Index: head/sys/cam/cam_ccb.h =================================================================== --- head/sys/cam/cam_ccb.h (revision 296603) +++ head/sys/cam/cam_ccb.h (revision 296604) @@ -1,1348 +1,1350 @@ /*- * Data structures and definitions for CAM Control Blocks (CCBs). * * Copyright (c) 1997, 1998 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _CAM_CAM_CCB_H #define _CAM_CAM_CCB_H 1 #include #include #include #include #ifndef _KERNEL #include #endif #include #include #include /* General allocation length definitions for CCB structures */ #define IOCDBLEN CAM_MAX_CDBLEN /* Space for CDB bytes/pointer */ #define VUHBALEN 14 /* Vendor Unique HBA length */ #define SIM_IDLEN 16 /* ASCII string len for SIM ID */ #define HBA_IDLEN 16 /* ASCII string len for HBA ID */ #define DEV_IDLEN 16 /* ASCII string len for device names */ #define CCB_PERIPH_PRIV_SIZE 2 /* size of peripheral private area */ #define CCB_SIM_PRIV_SIZE 2 /* size of sim private area */ /* Struct definitions for CAM control blocks */ /* Common CCB header */ /* CAM CCB flags */ typedef enum { CAM_CDB_POINTER = 0x00000001,/* The CDB field is a pointer */ CAM_QUEUE_ENABLE = 0x00000002,/* SIM queue actions are enabled */ CAM_CDB_LINKED = 0x00000004,/* CCB contains a linked CDB */ CAM_NEGOTIATE = 0x00000008,/* * Perform transport negotiation * with this command. */ CAM_DATA_ISPHYS = 0x00000010,/* Data type with physical addrs */ CAM_DIS_AUTOSENSE = 0x00000020,/* Disable autosense feature */ CAM_DIR_BOTH = 0x00000000,/* Data direction (00:IN/OUT) */ CAM_DIR_IN = 0x00000040,/* Data direction (01:DATA IN) */ CAM_DIR_OUT = 0x00000080,/* Data direction (10:DATA OUT) */ CAM_DIR_NONE = 0x000000C0,/* Data direction (11:no data) */ CAM_DIR_MASK = 0x000000C0,/* Data direction Mask */ CAM_DATA_VADDR = 0x00000000,/* Data type (000:Virtual) */ CAM_DATA_PADDR = 0x00000010,/* Data type (001:Physical) */ CAM_DATA_SG = 0x00040000,/* Data type (010:sglist) */ CAM_DATA_SG_PADDR = 0x00040010,/* Data type (011:sglist phys) */ CAM_DATA_BIO = 0x00200000,/* Data type (100:bio) */ CAM_DATA_MASK = 0x00240010,/* Data type mask */ CAM_SOFT_RST_OP = 0x00000100,/* Use Soft reset alternative */ CAM_ENG_SYNC = 0x00000200,/* Flush resid bytes on complete */ CAM_DEV_QFRZDIS = 0x00000400,/* Disable DEV Q freezing */ CAM_DEV_QFREEZE = 0x00000800,/* Freeze DEV Q on execution */ CAM_HIGH_POWER = 0x00001000,/* Command takes a lot of power */ CAM_SENSE_PTR = 0x00002000,/* Sense data is a pointer */ CAM_SENSE_PHYS = 0x00004000,/* Sense pointer is physical addr*/ CAM_TAG_ACTION_VALID = 0x00008000,/* Use the tag action in this ccb*/ CAM_PASS_ERR_RECOVER = 0x00010000,/* Pass driver does err. recovery*/ CAM_DIS_DISCONNECT = 0x00020000,/* Disable disconnect */ CAM_MSG_BUF_PHYS = 0x00080000,/* Message buffer ptr is physical*/ CAM_SNS_BUF_PHYS = 0x00100000,/* Autosense data ptr is physical*/ CAM_CDB_PHYS = 0x00400000,/* CDB poiner is physical */ CAM_ENG_SGLIST = 0x00800000,/* SG list is for the HBA engine */ /* Phase cognizant mode flags */ CAM_DIS_AUTOSRP = 0x01000000,/* Disable autosave/restore ptrs */ CAM_DIS_AUTODISC = 0x02000000,/* Disable auto disconnect */ CAM_TGT_CCB_AVAIL = 0x04000000,/* Target CCB available */ CAM_TGT_PHASE_MODE = 0x08000000,/* The SIM runs in phase mode */ CAM_MSGB_VALID = 0x10000000,/* Message buffer valid */ CAM_STATUS_VALID = 0x20000000,/* Status buffer valid */ CAM_DATAB_VALID = 0x40000000,/* Data buffer valid */ /* Host target Mode flags */ CAM_SEND_SENSE = 0x08000000,/* Send sense data with status */ CAM_TERM_IO = 0x10000000,/* Terminate I/O Message sup. */ CAM_DISCONNECT = 0x20000000,/* Disconnects are mandatory */ CAM_SEND_STATUS = 0x40000000,/* Send status after data phase */ CAM_UNLOCKED = 0x80000000 /* Call callback without lock. */ } ccb_flags; typedef enum { CAM_USER_DATA_ADDR = 0x00000002,/* Userspace data pointers */ CAM_SG_FORMAT_IOVEC = 0x00000004,/* iovec instead of busdma S/G*/ CAM_UNMAPPED_BUF = 0x00000008 /* use unmapped I/O */ } ccb_xflags; /* XPT Opcodes for xpt_action */ typedef enum { /* Function code flags are bits greater than 0xff */ XPT_FC_QUEUED = 0x100, /* Non-immediate function code */ XPT_FC_USER_CCB = 0x200, XPT_FC_XPT_ONLY = 0x400, /* Only for the transport layer device */ XPT_FC_DEV_QUEUED = 0x800 | XPT_FC_QUEUED, /* Passes through the device queues */ /* Common function commands: 0x00->0x0F */ XPT_NOOP = 0x00, /* Execute Nothing */ XPT_SCSI_IO = 0x01 | XPT_FC_DEV_QUEUED, /* Execute the requested I/O operation */ XPT_GDEV_TYPE = 0x02, /* Get type information for specified device */ XPT_GDEVLIST = 0x03, /* Get a list of peripheral devices */ XPT_PATH_INQ = 0x04, /* Path routing inquiry */ XPT_REL_SIMQ = 0x05, /* Release a frozen device queue */ XPT_SASYNC_CB = 0x06, /* Set Asynchronous Callback Parameters */ XPT_SDEV_TYPE = 0x07, /* Set device type information */ XPT_SCAN_BUS = 0x08 | XPT_FC_QUEUED | XPT_FC_USER_CCB | XPT_FC_XPT_ONLY, /* (Re)Scan the SCSI Bus */ XPT_DEV_MATCH = 0x09 | XPT_FC_XPT_ONLY, /* Get EDT entries matching the given pattern */ XPT_DEBUG = 0x0a, /* Turn on debugging for a bus, target or lun */ XPT_PATH_STATS = 0x0b, /* Path statistics (error counts, etc.) */ XPT_GDEV_STATS = 0x0c, /* Device statistics (error counts, etc.) */ XPT_DEV_ADVINFO = 0x0e, /* Get/Set Device advanced information */ XPT_ASYNC = 0x0f | XPT_FC_QUEUED | XPT_FC_USER_CCB | XPT_FC_XPT_ONLY, /* Asynchronous event */ /* SCSI Control Functions: 0x10->0x1F */ XPT_ABORT = 0x10, /* Abort the specified CCB */ XPT_RESET_BUS = 0x11 | XPT_FC_XPT_ONLY, /* Reset the specified SCSI bus */ XPT_RESET_DEV = 0x12 | XPT_FC_DEV_QUEUED, /* Bus Device Reset the specified SCSI device */ XPT_TERM_IO = 0x13, /* Terminate the I/O process */ XPT_SCAN_LUN = 0x14 | XPT_FC_QUEUED | XPT_FC_USER_CCB | XPT_FC_XPT_ONLY, /* Scan Logical Unit */ XPT_GET_TRAN_SETTINGS = 0x15, /* * Get default/user transfer settings * for the target */ XPT_SET_TRAN_SETTINGS = 0x16, /* * Set transfer rate/width * negotiation settings */ XPT_CALC_GEOMETRY = 0x17, /* * Calculate the geometry parameters for * a device give the sector size and * volume size. */ XPT_ATA_IO = 0x18 | XPT_FC_DEV_QUEUED, /* Execute the requested ATA I/O operation */ - XPT_GET_SIM_KNOB = 0x18, - /* - * Get SIM specific knob values. - */ + XPT_GET_SIM_KNOB_OLD = 0x18, /* Compat only */ XPT_SET_SIM_KNOB = 0x19, /* * Set SIM specific knob values. + */ + + XPT_GET_SIM_KNOB = 0x1a, + /* + * Get SIM specific knob values. */ XPT_SMP_IO = 0x1b | XPT_FC_DEV_QUEUED, /* Serial Management Protocol */ XPT_SCAN_TGT = 0x1E | XPT_FC_QUEUED | XPT_FC_USER_CCB | XPT_FC_XPT_ONLY, /* Scan Target */ /* HBA engine commands 0x20->0x2F */ XPT_ENG_INQ = 0x20 | XPT_FC_XPT_ONLY, /* HBA engine feature inquiry */ XPT_ENG_EXEC = 0x21 | XPT_FC_DEV_QUEUED, /* HBA execute engine request */ /* Target mode commands: 0x30->0x3F */ XPT_EN_LUN = 0x30, /* Enable LUN as a target */ XPT_TARGET_IO = 0x31 | XPT_FC_DEV_QUEUED, /* Execute target I/O request */ XPT_ACCEPT_TARGET_IO = 0x32 | XPT_FC_QUEUED | XPT_FC_USER_CCB, /* Accept Host Target Mode CDB */ XPT_CONT_TARGET_IO = 0x33 | XPT_FC_DEV_QUEUED, /* Continue Host Target I/O Connection */ XPT_IMMED_NOTIFY = 0x34 | XPT_FC_QUEUED | XPT_FC_USER_CCB, /* Notify Host Target driver of event (obsolete) */ XPT_NOTIFY_ACK = 0x35, /* Acknowledgement of event (obsolete) */ XPT_IMMEDIATE_NOTIFY = 0x36 | XPT_FC_QUEUED | XPT_FC_USER_CCB, /* Notify Host Target driver of event */ XPT_NOTIFY_ACKNOWLEDGE = 0x37 | XPT_FC_QUEUED | XPT_FC_USER_CCB, /* Acknowledgement of event */ /* Vendor Unique codes: 0x80->0x8F */ XPT_VUNIQUE = 0x80 } xpt_opcode; #define XPT_FC_GROUP_MASK 0xF0 #define XPT_FC_GROUP(op) ((op) & XPT_FC_GROUP_MASK) #define XPT_FC_GROUP_COMMON 0x00 #define XPT_FC_GROUP_SCSI_CONTROL 0x10 #define XPT_FC_GROUP_HBA_ENGINE 0x20 #define XPT_FC_GROUP_TMODE 0x30 #define XPT_FC_GROUP_VENDOR_UNIQUE 0x80 #define XPT_FC_IS_DEV_QUEUED(ccb) \ (((ccb)->ccb_h.func_code & XPT_FC_DEV_QUEUED) == XPT_FC_DEV_QUEUED) #define XPT_FC_IS_QUEUED(ccb) \ (((ccb)->ccb_h.func_code & XPT_FC_QUEUED) != 0) typedef enum { PROTO_UNKNOWN, PROTO_UNSPECIFIED, PROTO_SCSI, /* Small Computer System Interface */ PROTO_ATA, /* AT Attachment */ PROTO_ATAPI, /* AT Attachment Packetized Interface */ PROTO_SATAPM, /* SATA Port Multiplier */ PROTO_SEMB, /* SATA Enclosure Management Bridge */ } cam_proto; typedef enum { XPORT_UNKNOWN, XPORT_UNSPECIFIED, XPORT_SPI, /* SCSI Parallel Interface */ XPORT_FC, /* Fiber Channel */ XPORT_SSA, /* Serial Storage Architecture */ XPORT_USB, /* Universal Serial Bus */ XPORT_PPB, /* Parallel Port Bus */ XPORT_ATA, /* AT Attachment */ XPORT_SAS, /* Serial Attached SCSI */ XPORT_SATA, /* Serial AT Attachment */ XPORT_ISCSI, /* iSCSI */ XPORT_SRP, /* SCSI RDMA Protocol */ } cam_xport; #define XPORT_IS_ATA(t) ((t) == XPORT_ATA || (t) == XPORT_SATA) #define XPORT_IS_SCSI(t) ((t) != XPORT_UNKNOWN && \ (t) != XPORT_UNSPECIFIED && \ !XPORT_IS_ATA(t)) #define XPORT_DEVSTAT_TYPE(t) (XPORT_IS_ATA(t) ? DEVSTAT_TYPE_IF_IDE : \ XPORT_IS_SCSI(t) ? DEVSTAT_TYPE_IF_SCSI : \ DEVSTAT_TYPE_IF_OTHER) #define PROTO_VERSION_UNKNOWN (UINT_MAX - 1) #define PROTO_VERSION_UNSPECIFIED UINT_MAX #define XPORT_VERSION_UNKNOWN (UINT_MAX - 1) #define XPORT_VERSION_UNSPECIFIED UINT_MAX typedef union { LIST_ENTRY(ccb_hdr) le; SLIST_ENTRY(ccb_hdr) sle; TAILQ_ENTRY(ccb_hdr) tqe; STAILQ_ENTRY(ccb_hdr) stqe; } camq_entry; typedef union { void *ptr; u_long field; u_int8_t bytes[sizeof(uintptr_t)]; } ccb_priv_entry; typedef union { ccb_priv_entry entries[CCB_PERIPH_PRIV_SIZE]; u_int8_t bytes[CCB_PERIPH_PRIV_SIZE * sizeof(ccb_priv_entry)]; } ccb_ppriv_area; typedef union { ccb_priv_entry entries[CCB_SIM_PRIV_SIZE]; u_int8_t bytes[CCB_SIM_PRIV_SIZE * sizeof(ccb_priv_entry)]; } ccb_spriv_area; typedef struct { struct timeval *etime; uintptr_t sim_data; uintptr_t periph_data; } ccb_qos_area; struct ccb_hdr { cam_pinfo pinfo; /* Info for priority scheduling */ camq_entry xpt_links; /* For chaining in the XPT layer */ camq_entry sim_links; /* For chaining in the SIM layer */ camq_entry periph_links; /* For chaining in the type driver */ u_int32_t retry_count; void (*cbfcnp)(struct cam_periph *, union ccb *); /* Callback on completion function */ xpt_opcode func_code; /* XPT function code */ u_int32_t status; /* Status returned by CAM subsystem */ struct cam_path *path; /* Compiled path for this ccb */ path_id_t path_id; /* Path ID for the request */ target_id_t target_id; /* Target device ID */ lun_id_t target_lun; /* Target LUN number */ u_int32_t flags; /* ccb_flags */ u_int32_t xflags; /* Extended flags */ ccb_ppriv_area periph_priv; ccb_spriv_area sim_priv; ccb_qos_area qos; u_int32_t timeout; /* Hard timeout value in mseconds */ struct timeval softtimeout; /* Soft timeout value in sec + usec */ }; /* Get Device Information CCB */ struct ccb_getdev { struct ccb_hdr ccb_h; cam_proto protocol; struct scsi_inquiry_data inq_data; struct ata_params ident_data; u_int8_t serial_num[252]; u_int8_t inq_flags; u_int8_t serial_num_len; }; /* Device Statistics CCB */ struct ccb_getdevstats { struct ccb_hdr ccb_h; int dev_openings; /* Space left for more work on device*/ int dev_active; /* Transactions running on the device */ int allocated; /* CCBs allocated for the device */ int queued; /* CCBs queued to be sent to the device */ int held; /* * CCBs held by peripheral drivers * for this device */ int maxtags; /* * Boundary conditions for number of * tagged operations */ int mintags; struct timeval last_reset; /* Time of last bus reset/loop init */ }; typedef enum { CAM_GDEVLIST_LAST_DEVICE, CAM_GDEVLIST_LIST_CHANGED, CAM_GDEVLIST_MORE_DEVS, CAM_GDEVLIST_ERROR } ccb_getdevlist_status_e; struct ccb_getdevlist { struct ccb_hdr ccb_h; char periph_name[DEV_IDLEN]; u_int32_t unit_number; unsigned int generation; u_int32_t index; ccb_getdevlist_status_e status; }; typedef enum { PERIPH_MATCH_NONE = 0x000, PERIPH_MATCH_PATH = 0x001, PERIPH_MATCH_TARGET = 0x002, PERIPH_MATCH_LUN = 0x004, PERIPH_MATCH_NAME = 0x008, PERIPH_MATCH_UNIT = 0x010, PERIPH_MATCH_ANY = 0x01f } periph_pattern_flags; struct periph_match_pattern { char periph_name[DEV_IDLEN]; u_int32_t unit_number; path_id_t path_id; target_id_t target_id; lun_id_t target_lun; periph_pattern_flags flags; }; typedef enum { DEV_MATCH_NONE = 0x000, DEV_MATCH_PATH = 0x001, DEV_MATCH_TARGET = 0x002, DEV_MATCH_LUN = 0x004, DEV_MATCH_INQUIRY = 0x008, DEV_MATCH_DEVID = 0x010, DEV_MATCH_ANY = 0x00f } dev_pattern_flags; struct device_id_match_pattern { uint8_t id_len; uint8_t id[256]; }; struct device_match_pattern { path_id_t path_id; target_id_t target_id; lun_id_t target_lun; dev_pattern_flags flags; union { struct scsi_static_inquiry_pattern inq_pat; struct device_id_match_pattern devid_pat; } data; }; typedef enum { BUS_MATCH_NONE = 0x000, BUS_MATCH_PATH = 0x001, BUS_MATCH_NAME = 0x002, BUS_MATCH_UNIT = 0x004, BUS_MATCH_BUS_ID = 0x008, BUS_MATCH_ANY = 0x00f } bus_pattern_flags; struct bus_match_pattern { path_id_t path_id; char dev_name[DEV_IDLEN]; u_int32_t unit_number; u_int32_t bus_id; bus_pattern_flags flags; }; union match_pattern { struct periph_match_pattern periph_pattern; struct device_match_pattern device_pattern; struct bus_match_pattern bus_pattern; }; typedef enum { DEV_MATCH_PERIPH, DEV_MATCH_DEVICE, DEV_MATCH_BUS } dev_match_type; struct dev_match_pattern { dev_match_type type; union match_pattern pattern; }; struct periph_match_result { char periph_name[DEV_IDLEN]; u_int32_t unit_number; path_id_t path_id; target_id_t target_id; lun_id_t target_lun; }; typedef enum { DEV_RESULT_NOFLAG = 0x00, DEV_RESULT_UNCONFIGURED = 0x01 } dev_result_flags; struct device_match_result { path_id_t path_id; target_id_t target_id; lun_id_t target_lun; cam_proto protocol; struct scsi_inquiry_data inq_data; struct ata_params ident_data; dev_result_flags flags; }; struct bus_match_result { path_id_t path_id; char dev_name[DEV_IDLEN]; u_int32_t unit_number; u_int32_t bus_id; }; union match_result { struct periph_match_result periph_result; struct device_match_result device_result; struct bus_match_result bus_result; }; struct dev_match_result { dev_match_type type; union match_result result; }; typedef enum { CAM_DEV_MATCH_LAST, CAM_DEV_MATCH_MORE, CAM_DEV_MATCH_LIST_CHANGED, CAM_DEV_MATCH_SIZE_ERROR, CAM_DEV_MATCH_ERROR } ccb_dev_match_status; typedef enum { CAM_DEV_POS_NONE = 0x000, CAM_DEV_POS_BUS = 0x001, CAM_DEV_POS_TARGET = 0x002, CAM_DEV_POS_DEVICE = 0x004, CAM_DEV_POS_PERIPH = 0x008, CAM_DEV_POS_PDPTR = 0x010, CAM_DEV_POS_TYPEMASK = 0xf00, CAM_DEV_POS_EDT = 0x100, CAM_DEV_POS_PDRV = 0x200 } dev_pos_type; struct ccb_dm_cookie { void *bus; void *target; void *device; void *periph; void *pdrv; }; struct ccb_dev_position { u_int generations[4]; #define CAM_BUS_GENERATION 0x00 #define CAM_TARGET_GENERATION 0x01 #define CAM_DEV_GENERATION 0x02 #define CAM_PERIPH_GENERATION 0x03 dev_pos_type position_type; struct ccb_dm_cookie cookie; }; struct ccb_dev_match { struct ccb_hdr ccb_h; ccb_dev_match_status status; u_int32_t num_patterns; u_int32_t pattern_buf_len; struct dev_match_pattern *patterns; u_int32_t num_matches; u_int32_t match_buf_len; struct dev_match_result *matches; struct ccb_dev_position pos; }; /* * Definitions for the path inquiry CCB fields. */ #define CAM_VERSION 0x19 /* Hex value for current version */ typedef enum { PI_MDP_ABLE = 0x80, /* Supports MDP message */ PI_WIDE_32 = 0x40, /* Supports 32 bit wide SCSI */ PI_WIDE_16 = 0x20, /* Supports 16 bit wide SCSI */ PI_SDTR_ABLE = 0x10, /* Supports SDTR message */ PI_LINKED_CDB = 0x08, /* Supports linked CDBs */ PI_SATAPM = 0x04, /* Supports SATA PM */ PI_TAG_ABLE = 0x02, /* Supports tag queue messages */ PI_SOFT_RST = 0x01 /* Supports soft reset alternative */ } pi_inqflag; typedef enum { PIT_PROCESSOR = 0x80, /* Target mode processor mode */ PIT_PHASE = 0x40, /* Target mode phase cog. mode */ PIT_DISCONNECT = 0x20, /* Disconnects supported in target mode */ PIT_TERM_IO = 0x10, /* Terminate I/O message supported in TM */ PIT_GRP_6 = 0x08, /* Group 6 commands supported */ PIT_GRP_7 = 0x04 /* Group 7 commands supported */ } pi_tmflag; typedef enum { PIM_EXTLUNS = 0x100,/* 64bit extended LUNs supported */ PIM_SCANHILO = 0x80, /* Bus scans from high ID to low ID */ PIM_NOREMOVE = 0x40, /* Removeable devices not included in scan */ PIM_NOINITIATOR = 0x20, /* Initiator role not supported. */ PIM_NOBUSRESET = 0x10, /* User has disabled initial BUS RESET */ PIM_NO_6_BYTE = 0x08, /* Do not send 6-byte commands */ PIM_SEQSCAN = 0x04, /* Do bus scans sequentially, not in parallel */ PIM_UNMAPPED = 0x02, PIM_NOSCAN = 0x01 /* SIM does its own scanning */ } pi_miscflag; /* Path Inquiry CCB */ struct ccb_pathinq_settings_spi { u_int8_t ppr_options; }; struct ccb_pathinq_settings_fc { u_int64_t wwnn; /* world wide node name */ u_int64_t wwpn; /* world wide port name */ u_int32_t port; /* 24 bit port id, if known */ u_int32_t bitrate; /* Mbps */ }; struct ccb_pathinq_settings_sas { u_int32_t bitrate; /* Mbps */ }; #define PATHINQ_SETTINGS_SIZE 128 struct ccb_pathinq { struct ccb_hdr ccb_h; u_int8_t version_num; /* Version number for the SIM/HBA */ u_int8_t hba_inquiry; /* Mimic of INQ byte 7 for the HBA */ u_int16_t target_sprt; /* Flags for target mode support */ u_int32_t hba_misc; /* Misc HBA features */ u_int16_t hba_eng_cnt; /* HBA engine count */ /* Vendor Unique capabilities */ u_int8_t vuhba_flags[VUHBALEN]; u_int32_t max_target; /* Maximum supported Target */ u_int32_t max_lun; /* Maximum supported Lun */ u_int32_t async_flags; /* Installed Async handlers */ path_id_t hpath_id; /* Highest Path ID in the subsystem */ target_id_t initiator_id; /* ID of the HBA on the SCSI bus */ char sim_vid[SIM_IDLEN]; /* Vendor ID of the SIM */ char hba_vid[HBA_IDLEN]; /* Vendor ID of the HBA */ char dev_name[DEV_IDLEN];/* Device name for SIM */ u_int32_t unit_number; /* Unit number for SIM */ u_int32_t bus_id; /* Bus ID for SIM */ u_int32_t base_transfer_speed;/* Base bus speed in KB/sec */ cam_proto protocol; u_int protocol_version; cam_xport transport; u_int transport_version; union { struct ccb_pathinq_settings_spi spi; struct ccb_pathinq_settings_fc fc; struct ccb_pathinq_settings_sas sas; char ccb_pathinq_settings_opaque[PATHINQ_SETTINGS_SIZE]; } xport_specific; u_int maxio; /* Max supported I/O size, in bytes. */ u_int16_t hba_vendor; /* HBA vendor ID */ u_int16_t hba_device; /* HBA device ID */ u_int16_t hba_subvendor; /* HBA subvendor ID */ u_int16_t hba_subdevice; /* HBA subdevice ID */ }; /* Path Statistics CCB */ struct ccb_pathstats { struct ccb_hdr ccb_h; struct timeval last_reset; /* Time of last bus reset/loop init */ }; typedef enum { SMP_FLAG_NONE = 0x00, SMP_FLAG_REQ_SG = 0x01, SMP_FLAG_RSP_SG = 0x02 } ccb_smp_pass_flags; /* * Serial Management Protocol CCB * XXX Currently the semantics for this CCB are that it is executed either * by the addressed device, or that device's parent (i.e. an expander for * any device on an expander) if the addressed device doesn't support SMP. * Later, once we have the ability to probe SMP-only devices and put them * in CAM's topology, the CCB will only be executed by the addressed device * if possible. */ struct ccb_smpio { struct ccb_hdr ccb_h; uint8_t *smp_request; int smp_request_len; uint16_t smp_request_sglist_cnt; uint8_t *smp_response; int smp_response_len; uint16_t smp_response_sglist_cnt; ccb_smp_pass_flags flags; }; typedef union { u_int8_t *sense_ptr; /* * Pointer to storage * for sense information */ /* Storage Area for sense information */ struct scsi_sense_data sense_buf; } sense_t; typedef union { u_int8_t *cdb_ptr; /* Pointer to the CDB bytes to send */ /* Area for the CDB send */ u_int8_t cdb_bytes[IOCDBLEN]; } cdb_t; /* * SCSI I/O Request CCB used for the XPT_SCSI_IO and XPT_CONT_TARGET_IO * function codes. */ struct ccb_scsiio { struct ccb_hdr ccb_h; union ccb *next_ccb; /* Ptr for next CCB for action */ u_int8_t *req_map; /* Ptr to mapping info */ u_int8_t *data_ptr; /* Ptr to the data buf/SG list */ u_int32_t dxfer_len; /* Data transfer length */ /* Autosense storage */ struct scsi_sense_data sense_data; u_int8_t sense_len; /* Number of bytes to autosense */ u_int8_t cdb_len; /* Number of bytes for the CDB */ u_int16_t sglist_cnt; /* Number of SG list entries */ u_int8_t scsi_status; /* Returned SCSI status */ u_int8_t sense_resid; /* Autosense resid length: 2's comp */ u_int32_t resid; /* Transfer residual length: 2's comp */ cdb_t cdb_io; /* Union for CDB bytes/pointer */ u_int8_t *msg_ptr; /* Pointer to the message buffer */ u_int16_t msg_len; /* Number of bytes for the Message */ u_int8_t tag_action; /* What to do for tag queueing */ /* * The tag action should be either the define below (to send a * non-tagged transaction) or one of the defined scsi tag messages * from scsi_message.h. */ #define CAM_TAG_ACTION_NONE 0x00 u_int tag_id; /* tag id from initator (target mode) */ u_int init_id; /* initiator id of who selected */ }; /* * ATA I/O Request CCB used for the XPT_ATA_IO function code. */ struct ccb_ataio { struct ccb_hdr ccb_h; union ccb *next_ccb; /* Ptr for next CCB for action */ struct ata_cmd cmd; /* ATA command register set */ struct ata_res res; /* ATA result register set */ u_int8_t *data_ptr; /* Ptr to the data buf/SG list */ u_int32_t dxfer_len; /* Data transfer length */ u_int32_t resid; /* Transfer residual length: 2's comp */ u_int8_t tag_action; /* What to do for tag queueing */ /* * The tag action should be either the define below (to send a * non-tagged transaction) or one of the defined scsi tag messages * from scsi_message.h. */ #define CAM_TAG_ACTION_NONE 0x00 u_int tag_id; /* tag id from initator (target mode) */ u_int init_id; /* initiator id of who selected */ }; struct ccb_accept_tio { struct ccb_hdr ccb_h; cdb_t cdb_io; /* Union for CDB bytes/pointer */ u_int8_t cdb_len; /* Number of bytes for the CDB */ u_int8_t tag_action; /* What to do for tag queueing */ u_int8_t sense_len; /* Number of bytes of Sense Data */ u_int tag_id; /* tag id from initator (target mode) */ u_int init_id; /* initiator id of who selected */ struct scsi_sense_data sense_data; }; /* Release SIM Queue */ struct ccb_relsim { struct ccb_hdr ccb_h; u_int32_t release_flags; #define RELSIM_ADJUST_OPENINGS 0x01 #define RELSIM_RELEASE_AFTER_TIMEOUT 0x02 #define RELSIM_RELEASE_AFTER_CMDCMPLT 0x04 #define RELSIM_RELEASE_AFTER_QEMPTY 0x08 u_int32_t openings; u_int32_t release_timeout; /* Abstract argument. */ u_int32_t qfrozen_cnt; }; /* * Definitions for the asynchronous callback CCB fields. */ typedef enum { AC_UNIT_ATTENTION = 0x4000,/* Device reported UNIT ATTENTION */ AC_ADVINFO_CHANGED = 0x2000,/* Advance info might have changes */ AC_CONTRACT = 0x1000,/* A contractual callback */ AC_GETDEV_CHANGED = 0x800,/* Getdev info might have changed */ AC_INQ_CHANGED = 0x400,/* Inquiry info might have changed */ AC_TRANSFER_NEG = 0x200,/* New transfer settings in effect */ AC_LOST_DEVICE = 0x100,/* A device went away */ AC_FOUND_DEVICE = 0x080,/* A new device was found */ AC_PATH_DEREGISTERED = 0x040,/* A path has de-registered */ AC_PATH_REGISTERED = 0x020,/* A new path has been registered */ AC_SENT_BDR = 0x010,/* A BDR message was sent to target */ AC_SCSI_AEN = 0x008,/* A SCSI AEN has been received */ AC_UNSOL_RESEL = 0x002,/* Unsolicited reselection occurred */ AC_BUS_RESET = 0x001 /* A SCSI bus reset occurred */ } ac_code; typedef void ac_callback_t (void *softc, u_int32_t code, struct cam_path *path, void *args); /* * Generic Asynchronous callbacks. * * Generic arguments passed bac which are then interpreted between a per-system * contract number. */ #define AC_CONTRACT_DATA_MAX (128 - sizeof (u_int64_t)) struct ac_contract { u_int64_t contract_number; u_int8_t contract_data[AC_CONTRACT_DATA_MAX]; }; #define AC_CONTRACT_DEV_CHG 1 struct ac_device_changed { u_int64_t wwpn; u_int32_t port; target_id_t target; u_int8_t arrived; }; /* Set Asynchronous Callback CCB */ struct ccb_setasync { struct ccb_hdr ccb_h; u_int32_t event_enable; /* Async Event enables */ ac_callback_t *callback; void *callback_arg; }; /* Set Device Type CCB */ struct ccb_setdev { struct ccb_hdr ccb_h; u_int8_t dev_type; /* Value for dev type field in EDT */ }; /* SCSI Control Functions */ /* Abort XPT request CCB */ struct ccb_abort { struct ccb_hdr ccb_h; union ccb *abort_ccb; /* Pointer to CCB to abort */ }; /* Reset SCSI Bus CCB */ struct ccb_resetbus { struct ccb_hdr ccb_h; }; /* Reset SCSI Device CCB */ struct ccb_resetdev { struct ccb_hdr ccb_h; }; /* Terminate I/O Process Request CCB */ struct ccb_termio { struct ccb_hdr ccb_h; union ccb *termio_ccb; /* Pointer to CCB to terminate */ }; typedef enum { CTS_TYPE_CURRENT_SETTINGS, CTS_TYPE_USER_SETTINGS } cts_type; struct ccb_trans_settings_scsi { u_int valid; /* Which fields to honor */ #define CTS_SCSI_VALID_TQ 0x01 u_int flags; #define CTS_SCSI_FLAGS_TAG_ENB 0x01 }; struct ccb_trans_settings_ata { u_int valid; /* Which fields to honor */ #define CTS_ATA_VALID_TQ 0x01 u_int flags; #define CTS_ATA_FLAGS_TAG_ENB 0x01 }; struct ccb_trans_settings_spi { u_int valid; /* Which fields to honor */ #define CTS_SPI_VALID_SYNC_RATE 0x01 #define CTS_SPI_VALID_SYNC_OFFSET 0x02 #define CTS_SPI_VALID_BUS_WIDTH 0x04 #define CTS_SPI_VALID_DISC 0x08 #define CTS_SPI_VALID_PPR_OPTIONS 0x10 u_int flags; #define CTS_SPI_FLAGS_DISC_ENB 0x01 u_int sync_period; u_int sync_offset; u_int bus_width; u_int ppr_options; }; struct ccb_trans_settings_fc { u_int valid; /* Which fields to honor */ #define CTS_FC_VALID_WWNN 0x8000 #define CTS_FC_VALID_WWPN 0x4000 #define CTS_FC_VALID_PORT 0x2000 #define CTS_FC_VALID_SPEED 0x1000 u_int64_t wwnn; /* world wide node name */ u_int64_t wwpn; /* world wide port name */ u_int32_t port; /* 24 bit port id, if known */ u_int32_t bitrate; /* Mbps */ }; struct ccb_trans_settings_sas { u_int valid; /* Which fields to honor */ #define CTS_SAS_VALID_SPEED 0x1000 u_int32_t bitrate; /* Mbps */ }; struct ccb_trans_settings_pata { u_int valid; /* Which fields to honor */ #define CTS_ATA_VALID_MODE 0x01 #define CTS_ATA_VALID_BYTECOUNT 0x02 #define CTS_ATA_VALID_ATAPI 0x20 #define CTS_ATA_VALID_CAPS 0x40 int mode; /* Mode */ u_int bytecount; /* Length of PIO transaction */ u_int atapi; /* Length of ATAPI CDB */ u_int caps; /* Device and host SATA caps. */ #define CTS_ATA_CAPS_H 0x0000ffff #define CTS_ATA_CAPS_H_DMA48 0x00000001 /* 48-bit DMA */ #define CTS_ATA_CAPS_D 0xffff0000 }; struct ccb_trans_settings_sata { u_int valid; /* Which fields to honor */ #define CTS_SATA_VALID_MODE 0x01 #define CTS_SATA_VALID_BYTECOUNT 0x02 #define CTS_SATA_VALID_REVISION 0x04 #define CTS_SATA_VALID_PM 0x08 #define CTS_SATA_VALID_TAGS 0x10 #define CTS_SATA_VALID_ATAPI 0x20 #define CTS_SATA_VALID_CAPS 0x40 int mode; /* Legacy PATA mode */ u_int bytecount; /* Length of PIO transaction */ int revision; /* SATA revision */ u_int pm_present; /* PM is present (XPT->SIM) */ u_int tags; /* Number of allowed tags */ u_int atapi; /* Length of ATAPI CDB */ u_int caps; /* Device and host SATA caps. */ #define CTS_SATA_CAPS_H 0x0000ffff #define CTS_SATA_CAPS_H_PMREQ 0x00000001 #define CTS_SATA_CAPS_H_APST 0x00000002 #define CTS_SATA_CAPS_H_DMAAA 0x00000010 /* Auto-activation */ #define CTS_SATA_CAPS_H_AN 0x00000020 /* Async. notification */ #define CTS_SATA_CAPS_D 0xffff0000 #define CTS_SATA_CAPS_D_PMREQ 0x00010000 #define CTS_SATA_CAPS_D_APST 0x00020000 }; /* Get/Set transfer rate/width/disconnection/tag queueing settings */ struct ccb_trans_settings { struct ccb_hdr ccb_h; cts_type type; /* Current or User settings */ cam_proto protocol; u_int protocol_version; cam_xport transport; u_int transport_version; union { u_int valid; /* Which fields to honor */ struct ccb_trans_settings_ata ata; struct ccb_trans_settings_scsi scsi; } proto_specific; union { u_int valid; /* Which fields to honor */ struct ccb_trans_settings_spi spi; struct ccb_trans_settings_fc fc; struct ccb_trans_settings_sas sas; struct ccb_trans_settings_pata ata; struct ccb_trans_settings_sata sata; } xport_specific; }; /* * Calculate the geometry parameters for a device * give the block size and volume size in blocks. */ struct ccb_calc_geometry { struct ccb_hdr ccb_h; u_int32_t block_size; u_int64_t volume_size; u_int32_t cylinders; u_int8_t heads; u_int8_t secs_per_track; }; /* * Set or get SIM (and transport) specific knobs */ #define KNOB_VALID_ADDRESS 0x1 #define KNOB_VALID_ROLE 0x2 #define KNOB_ROLE_NONE 0x0 #define KNOB_ROLE_INITIATOR 0x1 #define KNOB_ROLE_TARGET 0x2 #define KNOB_ROLE_BOTH 0x3 struct ccb_sim_knob_settings_spi { u_int valid; u_int initiator_id; u_int role; }; struct ccb_sim_knob_settings_fc { u_int valid; u_int64_t wwnn; /* world wide node name */ u_int64_t wwpn; /* world wide port name */ u_int role; }; struct ccb_sim_knob_settings_sas { u_int valid; u_int64_t wwnn; /* world wide node name */ u_int role; }; #define KNOB_SETTINGS_SIZE 128 struct ccb_sim_knob { struct ccb_hdr ccb_h; union { u_int valid; /* Which fields to honor */ struct ccb_sim_knob_settings_spi spi; struct ccb_sim_knob_settings_fc fc; struct ccb_sim_knob_settings_sas sas; char pad[KNOB_SETTINGS_SIZE]; } xport_specific; }; /* * Rescan the given bus, or bus/target/lun */ struct ccb_rescan { struct ccb_hdr ccb_h; cam_flags flags; }; /* * Turn on debugging for the given bus, bus/target, or bus/target/lun. */ struct ccb_debug { struct ccb_hdr ccb_h; cam_debug_flags flags; }; /* Target mode structures. */ struct ccb_en_lun { struct ccb_hdr ccb_h; u_int16_t grp6_len; /* Group 6 VU CDB length */ u_int16_t grp7_len; /* Group 7 VU CDB length */ u_int8_t enable; }; /* old, barely used immediate notify, binary compatibility */ struct ccb_immed_notify { struct ccb_hdr ccb_h; struct scsi_sense_data sense_data; u_int8_t sense_len; /* Number of bytes in sense buffer */ u_int8_t initiator_id; /* Id of initiator that selected */ u_int8_t message_args[7]; /* Message Arguments */ }; struct ccb_notify_ack { struct ccb_hdr ccb_h; u_int16_t seq_id; /* Sequence identifier */ u_int8_t event; /* Event flags */ }; struct ccb_immediate_notify { struct ccb_hdr ccb_h; u_int tag_id; /* Tag for immediate notify */ u_int seq_id; /* Tag for target of notify */ u_int initiator_id; /* Initiator Identifier */ u_int arg; /* Function specific */ }; struct ccb_notify_acknowledge { struct ccb_hdr ccb_h; u_int tag_id; /* Tag for immediate notify */ u_int seq_id; /* Tar for target of notify */ u_int initiator_id; /* Initiator Identifier */ u_int arg; /* Function specific */ }; /* HBA engine structures. */ typedef enum { EIT_BUFFER, /* Engine type: buffer memory */ EIT_LOSSLESS, /* Engine type: lossless compression */ EIT_LOSSY, /* Engine type: lossy compression */ EIT_ENCRYPT /* Engine type: encryption */ } ei_type; typedef enum { EAD_VUNIQUE, /* Engine algorithm ID: vendor unique */ EAD_LZ1V1, /* Engine algorithm ID: LZ1 var.1 */ EAD_LZ2V1, /* Engine algorithm ID: LZ2 var.1 */ EAD_LZ2V2 /* Engine algorithm ID: LZ2 var.2 */ } ei_algo; struct ccb_eng_inq { struct ccb_hdr ccb_h; u_int16_t eng_num; /* The engine number for this inquiry */ ei_type eng_type; /* Returned engine type */ ei_algo eng_algo; /* Returned engine algorithm type */ u_int32_t eng_memeory; /* Returned engine memory size */ }; struct ccb_eng_exec { /* This structure must match SCSIIO size */ struct ccb_hdr ccb_h; u_int8_t *pdrv_ptr; /* Ptr used by the peripheral driver */ u_int8_t *req_map; /* Ptr for mapping info on the req. */ u_int8_t *data_ptr; /* Pointer to the data buf/SG list */ u_int32_t dxfer_len; /* Data transfer length */ u_int8_t *engdata_ptr; /* Pointer to the engine buffer data */ u_int16_t sglist_cnt; /* Num of scatter gather list entries */ u_int32_t dmax_len; /* Destination data maximum length */ u_int32_t dest_len; /* Destination data length */ int32_t src_resid; /* Source residual length: 2's comp */ u_int32_t timeout; /* Timeout value */ u_int16_t eng_num; /* Engine number for this request */ u_int16_t vu_flags; /* Vendor Unique flags */ }; /* * Definitions for the timeout field in the SCSI I/O CCB. */ #define CAM_TIME_DEFAULT 0x00000000 /* Use SIM default value */ #define CAM_TIME_INFINITY 0xFFFFFFFF /* Infinite timeout */ #define CAM_SUCCESS 0 /* For signaling general success */ #define CAM_FAILURE 1 /* For signaling general failure */ #define CAM_FALSE 0 #define CAM_TRUE 1 #define XPT_CCB_INVALID -1 /* for signaling a bad CCB to free */ /* * CCB for working with advanced device information. This operates in a fashion * similar to XPT_GDEV_TYPE. Specify the target in ccb_h, the buffer * type requested, and provide a buffer size/buffer to write to. If the * buffer is too small, provsiz will be larger than bufsiz. */ struct ccb_dev_advinfo { struct ccb_hdr ccb_h; uint32_t flags; #define CDAI_FLAG_NONE 0x0 /* No flags set */ #define CDAI_FLAG_STORE 0x1 /* If set, action becomes store */ uint32_t buftype; /* IN: Type of data being requested */ /* NB: buftype is interpreted on a per-transport basis */ #define CDAI_TYPE_SCSI_DEVID 1 #define CDAI_TYPE_SERIAL_NUM 2 #define CDAI_TYPE_PHYS_PATH 3 #define CDAI_TYPE_RCAPLONG 4 #define CDAI_TYPE_EXT_INQ 5 off_t bufsiz; /* IN: Size of external buffer */ #define CAM_SCSI_DEVID_MAXLEN 65536 /* length in buffer is an uint16_t */ off_t provsiz; /* OUT: Size required/used */ uint8_t *buf; /* IN/OUT: Buffer for requested data */ }; /* * CCB for sending async events */ struct ccb_async { struct ccb_hdr ccb_h; uint32_t async_code; off_t async_arg_size; void *async_arg_ptr; }; /* * Union of all CCB types for kernel space allocation. This union should * never be used for manipulating CCBs - its only use is for the allocation * and deallocation of raw CCB space and is the return type of xpt_ccb_alloc * and the argument to xpt_ccb_free. */ union ccb { struct ccb_hdr ccb_h; /* For convenience */ struct ccb_scsiio csio; struct ccb_getdev cgd; struct ccb_getdevlist cgdl; struct ccb_pathinq cpi; struct ccb_relsim crs; struct ccb_setasync csa; struct ccb_setdev csd; struct ccb_pathstats cpis; struct ccb_getdevstats cgds; struct ccb_dev_match cdm; struct ccb_trans_settings cts; struct ccb_calc_geometry ccg; struct ccb_sim_knob knob; struct ccb_abort cab; struct ccb_resetbus crb; struct ccb_resetdev crd; struct ccb_termio tio; struct ccb_accept_tio atio; struct ccb_scsiio ctio; struct ccb_en_lun cel; struct ccb_immed_notify cin; struct ccb_notify_ack cna; struct ccb_immediate_notify cin1; struct ccb_notify_acknowledge cna2; struct ccb_eng_inq cei; struct ccb_eng_exec cee; struct ccb_smpio smpio; struct ccb_rescan crcn; struct ccb_debug cdbg; struct ccb_ataio ataio; struct ccb_dev_advinfo cdai; struct ccb_async casync; }; __BEGIN_DECLS static __inline void cam_fill_csio(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int32_t flags, u_int8_t tag_action, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, u_int8_t cdb_len, u_int32_t timeout); static __inline void cam_fill_ctio(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int32_t flags, u_int tag_action, u_int tag_id, u_int init_id, u_int scsi_status, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int32_t timeout); static __inline void cam_fill_ataio(struct ccb_ataio *ataio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int32_t flags, u_int tag_action, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int32_t timeout); static __inline void cam_fill_smpio(struct ccb_smpio *smpio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint32_t flags, uint8_t *smp_request, int smp_request_len, uint8_t *smp_response, int smp_response_len, uint32_t timeout); static __inline void cam_fill_csio(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int32_t flags, u_int8_t tag_action, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int8_t sense_len, u_int8_t cdb_len, u_int32_t timeout) { csio->ccb_h.func_code = XPT_SCSI_IO; csio->ccb_h.flags = flags; csio->ccb_h.xflags = 0; csio->ccb_h.retry_count = retries; csio->ccb_h.cbfcnp = cbfcnp; csio->ccb_h.timeout = timeout; csio->data_ptr = data_ptr; csio->dxfer_len = dxfer_len; csio->sense_len = sense_len; csio->cdb_len = cdb_len; csio->tag_action = tag_action; } static __inline void cam_fill_ctio(struct ccb_scsiio *csio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int32_t flags, u_int tag_action, u_int tag_id, u_int init_id, u_int scsi_status, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int32_t timeout) { csio->ccb_h.func_code = XPT_CONT_TARGET_IO; csio->ccb_h.flags = flags; csio->ccb_h.xflags = 0; csio->ccb_h.retry_count = retries; csio->ccb_h.cbfcnp = cbfcnp; csio->ccb_h.timeout = timeout; csio->data_ptr = data_ptr; csio->dxfer_len = dxfer_len; csio->scsi_status = scsi_status; csio->tag_action = tag_action; csio->tag_id = tag_id; csio->init_id = init_id; } static __inline void cam_fill_ataio(struct ccb_ataio *ataio, u_int32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), u_int32_t flags, u_int tag_action, u_int8_t *data_ptr, u_int32_t dxfer_len, u_int32_t timeout) { ataio->ccb_h.func_code = XPT_ATA_IO; ataio->ccb_h.flags = flags; ataio->ccb_h.retry_count = retries; ataio->ccb_h.cbfcnp = cbfcnp; ataio->ccb_h.timeout = timeout; ataio->data_ptr = data_ptr; ataio->dxfer_len = dxfer_len; ataio->tag_action = tag_action; } static __inline void cam_fill_smpio(struct ccb_smpio *smpio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint32_t flags, uint8_t *smp_request, int smp_request_len, uint8_t *smp_response, int smp_response_len, uint32_t timeout) { #ifdef _KERNEL KASSERT((flags & CAM_DIR_MASK) == CAM_DIR_BOTH, ("direction != CAM_DIR_BOTH")); KASSERT((smp_request != NULL) && (smp_response != NULL), ("need valid request and response buffers")); KASSERT((smp_request_len != 0) && (smp_response_len != 0), ("need non-zero request and response lengths")); #endif /*_KERNEL*/ smpio->ccb_h.func_code = XPT_SMP_IO; smpio->ccb_h.flags = flags; smpio->ccb_h.retry_count = retries; smpio->ccb_h.cbfcnp = cbfcnp; smpio->ccb_h.timeout = timeout; smpio->smp_request = smp_request; smpio->smp_request_len = smp_request_len; smpio->smp_response = smp_response; smpio->smp_response_len = smp_response_len; } static __inline void cam_set_ccbstatus(union ccb *ccb, cam_status status) { ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= status; } static __inline cam_status cam_ccb_status(union ccb *ccb) { return ((cam_status)(ccb->ccb_h.status & CAM_STATUS_MASK)); } void cam_calc_geometry(struct ccb_calc_geometry *ccg, int extended); __END_DECLS #endif /* _CAM_CAM_CCB_H */ Index: head/sys/cam/cam_xpt.c =================================================================== --- head/sys/cam/cam_xpt.c (revision 296603) +++ head/sys/cam/cam_xpt.c (revision 296604) @@ -1,5292 +1,5293 @@ /*- * Implementation of the Common Access Method Transport (XPT) layer. * * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* geometry translation */ #include /* for xpt_print below */ #include "opt_cam.h" /* * This is the maximum number of high powered commands (e.g. start unit) * that can be outstanding at a particular time. */ #ifndef CAM_MAX_HIGHPOWER #define CAM_MAX_HIGHPOWER 4 #endif /* Datastructures internal to the xpt layer */ MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); /* Object for defering XPT actions to a taskqueue */ struct xpt_task { struct task task; void *data1; uintptr_t data2; }; struct xpt_softc { uint32_t xpt_generation; /* number of high powered commands that can go through right now */ struct mtx xpt_highpower_lock; STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; int num_highpower; /* queue for handling async rescan requests. */ TAILQ_HEAD(, ccb_hdr) ccb_scanq; int buses_to_config; int buses_config_done; /* Registered busses */ TAILQ_HEAD(,cam_eb) xpt_busses; u_int bus_generation; struct intr_config_hook *xpt_config_hook; int boot_delay; struct callout boot_callout; struct mtx xpt_topo_lock; struct mtx xpt_lock; struct taskqueue *xpt_taskq; }; typedef enum { DM_RET_COPY = 0x01, DM_RET_FLAG_MASK = 0x0f, DM_RET_NONE = 0x00, DM_RET_STOP = 0x10, DM_RET_DESCEND = 0x20, DM_RET_ERROR = 0x30, DM_RET_ACTION_MASK = 0xf0 } dev_match_ret; typedef enum { XPT_DEPTH_BUS, XPT_DEPTH_TARGET, XPT_DEPTH_DEVICE, XPT_DEPTH_PERIPH } xpt_traverse_depth; struct xpt_traverse_config { xpt_traverse_depth depth; void *tr_func; void *tr_arg; }; typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); /* Transport layer configuration information */ static struct xpt_softc xsoftc; MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, &xsoftc.boot_delay, 0, "Bus registration wait time"); SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); struct cam_doneq { struct mtx_padalign cam_doneq_mtx; STAILQ_HEAD(, ccb_hdr) cam_doneq; int cam_doneq_sleep; }; static struct cam_doneq cam_doneqs[MAXCPU]; static int cam_num_doneqs; static struct proc *cam_proc; SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, &cam_num_doneqs, 0, "Number of completion queues/threads"); struct cam_periph *xpt_periph; static periph_init_t xpt_periph_init; static struct periph_driver xpt_driver = { xpt_periph_init, "xpt", TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, CAM_PERIPH_DRV_EARLY }; PERIPHDRIVER_DECLARE(xpt, xpt_driver); static d_open_t xptopen; static d_close_t xptclose; static d_ioctl_t xptioctl; static d_ioctl_t xptdoioctl; static struct cdevsw xpt_cdevsw = { .d_version = D_VERSION, .d_flags = 0, .d_open = xptopen, .d_close = xptclose, .d_ioctl = xptioctl, .d_name = "xpt", }; /* Storage for debugging datastructures */ struct cam_path *cam_dpath; u_int32_t cam_dflags = CAM_DEBUG_FLAGS; SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, &cam_dflags, 0, "Enabled debug flags"); u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, &cam_debug_delay, 0, "Delay in us after each debug message"); /* Our boot-time initialization hook */ static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); static moduledata_t cam_moduledata = { "cam", cam_module_event_handler, NULL }; static int xpt_init(void *); DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); MODULE_VERSION(cam, 1); static void xpt_async_bcast(struct async_list *async_head, u_int32_t async_code, struct cam_path *path, void *async_arg); static path_id_t xptnextfreepathid(void); static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); static union ccb *xpt_get_ccb(struct cam_periph *periph); static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); static void xpt_run_allocq(struct cam_periph *periph, int sleep); static void xpt_run_allocq_task(void *context, int pending); static void