools using them for *your* private type * would have to read them. * * Instead, ask "tcpdump-workers@tcpdump.org" for a new DLT_ value, * as per the comment above, and use the type you're given. */ #define DLT_USER0 147 #define DLT_USER1 148 #define DLT_USER2 149 #define DLT_USER3 150 #define DLT_USER4 151 #define DLT_USER5 152 #define DLT_USER6 153 #define DLT_USER7 154 #define DLT_USER8 155 #define DLT_USER9 156 #define DLT_USER10 157 #define DLT_USER11 158 #define DLT_USER12 159 #define DLT_USER13 160 #define DLT_USER14 161 #define DLT_USER15 162 /* * For future use with 802.11 captures - defined by AbsoluteValue * Systems to store a number of bits of link-layer information * including radio information: * * http://www.shaftnet.org/~pizza/software/capturefrm.txt * * but it might be used by some non-AVS drivers now or in the * future. */ #define DLT_IEEE802_11_RADIO_AVS 163 /* 802.11 plus AVS radio header */ /* * Juniper-private data link type, as per request from * Hannes Gredler . The DLT_s are used * for passing on chassis-internal metainformation such as * QOS profiles, etc.. */ #define DLT_JUNIPER_MONITOR 164 /* * Reserved for BACnet MS/TP. */ #define DLT_BACNET_MS_TP 165 /* * Another PPP variant as per request from Karsten Keil . * * This is used in some OSes to allow a kernel socket filter to distinguish * between incoming and outgoing packets, on a socket intended to * supply pppd with outgoing packets so it can do dial-on-demand and * hangup-on-lack-of-demand; incoming packets are filtered out so they * don't cause pppd to hold the connection up (you don't want random * input packets such as port scans, packets from old lost connections, * etc. to force the connection to stay up). * * The first byte of the PPP header (0xff03) is modified to accomodate * the direction - 0x00 = IN, 0x01 = OUT. */ #define DLT_PPP_PPPD 166 /* * Names for backwards compatibility with older versions of some PPP * software; new software should use DLT_PPP_PPPD. */ #define DLT_PPP_WITH_DIRECTION DLT_PPP_PPPD #define DLT_LINUX_PPP_WITHDIRECTION DLT_PPP_PPPD /* * Juniper-private data link type, as per request from * Hannes Gredler . The DLT_s are used * for passing on chassis-internal metainformation such as * QOS profiles, cookies, etc.. */ #define DLT_JUNIPER_PPPOE 167 #define DLT_JUNIPER_PPPOE_ATM 168 #define DLT_GPRS_LLC 169 /* GPRS LLC */ #define DLT_GPF_T 170 /* GPF-T (ITU-T G.7041/Y.1303) */ #define DLT_GPF_F 171 /* GPF-F (ITU-T G.7041/Y.1303) */ /* * Requested by Oolan Zimmer for use in Gcom's T1/E1 line * monitoring equipment. */ #define DLT_GCOM_T1E1 172 #define DLT_GCOM_SERIAL 173 /* * Juniper-private data link type, as per request from * Hannes Gredler . The DLT_ is used * for internal communication to Physical Interface Cards (PIC) */ #define DLT_JUNIPER_PIC_PEER 174 /* * Link types requested by Gregor Maier of Endace * Measurement Systems. They add an ERF header (see * http://www.endace.com/support/EndaceRecordFormat.pdf) in front of * the link-layer header. */ #define DLT_ERF_ETH 175 /* Ethernet */ #define DLT_ERF_POS 176 /* Packet-over-SONET */ /* * Requested by Daniele Orlandi for raw LAPD * for vISDN (http://www.orlandi.com/visdn/). Its link-layer header * includes additional information before the LAPD header, so it's * not necessarily a generic LAPD header. */ #define DLT_LINUX_LAPD 177 /* * Juniper-private data link type, as per request from * Hannes Gredler . * The DLT_ are used for prepending meta-information * like interface index, interface name * before standard Ethernet, PPP, Frelay & C-HDLC Frames */ #define DLT_JUNIPER_ETHER 178 #define DLT_JUNIPER_PPP 179 #define DLT_JUNIPER_FRELAY 180 #define DLT_JUNIPER_CHDLC 181 /* * Multi Link Frame Relay (FRF.16) */ #define DLT_MFR 182 /* * Juniper-private data link type, as per request from * Hannes Gredler . * The DLT_ is used for internal communication with a * voice Adapter Card (PIC) */ #define DLT_JUNIPER_VP 183 /* * Arinc 429 frames. * DLT_ requested by Gianluca Varenni . * Every frame contains a 32bit A429 label. * More documentation on Arinc 429 can be found at * http://www.condoreng.com/support/downloads/tutorials/ARINCTutorial.pdf */ #define DLT_A429 184 /* * Arinc 653 Interpartition Communication messages. * DLT_ requested by Gianluca Varenni . * Please refer to the A653-1 standard for more information. */ #define DLT_A653_ICM 185 /* * USB packets, beginning with a USB setup header; requested by * Paolo Abeni . */ #define DLT_USB 186 /* * Bluetooth HCI UART transport layer (part H:4); requested by * Paolo Abeni. */ #define DLT_BLUETOOTH_HCI_H4 187 /* * IEEE 802.16 MAC Common Part Sublayer; requested by Maria Cruz * . */ #define DLT_IEEE802_16_MAC_CPS 188 /* * USB packets, beginning with a Linux USB header; requested by * Paolo Abeni . */ #define DLT_USB_LINUX 189 /* * Controller Area Network (CAN) v. 2.0B packets. * DLT_ requested by Gianluca Varenni . * Used to dump CAN packets coming from a CAN Vector board. * More documentation on the CAN v2.0B frames can be found at * http://www.can-cia.org/downloads/?269 */ #define DLT_CAN20B 190 /* * IEEE 802.15.4, with address fields padded, as is done by Linux * drivers; requested by Juergen Schimmer. */ #define DLT_IEEE802_15_4_LINUX 191 /* * Per Packet Information encapsulated packets. * DLT_ requested by Gianluca Varenni . */ #define DLT_PPI 192 /* * Header for 802.16 MAC Common Part Sublayer plus a radiotap radio header; * requested by Charles Clancy. */ #define DLT_IEEE802_16_MAC_CPS_RADIO 193 /* * Juniper-private data link type, as per request from * Hannes Gredler . * The DLT_ is used for internal communication with a * integrated service module (ISM). */ #define DLT_JUNIPER_ISM 194 /* * IEEE 802.15.4, exactly as it appears in the spec (no padding, no * nothing); requested by Mikko Saarnivala . */ #define DLT_IEEE802_15_4 195 /* * Various link-layer types, with a pseudo-header, for SITA * (http://www.sita.aero/); requested by Fulko Hew (fulko.hew@gmail.com). */ #define DLT_SITA 196 /* * Various link-layer types, with a pseudo-header, for Endace DAG cards; * encapsulates Endace ERF records. Requested by Stephen Donnelly * . */ #define DLT_ERF 197 /* * Special header prepended to Ethernet packets when capturing from a * u10 Networks board. Requested by Phil Mulholland * . */ #define DLT_RAIF1 198 /* * IPMB packet for IPMI, beginning with the I2C slave address, followed * by the netFn and LUN, etc.. Requested by Chanthy Toeung * . */ #define DLT_IPMB 199 /* * Juniper-private data link type, as per request from * Hannes Gredler . * The DLT_ is used for capturing data on a secure tunnel interface. */ #define DLT_JUNIPER_ST 200 /* * Bluetooth HCI UART transport layer (part H:4), with pseudo-header * that includes direction information; requested by Paolo Abeni. */ #define DLT_BLUETOOTH_HCI_H4_WITH_PHDR 201 /* * AX.25 packet with a 1-byte KISS header; see * * http://www.ax25.net/kiss.htm * * as per Richard Stearn . */ #define DLT_AX25_KISS 202 /* * LAPD packets from an ISDN channel, starting with the address field, * with no pseudo-header. * Requested by Varuna De Silva . */ #define DLT_LAPD 203 /* * Variants of various link-layer headers, with a one-byte direction * pseudo-header prepended - zero means "received by this host", * non-zero (any non-zero value) means "sent by this host" - as per * Will Barker . */ #define DLT_PPP_WITH_DIR 204 /* PPP - don't confuse with DLT_PPP_WITH_DIRECTION */ #define DLT_C_HDLC_WITH_DIR 205 /* Cisco HDLC */ #define DLT_FRELAY_WITH_DIR 206 /* Frame Relay */ #define DLT_LAPB_WITH_DIR 207 /* LAPB */ /* * 208 is reserved for an as-yet-unspecified proprietary link-layer * type, as requested by Will Barker. */ /* * IPMB with a Linux-specific pseudo-header; as requested by Alexey Neyman * . */ #define DLT_IPMB_LINUX 209 /* * FlexRay automotive bus - http://www.flexray.com/ - as requested * by Hannes Kaelber . */ #define DLT_FLEXRAY 210 /* * Media Oriented Systems Transport (MOST) bus for multimedia * transport - http://www.mostcooperation.com/ - as requested * by Hannes Kaelber . */ #define DLT_MOST 211 /* * Local Interconnect Network (LIN) bus for vehicle networks - * http://www.lin-subbus.org/ - as requested by Hannes Kaelber * . */ #define DLT_LIN 212 /* * X2E-private data link type used for serial line capture, * as requested by Hannes Kaelber . */ #define DLT_X2E_SERIAL 213 /* * X2E-private data link type used for the Xoraya data logger * family, as requested by Hannes Kaelber . */ #define DLT_X2E_XORAYA 214 /* * IEEE 802.15.4, exactly as it appears in the spec (no padding, no * nothing), but with the PHY-level data for non-ASK PHYs (4 octets * of 0 as preamble, one octet of SFD, one octet of frame length+ * reserved bit, and then the MAC-layer data, starting with the * frame control field). * * Requested by Max Filippov . */ #define DLT_IEEE802_15_4_NONASK_PHY 215 /* * David Gibson requested this for * captures from the Linux kernel /dev/input/eventN devices. This * is used to communicate keystrokes and mouse movements from the * Linux kernel to display systems, such as Xorg. */ #define DLT_LINUX_EVDEV 216 /* * GSM Um and Abis interfaces, preceded by a "gsmtap" header. * * Requested by Harald Welte . */ #define DLT_GSMTAP_UM 217 #define DLT_GSMTAP_ABIS 218 /* * MPLS, with an MPLS label as the link-layer header. * Requested by Michele Marchetto on behalf * of OpenBSD. */ #define DLT_MPLS 219 /* * USB packets, beginning with a Linux USB header, with the USB header * padded to 64 bytes; required for memory-mapped access. */ #define DLT_USB_LINUX_MMAPPED 220 /* * DECT packets, with a pseudo-header; requested by * Matthias Wenzel . */ #define DLT_DECT 221 /* * From: "Lidwa, Eric (GSFC-582.0)[SGT INC]" * Date: Mon, 11 May 2009 11:18:30 -0500 * * DLT_AOS. We need it for AOS Space Data Link Protocol. * I have already written dissectors for but need an OK from * legal before I can submit a patch. * */ #define DLT_AOS 222 /* * Wireless HART (Highway Addressable Remote Transducer) * From the HART Communication Foundation * IES/PAS 62591 * * Requested by Sam Roberts . */ #define DLT_WIHART 223 /* * Fibre Channel FC-2 frames, beginning with a Frame_Header. * Requested by Kahou Lei . */ #define DLT_FC_2 224 /* * Fibre Channel FC-2 frames, beginning with an encoding of the * SOF, and ending with an encoding of the EOF. * * The encodings represent the frame delimiters as 4-byte sequences * representing the corresponding ordered sets, with K28.5 * represented as 0xBC, and the D symbols as the corresponding * byte values; for example, SOFi2, which is K28.5 - D21.5 - D1.2 - D21.2, * is represented as 0xBC 0xB5 0x55 0x55. * * Requested by Kahou Lei . */ #define DLT_FC_2_WITH_FRAME_DELIMS 225 /* * Solaris ipnet pseudo-header; requested by Darren Reed . * * The pseudo-header starts with a one-byte version number; for version 2, * the pseudo-header is: * * struct dl_ipnetinfo { * u_int8_t dli_version; * u_int8_t dli_family; * u_int16_t dli_htype; * u_int32_t dli_pktlen; * u_int32_t dli_ifindex; * u_int32_t dli_grifindex; * u_int32_t dli_zsrc; * u_int32_t dli_zdst; * }; * * dli_version is 2 for the current version of the pseudo-header. * * dli_family is a Solaris address family value, so it's 2 for IPv4 * and 26 for IPv6. * * dli_htype is a "hook type" - 0 for incoming packets, 1 for outgoing * packets, and 2 for packets arriving from another zone on the same * machine. * * dli_pktlen is the length of the packet data following the pseudo-header * (so the captured length minus dli_pktlen is the length of the * pseudo-header, assuming the entire pseudo-header was captured). * * dli_ifindex is the interface index of the interface on which the * packet arrived. * * dli_grifindex is the group interface index number (for IPMP interfaces). * * dli_zsrc is the zone identifier for the source of the packet. * * dli_zdst is the zone identifier for the destination of the packet. * * A zone number of 0 is the global zone; a zone number of 0xffffffff * means that the packet arrived from another host on the network, not * from another zone on the same machine. * * An IPv4 or IPv6 datagram follows the pseudo-header; dli_family indicates * which of those it is. */ #define DLT_IPNET 226 /* * CAN (Controller Area Network) frames, with a pseudo-header as supplied * by Linux SocketCAN. See Documentation/networking/can.txt in the Linux * source. * * Requested by Felix Obenhuber . */ #define DLT_CAN_SOCKETCAN 227 /* * Raw IPv4/IPv6; different from DLT_RAW in that the DLT_ value specifies * whether it's v4 or v6. Requested by Darren Reed . */ #define DLT_IPV4 228 #define DLT_IPV6 229 /* * IEEE 802.15.4, exactly as it appears in the spec (no padding, no * nothing), and with no FCS at the end of the frame; requested by * Jon Smirl . */ #define DLT_IEEE802_15_4_NOFCS 230 /* * Raw D-Bus: * * http://www.freedesktop.org/wiki/Software/dbus * * messages: * * http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-messages * * starting with the endianness flag, followed by the message type, etc., * but without the authentication handshake before the message sequence: * * http://dbus.freedesktop.org/doc/dbus-specification.html#auth-protocol * * Requested by Martin Vidner . */ #define DLT_DBUS 231 /* * Juniper-private data link type, as per request from * Hannes Gredler . */ #define DLT_JUNIPER_VS 232 #define DLT_JUNIPER_SRX_E2E 233 #define DLT_JUNIPER_FIBRECHANNEL 234 /* * DVB-CI (DVB Common Interface for communication between a PC Card * module and a DVB receiver). See * * http://www.kaiser.cx/pcap-dvbci.html * * for the specification. * * Requested by Martin Kaiser . */ #define DLT_DVB_CI 235 /* * Variant of 3GPP TS 27.010 multiplexing protocol (similar to, but * *not* the same as, 27.010). Requested by Hans-Christoph Schemmel * . */ #define DLT_MUX27010 236 /* * STANAG 5066 D_PDUs. Requested by M. Baris Demiray * . */ #define DLT_STANAG_5066_D_PDU 237 /* * Juniper-private data link type, as per request from * Hannes Gredler . */ #define DLT_JUNIPER_ATM_CEMIC 238 /* * NetFilter LOG messages * (payload of netlink NFNL_SUBSYS_ULOG/NFULNL_MSG_PACKET packets) * * Requested by Jakub Zawadzki */ #define DLT_NFLOG 239 /* * Hilscher Gesellschaft fuer Systemautomation mbH link-layer type * for Ethernet packets with a 4-byte pseudo-header and always * with the payload including the FCS, as supplied by their * netANALYZER hardware and software. * * Requested by Holger P. Frommer */ #define DLT_NETANALYZER 240 /* * Hilscher Gesellschaft fuer Systemautomation mbH link-layer type * for Ethernet packets with a 4-byte pseudo-header and FCS and * with the Ethernet header preceded by 7 bytes of preamble and * 1 byte of SFD, as supplied by their netANALYZER hardware and * software. * * Requested by Holger P. Frommer */ #define DLT_NETANALYZER_TRANSPARENT 241 /* * IP-over-InfiniBand, as specified by RFC 4391. * * Requested by Petr Sumbera . */ #define DLT_IPOIB 242 /* * MPEG-2 transport stream (ISO 13818-1/ITU-T H.222.0). * * Requested by Guy Martin . */ #define DLT_MPEG_2_TS 243 /* * ng4T GmbH's UMTS Iub/Iur-over-ATM and Iub/Iur-over-IP format as * used by their ng40 protocol tester. * * Requested by Jens Grimmer . */ #define DLT_NG40 244 /* * Pseudo-header giving adapter number and flags, followed by an NFC * (Near-Field Communications) Logical Link Control Protocol (LLCP) PDU, * as specified by NFC Forum Logical Link Control Protocol Technical * Specification LLCP 1.1. * * Requested by Mike Wakerly . */ #define DLT_NFC_LLCP 245 /* * 245 is used as LINKTYPE_PFSYNC; do not use it for any other purpose. * * DLT_PFSYNC has different values on different platforms, and all of * them collide with something used elsewhere. On platforms that * don't already define it, define it as 245. */ #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__) && !defined(__DragonFly__) && !defined(__APPLE__) #define DLT_PFSYNC 246 #endif /* * Raw InfiniBand packets, starting with the Local Routing Header. * * Requested by Oren Kladnitsky . */ #define DLT_INFINIBAND 247 /* * SCTP, with no lower-level protocols (i.e., no IPv4 or IPv6). * * Requested by Michael Tuexen . */ #define DLT_SCTP 248 /* * USB packets, beginning with a USBPcap header. * * Requested by Tomasz Mon */ #define DLT_USBPCAP 249 /* * Schweitzer Engineering Laboratories "RTAC" product serial-line * packets. * * Requested by Chris Bontje . */ #define DLT_RTAC_SERIAL 250 /* * Bluetooth Low Energy air interface link-layer packets. * * Requested by Mike Kershaw . */ #define DLT_BLUETOOTH_LE_LL 251 /* * DLT type for upper-protocol layer PDU saves from wireshark. * * the actual contents are determined by two TAGs stored with each * packet: * EXP_PDU_TAG_LINKTYPE the link type (LINKTYPE_ value) of the * original packet. * * EXP_PDU_TAG_PROTO_NAME the name of the wireshark dissector * that can make sense of the data stored. */ #define DLT_WIRESHARK_UPPER_PDU 252 /* * DLT type for the netlink protocol (nlmon devices). */ #define DLT_NETLINK 253 /* * Bluetooth Linux Monitor headers for the BlueZ stack. */ #define DLT_BLUETOOTH_LINUX_MONITOR 254 /* * Bluetooth Basic Rate/Enhanced Data Rate baseband packets, as * captured by Ubertooth. */ #define DLT_BLUETOOTH_BREDR_BB 255 /* * Bluetooth Low Energy link layer packets, as captured by Ubertooth. */ #define DLT_BLUETOOTH_LE_LL_WITH_PHDR 256 /* * PROFIBUS data link layer. */ #define DLT_PROFIBUS_DL 257 /* * Apple's DLT_PKTAP headers. * * Sadly, the folks at Apple either had no clue that the DLT_USERn values * are for internal use within an organization and partners only, and * didn't know that the right way to get a link-layer header type is to * ask tcpdump.org for one, or knew and didn't care, so they just * used DLT_USER2, which causes problems for everything except for * their version of tcpdump. * * So I'll just give them one; hopefully this will show up in a * libpcap release in time for them to get this into 10.10 Big Sur * or whatever Mavericks' successor is called. LINKTYPE_PKTAP * will be 258 *even on OS X*; that is *intentional*, so that * PKTAP files look the same on *all* OSes (different OSes can have * different numerical values for a given DLT_, but *MUST NOT* have * different values for what goes in a file, as files can be moved * between OSes!). * * When capturing, on a system with a Darwin-based OS, on a device * that returns 149 (DLT_USER2 and Apple's DLT_PKTAP) with this * version of libpcap, the DLT_ value for the pcap_t will be DLT_PKTAP, * and that will continue to be DLT_USER2 on Darwin-based OSes. That way, * binary compatibility with Mavericks is preserved for programs using * this version of libpcap. This does mean that if you were using * DLT_USER2 for some capture device on OS X, you can't do so with * this version of libpcap, just as you can't with Apple's libpcap - * on OS X, they define DLT_PKTAP to be DLT_USER2, so programs won't * be able to distinguish between PKTAP and whatever you were using * DLT_USER2 for. * * If the program saves the capture to a file using this version of * libpcap's pcap_dump code, the LINKTYPE_ value in the file will be * LINKTYPE_PKTAP, which will be 258, even on Darwin-based OSes. * That way, the file will *not* be a DLT_USER2 file. That means * that the latest version of tcpdump, when built with this version * of libpcap, and sufficiently recent versions of Wireshark will * be able to read those files and interpret them correctly; however, * Apple's version of tcpdump in OS X 10.9 won't be able to handle * them. (Hopefully, Apple will pick up this version of libpcap, * and the corresponding version of tcpdump, so that tcpdump will * be able to handle the old LINKTYPE_USER2 captures *and* the new * LINKTYPE_PKTAP captures.) */ #ifdef __APPLE__ #define DLT_PKTAP DLT_USER2 #else #define DLT_PKTAP 258 #endif /* * Ethernet packets preceded by a header giving the last 6 octets * of the preamble specified by 802.3-2012 Clause 65, section * 65.1.3.2 "Transmit". */ #define DLT_EPON 259 /* * IPMI trace packets, as specified by Table 3-20 "Trace Data Block Format" * in the PICMG HPM.2 specification. */ #define DLT_IPMI_HPM_2 260 #define DLT_MATCHING_MAX 260 /* highest value in the "matching" range */ /* * DLT and savefile link type values are split into a class and * a member of that class. A class value of 0 indicates a regular * DLT_/LINKTYPE_ value. */ #define DLT_CLASS(x) ((x) & 0x03ff0000) /* * The instruction encodings. * * Please inform tcpdump-workers@lists.tcpdump.org if you use any * of the reserved values, so that we can note that they're used * (and perhaps implement it in the reference BPF implementation * and encourage its implementation elsewhere). */ /* * The upper 8 bits of the opcode aren't used. BSD/OS used 0x8000. */ /* instruction classes */ #define BPF_CLASS(code) ((code) & 0x07) #define BPF_LD 0x00 #define BPF_LDX 0x01 #define BPF_ST 0x02 #define BPF_STX 0x03 #define BPF_ALU 0x04 #define BPF_JMP 0x05 #define BPF_RET 0x06 #define BPF_MISC 0x07 /* ld/ldx fields */ #define BPF_SIZE(code) ((code) & 0x18) #define BPF_W 0x00 #define BPF_H 0x08 #define BPF_B 0x10 /* 0x18 reserved; used by BSD/OS */ #define BPF_MODE(code) ((code) & 0xe0) #define BPF_IMM 0x00 #define BPF_ABS 0x20 #define BPF_IND 0x40 #define BPF_MEM 0x60 #define BPF_LEN 0x80 #define BPF_MSH 0xa0 /* 0xc0 reserved; used by BSD/OS */ /* 0xe0 reserved; used by BSD/OS */ /* alu/jmp fields */ #define BPF_OP(code) ((code) & 0xf0) #define BPF_ADD 0x00 #define BPF_SUB 0x10 #define BPF_MUL 0x20 #define BPF_DIV 0x30 #define BPF_OR 0x40 #define BPF_AND 0x50 #define BPF_LSH 0x60 #define BPF_RSH 0x70 #define BPF_NEG 0x80 #define BPF_MOD 0x90 #define BPF_XOR 0xa0 /* 0xb0 reserved */ /* 0xc0 reserved */ /* 0xd0 reserved */ /* 0xe0 reserved */ /* 0xf0 reserved */ #define BPF_JA 0x00 #define BPF_JEQ 0x10 #define BPF_JGT 0x20 #define BPF_JGE 0x30 #define BPF_JSET 0x40 /* 0x50 reserved; used on BSD/OS */ /* 0x60 reserved */ /* 0x70 reserved */ /* 0x80 reserved */ /* 0x90 reserved */ /* 0xa0 reserved */ /* 0xb0 reserved */ /* 0xc0 reserved */ /* 0xd0 reserved */ /* 0xe0 reserved */ /* 0xf0 reserved */ #define BPF_SRC(code) ((code) & 0x08) #define BPF_K 0x00 #define BPF_X 0x08 /* ret - BPF_K and BPF_X also apply */ #define BPF_RVAL(code) ((code) & 0x18) #define BPF_A 0x10 /* 0x18 reserved */ /* misc */ #define BPF_MISCOP(code) ((code) & 0xf8) #define BPF_TAX 0x00 /* 0x08 reserved */ /* 0x10 reserved */ /* 0x18 reserved */ /* #define BPF_COP 0x20 NetBSD "coprocessor" extensions */ /* 0x28 reserved */ /* 0x30 reserved */ /* 0x38 reserved */ /* #define BPF_COPX 0x40 NetBSD "coprocessor" extensions */ /* also used on BSD/OS */ /* 0x48 reserved */ /* 0x50 reserved */ /* 0x58 reserved */ /* 0x60 reserved */ /* 0x68 reserved */ /* 0x70 reserved */ /* 0x78 reserved */ #define BPF_TXA 0x80 /* 0x88 reserved */ /* 0x90 reserved */ /* 0x98 reserved */ /* 0xa0 reserved */ /* 0xa8 reserved */ /* 0xb0 reserved */ /* 0xb8 reserved */ /* 0xc0 reserved; used on BSD/OS */ /* 0xc8 reserved */ /* 0xd0 reserved */ /* 0xd8 reserved */ /* 0xe0 reserved */ /* 0xe8 reserved */ /* 0xf0 reserved */ /* 0xf8 reserved */ /* * The instruction data structure. */ struct bpf_insn { u_short code; u_char jt; u_char jf; bpf_u_int32 k; }; /* * Macros for insn array initializers. */ #define BPF_STMT(code, k) { (u_short)(code), 0, 0, k } #define BPF_JUMP(code, k, jt, jf) { (u_short)(code), jt, jf, k } /* * Structure to retrieve available DLTs for the interface. */ struct bpf_dltlist { u_int bfl_len; /* number of bfd_list array */ u_int *bfl_list; /* array of DLTs */ }; #ifdef _KERNEL #ifdef MALLOC_DECLARE MALLOC_DECLARE(M_BPF); #endif #ifdef SYSCTL_DECL SYSCTL_DECL(_net_bpf); #endif /* * Rotate the packet buffers in descriptor d. Move the store buffer into the * hold slot, and the free buffer into the store slot. Zero the length of the * new store buffer. Descriptor lock should be held. One must be careful to * not rotate the buffers twice, i.e. if fbuf != NULL. */ #define ROTATE_BUFFERS(d) do { \ (d)->bd_hbuf = (d)->bd_sbuf; \ (d)->bd_hlen = (d)->bd_slen; \ (d)->bd_sbuf = (d)->bd_fbuf; \ (d)->bd_slen = 0; \ (d)->bd_fbuf = NULL; \ bpf_bufheld(d); \ } while (0) /* * Descriptor associated with each attached hardware interface. * Part of this structure is exposed to external callers to speed up * bpf_peers_present() calls. */ struct bpf_if; struct bpf_if_ext { LIST_ENTRY(bpf_if) bif_next; /* list of all interfaces */ LIST_HEAD(, bpf_d) bif_dlist; /* descriptor list */ }; void bpf_bufheld(struct bpf_d *d); int bpf_validate(const struct bpf_insn *, int); void bpf_tap(struct bpf_if *, u_char *, u_int); void bpf_mtap(struct bpf_if *, struct mbuf *); void bpf_mtap2(struct bpf_if *, void *, u_int, struct mbuf *); void bpfattach(struct ifnet *, u_int, u_int); void bpfattach2(struct ifnet *, u_int, u_int, struct bpf_if **); void bpfdetach(struct ifnet *); +#ifdef VIMAGE +int bpf_get_bp_params(struct bpf_if *, u_int *, u_int *); +#endif void bpfilterattach(int); u_int bpf_filter(const struct bpf_insn *, u_char *, u_int, u_int); static __inline int bpf_peers_present(struct bpf_if *bpf) { struct bpf_if_ext *ext; ext = (struct bpf_if_ext *)bpf; if (!LIST_EMPTY(&ext->bif_dlist)) return (1); return (0); } #define BPF_TAP(_ifp,_pkt,_pktlen) do { \ if (bpf_peers_present((_ifp)->if_bpf)) \ bpf_tap((_ifp)->if_bpf, (_pkt), (_pktlen)); \ } while (0) #define BPF_MTAP(_ifp,_m) do { \ if (bpf_peers_present((_ifp)->if_bpf)) { \ M_ASSERTVALID(_m); \ bpf_mtap((_ifp)->if_bpf, (_m)); \ } \ } while (0) #define BPF_MTAP2(_ifp,_data,_dlen,_m) do { \ if (bpf_peers_present((_ifp)->if_bpf)) { \ M_ASSERTVALID(_m); \ bpf_mtap2((_ifp)->if_bpf,(_data),(_dlen),(_m)); \ } \ } while (0) #endif /* * Number of scratch memory words (for BPF_LD|BPF_MEM and BPF_ST). */ #define BPF_MEMWORDS 16 #ifdef _SYS_EVENTHANDLER_H_ /* BPF attach/detach events */ struct ifnet; typedef void (*bpf_track_fn)(void *, struct ifnet *, int /* dlt */, int /* 1 =>'s attach */); EVENTHANDLER_DECLARE(bpf_track, bpf_track_fn); #endif /* _SYS_EVENTHANDLER_H_ */ #endif /* _NET_BPF_H_ */ Index: projects/vnet/sys/net/if.c =================================================================== --- projects/vnet/sys/net/if.c (revision 297511) +++ projects/vnet/sys/net/if.c (revision 297512) @@ -1,4024 +1,4047 @@ /*- * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if.c 8.5 (Berkeley) 1/9/95 * $FreeBSD$ */ #include "opt_compat.h" #include "opt_inet6.h" #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #include #include #ifdef INET #include #endif /* INET */ #ifdef INET6 #include #include #endif /* INET6 */ #endif /* INET || INET6 */ #include #ifdef COMPAT_FREEBSD32 #include #include #endif SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers"); SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management"); SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, &ifqmaxlen, 0, "max send queue size"); /* Log link state change events */ static int log_link_state_change = 1; SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, &log_link_state_change, 0, "log interface link state change events"); /* Interface description */ static unsigned int ifdescr_maxlen = 1024; SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, &ifdescr_maxlen, 0, "administrative maximum length for interface description"); static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); /* global sx for non-critical path ifdescr */ static struct sx ifdescr_sx; SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); void (*bridge_linkstate_p)(struct ifnet *ifp); void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); void (*lagg_linkstate_p)(struct ifnet *ifp, int state); /* These are external hooks for CARP. */ void (*carp_linkstate_p)(struct ifnet *ifp); void (*carp_demote_adj_p)(int, char *); int (*carp_master_p)(struct ifaddr *); #if defined(INET) || defined(INET6) int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *sa); int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); int (*carp_attach_p)(struct ifaddr *, int); void (*carp_detach_p)(struct ifaddr *); #endif #ifdef INET int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); #endif #ifdef INET6 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, const struct in6_addr *taddr); #endif struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; /* * XXX: Style; these should be sorted alphabetically, and unprototyped * static functions should be prototyped. Currently they are sorted by * declaration order. */ static void if_attachdomain(void *); static void if_attachdomain1(struct ifnet *); static int ifconf(u_long, caddr_t); static void if_freemulti(struct ifmultiaddr *); static void if_grow(void); static void if_input_default(struct ifnet *, struct mbuf *); static int if_requestencap_default(struct ifnet *, struct if_encap_req *); static void if_route(struct ifnet *, int flag, int fam); static int if_setflag(struct ifnet *, int, int, int *, int); static int if_transmit(struct ifnet *ifp, struct mbuf *m); static void if_unroute(struct ifnet *, int flag, int fam); static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *); static int ifhwioctl(u_long, struct ifnet *, caddr_t, struct thread *); static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); static void do_link_state_change(void *, int); static int if_getgroup(struct ifgroupreq *, struct ifnet *); static int if_getgroupmembers(struct ifgroupreq *); static void if_delgroups(struct ifnet *); static void if_attach_internal(struct ifnet *, int, struct if_clone *); -static int if_detach_internal(struct ifnet *, int, struct if_clone **); +static int if_detach_internal(struct ifnet *, int, int, struct if_clone **); #ifdef VIMAGE -static void if_vmove(struct ifnet *, struct vnet *); +static void if_vmove(struct ifnet *, struct vnet *, int); #endif #ifdef INET6 /* * XXX: declare here to avoid to include many inet6 related files.. * should be more generalized? */ extern void nd6_setmtu(struct ifnet *); #endif /* ipsec helper hooks */ VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]); VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]); VNET_DEFINE(int, if_index); int ifqmaxlen = IFQ_MAXLEN; VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ VNET_DEFINE(struct ifgrouphead, ifg_head); static VNET_DEFINE(int, if_indexlim) = 8; /* Table of ifnet by index. */ VNET_DEFINE(struct ifnet **, ifindex_table); #define V_if_indexlim VNET(if_indexlim) #define V_ifindex_table VNET(ifindex_table) /* * The global network interface list (V_ifnet) and related state (such as * if_index, if_indexlim, and ifindex_table) are protected by an sxlock and * an rwlock. Either may be acquired shared to stablize the list, but both * must be acquired writable to modify the list. This model allows us to * both stablize the interface list during interrupt thread processing, but * also to stablize it over long-running ioctls, without introducing priority * inversions and deadlocks. */ struct rwlock ifnet_rwlock; RW_SYSINIT_FLAGS(ifnet_rw, &ifnet_rwlock, "ifnet_rw", RW_RECURSE); struct sx ifnet_sxlock; SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE); /* * The allocation of network interfaces is a rather non-atomic affair; we * need to select an index before we are ready to expose the interface for * use, so will use this pointer value to indicate reservation. */ #define IFNET_HOLD (void *)(uintptr_t)(-1) static if_com_alloc_t *if_com_alloc[256]; static if_com_free_t *if_com_free[256]; static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); struct ifnet * ifnet_byindex_locked(u_short idx) { if (idx > V_if_index) return (NULL); if (V_ifindex_table[idx] == IFNET_HOLD) return (NULL); return (V_ifindex_table[idx]); } struct ifnet * ifnet_byindex(u_short idx) { struct ifnet *ifp; IFNET_RLOCK_NOSLEEP(); ifp = ifnet_byindex_locked(idx); IFNET_RUNLOCK_NOSLEEP(); return (ifp); } struct ifnet * ifnet_byindex_ref(u_short idx) { struct ifnet *ifp; IFNET_RLOCK_NOSLEEP(); ifp = ifnet_byindex_locked(idx); if (ifp == NULL || (ifp->if_flags & IFF_DYING)) { IFNET_RUNLOCK_NOSLEEP(); return (NULL); } if_ref(ifp); IFNET_RUNLOCK_NOSLEEP(); return (ifp); } /* * Allocate an ifindex array entry; return 0 on success or an error on * failure. */ static u_short ifindex_alloc(void) { u_short idx; IFNET_WLOCK_ASSERT(); retry: /* * Try to find an empty slot below V_if_index. If we fail, take the * next slot. */ for (idx = 1; idx <= V_if_index; idx++) { if (V_ifindex_table[idx] == NULL) break; } /* Catch if_index overflow. */ if (idx >= V_if_indexlim) { if_grow(); goto retry; } if (idx > V_if_index) V_if_index = idx; return (idx); } static void ifindex_free_locked(u_short idx) { IFNET_WLOCK_ASSERT(); V_ifindex_table[idx] = NULL; while (V_if_index > 0 && V_ifindex_table[V_if_index] == NULL) V_if_index--; } static void ifindex_free(u_short idx) { IFNET_WLOCK(); ifindex_free_locked(idx); IFNET_WUNLOCK(); } static void ifnet_setbyindex_locked(u_short idx, struct ifnet *ifp) { IFNET_WLOCK_ASSERT(); V_ifindex_table[idx] = ifp; } static void ifnet_setbyindex(u_short idx, struct ifnet *ifp) { IFNET_WLOCK(); ifnet_setbyindex_locked(idx, ifp); IFNET_WUNLOCK(); } struct ifaddr * ifaddr_byindex(u_short idx) { struct ifnet *ifp; struct ifaddr *ifa = NULL; IFNET_RLOCK_NOSLEEP(); ifp = ifnet_byindex_locked(idx); if (ifp != NULL && (ifa = ifp->if_addr) != NULL) ifa_ref(ifa); IFNET_RUNLOCK_NOSLEEP(); return (ifa); } /* * Network interface utility routines. * * Routines with ifa_ifwith* names take sockaddr *'s as * parameters. */ static void vnet_if_init(const void *unused __unused) { TAILQ_INIT(&V_ifnet); TAILQ_INIT(&V_ifg_head); IFNET_WLOCK(); if_grow(); /* create initial table */ IFNET_WUNLOCK(); vnet_if_clone_init(); } VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, NULL); #ifdef VIMAGE static void vnet_if_uninit(const void *unused __unused) { VNET_ASSERT(TAILQ_EMPTY(&V_ifnet), ("%s:%d tailq &V_ifnet=%p " "not empty", __func__, __LINE__, &V_ifnet)); VNET_ASSERT(TAILQ_EMPTY(&V_ifg_head), ("%s:%d tailq &V_ifg_head=%p " "not empty", __func__, __LINE__, &V_ifg_head)); free((caddr_t)V_ifindex_table, M_IFNET); } VNET_SYSUNINIT(vnet_if_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST, vnet_if_uninit, NULL); -/* - * XXX-BZ VNET; probably along with dom stuff. - * This is very wrong but MC currently implies that interfaces are - * gone before we can free it. This needs to be fied differently - * and this needs to be moved back to SI_SUB_INIT_IF. - */ static void vnet_if_return(const void *unused __unused) { struct ifnet *ifp, *nifp; /* Return all inherited interfaces to their parent vnets. */ TAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) { if (ifp->if_home_vnet != ifp->if_vnet) - if_vmove(ifp, ifp->if_home_vnet); + if_vmove(ifp, ifp->if_home_vnet, 1); } } -VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY, +VNET_SYSUNINIT(vnet_if_return, SI_SUB_INIT_IF, SI_ORDER_ANY, vnet_if_return, NULL); #endif static void if_grow(void) { int oldlim; u_int n; struct ifnet **e; IFNET_WLOCK_ASSERT(); oldlim = V_if_indexlim; IFNET_WUNLOCK(); n = (oldlim << 1) * sizeof(*e); e = malloc(n, M_IFNET, M_WAITOK | M_ZERO); IFNET_WLOCK(); if (V_if_indexlim != oldlim) { free(e, M_IFNET); return; } if (V_ifindex_table != NULL) { memcpy((caddr_t)e, (caddr_t)V_ifindex_table, n/2); free((caddr_t)V_ifindex_table, M_IFNET); } V_if_indexlim <<= 1; V_ifindex_table = e; } /* * Allocate a struct ifnet and an index for an interface. A layer 2 * common structure will also be allocated if an allocation routine is * registered for the passed type. */ struct ifnet * if_alloc(u_char type) { struct ifnet *ifp; u_short idx; ifp = malloc(sizeof(struct ifnet), M_IFNET, M_WAITOK|M_ZERO); IFNET_WLOCK(); idx = ifindex_alloc(); ifnet_setbyindex_locked(idx, IFNET_HOLD); IFNET_WUNLOCK(); ifp->if_index = idx; ifp->if_type = type; ifp->if_alloctype = type; if (if_com_alloc[type] != NULL) { ifp->if_l2com = if_com_alloc[type](type, ifp); if (ifp->if_l2com == NULL) { free(ifp, M_IFNET); ifindex_free(idx); return (NULL); } } IF_ADDR_LOCK_INIT(ifp); TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); ifp->if_afdata_initialized = 0; IF_AFDATA_LOCK_INIT(ifp); TAILQ_INIT(&ifp->if_addrhead); TAILQ_INIT(&ifp->if_multiaddrs); TAILQ_INIT(&ifp->if_groups); #ifdef MAC mac_ifnet_init(ifp); #endif ifq_init(&ifp->if_snd, ifp); refcount_init(&ifp->if_refcount, 1); /* Index reference. */ for (int i = 0; i < IFCOUNTERS; i++) ifp->if_counters[i] = counter_u64_alloc(M_WAITOK); ifp->if_get_counter = if_get_counter_default; ifnet_setbyindex(ifp->if_index, ifp); return (ifp); } /* * Do the actual work of freeing a struct ifnet, and layer 2 common * structure. This call is made when the last reference to an * interface is released. */ static void if_free_internal(struct ifnet *ifp) { KASSERT((ifp->if_flags & IFF_DYING), ("if_free_internal: interface not dying")); if (if_com_free[ifp->if_alloctype] != NULL) if_com_free[ifp->if_alloctype](ifp->if_l2com, ifp->if_alloctype); #ifdef MAC mac_ifnet_destroy(ifp); #endif /* MAC */ if (ifp->if_description != NULL) free(ifp->if_description, M_IFDESCR); IF_AFDATA_DESTROY(ifp); IF_ADDR_LOCK_DESTROY(ifp); ifq_delete(&ifp->if_snd); for (int i = 0; i < IFCOUNTERS; i++) counter_u64_free(ifp->if_counters[i]); free(ifp, M_IFNET); } /* * Deregister an interface and free the associated storage. */ void if_free(struct ifnet *ifp) { ifp->if_flags |= IFF_DYING; /* XXX: Locking */ CURVNET_SET_QUIET(ifp->if_vnet); IFNET_WLOCK(); KASSERT(ifp == ifnet_byindex_locked(ifp->if_index), ("%s: freeing unallocated ifnet", ifp->if_xname)); ifindex_free_locked(ifp->if_index); IFNET_WUNLOCK(); if (refcount_release(&ifp->if_refcount)) if_free_internal(ifp); CURVNET_RESTORE(); } /* * Interfaces to keep an ifnet type-stable despite the possibility of the * driver calling if_free(). If there are additional references, we defer * freeing the underlying data structure. */ void if_ref(struct ifnet *ifp) { /* We don't assert the ifnet list lock here, but arguably should. */ refcount_acquire(&ifp->if_refcount); } void if_rele(struct ifnet *ifp) { if (!refcount_release(&ifp->if_refcount)) return; if_free_internal(ifp); } void ifq_init(struct ifaltq *ifq, struct ifnet *ifp) { mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); if (ifq->ifq_maxlen == 0) ifq->ifq_maxlen = ifqmaxlen; ifq->altq_type = 0; ifq->altq_disc = NULL; ifq->altq_flags &= ALTQF_CANTCHANGE; ifq->altq_tbr = NULL; ifq->altq_ifp = ifp; } void ifq_delete(struct ifaltq *ifq) { mtx_destroy(&ifq->ifq_mtx); } /* * Perform generic interface initalization tasks and attach the interface * to the list of "active" interfaces. If vmove flag is set on entry * to if_attach_internal(), perform only a limited subset of initialization * tasks, given that we are moving from one vnet to another an ifnet which * has already been fully initialized. * * Note that if_detach_internal() removes group membership unconditionally * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL. * Thus, when if_vmove() is applied to a cloned interface, group membership * is lost while a cloned one always joins a group whose name is * ifc->ifc_name. To recover this after if_detach_internal() and * if_attach_internal(), the cloner should be specified to * if_attach_internal() via ifc. If it is non-NULL, if_attach_internal() * attempts to join a group whose name is ifc->ifc_name. * * XXX: * - The decision to return void and thus require this function to * succeed is questionable. * - We should probably do more sanity checking. For instance we don't * do anything to insure if_xname is unique or non-empty. */ void if_attach(struct ifnet *ifp) { if_attach_internal(ifp, 0, NULL); } /* * Compute the least common TSO limit. */ void if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax) { /* * 1) If there is no limit currently, take the limit from * the network adapter. * * 2) If the network adapter has a limit below the current * limit, apply it. */ if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 && ifp->if_hw_tsomax < pmax->tsomaxbytes)) { pmax->tsomaxbytes = ifp->if_hw_tsomax; } if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 && ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) { pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; } if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 && ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) { pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; } } /* * Update TSO limit of a network adapter. * * Returns zero if no change. Else non-zero. */ int if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax) { int retval = 0; if (ifp->if_hw_tsomax != pmax->tsomaxbytes) { ifp->if_hw_tsomax = pmax->tsomaxbytes; retval++; } if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) { ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize; retval++; } if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) { ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount; retval++; } return (retval); } static void if_attach_internal(struct ifnet *ifp, int vmove, struct if_clone *ifc) { unsigned socksize, ifasize; int namelen, masklen; struct sockaddr_dl *sdl; struct ifaddr *ifa; if (ifp->if_index == 0 || ifp != ifnet_byindex(ifp->if_index)) panic ("%s: BUG: if_attach called without if_alloc'd input()\n", ifp->if_xname); #ifdef VIMAGE ifp->if_vnet = curvnet; if (ifp->if_home_vnet == NULL) ifp->if_home_vnet = curvnet; #endif if_addgroup(ifp, IFG_ALL); /* Restore group membership for cloned interfaces. */ if (vmove && ifc != NULL) if_clone_addgroup(ifp, ifc); getmicrotime(&ifp->if_lastchange); ifp->if_epoch = time_uptime; KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) || (ifp->if_transmit != NULL && ifp->if_qflush != NULL), ("transmit and qflush must both either be set or both be NULL")); if (ifp->if_transmit == NULL) { ifp->if_transmit = if_transmit; ifp->if_qflush = if_qflush; } if (ifp->if_input == NULL) ifp->if_input = if_input_default; if (ifp->if_requestencap == NULL) ifp->if_requestencap = if_requestencap_default; if (!vmove) { #ifdef MAC mac_ifnet_create(ifp); #endif /* * Create a Link Level name for this device. */ namelen = strlen(ifp->if_xname); /* * Always save enough space for any possiable name so we * can do a rename in place later. */ masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; socksize = masklen + ifp->if_addrlen; if (socksize < sizeof(*sdl)) socksize = sizeof(*sdl); socksize = roundup2(socksize, sizeof(long)); ifasize = sizeof(*ifa) + 2 * socksize; ifa = ifa_alloc(ifasize, M_WAITOK); sdl = (struct sockaddr_dl *)(ifa + 1); sdl->sdl_len = socksize; sdl->sdl_family = AF_LINK; bcopy(ifp->if_xname, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl->sdl_index = ifp->if_index; sdl->sdl_type = ifp->if_type; ifp->if_addr = ifa; ifa->ifa_ifp = ifp; ifa->ifa_rtrequest = link_rtrequest; ifa->ifa_addr = (struct sockaddr *)sdl; sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); ifa->ifa_netmask = (struct sockaddr *)sdl; sdl->sdl_len = masklen; while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; TAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); /* Reliably crash if used uninitialized. */ ifp->if_broadcastaddr = NULL; #if defined(INET) || defined(INET6) /* Use defaults for TSO, if nothing is set */ if (ifp->if_hw_tsomax == 0 && ifp->if_hw_tsomaxsegcount == 0 && ifp->if_hw_tsomaxsegsize == 0) { /* * The TSO defaults needs to be such that an * NFS mbuf list of 35 mbufs totalling just * below 64K works and that a chain of mbufs * can be defragged into at most 32 segments: */ ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); ifp->if_hw_tsomaxsegcount = 35; ifp->if_hw_tsomaxsegsize = 2048; /* 2K */ /* XXX some drivers set IFCAP_TSO after ethernet attach */ if (ifp->if_capabilities & IFCAP_TSO) { if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n", ifp->if_hw_tsomax, ifp->if_hw_tsomaxsegcount, ifp->if_hw_tsomaxsegsize); } } #endif } #ifdef VIMAGE else { /* * Update the interface index in the link layer address * of the interface. */ for (ifa = ifp->if_addr; ifa != NULL; ifa = TAILQ_NEXT(ifa, ifa_link)) { if (ifa->ifa_addr->sa_family == AF_LINK) { sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_index = ifp->if_index; } } } #endif IFNET_WLOCK(); TAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); #ifdef VIMAGE curvnet->vnet_ifcnt++; #endif IFNET_WUNLOCK(); if (domain_init_status >= 2) if_attachdomain1(ifp); EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); if (IS_DEFAULT_VNET(curvnet)) devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); /* Announce the interface. */ rt_ifannouncemsg(ifp, IFAN_ARRIVAL); } static void if_attachdomain(void *dummy) { struct ifnet *ifp; TAILQ_FOREACH(ifp, &V_ifnet, if_link) if_attachdomain1(ifp); } SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, if_attachdomain, NULL); static void if_attachdomain1(struct ifnet *ifp) { struct domain *dp; /* * Since dp->dom_ifattach calls malloc() with M_WAITOK, we * cannot lock ifp->if_afdata initialization, entirely. */ if (IF_AFDATA_TRYLOCK(ifp) == 0) return; if (ifp->if_afdata_initialized >= domain_init_status) { IF_AFDATA_UNLOCK(ifp); log(LOG_WARNING, "%s called more than once on %s\n", __func__, ifp->if_xname); return; } ifp->if_afdata_initialized = domain_init_status; IF_AFDATA_UNLOCK(ifp); /* address family dependent data region */ bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); for (dp = domains; dp; dp = dp->dom_next) { if (dp->dom_ifattach) ifp->if_afdata[dp->dom_family] = (*dp->dom_ifattach)(ifp); } } /* * Remove any unicast or broadcast network addresses from an interface. */ void if_purgeaddrs(struct ifnet *ifp) { struct ifaddr *ifa, *next; /* XXX IF_ADDR_R/WLOCK */ TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { if (ifa->ifa_addr->sa_family == AF_LINK) continue; #ifdef INET /* XXX: Ugly!! ad hoc just for INET */ if (ifa->ifa_addr->sa_family == AF_INET) { struct ifaliasreq ifr; bzero(&ifr, sizeof(ifr)); ifr.ifra_addr = *ifa->ifa_addr; if (ifa->ifa_dstaddr) ifr.ifra_broadaddr = *ifa->ifa_dstaddr; if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, NULL) == 0) continue; } #endif /* INET */ #ifdef INET6 if (ifa->ifa_addr->sa_family == AF_INET6) { in6_purgeaddr(ifa); /* ifp_addrhead is already updated */ continue; } #endif /* INET6 */ IF_ADDR_WLOCK(ifp); TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(ifa); } } /* * Remove any multicast network addresses from an interface when an ifnet * is going away. */ static void if_purgemaddrs(struct ifnet *ifp) { struct ifmultiaddr *ifma; struct ifmultiaddr *next; IF_ADDR_WLOCK(ifp); TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) if_delmulti_locked(ifp, ifma, 1); IF_ADDR_WUNLOCK(ifp); } /* * Detach an interface, removing it from the list of "active" interfaces. * If vmove flag is set on entry to if_detach_internal(), perform only a * limited subset of cleanup tasks, given that we are moving an ifnet from * one vnet to another, where it must be fully operational. * * XXXRW: There are some significant questions about event ordering, and * how to prevent things from starting to use the interface during detach. */ void if_detach(struct ifnet *ifp) { CURVNET_SET_QUIET(ifp->if_vnet); - if_detach_internal(ifp, 0, NULL); + if_detach_internal(ifp, 0, 0, NULL); CURVNET_RESTORE(); } +/* + * The vmove, if set, flag indicates that we are called from a callpath + * that is moving an interface to a different vnet instance. + * + * The shutdown flag, if set, indicates that we are called in the + * progress of shutting down a vnet instance. Currently only the + * vnet_if_return SYSUNINIT function sets it. Note: we can be called + * on a vnet instance shutdown without this flag being set, e.g., when + * the cloned interfaces are destoyed as first thing of teardown. + */ static int -if_detach_internal(struct ifnet *ifp, int vmove, struct if_clone **ifcp) +if_detach_internal(struct ifnet *ifp, int vmove, int shutdown, + struct if_clone **ifcp) { struct ifaddr *ifa; int i; struct domain *dp; struct ifnet *iter; int found = 0; IFNET_WLOCK(); TAILQ_FOREACH(iter, &V_ifnet, if_link) if (iter == ifp) { TAILQ_REMOVE(&V_ifnet, ifp, if_link); found = 1; break; } #ifdef VIMAGE if (found) curvnet->vnet_ifcnt--; #endif IFNET_WUNLOCK(); if (!found) { /* * While we would want to panic here, we cannot * guarantee that the interface is indeed still on * the list given we don't hold locks all the way. */ return (ENOENT); #if 0 if (vmove) panic("%s: ifp=%p not on the ifnet tailq %p", __func__, ifp, &V_ifnet); else return; /* XXX this should panic as well? */ #endif } + /* The one thing we have to do. */ + if_delgroups(ifp); + + if (!vmove && !shutdown && ifp->if_vnet->vnet_state == VNET_STATE_DYING_AFTER_PSEUDO) + return (ENOENT); + /* Check if this is a cloned interface or not. */ if (vmove && ifcp != NULL) *ifcp = if_clone_findifc(ifp); /* * Remove/wait for pending events. */ taskqueue_drain(taskqueue_swi, &ifp->if_linktask); /* * Remove routes and flush queues. */ if_down(ifp); #ifdef ALTQ if (ALTQ_IS_ENABLED(&ifp->if_snd)) altq_disable(&ifp->if_snd); if (ALTQ_IS_ATTACHED(&ifp->if_snd)) altq_detach(&ifp->if_snd); #endif if_purgeaddrs(ifp); #ifdef INET - in_ifdetach(ifp); + in_ifdetach(ifp, !shutdown); #endif #ifdef INET6 /* * Remove all IPv6 kernel structs related to ifp. This should be done * before removing routing entries below, since IPv6 interface direct * routes are expected to be removed by the IPv6-specific kernel API. * Otherwise, the kernel will detect some inconsistency and bark it. */ - in6_ifdetach(ifp); + in6_ifdetach(ifp, !shutdown); #endif - if_purgemaddrs(ifp); + if (!shutdown) + if_purgemaddrs(ifp); /* Announce that the interface is gone. */ rt_ifannouncemsg(ifp, IFAN_DEPARTURE); EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); if (IS_DEFAULT_VNET(curvnet)) devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); if (!vmove) { /* * Prevent further calls into the device driver via ifnet. */ if_dead(ifp); /* * Remove link ifaddr pointer and maybe decrement if_index. * Clean up all addresses. */ ifp->if_addr = NULL; /* We can now free link ifaddr. */ if (!TAILQ_EMPTY(&ifp->if_addrhead)) { ifa = TAILQ_FIRST(&ifp->if_addrhead); IF_ADDR_WLOCK(ifp); TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(ifa); } } - rt_flushifroutes(ifp); - if_delgroups(ifp); + if (!shutdown) + rt_flushifroutes(ifp); /* * We cannot hold the lock over dom_ifdetach calls as they might * sleep, for example trying to drain a callout, thus open up the * theoretical race with re-attaching. */ IF_AFDATA_LOCK(ifp); i = ifp->if_afdata_initialized; ifp->if_afdata_initialized = 0; IF_AFDATA_UNLOCK(ifp); for (dp = domains; i > 0 && dp; dp = dp->dom_next) { if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) (*dp->dom_ifdetach)(ifp, ifp->if_afdata[dp->dom_family]); } return (0); } #ifdef VIMAGE /* * if_vmove() performs a limited version of if_detach() in current * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. * An attempt is made to shrink if_index in current vnet, find an * unused if_index in target vnet and calls if_grow() if necessary, * and finally find an unused if_xname for the target vnet. */ static void -if_vmove(struct ifnet *ifp, struct vnet *new_vnet) +if_vmove(struct ifnet *ifp, struct vnet *new_vnet, int shutdown) { struct if_clone *ifc; int rc; + u_int bif_dlt, bif_hdrlen; /* + * if_detach_internal() will call the eventhandler to notify + * interface departure. That will detach if_bpf. We need to + * safe the dlt and hdrlen so we can re-attach it later. + */ + bpf_get_bp_params(ifp->if_bpf, &bif_dlt, &bif_hdrlen); + + /* * Detach from current vnet, but preserve LLADDR info, do not * mark as dead etc. so that the ifnet can be reattached later. * If we cannot find it, we lost the race to someone else. */ - rc = if_detach_internal(ifp, 1, &ifc); + rc = if_detach_internal(ifp, 1, shutdown, &ifc); if (rc != 0) return; /* * Unlink the ifnet from ifindex_table[] in current vnet, and shrink * the if_index for that vnet if possible. * * NOTE: IFNET_WLOCK/IFNET_WUNLOCK() are assumed to be unvirtualized, * or we'd lock on one vnet and unlock on another. */ IFNET_WLOCK(); ifindex_free_locked(ifp->if_index); IFNET_WUNLOCK(); /* * Perform interface-specific reassignment tasks, if provided by * the driver. */ if (ifp->if_reassign != NULL) ifp->if_reassign(ifp, new_vnet, NULL); /* * Switch to the context of the target vnet. */ CURVNET_SET_QUIET(new_vnet); IFNET_WLOCK(); ifp->if_index = ifindex_alloc(); ifnet_setbyindex_locked(ifp->if_index, ifp); IFNET_WUNLOCK(); if_attach_internal(ifp, 1, ifc); + if (ifp->if_bpf == NULL) + bpfattach(ifp, bif_dlt, bif_hdrlen); + CURVNET_RESTORE(); } /* * Move an ifnet to or from another child prison/vnet, specified by the jail id. */ static int if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) { struct prison *pr; struct ifnet *difp; /* Try to find the prison within our visibility. */ sx_slock(&allprison_lock); pr = prison_find_child(td->td_ucred->cr_prison, jid); sx_sunlock(&allprison_lock); if (pr == NULL) return (ENXIO); prison_hold_locked(pr); mtx_unlock(&pr->pr_mtx); /* Do not try to move the iface from and to the same prison. */ if (pr->pr_vnet == ifp->if_vnet) { prison_free(pr); return (EEXIST); } /* Make sure the named iface does not exists in the dst. prison/vnet. */ /* XXX Lock interfaces to avoid races. */ CURVNET_SET_QUIET(pr->pr_vnet); difp = ifunit(ifname); CURVNET_RESTORE(); if (difp != NULL) { prison_free(pr); return (EEXIST); } /* Move the interface into the child jail/vnet. */ - if_vmove(ifp, pr->pr_vnet); + if_vmove(ifp, pr->pr_vnet, 0); /* Report the new if_xname back to the userland. */ sprintf(ifname, "%s", ifp->if_xname); prison_free(pr); return (0); } static int if_vmove_reclaim(struct thread *td, char *ifname, int jid) { struct prison *pr; struct vnet *vnet_dst; struct ifnet *ifp; /* Try to find the prison within our visibility. */ sx_slock(&allprison_lock); pr = prison_find_child(td->td_ucred->cr_prison, jid); sx_sunlock(&allprison_lock); if (pr == NULL) return (ENXIO); prison_hold_locked(pr); mtx_unlock(&pr->pr_mtx); /* Make sure the named iface exists in the source prison/vnet. */ CURVNET_SET(pr->pr_vnet); ifp = ifunit(ifname); /* XXX Lock to avoid races. */ if (ifp == NULL) { CURVNET_RESTORE(); prison_free(pr); return (ENXIO); } /* Do not try to move the iface from and to the same prison. */ vnet_dst = TD_TO_VNET(td); if (vnet_dst == ifp->if_vnet) { CURVNET_RESTORE(); prison_free(pr); return (EEXIST); } /* Get interface back from child jail/vnet. */ - if_vmove(ifp, vnet_dst); + if_vmove(ifp, vnet_dst, 0); CURVNET_RESTORE(); /* Report the new if_xname back to the userland. */ sprintf(ifname, "%s", ifp->if_xname); prison_free(pr); return (0); } #endif /* VIMAGE */ /* * Add a group to an interface */ int if_addgroup(struct ifnet *ifp, const char *groupname) { struct ifg_list *ifgl; struct ifg_group *ifg = NULL; struct ifg_member *ifgm; int new = 0; if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && groupname[strlen(groupname) - 1] <= '9') return (EINVAL); IFNET_WLOCK(); TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { IFNET_WUNLOCK(); return (EEXIST); } if ((ifgl = (struct ifg_list *)malloc(sizeof(struct ifg_list), M_TEMP, M_NOWAIT)) == NULL) { IFNET_WUNLOCK(); return (ENOMEM); } if ((ifgm = (struct ifg_member *)malloc(sizeof(struct ifg_member), M_TEMP, M_NOWAIT)) == NULL) { free(ifgl, M_TEMP); IFNET_WUNLOCK(); return (ENOMEM); } TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) if (!strcmp(ifg->ifg_group, groupname)) break; if (ifg == NULL) { if ((ifg = (struct ifg_group *)malloc(sizeof(struct ifg_group), M_TEMP, M_NOWAIT)) == NULL) { free(ifgl, M_TEMP); free(ifgm, M_TEMP); IFNET_WUNLOCK(); return (ENOMEM); } strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); ifg->ifg_refcnt = 0; TAILQ_INIT(&ifg->ifg_members); TAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); new = 1; } ifg->ifg_refcnt++; ifgl->ifgl_group = ifg; ifgm->ifgm_ifp = ifp; IF_ADDR_WLOCK(ifp); TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); IF_ADDR_WUNLOCK(ifp); IFNET_WUNLOCK(); if (new) EVENTHANDLER_INVOKE(group_attach_event, ifg); EVENTHANDLER_INVOKE(group_change_event, groupname); return (0); } /* * Remove a group from an interface */ int if_delgroup(struct ifnet *ifp, const char *groupname) { struct ifg_list *ifgl; struct ifg_member *ifgm; IFNET_WLOCK(); TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) break; if (ifgl == NULL) { IFNET_WUNLOCK(); return (ENOENT); } IF_ADDR_WLOCK(ifp); TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); IF_ADDR_WUNLOCK(ifp); TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) if (ifgm->ifgm_ifp == ifp) break; if (ifgm != NULL) { TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); free(ifgm, M_TEMP); } if (--ifgl->ifgl_group->ifg_refcnt == 0) { TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); IFNET_WUNLOCK(); EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); free(ifgl->ifgl_group, M_TEMP); } else IFNET_WUNLOCK(); free(ifgl, M_TEMP); EVENTHANDLER_INVOKE(group_change_event, groupname); return (0); } /* * Remove an interface from all groups */ static void if_delgroups(struct ifnet *ifp) { struct ifg_list *ifgl; struct ifg_member *ifgm; char groupname[IFNAMSIZ]; IFNET_WLOCK(); while (!TAILQ_EMPTY(&ifp->if_groups)) { ifgl = TAILQ_FIRST(&ifp->if_groups); strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); IF_ADDR_WLOCK(ifp); TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); // <<<< IF_ADDR_WUNLOCK(ifp); TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) if (ifgm->ifgm_ifp == ifp) break; if (ifgm != NULL) { TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); free(ifgm, M_TEMP); } if (--ifgl->ifgl_group->ifg_refcnt == 0) { TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next); IFNET_WUNLOCK(); EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); free(ifgl->ifgl_group, M_TEMP); } else IFNET_WUNLOCK(); free(ifgl, M_TEMP); EVENTHANDLER_INVOKE(group_change_event, groupname); IFNET_WLOCK(); } IFNET_WUNLOCK(); } /* * Stores all groups from an interface in memory pointed * to by data */ static int if_getgroup(struct ifgroupreq *data, struct ifnet *ifp) { int len, error; struct ifg_list *ifgl; struct ifg_req ifgrq, *ifgp; struct ifgroupreq *ifgr = data; if (ifgr->ifgr_len == 0) { IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) ifgr->ifgr_len += sizeof(struct ifg_req); IF_ADDR_RUNLOCK(ifp); return (0); } len = ifgr->ifgr_len; ifgp = ifgr->ifgr_groups; /* XXX: wire */ IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { if (len < sizeof(ifgrq)) { IF_ADDR_RUNLOCK(ifp); return (EINVAL); } bzero(&ifgrq, sizeof ifgrq); strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, sizeof(ifgrq.ifgrq_group)); if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { IF_ADDR_RUNLOCK(ifp); return (error); } len -= sizeof(ifgrq); ifgp++; } IF_ADDR_RUNLOCK(ifp); return (0); } /* * Stores all members of a group in memory pointed to by data */ static int if_getgroupmembers(struct ifgroupreq *data) { struct ifgroupreq *ifgr = data; struct ifg_group *ifg; struct ifg_member *ifgm; struct ifg_req ifgrq, *ifgp; int len, error; IFNET_RLOCK(); TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) break; if (ifg == NULL) { IFNET_RUNLOCK(); return (ENOENT); } if (ifgr->ifgr_len == 0) { TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) ifgr->ifgr_len += sizeof(ifgrq); IFNET_RUNLOCK(); return (0); } len = ifgr->ifgr_len; ifgp = ifgr->ifgr_groups; TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { if (len < sizeof(ifgrq)) { IFNET_RUNLOCK(); return (EINVAL); } bzero(&ifgrq, sizeof ifgrq); strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, sizeof(ifgrq.ifgrq_member)); if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { IFNET_RUNLOCK(); return (error); } len -= sizeof(ifgrq); ifgp++; } IFNET_RUNLOCK(); return (0); } /* * Return counter values from counter(9)s stored in ifnet. */ uint64_t if_get_counter_default(struct ifnet *ifp, ift_counter cnt) { KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); return (counter_u64_fetch(ifp->if_counters[cnt])); } /* * Increase an ifnet counter. Usually used for counters shared * between the stack and a driver, but function supports them all. */ void if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc) { KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); counter_u64_add(ifp->if_counters[cnt], inc); } /* * Copy data from ifnet to userland API structure if_data. */ void if_data_copy(struct ifnet *ifp, struct if_data *ifd) { ifd->ifi_type = ifp->if_type; ifd->ifi_physical = 0; ifd->ifi_addrlen = ifp->if_addrlen; ifd->ifi_hdrlen = ifp->if_hdrlen; ifd->ifi_link_state = ifp->if_link_state; ifd->ifi_vhid = 0; ifd->ifi_datalen = sizeof(struct if_data); ifd->ifi_mtu = ifp->if_mtu; ifd->ifi_metric = ifp->if_metric; ifd->ifi_baudrate = ifp->if_baudrate; ifd->ifi_hwassist = ifp->if_hwassist; ifd->ifi_epoch = ifp->if_epoch; ifd->ifi_lastchange = ifp->if_lastchange; ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS); ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS); ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS); ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS); ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS); ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES); ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES); ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS); ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS); ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS); ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS); ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO); } /* * Wrapper functions for struct ifnet address list locking macros. These are * used by kernel modules to avoid encoding programming interface or binary * interface assumptions that may be violated when kernel-internal locking * approaches change. */ void if_addr_rlock(struct ifnet *ifp) { IF_ADDR_RLOCK(ifp); } void if_addr_runlock(struct ifnet *ifp) { IF_ADDR_RUNLOCK(ifp); } void if_maddr_rlock(if_t ifp) { IF_ADDR_RLOCK((struct ifnet *)ifp); } void if_maddr_runlock(if_t ifp) { IF_ADDR_RUNLOCK((struct ifnet *)ifp); } /* * Initialization, destruction and refcounting functions for ifaddrs. */ struct ifaddr * ifa_alloc(size_t size, int flags) { struct ifaddr *ifa; KASSERT(size >= sizeof(struct ifaddr), ("%s: invalid size %zu", __func__, size)); ifa = malloc(size, M_IFADDR, M_ZERO | flags); if (ifa == NULL) return (NULL); if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) goto fail; if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) goto fail; if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) goto fail; if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) goto fail; refcount_init(&ifa->ifa_refcnt, 1); return (ifa); fail: /* free(NULL) is okay */ counter_u64_free(ifa->ifa_opackets); counter_u64_free(ifa->ifa_ipackets); counter_u64_free(ifa->ifa_obytes); counter_u64_free(ifa->ifa_ibytes); free(ifa, M_IFADDR); return (NULL); } void ifa_ref(struct ifaddr *ifa) { refcount_acquire(&ifa->ifa_refcnt); } void ifa_free(struct ifaddr *ifa) { if (refcount_release(&ifa->ifa_refcnt)) { counter_u64_free(ifa->ifa_opackets); counter_u64_free(ifa->ifa_ipackets); counter_u64_free(ifa->ifa_obytes); counter_u64_free(ifa->ifa_ibytes); free(ifa, M_IFADDR); } } static int ifa_maintain_loopback_route(int cmd, const char *otype, struct ifaddr *ifa, struct sockaddr *ia) { int error; struct rt_addrinfo info; struct sockaddr_dl null_sdl; struct ifnet *ifp; ifp = ifa->ifa_ifp; bzero(&info, sizeof(info)); if (cmd != RTM_DELETE) info.rti_ifp = V_loif; info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC; info.rti_info[RTAX_DST] = ia; info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; link_init_sdl(ifp, (struct sockaddr *)&null_sdl, ifp->if_type); error = rtrequest1_fib(cmd, &info, NULL, ifp->if_fib); if (error != 0) log(LOG_DEBUG, "%s: %s failed for interface %s: %u\n", __func__, otype, if_name(ifp), error); return (error); } int ifa_add_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) { return (ifa_maintain_loopback_route(RTM_ADD, "insertion", ifa, ia)); } int ifa_del_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) { return (ifa_maintain_loopback_route(RTM_DELETE, "deletion", ifa, ia)); } int ifa_switch_loopback_route(struct ifaddr *ifa, struct sockaddr *ia) { return (ifa_maintain_loopback_route(RTM_CHANGE, "switch", ifa, ia)); } /* * XXX: Because sockaddr_dl has deeper structure than the sockaddr * structs used to represent other address families, it is necessary * to perform a different comparison. */ #define sa_dl_equal(a1, a2) \ ((((const struct sockaddr_dl *)(a1))->sdl_len == \ ((const struct sockaddr_dl *)(a2))->sdl_len) && \ (bcmp(CLLADDR((const struct sockaddr_dl *)(a1)), \ CLLADDR((const struct sockaddr_dl *)(a2)), \ ((const struct sockaddr_dl *)(a1))->sdl_alen) == 0)) /* * Locate an interface based on a complete address. */ /*ARGSUSED*/ static struct ifaddr * ifa_ifwithaddr_internal(const struct sockaddr *addr, int getref) { struct ifnet *ifp; struct ifaddr *ifa; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (sa_equal(addr, ifa->ifa_addr)) { if (getref) ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); goto done; } /* IP6 doesn't have broadcast */ if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && ifa->ifa_broadaddr->sa_len != 0 && sa_equal(ifa->ifa_broadaddr, addr)) { if (getref) ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); goto done; } } IF_ADDR_RUNLOCK(ifp); } ifa = NULL; done: IFNET_RUNLOCK_NOSLEEP(); return (ifa); } struct ifaddr * ifa_ifwithaddr(const struct sockaddr *addr) { return (ifa_ifwithaddr_internal(addr, 1)); } int ifa_ifwithaddr_check(const struct sockaddr *addr) { return (ifa_ifwithaddr_internal(addr, 0) != NULL); } /* * Locate an interface based on the broadcast address. */ /* ARGSUSED */ struct ifaddr * ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum) { struct ifnet *ifp; struct ifaddr *ifa; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) continue; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && ifa->ifa_broadaddr->sa_len != 0 && sa_equal(ifa->ifa_broadaddr, addr)) { ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); goto done; } } IF_ADDR_RUNLOCK(ifp); } ifa = NULL; done: IFNET_RUNLOCK_NOSLEEP(); return (ifa); } /* * Locate the point to point interface with a given destination address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum) { struct ifnet *ifp; struct ifaddr *ifa; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if ((ifp->if_flags & IFF_POINTOPOINT) == 0) continue; if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) continue; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (ifa->ifa_dstaddr != NULL && sa_equal(addr, ifa->ifa_dstaddr)) { ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); goto done; } } IF_ADDR_RUNLOCK(ifp); } ifa = NULL; done: IFNET_RUNLOCK_NOSLEEP(); return (ifa); } /* * Find an interface on a specific network. If many, choice * is most specific found. */ struct ifaddr * ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum) { struct ifnet *ifp; struct ifaddr *ifa; struct ifaddr *ifa_maybe = NULL; u_int af = addr->sa_family; const char *addr_data = addr->sa_data, *cplim; /* * AF_LINK addresses can be looked up directly by their index number, * so do that if we can. */ if (af == AF_LINK) { const struct sockaddr_dl *sdl = (const struct sockaddr_dl *)addr; if (sdl->sdl_index && sdl->sdl_index <= V_if_index) return (ifaddr_byindex(sdl->sdl_index)); } /* * Scan though each interface, looking for ones that have addresses * in this address family and the requested fib. Maintain a reference * on ifa_maybe once we find one, as we release the IF_ADDR_RLOCK() that * kept it stable when we move onto the next interface. */ IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) continue; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { const char *cp, *cp2, *cp3; if (ifa->ifa_addr->sa_family != af) next: continue; if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { /* * This is a bit broken as it doesn't * take into account that the remote end may * be a single node in the network we are * looking for. * The trouble is that we don't know the * netmask for the remote end. */ if (ifa->ifa_dstaddr != NULL && sa_equal(addr, ifa->ifa_dstaddr)) { ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); goto done; } } else { /* * Scan all the bits in the ifa's address. * If a bit dissagrees with what we are * looking for, mask it with the netmask * to see if it really matters. * (A byte at a time) */ if (ifa->ifa_netmask == 0) continue; cp = addr_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; while (cp3 < cplim) if ((*cp++ ^ *cp2++) & *cp3++) goto next; /* next address! */ /* * If the netmask of what we just found * is more specific than what we had before * (if we had one), or if the virtual status * of new prefix is better than of the old one, * then remember the new one before continuing * to search for an even better one. */ if (ifa_maybe == NULL || ifa_preferred(ifa_maybe, ifa) || rn_refines((caddr_t)ifa->ifa_netmask, (caddr_t)ifa_maybe->ifa_netmask)) { if (ifa_maybe != NULL) ifa_free(ifa_maybe); ifa_maybe = ifa; ifa_ref(ifa_maybe); } } } IF_ADDR_RUNLOCK(ifp); } ifa = ifa_maybe; ifa_maybe = NULL; done: IFNET_RUNLOCK_NOSLEEP(); if (ifa_maybe != NULL) ifa_free(ifa_maybe); return (ifa); } /* * Find an interface address specific to an interface best matching * a given address. */ struct ifaddr * ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) { struct ifaddr *ifa; const char *cp, *cp2, *cp3; char *cplim; struct ifaddr *ifa_maybe = NULL; u_int af = addr->sa_family; if (af >= AF_MAX) return (NULL); IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != af) continue; if (ifa_maybe == NULL) ifa_maybe = ifa; if (ifa->ifa_netmask == 0) { if (sa_equal(addr, ifa->ifa_addr) || (ifa->ifa_dstaddr && sa_equal(addr, ifa->ifa_dstaddr))) goto done; continue; } if (ifp->if_flags & IFF_POINTOPOINT) { if (sa_equal(addr, ifa->ifa_dstaddr)) goto done; } else { cp = addr->sa_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; for (; cp3 < cplim; cp3++) if ((*cp++ ^ *cp2++) & *cp3) break; if (cp3 == cplim) goto done; } } ifa = ifa_maybe; done: if (ifa != NULL) ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); return (ifa); } /* * See whether new ifa is better than current one: * 1) A non-virtual one is preferred over virtual. * 2) A virtual in master state preferred over any other state. * * Used in several address selecting functions. */ int ifa_preferred(struct ifaddr *cur, struct ifaddr *next) { return (cur->ifa_carp && (!next->ifa_carp || ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); } #include /* * Default action when installing a route with a Link Level gateway. * Lookup an appropriate real ifa to point to. * This should be moved to /sys/net/link.c eventually. */ static void link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info) { struct ifaddr *ifa, *oifa; struct sockaddr *dst; struct ifnet *ifp; if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == 0) || ((ifp = ifa->ifa_ifp) == 0) || ((dst = rt_key(rt)) == 0)) return; ifa = ifaof_ifpforaddr(dst, ifp); if (ifa) { oifa = rt->rt_ifa; rt->rt_ifa = ifa; ifa_free(oifa); if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest) ifa->ifa_rtrequest(cmd, rt, info); } } struct sockaddr_dl * link_alloc_sdl(size_t size, int flags) { return (malloc(size, M_TEMP, flags)); } void link_free_sdl(struct sockaddr *sa) { free(sa, M_TEMP); } /* * Fills in given sdl with interface basic info. * Returns pointer to filled sdl. */ struct sockaddr_dl * link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype) { struct sockaddr_dl *sdl; sdl = (struct sockaddr_dl *)paddr; memset(sdl, 0, sizeof(struct sockaddr_dl)); sdl->sdl_len = sizeof(struct sockaddr_dl); sdl->sdl_family = AF_LINK; sdl->sdl_index = ifp->if_index; sdl->sdl_type = iftype; return (sdl); } /* * Mark an interface down and notify protocols of * the transition. */ static void if_unroute(struct ifnet *ifp, int flag, int fam) { struct ifaddr *ifa; KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP")); ifp->if_flags &= ~flag; getmicrotime(&ifp->if_lastchange); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) pfctlinput(PRC_IFDOWN, ifa->ifa_addr); ifp->if_qflush(ifp); if (ifp->if_carp) (*carp_linkstate_p)(ifp); rt_ifmsg(ifp); } /* * Mark an interface up and notify protocols of * the transition. */ static void if_route(struct ifnet *ifp, int flag, int fam) { struct ifaddr *ifa; KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP")); ifp->if_flags |= flag; getmicrotime(&ifp->if_lastchange); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) pfctlinput(PRC_IFUP, ifa->ifa_addr); if (ifp->if_carp) (*carp_linkstate_p)(ifp); rt_ifmsg(ifp); #ifdef INET6 in6_if_up(ifp); #endif } void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); int (*vlan_tag_p)(struct ifnet *, uint16_t *); int (*vlan_setcookie_p)(struct ifnet *, void *); void *(*vlan_cookie_p)(struct ifnet *); /* * Handle a change in the interface link state. To avoid LORs * between driver lock and upper layer locks, as well as possible * recursions, we post event to taskqueue, and all job * is done in static do_link_state_change(). */ void if_link_state_change(struct ifnet *ifp, int link_state) { /* Return if state hasn't changed. */ if (ifp->if_link_state == link_state) return; ifp->if_link_state = link_state; taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); } static void do_link_state_change(void *arg, int pending) { struct ifnet *ifp = (struct ifnet *)arg; int link_state = ifp->if_link_state; CURVNET_SET(ifp->if_vnet); /* Notify that the link state has changed. */ rt_ifmsg(ifp); if (ifp->if_vlantrunk != NULL) (*vlan_link_state_p)(ifp); if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && ifp->if_l2com != NULL) (*ng_ether_link_state_p)(ifp, link_state); if (ifp->if_carp) (*carp_linkstate_p)(ifp); if (ifp->if_bridge) (*bridge_linkstate_p)(ifp); if (ifp->if_lagg) (*lagg_linkstate_p)(ifp, link_state); if (IS_DEFAULT_VNET(curvnet)) devctl_notify("IFNET", ifp->if_xname, (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL); if (pending > 1) if_printf(ifp, "%d link states coalesced\n", pending); if (log_link_state_change) log(LOG_NOTICE, "%s: link state changed to %s\n", ifp->if_xname, (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); EVENTHANDLER_INVOKE(ifnet_link_event, ifp, ifp->if_link_state); CURVNET_RESTORE(); } /* * Mark an interface down and notify protocols of * the transition. */ void if_down(struct ifnet *ifp) { if_unroute(ifp, IFF_UP, AF_UNSPEC); } /* * Mark an interface up and notify protocols of * the transition. */ void if_up(struct ifnet *ifp) { if_route(ifp, IFF_UP, AF_UNSPEC); } /* * Flush an interface queue. */ void if_qflush(struct ifnet *ifp) { struct mbuf *m, *n; struct ifaltq *ifq; ifq = &ifp->if_snd; IFQ_LOCK(ifq); #ifdef ALTQ if (ALTQ_IS_ENABLED(ifq)) ALTQ_PURGE(ifq); #endif n = ifq->ifq_head; while ((m = n) != 0) { n = m->m_nextpkt; m_freem(m); } ifq->ifq_head = 0; ifq->ifq_tail = 0; ifq->ifq_len = 0; IFQ_UNLOCK(ifq); } /* * Map interface name to interface structure pointer, with or without * returning a reference. */ struct ifnet * ifunit_ref(const char *name) { struct ifnet *ifp; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && !(ifp->if_flags & IFF_DYING)) break; } if (ifp != NULL) if_ref(ifp); IFNET_RUNLOCK_NOSLEEP(); return (ifp); } struct ifnet * ifunit(const char *name) { struct ifnet *ifp; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) break; } IFNET_RUNLOCK_NOSLEEP(); return (ifp); } /* * Hardware specific interface ioctls. */ static int ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) { struct ifreq *ifr; int error = 0; int new_flags, temp_flags; size_t namelen, onamelen; size_t descrlen; char *descrbuf, *odescrbuf; char new_name[IFNAMSIZ]; struct ifaddr *ifa; struct sockaddr_dl *sdl; ifr = (struct ifreq *)data; switch (cmd) { case SIOCGIFINDEX: ifr->ifr_index = ifp->if_index; break; case SIOCGIFFLAGS: temp_flags = ifp->if_flags | ifp->if_drv_flags; ifr->ifr_flags = temp_flags & 0xffff; ifr->ifr_flagshigh = temp_flags >> 16; break; case SIOCGIFCAP: ifr->ifr_reqcap = ifp->if_capabilities; ifr->ifr_curcap = ifp->if_capenable; break; #ifdef MAC case SIOCGIFMAC: error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); break; #endif case SIOCGIFMETRIC: ifr->ifr_metric = ifp->if_metric; break; case SIOCGIFMTU: ifr->ifr_mtu = ifp->if_mtu; break; case SIOCGIFPHYS: /* XXXGL: did this ever worked? */ ifr->ifr_phys = 0; break; case SIOCGIFDESCR: error = 0; sx_slock(&ifdescr_sx); if (ifp->if_description == NULL) error = ENOMSG; else { /* space for terminating nul */ descrlen = strlen(ifp->if_description) + 1; if (ifr->ifr_buffer.length < descrlen) ifr->ifr_buffer.buffer = NULL; else error = copyout(ifp->if_description, ifr->ifr_buffer.buffer, descrlen); ifr->ifr_buffer.length = descrlen; } sx_sunlock(&ifdescr_sx); break; case SIOCSIFDESCR: error = priv_check(td, PRIV_NET_SETIFDESCR); if (error) return (error); /* * Copy only (length-1) bytes to make sure that * if_description is always nul terminated. The * length parameter is supposed to count the * terminating nul in. */ if (ifr->ifr_buffer.length > ifdescr_maxlen) return (ENAMETOOLONG); else if (ifr->ifr_buffer.length == 0) descrbuf = NULL; else { descrbuf = malloc(ifr->ifr_buffer.length, M_IFDESCR, M_WAITOK | M_ZERO); error = copyin(ifr->ifr_buffer.buffer, descrbuf, ifr->ifr_buffer.length - 1); if (error) { free(descrbuf, M_IFDESCR); break; } } sx_xlock(&ifdescr_sx); odescrbuf = ifp->if_description; ifp->if_description = descrbuf; sx_xunlock(&ifdescr_sx); getmicrotime(&ifp->if_lastchange); free(odescrbuf, M_IFDESCR); break; case SIOCGIFFIB: ifr->ifr_fib = ifp->if_fib; break; case SIOCSIFFIB: error = priv_check(td, PRIV_NET_SETIFFIB); if (error) return (error); if (ifr->ifr_fib >= rt_numfibs) return (EINVAL); ifp->if_fib = ifr->ifr_fib; break; case SIOCSIFFLAGS: error = priv_check(td, PRIV_NET_SETIFFLAGS); if (error) return (error); /* * Currently, no driver owned flags pass the IFF_CANTCHANGE * check, so we don't need special handling here yet. */ new_flags = (ifr->ifr_flags & 0xffff) | (ifr->ifr_flagshigh << 16); if (ifp->if_flags & IFF_UP && (new_flags & IFF_UP) == 0) { if_down(ifp); } else if (new_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { if_up(ifp); } /* See if permanently promiscuous mode bit is about to flip */ if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { if (new_flags & IFF_PPROMISC) ifp->if_flags |= IFF_PROMISC; else if (ifp->if_pcount == 0) ifp->if_flags &= ~IFF_PROMISC; log(LOG_INFO, "%s: permanently promiscuous mode %s\n", ifp->if_xname, (new_flags & IFF_PPROMISC) ? "enabled" : "disabled"); } ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | (new_flags &~ IFF_CANTCHANGE); if (ifp->if_ioctl) { (void) (*ifp->if_ioctl)(ifp, cmd, data); } getmicrotime(&ifp->if_lastchange); break; case SIOCSIFCAP: error = priv_check(td, PRIV_NET_SETIFCAP); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); if (ifr->ifr_reqcap & ~ifp->if_capabilities) return (EINVAL); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) getmicrotime(&ifp->if_lastchange); break; #ifdef MAC case SIOCSIFMAC: error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); break; #endif case SIOCSIFNAME: error = priv_check(td, PRIV_NET_SETIFNAME); if (error) return (error); error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL); if (error != 0) return (error); if (new_name[0] == '\0') return (EINVAL); if (ifunit(new_name) != NULL) return (EEXIST); /* * XXX: Locking. Nothing else seems to lock if_flags, * and there are numerous other races with the * ifunit() checks not being atomic with namespace * changes (renames, vmoves, if_attach, etc). */ ifp->if_flags |= IFF_RENAMING; /* Announce the departure of the interface. */ rt_ifannouncemsg(ifp, IFAN_DEPARTURE); EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); log(LOG_INFO, "%s: changing name to '%s'\n", ifp->if_xname, new_name); IF_ADDR_WLOCK(ifp); strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); ifa = ifp->if_addr; sdl = (struct sockaddr_dl *)ifa->ifa_addr; namelen = strlen(new_name); onamelen = sdl->sdl_nlen; /* * Move the address if needed. This is safe because we * allocate space for a name of length IFNAMSIZ when we * create this in if_attach(). */ if (namelen != onamelen) { bcopy(sdl->sdl_data + onamelen, sdl->sdl_data + namelen, sdl->sdl_alen); } bcopy(new_name, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl = (struct sockaddr_dl *)ifa->ifa_netmask; bzero(sdl->sdl_data, onamelen); while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; IF_ADDR_WUNLOCK(ifp); EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); /* Announce the return of the interface. */ rt_ifannouncemsg(ifp, IFAN_ARRIVAL); ifp->if_flags &= ~IFF_RENAMING; break; #ifdef VIMAGE case SIOCSIFVNET: error = priv_check(td, PRIV_NET_SETIFVNET); if (error) return (error); error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); break; #endif case SIOCSIFMETRIC: error = priv_check(td, PRIV_NET_SETIFMETRIC); if (error) return (error); ifp->if_metric = ifr->ifr_metric; getmicrotime(&ifp->if_lastchange); break; case SIOCSIFPHYS: error = priv_check(td, PRIV_NET_SETIFPHYS); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCSIFMTU: { u_long oldmtu = ifp->if_mtu; error = priv_check(td, PRIV_NET_SETIFMTU); if (error) return (error); if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) return (EINVAL); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) { getmicrotime(&ifp->if_lastchange); rt_ifmsg(ifp); } /* * If the link MTU changed, do network layer specific procedure. */ if (ifp->if_mtu != oldmtu) { #ifdef INET6 nd6_setmtu(ifp); #endif rt_updatemtu(ifp); } break; } case SIOCADDMULTI: case SIOCDELMULTI: if (cmd == SIOCADDMULTI) error = priv_check(td, PRIV_NET_ADDMULTI); else error = priv_check(td, PRIV_NET_DELMULTI); if (error) return (error); /* Don't allow group membership on non-multicast interfaces. */ if ((ifp->if_flags & IFF_MULTICAST) == 0) return (EOPNOTSUPP); /* Don't let users screw up protocols' entries. */ if (ifr->ifr_addr.sa_family != AF_LINK) return (EINVAL); if (cmd == SIOCADDMULTI) { struct ifmultiaddr *ifma; /* * Userland is only permitted to join groups once * via the if_addmulti() KPI, because it cannot hold * struct ifmultiaddr * between calls. It may also * lose a race while we check if the membership * already exists. */ IF_ADDR_RLOCK(ifp); ifma = if_findmulti(ifp, &ifr->ifr_addr); IF_ADDR_RUNLOCK(ifp); if (ifma != NULL) error = EADDRINUSE; else error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); } else { error = if_delmulti(ifp, &ifr->ifr_addr); } if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCSIFPHYADDR: case SIOCDIFPHYADDR: #ifdef INET6 case SIOCSIFPHYADDR_IN6: #endif case SIOCSIFMEDIA: case SIOCSIFGENERIC: error = priv_check(td, PRIV_NET_HWIOCTL); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCGIFSTATUS: case SIOCGIFPSRCADDR: case SIOCGIFPDSTADDR: case SIOCGIFMEDIA: case SIOCGIFXMEDIA: case SIOCGIFGENERIC: if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); break; case SIOCSIFLLADDR: error = priv_check(td, PRIV_NET_SETLLADDR); if (error) return (error); error = if_setlladdr(ifp, ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); break; case SIOCAIFGROUP: { struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; error = priv_check(td, PRIV_NET_ADDIFGROUP); if (error) return (error); if ((error = if_addgroup(ifp, ifgr->ifgr_group))) return (error); break; } case SIOCGIFGROUP: if ((error = if_getgroup((struct ifgroupreq *)ifr, ifp))) return (error); break; case SIOCDIFGROUP: { struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr; error = priv_check(td, PRIV_NET_DELIFGROUP); if (error) return (error); if ((error = if_delgroup(ifp, ifgr->ifgr_group))) return (error); break; } default: error = ENOIOCTL; break; } return (error); } #ifdef COMPAT_FREEBSD32 struct ifconf32 { int32_t ifc_len; union { uint32_t ifcu_buf; uint32_t ifcu_req; } ifc_ifcu; }; #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) #endif /* * Interface ioctls. */ int ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) { struct ifnet *ifp; struct ifreq *ifr; int error; int oif_flags; CURVNET_SET(so->so_vnet); switch (cmd) { case SIOCGIFCONF: error = ifconf(cmd, data); CURVNET_RESTORE(); return (error); #ifdef COMPAT_FREEBSD32 case SIOCGIFCONF32: { struct ifconf32 *ifc32; struct ifconf ifc; ifc32 = (struct ifconf32 *)data; ifc.ifc_len = ifc32->ifc_len; ifc.ifc_buf = PTRIN(ifc32->ifc_buf); error = ifconf(SIOCGIFCONF, (void *)&ifc); CURVNET_RESTORE(); if (error == 0) ifc32->ifc_len = ifc.ifc_len; return (error); } #endif } ifr = (struct ifreq *)data; switch (cmd) { #ifdef VIMAGE case SIOCSIFRVNET: error = priv_check(td, PRIV_NET_SETIFVNET); if (error == 0) error = if_vmove_reclaim(td, ifr->ifr_name, ifr->ifr_jid); CURVNET_RESTORE(); return (error); #endif case SIOCIFCREATE: case SIOCIFCREATE2: error = priv_check(td, PRIV_NET_IFCREATE); if (error == 0) error = if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL); CURVNET_RESTORE(); return (error); case SIOCIFDESTROY: error = priv_check(td, PRIV_NET_IFDESTROY); if (error == 0) error = if_clone_destroy(ifr->ifr_name); CURVNET_RESTORE(); return (error); case SIOCIFGCLONERS: error = if_clone_list((struct if_clonereq *)data); CURVNET_RESTORE(); return (error); case SIOCGIFGMEMB: error = if_getgroupmembers((struct ifgroupreq *)data); CURVNET_RESTORE(); return (error); #if defined(INET) || defined(INET6) case SIOCSVH: case SIOCGVH: if (carp_ioctl_p == NULL) error = EPROTONOSUPPORT; else error = (*carp_ioctl_p)(ifr, cmd, td); CURVNET_RESTORE(); return (error); #endif } ifp = ifunit_ref(ifr->ifr_name); if (ifp == NULL) { CURVNET_RESTORE(); return (ENXIO); } error = ifhwioctl(cmd, ifp, data, td); if (error != ENOIOCTL) { if_rele(ifp); CURVNET_RESTORE(); return (error); } oif_flags = ifp->if_flags; if (so->so_proto == NULL) { if_rele(ifp); CURVNET_RESTORE(); return (EOPNOTSUPP); } /* * Pass the request on to the socket control method, and if the * latter returns EOPNOTSUPP, directly to the interface. * * Make an exception for the legacy SIOCSIF* requests. Drivers * trust SIOCSIFADDR et al to come from an already privileged * layer, and do not perform any credentials checks or input * validation. */ error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, ifp, td)); if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL && cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) error = (*ifp->if_ioctl)(ifp, cmd, data); if ((oif_flags ^ ifp->if_flags) & IFF_UP) { #ifdef INET6 if (ifp->if_flags & IFF_UP) in6_if_up(ifp); #endif } if_rele(ifp); CURVNET_RESTORE(); return (error); } /* * The code common to handling reference counted flags, * e.g., in ifpromisc() and if_allmulti(). * The "pflag" argument can specify a permanent mode flag to check, * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. * * Only to be used on stack-owned flags, not driver-owned flags. */ static int if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) { struct ifreq ifr; int error; int oldflags, oldcount; /* Sanity checks to catch programming errors */ KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, ("%s: setting driver-owned flag %d", __func__, flag)); if (onswitch) KASSERT(*refcount >= 0, ("%s: increment negative refcount %d for flag %d", __func__, *refcount, flag)); else KASSERT(*refcount > 0, ("%s: decrement non-positive refcount %d for flag %d", __func__, *refcount, flag)); /* In case this mode is permanent, just touch refcount */ if (ifp->if_flags & pflag) { *refcount += onswitch ? 