Index: head/sys/dev/vnic/nic_main.c =================================================================== --- head/sys/dev/vnic/nic_main.c (revision 296035) +++ head/sys/dev/vnic/nic_main.c (revision 296036) @@ -1,1167 +1,1164 @@ /* * Copyright (C) 2015 Cavium Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ * */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef PCI_IOV #include #include #endif #include "thunder_bgx.h" #include "nic_reg.h" #include "nic.h" #include "q_struct.h" #define VNIC_PF_DEVSTR "Cavium Thunder NIC Physical Function Driver" #define VNIC_PF_REG_RID PCIR_BAR(PCI_CFG_REG_BAR_NUM) #define NIC_SET_VF_LMAC_MAP(bgx, lmac) ((((bgx) & 0xF) << 4) | ((lmac) & 0xF)) #define NIC_GET_BGX_FROM_VF_LMAC_MAP(map) (((map) >> 4) & 0xF) #define NIC_GET_LMAC_FROM_VF_LMAC_MAP(map) ((map) & 0xF) /* Structure to be used by the SR-IOV for VF configuration schemas */ struct nicvf_info { boolean_t vf_enabled; int vf_flags; }; struct nicpf { device_t dev; uint8_t rev_id; uint8_t node; u_int flags; uint8_t num_vf_en; /* No of VF enabled */ struct nicvf_info vf_info[MAX_NUM_VFS_SUPPORTED]; struct resource * reg_base; /* Register start address */ struct pkind_cfg pkind; uint8_t vf_lmac_map[MAX_LMAC]; boolean_t mbx_lock[MAX_NUM_VFS_SUPPORTED]; struct callout check_link; struct mtx check_link_mtx; uint8_t link[MAX_LMAC]; uint8_t duplex[MAX_LMAC]; uint32_t speed[MAX_LMAC]; uint16_t cpi_base[MAX_NUM_VFS_SUPPORTED]; uint16_t rss_ind_tbl_size; /* MSI-X */ boolean_t msix_enabled; uint8_t num_vec; struct msix_entry msix_entries[NIC_PF_MSIX_VECTORS]; struct resource * msix_table_res; }; static int nicpf_probe(device_t); static int nicpf_attach(device_t); static int nicpf_detach(device_t); #ifdef PCI_IOV static int nicpf_iov_init(device_t, uint16_t, const nvlist_t *); static void nicpf_iov_uninit(device_t); static int nicpf_iov_addr_vf(device_t, uint16_t, const nvlist_t *); #endif static device_method_t nicpf_methods[] = { /* Device interface */ DEVMETHOD(device_probe, nicpf_probe), DEVMETHOD(device_attach, nicpf_attach), DEVMETHOD(device_detach, nicpf_detach), /* PCI SR-IOV interface */ #ifdef PCI_IOV DEVMETHOD(pci_iov_init, nicpf_iov_init), DEVMETHOD(pci_iov_uninit, nicpf_iov_uninit), DEVMETHOD(pci_iov_add_vf, nicpf_iov_addr_vf), #endif DEVMETHOD_END, }; static driver_t nicpf_driver = { "vnicpf", nicpf_methods, sizeof(struct nicpf), }; static devclass_t nicpf_devclass; DRIVER_MODULE(nicpf, pci, nicpf_driver, nicpf_devclass, 0, 0); MODULE_DEPEND(nicpf, pci, 1, 1, 1); MODULE_DEPEND(nicpf, ether, 1, 1, 1); MODULE_DEPEND(nicpf, thunder_bgx, 1, 1, 1); static int nicpf_alloc_res(struct nicpf *); static void nicpf_free_res(struct nicpf *); static void nic_set_lmac_vf_mapping(struct nicpf *); static void nic_init_hw(struct nicpf *); static int nic_sriov_init(device_t, struct nicpf *); static void nic_poll_for_link(void *); static int nic_register_interrupts(struct nicpf *); static void nic_unregister_interrupts(struct nicpf *); /* * Device interface */ static int nicpf_probe(device_t dev) { uint16_t vendor_id; uint16_t device_id; vendor_id = pci_get_vendor(dev); device_id = pci_get_device(dev); if (vendor_id == PCI_VENDOR_ID_CAVIUM && device_id == PCI_DEVICE_ID_THUNDER_NIC_PF) { device_set_desc(dev, VNIC_PF_DEVSTR); return (BUS_PROBE_DEFAULT); } return (ENXIO); } static int