Index: head/sys/arm/broadcom/bcm2835/bcm2835_dma.c =================================================================== --- head/sys/arm/broadcom/bcm2835/bcm2835_dma.c (revision 295658) +++ head/sys/arm/broadcom/bcm2835/bcm2835_dma.c (revision 295659) @@ -1,731 +1,766 @@ /* * Copyright (c) 2013 Daisuke Aoyama * Copyright (c) 2013 Oleksandr Tymoshenko * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bcm2835_dma.h" #include "bcm2835_vcbus.h" #define MAX_REG 9 /* private flags */ #define BCM_DMA_CH_USED 0x00000001 #define BCM_DMA_CH_FREE 0x40000000 #define BCM_DMA_CH_UNMAP 0x80000000 /* Register Map (4.2.1.2) */ #define BCM_DMA_CS(n) (0x100*(n) + 0x00) #define CS_ACTIVE (1 << 0) #define CS_END (1 << 1) #define CS_INT (1 << 2) #define CS_DREQ (1 << 3) #define CS_ISPAUSED (1 << 4) #define CS_ISHELD (1 << 5) #define CS_ISWAIT (1 << 6) #define CS_ERR (1 << 8) #define CS_WAITWRT (1 << 28) #define CS_DISDBG (1 << 29) #define CS_ABORT (1 << 30) #define CS_RESET (1U << 31) #define BCM_DMA_CBADDR(n) (0x100*(n) + 0x04) #define BCM_DMA_INFO(n) (0x100*(n) + 0x08) #define INFO_INT_EN (1 << 0) #define INFO_TDMODE (1 << 1) #define INFO_WAIT_RESP (1 << 3) #define INFO_D_INC (1 << 4) #define INFO_D_WIDTH (1 << 5) #define INFO_D_DREQ (1 << 6) #define INFO_S_INC (1 << 8) #define INFO_S_WIDTH (1 << 9) #define INFO_S_DREQ (1 << 10) #define INFO_WAITS_SHIFT (21) #define INFO_PERMAP_SHIFT (16) #define INFO_PERMAP_MASK (0x1f << INFO_PERMAP_SHIFT) #define BCM_DMA_SRC(n) (0x100*(n) + 0x0C) #define BCM_DMA_DST(n) (0x100*(n) + 0x10) #define BCM_DMA_LEN(n) (0x100*(n) + 0x14) #define BCM_DMA_STRIDE(n) (0x100*(n) + 0x18) #define BCM_DMA_CBNEXT(n) (0x100*(n) + 0x1C) #define BCM_DMA_DEBUG(n) (0x100*(n) + 0x20) #define DEBUG_ERROR_MASK (7) #define BCM_DMA_INT_STATUS 0xfe0 #define BCM_DMA_ENABLE 0xff0 /* relative offset from BCM_VC_DMA0_BASE (p.39) */ #define BCM_DMA_CH(n) (0x100*(n)) +/* channels used by GPU */ +#define BCM_DMA_CH_BULK 0 +#define BCM_DMA_CH_FAST1 2 +#define BCM_DMA_CH_FAST2 3 + +#define BCM_DMA_CH_GPU_MASK ((1 << BCM_DMA_CH_BULK) | \ + (1 << BCM_DMA_CH_FAST1) | \ + (1 << BCM_DMA_CH_FAST2)) + /* DMA Control Block - 256bit aligned (p.40) */ struct bcm_dma_cb { uint32_t info; /* Transfer Information */ uint32_t src; /* Source Address */ uint32_t dst; /* Destination Address */ uint32_t len; /* Transfer Length */ uint32_t stride; /* 2D Mode Stride */ uint32_t next; /* Next Control Block Address */ uint32_t rsvd1; /* Reserved */ uint32_t rsvd2; /* Reserved */ }; #ifdef DEBUG static void bcm_dma_cb_dump(struct bcm_dma_cb *cb); static void bcm_dma_reg_dump(int ch); #endif /* DMA channel private info */ struct bcm_dma_ch { int ch; uint32_t flags; struct bcm_dma_cb * cb; uint32_t vc_cb; bus_dmamap_t dma_map; void (*intr_func)(int, void *); void * intr_arg; }; struct bcm_dma_softc { device_t sc_dev; struct mtx sc_mtx; struct resource * sc_mem; struct resource * sc_irq[BCM_DMA_CH_MAX]; void * sc_intrhand[BCM_DMA_CH_MAX]; struct bcm_dma_ch sc_dma_ch[BCM_DMA_CH_MAX]; bus_dma_tag_t sc_dma_tag; }; static struct bcm_dma_softc *bcm_dma_sc = NULL; +static uint32_t bcm_dma_channel_mask; static void bcm_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err) { bus_addr_t *addr; if (err) return; addr = (bus_addr_t*)arg; *addr = PHYS_TO_VCBUS(segs[0].ds_addr); } static void bcm_dma_reset(device_t dev, int ch) { struct bcm_dma_softc *sc = device_get_softc(dev); struct bcm_dma_cb *cb; uint32_t cs; int count; if (ch < 0 || ch >= BCM_DMA_CH_MAX) return; cs = bus_read_4(sc->sc_mem, BCM_DMA_CS(ch)); if (cs & CS_ACTIVE) { /* pause current task */ bus_write_4(sc->sc_mem, BCM_DMA_CS(ch), 0); count = 1000; do { cs = bus_read_4(sc->sc_mem, BCM_DMA_CS(ch)); } while (!(cs & CS_ISPAUSED) && (count-- > 0)); if (!