1 : -1; return (0); } /* Save ifnet parameters for if_ioctl() may fail */ oldcount = *refcount; oldflags = ifp->if_flags; /* * See if we aren't the only and touching refcount is enough. * Actually toggle interface flag if we are the first or last. */ if (onswitch) { if ((*refcount)++) return (0); ifp->if_flags |= flag; } else { if (--(*refcount)) return (0); ifp->if_flags &= ~flag; } /* Call down the driver since we've changed interface flags */ if (ifp->if_ioctl == NULL) { error = EOPNOTSUPP; goto recover; } ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); if (error) goto recover; /* Notify userland that interface flags have changed */ rt_ifmsg(ifp); return (0); recover: /* Recover after driver error */ *refcount = oldcount; ifp->if_flags = oldflags; return (error); } /* * Set/clear promiscuous mode on interface ifp based on the truth value * of pswitch. The calls are reference counted so that only the first * "on" request actually has an effect, as does the final "off" request. * Results are undefined if the "off" and "on" requests are not matched. */ int ifpromisc(struct ifnet *ifp, int pswitch) { int error; int oldflags = ifp->if_flags; error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, &ifp->if_pcount, pswitch); /* If promiscuous mode status has changed, log a message */ if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC)) log(LOG_INFO, "%s: promiscuous mode %s\n", ifp->if_xname, (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); return (error); } /* * Return interface configuration * of system. List may be used * in later ioctl's (above) to get * other information. */ /*ARGSUSED*/ static int ifconf(u_long cmd, caddr_t data) { struct ifconf *ifc = (struct ifconf *)data; struct ifnet *ifp; struct ifaddr *ifa; struct ifreq ifr; struct sbuf *sb; int error, full = 0, valid_len, max_len; /* Limit initial buffer size to MAXPHYS to avoid DoS from userspace. */ max_len = MAXPHYS - 1; /* Prevent hostile input from being able to crash the system */ if (ifc->ifc_len <= 0) return (EINVAL); again: if (ifc->ifc_len <= max_len) { max_len = ifc->ifc_len; full = 1; } sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); max_len = 0; valid_len = 0; IFNET_RLOCK(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { int addrs; /* * Zero the ifr_name buffer to make sure we don't * disclose the contents of the stack. */ memset(ifr.ifr_name, 0, sizeof(ifr.ifr_name)); if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) >= sizeof(ifr.ifr_name)) { sbuf_delete(sb); IFNET_RUNLOCK(); return (ENAMETOOLONG); } addrs = 0; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct sockaddr *sa = ifa->ifa_addr; if (prison_if(curthread->td_ucred, sa) != 0) continue; addrs++; if (sa->sa_len <= sizeof(*sa)) { ifr.ifr_addr = *sa; sbuf_bcat(sb, &ifr, sizeof(ifr)); max_len += sizeof(ifr); } else { sbuf_bcat(sb, &ifr, offsetof(struct ifreq, ifr_addr)); max_len += offsetof(struct ifreq, ifr_addr); sbuf_bcat(sb, sa, sa->sa_len); max_len += sa->sa_len; } if (sbuf_error(sb) == 0) valid_len = sbuf_len(sb); } IF_ADDR_RUNLOCK(ifp); if (addrs == 0) { bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr)); sbuf_bcat(sb, &ifr, sizeof(ifr)); max_len += sizeof(ifr); if (sbuf_error(sb) == 0) valid_len = sbuf_len(sb); } } IFNET_RUNLOCK(); /* * If we didn't allocate enough space (uncommon), try again. If * we have already allocated as much space as we are allowed, * return what we've got. */ if (valid_len != max_len && !full) { sbuf_delete(sb); goto again; } ifc->ifc_len = valid_len; sbuf_finish(sb); error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); sbuf_delete(sb); return (error); } /* * Just like ifpromisc(), but for all-multicast-reception mode. */ int if_allmulti(struct ifnet *ifp, int onswitch) { return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch)); } struct ifmultiaddr * if_findmulti(struct ifnet *ifp, const struct sockaddr *sa) { struct ifmultiaddr *ifma; IF_ADDR_LOCK_ASSERT(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (sa->sa_family == AF_LINK) { if (sa_dl_equal(ifma->ifma_addr, sa)) break; } else { if (sa_equal(ifma->ifma_addr, sa)) break; } } return ifma; } /* * Allocate a new ifmultiaddr and initialize based on passed arguments. We * make copies of passed sockaddrs. The ifmultiaddr will not be added to * the ifnet multicast address list here, so the caller must do that and * other setup work (such as notifying the device driver). The reference * count is initialized to 1. */ static struct ifmultiaddr * if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, int mflags) { struct ifmultiaddr *ifma; struct sockaddr *dupsa; ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | M_ZERO); if (ifma == NULL) return (NULL); dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); if (dupsa == NULL) { free(ifma, M_IFMADDR); return (NULL); } bcopy(sa, dupsa, sa->sa_len); ifma->ifma_addr = dupsa; ifma->ifma_ifp = ifp; ifma->ifma_refcount = 1; ifma->ifma_protospec = NULL; if (llsa == NULL) { ifma->ifma_lladdr = NULL; return (ifma); } dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); if (dupsa == NULL) { free(ifma->ifma_addr, M_IFMADDR); free(ifma, M_IFMADDR); return (NULL); } bcopy(llsa, dupsa, llsa->sa_len); ifma->ifma_lladdr = dupsa; return (ifma); } /* * if_freemulti: free ifmultiaddr structure and possibly attached related * addresses. The caller is responsible for implementing reference * counting, notifying the driver, handling routing messages, and releasing * any dependent link layer state. */ static void if_freemulti(struct ifmultiaddr *ifma) { KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", ifma->ifma_refcount)); if (ifma->ifma_lladdr != NULL) free(ifma->ifma_lladdr, M_IFMADDR); free(ifma->ifma_addr, M_IFMADDR); free(ifma, M_IFMADDR); } /* * Register an additional multicast address with a network interface. * * - If the address is already present, bump the reference count on the * address and return. * - If the address is not link-layer, look up a link layer address. * - Allocate address structures for one or both addresses, and attach to the * multicast address list on the interface. If automatically adding a link * layer address, the protocol address will own a reference to the link * layer address, to be freed when it is freed. * - Notify the network device driver of an addition to the multicast address * list. * * 'sa' points to caller-owned memory with the desired multicast address. * * 'retifma' will be used to return a pointer to the resulting multicast * address reference, if desired. */ int if_addmulti(struct ifnet *ifp, struct sockaddr *sa, struct ifmultiaddr **retifma) { struct ifmultiaddr *ifma, *ll_ifma; struct sockaddr *llsa; struct sockaddr_dl sdl; int error; /* * If the address is already present, return a new reference to it; * otherwise, allocate storage and set up a new address. */ IF_ADDR_WLOCK(ifp); ifma = if_findmulti(ifp, sa); if (ifma != NULL) { ifma->ifma_refcount++; if (retifma != NULL) *retifma = ifma; IF_ADDR_WUNLOCK(ifp); return (0); } /* * The address isn't already present; resolve the protocol address * into a link layer address, and then look that up, bump its * refcount or allocate an ifma for that also. * Most link layer resolving functions returns address data which * fits inside default sockaddr_dl structure. However callback * can allocate another sockaddr structure, in that case we need to * free it later. */ llsa = NULL; ll_ifma = NULL; if (ifp->if_resolvemulti != NULL) { /* Provide called function with buffer size information */ sdl.sdl_len = sizeof(sdl); llsa = (struct sockaddr *)&sdl; error = ifp->if_resolvemulti(ifp, &llsa, sa); if (error) goto unlock_out; } /* * Allocate the new address. Don't hook it up yet, as we may also * need to allocate a link layer multicast address. */ ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); if (ifma == NULL) { error = ENOMEM; goto free_llsa_out; } /* * If a link layer address is found, we'll need to see if it's * already present in the address list, or allocate is as well. * When this block finishes, the link layer address will be on the * list. */ if (llsa != NULL) { ll_ifma = if_findmulti(ifp, llsa); if (ll_ifma == NULL) { ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); if (ll_ifma == NULL) { --ifma->ifma_refcount; if_freemulti(ifma); error = ENOMEM; goto free_llsa_out; } TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, ifma_link); } else ll_ifma->ifma_refcount++; ifma->ifma_llifma = ll_ifma; } /* * We now have a new multicast address, ifma, and possibly a new or * referenced link layer address. Add the primary address to the * ifnet address list. */ TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); if (retifma != NULL) *retifma = ifma; /* * Must generate the message while holding the lock so that 'ifma' * pointer is still valid. */ rt_newmaddrmsg(RTM_NEWMADDR, ifma); IF_ADDR_WUNLOCK(ifp); /* * We are certain we have added something, so call down to the * interface to let them know about it. */ if (ifp->if_ioctl != NULL) { (void) (*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); } if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) link_free_sdl(llsa); return (0); free_llsa_out: if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) link_free_sdl(llsa); unlock_out: IF_ADDR_WUNLOCK(ifp); return (error); } /* * Delete a multicast group membership by network-layer group address. * * Returns ENOENT if the entry could not be found. If ifp no longer * exists, results are undefined. This entry point should only be used * from subsystems which do appropriate locking to hold ifp for the * duration of the call. * Network-layer protocol domains must use if_delmulti_ifma(). */ int if_delmulti(struct ifnet *ifp, struct sockaddr *sa) { struct ifmultiaddr *ifma; int lastref; #ifdef INVARIANTS struct ifnet *oifp; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(oifp, &V_ifnet, if_link) if (ifp == oifp) break; if (ifp != oifp) ifp = NULL; IFNET_RUNLOCK_NOSLEEP(); KASSERT(ifp != NULL, ("%s: ifnet went away", __func__)); #endif if (ifp == NULL) return (ENOENT); IF_ADDR_WLOCK(ifp); lastref = 0; ifma = if_findmulti(ifp, sa); if (ifma != NULL) lastref = if_delmulti_locked(ifp, ifma, 0); IF_ADDR_WUNLOCK(ifp); if (ifma == NULL) return (ENOENT); if (lastref && ifp->if_ioctl != NULL) { (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); } return (0); } /* * Delete all multicast group membership for an interface. * Should be used to quickly flush all multicast filters. */ void if_delallmulti(struct ifnet *ifp) { struct ifmultiaddr *ifma; struct ifmultiaddr *next; IF_ADDR_WLOCK(ifp); TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) if_delmulti_locked(ifp, ifma, 0); IF_ADDR_WUNLOCK(ifp); } /* * Delete a multicast group membership by group membership pointer. * Network-layer protocol domains must use this routine. * * It is safe to call this routine if the ifp disappeared. */ void if_delmulti_ifma(struct ifmultiaddr *ifma) { struct ifnet *ifp; int lastref; ifp = ifma->ifma_ifp; #ifdef DIAGNOSTIC if (ifp == NULL) { printf("%s: ifma_ifp seems to be detached\n", __func__); } else { struct ifnet *oifp; IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(oifp, &V_ifnet, if_link) if (ifp == oifp) break; if (ifp != oifp) { printf("%s: ifnet %p disappeared\n", __func__, ifp); ifp = NULL; } IFNET_RUNLOCK_NOSLEEP(); } #endif /* * If and only if the ifnet instance exists: Acquire the address lock. */ if (ifp != NULL) IF_ADDR_WLOCK(ifp); lastref = if_delmulti_locked(ifp, ifma, 0); if (ifp != NULL) { /* * If and only if the ifnet instance exists: * Release the address lock. * If the group was left: update the hardware hash filter. */ IF_ADDR_WUNLOCK(ifp); if (lastref && ifp->if_ioctl != NULL) { (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); } } } /* * Perform deletion of network-layer and/or link-layer multicast address. * * Return 0 if the reference count was decremented. * Return 1 if the final reference was released, indicating that the * hardware hash filter should be reprogrammed. */ static int if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) { struct ifmultiaddr *ll_ifma; if (ifp != NULL && ifma->ifma_ifp != NULL) { KASSERT(ifma->ifma_ifp == ifp, ("%s: inconsistent ifp %p", __func__, ifp)); IF_ADDR_WLOCK_ASSERT(ifp); } ifp = ifma->ifma_ifp; /* * If the ifnet is detaching, null out references to ifnet, * so that upper protocol layers will notice, and not attempt * to obtain locks for an ifnet which no longer exists. The * routing socket announcement must happen before the ifnet * instance is detached from the system. */ if (detaching) { #ifdef DIAGNOSTIC printf("%s: detaching ifnet instance %p\n", __func__, ifp); #endif /* * ifp may already be nulled out if we are being reentered * to delete the ll_ifma. */ if (ifp != NULL) { rt_newmaddrmsg(RTM_DELMADDR, ifma); ifma->ifma_ifp = NULL; } } if (--ifma->ifma_refcount > 0) return 0; /* * If this ifma is a network-layer ifma, a link-layer ifma may * have been associated with it. Release it first if so. */ ll_ifma = ifma->ifma_llifma; if (ll_ifma != NULL) { KASSERT(ifma->ifma_lladdr != NULL, ("%s: llifma w/o lladdr", __func__)); if (detaching) ll_ifma->ifma_ifp = NULL; /* XXX */ if (--ll_ifma->ifma_refcount == 0) { if (ifp != NULL) { TAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifma_link); } if_freemulti(ll_ifma); } } if (ifp != NULL) TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link); if_freemulti(ifma); /* * The last reference to this instance of struct ifmultiaddr * was released; the hardware should be notified of this change. */ return 1; } /* * Set the link layer address on an interface. * * At this time we only support certain types of interfaces, * and we don't allow the length of the address to change. * * Set noinline to be dtrace-friendly */ __noinline int if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) { struct sockaddr_dl *sdl; struct ifaddr *ifa; struct ifreq ifr; IF_ADDR_RLOCK(ifp); ifa = ifp->if_addr; if (ifa == NULL) { IF_ADDR_RUNLOCK(ifp); return (EINVAL); } ifa_ref(ifa); IF_ADDR_RUNLOCK(ifp); sdl = (struct sockaddr_dl *)ifa->ifa_addr; if (sdl == NULL) { ifa_free(ifa); return (EINVAL); } if (len != sdl->sdl_alen) { /* don't allow length to change */ ifa_free(ifa); return (EINVAL); } switch (ifp->if_type) { case IFT_ETHER: case IFT_FDDI: case IFT_XETHER: case IFT_ISO88025: case IFT_L2VLAN: case IFT_BRIDGE: case IFT_ARCNET: case IFT_IEEE8023ADLAG: case IFT_IEEE80211: bcopy(lladdr, LLADDR(sdl), len); ifa_free(ifa); break; default: ifa_free(ifa); return (ENODEV); } /* * If the interface is already up, we need * to re-init it in order to reprogram its * address filter. */ if ((ifp->if_flags & IFF_UP) != 0) { if (ifp->if_ioctl) { ifp->if_flags &= ~IFF_UP; ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); ifp->if_flags |= IFF_UP; ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); } } EVENTHANDLER_INVOKE(iflladdr_event, ifp); return (0); } /* * Compat function for handling basic encapsulation requests. * Not converted stacks (FDDI, IB, ..) supports traditional * output model: ARP (and other similar L2 protocols) are handled * inside output routine, arpresolve/nd6_resolve() returns MAC * address instead of full prepend. * * This function creates calculated header==MAC for IPv4/IPv6 and * returns EAFNOSUPPORT (which is then handled in ARP code) for other * address families. */ static int if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req) { if (req->rtype != IFENCAP_LL) return (EOPNOTSUPP); if (req->bufsize < req->lladdr_len) return (ENOMEM); switch (req->family) { case AF_INET: case AF_INET6: break; default: return (EAFNOSUPPORT); } /* Copy lladdr to storage as is */ memmove(req->buf, req->lladdr, req->lladdr_len); req->bufsize = req->lladdr_len; req->lladdr_off = 0; return (0); } /* * The name argument must be a pointer to storage which will last as * long as the interface does. For physical devices, the result of * device_get_name(dev) is a good choice and for pseudo-devices a * static string works well. */ void if_initname(struct ifnet *ifp, const char *name, int unit) { ifp->if_dname = name; ifp->if_dunit = unit; if (unit != IF_DUNIT_NONE) snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); else strlcpy(ifp->if_xname, name, IFNAMSIZ); } int if_printf(struct ifnet *ifp, const char * fmt, ...) { va_list ap; int retval; retval = printf("%s: ", ifp->if_xname); va_start(ap, fmt); retval += vprintf(fmt, ap); va_end(ap); return (retval); } void if_start(struct ifnet *ifp) { (*(ifp)->if_start)(ifp); } /* * Backwards compatibility interface for drivers * that have not implemented it */ static int if_transmit(struct ifnet *ifp, struct mbuf *m) { int error; IFQ_HANDOFF(ifp, m, error); return (error); } static void if_input_default(struct ifnet *ifp __unused, struct mbuf *m) { m_freem(m); } int if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) { int active = 0; IF_LOCK(ifq); if (_IF_QFULL(ifq)) { IF_UNLOCK(ifq); if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); m_freem(m); return (0); } if (ifp != NULL) { if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust); if (m->m_flags & (M_BCAST|M_MCAST)) if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); active = ifp->if_drv_flags & IFF_DRV_OACTIVE; } _IF_ENQUEUE(ifq, m); IF_UNLOCK(ifq); if (ifp != NULL && !active) (*(ifp)->if_start)(ifp); return (1); } void if_register_com_alloc(u_char type, if_com_alloc_t *a, if_com_free_t *f) { KASSERT(if_com_alloc[type] == NULL, ("if_register_com_alloc: %d already registered", type)); KASSERT(if_com_free[type] == NULL, ("if_register_com_alloc: %d free already registered", type)); if_com_alloc[type] = a; if_com_free[type] = f; } void if_deregister_com_alloc(u_char type) { KASSERT(if_com_alloc[type] != NULL, ("if_deregister_com_alloc: %d not registered", type)); KASSERT(if_com_free[type] != NULL, ("if_deregister_com_alloc: %d free not registered", type)); if_com_alloc[type] = NULL; if_com_free[type] = NULL; } /* API for driver access to network stack owned ifnet.*/ uint64_t if_setbaudrate(struct ifnet *ifp, uint64_t baudrate) { uint64_t oldbrate; oldbrate = ifp->if_baudrate; ifp->if_baudrate = baudrate; return (oldbrate); } uint64_t if_getbaudrate(if_t ifp) { return (((struct ifnet *)ifp)->if_baudrate); } int if_setcapabilities(if_t ifp, int capabilities) { ((struct ifnet *)ifp)->if_capabilities = capabilities; return (0); } int if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit) { ((struct ifnet *)ifp)->if_capabilities |= setbit; ((struct ifnet *)ifp)->if_capabilities &= ~clearbit; return (0); } int if_getcapabilities(if_t ifp) { return ((struct ifnet *)ifp)->if_capabilities; } int if_setcapenable(if_t ifp, int capabilities) { ((struct ifnet *)ifp)->if_capenable = capabilities; return (0); } int if_setcapenablebit(if_t ifp, int setcap, int clearcap) { if(setcap) ((struct ifnet *)ifp)->if_capenable |= setcap; if(clearcap) ((struct ifnet *)ifp)->if_capenable &= ~clearcap; return (0); } const char * if_getdname(if_t ifp) { return ((struct ifnet *)ifp)->if_dname; } int if_togglecapenable(if_t ifp, int togglecap) { ((struct ifnet *)ifp)->if_capenable ^= togglecap; return (0); } int if_getcapenable(if_t ifp) { return ((struct ifnet *)ifp)->if_capenable; } /* * This is largely undesirable because it ties ifnet to a device, but does * provide flexiblity for an embedded product vendor. Should be used with * the understanding that it violates the interface boundaries, and should be * a last resort only. */ int if_setdev(if_t ifp, void *dev) { return (0); } int if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags) { ((struct ifnet *)ifp)->if_drv_flags |= set_flags; ((struct ifnet *)ifp)->if_drv_flags &= ~clear_flags; return (0); } int if_getdrvflags(if_t ifp) { return ((struct ifnet *)ifp)->if_drv_flags; } int if_setdrvflags(if_t ifp, int flags) { ((struct ifnet *)ifp)->if_drv_flags = flags; return (0); } int if_setflags(if_t ifp, int flags) { ((struct ifnet *)ifp)->if_flags = flags; return (0); } int if_setflagbits(if_t ifp, int set, int clear) { ((struct ifnet *)ifp)->if_flags |= set; ((struct ifnet *)ifp)->if_flags &= ~clear; return (0); } int if_getflags(if_t ifp) { return ((struct ifnet *)ifp)->if_flags; } int if_clearhwassist(if_t ifp) { ((struct ifnet *)ifp)->if_hwassist = 0; return (0); } int if_sethwassistbits(if_t ifp, int toset, int toclear) { ((struct ifnet *)ifp)->if_hwassist |= toset; ((struct ifnet *)ifp)->if_hwassist &= ~toclear; return (0); } int if_sethwassist(if_t ifp, int hwassist_bit) { ((struct ifnet *)ifp)->if_hwassist = hwassist_bit; return (0); } int if_gethwassist(if_t ifp) { return ((struct ifnet *)ifp)->if_hwassist; } int if_setmtu(if_t ifp, int mtu) { ((struct ifnet *)ifp)->if_mtu = mtu; return (0); } int if_getmtu(if_t ifp) { return ((struct ifnet *)ifp)->if_mtu; } int if_getmtu_family(if_t ifp, int family) { struct domain *dp; for (dp = domains; dp; dp = dp->dom_next) { if (dp->dom_family == family && dp->dom_ifmtu != NULL) return (dp->dom_ifmtu((struct ifnet *)ifp)); } return (((struct ifnet *)ifp)->if_mtu); } int if_setsoftc(if_t ifp, void *softc) { ((struct ifnet *)ifp)->if_softc = softc; return (0); } void * if_getsoftc(if_t ifp) { return ((struct ifnet *)ifp)->if_softc; } void if_setrcvif(struct mbuf *m, if_t ifp) { m->m_pkthdr.rcvif = (struct ifnet *)ifp; } void if_setvtag(struct mbuf *m, uint16_t tag) { m->m_pkthdr.ether_vtag = tag; } uint16_t if_getvtag(struct mbuf *m) { return (m->m_pkthdr.ether_vtag); } int if_sendq_empty(if_t ifp) { return IFQ_DRV_IS_EMPTY(&((struct ifnet *)ifp)->if_snd); } struct ifaddr * if_getifaddr(if_t ifp) { return ((struct ifnet *)ifp)->if_addr; } int if_getamcount(if_t ifp) { return ((struct ifnet *)ifp)->if_amcount; } int if_setsendqready(if_t ifp) { IFQ_SET_READY(&((struct ifnet *)ifp)->if_snd); return (0); } int if_setsendqlen(if_t ifp, int tx_desc_count) { IFQ_SET_MAXLEN(&((struct ifnet *)ifp)->if_snd, tx_desc_count); ((struct ifnet *)ifp)->if_snd.ifq_drv_maxlen = tx_desc_count; return (0); } int if_vlantrunkinuse(if_t ifp) { return ((struct ifnet *)ifp)->if_vlantrunk != NULL?1:0; } int if_input(if_t ifp, struct mbuf* sendmp) { (*((struct ifnet *)ifp)->if_input)((struct ifnet *)ifp, sendmp); return (0); } /* XXX */ #ifndef ETH_ADDR_LEN #define ETH_ADDR_LEN 6 #endif int if_setupmultiaddr(if_t ifp, void *mta, int *cnt, int max) { struct ifmultiaddr *ifma; uint8_t *lmta = (uint8_t *)mta; int mcnt = 0; TAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; if (mcnt == max) break; bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), &lmta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN); mcnt++; } *cnt = mcnt; return (0); } int if_multiaddr_array(if_t ifp, void *mta, int *cnt, int max) { int error; if_maddr_rlock(ifp); error = if_setupmultiaddr(ifp, mta, cnt, max); if_maddr_runlock(ifp); return (error); } int if_multiaddr_count(if_t ifp, int max) { struct ifmultiaddr *ifma; int count; count = 0; if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; count++; if (count == max) break; } if_maddr_runlock(ifp); return (count); } struct mbuf * if_dequeue(if_t ifp) { struct mbuf *m; IFQ_DRV_DEQUEUE(&((struct ifnet *)ifp)->if_snd, m); return (m); } int if_sendq_prepend(if_t ifp, struct mbuf *m) { IFQ_DRV_PREPEND(&((struct ifnet *)ifp)->if_snd, m); return (0); } int if_setifheaderlen(if_t ifp, int len) { ((struct ifnet *)ifp)->if_hdrlen = len; return (0); } caddr_t if_getlladdr(if_t ifp) { return (IF_LLADDR((struct ifnet *)ifp)); } void * if_gethandle(u_char type) { return (if_alloc(type)); } void if_bpfmtap(if_t ifh, struct mbuf *m) { struct ifnet *ifp = (struct ifnet *)ifh; BPF_MTAP(ifp, m); } void if_etherbpfmtap(if_t ifh, struct mbuf *m) { struct ifnet *ifp = (struct ifnet *)ifh; ETHER_BPF_MTAP(ifp, m); } void if_vlancap(if_t ifh) { struct ifnet *ifp = (struct ifnet *)ifh; VLAN_CAPABILITIES(ifp); } void if_setinitfn(if_t ifp, void (*init_fn)(void *)) { ((struct ifnet *)ifp)->if_init = init_fn; } void if_setioctlfn(if_t ifp, int (*ioctl_fn)(if_t, u_long, caddr_t)) { ((struct ifnet *)ifp)->if_ioctl = (void *)ioctl_fn; } void if_setstartfn(if_t ifp, void (*start_fn)(if_t)) { ((struct ifnet *)ifp)->if_start = (void *)start_fn; } void if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn) { ((struct ifnet *)ifp)->if_transmit = start_fn; } void if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn) { ((struct ifnet *)ifp)->if_qflush = flush_fn; } void if_setgetcounterfn(if_t ifp, if_get_counter_t fn) { ifp->if_get_counter = fn; } /* Revisit these - These are inline functions originally. */ int drbr_inuse_drv(if_t ifh, struct buf_ring *br) { return drbr_inuse(ifh, br); } struct mbuf* drbr_dequeue_drv(if_t ifh, struct buf_ring *br) { return drbr_dequeue(ifh, br); } int drbr_needs_enqueue_drv(if_t ifh, struct buf_ring *br) { return drbr_needs_enqueue(ifh, br); } int drbr_enqueue_drv(if_t ifh, struct buf_ring *br, struct mbuf *m) { return drbr_enqueue(ifh, br, m); } Index: projects/vnet/sys/net/if_bridge.c =================================================================== --- projects/vnet/sys/net/if_bridge.c (revision 297511) +++ projects/vnet/sys/net/if_bridge.c (revision 297512) @@ -1,3572 +1,3572 @@ /* $NetBSD: if_bridge.c,v 1.31 2005/06/01 19:45:34 jdc Exp $ */ /* * Copyright 2001 Wasabi Systems, Inc. * All rights reserved. * * Written by Jason R. Thorpe for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1999, 2000 Jason L. Wright (jason@thought.net) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * OpenBSD: if_bridge.c,v 1.60 2001/06/15 03:38:33 itojun Exp */ /* * Network interface bridge support. * * TODO: * * - Currently only supports Ethernet-like interfaces (Ethernet, * 802.11, VLANs on Ethernet, etc.) Figure out a nice way * to bridge other types of interfaces (FDDI-FDDI, and maybe * consider heterogenous bridges). */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include /* for net/if.h */ #include #include /* string functions */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #endif #if defined(INET) || defined(INET6) #include #endif #include #include #include #include #include #include #include /* * Size of the route hash table. Must be a power of two. */ #ifndef BRIDGE_RTHASH_SIZE #define BRIDGE_RTHASH_SIZE 1024 #endif #define BRIDGE_RTHASH_MASK (BRIDGE_RTHASH_SIZE - 1) /* * Default maximum number of addresses to cache. */ #ifndef BRIDGE_RTABLE_MAX #define BRIDGE_RTABLE_MAX 2000 #endif /* * Timeout (in seconds) for entries learned dynamically. */ #ifndef BRIDGE_RTABLE_TIMEOUT #define BRIDGE_RTABLE_TIMEOUT (20 * 60) /* same as ARP */ #endif /* * Number of seconds between walks of the route list. */ #ifndef BRIDGE_RTABLE_PRUNE_PERIOD #define BRIDGE_RTABLE_PRUNE_PERIOD (5 * 60) #endif /* * List of capabilities to possibly mask on the member interface. */ #define BRIDGE_IFCAPS_MASK (IFCAP_TOE|IFCAP_TSO|IFCAP_TXCSUM) /* * List of capabilities to strip */ #define BRIDGE_IFCAPS_STRIP IFCAP_LRO /* * Bridge interface list entry. */ struct bridge_iflist { LIST_ENTRY(bridge_iflist) bif_next; struct ifnet *bif_ifp; /* member if */ struct bstp_port bif_stp; /* STP state */ uint32_t bif_flags; /* member if flags */ int bif_savedcaps; /* saved capabilities */ uint32_t bif_addrmax; /* max # of addresses */ uint32_t bif_addrcnt; /* cur. # of addresses */ uint32_t bif_addrexceeded;/* # of address violations */ }; /* * Bridge route node. */ struct bridge_rtnode { LIST_ENTRY(bridge_rtnode) brt_hash; /* hash table linkage */ LIST_ENTRY(bridge_rtnode) brt_list; /* list linkage */ struct bridge_iflist *brt_dst; /* destination if */ unsigned long brt_expire; /* expiration time */ uint8_t brt_flags; /* address flags */ uint8_t brt_addr[ETHER_ADDR_LEN]; uint16_t brt_vlan; /* vlan id */ }; #define brt_ifp brt_dst->bif_ifp /* * Software state for each bridge. */ struct bridge_softc { struct ifnet *sc_ifp; /* make this an interface */ LIST_ENTRY(bridge_softc) sc_list; struct mtx sc_mtx; struct cv sc_cv; uint32_t sc_brtmax; /* max # of addresses */ uint32_t sc_brtcnt; /* cur. # of addresses */ uint32_t sc_brttimeout; /* rt timeout in seconds */ struct callout sc_brcallout; /* bridge callout */ uint32_t sc_iflist_ref; /* refcount for sc_iflist */ uint32_t sc_iflist_xcnt; /* refcount for sc_iflist */ LIST_HEAD(, bridge_iflist) sc_iflist; /* member interface list */ LIST_HEAD(, bridge_rtnode) *sc_rthash; /* our forwarding table */ LIST_HEAD(, bridge_rtnode) sc_rtlist; /* list version of above */ uint32_t sc_rthash_key; /* key for hash */ LIST_HEAD(, bridge_iflist) sc_spanlist; /* span ports list */ struct bstp_state sc_stp; /* STP state */ uint32_t sc_brtexceeded; /* # of cache drops */ struct ifnet *sc_ifaddr; /* member mac copied from */ u_char sc_defaddr[6]; /* Default MAC address */ }; static VNET_DEFINE(struct mtx, bridge_list_mtx); #define V_bridge_list_mtx VNET(bridge_list_mtx) static eventhandler_tag bridge_detach_cookie; int bridge_rtable_prune_period = BRIDGE_RTABLE_PRUNE_PERIOD; uma_zone_t bridge_rtnode_zone; static int bridge_clone_create(struct if_clone *, int, caddr_t); static void bridge_clone_destroy(struct ifnet *); static int bridge_ioctl(struct ifnet *, u_long, caddr_t); static void bridge_mutecaps(struct bridge_softc *); static void bridge_set_ifcap(struct bridge_softc *, struct bridge_iflist *, int); static void bridge_ifdetach(void *arg __unused, struct ifnet *); static void bridge_init(void *); static void bridge_dummynet(struct mbuf *, struct ifnet *); static void bridge_stop(struct ifnet *, int); static int bridge_transmit(struct ifnet *, struct mbuf *); static void bridge_qflush(struct ifnet *); static struct mbuf *bridge_input(struct ifnet *, struct mbuf *); static int bridge_output(struct ifnet *, struct mbuf *, struct sockaddr *, struct rtentry *); static int bridge_enqueue(struct bridge_softc *, struct ifnet *, struct mbuf *); static void bridge_rtdelete(struct bridge_softc *, struct ifnet *ifp, int); static void bridge_forward(struct bridge_softc *, struct bridge_iflist *, struct mbuf *m); static void bridge_timer(void *); static void bridge_broadcast(struct bridge_softc *, struct ifnet *, struct mbuf *, int); static void bridge_span(struct bridge_softc *, struct mbuf *); static int bridge_rtupdate(struct bridge_softc *, const uint8_t *, uint16_t, struct bridge_iflist *, int, uint8_t); static struct ifnet *bridge_rtlookup(struct bridge_softc *, const uint8_t *, uint16_t); static void bridge_rttrim(struct bridge_softc *); static void bridge_rtage(struct bridge_softc *); static void bridge_rtflush(struct bridge_softc *, int); static int bridge_rtdaddr(struct bridge_softc *, const uint8_t *, uint16_t); static void bridge_rtable_init(struct bridge_softc *); static void bridge_rtable_fini(struct bridge_softc *); static int bridge_rtnode_addr_cmp(const uint8_t *, const uint8_t *); static struct bridge_rtnode *bridge_rtnode_lookup(struct bridge_softc *, const uint8_t *, uint16_t); static int bridge_rtnode_insert(struct bridge_softc *, struct bridge_rtnode *); static void bridge_rtnode_destroy(struct bridge_softc *, struct bridge_rtnode *); static void bridge_rtable_expire(struct ifnet *, int); static void bridge_state_change(struct ifnet *, int); static struct bridge_iflist *bridge_lookup_member(struct bridge_softc *, const char *name); static struct bridge_iflist *bridge_lookup_member_if(struct bridge_softc *, struct ifnet *ifp); static void bridge_delete_member(struct bridge_softc *, struct bridge_iflist *, int); static void bridge_delete_span(struct bridge_softc *, struct bridge_iflist *); static int bridge_ioctl_add(struct bridge_softc *, void *); static int bridge_ioctl_del(struct bridge_softc *, void *); static int bridge_ioctl_gifflags(struct bridge_softc *, void *); static int bridge_ioctl_sifflags(struct bridge_softc *, void *); static int bridge_ioctl_scache(struct bridge_softc *, void *); static int bridge_ioctl_gcache(struct bridge_softc *, void *); static int bridge_ioctl_gifs(struct bridge_softc *, void *); static int bridge_ioctl_rts(struct bridge_softc *, void *); static int bridge_ioctl_saddr(struct bridge_softc *, void *); static int bridge_ioctl_sto(struct bridge_softc *, void *); static int bridge_ioctl_gto(struct bridge_softc *, void *); static int bridge_ioctl_daddr(struct bridge_softc *, void *); static int bridge_ioctl_flush(struct bridge_softc *, void *); static int bridge_ioctl_gpri(struct bridge_softc *, void *); static int bridge_ioctl_spri(struct bridge_softc *, void *); static int bridge_ioctl_ght(struct bridge_softc *, void *); static int bridge_ioctl_sht(struct bridge_softc *, void *); static int bridge_ioctl_gfd(struct bridge_softc *, void *); static int bridge_ioctl_sfd(struct bridge_softc *, void *); static int bridge_ioctl_gma(struct bridge_softc *, void *); static int bridge_ioctl_sma(struct bridge_softc *, void *); static int bridge_ioctl_sifprio(struct bridge_softc *, void *); static int bridge_ioctl_sifcost(struct bridge_softc *, void *); static int bridge_ioctl_sifmaxaddr(struct bridge_softc *, void *); static int bridge_ioctl_addspan(struct bridge_softc *, void *); static int bridge_ioctl_delspan(struct bridge_softc *, void *); static int bridge_ioctl_gbparam(struct bridge_softc *, void *); static int bridge_ioctl_grte(struct bridge_softc *, void *); static int bridge_ioctl_gifsstp(struct bridge_softc *, void *); static int bridge_ioctl_sproto(struct bridge_softc *, void *); static int bridge_ioctl_stxhc(struct bridge_softc *, void *); static int bridge_pfil(struct mbuf **, struct ifnet *, struct ifnet *, int); static int bridge_ip_checkbasic(struct mbuf **mp); #ifdef INET6 static int bridge_ip6_checkbasic(struct mbuf **mp); #endif /* INET6 */ static int bridge_fragment(struct ifnet *, struct mbuf *, struct ether_header *, int, struct llc *); static void bridge_linkstate(struct ifnet *ifp); static void bridge_linkcheck(struct bridge_softc *sc); extern void (*bridge_linkstate_p)(struct ifnet *ifp); /* The default bridge vlan is 1 (IEEE 802.1Q-2003 Table 9-2) */ #define VLANTAGOF(_m) \ (_m->m_flags & M_VLANTAG) ? EVL_VLANOFTAG(_m->m_pkthdr.ether_vtag) : 1 static struct bstp_cb_ops bridge_ops = { .bcb_state = bridge_state_change, .bcb_rtage = bridge_rtable_expire }; SYSCTL_DECL(_net_link); static SYSCTL_NODE(_net_link, IFT_BRIDGE, bridge, CTLFLAG_RW, 0, "Bridge"); /* only pass IP[46] packets when pfil is enabled */ static VNET_DEFINE(int, pfil_onlyip) = 1; #define V_pfil_onlyip VNET(pfil_onlyip) SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_onlyip, CTLFLAG_RWTUN | CTLFLAG_VNET, &VNET_NAME(pfil_onlyip), 0, "Only pass IP packets when pfil is enabled"); /* run pfil hooks on the bridge interface */ static VNET_DEFINE(int, pfil_bridge) = 1; #define V_pfil_bridge VNET(pfil_bridge) SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_bridge, CTLFLAG_RWTUN | CTLFLAG_VNET, &VNET_NAME(pfil_bridge), 0, "Packet filter on the bridge interface"); /* layer2 filter with ipfw */ static VNET_DEFINE(int, pfil_ipfw); #define V_pfil_ipfw VNET(pfil_ipfw) /* layer2 ARP filter with ipfw */ static VNET_DEFINE(int, pfil_ipfw_arp); #define V_pfil_ipfw_arp VNET(pfil_ipfw_arp) SYSCTL_INT(_net_link_bridge, OID_AUTO, ipfw_arp, CTLFLAG_RWTUN | CTLFLAG_VNET, &VNET_NAME(pfil_ipfw_arp), 0, "Filter ARP packets through IPFW layer2"); /* run pfil hooks on the member interface */ static VNET_DEFINE(int, pfil_member) = 1; #define V_pfil_member VNET(pfil_member) SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_member, CTLFLAG_RWTUN | CTLFLAG_VNET, &VNET_NAME(pfil_member), 0, "Packet filter on the member interface"); /* run pfil hooks on the physical interface for locally destined packets */ static VNET_DEFINE(int, pfil_local_phys); #define V_pfil_local_phys VNET(pfil_local_phys) SYSCTL_INT(_net_link_bridge, OID_AUTO, pfil_local_phys, CTLFLAG_RWTUN | CTLFLAG_VNET, &VNET_NAME(pfil_local_phys), 0, "Packet filter on the physical interface for locally destined packets"); /* log STP state changes */ static VNET_DEFINE(int, log_stp); #define V_log_stp VNET(log_stp) SYSCTL_INT(_net_link_bridge, OID_AUTO, log_stp, CTLFLAG_RWTUN | CTLFLAG_VNET, &VNET_NAME(log_stp), 0, "Log STP state changes"); /* share MAC with first bridge member */ static VNET_DEFINE(int, bridge_inherit_mac); #define V_bridge_inherit_mac VNET(bridge_inherit_mac) SYSCTL_INT(_net_link_bridge, OID_AUTO, inherit_mac, CTLFLAG_RWTUN | CTLFLAG_VNET, &VNET_NAME(bridge_inherit_mac), 0, "Inherit MAC address from the first bridge member"); static VNET_DEFINE(int, allow_llz_overlap) = 0; #define V_allow_llz_overlap VNET(allow_llz_overlap) SYSCTL_INT(_net_link_bridge, OID_AUTO, allow_llz_overlap, CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_VNET, &VNET_NAME(allow_llz_overlap), 0, "Allow overlap of link-local scope " "zones of a bridge interface and the member interfaces"); struct bridge_control { int (*bc_func)(struct bridge_softc *, void *); int bc_argsize; int bc_flags; }; #define BC_F_COPYIN 0x01 /* copy arguments in */ #define BC_F_COPYOUT 0x02 /* copy arguments out */ #define BC_F_SUSER 0x04 /* do super-user check */ const struct bridge_control bridge_control_table[] = { { bridge_ioctl_add, sizeof(struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_del, sizeof(struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gifflags, sizeof(struct ifbreq), BC_F_COPYIN|BC_F_COPYOUT }, { bridge_ioctl_sifflags, sizeof(struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_scache, sizeof(struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gcache, sizeof(struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_gifs, sizeof(struct ifbifconf), BC_F_COPYIN|BC_F_COPYOUT }, { bridge_ioctl_rts, sizeof(struct ifbaconf), BC_F_COPYIN|BC_F_COPYOUT }, { bridge_ioctl_saddr, sizeof(struct ifbareq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_sto, sizeof(struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gto, sizeof(struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_daddr, sizeof(struct ifbareq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_flush, sizeof(struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gpri, sizeof(struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_spri, sizeof(struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_ght, sizeof(struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_sht, sizeof(struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gfd, sizeof(struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_sfd, sizeof(struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gma, sizeof(struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_sma, sizeof(struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_sifprio, sizeof(struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_sifcost, sizeof(struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_addspan, sizeof(struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_delspan, sizeof(struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_gbparam, sizeof(struct ifbropreq), BC_F_COPYOUT }, { bridge_ioctl_grte, sizeof(struct ifbrparam), BC_F_COPYOUT }, { bridge_ioctl_gifsstp, sizeof(struct ifbpstpconf), BC_F_COPYIN|BC_F_COPYOUT }, { bridge_ioctl_sproto, sizeof(struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_stxhc, sizeof(struct ifbrparam), BC_F_COPYIN|BC_F_SUSER }, { bridge_ioctl_sifmaxaddr, sizeof(struct ifbreq), BC_F_COPYIN|BC_F_SUSER }, }; const int bridge_control_table_size = nitems(bridge_control_table); static VNET_DEFINE(LIST_HEAD(, bridge_softc), bridge_list); #define V_bridge_list VNET(bridge_list) #define BRIDGE_LIST_LOCK_INIT(x) mtx_init(&V_bridge_list_mtx, \ "if_bridge list", NULL, MTX_DEF) #define BRIDGE_LIST_LOCK_DESTROY(x) mtx_destroy(&V_bridge_list_mtx) #define BRIDGE_LIST_LOCK(x) mtx_lock(&V_bridge_list_mtx) #define BRIDGE_LIST_UNLOCK(x) mtx_unlock(&V_bridge_list_mtx) static VNET_DEFINE(struct if_clone *, bridge_cloner); #define V_bridge_cloner VNET(bridge_cloner) static const char bridge_name[] = "bridge"; static void vnet_bridge_init(const void *unused __unused) { BRIDGE_LIST_LOCK_INIT(); LIST_INIT(&V_bridge_list); V_bridge_cloner = if_clone_simple(bridge_name, bridge_clone_create, bridge_clone_destroy, 0); } VNET_SYSINIT(vnet_bridge_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, vnet_bridge_init, NULL); static void vnet_bridge_uninit(const void *unused __unused) { if_clone_detach(V_bridge_cloner); V_bridge_cloner = NULL; BRIDGE_LIST_LOCK_DESTROY(); } VNET_SYSUNINIT(vnet_bridge_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, vnet_bridge_uninit, NULL); static int bridge_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: bridge_rtnode_zone = uma_zcreate("bridge_rtnode", sizeof(struct bridge_rtnode), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); bridge_input_p = bridge_input; bridge_output_p = bridge_output; bridge_dn_p = bridge_dummynet; bridge_linkstate_p = bridge_linkstate; bridge_detach_cookie = EVENTHANDLER_REGISTER( ifnet_departure_event, bridge_ifdetach, NULL, EVENTHANDLER_PRI_ANY); break; case MOD_UNLOAD: EVENTHANDLER_DEREGISTER(ifnet_departure_event, bridge_detach_cookie); uma_zdestroy(bridge_rtnode_zone); bridge_input_p = NULL; bridge_output_p = NULL; bridge_dn_p = NULL; bridge_linkstate_p = NULL; break; default: return (EOPNOTSUPP); } return (0); } static moduledata_t bridge_mod = { "if_bridge", bridge_modevent, 0 }; DECLARE_MODULE(if_bridge, bridge_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); MODULE_DEPEND(if_bridge, bridgestp, 1, 1, 1); /* * handler for net.link.bridge.ipfw */ static int sysctl_pfil_ipfw(SYSCTL_HANDLER_ARGS) { int enable = V_pfil_ipfw; int error; error = sysctl_handle_int(oidp, &enable, 0, req); enable &= 1; if (enable != V_pfil_ipfw) { V_pfil_ipfw = enable; /* * Disable pfil so that ipfw doesnt run twice, if the user * really wants both then they can re-enable pfil_bridge and/or * pfil_member. Also allow non-ip packets as ipfw can filter by * layer2 type. */ if (V_pfil_ipfw) { V_pfil_onlyip = 0; V_pfil_bridge = 0; V_pfil_member = 0; } } return (error); } SYSCTL_PROC(_net_link_bridge, OID_AUTO, ipfw, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_VNET, &VNET_NAME(pfil_ipfw), 0, &sysctl_pfil_ipfw, "I", "Layer2 filter with IPFW"); /* * bridge_clone_create: * * Create a new bridge instance. */ static int bridge_clone_create(struct if_clone *ifc, int unit, caddr_t params) { struct bridge_softc *sc, *sc2; struct ifnet *bifp, *ifp; int fb, retry; unsigned long hostid; sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK|M_ZERO); ifp = sc->sc_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { free(sc, M_DEVBUF); return (ENOSPC); } BRIDGE_LOCK_INIT(sc); sc->sc_brtmax = BRIDGE_RTABLE_MAX; sc->sc_brttimeout = BRIDGE_RTABLE_TIMEOUT; /* Initialize our routing table. */ bridge_rtable_init(sc); callout_init_mtx(&sc->sc_brcallout, &sc->sc_mtx, 0); LIST_INIT(&sc->sc_iflist); LIST_INIT(&sc->sc_spanlist); ifp->if_softc = sc; if_initname(ifp, bridge_name, unit); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = bridge_ioctl; ifp->if_transmit = bridge_transmit; ifp->if_qflush = bridge_qflush; ifp->if_init = bridge_init; ifp->if_type = IFT_BRIDGE; /* * Generate an ethernet address with a locally administered address. * * Since we are using random ethernet addresses for the bridge, it is * possible that we might have address collisions, so make sure that * this hardware address isn't already in use on another bridge. * The first try uses the hostid and falls back to arc4rand(). */ fb = 0; getcredhostid(curthread->td_ucred, &hostid); do { if (fb || hostid == 0) { arc4rand(sc->sc_defaddr, ETHER_ADDR_LEN, 1); sc->sc_defaddr[0] &= ~1;/* clear multicast bit */ sc->sc_defaddr[0] |= 2; /* set the LAA bit */ } else { sc->sc_defaddr[0] = 0x2; sc->sc_defaddr[1] = (hostid >> 24) & 0xff; sc->sc_defaddr[2] = (hostid >> 16) & 0xff; sc->sc_defaddr[3] = (hostid >> 8 ) & 0xff; sc->sc_defaddr[4] = hostid & 0xff; sc->sc_defaddr[5] = ifp->if_dunit & 0xff; } fb = 1; retry = 0; BRIDGE_LIST_LOCK(); LIST_FOREACH(sc2, &V_bridge_list, sc_list) { bifp = sc2->sc_ifp; if (memcmp(sc->sc_defaddr, IF_LLADDR(bifp), ETHER_ADDR_LEN) == 0) { retry = 1; break; } } BRIDGE_LIST_UNLOCK(); } while (retry == 1); bstp_attach(&sc->sc_stp, &bridge_ops); ether_ifattach(ifp, sc->sc_defaddr); /* Now undo some of the damage... */ ifp->if_baudrate = 0; ifp->if_type = IFT_BRIDGE; BRIDGE_LIST_LOCK(); LIST_INSERT_HEAD(&V_bridge_list, sc, sc_list); BRIDGE_LIST_UNLOCK(); return (0); } /* * bridge_clone_destroy: * * Destroy a bridge instance. */ static void bridge_clone_destroy(struct ifnet *ifp) { struct bridge_softc *sc = ifp->if_softc; struct bridge_iflist *bif; BRIDGE_LOCK(sc); bridge_stop(ifp, 1); ifp->if_flags &= ~IFF_UP; while ((bif = LIST_FIRST(&sc->sc_iflist)) != NULL) bridge_delete_member(sc, bif, 0); while ((bif = LIST_FIRST(&sc->sc_spanlist)) != NULL) { bridge_delete_span(sc, bif); } BRIDGE_UNLOCK(sc); callout_drain(&sc->sc_brcallout); BRIDGE_LIST_LOCK(); LIST_REMOVE(sc, sc_list); BRIDGE_LIST_UNLOCK(); bstp_detach(&sc->sc_stp); ether_ifdetach(ifp); if_free(ifp); /* Tear down the routing table. */ bridge_rtable_fini(sc); BRIDGE_LOCK_DESTROY(sc); free(sc, M_DEVBUF); } /* * bridge_ioctl: * * Handle a control request from the operator. */ static int bridge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct bridge_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct bridge_iflist *bif; struct thread *td = curthread; union { struct ifbreq ifbreq; struct ifbifconf ifbifconf; struct ifbareq ifbareq; struct ifbaconf ifbaconf; struct ifbrparam ifbrparam; struct ifbropreq ifbropreq; } args; struct ifdrv *ifd = (struct ifdrv *) data; const struct bridge_control *bc; int error = 0; switch (cmd) { case SIOCADDMULTI: case SIOCDELMULTI: break; case SIOCGDRVSPEC: case SIOCSDRVSPEC: if (ifd->ifd_cmd >= bridge_control_table_size) { error = EINVAL; break; } bc = &bridge_control_table[ifd->ifd_cmd]; if (cmd == SIOCGDRVSPEC && (bc->bc_flags & BC_F_COPYOUT) == 0) { error = EINVAL; break; } else if (cmd == SIOCSDRVSPEC && (bc->bc_flags & BC_F_COPYOUT) != 0) { error = EINVAL; break; } if (bc->bc_flags & BC_F_SUSER) { error = priv_check(td, PRIV_NET_BRIDGE); if (error) break; } if (ifd->ifd_len != bc->bc_argsize || ifd->ifd_len > sizeof(args)) { error = EINVAL; break; } bzero(&args, sizeof(args)); if (bc->bc_flags & BC_F_COPYIN) { error = copyin(ifd->ifd_data, &args, ifd->ifd_len); if (error) break; } BRIDGE_LOCK(sc); error = (*bc->bc_func)(sc, &args); BRIDGE_UNLOCK(sc); if (error) break; if (bc->bc_flags & BC_F_COPYOUT) error = copyout(&args, ifd->ifd_data, ifd->ifd_len); break; case SIOCSIFFLAGS: if (!(ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) { /* * If interface is marked down and it is running, * then stop and disable it. */ BRIDGE_LOCK(sc); bridge_stop(ifp, 1); BRIDGE_UNLOCK(sc); } else if ((ifp->if_flags & IFF_UP) && !(ifp->if_drv_flags & IFF_DRV_RUNNING)) { /* * If interface is marked up and it is stopped, then * start it. */ (*ifp->if_init)(sc); } break; case SIOCSIFMTU: if (ifr->ifr_mtu < 576) { error = EINVAL; break; } if (LIST_EMPTY(&sc->sc_iflist)) { sc->sc_ifp->if_mtu = ifr->ifr_mtu; break; } BRIDGE_LOCK(sc); LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { if (bif->bif_ifp->if_mtu != ifr->ifr_mtu) { log(LOG_NOTICE, "%s: invalid MTU: %u(%s)" " != %d\n", sc->sc_ifp->if_xname, bif->bif_ifp->if_mtu, bif->bif_ifp->if_xname, ifr->ifr_mtu); error = EINVAL; break; } } if (!error) sc->sc_ifp->if_mtu = ifr->ifr_mtu; BRIDGE_UNLOCK(sc); break; default: /* * drop the lock as ether_ioctl() will call bridge_start() and * cause the lock to be recursed. */ error = ether_ioctl(ifp, cmd, data); break; } return (error); } /* * bridge_mutecaps: * * Clear or restore unwanted capabilities on the member interface */ static void bridge_mutecaps(struct bridge_softc *sc) { struct bridge_iflist *bif; int enabled, mask; /* Initial bitmask of capabilities to test */ mask = BRIDGE_IFCAPS_MASK; LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { /* Every member must support it or its disabled */ mask &= bif->bif_savedcaps; } LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { enabled = bif->bif_ifp->if_capenable; enabled &= ~BRIDGE_IFCAPS_STRIP; /* strip off mask bits and enable them again if allowed */ enabled &= ~BRIDGE_IFCAPS_MASK; enabled |= mask; bridge_set_ifcap(sc, bif, enabled); } } static void bridge_set_ifcap(struct bridge_softc *sc, struct bridge_iflist *bif, int set) { struct ifnet *ifp = bif->bif_ifp; struct ifreq ifr; int error; bzero(&ifr, sizeof(ifr)); ifr.ifr_reqcap = set; if (ifp->if_capenable != set) { error = (*ifp->if_ioctl)(ifp, SIOCSIFCAP, (caddr_t)&ifr); if (error) if_printf(sc->sc_ifp, "error setting interface capabilities on %s\n", ifp->if_xname); } } /* * bridge_lookup_member: * * Lookup a bridge member interface. */ static struct bridge_iflist * bridge_lookup_member(struct bridge_softc *sc, const char *name) { struct bridge_iflist *bif; struct ifnet *ifp; BRIDGE_LOCK_ASSERT(sc); LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { ifp = bif->bif_ifp; if (strcmp(ifp->if_xname, name) == 0) return (bif); } return (NULL); } /* * bridge_lookup_member_if: * * Lookup a bridge member interface by ifnet*. */ static struct bridge_iflist * bridge_lookup_member_if(struct bridge_softc *sc, struct ifnet *member_ifp) { struct bridge_iflist *bif; BRIDGE_LOCK_ASSERT(sc); LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { if (bif->bif_ifp == member_ifp) return (bif); } return (NULL); } /* * bridge_delete_member: * * Delete the specified member interface. */ static void bridge_delete_member(struct bridge_softc *sc, struct bridge_iflist *bif, int gone) { struct ifnet *ifs = bif->bif_ifp; struct ifnet *fif = NULL; BRIDGE_LOCK_ASSERT(sc); if (bif->bif_flags & IFBIF_STP) bstp_disable(&bif->bif_stp); ifs->if_bridge = NULL; BRIDGE_XLOCK(sc); LIST_REMOVE(bif, bif_next); BRIDGE_XDROP(sc); /* * If removing the interface that gave the bridge its mac address, set * the mac address of the bridge to the address of the next member, or * to its default address if no members are left. */ if (V_bridge_inherit_mac && sc->sc_ifaddr == ifs) { if (LIST_EMPTY(&sc->sc_iflist)) { bcopy(sc->sc_defaddr, IF_LLADDR(sc->sc_ifp), ETHER_ADDR_LEN); sc->sc_ifaddr = NULL; } else { fif = LIST_FIRST(&sc->sc_iflist)->bif_ifp; bcopy(IF_LLADDR(fif), IF_LLADDR(sc->sc_ifp), ETHER_ADDR_LEN); sc->sc_ifaddr = fif; } EVENTHANDLER_INVOKE(iflladdr_event, sc->sc_ifp); } bridge_linkcheck(sc); bridge_mutecaps(sc); /* recalcuate now this interface is removed */ bridge_rtdelete(sc, ifs, IFBF_FLUSHALL); KASSERT(bif->bif_addrcnt == 0, ("%s: %d bridge routes referenced", __func__, bif->bif_addrcnt)); BRIDGE_UNLOCK(sc); if (!gone) { switch (ifs->if_type) { case IFT_ETHER: case IFT_L2VLAN: /* * Take the interface out of promiscuous mode, but only * if it was promiscuous in the first place. It might * not be if we're in the bridge_ioctl_add() error path. */ if (ifs->if_flags & IFF_PROMISC) (void) ifpromisc(ifs, 0); break; case IFT_GIF: break; default: #ifdef DIAGNOSTIC panic("bridge_delete_member: impossible"); #endif break; } /* reneable any interface capabilities */ bridge_set_ifcap(sc, bif, bif->bif_savedcaps); } bstp_destroy(&bif->bif_stp); /* prepare to free */ BRIDGE_LOCK(sc); free(bif, M_DEVBUF); } /* * bridge_delete_span: * * Delete the specified span interface. */ static void bridge_delete_span(struct bridge_softc *sc, struct bridge_iflist *bif) { BRIDGE_LOCK_ASSERT(sc); KASSERT(bif->bif_ifp->if_bridge == NULL, ("%s: not a span interface", __func__)); LIST_REMOVE(bif, bif_next); free(bif, M_DEVBUF); } static int bridge_ioctl_add(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif = NULL; struct ifnet *ifs; int error = 0; ifs = ifunit(req->ifbr_ifsname); if (ifs == NULL) return (ENOENT); if (ifs->if_ioctl == NULL) /* must be supported */ return (EINVAL); /* If it's in the span list, it can't be a member. */ LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) if (ifs == bif->bif_ifp) return (EBUSY); if (ifs->if_bridge == sc) return (EEXIST); if (ifs->if_bridge != NULL) return (EBUSY); switch (ifs->if_type) { case IFT_ETHER: case IFT_L2VLAN: case IFT_GIF: /* permitted interface types */ break; default: return (EINVAL); } #ifdef INET6 /* * Two valid inet6 addresses with link-local scope must not be * on the parent interface and the member interfaces at the * same time. This restriction is needed to prevent violation * of link-local scope zone. Attempts to add a member * interface which has inet6 addresses when the parent has * inet6 triggers removal of all inet6 addresses on the member * interface. */ /* Check if the parent interface has a link-local scope addr. */ if (V_allow_llz_overlap == 0 && in6ifa_llaonifp(sc->sc_ifp) != NULL) { /* * If any, remove all inet6 addresses from the member * interfaces. */ BRIDGE_XLOCK(sc); LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { if (in6ifa_llaonifp(bif->bif_ifp)) { BRIDGE_UNLOCK(sc); - in6_ifdetach(bif->bif_ifp); + in6_ifdetach(bif->bif_ifp, 1); BRIDGE_LOCK(sc); if_printf(sc->sc_ifp, "IPv6 addresses on %s have been removed " "before adding it as a member to prevent " "IPv6 address scope violation.\n", bif->bif_ifp->if_xname); } } BRIDGE_XDROP(sc); if (in6ifa_llaonifp(ifs)) { BRIDGE_UNLOCK(sc); - in6_ifdetach(ifs); + in6_ifdetach(ifs, 1); BRIDGE_LOCK(sc); if_printf(sc->sc_ifp, "IPv6 addresses on %s have been removed " "before adding it as a member to prevent " "IPv6 address scope violation.\n", ifs->if_xname); } } #endif /* Allow the first Ethernet member to define the MTU */ if (LIST_EMPTY(&sc->sc_iflist)) sc->sc_ifp->if_mtu = ifs->if_mtu; else if (sc->sc_ifp->if_mtu != ifs->if_mtu) { if_printf(sc->sc_ifp, "invalid MTU: %u(%s) != %u\n", ifs->if_mtu, ifs->if_xname, sc->sc_ifp->if_mtu); return (EINVAL); } bif = malloc(sizeof(*bif), M_DEVBUF, M_NOWAIT|M_ZERO); if (bif == NULL) return (ENOMEM); bif->bif_ifp = ifs; bif->bif_flags = IFBIF_LEARNING | IFBIF_DISCOVER; bif->bif_savedcaps = ifs->if_capenable; /* * Assign the interface's MAC address to the bridge if it's the first * member and the MAC address of the bridge has not been changed from * the default randomly generated one. */ if (V_bridge_inherit_mac && LIST_EMPTY(&sc->sc_iflist) && !memcmp(IF_LLADDR(sc->sc_ifp), sc->sc_defaddr, ETHER_ADDR_LEN)) { bcopy(IF_LLADDR(ifs), IF_LLADDR(sc->sc_ifp), ETHER_ADDR_LEN); sc->sc_ifaddr = ifs; EVENTHANDLER_INVOKE(iflladdr_event, sc->sc_ifp); } ifs->if_bridge = sc; bstp_create(&sc->sc_stp, &bif->bif_stp, bif->bif_ifp); /* * XXX: XLOCK HERE!?! * * NOTE: insert_***HEAD*** should be safe for the traversals. */ LIST_INSERT_HEAD(&sc->sc_iflist, bif, bif_next); /* Set interface capabilities to the intersection set of all members */ bridge_mutecaps(sc); bridge_linkcheck(sc); /* Place the interface into promiscuous mode */ switch (ifs->if_type) { case IFT_ETHER: case IFT_L2VLAN: BRIDGE_UNLOCK(sc); error = ifpromisc(ifs, 1); BRIDGE_LOCK(sc); break; } if (error) bridge_delete_member(sc, bif, 0); return (error); } static int bridge_ioctl_del(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif; bif = bridge_lookup_member(sc, req->ifbr_ifsname); if (bif == NULL) return (ENOENT); bridge_delete_member(sc, bif, 0); return (0); } static int bridge_ioctl_gifflags(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif; struct bstp_port *bp; bif = bridge_lookup_member(sc, req->ifbr_ifsname); if (bif == NULL) return (ENOENT); bp = &bif->bif_stp; req->ifbr_ifsflags = bif->bif_flags; req->ifbr_state = bp->bp_state; req->ifbr_priority = bp->bp_priority; req->ifbr_path_cost = bp->bp_path_cost; req->ifbr_portno = bif->bif_ifp->if_index & 0xfff; req->ifbr_proto = bp->bp_protover; req->ifbr_role = bp->bp_role; req->ifbr_stpflags = bp->bp_flags; req->ifbr_addrcnt = bif->bif_addrcnt; req->ifbr_addrmax = bif->bif_addrmax; req->ifbr_addrexceeded = bif->bif_addrexceeded; /* Copy STP state options as flags */ if (bp->bp_operedge) req->ifbr_ifsflags |= IFBIF_BSTP_EDGE; if (bp->bp_flags & BSTP_PORT_AUTOEDGE) req->ifbr_ifsflags |= IFBIF_BSTP_AUTOEDGE; if (bp->bp_ptp_link) req->ifbr_ifsflags |= IFBIF_BSTP_PTP; if (bp->bp_flags & BSTP_PORT_AUTOPTP) req->ifbr_ifsflags |= IFBIF_BSTP_AUTOPTP; if (bp->bp_flags & BSTP_PORT_ADMEDGE) req->ifbr_ifsflags |= IFBIF_BSTP_ADMEDGE; if (bp->bp_flags & BSTP_PORT_ADMCOST) req->ifbr_ifsflags |= IFBIF_BSTP_ADMCOST; return (0); } static int bridge_ioctl_sifflags(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif; struct bstp_port *bp; int error; bif = bridge_lookup_member(sc, req->ifbr_ifsname); if (bif == NULL) return (ENOENT); bp = &bif->bif_stp; if (req->ifbr_ifsflags & IFBIF_SPAN) /* SPAN is readonly */ return (EINVAL); if (req->ifbr_ifsflags & IFBIF_STP) { if ((bif->bif_flags & IFBIF_STP) == 0) { error = bstp_enable(&bif->bif_stp); if (error) return (error); } } else { if ((bif->bif_flags & IFBIF_STP) != 0) bstp_disable(&bif->bif_stp); } /* Pass on STP flags */ bstp_set_edge(bp, req->ifbr_ifsflags & IFBIF_BSTP_EDGE ? 1 : 0); bstp_set_autoedge(bp, req->ifbr_ifsflags & IFBIF_BSTP_AUTOEDGE ? 1 : 0); bstp_set_ptp(bp, req->ifbr_ifsflags & IFBIF_BSTP_PTP ? 1 : 0); bstp_set_autoptp(bp, req->ifbr_ifsflags & IFBIF_BSTP_AUTOPTP ? 1 : 0); /* Save the bits relating to the bridge */ bif->bif_flags = req->ifbr_ifsflags & IFBIFMASK; return (0); } static int bridge_ioctl_scache(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; sc->sc_brtmax = param->ifbrp_csize; bridge_rttrim(sc); return (0); } static int bridge_ioctl_gcache(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; param->ifbrp_csize = sc->sc_brtmax; return (0); } static int bridge_ioctl_gifs(struct bridge_softc *sc, void *arg) { struct ifbifconf *bifc = arg; struct bridge_iflist *bif; struct ifbreq breq; char *buf, *outbuf; int count, buflen, len, error = 0; count = 0; LIST_FOREACH(bif, &sc->sc_iflist, bif_next) count++; LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) count++; buflen = sizeof(breq) * count; if (bifc->ifbic_len == 0) { bifc->ifbic_len = buflen; return (0); } BRIDGE_UNLOCK(sc); outbuf = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); BRIDGE_LOCK(sc); count = 0; buf = outbuf; len = min(bifc->ifbic_len, buflen); bzero(&breq, sizeof(breq)); LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { if (len < sizeof(breq)) break; strlcpy(breq.ifbr_ifsname, bif->bif_ifp->if_xname, sizeof(breq.ifbr_ifsname)); /* Fill in the ifbreq structure */ error = bridge_ioctl_gifflags(sc, &breq); if (error) break; memcpy(buf, &breq, sizeof(breq)); count++; buf += sizeof(breq); len -= sizeof(breq); } LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) { if (len < sizeof(breq)) break; strlcpy(breq.ifbr_ifsname, bif->bif_ifp->if_xname, sizeof(breq.ifbr_ifsname)); breq.ifbr_ifsflags = bif->bif_flags; breq.ifbr_portno = bif->bif_ifp->if_index & 0xfff; memcpy(buf, &breq, sizeof(breq)); count++; buf += sizeof(breq); len -= sizeof(breq); } BRIDGE_UNLOCK(sc); bifc->ifbic_len = sizeof(breq) * count; error = copyout(outbuf, bifc->ifbic_req, bifc->ifbic_len); BRIDGE_LOCK(sc); free(outbuf, M_TEMP); return (error); } static int bridge_ioctl_rts(struct bridge_softc *sc, void *arg) { struct ifbaconf *bac = arg; struct bridge_rtnode *brt; struct ifbareq bareq; char *buf, *outbuf; int count, buflen, len, error = 0; if (bac->ifbac_len == 0) return (0); count = 0; LIST_FOREACH(brt, &sc->sc_rtlist, brt_list) count++; buflen = sizeof(bareq) * count; BRIDGE_UNLOCK(sc); outbuf = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); BRIDGE_LOCK(sc); count = 0; buf = outbuf; len = min(bac->ifbac_len, buflen); bzero(&bareq, sizeof(bareq)); LIST_FOREACH(brt, &sc->sc_rtlist, brt_list) { if (len < sizeof(bareq)) goto out; strlcpy(bareq.ifba_ifsname, brt->brt_ifp->if_xname, sizeof(bareq.ifba_ifsname)); memcpy(bareq.ifba_dst, brt->brt_addr, sizeof(brt->brt_addr)); bareq.ifba_vlan = brt->brt_vlan; if ((brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC && time_uptime < brt->brt_expire) bareq.ifba_expire = brt->brt_expire - time_uptime; else bareq.ifba_expire = 0; bareq.ifba_flags = brt->brt_flags; memcpy(buf, &bareq, sizeof(bareq)); count++; buf += sizeof(bareq); len -= sizeof(bareq); } out: BRIDGE_UNLOCK(sc); bac->ifbac_len = sizeof(bareq) * count; error = copyout(outbuf, bac->ifbac_req, bac->ifbac_len); BRIDGE_LOCK(sc); free(outbuf, M_TEMP); return (error); } static int bridge_ioctl_saddr(struct bridge_softc *sc, void *arg) { struct ifbareq *req = arg; struct bridge_iflist *bif; int error; bif = bridge_lookup_member(sc, req->ifba_ifsname); if (bif == NULL) return (ENOENT); error = bridge_rtupdate(sc, req->ifba_dst, req->ifba_vlan, bif, 1, req->ifba_flags); return (error); } static int bridge_ioctl_sto(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; sc->sc_brttimeout = param->ifbrp_ctime; return (0); } static int bridge_ioctl_gto(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; param->ifbrp_ctime = sc->sc_brttimeout; return (0); } static int bridge_ioctl_daddr(struct bridge_softc *sc, void *arg) { struct ifbareq *req = arg; return (bridge_rtdaddr(sc, req->ifba_dst, req->ifba_vlan)); } static int bridge_ioctl_flush(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; bridge_rtflush(sc, req->ifbr_ifsflags); return (0); } static int bridge_ioctl_gpri(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; struct bstp_state *bs = &sc->sc_stp; param->ifbrp_prio = bs->bs_bridge_priority; return (0); } static int bridge_ioctl_spri(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; return (bstp_set_priority(&sc->sc_stp, param->ifbrp_prio)); } static int bridge_ioctl_ght(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; struct bstp_state *bs = &sc->sc_stp; param->ifbrp_hellotime = bs->bs_bridge_htime >> 8; return (0); } static int bridge_ioctl_sht(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; return (bstp_set_htime(&sc->sc_stp, param->ifbrp_hellotime)); } static int bridge_ioctl_gfd(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; struct bstp_state *bs = &sc->sc_stp; param->ifbrp_fwddelay = bs->bs_bridge_fdelay >> 8; return (0); } static int bridge_ioctl_sfd(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; return (bstp_set_fdelay(&sc->sc_stp, param->ifbrp_fwddelay)); } static int bridge_ioctl_gma(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; struct bstp_state *bs = &sc->sc_stp; param->ifbrp_maxage = bs->bs_bridge_max_age >> 8; return (0); } static int bridge_ioctl_sma(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; return (bstp_set_maxage(&sc->sc_stp, param->ifbrp_maxage)); } static int bridge_ioctl_sifprio(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif; bif = bridge_lookup_member(sc, req->ifbr_ifsname); if (bif == NULL) return (ENOENT); return (bstp_set_port_priority(&bif->bif_stp, req->ifbr_priority)); } static int bridge_ioctl_sifcost(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif; bif = bridge_lookup_member(sc, req->ifbr_ifsname); if (bif == NULL) return (ENOENT); return (bstp_set_path_cost(&bif->bif_stp, req->ifbr_path_cost)); } static int bridge_ioctl_sifmaxaddr(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif; bif = bridge_lookup_member(sc, req->ifbr_ifsname); if (bif == NULL) return (ENOENT); bif->bif_addrmax = req->ifbr_addrmax; return (0); } static int bridge_ioctl_addspan(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif = NULL; struct ifnet *ifs; ifs = ifunit(req->ifbr_ifsname); if (ifs == NULL) return (ENOENT); LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) if (ifs == bif->bif_ifp) return (EBUSY); if (ifs->if_bridge != NULL) return (EBUSY); switch (ifs->if_type) { case IFT_ETHER: case IFT_GIF: case IFT_L2VLAN: break; default: return (EINVAL); } bif = malloc(sizeof(*bif), M_DEVBUF, M_NOWAIT|M_ZERO); if (bif == NULL) return (ENOMEM); bif->bif_ifp = ifs; bif->bif_flags = IFBIF_SPAN; LIST_INSERT_HEAD(&sc->sc_spanlist, bif, bif_next); return (0); } static int bridge_ioctl_delspan(struct bridge_softc *sc, void *arg) { struct ifbreq *req = arg; struct bridge_iflist *bif; struct ifnet *ifs; ifs = ifunit(req->ifbr_ifsname); if (ifs == NULL) return (ENOENT); LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) if (ifs == bif->bif_ifp) break; if (bif == NULL) return (ENOENT); bridge_delete_span(sc, bif); return (0); } static int bridge_ioctl_gbparam(struct bridge_softc *sc, void *arg) { struct ifbropreq *req = arg; struct bstp_state *bs = &sc->sc_stp; struct bstp_port *root_port; req->ifbop_maxage = bs->bs_bridge_max_age >> 8; req->ifbop_hellotime = bs->bs_bridge_htime >> 8; req->ifbop_fwddelay = bs->bs_bridge_fdelay >> 8; root_port = bs->bs_root_port; if (root_port == NULL) req->ifbop_root_port = 0; else req->ifbop_root_port = root_port->bp_ifp->if_index; req->ifbop_holdcount = bs->bs_txholdcount; req->ifbop_priority = bs->bs_bridge_priority; req->ifbop_protocol = bs->bs_protover; req->ifbop_root_path_cost = bs->bs_root_pv.pv_cost; req->ifbop_bridgeid = bs->bs_bridge_pv.pv_dbridge_id; req->ifbop_designated_root = bs->bs_root_pv.pv_root_id; req->ifbop_designated_bridge = bs->bs_root_pv.pv_dbridge_id; req->ifbop_last_tc_time.tv_sec = bs->bs_last_tc_time.tv_sec; req->ifbop_last_tc_time.tv_usec = bs->bs_last_tc_time.tv_usec; return (0); } static int bridge_ioctl_grte(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; param->ifbrp_cexceeded = sc->sc_brtexceeded; return (0); } static int bridge_ioctl_gifsstp(struct bridge_softc *sc, void *arg) { struct ifbpstpconf *bifstp = arg; struct bridge_iflist *bif; struct bstp_port *bp; struct ifbpstpreq bpreq; char *buf, *outbuf; int count, buflen, len, error = 0; count = 0; LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { if ((bif->bif_flags & IFBIF_STP) != 0) count++; } buflen = sizeof(bpreq) * count; if (bifstp->ifbpstp_len == 0) { bifstp->ifbpstp_len = buflen; return (0); } BRIDGE_UNLOCK(sc); outbuf = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); BRIDGE_LOCK(sc); count = 0; buf = outbuf; len = min(bifstp->ifbpstp_len, buflen); bzero(&bpreq, sizeof(bpreq)); LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { if (len < sizeof(bpreq)) break; if ((bif->bif_flags & IFBIF_STP) == 0) continue; bp = &bif->bif_stp; bpreq.ifbp_portno = bif->bif_ifp->if_index & 0xfff; bpreq.ifbp_fwd_trans = bp->bp_forward_transitions; bpreq.ifbp_design_cost = bp->bp_desg_pv.pv_cost; bpreq.ifbp_design_port = bp->bp_desg_pv.pv_port_id; bpreq.ifbp_design_bridge = bp->bp_desg_pv.pv_dbridge_id; bpreq.ifbp_design_root = bp->bp_desg_pv.pv_root_id; memcpy(buf, &bpreq, sizeof(bpreq)); count++; buf += sizeof(bpreq); len -= sizeof(bpreq); } BRIDGE_UNLOCK(sc); bifstp->ifbpstp_len = sizeof(bpreq) * count; error = copyout(outbuf, bifstp->ifbpstp_req, bifstp->ifbpstp_len); BRIDGE_LOCK(sc); free(outbuf, M_TEMP); return (error); } static int bridge_ioctl_sproto(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; return (bstp_set_protocol(&sc->sc_stp, param->ifbrp_proto)); } static int bridge_ioctl_stxhc(struct bridge_softc *sc, void *arg) { struct ifbrparam *param = arg; return (bstp_set_holdcount(&sc->sc_stp, param->ifbrp_txhc)); } /* * bridge_ifdetach: * * Detach an interface from a bridge. Called when a member * interface is detaching. */ static void bridge_ifdetach(void *arg __unused, struct ifnet *ifp) { struct bridge_softc *sc = ifp->if_bridge; struct bridge_iflist *bif; if (ifp->if_flags & IFF_RENAMING) return; if (V_bridge_cloner == NULL) { /* * This detach handler can be called after * vnet_bridge_uninit(). Just return in that case. */ return; } /* Check if the interface is a bridge member */ if (sc != NULL) { BRIDGE_LOCK(sc); bif = bridge_lookup_member_if(sc, ifp); if (bif != NULL) bridge_delete_member(sc, bif, 1); BRIDGE_UNLOCK(sc); return; } /* Check if the interface is a span port */ BRIDGE_LIST_LOCK(); LIST_FOREACH(sc, &V_bridge_list, sc_list) { BRIDGE_LOCK(sc); LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) if (ifp == bif->bif_ifp) { bridge_delete_span(sc, bif); break; } BRIDGE_UNLOCK(sc); } BRIDGE_LIST_UNLOCK(); } /* * bridge_init: * * Initialize a bridge interface. */ static void bridge_init(void *xsc) { struct bridge_softc *sc = (struct bridge_softc *)xsc; struct ifnet *ifp = sc->sc_ifp; if (ifp->if_drv_flags & IFF_DRV_RUNNING) return; BRIDGE_LOCK(sc); callout_reset(&sc->sc_brcallout, bridge_rtable_prune_period * hz, bridge_timer, sc); ifp->if_drv_flags |= IFF_DRV_RUNNING; bstp_init(&sc->sc_stp); /* Initialize Spanning Tree */ BRIDGE_UNLOCK(sc); } /* * bridge_stop: * * Stop the bridge interface. */ static void bridge_stop(struct ifnet *ifp, int disable) { struct bridge_softc *sc = ifp->if_softc; BRIDGE_LOCK_ASSERT(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; callout_stop(&sc->sc_brcallout); bstp_stop(&sc->sc_stp); bridge_rtflush(sc, IFBF_FLUSHDYN); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; } /* * bridge_enqueue: * * Enqueue a packet on a bridge member interface. * */ static int bridge_enqueue(struct bridge_softc *sc, struct ifnet *dst_ifp, struct mbuf *m) { int len, err = 0; short mflags; struct mbuf *m0; /* We may be sending a fragment so traverse the mbuf */ for (; m; m = m0) { m0 = m->m_nextpkt; m->m_nextpkt = NULL; len = m->m_pkthdr.len; mflags = m->m_flags; /* * If underlying interface can not do VLAN tag insertion itself * then attach a packet tag that holds it. */ if ((m->m_flags & M_VLANTAG) && (dst_ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) { m = ether_vlanencap(m, m->m_pkthdr.ether_vtag); if (m == NULL) { if_printf(dst_ifp, "unable to prepend VLAN header\n"); if_inc_counter(dst_ifp, IFCOUNTER_OERRORS, 1); continue; } m->m_flags &= ~M_VLANTAG; } if ((err = dst_ifp->if_transmit(dst_ifp, m))) { m_freem(m0); if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1); break; } if_inc_counter(sc->sc_ifp, IFCOUNTER_OPACKETS, 1); if_inc_counter(sc->sc_ifp, IFCOUNTER_OBYTES, len); if (mflags & M_MCAST) if_inc_counter(sc->sc_ifp, IFCOUNTER_OMCASTS, 1); } return (err); } /* * bridge_dummynet: * * Receive a queued packet from dummynet and pass it on to the output * interface. * * The mbuf has the Ethernet header already attached. */ static void bridge_dummynet(struct mbuf *m, struct ifnet *ifp) { struct bridge_softc *sc; sc = ifp->if_bridge; /* * The packet didnt originate from a member interface. This should only * ever happen if a member interface is removed while packets are * queued for it. */ if (sc == NULL) { m_freem(m); return; } if (PFIL_HOOKED(&V_inet_pfil_hook) #ifdef INET6 || PFIL_HOOKED(&V_inet6_pfil_hook) #endif ) { if (bridge_pfil(&m, sc->sc_ifp, ifp, PFIL_OUT) != 0) return; if (m == NULL) return; } bridge_enqueue(sc, ifp, m); } /* * bridge_output: * * Send output from a bridge member interface. This * performs the bridging function for locally originated * packets. * * The mbuf has the Ethernet header already attached. We must * enqueue or free the mbuf before returning. */ static int bridge_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *sa, struct rtentry *rt) { struct ether_header *eh; struct ifnet *dst_if; struct bridge_softc *sc; uint16_t vlan; if (m->m_len < ETHER_HDR_LEN) { m = m_pullup(m, ETHER_HDR_LEN); if (m == NULL) return (0); } eh = mtod(m, struct ether_header *); sc = ifp->if_bridge; vlan = VLANTAGOF(m); BRIDGE_LOCK(sc); /* * If bridge is down, but the original output interface is up, * go ahead and send out that interface. Otherwise, the packet * is dropped below. */ if ((sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { dst_if = ifp; goto sendunicast; } /* * If the packet is a multicast, or we don't know a better way to * get there, send to all interfaces. */ if (ETHER_IS_MULTICAST(eh->ether_dhost)) dst_if = NULL; else dst_if = bridge_rtlookup(sc, eh->ether_dhost, vlan); if (dst_if == NULL) { struct bridge_iflist *bif; struct mbuf *mc; int error = 0, used = 0; bridge_span(sc, m); BRIDGE_LOCK2REF(sc, error); if (error) { m_freem(m); return (0); } LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { dst_if = bif->bif_ifp; if (dst_if->if_type == IFT_GIF) continue; if ((dst_if->if_drv_flags & IFF_DRV_RUNNING) == 0) continue; /* * If this is not the original output interface, * and the interface is participating in spanning * tree, make sure the port is in a state that * allows forwarding. */ if (dst_if != ifp && (bif->bif_flags & IFBIF_STP) && bif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) continue; if (LIST_NEXT(bif, bif_next) == NULL) { used = 1; mc = m; } else { mc = m_copypacket(m, M_NOWAIT); if (mc == NULL) { if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1); continue; } } bridge_enqueue(sc, dst_if, mc); } if (used == 0) m_freem(m); BRIDGE_UNREF(sc); return (0); } sendunicast: /* * XXX Spanning tree consideration here? */ bridge_span(sc, m); if ((dst_if->if_drv_flags & IFF_DRV_RUNNING) == 0) { m_freem(m); BRIDGE_UNLOCK(sc); return (0); } BRIDGE_UNLOCK(sc); bridge_enqueue(sc, dst_if, m); return (0); } /* * bridge_transmit: * * Do output on a bridge. * */ static int bridge_transmit(struct ifnet *ifp, struct mbuf *m) { struct bridge_softc *sc; struct ether_header *eh; struct ifnet *dst_if; int error = 0; sc = ifp->if_softc; ETHER_BPF_MTAP(ifp, m); eh = mtod(m, struct ether_header *); BRIDGE_LOCK(sc); if (((m->m_flags & (M_BCAST|M_MCAST)) == 0) && (dst_if = bridge_rtlookup(sc, eh->ether_dhost, 1)) != NULL) { BRIDGE_UNLOCK(sc); error = bridge_enqueue(sc, dst_if, m); } else bridge_broadcast(sc, ifp, m, 0); return (error); } /* * The ifp->if_qflush entry point for if_bridge(4) is no-op. */ static void bridge_qflush(struct ifnet *ifp __unused) { } /* * bridge_forward: * * The forwarding function of the bridge. * * NOTE: Releases the lock on return. */ static void bridge_forward(struct bridge_softc *sc, struct bridge_iflist *sbif, struct mbuf *m) { struct bridge_iflist *dbif; struct ifnet *src_if, *dst_if, *ifp; struct ether_header *eh; uint16_t vlan; uint8_t *dst; int error; src_if = m->m_pkthdr.rcvif; ifp = sc->sc_ifp; if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); vlan = VLANTAGOF(m); if ((sbif->bif_flags & IFBIF_STP) && sbif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) goto drop; eh = mtod(m, struct ether_header *); dst = eh->ether_dhost; /* If the interface is learning, record the address. */ if (sbif->bif_flags & IFBIF_LEARNING) { error = bridge_rtupdate(sc, eh->ether_shost, vlan, sbif, 0, IFBAF_DYNAMIC); /* * If the interface has addresses limits then deny any source * that is not in the cache. */ if (error && sbif->bif_addrmax) goto drop; } if ((sbif->bif_flags & IFBIF_STP) != 0 && sbif->bif_stp.bp_state == BSTP_IFSTATE_LEARNING) goto drop; /* * At this point, the port either doesn't participate * in spanning tree or it is in the forwarding state. */ /* * If the packet is unicast, destined for someone on * "this" side of the bridge, drop it. */ if ((m->m_flags & (M_BCAST|M_MCAST)) == 0) { dst_if = bridge_rtlookup(sc, dst, vlan); if (src_if == dst_if) goto drop; } else { /* * Check if its a reserved multicast address, any address * listed in 802.1D section 7.12.6 may not be forwarded by the * bridge. * This is currently 01-80-C2-00-00-00 to 01-80-C2-00-00-0F */ if (dst[0] == 0x01 && dst[1] == 0x80 && dst[2] == 0xc2 && dst[3] == 0x00 && dst[4] == 0x00 && dst[5] <= 0x0f) goto drop; /* ...forward it to all interfaces. */ if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1); dst_if = NULL; } /* * If we have a destination interface which is a member of our bridge, * OR this is a unicast packet, push it through the bpf(4) machinery. * For broadcast or multicast packets, don't bother because it will * be reinjected into ether_input. We do this before we pass the packets * through the pfil(9) framework, as it is possible that pfil(9) will * drop the packet, or possibly modify it, making it difficult to debug * firewall issues on the bridge. */ if (dst_if != NULL || (m->m_flags & (M_BCAST | M_MCAST)) == 0) ETHER_BPF_MTAP(ifp, m); /* run the packet filter */ if (PFIL_HOOKED(&V_inet_pfil_hook) #ifdef INET6 || PFIL_HOOKED(&V_inet6_pfil_hook) #endif ) { BRIDGE_UNLOCK(sc); if (bridge_pfil(&m, ifp, src_if, PFIL_IN) != 0) return; if (m == NULL) return; BRIDGE_LOCK(sc); } if (dst_if == NULL) { bridge_broadcast(sc, src_if, m, 1); return; } /* * At this point, we're dealing with a unicast frame * going to a different interface. */ if ((dst_if->if_drv_flags & IFF_DRV_RUNNING) == 0) goto drop; dbif = bridge_lookup_member_if(sc, dst_if); if (dbif == NULL) /* Not a member of the bridge (anymore?) */ goto drop; /* Private segments can not talk to each other */ if (sbif->bif_flags & dbif->bif_flags & IFBIF_PRIVATE) goto drop; if ((dbif->bif_flags & IFBIF_STP) && dbif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) goto drop; BRIDGE_UNLOCK(sc); if (PFIL_HOOKED(&V_inet_pfil_hook) #ifdef INET6 || PFIL_HOOKED(&V_inet6_pfil_hook) #endif ) { if (bridge_pfil(&m, ifp, dst_if, PFIL_OUT) != 0) return; if (m == NULL) return; } bridge_enqueue(sc, dst_if, m); return; drop: BRIDGE_UNLOCK(sc); m_freem(m); } /* * bridge_input: * * Receive input from a member interface. Queue the packet for * bridging if it is not for us. */ static struct mbuf * bridge_input(struct ifnet *ifp, struct mbuf *m) { struct bridge_softc *sc = ifp->if_bridge; struct bridge_iflist *bif, *bif2; struct ifnet *bifp; struct ether_header *eh; struct mbuf *mc, *mc2; uint16_t vlan; int error; if ((sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return (m); bifp = sc->sc_ifp; vlan = VLANTAGOF(m); /* * Implement support for bridge monitoring. If this flag has been * set on this interface, discard the packet once we push it through * the bpf(4) machinery, but before we do, increment the byte and * packet counters associated with this interface. */ if ((bifp->if_flags & IFF_MONITOR) != 0) { m->m_pkthdr.rcvif = bifp; ETHER_BPF_MTAP(bifp, m); if_inc_counter(bifp, IFCOUNTER_IPACKETS, 1); if_inc_counter(bifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); m_freem(m); return (NULL); } BRIDGE_LOCK(sc); bif = bridge_lookup_member_if(sc, ifp); if (bif == NULL) { BRIDGE_UNLOCK(sc); return (m); } eh = mtod(m, struct ether_header *); bridge_span(sc, m); if (m->m_flags & (M_BCAST|M_MCAST)) { /* Tap off 802.1D packets; they do not get forwarded. */ if (memcmp(eh->ether_dhost, bstp_etheraddr, ETHER_ADDR_LEN) == 0) { bstp_input(&bif->bif_stp, ifp, m); /* consumes mbuf */ BRIDGE_UNLOCK(sc); return (NULL); } if ((bif->bif_flags & IFBIF_STP) && bif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) { BRIDGE_UNLOCK(sc); return (m); } /* * Make a deep copy of the packet and enqueue the copy * for bridge processing; return the original packet for * local processing. */ mc = m_dup(m, M_NOWAIT); if (mc == NULL) { BRIDGE_UNLOCK(sc); return (m); } /* Perform the bridge forwarding function with the copy. */ bridge_forward(sc, bif, mc); /* * Reinject the mbuf as arriving on the bridge so we have a * chance at claiming multicast packets. We can not loop back * here from ether_input as a bridge is never a member of a * bridge. */ KASSERT(bifp->if_bridge == NULL, ("loop created in bridge_input")); mc2 = m_dup(m, M_NOWAIT); if (mc2 != NULL) { /* Keep the layer3 header aligned */ int i = min(mc2->m_pkthdr.len, max_protohdr); mc2 = m_copyup(mc2, i, ETHER_ALIGN); } if (mc2 != NULL) { mc2->m_pkthdr.rcvif = bifp; (*bifp->if_input)(bifp, mc2); } /* Return the original packet for local processing. */ return (m); } if ((bif->bif_flags & IFBIF_STP) && bif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) { BRIDGE_UNLOCK(sc); return (m); } #if (defined(INET) || defined(INET6)) # define OR_CARP_CHECK_WE_ARE_DST(iface) \ || ((iface)->if_carp \ && (*carp_forus_p)((iface), eh->ether_dhost)) # define OR_CARP_CHECK_WE_ARE_SRC(iface) \ || ((iface)->if_carp \ && (*carp_forus_p)((iface), eh->ether_shost)) #else # define OR_CARP_CHECK_WE_ARE_DST(iface) # define OR_CARP_CHECK_WE_ARE_SRC(iface) #endif #ifdef INET6 # define OR_PFIL_HOOKED_INET6 \ || PFIL_HOOKED(&V_inet6_pfil_hook) #else # define OR_PFIL_HOOKED_INET6 #endif #define GRAB_OUR_PACKETS(iface) \ if ((iface)->if_type == IFT_GIF) \ continue; \ /* It is destined for us. */ \ if (memcmp(IF_LLADDR((iface)), eh->ether_dhost, ETHER_ADDR_LEN) == 0 \ OR_CARP_CHECK_WE_ARE_DST((iface)) \ ) { \ if ((iface)->if_type == IFT_BRIDGE) { \ ETHER_BPF_MTAP(iface, m); \ if_inc_counter(iface, IFCOUNTER_IPACKETS, 1); \ if_inc_counter(iface, IFCOUNTER_IBYTES, m->m_pkthdr.len); \ /* Filter on the physical interface. */ \ if (V_pfil_local_phys && \ (PFIL_HOOKED(&V_inet_pfil_hook) \ OR_PFIL_HOOKED_INET6)) { \ if (bridge_pfil(&m, NULL, ifp, \ PFIL_IN) != 0 || m == NULL) { \ BRIDGE_UNLOCK(sc); \ return (NULL); \ } \ eh = mtod(m, struct ether_header *); \ } \ } \ if (bif->bif_flags & IFBIF_LEARNING) { \ error = bridge_rtupdate(sc, eh->ether_shost, \ vlan, bif, 0, IFBAF_DYNAMIC); \ if (error && bif->bif_addrmax) { \ BRIDGE_UNLOCK(sc); \ m_freem(m); \ return (NULL); \ } \ } \ m->m_pkthdr.rcvif = iface; \ BRIDGE_UNLOCK(sc); \ return (m); \ } \ \ /* We just received a packet that we sent out. */ \ if (memcmp(IF_LLADDR((iface)), eh->ether_shost, ETHER_ADDR_LEN) == 0 \ OR_CARP_CHECK_WE_ARE_SRC((iface)) \ ) { \ BRIDGE_UNLOCK(sc); \ m_freem(m); \ return (NULL); \ } /* * Unicast. Make sure it's not for the bridge. */ do { GRAB_OUR_PACKETS(bifp) } while (0); /* * Give a chance for ifp at first priority. This will help when the * packet comes through the interface like VLAN's with the same MACs * on several interfaces from the same bridge. This also will save * some CPU cycles in case the destination interface and the input * interface (eq ifp) are the same. */ do { GRAB_OUR_PACKETS(ifp) } while (0); /* Now check the all bridge members. */ LIST_FOREACH(bif2, &sc->sc_iflist, bif_next) { GRAB_OUR_PACKETS(bif2->bif_ifp) } #undef OR_CARP_CHECK_WE_ARE_DST #undef OR_CARP_CHECK_WE_ARE_SRC #undef OR_PFIL_HOOKED_INET6 #undef GRAB_OUR_PACKETS /* Perform the bridge forwarding function. */ bridge_forward(sc, bif, m); return (NULL); } /* * bridge_broadcast: * * Send a frame to all interfaces that are members of * the bridge, except for the one on which the packet * arrived. * * NOTE: Releases the lock on return. */ static void bridge_broadcast(struct bridge_softc *sc, struct ifnet *src_if, struct mbuf *m, int runfilt) { struct bridge_iflist *dbif, *sbif; struct mbuf *mc; struct ifnet *dst_if; int error = 0, used = 0, i; sbif = bridge_lookup_member_if(sc, src_if); BRIDGE_LOCK2REF(sc, error); if (error) { m_freem(m); return; } /* Filter on the bridge interface before broadcasting */ if (runfilt && (PFIL_HOOKED(&V_inet_pfil_hook) #ifdef INET6 || PFIL_HOOKED(&V_inet6_pfil_hook) #endif )) { if (bridge_pfil(&m, sc->sc_ifp, NULL, PFIL_OUT) != 0) goto out; if (m == NULL) goto out; } LIST_FOREACH(dbif, &sc->sc_iflist, bif_next) { dst_if = dbif->bif_ifp; if (dst_if == src_if) continue; /* Private segments can not talk to each other */ if (sbif && (sbif->bif_flags & dbif->bif_flags & IFBIF_PRIVATE)) continue; if ((dbif->bif_flags & IFBIF_STP) && dbif->bif_stp.bp_state == BSTP_IFSTATE_DISCARDING) continue; if ((dbif->bif_flags & IFBIF_DISCOVER) == 0 && (m->m_flags & (M_BCAST|M_MCAST)) == 0) continue; if ((dst_if->if_drv_flags & IFF_DRV_RUNNING) == 0) continue; if (LIST_NEXT(dbif, bif_next) == NULL) { mc = m; used = 1; } else { mc = m_dup(m, M_NOWAIT); if (mc == NULL) { if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1); continue; } } /* * Filter on the output interface. Pass a NULL bridge interface * pointer so we do not redundantly filter on the bridge for * each interface we broadcast on. */ if (runfilt && (PFIL_HOOKED(&V_inet_pfil_hook) #ifdef INET6 || PFIL_HOOKED(&V_inet6_pfil_hook) #endif )) { if (used == 0) { /* Keep the layer3 header aligned */ i = min(mc->m_pkthdr.len, max_protohdr); mc = m_copyup(mc, i, ETHER_ALIGN); if (mc == NULL) { if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1); continue; } } if (bridge_pfil(&mc, NULL, dst_if, PFIL_OUT) != 0) continue; if (mc == NULL) continue; } bridge_enqueue(sc, dst_if, mc); } if (used == 0) m_freem(m); out: BRIDGE_UNREF(sc); } /* * bridge_span: * * Duplicate a packet out one or more interfaces that are in span mode, * the original mbuf is unmodified. */ static void bridge_span(struct bridge_softc *sc, struct mbuf *m) { struct bridge_iflist *bif; struct ifnet *dst_if; struct mbuf *mc; if (LIST_EMPTY(&sc->sc_spanlist)) return; LIST_FOREACH(bif, &sc->sc_spanlist, bif_next) { dst_if = bif->bif_ifp; if ((dst_if->if_drv_flags & IFF_DRV_RUNNING) == 0) continue; mc = m_copypacket(m, M_NOWAIT); if (mc == NULL) { if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1); continue; } bridge_enqueue(sc, dst_if, mc); } } /* * bridge_rtupdate: * * Add a bridge routing entry. */ static int bridge_rtupdate(struct bridge_softc *sc, const uint8_t *dst, uint16_t vlan, struct bridge_iflist *bif, int setflags, uint8_t flags) { struct bridge_rtnode *brt; int error; BRIDGE_LOCK_ASSERT(sc); /* Check the source address is valid and not multicast. */ if (ETHER_IS_MULTICAST(dst) || (dst[0] == 0 && dst[1] == 0 && dst[2] == 0 && dst[3] == 0 && dst[4] == 0 && dst[5] == 0) != 0) return (EINVAL); /* 802.1p frames map to vlan 1 */ if (vlan == 0) vlan = 1; /* * A route for this destination might already exist. If so, * update it, otherwise create a new one. */ if ((brt = bridge_rtnode_lookup(sc, dst, vlan)) == NULL) { if (sc->sc_brtcnt >= sc->sc_brtmax) { sc->sc_brtexceeded++; return (ENOSPC); } /* Check per interface address limits (if enabled) */ if (bif->bif_addrmax && bif->bif_addrcnt >= bif->bif_addrmax) { bif->bif_addrexceeded++; return (ENOSPC); } /* * Allocate a new bridge forwarding node, and * initialize the expiration time and Ethernet * address. */ brt = uma_zalloc(bridge_rtnode_zone, M_NOWAIT | M_ZERO); if (brt == NULL) return (ENOMEM); if (bif->bif_flags & IFBIF_STICKY) brt->brt_flags = IFBAF_STICKY; else brt->brt_flags = IFBAF_DYNAMIC; memcpy(brt->brt_addr, dst, ETHER_ADDR_LEN); brt->brt_vlan = vlan; if ((error = bridge_rtnode_insert(sc, brt)) != 0) { uma_zfree(bridge_rtnode_zone, brt); return (error); } brt->brt_dst = bif; bif->bif_addrcnt++; } if ((brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC && brt->brt_dst != bif) { brt->brt_dst->bif_addrcnt--; brt->brt_dst = bif; brt->brt_dst->bif_addrcnt++; } if ((flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) brt->brt_expire = time_uptime + sc->sc_brttimeout; if (setflags) brt->brt_flags = flags; return (0); } /* * bridge_rtlookup: * * Lookup the destination interface for an address. */ static struct ifnet * bridge_rtlookup(struct bridge_softc *sc, const uint8_t *addr, uint16_t vlan) { struct bridge_rtnode *brt; BRIDGE_LOCK_ASSERT(sc); if ((brt = bridge_rtnode_lookup(sc, addr, vlan)) == NULL) return (NULL); return (brt->brt_ifp); } /* * bridge_rttrim: * * Trim the routine table so that we have a number * of routing entries less than or equal to the * maximum number. */ static void bridge_rttrim(struct bridge_softc *sc) { struct bridge_rtnode *brt, *nbrt; BRIDGE_LOCK_ASSERT(sc); /* Make sure we actually need to do this. */ if (sc->sc_brtcnt <= sc->sc_brtmax) return; /* Force an aging cycle; this might trim enough addresses. */ bridge_rtage(sc); if (sc->sc_brtcnt <= sc->sc_brtmax) return; LIST_FOREACH_SAFE(brt, &sc->sc_rtlist, brt_list, nbrt) { if ((brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) { bridge_rtnode_destroy(sc, brt); if (sc->sc_brtcnt <= sc->sc_brtmax) return; } } } /* * bridge_timer: * * Aging timer for the bridge. */ static void bridge_timer(void *arg) { struct bridge_softc *sc = arg; BRIDGE_LOCK_ASSERT(sc); bridge_rtage(sc); if (sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) callout_reset(&sc->sc_brcallout, bridge_rtable_prune_period * hz, bridge_timer, sc); } /* * bridge_rtage: * * Perform an aging cycle. */ static void bridge_rtage(struct bridge_softc *sc) { struct bridge_rtnode *brt, *nbrt; BRIDGE_LOCK_ASSERT(sc); LIST_FOREACH_SAFE(brt, &sc->sc_rtlist, brt_list, nbrt) { if ((brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) { if (time_uptime >= brt->brt_expire) bridge_rtnode_destroy(sc, brt); } } } /* * bridge_rtflush: * * Remove all dynamic addresses from the bridge. */ static void bridge_rtflush(struct bridge_softc *sc, int full) { struct bridge_rtnode *brt, *nbrt; BRIDGE_LOCK_ASSERT(sc); LIST_FOREACH_SAFE(brt, &sc->sc_rtlist, brt_list, nbrt) { if (full || (brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) bridge_rtnode_destroy(sc, brt); } } /* * bridge_rtdaddr: * * Remove an address from the table. */ static int bridge_rtdaddr(struct bridge_softc *sc, const uint8_t *addr, uint16_t vlan) { struct bridge_rtnode *brt; int found = 0; BRIDGE_LOCK_ASSERT(sc); /* * If vlan is zero then we want to delete for all vlans so the lookup * may return more than one. */ while ((brt = bridge_rtnode_lookup(sc, addr, vlan)) != NULL) { bridge_rtnode_destroy(sc, brt); found = 1; } return (found ? 