Index: stable/10/sys/dev/nvme/nvme_ctrlr.c =================================================================== --- stable/10/sys/dev/nvme/nvme_ctrlr.c (revision 296190) +++ stable/10/sys/dev/nvme/nvme_ctrlr.c (revision 296191) @@ -1,1228 +1,1228 @@ /*- * Copyright (C) 2012-2016 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include "nvme_private.h" static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, struct nvme_async_event_request *aer); static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr); static int nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr) { ctrlr->resource_id = PCIR_BAR(0); ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY, &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE); if(ctrlr->resource == NULL) { nvme_printf(ctrlr, "unable to allocate pci resource\n"); return (ENOMEM); } ctrlr->bus_tag = rman_get_bustag(ctrlr->resource); ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource); ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle; /* * The NVMe spec allows for the MSI-X table to be placed behind * BAR 4/5, separate from the control/doorbell registers. Always * try to map this bar, because it must be mapped prior to calling * pci_alloc_msix(). If the table isn't behind BAR 4/5, * bus_alloc_resource() will just return NULL which is OK. */ ctrlr->bar4_resource_id = PCIR_BAR(4); ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY, &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE); return (0); } static void nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr) { struct nvme_qpair *qpair; uint32_t num_entries; qpair = &ctrlr->adminq; num_entries = NVME_ADMIN_ENTRIES; TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries); /* * If admin_entries was overridden to an invalid value, revert it * back to our default value. */ if (num_entries < NVME_MIN_ADMIN_ENTRIES || num_entries > NVME_MAX_ADMIN_ENTRIES) { nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d " "specified\n", num_entries); num_entries = NVME_ADMIN_ENTRIES; } /* * The admin queue's max xfer size is treated differently than the * max I/O xfer size. 16KB is sufficient here - maybe even less? */ nvme_qpair_construct(qpair, 0, /* qpair ID */ 0, /* vector */ num_entries, NVME_ADMIN_TRACKERS, ctrlr); } static int nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr) { struct nvme_qpair *qpair; union cap_lo_register cap_lo; int i, num_entries, num_trackers; num_entries = NVME_IO_ENTRIES; TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries); /* * NVMe spec sets a hard limit of 64K max entries, but * devices may specify a smaller limit, so we need to check * the MQES field in the capabilities register. */ cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo); num_entries = min(num_entries, cap_lo.bits.mqes+1); num_trackers = NVME_IO_TRACKERS; TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers); num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS); num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS); /* * No need to have more trackers than entries in the submit queue. * Note also that for a queue size of N, we can only have (N-1) * commands outstanding, hence the "-1" here. */ num_trackers = min(num_trackers, (num_entries-1)); /* * This was calculated previously when setting up interrupts, but * a controller could theoretically support fewer I/O queues than * MSI-X vectors. So calculate again here just to be safe. */ ctrlr->num_cpus_per_ioq = howmany(mp_ncpus, ctrlr->num_io_queues); ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair), M_NVME, M_ZERO | M_WAITOK); for (i = 0; i < ctrlr->num_io_queues; i++) { qpair = &ctrlr->ioq[i]; /* * Admin queue has ID=0. IO queues start at ID=1 - * hence the 'i+1' here. * * For I/O queues, use the controller-wide max_xfer_size * calculated in nvme_attach(). */ nvme_qpair_construct(qpair, i+1, /* qpair ID */ ctrlr->msix_enabled ? i+1 : 0, /* vector */ num_entries, num_trackers, ctrlr); /* * Do not bother binding interrupts if we only have one I/O * interrupt thread for this controller. */ if (ctrlr->num_io_queues > 1) bus_bind_intr(ctrlr->dev, qpair->res, i * ctrlr->num_cpus_per_ioq); } return (0); } static void nvme_ctrlr_fail(struct