(cs & CS_ISPAUSED)) { device_printf(dev, "Can't abort DMA transfer at channel %d\n", ch); } bus_write_4(sc->sc_mem, BCM_DMA_CBNEXT(ch), 0); /* Complete everything, clear interrupt */ bus_write_4(sc->sc_mem, BCM_DMA_CS(ch), CS_ABORT | CS_INT | CS_END| CS_ACTIVE); } /* clear control blocks */ bus_write_4(sc->sc_mem, BCM_DMA_CBADDR(ch), 0); bus_write_4(sc->sc_mem, BCM_DMA_CBNEXT(ch), 0); /* Reset control block */ cb = sc->sc_dma_ch[ch].cb; bzero(cb, sizeof(*cb)); cb->info = INFO_WAIT_RESP; } static int bcm_dma_init(device_t dev) { struct bcm_dma_softc *sc = device_get_softc(dev); - uint32_t mask; + uint32_t reg; struct bcm_dma_ch *ch; void *cb_virt; vm_paddr_t cb_phys; int err; int i; - /* disable and clear interrupt status */ - bus_write_4(sc->sc_mem, BCM_DMA_ENABLE, 0); - bus_write_4(sc->sc_mem, BCM_DMA_INT_STATUS, 0); + /* + * Only channels set in bcm_dma_channel_mask can be controlled by us. + * The others are out of our control as well as the corresponding bits + * in both BCM_DMA_ENABLE and BCM_DMA_INT_STATUS global registers. As + * these registers are RW ones, there is no safe way how to write only + * the bits which can be controlled by us. + * + * Fortunately, after reset, all channels are enabled in BCM_DMA_ENABLE + * register and all statuses are cleared in BCM_DMA_INT_STATUS one. + * Not touching these registers is a trade off between correct + * initialization which does not count on anything and not messing up + * something we have no control over. + */ + reg = bus_read_4(sc->sc_mem, BCM_DMA_ENABLE); + if ((reg & bcm_dma_channel_mask) != bcm_dma_channel_mask) + device_printf(dev, "channels are not enabled\n"); + reg = bus_read_4(sc->sc_mem, BCM_DMA_INT_STATUS); + if ((reg & bcm_dma_channel_mask) != 0) + device_printf(dev, "statuses are not cleared\n"); /* Allocate DMA chunks control blocks */ /* p.40 of spec - control block should be 32-bit aligned */ err = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct bcm_dma_cb), 1, sizeof(struct bcm_dma_cb), BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_dma_tag); if (err) { - device_printf(dev, "failed allocate DMA tag"); + device_printf(dev, "failed allocate DMA tag\n"); return (err); } /* setup initial settings */ for (i = 0; i < BCM_DMA_CH_MAX; i++) { ch = &sc->sc_dma_ch[i]; + bzero(ch, sizeof(struct bcm_dma_ch)); + ch->ch = i; + ch->flags = BCM_DMA_CH_UNMAP; + + if ((bcm_dma_channel_mask & (1 << i)) == 0) + continue; + err = bus_dmamem_alloc(sc->sc_dma_tag, &cb_virt, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &ch->dma_map); if (err) { device_printf(dev, "cannot allocate DMA memory\n"); break; } /* * Least alignment for busdma-allocated stuff is cache * line size, so just make sure nothing stupid happend * and we got properly aligned address */ if ((uintptr_t)cb_virt & 0x1f) { device_printf(dev, "DMA address is not 32-bytes aligned: %p\n", (void*)cb_virt); break; } err = bus_dmamap_load(sc->sc_dma_tag, ch->dma_map, cb_virt, sizeof(struct bcm_dma_cb), bcm_dmamap_cb, &cb_phys, BUS_DMA_WAITOK); if (err) { device_printf(dev, "cannot load DMA memory\n"); break; } - bzero(ch, sizeof(struct bcm_dma_ch)); - ch->ch = i; ch->cb = cb_virt; ch->vc_cb = cb_phys; - ch->intr_func = NULL; - ch->intr_arg = NULL; - ch->flags = BCM_DMA_CH_UNMAP; - + ch->flags = BCM_DMA_CH_FREE; ch->cb->info = INFO_WAIT_RESP; /* reset DMA engine */ - bcm_dma_reset(dev, i); + bus_write_4(sc->sc_mem, BCM_DMA_CS(i), CS_RESET); } - /* now use DMA2/DMA3 only */ - sc->sc_dma_ch[2].flags = BCM_DMA_CH_FREE; - sc->sc_dma_ch[3].flags = BCM_DMA_CH_FREE; - - /* enable DMAs */ - mask = 0; - - for (i = 0; i < BCM_DMA_CH_MAX; i++) - if (sc->sc_dma_ch[i].flags & BCM_DMA_CH_FREE) - mask |= (1 << i); - - bus_write_4(sc->sc_mem, BCM_DMA_ENABLE, mask); - return (0); } /* * Allocate DMA channel for further use, returns channel # or * BCM_DMA_CH_INVALID */ int bcm_dma_allocate(int req_ch) { struct bcm_dma_softc *sc = bcm_dma_sc; int ch = BCM_DMA_CH_INVALID; int i; if (req_ch >= BCM_DMA_CH_MAX) return (BCM_DMA_CH_INVALID); /* Auto(req_ch < 0) or CH specified */ mtx_lock(&sc->sc_mtx); if (req_ch < 0) { for (i = 0; i < BCM_DMA_CH_MAX; i++) { if (sc->sc_dma_ch[i].flags & BCM_DMA_CH_FREE) { ch = i; sc->sc_dma_ch[ch].flags &= ~BCM_DMA_CH_FREE; sc->sc_dma_ch[ch].flags |= BCM_DMA_CH_USED; break; } } } else { if (sc->sc_dma_ch[req_ch].flags & BCM_DMA_CH_FREE) { ch = req_ch; sc->sc_dma_ch[ch].flags &= ~BCM_DMA_CH_FREE; sc->sc_dma_ch[ch].flags |= BCM_DMA_CH_USED; } } mtx_unlock(&sc->sc_mtx); return (ch); } /* * Frees allocated channel. Returns 0 on success, -1 otherwise */ int bcm_dma_free(int ch) { struct bcm_dma_softc *sc = bcm_dma_sc; if (ch < 0 || ch >= BCM_DMA_CH_MAX) return (-1); mtx_lock(&sc->sc_mtx); if (sc->sc_dma_ch[ch].flags & BCM_DMA_CH_USED) { sc->sc_dma_ch[ch].flags |= BCM_DMA_CH_FREE; sc->sc_dma_ch[ch].flags &= ~BCM_DMA_CH_USED; sc->sc_dma_ch[ch].intr_func = NULL; sc->sc_dma_ch[ch].intr_arg = NULL; /* reset DMA engine */ bcm_dma_reset(sc->sc_dev, ch); } mtx_unlock(&sc->sc_mtx); return (0); } /* * Assign handler function for channel interrupt * Returns 0 on success, -1 otherwise */ int bcm_dma_setup_intr(int ch, void (*func)(int, void *), void *arg) { struct bcm_dma_softc *sc = bcm_dma_sc; struct bcm_dma_cb *cb; if (ch < 0 || ch >= BCM_DMA_CH_MAX) return (-1); if (!