Index: head/sys/dev/hyperv/netvsc/hv_netvsc_drv_freebsd.c =================================================================== --- head/sys/dev/hyperv/netvsc/hv_netvsc_drv_freebsd.c (revision 295605) +++ head/sys/dev/hyperv/netvsc/hv_netvsc_drv_freebsd.c (revision 295606) @@ -1,2050 +1,2050 @@ /*- * Copyright (c) 2010-2012 Citrix Inc. * Copyright (c) 2009-2012 Microsoft Corp. * Copyright (c) 2012 NetApp Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2004-2006 Kip Macy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet6.h" #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hv_net_vsc.h" #include "hv_rndis.h" #include "hv_rndis_filter.h" /* Short for Hyper-V network interface */ #define NETVSC_DEVNAME "hn" /* * It looks like offset 0 of buf is reserved to hold the softc pointer. * The sc pointer evidently not needed, and is not presently populated. * The packet offset is where the netvsc_packet starts in the buffer. */ #define HV_NV_SC_PTR_OFFSET_IN_BUF 0 #define HV_NV_PACKET_OFFSET_IN_BUF 16 /* YYY should get it from the underlying channel */ #define HN_TX_DESC_CNT 512 #define HN_LROENT_CNT_DEF 128 #define HN_RNDIS_MSG_LEN \ (sizeof(rndis_msg) + \ RNDIS_VLAN_PPI_SIZE + \ RNDIS_TSO_PPI_SIZE + \ RNDIS_CSUM_PPI_SIZE) #define HN_RNDIS_MSG_BOUNDARY PAGE_SIZE #define HN_RNDIS_MSG_ALIGN CACHE_LINE_SIZE #define HN_TX_DATA_BOUNDARY PAGE_SIZE #define HN_TX_DATA_MAXSIZE IP_MAXPACKET #define HN_TX_DATA_SEGSIZE PAGE_SIZE #define HN_TX_DATA_SEGCNT_MAX \ (NETVSC_PACKET_MAXPAGE - HV_RF_NUM_TX_RESERVED_PAGE_BUFS) #define HN_DIRECT_TX_SIZE_DEF 128 struct hn_txdesc { SLIST_ENTRY(hn_txdesc) link; struct mbuf *m; struct hn_softc *sc; int refs; uint32_t flags; /* HN_TXD_FLAG_ */ netvsc_packet netvsc_pkt; /* XXX to be removed */ bus_dmamap_t data_dmap; bus_addr_t rndis_msg_paddr; rndis_msg *rndis_msg; bus_dmamap_t rndis_msg_dmap; }; #define HN_TXD_FLAG_ONLIST 0x1 #define HN_TXD_FLAG_DMAMAP 0x2 /* * Only enable UDP checksum offloading when it is on 2012R2 or * later. UDP checksum offloading doesn't work on earlier * Windows releases. */ #define HN_CSUM_ASSIST_WIN8 (CSUM_TCP) #define HN_CSUM_ASSIST (CSUM_IP | CSUM_UDP | CSUM_TCP) /* XXX move to netinet/tcp_lro.h */ #define HN_LRO_HIWAT_MAX 65535 #define HN_LRO_HIWAT_DEF HN_LRO_HIWAT_MAX /* YYY 2*MTU is a bit rough, but should be good enough. */ #define HN_LRO_HIWAT_MTULIM(ifp) (2 * (ifp)->if_mtu) #define HN_LRO_HIWAT_ISVALID(sc, hiwat) \ ((hiwat) >= HN_LRO_HIWAT_MTULIM((sc)->hn_ifp) || \ (hiwat) <= HN_LRO_HIWAT_MAX) /* * Be aware that this sleepable mutex will exhibit WITNESS errors when * certain TCP and ARP code paths are taken. This appears to be a * well-known condition, as all other drivers checked use a sleeping * mutex to protect their transmit paths. * Also Be aware that mutexes do not play well with semaphores, and there * is a conflicting semaphore in a certain channel code path. */ #define NV_LOCK_INIT(_sc, _name) \ mtx_init(&(_sc)->hn_lock, _name, MTX_NETWORK_LOCK, MTX_DEF) #define NV_LOCK(_sc) mtx_lock(&(_sc)->hn_lock) #define NV_TRYLOCK(_sc) mtx_trylock(&(_sc)->hn_lock) #define NV_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->hn_lock, MA_OWNED) #define NV_UNLOCK(_sc) mtx_unlock(&(_sc)->hn_lock) #define NV_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->hn_lock) /* * Globals */ int hv_promisc_mode = 0; /* normal mode by default */ /* Trust tcp segements verification on host side. */ static int hn_trust_hosttcp = 1; TUNABLE_INT("dev.hn.trust_hosttcp", &hn_trust_hosttcp); /* Trust udp datagrams verification on host side. */ static int hn_trust_hostudp = 1; TUNABLE_INT("dev.hn.trust_hostudp", &hn_trust_hostudp); /* Trust ip packets verification on host side. */ static int hn_trust_hostip = 1; TUNABLE_INT("dev.hn.trust_hostip", &hn_trust_hostip); #if __FreeBSD_version >= 1100045 /* Limit TSO burst size */ static int hn_tso_maxlen = 0; TUNABLE_INT("dev.hn.tso_maxlen", &hn_tso_maxlen); #endif /* Limit chimney send size */ static int hn_tx_chimney_size = 0; TUNABLE_INT("dev.hn.tx_chimney_size", &hn_tx_chimney_size); /* Limit the size of packet for direct transmission */ static int hn_direct_tx_size = HN_DIRECT_TX_SIZE_DEF; TUNABLE_INT("dev.hn.direct_tx_size", &hn_direct_tx_size); #if defined(INET) || defined(INET6) #if __FreeBSD_version >= 1100095 static int hn_lro_entry_count = HN_LROENT_CNT_DEF; TUNABLE_INT("dev.hn.lro_entry_count", &hn_lro_entry_count); #endif #endif /* * Forward declarations */ static void hn_stop(hn_softc_t *sc); static void hn_ifinit_locked(hn_softc_t *sc); static void hn_ifinit(void *xsc); static int hn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data); static int hn_start_locked(struct ifnet *ifp, int len); static void hn_start(struct ifnet *ifp); static void hn_start_txeof(struct ifnet *ifp); static int hn_ifmedia_upd(struct ifnet *ifp); static void hn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); #ifdef HN_LRO_HIWAT static int hn_lro_hiwat_sysctl(SYSCTL_HANDLER_ARGS); #endif static int hn_trust_hcsum_sysctl(SYSCTL_HANDLER_ARGS); static int hn_tx_chimney_size_sysctl(SYSCTL_HANDLER_ARGS); static int hn_check_iplen(const struct mbuf *, int); static int hn_create_tx_ring(struct hn_softc *sc); static void hn_destroy_tx_ring(struct hn_softc *sc); static void hn_start_taskfunc(void *xsc, int pending); static void hn_txeof_taskfunc(void *xsc, int pending); static int hn_encap(struct hn_softc *, struct hn_txdesc *, struct mbuf **); static __inline void hn_set_lro_hiwat(struct hn_softc *sc, int hiwat) { sc->hn_lro_hiwat = hiwat; #ifdef HN_LRO_HIWAT sc->hn_lro.lro_hiwat = sc->hn_lro_hiwat; #endif } static int hn_ifmedia_upd(struct ifnet *ifp __unused) { return EOPNOTSUPP; } static void hn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct hn_softc *sc = ifp->if_softc; ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (!sc->hn_carrier) { ifmr->ifm_active |= IFM_NONE; return; } ifmr->ifm_status |= IFM_ACTIVE; ifmr->ifm_active |= IFM_10G_T | IFM_FDX; } /* {F8615163-DF3E-46c5-913F-F2D2F965ED0E} */ static const hv_guid g_net_vsc_device_type = { .data = {0x63, 0x51, 0x61, 0xF8, 0x3E, 0xDF, 0xc5, 0x46, 0x91, 0x3F, 0xF2, 0xD2, 0xF9, 0x65, 0xED, 0x0E} }; /* * Standard probe entry point. * */ static int netvsc_probe(device_t dev) { const char *p; p = vmbus_get_type(dev); if (!memcmp(p, &g_net_vsc_device_type.data, sizeof(hv_guid))) { device_set_desc(dev, "Synthetic Network Interface"); if (bootverbose) printf("Netvsc probe... DONE \n"); return (BUS_PROBE_DEFAULT); } return (ENXIO); } /* * Standard attach entry point. * * Called when the driver is loaded. It allocates needed resources, * and initializes the "hardware" and software. */ static int netvsc_attach(device_t dev) { struct hv_device *device_ctx = vmbus_get_devctx(dev); netvsc_device_info device_info; hn_softc_t *sc; int unit = device_get_unit(dev); struct ifnet *ifp = NULL; struct sysctl_oid_list *child; struct sysctl_ctx_list *ctx; int error; #if __FreeBSD_version >= 1100045 int tso_maxlen; #endif #if defined(INET) || defined(INET6) #if __FreeBSD_version >= 1100095 int lroent_cnt; #endif #endif sc = device_get_softc(dev); if (sc == NULL) { return (ENOMEM); } bzero(sc, sizeof(hn_softc_t)); sc->hn_unit = unit; sc->hn_dev = dev; sc->hn_lro_hiwat = HN_LRO_HIWAT_DEF; sc->hn_direct_tx_size = hn_direct_tx_size; if (hn_trust_hosttcp) sc->hn_trust_hcsum |= HN_TRUST_HCSUM_TCP; if (hn_trust_hostudp) sc->hn_trust_hcsum |= HN_TRUST_HCSUM_UDP; if (hn_trust_hostip) sc->hn_trust_hcsum |= HN_TRUST_HCSUM_IP; sc->hn_tx_taskq = taskqueue_create_fast("hn_tx", M_WAITOK, taskqueue_thread_enqueue, &sc->hn_tx_taskq); taskqueue_start_threads(&sc->hn_tx_taskq, 1, PI_NET, "%s tx", device_get_nameunit(dev)); TASK_INIT(&sc->hn_start_task, 0, hn_start_taskfunc, sc); TASK_INIT(&sc->hn_txeof_task, 0, hn_txeof_taskfunc, sc); error = hn_create_tx_ring(sc); if (error) goto failed; NV_LOCK_INIT(sc, "NetVSCLock"); sc->hn_dev_obj = device_ctx; ifp = sc->hn_ifp = if_alloc(IFT_ETHER); ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_dunit = unit; ifp->if_dname = NETVSC_DEVNAME; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = hn_ioctl; ifp->if_start = hn_start; ifp->if_init = hn_ifinit; /* needed by hv_rf_on_device_add() code */ ifp->if_mtu = ETHERMTU; IFQ_SET_MAXLEN(&ifp->if_snd, 512); ifp->if_snd.ifq_drv_maxlen = 511; IFQ_SET_READY(&ifp->if_snd); ifmedia_init(&sc->hn_media, 0, hn_ifmedia_upd, hn_ifmedia_sts); ifmedia_add(&sc->hn_media, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&sc->hn_media, IFM_ETHER | IFM_AUTO); /* XXX ifmedia_set really should do this for us */ sc->hn_media.ifm_media = sc->hn_media.ifm_cur->ifm_media; /* * Tell upper layers that we support full VLAN capability. */ ifp->if_hdrlen = sizeof(struct ether_vlan_header); ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | IFCAP_TSO | IFCAP_LRO; ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | IFCAP_TSO | IFCAP_LRO; if (hv_vmbus_protocal_version >= HV_VMBUS_VERSION_WIN8_1) sc->hn_csum_assist = HN_CSUM_ASSIST; else sc->hn_csum_assist = HN_CSUM_ASSIST_WIN8; ifp->if_hwassist = sc->hn_csum_assist | CSUM_TSO; error = hv_rf_on_device_add(device_ctx, &device_info); if (error) goto failed; if (device_info.link_state == 0) { sc->hn_carrier = 1; } #if defined(INET) || defined(INET6) #if __FreeBSD_version >= 1100095 lroent_cnt = hn_lro_entry_count; if (lroent_cnt < TCP_LRO_ENTRIES) lroent_cnt = TCP_LRO_ENTRIES; tcp_lro_init_args(&sc->hn_lro, ifp, lroent_cnt, 0); device_printf(dev, "LRO: entry count %d\n", lroent_cnt); #else tcp_lro_init(&sc->hn_lro); /* Driver private LRO settings */ sc->hn_lro.ifp = ifp; #endif #ifdef HN_LRO_HIWAT sc->hn_lro.lro_hiwat = sc->hn_lro_hiwat; #endif #endif /* INET || INET6 */ #if __FreeBSD_version >= 1100045 tso_maxlen = hn_tso_maxlen; if (tso_maxlen <= 0 || tso_maxlen > IP_MAXPACKET) tso_maxlen = IP_MAXPACKET; ifp->if_hw_tsomaxsegcount = HN_TX_DATA_SEGCNT_MAX; ifp->if_hw_tsomaxsegsize = PAGE_SIZE; ifp->if_hw_tsomax = tso_maxlen - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); #endif ether_ifattach(ifp, device_info.mac_addr); #if __FreeBSD_version >= 1100045 if_printf(ifp, "TSO: %u/%u/%u\n", ifp->if_hw_tsomax, ifp->if_hw_tsomaxsegcount, ifp->if_hw_tsomaxsegsize); #endif sc->hn_tx_chimney_max = sc->net_dev->send_section_size; sc->hn_tx_chimney_size = sc->hn_tx_chimney_max; if (hn_tx_chimney_size > 0 && hn_tx_chimney_size < sc->hn_tx_chimney_max) sc->hn_tx_chimney_size = hn_tx_chimney_size; ctx = device_get_sysctl_ctx(dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev)); SYSCTL_ADD_U64(ctx, child, OID_AUTO, "lro_queued", CTLFLAG_RW, &sc->hn_lro.lro_queued, 0, "LRO queued"); SYSCTL_ADD_U64(ctx, child, OID_AUTO, "lro_flushed", CTLFLAG_RW, &sc->hn_lro.lro_flushed, 0, "LRO flushed"); SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "lro_tried", CTLFLAG_RW, &sc->hn_lro_tried, "# of LRO tries"); #ifdef HN_LRO_HIWAT SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_hiwat", CTLTYPE_INT | CTLFLAG_RW, sc, 0, hn_lro_hiwat_sysctl, "I", "LRO high watermark"); #endif SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hosttcp", CTLTYPE_INT | CTLFLAG_RW, sc, HN_TRUST_HCSUM_TCP, hn_trust_hcsum_sysctl, "I", "Trust tcp segement verification on host side, " "when csum info is missing"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hostudp", CTLTYPE_INT | CTLFLAG_RW, sc, HN_TRUST_HCSUM_UDP, hn_trust_hcsum_sysctl, "I", "Trust udp datagram verification on host side, " "when csum info is missing"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hostip", CTLTYPE_INT | CTLFLAG_RW, sc, HN_TRUST_HCSUM_IP, hn_trust_hcsum_sysctl, "I", "Trust ip packet verification on host side, " "when csum info is missing"); SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "csum_ip", CTLFLAG_RW, &sc->hn_csum_ip, "RXCSUM IP"); SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "csum_tcp", CTLFLAG_RW, &sc->hn_csum_tcp, "RXCSUM