Index: head/sys/dev/hyperv/netvsc/hv_net_vsc.h =================================================================== --- head/sys/dev/hyperv/netvsc/hv_net_vsc.h (revision 296186) +++ head/sys/dev/hyperv/netvsc/hv_net_vsc.h (revision 296187) @@ -1,1106 +1,1107 @@ /*- * Copyright (c) 2009-2012 Microsoft Corp. * Copyright (c) 2010-2012 Citrix Inc. * Copyright (c) 2012 NetApp Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /* * HyperV vmbus (virtual machine bus) network VSC (virtual services client) * header file * * (Updated from unencumbered NvspProtocol.h) */ #ifndef __HV_NET_VSC_H__ #define __HV_NET_VSC_H__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define HN_USE_TXDESC_BUFRING MALLOC_DECLARE(M_NETVSC); #define NVSP_INVALID_PROTOCOL_VERSION (0xFFFFFFFF) #define NVSP_PROTOCOL_VERSION_1 2 #define NVSP_PROTOCOL_VERSION_2 0x30002 #define NVSP_PROTOCOL_VERSION_4 0x40000 #define NVSP_PROTOCOL_VERSION_5 0x50000 #define NVSP_MIN_PROTOCOL_VERSION (NVSP_PROTOCOL_VERSION_1) #define NVSP_MAX_PROTOCOL_VERSION (NVSP_PROTOCOL_VERSION_2) #define NVSP_PROTOCOL_VERSION_CURRENT NVSP_PROTOCOL_VERSION_2 #define VERSION_4_OFFLOAD_SIZE 22 #define NVSP_OPERATIONAL_STATUS_OK (0x00000000) #define NVSP_OPERATIONAL_STATUS_DEGRADED (0x00000001) #define NVSP_OPERATIONAL_STATUS_NONRECOVERABLE (0x00000002) #define NVSP_OPERATIONAL_STATUS_NO_CONTACT (0x00000003) #define NVSP_OPERATIONAL_STATUS_LOST_COMMUNICATION (0x00000004) /* * Maximun number of transfer pages (packets) the VSP will use on a receive */ #define NVSP_MAX_PACKETS_PER_RECEIVE 375 typedef enum nvsp_msg_type_ { nvsp_msg_type_none = 0, /* * Init Messages */ nvsp_msg_type_init = 1, nvsp_msg_type_init_complete = 2, nvsp_version_msg_start = 100, /* * Version 1 Messages */ nvsp_msg_1_type_send_ndis_vers = nvsp_version_msg_start, nvsp_msg_1_type_send_rx_buf, nvsp_msg_1_type_send_rx_buf_complete, nvsp_msg_1_type_revoke_rx_buf, nvsp_msg_1_type_send_send_buf, nvsp_msg_1_type_send_send_buf_complete, nvsp_msg_1_type_revoke_send_buf, nvsp_msg_1_type_send_rndis_pkt, nvsp_msg_1_type_send_rndis_pkt_complete, /* * Version 2 Messages */ nvsp_msg_2_type_send_chimney_delegated_buf, nvsp_msg_2_type_send_chimney_delegated_buf_complete, nvsp_msg_2_type_revoke_chimney_delegated_buf, nvsp_msg_2_type_resume_chimney_rx_indication, nvsp_msg_2_type_terminate_chimney, nvsp_msg_2_type_terminate_chimney_complete, nvsp_msg_2_type_indicate_chimney_event, nvsp_msg_2_type_send_chimney_packet, nvsp_msg_2_type_send_chimney_packet_complete, nvsp_msg_2_type_post_chimney_rx_request, nvsp_msg_2_type_post_chimney_rx_request_complete, nvsp_msg_2_type_alloc_rx_buf, nvsp_msg_2_type_alloc_rx_buf_complete, nvsp_msg_2_type_free_rx_buf, nvsp_msg_2_send_vmq_rndis_pkt, nvsp_msg_2_send_vmq_rndis_pkt_complete, nvsp_msg_2_type_send_ndis_config, nvsp_msg_2_type_alloc_chimney_handle, nvsp_msg_2_type_alloc_chimney_handle_complete, } nvsp_msg_type; typedef enum nvsp_status_ { nvsp_status_none = 0, nvsp_status_success, nvsp_status_failure, /* Deprecated */ nvsp_status_prot_vers_range_too_new, /* Deprecated */ nvsp_status_prot_vers_range_too_old, nvsp_status_invalid_rndis_pkt, nvsp_status_busy, nvsp_status_max, } nvsp_status; typedef struct nvsp_msg_hdr_ { uint32_t msg_type; } __packed nvsp_msg_hdr; /* * Init Messages */ /* * This message is used by the VSC to initialize the channel * after the channels has been opened. This message should * never include anything other then versioning (i.e. this * message will be the same for ever). * * Forever is a long time. The values have been redefined * in Win7 to indicate major and minor protocol version * number. */ typedef struct nvsp_msg_init_ { union { struct { uint16_t minor_protocol_version; uint16_t major_protocol_version; } s; /* Formerly min_protocol_version */ uint32_t protocol_version; } p1; /* Formerly max_protocol_version */ uint32_t protocol_version_2; } __packed nvsp_msg_init; /* * This message is used by the VSP to complete the initialization * of the channel. This message should never include anything other * then versioning (i.e. this message will be the same forever). */ typedef struct nvsp_msg_init_complete_ { /* Deprecated */ uint32_t negotiated_prot_vers; uint32_t max_mdl_chain_len; uint32_t status; } __packed nvsp_msg_init_complete; typedef union nvsp_msg_init_uber_ { nvsp_msg_init init; nvsp_msg_init_complete init_compl; } __packed nvsp_msg_init_uber; /* * Version 1 Messages */ /* * This message is used by the VSC to send the NDIS version * to the VSP. The VSP can use this information when handling * OIDs sent by the VSC. */ typedef struct nvsp_1_msg_send_ndis_version_ { uint32_t ndis_major_vers; /* Deprecated */ uint32_t ndis_minor_vers; } __packed nvsp_1_msg_send_ndis_version; /* * This message is used by the VSC to send a receive buffer * to the VSP. The VSP can then use the receive buffer to * send data to the VSC. */ typedef struct nvsp_1_msg_send_rx_buf_ { uint32_t gpadl_handle; uint16_t id; } __packed nvsp_1_msg_send_rx_buf; typedef struct nvsp_1_rx_buf_section_ { uint32_t offset; uint32_t sub_allocation_size; uint32_t num_sub_allocations; uint32_t end_offset; } __packed nvsp_1_rx_buf_section; /* * This message is used by the VSP to acknowledge a receive * buffer send by the VSC. This message must be sent by the * VSP before the VSP uses the receive buffer. */ typedef struct nvsp_1_msg_send_rx_buf_complete_ { uint32_t status; uint32_t num_sections; /* * The receive buffer is split into two parts, a large * suballocation section and a small suballocation * section. These sections are then suballocated by a * certain size. * * For example, the following break up of the receive * buffer has 6 large suballocations and 10 small * suballocations. * * | Large Section | | Small Section | * ------------------------------------------------------------ * | | | | | | | | | | | | | | | | | | * | | * LargeOffset SmallOffset */ nvsp_1_rx_buf_section sections[1]; } __packed nvsp_1_msg_send_rx_buf_complete; /* * This message is sent by the VSC to revoke the receive buffer. * After the VSP completes this transaction, the VSP should never * use the receive buffer again. */ typedef struct nvsp_1_msg_revoke_rx_buf_ { uint16_t id; } __packed nvsp_1_msg_revoke_rx_buf; /* * This message is used by the VSC to send a send buffer * to the VSP. The VSC can then use the send buffer to * send data to the VSP. */ typedef struct nvsp_1_msg_send_send_buf_ { uint32_t gpadl_handle; uint16_t id; } __packed nvsp_1_msg_send_send_buf; /* * This message is used by the VSP to acknowledge a send * buffer sent by the VSC. This message must be sent by the * VSP before the VSP uses the sent buffer. */ typedef struct nvsp_1_msg_send_send_buf_complete_ { uint32_t status; /* * The VSC gets to choose the size of the send buffer and * the VSP gets to choose the sections size of the buffer. * This was done to enable dynamic reconfigurations when * the cost of GPA-direct buffers decreases. */ uint32_t section_size; } __packed nvsp_1_msg_send_send_buf_complete; /* * This message is sent by the VSC to revoke the send buffer. * After the VSP completes this transaction, the vsp should never * use the send buffer again. */ typedef struct nvsp_1_msg_revoke_send_buf_ { uint16_t id; } __packed nvsp_1_msg_revoke_send_buf; /* * This message is used by both the VSP and the VSC to send * an RNDIS message to the opposite channel endpoint. */ typedef struct nvsp_1_msg_send_rndis_pkt_ { /* * This field is specified by RNIDS. They assume there's * two different channels of communication. However, * the Network VSP only has one. Therefore, the channel * travels with the RNDIS packet. */ uint32_t chan_type; /* * This field is used to send part or all of the data * through a send buffer. This values specifies an * index into the send buffer. If the index is * 0xFFFFFFFF, then the send buffer is not being used * and all of the data was sent through other VMBus * mechanisms. */ uint32_t send_buf_section_idx; uint32_t send_buf_section_size; } __packed nvsp_1_msg_send_rndis_pkt; /* * This message is used by both the VSP and the VSC to complete * a RNDIS message to the opposite channel endpoint. At this * point, the initiator of this message cannot use any resources * associated with the original RNDIS packet. */ typedef struct nvsp_1_msg_send_rndis_pkt_complete_ { uint32_t status; } __packed nvsp_1_msg_send_rndis_pkt_complete; /* * Version 2 Messages */ /* * This message is used by the VSC to send the NDIS version * to the VSP. The VSP can use this information when handling * OIDs sent by the VSC. */ typedef struct nvsp_2_netvsc_capabilities_ { union { uint64_t as_uint64; struct { uint64_t vmq : 1; uint64_t chimney : 1; uint64_t sriov : 1; uint64_t ieee8021q : 1; uint64_t correlationid : 1; uint64_t teaming : 1; } u2; } u1; } __packed nvsp_2_netvsc_capabilities; typedef struct nvsp_2_msg_send_ndis_config_ { uint32_t mtu; uint32_t reserved; nvsp_2_netvsc_capabilities capabilities; } __packed nvsp_2_msg_send_ndis_config; /* * NvspMessage2TypeSendChimneyDelegatedBuffer */ typedef struct nvsp_2_msg_send_chimney_buf_ { /* * On WIN7 beta, delegated_obj_max_size is defined as a uint32_t * Since WIN7 RC, it was split into two uint16_t. To have the same * struct layout, delegated_obj_max_size shall be the first field. */ uint16_t delegated_obj_max_size; /* * The revision # of chimney protocol used between NVSC and NVSP. * * This revision is NOT related to the chimney revision between * NDIS protocol and miniport drivers. */ uint16_t revision; uint32_t gpadl_handle; } __packed nvsp_2_msg_send_chimney_buf; /* Unsupported chimney revision 0 (only present in WIN7 beta) */ #define NVSP_CHIMNEY_REVISION_0 0 /* WIN7 Beta Chimney QFE */ #define NVSP_CHIMNEY_REVISION_1 1 /* The chimney revision since WIN7 RC */ #define NVSP_CHIMNEY_REVISION_2 2 /* * NvspMessage2TypeSendChimneyDelegatedBufferComplete */ typedef struct nvsp_2_msg_send_chimney_buf_complete_ { uint32_t status; /* * Maximum number outstanding sends and pre-posted receives. * * NVSC should not post more than SendQuota/ReceiveQuota packets. * Otherwise, it can block the non-chimney path for an indefinite * amount of time. * (since chimney sends/receives are affected by the remote peer). * * Note: NVSP enforces the quota restrictions on a per-VMBCHANNEL * basis. It doesn't enforce the restriction separately for chimney * send/receive. If NVSC doesn't voluntarily enforce "SendQuota", * it may kill its own network connectivity. */ uint32_t send_quota; uint32_t rx_quota; } __packed nvsp_2_msg_send_chimney_buf_complete; /* * NvspMessage2TypeRevokeChimneyDelegatedBuffer */ typedef struct nvsp_2_msg_revoke_chimney_buf_ { uint32_t gpadl_handle; } __packed nvsp_2_msg_revoke_chimney_buf; #define NVSP_CHIMNEY_OBJECT_TYPE_NEIGHBOR 0 #define NVSP_CHIMNEY_OBJECT_TYPE_PATH4 1 #define NVSP_CHIMNEY_OBJECT_TYPE_PATH6 2 #define NVSP_CHIMNEY_OBJECT_TYPE_TCP 3 /* * NvspMessage2TypeAllocateChimneyHandle */ typedef struct nvsp_2_msg_alloc_chimney_handle_ { uint64_t vsc_context; uint32_t object_type; } __packed nvsp_2_msg_alloc_chimney_handle; /* * NvspMessage2TypeAllocateChimneyHandleComplete */ typedef struct nvsp_2_msg_alloc_chimney_handle_complete_ { uint32_t vsp_handle; } __packed