(sc->sc_dma_ch[ch].flags & BCM_DMA_CH_USED)) return (-1); sc->sc_dma_ch[ch].intr_func = func; sc->sc_dma_ch[ch].intr_arg = arg; cb = sc->sc_dma_ch[ch].cb; cb->info |= INFO_INT_EN; return (0); } /* * Setup DMA source parameters * ch - channel number * dreq - hardware DREQ # or BCM_DMA_DREQ_NONE if * source is physical memory * inc_addr - BCM_DMA_INC_ADDR if source address * should be increased after each access or * BCM_DMA_SAME_ADDR if address should remain * the same * width - size of read operation, BCM_DMA_32BIT * for 32bit bursts, BCM_DMA_128BIT for 128 bits * * Returns 0 on success, -1 otherwise */ int bcm_dma_setup_src(int ch, int dreq, int inc_addr, int width) { struct bcm_dma_softc *sc = bcm_dma_sc; uint32_t info; if (ch < 0 || ch >= BCM_DMA_CH_MAX) return (-1); if (!(sc->sc_dma_ch[ch].flags & BCM_DMA_CH_USED)) return (-1); info = sc->sc_dma_ch[ch].cb->info; info &= ~INFO_PERMAP_MASK; info |= (dreq << INFO_PERMAP_SHIFT) & INFO_PERMAP_MASK; if (dreq) info |= INFO_S_DREQ; else info &= ~INFO_S_DREQ; if (width == BCM_DMA_128BIT) info |= INFO_S_WIDTH; else info &= ~INFO_S_WIDTH; if (inc_addr == BCM_DMA_INC_ADDR) info |= INFO_S_INC; else info &= ~INFO_S_INC; sc->sc_dma_ch[ch].cb->info = info; return (0); } /* * Setup DMA destination parameters * ch - channel number * dreq - hardware DREQ # or BCM_DMA_DREQ_NONE if * destination is physical memory * inc_addr - BCM_DMA_INC_ADDR if source address * should be increased after each access or * BCM_DMA_SAME_ADDR if address should remain * the same * width - size of write operation, BCM_DMA_32BIT * for 32bit bursts, BCM_DMA_128BIT for 128 bits * * Returns 0 on success, -1 otherwise */ int bcm_dma_setup_dst(int ch, int dreq, int inc_addr, int width) { struct bcm_dma_softc *sc = bcm_dma_sc; uint32_t info; if (ch < 0 || ch >= BCM_DMA_CH_MAX) return (-1); if (!(sc->sc_dma_ch[ch].flags & BCM_DMA_CH_USED)) return (-1); info = sc->sc_dma_ch[ch].cb->info; info &= ~INFO_PERMAP_MASK; info |= (dreq << INFO_PERMAP_SHIFT) & INFO_PERMAP_MASK; if (dreq) info |= INFO_D_DREQ; else info &= ~INFO_D_DREQ; if (width == BCM_DMA_128BIT) info |= INFO_D_WIDTH; else info &= ~INFO_D_WIDTH; if (inc_addr == BCM_DMA_INC_ADDR) info |= INFO_D_INC; else info &= ~INFO_D_INC; sc->sc_dma_ch[ch].cb->info = info; return (0); } #ifdef DEBUG void bcm_dma_cb_dump(struct bcm_dma_cb *cb) { printf("DMA CB "); printf("INFO: %8.8x ", cb->info); printf("SRC: %8.8x ", cb->src); printf("DST: %8.8x ", cb->dst); printf("LEN: %8.8x ", cb->len); printf("\n"); printf("STRIDE: %8.8x ", cb->stride); printf("NEXT: %8.8x ", cb->next); printf("RSVD1: %8.8x ", cb->rsvd1); printf("RSVD2: %8.8x ", cb->rsvd2); printf("\n"); } void bcm_dma_reg_dump(int ch) { struct bcm_dma_softc *sc = bcm_dma_sc; int i; uint32_t reg; if (ch < 0 || ch >= BCM_DMA_CH_MAX) return; printf("DMA%d: ", ch); for (i = 0; i < MAX_REG; i++) { reg = bus_read_4(sc->sc_mem, BCM_DMA_CH(ch) + i*4); printf("%8.8x ", reg); } printf("\n"); } #endif /* * Start DMA transaction * ch - channel number * src, dst - source and destination address in * ARM physical memory address space. * len - amount of bytes to be transfered * * Returns 0 on success, -1 otherwise */ int bcm_dma_start(int ch, vm_paddr_t src, vm_paddr_t dst, int len) { struct bcm_dma_softc *sc = bcm_dma_sc; struct bcm_dma_cb *cb; if (ch < 0 || ch >= BCM_DMA_CH_MAX) return (-1); if (!