TCP"); SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "csum_udp", CTLFLAG_RW, &sc->hn_csum_udp, "RXCSUM UDP"); SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "csum_trusted", CTLFLAG_RW, &sc->hn_csum_trusted, "# of packets that we trust host's csum verification"); SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "small_pkts", CTLFLAG_RW, &sc->hn_small_pkts, "# of small packets received"); SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "no_txdescs", CTLFLAG_RW, &sc->hn_no_txdescs, "# of times short of TX descs"); SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "send_failed", CTLFLAG_RW, &sc->hn_send_failed, "# of hyper-v sending failure"); SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "txdma_failed", CTLFLAG_RW, &sc->hn_txdma_failed, "# of TX DMA failure"); SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_collapsed", CTLFLAG_RW, &sc->hn_tx_collapsed, "# of TX mbuf collapsed"); SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_chimney", CTLFLAG_RW, &sc->hn_tx_chimney, "# of chimney send"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "txdesc_cnt", CTLFLAG_RD, &sc->hn_txdesc_cnt, 0, "# of total TX descs"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "txdesc_avail", CTLFLAG_RD, &sc->hn_txdesc_avail, 0, "# of available TX descs"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_chimney_max", CTLFLAG_RD, &sc->hn_tx_chimney_max, 0, "Chimney send packet size upper boundary"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_chimney_size", CTLTYPE_INT | CTLFLAG_RW, sc, 0, hn_tx_chimney_size_sysctl, "I", "Chimney send packet size limit"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "direct_tx_size", CTLFLAG_RW, &sc->hn_direct_tx_size, 0, "Size of the packet for direct transmission"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "sched_tx", CTLFLAG_RW, &sc->hn_sched_tx, 0, "Always schedule transmission " "instead of doing direct transmission"); if (unit == 0) { struct sysctl_ctx_list *dc_ctx; struct sysctl_oid_list *dc_child; devclass_t dc; /* * Add sysctl nodes for devclass */ dc = device_get_devclass(dev); dc_ctx = devclass_get_sysctl_ctx(dc); dc_child = SYSCTL_CHILDREN(devclass_get_sysctl_tree(dc)); SYSCTL_ADD_INT(dc_ctx, dc_child, OID_AUTO, "trust_hosttcp", CTLFLAG_RD, &hn_trust_hosttcp, 0, "Trust tcp segement verification on host side, " "when csum info is missing (global setting)"); SYSCTL_ADD_INT(dc_ctx, dc_child, OID_AUTO, "trust_hostudp", CTLFLAG_RD, &hn_trust_hostudp, 0, "Trust udp datagram verification on host side, " "when csum info is missing (global setting)"); SYSCTL_ADD_INT(dc_ctx, dc_child, OID_AUTO, "trust_hostip", CTLFLAG_RD, &hn_trust_hostip, 0, "Trust ip packet verification on host side, " "when csum info is missing (global setting)"); SYSCTL_ADD_INT(dc_ctx, dc_child, OID_AUTO, "tx_chimney_size", CTLFLAG_RD, &hn_tx_chimney_size, 0, "Chimney send packet size limit"); #if __FreeBSD_version >= 1100045 SYSCTL_ADD_INT(dc_ctx, dc_child, OID_AUTO, "tso_maxlen", CTLFLAG_RD, &hn_tso_maxlen, 0, "TSO burst limit"); #endif SYSCTL_ADD_INT(dc_ctx, dc_child, OID_AUTO, "direct_tx_size", CTLFLAG_RD, &hn_direct_tx_size, 0, "Size of the packet for direct transmission"); #if defined(INET) || defined(INET6) #if __FreeBSD_version >= 1100095 SYSCTL_ADD_INT(dc_ctx, dc_child, OID_AUTO, "lro_entry_count", CTLFLAG_RD, &hn_lro_entry_count, 0, "LRO entry count"); #endif #endif } return (0); failed: hn_destroy_tx_ring(sc); if (ifp != NULL) if_free(ifp); return (error); } /* * Standard detach entry point */ static int netvsc_detach(device_t dev) { struct hn_softc *sc = device_get_softc(dev); struct hv_device *hv_device = vmbus_get_devctx(dev); if (bootverbose) printf("netvsc_detach\n"); /* * XXXKYS: Need to clean up all our * driver state; this is the driver * unloading. */ /* * XXXKYS: Need to stop outgoing traffic and unregister * the netdevice. */ hv_rf_on_device_remove(hv_device, HV_RF_NV_DESTROY_CHANNEL); taskqueue_drain(sc->hn_tx_taskq, &sc->hn_start_task); taskqueue_drain(sc->hn_tx_taskq, &sc->hn_txeof_task); taskqueue_free(sc->hn_tx_taskq); ifmedia_removeall(&sc->hn_media); #if defined(INET) || defined(INET6) tcp_lro_free(&sc->hn_lro); #endif hn_destroy_tx_ring(sc); return (0); } /* * Standard shutdown entry point */ static int netvsc_shutdown(device_t dev) { return (0); } static __inline int hn_txdesc_dmamap_load(struct hn_softc *sc, struct hn_txdesc *txd, struct mbuf **m_head, bus_dma_segment_t *segs, int *nsegs) { struct mbuf *m = *m_head; int error; error = bus_dmamap_load_mbuf_sg(sc->hn_tx_data_dtag, txd->data_dmap, m, segs, nsegs, BUS_DMA_NOWAIT); if (error == EFBIG) { struct mbuf *m_new; m_new = m_collapse(m, M_NOWAIT, HN_TX_DATA_SEGCNT_MAX); if (m_new == NULL) return ENOBUFS; else *m_head = m = m_new; sc->hn_tx_collapsed++; error = bus_dmamap_load_mbuf_sg(sc->hn_tx_data_dtag, txd->data_dmap, m, segs, nsegs, BUS_DMA_NOWAIT); } if (!error) { bus_dmamap_sync(sc->hn_tx_data_dtag, txd->data_dmap, BUS_DMASYNC_PREWRITE); txd->flags |= HN_TXD_FLAG_DMAMAP; } return error; } static __inline void hn_txdesc_dmamap_unload(struct hn_softc *sc, struct hn_txdesc *txd) { if (txd->flags & HN_TXD_FLAG_DMAMAP) { bus_dmamap_sync(sc->hn_tx_data_dtag, txd->data_dmap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->hn_tx_data_dtag, txd->data_dmap); txd->flags &= ~HN_TXD_FLAG_DMAMAP; } } static __inline int hn_txdesc_put(struct hn_softc *sc, struct hn_txdesc *txd) { KASSERT((txd->flags & HN_TXD_FLAG_ONLIST) == 0, ("put an onlist txd %#x", txd->flags)); KASSERT(txd->refs > 0, ("invalid txd refs %d", txd->refs)); if (atomic_fetchadd_int(&txd->refs, -1) != 1) return 0; hn_txdesc_dmamap_unload(sc, txd); if (txd->m != NULL) { m_freem(txd->m); txd->m = NULL; } txd->flags |= HN_TXD_FLAG_ONLIST; mtx_lock_spin(&sc->hn_txlist_spin); KASSERT(sc->hn_txdesc_avail >= 0 && sc->hn_txdesc_avail < sc->hn_txdesc_cnt, ("txdesc_put: invalid txd avail %d", sc->hn_txdesc_avail)); sc->hn_txdesc_avail++; SLIST_INSERT_HEAD(&sc->hn_txlist, txd, link); mtx_unlock_spin(&sc->hn_txlist_spin); return 1; } static __inline struct hn_txdesc * hn_txdesc_get(struct hn_softc *sc) { struct hn_txdesc *txd; mtx_lock_spin(&sc->hn_txlist_spin); txd = SLIST_FIRST(&sc->hn_txlist); if (txd != NULL) { KASSERT(sc->hn_txdesc_avail > 0, ("txdesc_get: invalid txd avail %d", sc->hn_txdesc_avail)); sc->hn_txdesc_avail--; SLIST_REMOVE_HEAD(&sc->hn_txlist, link); } mtx_unlock_spin(&sc->hn_txlist_spin); if (txd != NULL) { KASSERT(txd->m == NULL && txd->refs == 0 && (txd->flags & HN_TXD_FLAG_ONLIST), ("invalid txd")); txd->flags &= ~HN_TXD_FLAG_ONLIST; txd->refs = 1; } return txd; } static __inline void hn_txdesc_hold(struct hn_txdesc *txd) { /* 0->1 transition will never work */ KASSERT(txd->refs > 0, ("invalid refs %d", txd->refs)); atomic_add_int(&txd->refs, 1); } /* * Send completion processing * * Note: It looks like offset 0 of buf is reserved to hold the softc * pointer. The sc pointer is not currently needed in this function, and * it is not presently populated by the TX function. */ void netvsc_xmit_completion(void *context) { netvsc_packet *packet = context; struct hn_txdesc *txd; struct hn_softc *sc; txd = (struct hn_txdesc *)(uintptr_t) packet->compl.send.send_completion_tid; sc = txd->sc; sc->hn_txeof = 1; hn_txdesc_put(sc, txd); } void netvsc_channel_rollup(struct hv_device *device_ctx) { struct hn_softc *sc = device_get_softc(device_ctx->device); #if defined(INET) || defined(INET6) struct lro_ctrl *lro = &sc->hn_lro; struct lro_entry *queued; while ((queued = SLIST_FIRST(&lro->lro_active)) != NULL) { SLIST_REMOVE_HEAD(&lro->lro_active, next); tcp_lro_flush(lro, queued); } #endif if (!sc->hn_txeof) return; sc->hn_txeof = 0; hn_start_txeof(sc->hn_ifp); } /* * NOTE: - * This this function fails, then both txd and m_head0 will be freed + * If this function fails, then both txd and m_head0 will be freed. */ static int hn_encap(struct hn_softc *sc, struct hn_txdesc *txd, struct mbuf **m_head0) { bus_dma_segment_t segs[HN_TX_DATA_SEGCNT_MAX]; int error, nsegs, i; struct mbuf *m_head = *m_head0; netvsc_packet *packet; rndis_msg *rndis_mesg; rndis_packet *rndis_pkt; rndis_per_packet_info *rppi; uint32_t rndis_msg_size; packet = &txd->netvsc_pkt; packet->is_data_pkt = TRUE; packet->tot_data_buf_len = m_head->m_pkthdr.len; /* * extension points to the area reserved for the * rndis_filter_packet, which is placed just after * the netvsc_packet (and rppi struct, if present; * length is updated later). */ rndis_mesg = txd->rndis_msg; /* XXX not necessary */ memset(rndis_mesg, 0, HN_RNDIS_MSG_LEN); rndis_mesg->ndis_msg_type = REMOTE_NDIS_PACKET_MSG; rndis_pkt = &rndis_mesg->msg.packet; rndis_pkt->data_offset = sizeof(rndis_packet); rndis_pkt->data_length = packet->tot_data_buf_len; rndis_pkt->per_pkt_info_offset = sizeof(rndis_packet); rndis_msg_size = RNDIS_MESSAGE_SIZE(rndis_packet); if (m_head->m_flags & M_VLANTAG) { ndis_8021q_info *rppi_vlan_info; rndis_msg_size += RNDIS_VLAN_PPI_SIZE; rppi = hv_set_rppi_data(rndis_mesg, RNDIS_VLAN_PPI_SIZE, ieee_8021q_info); rppi_vlan_info = (ndis_8021q_info *)((uint8_t *)rppi + rppi->per_packet_info_offset); rppi_vlan_info->u1.s1.vlan_id = m_head->m_pkthdr.ether_vtag & 0xfff; } if (m_head->m_pkthdr.csum_flags & CSUM_TSO) { rndis_tcp_tso_info *tso_info; struct ether_vlan_header *eh; int ether_len; /* * XXX need m_pullup and use mtodo */ eh = mtod(m_head, struct ether_vlan_header*); if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ether_len = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; else ether_len = ETHER_HDR_LEN; rndis_msg_size += RNDIS_TSO_PPI_SIZE; rppi = hv_set_rppi_data(rndis_mesg, RNDIS_TSO_PPI_SIZE, tcp_large_send_info); tso_info = (rndis_tcp_tso_info *)((uint8_t *)rppi + rppi->per_packet_info_offset); tso_info->lso_v2_xmit.type = RNDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; #ifdef INET if (m_head->m_pkthdr.csum_flags & CSUM_IP_TSO) { struct ip *ip = (struct ip *)(m_head->m_data + ether_len); unsigned long iph_len = ip->ip_hl << 2; struct tcphdr *th = (struct tcphdr *)((caddr_t)ip + iph_len); tso_info->lso_v2_xmit.ip_version = RNDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; ip->ip_len = 0; ip->ip_sum = 0; th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(IPPROTO_TCP)); } #endif #if defined(INET6) && defined(INET) else #endif #ifdef INET6 { struct ip6_hdr *ip6 = (struct ip6_hdr *) (m_head->m_data + ether_len); struct tcphdr *th = (struct tcphdr *)(ip6 + 1); tso_info->lso_v2_xmit.ip_version = RNDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; ip6->ip6_plen = 0; th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0); } #endif tso_info->lso_v2_xmit.tcp_header_offset = 0; tso_info->lso_v2_xmit.mss = m_head->m_pkthdr.tso_segsz; } else if (m_head->m_pkthdr.csum_flags & sc->hn_csum_assist) { rndis_tcp_ip_csum_info *csum_info; rndis_msg_size += RNDIS_CSUM_PPI_SIZE; rppi = hv_set_rppi_data(rndis_mesg, RNDIS_CSUM_PPI_SIZE, tcpip_chksum_info); csum_info = (rndis_tcp_ip_csum_info *)((uint8_t *)rppi + rppi->per_packet_info_offset); csum_info->xmit.is_ipv4 = 1; if (m_head->m_pkthdr.csum_flags & CSUM_IP) csum_info->xmit.ip_header_csum = 1; if (m_head->m_pkthdr.csum_flags & CSUM_TCP) { csum_info->xmit.tcp_csum = 1; csum_info->xmit.tcp_header_offset = 0; } else if (m_head->m_pkthdr.csum_flags & CSUM_UDP) { csum_info->xmit.udp_csum = 1; } } rndis_mesg->msg_len = packet->tot_data_buf_len + rndis_msg_size; packet->tot_data_buf_len = rndis_mesg->msg_len; /* * Chimney send, if the packet could fit into one chimney buffer. */ if (packet->tot_data_buf_len < sc->hn_tx_chimney_size) { netvsc_dev *net_dev = sc->net_dev; uint32_t send_buf_section_idx; send_buf_section_idx = hv_nv_get_next_send_section(net_dev); if (send_buf_section_idx != NVSP_1_CHIMNEY_SEND_INVALID_SECTION_INDEX) { uint8_t *dest = ((uint8_t *)net_dev->send_buf + (send_buf_section_idx * net_dev->send_section_size)); memcpy(dest, rndis_mesg, rndis_msg_size); dest += rndis_msg_size; m_copydata(m_head, 0, m_head->m_pkthdr.len, dest); packet->send_buf_section_idx = send_buf_section_idx; packet->send_buf_section_size = packet->tot_data_buf_len; packet->page_buf_count = 0; sc->hn_tx_chimney++; goto done; } } error = hn_txdesc_dmamap_load(sc, txd, &m_head, segs, &nsegs); if (error) { int freed; /* * This mbuf is not linked w/ the txd yet, so free it now. */ m_freem(m_head); *m_head0 = NULL; freed = hn_txdesc_put(sc, txd); KASSERT(freed != 0, ("fail to free txd upon txdma error")); sc->hn_txdma_failed++; if_inc_counter(sc->hn_ifp, IFCOUNTER_OERRORS, 1); return error; } *m_head0 = m_head; packet->page_buf_count = nsegs + HV_RF_NUM_TX_RESERVED_PAGE_BUFS; /* send packet with page buffer */ packet->page_buffers[0].pfn = atop(txd->rndis_msg_paddr); packet->page_buffers[0].offset = txd->rndis_msg_paddr & PAGE_MASK; packet->page_buffers[0].length = rndis_msg_size; /* * Fill the page buffers with mbuf info starting at index * HV_RF_NUM_TX_RESERVED_PAGE_BUFS. */ for (i = 0; i < nsegs; ++i) { hv_vmbus_page_buffer *pb = &packet->page_buffers[ i + HV_RF_NUM_TX_RESERVED_PAGE_BUFS]; pb->pfn = atop(segs[i].ds_addr); pb->offset = segs[i].ds_addr & PAGE_MASK; pb->length = segs[i].ds_len; } packet->send_buf_section_idx = NVSP_1_CHIMNEY_SEND_INVALID_SECTION_INDEX; packet->send_buf_section_size = 0; done: txd->m = m_head; /* Set the completion routine */ packet->compl.send.on_send_completion = netvsc_xmit_completion; packet->compl.send.send_completion_context = packet; packet->compl.send.send_completion_tid = (uint64_t)(uintptr_t)txd; return 0; } /* * Start a transmit of one or more packets */ static int hn_start_locked(struct ifnet *ifp, int len) { struct hn_softc *sc = ifp->if_softc; struct hv_device *device_ctx = vmbus_get_devctx(sc->hn_dev); if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return 0; while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { int error, send_failed = 0; struct hn_txdesc *txd; struct mbuf *m_head; IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; if (len > 0 && m_head->m_pkthdr.len > len) { /* * This sending could be time consuming; let callers * dispatch this packet sending (and sending of any * following up packets) to tx taskqueue. */ IF_PREPEND(&ifp->if_snd, m_head); return 1; } txd = hn_txdesc_get(sc); if (txd == NULL) { sc->hn_no_txdescs++; IF_PREPEND(&ifp->if_snd, m_head); atomic_set_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); break; } error = hn_encap(sc, txd, &m_head); if (error) { /* Both txd and m_head are freed */ continue; } again: /* * Make sure that txd is not freed before ETHER_BPF_MTAP. */ hn_txdesc_hold(txd); error = hv_nv_on_send(device_ctx, &txd->netvsc_pkt); if (!error) { ETHER_BPF_MTAP(ifp, m_head); if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); } hn_txdesc_put(sc, txd); if (__predict_false(error)) { int freed; /* * This should "really rarely" happen. * * XXX Too many RX to be acked or too many sideband * commands to run? Ask netvsc_channel_rollup() * to kick start later. */ sc->hn_txeof = 1; if (!send_failed) { sc->hn_send_failed++; send_failed = 1; /* * Try sending again after set hn_txeof; * in case that we missed the last * netvsc_channel_rollup(). */ goto again; } if_printf(ifp, "send failed\n"); /* * This mbuf will be prepended, don't free it * in hn_txdesc_put(); only unload it from the * DMA map in hn_txdesc_put(), if it was loaded. */ txd->m = NULL; freed = hn_txdesc_put(sc, txd); KASSERT(freed != 0, ("fail to free txd upon send error")); sc->hn_send_failed++; IF_PREPEND(&ifp->if_snd, m_head); atomic_set_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); break; } } return 0; } /* * Link up/down notification */ void netvsc_linkstatus_callback(struct hv_device *device_obj, uint32_t status) { hn_softc_t *sc = device_get_softc(device_obj->device); if (sc == NULL) { return; } if (status == 1) { sc->hn_carrier = 1; } else { sc->hn_carrier = 0; } } /* * Append the specified data to the indicated mbuf chain, * Extend the mbuf chain if the new data does not fit in * existing space. * * This is a minor rewrite of m_append() from sys/kern/uipc_mbuf.c. * There should be an equivalent in the kernel mbuf code, * but there does not appear to be one yet. * * Differs from m_append() in that additional mbufs are * allocated with cluster size MJUMPAGESIZE, and filled * accordingly. * * Return 1 if able to complete the job; otherwise 0. */ static int hv_m_append(struct mbuf *m0, int len, c_caddr_t cp) { struct mbuf *m, *n; int remainder, space; for (m = m0; m->m_next != NULL; m = m->m_next) ; remainder = len; space = M_TRAILINGSPACE(m); if (space > 0) { /* * Copy into available space. */ if (space > remainder) space = remainder; bcopy(cp, mtod(m, caddr_t) + m->m_len, space); m->m_len += space; cp += space; remainder -= space; } while (remainder > 0) { /* * Allocate a new mbuf; could check space * and allocate a cluster instead. */ n = m_getjcl(M_NOWAIT, m->m_type, 0, MJUMPAGESIZE); if (n == NULL) break; n->m_len = min(MJUMPAGESIZE, remainder); bcopy(cp, mtod(n, caddr_t), n->m_len); cp += n->m_len; remainder -= n->m_len; m->m_next = n; m = n; } if (m0->m_flags & M_PKTHDR) m0->m_pkthdr.len += len - remainder; return (remainder == 0); } /* * Called when we receive a data packet from the "wire" on the * specified device * * Note: This is no longer used as a callback */ int netvsc_recv(struct hv_device *device_ctx, netvsc_packet *packet, rndis_tcp_ip_csum_info *csum_info) { hn_softc_t *sc = (hn_softc_t *)device_get_softc(device_ctx->device); struct mbuf *m_new; struct ifnet *ifp; device_t dev = device_ctx->device; int size, do_lro = 0, do_csum = 1; if (sc == NULL) { return (0); /* TODO: KYS how can this be! */ } ifp = sc->hn_ifp; if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { return (0); } /* * Bail out if packet contains more data than configured MTU. */ if (packet->tot_data_buf_len > (ifp->if_mtu + ETHER_HDR_LEN)) { return (0); } else if (packet->tot_data_buf_len <= MHLEN) { m_new = m_gethdr(M_NOWAIT, MT_DATA); if (m_new == NULL) return (0); memcpy(mtod(m_new, void *), packet->data, packet->tot_data_buf_len); m_new->m_pkthdr.len = m_new->m_len = packet->tot_data_buf_len; sc->hn_small_pkts++; } else { /* * Get an mbuf with a cluster. For packets 2K or less, * get a standard 2K cluster. For anything larger, get a * 4K cluster. Any buffers larger than 4K can cause problems * if looped around to the Hyper-V TX channel, so avoid them. */ size = MCLBYTES; if (packet->tot_data_buf_len > MCLBYTES) { /* 4096 */ size = MJUMPAGESIZE; } m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, size); if (m_new == NULL) { device_printf(dev, "alloc mbuf failed.