nvsp_2_msg_alloc_chimney_handle_complete; /* * NvspMessage2TypeResumeChimneyRXIndication */ typedef struct nvsp_2_msg_resume_chimney_rx_indication { /* * Handle identifying the offloaded connection */ uint32_t vsp_tcp_handle; } __packed nvsp_2_msg_resume_chimney_rx_indication; #define NVSP_2_MSG_TERMINATE_CHIMNEY_FLAGS_FIRST_STAGE (0x01u) #define NVSP_2_MSG_TERMINATE_CHIMNEY_FLAGS_RESERVED (~(0x01u)) /* * NvspMessage2TypeTerminateChimney */ typedef struct nvsp_2_msg_terminate_chimney_ { /* * Handle identifying the offloaded object */ uint32_t vsp_handle; /* * Terminate Offload Flags * Bit 0: * When set to 0, terminate the offload at the destination NIC * Bit 1-31: Reserved, shall be zero */ uint32_t flags; union { /* * This field is valid only when bit 0 of flags is clear. * It specifies the index into the premapped delegated * object buffer. The buffer was sent through the * NvspMessage2TypeSendChimneyDelegatedBuffer * message at initialization time. * * NVSP will write the delegated state into the delegated * buffer upon upload completion. */ uint32_t index; /* * This field is valid only when bit 0 of flags is set. * * The seqence number of the most recently accepted RX * indication when VSC sets its TCP context into * "terminating" state. * * This allows NVSP to determines if there are any in-flight * RX indications for which the acceptance state is still * undefined. */ uint64_t last_accepted_rx_seq_no; } f0; } __packed nvsp_2_msg_terminate_chimney; #define NVSP_TERMINATE_CHIMNEY_COMPLETE_FLAG_DATA_CORRUPTED 0x0000001u /* * NvspMessage2TypeTerminateChimneyComplete */ typedef struct nvsp_2_msg_terminate_chimney_complete_ { uint64_t vsc_context; uint32_t flags; } __packed nvsp_2_msg_terminate_chimney_complete; /* * NvspMessage2TypeIndicateChimneyEvent */ typedef struct nvsp_2_msg_indicate_chimney_event_ { /* * When VscTcpContext is 0, event_type is an NDIS_STATUS event code * Otherwise, EventType is an TCP connection event (defined in * NdisTcpOffloadEventHandler chimney DDK document). */ uint32_t event_type; /* * When VscTcpContext is 0, EventType is an NDIS_STATUS event code * Otherwise, EventType is an TCP connection event specific information * (defined in NdisTcpOffloadEventHandler chimney DDK document). */ uint32_t event_specific_info; /* * If not 0, the event is per-TCP connection event. This field * contains the VSC's TCP context. * If 0, the event indication is global. */ uint64_t vsc_tcp_context; } __packed nvsp_2_msg_indicate_chimney_event; #define NVSP_1_CHIMNEY_SEND_INVALID_OOB_INDEX 0xffffu #define NVSP_1_CHIMNEY_SEND_INVALID_SECTION_INDEX 0xffffffff /* * NvspMessage2TypeSendChimneyPacket */ typedef struct nvsp_2_msg_send_chimney_pkt_ { /* * Identify the TCP connection for which this chimney send is */ uint32_t vsp_tcp_handle; /* * This field is used to send part or all of the data * through a send buffer. This values specifies an * index into the send buffer. If the index is * 0xFFFF, then the send buffer is not being used * and all of the data was sent through other VMBus * mechanisms. */ uint16_t send_buf_section_index; uint16_t send_buf_section_size; /* * OOB Data Index * This an index to the OOB data buffer. If the index is 0xFFFFFFFF, * then there is no OOB data. * * This field shall be always 0xFFFFFFFF for now. It is reserved for * the future. */ uint16_t oob_data_index; /* * DisconnectFlags = 0 * Normal chimney send. See MiniportTcpOffloadSend for details. * * DisconnectFlags = TCP_DISCONNECT_GRACEFUL_CLOSE (0x01) * Graceful disconnect. See MiniportTcpOffloadDisconnect for details. * * DisconnectFlags = TCP_DISCONNECT_ABORTIVE_CLOSE (0x02) * Abortive disconnect. See MiniportTcpOffloadDisconnect for details. */ uint16_t disconnect_flags; uint32_t seq_no; } __packed nvsp_2_msg_send_chimney_pkt; /* * NvspMessage2TypeSendChimneyPacketComplete */ typedef struct nvsp_2_msg_send_chimney_pkt_complete_ { /* * The NDIS_STATUS for the chimney send */ uint32_t status; /* * Number of bytes that have been sent to the peer (and ACKed by the peer). */ uint32_t bytes_transferred; } __packed nvsp_2_msg_send_chimney_pkt_complete; #define NVSP_1_CHIMNEY_RECV_FLAG_NO_PUSH 0x0001u #define NVSP_1_CHIMNEY_RECV_INVALID_OOB_INDEX 0xffffu /* * NvspMessage2TypePostChimneyRecvRequest */ typedef struct nvsp_2_msg_post_chimney_rx_request_ { /* * Identify the TCP connection which this chimney receive request * is for. */ uint32_t vsp_tcp_handle; /* * OOB Data Index * This an index to the OOB data buffer. If the index is 0xFFFFFFFF, * then there is no OOB data. * * This field shall be always 0xFFFFFFFF for now. It is reserved for * the future. */ uint32_t oob_data_index; /* * Bit 0 * When it is set, this is a "no-push" receive. * When it is clear, this is a "push" receive. * * Bit 1-15: Reserved and shall be zero */ uint16_t flags; /* * For debugging and diagnoses purpose. * The SeqNo is per TCP connection and starts from 0. */ uint32_t seq_no; } __packed nvsp_2_msg_post_chimney_rx_request; /* * NvspMessage2TypePostChimneyRecvRequestComplete */ typedef struct nvsp_2_msg_post_chimney_rx_request_complete_ { /* * The NDIS_STATUS for the chimney send */ uint32_t status; /* * Number of bytes that have been sent to the peer (and ACKed by * the peer). */ uint32_t bytes_xferred; } __packed nvsp_2_msg_post_chimney_rx_request_complete; /* * NvspMessage2TypeAllocateReceiveBuffer */ typedef struct nvsp_2_msg_alloc_rx_buf_ { /* * Allocation ID to match the allocation request and response */ uint32_t allocation_id; /* * Length of the VM shared memory receive buffer that needs to * be allocated */ uint32_t length; } __packed nvsp_2_msg_alloc_rx_buf; /* * NvspMessage2TypeAllocateReceiveBufferComplete */ typedef struct nvsp_2_msg_alloc_rx_buf_complete_ { /* * The NDIS_STATUS code for buffer allocation */ uint32_t status; /* * Allocation ID from NVSP_2_MESSAGE_ALLOCATE_RECEIVE_BUFFER */ uint32_t allocation_id; /* * GPADL handle for the allocated receive buffer */ uint32_t gpadl_handle; /* * Receive buffer ID that is further used in * NvspMessage2SendVmqRndisPacket */ uint64_t rx_buf_id; } __packed nvsp_2_msg_alloc_rx_buf_complete; /* * NvspMessage2TypeFreeReceiveBuffer */ typedef struct nvsp_2_msg_free_rx_buf_ { /* * Receive buffer ID previous returned in * NvspMessage2TypeAllocateReceiveBufferComplete message */ uint64_t rx_buf_id; } __packed nvsp_2_msg_free_rx_buf; /* * This structure is used in defining the buffers in * NVSP_2_MESSAGE_SEND_VMQ_RNDIS_PACKET structure */ typedef struct nvsp_xfer_page_range_ { /* * Specifies the ID of the receive buffer that has the buffer. This * ID can be the general receive buffer ID specified in * NvspMessage1TypeSendReceiveBuffer or it can be the shared memory * receive buffer ID allocated by the VSC and specified in * NvspMessage2TypeAllocateReceiveBufferComplete message */ uint64_t xfer_page_set_id; /* * Number of bytes */ uint32_t byte_count; /* * Offset in bytes from the beginning of the buffer */ uint32_t byte_offset; } __packed nvsp_xfer_page_range; /* * NvspMessage2SendVmqRndisPacket */ typedef struct nvsp_2_msg_send_vmq_rndis_pkt_ { /* * This field is specified by RNIDS. They assume there's * two different channels of communication. However, * the Network VSP only has one. Therefore, the channel * travels with the RNDIS packet. It must be RMC_DATA */ uint32_t channel_type; /* * Only the Range element corresponding to the RNDIS header of * the first RNDIS message in the multiple RNDIS messages sent * in one NVSP message. Information about the data portions as well * as the subsequent RNDIS messages in the same NVSP message are * embedded in the RNDIS header itself */ nvsp_xfer_page_range range; } __packed nvsp_2_msg_send_vmq_rndis_pkt; /* * This message is used by the VSC to complete * a RNDIS VMQ message to the VSP. At this point, * the initiator of this message can use any resources * associated with the original RNDIS VMQ packet. */ typedef struct nvsp_2_msg_send_vmq_rndis_pkt_complete_ { uint32_t status; } __packed nvsp_2_msg_send_vmq_rndis_pkt_complete; typedef union nvsp_1_msg_uber_ { nvsp_1_msg_send_ndis_version send_ndis_vers; nvsp_1_msg_send_rx_buf send_rx_buf; nvsp_1_msg_send_rx_buf_complete send_rx_buf_complete; nvsp_1_msg_revoke_rx_buf revoke_rx_buf; nvsp_1_msg_send_send_buf send_send_buf; nvsp_1_msg_send_send_buf_complete send_send_buf_complete; nvsp_1_msg_revoke_send_buf revoke_send_buf; nvsp_1_msg_send_rndis_pkt send_rndis_pkt; nvsp_1_msg_send_rndis_pkt_complete send_rndis_pkt_complete; } __packed nvsp_1_msg_uber; typedef union nvsp_2_msg_uber_ { nvsp_2_msg_send_ndis_config send_ndis_config; nvsp_2_msg_send_chimney_buf send_chimney_buf; nvsp_2_msg_send_chimney_buf_complete send_chimney_buf_complete; nvsp_2_msg_revoke_chimney_buf revoke_chimney_buf; nvsp_2_msg_resume_chimney_rx_indication resume_chimney_rx_indication; nvsp_2_msg_terminate_chimney terminate_chimney; nvsp_2_msg_terminate_chimney_complete terminate_chimney_complete; nvsp_2_msg_indicate_chimney_event indicate_chimney_event; nvsp_2_msg_send_chimney_pkt send_chimney_packet; nvsp_2_msg_send_chimney_pkt_complete send_chimney_packet_complete; nvsp_2_msg_post_chimney_rx_request post_chimney_rx_request; nvsp_2_msg_post_chimney_rx_request_complete post_chimney_rx_request_complete; nvsp_2_msg_alloc_rx_buf alloc_rx_buffer; nvsp_2_msg_alloc_rx_buf_complete alloc_rx_buffer_complete; nvsp_2_msg_free_rx_buf free_rx_buffer; nvsp_2_msg_send_vmq_rndis_pkt send_vmq_rndis_pkt; nvsp_2_msg_send_vmq_rndis_pkt_complete send_vmq_rndis_pkt_complete; nvsp_2_msg_alloc_chimney_handle alloc_chimney_handle; nvsp_2_msg_alloc_chimney_handle_complete alloc_chimney_handle_complete; } __packed nvsp_2_msg_uber; typedef union nvsp_all_msgs_ { nvsp_msg_init_uber init_msgs; nvsp_1_msg_uber vers_1_msgs; nvsp_2_msg_uber vers_2_msgs; } __packed nvsp_all_msgs; /* * ALL Messages */ typedef struct nvsp_msg_ { nvsp_msg_hdr hdr; nvsp_all_msgs msgs; } __packed nvsp_msg; /* * The following arguably belongs in a separate header file */ /* * Defines */ #define NETVSC_SEND_BUFFER_SIZE (1024*1024*15) /* 15M */ #define NETVSC_SEND_BUFFER_ID 0xface #define NETVSC_RECEIVE_BUFFER_SIZE_LEGACY (1024*1024*15) /* 15MB */ #define NETVSC_RECEIVE_BUFFER_SIZE (1024*1024*16) /* 16MB */ #define NETVSC_RECEIVE_BUFFER_ID 0xcafe #define NETVSC_RECEIVE_SG_COUNT 1 /* Preallocated receive packets */ #define NETVSC_RECEIVE_PACKETLIST_COUNT 256 /* * Maximum MTU we permit to be configured for a netvsc interface. * When the code was developed, a max MTU of 12232 was tested and * proven to work. 9K is a reasonable maximum for an Ethernet. */ #define NETVSC_MAX_CONFIGURABLE_MTU (9 * 1024) #define NETVSC_PACKET_SIZE PAGE_SIZE /* * Data types */ /* * Per netvsc channel-specific */ typedef struct netvsc_dev_ { struct hv_device *dev; /* Send buffer allocated by us but manages by NetVSP */ void *send_buf; uint32_t send_buf_size; uint32_t send_buf_gpadl_handle; uint32_t send_section_size; uint32_t send_section_count; unsigned long bitsmap_words; unsigned long *send_section_bitsmap; /* Receive buffer allocated by us but managed by NetVSP */ void *rx_buf; uint32_t rx_buf_size; uint32_t rx_buf_gpadl_handle; uint32_t rx_section_count; nvsp_1_rx_buf_section *rx_sections; /* Used