0 : ENOENT); } /* * bridge_rtdelete: * * Delete routes to a speicifc member interface. */ static void bridge_rtdelete(struct bridge_softc *sc, struct ifnet *ifp, int full) { struct bridge_rtnode *brt, *nbrt; BRIDGE_LOCK_ASSERT(sc); LIST_FOREACH_SAFE(brt, &sc->sc_rtlist, brt_list, nbrt) { if (brt->brt_ifp == ifp && (full || (brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC)) bridge_rtnode_destroy(sc, brt); } } /* * bridge_rtable_init: * * Initialize the route table for this bridge. */ static void bridge_rtable_init(struct bridge_softc *sc) { int i; sc->sc_rthash = malloc(sizeof(*sc->sc_rthash) * BRIDGE_RTHASH_SIZE, M_DEVBUF, M_WAITOK); for (i = 0; i < BRIDGE_RTHASH_SIZE; i++) LIST_INIT(&sc->sc_rthash[i]); sc->sc_rthash_key = arc4random(); LIST_INIT(&sc->sc_rtlist); } /* * bridge_rtable_fini: * * Deconstruct the route table for this bridge. */ static void bridge_rtable_fini(struct bridge_softc *sc) { KASSERT(sc->sc_brtcnt == 0, ("%s: %d bridge routes referenced", __func__, sc->sc_brtcnt)); free(sc->sc_rthash, M_DEVBUF); } /* * The following hash function is adapted from "Hash Functions" by Bob Jenkins * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). */ #define mix(a, b, c) \ do { \ a -= b; a -= c; a ^= (c >> 13); \ b -= c; b -= a; b ^= (a << 8); \ c -= a; c -= b; c ^= (b >> 13); \ a -= b; a -= c; a ^= (c >> 12); \ b -= c; b -= a; b ^= (a << 16); \ c -= a; c -= b; c ^= (b >> 5); \ a -= b; a -= c; a ^= (c >> 3); \ b -= c; b -= a; b ^= (a << 10); \ c -= a; c -= b; c ^= (b >> 15); \ } while (/*CONSTCOND*/0) static __inline uint32_t bridge_rthash(struct bridge_softc *sc, const uint8_t *addr) { uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = sc->sc_rthash_key; b += addr[5] << 8; b += addr[4]; a += addr[3] << 24; a += addr[2] << 16; a += addr[1] << 8; a += addr[0]; mix(a, b, c); return (c & BRIDGE_RTHASH_MASK); } #undef mix static int bridge_rtnode_addr_cmp(const uint8_t *a, const uint8_t *b) { int i, d; for (i = 0, d = 0; i < ETHER_ADDR_LEN && d == 0; i++) { d = ((int)a[i]) - ((int)b[i]); } return (d); } /* * bridge_rtnode_lookup: * * Look up a bridge route node for the specified destination. Compare the * vlan id or if zero then just return the first match. */ static struct bridge_rtnode * bridge_rtnode_lookup(struct bridge_softc *sc, const uint8_t *addr, uint16_t vlan) { struct bridge_rtnode *brt; uint32_t hash; int dir; BRIDGE_LOCK_ASSERT(sc); hash = bridge_rthash(sc, addr); LIST_FOREACH(brt, &sc->sc_rthash[hash], brt_hash) { dir = bridge_rtnode_addr_cmp(addr, brt->brt_addr); if (dir == 0 && (brt->brt_vlan == vlan || vlan == 0)) return (brt); if (dir > 0) return (NULL); } return (NULL); } /* * bridge_rtnode_insert: * * Insert the specified bridge node into the route table. We * assume the entry is not already in the table. */ static int bridge_rtnode_insert(struct bridge_softc *sc, struct bridge_rtnode *brt) { struct bridge_rtnode *lbrt; uint32_t hash; int dir; BRIDGE_LOCK_ASSERT(sc); hash = bridge_rthash(sc, brt->brt_addr); lbrt = LIST_FIRST(&sc->sc_rthash[hash]); if (lbrt == NULL) { LIST_INSERT_HEAD(&sc->sc_rthash[hash], brt, brt_hash); goto out; } do { dir = bridge_rtnode_addr_cmp(brt->brt_addr, lbrt->brt_addr); if (dir == 0 && brt->brt_vlan == lbrt->brt_vlan) return (EEXIST); if (dir > 0) { LIST_INSERT_BEFORE(lbrt, brt, brt_hash); goto out; } if (LIST_NEXT(lbrt, brt_hash) == NULL) { LIST_INSERT_AFTER(lbrt, brt, brt_hash); goto out; } lbrt = LIST_NEXT(lbrt, brt_hash); } while (lbrt != NULL); #ifdef DIAGNOSTIC panic("bridge_rtnode_insert: impossible"); #endif out: LIST_INSERT_HEAD(&sc->sc_rtlist, brt, brt_list); sc->sc_brtcnt++; return (0); } /* * bridge_rtnode_destroy: * * Destroy a bridge rtnode. */ static void bridge_rtnode_destroy(struct bridge_softc *sc, struct bridge_rtnode *brt) { BRIDGE_LOCK_ASSERT(sc); LIST_REMOVE(brt, brt_hash); LIST_REMOVE(brt, brt_list); sc->sc_brtcnt--; brt->brt_dst->bif_addrcnt--; uma_zfree(bridge_rtnode_zone, brt); } /* * bridge_rtable_expire: * * Set the expiry time for all routes on an interface. */ static void bridge_rtable_expire(struct ifnet *ifp, int age) { struct bridge_softc *sc = ifp->if_bridge; struct bridge_rtnode *brt; BRIDGE_LOCK(sc); /* * If the age is zero then flush, otherwise set all the expiry times to * age for the interface */ if (age == 0) bridge_rtdelete(sc, ifp, IFBF_FLUSHDYN); else { LIST_FOREACH(brt, &sc->sc_rtlist, brt_list) { /* Cap the expiry time to 'age' */ if (brt->brt_ifp == ifp && brt->brt_expire > time_uptime + age && (brt->brt_flags & IFBAF_TYPEMASK) == IFBAF_DYNAMIC) brt->brt_expire = time_uptime + age; } } BRIDGE_UNLOCK(sc); } /* * bridge_state_change: * * Callback from the bridgestp code when a port changes states. */ static void bridge_state_change(struct ifnet *ifp, int state) { struct bridge_softc *sc = ifp->if_bridge; static const char *stpstates[] = { "disabled", "listening", "learning", "forwarding", "blocking", "discarding" }; CURVNET_SET(ifp->if_vnet); if (V_log_stp) log(LOG_NOTICE, "%s: state changed to %s on %s\n", sc->sc_ifp->if_xname, stpstates[state], ifp->if_xname); CURVNET_RESTORE(); } /* * Send bridge packets through pfil if they are one of the types pfil can deal * with, or if they are ARP or REVARP. (pfil will pass ARP and REVARP without * question.) If *bifp or *ifp are NULL then packet filtering is skipped for * that interface. */ static int bridge_pfil(struct mbuf **mp, struct ifnet *bifp, struct ifnet *ifp, int dir) { int snap, error, i, hlen; struct ether_header *eh1, eh2; struct ip *ip; struct llc llc1; u_int16_t ether_type; snap = 0; error = -1; /* Default error if not error == 0 */ #if 0 /* we may return with the IP fields swapped, ensure its not shared */ KASSERT(M_WRITABLE(*mp), ("%s: modifying a shared mbuf", __func__)); #endif if (V_pfil_bridge == 0 && V_pfil_member == 0 && V_pfil_ipfw == 0) return (0); /* filtering is disabled */ i = min((*mp)->m_pkthdr.len, max_protohdr); if ((*mp)->m_len < i) { *mp = m_pullup(*mp, i); if (*mp == NULL) { printf("%s: m_pullup failed\n", __func__); return (-1); } } eh1 = mtod(*mp, struct ether_header *); ether_type = ntohs(eh1->ether_type); /* * Check for SNAP/LLC. */ if (ether_type < ETHERMTU) { struct llc *llc2 = (struct llc *)(eh1 + 1); if ((*mp)->m_len >= ETHER_HDR_LEN + 8 && llc2->llc_dsap == LLC_SNAP_LSAP && llc2->llc_ssap == LLC_SNAP_LSAP && llc2->llc_control == LLC_UI) { ether_type = htons(llc2->llc_un.type_snap.ether_type); snap = 1; } } /* * If we're trying to filter bridge traffic, don't look at anything * other than IP and ARP traffic. If the filter doesn't understand * IPv6, don't allow IPv6 through the bridge either. This is lame * since if we really wanted, say, an AppleTalk filter, we are hosed, * but of course we don't have an AppleTalk filter to begin with. * (Note that since pfil doesn't understand ARP it will pass *ALL* * ARP traffic.) */ switch (ether_type) { case ETHERTYPE_ARP: case ETHERTYPE_REVARP: if (V_pfil_ipfw_arp == 0) return (0); /* Automatically pass */ break; case ETHERTYPE_IP: #ifdef INET6 case ETHERTYPE_IPV6: #endif /* INET6 */ break; default: /* * Check to see if the user wants to pass non-ip * packets, these will not be checked by pfil(9) and * passed unconditionally so the default is to drop. */ if (V_pfil_onlyip) goto bad; } /* Run the packet through pfil before stripping link headers */ if (PFIL_HOOKED(&V_link_pfil_hook) && V_pfil_ipfw != 0 && dir == PFIL_OUT && ifp != NULL) { error = pfil_run_hooks(&V_link_pfil_hook, mp, ifp, dir, NULL); if (*mp == NULL || error != 0) /* packet consumed by filter */ return (error); } /* Strip off the Ethernet header and keep a copy. */ m_copydata(*mp, 0, ETHER_HDR_LEN, (caddr_t) &eh2); m_adj(*mp, ETHER_HDR_LEN); /* Strip off snap header, if present */ if (snap) { m_copydata(*mp, 0, sizeof(struct llc), (caddr_t) &llc1); m_adj(*mp, sizeof(struct llc)); } /* * Check the IP header for alignment and errors */ if (dir == PFIL_IN) { switch (ether_type) { case ETHERTYPE_IP: error = bridge_ip_checkbasic(mp); break; #ifdef INET6 case ETHERTYPE_IPV6: error = bridge_ip6_checkbasic(mp); break; #endif /* INET6 */ default: error = 0; } if (error) goto bad; } error = 0; /* * Run the packet through pfil */ switch (ether_type) { case ETHERTYPE_IP: /* * Run pfil on the member interface and the bridge, both can * be skipped by clearing pfil_member or pfil_bridge. * * Keep the order: * in_if -> bridge_if -> out_if */ if (V_pfil_bridge && dir == PFIL_OUT && bifp != NULL) error = pfil_run_hooks(&V_inet_pfil_hook, mp, bifp, dir, NULL); if (*mp == NULL || error != 0) /* filter may consume */ break; if (V_pfil_member && ifp != NULL) error = pfil_run_hooks(&V_inet_pfil_hook, mp, ifp, dir, NULL); if (*mp == NULL || error != 0) /* filter may consume */ break; if (V_pfil_bridge && dir == PFIL_IN && bifp != NULL) error = pfil_run_hooks(&V_inet_pfil_hook, mp, bifp, dir, NULL); if (*mp == NULL || error != 0) /* filter may consume */ break; /* check if we need to fragment the packet */ if (V_pfil_member && ifp != NULL && dir == PFIL_OUT) { i = (*mp)->m_pkthdr.len; if (i > ifp->if_mtu) { error = bridge_fragment(ifp, *mp, &eh2, snap, &llc1); return (error); } } /* Recalculate the ip checksum. */ ip = mtod(*mp, struct ip *); hlen = ip->ip_hl << 2; if (hlen < sizeof(struct ip)) goto bad; if (hlen > (*mp)->m_len) { if ((*mp = m_pullup(*mp, hlen)) == 0) goto bad; ip = mtod(*mp, struct ip *); if (ip == NULL) goto bad; } ip->ip_sum = 0; if (hlen == sizeof(struct ip)) ip->ip_sum = in_cksum_hdr(ip); else ip->ip_sum = in_cksum(*mp, hlen); break; #ifdef INET6 case ETHERTYPE_IPV6: if (V_pfil_bridge && dir == PFIL_OUT && bifp != NULL) error = pfil_run_hooks(&V_inet6_pfil_hook, mp, bifp, dir, NULL); if (*mp == NULL || error != 0) /* filter may consume */ break; if (V_pfil_member && ifp != NULL) error = pfil_run_hooks(&V_inet6_pfil_hook, mp, ifp, dir, NULL); if (*mp == NULL || error != 0) /* filter may consume */ break; if (V_pfil_bridge && dir == PFIL_IN && bifp != NULL) error = pfil_run_hooks(&V_inet6_pfil_hook, mp, bifp, dir, NULL); break; #endif default: error = 0; break; } if (*mp == NULL) return (error); if (error != 0) goto bad; error = -1; /* * Finally, put everything back the way it was and return */ if (snap) { M_PREPEND(*mp, sizeof(struct llc), M_NOWAIT); if (*mp == NULL) return (error); bcopy(&llc1, mtod(*mp, caddr_t), sizeof(struct llc)); } M_PREPEND(*mp, ETHER_HDR_LEN, M_NOWAIT); if (*mp == NULL) return (error); bcopy(&eh2, mtod(*mp, caddr_t), ETHER_HDR_LEN); return (0); bad: m_freem(*mp); *mp = NULL; return (error); } /* * Perform basic checks on header size since * pfil assumes ip_input has already processed * it for it. Cut-and-pasted from ip_input.c. * Given how simple the IPv6 version is, * does the IPv4 version really need to be * this complicated? * * XXX Should we update ipstat here, or not? * XXX Right now we update ipstat but not * XXX csum_counter. */ static int bridge_ip_checkbasic(struct mbuf **mp) { struct mbuf *m = *mp; struct ip *ip; int len, hlen; u_short sum; if (*mp == NULL) return (-1); if (IP_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) { if ((m = m_copyup(m, sizeof(struct ip), (max_linkhdr + 3) & ~3)) == NULL) { /* XXXJRT new stat, please */ KMOD_IPSTAT_INC(ips_toosmall); goto bad; } } else if (__predict_false(m->m_len < sizeof (struct ip))) { if ((m = m_pullup(m, sizeof (struct ip))) == NULL) { KMOD_IPSTAT_INC(ips_toosmall); goto bad; } } ip = mtod(m, struct ip *); if (ip == NULL) goto bad; if (ip->ip_v != IPVERSION) { KMOD_IPSTAT_INC(ips_badvers); goto bad; } hlen = ip->ip_hl << 2; if (hlen < sizeof(struct ip)) { /* minimum header length */ KMOD_IPSTAT_INC(ips_badhlen); goto bad; } if (hlen > m->m_len) { if ((m = m_pullup(m, hlen)) == 0) { KMOD_IPSTAT_INC(ips_badhlen); goto bad; } ip = mtod(m, struct ip *); if (ip == NULL) goto bad; } if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); } else { if (hlen == sizeof(struct ip)) { sum = in_cksum_hdr(ip); } else { sum = in_cksum(m, hlen); } } if (sum) { KMOD_IPSTAT_INC(ips_badsum); goto bad; } /* Retrieve the packet length. */ len = ntohs(ip->ip_len); /* * Check for additional length bogosity */ if (len < hlen) { KMOD_IPSTAT_INC(ips_badlen); goto bad; } /* * Check that the amount of data in the buffers * is as at least much as the IP header would have us expect. * Drop packet if shorter than we expect. */ if (m->m_pkthdr.len < len) { KMOD_IPSTAT_INC(ips_tooshort); goto bad; } /* Checks out, proceed */ *mp = m; return (0); bad: *mp = m; return (-1); } #ifdef INET6 /* * Same as above, but for IPv6. * Cut-and-pasted from ip6_input.c. * XXX Should we update ip6stat, or not? */ static int bridge_ip6_checkbasic(struct mbuf **mp) { struct mbuf *m = *mp; struct ip6_hdr *ip6; /* * If the IPv6 header is not aligned, slurp it up into a new * mbuf with space for link headers, in the event we forward * it. Otherwise, if it is aligned, make sure the entire base * IPv6 header is in the first mbuf of the chain. */ if (IP6_HDR_ALIGNED_P(mtod(m, caddr_t)) == 0) { struct ifnet *inifp = m->m_pkthdr.rcvif; if ((m = m_copyup(m, sizeof(struct ip6_hdr), (max_linkhdr + 3) & ~3)) == NULL) { /* XXXJRT new stat, please */ IP6STAT_INC(ip6s_toosmall); in6_ifstat_inc(inifp, ifs6_in_hdrerr); goto bad; } } else if (__predict_false(m->m_len < sizeof(struct ip6_hdr))) { struct ifnet *inifp = m->m_pkthdr.rcvif; if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) { IP6STAT_INC(ip6s_toosmall); in6_ifstat_inc(inifp, ifs6_in_hdrerr); goto bad; } } ip6 = mtod(m, struct ip6_hdr *); if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) { IP6STAT_INC(ip6s_badvers); in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_hdrerr); goto bad; } /* Checks out, proceed */ *mp = m; return (0); bad: *mp = m; return (-1); } #endif /* INET6 */ /* * bridge_fragment: * * Return a fragmented mbuf chain. */ static int bridge_fragment(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh, int snap, struct llc *llc) { struct mbuf *m0; struct ip *ip; int error = -1; if (m->m_len < sizeof(struct ip) && (m = m_pullup(m, sizeof(struct ip))) == NULL) goto out; ip = mtod(m, struct ip *); m->m_pkthdr.csum_flags |= CSUM_IP; error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist); if (error) goto out; /* walk the chain and re-add the Ethernet header */ for (m0 = m; m0; m0 = m0->m_nextpkt) { if (error == 0) { if (snap) { M_PREPEND(m0, sizeof(struct llc), M_NOWAIT); if (m0 == NULL) { error = ENOBUFS; continue; } bcopy(llc, mtod(m0, caddr_t), sizeof(struct llc)); } M_PREPEND(m0, ETHER_HDR_LEN, M_NOWAIT); if (m0 == NULL) { error = ENOBUFS; continue; } bcopy(eh, mtod(m0, caddr_t), ETHER_HDR_LEN); } else m_freem(m); } if (error == 0) KMOD_IPSTAT_INC(ips_fragmented); return (error); out: if (m != NULL) m_freem(m); return (error); } static void bridge_linkstate(struct ifnet *ifp) { struct bridge_softc *sc = ifp->if_bridge; struct bridge_iflist *bif; BRIDGE_LOCK(sc); bif = bridge_lookup_member_if(sc, ifp); if (bif == NULL) { BRIDGE_UNLOCK(sc); return; } bridge_linkcheck(sc); BRIDGE_UNLOCK(sc); bstp_linkstate(&bif->bif_stp); } static void bridge_linkcheck(struct bridge_softc *sc) { struct bridge_iflist *bif; int new_link, hasls; BRIDGE_LOCK_ASSERT(sc); new_link = LINK_STATE_DOWN; hasls = 0; /* Our link is considered up if at least one of our ports is active */ LIST_FOREACH(bif, &sc->sc_iflist, bif_next) { if (bif->bif_ifp->if_capabilities & IFCAP_LINKSTATE) hasls++; if (bif->bif_ifp->if_link_state == LINK_STATE_UP) { new_link = LINK_STATE_UP; break; } } if (!LIST_EMPTY(&sc->sc_iflist) && !hasls) { /* If no interfaces support link-state then we default to up */ new_link = LINK_STATE_UP; } if_link_state_change(sc->sc_ifp, new_link); } Index: projects/vnet/sys/net/if_enc.c =================================================================== --- projects/vnet/sys/net/if_enc.c (revision 297511) +++ projects/vnet/sys/net/if_enc.c (revision 297512) @@ -1,420 +1,412 @@ /*- * Copyright (c) 2006 The FreeBSD Project. * Copyright (c) 2015 Andrey V. Elsukov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #endif #include #include #define ENCMTU (1024+512) /* XXX this define must have the same value as in OpenBSD */ #define M_CONF 0x0400 /* payload was encrypted (ESP-transport) */ #define M_AUTH 0x0800 /* payload was authenticated (AH or ESP auth) */ #define M_AUTH_AH 0x2000 /* header was authenticated (AH) */ struct enchdr { u_int32_t af; u_int32_t spi; u_int32_t flags; }; struct enc_softc { struct ifnet *sc_ifp; }; static VNET_DEFINE(struct enc_softc *, enc_sc); #define V_enc_sc VNET(enc_sc) static VNET_DEFINE(struct if_clone *, enc_cloner); #define V_enc_cloner VNET(enc_cloner) static int enc_ioctl(struct ifnet *, u_long, caddr_t); static int enc_output(struct ifnet *, struct mbuf *, const struct sockaddr *, struct route *); static int enc_clone_create(struct if_clone *, int, caddr_t); static void enc_clone_destroy(struct ifnet *); static int enc_add_hhooks(struct enc_softc *); static void enc_remove_hhooks(struct enc_softc *); static const char encname[] = "enc"; /* * Before and after are relative to when we are stripping the * outer IP header. */ static VNET_DEFINE(int, filter_mask_in) = IPSEC_ENC_BEFORE; static VNET_DEFINE(int, bpf_mask_in) = IPSEC_ENC_BEFORE; static VNET_DEFINE(int, filter_mask_out) = IPSEC_ENC_BEFORE; static VNET_DEFINE(int, bpf_mask_out) = IPSEC_ENC_BEFORE | IPSEC_ENC_AFTER; #define V_filter_mask_in VNET(filter_mask_in) #define V_bpf_mask_in VNET(bpf_mask_in) #define V_filter_mask_out VNET(filter_mask_out) #define V_bpf_mask_out VNET(bpf_mask_out) static SYSCTL_NODE(_net, OID_AUTO, enc, CTLFLAG_RW, 0, "enc sysctl"); static SYSCTL_NODE(_net_enc, OID_AUTO, in, CTLFLAG_RW, 0, "enc input sysctl"); static SYSCTL_NODE(_net_enc, OID_AUTO, out, CTLFLAG_RW, 0, "enc output sysctl"); SYSCTL_INT(_net_enc_in, OID_AUTO, ipsec_filter_mask, CTLFLAG_RW | CTLFLAG_VNET, &VNET_NAME(filter_mask_in), 0, "IPsec input firewall filter mask"); SYSCTL_INT(_net_enc_in, OID_AUTO, ipsec_bpf_mask, CTLFLAG_RW | CTLFLAG_VNET, &VNET_NAME(bpf_mask_in), 0, "IPsec input bpf mask"); SYSCTL_INT(_net_enc_out, OID_AUTO, ipsec_filter_mask, CTLFLAG_RW | CTLFLAG_VNET, &VNET_NAME(filter_mask_out), 0, "IPsec output firewall filter mask"); SYSCTL_INT(_net_enc_out, OID_AUTO, ipsec_bpf_mask, CTLFLAG_RW | CTLFLAG_VNET, &VNET_NAME(bpf_mask_out), 0, "IPsec output bpf mask"); static void enc_clone_destroy(struct ifnet *ifp) { struct enc_softc *sc; sc = ifp->if_softc; KASSERT(sc == V_enc_sc, ("sc != ifp->if_softc")); bpfdetach(ifp); if_detach(ifp); if_free(ifp); free(sc, M_DEVBUF); V_enc_sc = NULL; } static int enc_clone_create(struct if_clone *ifc, int unit, caddr_t params) { struct ifnet *ifp; struct enc_softc *sc; sc = malloc(sizeof(struct enc_softc), M_DEVBUF, M_WAITOK | M_ZERO); ifp = sc->sc_ifp = if_alloc(IFT_ENC); if (ifp == NULL) { free(sc, M_DEVBUF); return (ENOSPC); } if (V_enc_sc != NULL) { if_free(ifp); free(sc, M_DEVBUF); return (EEXIST); } V_enc_sc = sc; if_initname(ifp, encname, unit); ifp->if_mtu = ENCMTU; ifp->if_ioctl = enc_ioctl; ifp->if_output = enc_output; ifp->if_softc = sc; if_attach(ifp); bpfattach(ifp, DLT_ENC, sizeof(struct enchdr)); return (0); } static int enc_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { m_freem(m); return (0); } static int enc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { if (cmd != SIOCSIFFLAGS) return (EINVAL); if (ifp->if_flags & IFF_UP) ifp->if_drv_flags |= IFF_DRV_RUNNING; else ifp->if_drv_flags &= ~IFF_DRV_RUNNING; return (0); } /* * One helper hook function is used by any hook points. * + from hhook_type we can determine the packet direction: * HHOOK_TYPE_IPSEC_IN or HHOOK_TYPE_IPSEC_OUT; * + from hhook_id we can determine address family: AF_INET or AF_INET6; * + udata contains pointer to enc_softc; * + ctx_data contains pointer to struct ipsec_ctx_data. */ static int enc_hhook(int32_t hhook_type, int32_t hhook_id, void *udata, void *ctx_data, void *hdata, struct osd *hosd) { struct enchdr hdr; struct ipsec_ctx_data *ctx; struct enc_softc *sc; struct ifnet *ifp, *rcvif; struct pfil_head *ph; int pdir; sc = (struct enc_softc *)udata; ifp = sc->sc_ifp; if ((ifp->if_flags & IFF_UP) == 0) return (0); ctx = (struct ipsec_ctx_data *)ctx_data; /* XXX: wrong hook point was used by caller? */ if (ctx->af != hhook_id) return (EPFNOSUPPORT); if (((hhook_type == HHOOK_TYPE_IPSEC_IN && (ctx->enc & V_bpf_mask_in) != 0) || (hhook_type == HHOOK_TYPE_IPSEC_OUT && (ctx->enc & V_bpf_mask_out) != 0)) && bpf_peers_present(ifp->if_bpf) != 0) { hdr.af = ctx->af; hdr.spi = ctx->sav->spi; hdr.flags = 0; if (ctx->sav->alg_enc != SADB_EALG_NONE) hdr.flags |= M_CONF; if (ctx->sav->alg_auth != SADB_AALG_NONE) hdr.flags |= M_AUTH; bpf_mtap2(ifp->if_bpf, &hdr, sizeof(hdr), *ctx->mp); } switch (hhook_type) { case HHOOK_TYPE_IPSEC_IN: if (ctx->enc == IPSEC_ENC_BEFORE) { /* Do accounting only once */ if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); if_inc_counter(ifp, IFCOUNTER_IBYTES, (*ctx->mp)->m_pkthdr.len); } if ((ctx->enc & V_filter_mask_in) == 0) return (0); /* skip pfil processing */ pdir = PFIL_IN; break; case HHOOK_TYPE_IPSEC_OUT: if (ctx->enc == IPSEC_ENC_BEFORE) { /* Do accounting only once */ if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); if_inc_counter(ifp, IFCOUNTER_OBYTES, (*ctx->mp)->m_pkthdr.len); } if ((ctx->enc & V_filter_mask_out) == 0) return (0); /* skip pfil processing */ pdir = PFIL_OUT; break; default: return (EINVAL); } switch (hhook_id) { #ifdef INET case AF_INET: ph = &V_inet_pfil_hook; break; #endif #ifdef INET6 case AF_INET6: ph = &V_inet6_pfil_hook; break; #endif default: ph = NULL; } if (ph == NULL || !PFIL_HOOKED(ph)) return (0); /* Make a packet looks like it was received on enc(4) */ rcvif = (*ctx->mp)->m_pkthdr.rcvif; (*ctx->mp)->m_pkthdr.rcvif = ifp; if (pfil_run_hooks(ph, ctx->mp, ifp, pdir, NULL) != 0 || *ctx->mp == NULL) { *ctx->mp = NULL; /* consumed by filter */ return (EACCES); } (*ctx->mp)->m_pkthdr.rcvif = rcvif; return (0); } static int enc_add_hhooks(struct enc_softc *sc) { struct hookinfo hki; int error; error = EPFNOSUPPORT; hki.hook_func = enc_hhook; hki.hook_helper = NULL; hki.hook_udata = sc; #ifdef INET hki.hook_id = AF_INET; hki.hook_type = HHOOK_TYPE_IPSEC_IN; error = hhook_add_hook(V_ipsec_hhh_in[HHOOK_IPSEC_INET], &hki, HHOOK_WAITOK); if (error != 0) return (error); hki.hook_type = HHOOK_TYPE_IPSEC_OUT; error = hhook_add_hook(V_ipsec_hhh_out[HHOOK_IPSEC_INET], &hki, HHOOK_WAITOK); if (error != 0) return (error); #endif #ifdef INET6 hki.hook_id = AF_INET6; hki.hook_type = HHOOK_TYPE_IPSEC_IN; error = hhook_add_hook(V_ipsec_hhh_in[HHOOK_IPSEC_INET6], &hki, HHOOK_WAITOK); if (error != 0) return (error); hki.hook_type = HHOOK_TYPE_IPSEC_OUT; error = hhook_add_hook(V_ipsec_hhh_out[HHOOK_IPSEC_INET6], &hki, HHOOK_WAITOK); if (error != 0) return (error); #endif return (error); } static void enc_remove_hhooks(struct enc_softc *sc) { struct hookinfo hki; hki.hook_func = enc_hhook; hki.hook_helper = NULL; hki.hook_udata = sc; #ifdef INET hki.hook_id = AF_INET; hki.hook_type = HHOOK_TYPE_IPSEC_IN; hhook_remove_hook(V_ipsec_hhh_in[HHOOK_IPSEC_INET], &hki); hki.hook_type = HHOOK_TYPE_IPSEC_OUT; hhook_remove_hook(V_ipsec_hhh_out[HHOOK_IPSEC_INET], &hki); #endif #ifdef INET6 hki.hook_id = AF_INET6; hki.hook_type = HHOOK_TYPE_IPSEC_IN; hhook_remove_hook(V_ipsec_hhh_in[HHOOK_IPSEC_INET6], &hki); hki.hook_type = HHOOK_TYPE_IPSEC_OUT; hhook_remove_hook(V_ipsec_hhh_out[HHOOK_IPSEC_INET6], &hki); #endif } static void vnet_enc_init(const void *unused __unused) { V_enc_sc = NULL; V_enc_cloner = if_clone_simple(encname, enc_clone_create, enc_clone_destroy, 1); } VNET_SYSINIT(vnet_enc_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_enc_init, NULL); static void vnet_enc_init_proto(void *unused __unused) { KASSERT(V_enc_sc != NULL, ("%s: V_enc_sc is %p\n", __func__, V_enc_sc)); if (enc_add_hhooks(V_enc_sc) != 0) enc_clone_destroy(V_enc_sc->sc_ifp); } VNET_SYSINIT(vnet_enc_init_proto, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, vnet_enc_init_proto, NULL); static void vnet_enc_uninit(const void *unused __unused) { - - if_clone_detach(V_enc_cloner); -} -VNET_SYSUNINIT(vnet_enc_uninit, SI_SUB_PSEUDO, SI_ORDER_ANY, - vnet_enc_uninit, NULL); - -static void -vnet_enc_uninit_proto(void *unused __unused) -{ KASSERT(V_enc_sc != NULL, ("%s: V_enc_sc is %p\n", __func__, V_enc_sc)); enc_remove_hhooks(V_enc_sc); + if_clone_detach(V_enc_cloner); } -VNET_SYSUNINIT(vnet_enc_uninit_proto, SI_SUB_PROTO_IFATTACHDOMAIN, - SI_ORDER_ANY, vnet_enc_uninit_proto, NULL); +VNET_SYSUNINIT(vnet_enc_uninit, SI_SUB_PSEUDO_DONE, SI_ORDER_ANY, + vnet_enc_uninit, NULL); static int enc_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: case MOD_UNLOAD: break; default: return (EOPNOTSUPP); } return (0); } static moduledata_t enc_mod = { "if_enc", enc_modevent, 0 }; DECLARE_MODULE(if_enc, enc_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); Index: projects/vnet/sys/net/if_epair.c =================================================================== --- projects/vnet/sys/net/if_epair.c (revision 297511) +++ projects/vnet/sys/net/if_epair.c (revision 297512) @@ -1,1010 +1,1010 @@ /*- * Copyright (c) 2008 The FreeBSD Foundation * Copyright (c) 2009-2010 Bjoern A. Zeeb * All rights reserved. * * This software was developed by CK Software GmbH under sponsorship * from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * A pair of virtual back-to-back connected ethernet like interfaces * (``two interfaces with a virtual cross-over cable''). * * This is mostly intended to be used to provide connectivity between * different virtual network stack instances. */ /* * Things to re-think once we have more experience: * - ifp->if_reassign function once we can test with vimage. Depending on * how if_vmove() is going to be improved. * - Real random etheraddrs that are checked to be uniquish; we would need * to re-do them in case we move the interface between network stacks * in a private if_reassign function. * In case we bridge to a real interface/network or between indepedent * epairs on multiple stacks/machines, we may need this. * For now let the user handle that case. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include SYSCTL_DECL(_net_link); static SYSCTL_NODE(_net_link, OID_AUTO, epair, CTLFLAG_RW, 0, "epair sysctl"); #ifdef EPAIR_DEBUG static int epair_debug = 0; SYSCTL_INT(_net_link_epair, OID_AUTO, epair_debug, CTLFLAG_RW, &epair_debug, 0, "if_epair(4) debugging."); #define DPRINTF(fmt, arg...) \ if (epair_debug) \ printf("[%s:%d] " fmt, __func__, __LINE__, ##arg) #else #define DPRINTF(fmt, arg...) #endif static void epair_nh_sintr(struct mbuf *); static struct mbuf *epair_nh_m2cpuid(struct mbuf *, uintptr_t, u_int *); static void epair_nh_drainedcpu(u_int); static void epair_start_locked(struct ifnet *); static int epair_media_change(struct ifnet *); static void epair_media_status(struct ifnet *, struct ifmediareq *); static int epair_clone_match(struct if_clone *, const char *); static int epair_clone_create(struct if_clone *, char *, size_t, caddr_t); static int epair_clone_destroy(struct if_clone *, struct ifnet *); static const char epairname[] = "epair"; /* Netisr related definitions and sysctl. */ static struct netisr_handler epair_nh = { .nh_name = epairname, .nh_proto = NETISR_EPAIR, .nh_policy = NETISR_POLICY_CPU, .nh_handler = epair_nh_sintr, .nh_m2cpuid = epair_nh_m2cpuid, .nh_drainedcpu = epair_nh_drainedcpu, }; static int sysctl_epair_netisr_maxqlen(SYSCTL_HANDLER_ARGS) { int error, qlimit; netisr_getqlimit(&epair_nh, &qlimit); error = sysctl_handle_int(oidp, &qlimit, 0, req); if (error || !req->newptr) return (error); if (qlimit < 1) return (EINVAL); return (netisr_setqlimit(&epair_nh, qlimit)); } SYSCTL_PROC(_net_link_epair, OID_AUTO, netisr_maxqlen, CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_epair_netisr_maxqlen, "I", "Maximum if_epair(4) netisr \"hw\" queue length"); struct epair_softc { struct ifnet *ifp; /* This ifp. */ struct ifnet *oifp; /* other ifp of pair. */ struct ifmedia media; /* Media config (fake). */ u_int refcount; /* # of mbufs in flight. */ u_int cpuid; /* CPU ID assigned upon creation. */ void (*if_qflush)(struct ifnet *); /* Original if_qflush routine. */ }; /* * Per-CPU list of ifps with data in the ifq that needs to be flushed * to the netisr ``hw'' queue before we allow any further direct queuing * to the ``hw'' queue. */ struct epair_ifp_drain { STAILQ_ENTRY(epair_ifp_drain) ifp_next; struct ifnet *ifp; }; STAILQ_HEAD(eid_list, epair_ifp_drain); #define EPAIR_LOCK_INIT(dpcpu) mtx_init(&(dpcpu)->if_epair_mtx, \ "if_epair", NULL, MTX_DEF) #define EPAIR_LOCK_DESTROY(dpcpu) mtx_destroy(&(dpcpu)->if_epair_mtx) #define EPAIR_LOCK_ASSERT(dpcpu) mtx_assert(&(dpcpu)->if_epair_mtx, \ MA_OWNED) #define EPAIR_LOCK(dpcpu) mtx_lock(&(dpcpu)->if_epair_mtx) #define EPAIR_UNLOCK(dpcpu) mtx_unlock(&(dpcpu)->if_epair_mtx) #ifdef INVARIANTS #define EPAIR_REFCOUNT_INIT(r, v) refcount_init((r), (v)) #define EPAIR_REFCOUNT_AQUIRE(r) refcount_acquire((r)) #define EPAIR_REFCOUNT_RELEASE(r) refcount_release((r)) #define EPAIR_REFCOUNT_ASSERT(a, p) KASSERT(a, p) #else #define EPAIR_REFCOUNT_INIT(r, v) #define EPAIR_REFCOUNT_AQUIRE(r) #define EPAIR_REFCOUNT_RELEASE(r) #define EPAIR_REFCOUNT_ASSERT(a, p) #endif static MALLOC_DEFINE(M_EPAIR, epairname, "Pair of virtual cross-over connected Ethernet-like interfaces"); static VNET_DEFINE(struct if_clone *, epair_cloner); #define V_epair_cloner VNET(epair_cloner) /* * DPCPU area and functions. */ struct epair_dpcpu { struct mtx if_epair_mtx; /* Per-CPU locking. */ int epair_drv_flags; /* Per-CPU ``hw'' drv flags. */ struct eid_list epair_ifp_drain_list; /* Per-CPU list of ifps with * data in the ifq. */ }; DPCPU_DEFINE(struct epair_dpcpu, epair_dpcpu); static void epair_dpcpu_init(void) { struct epair_dpcpu *epair_dpcpu; struct eid_list *s; u_int cpuid; CPU_FOREACH(cpuid) { epair_dpcpu = DPCPU_ID_PTR(cpuid, epair_dpcpu); /* Initialize per-cpu lock. */ EPAIR_LOCK_INIT(epair_dpcpu); /* Driver flags are per-cpu as are our netisr "hw" queues. */ epair_dpcpu->epair_drv_flags = 0; /* * Initialize per-cpu drain list. * Manually do what STAILQ_HEAD_INITIALIZER would do. */ s = &epair_dpcpu->epair_ifp_drain_list; s->stqh_first = NULL; s->stqh_last = &s->stqh_first; } } static void epair_dpcpu_detach(void) { struct epair_dpcpu *epair_dpcpu; u_int cpuid; CPU_FOREACH(cpuid) { epair_dpcpu = DPCPU_ID_PTR(cpuid, epair_dpcpu); /* Destroy per-cpu lock. */ EPAIR_LOCK_DESTROY(epair_dpcpu); } } /* * Helper functions. */ static u_int cpuid_from_ifp(struct ifnet *ifp) { struct epair_softc *sc; if (ifp == NULL) return (0); sc = ifp->if_softc; return (sc->cpuid); } /* * Netisr handler functions. */ static void epair_nh_sintr(struct mbuf *m) { struct ifnet *ifp; struct epair_softc *sc; ifp = m->m_pkthdr.rcvif; (*ifp->if_input)(ifp, m); sc = ifp->if_softc; EPAIR_REFCOUNT_RELEASE(&sc->refcount); EPAIR_REFCOUNT_ASSERT((int)sc->refcount >= 1, ("%s: ifp=%p sc->refcount not >= 1: %d", __func__, ifp, sc->refcount)); DPRINTF("ifp=%p refcount=%u\n", ifp, sc->refcount); } static struct mbuf * epair_nh_m2cpuid(struct mbuf *m, uintptr_t source, u_int *cpuid) { *cpuid = cpuid_from_ifp(m->m_pkthdr.rcvif); return (m); } static void epair_nh_drainedcpu(u_int cpuid) { struct epair_dpcpu *epair_dpcpu; struct epair_ifp_drain *elm, *tvar; struct ifnet *ifp; epair_dpcpu = DPCPU_ID_PTR(cpuid, epair_dpcpu); EPAIR_LOCK(epair_dpcpu); /* * Assume our "hw" queue and possibly ifq will be emptied * again. In case we will overflow the "hw" queue while * draining, epair_start_locked will set IFF_DRV_OACTIVE * again and we will stop and return. */ STAILQ_FOREACH_SAFE(elm, &epair_dpcpu->epair_ifp_drain_list, ifp_next, tvar) { ifp = elm->ifp; epair_dpcpu->epair_drv_flags &= ~IFF_DRV_OACTIVE; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; epair_start_locked(ifp); IFQ_LOCK(&ifp->if_snd); if (IFQ_IS_EMPTY(&ifp->if_snd)) { struct epair_softc *sc; STAILQ_REMOVE(&epair_dpcpu->epair_ifp_drain_list, elm, epair_ifp_drain, ifp_next); /* The cached ifp goes off the list. */ sc = ifp->if_softc; EPAIR_REFCOUNT_RELEASE(&sc->refcount); EPAIR_REFCOUNT_ASSERT((int)sc->refcount >= 1, ("%s: ifp=%p sc->refcount not >= 1: %d", __func__, ifp, sc->refcount)); free(elm, M_EPAIR); } IFQ_UNLOCK(&ifp->if_snd); if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) != 0) { /* Our "hw"q overflew again. */ epair_dpcpu->epair_drv_flags |= IFF_DRV_OACTIVE; DPRINTF("hw queue length overflow at %u\n", epair_nh.nh_qlimit); break; } } EPAIR_UNLOCK(epair_dpcpu); } /* * Network interface (`if') related functions. */ static void epair_remove_ifp_from_draining(struct ifnet *ifp) { struct epair_dpcpu *epair_dpcpu; struct epair_ifp_drain *elm, *tvar; u_int cpuid; CPU_FOREACH(cpuid) { epair_dpcpu = DPCPU_ID_PTR(cpuid, epair_dpcpu); EPAIR_LOCK(epair_dpcpu); STAILQ_FOREACH_SAFE(elm, &epair_dpcpu->epair_ifp_drain_list, ifp_next, tvar) { if (ifp == elm->ifp) { struct epair_softc *sc; STAILQ_REMOVE( &epair_dpcpu->epair_ifp_drain_list, elm, epair_ifp_drain, ifp_next); /* The cached ifp goes off the list. */ sc = ifp->if_softc; EPAIR_REFCOUNT_RELEASE(&sc->refcount); EPAIR_REFCOUNT_ASSERT((int)sc->refcount >= 1, ("%s: ifp=%p sc->refcount not >= 1: %d", __func__, ifp, sc->refcount)); free(elm, M_EPAIR); } } EPAIR_UNLOCK(epair_dpcpu); } } static int epair_add_ifp_for_draining(struct ifnet *ifp) { struct epair_dpcpu *epair_dpcpu; struct epair_softc *sc; struct epair_ifp_drain *elm = NULL; sc = ifp->if_softc; epair_dpcpu = DPCPU_ID_PTR(sc->cpuid, epair_dpcpu); EPAIR_LOCK_ASSERT(epair_dpcpu); STAILQ_FOREACH(elm, &epair_dpcpu->epair_ifp_drain_list, ifp_next) if (elm->ifp == ifp) break; /* If the ifp is there already, return success. */ if (elm != NULL) return (0); elm = malloc(sizeof(struct epair_ifp_drain), M_EPAIR, M_NOWAIT|M_ZERO); if (elm == NULL) return (ENOMEM); elm->ifp = ifp; /* Add a reference for the ifp pointer on the list. */ EPAIR_REFCOUNT_AQUIRE(&sc->refcount); STAILQ_INSERT_TAIL(&epair_dpcpu->epair_ifp_drain_list, elm, ifp_next); return (0); } static void epair_start_locked(struct ifnet *ifp) { struct epair_dpcpu *epair_dpcpu; struct mbuf *m; struct epair_softc *sc; struct ifnet *oifp; int error; DPRINTF("ifp=%p\n", ifp); sc = ifp->if_softc; epair_dpcpu = DPCPU_ID_PTR(sc->cpuid, epair_dpcpu); EPAIR_LOCK_ASSERT(epair_dpcpu); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; if ((ifp->if_flags & IFF_UP) == 0) return; /* * We get patckets here from ether_output via if_handoff() * and ned to put them into the input queue of the oifp * and call oifp->if_input() via netisr/epair_sintr(). */ oifp = sc->oifp; sc = oifp->if_softc; for (;;) { IFQ_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; BPF_MTAP(ifp, m); /* * In case the outgoing interface is not usable, * drop the packet. */ if ((oifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || (oifp->if_flags & IFF_UP) ==0) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); continue; } DPRINTF("packet %s -> %s\n", ifp->if_xname, oifp->if_xname); /* * Add a reference so the interface cannot go while the * packet is in transit as we rely on rcvif to stay valid. */ EPAIR_REFCOUNT_AQUIRE(&sc->refcount); m->m_pkthdr.rcvif = oifp; CURVNET_SET_QUIET(oifp->if_vnet); error = netisr_queue(NETISR_EPAIR, m); CURVNET_RESTORE(); if (!error) { if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); /* Someone else received the packet. */ if_inc_counter(oifp, IFCOUNTER_IPACKETS, 1); } else { /* The packet was freed already. */ epair_dpcpu->epair_drv_flags |= IFF_DRV_OACTIVE; ifp->if_drv_flags |= IFF_DRV_OACTIVE; (void) epair_add_ifp_for_draining(ifp); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); EPAIR_REFCOUNT_RELEASE(&sc->refcount); EPAIR_REFCOUNT_ASSERT((int)sc->refcount >= 1, ("%s: ifp=%p sc->refcount not >= 1: %d", __func__, oifp, sc->refcount)); } } } static void epair_start(struct ifnet *ifp) { struct epair_dpcpu *epair_dpcpu; epair_dpcpu = DPCPU_ID_PTR(cpuid_from_ifp(ifp), epair_dpcpu); EPAIR_LOCK(epair_dpcpu); epair_start_locked(ifp); EPAIR_UNLOCK(epair_dpcpu); } static int epair_transmit_locked(struct ifnet *ifp, struct mbuf *m) { struct epair_dpcpu *epair_dpcpu; struct epair_softc *sc; struct ifnet *oifp; int error, len; short mflags; DPRINTF("ifp=%p m=%p\n", ifp, m); sc = ifp->if_softc; epair_dpcpu = DPCPU_ID_PTR(sc->cpuid, epair_dpcpu); EPAIR_LOCK_ASSERT(epair_dpcpu); if (m == NULL) return (0); /* * We are not going to use the interface en/dequeue mechanism * on the TX side. We are called from ether_output_frame() * and will put the packet into the incoming queue of the * other interface of our pair via the netsir. */ if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { m_freem(m); return (ENXIO); } if ((ifp->if_flags & IFF_UP) == 0) { m_freem(m); return (ENETDOWN); } BPF_MTAP(ifp, m); /* * In case the outgoing interface is not usable, * drop the packet. */ oifp = sc->oifp; if ((oifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || (oifp->if_flags & IFF_UP) ==0) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); return (0); } len = m->m_pkthdr.len; mflags = m->m_flags; DPRINTF("packet %s -> %s\n", ifp->if_xname, oifp->if_xname); #ifdef ALTQ /* Support ALTQ via the clasic if_start() path. */ IF_LOCK(&ifp->if_snd); if (ALTQ_IS_ENABLED(&ifp->if_snd)) { ALTQ_ENQUEUE(&ifp->if_snd, m, NULL, error); if (error) if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); IF_UNLOCK(&ifp->if_snd); if (!error) { if_inc_counter(ifp, IFCOUNTER_OBYTES, len); if (mflags & (M_BCAST|M_MCAST)) if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) epair_start_locked(ifp); else (void)epair_add_ifp_for_draining(ifp); } return (error); } IF_UNLOCK(&ifp->if_snd); #endif if ((epair_dpcpu->epair_drv_flags & IFF_DRV_OACTIVE) != 0) { /* * Our hardware queue is full, try to fall back * queuing to the ifq but do not call ifp->if_start. * Either we are lucky or the packet is gone. */ IFQ_ENQUEUE(&ifp->if_snd, m, error); if (!error) (void)epair_add_ifp_for_draining(ifp); return (error); } sc = oifp->if_softc; /* * Add a reference so the interface cannot go while the * packet is in transit as we rely on rcvif to stay valid. */ EPAIR_REFCOUNT_AQUIRE(&sc->refcount); m->m_pkthdr.rcvif = oifp; CURVNET_SET_QUIET(oifp->if_vnet); error = netisr_queue(NETISR_EPAIR, m); CURVNET_RESTORE(); if (!error) { if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); /* * IFQ_HANDOFF_ADJ/ip_handoff() update statistics, * but as we bypass all this we have to duplicate * the logic another time. */ if_inc_counter(ifp, IFCOUNTER_OBYTES, len); if (mflags & (M_BCAST|M_MCAST)) if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); /* Someone else received the packet. */ if_inc_counter(oifp, IFCOUNTER_IPACKETS, 1); } else { /* The packet was freed already. */ epair_dpcpu->epair_drv_flags |= IFF_DRV_OACTIVE; ifp->if_drv_flags |= IFF_DRV_OACTIVE; if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); EPAIR_REFCOUNT_RELEASE(&sc->refcount); EPAIR_REFCOUNT_ASSERT((int)sc->refcount >= 1, ("%s: ifp=%p sc->refcount not >= 1: %d", __func__, oifp, sc->refcount)); } return (error); } static int epair_transmit(struct ifnet *ifp, struct mbuf *m) { struct epair_dpcpu *epair_dpcpu; int error; epair_dpcpu = DPCPU_ID_PTR(cpuid_from_ifp(ifp), epair_dpcpu); EPAIR_LOCK(epair_dpcpu); error = epair_transmit_locked(ifp, m); EPAIR_UNLOCK(epair_dpcpu); return (error); } static void epair_qflush(struct ifnet *ifp) { struct epair_softc *sc; sc = ifp->if_softc; KASSERT(sc != NULL, ("%s: ifp=%p, epair_softc gone? sc=%p\n", __func__, ifp, sc)); /* * Remove this ifp from all backpointer lists. The interface will not * usable for flushing anyway nor should it have anything to flush * after if_qflush(). */ epair_remove_ifp_from_draining(ifp); if (sc->if_qflush) sc->if_qflush(ifp); } static int epair_media_change(struct ifnet *ifp __unused) { /* Do nothing. */ return (0); } static void epair_media_status(struct ifnet *ifp __unused, struct ifmediareq *imr) { imr->ifm_status = IFM_AVALID | IFM_ACTIVE; imr->ifm_active = IFM_ETHER | IFM_10G_T | IFM_FDX; } static int epair_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct epair_softc *sc; struct ifreq *ifr; int error; ifr = (struct ifreq *)data; switch (cmd) { case SIOCSIFFLAGS: case SIOCADDMULTI: case SIOCDELMULTI: error = 0; break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: sc = ifp->if_softc; error = ifmedia_ioctl(ifp, ifr, &sc->media, cmd); break; case SIOCSIFMTU: /* We basically allow all kinds of MTUs. */ ifp->if_mtu = ifr->ifr_mtu; error = 0; break; default: /* Let the common ethernet handler process this. */ error = ether_ioctl(ifp, cmd, data); break; } return (error); } static void epair_init(void *dummy __unused) { } /* * Interface cloning functions. * We use our private ones so that we can create/destroy our secondary * device along with the primary one. */ static int epair_clone_match(struct if_clone *ifc, const char *name) { const char *cp; DPRINTF("name='%s'\n", name); /* * Our base name is epair. * Our interfaces will be named epair[ab]. * So accept anything of the following list: * - epair * - epair * but not the epair[ab] versions. */ if (strncmp(epairname, name, sizeof(epairname)-1) != 0) return (0); for (cp = name + sizeof(epairname) - 1; *cp != '\0'; cp++) { if (*cp < '0' || *cp > '9') return (0); } return (1); } static int epair_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params) { struct epair_softc *sca, *scb; struct ifnet *ifp; char *dp; int error, unit, wildcard; uint8_t eaddr[ETHER_ADDR_LEN]; /* 00:00:00:00:00:00 */ /* * We are abusing params to create our second interface. * Actually we already created it and called if_clone_create() * for it to do the official insertion procedure the moment we knew * it cannot fail anymore. So just do attach it here. */ if (params) { scb = (struct epair_softc *)params; ifp = scb->ifp; /* Assign a hopefully unique, locally administered etheraddr. */ eaddr[0] = 0x02; eaddr[3] = (ifp->if_index >> 8) & 0xff; eaddr[4] = ifp->if_index & 0xff; eaddr[5] = 0x0b; ether_ifattach(ifp, eaddr); /* Correctly set the name for the cloner list. */ strlcpy(name, scb->ifp->if_xname, len); return (0); } /* Try to see if a special unit was requested. */ error = ifc_name2unit(name, &unit); if (error != 0) return (error); wildcard = (unit < 0); error = ifc_alloc_unit(ifc, &unit); if (error != 0) return (error); /* * If no unit had been given, we need to adjust the ifName. * Also make sure there is space for our extra [ab] suffix. */ for (dp = name; *dp != '\0'; dp++); if (wildcard) { error = snprintf(dp, len - (dp - name), "%d", unit); if (error > len - (dp - name) - 1) { /* ifName too long. */ ifc_free_unit(ifc, unit); return (ENOSPC); } dp += error; } if (len - (dp - name) - 1 < 1) { /* No space left for our [ab] suffix. */ ifc_free_unit(ifc, unit); return (ENOSPC); } *dp = 'b'; /* Must not change dp so we can replace 'a' by 'b' later. */ *(dp+1) = '\0'; /* Check if 'a' and 'b' interfaces already exist. */ if (ifunit(name) != NULL) return (EEXIST); *dp = 'a'; if (ifunit(name) != NULL) return (EEXIST); /* Allocate memory for both [ab] interfaces */ sca = malloc(sizeof(struct epair_softc), M_EPAIR, M_WAITOK | M_ZERO); EPAIR_REFCOUNT_INIT(&sca->refcount, 1); sca->ifp = if_alloc(IFT_ETHER); if (sca->ifp == NULL) { free(sca, M_EPAIR); ifc_free_unit(ifc, unit); return (ENOSPC); } scb = malloc(sizeof(struct epair_softc), M_EPAIR, M_WAITOK | M_ZERO); EPAIR_REFCOUNT_INIT(&scb->refcount, 1); scb->ifp = if_alloc(IFT_ETHER); if (scb->ifp == NULL) { free(scb, M_EPAIR); if_free(sca->ifp); free(sca, M_EPAIR); ifc_free_unit(ifc, unit); return (ENOSPC); } /* * Cross-reference the interfaces so we will be able to free both. */ sca->oifp = scb->ifp; scb->oifp = sca->ifp; /* * Calculate the cpuid for netisr queueing based on the * ifIndex of the interfaces. As long as we cannot configure * this or use cpuset information easily we cannot guarantee * cache locality but we can at least allow parallelism. */ sca->cpuid = netisr_get_cpuid(sca->ifp->if_index % netisr_get_cpucount()); scb->cpuid = netisr_get_cpuid(scb->ifp->if_index % netisr_get_cpucount()); /* Initialise pseudo media types. */ ifmedia_init(&sca->media, 0, epair_media_change, epair_media_status); ifmedia_add(&sca->media, IFM_ETHER | IFM_10G_T, 0, NULL); ifmedia_set(&sca->media, IFM_ETHER | IFM_10G_T); ifmedia_init(&scb->media, 0, epair_media_change, epair_media_status); ifmedia_add(&scb->media, IFM_ETHER | IFM_10G_T, 0, NULL); ifmedia_set(&scb->media, IFM_ETHER | IFM_10G_T); /* Finish initialization of interface a. */ ifp = sca->ifp; ifp->if_softc = sca; strlcpy(ifp->if_xname, name, IFNAMSIZ); ifp->if_dname = epairname; ifp->if_dunit = unit; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_capabilities = IFCAP_VLAN_MTU; ifp->if_capenable = IFCAP_VLAN_MTU; ifp->if_start = epair_start; ifp->if_ioctl = epair_ioctl; ifp->if_init = epair_init; ifp->if_snd.ifq_maxlen = ifqmaxlen; /* Assign a hopefully unique, locally administered etheraddr. */ eaddr[0] = 0x02; eaddr[3] = (ifp->if_index >> 8) & 0xff; eaddr[4] = ifp->if_index & 0xff; eaddr[5] = 0x0a; ether_ifattach(ifp, eaddr); sca->if_qflush = ifp->if_qflush; ifp->if_qflush = epair_qflush; ifp->if_transmit = epair_transmit; ifp->if_baudrate = IF_Gbps(10); /* arbitrary maximum */ /* Swap the name and finish initialization of interface b. */ *dp = 'b'; ifp = scb->ifp; ifp->if_softc = scb; strlcpy(ifp->if_xname, name, IFNAMSIZ); ifp->if_dname = epairname; ifp->if_dunit = unit; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_capabilities = IFCAP_VLAN_MTU; ifp->if_capenable = IFCAP_VLAN_MTU; ifp->if_start = epair_start; ifp->if_ioctl = epair_ioctl; ifp->if_init = epair_init; ifp->if_snd.ifq_maxlen = ifqmaxlen; /* We need to play some tricks here for the second interface. */ strlcpy(name, epairname, len); error = if_clone_create(name, len, (caddr_t)scb); if (error) panic("%s: if_clone_create() for our 2nd iface failed: %d", __func__, error); scb->if_qflush = ifp->if_qflush; ifp->if_qflush = epair_qflush; ifp->if_transmit = epair_transmit; ifp->if_baudrate = IF_Gbps(10); /* arbitrary maximum */ /* * Restore name to a as the ifp for this will go into the * cloner list for the initial call. */ strlcpy(name, sca->ifp->if_xname, len); DPRINTF("name='%s/%db' created sca=%p scb=%p\n", name, unit, sca, scb); /* Tell the world, that we are ready to rock. */ sca->ifp->if_drv_flags |= IFF_DRV_RUNNING; scb->ifp->if_drv_flags |= IFF_DRV_RUNNING; if_link_state_change(sca->ifp, LINK_STATE_UP); if_link_state_change(scb->ifp, LINK_STATE_UP); return (0); } static int epair_clone_destroy(struct if_clone *ifc, struct ifnet *ifp) { struct ifnet *oifp; struct epair_softc *sca, *scb; int unit, error; DPRINTF("ifp=%p\n", ifp); /* * In case we called into if_clone_destroyif() ourselves * again to remove the second interface, the softc will be * NULL. In that case so not do anything but return success. */ if (ifp->if_softc == NULL) return (0); unit = ifp->if_dunit; sca = ifp->if_softc; oifp = sca->oifp; scb = oifp->if_softc; DPRINTF("ifp=%p oifp=%p\n", ifp, oifp); if_link_state_change(ifp, LINK_STATE_DOWN); if_link_state_change(oifp, LINK_STATE_DOWN); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; oifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* * Get rid of our second half. As the other of the two * interfaces may reside in a different vnet, we need to * switch before freeing them. */ CURVNET_SET_QUIET(oifp->if_vnet); ether_ifdetach(oifp); /* * Wait for all packets to be dispatched to if_input. * The numbers can only go down as the interface is * detached so there is no need to use atomics. */ DPRINTF("scb refcnt=%u\n", scb->refcount); EPAIR_REFCOUNT_ASSERT(scb->refcount == 1, ("%s: ifp=%p scb->refcount!=1: %d", __func__, oifp, scb->refcount)); oifp->if_softc = NULL; error = if_clone_destroyif(ifc, oifp); if (error) panic("%s: if_clone_destroyif() for our 2nd iface failed: %d", __func__, error); if_free(oifp); ifmedia_removeall(&scb->media); free(scb, M_EPAIR); CURVNET_RESTORE(); ether_ifdetach(ifp); /* * Wait for all packets to be dispatched to if_input. */ DPRINTF("sca refcnt=%u\n", sca->refcount); EPAIR_REFCOUNT_ASSERT(sca->refcount == 1, ("%s: ifp=%p sca->refcount!=1: %d", __func__, ifp, sca->refcount)); if_free(ifp); ifmedia_removeall(&sca->media); free(sca, M_EPAIR); ifc_free_unit(ifc, unit); return (0); } static void vnet_epair_init(const void *unused __unused) { V_epair_cloner = if_clone_advanced(epairname, 0, epair_clone_match, epair_clone_create, epair_clone_destroy); } -VNET_SYSINIT(vnet_epair_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, +VNET_SYSINIT(vnet_epair_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_epair_init, NULL); static void vnet_epair_uninit(const void *unused __unused) { if_clone_detach(V_epair_cloner); } -VNET_SYSUNINIT(vnet_epair_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, +VNET_SYSUNINIT(vnet_epair_uninit, SI_SUB_PSEUDO_DONE, SI_ORDER_ANY, vnet_epair_uninit, NULL); static int epair_modevent(module_t mod, int type, void *data) { int qlimit; switch (type) { case MOD_LOAD: /* For now limit us to one global mutex and one inq. */ epair_dpcpu_init(); epair_nh.nh_qlimit = 42 * ifqmaxlen; /* 42 shall be the number. */ if (TUNABLE_INT_FETCH("net.link.epair.netisr_maxqlen", &qlimit)) epair_nh.nh_qlimit = qlimit; netisr_register(&epair_nh); if (bootverbose) printf("%s initialized.\n", epairname); break; case MOD_UNLOAD: netisr_unregister(&epair_nh); epair_dpcpu_detach(); if (bootverbose) printf("%s unloaded.\n", epairname); break; default: return (EOPNOTSUPP); } return (0); } static moduledata_t epair_mod = { "if_epair", epair_modevent, 0 }; DECLARE_MODULE(if_epair, epair_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); MODULE_VERSION(if_epair, 1); Index: projects/vnet/sys/net/if_lagg.c =================================================================== --- projects/vnet/sys/net/if_lagg.c (revision 297511) +++ projects/vnet/sys/net/if_lagg.c (revision 297512) @@ -1,2240 +1,2240 @@ /* $OpenBSD: if_trunk.c,v 1.30 2007/01/31 06:20:19 reyk Exp $ */ /* * Copyright (c) 2005, 2006 Reyk Floeter * Copyright (c) 2007 Andrew Thompson * Copyright (c) 2014, 2016 Marcelo Araujo * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #endif #ifdef INET #include #include #endif #ifdef INET6 #include #include #include #endif #include #include #include /* Special flags we should propagate to the lagg ports. */ static struct { int flag; int (*func)(struct ifnet *, int); } lagg_pflags[] = { {IFF_PROMISC, ifpromisc}, {IFF_ALLMULTI, if_allmulti}, {0, NULL} }; VNET_DEFINE(SLIST_HEAD(__trhead, lagg_softc), lagg_list); /* list of laggs */ #define V_lagg_list VNET(lagg_list) static VNET_DEFINE(struct mtx, lagg_list_mtx); #define V_lagg_list_mtx VNET(lagg_list_mtx) #define LAGG_LIST_LOCK_INIT(x) mtx_init(&V_lagg_list_mtx, \ "if_lagg list", NULL, MTX_DEF) #define LAGG_LIST_LOCK_DESTROY(x) mtx_destroy(&V_lagg_list_mtx) #define LAGG_LIST_LOCK(x) mtx_lock(&V_lagg_list_mtx) #define LAGG_LIST_UNLOCK(x) mtx_unlock(&V_lagg_list_mtx) eventhandler_tag lagg_detach_cookie = NULL; static int lagg_clone_create(struct if_clone *, int, caddr_t); static void lagg_clone_destroy(struct ifnet *); static VNET_DEFINE(struct if_clone *, lagg_cloner); #define V_lagg_cloner VNET(lagg_cloner) static const char laggname[] = "lagg"; static void lagg_lladdr(struct lagg_softc *, uint8_t *); static void lagg_capabilities(struct lagg_softc *); static void lagg_port_lladdr(struct lagg_port *, uint8_t *, lagg_llqtype); static void lagg_port_setlladdr(void *, int); static int lagg_port_create(struct lagg_softc *, struct ifnet *); static int lagg_port_destroy(struct lagg_port *, int); static struct mbuf *lagg_input(struct ifnet *, struct mbuf *); static void lagg_linkstate(struct lagg_softc *); static void lagg_port_state(struct ifnet *, int); static int lagg_port_ioctl(struct ifnet *, u_long, caddr_t); static int lagg_port_output(struct ifnet *, struct mbuf *, const struct sockaddr *, struct route *); static void lagg_port_ifdetach(void *arg __unused, struct ifnet *); #ifdef LAGG_PORT_STACKING static int lagg_port_checkstacking(struct lagg_softc *); #endif static void lagg_port2req(struct lagg_port *, struct lagg_reqport *); static void lagg_init(void *); static void lagg_stop(struct lagg_softc *); static int lagg_ioctl(struct ifnet *, u_long, caddr_t); static int lagg_ether_setmulti(struct lagg_softc *); static int lagg_ether_cmdmulti(struct lagg_port *, int); static int lagg_setflag(struct lagg_port *, int, int, int (*func)(struct ifnet *, int)); static int lagg_setflags(struct lagg_port *, int status); static uint64_t lagg_get_counter(struct ifnet *ifp, ift_counter cnt); static int lagg_transmit(struct ifnet *, struct mbuf *); static void lagg_qflush(struct ifnet *); static int lagg_media_change(struct ifnet *); static void lagg_media_status(struct ifnet *, struct ifmediareq *); static struct lagg_port *lagg_link_active(struct lagg_softc *, struct lagg_port *); /* Simple round robin */ static void lagg_rr_attach(struct lagg_softc *); static int lagg_rr_start(struct lagg_softc *, struct mbuf *); static struct mbuf *lagg_rr_input(struct lagg_softc *, struct lagg_port *, struct mbuf *); /* Active failover */ static int lagg_fail_start(struct lagg_softc *, struct mbuf *); static struct mbuf *lagg_fail_input(struct lagg_softc *, struct lagg_port *, struct mbuf *); /* Loadbalancing */ static void lagg_lb_attach(struct lagg_softc *); static void lagg_lb_detach(struct lagg_softc *); static int lagg_lb_port_create(struct lagg_port *); static void lagg_lb_port_destroy(struct lagg_port *); static int lagg_lb_start(struct lagg_softc *, struct mbuf *); static struct mbuf *lagg_lb_input(struct lagg_softc *, struct lagg_port *, struct mbuf *); static int lagg_lb_porttable(struct lagg_softc *, struct lagg_port *); /* Broadcast */ static int lagg_bcast_start(struct lagg_softc *, struct mbuf *); static struct mbuf *lagg_bcast_input(struct lagg_softc *, struct lagg_port *, struct mbuf *); /* 802.3ad LACP */ static void lagg_lacp_attach(struct lagg_softc *); static void lagg_lacp_detach(struct lagg_softc *); static int lagg_lacp_start(struct lagg_softc *, struct mbuf *); static struct mbuf *lagg_lacp_input(struct lagg_softc *, struct lagg_port *, struct mbuf *); static void lagg_lacp_lladdr(struct lagg_softc *); /* lagg protocol table */ static const struct lagg_proto { lagg_proto pr_num; void (*pr_attach)(struct lagg_softc *); void (*pr_detach)(struct lagg_softc *); int (*pr_start)(struct lagg_softc *, struct mbuf *); struct mbuf * (*pr_input)(struct lagg_softc *, struct lagg_port *, struct mbuf *); int (*pr_addport)(struct lagg_port *); void (*pr_delport)(struct lagg_port *); void (*pr_linkstate)(struct lagg_port *); void (*pr_init)(struct lagg_softc *); void (*pr_stop)(struct lagg_softc *); void (*pr_lladdr)(struct lagg_softc *); void (*pr_request)(struct lagg_softc *, void *); void (*pr_portreq)(struct lagg_port *, void *); } lagg_protos[] = { { .pr_num = LAGG_PROTO_NONE }, { .pr_num = LAGG_PROTO_ROUNDROBIN, .pr_attach = lagg_rr_attach, .pr_start = lagg_rr_start, .pr_input = lagg_rr_input, }, { .pr_num = LAGG_PROTO_FAILOVER, .pr_start = lagg_fail_start, .pr_input = lagg_fail_input, }, { .pr_num = LAGG_PROTO_LOADBALANCE, .pr_attach = lagg_lb_attach, .pr_detach = lagg_lb_detach, .pr_start = lagg_lb_start, .pr_input = lagg_lb_input, .pr_addport = lagg_lb_port_create, .pr_delport = lagg_lb_port_destroy, }, { .pr_num = LAGG_PROTO_LACP, .pr_attach = lagg_lacp_attach, .pr_detach = lagg_lacp_detach, .pr_start = lagg_lacp_start, .pr_input = lagg_lacp_input, .pr_addport = lacp_port_create, .pr_delport = lacp_port_destroy, .pr_linkstate = lacp_linkstate, .pr_init = lacp_init, .pr_stop = lacp_stop, .pr_lladdr = lagg_lacp_lladdr, .pr_request = lacp_req, .pr_portreq = lacp_portreq, }, { .pr_num = LAGG_PROTO_BROADCAST, .pr_start = lagg_bcast_start, .pr_input = lagg_bcast_input, }, }; SYSCTL_DECL(_net_link); SYSCTL_NODE(_net_link, OID_AUTO, lagg, CTLFLAG_RW, 0, "Link Aggregation"); /* Allow input on any failover links */ static VNET_DEFINE(int, lagg_failover_rx_all); #define V_lagg_failover_rx_all VNET(lagg_failover_rx_all) SYSCTL_INT(_net_link_lagg, OID_AUTO, failover_rx_all, CTLFLAG_RW | CTLFLAG_VNET, &VNET_NAME(lagg_failover_rx_all), 0, "Accept input from any interface in a failover lagg"); /* Default value for using flowid */ static VNET_DEFINE(int, def_use_flowid) = 1; #define V_def_use_flowid VNET(def_use_flowid) SYSCTL_INT(_net_link_lagg, OID_AUTO, default_use_flowid, CTLFLAG_RWTUN, &VNET_NAME(def_use_flowid), 0, "Default setting for using flow id for load sharing"); /* Default value for flowid shift */ static VNET_DEFINE(int, def_flowid_shift) = 16; #define V_def_flowid_shift VNET(def_flowid_shift) SYSCTL_INT(_net_link_lagg, OID_AUTO, default_flowid_shift, CTLFLAG_RWTUN, &VNET_NAME(def_flowid_shift), 0, "Default setting for flowid shift for load sharing"); static void vnet_lagg_init(const void *unused __unused) { LAGG_LIST_LOCK_INIT(); SLIST_INIT(&V_lagg_list); V_lagg_cloner = if_clone_simple(laggname, lagg_clone_create, lagg_clone_destroy, 0); } VNET_SYSINIT(vnet_lagg_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, vnet_lagg_init, NULL); static void vnet_lagg_uninit(const void *unused __unused) { if_clone_detach(V_lagg_cloner); LAGG_LIST_LOCK_DESTROY(); } VNET_SYSUNINIT(vnet_lagg_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, vnet_lagg_uninit, NULL); static int lagg_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: lagg_input_p = lagg_input; lagg_linkstate_p = lagg_port_state; lagg_detach_cookie = EVENTHANDLER_REGISTER( ifnet_departure_event, lagg_port_ifdetach, NULL, EVENTHANDLER_PRI_ANY); break; case MOD_UNLOAD: EVENTHANDLER_DEREGISTER(ifnet_departure_event, lagg_detach_cookie); lagg_input_p = NULL; lagg_linkstate_p = NULL; break; default: return (EOPNOTSUPP); } return (0); } static moduledata_t lagg_mod = { "if_lagg", lagg_modevent, 0 }; DECLARE_MODULE(if_lagg, lagg_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); MODULE_VERSION(if_lagg, 1); static void lagg_proto_attach(struct lagg_softc *sc, lagg_proto pr) { KASSERT(sc->sc_proto == LAGG_PROTO_NONE, ("%s: sc %p has proto", __func__, sc)); if (sc->sc_ifflags & IFF_DEBUG) if_printf(sc->sc_ifp, "using proto %u\n", pr); if (lagg_protos[pr].pr_attach != NULL) lagg_protos[pr].pr_attach(sc); sc->sc_proto = pr; } static void lagg_proto_detach(struct lagg_softc *sc) { lagg_proto pr; LAGG_WLOCK_ASSERT(sc); pr = sc->sc_proto; sc->sc_proto = LAGG_PROTO_NONE; if (lagg_protos[pr].pr_detach != NULL) lagg_protos[pr].pr_detach(sc); else LAGG_WUNLOCK(sc); } static int lagg_proto_start(struct lagg_softc *sc, struct mbuf *m) { return (lagg_protos[sc->sc_proto].pr_start(sc, m)); } static struct mbuf * lagg_proto_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { return (lagg_protos[sc->sc_proto].pr_input(sc, lp, m)); } static int lagg_proto_addport(struct lagg_softc *sc, struct lagg_port *lp) { if (lagg_protos[sc->sc_proto].pr_addport == NULL) return (0); else return (lagg_protos[sc->sc_proto].pr_addport(lp)); } static void lagg_proto_delport(struct lagg_softc *sc, struct lagg_port *lp) { if (lagg_protos[sc->sc_proto].pr_delport != NULL) lagg_protos[sc->sc_proto].pr_delport(lp); } static void lagg_proto_linkstate(struct lagg_softc *sc, struct lagg_port *lp) { if (lagg_protos[sc->sc_proto].pr_linkstate != NULL) lagg_protos[sc->sc_proto].pr_linkstate(lp); } static void lagg_proto_init(struct lagg_softc *sc) { if (lagg_protos[sc->sc_proto].pr_init != NULL) lagg_protos[sc->sc_proto].pr_init(sc); } static void lagg_proto_stop(struct lagg_softc *sc) { if (lagg_protos[sc->sc_proto].pr_stop != NULL) lagg_protos[sc->sc_proto].pr_stop(sc); } static void lagg_proto_lladdr(struct lagg_softc *sc) { if (lagg_protos[sc->sc_proto].pr_lladdr != NULL) lagg_protos[sc->sc_proto].pr_lladdr(sc); } static void lagg_proto_request(struct lagg_softc *sc, void *v) { if (lagg_protos[sc->sc_proto].pr_request != NULL) lagg_protos[sc->sc_proto].pr_request(sc, v); } static void lagg_proto_portreq(struct lagg_softc *sc, struct lagg_port *lp, void *v) { if (lagg_protos[sc->sc_proto].pr_portreq != NULL) lagg_protos[sc->sc_proto].pr_portreq(lp, v); } /* * This routine is run via an vlan * config EVENT */ static void lagg_register_vlan(void *arg, struct ifnet *ifp, u_int16_t vtag) { struct lagg_softc *sc = ifp->if_softc; struct lagg_port *lp; struct rm_priotracker tracker; if (ifp->if_softc != arg) /* Not our event */ return; LAGG_RLOCK(sc, &tracker); if (!SLIST_EMPTY(&sc->sc_ports)) { SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) EVENTHANDLER_INVOKE(vlan_config, lp->lp_ifp, vtag); } LAGG_RUNLOCK(sc, &tracker); } /* * This routine is run via an vlan * unconfig EVENT */ static void lagg_unregister_vlan(void *arg, struct ifnet *ifp, u_int16_t vtag) { struct lagg_softc *sc = ifp->if_softc; struct lagg_port *lp; struct rm_priotracker tracker; if (ifp->if_softc != arg) /* Not our event */ return; LAGG_RLOCK(sc, &tracker); if (!SLIST_EMPTY(&sc->sc_ports)) { SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) EVENTHANDLER_INVOKE(vlan_unconfig, lp->lp_ifp, vtag); } LAGG_RUNLOCK(sc, &tracker); } static int lagg_clone_create(struct if_clone *ifc, int unit, caddr_t params) { struct lagg_softc *sc; struct ifnet *ifp; static const u_char eaddr[6]; /* 00:00:00:00:00:00 */ sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK|M_ZERO); ifp = sc->sc_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { free(sc, M_DEVBUF); return (ENOSPC); } if (V_def_use_flowid) sc->sc_opts |= LAGG_OPT_USE_FLOWID; sc->flowid_shift = V_def_flowid_shift; /* Hash all layers by default */ sc->sc_flags = MBUF_HASHFLAG_L2|MBUF_HASHFLAG_L3|MBUF_HASHFLAG_L4; lagg_proto_attach(sc, LAGG_PROTO_DEFAULT); LAGG_LOCK_INIT(sc); SLIST_INIT(&sc->sc_ports); TASK_INIT(&sc->sc_lladdr_task, 0, lagg_port_setlladdr, sc); /* Initialise pseudo media types */ ifmedia_init(&sc->sc_media, 0, lagg_media_change, lagg_media_status); ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO); if_initname(ifp, laggname, unit); ifp->if_softc = sc; ifp->if_transmit = lagg_transmit; ifp->if_qflush = lagg_qflush; ifp->if_init = lagg_init; ifp->if_ioctl = lagg_ioctl; ifp->if_get_counter = lagg_get_counter; ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; ifp->if_capenable = ifp->if_capabilities = IFCAP_HWSTATS; /* * Attach as an ordinary ethernet device, children will be attached * as special device IFT_IEEE8023ADLAG. */ ether_ifattach(ifp, eaddr); sc->vlan_attach = EVENTHANDLER_REGISTER(vlan_config, lagg_register_vlan, sc, EVENTHANDLER_PRI_FIRST); sc->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig, lagg_unregister_vlan, sc, EVENTHANDLER_PRI_FIRST); /* Insert into the global list of laggs */ LAGG_LIST_LOCK(); SLIST_INSERT_HEAD(&V_lagg_list, sc, sc_entries); LAGG_LIST_UNLOCK(); return (0); } static void lagg_clone_destroy(struct ifnet *ifp) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; struct lagg_port *lp; LAGG_WLOCK(sc); lagg_stop(sc); ifp->if_flags &= ~IFF_UP; EVENTHANDLER_DEREGISTER(vlan_config, sc->vlan_attach); EVENTHANDLER_DEREGISTER(vlan_unconfig, sc->vlan_detach); /* Shutdown and remove lagg ports */ while ((lp = SLIST_FIRST(&sc->sc_ports)) != NULL) lagg_port_destroy(lp, 1); /* Unhook the aggregation protocol */ lagg_proto_detach(sc); LAGG_UNLOCK_ASSERT(sc); ifmedia_removeall(&sc->sc_media); ether_ifdetach(ifp); if_free(ifp); LAGG_LIST_LOCK(); SLIST_REMOVE(&V_lagg_list, sc, lagg_softc, sc_entries); LAGG_LIST_UNLOCK(); taskqueue_drain(taskqueue_swi, &sc->sc_lladdr_task); LAGG_LOCK_DESTROY(sc); free(sc, M_DEVBUF); } /* * Set link-layer address on the lagg interface itself. * * Set noinline to be dtrace-friendly */ static __noinline void lagg_lladdr(struct lagg_softc *sc, uint8_t *lladdr) { struct ifnet *ifp = sc->sc_ifp; struct lagg_port lp; if (memcmp(lladdr, IF_LLADDR(ifp), ETHER_ADDR_LEN) == 0) return; LAGG_WLOCK_ASSERT(sc); /* * Set the link layer address on the lagg interface. * lagg_proto_lladdr() notifies the MAC change to * the aggregation protocol. iflladdr_event handler which * may trigger gratuitous ARPs for INET will be handled in * a taskqueue. */ bcopy(lladdr, IF_LLADDR(ifp), ETHER_ADDR_LEN); lagg_proto_lladdr(sc); /* * Send notification request for lagg interface * itself. Note that new lladdr is already set. */ bzero(&lp, sizeof(lp)); lp.lp_ifp = sc->sc_ifp; lp.lp_softc = sc; /* Do not request lladdr change */ lagg_port_lladdr(&lp, lladdr, LAGG_LLQTYPE_VIRT); } static void lagg_capabilities(struct lagg_softc *sc) { struct lagg_port *lp; int cap = ~0, ena = ~0; u_long hwa = ~0UL; struct ifnet_hw_tsomax hw_tsomax; LAGG_WLOCK_ASSERT(sc); memset(&hw_tsomax, 0, sizeof(hw_tsomax)); /* Get capabilities from the lagg ports */ SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { cap &= lp->lp_ifp->if_capabilities; ena &= lp->lp_ifp->if_capenable; hwa &= lp->lp_ifp->if_hwassist; if_hw_tsomax_common(lp->lp_ifp, &hw_tsomax); } cap = (cap == ~0 ? 0 : cap); ena = (ena == ~0 ? 0 : ena); hwa = (hwa == ~0 ? 0 : hwa); if (sc->sc_ifp->if_capabilities != cap || sc->sc_ifp->if_capenable != ena || sc->sc_ifp->if_hwassist != hwa || if_hw_tsomax_update(sc->sc_ifp, &hw_tsomax) != 0) { sc->sc_ifp->if_capabilities = cap; sc->sc_ifp->if_capenable = ena; sc->sc_ifp->if_hwassist = hwa; getmicrotime(&sc->sc_ifp->if_lastchange); if (sc->sc_ifflags & IFF_DEBUG) if_printf(sc->sc_ifp, "capabilities 0x%08x enabled 0x%08x\n", cap, ena); } } /* * Enqueue interface lladdr notification. * If request is already queued, it is updated. * If setting lladdr is also desired, @do_change has to be set to 1. * * Set noinline to be dtrace-friendly */ static __noinline void lagg_port_lladdr(struct lagg_port *lp, uint8_t *lladdr, lagg_llqtype llq_type) { struct lagg_softc *sc = lp->lp_softc; struct ifnet *ifp = lp->lp_ifp; struct lagg_llq *llq; LAGG_WLOCK_ASSERT(sc); /* * Do not enqueue requests where lladdr is the same for * "physical" interfaces (e.g. ports in lagg) */ if (llq_type == LAGG_LLQTYPE_PHYS && memcmp(IF_LLADDR(ifp), lladdr, ETHER_ADDR_LEN) == 0) return; /* Check to make sure its not already queued to be changed */ SLIST_FOREACH(llq, &sc->sc_llq_head, llq_entries) { if (llq->llq_ifp == ifp) { /* Update lladdr, it may have changed */ bcopy(lladdr, llq->llq_lladdr, ETHER_ADDR_LEN); return; } } llq = malloc(sizeof(struct lagg_llq), M_DEVBUF, M_NOWAIT | M_ZERO); if (llq == NULL) /* XXX what to do */ return; llq->llq_ifp = ifp; llq->llq_type = llq_type; bcopy(lladdr, llq->llq_lladdr, ETHER_ADDR_LEN); /* XXX: We should insert to tail */ SLIST_INSERT_HEAD(&sc->sc_llq_head, llq, llq_entries); taskqueue_enqueue(taskqueue_swi, &sc->sc_lladdr_task); } /* * Set the interface MAC address from a taskqueue to avoid a LOR. * * Set noinline to be dtrace-friendly */ static __noinline void lagg_port_setlladdr(void *arg, int pending) { struct lagg_softc *sc = (struct lagg_softc *)arg; struct lagg_llq *llq, *head; struct ifnet *ifp; /* Grab a local reference of the queue and remove it from the softc */ LAGG_WLOCK(sc); head = SLIST_FIRST(&sc->sc_llq_head); SLIST_FIRST(&sc->sc_llq_head) = NULL; LAGG_WUNLOCK(sc); /* * Traverse the queue and set the lladdr on each ifp. It is safe to do * unlocked as we have the only reference to it. */ for (llq = head; llq != NULL; llq = head) { ifp = llq->llq_ifp; CURVNET_SET(ifp->if_vnet); /* * Set the link layer address on the laggport interface. * Note that if_setlladdr() or iflladdr_event handler * may result in arp transmission / lltable updates. */ if (llq->llq_type == LAGG_LLQTYPE_PHYS) if_setlladdr(ifp, llq->llq_lladdr, ETHER_ADDR_LEN); else EVENTHANDLER_INVOKE(iflladdr_event, ifp); CURVNET_RESTORE(); head = SLIST_NEXT(llq, llq_entries); free(llq, M_DEVBUF); } } static int lagg_port_create(struct lagg_softc *sc, struct ifnet *ifp) { struct lagg_softc *sc_ptr; struct lagg_port *lp, *tlp; int error, i; uint64_t *pval; LAGG_WLOCK_ASSERT(sc); /* Limit the maximal number of lagg ports */ if (sc->sc_count >= LAGG_MAX_PORTS) return (ENOSPC); /* Check if port has already been associated to a lagg */ if (ifp->if_lagg != NULL) { /* Port is already in the current lagg? */ lp = (struct lagg_port *)ifp->if_lagg; if (lp->lp_softc == sc) return (EEXIST); return (EBUSY); } /* XXX Disallow non-ethernet interfaces (this should be any of 802) */ if (ifp->if_type != IFT_ETHER && ifp->if_type != IFT_L2VLAN) return (EPROTONOSUPPORT); /* Allow the first Ethernet member to define the MTU */ if (SLIST_EMPTY(&sc->sc_ports)) sc->sc_ifp->if_mtu = ifp->if_mtu; else if (sc->sc_ifp->if_mtu != ifp->if_mtu) { if_printf(sc->sc_ifp, "invalid MTU for %s\n", ifp->if_xname); return (EINVAL); } if ((lp = malloc(sizeof(struct lagg_port), M_DEVBUF, M_NOWAIT|M_ZERO)) == NULL) return (ENOMEM); /* Check if port is a stacked lagg */ LAGG_LIST_LOCK(); SLIST_FOREACH(sc_ptr, &V_lagg_list, sc_entries) { if (ifp == sc_ptr->sc_ifp) { LAGG_LIST_UNLOCK(); free(lp, M_DEVBUF); return (EINVAL); /* XXX disable stacking for the moment, its untested */ #ifdef LAGG_PORT_STACKING lp->lp_flags |= LAGG_PORT_STACK; if (lagg_port_checkstacking(sc_ptr) >= LAGG_MAX_STACKING) { LAGG_LIST_UNLOCK(); free(lp, M_DEVBUF); return (E2BIG); } #endif } } LAGG_LIST_UNLOCK(); /* Change the interface type */ lp->lp_iftype = ifp->if_type; ifp->if_type = IFT_IEEE8023ADLAG; ifp->if_lagg = lp; lp->lp_ioctl = ifp->if_ioctl; ifp->if_ioctl = lagg_port_ioctl; lp->lp_output = ifp->if_output; ifp->if_output = lagg_port_output; lp->lp_ifp = ifp; lp->lp_softc = sc; /* Save port link layer address */ bcopy(IF_LLADDR(ifp), lp->lp_lladdr, ETHER_ADDR_LEN); if (SLIST_EMPTY(&sc->sc_ports)) { sc->sc_primary = lp; /* First port in lagg. Update/notify lagg lladdress */ lagg_lladdr(sc, IF_LLADDR(ifp)); } else { /* * Update link layer address for this port and * send notifications to other subsystems. */ lagg_port_lladdr(lp, IF_LLADDR(sc->sc_ifp), LAGG_LLQTYPE_PHYS); } /* * Insert into the list of ports. * Keep ports sorted by if_index. It is handy, when configuration * is predictable and `ifconfig laggN create ...` command * will lead to the same result each time. */ SLIST_FOREACH(tlp, &sc->sc_ports, lp_entries) { if (tlp->lp_ifp->if_index < ifp->if_index && ( SLIST_NEXT(tlp, lp_entries) == NULL || SLIST_NEXT(tlp, lp_entries)->lp_ifp->if_index > ifp->if_index)) break; } if (tlp != NULL) SLIST_INSERT_AFTER(tlp, lp, lp_entries); else SLIST_INSERT_HEAD(&sc->sc_ports, lp, lp_entries); sc->sc_count++; /* Update lagg capabilities */ lagg_capabilities(sc); lagg_linkstate(sc); /* Read port counters */ pval = lp->port_counters.val; for (i = 0; i < IFCOUNTERS; i++, pval++) *pval = ifp->if_get_counter(ifp, i); /* Add multicast addresses and interface flags to this port */ lagg_ether_cmdmulti(lp, 1); lagg_setflags(lp, 1); if ((error = lagg_proto_addport(sc, lp)) != 0) { /* Remove the port, without calling pr_delport. */ lagg_port_destroy(lp, 0); return (error); } return (0); } #ifdef LAGG_PORT_STACKING static int lagg_port_checkstacking(struct lagg_softc *sc) { struct lagg_softc *sc_ptr; struct lagg_port *lp; int m = 0; LAGG_WLOCK_ASSERT(sc); SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (lp->lp_flags & LAGG_PORT_STACK) { sc_ptr = (struct lagg_softc *)lp->lp_ifp->if_softc; m = MAX(m, lagg_port_checkstacking(sc_ptr)); } } return (m + 1); } #endif static int lagg_port_destroy(struct lagg_port *lp, int rundelport) { struct lagg_softc *sc = lp->lp_softc; struct lagg_port *lp_ptr, *lp0; struct lagg_llq *llq; struct ifnet *ifp = lp->lp_ifp; uint64_t *pval, vdiff; int i; LAGG_WLOCK_ASSERT(sc); if (rundelport) lagg_proto_delport(sc, lp); /* * Remove multicast addresses and interface flags from this port and * reset the MAC address, skip if the interface is being detached. */ if (!lp->lp_detaching) { lagg_ether_cmdmulti(lp, 0); lagg_setflags(lp, 0); lagg_port_lladdr(lp, lp->lp_lladdr, LAGG_LLQTYPE_PHYS); } /* Restore interface */ ifp->if_type = lp->lp_iftype; ifp->if_ioctl = lp->lp_ioctl; ifp->if_output = lp->lp_output; ifp->if_lagg = NULL; /* Update detached port counters */ pval = lp->port_counters.val; for (i = 0; i < IFCOUNTERS; i++, pval++) { vdiff = ifp->if_get_counter(ifp, i) - *pval; sc->detached_counters.val[i] += vdiff; } /* Finally, remove the port from the lagg */ SLIST_REMOVE(&sc->sc_ports, lp, lagg_port, lp_entries); sc->sc_count--; /* Update the primary interface */ if (lp == sc->sc_primary) { uint8_t lladdr[ETHER_ADDR_LEN]; if ((lp0 = SLIST_FIRST(&sc->sc_ports)) == NULL) { bzero(&lladdr, ETHER_ADDR_LEN); } else { bcopy(lp0->lp_lladdr, lladdr, ETHER_ADDR_LEN); } lagg_lladdr(sc, lladdr); /* Mark lp0 as new primary */ sc->sc_primary = lp0; /* * Enqueue lladdr update/notification for each port * (new primary needs update as well, to switch from * old lladdr to its 'real' one). */ SLIST_FOREACH(lp_ptr, &sc->sc_ports, lp_entries) lagg_port_lladdr(lp_ptr, lladdr, LAGG_LLQTYPE_PHYS); } /* Remove any pending lladdr changes from the queue */ if (lp->lp_detaching) { SLIST_FOREACH(llq, &sc->sc_llq_head, llq_entries) { if (llq->llq_ifp == ifp) { SLIST_REMOVE(&sc->sc_llq_head, llq, lagg_llq, llq_entries); free(llq, M_DEVBUF); break; /* Only appears once */ } } } if (lp->lp_ifflags) if_printf(ifp, "%s: lp_ifflags unclean\n", __func__); free(lp, M_DEVBUF); /* Update lagg capabilities */ lagg_capabilities(sc); lagg_linkstate(sc); return (0); } static int lagg_port_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct lagg_reqport *rp = (struct lagg_reqport *)data; struct lagg_softc *sc; struct lagg_port *lp = NULL; int error = 0; struct rm_priotracker tracker; /* Should be checked by the caller */ if (ifp->if_type != IFT_IEEE8023ADLAG || (lp = ifp->if_lagg) == NULL || (sc = lp->lp_softc) == NULL) goto fallback; switch (cmd) { case SIOCGLAGGPORT: if (rp->rp_portname[0] == '\0' || ifunit(rp->rp_portname) != ifp) { error = EINVAL; break; } LAGG_RLOCK(sc, &tracker); if ((lp = ifp->if_lagg) == NULL || lp->lp_softc != sc) { error = ENOENT; LAGG_RUNLOCK(sc, &tracker); break; } lagg_port2req(lp, rp); LAGG_RUNLOCK(sc, &tracker); break; case SIOCSIFCAP: if (lp->lp_ioctl == NULL) { error = EINVAL; break; } error = (*lp->lp_ioctl)(ifp, cmd, data); if (error) break; /* Update lagg interface capabilities */ LAGG_WLOCK(sc); lagg_capabilities(sc); LAGG_WUNLOCK(sc); break; case SIOCSIFMTU: /* Do not allow the MTU to be changed once joined */ error = EINVAL; break; default: goto fallback; } return (error); fallback: if (lp->lp_ioctl != NULL) return ((*lp->lp_ioctl)(ifp, cmd, data)); return (EINVAL); } /* * Requests counter @cnt data. * * Counter value is calculated the following way: * 1) for each port, sum difference between current and "initial" measurements. * 2) add lagg logical interface counters. * 3) add data from detached_counters array. * * We also do the following things on ports attach/detach: * 1) On port attach we store all counters it has into port_counter array. * 2) On port detach we add the different between "initial" and * current counters data to detached_counters array. */ static uint64_t lagg_get_counter(struct ifnet *ifp, ift_counter cnt) { struct lagg_softc *sc; struct lagg_port *lp; struct ifnet *lpifp; struct rm_priotracker tracker; uint64_t newval, oldval, vsum; /* Revise this when we've got non-generic counters. */ KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); sc = (struct lagg_softc *)ifp->if_softc; LAGG_RLOCK(sc, &tracker); vsum = 0; SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { /* Saved attached value */ oldval = lp->port_counters.val[cnt]; /* current value */ lpifp = lp->lp_ifp; newval = lpifp->if_get_counter(lpifp, cnt); /* Calculate diff and save new */ vsum += newval - oldval; } /* * Add counter data which might be added by upper * layer protocols operating on logical interface. */ vsum += if_get_counter_default(ifp, cnt); /* * Add counter data from detached ports counters */ vsum += sc->detached_counters.val[cnt]; LAGG_RUNLOCK(sc, &tracker); return (vsum); } /* * For direct output to child ports. */ static int lagg_port_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { struct lagg_port *lp = ifp->if_lagg; switch (dst->sa_family) { case pseudo_AF_HDRCMPLT: case AF_UNSPEC: return ((*lp->lp_output)(ifp, m, dst, ro)); } /* drop any other frames */ m_freem(m); return (ENETDOWN); } static void lagg_port_ifdetach(void *arg __unused, struct ifnet *ifp) { struct lagg_port *lp; struct lagg_softc *sc; if ((lp = ifp->if_lagg) == NULL) return; /* If the ifnet is just being renamed, don't do anything. */ if (ifp->if_flags & IFF_RENAMING) return; sc = lp->lp_softc; LAGG_WLOCK(sc); lp->lp_detaching = 1; lagg_port_destroy(lp, 1); LAGG_WUNLOCK(sc); } static void lagg_port2req(struct lagg_port *lp, struct lagg_reqport *rp) { struct lagg_softc *sc = lp->lp_softc; strlcpy(rp->rp_ifname, sc->sc_ifname, sizeof(rp->rp_ifname)); strlcpy(rp->rp_portname, lp->lp_ifp->if_xname, sizeof(rp->rp_portname)); rp->rp_prio = lp->lp_prio; rp->rp_flags = lp->lp_flags; lagg_proto_portreq(sc, lp, &rp->rp_psc); /* Add protocol specific flags */ switch (sc->sc_proto) { case LAGG_PROTO_FAILOVER: if (lp == sc->sc_primary) rp->rp_flags |= LAGG_PORT_MASTER; if (lp == lagg_link_active(sc, sc->sc_primary)) rp->rp_flags |= LAGG_PORT_ACTIVE; break; case LAGG_PROTO_ROUNDROBIN: case LAGG_PROTO_LOADBALANCE: case LAGG_PROTO_BROADCAST: if (LAGG_PORTACTIVE(lp)) rp->rp_flags |= LAGG_PORT_ACTIVE; break; case LAGG_PROTO_LACP: /* LACP has a different definition of active */ if (lacp_isactive(lp)) rp->rp_flags |= LAGG_PORT_ACTIVE; if (lacp_iscollecting(lp)) rp->rp_flags |= LAGG_PORT_COLLECTING; if (lacp_isdistributing(lp)) rp->rp_flags |= LAGG_PORT_DISTRIBUTING; break; } } static void lagg_init(void *xsc) { struct lagg_softc *sc = (struct lagg_softc *)xsc; struct ifnet *ifp = sc->sc_ifp; struct lagg_port *lp; if (ifp->if_drv_flags & IFF_DRV_RUNNING) return; LAGG_WLOCK(sc); ifp->if_drv_flags |= IFF_DRV_RUNNING; /* * Update the port lladdrs if needed. * This might be if_setlladdr() notification * that lladdr has been changed. */ SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lagg_port_lladdr(lp, IF_LLADDR(ifp), LAGG_LLQTYPE_PHYS); lagg_proto_init(sc); LAGG_WUNLOCK(sc); } static void lagg_stop(struct lagg_softc *sc) { struct ifnet *ifp = sc->sc_ifp; LAGG_WLOCK_ASSERT(sc); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; ifp->if_drv_flags &= ~IFF_DRV_RUNNING; lagg_proto_stop(sc); } static int lagg_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; struct lagg_reqall *ra = (struct lagg_reqall *)data; struct lagg_reqopts *ro = (struct lagg_reqopts *)data; struct lagg_reqport *rp = (struct lagg_reqport *)data, rpbuf; struct lagg_reqflags *rf = (struct lagg_reqflags *)data; struct ifreq *ifr = (struct ifreq *)data; struct lagg_port *lp; struct ifnet *tpif; struct thread *td = curthread; char *buf, *outbuf; int count, buflen, len, error = 0; struct rm_priotracker tracker; bzero(&rpbuf, sizeof(rpbuf)); switch (cmd) { case SIOCGLAGG: LAGG_RLOCK(sc, &tracker); count = 0; SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) count++; buflen = count * sizeof(struct lagg_reqport); LAGG_RUNLOCK(sc, &tracker); outbuf = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO); LAGG_RLOCK(sc, &tracker); ra->ra_proto = sc->sc_proto; lagg_proto_request(sc, &ra->ra_psc); count = 0; buf = outbuf; len = min(ra->ra_size, buflen); SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (len < sizeof(rpbuf)) break; lagg_port2req(lp, &rpbuf); memcpy(buf, &rpbuf, sizeof(rpbuf)); count++; buf += sizeof(rpbuf); len -= sizeof(rpbuf); } LAGG_RUNLOCK(sc, &tracker); ra->ra_ports = count; ra->ra_size = count * sizeof(rpbuf); error = copyout(outbuf, ra->ra_port, ra->ra_size); free(outbuf, M_TEMP); break; case SIOCSLAGG: error = priv_check(td, PRIV_NET_LAGG); if (error) break; if (ra->ra_proto >= LAGG_PROTO_MAX) { error = EPROTONOSUPPORT; break; } LAGG_WLOCK(sc); lagg_proto_detach(sc); LAGG_UNLOCK_ASSERT(sc); lagg_proto_attach(sc, ra->ra_proto); break; case SIOCGLAGGOPTS: ro->ro_opts = sc->sc_opts; if (sc->sc_proto == LAGG_PROTO_LACP) { struct lacp_softc *lsc; lsc = (struct lacp_softc *)sc->sc_psc; if (lsc->lsc_debug.lsc_tx_test != 0) ro->ro_opts |= LAGG_OPT_LACP_TXTEST; if (lsc->lsc_debug.lsc_rx_test != 0) ro->ro_opts |= LAGG_OPT_LACP_RXTEST; if (lsc->lsc_strict_mode != 0) ro->ro_opts |= LAGG_OPT_LACP_STRICT; if (lsc->lsc_fast_timeout != 0) ro->ro_opts |= LAGG_OPT_LACP_TIMEOUT; ro->ro_active = sc->sc_active; } else { ro->ro_active = 0; SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) ro->ro_active += LAGG_PORTACTIVE(lp); } ro->ro_bkt = sc->sc_bkt; ro->ro_flapping = sc->sc_flapping; ro->ro_flowid_shift = sc->flowid_shift; break; case SIOCSLAGGOPTS: if (sc->sc_proto == LAGG_PROTO_ROUNDROBIN) { if (ro->ro_bkt == 0) sc->sc_bkt = 1; // Minimum 1 packet per iface. else sc->sc_bkt = ro->ro_bkt; } error = priv_check(td, PRIV_NET_LAGG); if (error) break; if (ro->ro_opts == 0) break; /* * Set options. LACP options are stored in sc->sc_psc, * not in sc_opts. */ int valid, lacp; switch (ro->ro_opts) { case LAGG_OPT_USE_FLOWID: case -LAGG_OPT_USE_FLOWID: case LAGG_OPT_FLOWIDSHIFT: valid = 1; lacp = 0; break; case LAGG_OPT_LACP_TXTEST: case -LAGG_OPT_LACP_TXTEST: case LAGG_OPT_LACP_RXTEST: case -LAGG_OPT_LACP_RXTEST: case LAGG_OPT_LACP_STRICT: case -LAGG_OPT_LACP_STRICT: case LAGG_OPT_LACP_TIMEOUT: case -LAGG_OPT_LACP_TIMEOUT: valid = lacp = 1; break; default: valid = lacp = 0; break; } LAGG_WLOCK(sc); if (valid == 0 || (lacp == 1 && sc->sc_proto != LAGG_PROTO_LACP)) { /* Invalid combination of options specified. */ error = EINVAL; LAGG_WUNLOCK(sc); break; /* Return from SIOCSLAGGOPTS. */ } /* * Store new options into sc->sc_opts except for * FLOWIDSHIFT and LACP options. */ if (lacp == 0) { if (ro->ro_opts == LAGG_OPT_FLOWIDSHIFT) sc->flowid_shift = ro->ro_flowid_shift; else if (ro->ro_opts > 0) sc->sc_opts |= ro->ro_opts; else sc->sc_opts &= ~ro->ro_opts; } else { struct lacp_softc *lsc; struct lacp_port *lp; lsc = (struct lacp_softc *)sc->sc_psc; switch (ro->ro_opts) { case LAGG_OPT_LACP_TXTEST: lsc->lsc_debug.lsc_tx_test = 1; break; case -LAGG_OPT_LACP_TXTEST: lsc->lsc_debug.lsc_tx_test = 0; break; case LAGG_OPT_LACP_RXTEST: lsc->lsc_debug.lsc_rx_test = 1; break; case -LAGG_OPT_LACP_RXTEST: lsc->lsc_debug.lsc_rx_test = 0; break; case LAGG_OPT_LACP_STRICT: lsc->lsc_strict_mode = 1; break; case -LAGG_OPT_LACP_STRICT: lsc->lsc_strict_mode = 0; break; case LAGG_OPT_LACP_TIMEOUT: LACP_LOCK(lsc); LIST_FOREACH(lp, &lsc->lsc_ports, lp_next) lp->lp_state |= LACP_STATE_TIMEOUT; LACP_UNLOCK(lsc); lsc->lsc_fast_timeout = 1; break; case -LAGG_OPT_LACP_TIMEOUT: LACP_LOCK(lsc); LIST_FOREACH(lp, &lsc->lsc_ports, lp_next) lp->lp_state &= ~LACP_STATE_TIMEOUT; LACP_UNLOCK(lsc); lsc->lsc_fast_timeout = 0; break; } } LAGG_WUNLOCK(sc); break; case SIOCGLAGGFLAGS: rf->rf_flags = 0; LAGG_RLOCK(sc, &tracker); if (sc->sc_flags & MBUF_HASHFLAG_L2) rf->rf_flags |= LAGG_F_HASHL2; if (sc->sc_flags & MBUF_HASHFLAG_L3) rf->rf_flags |= LAGG_F_HASHL3; if (sc->sc_flags & MBUF_HASHFLAG_L4) rf->rf_flags |= LAGG_F_HASHL4; LAGG_RUNLOCK(sc, &tracker); break; case SIOCSLAGGHASH: error = priv_check(td, PRIV_NET_LAGG); if (error) break; if ((rf->rf_flags & LAGG_F_HASHMASK) == 0) { error = EINVAL; break; } LAGG_WLOCK(sc); sc->sc_flags = 0; if (rf->rf_flags & LAGG_F_HASHL2) sc->sc_flags |= MBUF_HASHFLAG_L2; if (rf->rf_flags & LAGG_F_HASHL3) sc->sc_flags |= MBUF_HASHFLAG_L3; if (rf->rf_flags & LAGG_F_HASHL4) sc->sc_flags |= MBUF_HASHFLAG_L4; LAGG_WUNLOCK(sc); break; case SIOCGLAGGPORT: if (rp->rp_portname[0] == '\0' || (tpif = ifunit(rp->rp_portname)) == NULL) { error = EINVAL; break; } LAGG_RLOCK(sc, &tracker); if ((lp = (struct lagg_port *)tpif->if_lagg) == NULL || lp->lp_softc != sc) { error = ENOENT; LAGG_RUNLOCK(sc, &tracker); break; } lagg_port2req(lp, rp); LAGG_RUNLOCK(sc, &tracker); break; case SIOCSLAGGPORT: error = priv_check(td, PRIV_NET_LAGG); if (error) break; if (rp->rp_portname[0] == '\0' || (tpif = ifunit(rp->rp_portname)) == NULL) { error = EINVAL; break; } #ifdef INET6 /* * A laggport interface should not have inet6 address * because two interfaces with a valid link-local * scope zone must not be merged in any form. This * restriction is needed to prevent violation of * link-local scope zone. Attempts to add a laggport * interface which has inet6 addresses triggers * removal of all inet6 addresses on the member * interface. */ if (in6ifa_llaonifp(tpif)) { - in6_ifdetach(tpif); + in6_ifdetach(tpif, 1); if_printf(sc->sc_ifp, "IPv6 addresses on %s have been removed " "before adding it as a member to prevent " "IPv6 address scope violation.\n", tpif->if_xname); } #endif LAGG_WLOCK(sc); error = lagg_port_create(sc, tpif); LAGG_WUNLOCK(sc); break; case SIOCSLAGGDELPORT: error = priv_check(td, PRIV_NET_LAGG); if (error) break; if (rp->rp_portname[0] == '\0' || (tpif = ifunit(rp->rp_portname)) == NULL) { error = EINVAL; break; } LAGG_WLOCK(sc); if ((lp = (struct lagg_port *)tpif->if_lagg) == NULL || lp->lp_softc != sc) { error = ENOENT; LAGG_WUNLOCK(sc); break; } error = lagg_port_destroy(lp, 1); LAGG_WUNLOCK(sc); break; case SIOCSIFFLAGS: /* Set flags on ports too */ LAGG_WLOCK(sc); SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { lagg_setflags(lp, 1); } LAGG_WUNLOCK(sc); if (!(ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) { /* * If interface is marked down and it is running, * then stop and disable it. */ LAGG_WLOCK(sc); lagg_stop(sc); LAGG_WUNLOCK(sc); } else if ((ifp->if_flags & IFF_UP) && !(ifp->if_drv_flags & IFF_DRV_RUNNING)) { /* * If interface is marked up and it is stopped, then * start it. */ (*ifp->if_init)(sc); } break; case SIOCADDMULTI: case SIOCDELMULTI: LAGG_WLOCK(sc); error = lagg_ether_setmulti(sc); LAGG_WUNLOCK(sc); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); break; case SIOCSIFCAP: case SIOCSIFMTU: /* Do not allow the MTU or caps to be directly changed */ error = EINVAL; break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } static int lagg_ether_setmulti(struct lagg_softc *sc) { struct lagg_port *lp; LAGG_WLOCK_ASSERT(sc); SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { /* First, remove any existing filter entries. */ lagg_ether_cmdmulti(lp, 0); /* copy all addresses from the lagg interface to the port */ lagg_ether_cmdmulti(lp, 1); } return (0); } static int lagg_ether_cmdmulti(struct lagg_port *lp, int set) { struct lagg_softc *sc = lp->lp_softc; struct ifnet *ifp = lp->lp_ifp; struct ifnet *scifp = sc->sc_ifp; struct lagg_mc *mc; struct ifmultiaddr *ifma; int error; LAGG_WLOCK_ASSERT(sc); if (set) { IF_ADDR_WLOCK(scifp); TAILQ_FOREACH(ifma, &scifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; mc = malloc(sizeof(struct lagg_mc), M_DEVBUF, M_NOWAIT); if (mc == NULL) { IF_ADDR_WUNLOCK(scifp); return (ENOMEM); } bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len); mc->mc_addr.sdl_index = ifp->if_index; mc->mc_ifma = NULL; SLIST_INSERT_HEAD(&lp->lp_mc_head, mc, mc_entries); } IF_ADDR_WUNLOCK(scifp); SLIST_FOREACH (mc, &lp->lp_mc_head, mc_entries) { error = if_addmulti(ifp, (struct sockaddr *)&mc->mc_addr, &mc->mc_ifma); if (error) return (error); } } else { while ((mc = SLIST_FIRST(&lp->lp_mc_head)) != NULL) { SLIST_REMOVE(&lp->lp_mc_head, mc, lagg_mc, mc_entries); if (mc->mc_ifma && !lp->lp_detaching) if_delmulti_ifma(mc->mc_ifma); free(mc, M_DEVBUF); } } return (0); } /* Handle a ref counted flag that should be set on the lagg port as well */ static int lagg_setflag(struct lagg_port *lp, int flag, int status, int (*func)(struct ifnet *, int)) { struct lagg_softc *sc = lp->lp_softc; struct ifnet *scifp = sc->sc_ifp; struct ifnet *ifp = lp->lp_ifp; int error; LAGG_WLOCK_ASSERT(sc); status = status ? (scifp->if_flags & flag) : 0; /* Now "status" contains the flag value or 0 */ /* * See if recorded ports status is different from what * we want it to be. If it is, flip it. We record ports * status in lp_ifflags so that we won't clear ports flag * we haven't set. In fact, we don't clear or set ports * flags directly, but get or release references to them. * That's why we can be sure that recorded flags still are * in accord with actual ports flags. */ if (status != (lp->lp_ifflags & flag)) { error = (*func)(ifp, status); if (error) return (error); lp->lp_ifflags &= ~flag; lp->lp_ifflags |= status; } return (0); } /* * Handle IFF_* flags that require certain changes on the lagg port * if "status" is true, update ports flags respective to the lagg * if "status" is false, forcedly clear the flags set on port. */ static int lagg_setflags(struct lagg_port *lp, int status) { int error, i; for (i = 0; lagg_pflags[i].flag; i++) { error = lagg_setflag(lp, lagg_pflags[i].flag, status, lagg_pflags[i].func); if (error) return (error); } return (0); } static int lagg_transmit(struct ifnet *ifp, struct mbuf *m) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; int error, len, mcast; struct rm_priotracker tracker; len = m->m_pkthdr.len; mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0; LAGG_RLOCK(sc, &tracker); /* We need a Tx algorithm and at least one port */ if (sc->sc_proto == LAGG_PROTO_NONE || sc->sc_count == 0) { LAGG_RUNLOCK(sc, &tracker); m_freem(m); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (ENXIO); } ETHER_BPF_MTAP(ifp, m); error = lagg_proto_start(sc, m); LAGG_RUNLOCK(sc, &tracker); if (error != 0) if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (error); } /* * The ifp->if_qflush entry point for lagg(4) is no-op. */ static void lagg_qflush(struct ifnet *ifp __unused) { } static struct mbuf * lagg_input(struct ifnet *ifp, struct mbuf *m) { struct lagg_port *lp = ifp->if_lagg; struct lagg_softc *sc = lp->lp_softc; struct ifnet *scifp = sc->sc_ifp; struct rm_priotracker tracker; LAGG_RLOCK(sc, &tracker); if ((scifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || (lp->lp_flags & LAGG_PORT_DISABLED) || sc->sc_proto == LAGG_PROTO_NONE) { LAGG_RUNLOCK(sc, &tracker); m_freem(m); return (NULL); } ETHER_BPF_MTAP(scifp, m); if (lp->lp_detaching != 0) { m_freem(m); m = NULL; } else m = lagg_proto_input(sc, lp, m); if (m != NULL) { if (scifp->if_flags & IFF_MONITOR) { m_freem(m); m = NULL; } } LAGG_RUNLOCK(sc, &tracker); return (m); } static int lagg_media_change(struct ifnet *ifp) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; if (sc->sc_ifflags & IFF_DEBUG) printf("%s\n", __func__); /* Ignore */ return (0); } static void lagg_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct lagg_softc *sc = (struct lagg_softc *)ifp->if_softc; struct lagg_port *lp; struct rm_priotracker tracker; imr->ifm_status = IFM_AVALID; imr->ifm_active = IFM_ETHER | IFM_AUTO; LAGG_RLOCK(sc, &tracker); SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (LAGG_PORTACTIVE(lp)) imr->ifm_status |= IFM_ACTIVE; } LAGG_RUNLOCK(sc, &tracker); } static void lagg_linkstate(struct lagg_softc *sc) { struct lagg_port *lp; int new_link = LINK_STATE_DOWN; uint64_t speed; /* Our link is considered up if at least one of our ports is active */ SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (lp->lp_ifp->if_link_state == LINK_STATE_UP) { new_link = LINK_STATE_UP; break; } } if_link_state_change(sc->sc_ifp, new_link); /* Update if_baudrate to reflect the max possible speed */ switch (sc->sc_proto) { case LAGG_PROTO_FAILOVER: sc->sc_ifp->if_baudrate = sc->sc_primary != NULL ? sc->sc_primary->lp_ifp->if_baudrate : 0; break; case LAGG_PROTO_ROUNDROBIN: case LAGG_PROTO_LOADBALANCE: case LAGG_PROTO_BROADCAST: speed = 0; SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) speed += lp->lp_ifp->if_baudrate; sc->sc_ifp->if_baudrate = speed; break; case LAGG_PROTO_LACP: /* LACP updates if_baudrate itself */ break; } } static void lagg_port_state(struct ifnet *ifp, int state) { struct lagg_port *lp = (struct lagg_port *)ifp->if_lagg; struct lagg_softc *sc = NULL; if (lp != NULL) sc = lp->lp_softc; if (sc == NULL) return; LAGG_WLOCK(sc); lagg_linkstate(sc); lagg_proto_linkstate(sc, lp); LAGG_WUNLOCK(sc); } struct lagg_port * lagg_link_active(struct lagg_softc *sc, struct lagg_port *lp) { struct lagg_port *lp_next, *rval = NULL; // int new_link = LINK_STATE_DOWN; LAGG_RLOCK_ASSERT(sc); /* * Search a port which reports an active link state. */ if (lp == NULL) goto search; if (LAGG_PORTACTIVE(lp)) { rval = lp; goto found; } if ((lp_next = SLIST_NEXT(lp, lp_entries)) != NULL && LAGG_PORTACTIVE(lp_next)) { rval = lp_next; goto found; } search: SLIST_FOREACH(lp_next, &sc->sc_ports, lp_entries) { if (LAGG_PORTACTIVE(lp_next)) { rval = lp_next; goto found; } } found: if (rval != NULL) { /* * The IEEE 802.1D standard assumes that a lagg with * multiple ports is always full duplex. This is valid * for load sharing laggs and if at least two links * are active. Unfortunately, checking the latter would * be too expensive at this point. XXX if ((sc->sc_capabilities & IFCAP_LAGG_FULLDUPLEX) && (sc->sc_count > 1)) new_link = LINK_STATE_FULL_DUPLEX; else new_link = rval->lp_link_state; */ } return (rval); } int lagg_enqueue(struct ifnet *ifp, struct mbuf *m) { return (ifp->if_transmit)(ifp, m); } /* * Simple round robin aggregation */ static void lagg_rr_attach(struct lagg_softc *sc) { sc->sc_capabilities = IFCAP_LAGG_FULLDUPLEX; sc->sc_seq = 0; sc->sc_bkt_count = sc->sc_bkt; } static int lagg_rr_start(struct lagg_softc *sc, struct mbuf *m) { struct lagg_port *lp; uint32_t p; if (sc->sc_bkt_count == 0 && sc->sc_bkt > 0) sc->sc_bkt_count = sc->sc_bkt; if (sc->sc_bkt > 0) { atomic_subtract_int(&sc->sc_bkt_count, 1); if (atomic_cmpset_int(&sc->sc_bkt_count, 0, sc->sc_bkt)) p = atomic_fetchadd_32(&sc->sc_seq, 1); else p = sc->sc_seq; } else p = atomic_fetchadd_32(&sc->sc_seq, 1); p %= sc->sc_count; lp = SLIST_FIRST(&sc->sc_ports); while (p--) lp = SLIST_NEXT(lp, lp_entries); /* * Check the port's link state. This will return the next active * port if the link is down or the port is NULL. */ if ((lp = lagg_link_active(sc, lp)) == NULL) { m_freem(m); return (ENETDOWN); } /* Send mbuf */ return (lagg_enqueue(lp->lp_ifp, m)); } static struct mbuf * lagg_rr_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { struct ifnet *ifp = sc->sc_ifp; /* Just pass in the packet to our lagg device */ m->m_pkthdr.rcvif = ifp; return (m); } /* * Broadcast mode */ static int lagg_bcast_start(struct lagg_softc *sc, struct mbuf *m) { int active_ports = 0; int errors = 0; int ret; struct lagg_port *lp, *last = NULL; struct mbuf *m0; SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) { if (!LAGG_PORTACTIVE(lp)) continue; active_ports++; if (last != NULL) { m0 = m_copym(m, 0, M_COPYALL, M_NOWAIT); if (m0 == NULL) { ret = ENOBUFS; errors++; break; } ret = lagg_enqueue(last->lp_ifp, m0); if (ret != 0) errors++; } last = lp; } if (last == NULL) { m_freem(m); return (ENOENT); } if ((last = lagg_link_active(sc, last)) == NULL) { m_freem(m); return (ENETDOWN); } ret = lagg_enqueue(last->lp_ifp, m); if (ret != 0) errors++; if (errors == 0) return (ret); return (0); } static struct mbuf* lagg_bcast_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { struct ifnet *ifp = sc->sc_ifp; /* Just pass in the packet to our lagg device */ m->m_pkthdr.rcvif = ifp; return (m); } /* * Active failover */ static int lagg_fail_start(struct lagg_softc *sc, struct mbuf *m) { struct lagg_port *lp; /* Use the master port if active or the next available port */ if ((lp = lagg_link_active(sc, sc->sc_primary)) == NULL) { m_freem(m); return (ENETDOWN); } /* Send mbuf */ return (lagg_enqueue(lp->lp_ifp, m)); } static struct mbuf * lagg_fail_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { struct ifnet *ifp = sc->sc_ifp; struct lagg_port *tmp_tp; if (lp == sc->sc_primary || V_lagg_failover_rx_all) { m->m_pkthdr.rcvif = ifp; return (m); } if (!LAGG_PORTACTIVE(sc->sc_primary)) { tmp_tp = lagg_link_active(sc, sc->sc_primary); /* * If tmp_tp is null, we've recieved a packet when all * our links are down. Weird, but process it anyways. */ if ((tmp_tp == NULL || tmp_tp == lp)) { m->m_pkthdr.rcvif = ifp; return (m); } } m_freem(m); return (NULL); } /* * Loadbalancing */ static void lagg_lb_attach(struct lagg_softc *sc) { struct lagg_port *lp; struct lagg_lb *lb; lb = malloc(sizeof(struct lagg_lb), M_DEVBUF, M_WAITOK | M_ZERO); sc->sc_capabilities = IFCAP_LAGG_FULLDUPLEX; lb->lb_key = m_ether_tcpip_hash_init(); sc->sc_psc = lb; SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lagg_lb_port_create(lp); } static void lagg_lb_detach(struct lagg_softc *sc) { struct lagg_lb *lb; lb = (struct lagg_lb *)sc->sc_psc; LAGG_WUNLOCK(sc); if (lb != NULL) free(lb, M_DEVBUF); } static int lagg_lb_porttable(struct lagg_softc *sc, struct lagg_port *lp) { struct lagg_lb *lb = (struct lagg_lb *)sc->sc_psc; struct lagg_port *lp_next; int i = 0; bzero(&lb->lb_ports, sizeof(lb->lb_ports)); SLIST_FOREACH(lp_next, &sc->sc_ports, lp_entries) { if (lp_next == lp) continue; if (i >= LAGG_MAX_PORTS) return (EINVAL); if (sc->sc_ifflags & IFF_DEBUG) printf("%s: port %s at index %d\n", sc->sc_ifname, lp_next->lp_ifp->if_xname, i); lb->lb_ports[i++] = lp_next; } return (0); } static int lagg_lb_port_create(struct lagg_port *lp) { struct lagg_softc *sc = lp->lp_softc; return (lagg_lb_porttable(sc, NULL)); } static void lagg_lb_port_destroy(struct lagg_port *lp) { struct lagg_softc *sc = lp->lp_softc; lagg_lb_porttable(sc, lp); } static int lagg_lb_start(struct lagg_softc *sc, struct mbuf *m) { struct lagg_lb *lb = (struct lagg_lb *)sc->sc_psc; struct lagg_port *lp = NULL; uint32_t p = 0; if ((sc->sc_opts & LAGG_OPT_USE_FLOWID) && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) p = m->m_pkthdr.flowid >> sc->flowid_shift; else p = m_ether_tcpip_hash(sc->sc_flags, m, lb->lb_key); p %= sc->sc_count; lp = lb->lb_ports[p]; /* * Check the port's link state. This will return the next active * port if the link is down or the port is NULL. */ if ((lp = lagg_link_active(sc, lp)) == NULL) { m_freem(m); return (ENETDOWN); } /* Send mbuf */ return (lagg_enqueue(lp->lp_ifp, m)); } static struct mbuf * lagg_lb_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { struct ifnet *ifp = sc->sc_ifp; /* Just pass in the packet to our lagg device */ m->m_pkthdr.rcvif = ifp; return (m); } /* * 802.3ad LACP */ static void lagg_lacp_attach(struct lagg_softc *sc) { struct lagg_port *lp; lacp_attach(sc); SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lacp_port_create(lp); } static void lagg_lacp_detach(struct lagg_softc *sc) { struct lagg_port *lp; void *psc; SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lacp_port_destroy(lp); psc = sc->sc_psc; sc->sc_psc = NULL; LAGG_WUNLOCK(sc); lacp_detach(psc); } static void lagg_lacp_lladdr(struct lagg_softc *sc) { struct lagg_port *lp; /* purge all the lacp ports */ SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lacp_port_destroy(lp); /* add them back in */ SLIST_FOREACH(lp, &sc->sc_ports, lp_entries) lacp_port_create(lp); } static int lagg_lacp_start(struct lagg_softc *sc, struct mbuf *m) { struct lagg_port *lp; lp = lacp_select_tx_port(sc, m); if (lp == NULL) { m_freem(m); return (ENETDOWN); } /* Send mbuf */ return (lagg_enqueue(lp->lp_ifp, m)); } static struct mbuf * lagg_lacp_input(struct lagg_softc *sc, struct lagg_port *lp, struct mbuf *m) { struct ifnet *ifp = sc->sc_ifp; struct ether_header *eh; u_short etype; eh = mtod(m, struct ether_header *); etype = ntohs(eh->ether_type); /* Tap off LACP control messages */ if ((m->m_flags & M_VLANTAG) == 0 && etype == ETHERTYPE_SLOW) { m = lacp_input(lp, m); if (m == NULL) return (NULL); } /* * If the port is not collecting or not in the active aggregator then * free and return. */ if (lacp_iscollecting(lp) == 0 || lacp_isactive(lp) == 0) { m_freem(m); return (NULL); } m->m_pkthdr.rcvif = ifp; return (m); } Index: projects/vnet/sys/net/if_loop.c =================================================================== --- projects/vnet/sys/net/if_loop.c (revision 297511) +++ projects/vnet/sys/net/if_loop.c (revision 297512) @@ -1,446 +1,446 @@ /*- * Copyright (c) 1982, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if_loop.c 8.2 (Berkeley) 1/9/95 * $FreeBSD$ */ /* * Loopback interface driver for protocol testing and timing. */ #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif #ifdef INET6 #ifndef INET #include #endif #include #include #endif #include #ifdef TINY_LOMTU #define LOMTU (1024+512) #elif defined(LARGE_LOMTU) #define LOMTU 131072 #else #define LOMTU 16384 #endif #define LO_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_SCTP) #define LO_CSUM_FEATURES6 (CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | CSUM_SCTP_IPV6) #define LO_CSUM_SET (CSUM_DATA_VALID | CSUM_DATA_VALID_IPV6 | \ CSUM_PSEUDO_HDR | \ CSUM_IP_CHECKED | CSUM_IP_VALID | \ CSUM_SCTP_VALID) int loioctl(struct ifnet *, u_long, caddr_t); int looutput(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro); static int lo_clone_create(struct if_clone *, int, caddr_t); static void lo_clone_destroy(struct ifnet *); VNET_DEFINE(struct ifnet *, loif); /* Used externally */ #ifdef VIMAGE static VNET_DEFINE(struct if_clone *, lo_cloner); #define V_lo_cloner VNET(lo_cloner) #endif static struct if_clone *lo_cloner; static const char loname[] = "lo"; static void lo_clone_destroy(struct ifnet *ifp) { #ifndef VIMAGE /* XXX: destroying lo0 will lead to panics. */ KASSERT(V_loif != ifp, ("%s: destroying lo0", __func__)); #endif bpfdetach(ifp); if_detach(ifp); if_free(ifp); } static int lo_clone_create(struct if_clone *ifc, int unit, caddr_t params) { struct ifnet *ifp; ifp = if_alloc(IFT_LOOP); if (ifp == NULL) return (ENOSPC); if_initname(ifp, loname, unit); ifp->if_mtu = LOMTU; ifp->if_flags = IFF_LOOPBACK | IFF_MULTICAST; ifp->if_ioctl = loioctl; ifp->if_output = looutput; ifp->if_snd.ifq_maxlen = ifqmaxlen; ifp->if_capabilities = ifp->if_capenable = IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6; ifp->if_hwassist = LO_CSUM_FEATURES | LO_CSUM_FEATURES6; if_attach(ifp); bpfattach(ifp, DLT_NULL, sizeof(u_int32_t)); if (V_loif == NULL) V_loif = ifp; return (0); } static void vnet_loif_init(const void *unused __unused) { #ifdef VIMAGE lo_cloner = if_clone_simple(loname, lo_clone_create, lo_clone_destroy, 1); V_lo_cloner = lo_cloner; #else lo_cloner = if_clone_simple(loname, lo_clone_create, lo_clone_destroy, 1); #endif } -VNET_SYSINIT(vnet_loif_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, +VNET_SYSINIT(vnet_loif_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_loif_init, NULL); #ifdef VIMAGE static void vnet_loif_uninit(const void *unused __unused) { if_clone_detach(V_lo_cloner); V_loif = NULL; } -VNET_SYSUNINIT(vnet_loif_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, +VNET_SYSUNINIT(vnet_loif_uninit, SI_SUB_PSEUDO_DONE, SI_ORDER_SECOND, vnet_loif_uninit, NULL); #endif static int loop_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: break; case MOD_UNLOAD: printf("loop module unload - not possible for this module type\n"); return (EINVAL); default: return (EOPNOTSUPP); } return (0); } static moduledata_t loop_mod = { "if_lo", loop_modevent, 0 }; DECLARE_MODULE(if_lo, loop_mod, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY); int looutput(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { u_int32_t af; #ifdef MAC int error; #endif M_ASSERTPKTHDR(m); /* check if we have the packet header */ #ifdef MAC error = mac_ifnet_check_transmit(ifp, m); if (error) { m_freem(m); return (error); } #endif if (ro != NULL && ro->ro_flags & (RT_REJECT|RT_BLACKHOLE)) { m_freem(m); return (ro->ro_flags & RT_BLACKHOLE ? 