Index: head/sys/arm64/arm64/genassym.c =================================================================== --- head/sys/arm64/arm64/genassym.c (revision 295141) +++ head/sys/arm64/arm64/genassym.c (revision 295142) @@ -1,66 +1,68 @@ /*- * Copyright (c) 2004 Olivier Houchard * Copyright (c) 2014 Andrew Turner * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include ASSYM(KERNBASE, KERNBASE); ASSYM(VM_MAXUSER_ADDRESS, VM_MAXUSER_ADDRESS); ASSYM(TDF_ASTPENDING, TDF_ASTPENDING); ASSYM(TDF_NEEDRESCHED, TDF_NEEDRESCHED); ASSYM(PCPU_SIZE, sizeof(struct pcpu)); ASSYM(PC_CURPCB, offsetof(struct pcpu, pc_curpcb)); ASSYM(PC_CURTHREAD, offsetof(struct pcpu, pc_curthread)); /* Size of pcb, rounded to keep stack alignment */ ASSYM(PCB_SIZE, roundup2(sizeof(struct pcb), STACKALIGNBYTES + 1)); +ASSYM(PCB_SINGLE_STEP_SHIFT, PCB_SINGLE_STEP_SHIFT); ASSYM(PCB_REGS, offsetof(struct pcb, pcb_x)); ASSYM(PCB_SP, offsetof(struct pcb, pcb_sp)); ASSYM(PCB_L1ADDR, offsetof(struct pcb, pcb_l1addr)); ASSYM(PCB_ONFAULT, offsetof(struct pcb, pcb_onfault)); +ASSYM(PCB_FLAGS, offsetof(struct pcb, pcb_flags)); ASSYM(SF_UC, offsetof(struct sigframe, sf_uc)); ASSYM(TD_PCB, offsetof(struct thread, td_pcb)); ASSYM(TD_FLAGS, offsetof(struct thread, td_flags)); ASSYM(TD_LOCK, offsetof(struct thread, td_lock)); ASSYM(TF_SIZE, sizeof(struct trapframe)); ASSYM(TF_SP, offsetof(struct trapframe, tf_sp)); ASSYM(TF_ELR, offsetof(struct trapframe, tf_elr)); ASSYM(TF_X, offsetof(struct trapframe, tf_x)); Index: head/sys/arm64/arm64/machdep.c =================================================================== --- head/sys/arm64/arm64/machdep.c (revision 295141) +++ head/sys/arm64/arm64/machdep.c (revision 295142) @@ -1,984 +1,986 @@ /*- * Copyright (c) 2014 Andrew Turner * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include "opt_platform.h" #include "opt_ddb.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef VFP #include #endif #ifdef FDT #include #endif struct pcpu __pcpu[MAXCPU]; static struct trapframe proc0_tf; vm_paddr_t phys_avail[PHYS_AVAIL_SIZE + 2]; vm_paddr_t dump_avail[PHYS_AVAIL_SIZE + 2]; int early_boot = 1; int cold = 1; long realmem = 0; long Maxmem = 0; #define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1)) vm_paddr_t physmap[PHYSMAP_SIZE]; u_int physmap_idx; struct kva_md_info kmi; int64_t dcache_line_size; /* The minimum D cache line size */ int64_t icache_line_size; /* The minimum I cache line size */ int64_t idcache_line_size; /* The minimum cache line size */ static void cpu_startup(void *dummy) { identify_cpu(); vm_ksubmap_init(&kmi); bufinit(); vm_pager_bufferinit(); } SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL); int cpu_idle_wakeup(int cpu) { return (0); } void bzero(void *buf, size_t len) { uint8_t *p; p = buf; while(len-- > 0) *p++ = 0; } int fill_regs(struct thread *td, struct reg *regs) { struct trapframe *frame; frame = td->td_frame; regs->sp = frame->tf_sp; regs->lr = frame->tf_lr; regs->elr = frame->tf_elr; regs->spsr = frame->tf_spsr; memcpy(regs->x, frame->tf_x, sizeof(regs->x)); return (0); } int set_regs(struct thread *td, struct reg *regs) { struct trapframe *frame; frame = td->td_frame; frame->tf_sp = regs->sp; frame->tf_lr = regs->lr; frame->tf_elr = regs->elr; frame->tf_spsr = regs->spsr; memcpy(frame->tf_x, regs->x, sizeof(frame->tf_x)); return (0); } int fill_fpregs(struct thread *td, struct fpreg *regs) { #ifdef VFP struct pcb *pcb; pcb = td->td_pcb; if ((pcb->pcb_fpflags & PCB_FP_STARTED) != 0) { /* * If we have just been running VFP instructions we will * need to save the state to memcpy it below. */ vfp_save_state(td, pcb); memcpy(regs->fp_q, pcb->pcb_vfp, sizeof(regs->fp_q)); regs->fp_cr = pcb->pcb_fpcr; regs->fp_sr = pcb->pcb_fpsr; } else #endif memset(regs->fp_q, 0, sizeof(regs->fp_q)); return (0); } int set_fpregs(struct thread *td, struct fpreg *regs) { #ifdef VFP struct pcb *pcb; pcb = td->td_pcb; memcpy(pcb->pcb_vfp, regs->fp_q, sizeof(regs->fp_q)); pcb->pcb_fpcr = regs->fp_cr; pcb->pcb_fpsr = regs->fp_sr; #endif return (0); } int fill_dbregs(struct thread *td, struct dbreg *regs) { panic("ARM64TODO: fill_dbregs"); } int set_dbregs(struct thread *td, struct dbreg *regs) { panic("ARM64TODO: set_dbregs"); } int ptrace_set_pc(struct thread *td, u_long addr) { panic("ARM64TODO: ptrace_set_pc"); return (0); } int ptrace_single_step(struct thread *td) { - /* TODO; */ + td->td_frame->tf_spsr |= PSR_SS; + td->td_pcb->pcb_flags |= PCB_SINGLE_STEP; return (0); } int ptrace_clear_single_step(struct thread *td) { - /* TODO; */ + td->td_frame->tf_spsr &= ~PSR_SS; + td->td_pcb->pcb_flags &= ~PCB_SINGLE_STEP; return (0); } void exec_setregs(struct thread *td, struct image_params *imgp, u_long stack) { struct trapframe *tf = td->td_frame; memset(tf, 0, sizeof(struct trapframe)); /* * We need to set x0 for init as it doesn't call * cpu_set_syscall_retval to copy the value. We also * need to set td_retval for the cases where we do. */ tf->tf_x[0] = td->td_retval[0] = stack; tf->tf_sp = STACKALIGN(stack); tf->tf_lr = imgp->entry_addr; tf->tf_elr = imgp->entry_addr; } /* Sanity check these are the same size, they will be memcpy'd to and fro */ CTASSERT(sizeof(((struct trapframe *)0)->tf_x) == sizeof((struct gpregs *)0)->gp_x); CTASSERT(sizeof(((struct trapframe *)0)->tf_x) == sizeof((struct reg *)0)->x); int get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret) { struct trapframe *tf = td->td_frame; if (clear_ret & GET_MC_CLEAR_RET) { mcp->mc_gpregs.gp_x[0] = 0; mcp->mc_gpregs.gp_spsr = tf->tf_spsr & ~PSR_C; } else { mcp->mc_gpregs.gp_x[0] = tf->tf_x[0]; mcp->mc_gpregs.gp_spsr = tf->tf_spsr; } memcpy(&mcp->mc_gpregs.gp_x[1], &tf->tf_x[1], sizeof(mcp->mc_gpregs.gp_x[1]) * (nitems(mcp->mc_gpregs.gp_x) - 1)); mcp->mc_gpregs.gp_sp = tf->tf_sp; mcp->mc_gpregs.gp_lr = tf->tf_lr; mcp->mc_gpregs.gp_elr = tf->tf_elr; return (0); } int set_mcontext(struct thread *td, mcontext_t *mcp) { struct trapframe *tf = td->td_frame; memcpy(tf->tf_x, mcp->mc_gpregs.gp_x, sizeof(tf->tf_x)); tf->tf_sp = mcp->mc_gpregs.gp_sp; tf->tf_lr = mcp->mc_gpregs.gp_lr; tf->tf_elr = mcp->mc_gpregs.gp_elr; tf->tf_spsr = mcp->mc_gpregs.gp_spsr; return (0); } static void get_fpcontext(struct thread *td, mcontext_t *mcp) { #ifdef VFP struct pcb *curpcb; critical_enter(); curpcb = curthread->td_pcb; if ((curpcb->pcb_fpflags & PCB_FP_STARTED) != 0) { /* * If we have just been running VFP instructions we will * need to save the state to memcpy it below. */ vfp_save_state(td, curpcb); memcpy(mcp->mc_fpregs.fp_q, curpcb->pcb_vfp, sizeof(mcp->mc_fpregs)); mcp->mc_fpregs.fp_cr = curpcb->pcb_fpcr; mcp->mc_fpregs.fp_sr = curpcb->pcb_fpsr; mcp->mc_fpregs.fp_flags = curpcb->pcb_fpflags; mcp->mc_flags |= _MC_FP_VALID; } critical_exit(); #endif } static void set_fpcontext(struct thread *td, mcontext_t *mcp) { #ifdef VFP struct pcb *curpcb; critical_enter(); if ((mcp->mc_flags & _MC_FP_VALID) != 0) { curpcb = curthread->td_pcb; /* * Discard any vfp state for the current thread, we * are about to override it. */ vfp_discard(td); memcpy(curpcb->pcb_vfp, mcp->mc_fpregs.fp_q, sizeof(mcp->mc_fpregs)); curpcb->pcb_fpcr = mcp->mc_fpregs.fp_cr; curpcb->pcb_fpsr = mcp->mc_fpregs.fp_sr; curpcb->pcb_fpflags = mcp->mc_fpregs.fp_flags; } critical_exit(); #endif } void cpu_idle(int busy) { spinlock_enter(); if (!busy) cpu_idleclock(); if (!sched_runnable()) __asm __volatile( "dsb sy \n" "wfi \n"); if (!busy) cpu_activeclock(); spinlock_exit(); } void cpu_halt(void) { /* We should have shutdown by now, if not enter a low power sleep */ intr_disable(); while (1) { __asm __volatile("wfi"); } } /* * Flush the D-cache for non-DMA I/O so that the I-cache can * be made coherent later. */ void cpu_flush_dcache(void *ptr, size_t len) { /* ARM64TODO TBD */ } /* Get current clock frequency for the given CPU ID. */ int cpu_est_clockrate(int cpu_id, uint64_t *rate) { panic("ARM64TODO: cpu_est_clockrate"); } void cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size) { pcpu->pc_acpi_id = 0xffffffff; } void spinlock_enter(void) { struct thread *td; register_t daif; td = curthread; if (td->td_md.md_spinlock_count == 0) { daif = intr_disable(); td->td_md.md_spinlock_count = 1; td->td_md.md_saved_daif = daif; } else td->td_md.md_spinlock_count++; critical_enter(); } void spinlock_exit(void) { struct thread *td; register_t daif; td = curthread; critical_exit(); daif = td->td_md.md_saved_daif; td->td_md.md_spinlock_count--; if (td->td_md.md_spinlock_count == 0) intr_restore(daif); } #ifndef _SYS_SYSPROTO_H_ struct sigreturn_args { ucontext_t *ucp; }; #endif int sys_sigreturn(struct thread *td, struct sigreturn_args *uap) { ucontext_t uc; uint32_t spsr; if (uap == NULL) return (EFAULT); if (copyin(uap->sigcntxp, &uc, sizeof(uc))) return (EFAULT); spsr = uc.uc_mcontext.mc_gpregs.gp_spsr; if ((spsr & PSR_M_MASK) != PSR_M_EL0t || (spsr & (PSR_F | PSR_I | PSR_A | PSR_D)) != 0) return (EINVAL); set_mcontext(td, &uc.uc_mcontext); set_fpcontext(td, &uc.uc_mcontext); /* Restore signal mask. */ kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0); return (EJUSTRETURN); } /* * Construct a PCB from a trapframe. This is called from kdb_trap() where * we want to start a backtrace from the function that caused us to enter * the debugger. We have the context in the trapframe, but base the trace * on the PCB. The PCB doesn't have to be perfect, as long as it contains * enough for a backtrace. */ void makectx(struct trapframe *tf, struct pcb *pcb) { int i; for (i = 0; i < PCB_LR; i++) pcb->pcb_x[i] = tf->tf_x[i]; pcb->pcb_x[PCB_LR] = tf->tf_lr; pcb->pcb_pc = tf->tf_elr; pcb->pcb_sp = tf->tf_sp; } void sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) { struct thread *td; struct proc *p; struct trapframe *tf; struct sigframe *fp, frame; struct sigacts *psp; struct sysentvec *sysent; int code, onstack, sig; td = curthread; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); sig = ksi->ksi_signo; code = ksi->ksi_code; psp = p->p_sigacts; mtx_assert(&psp->ps_mtx, MA_OWNED); tf = td->td_frame; onstack = sigonstack(tf->tf_sp); CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm, catcher, sig); /* Allocate and validate space for the signal handler context. */ if ((td->td_pflags & TDP_ALTSTACK) != 0 && !onstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { fp = (struct sigframe *)((uintptr_t)td->td_sigstk.ss_sp + td->td_sigstk.ss_size); #if defined(COMPAT_43) td->td_sigstk.ss_flags |= SS_ONSTACK; #endif } else { fp = (struct sigframe *)td->td_frame->tf_sp; } /* Make room, keeping the stack aligned */ fp--; fp = (struct sigframe *)STACKALIGN(fp); /* Fill in the frame to copy out */ get_mcontext(td, &frame.sf_uc.uc_mcontext, 0); get_fpcontext(td, &frame.sf_uc.uc_mcontext); frame.sf_si = ksi->ksi_info; frame.sf_uc.uc_sigmask = *mask; frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ? ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE; frame.sf_uc.uc_stack = td->td_sigstk; mtx_unlock(&psp->ps_mtx); PROC_UNLOCK(td->td_proc); /* Copy the sigframe out to the user's stack. */ if (copyout(&frame, fp, sizeof(*fp)) != 0) { /* Process has trashed its stack. Kill it. */ CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp); PROC_LOCK(p); sigexit(td, SIGILL); } tf->tf_x[0]= sig; tf->tf_x[1] = (register_t)&fp->sf_si; tf->tf_x[2] = (register_t)&fp->sf_uc; tf->tf_elr = (register_t)catcher; tf->tf_sp = (register_t)fp; sysent = p->p_sysent; if (sysent->sv_sigcode_base != 0) tf->tf_lr = (register_t)sysent->sv_sigcode_base; else tf->tf_lr = (register_t)(sysent->sv_psstrings - *(sysent->sv_szsigcode)); CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_elr, tf->tf_sp); PROC_LOCK(p); mtx_lock(&psp->ps_mtx); } static void init_proc0(vm_offset_t kstack) { struct pcpu *pcpup = &__pcpu[0]; proc_linkup0(&proc0, &thread0); thread0.td_kstack = kstack; thread0.td_pcb = (struct pcb *)(thread0.td_kstack) - 1; thread0.td_pcb->pcb_fpflags = 0; thread0.td_pcb->pcb_vfpcpu = UINT_MAX; thread0.td_frame = &proc0_tf; pcpup->pc_curpcb = thread0.td_pcb; } typedef struct { uint32_t type; uint64_t phys_start; uint64_t virt_start; uint64_t num_pages; uint64_t attr; } EFI_MEMORY_DESCRIPTOR; static int add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap, u_int *physmap_idxp) { u_int i, insert_idx, _physmap_idx; _physmap_idx = *physmap_idxp; if (length == 0) return (1); /* * Find insertion point while checking for overlap. Start off by * assuming the new entry will be added to the end. */ insert_idx = _physmap_idx; for (i = 0; i <= _physmap_idx; i += 2) { if (base < physmap[i + 1]) { if (base + length <= physmap[i]) { insert_idx = i; break; } if (boothowto & RB_VERBOSE) printf( "Overlapping memory regions, ignoring second region\n"); return (1); } } /* See if we can prepend to the next entry. */ if (insert_idx <= _physmap_idx && base + length == physmap[insert_idx]) { physmap[insert_idx] = base; return (1); } /* See if we can append to the previous entry. */ if (insert_idx > 0 && base == physmap[insert_idx - 1]) { physmap[insert_idx - 1] += length; return (1); } _physmap_idx += 2; *physmap_idxp = _physmap_idx; if (_physmap_idx == PHYSMAP_SIZE) { printf( "Too many segments in the physical address map, giving up\n"); return (0); } /* * Move the last 'N' entries down to make room for the new * entry if needed. */ for (i = _physmap_idx; i > insert_idx; i -= 2) { physmap[i] = physmap[i - 2]; physmap[i + 1] = physmap[i - 1]; } /* Insert the new entry. */ physmap[insert_idx] = base; physmap[insert_idx + 1] = base + length; return (1); } #define efi_next_descriptor(ptr, size) \ ((struct efi_md *)(((uint8_t *) ptr) + size)) static void add_efi_map_entries(struct efi_map_header *efihdr, vm_paddr_t *physmap, u_int *physmap_idxp) { struct efi_md *map, *p; const char *type; size_t efisz; int ndesc, i; static const char *types[] = { "Reserved", "LoaderCode", "LoaderData", "BootServicesCode", "BootServicesData", "RuntimeServicesCode", "RuntimeServicesData", "ConventionalMemory", "UnusableMemory", "ACPIReclaimMemory", "ACPIMemoryNVS", "MemoryMappedIO", "MemoryMappedIOPortSpace", "PalCode" }; /* * Memory map data provided by UEFI via the GetMemoryMap * Boot Services API. */ efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf; map = (struct efi_md *)((uint8_t *)efihdr + efisz); if (efihdr->descriptor_size == 0) return; ndesc = efihdr->memory_size / efihdr->descriptor_size; if (boothowto & RB_VERBOSE) printf("%23s %12s %12s %8s %4s\n", "Type", "Physical", "Virtual", "#Pages", "Attr"); for (i = 0, p = map; i < ndesc; i++, p = efi_next_descriptor(p, efihdr->descriptor_size)) { if (boothowto & RB_VERBOSE) { if (p->md_type <= EFI_MD_TYPE_PALCODE) type = types[p->md_type]; else type = ""; printf("%23s %012lx %12p %08lx ", type, p->md_phys, p->md_virt, p->md_pages); if (p->md_attr & EFI_MD_ATTR_UC) printf("UC "); if (p->md_attr & EFI_MD_ATTR_WC) printf("WC "); if (p->md_attr & EFI_MD_ATTR_WT) printf("WT "); if (p->md_attr & EFI_MD_ATTR_WB) printf("WB "); if (p->md_attr & EFI_MD_ATTR_UCE) printf("UCE "); if (p->md_attr & EFI_MD_ATTR_WP) printf("WP "); if (p->md_attr & EFI_MD_ATTR_RP) printf("RP "); if (p->md_attr & EFI_MD_ATTR_XP) printf("XP "); if (p->md_attr & EFI_MD_ATTR_RT) printf("RUNTIME"); printf("\n"); } switch (p->md_type) { case EFI_MD_TYPE_CODE: case EFI_MD_TYPE_DATA: case EFI_MD_TYPE_BS_CODE: case EFI_MD_TYPE_BS_DATA: case EFI_MD_TYPE_FREE: /* * We're allowed to use any entry with these types. */ break; default: continue; } if (!add_physmap_entry(p->md_phys, (p->md_pages * PAGE_SIZE), physmap, physmap_idxp)) break; } } #ifdef FDT static void try_load_dtb(caddr_t kmdp) { vm_offset_t dtbp; dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t); if (dtbp == (vm_offset_t)NULL) { printf("ERROR loading DTB\n"); return; } if (OF_install(OFW_FDT, 0) == FALSE) panic("Cannot install FDT"); if (OF_init((void *)dtbp) != 0) panic("OF_init failed with the found device tree"); } #endif static void cache_setup(void) { int dcache_line_shift, icache_line_shift; uint32_t ctr_el0; ctr_el0 = READ_SPECIALREG(ctr_el0); /* Read the log2 words in each D cache line */ dcache_line_shift = CTR_DLINE_SIZE(ctr_el0); /* Get the D cache line size */ dcache_line_size = sizeof(int) << dcache_line_shift; /* And the same for the I cache */ icache_line_shift = CTR_ILINE_SIZE(ctr_el0); icache_line_size = sizeof(int) << icache_line_shift; idcache_line_size = MIN(dcache_line_size, icache_line_size); } void initarm(struct arm64_bootparams *abp) { struct efi_map_header *efihdr; struct pcpu *pcpup; vm_offset_t lastaddr; caddr_t kmdp; vm_paddr_t mem_len; int i; /* Set the module data location */ preload_metadata = (caddr_t)(uintptr_t)(abp->modulep); /* Find the kernel address */ kmdp = preload_search_by_type("elf kernel"); if (kmdp == NULL) kmdp = preload_search_by_type("elf64 kernel"); boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int); init_static_kenv(MD_FETCH(kmdp, MODINFOMD_ENVP, char *), 0); #ifdef FDT try_load_dtb(kmdp); #endif /* Find the address to start allocating from */ lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t); /* Load the physical memory ranges */ physmap_idx = 0; efihdr = (struct efi_map_header *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_EFI_MAP); add_efi_map_entries(efihdr, physmap, &physmap_idx); /* Print the memory map */ mem_len = 0; for (i = 0; i < physmap_idx; i += 2) { dump_avail[i] = physmap[i]; dump_avail[i + 1] = physmap[i + 1]; mem_len += physmap[i + 1] - physmap[i]; } dump_avail[i] = 0; dump_avail[i + 1] = 0; /* Set the pcpu data, this is needed by pmap_bootstrap */ pcpup = &__pcpu[0]; pcpu_init(pcpup, 0, sizeof(struct pcpu)); /* * Set the pcpu pointer with a backup in tpidr_el1 to be * loaded when entering the kernel from userland. */ __asm __volatile( "mov x18, %0 \n" "msr tpidr_el1, %0" :: "r"(pcpup)); PCPU_SET(curthread, &thread0); /* Do basic tuning, hz etc */ init_param1(); cache_setup(); /* Bootstrap enough of pmap to enter the kernel proper */ pmap_bootstrap(abp->kern_l1pt, KERNBASE - abp->kern_delta, lastaddr - KERNBASE); arm_devmap_bootstrap(0, NULL); cninit(); init_proc0(abp->kern_stack); msgbufinit(msgbufp, msgbufsize); mutex_init(); init_param2(physmem); dbg_monitor_init(); kdb_init(); early_boot = 0; } uint32_t (*arm_cpu_fill_vdso_timehands)(struct vdso_timehands *, struct timecounter *); uint32_t cpu_fill_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc) { return (arm_cpu_fill_vdso_timehands != NULL ? arm_cpu_fill_vdso_timehands(vdso_th, tc) : 0); } #ifdef DDB #include DB_SHOW_COMMAND(specialregs, db_show_spregs) { #define PRINT_REG(reg) \ db_printf(__STRING(reg) " = %#016lx\n", READ_SPECIALREG(reg)) PRINT_REG(actlr_el1); PRINT_REG(afsr0_el1); PRINT_REG(afsr1_el1); PRINT_REG(aidr_el1); PRINT_REG(amair_el1); PRINT_REG(ccsidr_el1); PRINT_REG(clidr_el1); PRINT_REG(contextidr_el1); PRINT_REG(cpacr_el1); PRINT_REG(csselr_el1); PRINT_REG(ctr_el0); PRINT_REG(currentel); PRINT_REG(daif); PRINT_REG(dczid_el0); PRINT_REG(elr_el1); PRINT_REG(esr_el1); PRINT_REG(far_el1); #if 0 /* ARM64TODO: Enable VFP before reading floating-point registers */ PRINT_REG(fpcr); PRINT_REG(fpsr); #endif PRINT_REG(id_aa64afr0_el1); PRINT_REG(id_aa64afr1_el1); PRINT_REG(id_aa64dfr0_el1); PRINT_REG(id_aa64dfr1_el1); PRINT_REG(id_aa64isar0_el1); PRINT_REG(id_aa64isar1_el1); PRINT_REG(id_aa64pfr0_el1); PRINT_REG(id_aa64pfr1_el1); PRINT_REG(id_afr0_el1); PRINT_REG(id_dfr0_el1); PRINT_REG(id_isar0_el1); PRINT_REG(id_isar1_el1); PRINT_REG(id_isar2_el1); PRINT_REG(id_isar3_el1); PRINT_REG(id_isar4_el1); PRINT_REG(id_isar5_el1); PRINT_REG(id_mmfr0_el1); PRINT_REG(id_mmfr1_el1); PRINT_REG(id_mmfr2_el1); PRINT_REG(id_mmfr3_el1); #if 0 /* Missing from llvm */ PRINT_REG(id_mmfr4_el1); #endif PRINT_REG(id_pfr0_el1); PRINT_REG(id_pfr1_el1); PRINT_REG(isr_el1); PRINT_REG(mair_el1); PRINT_REG(midr_el1); PRINT_REG(mpidr_el1); PRINT_REG(mvfr0_el1); PRINT_REG(mvfr1_el1); PRINT_REG(mvfr2_el1); PRINT_REG(revidr_el1); PRINT_REG(sctlr_el1); PRINT_REG(sp_el0); PRINT_REG(spsel); PRINT_REG(spsr_el1); PRINT_REG(tcr_el1); PRINT_REG(tpidr_el0); PRINT_REG(tpidr_el1); PRINT_REG(tpidrro_el0); PRINT_REG(ttbr0_el1); PRINT_REG(ttbr1_el1); PRINT_REG(vbar_el1); #undef PRINT_REG } DB_SHOW_COMMAND(vtop, db_show_vtop) { uint64_t phys; if (have_addr) { phys = arm64_address_translate_s1e1r(addr); db_printf("Physical address reg: 0x%016lx\n", phys); } else db_printf("show vtop \n"); } #endif Index: head/sys/arm64/arm64/mp_machdep.c =================================================================== --- head/sys/arm64/arm64/mp_machdep.c (revision 295141) +++ head/sys/arm64/arm64/mp_machdep.c (revision 295142) @@ -1,446 +1,449 @@ /*- * Copyright (c) 2015 The FreeBSD Foundation * All rights reserved. * * This software was developed by Andrew Turner under * sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include "opt_kstack_pages.h" #include "opt_platform.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #ifdef VFP #include #endif #ifdef FDT #include #include #endif #include boolean_t ofw_cpu_reg(phandle_t node, u_int, cell_t *); extern struct pcpu __pcpu[]; static enum { CPUS_UNKNOWN, #ifdef FDT CPUS_FDT, #endif } cpu_enum_method; static device_identify_t arm64_cpu_identify; static device_probe_t arm64_cpu_probe; static device_attach_t arm64_cpu_attach; static int ipi_handler(void *arg); struct mtx ap_boot_mtx; struct pcb stoppcbs[MAXCPU]; #ifdef INVARIANTS static uint32_t cpu_reg[MAXCPU][2]; #endif static device_t cpu_list[MAXCPU]; void mpentry(unsigned long cpuid); void init_secondary(uint64_t); uint8_t secondary_stacks[MAXCPU - 1][PAGE_SIZE * KSTACK_PAGES] __aligned(16); /* Set to 1 once we're ready to let the APs out of the pen. */ volatile int aps_ready = 0; /* Temporary variables for init_secondary() */ void *dpcpu[MAXCPU - 1]; static device_method_t arm64_cpu_methods[] = { /* Device interface */ DEVMETHOD(device_identify, arm64_cpu_identify), DEVMETHOD(device_probe, arm64_cpu_probe), DEVMETHOD(device_attach, arm64_cpu_attach), DEVMETHOD_END }; static devclass_t arm64_cpu_devclass; static driver_t arm64_cpu_driver = { "arm64_cpu", arm64_cpu_methods, 0 }; DRIVER_MODULE(arm64_cpu, cpu, arm64_cpu_driver, arm64_cpu_devclass, 0, 0); static void arm64_cpu_identify(driver_t *driver, device_t parent) { if (device_find_child(parent, "arm64_cpu", -1) != NULL) return; if (BUS_ADD_CHILD(parent, 0, "arm64_cpu", -1) == NULL) device_printf(parent, "add child failed\n"); } static int arm64_cpu_probe(device_t dev) { u_int cpuid; cpuid = device_get_unit(dev); if (cpuid >= MAXCPU || cpuid > mp_maxid) return (EINVAL); device_quiet(dev); return (0); } static int arm64_cpu_attach(device_t dev) { const uint32_t *reg; size_t reg_size; u_int cpuid; int i; cpuid = device_get_unit(dev); if (cpuid >= MAXCPU || cpuid > mp_maxid) return (EINVAL); KASSERT(cpu_list[cpuid] == NULL, ("Already have cpu %u", cpuid)); reg = cpu_get_cpuid(dev, ®_size); if (reg == NULL) return (EINVAL); if (bootverbose) { device_printf(dev, "register <"); for (i = 0; i < reg_size; i++) printf("%s%x", (i == 0) ? "" : " ", reg[i]); printf(">\n"); } /* Set the device to start it later */ cpu_list[cpuid] = dev; return (0); } static void release_aps(void *dummy __unused) { int cpu, i; /* Setup the IPI handler */ for (i = 0; i < COUNT_IPI; i++) arm_setup_ipihandler(ipi_handler, i); atomic_store_rel_int(&aps_ready, 1); /* Wake up the other CPUs */ __asm __volatile("sev"); printf("Release APs\n"); for (i = 0; i < 2000; i++) { if (smp_started) { for (cpu = 0; cpu <= mp_maxid; cpu++) { if (CPU_ABSENT(cpu)) continue; print_cpu_features(cpu); } return; } DELAY(1000); } printf("APs not started\n"); } SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL); void init_secondary(uint64_t cpu) { struct pcpu *pcpup; int i; pcpup = &__pcpu[cpu]; /* * Set the pcpu pointer with a backup in tpidr_el1 to be * loaded when entering the kernel from userland. */ __asm __volatile( "mov x18, %0 \n" "msr tpidr_el1, %0" :: "r"(pcpup)); /* Spin until the BSP releases the APs */ while (!aps_ready) __asm __volatile("wfe"); /* Initialize curthread */ KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread")); pcpup->pc_curthread = pcpup->pc_idlethread; pcpup->pc_curpcb = pcpup->pc_idlethread->td_pcb; /* * Identify current CPU. This is necessary to setup * affinity registers and to provide support for * runtime chip identification. */ identify_cpu(); /* Configure the interrupt controller */ arm_init_secondary(); for (i = 0; i < COUNT_IPI; i++) arm_unmask_ipi(i); /* Start per-CPU event timers. */ cpu_initclocks_ap(); #ifdef VFP vfp_init(); #endif + + dbg_monitor_init(); /* Enable interrupts */ intr_enable(); mtx_lock_spin(&ap_boot_mtx); atomic_add_rel_32(&smp_cpus, 1); if (smp_cpus == mp_ncpus) { /* enable IPI's, tlb shootdown, freezes etc */ atomic_store_rel_int(&smp_started, 1); } mtx_unlock_spin(&ap_boot_mtx); /* Enter the scheduler */ sched_throw(NULL); panic("scheduler returned us to init_secondary"); /* NOTREACHED */ } static int ipi_handler(void *arg) { u_int cpu, ipi; arg = (void *)((uintptr_t)arg & ~(1 << 16)); KASSERT((uintptr_t)arg < COUNT_IPI, ("Invalid IPI %ju", (uintptr_t)arg)); cpu = PCPU_GET(cpuid); ipi = (uintptr_t)arg; switch(ipi) { case IPI_AST: CTR0(KTR_SMP, "IPI_AST"); break; case IPI_PREEMPT: CTR1(KTR_SMP, "%s: IPI_PREEMPT", __func__); sched_preempt(curthread); break; case IPI_RENDEZVOUS: CTR0(KTR_SMP, "IPI_RENDEZVOUS"); smp_rendezvous_action(); break; case IPI_STOP: case IPI_STOP_HARD: CTR0(KTR_SMP, (ipi == IPI_STOP) ? "IPI_STOP" : "IPI_STOP_HARD"); savectx(&stoppcbs[cpu]); /* Indicate we are stopped */ CPU_SET_ATOMIC(cpu, &stopped_cpus); /* Wait for restart */ while (!CPU_ISSET(cpu, &started_cpus)) cpu_spinwait(); CPU_CLR_ATOMIC(cpu, &started_cpus); CPU_CLR_ATOMIC(cpu, &stopped_cpus); CTR0(KTR_SMP, "IPI_STOP (restart)"); break; case IPI_HARDCLOCK: CTR1(KTR_SMP, "%s: IPI_HARDCLOCK", __func__); hardclockintr(); break; default: panic("Unknown IPI %#0x on cpu %d", ipi, curcpu); } return (FILTER_HANDLED); } struct cpu_group * cpu_topo(void) { return (smp_topo_none()); } /* Determine if we running MP machine */ int cpu_mp_probe(void) { /* ARM64TODO: Read the u bit of mpidr_el1 to determine this */ return (1); } #ifdef FDT static boolean_t cpu_init_fdt(u_int id, phandle_t node, u_int addr_size, pcell_t *reg) { uint64_t target_cpu; struct pcpu *pcpup; vm_paddr_t pa; int err; /* Check we are able to start this cpu */ if (id > mp_maxid) return (0); KASSERT(id < MAXCPU, ("Too mant CPUs")); KASSERT(addr_size == 1 || addr_size == 2, ("Invalid register size")); #ifdef INVARIANTS cpu_reg[id][0] = reg[0]; if (addr_size == 2) cpu_reg[id][1] = reg[1]; #endif /* We are already running on cpu 0 */ if (id == 0) return (1); pcpup = &__pcpu[id]; pcpu_init(pcpup, id, sizeof(struct pcpu)); dpcpu[id - 1] = (void *)kmem_malloc(kernel_arena, DPCPU_SIZE, M_WAITOK | M_ZERO); dpcpu_init(dpcpu[id - 1], id); target_cpu = reg[0]; if (addr_size == 2) { target_cpu <<= 32; target_cpu |= reg[1]; } printf("Starting CPU %u (%lx)\n", id, target_cpu); pa = pmap_extract(kernel_pmap, (vm_offset_t)mpentry); err = psci_cpu_on(target_cpu, pa, id); if (err != PSCI_RETVAL_SUCCESS) { /* Panic here if INVARIANTS are enabled */ KASSERT(0, ("Failed to start CPU %u (%lx)\n", id, target_cpu)); pcpu_destroy(pcpup); kmem_free(kernel_arena, (vm_offset_t)dpcpu[id - 1], DPCPU_SIZE); dpcpu[id - 1] = NULL; /* Notify the user that the CPU failed to start */ printf("Failed to start CPU %u (%lx)\n", id, target_cpu); } else CPU_SET(id, &all_cpus); return (1); } #endif /* Initialize and fire up non-boot processors */ void cpu_mp_start(void) { mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN); CPU_SET(0, &all_cpus); switch(cpu_enum_method) { #ifdef FDT case CPUS_FDT: ofw_cpu_early_foreach(cpu_init_fdt, true); break; #endif case CPUS_UNKNOWN: break; } } /* Introduce rest of cores to the world */ void cpu_mp_announce(void) { } void cpu_mp_setmaxid(void) { #ifdef FDT int cores; cores = ofw_cpu_early_foreach(NULL, false); if (cores > 0) { cores = MIN(cores, MAXCPU); if (bootverbose) printf("Found %d CPUs in the device tree\n", cores); mp_ncpus = cores; mp_maxid = cores - 1; cpu_enum_method = CPUS_FDT; return; } #endif if (bootverbose) printf("No CPU data, limiting to 1 core\n"); mp_ncpus = 1; mp_maxid = 0; } Index: head/sys/arm64/arm64/swtch.S =================================================================== --- head/sys/arm64/arm64/swtch.S (revision 295141) +++ head/sys/arm64/arm64/swtch.S (revision 295142) @@ -1,282 +1,321 @@ /*- * Copyright (c) 2014 Andrew Turner * Copyright (c) 2014 The FreeBSD Foundation * All rights reserved. * * This software was developed by Andrew Turner under sponsorship from * the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include "assym.s" #include "opt_kstack_pages.h" #include "opt_sched.h" #include __FBSDID("$FreeBSD$"); +.macro clear_step_flag pcbflags, tmp + tbz \pcbflags, #PCB_SINGLE_STEP_SHIFT, 999f + mrs \tmp, mdscr_el1 + bic \tmp, \tmp, #1 + msr mdscr_el1, \tmp + isb +999: +.endm + +.macro set_step_flag pcbflags, tmp + tbz \pcbflags, #PCB_SINGLE_STEP_SHIFT, 999f + mrs \tmp, mdscr_el1 + orr \tmp, \tmp, #1 + msr mdscr_el1, \tmp + isb +999: +.endm + /* * void cpu_throw(struct thread *old, struct thread *new) */ ENTRY(cpu_throw) + /* Of old == NULL skip disabling stepping */ + cbz x0, 1f + + /* If we were single stepping, disable it */ + ldr x4, [x0, #TD_PCB] + ldr w5, [x4, #PCB_FLAGS] + clear_step_flag w5, x6 +1: + #ifdef VFP /* Backup the new thread pointer around a call to C code */ mov x19, x1 bl vfp_discard mov x1, x19 #endif /* Store the new curthread */ str x1, [x18, #PC_CURTHREAD] /* And the new pcb */ ldr x4, [x1, #TD_PCB] str x4, [x18, #PC_CURPCB] /* * TODO: We may need to flush the cache here. */ /* Switch to the new pmap */ ldr x5, [x4, #PCB_L1ADDR] msr ttbr0_el1, x5 isb /* Invalidate the TLB */ dsb sy tlbi vmalle1is dsb sy isb + /* If we are single stepping, enable it */ + ldr w5, [x4, #PCB_FLAGS] + set_step_flag w5, x6 + /* Restore the registers */ ldp x5, x6, [x4, #PCB_SP] mov sp, x5 msr tpidr_el0, x6 ldp x8, x9, [x4, #PCB_REGS + 8 * 8] ldp x10, x11, [x4, #PCB_REGS + 10 * 8] ldp x12, x13, [x4, #PCB_REGS + 12 * 8] ldp x14, x15, [x4, #PCB_REGS + 14 * 8] ldp x16, x17, [x4, #PCB_REGS + 16 * 8] ldr x19, [x4, #PCB_REGS + 19 * 8] ldp x20, x21, [x4, #PCB_REGS + 20 * 8] ldp x22, x23, [x4, #PCB_REGS + 22 * 8] ldp x24, x25, [x4, #PCB_REGS + 24 * 8] ldp x26, x27, [x4, #PCB_REGS + 26 * 8] ldp x28, x29, [x4, #PCB_REGS + 28 * 8] ldr x30, [x4, #PCB_REGS + 30 * 8] ret END(cpu_throw) /* * void cpu_switch(struct thread *old, struct thread *new, struct mtx *mtx) * * x0 = old * x1 = new * x2 = mtx * x3 to x7, x16 and x17 are caller saved */ ENTRY(cpu_switch) /* Store the new curthread */ str x1, [x18, #PC_CURTHREAD] /* And the new pcb */ ldr x4, [x1, #TD_PCB] str x4, [x18, #PC_CURPCB] /* * Save the old context. */ ldr x4, [x0, #TD_PCB] /* Store the callee-saved registers */ stp x8, x9, [x4, #PCB_REGS + 8 * 8] stp x10, x11, [x4, #PCB_REGS + 10 * 8] stp x12, x13, [x4, #PCB_REGS + 12 * 8] stp x14, x15, [x4, #PCB_REGS + 14 * 8] stp x16, x17, [x4, #PCB_REGS + 16 * 8] stp x18, x19, [x4, #PCB_REGS + 18 * 8] stp x20, x21, [x4, #PCB_REGS + 20 * 8] stp x22, x23, [x4, #PCB_REGS + 22 * 8] stp x24, x25, [x4, #PCB_REGS + 24 * 8] stp x26, x27, [x4, #PCB_REGS + 26 * 8] stp x28, x29, [x4, #PCB_REGS + 28 * 8] str x30, [x4, #PCB_REGS + 30 * 8] /* And the old stack pointer */ mov x5, sp mrs x6, tpidr_el0 stp x5, x6, [x4, #PCB_SP] + /* If we were single stepping, disable it */ + ldr w5, [x4, #PCB_FLAGS] + clear_step_flag w5, x6 + #ifdef VFP mov x19, x0 mov x20, x1 mov x21, x2 /* Load the pcb address */ mov x1, x4 bl vfp_save_state mov x2, x21 mov x1, x20 mov x0, x19 #endif /* * Restore the saved context. */ ldr x4, [x1, #TD_PCB] /* * TODO: We may need to flush the cache here if switching * to a user process. */ /* Switch to the new pmap */ ldr x5, [x4, #PCB_L1ADDR] msr ttbr0_el1, x5 isb /* Invalidate the TLB */ dsb sy tlbi vmalle1is dsb sy isb /* * Release the old thread. This doesn't need to be a store-release * as the above dsb instruction will provide release semantics. */ str x2, [x0, #TD_LOCK] #if defined(SCHED_ULE) && defined(SMP) /* Spin if TD_LOCK points to a blocked_lock */ ldr x2, =_C_LABEL(blocked_lock) 1: ldar x3, [x1, #TD_LOCK] cmp x3, x2 b.eq 1b #endif + + /* If we are single stepping, enable it */ + ldr w5, [x4, #PCB_FLAGS] + set_step_flag w5, x6 /* Restore the registers */ ldp x5, x6, [x4, #PCB_SP] mov sp, x5 msr tpidr_el0, x6 ldp x8, x9, [x4, #PCB_REGS + 8 * 8] ldp x10, x11, [x4, #PCB_REGS + 10 * 8] ldp x12, x13, [x4, #PCB_REGS + 12 * 8] ldp x14, x15, [x4, #PCB_REGS + 14 * 8] ldp x16, x17, [x4, #PCB_REGS + 16 * 8] ldr x19, [x4, #PCB_REGS + 19 * 8] ldp x20, x21, [x4, #PCB_REGS + 20 * 8] ldp x22, x23, [x4, #PCB_REGS + 22 * 8] ldp x24, x25, [x4, #PCB_REGS + 24 * 8] ldp x26, x27, [x4, #PCB_REGS + 26 * 8] ldp x28, x29, [x4, #PCB_REGS + 28 * 8] ldr x30, [x4, #PCB_REGS + 30 * 8] str xzr, [x4, #PCB_REGS + 18 * 8] ret .Lcpu_switch_panic_str: .asciz "cpu_switch: %p\0" END(cpu_switch) ENTRY(fork_trampoline) mov x0, x8 mov x1, x9 mov x2, sp mov fp, #0 /* Stack traceback stops here. */ bl _C_LABEL(fork_exit) /* Restore sp and lr */ ldp x0, x1, [sp] msr sp_el0, x0 mov lr, x1 /* Restore the registers other than x0 and x1 */ ldp x2, x3, [sp, #TF_X + 2 * 8] ldp x4, x5, [sp, #TF_X + 4 * 8] ldp x6, x7, [sp, #TF_X + 6 * 8] ldp x8, x9, [sp, #TF_X + 8 * 8] ldp x10, x11, [sp, #TF_X + 10 * 8] ldp x12, x13, [sp, #TF_X + 12 * 8] ldp x14, x15, [sp, #TF_X + 14 * 8] ldp x16, x17, [sp, #TF_X + 16 * 8] ldr x19, [sp, #TF_X + 19 * 8] ldp x20, x21, [sp, #TF_X + 20 * 8] ldp x22, x23, [sp, #TF_X + 22 * 8] ldp x24, x25, [sp, #TF_X + 24 * 8] ldp x26, x27, [sp, #TF_X + 26 * 8] ldp x28, x29, [sp, #TF_X + 28 * 8] /* Skip x30 as it was restored above as lr */ /* * Disable interrupts to avoid * overwriting spsr_el1 by an IRQ exception. */ msr daifset, #2 /* Restore elr and spsr */ ldp x0, x1, [sp, #16] msr elr_el1, x0 msr spsr_el1, x1 /* Finally x0 and x1 */ ldp x0, x1, [sp, #TF_X + 0 * 8] ldr x18, [sp, #TF_X + 18 * 8] /* * No need for interrupts reenabling since PSR * will be set to the desired value anyway. */ eret END(fork_trampoline) ENTRY(savectx) /* Store the callee-saved registers */ stp x8, x9, [x0, #PCB_REGS + 8 * 8] stp x10, x11, [x0, #PCB_REGS + 10 * 8] stp x12, x13, [x0, #PCB_REGS + 12 * 8] stp x14, x15, [x0, #PCB_REGS + 14 * 8] stp x16, x17, [x0, #PCB_REGS + 16 * 8] stp x18, x19, [x0, #PCB_REGS + 18 * 8] stp x20, x21, [x0, #PCB_REGS + 20 * 8] stp x22, x23, [x0, #PCB_REGS + 22 * 8] stp x24, x25, [x0, #PCB_REGS + 24 * 8] stp x26, x27, [x0, #PCB_REGS + 26 * 8] stp x28, x29, [x0, #PCB_REGS + 28 * 8] str x30, [x0, #PCB_REGS + 30 * 8] /* And the old stack pointer */ mov x5, sp mrs x6, tpidr_el0 stp x5, x6, [x0, #PCB_SP] /* Store the VFP registers */ #ifdef VFP mov x28, lr mov x1, x0 /* move pcb to the correct register */ mov x0, xzr /* td = NULL */ bl vfp_save_state mov lr, x28 #endif ret END(savectx) Index: head/sys/arm64/arm64/trap.c =================================================================== --- head/sys/arm64/arm64/trap.c (revision 295141) +++ head/sys/arm64/arm64/trap.c (revision 295142) @@ -1,398 +1,407 @@ /*- * Copyright (c) 2014 Andrew Turner * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #ifdef KDB #include #endif #include #include #include #include #include #include #include #include #include #include #ifdef KDTRACE_HOOKS #include #endif #ifdef VFP #include #endif #ifdef KDB #include #endif #ifdef DDB #include #endif extern register_t fsu_intr_fault; /* Called from exception.S */ void do_el1h_sync(struct trapframe *); void do_el0_sync(struct trapframe *); void do_el0_error(struct trapframe *); static void print_registers(struct trapframe *frame); int (*dtrace_invop_jump_addr)(struct trapframe *); static __inline void call_trapsignal(struct thread *td, int sig, int code, void *addr) { ksiginfo_t ksi; ksiginfo_init_trap(&ksi); ksi.ksi_signo = sig; ksi.ksi_code = code; ksi.ksi_addr = addr; trapsignal(td, &ksi); } int cpu_fetch_syscall_args(struct thread *td, struct syscall_args *sa) { struct proc *p; register_t *ap; int nap; nap = 8; p = td->td_proc; ap = td->td_frame->tf_x; sa->code = td->td_frame->tf_x[8]; if (sa->code == SYS_syscall || sa->code == SYS___syscall) { sa->code = *ap++; nap--; } if (p->p_sysent->sv_mask) sa->code &= p->p_sysent->sv_mask; if (sa->code >= p->p_sysent->sv_size) sa->callp = &p->p_sysent->sv_table[0]; else sa->callp = &p->p_sysent->sv_table[sa->code]; sa->narg = sa->callp->sy_narg; memcpy(sa->args, ap, nap * sizeof(register_t)); if (sa->narg > nap) panic("ARM64TODO: Could we have more than 8 args?"); td->td_retval[0] = 0; td->td_retval[1] = 0; return (0); } #include "../../kern/subr_syscall.c" static void svc_handler(struct trapframe *frame) { struct syscall_args sa; struct thread *td; int error; td = curthread; - td->td_frame = frame; error = syscallenter(td, &sa); syscallret(td, error, &sa); } static void data_abort(struct trapframe *frame, uint64_t esr, uint64_t far, int lower) { struct vm_map *map; struct thread *td; struct proc *p; struct pcb *pcb; vm_prot_t ftype; vm_offset_t va; int error, sig, ucode; /* * According