for NetVSP initialization protocol */ struct sema channel_init_sema; nvsp_msg channel_init_packet; nvsp_msg revoke_packet; /*uint8_t hw_mac_addr[HW_MACADDR_LEN];*/ /* Holds rndis device info */ void *extension; hv_bool_uint8_t destroy; /* Negotiated NVSP version */ uint32_t nvsp_version; uint8_t callback_buf[NETVSC_PACKET_SIZE]; } netvsc_dev; typedef void (*pfn_on_send_rx_completion)(void *); #define NETVSC_DEVICE_RING_BUFFER_SIZE (128 * PAGE_SIZE) #define NETVSC_PACKET_MAXPAGE 32 #define NETVSC_VLAN_PRIO_MASK 0xe000 #define NETVSC_VLAN_PRIO_SHIFT 13 #define NETVSC_VLAN_VID_MASK 0x0fff #define TYPE_IPV4 2 #define TYPE_IPV6 4 #define TYPE_TCP 2 #define TYPE_UDP 4 #define TRANSPORT_TYPE_NOT_IP 0 #define TRANSPORT_TYPE_IPV4_TCP ((TYPE_IPV4 << 16) | TYPE_TCP) #define TRANSPORT_TYPE_IPV4_UDP ((TYPE_IPV4 << 16) | TYPE_UDP) #define TRANSPORT_TYPE_IPV6_TCP ((TYPE_IPV6 << 16) | TYPE_TCP) #define TRANSPORT_TYPE_IPV6_UDP ((TYPE_IPV6 << 16) | TYPE_UDP) #ifdef __LP64__ #define BITS_PER_LONG 64 #else #define BITS_PER_LONG 32 #endif typedef struct netvsc_packet_ { struct hv_device *device; hv_bool_uint8_t is_data_pkt; /* One byte */ uint16_t vlan_tci; uint32_t status; /* Completion */ union { struct { uint64_t rx_completion_tid; void *rx_completion_context; /* This is no longer used */ pfn_on_send_rx_completion on_rx_completion; } rx; struct { uint64_t send_completion_tid; void *send_completion_context; /* Still used in netvsc and filter code */ pfn_on_send_rx_completion on_send_completion; } send; } compl; uint32_t send_buf_section_idx; uint32_t send_buf_section_size; void *rndis_mesg; uint32_t tot_data_buf_len; void *data; uint32_t page_buf_count; hv_vmbus_page_buffer page_buffers[NETVSC_PACKET_MAXPAGE]; } netvsc_packet; typedef struct { uint8_t mac_addr[6]; /* Assumption unsigned long */ hv_bool_uint8_t link_state; } netvsc_device_info; #ifndef HN_USE_TXDESC_BUFRING struct hn_txdesc; SLIST_HEAD(hn_txdesc_list, hn_txdesc); #else struct buf_ring; #endif struct hn_rx_ring { struct ifnet *hn_ifp; - struct lro_ctrl hn_lro; + int hn_rx_idx; /* Trust csum verification on host side */ int hn_trust_hcsum; /* HN_TRUST_HCSUM_ */ + struct lro_ctrl hn_lro; u_long hn_csum_ip; u_long hn_csum_tcp; u_long hn_csum_udp; u_long hn_csum_trusted; u_long hn_lro_tried; u_long hn_small_pkts; } __aligned(CACHE_LINE_SIZE); #define HN_TRUST_HCSUM_IP 0x0001 #define HN_TRUST_HCSUM_TCP 0x0002 #define HN_TRUST_HCSUM_UDP 0x0004 struct hv_vmbus_channel; struct hn_tx_ring { #ifndef HN_USE_TXDESC_BUFRING struct mtx hn_txlist_spin; struct hn_txdesc_list hn_txlist; #else struct buf_ring *hn_txdesc_br; #endif int hn_txdesc_cnt; int hn_txdesc_avail; int hn_has_txeof; int hn_sched_tx; void (*hn_txeof)(struct hn_tx_ring *); struct taskqueue *hn_tx_taskq; struct task hn_tx_task; struct task hn_txeof_task; struct buf_ring *hn_mbuf_br; int hn_oactive; struct mtx hn_tx_lock; struct hn_softc *hn_sc; struct hv_vmbus_channel *hn_chan; int hn_direct_tx_size; int hn_tx_chimney_size; bus_dma_tag_t hn_tx_data_dtag; uint64_t hn_csum_assist; u_long hn_no_txdescs; u_long hn_send_failed; u_long hn_txdma_failed; u_long hn_tx_collapsed; u_long hn_tx_chimney; /* Rarely used stuffs */ struct hn_txdesc *hn_txdesc; bus_dma_tag_t hn_tx_rndis_dtag; struct sysctl_oid *hn_tx_sysctl_tree; } __aligned(CACHE_LINE_SIZE); /* * Device-specific softc structure */ typedef struct hn_softc { struct ifnet *hn_ifp; struct ifmedia hn_media; device_t hn_dev; uint8_t hn_unit; int hn_carrier; int hn_if_flags; struct mtx hn_lock; int hn_initdone; /* See hv_netvsc_drv_freebsd.c for rules on how to use */ int temp_unusable; struct hv_device *hn_dev_obj; netvsc_dev *net_dev; int hn_rx_ring_cnt; struct hn_rx_ring *hn_rx_ring; int hn_tx_ring_cnt; struct hn_tx_ring *hn_tx_ring; int hn_tx_chimney_max; struct taskqueue *hn_tx_taskq; struct sysctl_oid *hn_tx_sysctl_tree; } hn_softc_t; /* * Externs */ extern int hv_promisc_mode; void netvsc_linkstatus_callback(struct hv_device *device_obj, uint32_t status); void hv_nv_on_receive_completion(struct hv_device *device, uint64_t tid, uint32_t status); netvsc_dev *hv_nv_on_device_add(struct hv_device *device, void *additional_info); int hv_nv_on_device_remove(struct hv_device *device, boolean_t destroy_channel); int hv_nv_on_send(struct hv_vmbus_channel *chan, netvsc_packet *pkt); int hv_nv_get_next_send_section(netvsc_dev *net_dev); #endif /* __HV_NET_VSC_H__ */ Index: head/sys/dev/hyperv/netvsc/hv_netvsc_drv_freebsd.c =================================================================== --- head/sys/dev/hyperv/netvsc/hv_netvsc_drv_freebsd.c (revision 296186) +++ head/sys/dev/hyperv/netvsc/hv_netvsc_drv_freebsd.c (revision 296187) @@ -1,2720 +1,2728 @@ /*- * Copyright (c) 2010-2012 Citrix Inc. * Copyright (c) 2009-2012 Microsoft Corp. * Copyright (c) 2012 NetApp Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2004-2006 Kip Macy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet6.h" #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hv_net_vsc.h" #include "hv_rndis.h" #include "hv_rndis_filter.h" #define hv_chan_rxr hv_chan_priv1 #define hv_chan_txr hv_chan_priv2 /* Short for Hyper-V network interface */ #define NETVSC_DEVNAME "hn" /* * It looks like offset 0 of buf is reserved to hold the softc pointer. * The sc pointer evidently not needed, and is not presently populated. * The packet offset is where the netvsc_packet starts in the buffer. */ #define HV_NV_SC_PTR_OFFSET_IN_BUF 0 #define HV_NV_PACKET_OFFSET_IN_BUF 16 /* YYY should get it from the underlying channel */ #define HN_TX_DESC_CNT 512 #define HN_LROENT_CNT_DEF 128 #define HN_RNDIS_MSG_LEN \ (sizeof(rndis_msg) + \ RNDIS_VLAN_PPI_SIZE + \ RNDIS_TSO_PPI_SIZE + \ RNDIS_CSUM_PPI_SIZE) #define HN_RNDIS_MSG_BOUNDARY PAGE_SIZE #define HN_RNDIS_MSG_ALIGN CACHE_LINE_SIZE #define HN_TX_DATA_BOUNDARY PAGE_SIZE #define HN_TX_DATA_MAXSIZE IP_MAXPACKET #define HN_TX_DATA_SEGSIZE PAGE_SIZE #define HN_TX_DATA_SEGCNT_MAX \ (NETVSC_PACKET_MAXPAGE - HV_RF_NUM_TX_RESERVED_PAGE_BUFS) #define HN_DIRECT_TX_SIZE_DEF 128 struct hn_txdesc { #ifndef HN_USE_TXDESC_BUFRING SLIST_ENTRY(hn_txdesc) link; #endif struct mbuf *m; struct hn_tx_ring *txr; int refs; uint32_t flags; /* HN_TXD_FLAG_ */ netvsc_packet netvsc_pkt; /* XXX to be removed */ bus_dmamap_t data_dmap; bus_addr_t rndis_msg_paddr; rndis_msg *rndis_msg; bus_dmamap_t rndis_msg_dmap; }; #define HN_TXD_FLAG_ONLIST 0x1 #define HN_TXD_FLAG_DMAMAP 0x2 /* * Only enable UDP checksum offloading when it is on 2012R2 or * later. UDP checksum offloading doesn't work on earlier * Windows releases. */ #define HN_CSUM_ASSIST_WIN8 (CSUM_IP | CSUM_TCP) #define HN_CSUM_ASSIST (CSUM_IP | CSUM_UDP | CSUM_TCP) #define HN_LRO_LENLIM_DEF (25 * ETHERMTU) /* YYY 2*MTU is a bit rough, but should be good enough. */ #define HN_LRO_LENLIM_MIN(ifp) (2 * (ifp)->if_mtu) #define HN_LRO_ACKCNT_DEF 1 /* * Be aware that this sleepable mutex will exhibit WITNESS errors when * certain TCP and ARP code paths are taken. This appears to be a * well-known condition, as all other drivers checked use a sleeping * mutex to protect their transmit paths. * Also Be aware that mutexes do not play well with semaphores, and there * is a conflicting semaphore in a certain channel code path. */ #define NV_LOCK_INIT(_sc, _name) \ mtx_init(&(_sc)->hn_lock, _name, MTX_NETWORK_LOCK, MTX_DEF) #define NV_LOCK(_sc) mtx_lock(&(_sc)->hn_lock) #define NV_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->hn_lock, MA_OWNED) #define NV_UNLOCK(_sc) mtx_unlock(&(_sc)->hn_lock) #define NV_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->hn_lock) /* * Globals */ int hv_promisc_mode = 0; /* normal mode by default */ SYSCTL_NODE(_hw, OID_AUTO, hn, CTLFLAG_RD, NULL, "Hyper-V network interface"); /* Trust tcp segements verification on host side. */ static int hn_trust_hosttcp = 1; SYSCTL_INT(_hw_hn, OID_AUTO, trust_hosttcp, CTLFLAG_RDTUN, &hn_trust_hosttcp, 0, "Trust tcp segement verification on host side, " "when csum info is missing (global setting)"); /* Trust udp datagrams verification on host side. */ static int hn_trust_hostudp = 1; SYSCTL_INT(_hw_hn, OID_AUTO, trust_hostudp, CTLFLAG_RDTUN, &hn_trust_hostudp, 0, "Trust udp datagram verification on host side, " "when csum info is missing (global setting)"); /* Trust ip packets verification on host side. */ static int hn_trust_hostip = 1; SYSCTL_INT(_hw_hn, OID_AUTO, trust_hostip, CTLFLAG_RDTUN, &hn_trust_hostip, 0, "Trust ip packet verification on host side, " "when csum info is missing (global setting)"); #if __FreeBSD_version >= 1100045 /* Limit TSO burst size */ static int hn_tso_maxlen = 0; SYSCTL_INT(_hw_hn, OID_AUTO, tso_maxlen, CTLFLAG_RDTUN, &hn_tso_maxlen, 0, "TSO burst limit"); #endif /* Limit chimney send size */ static int hn_tx_chimney_size = 0; SYSCTL_INT(_hw_hn, OID_AUTO, tx_chimney_size, CTLFLAG_RDTUN, &hn_tx_chimney_size, 0, "Chimney send packet size limit"); /* Limit the size of packet for direct transmission */ static int hn_direct_tx_size = HN_DIRECT_TX_SIZE_DEF; SYSCTL_INT(_hw_hn, OID_AUTO, direct_tx_size, CTLFLAG_RDTUN, &hn_direct_tx_size, 0, "Size of the packet for direct transmission"); #if defined(INET) || defined(INET6) #if __FreeBSD_version >= 1100095 static int hn_lro_entry_count = HN_LROENT_CNT_DEF; SYSCTL_INT(_hw_hn, OID_AUTO, lro_entry_count, CTLFLAG_RDTUN, &hn_lro_entry_count, 0, "LRO entry count"); #endif #endif static int hn_share_tx_taskq = 0; SYSCTL_INT(_hw_hn, OID_AUTO, share_tx_taskq, CTLFLAG_RDTUN, &hn_share_tx_taskq, 0, "Enable shared TX taskqueue"); static struct taskqueue *hn_tx_taskq; #ifndef HN_USE_TXDESC_BUFRING static int hn_use_txdesc_bufring = 0; #else static int hn_use_txdesc_bufring = 1; #endif SYSCTL_INT(_hw_hn, OID_AUTO, use_txdesc_bufring, CTLFLAG_RD, &hn_use_txdesc_bufring, 0, "Use buf_ring for TX descriptors"); static int hn_bind_tx_taskq = -1; SYSCTL_INT(_hw_hn, OID_AUTO, bind_tx_taskq, CTLFLAG_RDTUN, &hn_bind_tx_taskq, 0, "Bind TX taskqueue to the specified cpu"); static int hn_use_if_start = 0; SYSCTL_INT(_hw_hn, OID_AUTO, use_if_start, CTLFLAG_RDTUN, &hn_use_if_start, 0, "Use if_start TX method"); /* * Forward declarations */ static void hn_stop(hn_softc_t *sc); static void hn_ifinit_locked(hn_softc_t *sc); static void hn_ifinit(void *xsc); static int hn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data); static int hn_start_locked(struct hn_tx_ring *txr, int len); static void hn_start(struct ifnet *ifp); static void hn_start_txeof(struct hn_tx_ring *); static int hn_ifmedia_upd(struct ifnet *ifp); static void hn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); #if __FreeBSD_version >= 1100099 static int hn_lro_lenlim_sysctl(SYSCTL_HANDLER_ARGS); static int hn_lro_ackcnt_sysctl(SYSCTL_HANDLER_ARGS); #endif static int hn_trust_hcsum_sysctl(SYSCTL_HANDLER_ARGS); static int hn_tx_chimney_size_sysctl(SYSCTL_HANDLER_ARGS); static int hn_rx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS); static int hn_rx_stat_u64_sysctl(SYSCTL_HANDLER_ARGS); static int hn_tx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS); static int hn_tx_conf_int_sysctl(SYSCTL_HANDLER_ARGS); static int hn_check_iplen(const struct mbuf *, int); static int hn_create_tx_ring(struct hn_softc *, int); static void hn_destroy_tx_ring(struct hn_tx_ring *); static int hn_create_tx_data(struct hn_softc *); static void hn_destroy_tx_data(struct hn_softc *); static void hn_start_taskfunc(void *, int); static void hn_start_txeof_taskfunc(void *, int); static void hn_stop_tx_tasks(struct hn_softc *); static int hn_encap(struct hn_tx_ring *, struct hn_txdesc *, struct mbuf **); static void hn_create_rx_data(struct hn_softc *sc); static void hn_destroy_rx_data(struct hn_softc *sc); static void hn_set_tx_chimney_size(struct hn_softc *, int); static int hn_transmit(struct ifnet *, struct mbuf *); static void hn_xmit_qflush(struct ifnet *); static int hn_xmit(struct hn_tx_ring *, int); static void hn_xmit_txeof(struct hn_tx_ring *); static void hn_xmit_taskfunc(void *, int); static void hn_xmit_txeof_taskfunc(void *, int); static int hn_ifmedia_upd(struct ifnet *ifp __unused) { return EOPNOTSUPP; } static void hn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct hn_softc *sc = ifp->if_softc; ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (!sc->hn_carrier) { ifmr->ifm_active |= IFM_NONE; return; } ifmr->ifm_status |= IFM_ACTIVE; ifmr->ifm_active |= IFM_10G_T | IFM_FDX; } /* {F8615163-DF3E-46c5-913F-F2D2F965ED0E} */ static const hv_guid g_net_vsc_device_type = { .data = {0x63, 0x51, 0x61, 0xF8, 0x3E, 0xDF, 0xc5, 0x46, 0x91, 0x3F, 0xF2, 0xD2, 0xF9, 0x65, 0xED, 0x0E} }; /* * Standard probe entry point. * */ static int netvsc_probe(device_t dev) { const char *p; p = vmbus_get_type(dev); if (!memcmp(p, &g_net_vsc_device_type.data, sizeof(hv_guid))) { device_set_desc(dev, "Synthetic Network Interface"); if (bootverbose) printf("Netvsc probe... DONE \n"); return (BUS_PROBE_DEFAULT); } return (ENXIO); } /* * Standard attach entry point. * * Called when the driver is loaded. It allocates needed resources, * and initializes the "hardware" and software. */ static int netvsc_attach(device_t dev) { struct hv_device *device_ctx = vmbus_get_devctx(dev); struct hv_vmbus_channel *chan; netvsc_device_info device_info; hn_softc_t *sc; int unit = device_get_unit(dev); struct ifnet *ifp = NULL; int error; #if __FreeBSD_version >= 1100045 int tso_maxlen; #endif sc = device_get_softc(dev); if (sc == NULL) { return (ENOMEM); } bzero(sc, sizeof(hn_softc_t)); sc->hn_unit = unit; sc->hn_dev = dev; if (hn_tx_taskq == NULL) { sc->hn_tx_taskq = taskqueue_create("hn_tx", M_WAITOK, taskqueue_thread_enqueue, &sc->hn_tx_taskq); if (hn_bind_tx_taskq >= 0) { int cpu = hn_bind_tx_taskq; cpuset_t cpu_set; if (cpu > mp_ncpus - 1) cpu = mp_ncpus - 1; CPU_SETOF(cpu, &cpu_set); taskqueue_start_threads_cpuset(&sc->hn_tx_taskq, 1, PI_NET, &cpu_set, "%s tx", device_get_nameunit(dev)); } else { taskqueue_start_threads(&sc->hn_tx_taskq, 1, PI_NET, "%s tx", device_get_nameunit(dev)); } } else { sc->hn_tx_taskq = hn_tx_taskq; } NV_LOCK_INIT(sc, "NetVSCLock"); sc->hn_dev_obj = device_ctx; ifp = sc->hn_ifp = if_alloc(IFT_ETHER); ifp->if_softc = sc; error = hn_create_tx_data(sc); if (error) goto failed; hn_create_rx_data(sc); /* * Associate the first TX/RX ring w/ the primary channel. */ chan = device_ctx->channel; chan->hv_chan_rxr = &sc->hn_rx_ring[0]; chan->hv_chan_txr = &sc->hn_tx_ring[0]; sc->hn_tx_ring[0].hn_chan = chan; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_dunit = unit; ifp->if_dname = NETVSC_DEVNAME; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = hn_ioctl; ifp->if_init = hn_ifinit; /* needed by hv_rf_on_device_add() code */ ifp->if_mtu = ETHERMTU; if (hn_use_if_start) { ifp->if_start = hn_start; IFQ_SET_MAXLEN(&ifp->if_snd, 512); ifp->if_snd.ifq_drv_maxlen = 511; IFQ_SET_READY(&ifp->if_snd); } else { ifp->if_transmit = hn_transmit; ifp->if_qflush = hn_xmit_qflush; } ifmedia_init(&sc->hn_media, 0, hn_ifmedia_upd, hn_ifmedia_sts); ifmedia_add(&sc->hn_media, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&sc->hn_media, IFM_ETHER | IFM_AUTO); /* XXX ifmedia_set really should do this for us */ sc->hn_media.ifm_media = sc->hn_media.ifm_cur->ifm_media; /* * Tell upper layers that we support full VLAN capability. */ ifp->if_hdrlen = sizeof(struct ether_vlan_header); ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | IFCAP_TSO | IFCAP_LRO; ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | IFCAP_TSO | IFCAP_LRO; ifp->if_hwassist = sc->hn_tx_ring[0].hn_csum_assist | CSUM_TSO; error = hv_rf_on_device_add(device_ctx, &device_info); if (error) goto failed; if (device_info.link_state == 0) { sc->hn_carrier = 1; } #if __FreeBSD_version >= 1100045 tso_maxlen = hn_tso_maxlen; if (tso_maxlen <= 0 || tso_maxlen > IP_MAXPACKET) tso_maxlen = IP_MAXPACKET; ifp->if_hw_tsomaxsegcount = HN_TX_DATA_SEGCNT_MAX; ifp->if_hw_tsomaxsegsize = PAGE_SIZE; ifp->if_hw_tsomax = tso_maxlen - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); #endif ether_ifattach(ifp, device_info.mac_addr); #if __FreeBSD_version >= 1100045 if_printf(ifp, "TSO: %u/%u/%u\n", ifp->if_hw_tsomax, ifp->if_hw_tsomaxsegcount, ifp->if_hw_tsomaxsegsize); #endif sc->hn_tx_chimney_max = sc->net_dev->send_section_size; hn_set_tx_chimney_size(sc, sc->hn_tx_chimney_max); if (hn_tx_chimney_size > 0 && hn_tx_chimney_size < sc->hn_tx_chimney_max) hn_set_tx_chimney_size(sc, hn_tx_chimney_size); return (0); failed: hn_destroy_tx_data(sc); if (ifp != NULL) if_free(ifp); return (error); } /* * Standard detach entry point */ static int netvsc_detach(device_t dev) { struct hn_softc *sc = device_get_softc(dev); struct hv_device *hv_device = vmbus_get_devctx(dev); if (bootverbose) printf("netvsc_detach\n"); /* * XXXKYS: Need to clean up all our * driver state; this is the driver * unloading. */ /* * XXXKYS: Need to stop outgoing traffic and unregister * the netdevice. */ hv_rf_on_device_remove(hv_device, HV_RF_NV_DESTROY_CHANNEL); hn_stop_tx_tasks(sc); ifmedia_removeall(&sc->hn_media); hn_destroy_rx_data(sc); hn_destroy_tx_data(sc); if (sc->hn_tx_taskq != hn_tx_taskq) taskqueue_free(sc->hn_tx_taskq); return (0); } /* * Standard shutdown entry point */ static int netvsc_shutdown(device_t dev) { return (0); } static __inline int hn_txdesc_dmamap_load(struct hn_tx_ring *txr, struct hn_txdesc *txd, struct mbuf **m_head, bus_dma_segment_t *segs, int *nsegs) { struct mbuf *m = *m_head; int error; error = bus_dmamap_load_mbuf_sg(txr->hn_tx_data_dtag, txd->data_dmap, m, segs, nsegs, BUS_DMA_NOWAIT); if (error == EFBIG) { struct mbuf *m_new; m_new = m_collapse(m, M_NOWAIT, HN_TX_DATA_SEGCNT_MAX); if (m_new == NULL) return ENOBUFS; else *m_head = m = m_new; txr->hn_tx_collapsed++; error = bus_dmamap_load_mbuf_sg(txr->hn_tx_data_dtag, txd->data_dmap, m, segs, nsegs, BUS_DMA_NOWAIT); } if (!error) { bus_dmamap_sync(txr->hn_tx_data_dtag, txd->data_dmap, BUS_DMASYNC_PREWRITE); txd->flags |= HN_TXD_FLAG_DMAMAP; } return error; } static __inline void hn_txdesc_dmamap_unload(struct hn_tx_ring *txr, struct hn_txdesc *txd) { if (txd->flags & HN_TXD_FLAG_DMAMAP) { bus_dmamap_sync(txr->hn_tx_data_dtag, txd->data_dmap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txr->hn_tx_data_dtag, txd->data_dmap); txd->flags &= ~HN_TXD_FLAG_DMAMAP; } } static __inline int hn_txdesc_put(struct hn_tx_ring *txr, struct hn_txdesc *txd) { KASSERT((txd->flags & HN_TXD_FLAG_ONLIST) == 0, ("put an onlist txd %#x", txd->flags)); KASSERT(txd->refs > 0, ("invalid txd refs %d", txd->refs)); if (atomic_fetchadd_int(&txd->refs, -1) != 1) return 0; hn_txdesc_dmamap_unload(txr, txd); if (txd->m != NULL) { m_freem(txd->m); txd->m = NULL; } txd->flags |= HN_TXD_FLAG_ONLIST; #ifndef HN_USE_TXDESC_BUFRING mtx_lock_spin(&txr->hn_txlist_spin); KASSERT(txr->hn_txdesc_avail >= 0 && txr->hn_txdesc_avail < txr->hn_txdesc_cnt, ("txdesc_put: invalid txd avail %d", txr->hn_txdesc_avail)); txr->hn_txdesc_avail++; SLIST_INSERT_HEAD(&txr->hn_txlist, txd, link); mtx_unlock_spin(&txr->hn_txlist_spin); #else atomic_add_int(&txr->hn_txdesc_avail, 1); buf_ring_enqueue(txr->hn_txdesc_br, txd); #endif return 1; } static __inline struct hn_txdesc * hn_txdesc_get(struct hn_tx_ring *txr) { struct hn_txdesc *txd; #ifndef HN_USE_TXDESC_BUFRING mtx_lock_spin(&txr->hn_txlist_spin); txd = SLIST_FIRST(&txr->hn_txlist); if (txd != NULL) { KASSERT(txr->hn_txdesc_avail > 0, ("txdesc_get: invalid txd avail %d", txr->hn_txdesc_avail)); txr->hn_txdesc_avail--; SLIST_REMOVE_HEAD(&txr->hn_txlist, link); } mtx_unlock_spin(&txr->hn_txlist_spin); #else txd = buf_ring_dequeue_sc(txr->hn_txdesc_br); #endif if (txd != NULL) { #ifdef HN_USE_TXDESC_BUFRING atomic_subtract_int(&txr->hn_txdesc_avail, 1); #endif KASSERT(txd->m == NULL && txd->refs == 0 && (txd->flags & HN_TXD_FLAG_ONLIST), ("invalid txd")); txd->flags &= ~HN_TXD_FLAG_ONLIST; txd->refs = 1; } return txd; } static __inline void hn_txdesc_hold(struct hn_txdesc *txd) { /* 0->1 transition will never work */ KASSERT(txd->refs > 0, ("invalid refs %d", txd->refs)); atomic_add_int(&txd->refs, 1); } static void hn_tx_done(void *xpkt) { netvsc_packet *packet = xpkt; struct hn_txdesc *txd; struct hn_tx_ring *txr; txd = (struct hn_txdesc *)(uintptr_t) packet->compl.send.send_completion_tid; txr = txd->txr; txr->hn_has_txeof = 1; hn_txdesc_put(txr, txd); } void netvsc_channel_rollup(struct hv_vmbus_channel *chan) { struct hn_tx_ring *txr = chan->hv_chan_txr; #if defined(INET) || defined(INET6) struct hn_rx_ring *rxr = chan->hv_chan_rxr; struct lro_ctrl *lro = &rxr->hn_lro; struct lro_entry *queued; while ((queued = SLIST_FIRST(&lro->lro_active)) != NULL) { SLIST_REMOVE_HEAD(&lro->lro_active, next); tcp_lro_flush(lro, queued); } #endif /* * NOTE: * 'txr' could be NULL, if multiple channels and * ifnet.if_start method are enabled. */ if (txr == NULL || !txr->hn_has_txeof) return; txr->hn_has_txeof = 0; txr->hn_txeof(txr); } /* * NOTE: * If this function fails, then both txd and m_head0 will be freed. */ static int hn_encap(struct hn_tx_ring *txr, struct hn_txdesc *txd, struct mbuf **m_head0) { bus_dma_segment_t segs[HN_TX_DATA_SEGCNT_MAX]; int error, nsegs, i; struct mbuf *m_head = *m_head0; netvsc_packet *packet; rndis_msg *rndis_mesg; rndis_packet *rndis_pkt; rndis_per_packet_info *rppi; uint32_t rndis_msg_size; packet = &txd->netvsc_pkt; packet->is_data_pkt = TRUE; packet->tot_data_buf_len = m_head->m_pkthdr.len; /* * extension points to the area reserved for the * rndis_filter_packet, which is placed just after * the netvsc_packet (and rppi struct, if present; * length is updated later). */ rndis_mesg = txd->rndis_msg; /* XXX not necessary */ memset(rndis_mesg, 0, HN_RNDIS_MSG_LEN); rndis_mesg->ndis_msg_type = REMOTE_NDIS_PACKET_MSG; rndis_pkt = &rndis_mesg->msg.packet; rndis_pkt->data_offset = sizeof(rndis_packet); rndis_pkt->data_length = packet->tot_data_buf_len; rndis_pkt->per_pkt_info_offset = sizeof(rndis_packet); rndis_msg_size = RNDIS_MESSAGE_SIZE(rndis_packet); if (m_head->m_flags & M_VLANTAG) { ndis_8021q_info *rppi_vlan_info; rndis_msg_size += RNDIS_VLAN_PPI_SIZE; rppi = hv_set_rppi_data(rndis_mesg, RNDIS_VLAN_PPI_SIZE, ieee_8021q_info); rppi_vlan_info = (ndis_8021q_info *)((uint8_t *)rppi + rppi->per_packet_info_offset); rppi_vlan_info->u1.s1.vlan_id = m_head->m_pkthdr.ether_vtag & 0xfff; } if (m_head->m_pkthdr.csum_flags & CSUM_TSO) { rndis_tcp_tso_info *tso_info; struct ether_vlan_header *eh; int ether_len; /* * XXX need m_pullup and use mtodo */ eh = mtod(m_head, struct ether_vlan_header*); if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ether_len = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; else ether_len = ETHER_HDR_LEN; rndis_msg_size += RNDIS_TSO_PPI_SIZE; rppi = hv_set_rppi_data(rndis_mesg, RNDIS_TSO_PPI_SIZE, tcp_large_send_info); tso_info = (rndis_tcp_tso_info *)((uint8_t *)rppi + rppi->per_packet_info_offset); tso_info->lso_v2_xmit.type = RNDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; #ifdef INET if (m_head->m_pkthdr.csum_flags & CSUM_IP_TSO) { struct ip *ip = (struct ip *)(m_head->m_data + ether_len); unsigned long iph_len = ip->ip_hl << 2; struct tcphdr *th = (struct tcphdr *)((caddr_t)ip + iph_len); tso_info->lso_v2_xmit.ip_version = RNDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; ip->ip_len = 0; ip->ip_sum = 0; th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(IPPROTO_TCP)); } #endif #if defined(INET6) && defined(INET) else #endif #ifdef INET6 { struct ip6_hdr *ip6 = (struct ip6_hdr *) (m_head->m_data + ether_len); struct tcphdr *th = (struct tcphdr *)(ip6 + 1); tso_info->lso_v2_xmit.ip_version = RNDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; ip6->ip6_plen = 0; th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0); } #endif tso_info->lso_v2_xmit.tcp_header_offset = 0; tso_info->lso_v2_xmit.mss = m_head->m_pkthdr.tso_segsz; } else if (m_head->m_pkthdr.csum_flags & txr->hn_csum_assist) { rndis_tcp_ip_csum_info *csum_info; rndis_msg_size += RNDIS_CSUM_PPI_SIZE; rppi = hv_set_rppi_data(rndis_mesg, RNDIS_CSUM_PPI_SIZE, tcpip_chksum_info); csum_info = (rndis_tcp_ip_csum_info *)((uint8_t *)rppi + rppi->per_packet_info_offset); csum_info->xmit.is_ipv4 = 1; if (m_head->m_pkthdr.csum_flags & CSUM_IP) csum_info->xmit.ip_header_csum = 1; if (m_head->m_pkthdr.csum_flags & CSUM_TCP) { csum_info->xmit.tcp_csum = 1; csum_info->xmit.tcp_header_offset = 0; } else if (m_head->m_pkthdr.csum_flags & CSUM_UDP) { csum_info->xmit.udp_csum = 1; } } rndis_mesg->msg_len = packet->tot_data_buf_len + rndis_msg_size; packet->tot_data_buf_len = rndis_mesg->msg_len; /* * Chimney send, if the packet could fit into one chimney buffer. * * TODO: vRSS, chimney buffer should be per-channel. */ if (packet->tot_data_buf_len < txr->hn_tx_chimney_size) { netvsc_dev *net_dev = txr->hn_sc->net_dev; uint32_t send_buf_section_idx; send_buf_section_idx = hv_nv_get_next_send_section(net_dev); if (send_buf_section_idx != NVSP_1_CHIMNEY_SEND_INVALID_SECTION_INDEX) { uint8_t *dest = ((uint8_t *)net_dev->send_buf + (send_buf_section_idx * net_dev->send_section_size)); memcpy(dest, rndis_mesg, rndis_msg_size); dest += rndis_msg_size; m_copydata(m_head, 0, m_head->m_pkthdr.len, dest); packet->send_buf_section_idx = send_buf_section_idx; packet->send_buf_section_size = packet->tot_data_buf_len; packet->page_buf_count = 0; txr->hn_tx_chimney++; goto done; } } error = hn_txdesc_dmamap_load(txr, txd, &m_head, segs, &nsegs); if (error) { int freed; /* * This mbuf is not linked w/ the txd yet, so free it now. */ m_freem(m_head); *m_head0 = NULL; freed = hn_txdesc_put(txr, txd); KASSERT(freed != 0, ("fail to free txd upon txdma error")); txr->hn_txdma_failed++; if_inc_counter(txr->hn_sc->hn_ifp, IFCOUNTER_OERRORS, 1); return error; } *m_head0 = m_head; packet->page_buf_count = nsegs + HV_RF_NUM_TX_RESERVED_PAGE_BUFS; /* send packet with page buffer */ packet->page_buffers[0].pfn = atop(txd->rndis_msg_paddr); packet->page_buffers[0].offset = txd->rndis_msg_paddr & PAGE_MASK; packet->page_buffers[0].length = rndis_msg_size; /* * Fill the page buffers with mbuf info starting at index * HV_RF_NUM_TX_RESERVED_PAGE_BUFS. */ for (i = 0; i < nsegs; ++i) { hv_vmbus_page_buffer *pb = &packet->page_buffers[ i + HV_RF_NUM_TX_RESERVED_PAGE_BUFS]; pb->pfn = atop(segs[i].ds_addr); pb->offset = segs[i].ds_addr & PAGE_MASK; pb->length = segs[i].ds_len; } packet->send_buf_section_idx = NVSP_1_CHIMNEY_SEND_INVALID_SECTION_INDEX; packet->send_buf_section_size = 0; done: txd->m = m_head; /* Set the completion routine */ packet->compl.send.on_send_completion = hn_tx_done; packet->compl.send.send_completion_context = packet; packet->compl.send.send_completion_tid = (uint64_t)(uintptr_t)txd; return 0; } /* * NOTE: * If this function fails, then txd will be freed, but the mbuf * associated w/ the txd will _not_ be freed. */ static int hn_send_pkt(struct ifnet *ifp, struct hn_tx_ring *txr, struct hn_txdesc *txd) { int error, send_failed = 0; again: /* * Make sure that txd is not freed before ETHER_BPF_MTAP. */ hn_txdesc_hold(txd); error = hv_nv_on_send(txr->hn_chan, &txd->netvsc_pkt); if (!error) { ETHER_BPF_MTAP(ifp, txd->m); if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); if (!hn_use_if_start) { if_inc_counter(ifp, IFCOUNTER_OBYTES, txd->m->m_pkthdr.len); if (txd->m->m_flags & M_MCAST) if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); } } hn_txdesc_put(txr, txd); if (__predict_false(error)) { int freed; /* * This should "really rarely" happen. * * XXX Too many RX to be acked or too many sideband * commands to run? Ask netvsc_channel_rollup() * to kick start later. */ txr->hn_has_txeof = 1; if (!send_failed) { txr->hn_send_failed++; send_failed = 1; /* * Try sending again after set hn_has_txeof; * in case that we missed the last * netvsc_channel_rollup(). */ goto again; } if_printf(ifp, "send failed\n"); /* * Caller will perform further processing on the * associated mbuf, so don't free it in hn_txdesc_put(); * only unload it from the DMA map in hn_txdesc_put(), * if it was loaded. */ txd->m = NULL; freed = hn_txdesc_put(txr, txd); KASSERT(freed != 0, ("fail to free txd upon send error")); txr->hn_send_failed++; } return error; } /* * Start a transmit of one or more packets */ static int hn_start_locked(struct hn_tx_ring *txr, int len) { struct hn_softc *sc = txr->hn_sc; struct ifnet *ifp = sc->hn_ifp; KASSERT(hn_use_if_start, ("hn_start_locked is called, when if_start is disabled")); KASSERT(txr == &sc->hn_tx_ring[0], ("not the first TX ring")); mtx_assert(&txr->hn_tx_lock, MA_OWNED); if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return 0; while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { struct hn_txdesc *txd; struct mbuf *m_head; int error; IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; if (len > 0 && m_head->m_pkthdr.len > len) { /* * This sending could be time consuming; let callers * dispatch this packet sending (and sending of any * following up packets) to tx taskqueue. */ IFQ_DRV_PREPEND(&ifp->if_snd, m_head); return 1; } txd = hn_txdesc_get(txr); if (txd == NULL) { txr->hn_no_txdescs++; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); atomic_set_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); break; } error = hn_encap(txr, txd, &m_head); if (error) { /* Both txd and m_head are freed */ continue; } error = hn_send_pkt(ifp, txr, txd); if (__predict_false(error)) { /* txd is freed, but m_head is not */ IFQ_DRV_PREPEND(&ifp->if_snd, m_head); atomic_set_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); break; } } return 0; } /* * Link up/down notification */ void netvsc_linkstatus_callback(struct hv_device *device_obj, uint32_t status) { hn_softc_t *sc = device_get_softc(device_obj->device); if (sc == NULL) { return; } if (status == 1) { sc->hn_carrier = 1; } else { sc->hn_carrier = 0; } } /* * Append the specified data to the indicated mbuf chain, * Extend the mbuf chain if the new data does not fit in * existing space. * * This is a minor rewrite of m_append() from sys/kern/uipc_mbuf.c. * There should be an equivalent in the kernel mbuf code, * but there does not appear to be one yet. * * Differs from m_append() in that additional mbufs are * allocated with cluster size MJUMPAGESIZE, and filled * accordingly. * * Return 1 if able to complete the job; otherwise 0. */ static int hv_m_append(struct mbuf *m0, int len, c_caddr_t cp) { struct mbuf *m, *n; int remainder, space; for (m = m0; m->m_next != NULL; m = m->m_next) ; remainder = len; space = M_TRAILINGSPACE(m); if (space > 0) { /* * Copy into available space. */ if (space > remainder) space = remainder; bcopy(cp, mtod(m, caddr_t) + m->m_len, space); m->m_len += space; cp += space; remainder -= space; } while (remainder > 0) { /* * Allocate a new mbuf; could check space * and allocate a cluster instead. */ n = m_getjcl(M_NOWAIT, m->m_type, 0, MJUMPAGESIZE); if (n == NULL) break; n->m_len = min(MJUMPAGESIZE, remainder); bcopy(cp, mtod(n, caddr_t), n->m_len); cp += n->m_len; remainder -= n->m_len; m->m_next = n; m = n; } if (m0->m_flags & M_PKTHDR) m0->m_pkthdr.len += len - remainder; return (remainder == 0); } /* * Called when we receive a data packet from the "wire" on the * specified device * * Note: This is no longer used as a callback */ int netvsc_recv(struct hv_vmbus_channel *chan, netvsc_packet *packet, rndis_tcp_ip_csum_info *csum_info) { struct hn_rx_ring *rxr = chan->hv_chan_rxr; struct ifnet *ifp = rxr->hn_ifp; struct mbuf *m_new; int size, do_lro = 0, do_csum = 1; if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) return (0); /* * Bail out if packet contains more data than configured MTU. */ if (packet->tot_data_buf_len > (ifp->if_mtu + ETHER_HDR_LEN)) { return (0); } else if (packet->tot_data_buf_len <= MHLEN) { m_new = m_gethdr(M_NOWAIT, MT_DATA); if (m_new == NULL) return (0); memcpy(mtod(m_new, void *), packet->data, packet->tot_data_buf_len); m_new->m_pkthdr.len = m_new->m_len = packet->tot_data_buf_len; rxr->hn_small_pkts++; } else { /* * Get an mbuf with a cluster. For packets 2K or less, * get a standard 2K cluster. For anything larger, get a * 4K cluster. Any buffers larger than 4K can cause problems * if looped around to the Hyper-V TX channel, so avoid them. */ size = MCLBYTES; if (packet->tot_data_buf_len > MCLBYTES) { /* 4096 */ size = MJUMPAGESIZE; } m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, size); if (m_new == NULL) { if_printf(ifp, "alloc mbuf failed.