0 : EHOSTUNREACH); } if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); /* BPF writes need to be handled specially. */ if (dst->sa_family == AF_UNSPEC || dst->sa_family == pseudo_AF_HDRCMPLT) bcopy(dst->sa_data, &af, sizeof(af)); else af = dst->sa_family; #if 1 /* XXX */ switch (af) { case AF_INET: if (ifp->if_capenable & IFCAP_RXCSUM) { m->m_pkthdr.csum_data = 0xffff; m->m_pkthdr.csum_flags = LO_CSUM_SET; } m->m_pkthdr.csum_flags &= ~LO_CSUM_FEATURES; break; case AF_INET6: #if 0 /* * XXX-BZ for now always claim the checksum is good despite * any interface flags. This is a workaround for 9.1-R and * a proper solution ought to be sought later. */ if (ifp->if_capenable & IFCAP_RXCSUM_IPV6) { m->m_pkthdr.csum_data = 0xffff; m->m_pkthdr.csum_flags = LO_CSUM_SET; } #else m->m_pkthdr.csum_data = 0xffff; m->m_pkthdr.csum_flags = LO_CSUM_SET; #endif m->m_pkthdr.csum_flags &= ~LO_CSUM_FEATURES6; break; default: printf("looutput: af=%d unexpected\n", af); m_freem(m); return (EAFNOSUPPORT); } #endif return (if_simloop(ifp, m, af, 0)); } /* * if_simloop() * * This function is to support software emulation of hardware loopback, * i.e., for interfaces with the IFF_SIMPLEX attribute. Since they can't * hear their own broadcasts, we create a copy of the packet that we * would normally receive via a hardware loopback. * * This function expects the packet to include the media header of length hlen. */ int if_simloop(struct ifnet *ifp, struct mbuf *m, int af, int hlen) { int isr; M_ASSERTPKTHDR(m); m_tag_delete_nonpersistent(m); m->m_pkthdr.rcvif = ifp; #ifdef MAC mac_ifnet_create_mbuf(ifp, m); #endif /* * Let BPF see incoming packet in the following manner: * - Emulated packet loopback for a simplex interface * (net/if_ethersubr.c) * -> passes it to ifp's BPF * - IPv4/v6 multicast packet loopback (netinet(6)/ip(6)_output.c) * -> not passes it to any BPF * - Normal packet loopback from myself to myself (net/if_loop.c) * -> passes to lo0's BPF (even in case of IPv6, where ifp!=lo0) */ if (hlen > 0) { if (bpf_peers_present(ifp->if_bpf)) { bpf_mtap(ifp->if_bpf, m); } } else { if (bpf_peers_present(V_loif->if_bpf)) { if ((m->m_flags & M_MCAST) == 0 || V_loif == ifp) { /* XXX beware sizeof(af) != 4 */ u_int32_t af1 = af; /* * We need to prepend the address family. */ bpf_mtap2(V_loif->if_bpf, &af1, sizeof(af1), m); } } } /* Strip away media header */ if (hlen > 0) { m_adj(m, hlen); #ifndef __NO_STRICT_ALIGNMENT /* * Some archs do not like unaligned data, so * we move data down in the first mbuf. */ if (mtod(m, vm_offset_t) & 3) { KASSERT(hlen >= 3, ("if_simloop: hlen too small")); bcopy(m->m_data, (char *)(mtod(m, vm_offset_t) - (mtod(m, vm_offset_t) & 3)), m->m_len); m->m_data -= (mtod(m,vm_offset_t) & 3); } #endif } /* Deliver to upper layer protocol */ switch (af) { #ifdef INET case AF_INET: isr = NETISR_IP; break; #endif #ifdef INET6 case AF_INET6: m->m_flags |= M_LOOP; isr = NETISR_IPV6; break; #endif default: printf("if_simloop: can't handle af=%d\n", af); m_freem(m); return (EAFNOSUPPORT); } if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); netisr_queue(isr, m); /* mbuf is free'd on failure. */ return (0); } /* * Process an ioctl request. */ /* ARGSUSED */ int loioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ifreq *ifr = (struct ifreq *)data; int error = 0, mask; switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; ifp->if_drv_flags |= IFF_DRV_RUNNING; /* * Everything else is done at a higher level. */ break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifr == 0) { error = EAFNOSUPPORT; /* XXX */ break; } switch (ifr->ifr_addr.sa_family) { #ifdef INET case AF_INET: break; #endif #ifdef INET6 case AF_INET6: break; #endif default: error = EAFNOSUPPORT; break; } break; case SIOCSIFMTU: ifp->if_mtu = ifr->ifr_mtu; break; case SIOCSIFFLAGS: break; case SIOCSIFCAP: mask = ifp->if_capenable ^ ifr->ifr_reqcap; if ((mask & IFCAP_RXCSUM) != 0) ifp->if_capenable ^= IFCAP_RXCSUM; if ((mask & IFCAP_TXCSUM) != 0) ifp->if_capenable ^= IFCAP_TXCSUM; if ((mask & IFCAP_RXCSUM_IPV6) != 0) { #if 0 ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; #else error = EOPNOTSUPP; break; #endif } if ((mask & IFCAP_TXCSUM_IPV6) != 0) { #if 0 ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; #else error = EOPNOTSUPP; break; #endif } ifp->if_hwassist = 0; if (ifp->if_capenable & IFCAP_TXCSUM) ifp->if_hwassist = LO_CSUM_FEATURES; #if 0 if (ifp->if_capenable & IFCAP_TXCSUM_IPV6) ifp->if_hwassist |= LO_CSUM_FEATURES6; #endif break; default: error = EINVAL; } return (error); } Index: projects/vnet/sys/net/route.c =================================================================== --- projects/vnet/sys/net/route.c (revision 297511) +++ projects/vnet/sys/net/route.c (revision 297512) @@ -1,2293 +1,2302 @@ /*- * Copyright (c) 1980, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)route.c 8.3.1.1 (Berkeley) 2/23/95 * $FreeBSD$ */ /************************************************************************ * Note: In this file a 'fib' is a "forwarding information base" * * Which is the new name for an in kernel routing (next hop) table. * ***********************************************************************/ #include "opt_inet.h" #include "opt_inet6.h" #include "opt_route.h" #include "opt_sctp.h" #include "opt_mrouting.h" #include "opt_mpath.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RADIX_MPATH #include #endif #include #include #include #define RT_MAXFIBS UINT16_MAX /* Kernel config default option. */ #ifdef ROUTETABLES #if ROUTETABLES <= 0 #error "ROUTETABLES defined too low" #endif #if ROUTETABLES > RT_MAXFIBS #error "ROUTETABLES defined too big" #endif #define RT_NUMFIBS ROUTETABLES #endif /* ROUTETABLES */ /* Initialize to default if not otherwise set. */ #ifndef RT_NUMFIBS #define RT_NUMFIBS 1 #endif #if defined(INET) || defined(INET6) #ifdef SCTP extern void sctp_addr_change(struct ifaddr *ifa, int cmd); #endif /* SCTP */ #endif /* This is read-only.. */ u_int rt_numfibs = RT_NUMFIBS; SYSCTL_UINT(_net, OID_AUTO, fibs, CTLFLAG_RDTUN, &rt_numfibs, 0, ""); /* * By default add routes to all fibs for new interfaces. * Once this is set to 0 then only allocate routes on interface * changes for the FIB of the caller when adding a new set of addresses * to an interface. XXX this is a shotgun aproach to a problem that needs * a more fine grained solution.. that will come. * XXX also has the problems getting the FIB from curthread which will not * always work given the fib can be overridden and prefixes can be added * from the network stack context. */ VNET_DEFINE(u_int, rt_add_addr_allfibs) = 1; SYSCTL_UINT(_net, OID_AUTO, add_addr_allfibs, CTLFLAG_RWTUN | CTLFLAG_VNET, &VNET_NAME(rt_add_addr_allfibs), 0, ""); VNET_DEFINE(struct rtstat, rtstat); #define V_rtstat VNET(rtstat) VNET_DEFINE(struct rib_head *, rt_tables); #define V_rt_tables VNET(rt_tables) VNET_DEFINE(int, rttrash); /* routes not in table but not freed */ #define V_rttrash VNET(rttrash) /* * Convert a 'struct radix_node *' to a 'struct rtentry *'. * The operation can be done safely (in this code) because a * 'struct rtentry' starts with two 'struct radix_node''s, the first * one representing leaf nodes in the routing tree, which is * what the code in radix.c passes us as a 'struct radix_node'. * * But because there are a lot of assumptions in this conversion, * do not cast explicitly, but always use the macro below. */ #define RNTORT(p) ((struct rtentry *)(p)) static VNET_DEFINE(uma_zone_t, rtzone); /* Routing table UMA zone. */ #define V_rtzone VNET(rtzone) static int rtrequest1_fib_change(struct rib_head *, struct rt_addrinfo *, struct rtentry **, u_int); static void rt_setmetrics(const struct rt_addrinfo *, struct rtentry *); static int rt_ifdelroute(const struct rtentry *rt, void *arg); static struct rtentry *rt_unlinkrte(struct rib_head *rnh, struct rt_addrinfo *info, int *perror); static void rt_notifydelete(struct rtentry *rt, struct rt_addrinfo *info); #ifdef RADIX_MPATH static struct radix_node *rt_mpath_unlink(struct rib_head *rnh, struct rt_addrinfo *info, struct rtentry *rto, int *perror); #endif static int rt_exportinfo(struct rtentry *rt, struct rt_addrinfo *info, int flags); struct if_mtuinfo { struct ifnet *ifp; int mtu; }; static int if_updatemtu_cb(struct radix_node *, void *); /* * handler for net.my_fibnum */ static int sysctl_my_fibnum(SYSCTL_HANDLER_ARGS) { int fibnum; int error; fibnum = curthread->td_proc->p_fibnum; error = sysctl_handle_int(oidp, &fibnum, 0, req); return (error); } SYSCTL_PROC(_net, OID_AUTO, my_fibnum, CTLTYPE_INT|CTLFLAG_RD, NULL, 0, &sysctl_my_fibnum, "I", "default FIB of caller"); static __inline struct rib_head ** rt_tables_get_rnh_ptr(int table, int fam) { struct rib_head **rnh; KASSERT(table >= 0 && table < rt_numfibs, ("%s: table out of bounds.", __func__)); KASSERT(fam >= 0 && fam < (AF_MAX+1), ("%s: fam out of bounds.", __func__)); /* rnh is [fib=0][af=0]. */ rnh = (struct rib_head **)V_rt_tables; /* Get the offset to the requested table and fam. */ rnh += table * (AF_MAX+1) + fam; return (rnh); } struct rib_head * rt_tables_get_rnh(int table, int fam) { return (*rt_tables_get_rnh_ptr(table, fam)); } /* * route initialization must occur before ip6_init2(), which happenas at * SI_ORDER_MIDDLE. */ static void route_init(void) { /* whack the tunable ints into line. */ if (rt_numfibs > RT_MAXFIBS) rt_numfibs = RT_MAXFIBS; if (rt_numfibs == 0) rt_numfibs = 1; } SYSINIT(route_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, route_init, 0); static int rtentry_zinit(void *mem, int size, int how) { struct rtentry *rt = mem; rt->rt_pksent = counter_u64_alloc(how); if (rt->rt_pksent == NULL) return (ENOMEM); RT_LOCK_INIT(rt); return (0); } static void rtentry_zfini(void *mem, int size) { struct rtentry *rt = mem; RT_LOCK_DESTROY(rt); counter_u64_free(rt->rt_pksent); } static int rtentry_ctor(void *mem, int size, void *arg, int how) { struct rtentry *rt = mem; bzero(rt, offsetof(struct rtentry, rt_endzero)); counter_u64_zero(rt->rt_pksent); rt->rt_chain = NULL; return (0); } static void rtentry_dtor(void *mem, int size, void *arg) { struct rtentry *rt = mem; RT_UNLOCK_COND(rt); } static void vnet_route_init(const void *unused __unused) { struct domain *dom; struct rib_head **rnh; int table; int fam; V_rt_tables = malloc(rt_numfibs * (AF_MAX+1) * sizeof(struct rib_head *), M_RTABLE, M_WAITOK|M_ZERO); V_rtzone = uma_zcreate("rtentry", sizeof(struct rtentry), rtentry_ctor, rtentry_dtor, rtentry_zinit, rtentry_zfini, UMA_ALIGN_PTR, 0); for (dom = domains; dom; dom = dom->dom_next) { if (dom->dom_rtattach == NULL) continue; for (table = 0; table < rt_numfibs; table++) { fam = dom->dom_family; if (table != 0 && fam != AF_INET6 && fam != AF_INET) break; rnh = rt_tables_get_rnh_ptr(table, fam); if (rnh == NULL) panic("%s: rnh NULL", __func__); dom->dom_rtattach((void **)rnh, 0); } } } VNET_SYSINIT(vnet_route_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, vnet_route_init, 0); #ifdef VIMAGE static void vnet_route_uninit(const void *unused __unused) { int table; int fam; struct domain *dom; struct rib_head **rnh; for (dom = domains; dom; dom = dom->dom_next) { if (dom->dom_rtdetach == NULL) continue; for (table = 0; table < rt_numfibs; table++) { fam = dom->dom_family; if (table != 0 && fam != AF_INET6 && fam != AF_INET) break; rnh = rt_tables_get_rnh_ptr(table, fam); if (rnh == NULL) panic("%s: rnh NULL", __func__); dom->dom_rtdetach((void **)rnh, 0); } } free(V_rt_tables, M_RTABLE); uma_zdestroy(V_rtzone); } VNET_SYSUNINIT(vnet_route_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, vnet_route_uninit, 0); #endif struct rib_head * rt_table_init(int offset) { struct rib_head *rh; rh = malloc(sizeof(struct rib_head), M_RTABLE, M_WAITOK | M_ZERO); /* TODO: These details should be hidded inside radix.c */ /* Init masks tree */ rn_inithead_internal(&rh->head, rh->rnh_nodes, offset); rn_inithead_internal(&rh->rmhead.head, rh->rmhead.mask_nodes, 0); rh->head.rnh_masks = &rh->rmhead; /* Init locks */ rw_init(&rh->rib_lock, "rib head lock"); /* Finally, set base callbacks */ rh->rnh_addaddr = rn_addroute; rh->rnh_deladdr = rn_delete; rh->rnh_matchaddr = rn_match; rh->rnh_lookup = rn_lookup; rh->rnh_walktree = rn_walktree; rh->rnh_walktree_from = rn_walktree_from; return (rh); } static int rt_freeentry(struct radix_node *rn, void *arg) { struct radix_head * const rnh = arg; struct radix_node *x; x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh); if (x != NULL) R_Free(x); return (0); } void rt_table_destroy(struct rib_head *rh) { rn_walktree(&rh->rmhead.head, rt_freeentry, &rh->rmhead.head); /* Assume table is already empty */ rw_destroy(&rh->rib_lock); free(rh, M_RTABLE); } #ifndef _SYS_SYSPROTO_H_ struct setfib_args { int fibnum; }; #endif int sys_setfib(struct thread *td, struct setfib_args *uap) { if (uap->fibnum < 0 || uap->fibnum >= rt_numfibs) return EINVAL; td->td_proc->p_fibnum = uap->fibnum; return (0); } /* * Packet routing routines. */ void rtalloc_ign_fib(struct route *ro, u_long ignore, u_int fibnum) { struct rtentry *rt; if ((rt = ro->ro_rt) != NULL) { if (rt->rt_ifp != NULL && rt->rt_flags & RTF_UP) return; RTFREE(rt); ro->ro_rt = NULL; } ro->ro_rt = rtalloc1_fib(&ro->ro_dst, 1, ignore, fibnum); if (ro->ro_rt) RT_UNLOCK(ro->ro_rt); } /* * Look up the route that matches the address given * Or, at least try.. Create a cloned route if needed. * * The returned route, if any, is locked. */ struct rtentry * rtalloc1(struct sockaddr *dst, int report, u_long ignflags) { return (rtalloc1_fib(dst, report, ignflags, RT_DEFAULT_FIB)); } struct rtentry * rtalloc1_fib(struct sockaddr *dst, int report, u_long ignflags, u_int fibnum) { struct rib_head *rh; struct radix_node *rn; struct rtentry *newrt; struct rt_addrinfo info; int err = 0, msgtype = RTM_MISS; KASSERT((fibnum < rt_numfibs), ("rtalloc1_fib: bad fibnum")); rh = rt_tables_get_rnh(fibnum, dst->sa_family); newrt = NULL; if (rh == NULL) goto miss; /* * Look up the address in the table for that Address Family */ RIB_RLOCK(rh); rn = rh->rnh_matchaddr(dst, &rh->head); if (rn && ((rn->rn_flags & RNF_ROOT) == 0)) { newrt = RNTORT(rn); RT_LOCK(newrt); RT_ADDREF(newrt); RIB_RUNLOCK(rh); return (newrt); } else RIB_RUNLOCK(rh); /* * Either we hit the root or couldn't find any match, * Which basically means * "caint get there frm here" */ miss: V_rtstat.rts_unreach++; if (report) { /* * If required, report the failure to the supervising * Authorities. * For a delete, this is not an error. (report == 0) */ bzero(&info, sizeof(info)); info.rti_info[RTAX_DST] = dst; rt_missmsg_fib(msgtype, &info, 0, err, fibnum); } return (newrt); } /* * Remove a reference count from an rtentry. * If the count gets low enough, take it out of the routing table */ void rtfree(struct rtentry *rt) { struct rib_head *rnh; KASSERT(rt != NULL,("%s: NULL rt", __func__)); rnh = rt_tables_get_rnh(rt->rt_fibnum, rt_key(rt)->sa_family); KASSERT(rnh != NULL,("%s: NULL rnh", __func__)); RT_LOCK_ASSERT(rt); /* * The callers should use RTFREE_LOCKED() or RTFREE(), so * we should come here exactly with the last reference. */ RT_REMREF(rt); if (rt->rt_refcnt > 0) { log(LOG_DEBUG, "%s: %p has %d refs\n", __func__, rt, rt->rt_refcnt); goto done; } /* * On last reference give the "close method" a chance * to cleanup private state. This also permits (for * IPv4 and IPv6) a chance to decide if the routing table * entry should be purged immediately or at a later time. * When an immediate purge is to happen the close routine * typically calls rtexpunge which clears the RTF_UP flag * on the entry so that the code below reclaims the storage. */ if (rt->rt_refcnt == 0 && rnh->rnh_close) rnh->rnh_close((struct radix_node *)rt, &rnh->head); /* * If we are no longer "up" (and ref == 0) * then we can free the resources associated * with the route. */ if ((rt->rt_flags & RTF_UP) == 0) { if (rt->rt_nodes->rn_flags & (RNF_ACTIVE | RNF_ROOT)) panic("rtfree 2"); /* * the rtentry must have been removed from the routing table * so it is represented in rttrash.. remove that now. */ V_rttrash--; #ifdef DIAGNOSTIC if (rt->rt_refcnt < 0) { printf("rtfree: %p not freed (neg refs)\n", rt); goto done; } #endif /* * release references on items we hold them on.. * e.g other routes and ifaddrs. */ if (rt->rt_ifa) ifa_free(rt->rt_ifa); /* * The key is separatly alloc'd so free it (see rt_setgate()). * This also frees the gateway, as they are always malloc'd * together. */ R_Free(rt_key(rt)); /* * and the rtentry itself of course */ uma_zfree(V_rtzone, rt); return; } done: RT_UNLOCK(rt); } /* * Force a routing table entry to the specified * destination to go through the given gateway. * Normally called as a result of a routing redirect * message from the network layer. */ void rtredirect_fib(struct sockaddr *dst, struct sockaddr *gateway, struct sockaddr *netmask, int flags, struct sockaddr *src, u_int fibnum) { struct rtentry *rt; int error = 0; short *stat = NULL; struct rt_addrinfo info; struct ifaddr *ifa; struct rib_head *rnh; ifa = NULL; rnh = rt_tables_get_rnh(fibnum, dst->sa_family); if (rnh == NULL) { error = EAFNOSUPPORT; goto out; } /* verify the gateway is directly reachable */ if ((ifa = ifa_ifwithnet(gateway, 0, fibnum)) == NULL) { error = ENETUNREACH; goto out; } rt = rtalloc1_fib(dst, 0, 0UL, fibnum); /* NB: rt is locked */ /* * If the redirect isn't from our current router for this dst, * it's either old or wrong. If it redirects us to ourselves, * we have a routing loop, perhaps as a result of an interface * going down recently. */ if (!(flags & RTF_DONE) && rt) { if (!sa_equal(src, rt->rt_gateway)) { error = EINVAL; goto done; } if (rt->rt_ifa != ifa && ifa->ifa_addr->sa_family != AF_LINK) { error = EINVAL; goto done; } } if ((flags & RTF_GATEWAY) && ifa_ifwithaddr_check(gateway)) { error = EHOSTUNREACH; goto done; } /* * Create a new entry if we just got back a wildcard entry * or the lookup failed. This is necessary for hosts * which use routing redirects generated by smart gateways * to dynamically build the routing tables. */ if (rt == NULL || (rt_mask(rt) && rt_mask(rt)->sa_len < 2)) goto create; /* * Don't listen to the redirect if it's * for a route to an interface. */ if (rt->rt_flags & RTF_GATEWAY) { if (((rt->rt_flags & RTF_HOST) == 0) && (flags & RTF_HOST)) { /* * Changing from route to net => route to host. * Create new route, rather than smashing route to net. */ create: if (rt != NULL) RTFREE_LOCKED(rt); flags |= RTF_DYNAMIC; bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_DST] = dst; info.rti_info[RTAX_GATEWAY] = gateway; info.rti_info[RTAX_NETMASK] = netmask; info.rti_ifa = ifa; info.rti_flags = flags; error = rtrequest1_fib(RTM_ADD, &info, &rt, fibnum); if (rt != NULL) { RT_LOCK(rt); flags = rt->rt_flags; } stat = &V_rtstat.rts_dynamic; } else { /* * Smash the current notion of the gateway to * this destination. Should check about netmask!!! */ if ((flags & RTF_GATEWAY) == 0) rt->rt_flags &= ~RTF_GATEWAY; rt->rt_flags |= RTF_MODIFIED; flags |= RTF_MODIFIED; stat = &V_rtstat.rts_newgateway; /* * add the key and gateway (in one malloc'd chunk). */ RT_UNLOCK(rt); RIB_WLOCK(rnh); RT_LOCK(rt); rt_setgate(rt, rt_key(rt), gateway); RIB_WUNLOCK(rnh); } } else error = EHOSTUNREACH; done: if (rt) RTFREE_LOCKED(rt); out: if (error) V_rtstat.rts_badredirect++; else if (stat != NULL) (*stat)++; bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_DST] = dst; info.rti_info[RTAX_GATEWAY] = gateway; info.rti_info[RTAX_NETMASK] = netmask; info.rti_info[RTAX_AUTHOR] = src; rt_missmsg_fib(RTM_REDIRECT, &info, flags, error, fibnum); if (ifa != NULL) ifa_free(ifa); } /* * Routing table ioctl interface. */ int rtioctl_fib(u_long req, caddr_t data, u_int fibnum) { /* * If more ioctl commands are added here, make sure the proper * super-user checks are being performed because it is possible for * prison-root to make it this far if raw sockets have been enabled * in jails. */ #ifdef INET /* Multicast goop, grrr... */ return mrt_ioctl ? mrt_ioctl(req, data, fibnum) : EOPNOTSUPP; #else /* INET */ return ENXIO; #endif /* INET */ } struct ifaddr * ifa_ifwithroute(int flags, const struct sockaddr *dst, struct sockaddr *gateway, u_int fibnum) { struct ifaddr *ifa; int not_found = 0; if ((flags & RTF_GATEWAY) == 0) { /* * If we are adding a route to an interface, * and the interface is a pt to pt link * we should search for the destination * as our clue to the interface. Otherwise * we can use the local address. */ ifa = NULL; if (flags & RTF_HOST) ifa = ifa_ifwithdstaddr(dst, fibnum); if (ifa == NULL) ifa = ifa_ifwithaddr(gateway); } else { /* * If we are adding a route to a remote net * or host, the gateway may still be on the * other end of a pt to pt link. */ ifa = ifa_ifwithdstaddr(gateway, fibnum); } if (ifa == NULL) ifa = ifa_ifwithnet(gateway, 0, fibnum); if (ifa == NULL) { struct rtentry *rt = rtalloc1_fib(gateway, 0, 0, fibnum); if (rt == NULL) return (NULL); /* * dismiss a gateway that is reachable only * through the default router */ switch (gateway->sa_family) { case AF_INET: if (satosin(rt_key(rt))->sin_addr.s_addr == INADDR_ANY) not_found = 1; break; case AF_INET6: if (IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(rt))->sin6_addr)) not_found = 1; break; default: break; } if (!not_found && rt->rt_ifa != NULL) { ifa = rt->rt_ifa; ifa_ref(ifa); } RT_REMREF(rt); RT_UNLOCK(rt); if (not_found || ifa == NULL) return (NULL); } if (ifa->ifa_addr->sa_family != dst->sa_family) { struct ifaddr *oifa = ifa; ifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp); if (ifa == NULL) ifa = oifa; else ifa_free(oifa); } return (ifa); } /* * Do appropriate manipulations of a routing tree given * all the bits of info needed */ int rtrequest_fib(int req, struct sockaddr *dst, struct sockaddr *gateway, struct sockaddr *netmask, int flags, struct rtentry **ret_nrt, u_int fibnum) { struct rt_addrinfo info; if (dst->sa_len == 0) return(EINVAL); bzero((caddr_t)&info, sizeof(info)); info.rti_flags = flags; info.rti_info[RTAX_DST] = dst; info.rti_info[RTAX_GATEWAY] = gateway; info.rti_info[RTAX_NETMASK] = netmask; return rtrequest1_fib(req, &info, ret_nrt, fibnum); } /* * Copy most of @rt data into @info. * * If @flags contains NHR_COPY, copies dst,netmask and gw to the * pointers specified by @info structure. Assume such pointers * are zeroed sockaddr-like structures with sa_len field initialized * to reflect size of the provided buffer. if no NHR_COPY is specified, * point dst,netmask and gw @info fields to appropriate @rt values. * * if @flags contains NHR_REF, do refcouting on rt_ifp. * * Returns 0 on success. */ int rt_exportinfo(struct rtentry *rt, struct rt_addrinfo *info, int flags) { struct rt_metrics *rmx; struct sockaddr *src, *dst; int sa_len; if (flags & NHR_COPY) { /* Copy destination if dst is non-zero */ src = rt_key(rt); dst = info->rti_info[RTAX_DST]; sa_len = src->sa_len; if (dst != NULL) { if (src->sa_len > dst->sa_len) return (ENOMEM); memcpy(dst, src, src->sa_len); info->rti_addrs |= RTA_DST; } /* Copy mask if set && dst is non-zero */ src = rt_mask(rt); dst = info->rti_info[RTAX_NETMASK]; if (src != NULL && dst != NULL) { /* * Radix stores different value in sa_len, * assume rt_mask() to have the same length * as rt_key() */ if (sa_len > dst->sa_len) return (ENOMEM); memcpy(dst, src, src->sa_len); info->rti_addrs |= RTA_NETMASK; } /* Copy gateway is set && dst is non-zero */ src = rt->rt_gateway; dst = info->rti_info[RTAX_GATEWAY]; if ((rt->rt_flags & RTF_GATEWAY) && src != NULL && dst != NULL){ if (src->sa_len > dst->sa_len) return (ENOMEM); memcpy(dst, src, src->sa_len); info->rti_addrs |= RTA_GATEWAY; } } else { info->rti_info[RTAX_DST] = rt_key(rt); info->rti_addrs |= RTA_DST; if (rt_mask(rt) != NULL) { info->rti_info[RTAX_NETMASK] = rt_mask(rt); info->rti_addrs |= RTA_NETMASK; } if (rt->rt_flags & RTF_GATEWAY) { info->rti_info[RTAX_GATEWAY] = rt->rt_gateway; info->rti_addrs |= RTA_GATEWAY; } } rmx = info->rti_rmx; if (rmx != NULL) { info->rti_mflags |= RTV_MTU; rmx->rmx_mtu = rt->rt_mtu; } info->rti_flags = rt->rt_flags; info->rti_ifp = rt->rt_ifp; info->rti_ifa = rt->rt_ifa; if (flags & NHR_REF) { /* Do 'traditional' refcouting */ if_ref(info->rti_ifp); } return (0); } /* * Lookups up route entry for @dst in RIB database for fib @fibnum. * Exports entry data to @info using rt_exportinfo(). * * if @flags contains NHR_REF, refcouting is performed on rt_ifp. * All references can be released later by calling rib_free_info() * * Returns 0 on success. * Returns ENOENT for lookup failure, ENOMEM for export failure. */ int rib_lookup_info(uint32_t fibnum, const struct sockaddr *dst, uint32_t flags, uint32_t flowid, struct rt_addrinfo *info) { struct rib_head *rh; struct radix_node *rn; struct rtentry *rt; int error; KASSERT((fibnum < rt_numfibs), ("rib_lookup_rte: bad fibnum")); rh = rt_tables_get_rnh(fibnum, dst->sa_family); if (rh == NULL) return (ENOENT); RIB_RLOCK(rh); rn = rh->rnh_matchaddr(__DECONST(void *, dst), &rh->head); if (rn != NULL && ((rn->rn_flags & RNF_ROOT) == 0)) { rt = RNTORT(rn); /* Ensure route & ifp is UP */ if (RT_LINK_IS_UP(rt->rt_ifp)) { flags = (flags & NHR_REF) | NHR_COPY; error = rt_exportinfo(rt, info, flags); RIB_RUNLOCK(rh); return (error); } } RIB_RUNLOCK(rh); return (ENOENT); } /* * Releases all references acquired by rib_lookup_info() when * called with NHR_REF flags. */ void rib_free_info(struct rt_addrinfo *info) { if_rele(info->rti_ifp); } /* * Iterates over all existing fibs in system calling * @setwa_f function prior to traversing each fib. * Calls @wa_f function for each element in current fib. * If af is not AF_UNSPEC, iterates over fibs in particular * address family. */ void rt_foreach_fib_walk(int af, rt_setwarg_t *setwa_f, rt_walktree_f_t *wa_f, void *arg) { struct rib_head *rnh; uint32_t fibnum; int i; for (fibnum = 0; fibnum < rt_numfibs; fibnum++) { /* Do we want some specific family? */ if (af != AF_UNSPEC) { rnh = rt_tables_get_rnh(fibnum, af); if (rnh == NULL) continue; if (setwa_f != NULL) setwa_f(rnh, fibnum, af, arg); RIB_WLOCK(rnh); rnh->rnh_walktree(&rnh->head, (walktree_f_t *)wa_f,arg); RIB_WUNLOCK(rnh); continue; } for (i = 1; i <= AF_MAX; i++) { rnh = rt_tables_get_rnh(fibnum, i); if (rnh == NULL) continue; if (setwa_f != NULL) setwa_f(rnh, fibnum, i, arg); RIB_WLOCK(rnh); rnh->rnh_walktree(&rnh->head, (walktree_f_t *)wa_f,arg); RIB_WUNLOCK(rnh); } } } struct rt_delinfo { struct rt_addrinfo info; struct rib_head *rnh; struct rtentry *head; }; /* * Conditionally unlinks @rn from radix tree based * on info data passed in @arg. */ static int rt_checkdelroute(struct radix_node *rn, void *arg) { struct rt_delinfo *di; struct rt_addrinfo *info; struct rtentry *rt; int error; di = (struct rt_delinfo *)arg; rt = (struct rtentry *)rn; info = &di->info; error = 0; info->rti_info[RTAX_DST] = rt_key(rt); info->rti_info[RTAX_NETMASK] = rt_mask(rt); info->rti_info[RTAX_GATEWAY] = rt->rt_gateway; rt = rt_unlinkrte(di->rnh, info, &error); if (rt == NULL) { /* Either not allowed or not matched. Skip entry */ return (0); } /* Entry was unlinked. Add to the list and return */ rt->rt_chain = di->head; di->head = rt; return (0); } /* * Iterates over all existing fibs in system. * Deletes each element for which @filter_f function returned * non-zero value. * If @af is not AF_UNSPEC, iterates over fibs in particular * address family. */ void rt_foreach_fib_walk_del(int af, rt_filter_f_t *filter_f, void *arg) { struct rib_head *rnh; struct rt_delinfo di; struct rtentry *rt; uint32_t fibnum; int i, start, end; bzero(&di, sizeof(di)); di.info.rti_filter = filter_f; di.info.rti_filterdata = arg; for (fibnum = 0; fibnum < rt_numfibs; fibnum++) { /* Do we want some specific family? */ if (af != AF_UNSPEC) { start = af; end = af; } else { start = 1; end = AF_MAX; } for (i = start; i <= end; i++) { rnh = rt_tables_get_rnh(fibnum, i); if (rnh == NULL) continue; di.rnh = rnh; RIB_WLOCK(rnh); rnh->rnh_walktree(&rnh->head, rt_checkdelroute, &di); RIB_WUNLOCK(rnh); if (di.head == NULL) continue; /* We might have something to reclaim */ while (di.head != NULL) { rt = di.head; di.head = rt->rt_chain; rt->rt_chain = NULL; /* TODO std rt -> rt_addrinfo export */ di.info.rti_info[RTAX_DST] = rt_key(rt); di.info.rti_info[RTAX_NETMASK] = rt_mask(rt); rt_notifydelete(rt, &di.info); RTFREE_LOCKED(rt); } } } } /* * Delete Routes for a Network Interface * * Called for each routing entry via the rnh->rnh_walktree() call above * to delete all route entries referencing a detaching network interface. * * Arguments: * rt pointer to rtentry * arg argument passed to rnh->rnh_walktree() - detaching interface * * Returns: * 0 successful * errno failed - reason indicated */ static int rt_ifdelroute(const struct rtentry *rt, void *arg) { struct ifnet *ifp = arg; if (rt->rt_ifp != ifp) return (0); /* * Protect (sorta) against walktree recursion problems * with cloned routes */ if ((rt->rt_flags & RTF_UP) == 0) return (0); return (1); } /* * Delete all remaining routes using this interface * Unfortuneatly the only way to do this is to slog through * the entire routing table looking for routes which point * to this interface...oh well... */ void +rt_flushifroutes_af(struct ifnet *ifp, int af) +{ + KASSERT((af >= 1 && af <= AF_MAX), ("%s: af %d not >= 1 and <= %d", + __func__, af, AF_MAX)); + + rt_foreach_fib_walk_del(af, rt_ifdelroute, ifp); +} + +void rt_flushifroutes(struct ifnet *ifp) { rt_foreach_fib_walk_del(AF_UNSPEC, rt_ifdelroute, ifp); } /* * Conditionally unlinks rtentry matching data inside @info from @rnh. * Returns unlinked, locked and referenced @rtentry on success, * Returns NULL and sets @perror to: * ESRCH - if prefix was not found, * EADDRINUSE - if trying to delete PINNED route without appropriate flag. * ENOENT - if supplied filter function returned 0 (not matched). */ static struct rtentry * rt_unlinkrte(struct rib_head *rnh, struct rt_addrinfo *info, int *perror) { struct sockaddr *dst, *netmask; struct rtentry *rt; struct radix_node *rn; dst = info->rti_info[RTAX_DST]; netmask = info->rti_info[RTAX_NETMASK]; rt = (struct rtentry *)rnh->rnh_lookup(dst, netmask, &rnh->head); if (rt == NULL) { *perror = ESRCH; return (NULL); } if ((info->rti_flags & RTF_PINNED) == 0) { /* Check if target route can be deleted */ if (rt->rt_flags & RTF_PINNED) { *perror = EADDRINUSE; return (NULL); } } if (info->rti_filter != NULL) { if (info->rti_filter(rt, info->rti_filterdata) == 0) { /* Not matched */ *perror = ENOENT; return (NULL); } /* * Filter function requested rte deletion. * Ease the caller work by filling in remaining info * from that particular entry. */ info->rti_info[RTAX_GATEWAY] = rt->rt_gateway; } /* * Remove the item from the tree and return it. * Complain if it is not there and do no more processing. */ *perror = ESRCH; #ifdef RADIX_MPATH if (rt_mpath_capable(rnh)) rn = rt_mpath_unlink(rnh, info, rt, perror); else #endif rn = rnh->rnh_deladdr(dst, netmask, &rnh->head); if (rn == NULL) return (NULL); if (rn->rn_flags & (RNF_ACTIVE | RNF_ROOT)) panic ("rtrequest delete"); rt = RNTORT(rn); RT_LOCK(rt); RT_ADDREF(rt); rt->rt_flags &= ~RTF_UP; *perror = 0; return (rt); } static void rt_notifydelete(struct rtentry *rt, struct rt_addrinfo *info) { struct ifaddr *ifa; /* * give the protocol a chance to keep things in sync. */ ifa = rt->rt_ifa; if (ifa != NULL && ifa->ifa_rtrequest != NULL) ifa->ifa_rtrequest(RTM_DELETE, rt, info); /* * One more rtentry floating around that is not * linked to the routing table. rttrash will be decremented * when RTFREE(rt) is eventually called. */ V_rttrash++; } /* * These (questionable) definitions of apparent local variables apply * to the next two functions. XXXXXX!!! */ #define dst info->rti_info[RTAX_DST] #define gateway info->rti_info[RTAX_GATEWAY] #define netmask info->rti_info[RTAX_NETMASK] #define ifaaddr info->rti_info[RTAX_IFA] #define ifpaddr info->rti_info[RTAX_IFP] #define flags info->rti_flags /* * Look up rt_addrinfo for a specific fib. Note that if rti_ifa is defined, * it will be referenced so the caller must free it. */ int rt_getifa_fib(struct rt_addrinfo *info, u_int fibnum) { struct ifaddr *ifa; int error = 0; /* * ifp may be specified by sockaddr_dl * when protocol address is ambiguous. */ if (info->rti_ifp == NULL && ifpaddr != NULL && ifpaddr->sa_family == AF_LINK && (ifa = ifa_ifwithnet(ifpaddr, 0, fibnum)) != NULL) { info->rti_ifp = ifa->ifa_ifp; ifa_free(ifa); } if (info->rti_ifa == NULL && ifaaddr != NULL) info->rti_ifa = ifa_ifwithaddr(ifaaddr); if (info->rti_ifa == NULL) { struct sockaddr *sa; sa = ifaaddr != NULL ? ifaaddr : (gateway != NULL ? gateway : dst); if (sa != NULL && info->rti_ifp != NULL) info->rti_ifa = ifaof_ifpforaddr(sa, info->rti_ifp); else if (dst != NULL && gateway != NULL) info->rti_ifa = ifa_ifwithroute(flags, dst, gateway, fibnum); else if (sa != NULL) info->rti_ifa = ifa_ifwithroute(flags, sa, sa, fibnum); } if ((ifa = info->rti_ifa) != NULL) { if (info->rti_ifp == NULL) info->rti_ifp = ifa->ifa_ifp; } else error = ENETUNREACH; return (error); } static int if_updatemtu_cb(struct radix_node *rn, void *arg) { struct rtentry *rt; struct if_mtuinfo *ifmtu; rt = (struct rtentry *)rn; ifmtu = (struct if_mtuinfo *)arg; if (rt->rt_ifp != ifmtu->ifp) return (0); if (rt->rt_mtu >= ifmtu->mtu) { /* We have to decrease mtu regardless of flags */ rt->rt_mtu = ifmtu->mtu; return (0); } /* * New MTU is bigger. Check if are allowed to alter it */ if ((rt->rt_flags & (RTF_FIXEDMTU | RTF_GATEWAY | RTF_HOST)) != 0) { /* * Skip routes with user-supplied MTU and * non-interface routes */ return (0); } /* We are safe to update route MTU */ rt->rt_mtu = ifmtu->mtu; return (0); } void rt_updatemtu(struct ifnet *ifp) { struct if_mtuinfo ifmtu; struct rib_head *rnh; int i, j; ifmtu.ifp = ifp; /* * Try to update rt_mtu for all routes using this interface * Unfortunately the only way to do this is to traverse all * routing tables in all fibs/domains. */ for (i = 1; i <= AF_MAX; i++) { ifmtu.mtu = if_getmtu_family(ifp, i); for (j = 0; j < rt_numfibs; j++) { rnh = rt_tables_get_rnh(j, i); if (rnh == NULL) continue; RIB_WLOCK(rnh); rnh->rnh_walktree(&rnh->head, if_updatemtu_cb, &ifmtu); RIB_WUNLOCK(rnh); } } } #if 0 int p_sockaddr(char *buf, int buflen, struct sockaddr *s); int rt_print(char *buf, int buflen, struct rtentry *rt); int p_sockaddr(char *buf, int buflen, struct sockaddr *s) { void *paddr = NULL; switch (s->sa_family) { case AF_INET: paddr = &((struct sockaddr_in *)s)->sin_addr; break; case AF_INET6: paddr = &((struct sockaddr_in6 *)s)->sin6_addr; break; } if (paddr == NULL) return (0); if (inet_ntop(s->sa_family, paddr, buf, buflen) == NULL) return (0); return (strlen(buf)); } int rt_print(char *buf, int buflen, struct rtentry *rt) { struct sockaddr *addr, *mask; int i = 0; addr = rt_key(rt); mask = rt_mask(rt); i = p_sockaddr(buf, buflen, addr); if (!(rt->rt_flags & RTF_HOST)) { buf[i++] = '/'; i += p_sockaddr(buf + i, buflen - i, mask); } if (rt->rt_flags & RTF_GATEWAY) { buf[i++] = '>'; i += p_sockaddr(buf + i, buflen - i, rt->rt_gateway); } return (i); } #endif #ifdef RADIX_MPATH /* * Deletes key for single-path routes, unlinks rtentry with * gateway specified in @info from multi-path routes. * * Returnes unlinked entry. In case of failure, returns NULL * and sets @perror to ESRCH. */ static struct radix_node * rt_mpath_unlink(struct rib_head *rnh, struct rt_addrinfo *info, struct rtentry *rto, int *perror) { /* * if we got multipath routes, we require users to specify * a matching RTAX_GATEWAY. */ struct rtentry *rt; // *rto = NULL; struct radix_node *rn; struct sockaddr *gw; gw = info->rti_info[RTAX_GATEWAY]; rt = rt_mpath_matchgate(rto, gw); if (rt == NULL) { *perror = ESRCH; return (NULL); } /* * this is the first entry in the chain */ if (rto == rt) { rn = rn_mpath_next((struct radix_node *)rt); /* * there is another entry, now it's active */ if (rn) { rto = RNTORT(rn); RT_LOCK(rto); rto->rt_flags |= RTF_UP; RT_UNLOCK(rto); } else if (rt->rt_flags & RTF_GATEWAY) { /* * For gateway routes, we need to * make sure that we we are deleting * the correct gateway. * rt_mpath_matchgate() does not * check the case when there is only * one route in the chain. */ if (gw && (rt->rt_gateway->sa_len != gw->sa_len || memcmp(rt->rt_gateway, gw, gw->sa_len))) { *perror = ESRCH; return (NULL); } } /* * use the normal delete code to remove * the first entry */ rn = rnh->rnh_deladdr(dst, netmask, &rnh->head); *perror = 0; return (rn); } /* * if the entry is 2nd and on up */ if (rt_mpath_deldup(rto, rt) == 0) panic ("rtrequest1: rt_mpath_deldup"); *perror = 0; rn = (struct radix_node *)rt; return (rn); } #endif #ifdef FLOWTABLE static struct rtentry * rt_flowtable_check_route(struct rib_head *rnh, struct rt_addrinfo *info) { #if defined(INET6) || defined(INET) struct radix_node *rn; #endif struct rtentry *rt0; rt0 = NULL; /* "flow-table" only supports IPv6 and IPv4 at the moment. */ switch (dst->sa_family) { #ifdef INET6 case AF_INET6: #endif #ifdef INET case AF_INET: #endif #if defined(INET6) || defined(INET) rn = rnh->rnh_matchaddr(dst, &rnh->head); if (rn && ((rn->rn_flags & RNF_ROOT) == 0)) { struct sockaddr *mask; u_char *m, *n; int len; /* * compare mask to see if the new route is * more specific than the existing one */ rt0 = RNTORT(rn); RT_LOCK(rt0); RT_ADDREF(rt0); RT_UNLOCK(rt0); /* * A host route is already present, so * leave the flow-table entries as is. */ if (rt0->rt_flags & RTF_HOST) { RTFREE(rt0); rt0 = NULL; } else if (!(flags & RTF_HOST) && netmask) { mask = rt_mask(rt0); len = mask->sa_len; m = (u_char *)mask; n = (u_char *)netmask; while (len-- > 0) { if (*n != *m) break; n++; m++; } if (len == 0 || (*n < *m)) { RTFREE(rt0); rt0 = NULL; } } } #endif/* INET6 || INET */ } return (rt0); } #endif int rtrequest1_fib(int req, struct rt_addrinfo *info, struct rtentry **ret_nrt, u_int fibnum) { int error = 0; struct rtentry *rt, *rt_old; #ifdef FLOWTABLE struct rtentry *rt0; #endif struct radix_node *rn; struct rib_head *rnh; struct ifaddr *ifa; struct sockaddr *ndst; struct sockaddr_storage mdst; KASSERT((fibnum < rt_numfibs), ("rtrequest1_fib: bad fibnum")); KASSERT((flags & RTF_RNH_LOCKED) == 0, ("rtrequest1_fib: locked")); switch (dst->sa_family) { case AF_INET6: case AF_INET: /* We support multiple FIBs. */ break; default: fibnum = RT_DEFAULT_FIB; break; } /* * Find the correct routing tree to use for this Address Family */ rnh = rt_tables_get_rnh(fibnum, dst->sa_family); if (rnh == NULL) return (EAFNOSUPPORT); /* * If we are adding a host route then we don't want to put * a netmask in the tree, nor do we want to clone it. */ if (flags & RTF_HOST) netmask = NULL; switch (req) { case RTM_DELETE: if (netmask) { rt_maskedcopy(dst, (struct sockaddr *)&mdst, netmask); dst = (struct sockaddr *)&mdst; } RIB_WLOCK(rnh); rt = rt_unlinkrte(rnh, info, &error); RIB_WUNLOCK(rnh); if (error != 0) return (error); rt_notifydelete(rt, info); /* * If the caller wants it, then it can have it, * but it's up to it to free the rtentry as we won't be * doing it. */ if (ret_nrt) { *ret_nrt = rt; RT_UNLOCK(rt); } else RTFREE_LOCKED(rt); break; case RTM_RESOLVE: /* * resolve was only used for route cloning * here for compat */ break; case RTM_ADD: if ((flags & RTF_GATEWAY) && !gateway) return (EINVAL); if (dst && gateway && (dst->sa_family != gateway->sa_family) && (gateway->sa_family != AF_UNSPEC) && (gateway->sa_family != AF_LINK)) return (EINVAL); if (info->rti_ifa == NULL) { error = rt_getifa_fib(info, fibnum); if (error) return (error); } else ifa_ref(info->rti_ifa); ifa = info->rti_ifa; rt = uma_zalloc(V_rtzone, M_NOWAIT); if (rt == NULL) { ifa_free(ifa); return (ENOBUFS); } rt->rt_flags = RTF_UP | flags; rt->rt_fibnum = fibnum; /* * Add the gateway. Possibly re-malloc-ing the storage for it. */ if ((error = rt_setgate(rt, dst, gateway)) != 0) { ifa_free(ifa); uma_zfree(V_rtzone, rt); return (error); } /* * point to the (possibly newly malloc'd) dest address. */ ndst = (struct sockaddr *)rt_key(rt); /* * make sure it contains the value we want (masked if needed). */ if (netmask) { rt_maskedcopy(dst, ndst, netmask); } else bcopy(dst, ndst, dst->sa_len); /* * We use the ifa reference returned by rt_getifa_fib(). * This moved from below so that rnh->rnh_addaddr() can * examine the ifa and ifa->ifa_ifp if it so desires. */ rt->rt_ifa = ifa; rt->rt_ifp = ifa->ifa_ifp; rt->rt_weight = 1; rt_setmetrics(info, rt); RIB_WLOCK(rnh); RT_LOCK(rt); #ifdef RADIX_MPATH /* do not permit exactly the same dst/mask/gw pair */ if (rt_mpath_capable(rnh) && rt_mpath_conflict(rnh, rt, netmask)) { RIB_WUNLOCK(rnh); ifa_free(rt->rt_ifa); R_Free(rt_key(rt)); uma_zfree(V_rtzone, rt); return (EEXIST); } #endif #ifdef FLOWTABLE rt0 = rt_flowtable_check_route(rnh, info); #endif /* FLOWTABLE */ /* XXX mtu manipulation will be done in rnh_addaddr -- itojun */ rn = rnh->rnh_addaddr(ndst, netmask, &rnh->head, rt->rt_nodes); rt_old = NULL; if (rn == NULL && (info->rti_flags & RTF_PINNED) != 0) { /* * Force removal and re-try addition * TODO: better multipath&pinned support */ struct sockaddr *info_dst = info->rti_info[RTAX_DST]; info->rti_info[RTAX_DST] = ndst; /* Do not delete existing PINNED(interface) routes */ info->rti_flags &= ~RTF_PINNED; rt_old = rt_unlinkrte(rnh, info, &error); info->rti_flags |= RTF_PINNED; info->rti_info[RTAX_DST] = info_dst; if (rt_old != NULL) rn = rnh->rnh_addaddr(ndst, netmask, &rnh->head, rt->rt_nodes); } RIB_WUNLOCK(rnh); if (rt_old != NULL) RT_UNLOCK(rt_old); /* * If it still failed to go into the tree, * then un-make it (this should be a function) */ if (rn == NULL) { ifa_free(rt->rt_ifa); R_Free(rt_key(rt)); uma_zfree(V_rtzone, rt); #ifdef FLOWTABLE if (rt0 != NULL) RTFREE(rt0); #endif return (EEXIST); } #ifdef FLOWTABLE else if (rt0 != NULL) { flowtable_route_flush(dst->sa_family, rt0); RTFREE(rt0); } #endif if (rt_old != NULL) { rt_notifydelete(rt_old, info); RTFREE(rt_old); } /* * If this protocol has something to add to this then * allow it to do that as well. */ if (ifa->ifa_rtrequest) ifa->ifa_rtrequest(req, rt, info); /* * actually return a resultant rtentry and * give the caller a single reference. */ if (ret_nrt) { *ret_nrt = rt; RT_ADDREF(rt); } RT_UNLOCK(rt); break; case RTM_CHANGE: RIB_WLOCK(rnh); error = rtrequest1_fib_change(rnh, info, ret_nrt, fibnum); RIB_WUNLOCK(rnh); break; default: error = EOPNOTSUPP; } return (error); } #undef dst #undef gateway #undef netmask #undef ifaaddr #undef ifpaddr #undef flags static int rtrequest1_fib_change(struct rib_head *rnh, struct rt_addrinfo *info, struct rtentry **ret_nrt, u_int fibnum) { struct rtentry *rt = NULL; int error = 0; int free_ifa = 0; int family, mtu; struct if_mtuinfo ifmtu; rt = (struct rtentry *)rnh->rnh_lookup(info->rti_info[RTAX_DST], info->rti_info[RTAX_NETMASK], &rnh->head); if (rt == NULL) return (ESRCH); #ifdef RADIX_MPATH /* * If we got multipath routes, * we require users to specify a matching RTAX_GATEWAY. */ if (rt_mpath_capable(rnh)) { rt = rt_mpath_matchgate(rt, info->rti_info[RTAX_GATEWAY]); if (rt == NULL) return (ESRCH); } #endif RT_LOCK(rt); rt_setmetrics(info, rt); /* * New gateway could require new ifaddr, ifp; * flags may also be different; ifp may be specified * by ll sockaddr when protocol address is ambiguous */ if (((rt->rt_flags & RTF_GATEWAY) && info->rti_info[RTAX_GATEWAY] != NULL) || info->rti_info[RTAX_IFP] != NULL || (info->rti_info[RTAX_IFA] != NULL && !sa_equal(info->rti_info[RTAX_IFA], rt->rt_ifa->ifa_addr))) { error = rt_getifa_fib(info, fibnum); if (info->rti_ifa != NULL) free_ifa = 1; if (error != 0) goto bad; } /* Check if outgoing interface has changed */ if (info->rti_ifa != NULL && info->rti_ifa != rt->rt_ifa && rt->rt_ifa != NULL && rt->rt_ifa->ifa_rtrequest != NULL) { rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt, info); ifa_free(rt->rt_ifa); } /* Update gateway address */ if (info->rti_info[RTAX_GATEWAY] != NULL) { error = rt_setgate(rt, rt_key(rt), info->rti_info[RTAX_GATEWAY]); if (error != 0) goto bad; rt->rt_flags &= ~RTF_GATEWAY; rt->rt_flags |= (RTF_GATEWAY & info->rti_flags); } if (info->rti_ifa != NULL && info->rti_ifa != rt->rt_ifa) { ifa_ref(info->rti_ifa); rt->rt_ifa = info->rti_ifa; rt->rt_ifp = info->rti_ifp; } /* Allow some flags to be toggled on change. */ rt->rt_flags &= ~RTF_FMASK; rt->rt_flags |= info->rti_flags & RTF_FMASK; if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest != NULL) rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, info); /* Alter route MTU if necessary */ if (rt->rt_ifp != NULL) { family = info->rti_info[RTAX_DST]->sa_family; mtu = if_getmtu_family(rt->rt_ifp, family); /* Set default MTU */ if (rt->rt_mtu == 0) rt->rt_mtu = mtu; if (rt->rt_mtu != mtu) { /* Check if we really need to update */ ifmtu.ifp = rt->rt_ifp; ifmtu.mtu = mtu; if_updatemtu_cb(rt->rt_nodes, &ifmtu); } } if (ret_nrt) { *ret_nrt = rt; RT_ADDREF(rt); } bad: RT_UNLOCK(rt); if (free_ifa != 0) ifa_free(info->rti_ifa); return (error); } static void rt_setmetrics(const struct rt_addrinfo *info, struct rtentry *rt) { if (info->rti_mflags & RTV_MTU) { if (info->rti_rmx->rmx_mtu != 0) { /* * MTU was explicitly provided by user. * Keep it. */ rt->rt_flags |= RTF_FIXEDMTU; } else { /* * User explicitly sets MTU to 0. * Assume rollback to default. */ rt->rt_flags &= ~RTF_FIXEDMTU; } rt->rt_mtu = info->rti_rmx->rmx_mtu; } if (info->rti_mflags & RTV_WEIGHT) rt->rt_weight = info->rti_rmx->rmx_weight; /* Kernel -> userland timebase conversion. */ if (info->rti_mflags & RTV_EXPIRE) rt->rt_expire = info->rti_rmx->rmx_expire ? info->rti_rmx->rmx_expire - time_second + time_uptime : 0; } int rt_setgate(struct rtentry *rt, struct sockaddr *dst, struct sockaddr *gate) { /* XXX dst may be overwritten, can we move this to below */ int dlen = SA_SIZE(dst), glen = SA_SIZE(gate); /* * Prepare to store the gateway in rt->rt_gateway. * Both dst and gateway are stored one after the other in the same * malloc'd chunk. If we have room, we can reuse the old buffer, * rt_gateway already points to the right place. * Otherwise, malloc a new block and update the 'dst' address. */ if (rt->rt_gateway == NULL || glen > SA_SIZE(rt->rt_gateway)) { caddr_t new; R_Malloc(new, caddr_t, dlen + glen); if (new == NULL) return ENOBUFS; /* * XXX note, we copy from *dst and not *rt_key(rt) because * rt_setgate() can be called to initialize a newly * allocated route entry, in which case rt_key(rt) == NULL * (and also rt->rt_gateway == NULL). * Free()/free() handle a NULL argument just fine. */ bcopy(dst, new, dlen); R_Free(rt_key(rt)); /* free old block, if any */ rt_key(rt) = (struct sockaddr *)new; rt->rt_gateway = (struct sockaddr *)(new + dlen); } /* * Copy the new gateway value into the memory chunk. */ bcopy(gate, rt->rt_gateway, glen); return (0); } void rt_maskedcopy(struct sockaddr *src, struct sockaddr *dst, struct sockaddr *netmask) { u_char *cp1 = (u_char *)src; u_char *cp2 = (u_char *)dst; u_char *cp3 = (u_char *)netmask; u_char *cplim = cp2 + *cp3; u_char *cplim2 = cp2 + *cp1; *cp2++ = *cp1++; *cp2++ = *cp1++; /* copies sa_len & sa_family */ cp3 += 2; if (cplim > cplim2) cplim = cplim2; while (cp2 < cplim) *cp2++ = *cp1++ & *cp3++; if (cp2 < cplim2) bzero((caddr_t)cp2, (unsigned)(cplim2 - cp2)); } /* * Set up a routing table entry, normally * for an interface. */ #define _SOCKADDR_TMPSIZE 128 /* Not too big.. kernel stack size is limited */ static inline int rtinit1(struct ifaddr *ifa, int cmd, int flags, int fibnum) { struct sockaddr *dst; struct sockaddr *netmask; struct rtentry *rt = NULL; struct rt_addrinfo info; int error = 0; int startfib, endfib; char tempbuf[_SOCKADDR_TMPSIZE]; int didwork = 0; int a_failure = 0; static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; struct rib_head *rnh; if (flags & RTF_HOST) { dst = ifa->ifa_dstaddr; netmask = NULL; } else { dst = ifa->ifa_addr; netmask = ifa->ifa_netmask; } if (dst->sa_len == 0) return(EINVAL); switch (dst->sa_family) { case AF_INET6: case AF_INET: /* We support multiple FIBs. */ break; default: fibnum = RT_DEFAULT_FIB; break; } if (fibnum == RT_ALL_FIBS) { if (V_rt_add_addr_allfibs == 0 && cmd == (int)RTM_ADD) startfib = endfib = ifa->ifa_ifp->if_fib; else { startfib = 0; endfib = rt_numfibs - 1; } } else { KASSERT((fibnum < rt_numfibs), ("rtinit1: bad fibnum")); startfib = fibnum; endfib = fibnum; } /* * If it's a delete, check that if it exists, * it's on the correct interface or we might scrub * a route to another ifa which would * be confusing at best and possibly worse. */ if (cmd == RTM_DELETE) { /* * It's a delete, so it should already exist.. * If it's a net, mask off the host bits * (Assuming we have a mask) * XXX this is kinda inet specific.. */ if (netmask != NULL) { rt_maskedcopy(dst, (struct sockaddr *)tempbuf, netmask); dst = (struct sockaddr *)tempbuf; } } /* * Now go through all the requested tables (fibs) and do the * requested action. Realistically, this will either be fib 0 * for protocols that don't do multiple tables or all the * tables for those that do. */ for ( fibnum = startfib; fibnum <= endfib; fibnum++) { if (cmd == RTM_DELETE) { struct radix_node *rn; /* * Look up an rtentry that is in the routing tree and * contains the correct info. */ rnh = rt_tables_get_rnh(fibnum, dst->sa_family); if (rnh == NULL) /* this table doesn't exist but others might */ continue; RIB_RLOCK(rnh); rn = rnh->rnh_lookup(dst, netmask, &rnh->head); #ifdef RADIX_MPATH if (rt_mpath_capable(rnh)) { if (rn == NULL) error = ESRCH; else { rt = RNTORT(rn); /* * for interface route the * rt->rt_gateway is sockaddr_intf * for cloning ARP entries, so * rt_mpath_matchgate must use the * interface address */ rt = rt_mpath_matchgate(rt, ifa->ifa_addr); if (rt == NULL) error = ESRCH; } } #endif error = (rn == NULL || (rn->rn_flags & RNF_ROOT) || RNTORT(rn)->rt_ifa != ifa); RIB_RUNLOCK(rnh); if (error) { /* this is only an error if bad on ALL tables */ continue; } } /* * Do the actual request */ bzero((caddr_t)&info, sizeof(info)); info.rti_ifa = ifa; info.rti_flags = flags | (ifa->ifa_flags & ~IFA_RTSELF) | RTF_PINNED; info.rti_info[RTAX_DST] = dst; /* * doing this for compatibility reasons */ if (cmd == RTM_ADD) info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl; else info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr; info.rti_info[RTAX_NETMASK] = netmask; error = rtrequest1_fib(cmd, &info, &rt, fibnum); if (error == 0 && rt != NULL) { /* * notify any listening routing agents of the change */ RT_LOCK(rt); #ifdef RADIX_MPATH /* * in case address alias finds the first address * e.g. ifconfig bge0 192.0.2.246/24 * e.g. ifconfig bge0 192.0.2.247/24 * the address set in the route is 192.0.2.246 * so we need to replace it with 192.0.2.247 */ if (memcmp(rt->rt_ifa->ifa_addr, ifa->ifa_addr, ifa->ifa_addr->sa_len)) { ifa_free(rt->rt_ifa); ifa_ref(ifa); rt->rt_ifp = ifa->ifa_ifp; rt->rt_ifa = ifa; } #endif /* * doing this for compatibility reasons */ if (cmd == RTM_ADD) { ((struct sockaddr_dl *)rt->rt_gateway)->sdl_type = rt->rt_ifp->if_type; ((struct sockaddr_dl *)rt->rt_gateway)->sdl_index = rt->rt_ifp->if_index; } RT_ADDREF(rt); RT_UNLOCK(rt); rt_newaddrmsg_fib(cmd, ifa, error, rt, fibnum); RT_LOCK(rt); RT_REMREF(rt); if (cmd == RTM_DELETE) { /* * If we are deleting, and we found an entry, * then it's been removed from the tree.. * now throw it away. */ RTFREE_LOCKED(rt); } else { if (cmd == RTM_ADD) { /* * We just wanted to add it.. * we don't actually need a reference. */ RT_REMREF(rt); } RT_UNLOCK(rt); } didwork = 1; } if (error) a_failure = error; } if (cmd == RTM_DELETE) { if (didwork) { error = 0; } else { /* we only give an error if it wasn't in any table */ error = ((flags & RTF_HOST) ? EHOSTUNREACH : ENETUNREACH); } } else { if (a_failure) { /* return an error if any of them failed */ error = a_failure; } } return (error); } /* * Set up a routing table entry, normally * for an interface. */ int rtinit(struct ifaddr *ifa, int cmd, int flags) { struct sockaddr *dst; int fib = RT_DEFAULT_FIB; if (flags & RTF_HOST) { dst = ifa->ifa_dstaddr; } else { dst = ifa->ifa_addr; } switch (dst->sa_family) { case AF_INET6: case AF_INET: /* We do support multiple FIBs. */ fib = RT_ALL_FIBS; break; } return (rtinit1(ifa, cmd, flags, fib)); } /* * Announce interface address arrival/withdraw * Returns 0 on success. */ int rt_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) { KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, ("unexpected cmd %d", cmd)); KASSERT(fibnum == RT_ALL_FIBS || (fibnum >= 0 && fibnum < rt_numfibs), ("%s: fib out of range 0 <=%d<%d", __func__, fibnum, rt_numfibs)); #if defined(INET) || defined(INET6) #ifdef SCTP /* * notify the SCTP stack * this will only get called when an address is added/deleted * XXX pass the ifaddr struct instead if ifa->ifa_addr... */ sctp_addr_change(ifa, cmd); #endif /* SCTP */ #endif return (rtsock_addrmsg(cmd, ifa, fibnum)); } /* * Announce route addition/removal. * Users of this function MUST validate input data BEFORE calling. * However we have to be able to handle invalid data: * if some userland app sends us "invalid" route message (invalid mask, * no dst, wrong address families, etc...) we need to pass it back * to app (and any other rtsock consumers) with rtm_errno field set to * non-zero value. * Returns 0 on success. */ int rt_routemsg(int cmd, struct ifnet *ifp, int error, struct rtentry *rt, int fibnum) { KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, ("unexpected cmd %d", cmd)); KASSERT(fibnum == RT_ALL_FIBS || (fibnum >= 0 && fibnum < rt_numfibs), ("%s: fib out of range 0 <=%d<%d", __func__, fibnum, rt_numfibs)); KASSERT(rt_key(rt) != NULL, (":%s: rt_key must be supplied", __func__)); return (rtsock_routemsg(cmd, ifp, error, rt, fibnum)); } void rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) { rt_newaddrmsg_fib(cmd, ifa, error, rt, RT_ALL_FIBS); } /* * This is called to generate messages from the routing socket * indicating a network interface has had addresses associated with it. */ void rt_newaddrmsg_fib(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt, int fibnum) { KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, ("unexpected cmd %u", cmd)); KASSERT(fibnum == RT_ALL_FIBS || (fibnum >= 0 && fibnum < rt_numfibs), ("%s: fib out of range 0 <=%d<%d", __func__, fibnum, rt_numfibs)); if (cmd == RTM_ADD) { rt_addrmsg(cmd, ifa, fibnum); if (rt != NULL) rt_routemsg(cmd, ifa->ifa_ifp, error, rt, fibnum); } else { if (rt != NULL) rt_routemsg(cmd, ifa->ifa_ifp, error, rt, fibnum); rt_addrmsg(cmd, ifa, fibnum); } } Index: projects/vnet/sys/net/route.h =================================================================== --- projects/vnet/sys/net/route.h (revision 297511) +++ projects/vnet/sys/net/route.h (revision 297512) @@ -1,465 +1,466 @@ /*- * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)route.h 8.4 (Berkeley) 1/9/95 * $FreeBSD$ */ #ifndef _NET_ROUTE_H_ #define _NET_ROUTE_H_ #include #include /* * Kernel resident routing tables. * * The routing tables are initialized when interface addresses * are set by making entries for all directly connected interfaces. */ /* * Struct route consiste of a destination address, * a route entry pointer, link-layer prepend data pointer along * with its length. */ struct route { struct rtentry *ro_rt; char *ro_prepend; uint16_t ro_plen; uint16_t ro_flags; uint16_t ro_mtu; /* saved ro_rt mtu */ uint16_t spare; struct sockaddr ro_dst; }; #define RT_L2_ME_BIT 2 /* dst L2 addr is our address */ #define RT_MAY_LOOP_BIT 3 /* dst may require loop copy */ #define RT_HAS_HEADER_BIT 4 /* mbuf already have its header prepended */ #define RT_CACHING_CONTEXT 0x1 /* XXX: not used anywhere */ #define RT_NORTREF 0x2 /* doesn't hold reference on ro_rt */ #define RT_L2_ME (1 << RT_L2_ME_BIT) /* 0x0004 */ #define RT_MAY_LOOP (1 << RT_MAY_LOOP_BIT) /* 0x0008 */ #define RT_HAS_HEADER (1 << RT_HAS_HEADER_BIT) /* 0x0010 */ #define RT_REJECT 0x0020 /* Destination is reject */ #define RT_BLACKHOLE 0x0040 /* Destination is blackhole */ #define RT_HAS_GW 0x0080 /* Destination has GW */ struct rt_metrics { u_long rmx_locks; /* Kernel must leave these values alone */ u_long rmx_mtu; /* MTU for this path */ u_long rmx_hopcount; /* max hops expected */ u_long rmx_expire; /* lifetime for route, e.g. redirect */ u_long rmx_recvpipe; /* inbound delay-bandwidth product */ u_long rmx_sendpipe; /* outbound delay-bandwidth product */ u_long rmx_ssthresh; /* outbound gateway buffer limit */ u_long rmx_rtt; /* estimated round trip time */ u_long rmx_rttvar; /* estimated rtt variance */ u_long rmx_pksent; /* packets sent using this route */ u_long rmx_weight; /* route weight */ u_long rmx_filler[3]; /* will be used for T/TCP later */ }; /* * rmx_rtt and rmx_rttvar are stored as microseconds; * RTTTOPRHZ(rtt) converts to a value suitable for use * by a protocol slowtimo counter. */ #define RTM_RTTUNIT 1000000 /* units for rtt, rttvar, as units per sec */ #define RTTTOPRHZ(r) ((r) / (RTM_RTTUNIT / PR_SLOWHZ)) /* lle state is exported in rmx_state rt_metrics field */ #define rmx_state rmx_weight #define RT_DEFAULT_FIB 0 /* Explicitly mark fib=0 restricted cases */ #define RT_ALL_FIBS -1 /* Announce event for every fib */ #ifdef _KERNEL extern u_int rt_numfibs; /* number of usable routing tables */ VNET_DECLARE(u_int, rt_add_addr_allfibs); /* Announce interfaces to all fibs */ #define V_rt_add_addr_allfibs VNET(rt_add_addr_allfibs) #endif /* * We distinguish between routes to hosts and routes to networks, * preferring the former if available. For each route we infer * the interface to use from the gateway address supplied when * the route was entered. Routes that forward packets through * gateways are marked so that the output routines know to address the * gateway rather than the ultimate destination. */ #ifndef RNF_NORMAL #include #ifdef RADIX_MPATH #include #endif #endif #if defined(_KERNEL) || defined(_WANT_RTENTRY) struct rtentry { struct radix_node rt_nodes[2]; /* tree glue, and other values */ /* * XXX struct rtentry must begin with a struct radix_node (or two!) * because the code does some casts of a 'struct radix_node *' * to a 'struct rtentry *' */ #define rt_key(r) (*((struct sockaddr **)(&(r)->rt_nodes->rn_key))) #define rt_mask(r) (*((struct sockaddr **)(&(r)->rt_nodes->rn_mask))) struct sockaddr *rt_gateway; /* value */ struct ifnet *rt_ifp; /* the answer: interface to use */ struct ifaddr *rt_ifa; /* the answer: interface address to use */ int rt_flags; /* up/down?, host/net */ int rt_refcnt; /* # held references */ u_int rt_fibnum; /* which FIB */ u_long rt_mtu; /* MTU for this path */ u_long rt_weight; /* absolute weight */ u_long rt_expire; /* lifetime for route, e.g. redirect */ #define rt_endzero rt_pksent counter_u64_t rt_pksent; /* packets sent using this route */ struct mtx rt_mtx; /* mutex for routing entry */ struct rtentry *rt_chain; /* pointer to next rtentry to delete */ }; #endif /* _KERNEL || _WANT_RTENTRY */ #define RTF_UP 0x1 /* route usable */ #define RTF_GATEWAY 0x2 /* destination is a gateway */ #define RTF_HOST 0x4 /* host entry (net otherwise) */ #define RTF_REJECT 0x8 /* host or net unreachable */ #define RTF_DYNAMIC 0x10 /* created dynamically (by redirect) */ #define RTF_MODIFIED 0x20 /* modified dynamically (by redirect) */ #define RTF_DONE 0x40 /* message confirmed */ /* 0x80 unused, was RTF_DELCLONE */ /* 0x100 unused, was RTF_CLONING */ #define RTF_XRESOLVE 0x200 /* external daemon resolves name */ #define RTF_LLINFO 0x400 /* DEPRECATED - exists ONLY for backward compatibility */ #define RTF_LLDATA 0x400 /* used by apps to add/del L2 entries */ #define RTF_STATIC 0x800 /* manually added */ #define RTF_BLACKHOLE 0x1000 /* just discard pkts (during updates) */ #define RTF_PROTO2 0x4000 /* protocol specific routing flag */ #define RTF_PROTO1 0x8000 /* protocol specific routing flag */ /* 0x10000 unused, was RTF_PRCLONING */ /* 0x20000 unused, was RTF_WASCLONED */ #define RTF_PROTO3 0x40000 /* protocol specific routing flag */ #define RTF_FIXEDMTU 0x80000 /* MTU was explicitly specified */ #define RTF_PINNED 0x100000 /* route is immutable */ #define RTF_LOCAL 0x200000 /* route represents a local address */ #define RTF_BROADCAST 0x400000 /* route represents a bcast address */ #define RTF_MULTICAST 0x800000 /* route represents a mcast address */ /* 0x8000000 and up unassigned */ #define RTF_STICKY 0x10000000 /* always route dst->src */ #define RTF_RNH_LOCKED 0x40000000 /* unused */ #define RTF_GWFLAG_COMPAT 0x80000000 /* a compatibility bit for interacting with existing routing apps */ /* Mask of RTF flags that are allowed to be modified by RTM_CHANGE. */ #define RTF_FMASK \ (RTF_PROTO1 | RTF_PROTO2 | RTF_PROTO3 | RTF_BLACKHOLE | \ RTF_REJECT | RTF_STATIC | RTF_STICKY) /* * fib_ nexthop API flags. */ /* Consumer-visible nexthop info flags */ #define NHF_REJECT 0x0010 /* RTF_REJECT */ #define NHF_BLACKHOLE 0x0020 /* RTF_BLACKHOLE */ #define NHF_REDIRECT 0x0040 /* RTF_DYNAMIC|RTF_MODIFIED */ #define NHF_DEFAULT 0x0080 /* Default route */ #define NHF_BROADCAST 0x0100 /* RTF_BROADCAST */ #define NHF_GATEWAY 0x0200 /* RTF_GATEWAY */ /* Nexthop request flags */ #define NHR_IFAIF 0x01 /* Return ifa_ifp interface */ #define NHR_REF 0x02 /* For future use */ /* Control plane route request flags */ #define NHR_COPY 0x100 /* Copy rte data */ #ifdef _KERNEL /* rte<>ro_flags translation */ static inline void rt_update_ro_flags(struct route *ro) { int rt_flags = ro->ro_rt->rt_flags; ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); ro->ro_flags |= (rt_flags & RTF_REJECT) ? RT_REJECT : 0; ro->ro_flags |= (rt_flags & RTF_BLACKHOLE) ? RT_BLACKHOLE : 0; ro->ro_flags |= (rt_flags & RTF_GATEWAY) ? RT_HAS_GW : 0; } #endif /* * Routing statistics. */ struct rtstat { short rts_badredirect; /* bogus redirect calls */ short rts_dynamic; /* routes created by redirects */ short rts_newgateway; /* routes modified by redirects */ short rts_unreach; /* lookups which failed */ short rts_wildcard; /* lookups satisfied by a wildcard */ }; /* * Structures for routing messages. */ struct rt_msghdr { u_short rtm_msglen; /* to skip over non-understood messages */ u_char rtm_version; /* future binary compatibility */ u_char rtm_type; /* message type */ u_short rtm_index; /* index for associated ifp */ int rtm_flags; /* flags, incl. kern & message, e.g. DONE */ int rtm_addrs; /* bitmask identifying sockaddrs in msg */ pid_t rtm_pid; /* identify sender */ int rtm_seq; /* for sender to identify action */ int rtm_errno; /* why failed */ int rtm_fmask; /* bitmask used in RTM_CHANGE message */ u_long rtm_inits; /* which metrics we are initializing */ struct rt_metrics rtm_rmx; /* metrics themselves */ }; #define RTM_VERSION 5 /* Up the ante and ignore older versions */ /* * Message types. */ #define RTM_ADD 0x1 /* Add Route */ #define RTM_DELETE 0x2 /* Delete Route */ #define RTM_CHANGE 0x3 /* Change Metrics or flags */ #define RTM_GET 0x4 /* Report Metrics */ #define RTM_LOSING 0x5 /* Kernel Suspects Partitioning */ #define RTM_REDIRECT 0x6 /* Told to use different route */ #define RTM_MISS 0x7 /* Lookup failed on this address */ #define RTM_LOCK 0x8 /* fix specified metrics */ /* 0x9 */ /* 0xa */ #define RTM_RESOLVE 0xb /* req to resolve dst to LL addr */ #define RTM_NEWADDR 0xc /* address being added to iface */ #define RTM_DELADDR 0xd /* address being removed from iface */ #define RTM_IFINFO 0xe /* iface going up/down etc. */ #define RTM_NEWMADDR 0xf /* mcast group membership being added to if */ #define RTM_DELMADDR 0x10 /* mcast group membership being deleted */ #define RTM_IFANNOUNCE 0x11 /* iface arrival/departure */ #define RTM_IEEE80211 0x12 /* IEEE80211 wireless event */ /* * Bitmask values for rtm_inits and rmx_locks. */ #define RTV_MTU 0x1 /* init or lock _mtu */ #define RTV_HOPCOUNT 0x2 /* init or lock _hopcount */ #define RTV_EXPIRE 0x4 /* init or lock _expire */ #define RTV_RPIPE 0x8 /* init or lock _recvpipe */ #define RTV_SPIPE 0x10 /* init or lock _sendpipe */ #define RTV_SSTHRESH 0x20 /* init or lock _ssthresh */ #define RTV_RTT 0x40 /* init or lock _rtt */ #define RTV_RTTVAR 0x80 /* init or lock _rttvar */ #define RTV_WEIGHT 0x100 /* init or lock _weight */ /* * Bitmask values for rtm_addrs. */ #define RTA_DST 0x1 /* destination sockaddr present */ #define RTA_GATEWAY 0x2 /* gateway sockaddr present */ #define RTA_NETMASK 0x4 /* netmask sockaddr present */ #define RTA_GENMASK 0x8 /* cloning mask sockaddr present */ #define RTA_IFP 0x10 /* interface name sockaddr present */ #define RTA_IFA 0x20 /* interface addr sockaddr present */ #define RTA_AUTHOR 0x40 /* sockaddr for author of redirect */ #define RTA_BRD 0x80 /* for NEWADDR, broadcast or p-p dest addr */ /* * Index offsets for sockaddr array for alternate internal encoding. */ #define RTAX_DST 0 /* destination sockaddr present */ #define RTAX_GATEWAY 1 /* gateway sockaddr present */ #define RTAX_NETMASK 2 /* netmask sockaddr present */ #define RTAX_GENMASK 3 /* cloning mask sockaddr present */ #define RTAX_IFP 4 /* interface name sockaddr present */ #define RTAX_IFA 5 /* interface addr sockaddr present */ #define RTAX_AUTHOR 6 /* sockaddr for author of redirect */ #define RTAX_BRD 7 /* for NEWADDR, broadcast or p-p dest addr */ #define RTAX_MAX 8 /* size of array to allocate */ typedef int rt_filter_f_t(const struct rtentry *, void *); struct rt_addrinfo { int rti_addrs; /* Route RTF_ flags */ int rti_flags; /* Route RTF_ flags */ struct sockaddr *rti_info[RTAX_MAX]; /* Sockaddr data */ struct ifaddr *rti_ifa; /* value of rt_ifa addr */ struct ifnet *rti_ifp; /* route interface */ rt_filter_f_t *rti_filter; /* filter function */ void *rti_filterdata; /* filter paramenters */ u_long rti_mflags; /* metrics RTV_ flags */ u_long rti_spare; /* Will be used for fib */ struct rt_metrics *rti_rmx; /* Pointer to route metrics */ }; /* * This macro returns the size of a struct sockaddr when passed * through a routing socket. Basically we round up sa_len to * a multiple of sizeof(long), with a minimum of sizeof(long). * The check for a NULL pointer is just a convenience, probably never used. * The case sa_len == 0 should only apply to empty structures. */ #define SA_SIZE(sa) \ ( (!(sa) || ((struct sockaddr *)(sa))->sa_len == 0) ? \ sizeof(long) : \ 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(long) - 1) ) ) #define sa_equal(a, b) ( \ (((const struct sockaddr *)(a))->sa_len == ((const struct sockaddr *)(b))->sa_len) && \ (bcmp((a), (b), ((const struct sockaddr *)(b))->sa_len) == 0)) #ifdef _KERNEL #define RT_LINK_IS_UP(ifp) (!((ifp)->if_capabilities & IFCAP_LINKSTATE) \ || (ifp)->if_link_state == LINK_STATE_UP) #define RT_LOCK_INIT(_rt) \ mtx_init(&(_rt)->rt_mtx, "rtentry", NULL, MTX_DEF | MTX_DUPOK) #define RT_LOCK(_rt) mtx_lock(&(_rt)->rt_mtx) #define RT_UNLOCK(_rt) mtx_unlock(&(_rt)->rt_mtx) #define RT_LOCK_DESTROY(_rt) mtx_destroy(&(_rt)->rt_mtx) #define RT_LOCK_ASSERT(_rt) mtx_assert(&(_rt)->rt_mtx, MA_OWNED) #define RT_UNLOCK_COND(_rt) do { \ if (mtx_owned(&(_rt)->rt_mtx)) \ mtx_unlock(&(_rt)->rt_mtx); \ } while (0) #define RT_ADDREF(_rt) do { \ RT_LOCK_ASSERT(_rt); \ KASSERT((_rt)->rt_refcnt >= 0, \ ("negative refcnt %d", (_rt)->rt_refcnt)); \ (_rt)->rt_refcnt++; \ } while (0) #define RT_REMREF(_rt) do { \ RT_LOCK_ASSERT(_rt); \ KASSERT((_rt)->rt_refcnt > 0, \ ("bogus refcnt %d", (_rt)->rt_refcnt)); \ (_rt)->rt_refcnt--; \ } while (0) #define RTFREE_LOCKED(_rt) do { \ if ((_rt)->rt_refcnt <= 1) \ rtfree(_rt); \ else { \ RT_REMREF(_rt); \ RT_UNLOCK(_rt); \ } \ /* guard against invalid refs */ \ _rt = 0; \ } while (0) #define RTFREE(_rt) do { \ RT_LOCK(_rt); \ RTFREE_LOCKED(_rt); \ } while (0) #define RO_RTFREE(_ro) do { \ if ((_ro)->ro_rt) { \ if ((_ro)->ro_flags & RT_NORTREF) { \ (_ro)->ro_flags &= ~RT_NORTREF; \ (_ro)->ro_rt = NULL; \ } else { \ RT_LOCK((_ro)->ro_rt); \ RTFREE_LOCKED((_ro)->ro_rt); \ } \ } \ } while (0) struct ifmultiaddr; struct rib_head; void rt_ieee80211msg(struct ifnet *, int, void *, size_t); void rt_ifannouncemsg(struct ifnet *, int); void rt_ifmsg(struct ifnet *); void rt_missmsg(int, struct rt_addrinfo *, int, int); void rt_missmsg_fib(int, struct rt_addrinfo *, int, int, int); void rt_newaddrmsg(int, struct ifaddr *, int, struct rtentry *); void rt_newaddrmsg_fib(int, struct ifaddr *, int, struct rtentry *, int); int rt_addrmsg(int, struct ifaddr *, int); int rt_routemsg(int, struct ifnet *ifp, int, struct rtentry *, int); void rt_newmaddrmsg(int, struct ifmultiaddr *); int rt_setgate(struct rtentry *, struct sockaddr *, struct sockaddr *); void rt_maskedcopy(struct sockaddr *, struct sockaddr *, struct sockaddr *); struct rib_head *rt_table_init(int); void rt_table_destroy(struct rib_head *); int rtsock_addrmsg(int, struct ifaddr *, int); int rtsock_routemsg(int, struct ifnet *ifp, int, struct rtentry *, int); /* * Note the following locking behavior: * * rtalloc1() returns a locked rtentry * * rtfree() and RTFREE_LOCKED() require a locked rtentry * * RTFREE() uses an unlocked entry. */ void rtfree(struct rtentry *); void rt_updatemtu(struct ifnet *); typedef int rt_walktree_f_t(struct rtentry *, void *); typedef void rt_setwarg_t(struct rib_head *, uint32_t, int, void *); void rt_foreach_fib_walk(int af, rt_setwarg_t *, rt_walktree_f_t *, void *); void rt_foreach_fib_walk_del(int af, rt_filter_f_t *filter_f, void *arg); +void rt_flushifroutes_af(struct ifnet *, int); void rt_flushifroutes(struct ifnet *ifp); /* XXX MRT COMPAT VERSIONS THAT SET UNIVERSE to 0 */ /* Thes are used by old code not yet converted to use multiple FIBS */ struct rtentry *rtalloc1(struct sockaddr *, int, u_long); int rtinit(struct ifaddr *, int, int); /* XXX MRT NEW VERSIONS THAT USE FIBs * For now the protocol indepedent versions are the same as the AF_INET ones * but this will change.. */ int rt_getifa_fib(struct rt_addrinfo *, u_int fibnum); void rtalloc_ign_fib(struct route *ro, u_long ignflags, u_int fibnum); struct rtentry *rtalloc1_fib(struct sockaddr *, int, u_long, u_int); int rtioctl_fib(u_long, caddr_t, u_int); void rtredirect_fib(struct sockaddr *, struct sockaddr *, struct sockaddr *, int, struct sockaddr *, u_int); int rtrequest_fib(int, struct sockaddr *, struct sockaddr *, struct sockaddr *, int, struct rtentry **, u_int); int rtrequest1_fib(int, struct rt_addrinfo *, struct rtentry **, u_int); int rib_lookup_info(uint32_t, const struct sockaddr *, uint32_t, uint32_t, struct rt_addrinfo *); void rib_free_info(struct rt_addrinfo *info); #endif #endif Index: projects/vnet/sys/net/vnet.c =================================================================== --- projects/vnet/sys/net/vnet.c (revision 297511) +++ projects/vnet/sys/net/vnet.c (revision 297512) @@ -1,773 +1,797 @@ /*- * Copyright (c) 2004-2009 University of Zagreb * Copyright (c) 2006-2009 FreeBSD Foundation * All rights reserved. * * This software was developed by the University of Zagreb and the * FreeBSD Foundation under sponsorship by the Stichting NLnet and the * FreeBSD Foundation. * * Copyright (c) 2009 Jeffrey Roberson * Copyright (c) 2009 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_kdb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #include #endif #include #include #include /*- * This file implements core functions for virtual network stacks: * * - Virtual network stack management functions. * * - Virtual network stack memory allocator, which virtualizes global * variables in the network stack * * - Virtualized SYSINIT's/SYSUNINIT's, which allow network stack subsystems * to register startup/shutdown events to be run for each virtual network * stack instance. */ FEATURE(vimage, "VIMAGE kernel virtualization"); static MALLOC_DEFINE(M_VNET, "vnet", "network stack control block"); /* * The virtual network stack list has two read-write locks, one sleepable and * the other not, so that the list can be stablized and walked in a variety * of network stack contexts. Both must be acquired exclusively to modify * the list, but a read lock of either lock is sufficient to walk the list. */ struct rwlock vnet_rwlock; struct sx vnet_sxlock; #define VNET_LIST_WLOCK() do { \ sx_xlock(&vnet_sxlock); \ rw_wlock(&vnet_rwlock); \ } while (0) #define VNET_LIST_WUNLOCK() do { \ rw_wunlock(&vnet_rwlock); \ sx_xunlock(&vnet_sxlock); \ } while (0) struct vnet_list_head vnet_head; struct vnet *vnet0; /* * The virtual network stack allocator provides storage for virtualized * global variables. These variables are defined/declared using the * VNET_DEFINE()/VNET_DECLARE() macros, which place them in the 'set_vnet' * linker set. The details of the implementation are somewhat subtle, but * allow the majority of most network subsystems to maintain * virtualization-agnostic. * * The virtual network stack allocator handles variables in the base kernel * vs. modules in similar but different ways. In both cases, virtualized * global variables are marked as such by being declared to be part of the * vnet linker set. These "master" copies of global variables serve two * functions: * * (1) They contain static initialization or "default" values for global * variables which will be propagated to each virtual network stack * instance when created. As with normal global variables, they default * to zero-filled. * * (2) They act as unique global names by which the variable can be referred * to, regardless of network stack instance. The single global symbol * will be used to calculate the location of a per-virtual instance * variable at run-time. * * Each virtual network stack instance has a complete copy of each * virtualized global variable, stored in a malloc'd block of memory * referred to by vnet->vnet_data_mem. Critical to the design is that each * per-instance memory block is laid out identically to the master block so * that the offset of each global variable is the same across all blocks. To * optimize run-time access, a precalculated 'base' address, * vnet->vnet_data_base, is stored in each vnet, and is the amount that can * be added to the address of a 'master' instance of a variable to get to the * per-vnet instance. * * Virtualized global variables are handled in a similar manner, but as each * module has its own 'set_vnet' linker set, and we want to keep all * virtualized globals togther, we reserve space in the kernel's linker set * for potential module variables using a per-vnet character array, * 'modspace'. The virtual network stack allocator maintains a free list to * track what space in the array is free (all, initially) and as modules are * linked, allocates portions of the space to specific globals. The kernel * module linker queries the virtual network stack allocator and will * bind references of the global to the location during linking. It also * calls into the virtual network stack allocator, once the memory is * initialized, in order to propagate the new static initializations to all * existing virtual network stack instances so that the soon-to-be executing * module will find every network stack instance with proper default values. */ /* * Number of bytes of data in the 'set_vnet' linker set, and hence the total * size of all kernel virtualized global variables, and the malloc(9) type * that will be used to allocate it. */ #define VNET_BYTES (VNET_STOP - VNET_START) static MALLOC_DEFINE(M_VNET_DATA, "vnet_data", "VNET data"); /* * VNET_MODMIN is the minimum number of bytes we will reserve for the sum of * global variables across all loaded modules. As this actually sizes an * array declared as a virtualized global variable in the kernel itself, and * we want the virtualized global variable space to be page-sized, we may * have more space than that in practice. */ #define VNET_MODMIN 8192 #define VNET_SIZE roundup2(VNET_BYTES, PAGE_SIZE) /* * Space to store virtualized global variables from loadable kernel modules, * and the free list to manage it. */ static VNET_DEFINE(char, modspace[VNET_MODMIN]); /* * Global lists of subsystem constructor and destructors for vnets. They are * registered via VNET_SYSINIT() and VNET_SYSUNINIT(). Both lists are * protected by the vnet_sysinit_sxlock global lock. */ static TAILQ_HEAD(vnet_sysinit_head, vnet_sysinit) vnet_constructors = TAILQ_HEAD_INITIALIZER(vnet_constructors); static TAILQ_HEAD(vnet_sysuninit_head, vnet_sysinit) vnet_destructors = TAILQ_HEAD_INITIALIZER(vnet_destructors); struct sx vnet_sysinit_sxlock; #define VNET_SYSINIT_WLOCK() sx_xlock(&vnet_sysinit_sxlock); #define VNET_SYSINIT_WUNLOCK() sx_xunlock(&vnet_sysinit_sxlock); #define VNET_SYSINIT_RLOCK() sx_slock(&vnet_sysinit_sxlock); #define VNET_SYSINIT_RUNLOCK() sx_sunlock(&vnet_sysinit_sxlock); struct vnet_data_free { uintptr_t vnd_start; int vnd_len; TAILQ_ENTRY(vnet_data_free) vnd_link; }; static MALLOC_DEFINE(M_VNET_DATA_FREE, "vnet_data_free", "VNET resource accounting"); static TAILQ_HEAD(, vnet_data_free) vnet_data_free_head = TAILQ_HEAD_INITIALIZER(vnet_data_free_head); static struct sx vnet_data_free_lock; SDT_PROVIDER_DEFINE(vnet); SDT_PROBE_DEFINE1(vnet, functions, vnet_alloc, entry, "int"); SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, alloc, "int", "struct vnet *"); SDT_PROBE_DEFINE2(vnet, functions, vnet_alloc, return, "int", "struct vnet *"); SDT_PROBE_DEFINE2(vnet, functions, vnet_destroy, entry, "int", "struct vnet *"); SDT_PROBE_DEFINE1(vnet, functions, vnet_destroy, return, "int"); #ifdef DDB static void db_show_vnet_print_vs(struct vnet_sysinit *, int); #endif /* * Allocate a virtual network stack. */ struct vnet * vnet_alloc(void) { struct vnet *vnet; SDT_PROBE1(vnet, functions, vnet_alloc, entry, __LINE__); vnet = malloc(sizeof(struct vnet), M_VNET, M_WAITOK | M_ZERO); vnet->vnet_magic_n = VNET_MAGIC_N; + vnet->vnet_state = VNET_STATE_STARTING; SDT_PROBE2(vnet, functions, vnet_alloc, alloc, __LINE__, vnet); /* * Allocate storage for virtualized global variables and copy in * initial values form our 'master' copy. */ vnet->vnet_data_mem = malloc(VNET_SIZE, M_VNET_DATA, M_WAITOK); memcpy(vnet->vnet_data_mem, (void *)VNET_START, VNET_BYTES); /* * All use of vnet-specific data will immediately subtract VNET_START * from the base memory pointer, so pre-calculate that now to avoid * it on each use. */ vnet->vnet_data_base = (uintptr_t)vnet->vnet_data_mem - VNET_START; /* Initialize / attach vnet module instances. */ CURVNET_SET_QUIET(vnet); vnet_sysinit(); CURVNET_RESTORE(); VNET_LIST_WLOCK(); + vnet->vnet_state = VNET_STATE_ACTIVE; LIST_INSERT_HEAD(&vnet_head, vnet, vnet_le); VNET_LIST_WUNLOCK(); SDT_PROBE2(vnet, functions, vnet_alloc, return, __LINE__, vnet); return (vnet); } /* * Destroy a virtual network stack. */ void vnet_destroy(struct vnet *vnet) { SDT_PROBE2(vnet, functions, vnet_destroy, entry, __LINE__, vnet); KASSERT(vnet->vnet_sockcnt == 0, ("%s: vnet still has sockets", __func__)); VNET_LIST_WLOCK(); + vnet->vnet_state = VNET_STATE_DYING; LIST_REMOVE(vnet, vnet_le); VNET_LIST_WUNLOCK(); CURVNET_SET_QUIET(vnet); vnet_sysuninit(); CURVNET_RESTORE(); /* * Release storage for the virtual network stack instance. */ free(vnet->vnet_data_mem, M_VNET_DATA); vnet->vnet_data_mem = NULL; vnet->vnet_data_base = 0; vnet->vnet_magic_n = 0xdeadbeef; free(vnet, M_VNET); SDT_PROBE1(vnet, functions, vnet_destroy, return, __LINE__); } /* + * Cloned interfaces have become such a layer violation that they need + * special treatmeant. They need to go very first and they need to be able + * to clean themselves up entirely and not wait for the stack to shutdown as + * we if_free() them. We would like to split the cleanup of them up as well + * but in a non-VNET context a ifconfig foo0 destroy still has t work as well. + * This MUST be the only SYSUNINIT on SI_SUB_PSEUDO_DONE/SI_ORDER_FIRST! + */ +static void +vnet_uninit_after_pseudo(const void *unused __unused) +{ + + curvnet->vnet_state = VNET_STATE_DYING_AFTER_PSEUDO; +} +VNET_SYSUNINIT(vnet_if_uninit_after_pseudo, SI_SUB_PSEUDO_DONE, SI_ORDER_FIRST, + vnet_uninit_after_pseudo, NULL); + +/* * Boot time initialization and allocation of virtual network stacks. */ static void vnet_init_prelink(void *arg) { rw_init(&vnet_rwlock, "vnet_rwlock"); sx_init(&vnet_sxlock, "vnet_sxlock"); sx_init(&vnet_sysinit_sxlock, "vnet_sysinit_sxlock"); LIST_INIT(&vnet_head); } SYSINIT(vnet_init_prelink, SI_SUB_VNET_PRELINK, SI_ORDER_FIRST, vnet_init_prelink, NULL); static void vnet0_init(void *arg) { /* Warn people before take off - in case we crash early. */ printf("WARNING: VIMAGE (virtualized network stack) is a highly " "experimental feature.