(sc->sc_dma_ch[ch].flags & BCM_DMA_CH_USED)) return (-1); cb = sc->sc_dma_ch[ch].cb; if (BCM2835_ARM_IS_IO(src)) cb->src = IO_TO_VCBUS(src); else cb->src = PHYS_TO_VCBUS(src); if (BCM2835_ARM_IS_IO(dst)) cb->dst = IO_TO_VCBUS(dst); else cb->dst = PHYS_TO_VCBUS(dst); cb->len = len; bus_dmamap_sync(sc->sc_dma_tag, sc->sc_dma_ch[ch].dma_map, BUS_DMASYNC_PREWRITE); bus_write_4(sc->sc_mem, BCM_DMA_CBADDR(ch), sc->sc_dma_ch[ch].vc_cb); bus_write_4(sc->sc_mem, BCM_DMA_CS(ch), CS_ACTIVE); #ifdef DEBUG bcm_dma_cb_dump(sc->sc_dma_ch[ch].cb); bcm_dma_reg_dump(ch); #endif return (0); } /* * Get length requested for DMA transaction * ch - channel number * * Returns size of transaction, 0 if channel is invalid */ uint32_t bcm_dma_length(int ch) { struct bcm_dma_softc *sc = bcm_dma_sc; struct bcm_dma_cb *cb; if (ch < 0 || ch >= BCM_DMA_CH_MAX) return (0); if (!(sc->sc_dma_ch[ch].flags & BCM_DMA_CH_USED)) return (0); cb = sc->sc_dma_ch[ch].cb; return (cb->len); } static void bcm_dma_intr(void *arg) { struct bcm_dma_softc *sc = bcm_dma_sc; struct bcm_dma_ch *ch = (struct bcm_dma_ch *)arg; uint32_t cs, debug; /* my interrupt? */ cs = bus_read_4(sc->sc_mem, BCM_DMA_CS(ch->ch)); - if (!(cs & (CS_INT | CS_ERR))) + if (!(cs & (CS_INT | CS_ERR))) { + device_printf(sc->sc_dev, + "unexpected DMA intr CH=%d, CS=%x\n", ch->ch, cs); return; + } /* running? */ if (!(ch->flags & BCM_DMA_CH_USED)) { device_printf(sc->sc_dev, "unused DMA intr CH=%d, CS=%x\n", ch->ch, cs); return; } if (cs & CS_ERR) { debug = bus_read_4(sc->sc_mem, BCM_DMA_DEBUG(ch->ch)); device_printf(sc->sc_dev, "DMA error %d on CH%d\n", debug & DEBUG_ERROR_MASK, ch->ch); bus_write_4(sc->sc_mem, BCM_DMA_DEBUG(ch->ch), debug & DEBUG_ERROR_MASK); bcm_dma_reset(sc->sc_dev, ch->ch); } if (cs & CS_INT) { /* acknowledge interrupt */ bus_write_4(sc->sc_mem, BCM_DMA_CS(ch->ch), CS_INT | CS_END); /* Prepare for possible access to len field */ bus_dmamap_sync(sc->sc_dma_tag, ch->dma_map, BUS_DMASYNC_POSTWRITE); /* save callback function and argument */ if (ch->intr_func) ch->intr_func(ch->ch, ch->intr_arg); } } static int bcm_dma_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (!ofw_bus_is_compatible(dev, "broadcom,bcm2835-dma")) return (ENXIO); device_set_desc(dev, "BCM2835 DMA Controller"); return (BUS_PROBE_DEFAULT); } static int bcm_dma_attach(device_t dev) { struct bcm_dma_softc *sc = device_get_softc(dev); + phandle_t node; int rid, err = 0; int i; sc->sc_dev = dev; if (bcm_dma_sc) return (ENXIO); for (i = 0; i < BCM_DMA_CH_MAX; i++) { sc->sc_irq[i] = NULL; sc->sc_intrhand[i] = NULL; } + /* Get DMA channel mask. */ + node = ofw_bus_get_node(sc->sc_dev); + if (OF_getencprop(node, "brcm,dma-channel-mask", &bcm_dma_channel_mask, + sizeof(bcm_dma_channel_mask)) == -1 && + OF_getencprop(node, "broadcom,channels", &bcm_dma_channel_mask, + sizeof(bcm_dma_channel_mask)) == -1) { + device_printf(dev, "could not get channel mask property\n"); + return (ENXIO); + } + + /* Mask out channels used by GPU. */ + bcm_dma_channel_mask &= ~BCM_DMA_CH_GPU_MASK; + /* DMA0 - DMA14 */ rid = 0; sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->sc_mem == NULL) { device_printf(dev, "could not allocate memory resource\n"); return (ENXIO); } /* IRQ DMA0 - DMA11 XXX NOT USE DMA12(spurious?) */ for (rid = 0; rid < BCM_DMA_CH_MAX; rid++) { + if ((bcm_dma_channel_mask & (1 << rid)) == 0) + continue; + sc->sc_irq[rid] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE); if (sc->sc_irq[rid] == NULL) { device_printf(dev, "cannot allocate interrupt\n"); err = ENXIO; goto fail; } if (bus_setup_intr(dev, sc->sc_irq[rid], INTR_TYPE_MISC | INTR_MPSAFE, NULL, bcm_dma_intr, &sc->sc_dma_ch[rid], &sc->sc_intrhand[rid])) { device_printf(dev, "cannot setup interrupt handler\n"); err = ENXIO; goto fail; } } mtx_init(&sc->sc_mtx, "bcmdma", "bcmdma", MTX_DEF); bcm_dma_sc = sc; err = bcm_dma_init(dev); if (err) goto fail; return (err); fail: if (sc->sc_mem) bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem); for (i = 0; i < BCM_DMA_CH_MAX; i++) { if (sc->sc_intrhand[i]) bus_teardown_intr(dev, sc->sc_irq[i], sc->sc_intrhand[i]); if (sc->sc_irq[i]) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq[i]); } return (err); } static device_method_t bcm_dma_methods[] = { DEVMETHOD(device_probe, bcm_dma_probe), DEVMETHOD(device_attach, bcm_dma_attach), { 0, 0 } }; static driver_t bcm_dma_driver = { "bcm_dma", bcm_dma_methods, sizeof(struct bcm_dma_softc), }; static devclass_t bcm_dma_devclass; DRIVER_MODULE(bcm_dma, simplebus, bcm_dma_driver, bcm_dma_devclass, 0, 0); MODULE_VERSION(bcm_dma, 1); Index: head/sys/arm/broadcom/bcm2835/bcm2835_dma.h =================================================================== --- head/sys/arm/broadcom/bcm2835/bcm2835_dma.h (revision 295658) +++ head/sys/arm/broadcom/bcm2835/bcm2835_dma.h (revision 295659) @@ -1,62 +1,60 @@ /* * Copyright (c) 2013 Daisuke Aoyama * Copyright (c) 2013 Oleksandr Tymoshenko * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _BCM2835_DMA_H_ #define _BCM2835_DMA_H_ #define BCM_DMA_BLOCK_SIZE 512 /* DMA0-DMA15 but DMA15 is special */ #define BCM_DMA_CH_MAX 12 /* request CH for any nubmer */ #define BCM_DMA_CH_INVALID (-1) #define BCM_DMA_CH_ANY (-1) -#define BCM_DMA_CH_FAST1 (2) -#define BCM_DMA_CH_FAST2 (3) /* Peripheral DREQ Signals (4.2.1.3) */ #define BCM_DMA_DREQ_NONE 0 #define BCM_DMA_DREQ_EMMC 11 #define BCM_DMA_DREQ_SDHOST 13 #define BCM_DMA_SAME_ADDR 0 #define BCM_DMA_INC_ADDR 1 #define BCM_DMA_32BIT 0 #define BCM_DMA_128BIT 1 int bcm_dma_allocate(int req_ch); int bcm_dma_free(int ch); int bcm_dma_setup_intr(int ch, void (*func)(int, void *), void *arg); int bcm_dma_setup_src(int ch, int dreq, int inc_addr, int width); int bcm_dma_setup_dst(int ch, int dreq, int inc_addr, int width); int bcm_dma_start(int ch, vm_paddr_t src, vm_paddr_t dst, int len); uint32_t bcm_dma_length(int ch); #endif /* _BCM2835_DMA_H_ */ Index: head/sys/arm/broadcom/bcm2835/bcm2835_sdhci.c =================================================================== --- head/sys/arm/broadcom/bcm2835/bcm2835_sdhci.c (revision 295658) +++ head/sys/arm/broadcom/bcm2835/bcm2835_sdhci.c (revision 295659) @@ -1,678 +1,674 @@ /*- * Copyright (c) 2012 Oleksandr Tymoshenko * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sdhci_if.h" #include "bcm2835_dma.h" #include #include "bcm2835_vcbus.h" #define BCM2835_DEFAULT_SDHCI_FREQ 50 #define BCM_SDHCI_BUFFER_SIZE 512 #define NUM_DMA_SEGS 2 #ifdef DEBUG #define dprintf(fmt, args...) do { printf("%s(): ", __func__); \ printf(fmt,##args); } while (0) #else #define dprintf(fmt, args...) #endif static int bcm2835_sdhci_hs = 1; static int bcm2835_sdhci_pio_mode = 0; TUNABLE_INT("hw.bcm2835.sdhci.hs", &bcm2835_sdhci_hs); TUNABLE_INT("hw.bcm2835.sdhci.pio_mode", &bcm2835_sdhci_pio_mode); struct bcm_sdhci_softc { device_t sc_dev; struct resource * sc_mem_res; struct resource * sc_irq_res; bus_space_tag_t sc_bst; bus_space_handle_t sc_bsh; void * sc_intrhand; struct mmc_request * sc_req; struct sdhci_slot sc_slot; int sc_dma_ch; bus_dma_tag_t sc_dma_tag; bus_dmamap_t sc_dma_map; vm_paddr_t sc_sdhci_buffer_phys; uint32_t cmd_and_mode; bus_addr_t dmamap_seg_addrs[NUM_DMA_SEGS]; bus_size_t dmamap_seg_sizes[NUM_DMA_SEGS]; int dmamap_seg_count; int dmamap_seg_index; int dmamap_status; }; static int bcm_sdhci_probe(device_t); static int bcm_sdhci_attach(device_t); static int bcm_sdhci_detach(device_t); static void bcm_sdhci_intr(void *); static int bcm_sdhci_get_ro(device_t, device_t); static void bcm_sdhci_dma_intr(int ch, void *arg); static void bcm_sdhci_dmacb(void *arg, bus_dma_segment_t *segs, int nseg, int err) { struct bcm_sdhci_softc *sc = arg; int i; sc->dmamap_status = err; sc->dmamap_seg_count = nseg; /* Note nseg is guaranteed to be zero if err is non-zero. */ for (i = 0; i < nseg; i++) { sc->dmamap_seg_addrs[i] = segs[i].ds_addr; sc->dmamap_seg_sizes[i] = segs[i].ds_len; } } static int bcm_sdhci_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (!ofw_bus_is_compatible(dev, "broadcom,bcm2835-sdhci")) return (ENXIO); device_set_desc(dev, "Broadcom 2708 SDHCI controller"); return (BUS_PROBE_DEFAULT); } static int bcm_sdhci_attach(device_t dev) { struct bcm_sdhci_softc *sc = device_get_softc(dev); int rid, err; phandle_t node; pcell_t cell; u_int default_freq; sc->sc_dev = dev; sc->sc_req = NULL; err = bcm2835_mbox_set_power_state(BCM2835_MBOX_POWER_ID_EMMC, TRUE); if (err != 0) { if (bootverbose) device_printf(dev, "Unable to enable the power\n"); return (err); } default_freq = 0; err = bcm2835_mbox_get_clock_rate(BCM2835_MBOX_CLOCK_ID_EMMC, &default_freq); if (err == 0) { /* Convert to MHz */ default_freq /= 1000000; } if (default_freq == 0) { node = ofw_bus_get_node(sc->sc_dev); if ((OF_getencprop(node, "clock-frequency", &cell, sizeof(cell))) > 0) default_freq = cell / 1000000; } if (default_freq == 0) default_freq = BCM2835_DEFAULT_SDHCI_FREQ; if (bootverbose) device_printf(dev, "SDHCI