\n"); return (0); } hv_m_append(m_new, packet->tot_data_buf_len, packet->data); } m_new->m_pkthdr.rcvif = ifp; if (__predict_false((ifp->if_capenable & IFCAP_RXCSUM) == 0)) do_csum = 0; /* receive side checksum offload */ if (csum_info != NULL) { /* IP csum offload */ if (csum_info->receive.ip_csum_succeeded && do_csum) { m_new->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID); sc->hn_csum_ip++; } /* TCP/UDP csum offload */ if ((csum_info->receive.tcp_csum_succeeded || csum_info->receive.udp_csum_succeeded) && do_csum) { m_new->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); m_new->m_pkthdr.csum_data = 0xffff; if (csum_info->receive.tcp_csum_succeeded) sc->hn_csum_tcp++; else sc->hn_csum_udp++; } if (csum_info->receive.ip_csum_succeeded && csum_info->receive.tcp_csum_succeeded) do_lro = 1; } else { const struct ether_header *eh; uint16_t etype; int hoff; hoff = sizeof(*eh); if (m_new->m_len < hoff) goto skip; eh = mtod(m_new, struct ether_header *); etype = ntohs(eh->ether_type); if (etype == ETHERTYPE_VLAN) { const struct ether_vlan_header *evl; hoff = sizeof(*evl); if (m_new->m_len < hoff) goto skip; evl = mtod(m_new, struct ether_vlan_header *); etype = ntohs(evl->evl_proto); } if (etype == ETHERTYPE_IP) { int pr; pr = hn_check_iplen(m_new, hoff); if (pr == IPPROTO_TCP) { if (do_csum && (sc->hn_trust_hcsum & HN_TRUST_HCSUM_TCP)) { sc->hn_csum_trusted++; m_new->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); m_new->m_pkthdr.csum_data = 0xffff; } /* Rely on SW csum verification though... */ do_lro = 1; } else if (pr == IPPROTO_UDP) { if (do_csum && (sc->hn_trust_hcsum & HN_TRUST_HCSUM_UDP)) { sc->hn_csum_trusted++; m_new->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); m_new->m_pkthdr.csum_data = 0xffff; } } else if (pr != IPPROTO_DONE && do_csum && (sc->hn_trust_hcsum & HN_TRUST_HCSUM_IP)) { sc->hn_csum_trusted++; m_new->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID); } } } skip: if ((packet->vlan_tci != 0) && (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { m_new->m_pkthdr.ether_vtag = packet->vlan_tci; m_new->m_flags |= M_VLANTAG; } /* * Note: Moved RX completion back to hv_nv_on_receive() so all * messages (not just data messages) will trigger a response. */ if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); if ((ifp->if_capenable & IFCAP_LRO) && do_lro) { #if defined(INET) || defined(INET6) struct lro_ctrl *lro = &sc->hn_lro; if (lro->lro_cnt) { sc->hn_lro_tried++; if (tcp_lro_rx(lro, m_new, 0) == 0) { /* DONE! */ return 0; } } #endif } /* We're not holding the lock here, so don't release it */ (*ifp->if_input)(ifp, m_new); return (0); } void netvsc_recv_rollup(struct hv_device *device_ctx __unused) { } /* * Rules for using sc->temp_unusable: * 1. sc->temp_unusable can only be read or written while holding NV_LOCK() * 2. code reading sc->temp_unusable under NV_LOCK(), and finding * sc->temp_unusable set, must release NV_LOCK() and exit * 3. to retain exclusive control of the interface, * sc->temp_unusable must be set by code before releasing NV_LOCK() * 4. only code setting sc->temp_unusable can clear sc->temp_unusable * 5. code setting sc->temp_unusable must eventually clear sc->temp_unusable */ /* * Standard ioctl entry point. Called when the user wants to configure * the interface. */ static int hn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { hn_softc_t *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; #ifdef INET struct ifaddr *ifa = (struct ifaddr *)data; #endif netvsc_device_info device_info; struct hv_device *hn_dev; int mask, error = 0; int retry_cnt = 500; switch(cmd) { case SIOCSIFADDR: #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) { ifp->if_flags |= IFF_UP; if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) hn_ifinit(sc); arp_ifinit(ifp, ifa); } else #endif error = ether_ioctl(ifp, cmd, data); break; case SIOCSIFMTU: hn_dev = vmbus_get_devctx(sc->hn_dev); /* Check MTU value change */ if (ifp->if_mtu == ifr->ifr_mtu) break; if (ifr->ifr_mtu > NETVSC_MAX_CONFIGURABLE_MTU) { error = EINVAL; break; } /* Obtain and record requested MTU */ ifp->if_mtu = ifr->ifr_mtu; /* * Make sure that LRO high watermark is still valid, * after MTU change (the 2*MTU limit). */ if (!HN_LRO_HIWAT_ISVALID(sc, sc->hn_lro_hiwat)) hn_set_lro_hiwat(sc, HN_LRO_HIWAT_MTULIM(ifp)); do { NV_LOCK(sc); if (!sc->temp_unusable) { sc->temp_unusable = TRUE; retry_cnt = -1; } NV_UNLOCK(sc); if (retry_cnt > 0) { retry_cnt--; DELAY(5 * 1000); } } while (retry_cnt > 0); if (retry_cnt == 0) { error = EINVAL; break; } /* We must remove and add back the device to cause the new * MTU to take effect. This includes tearing down, but not * deleting the channel, then bringing it back up. */ error = hv_rf_on_device_remove(hn_dev, HV_RF_NV_RETAIN_CHANNEL); if (error) { NV_LOCK(sc); sc->temp_unusable = FALSE; NV_UNLOCK(sc); break; } error = hv_rf_on_device_add(hn_dev, &device_info); if (error) { NV_LOCK(sc); sc->temp_unusable = FALSE; NV_UNLOCK(sc); break; } sc->hn_tx_chimney_max = sc->net_dev->send_section_size; if (sc->hn_tx_chimney_size > sc->hn_tx_chimney_max) sc->hn_tx_chimney_size = sc->hn_tx_chimney_max; hn_ifinit_locked(sc); NV_LOCK(sc); sc->temp_unusable = FALSE; NV_UNLOCK(sc); break; case SIOCSIFFLAGS: do { NV_LOCK(sc); if (!sc->temp_unusable) { sc->temp_unusable = TRUE; retry_cnt = -1; } NV_UNLOCK(sc); if (retry_cnt > 0) { retry_cnt--; DELAY(5 * 1000); } } while (retry_cnt > 0); if (retry_cnt == 0) { error = EINVAL; break; } if (ifp->if_flags & IFF_UP) { /* * If only the state of the PROMISC flag changed, * then just use the 'set promisc mode' command * instead of reinitializing the entire NIC. Doing * a full re-init means reloading the firmware and * waiting for it to start up, which may take a * second or two. */ #ifdef notyet /* Fixme: Promiscuous mode? */ if (ifp->if_drv_flags & IFF_DRV_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->hn_if_flags & IFF_PROMISC)) { /* do something here for Hyper-V */ } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->hn_if_flags & IFF_PROMISC) { /* do something here for Hyper-V */ } else #endif hn_ifinit_locked(sc); } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { hn_stop(sc); } } NV_LOCK(sc); sc->temp_unusable = FALSE; NV_UNLOCK(sc); sc->hn_if_flags = ifp->if_flags; error = 0; break; case SIOCSIFCAP: NV_LOCK(sc); mask = ifr->ifr_reqcap ^ ifp->if_capenable; if (mask & IFCAP_TXCSUM) { ifp->if_capenable ^= IFCAP_TXCSUM; if (ifp->if_capenable & IFCAP_TXCSUM) ifp->if_hwassist |= sc->hn_csum_assist; else ifp->if_hwassist &= ~sc->hn_csum_assist; } if (mask & IFCAP_RXCSUM) ifp->if_capenable ^= IFCAP_RXCSUM; if (mask & IFCAP_LRO) ifp->if_capenable ^= IFCAP_LRO; if (mask & IFCAP_TSO4) { ifp->if_capenable ^= IFCAP_TSO4; if (ifp->if_capenable & IFCAP_TSO4) ifp->if_hwassist |= CSUM_IP_TSO; else ifp->if_hwassist &= ~CSUM_IP_TSO; } if (mask & IFCAP_TSO6) { ifp->if_capenable ^= IFCAP_TSO6; if (ifp->if_capenable & IFCAP_TSO6) ifp->if_hwassist |= CSUM_IP6_TSO; else ifp->if_hwassist &= ~CSUM_IP6_TSO; } NV_UNLOCK(sc); error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: #ifdef notyet /* Fixme: Multicast mode? */ if (ifp->if_drv_flags & IFF_DRV_RUNNING) { NV_LOCK(sc); netvsc_setmulti(sc); NV_UNLOCK(sc); error = 0; } #endif error = EINVAL; break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->hn_media, cmd); break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } /* * */ static void hn_stop(hn_softc_t *sc) { struct ifnet *ifp; int ret; struct hv_device *device_ctx = vmbus_get_devctx(sc->hn_dev); ifp = sc->hn_ifp; if (bootverbose) printf(" Closing Device ...\n"); atomic_clear_int(&ifp->if_drv_flags, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); if_link_state_change(ifp, LINK_STATE_DOWN); sc->hn_initdone = 0; ret = hv_rf_on_close(device_ctx); } /* * FreeBSD transmit entry point */ static void hn_start(struct ifnet *ifp) { struct hn_softc *sc = ifp->if_softc; if (sc->hn_sched_tx) goto do_sched; if (NV_TRYLOCK(sc)) { int sched; sched = hn_start_locked(ifp, sc->hn_direct_tx_size); NV_UNLOCK(sc); if (!sched) return; } do_sched: taskqueue_enqueue_fast(sc->hn_tx_taskq, &sc->hn_start_task); } static void hn_start_txeof(struct ifnet *ifp) { struct hn_softc *sc = ifp->if_softc; if (sc->hn_sched_tx) goto do_sched; if (NV_TRYLOCK(sc)) { int sched; atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); sched = hn_start_locked(ifp, sc->hn_direct_tx_size); NV_UNLOCK(sc); if (sched) { taskqueue_enqueue_fast(sc->hn_tx_taskq, &sc->hn_start_task); } } else { do_sched: /* * Release the OACTIVE earlier, with the hope, that * others could catch up. The task will clear the * flag again with the NV_LOCK to avoid possible * races. */ atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); taskqueue_enqueue_fast(sc->hn_tx_taskq, &sc->hn_txeof_task); } } /* * */ static void hn_ifinit_locked(hn_softc_t *sc) { struct ifnet *ifp; struct hv_device *device_ctx = vmbus_get_devctx(sc->hn_dev); int ret; ifp = sc->hn_ifp; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { return; } hv_promisc_mode = 1; ret = hv_rf_on_open(device_ctx); if (ret != 0) { return; } else { sc->hn_initdone = 1; } atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); atomic_set_int(&ifp->if_drv_flags, IFF_DRV_RUNNING); if_link_state_change(ifp, LINK_STATE_UP); } /* * */ static void hn_ifinit(void *xsc) { hn_softc_t *sc = xsc; NV_LOCK(sc); if (sc->temp_unusable) { NV_UNLOCK(sc); return; } sc->temp_unusable = TRUE; NV_UNLOCK(sc); hn_ifinit_locked(sc); NV_LOCK(sc); sc->temp_unusable = FALSE; NV_UNLOCK(sc); } #ifdef LATER /* * */ static void hn_watchdog(struct ifnet *ifp) { hn_softc_t *sc; sc = ifp->if_softc; printf("hn%d: watchdog timeout -- resetting\n", sc->hn_unit); hn_ifinit(sc); /*???*/ if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); } #endif #ifdef HN_LRO_HIWAT static int hn_lro_hiwat_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int hiwat, error; hiwat = sc->hn_lro_hiwat; error = sysctl_handle_int(oidp, &hiwat, 0, req); if (error || req->newptr == NULL) return error; if (!HN_LRO_HIWAT_ISVALID(sc, hiwat)) return EINVAL; if (sc->hn_lro_hiwat != hiwat) hn_set_lro_hiwat(sc, hiwat); return 0; } #endif /* HN_LRO_HIWAT */ static int hn_trust_hcsum_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int hcsum = arg2; int on, error; on = 0; if (sc->hn_trust_hcsum & hcsum) on = 1; error = sysctl_handle_int(oidp, &on, 0, req); if (error || req->newptr == NULL) return error; NV_LOCK(sc); if (on) sc->hn_trust_hcsum |= hcsum; else sc->hn_trust_hcsum &= ~hcsum; NV_UNLOCK(sc); return 0; } static int hn_tx_chimney_size_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int chimney_size, error; chimney_size = sc->hn_tx_chimney_size; error = sysctl_handle_int(oidp, &chimney_size, 0, req); if (error || req->newptr == NULL) return error; if (chimney_size > sc->hn_tx_chimney_max || chimney_size <= 0) return EINVAL; if (sc->hn_tx_chimney_size != chimney_size) sc->hn_tx_chimney_size = chimney_size; return 0; } static int hn_check_iplen(const struct mbuf *m, int