\n"); return (0); } hv_m_append(m_new, packet->tot_data_buf_len, packet->data); } m_new->m_pkthdr.rcvif = ifp; if (__predict_false((ifp->if_capenable & IFCAP_RXCSUM) == 0)) do_csum = 0; /* receive side checksum offload */ if (csum_info != NULL) { /* IP csum offload */ if (csum_info->receive.ip_csum_succeeded && do_csum) { m_new->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID); rxr->hn_csum_ip++; } /* TCP/UDP csum offload */ if ((csum_info->receive.tcp_csum_succeeded || csum_info->receive.udp_csum_succeeded) && do_csum) { m_new->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); m_new->m_pkthdr.csum_data = 0xffff; if (csum_info->receive.tcp_csum_succeeded) rxr->hn_csum_tcp++; else rxr->hn_csum_udp++; } if (csum_info->receive.ip_csum_succeeded && csum_info->receive.tcp_csum_succeeded) do_lro = 1; } else { const struct ether_header *eh; uint16_t etype; int hoff; hoff = sizeof(*eh); if (m_new->m_len < hoff) goto skip; eh = mtod(m_new, struct ether_header *); etype = ntohs(eh->ether_type); if (etype == ETHERTYPE_VLAN) { const struct ether_vlan_header *evl; hoff = sizeof(*evl); if (m_new->m_len < hoff) goto skip; evl = mtod(m_new, struct ether_vlan_header *); etype = ntohs(evl->evl_proto); } if (etype == ETHERTYPE_IP) { int pr; pr = hn_check_iplen(m_new, hoff); if (pr == IPPROTO_TCP) { if (do_csum && (rxr->hn_trust_hcsum & HN_TRUST_HCSUM_TCP)) { rxr->hn_csum_trusted++; m_new->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); m_new->m_pkthdr.csum_data = 0xffff; } /* Rely on SW csum verification though... */ do_lro = 1; } else if (pr == IPPROTO_UDP) { if (do_csum && (rxr->hn_trust_hcsum & HN_TRUST_HCSUM_UDP)) { rxr->hn_csum_trusted++; m_new->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); m_new->m_pkthdr.csum_data = 0xffff; } } else if (pr != IPPROTO_DONE && do_csum && (rxr->hn_trust_hcsum & HN_TRUST_HCSUM_IP)) { rxr->hn_csum_trusted++; m_new->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID); } } } skip: if ((packet->vlan_tci != 0) && (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { m_new->m_pkthdr.ether_vtag = packet->vlan_tci; m_new->m_flags |= M_VLANTAG; } + m_new->m_pkthdr.flowid = rxr->hn_rx_idx; + M_HASHTYPE_SET(m_new, M_HASHTYPE_OPAQUE); + /* * Note: Moved RX completion back to hv_nv_on_receive() so all * messages (not just data messages) will trigger a response. */ if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); if ((ifp->if_capenable & IFCAP_LRO) && do_lro) { #if defined(INET) || defined(INET6) struct lro_ctrl *lro = &rxr->hn_lro; if (lro->lro_cnt) { rxr->hn_lro_tried++; if (tcp_lro_rx(lro, m_new, 0) == 0) { /* DONE! */ return 0; } } #endif } /* We're not holding the lock here, so don't release it */ (*ifp->if_input)(ifp, m_new); return (0); } /* * Rules for using sc->temp_unusable: * 1. sc->temp_unusable can only be read or written while holding NV_LOCK() * 2. code reading sc->temp_unusable under NV_LOCK(), and finding * sc->temp_unusable set, must release NV_LOCK() and exit * 3. to retain exclusive control of the interface, * sc->temp_unusable must be set by code before releasing NV_LOCK() * 4. only code setting sc->temp_unusable can clear sc->temp_unusable * 5. code setting sc->temp_unusable must eventually clear sc->temp_unusable */ /* * Standard ioctl entry point. Called when the user wants to configure * the interface. */ static int hn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { hn_softc_t *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; #ifdef INET struct ifaddr *ifa = (struct ifaddr *)data; #endif netvsc_device_info device_info; struct hv_device *hn_dev; int mask, error = 0; int retry_cnt = 500; switch(cmd) { case SIOCSIFADDR: #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) { ifp->if_flags |= IFF_UP; if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) hn_ifinit(sc); arp_ifinit(ifp, ifa); } else #endif error = ether_ioctl(ifp, cmd, data); break; case SIOCSIFMTU: hn_dev = vmbus_get_devctx(sc->hn_dev); /* Check MTU value change */ if (ifp->if_mtu == ifr->ifr_mtu) break; if (ifr->ifr_mtu > NETVSC_MAX_CONFIGURABLE_MTU) { error = EINVAL; break; } /* Obtain and record requested MTU */ ifp->if_mtu = ifr->ifr_mtu; #if __FreeBSD_version >= 1100099 /* * Make sure that LRO aggregation length limit is still * valid, after the MTU change. */ NV_LOCK(sc); if (sc->hn_rx_ring[0].hn_lro.lro_length_lim < HN_LRO_LENLIM_MIN(ifp)) { int i; for (i = 0; i < sc->hn_rx_ring_cnt; ++i) { sc->hn_rx_ring[i].hn_lro.lro_length_lim = HN_LRO_LENLIM_MIN(ifp); } } NV_UNLOCK(sc); #endif do { NV_LOCK(sc); if (!sc->temp_unusable) { sc->temp_unusable = TRUE; retry_cnt = -1; } NV_UNLOCK(sc); if (retry_cnt > 0) { retry_cnt--; DELAY(5 * 1000); } } while (retry_cnt > 0); if (retry_cnt == 0) { error = EINVAL; break; } /* We must remove and add back the device to cause the new * MTU to take effect. This includes tearing down, but not * deleting the channel, then bringing it back up. */ error = hv_rf_on_device_remove(hn_dev, HV_RF_NV_RETAIN_CHANNEL); if (error) { NV_LOCK(sc); sc->temp_unusable = FALSE; NV_UNLOCK(sc); break; } error = hv_rf_on_device_add(hn_dev, &device_info); if (error) { NV_LOCK(sc); sc->temp_unusable = FALSE; NV_UNLOCK(sc); break; } sc->hn_tx_chimney_max = sc->net_dev->send_section_size; if (sc->hn_tx_ring[0].hn_tx_chimney_size > sc->hn_tx_chimney_max) hn_set_tx_chimney_size(sc, sc->hn_tx_chimney_max); hn_ifinit_locked(sc); NV_LOCK(sc); sc->temp_unusable = FALSE; NV_UNLOCK(sc); break; case SIOCSIFFLAGS: do { NV_LOCK(sc); if (!sc->temp_unusable) { sc->temp_unusable = TRUE; retry_cnt = -1; } NV_UNLOCK(sc); if (retry_cnt > 0) { retry_cnt--; DELAY(5 * 1000); } } while (retry_cnt > 0); if (retry_cnt == 0) { error = EINVAL; break; } if (ifp->if_flags & IFF_UP) { /* * If only the state of the PROMISC flag changed, * then just use the 'set promisc mode' command * instead of reinitializing the entire NIC. Doing * a full re-init means reloading the firmware and * waiting for it to start up, which may take a * second or two. */ #ifdef notyet /* Fixme: Promiscuous mode? */ if (ifp->if_drv_flags & IFF_DRV_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->hn_if_flags & IFF_PROMISC)) { /* do something here for Hyper-V */ } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->hn_if_flags & IFF_PROMISC) { /* do something here for Hyper-V */ } else #endif hn_ifinit_locked(sc); } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { hn_stop(sc); } } NV_LOCK(sc); sc->temp_unusable = FALSE; NV_UNLOCK(sc); sc->hn_if_flags = ifp->if_flags; error = 0; break; case SIOCSIFCAP: NV_LOCK(sc); mask = ifr->ifr_reqcap ^ ifp->if_capenable; if (mask & IFCAP_TXCSUM) { ifp->if_capenable ^= IFCAP_TXCSUM; if (ifp->if_capenable & IFCAP_TXCSUM) { ifp->if_hwassist |= sc->hn_tx_ring[0].hn_csum_assist; } else { ifp->if_hwassist &= ~sc->hn_tx_ring[0].hn_csum_assist; } } if (mask & IFCAP_RXCSUM) ifp->if_capenable ^= IFCAP_RXCSUM; if (mask & IFCAP_LRO) ifp->if_capenable ^= IFCAP_LRO; if (mask & IFCAP_TSO4) { ifp->if_capenable ^= IFCAP_TSO4; if (ifp->if_capenable & IFCAP_TSO4) ifp->if_hwassist |= CSUM_IP_TSO; else ifp->if_hwassist &= ~CSUM_IP_TSO; } if (mask & IFCAP_TSO6) { ifp->if_capenable ^= IFCAP_TSO6; if (ifp->if_capenable & IFCAP_TSO6) ifp->if_hwassist |= CSUM_IP6_TSO; else ifp->if_hwassist &= ~CSUM_IP6_TSO; } NV_UNLOCK(sc); error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: #ifdef notyet /* Fixme: Multicast mode? */ if (ifp->if_drv_flags & IFF_DRV_RUNNING) { NV_LOCK(sc); netvsc_setmulti(sc); NV_UNLOCK(sc); error = 0; } #endif error = EINVAL; break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->hn_media, cmd); break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } /* * */ static void hn_stop(hn_softc_t *sc) { struct ifnet *ifp; int ret, i; struct hv_device *device_ctx = vmbus_get_devctx(sc->hn_dev); ifp = sc->hn_ifp; if (bootverbose) printf(" Closing Device ...\n"); atomic_clear_int(&ifp->if_drv_flags, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); for (i = 0; i < sc->hn_tx_ring_cnt; ++i) sc->hn_tx_ring[i].hn_oactive = 0; if_link_state_change(ifp, LINK_STATE_DOWN); sc->hn_initdone = 0; ret = hv_rf_on_close(device_ctx); } /* * FreeBSD transmit entry point */ static void hn_start(struct ifnet *ifp) { struct hn_softc *sc = ifp->if_softc; struct hn_tx_ring *txr = &sc->hn_tx_ring[0]; if (txr->hn_sched_tx) goto do_sched; if (mtx_trylock(&txr->hn_tx_lock)) { int sched; sched = hn_start_locked(txr, txr->hn_direct_tx_size); mtx_unlock(&txr->hn_tx_lock); if (!sched) return; } do_sched: taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_tx_task); } static void hn_start_txeof(struct hn_tx_ring *txr) { struct hn_softc *sc = txr->hn_sc; struct ifnet *ifp = sc->hn_ifp; KASSERT(txr == &sc->hn_tx_ring[0], ("not the first TX ring")); if (txr->hn_sched_tx) goto do_sched; if (mtx_trylock(&txr->hn_tx_lock)) { int sched; atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); sched = hn_start_locked(txr, txr->hn_direct_tx_size); mtx_unlock(&txr->hn_tx_lock); if (sched) { taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_tx_task); } } else { do_sched: /* * Release the OACTIVE earlier, with the hope, that * others could catch up. The task will clear the * flag again with the hn_tx_lock to avoid possible * races. */ atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_txeof_task); } } /* * */ static void hn_ifinit_locked(hn_softc_t *sc) { struct ifnet *ifp; struct hv_device *device_ctx = vmbus_get_devctx(sc->hn_dev); int ret, i; ifp = sc->hn_ifp; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { return; } hv_promisc_mode = 1; ret = hv_rf_on_open(device_ctx); if (ret != 0) { return; } else { sc->hn_initdone = 1; } atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); for (i = 0; i < sc->hn_tx_ring_cnt; ++i) sc->hn_tx_ring[i].hn_oactive = 0; atomic_set_int(&ifp->if_drv_flags, IFF_DRV_RUNNING); if_link_state_change(ifp, LINK_STATE_UP); } /* * */ static void hn_ifinit(void *xsc) { hn_softc_t *sc = xsc; NV_LOCK(sc); if (sc->temp_unusable) { NV_UNLOCK(sc); return; } sc->temp_unusable = TRUE; NV_UNLOCK(sc); hn_ifinit_locked(sc); NV_LOCK(sc); sc->temp_unusable = FALSE; NV_UNLOCK(sc); } #ifdef LATER /* * */ static void hn_watchdog(struct ifnet *ifp) { hn_softc_t *sc; sc = ifp->if_softc; printf("hn%d: watchdog timeout -- resetting\n", sc->hn_unit); hn_ifinit(sc); /*???*/ if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); } #endif #if __FreeBSD_version >= 1100099 static int hn_lro_lenlim_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; unsigned int lenlim; int error, i; lenlim = sc->hn_rx_ring[0].hn_lro.lro_length_lim; error = sysctl_handle_int(oidp, &lenlim, 0, req); if (error || req->newptr == NULL) return error; if (lenlim < HN_LRO_LENLIM_MIN(sc->hn_ifp) || lenlim > TCP_LRO_LENGTH_MAX) return EINVAL; NV_LOCK(sc); for (i = 0; i < sc->hn_rx_ring_cnt; ++i) sc->hn_rx_ring[i].hn_lro.lro_length_lim = lenlim; NV_UNLOCK(sc); return 0; } static int hn_lro_ackcnt_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int ackcnt, error, i; /* * lro_ackcnt_lim is append count limit, * +1 to turn it into aggregation limit. */ ackcnt = sc->hn_rx_ring[0].hn_lro.lro_ackcnt_lim + 1; error = sysctl_handle_int(oidp, &ackcnt, 0, req); if (error || req->newptr == NULL) return error; if (ackcnt < 2 || ackcnt > (TCP_LRO_ACKCNT_MAX + 1)) return EINVAL; /* * Convert aggregation limit back to append * count limit. */ --ackcnt; NV_LOCK(sc); for (i = 0; i < sc->hn_rx_ring_cnt; ++i) sc->hn_rx_ring[i].hn_lro.lro_ackcnt_lim = ackcnt; NV_UNLOCK(sc); return 0; } #endif static int hn_trust_hcsum_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int hcsum = arg2; int on, error, i; on = 0; if (sc->hn_rx_ring[0].hn_trust_hcsum & hcsum) on = 1; error = sysctl_handle_int(oidp, &on, 0, req); if (error || req->newptr == NULL) return error; NV_LOCK(sc); for (i = 0; i < sc->hn_rx_ring_cnt; ++i) { struct hn_rx_ring *rxr = &sc->hn_rx_ring[i]; if (on) rxr->hn_trust_hcsum |= hcsum; else rxr->hn_trust_hcsum &= ~hcsum; } NV_UNLOCK(sc); return 0; } static int hn_tx_chimney_size_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int chimney_size, error; chimney_size = sc->hn_tx_ring[0].hn_tx_chimney_size; error = sysctl_handle_int(oidp, &chimney_size, 0, req); if (error || req->newptr == NULL) return error; if (chimney_size > sc->hn_tx_chimney_max || chimney_size <= 0) return EINVAL; hn_set_tx_chimney_size(sc, chimney_size); return 