Index: head/lib/libthr/thread/thr_mutex.c =================================================================== --- head/lib/libthr/thread/thr_mutex.c (revision 297139) +++ head/lib/libthr/thread/thr_mutex.c (revision 297140) @@ -1,958 +1,970 @@ /* * Copyright (c) 1995 John Birrell . * Copyright (c) 2006 David Xu . * Copyright (c) 2015 The FreeBSD Foundation * * All rights reserved. * * Portions of this software were developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by John Birrell. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include "namespace.h" #include #include #include #include #include #include #include #include "un-namespace.h" #include "thr_private.h" /* * For adaptive mutexes, how many times to spin doing trylock2 * before entering the kernel to block */ #define MUTEX_ADAPTIVE_SPINS 2000 /* * Prototypes */ int __pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutex_attr); int __pthread_mutex_trylock(pthread_mutex_t *mutex); int __pthread_mutex_lock(pthread_mutex_t *mutex); int __pthread_mutex_timedlock(pthread_mutex_t *mutex, const struct timespec *abstime); int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex, void *(calloc_cb)(size_t, size_t)); int _pthread_mutex_getspinloops_np(pthread_mutex_t *mutex, int *count); int _pthread_mutex_setspinloops_np(pthread_mutex_t *mutex, int count); int __pthread_mutex_setspinloops_np(pthread_mutex_t *mutex, int count); int _pthread_mutex_setyieldloops_np(pthread_mutex_t *mutex, int count); int _pthread_mutex_getyieldloops_np(pthread_mutex_t *mutex, int *count); int __pthread_mutex_setyieldloops_np(pthread_mutex_t *mutex, int count); static int mutex_self_trylock(pthread_mutex_t); static int mutex_self_lock(pthread_mutex_t, const struct timespec *abstime); static int mutex_unlock_common(struct pthread_mutex *, int, int *); static int mutex_lock_sleep(struct pthread *, pthread_mutex_t, const struct timespec *); __weak_reference(__pthread_mutex_init, pthread_mutex_init); __strong_reference(__pthread_mutex_init, _pthread_mutex_init); __weak_reference(__pthread_mutex_lock, pthread_mutex_lock); __strong_reference(__pthread_mutex_lock, _pthread_mutex_lock); __weak_reference(__pthread_mutex_timedlock, pthread_mutex_timedlock); __strong_reference(__pthread_mutex_timedlock, _pthread_mutex_timedlock); __weak_reference(__pthread_mutex_trylock, pthread_mutex_trylock); __strong_reference(__pthread_mutex_trylock, _pthread_mutex_trylock); /* Single underscore versions provided for libc internal usage: */ /* No difference between libc and application usage of these: */ __weak_reference(_pthread_mutex_destroy, pthread_mutex_destroy); __weak_reference(_pthread_mutex_unlock, pthread_mutex_unlock); __weak_reference(_pthread_mutex_getprioceiling, pthread_mutex_getprioceiling); __weak_reference(_pthread_mutex_setprioceiling, pthread_mutex_setprioceiling); __weak_reference(__pthread_mutex_setspinloops_np, pthread_mutex_setspinloops_np); __strong_reference(__pthread_mutex_setspinloops_np, _pthread_mutex_setspinloops_np); __weak_reference(_pthread_mutex_getspinloops_np, pthread_mutex_getspinloops_np); __weak_reference(__pthread_mutex_setyieldloops_np, pthread_mutex_setyieldloops_np); __strong_reference(__pthread_mutex_setyieldloops_np, _pthread_mutex_setyieldloops_np); __weak_reference(_pthread_mutex_getyieldloops_np, pthread_mutex_getyieldloops_np); __weak_reference(_pthread_mutex_isowned_np, pthread_mutex_isowned_np); static void mutex_init_link(struct pthread_mutex *m) { #if defined(_PTHREADS_INVARIANTS) m->m_qe.tqe_prev = NULL; m->m_qe.tqe_next = NULL; m->m_pqe.tqe_prev = NULL; m->m_pqe.tqe_next = NULL; #endif } static void mutex_assert_is_owned(struct pthread_mutex *m) { #if defined(_PTHREADS_INVARIANTS) - if (__predict_false(m->m_qe.tqe_prev == NULL)) - PANIC("mutex is not on list"); + if (__predict_false(m->m_qe.tqe_prev == NULL)) { + char msg[128]; + snprintf(msg, sizeof(msg), + "mutex %p own %#x %#x is not on list %p %p", + m, m->m_lock.m_owner, m->m_owner, m->m_qe.tqe_prev, + m->m_qe.tqe_next); + PANIC(msg); + } #endif } static void mutex_assert_not_owned(struct pthread_mutex *m) { #if defined(_PTHREADS_INVARIANTS) if (__predict_false(m->m_qe.tqe_prev != NULL || - m->m_qe.tqe_next != NULL)) - PANIC("mutex is on list"); + m->m_qe.tqe_next != NULL)) { + char msg[128]; + snprintf(msg, sizeof(msg), + "mutex %p own %#x %#x is on list %p %p", + m, m->m_lock.m_owner, m->m_owner, m->m_qe.tqe_prev, + m->m_qe.tqe_next); + PANIC(msg); + } #endif } static int is_pshared_mutex(struct pthread_mutex *m) { return ((m->m_lock.m_flags & USYNC_PROCESS_SHARED) != 0); } static int mutex_check_attr(const struct pthread_mutex_attr *attr) { if (attr->m_type < PTHREAD_MUTEX_ERRORCHECK || attr->m_type >= PTHREAD_MUTEX_TYPE_MAX) return (EINVAL); if (attr->m_protocol < PTHREAD_PRIO_NONE || attr->m_protocol > PTHREAD_PRIO_PROTECT) return (EINVAL); return (0); } static void mutex_init_body(struct pthread_mutex *pmutex, const struct pthread_mutex_attr *attr) { pmutex->m_flags = attr->m_type; pmutex->m_owner = 0; pmutex->m_count = 0; pmutex->m_spinloops = 0; pmutex->m_yieldloops = 0; mutex_init_link(pmutex); switch (attr->m_protocol) { case PTHREAD_PRIO_NONE: pmutex->m_lock.m_owner = UMUTEX_UNOWNED; pmutex->m_lock.m_flags = 0; break; case PTHREAD_PRIO_INHERIT: pmutex->m_lock.m_owner = UMUTEX_UNOWNED; pmutex->m_lock.m_flags = UMUTEX_PRIO_INHERIT; break; case PTHREAD_PRIO_PROTECT: pmutex->m_lock.m_owner = UMUTEX_CONTESTED; pmutex->m_lock.m_flags = UMUTEX_PRIO_PROTECT; pmutex->m_lock.m_ceilings[0] = attr->m_ceiling; break; } if (attr->m_pshared == PTHREAD_PROCESS_SHARED) pmutex->m_lock.m_flags |= USYNC_PROCESS_SHARED; if (PMUTEX_TYPE(pmutex->m_flags) == PTHREAD_MUTEX_ADAPTIVE_NP) { pmutex->m_spinloops = _thr_spinloops ? _thr_spinloops: MUTEX_ADAPTIVE_SPINS; pmutex->m_yieldloops = _thr_yieldloops; } } static int mutex_init(pthread_mutex_t *mutex, const struct pthread_mutex_attr *mutex_attr, void *(calloc_cb)(size_t, size_t)) { const struct pthread_mutex_attr *attr; struct pthread_mutex *pmutex; int error; if (mutex_attr == NULL) { attr = &_pthread_mutexattr_default; } else { attr = mutex_attr; error = mutex_check_attr(attr); if (error != 0) return (error); } if ((pmutex = (pthread_mutex_t) calloc_cb(1, sizeof(struct pthread_mutex))) == NULL) return (ENOMEM); mutex_init_body(pmutex, attr); *mutex = pmutex; return (0); } static int init_static(struct pthread *thread, pthread_mutex_t *mutex) { int ret; THR_LOCK_ACQUIRE(thread, &_mutex_static_lock); if (*mutex == THR_MUTEX_INITIALIZER) ret = mutex_init(mutex, &_pthread_mutexattr_default, calloc); else if (*mutex == THR_ADAPTIVE_MUTEX_INITIALIZER) ret = mutex_init(mutex, &_pthread_mutexattr_adaptive_default, calloc); else ret = 0; THR_LOCK_RELEASE(thread, &_mutex_static_lock); return (ret); } static void set_inherited_priority(struct pthread *curthread, struct pthread_mutex *m) { struct pthread_mutex *m2; m2 = TAILQ_LAST(&curthread->mq[TMQ_NORM_PP], mutex_queue); if (m2 != NULL) m->m_lock.m_ceilings[1] = m2->m_lock.m_ceilings[0]; else m->m_lock.m_ceilings[1] = -1; } int __pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutex_attr) { struct pthread_mutex *pmtx; int ret; if (mutex_attr != NULL) { ret = mutex_check_attr(*mutex_attr); if (ret != 0) return (ret); } if (mutex_attr == NULL || (*mutex_attr)->m_pshared == PTHREAD_PROCESS_PRIVATE) { return (mutex_init(mutex, mutex_attr ? *mutex_attr : NULL, calloc)); } pmtx = __thr_pshared_offpage(mutex, 1); if (pmtx == NULL) return (EFAULT); *mutex = THR_PSHARED_PTR; mutex_init_body(pmtx, *mutex_attr); return (0); } /* This function is used internally by malloc. */ int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex, void *(calloc_cb)(size_t, size_t)) { static const struct pthread_mutex_attr attr = { .m_type = PTHREAD_MUTEX_NORMAL, .m_protocol = PTHREAD_PRIO_NONE, .m_ceiling = 0, .m_pshared = PTHREAD_PROCESS_PRIVATE, }; int ret; ret = mutex_init(mutex, &attr, calloc_cb); if (ret == 0) (*mutex)->m_flags |= PMUTEX_FLAG_PRIVATE; return (ret); } /* * Fix mutex ownership for child process. * * Process private mutex ownership is transmitted from the forking * thread to the child process. * * Process shared mutex should not be inherited because owner is * forking thread which is in parent process, they are removed from * the owned mutex list. */ static void queue_fork(struct pthread *curthread, struct mutex_queue *q, struct mutex_queue *qp, uint bit) { struct pthread_mutex *m; TAILQ_INIT(q); TAILQ_FOREACH(m, qp, m_pqe) { TAILQ_INSERT_TAIL(q, m, m_qe); m->m_lock.m_owner = TID(curthread) | bit; m->m_owner = TID(curthread); } } void _mutex_fork(struct pthread *curthread) { queue_fork(curthread, &curthread->mq[TMQ_NORM], &curthread->mq[TMQ_NORM_PRIV], 0); queue_fork(curthread, &curthread->mq[TMQ_NORM_PP], &curthread->mq[TMQ_NORM_PP_PRIV], UMUTEX_CONTESTED); } int _pthread_mutex_destroy(pthread_mutex_t *mutex) { pthread_mutex_t m, m1; int ret; m = *mutex; if (m < THR_MUTEX_DESTROYED) { ret = 0; } else if (m == THR_MUTEX_DESTROYED) { ret = EINVAL; } else { if (m == THR_PSHARED_PTR) { m1 = __thr_pshared_offpage(mutex, 0); if (m1 != NULL) { mutex_assert_not_owned(m1); __thr_pshared_destroy(mutex); } *mutex = THR_MUTEX_DESTROYED; return (0); } if (m->m_owner != 0) { ret = EBUSY; } else { *mutex = THR_MUTEX_DESTROYED; mutex_assert_not_owned(m); free(m); ret = 0; } } return (ret); } static int mutex_qidx(struct pthread_mutex *m) { if ((m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0) return (TMQ_NORM); return (TMQ_NORM_PP); } static void enqueue_mutex(struct pthread *curthread, struct pthread_mutex *m) { int qidx; m->m_owner = TID(curthread); /* Add to the list of owned mutexes: */ mutex_assert_not_owned(m); qidx = mutex_qidx(m); TAILQ_INSERT_TAIL(&curthread->mq[qidx], m, m_qe); if (!is_pshared_mutex(m)) TAILQ_INSERT_TAIL(&curthread->mq[qidx + 1], m, m_pqe); } static void dequeue_mutex(struct pthread *curthread, struct pthread_mutex *m) { int qidx; m->m_owner = 0; mutex_assert_is_owned(m); qidx = mutex_qidx(m); TAILQ_REMOVE(&curthread->mq[qidx], m, m_qe); if (!is_pshared_mutex(m)) TAILQ_REMOVE(&curthread->mq[qidx + 1], m, m_pqe); if ((m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) != 0) set_inherited_priority(curthread, m); mutex_init_link(m); } static int check_and_init_mutex(pthread_mutex_t *mutex, struct pthread_mutex **m) { int ret; *m = *mutex; ret = 0; if (*m == THR_PSHARED_PTR) { *m = __thr_pshared_offpage(mutex, 