xpt_run_devq(struct cam_devq *devq); static timeout_t xpt_release_devq_timeout; static void xpt_release_simq_timeout(void *arg) __unused; static void xpt_acquire_bus(struct cam_eb *bus); static void xpt_release_bus(struct cam_eb *bus); static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); static int xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue); static struct cam_et* xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); static void xpt_acquire_target(struct cam_et *target); static void xpt_release_target(struct cam_et *target); static struct cam_eb* xpt_find_bus(path_id_t path_id); static struct cam_et* xpt_find_target(struct cam_eb *bus, target_id_t target_id); static struct cam_ed* xpt_find_device(struct cam_et *target, lun_id_t lun_id); static void xpt_config(void *arg); static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, u_int32_t new_priority); static xpt_devicefunc_t xptpassannouncefunc; static void xptaction(struct cam_sim *sim, union ccb *work_ccb); static void xptpoll(struct cam_sim *sim); static void camisr_runqueue(void); static void xpt_done_process(struct ccb_hdr *ccb_h); static void xpt_done_td(void *); static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_eb *bus); static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_ed *device); static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_periph *periph); static xpt_busfunc_t xptedtbusfunc; static xpt_targetfunc_t xptedttargetfunc; static xpt_devicefunc_t xptedtdevicefunc; static xpt_periphfunc_t xptedtperiphfunc; static xpt_pdrvfunc_t xptplistpdrvfunc; static xpt_periphfunc_t xptplistperiphfunc; static int xptedtmatch(struct ccb_dev_match *cdm); static int xptperiphlistmatch(struct ccb_dev_match *cdm); static int xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg); static int xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, xpt_targetfunc_t *tr_func, void *arg); static int xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, xpt_devicefunc_t *tr_func, void *arg); static int xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, xpt_periphfunc_t *tr_func, void *arg); static int xptpdrvtraverse(struct periph_driver **start_pdrv, xpt_pdrvfunc_t *tr_func, void *arg); static int xptpdperiphtraverse(struct periph_driver **pdrv, struct cam_periph *start_periph, xpt_periphfunc_t *tr_func, void *arg); static xpt_busfunc_t xptdefbusfunc; static xpt_targetfunc_t xptdeftargetfunc; static xpt_devicefunc_t xptdefdevicefunc; static xpt_periphfunc_t xptdefperiphfunc; static void xpt_finishconfig_task(void *context, int pending); static void xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, struct cam_ed *device, void *async_arg); static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id); static xpt_devicefunc_t xptsetasyncfunc; static xpt_busfunc_t xptsetasyncbusfunc; static cam_status xptregister(struct cam_periph *periph, void *arg); static __inline int device_is_queued(struct cam_ed *device); static __inline int xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) { int retval; mtx_assert(&devq->send_mtx, MA_OWNED); if ((dev->ccbq.queue.entries > 0) && (dev->ccbq.dev_openings > 0) && (dev->ccbq.queue.qfrozen_cnt == 0)) { /* * The priority of a device waiting for controller * resources is that of the highest priority CCB * enqueued. */ retval = xpt_schedule_dev(&devq->send_queue, &dev->devq_entry, CAMQ_GET_PRIO(&dev->ccbq.queue)); } else { retval = 0; } return (retval); } static __inline int device_is_queued(struct cam_ed *device) { return (device->devq_entry.index != CAM_UNQUEUED_INDEX); } static void xpt_periph_init() { make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); } static int xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) { /* * Only allow read-write access. */ if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) return(EPERM); /* * We don't allow nonblocking access. */ if ((flags & O_NONBLOCK) != 0) { printf("%s: can't do nonblocking access\n", devtoname(dev)); return(ENODEV); } return(0); } static int xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) { return(0); } /* * Don't automatically grab the xpt softc lock here even though this is going * through the xpt device. The xpt device is really just a back door for * accessing other devices and SIMs, so the right thing to do is to grab * the appropriate SIM lock once the bus/SIM is located. */ static int xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) { int error; if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); } return (error); } static int xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) { int error; error = 0; switch(cmd) { /* * For the transport layer CAMIOCOMMAND ioctl, we really only want * to accept CCB types that don't quite make sense to send through a * passthrough driver. XPT_PATH_INQ is an exception to this, as stated * in the CAM spec. */ case CAMIOCOMMAND: { union ccb *ccb; union ccb *inccb; struct cam_eb *bus; inccb = (union ccb *)addr; bus = xpt_find_bus(inccb->ccb_h.path_id); if (bus == NULL) return (EINVAL); switch (inccb->ccb_h.func_code) { case XPT_SCAN_BUS: case XPT_RESET_BUS: if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { xpt_release_bus(bus); return (EINVAL); } break; case XPT_SCAN_TGT: if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { xpt_release_bus(bus); return (EINVAL); } break; default: break; } switch(inccb->ccb_h.func_code) { case XPT_SCAN_BUS: case XPT_RESET_BUS: case XPT_PATH_INQ: case XPT_ENG_INQ: case XPT_SCAN_LUN: case XPT_SCAN_TGT: ccb = xpt_alloc_ccb(); /* * Create a path using the bus, target, and lun the * user passed in. */ if (xpt_create_path(&ccb->ccb_h.path, NULL, inccb->ccb_h.path_id, inccb->ccb_h.target_id, inccb->ccb_h.target_lun) != CAM_REQ_CMP){ error = EINVAL; xpt_free_ccb(ccb); break; } /* Ensure all of our fields are correct */ xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, inccb->ccb_h.pinfo.priority); xpt_merge_ccb(ccb, inccb); xpt_path_lock(ccb->ccb_h.path); cam_periph_runccb(ccb, NULL, 0, 0, NULL); xpt_path_unlock(ccb->ccb_h.path); bcopy(ccb, inccb, sizeof(union ccb)); xpt_free_path(ccb->ccb_h.path); xpt_free_ccb(ccb); break; case XPT_DEBUG: { union ccb ccb; /* * This is an immediate CCB, so it's okay to * allocate it on the stack. */ /* * Create a path using the bus, target, and lun the * user passed in. */ if (xpt_create_path(&ccb.ccb_h.path, NULL, inccb->ccb_h.path_id, inccb->ccb_h.target_id, inccb->ccb_h.target_lun) != CAM_REQ_CMP){ error = EINVAL; break; } /* Ensure all of our fields are correct */ xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, inccb->ccb_h.pinfo.priority); xpt_merge_ccb(&ccb, inccb); xpt_action(&ccb); bcopy(&ccb, inccb, sizeof(union ccb)); xpt_free_path(ccb.ccb_h.path); break; } case XPT_DEV_MATCH: { struct cam_periph_map_info mapinfo; struct cam_path *old_path; /* * We can't deal with physical addresses for this * type of transaction. */ if ((inccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) { error = EINVAL; break; } /* * Save this in case the caller had it set to * something in particular. */ old_path = inccb->ccb_h.path; /* * We really don't need a path for the matching * code. The path is needed because of the * debugging statements in xpt_action(). They * assume that the CCB has a valid path. */ inccb->ccb_h.path = xpt_periph->path; bzero(&mapinfo, sizeof(mapinfo)); /* * Map the pattern and match buffers into kernel * virtual address space. */ error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); if (error) { inccb->ccb_h.path = old_path; break; } /* * This is an immediate CCB, we can send it on directly. */ xpt_action(inccb); /* * Map the buffers back into user space. */ cam_periph_unmapmem(inccb, &mapinfo); inccb->ccb_h.path = old_path; error = 0; break; } default: error = ENOTSUP; break; } xpt_release_bus(bus); break; } /* * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, * with the periphal driver name and unit name filled in. The other * fields don't really matter as input. The passthrough driver name * ("pass"), and unit number are passed back in the ccb. The current * device generation number, and the index into the device peripheral * driver list, and the status are also passed back. Note that * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is * (or rather should be) impossible for the device peripheral driver * list to change since we look at the whole thing in one pass, and * we do it with lock protection. * */ case CAMGETPASSTHRU: { union ccb *ccb; struct cam_periph *periph; struct periph_driver **p_drv; char *name; u_int unit; int base_periph_found; ccb = (union ccb *)addr; unit = ccb->cgdl.unit_number; name = ccb->cgdl.periph_name; base_periph_found = 0; /* * Sanity check -- make sure we don't get a null peripheral * driver name. */ if (*ccb->cgdl.periph_name == '\0') { error = EINVAL; break; } /* Keep the list from changing while we traverse it */ xpt_lock_buses(); /* first find our driver in the list of drivers */ for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) if (strcmp((*p_drv)->driver_name, name) == 0) break; if (*p_drv == NULL) { xpt_unlock_buses(); ccb->ccb_h.status = CAM_REQ_CMP_ERR; ccb->cgdl.status = CAM_GDEVLIST_ERROR; *ccb->cgdl.periph_name = '\0'; ccb->cgdl.unit_number = 0; error = ENOENT; break; } /* * Run through every peripheral instance of this driver * and check to see whether it matches the unit passed * in by the user. If it does, get out of the loops and * find the passthrough driver associated with that * peripheral driver. */ for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; periph = TAILQ_NEXT(periph, unit_links)) { if (periph->unit_number == unit) break; } /* * If we found the peripheral driver that the user passed * in, go through all of the peripheral drivers for that * particular device and look for a passthrough driver. */ if (periph != NULL) { struct cam_ed *device; int i; base_periph_found = 1; device = periph->path->device; for (i = 0, periph = SLIST_FIRST(&device->periphs); periph != NULL; periph = SLIST_NEXT(periph, periph_links), i++) { /* * Check to see whether we have a * passthrough device or not. */ if (strcmp(periph->periph_name, "pass") == 0) { /* * Fill in the getdevlist fields. */ strcpy(ccb->cgdl.periph_name, periph->periph_name); ccb->cgdl.unit_number = periph->unit_number; if (SLIST_NEXT(periph, periph_links)) ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS; else ccb->cgdl.status = CAM_GDEVLIST_LAST_DEVICE; ccb->cgdl.generation = device->generation; ccb->cgdl.index = i; /* * Fill in some CCB header fields * that the user may want. */ ccb->ccb_h.path_id = periph->path->bus->path_id; ccb->ccb_h.target_id = periph->path->target->target_id; ccb->ccb_h.target_lun = periph->path->device->lun_id; ccb->ccb_h.status = CAM_REQ_CMP; break; } } } /* * If the periph is null here, one of two things has * happened. The first possibility is that we couldn't * find the unit number of the particular peripheral driver * that the user is asking about. e.g. the user asks for * the passthrough driver for "da11". We find the list of * "da" peripherals all right, but there is no unit 11. * The other possibility is that we went through the list * of peripheral drivers attached to the device structure, * but didn't find one with the name "pass". Either way, * we return ENOENT, since we couldn't find something. */ if (periph == NULL) { ccb->ccb_h.status = CAM_REQ_CMP_ERR; ccb->cgdl.status = CAM_GDEVLIST_ERROR; *ccb->cgdl.periph_name = '\0'; ccb->cgdl.unit_number = 0; error = ENOENT; /* * It is unfortunate that this is even necessary, * but there are many, many clueless users out there. * If this is true, the user is looking for the * passthrough driver, but doesn't have one in his * kernel. */ if (base_periph_found == 1) { printf("xptioctl: pass driver is not in the " "kernel\n"); printf("xptioctl: put \"device pass\" in " "your kernel config file\n"); } } xpt_unlock_buses(); break; } default: error = ENOTTY; break; } return(error); } static int cam_module_event_handler(module_t mod, int what, void *arg) { int error; switch (what) { case MOD_LOAD: if ((error = xpt_init(NULL)) != 0) return (error); break; case MOD_UNLOAD: return EBUSY; default: return EOPNOTSUPP; } return 0; } static void xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) { if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { xpt_free_path(done_ccb->ccb_h.path); xpt_free_ccb(done_ccb); } else { done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); } xpt_release_boot(); } /* thread to handle bus rescans */ static void xpt_scanner_thread(void *dummy) { union ccb *ccb; struct cam_path path; xpt_lock_buses(); for (;;) { if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, "-", 0); if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); xpt_unlock_buses(); /* * Since lock can be dropped inside and path freed * by completion callback even before return here, * take our own path copy for reference. */ xpt_copy_path(&path, ccb->ccb_h.path); xpt_path_lock(&path); xpt_action(ccb); xpt_path_unlock(&path); xpt_release_path(&path); xpt_lock_buses(); } } } void xpt_rescan(union ccb *ccb) { struct ccb_hdr *hdr; /* Prepare request */ if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) ccb->ccb_h.func_code = XPT_SCAN_BUS; else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) ccb->ccb_h.func_code = XPT_SCAN_TGT; else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) ccb->ccb_h.func_code = XPT_SCAN_LUN; else { xpt_print(ccb->ccb_h.path, "illegal scan path\n"); xpt_free_path(ccb->ccb_h.path); xpt_free_ccb(ccb); return; } ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; ccb->ccb_h.cbfcnp = xpt_rescan_done; xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); /* Don't make duplicate entries for the same paths. */ xpt_lock_buses(); if (ccb->ccb_h.ppriv_ptr1 == NULL) { TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { wakeup(&xsoftc.ccb_scanq); xpt_unlock_buses(); xpt_print(ccb->ccb_h.path, "rescan already queued\n"); xpt_free_path(ccb->ccb_h.path); xpt_free_ccb(ccb); return; } } } TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); xsoftc.buses_to_config++; wakeup(&xsoftc.ccb_scanq); xpt_unlock_buses(); } /* Functions accessed by the peripheral drivers */ static int xpt_init(void *dummy) { struct cam_sim *xpt_sim; struct cam_path *path; struct cam_devq *devq; cam_status status; int error, i; TAILQ_INIT(&xsoftc.xpt_busses); TAILQ_INIT(&xsoftc.ccb_scanq); STAILQ_INIT(&xsoftc.highpowerq); xsoftc.num_highpower = CAM_MAX_HIGHPOWER; mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); #ifdef CAM_BOOT_DELAY /* * Override this value at compile time to assist our users * who don't use loader to boot a kernel. */ xsoftc.boot_delay = CAM_BOOT_DELAY; #endif /* * The xpt layer is, itself, the equivelent of a SIM. * Allow 16 ccbs in the ccb pool for it. This should * give decent parallelism when we probe busses and * perform other XPT functions. */ devq = cam_simq_alloc(16); xpt_sim = cam_sim_alloc(xptaction, xptpoll, "xpt", /*softc*/NULL, /*unit*/0, /*mtx*/&xsoftc.xpt_lock, /*max_dev_transactions*/0, /*max_tagged_dev_transactions*/0, devq); if (xpt_sim == NULL) return (ENOMEM); mtx_lock(&xsoftc.xpt_lock); if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { mtx_unlock(&xsoftc.xpt_lock); printf("xpt_init: xpt_bus_register failed with status %#x," " failing attach\n", status); return (EINVAL); } mtx_unlock(&xsoftc.xpt_lock); /* * Looking at the XPT from the SIM layer, the XPT is * the equivelent of a peripheral driver. Allocate * a peripheral driver entry for us. */ if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { printf("xpt_init: xpt_create_path failed with status %#x," " failing attach\n", status); return (EINVAL); } xpt_path_lock(path); cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, path, NULL, 0, xpt_sim); xpt_path_unlock(path); xpt_free_path(path); if (cam_num_doneqs < 1) cam_num_doneqs = 1 + mp_ncpus / 6; else if (cam_num_doneqs > MAXCPU) cam_num_doneqs = MAXCPU; for (i = 0; i < cam_num_doneqs; i++) { mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, MTX_DEF); STAILQ_INIT(&cam_doneqs[i].cam_doneq); error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); if (error != 0) { cam_num_doneqs = i; break; } } if (cam_num_doneqs < 1) { printf("xpt_init: Cannot init completion queues " "- failing attach\n"); return (ENOMEM); } /* * Register a callback for when interrupts are enabled. */ xsoftc.xpt_config_hook = (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), M_CAMXPT, M_NOWAIT | M_ZERO); if (xsoftc.xpt_config_hook == NULL) { printf("xpt_init: Cannot malloc config hook " "- failing attach\n"); return (ENOMEM); } xsoftc.xpt_config_hook->ich_func = xpt_config; if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { free (xsoftc.xpt_config_hook, M_CAMXPT); printf("xpt_init: config_intrhook_establish failed " "- failing attach\n"); } return (0); } static cam_status xptregister(struct cam_periph *periph, void *arg) { struct cam_sim *xpt_sim; if (periph == NULL) { printf("xptregister: periph was NULL!!\n"); return(CAM_REQ_CMP_ERR); } xpt_sim = (struct cam_sim *)arg; xpt_sim->softc = periph; xpt_periph = periph; periph->softc = NULL; return(CAM_REQ_CMP); } int32_t xpt_add_periph(struct cam_periph *periph) { struct cam_ed *device; int32_t status; TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); device = periph->path->device; status = CAM_REQ_CMP; if (device != NULL) { mtx_lock(&device->target->bus->eb_mtx); device->generation++; SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); mtx_unlock(&device->target->bus->eb_mtx); atomic_add_32(&xsoftc.xpt_generation, 1); } return (status); } void xpt_remove_periph(struct cam_periph *periph) { struct cam_ed *device; device = periph->path->device; if (device != NULL) { mtx_lock(&device->target->bus->eb_mtx); device->generation++; SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); mtx_unlock(&device->target->bus->eb_mtx); atomic_add_32(&xsoftc.xpt_generation, 1); } } void xpt_announce_periph(struct cam_periph *periph, char *announce_string) { struct cam_path *path = periph->path; cam_periph_assert(periph, MA_OWNED); periph->flags |= CAM_PERIPH_ANNOUNCED; printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", periph->periph_name, periph->unit_number, path->bus->sim->sim_name, path->bus->sim->unit_number, path->bus->sim->bus_id, path->bus->path_id, path->target->target_id, (uintmax_t)path->device->lun_id); printf("%s%d: ", periph->periph_name, periph->unit_number); if (path->device->protocol == PROTO_SCSI) scsi_print_inquiry(&path->device->inq_data); else if (path->device->protocol == PROTO_ATA || path->device->protocol == PROTO_SATAPM) ata_print_ident(&path->device->ident_data); else if (path->device->protocol == PROTO_SEMB) semb_print_ident( (struct sep_identify_data *)&path->device->ident_data); else printf("Unknown protocol device\n"); if (path->device->serial_num_len > 0) { /* Don't wrap the screen - print only the first 60 chars */ printf("%s%d: Serial Number %.60s\n", periph->periph_name, periph->unit_number, path->device->serial_num); } /* Announce transport details. */ (*(path->bus->xport->announce))(periph); /* Announce command queueing. */ if (path->device->inq_flags & SID_CmdQue || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { printf("%s%d: Command Queueing enabled\n", periph->periph_name, periph->unit_number); } /* Announce caller's details if they've passed in. */ if (announce_string != NULL) printf("%s%d: %s\n", periph->periph_name, periph->unit_number, announce_string); } void xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) { if (quirks != 0) { printf("%s%d: quirks=0x%b\n", periph->periph_name, periph->unit_number, quirks, bit_string); } } void xpt_denounce_periph(struct cam_periph *periph) { struct cam_path *path = periph->path; cam_periph_assert(periph, MA_OWNED); printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", periph->periph_name, periph->unit_number, path->bus->sim->sim_name, path->bus->sim->unit_number, path->bus->sim->bus_id, path->bus->path_id, path->target->target_id, (uintmax_t)path->device->lun_id); printf("%s%d: ", periph->periph_name, periph->unit_number); if (path->device->protocol == PROTO_SCSI) scsi_print_inquiry_short(&path->device->inq_data); else if (path->device->protocol == PROTO_ATA || path->device->protocol == PROTO_SATAPM) ata_print_ident_short(&path->device->ident_data); else if (path->device->protocol == PROTO_SEMB) semb_print_ident_short( (struct sep_identify_data *)&path->device->ident_data); else printf("Unknown protocol device"); if (path->device->serial_num_len > 0) printf(" s/n %.60s", path->device->serial_num); printf(" detached\n"); } int xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) { int ret = -1, l; struct ccb_dev_advinfo cdai; struct scsi_vpd_id_descriptor *idd; xpt_path_assert(path, MA_OWNED); memset(&cdai, 0, sizeof(cdai)); xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); cdai.ccb_h.func_code = XPT_DEV_ADVINFO; cdai.bufsiz = len; if (!strcmp(attr, "GEOM::ident")) cdai.buftype = CDAI_TYPE_SERIAL_NUM; else if (!strcmp(attr, "GEOM::physpath")) cdai.buftype = CDAI_TYPE_PHYS_PATH; else if (strcmp(attr, "GEOM::lunid") == 0 || strcmp(attr, "GEOM::lunname") == 0) { cdai.buftype = CDAI_TYPE_SCSI_DEVID; cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; } else goto out; cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); if (cdai.buf == NULL) { ret = ENOMEM; goto out; } xpt_action((union ccb *)&cdai); /* can only be synchronous */ if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); if (cdai.provsiz == 0) goto out; if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { if (strcmp(attr, "GEOM::lunid") == 0) { idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, cdai.provsiz, scsi_devid_is_lun_naa); if (idd == NULL) idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, cdai.provsiz, scsi_devid_is_lun_eui64); } else idd = NULL; if (idd == NULL) idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, cdai.provsiz, scsi_devid_is_lun_t10); if (idd == NULL) idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, cdai.provsiz, scsi_devid_is_lun_name); if (idd == NULL) goto out; ret = 0; if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { if (idd->length < len) { for (l = 0; l < idd->length; l++) buf[l] = idd->identifier[l] ? idd->identifier[l] : ' '; buf[l] = 0; } else ret = EFAULT; } else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { l = strnlen(idd->identifier, idd->length); if (l < len) { bcopy(idd->identifier, buf, l); buf[l] = 0; } else ret = EFAULT; } else { if (idd->length * 2 < len) { for (l = 0; l < idd->length; l++) sprintf(buf + l * 2, "%02x", idd->identifier[l]); } else ret = EFAULT; } } else { ret = 0; if (strlcpy(buf, cdai.buf, len) >= len) ret = EFAULT; } out: if (cdai.buf != NULL) free(cdai.buf, M_CAMXPT); return ret; } static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_eb *bus) { dev_match_ret retval; int i; retval = DM_RET_NONE; /* * If we aren't given something to match against, that's an error. */ if (bus == NULL) return(DM_RET_ERROR); /* * If there are no match entries, then this bus matches no * matter what. */ if ((patterns == NULL) || (num_patterns == 0)) return(DM_RET_DESCEND | DM_RET_COPY); for (i = 0; i < num_patterns; i++) { struct bus_match_pattern *cur_pattern; /* * If the pattern in question isn't for a bus node, we * aren't interested. However, we do indicate to the * calling routine that we should continue descending the * tree, since the user wants to match against lower-level * EDT elements. */ if (patterns[i].type != DEV_MATCH_BUS) { if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) retval |= DM_RET_DESCEND; continue; } cur_pattern = &patterns[i].pattern.bus_pattern; /* * If they want to match any bus node, we give them any * device node. */ if (cur_pattern->flags == BUS_MATCH_ANY) { /* set the copy flag */ retval |= DM_RET_COPY; /* * If we've already decided on an action, go ahead * and return. */ if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) return(retval); } /* * Not sure why someone would do this... */ if (cur_pattern->flags == BUS_MATCH_NONE) continue; if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) && (cur_pattern->path_id != bus->path_id)) continue; if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) && (cur_pattern->bus_id != bus->sim->bus_id)) continue; if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) && (cur_pattern->unit_number != bus->sim->unit_number)) continue; if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, DEV_IDLEN) != 0)) continue; /* * If we get to this point, the user definitely wants * information on this bus. So tell the caller to copy the * data out. */ retval |= DM_RET_COPY; /* * If the return action has been set to descend, then we * know that we've already seen a non-bus matching * expression, therefore we need to further descend the tree. * This won't change by continuing around the loop, so we * go ahead and return. If we haven't seen a non-bus * matching expression, we keep going around the loop until * we exhaust the matching expressions. We'll set the stop * flag once we fall out of the loop. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) return(retval); } /* * If the return action hasn't been set to descend yet, that means * we haven't seen anything other than bus matching patterns. So * tell the caller to stop descending the tree -- the user doesn't * want to match against lower level tree elements. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) retval |= DM_RET_STOP; return(retval); } static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_ed *device) { dev_match_ret retval; int i; retval = DM_RET_NONE; /* * If we aren't given something to match against, that's an error. */ if (device == NULL) return(DM_RET_ERROR); /* * If there are no match entries, then this device matches no * matter what. */ if ((patterns == NULL) || (num_patterns == 0)) return(DM_RET_DESCEND | DM_RET_COPY); for (i = 0; i < num_patterns; i++) { struct device_match_pattern *cur_pattern; struct scsi_vpd_device_id *device_id_page; /* * If the pattern in question isn't for a device node, we * aren't interested. */ if (patterns[i].type != DEV_MATCH_DEVICE) { if ((patterns[i].type == DEV_MATCH_PERIPH) && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) retval |= DM_RET_DESCEND; continue; } cur_pattern = &patterns[i].pattern.device_pattern; /* Error out if mutually exclusive options are specified. */ if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) return(DM_RET_ERROR); /* * If they want to match any device node, we give them any * device node. */ if (cur_pattern->flags == DEV_MATCH_ANY) goto copy_dev_node; /* * Not sure why someone would do this... */ if (cur_pattern->flags == DEV_MATCH_NONE) continue; if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) && (cur_pattern->path_id != device->target->bus->path_id)) continue; if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) && (cur_pattern->target_id != device->target->target_id)) continue; if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) && (cur_pattern->target_lun != device->lun_id)) continue; if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) && (cam_quirkmatch((caddr_t)&device->inq_data, (caddr_t)&cur_pattern->data.inq_pat, 1, sizeof(cur_pattern->data.inq_pat), scsi_static_inquiry_match) == NULL)) continue; device_id_page = (struct scsi_vpd_device_id *)device->device_id; if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN || scsi_devid_match((uint8_t *)device_id_page->desc_list, device->device_id_len - SVPD_DEVICE_ID_HDR_LEN, cur_pattern->data.devid_pat.id, cur_pattern->data.devid_pat.id_len) != 0)) continue; copy_dev_node: /* * If we get to this point, the user definitely wants * information on this device. So tell the caller to copy * the data out. */ retval |= DM_RET_COPY; /* * If the return action has been set to descend, then we * know that we've already seen a peripheral matching * expression, therefore we need to further descend the tree. * This won't change by continuing around the loop, so we * go ahead and return. If we haven't seen a peripheral * matching expression, we keep going around the loop until * we exhaust the matching expressions. We'll set the stop * flag once we fall out of the loop. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) return(retval); } /* * If the return action hasn't been set to descend yet, that means * we haven't seen any peripheral matching patterns. So tell the * caller to stop descending the tree -- the user doesn't want to * match against lower level tree elements. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) retval |= DM_RET_STOP; return(retval); } /* * Match a single peripheral against any number of match patterns. */ static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, struct cam_periph *periph) { dev_match_ret retval; int i; /* * If we aren't given something to match against, that's an error. */ if (periph == NULL) return(DM_RET_ERROR); /* * If there are no match entries, then this peripheral matches no * matter what. */ if ((patterns == NULL) || (num_patterns == 0)) return(DM_RET_STOP | DM_RET_COPY); /* * There aren't any nodes below a peripheral node, so there's no * reason to descend the tree any further. */ retval = DM_RET_STOP; for (i = 0; i < num_patterns; i++) { struct periph_match_pattern *cur_pattern; /* * If the pattern in question isn't for a peripheral, we * aren't interested. */ if (patterns[i].type != DEV_MATCH_PERIPH) continue; cur_pattern = &patterns[i].pattern.periph_pattern; /* * If they want to match on anything, then we will do so. */ if (cur_pattern->flags == PERIPH_MATCH_ANY) { /* set the copy flag */ retval |= DM_RET_COPY; /* * We've already set the return action to stop, * since there are no nodes below peripherals in * the tree. */ return(retval); } /* * Not sure why someone would do this... */ if (cur_pattern->flags == PERIPH_MATCH_NONE) continue; if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) && (cur_pattern->path_id != periph->path->bus->path_id)) continue; /* * For the target and lun id's, we have to make sure the * target and lun pointers aren't NULL. The xpt peripheral * has a wildcard target and device. */ if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) && ((periph->path->target == NULL) ||(cur_pattern->target_id != periph->path->target->target_id))) continue; if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) && ((periph->path->device == NULL) || (cur_pattern->target_lun != periph->path->device->lun_id))) continue; if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) && (cur_pattern->unit_number != periph->unit_number)) continue; if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) && (strncmp(cur_pattern->periph_name, periph->periph_name, DEV_IDLEN) != 0)) continue; /* * If we get to this point, the user definitely wants * information on this peripheral. So tell the caller to * copy the data out. */ retval |= DM_RET_COPY; /* * The return action has already been set to stop, since * peripherals don't have any nodes below them in the EDT. */ return(retval); } /* * If we get to this point, the peripheral that was passed in * doesn't match any of the patterns. */ return(retval); } static int xptedtbusfunc(struct cam_eb *bus, void *arg) { struct ccb_dev_match *cdm; struct cam_et *target; dev_match_ret retval; cdm = (struct ccb_dev_match *)arg; /* * If our position is for something deeper in the tree, that means * that we've already seen this node. So, we keep going down. */ if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target != NULL)) retval = DM_RET_DESCEND; else retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); /* * If we got an error, bail out of the search. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } /* * If the copy flag is set, copy this bus out. */ if (retval & DM_RET_COPY) { int spaceleft, j; spaceleft = cdm->match_buf_len - (cdm->num_matches * sizeof(struct dev_match_result)); /* * If we don't have enough space to put in another * match result, save our position and tell the * user there are more devices to check. */ if (spaceleft < sizeof(struct dev_match_result)) { bzero(&cdm->pos, sizeof(cdm->pos)); cdm->pos.position_type = CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; cdm->pos.cookie.bus = bus; cdm->pos.generations[CAM_BUS_GENERATION]= xsoftc.bus_generation; cdm->status = CAM_DEV_MATCH_MORE; return(0); } j = cdm->num_matches; cdm->num_matches++; cdm->matches[j].type = DEV_MATCH_BUS; cdm->matches[j].result.bus_result.path_id = bus->path_id; cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; cdm->matches[j].result.bus_result.unit_number = bus->sim->unit_number; strncpy(cdm->matches[j].result.bus_result.dev_name, bus->sim->sim_name, DEV_IDLEN); } /* * If the user is only interested in busses, there's no * reason to descend to the next level in the tree. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) return(1); /* * If there is a target generation recorded, check it to * make sure the target list hasn't changed. */ mtx_lock(&bus->eb_mtx); if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target != NULL)) { if ((cdm->pos.generations[CAM_TARGET_GENERATION] != bus->generation)) { mtx_unlock(&bus->eb_mtx); cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return (0); } target = (struct cam_et *)cdm->pos.cookie.target; target->refcount++; } else target = NULL; mtx_unlock(&bus->eb_mtx); return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); } static int xptedttargetfunc(struct cam_et *target, void *arg) { struct ccb_dev_match *cdm; struct cam_eb *bus; struct cam_ed *device; cdm = (struct ccb_dev_match *)arg; bus = target->bus; /* * If there is a device list generation recorded, check it to * make sure the device list hasn't changed. */ mtx_lock(&bus->eb_mtx); if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target == target) && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) && (cdm->pos.cookie.device != NULL)) { if (cdm->pos.generations[CAM_DEV_GENERATION] != target->generation) { mtx_unlock(&bus->eb_mtx); cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } device = (struct cam_ed *)cdm->pos.cookie.device; device->refcount++; } else device = NULL; mtx_unlock(&bus->eb_mtx); return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); } static int xptedtdevicefunc(struct cam_ed *device, void *arg) { struct cam_eb *bus; struct cam_periph *periph; struct ccb_dev_match *cdm; dev_match_ret retval; cdm = (struct ccb_dev_match *)arg; bus = device->target->bus; /* * If our position is for something deeper in the tree, that means * that we've already seen this node. So, we keep going down. */ if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) && (cdm->pos.cookie.device == device) && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) && (cdm->pos.cookie.periph != NULL)) retval = DM_RET_DESCEND; else retval = xptdevicematch(cdm->patterns, cdm->num_patterns, device); if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } /* * If the copy flag is set, copy this device out. */ if (retval & DM_RET_COPY) { int spaceleft, j; spaceleft = cdm->match_buf_len - (cdm->num_matches * sizeof(struct dev_match_result)); /* * If we don't have enough space to put in another * match result, save our position and tell the * user there are more devices to check. */ if (spaceleft < sizeof(struct dev_match_result)) { bzero(&cdm->pos, sizeof(cdm->pos)); cdm->pos.position_type = CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; cdm->pos.cookie.bus = device->target->bus; cdm->pos.generations[CAM_BUS_GENERATION]= xsoftc.bus_generation; cdm->pos.cookie.target = device->target; cdm->pos.generations[CAM_TARGET_GENERATION] = device->target->bus->generation; cdm->pos.cookie.device = device; cdm->pos.generations[CAM_DEV_GENERATION] = device->target->generation; cdm->status = CAM_DEV_MATCH_MORE; return(0); } j = cdm->num_matches; cdm->num_matches++; cdm->matches[j].type = DEV_MATCH_DEVICE; cdm->matches[j].result.device_result.path_id = device->target->bus->path_id; cdm->matches[j].result.device_result.target_id = device->target->target_id; cdm->matches[j].result.device_result.target_lun = device->lun_id; cdm->matches[j].result.device_result.protocol = device->protocol; bcopy(&device->inq_data, &cdm->matches[j].result.device_result.inq_data, sizeof(struct scsi_inquiry_data)); bcopy(&device->ident_data, &cdm->matches[j].result.device_result.ident_data, sizeof(struct ata_params)); /* Let the user know whether this device is unconfigured */ if (device->flags & CAM_DEV_UNCONFIGURED) cdm->matches[j].result.device_result.flags = DEV_RESULT_UNCONFIGURED; else cdm->matches[j].result.device_result.flags = DEV_RESULT_NOFLAG; } /* * If the user isn't interested in peripherals, don't descend * the tree any further. */ if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) return(1); /* * If there is a peripheral list generation recorded, make sure * it hasn't changed. */ xpt_lock_buses(); mtx_lock(&bus->eb_mtx); if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus == bus) && (cdm->pos.position_type & CAM_DEV_POS_TARGET) && (cdm->pos.cookie.target == device->target) && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) && (cdm->pos.cookie.device == device) && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) && (cdm->pos.cookie.periph != NULL)) { if (cdm->pos.generations[CAM_PERIPH_GENERATION] != device->generation) { mtx_unlock(&bus->eb_mtx); xpt_unlock_buses(); cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } periph = (struct cam_periph *)cdm->pos.cookie.periph; periph->refcount++; } else periph = NULL; mtx_unlock(&bus->eb_mtx); xpt_unlock_buses(); return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); } static int xptedtperiphfunc(struct cam_periph *periph, void *arg) { struct ccb_dev_match *cdm; dev_match_ret retval; cdm = (struct ccb_dev_match *)arg; retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } /* * If the copy flag is set, copy this peripheral out. */ if (retval & DM_RET_COPY) { int spaceleft, j; spaceleft = cdm->match_buf_len - (cdm->num_matches * sizeof(struct dev_match_result)); /* * If we don't have enough space to put in another * match result, save our position and tell the * user there are more devices to check. */ if (spaceleft < sizeof(struct dev_match_result)) { bzero(&cdm->pos, sizeof(cdm->pos)); cdm->pos.position_type = CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | CAM_DEV_POS_PERIPH; cdm->pos.cookie.bus = periph->path->bus; cdm->pos.generations[CAM_BUS_GENERATION]= xsoftc.bus_generation; cdm->pos.cookie.target = periph->path->target; cdm->pos.generations[CAM_TARGET_GENERATION] = periph->path->bus->generation; cdm->pos.cookie.device = periph->path->device; cdm->pos.generations[CAM_DEV_GENERATION] = periph->path->target->generation; cdm->pos.cookie.periph = periph; cdm->pos.generations[CAM_PERIPH_GENERATION] = periph->path->device->generation; cdm->status = CAM_DEV_MATCH_MORE; return(0); } j = cdm->num_matches; cdm->num_matches++; cdm->matches[j].type = DEV_MATCH_PERIPH; cdm->matches[j].result.periph_result.path_id = periph->path->bus->path_id; cdm->matches[j].result.periph_result.target_id = periph->path->target->target_id; cdm->matches[j].result.periph_result.target_lun = periph->path->device->lun_id; cdm->matches[j].result.periph_result.unit_number = periph->unit_number; strncpy(cdm->matches[j].result.periph_result.periph_name, periph->periph_name, DEV_IDLEN); } return(1); } static int xptedtmatch(struct ccb_dev_match *cdm) { struct cam_eb *bus; int ret; cdm->num_matches = 0; /* * Check the bus list generation. If it has changed, the user * needs to reset everything and start over. */ xpt_lock_buses(); if ((cdm->pos.position_type & CAM_DEV_POS_BUS) && (cdm->pos.cookie.bus != NULL)) { if (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation) { xpt_unlock_buses(); cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } bus = (struct cam_eb *)cdm->pos.cookie.bus; bus->refcount++; } else bus = NULL; xpt_unlock_buses(); ret = xptbustraverse(bus, xptedtbusfunc, cdm); /* * If we get back 0, that means that we had to stop before fully * traversing the EDT. It also means that one of the subroutines * has set the status field to the proper value. If we get back 1, * we've fully traversed the EDT and copied out any matching entries. */ if (ret == 1) cdm->status = CAM_DEV_MATCH_LAST; return(ret); } static int xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) { struct cam_periph *periph; struct ccb_dev_match *cdm; cdm = (struct ccb_dev_match *)arg; xpt_lock_buses(); if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) && (cdm->pos.cookie.pdrv == pdrv) && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) && (cdm->pos.cookie.periph != NULL)) { if (cdm->pos.generations[CAM_PERIPH_GENERATION] != (*pdrv)->generation) { xpt_unlock_buses(); cdm->status = CAM_DEV_MATCH_LIST_CHANGED; return(0); } periph = (struct cam_periph *)cdm->pos.cookie.periph; periph->refcount++; } else periph = NULL; xpt_unlock_buses(); return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); } static int xptplistperiphfunc(struct cam_periph *periph, void *arg) { struct ccb_dev_match *cdm; dev_match_ret retval; cdm = (struct ccb_dev_match *)arg; retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } /* * If the copy flag is set, copy this peripheral out. */ if (retval & DM_RET_COPY) { int spaceleft, j; spaceleft = cdm->match_buf_len - (cdm->num_matches * sizeof(struct dev_match_result)); /* * If we don't have enough space to put in another * match result, save our position and tell the * user there are more devices to check. */ if (spaceleft < sizeof(struct dev_match_result)) { struct periph_driver **pdrv; pdrv = NULL; bzero(&cdm->pos, sizeof(cdm->pos)); cdm->pos.position_type = CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | CAM_DEV_POS_PERIPH; /* * This may look a bit non-sensical, but it is * actually quite logical. There are very few * peripheral drivers, and bloating every peripheral * structure with a pointer back to its parent * peripheral driver linker set entry would cost * more in the long run than doing this quick lookup. */ for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { if (strcmp((*pdrv)->driver_name, periph->periph_name) == 0) break; } if (*pdrv == NULL) { cdm->status = CAM_DEV_MATCH_ERROR; return(0); } cdm->pos.cookie.pdrv = pdrv; /* * The periph generation slot does double duty, as * does the periph pointer slot. They are used for * both edt and pdrv lookups and positioning. */ cdm->pos.cookie.periph = periph; cdm->pos.generations[CAM_PERIPH_GENERATION] = (*pdrv)->generation; cdm->status = CAM_DEV_MATCH_MORE; return(0); } j = cdm->num_matches; cdm->num_matches++; cdm->matches[j].type = DEV_MATCH_PERIPH; cdm->matches[j].result.periph_result.path_id = periph->path->bus->path_id; /* * The transport layer peripheral doesn't have a target or * lun. */ if (periph->path->target) cdm->matches[j].result.periph_result.target_id = periph->path->target->target_id; else cdm->matches[j].result.periph_result.target_id = CAM_TARGET_WILDCARD; if (periph->path->device) cdm->matches[j].result.periph_result.target_lun = periph->path->device->lun_id; else cdm->matches[j].result.periph_result.target_lun = CAM_LUN_WILDCARD; cdm->matches[j].result.periph_result.unit_number = periph->unit_number; strncpy(cdm->matches[j].result.periph_result.periph_name, periph->periph_name, DEV_IDLEN); } return(1); } static int xptperiphlistmatch(struct ccb_dev_match *cdm) { int ret; cdm->num_matches = 0; /* * At this point in the edt traversal function, we check the bus * list generation to make sure that no busses have been added or * removed since the user last sent a XPT_DEV_MATCH ccb through. * For the peripheral driver list traversal function, however, we * don't have to worry about new peripheral driver types coming or * going; they're in a linker set, and therefore can't change * without a recompile. */ if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) && (cdm->pos.cookie.pdrv != NULL)) ret = xptpdrvtraverse( (struct periph_driver **)cdm->pos.cookie.pdrv, xptplistpdrvfunc, cdm); else ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); /* * If we get back 0, that means that we had to stop before fully * traversing the peripheral driver tree. It also means that one of * the subroutines has set the status field to the proper value. If * we get back 1, we've fully traversed the EDT and copied out any * matching entries. */ if (ret == 1) cdm->status = CAM_DEV_MATCH_LAST; return(ret); } static int xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) { struct cam_eb *bus, *next_bus; int retval; retval = 1; if (start_bus) bus = start_bus; else { xpt_lock_buses(); bus = TAILQ_FIRST(&xsoftc.xpt_busses); if (bus == NULL) { xpt_unlock_buses(); return (retval); } bus->refcount++; xpt_unlock_buses(); } for (; bus != NULL; bus = next_bus) { retval = tr_func(bus, arg); if (retval == 0) { xpt_release_bus(bus); break; } xpt_lock_buses(); next_bus = TAILQ_NEXT(bus, links); if (next_bus) next_bus->refcount++; xpt_unlock_buses(); xpt_release_bus(bus); } return(retval); } static int xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, xpt_targetfunc_t *tr_func, void *arg) { struct cam_et *target, *next_target; int retval; retval = 1; if (start_target) target = start_target; else { mtx_lock(&bus->eb_mtx); target = TAILQ_FIRST(&bus->et_entries); if (target == NULL) { mtx_unlock(&bus->eb_mtx); return (retval); } target->refcount++; mtx_unlock(&bus->eb_mtx); } for (; target != NULL; target = next_target) { retval = tr_func(target, arg); if (retval == 0) { xpt_release_target(target); break; } mtx_lock(&bus->eb_mtx); next_target = TAILQ_NEXT(target, links); if (next_target) next_target->refcount++; mtx_unlock(&bus->eb_mtx); xpt_release_target(target); } return(retval); } static int xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, xpt_devicefunc_t *tr_func, void *arg) { struct cam_eb *bus; struct cam_ed *device, *next_device; int retval; retval = 1; bus = target->bus; if (start_device) device = start_device; else { mtx_lock(&bus->eb_mtx); device = TAILQ_FIRST(&target->ed_entries); if (device == NULL) { mtx_unlock(&bus->eb_mtx); return (retval); } device->refcount++; mtx_unlock(&bus->eb_mtx); } for (; device != NULL; device = next_device) { mtx_lock(&device->device_mtx); retval = tr_func(device, arg); mtx_unlock(&device->device_mtx); if (retval == 0) { xpt_release_device(device); break; } mtx_lock(&bus->eb_mtx); next_device = TAILQ_NEXT(device, links); if (next_device) next_device->refcount++; mtx_unlock(&bus->eb_mtx); xpt_release_device(device); } return(retval); } static int xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, xpt_periphfunc_t *tr_func, void *arg) { struct cam_eb *bus; struct cam_periph *periph, *next_periph; int retval; retval = 1; bus = device->target->bus; if (start_periph) periph = start_periph; else { xpt_lock_buses(); mtx_lock(&bus->eb_mtx); periph = SLIST_FIRST(&device->periphs); while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) periph = SLIST_NEXT(periph, periph_links); if (periph == NULL) { mtx_unlock(&bus->eb_mtx); xpt_unlock_buses(); return (retval); } periph->refcount++; mtx_unlock(&bus->eb_mtx); xpt_unlock_buses(); } for (; periph != NULL; periph = next_periph) { retval = tr_func(periph, arg); if (retval == 0) { cam_periph_release_locked(periph); break; } xpt_lock_buses(); mtx_lock(&bus->eb_mtx); next_periph = SLIST_NEXT(periph, periph_links); while (next_periph != NULL && (next_periph->flags & CAM_PERIPH_FREE) != 0) next_periph = SLIST_NEXT(next_periph, periph_links); if (next_periph) next_periph->refcount++; mtx_unlock(&bus->eb_mtx); xpt_unlock_buses(); cam_periph_release_locked(periph); } return(retval); } static int xptpdrvtraverse(struct periph_driver **start_pdrv, xpt_pdrvfunc_t *tr_func, void *arg) { struct periph_driver **pdrv; int retval; retval = 1; /* * We don't traverse the peripheral driver list like we do the * other lists, because it is a linker set, and therefore cannot be * changed during runtime. If the peripheral driver list is ever * re-done to be something other than a linker set (i.e. it can * change while the system is running), the list traversal should * be modified to work like the other traversal functions. */ for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); *pdrv != NULL; pdrv++) { retval = tr_func(pdrv, arg); if (retval == 0) return(retval); } return(retval); } static int xptpdperiphtraverse(struct periph_driver **pdrv, struct cam_periph *start_periph, xpt_periphfunc_t *tr_func, void *arg) { struct cam_periph *periph, *next_periph; int retval; retval = 1; if (start_periph) periph = start_periph; else { xpt_lock_buses(); periph = TAILQ_FIRST(&(*pdrv)->units); while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) periph = TAILQ_NEXT(periph, unit_links); if (periph == NULL) { xpt_unlock_buses(); return (retval); } periph->refcount++; xpt_unlock_buses(); } for (; periph != NULL; periph = next_periph) { cam_periph_lock(periph); retval = tr_func(periph, arg); cam_periph_unlock(periph); if (retval == 0) { cam_periph_release(periph); break; } xpt_lock_buses(); next_periph = TAILQ_NEXT(periph, unit_links); while (next_periph != NULL && (next_periph->flags & CAM_PERIPH_FREE) != 0) next_periph = TAILQ_NEXT(next_periph, unit_links); if (next_periph) next_periph->refcount++; xpt_unlock_buses(); cam_periph_release(periph); } return(retval); } static int xptdefbusfunc(struct cam_eb *bus, void *arg) { struct xpt_traverse_config *tr_config; tr_config = (struct xpt_traverse_config *)arg; if (tr_config->depth == XPT_DEPTH_BUS) { xpt_busfunc_t *tr_func; tr_func = (xpt_busfunc_t *)tr_config->tr_func; return(tr_func(bus, tr_config->tr_arg)); } else return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); } static int xptdeftargetfunc(struct cam_et *target, void *arg) { struct xpt_traverse_config *tr_config; tr_config = (struct xpt_traverse_config *)arg; if (tr_config->depth == XPT_DEPTH_TARGET) { xpt_targetfunc_t *tr_func; tr_func = (xpt_targetfunc_t *)tr_config->tr_func; return(tr_func(target, tr_config->tr_arg)); } else return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); } static int xptdefdevicefunc(struct cam_ed *device, void *arg) { struct xpt_traverse_config *tr_config; tr_config = (struct xpt_traverse_config *)arg; if (tr_config->depth == XPT_DEPTH_DEVICE) { xpt_devicefunc_t *tr_func; tr_func = (xpt_devicefunc_t *)tr_config->tr_func; return(tr_func(device, tr_config->tr_arg)); } else return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); } static int xptdefperiphfunc(struct cam_periph *periph, void *arg) { struct xpt_traverse_config *tr_config; xpt_periphfunc_t *tr_func; tr_config = (struct xpt_traverse_config *)arg; tr_func = (xpt_periphfunc_t *)tr_config->tr_func; /* * Unlike the other default functions, we don't check for depth * here. The peripheral driver level is the last level in the EDT, * so if we're here, we should execute the function in question. */ return(tr_func(periph, tr_config->tr_arg)); } /* * Execute the given function for every bus in the EDT. */ static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) { struct xpt_traverse_config tr_config; tr_config.depth = XPT_DEPTH_BUS; tr_config.tr_func = tr_func; tr_config.tr_arg = arg; return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); } /* * Execute the given function for every device in the EDT. */ static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) { struct xpt_traverse_config tr_config; tr_config.depth = XPT_DEPTH_DEVICE; tr_config.tr_func = tr_func; tr_config.tr_arg = arg; return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); } static int xptsetasyncfunc(struct cam_ed *device, void *arg) { struct cam_path path; struct ccb_getdev cgd; struct ccb_setasync *csa = (struct ccb_setasync *)arg; /* * Don't report unconfigured devices (Wildcard devs, * devices only for target mode, device instances * that have been invalidated but are waiting for * their last reference count to be released). */ if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) return (1); xpt_compile_path(&path, NULL, device->target->bus->path_id, device->target->target_id, device->lun_id); xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); cgd.ccb_h.func_code = XPT_GDEV_TYPE; xpt_action((union ccb *)&cgd); csa->callback(csa->callback_arg, AC_FOUND_DEVICE, &path, &cgd); xpt_release_path(&path); return(1); } static int xptsetasyncbusfunc(struct cam_eb *bus, void *arg) { struct cam_path path; struct ccb_pathinq cpi; struct ccb_setasync *csa = (struct ccb_setasync *)arg; xpt_compile_path(&path, /*periph*/NULL, bus->path_id, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); xpt_path_lock(&path); xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); cpi.ccb_h.func_code = XPT_PATH_INQ; xpt_action((union ccb *)&cpi); csa->callback(csa->callback_arg, AC_PATH_REGISTERED, &path, &cpi); xpt_path_unlock(&path); xpt_release_path(&path); return(1); } void xpt_action(union ccb *start_ccb) { CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action: func=%#x\n", start_ccb->ccb_h.func_code)); start_ccb->ccb_h.status = CAM_REQ_INPROG; (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); } void xpt_action_default(union ccb *start_ccb) { struct cam_path *path; struct cam_sim *sim; int lock; path = start_ccb->ccb_h.path; CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default: func=%#x\n", start_ccb->ccb_h.func_code)); switch (start_ccb->ccb_h.func_code) { case XPT_SCSI_IO: { struct cam_ed *device; /* * For the sake of compatibility with SCSI-1 * devices that may not understand the identify * message, we include lun information in the * second byte of all commands. SCSI-1 specifies * that luns are a 3 bit value and reserves only 3 * bits for lun information in the CDB. Later * revisions of the SCSI spec allow for more than 8 * luns, but have deprecated lun information in the * CDB. So, if the lun won't fit, we must omit. * * Also be aware that during initial probing for devices, * the inquiry information is unknown but initialized to 0. * This means that this code will be exercised while probing * devices with an ANSI revision greater than 2. */ device = path->device; if (device->protocol_version <= SCSI_REV_2 && start_ccb->ccb_h.target_lun < 8 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { start_ccb->csio.cdb_io.cdb_bytes[1] |= start_ccb->ccb_h.target_lun << 5; } start_ccb->csio.scsi_status = SCSI_STATUS_OK; } /* FALLTHROUGH */ case XPT_TARGET_IO: case XPT_CONT_TARGET_IO: start_ccb->csio.sense_resid = 0; start_ccb->csio.resid = 0; /* FALLTHROUGH */ case XPT_ATA_IO: if (start_ccb->ccb_h.func_code == XPT_ATA_IO) start_ccb->ataio.resid = 0; /* FALLTHROUGH */ case XPT_RESET_DEV: case XPT_ENG_EXEC: case XPT_SMP_IO: { struct cam_devq *devq; devq = path->bus->sim->devq; mtx_lock(&devq->send_mtx); cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); if (xpt_schedule_devq(devq, path->device) != 0) xpt_run_devq(devq); mtx_unlock(&devq->send_mtx); break; } case XPT_CALC_GEOMETRY: /* Filter out garbage */ if (start_ccb->ccg.block_size == 0 || start_ccb->ccg.volume_size == 0) { start_ccb->ccg.cylinders = 0; start_ccb->ccg.heads = 0; start_ccb->ccg.secs_per_track = 0; start_ccb->ccb_h.status = CAM_REQ_CMP; break; } #if defined(PC98) || defined(__sparc64__) /* * In a PC-98 system, geometry translation depens on * the "real" device geometry obtained from mode page 4. * SCSI geometry translation is performed in the * initialization routine of the SCSI BIOS and the result * stored in host memory. If the translation is available * in host memory, use it. If not, rely on the default * translation the device driver performs. * For sparc64, we may need adjust the geometry of large * disks in order to fit the limitations of the 16-bit * fields of the VTOC8 disk label. */ if (scsi_da_bios_params(&start_ccb->ccg) != 0) { start_ccb->ccb_h.status = CAM_REQ_CMP; break; } #endif goto call_sim; case XPT_ABORT: { union ccb* abort_ccb; abort_ccb = start_ccb->cab.abort_ccb; if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { if (abort_ccb->ccb_h.pinfo.index >= 0) { struct cam_ccbq *ccbq; struct cam_ed *device; device = abort_ccb->ccb_h.path->device; ccbq = &device->ccbq; cam_ccbq_remove_ccb(ccbq, abort_ccb); abort_ccb->ccb_h.status = CAM_REQ_ABORTED|CAM_DEV_QFRZN; xpt_freeze_devq(abort_ccb->ccb_h.path, 1); xpt_done(abort_ccb); start_ccb->ccb_h.status = CAM_REQ_CMP; break; } if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { /* * We've caught this ccb en route to * the SIM. Flag it for abort and the * SIM will do so just before starting * real work on the CCB. */ abort_ccb->ccb_h.status = CAM_REQ_ABORTED|CAM_DEV_QFRZN; xpt_freeze_devq(abort_ccb->ccb_h.path, 1); start_ccb->ccb_h.status = CAM_REQ_CMP; break; } } if (XPT_FC_IS_QUEUED(abort_ccb) && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { /* * It's already completed but waiting * for our SWI to get to it. */ start_ccb->ccb_h.status = CAM_UA_ABORT; break; } /* * If we weren't able to take care of the abort request * in the XPT, pass the request down to the SIM for processing. */ } /* FALLTHROUGH */ case XPT_ACCEPT_TARGET_IO: case XPT_EN_LUN: case XPT_IMMED_NOTIFY: case XPT_NOTIFY_ACK: case XPT_RESET_BUS: case XPT_IMMEDIATE_NOTIFY: case XPT_NOTIFY_ACKNOWLEDGE: + case XPT_GET_SIM_KNOB_OLD: case XPT_GET_SIM_KNOB: case XPT_SET_SIM_KNOB: case XPT_GET_TRAN_SETTINGS: case XPT_SET_TRAN_SETTINGS: case XPT_PATH_INQ: call_sim: sim = path->bus->sim; lock = (mtx_owned(sim->mtx) == 0); if (lock) CAM_SIM_LOCK(sim); CAM_DEBUG(path, CAM_DEBUG_TRACE, ("sim->sim_action: func=%#x\n", start_ccb->ccb_h.func_code)); (*(sim->sim_action))(sim, start_ccb); CAM_DEBUG(path, CAM_DEBUG_TRACE, ("sim->sim_action: status=%#x\n", start_ccb->ccb_h.status)); if (lock) CAM_SIM_UNLOCK(sim); break; case XPT_PATH_STATS: start_ccb->cpis.last_reset = path->bus->last_reset; start_ccb->ccb_h.status = CAM_REQ_CMP; break; case XPT_GDEV_TYPE: { struct cam_ed *dev; dev = path->device; if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; } else { struct ccb_getdev *cgd; cgd = &start_ccb->cgd; cgd->protocol = dev->protocol; cgd->inq_data = dev->inq_data; cgd->ident_data = dev->ident_data; cgd->inq_flags = dev->inq_flags; cgd->ccb_h.status = CAM_REQ_CMP; cgd->serial_num_len = dev->serial_num_len; if ((dev->serial_num_len > 0) && (dev->serial_num != NULL)) bcopy(dev->serial_num, cgd->serial_num, dev->serial_num_len); } break; } case XPT_GDEV_STATS: { struct cam_ed *dev; dev = path->device; if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; } else { struct ccb_getdevstats *cgds; struct cam_eb *bus; struct cam_et *tar; struct cam_devq *devq; cgds = &start_ccb->cgds; bus = path->bus; tar = path->target; devq = bus->sim->devq; mtx_lock(&devq->send_mtx); cgds->dev_openings = dev->ccbq.dev_openings; cgds->dev_active = dev->ccbq.dev_active; cgds->allocated = dev->ccbq.allocated; cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); cgds->held = cgds->allocated - cgds->dev_active - cgds->queued; cgds->last_reset = tar->last_reset; cgds->maxtags = dev->maxtags; cgds->mintags = dev->mintags; if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) cgds->last_reset = bus->last_reset; mtx_unlock(&devq->send_mtx); cgds->ccb_h.status = CAM_REQ_CMP; } break; } case XPT_GDEVLIST: { struct cam_periph *nperiph; struct periph_list *periph_head; struct ccb_getdevlist *cgdl; u_int i; struct cam_ed *device; int found; found = 0; /* * Don't want anyone mucking with our data. */ device = path->device; periph_head = &device->periphs; cgdl = &start_ccb->cgdl; /* * Check and see if the list has changed since the user * last requested a list member. If so, tell them that the * list has changed, and therefore they need to start over * from the beginning. */ if ((cgdl->index != 0) && (cgdl->generation != device->generation)) { cgdl->status = CAM_GDEVLIST_LIST_CHANGED; break; } /* * Traverse the list of peripherals and attempt to find * the requested peripheral. */ for (nperiph = SLIST_FIRST(periph_head), i = 0; (nperiph != NULL) && (i <= cgdl->index); nperiph = SLIST_NEXT(nperiph, periph_links), i++) { if (i == cgdl->index) { strncpy(cgdl->periph_name, nperiph->periph_name, DEV_IDLEN); cgdl->unit_number = nperiph->unit_number; found = 1; } } if (found == 0) { cgdl->status = CAM_GDEVLIST_ERROR; break; } if (nperiph == NULL) cgdl->status = CAM_GDEVLIST_LAST_DEVICE; else cgdl->status = CAM_GDEVLIST_MORE_DEVS; cgdl->index++; cgdl->generation = device->generation; cgdl->ccb_h.status = CAM_REQ_CMP; break; } case XPT_DEV_MATCH: { dev_pos_type position_type; struct ccb_dev_match *cdm; cdm = &start_ccb->cdm; /* * There are two ways of getting at information in the EDT. * The first way is via the primary EDT tree. It starts * with a list of busses, then a list of targets on a bus, * then devices/luns on a target, and then peripherals on a * device/lun. The "other" way is by the peripheral driver * lists. The peripheral driver lists are organized by * peripheral driver. (obviously) So it makes sense to * use the peripheral driver list if the user is looking * for something like "da1", or all "da" devices. If the * user is looking for something on a particular bus/target * or lun, it's generally better to go through the EDT tree. */ if (cdm->pos.position_type != CAM_DEV_POS_NONE) position_type = cdm->pos.position_type; else { u_int i; position_type = CAM_DEV_POS_NONE; for (i = 0; i < cdm->num_patterns; i++) { if ((cdm->patterns[i].type == DEV_MATCH_BUS) ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ position_type = CAM_DEV_POS_EDT; break; } } if (cdm->num_patterns == 0) position_type = CAM_DEV_POS_EDT; else if (position_type == CAM_DEV_POS_NONE) position_type = CAM_DEV_POS_PDRV; } switch(position_type & CAM_DEV_POS_TYPEMASK) { case CAM_DEV_POS_EDT: xptedtmatch(cdm); break; case CAM_DEV_POS_PDRV: xptperiphlistmatch(cdm); break; default: cdm->status = CAM_DEV_MATCH_ERROR; break; } if (cdm->status == CAM_DEV_MATCH_ERROR) start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; else start_ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_SASYNC_CB: { struct ccb_setasync *csa; struct async_node *cur_entry; struct async_list *async_head; u_int32_t added; csa = &start_ccb->csa; added = csa->event_enable; async_head = &path->device->asyncs; /* * If there is already an entry for us, simply * update it. */ cur_entry = SLIST_FIRST(async_head); while (cur_entry != NULL) { if ((cur_entry->callback_arg == csa->callback_arg) && (cur_entry->callback == csa->callback)) break; cur_entry = SLIST_NEXT(cur_entry, links); } if (cur_entry != NULL) { /* * If the request has no flags set, * remove the entry. */ added &= ~cur_entry->event_enable; if (csa->event_enable == 0) { SLIST_REMOVE(async_head, cur_entry, async_node, links); xpt_release_device(path->device); free(cur_entry, M_CAMXPT); } else { cur_entry->event_enable = csa->event_enable; } csa->event_enable = added; } else { cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, M_NOWAIT); if (cur_entry == NULL) { csa->ccb_h.status = CAM_RESRC_UNAVAIL; break; } cur_entry->event_enable = csa->event_enable; cur_entry->event_lock = mtx_owned(path->bus->sim->mtx) ? 1 : 0; cur_entry->callback_arg = csa->callback_arg; cur_entry->callback = csa->callback; SLIST_INSERT_HEAD(async_head, cur_entry, links); xpt_acquire_device(path->device); } start_ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_REL_SIMQ: { struct ccb_relsim *crs; struct cam_ed *dev; crs = &start_ccb->crs; dev = path->device; if (dev == NULL) { crs->ccb_h.status = CAM_DEV_NOT_THERE; break; } if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { /* Don't ever go below one opening */ if (crs->openings > 0) { xpt_dev_ccbq_resize(path, crs->openings); if (bootverbose) { xpt_print(path, "number of openings is now %d\n", crs->openings); } } } mtx_lock(&dev->sim->devq->send_mtx); if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { /* * Just extend the old timeout and decrement * the freeze count so that a single timeout * is sufficient for releasing the queue. */ start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; callout_stop(&dev->callout); } else { start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; } callout_reset_sbt(&dev->callout, SBT_1MS * crs->release_timeout, 0, xpt_release_devq_timeout, dev, 0); dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; } if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { /* * Decrement the freeze count so that a single * completion is still sufficient to unfreeze * the queue. */ start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; } else { dev->flags |= CAM_DEV_REL_ON_COMPLETE; start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; } } if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 || (dev->ccbq.dev_active == 0)) { start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; } else { dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; } } mtx_unlock(&dev->sim->devq->send_mtx); if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; start_ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_DEBUG: { struct cam_path *oldpath; /* Check that all request bits are supported. */ if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; break; } cam_dflags = CAM_DEBUG_NONE; if (cam_dpath != NULL) { oldpath = cam_dpath; cam_dpath = NULL; xpt_free_path(oldpath); } if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { if (xpt_create_path(&cam_dpath, NULL, start_ccb->ccb_h.path_id, start_ccb->ccb_h.target_id, start_ccb->ccb_h.target_lun) != CAM_REQ_CMP) { start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; } else { cam_dflags = start_ccb->cdbg.flags; start_ccb->ccb_h.status = CAM_REQ_CMP; xpt_print(cam_dpath, "debugging flags now %x\n", cam_dflags); } } else start_ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_NOOP: if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) xpt_freeze_devq(path, 1); start_ccb->ccb_h.status = CAM_REQ_CMP; break; default: case XPT_SDEV_TYPE: case XPT_TERM_IO: case XPT_ENG_INQ: /* XXX Implement */ printf("%s: CCB type %#x not supported\n", __func__, start_ccb->ccb_h.func_code); start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { xpt_done(start_ccb); } break; } } void xpt_polled_action(union ccb *start_ccb) { u_int32_t timeout; struct cam_sim *sim; struct cam_devq *devq; struct cam_ed *dev; timeout = start_ccb->ccb_h.timeout * 10; sim = start_ccb->ccb_h.path->bus->sim; devq = sim->devq; dev = start_ccb->ccb_h.path->device; mtx_unlock(&dev->device_mtx); /* * Steal an opening so that no other queued requests * can get it before us while we simulate interrupts. */ mtx_lock(&devq->send_mtx); dev->ccbq.dev_openings--; while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && (--timeout > 0)) { mtx_unlock(&devq->send_mtx); DELAY(100); CAM_SIM_LOCK(sim); (*(sim->sim_poll))(sim); CAM_SIM_UNLOCK(sim); camisr_runqueue(); mtx_lock(&devq->send_mtx); } dev->ccbq.dev_openings++; mtx_unlock(&devq->send_mtx); if (timeout != 0) { xpt_action(start_ccb); while(--timeout > 0) { CAM_SIM_LOCK(sim); (*(sim->sim_poll))(sim); CAM_SIM_UNLOCK(sim); camisr_runqueue(); if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) break; DELAY(100); } if (timeout == 0) { /* * XXX Is it worth adding a sim_timeout entry * point so we can attempt recovery? If * this is only used for dumps, I don't think * it is. */ start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; } } else { start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; } mtx_lock(&dev->device_mtx); } /* * Schedule a peripheral driver to receive a ccb when its * target device has space for more transactions. */ void xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) { CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); cam_periph_assert(periph, MA_OWNED); if (new_priority < periph->scheduled_priority) { periph->scheduled_priority = new_priority; xpt_run_allocq(periph, 0); } } /* * Schedule a device to run on a given queue. * If the device was inserted as a new entry on the queue, * return 1 meaning the device queue should be run. If we * were already queued, implying someone else has already * started the queue, return 0 so the caller doesn't attempt * to run the queue. */ static int xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, u_int32_t new_priority) { int retval; u_int32_t old_priority; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); old_priority = pinfo->priority; /* * Are we already queued? */ if (pinfo->index != CAM_UNQUEUED_INDEX) { /* Simply reorder based on new priority */ if (new_priority < old_priority) { camq_change_priority(queue, pinfo->index, new_priority); CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("changed priority to %d\n", new_priority)); retval = 1; } else retval = 0; } else { /* New entry on the queue */ if (new_priority < old_priority) pinfo->priority = new_priority; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("Inserting onto queue\n")); pinfo->generation = ++queue->generation; camq_insert(queue, pinfo); retval = 1; } return (retval); } static void xpt_run_allocq_task(void *context, int pending) { struct cam_periph *periph = context; cam_periph_lock(periph); periph->flags &= ~CAM_PERIPH_RUN_TASK; xpt_run_allocq(periph, 1); cam_periph_unlock(periph); cam_periph_release(periph); } static void xpt_run_allocq(struct cam_periph *periph, int sleep) { struct cam_ed *device; union ccb *ccb; uint32_t prio; cam_periph_assert(periph, MA_OWNED); if (periph->periph_allocating) return; periph->periph_allocating = 1; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); device = periph->path->device; ccb = NULL; restart: while ((prio = min(periph->scheduled_priority, periph->immediate_priority)) != CAM_PRIORITY_NONE && (periph->periph_allocated - (ccb != NULL ? 1 : 0) < device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { if (ccb == NULL && (ccb = xpt_get_ccb_nowait(periph)) == NULL) { if (sleep) { ccb = xpt_get_ccb(periph); goto restart; } if (periph->flags & CAM_PERIPH_RUN_TASK) break; cam_periph_doacquire(periph); periph->flags |= CAM_PERIPH_RUN_TASK; taskqueue_enqueue(xsoftc.xpt_taskq, &periph->periph_run_task); break; } xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); if (prio == periph->immediate_priority) { periph->immediate_priority = CAM_PRIORITY_NONE; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("waking cam_periph_getccb()\n")); SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, periph_links.sle); wakeup(&periph->ccb_list); } else { periph->scheduled_priority = CAM_PRIORITY_NONE; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("calling periph_start()\n")); periph->periph_start(periph, ccb); } ccb = NULL; } if (ccb != NULL) xpt_release_ccb(ccb); periph->periph_allocating = 0; } static void xpt_run_devq(struct cam_devq *devq) { char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; int lock; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); devq->send_queue.qfrozen_cnt++; while ((devq->send_queue.entries > 0) && (devq->send_openings > 0) && (devq->send_queue.qfrozen_cnt <= 1)) { struct cam_ed *device; union ccb *work_ccb; struct cam_sim *sim; device = (struct cam_ed *)camq_remove(&devq->send_queue, CAMQ_HEAD); CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("running device %p\n", device)); work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); if (work_ccb == NULL) { printf("device on run queue with no ccbs???\n"); continue; } if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { mtx_lock(&xsoftc.xpt_highpower_lock); if (xsoftc.num_highpower <= 0) { /* * We got a high power command, but we * don't have any available slots. Freeze * the device queue until we have a slot * available. */ xpt_freeze_devq_device(device, 1); STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, highpowerq_entry); mtx_unlock(&xsoftc.xpt_highpower_lock); continue; } else { /* * Consume a high power slot while * this ccb runs. */ xsoftc.num_highpower--; } mtx_unlock(&xsoftc.xpt_highpower_lock); } cam_ccbq_remove_ccb(&device->ccbq, work_ccb); cam_ccbq_send_ccb(&device->ccbq, work_ccb); devq->send_openings--; devq->send_active++; xpt_schedule_devq(devq, device); mtx_unlock(&devq->send_mtx); if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { /* * The client wants to freeze the queue * after this CCB is sent. */ xpt_freeze_devq(work_ccb->ccb_h.path, 1); } /* In Target mode, the peripheral driver knows best... */ if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { if ((device->inq_flags & SID_CmdQue) != 0 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; else /* * Clear this in case of a retried CCB that * failed due to a rejected tag. */ work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; } switch (work_ccb->ccb_h.func_code) { case XPT_SCSI_IO: CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_CDB,("%s. CDB: %s\n", scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0], &device->inq_data), scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes, cdb_str, sizeof(cdb_str)))); break; case XPT_ATA_IO: CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_CDB,("%s. ACB: %s\n", ata_op_string(&work_ccb->ataio.cmd), ata_cmd_string(&work_ccb->ataio.cmd, cdb_str, sizeof(cdb_str)))); break; default: break; } /* * Device queues can be shared among multiple SIM instances * that reside on different busses. Use the SIM from the * queued device, rather than the one from the calling bus. */ sim = device->sim; lock = (mtx_owned(sim->mtx) == 0); if (lock) CAM_SIM_LOCK(sim); (*(sim->sim_action))(sim, work_ccb); if (lock) CAM_SIM_UNLOCK(sim); mtx_lock(&devq->send_mtx); } devq->send_queue.qfrozen_cnt--; } /* * This function merges stuff from the slave ccb into the master ccb, while * keeping important fields in the master ccb constant. */ void xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) { /* * Pull fields that are valid for peripheral drivers to set * into the master CCB along with the CCB "payload". */ master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], sizeof(union ccb) - sizeof(struct ccb_hdr)); } void xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority, u_int32_t flags) { CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); ccb_h->pinfo.priority = priority; ccb_h->path = path; ccb_h->path_id = path->bus->path_id; if (path->target) ccb_h->target_id = path->target->target_id; else ccb_h->target_id = CAM_TARGET_WILDCARD; if (path->device) { ccb_h->target_lun = path->device->lun_id; ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; } else { ccb_h->target_lun = CAM_TARGET_WILDCARD; } ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; ccb_h->flags = flags; ccb_h->xflags = 0; } void xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) { xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); } /* Path manipulation functions */ cam_status xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, path_id_t path_id, target_id_t target_id, lun_id_t lun_id) { struct cam_path *path; cam_status status; path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); if (path == NULL) { status = CAM_RESRC_UNAVAIL; return(status); } status = xpt_compile_path(path, perph, path_id, target_id, lun_id); if (status != CAM_REQ_CMP) { free(path, M_CAMPATH); path = NULL; } *new_path_ptr = path; return (status); } cam_status xpt_create_path_unlocked(struct cam_path **new_path_ptr, struct cam_periph *periph, path_id_t path_id, target_id_t target_id, lun_id_t lun_id) { return (xpt_create_path(new_path_ptr, periph, path_id, target_id, lun_id)); } cam_status xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, path_id_t path_id, target_id_t target_id, lun_id_t lun_id) { struct cam_eb *bus; struct cam_et *target; struct cam_ed *device; cam_status status; status = CAM_REQ_CMP; /* Completed without error */ target = NULL; /* Wildcarded */ device = NULL; /* Wildcarded */ /* * We will potentially modify the EDT, so block interrupts * that may attempt to create cam paths. */ bus = xpt_find_bus(path_id); if (bus == NULL) { status = CAM_PATH_INVALID; } else { xpt_lock_buses(); mtx_lock(&bus->eb_mtx); target = xpt_find_target(bus, target_id); if (target == NULL) { /* Create one */ struct cam_et *new_target; new_target = xpt_alloc_target(bus, target_id); if (new_target == NULL) { status = CAM_RESRC_UNAVAIL; } else { target = new_target; } } xpt_unlock_buses(); if (target != NULL) { device = xpt_find_device(target, lun_id); if (device == NULL) { /* Create one */ struct cam_ed *new_device; new_device = (*(bus->xport->alloc_device))(bus, target, lun_id); if (new_device == NULL) { status = CAM_RESRC_UNAVAIL; } else { device = new_device; } } } mtx_unlock(&bus->eb_mtx); } /* * Only touch the user's data if we are successful. */ if (status == CAM_REQ_CMP) { new_path->periph = perph; new_path->bus = bus; new_path->target = target; new_path->device = device; CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); } else { if (device != NULL) xpt_release_device(device); if (target != NULL) xpt_release_target(target); if (bus != NULL) xpt_release_bus(bus); } return (status); } cam_status xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) { struct cam_path *new_path; new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); if (new_path == NULL) return(CAM_RESRC_UNAVAIL); xpt_copy_path(new_path, path); *new_path_ptr = new_path; return (CAM_REQ_CMP); } void xpt_copy_path(struct cam_path *new_path, struct cam_path *path) { *new_path = *path; if (path->bus != NULL) xpt_acquire_bus(path->bus); if (path->target != NULL) xpt_acquire_target(path->target); if (path->device != NULL) xpt_acquire_device(path->device); } void xpt_release_path(struct cam_path *path) { CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); if (path->device != NULL) { xpt_release_device(path->device); path->device = NULL; } if (path->target != NULL) { xpt_release_target(path->target); path->target = NULL; } if (path->bus != NULL) { xpt_release_bus(path->bus); path->bus = NULL; } } void xpt_free_path(struct cam_path *path) { CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); xpt_release_path(path); free(path, M_CAMPATH); } void xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) { xpt_lock_buses(); if (bus_ref) { if (path->bus) *bus_ref = path->bus->refcount; else *bus_ref = 0; } if (periph_ref) { if (path->periph) *periph_ref = path->periph->refcount; else *periph_ref = 0; } xpt_unlock_buses(); if (target_ref) { if (path->target) *target_ref = path->target->refcount; else *target_ref = 0; } if (device_ref) { if (path->device) *device_ref = path->device->refcount; else *device_ref = 0; } } /* * Return -1 for failure, 0 for exact match, 1 for match with wildcards * in path1, 2 for match with wildcards in path2. */ int xpt_path_comp(struct cam_path *path1, struct cam_path *path2) { int retval = 0; if (path1->bus != path2->bus) { if (path1->bus->path_id == CAM_BUS_WILDCARD) retval = 1; else if (path2->bus->path_id == CAM_BUS_WILDCARD) retval = 2; else return (-1); } if (path1->target != path2->target) { if (path1->target->target_id == CAM_TARGET_WILDCARD) { if (retval == 0) retval = 1; } else if (path2->target->target_id == CAM_TARGET_WILDCARD) retval = 2; else return (-1); } if (path1->device != path2->device) { if (path1->device->lun_id == CAM_LUN_WILDCARD) { if (retval == 0) retval = 1; } else if (path2->device->lun_id == CAM_LUN_WILDCARD) retval = 2; else return (-1); } return (retval); } int xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) { int retval = 0; if (path->bus != dev->target->bus) { if (path->bus->path_id == CAM_BUS_WILDCARD) retval = 1; else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) retval = 2; else return (-1); } if (path->target != dev->target) { if (path->target->target_id == CAM_TARGET_WILDCARD) { if (retval == 0) retval = 1; } else if (dev->target->target_id == CAM_TARGET_WILDCARD) retval = 2; else return (-1); } if (path->device != dev) { if (path->device->lun_id == CAM_LUN_WILDCARD) { if (retval == 0) retval = 1; } else if (dev->lun_id == CAM_LUN_WILDCARD) retval = 2; else return (-1); } return (retval); } void xpt_print_path(struct cam_path *path) { if (path == NULL) printf("(nopath): "); else { if (path->periph != NULL) printf("(%s%d:", path->periph->periph_name, path->periph->unit_number); else printf("(noperiph:"); if (path->bus != NULL) printf("%s%d:%d:", path->bus->sim->sim_name, path->bus->sim->unit_number, path->bus->sim->bus_id); else printf("nobus:"); if (path->target != NULL) printf("%d:", path->target->target_id); else printf("X:"); if (path->device != NULL) printf("%jx): ", (uintmax_t)path->device->lun_id); else printf("X): "); } } void xpt_print_device(struct cam_ed *device) { if (device == NULL) printf("(nopath): "); else { printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, device->sim->unit_number, device->sim->bus_id, device->target->target_id, (uintmax_t)device->lun_id); } } void xpt_print(struct cam_path *path, const char *fmt, ...) { va_list ap; xpt_print_path(path); va_start(ap, fmt); vprintf(fmt, ap); va_end(ap); } int xpt_path_string(struct cam_path *path, char *str, size_t str_len) { struct sbuf sb; sbuf_new(&sb, str, str_len, 0); if (path == NULL) sbuf_printf(&sb, "(nopath): "); else { if (path->periph != NULL) sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, path->periph->unit_number); else sbuf_printf(&sb, "(noperiph:"); if (path->bus != NULL) sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, path->bus->sim->unit_number, path->bus->sim->bus_id); else sbuf_printf(&sb, "nobus:"); if (path->target != NULL) sbuf_printf(&sb, "%d:", path->target->target_id); else sbuf_printf(&sb, "X:"); if (path->device != NULL) sbuf_printf(&sb, "%jx): ", (uintmax_t)path->device->lun_id); else sbuf_printf(&sb, "X): "); } sbuf_finish(&sb); return(sbuf_len(&sb)); } path_id_t xpt_path_path_id(struct cam_path *path) { return(path->bus->path_id); } target_id_t xpt_path_target_id(struct cam_path *path) { if (path->target != NULL) return (path->target->target_id); else return (CAM_TARGET_WILDCARD); } lun_id_t xpt_path_lun_id(struct cam_path *path) { if (path->device != NULL) return (path->device->lun_id); else return (CAM_LUN_WILDCARD); } struct cam_sim * xpt_path_sim(struct cam_path *path) { return (path->bus->sim); } struct cam_periph* xpt_path_periph(struct cam_path *path) { return (path->periph); } /* * Release a CAM control block for the caller. Remit the cost of the structure * to the device referenced by the path. If the this device had no 'credits' * and peripheral drivers have registered async callbacks for this notification * call them now. */ void xpt_release_ccb(union ccb *free_ccb) { struct cam_ed *device; struct cam_periph *periph; CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); device = free_ccb->ccb_h.path->device; periph = free_ccb->ccb_h.path->periph; xpt_free_ccb(free_ccb); periph->periph_allocated--; cam_ccbq_release_opening(&device->ccbq); xpt_run_allocq(periph, 0); } /* Functions accessed by SIM drivers */ static struct xpt_xport xport_default = { .alloc_device = xpt_alloc_device_default, .action = xpt_action_default, .async = xpt_dev_async_default, }; /* * A sim structure, listing the SIM entry points and instance * identification info is passed to xpt_bus_register to hook the SIM * into the CAM framework. xpt_bus_register creates a cam_eb entry * for this new bus and places it in the array of busses and assigns * it a path_id. The path_id may be influenced by "hard wiring" * information specified by the user. Once interrupt services are * available, the bus will be probed. */ int32_t xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) { struct cam_eb *new_bus; struct cam_eb *old_bus; struct ccb_pathinq cpi; struct cam_path *path; cam_status status; mtx_assert(sim->mtx, MA_OWNED); sim->bus_id = bus; new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), M_CAMXPT, M_NOWAIT|M_ZERO); if (new_bus == NULL) { /* Couldn't satisfy request */ return (CAM_RESRC_UNAVAIL); } mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); TAILQ_INIT(&new_bus->et_entries); cam_sim_hold(sim); new_bus->sim = sim; timevalclear(&new_bus->last_reset); new_bus->flags = 0; new_bus->refcount = 1; /* Held until a bus_deregister event */ new_bus->generation = 0; xpt_lock_buses(); sim->path_id = new_bus->path_id = xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); while (old_bus != NULL && old_bus->path_id < new_bus->path_id) old_bus = TAILQ_NEXT(old_bus, links); if (old_bus != NULL) TAILQ_INSERT_BEFORE(old_bus, new_bus, links); else TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); xsoftc.bus_generation++; xpt_unlock_buses(); /* * Set a default transport so that a PATH_INQ can be issued to * the SIM. This will then allow for probing and attaching of * a more appropriate transport. */ new_bus->xport = &xport_default; status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); if (status != CAM_REQ_CMP) { xpt_release_bus(new_bus); free(path, M_CAMXPT); return (CAM_RESRC_UNAVAIL); } xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); cpi.ccb_h.func_code = XPT_PATH_INQ; xpt_action((union ccb *)&cpi); if (cpi.ccb_h.status == CAM_REQ_CMP) { switch (cpi.transport) { case XPORT_SPI: case XPORT_SAS: case XPORT_FC: case XPORT_USB: case XPORT_ISCSI: case XPORT_SRP: case XPORT_PPB: new_bus->xport = scsi_get_xport(); break; case XPORT_ATA: case XPORT_SATA: new_bus->xport = ata_get_xport(); break; default: new_bus->xport = &xport_default; break; } } /* Notify interested parties */ if (sim->path_id != CAM_XPT_PATH_ID) { xpt_async(AC_PATH_REGISTERED, path, &cpi); if ((cpi.hba_misc & PIM_NOSCAN) == 0) { union ccb *scan_ccb; /* Initiate bus rescan. */ scan_ccb = xpt_alloc_ccb_nowait(); if (scan_ccb != NULL) { scan_ccb->ccb_h.path = path; scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; scan_ccb->crcn.flags = 0; xpt_rescan(scan_ccb); } else { xpt_print(path, "Can't allocate CCB to scan bus\n"); xpt_free_path(path); } } else xpt_free_path(path); } else xpt_free_path(path); return (CAM_SUCCESS); } int32_t xpt_bus_deregister(path_id_t pathid) { struct cam_path bus_path; cam_status status; status = xpt_compile_path(&bus_path, NULL, pathid, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); if (status != CAM_REQ_CMP) return (status); xpt_async(AC_LOST_DEVICE, &bus_path, NULL); xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); /* Release the reference count held while registered. */ xpt_release_bus(bus_path.bus); xpt_release_path(&bus_path); return (CAM_REQ_CMP); } static path_id_t xptnextfreepathid(void) { struct cam_eb *bus; path_id_t pathid; const char *strval; mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); pathid = 0; bus = TAILQ_FIRST(&xsoftc.xpt_busses); retry: /* Find an unoccupied pathid */ while (bus != NULL && bus->path_id <= pathid) { if (bus->path_id == pathid) pathid++; bus = TAILQ_NEXT(bus, links); } /* * Ensure that this pathid is not reserved for * a bus that may be registered in the future. */ if (resource_string_value("scbus", pathid, "at", &strval) == 0) { ++pathid; /* Start the search over */ goto retry; } return (pathid); } static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus) { path_id_t pathid; int i, dunit, val; char buf[32]; const char *dname; pathid = CAM_XPT_PATH_ID; snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) return (pathid); i = 0; while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { if (strcmp(dname, "scbus")) { /* Avoid a bit of foot shooting. */ continue; } if (dunit < 0) /* unwired?! */ continue; if (resource_int_value("scbus", dunit, "bus", &val) == 0) { if (sim_bus == val) { pathid = dunit; break; } } else if (sim_bus == 0) { /* Unspecified matches bus 0 */ pathid = dunit; break; } else { printf("Ambiguous scbus configuration for %s%d " "bus %d, cannot wire down. The kernel " "config entry for scbus%d should " "specify a controller bus.