hoff) { const struct ip *ip; int len, iphlen, iplen; const struct tcphdr *th; int thoff; /* TCP data offset */ len = hoff + sizeof(struct ip); /* The packet must be at least the size of an IP header. */ if (m->m_pkthdr.len < len) return IPPROTO_DONE; /* The fixed IP header must reside completely in the first mbuf. */ if (m->m_len < len) return IPPROTO_DONE; ip = mtodo(m, hoff); /* Bound check the packet's stated IP header length. */ iphlen = ip->ip_hl << 2; if (iphlen < sizeof(struct ip)) /* minimum header length */ return IPPROTO_DONE; /* The full IP header must reside completely in the one mbuf. */ if (m->m_len < hoff + iphlen) return IPPROTO_DONE; iplen = ntohs(ip->ip_len); /* * Check that the amount of data in the buffers is as * at least much as the IP header would have us expect. */ if (m->m_pkthdr.len < hoff + iplen) return IPPROTO_DONE; /* * Ignore IP fragments. */ if (ntohs(ip->ip_off) & (IP_OFFMASK | IP_MF)) return IPPROTO_DONE; /* * The TCP/IP or UDP/IP header must be entirely contained within * the first fragment of a packet. */ switch (ip->ip_p) { case IPPROTO_TCP: if (iplen < iphlen + sizeof(struct tcphdr)) return IPPROTO_DONE; if (m->m_len < hoff + iphlen + sizeof(struct tcphdr)) return IPPROTO_DONE; th = (const struct tcphdr *)((const uint8_t *)ip + iphlen); thoff = th->th_off << 2; if (thoff < sizeof(struct tcphdr) || thoff + iphlen > iplen) return IPPROTO_DONE; if (m->m_len < hoff + iphlen + thoff) return IPPROTO_DONE; break; case IPPROTO_UDP: if (iplen < iphlen + sizeof(struct udphdr)) return IPPROTO_DONE; if (m->m_len < hoff + iphlen + sizeof(struct udphdr)) return IPPROTO_DONE; break; default: if (iplen < iphlen) return IPPROTO_DONE; break; } return ip->ip_p; } static void hn_dma_map_paddr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { bus_addr_t *paddr = arg; if (error) return; KASSERT(nseg == 1, ("too many segments %d!", nseg)); *paddr = segs->ds_addr; } static int hn_create_tx_ring(struct hn_softc *sc) { bus_dma_tag_t parent_dtag; int error, i; sc->hn_txdesc_cnt = HN_TX_DESC_CNT; sc->hn_txdesc = malloc(sizeof(struct hn_txdesc) * sc->hn_txdesc_cnt, M_NETVSC, M_WAITOK | M_ZERO); SLIST_INIT(&sc->hn_txlist); mtx_init(&sc->hn_txlist_spin, "hn txlist", NULL, MTX_SPIN); parent_dtag = bus_get_dma_tag(sc->hn_dev); /* DMA tag for RNDIS messages. */ error = bus_dma_tag_create(parent_dtag, /* parent */ HN_RNDIS_MSG_ALIGN, /* alignment */ HN_RNDIS_MSG_BOUNDARY, /* boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ HN_RNDIS_MSG_LEN, /* maxsize */ 1, /* nsegments */ HN_RNDIS_MSG_LEN, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &sc->hn_tx_rndis_dtag); if (error) { device_printf(sc->hn_dev, "failed to create rndis dmatag\n"); return error; } /* DMA tag for data. */ error = bus_dma_tag_create(parent_dtag, /* parent */ 1, /* alignment */ HN_TX_DATA_BOUNDARY, /* boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ HN_TX_DATA_MAXSIZE, /* maxsize */ HN_TX_DATA_SEGCNT_MAX, /* nsegments */ HN_TX_DATA_SEGSIZE, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &sc->hn_tx_data_dtag); if (error) { device_printf(sc->hn_dev, "failed to create data dmatag\n"); return error; } for (i = 0; i < sc->hn_txdesc_cnt; ++i) { struct hn_txdesc *txd = &sc->hn_txdesc[i]; txd->sc = sc; /* * Allocate and load RNDIS messages. */ error = bus_dmamem_alloc(sc->hn_tx_rndis_dtag, (void **)&txd->rndis_msg, BUS_DMA_WAITOK | BUS_DMA_COHERENT, &txd->rndis_msg_dmap); if (error) { device_printf(sc->hn_dev, "failed to allocate rndis_msg, %d\n", i); return error; } error = bus_dmamap_load(sc->hn_tx_rndis_dtag, txd->rndis_msg_dmap, txd->rndis_msg, HN_RNDIS_MSG_LEN, hn_dma_map_paddr, &txd->rndis_msg_paddr, BUS_DMA_NOWAIT); if (error) { device_printf(sc->hn_dev, "failed to load rndis_msg, %d\n", i); bus_dmamem_free(sc->hn_tx_rndis_dtag, txd->rndis_msg, txd->rndis_msg_dmap); return error; } /* DMA map for TX data. */ error = bus_dmamap_create(sc->hn_tx_data_dtag, 0, &txd->data_dmap); if (error) { device_printf(sc->hn_dev, "failed to allocate tx data dmamap\n"); bus_dmamap_unload(sc->hn_tx_rndis_dtag, txd->rndis_msg_dmap); bus_dmamem_free(sc->hn_tx_rndis_dtag, txd->rndis_msg, txd->rndis_msg_dmap); return error; } /* All set, put it to list */ txd->flags |= HN_TXD_FLAG_ONLIST; SLIST_INSERT_HEAD(&sc->hn_txlist, txd, link); } sc->hn_txdesc_avail = sc->hn_txdesc_cnt; return 0; } static void hn_destroy_tx_ring(struct hn_softc *sc) { struct hn_txdesc *txd; while ((txd = SLIST_FIRST(&sc->hn_txlist)) != NULL) { KASSERT(txd->m == NULL, ("still has mbuf installed")); KASSERT((txd->flags & HN_TXD_FLAG_DMAMAP) == 0, ("still dma mapped")); SLIST_REMOVE_HEAD(&sc->hn_txlist, link); bus_dmamap_unload(sc->hn_tx_rndis_dtag, txd->rndis_msg_dmap); bus_dmamem_free(sc->hn_tx_rndis_dtag, txd->rndis_msg, txd->rndis_msg_dmap); bus_dmamap_destroy(sc->hn_tx_data_dtag, txd->data_dmap); } if (sc->hn_tx_data_dtag != NULL) bus_dma_tag_destroy(sc->hn_tx_data_dtag); if (sc->hn_tx_rndis_dtag != NULL) bus_dma_tag_destroy(sc->hn_tx_rndis_dtag); free(sc->hn_txdesc, M_NETVSC); mtx_destroy(&sc->hn_txlist_spin); } static void hn_start_taskfunc(void *xsc, int pending __unused) { struct hn_softc *sc = xsc; NV_LOCK(sc); hn_start_locked(sc->hn_ifp, 0); NV_UNLOCK(sc); } static void hn_txeof_taskfunc(void *xsc, int pending __unused) { struct hn_softc *sc = xsc; struct ifnet *ifp = sc->hn_ifp; NV_LOCK(sc); atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); hn_start_locked(ifp, 0); NV_UNLOCK(sc); } static device_method_t netvsc_methods[] = { /* Device interface */ DEVMETHOD(device_probe, netvsc_probe), DEVMETHOD(device_attach, netvsc_attach), DEVMETHOD(device_detach, netvsc_detach), DEVMETHOD(device_shutdown, netvsc_shutdown), { 0, 0 } }; static driver_t netvsc_driver = { NETVSC_DEVNAME, netvsc_methods, sizeof(hn_softc_t) }; static devclass_t netvsc_devclass; DRIVER_MODULE(hn, vmbus, netvsc_driver, netvsc_devclass, 0, 0); MODULE_VERSION(hn, 1); MODULE_DEPEND(hn, vmbus, 1, 1, 1);