frequency: %dMHz\n", default_freq); rid = 0; sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (!sc->sc_mem_res) { device_printf(dev, "cannot allocate memory window\n"); err = ENXIO; goto fail; } sc->sc_bst = rman_get_bustag(sc->sc_mem_res); sc->sc_bsh = rman_get_bushandle(sc->sc_mem_res); rid = 0; sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE); if (!sc->sc_irq_res) { device_printf(dev, "cannot allocate interrupt\n"); err = ENXIO; goto fail; } if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_BIO | INTR_MPSAFE, NULL, bcm_sdhci_intr, sc, &sc->sc_intrhand)) { device_printf(dev, "cannot setup interrupt handler\n"); err = ENXIO; goto fail; } if (!bcm2835_sdhci_pio_mode) sc->sc_slot.opt = SDHCI_PLATFORM_TRANSFER; sc->sc_slot.caps = SDHCI_CAN_VDD_330 | SDHCI_CAN_VDD_180; if (bcm2835_sdhci_hs) sc->sc_slot.caps |= SDHCI_CAN_DO_HISPD; sc->sc_slot.caps |= (default_freq << SDHCI_CLOCK_BASE_SHIFT); sc->sc_slot.quirks = SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK | SDHCI_QUIRK_BROKEN_TIMEOUT_VAL | SDHCI_QUIRK_DONT_SET_HISPD_BIT | SDHCI_QUIRK_MISSING_CAPS; sdhci_init_slot(dev, &sc->sc_slot, 0); - sc->sc_dma_ch = bcm_dma_allocate(BCM_DMA_CH_FAST1); - if (sc->sc_dma_ch == BCM_DMA_CH_INVALID) - sc->sc_dma_ch = bcm_dma_allocate(BCM_DMA_CH_FAST2); - if (sc->sc_dma_ch == BCM_DMA_CH_INVALID) - sc->sc_dma_ch = bcm_dma_allocate(BCM_DMA_CH_ANY); + sc->sc_dma_ch = bcm_dma_allocate(BCM_DMA_CH_ANY); if (sc->sc_dma_ch == BCM_DMA_CH_INVALID) goto fail; bcm_dma_setup_intr(sc->sc_dma_ch, bcm_sdhci_dma_intr, sc); /* Allocate bus_dma resources. */ err = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, BCM_SDHCI_BUFFER_SIZE, NUM_DMA_SEGS, BCM_SDHCI_BUFFER_SIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_dma_tag); if (err) { device_printf(dev, "failed allocate DMA tag"); goto fail; } err = bus_dmamap_create(sc->sc_dma_tag, 0, &sc->sc_dma_map); if (err) { device_printf(dev, "bus_dmamap_create failed\n"); goto fail; } sc->sc_sdhci_buffer_phys = BUS_SPACE_PHYSADDR(sc->sc_mem_res, SDHCI_BUFFER); bus_generic_probe(dev); bus_generic_attach(dev); sdhci_start_slot(&sc->sc_slot); return (0); fail: if (sc->sc_intrhand) bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand); if (sc->sc_irq_res) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res); if (sc->sc_mem_res) bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res); return (err); } static int bcm_sdhci_detach(device_t dev) { return (EBUSY); } static void bcm_sdhci_intr(void *arg) { struct bcm_sdhci_softc *sc = arg; sdhci_generic_intr(&sc->sc_slot); } static int bcm_sdhci_get_ro(device_t bus, device_t child) { return (0); } static inline uint32_t RD4(struct bcm_sdhci_softc *sc, bus_size_t off) { uint32_t val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, off); return val; } static inline void WR4(struct bcm_sdhci_softc *sc, bus_size_t off, uint32_t val) { bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, val); /* * The Arasan HC has a bug where it may lose the content of * consecutive writes to registers that are within two SD-card * clock cycles of each other (a clock domain crossing problem). */ if (sc->sc_slot.clock > 0) DELAY(((2 * 1000000) / sc->sc_slot.clock) + 1); } static uint8_t bcm_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off) { struct bcm_sdhci_softc *sc = device_get_softc(dev); uint32_t val = RD4(sc, off & ~3); return ((val >> (off & 3)*8) & 0xff); } static uint16_t bcm_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off) { struct bcm_sdhci_softc *sc = device_get_softc(dev); uint32_t val = RD4(sc, off & ~3); /* * Standard 32-bit handling of command and transfer mode. */ if (off == SDHCI_TRANSFER_MODE) { return (sc->cmd_and_mode >> 16); } else if (off == SDHCI_COMMAND_FLAGS) { return (sc->cmd_and_mode & 0x0000ffff); } return ((val >> (off & 3)*8) & 0xffff); } static uint32_t bcm_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off) { struct bcm_sdhci_softc *sc = device_get_softc(dev); return RD4(sc, off); } static void bcm_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t *data, bus_size_t count) { struct bcm_sdhci_softc *sc = device_get_softc(dev); bus_space_read_multi_4(sc->sc_bst, sc->sc_bsh, off, data, count); } static void