\n" "Scbus will be assigned dynamically.\n", sim_name, sim_unit, sim_bus, dunit); break; } } if (pathid == CAM_XPT_PATH_ID) pathid = xptnextfreepathid(); return (pathid); } static const char * xpt_async_string(u_int32_t async_code) { switch (async_code) { case AC_BUS_RESET: return ("AC_BUS_RESET"); case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); case AC_SCSI_AEN: return ("AC_SCSI_AEN"); case AC_SENT_BDR: return ("AC_SENT_BDR"); case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); case AC_CONTRACT: return ("AC_CONTRACT"); case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); } return ("AC_UNKNOWN"); } static int xpt_async_size(u_int32_t async_code) { switch (async_code) { case AC_BUS_RESET: return (0); case AC_UNSOL_RESEL: return (0); case AC_SCSI_AEN: return (0); case AC_SENT_BDR: return (0); case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); case AC_PATH_DEREGISTERED: return (0); case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); case AC_LOST_DEVICE: return (0); case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); case AC_INQ_CHANGED: return (0); case AC_GETDEV_CHANGED: return (0); case AC_CONTRACT: return (sizeof(struct ac_contract)); case AC_ADVINFO_CHANGED: return (-1); case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); } return (0); } static int xpt_async_process_dev(struct cam_ed *device, void *arg) { union ccb *ccb = arg; struct cam_path *path = ccb->ccb_h.path; void *async_arg = ccb->casync.async_arg_ptr; u_int32_t async_code = ccb->casync.async_code; int relock; if (path->device != device && path->device->lun_id != CAM_LUN_WILDCARD && device->lun_id != CAM_LUN_WILDCARD) return (1); /* * The async callback could free the device. * If it is a broadcast async, it doesn't hold * device reference, so take our own reference. */ xpt_acquire_device(device); /* * If async for specific device is to be delivered to * the wildcard client, take the specific device lock. * XXX: We may need a way for client to specify it. */ if ((device->lun_id == CAM_LUN_WILDCARD && path->device->lun_id != CAM_LUN_WILDCARD) || (device->target->target_id == CAM_TARGET_WILDCARD && path->target->target_id != CAM_TARGET_WILDCARD) || (device->target->bus->path_id == CAM_BUS_WILDCARD && path->target->bus->path_id != CAM_BUS_WILDCARD)) { mtx_unlock(&device->device_mtx); xpt_path_lock(path); relock = 1; } else relock = 0; (*(device->target->bus->xport->async))(async_code, device->target->bus, device->target, device, async_arg); xpt_async_bcast(&device->asyncs, async_code, path, async_arg); if (relock) { xpt_path_unlock(path); mtx_lock(&device->device_mtx); } xpt_release_device(device); return (1); } static int xpt_async_process_tgt(struct cam_et *target, void *arg) { union ccb *ccb = arg; struct cam_path *path = ccb->ccb_h.path; if (path->target != target && path->target->target_id != CAM_TARGET_WILDCARD && target->target_id != CAM_TARGET_WILDCARD) return (1); if (ccb->casync.async_code == AC_SENT_BDR) { /* Update our notion of when the last reset occurred */ microtime(&target->last_reset); } return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); } static void xpt_async_process(struct cam_periph *periph, union ccb *ccb) { struct cam_eb *bus; struct cam_path *path; void *async_arg; u_int32_t async_code; path = ccb->ccb_h.path; async_code = ccb->casync.async_code; async_arg = ccb->casync.async_arg_ptr; CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, ("xpt_async(%s)\n", xpt_async_string(async_code))); bus = path->bus; if (async_code == AC_BUS_RESET) { /* Update our notion of when the last reset occurred */ microtime(&bus->last_reset); } xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); /* * If this wasn't a fully wildcarded async, tell all * clients that want all async events. */ if (bus != xpt_periph->path->bus) { xpt_path_lock(xpt_periph->path); xpt_async_process_dev(xpt_periph->path->device, ccb); xpt_path_unlock(xpt_periph->path); } if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) xpt_release_devq(path, 1, TRUE); else xpt_release_simq(path->bus->sim, TRUE); if (ccb->casync.async_arg_size > 0) free(async_arg, M_CAMXPT); xpt_free_path(path); xpt_free_ccb(ccb); } static void xpt_async_bcast(struct async_list *async_head, u_int32_t async_code, struct cam_path *path, void *async_arg) { struct async_node *cur_entry; int lock; cur_entry = SLIST_FIRST(async_head); while (cur_entry != NULL) { struct async_node *next_entry; /* * Grab the next list entry before we call the current * entry's callback. This is because the callback function * can delete its async callback entry. */ next_entry = SLIST_NEXT(cur_entry, links); if ((cur_entry->event_enable & async_code) != 0) { lock = cur_entry->event_lock; if (lock) CAM_SIM_LOCK(path->device->sim); cur_entry->callback(cur_entry->callback_arg, async_code, path, async_arg); if (lock) CAM_SIM_UNLOCK(path->device->sim); } cur_entry = next_entry; } } void xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) { union ccb *ccb; int size; ccb = xpt_alloc_ccb_nowait(); if (ccb == NULL) { xpt_print(path, "Can't allocate CCB to send %s\n", xpt_async_string(async_code)); return; } if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { xpt_print(path, "Can't allocate path to send %s\n", xpt_async_string(async_code)); xpt_free_ccb(ccb); return; } ccb->ccb_h.path->periph = NULL; ccb->ccb_h.func_code = XPT_ASYNC; ccb->ccb_h.cbfcnp = xpt_async_process; ccb->ccb_h.flags |= CAM_UNLOCKED; ccb->casync.async_code = async_code; ccb->casync.async_arg_size = 0; size = xpt_async_size(async_code); if (size > 0 && async_arg != NULL) { ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); if (ccb->casync.async_arg_ptr == NULL) { xpt_print(path, "Can't allocate argument to send %s\n", xpt_async_string(async_code)); xpt_free_path(ccb->ccb_h.path); xpt_free_ccb(ccb); return; } memcpy(ccb->casync.async_arg_ptr, async_arg, size); ccb->casync.async_arg_size = size; } else if (size < 0) { ccb->casync.async_arg_ptr = async_arg; ccb->casync.async_arg_size = size; } if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) xpt_freeze_devq(path, 1); else xpt_freeze_simq(path->bus->sim, 1); xpt_done(ccb); } static void xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, struct cam_ed *device, void *async_arg) { /* * We only need to handle events for real devices. */ if (target->target_id == CAM_TARGET_WILDCARD || device->lun_id == CAM_LUN_WILDCARD) return; printf("%s called\n", __func__); } static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count) { struct cam_devq *devq; uint32_t freeze; devq = dev->sim->devq; mtx_assert(&devq->send_mtx, MA_OWNED); CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_freeze_devq_device(%d) %u->%u\n", count, dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); freeze = (dev->ccbq.queue.qfrozen_cnt += count); /* Remove frozen device from sendq. */ if (device_is_queued(dev)) camq_remove(&devq->send_queue, dev->devq_entry.index); return (freeze); } u_int32_t xpt_freeze_devq(struct cam_path *path, u_int count) { struct cam_ed *dev = path->device; struct cam_devq *devq; uint32_t freeze; devq = dev->sim->devq; mtx_lock(&devq->send_mtx); CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); freeze = xpt_freeze_devq_device(dev, count); mtx_unlock(&devq->send_mtx); return (freeze); } u_int32_t xpt_freeze_simq(struct cam_sim *sim, u_int count) { struct cam_devq *devq; uint32_t freeze; devq = sim->devq; mtx_lock(&devq->send_mtx); freeze = (devq->send_queue.qfrozen_cnt += count); mtx_unlock(&devq->send_mtx); return (freeze); } static void xpt_release_devq_timeout(void *arg) { struct cam_ed *dev; struct cam_devq *devq; dev = (struct cam_ed *)arg; CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); devq = dev->sim->devq; mtx_assert(&devq->send_mtx, MA_OWNED); if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) xpt_run_devq(devq); } void xpt_release_devq(struct cam_path *path, u_int count, int run_queue) { struct cam_ed *dev; struct cam_devq *devq; CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", count, run_queue)); dev = path->device; devq = dev->sim->devq; mtx_lock(&devq->send_mtx); if (xpt_release_devq_device(dev, count, run_queue)) xpt_run_devq(dev->sim->devq); mtx_unlock(&devq->send_mtx); } static int xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) { mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); if (count > dev->ccbq.queue.qfrozen_cnt) { #ifdef INVARIANTS printf("xpt_release_devq(): requested %u > present %u\n", count, dev->ccbq.queue.qfrozen_cnt); #endif count = dev->ccbq.queue.qfrozen_cnt; } dev->ccbq.queue.qfrozen_cnt -= count; if (dev->ccbq.queue.qfrozen_cnt == 0) { /* * No longer need to wait for a successful * command completion. */ dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; /* * Remove any timeouts that might be scheduled * to release this queue. */ if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { callout_stop(&dev->callout); dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; } /* * Now that we are unfrozen schedule the * device so any pending transactions are * run. */ xpt_schedule_devq(dev->sim->devq, dev); } else run_queue = 0; return (run_queue); } void xpt_release_simq(struct cam_sim *sim, int run_queue) { struct cam_devq *devq; devq = sim->devq; mtx_lock(&devq->send_mtx); if (devq->send_queue.qfrozen_cnt <= 0) { #ifdef INVARIANTS printf("xpt_release_simq: requested 1 > present %u\n", devq->send_queue.qfrozen_cnt); #endif } else devq->send_queue.qfrozen_cnt--; if (devq->send_queue.qfrozen_cnt == 0) { /* * If there is a timeout scheduled to release this * sim queue, remove it. The queue frozen count is * already at 0. */ if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ callout_stop(&sim->callout); sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; } if (run_queue) { /* * Now that we are unfrozen run the send queue. */ xpt_run_devq(sim->devq); } } mtx_unlock(&devq->send_mtx); } /* * XXX Appears to be unused. */ static void xpt_release_simq_timeout(void *arg) { struct cam_sim *sim; sim = (struct cam_sim *)arg; xpt_release_simq(sim, /* run_queue */ TRUE); } void xpt_done(union ccb *done_ccb) { struct cam_doneq *queue; int run, hash; CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) return; hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + done_ccb->ccb_h.target_lun) % cam_num_doneqs; queue = &cam_doneqs[hash]; mtx_lock(&queue->cam_doneq_mtx); run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; mtx_unlock(&queue->cam_doneq_mtx); if (run) wakeup(&queue->cam_doneq); } void xpt_done_direct(union ccb *done_ccb) { CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done_direct\n")); if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) return; xpt_done_process(&done_ccb->ccb_h); } union ccb * xpt_alloc_ccb() { union ccb *new_ccb; new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); return (new_ccb); } union ccb * xpt_alloc_ccb_nowait() { union ccb *new_ccb; new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); return (new_ccb); } void xpt_free_ccb(union ccb *free_ccb) { free(free_ccb, M_CAMCCB); } /* Private XPT functions */ /* * Get a CAM control block for the caller. Charge the structure to the device * referenced by the path. If we don't have sufficient resources to allocate * more ccbs, we return NULL. */ static union ccb * xpt_get_ccb_nowait(struct cam_periph *periph) { union ccb *new_ccb; new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); if (new_ccb == NULL) return (NULL); periph->periph_allocated++; cam_ccbq_take_opening(&periph->path->device->ccbq); return (new_ccb); } static union ccb * xpt_get_ccb(struct cam_periph *periph) { union ccb *new_ccb; cam_periph_unlock(periph); new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); cam_periph_lock(periph); periph->periph_allocated++; cam_ccbq_take_opening(&periph->path->device->ccbq); return (new_ccb); } union ccb * cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) { struct ccb_hdr *ccb_h; CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); cam_periph_assert(periph, MA_OWNED); while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || ccb_h->pinfo.priority != priority) { if (priority < periph->immediate_priority) { periph->immediate_priority = priority; xpt_run_allocq(periph, 0); } else cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, "cgticb", 0); } SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); return ((union ccb *)ccb_h); } static void xpt_acquire_bus(struct cam_eb *bus) { xpt_lock_buses(); bus->refcount++; xpt_unlock_buses(); } static void xpt_release_bus(struct cam_eb *bus) { xpt_lock_buses(); KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); if (--bus->refcount > 0) { xpt_unlock_buses(); return; } TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); xsoftc.bus_generation++; xpt_unlock_buses(); KASSERT(TAILQ_EMPTY(&bus->et_entries), ("destroying bus, but target list is not empty")); cam_sim_release(bus->sim); mtx_destroy(&bus->eb_mtx); free(bus, M_CAMXPT); } static struct cam_et * xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) { struct cam_et *cur_target, *target; mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); mtx_assert(&bus->eb_mtx, MA_OWNED); target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT|M_ZERO); if (target == NULL) return (NULL); TAILQ_INIT(&target->ed_entries); target->bus = bus; target->target_id = target_id; target->refcount = 1; target->generation = 0; target->luns = NULL; mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); timevalclear(&target->last_reset); /* * Hold a reference to our parent bus so it * will not go away before we do. */ bus->refcount++; /* Insertion sort into our bus's target list */ cur_target = TAILQ_FIRST(&bus->et_entries); while (cur_target != NULL && cur_target->target_id < target_id) cur_target = TAILQ_NEXT(cur_target, links); if (cur_target != NULL) { TAILQ_INSERT_BEFORE(cur_target, target, links); } else { TAILQ_INSERT_TAIL(&bus->et_entries, target, links); } bus->generation++; return (target); } static void xpt_acquire_target(struct cam_et *target) { struct cam_eb *bus = target->bus; mtx_lock(&bus->eb_mtx); target->refcount++; mtx_unlock(&bus->eb_mtx); } static void xpt_release_target(struct cam_et *target) { struct cam_eb *bus = target->bus; mtx_lock(&bus->eb_mtx); if (--target->refcount > 0) { mtx_unlock(&bus->eb_mtx); return; } TAILQ_REMOVE(&bus->et_entries, target, links); bus->generation++; mtx_unlock(&bus->eb_mtx); KASSERT(TAILQ_EMPTY(&target->ed_entries), ("destroying target, but device list is not empty")); xpt_release_bus(bus); mtx_destroy(&target->luns_mtx); if (target->luns) free(target->luns, M_CAMXPT); free(target, M_CAMXPT); } static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) { struct cam_ed *device; device = xpt_alloc_device(bus, target, lun_id); if (device == NULL) return (NULL); device->mintags = 1; device->maxtags = 1; return (device); } static void xpt_destroy_device(void *context, int pending) { struct cam_ed *device = context; mtx_lock(&device->device_mtx); mtx_destroy(&device->device_mtx); free(device, M_CAMDEV); } struct cam_ed * xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) { struct cam_ed *cur_device, *device; struct cam_devq *devq; cam_status status; mtx_assert(&bus->eb_mtx, MA_OWNED); /* Make space for us in the device queue on our bus */ devq = bus->sim->devq; mtx_lock(&devq->send_mtx); status = cam_devq_resize(devq, devq->send_queue.array_size + 1); mtx_unlock(&devq->send_mtx); if (status != CAM_REQ_CMP) return (NULL); device = (struct cam_ed *)malloc(sizeof(*device), M_CAMDEV, M_NOWAIT|M_ZERO); if (device == NULL) return (NULL); cam_init_pinfo(&device->devq_entry); device->target = target; device->lun_id = lun_id; device->sim = bus->sim; if (cam_ccbq_init(&device->ccbq, bus->sim->max_dev_openings) != 0) { free(device, M_CAMDEV); return (NULL); } SLIST_INIT(&device->asyncs); SLIST_INIT(&device->periphs); device->generation = 0; device->flags = CAM_DEV_UNCONFIGURED; device->tag_delay_count = 0; device->tag_saved_openings = 0; device->refcount = 1; mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); callout_init_mtx(&device->callout, &devq->send_mtx, 0); TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); /* * Hold a reference to our parent bus so it * will not go away before we do. */ target->refcount++; cur_device = TAILQ_FIRST(&target->ed_entries); while (cur_device != NULL && cur_device->lun_id < lun_id) cur_device = TAILQ_NEXT(cur_device, links); if (cur_device != NULL) TAILQ_INSERT_BEFORE(cur_device, device, links); else TAILQ_INSERT_TAIL(&target->ed_entries, device, links); target->generation++; return (device); } void xpt_acquire_device(struct cam_ed *device) { struct cam_eb *bus = device->target->bus; mtx_lock(&bus->eb_mtx); device->refcount++; mtx_unlock(&bus->eb_mtx); } void xpt_release_device(struct cam_ed *device) { struct cam_eb *bus = device->target->bus; struct cam_devq *devq; mtx_lock(&bus->eb_mtx); if (--device->refcount > 0) { mtx_unlock(&bus->eb_mtx); return; } TAILQ_REMOVE(&device->target->ed_entries, device,links); device->target->generation++; mtx_unlock(&bus->eb_mtx); /* Release our slot in the devq */ devq = bus->sim->devq; mtx_lock(&devq->send_mtx); cam_devq_resize(devq, devq->send_queue.array_size - 1); mtx_unlock(&devq->send_mtx); KASSERT(SLIST_EMPTY(&device->periphs), ("destroying device, but periphs list is not empty")); KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, ("destroying device while still queued for ccbs")); if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) callout_stop(&device->callout); xpt_release_target(device->target); cam_ccbq_fini(&device->ccbq); /* * Free allocated memory. free(9) does nothing if the * supplied pointer is NULL, so it is safe to call without * checking. */ free(device->supported_vpds, M_CAMXPT); free(device->device_id, M_CAMXPT); free(device->ext_inq, M_CAMXPT); free(device->physpath, M_CAMXPT); free(device->rcap_buf, M_CAMXPT); free(device->serial_num, M_CAMXPT); taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); } u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) { int result; struct cam_ed *dev; dev = path->device; mtx_lock(&dev->sim->devq->send_mtx); result = cam_ccbq_resize(&dev->ccbq, newopenings); mtx_unlock(&dev->sim->devq->send_mtx); if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 || (dev->inq_flags & SID_CmdQue) != 0) dev->tag_saved_openings = newopenings; return (result); } static struct cam_eb * xpt_find_bus(path_id_t path_id) { struct cam_eb *bus; xpt_lock_buses(); for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); bus != NULL; bus = TAILQ_NEXT(bus, links)) { if (bus->path_id == path_id) { bus->refcount++; break; } } xpt_unlock_buses(); return (bus); } static struct cam_et * xpt_find_target(struct cam_eb *bus, target_id_t target_id) { struct cam_et *target; mtx_assert(&bus->eb_mtx, MA_OWNED); for (target = TAILQ_FIRST(&bus->et_entries); target != NULL; target = TAILQ_NEXT(target, links)) { if (target->target_id == target_id) { target->refcount++; break; } } return (target); } static struct cam_ed * xpt_find_device(struct cam_et *target, lun_id_t lun_id) { struct cam_ed *device; mtx_assert(&target->bus->eb_mtx, MA_OWNED); for (device = TAILQ_FIRST(&target->ed_entries); device != NULL; device = TAILQ_NEXT(device, links)) { if (device->lun_id == lun_id) { device->refcount++; break; } } return (device); } void xpt_start_tags(struct cam_path *path) { struct ccb_relsim crs; struct cam_ed *device; struct cam_sim *sim; int newopenings; device = path->device; sim = path->bus->sim; device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; xpt_freeze_devq(path, /*count*/1); device->inq_flags |= SID_CmdQue; if (device->tag_saved_openings != 0) newopenings = device->tag_saved_openings; else newopenings = min(device->maxtags, sim->max_tagged_dev_openings); xpt_dev_ccbq_resize(path, newopenings); xpt_async(AC_GETDEV_CHANGED, path, NULL); xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); crs.ccb_h.func_code = XPT_REL_SIMQ; crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; crs.openings = crs.release_timeout = crs.qfrozen_cnt = 0; xpt_action((union ccb *)&crs); } void xpt_stop_tags(struct cam_path *path) { struct ccb_relsim crs; struct cam_ed *device; struct cam_sim *sim; device = path->device; sim = path->bus->sim; device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; device->tag_delay_count = 0; xpt_freeze_devq(path, /*count*/1); device->inq_flags &= ~SID_CmdQue; xpt_dev_ccbq_resize(path, sim->max_dev_openings); xpt_async(AC_GETDEV_CHANGED, path, NULL); xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); crs.ccb_h.func_code = XPT_REL_SIMQ; crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; crs.openings = crs.release_timeout = crs.qfrozen_cnt = 0; xpt_action((union ccb *)&crs); } static void xpt_boot_delay(void *arg) { xpt_release_boot(); } static void xpt_config(void *arg) { /* * Now that interrupts are enabled, go find our devices */ if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) printf("xpt_config: failed to create taskqueue thread.\n"); /* Setup debugging path */ if (cam_dflags != CAM_DEBUG_NONE) { if (xpt_create_path(&cam_dpath, NULL, CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN) != CAM_REQ_CMP) { printf("xpt_config: xpt_create_path() failed for debug" " target %d:%d:%d, debugging disabled\n", CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); cam_dflags = CAM_DEBUG_NONE; } } else cam_dpath = NULL; periphdriver_init(1); xpt_hold_boot(); callout_init(&xsoftc.boot_callout, 1); callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, xpt_boot_delay, NULL, 0); /* Fire up rescan thread. */ if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, "cam", "scanner")) { printf("xpt_config: failed to create rescan thread.\n"); } } void xpt_hold_boot(void) { xpt_lock_buses(); xsoftc.buses_to_config++; xpt_unlock_buses(); } void xpt_release_boot(void) { xpt_lock_buses(); xsoftc.buses_to_config--; if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { struct xpt_task *task; xsoftc.buses_config_done = 1; xpt_unlock_buses(); /* Call manually because we don't have any busses */ task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); if (task != NULL) { TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); taskqueue_enqueue(taskqueue_thread, &task->task); } } else xpt_unlock_buses(); } /* * If the given device only has one peripheral attached to it, and if that * peripheral is the passthrough driver, announce it. This insures that the * user sees some sort of announcement for every peripheral in their system. */ static int xptpassannouncefunc(struct cam_ed *device, void *arg) { struct cam_periph *periph; int i; for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; periph = SLIST_NEXT(periph, periph_links), i++); periph = SLIST_FIRST(&device->periphs); if ((i == 1) && (strncmp(periph->periph_name, "pass", 4) == 0)) xpt_announce_periph(periph, NULL); return(1); } static void xpt_finishconfig_task(void *context, int pending) { periphdriver_init(2); /* * Check for devices with no "standard" peripheral driver * attached. For any devices like that, announce the * passthrough driver so the user will see something. */ if (!bootverbose) xpt_for_all_devices(xptpassannouncefunc, NULL); /* Release our hook so that the boot can continue. */ config_intrhook_disestablish(xsoftc.xpt_config_hook); free(xsoftc.xpt_config_hook, M_CAMXPT); xsoftc.xpt_config_hook = NULL; free(context, M_CAMXPT); } cam_status xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, struct cam_path *path) { struct ccb_setasync csa; cam_status status; int xptpath = 0; if (path == NULL) { status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); if (status != CAM_REQ_CMP) return (status); xpt_path_lock(path); xptpath = 1; } xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); csa.ccb_h.func_code = XPT_SASYNC_CB; csa.event_enable = event; csa.callback = cbfunc; csa.callback_arg = cbarg; xpt_action((union ccb *)&csa); status = csa.ccb_h.status; if (xptpath) { xpt_path_unlock(path); xpt_free_path(path); } if ((status == CAM_REQ_CMP) && (csa.event_enable & AC_FOUND_DEVICE)) { /* * Get this peripheral up to date with all * the currently existing devices. */ xpt_for_all_devices(xptsetasyncfunc, &csa); } if ((status == CAM_REQ_CMP) && (csa.event_enable & AC_PATH_REGISTERED)) { /* * Get this peripheral up to date with all * the currently existing busses. */ xpt_for_all_busses(xptsetasyncbusfunc, &csa); } return (status); } static void xptaction(struct cam_sim *sim, union ccb *work_ccb) { CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); switch (work_ccb->ccb_h.func_code) { /* Common cases first */ case XPT_PATH_INQ: /* Path routing inquiry */ { struct ccb_pathinq *cpi; cpi = &work_ccb->cpi; cpi->version_num = 1; /* XXX??? */ cpi->hba_inquiry = 0; cpi->target_sprt = 0; cpi->hba_misc = 0; cpi->hba_eng_cnt = 0; cpi->max_target = 0; cpi->max_lun = 0; cpi->initiator_id = 0; strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strncpy(cpi->hba_vid, "", HBA_IDLEN); strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); cpi->unit_number = sim->unit_number; cpi->bus_id = sim->bus_id; cpi->base_transfer_speed = 0; cpi->protocol = PROTO_UNSPECIFIED; cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; cpi->transport = XPORT_UNSPECIFIED; cpi->transport_version = XPORT_VERSION_UNSPECIFIED; cpi->ccb_h.status = CAM_REQ_CMP; xpt_done(work_ccb); break; } default: work_ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(work_ccb); break; } } /* * The xpt as a "controller" has no interrupt sources, so polling * is a no-op. */ static void xptpoll(struct cam_sim *sim) { } void xpt_lock_buses(void) { mtx_lock(&xsoftc.xpt_topo_lock); } void xpt_unlock_buses(void) { mtx_unlock(&xsoftc.xpt_topo_lock); } struct mtx * xpt_path_mtx(struct cam_path *path) { return (&path->device->device_mtx); } static void xpt_done_process(struct ccb_hdr *ccb_h) { struct cam_sim *sim; struct cam_devq *devq; struct mtx *mtx = NULL; if (ccb_h->flags & CAM_HIGH_POWER) { struct highpowerlist *hphead; struct cam_ed *device; mtx_lock(&xsoftc.xpt_highpower_lock); hphead = &xsoftc.highpowerq; device = STAILQ_FIRST(hphead); /* * Increment the count since this command is done. */ xsoftc.num_highpower++; /* * Any high powered commands queued up? */ if (device != NULL) { STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); mtx_unlock(&xsoftc.xpt_highpower_lock); mtx_lock(&device->sim->devq->send_mtx); xpt_release_devq_device(device, /*count*/1, /*runqueue*/TRUE); mtx_unlock(&device->sim->devq->send_mtx); } else mtx_unlock(&xsoftc.xpt_highpower_lock); } sim = ccb_h->path->bus->sim; if (ccb_h->status & CAM_RELEASE_SIMQ) { xpt_release_simq(sim, /*run_queue*/FALSE); ccb_h->status &= ~CAM_RELEASE_SIMQ; } if ((ccb_h->flags & CAM_DEV_QFRZDIS) && (ccb_h->status & CAM_DEV_QFRZN)) { xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); ccb_h->status &= ~CAM_DEV_QFRZN; } devq = sim->devq; if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { struct cam_ed *dev = ccb_h->path->device; mtx_lock(&devq->send_mtx); devq->send_active--; devq->send_openings++; cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 && (dev->ccbq.dev_active == 0))) { dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; xpt_release_devq_device(dev, /*count*/1, /*run_queue*/FALSE); } if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; xpt_release_devq_device(dev, /*count*/1, /*run_queue*/FALSE); } if (!device_is_queued(dev)) (void)xpt_schedule_devq(devq, dev); xpt_run_devq(devq); mtx_unlock(&devq->send_mtx); if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { mtx = xpt_path_mtx(ccb_h->path); mtx_lock(mtx); if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 && (--dev->tag_delay_count == 0)) xpt_start_tags(ccb_h->path); } } if ((ccb_h->flags & CAM_UNLOCKED) == 0) { if (mtx == NULL) { mtx = xpt_path_mtx(ccb_h->path); mtx_lock(mtx); } } else { if (mtx != NULL) { mtx_unlock(mtx); mtx = NULL; } } /* Call the peripheral driver's callback */ ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); if (mtx != NULL) mtx_unlock(mtx); } void xpt_done_td(void *arg) { struct cam_doneq *queue = arg; struct ccb_hdr *ccb_h; STAILQ_HEAD(, ccb_hdr) doneq; STAILQ_INIT(&doneq); mtx_lock(&queue->cam_doneq_mtx); while (1) { while (STAILQ_EMPTY(&queue->cam_doneq)) { queue->cam_doneq_sleep = 1; msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, PRIBIO, "-", 0); queue->cam_doneq_sleep = 0; } STAILQ_CONCAT(&doneq, &queue->cam_doneq); mtx_unlock(&queue->cam_doneq_mtx); THREAD_NO_SLEEPING(); while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); xpt_done_process(ccb_h); } THREAD_SLEEPING_OK(); mtx_lock(&queue->cam_doneq_mtx); } } static void camisr_runqueue(void) { struct ccb_hdr *ccb_h; struct cam_doneq *queue; int i; /* Process global queues. */ for (i = 0; i < cam_num_doneqs; i++) { queue = &cam_doneqs[i]; mtx_lock(&queue->cam_doneq_mtx); while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); mtx_unlock(&queue->cam_doneq_mtx); xpt_done_process(ccb_h); mtx_lock(&queue->cam_doneq_mtx); } mtx_unlock(&queue->cam_doneq_mtx); } } Index: head/sys/cam/ctl/scsi_ctl.c =================================================================== --- head/sys/cam/ctl/scsi_ctl.c (revision 296603) +++ head/sys/cam/ctl/scsi_ctl.c (revision 296604) @@ -1,2077 +1,2078 @@ /*- * Copyright (c) 2008, 2009 Silicon Graphics International Corp. * Copyright (c) 2014-2015 Alexander Motin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. * * $Id: //depot/users/kenm/FreeBSD-test2/sys/cam/ctl/scsi_ctl.c#4 $ */ /* * Peripheral driver interface between CAM and CTL (CAM Target Layer). * * Author: Ken Merry */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct ctlfe_softc { struct ctl_port port; path_id_t path_id; target_id_t target_id; uint32_t hba_misc; u_int maxio; struct cam_sim *sim; char port_name[DEV_IDLEN]; struct mtx lun_softc_mtx; STAILQ_HEAD(, ctlfe_lun_softc) lun_softc_list; STAILQ_ENTRY(ctlfe_softc) links; }; STAILQ_HEAD(, ctlfe_softc) ctlfe_softc_list; struct mtx ctlfe_list_mtx; static char ctlfe_mtx_desc[] = "ctlfelist"; #ifdef CTLFE_INIT_ENABLE static int ctlfe_max_targets = 1; static int ctlfe_num_targets = 0; #endif typedef enum { CTLFE_LUN_NONE = 0x00, CTLFE_LUN_WILDCARD = 0x01 } ctlfe_lun_flags; struct ctlfe_lun_softc { struct ctlfe_softc *parent_softc; struct cam_periph *periph; ctlfe_lun_flags flags; uint64_t ccbs_alloced; uint64_t ccbs_freed; uint64_t ctios_sent; uint64_t ctios_returned; uint64_t atios_alloced; uint64_t atios_freed; uint64_t inots_alloced; uint64_t inots_freed; /* bus_dma_tag_t dma_tag; */ TAILQ_HEAD(, ccb_hdr) work_queue; STAILQ_ENTRY(ctlfe_lun_softc) links; }; typedef enum { CTLFE_CMD_NONE = 0x00, CTLFE_CMD_PIECEWISE = 0x01 } ctlfe_cmd_flags; struct ctlfe_cmd_info { int cur_transfer_index; size_t cur_transfer_off; ctlfe_cmd_flags flags; /* * XXX KDM struct bus_dma_segment is 8 bytes on i386, and 16 * bytes on amd64. So with 32 elements, this is 256 bytes on * i386 and 512 bytes on amd64. */ #define CTLFE_MAX_SEGS 32 bus_dma_segment_t cam_sglist[CTLFE_MAX_SEGS]; }; /* * When we register the adapter/bus, request that this many ctl_ios be * allocated. This should be the maximum supported by the adapter, but we * currently don't have a way to get that back from the path inquiry. * XXX KDM add that to the path inquiry. */ #define CTLFE_REQ_CTL_IO 4096 /* * Number of Accept Target I/O CCBs to allocate and queue down to the * adapter per LUN. * XXX KDM should this be controlled by CTL? */ #define CTLFE_ATIO_PER_LUN 1024 /* * Number of Immediate Notify CCBs (used for aborts, resets, etc.) to * allocate and queue down to the adapter per LUN. * XXX KDM should this be controlled by CTL? */ #define CTLFE_IN_PER_LUN 1024 /* * Timeout (in seconds) on CTIO CCB allocation for doing a DMA or sending * status to the initiator. The SIM is expected to have its own timeouts, * so we're not putting this timeout around the CCB execution time. The * SIM should timeout and let us know if it has an issue. */ #define CTLFE_DMA_TIMEOUT 60 /* * Turn this on to enable extra debugging prints. */ #if 0 #define CTLFE_DEBUG #endif /* * Use randomly assigned WWNN/WWPN values. This is to work around an issue * in the FreeBSD initiator that makes it unable to rescan the target if * the target gets rebooted and the WWNN/WWPN stay the same. */ #if 0 #define RANDOM_WWNN #endif MALLOC_DEFINE(M_CTLFE, "CAM CTL FE", "CAM CTL FE interface"); #define io_ptr ppriv_ptr0 /* This is only used in the CTIO */ #define ccb_atio ppriv_ptr1 int ctlfeinitialize(void); void ctlfeshutdown(void); static periph_init_t ctlfeperiphinit; static void ctlfeasync(void *callback_arg, uint32_t code, struct cam_path *path, void *arg); static periph_ctor_t ctlferegister; static periph_oninv_t ctlfeoninvalidate; static periph_dtor_t ctlfecleanup; static periph_start_t ctlfestart; static void ctlfedone(struct cam_periph *periph, union ccb *done_ccb); static void ctlfe_onoffline(void *arg, int online); static void ctlfe_online(void *arg); static void ctlfe_offline(void *arg); static int ctlfe_lun_enable(void *arg, int lun_id); static int ctlfe_lun_disable(void *arg, int lun_id); static void ctlfe_dump_sim(struct cam_sim *sim); static void ctlfe_dump_queue(struct ctlfe_lun_softc *softc); static void ctlfe_datamove(union ctl_io *io); static void ctlfe_done(union ctl_io *io); static void ctlfe_dump(void); static struct periph_driver ctlfe_driver = { ctlfeperiphinit, "ctl", TAILQ_HEAD_INITIALIZER(ctlfe_driver.units), /*generation*/ 0, CAM_PERIPH_DRV_EARLY }; static struct ctl_frontend ctlfe_frontend = { .name = "camtgt", .init = ctlfeinitialize, .fe_dump = ctlfe_dump, .shutdown = ctlfeshutdown, }; CTL_FRONTEND_DECLARE(ctlfe, ctlfe_frontend); void ctlfeshutdown(void) { return; } int ctlfeinitialize(void) { STAILQ_INIT(&ctlfe_softc_list); mtx_init(&ctlfe_list_mtx, ctlfe_mtx_desc, NULL, MTX_DEF); periphdriver_register(&ctlfe_driver); return (0); } void ctlfeperiphinit(void) { cam_status status; status = xpt_register_async(AC_PATH_REGISTERED | AC_PATH_DEREGISTERED | AC_CONTRACT, ctlfeasync, NULL, NULL); if (status != CAM_REQ_CMP) { printf("ctl: Failed to attach async callback due to CAM " "status 0x%x!\n", status); } } static void ctlfeasync(void *callback_arg, uint32_t code, struct cam_path *path, void *arg) { struct ctlfe_softc *softc; #ifdef CTLFEDEBUG printf("%s: entered\n", __func__); #endif mtx_lock(&ctlfe_list_mtx); STAILQ_FOREACH(softc, &ctlfe_softc_list, links) { if (softc->path_id == xpt_path_path_id(path)) break; } mtx_unlock(&ctlfe_list_mtx); /* * When a new path gets registered, and it is capable of target * mode, go ahead and attach. Later on, we may need to be more * selective, but for now this will be sufficient. */ switch (code) { case AC_PATH_REGISTERED: { struct ctl_port *port; struct ccb_pathinq *cpi; int retval; cpi = (struct ccb_pathinq *)arg; /* Don't attach if it doesn't support target mode */ if ((cpi->target_sprt & PIT_PROCESSOR) == 0) { #ifdef CTLFEDEBUG printf("%s: SIM %s%d doesn't support target mode\n", __func__, cpi->dev_name, cpi->unit_number); #endif break; } if (softc != NULL) { #ifdef CTLFEDEBUG printf("%s: CTL port for CAM path %u already exists\n", __func__, xpt_path_path_id(path)); #endif break; } #ifdef CTLFE_INIT_ENABLE if (ctlfe_num_targets >= ctlfe_max_targets) { union ccb *ccb; ccb = (union ccb *)malloc(sizeof(*ccb), M_TEMP, M_NOWAIT | M_ZERO); if (ccb == NULL) { printf("%s: unable to malloc CCB!\n", __func__); return; } xpt_setup_ccb(&ccb->ccb_h, path, CAM_PRIORITY_NONE); ccb->ccb_h.func_code = XPT_SET_SIM_KNOB; ccb->knob.xport_specific.valid = KNOB_VALID_ROLE; ccb->knob.xport_specific.fc.role = KNOB_ROLE_INITIATOR; xpt_action(ccb); if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { printf("%s: SIM %s%d (path id %d) initiator " "enable failed with status %#x\n", __func__, cpi->dev_name, cpi->unit_number, cpi->ccb_h.path_id, ccb->ccb_h.status); } else { printf("%s: SIM %s%d (path id %d) initiator " "enable succeeded\n", __func__, cpi->dev_name, cpi->unit_number, cpi->ccb_h.path_id); } free(ccb, M_TEMP); break; } else { ctlfe_num_targets++; } printf("%s: ctlfe_num_targets = %d\n", __func__, ctlfe_num_targets); #endif /* CTLFE_INIT_ENABLE */ /* * We're in an interrupt context here, so we have to * use M_NOWAIT. Of course this means trouble if we * can't allocate memory. */ softc = malloc(sizeof(*softc), M_CTLFE, M_NOWAIT | M_ZERO); if (softc == NULL) { printf("%s: unable to malloc %zd bytes for softc\n", __func__, sizeof(*softc)); return; } softc->path_id = cpi->ccb_h.path_id; softc->target_id = cpi->initiator_id; softc->sim = xpt_path_sim(path); softc->hba_misc = cpi->hba_misc; if (cpi->maxio != 0) softc->maxio = cpi->maxio; else softc->maxio = DFLTPHYS; mtx_init(&softc->lun_softc_mtx, "LUN softc mtx", NULL, MTX_DEF); STAILQ_INIT(&softc->lun_softc_list); port = &softc->port; port->frontend = &ctlfe_frontend; /* * XXX KDM should we be more accurate here ? */ if (cpi->transport == XPORT_FC) port->port_type = CTL_PORT_FC; else if (cpi->transport == XPORT_SAS) port->port_type = CTL_PORT_SAS; else port->port_type = CTL_PORT_SCSI; /* XXX KDM what should the real number be here? */ port->num_requested_ctl_io = 4096; snprintf(softc->port_name, sizeof(softc->port_name), "%s%d", cpi->dev_name, cpi->unit_number); /* * XXX KDM it would be nice to allocate storage in the * frontend structure itself. */ port->port_name = softc->port_name; port->physical_port = cpi->bus_id; port->virtual_port = 0; port->port_online = ctlfe_online; port->port_offline = ctlfe_offline; port->onoff_arg = softc; port->lun_enable = ctlfe_lun_enable; port->lun_disable = ctlfe_lun_disable; port->targ_lun_arg = softc; port->fe_datamove = ctlfe_datamove; port->fe_done = ctlfe_done; /* * XXX KDM the path inquiry doesn't give us the maximum * number of targets supported. */ port->max_targets = cpi->max_target; port->max_target_id = cpi->max_target; port->targ_port = -1; /* * XXX KDM need to figure out whether we're the master or * slave. */ #ifdef CTLFEDEBUG printf("%s: calling ctl_port_register() for %s%d\n", __func__, cpi->dev_name, cpi->unit_number); #endif retval = ctl_port_register(port); if (retval != 0) { printf("%s: ctl_port_register() failed with " "error %d!\n", __func__, retval); mtx_destroy(&softc->lun_softc_mtx); free(softc, M_CTLFE); break; } else { mtx_lock(&ctlfe_list_mtx); STAILQ_INSERT_TAIL(&ctlfe_softc_list, softc, links); mtx_unlock(&ctlfe_list_mtx); } break; } case AC_PATH_DEREGISTERED: { if (softc != NULL) { /* * XXX KDM are we certain at this point that there * are no outstanding commands for this frontend? */ mtx_lock(&ctlfe_list_mtx); STAILQ_REMOVE(&ctlfe_softc_list, softc, ctlfe_softc, links); mtx_unlock(&ctlfe_list_mtx); ctl_port_deregister(&softc->port); mtx_destroy(&softc->lun_softc_mtx); free(softc, M_CTLFE); } break; } case AC_CONTRACT: { struct ac_contract *ac; ac = (struct ac_contract *)arg; switch (ac->contract_number) { case AC_CONTRACT_DEV_CHG: { struct ac_device_changed *dev_chg; int retval; dev_chg = (struct ac_device_changed *)ac->contract_data; printf("%s: WWPN %#jx port 0x%06x path %u target %u %s\n", __func__, dev_chg->wwpn, dev_chg->port, xpt_path_path_id(path), dev_chg->target, (dev_chg->arrived == 0) ? "left" : "arrived"); if (softc == NULL) { printf("%s: CTL port for CAM path %u not " "found!