nvme_controller *ctrlr) { int i; ctrlr->is_failed = TRUE; nvme_qpair_fail(&ctrlr->adminq); for (i = 0; i < ctrlr->num_io_queues; i++) nvme_qpair_fail(&ctrlr->ioq[i]); nvme_notify_fail_consumers(ctrlr); } void nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr, struct nvme_request *req) { mtx_lock(&ctrlr->lock); STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq); mtx_unlock(&ctrlr->lock); taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task); } static void nvme_ctrlr_fail_req_task(void *arg, int pending) { struct nvme_controller *ctrlr = arg; struct nvme_request *req; mtx_lock(&ctrlr->lock); while (!STAILQ_EMPTY(&ctrlr->fail_req)) { req = STAILQ_FIRST(&ctrlr->fail_req); STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq); nvme_qpair_manual_complete_request(req->qpair, req, NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE); } mtx_unlock(&ctrlr->lock); } static int nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val) { int ms_waited; union cc_register cc; union csts_register csts; cc.raw = nvme_mmio_read_4(ctrlr, cc); csts.raw = nvme_mmio_read_4(ctrlr, csts); if (cc.bits.en != desired_val) { nvme_printf(ctrlr, "%s called with desired_val = %d " "but cc.en = %d\n", __func__, desired_val, cc.bits.en); return (ENXIO); } ms_waited = 0; while (csts.bits.rdy != desired_val) { DELAY(1000); if (ms_waited++ > ctrlr->ready_timeout_in_ms) { nvme_printf(ctrlr, "controller ready did not become %d " "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms); return (ENXIO); } csts.raw = nvme_mmio_read_4(ctrlr, csts); } return (0); } static void nvme_ctrlr_disable(struct nvme_controller *ctrlr) { union cc_register cc; union csts_register csts; cc.raw = nvme_mmio_read_4(ctrlr, cc); csts.raw = nvme_mmio_read_4(ctrlr, csts); if (cc.bits.en == 1 && csts.bits.rdy == 0) nvme_ctrlr_wait_for_ready(ctrlr, 1); cc.bits.en = 0; nvme_mmio_write_4(ctrlr, cc, cc.raw); DELAY(5000); nvme_ctrlr_wait_for_ready(ctrlr, 0); } static int nvme_ctrlr_enable(struct nvme_controller *ctrlr) { union cc_register cc; union csts_register csts; union aqa_register aqa; cc.raw = nvme_mmio_read_4(ctrlr, cc); csts.raw = nvme_mmio_read_4(ctrlr, csts); if (cc.bits.en == 1) { if (csts.bits.rdy == 1) return (0); else return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); } nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr); DELAY(5000); nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr); DELAY(5000); aqa.raw = 0; /* acqs and asqs are 0-based. */ aqa.bits.acqs = ctrlr->adminq.num_entries-1; aqa.bits.asqs = ctrlr->adminq.num_entries-1; nvme_mmio_write_4(ctrlr, aqa, aqa.raw); DELAY(5000); cc.bits.en = 1; cc.bits.css = 0; cc.bits.ams = 0; cc.bits.shn = 0; cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */ cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */ /* This evaluates to 0, which is according to spec. */ cc.bits.mps = (PAGE_SIZE >> 13); nvme_mmio_write_4(ctrlr, cc, cc.raw); DELAY(5000); return (nvme_ctrlr_wait_for_ready(ctrlr, 1)); } int nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr) { int i; nvme_admin_qpair_disable(&ctrlr->adminq); /* * I/O queues are not allocated before the initial HW * reset, so do not try to disable them. Use is_initialized * to determine if this is the initial HW reset. */ if (ctrlr->is_initialized) { for (i = 0; i < ctrlr->num_io_queues; i++) nvme_io_qpair_disable(&ctrlr->ioq[i]); } DELAY(100*1000); nvme_ctrlr_disable(ctrlr); return (nvme_ctrlr_enable(ctrlr)); } void nvme_ctrlr_reset(struct nvme_controller *ctrlr) { int cmpset; cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1); if (cmpset == 0 || ctrlr->is_failed) /* * Controller is already resetting or has failed. Return * immediately since there is no need to kick off another * reset in these cases. */ return; taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task); } static int nvme_ctrlr_identify(struct nvme_controller *ctrlr) { struct nvme_completion_poll_status status; status.done = FALSE; nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata, nvme_completion_poll_cb, &status); while (status.done == FALSE) pause("nvme", 1); if (nvme_completion_is_error(&status.cpl)) { nvme_printf(ctrlr, "nvme_identify_controller failed!