0); if (*m == NULL) ret = EINVAL; } else if (__predict_false(*m <= THR_MUTEX_DESTROYED)) { if (*m == THR_MUTEX_DESTROYED) { ret = EINVAL; } else { ret = init_static(_get_curthread(), mutex); if (ret == 0) *m = *mutex; } } return (ret); } int __pthread_mutex_trylock(pthread_mutex_t *mutex) { struct pthread *curthread; struct pthread_mutex *m; uint32_t id; int ret; ret = check_and_init_mutex(mutex, &m); if (ret != 0) return (ret); curthread = _get_curthread(); id = TID(curthread); if (m->m_flags & PMUTEX_FLAG_PRIVATE) THR_CRITICAL_ENTER(curthread); ret = _thr_umutex_trylock(&m->m_lock, id); if (__predict_true(ret == 0)) { enqueue_mutex(curthread, m); } else if (m->m_owner == id) { ret = mutex_self_trylock(m); } /* else {} */ if (ret && (m->m_flags & PMUTEX_FLAG_PRIVATE)) THR_CRITICAL_LEAVE(curthread); return (ret); } static int mutex_lock_sleep(struct pthread *curthread, struct pthread_mutex *m, const struct timespec *abstime) { uint32_t id, owner; int count; int ret; id = TID(curthread); if (m->m_owner == id) return (mutex_self_lock(m, abstime)); /* * For adaptive mutexes, spin for a bit in the expectation * that if the application requests this mutex type then * the lock is likely to be released quickly and it is * faster than entering the kernel */ if (__predict_false( (m->m_lock.m_flags & (UMUTEX_PRIO_PROTECT | UMUTEX_PRIO_INHERIT)) != 0)) goto sleep_in_kernel; if (!_thr_is_smp) goto yield_loop; count = m->m_spinloops; while (count--) { owner = m->m_lock.m_owner; if ((owner & ~UMUTEX_CONTESTED) == 0) { if (atomic_cmpset_acq_32(&m->m_lock.m_owner, owner, id|owner)) { ret = 0; goto done; } } CPU_SPINWAIT; } yield_loop: count = m->m_yieldloops; while (count--) { _sched_yield(); owner = m->m_lock.m_owner; if ((owner & ~UMUTEX_CONTESTED) == 0) { if (atomic_cmpset_acq_32(&m->m_lock.m_owner, owner, id|owner)) { ret = 0; goto done; } } } sleep_in_kernel: if (abstime == NULL) { ret = __thr_umutex_lock(&m->m_lock, id); } else if (__predict_false( abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000)) { ret = EINVAL; } else { ret = __thr_umutex_timedlock(&m->m_lock, id, abstime); } done: if (ret == 0) enqueue_mutex(curthread, m); return (ret); } static inline int mutex_lock_common(struct pthread_mutex *m, const struct timespec *abstime, int cvattach) { struct pthread *curthread = _get_curthread(); int ret; if (!cvattach && m->m_flags & PMUTEX_FLAG_PRIVATE) THR_CRITICAL_ENTER(curthread); if (_thr_umutex_trylock2(&m->m_lock, TID(curthread)) == 0) { enqueue_mutex(curthread, m); ret = 0; } else { ret = mutex_lock_sleep(curthread, m, abstime); } if (ret && (m->m_flags & PMUTEX_FLAG_PRIVATE) && !cvattach) THR_CRITICAL_LEAVE(curthread); return (ret); } int __pthread_mutex_lock(pthread_mutex_t *mutex) { struct pthread_mutex *m; int ret; _thr_check_init(); ret = check_and_init_mutex(mutex, &m); if (ret == 0) ret = mutex_lock_common(m, NULL, 0); return (ret); } int __pthread_mutex_timedlock(pthread_mutex_t *mutex, const struct timespec *abstime) { struct pthread_mutex *m; int ret; _thr_check_init(); ret = check_and_init_mutex(mutex, &m); if (ret == 0) ret = mutex_lock_common(m, abstime, 0); return (ret); } int _pthread_mutex_unlock(pthread_mutex_t *mutex) { struct pthread_mutex *mp; if (*mutex == THR_PSHARED_PTR) { mp = __thr_pshared_offpage(mutex, 0); if (mp == NULL) return (EINVAL); } else { mp = *mutex; } return (mutex_unlock_common(mp, 0, NULL)); } int _mutex_cv_lock(struct pthread_mutex *m, int count) { int error; error = mutex_lock_common(m, NULL, 1); if (error == 0) m->m_count = count; return (error); } int _mutex_cv_unlock(struct pthread_mutex *m, int *count, int *defer) { /* * Clear the count in case this is a recursive mutex. */ *count = m->m_count; m->m_count = 0; (void)mutex_unlock_common(m, 1, defer); return (0); } int _mutex_cv_attach(struct pthread_mutex *m, int count) { struct pthread *curthread = _get_curthread(); enqueue_mutex(curthread, m); m->m_count = count; return (0); } int _mutex_cv_detach(struct pthread_mutex *mp, int *recurse) { struct pthread *curthread = _get_curthread(); int defered; int error; if ((error = _mutex_owned(curthread, mp)) != 0) return (error); /* * Clear the count in case this is a recursive mutex. */ *recurse = mp->m_count; mp->m_count = 0; dequeue_mutex(curthread, mp); /* Will this happen in real-world ? */ if ((mp->m_flags & PMUTEX_FLAG_DEFERED) != 0) { defered = 1; mp->m_flags &= ~PMUTEX_FLAG_DEFERED; } else defered = 0; if (defered) { _thr_wake_all(curthread->defer_waiters, curthread->nwaiter_defer); curthread->nwaiter_defer = 0; } return (0); } static int mutex_self_trylock(struct pthread_mutex *m) { int ret; switch (PMUTEX_TYPE(m->m_flags)) { case PTHREAD_MUTEX_ERRORCHECK: case PTHREAD_MUTEX_NORMAL: case PTHREAD_MUTEX_ADAPTIVE_NP: ret = EBUSY; break; case PTHREAD_MUTEX_RECURSIVE: /* Increment the lock count: */ if (m->m_count + 1 > 0) { m->m_count++; ret = 0; } else ret = EAGAIN; break; default: /* Trap invalid mutex types; */ ret = EINVAL; } return (ret); } static int mutex_self_lock(struct pthread_mutex *m, const struct timespec *abstime) { struct timespec ts1, ts2; int ret; switch (PMUTEX_TYPE(m->m_flags)) { case PTHREAD_MUTEX_ERRORCHECK: case PTHREAD_MUTEX_ADAPTIVE_NP: if (abstime) { if (abstime->tv_sec < 0 || abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000) { ret = EINVAL; } else { clock_gettime(CLOCK_REALTIME, &ts1); TIMESPEC_SUB(&ts2, abstime, &ts1); __sys_nanosleep(&ts2, NULL); ret = ETIMEDOUT; } } else { /* * POSIX specifies that mutexes should return * EDEADLK if a recursive lock is detected. */ ret = EDEADLK; } break; case PTHREAD_MUTEX_NORMAL: /* * What SS2 define as a 'normal' mutex. Intentionally * deadlock on attempts to get a lock you already own. */ ret = 0; if (abstime) { if (abstime->tv_sec < 0 || abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000) { ret = EINVAL; } else { clock_gettime(CLOCK_REALTIME, &ts1); TIMESPEC_SUB(&ts2, abstime, &ts1); __sys_nanosleep(&ts2, NULL); ret = ETIMEDOUT; } } else { ts1.tv_sec = 30; ts1.tv_nsec = 0; for (;;) __sys_nanosleep(&ts1, NULL); } break; case PTHREAD_MUTEX_RECURSIVE: /* Increment the lock count: */ if (m->m_count + 1 > 0) { m->m_count++; ret = 0; } else ret = EAGAIN; break; default: /* Trap invalid mutex types; */ ret = EINVAL; } return (ret); } static int mutex_unlock_common(struct pthread_mutex *m, int cv, int *mtx_defer) { struct pthread *curthread = _get_curthread(); uint32_t id; int defered, error; if (__predict_false(m <= THR_MUTEX_DESTROYED)) { if (m == THR_MUTEX_DESTROYED) return (EINVAL); return (EPERM); } id = TID(curthread); /* * Check if the running thread is not the owner of the mutex. */ if (__predict_false(m->m_owner != id)) return (EPERM); error = 0; if (__predict_false( PMUTEX_TYPE(m->m_flags) == PTHREAD_MUTEX_RECURSIVE && m->m_count > 0)) { m->m_count--; } else { if ((m->m_flags & PMUTEX_FLAG_DEFERED) != 0) { defered = 1; m->m_flags &= ~PMUTEX_FLAG_DEFERED; } else defered = 0; dequeue_mutex(curthread, m); error = _thr_umutex_unlock2(&m->m_lock, id, mtx_defer); if (mtx_defer == NULL && defered) { _thr_wake_all(curthread->defer_waiters, curthread->nwaiter_defer); curthread->nwaiter_defer = 0; } } if (!cv && m->m_flags & PMUTEX_FLAG_PRIVATE) THR_CRITICAL_LEAVE(curthread); return (error); } int _pthread_mutex_getprioceiling(pthread_mutex_t *mutex, int *prioceiling) { struct pthread_mutex *m; if (*mutex == THR_PSHARED_PTR) { m = __thr_pshared_offpage(mutex, 0); if (m == NULL) return (EINVAL); } else { m = *mutex; if (m <= THR_MUTEX_DESTROYED) return (EINVAL); } if ((m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0) return (EINVAL); *prioceiling = m->m_lock.m_ceilings[0]; return (0); } int _pthread_mutex_setprioceiling(pthread_mutex_t *mutex, int ceiling, int *old_ceiling) { struct pthread *curthread; struct pthread_mutex *m, *m1, *m2; struct mutex_queue *q, *qp; int ret; if (*mutex == THR_PSHARED_PTR) { m = __thr_pshared_offpage(mutex, 0); if (m == NULL) return (EINVAL); } else { m = *mutex; if (m <= THR_MUTEX_DESTROYED) return (EINVAL); } if ((m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0) return (EINVAL); ret = __thr_umutex_set_ceiling(&m->m_lock, ceiling, old_ceiling); if (ret != 0) return (ret); curthread = _get_curthread(); if (m->m_owner == TID(curthread)) { mutex_assert_is_owned(m); m1 = TAILQ_PREV(m, mutex_queue, m_qe); m2 = TAILQ_NEXT(m, m_qe); if ((m1 != NULL && m1->m_lock.m_ceilings[0] > (u_int)ceiling) || (m2 != NULL && m2->m_lock.m_ceilings[0] < (u_int)ceiling)) { q = &curthread->mq[TMQ_NORM_PP]; qp = &curthread->mq[TMQ_NORM_PP_PRIV]; TAILQ_REMOVE(q, m, m_qe); if (!is_pshared_mutex(m)) TAILQ_REMOVE(qp, m, m_pqe); TAILQ_FOREACH(m2, q, m_qe) { if (m2->m_lock.m_ceilings[0] > (u_int)ceiling) { TAILQ_INSERT_BEFORE(m2, m, m_qe); if (!is_pshared_mutex(m)) { while (m2 != NULL && is_pshared_mutex(m2)) { m2 = TAILQ_PREV(m2, mutex_queue, m_qe); } if (m2 == NULL) { TAILQ_INSERT_HEAD(qp, m, m_pqe); } else { TAILQ_INSERT_BEFORE(m2, m, m_pqe); } } return (0); } } TAILQ_INSERT_TAIL(q, m, m_qe); if (!is_pshared_mutex(m)) TAILQ_INSERT_TAIL(qp, m, m_pqe); } } return (0); } int _pthread_mutex_getspinloops_np(pthread_mutex_t *mutex, int *count) { struct pthread_mutex *m; int ret; ret = check_and_init_mutex(mutex, &m); if (ret == 0) *count = m->m_spinloops; return (ret); } int __pthread_mutex_setspinloops_np(pthread_mutex_t *mutex, int count) { struct pthread_mutex *m; int ret; ret = check_and_init_mutex(mutex, &m); if (ret == 0) m->m_spinloops = count; return (ret); } int _pthread_mutex_getyieldloops_np(pthread_mutex_t *mutex, int *count) { struct pthread_mutex *m; int ret; ret = check_and_init_mutex(mutex, &m); if (ret == 0) *count = m->m_yieldloops; return (ret); } int __pthread_mutex_setyieldloops_np(pthread_mutex_t *mutex, int count) { struct pthread_mutex *m; int ret; ret = check_and_init_mutex(mutex, &m); if (ret == 0) m->m_yieldloops = count; return (0); } int _pthread_mutex_isowned_np(pthread_mutex_t *mutex) { struct pthread_mutex *m; if (*mutex == THR_PSHARED_PTR) { m = __thr_pshared_offpage(mutex, 0); if (m == NULL) return (0); } else { m = *mutex; if (m <= THR_MUTEX_DESTROYED) return (0); } return (m->m_owner == TID(_get_curthread())); } int _mutex_owned(struct pthread *curthread, const struct pthread_mutex *mp) { if (__predict_false(mp <= THR_MUTEX_DESTROYED)) { if (mp == THR_MUTEX_DESTROYED) return (EINVAL); return (EPERM); } if (mp->m_owner != TID(curthread)) return (EPERM); return (0); }