\n", __func__, xpt_path_path_id(path)); break; } if (dev_chg->arrived != 0) { retval = ctl_add_initiator(&softc->port, dev_chg->target, dev_chg->wwpn, NULL); } else { retval = ctl_remove_initiator(&softc->port, dev_chg->target); } if (retval < 0) { printf("%s: could not %s port %d iid %u " "WWPN %#jx!\n", __func__, (dev_chg->arrived != 0) ? "add" : "remove", softc->port.targ_port, dev_chg->target, (uintmax_t)dev_chg->wwpn); } break; } default: printf("%s: unsupported contract number %ju\n", __func__, (uintmax_t)ac->contract_number); break; } break; } default: break; } } static cam_status ctlferegister(struct cam_periph *periph, void *arg) { struct ctlfe_softc *bus_softc; struct ctlfe_lun_softc *softc; union ccb en_lun_ccb; cam_status status; int i; softc = (struct ctlfe_lun_softc *)arg; bus_softc = softc->parent_softc; TAILQ_INIT(&softc->work_queue); softc->periph = periph; periph->softc = softc; xpt_setup_ccb(&en_lun_ccb.ccb_h, periph->path, CAM_PRIORITY_NONE); en_lun_ccb.ccb_h.func_code = XPT_EN_LUN; en_lun_ccb.cel.grp6_len = 0; en_lun_ccb.cel.grp7_len = 0; en_lun_ccb.cel.enable = 1; xpt_action(&en_lun_ccb); status = (en_lun_ccb.ccb_h.status & CAM_STATUS_MASK); if (status != CAM_REQ_CMP) { xpt_print(periph->path, "%s: Enable LUN failed, status 0x%x\n", __func__, en_lun_ccb.ccb_h.status); return (status); } status = CAM_REQ_CMP; for (i = 0; i < CTLFE_ATIO_PER_LUN; i++) { union ccb *new_ccb; union ctl_io *new_io; struct ctlfe_cmd_info *cmd_info; new_ccb = (union ccb *)malloc(sizeof(*new_ccb), M_CTLFE, M_ZERO|M_NOWAIT); if (new_ccb == NULL) { status = CAM_RESRC_UNAVAIL; break; } new_io = ctl_alloc_io_nowait(bus_softc->port.ctl_pool_ref); if (new_io == NULL) { free(new_ccb, M_CTLFE); status = CAM_RESRC_UNAVAIL; break; } cmd_info = malloc(sizeof(*cmd_info), M_CTLFE, M_ZERO | M_NOWAIT); if (cmd_info == NULL) { ctl_free_io(new_io); free(new_ccb, M_CTLFE); status = CAM_RESRC_UNAVAIL; break; } new_io->io_hdr.ctl_private[CTL_PRIV_FRONTEND2].ptr = cmd_info; softc->atios_alloced++; new_ccb->ccb_h.io_ptr = new_io; xpt_setup_ccb(&new_ccb->ccb_h, periph->path, /*priority*/ 1); new_ccb->ccb_h.func_code = XPT_ACCEPT_TARGET_IO; new_ccb->ccb_h.cbfcnp = ctlfedone; new_ccb->ccb_h.flags |= CAM_UNLOCKED; xpt_action(new_ccb); status = new_ccb->ccb_h.status; if ((status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { free(cmd_info, M_CTLFE); ctl_free_io(new_io); free(new_ccb, M_CTLFE); break; } } status = cam_periph_acquire(periph); if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { xpt_print(periph->path, "%s: could not acquire reference " "count, status = %#x\n", __func__, status); return (status); } if (i == 0) { xpt_print(periph->path, "%s: could not allocate ATIO CCBs, " "status 0x%x\n", __func__, status); return (CAM_REQ_CMP_ERR); } for (i = 0; i < CTLFE_IN_PER_LUN; i++) { union ccb *new_ccb; union ctl_io *new_io; new_ccb = (union ccb *)malloc(sizeof(*new_ccb), M_CTLFE, M_ZERO|M_NOWAIT); if (new_ccb == NULL) { status = CAM_RESRC_UNAVAIL; break; } new_io = ctl_alloc_io_nowait(bus_softc->port.ctl_pool_ref); if (new_io == NULL) { free(new_ccb, M_CTLFE); status = CAM_RESRC_UNAVAIL; break; } softc->inots_alloced++; new_ccb->ccb_h.io_ptr = new_io; xpt_setup_ccb(&new_ccb->ccb_h, periph->path, /*priority*/ 1); new_ccb->ccb_h.func_code = XPT_IMMEDIATE_NOTIFY; new_ccb->ccb_h.cbfcnp = ctlfedone; new_ccb->ccb_h.flags |= CAM_UNLOCKED; xpt_action(new_ccb); status = new_ccb->ccb_h.status; if ((status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { /* * Note that we don't free the CCB here. If the * status is not CAM_REQ_INPROG, then we're * probably talking to a SIM that says it is * target-capable but doesn't support the * XPT_IMMEDIATE_NOTIFY CCB. i.e. it supports the * older API. In that case, it'll call xpt_done() * on the CCB, and we need to free it in our done * routine as a result. */ break; } } if ((i == 0) || (status != CAM_REQ_INPROG)) { xpt_print(periph->path, "%s: could not allocate immediate " "notify CCBs, status 0x%x\n", __func__, status); return (CAM_REQ_CMP_ERR); } mtx_lock(&bus_softc->lun_softc_mtx); STAILQ_INSERT_TAIL(&bus_softc->lun_softc_list, softc, links); mtx_unlock(&bus_softc->lun_softc_mtx); return (CAM_REQ_CMP); } static void ctlfeoninvalidate(struct cam_periph *periph) { union ccb en_lun_ccb; cam_status status; struct ctlfe_softc *bus_softc; struct ctlfe_lun_softc *softc; softc = (struct ctlfe_lun_softc *)periph->softc; xpt_setup_ccb(&en_lun_ccb.ccb_h, periph->path, CAM_PRIORITY_NONE); en_lun_ccb.ccb_h.func_code = XPT_EN_LUN; en_lun_ccb.cel.grp6_len = 0; en_lun_ccb.cel.grp7_len = 0; en_lun_ccb.cel.enable = 0; xpt_action(&en_lun_ccb); status = (en_lun_ccb.ccb_h.status & CAM_STATUS_MASK); if (status != CAM_REQ_CMP) { xpt_print(periph->path, "%s: Disable LUN failed, status 0x%x\n", __func__, en_lun_ccb.ccb_h.status); /* * XXX KDM what do we do now? */ } bus_softc = softc->parent_softc; mtx_lock(&bus_softc->lun_softc_mtx); STAILQ_REMOVE(&bus_softc->lun_softc_list, softc, ctlfe_lun_softc, links); mtx_unlock(&bus_softc->lun_softc_mtx); } static void ctlfecleanup(struct cam_periph *periph) { struct ctlfe_lun_softc *softc; softc = (struct ctlfe_lun_softc *)periph->softc; KASSERT(softc->ccbs_freed == softc->ccbs_alloced, ("%s: " "ccbs_freed %ju != ccbs_alloced %ju", __func__, softc->ccbs_freed, softc->ccbs_alloced)); KASSERT(softc->ctios_returned == softc->ctios_sent, ("%s: " "ctios_returned %ju != ctios_sent %ju", __func__, softc->ctios_returned, softc->ctios_sent)); KASSERT(softc->atios_freed == softc->atios_alloced, ("%s: " "atios_freed %ju != atios_alloced %ju", __func__, softc->atios_freed, softc->atios_alloced)); KASSERT(softc->inots_freed == softc->inots_alloced, ("%s: " "inots_freed %ju != inots_alloced %ju", __func__, softc->inots_freed, softc->inots_alloced)); free(softc, M_CTLFE); } static void ctlfedata(struct ctlfe_lun_softc *softc, union ctl_io *io, ccb_flags *flags, uint8_t **data_ptr, uint32_t *dxfer_len, u_int16_t *sglist_cnt) { struct ctlfe_softc *bus_softc; struct ctlfe_cmd_info *cmd_info; struct ctl_sg_entry *ctl_sglist; bus_dma_segment_t *cam_sglist; size_t off; int i, idx; cmd_info = io->io_hdr.ctl_private[CTL_PRIV_FRONTEND2].ptr; bus_softc = softc->parent_softc; /* * Set the direction, relative to the initiator. */ *flags &= ~CAM_DIR_MASK; if ((io->io_hdr.flags & CTL_FLAG_DATA_MASK) == CTL_FLAG_DATA_IN) *flags |= CAM_DIR_IN; else *flags |= CAM_DIR_OUT; *flags &= ~CAM_DATA_MASK; idx = cmd_info->cur_transfer_index; off = cmd_info->cur_transfer_off; cmd_info->flags &= ~CTLFE_CMD_PIECEWISE; if (io->scsiio.kern_sg_entries == 0) { /* No S/G list. */ *data_ptr = io->scsiio.kern_data_ptr + off; if (io->scsiio.kern_data_len - off <= bus_softc->maxio) { *dxfer_len = io->scsiio.kern_data_len - off; } else { *dxfer_len = bus_softc->maxio; cmd_info->cur_transfer_index = -1; cmd_info->cur_transfer_off = bus_softc->maxio; cmd_info->flags |= CTLFE_CMD_PIECEWISE; } *sglist_cnt = 0; if (io->io_hdr.flags & CTL_FLAG_BUS_ADDR) *flags |= CAM_DATA_PADDR; else *flags |= CAM_DATA_VADDR; } else { /* S/G list with physical or virtual pointers. */ ctl_sglist = (struct ctl_sg_entry *)io->scsiio.kern_data_ptr; cam_sglist = cmd_info->cam_sglist; *dxfer_len = 0; for (i = 0; i < io->scsiio.kern_sg_entries - idx; i++) { cam_sglist[i].ds_addr = (bus_addr_t)ctl_sglist[i + idx].addr + off; if (ctl_sglist[i + idx].len - off <= bus_softc->maxio - *dxfer_len) { cam_sglist[i].ds_len = ctl_sglist[idx + i].len - off; *dxfer_len += cam_sglist[i].ds_len; } else { cam_sglist[i].ds_len = bus_softc->maxio - *dxfer_len; cmd_info->cur_transfer_index = idx + i; cmd_info->cur_transfer_off = cam_sglist[i].ds_len + off; cmd_info->flags |= CTLFE_CMD_PIECEWISE; *dxfer_len += cam_sglist[i].ds_len; if (ctl_sglist[i].len != 0) i++; break; } if (i == (CTLFE_MAX_SEGS - 1) && idx + i < (io->scsiio.kern_sg_entries - 1)) { cmd_info->cur_transfer_index = idx + i + 1; cmd_info->cur_transfer_off = 0; cmd_info->flags |= CTLFE_CMD_PIECEWISE; i++; break; } off = 0; } *sglist_cnt = i; if (io->io_hdr.flags & CTL_FLAG_BUS_ADDR) *flags |= CAM_DATA_SG_PADDR; else *flags |= CAM_DATA_SG; *data_ptr = (uint8_t *)cam_sglist; } } static void ctlfestart(struct cam_periph *periph, union ccb *start_ccb) { struct ctlfe_lun_softc *softc; struct ctlfe_cmd_info *cmd_info; struct ccb_hdr *ccb_h; struct ccb_accept_tio *atio; struct ccb_scsiio *csio; uint8_t *data_ptr; uint32_t dxfer_len; ccb_flags flags; union ctl_io *io; uint8_t scsi_status; softc = (struct ctlfe_lun_softc *)periph->softc; softc->ccbs_alloced++; ccb_h = TAILQ_FIRST(&softc->work_queue); if (ccb_h == NULL) { softc->ccbs_freed++; xpt_release_ccb(start_ccb); return; } /* Take the ATIO off the work queue */ TAILQ_REMOVE(&softc->work_queue, ccb_h, periph_links.tqe); atio = (struct ccb_accept_tio *)ccb_h; io = (union ctl_io *)ccb_h->io_ptr; csio = &start_ccb->csio; flags = atio->ccb_h.flags & (CAM_DIS_DISCONNECT|CAM_TAG_ACTION_VALID|CAM_DIR_MASK); cmd_info = io->io_hdr.ctl_private[CTL_PRIV_FRONTEND2].ptr; cmd_info->cur_transfer_index = 0; cmd_info->cur_transfer_off = 0; cmd_info->flags = 0; if (io->io_hdr.flags & CTL_FLAG_DMA_QUEUED) { /* * Datamove call, we need to setup the S/G list. */ scsi_status = 0; csio->cdb_len = atio->cdb_len; ctlfedata(softc, io, &flags, &data_ptr, &dxfer_len, &csio->sglist_cnt); io->scsiio.ext_data_filled += dxfer_len; if (io->scsiio.ext_data_filled > io->scsiio.kern_total_len) { xpt_print(periph->path, "%s: tag 0x%04x " "fill len %u > total %u\n", __func__, io->scsiio.tag_num, io->scsiio.ext_data_filled, io->scsiio.kern_total_len); } } else { /* * We're done, send status back. */ if ((io->io_hdr.flags & CTL_FLAG_ABORT) && (io->io_hdr.flags & CTL_FLAG_ABORT_STATUS) == 0) { io->io_hdr.flags &= ~CTL_FLAG_STATUS_QUEUED; /* * If this command was aborted, we don't * need to send status back to the SIM. * Just free the CTIO and ctl_io, and * recycle the ATIO back to the SIM. */ xpt_print(periph->path, "%s: aborted " "command 0x%04x discarded\n", __func__, io->scsiio.tag_num); /* * For a wildcard attachment, commands can * come in with a specific target/lun. Reset * the target and LUN fields back to the * wildcard values before we send them back * down to the SIM. The SIM has a wildcard * LUN enabled, not whatever target/lun * these happened to be. */ if (softc->flags & CTLFE_LUN_WILDCARD) { atio->ccb_h.target_id = CAM_TARGET_WILDCARD; atio->ccb_h.target_lun = CAM_LUN_WILDCARD; } if (atio->ccb_h.func_code != XPT_ACCEPT_TARGET_IO) { xpt_print(periph->path, "%s: func_code " "is %#x\n", __func__, atio->ccb_h.func_code); } start_ccb->ccb_h.func_code = XPT_ABORT; start_ccb->cab.abort_ccb = (union ccb *)atio; /* Tell the SIM that we've aborted this ATIO */ xpt_action(start_ccb); softc->ccbs_freed++; xpt_release_ccb(start_ccb); /* * Send the ATIO back down to the SIM. */ xpt_action((union ccb *)atio); /* * If we still have work to do, ask for * another CCB. Otherwise, deactivate our * callout. */ if (!TAILQ_EMPTY(&softc->work_queue)) xpt_schedule(periph, /*priority*/ 1); return; } data_ptr = NULL; dxfer_len = 0; csio->sglist_cnt = 0; scsi_status = 0; } if ((io->io_hdr.flags & CTL_FLAG_STATUS_QUEUED) && (cmd_info->flags & CTLFE_CMD_PIECEWISE) == 0 && ((io->io_hdr.flags & CTL_FLAG_DMA_QUEUED) == 0 || io->io_hdr.status == CTL_SUCCESS)) { flags |= CAM_SEND_STATUS; scsi_status = io->scsiio.scsi_status; csio->sense_len = io->scsiio.sense_len; #ifdef CTLFEDEBUG printf("%s: tag %04x status %x\n", __func__, atio->tag_id, io->io_hdr.status); #endif if (csio->sense_len != 0) { csio->sense_data = io->scsiio.sense_data; flags |= CAM_SEND_SENSE; } else if (scsi_status == SCSI_STATUS_CHECK_COND) { xpt_print(periph->path, "%s: check condition " "with no sense\n", __func__); } } #ifdef CTLFEDEBUG printf("%s: %s: tag %04x flags %x ptr %p len %u\n", __func__, (flags & CAM_SEND_STATUS) ? "done" : "datamove", atio->tag_id, flags, data_ptr, dxfer_len); #endif /* * Valid combinations: * - CAM_SEND_STATUS, CAM_DATA_SG = 0, dxfer_len = 0, * sglist_cnt = 0 * - CAM_SEND_STATUS = 0, CAM_DATA_SG = 0, dxfer_len != 0, * sglist_cnt = 0 * - CAM_SEND_STATUS = 0, CAM_DATA_SG, dxfer_len != 0, * sglist_cnt != 0 */ #ifdef CTLFEDEBUG if (((flags & CAM_SEND_STATUS) && (((flags & CAM_DATA_SG) != 0) || (dxfer_len != 0) || (csio->sglist_cnt != 0))) || (((flags & CAM_SEND_STATUS) == 0) && (dxfer_len == 0)) || ((flags & CAM_DATA_SG) && (csio->sglist_cnt == 0)) || (((flags & CAM_DATA_SG) == 0) && (csio->sglist_cnt != 0))) { printf("%s: tag %04x cdb %02x flags %#x dxfer_len " "%d sg %u\n", __func__, atio->tag_id, atio->cdb_io.cdb_bytes[0], flags, dxfer_len, csio->sglist_cnt); printf("%s: tag %04x io status %#x\n", __func__, atio->tag_id, io->io_hdr.status); } #endif cam_fill_ctio(csio, /*retries*/ 2, ctlfedone, flags, (flags & CAM_TAG_ACTION_VALID) ? MSG_SIMPLE_Q_TAG : 0, atio->tag_id, atio->init_id, scsi_status, /*data_ptr*/ data_ptr, /*dxfer_len*/ dxfer_len, /*timeout*/ 5 * 1000); start_ccb->ccb_h.flags |= CAM_UNLOCKED; start_ccb->ccb_h.ccb_atio = atio; if (io->io_hdr.flags & CTL_FLAG_DMA_QUEUED) io->io_hdr.flags |= CTL_FLAG_DMA_INPROG; io->io_hdr.flags &= ~(CTL_FLAG_DMA_QUEUED | CTL_FLAG_STATUS_QUEUED); softc->ctios_sent++; cam_periph_unlock(periph); xpt_action(start_ccb); cam_periph_lock(periph); /* * If we still have work to do, ask for another CCB. */ if (!TAILQ_EMPTY(&softc->work_queue)) xpt_schedule(periph, /*priority*/ 1); } static void ctlfe_free_ccb(struct cam_periph *periph, union ccb *ccb) { struct ctlfe_lun_softc *softc; union ctl_io *io; struct ctlfe_cmd_info *cmd_info; softc = (struct ctlfe_lun_softc *)periph->softc; io = ccb->ccb_h.io_ptr; switch (ccb->ccb_h.func_code) { case XPT_ACCEPT_TARGET_IO: softc->atios_freed++; cmd_info = io->io_hdr.ctl_private[CTL_PRIV_FRONTEND2].ptr; free(cmd_info, M_CTLFE); break; case XPT_IMMEDIATE_NOTIFY: case XPT_NOTIFY_ACKNOWLEDGE: softc->inots_freed++; break; default: break; } ctl_free_io(io); free(ccb, M_CTLFE); KASSERT(softc->atios_freed <= softc->atios_alloced, ("%s: " "atios_freed %ju > atios_alloced %ju", __func__, softc->atios_freed, softc->atios_alloced)); KASSERT(softc->inots_freed <= softc->inots_alloced, ("%s: " "inots_freed %ju > inots_alloced %ju", __func__, softc->inots_freed, softc->inots_alloced)); /* * If we have received all of our CCBs, we can release our * reference on the peripheral driver. It will probably go away * now. */ if ((softc->atios_freed == softc->atios_alloced) && (softc->inots_freed == softc->inots_alloced)) { cam_periph_release_locked(periph); } } static int ctlfe_adjust_cdb(struct ccb_accept_tio *atio, uint32_t offset) { uint64_t lba; uint32_t num_blocks, nbc; uint8_t *cmdbyt = (atio->ccb_h.flags & CAM_CDB_POINTER)? atio->cdb_io.cdb_ptr : atio->cdb_io.cdb_bytes; nbc = offset >> 9; /* ASSUMING 512 BYTE BLOCKS */ switch (cmdbyt[0]) { case READ_6: case WRITE_6: { struct scsi_rw_6 *cdb = (struct scsi_rw_6 *)cmdbyt; lba = scsi_3btoul(cdb->addr); lba &= 0x1fffff; num_blocks = cdb->length; if (num_blocks == 0) num_blocks = 256; lba += nbc; num_blocks -= nbc; scsi_ulto3b(lba, cdb->addr); cdb->length = num_blocks; break; } case READ_10: case WRITE_10: { struct scsi_rw_10 *cdb = (struct scsi_rw_10 *)cmdbyt; lba = scsi_4btoul(cdb->addr); num_blocks = scsi_2btoul(cdb->length); lba += nbc; num_blocks -= nbc; scsi_ulto4b(lba, cdb->addr); scsi_ulto2b(num_blocks, cdb->length); break; } case READ_12: case WRITE_12: { struct scsi_rw_12 *cdb = (struct scsi_rw_12 *)cmdbyt; lba = scsi_4btoul(cdb->addr); num_blocks = scsi_4btoul(cdb->length); lba += nbc; num_blocks -= nbc; scsi_ulto4b(lba, cdb->addr); scsi_ulto4b(num_blocks, cdb->length); break; } case READ_16: case WRITE_16: { struct scsi_rw_16 *cdb = (struct scsi_rw_16 *)cmdbyt; lba = scsi_8btou64(cdb->addr); num_blocks = scsi_4btoul(cdb->length); lba += nbc; num_blocks -= nbc; scsi_u64to8b(lba, cdb->addr); scsi_ulto4b(num_blocks, cdb->length); break; } default: return -1; } return (0); } static void ctlfedone(struct cam_periph *periph, union ccb *done_ccb) { struct ctlfe_lun_softc *softc; struct ctlfe_softc *bus_softc; struct ctlfe_cmd_info *cmd_info; struct ccb_accept_tio *atio = NULL; union ctl_io *io = NULL; struct mtx *mtx; KASSERT((done_ccb->ccb_h.flags & CAM_UNLOCKED) != 0, ("CCB in ctlfedone() without CAM_UNLOCKED flag")); #ifdef CTLFE_DEBUG printf("%s: entered, func_code = %#x\n", __func__, done_ccb->ccb_h.func_code); #endif /* * At this point CTL has no known use case for device queue freezes. * In case some SIM think different -- drop its freeze right here. */ if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { cam_release_devq(periph->path, /*relsim_flags*/0, /*reduction*/0, /*timeout*/0, /*getcount_only*/0); done_ccb->ccb_h.status &= ~CAM_DEV_QFRZN; } softc = (struct ctlfe_lun_softc *)periph->softc; bus_softc = softc->parent_softc; mtx = cam_periph_mtx(periph); mtx_lock(mtx); /* * If the peripheral is invalid, ATIOs and immediate notify CCBs * need to be freed. Most of the ATIOs and INOTs that come back * will be CCBs that are being returned from the SIM as a result of * our disabling the LUN. * * Other CCB types are handled in their respective cases below. */ if (periph->flags & CAM_PERIPH_INVALID) { switch (done_ccb->ccb_h.func_code) { case XPT_ACCEPT_TARGET_IO: case XPT_IMMEDIATE_NOTIFY: case XPT_NOTIFY_ACKNOWLEDGE: ctlfe_free_ccb(periph, done_ccb); goto out; default: break; } } switch (done_ccb->ccb_h.func_code) { case XPT_ACCEPT_TARGET_IO: { atio = &done_ccb->atio; resubmit: /* * Allocate a ctl_io, pass it to CTL, and wait for the * datamove or done. */ mtx_unlock(mtx); io = done_ccb->ccb_h.io_ptr; cmd_info = io->io_hdr.ctl_private[CTL_PRIV_FRONTEND2].ptr; ctl_zero_io(io); /* Save pointers on both sides */ io->io_hdr.ctl_private[CTL_PRIV_FRONTEND].ptr = done_ccb; io->io_hdr.ctl_private[CTL_PRIV_FRONTEND2].ptr = cmd_info; done_ccb->ccb_h.io_ptr = io; /* * Only SCSI I/O comes down this path, resets, etc. come * down the immediate notify path below. */ io->io_hdr.io_type = CTL_IO_SCSI; io->io_hdr.nexus.initid = atio->init_id; io->io_hdr.nexus.targ_port = bus_softc->port.targ_port; if (bus_softc->hba_misc & PIM_EXTLUNS) { io->io_hdr.nexus.targ_lun = ctl_decode_lun( CAM_EXTLUN_BYTE_SWIZZLE(atio->ccb_h.target_lun)); } else { io->io_hdr.nexus.targ_lun = atio->ccb_h.target_lun; } io->scsiio.tag_num = atio->tag_id; switch (atio->tag_action) { case CAM_TAG_ACTION_NONE: io->scsiio.tag_type = CTL_TAG_UNTAGGED; break; case MSG_SIMPLE_TASK: io->scsiio.tag_type = CTL_TAG_SIMPLE; break; case MSG_HEAD_OF_QUEUE_TASK: io->scsiio.tag_type = CTL_TAG_HEAD_OF_QUEUE; break; case MSG_ORDERED_TASK: io->scsiio.tag_type = CTL_TAG_ORDERED; break; case MSG_ACA_TASK: io->scsiio.tag_type = CTL_TAG_ACA; break; default: io->scsiio.tag_type = CTL_TAG_UNTAGGED; printf("%s: unhandled tag type %#x!!\n", __func__, atio->tag_action); break; } if (atio->cdb_len > sizeof(io->scsiio.cdb)) { printf("%s: WARNING: CDB len %d > ctl_io space %zd\n", __func__, atio->cdb_len, sizeof(io->scsiio.cdb)); } io->scsiio.cdb_len = min(atio->cdb_len, sizeof(io->scsiio.cdb)); bcopy(atio->cdb_io.cdb_bytes, io->scsiio.cdb, io->scsiio.cdb_len); #ifdef CTLFEDEBUG printf("%s: %u:%u:%u: tag %04x CDB %02x\n", __func__, io->io_hdr.nexus.initid, io->io_hdr.nexus.targ_port, io->io_hdr.nexus.targ_lun, io->scsiio.tag_num, io->scsiio.cdb[0]); #endif ctl_queue(io); return; } case XPT_CONT_TARGET_IO: { int srr = 0; uint32_t srr_off = 0; atio = (struct ccb_accept_tio *)done_ccb->ccb_h.ccb_atio; io = (union ctl_io *)atio->ccb_h.io_ptr; softc->ctios_returned++; #ifdef CTLFEDEBUG printf("%s: got XPT_CONT_TARGET_IO tag %#x flags %#x\n", __func__, atio->tag_id, done_ccb->ccb_h.flags); #endif /* * Handle SRR case were the data pointer is pushed back hack */ if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_MESSAGE_RECV && done_ccb->csio.msg_ptr != NULL && done_ccb->csio.msg_ptr[0] == MSG_EXTENDED && done_ccb->csio.msg_ptr[1] == 5 && done_ccb->csio.msg_ptr[2] == 0) { srr = 1; srr_off = (done_ccb->csio.msg_ptr[3] << 24) | (done_ccb->csio.msg_ptr[4] << 16) | (done_ccb->csio.msg_ptr[5] << 8) | (done_ccb->csio.msg_ptr[6]); } if (srr && (io->io_hdr.flags & CTL_FLAG_DMA_INPROG) == 0) { /* * If status was being sent, the back end data is now * history. Hack it up and resubmit a new command with * the CDB adjusted. If the SIM does the right thing, * all of the resid math should work. */ softc->ccbs_freed++; xpt_release_ccb(done_ccb); if (ctlfe_adjust_cdb(atio, srr_off) == 0) { done_ccb = (union ccb *)atio; goto resubmit; } /* * Fall through to doom.... */ } else if (srr) { /* * If we have an srr and we're still sending data, we * should be able to adjust offsets and cycle again. */ io->scsiio.kern_rel_offset = io->scsiio.ext_data_filled = srr_off; io->scsiio.ext_data_len = io->scsiio.kern_total_len - io->scsiio.kern_rel_offset; softc->ccbs_freed++; io->scsiio.io_hdr.status = CTL_STATUS_NONE; xpt_release_ccb(done_ccb); TAILQ_INSERT_HEAD(&softc->work_queue, &atio->ccb_h, periph_links.tqe); xpt_schedule(periph, /*priority*/ 1); break; } if ((done_ccb->ccb_h.flags & CAM_SEND_STATUS) && (done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) io->io_hdr.flags |= CTL_FLAG_STATUS_SENT; /* * If we were sending status back to the initiator, free up * resources. If we were doing a datamove, call the * datamove done routine. */ if ((io->io_hdr.flags & CTL_FLAG_DMA_INPROG) == 0) { softc->ccbs_freed++; xpt_release_ccb(done_ccb); /* * For a wildcard attachment, commands can come in * with a specific target/lun. Reset the target * and LUN fields back to the wildcard values before * we send them back down to the SIM. The SIM has * a wildcard LUN enabled, not whatever target/lun * these happened to be. */ if (softc->flags & CTLFE_LUN_WILDCARD) { atio->ccb_h.target_id = CAM_TARGET_WILDCARD; atio->ccb_h.target_lun = CAM_LUN_WILDCARD; } if (periph->flags & CAM_PERIPH_INVALID) { ctlfe_free_ccb(periph, (union ccb *)atio); } else { mtx_unlock(mtx); xpt_action((union ccb *)atio); return; } } else { struct ctlfe_cmd_info *cmd_info; struct ccb_scsiio *csio; csio = &done_ccb->csio; cmd_info = io->io_hdr.ctl_private[CTL_PRIV_FRONTEND2].ptr; io->io_hdr.flags &= ~CTL_FLAG_DMA_INPROG; io->scsiio.ext_data_len += csio->dxfer_len; if (io->scsiio.ext_data_len > io->scsiio.kern_total_len) { xpt_print(periph->path, "%s: tag 0x%04x " "done len %u > total %u sent %u\n", __func__, io->scsiio.tag_num, io->scsiio.ext_data_len, io->scsiio.kern_total_len, io->scsiio.ext_data_filled); } /* * Translate CAM status to CTL status. Success * does not change the overall, ctl_io status. In * that case we just set port_status to 0. If we * have a failure, though, set a data phase error * for the overall ctl_io. */ switch (done_ccb->ccb_h.status & CAM_STATUS_MASK) { case CAM_REQ_CMP: io->io_hdr.port_status = 0; break; default: /* * XXX KDM we probably need to figure out a * standard set of errors that the SIM * drivers should return in the event of a * data transfer failure. A data phase * error will at least point the user to a * data transfer error of some sort. * Hopefully the SIM printed out some * additional information to give the user * a clue what happened. */ io->io_hdr.port_status = 0xbad1; ctl_set_data_phase_error(&io->scsiio); /* * XXX KDM figure out residual. */ break; } /* * If we had to break this S/G list into multiple * pieces, figure out where we are in the list, and * continue sending pieces if necessary. */ if ((cmd_info->flags & CTLFE_CMD_PIECEWISE) && (io->io_hdr.port_status == 0)) { ccb_flags flags; uint8_t scsi_status; uint8_t *data_ptr; uint32_t dxfer_len; flags = atio->ccb_h.flags & (CAM_DIS_DISCONNECT| CAM_TAG_ACTION_VALID); ctlfedata(softc, io, &flags, &data_ptr, &dxfer_len, &csio->sglist_cnt); scsi_status = 0; if (((flags & CAM_SEND_STATUS) == 0) && (dxfer_len == 0)) { printf("%s: tag %04x no status or " "len cdb = %02x\n", __func__, atio->tag_id, atio->cdb_io.cdb_bytes[0]); printf("%s: tag %04x io status %#x\n", __func__, atio->tag_id, io->io_hdr.status); } cam_fill_ctio(csio, /*retries*/ 2, ctlfedone, flags, (flags & CAM_TAG_ACTION_VALID) ? MSG_SIMPLE_Q_TAG : 0, atio->tag_id, atio->init_id, scsi_status, /*data_ptr*/ data_ptr, /*dxfer_len*/ dxfer_len, /*timeout*/ 5 * 1000); csio->ccb_h.flags |= CAM_UNLOCKED; csio->resid = 0; csio->ccb_h.ccb_atio = atio; io->io_hdr.flags |= CTL_FLAG_DMA_INPROG; softc->ctios_sent++; mtx_unlock(mtx); xpt_action((union ccb *)csio); } else { /* * Release the CTIO. The ATIO will be sent back * down to the SIM once we send status. */ softc->ccbs_freed++; xpt_release_ccb(done_ccb); mtx_unlock(mtx); /* Call the backend move done callback */ io->scsiio.be_move_done(io); } return; } break; } case XPT_IMMEDIATE_NOTIFY: { union ctl_io *io; struct ccb_immediate_notify *inot; cam_status status; int send_ctl_io; inot = &done_ccb->cin1; printf("%s: got XPT_IMMEDIATE_NOTIFY status %#x tag %#x " "seq %#x\n", __func__, inot->ccb_h.status, inot->tag_id, inot->seq_id); io = done_ccb->ccb_h.io_ptr; ctl_zero_io(io); send_ctl_io = 1; io->io_hdr.io_type = CTL_IO_TASK; io->io_hdr.ctl_private[CTL_PRIV_FRONTEND].ptr =done_ccb; inot->ccb_h.io_ptr = io; io->io_hdr.nexus.initid = inot->initiator_id; io->io_hdr.nexus.targ_port = bus_softc->port.targ_port; if (bus_softc->hba_misc & PIM_EXTLUNS) { io->io_hdr.nexus.targ_lun = ctl_decode_lun( CAM_EXTLUN_BYTE_SWIZZLE(inot->ccb_h.target_lun)); } else { io->io_hdr.nexus.targ_lun = inot->ccb_h.target_lun; } /* XXX KDM should this be the tag_id? */ io->taskio.tag_num = inot->seq_id; status = inot->ccb_h.status & CAM_STATUS_MASK; switch (status) { case CAM_SCSI_BUS_RESET: io->taskio.task_action = CTL_TASK_BUS_RESET; break; case CAM_BDR_SENT: io->taskio.task_action = CTL_TASK_TARGET_RESET; break; case CAM_MESSAGE_RECV: switch (inot->arg) { case MSG_ABORT_TASK_SET: io->taskio.task_action = CTL_TASK_ABORT_TASK_SET; break; case MSG_TARGET_RESET: io->taskio.task_action = CTL_TASK_TARGET_RESET; break; case MSG_ABORT_TASK: io->taskio.task_action = CTL_TASK_ABORT_TASK; break; case MSG_LOGICAL_UNIT_RESET: io->taskio.task_action = CTL_TASK_LUN_RESET; break; case MSG_CLEAR_TASK_SET: io->taskio.task_action = CTL_TASK_CLEAR_TASK_SET; break; case MSG_CLEAR_ACA: io->taskio.task_action = CTL_TASK_CLEAR_ACA; break; case MSG_QUERY_TASK: io->taskio.task_action = CTL_TASK_QUERY_TASK; break; case MSG_QUERY_TASK_SET: io->taskio.task_action = CTL_TASK_QUERY_TASK_SET; break; case MSG_QUERY_ASYNC_EVENT: io->taskio.task_action = CTL_TASK_QUERY_ASYNC_EVENT; break; case MSG_NOOP: send_ctl_io = 0; break; default: xpt_print(periph->path, "%s: unsupported message 0x%x\n", __func__, inot->arg); send_ctl_io = 0; break; } break; case CAM_REQ_ABORTED: /* * This request was sent back by the driver. * XXX KDM what do we do here? */ send_ctl_io = 0; break; case CAM_REQ_INVALID: case CAM_PROVIDE_FAIL: default: /* * We should only get here if we're talking * to a talking to a SIM that is target * capable but supports the old API. In * that case, we need to just free the CCB. * If we actually send a notify acknowledge, * it will send that back with an error as * well. */ if ((status != CAM_REQ_INVALID) && (status != CAM_PROVIDE_FAIL)) xpt_print(periph->path, "%s: unsupported CAM status 0x%x\n", __func__, status); ctlfe_free_ccb(periph, done_ccb); goto out; } if (send_ctl_io != 0) { ctl_queue(io); } else { done_ccb->ccb_h.status = CAM_REQ_INPROG; done_ccb->ccb_h.func_code = XPT_NOTIFY_ACKNOWLEDGE; xpt_action(done_ccb); } break; } case XPT_NOTIFY_ACKNOWLEDGE: /* * Queue this back down to the SIM as an immediate notify. */ done_ccb->ccb_h.func_code = XPT_IMMEDIATE_NOTIFY; xpt_action(done_ccb); break; case XPT_SET_SIM_KNOB: case XPT_GET_SIM_KNOB: + case XPT_GET_SIM_KNOB_OLD: break; default: panic("%s: unexpected CCB type %#x", __func__, done_ccb->ccb_h.func_code); break; } out: mtx_unlock(mtx); } static void ctlfe_onoffline(void *arg, int online) { struct ctlfe_softc *bus_softc; union ccb *ccb; cam_status status; struct cam_path *path; int set_wwnn; bus_softc = (struct ctlfe_softc *)arg; set_wwnn = 0; status = xpt_create_path(&path, /*periph*/ NULL, bus_softc->path_id, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); if (status != CAM_REQ_CMP) { printf("%s: unable to create path!\n", __func__); return; } ccb = xpt_alloc_ccb(); xpt_setup_ccb(&ccb->ccb_h, path, CAM_PRIORITY_NONE); ccb->ccb_h.func_code = XPT_GET_SIM_KNOB; xpt_action(ccb); /* * Copan WWN format: * * Bits 63-60: 0x5 NAA, IEEE registered name * Bits 59-36: 0x000ED5 IEEE Company name assigned to Copan * Bits 35-12: Copan SSN (Sequential Serial Number) * Bits 11-8: Type of port: * 1 == N-Port * 2 == F-Port * 3 == NL-Port * Bits 7-0: 0 == Node Name, >0 == Port Number */ if (online != 0) { if ((ccb->knob.xport_specific.valid & KNOB_VALID_ADDRESS) != 0){ #ifdef RANDOM_WWNN uint64_t random_bits; #endif printf("%s: %s current WWNN %#jx\n", __func__, bus_softc->port_name, ccb->knob.xport_specific.fc.wwnn); printf("%s: %s current WWPN %#jx\n", __func__, bus_softc->port_name, ccb->knob.xport_specific.fc.wwpn); #ifdef RANDOM_WWNN arc4rand(&random_bits, sizeof(random_bits), 0); #endif /* * XXX KDM this is a bit of a kludge for now. We * take the current WWNN/WWPN from the card, and * replace the company identifier and the NL-Port * indicator and the port number (for the WWPN). * This should be replaced later with ddb_GetWWNN, * or possibly a more centralized scheme. (It * would be nice to have the WWNN/WWPN for each * port stored in the ctl_port structure.) */ #ifdef RANDOM_WWNN ccb->knob.xport_specific.fc.wwnn = (random_bits & 0x0000000fffffff00ULL) | /* Company ID */ 0x5000ED5000000000ULL | /* NL-Port */ 0x0300; ccb->knob.xport_specific.fc.wwpn = (random_bits & 0x0000000fffffff00ULL) | /* Company ID */ 0x5000ED5000000000ULL | /* NL-Port */ 0x3000 | /* Port Num */ (bus_softc->port.targ_port & 0xff); /* * This is a bit of an API break/reversal, but if * we're doing the random WWNN that's a little * different anyway. So record what we're actually * using with the frontend code so it's reported * accurately. */ ctl_port_set_wwns(&bus_softc->port, true, ccb->knob.xport_specific.fc.wwnn, true, ccb->knob.xport_specific.fc.wwpn); set_wwnn = 1; #else /* RANDOM_WWNN */ /* * If the user has specified a WWNN/WWPN, send them * down to the SIM. Otherwise, record what the SIM * has reported. */ if (bus_softc->port.wwnn != 0 && bus_softc->port.wwnn != ccb->knob.xport_specific.fc.wwnn) { ccb->knob.xport_specific.fc.wwnn = bus_softc->port.wwnn; set_wwnn = 1; } else { ctl_port_set_wwns(&bus_softc->port, true, ccb->knob.xport_specific.fc.wwnn, false, 0); } if (bus_softc->port.wwpn != 0 && bus_softc->port.wwpn != ccb->knob.xport_specific.fc.wwpn) { ccb->knob.xport_specific.fc.wwpn = bus_softc->port.wwpn; set_wwnn = 1; } else { ctl_port_set_wwns(&bus_softc->port, false, 0, true, ccb->knob.xport_specific.fc.wwpn); } #endif /* RANDOM_WWNN */ if (set_wwnn != 0) { printf("%s: %s new WWNN %#jx\n", __func__, bus_softc->port_name, ccb->knob.xport_specific.fc.wwnn); printf("%s: %s new WWPN %#jx\n", __func__, bus_softc->port_name, ccb->knob.xport_specific.fc.wwpn); } } else { printf("%s: %s has no valid WWNN/WWPN\n", __func__, bus_softc->port_name); } } ccb->ccb_h.func_code = XPT_SET_SIM_KNOB; ccb->knob.xport_specific.valid = KNOB_VALID_ROLE; if (set_wwnn != 0) ccb->knob.xport_specific.valid |= KNOB_VALID_ADDRESS; if (online != 0) ccb->knob.xport_specific.fc.role |= KNOB_ROLE_TARGET; else ccb->knob.xport_specific.fc.role &= ~KNOB_ROLE_TARGET; xpt_action(ccb); if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { printf("%s: SIM %s (path id %d) target %s failed with " "status %#x\n", __func__, bus_softc->port_name, bus_softc->path_id, (online != 0) ? "enable" : "disable", ccb->ccb_h.status); } else { printf("%s: SIM %s (path id %d) target %s succeeded\n", __func__, bus_softc->port_name, bus_softc->path_id, (online != 0) ? "enable" : "disable"); } xpt_free_path(path); xpt_free_ccb(ccb); } static void ctlfe_online(void *arg) { struct ctlfe_softc *bus_softc; struct cam_path *path; cam_status status; struct ctlfe_lun_softc *lun_softc; struct cam_periph *periph; bus_softc = (struct ctlfe_softc *)arg; /* * Create the wildcard LUN before bringing the port online. */ status = xpt_create_path(&path, /*periph*/ NULL, bus_softc->path_id, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); if (status != CAM_REQ_CMP) { printf("%s: unable to create path for wildcard periph\n", __func__); return; } lun_softc = malloc(sizeof(*lun_softc), M_CTLFE, M_WAITOK | M_ZERO); xpt_path_lock(path); periph = cam_periph_find(path, "ctl"); if (periph != NULL) { /* We've already got a periph, no need to alloc a new one. */ xpt_path_unlock(path); xpt_free_path(path); free(lun_softc, M_CTLFE); return; } lun_softc->parent_softc = bus_softc; lun_softc->flags |= CTLFE_LUN_WILDCARD; status = cam_periph_alloc(ctlferegister, ctlfeoninvalidate, ctlfecleanup, ctlfestart, "ctl", CAM_PERIPH_BIO, path, ctlfeasync, 0, lun_softc); if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { const struct cam_status_entry *entry; entry = cam_fetch_status_entry(status); printf("%s: CAM error %s (%#x) returned from " "cam_periph_alloc()\n", __func__, (entry != NULL) ? entry->status_text : "Unknown", status); free(lun_softc, M_CTLFE); } xpt_path_unlock(path); ctlfe_onoffline(arg, /*online*/ 1); xpt_free_path(path); } static void ctlfe_offline(void *arg) { struct ctlfe_softc *bus_softc; struct cam_path *path; cam_status status; struct cam_periph *periph; bus_softc = (struct ctlfe_softc *)arg; ctlfe_onoffline(arg, /*online*/ 0); /* * Disable the wildcard LUN for this port now that we have taken * the port offline. */ status = xpt_create_path(&path, /*periph*/ NULL, bus_softc->path_id, CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); if (status != CAM_REQ_CMP) { printf("%s: unable to create path for wildcard periph\n", __func__); return; } xpt_path_lock(path); if ((periph = cam_periph_find(path, "ctl")) != NULL) cam_periph_invalidate(periph); xpt_path_unlock(path); xpt_free_path(path); } /* * This will get called to enable a LUN on every bus that is attached to * CTL. So we only need to create a path/periph for this particular bus. */ static int ctlfe_lun_enable(void *arg, int lun_id) { struct ctlfe_softc *bus_softc; struct ctlfe_lun_softc *softc; struct cam_path *path; struct cam_periph *periph; cam_status status; bus_softc = (struct ctlfe_softc *)arg; if (bus_softc->hba_misc & PIM_EXTLUNS) lun_id = CAM_EXTLUN_BYTE_SWIZZLE(ctl_encode_lun(lun_id)); status = xpt_create_path(&path, /*periph*/ NULL, bus_softc->path_id, bus_softc->target_id, lun_id); /* XXX KDM need some way to return status to CTL here? */ if (status != CAM_REQ_CMP) { printf("%s: could not create path, status %#x\n", __func__, status); return (1); } softc = malloc(sizeof(*softc), M_CTLFE, M_WAITOK | M_ZERO); xpt_path_lock(path); periph = cam_periph_find(path, "ctl"); if (periph != NULL) { /* We've already got a periph, no need to alloc a new one. */ xpt_path_unlock(path); xpt_free_path(path); free(softc, M_CTLFE); return (0); } softc->parent_softc = bus_softc; status = cam_periph_alloc(ctlferegister, ctlfeoninvalidate, ctlfecleanup, ctlfestart, "ctl", CAM_PERIPH_BIO, path, ctlfeasync, 0, softc); if ((status & CAM_STATUS_MASK) != CAM_REQ_CMP) { const struct cam_status_entry *entry; entry = cam_fetch_status_entry(status); printf("%s: CAM error %s (%#x) returned from " "cam_periph_alloc()\n", __func__, (entry != NULL) ? entry->status_text : "Unknown", status); free(softc, M_CTLFE); } xpt_path_unlock(path); xpt_free_path(path); return (0); } /* * This will get called when the user removes a LUN to disable that LUN * on every bus that is attached to CTL. */ static int ctlfe_lun_disable(void *arg, int lun_id) { struct ctlfe_softc *softc; struct ctlfe_lun_softc *lun_softc; softc = (struct ctlfe_softc *)arg; if (softc->hba_misc & PIM_EXTLUNS) lun_id = CAM_EXTLUN_BYTE_SWIZZLE(ctl_encode_lun(lun_id)); mtx_lock(&softc->lun_softc_mtx); STAILQ_FOREACH(lun_softc, &softc->lun_softc_list, links) { struct cam_path *path; path = lun_softc->periph->path; if ((xpt_path_target_id(path) == softc->target_id) && (xpt_path_lun_id(path) == lun_id)) { break; } } if (lun_softc == NULL) { mtx_unlock(&softc->lun_softc_mtx); printf("%s: can't find lun %d\n", __func__, lun_id); return (1); } cam_periph_acquire(lun_softc->periph); mtx_unlock(&softc->lun_softc_mtx); cam_periph_lock(lun_softc->periph); cam_periph_invalidate(lun_softc->periph); cam_periph_unlock(lun_softc->periph); cam_periph_release(lun_softc->periph); return (0); } static void ctlfe_dump_sim(struct cam_sim *sim) { printf("%s%d: max tagged openings: %d, max dev openings: %d\n", sim->sim_name, sim->unit_number, sim->max_tagged_dev_openings, sim->max_dev_openings); } /* * Assumes that the SIM lock is held. */ static void ctlfe_dump_queue(struct ctlfe_lun_softc *softc) { struct ccb_hdr *hdr; struct cam_periph *periph; int num_items; periph = softc->periph; num_items = 0; TAILQ_FOREACH(hdr, &softc->work_queue, periph_links.tqe) { union ctl_io *io = hdr->io_ptr; num_items++; /* * Only regular SCSI I/O is put on the work * queue, so we can print sense here. There may be no * sense if it's no the queue for a DMA, but this serves to * print out the CCB as well. * * XXX KDM switch this over to scsi_sense_print() when * CTL is merged in with CAM. */ ctl_io_error_print(io, NULL); /* * Print DMA status if we are DMA_QUEUED. */ if (io->io_hdr.flags & CTL_FLAG_DMA_QUEUED) { xpt_print(periph->path, "Total %u, Current %u, Resid %u\n", io->scsiio.kern_total_len, io->scsiio.kern_data_len, io->scsiio.kern_data_resid); } } xpt_print(periph->path, "%d requests total waiting for CCBs\n", num_items); xpt_print(periph->path, "%ju CCBs outstanding (%ju allocated, %ju " "freed)\n", (uintmax_t)(softc->ccbs_alloced - softc->ccbs_freed), (uintmax_t)softc->ccbs_alloced, (uintmax_t)softc->ccbs_freed); xpt_print(periph->path, "%ju CTIOs outstanding (%ju sent, %ju " "returned\n", (uintmax_t)(softc->ctios_sent - softc->ctios_returned), softc->ctios_sent, softc->ctios_returned); } /* * Datamove/done routine called by CTL. Put ourselves on the queue to * receive a CCB from CAM so we can queue the continue I/O request down * to the adapter. */ static void ctlfe_datamove(union ctl_io *io) { union ccb *ccb; struct cam_periph *periph; struct ctlfe_lun_softc *softc; KASSERT(io->io_hdr.io_type == CTL_IO_SCSI, ("Unexpected io_type (%d) in ctlfe_datamove", io->io_hdr.io_type)); ccb = io->io_hdr.ctl_private[CTL_PRIV_FRONTEND].ptr; periph = xpt_path_periph(ccb->ccb_h.path); cam_periph_lock(periph); softc = (struct ctlfe_lun_softc *)periph->softc; io->io_hdr.flags |= CTL_FLAG_DMA_QUEUED; if ((io->io_hdr.status & CTL_STATUS_MASK) != CTL_STATUS_NONE) io->io_hdr.flags |= CTL_FLAG_STATUS_QUEUED; TAILQ_INSERT_TAIL(&softc->work_queue, &ccb->ccb_h, periph_links.tqe); xpt_schedule(periph, /*priority*/ 1); cam_periph_unlock(periph); } static void ctlfe_done(union ctl_io *io) { union ccb *ccb; struct cam_periph *periph; struct ctlfe_lun_softc *softc; ccb = io->io_hdr.ctl_private[CTL_PRIV_FRONTEND].ptr; periph = xpt_path_periph(ccb->ccb_h.path); cam_periph_lock(periph); softc = (struct ctlfe_lun_softc *)periph->softc; if (io->io_hdr.io_type == CTL_IO_TASK) { /* * Task management commands don't require any further * communication back to the adapter. Requeue the CCB * to the adapter, and free the CTL I/O. */ xpt_print(ccb->ccb_h.path, "%s: returning task I/O " "tag %#x seq %#x\n", __func__, ccb->cin1.tag_id, ccb->cin1.seq_id); /* * Send the notify acknowledge down to the SIM, to let it * know we processed the task management command. */ ccb->ccb_h.status = CAM_REQ_INPROG; ccb->ccb_h.func_code = XPT_NOTIFY_ACKNOWLEDGE; xpt_action(ccb); } else if (io->io_hdr.flags & CTL_FLAG_STATUS_SENT) { if (softc->flags & CTLFE_LUN_WILDCARD) { ccb->ccb_h.target_id = CAM_TARGET_WILDCARD; ccb->ccb_h.target_lun = CAM_LUN_WILDCARD; } if (periph->flags & CAM_PERIPH_INVALID) { ctlfe_free_ccb(periph, ccb); } else { cam_periph_unlock(periph); xpt_action(ccb); return; } } else { io->io_hdr.flags |= CTL_FLAG_STATUS_QUEUED; TAILQ_INSERT_TAIL(&softc->work_queue, &ccb->ccb_h, periph_links.tqe); xpt_schedule(periph, /*priority*/ 1); } cam_periph_unlock(periph); } static void ctlfe_dump(void) { struct ctlfe_softc *bus_softc; struct ctlfe_lun_softc *lun_softc; STAILQ_FOREACH(bus_softc, &ctlfe_softc_list, links) { ctlfe_dump_sim(bus_softc->sim); STAILQ_FOREACH(lun_softc, &bus_softc->lun_softc_list, links) ctlfe_dump_queue(lun_softc); } } Index: head/sys/dev/isp/isp_freebsd.c =================================================================== --- head/sys/dev/isp/isp_freebsd.c (revision 296603) +++ head/sys/dev/isp/isp_freebsd.c (revision 296604) @@ -1,4884 +1,4885 @@ /*- * Copyright (c) 1997-2009 by Matthew Jacob * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Platform (FreeBSD) dependent common attachment code for Qlogic adapters. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #if __FreeBSD_version < 800002 #define THREAD_CREATE kthread_create #else #define THREAD_CREATE kproc_create #endif MODULE_VERSION(isp, 1); MODULE_DEPEND(isp, cam, 1, 1, 1); int isp_announced = 0; int isp_loop_down_limit = 60; /* default loop down limit */ int isp_quickboot_time = 7; /* don't wait more than N secs for loop up */ int isp_gone_device_time = 30; /* grace time before reporting device lost */ static const char prom3[] = "Chan %d [%u] PortID 0x%06x Departed because of %s"; static void isp_freeze_loopdown(ispsoftc_t *, int); static void isp_loop_changed(ispsoftc_t *isp, int chan); static d_ioctl_t ispioctl; static void isp_intr_enable(void *); static void isp_cam_async(void *, uint32_t, struct cam_path *, void *); static void isp_poll(struct cam_sim *); static timeout_t isp_watchdog; static timeout_t isp_gdt; static task_fn_t isp_gdt_task; static void isp_kthread(void *); static void isp_action(struct cam_sim *, union ccb *); static int isp_timer_count; static void isp_timer(void *); static struct cdevsw isp_cdevsw = { .d_version = D_VERSION, .d_ioctl = ispioctl, .d_name = "isp", }; static int isp_role_sysctl(SYSCTL_HANDLER_ARGS) { ispsoftc_t *isp = (ispsoftc_t *)arg1; int chan = arg2; int error, old, value; value = FCPARAM(isp, chan)->role; error = sysctl_handle_int(oidp, &value, 0, req); if ((error != 0) || (req->newptr == NULL)) return (error); if (value < ISP_ROLE_NONE || value > ISP_ROLE_BOTH) return (EINVAL); ISP_LOCK(isp); old = FCPARAM(isp, chan)->role; /* We don't allow target mode switch from here. */ value = (old & ISP_ROLE_TARGET) | (value & ISP_ROLE_INITIATOR); /* If nothing has changed -- we are done. */ if (value == old) { ISP_UNLOCK(isp); return (0); } /* Actually change the role. */ error = isp_control(isp, ISPCTL_CHANGE_ROLE, chan, value); ISP_UNLOCK(isp); return (error); } static int isp_attach_chan(ispsoftc_t *isp, struct cam_devq *devq, int chan) { struct ccb_setasync csa; struct cam_sim *sim; struct cam_path *path; /* * Construct our SIM entry. */ sim = cam_sim_alloc(isp_action, isp_poll, "isp", isp, device_get_unit(isp->isp_dev), &isp->isp_osinfo.lock, isp->isp_maxcmds, isp->isp_maxcmds, devq); if (sim == NULL) { return (ENOMEM); } ISP_LOCK(isp); if (xpt_bus_register(sim, isp->isp_dev, chan) != CAM_SUCCESS) { ISP_UNLOCK(isp); cam_sim_free(sim, FALSE); return (EIO); } ISP_UNLOCK(isp); if (xpt_create_path(&path, NULL, cam_sim_path(sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { ISP_LOCK(isp); xpt_bus_deregister(cam_sim_path(sim)); ISP_UNLOCK(isp); cam_sim_free(sim, FALSE); return (ENXIO); } xpt_setup_ccb(&csa.ccb_h, path, 5); csa.ccb_h.func_code = XPT_SASYNC_CB; csa.event_enable = AC_LOST_DEVICE; csa.callback = isp_cam_async; csa.callback_arg = sim; ISP_LOCK(isp); xpt_action((union ccb *)&csa); ISP_UNLOCK(isp); if (IS_SCSI(isp)) { struct isp_spi *spi = ISP_SPI_PC(isp, chan); spi->sim = sim; spi->path = path; } else { fcparam *fcp = FCPARAM(isp, chan); struct isp_fc *fc = ISP_FC_PC(isp, chan); struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(isp->isp_osinfo.dev); struct sysctl_oid *tree = device_get_sysctl_tree(isp->isp_osinfo.dev); char name[16]; ISP_LOCK(isp); fc->sim = sim; fc->path = path; fc->isp = isp; fc->ready = 1; callout_init_mtx(&fc->gdt, &isp->isp_osinfo.lock, 0); TASK_INIT(&fc->gtask, 1, isp_gdt_task, fc); isp_loop_changed(isp, chan); ISP_UNLOCK(isp); if (THREAD_CREATE(isp_kthread, fc, &fc->kproc, 0, 0, "%s: fc_thrd%d", device_get_nameunit(isp->isp_osinfo.dev), chan)) { xpt_free_path(fc->path); ISP_LOCK(isp); xpt_bus_deregister(cam_sim_path(fc->sim)); ISP_UNLOCK(isp); cam_sim_free(fc->sim, FALSE); return (ENOMEM); } fc->num_threads += 1; if (chan > 0) { snprintf(name, sizeof(name), "chan%d", chan); tree = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, name, CTLFLAG_RW, 0, "Virtual channel"); } SYSCTL_ADD_QUAD(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "wwnn", CTLFLAG_RD, &fcp->isp_wwnn, "World Wide Node Name"); SYSCTL_ADD_QUAD(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "wwpn", CTLFLAG_RD, &fcp->isp_wwpn, "World Wide Port Name"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "loop_down_limit", CTLFLAG_RW, &fc->loop_down_limit, 0, "Loop Down Limit"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "gone_device_time", CTLFLAG_RW, &fc->gone_device_time, 0, "Gone Device Time"); #if defined(ISP_TARGET_MODE) && defined(DEBUG) SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "inject_lost_data_frame", CTLFLAG_RW, &fc->inject_lost_data_frame, 0, "Cause a Lost Frame on a Read"); #endif SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "role", CTLTYPE_INT | CTLFLAG_RW, isp, chan, isp_role_sysctl, "I", "Current role"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "speed", CTLFLAG_RD, &fcp->isp_gbspeed, 0, "Connection speed in gigabits"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "linkstate", CTLFLAG_RD, &fcp->isp_linkstate, 0, "Link state"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "fwstate", CTLFLAG_RD, &fcp->isp_fwstate, 0, "Firmware state"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "loopstate", CTLFLAG_RD, &fcp->isp_loopstate, 0, "Loop state"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "topo", CTLFLAG_RD, &fcp->isp_topo, 0, "Connection topology"); } return (0); } static void isp_detach_chan(ispsoftc_t *isp, int chan) { struct cam_sim *sim; struct cam_path *path; struct ccb_setasync csa; int *num_threads; ISP_GET_PC(isp, chan, sim, sim); ISP_GET_PC(isp, chan, path, path); ISP_GET_PC_ADDR(isp, chan, num_threads, num_threads); xpt_setup_ccb(&csa.ccb_h, path, 5); csa.ccb_h.func_code = XPT_SASYNC_CB; csa.event_enable = 0; csa.callback = isp_cam_async; csa.callback_arg = sim; xpt_action((union ccb *)&csa); xpt_free_path(path); xpt_bus_deregister(cam_sim_path(sim)); cam_sim_free(sim, FALSE); /* Wait for the channel's spawned threads to exit. */ wakeup(isp->isp_osinfo.pc.ptr); while (*num_threads != 0) mtx_sleep(isp, &isp->isp_osinfo.lock, PRIBIO, "isp_reap", 100); } int isp_attach(ispsoftc_t *isp) { const char *nu = device_get_nameunit(isp->isp_osinfo.dev); int du = device_get_unit(isp->isp_dev); int chan; isp->isp_osinfo.ehook.ich_func = isp_intr_enable; isp->isp_osinfo.ehook.ich_arg = isp; /* * Haha. Set this first, because if we're loaded as a module isp_intr_enable * will be called right awawy, which will clear isp_osinfo.ehook_active, * which would be unwise to then set again later. */ isp->isp_osinfo.ehook_active = 1; if (config_intrhook_establish(&isp->isp_osinfo.ehook) != 0) { isp_prt(isp, ISP_LOGERR, "could not establish interrupt enable hook"); return (-EIO); } /* * Create the device queue for our SIM(s). */ isp->isp_osinfo.devq = cam_simq_alloc(isp->isp_maxcmds); if (isp->isp_osinfo.devq == NULL) { config_intrhook_disestablish(&isp->isp_osinfo.ehook); return (EIO); } for (chan = 0; chan < isp->isp_nchan; chan++) { if (isp_attach_chan(isp, isp->isp_osinfo.devq, chan)) { goto unwind; } } callout_init_mtx(&isp->isp_osinfo.tmo, &isp->isp_osinfo.lock, 0); isp_timer_count = hz >> 2; callout_reset(&isp->isp_osinfo.tmo, isp_timer_count, isp_timer, isp); isp->isp_osinfo.timer_active = 1; isp->isp_osinfo.cdev = make_dev(&isp_cdevsw, du, UID_ROOT, GID_OPERATOR, 0600, "%s", nu); if (isp->isp_osinfo.cdev) { isp->isp_osinfo.cdev->si_drv1 = isp; } return (0); unwind: while (--chan >= 0) { struct cam_sim *sim; struct cam_path *path; ISP_GET_PC(isp, chan, sim, sim); ISP_GET_PC(isp, chan, path, path); xpt_free_path(path); ISP_LOCK(isp); xpt_bus_deregister(cam_sim_path(sim)); ISP_UNLOCK(isp); cam_sim_free(sim, FALSE); } if (isp->isp_osinfo.ehook_active) { config_intrhook_disestablish(&isp->isp_osinfo.ehook); isp->isp_osinfo.ehook_active = 0; } if (isp->isp_osinfo.cdev) { destroy_dev(isp->isp_osinfo.cdev); isp->isp_osinfo.cdev = NULL; } cam_simq_free(isp->isp_osinfo.devq); isp->isp_osinfo.devq = NULL; return (-1); } int isp_detach(ispsoftc_t *isp) { struct cam_sim *sim; int chan; ISP_LOCK(isp); for (chan = isp->isp_nchan - 1; chan >= 0; chan -= 1) { ISP_GET_PC(isp, chan, sim, sim); if (sim->refcount > 2) { ISP_UNLOCK(isp); return (EBUSY); } } /* Tell spawned threads that we're exiting. */ isp->isp_osinfo.is_exiting = 1; if (isp->isp_osinfo.timer_active) { callout_stop(&isp->isp_osinfo.tmo); isp->isp_osinfo.timer_active = 0; } for (chan = isp->isp_nchan - 1; chan >= 0; chan -= 1) isp_detach_chan(isp, chan); ISP_UNLOCK(isp); if (isp->isp_osinfo.cdev) { destroy_dev(isp->isp_osinfo.cdev); isp->isp_osinfo.cdev = NULL; } if (isp->isp_osinfo.ehook_active) { config_intrhook_disestablish(&isp->isp_osinfo.ehook); isp->isp_osinfo.ehook_active = 0; } if (isp->isp_osinfo.devq != NULL) { cam_simq_free(isp->isp_osinfo.devq); isp->isp_osinfo.devq = NULL; } return (0); } static void isp_freeze_loopdown(ispsoftc_t *isp, int chan) { if (IS_FC(isp)) { struct isp_fc *fc = ISP_FC_PC(isp, chan); if (fc->simqfrozen == 0) { isp_prt(isp, ISP_LOGDEBUG0, "Chan %d Freeze simq (loopdown)", chan); fc->simqfrozen = SIMQFRZ_LOOPDOWN; #if __FreeBSD_version >= 1000039 xpt_hold_boot(); #endif xpt_freeze_simq(fc->sim, 1); } else { isp_prt(isp, ISP_LOGDEBUG0, "Chan %d Mark simq frozen (loopdown)", chan); fc->simqfrozen |= SIMQFRZ_LOOPDOWN; } } } static void isp_unfreeze_loopdown(ispsoftc_t *isp, int chan) { if (IS_FC(isp)) { struct isp_fc *fc = ISP_FC_PC(isp, chan); int wasfrozen = fc->simqfrozen & SIMQFRZ_LOOPDOWN; fc->simqfrozen &= ~SIMQFRZ_LOOPDOWN; if (wasfrozen && fc->simqfrozen == 0) { isp_prt(isp, ISP_LOGDEBUG0, "Chan %d Release simq", chan); xpt_release_simq(fc->sim, 1); #if __FreeBSD_version >= 1000039 xpt_release_boot(); #endif } } } static int ispioctl(struct cdev *dev, u_long c, caddr_t addr, int flags, struct thread *td) { ispsoftc_t *isp; int nr, chan, retval = ENOTTY; isp = dev->si_drv1; switch (c) { case ISP_SDBLEV: { int olddblev = isp->isp_dblev; isp->isp_dblev = *(int *)addr; *(int *)addr = olddblev; retval = 0; break; } case ISP_GETROLE: chan = *(int *)addr; if (chan < 0 || chan >= isp->isp_nchan) { retval = -ENXIO; break; } if (IS_FC(isp)) { *(int *)addr = FCPARAM(isp, chan)->role; } else { *(int *)addr = ISP_ROLE_INITIATOR; } retval = 0; break; case ISP_SETROLE: if (IS_SCSI(isp)) break; nr = *(int *)addr; chan = nr >> 8; if (chan < 0 || chan >= isp->isp_nchan) { retval = -ENXIO; break; } nr &= 0xff; if (nr & ~(ISP_ROLE_INITIATOR|ISP_ROLE_TARGET)) { retval = EINVAL; break; } ISP_LOCK(isp); *(int *)addr = FCPARAM(isp, chan)->role; retval = isp_control(isp, ISPCTL_CHANGE_ROLE, chan, nr); ISP_UNLOCK(isp); retval = 0; break; case ISP_RESETHBA: ISP_LOCK(isp); isp_reinit(isp, 0); ISP_UNLOCK(isp); retval = 0; break; case ISP_RESCAN: if (IS_FC(isp)) { chan = *(int *)addr; if (chan < 0 || chan >= isp->isp_nchan) { retval = -ENXIO; break; } ISP_LOCK(isp); if (isp_fc_runstate(isp, chan, 5 * 1000000) != LOOP_READY) { retval = EIO; } else { retval = 0; } ISP_UNLOCK(isp); } break; case ISP_FC_LIP: if (IS_FC(isp)) { chan = *(int *)addr; if (chan < 0 || chan >= isp->isp_nchan) { retval = -ENXIO; break; } ISP_LOCK(isp); if (isp_control(isp, ISPCTL_SEND_LIP, chan)) { retval = EIO; } else { retval = 0; } ISP_UNLOCK(isp); } break; case ISP_FC_GETDINFO: { struct isp_fc_device *ifc = (struct isp_fc_device *) addr; fcportdb_t *lp; if (IS_SCSI(isp)) { break; } if (ifc->loopid >= MAX_FC_TARG) { retval = EINVAL; break; } lp = &FCPARAM(isp, ifc->chan)->portdb[ifc->loopid]; if (lp->state != FC_PORTDB_STATE_NIL) { ifc->role = (lp->prli_word3 & SVC3_ROLE_MASK) >> SVC3_ROLE_SHIFT; ifc->loopid = lp->handle; ifc->portid = lp->portid; ifc->node_wwn = lp->node_wwn; ifc->port_wwn = lp->port_wwn; retval = 0; } else { retval = ENODEV; } break; } case ISP_GET_STATS: { isp_stats_t *sp = (isp_stats_t *) addr; ISP_MEMZERO(sp, sizeof (*sp)); sp->isp_stat_version = ISP_STATS_VERSION; sp->isp_type = isp->isp_type; sp->isp_revision = isp->isp_revision; ISP_LOCK(isp); sp->isp_stats[ISP_INTCNT] = isp->isp_intcnt; sp->isp_stats[ISP_INTBOGUS] = isp->isp_intbogus; sp->isp_stats[ISP_INTMBOXC] = isp->isp_intmboxc; sp->isp_stats[ISP_INGOASYNC] = isp->isp_intoasync; sp->isp_stats[ISP_RSLTCCMPLT] = isp->isp_rsltccmplt; sp->isp_stats[ISP_FPHCCMCPLT] = isp->isp_fphccmplt; sp->isp_stats[ISP_RSCCHIWAT] = isp->isp_rscchiwater; sp->isp_stats[ISP_FPCCHIWAT] = isp->isp_fpcchiwater; ISP_UNLOCK(isp); retval = 0; break; } case ISP_CLR_STATS: ISP_LOCK(isp); isp->isp_intcnt = 0; isp->isp_intbogus = 0; isp->isp_intmboxc = 0; isp->isp_intoasync = 0; isp->isp_rsltccmplt = 0; isp->isp_fphccmplt = 0; isp->isp_rscchiwater = 0; isp->isp_fpcchiwater = 0; ISP_UNLOCK(isp); retval = 0; break; case ISP_FC_GETHINFO: { struct isp_hba_device *hba = (struct isp_hba_device *) addr; int chan = hba->fc_channel; if (chan < 0 || chan >= isp->isp_nchan) { retval = ENXIO; break; } hba->fc_fw_major = ISP_FW_MAJORX(isp->isp_fwrev); hba->fc_fw_minor = ISP_FW_MINORX(isp->isp_fwrev); hba->fc_fw_micro = ISP_FW_MICROX(isp->isp_fwrev); hba->fc_nchannels = isp->isp_nchan; if (IS_FC(isp)) { hba->fc_nports = MAX_FC_TARG; hba->fc_speed = FCPARAM(isp, hba->fc_channel)->isp_gbspeed; hba->fc_topology = FCPARAM(isp, chan)->isp_topo + 1; hba->fc_loopid = FCPARAM(isp, chan)->isp_loopid; hba->nvram_node_wwn = FCPARAM(isp, chan)->isp_wwnn_nvram; hba->nvram_port_wwn = FCPARAM(isp, chan)->isp_wwpn_nvram; hba->active_node_wwn = FCPARAM(isp, chan)->isp_wwnn; hba->active_port_wwn = FCPARAM(isp, chan)->isp_wwpn; } else { hba->fc_nports = MAX_TARGETS; hba->fc_speed = 0; hba->fc_topology = 0; hba->nvram_node_wwn = 0ull; hba->nvram_port_wwn = 0ull; hba->active_node_wwn = 0ull; hba->active_port_wwn = 0ull; } retval = 0; break; } case ISP_TSK_MGMT: { int needmarker; struct isp_fc_tsk_mgmt *fct = (struct isp_fc_tsk_mgmt *) addr; uint16_t nphdl; mbreg_t mbs; if (IS_SCSI(isp)) { break; } chan = fct->chan; if (chan < 0 || chan >= isp->isp_nchan) { retval = -ENXIO; break; } needmarker = retval = 0; nphdl = fct->loopid; ISP_LOCK(isp); if (IS_24XX(isp)) { uint8_t local[QENTRY_LEN]; isp24xx_tmf_t *tmf; isp24xx_statusreq_t *sp; fcparam *fcp = FCPARAM(isp, chan); fcportdb_t *lp; int i; for (i = 0; i < MAX_FC_TARG; i++) { lp = &fcp->portdb[i]; if (lp->handle == nphdl) { break; } } if (i == MAX_FC_TARG) { retval = ENXIO; ISP_UNLOCK(isp); break; } /* XXX VALIDATE LP XXX */ tmf = (isp24xx_tmf_t *) local; ISP_MEMZERO(tmf, QENTRY_LEN); tmf->tmf_header.rqs_entry_type = RQSTYPE_TSK_MGMT; tmf->tmf_header.rqs_entry_count = 1; tmf->tmf_nphdl = lp->handle; tmf->tmf_delay = 2; tmf->tmf_timeout = 4; tmf->tmf_tidlo = lp->portid; tmf->tmf_tidhi = lp->portid >> 16; tmf->tmf_vpidx = ISP_GET_VPIDX(isp, chan); tmf->tmf_lun[1] = fct->lun & 0xff; if (fct->lun >= 256) { tmf->tmf_lun[0] = 0x40 | (fct->lun >> 8); } switch (fct->action) { case IPT_CLEAR_ACA: tmf->tmf_flags = ISP24XX_TMF_CLEAR_ACA; break; case IPT_TARGET_RESET: tmf->tmf_flags = ISP24XX_TMF_TARGET_RESET; needmarker = 1; break; case IPT_LUN_RESET: tmf->tmf_flags = ISP24XX_TMF_LUN_RESET; needmarker = 1; break; case IPT_CLEAR_TASK_SET: tmf->tmf_flags = ISP24XX_TMF_CLEAR_TASK_SET; needmarker = 1; break; case IPT_ABORT_TASK_SET: tmf->tmf_flags = ISP24XX_TMF_ABORT_TASK_SET; needmarker = 1; break; default: retval = EINVAL; break; } if (retval) { ISP_UNLOCK(isp); break; } MBSINIT(&mbs, MBOX_EXEC_COMMAND_IOCB_A64, MBLOGALL, MBCMD_DEFAULT_TIMEOUT + tmf->tmf_timeout * 1000000); mbs.param[1] = QENTRY_LEN; mbs.param[2] = DMA_WD1(fcp->isp_scdma); mbs.param[3] = DMA_WD0(fcp->isp_scdma); mbs.param[6] = DMA_WD3(fcp->isp_scdma); mbs.param[7] = DMA_WD2(fcp->isp_scdma); if (FC_SCRATCH_ACQUIRE(isp, chan)) { ISP_UNLOCK(isp); retval = ENOMEM; break; } isp_put_24xx_tmf(isp, tmf, fcp->isp_scratch); MEMORYBARRIER(isp, SYNC_SFORDEV, 0, QENTRY_LEN, chan); sp = (isp24xx_statusreq_t *) local; sp->req_completion_status = 1; retval = isp_control(isp, ISPCTL_RUN_MBOXCMD, &mbs); MEMORYBARRIER(isp, SYNC_SFORCPU, QENTRY_LEN, QENTRY_LEN, chan); isp_get_24xx_response(isp, &((isp24xx_statusreq_t *)fcp->isp_scratch)[1], sp); FC_SCRATCH_RELEASE(isp, chan); if (retval || sp->req_completion_status != 0) { FC_SCRATCH_RELEASE(isp, chan); retval = EIO; } if (retval == 0) { if (needmarker) { fcp->sendmarker = 1; } } } else { MBSINIT(&mbs, 0, MBLOGALL, 0); if (ISP_CAP_2KLOGIN(isp) == 0) { nphdl <<= 8; } switch (fct->action) { case IPT_CLEAR_ACA: mbs.param[0] = MBOX_CLEAR_ACA; mbs.param[1] = nphdl; mbs.param[2] = fct->lun; break; case IPT_TARGET_RESET: mbs.param[0] = MBOX_TARGET_RESET; mbs.param[1] = nphdl; needmarker = 1; break; case IPT_LUN_RESET: mbs.param[0] = MBOX_LUN_RESET; mbs.param[1] = nphdl; mbs.param[2] = fct->lun; needmarker = 1; break; case IPT_CLEAR_TASK_SET: mbs.param[0] = MBOX_CLEAR_TASK_SET; mbs.param[1] = nphdl; mbs.param[2] = fct->lun; needmarker = 1; break; case IPT_ABORT_TASK_SET: mbs.param[0] = MBOX_ABORT_TASK_SET; mbs.param[1] = nphdl; mbs.param[2] = fct->lun; needmarker = 1; break; default: retval = EINVAL; break; } if (retval == 0) { if (needmarker) { FCPARAM(isp, chan)->sendmarker = 1; } retval = isp_control(isp, ISPCTL_RUN_MBOXCMD, &mbs); if (retval) { retval = EIO; } } } ISP_UNLOCK(isp); break; } default: break; } return (retval); } static void isp_intr_enable(void *arg) { int chan; ispsoftc_t *isp = arg; ISP_LOCK(isp); if (IS_FC(isp)) { for (chan = 0; chan < isp->isp_nchan; chan++) { if (FCPARAM(isp, chan)->role != ISP_ROLE_NONE) { ISP_ENABLE_INTS(isp); break; } } } else { ISP_ENABLE_INTS(isp); } isp->isp_osinfo.ehook_active = 0; ISP_UNLOCK(isp); /* Release our hook so that the boot can continue. */ config_intrhook_disestablish(&isp->isp_osinfo.ehook); } /* * Local Inlines */ static ISP_INLINE int isp_get_pcmd(ispsoftc_t *, union ccb *); static ISP_INLINE void isp_free_pcmd(ispsoftc_t *, union ccb *); static ISP_INLINE int isp_get_pcmd(ispsoftc_t *isp, union ccb *ccb) { ISP_PCMD(ccb) = isp->isp_osinfo.pcmd_free; if (ISP_PCMD(ccb) == NULL) { return (-1); } isp->isp_osinfo.pcmd_free = ((struct isp_pcmd *)ISP_PCMD(ccb))->next; return (0); } static ISP_INLINE void isp_free_pcmd(ispsoftc_t *isp, union ccb *ccb) { if (ISP_PCMD(ccb)) { #ifdef ISP_TARGET_MODE PISP_PCMD(ccb)->datalen = 0; PISP_PCMD(ccb)->totslen = 0; PISP_PCMD(ccb)->cumslen = 0; PISP_PCMD(ccb)->crn = 0; #endif PISP_PCMD(ccb)->next = isp->isp_osinfo.pcmd_free; isp->isp_osinfo.pcmd_free = ISP_PCMD(ccb); ISP_PCMD(ccb) = NULL; } } /* * Put the target mode functions here, because some are inlines */ #ifdef ISP_TARGET_MODE static ISP_INLINE int is_lun_enabled(ispsoftc_t *, int, lun_id_t); static ISP_INLINE tstate_t *get_lun_statep(ispsoftc_t *, int, lun_id_t); static ISP_INLINE tstate_t *get_lun_statep_from_tag(ispsoftc_t *, int, uint32_t); static ISP_INLINE void rls_lun_statep(ispsoftc_t *, tstate_t *); static ISP_INLINE inot_private_data_t *get_ntp_from_tagdata(ispsoftc_t *, uint32_t, uint32_t, tstate_t **); static ISP_INLINE atio_private_data_t *isp_get_atpd(ispsoftc_t *, tstate_t *, uint32_t); static ISP_INLINE atio_private_data_t *isp_find_atpd(ispsoftc_t *, tstate_t *, uint32_t); static ISP_INLINE void isp_put_atpd(ispsoftc_t *, tstate_t *, atio_private_data_t *); static ISP_INLINE inot_private_data_t *isp_get_ntpd(ispsoftc_t *, tstate_t *); static ISP_INLINE inot_private_data_t *isp_find_ntpd(ispsoftc_t *, tstate_t *, uint32_t, uint32_t); static ISP_INLINE void isp_put_ntpd(ispsoftc_t *, tstate_t *, inot_private_data_t *); static cam_status create_lun_state(ispsoftc_t *, int, struct cam_path *, tstate_t **); static void destroy_lun_state(ispsoftc_t *, tstate_t *); static void isp_enable_lun(ispsoftc_t *, union ccb *); static void isp_disable_lun(ispsoftc_t *, union ccb *); static timeout_t isp_refire_putback_atio; static timeout_t isp_refire_notify_ack; static void isp_complete_ctio(union ccb *); static void isp_target_putback_atio(union ccb *); enum Start_Ctio_How { FROM_CAM, FROM_TIMER, FROM_SRR, FROM_CTIO_DONE }; static void isp_target_start_ctio(ispsoftc_t *, union ccb *, enum Start_Ctio_How); static void isp_handle_platform_atio2(ispsoftc_t *, at2_entry_t *); static void isp_handle_platform_atio7(ispsoftc_t *, at7_entry_t *); static void isp_handle_platform_ctio(ispsoftc_t *, void *); static void isp_handle_platform_notify_fc(ispsoftc_t *, in_fcentry_t *); static void isp_handle_platform_notify_24xx(ispsoftc_t *, in_fcentry_24xx_t *); static int isp_handle_platform_target_notify_ack(ispsoftc_t *, isp_notify_t *); static void isp_handle_platform_target_tmf(ispsoftc_t *, isp_notify_t *); static void isp_target_mark_aborted(ispsoftc_t *, union ccb *); static void isp_target_mark_aborted_early(ispsoftc_t *, tstate_t *, uint32_t); static ISP_INLINE int is_lun_enabled(ispsoftc_t *isp, int bus, lun_id_t lun) { tstate_t *tptr; struct tslist *lhp; ISP_GET_PC_ADDR(isp, bus, lun_hash[LUN_HASH_FUNC(lun)], lhp); SLIST_FOREACH(tptr, lhp, next) { if (tptr->ts_lun == lun) { return (1); } } return (0); } static void dump_tstates(ispsoftc_t *isp, int bus) { int i, j; struct tslist *lhp; tstate_t *tptr = NULL; if (bus >= isp->isp_nchan) { return; } for (i = 0; i < LUN_HASH_SIZE; i++) { ISP_GET_PC_ADDR(isp, bus, lun_hash[i], lhp); j = 0; SLIST_FOREACH(tptr, lhp, next) { xpt_print(tptr->owner, "[%d, %d] atio_cnt=%d inot_cnt=%d\n", i, j, tptr->atio_count, tptr->inot_count); j++; } } } static ISP_INLINE tstate_t * get_lun_statep(ispsoftc_t *isp, int bus, lun_id_t lun) { tstate_t *tptr = NULL; struct tslist *lhp; if (bus < isp->isp_nchan) { ISP_GET_PC_ADDR(isp, bus, lun_hash[LUN_HASH_FUNC(lun)], lhp); SLIST_FOREACH(tptr, lhp, next) { if (tptr->ts_lun == lun) { tptr->hold++; return (tptr); } } } return (NULL); } static ISP_INLINE tstate_t * get_lun_statep_from_tag(ispsoftc_t *isp, int bus, uint32_t tagval) { tstate_t *tptr = NULL; atio_private_data_t *atp; struct tslist *lhp; int i; if (bus < isp->isp_nchan && tagval != 0) { for (i = 0; i < LUN_HASH_SIZE; i++) { ISP_GET_PC_ADDR(isp, bus, lun_hash[i], lhp); SLIST_FOREACH(tptr, lhp, next) { atp = isp_find_atpd(isp, tptr, tagval); if (atp) { tptr->hold++; return (tptr); } } } } return (NULL); } static ISP_INLINE inot_private_data_t * get_ntp_from_tagdata(ispsoftc_t *isp, uint32_t tag_id, uint32_t seq_id, tstate_t **rslt) { inot_private_data_t *ntp; tstate_t *tptr; struct tslist *lhp; int bus, i; for (bus = 0; bus < isp->isp_nchan; bus++) { for (i = 0; i < LUN_HASH_SIZE; i++) { ISP_GET_PC_ADDR(isp, bus, lun_hash[i], lhp); SLIST_FOREACH(tptr, lhp, next) { ntp = isp_find_ntpd(isp, tptr, tag_id, seq_id); if (ntp) { *rslt = tptr; tptr->hold++; return (ntp); } } } } return (NULL); } static ISP_INLINE void rls_lun_statep(ispsoftc_t *isp, tstate_t *tptr) { KASSERT((tptr->hold), ("tptr not held")); tptr->hold--; } static void isp_tmcmd_restart(ispsoftc_t *isp) { inot_private_data_t *ntp; inot_private_data_t *restart_queue; tstate_t *tptr; union ccb *ccb; struct tslist *lhp; int bus, i; for (bus = 0; bus < isp->isp_nchan; bus++) { for (i = 0; i < LUN_HASH_SIZE; i++) { ISP_GET_PC_ADDR(isp, bus, lun_hash[i], lhp); SLIST_FOREACH(tptr, lhp, next) { if ((restart_queue = tptr->restart_queue) != NULL) tptr->restart_queue = NULL; while (restart_queue) { ntp = restart_queue; restart_queue = ntp->rd.nt.nt_hba; if (IS_24XX(isp)) { isp_prt(isp, ISP_LOGTDEBUG0, "%s: restarting resrc deprived %x", __func__, ((at7_entry_t *)ntp->rd.data)->at_rxid); isp_handle_platform_atio7(isp, (at7_entry_t *) ntp->rd.data); } else { isp_prt(isp, ISP_LOGTDEBUG0, "%s: restarting resrc deprived %x", __func__, ((at2_entry_t *)ntp->rd.data)->at_rxid); isp_handle_platform_atio2(isp, (at2_entry_t *) ntp->rd.data); } isp_put_ntpd(isp, tptr, ntp); if (tptr->restart_queue && restart_queue != NULL) { ntp = tptr->restart_queue; tptr->restart_queue = restart_queue; while (restart_queue->rd.nt.nt_hba) { restart_queue = restart_queue->rd.nt.nt_hba; } restart_queue->rd.nt.nt_hba = ntp; break; } } /* * We only need to do this once per tptr */ if (!TAILQ_EMPTY(&tptr->waitq)) { ccb = (union ccb *)TAILQ_LAST(&tptr->waitq, isp_ccbq); TAILQ_REMOVE(&tptr->waitq, &ccb->ccb_h, periph_links.tqe); isp_target_start_ctio(isp, ccb, FROM_TIMER); } } } } } static ISP_INLINE atio_private_data_t * isp_get_atpd(ispsoftc_t *isp, tstate_t *tptr, uint32_t tag) { atio_private_data_t *atp; atp = LIST_FIRST(&tptr->atfree); if (atp) { LIST_REMOVE(atp, next); atp->tag = tag; LIST_INSERT_HEAD(&tptr->atused[ATPDPHASH(tag)], atp, next); } return (atp); } static ISP_INLINE atio_private_data_t * isp_find_atpd(ispsoftc_t *isp, tstate_t *tptr, uint32_t tag) { atio_private_data_t *atp; LIST_FOREACH(atp, &tptr->atused[ATPDPHASH(tag)], next) { if (atp->tag == tag) return (atp); } return (NULL); } static ISP_INLINE void isp_put_atpd(ispsoftc_t *isp, tstate_t *tptr, atio_private_data_t *atp) { if (atp->ests) { isp_put_ecmd(isp, atp->ests); } LIST_REMOVE(atp, next); memset(atp, 0, sizeof (*atp)); LIST_INSERT_HEAD(&tptr->atfree, atp, next); } static void isp_dump_atpd(ispsoftc_t *isp, tstate_t *tptr) { atio_private_data_t *atp; const char *states[8] = { "Free", "ATIO", "CAM", "CTIO", "LAST_CTIO", "PDON", "?6", "7" }; for (atp = tptr->atpool; atp < &tptr->atpool[ATPDPSIZE]; atp++) { xpt_print(tptr->owner, "ATP: [0x%x] origdlen %u bytes_xfrd %u lun %x nphdl 0x%04x s_id 0x%06x d_id 0x%06x oxid 0x%04x state %s\n", atp->tag, atp->orig_datalen, atp->bytes_xfered, atp->lun, atp->nphdl, atp->sid, atp->portid, atp->oxid, states[atp->state & 0x7]); } } static ISP_INLINE inot_private_data_t * isp_get_ntpd(ispsoftc_t *isp, tstate_t *tptr) { inot_private_data_t *ntp; ntp = tptr->ntfree; if (ntp) { tptr->ntfree = ntp->next; } return (ntp); } static ISP_INLINE inot_private_data_t * isp_find_ntpd(ispsoftc_t *isp, tstate_t *tptr, uint32_t tag_id, uint32_t seq_id) { inot_private_data_t *ntp; for (ntp = tptr->ntpool; ntp < &tptr->ntpool[ATPDPSIZE]; ntp++) { if (ntp->rd.tag_id == tag_id && ntp->rd.seq_id == seq_id) { return (ntp); } } return (NULL); } static ISP_INLINE void isp_put_ntpd(ispsoftc_t *isp, tstate_t *tptr, inot_private_data_t *ntp) { ntp->rd.tag_id = ntp->rd.seq_id = 0; ntp->next = tptr->ntfree; tptr->ntfree = ntp; } static cam_status create_lun_state(ispsoftc_t *isp, int bus, struct cam_path *path, tstate_t **rslt) { cam_status status; lun_id_t lun; struct tslist *lhp; tstate_t *tptr; int i; lun = xpt_path_lun_id(path); if (lun != CAM_LUN_WILDCARD) { if (ISP_MAX_LUNS(isp) > 0 && lun >= ISP_MAX_LUNS(isp)) { return (CAM_LUN_INVALID); } } if (is_lun_enabled(isp, bus, lun)) { return (CAM_LUN_ALRDY_ENA); } tptr = malloc(sizeof (tstate_t), M_DEVBUF, M_NOWAIT|M_ZERO); if (tptr == NULL) { return (CAM_RESRC_UNAVAIL); } tptr->ts_lun = lun; status = xpt_create_path(&tptr->owner, NULL, xpt_path_path_id(path), xpt_path_target_id(path), lun); if (status != CAM_REQ_CMP) { free(tptr, M_DEVBUF); return (status); } SLIST_INIT(&tptr->atios); SLIST_INIT(&tptr->inots); TAILQ_INIT(&tptr->waitq); LIST_INIT(&tptr->atfree); for (i = ATPDPSIZE-1; i >= 0; i--) LIST_INSERT_HEAD(&tptr->atfree, &tptr->atpool[i], next); for (i = 0; i < ATPDPHASHSIZE; i++) LIST_INIT(&tptr->atused[i]); for (i = 0; i < ATPDPSIZE-1; i++) tptr->ntpool[i].next = &tptr->ntpool[i+1]; tptr->ntfree = tptr->ntpool; tptr->hold = 1; ISP_GET_PC_ADDR(isp, bus, lun_hash[LUN_HASH_FUNC(lun)], lhp); SLIST_INSERT_HEAD(lhp, tptr, next); *rslt = tptr; ISP_PATH_PRT(isp, ISP_LOGTDEBUG0, path, "created tstate\n"); return (CAM_REQ_CMP); } static ISP_INLINE void destroy_lun_state(ispsoftc_t *isp, tstate_t *tptr) { union ccb *ccb; struct tslist *lhp; KASSERT((tptr->hold != 0), ("tptr is not held")); KASSERT((tptr->hold == 1), ("tptr still held (%d)", tptr->hold)); do { ccb = (union ccb *)SLIST_FIRST(&tptr->atios); if (ccb) { SLIST_REMOVE_HEAD(&tptr->atios, sim_links.sle); ccb->ccb_h.status = CAM_REQ_ABORTED; xpt_done(ccb); } } while (ccb); do { ccb = (union ccb *)SLIST_FIRST(&tptr->inots); if (ccb) { SLIST_REMOVE_HEAD(&tptr->inots, sim_links.sle); ccb->ccb_h.status = CAM_REQ_ABORTED; xpt_done(ccb); } } while (ccb); ISP_GET_PC_ADDR(isp, cam_sim_bus(xpt_path_sim(tptr->owner)), lun_hash[LUN_HASH_FUNC(tptr->ts_lun)], lhp); SLIST_REMOVE(lhp, tptr, tstate, next); ISP_PATH_PRT(isp, ISP_LOGTDEBUG0, tptr->owner, "destroyed tstate\n"); xpt_free_path(tptr->owner); free(tptr, M_DEVBUF); } static void isp_enable_lun(ispsoftc_t *isp, union ccb *ccb) { tstate_t *tptr; int bus; target_id_t target; lun_id_t lun; if (!IS_FC(isp) || !ISP_CAP_TMODE(isp) || !ISP_CAP_SCCFW(isp)) { xpt_print(ccb->ccb_h.path, "Target mode is not supported\n"); ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; xpt_done(ccb); return; } /* * We only support either target and lun both wildcard * or target and lun both non-wildcard. */ bus = XS_CHANNEL(ccb); target = ccb->ccb_h.target_id; lun = ccb->ccb_h.target_lun; ISP_PATH_PRT(isp, ISP_LOGTDEBUG0|ISP_LOGCONFIG, ccb->ccb_h.path, "enabling lun %jx\n", (uintmax_t)lun); if ((target == CAM_TARGET_WILDCARD) != (lun == CAM_LUN_WILDCARD)) { ccb->ccb_h.status = CAM_LUN_INVALID; xpt_done(ccb); return; } /* Create the state pointer. It should not already exist. */ tptr = get_lun_statep(isp, bus, lun); if (tptr) { ccb->ccb_h.status = CAM_LUN_ALRDY_ENA; xpt_done(ccb); return; } ccb->ccb_h.status = create_lun_state(isp, bus, ccb->ccb_h.path, &tptr); if (ccb->ccb_h.status != CAM_REQ_CMP) { xpt_done(ccb); return; } rls_lun_statep(isp, tptr); ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); } static void isp_disable_lun(ispsoftc_t *isp, union ccb *ccb) { tstate_t *tptr = NULL; int bus; target_id_t target; lun_id_t lun; bus = XS_CHANNEL(ccb); target = ccb->ccb_h.target_id; lun = ccb->ccb_h.target_lun; ISP_PATH_PRT(isp, ISP_LOGTDEBUG0|ISP_LOGCONFIG, ccb->ccb_h.path, "disabling lun %jx\n", (uintmax_t)lun); if ((target == CAM_TARGET_WILDCARD) != (lun == CAM_LUN_WILDCARD)) { ccb->ccb_h.status = CAM_LUN_INVALID; xpt_done(ccb); return; } /* Find the state pointer. */ if ((tptr = get_lun_statep(isp, bus, lun)) == NULL) { ccb->ccb_h.status = CAM_PATH_INVALID; xpt_done(ccb); return; } destroy_lun_state(isp, tptr); ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); } static void isp_target_start_ctio(ispsoftc_t *isp, union ccb *ccb, enum Start_Ctio_How how) { int fctape, sendstatus, resid; tstate_t *tptr; fcparam *fcp; atio_private_data_t *atp; struct ccb_scsiio *cso; uint32_t dmaresult, handle, xfrlen, sense_length, tmp; uint8_t local[QENTRY_LEN]; tptr = get_lun_statep(isp, XS_CHANNEL(ccb), XS_LUN(ccb)); if (tptr == NULL) { tptr = get_lun_statep(isp, XS_CHANNEL(ccb), CAM_LUN_WILDCARD); if (tptr == NULL) { isp_prt(isp, ISP_LOGERR, "%s: [0x%x] cannot find tstate pointer", __func__, ccb->csio.tag_id); ccb->ccb_h.status = CAM_DEV_NOT_THERE; xpt_done(ccb); return; } } isp_prt(isp, ISP_LOGTDEBUG0, "%s: ENTRY[0x%x] how %u xfrlen %u sendstatus %d sense_len %u", __func__, ccb->csio.tag_id, how, ccb->csio.dxfer_len, (ccb->ccb_h.flags & CAM_SEND_STATUS) != 0, ((ccb->ccb_h.flags & CAM_SEND_SENSE)? ccb->csio.sense_len : 0)); switch (how) { case FROM_TIMER: case FROM_CAM: /* * Insert at the tail of the list, if any, waiting CTIO CCBs */ TAILQ_INSERT_TAIL(&tptr->waitq, &ccb->ccb_h, periph_links.tqe); break; case FROM_SRR: case FROM_CTIO_DONE: TAILQ_INSERT_HEAD(&tptr->waitq, &ccb->ccb_h, periph_links.tqe); break; } while (TAILQ_FIRST(&tptr->waitq) != NULL) { ccb = (union ccb *) TAILQ_FIRST(&tptr->waitq); TAILQ_REMOVE(&tptr->waitq, &ccb->ccb_h, periph_links.tqe); cso = &ccb->csio; xfrlen = cso->dxfer_len; if (xfrlen == 0) { if ((ccb->ccb_h.flags & CAM_SEND_STATUS) == 0) { ISP_PATH_PRT(isp, ISP_LOGERR, ccb->ccb_h.path, "a data transfer length of zero but no status to send is wrong\n"); ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); continue; } } atp = isp_find_atpd(isp, tptr, cso->tag_id); if (atp == NULL) { isp_prt(isp, ISP_LOGERR, "%s: [0x%x] cannot find private data adjunct in %s", __func__, cso->tag_id, __func__); isp_dump_atpd(isp, tptr); ccb->ccb_h.status = CAM_REQ_CMP_ERR; xpt_done(ccb); continue; } /* * Is this command a dead duck? */ if (atp->dead) { isp_prt(isp, ISP_LOGERR, "%s: [0x%x] not sending a CTIO for a dead command", __func__, cso->tag_id); ccb->ccb_h.status = CAM_REQ_ABORTED; xpt_done(ccb); continue; } /* * Check to make sure we're still in target mode. */ fcp = FCPARAM(isp, XS_CHANNEL(ccb)); if ((fcp->role & ISP_ROLE_TARGET) == 0) { isp_prt(isp, ISP_LOGERR, "%s: [0x%x] stopping sending a CTIO because we're no longer in target mode", __func__, cso->tag_id); ccb->ccb_h.status = CAM_PROVIDE_FAIL; xpt_done(ccb); continue; } /* * We're only handling ATPD_CCB_OUTSTANDING outstanding CCB at a time (one of which * could be split into two CTIOs to split data and status). */ if (atp->ctcnt >= ATPD_CCB_OUTSTANDING) { isp_prt(isp, ISP_LOGTINFO, "[0x%x] handling only %d CCBs at a time (flags for this ccb: 0x%x)", cso->tag_id, ATPD_CCB_OUTSTANDING, ccb->ccb_h.flags); TAILQ_INSERT_HEAD(&tptr->waitq, &ccb->ccb_h, periph_links.tqe); break; } /* * Does the initiator expect FC-Tape style responses? */ if ((atp->word3 & PRLI_WD3_RETRY) && fcp->fctape_enabled) { fctape = 1; } else { fctape = 0; } /* * If we already did the data xfer portion of a CTIO that sends data * and status, don't do it again and do the status portion now. */ if (atp->sendst) { isp_prt(isp, ISP_LOGTINFO, "[0x%x] now sending synthesized status orig_dl=%u xfered=%u bit=%u", cso->tag_id, atp->orig_datalen, atp->bytes_xfered, atp->bytes_in_transit); xfrlen = 0; /* we already did the data transfer */ atp->sendst = 0; } if (ccb->ccb_h.flags & CAM_SEND_STATUS) { sendstatus = 1; } else { sendstatus = 0; } if (ccb->ccb_h.flags & CAM_SEND_SENSE) { KASSERT((sendstatus != 0), ("how can you have CAM_SEND_SENSE w/o CAM_SEND_STATUS?")); /* * Sense length is not the entire sense data structure size. Periph * drivers don't seem to be setting sense_len to reflect the actual * size. We'll peek inside to get the right amount. */ sense_length = cso->sense_len; /* * This 'cannot' happen */ if (sense_length > (XCMD_SIZE - MIN_FCP_RESPONSE_SIZE)) { sense_length = XCMD_SIZE - MIN_FCP_RESPONSE_SIZE; } } else { sense_length = 0; } memset(local, 0, QENTRY_LEN); /* * Check for overflow */ tmp = atp->bytes_xfered + atp->bytes_in_transit + xfrlen; if (tmp > atp->orig_datalen) { isp_prt(isp, ISP_LOGERR, "%s: [0x%x] data overflow by %u bytes", __func__, cso->tag_id, tmp - atp->orig_datalen); ccb->ccb_h.status = CAM_DATA_RUN_ERR; xpt_done(ccb); continue; } if (IS_24XX(isp)) { ct7_entry_t *cto = (ct7_entry_t *) local; cto->ct_header.rqs_entry_type = RQSTYPE_CTIO7; cto->ct_header.rqs_entry_count = 1; cto->ct_header.rqs_seqno |= ATPD_SEQ_NOTIFY_CAM; ATPD_SET_SEQNO(cto, atp); cto->ct_nphdl = atp->nphdl; cto->ct_rxid = atp->tag; cto->ct_iid_lo = atp->portid; cto->ct_iid_hi = atp->portid >> 16; cto->ct_oxid = atp->oxid; cto->ct_vpidx = ISP_GET_VPIDX(isp, XS_CHANNEL(ccb)); cto->ct_timeout = (XS_TIME(ccb) + 999) / 1000; cto->ct_flags = atp->tattr << CT7_TASK_ATTR_SHIFT; /* * Mode 1, status, no data. Only possible when we are sending status, have * no data to transfer, and any sense data can fit into a ct7_entry_t. * * Mode 2, status, no data. We have to use this in the case that * the sense data won't fit into a ct7_entry_t. * */ if (sendstatus && xfrlen == 0) { cto->ct_flags |= CT7_SENDSTATUS | CT7_NO_DATA; resid = atp->orig_datalen - atp->bytes_xfered - atp->bytes_in_transit; if (sense_length <= MAXRESPLEN_24XX) { if (resid < 0) { cto->ct_resid = -resid; } else if (resid > 0) { cto->ct_resid = resid; } cto->ct_flags |= CT7_FLAG_MODE1; cto->ct_scsi_status = cso->scsi_status; if (resid < 0) { cto->ct_scsi_status |= (FCP_RESID_OVERFLOW << 8); } else if (resid > 0) { cto->ct_scsi_status |= (FCP_RESID_UNDERFLOW << 8); } if (fctape) { cto->ct_flags |= CT7_CONFIRM|CT7_EXPLCT_CONF; } if (sense_length) { cto->ct_scsi_status |= (FCP_SNSLEN_VALID << 8); cto->rsp.m1.ct_resplen = cto->ct_senselen = sense_length; memcpy(cto->rsp.m1.ct_resp, &cso->sense_data, sense_length); } } else { bus_addr_t addr; char buf[XCMD_SIZE]; fcp_rsp_iu_t *rp; if (atp->ests == NULL) { atp->ests = isp_get_ecmd(isp); if (atp->ests == NULL) { TAILQ_INSERT_HEAD(&tptr->waitq, &ccb->ccb_h, periph_links.tqe); break; } } memset(buf, 0, sizeof (buf)); rp = (fcp_rsp_iu_t *)buf; if (fctape) { cto->ct_flags |= CT7_CONFIRM|CT7_EXPLCT_CONF; rp->fcp_rsp_bits |= FCP_CONF_REQ; } cto->ct_flags |= CT7_FLAG_MODE2; rp->fcp_rsp_scsi_status = cso->scsi_status; if (resid < 0) { rp->fcp_rsp_resid = -resid; rp->fcp_rsp_bits |= FCP_RESID_OVERFLOW; } else if (resid > 0) { rp->fcp_rsp_resid = resid; rp->fcp_rsp_bits |= FCP_RESID_UNDERFLOW; } if (sense_length) { rp->fcp_rsp_snslen = sense_length; cto->ct_senselen = sense_length; rp->fcp_rsp_bits |= FCP_SNSLEN_VALID; isp_put_fcp_rsp_iu(isp, rp, atp->ests); memcpy(((fcp_rsp_iu_t *)atp->ests)->fcp_rsp_extra, &cso->sense_data, sense_length); } else { isp_put_fcp_rsp_iu(isp, rp, atp->ests); } if (isp->isp_dblev & ISP_LOGTDEBUG1) { isp_print_bytes(isp, "FCP Response Frame After Swizzling", MIN_FCP_RESPONSE_SIZE + sense_length, atp->ests); } addr = isp->isp_osinfo.ecmd_dma; addr += ((((isp_ecmd_t *)atp->ests) - isp->isp_osinfo.ecmd_base) * XCMD_SIZE); isp_prt(isp, ISP_LOGTDEBUG0, "%s: ests base %p vaddr %p ecmd_dma %jx addr %jx len %u", __func__, isp->isp_osinfo.ecmd_base, atp->ests, (uintmax_t) isp->isp_osinfo.ecmd_dma, (uintmax_t)addr, MIN_FCP_RESPONSE_SIZE + sense_length); cto->rsp.m2.ct_datalen = MIN_FCP_RESPONSE_SIZE + sense_length; cto->rsp.m2.ct_fcp_rsp_iudata.ds_base = DMA_LO32(addr); cto->rsp.m2.ct_fcp_rsp_iudata.ds_basehi = DMA_HI32(addr); cto->rsp.m2.ct_fcp_rsp_iudata.ds_count = MIN_FCP_RESPONSE_SIZE + sense_length; } if (sense_length) { isp_prt(isp, ISP_LOGTDEBUG0, "%s: CTIO7[0x%x] seq %u nc %d CDB0=%x sstatus=0x%x flags=0x%x resid=%d slen %u sense: %x %x/%x/%x", __func__, cto->ct_rxid, ATPD_GET_SEQNO(cto), ATPD_GET_NCAM(cto), atp->cdb0, cto->ct_scsi_status, cto->ct_flags, cto->ct_resid, sense_length, cso->sense_data.error_code, cso->sense_data.sense_buf[1], cso->sense_data.sense_buf[11], cso->sense_data.sense_buf[12]); } else { isp_prt(isp, ISP_LOGDEBUG0, "%s: CTIO7[0x%x] seq %u nc %d CDB0=%x sstatus=0x%x flags=0x%x resid=%d", __func__, cto->ct_rxid, ATPD_GET_SEQNO(cto), ATPD_GET_NCAM(cto), atp->cdb0, cto->ct_scsi_status, cto->ct_flags, cto->ct_resid); } atp->state = ATPD_STATE_LAST_CTIO; } /* * Mode 0 data transfers, *possibly* with status. */ if (xfrlen != 0) { cto->ct_flags |= CT7_FLAG_MODE0; if ((cso->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { cto->ct_flags |= CT7_DATA_IN; } else { cto->ct_flags |= CT7_DATA_OUT; } cto->rsp.m0.reloff = atp->bytes_xfered + atp->bytes_in_transit; cto->rsp.m0.ct_xfrlen = xfrlen; #ifdef DEBUG if (ISP_FC_PC(isp, XS_CHANNEL(ccb))->inject_lost_data_frame && xfrlen > ISP_FC_PC(isp, XS_CHANNEL(ccb))->inject_lost_data_frame) { isp_prt(isp, ISP_LOGWARN, "%s: truncating data frame with xfrlen %d to %d", __func__, xfrlen, xfrlen - (xfrlen >> 2)); ISP_FC_PC(isp, XS_CHANNEL(ccb))->inject_lost_data_frame = 0; cto->rsp.m0.ct_xfrlen -= xfrlen >> 2; } #endif if (sendstatus) { resid = atp->orig_datalen - atp->bytes_xfered - xfrlen; if (cso->scsi_status == SCSI_STATUS_OK && resid == 0 /* && fctape == 0 */) { cto->ct_flags |= CT7_SENDSTATUS; atp->state = ATPD_STATE_LAST_CTIO; if (fctape) { cto->ct_flags |= CT7_CONFIRM|CT7_EXPLCT_CONF; } } else { atp->sendst = 1; /* send status later */ cto->ct_header.rqs_seqno &= ~ATPD_SEQ_NOTIFY_CAM; atp->state = ATPD_STATE_CTIO; } } else { atp->state = ATPD_STATE_CTIO; } isp_prt(isp, ISP_LOGTDEBUG0, "%s: CTIO7[0x%x] seq %u nc %d CDB0=%x sstatus=0x%x flags=0x%x xfrlen=%u off=%u", __func__, cto->ct_rxid, ATPD_GET_SEQNO(cto), ATPD_GET_NCAM(cto), atp->cdb0, cto->ct_scsi_status, cto->ct_flags, xfrlen, atp->bytes_xfered); } } else { ct2_entry_t *cto = (ct2_entry_t *) local; if (isp->isp_osinfo.sixtyfourbit) cto->ct_header.rqs_entry_type = RQSTYPE_CTIO3; else cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2; cto->ct_header.rqs_entry_count = 1; cto->ct_header.rqs_seqno |= ATPD_SEQ_NOTIFY_CAM; ATPD_SET_SEQNO(cto, atp); if (ISP_CAP_2KLOGIN(isp)) { ((ct2e_entry_t *)cto)->ct_iid = atp->nphdl; } else { cto->ct_iid = atp->nphdl; if (ISP_CAP_SCCFW(isp) == 0) { cto->ct_lun = ccb->ccb_h.target_lun; } } cto->ct_timeout = (XS_TIME(ccb) + 999) / 1000; cto->ct_rxid = cso->tag_id; /* * Mode 1, status, no data. Only possible when we are sending status, have * no data to transfer, and the sense length can fit in the ct7_entry. * * Mode 2, status, no data. We have to use this in the case the response * length won't fit into a ct2_entry_t. * * We'll fill out this structure with information as if this were a * Mode 1. The hardware layer will create the Mode 2 FCP RSP IU as * needed based upon this. */ if (sendstatus && xfrlen == 0) { cto->ct_flags |= CT2_SENDSTATUS | CT2_NO_DATA; resid = atp->orig_datalen - atp->bytes_xfered - atp->bytes_in_transit; if (sense_length <= MAXRESPLEN) { if (resid < 0) { cto->ct_resid = -resid; } else if (resid > 0) { cto->ct_resid = resid; } cto->ct_flags |= CT2_FLAG_MODE1; cto->rsp.m1.ct_scsi_status = cso->scsi_status; if (resid < 0) { cto->rsp.m1.ct_scsi_status |= CT2_DATA_OVER; } else if (resid > 0) { cto->rsp.m1.ct_scsi_status |= CT2_DATA_UNDER; } if (fctape) { cto->ct_flags |= CT2_CONFIRM; } if (sense_length) { cto->rsp.m1.ct_scsi_status |= CT2_SNSLEN_VALID; cto->rsp.m1.ct_resplen = cto->rsp.m1.ct_senselen = sense_length; memcpy(cto->rsp.m1.ct_resp, &cso->sense_data, sense_length); } } else { bus_addr_t addr; char buf[XCMD_SIZE]; fcp_rsp_iu_t *rp; if (atp->ests == NULL) { atp->ests = isp_get_ecmd(isp); if (atp->ests == NULL) { TAILQ_INSERT_HEAD(&tptr->waitq, &ccb->ccb_h, periph_links.tqe); break; } } memset(buf, 0, sizeof (buf)); rp = (fcp_rsp_iu_t *)buf; if (fctape) { cto->ct_flags |= CT2_CONFIRM; rp->fcp_rsp_bits |= FCP_CONF_REQ; } cto->ct_flags |= CT2_FLAG_MODE2; rp->fcp_rsp_scsi_status = cso->scsi_status; if (resid < 0) { rp->fcp_rsp_resid = -resid; rp->fcp_rsp_bits |= FCP_RESID_OVERFLOW; } else if (resid > 0) { rp->fcp_rsp_resid = resid; rp->fcp_rsp_bits |= FCP_RESID_UNDERFLOW; } if (sense_length) { rp->fcp_rsp_snslen = sense_length; rp->fcp_rsp_bits |= FCP_SNSLEN_VALID; isp_put_fcp_rsp_iu(isp, rp, atp->ests); memcpy(((fcp_rsp_iu_t *)atp->ests)->fcp_rsp_extra, &cso->sense_data, sense_length); } else { isp_put_fcp_rsp_iu(isp, rp, atp->ests); } if (isp->isp_dblev & ISP_LOGTDEBUG1) { isp_print_bytes(isp, "FCP Response Frame After Swizzling", MIN_FCP_RESPONSE_SIZE + sense_length, atp->ests); } addr = isp->isp_osinfo.ecmd_dma; addr += ((((isp_ecmd_t *)atp->ests) - isp->isp_osinfo.ecmd_base) * XCMD_SIZE); isp_prt(isp, ISP_LOGTDEBUG0, "%s: ests base %p vaddr %p ecmd_dma %jx addr %jx len %u", __func__, isp->isp_osinfo.ecmd_base, atp->ests, (uintmax_t) isp->isp_osinfo.ecmd_dma, (uintmax_t)addr, MIN_FCP_RESPONSE_SIZE + sense_length); cto->rsp.m2.ct_datalen = MIN_FCP_RESPONSE_SIZE + sense_length; if (isp->isp_osinfo.sixtyfourbit) { cto->rsp.m2.u.ct_fcp_rsp_iudata_64.ds_base = DMA_LO32(addr); cto->rsp.m2.u.ct_fcp_rsp_iudata_64.ds_basehi = DMA_HI32(addr); cto->rsp.m2.u.ct_fcp_rsp_iudata_64.ds_count = MIN_FCP_RESPONSE_SIZE + sense_length; } else { cto->rsp.m2.u.ct_fcp_rsp_iudata_32.ds_base = DMA_LO32(addr); cto->rsp.m2.u.ct_fcp_rsp_iudata_32.ds_count = MIN_FCP_RESPONSE_SIZE + sense_length; } } if (sense_length) { isp_prt(isp, ISP_LOGTDEBUG0, "%s: CTIO2[0x%x] seq %u nc %d CDB0=%x sstatus=0x%x flags=0x%x resid=%d sense: %x %x/%x/%x", __func__, cto->ct_rxid, ATPD_GET_SEQNO(cto), ATPD_GET_NCAM(cto), atp->cdb0, cso->scsi_status, cto->ct_flags, cto->ct_resid, cso->sense_data.error_code, cso->sense_data.sense_buf[1], cso->sense_data.sense_buf[11], cso->sense_data.sense_buf[12]); } else { isp_prt(isp, ISP_LOGTDEBUG0, "%s: CTIO2[0x%x] seq %u nc %d CDB0=%x sstatus=0x%x flags=0x%x resid=%d", __func__, cto->ct_rxid, ATPD_GET_SEQNO(cto), ATPD_GET_NCAM(cto), atp->cdb0, cso->scsi_status, cto->ct_flags, cto->ct_resid); } atp->state = ATPD_STATE_LAST_CTIO; } if (xfrlen != 0) { cto->ct_flags |= CT2_FLAG_MODE0; if ((cso->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { cto->ct_flags |= CT2_DATA_IN; } else { cto->ct_flags |= CT2_DATA_OUT; } cto->ct_reloff = atp->bytes_xfered + atp->bytes_in_transit; cto->rsp.m0.ct_xfrlen = xfrlen; if (sendstatus) { resid = atp->orig_datalen - atp->bytes_xfered - xfrlen; if (cso->scsi_status == SCSI_STATUS_OK && resid == 0 /*&& fctape == 0*/) { cto->ct_flags |= CT2_SENDSTATUS; atp->state = ATPD_STATE_LAST_CTIO; if (fctape) { cto->ct_flags |= CT2_CONFIRM; } } else { atp->sendst = 1; /* send status later */ cto->ct_header.rqs_seqno &= ~ATPD_SEQ_NOTIFY_CAM; atp->state = ATPD_STATE_CTIO; } } else { atp->state = ATPD_STATE_CTIO; } } isp_prt(isp, ISP_LOGTDEBUG0, "%s: CTIO2[%x] seq %u nc %d CDB0=%x scsi status %x flags %x resid %d xfrlen %u offset %u", __func__, cto->ct_rxid, ATPD_GET_SEQNO(cto), ATPD_GET_NCAM(cto), atp->cdb0, cso->scsi_status, cto->ct_flags, cto->ct_resid, cso->dxfer_len, atp->bytes_xfered); } if (isp_get_pcmd(isp, ccb)) { ISP_PATH_PRT(isp, ISP_LOGWARN, ccb->ccb_h.path, "out of PCMDs\n"); TAILQ_INSERT_HEAD(&tptr->waitq, &ccb->ccb_h, periph_links.tqe); break; } handle = isp_allocate_handle(isp, ccb, ISP_HANDLE_TARGET); if (handle == 0) { ISP_PATH_PRT(isp, ISP_LOGWARN, ccb->ccb_h.path, "No XFLIST pointers for %s\n", __func__); TAILQ_INSERT_HEAD(&tptr->waitq, &ccb->ccb_h, periph_links.tqe); isp_free_pcmd(isp, ccb); break; } atp->bytes_in_transit += xfrlen; PISP_PCMD(ccb)->datalen = xfrlen; /* * Call the dma setup routines for this entry (and any subsequent * CTIOs) if there's data to move, and then tell the f/w it's got * new things to play with. As with isp_start's usage of DMA setup, * any swizzling is done in the machine dependent layer. Because * of this, we put the request onto the queue area first in native * format. */ if (IS_24XX(isp)) { ct7_entry_t *cto = (ct7_entry_t *) local; cto->ct_syshandle = handle; } else { ct2_entry_t *cto = (ct2_entry_t *) local; cto->ct_syshandle = handle; } dmaresult = ISP_DMASETUP(isp, cso, (ispreq_t *) local); if (dmaresult != CMD_QUEUED) { isp_destroy_handle(isp, handle); isp_free_pcmd(isp, ccb); if (dmaresult == CMD_EAGAIN) { TAILQ_INSERT_HEAD(&tptr->waitq, &ccb->ccb_h, periph_links.tqe); break; } ccb->ccb_h.status = CAM_REQ_CMP_ERR; xpt_done(ccb); continue; } isp->isp_nactive++; ccb->ccb_h.status = CAM_REQ_INPROG | CAM_SIM_QUEUED; if (xfrlen) { ccb->ccb_h.spriv_field0 = atp->bytes_xfered; } else { ccb->ccb_h.spriv_field0 = ~0; } atp->ctcnt++; atp->seqno++; } rls_lun_statep(isp, tptr); } static void isp_refire_putback_atio(void *arg) { union ccb *ccb = arg; ISP_ASSERT_LOCKED((ispsoftc_t *)XS_ISP(ccb)); isp_target_putback_atio(ccb); } static void isp_refire_notify_ack(void *arg) { isp_tna_t *tp = arg; ispsoftc_t *isp = tp->isp; ISP_ASSERT_LOCKED(isp); if (isp_notify_ack(isp, tp->not)) { callout_schedule(&tp->timer, 5); } else { free(tp, M_DEVBUF); } } static void isp_target_putback_atio(union ccb *ccb) { ispsoftc_t *isp; struct ccb_scsiio *cso; void *qe; at2_entry_t local, *at = &local; isp = XS_ISP(ccb); qe = isp_getrqentry(isp); if (qe == NULL) { xpt_print(ccb->ccb_h.path, "%s: Request Queue Overflow\n", __func__); callout_reset(&PISP_PCMD(ccb)->wdog, 10, isp_refire_putback_atio, ccb); return; } memset(qe, 0, QENTRY_LEN); cso = &ccb->csio; ISP_MEMZERO(at, sizeof (at2_entry_t)); at->at_header.rqs_entry_type = RQSTYPE_ATIO2; at->at_header.rqs_entry_count = 1; if (ISP_CAP_SCCFW(isp)) { at->at_scclun = (uint16_t) ccb->ccb_h.target_lun; #if __FreeBSD_version < 1000700 if (at->at_scclun >= 256) at->at_scclun |= 0x4000; #endif } else { at->at_lun = (uint8_t) ccb->ccb_h.target_lun; } at->at_status = CT_OK; at->at_rxid = cso->tag_id; at->at_iid = cso->ccb_h.target_id; isp_put_atio2(isp, at, qe); ISP_TDQE(isp, "isp_target_putback_atio", isp->isp_reqidx, qe); ISP_SYNC_REQUEST(isp); isp_complete_ctio(ccb); } static void isp_complete_ctio(union ccb *ccb) { if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { ccb->ccb_h.status &= ~CAM_SIM_QUEUED; xpt_done(ccb); } } static void isp_handle_platform_atio2(ispsoftc_t *isp, at2_entry_t *aep) { fcparam *fcp; lun_id_t lun; fcportdb_t *lp; tstate_t *tptr; struct ccb_accept_tio *atiop; uint16_t nphdl; atio_private_data_t *atp; inot_private_data_t *ntp; /* * The firmware status (except for the QLTM_SVALID bit) * indicates why this ATIO was sent to us. * * If QLTM_SVALID is set, the firmware has recommended Sense Data. */ if ((aep->at_status & ~QLTM_SVALID) != AT_CDB) { isp_prt(isp, ISP_LOGWARN, "bogus atio (0x%x) leaked to platform", aep->at_status); isp_endcmd(isp, aep, SCSI_STATUS_BUSY, 0); return; } fcp = FCPARAM(isp, 0); if (ISP_CAP_SCCFW(isp)) { lun = aep->at_scclun; #if __FreeBSD_version < 1000700 lun &= 0x3fff; #endif } else { lun = aep->at_lun; } if (ISP_CAP_2KLOGIN(isp)) { nphdl = ((at2e_entry_t *)aep)->at_iid; } else { nphdl = aep->at_iid; } tptr = get_lun_statep(isp, 0, lun); if (tptr == NULL) { tptr = get_lun_statep(isp, 0, CAM_LUN_WILDCARD); if (tptr == NULL) { isp_prt(isp, ISP_LOGWARN, "%s: [0x%x] no state pointer for lun %jx or wildcard", __func__, aep->at_rxid, (uintmax_t)lun); if (lun == 0) { isp_endcmd(isp, aep, SCSI_STATUS_BUSY, 0); } else { isp_endcmd(isp, aep, SCSI_STATUS_CHECK_COND | ECMD_SVALID | (0x5 << 12) | (0x25 << 16), 0); } return; } } /* * Start any commands pending resources first. */ if (tptr->restart_queue) { inot_private_data_t *restart_queue = tptr->restart_queue; tptr->restart_queue = NULL; while (restart_queue) { ntp = restart_queue; restart_queue = ntp->rd.nt.nt_hba; isp_prt(isp, ISP_LOGTDEBUG0, "%s: restarting resrc deprived %x", __func__, ((at2_entry_t *)ntp->rd.data)->at_rxid); isp_handle_platform_atio2(isp, (at2_entry_t *) ntp->rd.data); isp_put_ntpd(isp, tptr, ntp); /* * If a recursion caused the restart queue to start to fill again, * stop and splice the new list on top of the old list and restore * it and go to noresrc. */ if (tptr->restart_queue) { ntp = tptr->restart_queue; tptr->restart_queue = restart_queue; while (restart_queue->rd.nt.nt_hba) { restart_queue = restart_queue->rd.nt.nt_hba; } restart_queue->rd.nt.nt_hba = ntp; goto noresrc; } } } atiop = (struct ccb_accept_tio *) SLIST_FIRST(&tptr->atios); if (atiop == NULL) { goto noresrc; } atp = isp_get_atpd(isp, tptr, aep->at_rxid); if (atp == NULL) { goto noresrc; } atp->state = ATPD_STATE_ATIO; SLIST_REMOVE_HEAD(&tptr->atios, sim_links.sle); tptr->atio_count--; isp_prt(isp, ISP_LOGTDEBUG2, "Take FREE ATIO count now %d", tptr->atio_count); atiop->ccb_h.target_id = fcp->isp_loopid; atiop->ccb_h.target_lun = lun; /* * We don't get 'suggested' sense data as we do with SCSI cards. */ atiop->sense_len = 0; /* * If we're not in the port database, add ourselves. */ if (IS_2100(isp)) atiop->init_id = nphdl; else { if ((isp_find_pdb_by_handle(isp, 0, nphdl, &lp) == 0 || lp->state == FC_PORTDB_STATE_ZOMBIE)) { uint64_t wwpn = (((uint64_t) aep->at_wwpn[0]) << 48) | (((uint64_t) aep->at_wwpn[1]) << 32) | (((uint64_t) aep->at_wwpn[2]) << 16) | (((uint64_t) aep->at_wwpn[3]) << 0); isp_add_wwn_entry(isp, 0, wwpn, INI_NONE, nphdl, PORT_ANY, 0); if (fcp->isp_loopstate > LOOP_LTEST_DONE) fcp->isp_loopstate = LOOP_LTEST_DONE; isp_async(isp, ISPASYNC_CHANGE_NOTIFY, 0, ISPASYNC_CHANGE_PDB, nphdl, 0x06, 0xff); isp_find_pdb_by_handle(isp, 0, nphdl, &lp); } atiop->init_id = FC_PORTDB_TGT(isp, 0, lp); } atiop->cdb_len = ATIO2_CDBLEN; ISP_MEMCPY(atiop->cdb_io.cdb_bytes, aep->at_cdb, ATIO2_CDBLEN); atiop->ccb_h.status = CAM_CDB_RECVD; atiop->tag_id = atp->tag; switch (aep->at_taskflags & ATIO2_TC_ATTR_MASK) { case ATIO2_TC_ATTR_SIMPLEQ: atiop->ccb_h.flags |= CAM_TAG_ACTION_VALID; atiop->tag_action = MSG_SIMPLE_Q_TAG; break; case ATIO2_TC_ATTR_HEADOFQ: atiop->ccb_h.flags |= CAM_TAG_ACTION_VALID; atiop->tag_action = MSG_HEAD_OF_Q_TAG; break; case ATIO2_TC_ATTR_ORDERED: atiop->ccb_h.flags |= CAM_TAG_ACTION_VALID; atiop->tag_action = MSG_ORDERED_Q_TAG; break; case ATIO2_TC_ATTR_ACAQ: /* ?? */ case ATIO2_TC_ATTR_UNTAGGED: default: atiop->tag_action = 0; break; } atp->orig_datalen = aep->at_datalen; atp->bytes_xfered = 0; atp->lun = lun; atp->nphdl = nphdl; atp->sid = PORT_ANY; atp->oxid = aep->at_oxid; atp->cdb0 = aep->at_cdb[0]; atp->tattr = aep->at_taskflags & ATIO2_TC_ATTR_MASK; atp->state = ATPD_STATE_CAM; xpt_done((union ccb *)atiop); isp_prt(isp, ISP_LOGTDEBUG0, "ATIO2[0x%x] CDB=0x%x lun %jx datalen %u", aep->at_rxid, atp->cdb0, (uintmax_t)lun, atp->orig_datalen); rls_lun_statep(isp, tptr); return; noresrc: ntp = isp_get_ntpd(isp, tptr); if (ntp == NULL) { rls_lun_statep(isp, tptr); isp_endcmd(isp, aep, nphdl, 0, SCSI_STATUS_BUSY, 0); return; } memcpy(ntp->rd.data, aep, QENTRY_LEN); ntp->rd.nt.nt_hba = tptr->restart_queue; tptr->restart_queue = ntp; rls_lun_statep(isp, tptr); } static void isp_handle_platform_atio7(ispsoftc_t *isp, at7_entry_t *aep) { int cdbxlen; lun_id_t lun; uint16_t chan, nphdl = NIL_HANDLE; uint32_t did, sid; fcportdb_t *lp; tstate_t *tptr; struct ccb_accept_tio *atiop; atio_private_data_t *atp = NULL; atio_private_data_t *oatp; inot_private_data_t *ntp; did = (aep->at_hdr.d_id[0] << 16) | (aep->at_hdr.d_id[1] << 8) | aep->at_hdr.d_id[2]; sid = (aep->at_hdr.s_id[0] << 16) | (aep->at_hdr.s_id[1] << 8) | aep->at_hdr.s_id[2]; #if __FreeBSD_version >= 1000700 lun = CAM_EXTLUN_BYTE_SWIZZLE(be64dec(aep->at_cmnd.fcp_cmnd_lun)); #else lun = (aep->at_cmnd.fcp_cmnd_lun[0] & 0x3f << 8) | aep->at_cmnd.fcp_cmnd_lun[1]; #endif /* * Find the N-port handle, and Virtual Port Index for this command. * * If we can't, we're somewhat in trouble because we can't actually respond w/o that information. * We also, as a matter of course, need to know the WWN of the initiator too. */ if (ISP_CAP_MULTI_ID(isp) && isp->isp_nchan > 1) { /* * Find the right channel based upon D_ID */ isp_find_chan_by_did(isp, did, &chan); if (chan == ISP_NOCHAN) { NANOTIME_T now; /* * If we don't recognizer our own D_DID, terminate the exchange, unless we're within 2 seconds of startup * It's a bit tricky here as we need to stash this command *somewhere*. */ GET_NANOTIME(&now); if (NANOTIME_SUB(&isp->isp_init_time, &now) > 2000000000ULL) { isp_prt(isp, ISP_LOGWARN, "%s: [RX_ID 0x%x] D_ID %x not found on any channel- dropping", __func__, aep->at_rxid, did); isp_endcmd(isp, aep, NIL_HANDLE, ISP_NOCHAN, ECMD_TERMINATE, 0); return; } tptr = get_lun_statep(isp, 0, 0); if (tptr == NULL) { tptr = get_lun_statep(isp, 0, CAM_LUN_WILDCARD); if (tptr == NULL) { isp_prt(isp, ISP_LOGWARN, "%s: [RX_ID 0x%x] D_ID %x not found on any channel and no tptr- dropping", __func__, aep->at_rxid, did); isp_endcmd(isp, aep, NIL_HANDLE, ISP_NOCHAN, ECMD_TERMINATE, 0); return; } } isp_prt(isp, ISP_LOGWARN, "%s: [RX_ID 0x%x] D_ID %x not found on any channel- deferring", __func__, aep->at_rxid, did); goto noresrc; } isp_prt(isp, ISP_LOGTDEBUG0, "%s: [RX_ID 0x%x] D_ID 0x%06x found on Chan %d for S_ID 0x%06x", __func__, aep->at_rxid, did, chan, sid); } else { chan = 0; } /* * Find the PDB entry for this initiator */ if (isp_find_pdb_by_portid(isp, chan, sid, &lp) == 0) { /* * If we're not in the port database terminate the exchange. */ isp_prt(isp, ISP_LOGTINFO, "%s: [RX_ID 0x%x] D_ID 0x%06x found on Chan %d for S_ID 0x%06x wasn't in PDB already", __func__, aep->at_rxid, did, chan, sid); isp_dump_portdb(isp, chan); isp_endcmd(isp, aep, NIL_HANDLE, chan, ECMD_TERMINATE, 0); return; } nphdl = lp->handle; /* * Get the tstate pointer */ tptr = get_lun_statep(isp, chan, lun); if (tptr == NULL) { tptr = get_lun_statep(isp, chan, CAM_LUN_WILDCARD); if (tptr == NULL) { isp_prt(isp, ISP_LOGWARN, "%s: [0x%x] no state pointer for lun %jx or wildcard", __func__, aep->at_rxid, (uintmax_t)lun); if (lun == 0) { isp_endcmd(isp, aep, nphdl, SCSI_STATUS_BUSY, 0); } else { isp_endcmd(isp, aep, nphdl, chan, SCSI_STATUS_CHECK_COND | ECMD_SVALID | (0x5 << 12) | (0x25 << 16), 0); } return; } } /* * Start any commands pending resources first. */ if (tptr->restart_queue) { inot_private_data_t *restart_queue = tptr->restart_queue; tptr->restart_queue = NULL; while (restart_queue) { ntp = restart_queue; restart_queue = ntp->rd.nt.nt_hba; isp_prt(isp, ISP_LOGTDEBUG0, "%s: restarting resrc deprived %x", __func__, ((at7_entry_t *)ntp->rd.data)->at_rxid); isp_handle_platform_atio7(isp, (at7_entry_t *) ntp->rd.data); isp_put_ntpd(isp, tptr, ntp); /* * If a recursion caused the restart queue to start to fill again, * stop and splice the new list on top of the old list and restore * it and go to noresrc. */ if (tptr->restart_queue) { isp_prt(isp, ISP_LOGTDEBUG0, "%s: restart queue refilling", __func__); if (restart_queue) { ntp = tptr->restart_queue; tptr->restart_queue = restart_queue; while (restart_queue->rd.nt.nt_hba) { restart_queue = restart_queue->rd.nt.nt_hba; } restart_queue->rd.nt.nt_hba = ntp; } goto noresrc; } } } /* * If the f/w is out of resources, just send a BUSY status back. */ if (aep->at_rxid == AT7_NORESRC_RXID) { rls_lun_statep(isp, tptr); isp_endcmd(isp, aep, nphdl, chan, SCSI_BUSY, 0); return; } /* * If we're out of resources, just send a BUSY status back. */ atiop = (struct ccb_accept_tio *) SLIST_FIRST(&tptr->atios); if (atiop == NULL) { isp_prt(isp, ISP_LOGTDEBUG0, "[0x%x] out of atios", aep->at_rxid); goto noresrc; } oatp = isp_find_atpd(isp, tptr, aep->at_rxid); if (oatp) { isp_prt(isp, ISP_LOGTDEBUG0, "[0x%x] tag wraparound in isp_handle_platforms_atio7 (N-Port Handle 0x%04x S_ID 0x%04x OX_ID 0x%04x) oatp state %d", aep->at_rxid, nphdl, sid, aep->at_hdr.ox_id, oatp->state); /* * It's not a "no resource" condition- but we can treat it like one */ goto noresrc; } atp = isp_get_atpd(isp, tptr, aep->at_rxid); if (atp == NULL) { isp_prt(isp, ISP_LOGTDEBUG0, "[0x%x] out of atps", aep->at_rxid); goto noresrc; } atp->word3 = lp->prli_word3; atp->state = ATPD_STATE_ATIO; SLIST_REMOVE_HEAD(&tptr->atios, sim_links.sle); tptr->atio_count--; ISP_PATH_PRT(isp, ISP_LOGTDEBUG2, atiop->ccb_h.path, "Take FREE ATIO count now %d\n", tptr->atio_count); atiop->init_id = FC_PORTDB_TGT(isp, chan, lp); atiop->ccb_h.target_id = FCPARAM(isp, chan)->isp_loopid; atiop->ccb_h.target_lun = lun; atiop->sense_len = 0; cdbxlen = aep->at_cmnd.fcp_cmnd_alen_datadir >> FCP_CMND_ADDTL_CDBLEN_SHIFT; if (cdbxlen) { isp_prt(isp, ISP_LOGWARN, "additional CDBLEN ignored"); } cdbxlen = sizeof (aep->at_cmnd.cdb_dl.sf.fcp_cmnd_cdb); ISP_MEMCPY(atiop->cdb_io.cdb_bytes, aep->at_cmnd.cdb_dl.sf.fcp_cmnd_cdb, cdbxlen); atiop->cdb_len = cdbxlen; atiop->ccb_h.status = CAM_CDB_RECVD; atiop->tag_id = atp->tag; switch (aep->at_cmnd.fcp_cmnd_task_attribute & FCP_CMND_TASK_ATTR_MASK) { case FCP_CMND_TASK_ATTR_SIMPLE: atiop->ccb_h.flags |= CAM_TAG_ACTION_VALID; atiop->tag_action = MSG_SIMPLE_Q_TAG; break; case FCP_CMND_TASK_ATTR_HEAD: atiop->ccb_h.flags |= CAM_TAG_ACTION_VALID; atiop->tag_action = MSG_HEAD_OF_Q_TAG; break; case FCP_CMND_TASK_ATTR_ORDERED: atiop->ccb_h.flags |= CAM_TAG_ACTION_VALID; atiop->tag_action = MSG_ORDERED_Q_TAG; break; default: /* FALLTHROUGH */ case FCP_CMND_TASK_ATTR_ACA: case FCP_CMND_TASK_ATTR_UNTAGGED: atiop->tag_action = 0; break; } atp->orig_datalen = aep->at_cmnd.cdb_dl.sf.fcp_cmnd_dl; atp->bytes_xfered = 0; atp->lun = lun; atp->nphdl = nphdl; atp->portid = sid; atp->oxid = aep->at_hdr.ox_id; atp->rxid = aep->at_hdr.rx_id; atp->cdb0 = atiop->cdb_io.cdb_bytes[0]; atp->tattr = aep->at_cmnd.fcp_cmnd_task_attribute & FCP_CMND_TASK_ATTR_MASK; atp->state = ATPD_STATE_CAM; isp_prt(isp, ISP_LOGTDEBUG0, "ATIO7[0x%x] CDB=0x%x lun %jx datalen %u", aep->at_rxid, atp->cdb0, (uintmax_t)lun, atp->orig_datalen); xpt_done((union ccb *)atiop); rls_lun_statep(isp, tptr); return; noresrc: if (atp) { isp_put_atpd(isp, tptr, atp); } ntp = isp_get_ntpd(isp, tptr); if (ntp == NULL) { rls_lun_statep(isp, tptr); isp_endcmd(isp, aep, nphdl, chan, SCSI_STATUS_BUSY, 0); return; } memcpy(ntp->rd.data, aep, QENTRY_LEN); ntp->rd.nt.nt_hba = tptr->restart_queue; tptr->restart_queue = ntp; rls_lun_statep(isp, tptr); } /* * Handle starting an SRR (sequence retransmit request) * We get here when we've gotten the immediate notify * and the return of all outstanding CTIOs for this * transaction. */ static void isp_handle_srr_start(ispsoftc_t *isp, tstate_t *tptr, atio_private_data_t *atp) { in_fcentry_24xx_t *inot; uint32_t srr_off, ccb_off, ccb_len, ccb_end; union ccb *ccb; inot = (in_fcentry_24xx_t *)atp->srr; srr_off = inot->in_srr_reloff_lo | (inot->in_srr_reloff_hi << 16); ccb = atp->srr_ccb; atp->srr_ccb = NULL; atp->nsrr++; if (ccb == NULL) { isp_prt(isp, ISP_LOGWARN, "SRR[0x%x] null ccb", atp->tag); goto fail; } ccb_off = ccb->ccb_h.spriv_field0; ccb_len = ccb->csio.dxfer_len; ccb_end = (ccb_off == ~0)? ~0 : ccb_off + ccb_len; switch (inot->in_srr_iu) { case R_CTL_INFO_SOLICITED_DATA: /* * We have to restart a FCP_DATA data out transaction */ atp->sendst = 0; atp->bytes_xfered = srr_off; if (ccb_len == 0) { isp_prt(isp, ISP_LOGWARN, "SRR[0x%x] SRR offset 0x%x but current CCB doesn't transfer data", atp->tag, srr_off); goto mdp; } if (srr_off < ccb_off || ccb_off > srr_off + ccb_len) { isp_prt(isp, ISP_LOGWARN, "SRR[0x%x] SRR offset 0x%x not covered by current CCB data range [0x%x..0x%x]", atp->tag, srr_off, ccb_off, ccb_end); goto mdp; } isp_prt(isp, ISP_LOGWARN, "SRR[0x%x] SRR offset 0x%x covered by current CCB data range [0x%x..0x%x]", atp->tag, srr_off, ccb_off, ccb_end); break; case R_CTL_INFO_COMMAND_STATUS: isp_prt(isp, ISP_LOGTINFO, "SRR[0x%x] Got an FCP RSP SRR- resending status", atp->tag); atp->sendst = 1; /* * We have to restart a FCP_RSP IU transaction */ break; case R_CTL_INFO_DATA_DESCRIPTOR: /* * We have to restart an FCP DATA in transaction */ isp_prt(isp, ISP_LOGWARN, "Got an FCP DATA IN SRR- dropping"); goto fail; default: isp_prt(isp, ISP_LOGWARN, "Got an unknown information (%x) SRR- dropping", inot->in_srr_iu); goto fail; } /* * We can't do anything until this is acked, so we might as well start it now. * We aren't going to do the usual asynchronous ack issue because we need * to make sure this gets on the wire first. */ if (isp_notify_ack(isp, inot)) { isp_prt(isp, ISP_LOGWARN, "could not push positive ack for SRR- you lose"); goto fail; } isp_target_start_ctio(isp, ccb, FROM_SRR); return; fail: inot->in_reserved = 1; isp_async(isp, ISPASYNC_TARGET_NOTIFY_ACK, inot); ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= CAM_REQ_CMP_ERR; isp_complete_ctio(ccb); return; mdp: if (isp_notify_ack(isp, inot)) { isp_prt(isp, ISP_LOGWARN, "could not push positive ack for SRR- you lose"); goto fail; } ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status = CAM_MESSAGE_RECV; /* * This is not a strict interpretation of MDP, but it's close */ ccb->csio.msg_ptr = &ccb->csio.sense_data.sense_buf[SSD_FULL_SIZE - 16]; ccb->csio.msg_len = 7; ccb->csio.msg_ptr[0] = MSG_EXTENDED; ccb->csio.msg_ptr[1] = 5; ccb->csio.msg_ptr[2] = 0; /* modify data pointer */ ccb->csio.msg_ptr[3] = srr_off >> 24; ccb->csio.msg_ptr[4] = srr_off >> 16; ccb->csio.msg_ptr[5] = srr_off >> 8; ccb->csio.msg_ptr[6] = srr_off; isp_complete_ctio(ccb); } static void isp_handle_srr_notify(ispsoftc_t *isp, void *inot_raw) { tstate_t *tptr; in_fcentry_24xx_t *inot = inot_raw; atio_private_data_t *atp; uint32_t tag = inot->in_rxid; uint32_t bus = inot->in_vpidx; if (!IS_24XX(isp)) { isp_async(isp, ISPASYNC_TARGET_NOTIFY_ACK, inot_raw); return; } tptr = get_lun_statep_from_tag(isp, bus, tag); if (tptr == NULL) { isp_prt(isp, ISP_LOGERR, "%s: cannot find tptr for tag %x in SRR Notify", __func__, tag); isp_async(isp, ISPASYNC_TARGET_NOTIFY_ACK, inot); return; } atp = isp_find_atpd(isp, tptr, tag); if (atp == NULL) { rls_lun_statep(isp, tptr); isp_prt(isp, ISP_LOGERR, "%s: cannot find adjunct for %x in SRR Notify", __func__, tag); isp_async(isp, ISPASYNC_TARGET_NOTIFY_ACK, inot); return; } atp->srr_notify_rcvd = 1; memcpy(atp->srr, inot, sizeof (atp->srr)); isp_prt(isp, ISP_LOGTINFO /* ISP_LOGTDEBUG0 */, "SRR[0x%x] inot->in_rxid flags 0x%x srr_iu=%x reloff 0x%x", inot->in_rxid, inot->in_flags, inot->in_srr_iu, inot->in_srr_reloff_lo | (inot->in_srr_reloff_hi << 16)); if (atp->srr_ccb) isp_handle_srr_start(isp, tptr, atp); rls_lun_statep(isp, tptr); } static void isp_handle_platform_ctio(ispsoftc_t *isp, void *arg) { union ccb *ccb; int sentstatus = 0, ok = 0, notify_cam = 0, resid = 0, failure = 0; tstate_t *tptr = NULL; atio_private_data_t *atp = NULL; int bus; uint32_t handle, moved_data = 0, data_requested; handle = ((ct2_entry_t *)arg)->ct_syshandle; ccb = isp_find_xs(isp, handle); if (ccb == NULL) { isp_print_bytes(isp, "null ccb in isp_handle_platform_ctio", QENTRY_LEN, arg); return; } isp_destroy_handle(isp, handle); data_requested = PISP_PCMD(ccb)->datalen; isp_free_pcmd(isp, ccb); if (isp->isp_nactive) { isp->isp_nactive--; } bus = XS_CHANNEL(ccb); tptr = get_lun_statep(isp, bus, XS_LUN(ccb)); if (tptr == NULL) { tptr = get_lun_statep(isp, bus, CAM_LUN_WILDCARD); } if (tptr == NULL) { isp_prt(isp, ISP_LOGERR, "%s: cannot find tptr for tag %x after I/O", __func__, ccb->csio.tag_id); return; } if (IS_24XX(isp)) { atp = isp_find_atpd(isp, tptr, ((ct7_entry_t *)arg)->ct_rxid); } else { atp = isp_find_atpd(isp, tptr, ((ct2_entry_t *)arg)->ct_rxid); } if (atp == NULL) { /* * XXX: isp_clear_commands() generates fake CTIO with zero * ct_rxid value, filling only ct_syshandle. Workaround * that using tag_id from the CCB, pointed by ct_syshandle. */ atp = isp_find_atpd(isp, tptr, ccb->csio.tag_id); } if (atp == NULL) { rls_lun_statep(isp, tptr); isp_prt(isp, ISP_LOGERR, "%s: cannot find adjunct for %x after I/O", __func__, ccb->csio.tag_id); return; } KASSERT((atp->ctcnt > 0), ("ctio count not greater than zero")); atp->bytes_in_transit -= data_requested; atp->ctcnt -= 1; ccb->ccb_h.status &= ~CAM_STATUS_MASK; if (IS_24XX(isp)) { ct7_entry_t *ct = arg; if (ct->ct_nphdl == CT7_SRR) { atp->srr_ccb = ccb; if (atp->srr_notify_rcvd) isp_handle_srr_start(isp, tptr, atp); rls_lun_statep(isp, tptr); return; } if (ct->ct_nphdl == CT_HBA_RESET) { failure = CAM_UNREC_HBA_ERROR; } else { sentstatus = ct->ct_flags & CT7_SENDSTATUS; ok = (ct->ct_nphdl == CT7_OK); notify_cam = (ct->ct_header.rqs_seqno & ATPD_SEQ_NOTIFY_CAM) != 0; if ((ct->ct_flags & CT7_DATAMASK) != CT7_NO_DATA) { resid = ct->ct_resid; moved_data = data_requested - resid; } } isp_prt(isp, ok? ISP_LOGTDEBUG0 : ISP_LOGWARN, "%s: CTIO7[%x] seq %u nc %d sts 0x%x flg 0x%x sns %d resid %d %s", __func__, ct->ct_rxid, ATPD_GET_SEQNO(ct), notify_cam, ct->ct_nphdl, ct->ct_flags, (ccb->ccb_h.status & CAM_SENT_SENSE) != 0, resid, sentstatus? "FIN" : "MID"); } else { ct2_entry_t *ct = arg; if (ct->ct_status == CT_SRR) { atp->srr_ccb = ccb; if (atp->srr_notify_rcvd) isp_handle_srr_start(isp, tptr, atp); rls_lun_statep(isp, tptr); isp_target_putback_atio(ccb); return; } if (ct->ct_status == CT_HBA_RESET) { failure = CAM_UNREC_HBA_ERROR; } else { sentstatus = ct->ct_flags & CT2_SENDSTATUS; ok = (ct->ct_status & ~QLTM_SVALID) == CT_OK; notify_cam = (ct->ct_header.rqs_seqno & ATPD_SEQ_NOTIFY_CAM) != 0; if ((ct->ct_flags & CT2_DATAMASK) != CT2_NO_DATA) { resid = ct->ct_resid; moved_data = data_requested - resid; } } isp_prt(isp, ok? ISP_LOGTDEBUG0 : ISP_LOGWARN, "%s: CTIO2[%x] seq %u nc %d sts 0x%x flg 0x%x sns %d resid %d %s", __func__, ct->ct_rxid, ATPD_GET_SEQNO(ct), notify_cam, ct->ct_status, ct->ct_flags, (ccb->ccb_h.status & CAM_SENT_SENSE) != 0, resid, sentstatus? "FIN" : "MID"); } if (ok) { if (moved_data) { atp->bytes_xfered += moved_data; ccb->csio.resid = atp->orig_datalen - atp->bytes_xfered - atp->bytes_in_transit; } if (sentstatus && (ccb->ccb_h.flags & CAM_SEND_SENSE)) { ccb->ccb_h.status |= CAM_SENT_SENSE; } ccb->ccb_h.status |= CAM_REQ_CMP; } else { notify_cam = 1; if (failure == CAM_UNREC_HBA_ERROR) ccb->ccb_h.status |= CAM_UNREC_HBA_ERROR; else ccb->ccb_h.status |= CAM_REQ_CMP_ERR; } atp->state = ATPD_STATE_PDON; rls_lun_statep(isp, tptr); /* * We never *not* notify CAM when there has been any error (ok == 0), * so we never need to do an ATIO putback if we're not notifying CAM. */ isp_prt(isp, ISP_LOGTDEBUG0, "%s CTIO[0x%x] done (ok=%d nc=%d nowsendstatus=%d ccb ss=%d)", (sentstatus)? " FINAL " : "MIDTERM ", atp->tag, ok, notify_cam, atp->sendst, (ccb->ccb_h.flags & CAM_SEND_STATUS) != 0); if (notify_cam == 0) { if (atp->sendst) { isp_target_start_ctio(isp, ccb, FROM_CTIO_DONE); } return; } /* * We're telling CAM we're done with this CTIO transaction. * * 24XX cards never need an ATIO put back. * * Other cards need one put back only on error. * In the latter case, a timeout will re-fire * and try again in case we didn't have * queue resources to do so at first. In any case, * once the putback is done we do the completion * call. */ if (ok || IS_24XX(isp)) { isp_complete_ctio(ccb); } else { isp_target_putback_atio(ccb); } } static void isp_handle_platform_notify_fc(ispsoftc_t *isp, in_fcentry_t *inp) { int needack = 1; switch (inp->in_status) { case IN_PORT_LOGOUT: /* * XXX: Need to delete this initiator's WWN from the database * XXX: Need to send this LOGOUT upstream */ isp_prt(isp, ISP_LOGWARN, "port logout of S_ID 0x%x", inp->in_iid); break; case IN_PORT_CHANGED: isp_prt(isp, ISP_LOGWARN, "port changed for S_ID 0x%x", inp->in_iid); break; case IN_GLOBAL_LOGO: isp_del_all_wwn_entries(isp, 0); isp_prt(isp, ISP_LOGINFO, "all ports logged out"); break; case IN_ABORT_TASK: { tstate_t *tptr; uint16_t nphdl, lun; uint32_t sid; uint64_t wwn; atio_private_data_t *atp; fcportdb_t *lp; struct ccb_immediate_notify *inot = NULL; if (ISP_CAP_SCCFW(isp)) { lun = inp->in_scclun; #if __FreeBSD_version < 1000700 lun &= 0x3fff; #endif } else { lun = inp->in_lun; } if (ISP_CAP_2KLOGIN(isp)) { nphdl = ((in_fcentry_e_t *)inp)->in_iid; } else { nphdl = inp->in_iid; } if (isp_find_pdb_by_handle(isp, 0, nphdl, &lp)) { wwn = lp->port_wwn; sid = lp->portid; } else { wwn = INI_ANY; sid = PORT_ANY; } tptr = get_lun_statep(isp, 0, lun); if (tptr == NULL) { tptr = get_lun_statep(isp, 0, CAM_LUN_WILDCARD); if (tptr == NULL) { isp_prt(isp, ISP_LOGWARN, "ABORT TASK for lun %x, but no tstate", lun); return; } } atp = isp_find_atpd(isp, tptr, inp->in_seqid); if (atp) { inot = (struct ccb_immediate_notify *) SLIST_FIRST(&tptr->inots); isp_prt(isp, ISP_LOGTDEBUG0, "ABORT TASK RX_ID %x WWN 0x%016llx state %d", inp->in_seqid, (unsigned long long) wwn, atp->state); if (inot) { tptr->inot_count--; SLIST_REMOVE_HEAD(&tptr->inots, sim_links.sle); ISP_PATH_PRT(isp, ISP_LOGTDEBUG2, inot->ccb_h.path, "%s: Take FREE INOT count now %d\n", __func__, tptr->inot_count); } else { ISP_PATH_PRT(isp, ISP_LOGWARN, tptr->owner, "out of INOT structures\n"); } } else { ISP_PATH_PRT(isp, ISP_LOGWARN, tptr->owner, "abort task RX_ID %x from wwn 0x%016llx, state unknown\n", inp->in_seqid, wwn); } if (inot) { isp_notify_t tmp, *nt = &tmp; ISP_MEMZERO(nt, sizeof (isp_notify_t)); nt->nt_hba = isp; nt->nt_tgt = FCPARAM(isp, 0)->isp_wwpn; nt->nt_wwn = wwn; nt->nt_nphdl = nphdl; nt->nt_sid = sid; nt->nt_did = PORT_ANY; nt->nt_lun = lun; nt->nt_need_ack = 1; nt->nt_channel = 0; nt->nt_ncode = NT_ABORT_TASK; nt->nt_lreserved = inot; isp_handle_platform_target_tmf(isp, nt); needack = 0; } rls_lun_statep(isp, tptr); break; } default: break; } if (needack) { isp_async(isp, ISPASYNC_TARGET_NOTIFY_ACK, inp); } } static void isp_handle_platform_notify_24xx(ispsoftc_t *isp, in_fcentry_24xx_t *inot) { uint16_t nphdl; uint16_t prli_options = 0; uint32_t portid; fcportdb_t *lp; char *msg = NULL; uint8_t *ptr = (uint8_t *)inot; uint64_t wwpn = INI_NONE, wwnn = INI_NONE; nphdl = inot->in_nphdl; if (nphdl != NIL_HANDLE) { portid = inot->in_portid_hi << 16 | inot->in_portid_lo; } else { portid = PORT_ANY; } switch (inot->in_status) { case IN24XX_ELS_RCVD: { char buf[16]; int chan = ISP_GET_VPIDX(isp, inot->in_vpidx); /* * Note that we're just getting notification that an ELS was received * (possibly with some associated information sent upstream). This is * *not* the same as being given the ELS frame to accept or reject. */ switch (inot->in_status_subcode) { case LOGO: msg = "LOGO"; wwpn = be64dec(&ptr[IN24XX_PLOGI_WWPN_OFF]); isp_del_wwn_entry(isp, chan, wwpn, nphdl, portid); break; case PRLO: msg = "PRLO"; break; case PLOGI: msg = "PLOGI"; wwnn = be64dec(&ptr[IN24XX_PLOGI_WWNN_OFF]); wwpn = be64dec(&ptr[IN24XX_PLOGI_WWPN_OFF]); isp_add_wwn_entry(isp, chan, wwpn, wwnn, nphdl, portid, prli_options); break; case PRLI: msg = "PRLI"; prli_options = inot->in_prli_options; if (inot->in_flags & IN24XX_FLAG_PN_NN_VALID) wwnn = be64dec(&ptr[IN24XX_PRLI_WWNN_OFF]); wwpn = be64dec(&ptr[IN24XX_PRLI_WWPN_OFF]); isp_add_wwn_entry(isp, chan, wwpn, wwnn, nphdl, portid, prli_options); break; case PDISC: msg = "PDISC"; break; case ADISC: msg = "ADISC"; break; default: ISP_SNPRINTF(buf, sizeof (buf), "ELS 0x%x", inot->in_status_subcode); msg = buf; break; } if (inot->in_flags & IN24XX_FLAG_PUREX_IOCB) { isp_prt(isp, ISP_LOGERR, "%s Chan %d ELS N-port handle %x PortID 0x%06x marked as needing a PUREX response", msg, chan, nphdl, portid); break; } isp_prt(isp, ISP_LOGTDEBUG0, "%s Chan %d ELS N-port handle %x PortID 0x%06x RX_ID 0x%x OX_ID 0x%x", msg, chan, nphdl, portid, inot->in_rxid, inot->in_oxid); isp_async(isp, ISPASYNC_TARGET_NOTIFY_ACK, inot); break; } case IN24XX_PORT_LOGOUT: msg = "PORT LOGOUT"; if (isp_find_pdb_by_handle(isp, ISP_GET_VPIDX(isp, inot->in_vpidx), nphdl, &lp)) { isp_del_wwn_entry(isp, ISP_GET_VPIDX(isp, inot->in_vpidx), lp->port_wwn, nphdl, lp->portid); } /* FALLTHROUGH */ case IN24XX_PORT_CHANGED: if (msg == NULL) msg = "PORT CHANGED"; /* FALLTHROUGH */ case IN24XX_LIP_RESET: if (msg == NULL) msg = "LIP RESET"; isp_prt(isp, ISP_LOGINFO, "Chan %d %s (sub-status 0x%x) for N-port handle 0x%x", ISP_GET_VPIDX(isp, inot->in_vpidx), msg, inot->in_status_subcode, nphdl); /* * All subcodes here are irrelevant. What is relevant * is that we need to terminate all active commands from * this initiator (known by N-port handle). */ /* XXX IMPLEMENT XXX */ isp_async(isp, ISPASYNC_TARGET_NOTIFY_ACK, inot); break; case IN24XX_SRR_RCVD: #ifdef ISP_TARGET_MODE isp_handle_srr_notify(isp, inot); break; #else if (msg == NULL) msg = "SRR RCVD"; /* FALLTHROUGH */ #endif case IN24XX_LINK_RESET: if (msg == NULL) msg = "LINK RESET"; case IN24XX_LINK_FAILED: if (msg == NULL) msg = "LINK FAILED"; default: isp_prt(isp, ISP_LOGWARN, "Chan %d %s", ISP_GET_VPIDX(isp, inot->in_vpidx), msg); isp_async(isp, ISPASYNC_TARGET_NOTIFY_ACK, inot); break; } } static int isp_handle_platform_target_notify_ack(ispsoftc_t *isp, isp_notify_t *mp) { if (isp->isp_state != ISP_RUNSTATE) { isp_prt(isp, ISP_LOGTINFO, "Notify Code 0x%x (qevalid=%d) acked- h/w not ready (dropping)", mp->nt_ncode, mp->nt_lreserved != NULL); return (0); } /* * This case is for a Task Management Function, which shows up as an ATIO7 entry. */ if (IS_24XX(isp) && mp->nt_lreserved && ((isphdr_t *)mp->nt_lreserved)->rqs_entry_type == RQSTYPE_ATIO) { ct7_entry_t local, *cto = &local; at7_entry_t *aep = (at7_entry_t *)mp->nt_lreserved; fcportdb_t *lp; uint32_t sid; uint16_t nphdl; sid = (aep->at_hdr.s_id[0] << 16) | (aep->at_hdr.s_id[1] << 8) | aep->at_hdr.s_id[2]; if (isp_find_pdb_by_portid(isp, mp->nt_channel, sid, &lp)) { nphdl = lp->handle; } else { nphdl = NIL_HANDLE; } ISP_MEMZERO(&local, sizeof (local)); cto->ct_header.rqs_entry_type = RQSTYPE_CTIO7; cto->ct_header.rqs_entry_count = 1; cto->ct_nphdl = nphdl; cto->ct_rxid = aep->at_rxid; cto->ct_vpidx = mp->nt_channel; cto->ct_iid_lo = sid; cto->ct_iid_hi = sid >> 16; cto->ct_oxid = aep->at_hdr.ox_id; cto->ct_flags = CT7_SENDSTATUS|CT7_NOACK|CT7_NO_DATA|CT7_FLAG_MODE1; cto->ct_flags |= (aep->at_ta_len >> 12) << CT7_TASK_ATTR_SHIFT; return (isp_target_put_entry(isp, &local)); } /* * This case is for a responding to an ABTS frame */ if (IS_24XX(isp) && mp->nt_lreserved && ((isphdr_t *)mp->nt_lreserved)->rqs_entry_type == RQSTYPE_ABTS_RCVD) { /* * Overload nt_need_ack here to mark whether we've terminated the associated command. */ if (mp->nt_need_ack) { uint8_t storage[QENTRY_LEN]; ct7_entry_t *cto = (ct7_entry_t *) storage; abts_t *abts = (abts_t *)mp->nt_lreserved; ISP_MEMZERO(cto, sizeof (ct7_entry_t)); isp_prt(isp, ISP_LOGTDEBUG0, "%s: [%x] terminating after ABTS received", __func__, abts->abts_rxid_task); cto->ct_header.rqs_entry_type = RQSTYPE_CTIO7; cto->ct_header.rqs_entry_count = 1; cto->ct_nphdl = mp->nt_nphdl; cto->ct_rxid = abts->abts_rxid_task; cto->ct_iid_lo = mp->nt_sid; cto->ct_iid_hi = mp->nt_sid >> 16; cto->ct_oxid = abts->abts_ox_id; cto->ct_vpidx = mp->nt_channel; cto->ct_flags = CT7_NOACK|CT7_TERMINATE; if (isp_target_put_entry(isp, cto)) { return (ENOMEM); } mp->nt_need_ack = 0; } if (isp_acknak_abts(isp, mp->nt_lreserved, 0) == ENOMEM) { return (ENOMEM); } else { return (0); } } /* * Handle logout cases here */ if (mp->nt_ncode == NT_GLOBAL_LOGOUT) { isp_del_all_wwn_entries(isp, mp->nt_channel); } if (mp->nt_ncode == NT_LOGOUT) { if (!IS_2100(isp) && IS_FC(isp)) { isp_del_wwn_entries(isp, mp); } } /* * General purpose acknowledgement */ if (mp->nt_need_ack) { isp_prt(isp, ISP_LOGTINFO, "Notify Code 0x%x (qevalid=%d) being acked", mp->nt_ncode, mp->nt_lreserved != NULL); /* * Don't need to use the guaranteed send because the caller can retry */ return (isp_notify_ack(isp, mp->nt_lreserved)); } return (0); } /* * Handle task management functions. * * We show up here with a notify structure filled out. * * The nt_lreserved tag points to the original queue entry */ static void isp_handle_platform_target_tmf(ispsoftc_t *isp, isp_notify_t *notify) { tstate_t *tptr; fcportdb_t *lp; struct ccb_immediate_notify *inot; inot_private_data_t *ntp = NULL; lun_id_t lun; isp_prt(isp, ISP_LOGTDEBUG0, "%s: code 0x%x sid 0x%x tagval 0x%016llx chan %d lun 0x%x", __func__, notify->nt_ncode, notify->nt_sid, (unsigned long long) notify->nt_tagval, notify->nt_channel, notify->nt_lun); /* * NB: This assignment is necessary because of tricky type conversion. * XXX: This is tricky and I need to check this. If the lun isn't known * XXX: for the task management function, it does not of necessity follow * XXX: that it should go up stream to the wildcard listener. */ if (notify->nt_lun == LUN_ANY) { lun = CAM_LUN_WILDCARD; } else { lun = notify->nt_lun; } tptr = get_lun_statep(isp, notify->nt_channel, lun); if (tptr == NULL) { tptr = get_lun_statep(isp, notify->nt_channel, CAM_LUN_WILDCARD); if (tptr == NULL) { isp_prt(isp, ISP_LOGWARN, "%s: no state pointer found for chan %d lun %#jx", __func__, notify->nt_channel, (uintmax_t)lun); goto bad; } } inot = (struct ccb_immediate_notify *) SLIST_FIRST(&tptr->inots); if (inot == NULL) { isp_prt(isp, ISP_LOGWARN, "%s: out of immediate notify structures for chan %d lun %#jx", __func__, notify->nt_channel, (uintmax_t)lun); goto bad; } if (isp_find_pdb_by_portid(isp, notify->nt_channel, notify->nt_sid, &lp) == 0 && isp_find_pdb_by_handle(isp, notify->nt_channel, notify->nt_nphdl, &lp) == 0) { inot->initiator_id = CAM_TARGET_WILDCARD; } else { inot->initiator_id = FC_PORTDB_TGT(isp, notify->nt_channel, lp); } inot->seq_id = notify->nt_tagval; inot->tag_id = notify->nt_tagval >> 32; switch (notify->nt_ncode) { case NT_ABORT_TASK: isp_target_mark_aborted_early(isp, tptr, inot->tag_id); inot->arg = MSG_ABORT_TASK; break; case NT_ABORT_TASK_SET: isp_target_mark_aborted_early(isp, tptr, TAG_ANY); inot->arg = MSG_ABORT_TASK_SET; break; case NT_CLEAR_ACA: inot->arg = MSG_CLEAR_ACA; break; case NT_CLEAR_TASK_SET: inot->arg = MSG_CLEAR_TASK_SET; break; case NT_LUN_RESET: inot->arg = MSG_LOGICAL_UNIT_RESET; break; case NT_TARGET_RESET: inot->arg = MSG_TARGET_RESET; break; case NT_QUERY_TASK_SET: inot->arg = MSG_QUERY_TASK_SET; break; case NT_QUERY_ASYNC_EVENT: inot->arg = MSG_QUERY_ASYNC_EVENT; break; default: isp_prt(isp, ISP_LOGWARN, "%s: unknown TMF code 0x%x for chan %d lun %#jx", __func__, notify->nt_ncode, notify->nt_channel, (uintmax_t)lun); goto bad; } ntp = isp_get_ntpd(isp, tptr); if (ntp == NULL) { isp_prt(isp, ISP_LOGWARN, "%s: out of inotify private structures", __func__); goto bad; } ISP_MEMCPY(&ntp->rd.nt, notify, sizeof (isp_notify_t)); if (notify->nt_lreserved) { ISP_MEMCPY(&ntp->rd.data, notify->nt_lreserved, QENTRY_LEN); ntp->rd.nt.nt_lreserved = &ntp->rd.data; } ntp->rd.seq_id = notify->nt_tagval; ntp->rd.tag_id = notify->nt_tagval >> 32; tptr->inot_count--; SLIST_REMOVE_HEAD(&tptr->inots, sim_links.sle); rls_lun_statep(isp, tptr); ISP_PATH_PRT(isp, ISP_LOGTDEBUG2, inot->ccb_h.path, "%s: Take FREE INOT count now %d\n", __func__, tptr->inot_count); inot->ccb_h.status = CAM_MESSAGE_RECV; xpt_done((union ccb *)inot); return; bad: if (tptr) { rls_lun_statep(isp, tptr); } if (notify->nt_need_ack && notify->nt_lreserved) { if (((isphdr_t *)notify->nt_lreserved)->rqs_entry_type == RQSTYPE_ABTS_RCVD) { if (isp_acknak_abts(isp, notify->nt_lreserved, ENOMEM)) { isp_prt(isp, ISP_LOGWARN, "you lose- unable to send an ACKNAK"); } } else { isp_async(isp, ISPASYNC_TARGET_NOTIFY_ACK, notify->nt_lreserved); } } } /* * Find the associated private data and mark it as dead so * we don't try to work on it any further. */ static void isp_target_mark_aborted(ispsoftc_t *isp, union ccb *ccb) { tstate_t *tptr; atio_private_data_t *atp; union ccb *accb = ccb->cab.abort_ccb; tptr = get_lun_statep(isp, XS_CHANNEL(accb), XS_LUN(accb)); if (tptr == NULL) { tptr = get_lun_statep(isp, XS_CHANNEL(accb), CAM_LUN_WILDCARD); if (tptr == NULL) { ccb->ccb_h.status = CAM_REQ_INVALID; return; } } atp = isp_find_atpd(isp, tptr, accb->atio.tag_id); if (atp == NULL) { ccb->ccb_h.status = CAM_REQ_INVALID; } else { atp->dead = 1; ccb->ccb_h.status = CAM_REQ_CMP; } rls_lun_statep(isp, tptr); } static void isp_target_mark_aborted_early(ispsoftc_t *isp, tstate_t *tptr, uint32_t tag_id) { atio_private_data_t *atp; inot_private_data_t *restart_queue = tptr->restart_queue; /* * First, clean any commands pending restart */ tptr->restart_queue = NULL; while (restart_queue) { uint32_t this_tag_id; inot_private_data_t *ntp = restart_queue; restart_queue = ntp->rd.nt.nt_hba; if (IS_24XX(isp)) { this_tag_id = ((at7_entry_t *)ntp->rd.data)->at_rxid; } else { this_tag_id = ((at2_entry_t *)ntp->rd.data)->at_rxid; } if ((uint64_t)tag_id == TAG_ANY || tag_id == this_tag_id) { isp_put_ntpd(isp, tptr, ntp); } else { ntp->rd.nt.nt_hba = tptr->restart_queue; tptr->restart_queue = ntp; } } /* * Now mark other ones dead as well. */ for (atp = tptr->atpool; atp < &tptr->atpool[ATPDPSIZE]; atp++) { if ((uint64_t)tag_id == TAG_ANY || atp->tag == tag_id) { atp->dead = 1; } } } #endif static void isp_cam_async(void *cbarg, uint32_t code, struct cam_path *path, void *arg) { struct cam_sim *sim; int bus, tgt; ispsoftc_t *isp; sim = (struct cam_sim *)cbarg; isp = (ispsoftc_t *) cam_sim_softc(sim); bus = cam_sim_bus(sim); tgt = xpt_path_target_id(path); switch (code) { case AC_LOST_DEVICE: if (IS_SCSI(isp)) { uint16_t oflags, nflags; sdparam *sdp = SDPARAM(isp, bus); if (tgt >= 0) { nflags = sdp->isp_devparam[tgt].nvrm_flags; nflags &= DPARM_SAFE_DFLT; if (isp->isp_loaded_fw) { nflags |= DPARM_NARROW | DPARM_ASYNC; } oflags = sdp->isp_devparam[tgt].goal_flags; sdp->isp_devparam[tgt].goal_flags = nflags; sdp->isp_devparam[tgt].dev_update = 1; sdp->update = 1; (void) isp_control(isp, ISPCTL_UPDATE_PARAMS, bus); sdp->isp_devparam[tgt].goal_flags = oflags; } } break; default: isp_prt(isp, ISP_LOGWARN, "isp_cam_async: Code 0x%x", code); break; } } static void isp_poll(struct cam_sim *sim) { ispsoftc_t *isp = cam_sim_softc(sim); uint16_t isr, sema, info; if (ISP_READ_ISR(isp, &isr, &sema, &info)) isp_intr(isp, isr, sema, info); } static void isp_watchdog(void *arg) { struct ccb_scsiio *xs = arg; ispsoftc_t *isp; uint32_t ohandle = ISP_HANDLE_FREE, handle; isp = XS_ISP(xs); handle = isp_find_handle(isp, xs); /* * Hand crank the interrupt code just to be sure the command isn't stuck somewhere. */ if (handle != ISP_HANDLE_FREE) { uint16_t isr, sema, info; if (ISP_READ_ISR(isp, &isr, &sema, &info) != 0) isp_intr(isp, isr, sema, info); ohandle = handle; handle = isp_find_handle(isp, xs); } if (handle != ISP_HANDLE_FREE) { /* * Try and make sure the command is really dead before * we release the handle (and DMA resources) for reuse. * * If we are successful in aborting the command then * we're done here because we'll get the command returned * back separately. */ if (isp_control(isp, ISPCTL_ABORT_CMD, xs) == 0) { return; } /* * Note that after calling the above, the command may in * fact have been completed. */ xs = isp_find_xs(isp, handle); /* * If the command no longer exists, then we won't * be able to find the xs again with this handle. */ if (xs == NULL) { return; } /* * After this point, the command is really dead. */ if (XS_XFRLEN(xs)) { ISP_DMAFREE(isp, xs, handle); } isp_destroy_handle(isp, handle); isp_prt(isp, ISP_LOGERR, "%s: timeout for handle 0x%x", __func__, handle); xs->ccb_h.status &= ~CAM_STATUS_MASK; xs->ccb_h.status |= CAM_CMD_TIMEOUT; isp_prt_endcmd(isp, xs); isp_done(xs); } else { if (ohandle != ISP_HANDLE_FREE) { isp_prt(isp, ISP_LOGWARN, "%s: timeout for handle 0x%x, recovered during interrupt", __func__, ohandle); } else { isp_prt(isp, ISP_LOGWARN, "%s: timeout for handle already free", __func__); } } } static void isp_make_here(ispsoftc_t *isp, fcportdb_t *fcp, int chan, int tgt) { union ccb *ccb; struct isp_fc *fc = ISP_FC_PC(isp, chan); /* * Allocate a CCB, create a wildcard path for this target and schedule a rescan. */ ccb = xpt_alloc_ccb_nowait(); if (ccb == NULL) { isp_prt(isp, ISP_LOGWARN, "Chan %d unable to alloc CCB for rescan", chan); return; } if (xpt_create_path(&ccb->ccb_h.path, NULL, cam_sim_path(fc->sim), tgt, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { isp_prt(isp, ISP_LOGWARN, "unable to create path for rescan"); xpt_free_ccb(ccb); return; } xpt_rescan(ccb); } static void isp_make_gone(ispsoftc_t *isp, fcportdb_t *fcp, int chan, int tgt) { struct cam_path *tp; struct isp_fc *fc = ISP_FC_PC(isp, chan); if (xpt_create_path(&tp, NULL, cam_sim_path(fc->sim), tgt, CAM_LUN_WILDCARD) == CAM_REQ_CMP) { xpt_async(AC_LOST_DEVICE, tp, NULL); xpt_free_path(tp); } } /* * Gone Device Timer Function- when we have decided that a device has gone * away, we wait a specific period of time prior to telling the OS it has * gone away. * * This timer function fires once a second and then scans the port database * for devices that are marked dead but still have a virtual target assigned. * We decrement a counter for that port database entry, and when it hits zero, * we tell the OS the device has gone away. */ static void isp_gdt(void *arg) { struct isp_fc *fc = arg; taskqueue_enqueue(taskqueue_thread, &fc->gtask); } static void isp_gdt_task(void *arg, int pending) { struct isp_fc *fc = arg; ispsoftc_t *isp = fc->isp; int chan = fc - isp->isp_osinfo.pc.fc; fcportdb_t *lp; struct ac_contract ac; struct ac_device_changed *adc; int dbidx, more_to_do = 0; ISP_LOCK(isp); isp_prt(isp, ISP_LOGDEBUG0, "Chan %d GDT timer expired", chan); for (dbidx = 0; dbidx < MAX_FC_TARG; dbidx++) { lp = &FCPARAM(isp, chan)->portdb[dbidx]; if (lp->state != FC_PORTDB_STATE_ZOMBIE) { continue; } if (lp->gone_timer != 0) { lp->gone_timer -= 1; more_to_do++; continue; } isp_prt(isp, ISP_LOGCONFIG, prom3, chan, dbidx, lp->portid, "Gone Device Timeout"); if (lp->is_target) { lp->is_target = 0; isp_make_gone(isp, lp, chan, dbidx); } if (lp->is_initiator) { lp->is_initiator = 0; ac.contract_number = AC_CONTRACT_DEV_CHG; adc = (struct ac_device_changed *) ac.contract_data; adc->wwpn = lp->port_wwn; adc->port = lp->portid; adc->target = dbidx; adc->arrived = 0; xpt_async(AC_CONTRACT, fc->path, &ac); } lp->state = FC_PORTDB_STATE_NIL; } if (fc->ready) { if (more_to_do) { callout_reset(&fc->gdt, hz, isp_gdt, fc); } else { callout_deactivate(&fc->gdt); isp_prt(isp, ISP_LOG_SANCFG, "Chan %d Stopping Gone Device Timer @ %lu", chan, (unsigned long) time_uptime); } } ISP_UNLOCK(isp); } /* * When loop goes down we remember the time and freeze CAM command queue. * During some time period we are trying to reprobe the loop. But if we * fail, we tell the OS that devices have gone away and drop the freeze. * * We don't clear the devices out of our port database because, when loop * come back up, we have to do some actual cleanup with the chip at that * point (implicit PLOGO, e.g., to get the chip's port database state right). */ static void isp_loop_changed(ispsoftc_t *isp, int chan) { fcparam *fcp = FCPARAM(isp, chan); struct isp_fc *fc = ISP_FC_PC(isp, chan); if (fc->loop_down_time) return; isp_prt(isp, ISP_LOG_SANCFG|ISP_LOGDEBUG0, "Chan %d Loop changed", chan); if (fcp->role & ISP_ROLE_INITIATOR) isp_freeze_loopdown(isp, chan); fc->loop_dead = 0; fc->loop_down_time = time_uptime; wakeup(fc); } static void isp_loop_up(ispsoftc_t *isp, int chan) { struct isp_fc *fc = ISP_FC_PC(isp, chan); isp_prt(isp, ISP_LOG_SANCFG|ISP_LOGDEBUG0, "Chan %d Loop is up", chan); fc->loop_seen_once = 1; fc->loop_dead = 0; fc->loop_down_time = 0; isp_unfreeze_loopdown(isp, chan); } static void isp_loop_dead(ispsoftc_t *isp, int chan) { fcparam *fcp = FCPARAM(isp, chan); struct isp_fc *fc = ISP_FC_PC(isp, chan); fcportdb_t *lp; struct ac_contract ac; struct ac_device_changed *adc; int dbidx, i; isp_prt(isp, ISP_LOG_SANCFG|ISP_LOGDEBUG0, "Chan %d Loop is dead", chan); /* * Notify to the OS all targets who we now consider have departed. */ for (dbidx = 0; dbidx < MAX_FC_TARG; dbidx++) { lp = &fcp->portdb[dbidx]; if (lp->state == FC_PORTDB_STATE_NIL) continue; /* * XXX: CLEAN UP AND COMPLETE ANY PENDING COMMANDS FIRST! */ for (i = 0; i < isp->isp_maxcmds; i++) { struct ccb_scsiio *xs; if (ISP_H2HT(isp->isp_xflist[i].handle) != ISP_HANDLE_INITIATOR) { continue; } if ((xs = isp->isp_xflist[i].cmd) == NULL) { continue; } if (dbidx != XS_TGT(xs)) { continue; } isp_prt(isp, ISP_LOGWARN, "command handle 0x%x for %d.