\n"); return (ENXIO); } /* * Use MDTS to ensure our default max_xfer_size doesn't exceed what the * controller supports. */ if (ctrlr->cdata.mdts > 0) ctrlr->max_xfer_size = min(ctrlr->max_xfer_size, ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts))); return (0); } static int nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr) { struct nvme_completion_poll_status status; int cq_allocated, sq_allocated; status.done = FALSE; nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues, nvme_completion_poll_cb, &status); while (status.done == FALSE) pause("nvme", 1); if (nvme_completion_is_error(&status.cpl)) { nvme_printf(ctrlr, "nvme_set_num_queues failed!\n"); return (ENXIO); } /* * Data in cdw0 is 0-based. * Lower 16-bits indicate number of submission queues allocated. * Upper 16-bits indicate number of completion queues allocated. */ sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1; cq_allocated = (status.cpl.cdw0 >> 16) + 1; /* * Controller may allocate more queues than we requested, * so use the minimum of the number requested and what was * actually allocated. */ ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated); ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated); return (0); } static int nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr) { struct nvme_completion_poll_status status; struct nvme_qpair *qpair; int i; for (i = 0; i < ctrlr->num_io_queues; i++) { qpair = &ctrlr->ioq[i]; status.done = FALSE; nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector, nvme_completion_poll_cb, &status); while (status.done == FALSE) pause("nvme", 1); if (nvme_completion_is_error(&status.cpl)) { nvme_printf(ctrlr, "nvme_create_io_cq failed!\n"); return (ENXIO); } status.done = FALSE; nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status); while (status.done == FALSE) pause("nvme", 1); if (nvme_completion_is_error(&status.cpl)) { nvme_printf(ctrlr, "nvme_create_io_sq failed!\n"); return (ENXIO); } } return (0); } static int nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr) { struct nvme_namespace *ns; int i, status; for (i = 0; i < ctrlr->cdata.nn; i++) { ns = &ctrlr->ns[i]; status = nvme_ns_construct(ns, i+1, ctrlr); if (status != 0) return (status); } return (0); } static boolean_t is_log_page_id_valid(uint8_t page_id) { switch (page_id) { case NVME_LOG_ERROR: case NVME_LOG_HEALTH_INFORMATION: case NVME_LOG_FIRMWARE_SLOT: return (TRUE); } return (FALSE); } static uint32_t nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id) { uint32_t log_page_size; switch (page_id) { case NVME_LOG_ERROR: log_page_size = min( sizeof(struct nvme_error_information_entry) * ctrlr->cdata.elpe, NVME_MAX_AER_LOG_SIZE); break; case NVME_LOG_HEALTH_INFORMATION: log_page_size = sizeof(struct nvme_health_information_page); break; case NVME_LOG_FIRMWARE_SLOT: log_page_size = sizeof(struct nvme_firmware_page); break; default: log_page_size = 0; break; } return (log_page_size); } static void nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr, union nvme_critical_warning_state state) { if (state.bits.available_spare == 1) nvme_printf(ctrlr, "available spare space below threshold\n"); if (state.bits.temperature == 1) nvme_printf(ctrlr, "temperature above threshold\n"); if (state.bits.device_reliability == 1) nvme_printf(ctrlr, "device reliability degraded\n"); if (state.bits.read_only == 1) nvme_printf(ctrlr, "media placed in read only mode\n"); if (state.bits.volatile_memory_backup == 1) nvme_printf(ctrlr, "volatile memory backup device failed\n"); if (state.bits.reserved != 0) nvme_printf(ctrlr, "unknown critical warning(s): state = 0x%02x\n", state.raw); } static void nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl) { struct nvme_async_event_request *aer = arg; struct nvme_health_information_page *health_info; /* * If the log page fetch for some reason completed with an error, * don't pass log page data to the consumers. In practice, this case * should never happen. */ if (nvme_completion_is_error(cpl)) nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, aer->log_page_id, NULL, 0); else { if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) { health_info = (struct nvme_health_information_page *) aer->log_page_buffer; nvme_ctrlr_log_critical_warnings(aer->ctrlr, health_info->critical_warning); /* * Critical warnings reported through the * SMART/health log page are persistent, so * clear the associated bits in the async event * config so that we do not receive repeated * notifications for the same event. */ aer->ctrlr->async_event_config.raw &= ~health_info->critical_warning.raw; nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr, aer->ctrlr->async_event_config, NULL, NULL); } /* * Pass the cpl data from the original async event completion, * not the log page fetch. */ nvme_notify_async_consumers(aer->ctrlr, &aer->cpl, aer->log_page_id, aer->log_page_buffer, aer->log_page_size); } /* * Repost another asynchronous event request to replace the one * that just completed. */ nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); } static void nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl) { struct nvme_async_event_request *aer = arg; if (nvme_completion_is_error(cpl)) { /* * Do not retry failed async event requests. This avoids * infinite loops where a new async event request is submitted * to replace the one just failed, only to fail again and * perpetuate the loop. */ return; } /* Associated log page is in bits 23:16 of completion entry dw0. */ aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16; nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n", aer->log_page_id); if (is_log_page_id_valid(aer->log_page_id)) { aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr, aer->log_page_id); memcpy(&aer->cpl, cpl, sizeof(*cpl)); nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id, NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer, aer->log_page_size, nvme_ctrlr_async_event_log_page_cb, aer); /* Wait to notify consumers until after log page is fetched. */ } else { nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id, NULL, 0); /* * Repost another asynchronous event request to replace the one * that just completed. */ nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer); } } static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr, struct nvme_async_event_request *aer) { struct nvme_request *req; aer->ctrlr = ctrlr; req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer); aer->req = req; /* * Disable timeout here, since asynchronous event requests should by * nature never be timed out. */ req->timeout = FALSE; req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST; nvme_ctrlr_submit_admin_request(ctrlr, req); } static void nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr) { struct nvme_completion_poll_status status; struct nvme_async_event_request *aer; uint32_t i; ctrlr->async_event_config.raw = 0xFF; ctrlr->async_event_config.bits.reserved = 0; status.done = FALSE; nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD, 0, NULL, 0, nvme_completion_poll_cb, &status); while (status.done == FALSE) pause("nvme", 1); if (nvme_completion_is_error(&status.cpl) || (status.cpl.cdw0 & 0xFFFF) == 0xFFFF || (status.cpl.cdw0 & 0xFFFF) == 0x0000) { nvme_printf(ctrlr, "temperature threshold not supported\n"); ctrlr->async_event_config.bits.temperature = 0; } nvme_ctrlr_cmd_set_async_event_config(ctrlr, ctrlr->async_event_config, NULL, NULL); /* aerl is a zero-based value, so we need to add 1 here. */ ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1)); for (i = 0; i < ctrlr->num_aers; i++) { aer = &ctrlr->aer[i]; nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); } } static void nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr) { ctrlr->int_coal_time = 0; TUNABLE_INT_FETCH("hw.nvme.int_coal_time", &ctrlr->int_coal_time); ctrlr->int_coal_threshold = 0; TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold", &ctrlr->int_coal_threshold); nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time, ctrlr->int_coal_threshold, NULL, NULL); } static void nvme_ctrlr_start(void *ctrlr_arg) { struct nvme_controller *ctrlr = ctrlr_arg; uint32_t old_num_io_queues; int i; /* * Only reset adminq here when we are restarting the * controller after a reset. During initialization, * we have already submitted admin commands to get * the number of I/O queues supported, so cannot reset * the adminq again here. */ if (ctrlr->is_resetting) { nvme_qpair_reset(&ctrlr->adminq); } for (i = 0; i < ctrlr->num_io_queues; i++) nvme_qpair_reset(&ctrlr->ioq[i]); nvme_admin_qpair_enable(&ctrlr->adminq); if (nvme_ctrlr_identify(ctrlr) != 0) { nvme_ctrlr_fail(ctrlr); return; } /* * The number of qpairs are determined during controller initialization, * including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the * HW limit. We call SET_FEATURES again here so that it gets called * after any reset for controllers that depend on the driver to * explicit specify how many queues it will use. This value should * never change between resets, so panic if somehow that does happen. */ if (ctrlr->is_resetting) { old_num_io_queues = ctrlr->num_io_queues; if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) { nvme_ctrlr_fail(ctrlr); return; } if (old_num_io_queues != ctrlr->num_io_queues) { panic("num_io_queues changed from %u to %u", old_num_io_queues, ctrlr->num_io_queues); } } if (nvme_ctrlr_create_qpairs(ctrlr) != 0) { nvme_ctrlr_fail(ctrlr); return; } if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) { nvme_ctrlr_fail(ctrlr); return; } nvme_ctrlr_configure_aer(ctrlr); nvme_ctrlr_configure_int_coalescing(ctrlr); for (i = 0; i < ctrlr->num_io_queues; i++) nvme_io_qpair_enable(&ctrlr->ioq[i]); } void nvme_ctrlr_start_config_hook(void *arg) { struct nvme_controller *ctrlr = arg; nvme_qpair_reset(&ctrlr->adminq); nvme_admin_qpair_enable(&ctrlr->adminq); if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 && nvme_ctrlr_construct_io_qpairs(ctrlr) == 0) nvme_ctrlr_start(ctrlr); else nvme_ctrlr_fail(ctrlr); nvme_sysctl_initialize_ctrlr(ctrlr); config_intrhook_disestablish(&ctrlr->config_hook); ctrlr->is_initialized = 1; nvme_notify_new_controller(ctrlr); } static void nvme_ctrlr_reset_task(void *arg, int pending) { struct nvme_controller *ctrlr = arg; int status; nvme_printf(ctrlr, "resetting controller\n"); status = nvme_ctrlr_hw_reset(ctrlr); /* * Use pause instead of DELAY, so that we yield to any nvme interrupt * handlers on this CPU that were blocked on a qpair lock. We want * all nvme interrupts completed before proceeding with restarting the * controller. * * XXX - any way to guarantee the interrupt handlers have quiesced? */ pause("nvmereset", hz / 10); if (status == 0) nvme_ctrlr_start(ctrlr); else nvme_ctrlr_fail(ctrlr); atomic_cmpset_32(&ctrlr->is_resetting, 1, 0); } static void nvme_ctrlr_intx_handler(void *arg) { struct nvme_controller *ctrlr = arg; nvme_mmio_write_4(ctrlr, intms, 1); nvme_qpair_process_completions(&ctrlr->adminq); - if (ctrlr->ioq[0].cpl) + if (ctrlr->ioq && ctrlr->ioq[0].cpl) nvme_qpair_process_completions(&ctrlr->ioq[0]); nvme_mmio_write_4(ctrlr, intmc, 1); } static int nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr) { ctrlr->msix_enabled = 0; ctrlr->num_io_queues = 1; ctrlr->num_cpus_per_ioq = mp_ncpus; ctrlr->rid = 0; ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ, &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE); if (ctrlr->res == NULL) { nvme_printf(ctrlr, "unable to allocate shared IRQ\n"); return (ENOMEM); } bus_setup_intr(ctrlr->dev, ctrlr->res, INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler, ctrlr, &ctrlr->tag); if (ctrlr->tag == NULL) { nvme_printf(ctrlr, "unable to setup intx handler\n"); return (ENOMEM); } return (0); } static void nvme_pt_done(void *arg, const struct nvme_completion *cpl) { struct nvme_pt_command *pt = arg; bzero(&pt->cpl, sizeof(pt->cpl)); pt->cpl.cdw0 = cpl->cdw0; pt->cpl.status = cpl->status; pt->cpl.status.p = 0; mtx_lock(pt->driver_lock); wakeup(pt); mtx_unlock(pt->driver_lock); } int nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr, struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer, int is_admin_cmd) { struct nvme_request *req; struct mtx *mtx; struct buf *buf = NULL; int ret = 0; if (pt->len > 0) { if (pt->len > ctrlr->max_xfer_size) { nvme_printf(ctrlr, "pt->len (%d) " "exceeds max_xfer_size (%d)\n", pt->len, ctrlr->max_xfer_size); return EIO; } if (is_user_buffer) { /* * Ensure the user buffer is wired for the duration of * this passthrough command. */ PHOLD(curproc); buf = getpbuf(NULL); buf->b_saveaddr = buf->b_data; buf->b_data = pt->buf; buf->b_bufsize = pt->len; buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE; #ifdef NVME_UNMAPPED_BIO_SUPPORT if (vmapbuf(buf, 1) < 0) { #else if (vmapbuf(buf) < 0) { #endif ret = EFAULT; goto err; } req = nvme_allocate_request_vaddr(buf->b_data, pt->len, nvme_pt_done, pt); } else req = nvme_allocate_request_vaddr(pt->buf, pt->len, nvme_pt_done, pt); } else req = nvme_allocate_request_null(nvme_pt_done, pt); req->cmd.opc = pt->cmd.opc; req->cmd.cdw10 = pt->cmd.cdw10; req->cmd.cdw11 = pt->cmd.cdw11; req->cmd.cdw12 = pt->cmd.cdw12; req->cmd.cdw13 = pt->cmd.cdw13; req->cmd.cdw14 = pt->cmd.cdw14; req->cmd.cdw15 = pt->cmd.cdw15; req->cmd.nsid = nsid; if (is_admin_cmd) mtx = &ctrlr->lock; else mtx = &ctrlr->ns[nsid-1].lock; mtx_lock(mtx); pt->driver_lock = mtx; if (is_admin_cmd) nvme_ctrlr_submit_admin_request(ctrlr, req); else nvme_ctrlr_submit_io_request(ctrlr, req); mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0); mtx_unlock(mtx); pt->driver_lock = NULL; err: if (buf != NULL) { relpbuf(buf, NULL); PRELE(curproc); } return (ret); } static int nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag, struct thread *td) { struct nvme_controller *ctrlr; struct nvme_pt_command *pt; ctrlr = cdev->si_drv1; switch (cmd) { case NVME_RESET_CONTROLLER: nvme_ctrlr_reset(ctrlr); break; case NVME_PASSTHROUGH_CMD: pt = (struct nvme_pt_command *)arg; return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid, 1 /* is_user_buffer */, 1 /* is_admin_cmd */)); default: return (ENOTTY); } return (0); } static struct cdevsw nvme_ctrlr_cdevsw = { .d_version = D_VERSION, .d_flags = 0, .d_ioctl = nvme_ctrlr_ioctl }; static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr) { device_t dev; int per_cpu_io_queues; int min_cpus_per_ioq; int num_vectors_requested, num_vectors_allocated; int num_vectors_available; dev = ctrlr->dev; min_cpus_per_ioq = 1; TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq); if (min_cpus_per_ioq < 1) { min_cpus_per_ioq = 1; } else if (min_cpus_per_ioq > mp_ncpus) { min_cpus_per_ioq = mp_ncpus; } per_cpu_io_queues = 1; TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues); if (per_cpu_io_queues == 0) { min_cpus_per_ioq = mp_ncpus; } ctrlr->force_intx = 0; TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx); /* * FreeBSD currently cannot allocate more than about 190 vectors at * boot, meaning that systems with high core count and many devices * requesting per-CPU interrupt vectors will not get their full * allotment. So first, try to allocate as many as we may need to * understand what is available, then immediately release them. * Then figure out how many of those we will actually use, based on * assigning an equal number of cores to each I/O queue. */ /* One vector for per core I/O queue, plus one vector for admin queue. */ num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1); if (pci_alloc_msix(dev, &num_vectors_available) != 0) { num_vectors_available = 0; } pci_release_msi(dev); if (ctrlr->force_intx || num_vectors_available < 2) { nvme_ctrlr_configure_intx(ctrlr); return; } /* * Do not use all vectors for I/O queues - one must be saved for the * admin queue. */ ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq, howmany(mp_ncpus, num_vectors_available - 1)); ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq); num_vectors_requested = ctrlr->num_io_queues + 1; num_vectors_allocated = num_vectors_requested; /* * Now just allocate the number of vectors we need. This should * succeed, since we previously called pci_alloc_msix() * successfully returning at least this many vectors, but just to * be safe, if something goes wrong just revert to INTx. */ if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) { nvme_ctrlr_configure_intx(ctrlr); return; } if (num_vectors_allocated < num_vectors_requested) { pci_release_msi(dev); nvme_ctrlr_configure_intx(ctrlr); return; } ctrlr->msix_enabled = 1; } int nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev) { union cap_lo_register cap_lo; union cap_hi_register cap_hi; int status, timeout_period; ctrlr->dev = dev; mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF); status = nvme_ctrlr_allocate_bar(ctrlr); if (status != 0) return (status); /* * Software