to the ARMv8-A rev. A.g, B2.10.5 "Load-Exclusive * and Store-Exclusive instruction usage restrictions", state * of the exclusive monitors after data abort exception is unknown. */ clrex(); #ifdef KDB if (kdb_active) { kdb_reenter(); return; } #endif td = curthread; pcb = td->td_pcb; /* * Special case for fuswintr and suswintr. These can't sleep so * handle them early on in the trap handler. */ if (__predict_false(pcb->pcb_onfault == (vm_offset_t)&fsu_intr_fault)) { frame->tf_elr = pcb->pcb_onfault; return; } KASSERT(td->td_md.md_spinlock_count == 0, ("data abort with spinlock held")); if (td->td_critnest != 0 || WITNESS_CHECK(WARN_SLEEPOK | WARN_GIANTOK, NULL, "Kernel page fault") != 0) { print_registers(frame); printf(" far: %16lx\n", far); printf(" esr: %.8lx\n", esr); panic("data abort in critical section or under mutex"); } p = td->td_proc; if (lower) map = &p->p_vmspace->vm_map; else { /* The top bit tells us which range to use */ if ((far >> 63) == 1) map = kernel_map; else map = &p->p_vmspace->vm_map; } va = trunc_page(far); ftype = ((esr >> 6) & 1) ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ; /* Fault in the page. */ error = vm_fault(map, va, ftype, VM_FAULT_NORMAL); if (error != KERN_SUCCESS) { if (lower) { sig = SIGSEGV; if (error == KERN_PROTECTION_FAILURE) ucode = SEGV_ACCERR; else ucode = SEGV_MAPERR; call_trapsignal(td, sig, ucode, (void *)far); } else { if (td->td_intr_nesting_level == 0 && pcb->pcb_onfault != 0) { frame->tf_x[0] = error; frame->tf_elr = pcb->pcb_onfault; return; } printf("Fatal data abort:\n"); print_registers(frame); printf(" far: %16lx\n", far); printf(" esr: %.8lx\n", esr); #ifdef KDB if (debugger_on_panic || kdb_active) if (kdb_trap(ESR_ELx_EXCEPTION(esr), 0, frame)) return; #endif panic("vm_fault failed: %lx", frame->tf_elr); } } if (lower) userret(td, frame); } static void print_registers(struct trapframe *frame) { u_int reg; for (reg = 0; reg < 31; reg++) { printf(" %sx%d: %16lx\n", (reg < 10) ? " " : "", reg, frame->tf_x[reg]); } printf(" sp: %16lx\n", frame->tf_sp); printf(" lr: %16lx\n", frame->tf_lr); printf(" elr: %16lx\n", frame->tf_elr); printf("spsr: %16lx\n", frame->tf_spsr); } void do_el1h_sync(struct trapframe *frame) { uint32_t exception; uint64_t esr, far; /* Read the esr register to get the exception details */ esr = READ_SPECIALREG(esr_el1); exception = ESR_ELx_EXCEPTION(esr); #ifdef KDTRACE_HOOKS if (dtrace_trap_func != NULL && (*dtrace_trap_func)(frame, exception)) return; #endif CTR4(KTR_TRAP, "do_el1_sync: curthread: %p, esr %lx, elr: %lx, frame: %p", curthread, esr, frame->tf_elr, frame); switch(exception) { case EXCP_FP_SIMD: case EXCP_TRAP_FP: print_registers(frame); printf(" esr: %.8lx\n", esr); panic("VFP exception in the kernel"); case EXCP_DATA_ABORT: far = READ_SPECIALREG(far_el1); intr_enable(); data_abort(frame, esr, far, 0); break; case EXCP_BRK: #ifdef KDTRACE_HOOKS if ((esr & ESR_ELx_ISS_MASK) == 0x40d && \ dtrace_invop_jump_addr != 0) { dtrace_invop_jump_addr(frame); break; } #endif /* FALLTHROUGH */ case EXCP_WATCHPT_EL1: case EXCP_SOFTSTP_EL1: #ifdef KDB kdb_trap(exception, 0, frame); #else panic("No debugger in kernel.\n"); #endif break; default: print_registers(frame); panic("Unknown kernel exception %x esr_el1 %lx\n", exception, esr); } } /* * The attempted execution of an instruction bit pattern that has no allocated * instruction results in an exception with an unknown reason. */ static void el0_excp_unknown(struct trapframe *frame) { struct thread *td; uint64_t far; td = curthread; far = READ_SPECIALREG(far_el1); call_trapsignal(td, SIGILL, ILL_ILLTRP, (void *)far); userret(td, frame); } void do_el0_sync(struct trapframe *frame) { struct thread *td; uint32_t exception; uint64_t esr, far; /* Check we have a sane environment when entering from userland */ KASSERT((uintptr_t)get_pcpu() >= VM_MIN_KERNEL_ADDRESS, ("Invalid pcpu address from userland: %p (tpidr %lx)", get_pcpu(), READ_SPECIALREG(tpidr_el1))); + td = curthread; + td->td_frame = frame; + esr = READ_SPECIALREG(esr_el1); exception = ESR_ELx_EXCEPTION(esr); switch (exception) { case EXCP_INSN_ABORT_L: case EXCP_DATA_ABORT_L: case EXCP_DATA_ABORT: far = READ_SPECIALREG(far_el1); } intr_enable(); CTR4(KTR_TRAP, "do_el0_sync: curthread: %p, esr %lx, elr: %lx, frame: %p", curthread, esr, frame->tf_elr, frame); switch(exception) { case EXCP_FP_SIMD: case EXCP_TRAP_FP: #ifdef VFP vfp_restore_state(); #else panic("VFP exception in userland"); #endif break; case EXCP_SVC: svc_handler(frame); break; case EXCP_INSN_ABORT_L: case EXCP_DATA_ABORT_L: case EXCP_DATA_ABORT: data_abort(frame, esr, far, 1); break; case EXCP_UNKNOWN: el0_excp_unknown(frame); break; case EXCP_PC_ALIGN: - td = curthread; call_trapsignal(td, SIGBUS, BUS_ADRALN, (void *)frame->tf_elr); userret(td, frame); break; case EXCP_BRK: - td = curthread; call_trapsignal(td, SIGTRAP, TRAP_BRKPT, (void *)frame->tf_elr); + userret(td, frame); + break; + case EXCP_SOFTSTP_EL0: + td->td_frame->tf_spsr &= ~PSR_SS; + td->td_pcb->pcb_flags &= ~PCB_SINGLE_STEP; + WRITE_SPECIALREG(MDSCR_EL1, + READ_SPECIALREG(MDSCR_EL1) & ~DBG_MDSCR_SS); + call_trapsignal(td, SIGTRAP, TRAP_TRACE, + (void *)frame->tf_elr); userret(td, frame); break; default: print_registers(frame); panic("Unknown userland exception %x esr_el1 %lx\n", exception, esr); } } void do_el0_error(struct trapframe *frame) { panic("ARM64TODO: do_el0_error"); } Index: head/sys/arm64/include/armreg.h =================================================================== --- head/sys/arm64/include/armreg.h (revision 295141) +++ head/sys/arm64/include/armreg.h (revision 295142) @@ -1,394 +1,395 @@ /*- * Copyright (c) 2013, 2014 Andrew Turner * Copyright (c) 2015 The FreeBSD Foundation * All rights reserved. * * This software was developed by Andrew Turner under * sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _MACHINE_ARMREG_H_ #define _MACHINE_ARMREG_H_ #define INSN_SIZE 4 #define READ_SPECIALREG(reg) \ ({ uint64_t val; \ __asm __volatile("mrs %0, " __STRING(reg) : "=&r" (val)); \ val; \ }) #define WRITE_SPECIALREG(reg, val) \ __asm __volatile("msr " __STRING(reg) ", %0" : : "r"((uint64_t)val)) /* CNTHCTL_EL2 - Counter-timer Hypervisor Control register */ #define CNTHCTL_EVNTI_MASK (0xf << 4) /* Bit to trigger event stream */ #define CNTHCTL_EVNTDIR (1 << 3) /* Control transition trigger bit */ #define CNTHCTL_EVNTEN (1 << 2) /* Enable event stream */ #define CNTHCTL_EL1PCEN (1 << 1) /* Allow EL0/1 physical timer access */ #define CNTHCTL_EL1PCTEN (1 << 0) /*Allow EL0/1 physical counter access*/ /* CPACR_EL1 */ #define CPACR_FPEN_MASK (0x3 << 20) #define CPACR_FPEN_TRAP_ALL1 (0x0 << 20) /* Traps from EL0 and EL1 */ #define CPACR_FPEN_TRAP_EL0 (0x1 << 20) /* Traps from EL0 */ #define CPACR_FPEN_TRAP_ALL2 (0x2 << 20) /* Traps from EL0 and EL1 */ #define CPACR_FPEN_TRAP_NONE (0x3 << 20) /* No traps */ #define CPACR_TTA (0x1 << 28) /* CTR_EL0 - Cache Type Register */ #define CTR_DLINE_SHIFT 16 #define CTR_DLINE_MASK (0xf << CTR_DLINE_SHIFT) #define CTR_DLINE_SIZE(reg) (((reg) & CTR_DLINE_MASK) >> CTR_DLINE_SHIFT) #define CTR_ILINE_SHIFT 0 #define CTR_ILINE_MASK (0xf << CTR_ILINE_SHIFT) #define CTR_ILINE_SIZE(reg) (((reg) & CTR_ILINE_MASK) >> CTR_ILINE_SHIFT) /* ESR_ELx */ #define ESR_ELx_ISS_MASK 0x00ffffff #define ISS_INSN_FnV (0x01 << 10) #define ISS_INSN_EA (0x01 << 9) #define ISS_INSN_S1PTW (0x01 << 7) #define ISS_INSN_IFSC_MASK (0x1f << 0) #define ISS_DATA_ISV (0x01 << 24) #define ISS_DATA_SAS_MASK (0x03 << 22) #define ISS_DATA_SSE (0x01 << 21) #define ISS_DATA_SRT_MASK (0x1f << 16) #define ISS_DATA_SF (0x01 << 15) #define ISS_DATA_AR (0x01 << 14) #define ISS_DATA_FnV (0x01 << 10) #define ISS_DATa_EA (0x01 << 9) #define ISS_DATa_CM (0x01 << 8) #define ISS_INSN_S1PTW (0x01 << 7) #define ISS_DATa_WnR (0x01 << 6) #define ISS_DATA_DFSC_MASK (0x1f << 0) #define ESR_ELx_IL (0x01 << 25) #define ESR_ELx_EC_SHIFT 26 #define ESR_ELx_EC_MASK (0x3f << 26) #define ESR_ELx_EXCEPTION(esr) (((esr) & ESR_ELx_EC_MASK) >> ESR_ELx_EC_SHIFT) #define EXCP_UNKNOWN 0x00 /* Unkwn exception */ #define EXCP_FP_SIMD 0x07 /* VFP/SIMD trap */ #define EXCP_ILL_STATE 0x0e /* Illegal execution state */ #define EXCP_SVC 0x15 /* SVC trap */ #define EXCP_MSR 0x18 /* MSR/MRS trap */ #define EXCP_INSN_ABORT_L 0x20 /* Instruction abort, from lower EL */ #define EXCP_INSN_ABORT 0x21 /* Instruction abort, from same EL */ #define EXCP_PC_ALIGN 0x22 /* PC alignment fault */ #define EXCP_DATA_ABORT_L 0x24 /* Data abort, from lower EL */ #define EXCP_DATA_ABORT 0x25 /* Data abort, from same EL */ #define EXCP_SP_ALIGN 0x26 /* SP slignment fault */ #define EXCP_TRAP_FP 0x2c /* Trapped FP exception */ #define EXCP_SERROR 0x2f /* SError interrupt */ +#define EXCP_SOFTSTP_EL0 0x32 /* Software Step, from lower EL */ #define EXCP_SOFTSTP_EL1 0x33 /* Software Step, from same EL */ #define EXCP_WATCHPT_EL1 0x35 /* Watchpoint, from same EL */ #define EXCP_BRK 0x3c /* Breakpoint */ /* ICC_CTLR_EL1 */ #define ICC_CTLR_EL1_EOIMODE (1U << 1) /* ICC_IAR1_EL1 */ #define ICC_IAR1_EL1_SPUR (0x03ff) /* ICC_IGRPEN0_EL1 */ #define ICC_IGRPEN0_EL1_EN (1U << 0) /* ICC_PMR_EL1 */ #define ICC_PMR_EL1_PRIO_MASK (0xFFUL) /* ICC_SRE_EL1 */ #define ICC_SRE_EL1_SRE (1U << 0) /* ICC_SRE_EL2 */ #define ICC_SRE_EL2_EN (1U << 3) /* ID_AA64DFR0_EL1 */ #define ID_AA64DFR0_MASK 0xf0f0ffff #define ID_AA64DFR0_DEBUG_VER_SHIFT 0 #define ID_AA64DFR0_DEBUG_VER_MASK (0xf << ID_AA64DFR0_DEBUG_VER_SHIFT) #define ID_AA64DFR0_DEBUG_VER(x) ((x) & ID_AA64DFR0_DEBUG_VER_MASK) #define ID_AA64DFR0_DEBUG_VER_8 (0x6 << ID_AA64DFR0_DEBUG_VER_SHIFT) #define ID_AA64DFR0_TRACE_VER_SHIFT 4 #define ID_AA64DFR0_TRACE_VER_MASK (0xf << ID_AA64DFR0_TRACE_VER_SHIFT) #define ID_AA64DFR0_TRACE_VER(x) ((x) & ID_AA64DFR0_TRACE_VER_MASK) #define ID_AA64DFR0_TRACE_VER_NONE (0x0 << ID_AA64DFR0_TRACE_VER_SHIFT) #define ID_AA64DFR0_TRACE_VER_IMPL (0x1 << ID_AA64DFR0_TRACE_VER_SHIFT) #define ID_AA64DFR0_PMU_VER_SHIFT 8 #define ID_AA64DFR0_PMU_VER_MASK (0xf << ID_AA64DFR0_PMU_VER_SHIFT) #define ID_AA64DFR0_PMU_VER(x) ((x) & ID_AA64DFR0_PMU_VER_MASK) #define ID_AA64DFR0_PMU_VER_NONE (0x0 << ID_AA64DFR0_PMU_VER_SHIFT) #define ID_AA64DFR0_PMU_VER_3 (0x1 << ID_AA64DFR0_PMU_VER_SHIFT) #define ID_AA64DFR0_PMU_VER_IMPL (0xf << ID_AA64DFR0_PMU_VER_SHIFT) #define ID_AA64DFR0_BRPS_SHIFT 12 #define ID_AA64DFR0_BRPS_MASK (0xf << ID_AA64DFR0_BRPS_SHIFT) #define ID_AA64DFR0_BRPS(x) \ ((((x) >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) + 1) #define ID_AA64DFR0_WRPS_SHIFT 20 #define ID_AA64DFR0_WRPS_MASK (0xf << ID_AA64DFR0_WRPS_SHIFT) #define ID_AA64DFR0_WRPS(x) \ ((((x) >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) + 1) #define ID_AA64DFR0_CTX_CMPS_SHIFT 28 #define ID_AA64DFR0_CTX_CMPS_MASK (0xf << ID_AA64DFR0_CTX_CMPS_SHIFT) #define ID_AA64DFR0_CTX_CMPS(x) \ ((((x) >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) + 1) /* ID_AA64ISAR0_EL1 */ #define ID_AA64ISAR0_MASK 0x000ffff0 #define ID_AA64ISAR0_AES_SHIFT 4 #define ID_AA64ISAR0_AES_MASK (0xf << ID_AA64ISAR0_AES_SHIFT) #define ID_AA64ISAR0_AES(x) ((x) & ID_AA64ISAR0_AES_MASK) #define ID_AA64ISAR0_AES_NONE (0x0 << ID_AA64ISAR0_AES_SHIFT) #define ID_AA64ISAR0_AES_BASE (0x1 << ID_AA64ISAR0_AES_SHIFT) #define ID_AA64ISAR0_AES_PMULL (0x2 << ID_AA64ISAR0_AES_SHIFT) #define ID_AA64ISAR0_SHA1_SHIFT 8 #define ID_AA64ISAR0_SHA1_MASK (0xf << ID_AA64ISAR0_SHA1_SHIFT) #define ID_AA64ISAR0_SHA1(x) ((x) & ID_AA64ISAR0_SHA1_MASK) #define ID_AA64ISAR0_SHA1_NONE (0x0 << ID_AA64ISAR0_SHA1_SHIFT) #define ID_AA64ISAR0_SHA1_BASE (0x1 << ID_AA64ISAR0_SHA1_SHIFT) #define ID_AA64ISAR0_SHA2_SHIFT 12 #define ID_AA64ISAR0_SHA2_MASK (0xf << ID_AA64ISAR0_SHA2_SHIFT) #define ID_AA64ISAR0_SHA2(x) ((x) & ID_AA64ISAR0_SHA2_MASK) #define ID_AA64ISAR0_SHA2_NONE (0x0 << ID_AA64ISAR0_SHA2_SHIFT) #define ID_AA64ISAR0_SHA2_BASE (0x1 << ID_AA64ISAR0_SHA2_SHIFT) #define ID_AA64ISAR0_CRC32_SHIFT 16 #define ID_AA64ISAR0_CRC32_MASK (0xf << ID_AA64ISAR0_CRC32_SHIFT) #define ID_AA64ISAR0_CRC32(x) ((x) & ID_AA64ISAR0_CRC32_MASK) #define ID_AA64ISAR0_CRC32_NONE (0x0 << ID_AA64ISAR0_CRC32_SHIFT) #define ID_AA64ISAR0_CRC32_BASE (0x1 << ID_AA64ISAR0_CRC32_SHIFT) /* ID_AA64MMFR0_EL1 */ #define ID_AA64MMFR0_MASK 0xffffffff #define ID_AA64MMFR0_PA_RANGE_SHIFT 0 #define ID_AA64MMFR0_PA_RANGE_MASK (0xf << ID_AA64MMFR0_PA_RANGE_SHIFT) #define ID_AA64MMFR0_PA_RANGE(x) ((x) & ID_AA64MMFR0_PA_RANGE_MASK) #define ID_AA64MMFR0_PA_RANGE_4G (0x0 << ID_AA64MMFR0_PA_RANGE_SHIFT) #define ID_AA64MMFR0_PA_RANGE_64G (0x1 << ID_AA64MMFR0_PA_RANGE_SHIFT) #define ID_AA64MMFR0_PA_RANGE_1T (0x2 << ID_AA64MMFR0_PA_RANGE_SHIFT) #define ID_AA64MMFR0_PA_RANGE_4T (0x3 << ID_AA64MMFR0_PA_RANGE_SHIFT) #define ID_AA64MMFR0_PA_RANGE_16T (0x4 << ID_AA64MMFR0_PA_RANGE_SHIFT) #define ID_AA64MMFR0_PA_RANGE_256T (0x5 << ID_AA64MMFR0_PA_RANGE_SHIFT) #define ID_AA64MMFR0_ASID_BITS_SHIFT 4 #define ID_AA64MMFR0_ASID_BITS_MASK (0xf << ID_AA64MMFR0_ASID_BITS_SHIFT) #define ID_AA64MMFR0_ASID_BITS(x) ((x) & ID_AA64MMFR0_ASID_BITS_MASK) #define ID_AA64MMFR0_ASID_BITS_8 (0x0 << ID_AA64MMFR0_ASID_BITS_SHIFT) #define ID_AA64MMFR0_ASID_BITS_16 (0x2 << ID_AA64MMFR0_ASID_BITS_SHIFT) #define ID_AA64MMFR0_BIGEND_SHIFT 8 #define ID_AA64MMFR0_BIGEND_MASK (0xf << ID_AA64MMFR0_BIGEND_SHIFT) #define ID_AA64MMFR0_BIGEND(x) ((x) & ID_AA64MMFR0_BIGEND_MASK) #define ID_AA64MMFR0_BIGEND_FIXED (0x0 << ID_AA64MMFR0_BIGEND_SHIFT) #define ID_AA64MMFR0_BIGEND_MIXED (0x1 << ID_AA64MMFR0_BIGEND_SHIFT) #define ID_AA64MMFR0_S_NS_MEM_SHIFT 12 #define ID_AA64MMFR0_S_NS_MEM_MASK (0xf << ID_AA64MMFR0_S_NS_MEM_SHIFT) #define ID_AA64MMFR0_S_NS_MEM(x) ((x) & ID_AA64MMFR0_S_NS_MEM_MASK) #define ID_AA64MMFR0_S_NS_MEM_NONE (0x0 << ID_AA64MMFR0_S_NS_MEM_SHIFT) #define ID_AA64MMFR0_S_NS_MEM_DISTINCT (0x1 << ID_AA64MMFR0_S_NS_MEM_SHIFT) #define ID_AA64MMFR0_BIGEND_EL0_SHIFT 16 #define ID_AA64MMFR0_BIGEND_EL0_MASK (0xf << ID_AA64MMFR0_BIGEND_EL0_SHIFT) #define ID_AA64MMFR0_BIGEND_EL0(x) ((x) & ID_AA64MMFR0_BIGEND_EL0_MASK) #define ID_AA64MMFR0_BIGEND_EL0_FIXED (0x0 << ID_AA64MMFR0_BIGEND_EL0_SHIFT) #define ID_AA64MMFR0_BIGEND_EL0_MIXED (0x1 << ID_AA64MMFR0_BIGEND_EL0_SHIFT) #define ID_AA64MMFR0_TGRAN16_SHIFT 20 #define ID_AA64MMFR0_TGRAN16_MASK (0xf << ID_AA64MMFR0_TGRAN16_SHIFT) #define ID_AA64MMFR0_TGRAN16(x) ((x) & ID_AA64MMFR0_TGRAN16_MASK) #define ID_AA64MMFR0_TGRAN16_NONE (0x0 << ID_AA64MMFR0_TGRAN16_SHIFT) #define ID_AA64MMFR0_TGRAN16_IMPL (0x1 << ID_AA64MMFR0_TGRAN16_SHIFT) #define ID_AA64MMFR0_TGRAN64_SHIFT 24 #define ID_AA64MMFR0_TGRAN64_MASK (0xf << ID_AA64MMFR0_TGRAN64_SHIFT) #define ID_AA64MMFR0_TGRAN64(x) ((x) & ID_AA64MMFR0_TGRAN64_MASK) #define ID_AA64MMFR0_TGRAN64_IMPL (0x0 << ID_AA64MMFR0_TGRAN64_SHIFT) #define ID_AA64MMFR0_TGRAN64_NONE (0xf << ID_AA64MMFR0_TGRAN64_SHIFT) #define ID_AA64MMFR0_TGRAN4_SHIFT 28 #define ID_AA64MMFR0_TGRAN4_MASK (0xf << ID_AA64MMFR0_TGRAN4_SHIFT) #define