\n"); /* * We MUST clear curvnet in vi_init_done() before going SMP, * otherwise CURVNET_SET() macros would scream about unnecessary * curvnet recursions. */ curvnet = prison0.pr_vnet = vnet0 = vnet_alloc(); } SYSINIT(vnet0_init, SI_SUB_VNET, SI_ORDER_FIRST, vnet0_init, NULL); static void vnet_init_done(void *unused) { curvnet = NULL; } SYSINIT(vnet_init_done, SI_SUB_VNET_DONE, SI_ORDER_FIRST, vnet_init_done, NULL); /* * Once on boot, initialize the modspace freelist to entirely cover modspace. */ static void vnet_data_startup(void *dummy __unused) { struct vnet_data_free *df; df = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); df->vnd_start = (uintptr_t)&VNET_NAME(modspace); df->vnd_len = VNET_MODMIN; TAILQ_INSERT_HEAD(&vnet_data_free_head, df, vnd_link); sx_init(&vnet_data_free_lock, "vnet_data alloc lock"); } SYSINIT(vnet_data, SI_SUB_KLD, SI_ORDER_FIRST, vnet_data_startup, 0); /* * When a module is loaded and requires storage for a virtualized global * variable, allocate space from the modspace free list. This interface * should be used only by the kernel linker. */ void * vnet_data_alloc(int size) { struct vnet_data_free *df; void *s; s = NULL; size = roundup2(size, sizeof(void *)); sx_xlock(&vnet_data_free_lock); TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { if (df->vnd_len < size) continue; if (df->vnd_len == size) { s = (void *)df->vnd_start; TAILQ_REMOVE(&vnet_data_free_head, df, vnd_link); free(df, M_VNET_DATA_FREE); break; } s = (void *)df->vnd_start; df->vnd_len -= size; df->vnd_start = df->vnd_start + size; break; } sx_xunlock(&vnet_data_free_lock); return (s); } /* * Free space for a virtualized global variable on module unload. */ void vnet_data_free(void *start_arg, int size) { struct vnet_data_free *df; struct vnet_data_free *dn; uintptr_t start; uintptr_t end; size = roundup2(size, sizeof(void *)); start = (uintptr_t)start_arg; end = start + size; /* * Free a region of space and merge it with as many neighbors as * possible. Keeping the list sorted simplifies this operation. */ sx_xlock(&vnet_data_free_lock); TAILQ_FOREACH(df, &vnet_data_free_head, vnd_link) { if (df->vnd_start > end) break; /* * If we expand at the end of an entry we may have to merge * it with the one following it as well. */ if (df->vnd_start + df->vnd_len == start) { df->vnd_len += size; dn = TAILQ_NEXT(df, vnd_link); if (df->vnd_start + df->vnd_len == dn->vnd_start) { df->vnd_len += dn->vnd_len; TAILQ_REMOVE(&vnet_data_free_head, dn, vnd_link); free(dn, M_VNET_DATA_FREE); } sx_xunlock(&vnet_data_free_lock); return; } if (df->vnd_start == end) { df->vnd_start = start; df->vnd_len += size; sx_xunlock(&vnet_data_free_lock); return; } } dn = malloc(sizeof(*df), M_VNET_DATA_FREE, M_WAITOK | M_ZERO); dn->vnd_start = start; dn->vnd_len = size; if (df) TAILQ_INSERT_BEFORE(df, dn, vnd_link); else TAILQ_INSERT_TAIL(&vnet_data_free_head, dn, vnd_link); sx_xunlock(&vnet_data_free_lock); } /* * When a new virtualized global variable has been allocated, propagate its * initial value to each already-allocated virtual network stack instance. */ void vnet_data_copy(void *start, int size) { struct vnet *vnet; VNET_LIST_RLOCK(); LIST_FOREACH(vnet, &vnet_head, vnet_le) memcpy((void *)((uintptr_t)vnet->vnet_data_base + (uintptr_t)start), start, size); VNET_LIST_RUNLOCK(); } /* * Support for special SYSINIT handlers registered via VNET_SYSINIT() * and VNET_SYSUNINIT(). */ void vnet_register_sysinit(void *arg) { struct vnet_sysinit *vs, *vs2; struct vnet *vnet; vs = arg; KASSERT(vs->subsystem > SI_SUB_VNET, ("vnet sysinit too early")); /* Add the constructor to the global list of vnet constructors. */ VNET_SYSINIT_WLOCK(); TAILQ_FOREACH(vs2, &vnet_constructors, link) { if (vs2->subsystem > vs->subsystem) break; if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) break; } if (vs2 != NULL) TAILQ_INSERT_BEFORE(vs2, vs, link); else TAILQ_INSERT_TAIL(&vnet_constructors, vs, link); /* * Invoke the constructor on all the existing vnets when it is * registered. */ VNET_FOREACH(vnet) { CURVNET_SET_QUIET(vnet); vs->func(vs->arg); CURVNET_RESTORE(); } VNET_SYSINIT_WUNLOCK(); } void vnet_deregister_sysinit(void *arg) { struct vnet_sysinit *vs; vs = arg; /* Remove the constructor from the global list of vnet constructors. */ VNET_SYSINIT_WLOCK(); TAILQ_REMOVE(&vnet_constructors, vs, link); VNET_SYSINIT_WUNLOCK(); } void vnet_register_sysuninit(void *arg) { struct vnet_sysinit *vs, *vs2; vs = arg; /* Add the destructor to the global list of vnet destructors. */ VNET_SYSINIT_WLOCK(); TAILQ_FOREACH(vs2, &vnet_destructors, link) { if (vs2->subsystem > vs->subsystem) break; if (vs2->subsystem == vs->subsystem && vs2->order > vs->order) break; } if (vs2 != NULL) TAILQ_INSERT_BEFORE(vs2, vs, link); else TAILQ_INSERT_TAIL(&vnet_destructors, vs, link); VNET_SYSINIT_WUNLOCK(); } void vnet_deregister_sysuninit(void *arg) { struct vnet_sysinit *vs; struct vnet *vnet; vs = arg; /* * Invoke the destructor on all the existing vnets when it is * deregistered. */ VNET_SYSINIT_WLOCK(); VNET_FOREACH(vnet) { CURVNET_SET_QUIET(vnet); vs->func(vs->arg); CURVNET_RESTORE(); } /* Remove the destructor from the global list of vnet destructors. */ TAILQ_REMOVE(&vnet_destructors, vs, link); VNET_SYSINIT_WUNLOCK(); } /* * Invoke all registered vnet constructors on the current vnet. Used during * vnet construction. The caller is responsible for ensuring the new vnet is * the current vnet and that the vnet_sysinit_sxlock lock is locked. */ void vnet_sysinit(void) { struct vnet_sysinit *vs; VNET_SYSINIT_RLOCK(); TAILQ_FOREACH(vs, &vnet_constructors, link) { vs->func(vs->arg); } VNET_SYSINIT_RUNLOCK(); } /* * Invoke all registered vnet destructors on the current vnet. Used during * vnet destruction. The caller is responsible for ensuring the dying vnet * the current vnet and that the vnet_sysinit_sxlock lock is locked. */ void vnet_sysuninit(void) { struct vnet_sysinit *vs; VNET_SYSINIT_RLOCK(); TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, link) { vs->func(vs->arg); } VNET_SYSINIT_RUNLOCK(); } /* * EVENTHANDLER(9) extensions. */ /* * Invoke the eventhandler function originally registered with the possibly * registered argument for all virtual network stack instances. * * This iterator can only be used for eventhandlers that do not take any * additional arguments, as we do ignore the variadic arguments from the * EVENTHANDLER_INVOKE() call. */ void vnet_global_eventhandler_iterator_func(void *arg, ...) { VNET_ITERATOR_DECL(vnet_iter); struct eventhandler_entry_vimage *v_ee; /* * There is a bug here in that we should actually cast things to * (struct eventhandler_entry_ ## name *) but that's not easily * possible in here so just re-using the variadic version we * defined for the generic vimage case. */ v_ee = arg; VNET_LIST_RLOCK(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); ((vimage_iterator_func_t)v_ee->func)(v_ee->ee_arg); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK(); } #ifdef VNET_DEBUG struct vnet_recursion { SLIST_ENTRY(vnet_recursion) vnr_le; const char *prev_fn; const char *where_fn; int where_line; struct vnet *old_vnet; struct vnet *new_vnet; }; static SLIST_HEAD(, vnet_recursion) vnet_recursions = SLIST_HEAD_INITIALIZER(vnet_recursions); static void vnet_print_recursion(struct vnet_recursion *vnr, int brief) { if (!brief) printf("CURVNET_SET() recursion in "); printf("%s() line %d, prev in %s()", vnr->where_fn, vnr->where_line, vnr->prev_fn); if (brief) printf(", "); else printf("\n "); printf("%p -> %p\n", vnr->old_vnet, vnr->new_vnet); } void vnet_log_recursion(struct vnet *old_vnet, const char *old_fn, int line) { struct vnet_recursion *vnr; /* Skip already logged recursion events. */ SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) if (vnr->prev_fn == old_fn && vnr->where_fn == curthread->td_vnet_lpush && vnr->where_line == line && (vnr->old_vnet == vnr->new_vnet) == (curvnet == old_vnet)) return; vnr = malloc(sizeof(*vnr), M_VNET, M_NOWAIT | M_ZERO); if (vnr == NULL) panic("%s: malloc failed", __func__); vnr->prev_fn = old_fn; vnr->where_fn = curthread->td_vnet_lpush; vnr->where_line = line; vnr->old_vnet = old_vnet; vnr->new_vnet = curvnet; SLIST_INSERT_HEAD(&vnet_recursions, vnr, vnr_le); vnet_print_recursion(vnr, 0); #ifdef KDB kdb_backtrace(); #endif } #endif /* VNET_DEBUG */ /* * DDB(4). */ #ifdef DDB DB_SHOW_COMMAND(vnets, db_show_vnets) { VNET_ITERATOR_DECL(vnet_iter); VNET_FOREACH(vnet_iter) { + if (have_addr && addr != 0 && + (struct vnet *)addr != vnet_iter) + continue; db_printf("vnet = %p\n", vnet_iter); db_printf(" vnet_magic_n = 0x%x (%s, orig 0x%x)\n", vnet_iter->vnet_magic_n, (vnet_iter->vnet_magic_n == VNET_MAGIC_N) ? "ok" : "mismatch", VNET_MAGIC_N); db_printf(" vnet_ifcnt = %u\n", vnet_iter->vnet_ifcnt); db_printf(" vnet_sockcnt = %u\n", vnet_iter->vnet_sockcnt); db_printf(" vnet_data_mem = %p\n", vnet_iter->vnet_data_mem); db_printf(" vnet_data_base = 0x%jx\n", (uintmax_t)vnet_iter->vnet_data_base); + db_printf(" vnet_state = %#x\n", vnet_iter->vnet_state); db_printf("\n"); if (db_pager_quit) break; } } static void db_show_vnet_print_vs(struct vnet_sysinit *vs, int ddb) { const char *vsname, *funcname; c_db_sym_t sym; db_expr_t offset; #define xprint(...) \ if (ddb) \ db_printf(__VA_ARGS__); \ else \ printf(__VA_ARGS__) if (vs == NULL) { xprint("%s: no vnet_sysinit * given\n", __func__); return; } sym = db_search_symbol((vm_offset_t)vs, DB_STGY_ANY, &offset); db_symbol_values(sym, &vsname, NULL); sym = db_search_symbol((vm_offset_t)vs->func, DB_STGY_PROC, &offset); db_symbol_values(sym, &funcname, NULL); xprint("%s(%p)\n", (vsname != NULL) ? vsname : "", vs); xprint(" 0x%08x 0x%08x\n", vs->subsystem, vs->order); xprint(" %p(%s)(%p)\n", vs->func, (funcname != NULL) ? funcname : "", vs->arg); #undef xprint } DB_SHOW_COMMAND(vnet_sysinit, db_show_vnet_sysinit) { struct vnet_sysinit *vs; db_printf("VNET_SYSINIT vs Name(Ptr)\n"); db_printf(" Subsystem Order\n"); db_printf(" Function(Name)(Arg)\n"); TAILQ_FOREACH(vs, &vnet_constructors, link) { db_show_vnet_print_vs(vs, 1); if (db_pager_quit) break; } } DB_SHOW_COMMAND(vnet_sysuninit, db_show_vnet_sysuninit) { struct vnet_sysinit *vs; db_printf("VNET_SYSUNINIT vs Name(Ptr)\n"); db_printf(" Subsystem Order\n"); db_printf(" Function(Name)(Arg)\n"); TAILQ_FOREACH_REVERSE(vs, &vnet_destructors, vnet_sysuninit_head, link) { db_show_vnet_print_vs(vs, 1); if (db_pager_quit) break; } } #ifdef VNET_DEBUG DB_SHOW_COMMAND(vnetrcrs, db_show_vnetrcrs) { struct vnet_recursion *vnr; SLIST_FOREACH(vnr, &vnet_recursions, vnr_le) vnet_print_recursion(vnr, 1); } #endif #endif /* DDB */ Index: projects/vnet/sys/net/vnet.h =================================================================== --- projects/vnet/sys/net/vnet.h (revision 297511) +++ projects/vnet/sys/net/vnet.h (revision 297512) @@ -1,431 +1,436 @@ /*- * Copyright (c) 2006-2009 University of Zagreb * Copyright (c) 2006-2009 FreeBSD Foundation * All rights reserved. * * This software was developed by the University of Zagreb and the * FreeBSD Foundation under sponsorship by the Stichting NLnet and the * FreeBSD Foundation. * * Copyright (c) 2009 Jeffrey Roberson * Copyright (c) 2009 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /*- * This header file defines several sets of interfaces supporting virtualized * network stacks: * * - Definition of 'struct vnet' and functions and macros to allocate/free/ * manipulate it. * * - A virtual network stack memory allocator, which provides support for * virtualized global variables via a special linker set, set_vnet. * * - Virtualized sysinits/sysuninits, which allow constructors and * destructors to be run for each network stack subsystem as virtual * instances are created and destroyed. * * If VIMAGE isn't compiled into the kernel, virtualized global variables * compile to normal global variables, and virtualized sysinits to regular * sysinits. */ #ifndef _NET_VNET_H_ #define _NET_VNET_H_ /* * struct vnet describes a virtualized network stack, and is primarily a * pointer to storage for virtualized global variables. Expose to userspace * as required for libkvm. */ #if defined(_KERNEL) || defined(_WANT_VNET) #include struct vnet { LIST_ENTRY(vnet) vnet_le; /* all vnets list */ u_int vnet_magic_n; u_int vnet_ifcnt; u_int vnet_sockcnt; + u_int vnet_state; +#define VNET_STATE_STARTING 0x01 +#define VNET_STATE_ACTIVE 0x02 +#define VNET_STATE_DYING 0x04 +#define VNET_STATE_DYING_AFTER_PSEUDO 0x08 void *vnet_data_mem; uintptr_t vnet_data_base; }; #define VNET_MAGIC_N 0x3e0d8f29 /* * These two virtual network stack allocator definitions are also required * for libkvm so that it can evaluate virtualized global variables. */ #define VNET_SETNAME "set_vnet" #define VNET_SYMPREFIX "vnet_entry_" #endif #ifdef _KERNEL #define VNET_PCPUSTAT_DECLARE(type, name) \ VNET_DECLARE(counter_u64_t, name[sizeof(type) / sizeof(uint64_t)]) #define VNET_PCPUSTAT_DEFINE(type, name) \ VNET_DEFINE(counter_u64_t, name[sizeof(type) / sizeof(uint64_t)]) #define VNET_PCPUSTAT_ALLOC(name, wait) \ COUNTER_ARRAY_ALLOC(VNET(name), \ sizeof(VNET(name)) / sizeof(counter_u64_t), (wait)) #define VNET_PCPUSTAT_FREE(name) \ COUNTER_ARRAY_FREE(VNET(name), sizeof(VNET(name)) / sizeof(counter_u64_t)) #define VNET_PCPUSTAT_ADD(type, name, f, v) \ counter_u64_add(VNET(name)[offsetof(type, f) / sizeof(uint64_t)], (v)) #define VNET_PCPUSTAT_FETCH(type, name, f) \ counter_u64_fetch(VNET(name)[offsetof(type, f) / sizeof(uint64_t)]) #define VNET_PCPUSTAT_SYSINIT(name) \ static void \ vnet_##name##_init(const void *unused) \ { \ VNET_PCPUSTAT_ALLOC(name, M_WAITOK); \ } \ VNET_SYSINIT(vnet_ ## name ## _init, SI_SUB_PROTO_IFATTACHDOMAIN, \ SI_ORDER_ANY, vnet_ ## name ## _init, NULL) #define VNET_PCPUSTAT_SYSUNINIT(name) \ static void \ vnet_##name##_uninit(const void *unused) \ { \ VNET_PCPUSTAT_FREE(name); \ } \ VNET_SYSUNINIT(vnet_ ## name ## _uninit, SI_SUB_PROTO_IFATTACHDOMAIN, \ SI_ORDER_ANY, vnet_ ## name ## _uninit, NULL) #ifdef SYSCTL_OID #define SYSCTL_VNET_PCPUSTAT(parent, nbr, name, type, array, desc) \ static int \ array##_sysctl(SYSCTL_HANDLER_ARGS) \ { \ type s; \ CTASSERT((sizeof(type) / sizeof(uint64_t)) == \ (sizeof(VNET(array)) / sizeof(counter_u64_t))); \ COUNTER_ARRAY_COPY(VNET(array), &s, sizeof(type) / sizeof(uint64_t));\ if (req->newptr) \ COUNTER_ARRAY_ZERO(VNET(array), \ sizeof(type) / sizeof(uint64_t)); \ return (SYSCTL_OUT(req, &s, sizeof(type))); \ } \ SYSCTL_PROC(parent, nbr, name, CTLFLAG_VNET | CTLTYPE_OPAQUE | CTLFLAG_RW, \ NULL, 0, array ## _sysctl, "I", desc) #endif /* SYSCTL_OID */ #ifdef VIMAGE #include #include /* for struct thread */ #include #include /* * Location of the kernel's 'set_vnet' linker set. */ extern uintptr_t *__start_set_vnet; __GLOBL(__start_set_vnet); extern uintptr_t *__stop_set_vnet; __GLOBL(__stop_set_vnet); #define VNET_START (uintptr_t)&__start_set_vnet #define VNET_STOP (uintptr_t)&__stop_set_vnet /* * Functions to allocate and destroy virtual network stacks. */ struct vnet *vnet_alloc(void); void vnet_destroy(struct vnet *vnet); /* * The current virtual network stack -- we may wish to move this to struct * pcpu in the future. */ #define curvnet curthread->td_vnet /* * Various macros -- get and set the current network stack, but also * assertions. */ #if defined(INVARIANTS) || defined(VNET_DEBUG) #define VNET_ASSERT(exp, msg) do { \ if (!(exp)) \ panic msg; \ } while (0) #else #define VNET_ASSERT(exp, msg) do { \ } while (0) #endif #ifdef VNET_DEBUG void vnet_log_recursion(struct vnet *, const char *, int); #define CURVNET_SET_QUIET(arg) \ VNET_ASSERT((arg) != NULL && (arg)->vnet_magic_n == VNET_MAGIC_N, \ ("CURVNET_SET at %s:%d %s() curvnet=%p vnet=%p", \ __FILE__, __LINE__, __func__, curvnet, (arg))); \ struct vnet *saved_vnet = curvnet; \ const char *saved_vnet_lpush = curthread->td_vnet_lpush; \ curvnet = arg; \ curthread->td_vnet_lpush = __func__; #define CURVNET_SET_VERBOSE(arg) \ CURVNET_SET_QUIET(arg) \ if (saved_vnet) \ vnet_log_recursion(saved_vnet, saved_vnet_lpush, __LINE__); #define CURVNET_SET(arg) CURVNET_SET_VERBOSE(arg) #define CURVNET_RESTORE() \ VNET_ASSERT(curvnet != NULL && (saved_vnet == NULL || \ saved_vnet->vnet_magic_n == VNET_MAGIC_N), \ ("CURVNET_RESTORE at %s:%d %s() curvnet=%p saved_vnet=%p", \ __FILE__, __LINE__, __func__, curvnet, saved_vnet)); \ curvnet = saved_vnet; \ curthread->td_vnet_lpush = saved_vnet_lpush; #else /* !VNET_DEBUG */ #define CURVNET_SET_QUIET(arg) \ VNET_ASSERT((arg) != NULL && (arg)->vnet_magic_n == VNET_MAGIC_N, \ ("CURVNET_SET at %s:%d %s() curvnet=%p vnet=%p", \ __FILE__, __LINE__, __func__, curvnet, (arg))); \ struct vnet *saved_vnet = curvnet; \ curvnet = arg; #define CURVNET_SET_VERBOSE(arg) \ CURVNET_SET_QUIET(arg) #define CURVNET_SET(arg) CURVNET_SET_VERBOSE(arg) #define CURVNET_RESTORE() \ VNET_ASSERT(curvnet != NULL && (saved_vnet == NULL || \ saved_vnet->vnet_magic_n == VNET_MAGIC_N), \ ("CURVNET_RESTORE at %s:%d %s() curvnet=%p saved_vnet=%p", \ __FILE__, __LINE__, __func__, curvnet, saved_vnet)); \ curvnet = saved_vnet; #endif /* VNET_DEBUG */ extern struct vnet *vnet0; #define IS_DEFAULT_VNET(arg) ((arg) == vnet0) #define CRED_TO_VNET(cr) (cr)->cr_prison->pr_vnet #define TD_TO_VNET(td) CRED_TO_VNET((td)->td_ucred) #define P_TO_VNET(p) CRED_TO_VNET((p)->p_ucred) /* * Global linked list of all virtual network stacks, along with read locks to * access it. If a caller may sleep while accessing the list, it must use * the sleepable lock macros. */ LIST_HEAD(vnet_list_head, vnet); extern struct vnet_list_head vnet_head; extern struct rwlock vnet_rwlock; extern struct sx vnet_sxlock; #define VNET_LIST_RLOCK() sx_slock(&vnet_sxlock) #define VNET_LIST_RLOCK_NOSLEEP() rw_rlock(&vnet_rwlock) #define VNET_LIST_RUNLOCK() sx_sunlock(&vnet_sxlock) #define VNET_LIST_RUNLOCK_NOSLEEP() rw_runlock(&vnet_rwlock) /* * Iteration macros to walk the global list of virtual network stacks. */ #define VNET_ITERATOR_DECL(arg) struct vnet *arg #define VNET_FOREACH(arg) LIST_FOREACH((arg), &vnet_head, vnet_le) /* * Virtual network stack memory allocator, which allows global variables to * be automatically instantiated for each network stack instance. */ #define VNET_NAME(n) vnet_entry_##n #define VNET_DECLARE(t, n) extern t VNET_NAME(n) #define VNET_DEFINE(t, n) t VNET_NAME(n) __section(VNET_SETNAME) __used #define _VNET_PTR(b, n) (__typeof(VNET_NAME(n))*) \ ((b) + (uintptr_t)&VNET_NAME(n)) #define _VNET(b, n) (*_VNET_PTR(b, n)) /* * Virtualized global variable accessor macros. */ #define VNET_VNET_PTR(vnet, n) _VNET_PTR((vnet)->vnet_data_base, n) #define VNET_VNET(vnet, n) (*VNET_VNET_PTR((vnet), n)) #define VNET_PTR(n) VNET_VNET_PTR(curvnet, n) #define VNET(n) VNET_VNET(curvnet, n) /* * Virtual network stack allocator interfaces from the kernel linker. */ void *vnet_data_alloc(int size); void vnet_data_copy(void *start, int size); void vnet_data_free(void *start_arg, int size); /* * Virtual sysinit mechanism, allowing network stack components to declare * startup and shutdown methods to be run when virtual network stack * instances are created and destroyed. */ #include /* * SYSINIT/SYSUNINIT variants that provide per-vnet constructors and * destructors. */ struct vnet_sysinit { enum sysinit_sub_id subsystem; enum sysinit_elem_order order; sysinit_cfunc_t func; const void *arg; TAILQ_ENTRY(vnet_sysinit) link; }; #define VNET_SYSINIT(ident, subsystem, order, func, arg) \ static struct vnet_sysinit ident ## _vnet_init = { \ subsystem, \ order, \ (sysinit_cfunc_t)(sysinit_nfunc_t)func, \ (arg) \ }; \ SYSINIT(vnet_init_ ## ident, subsystem, order, \ vnet_register_sysinit, &ident ## _vnet_init); \ SYSUNINIT(vnet_init_ ## ident, subsystem, order, \ vnet_deregister_sysinit, &ident ## _vnet_init) #define VNET_SYSUNINIT(ident, subsystem, order, func, arg) \ static struct vnet_sysinit ident ## _vnet_uninit = { \ subsystem, \ order, \ (sysinit_cfunc_t)(sysinit_nfunc_t)func, \ (arg) \ }; \ SYSINIT(vnet_uninit_ ## ident, subsystem, order, \ vnet_register_sysuninit, &ident ## _vnet_uninit); \ SYSUNINIT(vnet_uninit_ ## ident, subsystem, order, \ vnet_deregister_sysuninit, &ident ## _vnet_uninit) /* * Run per-vnet sysinits or sysuninits during vnet creation/destruction. */ void vnet_sysinit(void); void vnet_sysuninit(void); /* * Interfaces for managing per-vnet constructors and destructors. */ void vnet_register_sysinit(void *arg); void vnet_register_sysuninit(void *arg); void vnet_deregister_sysinit(void *arg); void vnet_deregister_sysuninit(void *arg); /* * EVENTHANDLER(9) extensions. */ #include void vnet_global_eventhandler_iterator_func(void *, ...); #define VNET_GLOBAL_EVENTHANDLER_REGISTER_TAG(tag, name, func, arg, priority) \ do { \ if (IS_DEFAULT_VNET(curvnet)) { \ (tag) = vimage_eventhandler_register(NULL, #name, func, \ arg, priority, \ vnet_global_eventhandler_iterator_func); \ } \ } while(0) #define VNET_GLOBAL_EVENTHANDLER_REGISTER(name, func, arg, priority) \ do { \ if (IS_DEFAULT_VNET(curvnet)) { \ vimage_eventhandler_register(NULL, #name, func, \ arg, priority, \ vnet_global_eventhandler_iterator_func); \ } \ } while(0) #else /* !VIMAGE */ /* * Various virtual network stack macros compile to no-ops without VIMAGE. */ #define curvnet NULL #define VNET_ASSERT(exp, msg) #define CURVNET_SET(arg) #define CURVNET_SET_QUIET(arg) #define CURVNET_RESTORE() #define VNET_LIST_RLOCK() #define VNET_LIST_RLOCK_NOSLEEP() #define VNET_LIST_RUNLOCK() #define VNET_LIST_RUNLOCK_NOSLEEP() #define VNET_ITERATOR_DECL(arg) #define VNET_FOREACH(arg) #define IS_DEFAULT_VNET(arg) 1 #define CRED_TO_VNET(cr) NULL #define TD_TO_VNET(td) NULL #define P_TO_VNET(p) NULL /* * Versions of the VNET macros that compile to normal global variables and * standard sysctl definitions. */ #define VNET_NAME(n) n #define VNET_DECLARE(t, n) extern t n #define VNET_DEFINE(t, n) t n #define _VNET_PTR(b, n) &VNET_NAME(n) /* * Virtualized global variable accessor macros. */ #define VNET_VNET_PTR(vnet, n) (&(n)) #define VNET_VNET(vnet, n) (n) #define VNET_PTR(n) (&(n)) #define VNET(n) (n) /* * When VIMAGE isn't compiled into the kernel, VNET_SYSINIT/VNET_SYSUNINIT * map into normal sysinits, which have the same ordering properties. */ #define VNET_SYSINIT(ident, subsystem, order, func, arg) \ SYSINIT(ident, subsystem, order, func, arg) #define VNET_SYSUNINIT(ident, subsystem, order, func, arg) \ SYSUNINIT(ident, subsystem, order, func, arg) /* * Without VIMAGE revert to the default implementation. */ #define VNET_GLOBAL_EVENTHANDLER_REGISTER_TAG(tag, name, func, arg, priority) \ (tag) = eventhandler_register(NULL, #name, func, arg, priority) #define VNET_GLOBAL_EVENTHANDLER_REGISTER(name, func, arg, priority) \ eventhandler_register(NULL, #name, func, arg, priority) #endif /* VIMAGE */ #endif /* _KERNEL */ #endif /* !_NET_VNET_H_ */ Index: projects/vnet/sys/netinet/igmp.c =================================================================== --- projects/vnet/sys/netinet/igmp.c (revision 297511) +++ projects/vnet/sys/netinet/igmp.c (revision 297512) @@ -1,3674 +1,3667 @@ /*- * Copyright (c) 2007-2009 Bruce Simpson. * Copyright (c) 1988 Stephen Deering. * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Stephen Deering of Stanford University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)igmp.c 8.1 (Berkeley) 7/19/93 */ /* * Internet Group Management Protocol (IGMP) routines. * [RFC1112, RFC2236, RFC3376] * * Written by Steve Deering, Stanford, May 1988. * Modified by Rosen Sharma, Stanford, Aug 1994. * Modified by Bill Fenner, Xerox PARC, Feb 1995. * Modified to fully comply to IGMPv2 by Bill Fenner, Oct 1995. * Significantly rewritten for IGMPv3, VIMAGE, and SMP by Bruce Simpson. * * MULTICAST Revision: 3.5.1.4 */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef KTR_IGMPV3 #define KTR_IGMPV3 KTR_INET #endif static struct igmp_ifsoftc * igi_alloc_locked(struct ifnet *); static void igi_delete_locked(const struct ifnet *); static void igmp_dispatch_queue(struct mbufq *, int, const int); static void igmp_fasttimo_vnet(void); static void igmp_final_leave(struct in_multi *, struct igmp_ifsoftc *); static int igmp_handle_state_change(struct in_multi *, struct igmp_ifsoftc *); static int igmp_initial_join(struct in_multi *, struct igmp_ifsoftc *); static int igmp_input_v1_query(struct ifnet *, const struct ip *, const struct igmp *); static int igmp_input_v2_query(struct ifnet *, const struct ip *, const struct igmp *); static int igmp_input_v3_query(struct ifnet *, const struct ip *, /*const*/ struct igmpv3 *); static int igmp_input_v3_group_query(struct in_multi *, struct igmp_ifsoftc *, int, /*const*/ struct igmpv3 *); static int igmp_input_v1_report(struct ifnet *, /*const*/ struct ip *, /*const*/ struct igmp *); static int igmp_input_v2_report(struct ifnet *, /*const*/ struct ip *, /*const*/ struct igmp *); static void igmp_intr(struct mbuf *); static int igmp_isgroupreported(const struct in_addr); static struct mbuf * igmp_ra_alloc(void); #ifdef KTR static char * igmp_rec_type_to_str(const int); #endif static void igmp_set_version(struct igmp_ifsoftc *, const int); static void igmp_slowtimo_vnet(void); static int igmp_v1v2_queue_report(struct in_multi *, const int); static void igmp_v1v2_process_group_timer(struct in_multi *, const int); static void igmp_v1v2_process_querier_timers(struct igmp_ifsoftc *); static void igmp_v2_update_group(struct in_multi *, const int); static void igmp_v3_cancel_link_timers(struct igmp_ifsoftc *); static void igmp_v3_dispatch_general_query(struct igmp_ifsoftc *); static struct mbuf * igmp_v3_encap_report(struct ifnet *, struct mbuf *); static int igmp_v3_enqueue_group_record(struct mbufq *, struct in_multi *, const int, const int, const int); static int igmp_v3_enqueue_filter_change(struct mbufq *, struct in_multi *); static void igmp_v3_process_group_timers(struct igmp_ifsoftc *, struct mbufq *, struct mbufq *, struct in_multi *, const int); static int igmp_v3_merge_state_changes(struct in_multi *, struct mbufq *); static void igmp_v3_suppress_group_record(struct in_multi *); static int sysctl_igmp_default_version(SYSCTL_HANDLER_ARGS); static int sysctl_igmp_gsr(SYSCTL_HANDLER_ARGS); static int sysctl_igmp_ifinfo(SYSCTL_HANDLER_ARGS); static const struct netisr_handler igmp_nh = { .nh_name = "igmp", .nh_handler = igmp_intr, .nh_proto = NETISR_IGMP, .nh_policy = NETISR_POLICY_SOURCE, }; /* * System-wide globals. * * Unlocked access to these is OK, except for the global IGMP output * queue. The IGMP subsystem lock ends up being system-wide for the moment, * because all VIMAGEs have to share a global output queue, as netisrs * themselves are not virtualized. * * Locking: * * The permitted lock order is: IN_MULTI_LOCK, IGMP_LOCK, IF_ADDR_LOCK. * Any may be taken independently; if any are held at the same * time, the above lock order must be followed. * * All output is delegated to the netisr. * Now that Giant has been eliminated, the netisr may be inlined. * * IN_MULTI_LOCK covers in_multi. * * IGMP_LOCK covers igmp_ifsoftc and any global variables in this file, * including the output queue. * * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of * per-link state iterators. * * igmp_ifsoftc is valid as long as PF_INET is attached to the interface, * therefore it is not refcounted. * We allow unlocked reads of igmp_ifsoftc when accessed via in_multi. * * Reference counting * * IGMP acquires its own reference every time an in_multi is passed to * it and the group is being joined for the first time. * * IGMP releases its reference(s) on in_multi in a deferred way, * because the operations which process the release run as part of * a loop whose control variables are directly affected by the release * (that, and not recursing on the IF_ADDR_LOCK). * * VIMAGE: Each in_multi corresponds to an ifp, and each ifp corresponds * to a vnet in ifp->if_vnet. * * SMPng: XXX We may potentially race operations on ifma_protospec. * The problem is that we currently lack a clean way of taking the * IF_ADDR_LOCK() between the ifnet and in layers w/o recursing, * as anything which modifies ifma needs to be covered by that lock. * So check for ifma_protospec being NULL before proceeding. */ struct mtx igmp_mtx; struct mbuf *m_raopt; /* Router Alert option */ static MALLOC_DEFINE(M_IGMP, "igmp", "igmp state"); /* * VIMAGE-wide globals. * * The IGMPv3 timers themselves need to run per-image, however, * protosw timers run globally (see tcp). * An ifnet can only be in one vimage at a time, and the loopback * ifnet, loif, is itself virtualized. * It would otherwise be possible to seriously hose IGMP state, * and create inconsistencies in upstream multicast routing, if you have * multiple VIMAGEs running on the same link joining different multicast * groups, UNLESS the "primary IP address" is different. This is because * IGMP for IPv4 does not force link-local addresses to be used for each * node, unlike MLD for IPv6. * Obviously the IGMPv3 per-interface state has per-vimage granularity * also as a result. * * FUTURE: Stop using IFP_TO_IA/INADDR_ANY, and use source address selection * policy to control the address used by IGMP on the link. */ static VNET_DEFINE(int, interface_timers_running); /* IGMPv3 general * query response */ static VNET_DEFINE(int, state_change_timers_running); /* IGMPv3 state-change * retransmit */ static VNET_DEFINE(int, current_state_timers_running); /* IGMPv1/v2 host * report; IGMPv3 g/sg * query response */ #define V_interface_timers_running VNET(interface_timers_running) #define V_state_change_timers_running VNET(state_change_timers_running) #define V_current_state_timers_running VNET(current_state_timers_running) static VNET_DEFINE(LIST_HEAD(, igmp_ifsoftc), igi_head) = LIST_HEAD_INITIALIZER(igi_head); static VNET_DEFINE(struct igmpstat, igmpstat) = { .igps_version = IGPS_VERSION_3, .igps_len = sizeof(struct igmpstat), }; static VNET_DEFINE(struct timeval, igmp_gsrdelay) = {10, 0}; #define V_igi_head VNET(igi_head) #define V_igmpstat VNET(igmpstat) #define V_igmp_gsrdelay VNET(igmp_gsrdelay) static VNET_DEFINE(int, igmp_recvifkludge) = 1; static VNET_DEFINE(int, igmp_sendra) = 1; static VNET_DEFINE(int, igmp_sendlocal) = 1; static VNET_DEFINE(int, igmp_v1enable) = 1; static VNET_DEFINE(int, igmp_v2enable) = 1; static VNET_DEFINE(int, igmp_legacysupp); static VNET_DEFINE(int, igmp_default_version) = IGMP_VERSION_3; #define V_igmp_recvifkludge VNET(igmp_recvifkludge) #define V_igmp_sendra VNET(igmp_sendra) #define V_igmp_sendlocal VNET(igmp_sendlocal) #define V_igmp_v1enable VNET(igmp_v1enable) #define V_igmp_v2enable VNET(igmp_v2enable) #define V_igmp_legacysupp VNET(igmp_legacysupp) #define V_igmp_default_version VNET(igmp_default_version) /* * Virtualized sysctls. */ SYSCTL_STRUCT(_net_inet_igmp, IGMPCTL_STATS, stats, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(igmpstat), igmpstat, ""); SYSCTL_INT(_net_inet_igmp, OID_AUTO, recvifkludge, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(igmp_recvifkludge), 0, "Rewrite IGMPv1/v2 reports from 0.0.0.0 to contain subnet address"); SYSCTL_INT(_net_inet_igmp, OID_AUTO, sendra, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(igmp_sendra), 0, "Send IP Router Alert option in IGMPv2/v3 messages"); SYSCTL_INT(_net_inet_igmp, OID_AUTO, sendlocal, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(igmp_sendlocal), 0, "Send IGMP membership reports for 224.0.0.0/24 groups"); SYSCTL_INT(_net_inet_igmp, OID_AUTO, v1enable, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(igmp_v1enable), 0, "Enable backwards compatibility with IGMPv1"); SYSCTL_INT(_net_inet_igmp, OID_AUTO, v2enable, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(igmp_v2enable), 0, "Enable backwards compatibility with IGMPv2"); SYSCTL_INT(_net_inet_igmp, OID_AUTO, legacysupp, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(igmp_legacysupp), 0, "Allow v1/v2 reports to suppress v3 group responses"); SYSCTL_PROC(_net_inet_igmp, OID_AUTO, default_version, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &VNET_NAME(igmp_default_version), 0, sysctl_igmp_default_version, "I", "Default version of IGMP to run on each interface"); SYSCTL_PROC(_net_inet_igmp, OID_AUTO, gsrdelay, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &VNET_NAME(igmp_gsrdelay.tv_sec), 0, sysctl_igmp_gsr, "I", "Rate limit for IGMPv3 Group-and-Source queries in seconds"); /* * Non-virtualized sysctls. */ static SYSCTL_NODE(_net_inet_igmp, OID_AUTO, ifinfo, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_igmp_ifinfo, "Per-interface IGMPv3 state"); static __inline void igmp_save_context(struct mbuf *m, struct ifnet *ifp) { #ifdef VIMAGE m->m_pkthdr.PH_loc.ptr = ifp->if_vnet; #endif /* VIMAGE */ m->m_pkthdr.flowid = ifp->if_index; } static __inline void igmp_scrub_context(struct mbuf *m) { m->m_pkthdr.PH_loc.ptr = NULL; m->m_pkthdr.flowid = 0; } #ifdef KTR static __inline char * inet_ntoa_haddr(in_addr_t haddr) { struct in_addr ia; ia.s_addr = htonl(haddr); return (inet_ntoa(ia)); } #endif /* * Restore context from a queued IGMP output chain. * Return saved ifindex. * * VIMAGE: The assertion is there to make sure that we * actually called CURVNET_SET() with what's in the mbuf chain. */ static __inline uint32_t igmp_restore_context(struct mbuf *m) { #ifdef notyet #if defined(VIMAGE) && defined(INVARIANTS) KASSERT(curvnet == (m->m_pkthdr.PH_loc.ptr), ("%s: called when curvnet was not restored", __func__)); #endif #endif return (m->m_pkthdr.flowid); } /* * Retrieve or set default IGMP version. * * VIMAGE: Assume curvnet set by caller. * SMPng: NOTE: Serialized by IGMP lock. */ static int sysctl_igmp_default_version(SYSCTL_HANDLER_ARGS) { int error; int new; error = sysctl_wire_old_buffer(req, sizeof(int)); if (error) return (error); IGMP_LOCK(); new = V_igmp_default_version; error = sysctl_handle_int(oidp, &new, 0, req); if (error || !req->newptr) goto out_locked; if (new < IGMP_VERSION_1 || new > IGMP_VERSION_3) { error = EINVAL; goto out_locked; } CTR2(KTR_IGMPV3, "change igmp_default_version from %d to %d", V_igmp_default_version, new); V_igmp_default_version = new; out_locked: IGMP_UNLOCK(); return (error); } /* * Retrieve or set threshold between group-source queries in seconds. * * VIMAGE: Assume curvnet set by caller. * SMPng: NOTE: Serialized by IGMP lock. */ static int sysctl_igmp_gsr(SYSCTL_HANDLER_ARGS) { int error; int i; error = sysctl_wire_old_buffer(req, sizeof(int)); if (error) return (error); IGMP_LOCK(); i = V_igmp_gsrdelay.tv_sec; error = sysctl_handle_int(oidp, &i, 0, req); if (error || !req->newptr) goto out_locked; if (i < -1 || i >= 60) { error = EINVAL; goto out_locked; } CTR2(KTR_IGMPV3, "change igmp_gsrdelay from %d to %d", V_igmp_gsrdelay.tv_sec, i); V_igmp_gsrdelay.tv_sec = i; out_locked: IGMP_UNLOCK(); return (error); } /* * Expose struct igmp_ifsoftc to userland, keyed by ifindex. * For use by ifmcstat(8). * * SMPng: NOTE: Does an unlocked ifindex space read. * VIMAGE: Assume curvnet set by caller. The node handler itself * is not directly virtualized. */ static int sysctl_igmp_ifinfo(SYSCTL_HANDLER_ARGS) { int *name; int error; u_int namelen; struct ifnet *ifp; struct igmp_ifsoftc *igi; name = (int *)arg1; namelen = arg2; if (req->newptr != NULL) return (EPERM); if (namelen != 1) return (EINVAL); error = sysctl_wire_old_buffer(req, sizeof(struct igmp_ifinfo)); if (error) return (error); IN_MULTI_LOCK(); IGMP_LOCK(); if (name[0] <= 0 || name[0] > V_if_index) { error = ENOENT; goto out_locked; } error = ENOENT; ifp = ifnet_byindex(name[0]); if (ifp == NULL) goto out_locked; LIST_FOREACH(igi, &V_igi_head, igi_link) { if (ifp == igi->igi_ifp) { struct igmp_ifinfo info; info.igi_version = igi->igi_version; info.igi_v1_timer = igi->igi_v1_timer; info.igi_v2_timer = igi->igi_v2_timer; info.igi_v3_timer = igi->igi_v3_timer; info.igi_flags = igi->igi_flags; info.igi_rv = igi->igi_rv; info.igi_qi = igi->igi_qi; info.igi_qri = igi->igi_qri; info.igi_uri = igi->igi_uri; error = SYSCTL_OUT(req, &info, sizeof(info)); break; } } out_locked: IGMP_UNLOCK(); IN_MULTI_UNLOCK(); return (error); } /* * Dispatch an entire queue of pending packet chains * using the netisr. * VIMAGE: Assumes the vnet pointer has been set. */ static void igmp_dispatch_queue(struct mbufq *mq, int limit, const int loop) { struct mbuf *m; while ((m = mbufq_dequeue(mq)) != NULL) { CTR3(KTR_IGMPV3, "%s: dispatch %p from %p", __func__, mq, m); if (loop) m->m_flags |= M_IGMP_LOOP; netisr_dispatch(NETISR_IGMP, m); if (--limit == 0) break; } } /* * Filter outgoing IGMP report state by group. * * Reports are ALWAYS suppressed for ALL-HOSTS (224.0.0.1). * If the net.inet.igmp.sendlocal sysctl is 0, then IGMP reports are * disabled for all groups in the 224.0.0.0/24 link-local scope. However, * this may break certain IGMP snooping switches which rely on the old * report behaviour. * * Return zero if the given group is one for which IGMP reports * should be suppressed, or non-zero if reports should be issued. */ static __inline int igmp_isgroupreported(const struct in_addr addr) { if (in_allhosts(addr) || ((!V_igmp_sendlocal && IN_LOCAL_GROUP(ntohl(addr.s_addr))))) return (0); return (1); } /* * Construct a Router Alert option to use in outgoing packets. */ static struct mbuf * igmp_ra_alloc(void) { struct mbuf *m; struct ipoption *p; m = m_get(M_WAITOK, MT_DATA); p = mtod(m, struct ipoption *); p->ipopt_dst.s_addr = INADDR_ANY; p->ipopt_list[0] = IPOPT_RA; /* Router Alert Option */ p->ipopt_list[1] = 0x04; /* 4 bytes long */ p->ipopt_list[2] = IPOPT_EOL; /* End of IP option list */ p->ipopt_list[3] = 0x00; /* pad byte */ m->m_len = sizeof(p->ipopt_dst) + p->ipopt_list[1]; return (m); } /* * Attach IGMP when PF_INET is attached to an interface. */ struct igmp_ifsoftc * igmp_domifattach(struct ifnet *ifp) { struct igmp_ifsoftc *igi; CTR3(KTR_IGMPV3, "%s: called for ifp %p(%s)", __func__, ifp, ifp->if_xname); IGMP_LOCK(); igi = igi_alloc_locked(ifp); if (!(ifp->if_flags & IFF_MULTICAST)) igi->igi_flags |= IGIF_SILENT; IGMP_UNLOCK(); return (igi); } /* * VIMAGE: assume curvnet set by caller. */ static struct igmp_ifsoftc * igi_alloc_locked(/*const*/ struct ifnet *ifp) { struct igmp_ifsoftc *igi; IGMP_LOCK_ASSERT(); igi = malloc(sizeof(struct igmp_ifsoftc), M_IGMP, M_NOWAIT|M_ZERO); if (igi == NULL) goto out; igi->igi_ifp = ifp; igi->igi_version = V_igmp_default_version; igi->igi_flags = 0; igi->igi_rv = IGMP_RV_INIT; igi->igi_qi = IGMP_QI_INIT; igi->igi_qri = IGMP_QRI_INIT; igi->igi_uri = IGMP_URI_INIT; SLIST_INIT(&igi->igi_relinmhead); mbufq_init(&igi->igi_gq, IGMP_MAX_RESPONSE_PACKETS); LIST_INSERT_HEAD(&V_igi_head, igi, igi_link); CTR2(KTR_IGMPV3, "allocate igmp_ifsoftc for ifp %p(%s)", ifp, ifp->if_xname); out: return (igi); } /* * Hook for ifdetach. * * NOTE: Some finalization tasks need to run before the protocol domain * is detached, but also before the link layer does its cleanup. * * SMPNG: igmp_ifdetach() needs to take IF_ADDR_LOCK(). * XXX This is also bitten by unlocked ifma_protospec access. */ void igmp_ifdetach(struct ifnet *ifp) { struct igmp_ifsoftc *igi; struct ifmultiaddr *ifma; struct in_multi *inm, *tinm; CTR3(KTR_IGMPV3, "%s: called for ifp %p(%s)", __func__, ifp, ifp->if_xname); IGMP_LOCK(); igi = ((struct in_ifinfo *)ifp->if_afdata[AF_INET])->ii_igmp; if (igi->igi_version == IGMP_VERSION_3) { IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; #if 0 KASSERT(ifma->ifma_protospec != NULL, ("%s: ifma_protospec is NULL", __func__)); #endif inm = (struct in_multi *)ifma->ifma_protospec; if (inm->inm_state == IGMP_LEAVING_MEMBER) { SLIST_INSERT_HEAD(&igi->igi_relinmhead, inm, inm_nrele); } inm_clear_recorded(inm); } IF_ADDR_RUNLOCK(ifp); /* * Free the in_multi reference(s) for this IGMP lifecycle. */ SLIST_FOREACH_SAFE(inm, &igi->igi_relinmhead, inm_nrele, tinm) { SLIST_REMOVE_HEAD(&igi->igi_relinmhead, inm_nrele); inm_release_locked(inm); } } IGMP_UNLOCK(); } /* * Hook for domifdetach. */ void igmp_domifdetach(struct ifnet *ifp) { CTR3(KTR_IGMPV3, "%s: called for ifp %p(%s)", __func__, ifp, ifp->if_xname); IGMP_LOCK(); igi_delete_locked(ifp); IGMP_UNLOCK(); } static void igi_delete_locked(const struct ifnet *ifp) { struct igmp_ifsoftc *igi, *tigi; CTR3(KTR_IGMPV3, "%s: freeing igmp_ifsoftc for ifp %p(%s)", __func__, ifp, ifp->if_xname); IGMP_LOCK_ASSERT(); LIST_FOREACH_SAFE(igi, &V_igi_head, igi_link, tigi) { if (igi->igi_ifp == ifp) { /* * Free deferred General Query responses. */ mbufq_drain(&igi->igi_gq); LIST_REMOVE(igi, igi_link); KASSERT(SLIST_EMPTY(&igi->igi_relinmhead), ("%s: there are dangling in_multi references", __func__)); free(igi, M_IGMP); return; } } - -#ifdef INVARIANTS - panic("%s: igmp_ifsoftc not found for ifp %p\n", __func__, ifp); -#endif } /* * Process a received IGMPv1 query. * Return non-zero if the message should be dropped. * * VIMAGE: The curvnet pointer is derived from the input ifp. */ static int igmp_input_v1_query(struct ifnet *ifp, const struct ip *ip, const struct igmp *igmp) { struct ifmultiaddr *ifma; struct igmp_ifsoftc *igi; struct in_multi *inm; /* * IGMPv1 Host Mmembership Queries SHOULD always be addressed to * 224.0.0.1. They are always treated as General Queries. * igmp_group is always ignored. Do not drop it as a userland * daemon may wish to see it. * XXX SMPng: unlocked increments in igmpstat assumed atomic. */ if (!in_allhosts(ip->ip_dst) || !in_nullhost(igmp->igmp_group)) { IGMPSTAT_INC(igps_rcv_badqueries); return (0); } IGMPSTAT_INC(igps_rcv_gen_queries); IN_MULTI_LOCK(); IGMP_LOCK(); igi = ((struct in_ifinfo *)ifp->if_afdata[AF_INET])->ii_igmp; KASSERT(igi != NULL, ("%s: no igmp_ifsoftc for ifp %p", __func__, ifp)); if (igi->igi_flags & IGIF_LOOPBACK) { CTR2(KTR_IGMPV3, "ignore v1 query on IGIF_LOOPBACK ifp %p(%s)", ifp, ifp->if_xname); goto out_locked; } /* * Switch to IGMPv1 host compatibility mode. */ igmp_set_version(igi, IGMP_VERSION_1); CTR2(KTR_IGMPV3, "process v1 query on ifp %p(%s)", ifp, ifp->if_xname); /* * Start the timers in all of our group records * for the interface on which the query arrived, * except those which are already running. */ IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; if (inm->inm_timer != 0) continue; switch (inm->inm_state) { case IGMP_NOT_MEMBER: case IGMP_SILENT_MEMBER: break; case IGMP_G_QUERY_PENDING_MEMBER: case IGMP_SG_QUERY_PENDING_MEMBER: case IGMP_REPORTING_MEMBER: case IGMP_IDLE_MEMBER: case IGMP_LAZY_MEMBER: case IGMP_SLEEPING_MEMBER: case IGMP_AWAKENING_MEMBER: inm->inm_state = IGMP_REPORTING_MEMBER; inm->inm_timer = IGMP_RANDOM_DELAY( IGMP_V1V2_MAX_RI * PR_FASTHZ); V_current_state_timers_running = 1; break; case IGMP_LEAVING_MEMBER: break; } } IF_ADDR_RUNLOCK(ifp); out_locked: IGMP_UNLOCK(); IN_MULTI_UNLOCK(); return (0); } /* * Process a received IGMPv2 general or group-specific query. */ static int igmp_input_v2_query(struct ifnet *ifp, const struct ip *ip, const struct igmp *igmp) { struct ifmultiaddr *ifma; struct igmp_ifsoftc *igi; struct in_multi *inm; int is_general_query; uint16_t timer; is_general_query = 0; /* * Validate address fields upfront. * XXX SMPng: unlocked increments in igmpstat assumed atomic. */ if (in_nullhost(igmp->igmp_group)) { /* * IGMPv2 General Query. * If this was not sent to the all-hosts group, ignore it. */ if (!in_allhosts(ip->ip_dst)) return (0); IGMPSTAT_INC(igps_rcv_gen_queries); is_general_query = 1; } else { /* IGMPv2 Group-Specific Query. */ IGMPSTAT_INC(igps_rcv_group_queries); } IN_MULTI_LOCK(); IGMP_LOCK(); igi = ((struct in_ifinfo *)ifp->if_afdata[AF_INET])->ii_igmp; KASSERT(igi != NULL, ("%s: no igmp_ifsoftc for ifp %p", __func__, ifp)); if (igi->igi_flags & IGIF_LOOPBACK) { CTR2(KTR_IGMPV3, "ignore v2 query on IGIF_LOOPBACK ifp %p(%s)", ifp, ifp->if_xname); goto out_locked; } /* * Ignore v2 query if in v1 Compatibility Mode. */ if (igi->igi_version == IGMP_VERSION_1) goto out_locked; igmp_set_version(igi, IGMP_VERSION_2); timer = igmp->igmp_code * PR_FASTHZ / IGMP_TIMER_SCALE; if (timer == 0) timer = 1; if (is_general_query) { /* * For each reporting group joined on this * interface, kick the report timer. */ CTR2(KTR_IGMPV3, "process v2 general query on ifp %p(%s)", ifp, ifp->if_xname); IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; igmp_v2_update_group(inm, timer); } IF_ADDR_RUNLOCK(ifp); } else { /* * Group-specific IGMPv2 query, we need only * look up the single group to process it. */ inm = inm_lookup(ifp, igmp->igmp_group); if (inm != NULL) { CTR3(KTR_IGMPV3, "process v2 query %s on ifp %p(%s)", inet_ntoa(igmp->igmp_group), ifp, ifp->if_xname); igmp_v2_update_group(inm, timer); } } out_locked: IGMP_UNLOCK(); IN_MULTI_UNLOCK(); return (0); } /* * Update the report timer on a group in response to an IGMPv2 query. * * If we are becoming the reporting member for this group, start the timer. * If we already are the reporting member for this group, and timer is * below the threshold, reset it. * * We may be updating the group for the first time since we switched * to IGMPv3. If we are, then we must clear any recorded source lists, * and transition to REPORTING state; the group timer is overloaded * for group and group-source query responses. * * Unlike IGMPv3, the delay per group should be jittered * to avoid bursts of IGMPv2 reports. */ static void igmp_v2_update_group(struct in_multi *inm, const int timer) { CTR4(KTR_IGMPV3, "%s: %s/%s timer=%d", __func__, inet_ntoa(inm->inm_addr), inm->inm_ifp->if_xname, timer); IN_MULTI_LOCK_ASSERT(); switch (inm->inm_state) { case IGMP_NOT_MEMBER: case IGMP_SILENT_MEMBER: break; case IGMP_REPORTING_MEMBER: if (inm->inm_timer != 0 && inm->inm_timer <= timer) { CTR1(KTR_IGMPV3, "%s: REPORTING and timer running, " "skipping.", __func__); break; } /* FALLTHROUGH */ case IGMP_SG_QUERY_PENDING_MEMBER: case IGMP_G_QUERY_PENDING_MEMBER: case IGMP_IDLE_MEMBER: case IGMP_LAZY_MEMBER: case IGMP_AWAKENING_MEMBER: CTR1(KTR_IGMPV3, "%s: ->REPORTING", __func__); inm->inm_state = IGMP_REPORTING_MEMBER; inm->inm_timer = IGMP_RANDOM_DELAY(timer); V_current_state_timers_running = 1; break; case IGMP_SLEEPING_MEMBER: CTR1(KTR_IGMPV3, "%s: ->AWAKENING", __func__); inm->inm_state = IGMP_AWAKENING_MEMBER; break; case IGMP_LEAVING_MEMBER: break; } } /* * Process a received IGMPv3 general, group-specific or * group-and-source-specific query. * Assumes m has already been pulled up to the full IGMP message length. * Return 0 if successful, otherwise an appropriate error code is returned. */ static int igmp_input_v3_query(struct ifnet *ifp, const struct ip *ip, /*const*/ struct igmpv3 *igmpv3) { struct igmp_ifsoftc *igi; struct in_multi *inm; int is_general_query; uint32_t maxresp, nsrc, qqi; uint16_t timer; uint8_t qrv; is_general_query = 0; CTR2(KTR_IGMPV3, "process v3 query on ifp %p(%s)", ifp, ifp->if_xname); maxresp = igmpv3->igmp_code; /* in 1/10ths of a second */ if (maxresp >= 128) { maxresp = IGMP_MANT(igmpv3->igmp_code) << (IGMP_EXP(igmpv3->igmp_code) + 3); } /* * Robustness must never be less than 2 for on-wire IGMPv3. * FUTURE: Check if ifp has IGIF_LOOPBACK set, as we will make * an exception for interfaces whose IGMPv3 state changes * are redirected to loopback (e.g. MANET). */ qrv = IGMP_QRV(igmpv3->igmp_misc); if (qrv < 2) { CTR3(KTR_IGMPV3, "%s: clamping qrv %d to %d", __func__, qrv, IGMP_RV_INIT); qrv = IGMP_RV_INIT; } qqi = igmpv3->igmp_qqi; if (qqi >= 128) { qqi = IGMP_MANT(igmpv3->igmp_qqi) << (IGMP_EXP(igmpv3->igmp_qqi) + 3); } timer = maxresp * PR_FASTHZ / IGMP_TIMER_SCALE; if (timer == 0) timer = 1; nsrc = ntohs(igmpv3->igmp_numsrc); /* * Validate address fields and versions upfront before * accepting v3 query. * XXX SMPng: Unlocked access to igmpstat counters here. */ if (in_nullhost(igmpv3->igmp_group)) { /* * IGMPv3 General Query. * * General Queries SHOULD be directed to 224.0.0.1. * A general query with a source list has undefined * behaviour; discard it. */ IGMPSTAT_INC(igps_rcv_gen_queries); if (!in_allhosts(ip->ip_dst) || nsrc > 0) { IGMPSTAT_INC(igps_rcv_badqueries); return (0); } is_general_query = 1; } else { /* Group or group-source specific query. */ if (nsrc == 0) IGMPSTAT_INC(igps_rcv_group_queries); else IGMPSTAT_INC(igps_rcv_gsr_queries); } IN_MULTI_LOCK(); IGMP_LOCK(); igi = ((struct in_ifinfo *)ifp->if_afdata[AF_INET])->ii_igmp; KASSERT(igi != NULL, ("%s: no igmp_ifsoftc for ifp %p", __func__, ifp)); if (igi->igi_flags & IGIF_LOOPBACK) { CTR2(KTR_IGMPV3, "ignore v3 query on IGIF_LOOPBACK ifp %p(%s)", ifp, ifp->if_xname); goto out_locked; } /* * Discard the v3 query if we're in Compatibility Mode. * The RFC is not obviously worded that hosts need to stay in * compatibility mode until the Old Version Querier Present * timer expires. */ if (igi->igi_version != IGMP_VERSION_3) { CTR3(KTR_IGMPV3, "ignore v3 query in v%d mode on ifp %p(%s)", igi->igi_version, ifp, ifp->if_xname); goto out_locked; } igmp_set_version(igi, IGMP_VERSION_3); igi->igi_rv = qrv; igi->igi_qi = qqi; igi->igi_qri = maxresp; CTR4(KTR_IGMPV3, "%s: qrv %d qi %d qri %d", __func__, qrv, qqi, maxresp); if (is_general_query) { /* * Schedule a current-state report on this ifp for * all groups, possibly containing source lists. * If there is a pending General Query response * scheduled earlier than the selected delay, do * not schedule any other reports. * Otherwise, reset the interface timer. */ CTR2(KTR_IGMPV3, "process v3 general query on ifp %p(%s)", ifp, ifp->if_xname); if (igi->igi_v3_timer == 0 || igi->igi_v3_timer >= timer) { igi->igi_v3_timer = IGMP_RANDOM_DELAY(timer); V_interface_timers_running = 1; } } else { /* * Group-source-specific queries are throttled on * a per-group basis to defeat denial-of-service attempts. * Queries for groups we are not a member of on this * link are simply ignored. */ inm = inm_lookup(ifp, igmpv3->igmp_group); if (inm == NULL) goto out_locked; if (nsrc > 0) { if (!ratecheck(&inm->inm_lastgsrtv, &V_igmp_gsrdelay)) { CTR1(KTR_IGMPV3, "%s: GS query throttled.", __func__); IGMPSTAT_INC(igps_drop_gsr_queries); goto out_locked; } } CTR3(KTR_IGMPV3, "process v3 %s query on ifp %p(%s)", inet_ntoa(igmpv3->igmp_group), ifp, ifp->if_xname); /* * If there is a pending General Query response * scheduled sooner than the selected delay, no * further report need be scheduled. * Otherwise, prepare to respond to the * group-specific or group-and-source query. */ if (igi->igi_v3_timer == 0 || igi->igi_v3_timer >= timer) igmp_input_v3_group_query(inm, igi, timer, igmpv3); } out_locked: IGMP_UNLOCK(); IN_MULTI_UNLOCK(); return (0); } /* * Process a recieved IGMPv3 group-specific or group-and-source-specific * query. * Return <0 if any error occured. Currently this is ignored. */ static int igmp_input_v3_group_query(struct in_multi *inm, struct igmp_ifsoftc *igi, int timer, /*const*/ struct igmpv3 *igmpv3) { int retval; uint16_t nsrc; IN_MULTI_LOCK_ASSERT(); IGMP_LOCK_ASSERT(); retval = 0; switch (inm->inm_state) { case IGMP_NOT_MEMBER: case IGMP_SILENT_MEMBER: case IGMP_SLEEPING_MEMBER: case IGMP_LAZY_MEMBER: case IGMP_AWAKENING_MEMBER: case IGMP_IDLE_MEMBER: case IGMP_LEAVING_MEMBER: return (retval); break; case IGMP_REPORTING_MEMBER: case IGMP_G_QUERY_PENDING_MEMBER: case IGMP_SG_QUERY_PENDING_MEMBER: break; } nsrc = ntohs(igmpv3->igmp_numsrc); /* * Deal with group-specific queries upfront. * If any group query is already pending, purge any recorded * source-list state if it exists, and schedule a query response * for this group-specific query. */ if (nsrc == 0) { if (inm->inm_state == IGMP_G_QUERY_PENDING_MEMBER || inm->inm_state == IGMP_SG_QUERY_PENDING_MEMBER) { inm_clear_recorded(inm); timer = min(inm->inm_timer, timer); } inm->inm_state = IGMP_G_QUERY_PENDING_MEMBER; inm->inm_timer = IGMP_RANDOM_DELAY(timer); V_current_state_timers_running = 1; return (retval); } /* * Deal with the case where a group-and-source-specific query has * been received but a group-specific query is already pending. */ if (inm->inm_state == IGMP_G_QUERY_PENDING_MEMBER) { timer = min(inm->inm_timer, timer); inm->inm_timer = IGMP_RANDOM_DELAY(timer); V_current_state_timers_running = 1; return (retval); } /* * Finally, deal with the case where a group-and-source-specific * query has been received, where a response to a previous g-s-r * query exists, or none exists. * In this case, we need to parse the source-list which the Querier * has provided us with and check if we have any source list filter * entries at T1 for these sources. If we do not, there is no need * schedule a report and the query may be dropped. * If we do, we must record them and schedule a current-state * report for those sources. * FIXME: Handling source lists larger than 1 mbuf requires that * we pass the mbuf chain pointer down to this function, and use * m_getptr() to walk the chain. */ if (inm->inm_nsrc > 0) { const struct in_addr *ap; int i, nrecorded; ap = (const struct in_addr *)(igmpv3 + 1); nrecorded = 0; for (i = 0; i < nsrc; i++, ap++) { retval = inm_record_source(inm, ap->s_addr); if (retval < 0) break; nrecorded += retval; } if (nrecorded > 0) { CTR1(KTR_IGMPV3, "%s: schedule response to SG query", __func__); inm->inm_state = IGMP_SG_QUERY_PENDING_MEMBER; inm->inm_timer = IGMP_RANDOM_DELAY(timer); V_current_state_timers_running = 1; } } return (retval); } /* * Process a received IGMPv1 host membership report. * * NOTE: 0.0.0.0 workaround breaks const correctness. */ static int igmp_input_v1_report(struct ifnet *ifp, /*const*/ struct ip *ip, /*const*/ struct igmp *igmp) { struct rm_priotracker in_ifa_tracker; struct in_ifaddr *ia; struct in_multi *inm; IGMPSTAT_INC(igps_rcv_reports); if (ifp->if_flags & IFF_LOOPBACK) return (0); if (!IN_MULTICAST(ntohl(igmp->igmp_group.s_addr)) || !in_hosteq(igmp->igmp_group, ip->ip_dst)) { IGMPSTAT_INC(igps_rcv_badreports); return (EINVAL); } /* * RFC 3376, Section 4.2.13, 9.2, 9.3: * Booting clients may use the source address 0.0.0.0. Some * IGMP daemons may not know how to use IP_RECVIF to determine * the interface upon which this message was received. * Replace 0.0.0.0 with the subnet address if told to do so. */ if (V_igmp_recvifkludge && in_nullhost(ip->ip_src)) { IFP_TO_IA(ifp, ia, &in_ifa_tracker); if (ia != NULL) { ip->ip_src.s_addr = htonl(ia->ia_subnet); ifa_free(&ia->ia_ifa); } } CTR3(KTR_IGMPV3, "process v1 report %s on ifp %p(%s)", inet_ntoa(igmp->igmp_group), ifp, ifp->if_xname); /* * IGMPv1 report suppression. * If we are a member of this group, and our membership should be * reported, stop our group timer and transition to the 'lazy' state. */ IN_MULTI_LOCK(); inm = inm_lookup(ifp, igmp->igmp_group); if (inm != NULL) { struct igmp_ifsoftc *igi; igi = inm->inm_igi; if (igi == NULL) { KASSERT(igi != NULL, ("%s: no igi for ifp %p", __func__, ifp)); goto out_locked; } IGMPSTAT_INC(igps_rcv_ourreports); /* * If we are in IGMPv3 host mode, do not allow the * other host's IGMPv1 report to suppress our reports * unless explicitly configured to do so. */ if (igi->igi_version == IGMP_VERSION_3) { if (V_igmp_legacysupp) igmp_v3_suppress_group_record(inm); goto out_locked; } inm->inm_timer = 0; switch (inm->inm_state) { case IGMP_NOT_MEMBER: case IGMP_SILENT_MEMBER: break; case IGMP_IDLE_MEMBER: case IGMP_LAZY_MEMBER: case IGMP_AWAKENING_MEMBER: CTR3(KTR_IGMPV3, "report suppressed for %s on ifp %p(%s)", inet_ntoa(igmp->igmp_group), ifp, ifp->if_xname); case IGMP_SLEEPING_MEMBER: inm->inm_state = IGMP_SLEEPING_MEMBER; break; case IGMP_REPORTING_MEMBER: CTR3(KTR_IGMPV3, "report suppressed for %s on ifp %p(%s)", inet_ntoa(igmp->igmp_group), ifp, ifp->if_xname); if (igi->igi_version == IGMP_VERSION_1) inm->inm_state = IGMP_LAZY_MEMBER; else if (igi->igi_version == IGMP_VERSION_2) inm->inm_state = IGMP_SLEEPING_MEMBER; break; case IGMP_G_QUERY_PENDING_MEMBER: case IGMP_SG_QUERY_PENDING_MEMBER: case IGMP_LEAVING_MEMBER: break; } } out_locked: IN_MULTI_UNLOCK(); return (0); } /* * Process a received IGMPv2 host membership report. * * NOTE: 0.0.0.0 workaround breaks const correctness. */ static int igmp_input_v2_report(struct ifnet *ifp, /*const*/ struct ip *ip, /*const*/ struct igmp *igmp) { struct rm_priotracker in_ifa_tracker; struct in_ifaddr *ia; struct in_multi *inm; /* * Make sure we don't hear our own membership report. Fast * leave requires knowing that we are the only member of a * group. */ IFP_TO_IA(ifp, ia, &in_ifa_tracker); if (ia != NULL && in_hosteq(ip->ip_src, IA_SIN(ia)->sin_addr)) { ifa_free(&ia->ia_ifa); return (0); } IGMPSTAT_INC(igps_rcv_reports); if (ifp->if_flags & IFF_LOOPBACK) { if (ia != NULL) ifa_free(&ia->ia_ifa); return (0); } if (!IN_MULTICAST(ntohl(igmp->igmp_group.s_addr)) || !in_hosteq(igmp->igmp_group, ip->ip_dst)) { if (ia != NULL) ifa_free(&ia->ia_ifa); IGMPSTAT_INC(igps_rcv_badreports); return (EINVAL); } /* * RFC 3376, Section 4.2.13, 9.2, 9.3: * Booting clients may use the source address 0.0.0.0. Some * IGMP daemons may not know how to use IP_RECVIF to determine * the interface upon which this message was received. * Replace 0.0.0.0 with the subnet address if told to do so. */ if (V_igmp_recvifkludge && in_nullhost(ip->ip_src)) { if (ia != NULL) ip->ip_src.s_addr = htonl(ia->ia_subnet); } if (ia != NULL) ifa_free(&ia->ia_ifa); CTR3(KTR_IGMPV3, "process v2 report %s on ifp %p(%s)", inet_ntoa(igmp->igmp_group), ifp, ifp->if_xname); /* * IGMPv2 report suppression. * If we are a member of this group, and our membership should be * reported, and our group timer is pending or about to be reset, * stop our group timer by transitioning to the 'lazy' state. */ IN_MULTI_LOCK(); inm = inm_lookup(ifp, igmp->igmp_group); if (inm != NULL) { struct igmp_ifsoftc *igi; igi = inm->inm_igi; KASSERT(igi != NULL, ("%s: no igi for ifp %p", __func__, ifp)); IGMPSTAT_INC(igps_rcv_ourreports); /* * If we are in IGMPv3 host mode, do not allow the * other host's IGMPv1 report to suppress our reports * unless explicitly configured to do so. */ if (igi->igi_version == IGMP_VERSION_3) { if (V_igmp_legacysupp) igmp_v3_suppress_group_record(inm); goto out_locked; } inm->inm_timer = 0; switch (inm->inm_state) { case IGMP_NOT_MEMBER: case IGMP_SILENT_MEMBER: case IGMP_SLEEPING_MEMBER: break; case IGMP_REPORTING_MEMBER: case IGMP_IDLE_MEMBER: case IGMP_AWAKENING_MEMBER: CTR3(KTR_IGMPV3, "report suppressed for %s on ifp %p(%s)", inet_ntoa(igmp->igmp_group), ifp, ifp->if_xname); case IGMP_LAZY_MEMBER: inm->inm_state = IGMP_LAZY_MEMBER; break; case IGMP_G_QUERY_PENDING_MEMBER: case IGMP_SG_QUERY_PENDING_MEMBER: case IGMP_LEAVING_MEMBER: break; } } out_locked: IN_MULTI_UNLOCK(); return (0); } int igmp_input(struct mbuf **mp, int *offp, int proto) { int iphlen; struct ifnet *ifp; struct igmp *igmp; struct ip *ip; struct mbuf *m; int igmplen; int minlen; int queryver; CTR3(KTR_IGMPV3, "%s: called w/mbuf (%p,%d)", __func__, *mp, *offp); m = *mp; ifp = m->m_pkthdr.rcvif; *mp = NULL; IGMPSTAT_INC(igps_rcv_total); ip = mtod(m, struct ip *); iphlen = *offp; igmplen = ntohs(ip->ip_len) - iphlen; /* * Validate lengths. */ if (igmplen < IGMP_MINLEN) { IGMPSTAT_INC(igps_rcv_tooshort); m_freem(m); return (IPPROTO_DONE); } /* * Always pullup to the minimum size for v1/v2 or v3 * to amortize calls to m_pullup(). */ minlen = iphlen; if (igmplen >= IGMP_V3_QUERY_MINLEN) minlen += IGMP_V3_QUERY_MINLEN; else minlen += IGMP_MINLEN; if ((!M_WRITABLE(m) || m->m_len < minlen) && (m = m_pullup(m, minlen)) == 0) { IGMPSTAT_INC(igps_rcv_tooshort); return (IPPROTO_DONE); } ip = mtod(m, struct ip *); /* * Validate checksum. */ m->m_data += iphlen; m->m_len -= iphlen; igmp = mtod(m, struct igmp *); if (in_cksum(m, igmplen)) { IGMPSTAT_INC(igps_rcv_badsum); m_freem(m); return (IPPROTO_DONE); } m->m_data -= iphlen; m->m_len += iphlen; /* * IGMP control traffic is link-scope, and must have a TTL of 1. * DVMRP traffic (e.g. mrinfo, mtrace) is an exception; * probe packets may come from beyond the LAN. */ if (igmp->igmp_type != IGMP_DVMRP && ip->ip_ttl != 1) { IGMPSTAT_INC(igps_rcv_badttl); m_freem(m); return (IPPROTO_DONE); } switch (igmp->igmp_type) { case IGMP_HOST_MEMBERSHIP_QUERY: if (igmplen == IGMP_MINLEN) { if (igmp->igmp_code == 0) queryver = IGMP_VERSION_1; else queryver = IGMP_VERSION_2; } else if (igmplen >= IGMP_V3_QUERY_MINLEN) { queryver = IGMP_VERSION_3; } else { IGMPSTAT_INC(igps_rcv_tooshort); m_freem(m); return (IPPROTO_DONE); } switch (queryver) { case IGMP_VERSION_1: IGMPSTAT_INC(igps_rcv_v1v2_queries); if (!V_igmp_v1enable) break; if (igmp_input_v1_query(ifp, ip, igmp) != 0) { m_freem(m); return (IPPROTO_DONE); } break; case IGMP_VERSION_2: IGMPSTAT_INC(igps_rcv_v1v2_queries); if (!V_igmp_v2enable) break; if (igmp_input_v2_query(ifp, ip, igmp) != 0) { m_freem(m); return (IPPROTO_DONE); } break; case IGMP_VERSION_3: { struct igmpv3 *igmpv3; uint16_t igmpv3len; uint16_t nsrc; IGMPSTAT_INC(igps_rcv_v3_queries); igmpv3 = (struct igmpv3 *)igmp; /* * Validate length based on source count. */ nsrc = ntohs(igmpv3->igmp_numsrc); if (nsrc * sizeof(in_addr_t) > UINT16_MAX - iphlen - IGMP_V3_QUERY_MINLEN) { IGMPSTAT_INC(igps_rcv_tooshort); return (IPPROTO_DONE); } /* * m_pullup() may modify m, so pullup in * this scope. */ igmpv3len = iphlen + IGMP_V3_QUERY_MINLEN + sizeof(struct in_addr) * nsrc; if ((!M_WRITABLE(m) || m->m_len < igmpv3len) && (m = m_pullup(m, igmpv3len)) == NULL) { IGMPSTAT_INC(igps_rcv_tooshort); return (IPPROTO_DONE); } igmpv3 = (struct igmpv3 *)(mtod(m, uint8_t *) + iphlen); if (igmp_input_v3_query(ifp, ip, igmpv3) != 0) { m_freem(m); return (IPPROTO_DONE); } } break; } break; case IGMP_v1_HOST_MEMBERSHIP_REPORT: if (!V_igmp_v1enable) break; if (igmp_input_v1_report(ifp, ip, igmp) != 0) { m_freem(m); return (IPPROTO_DONE); } break; case IGMP_v2_HOST_MEMBERSHIP_REPORT: if (!V_igmp_v2enable) break; if (!ip_checkrouteralert(m)) IGMPSTAT_INC(igps_rcv_nora); if (igmp_input_v2_report(ifp, ip, igmp) != 0) { m_freem(m); return (IPPROTO_DONE); } break; case IGMP_v3_HOST_MEMBERSHIP_REPORT: /* * Hosts do not need to process IGMPv3 membership reports, * as report suppression is no longer required. */ if (!ip_checkrouteralert(m)) IGMPSTAT_INC(igps_rcv_nora); break; default: break; } /* * Pass all valid IGMP packets up to any process(es) listening on a * raw IGMP socket. */ *mp = m; return (rip_input(mp, offp, proto)); } /* * Fast timeout handler (global). * VIMAGE: Timeout handlers are expected to service all vimages. */ void igmp_fasttimo(void) { VNET_ITERATOR_DECL(vnet_iter); VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); igmp_fasttimo_vnet(); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); } /* * Fast timeout handler (per-vnet). * Sends are shuffled off to a netisr to deal with Giant. * * VIMAGE: Assume caller has set up our curvnet. */ static void igmp_fasttimo_vnet(void) { struct mbufq scq; /* State-change packets */ struct mbufq qrq; /* Query response packets */ struct ifnet *ifp; struct igmp_ifsoftc *igi; struct ifmultiaddr *ifma; struct in_multi *inm; int loop, uri_fasthz; loop = 0; uri_fasthz = 0; /* * Quick check to see if any work needs to be done, in order to * minimize the overhead of fasttimo processing. * SMPng: XXX Unlocked reads. */ if (!V_current_state_timers_running && !V_interface_timers_running && !V_state_change_timers_running) return; IN_MULTI_LOCK(); IGMP_LOCK(); /* * IGMPv3 General Query response timer processing. */ if (V_interface_timers_running) { CTR1(KTR_IGMPV3, "%s: interface timers running", __func__); V_interface_timers_running = 0; LIST_FOREACH(igi, &V_igi_head, igi_link) { if (igi->igi_v3_timer == 0) { /* Do nothing. */ } else if (--igi->igi_v3_timer == 0) { igmp_v3_dispatch_general_query(igi); } else { V_interface_timers_running = 1; } } } if (!V_current_state_timers_running && !V_state_change_timers_running) goto out_locked; V_current_state_timers_running = 0; V_state_change_timers_running = 0; CTR1(KTR_IGMPV3, "%s: state change timers running", __func__); /* * IGMPv1/v2/v3 host report and state-change timer processing. * Note: Processing a v3 group timer may remove a node. */ LIST_FOREACH(igi, &V_igi_head, igi_link) { ifp = igi->igi_ifp; if (igi->igi_version == IGMP_VERSION_3) { loop = (igi->igi_flags & IGIF_LOOPBACK) ? 1 : 0; uri_fasthz = IGMP_RANDOM_DELAY(igi->igi_uri * PR_FASTHZ); mbufq_init(&qrq, IGMP_MAX_G_GS_PACKETS); mbufq_init(&scq, IGMP_MAX_STATE_CHANGE_PACKETS); } IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; switch (igi->igi_version) { case IGMP_VERSION_1: case IGMP_VERSION_2: igmp_v1v2_process_group_timer(inm, igi->igi_version); break; case IGMP_VERSION_3: igmp_v3_process_group_timers(igi, &qrq, &scq, inm, uri_fasthz); break; } } IF_ADDR_RUNLOCK(ifp); if (igi->igi_version == IGMP_VERSION_3) { struct in_multi *tinm; igmp_dispatch_queue(&qrq, 0, loop); igmp_dispatch_queue(&scq, 0, loop); /* * Free the in_multi reference(s) for this * IGMP lifecycle. */ SLIST_FOREACH_SAFE(inm, &igi->igi_relinmhead, inm_nrele, tinm) { SLIST_REMOVE_HEAD(&igi->igi_relinmhead, inm_nrele); inm_release_locked(inm); } } } out_locked: IGMP_UNLOCK(); IN_MULTI_UNLOCK(); } /* * Update host report group timer for IGMPv1/v2. * Will update the global pending timer flags. */ static void igmp_v1v2_process_group_timer(struct in_multi *inm, const int version) { int report_timer_expired; IN_MULTI_LOCK_ASSERT(); IGMP_LOCK_ASSERT(); if (inm->inm_timer == 0) { report_timer_expired = 0; } else if (--inm->inm_timer == 0) { report_timer_expired = 1; } else { V_current_state_timers_running = 1; return; } switch (inm->inm_state) { case IGMP_NOT_MEMBER: case IGMP_SILENT_MEMBER: case IGMP_IDLE_MEMBER: case IGMP_LAZY_MEMBER: case IGMP_SLEEPING_MEMBER: case IGMP_AWAKENING_MEMBER: break; case IGMP_REPORTING_MEMBER: if (report_timer_expired) { inm->inm_state = IGMP_IDLE_MEMBER; (void)igmp_v1v2_queue_report(inm, (version == IGMP_VERSION_2) ? IGMP_v2_HOST_MEMBERSHIP_REPORT : IGMP_v1_HOST_MEMBERSHIP_REPORT); } break; case IGMP_G_QUERY_PENDING_MEMBER: case IGMP_SG_QUERY_PENDING_MEMBER: case IGMP_LEAVING_MEMBER: break; } } /* * Update a group's timers for IGMPv3. * Will update the global pending timer flags. * Note: Unlocked read from igi. */ static void igmp_v3_process_group_timers(struct igmp_ifsoftc *igi, struct mbufq *qrq, struct mbufq *scq, struct in_multi *inm, const int uri_fasthz) { int query_response_timer_expired; int state_change_retransmit_timer_expired; IN_MULTI_LOCK_ASSERT(); IGMP_LOCK_ASSERT(); query_response_timer_expired = 0; state_change_retransmit_timer_expired = 0; /* * During a transition from v1/v2 compatibility mode back to v3, * a group record in REPORTING state may still have its group * timer active. This is a no-op in this function; it is easier * to deal with it here than to complicate the slow-timeout path. */ if (inm->inm_timer == 0) { query_response_timer_expired = 0; } else if (--inm->inm_timer == 0) { query_response_timer_expired = 1; } else { V_current_state_timers_running = 1; } if (inm->inm_sctimer == 0) { state_change_retransmit_timer_expired = 0; } else if (--inm->inm_sctimer == 0) { state_change_retransmit_timer_expired = 1; } else { V_state_change_timers_running = 1; } /* We are in fasttimo, so be quick about it. */ if (!state_change_retransmit_timer_expired && !query_response_timer_expired) return; switch (inm->inm_state) { case IGMP_NOT_MEMBER: case IGMP_SILENT_MEMBER: case IGMP_SLEEPING_MEMBER: case IGMP_LAZY_MEMBER: case IGMP_AWAKENING_MEMBER: case IGMP_IDLE_MEMBER: break; case IGMP_G_QUERY_PENDING_MEMBER: case IGMP_SG_QUERY_PENDING_MEMBER: /* * Respond to a previously pending Group-Specific * or Group-and-Source-Specific query by enqueueing * the appropriate Current-State report for * immediate transmission. */ if (query_response_timer_expired) { int retval; retval = igmp_v3_enqueue_group_record(qrq, inm, 0, 1, (inm->inm_state == IGMP_SG_QUERY_PENDING_MEMBER)); CTR2(KTR_IGMPV3, "%s: enqueue record = %d", __func__, retval); inm->inm_state = IGMP_REPORTING_MEMBER; /* XXX Clear recorded sources for next time. */ inm_clear_recorded(inm); } /* FALLTHROUGH */ case IGMP_REPORTING_MEMBER: case IGMP_LEAVING_MEMBER: if (state_change_retransmit_timer_expired) { /* * State-change retransmission timer fired. * If there are any further pending retransmissions, * set the global pending state-change flag, and * reset the timer. */ if (--inm->inm_scrv > 0) { inm->inm_sctimer = uri_fasthz; V_state_change_timers_running = 1; } /* * Retransmit the previously computed state-change * report. If there are no further pending * retransmissions, the mbuf queue will be consumed. * Update T0 state to T1 as we have now sent * a state-change. */ (void)igmp_v3_merge_state_changes(inm, scq); inm_commit(inm); CTR3(KTR_IGMPV3, "%s: T1 -> T0 for %s/%s", __func__, inet_ntoa(inm->inm_addr), inm->inm_ifp->if_xname); /* * If we are leaving the group for good, make sure * we release IGMP's reference to it. * This release must be deferred using a SLIST, * as we are called from a loop which traverses * the in_ifmultiaddr TAILQ. */ if (inm->inm_state == IGMP_LEAVING_MEMBER && inm->inm_scrv == 0) { inm->inm_state = IGMP_NOT_MEMBER; SLIST_INSERT_HEAD(&igi->igi_relinmhead, inm, inm_nrele); } } break; } } /* * Suppress a group's pending response to a group or source/group query. * * Do NOT suppress state changes. This leads to IGMPv3 inconsistency. * Do NOT update ST1/ST0 as this operation merely suppresses * the currently pending group record. * Do NOT suppress the response to a general query. It is possible but * it would require adding another state or flag. */ static void igmp_v3_suppress_group_record(struct in_multi *inm) { IN_MULTI_LOCK_ASSERT(); KASSERT(inm->inm_igi->igi_version == IGMP_VERSION_3, ("%s: not IGMPv3 mode on link", __func__)); if (inm->inm_state != IGMP_G_QUERY_PENDING_MEMBER || inm->inm_state != IGMP_SG_QUERY_PENDING_MEMBER) return; if (inm->inm_state == IGMP_SG_QUERY_PENDING_MEMBER) inm_clear_recorded(inm); inm->inm_timer = 0; inm->inm_state = IGMP_REPORTING_MEMBER; } /* * Switch to a different IGMP version on the given interface, * as per Section 7.2.1. */ static void igmp_set_version(struct igmp_ifsoftc *igi, const int version) { int old_version_timer; IGMP_LOCK_ASSERT(); CTR4(KTR_IGMPV3, "%s: switching to v%d on ifp %p(%s)", __func__, version, igi->igi_ifp, igi->igi_ifp->if_xname); if (version == IGMP_VERSION_1 || version == IGMP_VERSION_2) { /* * Compute the "Older Version Querier Present" timer as per * Section 8.12. */ old_version_timer = igi->igi_rv * igi->igi_qi + igi->igi_qri; old_version_timer *= PR_SLOWHZ; if (version == IGMP_VERSION_1) { igi->igi_v1_timer = old_version_timer; igi->igi_v2_timer = 0; } else if (version == IGMP_VERSION_2) { igi->igi_v1_timer = 0; igi->igi_v2_timer = old_version_timer; } } if (igi->igi_v1_timer == 0 && igi->igi_v2_timer > 0) { if (igi->igi_version != IGMP_VERSION_2) { igi->igi_version = IGMP_VERSION_2; igmp_v3_cancel_link_timers(igi); } } else if (igi->igi_v1_timer > 0) { if (igi->igi_version != IGMP_VERSION_1) { igi->igi_version = IGMP_VERSION_1; igmp_v3_cancel_link_timers(igi); } } } /* * Cancel pending IGMPv3 timers for the given link and all groups * joined on it; state-change, general-query, and group-query timers. * * Only ever called on a transition from v3 to Compatibility mode. Kill * the timers stone dead (this may be expensive for large N groups), they * will be restarted if Compatibility Mode deems that they must be due to * query processing. */ static void igmp_v3_cancel_link_timers(struct igmp_ifsoftc *igi) { struct ifmultiaddr *ifma; struct ifnet *ifp; struct in_multi *inm, *tinm; CTR3(KTR_IGMPV3, "%s: cancel v3 timers on ifp %p(%s)", __func__, igi->igi_ifp, igi->igi_ifp->if_xname); IN_MULTI_LOCK_ASSERT(); IGMP_LOCK_ASSERT(); /* * Stop the v3 General Query Response on this link stone dead. * If fasttimo is woken up due to V_interface_timers_running, * the flag will be cleared if there are no pending link timers. */ igi->igi_v3_timer = 0; /* * Now clear the current-state and state-change report timers * for all memberships scoped to this link. */ ifp = igi->igi_ifp; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; switch (inm->inm_state) { case IGMP_NOT_MEMBER: case IGMP_SILENT_MEMBER: case IGMP_IDLE_MEMBER: case IGMP_LAZY_MEMBER: case IGMP_SLEEPING_MEMBER: case IGMP_AWAKENING_MEMBER: /* * These states are either not relevant in v3 mode, * or are unreported. Do nothing. */ break; case IGMP_LEAVING_MEMBER: /* * If we are leaving the group and switching to * compatibility mode, we need to release the final * reference held for issuing the INCLUDE {}, and * transition to REPORTING to ensure the host leave * message is sent upstream to the old querier -- * transition to NOT would lose the leave and race. */ SLIST_INSERT_HEAD(&igi->igi_relinmhead, inm, inm_nrele); /* FALLTHROUGH */ case IGMP_G_QUERY_PENDING_MEMBER: case IGMP_SG_QUERY_PENDING_MEMBER: inm_clear_recorded(inm); /* FALLTHROUGH */ case IGMP_REPORTING_MEMBER: inm->inm_state = IGMP_REPORTING_MEMBER; break; } /* * Always clear state-change and group report timers. * Free any pending IGMPv3 state-change records. */ inm->inm_sctimer = 0; inm->inm_timer = 0; mbufq_drain(&inm->inm_scq); } IF_ADDR_RUNLOCK(ifp); SLIST_FOREACH_SAFE(inm, &igi->igi_relinmhead, inm_nrele, tinm) { SLIST_REMOVE_HEAD(&igi->igi_relinmhead, inm_nrele); inm_release_locked(inm); } } /* * Update the Older Version Querier Present timers for a link. * See Section 7.2.1 of RFC 3376. */ static void igmp_v1v2_process_querier_timers(struct igmp_ifsoftc *igi) { IGMP_LOCK_ASSERT(); if (igi->igi_v1_timer == 0 && igi->igi_v2_timer == 0) { /* * IGMPv1 and IGMPv2 Querier Present timers expired. * * Revert to IGMPv3. */ if (igi->igi_version != IGMP_VERSION_3) { CTR5(KTR_IGMPV3, "%s: transition from v%d -> v%d on %p(%s)", __func__, igi->igi_version, IGMP_VERSION_3, igi->igi_ifp, igi->igi_ifp->if_xname); igi->igi_version = IGMP_VERSION_3; } } else if (igi->igi_v1_timer == 0 && igi->igi_v2_timer > 0) { /* * IGMPv1 Querier Present timer expired, * IGMPv2 Querier Present timer running. * If IGMPv2 was disabled since last timeout, * revert to IGMPv3. * If IGMPv2 is enabled, revert to IGMPv2. */ if (!V_igmp_v2enable) { CTR5(KTR_IGMPV3, "%s: transition from v%d -> v%d on %p(%s)", __func__, igi->igi_version, IGMP_VERSION_3, igi->igi_ifp, igi->igi_ifp->if_xname); igi->igi_v2_timer = 0; igi->igi_version = IGMP_VERSION_3; } else { --igi->igi_v2_timer; if (igi->igi_version != IGMP_VERSION_2) { CTR5(KTR_IGMPV3, "%s: transition from v%d -> v%d on %p(%s)", __func__, igi->igi_version, IGMP_VERSION_2, igi->igi_ifp, igi->igi_ifp->if_xname); igi->igi_version = IGMP_VERSION_2; igmp_v3_cancel_link_timers(igi); } } } else if (igi->igi_v1_timer > 0) { /* * IGMPv1 Querier Present timer running. * Stop IGMPv2 timer if running. * * If IGMPv1 was disabled since last timeout, * revert to IGMPv3. * If IGMPv1 is enabled, reset IGMPv2 timer if running. */ if (!V_igmp_v1enable) { CTR5(KTR_IGMPV3, "%s: transition from v%d -> v%d on %p(%s)", __func__, igi->igi_version, IGMP_VERSION_3, igi->igi_ifp, igi->igi_ifp->if_xname); igi->igi_v1_timer = 0; igi->igi_version = IGMP_VERSION_3; } else { --igi->igi_v1_timer; } if (igi->igi_v2_timer > 0) { CTR3(KTR_IGMPV3, "%s: cancel v2 timer on %p(%s)", __func__, igi->igi_ifp, igi->igi_ifp->if_xname); igi->igi_v2_timer = 0; } } } /* * Global slowtimo handler. * VIMAGE: Timeout handlers are expected to service all vimages. */ void igmp_slowtimo(void) { VNET_ITERATOR_DECL(vnet_iter); VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); igmp_slowtimo_vnet(); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); } /* * Per-vnet slowtimo handler. */ static void igmp_slowtimo_vnet(void) { struct igmp_ifsoftc *igi; IGMP_LOCK(); LIST_FOREACH(igi, &V_igi_head, igi_link) { igmp_v1v2_process_querier_timers(igi); } IGMP_UNLOCK(); } /* * Dispatch an IGMPv1/v2 host report or leave message. * These are always small enough to fit inside a single mbuf. */ static int igmp_v1v2_queue_report(struct in_multi *inm, const int type) { struct ifnet *ifp; struct igmp *igmp; struct ip *ip; struct mbuf *m; IN_MULTI_LOCK_ASSERT(); IGMP_LOCK_ASSERT(); ifp = inm->inm_ifp; m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) return (ENOMEM); M_ALIGN(m, sizeof(struct ip) + sizeof(struct igmp)); m->m_pkthdr.len = sizeof(struct ip) + sizeof(struct igmp); m->m_data += sizeof(struct ip); m->m_len = sizeof(struct igmp); igmp = mtod(m, struct igmp *); igmp->igmp_type = type; igmp->igmp_code = 0; igmp->igmp_group = inm->inm_addr; igmp->igmp_cksum = 0; igmp->igmp_cksum = in_cksum(m, sizeof(struct igmp)); m->m_data -= sizeof(struct ip); m->m_len += sizeof(struct ip); ip = mtod(m, struct ip *); ip->ip_tos = 0; ip->ip_len = htons(sizeof(struct ip) + sizeof(struct igmp)); ip->ip_off = 0; ip->ip_p = IPPROTO_IGMP; ip->ip_src.s_addr = INADDR_ANY; if (type == IGMP_HOST_LEAVE_MESSAGE) ip->ip_dst.s_addr = htonl(INADDR_ALLRTRS_GROUP); else ip->ip_dst = inm->inm_addr; igmp_save_context(m, ifp); m->m_flags |= M_IGMPV2; if (inm->inm_igi->igi_flags & IGIF_LOOPBACK) m->m_flags |= M_IGMP_LOOP; CTR2(KTR_IGMPV3, "%s: netisr_dispatch(NETISR_IGMP, %p)", __func__, m); netisr_dispatch(NETISR_IGMP, m); return (0); } /* * Process a state change from the upper layer for the given IPv4 group. * * Each socket holds a reference on the in_multi in its own ip_moptions. * The socket layer will have made the necessary updates to.the group * state, it is now up to IGMP to issue a state change report if there * has been any change between T0 (when the last state-change was issued) * and T1 (now). * * We use the IGMPv3 state machine at group level. The IGMP module * however makes the decision as to which IGMP protocol version to speak. * A state change *from* INCLUDE {} always means an initial join. * A state change *to* INCLUDE {} always means a final leave. * * FUTURE: If IGIF_V3LITE is enabled for this interface, then we can * save ourselves a bunch of work; any exclusive mode groups need not * compute source filter lists. * * VIMAGE: curvnet should have been set by caller, as this routine * is called from the socket option handlers. */ int igmp_change_state(struct in_multi *inm) { struct igmp_ifsoftc *igi; struct ifnet *ifp; int error; IN_MULTI_LOCK_ASSERT(); error = 0; /* * Try to detect if the upper layer just asked us to change state * for an interface which has now gone away. */ KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__)); ifp = inm->inm_ifma->ifma_ifp; /* * Sanity check that netinet's notion of ifp is the * same as net's. */ KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__)); IGMP_LOCK(); igi = ((struct in_ifinfo *)ifp->if_afdata[AF_INET])->ii_igmp; KASSERT(igi != NULL, ("%s: no igmp_ifsoftc for ifp %p", __func__, ifp)); /* * If we detect a state transition to or from MCAST_UNDEFINED * for this group, then we are starting or finishing an IGMP * life cycle for this group. */ if (inm->inm_st[1].iss_fmode != inm->inm_st[0].iss_fmode) { CTR3(KTR_IGMPV3, "%s: inm transition %d -> %d", __func__, inm->inm_st[0].iss_fmode, inm->inm_st[1].iss_fmode); if (inm->inm_st[0].iss_fmode == MCAST_UNDEFINED) { CTR1(KTR_IGMPV3, "%s: initial join", __func__); error = igmp_initial_join(inm, igi); goto out_locked; } else if (inm->inm_st[1].iss_fmode == MCAST_UNDEFINED) { CTR1(KTR_IGMPV3, "%s: final leave", __func__); igmp_final_leave(inm, igi); goto out_locked; } } else { CTR1(KTR_IGMPV3, "%s: filter set change", __func__); } error = igmp_handle_state_change(inm, igi); out_locked: IGMP_UNLOCK(); return (error); } /* * Perform the initial join for an IGMP group. * * When joining a group: * If the group should have its IGMP traffic suppressed, do nothing. * IGMPv1 starts sending IGMPv1 host membership reports. * IGMPv2 starts sending IGMPv2 host membership reports. * IGMPv3 will schedule an IGMPv3 state-change report containing the * initial state of the membership. */ static int igmp_initial_join(struct in_multi *inm, struct igmp_ifsoftc *igi) { struct ifnet *ifp; struct mbufq *mq; int error, retval, syncstates; CTR4(KTR_IGMPV3, "%s: initial join %s on ifp %p(%s)", __func__, inet_ntoa(inm->inm_addr), inm->inm_ifp, inm->inm_ifp->if_xname); error = 0; syncstates = 1; ifp = inm->inm_ifp; IN_MULTI_LOCK_ASSERT(); IGMP_LOCK_ASSERT(); KASSERT(igi && igi->igi_ifp == ifp, ("%s: inconsistent ifp", __func__)); /* * Groups joined on loopback or marked as 'not reported', * e.g. 224.0.0.1, enter the IGMP_SILENT_MEMBER state and * are never reported in any IGMP protocol exchanges. * All other groups enter the appropriate IGMP state machine * for the version in use on this link. * A link marked as IGIF_SILENT causes IGMP to be completely * disabled for the link. */ if ((ifp->if_flags & IFF_LOOPBACK) || (igi->igi_flags & IGIF_SILENT) || !igmp_isgroupreported(inm->inm_addr)) { CTR1(KTR_IGMPV3, "%s: not kicking state machine for silent group", __func__); inm->inm_state = IGMP_SILENT_MEMBER; inm->inm_timer = 0; } else { /* * Deal with overlapping in_multi lifecycle. * If this group was LEAVING, then make sure * we drop the reference we picked up to keep the * group around for the final INCLUDE {} enqueue. */ if (igi->igi_version == IGMP_VERSION_3 && inm->inm_state == IGMP_LEAVING_MEMBER) inm_release_locked(inm); inm->inm_state = IGMP_REPORTING_MEMBER; switch (igi->igi_version) { case IGMP_VERSION_1: case IGMP_VERSION_2: inm->inm_state = IGMP_IDLE_MEMBER; error = igmp_v1v2_queue_report(inm, (igi->igi_version == IGMP_VERSION_2) ? IGMP_v2_HOST_MEMBERSHIP_REPORT : IGMP_v1_HOST_MEMBERSHIP_REPORT); if (error == 0) { inm->inm_timer = IGMP_RANDOM_DELAY( IGMP_V1V2_MAX_RI * PR_FASTHZ); V_current_state_timers_running = 1; } break; case IGMP_VERSION_3: /* * Defer update of T0 to T1, until the first copy * of the state change has been transmitted. */ syncstates = 0; /* * Immediately enqueue a State-Change Report for * this interface, freeing any previous reports. * Don't kick the timers if there is nothing to do, * or if an error occurred. */ mq = &inm->inm_scq; mbufq_drain(mq); retval = igmp_v3_enqueue_group_record(mq, inm, 1, 0, 0); CTR2(KTR_IGMPV3, "%s: enqueue record = %d", __func__, retval); if (retval <= 0) { error = retval * -1; break; } /* * Schedule transmission of pending state-change * report up to RV times for this link. The timer * will fire at the next igmp_fasttimo (~200ms), * giving us an opportunity to merge the reports. */ if (igi->igi_flags & IGIF_LOOPBACK) { inm->inm_scrv = 1; } else { KASSERT(igi->igi_rv > 1, ("%s: invalid robustness %d", __func__, igi->igi_rv)); inm->inm_scrv = igi->igi_rv; } inm->inm_sctimer = 1; V_state_change_timers_running = 1; error = 0; break; } } /* * Only update the T0 state if state change is atomic, * i.e. we don't need to wait for a timer to fire before we * can consider the state change to have been communicated. */ if (syncstates) { inm_commit(inm); CTR3(KTR_IGMPV3, "%s: T1 -> T0 for %s/%s", __func__, inet_ntoa(inm->inm_addr), inm->inm_ifp->if_xname); } return (error); } /* * Issue an intermediate state change during the IGMP life-cycle. */ static int igmp_handle_state_change(struct in_multi *inm, struct igmp_ifsoftc *igi) { struct ifnet *ifp; int retval; CTR4(KTR_IGMPV3, "%s: state change for %s on ifp %p(%s)", __func__, inet_ntoa(inm->inm_addr), inm->inm_ifp, inm->inm_ifp->if_xname); ifp = inm->inm_ifp; IN_MULTI_LOCK_ASSERT(); IGMP_LOCK_ASSERT(); KASSERT(igi && igi->igi_ifp == ifp, ("%s: inconsistent ifp", __func__)); if ((ifp->if_flags & IFF_LOOPBACK) || (igi->igi_flags & IGIF_SILENT) || !igmp_isgroupreported(inm->inm_addr) || (igi->igi_version != IGMP_VERSION_3)) { if (!igmp_isgroupreported(inm->inm_addr)) { CTR1(KTR_IGMPV3, "%s: not kicking state machine for silent group", __func__); } CTR1(KTR_IGMPV3, "%s: nothing to do", __func__); inm_commit(inm); CTR3(KTR_IGMPV3, "%s: T1 -> T0 for %s/%s", __func__, inet_ntoa(inm->inm_addr), inm->inm_ifp->if_xname); return (0); } mbufq_drain(&inm->inm_scq); retval = igmp_v3_enqueue_group_record(&inm->inm_scq, inm, 1, 0, 0); CTR2(KTR_IGMPV3, "%s: enqueue record = %d", __func__, retval); if (retval <= 0) return (-retval); /* * If record(s) were enqueued, start the state-change * report timer for this group. */ inm->inm_scrv = ((igi->igi_flags & IGIF_LOOPBACK) ? 1 : igi->igi_rv); inm->inm_sctimer = 1; V_state_change_timers_running = 1; return (0); } /* * Perform the final leave for an IGMP group. * * When leaving a group: * IGMPv1 does nothing. * IGMPv2 sends a host leave message, if and only if we are the reporter. * IGMPv3 enqueues a state-change report containing a transition * to INCLUDE {} for immediate transmission. */ static void igmp_final_leave(struct in_multi *inm, struct igmp_ifsoftc *igi) { int syncstates; syncstates = 1; CTR4(KTR_IGMPV3, "%s: final leave %s on ifp %p(%s)", __func__, inet_ntoa(inm->inm_addr), inm->inm_ifp, inm->inm_ifp->if_xname); IN_MULTI_LOCK_ASSERT(); IGMP_LOCK_ASSERT(); switch (inm->inm_state) { case IGMP_NOT_MEMBER: case IGMP_SILENT_MEMBER: case IGMP_LEAVING_MEMBER: /* Already leaving or left; do nothing. */ CTR1(KTR_IGMPV3, "%s: not kicking state machine for silent group", __func__); break; case IGMP_REPORTING_MEMBER: case IGMP_IDLE_MEMBER: case IGMP_G_QUERY_PENDING_MEMBER: case IGMP_SG_QUERY_PENDING_MEMBER: if (igi->igi_version == IGMP_VERSION_2) { #ifdef INVARIANTS if (inm->inm_state == IGMP_G_QUERY_PENDING_MEMBER || inm->inm_state == IGMP_SG_QUERY_PENDING_MEMBER) panic("%s: IGMPv3 state reached, not IGMPv3 mode", __func__); #endif igmp_v1v2_queue_report(inm, IGMP_HOST_LEAVE_MESSAGE); inm->inm_state = IGMP_NOT_MEMBER; } else if (igi->igi_version == IGMP_VERSION_3) { /* * Stop group timer and all pending reports. * Immediately enqueue a state-change report * TO_IN {} to be sent on the next fast timeout, * giving us an opportunity to merge reports. */ mbufq_drain(&inm->inm_scq); inm->inm_timer = 0; if (igi->igi_flags & IGIF_LOOPBACK) { inm->inm_scrv = 1; } else { inm->inm_scrv = igi->igi_rv; } CTR4(KTR_IGMPV3, "%s: Leaving %s/%s with %d " "pending retransmissions.", __func__, inet_ntoa(inm->inm_addr), inm->inm_ifp->if_xname, inm->inm_scrv); if (inm->inm_scrv == 0) { inm->inm_state = IGMP_NOT_MEMBER; inm->inm_sctimer = 0; } else { int retval; inm_acquire_locked(inm); retval = igmp_v3_enqueue_group_record( &inm->inm_scq, inm, 1, 0, 0); KASSERT(retval != 0, ("%s: enqueue record = %d", __func__, retval)); inm->inm_state = IGMP_LEAVING_MEMBER; inm->inm_sctimer = 1; V_state_change_timers_running = 1; syncstates = 0; } break; } break; case IGMP_LAZY_MEMBER: case IGMP_SLEEPING_MEMBER: case IGMP_AWAKENING_MEMBER: /* Our reports are suppressed; do nothing. */ break; } if (syncstates) { inm_commit(inm); CTR3(KTR_IGMPV3, "%s: T1 -> T0 for %s/%s", __func__, inet_ntoa(inm->inm_addr), inm->inm_ifp->if_xname); inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; CTR3(KTR_IGMPV3, "%s: T1 now MCAST_UNDEFINED for %s/%s", __func__, inet_ntoa(inm->inm_addr), inm->inm_ifp->if_xname); } } /* * Enqueue an IGMPv3 group record to the given output queue. * * XXX This function could do with having the allocation code * split out, and the multiple-tree-walks coalesced into a single * routine as has been done in igmp_v3_enqueue_filter_change(). * * If is_state_change is zero, a current-state record is appended. * If is_state_change is non-zero, a state-change report is appended. * * If is_group_query is non-zero, an mbuf packet chain is allocated. * If is_group_query is zero, and if there is a packet with free space * at the tail of the queue, it will be appended to providing there * is enough free space. * Otherwise a new mbuf packet chain is allocated. * * If is_source_query is non-zero, each source is checked to see if * it was recorded for a Group-Source query, and will be omitted if * it is not both in-mode and recorded. * * The function will attempt to allocate leading space in the packet * for the IP/IGMP header to be prepended without fragmenting the chain. * * If successful the size of all data appended to the queue is returned, * otherwise an error code less than zero is returned, or zero if * no record(s) were appended. */ static int igmp_v3_enqueue_group_record(struct mbufq *mq, struct in_multi *inm, const int is_state_change, const int is_group_query, const int is_source_query) { struct igmp_grouprec ig; struct igmp_grouprec *pig; struct ifnet *ifp; struct ip_msource *ims, *nims; struct mbuf *m0, *m, *md; int error, is_filter_list_change; int minrec0len, m0srcs, msrcs, nbytes, off; int record_has_sources; int now; int type; in_addr_t naddr; uint8_t mode; IN_MULTI_LOCK_ASSERT(); error = 0; ifp = inm->inm_ifp; is_filter_list_change = 0; m = NULL; m0 = NULL; m0srcs = 0; msrcs = 0; nbytes = 0; nims = NULL; record_has_sources = 1; pig = NULL; type = IGMP_DO_NOTHING; mode = inm->inm_st[1].iss_fmode; /* * If we did not transition out of ASM mode during t0->t1, * and there are no source nodes to process, we can skip * the generation of source records. */ if (inm->inm_st[0].iss_asm > 0 && inm->inm_st[1].iss_asm > 0 && inm->inm_nsrc == 0) record_has_sources = 0; if (is_state_change) { /* * Queue a state change record. * If the mode did not change, and there are non-ASM * listeners or source filters present, * we potentially need to issue two records for the group. * If we are transitioning to MCAST_UNDEFINED, we need * not send any sources. * If there are ASM listeners, and there was no filter * mode transition of any kind, do nothing. */ if (mode != inm->inm_st[0].iss_fmode) { if (mode == MCAST_EXCLUDE) { CTR1(KTR_IGMPV3, "%s: change to EXCLUDE", __func__); type = IGMP_CHANGE_TO_EXCLUDE_MODE; } else { CTR1(KTR_IGMPV3, "%s: change to INCLUDE", __func__); type = IGMP_CHANGE_TO_INCLUDE_MODE; if (mode == MCAST_UNDEFINED) record_has_sources = 0; } } else { if (record_has_sources) { is_filter_list_change = 1; } else { type = IGMP_DO_NOTHING; } } } else { /* * Queue a current state record. */ if (mode == MCAST_EXCLUDE) { type = IGMP_MODE_IS_EXCLUDE; } else if (mode == MCAST_INCLUDE) { type = IGMP_MODE_IS_INCLUDE; KASSERT(inm->inm_st[1].iss_asm == 0, ("%s: inm %p is INCLUDE but ASM count is %d", __func__, inm, inm->inm_st[1].iss_asm)); } } /* * Generate the filter list changes using a separate function. */ if (is_filter_list_change) return (igmp_v3_enqueue_filter_change(mq, inm)); if (type == IGMP_DO_NOTHING) { CTR3(KTR_IGMPV3, "%s: nothing to do for %s/%s", __func__, inet_ntoa(inm->inm_addr), inm->inm_ifp->if_xname); return (0); } /* * If any sources are present, we must be able to fit at least * one in the trailing space of the tail packet's mbuf, * ideally more. */ minrec0len = sizeof(struct igmp_grouprec); if (record_has_sources) minrec0len += sizeof(in_addr_t); CTR4(KTR_IGMPV3, "%s: queueing %s for %s/%s", __func__, igmp_rec_type_to_str(type), inet_ntoa(inm->inm_addr), inm->inm_ifp->if_xname); /* * Check if we have a packet in the tail of the queue for this * group into which the first group record for this group will fit. * Otherwise allocate a new packet. * Always allocate leading space for IP+RA_OPT+IGMP+REPORT. * Note: Group records for G/GSR query responses MUST be sent * in their own packet. */ m0 = mbufq_last(mq); if (!is_group_query && m0 != NULL && (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= IGMP_V3_REPORT_MAXRECS) && (m0->m_pkthdr.len + minrec0len) < (ifp->if_mtu - IGMP_LEADINGSPACE)) { m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - sizeof(struct igmp_grouprec)) / sizeof(in_addr_t); m = m0; CTR1(KTR_IGMPV3, "%s: use existing packet", __func__); } else { if (mbufq_full(mq)) { CTR1(KTR_IGMPV3, "%s: outbound queue full", __func__); return (-ENOMEM); } m = NULL; m0srcs = (ifp->if_mtu - IGMP_LEADINGSPACE - sizeof(struct igmp_grouprec)) / sizeof(in_addr_t); if (!is_state_change && !is_group_query) { m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m) m->m_data += IGMP_LEADINGSPACE; } if (m == NULL) { m = m_gethdr(M_NOWAIT, MT_DATA); if (m) M_ALIGN(m, IGMP_LEADINGSPACE); } if (m == NULL) return (-ENOMEM); igmp_save_context(m, ifp); CTR1(KTR_IGMPV3, "%s: allocated first packet", __func__); } /* * Append group record. * If we have sources, we don't know how many yet. */ ig.ig_type = type; ig.ig_datalen = 0; ig.ig_numsrc = 0; ig.ig_group = inm->inm_addr; if (!m_append(m, sizeof(struct igmp_grouprec), (void *)&ig)) { if (m != m0) m_freem(m); CTR1(KTR_IGMPV3, "%s: m_append() failed.", __func__); return (-ENOMEM); } nbytes += sizeof(struct igmp_grouprec); /* * Append as many sources as will fit in the first packet. * If we are appending to a new packet, the chain allocation * may potentially use clusters; use m_getptr() in this case. * If we are appending to an existing packet, we need to obtain * a pointer to the group record after m_append(), in case a new * mbuf was allocated. * Only append sources which are in-mode at t1. If we are * transitioning to MCAST_UNDEFINED state on the group, do not * include source entries. * Only report recorded sources in our filter set when responding * to a group-source query. */ if (record_has_sources) { if (m == m0) { md = m_last(m); pig = (struct igmp_grouprec *)(mtod(md, uint8_t *) + md->m_len - nbytes); } else { md = m_getptr(m, 0, &off); pig = (struct igmp_grouprec *)(mtod(md, uint8_t *) + off); } msrcs = 0; RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, nims) { CTR2(KTR_IGMPV3, "%s: visit node %s", __func__, inet_ntoa_haddr(ims->ims_haddr)); now = ims_get_mode(inm, ims, 1); CTR2(KTR_IGMPV3, "%s: node is %d", __func__, now); if ((now != mode) || (now == mode && mode == MCAST_UNDEFINED)) { CTR1(KTR_IGMPV3, "%s: skip node", __func__); continue; } if (is_source_query && ims->ims_stp == 0) { CTR1(KTR_IGMPV3, "%s: skip unrecorded node", __func__); continue; } CTR1(KTR_IGMPV3, "%s: append node", __func__); naddr = htonl(ims->ims_haddr); if (!m_append(m, sizeof(in_addr_t), (void *)&naddr)) { if (m != m0) m_freem(m); CTR1(KTR_IGMPV3, "%s: m_append() failed.", __func__); return (-ENOMEM); } nbytes += sizeof(in_addr_t); ++msrcs; if (msrcs == m0srcs) break; } CTR2(KTR_IGMPV3, "%s: msrcs is %d this packet", __func__, msrcs); pig->ig_numsrc = htons(msrcs); nbytes += (msrcs * sizeof(in_addr_t)); } if (is_source_query && msrcs == 0) { CTR1(KTR_IGMPV3, "%s: no recorded sources to report", __func__); if (m != m0) m_freem(m); return (0); } /* * We are good to go with first packet. */ if (m != m0) { CTR1(KTR_IGMPV3, "%s: enqueueing first packet", __func__); m->m_pkthdr.PH_vt.vt_nrecs = 1; mbufq_enqueue(mq, m); } else m->m_pkthdr.PH_vt.vt_nrecs++; /* * No further work needed if no source list in packet(s). */ if (!record_has_sources) return (nbytes); /* * Whilst sources remain to be announced, we need to allocate * a new packet and fill out as many sources as will fit. * Always try for a cluster first. */ while (nims != NULL) { if (mbufq_full(mq)) { CTR1(KTR_IGMPV3, "%s: outbound queue full", __func__); return (-ENOMEM); } m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m) m->m_data += IGMP_LEADINGSPACE; if (m == NULL) { m = m_gethdr(M_NOWAIT, MT_DATA); if (m) M_ALIGN(m, IGMP_LEADINGSPACE); } if (m == NULL) return (-ENOMEM); igmp_save_context(m, ifp); md = m_getptr(m, 0, &off); pig = (struct igmp_grouprec *)(mtod(md, uint8_t *) + off); CTR1(KTR_IGMPV3, "%s: allocated next packet", __func__); if (!m_append(m, sizeof(struct igmp_grouprec), (void *)&ig)) { if (m != m0) m_freem(m); CTR1(KTR_IGMPV3, "%s: m_append() failed.", __func__); return (-ENOMEM); } m->m_pkthdr.PH_vt.vt_nrecs = 1; nbytes += sizeof(struct igmp_grouprec); m0srcs = (ifp->if_mtu - IGMP_LEADINGSPACE - sizeof(struct igmp_grouprec)) / sizeof(in_addr_t); msrcs = 0; RB_FOREACH_FROM(ims, ip_msource_tree, nims) { CTR2(KTR_IGMPV3, "%s: visit node %s", __func__, inet_ntoa_haddr(ims->ims_haddr)); now = ims_get_mode(inm, ims, 1); if ((now != mode) || (now == mode && mode == MCAST_UNDEFINED)) { CTR1(KTR_IGMPV3, "%s: skip node", __func__); continue; } if (is_source_query && ims->ims_stp == 0) { CTR1(KTR_IGMPV3, "%s: skip unrecorded node", __func__); continue; } CTR1(KTR_IGMPV3, "%s: append node", __func__); naddr = htonl(ims->ims_haddr); if (!m_append(m, sizeof(in_addr_t), (void *)&naddr)) { if (m != m0) m_freem(m); CTR1(KTR_IGMPV3, "%s: m_append() failed.", __func__); return (-ENOMEM); } ++msrcs; if (msrcs == m0srcs) break; } pig->ig_numsrc = htons(msrcs); nbytes += (msrcs * sizeof(in_addr_t)); CTR1(KTR_IGMPV3, "%s: enqueueing next packet", __func__); mbufq_enqueue(mq, m); } return (nbytes); } /* * Type used to mark record pass completion. * We exploit the fact we can cast to this easily from the * current filter modes on each ip_msource node. */ typedef enum { REC_NONE = 0x00, /* MCAST_UNDEFINED */ REC_ALLOW = 0x01, /* MCAST_INCLUDE */ REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ REC_FULL = REC_ALLOW | REC_BLOCK } rectype_t; /* * Enqueue an IGMPv3 filter list change to the given output queue. * * Source list filter state is held in an RB-tree. When the filter list * for a group is changed without changing its mode, we need to compute * the deltas between T0 and T1 for each source in the filter set, * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. * * As we may potentially queue two record types, and the entire R-B tree * needs to be walked at once, we break this out into its own function * so we can generate a tightly packed queue of packets. * * XXX This could be written to only use one tree walk, although that makes * serializing into the mbuf chains a bit harder. For now we do two walks * which makes things easier on us, and it may or may not be harder on * the L2 cache. * * If successful the size of all data appended to the queue is returned, * otherwise an error code less than zero is returned, or zero if * no record(s) were appended. */ static int igmp_v3_enqueue_filter_change(struct mbufq *mq, struct in_multi *inm) { static const int MINRECLEN = sizeof(struct igmp_grouprec) + sizeof(in_addr_t); struct ifnet *ifp; struct igmp_grouprec ig; struct igmp_grouprec *pig; struct ip_msource *ims, *nims; struct mbuf *m, *m0, *md; in_addr_t naddr; int m0srcs, nbytes, npbytes, off, rsrcs, schanged; int nallow, nblock; uint8_t mode, now, then; rectype_t crt, drt, nrt; IN_MULTI_LOCK_ASSERT(); if (inm->inm_nsrc == 0 || (inm->inm_st[0].iss_asm > 0 && inm->inm_st[1].iss_asm > 0)) return (0); ifp = inm->inm_ifp; /* interface */ mode = inm->inm_st[1].iss_fmode; /* filter mode at t1 */ crt = REC_NONE; /* current group record type */ drt = REC_NONE; /* mask of completed group record types */ nrt = REC_NONE; /* record type for current node */ m0srcs = 0; /* # source which will fit in current mbuf chain */ nbytes = 0; /* # of bytes appended to group's state-change queue */ npbytes = 0; /* # of bytes appended this packet */ rsrcs = 0; /* # sources encoded in current record */ schanged = 0; /* # nodes encoded in overall filter change */ nallow = 0; /* # of source entries in ALLOW_NEW */ nblock = 0; /* # of source entries in BLOCK_OLD */ nims = NULL; /* next tree node pointer */ /* * For each possible filter record mode. * The first kind of source we encounter tells us which * is the first kind of record we start appending. * If a node transitioned to UNDEFINED at t1, its mode is treated * as the inverse of the group's filter mode. */ while (drt != REC_FULL) { do { m0 = mbufq_last(mq); if (m0 != NULL && (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= IGMP_V3_REPORT_MAXRECS) && (m0->m_pkthdr.len + MINRECLEN) < (ifp->if_mtu - IGMP_LEADINGSPACE)) { m = m0; m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - sizeof(struct igmp_grouprec)) / sizeof(in_addr_t); CTR1(KTR_IGMPV3, "%s: use previous packet", __func__); } else { m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m) m->m_data += IGMP_LEADINGSPACE; if (m == NULL) { m = m_gethdr(M_NOWAIT, MT_DATA); if (m) M_ALIGN(m, IGMP_LEADINGSPACE); } if (m == NULL) { CTR1(KTR_IGMPV3, "%s: m_get*() failed", __func__); return (-ENOMEM); } m->m_pkthdr.PH_vt.vt_nrecs = 0; igmp_save_context(m, ifp); m0srcs = (ifp->if_mtu - IGMP_LEADINGSPACE - sizeof(struct igmp_grouprec)) / sizeof(in_addr_t); npbytes = 0; CTR1(KTR_IGMPV3, "%s: allocated new packet", __func__); } /* * Append the IGMP group record header to the * current packet's data area. * Recalculate pointer to free space for next * group record, in case m_append() allocated * a new mbuf or cluster. */ memset(&ig, 0, sizeof(ig)); ig.ig_group = inm->inm_addr; if (!m_append(m, sizeof(ig), (void *)&ig)) { if (m != m0) m_freem(m); CTR1(KTR_IGMPV3, "%s: m_append() failed", __func__); return (-ENOMEM); } npbytes += sizeof(struct igmp_grouprec); if (m != m0) { /* new packet; offset in c hain */ md = m_getptr(m, npbytes - sizeof(struct igmp_grouprec), &off); pig = (struct igmp_grouprec *)(mtod(md, uint8_t *) + off); } else { /* current packet; offset from last append */ md = m_last(m); pig = (struct igmp_grouprec *)(mtod(md, uint8_t *) + md->m_len - sizeof(struct igmp_grouprec)); } /* * Begin walking the tree for this record type * pass, or continue from where we left off * previously if we had to allocate a new packet. * Only report deltas in-mode at t1. * We need not report included sources as allowed * if we are in inclusive mode on the group, * however the converse is not true. */ rsrcs = 0; if (nims == NULL) nims = RB_MIN(ip_msource_tree, &inm->inm_srcs); RB_FOREACH_FROM(ims, ip_msource_tree, nims) { CTR2(KTR_IGMPV3, "%s: visit node %s", __func__, inet_ntoa_haddr(ims->ims_haddr)); now = ims_get_mode(inm, ims, 1); then = ims_get_mode(inm, ims, 0); CTR3(KTR_IGMPV3, "%s: mode: t0 %d, t1 %d", __func__, then, now); if (now == then) { CTR1(KTR_IGMPV3, "%s: skip unchanged", __func__); continue; } if (mode == MCAST_EXCLUDE && now == MCAST_INCLUDE) { CTR1(KTR_IGMPV3, "%s: skip IN src on EX group", __func__); continue; } nrt = (rectype_t)now; if (nrt == REC_NONE) nrt = (rectype_t)(~mode & REC_FULL); if (schanged++ == 0) { crt = nrt; } else if (crt != nrt) continue; naddr = htonl(ims->ims_haddr); if (!m_append(m, sizeof(in_addr_t), (void *)&naddr)) { if (m != m0) m_freem(m); CTR1(KTR_IGMPV3, "%s: m_append() failed", __func__); return (-ENOMEM); } nallow += !!