emulators may set the doorbell stride to something * other than zero, but this driver is not set up to handle that. */ cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi); if (cap_hi.bits.dstrd != 0) return (ENXIO); ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin); /* Get ready timeout value from controller, in units of 500ms. */ cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo); ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500; timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD; TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period); timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD); timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD); ctrlr->timeout_period = timeout_period; nvme_retry_count = NVME_DEFAULT_RETRY_COUNT; TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count); ctrlr->enable_aborts = 0; TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts); nvme_ctrlr_setup_interrupts(ctrlr); ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE; nvme_ctrlr_construct_admin_qpair(ctrlr); ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev), UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev)); if (ctrlr->cdev == NULL) return (ENXIO); ctrlr->cdev->si_drv1 = (void *)ctrlr; ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK, taskqueue_thread_enqueue, &ctrlr->taskqueue); taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq"); ctrlr->is_resetting = 0; ctrlr->is_initialized = 0; ctrlr->notification_sent = 0; TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr); TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr); STAILQ_INIT(&ctrlr->fail_req); ctrlr->is_failed = FALSE; return (0); } void nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev) { int i; /* * Notify the controller of a shutdown, even though this is due to * a driver unload, not a system shutdown (this path is not invoked * during shutdown). This ensures the controller receives a * shutdown notification in case the system is shutdown before * reloading the driver. */ nvme_ctrlr_shutdown(ctrlr); nvme_ctrlr_disable(ctrlr); taskqueue_free(ctrlr->taskqueue); for (i = 0; i < NVME_MAX_NAMESPACES; i++) nvme_ns_destruct(&ctrlr->ns[i]); if (ctrlr->cdev) destroy_dev(ctrlr->cdev); for (i = 0; i < ctrlr->num_io_queues; i++) { nvme_io_qpair_destroy(&ctrlr->ioq[i]); } free(ctrlr->ioq, M_NVME); nvme_admin_qpair_destroy(&ctrlr->adminq); if (ctrlr->resource != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, ctrlr->resource_id, ctrlr->resource); } if (ctrlr->bar4_resource != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, ctrlr->bar4_resource_id, ctrlr->bar4_resource); } if (ctrlr->tag) bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag); if (ctrlr->res) bus_release_resource(ctrlr->dev, SYS_RES_IRQ, rman_get_rid(ctrlr->res), ctrlr->res); if (ctrlr->msix_enabled) pci_release_msi(dev); } void nvme_ctrlr_shutdown(struct nvme_controller *ctrlr) { union cc_register cc; union csts_register csts; int ticks = 0; cc.raw = nvme_mmio_read_4(ctrlr, cc); cc.bits.shn = NVME_SHN_NORMAL; nvme_mmio_write_4(ctrlr, cc, cc.raw); csts.raw = nvme_mmio_read_4(ctrlr, csts); while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) { pause("nvme shn", 1); csts.raw = nvme_mmio_read_4(ctrlr, csts); } if (csts.bits.shst != NVME_SHST_COMPLETE) nvme_printf(ctrlr, "did not complete shutdown within 5 seconds " "of notification\n"); } void nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr, struct nvme_request *req) { nvme_qpair_submit_request(&ctrlr->adminq, req); } void nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr, struct nvme_request *req) { struct nvme_qpair *qpair; qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq]; nvme_qpair_submit_request(qpair, req); } device_t nvme_ctrlr_get_device(struct nvme_controller *ctrlr) { return (ctrlr->dev); } const struct nvme_controller_data * nvme_ctrlr_get_data(struct nvme_controller *ctrlr) { return (&ctrlr->cdata); } Index: stable/10 =================================================================== --- stable/10 (revision 296190) +++ stable/10 (revision 296191) Property changes on: stable/10 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r295944