bcm_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint8_t val) { struct bcm_sdhci_softc *sc = device_get_softc(dev); uint32_t val32 = RD4(sc, off & ~3); val32 &= ~(0xff << (off & 3)*8); val32 |= (val << (off & 3)*8); WR4(sc, off & ~3, val32); } static void bcm_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint16_t val) { struct bcm_sdhci_softc *sc = device_get_softc(dev); uint32_t val32; if (off == SDHCI_COMMAND_FLAGS) val32 = sc->cmd_and_mode; else val32 = RD4(sc, off & ~3); val32 &= ~(0xffff << (off & 3)*8); val32 |= (val << (off & 3)*8); if (off == SDHCI_TRANSFER_MODE) sc->cmd_and_mode = val32; else { WR4(sc, off & ~3, val32); if (off == SDHCI_COMMAND_FLAGS) sc->cmd_and_mode = val32; } } static void bcm_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t val) { struct bcm_sdhci_softc *sc = device_get_softc(dev); WR4(sc, off, val); } static void bcm_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t *data, bus_size_t count) { struct bcm_sdhci_softc *sc = device_get_softc(dev); bus_space_write_multi_4(sc->sc_bst, sc->sc_bsh, off, data, count); } static void bcm_sdhci_start_dma_seg(struct bcm_sdhci_softc *sc) { struct sdhci_slot *slot; vm_paddr_t pdst, psrc; int err, idx, len, sync_op; slot = &sc->sc_slot; idx = sc->dmamap_seg_index++; len = sc->dmamap_seg_sizes[idx]; slot->offset += len; if (slot->curcmd->data->flags & MMC_DATA_READ) { bcm_dma_setup_src(sc->sc_dma_ch, BCM_DMA_DREQ_EMMC, BCM_DMA_SAME_ADDR, BCM_DMA_32BIT); bcm_dma_setup_dst(sc->sc_dma_ch, BCM_DMA_DREQ_NONE, BCM_DMA_INC_ADDR, (len & 0xf) ? BCM_DMA_32BIT : BCM_DMA_128BIT); psrc = sc->sc_sdhci_buffer_phys; pdst = sc->dmamap_seg_addrs[idx]; sync_op = BUS_DMASYNC_PREREAD; } else { bcm_dma_setup_src(sc->sc_dma_ch, BCM_DMA_DREQ_NONE, BCM_DMA_INC_ADDR, (len & 0xf) ? BCM_DMA_32BIT : BCM_DMA_128BIT); bcm_dma_setup_dst(sc->sc_dma_ch, BCM_DMA_DREQ_EMMC, BCM_DMA_SAME_ADDR, BCM_DMA_32BIT); psrc = sc->dmamap_seg_addrs[idx]; pdst = sc->sc_sdhci_buffer_phys; sync_op = BUS_DMASYNC_PREWRITE; } /* * When starting a new DMA operation do the busdma sync operation, and * disable SDCHI data interrrupts because we'll be driven by DMA * interrupts (or SDHCI error interrupts) until the IO is done. */ if (idx == 0) { bus_dmamap_sync(sc->sc_dma_tag, sc->sc_dma_map, sync_op); slot->intmask &= ~(SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL | SDHCI_INT_DATA_END); bcm_sdhci_write_4(sc->sc_dev, &sc->sc_slot, SDHCI_SIGNAL_ENABLE, slot->intmask); } /* * Start the DMA transfer. Only programming errors (like failing to * allocate a channel) cause a non-zero return from bcm_dma_start(). */ err = bcm_dma_start(sc->sc_dma_ch, psrc, pdst, len); KASSERT((err == 0), ("bcm2835_sdhci: failed DMA start")); } static void bcm_sdhci_dma_intr(int ch, void *arg) { struct bcm_sdhci_softc *sc = (struct bcm_sdhci_softc *)arg; struct sdhci_slot *slot = &sc->sc_slot; uint32_t reg, mask; int left, sync_op; mtx_lock(&slot->mtx); /* * If there are more segments for the current dma, start the next one. * Otherwise unload the dma map and decide what to do next based on the * status of the sdhci controller and whether there's more data left. */ if (sc->dmamap_seg_index < sc->dmamap_seg_count) { bcm_sdhci_start_dma_seg(sc); mtx_unlock(&slot->mtx); return; } if (slot->curcmd->data->flags & MMC_DATA_READ) { sync_op = BUS_DMASYNC_POSTREAD; mask = SDHCI_INT_DATA_AVAIL; } else { sync_op = BUS_DMASYNC_POSTWRITE; mask = SDHCI_INT_SPACE_AVAIL; } bus_dmamap_sync(sc->sc_dma_tag, sc->sc_dma_map, sync_op); bus_dmamap_unload(sc->sc_dma_tag, sc->sc_dma_map); sc->dmamap_seg_count = 0; sc->dmamap_seg_index = 0; left = min(BCM_SDHCI_BUFFER_SIZE, slot->curcmd->data->len - slot->offset); /* DATA END? */ reg = bcm_sdhci_read_4(slot->bus, slot, SDHCI_INT_STATUS); if (reg & SDHCI_INT_DATA_END) { /* ACK for all outstanding interrupts */ bcm_sdhci_write_4(slot->bus, slot, SDHCI_INT_STATUS, reg); /* enable INT */ slot->intmask |= SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL | SDHCI_INT_DATA_END; bcm_sdhci_write_4(slot->bus, slot, SDHCI_SIGNAL_ENABLE, slot->intmask); /* finish this data */ sdhci_finish_data(slot); } else { /* already available? */ if (reg & mask) { /* ACK for DATA_AVAIL or SPACE_AVAIL */ bcm_sdhci_write_4(slot->bus, slot, SDHCI_INT_STATUS, mask); /* continue next