(crt == REC_ALLOW); nblock += !!(crt == REC_BLOCK); if (++rsrcs == m0srcs) break; } /* * If we did not append any tree nodes on this * pass, back out of allocations. */ if (rsrcs == 0) { npbytes -= sizeof(struct igmp_grouprec); if (m != m0) { CTR1(KTR_IGMPV3, "%s: m_free(m)", __func__); m_freem(m); } else { CTR1(KTR_IGMPV3, "%s: m_adj(m, -ig)", __func__); m_adj(m, -((int)sizeof( struct igmp_grouprec))); } continue; } npbytes += (rsrcs * sizeof(in_addr_t)); if (crt == REC_ALLOW) pig->ig_type = IGMP_ALLOW_NEW_SOURCES; else if (crt == REC_BLOCK) pig->ig_type = IGMP_BLOCK_OLD_SOURCES; pig->ig_numsrc = htons(rsrcs); /* * Count the new group record, and enqueue this * packet if it wasn't already queued. */ m->m_pkthdr.PH_vt.vt_nrecs++; if (m != m0) mbufq_enqueue(mq, m); nbytes += npbytes; } while (nims != NULL); drt |= crt; crt = (~crt & REC_FULL); } CTR3(KTR_IGMPV3, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__, nallow, nblock); return (nbytes); } static int igmp_v3_merge_state_changes(struct in_multi *inm, struct mbufq *scq) { struct mbufq *gq; struct mbuf *m; /* pending state-change */ struct mbuf *m0; /* copy of pending state-change */ struct mbuf *mt; /* last state-change in packet */ int docopy, domerge; u_int recslen; docopy = 0; domerge = 0; recslen = 0; IN_MULTI_LOCK_ASSERT(); IGMP_LOCK_ASSERT(); /* * If there are further pending retransmissions, make a writable * copy of each queued state-change message before merging. */ if (inm->inm_scrv > 0) docopy = 1; gq = &inm->inm_scq; #ifdef KTR if (mbufq_first(gq) == NULL) { CTR2(KTR_IGMPV3, "%s: WARNING: queue for inm %p is empty", __func__, inm); } #endif m = mbufq_first(gq); while (m != NULL) { /* * Only merge the report into the current packet if * there is sufficient space to do so; an IGMPv3 report * packet may only contain 65,535 group records. * Always use a simple mbuf chain concatentation to do this, * as large state changes for single groups may have * allocated clusters. */ domerge = 0; mt = mbufq_last(scq); if (mt != NULL) { recslen = m_length(m, NULL); if ((mt->m_pkthdr.PH_vt.vt_nrecs + m->m_pkthdr.PH_vt.vt_nrecs <= IGMP_V3_REPORT_MAXRECS) && (mt->m_pkthdr.len + recslen <= (inm->inm_ifp->if_mtu - IGMP_LEADINGSPACE))) domerge = 1; } if (!domerge && mbufq_full(gq)) { CTR2(KTR_IGMPV3, "%s: outbound queue full, skipping whole packet %p", __func__, m); mt = m->m_nextpkt; if (!docopy) m_freem(m); m = mt; continue; } if (!docopy) { CTR2(KTR_IGMPV3, "%s: dequeueing %p", __func__, m); m0 = mbufq_dequeue(gq); m = m0->m_nextpkt; } else { CTR2(KTR_IGMPV3, "%s: copying %p", __func__, m); m0 = m_dup(m, M_NOWAIT); if (m0 == NULL) return (ENOMEM); m0->m_nextpkt = NULL; m = m->m_nextpkt; } if (!domerge) { CTR3(KTR_IGMPV3, "%s: queueing %p to scq %p)", __func__, m0, scq); mbufq_enqueue(scq, m0); } else { struct mbuf *mtl; /* last mbuf of packet mt */ CTR3(KTR_IGMPV3, "%s: merging %p with scq tail %p)", __func__, m0, mt); mtl = m_last(mt); m0->m_flags &= ~M_PKTHDR; mt->m_pkthdr.len += recslen; mt->m_pkthdr.PH_vt.vt_nrecs += m0->m_pkthdr.PH_vt.vt_nrecs; mtl->m_next = m0; } } return (0); } /* * Respond to a pending IGMPv3 General Query. */ static void igmp_v3_dispatch_general_query(struct igmp_ifsoftc *igi) { struct ifmultiaddr *ifma; struct ifnet *ifp; struct in_multi *inm; int retval, loop; IN_MULTI_LOCK_ASSERT(); IGMP_LOCK_ASSERT(); KASSERT(igi->igi_version == IGMP_VERSION_3, ("%s: called when version %d", __func__, igi->igi_version)); /* * Check that there are some packets queued. If so, send them first. * For large number of groups the reply to general query can take * many packets, we should finish sending them before starting of * queuing the new reply. */ if (mbufq_len(&igi->igi_gq) != 0) goto send; ifp = igi->igi_ifp; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; KASSERT(ifp == inm->inm_ifp, ("%s: inconsistent ifp", __func__)); switch (inm->inm_state) { case IGMP_NOT_MEMBER: case IGMP_SILENT_MEMBER: break; case IGMP_REPORTING_MEMBER: case IGMP_IDLE_MEMBER: case IGMP_LAZY_MEMBER: case IGMP_SLEEPING_MEMBER: case IGMP_AWAKENING_MEMBER: inm->inm_state = IGMP_REPORTING_MEMBER; retval = igmp_v3_enqueue_group_record(&igi->igi_gq, inm, 0, 0, 0); CTR2(KTR_IGMPV3, "%s: enqueue record = %d", __func__, retval); break; case IGMP_G_QUERY_PENDING_MEMBER: case IGMP_SG_QUERY_PENDING_MEMBER: case IGMP_LEAVING_MEMBER: break; } } IF_ADDR_RUNLOCK(ifp); send: loop = (igi->igi_flags & IGIF_LOOPBACK) ? 1 : 0; igmp_dispatch_queue(&igi->igi_gq, IGMP_MAX_RESPONSE_BURST, loop); /* * Slew transmission of bursts over 500ms intervals. */ if (mbufq_first(&igi->igi_gq) != NULL) { igi->igi_v3_timer = 1 + IGMP_RANDOM_DELAY( IGMP_RESPONSE_BURST_INTERVAL); V_interface_timers_running = 1; } } /* * Transmit the next pending IGMP message in the output queue. * * We get called from netisr_processqueue(). A mutex private to igmpoq * will be acquired and released around this routine. * * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis. * MRT: Nothing needs to be done, as IGMP traffic is always local to * a link and uses a link-scope multicast address. */ static void igmp_intr(struct mbuf *m) { struct ip_moptions imo; struct ifnet *ifp; struct mbuf *ipopts, *m0; int error; uint32_t ifindex; CTR2(KTR_IGMPV3, "%s: transmit %p", __func__, m); /* * Set VNET image pointer from enqueued mbuf chain * before doing anything else. Whilst we use interface * indexes to guard against interface detach, they are * unique to each VIMAGE and must be retrieved. */ CURVNET_SET((struct vnet *)(m->m_pkthdr.PH_loc.ptr)); ifindex = igmp_restore_context(m); /* * Check if the ifnet still exists. This limits the scope of * any race in the absence of a global ifp lock for low cost * (an array lookup). */ ifp = ifnet_byindex(ifindex); if (ifp == NULL) { CTR3(KTR_IGMPV3, "%s: dropped %p as ifindex %u went away.", __func__, m, ifindex); m_freem(m); IPSTAT_INC(ips_noroute); goto out; } ipopts = V_igmp_sendra ? m_raopt : NULL; imo.imo_multicast_ttl = 1; imo.imo_multicast_vif = -1; imo.imo_multicast_loop = (V_ip_mrouter != NULL); /* * If the user requested that IGMP traffic be explicitly * redirected to the loopback interface (e.g. they are running a * MANET interface and the routing protocol needs to see the * updates), handle this now. */ if (m->m_flags & M_IGMP_LOOP) imo.imo_multicast_ifp = V_loif; else imo.imo_multicast_ifp = ifp; if (m->m_flags & M_IGMPV2) { m0 = m; } else { m0 = igmp_v3_encap_report(ifp, m); if (m0 == NULL) { CTR2(KTR_IGMPV3, "%s: dropped %p", __func__, m); m_freem(m); IPSTAT_INC(ips_odropped); goto out; } } igmp_scrub_context(m0); m_clrprotoflags(m); m0->m_pkthdr.rcvif = V_loif; #ifdef MAC mac_netinet_igmp_send(ifp, m0); #endif error = ip_output(m0, ipopts, NULL, 0, &imo, NULL); if (error) { CTR3(KTR_IGMPV3, "%s: ip_output(%p) = %d", __func__, m0, error); goto out; } IGMPSTAT_INC(igps_snd_reports); out: /* * We must restore the existing vnet pointer before * continuing as we are run from netisr context. */ CURVNET_RESTORE(); } /* * Encapsulate an IGMPv3 report. * * The internal mbuf flag M_IGMPV3_HDR is used to indicate that the mbuf * chain has already had its IP/IGMPv3 header prepended. In this case * the function will not attempt to prepend; the lengths and checksums * will however be re-computed. * * Returns a pointer to the new mbuf chain head, or NULL if the * allocation failed. */ static struct mbuf * igmp_v3_encap_report(struct ifnet *ifp, struct mbuf *m) { struct rm_priotracker in_ifa_tracker; struct igmp_report *igmp; struct ip *ip; int hdrlen, igmpreclen; KASSERT((m->m_flags & M_PKTHDR), ("%s: mbuf chain %p is !M_PKTHDR", __func__, m)); igmpreclen = m_length(m, NULL); hdrlen = sizeof(struct ip) + sizeof(struct igmp_report); if (m->m_flags & M_IGMPV3_HDR) { igmpreclen -= hdrlen; } else { M_PREPEND(m, hdrlen, M_NOWAIT); if (m == NULL) return (NULL); m->m_flags |= M_IGMPV3_HDR; } CTR2(KTR_IGMPV3, "%s: igmpreclen is %d", __func__, igmpreclen); m->m_data += sizeof(struct ip); m->m_len -= sizeof(struct ip); igmp = mtod(m, struct igmp_report *); igmp->ir_type = IGMP_v3_HOST_MEMBERSHIP_REPORT; igmp->ir_rsv1 = 0; igmp->ir_rsv2 = 0; igmp->ir_numgrps = htons(m->m_pkthdr.PH_vt.vt_nrecs); igmp->ir_cksum = 0; igmp->ir_cksum = in_cksum(m, sizeof(struct igmp_report) + igmpreclen); m->m_pkthdr.PH_vt.vt_nrecs = 0; m->m_data -= sizeof(struct ip); m->m_len += sizeof(struct ip); ip = mtod(m, struct ip *); ip->ip_tos = IPTOS_PREC_INTERNETCONTROL; ip->ip_len = htons(hdrlen + igmpreclen); ip->ip_off = htons(IP_DF); ip->ip_p = IPPROTO_IGMP; ip->ip_sum = 0; ip->ip_src.s_addr = INADDR_ANY; if (m->m_flags & M_IGMP_LOOP) { struct in_ifaddr *ia; IFP_TO_IA(ifp, ia, &in_ifa_tracker); if (ia != NULL) { ip->ip_src = ia->ia_addr.sin_addr; ifa_free(&ia->ia_ifa); } } ip->ip_dst.s_addr = htonl(INADDR_ALLRPTS_GROUP); return (m); } #ifdef KTR static char * igmp_rec_type_to_str(const int type) { switch (type) { case IGMP_CHANGE_TO_EXCLUDE_MODE: return "TO_EX"; break; case IGMP_CHANGE_TO_INCLUDE_MODE: return "TO_IN"; break; case IGMP_MODE_IS_EXCLUDE: return "MODE_EX"; break; case IGMP_MODE_IS_INCLUDE: return "MODE_IN"; break; case IGMP_ALLOW_NEW_SOURCES: return "ALLOW_NEW"; break; case IGMP_BLOCK_OLD_SOURCES: return "BLOCK_OLD"; break; default: break; } return "unknown"; } #endif #ifdef VIMAGE static void vnet_igmp_uninit(const void *unused __unused) { + /* This can happen when we shutdown the entire network stack. */ CTR1(KTR_IGMPV3, "%s: tearing down", __func__); - - VNET_ASSERT(LIST_EMPTY(&V_igi_head), - ("%s: igi list %p not empty; ifnets not detached?", __func__, - &V_igi_head)); } VNET_SYSUNINIT(vnet_igmp_uninit, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_igmp_uninit, NULL); #endif #ifdef DDB DB_SHOW_COMMAND(igi_list, db_show_igi_list) { struct igmp_ifsoftc *igi, *tigi; LIST_HEAD(_igi_list, igmp_ifsoftc) *igi_head; if (!have_addr) { db_printf("usage: show igi_list \n"); return; } igi_head = (struct _igi_list *)addr; LIST_FOREACH_SAFE(igi, igi_head, igi_link, tigi) { db_printf("igmp_ifsoftc %p:\n", igi); db_printf(" ifp %p\n", igi->igi_ifp); db_printf(" version %u\n", igi->igi_version); db_printf(" v1_timer %u\n", igi->igi_v1_timer); db_printf(" v2_timer %u\n", igi->igi_v2_timer); db_printf(" v3_timer %u\n", igi->igi_v3_timer); db_printf(" flags %#x\n", igi->igi_flags); db_printf(" rv %u\n", igi->igi_rv); db_printf(" qi %u\n", igi->igi_qi); db_printf(" qri %u\n", igi->igi_qri); db_printf(" uri %u\n", igi->igi_uri); /* SLIST_HEAD(,in_multi) igi_relinmhead */ /* struct mbufq igi_gq; */ db_printf("\n"); } } #endif static int igmp_modevent(module_t mod, int type, void *unused __unused) { switch (type) { case MOD_LOAD: CTR1(KTR_IGMPV3, "%s: initializing", __func__); IGMP_LOCK_INIT(); m_raopt = igmp_ra_alloc(); netisr_register(&igmp_nh); break; case MOD_UNLOAD: CTR1(KTR_IGMPV3, "%s: tearing down", __func__); netisr_unregister(&igmp_nh); m_free(m_raopt); m_raopt = NULL; IGMP_LOCK_DESTROY(); break; default: return (EOPNOTSUPP); } return (0); } static moduledata_t igmp_mod = { "igmp", igmp_modevent, 0 }; DECLARE_MODULE(igmp, igmp_mod, SI_SUB_PROTO_MC, SI_ORDER_ANY); Index: projects/vnet/sys/netinet/in.c =================================================================== --- projects/vnet/sys/netinet/in.c (revision 297511) +++ projects/vnet/sys/netinet/in.c (revision 297512) @@ -1,1432 +1,1467 @@ /*- * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * Copyright (C) 2001 WIDE Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in.c 8.4 (Berkeley) 1/9/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_mpath.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int in_aifaddr_ioctl(u_long, caddr_t, struct ifnet *, struct thread *); static int in_difaddr_ioctl(caddr_t, struct ifnet *, struct thread *); static void in_socktrim(struct sockaddr_in *); static void in_purgemaddrs(struct ifnet *); static VNET_DEFINE(int, nosameprefix); #define V_nosameprefix VNET(nosameprefix) SYSCTL_INT(_net_inet_ip, OID_AUTO, no_same_prefix, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nosameprefix), 0, "Refuse to create same prefixes on different interfaces"); VNET_DECLARE(struct inpcbinfo, ripcbinfo); #define V_ripcbinfo VNET(ripcbinfo) static struct sx in_control_sx; SX_SYSINIT(in_control_sx, &in_control_sx, "in_control"); /* * Return 1 if an internet address is for a ``local'' host * (one to which we have a connection). */ int in_localaddr(struct in_addr in) { struct rm_priotracker in_ifa_tracker; register u_long i = ntohl(in.s_addr); register struct in_ifaddr *ia; IN_IFADDR_RLOCK(&in_ifa_tracker); TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if ((i & ia->ia_subnetmask) == ia->ia_subnet) { IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (1); } } IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (0); } /* * Return 1 if an internet address is for the local host and configured * on one of its interfaces. */ int in_localip(struct in_addr in) { struct rm_priotracker in_ifa_tracker; struct in_ifaddr *ia; IN_IFADDR_RLOCK(&in_ifa_tracker); LIST_FOREACH(ia, INADDR_HASH(in.s_addr), ia_hash) { if (IA_SIN(ia)->sin_addr.s_addr == in.s_addr) { IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (1); } } IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (0); } /* * Return 1 if an internet address is configured on an interface. */ int in_ifhasaddr(struct ifnet *ifp, struct in_addr in) { struct ifaddr *ifa; struct in_ifaddr *ia; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; ia = (struct in_ifaddr *)ifa; if (ia->ia_addr.sin_addr.s_addr == in.s_addr) { IF_ADDR_RUNLOCK(ifp); return (1); } } IF_ADDR_RUNLOCK(ifp); return (0); } /* * Return a reference to the interface address which is different to * the supplied one but with same IP address value. */ static struct in_ifaddr * in_localip_more(struct in_ifaddr *ia) { struct rm_priotracker in_ifa_tracker; in_addr_t in = IA_SIN(ia)->sin_addr.s_addr; struct in_ifaddr *it; IN_IFADDR_RLOCK(&in_ifa_tracker); LIST_FOREACH(it, INADDR_HASH(in), ia_hash) { if (it != ia && IA_SIN(it)->sin_addr.s_addr == in) { ifa_ref(&it->ia_ifa); IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (it); } } IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (NULL); } /* * Determine whether an IP address is in a reserved set of addresses * that may not be forwarded, or whether datagrams to that destination * may be forwarded. */ int in_canforward(struct in_addr in) { register u_long i = ntohl(in.s_addr); register u_long net; if (IN_EXPERIMENTAL(i) || IN_MULTICAST(i) || IN_LINKLOCAL(i)) return (0); if (IN_CLASSA(i)) { net = i & IN_CLASSA_NET; if (net == 0 || net == (IN_LOOPBACKNET << IN_CLASSA_NSHIFT)) return (0); } return (1); } /* * Trim a mask in a sockaddr */ static void in_socktrim(struct sockaddr_in *ap) { register char *cplim = (char *) &ap->sin_addr; register char *cp = (char *) (&ap->sin_addr + 1); ap->sin_len = 0; while (--cp >= cplim) if (*cp) { (ap)->sin_len = cp - (char *) (ap) + 1; break; } } /* * Generic internet control operations (ioctl's). */ int in_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { struct ifreq *ifr = (struct ifreq *)data; struct sockaddr_in *addr = (struct sockaddr_in *)&ifr->ifr_addr; struct ifaddr *ifa; struct in_ifaddr *ia; int error; if (ifp == NULL) return (EADDRNOTAVAIL); /* * Filter out 4 ioctls we implement directly. Forward the rest * to specific functions and ifp->if_ioctl(). */ switch (cmd) { case SIOCGIFADDR: case SIOCGIFBRDADDR: case SIOCGIFDSTADDR: case SIOCGIFNETMASK: break; case SIOCDIFADDR: sx_xlock(&in_control_sx); error = in_difaddr_ioctl(data, ifp, td); sx_xunlock(&in_control_sx); return (error); case OSIOCAIFADDR: /* 9.x compat */ case SIOCAIFADDR: sx_xlock(&in_control_sx); error = in_aifaddr_ioctl(cmd, data, ifp, td); sx_xunlock(&in_control_sx); return (error); case SIOCSIFADDR: case SIOCSIFBRDADDR: case SIOCSIFDSTADDR: case SIOCSIFNETMASK: /* We no longer support that old commands. */ return (EINVAL); default: if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); return ((*ifp->if_ioctl)(ifp, cmd, data)); } if (addr->sin_addr.s_addr != INADDR_ANY && prison_check_ip4(td->td_ucred, &addr->sin_addr) != 0) return (EADDRNOTAVAIL); /* * Find address for this interface, if it exists. If an * address was specified, find that one instead of the * first one on the interface, if possible. */ IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; ia = (struct in_ifaddr *)ifa; if (ia->ia_addr.sin_addr.s_addr == addr->sin_addr.s_addr) break; } if (ifa == NULL) TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (ifa->ifa_addr->sa_family == AF_INET) { ia = (struct in_ifaddr *)ifa; if (prison_check_ip4(td->td_ucred, &ia->ia_addr.sin_addr) == 0) break; } if (ifa == NULL) { IF_ADDR_RUNLOCK(ifp); return (EADDRNOTAVAIL); } error = 0; switch (cmd) { case SIOCGIFADDR: *addr = ia->ia_addr; break; case SIOCGIFBRDADDR: if ((ifp->if_flags & IFF_BROADCAST) == 0) { error = EINVAL; break; } *addr = ia->ia_broadaddr; break; case SIOCGIFDSTADDR: if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { error = EINVAL; break; } *addr = ia->ia_dstaddr; break; case SIOCGIFNETMASK: *addr = ia->ia_sockmask; break; } IF_ADDR_RUNLOCK(ifp); return (error); } static int in_aifaddr_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { const struct in_aliasreq *ifra = (struct in_aliasreq *)data; const struct sockaddr_in *addr = &ifra->ifra_addr; const struct sockaddr_in *broadaddr = &ifra->ifra_broadaddr; const struct sockaddr_in *mask = &ifra->ifra_mask; const struct sockaddr_in *dstaddr = &ifra->ifra_dstaddr; const int vhid = (cmd == SIOCAIFADDR) ? ifra->ifra_vhid : 0; struct ifaddr *ifa; struct in_ifaddr *ia; bool iaIsFirst; int error = 0; error = priv_check(td, PRIV_NET_ADDIFADDR); if (error) return (error); /* * ifra_addr must be present and be of INET family. * ifra_broadaddr/ifra_dstaddr and ifra_mask are optional. */ if (addr->sin_len != sizeof(struct sockaddr_in) || addr->sin_family != AF_INET) return (EINVAL); if (broadaddr->sin_len != 0 && (broadaddr->sin_len != sizeof(struct sockaddr_in) || broadaddr->sin_family != AF_INET)) return (EINVAL); if (mask->sin_len != 0 && (mask->sin_len != sizeof(struct sockaddr_in) || mask->sin_family != AF_INET)) return (EINVAL); if ((ifp->if_flags & IFF_POINTOPOINT) && (dstaddr->sin_len != sizeof(struct sockaddr_in) || dstaddr->sin_addr.s_addr == INADDR_ANY)) return (EDESTADDRREQ); if (vhid > 0 && carp_attach_p == NULL) return (EPROTONOSUPPORT); /* * See whether address already exist. */ iaIsFirst = true; ia = NULL; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct in_ifaddr *it; if (ifa->ifa_addr->sa_family != AF_INET) continue; it = (struct in_ifaddr *)ifa; iaIsFirst = false; if (it->ia_addr.sin_addr.s_addr == addr->sin_addr.s_addr && prison_check_ip4(td->td_ucred, &addr->sin_addr) == 0) ia = it; } IF_ADDR_RUNLOCK(ifp); if (ia != NULL) (void )in_difaddr_ioctl(data, ifp, td); ifa = ifa_alloc(sizeof(struct in_ifaddr), M_WAITOK); ia = (struct in_ifaddr *)ifa; ifa->ifa_addr = (struct sockaddr *)&ia->ia_addr; ifa->ifa_dstaddr = (struct sockaddr *)&ia->ia_dstaddr; ifa->ifa_netmask = (struct sockaddr *)&ia->ia_sockmask; ia->ia_ifp = ifp; ia->ia_addr = *addr; if (mask->sin_len != 0) { ia->ia_sockmask = *mask; ia->ia_subnetmask = ntohl(ia->ia_sockmask.sin_addr.s_addr); } else { in_addr_t i = ntohl(addr->sin_addr.s_addr); /* * Be compatible with network classes, if netmask isn't * supplied, guess it based on classes. */ if (IN_CLASSA(i)) ia->ia_subnetmask = IN_CLASSA_NET; else if (IN_CLASSB(i)) ia->ia_subnetmask = IN_CLASSB_NET; else ia->ia_subnetmask = IN_CLASSC_NET; ia->ia_sockmask.sin_addr.s_addr = htonl(ia->ia_subnetmask); } ia->ia_subnet = ntohl(addr->sin_addr.s_addr) & ia->ia_subnetmask; in_socktrim(&ia->ia_sockmask); if (ifp->if_flags & IFF_BROADCAST) { if (broadaddr->sin_len != 0) { ia->ia_broadaddr = *broadaddr; } else if (ia->ia_subnetmask == IN_RFC3021_MASK) { ia->ia_broadaddr.sin_addr.s_addr = INADDR_BROADCAST; ia->ia_broadaddr.sin_len = sizeof(struct sockaddr_in); ia->ia_broadaddr.sin_family = AF_INET; } else { ia->ia_broadaddr.sin_addr.s_addr = htonl(ia->ia_subnet | ~ia->ia_subnetmask); ia->ia_broadaddr.sin_len = sizeof(struct sockaddr_in); ia->ia_broadaddr.sin_family = AF_INET; } } if (ifp->if_flags & IFF_POINTOPOINT) ia->ia_dstaddr = *dstaddr; /* XXXGL: rtinit() needs this strange assignment. */ if (ifp->if_flags & IFF_LOOPBACK) ia->ia_dstaddr = ia->ia_addr; if (vhid != 0) { error = (*carp_attach_p)(&ia->ia_ifa, vhid); if (error) return (error); } /* if_addrhead is already referenced by ifa_alloc() */ IF_ADDR_WLOCK(ifp); TAILQ_INSERT_TAIL(&ifp->if_addrhead, ifa, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_ref(ifa); /* in_ifaddrhead */ IN_IFADDR_WLOCK(); TAILQ_INSERT_TAIL(&V_in_ifaddrhead, ia, ia_link); LIST_INSERT_HEAD(INADDR_HASH(ia->ia_addr.sin_addr.s_addr), ia, ia_hash); IN_IFADDR_WUNLOCK(); /* * Give the interface a chance to initialize * if this is its first address, * and to validate the address if necessary. */ if (ifp->if_ioctl != NULL) { error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); if (error) goto fail1; } /* * Add route for the network. */ if (vhid == 0) { int flags = RTF_UP; if (ifp->if_flags & (IFF_LOOPBACK|IFF_POINTOPOINT)) flags |= RTF_HOST; error = in_addprefix(ia, flags); if (error) goto fail1; } /* * Add a loopback route to self. */ if (vhid == 0 && (ifp->if_flags & IFF_LOOPBACK) == 0 && ia->ia_addr.sin_addr.s_addr != INADDR_ANY && !((ifp->if_flags & IFF_POINTOPOINT) && ia->ia_dstaddr.sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)) { struct in_ifaddr *eia; eia = in_localip_more(ia); if (eia == NULL) { error = ifa_add_loopback_route((struct ifaddr *)ia, (struct sockaddr *)&ia->ia_addr); if (error) goto fail2; } else ifa_free(&eia->ia_ifa); } if (iaIsFirst && (ifp->if_flags & IFF_MULTICAST)) { struct in_addr allhosts_addr; struct in_ifinfo *ii; ii = ((struct in_ifinfo *)ifp->if_afdata[AF_INET]); allhosts_addr.s_addr = htonl(INADDR_ALLHOSTS_GROUP); error = in_joingroup(ifp, &allhosts_addr, NULL, &ii->ii_allhosts); } EVENTHANDLER_INVOKE(ifaddr_event, ifp); return (error); fail2: if (vhid == 0) (void )in_scrubprefix(ia, LLE_STATIC); fail1: if (ia->ia_ifa.ifa_carp) (*carp_detach_p)(&ia->ia_ifa); IF_ADDR_WLOCK(ifp); TAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(&ia->ia_ifa); /* if_addrhead */ IN_IFADDR_WLOCK(); TAILQ_REMOVE(&V_in_ifaddrhead, ia, ia_link); LIST_REMOVE(ia, ia_hash); IN_IFADDR_WUNLOCK(); ifa_free(&ia->ia_ifa); /* in_ifaddrhead */ return (error); } static int in_difaddr_ioctl(caddr_t data, struct ifnet *ifp, struct thread *td) { const struct ifreq *ifr = (struct ifreq *)data; const struct sockaddr_in *addr = (const struct sockaddr_in *) &ifr->ifr_addr; struct ifaddr *ifa; struct in_ifaddr *ia; bool deleteAny, iaIsLast; int error; if (td != NULL) { error = priv_check(td, PRIV_NET_DELIFADDR); if (error) return (error); } if (addr->sin_len != sizeof(struct sockaddr_in) || addr->sin_family != AF_INET) deleteAny = true; else deleteAny = false; iaIsLast = true; ia = NULL; IF_ADDR_WLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct in_ifaddr *it; if (ifa->ifa_addr->sa_family != AF_INET) continue; it = (struct in_ifaddr *)ifa; if (deleteAny && ia == NULL && (td == NULL || prison_check_ip4(td->td_ucred, &it->ia_addr.sin_addr) == 0)) ia = it; if (it->ia_addr.sin_addr.s_addr == addr->sin_addr.s_addr && (td == NULL || prison_check_ip4(td->td_ucred, &addr->sin_addr) == 0)) ia = it; if (it != ia) iaIsLast = false; } if (ia == NULL) { IF_ADDR_WUNLOCK(ifp); return (EADDRNOTAVAIL); } TAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(&ia->ia_ifa); /* if_addrhead */ IN_IFADDR_WLOCK(); TAILQ_REMOVE(&V_in_ifaddrhead, ia, ia_link); LIST_REMOVE(ia, ia_hash); IN_IFADDR_WUNLOCK(); /* * in_scrubprefix() kills the interface route. */ in_scrubprefix(ia, LLE_STATIC); /* * in_ifadown gets rid of all the rest of * the routes. This is not quite the right * thing to do, but at least if we are running * a routing process they will come back. */ in_ifadown(&ia->ia_ifa, 1); if (ia->ia_ifa.ifa_carp) (*carp_detach_p)(&ia->ia_ifa); /* * If this is the last IPv4 address configured on this * interface, leave the all-hosts group. * No state-change report need be transmitted. */ if (iaIsLast && (ifp->if_flags & IFF_MULTICAST)) { struct in_ifinfo *ii; ii = ((struct in_ifinfo *)ifp->if_afdata[AF_INET]); IN_MULTI_LOCK(); if (ii->ii_allhosts) { (void)in_leavegroup_locked(ii->ii_allhosts, NULL); ii->ii_allhosts = NULL; } IN_MULTI_UNLOCK(); } EVENTHANDLER_INVOKE(ifaddr_event, ifp); ifa_free(&ia->ia_ifa); /* in_ifaddrhead */ return (0); } #define rtinitflags(x) \ ((((x)->ia_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) != 0) \ ? RTF_HOST : 0) /* * Check if we have a route for the given prefix already or add one accordingly. */ int in_addprefix(struct in_ifaddr *target, int flags) { struct rm_priotracker in_ifa_tracker; struct in_ifaddr *ia; struct in_addr prefix, mask, p, m; int error; if ((flags & RTF_HOST) != 0) { prefix = target->ia_dstaddr.sin_addr; mask.s_addr = 0; } else { prefix = target->ia_addr.sin_addr; mask = target->ia_sockmask.sin_addr; prefix.s_addr &= mask.s_addr; } IN_IFADDR_RLOCK(&in_ifa_tracker); /* Look for an existing address with the same prefix, mask, and fib */ TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if (rtinitflags(ia)) { p = ia->ia_dstaddr.sin_addr; if (prefix.s_addr != p.s_addr) continue; } else { p = ia->ia_addr.sin_addr; m = ia->ia_sockmask.sin_addr; p.s_addr &= m.s_addr; if (prefix.s_addr != p.s_addr || mask.s_addr != m.s_addr) continue; } if (target->ia_ifp->if_fib != ia->ia_ifp->if_fib) continue; /* * If we got a matching prefix route inserted by other * interface address, we are done here. */ if (ia->ia_flags & IFA_ROUTE) { #ifdef RADIX_MPATH if (ia->ia_addr.sin_addr.s_addr == target->ia_addr.sin_addr.s_addr) { IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (EEXIST); } else break; #endif if (V_nosameprefix) { IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (EEXIST); } else { int fibnum; fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : target->ia_ifp->if_fib; rt_addrmsg(RTM_ADD, &target->ia_ifa, fibnum); IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (0); } } } IN_IFADDR_RUNLOCK(&in_ifa_tracker); /* * No-one seem to have this prefix route, so we try to insert it. */ error = rtinit(&target->ia_ifa, (int)RTM_ADD, flags); if (!error) target->ia_flags |= IFA_ROUTE; return (error); } /* * Removes either all lle entries for given @ia, or lle * corresponding to @ia address. */ static void in_scrubprefixlle(struct in_ifaddr *ia, int all, u_int flags) { struct sockaddr_in addr, mask; struct sockaddr *saddr, *smask; struct ifnet *ifp; saddr = (struct sockaddr *)&addr; bzero(&addr, sizeof(addr)); addr.sin_len = sizeof(addr); addr.sin_family = AF_INET; smask = (struct sockaddr *)&mask; bzero(&mask, sizeof(mask)); mask.sin_len = sizeof(mask); mask.sin_family = AF_INET; mask.sin_addr.s_addr = ia->ia_subnetmask; ifp = ia->ia_ifp; if (all) { /* * Remove all L2 entries matching given prefix. * Convert address to host representation to avoid * doing this on every callback. ia_subnetmask is already * stored in host representation. */ addr.sin_addr.s_addr = ntohl(ia->ia_addr.sin_addr.s_addr); lltable_prefix_free(AF_INET, saddr, smask, flags); } else { /* Remove interface address only */ addr.sin_addr.s_addr = ia->ia_addr.sin_addr.s_addr; lltable_delete_addr(LLTABLE(ifp), LLE_IFADDR, saddr); } } /* * If there is no other address in the system that can serve a route to the * same prefix, remove the route. Hand over the route to the new address * otherwise. */ int in_scrubprefix(struct in_ifaddr *target, u_int flags) { struct rm_priotracker in_ifa_tracker; struct in_ifaddr *ia; struct in_addr prefix, mask, p, m; int error = 0; /* * Remove the loopback route to the interface address. */ if ((target->ia_addr.sin_addr.s_addr != INADDR_ANY) && !(target->ia_ifp->if_flags & IFF_LOOPBACK) && (flags & LLE_STATIC)) { struct in_ifaddr *eia; /* * XXXME: add fib-aware in_localip. * We definitely don't want to switch between * prefixes in different fibs. */ eia = in_localip_more(target); if (eia != NULL) { error = ifa_switch_loopback_route((struct ifaddr *)eia, (struct sockaddr *)&target->ia_addr); ifa_free(&eia->ia_ifa); } else { error = ifa_del_loopback_route((struct ifaddr *)target, (struct sockaddr *)&target->ia_addr); } } if (rtinitflags(target)) { prefix = target->ia_dstaddr.sin_addr; mask.s_addr = 0; } else { prefix = target->ia_addr.sin_addr; mask = target->ia_sockmask.sin_addr; prefix.s_addr &= mask.s_addr; } if ((target->ia_flags & IFA_ROUTE) == 0) { int fibnum; fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : target->ia_ifp->if_fib; rt_addrmsg(RTM_DELETE, &target->ia_ifa, fibnum); /* * Removing address from !IFF_UP interface or * prefix which exists on other interface (along with route). * No entries should exist here except target addr. * Given that, delete this entry only. */ in_scrubprefixlle(target, 0, flags); return (0); } IN_IFADDR_RLOCK(&in_ifa_tracker); TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if (rtinitflags(ia)) { p = ia->ia_dstaddr.sin_addr; if (prefix.s_addr != p.s_addr) continue; } else { p = ia->ia_addr.sin_addr; m = ia->ia_sockmask.sin_addr; p.s_addr &= m.s_addr; if (prefix.s_addr != p.s_addr || mask.s_addr != m.s_addr) continue; } if ((ia->ia_ifp->if_flags & IFF_UP) == 0) continue; /* * If we got a matching prefix address, move IFA_ROUTE and * the route itself to it. Make sure that routing daemons * get a heads-up. */ if ((ia->ia_flags & IFA_ROUTE) == 0) { ifa_ref(&ia->ia_ifa); IN_IFADDR_RUNLOCK(&in_ifa_tracker); error = rtinit(&(target->ia_ifa), (int)RTM_DELETE, rtinitflags(target)); if (error == 0) target->ia_flags &= ~IFA_ROUTE; else log(LOG_INFO, "in_scrubprefix: err=%d, old prefix delete failed\n", error); /* Scrub all entries IFF interface is different */ in_scrubprefixlle(target, target->ia_ifp != ia->ia_ifp, flags); error = rtinit(&ia->ia_ifa, (int)RTM_ADD, rtinitflags(ia) | RTF_UP); if (error == 0) ia->ia_flags |= IFA_ROUTE; else log(LOG_INFO, "in_scrubprefix: err=%d, new prefix add failed\n", error); ifa_free(&ia->ia_ifa); return (error); } } IN_IFADDR_RUNLOCK(&in_ifa_tracker); /* * remove all L2 entries on the given prefix */ in_scrubprefixlle(target, 1, flags); /* * As no-one seem to have this prefix, we can remove the route. */ error = rtinit(&(target->ia_ifa), (int)RTM_DELETE, rtinitflags(target)); if (error == 0) target->ia_flags &= ~IFA_ROUTE; else log(LOG_INFO, "in_scrubprefix: err=%d, prefix delete failed\n", error); return (error); } #undef rtinitflags +void +in_ifscrub_all(void) +{ + struct ifnet *ifp; + struct ifaddr *ifa, *nifa; + struct ifaliasreq ifr; + + IFNET_RLOCK(); + TAILQ_FOREACH(ifp, &V_ifnet, if_link) { + /* Cannot lock here - lock recursion. */ + /* IF_ADDR_RLOCK(ifp); */ + TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, nifa) { + if (ifa->ifa_addr->sa_family != AF_INET) + continue; + + /* + * This is ugly but the only way for legacy IP to + * cleanly remove addresses and everything attached. + */ + bzero(&ifr, sizeof(ifr)); + ifr.ifra_addr = *ifa->ifa_addr; + if (ifa->ifa_dstaddr) + ifr.ifra_broadaddr = *ifa->ifa_dstaddr; + (void)in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, + ifp, NULL); + } + /* IF_ADDR_RUNLOCK(ifp); */ + in_purgemaddrs(ifp); + igmp_domifdetach(ifp); + } + IFNET_RUNLOCK(); +} + /* * Return 1 if the address might be a local broadcast address. */ int in_broadcast(struct in_addr in, struct ifnet *ifp) { register struct ifaddr *ifa; u_long t; if (in.s_addr == INADDR_BROADCAST || in.s_addr == INADDR_ANY) return (1); if ((ifp->if_flags & IFF_BROADCAST) == 0) return (0); t = ntohl(in.s_addr); /* * Look through the list of addresses for a match * with a broadcast address. */ #define ia ((struct in_ifaddr *)ifa) TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (ifa->ifa_addr->sa_family == AF_INET && (in.s_addr == ia->ia_broadaddr.sin_addr.s_addr || /* * Check for old-style (host 0) broadcast, but * taking into account that RFC 3021 obsoletes it. */ (ia->ia_subnetmask != IN_RFC3021_MASK && t == ia->ia_subnet)) && /* * Check for an all one subnetmask. These * only exist when an interface gets a secondary * address. */ ia->ia_subnetmask != (u_long)0xffffffff) return (1); return (0); #undef ia } /* * On interface removal, clean up IPv4 data structures hung off of the ifnet. */ void -in_ifdetach(struct ifnet *ifp) +in_ifdetach(struct ifnet *ifp, int purgeulp) { - in_pcbpurgeif0(&V_ripcbinfo, ifp); - in_pcbpurgeif0(&V_udbinfo, ifp); - in_pcbpurgeif0(&V_ulitecbinfo, ifp); + if (purgeulp) { + in_pcbpurgeif0(&V_ripcbinfo, ifp); + in_pcbpurgeif0(&V_udbinfo, ifp); + in_pcbpurgeif0(&V_ulitecbinfo, ifp); + } in_purgemaddrs(ifp); } /* * Delete all IPv4 multicast address records, and associated link-layer * multicast address records, associated with ifp. * XXX It looks like domifdetach runs AFTER the link layer cleanup. * XXX This should not race with ifma_protospec being set during * a new allocation, if it does, we have bigger problems. */ static void in_purgemaddrs(struct ifnet *ifp) { LIST_HEAD(,in_multi) purgeinms; struct in_multi *inm, *tinm; struct ifmultiaddr *ifma; LIST_INIT(&purgeinms); IN_MULTI_LOCK(); /* * Extract list of in_multi associated with the detaching ifp * which the PF_INET layer is about to release. * We need to do this as IF_ADDR_LOCK() may be re-acquired * by code further down. */ IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; #if 0 KASSERT(ifma->ifma_protospec != NULL, ("%s: ifma_protospec is NULL", __func__)); #endif inm = (struct in_multi *)ifma->ifma_protospec; LIST_INSERT_HEAD(&purgeinms, inm, inm_link); } IF_ADDR_RUNLOCK(ifp); LIST_FOREACH_SAFE(inm, &purgeinms, inm_link, tinm) { LIST_REMOVE(inm, inm_link); inm_release_locked(inm); } igmp_ifdetach(ifp); IN_MULTI_UNLOCK(); } struct in_llentry { struct llentry base; }; #define IN_LLTBL_DEFAULT_HSIZE 32 #define IN_LLTBL_HASH(k, h) \ (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1)) /* * Do actual deallocation of @lle. * Called by LLE_FREE_LOCKED when number of references * drops to zero. */ static void in_lltable_destroy_lle(struct llentry *lle) { LLE_WUNLOCK(lle); LLE_LOCK_DESTROY(lle); LLE_REQ_DESTROY(lle); free(lle, M_LLTABLE); } static struct llentry * in_lltable_new(struct in_addr addr4, u_int flags) { struct in_llentry *lle; lle = malloc(sizeof(struct in_llentry), M_LLTABLE, M_NOWAIT | M_ZERO); if (lle == NULL) /* NB: caller generates msg */ return NULL; /* * For IPv4 this will trigger "arpresolve" to generate * an ARP request. */ lle->base.la_expire = time_uptime; /* mark expired */ lle->base.r_l3addr.addr4 = addr4; lle->base.lle_refcnt = 1; lle->base.lle_free = in_lltable_destroy_lle; LLE_LOCK_INIT(&lle->base); LLE_REQ_INIT(&lle->base); callout_init(&lle->base.lle_timer, 1); return (&lle->base); } #define IN_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \ ((((d).s_addr ^ (a).s_addr) & (m).s_addr)) == 0 ) static int in_lltable_match_prefix(const struct sockaddr *saddr, const struct sockaddr *smask, u_int flags, struct llentry *lle) { struct in_addr addr, mask, lle_addr; addr = ((const struct sockaddr_in *)saddr)->sin_addr; mask = ((const struct sockaddr_in *)smask)->sin_addr; lle_addr.s_addr = ntohl(lle->r_l3addr.addr4.s_addr); if (IN_ARE_MASKED_ADDR_EQUAL(lle_addr, addr, mask) == 0) return (0); if (lle->la_flags & LLE_IFADDR) { /* * Delete LLE_IFADDR records IFF address & flag matches. * Note that addr is the interface address within prefix * being matched. * Note also we should handle 'ifdown' cases without removing * ifaddr macs. */ if (addr.s_addr == lle_addr.s_addr && (flags & LLE_STATIC) != 0) return (1); return (0); } /* flags & LLE_STATIC means deleting both dynamic and static entries */ if ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)) return (1); return (0); } static void in_lltable_free_entry(struct lltable *llt, struct llentry *lle) { struct ifnet *ifp; size_t pkts_dropped; LLE_WLOCK_ASSERT(lle); KASSERT(llt != NULL, ("lltable is NULL")); /* Unlink entry from table if not already */ if ((lle->la_flags & LLE_LINKED) != 0) { ifp = llt->llt_ifp; IF_AFDATA_WLOCK_ASSERT(ifp); lltable_unlink_entry(llt, lle); } /* cancel timer */ if (callout_stop(&lle->lle_timer) > 0) LLE_REMREF(lle); /* Drop hold queue */ pkts_dropped = llentry_free(lle); ARPSTAT_ADD(dropped, pkts_dropped); } static int in_lltable_rtcheck(struct ifnet *ifp, u_int flags, const struct sockaddr *l3addr) { struct rt_addrinfo info; struct sockaddr_in rt_key, rt_mask; struct sockaddr rt_gateway; int rt_flags; KASSERT(l3addr->sa_family == AF_INET, ("sin_family %d", l3addr->sa_family)); bzero(&rt_key, sizeof(rt_key)); rt_key.sin_len = sizeof(rt_key); bzero(&rt_mask, sizeof(rt_mask)); rt_mask.sin_len = sizeof(rt_mask); bzero(&rt_gateway, sizeof(rt_gateway)); rt_gateway.sa_len = sizeof(rt_gateway); bzero(&info, sizeof(info)); info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; info.rti_info[RTAX_NETMASK] = (struct sockaddr *)&rt_mask; info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&rt_gateway; if (rib_lookup_info(ifp->if_fib, l3addr, NHR_REF, 0, &info) != 0) return (EINVAL); rt_flags = info.rti_flags; /* * If the gateway for an existing host route matches the target L3 * address, which is a special route inserted by some implementation * such as MANET, and the interface is of the correct type, then * allow for ARP to proceed. */ if (rt_flags & RTF_GATEWAY) { if (!(rt_flags & RTF_HOST) || !info.rti_ifp || info.rti_ifp->if_type != IFT_ETHER || (info.rti_ifp->if_flags & (IFF_NOARP | IFF_STATICARP)) != 0 || memcmp(rt_gateway.sa_data, l3addr->sa_data, sizeof(in_addr_t)) != 0) { rib_free_info(&info); return (EINVAL); } } rib_free_info(&info); /* * Make sure that at least the destination address is covered * by the route. This is for handling the case where 2 or more * interfaces have the same prefix. An incoming packet arrives * on one interface and the corresponding outgoing packet leaves * another interface. */ if (!(rt_flags & RTF_HOST) && info.rti_ifp != ifp) { const char *sa, *mask, *addr, *lim; int len; mask = (const char *)&rt_mask; /* * Just being extra cautious to avoid some custom * code getting into trouble. */ if ((info.rti_addrs & RTA_NETMASK) == 0) return (EINVAL); sa = (const char *)&rt_key; addr = (const char *)l3addr; len = ((const struct sockaddr_in *)l3addr)->sin_len; lim = addr + len; for ( ; addr < lim; sa++, mask++, addr++) { if ((*sa ^ *addr) & *mask) { #ifdef DIAGNOSTIC log(LOG_INFO, "IPv4 address: \"%s\" is not on the network\n", inet_ntoa(((const struct sockaddr_in *)l3addr)->sin_addr)); #endif return (EINVAL); } } } return (0); } static inline uint32_t in_lltable_hash_dst(const struct in_addr dst, uint32_t hsize) { return (IN_LLTBL_HASH(dst.s_addr, hsize)); } static uint32_t in_lltable_hash(const struct llentry *lle, uint32_t hsize) { return (in_lltable_hash_dst(lle->r_l3addr.addr4, hsize)); } static void in_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)sa; bzero(sin, sizeof(*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = lle->r_l3addr.addr4; } static inline struct llentry * in_lltable_find_dst(struct lltable *llt, struct in_addr dst) { struct llentry *lle; struct llentries *lleh; u_int hashidx; hashidx = in_lltable_hash_dst(dst, llt->llt_hsize); lleh = &llt->lle_head[hashidx]; LIST_FOREACH(lle, lleh, lle_next) { if (lle->la_flags & LLE_DELETED) continue; if (lle->r_l3addr.addr4.s_addr == dst.s_addr) break; } return (lle); } static void in_lltable_delete_entry(struct lltable *llt, struct llentry *lle) { lle->la_flags |= LLE_DELETED; EVENTHANDLER_INVOKE(lle_event, lle, LLENTRY_DELETED); #ifdef DIAGNOSTIC log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle); #endif llentry_free(lle); } static struct llentry * in_lltable_alloc(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) { const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr; struct ifnet *ifp = llt->llt_ifp; struct llentry *lle; char linkhdr[LLE_MAX_LINKHDR]; size_t linkhdrsize; int lladdr_off; KASSERT(l3addr->sa_family == AF_INET, ("sin_family %d", l3addr->sa_family)); /* * A route that covers the given address must have * been installed 1st because we are doing a resolution, * verify this. */ if (!(flags & LLE_IFADDR) && in_lltable_rtcheck(ifp, flags, l3addr) != 0) return (NULL); lle = in_lltable_new(sin->sin_addr, flags); if (lle == NULL) { log(LOG_INFO, "lla_lookup: new lle malloc failed\n"); return (NULL); } lle->la_flags = flags; if (flags & LLE_STATIC) lle->r_flags |= RLLE_VALID; if ((flags & LLE_IFADDR) == LLE_IFADDR) { linkhdrsize = LLE_MAX_LINKHDR; if (lltable_calc_llheader(ifp, AF_INET, IF_LLADDR(ifp), linkhdr, &linkhdrsize, &lladdr_off) != 0) return (NULL); lltable_set_entry_addr(ifp, lle, linkhdr, linkhdrsize, lladdr_off); lle->la_flags |= LLE_STATIC; lle->r_flags |= (RLLE_VALID | RLLE_IFADDR); } return (lle); } /* * Return NULL if not found or marked for deletion. * If found return lle read locked. */ static struct llentry * in_lltable_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) { const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr; struct llentry *lle; IF_AFDATA_LOCK_ASSERT(llt->llt_ifp); KASSERT(l3addr->sa_family == AF_INET, ("sin_family %d", l3addr->sa_family)); lle = in_lltable_find_dst(llt, sin->sin_addr); if (lle == NULL) return (NULL); KASSERT((flags & (LLE_UNLOCKED|LLE_EXCLUSIVE)) != (LLE_UNLOCKED|LLE_EXCLUSIVE),("wrong lle request flags: 0x%X", flags)); if (flags & LLE_UNLOCKED) return (lle); if (flags & LLE_EXCLUSIVE) LLE_WLOCK(lle); else LLE_RLOCK(lle); return (lle); } static int in_lltable_dump_entry(struct lltable *llt, struct llentry *lle, struct sysctl_req *wr) { struct ifnet *ifp = llt->llt_ifp; /* XXX stack use */ struct { struct rt_msghdr rtm; struct sockaddr_in sin; struct sockaddr_dl sdl; } arpc; struct sockaddr_dl *sdl; int error; bzero(&arpc, sizeof(arpc)); /* skip deleted entries */ if ((lle->la_flags & LLE_DELETED) == LLE_DELETED) return (0); /* Skip if jailed and not a valid IP of the prison. */ lltable_fill_sa_entry(lle,(struct sockaddr *)&arpc.sin); if (prison_if(wr->td->td_ucred, (struct sockaddr *)&arpc.sin) != 0) return (0); /* * produce a msg made of: * struct rt_msghdr; * struct sockaddr_in; (IPv4) * struct sockaddr_dl; */ arpc.rtm.rtm_msglen = sizeof(arpc); arpc.rtm.rtm_version = RTM_VERSION; arpc.rtm.rtm_type = RTM_GET; arpc.rtm.rtm_flags = RTF_UP; arpc.rtm.rtm_addrs = RTA_DST | RTA_GATEWAY; /* publish */ if (lle->la_flags & LLE_PUB) arpc.rtm.rtm_flags |= RTF_ANNOUNCE; sdl = &arpc.sdl; sdl->sdl_family = AF_LINK; sdl->sdl_len = sizeof(*sdl); sdl->sdl_index = ifp->if_index; sdl->sdl_type = ifp->if_type; if ((lle->la_flags & LLE_VALID) == LLE_VALID) { sdl->sdl_alen = ifp->if_addrlen; bcopy(lle->ll_addr, LLADDR(sdl), ifp->if_addrlen); } else { sdl->sdl_alen = 0; bzero(LLADDR(sdl), ifp->if_addrlen); } arpc.rtm.rtm_rmx.rmx_expire = lle->la_flags & LLE_STATIC ? 0 : lle->la_expire; arpc.rtm.rtm_flags |= (RTF_HOST | RTF_LLDATA); if (lle->la_flags & LLE_STATIC) arpc.rtm.rtm_flags |= RTF_STATIC; if (lle->la_flags & LLE_IFADDR) arpc.rtm.rtm_flags |= RTF_PINNED; arpc.rtm.rtm_index = ifp->if_index; error = SYSCTL_OUT(wr, &arpc, sizeof(arpc)); return (error); } static struct lltable * in_lltattach(struct ifnet *ifp) { struct lltable *llt; llt = lltable_allocate_htbl(IN_LLTBL_DEFAULT_HSIZE); llt->llt_af = AF_INET; llt->llt_ifp = ifp; llt->llt_lookup = in_lltable_lookup; llt->llt_alloc_entry = in_lltable_alloc; llt->llt_delete_entry = in_lltable_delete_entry; llt->llt_dump_entry = in_lltable_dump_entry; llt->llt_hash = in_lltable_hash; llt->llt_fill_sa_entry = in_lltable_fill_sa_entry; llt->llt_free_entry = in_lltable_free_entry; llt->llt_match_prefix = in_lltable_match_prefix; lltable_link(llt); return (llt); } void * in_domifattach(struct ifnet *ifp) { struct in_ifinfo *ii; ii = malloc(sizeof(struct in_ifinfo), M_IFADDR, M_WAITOK|M_ZERO); ii->ii_llt = in_lltattach(ifp); ii->ii_igmp = igmp_domifattach(ifp); return (ii); } void in_domifdetach(struct ifnet *ifp, void *aux) { struct in_ifinfo *ii = (struct in_ifinfo *)aux; igmp_domifdetach(ifp); lltable_free(ii->ii_llt); free(ii, M_IFADDR); } Index: projects/vnet/sys/netinet/in.h =================================================================== --- projects/vnet/sys/netinet/in.h (revision 297511) +++ projects/vnet/sys/netinet/in.h (revision 297512) @@ -1,669 +1,669 @@ /*- * Copyright (c) 1982, 1986, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in.h 8.3 (Berkeley) 1/3/94 * $FreeBSD$ */ #ifndef _NETINET_IN_H_ #define _NETINET_IN_H_ #include #include #include /* Protocols common to RFC 1700, POSIX, and X/Open. */ #define IPPROTO_IP 0 /* dummy for IP */ #define IPPROTO_ICMP 1 /* control message protocol */ #define IPPROTO_TCP 6 /* tcp */ #define IPPROTO_UDP 17 /* user datagram protocol */ #define INADDR_ANY ((in_addr_t)0x00000000) #define INADDR_BROADCAST ((in_addr_t)0xffffffff) /* must be masked */ #ifndef _UINT8_T_DECLARED typedef __uint8_t uint8_t; #define _UINT8_T_DECLARED #endif #ifndef _UINT16_T_DECLARED typedef __uint16_t uint16_t; #define _UINT16_T_DECLARED #endif #ifndef _UINT32_T_DECLARED typedef __uint32_t uint32_t; #define _UINT32_T_DECLARED #endif #ifndef _IN_ADDR_T_DECLARED typedef uint32_t in_addr_t; #define _IN_ADDR_T_DECLARED #endif #ifndef _IN_PORT_T_DECLARED typedef uint16_t in_port_t; #define _IN_PORT_T_DECLARED #endif #ifndef _SA_FAMILY_T_DECLARED typedef __sa_family_t sa_family_t; #define _SA_FAMILY_T_DECLARED #endif /* Internet address (a structure for historical reasons). */ #ifndef _STRUCT_IN_ADDR_DECLARED struct in_addr { in_addr_t s_addr; }; #define _STRUCT_IN_ADDR_DECLARED #endif #ifndef _SOCKLEN_T_DECLARED typedef __socklen_t socklen_t; #define _SOCKLEN_T_DECLARED #endif #include /* Socket address, internet style. */ struct sockaddr_in { uint8_t sin_len; sa_family_t sin_family; in_port_t sin_port; struct in_addr sin_addr; char sin_zero[8]; }; #if !defined(_KERNEL) && __POSIX_VISIBLE >= 200112 #ifndef _BYTEORDER_PROTOTYPED #define _BYTEORDER_PROTOTYPED __BEGIN_DECLS uint32_t htonl(uint32_t); uint16_t htons(uint16_t); uint32_t ntohl(uint32_t); uint16_t ntohs(uint16_t); __END_DECLS #endif #ifndef _BYTEORDER_FUNC_DEFINED #define _BYTEORDER_FUNC_DEFINED #define htonl(x) __htonl(x) #define htons(x) __htons(x) #define ntohl(x) __ntohl(x) #define ntohs(x) __ntohs(x) #endif #endif /* !_KERNEL && __POSIX_VISIBLE >= 200112 */ #if __POSIX_VISIBLE >= 200112 #define IPPROTO_IPV6 41 /* IP6 header */ #define IPPROTO_RAW 255 /* raw IP packet */ #define INET_ADDRSTRLEN 16 #endif #if __BSD_VISIBLE /* * Constants and structures defined by the internet system, * Per RFC 790, September 1981, and numerous additions. */ /* * Protocols (RFC 1700) */ #define IPPROTO_HOPOPTS 0 /* IP6 hop-by-hop options */ #define IPPROTO_IGMP 2 /* group mgmt protocol */ #define IPPROTO_GGP 3 /* gateway^2 (deprecated) */ #define IPPROTO_IPV4 4 /* IPv4 encapsulation */ #define IPPROTO_IPIP IPPROTO_IPV4 /* for compatibility */ #define IPPROTO_ST 7 /* Stream protocol II */ #define IPPROTO_EGP 8 /* exterior gateway protocol */ #define IPPROTO_PIGP 9 /* private interior gateway */ #define IPPROTO_RCCMON 10 /* BBN RCC Monitoring */ #define IPPROTO_NVPII 11 /* network voice protocol*/ #define IPPROTO_PUP 12 /* pup */ #define IPPROTO_ARGUS 13 /* Argus */ #define IPPROTO_EMCON 14 /* EMCON */ #define IPPROTO_XNET 15 /* Cross Net Debugger */ #define IPPROTO_CHAOS 16 /* Chaos*/ #define IPPROTO_MUX 18 /* Multiplexing */ #define IPPROTO_MEAS 19 /* DCN Measurement Subsystems */ #define IPPROTO_HMP 20 /* Host Monitoring */ #define IPPROTO_PRM 21 /* Packet Radio Measurement */ #define IPPROTO_IDP 22 /* xns idp */ #define IPPROTO_TRUNK1 23 /* Trunk-1 */ #define IPPROTO_TRUNK2 24 /* Trunk-2 */ #define IPPROTO_LEAF1 25 /* Leaf-1 */ #define IPPROTO_LEAF2 26 /* Leaf-2 */ #define IPPROTO_RDP 27 /* Reliable Data */ #define IPPROTO_IRTP 28 /* Reliable Transaction */ #define IPPROTO_TP 29 /* tp-4 w/ class negotiation */ #define IPPROTO_BLT 30 /* Bulk Data Transfer */ #define IPPROTO_NSP 31 /* Network Services */ #define IPPROTO_INP 32 /* Merit Internodal */ #define IPPROTO_SEP 33 /* Sequential Exchange */ #define IPPROTO_3PC 34 /* Third Party Connect */ #define IPPROTO_IDPR 35 /* InterDomain Policy Routing */ #define IPPROTO_XTP 36 /* XTP */ #define IPPROTO_DDP 37 /* Datagram Delivery */ #define IPPROTO_CMTP 38 /* Control Message Transport */ #define IPPROTO_TPXX 39 /* TP++ Transport */ #define IPPROTO_IL 40 /* IL transport protocol */ #define IPPROTO_SDRP 42 /* Source Demand Routing */ #define IPPROTO_ROUTING 43 /* IP6 routing header */ #define IPPROTO_FRAGMENT 44 /* IP6 fragmentation header */ #define IPPROTO_IDRP 45 /* InterDomain Routing*/ #define IPPROTO_RSVP 46 /* resource reservation */ #define IPPROTO_GRE 47 /* General Routing Encap. */ #define IPPROTO_MHRP 48 /* Mobile Host Routing */ #define IPPROTO_BHA 49 /* BHA */ #define IPPROTO_ESP 50 /* IP6 Encap Sec. Payload */ #define IPPROTO_AH 51 /* IP6 Auth Header */ #define IPPROTO_INLSP 52 /* Integ. Net Layer Security */ #define IPPROTO_SWIPE 53 /* IP with encryption */ #define IPPROTO_NHRP 54 /* Next Hop Resolution */ #define IPPROTO_MOBILE 55 /* IP Mobility */ #define IPPROTO_TLSP 56 /* Transport Layer Security */ #define IPPROTO_SKIP 57 /* SKIP */ #define IPPROTO_ICMPV6 58 /* ICMP6 */ #define IPPROTO_NONE 59 /* IP6 no next header */ #define IPPROTO_DSTOPTS 60 /* IP6 destination option */ #define IPPROTO_AHIP 61 /* any host internal protocol */ #define IPPROTO_CFTP 62 /* CFTP */ #define IPPROTO_HELLO 63 /* "hello" routing protocol */ #define IPPROTO_SATEXPAK 64 /* SATNET/Backroom EXPAK */ #define IPPROTO_KRYPTOLAN 65 /* Kryptolan */ #define IPPROTO_RVD 66 /* Remote Virtual Disk */ #define IPPROTO_IPPC 67 /* Pluribus Packet Core */ #define IPPROTO_ADFS 68 /* Any distributed FS */ #define IPPROTO_SATMON 69 /* Satnet Monitoring */ #define IPPROTO_VISA 70 /* VISA Protocol */ #define IPPROTO_IPCV 71 /* Packet Core Utility */ #define IPPROTO_CPNX 72 /* Comp. Prot. Net. Executive */ #define IPPROTO_CPHB 73 /* Comp. Prot. HeartBeat */ #define IPPROTO_WSN 74 /* Wang Span Network */ #define IPPROTO_PVP 75 /* Packet Video Protocol */ #define IPPROTO_BRSATMON 76 /* BackRoom SATNET Monitoring */ #define IPPROTO_ND 77 /* Sun net disk proto (temp.) */ #define IPPROTO_WBMON 78 /* WIDEBAND Monitoring */ #define IPPROTO_WBEXPAK 79 /* WIDEBAND EXPAK */ #define IPPROTO_EON 80 /* ISO cnlp */ #define IPPROTO_VMTP 81 /* VMTP */ #define IPPROTO_SVMTP 82 /* Secure VMTP */ #define IPPROTO_VINES 83 /* Banyon VINES */ #define IPPROTO_TTP 84 /* TTP */ #define IPPROTO_IGP 85 /* NSFNET-IGP */ #define IPPROTO_DGP 86 /* dissimilar gateway prot. */ #define IPPROTO_TCF 87 /* TCF */ #define IPPROTO_IGRP 88 /* Cisco/GXS IGRP */ #define IPPROTO_OSPFIGP 89 /* OSPFIGP */ #define IPPROTO_SRPC 90 /* Strite RPC protocol */ #define IPPROTO_LARP 91 /* Locus Address Resoloution */ #define IPPROTO_MTP 92 /* Multicast Transport */ #define IPPROTO_AX25 93 /* AX.25 Frames */ #define IPPROTO_IPEIP 94 /* IP encapsulated in IP */ #define IPPROTO_MICP 95 /* Mobile Int.ing control */ #define IPPROTO_SCCSP 96 /* Semaphore Comm. security */ #define IPPROTO_ETHERIP 97 /* Ethernet IP encapsulation */ #define IPPROTO_ENCAP 98 /* encapsulation header */ #define IPPROTO_APES 99 /* any private encr. scheme */ #define IPPROTO_GMTP 100 /* GMTP*/ #define IPPROTO_IPCOMP 108 /* payload compression (IPComp) */ #define IPPROTO_SCTP 132 /* SCTP */ #define IPPROTO_MH 135 /* IPv6 Mobility Header */ #define IPPROTO_UDPLITE 136 /* UDP-Lite */ #define IPPROTO_HIP 139 /* IP6 Host Identity Protocol */ #define IPPROTO_SHIM6 140 /* IP6 Shim6 Protocol */ /* 101-254: Partly Unassigned */ #define IPPROTO_PIM 103 /* Protocol Independent Mcast */ #define IPPROTO_CARP 112 /* CARP */ #define IPPROTO_PGM 113 /* PGM */ #define IPPROTO_MPLS 137 /* MPLS-in-IP */ #define IPPROTO_PFSYNC 240 /* PFSYNC */ #define IPPROTO_RESERVED_253 253 /* Reserved */ #define IPPROTO_RESERVED_254 254 /* Reserved */ /* 255: Reserved */ /* BSD Private, local use, namespace incursion, no longer used */ #define IPPROTO_OLD_DIVERT 254 /* OLD divert pseudo-proto */ #define IPPROTO_MAX 256 /* last return value of *_input(), meaning "all job for this pkt is done". */ #define IPPROTO_DONE 257 /* Only used internally, so can be outside the range of valid IP protocols. */ #define IPPROTO_DIVERT 258 /* divert pseudo-protocol */ #define IPPROTO_SEND 259 /* SeND pseudo-protocol */ /* * Defined to avoid confusion. The master value is defined by * PROTO_SPACER in sys/protosw.h. */ #define IPPROTO_SPACER 32767 /* spacer for loadable protos */ /* * Local port number conventions: * * When a user does a bind(2) or connect(2) with a port number of zero, * a non-conflicting local port address is chosen. * The default range is IPPORT_HIFIRSTAUTO through * IPPORT_HILASTAUTO, although that is settable by sysctl. * * A user may set the IPPROTO_IP option IP_PORTRANGE to change this * default assignment range. * * The value IP_PORTRANGE_DEFAULT causes the default behavior. * * The value IP_PORTRANGE_HIGH changes the range of candidate port numbers * into the "high" range. These are reserved for client outbound connections * which do not want to be filtered by any firewalls. * * The value IP_PORTRANGE_LOW changes the range to the "low" are * that is (by convention) restricted to privileged processes. This * convention is based on "vouchsafe" principles only. It is only secure * if you trust the remote host to restrict these ports. * * The default range of ports and the high range can be changed by * sysctl(3). (net.inet.ip.port{hi,low}{first,last}_auto) * * Changing those values has bad security implications if you are * using a stateless firewall that is allowing packets outside of that * range in order to allow transparent outgoing connections. * * Such a firewall configuration will generally depend on the use of these * default values. If you change them, you may find your Security * Administrator looking for you with a heavy object. * * For a slightly more orthodox text view on this: * * ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers * * port numbers are divided into three ranges: * * 0 - 1023 Well Known Ports * 1024 - 49151 Registered Ports * 49152 - 65535 Dynamic and/or Private Ports * */ /* * Ports < IPPORT_RESERVED are reserved for * privileged processes (e.g. root). (IP_PORTRANGE_LOW) */ #define IPPORT_RESERVED 1024 /* * Default local port range, used by IP_PORTRANGE_DEFAULT */ #define IPPORT_EPHEMERALFIRST 10000 #define IPPORT_EPHEMERALLAST 65535 /* * Dynamic port range, used by IP_PORTRANGE_HIGH. */ #define IPPORT_HIFIRSTAUTO 49152 #define IPPORT_HILASTAUTO 65535 /* * Scanning for a free reserved port return a value below IPPORT_RESERVED, * but higher than IPPORT_RESERVEDSTART. Traditionally the start value was * 512, but that conflicts with some well-known-services that firewalls may * have a fit if we use. */ #define IPPORT_RESERVEDSTART 600 #define IPPORT_MAX 65535 /* * Definitions of bits in internet address integers. * On subnets, the decomposition of addresses to host and net parts * is done according to subnet mask, not the masks here. */ #define IN_CLASSA(i) (((in_addr_t)(i) & 0x80000000) == 0) #define IN_CLASSA_NET 0xff000000 #define IN_CLASSA_NSHIFT 24 #define IN_CLASSA_HOST 0x00ffffff #define IN_CLASSA_MAX 128 #define IN_CLASSB(i) (((in_addr_t)(i) & 0xc0000000) == 0x80000000) #define IN_CLASSB_NET 0xffff0000 #define IN_CLASSB_NSHIFT 16 #define IN_CLASSB_HOST 0x0000ffff #define IN_CLASSB_MAX 65536 #define IN_CLASSC(i) (((in_addr_t)(i) & 0xe0000000) == 0xc0000000) #define IN_CLASSC_NET 0xffffff00 #define IN_CLASSC_NSHIFT 8 #define IN_CLASSC_HOST 0x000000ff #define IN_CLASSD(i) (((in_addr_t)(i) & 0xf0000000) == 0xe0000000) #define IN_CLASSD_NET 0xf0000000 /* These ones aren't really */ #define IN_CLASSD_NSHIFT 28 /* net and host fields, but */ #define IN_CLASSD_HOST 0x0fffffff /* routing needn't know. */ #define IN_MULTICAST(i) IN_CLASSD(i) #define IN_EXPERIMENTAL(i) (((in_addr_t)(i) & 0xf0000000) == 0xf0000000) #define IN_BADCLASS(i) (((in_addr_t)(i) & 0xf0000000) == 0xf0000000) #define IN_LINKLOCAL(i) (((in_addr_t)(i) & 0xffff0000) == 0xa9fe0000) #define IN_LOOPBACK(i) (((in_addr_t)(i) & 0xff000000) == 0x7f000000) #define IN_ZERONET(i) (((in_addr_t)(i) & 0xff000000) == 0) #define IN_PRIVATE(i) ((((in_addr_t)(i) & 0xff000000) == 0x0a000000) || \ (((in_addr_t)(i) & 0xfff00000) == 0xac100000) || \ (((in_addr_t)(i) & 0xffff0000) == 0xc0a80000)) #define IN_LOCAL_GROUP(i) (((in_addr_t)(i) & 0xffffff00) == 0xe0000000) #define IN_ANY_LOCAL(i) (IN_LINKLOCAL(i) || IN_LOCAL_GROUP(i)) #define INADDR_LOOPBACK ((in_addr_t)0x7f000001) #ifndef _KERNEL #define INADDR_NONE ((in_addr_t)0xffffffff) /* -1 return */ #endif #define INADDR_UNSPEC_GROUP ((in_addr_t)0xe0000000) /* 224.0.0.0 */ #define INADDR_ALLHOSTS_GROUP ((in_addr_t)0xe0000001) /* 224.0.0.1 */ #define INADDR_ALLRTRS_GROUP ((in_addr_t)0xe0000002) /* 224.0.0.2 */ #define INADDR_ALLRPTS_GROUP ((in_addr_t)0xe0000016) /* 224.0.0.22, IGMPv3 */ #define INADDR_CARP_GROUP ((in_addr_t)0xe0000012) /* 224.0.0.18 */ #define INADDR_PFSYNC_GROUP ((in_addr_t)0xe00000f0) /* 224.0.0.240 */ #define INADDR_ALLMDNS_GROUP ((in_addr_t)0xe00000fb) /* 224.0.0.251 */ #define INADDR_MAX_LOCAL_GROUP ((in_addr_t)0xe00000ff) /* 224.0.0.255 */ #define IN_LOOPBACKNET 127 /* official! */ #define IN_RFC3021_MASK ((in_addr_t)0xfffffffe) /* * Options for use with [gs]etsockopt at the IP level. * First word of comment is data type; bool is stored in int. */ #define IP_OPTIONS 1 /* buf/ip_opts; set/get IP options */ #define IP_HDRINCL 2 /* int; header is included with data */ #define IP_TOS 3 /* int; IP type of service and preced. */ #define IP_TTL 4 /* int; IP time to live */ #define IP_RECVOPTS 5 /* bool; receive all IP opts w/dgram */ #define IP_RECVRETOPTS 6 /* bool; receive IP opts for response */ #define IP_RECVDSTADDR 7 /* bool; receive IP dst addr w/dgram */ #define IP_SENDSRCADDR IP_RECVDSTADDR /* cmsg_type to set src addr */ #define IP_RETOPTS 8 /* ip_opts; set/get IP options */ #define IP_MULTICAST_IF 9 /* struct in_addr *or* struct ip_mreqn; * set/get IP multicast i/f */ #define IP_MULTICAST_TTL 10 /* u_char; set/get IP multicast ttl */ #define IP_MULTICAST_LOOP 11 /* u_char; set/get IP multicast loopback */ #define IP_ADD_MEMBERSHIP 12 /* ip_mreq; add an IP group membership */ #define IP_DROP_MEMBERSHIP 13 /* ip_mreq; drop an IP group membership */ #define IP_MULTICAST_VIF 14 /* set/get IP mcast virt. iface */ #define IP_RSVP_ON 15 /* enable RSVP in kernel */ #define IP_RSVP_OFF 16 /* disable RSVP in kernel */ #define IP_RSVP_VIF_ON 17 /* set RSVP per-vif socket */ #define IP_RSVP_VIF_OFF 18 /* unset RSVP per-vif socket */ #define IP_PORTRANGE 19 /* int; range to choose for unspec port */ #define IP_RECVIF 20 /* bool; receive reception if w/dgram */ /* for IPSEC */ #define IP_IPSEC_POLICY 21 /* int; set/get security policy */ /* unused; was IP_FAITH */ #define IP_ONESBCAST 23 /* bool: send all-ones broadcast */ #define IP_BINDANY 24 /* bool: allow bind to any address */ #define IP_BINDMULTI 25 /* bool: allow multiple listeners on a tuple */ #define IP_RSS_LISTEN_BUCKET 26 /* int; set RSS listen bucket */ /* * Options for controlling the firewall and dummynet. * Historical options (from 40 to 64) will eventually be * replaced by only two options, IP_FW3 and IP_DUMMYNET3. */ #define IP_FW_TABLE_ADD 40 /* add entry */ #define IP_FW_TABLE_DEL 41 /* delete entry */ #define IP_FW_TABLE_FLUSH 42 /* flush table */ #define IP_FW_TABLE_GETSIZE 43 /* get table size */ #define IP_FW_TABLE_LIST 44 /* list table contents */ #define IP_FW3 48 /* generic ipfw v.3 sockopts */ #define IP_DUMMYNET3 49 /* generic dummynet v.3 sockopts */ #define IP_FW_ADD 50 /* add a firewall rule to chain */ #define IP_FW_DEL 51 /* delete a firewall rule from chain */ #define IP_FW_FLUSH 52 /* flush firewall rule chain */ #define IP_FW_ZERO 53 /* clear single/all firewall counter(s) */ #define IP_FW_GET 54 /* get entire firewall rule chain */ #define IP_FW_RESETLOG 55 /* reset logging counters */ #define IP_FW_NAT_CFG 56 /* add/config a nat rule */ #define IP_FW_NAT_DEL 57 /* delete a nat rule */ #define IP_FW_NAT_GET_CONFIG 58 /* get configuration of a nat rule */ #define IP_FW_NAT_GET_LOG 59 /* get log of a nat rule */ #define IP_DUMMYNET_CONFIGURE 60 /* add/configure a dummynet pipe */ #define IP_DUMMYNET_DEL 61 /* delete a dummynet pipe from chain */ #define IP_DUMMYNET_FLUSH 62 /* flush dummynet */ #define IP_DUMMYNET_GET 64 /* get entire dummynet pipes */ #define IP_RECVTTL 65 /* bool; receive IP TTL w/dgram */ #define IP_MINTTL 66 /* minimum TTL for packet or drop */ #define IP_DONTFRAG 67 /* don't fragment packet */ #define IP_RECVTOS 68 /* bool; receive IP TOS w/dgram */ /* IPv4 Source Filter Multicast API [RFC3678] */ #define IP_ADD_SOURCE_MEMBERSHIP 70 /* join a source-specific group */ #define IP_DROP_SOURCE_MEMBERSHIP 71 /* drop a single source */ #define IP_BLOCK_SOURCE 72 /* block a source */ #define IP_UNBLOCK_SOURCE 73 /* unblock a source */ /* The following option is private; do not use it from user applications. */ #define IP_MSFILTER 74 /* set/get filter list */ /* Protocol Independent Multicast API [RFC3678] */ #define MCAST_JOIN_GROUP 80 /* join an any-source group */ #define MCAST_LEAVE_GROUP 81 /* leave all sources for group */ #define MCAST_JOIN_SOURCE_GROUP 82 /* join a source-specific group */ #define MCAST_LEAVE_SOURCE_GROUP 83 /* leave a single source */ #define MCAST_BLOCK_SOURCE 84 /* block a source */ #define MCAST_UNBLOCK_SOURCE 85 /* unblock a source */ /* Flow and RSS definitions */ #define IP_FLOWID 90 /* get flow id for the given socket/inp */ #define IP_FLOWTYPE 91 /* get flow type (M_HASHTYPE) */ #define IP_RSSBUCKETID 92 /* get RSS flowid -> bucket mapping */ #define IP_RECVFLOWID 93 /* bool; receive IP flowid/flowtype w/ datagram */ #define IP_RECVRSSBUCKETID 94 /* bool; receive IP RSS bucket id w/ datagram */ /* * Defaults and limits for options */ #define IP_DEFAULT_MULTICAST_TTL 1 /* normally limit m'casts to 1 hop */ #define IP_DEFAULT_MULTICAST_LOOP 1 /* normally hear sends if a member */ /* * The imo_membership vector for each socket is now dynamically allocated at * run-time, bounded by USHRT_MAX, and is reallocated when needed, sized * according to a power-of-two increment. */ #define IP_MIN_MEMBERSHIPS 31 #define IP_MAX_MEMBERSHIPS 4095 #define IP_MAX_SOURCE_FILTER 1024 /* XXX to be unused */ /* * Default resource limits for IPv4 multicast source filtering. * These may be modified by sysctl. */ #define IP_MAX_GROUP_SRC_FILTER 512 /* sources per group */ #define IP_MAX_SOCK_SRC_FILTER 128 /* sources per socket/group */ #define IP_MAX_SOCK_MUTE_FILTER 128 /* XXX no longer used */ /* * Argument structure for IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP. */ struct ip_mreq { struct in_addr imr_multiaddr; /* IP multicast address of group */ struct in_addr imr_interface; /* local IP address of interface */ }; /* * Modified argument structure for IP_MULTICAST_IF, obtained from Linux. * This is used to specify an interface index for multicast sends, as * the IPv4 legacy APIs do not support this (unless IP_SENDIF is available). */ struct ip_mreqn { struct in_addr imr_multiaddr; /* IP multicast address of group */ struct in_addr imr_address; /* local IP address of interface */ int imr_ifindex; /* Interface index; cast to uint32_t */ }; /* * Argument structure for IPv4 Multicast Source Filter APIs. [RFC3678] */ struct ip_mreq_source { struct in_addr imr_multiaddr; /* IP multicast address of group */ struct in_addr imr_sourceaddr; /* IP address of source */ struct in_addr imr_interface; /* local IP address of interface */ }; /* * Argument structures for Protocol-Independent Multicast Source * Filter APIs. [RFC3678] */ struct group_req { uint32_t gr_interface; /* interface index */ struct sockaddr_storage gr_group; /* group address */ }; struct group_source_req { uint32_t gsr_interface; /* interface index */ struct sockaddr_storage gsr_group; /* group address */ struct sockaddr_storage gsr_source; /* source address */ }; #ifndef __MSFILTERREQ_DEFINED #define __MSFILTERREQ_DEFINED /* * The following structure is private; do not use it from user applications. * It is used to communicate IP_MSFILTER/IPV6_MSFILTER information between * the RFC 3678 libc functions and the kernel. */ struct __msfilterreq { uint32_t msfr_ifindex; /* interface index */ uint32_t msfr_fmode; /* filter mode for group */ uint32_t msfr_nsrcs; /* # of sources in msfr_srcs */ struct sockaddr_storage msfr_group; /* group address */ struct sockaddr_storage *msfr_srcs; /* pointer to the first member * of a contiguous array of * sources to filter in full. */ }; #endif struct sockaddr; /* * Advanced (Full-state) APIs [RFC3678] * The RFC specifies uint_t for the 6th argument to [sg]etsourcefilter(). * We use uint32_t here to be consistent. */ int setipv4sourcefilter(int, struct in_addr, struct in_addr, uint32_t, uint32_t, struct in_addr *); int getipv4sourcefilter(int, struct in_addr, struct in_addr, uint32_t *, uint32_t *, struct in_addr *); int setsourcefilter(int, uint32_t, struct sockaddr *, socklen_t, uint32_t, uint32_t, struct sockaddr_storage *); int getsourcefilter(int, uint32_t, struct sockaddr *, socklen_t, uint32_t *, uint32_t *, struct sockaddr_storage *); /* * Filter modes; also used to represent per-socket filter mode internally. */ #define MCAST_UNDEFINED 0 /* fmode: not yet defined */ #define MCAST_INCLUDE 1 /* fmode: include these source(s) */ #define MCAST_EXCLUDE 2 /* fmode: exclude these source(s) */ /* * Argument for IP_PORTRANGE: * - which range to search when port is unspecified at bind() or connect() */ #define IP_PORTRANGE_DEFAULT 0 /* default range */ #define IP_PORTRANGE_HIGH 1 /* "high" - request firewall bypass */ #define IP_PORTRANGE_LOW 2 /* "low" - vouchsafe security */ /* * Identifiers for IP sysctl nodes */ #define IPCTL_FORWARDING 1 /* act as router */ #define IPCTL_SENDREDIRECTS 2 /* may send redirects when forwarding */ #define IPCTL_DEFTTL 3 /* default TTL */ #ifdef notyet #define IPCTL_DEFMTU 4 /* default MTU */ #endif /* IPCTL_RTEXPIRE 5 deprecated */ /* IPCTL_RTMINEXPIRE 6 deprecated */ /* IPCTL_RTMAXCACHE 7 deprecated */ #define IPCTL_SOURCEROUTE 8 /* may perform source routes */ #define IPCTL_DIRECTEDBROADCAST 9 /* may re-broadcast received packets */ #define IPCTL_INTRQMAXLEN 10 /* max length of netisr queue */ #define IPCTL_INTRQDROPS 11 /* number of netisr q drops */ #define IPCTL_STATS 12 /* ipstat structure */ #define IPCTL_ACCEPTSOURCEROUTE 13 /* may accept source routed packets */ #define IPCTL_FASTFORWARDING 14 /* use fast IP forwarding code */ /* 15, unused, was: IPCTL_KEEPFAITH */ #define IPCTL_GIF_TTL 16 /* default TTL for gif encap packet */ #endif /* __BSD_VISIBLE */ #ifdef _KERNEL struct ifnet; struct mbuf; /* forward declarations for Standard C */ int in_broadcast(struct in_addr, struct ifnet *); int in_canforward(struct in_addr); int in_localaddr(struct in_addr); int in_localip(struct in_addr); int in_ifhasaddr(struct ifnet *, struct in_addr); int inet_aton(const char *, struct in_addr *); /* in libkern */ char *inet_ntoa(struct in_addr); /* in libkern */ char *inet_ntoa_r(struct in_addr ina, char *buf); /* in libkern */ char *inet_ntop(int, const void *, char *, socklen_t); /* in libkern */ int inet_pton(int af, const char *, void *); /* in libkern */ -void in_ifdetach(struct ifnet *); +void in_ifdetach(struct ifnet *, int); #define in_hosteq(s, t) ((s).s_addr == (t).s_addr) #define in_nullhost(x) ((x).s_addr == INADDR_ANY) #define in_allhosts(x) ((x).s_addr == htonl(INADDR_ALLHOSTS_GROUP)) #define satosin(sa) ((struct sockaddr_in *)(sa)) #define sintosa(sin) ((struct sockaddr *)(sin)) #define ifatoia(ifa) ((struct in_ifaddr *)(ifa)) #endif /* _KERNEL */ /* INET6 stuff */ #if __POSIX_VISIBLE >= 200112 #define __KAME_NETINET_IN_H_INCLUDED_ #include #undef __KAME_NETINET_IN_H_INCLUDED_ #endif #endif /* !_NETINET_IN_H_*/ Index: projects/vnet/sys/netinet/in_var.h =================================================================== --- projects/vnet/sys/netinet/in_var.h (revision 297511) +++ projects/vnet/sys/netinet/in_var.h (revision 297512) @@ -1,396 +1,397 @@ /*- * Copyright (c) 1985, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_var.h 8.2 (Berkeley) 1/9/95 * $FreeBSD$ */ #ifndef _NETINET_IN_VAR_H_ #define _NETINET_IN_VAR_H_ /* * Argument structure for SIOCAIFADDR. */ struct in_aliasreq { char ifra_name[IFNAMSIZ]; /* if name, e.g. "en0" */ struct sockaddr_in ifra_addr; struct sockaddr_in ifra_broadaddr; #define ifra_dstaddr ifra_broadaddr struct sockaddr_in ifra_mask; int ifra_vhid; }; #ifdef _KERNEL #include #include #include struct igmp_ifsoftc; struct in_multi; struct lltable; /* * IPv4 per-interface state. */ struct in_ifinfo { struct lltable *ii_llt; /* ARP state */ struct igmp_ifsoftc *ii_igmp; /* IGMP state */ struct in_multi *ii_allhosts; /* 224.0.0.1 membership */ }; /* * Interface address, Internet version. One of these structures * is allocated for each Internet address on an interface. * The ifaddr structure contains the protocol-independent part * of the structure and is assumed to be first. */ struct in_ifaddr { struct ifaddr ia_ifa; /* protocol-independent info */ #define ia_ifp ia_ifa.ifa_ifp #define ia_flags ia_ifa.ifa_flags /* ia_subnet{,mask} in host order */ u_long ia_subnet; /* subnet address */ u_long ia_subnetmask; /* mask of subnet */ LIST_ENTRY(in_ifaddr) ia_hash; /* entry in bucket of inet addresses */ TAILQ_ENTRY(in_ifaddr) ia_link; /* list of internet addresses */ struct sockaddr_in ia_addr; /* reserve space for interface name */ struct sockaddr_in ia_dstaddr; /* reserve space for broadcast addr */ #define ia_broadaddr ia_dstaddr struct sockaddr_in ia_sockmask; /* reserve space for general netmask */ }; /* * Given a pointer to an in_ifaddr (ifaddr), * return a pointer to the addr as a sockaddr_in. */ #define IA_SIN(ia) (&(((struct in_ifaddr *)(ia))->ia_addr)) #define IA_DSTSIN(ia) (&(((struct in_ifaddr *)(ia))->ia_dstaddr)) #define IA_MASKSIN(ia) (&(((struct in_ifaddr *)(ia))->ia_sockmask)) #define IN_LNAOF(in, ifa) \ ((ntohl((in).s_addr) & ~((struct in_ifaddr *)(ifa)->ia_subnetmask)) extern u_char inetctlerrmap[]; #define LLTABLE(ifp) \ ((struct in_ifinfo *)(ifp)->if_afdata[AF_INET])->ii_llt /* * Hash table for IP addresses. */ TAILQ_HEAD(in_ifaddrhead, in_ifaddr); LIST_HEAD(in_ifaddrhashhead, in_ifaddr); VNET_DECLARE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); VNET_DECLARE(struct in_ifaddrhead, in_ifaddrhead); VNET_DECLARE(u_long, in_ifaddrhmask); /* mask for hash table */ #define V_in_ifaddrhashtbl VNET(in_ifaddrhashtbl) #define V_in_ifaddrhead VNET(in_ifaddrhead) #define V_in_ifaddrhmask VNET(in_ifaddrhmask) #define INADDR_NHASH_LOG2 9 #define INADDR_NHASH (1 << INADDR_NHASH_LOG2) #define INADDR_HASHVAL(x) fnv_32_buf((&(x)), sizeof(x), FNV1_32_INIT) #define INADDR_HASH(x) \ (&V_in_ifaddrhashtbl[INADDR_HASHVAL(x) & V_in_ifaddrhmask]) extern struct rmlock in_ifaddr_lock; #define IN_IFADDR_LOCK_ASSERT() rm_assert(&in_ifaddr_lock, RA_LOCKED) #define IN_IFADDR_RLOCK(t) rm_rlock(&in_ifaddr_lock, (t)) #define IN_IFADDR_RLOCK_ASSERT() rm_assert(&in_ifaddr_lock, RA_RLOCKED) #define IN_IFADDR_RUNLOCK(t) rm_runlock(&in_ifaddr_lock, (t)) #define IN_IFADDR_WLOCK() rm_wlock(&in_ifaddr_lock) #define IN_IFADDR_WLOCK_ASSERT() rm_assert(&in_ifaddr_lock, RA_WLOCKED) #define IN_IFADDR_WUNLOCK() rm_wunlock(&in_ifaddr_lock) /* * Macro for finding the internet address structure (in_ifaddr) * corresponding to one of our IP addresses (in_addr). */ #define INADDR_TO_IFADDR(addr, ia) \ /* struct in_addr addr; */ \ /* struct in_ifaddr *ia; */ \ do { \ \ LIST_FOREACH(ia, INADDR_HASH((addr).s_addr), ia_hash) \ if (IA_SIN(ia)->sin_addr.s_addr == (addr).s_addr) \ break; \ } while (0) /* * Macro for finding the interface (ifnet structure) corresponding to one * of our IP addresses. */ #define INADDR_TO_IFP(addr, ifp) \ /* struct in_addr addr; */ \ /* struct ifnet *ifp; */ \ { \ struct in_ifaddr *ia; \ \ INADDR_TO_IFADDR(addr, ia); \ (ifp) = (ia == NULL) ? NULL : ia->ia_ifp; \ } /* * Macro for finding the internet address structure (in_ifaddr) corresponding * to a given interface (ifnet structure). */ #define IFP_TO_IA(ifp, ia, t) \ /* struct ifnet *ifp; */ \ /* struct in_ifaddr *ia; */ \ /* struct rm_priotracker *t; */ \ do { \ IN_IFADDR_RLOCK((t)); \ for ((ia) = TAILQ_FIRST(&V_in_ifaddrhead); \ (ia) != NULL && (ia)->ia_ifp != (ifp); \ (ia) = TAILQ_NEXT((ia), ia_link)) \ continue; \ if ((ia) != NULL) \ ifa_ref(&(ia)->ia_ifa); \ IN_IFADDR_RUNLOCK((t)); \ } while (0) /* * Legacy IPv4 IGMP per-link structure. */ struct router_info { struct ifnet *rti_ifp; int rti_type; /* type of router which is querier on this interface */ int rti_time; /* # of slow timeouts since last old query */ SLIST_ENTRY(router_info) rti_list; }; /* * IPv4 multicast IGMP-layer source entry. */ struct ip_msource { RB_ENTRY(ip_msource) ims_link; /* RB tree links */ in_addr_t ims_haddr; /* host byte order */ struct ims_st { uint16_t ex; /* # of exclusive members */ uint16_t in; /* # of inclusive members */ } ims_st[2]; /* state at t0, t1 */ uint8_t ims_stp; /* pending query */ }; /* * IPv4 multicast PCB-layer source entry. */ struct in_msource { RB_ENTRY(ip_msource) ims_link; /* RB tree links */ in_addr_t ims_haddr; /* host byte order */ uint8_t imsl_st[2]; /* state before/at commit */ }; RB_HEAD(ip_msource_tree, ip_msource); /* define struct ip_msource_tree */ static __inline int ip_msource_cmp(const struct ip_msource *a, const struct ip_msource *b) { if (a->ims_haddr < b->ims_haddr) return (-1); if (a->ims_haddr == b->ims_haddr) return (0); return (1); } RB_PROTOTYPE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp); /* * IPv4 multicast PCB-layer group filter descriptor. */ struct in_mfilter { struct ip_msource_tree imf_sources; /* source list for (S,G) */ u_long imf_nsrc; /* # of source entries */ uint8_t imf_st[2]; /* state before/at commit */ }; /* * IPv4 group descriptor. * * For every entry on an ifnet's if_multiaddrs list which represents * an IP multicast group, there is one of these structures. * * If any source filters are present, then a node will exist in the RB-tree * to permit fast lookup by source whenever an operation takes place. * This permits pre-order traversal when we issue reports. * Source filter trees are kept separately from the socket layer to * greatly simplify locking. * * When IGMPv3 is active, inm_timer is the response to group query timer. * The state-change timer inm_sctimer is separate; whenever state changes * for the group the state change record is generated and transmitted, * and kept if retransmissions are necessary. * * FUTURE: inm_link is now only used when groups are being purged * on a detaching ifnet. It could be demoted to a SLIST_ENTRY, but * because it is at the very start of the struct, we can't do this * w/o breaking the ABI for ifmcstat. */ struct in_multi { LIST_ENTRY(in_multi) inm_link; /* to-be-released by in_ifdetach */ struct in_addr inm_addr; /* IP multicast address, convenience */ struct ifnet *inm_ifp; /* back pointer to ifnet */ struct ifmultiaddr *inm_ifma; /* back pointer to ifmultiaddr */ u_int inm_timer; /* IGMPv1/v2 group / v3 query timer */ u_int inm_state; /* state of the membership */ void *inm_rti; /* unused, legacy field */ u_int inm_refcount; /* reference count */ /* New fields for IGMPv3 follow. */ struct igmp_ifsoftc *inm_igi; /* IGMP info */ SLIST_ENTRY(in_multi) inm_nrele; /* to-be-released by IGMP */ struct ip_msource_tree inm_srcs; /* tree of sources */ u_long inm_nsrc; /* # of tree entries */ struct mbufq inm_scq; /* queue of pending * state-change packets */ struct timeval inm_lastgsrtv; /* Time of last G-S-R query */ uint16_t inm_sctimer; /* state-change timer */ uint16_t inm_scrv; /* state-change rexmit count */ /* * SSM state counters which track state at T0 (the time the last * state-change report's RV timer went to zero) and T1 * (time of pending report, i.e. now). * Used for computing IGMPv3 state-change reports. Several refcounts * are maintained here to optimize for common use-cases. */ struct inm_st { uint16_t iss_fmode; /* IGMP filter mode */ uint16_t iss_asm; /* # of ASM listeners */ uint16_t iss_ex; /* # of exclusive members */ uint16_t iss_in; /* # of inclusive members */ uint16_t iss_rec; /* # of recorded sources */ } inm_st[2]; /* state at t0, t1 */ }; /* * Helper function to derive the filter mode on a source entry * from its internal counters. Predicates are: * A source is only excluded if all listeners exclude it. * A source is only included if no listeners exclude it, * and at least one listener includes it. * May be used by ifmcstat(8). */ static __inline uint8_t ims_get_mode(const struct in_multi *inm, const struct ip_msource *ims, uint8_t t) { t = !!t; if (inm->inm_st[t].iss_ex > 0 && inm->inm_st[t].iss_ex == ims->ims_st[t].ex) return (MCAST_EXCLUDE); else if (ims->ims_st[t].in > 0 && ims->ims_st[t].ex == 0) return (MCAST_INCLUDE); return (MCAST_UNDEFINED); } #ifdef SYSCTL_DECL SYSCTL_DECL(_net_inet); SYSCTL_DECL(_net_inet_ip); SYSCTL_DECL(_net_inet_raw); #endif /* * Lock macros for IPv4 layer multicast address lists. IPv4 lock goes * before link layer multicast locks in the lock order. In most cases, * consumers of IN_*_MULTI() macros should acquire the locks before * calling them; users of the in_{add,del}multi() functions should not. */ extern struct mtx in_multi_mtx; #define IN_MULTI_LOCK() mtx_lock(&in_multi_mtx) #define IN_MULTI_UNLOCK() mtx_unlock(&in_multi_mtx) #define IN_MULTI_LOCK_ASSERT() mtx_assert(&in_multi_mtx, MA_OWNED) #define IN_MULTI_UNLOCK_ASSERT() mtx_assert(&in_multi_mtx, MA_NOTOWNED) /* Acquire an in_multi record. */ static __inline void inm_acquire_locked(struct in_multi *inm) { IN_MULTI_LOCK_ASSERT(); ++inm->inm_refcount; } /* * Return values for imo_multi_filter(). */ #define MCAST_PASS 0 /* Pass */ #define MCAST_NOTGMEMBER 1 /* This host not a member of group */ #define MCAST_NOTSMEMBER 2 /* This host excluded source */ #define MCAST_MUTED 3 /* [deprecated] */ struct rtentry; struct route; struct ip_moptions; struct in_multi *inm_lookup_locked(struct ifnet *, const struct in_addr); struct in_multi *inm_lookup(struct ifnet *, const struct in_addr); int imo_multi_filter(const struct ip_moptions *, const struct ifnet *, const struct sockaddr *, const struct sockaddr *); void inm_commit(struct in_multi *); void inm_clear_recorded(struct in_multi *); void inm_print(const struct in_multi *); int inm_record_source(struct in_multi *inm, const in_addr_t); void inm_release(struct in_multi *); void inm_release_locked(struct in_multi *); struct in_multi * in_addmulti(struct in_addr *, struct ifnet *); void in_delmulti(struct in_multi *); int in_joingroup(struct ifnet *, const struct in_addr *, /*const*/ struct in_mfilter *, struct in_multi **); int in_joingroup_locked(struct ifnet *, const struct in_addr *, /*const*/ struct in_mfilter *, struct in_multi **); int in_leavegroup(struct in_multi *, /*const*/ struct in_mfilter *); int in_leavegroup_locked(struct in_multi *, /*const*/ struct in_mfilter *); int in_control(struct socket *, u_long, caddr_t, struct ifnet *, struct thread *); int in_addprefix(struct in_ifaddr *, int); int in_scrubprefix(struct in_ifaddr *, u_int); +void in_ifscrub_all(void); void ip_input(struct mbuf *); void ip_direct_input(struct mbuf *); void in_ifadown(struct ifaddr *ifa, int); struct mbuf *ip_tryforward(struct mbuf *); void *in_domifattach(struct ifnet *); void in_domifdetach(struct ifnet *, void *); /* XXX */ void in_rtalloc_ign(struct route *ro, u_long ignflags, u_int fibnum); void in_rtredirect(struct sockaddr *, struct sockaddr *, struct sockaddr *, int, struct sockaddr *, u_int); #endif /* _KERNEL */ /* INET6 stuff */ #include #endif /* _NETINET_IN_VAR_H_ */ Index: projects/vnet/sys/netinet/ip_input.c =================================================================== --- projects/vnet/sys/netinet/ip_input.c (revision 297511) +++ projects/vnet/sys/netinet/ip_input.c (revision 297512) @@ -1,1346 +1,1357 @@ /*- * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_bootp.h" #include "opt_ipfw.h" #include "opt_ipstealth.h" #include "opt_ipsec.h" #include "opt_route.