nicpf_attach(device_t dev) { struct nicpf *nic; int err; nic = device_get_softc(dev); nic->dev = dev; /* Enable bus mastering */ pci_enable_busmaster(dev); /* Allocate PCI resources */ err = nicpf_alloc_res(nic); if (err != 0) { device_printf(dev, "Could not allocate PCI resources\n"); return (err); } nic->node = nic_get_node_id(nic->reg_base); nic->rev_id = pci_read_config(dev, PCIR_REVID, 1); /* Enable Traffic Network Switch (TNS) bypass mode by default */ nic->flags &= ~NIC_TNS_ENABLED; nic_set_lmac_vf_mapping(nic); /* Initialize hardware */ nic_init_hw(nic); /* Set RSS TBL size for each VF */ nic->rss_ind_tbl_size = NIC_MAX_RSS_IDR_TBL_SIZE; /* Setup interrupts */ err = nic_register_interrupts(nic); if (err != 0) goto err_free_res; /* Configure SRIOV */ err = nic_sriov_init(dev, nic); if (err != 0) goto err_free_intr; if (nic->flags & NIC_TNS_ENABLED) return (0); mtx_init(&nic->check_link_mtx, "VNIC PF link poll", NULL, MTX_DEF); /* Register physical link status poll callout */ callout_init_mtx(&nic->check_link, &nic->check_link_mtx, 0); mtx_lock(&nic->check_link_mtx); nic_poll_for_link(nic); mtx_unlock(&nic->check_link_mtx); return (0); err_free_intr: nic_unregister_interrupts(nic); err_free_res: nicpf_free_res(nic); pci_disable_busmaster(dev); return (err); } static int nicpf_detach(device_t dev) { struct nicpf *nic; nic = device_get_softc(dev); callout_drain(&nic->check_link); mtx_destroy(&nic->check_link_mtx); nic_unregister_interrupts(nic); nicpf_free_res(nic); pci_disable_busmaster(dev); return (0); } /* * SR-IOV interface */ #ifdef PCI_IOV static int nicpf_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *params) { struct nicpf *nic; nic = device_get_softc(dev); nic->num_vf_en = 0; if (num_vfs == 0) return (ENXIO); if (num_vfs > MAX_NUM_VFS_SUPPORTED) return (EINVAL); /* * Just set variables here. * The number of VFs will be written to configuration * space later in PCI_ADD_VF(). */ nic->num_vf_en = num_vfs; nic->flags |= NIC_SRIOV_ENABLED; return (0); } static void nicpf_iov_uninit(device_t dev) { /* ARM64TODO: Implement this function */ } static int nicpf_iov_addr_vf(device_t dev, uint16_t vfnum, const nvlist_t *params) { const void *mac; struct nicpf *nic; size_t size; int bgx, lmac; nic = device_get_softc(dev); if ((nic->flags & NIC_SRIOV_ENABLED) == 0) return (ENXIO); if (nvlist_exists_binary(params, "mac-addr") != 0) { mac = nvlist_get_binary(params, "mac-addr", &size); bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vfnum]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vfnum]); bgx_set_lmac_mac(nic->node, bgx, lmac, mac); } return (0); } #endif /* * Helper routines */ static int nicpf_alloc_res(struct nicpf *nic) { device_t dev; int rid; dev = nic->dev; rid = VNIC_PF_REG_RID; nic->reg_base = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (nic->reg_base == NULL) { /* For verbose output print some more details */ if (bootverbose) { device_printf(dev, "Could not allocate registers memory\n"); } return (ENXIO); } return (0); } static void nicpf_free_res(struct nicpf *nic) { device_t dev; dev = nic->dev; if (nic->reg_base != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(nic->reg_base), nic->reg_base); } } /* Register read/write APIs */ static __inline void nic_reg_write(struct nicpf *nic, bus_space_handle_t offset, uint64_t val) { bus_write_8(nic->reg_base, offset, val); } static __inline uint64_t nic_reg_read(struct nicpf *nic, uint64_t offset) { uint64_t val; val = bus_read_8(nic->reg_base, offset); return (val); } /* PF -> VF mailbox communication APIs */ static void nic_enable_mbx_intr(struct nicpf *nic) { /* Enable mailbox interrupt for all 128 VFs */ nic_reg_write(nic, NIC_PF_MAILBOX_ENA_W1S, ~0UL); nic_reg_write(nic, NIC_PF_MAILBOX_ENA_W1S + sizeof(uint64_t), ~0UL); } static void nic_clear_mbx_intr(struct nicpf *nic, int vf, int mbx_reg) { nic_reg_write(nic, NIC_PF_MAILBOX_INT + (mbx_reg << 3), (1UL << vf)); } static uint64_t nic_get_mbx_addr(int vf) { return (NIC_PF_VF_0_127_MAILBOX_0_1 + (vf << NIC_VF_NUM_SHIFT)); } /* * Send a mailbox message to VF * @vf: vf to which this message to be sent * @mbx: Message to be sent */ static void nic_send_msg_to_vf(struct nicpf *nic, int vf, union nic_mbx *mbx) { bus_space_handle_t mbx_addr = nic_get_mbx_addr(vf); uint64_t *msg = (uint64_t *)mbx; /* * In first revision HW, mbox interrupt is triggerred * when PF writes to MBOX(1), in next revisions when * PF writes to MBOX(0) */ if (nic->rev_id == 0) { nic_reg_write(nic, mbx_addr + 0, msg[0]); nic_reg_write(nic, mbx_addr + 8, msg[1]); } else { nic_reg_write(nic, mbx_addr + 8, msg[1]); nic_reg_write(nic, mbx_addr + 0, msg[0]); } } /* * Responds to VF's READY message with VF's * ID, node, MAC address e.t.c * @vf: VF which sent READY message */ static void nic_mbx_send_ready(struct nicpf *nic, int vf) { union nic_mbx mbx = {}; int bgx_idx, lmac; const char *mac; mbx.nic_cfg.msg = NIC_MBOX_MSG_READY; mbx.nic_cfg.vf_id = vf; if (nic->flags & NIC_TNS_ENABLED) mbx.nic_cfg.tns_mode = NIC_TNS_MODE; else mbx.nic_cfg.tns_mode = NIC_TNS_BYPASS_MODE; if (vf < MAX_LMAC) { bgx_idx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); mac = bgx_get_lmac_mac(nic->node, bgx_idx, lmac); if (mac) { memcpy((uint8_t *)&mbx.nic_cfg.mac_addr, mac, ETHER_ADDR_LEN); } } mbx.nic_cfg.node_id = nic->node; mbx.nic_cfg.loopback_supported = vf < MAX_LMAC; nic_send_msg_to_vf(nic, vf, &mbx); } /* * ACKs VF's mailbox message * @vf: VF to which ACK to be sent */ static void nic_mbx_send_ack(struct nicpf *nic, int vf) { union nic_mbx mbx = {}; mbx.msg.msg = NIC_MBOX_MSG_ACK; nic_send_msg_to_vf(nic, vf, &mbx); } /* * NACKs VF's mailbox message that PF is not able to * complete the action * @vf: VF to which ACK to be sent */ static void nic_mbx_send_nack(struct nicpf *nic, int vf) { union nic_mbx mbx = {}; mbx.msg.msg = NIC_MBOX_MSG_NACK; nic_send_msg_to_vf(nic, vf, &mbx); } /* * Flush all in flight receive packets to memory and * bring down an active RQ */ static int nic_rcv_queue_sw_sync(struct nicpf *nic) { uint16_t timeout = ~0x00; nic_reg_write(nic, NIC_PF_SW_SYNC_RX, 0x01); /* Wait till sync cycle is finished */ while (timeout) { if (nic_reg_read(nic, NIC_PF_SW_SYNC_RX_DONE) & 0x1) break; timeout--; } nic_reg_write(nic, NIC_PF_SW_SYNC_RX, 0x00); if (!timeout) { device_printf(nic->dev, "Receive queue software sync failed\n"); return (ETIMEDOUT); } return (0); } /* Get BGX Rx/Tx stats and respond to VF's request */ static void nic_get_bgx_stats(struct nicpf *nic, struct bgx_stats_msg *bgx) { int bgx_idx, lmac; union nic_mbx mbx = {}; bgx_idx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[bgx->vf_id]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[bgx->vf_id]); mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS; mbx.bgx_stats.vf_id = bgx->vf_id; mbx.bgx_stats.rx = bgx->rx; mbx.bgx_stats.idx = bgx->idx; if (bgx->rx != 0) { mbx.bgx_stats.stats = bgx_get_rx_stats(nic->node, bgx_idx, lmac, bgx->idx); } else { mbx.bgx_stats.stats = bgx_get_tx_stats(nic->node, bgx_idx, lmac, bgx->idx); } nic_send_msg_to_vf(nic, bgx->vf_id, &mbx); } /* Update hardware min/max frame size */ static int nic_update_hw_frs(struct nicpf *nic, int new_frs, int vf) { if ((new_frs > NIC_HW_MAX_FRS) || (new_frs < NIC_HW_MIN_FRS)) { device_printf(nic->dev, "Invalid MTU setting from VF%d rejected, " "should be between %d and %d\n", vf, NIC_HW_MIN_FRS, NIC_HW_MAX_FRS); return (EINVAL); } new_frs += ETHER_HDR_LEN; if (new_frs <= nic->pkind.maxlen) return (0); nic->pkind.maxlen = new_frs; nic_reg_write(nic, NIC_PF_PKIND_0_15_CFG, *(uint64_t *)&nic->pkind); return (0); } /* Set minimum transmit packet size */ static void nic_set_tx_pkt_pad(struct nicpf *nic, int size) { int lmac; uint64_t lmac_cfg; /* Max value that can be set is 60 */ if (size > 60) size = 60; for (lmac = 0; lmac < (MAX_BGX_PER_CN88XX * MAX_LMAC_PER_BGX); lmac++) { lmac_cfg = nic_reg_read(nic, NIC_PF_LMAC_0_7_CFG | (lmac << 3)); lmac_cfg &= ~(0xF << 2); lmac_cfg |= ((size / 4) << 2); nic_reg_write(nic, NIC_PF_LMAC_0_7_CFG | (lmac << 3), lmac_cfg); } } /* * Function to check number of LMACs present and set VF::LMAC mapping. * Mapping will be used while initializing channels. */ static void nic_set_lmac_vf_mapping(struct nicpf *nic) { unsigned bgx_map = bgx_get_map(nic->node); int bgx, next_bgx_lmac = 0; int lmac, lmac_cnt = 0; uint64_t lmac_credit; nic->num_vf_en = 0; if (nic->flags & NIC_TNS_ENABLED) { nic->num_vf_en = DEFAULT_NUM_VF_ENABLED; return; } for (bgx = 0; bgx < NIC_MAX_BGX; bgx++) { if ((bgx_map & (1 << bgx)) == 0) continue; lmac_cnt = bgx_get_lmac_count(nic->node, bgx); for (lmac = 0; lmac < lmac_cnt; lmac++) nic->vf_lmac_map[next_bgx_lmac++] = NIC_SET_VF_LMAC_MAP(bgx, lmac); nic->num_vf_en += lmac_cnt; /* Program LMAC credits */ lmac_credit = (1UL << 1); /* channel credit enable */ lmac_credit |= (0x1ff << 2); /* Max outstanding pkt count */ /* 48KB BGX Tx buffer size, each unit is of size 16bytes */ lmac_credit |= (((((48 * 1024) / lmac_cnt) - NIC_HW_MAX_FRS) / 16) << 12); lmac = bgx * MAX_LMAC_PER_BGX; for (; lmac < lmac_cnt + (bgx * MAX_LMAC_PER_BGX); lmac++) { nic_reg_write(nic, NIC_PF_LMAC_0_7_CREDIT + (lmac * 8), lmac_credit); } } } #define TNS_PORT0_BLOCK 6 #define TNS_PORT1_BLOCK 7 #define BGX0_BLOCK 8 #define BGX1_BLOCK 9 static void nic_init_hw(struct nicpf *nic) { int i; - /* Reset NIC, in case the driver is repeatedly inserted and removed */ - nic_reg_write(nic, NIC_PF_SOFT_RESET, 1); - /* Enable NIC HW block */ nic_reg_write(nic, NIC_PF_CFG, 0x3); /* Enable backpressure */ nic_reg_write(nic, NIC_PF_BP_CFG, (1UL << 6) | 0x03); if (nic->flags & NIC_TNS_ENABLED) { nic_reg_write(nic, NIC_PF_INTF_0_1_SEND_CFG, (NIC_TNS_MODE << 7) | TNS_PORT0_BLOCK); nic_reg_write(nic, NIC_PF_INTF_0_1_SEND_CFG | (1 << 8), (NIC_TNS_MODE << 7) | TNS_PORT1_BLOCK); nic_reg_write(nic, NIC_PF_INTF_0_1_BP_CFG, (1UL << 63) | TNS_PORT0_BLOCK); nic_reg_write(nic, NIC_PF_INTF_0_1_BP_CFG + (1 << 8), (1UL << 63) | TNS_PORT1_BLOCK); } else { /* Disable TNS