0; } static int hn_rx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int ofs = arg2, i, error; struct hn_rx_ring *rxr; u_long stat; stat = 0; for (i = 0; i < sc->hn_rx_ring_cnt; ++i) { rxr = &sc->hn_rx_ring[i]; stat += *((u_long *)((uint8_t *)rxr + ofs)); } error = sysctl_handle_long(oidp, &stat, 0, req); if (error || req->newptr == NULL) return error; /* Zero out this stat. */ for (i = 0; i < sc->hn_rx_ring_cnt; ++i) { rxr = &sc->hn_rx_ring[i]; *((u_long *)((uint8_t *)rxr + ofs)) = 0; } return 0; } static int hn_rx_stat_u64_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int ofs = arg2, i, error; struct hn_rx_ring *rxr; uint64_t stat; stat = 0; for (i = 0; i < sc->hn_rx_ring_cnt; ++i) { rxr = &sc->hn_rx_ring[i]; stat += *((uint64_t *)((uint8_t *)rxr + ofs)); } error = sysctl_handle_64(oidp, &stat, 0, req); if (error || req->newptr == NULL) return error; /* Zero out this stat. */ for (i = 0; i < sc->hn_rx_ring_cnt; ++i) { rxr = &sc->hn_rx_ring[i]; *((uint64_t *)((uint8_t *)rxr + ofs)) = 0; } return 0; } static int hn_tx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int ofs = arg2, i, error; struct hn_tx_ring *txr; u_long stat; stat = 0; for (i = 0; i < sc->hn_tx_ring_cnt; ++i) { txr = &sc->hn_tx_ring[i]; stat += *((u_long *)((uint8_t *)txr + ofs)); } error = sysctl_handle_long(oidp, &stat, 0, req); if (error || req->newptr == NULL) return error; /* Zero out this stat. */ for (i = 0; i < sc->hn_tx_ring_cnt; ++i) { txr = &sc->hn_tx_ring[i]; *((u_long *)((uint8_t *)txr + ofs)) = 0; } return 0; } static int hn_tx_conf_int_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int ofs = arg2, i, error, conf; struct hn_tx_ring *txr; txr = &sc->hn_tx_ring[0]; conf = *((int *)((uint8_t *)txr + ofs)); error = sysctl_handle_int(oidp, &conf, 0, req); if (error || req->newptr == NULL) return error; NV_LOCK(sc); for (i = 0; i < sc->hn_tx_ring_cnt; ++i) { txr = &sc->hn_tx_ring[i]; *((int *)((uint8_t *)txr + ofs)) = conf; } NV_UNLOCK(sc); return 0; } static int hn_check_iplen(const struct mbuf *m, int hoff) { const struct ip *ip; int len, iphlen, iplen; const struct tcphdr *th; int thoff; /* TCP data offset */ len = hoff + sizeof(struct ip); /* The packet must be at least the size of an IP header. */ if (m->m_pkthdr.len < len) return IPPROTO_DONE; /* The fixed IP header must reside completely in the first mbuf. */ if (m->m_len < len) return IPPROTO_DONE; ip = mtodo(m, hoff); /* Bound check the packet's stated IP header length. */ iphlen = ip->ip_hl << 2; if (iphlen < sizeof(struct ip)) /* minimum header length */ return IPPROTO_DONE; /* The full IP header must reside completely in the one mbuf. */ if (m->m_len < hoff + iphlen) return IPPROTO_DONE; iplen = ntohs(ip->ip_len); /* * Check that the amount of data in the buffers is as * at least much as the IP header would have us expect. */ if (m->m_pkthdr.len < hoff + iplen) return IPPROTO_DONE; /* * Ignore IP fragments. */ if (ntohs(ip->ip_off) & (IP_OFFMASK | IP_MF)) return IPPROTO_DONE; /* * The TCP/IP or UDP/IP header must be entirely contained within * the first fragment of a packet. */ switch (ip->ip_p) { case IPPROTO_TCP: if (iplen < iphlen + sizeof(struct tcphdr)) return IPPROTO_DONE; if (m->m_len < hoff + iphlen + sizeof(struct tcphdr)) return IPPROTO_DONE; th = (const struct tcphdr *)((const uint8_t *)ip + iphlen); thoff = th->th_off << 2; if (thoff < sizeof(struct tcphdr) || thoff + iphlen > iplen) return IPPROTO_DONE; if (m->m_len < hoff + iphlen + thoff) return IPPROTO_DONE; break; case IPPROTO_UDP: if (iplen < iphlen + sizeof(struct udphdr)) return IPPROTO_DONE; if (m->m_len < hoff + iphlen + sizeof(struct udphdr)) return IPPROTO_DONE; break; default: if (iplen < iphlen) return IPPROTO_DONE; break; } return ip->ip_p; } static void hn_dma_map_paddr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { bus_addr_t *paddr = arg; if (error) return; KASSERT(nseg == 1, ("too many segments %d!", nseg)); *paddr = segs->ds_addr; } static void hn_create_rx_data(struct hn_softc *sc) { struct sysctl_oid_list *child; struct sysctl_ctx_list *ctx; device_t dev = sc->hn_dev; #if defined(INET) || defined(INET6) #if __FreeBSD_version >= 1100095 int lroent_cnt; #endif #endif int i; sc->hn_rx_ring_cnt = 1; /* TODO: vRSS */ sc->hn_rx_ring = malloc(sizeof(struct hn_rx_ring) * sc->hn_rx_ring_cnt, M_NETVSC, M_WAITOK | M_ZERO); #if defined(INET) || defined(INET6) #if __FreeBSD_version >= 1100095 lroent_cnt = hn_lro_entry_count; if (lroent_cnt < TCP_LRO_ENTRIES) lroent_cnt = TCP_LRO_ENTRIES; device_printf(dev, "LRO: entry count %d\n", lroent_cnt); #endif #endif /* INET || INET6 */ for (i = 0; i < sc->hn_rx_ring_cnt; ++i) { struct hn_rx_ring *rxr = &sc->hn_rx_ring[i]; if (hn_trust_hosttcp) rxr->hn_trust_hcsum |= HN_TRUST_HCSUM_TCP; if (hn_trust_hostudp) rxr->hn_trust_hcsum |= HN_TRUST_HCSUM_UDP; if (hn_trust_hostip) rxr->hn_trust_hcsum |= HN_TRUST_HCSUM_IP; rxr->hn_ifp = sc->hn_ifp; + rxr->hn_rx_idx = i; /* * Initialize LRO. */ #if defined(INET) || defined(INET6) #if __FreeBSD_version >= 1100095 tcp_lro_init_args(&rxr->hn_lro, sc->hn_ifp, lroent_cnt, 0); #else tcp_lro_init(&rxr->hn_lro); rxr->hn_lro.ifp = sc->hn_ifp; #endif #if __FreeBSD_version >= 1100099 rxr->hn_lro.lro_length_lim = HN_LRO_LENLIM_DEF; rxr->hn_lro.lro_ackcnt_lim = HN_LRO_ACKCNT_DEF; #endif #endif /* INET || INET6 */ } ctx = device_get_sysctl_ctx(dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev)); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_queued", CTLTYPE_U64 | CTLFLAG_RW, sc, __offsetof(struct hn_rx_ring, hn_lro.lro_queued), hn_rx_stat_u64_sysctl, "LU", "LRO queued"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_flushed", CTLTYPE_U64 | CTLFLAG_RW, sc, __offsetof(struct hn_rx_ring, hn_lro.lro_flushed), hn_rx_stat_u64_sysctl, "LU", "LRO flushed"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_tried", CTLTYPE_ULONG | CTLFLAG_RW, sc, __offsetof(struct hn_rx_ring, hn_lro_tried), hn_rx_stat_ulong_sysctl, "LU", "# of LRO tries"); #if __FreeBSD_version >= 1100099 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_length_lim", CTLTYPE_UINT | CTLFLAG_RW, sc, 0, hn_lro_lenlim_sysctl, "IU", "Max # of data bytes to be aggregated by LRO"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_ackcnt_lim", CTLTYPE_INT | CTLFLAG_RW, sc, 0, hn_lro_ackcnt_sysctl, "I", "Max # of ACKs to be aggregated by LRO"); #endif SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hosttcp", CTLTYPE_INT | CTLFLAG_RW, sc, HN_TRUST_HCSUM_TCP, hn_trust_hcsum_sysctl, "I", "Trust tcp segement verification on host side, " "when csum info is missing"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hostudp", CTLTYPE_INT | CTLFLAG_RW, sc, HN_TRUST_HCSUM_UDP, hn_trust_hcsum_sysctl, "I", "Trust udp datagram verification on host side, " "when csum info is missing"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hostip", CTLTYPE_INT | CTLFLAG_RW, sc, HN_TRUST_HCSUM_IP, hn_trust_hcsum_sysctl, "I", "Trust ip packet verification on host side, " "when csum info is missing"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_ip", CTLTYPE_ULONG | CTLFLAG_RW, sc, __offsetof(struct hn_rx_ring, hn_csum_ip), hn_rx_stat_ulong_sysctl, "LU", "RXCSUM IP"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_tcp", CTLTYPE_ULONG | CTLFLAG_RW, sc, __offsetof(struct hn_rx_ring, hn_csum_tcp), hn_rx_stat_ulong_sysctl, "LU", "RXCSUM TCP"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_udp", CTLTYPE_ULONG | CTLFLAG_RW, sc, __offsetof(struct hn_rx_ring, hn_csum_udp), hn_rx_stat_ulong_sysctl, "LU", "RXCSUM UDP"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_trusted", CTLTYPE_ULONG | CTLFLAG_RW, sc, __offsetof(struct hn_rx_ring, hn_csum_trusted), hn_rx_stat_ulong_sysctl, "LU", "# of packets that we trust host's csum verification"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "small_pkts", CTLTYPE_ULONG | CTLFLAG_RW, sc, __offsetof(struct hn_rx_ring, hn_small_pkts), hn_rx_stat_ulong_sysctl, "LU", "# of small packets received"); } static void hn_destroy_rx_data(struct hn_softc *sc) { #if defined(INET) || defined(INET6) int i; #endif if (sc->hn_rx_ring_cnt == 0) return; #if defined(INET) || defined(INET6) for (i = 0; i < sc->hn_rx_ring_cnt; ++i) tcp_lro_free(&sc->hn_rx_ring[i].hn_lro); #endif free(sc->hn_rx_ring, M_NETVSC); sc->hn_rx_ring = NULL; sc->hn_rx_ring_cnt = 0; } static int hn_create_tx_ring(struct hn_softc *sc, int id) { struct hn_tx_ring *txr = &sc->hn_tx_ring[id]; bus_dma_tag_t parent_dtag; int error, i; txr->hn_sc = sc; #ifndef HN_USE_TXDESC_BUFRING mtx_init(&txr->hn_txlist_spin, "hn txlist", NULL, MTX_SPIN); #endif mtx_init(&txr->hn_tx_lock, "hn tx", NULL, MTX_DEF); txr->hn_txdesc_cnt = HN_TX_DESC_CNT; txr->hn_txdesc = malloc(sizeof(struct hn_txdesc) * txr->hn_txdesc_cnt, M_NETVSC, M_WAITOK | M_ZERO); #ifndef HN_USE_TXDESC_BUFRING SLIST_INIT(&txr->hn_txlist); #else txr->hn_txdesc_br = buf_ring_alloc(txr->hn_txdesc_cnt, M_NETVSC, M_WAITOK, &txr->hn_tx_lock); #endif txr->hn_tx_taskq = sc->hn_tx_taskq; if (hn_use_if_start) { txr->hn_txeof = hn_start_txeof; TASK_INIT(&txr->hn_tx_task, 0, hn_start_taskfunc, txr); TASK_INIT(&txr->hn_txeof_task, 0, hn_start_txeof_taskfunc, txr); } else { txr->hn_txeof = hn_xmit_txeof; TASK_INIT(&txr->hn_tx_task, 0, hn_xmit_taskfunc, txr); TASK_INIT(&txr->hn_txeof_task, 0, hn_xmit_txeof_taskfunc, txr); txr->hn_mbuf_br = buf_ring_alloc(txr->hn_txdesc_cnt, M_NETVSC, M_WAITOK, &txr->hn_tx_lock); } txr->hn_direct_tx_size = hn_direct_tx_size; if (hv_vmbus_protocal_version >= HV_VMBUS_VERSION_WIN8_1) txr->hn_csum_assist = HN_CSUM_ASSIST; else txr->hn_csum_assist = HN_CSUM_ASSIST_WIN8; /* * Always schedule transmission instead of trying to do direct * transmission. This one gives the best performance so far. */ txr->hn_sched_tx = 1; parent_dtag = bus_get_dma_tag(sc->hn_dev); /* DMA tag for RNDIS messages. */ error = bus_dma_tag_create(parent_dtag, /* parent */ HN_RNDIS_MSG_ALIGN, /* alignment */ HN_RNDIS_MSG_BOUNDARY, /* boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ HN_RNDIS_MSG_LEN, /* maxsize */ 1, /* nsegments */ HN_RNDIS_MSG_LEN, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &txr->hn_tx_rndis_dtag); if (error) { device_printf(sc->hn_dev, "failed to create rndis dmatag\n"); return error; } /* DMA tag for data. */ error = bus_dma_tag_create(parent_dtag, /* parent */ 1, /* alignment */ HN_TX_DATA_BOUNDARY, /* boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ HN_TX_DATA_MAXSIZE, /* maxsize */ HN_TX_DATA_SEGCNT_MAX, /* nsegments */ HN_TX_DATA_SEGSIZE, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &txr->hn_tx_data_dtag); if (error) { device_printf(sc->hn_dev, "failed to create data dmatag\n"); return error; } for (i = 0; i < txr->hn_txdesc_cnt; ++i) { struct hn_txdesc *txd = &txr->hn_txdesc[i]; txd->txr = txr; /* * Allocate and load RNDIS messages. */ error = bus_dmamem_alloc(txr->hn_tx_rndis_dtag, (void **)&txd->rndis_msg, BUS_DMA_WAITOK | BUS_DMA_COHERENT, &txd->rndis_msg_dmap); if (error) { device_printf(sc->hn_dev, "failed to allocate rndis_msg, %d\n", i); return error; } error = bus_dmamap_load(txr->hn_tx_rndis_dtag, txd->rndis_msg_dmap, txd->rndis_msg, HN_RNDIS_MSG_LEN, hn_dma_map_paddr, &txd->rndis_msg_paddr, BUS_DMA_NOWAIT); if (error) { device_printf(sc->hn_dev, "failed to load rndis_msg, %d\n", i); bus_dmamem_free(txr->hn_tx_rndis_dtag, txd->rndis_msg, txd->rndis_msg_dmap); return error; } /* DMA map for TX data. */ error = bus_dmamap_create(txr->hn_tx_data_dtag, 0, &txd->data_dmap); if (error) { device_printf(sc->hn_dev, "failed to allocate tx data dmamap\n"); bus_dmamap_unload(txr->hn_tx_rndis_dtag, txd->rndis_msg_dmap); bus_dmamem_free(txr->hn_tx_rndis_dtag, txd->rndis_msg, txd->rndis_msg_dmap); return error; } /* All set, put it to list */ txd->flags |= HN_TXD_FLAG_ONLIST; #ifndef HN_USE_TXDESC_BUFRING SLIST_INSERT_HEAD(&txr->hn_txlist, txd, link); #else buf_ring_enqueue(txr->hn_txdesc_br, txd); #endif } txr->hn_txdesc_avail = txr->hn_txdesc_cnt; if (sc->hn_tx_sysctl_tree != NULL) { struct sysctl_oid_list *child; struct sysctl_ctx_list *ctx; char name[16]; /* * Create per TX ring sysctl tree: * dev.hn.UNIT.tx.RINGID */ ctx = device_get_sysctl_ctx(sc->hn_dev); child = SYSCTL_CHILDREN(sc->hn_tx_sysctl_tree); snprintf(name, sizeof(name), "%d", id); txr->hn_tx_sysctl_tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, name, CTLFLAG_RD, 0, ""); if (txr->hn_tx_sysctl_tree != NULL) { child = SYSCTL_CHILDREN(txr->hn_tx_sysctl_tree); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "txdesc_avail", CTLFLAG_RD, &txr->hn_txdesc_avail, 0, "# of available TX descs"); if (!hn_use_if_start) { SYSCTL_ADD_INT(ctx, child, OID_AUTO, "oactive", CTLFLAG_RD, &txr->hn_oactive, 0, "over active"); } } } return 0; } static void hn_txdesc_dmamap_destroy(struct hn_txdesc *txd) { struct hn_tx_ring *txr = txd->txr; KASSERT(txd->m == NULL, ("still has mbuf installed")); KASSERT((txd->flags & HN_TXD_FLAG_DMAMAP) == 0, ("still dma mapped")); bus_dmamap_unload(txr->hn_tx_rndis_dtag, txd->rndis_msg_dmap); bus_dmamem_free(txr->hn_tx_rndis_dtag, txd->rndis_msg, txd->rndis_msg_dmap); bus_dmamap_destroy(txr->hn_tx_data_dtag, txd->data_dmap); } static void hn_destroy_tx_ring(struct hn_tx_ring *txr) { struct hn_txdesc *txd; if (txr->hn_txdesc == NULL) return; #ifndef HN_USE_TXDESC_BUFRING while ((txd = SLIST_FIRST(&txr->hn_txlist)) != NULL) { SLIST_REMOVE_HEAD(&txr->hn_txlist, link); hn_txdesc_dmamap_destroy(txd); } #else mtx_lock(&txr->hn_tx_lock); while ((txd = buf_ring_dequeue_sc(txr->hn_txdesc_br)) != NULL) hn_txdesc_dmamap_destroy(txd); mtx_unlock(&txr->hn_tx_lock); #endif if (txr->hn_tx_data_dtag != NULL) bus_dma_tag_destroy(txr->hn_tx_data_dtag); if (txr->hn_tx_rndis_dtag != NULL) bus_dma_tag_destroy(txr->hn_tx_rndis_dtag); #ifdef HN_USE_TXDESC_BUFRING buf_ring_free(txr->hn_txdesc_br, M_NETVSC); #endif free(txr->hn_txdesc, M_NETVSC); txr->hn_txdesc = NULL; if (txr->hn_mbuf_br != NULL) buf_ring_free(txr->hn_mbuf_br, M_NETVSC); #ifndef HN_USE_TXDESC_BUFRING mtx_destroy(&txr->hn_txlist_spin); #endif mtx_destroy(&txr->hn_tx_lock); } static int hn_create_tx_data(struct hn_softc *sc) { struct sysctl_oid_list *child; struct sysctl_ctx_list *ctx; int i; if (hn_use_if_start) { /* ifnet.if_start only needs one TX ring */ sc->hn_tx_ring_cnt = 1; } else { sc->hn_tx_ring_cnt = 1; /* TODO: vRSS */ } sc->hn_tx_ring = malloc(sizeof(struct hn_tx_ring) * sc->hn_tx_ring_cnt, M_NETVSC, M_WAITOK | M_ZERO); ctx = device_get_sysctl_ctx(sc->hn_dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->hn_dev)); /* Create dev.hn.UNIT.tx sysctl tree */ sc->hn_tx_sysctl_tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "tx", CTLFLAG_RD, 0, ""); for (i = 0; i < sc->hn_tx_ring_cnt; ++i) { int error; error = hn_create_tx_ring(sc, i); if (error) return error; } SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "no_txdescs", CTLTYPE_ULONG | CTLFLAG_RW, sc, __offsetof(struct hn_tx_ring, hn_no_txdescs), hn_tx_stat_ulong_sysctl, "LU", "# of times short of TX descs"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "send_failed", CTLTYPE_ULONG | CTLFLAG_RW, sc, __offsetof(struct hn_tx_ring, hn_send_failed), hn_tx_stat_ulong_sysctl, "LU", "# of hyper-v sending failure"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "txdma_failed", CTLTYPE_ULONG | CTLFLAG_RW, sc, __offsetof(struct hn_tx_ring, hn_txdma_failed), hn_tx_stat_ulong_sysctl, "LU", "# of TX DMA failure"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_collapsed", CTLTYPE_ULONG | CTLFLAG_RW, sc, __offsetof(struct hn_tx_ring, hn_tx_collapsed), hn_tx_stat_ulong_sysctl, "LU", "# of TX mbuf collapsed"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_chimney", CTLTYPE_ULONG | CTLFLAG_RW, sc, __offsetof(struct hn_tx_ring, hn_tx_chimney), hn_tx_stat_ulong_sysctl, "LU", "# of chimney send"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "txdesc_cnt", CTLFLAG_RD, &sc->hn_tx_ring[0].hn_txdesc_cnt, 0, "# of total TX descs"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_chimney_max", CTLFLAG_RD, &sc->hn_tx_chimney_max, 0, "Chimney send packet size upper boundary"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_chimney_size", CTLTYPE_INT | CTLFLAG_RW, sc, 0, hn_tx_chimney_size_sysctl, "I", "Chimney send packet size limit"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "direct_tx_size", CTLTYPE_INT | CTLFLAG_RW, sc, __offsetof(struct hn_tx_ring, hn_direct_tx_size), hn_tx_conf_int_sysctl, "I", "Size of the packet for direct transmission"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "sched_tx", CTLTYPE_INT | CTLFLAG_RW, sc, __offsetof(struct hn_tx_ring, hn_sched_tx), hn_tx_conf_int_sysctl, "I", "Always schedule transmission " "instead of doing direct transmission"); return 0; } static void hn_set_tx_chimney_size(struct hn_softc *sc, int chimney_size) { int i; NV_LOCK(sc); for (i = 0; i < sc->hn_tx_ring_cnt; ++i) sc->hn_tx_ring[i].hn_tx_chimney_size = chimney_size; NV_UNLOCK(sc); } static void hn_destroy_tx_data(struct hn_softc *sc) { int i; if (sc->hn_tx_ring_cnt == 0) return; for (i = 0; i < sc->hn_tx_ring_cnt; ++i) hn_destroy_tx_ring(&sc->hn_tx_ring[i]); free(sc->hn_tx_ring, M_NETVSC); sc->hn_tx_ring = NULL; sc->hn_tx_ring_cnt = 0; } static void hn_start_taskfunc(void *xtxr, int pending __unused) { struct hn_tx_ring *txr = xtxr; mtx_lock(&txr->hn_tx_lock); hn_start_locked(txr, 0); mtx_unlock(&txr->hn_tx_lock); } static void hn_start_txeof_taskfunc(void *xtxr, int pending __unused) { struct hn_tx_ring *txr = xtxr; mtx_lock(&txr->hn_tx_lock); atomic_clear_int(&txr->hn_sc->hn_ifp->if_drv_flags, IFF_DRV_OACTIVE); hn_start_locked(txr, 0); mtx_unlock(&txr->hn_tx_lock); } static void hn_stop_tx_tasks(struct hn_softc *sc) { int i; for (i = 0; i < sc->hn_tx_ring_cnt; ++i) { struct hn_tx_ring *txr = &sc->hn_tx_ring[i]; taskqueue_drain(txr->hn_tx_taskq, &txr->hn_tx_task); taskqueue_drain(txr->hn_tx_taskq, &txr->hn_txeof_task); } } static int hn_xmit(struct hn_tx_ring *txr, int len) { struct hn_softc *sc = txr->hn_sc; struct ifnet *ifp = sc->hn_ifp; struct mbuf *m_head; mtx_assert(&txr->hn_tx_lock, MA_OWNED); KASSERT(hn_use_if_start == 0, ("hn_xmit is called, when if_start is enabled")); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || txr->hn_oactive) return 0; while ((m_head = drbr_peek(ifp, txr->hn_mbuf_br)) != NULL) { struct hn_txdesc *txd; int error; if (len > 0 && m_head->m_pkthdr.len > len) { /* * This sending could be time consuming; let callers * dispatch this packet sending (and sending of any * following up packets) to tx taskqueue. */ drbr_putback(ifp, txr->hn_mbuf_br, m_head); return 1; } txd = hn_txdesc_get(txr); if (txd == NULL) { txr->hn_no_txdescs++; drbr_putback(ifp, txr->hn_mbuf_br, m_head); txr->hn_oactive = 1; break; } error = hn_encap(txr, txd, &m_head); if (error) { /* Both txd and m_head are freed; discard */ drbr_advance(ifp, txr->hn_mbuf_br); continue; } error = hn_send_pkt(ifp, txr, txd); if (__predict_false(error)) { /* txd is freed, but m_head is not */ drbr_putback(ifp, txr->hn_mbuf_br, m_head); txr->hn_oactive = 1; break; } /* Sent */ drbr_advance(ifp, txr->hn_mbuf_br); } return 0; } static int hn_transmit(struct ifnet *ifp, struct mbuf *m) { struct hn_softc *sc = ifp->if_softc; struct hn_tx_ring *txr; - int error; + int error, idx = 0; - /* TODO: vRSS, TX ring selection */ - txr = &sc->hn_tx_ring[0]; + /* + * Select the TX ring based on flowid + */ + if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) + idx = m->m_pkthdr.flowid % sc->hn_tx_ring_cnt; + txr = &sc->hn_tx_ring[idx]; error = drbr_enqueue(ifp, txr->hn_mbuf_br, m); if (error) return error; if (txr->hn_oactive) return 0; if (txr->hn_sched_tx) goto do_sched; if (mtx_trylock(&txr->hn_tx_lock)) { int sched; sched = hn_xmit(txr, txr->hn_direct_tx_size); mtx_unlock(&txr->hn_tx_lock); if (!sched) return 0; } do_sched: taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_tx_task); return 0; } static void hn_xmit_qflush(struct ifnet *ifp) { struct hn_softc *sc = ifp->if_softc; int i; for (i = 0; i < sc->hn_tx_ring_cnt; ++i) { struct hn_tx_ring *txr = &sc->hn_tx_ring[i]; struct mbuf *m; mtx_lock(&txr->hn_tx_lock); while ((m = buf_ring_dequeue_sc(txr->hn_mbuf_br)) != NULL) m_freem(m); mtx_unlock(&txr->hn_tx_lock); } if_qflush(ifp); } static void hn_xmit_txeof(struct hn_tx_ring *txr) { if (txr->hn_sched_tx) goto do_sched; if (mtx_trylock(&txr->hn_tx_lock)) { int sched; txr->hn_oactive = 0; sched = hn_xmit(txr, txr->hn_direct_tx_size); mtx_unlock(&txr->hn_tx_lock); if (sched) { taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_tx_task); } } else { do_sched: /* * Release the oactive earlier, with the hope, that * others could catch up. The task will clear the * oactive again with the hn_tx_lock to avoid possible * races. */ txr->hn_oactive = 0; taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_txeof_task); } } static void hn_xmit_taskfunc(void *xtxr, int pending __unused) { struct hn_tx_ring *txr = xtxr; mtx_lock(&txr->hn_tx_lock); hn_xmit(txr, 0); mtx_unlock(&txr->hn_tx_lock); } static void hn_xmit_txeof_taskfunc(void *xtxr, int pending __unused) { struct hn_tx_ring *txr = xtxr; mtx_lock(&txr->hn_tx_lock); txr->hn_oactive = 0; hn_xmit(txr, 0); mtx_unlock(&txr->hn_tx_lock); } static void hn_tx_taskq_create(void *arg __unused) { if (!hn_share_tx_taskq) return; hn_tx_taskq = taskqueue_create("hn_tx", M_WAITOK, taskqueue_thread_enqueue, &hn_tx_taskq); if (hn_bind_tx_taskq >= 0) { int cpu = hn_bind_tx_taskq; cpuset_t cpu_set; if (cpu > mp_ncpus - 1) cpu = mp_ncpus - 1; CPU_SETOF(cpu, &cpu_set); taskqueue_start_threads_cpuset(&hn_tx_taskq, 1, PI_NET, &cpu_set, "hn tx"); } else { taskqueue_start_threads(&hn_tx_taskq, 1, PI_NET, "hn tx"); } } SYSINIT(hn_txtq_create, SI_SUB_DRIVERS, SI_ORDER_FIRST, hn_tx_taskq_create, NULL); static void hn_tx_taskq_destroy(void *arg __unused) { if (hn_tx_taskq != NULL) taskqueue_free(hn_tx_taskq); } SYSUNINIT(hn_txtq_destroy, SI_SUB_DRIVERS, SI_ORDER_FIRST, hn_tx_taskq_destroy, NULL); static device_method_t netvsc_methods[] = { /* Device interface */ DEVMETHOD(device_probe, netvsc_probe), DEVMETHOD(device_attach, netvsc_attach), DEVMETHOD(device_detach, netvsc_detach), DEVMETHOD(device_shutdown, netvsc_shutdown), { 0, 0 } }; static driver_t netvsc_driver = { NETVSC_DEVNAME, netvsc_methods, sizeof(hn_softc_t) }; static devclass_t netvsc_devclass; DRIVER_MODULE(hn, vmbus, netvsc_driver, netvsc_devclass, 0, 0); MODULE_VERSION(hn, 1); MODULE_DEPEND(hn, vmbus, 1, 1, 1);