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IPSEC #include #include #include #endif /* IPSEC */ #include #include #include #ifdef CTASSERT CTASSERT(sizeof(struct ip) == 20); #endif /* IP reassembly functions are defined in ip_reass.c. */ extern void ipreass_init(void); extern void ipreass_drain(void); extern void ipreass_slowtimo(void); #ifdef VIMAGE extern void ipreass_destroy(void); #endif struct rmlock in_ifaddr_lock; RM_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock"); VNET_DEFINE(int, rsvp_on); VNET_DEFINE(int, ipforwarding); SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipforwarding), 0, "Enable IP forwarding between interfaces"); static VNET_DEFINE(int, ipsendredirects) = 1; /* XXX */ #define V_ipsendredirects VNET(ipsendredirects) SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsendredirects), 0, "Enable sending IP redirects"); /* * XXX - Setting ip_checkinterface mostly implements the receive side of * the Strong ES model described in RFC 1122, but since the routing table * and transmit implementation do not implement the Strong ES model, * setting this to 1 results in an odd hybrid. * * XXX - ip_checkinterface currently must be disabled if you use ipnat * to translate the destination address to another local interface. * * XXX - ip_checkinterface must be disabled if you add IP aliases * to the loopback interface instead of the interface where the * packets for those addresses are received. */ static VNET_DEFINE(int, ip_checkinterface); #define V_ip_checkinterface VNET(ip_checkinterface) SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip_checkinterface), 0, "Verify packet arrives on correct interface"); VNET_DEFINE(struct pfil_head, inet_pfil_hook); /* Packet filter hooks */ static struct netisr_handler ip_nh = { .nh_name = "ip", .nh_handler = ip_input, .nh_proto = NETISR_IP, #ifdef RSS .nh_m2cpuid = rss_soft_m2cpuid_v4, .nh_policy = NETISR_POLICY_CPU, .nh_dispatch = NETISR_DISPATCH_HYBRID, #else .nh_policy = NETISR_POLICY_FLOW, #endif }; #ifdef RSS /* * Directly dispatched frames are currently assumed * to have a flowid already calculated. * * It should likely have something that assert it * actually has valid flow details. */ static struct netisr_handler ip_direct_nh = { .nh_name = "ip_direct", .nh_handler = ip_direct_input, .nh_proto = NETISR_IP_DIRECT, .nh_m2cpuid = rss_soft_m2cpuid_v4, .nh_policy = NETISR_POLICY_CPU, .nh_dispatch = NETISR_DISPATCH_HYBRID, }; #endif extern struct domain inetdomain; extern struct protosw inetsw[]; u_char ip_protox[IPPROTO_MAX]; VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead); /* first inet address */ VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table */ VNET_DEFINE(u_long, in_ifaddrhmask); /* mask for hash table */ #ifdef IPCTL_DEFMTU SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, &ip_mtu, 0, "Default MTU"); #endif #ifdef IPSTEALTH VNET_DEFINE(int, ipstealth); SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipstealth), 0, "IP stealth mode, no TTL decrementation on forwarding"); #endif /* * IP statistics are stored in the "array" of counter(9)s. */ VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat); VNET_PCPUSTAT_SYSINIT(ipstat); SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)"); #ifdef VIMAGE VNET_PCPUSTAT_SYSUNINIT(ipstat); #endif /* VIMAGE */ /* * Kernel module interface for updating ipstat. The argument is an index * into ipstat treated as an array. */ void kmod_ipstat_inc(int statnum) { counter_u64_add(VNET(ipstat)[statnum], 1); } void kmod_ipstat_dec(int statnum) { counter_u64_add(VNET(ipstat)[statnum], -1); } static int sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS) { int error, qlimit; netisr_getqlimit(&ip_nh, &qlimit); error = sysctl_handle_int(oidp, &qlimit, 0, req); if (error || !req->newptr) return (error); if (qlimit < 1) return (EINVAL); return (netisr_setqlimit(&ip_nh, qlimit)); } SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I", "Maximum size of the IP input queue"); static int sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS) { u_int64_t qdrops_long; int error, qdrops; netisr_getqdrops(&ip_nh, &qdrops_long); qdrops = qdrops_long; error = sysctl_handle_int(oidp, &qdrops, 0, req); if (error || !req->newptr) return (error); if (qdrops != 0) return (EINVAL); netisr_clearqdrops(&ip_nh); return (0); } SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I", "Number of packets dropped from the IP input queue"); #ifdef RSS static int sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS) { int error, qlimit; netisr_getqlimit(&ip_direct_nh, &qlimit); error = sysctl_handle_int(oidp, &qlimit, 0, req); if (error || !req->newptr) return (error); if (qlimit < 1) return (EINVAL); return (netisr_setqlimit(&ip_direct_nh, qlimit)); } SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_direct_queue_maxlen, CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_direct_queue_maxlen, "I", "Maximum size of the IP direct input queue"); static int sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS) { u_int64_t qdrops_long; int error, qdrops; netisr_getqdrops(&ip_direct_nh, &qdrops_long); qdrops = qdrops_long; error = sysctl_handle_int(oidp, &qdrops, 0, req); if (error || !req->newptr) return (error); if (qdrops != 0) return (EINVAL); netisr_clearqdrops(&ip_direct_nh); return (0); } SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_direct_queue_drops, CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_direct_queue_drops, "I", "Number of packets dropped from the IP direct input queue"); #endif /* RSS */ /* * IP initialization: fill in IP protocol switch table. * All protocols not implemented in kernel go to raw IP protocol handler. */ void ip_init(void) { struct protosw *pr; int i; TAILQ_INIT(&V_in_ifaddrhead); V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask); /* Initialize IP reassembly queue. */ ipreass_init(); /* Initialize packet filter hooks. */ V_inet_pfil_hook.ph_type = PFIL_TYPE_AF; V_inet_pfil_hook.ph_af = AF_INET; if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0) printf("%s: WARNING: unable to register pfil hook, " "error %d\n", __func__, i); if (hhook_head_register(HHOOK_TYPE_IPSEC_IN, AF_INET, &V_ipsec_hhh_in[HHOOK_IPSEC_INET], HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) printf("%s: WARNING: unable to register input helper hook\n", __func__); if (hhook_head_register(HHOOK_TYPE_IPSEC_OUT, AF_INET, &V_ipsec_hhh_out[HHOOK_IPSEC_INET], HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) printf("%s: WARNING: unable to register output helper hook\n", __func__); /* Skip initialization of globals for non-default instances. */ if (!IS_DEFAULT_VNET(curvnet)) return; pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); if (pr == NULL) panic("ip_init: PF_INET not found"); /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */ for (i = 0; i < IPPROTO_MAX; i++) ip_protox[i] = pr - inetsw; /* * Cycle through IP protocols and put them into the appropriate place * in ip_protox[]. */ for (pr = inetdomain.dom_protosw; pr < inetdomain.dom_protoswNPROTOSW; pr++) if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) { /* Be careful to only index valid IP protocols. */ if (pr->pr_protocol < IPPROTO_MAX) ip_protox[pr->pr_protocol] = pr - inetsw; } netisr_register(&ip_nh); #ifdef RSS netisr_register(&ip_direct_nh); #endif } #ifdef VIMAGE static void ip_destroy(void *unused __unused) { + struct ifnet *ifp; int error; if ((error = pfil_head_unregister(&V_inet_pfil_hook)) != 0) printf("%s: WARNING: unable to unregister pfil hook, " "error %d\n", __func__, error); error = hhook_head_deregister(V_ipsec_hhh_in[HHOOK_IPSEC_INET]); if (error != 0) { printf("%s: WARNING: unable to deregister input helper hook " "type HHOOK_TYPE_IPSEC_IN, id HHOOK_IPSEC_INET: " "error %d returned\n", __func__, error); } error = hhook_head_deregister(V_ipsec_hhh_out[HHOOK_IPSEC_INET]); if (error != 0) { printf("%s: WARNING: unable to deregister output helper hook " "type HHOOK_TYPE_IPSEC_OUT, id HHOOK_IPSEC_INET: " "error %d returned\n", __func__, error); } - /* Cleanup in_ifaddr hash table; should be empty. */ - hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask); + /* Remove the IPv4 addresses from all interfaces. */ + in_ifscrub_all(); + + /* Make sure the IPv4 routes are gone as well. */ + IFNET_RLOCK(); + TAILQ_FOREACH(ifp, &V_ifnet, if_link) + rt_flushifroutes_af(ifp, AF_INET); + IFNET_RUNLOCK(); + /* Destroy IP reassembly queue. */ ipreass_destroy(); + + /* Cleanup in_ifaddr hash table; should be empty. */ + hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask); } VNET_SYSUNINIT(ip, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ip_destroy, NULL); #endif #ifdef RSS /* * IP direct input routine. * * This is called when reinjecting completed fragments where * all of the previous checking and book-keeping has been done. */ void ip_direct_input(struct mbuf *m) { struct ip *ip; int hlen; ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; IPSTAT_INC(ips_delivered); (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); return; } #endif /* * Ip input routine. Checksum and byte swap header. If fragmented * try to reassemble. Process options. Pass to next level. */ void ip_input(struct mbuf *m) { struct ip *ip = NULL; struct in_ifaddr *ia = NULL; struct ifaddr *ifa; struct ifnet *ifp; int checkif, hlen = 0; uint16_t sum, ip_len; int dchg = 0; /* dest changed after fw */ struct in_addr odst; /* original dst address */ M_ASSERTPKTHDR(m); if (m->m_flags & M_FASTFWD_OURS) { m->m_flags &= ~M_FASTFWD_OURS; /* Set up some basics that will be used later. */ ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; ip_len = ntohs(ip->ip_len); goto ours; } IPSTAT_INC(ips_total); if (m->m_pkthdr.len < sizeof(struct ip)) goto tooshort; if (m->m_len < sizeof (struct ip) && (m = m_pullup(m, sizeof (struct ip))) == NULL) { IPSTAT_INC(ips_toosmall); return; } ip = mtod(m, struct ip *); if (ip->ip_v != IPVERSION) { IPSTAT_INC(ips_badvers); goto bad; } hlen = ip->ip_hl << 2; if (hlen < sizeof(struct ip)) { /* minimum header length */ IPSTAT_INC(ips_badhlen); goto bad; } if (hlen > m->m_len) { if ((m = m_pullup(m, hlen)) == NULL) { IPSTAT_INC(ips_badhlen); return; } ip = mtod(m, struct ip *); } IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL); /* 127/8 must not appear on wire - RFC1122 */ ifp = m->m_pkthdr.rcvif; if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { if ((ifp->if_flags & IFF_LOOPBACK) == 0) { IPSTAT_INC(ips_badaddr); goto bad; } } if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); } else { if (hlen == sizeof(struct ip)) { sum = in_cksum_hdr(ip); } else { sum = in_cksum(m, hlen); } } if (sum) { IPSTAT_INC(ips_badsum); goto bad; } #ifdef ALTQ if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) /* packet is dropped by traffic conditioner */ return; #endif ip_len = ntohs(ip->ip_len); if (ip_len < hlen) { IPSTAT_INC(ips_badlen); goto bad; } /* * Check that the amount of data in the buffers * is as at least much as the IP header would have us expect. * Trim mbufs if longer than we expect. * Drop packet if shorter than we expect. */ if (m->m_pkthdr.len < ip_len) { tooshort: IPSTAT_INC(ips_tooshort); goto bad; } if (m->m_pkthdr.len > ip_len) { if (m->m_len == m->m_pkthdr.len) { m->m_len = ip_len; m->m_pkthdr.len = ip_len; } else m_adj(m, ip_len - m->m_pkthdr.len); } /* Try to forward the packet, but if we fail continue */ #ifdef IPSEC /* For now we do not handle IPSEC in tryforward. */ if (!key_havesp(IPSEC_DIR_INBOUND) && !key_havesp(IPSEC_DIR_OUTBOUND) && (V_ipforwarding == 1)) if (ip_tryforward(m) == NULL) return; /* * Bypass packet filtering for packets previously handled by IPsec. */ if (ip_ipsec_filtertunnel(m)) goto passin; #else if (V_ipforwarding == 1) if (ip_tryforward(m) == NULL) return; #endif /* IPSEC */ /* * Run through list of hooks for input packets. * * NB: Beware of the destination address changing (e.g. * by NAT rewriting). When this happens, tell * ip_forward to do the right thing. */ /* Jump over all PFIL processing if hooks are not active. */ if (!PFIL_HOOKED(&V_inet_pfil_hook)) goto passin; odst = ip->ip_dst; if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0) return; if (m == NULL) /* consumed by filter */ return; ip = mtod(m, struct ip *); dchg = (odst.s_addr != ip->ip_dst.s_addr); ifp = m->m_pkthdr.rcvif; if (m->m_flags & M_FASTFWD_OURS) { m->m_flags &= ~M_FASTFWD_OURS; goto ours; } if (m->m_flags & M_IP_NEXTHOP) { dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL); if (dchg != 0) { /* * Directly ship the packet on. This allows * forwarding packets originally destined to us * to some other directly connected host. */ ip_forward(m, 1); return; } } passin: /* * Process options and, if not destined for us, * ship it on. ip_dooptions returns 1 when an * error was detected (causing an icmp message * to be sent and the original packet to be freed). */ if (hlen > sizeof (struct ip) && ip_dooptions(m, 0)) return; /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no * matter if it is destined to another node, or whether it is * a multicast one, RSVP wants it! and prevents it from being forwarded * anywhere else. Also checks if the rsvp daemon is running before * grabbing the packet. */ if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP) goto ours; /* * Check our list of addresses, to see if the packet is for us. * If we don't have any addresses, assume any unicast packet * we receive might be for us (and let the upper layers deal * with it). */ if (TAILQ_EMPTY(&V_in_ifaddrhead) && (m->m_flags & (M_MCAST|M_BCAST)) == 0) goto ours; /* * Enable a consistency check between the destination address * and the arrival interface for a unicast packet (the RFC 1122 * strong ES model) if IP forwarding is disabled and the packet * is not locally generated and the packet is not subject to * 'ipfw fwd'. * * XXX - Checking also should be disabled if the destination * address is ipnat'ed to a different interface. * * XXX - Checking is incompatible with IP aliases added * to the loopback interface instead of the interface where * the packets are received. * * XXX - This is the case for carp vhost IPs as well so we * insert a workaround. If the packet got here, we already * checked with carp_iamatch() and carp_forus(). */ checkif = V_ip_checkinterface && (V_ipforwarding == 0) && ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) && ifp->if_carp == NULL && (dchg == 0); /* * Check for exact addresses in the hash bucket. */ /* IN_IFADDR_RLOCK(); */ LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) { /* * If the address matches, verify that the packet * arrived via the correct interface if checking is * enabled. */ if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr && (!checkif || ia->ia_ifp == ifp)) { counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); counter_u64_add(ia->ia_ifa.ifa_ibytes, m->m_pkthdr.len); /* IN_IFADDR_RUNLOCK(); */ goto ours; } } /* IN_IFADDR_RUNLOCK(); */ /* * Check for broadcast addresses. * * Only accept broadcast packets that arrive via the matching * interface. Reception of forwarded directed broadcasts would * be handled via ip_forward() and ether_output() with the loopback * into the stack for SIMPLEX interfaces handled by ether_output(). */ if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) { IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; ia = ifatoia(ifa); if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == ip->ip_dst.s_addr) { counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); counter_u64_add(ia->ia_ifa.ifa_ibytes, m->m_pkthdr.len); IF_ADDR_RUNLOCK(ifp); goto ours; } #ifdef BOOTP_COMPAT if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) { counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); counter_u64_add(ia->ia_ifa.ifa_ibytes, m->m_pkthdr.len); IF_ADDR_RUNLOCK(ifp); goto ours; } #endif } IF_ADDR_RUNLOCK(ifp); ia = NULL; } /* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */ if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) { IPSTAT_INC(ips_cantforward); m_freem(m); return; } if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { if (V_ip_mrouter) { /* * If we are acting as a multicast router, all * incoming multicast packets are passed to the * kernel-level multicast forwarding function. * The packet is returned (relatively) intact; if * ip_mforward() returns a non-zero value, the packet * must be discarded, else it may be accepted below. */ if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) { IPSTAT_INC(ips_cantforward); m_freem(m); return; } /* * The process-level routing daemon needs to receive * all multicast IGMP packets, whether or not this * host belongs to their destination groups. */ if (ip->ip_p == IPPROTO_IGMP) goto ours; IPSTAT_INC(ips_forward); } /* * Assume the packet is for us, to avoid prematurely taking * a lock on the in_multi hash. Protocols must perform * their own filtering and update statistics accordingly. */ goto ours; } if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) goto ours; if (ip->ip_dst.s_addr == INADDR_ANY) goto ours; /* * Not for us; forward if possible and desirable. */ if (V_ipforwarding == 0) { IPSTAT_INC(ips_cantforward); m_freem(m); } else { ip_forward(m, dchg); } return; ours: #ifdef IPSTEALTH /* * IPSTEALTH: Process non-routing options only * if the packet is destined for us. */ if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) return; #endif /* IPSTEALTH */ /* * Attempt reassembly; if it succeeds, proceed. * ip_reass() will return a different mbuf. */ if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) { /* XXXGL: shouldn't we save & set m_flags? */ m = ip_reass(m); if (m == NULL) return; ip = mtod(m, struct ip *); /* Get the header length of the reassembled packet */ hlen = ip->ip_hl << 2; } #ifdef IPSEC /* * enforce IPsec policy checking if we are seeing last header. * note that we do not visit this with protocols with pcb layer * code - like udp/tcp/raw ip. */ if (ip_ipsec_input(m, ip->ip_p) != 0) goto bad; #endif /* IPSEC */ /* * Switch out to protocol's input routine. */ IPSTAT_INC(ips_delivered); (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); return; bad: m_freem(m); } /* * IP timer processing; * if a timer expires on a reassembly * queue, discard it. */ void ip_slowtimo(void) { VNET_ITERATOR_DECL(vnet_iter); VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); ipreass_slowtimo(); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); } void ip_drain(void) { VNET_ITERATOR_DECL(vnet_iter); VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); ipreass_drain(); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); } /* * The protocol to be inserted into ip_protox[] must be already registered * in inetsw[], either statically or through pf_proto_register(). */ int ipproto_register(short ipproto) { struct protosw *pr; /* Sanity checks. */ if (ipproto <= 0 || ipproto >= IPPROTO_MAX) return (EPROTONOSUPPORT); /* * The protocol slot must not be occupied by another protocol * already. An index pointing to IPPROTO_RAW is unused. */ pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); if (pr == NULL) return (EPFNOSUPPORT); if (ip_protox[ipproto] != pr - inetsw) /* IPPROTO_RAW */ return (EEXIST); /* Find the protocol position in inetsw[] and set the index. */ for (pr = inetdomain.dom_protosw; pr < inetdomain.dom_protoswNPROTOSW; pr++) { if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol && pr->pr_protocol == ipproto) { ip_protox[pr->pr_protocol] = pr - inetsw; return (0); } } return (EPROTONOSUPPORT); } int ipproto_unregister(short ipproto) { struct protosw *pr; /* Sanity checks. */ if (ipproto <= 0 || ipproto >= IPPROTO_MAX) return (EPROTONOSUPPORT); /* Check if the protocol was indeed registered. */ pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); if (pr == NULL) return (EPFNOSUPPORT); if (ip_protox[ipproto] == pr - inetsw) /* IPPROTO_RAW */ return (ENOENT); /* Reset the protocol slot to IPPROTO_RAW. */ ip_protox[ipproto] = pr - inetsw; return (0); } u_char inetctlerrmap[PRC_NCMDS] = { 0, 0, 0, 0, 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, EMSGSIZE, EHOSTUNREACH, 0, 0, 0, 0, EHOSTUNREACH, 0, ENOPROTOOPT, ECONNREFUSED }; /* * Forward a packet. If some error occurs return the sender * an icmp packet. Note we can't always generate a meaningful * icmp message because icmp doesn't have a large enough repertoire * of codes and types. * * If not forwarding, just drop the packet. This could be confusing * if ipforwarding was zero but some routing protocol was advancing * us as a gateway to somewhere. However, we must let the routing * protocol deal with that. * * The srcrt parameter indicates whether the packet is being forwarded * via a source route. */ void ip_forward(struct mbuf *m, int srcrt) { struct ip *ip = mtod(m, struct ip *); struct in_ifaddr *ia; struct mbuf *mcopy; struct sockaddr_in *sin; struct in_addr dest; struct route ro; int error, type = 0, code = 0, mtu = 0; if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) { IPSTAT_INC(ips_cantforward); m_freem(m); return; } #ifdef IPSEC if (ip_ipsec_fwd(m) != 0) { IPSTAT_INC(ips_cantforward); m_freem(m); return; } #endif /* IPSEC */ #ifdef IPSTEALTH if (!V_ipstealth) { #endif if (ip->ip_ttl <= IPTTLDEC) { icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 0, 0); return; } #ifdef IPSTEALTH } #endif bzero(&ro, sizeof(ro)); sin = (struct sockaddr_in *)&ro.ro_dst; sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = ip->ip_dst; #ifdef RADIX_MPATH rtalloc_mpath_fib(&ro, ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr), M_GETFIB(m)); #else in_rtalloc_ign(&ro, 0, M_GETFIB(m)); #endif if (ro.ro_rt != NULL) { ia = ifatoia(ro.ro_rt->rt_ifa); ifa_ref(&ia->ia_ifa); } else ia = NULL; #ifndef IPSEC /* * 'ia' may be NULL if there is no route for this destination. * In case of IPsec, Don't discard it just yet, but pass it to * ip_output in case of outgoing IPsec policy. */ if (!srcrt && ia == NULL) { icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0); RO_RTFREE(&ro); return; } #endif /* * Save the IP header and at most 8 bytes of the payload, * in case we need to generate an ICMP message to the src. * * XXX this can be optimized a lot by saving the data in a local * buffer on the stack (72 bytes at most), and only allocating the * mbuf if really necessary. The vast majority of the packets * are forwarded without having to send an ICMP back (either * because unnecessary, or because rate limited), so we are * really we are wasting a lot of work here. * * We don't use m_copy() because it might return a reference * to a shared cluster. Both this function and ip_output() * assume exclusive access to the IP header in `m', so any * data in a cluster may change before we reach icmp_error(). */ mcopy = m_gethdr(M_NOWAIT, m->m_type); if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) { /* * It's probably ok if the pkthdr dup fails (because * the deep copy of the tag chain failed), but for now * be conservative and just discard the copy since * code below may some day want the tags. */ m_free(mcopy); mcopy = NULL; } if (mcopy != NULL) { mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy)); mcopy->m_pkthdr.len = mcopy->m_len; m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); } #ifdef IPSTEALTH if (!V_ipstealth) { #endif ip->ip_ttl -= IPTTLDEC; #ifdef IPSTEALTH } #endif /* * If forwarding packet using same interface that it came in on, * perhaps should send a redirect to sender to shortcut a hop. * Only send redirect if source is sending directly to us, * and if packet was not source routed (or has any options). * Also, don't send redirect if forwarding using a default route * or a route modified by a redirect. */ dest.s_addr = 0; if (!srcrt && V_ipsendredirects && ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) { struct rtentry *rt; rt = ro.ro_rt; if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && satosin(rt_key(rt))->sin_addr.s_addr != 0) { #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa)) u_long src = ntohl(ip->ip_src.s_addr); if (RTA(rt) && (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) { if (rt->rt_flags & RTF_GATEWAY) dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr; else dest.s_addr = ip->ip_dst.s_addr; /* Router requirements says to only send host redirects */ type = ICMP_REDIRECT; code = ICMP_REDIRECT_HOST; } } } error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL); if (error == EMSGSIZE && ro.ro_rt) mtu = ro.ro_rt->rt_mtu; RO_RTFREE(&ro); if (error) IPSTAT_INC(ips_cantforward); else { IPSTAT_INC(ips_forward); if (type) IPSTAT_INC(ips_redirectsent); else { if (mcopy) m_freem(mcopy); if (ia != NULL) ifa_free(&ia->ia_ifa); return; } } if (mcopy == NULL) { if (ia != NULL) ifa_free(&ia->ia_ifa); return; } switch (error) { case 0: /* forwarded, but need redirect */ /* type, code set above */ break; case ENETUNREACH: case EHOSTUNREACH: case ENETDOWN: case EHOSTDOWN: default: type = ICMP_UNREACH; code = ICMP_UNREACH_HOST; break; case EMSGSIZE: type = ICMP_UNREACH; code = ICMP_UNREACH_NEEDFRAG; #ifdef IPSEC /* * If IPsec is configured for this path, * override any possibly mtu value set by ip_output. */ mtu = ip_ipsec_mtu(mcopy, mtu); #endif /* IPSEC */ /* * If the MTU was set before make sure we are below the * interface MTU. * If the MTU wasn't set before use the interface mtu or * fall back to the next smaller mtu step compared to the * current packet size. */ if (mtu != 0) { if (ia != NULL) mtu = min(mtu, ia->ia_ifp->if_mtu); } else { if (ia != NULL) mtu = ia->ia_ifp->if_mtu; else mtu = ip_next_mtu(ntohs(ip->ip_len), 0); } IPSTAT_INC(ips_cantfrag); break; case ENOBUFS: case EACCES: /* ipfw denied packet */ m_freem(mcopy); if (ia != NULL) ifa_free(&ia->ia_ifa); return; } if (ia != NULL) ifa_free(&ia->ia_ifa); icmp_error(mcopy, type, code, dest.s_addr, mtu); } void ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip, struct mbuf *m) { if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) { struct bintime bt; bintime(&bt); if (inp->inp_socket->so_options & SO_BINTIME) { *mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt), SCM_BINTIME, SOL_SOCKET); if (*mp) mp = &(*mp)->m_next; } if (inp->inp_socket->so_options & SO_TIMESTAMP) { struct timeval tv; bintime2timeval(&bt, &tv); *mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv), SCM_TIMESTAMP, SOL_SOCKET); if (*mp) mp = &(*mp)->m_next; } } if (inp->inp_flags & INP_RECVDSTADDR) { *mp = sbcreatecontrol((caddr_t)&ip->ip_dst, sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } if (inp->inp_flags & INP_RECVTTL) { *mp = sbcreatecontrol((caddr_t)&ip->ip_ttl, sizeof(u_char), IP_RECVTTL, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } #ifdef notyet /* XXX * Moving these out of udp_input() made them even more broken * than they already were. */ /* options were tossed already */ if (inp->inp_flags & INP_RECVOPTS) { *mp = sbcreatecontrol((caddr_t)opts_deleted_above, sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } /* ip_srcroute doesn't do what we want here, need to fix */ if (inp->inp_flags & INP_RECVRETOPTS) { *mp = sbcreatecontrol((caddr_t)ip_srcroute(m), sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } #endif if (inp->inp_flags & INP_RECVIF) { struct ifnet *ifp; struct sdlbuf { struct sockaddr_dl sdl; u_char pad[32]; } sdlbuf; struct sockaddr_dl *sdp; struct sockaddr_dl *sdl2 = &sdlbuf.sdl; if ((ifp = m->m_pkthdr.rcvif) && ifp->if_index && ifp->if_index <= V_if_index) { sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr; /* * Change our mind and don't try copy. */ if (sdp->sdl_family != AF_LINK || sdp->sdl_len > sizeof(sdlbuf)) { goto makedummy; } bcopy(sdp, sdl2, sdp->sdl_len); } else { makedummy: sdl2->sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]); sdl2->sdl_family = AF_LINK; sdl2->sdl_index = 0; sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; } *mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len, IP_RECVIF, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } if (inp->inp_flags & INP_RECVTOS) { *mp = sbcreatecontrol((caddr_t)&ip->ip_tos, sizeof(u_char), IP_RECVTOS, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } if (inp->inp_flags2 & INP_RECVFLOWID) { uint32_t flowid, flow_type; flowid = m->m_pkthdr.flowid; flow_type = M_HASHTYPE_GET(m); /* * XXX should handle the failure of one or the * other - don't populate both? */ *mp = sbcreatecontrol((caddr_t) &flowid, sizeof(uint32_t), IP_FLOWID, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; *mp = sbcreatecontrol((caddr_t) &flow_type, sizeof(uint32_t), IP_FLOWTYPE, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } #ifdef RSS if (inp->inp_flags2 & INP_RECVRSSBUCKETID) { uint32_t flowid, flow_type; uint32_t rss_bucketid; flowid = m->m_pkthdr.flowid; flow_type = M_HASHTYPE_GET(m); if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) { *mp = sbcreatecontrol((caddr_t) &rss_bucketid, sizeof(uint32_t), IP_RSSBUCKETID, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } } #endif } /* * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on * locking. This code remains in ip_input.c as ip_mroute.c is optionally * compiled. */ static VNET_DEFINE(int, ip_rsvp_on); VNET_DEFINE(struct socket *, ip_rsvpd); #define V_ip_rsvp_on VNET(ip_rsvp_on) int ip_rsvp_init(struct socket *so) { if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) return EOPNOTSUPP; if (V_ip_rsvpd != NULL) return EADDRINUSE; V_ip_rsvpd = so; /* * This may seem silly, but we need to be sure we don't over-increment * the RSVP counter, in case something slips up. */ if (!V_ip_rsvp_on) { V_ip_rsvp_on = 1; V_rsvp_on++; } return 0; } int ip_rsvp_done(void) { V_ip_rsvpd = NULL; /* * This may seem silly, but we need to be sure we don't over-decrement * the RSVP counter, in case something slips up. */ if (V_ip_rsvp_on) { V_ip_rsvp_on = 0; V_rsvp_on--; } return 0; } int rsvp_input(struct mbuf **mp, int *offp, int proto) { struct mbuf *m; m = *mp; *mp = NULL; if (rsvp_input_p) { /* call the real one if loaded */ *mp = m; rsvp_input_p(mp, offp, proto); return (IPPROTO_DONE); } /* Can still get packets with rsvp_on = 0 if there is a local member * of the group to which the RSVP packet is addressed. But in this * case we want to throw the packet away. */ if (!V_rsvp_on) { m_freem(m); return (IPPROTO_DONE); } if (V_ip_rsvpd != NULL) { *mp = m; rip_input(mp, offp, proto); return (IPPROTO_DONE); } /* Drop the packet */ m_freem(m); return (IPPROTO_DONE); } Index: projects/vnet/sys/netinet6/in6_ifattach.c =================================================================== --- projects/vnet/sys/netinet6/in6_ifattach.c (revision 297511) +++ projects/vnet/sys/netinet6/in6_ifattach.c (revision 297512) @@ -1,918 +1,927 @@ /*- * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: in6_ifattach.c,v 1.118 2001/05/24 07:44:00 itojun Exp $ */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include VNET_DEFINE(unsigned long, in6_maxmtu) = 0; #ifdef IP6_AUTO_LINKLOCAL VNET_DEFINE(int, ip6_auto_linklocal) = IP6_AUTO_LINKLOCAL; #else VNET_DEFINE(int, ip6_auto_linklocal) = 1; /* enabled by default */ #endif VNET_DEFINE(struct callout, in6_tmpaddrtimer_ch); #define V_in6_tmpaddrtimer_ch VNET(in6_tmpaddrtimer_ch) VNET_DECLARE(struct inpcbinfo, ripcbinfo); #define V_ripcbinfo VNET(ripcbinfo) static int get_rand_ifid(struct ifnet *, struct in6_addr *); static int generate_tmp_ifid(u_int8_t *, const u_int8_t *, u_int8_t *); static int get_ifid(struct ifnet *, struct ifnet *, struct in6_addr *); static int in6_ifattach_linklocal(struct ifnet *, struct ifnet *); static int in6_ifattach_loopback(struct ifnet *); static void in6_purgemaddrs(struct ifnet *); #define EUI64_GBIT 0x01 #define EUI64_UBIT 0x02 #define EUI64_TO_IFID(in6) do {(in6)->s6_addr[8] ^= EUI64_UBIT; } while (0) #define EUI64_GROUP(in6) ((in6)->s6_addr[8] & EUI64_GBIT) #define EUI64_INDIVIDUAL(in6) (!EUI64_GROUP(in6)) #define EUI64_LOCAL(in6) ((in6)->s6_addr[8] & EUI64_UBIT) #define EUI64_UNIVERSAL(in6) (!EUI64_LOCAL(in6)) #define IFID_LOCAL(in6) (!EUI64_LOCAL(in6)) #define IFID_UNIVERSAL(in6) (!EUI64_UNIVERSAL(in6)) /* * Generate a last-resort interface identifier, when the machine has no * IEEE802/EUI64 address sources. * The goal here is to get an interface identifier that is * (1) random enough and (2) does not change across reboot. * We currently use MD5(hostname) for it. * * in6 - upper 64bits are preserved */ static int get_rand_ifid(struct ifnet *ifp, struct in6_addr *in6) { MD5_CTX ctxt; struct prison *pr; u_int8_t digest[16]; int hostnamelen; pr = curthread->td_ucred->cr_prison; mtx_lock(&pr->pr_mtx); hostnamelen = strlen(pr->pr_hostname); #if 0 /* we need at least several letters as seed for ifid */ if (hostnamelen < 3) { mtx_unlock(&pr->pr_mtx); return -1; } #endif /* generate 8 bytes of pseudo-random value. */ bzero(&ctxt, sizeof(ctxt)); MD5Init(&ctxt); MD5Update(&ctxt, pr->pr_hostname, hostnamelen); mtx_unlock(&pr->pr_mtx); MD5Final(digest, &ctxt); /* assumes sizeof(digest) > sizeof(ifid) */ bcopy(digest, &in6->s6_addr[8], 8); /* make sure to set "u" bit to local, and "g" bit to individual. */ in6->s6_addr[8] &= ~EUI64_GBIT; /* g bit to "individual" */ in6->s6_addr[8] |= EUI64_UBIT; /* u bit to "local" */ /* convert EUI64 into IPv6 interface identifier */ EUI64_TO_IFID(in6); return 0; } static int generate_tmp_ifid(u_int8_t *seed0, const u_int8_t *seed1, u_int8_t *ret) { MD5_CTX ctxt; u_int8_t seed[16], digest[16], nullbuf[8]; u_int32_t val32; /* If there's no history, start with a random seed. */ bzero(nullbuf, sizeof(nullbuf)); if (bcmp(nullbuf, seed0, sizeof(nullbuf)) == 0) { int i; for (i = 0; i < 2; i++) { val32 = arc4random(); bcopy(&val32, seed + sizeof(val32) * i, sizeof(val32)); } } else bcopy(seed0, seed, 8); /* copy the right-most 64-bits of the given address */ /* XXX assumption on the size of IFID */ bcopy(seed1, &seed[8], 8); if (0) { /* for debugging purposes only */ int i; printf("generate_tmp_ifid: new randomized ID from: "); for (i = 0; i < 16; i++) printf("%02x", seed[i]); printf(" "); } /* generate 16 bytes of pseudo-random value. */ bzero(&ctxt, sizeof(ctxt)); MD5Init(&ctxt); MD5Update(&ctxt, seed, sizeof(seed)); MD5Final(digest, &ctxt); /* * RFC 3041 3.2.1. (3) * Take the left-most 64-bits of the MD5 digest and set bit 6 (the * left-most bit is numbered 0) to zero. */ bcopy(digest, ret, 8); ret[0] &= ~EUI64_UBIT; /* * XXX: we'd like to ensure that the generated value is not zero * for simplicity. If the caclculated digest happens to be zero, * use a random non-zero value as the last resort. */ if (bcmp(nullbuf, ret, sizeof(nullbuf)) == 0) { nd6log((LOG_INFO, "generate_tmp_ifid: computed MD5 value is zero.\n")); val32 = arc4random(); val32 = 1 + (val32 % (0xffffffff - 1)); } /* * RFC 3041 3.2.1. (4) * Take the rightmost 64-bits of the MD5 digest and save them in * stable storage as the history value to be used in the next * iteration of the algorithm. */ bcopy(&digest[8], seed0, 8); if (0) { /* for debugging purposes only */ int i; printf("to: "); for (i = 0; i < 16; i++) printf("%02x", digest[i]); printf("\n"); } return 0; } /* * Get interface identifier for the specified interface. * XXX assumes single sockaddr_dl (AF_LINK address) per an interface * * in6 - upper 64bits are preserved */ int in6_get_hw_ifid(struct ifnet *ifp, struct in6_addr *in6) { struct ifaddr *ifa; struct sockaddr_dl *sdl; u_int8_t *addr; size_t addrlen; static u_int8_t allzero[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; static u_int8_t allone[8] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_LINK) continue; sdl = (struct sockaddr_dl *)ifa->ifa_addr; if (sdl == NULL) continue; if (sdl->sdl_alen == 0) continue; goto found; } IF_ADDR_RUNLOCK(ifp); return -1; found: IF_ADDR_LOCK_ASSERT(ifp); addr = LLADDR(sdl); addrlen = sdl->sdl_alen; /* get EUI64 */ switch (ifp->if_type) { case IFT_BRIDGE: case IFT_ETHER: case IFT_L2VLAN: case IFT_FDDI: case IFT_ISO88025: case IFT_ATM: case IFT_IEEE1394: case IFT_IEEE80211: /* IEEE802/EUI64 cases - what others? */ /* IEEE1394 uses 16byte length address starting with EUI64 */ if (addrlen > 8) addrlen = 8; /* look at IEEE802/EUI64 only */ if (addrlen != 8 && addrlen != 6) { IF_ADDR_RUNLOCK(ifp); return -1; } /* * check for invalid MAC address - on bsdi, we see it a lot * since wildboar configures all-zero MAC on pccard before * card insertion. */ if (bcmp(addr, allzero, addrlen) == 0) { IF_ADDR_RUNLOCK(ifp); return -1; } if (bcmp(addr, allone, addrlen) == 0) { IF_ADDR_RUNLOCK(ifp); return -1; } /* make EUI64 address */ if (addrlen == 8) bcopy(addr, &in6->s6_addr[8], 8); else if (addrlen == 6) { in6->s6_addr[8] = addr[0]; in6->s6_addr[9] = addr[1]; in6->s6_addr[10] = addr[2]; in6->s6_addr[11] = 0xff; in6->s6_addr[12] = 0xfe; in6->s6_addr[13] = addr[3]; in6->s6_addr[14] = addr[4]; in6->s6_addr[15] = addr[5]; } break; case IFT_ARCNET: if (addrlen != 1) { IF_ADDR_RUNLOCK(ifp); return -1; } if (!addr[0]) { IF_ADDR_RUNLOCK(ifp); return -1; } bzero(&in6->s6_addr[8], 8); in6->s6_addr[15] = addr[0]; /* * due to insufficient bitwidth, we mark it local. */ in6->s6_addr[8] &= ~EUI64_GBIT; /* g bit to "individual" */ in6->s6_addr[8] |= EUI64_UBIT; /* u bit to "local" */ break; case IFT_GIF: case IFT_STF: /* * RFC2893 says: "SHOULD use IPv4 address as ifid source". * however, IPv4 address is not very suitable as unique * identifier source (can be renumbered). * we don't do this. */ IF_ADDR_RUNLOCK(ifp); return -1; default: IF_ADDR_RUNLOCK(ifp); return -1; } /* sanity check: g bit must not indicate "group" */ if (EUI64_GROUP(in6)) { IF_ADDR_RUNLOCK(ifp); return -1; } /* convert EUI64 into IPv6 interface identifier */ EUI64_TO_IFID(in6); /* * sanity check: ifid must not be all zero, avoid conflict with * subnet router anycast */ if ((in6->s6_addr[8] & ~(EUI64_GBIT | EUI64_UBIT)) == 0x00 && bcmp(&in6->s6_addr[9], allzero, 7) == 0) { IF_ADDR_RUNLOCK(ifp); return -1; } IF_ADDR_RUNLOCK(ifp); return 0; } /* * Get interface identifier for the specified interface. If it is not * available on ifp0, borrow interface identifier from other information * sources. * * altifp - secondary EUI64 source */ static int get_ifid(struct ifnet *ifp0, struct ifnet *altifp, struct in6_addr *in6) { struct ifnet *ifp; /* first, try to get it from the interface itself */ if (in6_get_hw_ifid(ifp0, in6) == 0) { nd6log((LOG_DEBUG, "%s: got interface identifier from itself\n", if_name(ifp0))); goto success; } /* try secondary EUI64 source. this basically is for ATM PVC */ if (altifp && in6_get_hw_ifid(altifp, in6) == 0) { nd6log((LOG_DEBUG, "%s: got interface identifier from %s\n", if_name(ifp0), if_name(altifp))); goto success; } /* next, try to get it from some other hardware interface */ IFNET_RLOCK_NOSLEEP(); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (ifp == ifp0) continue; if (in6_get_hw_ifid(ifp, in6) != 0) continue; /* * to borrow ifid from other interface, ifid needs to be * globally unique */ if (IFID_UNIVERSAL(in6)) { nd6log((LOG_DEBUG, "%s: borrow interface identifier from %s\n", if_name(ifp0), if_name(ifp))); IFNET_RUNLOCK_NOSLEEP(); goto success; } } IFNET_RUNLOCK_NOSLEEP(); /* last resort: get from random number source */ if (get_rand_ifid(ifp, in6) == 0) { nd6log((LOG_DEBUG, "%s: interface identifier generated by random number\n", if_name(ifp0))); goto success; } printf("%s: failed to get interface identifier\n", if_name(ifp0)); return -1; success: nd6log((LOG_INFO, "%s: ifid: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", if_name(ifp0), in6->s6_addr[8], in6->s6_addr[9], in6->s6_addr[10], in6->s6_addr[11], in6->s6_addr[12], in6->s6_addr[13], in6->s6_addr[14], in6->s6_addr[15])); return 0; } /* * altifp - secondary EUI64 source */ static int in6_ifattach_linklocal(struct ifnet *ifp, struct ifnet *altifp) { struct in6_ifaddr *ia; struct in6_aliasreq ifra; struct nd_prefixctl pr0; int error; /* * configure link-local address. */ in6_prepare_ifra(&ifra, NULL, &in6mask64); ifra.ifra_addr.sin6_addr.s6_addr32[0] = htonl(0xfe800000); ifra.ifra_addr.sin6_addr.s6_addr32[1] = 0; if ((ifp->if_flags & IFF_LOOPBACK) != 0) { ifra.ifra_addr.sin6_addr.s6_addr32[2] = 0; ifra.ifra_addr.sin6_addr.s6_addr32[3] = htonl(1); } else { if (get_ifid(ifp, altifp, &ifra.ifra_addr.sin6_addr) != 0) { nd6log((LOG_ERR, "%s: no ifid available\n", if_name(ifp))); return (-1); } } if (in6_setscope(&ifra.ifra_addr.sin6_addr, ifp, NULL)) return (-1); /* link-local addresses should NEVER expire. */ ifra.ifra_lifetime.ia6t_vltime = ND6_INFINITE_LIFETIME; ifra.ifra_lifetime.ia6t_pltime = ND6_INFINITE_LIFETIME; /* * Now call in6_update_ifa() to do a bunch of procedures to configure * a link-local address. We can set the 3rd argument to NULL, because * we know there's no other link-local address on the interface * and therefore we are adding one (instead of updating one). */ if ((error = in6_update_ifa(ifp, &ifra, NULL, IN6_IFAUPDATE_DADDELAY)) != 0) { /* * XXX: When the interface does not support IPv6, this call * would fail in the SIOCSIFADDR ioctl. I believe the * notification is rather confusing in this case, so just * suppress it. (jinmei@kame.net 20010130) */ if (error != EAFNOSUPPORT) nd6log((LOG_NOTICE, "in6_ifattach_linklocal: failed to " "configure a link-local address on %s " "(errno=%d)\n", if_name(ifp), error)); return (-1); } ia = in6ifa_ifpforlinklocal(ifp, 0); /* ia must not be NULL */ KASSERT(ia != NULL, ("%s: ia == NULL, ifp=%p", __func__, ifp)); ifa_free(&ia->ia_ifa); /* * Make the link-local prefix (fe80::%link/64) as on-link. * Since we'd like to manage prefixes separately from addresses, * we make an ND6 prefix structure for the link-local prefix, * and add it to the prefix list as a never-expire prefix. * XXX: this change might affect some existing code base... */ bzero(&pr0, sizeof(pr0)); pr0.ndpr_ifp = ifp; /* this should be 64 at this moment. */ pr0.ndpr_plen = in6_mask2len(&ifra.ifra_prefixmask.sin6_addr, NULL); pr0.ndpr_prefix = ifra.ifra_addr; /* apply the mask for safety. (nd6_prelist_add will apply it again) */ IN6_MASK_ADDR(&pr0.ndpr_prefix.sin6_addr, &in6mask64); /* * Initialize parameters. The link-local prefix must always be * on-link, and its lifetimes never expire. */ pr0.ndpr_raf_onlink = 1; pr0.ndpr_raf_auto = 1; /* probably meaningless */ pr0.ndpr_vltime = ND6_INFINITE_LIFETIME; pr0.ndpr_pltime = ND6_INFINITE_LIFETIME; /* * Since there is no other link-local addresses, nd6_prefix_lookup() * probably returns NULL. However, we cannot always expect the result. * For example, if we first remove the (only) existing link-local * address, and then reconfigure another one, the prefix is still * valid with referring to the old link-local address. */ if (nd6_prefix_lookup(&pr0) == NULL) { if ((error = nd6_prelist_add(&pr0, NULL, NULL)) != 0) return (error); } return 0; } /* * ifp - must be IFT_LOOP */ static int in6_ifattach_loopback(struct ifnet *ifp) { struct in6_aliasreq ifra; int error; in6_prepare_ifra(&ifra, &in6addr_loopback, &in6mask128); /* * Always initialize ia_dstaddr (= broadcast address) to loopback * address. Follows IPv4 practice - see in_ifinit(). */ ifra.ifra_dstaddr.sin6_len = sizeof(struct sockaddr_in6); ifra.ifra_dstaddr.sin6_family = AF_INET6; ifra.ifra_dstaddr.sin6_addr = in6addr_loopback; /* the loopback address should NEVER expire. */ ifra.ifra_lifetime.ia6t_vltime = ND6_INFINITE_LIFETIME; ifra.ifra_lifetime.ia6t_pltime = ND6_INFINITE_LIFETIME; /* * We are sure that this is a newly assigned address, so we can set * NULL to the 3rd arg. */ if ((error = in6_update_ifa(ifp, &ifra, NULL, 0)) != 0) { nd6log((LOG_ERR, "in6_ifattach_loopback: failed to configure " "the loopback address on %s (errno=%d)\n", if_name(ifp), error)); return (-1); } return 0; } /* * compute NI group address, based on the current hostname setting. * see RFC 4620. * * when ifp == NULL, the caller is responsible for filling scopeid. * * If oldmcprefix == 1, FF02:0:0:0:0:2::/96 is used for NI group address * while it is FF02:0:0:0:0:2:FF00::/104 in RFC 4620. */ static int in6_nigroup0(struct ifnet *ifp, const char *name, int namelen, struct in6_addr *in6, int oldmcprefix) { struct prison *pr; const char *p; u_char *q; MD5_CTX ctxt; u_int8_t digest[16]; char l; char n[64]; /* a single label must not exceed 63 chars */ /* * If no name is given and namelen is -1, * we try to do the hostname lookup ourselves. */ if (!name && namelen == -1) { pr = curthread->td_ucred->cr_prison; mtx_lock(&pr->pr_mtx); name = pr->pr_hostname; namelen = strlen(name); } else pr = NULL; if (!name || !namelen) { if (pr != NULL) mtx_unlock(&pr->pr_mtx); return -1; } p = name; while (p && *p && *p != '.' && p - name < namelen) p++; if (p == name || p - name > sizeof(n) - 1) { if (pr != NULL) mtx_unlock(&pr->pr_mtx); return -1; /* label too long */ } l = p - name; strncpy(n, name, l); if (pr != NULL) mtx_unlock(&pr->pr_mtx); n[(int)l] = '\0'; for (q = n; *q; q++) { if ('A' <= *q && *q <= 'Z') *q = *q - 'A' + 'a'; } /* generate 16 bytes of pseudo-random value. */ bzero(&ctxt, sizeof(ctxt)); MD5Init(&ctxt); MD5Update(&ctxt, &l, sizeof(l)); MD5Update(&ctxt, n, l); MD5Final(digest, &ctxt); bzero(in6, sizeof(*in6)); in6->s6_addr16[0] = IPV6_ADDR_INT16_MLL; in6->s6_addr8[11] = 2; if (oldmcprefix == 0) { in6->s6_addr8[12] = 0xff; /* Copy the first 24 bits of 128-bit hash into the address. */ bcopy(digest, &in6->s6_addr8[13], 3); } else { /* Copy the first 32 bits of 128-bit hash into the address. */ bcopy(digest, &in6->s6_addr32[3], sizeof(in6->s6_addr32[3])); } if (in6_setscope(in6, ifp, NULL)) return (-1); /* XXX: should not fail */ return 0; } int in6_nigroup(struct ifnet *ifp, const char *name, int namelen, struct in6_addr *in6) { return (in6_nigroup0(ifp, name, namelen, in6, 0)); } int in6_nigroup_oldmcprefix(struct ifnet *ifp, const char *name, int namelen, struct in6_addr *in6) { return (in6_nigroup0(ifp, name, namelen, in6, 1)); } /* * XXX multiple loopback interface needs more care. for instance, * nodelocal address needs to be configured onto only one of them. * XXX multiple link-local address case * * altifp - secondary EUI64 source */ void in6_ifattach(struct ifnet *ifp, struct ifnet *altifp) { struct in6_ifaddr *ia; struct in6_addr in6; if (ifp->if_afdata[AF_INET6] == NULL) return; /* * quirks based on interface type */ switch (ifp->if_type) { case IFT_STF: /* * 6to4 interface is a very special kind of beast. * no multicast, no linklocal. RFC2529 specifies how to make * linklocals for 6to4 interface, but there's no use and * it is rather harmful to have one. */ ND_IFINFO(ifp)->flags &= ~ND6_IFF_AUTO_LINKLOCAL; break; default: break; } /* * usually, we require multicast capability to the interface */ if ((ifp->if_flags & IFF_MULTICAST) == 0) { nd6log((LOG_INFO, "in6_ifattach: " "%s is not multicast capable, IPv6 not enabled\n", if_name(ifp))); return; } /* * assign loopback address for loopback interface. * XXX multiple loopback interface case. */ if ((ifp->if_flags & IFF_LOOPBACK) != 0) { struct ifaddr *ifa; in6 = in6addr_loopback; ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp, &in6); if (ifa == NULL) { if (in6_ifattach_loopback(ifp) != 0) return; } else ifa_free(ifa); } /* * assign a link-local address, if there's none. */ if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL) { int error; ia = in6ifa_ifpforlinklocal(ifp, 0); if (ia == NULL) { error = in6_ifattach_linklocal(ifp, altifp); #if 0 if (error) log(LOG_NOTICE, "in6_ifattach_linklocal: " "failed to add a link-local addr to %s\n", if_name(ifp)); #endif } else ifa_free(&ia->ia_ifa); } /* update dynamically. */ if (V_in6_maxmtu < ifp->if_mtu) V_in6_maxmtu = ifp->if_mtu; } /* * NOTE: in6_ifdetach() does not support loopback if at this moment. * We don't need this function in bsdi, because interfaces are never removed * from the ifnet list in bsdi. */ void -in6_ifdetach(struct ifnet *ifp) +in6_ifdetach(struct ifnet *ifp, int purgeulp) { struct ifaddr *ifa, *next; if (ifp->if_afdata[AF_INET6] == NULL) return; /* remove neighbor management table */ - nd6_purge(ifp); + /* + * Enabling the nd6_purge will panic on vmove for interfaces on VNET + * teardown as the IPv6 layer is cleaned up already and the locks + * are destroyed. + */ + if (purgeulp) + nd6_purge(ifp); /* * nuke any of IPv6 addresses we have * XXX: all addresses should be already removed */ TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; in6_purgeaddr(ifa); } - in6_pcbpurgeif0(&V_udbinfo, ifp); - in6_pcbpurgeif0(&V_ulitecbinfo, ifp); - in6_pcbpurgeif0(&V_ripcbinfo, ifp); + if (purgeulp) { + in6_pcbpurgeif0(&V_udbinfo, ifp); + in6_pcbpurgeif0(&V_ulitecbinfo, ifp); + in6_pcbpurgeif0(&V_ripcbinfo, ifp); + } /* leave from all multicast groups joined */ in6_purgemaddrs(ifp); /* * remove neighbor management table. we call it twice just to make * sure we nuke everything. maybe we need just one call. * XXX: since the first call did not release addresses, some prefixes * might remain. We should call nd6_purge() again to release the * prefixes after removing all addresses above. * (Or can we just delay calling nd6_purge until at this point?) */ - nd6_purge(ifp); + if (purgeulp) + nd6_purge(ifp); } int in6_get_tmpifid(struct ifnet *ifp, u_int8_t *retbuf, const u_int8_t *baseid, int generate) { u_int8_t nullbuf[8]; struct nd_ifinfo *ndi = ND_IFINFO(ifp); bzero(nullbuf, sizeof(nullbuf)); if (bcmp(ndi->randomid, nullbuf, sizeof(nullbuf)) == 0) { /* we've never created a random ID. Create a new one. */ generate = 1; } if (generate) { bcopy(baseid, ndi->randomseed1, sizeof(ndi->randomseed1)); /* generate_tmp_ifid will update seedn and buf */ (void)generate_tmp_ifid(ndi->randomseed0, ndi->randomseed1, ndi->randomid); } bcopy(ndi->randomid, retbuf, 8); return (0); } void in6_tmpaddrtimer(void *arg) { CURVNET_SET((struct vnet *) arg); struct nd_ifinfo *ndi; u_int8_t nullbuf[8]; struct ifnet *ifp; callout_reset(&V_in6_tmpaddrtimer_ch, (V_ip6_temp_preferred_lifetime - V_ip6_desync_factor - V_ip6_temp_regen_advance) * hz, in6_tmpaddrtimer, curvnet); bzero(nullbuf, sizeof(nullbuf)); TAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (ifp->if_afdata[AF_INET6] == NULL) continue; ndi = ND_IFINFO(ifp); if (bcmp(ndi->randomid, nullbuf, sizeof(nullbuf)) != 0) { /* * We've been generating a random ID on this interface. * Create a new one. */ (void)generate_tmp_ifid(ndi->randomseed0, ndi->randomseed1, ndi->randomid); } } CURVNET_RESTORE(); } static void in6_purgemaddrs(struct ifnet *ifp) { LIST_HEAD(,in6_multi) purgeinms; struct in6_multi *inm, *tinm; struct ifmultiaddr *ifma; LIST_INIT(&purgeinms); IN6_MULTI_LOCK(); /* * Extract list of in6_multi associated with the detaching ifp * which the PF_INET6 layer is about to release. * We need to do this as IF_ADDR_LOCK() may be re-acquired * by code further down. */ IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET6 || ifma->ifma_protospec == NULL) continue; inm = (struct in6_multi *)ifma->ifma_protospec; LIST_INSERT_HEAD(&purgeinms, inm, in6m_entry); } IF_ADDR_RUNLOCK(ifp); LIST_FOREACH_SAFE(inm, &purgeinms, in6m_entry, tinm) { LIST_REMOVE(inm, in6m_entry); in6m_release_locked(inm); } mld_ifdetach(ifp); IN6_MULTI_UNLOCK(); } void in6_ifattach_destroy(void) { callout_drain(&V_in6_tmpaddrtimer_ch); } static void in6_ifattach_init(void *dummy) { /* Timer for regeneranation of temporary addresses randomize ID. */ callout_init(&V_in6_tmpaddrtimer_ch, 0); callout_reset(&V_in6_tmpaddrtimer_ch, (V_ip6_temp_preferred_lifetime - V_ip6_desync_factor - V_ip6_temp_regen_advance) * hz, in6_tmpaddrtimer, curvnet); } /* * Cheat. * This must be after route_init(), which is now SI_ORDER_THIRD. */ SYSINIT(in6_ifattach_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, in6_ifattach_init, NULL); Index: projects/vnet/sys/netinet6/in6_ifattach.h =================================================================== --- projects/vnet/sys/netinet6/in6_ifattach.h (revision 297511) +++ projects/vnet/sys/netinet6/in6_ifattach.h (revision 297512) @@ -1,47 +1,47 @@ /*- * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: in6_ifattach.h,v 1.14 2001/02/08 12:48:39 jinmei Exp $ * $FreeBSD$ */ #ifndef _NETINET6_IN6_IFATTACH_H_ #define _NETINET6_IN6_IFATTACH_H_ #ifdef _KERNEL void in6_ifattach(struct ifnet *, struct ifnet *); void in6_ifattach_destroy(void); -void in6_ifdetach(struct ifnet *); +void in6_ifdetach(struct ifnet *, int); int in6_get_tmpifid(struct ifnet *, u_int8_t *, const u_int8_t *, int); void in6_tmpaddrtimer(void *); int in6_get_hw_ifid(struct ifnet *, struct in6_addr *); int in6_nigroup(struct ifnet *, const char *, int, struct in6_addr *); int in6_nigroup_oldmcprefix(struct ifnet *, const char *, int, struct in6_addr *); #endif /* _KERNEL */ #endif /* _NETINET6_IN6_IFATTACH_H_ */ Index: projects/vnet/sys/netinet6/ip6_input.c =================================================================== --- projects/vnet/sys/netinet6/ip6_input.c (revision 297511) +++ projects/vnet/sys/netinet6/ip6_input.c (revision 297512) @@ -1,1705 +1,1729 @@ /*- * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: ip6_input.c,v 1.259 2002/01/21 04:58:09 jinmei Exp $ */ /*- * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipfw.h" #include "opt_ipsec.h" #include "opt_route.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif /* INET */ #include #include #include #include #include #include #include +#include #include #include #ifdef IPSEC #include #include #include #endif /* IPSEC */ #include extern struct domain inet6domain; u_char ip6_protox[IPPROTO_MAX]; VNET_DEFINE(struct in6_ifaddrhead, in6_ifaddrhead); VNET_DEFINE(struct in6_ifaddrlisthead *, in6_ifaddrhashtbl); VNET_DEFINE(u_long, in6_ifaddrhmask); static struct netisr_handler ip6_nh = { .nh_name = "ip6", .nh_handler = ip6_input, .nh_proto = NETISR_IPV6, #ifdef RSS .nh_m2cpuid = rss_soft_m2cpuid_v6, .nh_policy = NETISR_POLICY_CPU, .nh_dispatch = NETISR_DISPATCH_HYBRID, #else .nh_policy = NETISR_POLICY_FLOW, #endif }; #ifdef RSS static struct netisr_handler ip6_direct_nh = { .nh_name = "ip6_direct", .nh_handler = ip6_direct_input, .nh_proto = NETISR_IPV6_DIRECT, .nh_m2cpuid = rss_soft_m2cpuid_v6, .nh_policy = NETISR_POLICY_CPU, .nh_dispatch = NETISR_DISPATCH_HYBRID, }; #endif VNET_DEFINE(struct pfil_head, inet6_pfil_hook); VNET_PCPUSTAT_DEFINE(struct ip6stat, ip6stat); VNET_PCPUSTAT_SYSINIT(ip6stat); #ifdef VIMAGE VNET_PCPUSTAT_SYSUNINIT(ip6stat); #endif /* VIMAGE */ struct rmlock in6_ifaddr_lock; RM_SYSINIT(in6_ifaddr_lock, &in6_ifaddr_lock, "in6_ifaddr_lock"); static int ip6_hopopts_input(u_int32_t *, u_int32_t *, struct mbuf **, int *); #ifdef PULLDOWN_TEST static struct mbuf *ip6_pullexthdr(struct mbuf *, size_t, int); #endif /* * IP6 initialization: fill in IP6 protocol switch table. * All protocols not implemented in kernel go to raw IP6 protocol handler. */ void ip6_init(void) { struct protosw *pr; int i; TUNABLE_INT_FETCH("net.inet6.ip6.auto_linklocal", &V_ip6_auto_linklocal); TUNABLE_INT_FETCH("net.inet6.ip6.accept_rtadv", &V_ip6_accept_rtadv); TUNABLE_INT_FETCH("net.inet6.ip6.no_radr", &V_ip6_no_radr); TAILQ_INIT(&V_in6_ifaddrhead); V_in6_ifaddrhashtbl = hashinit(IN6ADDR_NHASH, M_IFADDR, &V_in6_ifaddrhmask); /* Initialize packet filter hooks. */ V_inet6_pfil_hook.ph_type = PFIL_TYPE_AF; V_inet6_pfil_hook.ph_af = AF_INET6; if ((i = pfil_head_register(&V_inet6_pfil_hook)) != 0) printf("%s: WARNING: unable to register pfil hook, " "error %d\n", __func__, i); if (hhook_head_register(HHOOK_TYPE_IPSEC_IN, AF_INET6, &V_ipsec_hhh_in[HHOOK_IPSEC_INET6], HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) printf("%s: WARNING: unable to register input helper hook\n", __func__); if (hhook_head_register(HHOOK_TYPE_IPSEC_OUT, AF_INET6, &V_ipsec_hhh_out[HHOOK_IPSEC_INET6], HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) printf("%s: WARNING: unable to register output helper hook\n", __func__); scope6_init(); addrsel_policy_init(); nd6_init(); frag6_init(); V_ip6_desync_factor = arc4random() % MAX_TEMP_DESYNC_FACTOR; /* Skip global initialization stuff for non-default instances. */ if (!IS_DEFAULT_VNET(curvnet)) return; pr = pffindproto(PF_INET6, IPPROTO_RAW, SOCK_RAW); if (pr == NULL) panic("ip6_init"); /* Initialize the entire ip6_protox[] array to IPPROTO_RAW. */ for (i = 0; i < IPPROTO_MAX; i++) ip6_protox[i] = pr - inet6sw; /* * Cycle through IP protocols and put them into the appropriate place * in ip6_protox[]. */ for (pr = inet6domain.dom_protosw; pr < inet6domain.dom_protoswNPROTOSW; pr++) if (pr->pr_domain->dom_family == PF_INET6 && pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) { /* Be careful to only index valid IP protocols. */ if (pr->pr_protocol < IPPROTO_MAX) ip6_protox[pr->pr_protocol] = pr - inet6sw; } netisr_register(&ip6_nh); #ifdef RSS netisr_register(&ip6_direct_nh); #endif } /* * The protocol to be inserted into ip6_protox[] must be already registered * in inet6sw[], either statically or through pf_proto_register(). */ int ip6proto_register(short ip6proto) { struct protosw *pr; /* Sanity checks. */ if (ip6proto <= 0 || ip6proto >= IPPROTO_MAX) return (EPROTONOSUPPORT); /* * The protocol slot must not be occupied by another protocol * already. An index pointing to IPPROTO_RAW is unused. */ pr = pffindproto(PF_INET6, IPPROTO_RAW, SOCK_RAW); if (pr == NULL) return (EPFNOSUPPORT); if (ip6_protox[ip6proto] != pr - inet6sw) /* IPPROTO_RAW */ return (EEXIST); /* * Find the protocol position in inet6sw[] and set the index. */ for (pr = inet6domain.dom_protosw; pr < inet6domain.dom_protoswNPROTOSW; pr++) { if (pr->pr_domain->dom_family == PF_INET6 && pr->pr_protocol && pr->pr_protocol == ip6proto) { ip6_protox[pr->pr_protocol] = pr - inet6sw; return (0); } } return (EPROTONOSUPPORT); } int ip6proto_unregister(short ip6proto) { struct protosw *pr; /* Sanity checks. */ if (ip6proto <= 0 || ip6proto >= IPPROTO_MAX) return (EPROTONOSUPPORT); /* Check if the protocol was indeed registered. */ pr = pffindproto(PF_INET6, IPPROTO_RAW, SOCK_RAW); if (pr == NULL) return (EPFNOSUPPORT); if (ip6_protox[ip6proto] == pr - inet6sw) /* IPPROTO_RAW */ return (ENOENT); /* Reset the protocol slot to IPPROTO_RAW. */ ip6_protox[ip6proto] = pr - inet6sw; return (0); } #ifdef VIMAGE static void ip6_destroy(void *unused __unused) { + struct ifaddr *ifa, *nifa; + struct ifnet *ifp; int error; if ((error = pfil_head_unregister(&V_inet6_pfil_hook)) != 0) printf("%s: WARNING: unable to unregister pfil hook, " "error %d\n", __func__, error); error = hhook_head_deregister(V_ipsec_hhh_in[HHOOK_IPSEC_INET6]); if (error != 0) { printf("%s: WARNING: unable to deregister input helper hook " "type HHOOK_TYPE_IPSEC_IN, id HHOOK_IPSEC_INET6: " "error %d returned\n", __func__, error); } error = hhook_head_deregister(V_ipsec_hhh_out[HHOOK_IPSEC_INET6]); if (error != 0) { printf("%s: WARNING: unable to deregister output helper hook " "type HHOOK_TYPE_IPSEC_OUT, id HHOOK_IPSEC_INET6: " "error %d returned\n", __func__, error); } - hashdestroy(V_in6_ifaddrhashtbl, M_IFADDR, V_in6_ifaddrhmask); + + /* Cleanup addresses. */ + IFNET_RLOCK(); + TAILQ_FOREACH(ifp, &V_ifnet, if_link) { + /* Cannot lock here - lock recursion. */ + /* IF_ADDR_LOCK(ifp); */ + TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, nifa) { + + if (ifa->ifa_addr->sa_family != AF_INET6) + continue; + in6_purgeaddr(ifa); + } + /* IF_ADDR_UNLOCK(ifp); */ + in6_ifdetach(ifp, 0); + mld_domifdetach(ifp); + /* Make sure any routes are gone as well. */ + rt_flushifroutes_af(ifp, AF_INET6); + } + IFNET_RUNLOCK(); + nd6_destroy(); in6_ifattach_destroy(); + + hashdestroy(V_in6_ifaddrhashtbl, M_IFADDR, V_in6_ifaddrhmask); } VNET_SYSUNINIT(inet6, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ip6_destroy, NULL); #endif static int ip6_input_hbh(struct mbuf *m, uint32_t *plen, uint32_t *rtalert, int *off, int *nxt, int *ours) { struct ip6_hdr *ip6; struct ip6_hbh *hbh; if (ip6_hopopts_input(plen, rtalert, &m, off)) { #if 0 /*touches NULL pointer*/ in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_discard); #endif goto out; /* m have already been freed */ } /* adjust pointer */ ip6 = mtod(m, struct ip6_hdr *); /* * if the payload length field is 0 and the next header field * indicates Hop-by-Hop Options header, then a Jumbo Payload * option MUST be included. */ if (ip6->ip6_plen == 0 && *plen == 0) { /* * Note that if a valid jumbo payload option is * contained, ip6_hopopts_input() must set a valid * (non-zero) payload length to the variable plen. */ IP6STAT_INC(ip6s_badoptions); in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_discard); in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_hdrerr); icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, (caddr_t)&ip6->ip6_plen - (caddr_t)ip6); goto out; } #ifndef PULLDOWN_TEST /* ip6_hopopts_input() ensures that mbuf is contiguous */ hbh = (struct ip6_hbh *)(ip6 + 1); #else IP6_EXTHDR_GET(hbh, struct ip6_hbh *, m, sizeof(struct ip6_hdr), sizeof(struct ip6_hbh)); if (hbh == NULL) { IP6STAT_INC(ip6s_tooshort); goto out; } #endif *nxt = hbh->ip6h_nxt; /* * If we are acting as a router and the packet contains a * router alert option, see if we know the option value. * Currently, we only support the option value for MLD, in which * case we should pass the packet to the multicast routing * daemon. */ if (*rtalert != ~0) { switch (*rtalert) { case IP6OPT_RTALERT_MLD: if (V_ip6_forwarding) *ours = 1; break; default: /* * RFC2711 requires unrecognized values must be * silently ignored. */ break; } } return (0); out: return (1); } #ifdef RSS /* * IPv6 direct input routine. * * This is called when reinjecting completed fragments where * all of the previous checking and book-keeping has been done. */ void ip6_direct_input(struct mbuf *m) { int off, nxt; int nest; struct m_tag *mtag; struct ip6_direct_ctx *ip6dc; mtag = m_tag_locate(m, MTAG_ABI_IPV6, IPV6_TAG_DIRECT, NULL); KASSERT(mtag != NULL, ("Reinjected packet w/o direct ctx tag!")); ip6dc = (struct ip6_direct_ctx *)(mtag + 1); nxt = ip6dc->ip6dc_nxt; off = ip6dc->ip6dc_off; nest = 0; m_tag_delete(m, mtag); while (nxt != IPPROTO_DONE) { if (V_ip6_hdrnestlimit && (++nest > V_ip6_hdrnestlimit)) { IP6STAT_INC(ip6s_toomanyhdr); goto bad; } /* * protection against faulty packet - there should be * more sanity checks in header chain processing. */ if (m->m_pkthdr.len < off) { IP6STAT_INC(ip6s_tooshort); in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_truncated); goto bad; } #ifdef IPSEC /* * enforce IPsec policy checking if we are seeing last header. * note that we do not visit this with protocols with pcb layer * code - like udp/tcp/raw ip. */ if (ip6_ipsec_input(m, nxt)) goto bad; #endif /* IPSEC */ nxt = (*inet6sw[ip6_protox[nxt]].pr_input)(&m, &off, nxt); } return; bad: m_freem(m); } #endif void ip6_input(struct mbuf *m) { struct in6_addr odst; struct ip6_hdr *ip6; struct in6_ifaddr *ia; u_int32_t plen; u_int32_t rtalert = ~0; int off = sizeof(struct ip6_hdr), nest; int nxt, ours = 0; int srcrt = 0; #ifdef IPSEC /* * should the inner packet be considered authentic? * see comment in ah4_input(). * NB: m cannot be NULL when passed to the input routine */ m->m_flags &= ~M_AUTHIPHDR; m->m_flags &= ~M_AUTHIPDGM; #endif /* IPSEC */ if (m->m_flags & M_FASTFWD_OURS) { /* * Firewall changed destination to local. */ m->m_flags &= ~M_FASTFWD_OURS; ours = 1; ip6 = mtod(m, struct ip6_hdr *); goto hbhcheck; } /* * mbuf statistics */ if (m->m_flags & M_EXT) { if (m->m_next) IP6STAT_INC(ip6s_mext2m); else IP6STAT_INC(ip6s_mext1); } else { if (m->m_next) { if (m->m_flags & M_LOOP) { IP6STAT_INC(ip6s_m2m[V_loif->if_index]); } else if (m->m_pkthdr.rcvif->if_index < IP6S_M2MMAX) IP6STAT_INC( ip6s_m2m[m->m_pkthdr.rcvif->if_index]); else IP6STAT_INC(ip6s_m2m[0]); } else IP6STAT_INC(ip6s_m1); } /* drop the packet if IPv6 operation is disabled on the IF */ if ((ND_IFINFO(m->m_pkthdr.rcvif)->flags & ND6_IFF_IFDISABLED)) goto bad; in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_receive); IP6STAT_INC(ip6s_total); #ifndef PULLDOWN_TEST /* * L2 bridge code and some other code can return mbuf chain * that does not conform to KAME requirement. too bad. * XXX: fails to join if interface MTU > MCLBYTES. jumbogram? */ if (m && m->m_next != NULL && m->m_pkthdr.len < MCLBYTES) { struct mbuf *n; if (m->m_pkthdr.len > MHLEN) n = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); else n = m_gethdr(M_NOWAIT, MT_DATA); if (n == NULL) { m_freem(m); return; /* ENOBUFS */ } m_move_pkthdr(n, m); m_copydata(m, 0, n->m_pkthdr.len, mtod(n, caddr_t)); n->m_len = n->m_pkthdr.len; m_freem(m); m = n; } IP6_EXTHDR_CHECK(m, 0, sizeof(struct ip6_hdr), /* nothing */); #endif if (m->m_len < sizeof(struct ip6_hdr)) { struct ifnet *inifp; inifp = m->m_pkthdr.rcvif; if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) { IP6STAT_INC(ip6s_toosmall); in6_ifstat_inc(inifp, ifs6_in_hdrerr); return; } } ip6 = mtod(m, struct ip6_hdr *); if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) { IP6STAT_INC(ip6s_badvers); in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_hdrerr); goto bad; } IP6STAT_INC(ip6s_nxthist[ip6->ip6_nxt]); IP_PROBE(receive, NULL, NULL, ip6, m->m_pkthdr.rcvif, NULL, ip6); /* * Check against address spoofing/corruption. */ if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src) || IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_dst)) { /* * XXX: "badscope" is not very suitable for a multicast source. */ IP6STAT_INC(ip6s_badscope); in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_addrerr); goto bad; } if (IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst) && !(m->m_flags & M_LOOP)) { /* * In this case, the packet should come from the loopback * interface. However, we cannot just check the if_flags, * because ip6_mloopback() passes the "actual" interface * as the outgoing/incoming interface. */ IP6STAT_INC(ip6s_badscope); in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_addrerr); goto bad; } if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && IPV6_ADDR_MC_SCOPE(&ip6->ip6_dst) == 0) { /* * RFC4291 2.7: * Nodes must not originate a packet to a multicast address * whose scop field contains the reserved value 0; if such * a packet is received, it must be silently dropped. */ IP6STAT_INC(ip6s_badscope); in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_addrerr); goto bad; } #ifdef ALTQ if (altq_input != NULL && (*altq_input)(m, AF_INET6) == 0) { /* packet is dropped by traffic conditioner */ return; } #endif /* * The following check is not documented in specs. A malicious * party may be able to use IPv4 mapped addr to confuse tcp/udp stack * and bypass security checks (act as if it was from 127.0.0.1 by using * IPv6 src ::ffff:127.0.0.1). Be cautious. * * This check chokes if we are in an SIIT cloud. As none of BSDs * support IPv4-less kernel compilation, we cannot support SIIT * environment at all. So, it makes more sense for us to reject any * malicious packets for non-SIIT environment, than try to do a * partial support for SIIT environment. */ if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) || IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) { IP6STAT_INC(ip6s_badscope); in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_addrerr); goto bad; } #if 0 /* * Reject packets with IPv4 compatible addresses (auto tunnel). * * The code forbids auto tunnel relay case in RFC1933 (the check is * stronger than RFC1933). We may want to re-enable it if mech-xx * is revised to forbid relaying case. */ if (IN6_IS_ADDR_V4COMPAT(&ip6->ip6_src) || IN6_IS_ADDR_V4COMPAT(&ip6->ip6_dst)) { IP6STAT_INC(ip6s_badscope); in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_addrerr); goto bad; } #endif #ifdef IPSEC /* * Bypass packet filtering for packets previously handled by IPsec. */ if (ip6_ipsec_filtertunnel(m)) goto passin; #endif /* IPSEC */ /* * Run through list of hooks for input packets. * * NB: Beware of the destination address changing * (e.g. by NAT rewriting). When this happens, * tell ip6_forward to do the right thing. */ odst = ip6->ip6_dst; /* Jump over all PFIL processing if hooks are not active. */ if (!PFIL_HOOKED(&V_inet6_pfil_hook)) goto passin; if (pfil_run_hooks(&V_inet6_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN, NULL)) return; if (m == NULL) /* consumed by filter */ return; ip6 = mtod(m, struct ip6_hdr *); srcrt = !IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst); if (m->m_flags & M_FASTFWD_OURS) { m->m_flags &= ~M_FASTFWD_OURS; ours = 1; goto hbhcheck; } if ((m->m_flags & M_IP6_NEXTHOP) && m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL) { /* * Directly ship the packet on. This allows forwarding * packets originally destined to us to some other directly * connected host. */ ip6_forward(m, 1); return; } passin: /* * Disambiguate address scope zones (if there is ambiguity). * We first make sure that the original source or destination address * is not in our internal form for scoped addresses. Such addresses * are not necessarily invalid spec-wise, but we cannot accept them due * to the usage conflict. * in6_setscope() then also checks and rejects the cases where src or * dst are the loopback address and the receiving interface * is not loopback. */ if (in6_clearscope(&ip6->ip6_src) || in6_clearscope(&ip6->ip6_dst)) { IP6STAT_INC(ip6s_badscope); /* XXX */ goto bad; } if (in6_setscope(&ip6->ip6_src, m->m_pkthdr.rcvif, NULL) || in6_setscope(&ip6->ip6_dst, m->m_pkthdr.rcvif, NULL)) { IP6STAT_INC(ip6s_badscope); goto bad; } /* * Multicast check. Assume packet is for us to avoid * prematurely taking locks. */ if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { ours = 1; in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_mcast); goto hbhcheck; } /* * Unicast check * XXX: For now we keep link-local IPv6 addresses with embedded * scope zone id, therefore we use zero zoneid here. */ ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */); if (ia != NULL) { if (ia->ia6_flags & IN6_IFF_NOTREADY) { char ip6bufs[INET6_ADDRSTRLEN]; char ip6bufd[INET6_ADDRSTRLEN]; /* address is not ready, so discard the packet. */ nd6log((LOG_INFO, "ip6_input: packet to an unready address %s->%s\n", ip6_sprintf(ip6bufs, &ip6->ip6_src), ip6_sprintf(ip6bufd, &ip6->ip6_dst))); ifa_free(&ia->ia_ifa); goto bad; } /* Count the packet in the ip address stats */ counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); counter_u64_add(ia->ia_ifa.ifa_ibytes, m->m_pkthdr.len); ifa_free(&ia->ia_ifa); ours = 1; goto hbhcheck; } /* * Now there is no reason to process the packet if it's not our own * and we're not a router. */ if (!V_ip6_forwarding) { IP6STAT_INC(ip6s_cantforward); in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_discard); goto bad; } hbhcheck: /* * Process Hop-by-Hop options header if it's contained. * m may be modified in ip6_hopopts_input(). * If a JumboPayload option is included, plen will also be modified. */ plen = (u_int32_t)ntohs(ip6->ip6_plen); if (ip6->ip6_nxt == IPPROTO_HOPOPTS) { if (ip6_input_hbh(m, &plen, &rtalert, &off, &nxt, &ours) != 0) return; } else nxt = ip6->ip6_nxt; /* * Use mbuf flags to propagate Router Alert option to * ICMPv6 layer, as hop-by-hop options have been stripped. */ if (rtalert != ~0) m->m_flags |= M_RTALERT_MLD; /* * Check that the amount of data in the buffers * is as at least much as the IPv6 header would have us expect. * Trim mbufs if longer than we expect. * Drop packet if shorter than we expect. */ if (m->m_pkthdr.len - sizeof(struct ip6_hdr) < plen) { IP6STAT_INC(ip6s_tooshort); in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_truncated); goto bad; } if (m->m_pkthdr.len > sizeof(struct ip6_hdr) + plen) { if (m->m_len == m->m_pkthdr.len) { m->m_len = sizeof(struct ip6_hdr) + plen; m->m_pkthdr.len = sizeof(struct ip6_hdr) + plen; } else m_adj(m, sizeof(struct ip6_hdr) + plen - m->m_pkthdr.len); } /* * Forward if desirable. */ if (V_ip6_mrouter && IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { /* * If we are acting as a multicast router, all * incoming multicast packets are passed to the * kernel-level multicast forwarding function. * The packet is returned (relatively) intact; if * ip6_mforward() returns a non-zero value, the packet * must be discarded, else it may be accepted below. * * XXX TODO: Check hlim and multicast scope here to avoid * unnecessarily calling into ip6_mforward(). */ if (ip6_mforward && ip6_mforward(ip6, m->m_pkthdr.rcvif, m)) { IP6STAT_INC(ip6s_cantforward); in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_discard); goto bad; } } else if (!ours) { ip6_forward(m, srcrt); return; } ip6 = mtod(m, struct ip6_hdr *); /* * Malicious party may be able to use IPv4 mapped addr to confuse * tcp/udp stack and bypass security checks (act as if it was from * 127.0.0.1 by using IPv6 src ::ffff:127.0.0.1). Be cautious. * * For SIIT end node behavior, you may want to disable the check. * However, you will become vulnerable to attacks using IPv4 mapped * source. */ if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) || IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) { IP6STAT_INC(ip6s_badscope); in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_addrerr); goto bad; } /* * Tell launch routine the next header */ IP6STAT_INC(ip6s_delivered); in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_deliver); nest = 0; while (nxt != IPPROTO_DONE) { if (V_ip6_hdrnestlimit && (++nest > V_ip6_hdrnestlimit)) { IP6STAT_INC(ip6s_toomanyhdr); goto bad; } /* * protection against faulty packet - there should be * more sanity checks in header chain processing. */ if (m->m_pkthdr.len < off) { IP6STAT_INC(ip6s_tooshort); in6_ifstat_inc(m->m_pkthdr.rcvif, ifs6_in_truncated); goto bad; } #ifdef IPSEC /* * enforce IPsec policy checking if we are seeing last header. * note that we do not visit this with protocols with pcb layer * code - like udp/tcp/raw ip. */ if (ip6_ipsec_input(m, nxt)) goto bad; #endif /* IPSEC */ nxt = (*inet6sw[ip6_protox[nxt]].pr_input)(&m, &off, nxt); } return; bad: m_freem(m); } /* * Hop-by-Hop options header processing. If a valid jumbo payload option is * included, the real payload length will be stored in plenp. * * rtalertp - XXX: should be stored more smart way */ static int ip6_hopopts_input(u_int32_t *plenp, u_int32_t *rtalertp, struct mbuf **mp, int *offp) { struct mbuf *m = *mp; int off = *offp, hbhlen; struct ip6_hbh *hbh; /* validation of the length of the header */ #ifndef PULLDOWN_TEST IP6_EXTHDR_CHECK(m, off, sizeof(*hbh), -1); hbh = (struct ip6_hbh *)(mtod(m, caddr_t) + off); hbhlen = (hbh->ip6h_len + 1) << 3; IP6_EXTHDR_CHECK(m, off, hbhlen, -1); hbh = (struct ip6_hbh *)(mtod(m, caddr_t) + off); #else IP6_EXTHDR_GET(hbh, struct ip6_hbh *, m, sizeof(struct ip6_hdr), sizeof(struct ip6_hbh)); if (hbh == NULL) { IP6STAT_INC(ip6s_tooshort); return -1; } hbhlen = (hbh->ip6h_len + 1) << 3; IP6_EXTHDR_GET(hbh, struct ip6_hbh *, m, sizeof(struct ip6_hdr), hbhlen); if (hbh == NULL) { IP6STAT_INC(ip6s_tooshort); return -1; } #endif off += hbhlen; hbhlen -= sizeof(struct ip6_hbh); if (ip6_process_hopopts(m, (u_int8_t *)hbh + sizeof(struct ip6_hbh), hbhlen, rtalertp, plenp) < 0) return (-1); *offp = off; *mp = m; return (0); } /* * Search header for all Hop-by-hop options and process each option. * This function is separate from ip6_hopopts_input() in order to * handle a case where the sending node itself process its hop-by-hop * options header. In such a case, the function is called from ip6_output(). * * The function assumes that hbh header is located right after the IPv6 header * (RFC2460 p7), opthead is pointer into data content in m, and opthead to * opthead + hbhlen is located in contiguous memory region. */ int ip6_process_hopopts(struct mbuf *m, u_int8_t *opthead, int hbhlen, u_int32_t *rtalertp, u_int32_t *plenp) { struct ip6_hdr *ip6; int optlen = 0; u_int8_t *opt = opthead; u_int16_t rtalert_val; u_int32_t jumboplen; const int erroff = sizeof(struct ip6_hdr) + sizeof(struct ip6_hbh); for (; hbhlen > 0; hbhlen -= optlen, opt += optlen) { switch (*opt) { case IP6OPT_PAD1: optlen = 1; break; case IP6OPT_PADN: if (hbhlen < IP6OPT_MINLEN) { IP6STAT_INC(ip6s_toosmall); goto bad; } optlen = *(opt + 1) + 2; break; case IP6OPT_ROUTER_ALERT: /* XXX may need check for alignment */ if (hbhlen < IP6OPT_RTALERT_LEN) { IP6STAT_INC(ip6s_toosmall); goto bad; } if (*(opt + 1) != IP6OPT_RTALERT_LEN - 2) { /* XXX stat */ icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, erroff + opt + 1 - opthead); return (-1); } optlen = IP6OPT_RTALERT_LEN; bcopy((caddr_t)(opt + 2), (caddr_t)&rtalert_val, 2); *rtalertp = ntohs(rtalert_val); break; case IP6OPT_JUMBO: /* XXX may need check for alignment */ if (hbhlen < IP6OPT_JUMBO_LEN) { IP6STAT_INC(ip6s_toosmall); goto bad; } if (*(opt + 1) != IP6OPT_JUMBO_LEN - 2) { /* XXX stat */ icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, erroff + opt + 1 - opthead); return (-1); } optlen = IP6OPT_JUMBO_LEN; /* * IPv6 packets that have non 0 payload length * must not contain a jumbo payload option. */ ip6 = mtod(m, struct ip6_hdr *); if (ip6->ip6_plen) { IP6STAT_INC(ip6s_badoptions); icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, erroff + opt - opthead); return (-1); } /* * We may see jumbolen in unaligned location, so * we'd need to perform bcopy(). */ bcopy(opt + 2, &jumboplen, sizeof(jumboplen)); jumboplen = (u_int32_t)htonl(jumboplen); #if 1 /* * if there are multiple jumbo payload options, * *plenp will be non-zero and the packet will be * rejected. * the behavior may need some debate in ipngwg - * multiple options does not make sense, however, * there's no explicit mention in specification. */ if (*plenp != 0) { IP6STAT_INC(ip6s_badoptions); icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, erroff + opt + 2 - opthead); return (-1); } #endif /* * jumbo payload length must be larger than 65535. */ if (jumboplen <= IPV6_MAXPACKET) { IP6STAT_INC(ip6s_badoptions); icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, erroff + opt + 2 - opthead); return (-1); } *plenp = jumboplen; break; default: /* unknown option */ if (hbhlen < IP6OPT_MINLEN) { IP6STAT_INC(ip6s_toosmall); goto bad; } optlen = ip6_unknown_opt(opt, m, erroff + opt - opthead); if (optlen == -1) return (-1); optlen += 2; break; } } return (0); bad: m_freem(m); return (-1); } /* * Unknown option processing. * The third argument `off' is the offset from the IPv6 header to the option, * which is necessary if the IPv6 header the and option header and IPv6 header * is not contiguous in order to return an ICMPv6 error. */ int ip6_unknown_opt(u_int8_t *optp, struct mbuf *m, int off) { struct ip6_hdr *ip6; switch (IP6OPT_TYPE(*optp)) { case IP6OPT_TYPE_SKIP: /* ignore the option */ return ((int)*(optp + 1)); case IP6OPT_TYPE_DISCARD: /* silently discard */ m_freem(m); return (-1); case IP6OPT_TYPE_FORCEICMP: /* send ICMP even if multicasted */ IP6STAT_INC(ip6s_badoptions); icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_OPTION, off); return (-1); case IP6OPT_TYPE_ICMP: /* send ICMP if not multicasted */ IP6STAT_INC(ip6s_badoptions); ip6 = mtod(m, struct ip6_hdr *); if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || (m->m_flags & (M_BCAST|M_MCAST))) m_freem(m); else icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_OPTION, off); return (-1); } m_freem(m); /* XXX: NOTREACHED */ return (-1); } /* * Create the "control" list for this pcb. * These functions will not modify mbuf chain at all. * * With KAME mbuf chain restriction: * The routine will be called from upper layer handlers like tcp6_input(). * Thus the routine assumes that the caller (tcp6_input) have already * called IP6_EXTHDR_CHECK() and all the extension headers are located in the * very first mbuf on the mbuf chain. * * ip6_savecontrol_v4 will handle those options that are possible to be * set on a v4-mapped socket. * ip6_savecontrol will directly call ip6_savecontrol_v4 to handle those * options and handle the v6-only ones itself. */ struct mbuf ** ip6_savecontrol_v4(struct inpcb *inp, struct mbuf *m, struct mbuf **mp, int *v4only) { struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); #ifdef SO_TIMESTAMP if ((inp->inp_socket->so_options & SO_TIMESTAMP) != 0) { struct timeval tv; microtime(&tv); *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv), SCM_TIMESTAMP, SOL_SOCKET); if (*mp) mp = &(*mp)->m_next; } #endif #define IS2292(inp, x, y) (((inp)->inp_flags & IN6P_RFC2292) ? (x) : (y)) /* RFC 2292 sec. 5 */ if ((inp->inp_flags & IN6P_PKTINFO) != 0) { struct in6_pktinfo pi6; if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) { #ifdef INET struct ip *ip; ip = mtod(m, struct ip *); pi6.ipi6_addr.s6_addr32[0] = 0; pi6.ipi6_addr.s6_addr32[1] = 0; pi6.ipi6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; pi6.ipi6_addr.s6_addr32[3] = ip->ip_dst.s_addr; #else /* We won't hit this code */ bzero(&pi6.ipi6_addr, sizeof(struct in6_addr)); #endif } else { bcopy(&ip6->ip6_dst, &pi6.ipi6_addr, sizeof(struct in6_addr)); in6_clearscope(&pi6.ipi6_addr); /* XXX */ } pi6.ipi6_ifindex = (m && m->m_pkthdr.rcvif) ? m->m_pkthdr.rcvif->if_index : 0; *mp = sbcreatecontrol((caddr_t) &pi6, sizeof(struct in6_pktinfo), IS2292(inp, IPV6_2292PKTINFO, IPV6_PKTINFO), IPPROTO_IPV6); if (*mp) mp = &(*mp)->m_next; } if ((inp->inp_flags & IN6P_HOPLIMIT) != 0) { int hlim; if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) { #ifdef INET struct ip *ip; ip = mtod(m, struct ip *); hlim = ip->ip_ttl; #else /* We won't hit this code */ hlim = 0; #endif } else { hlim = ip6->ip6_hlim & 0xff; } *mp = sbcreatecontrol((caddr_t) &hlim, sizeof(int), IS2292(inp, IPV6_2292HOPLIMIT, IPV6_HOPLIMIT), IPPROTO_IPV6); if (*mp) mp = &(*mp)->m_next; } if ((inp->inp_flags & IN6P_TCLASS) != 0) { int tclass; if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) { #ifdef INET struct ip *ip; ip = mtod(m, struct ip *); tclass = ip->ip_tos; #else /* We won't hit this code */ tclass = 0; #endif } else { u_int32_t flowinfo; flowinfo = (u_int32_t)ntohl(ip6->ip6_flow & IPV6_FLOWINFO_MASK); flowinfo >>= 20; tclass = flowinfo & 0xff; } *mp = sbcreatecontrol((caddr_t) &tclass, sizeof(int), IPV6_TCLASS, IPPROTO_IPV6); if (*mp) mp = &(*mp)->m_next; } if (v4only != NULL) { if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) { *v4only = 1; } else { *v4only = 0; } } return (mp); } void ip6_savecontrol(struct inpcb *in6p, struct mbuf *m, struct mbuf **mp) { struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); int v4only = 0; mp = ip6_savecontrol_v4(in6p, m, mp, &v4only); if (v4only) return; /* * IPV6_HOPOPTS socket option. Recall that we required super-user * privilege for the option (see ip6_ctloutput), but it might be too * strict, since there might be some hop-by-hop options which can be * returned to normal user. * See also RFC 2292 section 6 (or RFC 3542 section 8). */ if ((in6p->inp_flags & IN6P_HOPOPTS) != 0) { /* * Check if a hop-by-hop options header is contatined in the * received packet, and if so, store the options as ancillary * data. Note that a hop-by-hop options header must be * just after the IPv6 header, which is assured through the * IPv6 input processing. */ if (ip6->ip6_nxt == IPPROTO_HOPOPTS) { struct ip6_hbh *hbh; int hbhlen = 0; #ifdef PULLDOWN_TEST struct mbuf *ext; #endif #ifndef PULLDOWN_TEST hbh = (struct ip6_hbh *)(ip6 + 1); hbhlen = (hbh->ip6h_len + 1) << 3; #else ext = ip6_pullexthdr(m, sizeof(struct ip6_hdr), ip6->ip6_nxt); if (ext == NULL) { IP6STAT_INC(ip6s_tooshort); return; } hbh = mtod(ext, struct ip6_hbh *); hbhlen = (hbh->ip6h_len + 1) << 3; if (hbhlen != ext->m_len) { m_freem(ext); IP6STAT_INC(ip6s_tooshort); return; } #endif /* * XXX: We copy the whole header even if a * jumbo payload option is included, the option which * is to be removed before returning according to * RFC2292. * Note: this constraint is removed in RFC3542 */ *mp = sbcreatecontrol((caddr_t)hbh, hbhlen, IS2292(in6p, IPV6_2292HOPOPTS, IPV6_HOPOPTS), IPPROTO_IPV6); if (*mp) mp = &(*mp)->m_next; #ifdef PULLDOWN_TEST m_freem(ext); #endif } } if ((in6p->inp_flags & (IN6P_RTHDR | IN6P_DSTOPTS)) != 0) { int nxt = ip6->ip6_nxt, off = sizeof(struct ip6_hdr); /* * Search for destination options headers or routing * header(s) through the header chain, and stores each * header as ancillary data. * Note that the order of the headers remains in * the chain of ancillary data. */ while (1) { /* is explicit loop prevention necessary? */ struct ip6_ext *ip6e = NULL; int elen; #ifdef PULLDOWN_TEST struct mbuf *ext = NULL; #endif /* * if it is not an extension header, don't try to * pull it from the chain. */ switch (nxt) { case IPPROTO_DSTOPTS: case IPPROTO_ROUTING: case IPPROTO_HOPOPTS: case IPPROTO_AH: /* is it possible? */ break; default: goto loopend; } #ifndef PULLDOWN_TEST if (off + sizeof(*ip6e) > m->m_len) goto loopend; ip6e = (struct ip6_ext *)(mtod(m, caddr_t) + off); if (nxt == IPPROTO_AH) elen = (ip6e->ip6e_len + 2) << 2; else elen = (ip6e->ip6e_len + 1) << 3; if (off + elen > m->m_len) goto loopend; #else ext = ip6_pullexthdr(m, off, nxt); if (ext == NULL) { IP6STAT_INC(ip6s_tooshort); return; } ip6e = mtod(ext, struct ip6_ext *); if (nxt == IPPROTO_AH) elen = (ip6e->ip6e_len + 2) << 2; else elen = (ip6e->ip6e_len + 1) << 3; if (elen != ext->m_len) { m_freem(ext); IP6STAT_INC(ip6s_tooshort); return; } #endif switch (nxt) { case IPPROTO_DSTOPTS: if (!(in6p->inp_flags & IN6P_DSTOPTS)) break; *mp = sbcreatecontrol((caddr_t)ip6e, elen, IS2292(in6p, IPV6_2292DSTOPTS, IPV6_DSTOPTS), IPPROTO_IPV6); if (*mp) mp = &(*mp)->m_next; break; case IPPROTO_ROUTING: if (!(in6p->inp_flags & IN6P_RTHDR)) break; *mp = sbcreatecontrol((caddr_t)ip6e, elen, IS2292(in6p, IPV6_2292RTHDR, IPV6_RTHDR), IPPROTO_IPV6); if (*mp) mp = &(*mp)->m_next; break; case IPPROTO_HOPOPTS: case IPPROTO_AH: /* is it possible? */ break; default: /* * other cases have been filtered in the above. * none will visit this case. here we supply * the code just in case (nxt overwritten or * other cases). */ #ifdef PULLDOWN_TEST m_freem(ext); #endif goto loopend; } /* proceed with the next header. */ off += elen; nxt = ip6e->ip6e_nxt; ip6e = NULL; #ifdef PULLDOWN_TEST m_freem(ext); ext = NULL; #endif } loopend: ; } if (in6p->inp_flags2 & INP_RECVFLOWID) { uint32_t flowid, flow_type; flowid = m->m_pkthdr.flowid; flow_type = M_HASHTYPE_GET(m); /* * XXX should handle the failure of one or the * other - don't populate both? */ *mp = sbcreatecontrol((caddr_t) &flowid, sizeof(uint32_t), IPV6_FLOWID, IPPROTO_IPV6); if (*mp) mp = &(*mp)->m_next; *mp = sbcreatecontrol((caddr_t) &flow_type, sizeof(uint32_t), IPV6_FLOWTYPE, IPPROTO_IPV6); if (*mp) mp = &(*mp)->m_next; } #ifdef RSS if (in6p->inp_flags2 & INP_RECVRSSBUCKETID) { uint32_t flowid, flow_type; uint32_t rss_bucketid; flowid = m->m_pkthdr.flowid; flow_type = M_HASHTYPE_GET(m); if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) { *mp = sbcreatecontrol((caddr_t) &rss_bucketid, sizeof(uint32_t), IPV6_RSSBUCKETID, IPPROTO_IPV6); if (*mp) mp = &(*mp)->m_next; } } #endif } #undef IS2292 void ip6_notify_pmtu(struct inpcb *inp, struct sockaddr_in6 *dst, u_int32_t mtu) { struct socket *so; struct mbuf *m_mtu; struct ip6_mtuinfo mtuctl; KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); /* * Notify the error by sending IPV6_PATHMTU ancillary data if * application wanted to know the MTU value. * NOTE: we notify disconnected sockets, because some udp * applications keep sending sockets disconnected. * NOTE: our implementation doesn't notify connected sockets that has * foreign address that is different than given destination addresses * (this is permitted by RFC 3542). */ if ((inp->inp_flags & IN6P_MTU) == 0 || ( !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr) && !IN6_ARE_ADDR_EQUAL(&inp->in6p_faddr, &dst->sin6_addr))) return; mtuctl.ip6m_mtu = mtu; mtuctl.ip6m_addr = *dst; if (sa6_recoverscope(&mtuctl.ip6m_addr)) return; if ((m_mtu = sbcreatecontrol((caddr_t)&mtuctl, sizeof(mtuctl), IPV6_PATHMTU, IPPROTO_IPV6)) == NULL) return; so = inp->inp_socket; if (sbappendaddr(&so->so_rcv, (struct sockaddr *)dst, NULL, m_mtu) == 0) { m_freem(m_mtu); /* XXX: should count statistics */ } else sorwakeup(so); } #ifdef PULLDOWN_TEST /* * pull single extension header from mbuf chain. returns single mbuf that * contains the result, or NULL on error. */ static struct mbuf * ip6_pullexthdr(struct mbuf *m, size_t off, int nxt) { struct ip6_ext ip6e; size_t elen; struct mbuf *n; #ifdef DIAGNOSTIC switch (nxt) { case IPPROTO_DSTOPTS: case IPPROTO_ROUTING: case IPPROTO_HOPOPTS: case IPPROTO_AH: /* is it possible? */ break; default: printf("ip6_pullexthdr: invalid nxt=%d\n", nxt); } #endif m_copydata(m, off, sizeof(ip6e), (caddr_t)&ip6e); if (nxt == IPPROTO_AH) elen = (ip6e.ip6e_len + 2) << 2; else elen = (ip6e.ip6e_len + 1) << 3; if (elen > MLEN) n = m_getcl(M_NOWAIT, MT_DATA, 0); else n = m_get(M_NOWAIT, MT_DATA); if (n == NULL) return NULL; m_copydata(m, off, elen, mtod(n, caddr_t)); n->m_len = elen; return n; } #endif /* * Get pointer to the previous header followed by the header * currently processed. * XXX: This function supposes that * M includes all headers, * the next header field and the header length field of each header * are valid, and * the sum of each header length equals to OFF. * Because of these assumptions, this function must be called very * carefully. Moreover, it will not be used in the near future when * we develop `neater' mechanism to process extension headers. */ char * ip6_get_prevhdr(const struct mbuf *m, int off) { struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); if (off == sizeof(struct ip6_hdr)) return (&ip6->ip6_nxt); else { int len, nxt; struct ip6_ext *ip6e = NULL; nxt = ip6->ip6_nxt; len = sizeof(struct ip6_hdr); while (len < off) { ip6e = (struct ip6_ext *)(mtod(m, caddr_t) + len); switch (nxt) { case IPPROTO_FRAGMENT: len += sizeof(struct ip6_frag); break; case IPPROTO_AH: len += (ip6e->ip6e_len + 2) << 2; break; default: len += (ip6e->ip6e_len + 1) << 3; break; } nxt = ip6e->ip6e_nxt; } if (ip6e) return (&ip6e->ip6e_nxt); else return NULL; } } /* * get next header offset. m will be retained. */ int ip6_nexthdr(const struct mbuf *m, int off, int proto, int *nxtp) { struct ip6_hdr ip6; struct ip6_ext ip6e; struct ip6_frag fh; /* just in case */ if (m == NULL) panic("ip6_nexthdr: m == NULL"); if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len < off) return -1; switch (proto) { case IPPROTO_IPV6: if (m->m_pkthdr.len < off + sizeof(ip6)) return -1; m_copydata(m, off, sizeof(ip6), (caddr_t)&ip6); if (nxtp) *nxtp = ip6.ip6_nxt; off += sizeof(ip6); return off; case IPPROTO_FRAGMENT: /* * terminate parsing if it is not the first fragment, * it does not make sense to parse through it. */ if (m->m_pkthdr.len < off + sizeof(fh)) return -1; m_copydata(m, off, sizeof(fh), (caddr_t)&fh); /* IP6F_OFF_MASK = 0xfff8(BigEndian), 0xf8ff(LittleEndian) */ if (fh.ip6f_offlg & IP6F_OFF_MASK) return -1; if (nxtp) *nxtp = fh.ip6f_nxt; off += sizeof(struct ip6_frag); return off; case IPPROTO_AH: if (m->m_pkthdr.len < off + sizeof(ip6e)) return -1; m_copydata(m, off, sizeof(ip6e), (caddr_t)&ip6e); if (nxtp) *nxtp = ip6e.ip6e_nxt; off += (ip6e.ip6e_len + 2) << 2; return off; case IPPROTO_HOPOPTS: case IPPROTO_ROUTING: case IPPROTO_DSTOPTS: if (m->m_pkthdr.len < off + sizeof(ip6e)) return -1; m_copydata(m, off, sizeof(ip6e), (caddr_t)&ip6e); if (nxtp) *nxtp = ip6e.ip6e_nxt; off += (ip6e.ip6e_len + 1) << 3; return off; case IPPROTO_NONE: case IPPROTO_ESP: case IPPROTO_IPCOMP: /* give up */ return -1; default: return -1; } /* NOTREACHED */ } /* * get offset for the last header in the chain. m will be kept untainted. */ int ip6_lasthdr(const struct mbuf *m, int off, int proto, int *nxtp) { int newoff; int nxt; if (!nxtp) { nxt = -1; nxtp = &nxt; } while (1) { newoff = ip6_nexthdr(m, off, proto, nxtp); if (newoff < 0) return off; else if (newoff < off) return -1; /* invalid */ else if (newoff == off) return newoff; off = newoff; proto = *nxtp; } } /* * System control for IP6 */ u_char inet6ctlerrmap[PRC_NCMDS] = { 0, 0, 0, 0, 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, EMSGSIZE, EHOSTUNREACH, 0, 0, 0, 0, 0, 0, ENOPROTOOPT }; Index: projects/vnet/sys/netinet6/mld6.c =================================================================== --- projects/vnet/sys/netinet6/mld6.c (revision 297511) +++ projects/vnet/sys/netinet6/mld6.c (revision 297512) @@ -1,3320 +1,3316 @@ /*- * Copyright (c) 2009 Bruce Simpson. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $ */ /*- * Copyright (c) 1988 Stephen Deering. * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Stephen Deering of Stanford University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)igmp.c 8.1 (Berkeley) 7/19/93 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef KTR_MLD #define KTR_MLD KTR_INET6 #endif static struct mld_ifsoftc * mli_alloc_locked(struct ifnet *); static void mli_delete_locked(const struct ifnet *); static void mld_dispatch_packet(struct mbuf *); static void mld_dispatch_queue(struct mbufq *, int); static void mld_final_leave(struct in6_multi *, struct mld_ifsoftc *); static void mld_fasttimo_vnet(void); static int mld_handle_state_change(struct in6_multi *, struct mld_ifsoftc *); static int mld_initial_join(struct in6_multi *, struct mld_ifsoftc *, const int); #ifdef KTR static char * mld_rec_type_to_str(const int); #endif static void mld_set_version(struct mld_ifsoftc *, const int); static void mld_slowtimo_vnet(void); static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *, /*const*/ struct mld_hdr *); static int mld_v1_input_report(struct ifnet *, const struct ip6_hdr *, /*const*/ struct mld_hdr *); static void mld_v1_process_group_timer(struct mld_ifsoftc *, struct in6_multi *); static void mld_v1_process_querier_timers(struct mld_ifsoftc *); static int mld_v1_transmit_report(struct in6_multi *, const int); static void mld_v1_update_group(struct in6_multi *, const int); static void mld_v2_cancel_link_timers(struct mld_ifsoftc *); static void mld_v2_dispatch_general_query(struct mld_ifsoftc *); static struct mbuf * mld_v2_encap_report(struct ifnet *, struct mbuf *); static int mld_v2_enqueue_filter_change(struct mbufq *, struct in6_multi *); static int mld_v2_enqueue_group_record(struct mbufq *, struct in6_multi *, const int, const int, const int, const int); static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *, struct mbuf *, const int, const int); static int mld_v2_merge_state_changes(struct in6_multi *, struct mbufq *); static void mld_v2_process_group_timers(struct mld_ifsoftc *, struct mbufq *, struct mbufq *, struct in6_multi *, const int); static int mld_v2_process_group_query(struct in6_multi *, struct mld_ifsoftc *mli, int, struct mbuf *, const int); static int sysctl_mld_gsr(SYSCTL_HANDLER_ARGS); static int sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS); /* * Normative references: RFC 2710, RFC 3590, RFC 3810. * * Locking: * * The MLD subsystem lock ends up being system-wide for the moment, * but could be per-VIMAGE later on. * * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. * Any may be taken independently; if any are held at the same * time, the above lock order must be followed. * * IN6_MULTI_LOCK covers in_multi. * * MLD_LOCK covers per-link state and any global variables in this file. * * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of * per-link state iterators. * * XXX LOR PREVENTION * A special case for IPv6 is the in6_setscope() routine. ip6_output() * will not accept an ifp; it wants an embedded scope ID, unlike * ip_output(), which happily takes the ifp given to it. The embedded * scope ID is only used by MLD to select the outgoing interface. * * During interface attach and detach, MLD will take MLD_LOCK *after* * the IF_AFDATA_LOCK. * As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call * it with MLD_LOCK held without triggering an LOR. A netisr with indirect * dispatch could work around this, but we'd rather not do that, as it * can introduce other races. * * As such, we exploit the fact that the scope ID is just the interface * index, and embed it in the IPv6 destination address accordingly. * This is potentially NOT VALID for MLDv1 reports, as they * are always sent to the multicast group itself; as MLDv2 * reports are always sent to ff02::16, this is not an issue * when MLDv2 is in use. * * This does not however eliminate the LOR when ip6_output() itself * calls in6_setscope() internally whilst MLD_LOCK is held. This will * trigger a LOR warning in WITNESS when the ifnet is detached. * * The right answer is probably to make IF_AFDATA_LOCK an rwlock, given * how it's used across the network stack. Here we're simply exploiting * the fact that MLD runs at a similar layer in the stack to scope6.c. * * VIMAGE: * * Each in6_multi corresponds to an ifp, and each ifp corresponds * to a vnet in ifp->if_vnet. */ static struct mtx mld_mtx; static MALLOC_DEFINE(M_MLD, "mld", "mld state"); #define MLD_EMBEDSCOPE(pin6, zoneid) \ if (IN6_IS_SCOPE_LINKLOCAL(pin6) || \ IN6_IS_ADDR_MC_INTFACELOCAL(pin6)) \ (pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF) \ /* * VIMAGE-wide globals. */ static VNET_DEFINE(struct timeval, mld_gsrdelay) = {10, 0}; static VNET_DEFINE(LIST_HEAD(, mld_ifsoftc), mli_head); static VNET_DEFINE(int, interface_timers_running6); static VNET_DEFINE(int, state_change_timers_running6); static VNET_DEFINE(int, current_state_timers_running6); #define V_mld_gsrdelay VNET(mld_gsrdelay) #define V_mli_head VNET(mli_head) #define V_interface_timers_running6 VNET(interface_timers_running6) #define V_state_change_timers_running6 VNET(state_change_timers_running6) #define V_current_state_timers_running6 VNET(current_state_timers_running6) SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */ SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0, "IPv6 Multicast Listener Discovery"); /* * Virtualized sysctls. */ SYSCTL_PROC(_net_inet6_mld, OID_AUTO, gsrdelay, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I", "Rate limit for MLDv2 Group-and-Source queries in seconds"); /* * Non-virtualized sysctls. */ static SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mld_ifinfo, "Per-interface MLDv2 state"); static int mld_v1enable = 1; SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RWTUN, &mld_v1enable, 0, "Enable fallback to MLDv1"); static int mld_use_allow = 1; SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RWTUN, &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves"); /* * Packed Router Alert option structure declaration. */ struct mld_raopt { struct ip6_hbh hbh; struct ip6_opt pad; struct ip6_opt_router ra; } __packed; /* * Router Alert hop-by-hop option header. */ static struct mld_raopt mld_ra = { .hbh = { 0, 0 }, .pad = { .ip6o_type = IP6OPT_PADN, 0 }, .ra = { .ip6or_type = IP6OPT_ROUTER_ALERT, .ip6or_len = IP6OPT_RTALERT_LEN - 2, .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF), .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF) } }; static struct ip6_pktopts mld_po; static __inline void mld_save_context(struct mbuf *m, struct ifnet *ifp) { #ifdef VIMAGE m->m_pkthdr.PH_loc.ptr = ifp->if_vnet; #endif /* VIMAGE */ m->m_pkthdr.flowid = ifp->if_index; } static __inline void mld_scrub_context(struct mbuf *m) { m->m_pkthdr.PH_loc.ptr = NULL; m->m_pkthdr.flowid = 0; } /* * Restore context from a queued output chain. * Return saved ifindex. * * VIMAGE: The assertion is there to make sure that we * actually called CURVNET_SET() with what's in the mbuf chain. */ static __inline uint32_t mld_restore_context(struct mbuf *m) { #if defined(VIMAGE) && defined(INVARIANTS) KASSERT(curvnet == m->m_pkthdr.PH_loc.ptr, - ("%s: called when curvnet was not restored", __func__)); + ("%s: called when curvnet was not restored: cuvnet %p m ptr %p", + __func__, curvnet, m->m_pkthdr.PH_loc.ptr)); #endif return (m->m_pkthdr.flowid); } /* * Retrieve or set threshold between group-source queries in seconds. * * VIMAGE: Assume curvnet set by caller. * SMPng: NOTE: Serialized by MLD lock. */ static int sysctl_mld_gsr(SYSCTL_HANDLER_ARGS) { int error; int i; error = sysctl_wire_old_buffer(req, sizeof(int)); if (error) return (error); MLD_LOCK(); i = V_mld_gsrdelay.tv_sec; error = sysctl_handle_int(oidp, &i, 0, req); if (error || !req->newptr) goto out_locked; if (i < -1 || i >= 60) { error = EINVAL; goto out_locked; } CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d", V_mld_gsrdelay.tv_sec, i); V_mld_gsrdelay.tv_sec = i; out_locked: MLD_UNLOCK(); return (error); } /* * Expose struct mld_ifsoftc to userland, keyed by ifindex. * For use by ifmcstat(8). * * SMPng: NOTE: Does an unlocked ifindex space read. * VIMAGE: Assume curvnet set by caller. The node handler itself * is not directly virtualized. */ static int sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS) { int *name; int error; u_int namelen; struct ifnet *ifp; struct mld_ifsoftc *mli; name = (int *)arg1; namelen = arg2; if (req->newptr != NULL) return (EPERM); if (namelen != 1) return (EINVAL); error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo)); if (error) return (error); IN6_MULTI_LOCK(); MLD_LOCK(); if (name[0] <= 0 || name[0] > V_if_index) { error = ENOENT; goto out_locked; } error = ENOENT; ifp = ifnet_byindex(name[0]); if (ifp == NULL) goto out_locked; LIST_FOREACH(mli, &V_mli_head, mli_link) { if (ifp == mli->mli_ifp) { struct mld_ifinfo info; info.mli_version = mli->mli_version; info.mli_v1_timer = mli->mli_v1_timer; info.mli_v2_timer = mli->mli_v2_timer; info.mli_flags = mli->mli_flags; info.mli_rv = mli->mli_rv; info.mli_qi = mli->mli_qi; info.mli_qri = mli->mli_qri; info.mli_uri = mli->mli_uri; error = SYSCTL_OUT(req, &info, sizeof(info)); break; } } out_locked: MLD_UNLOCK(); IN6_MULTI_UNLOCK(); return (error); } /* * Dispatch an entire queue of pending packet chains. * VIMAGE: Assumes the vnet pointer has been set. */ static void mld_dispatch_queue(struct mbufq *mq, int limit) { struct mbuf *m; while ((m = mbufq_dequeue(mq)) != NULL) { CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, mq, m); mld_dispatch_packet(m); if (--limit == 0) break; } } /* * Filter outgoing MLD report state by group. * * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1) * and node-local addresses. However, kernel and socket consumers * always embed the KAME scope ID in the address provided, so strip it * when performing comparison. * Note: This is not the same as the *multicast* scope. * * Return zero if the given group is one for which MLD reports * should be suppressed, or non-zero if reports should be issued. */ static __inline int mld_is_addr_reported(const struct in6_addr *addr) { KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__)); if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL) return (0); if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) { struct in6_addr tmp = *addr; in6_clearscope(&tmp); if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes)) return (0); } return (1); } /* * Attach MLD when PF_INET6 is attached to an interface. * * SMPng: Normally called with IF_AFDATA_LOCK held. */ struct mld_ifsoftc * mld_domifattach(struct ifnet *ifp) { struct mld_ifsoftc *mli; CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, if_name(ifp)); MLD_LOCK(); mli = mli_alloc_locked(ifp); if (!(ifp->if_flags & IFF_MULTICAST)) mli->mli_flags |= MLIF_SILENT; if (mld_use_allow) mli->mli_flags |= MLIF_USEALLOW; MLD_UNLOCK(); return (mli); } /* * VIMAGE: assume curvnet set by caller. */ static struct mld_ifsoftc * mli_alloc_locked(/*const*/ struct ifnet *ifp) { struct mld_ifsoftc *mli; MLD_LOCK_ASSERT(); mli = malloc(sizeof(struct mld_ifsoftc), M_MLD, M_NOWAIT|M_ZERO); if (mli == NULL) goto out; mli->mli_ifp = ifp; mli->mli_version = MLD_VERSION_2; mli->mli_flags = 0; mli->mli_rv = MLD_RV_INIT; mli->mli_qi = MLD_QI_INIT; mli->mli_qri = MLD_QRI_INIT; mli->mli_uri = MLD_URI_INIT; SLIST_INIT(&mli->mli_relinmhead); mbufq_init(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS); LIST_INSERT_HEAD(&V_mli_head, mli, mli_link); CTR2(KTR_MLD, "allocate mld_ifsoftc for ifp %p(%s)", ifp, if_name(ifp)); out: return (mli); } /* * Hook for ifdetach. * * NOTE: Some finalization tasks need to run before the protocol domain * is detached, but also before the link layer does its cleanup. * Run before link-layer cleanup; cleanup groups, but do not free MLD state. * * SMPng: Caller must hold IN6_MULTI_LOCK(). * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator. * XXX This routine is also bitten by unlocked ifma_protospec access. */ void mld_ifdetach(struct ifnet *ifp) { struct mld_ifsoftc *mli; struct ifmultiaddr *ifma; struct in6_multi *inm, *tinm; CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, if_name(ifp)); IN6_MULTI_LOCK_ASSERT(); MLD_LOCK(); mli = MLD_IFINFO(ifp); if (mli->mli_version == MLD_VERSION_2) { IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET6 || ifma->ifma_protospec == NULL) continue; inm = (struct in6_multi *)ifma->ifma_protospec; if (inm->in6m_state == MLD_LEAVING_MEMBER) { SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm, in6m_nrele); } in6m_clear_recorded(inm); } IF_ADDR_RUNLOCK(ifp); SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, tinm) { SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); in6m_release_locked(inm); } } MLD_UNLOCK(); } /* * Hook for domifdetach. * Runs after link-layer cleanup; free MLD state. * * SMPng: Normally called with IF_AFDATA_LOCK held. */ void mld_domifdetach(struct ifnet *ifp) { CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, if_name(ifp)); MLD_LOCK(); mli_delete_locked(ifp); MLD_UNLOCK(); } static void mli_delete_locked(const struct ifnet *ifp) { struct mld_ifsoftc *mli, *tmli; CTR3(KTR_MLD, "%s: freeing mld_ifsoftc for ifp %p(%s)", __func__, ifp, if_name(ifp)); MLD_LOCK_ASSERT(); LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) { if (mli->mli_ifp == ifp) { /* * Free deferred General Query responses. */ mbufq_drain(&mli->mli_gq); LIST_REMOVE(mli, mli_link); KASSERT(SLIST_EMPTY(&mli->mli_relinmhead), ("%s: there are dangling in_multi references", __func__)); free(mli, M_MLD); return; } } -#ifdef INVARIANTS - panic("%s: mld_ifsoftc not found for ifp %p\n", __func__, ifp); -#endif } /* * Process a received MLDv1 general or address-specific query. * Assumes that the query header has been pulled up to sizeof(mld_hdr). * * NOTE: Can't be fully const correct as we temporarily embed scope ID in * mld_addr. This is OK as we own the mbuf chain. */ static int mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, /*const*/ struct mld_hdr *mld) { struct ifmultiaddr *ifma; struct mld_ifsoftc *mli; struct in6_multi *inm; int is_general_query; uint16_t timer; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif is_general_query = 0; if (!mld_v1enable) { CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)", ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, if_name(ifp)); return (0); } /* * RFC3810 Section 6.2: MLD queries must originate from * a router's link-local address. */ if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", ip6_sprintf(ip6tbuf, &ip6->ip6_src), ifp, if_name(ifp)); return (0); } /* * Do address field validation upfront before we accept * the query. */ if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { /* * MLDv1 General Query. * If this was not sent to the all-nodes group, ignore it. */ struct in6_addr dst; dst = ip6->ip6_dst; in6_clearscope(&dst); if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) return (EINVAL); is_general_query = 1; } else { /* * Embed scope ID of receiving interface in MLD query for * lookup whilst we don't hold other locks. */ in6_setscope(&mld->mld_addr, ifp, NULL); } IN6_MULTI_LOCK(); MLD_LOCK(); /* * Switch to MLDv1 host compatibility mode. */ mli = MLD_IFINFO(ifp); KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); mld_set_version(mli, MLD_VERSION_1); timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE; if (timer == 0) timer = 1; IF_ADDR_RLOCK(ifp); if (is_general_query) { /* * For each reporting group joined on this * interface, kick the report timer. */ CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)", ifp, if_name(ifp)); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET6 || ifma->ifma_protospec == NULL) continue; inm = (struct in6_multi *)ifma->ifma_protospec; mld_v1_update_group(inm, timer); } } else { /* * MLDv1 Group-Specific Query. * If this is a group-specific MLDv1 query, we need only * look up the single group to process it. */ inm = in6m_lookup_locked(ifp, &mld->mld_addr); if (inm != NULL) { CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)", ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, if_name(ifp)); mld_v1_update_group(inm, timer); } /* XXX Clear embedded scope ID as userland won't expect it. */ in6_clearscope(&mld->mld_addr); } IF_ADDR_RUNLOCK(ifp); MLD_UNLOCK(); IN6_MULTI_UNLOCK(); return (0); } /* * Update the report timer on a group in response to an MLDv1 query. * * If we are becoming the reporting member for this group, start the timer. * If we already are the reporting member for this group, and timer is * below the threshold, reset it. * * We may be updating the group for the first time since we switched * to MLDv2. If we are, then we must clear any recorded source lists, * and transition to REPORTING state; the group timer is overloaded * for group and group-source query responses. * * Unlike MLDv2, the delay per group should be jittered * to avoid bursts of MLDv1 reports. */ static void mld_v1_update_group(struct in6_multi *inm, const int timer) { #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), if_name(inm->in6m_ifp), timer); IN6_MULTI_LOCK_ASSERT(); switch (inm->in6m_state) { case MLD_NOT_MEMBER: case MLD_SILENT_MEMBER: break; case MLD_REPORTING_MEMBER: if (inm->in6m_timer != 0 && inm->in6m_timer <= timer) { CTR1(KTR_MLD, "%s: REPORTING and timer running, " "skipping.", __func__); break; } /* FALLTHROUGH */ case MLD_SG_QUERY_PENDING_MEMBER: case MLD_G_QUERY_PENDING_MEMBER: case MLD_IDLE_MEMBER: case MLD_LAZY_MEMBER: case MLD_AWAKENING_MEMBER: CTR1(KTR_MLD, "%s: ->REPORTING", __func__); inm->in6m_state = MLD_REPORTING_MEMBER; inm->in6m_timer = MLD_RANDOM_DELAY(timer); V_current_state_timers_running6 = 1; break; case MLD_SLEEPING_MEMBER: CTR1(KTR_MLD, "%s: ->AWAKENING", __func__); inm->in6m_state = MLD_AWAKENING_MEMBER; break; case MLD_LEAVING_MEMBER: break; } } /* * Process a received MLDv2 general, group-specific or * group-and-source-specific query. * * Assumes that the query header has been pulled up to sizeof(mldv2_query). * * Return 0 if successful, otherwise an appropriate error code is returned. */ static int mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, struct mbuf *m, const int off, const int icmp6len) { struct mld_ifsoftc *mli; struct mldv2_query *mld; struct in6_multi *inm; uint32_t maxdelay, nsrc, qqi; int is_general_query; uint16_t timer; uint8_t qrv; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif is_general_query = 0; /* * RFC3810 Section 6.2: MLD queries must originate from * a router's link-local address. */ if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", ip6_sprintf(ip6tbuf, &ip6->ip6_src), ifp, if_name(ifp)); return (0); } CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, if_name(ifp)); mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off); maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */ if (maxdelay >= 32768) { maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) << (MLD_MRC_EXP(maxdelay) + 3); } timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE; if (timer == 0) timer = 1; qrv = MLD_QRV(mld->mld_misc); if (qrv < 2) { CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__, qrv, MLD_RV_INIT); qrv = MLD_RV_INIT; } qqi = mld->mld_qqi; if (qqi >= 128) { qqi = MLD_QQIC_MANT(mld->mld_qqi) << (MLD_QQIC_EXP(mld->mld_qqi) + 3); } nsrc = ntohs(mld->mld_numsrc); if (nsrc > MLD_MAX_GS_SOURCES) return (EMSGSIZE); if (icmp6len < sizeof(struct mldv2_query) + (nsrc * sizeof(struct in6_addr))) return (EMSGSIZE); /* * Do further input validation upfront to avoid resetting timers * should we need to discard this query. */ if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { /* * A general query with a source list has undefined * behaviour; discard it. */ if (nsrc > 0) return (EINVAL); is_general_query = 1; } else { /* * Embed scope ID of receiving interface in MLD query for * lookup whilst we don't hold other locks (due to KAME * locking lameness). We own this mbuf chain just now. */ in6_setscope(&mld->mld_addr, ifp, NULL); } IN6_MULTI_LOCK(); MLD_LOCK(); mli = MLD_IFINFO(ifp); KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); /* * Discard the v2 query if we're in Compatibility Mode. * The RFC is pretty clear that hosts need to stay in MLDv1 mode * until the Old Version Querier Present timer expires. */ if (mli->mli_version != MLD_VERSION_2) goto out_locked; mld_set_version(mli, MLD_VERSION_2); mli->mli_rv = qrv; mli->mli_qi = qqi; mli->mli_qri = maxdelay; CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi, maxdelay); if (is_general_query) { /* * MLDv2 General Query. * * Schedule a current-state report on this ifp for * all groups, possibly containing source lists. * * If there is a pending General Query response * scheduled earlier than the selected delay, do * not schedule any other reports. * Otherwise, reset the interface timer. */ CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)", ifp, if_name(ifp)); if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) { mli->mli_v2_timer = MLD_RANDOM_DELAY(timer); V_interface_timers_running6 = 1; } } else { /* * MLDv2 Group-specific or Group-and-source-specific Query. * * Group-source-specific queries are throttled on * a per-group basis to defeat denial-of-service attempts. * Queries for groups we are not a member of on this * link are simply ignored. */ IF_ADDR_RLOCK(ifp); inm = in6m_lookup_locked(ifp, &mld->mld_addr); if (inm == NULL) { IF_ADDR_RUNLOCK(ifp); goto out_locked; } if (nsrc > 0) { if (!ratecheck(&inm->in6m_lastgsrtv, &V_mld_gsrdelay)) { CTR1(KTR_MLD, "%s: GS query throttled.", __func__); IF_ADDR_RUNLOCK(ifp); goto out_locked; } } CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)", ifp, if_name(ifp)); /* * If there is a pending General Query response * scheduled sooner than the selected delay, no * further report need be scheduled. * Otherwise, prepare to respond to the * group-specific or group-and-source query. */ if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) mld_v2_process_group_query(inm, mli, timer, m, off); /* XXX Clear embedded scope ID as userland won't expect it. */ in6_clearscope(&mld->mld_addr); IF_ADDR_RUNLOCK(ifp); } out_locked: MLD_UNLOCK(); IN6_MULTI_UNLOCK(); return (0); } /* * Process a recieved MLDv2 group-specific or group-and-source-specific * query. * Return <0 if any error occured. Currently this is ignored. */ static int mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifsoftc *mli, int timer, struct mbuf *m0, const int off) { struct mldv2_query *mld; int retval; uint16_t nsrc; IN6_MULTI_LOCK_ASSERT(); MLD_LOCK_ASSERT(); retval = 0; mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off); switch (inm->in6m_state) { case MLD_NOT_MEMBER: case MLD_SILENT_MEMBER: case MLD_SLEEPING_MEMBER: case MLD_LAZY_MEMBER: case MLD_AWAKENING_MEMBER: case MLD_IDLE_MEMBER: case MLD_LEAVING_MEMBER: return (retval); break; case MLD_REPORTING_MEMBER: case MLD_G_QUERY_PENDING_MEMBER: case MLD_SG_QUERY_PENDING_MEMBER: break; } nsrc = ntohs(mld->mld_numsrc); /* * Deal with group-specific queries upfront. * If any group query is already pending, purge any recorded * source-list state if it exists, and schedule a query response * for this group-specific query. */ if (nsrc == 0) { if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) { in6m_clear_recorded(inm); timer = min(inm->in6m_timer, timer); } inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER; inm->in6m_timer = MLD_RANDOM_DELAY(timer); V_current_state_timers_running6 = 1; return (retval); } /* * Deal with the case where a group-and-source-specific query has * been received but a group-specific query is already pending. */ if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) { timer = min(inm->in6m_timer, timer); inm->in6m_timer = MLD_RANDOM_DELAY(timer); V_current_state_timers_running6 = 1; return (retval); } /* * Finally, deal with the case where a group-and-source-specific * query has been received, where a response to a previous g-s-r * query exists, or none exists. * In this case, we need to parse the source-list which the Querier * has provided us with and check if we have any source list filter * entries at T1 for these sources. If we do not, there is no need * schedule a report and the query may be dropped. * If we do, we must record them and schedule a current-state * report for those sources. */ if (inm->in6m_nsrc > 0) { struct mbuf *m; uint8_t *sp; int i, nrecorded; int soff; m = m0; soff = off + sizeof(struct mldv2_query); nrecorded = 0; for (i = 0; i < nsrc; i++) { sp = mtod(m, uint8_t *) + soff; retval = in6m_record_source(inm, (const struct in6_addr *)sp); if (retval < 0) break; nrecorded += retval; soff += sizeof(struct in6_addr); if (soff >= m->m_len) { soff = soff - m->m_len; m = m->m_next; if (m == NULL) break; } } if (nrecorded > 0) { CTR1(KTR_MLD, "%s: schedule response to SG query", __func__); inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER; inm->in6m_timer = MLD_RANDOM_DELAY(timer); V_current_state_timers_running6 = 1; } } return (retval); } /* * Process a received MLDv1 host membership report. * Assumes mld points to mld_hdr in pulled up mbuf chain. * * NOTE: Can't be fully const correct as we temporarily embed scope ID in * mld_addr. This is OK as we own the mbuf chain. */ static int mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6, /*const*/ struct mld_hdr *mld) { struct in6_addr src, dst; struct in6_ifaddr *ia; struct in6_multi *inm; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif if (!mld_v1enable) { CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)", ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, if_name(ifp)); return (0); } if (ifp->if_flags & IFF_LOOPBACK) return (0); /* * MLDv1 reports must originate from a host's link-local address, * or the unspecified address (when booting). */ src = ip6->ip6_src; in6_clearscope(&src); if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) { CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", ip6_sprintf(ip6tbuf, &ip6->ip6_src), ifp, if_name(ifp)); return (EINVAL); } /* * RFC2710 Section 4: MLDv1 reports must pertain to a multicast * group, and must be directed to the group itself. */ dst = ip6->ip6_dst; in6_clearscope(&dst); if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) || !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) { CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)", ip6_sprintf(ip6tbuf, &ip6->ip6_dst), ifp, if_name(ifp)); return (EINVAL); } /* * Make sure we don't hear our own membership report, as fast * leave requires knowing that we are the only member of a * group. Assume we used the link-local address if available, * otherwise look for ::. * * XXX Note that scope ID comparison is needed for the address * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be * performed for the on-wire address. */ ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) || (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) { if (ia != NULL) ifa_free(&ia->ia_ifa); return (0); } if (ia != NULL) ifa_free(&ia->ia_ifa); CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)", ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, if_name(ifp)); /* * Embed scope ID of receiving interface in MLD query for lookup * whilst we don't hold other locks (due to KAME locking lameness). */ if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) in6_setscope(&mld->mld_addr, ifp, NULL); IN6_MULTI_LOCK(); MLD_LOCK(); IF_ADDR_RLOCK(ifp); /* * MLDv1 report suppression. * If we are a member of this group, and our membership should be * reported, and our group timer is pending or about to be reset, * stop our group timer by transitioning to the 'lazy' state. */ inm = in6m_lookup_locked(ifp, &mld->mld_addr); if (inm != NULL) { struct mld_ifsoftc *mli; mli = inm->in6m_mli; KASSERT(mli != NULL, ("%s: no mli for ifp %p", __func__, ifp)); /* * If we are in MLDv2 host mode, do not allow the * other host's MLDv1 report to suppress our reports. */ if (mli->mli_version == MLD_VERSION_2) goto out_locked; inm->in6m_timer = 0; switch (inm->in6m_state) { case MLD_NOT_MEMBER: case MLD_SILENT_MEMBER: case MLD_SLEEPING_MEMBER: break; case MLD_REPORTING_MEMBER: case MLD_IDLE_MEMBER: case MLD_AWAKENING_MEMBER: CTR3(KTR_MLD, "report suppressed for %s on ifp %p(%s)", ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, if_name(ifp)); case MLD_LAZY_MEMBER: inm->in6m_state = MLD_LAZY_MEMBER; break; case MLD_G_QUERY_PENDING_MEMBER: case MLD_SG_QUERY_PENDING_MEMBER: case MLD_LEAVING_MEMBER: break; } } out_locked: IF_ADDR_RUNLOCK(ifp); MLD_UNLOCK(); IN6_MULTI_UNLOCK(); /* XXX Clear embedded scope ID as userland won't expect it. */ in6_clearscope(&mld->mld_addr); return (0); } /* * MLD input path. * * Assume query messages which fit in a single ICMPv6 message header * have been pulled up. * Assume that userland will want to see the message, even if it * otherwise fails kernel input validation; do not free it. * Pullup may however free the mbuf chain m if it fails. * * Return IPPROTO_DONE if we freed m. Otherwise, return 0. */ int mld_input(struct mbuf *m, int off, int icmp6len) { struct ifnet *ifp; struct ip6_hdr *ip6; struct mld_hdr *mld; int mldlen; CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off); ifp = m->m_pkthdr.rcvif; ip6 = mtod(m, struct ip6_hdr *); /* Pullup to appropriate size. */ mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); if (mld->mld_type == MLD_LISTENER_QUERY && icmp6len >= sizeof(struct mldv2_query)) { mldlen = sizeof(struct mldv2_query); } else { mldlen = sizeof(struct mld_hdr); } IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen); if (mld == NULL) { ICMP6STAT_INC(icp6s_badlen); return (IPPROTO_DONE); } /* * Userland needs to see all of this traffic for implementing * the endpoint discovery portion of multicast routing. */ switch (mld->mld_type) { case MLD_LISTENER_QUERY: icmp6_ifstat_inc(ifp, ifs6_in_mldquery); if (icmp6len == sizeof(struct mld_hdr)) { if (mld_v1_input_query(ifp, ip6, mld) != 0) return (0); } else if (icmp6len >= sizeof(struct mldv2_query)) { if (mld_v2_input_query(ifp, ip6, m, off, icmp6len) != 0) return (0); } break; case MLD_LISTENER_REPORT: icmp6_ifstat_inc(ifp, ifs6_in_mldreport); if (mld_v1_input_report(ifp, ip6, mld) != 0) return (0); break; case MLDV2_LISTENER_REPORT: icmp6_ifstat_inc(ifp, ifs6_in_mldreport); break; case MLD_LISTENER_DONE: icmp6_ifstat_inc(ifp, ifs6_in_mlddone); break; default: break; } return (0); } /* * Fast timeout handler (global). * VIMAGE: Timeout handlers are expected to service all vimages. */ void mld_fasttimo(void) { VNET_ITERATOR_DECL(vnet_iter); VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); mld_fasttimo_vnet(); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); } /* * Fast timeout handler (per-vnet). * * VIMAGE: Assume caller has set up our curvnet. */ static void mld_fasttimo_vnet(void) { struct mbufq scq; /* State-change packets */ struct mbufq qrq; /* Query response packets */ struct ifnet *ifp; struct mld_ifsoftc *mli; struct ifmultiaddr *ifma; struct in6_multi *inm, *tinm; int uri_fasthz; uri_fasthz = 0; /* * Quick check to see if any work needs to be done, in order to * minimize the overhead of fasttimo processing. * SMPng: XXX Unlocked reads. */ if (!V_current_state_timers_running6 && !V_interface_timers_running6 && !V_state_change_timers_running6) return; IN6_MULTI_LOCK(); MLD_LOCK(); /* * MLDv2 General Query response timer processing. */ if (V_interface_timers_running6) { CTR1(KTR_MLD, "%s: interface timers running", __func__); V_interface_timers_running6 = 0; LIST_FOREACH(mli, &V_mli_head, mli_link) { if (mli->mli_v2_timer == 0) { /* Do nothing. */ } else if (--mli->mli_v2_timer == 0) { mld_v2_dispatch_general_query(mli); } else { V_interface_timers_running6 = 1; } } } if (!V_current_state_timers_running6 && !V_state_change_timers_running6) goto out_locked; V_current_state_timers_running6 = 0; V_state_change_timers_running6 = 0; CTR1(KTR_MLD, "%s: state change timers running", __func__); /* * MLD host report and state-change timer processing. * Note: Processing a v2 group timer may remove a node. */ LIST_FOREACH(mli, &V_mli_head, mli_link) { ifp = mli->mli_ifp; if (mli->mli_version == MLD_VERSION_2) { uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri * PR_FASTHZ); mbufq_init(&qrq, MLD_MAX_G_GS_PACKETS); mbufq_init(&scq, MLD_MAX_STATE_CHANGE_PACKETS); } IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET6 || ifma->ifma_protospec == NULL) continue; inm = (struct in6_multi *)ifma->ifma_protospec; switch (mli->mli_version) { case MLD_VERSION_1: mld_v1_process_group_timer(mli, inm); break; case MLD_VERSION_2: mld_v2_process_group_timers(mli, &qrq, &scq, inm, uri_fasthz); break; } } IF_ADDR_RUNLOCK(ifp); switch (mli->mli_version) { case MLD_VERSION_1: /* * Transmit reports for this lifecycle. This * is done while not holding IF_ADDR_LOCK * since this can call * in6ifa_ifpforlinklocal() which locks * IF_ADDR_LOCK internally as well as * ip6_output() to transmit a packet. */ SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, tinm) { SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); (void)mld_v1_transmit_report(inm, MLD_LISTENER_REPORT); } break; case MLD_VERSION_2: mld_dispatch_queue(&qrq, 0); mld_dispatch_queue(&scq, 0); /* * Free the in_multi reference(s) for * this lifecycle. */ SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, tinm) { SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); in6m_release_locked(inm); } break; } } out_locked: MLD_UNLOCK(); IN6_MULTI_UNLOCK(); } /* * Update host report group timer. * Will update the global pending timer flags. */ static void mld_v1_process_group_timer(struct mld_ifsoftc *mli, struct in6_multi *inm) { int report_timer_expired; IN6_MULTI_LOCK_ASSERT(); MLD_LOCK_ASSERT(); if (inm->in6m_timer == 0) { report_timer_expired = 0; } else if (--inm->in6m_timer == 0) { report_timer_expired = 1; } else { V_current_state_timers_running6 = 1; return; } switch (inm->in6m_state) { case MLD_NOT_MEMBER: case MLD_SILENT_MEMBER: case MLD_IDLE_MEMBER: case MLD_LAZY_MEMBER: case MLD_SLEEPING_MEMBER: case MLD_AWAKENING_MEMBER: break; case MLD_REPORTING_MEMBER: if (report_timer_expired) { inm->in6m_state = MLD_IDLE_MEMBER; SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm, in6m_nrele); } break; case MLD_G_QUERY_PENDING_MEMBER: case MLD_SG_QUERY_PENDING_MEMBER: case MLD_LEAVING_MEMBER: break; } } /* * Update a group's timers for MLDv2. * Will update the global pending timer flags. * Note: Unlocked read from mli. */ static void mld_v2_process_group_timers(struct mld_ifsoftc *mli, struct mbufq *qrq, struct mbufq *scq, struct in6_multi *inm, const int uri_fasthz) { int query_response_timer_expired; int state_change_retransmit_timer_expired; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif IN6_MULTI_LOCK_ASSERT(); MLD_LOCK_ASSERT(); query_response_timer_expired = 0; state_change_retransmit_timer_expired = 0; /* * During a transition from compatibility mode back to MLDv2, * a group record in REPORTING state may still have its group * timer active. This is a no-op in this function; it is easier * to deal with it here than to complicate the slow-timeout path. */ if (inm->in6m_timer == 0) { query_response_timer_expired = 0; } else if (--inm->in6m_timer == 0) { query_response_timer_expired = 1; } else { V_current_state_timers_running6 = 1; } if (inm->in6m_sctimer == 0) { state_change_retransmit_timer_expired = 0; } else if (--inm->in6m_sctimer == 0) { state_change_retransmit_timer_expired = 1; } else { V_state_change_timers_running6 = 1; } /* We are in fasttimo, so be quick about it. */ if (!state_change_retransmit_timer_expired && !query_response_timer_expired) return; switch (inm->in6m_state) { case MLD_NOT_MEMBER: case MLD_SILENT_MEMBER: case MLD_SLEEPING_MEMBER: case MLD_LAZY_MEMBER: case MLD_AWAKENING_MEMBER: case MLD_IDLE_MEMBER: break; case MLD_G_QUERY_PENDING_MEMBER: case MLD_SG_QUERY_PENDING_MEMBER: /* * Respond to a previously pending Group-Specific * or Group-and-Source-Specific query by enqueueing * the appropriate Current-State report for * immediate transmission. */ if (query_response_timer_expired) { int retval; retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1, (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER), 0); CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); inm->in6m_state = MLD_REPORTING_MEMBER; in6m_clear_recorded(inm); } /* FALLTHROUGH */ case MLD_REPORTING_MEMBER: case MLD_LEAVING_MEMBER: if (state_change_retransmit_timer_expired) { /* * State-change retransmission timer fired. * If there are any further pending retransmissions, * set the global pending state-change flag, and * reset the timer. */ if (--inm->in6m_scrv > 0) { inm->in6m_sctimer = uri_fasthz; V_state_change_timers_running6 = 1; } /* * Retransmit the previously computed state-change * report. If there are no further pending * retransmissions, the mbuf queue will be consumed. * Update T0 state to T1 as we have now sent * a state-change. */ (void)mld_v2_merge_state_changes(inm, scq); in6m_commit(inm); CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), if_name(inm->in6m_ifp)); /* * If we are leaving the group for good, make sure * we release MLD's reference to it. * This release must be deferred using a SLIST, * as we are called from a loop which traverses * the in_ifmultiaddr TAILQ. */ if (inm->in6m_state == MLD_LEAVING_MEMBER && inm->in6m_scrv == 0) { inm->in6m_state = MLD_NOT_MEMBER; SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm, in6m_nrele); } } break; } } /* * Switch to a different version on the given interface, * as per Section 9.12. */ static void mld_set_version(struct mld_ifsoftc *mli, const int version) { int old_version_timer; MLD_LOCK_ASSERT(); CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__, version, mli->mli_ifp, if_name(mli->mli_ifp)); if (version == MLD_VERSION_1) { /* * Compute the "Older Version Querier Present" timer as per * Section 9.12. */ old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri; old_version_timer *= PR_SLOWHZ; mli->mli_v1_timer = old_version_timer; } if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) { mli->mli_version = MLD_VERSION_1; mld_v2_cancel_link_timers(mli); } } /* * Cancel pending MLDv2 timers for the given link and all groups * joined on it; state-change, general-query, and group-query timers. */ static void mld_v2_cancel_link_timers(struct mld_ifsoftc *mli) { struct ifmultiaddr *ifma; struct ifnet *ifp; struct in6_multi *inm, *tinm; CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__, mli->mli_ifp, if_name(mli->mli_ifp)); IN6_MULTI_LOCK_ASSERT(); MLD_LOCK_ASSERT(); /* * Fast-track this potentially expensive operation * by checking all the global 'timer pending' flags. */ if (!V_interface_timers_running6 && !V_state_change_timers_running6 && !V_current_state_timers_running6) return; mli->mli_v2_timer = 0; ifp = mli->mli_ifp; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET6) continue; inm = (struct in6_multi *)ifma->ifma_protospec; switch (inm->in6m_state) { case MLD_NOT_MEMBER: case MLD_SILENT_MEMBER: case MLD_IDLE_MEMBER: case MLD_LAZY_MEMBER: case MLD_SLEEPING_MEMBER: case MLD_AWAKENING_MEMBER: break; case MLD_LEAVING_MEMBER: /* * If we are leaving the group and switching * version, we need to release the final * reference held for issuing the INCLUDE {}. */ SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm, in6m_nrele); /* FALLTHROUGH */ case MLD_G_QUERY_PENDING_MEMBER: case MLD_SG_QUERY_PENDING_MEMBER: in6m_clear_recorded(inm); /* FALLTHROUGH */ case MLD_REPORTING_MEMBER: inm->in6m_sctimer = 0; inm->in6m_timer = 0; inm->in6m_state = MLD_REPORTING_MEMBER; /* * Free any pending MLDv2 state-change records. */ mbufq_drain(&inm->in6m_scq); break; } } IF_ADDR_RUNLOCK(ifp); SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, tinm) { SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele); in6m_release_locked(inm); } } /* * Global slowtimo handler. * VIMAGE: Timeout handlers are expected to service all vimages. */ void mld_slowtimo(void) { VNET_ITERATOR_DECL(vnet_iter); VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); mld_slowtimo_vnet(); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); } /* * Per-vnet slowtimo handler. */ static void mld_slowtimo_vnet(void) { struct mld_ifsoftc *mli; MLD_LOCK(); LIST_FOREACH(mli, &V_mli_head, mli_link) { mld_v1_process_querier_timers(mli); } MLD_UNLOCK(); } /* * Update the Older Version Querier Present timers for a link. * See Section 9.12 of RFC 3810. */ static void mld_v1_process_querier_timers(struct mld_ifsoftc *mli) { MLD_LOCK_ASSERT(); if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) { /* * MLDv1 Querier Present timer expired; revert to MLDv2. */ CTR5(KTR_MLD, "%s: transition from v%d -> v%d on %p(%s)", __func__, mli->mli_version, MLD_VERSION_2, mli->mli_ifp, if_name(mli->mli_ifp)); mli->mli_version = MLD_VERSION_2; } } /* * Transmit an MLDv1 report immediately. */ static int mld_v1_transmit_report(struct in6_multi *in6m, const int type) { struct ifnet *ifp; struct in6_ifaddr *ia; struct ip6_hdr *ip6; struct mbuf *mh, *md; struct mld_hdr *mld; IN6_MULTI_LOCK_ASSERT(); MLD_LOCK_ASSERT(); ifp = in6m->in6m_ifp; ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); /* ia may be NULL if link-local address is tentative. */ mh = m_gethdr(M_NOWAIT, MT_DATA); if (mh == NULL) { if (ia != NULL) ifa_free(&ia->ia_ifa); return (ENOMEM); } md = m_get(M_NOWAIT, MT_DATA); if (md == NULL) { m_free(mh); if (ia != NULL) ifa_free(&ia->ia_ifa); return (ENOMEM); } mh->m_next = md; /* * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so * that ether_output() does not need to allocate another mbuf * for the header in the most common case. */ M_ALIGN(mh, sizeof(struct ip6_hdr)); mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr); mh->m_len = sizeof(struct ip6_hdr); ip6 = mtod(mh, struct ip6_hdr *); ip6->ip6_flow = 0; ip6->ip6_vfc &= ~IPV6_VERSION_MASK; ip6->ip6_vfc |= IPV6_VERSION; ip6->ip6_nxt = IPPROTO_ICMPV6; ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; ip6->ip6_dst = in6m->in6m_addr; md->m_len = sizeof(struct mld_hdr); mld = mtod(md, struct mld_hdr *); mld->mld_type = type; mld->mld_code = 0; mld->mld_cksum = 0; mld->mld_maxdelay = 0; mld->mld_reserved = 0; mld->mld_addr = in6m->in6m_addr; in6_clearscope(&mld->mld_addr); mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, sizeof(struct ip6_hdr), sizeof(struct mld_hdr)); mld_save_context(mh, ifp); mh->m_flags |= M_MLDV1; mld_dispatch_packet(mh); if (ia != NULL) ifa_free(&ia->ia_ifa); return (0); } /* * Process a state change from the upper layer for the given IPv6 group. * * Each socket holds a reference on the in_multi in its own ip_moptions. * The socket layer will have made the necessary updates to.the group * state, it is now up to MLD to issue a state change report if there * has been any change between T0 (when the last state-change was issued) * and T1 (now). * * We use the MLDv2 state machine at group level. The MLd module * however makes the decision as to which MLD protocol version to speak. * A state change *from* INCLUDE {} always means an initial join. * A state change *to* INCLUDE {} always means a final leave. * * If delay is non-zero, and the state change is an initial multicast * join, the state change report will be delayed by 'delay' ticks * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise * the initial MLDv2 state change report will be delayed by whichever * is sooner, a pending state-change timer or delay itself. * * VIMAGE: curvnet should have been set by caller, as this routine * is called from the socket option handlers. */ int mld_change_state(struct in6_multi *inm, const int delay) { struct mld_ifsoftc *mli; struct ifnet *ifp; int error; IN6_MULTI_LOCK_ASSERT(); error = 0; /* * Try to detect if the upper layer just asked us to change state * for an interface which has now gone away. */ KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); ifp = inm->in6m_ifma->ifma_ifp; if (ifp != NULL) { /* * Sanity check that netinet6's notion of ifp is the * same as net's. */ KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); } MLD_LOCK(); mli = MLD_IFINFO(ifp); KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); /* * If we detect a state transition to or from MCAST_UNDEFINED * for this group, then we are starting or finishing an MLD * life cycle for this group. */ if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) { CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__, inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode); if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) { CTR1(KTR_MLD, "%s: initial join", __func__); error = mld_initial_join(inm, mli, delay); goto out_locked; } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) { CTR1(KTR_MLD, "%s: final leave", __func__); mld_final_leave(inm, mli); goto out_locked; } } else { CTR1(KTR_MLD, "%s: filter set change", __func__); } error = mld_handle_state_change(inm, mli); out_locked: MLD_UNLOCK(); return (error); } /* * Perform the initial join for an MLD group. * * When joining a group: * If the group should have its MLD traffic suppressed, do nothing. * MLDv1 starts sending MLDv1 host membership reports. * MLDv2 will schedule an MLDv2 state-change report containing the * initial state of the membership. * * If the delay argument is non-zero, then we must delay sending the * initial state change for delay ticks (in units of PR_FASTHZ). */ static int mld_initial_join(struct in6_multi *inm, struct mld_ifsoftc *mli, const int delay) { struct ifnet *ifp; struct mbufq *mq; int error, retval, syncstates; int odelay; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)", __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), inm->in6m_ifp, if_name(inm->in6m_ifp)); error = 0; syncstates = 1; ifp = inm->in6m_ifp; IN6_MULTI_LOCK_ASSERT(); MLD_LOCK_ASSERT(); KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__)); /* * Groups joined on loopback or marked as 'not reported', * enter the MLD_SILENT_MEMBER state and * are never reported in any protocol exchanges. * All other groups enter the appropriate state machine * for the version in use on this link. * A link marked as MLIF_SILENT causes MLD to be completely * disabled for the link. */ if ((ifp->if_flags & IFF_LOOPBACK) || (mli->mli_flags & MLIF_SILENT) || !mld_is_addr_reported(&inm->in6m_addr)) { CTR1(KTR_MLD, "%s: not kicking state machine for silent group", __func__); inm->in6m_state = MLD_SILENT_MEMBER; inm->in6m_timer = 0; } else { /* * Deal with overlapping in_multi lifecycle. * If this group was LEAVING, then make sure * we drop the reference we picked up to keep the * group around for the final INCLUDE {} enqueue. */ if (mli->mli_version == MLD_VERSION_2 && inm->in6m_state == MLD_LEAVING_MEMBER) in6m_release_locked(inm); inm->in6m_state = MLD_REPORTING_MEMBER; switch (mli->mli_version) { case MLD_VERSION_1: /* * If a delay was provided, only use it if * it is greater than the delay normally * used for an MLDv1 state change report, * and delay sending the initial MLDv1 report * by not transitioning to the IDLE state. */ odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ); if (delay) { inm->in6m_timer = max(delay, odelay); V_current_state_timers_running6 = 1; } else { inm->in6m_state = MLD_IDLE_MEMBER; error = mld_v1_transmit_report(inm, MLD_LISTENER_REPORT); if (error == 0) { inm->in6m_timer = odelay; V_current_state_timers_running6 = 1; } } break; case MLD_VERSION_2: /* * Defer update of T0 to T1, until the first copy * of the state change has been transmitted. */ syncstates = 0; /* * Immediately enqueue a State-Change Report for * this interface, freeing any previous reports. * Don't kick the timers if there is nothing to do, * or if an error occurred. */ mq = &inm->in6m_scq; mbufq_drain(mq); retval = mld_v2_enqueue_group_record(mq, inm, 1, 0, 0, (mli->mli_flags & MLIF_USEALLOW)); CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); if (retval <= 0) { error = retval * -1; break; } /* * Schedule transmission of pending state-change * report up to RV times for this link. The timer * will fire at the next mld_fasttimo (~200ms), * giving us an opportunity to merge the reports. * * If a delay was provided to this function, only * use this delay if sooner than the existing one. */ KASSERT(mli->mli_rv > 1, ("%s: invalid robustness %d", __func__, mli->mli_rv)); inm->in6m_scrv = mli->mli_rv; if (delay) { if (inm->in6m_sctimer > 1) { inm->in6m_sctimer = min(inm->in6m_sctimer, delay); } else inm->in6m_sctimer = delay; } else inm->in6m_sctimer = 1; V_state_change_timers_running6 = 1; error = 0; break; } } /* * Only update the T0 state if state change is atomic, * i.e. we don't need to wait for a timer to fire before we * can consider the state change to have been communicated. */ if (syncstates) { in6m_commit(inm); CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), if_name(inm->in6m_ifp)); } return (error); } /* * Issue an intermediate state change during the life-cycle. */ static int mld_handle_state_change(struct in6_multi *inm, struct mld_ifsoftc *mli) { struct ifnet *ifp; int retval; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)", __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), inm->in6m_ifp, if_name(inm->in6m_ifp)); ifp = inm->in6m_ifp; IN6_MULTI_LOCK_ASSERT(); MLD_LOCK_ASSERT(); KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__)); if ((ifp->if_flags & IFF_LOOPBACK) || (mli->mli_flags & MLIF_SILENT) || !mld_is_addr_reported(&inm->in6m_addr) || (mli->mli_version != MLD_VERSION_2)) { if (!mld_is_addr_reported(&inm->in6m_addr)) { CTR1(KTR_MLD, "%s: not kicking state machine for silent group", __func__); } CTR1(KTR_MLD, "%s: nothing to do", __func__); in6m_commit(inm); CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), if_name(inm->in6m_ifp)); return (0); } mbufq_drain(&inm->in6m_scq); retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0, (mli->mli_flags & MLIF_USEALLOW)); CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); if (retval <= 0) return (-retval); /* * If record(s) were enqueued, start the state-change * report timer for this group. */ inm->in6m_scrv = mli->mli_rv; inm->in6m_sctimer = 1; V_state_change_timers_running6 = 1; return (0); } /* * Perform the final leave for a multicast address. * * When leaving a group: * MLDv1 sends a DONE message, if and only if we are the reporter. * MLDv2 enqueues a state-change report containing a transition * to INCLUDE {} for immediate transmission. */ static void mld_final_leave(struct in6_multi *inm, struct mld_ifsoftc *mli) { int syncstates; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif syncstates = 1; CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)", __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), inm->in6m_ifp, if_name(inm->in6m_ifp)); IN6_MULTI_LOCK_ASSERT(); MLD_LOCK_ASSERT(); switch (inm->in6m_state) { case MLD_NOT_MEMBER: case MLD_SILENT_MEMBER: case MLD_LEAVING_MEMBER: /* Already leaving or left; do nothing. */ CTR1(KTR_MLD, "%s: not kicking state machine for silent group", __func__); break; case MLD_REPORTING_MEMBER: case MLD_IDLE_MEMBER: case MLD_G_QUERY_PENDING_MEMBER: case MLD_SG_QUERY_PENDING_MEMBER: if (mli->mli_version == MLD_VERSION_1) { #ifdef INVARIANTS if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) panic("%s: MLDv2 state reached, not MLDv2 mode", __func__); #endif mld_v1_transmit_report(inm, MLD_LISTENER_DONE); inm->in6m_state = MLD_NOT_MEMBER; V_current_state_timers_running6 = 1; } else if (mli->mli_version == MLD_VERSION_2) { /* * Stop group timer and all pending reports. * Immediately enqueue a state-change report * TO_IN {} to be sent on the next fast timeout, * giving us an opportunity to merge reports. */ mbufq_drain(&inm->in6m_scq); inm->in6m_timer = 0; inm->in6m_scrv = mli->mli_rv; CTR4(KTR_MLD, "%s: Leaving %s/%s with %d " "pending retransmissions.", __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), if_name(inm->in6m_ifp), inm->in6m_scrv); if (inm->in6m_scrv == 0) { inm->in6m_state = MLD_NOT_MEMBER; inm->in6m_sctimer = 0; } else { int retval; in6m_acquire_locked(inm); retval = mld_v2_enqueue_group_record( &inm->in6m_scq, inm, 1, 0, 0, (mli->mli_flags & MLIF_USEALLOW)); KASSERT(retval != 0, ("%s: enqueue record = %d", __func__, retval)); inm->in6m_state = MLD_LEAVING_MEMBER; inm->in6m_sctimer = 1; V_state_change_timers_running6 = 1; syncstates = 0; } break; } break; case MLD_LAZY_MEMBER: case MLD_SLEEPING_MEMBER: case MLD_AWAKENING_MEMBER: /* Our reports are suppressed; do nothing. */ break; } if (syncstates) { in6m_commit(inm); CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), if_name(inm->in6m_ifp)); inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s", __func__, &inm->in6m_addr, if_name(inm->in6m_ifp)); } } /* * Enqueue an MLDv2 group record to the given output queue. * * If is_state_change is zero, a current-state record is appended. * If is_state_change is non-zero, a state-change report is appended. * * If is_group_query is non-zero, an mbuf packet chain is allocated. * If is_group_query is zero, and if there is a packet with free space * at the tail of the queue, it will be appended to providing there * is enough free space. * Otherwise a new mbuf packet chain is allocated. * * If is_source_query is non-zero, each source is checked to see if * it was recorded for a Group-Source query, and will be omitted if * it is not both in-mode and recorded. * * If use_block_allow is non-zero, state change reports for initial join * and final leave, on an inclusive mode group with a source list, will be * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively. * * The function will attempt to allocate leading space in the packet * for the IPv6+ICMP headers to be prepended without fragmenting the chain. * * If successful the size of all data appended to the queue is returned, * otherwise an error code less than zero is returned, or zero if * no record(s) were appended. */ static int mld_v2_enqueue_group_record(struct mbufq *mq, struct in6_multi *inm, const int is_state_change, const int is_group_query, const int is_source_query, const int use_block_allow) { struct mldv2_record mr; struct mldv2_record *pmr; struct ifnet *ifp; struct ip6_msource *ims, *nims; struct mbuf *m0, *m, *md; int error, is_filter_list_change; int minrec0len, m0srcs, msrcs, nbytes, off; int record_has_sources; int now; int type; uint8_t mode; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif IN6_MULTI_LOCK_ASSERT(); error = 0; ifp = inm->in6m_ifp; is_filter_list_change = 0; m = NULL; m0 = NULL; m0srcs = 0; msrcs = 0; nbytes = 0; nims = NULL; record_has_sources = 1; pmr = NULL; type = MLD_DO_NOTHING; mode = inm->in6m_st[1].iss_fmode; /* * If we did not transition out of ASM mode during t0->t1, * and there are no source nodes to process, we can skip * the generation of source records. */ if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 && inm->in6m_nsrc == 0) record_has_sources = 0; if (is_state_change) { /* * Queue a state change record. * If the mode did not change, and there are non-ASM * listeners or source filters present, * we potentially need to issue two records for the group. * If there are ASM listeners, and there was no filter * mode transition of any kind, do nothing. * * If we are transitioning to MCAST_UNDEFINED, we need * not send any sources. A transition to/from this state is * considered inclusive with some special treatment. * * If we are rewriting initial joins/leaves to use * ALLOW/BLOCK, and the group's membership is inclusive, * we need to send sources in all cases. */ if (mode != inm->in6m_st[0].iss_fmode) { if (mode == MCAST_EXCLUDE) { CTR1(KTR_MLD, "%s: change to EXCLUDE", __func__); type = MLD_CHANGE_TO_EXCLUDE_MODE; } else { CTR1(KTR_MLD, "%s: change to INCLUDE", __func__); if (use_block_allow) { /* * XXX * Here we're interested in state * edges either direction between * MCAST_UNDEFINED and MCAST_INCLUDE. * Perhaps we should just check * the group state, rather than * the filter mode. */ if (mode == MCAST_UNDEFINED) { type = MLD_BLOCK_OLD_SOURCES; } else { type = MLD_ALLOW_NEW_SOURCES; } } else { type = MLD_CHANGE_TO_INCLUDE_MODE; if (mode == MCAST_UNDEFINED) record_has_sources = 0; } } } else { if (record_has_sources) { is_filter_list_change = 1; } else { type = MLD_DO_NOTHING; } } } else { /* * Queue a current state record. */ if (mode == MCAST_EXCLUDE) { type = MLD_MODE_IS_EXCLUDE; } else if (mode == MCAST_INCLUDE) { type = MLD_MODE_IS_INCLUDE; KASSERT(inm->in6m_st[1].iss_asm == 0, ("%s: inm %p is INCLUDE but ASM count is %d", __func__, inm, inm->in6m_st[1].iss_asm)); } } /* * Generate the filter list changes using a separate function. */ if (is_filter_list_change) return (mld_v2_enqueue_filter_change(mq, inm)); if (type == MLD_DO_NOTHING) { CTR3(KTR_MLD, "%s: nothing to do for %s/%s", __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), if_name(inm->in6m_ifp)); return (0); } /* * If any sources are present, we must be able to fit at least * one in the trailing space of the tail packet's mbuf, * ideally more. */ minrec0len = sizeof(struct mldv2_record); if (record_has_sources) minrec0len += sizeof(struct in6_addr); CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__, mld_rec_type_to_str(type), ip6_sprintf(ip6tbuf, &inm->in6m_addr), if_name(inm->in6m_ifp)); /* * Check if we have a packet in the tail of the queue for this * group into which the first group record for this group will fit. * Otherwise allocate a new packet. * Always allocate leading space for IP6+RA+ICMPV6+REPORT. * Note: Group records for G/GSR query responses MUST be sent * in their own packet. */ m0 = mbufq_last(mq); if (!is_group_query && m0 != NULL && (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && (m0->m_pkthdr.len + minrec0len) < (ifp->if_mtu - MLD_MTUSPACE)) { m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - sizeof(struct mldv2_record)) / sizeof(struct in6_addr); m = m0; CTR1(KTR_MLD, "%s: use existing packet", __func__); } else { if (mbufq_full(mq)) { CTR1(KTR_MLD, "%s: outbound queue full", __func__); return (-ENOMEM); } m = NULL; m0srcs = (ifp->if_mtu - MLD_MTUSPACE - sizeof(struct mldv2_record)) / sizeof(struct in6_addr); if (!is_state_change && !is_group_query) m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) return (-ENOMEM); mld_save_context(m, ifp); CTR1(KTR_MLD, "%s: allocated first packet", __func__); } /* * Append group record. * If we have sources, we don't know how many yet. */ mr.mr_type = type; mr.mr_datalen = 0; mr.mr_numsrc = 0; mr.mr_addr = inm->in6m_addr; in6_clearscope(&mr.mr_addr); if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { if (m != m0) m_freem(m); CTR1(KTR_MLD, "%s: m_append() failed.", __func__); return (-ENOMEM); } nbytes += sizeof(struct mldv2_record); /* * Append as many sources as will fit in the first packet. * If we are appending to a new packet, the chain allocation * may potentially use clusters; use m_getptr() in this case. * If we are appending to an existing packet, we need to obtain * a pointer to the group record after m_append(), in case a new * mbuf was allocated. * * Only append sources which are in-mode at t1. If we are * transitioning to MCAST_UNDEFINED state on the group, and * use_block_allow is zero, do not include source entries. * Otherwise, we need to include this source in the report. * * Only report recorded sources in our filter set when responding * to a group-source query. */ if (record_has_sources) { if (m == m0) { md = m_last(m); pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + md->m_len - nbytes); } else { md = m_getptr(m, 0, &off); pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); } msrcs = 0; RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, nims) { CTR2(KTR_MLD, "%s: visit node %s", __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr)); now = im6s_get_mode(inm, ims, 1); CTR2(KTR_MLD, "%s: node is %d", __func__, now); if ((now != mode) || (now == mode && (!use_block_allow && mode == MCAST_UNDEFINED))) { CTR1(KTR_MLD, "%s: skip node", __func__); continue; } if (is_source_query && ims->im6s_stp == 0) { CTR1(KTR_MLD, "%s: skip unrecorded node", __func__); continue; } CTR1(KTR_MLD, "%s: append node", __func__); if (!m_append(m, sizeof(struct in6_addr), (void *)&ims->im6s_addr)) { if (m != m0) m_freem(m); CTR1(KTR_MLD, "%s: m_append() failed.", __func__); return (-ENOMEM); } nbytes += sizeof(struct in6_addr); ++msrcs; if (msrcs == m0srcs) break; } CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__, msrcs); pmr->mr_numsrc = htons(msrcs); nbytes += (msrcs * sizeof(struct in6_addr)); } if (is_source_query && msrcs == 0) { CTR1(KTR_MLD, "%s: no recorded sources to report", __func__); if (m != m0) m_freem(m); return (0); } /* * We are good to go with first packet. */ if (m != m0) { CTR1(KTR_MLD, "%s: enqueueing first packet", __func__); m->m_pkthdr.PH_vt.vt_nrecs = 1; mbufq_enqueue(mq, m); } else m->m_pkthdr.PH_vt.vt_nrecs++; /* * No further work needed if no source list in packet(s). */ if (!record_has_sources) return (nbytes); /* * Whilst sources remain to be announced, we need to allocate * a new packet and fill out as many sources as will fit. * Always try for a cluster first. */ while (nims != NULL) { if (mbufq_full(mq)) { CTR1(KTR_MLD, "%s: outbound queue full", __func__); return (-ENOMEM); } m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) return (-ENOMEM); mld_save_context(m, ifp); md = m_getptr(m, 0, &off); pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); CTR1(KTR_MLD, "%s: allocated next packet", __func__); if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { if (m != m0) m_freem(m); CTR1(KTR_MLD, "%s: m_append() failed.", __func__); return (-ENOMEM); } m->m_pkthdr.PH_vt.vt_nrecs = 1; nbytes += sizeof(struct mldv2_record); m0srcs = (ifp->if_mtu - MLD_MTUSPACE - sizeof(struct mldv2_record)) / sizeof(struct in6_addr); msrcs = 0; RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { CTR2(KTR_MLD, "%s: visit node %s", __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr)); now = im6s_get_mode(inm, ims, 1); if ((now != mode) || (now == mode && (!use_block_allow && mode == MCAST_UNDEFINED))) { CTR1(KTR_MLD, "%s: skip node", __func__); continue; } if (is_source_query && ims->im6s_stp == 0) { CTR1(KTR_MLD, "%s: skip unrecorded node", __func__); continue; } CTR1(KTR_MLD, "%s: append node", __func__); if (!m_append(m, sizeof(struct in6_addr), (void *)&ims->im6s_addr)) { if (m != m0) m_freem(m); CTR1(KTR_MLD, "%s: m_append() failed.", __func__); return (-ENOMEM); } ++msrcs; if (msrcs == m0srcs) break; } pmr->mr_numsrc = htons(msrcs); nbytes += (msrcs * sizeof(struct in6_addr)); CTR1(KTR_MLD, "%s: enqueueing next packet", __func__); mbufq_enqueue(mq, m); } return (nbytes); } /* * Type used to mark record pass completion. * We exploit the fact we can cast to this easily from the * current filter modes on each ip_msource node. */ typedef enum { REC_NONE = 0x00, /* MCAST_UNDEFINED */ REC_ALLOW = 0x01, /* MCAST_INCLUDE */ REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ REC_FULL = REC_ALLOW | REC_BLOCK } rectype_t; /* * Enqueue an MLDv2 filter list change to the given output queue. * * Source list filter state is held in an RB-tree. When the filter list * for a group is changed without changing its mode, we need to compute * the deltas between T0 and T1 for each source in the filter set, * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. * * As we may potentially queue two record types, and the entire R-B tree * needs to be walked at once, we break this out into its own function * so we can generate a tightly packed queue of packets. * * XXX This could be written to only use one tree walk, although that makes * serializing into the mbuf chains a bit harder. For now we do two walks * which makes things easier on us, and it may or may not be harder on * the L2 cache. * * If successful the size of all data appended to the queue is returned, * otherwise an error code less than zero is returned, or zero if * no record(s) were appended. */ static int mld_v2_enqueue_filter_change(struct mbufq *mq, struct in6_multi *inm) { static const int MINRECLEN = sizeof(struct mldv2_record) + sizeof(struct in6_addr); struct ifnet *ifp; struct mldv2_record mr; struct mldv2_record *pmr; struct ip6_msource *ims, *nims; struct mbuf *m, *m0, *md; int m0srcs, nbytes, npbytes, off, rsrcs, schanged; int nallow, nblock; uint8_t mode, now, then; rectype_t crt, drt, nrt; #ifdef KTR char ip6tbuf[INET6_ADDRSTRLEN]; #endif IN6_MULTI_LOCK_ASSERT(); if (inm->in6m_nsrc == 0 || (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0)) return (0); ifp = inm->in6m_ifp; /* interface */ mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */ crt = REC_NONE; /* current group record type */ drt = REC_NONE; /* mask of completed group record types */ nrt = REC_NONE; /* record type for current node */ m0srcs = 0; /* # source which will fit in current mbuf chain */ npbytes = 0; /* # of bytes appended this packet */ nbytes = 0; /* # of bytes appended to group's state-change queue */ rsrcs = 0; /* # sources encoded in current record */ schanged = 0; /* # nodes encoded in overall filter change */ nallow = 0; /* # of source entries in ALLOW_NEW */ nblock = 0; /* # of source entries in BLOCK_OLD */ nims = NULL; /* next tree node pointer */ /* * For each possible filter record mode. * The first kind of source we encounter tells us which * is the first kind of record we start appending. * If a node transitioned to UNDEFINED at t1, its mode is treated * as the inverse of the group's filter mode. */ while (drt != REC_FULL) { do { m0 = mbufq_last(mq); if (m0 != NULL && (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && (m0->m_pkthdr.len + MINRECLEN) < (ifp->if_mtu - MLD_MTUSPACE)) { m = m0; m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - sizeof(struct mldv2_record)) / sizeof(struct in6_addr); CTR1(KTR_MLD, "%s: use previous packet", __func__); } else { m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) { CTR1(KTR_MLD, "%s: m_get*() failed", __func__); return (-ENOMEM); } m->m_pkthdr.PH_vt.vt_nrecs = 0; mld_save_context(m, ifp); m0srcs = (ifp->if_mtu - MLD_MTUSPACE - sizeof(struct mldv2_record)) / sizeof(struct in6_addr); npbytes = 0; CTR1(KTR_MLD, "%s: allocated new packet", __func__); } /* * Append the MLD group record header to the * current packet's data area. * Recalculate pointer to free space for next * group record, in case m_append() allocated * a new mbuf or cluster. */ memset(&mr, 0, sizeof(mr)); mr.mr_addr = inm->in6m_addr; in6_clearscope(&mr.mr_addr); if (!m_append(m, sizeof(mr), (void *)&mr)) { if (m != m0) m_freem(m); CTR1(KTR_MLD, "%s: m_append() failed", __func__); return (-ENOMEM); } npbytes += sizeof(struct mldv2_record); if (m != m0) { /* new packet; offset in chain */ md = m_getptr(m, npbytes - sizeof(struct mldv2_record), &off); pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); } else { /* current packet; offset from last append */ md = m_last(m); pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + md->m_len - sizeof(struct mldv2_record)); } /* * Begin walking the tree for this record type * pass, or continue from where we left off * previously if we had to allocate a new packet. * Only report deltas in-mode at t1. * We need not report included sources as allowed * if we are in inclusive mode on the group, * however the converse is not true. */ rsrcs = 0; if (nims == NULL) { nims = RB_MIN(ip6_msource_tree, &inm->in6m_srcs); } RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { CTR2(KTR_MLD, "%s: visit node %s", __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr)); now = im6s_get_mode(inm, ims, 1); then = im6s_get_mode(inm, ims, 0); CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d", __func__, then, now); if (now == then) { CTR1(KTR_MLD, "%s: skip unchanged", __func__); continue; } if (mode == MCAST_EXCLUDE && now == MCAST_INCLUDE) { CTR1(KTR_MLD, "%s: skip IN src on EX group", __func__); continue; } nrt = (rectype_t)now; if (nrt == REC_NONE) nrt = (rectype_t)(~mode & REC_FULL); if (schanged++ == 0) { crt = nrt; } else if (crt != nrt) continue; if (!m_append(m, sizeof(struct in6_addr), (void *)&ims->im6s_addr)) { if (m != m0) m_freem(m); CTR1(KTR_MLD, "%s: m_append() failed", __func__); return (-ENOMEM); } nallow += !!(crt == REC_ALLOW); nblock += !!(crt == REC_BLOCK); if (++rsrcs == m0srcs) break; } /* * If we did not append any tree nodes on this * pass, back out of allocations. */ if (rsrcs == 0) { npbytes -= sizeof(struct mldv2_record); if (m != m0) { CTR1(KTR_MLD, "%s: m_free(m)", __func__); m_freem(m); } else { CTR1(KTR_MLD, "%s: m_adj(m, -mr)", __func__); m_adj(m, -((int)sizeof( struct mldv2_record))); } continue; } npbytes += (rsrcs * sizeof(struct in6_addr)); if (crt == REC_ALLOW) pmr->mr_type = MLD_ALLOW_NEW_SOURCES; else if (crt == REC_BLOCK) pmr->mr_type = MLD_BLOCK_OLD_SOURCES; pmr->mr_numsrc = htons(rsrcs); /* * Count the new group record, and enqueue this * packet if it wasn't already queued. */ m->m_pkthdr.PH_vt.vt_nrecs++; if (m != m0) mbufq_enqueue(mq, m); nbytes += npbytes; } while (nims != NULL); drt |= crt; crt = (~crt & REC_FULL); } CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__, nallow, nblock); return (nbytes); } static int mld_v2_merge_state_changes(struct in6_multi *inm, struct mbufq *scq) { struct mbufq *gq; struct mbuf *m; /* pending state-change */ struct mbuf *m0; /* copy of pending state-change */ struct mbuf *mt; /* last state-change in packet */ int docopy, domerge; u_int recslen; docopy = 0; domerge = 0; recslen = 0; IN6_MULTI_LOCK_ASSERT(); MLD_LOCK_ASSERT(); /* * If there are further pending retransmissions, make a writable * copy of each queued state-change message before merging. */ if (inm->in6m_scrv > 0) docopy = 1; gq = &inm->in6m_scq; #ifdef KTR if (mbufq_first(gq) == NULL) { CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty", __func__, inm); } #endif m = mbufq_first(gq); while (m != NULL) { /* * Only merge the report into the current packet if * there is sufficient space to do so; an MLDv2 report * packet may only contain 65,535 group records. * Always use a simple mbuf chain concatentation to do this, * as large state changes for single groups may have * allocated clusters. */ domerge = 0; mt = mbufq_last(scq); if (mt != NULL) { recslen = m_length(m, NULL); if ((mt->m_pkthdr.PH_vt.vt_nrecs + m->m_pkthdr.PH_vt.vt_nrecs <= MLD_V2_REPORT_MAXRECS) && (mt->m_pkthdr.len + recslen <= (inm->in6m_ifp->if_mtu - MLD_MTUSPACE))) domerge = 1; } if (!domerge && mbufq_full(gq)) { CTR2(KTR_MLD, "%s: outbound queue full, skipping whole packet %p", __func__, m); mt = m->m_nextpkt; if (!docopy) m_freem(m); m = mt; continue; } if (!docopy) { CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m); m0 = mbufq_dequeue(gq); m = m0->m_nextpkt; } else { CTR2(KTR_MLD, "%s: copying %p", __func__, m); m0 = m_dup(m, M_NOWAIT); if (m0 == NULL) return (ENOMEM); m0->m_nextpkt = NULL; m = m->m_nextpkt; } if (!domerge) { CTR3(KTR_MLD, "%s: queueing %p to scq %p)", __func__, m0, scq); mbufq_enqueue(scq, m0); } else { struct mbuf *mtl; /* last mbuf of packet mt */ CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)", __func__, m0, mt); mtl = m_last(mt); m0->m_flags &= ~M_PKTHDR; mt->m_pkthdr.len += recslen; mt->m_pkthdr.PH_vt.vt_nrecs += m0->m_pkthdr.PH_vt.vt_nrecs; mtl->m_next = m0; } } return (0); } /* * Respond to a pending MLDv2 General Query. */ static void mld_v2_dispatch_general_query(struct mld_ifsoftc *mli) { struct ifmultiaddr *ifma; struct ifnet *ifp; struct in6_multi *inm; int retval; IN6_MULTI_LOCK_ASSERT(); MLD_LOCK_ASSERT(); KASSERT(mli->mli_version == MLD_VERSION_2, ("%s: called when version %d", __func__, mli->mli_version)); /* * Check that there are some packets queued. If so, send them first. * For large number of groups the reply to general query can take * many packets, we should finish sending them before starting of * queuing the new reply. */ if (mbufq_len(&mli->mli_gq) != 0) goto send; ifp = mli->mli_ifp; IF_ADDR_RLOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET6 || ifma->ifma_protospec == NULL) continue; inm = (struct in6_multi *)ifma->ifma_protospec; KASSERT(ifp == inm->in6m_ifp, ("%s: inconsistent ifp", __func__)); switch (inm->in6m_state) { case MLD_NOT_MEMBER: case MLD_SILENT_MEMBER: break; case MLD_REPORTING_MEMBER: case MLD_IDLE_MEMBER: case MLD_LAZY_MEMBER: case MLD_SLEEPING_MEMBER: case MLD_AWAKENING_MEMBER: inm->in6m_state = MLD_REPORTING_MEMBER; retval = mld_v2_enqueue_group_record(&mli->mli_gq, inm, 0, 0, 0, 0); CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); break; case MLD_G_QUERY_PENDING_MEMBER: case MLD_SG_QUERY_PENDING_MEMBER: case MLD_LEAVING_MEMBER: break; } } IF_ADDR_RUNLOCK(ifp); send: mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST); /* * Slew transmission of bursts over 500ms intervals. */ if (mbufq_first(&mli->mli_gq) != NULL) { mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY( MLD_RESPONSE_BURST_INTERVAL); V_interface_timers_running6 = 1; } } /* * Transmit the next pending message in the output queue. * * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis. * MRT: Nothing needs to be done, as MLD traffic is always local to * a link and uses a link-scope multicast address. */ static void mld_dispatch_packet(struct mbuf *m) { struct ip6_moptions im6o; struct ifnet *ifp; struct ifnet *oifp; struct mbuf *m0; struct mbuf *md; struct ip6_hdr *ip6; struct mld_hdr *mld; int error; int off; int type; uint32_t ifindex; CTR2(KTR_MLD, "%s: transmit %p", __func__, m); /* * Set VNET image pointer from enqueued mbuf chain * before doing anything else. Whilst we use interface * indexes to guard against interface detach, they are * unique to each VIMAGE and must be retrieved. */ ifindex = mld_restore_context(m); /* * Check if the ifnet still exists. This limits the scope of * any race in the absence of a global ifp lock for low cost * (an array lookup). */ ifp = ifnet_byindex(ifindex); if (ifp == NULL) { CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.", __func__, m, ifindex); m_freem(m); IP6STAT_INC(ip6s_noroute); goto out; } im6o.im6o_multicast_hlim = 1; im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL); im6o.im6o_multicast_ifp = ifp; if (m->m_flags & M_MLDV1) { m0 = m; } else { m0 = mld_v2_encap_report(ifp, m); if (m0 == NULL) { CTR2(KTR_MLD, "%s: dropped %p", __func__, m); IP6STAT_INC(ip6s_odropped); goto out; } } mld_scrub_context(m0); m_clrprotoflags(m); m0->m_pkthdr.rcvif = V_loif; ip6 = mtod(m0, struct ip6_hdr *); #if 0 (void)in6_setscope(&ip6->ip6_dst, ifp, NULL); /* XXX LOR */ #else /* * XXX XXX Break some KPI rules to prevent an LOR which would * occur if we called in6_setscope() at transmission. * See comments at top of file. */ MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index); #endif /* * Retrieve the ICMPv6 type before handoff to ip6_output(), * so we can bump the stats. */ md = m_getptr(m0, sizeof(struct ip6_hdr), &off); mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off); type = mld->mld_type; error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o, &oifp, NULL); if (error) { CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error); goto out; } ICMP6STAT_INC(icp6s_outhist[type]); if (oifp != NULL) { icmp6_ifstat_inc(oifp, ifs6_out_msg); switch (type) { case MLD_LISTENER_REPORT: case MLDV2_LISTENER_REPORT: icmp6_ifstat_inc(oifp, ifs6_out_mldreport); break; case MLD_LISTENER_DONE: icmp6_ifstat_inc(oifp, ifs6_out_mlddone); break; } } out: return; } /* * Encapsulate an MLDv2 report. * * KAME IPv6 requires that hop-by-hop options be passed separately, * and that the IPv6 header be prepended in a separate mbuf. * * Returns a pointer to the new mbuf chain head, or NULL if the * allocation failed. */ static struct mbuf * mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m) { struct mbuf *mh; struct mldv2_report *mld; struct ip6_hdr *ip6; struct in6_ifaddr *ia; int mldreclen; KASSERT(ifp != NULL, ("%s: null ifp", __func__)); KASSERT((m->m_flags & M_PKTHDR), ("%s: mbuf chain %p is !M_PKTHDR", __func__, m)); /* * RFC3590: OK to send as :: or tentative during DAD. */ ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); if (ia == NULL) CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__); mh = m_gethdr(M_NOWAIT, MT_DATA); if (mh == NULL) { if (ia != NULL) ifa_free(&ia->ia_ifa); m_freem(m); return (NULL); } M_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report)); mldreclen = m_length(m, NULL); CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen); mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report); mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report) + mldreclen; ip6 = mtod(mh, struct ip6_hdr *); ip6->ip6_flow = 0; ip6->ip6_vfc &= ~IPV6_VERSION_MASK; ip6->ip6_vfc |= IPV6_VERSION; ip6->ip6_nxt = IPPROTO_ICMPV6; ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; if (ia != NULL) ifa_free(&ia->ia_ifa); ip6->ip6_dst = in6addr_linklocal_allv2routers; /* scope ID will be set in netisr */ mld = (struct mldv2_report *)(ip6 + 1); mld->mld_type = MLDV2_LISTENER_REPORT; mld->mld_code = 0; mld->mld_cksum = 0; mld->mld_v2_reserved = 0; mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs); m->m_pkthdr.PH_vt.vt_nrecs = 0; mh->m_next = m; mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen); return (mh); } #ifdef KTR static char * mld_rec_type_to_str(const int type) { switch (type) { case MLD_CHANGE_TO_EXCLUDE_MODE: return "TO_EX"; break; case MLD_CHANGE_TO_INCLUDE_MODE: return "TO_IN"; break; case MLD_MODE_IS_EXCLUDE: return "MODE_EX"; break; case MLD_MODE_IS_INCLUDE: return "MODE_IN"; break; case MLD_ALLOW_NEW_SOURCES: return "ALLOW_NEW"; break; case MLD_BLOCK_OLD_SOURCES: return "BLOCK_OLD"; break; default: break; } return "unknown"; } #endif static void mld_init(void *unused __unused) { CTR1(KTR_MLD, "%s: initializing", __func__); MLD_LOCK_INIT(); ip6_initpktopts(&mld_po); mld_po.ip6po_hlim = 1; mld_po.ip6po_hbh = &mld_ra.hbh; mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER; mld_po.ip6po_flags = IP6PO_DONTFRAG; } SYSINIT(mld_init, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, mld_init, NULL); static void mld_uninit(void *unused __unused) { CTR1(KTR_MLD, "%s: tearing down", __func__); MLD_LOCK_DESTROY(); } SYSUNINIT(mld_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, mld_uninit, NULL); static void vnet_mld_init(const void *unused __unused) { CTR1(KTR_MLD, "%s: initializing", __func__); LIST_INIT(&V_mli_head); } VNET_SYSINIT(vnet_mld_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mld_init, NULL); static void vnet_mld_uninit(const void *unused __unused) { + /* This can happen if we shutdown the network stack. */ CTR1(KTR_MLD, "%s: tearing down", __func__); - - KASSERT(LIST_EMPTY(&V_mli_head), - ("%s: mli list not empty; ifnets not detached?", __func__)); } VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mld_uninit, NULL); static int mld_modevent(module_t mod, int type, void *unused __unused) { switch (type) { case MOD_LOAD: case MOD_UNLOAD: break; default: return (EOPNOTSUPP); } return (0); } static moduledata_t mld_mod = { "mld", mld_modevent, 0 }; DECLARE_MODULE(mld, mld_mod, SI_SUB_PROTO_MC, SI_ORDER_ANY); Index: projects/vnet/sys/sys/kernel.h =================================================================== --- projects/vnet/sys/sys/kernel.h (revision 297511) +++ projects/vnet/sys/sys/kernel.h (revision 297512) @@ -1,369 +1,370 @@ /*- * Copyright (c) 1995 Terrence R. Lambert * All rights reserved. * * Copyright (c) 1990, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kernel.h 8.3 (Berkeley) 1/21/94 * $FreeBSD$ */ #ifndef _SYS_KERNEL_H_ #define _SYS_KERNEL_H_ #include #ifdef _KERNEL /* for intrhook below */ #include /* Global variables for the kernel. */ /* 1.1 */ extern char kernelname[MAXPATHLEN]; extern int tick; /* usec per tick (1000000 / hz) */ extern int hz; /* system clock's frequency */ extern int psratio; /* ratio: prof / stat */ extern int stathz; /* statistics clock's frequency */ extern int profhz; /* profiling clock's frequency */ extern int profprocs; /* number of process's profiling */ extern volatile int ticks; #endif /* _KERNEL */ /* * Enumerated types for known system startup interfaces. * * Startup occurs in ascending numeric order; the list entries are * sorted prior to attempting startup to guarantee order. Items * of the same level are arbitrated for order based on the 'order' * element. * * These numbers are arbitrary and are chosen ONLY for ordering; the * enumeration values are explicit rather than implicit to provide * for binary compatibility with inserted elements. * * The SI_SUB_LAST value must have the highest lexical value. */ enum sysinit_sub_id { SI_SUB_DUMMY = 0x0000000, /* not executed; for linker*/ SI_SUB_DONE = 0x0000001, /* processed*/ SI_SUB_TUNABLES = 0x0700000, /* establish tunable values */ SI_SUB_COPYRIGHT = 0x0800001, /* first use of console*/ SI_SUB_VM = 0x1000000, /* virtual memory system init*/ SI_SUB_KMEM = 0x1800000, /* kernel memory*/ SI_SUB_HYPERVISOR = 0x1A40000, /* * Hypervisor detection and * virtualization support * setup. */ SI_SUB_WITNESS = 0x1A80000, /* witness initialization */ SI_SUB_MTX_POOL_DYNAMIC = 0x1AC0000, /* dynamic mutex pool */ SI_SUB_LOCK = 0x1B00000, /* various locks */ SI_SUB_EVENTHANDLER = 0x1C00000, /* eventhandler init */ SI_SUB_VNET_PRELINK = 0x1E00000, /* vnet init before modules */ SI_SUB_KLD = 0x2000000, /* KLD and module setup */ SI_SUB_CPU = 0x2100000, /* CPU resource(s)*/ SI_SUB_RACCT = 0x2110000, /* resource accounting */ SI_SUB_KDTRACE = 0x2140000, /* Kernel dtrace hooks */ SI_SUB_RANDOM = 0x2160000, /* random number generator */ SI_SUB_MAC = 0x2180000, /* TrustedBSD MAC subsystem */ SI_SUB_MAC_POLICY = 0x21C0000, /* TrustedBSD MAC policies */ SI_SUB_MAC_LATE = 0x21D0000, /* TrustedBSD MAC subsystem */ SI_SUB_VNET = 0x21E0000, /* vnet 0 */ SI_SUB_INTRINSIC = 0x2200000, /* proc 0*/ SI_SUB_VM_CONF = 0x2300000, /* config VM, set limits*/ SI_SUB_DDB_SERVICES = 0x2380000, /* capture, scripting, etc. */ SI_SUB_RUN_QUEUE = 0x2400000, /* set up run queue*/ SI_SUB_KTRACE = 0x2480000, /* ktrace */ SI_SUB_OPENSOLARIS = 0x2490000, /* OpenSolaris compatibility */ SI_SUB_AUDIT = 0x24C0000, /* audit */ SI_SUB_CREATE_INIT = 0x2500000, /* create init process*/ SI_SUB_SCHED_IDLE = 0x2600000, /* required idle procs */ SI_SUB_MBUF = 0x2700000, /* mbuf subsystem */ SI_SUB_INTR = 0x2800000, /* interrupt threads */ SI_SUB_SOFTINTR = 0x2800001, /* start soft interrupt thread */ SI_SUB_DEVFS = 0x2F00000, /* devfs ready for devices */ SI_SUB_INIT_IF = 0x3000000, /* prep for net interfaces */ SI_SUB_NETGRAPH = 0x3010000, /* Let Netgraph initialize */ SI_SUB_DTRACE = 0x3020000, /* DTrace subsystem */ SI_SUB_DTRACE_PROVIDER = 0x3048000, /* DTrace providers */ SI_SUB_DTRACE_ANON = 0x308C000, /* DTrace anon enabling */ SI_SUB_DRIVERS = 0x3100000, /* Let Drivers initialize */ SI_SUB_CONFIGURE = 0x3800000, /* Configure devices */ SI_SUB_VFS = 0x4000000, /* virtual filesystem*/ SI_SUB_CLOCKS = 0x4800000, /* real time and stat clocks*/ SI_SUB_SYSV_SHM = 0x6400000, /* System V shared memory*/ SI_SUB_SYSV_SEM = 0x6800000, /* System V semaphores*/ SI_SUB_SYSV_MSG = 0x6C00000, /* System V message queues*/ SI_SUB_P1003_1B = 0x6E00000, /* P1003.1B realtime */ SI_SUB_PSEUDO = 0x7000000, /* pseudo devices*/ SI_SUB_EXEC = 0x7400000, /* execve() handlers */ SI_SUB_PROTO_BEGIN = 0x8000000, /* VNET initialization */ SI_SUB_PROTO_PFIL = 0x8100000, /* Intialize pfil before FWs */ SI_SUB_PROTO_IF = 0x8400000, /* interfaces*/ SI_SUB_PROTO_DOMAININIT = 0x8600000, /* domain registration system */ SI_SUB_PROTO_MC = 0x8700000, /* Multicast */ SI_SUB_PROTO_DOMAIN = 0x8800000, /* domains (address families?)*/ SI_SUB_FW = 0x8806000, /* Firewalls */ SI_SUB_PROTO_IFATTACHDOMAIN = 0x8808000,/* domain dependent data init */ SI_SUB_PROTO_END = 0x8ffffff, /* VNET helper functions */ SI_SUB_KPROF = 0x9000000, /* kernel profiling*/ SI_SUB_KICK_SCHEDULER = 0xa000000, /* start the timeout events*/ SI_SUB_INT_CONFIG_HOOKS = 0xa800000, /* Interrupts enabled config */ SI_SUB_ROOT_CONF = 0xb000000, /* Find root devices */ SI_SUB_INTRINSIC_POST = 0xd000000, /* proc 0 cleanup*/ SI_SUB_SYSCALLS = 0xd800000, /* register system calls */ + SI_SUB_PSEUDO_DONE = 0xdb00000, /* pseudo dev removal; last! */ SI_SUB_VNET_DONE = 0xdc00000, /* vnet registration complete */ SI_SUB_KTHREAD_INIT = 0xe000000, /* init process*/ SI_SUB_KTHREAD_PAGE = 0xe400000, /* pageout daemon*/ SI_SUB_KTHREAD_VM = 0xe800000, /* vm daemon*/ SI_SUB_KTHREAD_BUF = 0xea00000, /* buffer daemon*/ SI_SUB_KTHREAD_UPDATE = 0xec00000, /* update daemon*/ SI_SUB_KTHREAD_IDLE = 0xee00000, /* idle procs*/ SI_SUB_SMP = 0xf000000, /* start the APs*/ SI_SUB_RACCTD = 0xf100000, /* start racctd*/ SI_SUB_LAST = 0xfffffff /* final initialization */ }; /* * Some enumerated orders; "ANY" sorts last. */ enum sysinit_elem_order { SI_ORDER_FIRST = 0x0000000, /* first*/ SI_ORDER_SECOND = 0x0000001, /* second*/ SI_ORDER_THIRD = 0x0000002, /* third*/ SI_ORDER_FOURTH = 0x0000003, /* fourth*/ SI_ORDER_MIDDLE = 0x1000000, /* somewhere in the middle */ SI_ORDER_ANY = 0xfffffff /* last*/ }; /* * A system initialization call instance * * At the moment there is one instance of sysinit. We probably do not * want two which is why this code is if'd out, but we definitely want * to discern SYSINIT's which take non-constant data pointers and * SYSINIT's which take constant data pointers, * * The C_* macros take functions expecting const void * arguments * while the non-C_* macros take functions expecting just void * arguments. * * With -Wcast-qual on, the compiler issues warnings: * - if we pass non-const data or functions taking non-const data * to a C_* macro. * * - if we pass const data to the normal macros * * However, no warning is issued if we pass a function taking const data * through a normal non-const macro. This is ok because the function is * saying it won't modify the data so we don't care whether the data is * modifiable or not. */ typedef void (*sysinit_nfunc_t)(void *); typedef void (*sysinit_cfunc_t)(const void *); struct sysinit { enum sysinit_sub_id subsystem; /* subsystem identifier*/ enum sysinit_elem_order order; /* init order within subsystem*/ sysinit_cfunc_t func; /* function */ const void *udata; /* multiplexer/argument */ }; /* * Default: no special processing * * The C_ version of SYSINIT is for data pointers to const * data ( and functions taking data pointers to const data ). * At the moment it is no different from SYSINIT and thus * still results in warnings. * * The casts are necessary to have the compiler produce the * correct warnings when -Wcast-qual is used. * */ #define C_SYSINIT(uniquifier, subsystem, order, func, ident) \ static struct sysinit uniquifier ## _sys_init = { \ subsystem, \ order, \ func, \ (ident) \ }; \ DATA_SET(sysinit_set,uniquifier ## _sys_init) #define SYSINIT(uniquifier, subsystem, order, func, ident) \ C_SYSINIT(uniquifier, subsystem, order, \ (sysinit_cfunc_t)(sysinit_nfunc_t)func, (void *)(ident)) /* * Called on module unload: no special processing */ #define C_SYSUNINIT(uniquifier, subsystem, order, func, ident) \ static struct sysinit uniquifier ## _sys_uninit = { \ subsystem, \ order, \ func, \ (ident) \ }; \ DATA_SET(sysuninit_set,uniquifier ## _sys_uninit) #define SYSUNINIT(uniquifier, subsystem, order, func, ident) \ C_SYSUNINIT(uniquifier, subsystem, order, \ (sysinit_cfunc_t)(sysinit_nfunc_t)func, (void *)(ident)) void sysinit_add(struct sysinit **set, struct sysinit **set_end); /* * Infrastructure for tunable 'constants'. Value may be specified at compile * time or kernel load time. Rules relating tunables together can be placed * in a SYSINIT function at SI_SUB_TUNABLES with SI_ORDER_ANY. * * WARNING: developers should never use the reserved suffixes specified in * loader.conf(5) for any tunables or conflicts will result. */ /* * int * please avoid using for new tunables! */ extern void tunable_int_init(void *); struct tunable_int { const char *path; int *var; }; #define TUNABLE_INT(path, var) \ static struct tunable_int __CONCAT(__tunable_int_, __LINE__) = { \ (path), \ (var), \ }; \ SYSINIT(__CONCAT(__Tunable_init_, __LINE__), \ SI_SUB_TUNABLES, SI_ORDER_MIDDLE, tunable_int_init, \ &__CONCAT(__tunable_int_, __LINE__)) #define TUNABLE_INT_FETCH(path, var) getenv_int((path), (var)) /* * long */ extern void tunable_long_init(void *); struct tunable_long { const char *path; long *var; }; #define TUNABLE_LONG(path, var) \ static struct tunable_long __CONCAT(__tunable_long_, __LINE__) = { \ (path), \ (var), \ }; \ SYSINIT(__CONCAT(__Tunable_init_, __LINE__), \ SI_SUB_TUNABLES, SI_ORDER_MIDDLE, tunable_long_init,\ &__CONCAT(__tunable_long_, __LINE__)) #define TUNABLE_LONG_FETCH(path, var) getenv_long((path), (var)) /* * unsigned long */ extern void tunable_ulong_init(void *); struct tunable_ulong { const char *path; unsigned long *var; }; #define TUNABLE_ULONG(path, var) \ static struct tunable_ulong __CONCAT(__tunable_ulong_, __LINE__) = { \ (path), \ (var), \ }; \ SYSINIT(__CONCAT(__Tunable_init_, __LINE__), \ SI_SUB_TUNABLES, SI_ORDER_MIDDLE, tunable_ulong_init, \ &__CONCAT(__tunable_ulong_, __LINE__)) #define TUNABLE_ULONG_FETCH(path, var) getenv_ulong((path), (var)) /* * quad */ extern void tunable_quad_init(void *); struct tunable_quad { const char *path; quad_t *var; }; #define TUNABLE_QUAD(path, var) \ static struct tunable_quad __CONCAT(__tunable_quad_, __LINE__) = { \ (path), \ (var), \ }; \ SYSINIT(__CONCAT(__Tunable_init_, __LINE__), \ SI_SUB_TUNABLES, SI_ORDER_MIDDLE, tunable_quad_init, \ &__CONCAT(__tunable_quad_, __LINE__)) #define TUNABLE_QUAD_FETCH(path, var) getenv_quad((path), (var)) extern void tunable_str_init(void *); struct tunable_str { const char *path; char *var; int size; }; #define TUNABLE_STR(path, var, size) \ static struct tunable_str __CONCAT(__tunable_str_, __LINE__) = { \ (path), \ (var), \ (size), \ }; \ SYSINIT(__CONCAT(__Tunable_init_, __LINE__), \ SI_SUB_TUNABLES, SI_ORDER_MIDDLE, tunable_str_init, \ &__CONCAT(__tunable_str_, __LINE__)) #define TUNABLE_STR_FETCH(path, var, size) \ getenv_string((path), (var), (size)) struct intr_config_hook { TAILQ_ENTRY(intr_config_hook) ich_links; void (*ich_func)(void *arg); void *ich_arg; }; int config_intrhook_establish(struct intr_config_hook *hook); void config_intrhook_disestablish(struct intr_config_hook *hook); #endif /* !_SYS_KERNEL_H_*/