mode on both interfaces */ nic_reg_write(nic, NIC_PF_INTF_0_1_SEND_CFG, (NIC_TNS_BYPASS_MODE << 7) | BGX0_BLOCK); nic_reg_write(nic, NIC_PF_INTF_0_1_SEND_CFG | (1 << 8), (NIC_TNS_BYPASS_MODE << 7) | BGX1_BLOCK); nic_reg_write(nic, NIC_PF_INTF_0_1_BP_CFG, (1UL << 63) | BGX0_BLOCK); nic_reg_write(nic, NIC_PF_INTF_0_1_BP_CFG + (1 << 8), (1UL << 63) | BGX1_BLOCK); } /* PKIND configuration */ nic->pkind.minlen = 0; nic->pkind.maxlen = NIC_HW_MAX_FRS + ETHER_HDR_LEN; nic->pkind.lenerr_en = 1; nic->pkind.rx_hdr = 0; nic->pkind.hdr_sl = 0; for (i = 0; i < NIC_MAX_PKIND; i++) { nic_reg_write(nic, NIC_PF_PKIND_0_15_CFG | (i << 3), *(uint64_t *)&nic->pkind); } nic_set_tx_pkt_pad(nic, NIC_HW_MIN_FRS); /* Timer config */ nic_reg_write(nic, NIC_PF_INTR_TIMER_CFG, NICPF_CLK_PER_INT_TICK); /* Enable VLAN ethertype matching and stripping */ nic_reg_write(nic, NIC_PF_RX_ETYPE_0_7, (2 << 19) | (ETYPE_ALG_VLAN_STRIP << 16) | ETHERTYPE_VLAN); } /* Channel parse index configuration */ static void nic_config_cpi(struct nicpf *nic, struct cpi_cfg_msg *cfg) { uint32_t vnic, bgx, lmac, chan; uint32_t padd, cpi_count = 0; uint64_t cpi_base, cpi, rssi_base, rssi; uint8_t qset, rq_idx = 0; vnic = cfg->vf_id; bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vnic]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vnic]); chan = (lmac * MAX_BGX_CHANS_PER_LMAC) + (bgx * NIC_CHANS_PER_INF); cpi_base = (lmac * NIC_MAX_CPI_PER_LMAC) + (bgx * NIC_CPI_PER_BGX); rssi_base = (lmac * nic->rss_ind_tbl_size) + (bgx * NIC_RSSI_PER_BGX); /* Rx channel configuration */ nic_reg_write(nic, NIC_PF_CHAN_0_255_RX_BP_CFG | (chan << 3), (1UL << 63) | (vnic << 0)); nic_reg_write(nic, NIC_PF_CHAN_0_255_RX_CFG | (chan << 3), ((uint64_t)cfg->cpi_alg << 62) | (cpi_base << 48)); if (cfg->cpi_alg == CPI_ALG_NONE) cpi_count = 1; else if (cfg->cpi_alg == CPI_ALG_VLAN) /* 3 bits of PCP */ cpi_count = 8; else if (cfg->cpi_alg == CPI_ALG_VLAN16) /* 3 bits PCP + DEI */ cpi_count = 16; else if (cfg->cpi_alg == CPI_ALG_DIFF) /* 6bits DSCP */ cpi_count = NIC_MAX_CPI_PER_LMAC; /* RSS Qset, Qidx mapping */ qset = cfg->vf_id; rssi = rssi_base; for (; rssi < (rssi_base + cfg->rq_cnt); rssi++) { nic_reg_write(nic, NIC_PF_RSSI_0_4097_RQ | (rssi << 3), (qset << 3) | rq_idx); rq_idx++; } rssi = 0; cpi = cpi_base; for (; cpi < (cpi_base + cpi_count); cpi++) { /* Determine port to channel adder */ if (cfg->cpi_alg != CPI_ALG_DIFF) padd = cpi % cpi_count; else padd = cpi % 8; /* 3 bits CS out of 6bits DSCP */ /* Leave RSS_SIZE as '0' to disable RSS */ nic_reg_write(nic, NIC_PF_CPI_0_2047_CFG | (cpi << 3), (vnic << 24) | (padd << 16) | (rssi_base + rssi)); if ((rssi + 1) >= cfg->rq_cnt) continue; if (cfg->cpi_alg == CPI_ALG_VLAN) rssi++; else if (cfg->cpi_alg == CPI_ALG_VLAN16) rssi = ((cpi - cpi_base) & 0xe) >> 1; else if (cfg->cpi_alg == CPI_ALG_DIFF) rssi = ((cpi - cpi_base) & 0x38) >> 3; } nic->cpi_base[cfg->vf_id] = cpi_base; } /* * 4 level transmit side scheduler configutation * for TNS bypass mode * * Sample configuration for SQ0 * VNIC0-SQ0 -> TL4(0) -> TL3[0] -> TL2[0] -> TL1[0] -> BGX0 * VNIC1-SQ0 -> TL4(8) -> TL3[2] -> TL2[0] -> TL1[0] -> BGX0 * VNIC2-SQ0 -> TL4(16) -> TL3[4] -> TL2[1] -> TL1[0] -> BGX0 * VNIC3-SQ0 -> TL4(24) -> TL3[6] -> TL2[1] -> TL1[0] -> BGX0 * VNIC4-SQ0 -> TL4(512) -> TL3[128] -> TL2[32] -> TL1[1] -> BGX1 * VNIC5-SQ0 -> TL4(520) -> TL3[130] -> TL2[32] -> TL1[1] -> BGX1 * VNIC6-SQ0 -> TL4(528) -> TL3[132] -> TL2[33] -> TL1[1] -> BGX1 * VNIC7-SQ0 -> TL4(536) -> TL3[134] -> TL2[33] -> TL1[1] -> BGX1 */ static void nic_tx_channel_cfg(struct nicpf *nic, uint8_t vnic, struct sq_cfg_msg *sq) { uint32_t bgx, lmac, chan; uint32_t tl2, tl3, tl4; uint32_t rr_quantum; uint8_t sq_idx = sq->sq_num; uint8_t pqs_vnic; pqs_vnic = vnic; bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[pqs_vnic]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[pqs_vnic]); /* 24 bytes for FCS, IPG and preamble */ rr_quantum = ((NIC_HW_MAX_FRS + 24) / 4); tl4 = (lmac * NIC_TL4_PER_LMAC) + (bgx * NIC_TL4_PER_BGX); tl4 += sq_idx; tl3 = tl4 / (NIC_MAX_TL4 / NIC_MAX_TL3); nic_reg_write(nic, NIC_PF_QSET_0_127_SQ_0_7_CFG2 | ((uint64_t)vnic << NIC_QS_ID_SHIFT) | ((uint32_t)sq_idx << NIC_Q_NUM_SHIFT), tl4); nic_reg_write(nic, NIC_PF_TL4_0_1023_CFG | (tl4 << 3), ((uint64_t)vnic << 27) | ((uint32_t)sq_idx << 24) | rr_quantum); nic_reg_write(nic, NIC_PF_TL3_0_255_CFG | (tl3 << 3), rr_quantum); chan = (lmac * MAX_BGX_CHANS_PER_LMAC) + (bgx * NIC_CHANS_PER_INF); nic_reg_write(nic, NIC_PF_TL3_0_255_CHAN | (tl3 << 3), chan); /* Enable backpressure on the channel */ nic_reg_write(nic, NIC_PF_CHAN_0_255_TX_CFG | (chan << 3), 1); tl2 = tl3 >> 2; nic_reg_write(nic, NIC_PF_TL3A_0_63_CFG | (tl2 << 3), tl2); nic_reg_write(nic, NIC_PF_TL2_0_63_CFG | (tl2 << 3), rr_quantum); /* No priorities as of now */ nic_reg_write(nic, NIC_PF_TL2_0_63_PRI | (tl2 << 3), 0x00); } static int nic_config_loopback(struct nicpf *nic, struct set_loopback *lbk) { int bgx_idx, lmac_idx; if (lbk->vf_id > MAX_LMAC) return (ENXIO); bgx_idx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[lbk->vf_id]); lmac_idx = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[lbk->vf_id]); bgx_lmac_internal_loopback(nic->node, bgx_idx, lmac_idx, lbk->enable); return (0); } /* Interrupt handler to handle mailbox messages from VFs */ static void nic_handle_mbx_intr(struct nicpf *nic, int vf) { union nic_mbx mbx = {}; uint64_t *mbx_data; uint64_t mbx_addr; uint64_t reg_addr; uint64_t cfg; int bgx, lmac; int i; int ret = 0; nic->mbx_lock[vf] = TRUE; mbx_addr = nic_get_mbx_addr(vf); mbx_data = (uint64_t *)&mbx; for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) { *mbx_data = nic_reg_read(nic, mbx_addr); mbx_data++; mbx_addr += sizeof(uint64_t); } switch (mbx.msg.msg) { case NIC_MBOX_MSG_READY: nic_mbx_send_ready(nic, vf); if (vf < MAX_LMAC) { nic->link[vf] = 0; nic->duplex[vf] = 0; nic->speed[vf] = 0; } ret = 1; break; case NIC_MBOX_MSG_QS_CFG: reg_addr = NIC_PF_QSET_0_127_CFG | (mbx.qs.num << NIC_QS_ID_SHIFT); cfg = mbx.qs.cfg; nic_reg_write(nic, reg_addr, cfg); break; case NIC_MBOX_MSG_RQ_CFG: reg_addr = NIC_PF_QSET_0_127_RQ_0_7_CFG | (mbx.rq.qs_num << NIC_QS_ID_SHIFT) | (mbx.rq.rq_num << NIC_Q_NUM_SHIFT); nic_reg_write(nic, reg_addr, mbx.rq.cfg); break; case NIC_MBOX_MSG_RQ_BP_CFG: reg_addr = NIC_PF_QSET_0_127_RQ_0_7_BP_CFG | (mbx.rq.qs_num << NIC_QS_ID_SHIFT) | (mbx.rq.rq_num << NIC_Q_NUM_SHIFT); nic_reg_write(nic, reg_addr, mbx.rq.cfg); break; case NIC_MBOX_MSG_RQ_SW_SYNC: ret = nic_rcv_queue_sw_sync(nic); break; case NIC_MBOX_MSG_RQ_DROP_CFG: reg_addr = NIC_PF_QSET_0_127_RQ_0_7_DROP_CFG | (mbx.rq.qs_num << NIC_QS_ID_SHIFT) | (mbx.rq.rq_num << NIC_Q_NUM_SHIFT); nic_reg_write(nic, reg_addr, mbx.rq.cfg); break; case NIC_MBOX_MSG_SQ_CFG: reg_addr = NIC_PF_QSET_0_127_SQ_0_7_CFG | (mbx.sq.qs_num << NIC_QS_ID_SHIFT) | (mbx.sq.sq_num << NIC_Q_NUM_SHIFT); nic_reg_write(nic, reg_addr, mbx.sq.cfg); nic_tx_channel_cfg(nic, mbx.qs.num, &mbx.sq); break; case NIC_MBOX_MSG_SET_MAC: lmac = mbx.mac.vf_id; bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[lmac]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[lmac]); bgx_set_lmac_mac(nic->node, bgx, lmac, mbx.mac.mac_addr); break; case NIC_MBOX_MSG_SET_MAX_FRS: ret = nic_update_hw_frs(nic, mbx.frs.max_frs, mbx.frs.vf_id); break; case NIC_MBOX_MSG_CPI_CFG: nic_config_cpi(nic, &mbx.cpi_cfg); break; case NIC_MBOX_MSG_CFG_DONE: /* Last message of VF config msg sequence */ nic->vf_info[vf].vf_enabled = TRUE; goto unlock; case NIC_MBOX_MSG_SHUTDOWN: /* First msg in VF teardown sequence */ nic->vf_info[vf].vf_enabled = FALSE; break; case NIC_MBOX_MSG_BGX_STATS: nic_get_bgx_stats(nic, &mbx.bgx_stats); goto unlock; case NIC_MBOX_MSG_LOOPBACK: ret = nic_config_loopback(nic, &mbx.lbk); break; default: device_printf(nic->dev, "Invalid msg from VF%d, msg 0x%x\n", vf, mbx.msg.msg); break; } if (ret == 0) nic_mbx_send_ack(nic, vf); else if (mbx.msg.msg != NIC_MBOX_MSG_READY) nic_mbx_send_nack(nic, vf); unlock: nic->mbx_lock[vf] = FALSE; } static void nic_mbx_intr_handler(struct nicpf *nic, int mbx) { uint64_t intr; uint8_t vf, vf_per_mbx_reg = 64; intr = nic_reg_read(nic, NIC_PF_MAILBOX_INT + (mbx << 3)); for (vf = 0; vf < vf_per_mbx_reg; vf++) { if (intr & (1UL << vf)) { nic_handle_mbx_intr(nic, vf + (mbx * vf_per_mbx_reg)); nic_clear_mbx_intr(nic, vf, mbx); } } } static void nic_mbx0_intr_handler (void *arg) { struct nicpf *nic = (struct nicpf *)arg; nic_mbx_intr_handler(nic, 0); } static void nic_mbx1_intr_handler (void *arg) { struct nicpf *nic = (struct nicpf *)arg; nic_mbx_intr_handler(nic, 1); } static int nic_enable_msix(struct nicpf *nic) { struct pci_devinfo *dinfo; int rid, count; int ret; dinfo = device_get_ivars(nic->dev); rid = dinfo->cfg.msix.msix_table_bar; nic->msix_table_res = bus_alloc_resource_any(nic->dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (nic->msix_table_res == NULL) { device_printf(nic->dev, "Could not allocate memory for MSI-X table\n"); return (ENXIO); } count = nic->num_vec = NIC_PF_MSIX_VECTORS; ret = pci_alloc_msix(nic->dev, &count); if ((ret != 0) || (count != nic->num_vec)) { device_printf(nic->dev, "Request for #%d msix vectors failed, error: %d\n", nic->num_vec, ret); return (ret); } nic->msix_enabled = 1; return (0); } static void nic_disable_msix(struct nicpf *nic) { if (nic->msix_enabled) { pci_release_msi(nic->dev); nic->msix_enabled = 0; nic->num_vec = 0; } } static void nic_free_all_interrupts(struct nicpf *nic) { int irq; for (irq = 0; irq < nic->num_vec; irq++) { if (nic->msix_entries[irq].irq_res == NULL) continue; if (nic->msix_entries[irq].handle != NULL) { bus_teardown_intr(nic->dev, nic->msix_entries[irq].irq_res, nic->msix_entries[irq].handle); } bus_release_resource(nic->dev, SYS_RES_IRQ, irq, nic->msix_entries[irq].irq_res); } } static int nic_register_interrupts(struct nicpf *nic) { int irq, rid; int ret; /* Enable MSI-X */ ret = nic_enable_msix(nic); if (ret != 0) return (ret); /* Register mailbox interrupt