%d.%jx orphaned by loop down timeout", isp->isp_xflist[i].handle, chan, XS_TGT(xs), (uintmax_t)XS_LUN(xs)); } isp_prt(isp, ISP_LOGCONFIG, prom3, chan, dbidx, lp->portid, "Loop Down Timeout"); if (lp->is_target) { lp->is_target = 0; isp_make_gone(isp, lp, chan, dbidx); } if (lp->is_initiator) { lp->is_initiator = 0; ac.contract_number = AC_CONTRACT_DEV_CHG; adc = (struct ac_device_changed *) ac.contract_data; adc->wwpn = lp->port_wwn; adc->port = lp->portid; adc->target = dbidx; adc->arrived = 0; xpt_async(AC_CONTRACT, fc->path, &ac); } } isp_unfreeze_loopdown(isp, chan); fc->loop_dead = 1; fc->loop_down_time = 0; } static void isp_kthread(void *arg) { struct isp_fc *fc = arg; ispsoftc_t *isp = fc->isp; int chan = fc - isp->isp_osinfo.pc.fc; int slp = 0, d; int lb, lim; mtx_lock(&isp->isp_osinfo.lock); while (isp->isp_osinfo.is_exiting == 0) { isp_prt(isp, ISP_LOG_SANCFG|ISP_LOGDEBUG0, "Chan %d Checking FC state", chan); lb = isp_fc_runstate(isp, chan, 250000); isp_prt(isp, ISP_LOG_SANCFG|ISP_LOGDEBUG0, "Chan %d FC got to %s state", chan, isp_fc_loop_statename(lb)); /* * Our action is different based upon whether we're supporting * Initiator mode or not. If we are, we might freeze the simq * when loop is down and set all sorts of different delays to * check again. * * If not, we simply just wait for loop to come up. */ if (lb == LOOP_READY || lb < 0) { slp = 0; } else { /* * If we've never seen loop up and we've waited longer * than quickboot time, or we've seen loop up but we've * waited longer than loop_down_limit, give up and go * to sleep until loop comes up. */ if (fc->loop_seen_once == 0) lim = isp_quickboot_time; else lim = fc->loop_down_limit; d = time_uptime - fc->loop_down_time; if (d >= lim) slp = 0; else if (d < 10) slp = 1; else if (d < 30) slp = 5; else if (d < 60) slp = 10; else if (d < 120) slp = 20; else slp = 30; } if (slp == 0) { if (lb == LOOP_READY) isp_loop_up(isp, chan); else isp_loop_dead(isp, chan); } isp_prt(isp, ISP_LOG_SANCFG|ISP_LOGDEBUG0, "Chan %d sleep for %d seconds", chan, slp); msleep(fc, &isp->isp_osinfo.lock, PRIBIO, "ispf", slp * hz); } fc->num_threads -= 1; mtx_unlock(&isp->isp_osinfo.lock); kthread_exit(); } static void isp_action(struct cam_sim *sim, union ccb *ccb) { int bus, tgt, ts, error; ispsoftc_t *isp; struct ccb_trans_settings *cts; CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("isp_action\n")); isp = (ispsoftc_t *)cam_sim_softc(sim); mtx_assert(&isp->isp_lock, MA_OWNED); isp_prt(isp, ISP_LOGDEBUG2, "isp_action code %x", ccb->ccb_h.func_code); ISP_PCMD(ccb) = NULL; switch (ccb->ccb_h.func_code) { case XPT_SCSI_IO: /* Execute the requested I/O operation */ bus = XS_CHANNEL(ccb); /* * Do a couple of preliminary checks... */ if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) { if ((ccb->ccb_h.flags & CAM_CDB_PHYS) != 0) { ccb->ccb_h.status = CAM_REQ_INVALID; isp_done((struct ccb_scsiio *) ccb); break; } } ccb->csio.req_map = NULL; #ifdef DIAGNOSTIC if (ccb->ccb_h.target_id >= ISP_MAX_TARGETS(isp)) { xpt_print(ccb->ccb_h.path, "invalid target\n"); ccb->ccb_h.status = CAM_PATH_INVALID; } else if (ISP_MAX_LUNS(isp) > 0 && ccb->ccb_h.target_lun >= ISP_MAX_LUNS(isp)) { xpt_print(ccb->ccb_h.path, "invalid lun\n"); ccb->ccb_h.status = CAM_PATH_INVALID; } if (ccb->ccb_h.status == CAM_PATH_INVALID) { xpt_done(ccb); break; } #endif ccb->csio.scsi_status = SCSI_STATUS_OK; if (isp_get_pcmd(isp, ccb)) { isp_prt(isp, ISP_LOGWARN, "out of PCMDs"); cam_freeze_devq(ccb->ccb_h.path); cam_release_devq(ccb->ccb_h.path, RELSIM_RELEASE_AFTER_TIMEOUT, 0, 250, 0); ccb->ccb_h.status = CAM_REQUEUE_REQ; xpt_done(ccb); break; } error = isp_start((XS_T *) ccb); switch (error) { case CMD_QUEUED: ccb->ccb_h.status |= CAM_SIM_QUEUED; if (ccb->ccb_h.timeout == CAM_TIME_INFINITY) { break; } ts = ccb->ccb_h.timeout; if (ts == CAM_TIME_DEFAULT) { ts = 60*1000; } ts = isp_mstohz(ts); callout_reset(&PISP_PCMD(ccb)->wdog, ts, isp_watchdog, ccb); break; case CMD_RQLATER: /* * We get this result if the loop isn't ready * or if the device in question has gone zombie. */ if (ISP_FC_PC(isp, bus)->loop_dead) { isp_prt(isp, ISP_LOGDEBUG0, "%d.%jx loop is dead", XS_TGT(ccb), (uintmax_t)XS_LUN(ccb)); ccb->ccb_h.status = CAM_SEL_TIMEOUT; isp_done((struct ccb_scsiio *) ccb); break; } isp_prt(isp, ISP_LOGDEBUG0, "%d.%jx retry later", XS_TGT(ccb), (uintmax_t)XS_LUN(ccb)); cam_freeze_devq(ccb->ccb_h.path); cam_release_devq(ccb->ccb_h.path, RELSIM_RELEASE_AFTER_TIMEOUT, 0, 1000, 0); ccb->ccb_h.status = CAM_REQUEUE_REQ; isp_free_pcmd(isp, ccb); xpt_done(ccb); break; case CMD_EAGAIN: isp_free_pcmd(isp, ccb); cam_freeze_devq(ccb->ccb_h.path); cam_release_devq(ccb->ccb_h.path, RELSIM_RELEASE_AFTER_TIMEOUT, 0, 100, 0); ccb->ccb_h.status = CAM_REQUEUE_REQ; xpt_done(ccb); break; case CMD_COMPLETE: isp_done((struct ccb_scsiio *) ccb); break; default: isp_prt(isp, ISP_LOGERR, "What's this? 0x%x at %d in file %s", error, __LINE__, __FILE__); ccb->ccb_h.status = CAM_REQUEUE_REQ; isp_free_pcmd(isp, ccb); xpt_done(ccb); } break; #ifdef ISP_TARGET_MODE case XPT_EN_LUN: /* Enable/Disable LUN as a target */ if (ccb->cel.enable) { isp_enable_lun(isp, ccb); } else { isp_disable_lun(isp, ccb); } break; case XPT_IMMED_NOTIFY: case XPT_IMMEDIATE_NOTIFY: /* Add Immediate Notify Resource */ case XPT_ACCEPT_TARGET_IO: /* Add Accept Target IO Resource */ { tstate_t *tptr = get_lun_statep(isp, XS_CHANNEL(ccb), ccb->ccb_h.target_lun); if (tptr == NULL) { tptr = get_lun_statep(isp, XS_CHANNEL(ccb), CAM_LUN_WILDCARD); } if (tptr == NULL) { const char *str; uint32_t tag; if (ccb->ccb_h.func_code == XPT_IMMEDIATE_NOTIFY) { str = "XPT_IMMEDIATE_NOTIFY"; tag = ccb->cin1.seq_id; } else { tag = ccb->atio.tag_id; str = "XPT_ACCEPT_TARGET_IO"; } ISP_PATH_PRT(isp, ISP_LOGWARN, ccb->ccb_h.path, "%s: [0x%x] no state pointer found for %s\n", __func__, tag, str); dump_tstates(isp, XS_CHANNEL(ccb)); ccb->ccb_h.status = CAM_DEV_NOT_THERE; break; } ccb->ccb_h.spriv_field0 = 0; ccb->ccb_h.spriv_ptr1 = isp; if (ccb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO) { if (ccb->atio.tag_id) { atio_private_data_t *atp = isp_find_atpd(isp, tptr, ccb->atio.tag_id); if (atp) { isp_put_atpd(isp, tptr, atp); } } tptr->atio_count++; SLIST_INSERT_HEAD(&tptr->atios, &ccb->ccb_h, sim_links.sle); ISP_PATH_PRT(isp, ISP_LOGTDEBUG2, ccb->ccb_h.path, "Put FREE ATIO (tag id 0x%x), count now %d\n", ccb->atio.tag_id, tptr->atio_count); ccb->atio.tag_id = 0; } else if (ccb->ccb_h.func_code == XPT_IMMEDIATE_NOTIFY) { if (ccb->cin1.tag_id) { inot_private_data_t *ntp = isp_find_ntpd(isp, tptr, ccb->cin1.tag_id, ccb->cin1.seq_id); if (ntp) { isp_put_ntpd(isp, tptr, ntp); } } tptr->inot_count++; SLIST_INSERT_HEAD(&tptr->inots, &ccb->ccb_h, sim_links.sle); ISP_PATH_PRT(isp, ISP_LOGTDEBUG2, ccb->ccb_h.path, "Put FREE INOT, (seq id 0x%x) count now %d\n", ccb->cin1.seq_id, tptr->inot_count); ccb->cin1.seq_id = 0; } else if (ccb->ccb_h.func_code == XPT_IMMED_NOTIFY) { tptr->inot_count++; SLIST_INSERT_HEAD(&tptr->inots, &ccb->ccb_h, sim_links.sle); ISP_PATH_PRT(isp, ISP_LOGTDEBUG2, ccb->ccb_h.path, "Put FREE INOT, (seq id 0x%x) count now %d\n", ccb->cin1.seq_id, tptr->inot_count); ccb->cin1.seq_id = 0; } rls_lun_statep(isp, tptr); ccb->ccb_h.status = CAM_REQ_INPROG; break; } case XPT_NOTIFY_ACK: ccb->ccb_h.status = CAM_REQ_CMP_ERR; break; case XPT_NOTIFY_ACKNOWLEDGE: /* notify ack */ { tstate_t *tptr; inot_private_data_t *ntp; /* * XXX: Because we cannot guarantee that the path information in the notify acknowledge ccb * XXX: matches that for the immediate notify, we have to *search* for the notify structure */ /* * All the relevant path information is in the associated immediate notify */ ISP_PATH_PRT(isp, ISP_LOGTDEBUG0, ccb->ccb_h.path, "%s: [0x%x] NOTIFY ACKNOWLEDGE for 0x%x seen\n", __func__, ccb->cna2.tag_id, ccb->cna2.seq_id); ntp = get_ntp_from_tagdata(isp, ccb->cna2.tag_id, ccb->cna2.seq_id, &tptr); if (ntp == NULL) { ISP_PATH_PRT(isp, ISP_LOGWARN, ccb->ccb_h.path, "%s: [0x%x] XPT_NOTIFY_ACKNOWLEDGE of 0x%x cannot find ntp private data\n", __func__, ccb->cna2.tag_id, ccb->cna2.seq_id); ccb->ccb_h.status = CAM_DEV_NOT_THERE; xpt_done(ccb); break; } if (isp_handle_platform_target_notify_ack(isp, &ntp->rd.nt)) { rls_lun_statep(isp, tptr); cam_freeze_devq(ccb->ccb_h.path); cam_release_devq(ccb->ccb_h.path, RELSIM_RELEASE_AFTER_TIMEOUT, 0, 1000, 0); ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= CAM_REQUEUE_REQ; break; } isp_put_ntpd(isp, tptr, ntp); rls_lun_statep(isp, tptr); ccb->ccb_h.status = CAM_REQ_CMP; ISP_PATH_PRT(isp, ISP_LOGTDEBUG0, ccb->ccb_h.path, "%s: [0x%x] calling xpt_done for tag 0x%x\n", __func__, ccb->cna2.tag_id, ccb->cna2.seq_id); xpt_done(ccb); break; } case XPT_CONT_TARGET_IO: isp_target_start_ctio(isp, ccb, FROM_CAM); break; #endif case XPT_RESET_DEV: /* BDR the specified SCSI device */ bus = cam_sim_bus(xpt_path_sim(ccb->ccb_h.path)); tgt = ccb->ccb_h.target_id; tgt |= (bus << 16); error = isp_control(isp, ISPCTL_RESET_DEV, bus, tgt); if (error) { ccb->ccb_h.status = CAM_REQ_CMP_ERR; } else { /* * If we have a FC device, reset the Command * Reference Number, because the target will expect * that we re-start the CRN at 1 after a reset. */ if (IS_FC(isp)) isp_fcp_reset_crn(isp, bus, tgt, /*tgt_set*/ 1); ccb->ccb_h.status = CAM_REQ_CMP; } xpt_done(ccb); break; case XPT_ABORT: /* Abort the specified CCB */ { union ccb *accb = ccb->cab.abort_ccb; switch (accb->ccb_h.func_code) { #ifdef ISP_TARGET_MODE case XPT_ACCEPT_TARGET_IO: isp_target_mark_aborted(isp, ccb); break; #endif case XPT_SCSI_IO: error = isp_control(isp, ISPCTL_ABORT_CMD, accb); if (error) { ccb->ccb_h.status = CAM_UA_ABORT; } else { ccb->ccb_h.status = CAM_REQ_CMP; } break; default: ccb->ccb_h.status = CAM_REQ_INVALID; break; } /* * This is not a queued CCB, so the caller expects it to be * complete when control is returned. */ break; } #define IS_CURRENT_SETTINGS(c) (c->type == CTS_TYPE_CURRENT_SETTINGS) case XPT_SET_TRAN_SETTINGS: /* Nexus Settings */ cts = &ccb->cts; if (!IS_CURRENT_SETTINGS(cts)) { ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; } tgt = cts->ccb_h.target_id; bus = cam_sim_bus(xpt_path_sim(cts->ccb_h.path)); if (IS_SCSI(isp)) { struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi; struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi; sdparam *sdp = SDPARAM(isp, bus); uint16_t *dptr; if (spi->valid == 0 && scsi->valid == 0) { ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } /* * We always update (internally) from goal_flags * so any request to change settings just gets * vectored to that location. */ dptr = &sdp->isp_devparam[tgt].goal_flags; if ((spi->valid & CTS_SPI_VALID_DISC) != 0) { if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0) *dptr |= DPARM_DISC; else *dptr &= ~DPARM_DISC; } if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) { if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) *dptr |= DPARM_TQING; else *dptr &= ~DPARM_TQING; } if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) { if (spi->bus_width == MSG_EXT_WDTR_BUS_16_BIT) *dptr |= DPARM_WIDE; else *dptr &= ~DPARM_WIDE; } /* * XXX: FIX ME */ if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) && (spi->valid & CTS_SPI_VALID_SYNC_RATE) && (spi->sync_period && spi->sync_offset)) { *dptr |= DPARM_SYNC; /* * XXX: CHECK FOR LEGALITY */ sdp->isp_devparam[tgt].goal_period = spi->sync_period; sdp->isp_devparam[tgt].goal_offset = spi->sync_offset; } else { *dptr &= ~DPARM_SYNC; } isp_prt(isp, ISP_LOGDEBUG0, "SET (%d.%d.%jx) to flags %x off %x per %x", bus, tgt, (uintmax_t)cts->ccb_h.target_lun, sdp->isp_devparam[tgt].goal_flags, sdp->isp_devparam[tgt].goal_offset, sdp->isp_devparam[tgt].goal_period); sdp->isp_devparam[tgt].dev_update = 1; sdp->update = 1; } ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; case XPT_GET_TRAN_SETTINGS: cts = &ccb->cts; tgt = cts->ccb_h.target_id; bus = cam_sim_bus(xpt_path_sim(cts->ccb_h.path)); if (IS_FC(isp)) { fcparam *fcp = FCPARAM(isp, bus); struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi; struct ccb_trans_settings_fc *fc = &cts->xport_specific.fc; cts->protocol = PROTO_SCSI; cts->protocol_version = SCSI_REV_2; cts->transport = XPORT_FC; cts->transport_version = 0; scsi->valid = CTS_SCSI_VALID_TQ; scsi->flags = CTS_SCSI_FLAGS_TAG_ENB; fc->valid = CTS_FC_VALID_SPEED; fc->bitrate = 100000; fc->bitrate *= fcp->isp_gbspeed; if (tgt < MAX_FC_TARG) { fcportdb_t *lp = &fcp->portdb[tgt]; fc->wwnn = lp->node_wwn; fc->wwpn = lp->port_wwn; fc->port = lp->portid; fc->valid |= CTS_FC_VALID_WWNN | CTS_FC_VALID_WWPN | CTS_FC_VALID_PORT; } } else { struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi; struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi; sdparam *sdp = SDPARAM(isp, bus); uint16_t dval, pval, oval; if (IS_CURRENT_SETTINGS(cts)) { sdp->isp_devparam[tgt].dev_refresh = 1; sdp->update = 1; (void) isp_control(isp, ISPCTL_UPDATE_PARAMS, bus); dval = sdp->isp_devparam[tgt].actv_flags; oval = sdp->isp_devparam[tgt].actv_offset; pval = sdp->isp_devparam[tgt].actv_period; } else { dval = sdp->isp_devparam[tgt].nvrm_flags; oval = sdp->isp_devparam[tgt].nvrm_offset; pval = sdp->isp_devparam[tgt].nvrm_period; } cts->protocol = PROTO_SCSI; cts->protocol_version = SCSI_REV_2; cts->transport = XPORT_SPI; cts->transport_version = 2; spi->valid = 0; scsi->valid = 0; spi->flags = 0; scsi->flags = 0; if (dval & DPARM_DISC) { spi->flags |= CTS_SPI_FLAGS_DISC_ENB; } if ((dval & DPARM_SYNC) && oval && pval) { spi->sync_offset = oval; spi->sync_period = pval; } else { spi->sync_offset = 0; spi->sync_period = 0; } spi->valid |= CTS_SPI_VALID_SYNC_OFFSET; spi->valid |= CTS_SPI_VALID_SYNC_RATE; spi->valid |= CTS_SPI_VALID_BUS_WIDTH; if (dval & DPARM_WIDE) { spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; } else { spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; } if (cts->ccb_h.target_lun != CAM_LUN_WILDCARD) { scsi->valid = CTS_SCSI_VALID_TQ; if (dval & DPARM_TQING) { scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; } spi->valid |= CTS_SPI_VALID_DISC; } isp_prt(isp, ISP_LOGDEBUG0, "GET %s (%d.%d.%jx) to flags %x off %x per %x", IS_CURRENT_SETTINGS(cts)? "ACTIVE" : "NVRAM", bus, tgt, (uintmax_t)cts->ccb_h.target_lun, dval, oval, pval); } ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; case XPT_CALC_GEOMETRY: cam_calc_geometry(&ccb->ccg, 1); xpt_done(ccb); break; case XPT_RESET_BUS: /* Reset the specified bus */ bus = cam_sim_bus(sim); error = isp_control(isp, ISPCTL_RESET_BUS, bus); if (error) { ccb->ccb_h.status = CAM_REQ_CMP_ERR; xpt_done(ccb); break; } if (bootverbose) { xpt_print(ccb->ccb_h.path, "reset bus on channel %d\n", bus); } if (IS_FC(isp)) { xpt_async(AC_BUS_RESET, ISP_FC_PC(isp, bus)->path, 0); } else { xpt_async(AC_BUS_RESET, ISP_SPI_PC(isp, bus)->path, 0); } ccb->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; case XPT_TERM_IO: /* Terminate the I/O process */ ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; case XPT_SET_SIM_KNOB: /* Set SIM knobs */ { struct ccb_sim_knob *kp = &ccb->knob; fcparam *fcp; if (!IS_FC(isp)) { ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; } bus = cam_sim_bus(xpt_path_sim(kp->ccb_h.path)); fcp = FCPARAM(isp, bus); if (kp->xport_specific.fc.valid & KNOB_VALID_ADDRESS) { fcp->isp_wwnn = ISP_FC_PC(isp, bus)->def_wwnn = kp->xport_specific.fc.wwnn; fcp->isp_wwpn = ISP_FC_PC(isp, bus)->def_wwpn = kp->xport_specific.fc.wwpn; isp_prt(isp, ISP_LOGALL, "Setting Channel %d wwns to 0x%jx 0x%jx", bus, fcp->isp_wwnn, fcp->isp_wwpn); } ccb->ccb_h.status = CAM_REQ_CMP; if (kp->xport_specific.fc.valid & KNOB_VALID_ROLE) { int rchange = 0; int newrole = 0; switch (kp->xport_specific.fc.role) { case KNOB_ROLE_NONE: if (fcp->role != ISP_ROLE_NONE) { rchange = 1; newrole = ISP_ROLE_NONE; } break; case KNOB_ROLE_TARGET: if (fcp->role != ISP_ROLE_TARGET) { rchange = 1; newrole = ISP_ROLE_TARGET; } break; case KNOB_ROLE_INITIATOR: if (fcp->role != ISP_ROLE_INITIATOR) { rchange = 1; newrole = ISP_ROLE_INITIATOR; } break; case KNOB_ROLE_BOTH: if (fcp->role != ISP_ROLE_BOTH) { rchange = 1; newrole = ISP_ROLE_BOTH; } break; } if (rchange) { ISP_PATH_PRT(isp, ISP_LOGCONFIG, ccb->ccb_h.path, "changing role on from %d to %d\n", fcp->role, newrole); if (isp_control(isp, ISPCTL_CHANGE_ROLE, bus, newrole) != 0) { ccb->ccb_h.status = CAM_REQ_CMP_ERR; xpt_done(ccb); break; } } } xpt_done(ccb); break; } + case XPT_GET_SIM_KNOB_OLD: /* Get SIM knobs -- compat value */ case XPT_GET_SIM_KNOB: /* Get SIM knobs */ { struct ccb_sim_knob *kp = &ccb->knob; if (IS_FC(isp)) { fcparam *fcp; bus = cam_sim_bus(xpt_path_sim(kp->ccb_h.path)); fcp = FCPARAM(isp, bus); kp->xport_specific.fc.wwnn = fcp->isp_wwnn; kp->xport_specific.fc.wwpn = fcp->isp_wwpn; switch (fcp->role) { case ISP_ROLE_NONE: kp->xport_specific.fc.role = KNOB_ROLE_NONE; break; case ISP_ROLE_TARGET: kp->xport_specific.fc.role = KNOB_ROLE_TARGET; break; case ISP_ROLE_INITIATOR: kp->xport_specific.fc.role = KNOB_ROLE_INITIATOR; break; case ISP_ROLE_BOTH: kp->xport_specific.fc.role = KNOB_ROLE_BOTH; break; } kp->xport_specific.fc.valid = KNOB_VALID_ADDRESS | KNOB_VALID_ROLE; ccb->ccb_h.status = CAM_REQ_CMP; } else { ccb->ccb_h.status = CAM_REQ_INVALID; } xpt_done(ccb); break; } case XPT_PATH_INQ: /* Path routing inquiry */ { struct ccb_pathinq *cpi = &ccb->cpi; cpi->version_num = 1; #ifdef ISP_TARGET_MODE if (IS_FC(isp) && ISP_CAP_TMODE(isp) && ISP_CAP_SCCFW(isp)) cpi->target_sprt = PIT_PROCESSOR | PIT_DISCONNECT | PIT_TERM_IO; else #endif cpi->target_sprt = 0; cpi->hba_eng_cnt = 0; cpi->max_target = ISP_MAX_TARGETS(isp) - 1; cpi->max_lun = ISP_MAX_LUNS(isp) == 0 ? 255 : ISP_MAX_LUNS(isp) - 1; cpi->bus_id = cam_sim_bus(sim); if (isp->isp_osinfo.sixtyfourbit) cpi->maxio = (ISP_NSEG64_MAX - 1) * PAGE_SIZE; else cpi->maxio = (ISP_NSEG_MAX - 1) * PAGE_SIZE; bus = cam_sim_bus(xpt_path_sim(cpi->ccb_h.path)); if (IS_FC(isp)) { fcparam *fcp = FCPARAM(isp, bus); cpi->hba_misc = PIM_NOBUSRESET | PIM_UNMAPPED; #if __FreeBSD_version >= 1000700 cpi->hba_misc |= PIM_EXTLUNS; #endif #if __FreeBSD_version >= 1000039 cpi->hba_misc |= PIM_NOSCAN; #endif /* * Because our loop ID can shift from time to time, * make our initiator ID out of range of our bus. */ cpi->initiator_id = cpi->max_target + 1; /* * Set base transfer capabilities for Fibre Channel, for this HBA. */ if (IS_25XX(isp)) { cpi->base_transfer_speed = 8000000; } else if (IS_24XX(isp)) { cpi->base_transfer_speed = 4000000; } else if (IS_23XX(isp)) { cpi->base_transfer_speed = 2000000; } else { cpi->base_transfer_speed = 1000000; } cpi->hba_inquiry = PI_TAG_ABLE; cpi->transport = XPORT_FC; cpi->transport_version = 0; cpi->xport_specific.fc.wwnn = fcp->isp_wwnn; cpi->xport_specific.fc.wwpn = fcp->isp_wwpn; cpi->xport_specific.fc.port = fcp->isp_portid; cpi->xport_specific.fc.bitrate = fcp->isp_gbspeed * 1000; } else { sdparam *sdp = SDPARAM(isp, bus); cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16; cpi->hba_misc = PIM_UNMAPPED; cpi->initiator_id = sdp->isp_initiator_id; cpi->base_transfer_speed = 3300; cpi->transport = XPORT_SPI; cpi->transport_version = 2; } cpi->protocol = PROTO_SCSI; cpi->protocol_version = SCSI_REV_2; strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strncpy(cpi->hba_vid, "Qlogic", HBA_IDLEN); strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); cpi->unit_number = cam_sim_unit(sim); cpi->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } default: ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; } } #define ISPDDB (CAM_DEBUG_INFO|CAM_DEBUG_TRACE|CAM_DEBUG_CDB) void isp_done(XS_T *sccb) { ispsoftc_t *isp = XS_ISP(sccb); uint32_t status; if (XS_NOERR(sccb)) XS_SETERR(sccb, CAM_REQ_CMP); if ((sccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP && (sccb->scsi_status != SCSI_STATUS_OK)) { sccb->ccb_h.status &= ~CAM_STATUS_MASK; if ((sccb->scsi_status == SCSI_STATUS_CHECK_COND) && (sccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0) { sccb->ccb_h.status |= CAM_AUTOSENSE_FAIL; } else { sccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR; } } sccb->ccb_h.status &= ~CAM_SIM_QUEUED; status = sccb->ccb_h.status & CAM_STATUS_MASK; if (status != CAM_REQ_CMP) { if (status != CAM_SEL_TIMEOUT) isp_prt(isp, ISP_LOGDEBUG0, "target %d lun %jx CAM status 0x%x SCSI status 0x%x", XS_TGT(sccb), (uintmax_t)XS_LUN(sccb), sccb->ccb_h.status, sccb->scsi_status); else if ((IS_FC(isp)) && (XS_TGT(sccb) < MAX_FC_TARG)) { fcparam *fcp; fcp = FCPARAM(isp, XS_CHANNEL(sccb)); fcp->portdb[XS_TGT(sccb)].is_target = 0; } if ((sccb->ccb_h.status & CAM_DEV_QFRZN) == 0) { sccb->ccb_h.status |= CAM_DEV_QFRZN; xpt_freeze_devq(sccb->ccb_h.path, 1); } } if ((CAM_DEBUGGED(sccb->ccb_h.path, ISPDDB)) && (sccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { xpt_print(sccb->ccb_h.path, "cam completion status 0x%x\n", sccb->ccb_h.status); } if (ISP_PCMD(sccb)) { if (callout_active(&PISP_PCMD(sccb)->wdog)) callout_stop(&PISP_PCMD(sccb)->wdog); isp_free_pcmd(isp, (union ccb *) sccb); } xpt_done((union ccb *) sccb); } void isp_async(ispsoftc_t *isp, ispasync_t cmd, ...) { int bus; static const char prom[] = "Chan %d [%d] WWPN 0x%16jx PortID 0x%06x handle 0x%x %s %s"; char buf[64]; char *msg = NULL; target_id_t tgt; fcportdb_t *lp; struct isp_fc *fc; struct cam_path *tmppath; struct ac_contract ac; struct ac_device_changed *adc; va_list ap; switch (cmd) { case ISPASYNC_NEW_TGT_PARAMS: { struct ccb_trans_settings_scsi *scsi; struct ccb_trans_settings_spi *spi; int flags, tgt; sdparam *sdp; struct ccb_trans_settings cts; memset(&cts, 0, sizeof (struct ccb_trans_settings)); va_start(ap, cmd); bus = va_arg(ap, int); tgt = va_arg(ap, int); va_end(ap); sdp = SDPARAM(isp, bus); if (xpt_create_path(&tmppath, NULL, cam_sim_path(ISP_SPI_PC(isp, bus)->sim), tgt, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { isp_prt(isp, ISP_LOGWARN, "isp_async cannot make temp path for %d.%d", tgt, bus); break; } flags = sdp->isp_devparam[tgt].actv_flags; cts.type = CTS_TYPE_CURRENT_SETTINGS; cts.protocol = PROTO_SCSI; cts.transport = XPORT_SPI; scsi = &cts.proto_specific.scsi; spi = &cts.xport_specific.spi; if (flags & DPARM_TQING) { scsi->valid |= CTS_SCSI_VALID_TQ; scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB; } if (flags & DPARM_DISC) { spi->valid |= CTS_SPI_VALID_DISC; spi->flags |= CTS_SPI_FLAGS_DISC_ENB; } spi->flags |= CTS_SPI_VALID_BUS_WIDTH; if (flags & DPARM_WIDE) { spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; } else { spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; } if (flags & DPARM_SYNC) { spi->valid |= CTS_SPI_VALID_SYNC_RATE; spi->valid |= CTS_SPI_VALID_SYNC_OFFSET; spi->sync_period = sdp->isp_devparam[tgt].actv_period; spi->sync_offset = sdp->isp_devparam[tgt].actv_offset; } isp_prt(isp, ISP_LOGDEBUG2, "NEW_TGT_PARAMS bus %d tgt %d period %x offset %x flags %x", bus, tgt, sdp->isp_devparam[tgt].actv_period, sdp->isp_devparam[tgt].actv_offset, flags); xpt_setup_ccb(&cts.ccb_h, tmppath, 1); xpt_async(AC_TRANSFER_NEG, tmppath, &cts); xpt_free_path(tmppath); break; } case ISPASYNC_BUS_RESET: { va_start(ap, cmd); bus = va_arg(ap, int); va_end(ap); isp_prt(isp, ISP_LOGINFO, "SCSI bus reset on bus %d detected", bus); if (IS_FC(isp)) { xpt_async(AC_BUS_RESET, ISP_FC_PC(isp, bus)->path, NULL); } else { xpt_async(AC_BUS_RESET, ISP_SPI_PC(isp, bus)->path, NULL); } break; } case ISPASYNC_LIP: if (msg == NULL) msg = "LIP Received"; /* FALLTHROUGH */ case ISPASYNC_LOOP_RESET: if (msg == NULL) msg = "LOOP Reset"; /* FALLTHROUGH */ case ISPASYNC_LOOP_DOWN: if (msg == NULL) msg = "LOOP Down"; va_start(ap, cmd); bus = va_arg(ap, int); va_end(ap); isp_fcp_reset_crn(isp, bus, /*tgt*/0, /*tgt_set*/ 0); isp_loop_changed(isp, bus); isp_prt(isp, ISP_LOGINFO, "Chan %d %s", bus, msg); break; case ISPASYNC_LOOP_UP: va_start(ap, cmd); bus = va_arg(ap, int); va_end(ap); isp_loop_changed(isp, bus); isp_prt(isp, ISP_LOGINFO, "Chan %d Loop UP", bus); break; case ISPASYNC_DEV_ARRIVED: va_start(ap, cmd); bus = va_arg(ap, int); lp = va_arg(ap, fcportdb_t *); va_end(ap); fc = ISP_FC_PC(isp, bus); tgt = FC_PORTDB_TGT(isp, bus, lp); isp_gen_role_str(buf, sizeof (buf), lp->prli_word3); isp_prt(isp, ISP_LOGCONFIG, prom, bus, tgt, lp->port_wwn, lp->portid, lp->handle, buf, "arrived"); if ((FCPARAM(isp, bus)->role & ISP_ROLE_INITIATOR) && (lp->prli_word3 & PRLI_WD3_TARGET_FUNCTION)) { lp->is_target = 1; isp_fcp_reset_crn(isp, bus, tgt, /*tgt_set*/ 1); isp_make_here(isp, lp, bus, tgt); } if ((FCPARAM(isp, bus)->role & ISP_ROLE_TARGET) && (lp->prli_word3 & PRLI_WD3_INITIATOR_FUNCTION)) { lp->is_initiator = 1; ac.contract_number = AC_CONTRACT_DEV_CHG; adc = (struct ac_device_changed *) ac.contract_data; adc->wwpn = lp->port_wwn; adc->port = lp->portid; adc->target = tgt; adc->arrived = 1; xpt_async(AC_CONTRACT, fc->path, &ac); } break; case ISPASYNC_DEV_CHANGED: va_start(ap, cmd); bus = va_arg(ap, int); lp = va_arg(ap, fcportdb_t *); va_end(ap); fc = ISP_FC_PC(isp, bus); tgt = FC_PORTDB_TGT(isp, bus, lp); isp_gen_role_str(buf, sizeof (buf), lp->new_prli_word3); isp_prt(isp, ISP_LOGCONFIG, prom, bus, tgt, lp->port_wwn, lp->new_portid, lp->handle, buf, "changed"); changed: if (lp->is_target != ((FCPARAM(isp, bus)->role & ISP_ROLE_INITIATOR) && (lp->new_prli_word3 & PRLI_WD3_TARGET_FUNCTION))) { lp->is_target = !lp->is_target; if (lp->is_target) { isp_fcp_reset_crn(isp, bus, tgt, /*tgt_set*/ 1); isp_make_here(isp, lp, bus, tgt); } else { isp_make_gone(isp, lp, bus, tgt); isp_fcp_reset_crn(isp, bus, tgt, /*tgt_set*/ 1); } } if (lp->is_initiator != ((FCPARAM(isp, bus)->role & ISP_ROLE_TARGET) && (lp->new_prli_word3 & PRLI_WD3_INITIATOR_FUNCTION))) { lp->is_initiator = !lp->is_initiator; ac.contract_number = AC_CONTRACT_DEV_CHG; adc = (struct ac_device_changed *) ac.contract_data; adc->wwpn = lp->port_wwn; adc->port = lp->portid; adc->target = tgt; adc->arrived = lp->is_initiator; xpt_async(AC_CONTRACT, fc->path, &ac); } break; case ISPASYNC_DEV_STAYED: va_start(ap, cmd); bus = va_arg(ap, int); lp = va_arg(ap, fcportdb_t *); va_end(ap); fc = ISP_FC_PC(isp, bus); tgt = FC_PORTDB_TGT(isp, bus, lp); isp_gen_role_str(buf, sizeof (buf), lp->prli_word3); isp_prt(isp, ISP_LOGCONFIG, prom, bus, tgt, lp->port_wwn, lp->portid, lp->handle, buf, "stayed"); goto changed; case ISPASYNC_DEV_GONE: va_start(ap, cmd); bus = va_arg(ap, int); lp = va_arg(ap, fcportdb_t *); va_end(ap); fc = ISP_FC_PC(isp, bus); tgt = FC_PORTDB_TGT(isp, bus, lp); /* * If this has a virtual target or initiator set the isp_gdt * timer running on it to delay its departure. */ isp_gen_role_str(buf, sizeof (buf), lp->prli_word3); if (lp->is_target || lp->is_initiator) { lp->state = FC_PORTDB_STATE_ZOMBIE; lp->gone_timer = fc->gone_device_time; isp_prt(isp, ISP_LOGCONFIG, prom, bus, tgt, lp->port_wwn, lp->portid, lp->handle, buf, "gone zombie"); if (fc->ready && !callout_active(&fc->gdt)) { isp_prt(isp, ISP_LOG_SANCFG|ISP_LOGDEBUG0, "Chan %d Starting Gone Device Timer with %u seconds time now %lu", bus, lp->gone_timer, (unsigned long)time_uptime); callout_reset(&fc->gdt, hz, isp_gdt, fc); } break; } isp_prt(isp, ISP_LOGCONFIG, prom, bus, tgt, lp->port_wwn, lp->portid, lp->handle, buf, "gone"); break; case ISPASYNC_CHANGE_NOTIFY: { char *msg; int evt, nphdl, nlstate, portid, reason; va_start(ap, cmd); bus = va_arg(ap, int); evt = va_arg(ap, int); if (evt == ISPASYNC_CHANGE_PDB) { nphdl = va_arg(ap, int); nlstate = va_arg(ap, int); reason = va_arg(ap, int); } else if (evt == ISPASYNC_CHANGE_SNS) { portid = va_arg(ap, int); } else { nphdl = NIL_HANDLE; nlstate = reason = 0; } va_end(ap); fc = ISP_FC_PC(isp, bus); if (evt == ISPASYNC_CHANGE_PDB) { msg = "Port Database Changed"; isp_prt(isp, ISP_LOGINFO, "Chan %d %s (nphdl 0x%x state 0x%x reason 0x%x)", bus, msg, nphdl, nlstate, reason); } else if (evt == ISPASYNC_CHANGE_SNS) { msg = "Name Server Database Changed"; isp_prt(isp, ISP_LOGINFO, "Chan %d %s (PortID 0x%06x)", bus, msg, portid); } else { msg = "Other Change Notify"; isp_prt(isp, ISP_LOGINFO, "Chan %d %s", bus, msg); } isp_loop_changed(isp, bus); break; } #ifdef ISP_TARGET_MODE case ISPASYNC_TARGET_NOTIFY: { isp_notify_t *notify; va_start(ap, cmd); notify = va_arg(ap, isp_notify_t *); va_end(ap); switch (notify->nt_ncode) { case NT_ABORT_TASK: case NT_ABORT_TASK_SET: case NT_CLEAR_ACA: case NT_CLEAR_TASK_SET: case NT_LUN_RESET: case NT_TARGET_RESET: case NT_QUERY_TASK_SET: case NT_QUERY_ASYNC_EVENT: /* * These are task management functions. */ isp_handle_platform_target_tmf(isp, notify); break; case NT_BUS_RESET: case NT_LIP_RESET: case NT_LINK_UP: case NT_LINK_DOWN: case NT_HBA_RESET: /* * No action need be taken here. */ break; case NT_GLOBAL_LOGOUT: case NT_LOGOUT: /* * This is device arrival/departure notification */ isp_handle_platform_target_notify_ack(isp, notify); break; default: isp_prt(isp, ISP_LOGALL, "target notify code 0x%x", notify->nt_ncode); isp_handle_platform_target_notify_ack(isp, notify); break; } break; } case ISPASYNC_TARGET_NOTIFY_ACK: { void *inot; va_start(ap, cmd); inot = va_arg(ap, void *); va_end(ap); if (isp_notify_ack(isp, inot)) { isp_tna_t *tp = malloc(sizeof (*tp), M_DEVBUF, M_NOWAIT); if (tp) { tp->isp = isp; if (inot) { memcpy(tp->data, inot, sizeof (tp->data)); tp->not = tp->data; } else { tp->not = NULL; } callout_init_mtx(&tp->timer, &isp->isp_lock, 0); callout_reset(&tp->timer, 5, isp_refire_notify_ack, tp); } else { isp_prt(isp, ISP_LOGERR, "you lose- cannot allocate a notify refire"); } } break; } case ISPASYNC_TARGET_ACTION: { isphdr_t *hp; va_start(ap, cmd); hp = va_arg(ap, isphdr_t *); va_end(ap); switch (hp->rqs_entry_type) { default: isp_prt(isp, ISP_LOGWARN, "%s: unhandled target action 0x%x", __func__, hp->rqs_entry_type); break; case RQSTYPE_NOTIFY: if (IS_24XX(isp)) { isp_handle_platform_notify_24xx(isp, (in_fcentry_24xx_t *) hp); } else { isp_handle_platform_notify_fc(isp, (in_fcentry_t *) hp); } break; case RQSTYPE_ATIO: isp_handle_platform_atio7(isp, (at7_entry_t *) hp); break; case RQSTYPE_ATIO2: isp_handle_platform_atio2(isp, (at2_entry_t *) hp); break; case RQSTYPE_CTIO7: case RQSTYPE_CTIO3: case RQSTYPE_CTIO2: case RQSTYPE_CTIO: isp_handle_platform_ctio(isp, hp); break; case RQSTYPE_ABTS_RCVD: { abts_t *abts = (abts_t *)hp; isp_notify_t notify, *nt = ¬ify; tstate_t *tptr; fcportdb_t *lp; uint16_t chan; uint32_t sid, did; did = (abts->abts_did_hi << 16) | abts->abts_did_lo; sid = (abts->abts_sid_hi << 16) | abts->abts_sid_lo; ISP_MEMZERO(nt, sizeof (isp_notify_t)); nt->nt_hba = isp; nt->nt_did = did; nt->nt_nphdl = abts->abts_nphdl; nt->nt_sid = sid; isp_find_chan_by_did(isp, did, &chan); if (chan == ISP_NOCHAN) { nt->nt_tgt = TGT_ANY; } else { nt->nt_tgt = FCPARAM(isp, chan)->isp_wwpn; if (isp_find_pdb_by_handle(isp, chan, abts->abts_nphdl, &lp)) { nt->nt_wwn = lp->port_wwn; } else { nt->nt_wwn = INI_ANY; } } /* * Try hard to find the lun for this command. */ tptr = get_lun_statep_from_tag(isp, chan, abts->abts_rxid_task); if (tptr) { nt->nt_lun = tptr->ts_lun; rls_lun_statep(isp, tptr); } else { nt->nt_lun = LUN_ANY; } nt->nt_need_ack = 1; nt->nt_tagval = abts->abts_rxid_task; nt->nt_tagval |= (((uint64_t) abts->abts_rxid_abts) << 32); if (abts->abts_rxid_task == ISP24XX_NO_TASK) { isp_prt(isp, ISP_LOGTINFO, "[0x%x] ABTS from N-Port handle 0x%x Port 0x%06x has no task id (rx_id 0x%04x ox_id 0x%04x)", abts->abts_rxid_abts, abts->abts_nphdl, sid, abts->abts_rx_id, abts->abts_ox_id); } else { isp_prt(isp, ISP_LOGTINFO, "[0x%x] ABTS from N-Port handle 0x%x Port 0x%06x for task 0x%x (rx_id 0x%04x ox_id 0x%04x)", abts->abts_rxid_abts, abts->abts_nphdl, sid, abts->abts_rxid_task, abts->abts_rx_id, abts->abts_ox_id); } nt->nt_channel = chan; nt->nt_ncode = NT_ABORT_TASK; nt->nt_lreserved = hp; isp_handle_platform_target_tmf(isp, nt); break; } } break; } #endif case ISPASYNC_FW_CRASH: { uint16_t mbox1, mbox6; mbox1 = ISP_READ(isp, OUTMAILBOX1); if (IS_DUALBUS(isp)) { mbox6 = ISP_READ(isp, OUTMAILBOX6); } else { mbox6 = 0; } isp_prt(isp, ISP_LOGERR, "Internal Firmware Error on bus %d @ RISC Address 0x%x", mbox6, mbox1); mbox1 = isp->isp_osinfo.mbox_sleep_ok; isp->isp_osinfo.mbox_sleep_ok = 0; isp_reinit(isp, 1); isp->isp_osinfo.mbox_sleep_ok = mbox1; isp_async(isp, ISPASYNC_FW_RESTARTED, NULL); break; } default: isp_prt(isp, ISP_LOGERR, "unknown isp_async event %d", cmd); break; } } /* * Locks are held before coming here. */ void isp_uninit(ispsoftc_t *isp) { if (IS_24XX(isp)) { ISP_WRITE(isp, BIU2400_HCCR, HCCR_2400_CMD_RESET); } else { ISP_WRITE(isp, HCCR, HCCR_CMD_RESET); } ISP_DISABLE_INTS(isp); } uint64_t isp_default_wwn(ispsoftc_t * isp, int chan, int isactive, int iswwnn) { uint64_t seed; struct isp_fc *fc = ISP_FC_PC(isp, chan); /* First try to use explicitly configured WWNs. */ seed = iswwnn ? fc->def_wwnn : fc->def_wwpn; if (seed) return (seed); /* Otherwise try to use WWNs from NVRAM. */ if (isactive) { seed = iswwnn ? FCPARAM(isp, chan)->isp_wwnn_nvram : FCPARAM(isp, chan)->isp_wwpn_nvram; if (seed) return (seed); } /* If still no WWNs, try to steal them from the first channel. */ if (chan > 0) { seed = iswwnn ? ISP_FC_PC(isp, 0)->def_wwnn : ISP_FC_PC(isp, 0)->def_wwpn; if (seed == 0) { seed = iswwnn ? FCPARAM(isp, 0)->isp_wwnn_nvram : FCPARAM(isp, 0)->isp_wwpn_nvram; } } /* If still nothing -- improvise. */ if (seed == 0) { seed = 0x400000007F000000ull + device_get_unit(isp->isp_dev); if (!iswwnn) seed ^= 0x0100000000000000ULL; } /* For additional channels we have to improvise even more. */ if (!iswwnn && chan > 0) { /* * We'll stick our channel number plus one first into bits * 57..59 and thence into bits 52..55 which allows for 8 bits * of channel which is enough for our maximum of 255 channels. */ seed ^= 0x0100000000000000ULL; seed ^= ((uint64_t) (chan + 1) & 0xf) << 56; seed ^= ((uint64_t) ((chan + 1) >> 4) & 0xf) << 52; } return (seed); } void isp_prt(ispsoftc_t *isp, int level, const char *fmt, ...) { int loc; char lbuf[200]; va_list ap; if (level != ISP_LOGALL && (level & isp->isp_dblev) == 0) { return; } snprintf(lbuf, sizeof (lbuf), "%s: ", device_get_nameunit(isp->isp_dev)); loc = strlen(lbuf); va_start(ap, fmt); vsnprintf(&lbuf[loc], sizeof (lbuf) - loc - 1, fmt, ap); va_end(ap); printf("%s\n", lbuf); } void isp_xs_prt(ispsoftc_t *isp, XS_T *xs, int level, const char *fmt, ...) { va_list ap; if (level != ISP_LOGALL && (level & isp->isp_dblev) == 0) { return; } xpt_print_path(xs->ccb_h.path); va_start(ap, fmt); vprintf(fmt, ap); va_end(ap); printf("\n"); } uint64_t isp_nanotime_sub(struct timespec *b, struct timespec *a) { uint64_t elapsed; struct timespec x = *b; timespecsub(&x, a); elapsed = GET_NANOSEC(&x); if (elapsed == 0) elapsed++; return (elapsed); } int isp_mbox_acquire(ispsoftc_t *isp) { if (isp->isp_osinfo.mboxbsy) { return (1); } else { isp->isp_osinfo.mboxcmd_done = 0; isp->isp_osinfo.mboxbsy = 1; return (0); } } void isp_mbox_wait_complete(ispsoftc_t *isp, mbreg_t *mbp) { unsigned int usecs = mbp->timeout; unsigned int max, olim, ilim; if (usecs == 0) { usecs = MBCMD_DEFAULT_TIMEOUT; } max = isp->isp_mbxwrk0 + 1; if (isp->isp_osinfo.mbox_sleep_ok) { unsigned int ms = (usecs + 999) / 1000; isp->isp_osinfo.mbox_sleep_ok = 0; isp->isp_osinfo.mbox_sleeping = 1; for (olim = 0; olim < max; olim++) { msleep(&isp->isp_mbxworkp, &isp->isp_osinfo.lock, PRIBIO, "ispmbx_sleep", isp_mstohz(ms)); if (isp->isp_osinfo.mboxcmd_done) { break; } } isp->isp_osinfo.mbox_sleep_ok = 1; isp->isp_osinfo.mbox_sleeping = 0; } else { for (olim = 0; olim < max; olim++) { for (ilim = 0; ilim < usecs; ilim += 100) { uint16_t isr, sema, info; if (isp->isp_osinfo.mboxcmd_done) { break; } if (ISP_READ_ISR(isp, &isr, &sema, &info)) { isp_intr(isp, isr, sema, info); if (isp->isp_osinfo.mboxcmd_done) { break; } } ISP_DELAY(100); } if (isp->isp_osinfo.mboxcmd_done) { break; } } } if (isp->isp_osinfo.mboxcmd_done == 0) { isp_prt(isp, ISP_LOGWARN, "%s Mailbox Command (0x%x) Timeout (%uus) (started @ %s:%d)", isp->isp_osinfo.mbox_sleep_ok? "Interrupting" : "Polled", isp->isp_lastmbxcmd, usecs, mbp->func, mbp->lineno); mbp->param[0] = MBOX_TIMEOUT; isp->isp_osinfo.mboxcmd_done = 1; } } void isp_mbox_notify_done(ispsoftc_t *isp) { if (isp->isp_osinfo.mbox_sleeping) { wakeup(&isp->isp_mbxworkp); } isp->isp_osinfo.mboxcmd_done = 1; } void isp_mbox_release(ispsoftc_t *isp) { isp->isp_osinfo.mboxbsy = 0; } int isp_fc_scratch_acquire(ispsoftc_t *isp, int chan) { int ret = 0; if (isp->isp_osinfo.pc.fc[chan].fcbsy) { ret = -1; } else { isp->isp_osinfo.pc.fc[chan].fcbsy = 1; } return (ret); } int isp_mstohz(int ms) { int hz; struct timeval t; t.tv_sec = ms / 1000; t.tv_usec = (ms % 1000) * 1000; hz = tvtohz(&t); if (hz < 0) { hz = 0x7fffffff; } if (hz == 0) { hz = 1; } return (hz); } void isp_platform_intr(void *arg) { ispsoftc_t *isp = arg; uint16_t isr, sema, info; ISP_LOCK(isp); isp->isp_intcnt++; if (ISP_READ_ISR(isp, &isr, &sema, &info)) isp_intr(isp, isr, sema, info); else isp->isp_intbogus++; ISP_UNLOCK(isp); } void isp_common_dmateardown(ispsoftc_t *isp, struct ccb_scsiio *csio, uint32_t hdl) { if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { bus_dmamap_sync(isp->isp_osinfo.dmat, PISP_PCMD(csio)->dmap, BUS_DMASYNC_POSTREAD); } else { bus_dmamap_sync(isp->isp_osinfo.dmat, PISP_PCMD(csio)->dmap, BUS_DMASYNC_POSTWRITE); } bus_dmamap_unload(isp->isp_osinfo.dmat, PISP_PCMD(csio)->dmap); } /* * Reset the command reference number for all LUNs on a specific target * (needed when a target arrives again) or for all targets on a port * (needed for events like a LIP). */ void isp_fcp_reset_crn(ispsoftc_t *isp, int chan, uint32_t tgt, int tgt_set) { struct isp_fc *fc = ISP_FC_PC(isp, chan); struct isp_nexus *nxp; int i; if (tgt_set == 0) isp_prt(isp, ISP_LOGDEBUG0, "Chan %d resetting CRN on all targets", chan); else isp_prt(isp, ISP_LOGDEBUG0, "Chan %d resetting CRN on target %u", chan, tgt); for (i = 0; i < NEXUS_HASH_WIDTH; i++) { for (nxp = fc->nexus_hash[i]; nxp != NULL; nxp = nxp->next) { if (tgt_set == 0 || tgt == nxp->tgt) nxp->crnseed = 0; } } } int isp_fcp_next_crn(ispsoftc_t *isp, uint8_t *crnp, XS_T *cmd) { lun_id_t lun; uint32_t chan, tgt; struct isp_fc *fc; struct isp_nexus *nxp; int idx; if (IS_2100(isp)) return (0); chan = XS_CHANNEL(cmd); tgt = XS_TGT(cmd); lun = XS_LUN(cmd); fc = &isp->isp_osinfo.pc.fc[chan]; idx = NEXUS_HASH(tgt, lun); nxp = fc->nexus_hash[idx]; while (nxp) { if (nxp->tgt == tgt && nxp->lun == lun) break; nxp = nxp->next; } if (nxp == NULL) { nxp = fc->nexus_free_list; if (nxp == NULL) { nxp = malloc(sizeof (struct isp_nexus), M_DEVBUF, M_ZERO|M_NOWAIT); if (nxp == NULL) { return (-1); } } else { fc->nexus_free_list = nxp->next; } nxp->tgt = tgt; nxp->lun = lun; nxp->next = fc->nexus_hash[idx]; fc->nexus_hash[idx] = nxp; } if (nxp->crnseed == 0) nxp->crnseed = 1; PISP_PCMD(cmd)->crn = nxp->crnseed; *crnp = nxp->crnseed++; return (0); } /* * We enter with the lock held */ void isp_timer(void *arg) { ispsoftc_t *isp = arg; #ifdef ISP_TARGET_MODE isp_tmcmd_restart(isp); #endif callout_reset(&isp->isp_osinfo.tmo, isp_timer_count, isp_timer, isp); } isp_ecmd_t * isp_get_ecmd(ispsoftc_t *isp) { isp_ecmd_t *ecmd = isp->isp_osinfo.ecmd_free; if (ecmd) { isp->isp_osinfo.ecmd_free = ecmd->next; } return (ecmd); } void isp_put_ecmd(ispsoftc_t *isp, isp_ecmd_t *ecmd) { ecmd->next = isp->isp_osinfo.ecmd_free; isp->isp_osinfo.ecmd_free = ecmd; }