DMA transfer */ if (bus_dmamap_load(sc->sc_dma_tag, sc->sc_dma_map, (uint8_t *)slot->curcmd->data->data + slot->offset, left, bcm_sdhci_dmacb, sc, BUS_DMA_NOWAIT) != 0 || sc->dmamap_status != 0) { slot->curcmd->error = MMC_ERR_NO_MEMORY; sdhci_finish_data(slot); } else { bcm_sdhci_start_dma_seg(sc); } } else { /* wait for next data by INT */ /* enable INT */ slot->intmask |= SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL | SDHCI_INT_DATA_END; bcm_sdhci_write_4(slot->bus, slot, SDHCI_SIGNAL_ENABLE, slot->intmask); } } mtx_unlock(&slot->mtx); } static void bcm_sdhci_read_dma(device_t dev, struct sdhci_slot *slot) { struct bcm_sdhci_softc *sc = device_get_softc(slot->bus); size_t left; if (sc->dmamap_seg_count != 0) { device_printf(sc->sc_dev, "DMA in use\n"); return; } left = min(BCM_SDHCI_BUFFER_SIZE, slot->curcmd->data->len - slot->offset); KASSERT((left & 3) == 0, ("%s: len = %d, not word-aligned", __func__, left)); if (bus_dmamap_load(sc->sc_dma_tag, sc->sc_dma_map, (uint8_t *)slot->curcmd->data->data + slot->offset, left, bcm_sdhci_dmacb, sc, BUS_DMA_NOWAIT) != 0 || sc->dmamap_status != 0) { slot->curcmd->error = MMC_ERR_NO_MEMORY; return; } /* DMA start */ bcm_sdhci_start_dma_seg(sc); } static void bcm_sdhci_write_dma(device_t dev, struct sdhci_slot *slot) { struct bcm_sdhci_softc *sc = device_get_softc(slot->bus); size_t left; if (sc->dmamap_seg_count != 0) { device_printf(sc->sc_dev, "DMA in use\n"); return; } left = min(BCM_SDHCI_BUFFER_SIZE, slot->curcmd->data->len - slot->offset); KASSERT((left & 3) == 0, ("%s: len = %d, not word-aligned", __func__, left)); if (bus_dmamap_load(sc->sc_dma_tag, sc->sc_dma_map, (uint8_t *)slot->curcmd->data->data + slot->offset, left, bcm_sdhci_dmacb, sc, BUS_DMA_NOWAIT) != 0 || sc->dmamap_status != 0) { slot->curcmd->error = MMC_ERR_NO_MEMORY; return; } /* DMA start */ bcm_sdhci_start_dma_seg(sc); } static int bcm_sdhci_will_handle_transfer(device_t dev, struct sdhci_slot *slot) { size_t left; /* * Do not use DMA for transfers less than block size or with a length * that is not a multiple of four. */ left = min(BCM_DMA_BLOCK_SIZE, slot->curcmd->data->len - slot->offset); if (left < BCM_DMA_BLOCK_SIZE) return (0); if (left & 0x03) return (0); return (1); } static void bcm_sdhci_start_transfer(device_t dev, struct sdhci_slot *slot, uint32_t *intmask) { /* DMA transfer FIFO 1KB */ if (slot->curcmd->data->flags & MMC_DATA_READ) bcm_sdhci_read_dma(dev, slot); else bcm_sdhci_write_dma(dev, slot); } static void bcm_sdhci_finish_transfer(device_t dev, struct sdhci_slot *slot) { sdhci_finish_data(slot); } static device_method_t bcm_sdhci_methods[] = { /* Device interface */ DEVMETHOD(device_probe, bcm_sdhci_probe), DEVMETHOD(device_attach, bcm_sdhci_attach), DEVMETHOD(device_detach, bcm_sdhci_detach), /* Bus interface */ DEVMETHOD(bus_read_ivar, sdhci_generic_read_ivar), DEVMETHOD(bus_write_ivar, sdhci_generic_write_ivar), DEVMETHOD(bus_print_child, bus_generic_print_child), /* MMC bridge interface */ DEVMETHOD(mmcbr_update_ios, sdhci_generic_update_ios), DEVMETHOD(mmcbr_request, sdhci_generic_request), DEVMETHOD(mmcbr_get_ro, bcm_sdhci_get_ro), DEVMETHOD(mmcbr_acquire_host, sdhci_generic_acquire_host), DEVMETHOD(mmcbr_release_host, sdhci_generic_release_host), /* Platform transfer methods */ DEVMETHOD(sdhci_platform_will_handle, bcm_sdhci_will_handle_transfer), DEVMETHOD(sdhci_platform_start_transfer, bcm_sdhci_start_transfer), DEVMETHOD(sdhci_platform_finish_transfer, bcm_sdhci_finish_transfer), /* SDHCI registers accessors */ DEVMETHOD(sdhci_read_1, bcm_sdhci_read_1), DEVMETHOD(sdhci_read_2, bcm_sdhci_read_2), DEVMETHOD(sdhci_read_4, bcm_sdhci_read_4), DEVMETHOD(sdhci_read_multi_4, bcm_sdhci_read_multi_4), DEVMETHOD(sdhci_write_1, bcm_sdhci_write_1), DEVMETHOD(sdhci_write_2, bcm_sdhci_write_2), DEVMETHOD(sdhci_write_4, bcm_sdhci_write_4), DEVMETHOD(sdhci_write_multi_4, bcm_sdhci_write_multi_4), { 0, 0 } }; static devclass_t bcm_sdhci_devclass; static driver_t bcm_sdhci_driver = { "sdhci_bcm", bcm_sdhci_methods, sizeof(struct bcm_sdhci_softc), }; DRIVER_MODULE(sdhci_bcm, simplebus, bcm_sdhci_driver, bcm_sdhci_devclass, 0, 0); MODULE_DEPEND(sdhci_bcm, sdhci, 1, 1, 1); DRIVER_MODULE(mmc, sdhci_bcm, mmc_driver, mmc_devclass, NULL, NULL);