ID_AA64MMFR0_TGRAN4(x) ((x) & ID_AA64MMFR0_TGRAN4_MASK) #define ID_AA64MMFR0_TGRAN4_IMPL (0x0 << ID_AA64MMFR0_TGRAN4_SHIFT) #define ID_AA64MMFR0_TGRAN4_NONE (0xf << ID_AA64MMFR0_TGRAN4_SHIFT) /* ID_AA64PFR0_EL1 */ #define ID_AA64PFR0_MASK 0x0fffffff #define ID_AA64PFR0_EL0_SHIFT 0 #define ID_AA64PFR0_EL0_MASK (0xf << ID_AA64PFR0_EL0_SHIFT) #define ID_AA64PFR0_EL0(x) ((x) & ID_AA64PFR0_EL0_MASK) #define ID_AA64PFR0_EL0_64 (1 << ID_AA64PFR0_EL0_SHIFT) #define ID_AA64PFR0_EL0_64_32 (2 << ID_AA64PFR0_EL0_SHIFT) #define ID_AA64PFR0_EL1_SHIFT 4 #define ID_AA64PFR0_EL1_MASK (0xf << ID_AA64PFR0_EL1_SHIFT) #define ID_AA64PFR0_EL1(x) ((x) & ID_AA64PFR0_EL1_MASK) #define ID_AA64PFR0_EL1_64 (1 << ID_AA64PFR0_EL1_SHIFT) #define ID_AA64PFR0_EL1_64_32 (2 << ID_AA64PFR0_EL1_SHIFT) #define ID_AA64PFR0_EL2_SHIFT 8 #define ID_AA64PFR0_EL2_MASK (0xf << ID_AA64PFR0_EL2_SHIFT) #define ID_AA64PFR0_EL2(x) ((x) & ID_AA64PFR0_EL2_MASK) #define ID_AA64PFR0_EL2_NONE (0 << ID_AA64PFR0_EL2_SHIFT) #define ID_AA64PFR0_EL2_64 (1 << ID_AA64PFR0_EL2_SHIFT) #define ID_AA64PFR0_EL2_64_32 (2 << ID_AA64PFR0_EL2_SHIFT) #define ID_AA64PFR0_EL3_SHIFT 12 #define ID_AA64PFR0_EL3_MASK (0xf << ID_AA64PFR0_EL3_SHIFT) #define ID_AA64PFR0_EL3(x) ((x) & ID_AA64PFR0_EL3_MASK) #define ID_AA64PFR0_EL3_NONE (0 << ID_AA64PFR0_EL3_SHIFT) #define ID_AA64PFR0_EL3_64 (1 << ID_AA64PFR0_EL3_SHIFT) #define ID_AA64PFR0_EL3_64_32 (2 << ID_AA64PFR0_EL3_SHIFT) #define ID_AA64PFR0_FP_SHIFT 16 #define ID_AA64PFR0_FP_MASK (0xf << ID_AA64PFR0_FP_SHIFT) #define ID_AA64PFR0_FP(x) ((x) & ID_AA64PFR0_FP_MASK) #define ID_AA64PFR0_FP_IMPL (0x0 << ID_AA64PFR0_FP_SHIFT) #define ID_AA64PFR0_FP_NONE (0xf << ID_AA64PFR0_FP_SHIFT) #define ID_AA64PFR0_ADV_SIMD_SHIFT 20 #define ID_AA64PFR0_ADV_SIMD_MASK (0xf << ID_AA64PFR0_ADV_SIMD_SHIFT) #define ID_AA64PFR0_ADV_SIMD(x) ((x) & ID_AA64PFR0_ADV_SIMD_MASK) #define ID_AA64PFR0_ADV_SIMD_IMPL (0x0 << ID_AA64PFR0_ADV_SIMD_SHIFT) #define ID_AA64PFR0_ADV_SIMD_NONE (0xf << ID_AA64PFR0_ADV_SIMD_SHIFT) #define ID_AA64PFR0_GIC_BITS 0x4 /* Number of bits in GIC field */ #define ID_AA64PFR0_GIC_SHIFT 24 #define ID_AA64PFR0_GIC_MASK (0xf << ID_AA64PFR0_GIC_SHIFT) #define ID_AA64PFR0_GIC(x) ((x) & ID_AA64PFR0_GIC_MASK) #define ID_AA64PFR0_GIC_CPUIF_NONE (0x0 << ID_AA64PFR0_GIC_SHIFT) #define ID_AA64PFR0_GIC_CPUIF_EN (0x1 << ID_AA64PFR0_GIC_SHIFT) /* MAIR_EL1 - Memory Attribute Indirection Register */ #define MAIR_ATTR_MASK(idx) (0xff << ((n)* 8)) #define MAIR_ATTR(attr, idx) ((attr) << ((idx) * 8)) /* SCTLR_EL1 - System Control Register */ #define SCTLR_RES0 0xc8222400 /* Reserved, write 0 */ #define SCTLR_RES1 0x30d00800 /* Reserved, write 1 */ #define SCTLR_M 0x00000001 #define SCTLR_A 0x00000002 #define SCTLR_C 0x00000004 #define SCTLR_SA 0x00000008 #define SCTLR_SA0 0x00000010 #define SCTLR_CP15BEN 0x00000020 #define SCTLR_THEE 0x00000040 #define SCTLR_ITD 0x00000080 #define SCTLR_SED 0x00000100 #define SCTLR_UMA 0x00000200 #define SCTLR_I 0x00001000 #define SCTLR_DZE 0x00004000 #define SCTLR_UCT 0x00008000 #define SCTLR_nTWI 0x00010000 #define SCTLR_nTWE 0x00040000 #define SCTLR_WXN 0x00080000 #define SCTLR_EOE 0x01000000 #define SCTLR_EE 0x02000000 #define SCTLR_UCI 0x04000000 /* SPSR_EL1 */ /* * When the exception is taken in AArch64: * M[4] is 0 for AArch64 mode * M[3:2] is the exception level * M[1] is unused * M[0] is the SP select: * 0: always SP0 * 1: current ELs SP */ #define PSR_M_EL0t 0x00000000 #define PSR_M_EL1t 0x00000004 #define PSR_M_EL1h 0x00000005 #define PSR_M_EL2t 0x00000008 #define PSR_M_EL2h 0x00000009 #define PSR_M_MASK 0x0000001f #define PSR_F 0x00000040 #define PSR_I 0x00000080 #define PSR_A 0x00000100 #define PSR_D 0x00000200 #define PSR_IL 0x00100000 #define PSR_SS 0x00200000 #define PSR_V 0x10000000 #define PSR_C 0x20000000 #define PSR_Z 0x40000000 #define PSR_N 0x80000000 /* TCR_EL1 - Translation Control Register */ #define TCR_ASID_16 (1 << 36) #define TCR_IPS_SHIFT 32 #define TCR_IPS_32BIT (0 << TCR_IPS_SHIFT) #define TCR_IPS_36BIT (1 << TCR_IPS_SHIFT) #define TCR_IPS_40BIT (2 << TCR_IPS_SHIFT) #define TCR_IPS_42BIT (3 << TCR_IPS_SHIFT) #define TCR_IPS_44BIT (4 << TCR_IPS_SHIFT) #define TCR_IPS_48BIT (5 << TCR_IPS_SHIFT) #define TCR_TG1_SHIFT 30 #define TCR_TG1_16K (1 << TCR_TG1_SHIFT) #define TCR_TG1_4K (2 << TCR_TG1_SHIFT) #define TCR_TG1_64K (3 << TCR_TG1_SHIFT) #define TCR_SH1_SHIFT 28 #define TCR_SH1_IS (0x3UL << TCR_SH1_SHIFT) #define TCR_ORGN1_SHIFT 26 #define TCR_ORGN1_WBWA (0x1UL << TCR_ORGN1_SHIFT) #define TCR_IRGN1_SHIFT 24 #define TCR_IRGN1_WBWA (0x1UL << TCR_IRGN1_SHIFT) #define TCR_SH0_SHIFT 12 #define TCR_SH0_IS (0x3UL << TCR_SH0_SHIFT) #define TCR_ORGN0_SHIFT 10 #define TCR_ORGN0_WBWA (0x1UL << TCR_ORGN0_SHIFT) #define TCR_IRGN0_SHIFT 8 #define TCR_IRGN0_WBWA (0x1UL << TCR_IRGN0_SHIFT) #define TCR_CACHE_ATTRS ((TCR_IRGN0_WBWA | TCR_IRGN1_WBWA) |\ (TCR_ORGN0_WBWA | TCR_ORGN1_WBWA)) #ifdef SMP #define TCR_SMP_ATTRS (TCR_SH0_IS | TCR_SH1_IS) #else #define TCR_SMP_ATTRS 0 #endif #define TCR_T1SZ_SHIFT 16 #define TCR_T0SZ_SHIFT 0 #define TCR_T1SZ(x) ((x) << TCR_T1SZ_SHIFT) #define TCR_T0SZ(x) ((x) << TCR_T0SZ_SHIFT) #define TCR_TxSZ(x) (TCR_T1SZ(x) | TCR_T0SZ(x)) /* Saved Program Status Register */ #define DBG_SPSR_SS (0x1 << 21) /* Monitor Debug System Control Register */ #define DBG_MDSCR_SS (0x1 << 0) #define DBG_MDSCR_KDE (0x1 << 13) #define DBG_MDSCR_MDE (0x1 << 15) /* Perfomance Monitoring Counters */ #define PMCR_E (1 << 0) /* Enable all counters */ #define PMCR_P (1 << 1) /* Reset all counters */ #define PMCR_C (1 << 2) /* Clock counter reset */ #define PMCR_D (1 << 3) /* CNTR counts every 64 clk cycles */ #define PMCR_X (1 << 4) /* Export to ext. monitoring (ETM) */ #define PMCR_DP (1 << 5) /* Disable CCNT if non-invasive debug*/ #define PMCR_LC (1 << 6) /* Long cycle count enable */ #define PMCR_IMP_SHIFT 24 /* Implementer code */ #define PMCR_IMP_MASK (0xff << PMCR_IMP_SHIFT) #define PMCR_IDCODE_SHIFT 16 /* Identification code */ #define PMCR_IDCODE_MASK (0xff << PMCR_IDCODE_SHIFT) #define PMCR_IDCODE_CORTEX_A57 0x01 #define PMCR_IDCODE_CORTEX_A72 0x02 #define PMCR_IDCODE_CORTEX_A53 0x03 #define PMCR_N_SHIFT 11 /* Number of counters implemented */ #define PMCR_N_MASK (0x1f << PMCR_N_SHIFT) #endif /* !_MACHINE_ARMREG_H_ */ Index: head/sys/arm64/include/pcb.h =================================================================== --- head/sys/arm64/include/pcb.h (revision 295141) +++ head/sys/arm64/include/pcb.h (revision 295142) @@ -1,64 +1,68 @@ /*- * Copyright (c) 2001 Jake Burkholder. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _MACHINE_PCB_H_ #define _MACHINE_PCB_H_ #ifndef LOCORE struct trapframe; #define PCB_LR 30 struct pcb { uint64_t pcb_x[31]; uint64_t pcb_pc; /* These two need to be in order as we access them together */ uint64_t pcb_sp; uint64_t pcb_tpidr_el0; vm_offset_t pcb_l1addr; /* Fault handler, the error value is passed in x0 */ vm_offset_t pcb_onfault; + u_int pcb_flags; +#define PCB_SINGLE_STEP_SHIFT 0 +#define PCB_SINGLE_STEP (1 << PCB_SINGLE_STEP_SHIFT) + /* Place last to simplify the asm to access the rest if the struct */ __uint128_t pcb_vfp[32]; uint32_t pcb_fpcr; uint32_t pcb_fpsr; int pcb_fpflags; #define PCB_FP_STARTED 0x01 u_int pcb_vfpcpu; /* Last cpu this thread ran VFP code */ }; #ifdef _KERNEL void makectx(struct trapframe *tf, struct pcb *pcb); int savectx(struct pcb *pcb) __returns_twice; #endif #endif /* !LOCORE */ #endif /* !_MACHINE_PCB_H_ */