handlers */ irq = NIC_PF_INTR_ID_MBOX0; rid = irq + 1; nic->msix_entries[irq].irq_res = bus_alloc_resource_any(nic->dev, SYS_RES_IRQ, &rid, (RF_SHAREABLE | RF_ACTIVE)); if (nic->msix_entries[irq].irq_res == NULL) { ret = ENXIO; goto fail; } ret = bus_setup_intr(nic->dev, nic->msix_entries[irq].irq_res, (INTR_MPSAFE | INTR_TYPE_MISC), NULL, nic_mbx0_intr_handler, nic, &nic->msix_entries[irq].handle); if (ret != 0) goto fail; irq = NIC_PF_INTR_ID_MBOX1; rid = irq + 1; nic->msix_entries[irq].irq_res = bus_alloc_resource_any(nic->dev, SYS_RES_IRQ, &rid, (RF_SHAREABLE | RF_ACTIVE)); if (nic->msix_entries[irq].irq_res == NULL) { ret = ENXIO; goto fail; } ret = bus_setup_intr(nic->dev, nic->msix_entries[irq].irq_res, (INTR_MPSAFE | INTR_TYPE_MISC), NULL, nic_mbx1_intr_handler, nic, &nic->msix_entries[irq].handle); if (ret != 0) goto fail; /* Enable mailbox interrupt */ nic_enable_mbx_intr(nic); return (0); fail: nic_free_all_interrupts(nic); return (ret); } static void nic_unregister_interrupts(struct nicpf *nic) { nic_free_all_interrupts(nic); nic_disable_msix(nic); } static int nic_sriov_init(device_t dev, struct nicpf *nic) { #ifdef PCI_IOV nvlist_t *pf_schema, *vf_schema; int iov_pos; int err; uint16_t total_vf_cnt; err = pci_find_extcap(dev, PCIZ_SRIOV, &iov_pos); if (err != 0) { device_printf(dev, "SR-IOV capability is not found in PCIe config space\n"); return (err); } /* Fix-up the number of enabled VFs */ total_vf_cnt = pci_read_config(dev, iov_pos + PCIR_SRIOV_TOTAL_VFS, 2); if (total_vf_cnt < nic->num_vf_en) nic->num_vf_en = total_vf_cnt; if (total_vf_cnt == 0) return (0); /* Attach SR-IOV */ pf_schema = pci_iov_schema_alloc_node(); vf_schema = pci_iov_schema_alloc_node(); pci_iov_schema_add_unicast_mac(vf_schema, "mac-addr", 0, NULL); /* * All VFs can change their MACs. * This flag will be ignored but we set it just for the record. */ pci_iov_schema_add_bool(vf_schema, "allow-set-mac", IOV_SCHEMA_HASDEFAULT, TRUE); err = pci_iov_attach(dev, pf_schema, vf_schema); if (err != 0) { device_printf(dev, "Failed to initialize SR-IOV (error=%d)\n", err); nic->num_vf_en = 0; return (err); } #endif return (0); } /* * Poll for BGX LMAC link status and update corresponding VF * if there is a change, valid only if internal L2 switch * is not present otherwise VF link is always treated as up */ static void nic_poll_for_link(void *arg) { union nic_mbx mbx = {}; struct nicpf *nic; struct bgx_link_status link; uint8_t vf, bgx, lmac; nic = (struct nicpf *)arg; mbx.link_status.msg = NIC_MBOX_MSG_BGX_LINK_CHANGE; for (vf = 0; vf < nic->num_vf_en; vf++) { /* Poll only if VF is UP */ if (!nic->vf_info[vf].vf_enabled) continue; /* Get BGX, LMAC indices for the VF */ bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]); /* Get interface link status */ bgx_get_lmac_link_state(nic->node, bgx, lmac, &link); /* Inform VF only if link status changed */ if (nic->link[vf] == link.link_up) continue; if (!nic->mbx_lock[vf]) { nic->link[vf] = link.link_up; nic->duplex[vf] = link.duplex; nic->speed[vf] = link.speed; /* Send a mbox message to VF with current link status */ mbx.link_status.link_up = link.link_up; mbx.link_status.duplex = link.duplex; mbx.link_status.speed = link.speed; nic_send_msg_to_vf(nic, vf, &mbx); } } callout_reset(&nic->check_link, hz * 2, nic_poll_for_link, nic); }